Development of Organotitanium Reagents: Applications of Titanium Arylamine, Enolate and Enamine Derivatives in Organic Synthesis

A Thesis Submitted for the Degree of DOCTOR OF PHILOSOPHY

By
Kishorebabu Neela

SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD HYDERABAD 500 046 INDIA

July 2006

To
My Teachers
&
Family members

School of Chemistry University of Hyderabad Central University P. O. Hyderabad 500 046 India

Statement

I hereby declare that the matter embodied in this thesis is the result of investigations carried out by me in the School of Chemistry, University of Hyderabad, Hyderabad, under the supervision of Professor M. Periasamy.

In keeping with the general practice of reporting scientific observations, due acknowledgement has been made wherever the work described is based on the findings of other investigators.

KISHOREBABU NEELA

School of Chemistry University of Hyderabad Central University P. O. Hyderabad 500 046 India

Certificate

Certified that the work embodied in this thesis entitled 'Development of Organotitanium Reagents: Applications of Titanium Arylamine, Enolate and Enamine Derivatives in Organic Synthesis' has been carried out by Mr. Kishorebabu Neela, under my supervision and the same has not been submitted elsewhere for a Degree.

PROFESSOR M. PERIASAMY (THESIS SUPERVISOR)

DEAN SCHOOL OF CHEMISTRY

Acknowledgements

I wish to express my deep sense of gratitude with profound respect to my supervisor **Prof. M. Periasamy** for his inspiring guidance, constant encouragement and personal motivation throughout my tenure here. I will always be indebted to him for this.

I am grateful to Prof. M. Nagarajan, Prof. G. R. Desiraju and Prof. E. D. Jemmis, Deans, School of Chemistry, for providing all facilities to carry out my research work. I thank Prof. D. Basavaiah for his generous help in many ways. I would like to place on record my appreciation and gratitude to the faculty members of the School of Chemistry for their help throughout my stay here.

I would like to thank the Director, IICT, Hyderabad and Dr. M. Vairamani, Mass Spectroscopy group, IICT, for providing the mass spectra for some of the compounds.

I would like to thank my colleagues Dr. K. N. Jaya Kumar and Mr. P. Vairaprakash for their help and extreme cooperation during my thesis work. I extend my heartfelt thanks to my past and present labmates Dr. V. Dharma Rao, Dr. G. Srinivas, Dr. S. Sivakumar, Dr. N. Sampath Kumar, Mr. G. V. Karunakar, Dr. A. Mukkanti, Dr. M. Seenivasaperumal, Dr. M. Narsi Reddy, Dr. S. Suresh, Dr. M. Padmaja, Mr. D. Shyam Raj, Mr. G. P. Muthukumara Gopal, Mr. Shaik Anwar, Mr. S. Selva Ganesan, Mr. S. Sathish Kumar, Mr. M. Nagaraju, Mr. B. Mallesh and Mr. N. Sanjeeva Kumar for creating a pleasant work atmosphere.

All the research scholars of the School of Chemistry have been extremely helpful and I thank them all. A special note of thanks to Mr. Jorly and Mr. Prasad for their timely help regarding my research work. I also thank all of my friends in this campus that made my stay a memorable one.

I would like to thank Mr. Kishore, Mr. Praveen, Mr. Santhosh Kumar, Mr. Nataraj, Mr. Ravi Prakash, Mr. Shyam, Mr. Jaya Raju, Mr. Rama Krishna, Mr. Ravi, Mr. Masthan, Mr. Sudeep, Mr. Viswanathan, Mr. Joseph, Mr. Katema and all others for their prayers during my stay in this campus. I thank Mr. Dandamudi Lenin Babu, Mr. Nageswera Rao and Mr. Israel for their help and encouragement.

I wish to express my deep sense of gratitude to Pastor Abraham K. D. S. and all the church members (House of Prayer, Amberpet) for their heartfull prayers.

I thank Mr. Raghavaiah for his help in X-ray data collection. All the non-teaching staff of the School of Chemistry has been helpful, I thank them all. Mr. S. Satyanarayana, Mr. V. Bhaskar Rao, Mrs. Vijaya Lakshmi, Mrs. Asia Parwez, Mr. K. R. B. V. Prasad, Mr. Shetty, Mr. Vijay, Mr. Vijaya Bhaskar, Mr. Ramana, Mr. Joseph, Mr. Santosh and Mr. Rangaiah are a few to mention.

I should recall here, the kind of training I received from my elementary and high school teachers that laid a strong foundation for whatever I am today and I thank them all.

I thank all of my friends from my native place, 10th, +2 classmates, B.Sc and M.Sc classmates for their encouragement.

I wish to extend my sincere thanks to the University authorities for providing all the necessary facilities for this work. The X-ray crystallographic data were collected in the National Single Crystal X-ray facility funded by DST, New Delhi.

Finally, I would like to thank the CSIR for the financial support during my tenure.

Kishorebabu Neela

Abbreviations

Ac acetyl

acac acetylacetonate

aq. aqueous

Ar aryl

ArM arylmetal

binap 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl

Bn benzyl

BTMG *t*-butyl 1,1,3,3-tetramethylguanidine

Bu butyl cat. catalytic

COD 1,5-cyclooctadiene
Cp cyclopentadienyl

dba dibenzylideneacetone

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCA 9,10-dicyanoanthracene

DCM dichloromethane

DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

DMAA *N,N*-dimethylacetamide
DME 1,2-dimethoxyethane

DMF *N,N*-dimethylformamide

dppb 1,2-bis(diphenylphosphino)benzenedppe 1,2-bis(diphenylphosphino)ethane

dppf 1,2-bis(diphenylphosphino)ferrocene

dr diastereomeric ratio

E electrophile

ee enantiomeric excess

EI electron impact

eq. equation

equiv. equivalent

er enantiomeric ratio

Et ethyl

FG Functional Group

HMPA hexamethylphosphoric triamide

HQ-Cl chlorohydroquinone

ⁱPr isopropyl

LiHMDS lithium hexamethyldisilazane

liq. liquid
Me methyl

mp melting point

M metal

Ms methanesulfonyl

n- primary

NMP *N*-methylpyrrolidone

NPMOV molybdovanadophosphate

ORTEP oak ridge thermal ellipsoid plot

Ph phenyl

PPFA N,N-dimethyl-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethylamine

Py pyridine

rt room temperature

sec secondary t- tertiary

TADDOL $\alpha, \alpha, \alpha', \alpha'$ -tetraaryl-2,2-dimethyl-1,3-dioxolan-4,5-dimethanol

TBAF tetrabutylammonium fluoride

TBDMS *t*-butyldimethylsilyl
TBDPS *t*-butyldiphenylsilyl

Tf trifluoromethanesulfonyl

tfp tris(2-furyl)phosphine

THF tetrahydrofuran

TMEDA *N,N,N',N'*-tetramethyl-1,2-ethylenediamine

TMS tetramethylsilane

TMSCl trimethylsilyl chloride
TMU 1,1,3,3-tetramethylurea

Tol tolyl X halide

ABSTRACT

This thesis describes, "Development of Organotitanium Reagents: Applications of Titanium Arylamine, Enolate and Enamine Derivatives in Organic Synthesis" comprises of three chapters. Each chapter is subdivided into four sections namely Introduction, Results and Discussion, Conclusions and Experimental Section along with References. The work described in this thesis is exploratory in nature.

The first chapter describes a brief review on the preparation and applications of arylmetal reagents and aryltitanium reagents. The reaction of N,N-dialkylarylamines $\mathbf{1}$ in the presence of TiCl₄ was examined using electrophiles (Scheme 1). The reaction using N,N-dialkylarylamines and TiCl₄ with diethyl oxalate produced α -hydroxy esters $\mathbf{2}$ as well as α -ketoesters $\mathbf{3}$ by the addition of aryltitanium selectively at one carbonyl group. The aryltitanium species of N,N-dialkylanilines added to α -ketoester to produce diarylated acetic acid esters $\mathbf{4}$ as well as α -hydroxy esters $\mathbf{5}$ in good yields. The reaction with symmetrical α -dicarbonyl compounds like α -diketones produced α -hydroxy ketones $\mathbf{6}$ in good yields. The addition reaction of aryltitanium with unsymmetrical γ -dicarbonyl compounds like ethyl 2-benzoyl-benzoic acid ethyl esters give γ -lactones $\mathbf{7}$. The reaction with α,β -unsaturated carbonyl compounds like alkynyl ketone gave the corresponding 1,4-addition product $\mathbf{8}$. In the reactions with aryl ethers like 1,2-dimethoxy-1,2-diarylethane, the 1,1'- disubstistuted aryl product $\mathbf{9}$ were formed through rearrangement. The reaction with trimethyl orthoformate produced the corresponding formylated product $\mathbf{10}$ in good yields.

Scheme 1

Several of these transformations can also rationalized considering TiCl₄ promoted activation of electrophiles without involving aryltitanium intermediates. In order to examine this possibility, we have carried out the reactions using other Lewis acids SnCl₄ and Et₂O:BF₃. The reactions of N,N-dialkylarylamines 1 and SnCl₄ with orthoformate, acetals or aldehyde as well as α , β -unsaturated carbonyl compounds give the corresponding arylated compounds 10-12 (Scheme 2).

Scheme 2

The N,N-dialkylarylamines $\mathbf{1}$ reacted with orthoformate, acetals or aryl aldehyde in the presence of $Et_2O:BF_3$. We have observed the reaction of N,N-dialkylarylamines with trimethyl orthoformate and $Et_2O:BF_3$. The expected formylated products $\mathbf{10}$ were obtained in good yields (Scheme 3).

Scheme 3

In the second chapter, synthetic transformations of titanium enolates of esters and ketones with $N_{\bullet}N_{\bullet}$ -dialkylarylamines and dicarbonyl compounds are described. We have

observed that the reaction of aryltitanium species of N,N-dialkyl arylamines 1, prepared in situ using TiCl₄, with arylacetic acid esters 13 (R''=OR') produces α -arylated products 14 in good yields (Scheme 4). α -Keto esters react with titanium enolate of alkanoic acid anhydrides 13 (R''=OOCCH₂R') prepared in situ using the TiCl₄/n-Bu₃N reagent system to give maleic anhydrides 15 (Scheme 4). Diphenyl maleic anhydride was obtained by the reaction of phenylacetyl chloride and ethyl benzoylformate with the TiCl₄/n-Bu₃N reagent system.

Scheme 4

 γ -Substituted γ -butenolides **16** were obtained in one step by the reaction of titanium enolates of ketones **13** (R''=aryl, alkyl) with α -keto esters in the presence of the TiCl₄/n-Bu₃N reagent system (Scheme 4). The intermediate **17** involved in this transformation was

isolated by changing the ratio of ethyl benzoylformate and ketone **13** to 1:1, respectively. In the reaction of ethyl 2-benzoylbenzoates and ketones **13** with the $TiCl_4/n$ -Bu₃N reagent system, the γ -lactone **18** was obtained (Scheme 4). The ethyl-2-benzoylbenzoates react with esters **13** (R''=OR') in the presence of the $TiCl_4/Et_3N$ reagent system to give γ -lactones **18** (Scheme 4).

Efforts towards the synthesis of poly-1,1'-bi-2-naphthol pyrrole derivatives are discussed in chapter 3. We have developed a method for selective acylation of 1,1'-bi-2-naphthyl ether derivatives using TiCl₄ as well as with other Lewis acids SnCl₄ and AlCl₃. Initially, we have examined the acylation of 1,1'-bi-2-naphthol ether **19** using TiCl₄ and acid chlorides (Scheme 5). In this case, monoacyl derivative **20** and the diacyl derivative **21** were obtained.

Scheme 5

We have also examined the acylation of (\pm) 1,1'-bi-2-naphthol derived ether **22** with TiCl₄ as well as SnCl₄. The monoacyl and diacyl derivatives, **23** and **24**, were formed, in 15-21% and 66-71% yields, respectively (Scheme 6).

Scheme 6

The acylation of methyl protected chiral 1,1'-bi-naphthol **25** was readily carried out using AlCl₃ to obtain the corresponding diacyl compound **26** (Scheme 7).

Scheme 7

The diacetyl derivative **26** was converted to ketimines **27** using arylamines and the TiCl₄/Et₃N reagent system. The reaction of the diimine **27**, derivative of compound **26** was examined using the TiCl₄/Et₃N reagent system to prepare poly-1,1'-bi-2-naphthyl derivatives containing pyrrole spacers following a procedure developed in this laboratory for the synthesis of diaryl pyrroles from certain ketimines (Scheme 8).

Scheme 8

Note: Scheme numbers and compound numbers given in this abstract are different from those given in the Chapters. Also, different set of numbers for Schemes, Tables, compounds, Figures and references etc. are given in different Chapters.

Contents

State	ment	i	
Certificate			
Acknowledgements Abbreviations			
			Abstract
Ch	apter 1		
Synt	hetic Applications of the Tertiary Arylamine /TiCl4 Reagent		
Syste	e m		
1	Introduction	1	
1.1	Preparation and reactions of arylmetal reagents	2	
1.2	Results and Discussion		
	Reactions of the N,N-dialkyl arylamines /TiCl ₄ reagent system with various	JS	
	electrophiles	23	
1.2.1	Reaction of N,N-dialkylarylamines and TiCl ₄ with dicarbonyl compounds	25	
1.2.2	Reaction of tertiary arylamine and TiCl ₄ with methoxy compounds	35	
1.2.3	Reactions of the N,N-dialkylaryl amines in the presence of other Lewis ac	acids	
	with electrophiles	41	
1.2.3.	1 Reaction of the N,N-dialkylaryl amines /SnCl ₄ reagent system with electrons	philes	
		41	
1.2.3.	2 Reaction of the <i>N</i> , <i>N</i> -dialkylarylamines/ Et ₂ O:BF ₃ reagent system with		
	electrophiles	47	
1.3	Conclusions	50	
1.4	Experimental Section	51	
1.5	References	82	

Chapter 2

Synthetic Applications of Titanium Enolates

2.1	Introduction		
	Reactions of metal enolates in the presence of titanium reagents.	89	
2.1.1	Titanium enolates in aldol reactions	90	
2.1.2	Titanium enolates in Mannich-type reactions	99	
2.1.3	Titanium enolates in Michael-type reactions	104	
2.1.4	Titanium enolate-promoted alkylation reactions	108	
2.1.5	Titanium enolate mediated oxidative coupling reactions	109	
2.1.6	Previous reports on reactions of titanium enolates from this laboratory	110	
2.1.7	Other reports on titanium reagents from this laboratory	112	
2.2	Results and Discussion		
2.2.1	Reaction of titanium enolates of esters with tertiary arylamines: α -arylatio	n of	
	esters	115	
2.2.2	Reactions of titanium enolates with dicarbonyl compounds	122	
2.2.2.1	Reaction of titanium enolates of alkanoic acid anhydrides with α -ketoesters:		
	Synthesis of maleic anhydrides	122	
2.2.2.2	Reaction of phenylacetyl chloride with $\alpha\text{-ketoesters}$ in the presence of the		
	TiCl ₄ /n-Bu ₃ N reagent system	126	
2.2.2.3	Reaction of titanium enolates of ketones with α -ketoesters: Synthesis of γ -		
	substituted γ-butenolides	127	
2.2.3	Reactions of titanium enolates with ethyl 2-benzoyl benzoates: Synthesis of	of y-	
	lactones	135	
2.2.3.1	Reaction of titanium enolates of ketones with ethyl 2-benzoyl benzoate	135	
2.2.3.2	Reaction of titanium enolates of esters with ethyl 2-benzoyl benzoates	138	
2.3	Conclusions	144	
2.4	Experimental Section	145	
2.5	References	167	

Chapter 3

Efforts Towards the Synthesis of Poly 1,1'-Bi-2-napthyl Derivatives Containing Pyrrole Spacers

3.1	Introduction	173		
3.1.1	Previous reports on 1,1'-bi-2-naphthol from this laboratory	173		
3.1.2	Synthesis and utility of 3,3'-poly 1,1'-bi-2-naphthol derivatives	176		
3.1.3	Synthesis and utility of 6,6'-poly 1,1'-bi-2-naphthol derivatives	181		
3.2	Results and Discussion			
	Efforts towards the synthesis of poly 1,1'-bi-2-naphthyl derivatives contain	ning		
	pyrrole spacers	183		
3.2.1	Acylation of 1,1'-bi-2-naphthyl alkyl ethers with $TiCl_4$ and acid chlorides	186		
3.2.2	Acylation of 1,1'-bi-2-naphthyl alkyl ethers using SnCl ₄ and acid chloride	s 188		
3.2.3	Acylation of 1,1'-bi-2-napthyl alkyl ethers with AlCl ₃ and acid chlorides	189		
3.2.4	Efforts towards the synthesis of chiral bi-2-naphthyl polymers containing			
	pyrrole spcers using the ketimines of 6,6'-diacyl-1,1'-bi-2-naphthol methy	1		
	ethers and the TiCl ₄ /Et ₃ N reagent system	190		
3.3	Conclusions	192		
3.4	Experimental Section	193		
3.5	References	206		
Appen	Appendix I (Representative spectra) Appendix II (X-Ray crystallographic data)			
Appen				
List of	List of publications 20			

Chapter 1

Synthetic Applications of the Tertiary Arylamine/TiCl₄ Reagent System

Titanium, a very abundant, relatively inexpensive and generally nontoxic element, has been under utilized in organic synthesis. Although numerous compounds of titanium are known, only a handful of these reagents (eg.: TiCl₄, TiCl₃, Ti(OR)₄, TiCl(OR)₃, TiCl₂(OR)₂ and Cp₂TiCl₂) are widely used. The titanium regents are by far the most versatile among the transition metal reagents used in the organic synthesis. Their applications range from use in attaining better selectivity in known organic transformations to the exploration of novel reactions. The property of the exploration of novel reactions.

Discovery of Ziegler catalyst brought a new era to research in organometallic reactions as well as organotitanium chemistry.² Also, the TiCl₄/RMgX or RLi, Cp₂TiCl₂/RMgX or RLi or LiAlH₄ and TiCl₄/Li/TMSCl reagent combinations were found to be useful in fixation of molecular nitrogen under mild conditions.³

In recent years, the deoxygenative-reductive coupling reactions of carbonyl compounds (eg.: McMurry reaction) have been widely employed in synthesis using the low valent titanium (LVT) species, produced by the reduction of TiCl₄ with metals and metal hydrides.⁴ The Cp₂TiCl₂/(CH₃)₃Al (The Tebbe's reagent) and the TiCl₄/CH₂Br₂/Zn reagent systems have been used for the Wittig-type olefination of carbonyl compounds.⁵ The Reetz reagent, Me₂TiCl₂, has been employed in *gem*-dimethylation of carbonyl compounds.⁶ Several reports show that the transmetalation of organolithium or organomagnesium reagents with titanium reagents leads to better chemo-, regio- and stereoselectivities.^{1,7}

Very recently, the TiCl₄/trialkylamine reagent system has been extensively employed in the preparation of titanium enolates for synthetic applications.⁸ Also, the TiCl₄ has been used as Lewis acid for arylation as well as acylation of aromatic compounds.⁹ We have undertaken research efforts on the development of aryltitanium reactions. Accordingly, it is of interest to briefly review the literature reports on these topics.

1.1 Preparation and reactions of arylmetal reagents

Generally, arylmetal reagents **1** and **1'** are prepared by metal-halogen¹⁰ or metal-hydrogen exchange,¹¹ and transmetalation reaction between arymetal compound and a metal halide¹² or a metal.¹³ (Scheme 1)

Scheme 1

Arylmetal compounds are useful building blocks in synthetic organic chemistry (Scheme 1). In most cases, the addition of the arylmetal reagents to the electrophilic carbonhetero atom double bonds in aldehydes¹⁴ or imines¹⁵, as well as the 1,4-addition to α,β -unsaturated carbonyl compounds and α -dicarbonyl compounds¹⁶⁻¹⁸ occur chemo-regioselectively (2). Moreover, aromatic metalation permits regioselective preparation of poly substituted aromatics and regiospecific construction of carbocyclic and heterocyclic systems, ^{17,19} which are not readily available by simple electrophilic substitution.

1.1.1 Aryllithium Reagents

Among the alkali metals, aryl and heteroaryllithium compounds **3** were widely used for synthetic applications. They can be prepared by methods outlined in Chart 1.

Chart 1: Methods of Preparation of Aryllithium Compounds

These aryllithium compounds **3** are widely used for the synthesis of polyfunctionalized molecules (Chart 2).

Chart 2: Synthetic Applications of Aryllithium Reagents

OTMS
$$Cul$$
, $TMEDA/$ $TMSCI$ THF THF $TMSCI$ THF T

Addition of phenyllithium to N,N'-dimethoxy-N,N'-dimethylethanediamide provides α -keto amide **4** as well as 1,2-diketone **5** by nucleophilic displacement.²⁴ Condensation of

phenyldilithoamide (R=CONLiR) with benzophenone followed by thermal cyclization to afford the γ -lactone **6** was reported.²⁵ Phenyllithium addition in a clean 1,2-fashion to diisopropyl squarate produced 4-hydroxy-4-phenyl-2,3-bis(1-methylethoxy)-4-cyclobuten-1-one **7**.²⁶ 1,4-Addition of phenyllithium to enone in the presence of the CuI/TMEDA/TMSCl reagent system to give ketone **8** at –78 °C in THF was also reported.²⁷ Condensation of phenyldilithoamide (R=CONLiR) with benzophenone gave the γ -hydroxyamide **9**.²⁵ Addition reaction of aryllithium (R=H, OMe) reagents to oxime ethers in the presence of F₃B:OEt₂ gave compound **10** in 44% yield.²⁸

In the last few years, aryllithium chemistry has also attracted the attention for use in the cross-coupling reactions catalyzed by transition metals, since these reagents can participate in the preparation of other organometalics by the transmetallation. Thus aryllithium chemistry is a very active field of investigation and several excellent reviews covering various aspects of this chemistry have appeared.

Several other arylmetal reagents also have been widely used in organic reactions. Preparation and reactions of these reagents given in the charts and schemes outlined in next sections.

1.1.2 Arylmagnesium Reagents

Chart 3: Preparation of Arvlmagnesium Reagents

Chart 4: Synthetic Applications of Arylmagnesium Reagents

1.1.3 Arylboron Reagents

Chart 5: Preparation of Arylboron Reagents

Chart 6: Synthetic Applications of Arylboron Reagents

1.1.4 Arylsilicon Reagents

Chart 7: Preparation of Arylsilicon Reagents

$$CI \longrightarrow F_3C$$

$$CI \longrightarrow HMPT \longrightarrow Si(CH_3)_3 \longrightarrow ref (47a)$$

$$+ Me_3SiSiMe_3 \longrightarrow NaOMe, HMPT \longrightarrow Si(Me)_3 \qquad ref (47b)$$

$$+ Me_3SiCN \longrightarrow hexane \longrightarrow Si(Me)_3 \qquad ref (47c)$$

$$CaCl \longrightarrow hexane \longrightarrow Si(Me)_3 \qquad ref (47d)$$

Chart 8 : Reactions of arylsilicon Reagents

1.1.5 Aryltin Reagents

Chart 9 : Preparation of Aryltin Reagents

Chart 10: Reactions of Aryltin Reagents

1.1.6 Aryllead reagents

Chart 11: Preparation of Aryllead Reagents

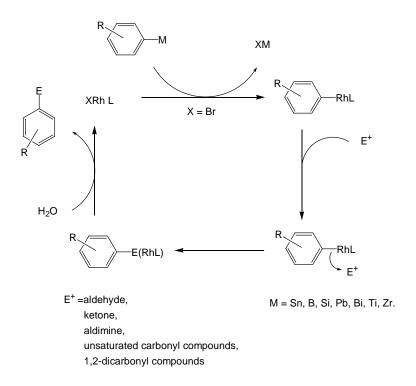
Chart 11: (Continued)

Chart 12: Reactions of Aryllead Reagents

Pb(OAc)₃

1.1.7 Arylbismuth Reagents

Chart 13: Preparation of Arylbismuth Reagents


Chart 14: Reactions of Arylbismuth Reagents

$$R = \frac{1}{R} \frac{1}{R}$$

1.1.8 Preparation and reactions of arylrhodium reagents

Transition metal-catalyzed transformations using organometallic reagents are of great importance in modern organic chemistry. The rhodium-catalyzed addition of the organometallic reagents to the carbon-hetero atom double bond in such as aldehydes or imines, as well as the 1,4-addition to α,β -unsaturated carbonyl compounds and α -dicarbonyl compounds commonly involve organorhodium complexes as active species, produced in situ by the transmetalation with the organometallic reagents such as tin, boron, silicon, lead, bismuth, titanium and zirconium. In most cases, the reactions occur with chemo- and regioselectivity (Scheme 2).18

Scheme 2

1.1.9 Arylcopper Reagents

Chart 15: Preparation of Arylcopper Reagents

Chart 16: Reactions of Arylcopper Reagents

1.1.10 **Arylnickel reagents**

Scheme 3: Preparation of Arylnickel Reagents

Scheme 4: Reactions of Arylnickel Reagents

$$R = o\text{-}CO_2Me$$

$$CICH_2COCH_3$$

$$CH_2CCH_3$$

$$CICH_2COCH_3$$

$$R = H$$

$$CH_2COCH_3$$

$$R = H$$

$$CH_2COCH_3$$

$$R = H$$

1.1.11 **Arylpalladium Reagents**

Chart 17: Preparation of Arylpalladium Reagents

Chart 18: Reactions of Arylpalladium Reagents

ArX

$$R''$$
 R''
 R'

Arylzinc Reagents 1.1.12.

Chart 19: Preparation of Arylzinc Reagents

Chart 20: Reactions of Arylzinc Reagents

1.1.13 Arylcadmium Reagents

Chart 21: Preparation of Arylcadmium Reagents

Scheme 5 : Reactions of Arylcadmium Reagents

1.1.14 Arylmercury Reagents

Chart 22: Preparation of Arylmercury Reagents

Scheme 6: Reactions of Arylmercury Reagents

1.1.15 Aryllanthanoide reagents

Chart 23: Preparation of Aryllanthanoide Reagents

Scheme 7: Reactions of Aryllanthanoide Reagents

18 Introduction

1.1.16 Preparation of aryltitanium reagents and their reactions

We have undertaken studies on the aryltitanium species. Accordingly, it is of interest to briefly review the reports on the preparation and applications of the aryltitanium reagents.

In 1953, the first unambiguous synthesis and characterization of an organotitanium compound **11** having a Ti-C σ -bond was reported.⁸⁷ The titanium tetraisopropoxide was reacted with phenyllithium (containing LiBr) and then with TiCl₄ to obtain the PhTi(OPrⁱ)₃ in an overall yield of 40% (Path A, Scheme 8).

Scheme 8

In 1962, an improved procedure was reported for preparing the PhTi(OPrⁱ)₃ **11** by the reaction of salt-free phenyllithium with chlorotriisopropoxytitanium at −10 °C (Path B, Scheme 8). The PhTi(OPrⁱ)₃ is a yellow crystalline compound having a melting point of 88-90 °C and it is stable in the dark at 10 °C for months, but decomposes rapidly if heated above its melting point to form violet colored Ti(III) species and diphenyl. 88

The phenyltitanium derivative **11** reacts with benzophenone to give the triphenylcarbinol **12** in 19% yield. The carbonation of the unisolated phenyltitanium derivative with excess dry ice gave a very small amount of benzoic acid (Chart 24).⁸⁷

The reactions of organotitanium derivatives with carbonyl compounds were studied in detail (chart 24).⁸⁹

Chart 24: Reactions of Aryltitanium Reagents

The phenyltitanium derivative 11 reacts with aryl aldehyde derivatives to give the corresponding alcohols 13 in good yields. Also, it reacts with 4-t-butyleyclohexanone to produce the corresponding alcohol 14 as a 1:1 cis/trans mixture (Chart 24). The reaction of aryltriisopropoxytitanium reagent with pyrimidin-2(1H)ones, produces the regioselective 1:1 adduct. Dehydrogenation of the adduct gives the arylated, fully conjugated heterocycle 15 (Chart 24).90,91

The aryltitanium derivative 11 is sensitive to air (oxygen) and moisture and gives phenol 17 and benzene 16 respectively. 92 The ring opening of unsymmetrical allylic, benzylic, propargylic and Si-substituted epoxides by titanium acetylides has been reported. 93 When the PhTi(OPrⁱ)₃ prepared from bromobenzene, ⁿBuLi and ClTi(OPrⁱ)₃, (and without isolation) was treated with styrene oxide, regiospecific ring opening of the epoxide takes place to give the product 18 (Chart 24).⁹³ Recently, it has been reported that a rhodium catalyzed asymmetric 1,4-addition of aryltitanium reagents 11 to enones produced the βketone **19** through chiral titanium enolates generation (Chart 24). 94

20 Introduction

The alkyl and aryltitanium derivatives **20** were readily prepared by the reaction of zinc dialkyls or zinc diaryls and TiCl₄ or TiBr₄. The aryltitanium species can be stabilized by bipyridyl adduct formation (Scheme 9).

Scheme 9

$$ZnR_2$$
 $TiCl_4$ $RTiCl_3$ $2,2'$ -bipyridyl $R = n$ -propyl, n -pentyl, phenyl $R = n$ -propyl, R -pentyl, phenyl

Tetraphenyltitanium was prepared in good yields by the reaction of phenylmagnesium bromide with the bipyridine adduct of $TiCl_4$ or similar complexes $TiCl_4L_2$ in ether. ⁹⁶ In solution, $Ti(C_6H_5)_4$ is fairly stable, but in the solid state deterioration is rather rapid at room temperature.

An enantioselective addition of aryl groups to aromatic aldehydes using aryltitanium-binaphthol derivatives was developed. Chiral, non-racemic organotitanium reagents **21** were generated *in situ* from chiral-2-binaphthol, chlorotriisopropoxytitanium and ArMgX in THF. These reagents transfer aryl groups to aromatic aldehydes to produce the alcohol **22** with high enantioselectivity (Scheme 10). 97

Also, the Ti-TADDOL complex A catalyzed the highly enantioselective (99.5:0.5) addition of alkyl and aryltitanium 11 derivatives to aldehydes.⁹⁸ Aryl and alkyl triisopropoxytitanium reagent 11 were prepared from the corresponding RLi or RMgX reagents and ClTi(OPrⁱ)₃ with careful removal of salts (Scheme 11).

Scheme 11

$$R = \text{alkyl, aryl}$$
R = alkyl, aryl
$$R = \frac{11}{2} = \frac$$

The first metalative Reppe reaction, in which direct preparation of aryltitanium compounds was reported (Scheme 12).99 Three different unsymmetrical acetylenes and one molecule of titanium species are combined together in a highly controlled manner to give directly the aryltitanium compound 24. The formation of aryltitanium compound was confirmed by subsequent reactions with electrophiles to obtain compounds 25, 26 and 27 (Scheme 12).

22 Introduction

Generally, the alkyl and aryltitanium reagents RTiX₃ ($X = OCHMe_2$, Cl) react with α , β -unsaturated aldehydes and ketones in a 1,2–fashion. However, the methyltitanium ate complexes and phenyltitanium complexes were reported to undergo nickel catalyzed 1,4-addition to enones. However, the methyltitanium ate

1.1.16.1 Previous work on aryltitanium reagents from this laboratory:

Aryltitanium species **28** can also generated by the direct metalation of N,N-dialkylarylamines with TiCl₄ without using another organometallic reagents. These species undergo oxidative coupling to produce N,N,N',N'-tetraalkylbenzidines **29** in good yields. ¹⁰¹

The reaction of aryltitanium species obtained *in situ* was examined with electrophiles (Scheme 13). In the reaction with diaryl ketones, the expected electrophilic addition products **30** were obtained. In the case of reactions using benzaldehyde, and methyl formate, the initially formed electrophilic addition products underwent further arylation to give compounds **31** and **32**. The chlorodiphenylphosphine gave the corresponding electrophilic substitution product **33** (Scheme 13).¹⁰¹

Scheme 13

Further studies on the scope and limitations of the reactivity of aryltitanium species in the presence of other electrophiles are described in this chapter in the next section.

1.2 Results and Discussion

1.2 Reactions of the *N*, *N*-dialkylarylamines/TiCl₄ reagent system with various electrophiles

As discussed in the introductory section, it has been reported from this laboratory that the aryltitanium species **28** prepared *in situ* using *N,N*-dialkylarylamines and TiCl₄ reacts with simple electrophilies to produce arylated compounds **29-33** (Scheme 14).

Scheme 14

Though, the possibility of TiCl₄ playing the role of just activation of the electrophiles for reaction with arylamines cannot be ruled out, the formation of benzidine derivatives indicates the intermediacy of the aryltitanium species **28**. Moreover, the observation that the reaction of *N*,*N*-dialkylarylamines and TiCl₄ with compounds like ClPPh₂ (Scheme 15a) to give triaryl phosphine derivative is similar to the reaction of organometallic species, eg.: RLi or RMgX with phosphorous halides. The isolation of phosphorous derived compounds in organometallic reactions would also provide evidence for the presence of reactive C-M bonds. ^{101, 102}

Scheme 15a

$$R$$
 N
 R
 $+$ CIPPh₂ $\xrightarrow{\text{TiCl}_4, \text{CH}_2\text{Cl}_2}$
 0 -25 °C
 R
 N
 $-$ PPh₂

To further examine the intermediacy of aryltitanium species, we have carried out an experiment (Scheme 15b) using N,N-diethylaniline at -40 °C for 6 h and quenched the reaction with D_2O at -40 °C. In this case, the corresponding benzidine was isolated in 10% yield and the recovered N,N-diethylaniline did not contain any deuterium in the *para*-position. Presumably, the reaction does not go through the arylamine intermediacy or the intermediate does not survive for 6h at -40 °C.

Scheme 15b

In continuation of these studies on the scope and limitations of the reactivity of the arylamines, we have further examined the reactions of TiCl₄/tertiary arylamine combination with dicarbonyl compounds of esters, keto esters and others electrophilies.

1.2.1 Reaction of *N,N*-dialkylarylamines and TiCl₄ with dicarbonyl compounds

1.2.1.1 Reaction of the tertiary arylamine/TiCl₄ reagent system with diethyl oxalate

We have examined the reaction of the N,N-dialkylanilines with diethyl oxalate 33 in the presence of TiCl₄, since it is well-known that the reaction of arylmagnesium reagents with diethyl oxalate produces α -keto esters (Scheme 16).

Scheme 16

We have carried out the reaction between N,N-dialkylanilines and diethyl oxalate in the presence of TiCl₄ at 0-25 °C. Indeed, the expected reaction pattern was observed and corresponding α -hydroxy esters **34** were formed (Scheme 17). For example, the reaction of N,N-diethylaniline, TiCl₄ and diethyl oxalate at 0-25 °C for 5 h produced α -hydroxy ester **34a** in 54% yield. Whereas, N-phenyl piperidine gave the product **34b** in 52% yield. The results are summarized in Table 1.

S.NO	ArNR ₂	Ester	Product ^b	Yield ^c (%)
1	$Ar = Ph, R = C_2H_5$	C_2H_5O OC_2H_5	CH_3 O OC_2H_5 OC_2H_5 OC_3 OC_2 OC_3	54
2	Ar = Ph, R = $-C_5H_{10}$	33	$\begin{array}{c} O \\ O \\ O \\ O \\ O \\ O \\ \end{array}$	52
3	Ar = 1-Naphthyl, R = CH_3	33	H_3C O	64
4	Ar = 1-Naphthyl, $R = -C_5H_{10}$ -	33	O OCH ₃ O 35b	61

Table 1. Reaction of N,N-dialkylarylamines and TiCl₄ with diethyl oxalate.^a

The reaction of N,N-dialkylaniline with diethyl oxalate can be visualized by two possible mechanistic pathways **A** or **B**. One is a simple addition reaction of N,N-dialkylaniline with diethyl oxalate activated by TiCl₄ (Path A). The other is the reaction between *in situ* formed aryltitanium species **28** and diethyl oxalate to give α -hydroxy esters **34** (Path B) as outlined in the Scheme 18.

^aThe reactions were carried out using the amine (5 mmol), diethyl oxalate (2.5 mmol) and TiCl₄ (10 mmol, 2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂).

^bThe products were identified by ¹H, ¹³C-NMR and mass spectral data.

^cThe isolated yields were based on the amount of diethyl oxalate used.

The reaction of diethyl oxalate **33** with the N,N-dialkyl-1-naphthylamine and TiCl₄ gave the α -keto ester **35** in 61-64% yields (Table 1, entries 3 and 4). The products and yields obtained with diethyl oxalate in the presence of other tertiary arylamines are summarized in Table 1. Presumably, in the case of N,N-dialkyl-1-naphthylamines the reaction stops at the α -keto ester stage due to steric hindrance (Scheme 19).

1.2.1.2 Reaction of the tertiary arylamine/TiCl $_4$ reagent system with α -keto esters

We have examined the reaction of tertiary arylamine with unsymmetrical α -dicarbonyl compounds. Interestingly, the arylation takes place with selectivity at the keto carbonyl moiety of the α -keto ester **36** to produce the corresponding diarylated acetic acid esters **37** in 72-89% yields (Scheme 20). For example the reaction of N, N-diethylaniline gave the diarylated product **37a** in 89% yield with ethyl 4-methylbenzoylformate (Table 2, entry 1). Whereas, the reaction of ethyl benzoylformate with N, N-diethylaniline and TiCl₄ at 0-25 °C for 5 h produced both the monoarylated **38a** as well as diarylated **37d** products in 22% and 68% yields, respectively (Table 2, entry 4). However, in the case of the transformation using N-ethyl, N-pentylaniline, the reaction stopped at the monoarylation stage to give exclusively the α -hydroxy ester **38b** in 78% yield (Table 2, entry 5). The transformation was generalized with various aryl α -keto esters as well as amines and the results are summarized in Table 2.

S.NO	PhNRR'	Keto ester	Product ^b	Yield ^c (%)
1	R, R' = C_2H_5	R" = <i>p</i> -MePh	CH_3 O OC_2H_5 Php -Me CH_3 $37a$	89
2	R, R' = C_2H_5	R" = <i>p</i> -MeOPh	CH_3 O OC_2H_5 Php -OMe	86
3	$R, R' = C_2H_5$	R" = Me	O O O O O O O O O O	81
4	R, R' = C_2H_5	R" = Ph	CH ₃ CH ₃ O OC ₂ H ₅ Ph 37d	68
			CH_3 O OC_2H_5 O OC_2H_5 OC_3 OC_3 OC_3 OC_3 OC_4 OC_4 OC_5	22
5	$R = n-C_5H_{11}$ $R' = C_2H_5$	R" = Ph	CH_3 O OC_2H_5 OH Ph C_4H_9 OC_2H_5	78

Table 2. Reaction of *N*,*N*-dialkyl arylamines and TiCl₄ with α -keto esters^a

The addition of N,N-diethylaniline to α -keto ester can be visualized as outlined in the Scheme 21. Selective addition of *in situ* formed aryltitanium species to keto group of α -keto ester to give α -hydroxy esters 38, followed by further addition of aryltitanium species to produce compound 37.

^aThe reactions were carried out using the amine (7.5 mmol), α-keto esters (2.5 mmol) and TiCl₄ (10 mmol, 2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂).

^bThe products were identified by ¹H, ¹³C-NMR and mass spectral data.

 $^{^{\}text{c}}$ The isolated yields based on the amount of α -keto esters used.

$$\begin{array}{c} R \\ N \\ R' \\ \hline \end{array}$$

As outlined in the introductory section, arylmetal reagents such as aryltin reagents react with unsymmetrical α -dicarbonyl compounds to produce arylated products of type **38** under rhodium catalyst (Scheme 22).¹⁸

1.2.1.3 Reaction of the tertiary arylamine/TiCl $_4$ reagent system with α -diketones

The reaction with symmetrical α -dicarbonyl compounds like benzil **39** was also examined. The corresponding monoarylated products were obtained in 70-85% yields. For example the reaction using *N*,*N*-diethylaniline gave α -hydroxy ketone **40a** in 85% yield and the use of *N*-phenylpiperidine gave **39b** in 70% yield (Scheme 23).

This reaction pattern is also similar to that reported for rhodium catalyzed aryltin reagents as shown in Scheme 24.¹⁸

Scheme 24

1.2.1.4 Reaction of the tertiary arylamine/TiCl₄ reagent system with γ-dicarbonyl compounds

We have also examined the addition reaction of the arylamine/TiCl₄ reagent combination with unsymmetrical γ -dicarbonyl compounds. In the reaction using ethyl 2-benzoylbenzoates **41**, the γ -lactones **42** were obtained in 82-91% yields (Scheme 25). The results are summarized in Table 3.

Table 3. Reaction of N,N-dialkyl arylamines with ethyl 2-benzoylbenzoates^a

S.NO	PhNR ₂	Keto ester 41	Product ^b	Yield ^c (%)
1	R =CH ₃	Ar = Ph	CH ₃ CH ₃ 42a	89
2	R = CH ₃	Ar = <i>p</i> -CH ₃ Ph	CH ₃ CH ₃ 42b	86
3	$R = C_2H_5$	Ar = Ph	H ₃ C O H ₃ C N N O 42c H ₃ C	90
4	$R = C_2H_5$	Ar <i>=p</i> -CH ₃	H ₃ C H ₃ C	81

^aThe reactions were carried out using the amine (5 mmol), ethyl 2-benzoylbenzoate (2.5 mmol) and TiCl₄ (10 mmol, 2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂).

^bThe products were identified by ¹H, ¹³C-NMR and mass spectral data.

^cThe isolated yields were based on the amount of carbonyl compound used.

The selective addition of *N*,*N*-dialkylarylamines to ethyl 2-benzoylbenzoates **41** can be interpreted tentatively in terms of formation of aryltitanium species *in situ* as shown in (Path A) Scheme 26. However, the alternative pathway involving the activation of the ketocarbonyl by TiCl₄ followed by electrophilic substitution on the arylamine cannot be ruled out (Path B).

Scheme 26

Previously, the compounds of the type **42** were prepared using aryltitanium aryllithium, and arylzinc reagents as shown in Scheme 27.

$$C_{6}H_{13}C \equiv CCOOBu^{t}$$

$$C_{6}H_{13}C \equiv CH$$

$$C_{6}H_{13}C \equiv CH$$

$$C_{6}H_{13}C \equiv CH$$

$$-58^{\circ}C$$

1.2.1.5 Reaction of the tertiary arylamine/TiCl₄ reagent system with α,β -unsaturated carbonyl compounds

As outlined in introductory section, 94 aryltitanium reagents 11 undergoes 1,4-addition to enones, to give the ketone 19 (Chart 24). We have observed that the reaction of the arylamine/TiCl₄ reagent system with α,β -unsaturated carbonyl compounds like alkynyl ketone gave the similar reactivity and the corresponding 1,4-addition product was formed. For example, in the reaction of N,N-dimethyl-1-naphthylamine and TiCl₄ with alkynyl ketone 43, the ketone 44 was obtained in 65% yield (Scheme 28).

1.2.2 Reaction of the tertiary arylamine/TiCl₄ reagent system with methoxy compounds

In the several of the above transformations, the –OTiCl₃ group is expected to be the leaving group. Accordingly, aryl ethers containing benzylic -OCH₃ groups would also undergo such transformation upon complexation with TiCl₄. Indeed, this was observed, the reaction of *N*,*N*-diethylaniline/TiCl₄ combination with 1-phenylethyl methyl ether **45** to produced *N*,*N*-diethylaniline derivative **46** in 52% yield (Scheme 29).

Scheme 29

Interestingly, in the reaction using aryl ethers like 1,2-dimethoxy-1,2-diarylethane 47, the expected 1,2-disubstistuted product 48 was not formed. Instead, 1,1- disubstituted aryl product 49 was formed through rearrangement (Scheme 30). For example, the reaction

of the *N*,*N*-diethylaniline/TiCl₄ reagent system and 1,2-dimethoxy-1,2-diphenylethane produced the substituted product **49a** in 85% yield. The reaction was generalized using other 1,2-dimethoxy-1,2-diarylethane as well as amines. The results are summarized in Table 5.

Scheme 30

The product **49c** was also identified by X-ray crystal structure analysis.

Fig. 1: ORTEP diagram of compound 49c

 Table 4: Crystal data and structure refinement for 49c

Empirical formula	$C_{42} H_{44} N_2$
Formula weight	576.79
Temperature	298(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 11.2663(8) \text{ Å}, \alpha = 102.9260(10)^{\circ}.$
	$b = 13.1471(9) \text{ Å}, \beta = 111.8580(10)^{\circ}.$
	$c = 13.8028(9) \text{ Å}, \gamma = 08.1940(10)^{\circ}.$
Volume	1663.3(2) Å ³
Z	2
Density (calculated)	1.152 Mg/m^3
Absorption coefficient	0.066 mm ⁻¹
F(000)	620
Crystal size	$0.45 \times 0.40 \times 0.16 \text{ mm}^3$
Theta range for data collection	1.72 to 28.29°.
Index ranges	-14<=h<=14,-17<=k<=17, -18<=l<=18
Reflections collected	19581
Independent reflections	7789 [R(int) = 0.0415]
Completeness to theta = 25.00°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.98 and 0.97
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7789 / 0 / 397
Goodness-of-fit on F ²	1.029
Final R indices [I>2sigma(I)]	R1 = 0.0710, wR2 = 0.1950
R indices (all data)	R1 = 0.1222, $wR2 = 0.2240$
Largest diff. peak and hole	0.452 and -0.411 e.Å ⁻³

S.NO	PhNR ₂	Ether 47	Product ^b	Yield ^c (%)
				H ₃ -CH ₃
1	$R = C_2H_5$	Ar' = Ph	49a	89
2	$R = -C_5H_{10}$ -	Ar' = Ph	Ph Ph N 49b	86
3	$R = C_2H_5$	Ar' = 1-Naphthyl		CH ₃ _CH ₃ 90
4	$R = -C_5H_{10}$	Ar' = 1-Naphthyl	Np-1 1-Np	81 d

Table 5. Reaction of *N*,*N*-dialkyl arylamines and TiCl₄ with 1,2-dimethoxy-1,2-diarylethanes^a

The reaction of *N,N*-dialkylanilines to 1,2-dimethoxy-1,2-diarylethanes can be interpreted in terms of substitution of aryltitanium species formed *in situ* followed by the rearrangement of aryl group to give the carbocation and further arylation to produce product **49** as outlined in Scheme 31 (Path A). However, the alternative pathway involving the TiCl₄ promoted arylation by the amine cannot be ruled out (Path B).

^a The reactions were carried out using arylamine (7.5 mmol), 1,2-dimethoxy-1,2-diarylethane **47** (2.5 mmol) and TiCl₄ (10 mmol, 1:1 solution of TiCl₄/CH₂Cl₂).

^bThe products were identified by ¹H , ¹³C-NMR and the product **49c** was identified by X-ray crystal structure.

^cThe isolated yields were based on the amount of ether **47** used.

1.2.2.1 Reaction of the tertiary arylamine/TiCl₄ reagent system with trimethyl orthoformate

It was of interest to us to examine the reaction of *N*,*N*-dialkylarylamines with trimethyl orthoformate **50**. In this case, the corresponding formylated products **51** were obtained in good yields (Scheme 32). The reaction of *N*-ethyl, *N*-butylaniline with trimethyl orthoformate gave formylated product **51a** in 78% yield. Similarly, *N*-(1-naphthyl)piperidine gave corresponding aldehyde **51b** in 82% yield.

Amine Product Yield%
$$C_{4}H_{9} \qquad O_{4}H_{5}$$

$$C_{2}H_{5} \qquad O_{5}H_{5}$$

$$S_{1}$$

$$S_{1}$$

$$C_{2}H_{5} \qquad O_{4}$$

$$S_{1}$$

$$S_{2}$$

$$S_{2}$$

Presumably, the monoarylated acetal intermediates are hydrolyzed upon work up to give the aldehyde products and the transformation can be visualized by the mechanistic pathway outlined in the Scheme 33. Again, the alternative pathway involving coordination of the -OCH₃ group in the orthoformate with TiCl₄ followed by arylation by amine cannot be ruled out.

Formylation is a key process in organic synthesis. Not surprisingly, a large number of methods have been developed for this reaction. Reagents for electrophilic formylation 104 are mostly of the type Y-CH=X⁺. Thus, the reaction attributed to Vilsmeier (ClCH=NR₂⁺), Rieche (eg.: MeOCHCl₂ \rightarrow MeO=CHCl⁺), Gatterman (Zn[CN]₂/HCl \rightarrow HC=NH₂²⁺), Gatterman-Koch (CO/HCl/Lewis acid \rightarrow HC=O⁺) and even Duff (CH₂=NH₂⁺) followed by dehydrogenation of initially formed RCH₂NH₂ all fit this pattern. Previously, TiCl₄ has been used in alliance with MeOCHCl₂ reagent system for the formylation of diphenols, 3-substituted thiophines and *O*-formylation of phenols. The method described here is a good addition to these pool of the methods.

1.2.3 Reactions of *N*, *N*-dialkylarylamines in the presence of other Lewis acids with electrophiles

As discussed in the above sections, several transformations can be explained by initial complexation of the electrophiles by the Lewis acid TiCl₄ for reaction with arylamines. Accordingly, we became interested in examining some of these transformations using SnCl₄ and F₃B:OEt₂.

1.2.3.1 Reactions of the N,N-dialkylarylamines /SnCl4 reagent system with electrophiles

Initially, we have used SnCl₄ as Lewis acid. The reactions of *N*,*N*-dialkylarylamines with aryl ketones like benzophenone was not observed (Scheme 34).

However, N,N-dialkylarylamines reacted with methoxy compounds as well as α,β -unsaturated carbonyl compounds in the presence of SnCl₄ to give the corresponding arylated compounds.

.

1.2.3.1.1 Reaction of the tertiary arylamine/SnCl₄ system with trimethyl orthoformate

We have observed that the reaction of *N*,*N*-dialkylarylamines with trimethyl orthoformate **50** and SnCl₄ produce the corresponding formylated products **51** in good yields (Scheme 35). The reaction of *N*,*N*-diethylaniline with trimethyl orthoformate gave formylated product **51c** in 64% yield. Whereas, *N*,*N*-dialkyl -1-naphthylamines produced better yields than *N*,*N*-dialkylanilines. In the case of *N*,*N*-dimethyl-1-naphthylamine, the corresponding aldehyde was obtained in 72% yield. The reaction was generalized with other amines and the results are summarized in Table 6.

Scheme 35

The reaction of *N*,*N*-dialkylarylamines with trimethyl orthoformate in the presence of SnCl₄ can be visualized by the mechanistic pathway outlined in the Scheme 36.

$$\begin{array}{c} R \\ R \\ R \\ \end{array} \begin{array}{c} SnCl_4 \\ HC(OCH_3) \\ R \\ \end{array} \begin{array}{c} R \\ H_3CO \\ \end{array} \begin{array}{c} CH_3 \\ SnCl_4 \\ \end{array} \begin{array}{c} R \\ R \\ \end{array} \begin{array}{c} H_3COCl_2Sn \\ OCH_3 \\ H \\ \end{array} \begin{array}{c} CH_3COCl_2Sn \\ OCH_3 \\ \end{array} \begin{array}{c} CH_3COCl_2Sn \\ COCH_3 \\ CCH_3COCl_2Sn \\ CCH_3COCl_2Sn$$

Table 6. Reaction of N,N-dialkyl arylamines with trimethyl orthoformate, acetals and $SnCl_4^a$

S.NO	Amine	Electrophile	Product ^b	Yield ^c
1	CH ₃	(%) HC(OCH ₃) ₃	O CH ₃ 51c	64
2	$\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	HC(OCH ₃) ₃	$\begin{array}{c} O \\ H \end{array}$	62
3	C_2H_5 C_2H_5	HC(OCH ₃) ₃	O CH ₃ CH ₃ 51d	72
4		HC(OCH ₃) ₃	O H 51b	69

^aThe reactions were carried out using arylamine (5 mmol), trimthyl ortoformatethe (7.5 mmol), and SnCl₄ (10 mmol).

^bThe products were identified by ¹H, ¹³C-NMR and mass spectral data.

^cThe yields were of isolated products.

Previously, it was reported that the hydrolysis of 2-arylbenzo-1,3-dithioles using mercury(II)chloride and mercury(II)oxide in boiling aqueous tetrahydrofuran produced 51d in 37% yield (Scheme 37).¹⁰⁵

Scheme 37

The present methods using TiCl₄ and SnCl₄ could serve as good alternative methods for this transformation.

1.2.3.1.2 Reaction of the tertiary arylamine /SnCl₄ system with acetals

We have also observed that in the reaction of *N*,*N*-dialkylanilines with acetals **52** gave the corresponding diarylated derivatives **53.** For example, the reaction of benzaldehyde dimethyl acetal and *N*,*N*-dimethylaniline with SnCl₄ produced triarylmethane derivative **53a** in 88% yield (Scheme 38). Similarly, phenylacetaldehyde dimethyl acetal gave diaryl substituted product **53b** in 78% yield.

1.2.3.1.3 Reaction of the tertiary arylamine/SnCl₄ system with benzaldehyde

The reaction of *N*,*N*-diethylaniline and benzaldehyde with SnCl₄ produced the triarylmethane derivative **53a** in 64% yield (Scheme 39). Presumably, this product would have formed through further arylation of the initially formed product.

It is of interest to note here that aryl aldehydes have reported to react with PhSn(Me)₃ in the presence of a rhodium catalyst to produce the corresponding secondary alcohols.⁵⁵

1.2.3.1.4 Reaction of the tertiary arylamine/SnCl₄ system with α,β -unsaturated carbonyl compounds

We have also examined the reaction of N,N-dialkylaniline with α,β -unsaturated carbonyl compounds like chalcone **54** in the presence of SnCl₄. In the reaction using, N,N-diethylaniline and chalcone, the corresponding 1,4-addition product **55a** was obtained in 82% yield. Whereas, with N,N-dimethylaniline and N,N-dimethyl-1-naphthylamine the corresponding 1,4-addition products **55b** and **55c** were produced in 78% and 88% yields, respectively (Scheme 40).

1.2.3.2 Reactions of the *N,N*-dialkylarylamines/Et₂O:BF₃ reagent system with electrophiles

We have also examined the reaction of *N*,*N*-dialkylarylamines with methoxy compounds in the presence of Et₂O:BF₃. We have observed that the reaction of *N*,*N*-dialkylarylamines with trimethyl orthoformate **50** and Et₂O:BF₃. The corresponding formylated products **51** were obtained in good yields (Scheme 41). The reaction of *N*,*N*-diethylaniline with trimethyl orthoformate and Et₂O:BF₃ gave formylated product *N*,*N*-diethylaminobenzaldehyde **51c** in 61% yield. Whereas, in the case of, *N*,*N*-dimethyl-1-naphthylamine the corresponding aldehyde **51d** was obtained in 78% yield. The reaction was generalized with other amines and the results are summarized in Table 7.

Scheme 41

The reaction of acetals and *N*,*N*-dialkylanilines with Et₂O:BF₃ gave the corresponding arylated products **53** (Scheme 42). For example, the reaction of benzaldehyde dimethyl acetal and *N*,*N*-dimethylaniline with Et₂O:BF₃ produced triarylmethane derivative **53a** in 75% yield (entry 4, Table 7). Whereas, phenylacetaldehyde dimethyl acetal produced diarylmethane derivative **53b** in 80% yield (entry 5, Table 7).

Table 7. Reaction of N,N-dialkyl aryl amines with trimethyl orthoformate, acetals and $Et_2O:BF_3^{a,b}$

S.NO	Amine	Electrophile	Product	Yield (%)
1	\sim	HC(OCH ₃) ₃	O H CH ₃ 51c	61
2	CH ₃	HC(OCH ₃) ₃	$\begin{array}{c} O \\ H \\ \\ CH_3 \\ \\ 51d \\ \end{array}$	78
3		HC(OCH ₃) ₃	O H 51b	64
4	CH ₃	PhCH(OCH ₃) ₂	H_3C H_3C Ph 53a	75
5	\sim	PhCH ₂ CH(OCH ₃) ₂	H_3C N H_3C H_3C H_3C H_3C H_3C H_3C	80

 $^{^{}a}$ The reactions were carried out using arylamine (5 mmol), trimethyl orthoformate (7.5 mmol), and Et₂O:BF₃ (10 mmol).

^bThe reactions were carried out using acetals (2.5 mmol), amine (7.5 mmol) and Et₂O:BF₃ (10 mmol).

The product **53a** was obtained in 74% yield in the reaction of N,N-diethylaniline with benzaldehyde and Et₂O:BF₃ (Scheme 43).

Scheme 43

The formyl derivatives of *N*,*N*-dialkylarylamines have been used for the synthesis of dialkylaminostyryl dyes. Moreover, majority of naphthylidene dyes are found to be far better photographic sensitizers than the corresponding styryl dyes. Accordingly, the new method described here for the synthesis of these derivatives has good synthetic potential.

1.3 Conclusions

The reaction of reactive N,N-dialkyl arylamines and TiCl₄ was examined using electrophiles. The reaction using N,N-dialkylanilines and diethyl oxalate with TiCl₄ produced α -hydroxy esters as well as α -keto esters by the addition of arylamine moiety selectively at one carbonyl group. The reaction using N,N-dialkylanilines and α -keto ester produced the corresponding diarylated acetic acid esters as well as α -hydroxy esters in good yields. The reaction with symmetrical α -dicarbonyl compounds like α -diketones produced α -hydroxyketones in good yields. The addition reaction to unsymmetrical γ -dicarbonyl compounds like ethyl 2-benzoylbenzoates gave γ -lactones. The reaction using α,β -unsaturated carbonyl compounds like alkynyl ketone gave the corresponding 1,4-addition product. The reactions with aryl ethers like 1,2-dimethoxy-1,2-diarylethane gave 1,1-disubstituted aryl products through the rearrangement.

The reactivity of *N*,*N*-dialkyl arylamines with electrophiles were also examined using the Lewis acids SnCl₄ and Et₂O:BF₃. The reactivity pattern with benzylic -OCH₃ group is similar with all Lewis acids, TiCl₄, SnCl₄ and F₃B:OEt₂.

1.4 Experimental Section

General Information

Melting points reported in this thesis are uncorrected and were determined using a Superfit capillary point apparatus. IR (KBr) spectra were recorded on JASCO FT-IR spectrophotometer Model 5300. The neat IR spectra were recorded on JASCO FT-IR spectrophotometer Model 5300 and SHIMADZU FT-IR spectrophotometer Model 8300 with polystyrene as reference. 1 H-NMR (200 MHz), 13 C-NMR (50 MHz)) and 1 H-NMR (400 MHz), 13 C-NMR (100 MHz) spectra were recorded on Bruker-AC-200 and Bruker-Avance-400 spectrometer with chloroform-d as solvent and TMS as reference ($\delta = 0$ ppm). The chemical shifts are expressed in δ downfield from the signal of internal TMS. Elemental analyses were carried out using a Perkin-Elmer elemental analyzer model-240C and Thermo Finnigan analyzer series Flash EA 1112. Mass spectral analyses were carried out on VG 7070H mass spectrometer using EI technique at 70 eV.

Analytical thin layer chromatographic tests were carried out on glass plates (3 x 10 cm) coated with 250 m μ acme's silica gel-G and GF₂₅₄ containing 13% calcium sulfate as binder. The spots were visualized by short exposure to iodine vapour or UV light. Column chromatography was carried out using acme's silica gel (100-200 mesh).

All the glassware were pre-dried at 140 °C in an air-oven for 4 h, assembled in hot condition and cooled under a stream of dry nitrogen. Unless, otherwise mentioned, all the operations and transformations of reagents were carried out using standard syringe, septum technique recommended for handling air sensitive organometallic compounds. Reagents prepared *in situ* in solvents were transferred using a double-ended stainless steel (Aldrich) needle under a pressure of nitrogen whenever required.

In all experiments, a round bottom flask of appropriate size with a side arm, a side septum, a magnetic stirring bar, a condenser and a connecting tube attached to a mercury bubbler were used. The outlet of the mercury bubbler was connected by a long tube to the atmosphere. All dry solvents and reagents (liquids) used were distilled from appropriate

drying agents. As a routine practice, all organic extracts were washed with saturated sodium chloride solution (brine) and dried over anhydrous MgSO₄ or Na₂SO₄ and concentrated on Buchi-EL-rotary evaporator. All yields reported are of isolated materials adjudged homogeneous by TLC, IR and NMR spectroscopy. Dichloromethane, 1,2-dichloroethane and chloroform were distilled over CaH₂ and dried over molecular sieves. All the tertiary amines were distilled over CaH₂ and stored over KOH pellets. Titanium tetrachloride, supplied by Spectrochem Ltd., India was used. It was used as 1:1 TiCl₄:CH₂Cl₂ stock solution. *N*,*N*-Diethylaniline and *N*,*N*-dimethylaniline were supplied by Spectrochem Ltd., India. PhCHO was distilled before use. Trimethyl orthoformate were supplied by E. Merck (India).

The X-ray diffraction measurements for the respective compounds were carried out at 293 K on an automated Enraf-Nonius MACH3 difractometer using graphite monochromated, Mo-K α (λ = 0.71073 A°) radiation with CAD4 software. Primary unit cell constants were determined with a set of 25 narrow frame scans. Intensity data were collected by the ω scan mode. Measuring the intensity of the three standard reflections after every one and half hour intervals monitored stability of the crystal during the measurement. No appreciable variation of the crystal was detected. X-ray diffraction measurements for the respective compounds were carried out at 293 K on Bruker-Nonius SMART APEX CCD area detector system. The data were reduced using XTAL 3.4 (or) SAINT programme, without applying absorption correction. The refinement for structure was made by full-matrix least squares on F² (SHELX 97 or SHELXTL).

Reaction of N, N-dialkyl arylamines and TICl4 with electrophiles 1.4.1

1.4.1.1 Reaction of N,N-dialkyl arylamines and TICl₄ with diethyl oxalate

In CH₂Cl₂ (25 mL), N,N-diethylaniline (1.2 mL, 7.5 mmol) and diethyl oxalate (0.35 ml, 2.1 mmol) were taken at 0 °C under N₂. The TiCl₄ (2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 10 mmol) in 10 mL of CH₂Cl₂ was added drop wise for 15 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 5 h. A saturated K₂CO₃ solution (10 mL) was added and stirred for 0.5 h. The contents were filtered through a Buchner funnel. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine and N,N,N',N'tetramethylbenzidine were eluted using 2:98 EtOAc/hexane mixture. The α-hydroxy ester **34a** was next eluted.

H₃C

CH₃

 OC_2H_5

ОН **34а**

Yield 0.57 g (58%)

IR (Neat) (cm⁻¹) 3560, 2972, 1720, 1610, 1517, 1267, 1195,

812

¹H-NMR (δ ppm, CDCl₃) 7.27 (d, J=8.8 Hz, 4H), 6.53 (d,

J=8.8 Hz, 4H), 4.30 (q, J=6.8 Hz, 2H), 3.37 (q, J=7.2 Hz, 8H), 1.32 (t, J=7.2

Hz, 3H), 1.18 (t, J=6.8 Hz, 12H) (**Spectrum No. 1**)

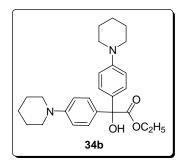
¹³C-NMR (δ ppm, CDCl₃) 175.5, 147.4, 129.5, 128.5, 111.2, 80.5, 62.2, 44.3, 14.1, 12.7

(Spectrum No. 2)

MS (EI) m/z 398 (M⁺, 37%) (**Spectrum No. 3**)

Yield 0.59 g (57%)

IR (Neat) (cm⁻¹) 3493, 2932, 1732, 748


 1 H-NMR (δ ppm, CDCl₃) 7.31 (d, J=8.8 Hz, 4H), 6.88 (d,

J=8.8 Hz, 4H), 4.29 (q, J=6.8 Hz, 2H), 3.18 (t,

J=5.6 Hz, 8H), 1.85-1.52 (m, 12H), 1.27 (t, J=6.8 Hz, 3H)

¹³C-NMR (δ ppm, CDCl₃) 172.7, 151.3, 131.3, 129.4, 115.1, 86.2, 60.6, 61.1, 50.2,

25.9, 24.3, 15.5, 14.1

Yield 0.46 g (69%)

(cm⁻¹) 2925, 2850, 1732, 1654, 1564, 1515, 1083, 771 IR (Neat)

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 9.30 (d, J=8.8 Hz, 1H), 8.13 (d, J=8.8 Hz, 1H), 7.88 (d, 1H), 7.72-7.48 (m, 2H), 6.91 (d, J=7.8

OC₂H₅ H₃C CH₃

Hz, 1H), 4.46 (q, J=7.2 Hz, 2H), 3.05 (s, 6H), 1.43 (t, J=7.2 Hz, 3H)

¹³C-NMR (δ ppm, CDCl₃) 187.4, 165.5, 157.8, 136.5, 133.4, 129.0, 127.5, 126.4, 125.4, 125.3, 120.5, 110.7, 61.9, 44.4, 14.1

MS (EI) m/z 271

Yield 0.47 g (62%)

IR (Neat) (cm⁻¹) 2935, 2850, 1732, 1658, 1566, 1512, 1207, 1080, 771

35b

OC₂H₅

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 9.27 (d, J=8.8 Hz, 1H), 8.14 (d, J=8.8 Hz, 1H), 7.90 (d, J=8.8 Hz, 1H), 7.72-7.48 (m, 2H), 6.96 (d, \overline{J} =8.8 Hz, 1H),

4.46 (q, J=6.8 Hz, 2H), 3.19 (t, J=5.6 Hz, 4H), 2.10-1.62 (m, 6H), 1.43 (t,

J=6.8 Hz, 3H) (**Spectrum No. 4**)

¹³C-NMR (δ ppm, CDCl₃) 187.1, 165.4, 158.1, 136.5, 133.2, 129.0, 128.4, 126.4, 125.9, 124.7, 121.4, 112.0, 62.0, 54.2, 26.2, 24.4, 14.1 (**Spectrum No. 5**) MS (EI) m/z 311 (M⁺, 32%)

1.4.1.2 Reaction of the N,N-dialkyl arylamines/TiCl₄ reagent system with α -keto esters

In CH₂Cl₂ (25 mL), *N*,*N*-diethylaniline (1.2 mL, 7.5 mmol) and ethyl benzoylformate (0.375 mL, 2.5 mmol) were taken at 0 °C under N₂. The TiCl₄ (2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 10 mmol) in 10 mL CH₂Cl₂ was added dropwise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 8 h. A saturated K₂CO₃ solution (20 mL) was added and stirred for 0.5 h. The contents were filtered through a Buchner funnel. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine, benzidine derivative were eluted using 2:98 EtOAc/hexane. The arylated ester **37d** and α -hydroxy ester **38a** were then eluted with 4:96 EtOAc/hexane mixture.

CH₃

37d

H₃C

H₃C

CH₃

OH OC2H5

38a

Yield 0.77 g (68%)

98-100 °C mp

(cm⁻¹) 2972, 2931, 1726, 1610, 1515, 1197, IR (KBr)

700

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 7.40-7.16 (m, 5H), 7.04 (d,

J=8.8 Hz, 4H), 6.60 (d, J=8.8 Hz, 4H), 4.35 (q, J=6.8 Hz, 2H), 3.36 (q,

J=7.2 Hz, 8H), 1.29-1.15 (m, 15H) (**Spectrum No. 11**)

¹³C-NMR (δ ppm, CDCl₃) 174.7, 146.4, 144.7, 131.3, 130.4, 127.6, 127.3,

126.3, 110.7, 65.8, 61.2, 44.5, 14.1, 12.7 (**Spectrum No. 12**)

m/z 458 MS (EI)`

Calculated for C₃₀H₃₈N₂O₂: C, 78.56%; H, 8.35%; N, 6.11% **Analysis**

> Found : C, 78.61%; H, 8.30%; N, 6.40%

Yield 0.17 g (22%)

(cm⁻¹) 3500, 2972, 2931, 2896, 1722, 1610, 1519, IR (Neat)

1245, 1197, 698

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 7.55-7.21 (m, 6H), 6.63 (d, J=8.8 Hz, 2H), 4.42 (q, J=6.8 Hz,

2H) 4.13 (s, 1H), 3.36 (q, J=7.2 Hz, 4H), 1.29 (t, J=7.2 Hz, 3H) 1.21 (t, J=6.8

Hz, 12H)

¹³C-NMR (δ ppm, CDCl₃) 175.0, 147.5, 142.6, 128.8, 128.4, 127.8, 127.7, 127.5, 111.0,

80.8, 62.6, 44.3, 14.1, 12.6

H₃C

37a

 CH_3

CH₃

`CH₃

Yield 1.09 g (89%) mp 100-102 °C

IR (KBr) (cm⁻¹) 2970, 2935, 1720, 1608, 1516, 1020, 814, 515

¹H-NMR (δ ppm, CDCl₃) 7.19-7.08 (m, 8H), 6.65 (d, J=8.8)

Hz, 4H), 4.36 (q, J=6.8 Hz, 2H), 3.41 (q, J=7.2 Hz,

8H), 2.40 (s, 3H), 1.31 (t, J=7.2 Hz, 3H), 1.23 (t, J=6.8 Hz, 12H)

¹³C-NMR (δ ppm, CDCl₃) 174.8, 146.3, 141.8, 135.8, 131.3, 130.4, 130.3, 128.1, 110.6, 65.5, 61.3, 44.3, 21.1, 14.2, 12.8

MS(EI) m/z 472

Analysis Calculated for $C_{25}H_{36}N_2O_2$: C, 75.72%; H, 9.15%; N, 7.06%

Found : C, 75.75%; H, 9.16%; N, 7.31%

Yield 1.0 g (82%)

mp 101-103 °C

IR (KBr) (cm⁻¹) 2968, 2831, 1722, 1608, 1197, 1032, 814,

522

H₃C N CH₃

CH₃

OC₂H₅

37b

OCH₃

¹H-NMR (δ ppm, CDCl₃) 7.17 (d, J=9.2 Hz, 2H), 7.04 (d, J=8.8 Hz, 4H), 6.84 (d, J=8.8

Hz, 2H), 6.61 (d, J=9.2 Hz, 4H), 4.31 (q, J=7.2 Hz, 2H), 3.83 (s, 3H), 3.38 (q,

J=6.8Hz, 8H), 1.28 (t, J=7.2, 3H), 1.20 (t, J=6.8 Hz, 12H) (Spectrum No. 6)

¹³C-NMR (δ ppm, CDCl₃) 174.9, 157.9, 146.3, 136.8, 131.5, 131.2, 130.4, 112.6, 110.6,

65.1, 61.3, 55.2, 44.3, 14.2, 12.7 (**Spectrum No. 7**)

MS (EI) m/z 488 (M^+ , 11%) (**Spectrum No. 8**)

Yield 0.81 g (82%)

(cm⁻¹) 2972, 2930, 1724, 1621, 1518, 1199, 1091, IR (Neat)

814

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 7.06 (d, 4H), 6.62 (d, 4H) 4.20 (q,

J=6.8 Hz, 2H), 3.31 (q, J=7.2 Hz, 8H), 1.86 (s, 3H), 1.27-1.09 (m, 15H)

(Spectrum No. 9)

¹³C-NMR (δ ppm, CDCl₃) 176.3, 146.4, 131.9, 128.9, 111.2, 60.9, 54.7, 44.4, 27.3,

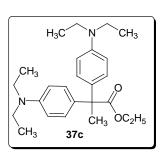
14.2, 12.7 (**Spectrum No. 10**)

Yield 0.80 g (88%)

IR (Neat) (cm⁻¹) 3501, 2968, 2930, 2870, 1722, 1610, 1520,

1059, 767, 698

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 7.60-7.26 (m, 7H), 6.67 (d, J=8.8


Hz, 2H), 4.36-4.31 (m, 4H), 3.42-3.26 (m, 4H), 1.66-1.17 (m, 9H), 0.98 (t,

J=6.8 Hz, 3H) (**Spectrum No. 13**)

¹³C-NMR (δ ppm, CDCl₃) 174.8, 147.4, 142.5, 128.6, 128.2, 127.7, 127.5, 127.4, 110.8,

80.6, 62.4, 50.2, 44.7, 29.2, 27.1, 22.5, 14.0, 13.9, 12.2 (**Spectrum No. 14**)

MS (EI) m/z 369 (M^+ , 23%) (**Spectrum No. 15**)

38b

1.4.1.3 Reaction of the *N,N*-dialkyl arylamines/TiCl₄ reagent system with benzil

Dichloromethane (25 mL), *N*,*N*-diethylaniline (1.2 mL, 7.5 mmol) and benzil (0.22 g, 2.5 mmol) were taken at 0 °C under N_2 . The TiCl₄ (2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 10mmol) in 10 mL CH₂Cl₂ was added dropwise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 8 h. A saturated K_2CO_3 solution (20 mL) was added and stirred for 0.5 h. The contents were filtered through a Buchner funnel. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 25 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine and benzidine derivative (0.10 g, 12%) were eluted using 2:98 EtOAc/hexane mixture. The α -hydroxy ketone **40a** was eluted next.

Yield 0.85 g (85%)

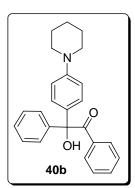
IR (Neat) (cm⁻¹) 3423, 2970, 2929, 1674, 1608, 1517, 1267,

1197, 698

¹H-NMR (δ ppm, CDCl₃) 7.74 (d, J=7.8 Hz, 2H), 7.35-7.05

(m, 10H), 6.60 (s, 1H), 3.32 (q, J=6.8 Hz, 4H), 1.14 (t, J=6.8 Hz, 6H) (Spectrum No. 16)

¹³C-NMR (δ ppm, CDCl₃) 200.1, 146.2, 145.3, 138.4, 131.7, 131.1, 130.8, 129.9, 127.4, 127.3, 125.9, 110.9, 84.9, 44.2, 12.7 (**Spectrum No. 17**)


Yield 0.64 g (70%)

(cm⁻¹) 3456, 3059, 2934, 2854, 1672, 1608, 1512, IR (Neat)

1238, 700

¹H-NMR $(\delta \text{ ppm, CDCl}_3) 8.01-672 \text{ (m, 14H), 4.99 (s, 1H), 3.18}$

(t, J= 4.6 Hz, 4H), 2.15-1.45 (m, 6H)

¹³C-NMR (δ ppm, CDCl₃) 201.4, 151.8, 142.3, 135.5, 132.7, 130.8, 129.2, 128.4, 128.3, 128.1, 127.9, 115.7, 84.8, 50.2, 25.6, 24.2

1.4.1.4 Reaction of the *N*,*N*-dialkyl arylamines/TiCl₄ reagent system with ethyl 2-benzoyl benzoate

Dichloromethane (25 mL), N,N-diethylaniline (0.81 mL, 5 mmol) and Ethyl 2benzoyl benzoate (0.63g, 2.5 mmol) were taken at 0 °C under N₂. The TiCl₄ (2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 10 mmol) in 10 mL CH₂Cl₂ was added dropwise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 8 h. A saturated K₂CO₃ solution (20 mL) was added and stirred for 0.5 h. The contents were filtered through a Buchner funnel. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine and benzidine

CH₃

ĊH₃

42a

derivative were eluted using 2:98 EtOAc/hexane mixture. The γ -lactone **42a** was isolated using 3:97 EtOAc/hexane mixture as eluent.

Yield 0.72 g (89%)

mp 52-54 °C

IR (KBr) (cm⁻¹) 3057, 2891, 1757, 1610, 1521, 1356, 1259,

1109, 738, 696

 1 H-NMR (δ ppm, CDCl₃) 7.91-6.61 (m, 13H), 2.99 (s, 6H)

¹³C-NMR (δ ppm, CDCl₃) 170.1, 157.8, 150.5, 141.7, 134.1, 129.2, 128.6, 128.5, 128.3,

 $128.0,\,127.0,\,125.9,\,124.2,\,111.8,\,92.3,\,40.3$

GCMS m/z 329

Analysis Calculated for $C_{22}H_{19}NO_2$: C, 80.22%; H, 5.81%; N, 4.25%

Found : C, 80.01%; H, 5.82%; N, 4.05%

Yield 0.73 g (86%)

mp 98-100 °C

(cm⁻¹) 3045, 2922, 2804, 1770, 1610, 1514, 1466, IR (KBr)

1358, 1217, 1105, 1055, 925, 736, 692

ĊH₃ 42b

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 7.93-7.11 (m, 10H), 6.64 (d, J=8.8 Hz, 2H), 2.93 (s, 6H),

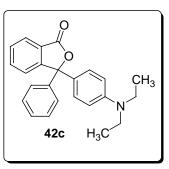
2.33 (s, 3H)

¹³C-NMR (δ ppm, CDCl₃) 170.2, 153.0, 150.5, 138.7, 138.1, 134.0, 129.1, 128.6, 127.0,

125.8, 124.2, 111.8, 92.4, 40.3, 21.1

GCMS m/z 343

Yield 0.80 g (90%)


mp 108-110 °C

IR (KBr) (cm⁻¹) 3061, 2972, 1763, 1608, 1259, 1199, 699

¹H-NMR $(\delta ppm, CDCl_3)$ 7.92-6.55 (m, 13H), 3.32 (q,

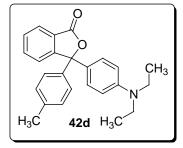
J=6.8 Hz, 4H), 1.13 (t, 6.8 Hz, 6H) (**Spectrum**

No. 18)

¹³C-NMR (δ ppm, CDCl₃) 169.9, 152.7, 147.7, 141.6, 133.8, 128.9, 128.2, 128.2, 126.7,

126.5, 125.6, 125.5, 124.0, 110.9, 92.2, 44.1, 12.4 (**Spectrum No. 19**)

m/z 357 (M⁺, 83%) (**Spectrum No. 20**) MS (EI)


Yield 0.78 g (81%)

mp 101-103°C

IR (KBr) (cm⁻¹) 3045, 2970, 2928, 1759, 1610, 1521,

1466, 1402, 1375, 1259, 1199, 1105, 758, 733,

690

 1 H-NMR (δ ppm, CDCl₃) 7.95-7.02 (m, 10H), 6.59 (d, J=9.8 Hz, 2H), 3.33 (q, J=6.8

Hz, 4H), 2.33 (s, 3H), 1.15 (t, J=6.8 Hz, 6H)

¹³C-NMR (δ ppm, CDCl₃) 170.0, 153.0, 147.8, 138.7, 138.0, 133.9, 129.8, 127.7, 125.8,

124.1, 111.0, 92.4, 44.4, 21.1, 12.6

GCMS m/z 371

1.4.1.5 Reaction of the *N,N*-dialkyl arylamines/TiCl₄ reagent system with alkynyl ketone

In CH₂Cl₂ (25 mL), *N*,*N*-dimethyl-1-naphthylamine (0.8 mL, 5 mmol) and alkynyl ketone (0.52 g, 2.5 mmol) were taken at 0 °C under N₂. The TiCl₄ (1.65 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 7.5 mmol) in 10 mL CH₂Cl₂ was added dropwise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 5 h. A saturated K₂CO₃ solution (15 mL) was added and stirred for 0.5 h. The reaction mixture was filtered through a Buchner funnel. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine and benzidine

derivative were eluted using 2:98 EtOAc/hexane mixture. The ketone 44 was isolated using 2:98 EtOAc/hexane mixture as eluent.

0.61 g (65%) Yield

(cm⁻¹) 3050, 2939, 2829, 1662, 1577, 1510, 1448, IR (Neat) 1269, 1217, 1045, 1020, 765, 696

¹H-NMR (δ ppm, CDCl₃) 8.23-6.93 (m, 17H), 2.88 (s, 6H) (Spectrum No. 21)

44

¹³C-NMR (δ ppm, CDCl₃) 193.0, 153.7, 151.4, 141.2, 138.7, 133.2, 132.0, 131.1, 129.4, 128.7, 128.3, 128.0, 127.8, 127.2, 126.6, 125.9, 125.7, 124.9, 124.6, 113.1, 45.1 (**Spectrum No. 22**)

GCMS m/z 377

1.4.1.6 Reaction of the *N,N*-dialkyl arylamines/TiCl₄ reagent system with 1,2-dimethoxy-1,2-diaryl ethanes

In CH₂Cl₂ (25 mL), *N*,*N*-diethylaniline (1.2 mL, 7.5 mmol) and 1,2-dimethoxy-1,2-phenyl ethane (0.49 g, 2.5 mmol) were taken at 0 °C under N₂. The TiCl₄ (1.65 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 7.5 mmol) in 10 mL CH₂Cl₂ was added dropwise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 5 h. A saturated K₂CO₃ solution (15 mL) was added and stirred for 0.5 h. The reaction mixture was filtered through a Buchner funnel. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine and benzidine derivative were eluted using 2:98 EtOAc/hexane mixture. The product 1,1',2,2'-tetra arylethane **49a** was isolated using 3:97 EtOAc/hexane mixture as eluent.

Yield 0.89 g (89%)

IR (Neat) (cm⁻¹) 3028, 2966, 2893, 1612, 1518, 1354,

1267,800, 742

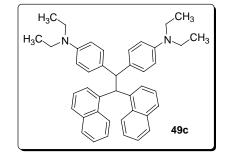
¹³C-NMR (δ ppm, CDCl₃) 148.9, 144.5, 131.9, 129.1, 128.7, 127.9, 125.4, 112.2, 56.9, 54.3, 44.3, 12.5 (**Spectrum No. 26**)

Yield 0.66 g (55%)

IR (Neat) (cm⁻¹) 3028, 2926, 2852, 1612, 1514, 1236, 804, 744, 698

¹H-NMR (δ ppm, CDCl₃) 6.36-6.08 (m, 14H), 5.78 (d,

J=8.6 Hz, 4H), 3.78 (dd, J=11.7 Hz, 2H), 2.21 (t, J=5.0 Hz, 8H), 0.80-0.62 (m, 12H)


¹³C-NMR (δ ppm, CDCl₃) 145.0, 144.1, 135.0, 128.9, 128.6, 128.0, 116.3, 56.7, 54.6, 50.7, 26.0, 24.2 (**Spectrum No. 27**)

Yield 1.0 g (72%)

mp 268-270 °C

IR (KBr) (cm⁻¹) 3043, 2966, 1612, 1518, 775

¹H-NMR (δ ppm, CDCl₃) 8.14-7.20 (m, 14H), 6.71 (d, J=8.4 Hz, 4H), 6.29 (d, J=8.4 Hz, 4H),

4.85 (d,J=11.0 Hz, 2H), 3.15 (q, J=6.8 Hz, 8H), 0.99 (t, J=6.8 Hz, 12H)

(Spectrum No. 28)

¹³C-NMR (δ ppm, CDCl₃) 140.4, 133.6, 132.3, 129.6, 128.4, 126.7, 126.4, 125.4, 125.1, 124.6, 123.7, 112.4, 55.9, 44.7, 12.4 (**Spectrum No. 29**)

The structure was also confirmed by single crystal X-ray data.

Analysis Calculated for $C_{42}H_{44}N_2$: C, 87.45%; H, 7.69%; N, 4.86%

Found : C, 87.63%; H, 7.65%; N, 4.81%

Yield 0.63 g (42%)

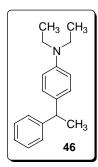
mp 248-250 °C

IR (KBr) (cm⁻¹) 2970, 2930, 2870, 1612, 1564, 1265, 808

 1 H-NMR (δ ppm, CDCl₃) 8.06 (d, J=8.8 Hz, 2H), 7.66 (d,

49d

J=8.8 Hz, 2H), 7.55 (d, J=6.8 Hz, 2H), 7.31-7.17 (m, 4H), 6.71 (d J=8.6 Hz, 4H), 6.47 (d, J=8.8 Hz, 4H), 6.22 (d, J=8.8 Hz, 2H), 4.83 (d, J=11.0 Hz, 2H), 2.88 (t, J=6.0 Hz, 8H), 1.70-1.86 (m, 12H)


¹³C-NMR (δ ppm, CDCl₃) 150.0, 140.1, 134.5, 133.6, 132.2, 129.3, 128.4, 126.5, 125.5, 125.1, 124.6, 123.5, 116.0, 56.2, 50.8, 25.7, 24.3

1.4.1.7 Reaction of the *N,N*-dialkyl arylamines/TiCl₄ reagent system with 1-methoxy-1-phenyl ethane

Yield 0.32 g (52%)

IR (Neat) (cm⁻¹) 2966, 2929, 2869, 1614, 1517, 1265, 815,

700

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 7.50-6.70 (m, 9H), 4.23 (q, J=7.2 Hz, 1H), 3.52 (q, J=6.8 Hz, 4H), 1.75 (d, J=7.2 Hz, 3H) 1.32 (t, J=6.8 Hz, 6H) (**Spectrum No. 23**) ¹³C-NMR (δ ppm, CDCl₃) 147.5, 146.3, 143.6, 128.5, 127.7, 126.3, 125.6, 112.2, 44.6, 44.0, 22.3, 12.8 (**Spectrum No. 24**)

1.4.1.8 Reaction of the *N,N*-dialkyl arylamines/TiCl₄ reagent system with trimethyl orthoformate

In CH₂Cl₂ (25 mL), N-ethyl, N-butylaniline (0.8 mL, 5 mmol) and trimethyl orthoformate (0.81 mL, 7.5 mmol) were taken at 0 °C under N₂. The TiCl₄ (2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 10 mmol) in 10 mL CH₂Cl₂ was added dropwise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 5 h. A saturated K₂CO₃ solution (15 mL) was added and stirred for 0.5 h. The contents were filtered through a Buchner funnel. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 20 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine and benzidine derivative were eluted using 2:98 EtOAc/hexane mixture. The aldehyde derivative 51a was eluted using 3:97 EtOAc/hexane mixture.

CH₃

51a

51b 0

H₃C

Yield 0.56 g (74%)

IR (Neat) (cm⁻¹) 2974, 2929, 2806, 2731, 1666, 1593, 1527,

1407, 1355, 817

¹H-NMR (δ ppm, CDCl₃) 9.98 (s, 1H), 7.68 (d, J=9.0 Hz,

2H), 6.64 (d, J=8.8 Hz, 2H), 3.54-3.28 (m, 4H), 1.70-1.20 (m, 2H), 1.18 (t,

J=6.8 Hz, 3H), 0.95 (t, J=7.2 Hz, 3H) (**Spectrum No. 30**)

¹³C-NMR (δ ppm, CDCl₃) 189.9, 152.5, 132.2, 124.6, 110.7, 50.3, 45.2, 29.5, 20.3,

13.9, 12.2 (**Spectrum No. 31**)

GCMS m/z 205

The above procedure was followed for the reaction of N-(1-naphthyl) piperidine, trimethyl orthoformate and TiCl₄.

Yield 0.46 g (85%)

IR (Neat) (cm⁻¹) 3078, 3045, 2948, 2841, 2790, 2732, 1678, 1568,

1338, 1056, 767

¹H-NMR (δ ppm, CDCl₃) 10.23 (s, 1H), 9.34 (d, J=8.8 Hz, 1H,),

(6 ppin, CDCi3) 10.23 (8, 111), 9.34 (u, 3-8.8 fiz, 111,),

8.18 (d, 1H, J=8.8 Hz), 7.67 (d, 1H, J=8.8 Hz), 7.90-7.55 (m, 2H), 7.10 (d,

1H, J=8.8 Hz), 3.21 (t, J=6.8 Hz, 4H), 1.95-1.87 (m, 4H), 1.76-1.72 (m, 2H)

¹³C-NMR (δ ppm, CDCl₃) 192.3, 157.4, 138.7, 132.4, 128.7, 128.2, 126.0, 125.9, 125.5,

124.5, 112.7, 54.3, 24.3, 24.5

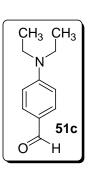
1.4.2 Reactions of N, N-dialkyl arylamines and SnCl₄ with electrophiles

Reaction of N,N-dialkyl arylamines and SnCl₄ with trimethyl 1.4.2.1 orthoformate

In CH₂Cl₂ (25 mL), N,N-diethylaniline (0.8 mL, 5 mmol) and trimethyl orthoformate (0.81 mL, 7.5 mmol) were taken at 0 °C under N₂. The SnCl₄ (1.1 mL, 10 mmol) was added dropwise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 3 h. A saturated K₂CO₃ solution (15 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine was eluted using 2:98 EtOAc/hexane mixture. The aldehyde derivative **51c** was eluted using 3:97 EtOAc/hexane mixture.

Yield 0.46 g (62%)

Yield 0.43 g (64%)


IR (Neat) (cm⁻¹) 2974, 2929, 2806, 2731, 1666, 1593, 1527,

1407, 1355, 817

¹H-NMR (δ ppm, CDCl₃) 9.70 (s, 1H), 7.70 (d, J=8.6 Hz, 2H), 6.65 (d,

J=8.7 Hz, 2H), 3.45 (q, J=6.8 Hz, 4H), 1.25 (t, J=6.8 Hz, 6H)

¹³C-NMR (δ ppm, CDCl₃) 189.8, 152.2, 132.2, 124.6, 110.5, 44.6, 12.4

The above procedure was followed for the reaction of *N*,*N*-dialkyl-1-naphthylamine, trimethyl orthoformate and SnCl₄.

Yield 0.37 g (69%)

 H_3C_N C H_3

51c

Yield 0.36 g (72%)

IR (Neat) (cm⁻¹) 3078, 3045, 2948, 2841, 2790, 2732, 1678, 1568,

1338, 1056, 767

 $^{1}\text{H-NMR}$ (δ ppm, CDCl₃) 10.11 (s, 1H), 9.37 (d, 1H, J=8.79 Hz),

8.13 (d, 1H, J=8.79 Hz), 7.73 (d, 1H, J=7.8 Hz), 7.67-7.42 (m, 2H), 6.90 (d,

1H, J=7.8 Hz), 2.94 (s, 6H)

¹³C-NMR (δ ppm, CDCl₃) 192.1, 157.2, 138.9, 132.6, 128.7, 127.4, 125.5, 125.14,

111.51, 44.51

1.4.2.2 Reaction of N,N-dialkyl aniline and SnCl₄ with acetals

In CH₂Cl₂ (25 mL), N,N-diethylaniline (0.8 mL, 5 mmol) and benzaldehyde dimethyl acetal (0.42 mL, 2.5 mmol) were taken at 0 $^{\circ}$ C under N_2 and $SnCl_4$ (0.8 mL , 7.5 mmol) was added. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 3 h. A saturated K₂CO₃ solution (15 mL) was added and stirred for 10 min. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine was eluted using 2:98 EtOAc/hexane mixture. The product 53a was eluted using 3:97 EtOAc/hexane mixture.

Yield 1.15 g (88%)

(cm⁻¹) 3070, 3028, 2800, 1610, 1518, 1350, 1203, 1153, IR (Neat)

1060, 788

¹H-NMR (δ ppm, CDCl₃) 7.40-6.73 (m, 13H), 5.48 (s, 1H), 2.99

(s, 12H)

53b

¹³C-NMR (δ ppm, CDCl₃) 149.1, 145.6, 133.0, 130.1, 129.5, 128.2, 125.9, 112.7, 55.2,

40.8

Analysis Calculated for $C_{23}H_{26}N_2$: C, 83.59%; H, 7.93%; N, 8.48%

Found : C, 86.66%; H, 7.92%; N, 8.55%

Yield 0.67 g (78%)

mp 64-66 °C

IR (KBr) (cm⁻¹) 2970, 2930, 2868, 1612, 1518, 1265, 704

¹H-NMR (δ ppm, CDCl₃) 7.30-6.60 (m, 13H), 4.15 (t, J=6.8

Hz, 1H), 3.45-3.25 (m, 10H), 1.25 (t, J=6.8 Hz, 12H)

¹³C-NMR (δ ppm, CDCl₃) 146.3, 141.5, 132.8, 129.3, 128.8, 128.0, 125.6, 112.3, 51.2,

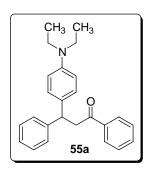
44.5, 42.9, 12.8

MS(EI) m/z 400

In CH₂Cl₂ (25 mL), *N*,*N*-dimethylaniline (1.6 mL, 10 mmol) and benzaldehyde (0.5 mL, 5 mmol) were taken at 0 °C under N₂ and SnCl₄ (1.6 mL, 10 mmol) was added. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 3 h. A saturated K_2CO_3 solution (20 mL) was added and stirred for 10 min. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×25 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄.

The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine was eluted using 2:98 EtOAc/hexane mixture. The triarylmethane 53b was next eluted.

Yield 1.07 g (82%)

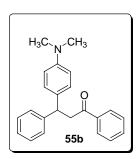

Reaction of N,N-dialkyl arylamines and SnCl₄ with α,β-unsaturated 1.4.2.4 ketones

In CH₂Cl₂ (25 mL), N,N-diethylaniline (0.8 mL, 5 mmol) and chalcone (0.52 g, 2.5 mmol) were taken at 0 °C under N2. The SnCl4 (0.8 mL, 7.5 mmol) in 10 mL CH2Cl2 was added dropwise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 6 h. A saturated K₂CO₃ solution (15 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The ketone **55a** was isolated using 2:98 EtOAc/hexane mixture as eluent.

Yield 0.45 g (82%)

mp 62-64 °C

IR (KBr) (cm⁻¹) 3055, 2968, 2928, 2887, 1684, 1612, 1520, 1197, 752


¹H-NMR (δ ppm, CDCl₃) 8.03 (d, J=7.3 Hz, 2H), 7.70-7.15 (m, 10H), 6.70 (d, J=8.4 Hz, 2H), 4.85 (t, J=7.1 Hz, 1H), 3.80 (d, J=7.1 Hz, 2H), 3.40 (q, J=6.9 Hz, 4H), 1.21 (t, J=6.9 Hz, 6H)

¹³C-NMR (δ ppm, CDCl₃) 198.50, 146.6, 145.2, 137.5, 133.0, 131.2, 128.7, 128.6, 128.5, 128.2, 128.0, 126.2, 112.2, 45.3, 44.4, 12.8

Yield 0.40 g (75%)

IR (Neat) (cm⁻¹) 3055, 2968, 2928, 2887, 1684, 1612, 1520, 1197, 752

¹H-NMR 7.99-6.68 (m, 13H), 4.80 (t, J=6.9 Hz, 1H), 3.75 (d, J=6.8 Hz, 2H), 2.92 (s, 6H) (**Spectrum No. 32**)

 H_3C_N C H_3

55c

¹³C-NMR (δ ppm, CDCl₃) 198.4, 149.3, 145.0, 132.9, 132.2, 128.5, 128.1, 127.9, 126.2, 112.9, 45.3, 45.2, 40.7 (**Spectrum No. 33**)

Analysis Calculated for C₂₃H₂₃NO : C, 83.85%; H, 7.04%; N, 4.25%

> Found : C, 83.69%; H, 7.10%; N, 4.15%

Yield 0.63 g (88 %)

154-156 °C mp

(cm⁻¹) 3059, 3024, 2972, 2935, 2789, 1676, 1581, IR (KBr)

1450, 763

¹H-NMR 8.46-7.06 (m, 16H), 5.71 (t, J=6.8 Hz, 1H), 3.92 (d, J=6.8 Hz, 2H), 2.95 (s, 6H)

¹³C-NMR (δ ppm, CDCl₃) 198.2, 150.1, 144.4, 137.3, 134.3, 133.1, 132.8, 129.6, 128.6, 128.1, 126.3, 126.1, 124.9, 124.5, 124.3, 113.5, 45.3, 41.4

1.4.3 Reactions arylamines of *N,N*-dialkyl Et₂O:BF₃ with and electerophiles

1.4.3.1 Reaction N,N-dialkyl arylamines with trimethyl of orthoformate and Et₂O:BF₃

In CH₂Cl₂ (25 mL), N,N-diethylaniline (0.8 mL, 5 mmol), trimethyl orthoformate (0.81 mL, 7.5 mmol) were taken at 0 °C under N₂ and Et₂O:BF₃ (1.1 mL, 10 mmol) was added. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 3 h. A saturated K₂CO₃ solution (15 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2×20 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine was eluted using 2:98 EtOAc/hexane mixture. The aldehyde derivative **51c** was eluted using 3:97 EtOAc/hexane mixture.

The above procedure was followed for the reaction of *N*,*N*-dimethyl-1-naphthylamine, trimethyl orthoformate and Et₂O:BF₃.

Yield 0.34 g (64%)

Yield 0.39 g (78%)

The spectral data were identified that of samples obtained in experiments using TiCl₄ or SnCl₄

Reaction of N,N-dialkyl arylamines and Et₂O:BF₃ with acetals 1.4.3.2

In CH₂Cl₂ (25 mL), N,N-diethylaniline (0.8 mL, 5 mmol), benzaldehyde dimethyl acetal (0.42 mL, 2.5 mmol) were taken at 0 °C under N₂ atmosphere and Et₂O:BF₃ (0.8 mL, 7.5 mmol) was added. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 3 h. A saturated K₂CO₃ solution (15 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine were eluted using 2:98 EtOAc/hexane mixture. The product **53b** was eluted using 3:97 EtOAc/hexane mixture.

Yield 1.2 g (75%)

Yield 0.69 g (80%)

The spectral data were identified that of samples obtained in experiments using SnCl₄.

1.4.3.3 Reaction of N,N-dialkyl arylamines and $Et_2O:BF_3$ with benzaldehyde

In CH_2Cl_2 (25 mL), N,N-dimethylaniline (0.8 mL, 10 mmol) and benzaldehyde (0.25 mL, 2.5 mmol) were taken at 0 °C under N_2 and $Et_2O:BF_3$ (0.8 mL , 7.5 mmol) was added. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 3 h. A

saturated K₂CO₃ solution (20 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×25 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine, benzidine derivative and unreacted benzaldehyde were eluted using 1:99 EtOAc/hexane mixture. The triarylmethane **53b** was next eluted.

The spectral data were identified that of samples obtained in experiments using TiCl₄ or SnCl₄

1.5 References

- Reetz, M. T. Organotitanium reagents in organic synthesis, Springer-Verlag, Berlin,
 1986. (b) Organometallics in Synthesis A Manual, M. Schlosser (Ed), John Wiley & Sons, 2002, p 817.
- (a) Zieglar, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 541. (b)
 Zieglar, K. Angew. Chem. 1964, 76, 545. (c) Natta, G. Angew. Chem. 1956, 68, 393.
 (d) Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255.
- 3. (a) Vol'pin, M. E.; Shur, V. B. *Nature* **1966**, 209, 1236. (b) Hori, M.; Mori, M. *J. Org. Chem.* **1995**, 60, 1480.
- 4. McMurry, J. E. Chem. Rev. **1989**, 89, 1513.
- 5. (a) Titanium and Zirconium derivatives in organic synthesis: A review with procedures by Seebach, D.; Weidmann, B.; Wider, L. in Modern Synthetic Methods 1983, Ed. Scheffold, R. Wiley, New York, 1983, p 217. (b) Takai, K.; Hotta, Y. Oshima, K.; Nozaki, H. Tetrahedron Lett. 1978, 19, 2417.
- 6. Reetz, M. T.; Westermann, J.; Steinbach, R. J. Chem. Soc., Chem. Commun. 1981, 237.
- 7. Pastor, I. M.; Yus, M. *Tetrahedron* **2001**, *57*, 2365 and references cited there in.
- 8. (a) Periasamy, M. *ARKIVOC* **2002**(*VII*), 151. (b) Harrison, C. R. *Tetrahedron Lett.* **1987**, 28, 4135. (c) Evans, D.A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. *J. Am. Chem. Soc.* **1990**, *112*, 866. (d) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. *J. Am. Chem. Soc.* **1991**, *113*, 1047. (e) Crimmins, M. T.; King, B. W.; Tabet, E. A. *J. Am. Chem. Soc.* **1997**, *119*, 7883. (f) Yoshida, Y.; Hayashi, R.; Sumihara, H.; Tanabe, Y. *Tetrahedron Lett.* **1997**, *38*, 8727 and references cited therein.
- 9. Reddy, M. N. Ph.D Thesis, School of Chemistry, University of Hyderabad, Hyderabad, India.

References 83

10. Bujwid, Z. J.; Gerrard, W.; Lappert, M. F. Chem. Ind. (London) **1959**, 1091.

- 11. Solomayor, N.; Lete, E. Current organic Chemistry 2003, 7, 275.
- 12. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Eaborn, C.; Hornfeld, H. L.; Walton, D. R. M. J. Organomet. Chem. 1967, 10, 529. (c) Harada, G.; Yoshida, M.; Iyoda, M. Chem. Lett. 2000, 160. (d) Wilkinson, G.; Stone, F. G. A.; Abel, E. W. (Eds.), "Comprehensive Organometallic Chemistry", Pergamon press, 1982, Vol. 2, p-531. (e) Wilkinson, G.; Stone, F. G. A.; Abel E. W. (Eds.), "Comprehensive Organometallic Chemistry", Pergamon press, 1982, Vol. 2, p-685. (f) Jukes, A. E. Adv. Organomet. Chem. 1974, Vol. 12, p-219, Ed., Stone, F. G. A.; West, R. Acad. Press. (g) Wilkinson, G.; Stone, F. G. A.; Abel E. W. (Eds.), "Comprehensive Organometallic Chemistry", Pergamon press, 1982, Vol. 2, p-832. (h) Wilkinson, G.; Stone, F. G. A.; Abel, E. W. (Eds.), "Comprehensive Organometallic Chemistry", Pergamon press, 1982, Vol. 2, p-869. (i) Herwig, W.; Zeiss, H. J. Am. Chem. Soc. 1959, 81, 4798. (j) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis, Pergamon Press, 1993, Vol. 1, p-174. (k) (a) Cahiez, G.; Bernard, D.; Normant, J. F. Synthesis 1977, 130. (b) Normant, J. F.; Cahiez, G. Organomanganese reagents in Modern Synthetic Methods, R. Scheffold, Ed., 1983, Vol. 3, p-173.
- 13. Rieke, R. D.; Hanson, M. V. *Tetrahedron* **1997**, *53*, 1925. (b) Deacon, G. B.; Raverty, W. D.; Vince, D. G. *J. Organomet. Chem.* **1977**, *135*, 103.
- Sasai, M.; Ueda, M.; Miyaura, N. Angew. Chem. Int. Ed. Engl. 1998, 37, 3279. (b)
 Oi, S.; Moro, M.; Inoue, Y. J. Chem. Soc., Chem. Comm. 1997, 1621.
- (a) Rodriques, K. E.; Basha, A.; Summers, J. B.; Brooks, D. W. *Tetrahedron lett.* 1988, 29, 3455. (b) Ueda, M.; Saito, A.; Miyaura, N. *Synlett.* 2000, 1637.
- 16. Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.
- 17. (a) Koo, S.; Liebeskind, L. S. J. Am. Chem. Soc. **1995**, 117, 3389.
- 18. Oi, S.; Moro, M.; Fukuhara, H.; Kawanishi, T.; Inoue. I.; Yoshio, I. *Tetrahedron* **2003**, *59*, 4351 and references therein.

- (a) Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300. (b) Beak, P.;
 Snieckus, V. Acc. Chem. Res. 1982, 15, 306. (d) Snieckus, V. Chem. Rev. 1990, 90, 879. (e) Snieckus, V. Pure Appl. Chem. 1994, 66, 2155.
- 20. Semmelheck, M. F.; Hernden, J. W. *Organometallics* **1983**, 2, 363.
- 21. Beak, P.; Selling, G. W. J. Org. Chem. 1989, 54, 5574.
- 22. Brooks, P.; Gallagher, M. J.; Sarroff, A. Aus. J. Chem. 1987, 40, 1341.
- 23. Nakajima, M.; Anselma, J. P. J. Org. Chem. 1983, 48, 2492.
- 24. Sibi, M. P.; Marvan, M.; Sharma, R. J. Org. Chem. **1995**, 60, 5016.
- 25. Mon, C.-L.; Barnish, I.; T., Hauser, C.; R. J. Heterocycl. Chem. 1969, 6, 475.
- Liebeskind, L. S.; Fengl, R. W.; Wirtz, K. R.; Shawe, T. J. Org. Chem. 1988, 53, 2482.
- 27. Johnson, C. R.; Marren, T. *Tetrahedron lett.* **1987**, 28, 27.
- 28. Rdriques, K. E.; Basha, A.; Summers, J. B.; Brooks, D. W. *Tetrahedron lett.* **1988**, 29, 3455.
- Chauder, B.; Green, L.; Snieckus, V. *Pure. Appl. Chem.* 1999, 8, 1521. (b) Mac Nel,
 S. L.; Gray, M.; Briggs, L. E.; Li, J. J.; Snieckus, V. *Synlett* 1998, 63, 1514. (c)
 Kalinin, A. V.; Bower, J. F.; Riebel, P.; Snieckus, V. *J. Org. Chem.* 1999, 64, 2986.
- 30. Kiefl, C.; Mannschreck, A. *Synthesis* **1995**, 1033. (b) Klement, I.; Stadtmuller, H.; Knochel, P.; Cahiez, G. *Tetrahedron lett.* **1997**, *38*, 1927. (c) Amat, M.; Seffar, F.; Llor, N.; Bosch, J. *Synthesis* **2001**, 276.
- (a) Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300. (b) Beak, P.;
 Snieckus, V. Acc. Chem. Res. 1982, 15, 306. (d) Snieckus, V. Chem. Rev. 1990, 90, 879. (e) Snieckus, V. Pure Appl. Chem. 1994, 66, 2155.
- 32. Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maknnela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otta, S.; Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. *J. Am. Chem. Soc.* **2004**, *126*, 14712.
- 33. Hoshi, M.; Mosuda, Y.; Arase, A. Bull. Chem. Soc. Jpn. 1988, 61, 3764.

References 85

34. (a) Jones, L. A.; Kirby, S. L.; Kean, D. M.; Campbell, G. L. *J. Organometallic Chem.*1985, 284, 159. (b) Krasovskiy, A.; Knochel, P. *Angew. Chem. Int. Ed. Engl.* 2004, 43, 3333.

- 35. Weinstock, L. M.; Currie, R. B.; Lovell, A. V. Synth. Commun. **1981**, 11, 943.
- 36. Tamao, K.; Zembayashi, M.; Kumada, M. *Chem. lett.* **1976**, 1239.
- 37. Liebeskind, L. S.; Suresh, I.; Jewell, C. F. Jr. J. Org. Chem. **1986**, *51*, 3065.
- 38. Jalander, L. Synth. Commun. 1988, 18, 343.
- 39. Newman, M. S.; Farbman, M. D. J. Am. Chem. Soc. **1944**, 66, 1550.
- 40. Devine, P. N.; Oh, T. Tetrahedron lett. **1991**, *32*, 883.
- 41. McCarthy, J. R.; Barney, C. L.; Mathews, D. P.; Barger, T. M. *Tetrahedron lett.* **1987**, 28, 2207.
- 42. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- 43. Bujwid, Z. J.; Gerrard, W.; Lappert, M. F. Chem. Ind. (London), **1959**, 1091.
- 44. Ueda, M.; Miyaura, N. J. Org. Chem. **2000**, 65, 4450.
- 45. Gooben, L. J. J. Chem. Soc., Chem. Comm. 2001, 669.
- (a) Takaya, Y.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc. 1998, 120, 5579.
 (b) Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 1999, 121,11591.
- (a) Postigo, Al.; Vaillard, S. E.; Rossi, R. A. J. Organometallic Chem. 2002, 656, 108.
 (b) Postigo, Al.; Rossi, R. A. Org. lett. 2001, 3, 1197.
 (c) Mai, K.; Patil, G. Organometallics 1991, 10, 2772.
 (d) Mochida, K.; Ogawa, H. J. Organometallic Chem. 1983, 243, 131.
- 48. Oi, S.; More, M.; Inoue, Y. Organometallics **2001**, 20, 1036.
- 49. Huang, T.-S.; Li, C.-J. J. Chem. Soc., Chem. Comm. 2001, 2348.
- 50. Mandal, S.; Sarkar, A. J. Org. Chem. **1998**, 63, 1901.
- 51. Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508.
- 52. Wilkinson, G.; Stone, F. G. A.; Abel (Eds.), E. W. "Comprehensive Organometallic Chemistry", Pergamon press, **1982**, Vol. 2, p-531.
- 53. Harada, G.; Yoshida, M.; Iyoda, M. Chem. Lett. 2000, 160.

- 54. Eaborn, C.; Hornfeld, H. L.; Walton, D. R. M. J. Organomet. Chem. 1967, 10, 529.
- 55. Oi, S.; More, M.; Inoue, Y. J. Chem. Soc., Chem. Comm. 1997, 1621.
- 56. Huang, T.; Meng, Y.; Venkatraman, S.; Wang, D.; Li, C.-J. *J. Am. Chem. Soc.* **2001**, *123*, 7451.
- 57. Oi, S.; Moro, M.; Fukuhara, H.; Kawanishi, T.; Inoue. I.; Yoshio, I. *Tetrahedron* **2003**, *59*, 4351 and references therein.
- 58. (a) G. Wilkinson, F. G. A. Stone, E. W. Abel (Eds.), "Comprehensive Organometallic Chemistry", Pergamon press, **1982**, Vol. 2, p-832. (b) Bell, H. C. J.; Kalman, R.; Pinhey, J. T.; Sternhell, S. Austr. J. Chem. **1979**, 32, 1521.
- (a) Morgon, J.; Pinhey, J. T.; Rowe, B. A. *J. Chem. Soc.*, *Perkin. Trans.1* 1997, 1005.(b) Pinhey, J. T. *Aust. J. Chem.* 1991, 44, 1353.
- 60. Kozyrod, P. R.; Morgon, J.; Pinhey, J. T. Aust. J. Chem. 1991, 44, 369.
- 61. (a) Wilkinson, G.; Stone, F. G. A.; Abel, E. W. (Eds.), "Comprehensive Organometallic Chemistry", Pergamon press, **1982**, Vol. 2, p-685. (b) Elliott, G. I.; Konopelski, J. P. Tetrahedron **2001**, *57*, 5683.
- 62. Lowig, C.; Schweir, E. Liebigs. Ann. Chem. 1850, 75, 315.
- 63. Fint, J.-P. Chem. Rev. 1989, 89, 1487.
- 64. Rieke, R. D.; Wu, T. C. Synth. Commun. **1989**, 19, 1833.
- 65. Jukes, A. E. *Adv. Organomet. Chem.* **1974**, Vol. *12*, p-219, Ed., F. G. A. Stone, R. West, Acad. Press.
- 66. Rathke, M. W.; Vogiazoglou, D. J. Org. Chem. **1987**, 52, 3697.
- 67. Johnson, C. R.; Marren, T. *Tetrahedron lett.* **1987**, 28, 27.
- 68. Sacks, C. E.; Fuchs, P. L. J. Am. Chem. Soc. 1975, 97, 7372.
- 69. Marino, J. P.; Jaen, J. C. J. Am. Chem. Soc. 1982, 104, 3165.
- 70. Durandetti, M.; Nedelec, J. –Y.; Perichon, J. J. Org. Chem. **1996**, 61, 1748.
- 71. Moradi, W. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7996.
- 72. Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc. **2000**, 122, 1360.
- 73. Majid, T. N.; Knochel, P. *Tetrahedron Lett.* **1990**, *31*, 4413.

References 87

- 74. Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. **1991**, *56*, 1445.
- 75. Markies, P. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F. *Organometallics* **1991**, *10*, 3538.
- 76. Sibille, S.; Ratovelomanana, V.; Perichon, J. J. Chem. Soc., Chem. Comm. 1992, 283.
- 77. Ogawa, Y.; Saiga, A.; Mori, M.; Shibata, T.; Takagi, K. J. Org. Chem. **2000**, 65, 1031.
- 78. Lamaty, F.; Lazaro, R.; Martinez, J. *Tetrahedron lett.* **1997**, *38*, 3385.
- 79. Burkhardt, E. R; Rieke, R. D. J. Org. Chem. **1985**, 50, 416.
- 80. Jones, R. R; Young, J. R. J. Org. Chem. 1968, 33, 1675.
- 81. Larock, R. C. Organomercury compounds in organic synthesis, Springer-Verlag, 1985.
- 82. Wilkinson, G.; Stone, F. G. A.; Abel (Eds.), E, W. "Comprehensive Organometallic Chemistry", Pergamon press, 1982, Vol. 2, p-877.
- 83. Wu, T. C.; Xiong, H.; Rieke, R. D. J. Org. Chem. 1990, 55, 5045.
- 84. Evans, D. F.; Fazakerley, G. V.; Phillips, R. F. J. Chem. Soc. D **1970**, 244.
- 85. Deacon, G. B.; Raverty, W. D.; Vince, D. G. J. Organomet. Chem. 1977, 135, 103.
- 86. Hou, Z.; Fujiwara, Y.; Jintoku, T.; Mine, N.; Tokoo, K.; Ttaniguchi, H. *J. Org. Chem.* **1987**, *52*, 3528.
- 87. Herman, D. F.; Nelson, W. K. J. Am. Chem. Soc. 1953, 75, 3877.
- 88. Holloway, H. Chem. Ind. 1962, 214.
- 89. Weidmann, B.; Widler, L.; Olivero, A. G.; Maycock, C. D.; Seebach, D. *Helv. Chim. Acta* **1981**, *64*, 357.
- 90. Rise, F.; Undheim, K. J. Chem. Soc., Perkin Trans. 1 **1985**, 1997.
- 91. (a) Reetz, M. T. *Top. Curr. Chem.* **1982**, *106*, 1. (b) Weidmann, B.; Seebach, D. *Angew. Chem. Int. Ed. Engl.* **1983**, 22, 31.
- 92. Herman, D. F.; Nelson, W. K. J. Am. Chem. Soc. 1953, 75, 3877.
- 93. Krause, N.; Seebach, D. Chem. Ber. 1988, 121, 1315.
- 94. Hayashi, T.; Tokunaga, N.; Yoshida, K.; Han, J. W. J. Am. Chem. Soc. 2002, 124, 12102.

- (a) Thiele, K. H.; Zdunneck, P.; Baumgart, D. Z. Anorg. Allg. Chem. 1970, 378, 62.(b) Thiele, K. H. Pure. Appl. Chem. 1972, 30, 575.
- 96. (a) Boustany, K. S.; Bernauer, K.; Jacot-Guillarmod, A. Helv. Chim. Acta 1967, 50, 1305. (b) Tabacchi, R.; Boustany, K. S.; Jacot-Guillarmod, A. Helv. Chim. Acta 1970, 53, 1971.
- 97. Seebach, D.; Beck, A. K.; Roggo, S.; Wonnacott, A. Chem. Ber. 1985, 118, 3673.
- 98. Weber, B.; Seebach, D. *Tetrahedron* **1994**, *50*, 7473.
- 99. Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. **2001**, 123, 7925.
- 100. Flemming, S.; Kabbara, J.; Nickisch, K.; Neh, H.; Westermann, J. *Tetrahedron Lett.* **1994**, *35*, 6075.
- 101. Periasamy, M.; Jayakumar, K. N.; Bharathi, P. J. Org. Chem. 2000, 65, 3548.
- (a) Charrier, C.; Chodkiewicz, W.; Cadiot, P. Bull. Chem. Soc. Fr. 1966, 1002. (b)
 Snieckus, V. Chem. Rev. 1990, 90, 879.
- 103. Olah, G. A.; Kuhn, S. J. In *Friedel-Craft and Related Reactions*; Olah, G. A.; Ed.; Wiley-Interscience:New York, **1964**; Vol. III, Part II,pp. 1153
- 104. (a) Scarpat, M. L.; Bianco, A.; Mascitelli, L.; Passacantilli, P. Synth. Commun. 1990,
 20, 2565. (b) Meth-Cohn, O.; Ashton, M. Tetrahedron Lett. 2000, 41, 2749. (c)
 Garcia, O.; Nicolas, E.; Albericio, F. Tetrahedron Lett. 2003, 44, 4961.
- 105. Nakayama J. Synthesis **1975**, *3*, 170.
- 106. Banerji, J. C.; Sanyl, S. A. *Indian J. Chem.* **1968**, *6*, 346.
- 107. Hall, S. R.; King, G. S.D.; Stewart, J. M. Eds, *Xtal 3.4 User's Manual*, Xtal System, University of Western Australia, **1995**. (b) *SAINT* Version 6.2
- 108. (a) Sheldrick, G. M.; *SHELEX-97*, University of Göttingen, Göttingen, Germany, **1997**; (b) *SHELXTL* Version 6.14, Bruker AXS.

Synthetic Applications of Titanium

Enolates

2.1 Reactions of metal enolates in the presence of titanium reagents.

One of the most fundamental reactions in organic chemistry is the C-C bond forming process. The most versatile approach for this transformation is the nucleophilic addition of metal enolates of α -hydrogen containing carbonyl compounds to various electrophiles. The metal ion associated with the enolate has pronounced effect on stereoselectivity. Titanium enolates have been very successfully applied in this respect and there has been immense interest in this field. The titanium enolates are generally prepared by the transmetalation of the corresponding lithium enolates or silyl enol ethers. The titanium enolates can also be prepared directly by treating the α -hydrogen containing carbonyl compounds with the TiCl₄/tertiary amine reagent system (Chart 1).

The titanium enolates-mediated oxidative homocoupling, aldol, Mannich-type and Michael-type reactions to produce the corresponding products **i**, **ii**, **iii** and **iv** have tremendous synthetic potential for the construction of C-C bond in organic synthesis (Chart 1).

Chart 1.

TMSCI/Mg
$$R^{1} \qquad R^{3}$$

$$R^{2} \qquad OTMS$$

$$R^{1} \qquad R^{2} \qquad CO_{2}R$$

$$R^{4}CHO \qquad OH \qquad ii$$

$$R^{3} \qquad R^{1} \qquad R^{2}R^{2}$$

$$R^{4}CHO \qquad OH \qquad ii$$

$$R^{3} \qquad R^{1} \qquad R^{2}R^{4}$$

$$R^{4} \qquad OHR$$

$$R^{4} \qquad C=NR$$

$$R^{3} \qquad R^{1} \qquad R^{2}R^{4}$$

$$R^{4} \qquad C=NR$$

$$R^{3} \qquad R^{1} \qquad R^{2}$$

$$R^{4} \qquad C=NR$$

$$R^{4} \qquad C=NR$$

$$R^{3} \qquad R^{1} \qquad R^{2}$$

$$R^{4} \qquad C=NR$$

$$R^{4}$$

We have undertaken research efforts on the development of directly prepared titanium enolates for C-C bond forming reactions. Accordingly, it is of interest to briefly review the literature reports on these C-C bond forming reactions mediated by titanium enolates.

2.1.1 Titanium enolates in aldol reactions

Aldol reaction has been one of the powerful tool for the construction of C-C bond in organic synthesis, used in key steps in the syntheses of several complex and bioactive natural products.² Several metal enolate-based aldol transformations provided convenient access to aldol products in pure form. Among various metal enolates, the titanium enolate-mediated aldol reaction has tremendous synthetic potential, since the titanium reagents are readily available and inexpensive.³

2.1.1.1 Aldol reactions of titanium enolates prepared by the transmetalation of lithium enolates

Reetz *et al.*⁴ reported that the lithium enolates of ketone **1**, prepared by the reaction of the corresponding ketone and LDA, react with aldehydes in the presence of $Ti(O^iPr)_3Cl$ or $Ti(NEt_2)_3Br$, to give *syn* **3a** and *anti* **3b**, respectively with high diastereoselectivity (Scheme 1). In this reaction, the titanium enolate **2** formed *in situ* is the reactive species.

OLi
$$CH_3$$
 LDA R^1 CH_3 CH_3

Later, this methodology was extended by using the titanium enolates of aldehyde derivatives of N,N-dimethylhydrazones to obtain aldol type products in good yields with excellent selectivity.4c

Lithium enolate of N-propanoyloxazolidinone 4 was treated with Ti(OⁱPr)₃Cl to produce titanium enolate 5 by the transmetalation for use in the aldol reaction with benzaldehyde to give 6. The selectivities realized depended on the amount of the titanium reagent used (Scheme 2).5

Scheme 2

Murphy et al.⁶ reported that the titanium enolate 8, generated by the transmetalation of the corresponding lithium enolate of N-propionylpyrrolidine 7 with Cp₂TiCl₂, furnished the corresponding aldol adducts 9 in good yields with good to excellent selectivity through an anti-selective aldol process (Scheme 3).

Scheme 3

Me

LDA

OLi

CICp₂TiO

N

R = Et,
i
Pr, Ph, MeCH=CH

8

RCHO

Me

Anti-9a

Syn-9b

yields 64-77%

9a:9b = 79:21 to 98:2

The *N*-propanoyloxazolidinone **10** readily accessed from camphorquinone, has been converted to the corresponding titanium enolate **11** via the lithium enolate using chlorotriisopropoxytitanium. Aldol reaction of the titanium enolate with a variety of aldehydes produces the products **12a** and **12b** with moderate to good selectivity (Scheme 4).

LIO
$$\frac{10}{10}$$

LIO $\frac{11}{RCHO}$

NO OH $\frac{1}{R}$

NO

2.1.1.2 Aldol reactions of titanium enolates prepared by the transmetalation of enol silanes: (Mukaiyama aldol reaction)

The discovery of Mukaiyama and coworkers⁸ that the aldehydes and acetals react with enol silanes in the presence of Lewis acids, provides an useful route for the construction of molecules via the crossed-aldol reaction. Stoichiometric quantities of Lewis acids like TiCl₄, SnCl₄, AlCl₃, BCl₃, BF₃:OEt₂ and ZnCl₂ were found to promote this reaction.

Mukaiyama and co-workers⁹ also reported that the titanium complex **14** formed *in* situ by the reaction of TiCl₄ and trimethylsilyl enol ethers 13 react with aldehydes to give βhydroxy carbonyl compounds 15 in good yields (Scheme 5).

Scheme 5

Ojima et al. 10 reported that the aldol synthesis mediated by TiCl₄ between silyl enol ethers and ketene silvl acetals 16 with (-) -methyl pyruvate and phenylglyoxalate gives the chiral β-hydroxy carbonyl compounds 17 and 18 in good yields (Scheme 6).

Scheme 6

Ph O
$$\frac{1}{100}$$
 O $\frac{1}{100}$ O $\frac{1}{100}$ O $\frac{1}{100}$ OH $\frac{1}{100}$ OSiMe₃ $\frac{1}{100}$ OSiMe₃ Asymmetric induction: 25-68% asymmetric induction: 25-68% asymmetric induction: 25-68% $\frac{1}{100}$ O $\frac{1}{100}$ OH $\frac{1}{100}$

Mukaiyama *et al.*¹¹ reported that the titanium enolate **20** formed by the reaction of TiCl₄ and trimethylsilyl enol ethers **19** reacts smoothly with aldehydes or ketones to give the corresponding β -hydroxy carbonyl compounds **21** in good yields (Scheme 7).

Gennari et al. 12 reported that the TiCl₄ in alliance with phosphines (PR₃) effectively catalyses the aldol addition of silvl ketene acetals 22 to aldehydes to produce 22a and 22b with improved *anti-syn* ratios (Scheme 8).

Scheme 8

Addition of titanium enolate 24, generated in the reaction of trimethylsilyl enol ether 23 of 3-pentanone and TiCl₄, to aldehydes delivered the corresponding syn aldol adducts 25 in good yields with moderate selectivity (Scheme 9). 13

Scheme 9

OSiMe₃ TiCl₄ OTiCl₃ RCHO Me

23
$$R = {}^{i}$$
Pr yield 63% syn:anti = 75:25

 $R = Ph$ yield 75% syn:anti = 81:19

Chan et al. 14 reported that the condensation of the E-isomer of O-ethyl-O-trimethyl silylmethylketene acetal 26 with aldehyde promoted by titanium tetrachloride gives stereoselectively threo isomer of compound 27 (Scheme 10).

Scheme 10

The (TMSOF) 2-[(trimethylsilyl)oxy]furan **28** derivative has been used in an enantioselective aldol reaction by Figaderi *et al*. Indeed, addition of compound **28** to achiral aldehydes, in the presence of $Ti(O^iPr)_4$ and (R)-1,1'-bi-2-napthol (BINOL), gave the corresponding butenolides **29** with moderate diastereomeric ratio (dr = 60%) and in 60-90% ee (Scheme 11).¹⁵

Scheme 11

Me₃SiO
$$\stackrel{}{ }$$
 + R $\stackrel{}{ }$ $\stackrel{}{ }$

Zhang *et al.*¹⁶ reported the Mukaiyama aldol reaction on mucohalic acid. The reaction of mucohalic acid with various ketene silyl acetals or silyl enols ethers **30** in the presence of TiCl₄ produced the γ -substituted γ -butenolides **31** in good to excellent yields (Scheme 12).

Scheme 12

Me₃SiO

$$R^2$$
 R^1
 R^1
 R^2
 R^3
 R^1
 R^2
 R^3
 R^1
 R^2
 R^3
 R^4
 R^4

2.1.1.3 Aldol reactions of titanium enolates prepared directly by using the TiCl₄/R₃N reagent system

Harrison et al. 17 reported the first instances of titanium enolates 32, generated directly by the reaction of carbonyl compounds using TiCl₄ and tertiary amine, exhibiting ability to promote stereoselective aldol reactions. It was reported that the reaction of propiophenone derived titanium enolates with aromatic aldehydes afforded the corresponding syn aldol adducts 33 with excellent selectivity and yields (Scheme 13).

Aldol reactions involving thioester based titanium enolates **34**, generated directly using TiCl₄ and tertiary amine, were reported to give aldol adducts **35** in moderate yields with moderate to good *syn*-selectivity (Scheme 14).¹⁸

Scheme 14

OTICI₃
R¹
CH₃

$$R^1$$
CH₃
 R^2
 $R^$

Titanium enolates of α -benzyloxythioesters, generated using the TiCl₄/Et₃N reagent system, were employed to obtain *anti*- α -benzyloxy- β -hydroxy thioesters **36** with excellent yields with high level of selectivity (Scheme 15).¹⁹

Scheme 15

PhS OBn
$$\frac{1. \text{ TiCl}_4/\text{Et}_3\text{N}}{2. \text{ RCHO}}$$
 PhS OBn $\frac{1. \text{ TiCl}_4/\text{Et}_3\text{N}}{2. \text{ RCHO}}$ PhS OBn $\frac{1. \text{TiCl}_4/\text{Et}_3\text{N}}{2. \text{ RCHO}}$ PhS OBn $\frac{1. \text{ TiCl}_4/\text{Et}_3\text{N}}{2. \text{ TiCl}_4/\text{Et}_3\text{N}}$ PhS OBn \frac

Evans and other research groups²⁰ studied the asymmetric aldol processes by utilizing the reactions of several oxazolidinone-, oxazolidinethione-, oxazolidineselone-, thiazolidinethione-derived titanium enolates (generated directly by treating the respective carbonyl compound with chlorotitanium reagents and tertiary amines) with different

aldehydes. The selectivities realized in these reactions depend on the substrates, reagents and reaction conditions.

2.1.2 Titanium enolates in Mannich-type reactions

Mannich-type reactions afford convenient routes for the synthesis of β-amino carbonyl compounds.²¹ Addition of titanium enolates to imines is a useful method to access the β-amino carbonyl compounds with one or two stereogenic centers depending upon the choice of enolate substituent and imine.

Mannich-type reactions of titanium enolates prepared by the 2.1.2.1 transmetalation of lithium enolates

Fujisawa et al.²² reported a diastereoselective addition of titanium enolates 38 of esters, prepared by the transmetalation of the corresponding lithium enolates 37 with the chlorotriisopropoxytitanium to a chiral imine that provided (4R)-β-lactams 39a as major diastereomers while the use of lithium enolates gave (4S)-β-lactams 39b as major products (Scheme 16).

Later, two new stereogenic centers were introduced via the condensation reaction of the titanium enolates **41** of prochiral esters with the chiral imine to afford (3R,4S)- β -lactams **42** exclusively.²³ Whereas the use of lithium enolates **40** gave the corresponding (3S,4S)- β -lactams stereoselectively (Scheme 17).²³

Scheme 17

Ellman and coworkers²⁴ reported the addition of titanium ester enolate **43**, prepared by the transmetalation of the corresponding lithium ester enolate, to enantiomerically pure *ter*-butanesulfinyl aldimines or ketimines **44** that provided optically active β -amino esters **45** in good yields with high diastereoselectivity (Scheme 18).

OTi(
$$O^{i}Pr$$
)₃

44

OMe

45

R¹ = Me, ⁱBu, Ph, ⁱPr, 3-pyridine

R² = H, Me

2.1.2.2 Mannich-type reactions of titanium enolates prepared by the transmetalation of enol silanes

First instance for the synthesis of β-amino esters via TiCl₄-mediated reaction of enol silanes with imines, was reported by Ojima and coworkers²⁵ in 1977. These authors showed that O-methyl-O-trimethylsilyl ketene acetals **46** react with imines in the presence of TiCl₄ to afford β-amino esters or β-lactams depending on the nature of imine. Where as, N-arylimines afforded β-amino esters **47**, the N-alkylimines gave β-lactams **48** (Scheme 19).

Scheme 19

$$R^{4}R^{3}C \xrightarrow{OMe} + R^{1}HC = NR^{2} \xrightarrow{TiCl_{4}} R^{3} \xrightarrow{CO_{2}Me} or R^{3} \xrightarrow{R^{4}} CO_{2}Me$$

$$R^{1} = Ph, Et, \stackrel{i}{P}r$$

$$R^{3}, R^{4} = -(CH_{2})_{5^{-}}, R^{3} = Me, R^{4} = Me$$

$$R^{1} = Ph, Et, \stackrel{i}{P}r$$

$$R^{3} = Me, R^{4} = Me$$

$$R^{1} = Ph, Et, \stackrel{i}{P}r$$

$$R^{3} = Me, R^{4} = Me$$

$$R^{1} = NHR^{2} \xrightarrow{R^{4}} O$$

$$R^{3} = Me, R^{4} = Me$$

$$R^{1} = NHR^{2} \xrightarrow{R^{4}} O$$

$$R^{3} = Me, R^{4} = Me$$

$$R^{1} = NHR^{2} \xrightarrow{R^{4}} O$$

$$R^{3} = Me, R^{4} = Me$$

$$R^{1} = NHR^{2} \xrightarrow{R^{4}} O$$

$$R^{2} = Me, PhCH_{2}, PhCHMe$$

The use of the ketene bis(trimethylsilyl) acetals **49** with Schiff bases in the presence of TiCl₄ for the synthesis of β -lactams **50** was reported (Scheme 20)²⁶.

Ojima and coworkers²⁷ reported that the reaction of vinylketene silyl acetals **51** with imine complex of TiCl₄ gives the corresponding 5,6-dihydro-2-pyridones **52** and/or 5-amino-2-alkenoates **53** in good to excellent yields (Scheme 21).

Scheme 21

$$R^{3}CH=NR^{4} + TiCl_{4}$$

$$R^{4} + R^{2} + R^{2} + R^{2} + R^{2} + R^{2} + R^{2} + R^{3} + R^{4} + R^{2} + R^{2} + R^{3} + R^{4} + R^{2} + R^{3} + R^{4} + R^{2} + R^{3} + R^{3} + R^{4} + R^{2} + R^{3} + R^{4} + R^{2} + R^{3} + R^{4} +$$

2.1.2.3 Mannich-type reactions of titanium enolates generated directly from TiCl₄ and tertiary amines

Zanda and co-workers²⁸ reported the stereoselective Mannich-Type reaction of an acyclic ketimine with a substituted chlorotitanium enolate for the efficient approach to D-erythro- α -trifluoromethyl- β -hydroxyaspartic units **54** (Scheme 22).

Cinquini *et al.*²⁹ reported that the reaction of titanium enolates **55**, generated by the treatment of 2-thiopyridyl esters using triethylamine and TiCl₄, with imines afforded *trans*-β-lactams **56** in good to excellent yields with moderate to good stereoselectivity (Scheme 23).

Scheme 23

R¹ TiCl₄/Et₃N R¹
$$R^2$$
 R^3 R^3 R^4 R^3 R^3 R^4 R^3 R^4 R^3 R^4 R^3 R^4 R^4

The *N*-benzylidene-(R)- α -methylbenzylamine was also employed in the stereoselective synthesis of *trans*- β -lactams **58** using titanium enolates of 2-pyridyl thioesters **57** (Scheme 24).

R TiCl₄/Et₃N Ph Ph Ph R H Ph Ph Ph Me Trans-58a trans-58b

R =
i
Pr yield = 62% trans:cis = 93:7 58a:58b = 91:9

R = OSi(i Pr)₃ yield = 90% trans:cis = 62:38 58a:58b = 90:10

Andrian *et al.*³⁰ reported the synthesis of α -methoxy- β -substituted- β -amino esters **59** by an *anti* selective reaction of the titanium enolate of methyl methoxyacetate with imines (Scheme 25).

Scheme 25

MeO
$$OCH_3$$
 OCH_3 OCH_3

2.1.3 Titanium enolates in Michael-type reactions

The Michael-type conjugate addition to α , β -unsaturated carbonyl systems has been established as one of the versatile functionalization methods in organic synthesis.³¹ Generally, these reactions are promoted by strong bases such as alkali metal alkoxides or hydroxides or organoalkali metal reagents. The application of transition metal compounds as promoters is a mild and efficient alternative to strong base catalysis of the Michael reaction.³² Accordingly, the utility of titanium enolates or titanium enolate complexes received considerable interest in the Michael-type reactions.

2.1.3.1 Michael-type reactions of titanium enolates prepared by the transmetalation of lithium enolates

Bernardi and coworkers³³ introduced the use of titanium enolate, prepared by treating the corresponding lithium enolates of carbonyl compounds with titanium(IV) isopropoxide, in conjugate addition (Michael-type) reactions. The reaction between *Z*-titanium ate

complexes **60** of ketones and benzalpinacolone **61** afforded the corresponding *anti*-Michael adducts **62a** in moderate to good yields with high selectivity. Whereas the addition of the *E*-titanium ate complex **60a** of isopropyl ethyl ketone furnished the *syn* adducts **62b** selectively (Scheme 26).³⁴

Scheme 26

The *E*-titanium enolate complex **63** of the 'butyl propionate was reacted with *E*-configured benzalpinacolone **64a** or 'butyl *E*-cinnamate **64b** to obtain the respective Michael adducts **65a** with *anti*-selectivity (Scheme 27).

Scheme 27

2.1.3.2 Michael-type reactions of titanium enolates prepared by the transmetalation of silyl enolates

Mukaiyama *et al.*³⁵ reported the Michael type reaction of *O*-silylated ketene acetals **66** with α,β -unsaturated carbonyl compounds promoted by TiCl₄ to produce the adduct **67** (Scheme 28).

R⁵ OSiMe₃ + R⁴ O R¹
$$CH_2CI_2$$
, -78 °C R^5 R³ R² R³ R² R⁴ O MeO R⁵ R³ R² R³ R² R⁴ O MeO R⁵ R³ R² R³ R² R³ R² R³ R² R³ R⁴ Ph, CH₃ R⁴ Ph, CH₃, H R⁵, R⁶ = alkyl

2.1.3.3 Michael-type reactions of titanium enolates generated directly from chlorotitanium reagents and tertiary amines

Evans *et al.*³⁶ reported the diastereoselective addition of chlorotitanium enolate of chiral *N*-acyloxazolidinone **68** to Michael acceptors for obtaining the corresponding Michael adducts **69** in good yields with good selectivity (Scheme 29).

Scheme 29

Me

Bn

TiCl₄ or Ti(OⁱPr)Cl₃/

i
Pr₂NEt

OTiCl₃(or OⁱPr)

Me

OR

Me

Bn

G9

yields 78-93%

Stereoselectivity >95:5 to >99:1

Different regio- and stereoselectivities were observed in the addition reactions of titanium dialkylamide or dialkylthioamide enolates and their lithium complexes with E or Z enones.³⁷ In these reactions, the regio- and stereochemical outcome depend on several factors such as the stoichiometry of the reagents, configurations of the substrates, and solvents.

2.1.4 Titanium enolate promoted alkylation reactions

Hassine *et al.*³⁸ reported the one pot synthesis of α,β -unsaturated ketones **71** from trimethylsilylenol ethers **70** (Scheme 30).

Scheme 30

The phenylthiomethylation of O-silylated enolate 72 promoted by TiX_4 (X = Cl, Br) gave the corresponding thiomethylated product 73 in good yield with moderate stereoselection (Scheme 31).³⁹

Scheme 31

Reaction of 2-(*N*-methylanilino)-2-phenylsulfonylacetonitrile and titanium enolates of ketones afforded the corresponding alkylated products **74** in moderate yields with low diastereoselectivity (Scheme 32).⁴⁰

Scheme 32

$$R = PhCOCHMe,$$

$$EtCOCHMe$$

$$1. TiCl_4/Pr_2NH$$

$$2.$$

$$PhS$$

$$NMePh$$

$$T4$$

$$yields 80% and 65%$$

$$dr's = 68:32 and 60:40$$

2.1.5 Titanium enolate mediated oxidative coupling reactions

Ojima *et al.*⁴¹ observed that the oxidative coupling of lithium ester enolates is effectively promoted by the use of TiCl₄. The homocoupled product **75** was obtained in this reaction in moderate to good yields (Scheme 33).

Scheme 33

Titanium enolates of phenylacetic acid esters were used in the oxidative homocoupling to obtain 2,3-disubstituted succinic acid esters **76** in good yields with excellent diastereoselectivity (Scheme 34).⁴²

Scheme 34

Ph OR
$$\frac{\text{TiCl}_4/\text{Et}_3\text{N}}{\text{OR}}$$
 Ph OR $\frac{\text{CO}_2\text{R}}{\text{Ph}}$ CO₂R $\frac{\text{CO}_2\text{R}}{\text{CO}_2\text{R}}$ $\frac{\text{CO}_2\text{R}}{\text{$

Enantioselective oxidative coupling of titanium enolates of *N*-phenylacetyloxazolidinones, in presence of a chiral ligand **77** and an oxidant, afforded the homodimer **78** (Scheme 35). 43

Scheme 35

2.1.6 Previous reports on reactions of titanium enolates from this laboratory

Intramolecular oxidative coupling of phenylacetic acid esters **79** of enantiomerically pure 1,1'-bi-2-naphthol was achieved by preparing the corresponding titanium ester enolates **80** *in situ* using the TiCl₄/Et₃N reagent system. The coupled product **81** was reduced with the NaBH₄/I₂ reagent system to furnish the enantiomerically pure 2,3-diphenyl-1,4-butanediol **82** in good yields (Scheme 36).⁴⁴

Scheme 36

The γ -imino esters **83** cyclized diastereoselectively to produce the *cis*-2-aryl-3-pyrrolidine carboxylic esters **84** using the TiCl₄/Et₃N reagent system (Scheme 37). ⁴⁵

Scheme 37

Ar
$$\frac{\text{N}}{\text{H}}$$
 $\frac{\text{OR}}{\text{OR}}$ $\frac{\text{TiCl}_4/\text{Et}_3\text{N}}{\text{CH}_2\text{Cl}_2, 0 \, ^{\circ}\text{C}}$ $\frac{\text{RO}}{\text{Ar}}$ $\frac{\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{H}}$ $\frac{\text{RO}}{\text{N}}$ $\frac{\text{N}}{\text{H}}$ $\frac{\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{H}}$ $\frac{\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{H}}$ $\frac{\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{H}}$ $\frac{\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{H}}$ $\frac{\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{H}}$ $\frac{\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{N$

Stereoselective synthesis of *syn*-β-amino esters **85** was achieved by the reaction between the benzaldehyde imines and the titanium enolate generated from esters using the TiCl₄/Et₃N reagent system (Scheme 38).⁴⁶

Scheme 38

$$R = CH_{3}$$

$$R' = Bn, ^{n}Bu, Ph, OMe, *CH(Ph)CH_{3}$$

$$R' = CH_{3}$$

$$R' = R' = R' + Ph + CO_{2}CH_{3} +$$

2.1.7 Other reports on titanium reagents from this laboratory

The titanium reagents were also used for several other organic transformations in this laboratory. Some of the transformations developed are described here. Terminal alkynes react with the TiCl₄/Et₃N reagent system to produce the corresponding 1,3-diynes **87.** The reaction is considered to go through an alkynyl titanium intermediate **86** (Scheme 39).⁴⁷

Scheme 39

$$R \xrightarrow{\text{TiCl}_4/\text{Et}_3\text{N}} \qquad \left[R \xrightarrow{\text{TiCl}_3} \right] \xrightarrow{\text{R}} \qquad R \xrightarrow{\text{Ell}_4/\text{Et}_3\text{N}} \qquad R \xrightarrow{\text{Ell}_4/\text{Ell}_3\text{N}} \qquad R \xrightarrow{\text{Ell}_4/\text{Ell}_3/\text{Ell}_3\text{N}} \qquad R \xrightarrow{\text{Ell}_4/\text{Ell}_4/\text{Ell}_3\text{N}} \qquad R \xrightarrow{\text{Ell}_4/\text{Ell}_4/\text{Ell}_3\text{N}} \qquad R \xrightarrow{\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell}_4/\text{Ell$$

It was also reported from this laboratory that the trialkyl amines react with the $TiCl_4$ at 0-25 °C to give the corresponding iminium ions **88**, which undergo metalation followed by reaction with diaryl ketones to produce the corresponding α,β -unsaturated aldehydes **89** (Scheme 40).⁴⁸

Scheme 40

TiCl₄

$$CH_2Cl_2$$

$$Et_3N^+HCl^-$$

$$= 88$$

$$= 88$$

$$- Cl^- CH_3$$

$$= - CH_3$$

$$=$$

Recently, an interesting cyclobutanone synthesis was reported from this laboratory. The iminium ion $\bf 90$ prepared using I_2 and diisopropylbenzylamine, upon reaction with TiCl₄ and excess amine produced the corresponding 3,3-diarylcyclobutanones $\bf 91$ in moderate to good yields (Scheme $\bf 41$).

Scheme 41

The reaction of the TiCl₄/Et₃N reagent system with ketimines afforded the 1,2,5-trisubstituted pyrroles **92** in moderate to good yields (Scheme 42).⁵⁰

$$R^{1}$$
 CH₃ $TiCl_{4}/Et_{3}N$ R^{1} R^{1} R^{1} R^{2} R^{1} R^{2} R^{3} R^{4} R^{5} $R^{$

The TiCl₄/Et₃N reagent system was used successfully for the aromatization of enamines **93** also reported (Scheme 43).⁵¹

Scheme 43

R N R' R' R N R' R' R,R' =
$$(CH_2)_4$$
, $(CH_2)_5$, $(CH_2)_2O(CH_2)_2$ R,R' = $(CH_3)_4$, Ph yields 68-84%

Low valent titanium species, Ti(III), prepared using TiCl₄ by oxidation of the trialkyl amines in the absence of electrophiles, is useful for the pinacol coupling of aryl aldehydes. The 1,2-diols **94** were obtained in moderate to good yields with moderate to excellent *dl*-selectivity (Scheme 44).⁵²

Scheme 44

TiCl₄ + Et₃N
$$\longrightarrow$$
 TiCl₃ + Et₂N=CH-CH₃

ArCHO

Ar = Ph, p -ClC₆H₄,

 p -MeC₆H₄, o -MeC₆H₄

Yields 58-71%

 $dt:meso = 74:26 \text{ to } 100:0$

We have undertaken research efforts towards developing new methods for the C-C bond construction by exploiting the titanium enolates of carbonyl compounds, prepared *in situ* using the TiCl₄/R₃N reagent system. The results are described in the next section.

2.2 Results and Discussion

2.2.1 Reaction of titanium enolates of esters with tertiary arylamines: α arylation of esters

Previously, oxidative homocoupling of titanium enolates of phenylacetic acid esters **95** generated directly using $TiCl_4/R_3N$ reagent system⁴² and oxidative homocoupling of N,N-dialkyl arylamines promoted by aryltitanium species⁵³ were reported from this laboratory. It was of interest to us to examine the cross-coupling between titanium enolates of arylacetic acid esters and aryltitanium species prepared *in situ* using N,N-dialkyl arylamines **96**. (Scheme 45)

Indeed, the reaction of aryltitanium species 96 with alkyl arylacetates 97 produced the corresponding α -arylated products 98 in good yields (Scheme 46).

Scheme 46

For example, the reaction of N,N-dimethylaniline and ethyl phenylacetate with TiCl₄ at 0-25 °C for 8 h produced **98a** in 89% yield, besides the corresponding benzidine derivative in 10% yield. Similarly, N,N-dialkyl-1-naphthylamines also reacted with alkyl arylacetates to give the corresponding α -arylated esters **99** in 65-75 % yields (Scheme 47).

Scheme 47

The transformation was examined using various esters as well as amines and the results are summarized in Table 1.

Table 1. Reaction of aryltitanium species with arylacetic acid esters

S.NO	ArNR ₂	Ester	Product ^a	Yield ^b (%)
1	$Ar = Ph, R = CH_3$	$R' = Ph, R'' = C_2H_5$	H_3C O	89
2	Ar= Ph, R = CH ₃	R' = Ph, R" = CH ₃	H ₃ C OCH ₃ Ph 98b	86
3	$Ar = Ph, R = C_2H_5$	$R' = Ph, R'' = C_2H_5$	H_3C N OC_2H_5 Ph Ph Ph	90
4	$Ar = Ph, R = C_2H_5$	$R' = Ph, R'' = CH_3$	H ₃ C — OCH ₃ — Ph 98d	81
5	$Ar = 1-Naphthyl,$ $R = CH_3$	R' = Ph, R" = CH ₃	H ₃ C OCH ₃ Ph	65
6	Ar = 1-Naphthyl, $R = CH_3$	$R' = Ph, R'' = C_2H_{\xi}$	H_3C O	76
7	Ar =1-Naphthyl, R = CH_3	R' = 1-Naphthyl, $R'' = CH_3$	H_3C O	68
8	Ar = Ph, $R = CH_3$	R' = 1-Naphthyl, $R'' = CH_3$	H ₃ C OCH ₃ H ₃ C 1-Np 98e	65
9	Ar = Ph, R = C_2H	R' = 1-Naphthyl, $R'' = CH_3$	H ₃ C OCH ₃ 1-Np 98f	76
10	$Ar = Ph, R = -C_4h$	H_8 - R' = Ph, R" = C_2H_1	√ <u></u> Ph 98g	62
11	$Ar = Ph, R = -C_4F$	J_{8} - R' = Ph, R" = CH ₃	OCH ₃ OPh 98h	61
12	$Ar = Ph, R = -C_4F$	H_8 - R' =1-Naphthyl, R" = CH_3	OCH ₃ 1-Np 98i	55

^aThe products were identified by ¹H, ¹³C-NMR and mass spectral data and comparison with the data reported for compound **98a**. ⁵⁴

^bThe isolated yields were based on the amount of ester used.

The cross-coupled product formation can be explained considering cross coupling between the titanium enolate **95** of esters and aryltitanium species **96** formed *in situ* as shown in Scheme 48.

Scheme 48

Initially, the reaction of N,N-dialkylarylamines with TiCl₄ would produce aryltitanium intermediates (Scheme 48). The TiCl₄-ester complex could be deprotonated by the base N,N-dialkylarylamine which would lead to the formation of titanium enolates.

Finally, cross-coupling between aryltitanium and titanium enolates of ester lead to the formation of the α -arylated ester (Scheme 48).

In this reaction, the arylating agent *N*,*N*-dialkylarylamine itself is acting as a base for enolate formation. Here, TiCl₄ has the dual role of metalating the *N*,*N*-dialkylarylamine and producing the enolate from the ester. We have observed that some of the enolizable esters like methyl propionate did not react with aryltitanium under these reaction conditions, possibly due to weak basicity of the arylamines.

The product **98e** was also characterized by X-ray crystal structure analysis.

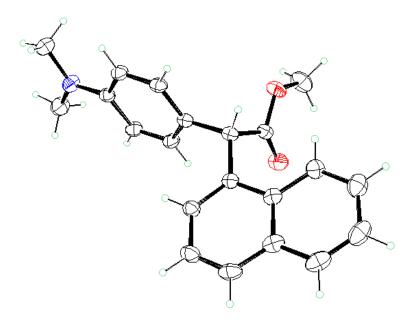


Fig 1. ORTEP diagram of compound 98e

Table 2: Crystal data and structure refinement for compound 98e

Empirical formula	C_{21}	H_{21}	N	O_2	
-------------------	----------	----------	---	-------	--

Formula weight 319.39

Temperature 293(2) K

Wavelength 0.71073 A

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 8.4790(9) A $\alpha = 89.811(2) ^{\circ}$.

b = 9.2843(10) A $\beta = 87.981(2)$ °.

c = 11.9528(13) A $\gamma = 66.418(2)$ °.

Volume 861.77(16) Å³

Z 2

Calculated density 1.231 Mg/m³
Absorption coefficient 0.079 mm^-1

F(000) 340

Theta range for data collection 1.70 to 25.97 °.

Limiting indices -10 <= h <= 10, -11 <= k <= 11, -14 <= 1 <= 14

Reflections collected 8946

Independent reflections 3348 [R(int) = 0.0200]

Completeness to theta = 25.97 98.9 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1 and 0.914201

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 3348 / 0 / 220

Goodness-of-fit on F^2 1.040

Final R indices [I>2sigma(I)] R1 = 0.0464, wR2 = 0.1286 R indices (all data) R1 = 0.0586, wR2 = 0.1388

Largest diff. Peak and hole 0.185 and -0.197 e.Å⁻³

Although, these reactions are limited to only N,N-dialkylarylamines, it is simple compared to the conventional ways of α -arylation of esters either starting from aryl halides using strong bases or involving transmetalation reactions. Generally, methods for the α -arylation of esters have a number of disadvantages like the need of special and toxic reagents, harsh reaction conditions, or multiple steps. For example, the compound **98a** was obtained in 80% yield by the reaction of ethyl phenylacetate with N,N-dimethyl-4-bromo benzene in the presence of 1.5 mol % $Pd_2(dba)_3$ and 6.3 mol% ligand **100** (Scheme 49).⁵⁴

Scheme 49

$$H_3C$$
 H_3C
 H_3C

 α -Aryl carbonyl compounds such as esters, ketones and their derivatives are important class of organic compounds.⁵⁵ In particular, α -aryl carboxylic acids are integral structural components of several pharmaceuticals with analgesic and anti-inflammatory properties, for example, ibuprofen, naproxen, ketoprofen, and flurbiprofen.^{55,56} These compounds are able to reduce inflammation and pain by inhibition of the cycloxygenage system. Though the synthesis of α -aryl esters has been a field of active research for years,⁵⁷ the development of a reliable, economically reasonable, and general protocol remains elusive. Therefore, the synthesic method described here using readily accessible reagents has good potential for further exploitation,

2.2.2 Reactions of titanium enolates with dicarbonyl compounds

2.2.2.1 Reaction of titanium enolates of alkanoic acid anhydrides with α -keto esters: **Synthesis of maleic anhydrides**

During the investigations on the synthetic applications of the titanium enolates of ketone and esters, generated using the $TiCl_4/R_3N$ reagent system,⁴⁴⁻⁴⁶ we became interested in the cross aldol condensation mediated by $TiCl_4$ with enolates and α -keto esters (Scheme 50).⁹

Scheme 50

$$R^1$$
 OSiMe₃ OEt H_2O R^3 OEt H_2O R^3 OEt R^2 R^3 OEt R^3 OET R^4 R^2 OET R^4 R^2 OET R^4 R^2 OET R^4 R^2 OET R^4 R^4 R^2 OET R^4 R

It was of interest to examine the reaction pattern of titanium enolates of carbonyl compounds with α -keto esters. Initially, we have chosen alkanoic acid anhydrides as enolate source. We have observed that the α -keto esters 101 react with alkanoic acid anhydrides 102 in the presence of the TiCl₄/n-Bu₃N reagent system to give maleic anhydrides 103 (Scheme 51). For example, ethyl benzoylformate reacts with acetic anhydride in 1,2-dichloroethane solvent at refluxing temperature to produce the phenylmaleic anhydride 103a in 92% yield. This conversion of acyclic anhydrides to cyclic anhydrides was found to be general for aryl α -keto esters and alkyl anhydrides using the TiCl₄/n-Bu₃N reagent system. The results are summarized in Table 3.

OEt + R' OR'
$$\frac{\text{TiCl}_4/ n\text{-Bu}_3\text{N}}{\text{C}_2\text{H}_4\text{Cl}_2}$$
 reflux, 12 h O O R' $\frac{\text{TiCl}_4/ n\text{-Bu}_3\text{N}}{\text{C}_2\text{H}_4\text{Cl}_2}$ 103

Table 3: Reaction of α-keto ester with anhydrides and TiCl₄/*n*-Bu₃N.^a

S NO	R ¹	R ²	Product ^b	Yield % ^c
1	Н		H 0 103a	92
2	н	H ₃ C—	H ₃ C 103b	84
3	Н	H ₃ CO	H ₃ CO 103c	64 ^c
4	CH ₃		H ₃ C 0 103d	81
5	CH₃	H ₃ C-\(\bigcirc\)	H ₃ C 0 103e	76
6	CH ₃	H ₃ CO—	H ₃ C 0 103f	62 ^c

^aThe reactions were carried out using α-keto esters (5 mmol), acetic anhydride (10 mmol), TiCl₄ (3.3 mL of 1:1 solution of TiCl₄/CH₂Cl₂) (15 mmol) and n-Bu₃N (6 mmol).

^bThe products were identified by ¹H, ¹³C-NMR and mass spectral data and comparison of the data reported for compound **103a**, **103b**, **103c**. ^{62g}

^cThe isolated yields are based on the amount of keto ester used.

It was found that the use of acetic anhydride gave higher yields (entry 1-3) compared to that using propionic anhydride (entry 4-6). The reaction of acetic anhydride with benzoylformate gave **103a** in high yield 92% (entry 1). Whereas, with p-Me and p-OMe substituted benzoylformates produced **103b** and **103c** in 84% and 64% yields, respectively (entries 2 and 3). Similar variation of the yields with the substitution on the phenyl ring of α -keto esters was also observed with propionic anhydride.

The transformation can be rationalized by the mechanistic pathway outlined in Scheme 52, involving formation of titanium enolate of anhydride **104** and its aldol reaction with the α -keto esters followed by cyclization to give maleic anhydrides **103** (Scheme 52).

Scheme 52

Maleic anhydrides are important synthons widely used in the construction of new organic skeletons. These cyclic compounds have immense potential for application as dienophiles in Diels-Alder reactions⁵⁸ and as monomers in polymerization reactions.⁵⁹ Moreover, a large number of substituted maleic anhydrides were identified showing a range of biological activities,⁶⁰ including antibacterial activity.⁶¹ However, only a very few general methods are available for the synthesis of the substituted maleic anhydrides.

Previously, synthesis of compounds **103a**, **103b** and **103c** were reported via Pd-catalyzed carbonylation of alk-1-ynes (Scheme 53). 62

Scheme 53

1.
$$CO/O_2$$
2. $\frac{cat}{Pd(OAc)_2/HQ-CI/NPMoV}$
3. $CH_3SO_3/Dioxane$
25 °C, 15 h

1. CO/H_2O
2. $PdCl_2$, $CuCl_2$
Dioxane

1. CO/H_2O
2. Pdl_2 , Kl
Dioxane

1. CO/H_2O
2. Pdl_2 , $CuCl_2$
R = Ph
R = P-CH₃Ph
R = P-CH₃Ph
R = P-CH₃OPh
R = P-CH

More recently, it was reported that Pd catalyzed and CO₂ promoted oxidative carbonylation of the corresponding 1-alkynes in conjunction with excess of KI in water/dioxane gave the products **103a**, **103b** and **103c** in 54%, 68% and 70% yields, respectively. It has been reported from this laboratory that oxidative carbonylation of alk-1-ynes using metal carbonyls gives substituted maleic anhydrides. 63

Dean *et al.*⁶⁴ reported the synthesis of compounds **103a** and **103b** by the condensation of aryl acetonitriles with glyoxylic acid in 48% and 31% yields, respectively (Scheme 54).

Scheme 54

ArCH₂CN + HCCO₂H
$$\frac{0}{103}$$
 1. K₂CO₃, MeOH rt or reflux 2. 25% HCl, rt $\frac{2. 25\% \text{ HCl, rt}}{3. \text{ HCO}_2\text{H}, \text{H}_2\text{SO}_4}$ H $\frac{2. 25\% \text{ HCl, rt}}{103}$ Ar = 4-MePh 31% 103k reflux

The method described here would serve as a simple alternative to these reported methods.

2.2.2.2 Reaction of phenylacetyl chloride with α -keto ester in the presence of the TiCl₄/n-Bu₃N reagent system

The diphenylmaleic anhydride **106** was obtained in 95% yield by the reaction of phenylacetyl chloride **105** and ethyl benzoylformate with the $TiCl_4/n$ -Bu₃N reagent system under the refluxing temperature in 1,2-dichloroethane solvent (Scheme 55). Whereas, aliphatic acids and acid chlorides did not react with α -keto ester under the same reaction condition.

Scheme 55

Ph OEt + Ph Cl
$$TiCl_4/n$$
-Bu₃N Ph OC $C_2H_4Cl_2$ reflux, 12 h Ph OC 101a 105

Diarylmaleic anhydrides are known to be useful for controlling microbial growth in water as well as preventing slime formation in various industrial manufacturing processes. Diaryl substituted maleic anhydrides have been also used to prepare the corresponding photodimers as well as for the synthesis of biologically active derivatives.⁶⁵

Recently, the synthesis of diarylsubstituted maleic anhydrides reported through tandem cyclization reaction as shown in Scheme 56.⁶⁶

Scheme 56

2.2.2.3 Reaction of titanium enolates of ketones with α -keto esters: Synthesis of γ -substituted γ -butenolides

We have also examined the reaction of titanium enolates of ketones with α -keto esters. The titanium enolates of ketones were prepared directly by using the titanium tetrachloride and tertiary amines *in situ* in the presence of α -keto esters at 90-95 °C. Interestingly, the highly functionalized γ -substituted γ -butenolides 108 were obtained in one step by the reaction of ketones 107 and α -keto esters 101 in the presence of TiCl₄/*n*-Bu₃N (Scheme 57). For example, one equivalent ethyl benzoylformate reacts with two equivalence of deoxybenzoin in 1,2-dichloroethane solvent to produce the γ -butenolide (γ -lactone) 108a in 82% yield. This transformation was found to be general for aryl α -keto esters and ketones using the TiCl₄/*n*-Bu₃N reagent system. The results are summarized in Table 4.

Scheme 57

Table 4 : Reaction of α -keto esters with ketones and TiCl ₄ / n -Bu ₃ N.

S NO	R	R [']	R"	Product ^b	Yield % ^c	dr% ^d
1				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82 08 a	29:71 ^e
2	H ₃ C-	- 🔊	- (<u>H</u>	l ₃ c -	84 1 08b	0:100 ^e
3		CH₃		O O CH ₃	82 08c	80:20 ^f
4		CH₃ H₃	,c-{	O CH ₃	CH ₃ 61 08d	51:49 ^f
5		СН ₃ Е	3r—	0 0 CH ₃	Br 76	50:50 ^f

^aThe reactions were carried out using α -keto esters (1.25 mmol), ketone (2.5 mmol), TiCl₄ (7.5 mmol, 1.65 mL of 1:1 solution of TiCl₄/CH₂Cl₂) and n-Bu₃N (1.43 mL, 7.5mmol). ^bThe products were identified by ¹H, ¹³C-NMR spectral data.

^cThe isolated yields are based on the amount of ketone used.

^dThe diastereomeric ratio of compound are as determined by ¹H NMR.

^eThe diastereomeric ratio are for *syn/anti* as determined by ¹H NMR.

^fDiastereomeric ratio and the configurations (*syn/anti*) could not be assigned with available data.

Generally, the yields are moderate to good for this transformation. Ethyl(4-methyl)benzoylformate gave butenolide **108b** in 84% yield with deoxybenzoin (Table 4 entry 2) and the reaction of deoxybenzoin with ethyl benzoylformate produced butenolide **108a** in 82% yield (Table 4 entry 2). In the case of propiophenones, yields of γ -butenolides were decreased compared to deoxybenzoin. The reaction of propiophenone with ethyl benzoylformate gave the lactone **108c** in 82% and 4-methyl propiophenone produced the butenolide **108d** in 61% yield, respectively, (Table 4 entries 3 and 4). Whereas, the product **108e** was obtained in 76% yield in the reaction of 4-bromo propiophenone with ethyl benzoylformate (Table 4 entry 5).

The structure of the major product **108b** was found to be *anti* by X-ray crystal structure analysis.

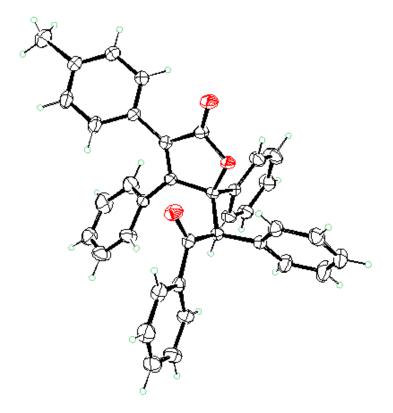


Fig 2. ORTEP diagram of compound 108b

Table 5:	Crystal	data and	structure	refinement	for 1	108b
----------	---------	----------	-----------	------------	-------	------

Empirical formula	$C_{37} H_{28} O_3$				
Formula weight	520.59				
Temperature	293(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	P2(1)/c				
Unit cell dimensions	$a = 10.212(4) \text{ Å}$ $\beta = 97.749(6)^{\circ}$.				
	b = 18.516(7) Å				
	c = 15.270(6) Å				
Volume	2861.2(18) Å ³				
Z	4				
Density (calculated)	1.209 Mg/m^3				
Absorption coefficient	0.076 mm ⁻¹				
F(000)	1096				
Crystal size	$0.42 \times 0.27 \times 0.12 \text{ mm}^3$				
Theta range for data collection	1.74 to 28.36°.				
Index ranges	-13<=h<=13, -24<=k<=24, -				
20<=1<=20					
Reflections collected	31059				
Independent reflections	6777 [R(int) = 0.0783]				
Completeness to theta = 25.00°	99.8 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.991 and 0.952				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	6777 / 0 / 362				
Goodness-of-fit on F ²	0.879				
Final R indices [I>2sigma(I)]	R1 = 0.0511, $wR2 = 0.1350$				
R indices (all data) $R1 = 0.1324$, $wR2 = 0.1587$					
Largest diff. peak and hole	0.332 and -0.313 e.Å- ³				

The transformation can be rationalized by the mechanistic pathway outlined in Scheme 58, involving formation of titanium enolate of ketone **109** and its aldol reaction with the α -keto esters followed by a second aldol reaction with intermediate **110** and then cyclization to give butenolide **108** as shown in Scheme 58.

Scheme 58

We have made efforts to isolate the intermediates involved in the above transformation. We have observed that the use of the ethyl benzoylformate and ketone in 1:1 ratio to produced the (Z)- γ -ketoester **110a** in 82% yield (Scheme 59).

Scheme 59

The configuration of the compound 110a was assigned as (Z) by X-ray crystal structure analysis.

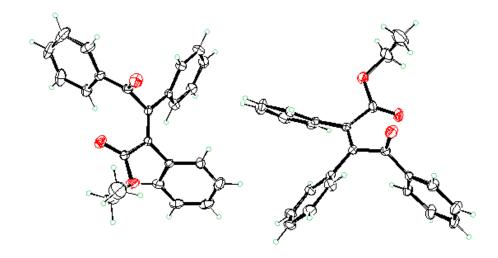


Fig 3. ORTEP diagram of compound 110a

The transformation can be rationalized by the mechanistic pathway outlined in Scheme 60, involving formation of titanium enolate of ketone **109** and its aldol reaction with the α -keto esters followed by removal of second proton to give the γ -keto ester **110** as shown in Scheme 60.

Scheme 60

$$R \xrightarrow{\text{TiCl}_4/n\text{-Bu}_3\text{N}} R \xrightarrow{\text{R'}} R' \xrightarrow{\text{R'}} R' \xrightarrow{\text{N-Bu}_3\text{N}(H)} R' \xrightarrow{\text{N-Bu}_3\text{N}(H)} R' \xrightarrow{\text{N-Bu}_3\text{N}(H)} R' \xrightarrow{\text{R'}} R' \xrightarrow{\text{N-Bu}_3\text{N}(H)} R' \xrightarrow{\text{N-Bu}_3\text{N-Bu}_3\text{N}(H)} R' \xrightarrow{\text{N-Bu}_3\text{N}(H)} R' \xrightarrow{\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N}(H)} R' \xrightarrow{\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3\text{N-Bu}_3$$

Table 5. Crystal data and structure refinement for 110a

Empirical formula	$C_{24} H_{20} O_3$
Formula weight	356.40
Temperature	298(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pca2(1)
Unit cell dimensions	$a = 18.168(4) \text{ Å} \alpha = \beta = \gamma = 90^{\circ}.$
	b = 6.2483(12) Å
	c = 33.945(6) Å
Volume	3853.4(13) Å ³
Z	8
Density (calculated)	1.229 Mg/m^3
Absorption coefficient	0.080 mm ⁻¹
F(000)	1504
Crystal size	0.42 x 0.32 x 0.20 mm ³
Theta range for data collection	2.24 to 26.03°.
Index ranges	-21<=h<=22, -7<=k<=7, -38<=l<=41
Reflections collected	18341
Independent reflections	3857 [R(int) = 0.0531]
Completeness to theta = 25.00°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9842 and 0.9321
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3857 / 1 / 489
Goodness-of-fit on F ²	1.082
Final R indices [I>2sigma(I)]	R1 = 0.0657, $wR2 = 0.1474$
R indices (all data)	R1 = 0.0869, $wR2 = 0.1609$
Absolute structure parameter	10(10)
Largest diff. peak and hole	0.324 and -0.176 e.Å- ³

In the present reaction of titanium enolates of ketones with α -ketoesters, syn and anti γ -substituted γ -butenolide adducts can be obtained with both (E)- and (Z)-enolates of ketones. The anti stereoselectivty for the transformation can be tentatively explained on the basis of the stereochemical model shown in Figure 5. The configuration of the intermediate 110 is expected to be (Z). The results can be explained considering that the E-titanium enolate of ketone would be in equilibrium with the Z-titanium enolate of ketone. The reaction of the E-titanium ketone enolate would give a lower-energy transition state TS-1 leading to the major anti product. The syn product with E-titanium ketone enolate is not favored because it would give a higher-energy transition state TS-2 due to the greater repulsions from the large group (X) of the intermediate 110.

Fig 4: Stereochemical models

 γ -Butenolides are ubiquitous chemical moieties found in various biologically active natural products. They have attracted the attention of synthetic organic and medicinal chemists. The α , β -unsaturated γ -lactones are prominent moieties in the building of natural flavours and odors. Moreover, certain functionalized open-chain molecules made by using γ -butenolides, such as 1,4-solfonylalcohols, are found in fruits and vegetables and they have been the subject of intense research in flavor chemistry. Also, the butenolide is also a valuable synthon useful, in organic synthesis.

There are many ways to synthesize the butenolide moiety. Recently, Zhang et al. Recently, Zhang et al. Recently according to the property of the synthesis of the synthesis of the synthesis of 5-acylamino butenolides using isocyanides, glyoxals and acetophosphonic acid diethyl esters through the Passerini three component reaction in the presence of DEE or THF followed by intramolecular Witting-type reaction (Scheme 61).

Scheme 61

Ar CHO + R1 NC + EtO P COOH
$$\frac{DEE}{O}$$
 THF

Ar O LiBr NEt₃ THF

NEt₃ THF

2.2.3 Reactions of titanium enolates with ethyl 2-benzoyl benzoates

2.2.3.1 Reaction of titanium enolates of ketones with ethyl 2-benzoylbenzoates: Synthesis of γ -lactones

It was of interest to us to examine the aldol reaction of ketones with γ -keto ester using the TiCl₄/R₃N reagent system. We have examined the reaction of ethyl 2-benzoylbenzoates **111** with ketones **107** using the TiCl₄/n-Bu₃N reagent system. In this case, corresponding γ -lactone **112** was obtained (Scheme 62). For example, ethyl 2-

benzoylbenzoate reacts with deoxybenzoin in 1,2-dichloroethane to produce the γ -lactones **112a** in 92% yield. The diastereomeric ratio of compound γ -lactones **112a** is 67:33 as determined by 1 H-NMR.

Scheme 62

OEt + Ph Ph
$$\frac{\text{TiCl}_4/n\text{-Bu}_3\text{N}}{\text{C}_2\text{H}_4\text{Cl}_2}$$
 reflux, 12h $\frac{\text{Ph}}{\text{Ph}}$ + $\frac{\text{TiCl}_4/n\text{-Bu}_3\text{N}}{\text{Ph}}$ + $\frac{\text{TiCl}_4/$

The configuration of the major isomer of **112a** was found to be *syn* by X-ray crystal structure analysis.

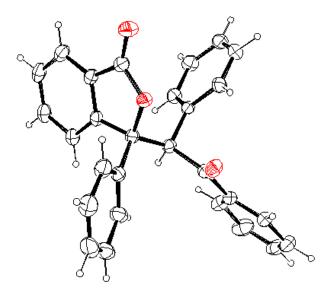


Fig 5. ORTEP diagram of compound 112a

Table 6. Crystal data and structure refinement for 112a

Empirical formula $C_{28} H_{20} O_3$ Formula weight 404.44 Temperature 293(2) K 0.71073 Å Wavelength Orthorhombic Crystal system Space group Pbca Unit cell dimensions $\alpha=\beta=\gamma=90^{\circ}$. a = 12.9974(9) Åb = 16.4421(11) Åc = 20.1416(13) ÅVolume 4304.4(5) Å³ Z 8 1.248 Mg/m^3 Density (calculated) 0.080 mm⁻¹ Absorption coefficient F(000)1696 $0.32 \times 0.22 \times 0.20 \text{ mm}^3$ Crystal size Theta range for data collection 2.02 to 26.03°. -16<=h<=15, -20<=k<=20, -24<=1<=24 Index ranges Reflections collected 42344 Independent reflections 4238 [R(int) = 0.0424]Completeness to theta = 26.03° 99.9 % Absorption correction Semi-empirical from equivalents 0.975 and 0.965 Max. and min. transmission Full-matrix least-squares on F² Refinement method Data / restraints / parameters 4238 / 0 / 280 Goodness-of-fit on F² 1.063 Final R indices [I>2sigma(I)] R1 = 0.0519, wR2 = 0.1124R1 = 0.0747, wR2 = 0.1232R indices (all data) 0.147 and -0.135 e.Å⁻³ Largest diff. peak and hole

The transformation can be rationalized by the mechanistic pathway involving the formation of titanium enolate of ketone **109** and its aldol reaction with the γ -keto esters followed by cyclization as outlined in scheme 63.

Scheme 63

2.2.3.2 Reaction of titanium enolates of esters with ethyl 2-benzoylbenzoates: Synthesis of γ -lactones

We have also examined the reaction of titanium enolates of arylaceticacid esters **97**. In this case, the γ -lactones **113** were isolated (Scheme 64). For example, ethyl 2-benzoylbenzoate reacts with methyl phenylacetate produced the corresponding γ -lactone **113b** in 92% yield. This transformation was found to be general for ethyl 2-benzoylbenzoates and esters using the TiCl₄/Et₃N reagent system. The results are summarized in the Table 7.

Scheme 64

Table 7: Reaction of ethyl 2-benzoylbenzoates with ester and TiCl₄/Et₃N.^a

Entry	Ester	Substrate	T (°C)	Product ^b	Yield % ^c	dr % ^d
1	O OMe	O OEt O p-MePh	0-25	O CH ₃ OMe O 113a	85	50:50
2	Ph		-40	113a	81	100:0 ^e
3	Ph		-70	113a	76	100:0
4	Ph	O OEt O Ph	0-25	OMe	92	52:48
5	Ph		-40	113b	74	73:27
6	OMe	OEt Op-MePh	0-25	O CH ₃ OMe O 113c	78	53:47
7	1-Naphthyl	-	40	113c	75	50:50

 $[^]a$ The reactions were carried out using ethyl 2-benzoylbenzoates (5 mmol), ester (6 mmol), TiCl₄ (3.3 mL of 1:1 solution of TiCl₄/CH₂Cl₂) (12 mmol) and Et₃N (15mmol).

^bThe products were identified by ¹H, ¹³C-NMR and mass spectral data.

^cThe isolated yields are based on the amount of keto ester used.

^d The diastereomaric ratio of mixture are as determined by ¹H-NMR. The diastereomars could not be separated.

^e The configuration was assigned as *syn* by X-ray crystal structure analysis.

It was found that the γ -lactones were obtained in higher yields at 0-25 °C (Table 8, entries 1,3 and 6) but the selectivity was better at -40 °C and -70 °C (Table 8, entries 2,4,5 and 7). The diastereomeric ratio of product **113a** formed at 0-25 °C was found to be 50:50, where as, at low temperatures -40 °C and -70 °C, it was identified as up to 100:0. Similarly, compound **113b** and **113c** gave higher selectivities 73:27 and 53:47 at -40 °C as determined by 1 H-NMR.

The product **113a** obtained in the case of entry 2 from Table 7 was identified by X-ray crystal structure analysis.

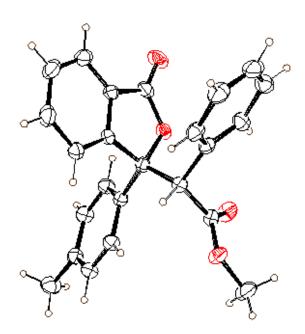


Fig 6: ORTEP diagram of compound 113a

Table 8. Crystal data and structure refinement for 113a

Empirical formula	$C_{24} H_{20} O_4$		
Formula weight	372.40		
Temperature	298(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 11.4052(14) Å	$\alpha = 90^{\circ}$.	
	b = 10.6351(13) Å	$\beta = 93.081(2)^{\circ}$.	
	c = 16.450(2) Å	$\gamma = 90^{\circ}$.	
Volume	1992.4(4) Å ³		
Z	4		
Density (calculated)	1.241 Mg/m^3		
Absorption coefficient	0.084 mm ⁻¹		
F(000)	784		
Crystal size	$0.36 \times 0.32 \times 0.16 \text{ mm}^3$		
Theta range for data collection	1.79 to 26.01°.		
Index ranges	-14<=h<=14, -13<=k<=13, -19<=l<=20		
Reflections collected	14312		
Independent reflections	3915 [R(int) = 0.0289]		
Completeness to theta = 25.00°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9867 and 0.9204		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3915 / 0 / 255		
Goodness-of-fit on F ²	1.086		
Final R indices [I>2sigma(I)]	R1 = 0.0606, $wR2 = 0.12$	294	
R indices (all data)	R1 = 0.0841, $wR2 = 0.1408$		
Largest diff. peak and hole	0.164 and -0.199 e.Å- ³		

This transformation can be rationalized by the mechanistic pathway involving formation of titanium enolate of ester **96** and its aldol reaction with the γ -keto esters followed by cyclization to give lactone **113** as shown in Scheme 65.

Scheme 65

In the present reaction of titanium enolates of ketones or esters with ethyl-2-benzoylbenzoates, syn and anti γ -lactone adducts can be obtained with both (E)- and (Z)-enolates. The syn stereoselectivty for the transformation can be tentatively explained on the basis of the stereochemical model shown in Figure 8. The results can be explained considering that the E-titanium ketone enolate would be in equilibrium with the E-titanium ketone enolate. The reaction of the E-titanium ketone enolate would give a lower-energy transition state **TS-3** due to the lesser repulsions from the aryl group (X) leading to the major syn product. The anti product with E-titanium ketone enolate is not favored because it would give a higher-energy transition state **TS-4** due to greater repulsions from the large phenyl group (Ar).

TS-3 (favored)

$$X = X$$
 $X = X$
 $X =$

Fig 7: Stereochemical models

2. 3 Conclusions

In conclusion, the aryltitanium species prepared *in situ* from *N,N*-dialkyl arylamines undergoes cross-coupling with titanium enolates of aryl acetic acid esters to give the corresponding α -diaryl acetic acid esters **98a-98i** and **99a-99c** in 55-90% yields. A simple and convenient method for the synthesis of maleic anhydrides **103a-103f** were achieved using the α -keto esters, alkanoic acid anhydrides and the TiCl₄/*n*-Bu₃N reagent system. Diphenylmaleic anhydride **106** was obtained in 95% yield by the reaction of phenylacetyl chloride and ethyl benzoylformate using the TiCl₄/*n*-Bu₃N reagent system. γ -Substituted γ -butenolides **108a-108e** with the diastereomeric ratio 0-100 were obtained in one step by the reaction of titanium enolates of ketones with α -keto esters, . The reaction of ethyl 2-benzoylbenzoates with ketones in the presence of the TiCl₄/*n*-Bu₃N reagent system gave the corresponding γ -lactone **112** with *syn/anti* ratio 67:33 in 82% yield. Also, ethyl 2-benzoylbenzoates react with titanium ester enolates prepared using the TiCl₄/Et₃N reagent system and esters to give γ -lactones **113a-113c** with diastereomeric ratio 0-100 in 74-92% yields.

2.4 Experimental Section

2.4.1 General procedure for the reaction of N,N-dialkylarylamines with anylacetic acid esters: α -Arylation of anylacetic acid esters

In CH₂Cl₂ (25 mL), *N,N*-dimethylaniline (1.2 mL, 7.5 mmol) and ethyl phenylacetate (0.35 ml, 2.1 mmol) were taken at 0 °C under N₂. The TiCl₄ (2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 10 mmol) in 10 mL CH₂Cl₂ was added drop wise for 5 minutes. The reaction mixture was stirred at 0 °C for 0.5 h and stirred further at 0-25 °C for 8 h. A saturated K₂CO₃ solution (10 mL) was added and stirred for 0.5 h. The reaction mixture was filtered through a Buchner funnel. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2×25 mL). The combined organic extract was washed with brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The unreacted amine and *N,N,N',N'*-tetramethylbenzidine were eluted using 2:98 EtOAc/hexane mixture. The aminoester **98a** was next eluted.

 H_3C_N C H_3

 H_3C_N C H_3

OCH₃

98b

 OC_2H_5

98a

Yield $0.52g (89\%)^{54}$

IR (Neat) (cm⁻¹) 2979, 2929, 2802, 1732, 1614, 1519, 1348,

1149, 721, 698

 1 H-NMR (δ ppm, CDCl₃) 7.4-7.2 (m, 7H), 6.76 (d, J=8.8 Hz,

2H), 4.97 (s, 1H), 4.25 (q, J=7.2, 2H), 2.95 (s, 6H), 1.29 (t, J=7.2 Hz, 3H)

¹³C-NMR (δ ppm, CDCl₃) 173.0, 149.8, 139.7, 129.3, 128.5, 128.5, 126.9, 126.8, 112.7,

60.9, 56.4, 40.6, 14.2

Analysis Calculated for C₁₈H₂₁NO₂: C, 76.29%; H, 7.49%; N, 4.94%

Found : C, 76.44%; H, 7.45%; N, 5.29%

Yield 0.48 g (86%)

IR (Neat) (cm⁻¹) 2980, 2850, 2802, 1737, 1612, 1521, 1350,

1151, 719, 698

 $^{1}\text{H-NMR}$ (δ ppm, CDCl₃) 7.45-7.22 (m, 7H), 6.77 (d, J=8.8 Hz,

2H), 5.08 (s, 1H), 3.80 (s, 3H), 2.99 (s, 6H)

¹³C-NMR (δ ppm, CDCl₃) 173.6, 149.9, 139.6, 129.4, 128.6, 127.4, 127.1, 126.5, 112.7,

56.3, 52.2, 40.6

MS (EI) m/z 269

Yield 0.58 g (90%)

IR (Neat) (cm⁻¹) 2974, 2931, 2871, 1733, 1612, 1519, 1149, 698

¹H-NMR (δ ppm, CDCl₃) 7.4-7.15 (m, 7H), 6.66 (d, J=8.8 Hz,

2H), 4.92 (s, 1H), 4.22 (q, J=7.2 Hz, 2H), 3.35 (q,

J=6.8 Hz, 4H), 1.28 (t, J=7.2 Hz, 3H), 1.17 (t, J=6.8 Hz, 6H) (**Spectrum No.**

34)

¹³C-NMR (δ ppm, CDCl₃) 173.1, 147.0, 139.8, 129.5, 128.5, 128.4, 126.9, 125.5, 111.9, 60.9, 56.3, 44.4, 14.2, 12.6 (**Spectrum No. 35**)

Yield 0.50 g (81%)

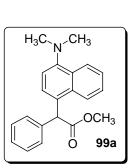
IR (Neat) (cm⁻¹) 2970, 2929, 2871, 1737, 1612, 1519, 1151,

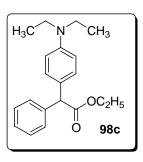
806, 698

 1 H-NMR (δ ppm, CDCl₃) 7.38-7.1 (m, 7H), 6.64 (d, J=8.8 Hz,

2H), 4.93 (s, 1H), 3.78 (s, 3H), 3.33 (q, J=7.2 Hz, 4H), 1.16 (t, J=7.2 Hz, 6H)

¹³C-NMR (δ ppm, CDCl₃) 173.5, 147.1, 139.6, 129.5, 128.5, 128.5, 127.0, 125.2, 111.8,


56.2, 52.1, 44.3, 12.6


Yield 0.42 g (65%)

IR (Neat) (cm⁻¹) 2925, 2854, 2831, 1739, 1454, 1388,

1193, 1159, 769

 1 H-NMR (δ ppm, CDCl₃) 8.38-7.23 (m, 10), 7.04 (d, J=8.8

H₃C

CH₃

OCH₃

98d

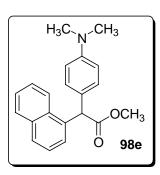
Hz,1H), 5.75 (s, 1H), 3.78 (s, 3H), 2.90 (s, 6H)

¹³C-NMR (δ ppm, CDCl₃) 173.5, 150.8, 138.3, 132.9, 129.3, 129.0, 128.6, 127.3, 126.3, 125.1, 124.9, 123.6, 113.5, 53.4, 52.4, 45.2 (**Spectrum No. 45**)

Yield 0.52 g (76%)

IR (Neat) (cm⁻¹) 2935, 2860, 2829, 1735, 1454, 1390, 1172, 1147, 765, 700 H₃C_NCH₃
OC₂H₅
O 99b

 $^{1}\text{H-NMR}$ (δ ppm, CDCl₃) 8.38-7.25 (m, 10H), 7.08 (d, J=8.8 Hz,


1H), 5.73 (s, 1H), 4.26 (q, J=6.8 Hz, 2H), 2.90 (s, 6H), 1.27 (t, J=6.8 Hz, 3H)

¹³C-NMR (δ ppm, CDCl₃) 173.0, 150.7, 138.4, 132.9, 129.3, 129.0, 128.6, 127.2, 126.3, 126.2, 125.0, 124.9, 123.6, 113.5, 61.2, 53.5, 45.2, 14.2 (**Spectrum No. 46**)

Yield 0.42 g (65%)

mp 122-124 °C

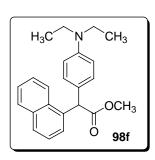
IR (KBr) (cm⁻¹) 2949, 1737, 1612, 1521, 1352, 1191, 1061, 779

¹H-NMR (δ ppm, CDCl₃) 8.18-7.33 (m, 9H), 6.82 (d, J=8.8 Hz, 2H), 5.88 (s, 1H), 3.86 (s, 3H), 3.0 (s, 6H) (**Spectrum No. 36**)

¹³C-NMR (δ ppm, CDCl₃) 173.9, 145.0, 135.5, 134.2, 131.9, 129.8, 129.1, 128.1, 126.6, 126.3, 125.7, 125.6, 123.5, 112.8, 53.0, 52.4, 40.6 (**Spectrum No. 37**)

MS (EI) m/z 319 (**Spectrum No. 38**)

The structure (98e) was also confirmed by single crystal X-ray structure analysis)


Yield 0.54 g (76%)

IR (Neat) (cm⁻¹) 2970, 1735, 1610, 1517, 1353, 769

¹H-NMR (δ ppm, CDCl₃) 8.10-7.46 (m, 7H), 7.26 (d, J=8.4

Hz, 2H), 6.72 (d, J=8.8 Hz, 2H), 5.78 (s, 1H), 3.81 (s,

3H), 3.38 (q, J=7.2 Hz, 4H), 1.21 (t, J=7.2 Hz, 6H)

 H_3C_N C H_3

OCH₃

99c

¹³C-NMR (δ ppm, CDCl₃) 174.0, 147.2, 135.5, 134.1, 129.9, 129.0, 127.9, 126.5, 126.3, 125.6, 125.5, 124.4, 123.4, 112.0, 52.8, 52.3, 44.4, 12.7

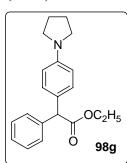
Yield 0.52 g (68%)

IR (Neat) (cm⁻¹) 3062, 2925, 2854, 2385, 1741, 1581,

1450, 1390, 1190, 1157, 771

 1 H-NMR (δ ppm, CDCl₃) 8.41-7.26 (m, 11H), 7.20 (d, J=8.8

Hz,1H), 7.00 (d, J=8.8 Hz,1H), 6.50 (s, 1H), 3.82 (s, 3H), 2.90 (s, 6H)

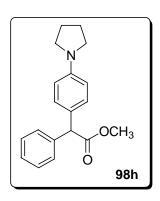

¹³C-NMR (δ ppm, CDCl₃) 173.8, 150.8, 134.4, 134.1, 132.9, 131.8, 129.4, 129.0, 128.2,

127.7, 126.7, 125.7, 125.6, 125.2, 123.4, 123.1, 113.7, 52.5, 50.1, 45.3

Yield 0.37 g (62%)

IR (Neat) (cm⁻¹) 2962, 2925, 2852, 1733, 1614, 1521, 1369,

1149, 692

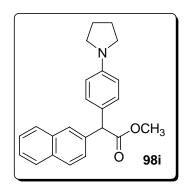

¹H-NMR (δ ppm, CDCl₃) 7.6-7.2 (m, 7H), 6.54 (d, J=8.8 Hz, 2H), 4.93 (s, 1H), 4.21 (q, J=6.8 Hz, 2H), 3.27 (t, J=6.8 Hz, 4H), 2.25-1.92 (m, 4H), 1.28 (t, J=6.8 Hz, 3H) (**Spectrum No. 39**)

¹³C-NMR (δ ppm, CDCl₃) 173.1, 147.1, 139.9, 129.4, 128.5, 128.4, 126.8, 60.9, 56.4, 47.7, 25.5, 14.2 (**Spectrum No. 40**)

Yield 0.39 g (61%)

IR (Neat) (cm⁻¹) 2949, 2839, 1737, 1614, 1521, 1375, 1151, 700

¹H-NMR (δ ppm, CDCl₃) 7.40-7.10 (m, 7H), 6.65 (d, J=8.8 Hz, 2H), 4.97 (s, 1H), 3.75 (s, 6H), 3.28 (t, J=6.8 Hz, 4H), 2.25-1.95 (m, 4H) (**Spectrum No. 41**)


¹³C-NMR (δ ppm, CDCl₃) 173.6, 147.1, 139.6, 129.4, 128.5, 126.9, 125.5, 111.4, 56.3, 52.1, 47.8, 25.5 (**Spectrum No. 42**)

Yield 0.28 g (55%)

IR (Neat) (cm⁻¹) 2925, 2923, 2850, 1735, 1612, 1519, 1163, 732

¹H-NMR (δ ppm, CDCl₃) 8.07-7.18 (m, 9H), 6.55 (d, J=8.8 Hz, 2H), 5.71 (s, 1H), 3.28 (t, J=6.8 Hz, 4H),

1.96-2.15 (m, 4H) (**Spectrum No. 43**)

¹³C-NMR (δ ppm, CDCl₃) 173.8, 147.2, 135.4, 134.1, 131.9, 129.7, 128.9, 127.8, 126.3, 125.4, 123.3, 111.8, 52.9, 52.1, 47.7, 25.4 (**Spectrum No. 44**)

2.4.2 General procedure for the reaction of α-keto ester with alkanoic acid anhydrides using the TiCl₄/n-Bu₃N reagent system: Synthesis of substituted maleic anhydrides

Acetic anhydride (0.63 g, 2.5 mmol) and ethyl benzoylformate (0.96 g, 5 mmol) were taken in dichloroethane (25 mL) under N₂, and TiCl₄ (1.65 mL of 1:1 solution of TiCl₄-CH₂Cl₂, 7.5 mmol) was added at 0 °C followed by *N,N,N*-tributylamine (1.43 ml, 7.5 mmol). The contents were stirred at 0 °C for 10 min and then refluxed at 95-100 °C for 12 h. The mixture was brought to room temperature, saturated NH₄Cl solution (20 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic extract was washed with 5N HCl (2 × 20 mL) to remove the unreacted amine, followed by water and brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. Unidentified less polar compounds and the unreacted ketone were eluted using 1:99 EtOAc/hexane mixture. The phenylmaleic anhydride **103a** (92%) was eluted using EtOAc/hexane (2:98) mixture.

103a

Yield 0.80 g (92%)

mp 117-118 (Lit ^{62g} 118-119) °C

IR (KBr) (cm⁻¹) 2966, 1766, 1724, 1606, 1514, 1248,

1028, 835, 738

¹H-NMR (δ ppm, CDCl₃) 7.96 (d, J=6.6 Hz, 2H), 7.72-7.40 (m, 3H), 7.00 (s,

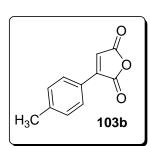
1H) (**Spectrum No. 47**)

¹³C-NMR (δ ppm, CDCl₃) 164.5, 163.6, 146.8, 132.7, 129.3, 129.0, 126.9, 124.5

(Spectrum No. 48)

Yield 0.78 g (84%)

Mp 105-106 (Lit ^{62g} 106-108)°C


IR (KBr) (cm⁻¹) 3067, 2924, 1790, 1770, 1491, 1089, 831, 540

 $^{1}\text{H-NMR}$ (δ ppm, CDCl₃) 7.77 (d, J=8.0 Hz, 2H), 7.21 (d,

J=8.0 Hz, 2H), 6.81 (s, 1H), 2.33 (s, 3H) (**Spectrum No. 49**)

¹³C-NMR (δ ppm, CDCl₃) 164.6, 163.8, 146.6, 143.8, 130.1, 129.0, 124.2, 123.1, 21.6

(Spectrum No. 50)

Yield 0.64 g (64%)

mp 141-143 (Lit ^{62g}142-143) °C

IR (KBr) (cm⁻¹) 3069, 2935, 1790, 1774, 1601, 1508, 1215,

831, 536

¹H-NMR (δ ppm, CDCl₃) 7.89 (d, J=8.2 Hz, 2H), 6.90 (d, J=8.2 Hz, 2H), 3.80 (s, 3H)

¹³C-NMR (δ ppm, CDCl₃) 165.2, 163.3, 159.2, 146.4, 131.1, 128.6, 121.0, 114.9, 55.8

Yield 0.76 g (81%)

mp 98-100 °C

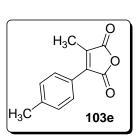
IR (KBr) (cm⁻¹) 2962, 2876, 1844, 1768, 1726, 1450, 1201, 916,

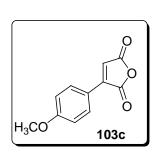
702

¹H-NMR (δ ppm, CDCl₃) 7.72-7.45 (m, 5H), 2.31 (s, 3H) (**Spectrum No. 51**)

¹³C-NMR (δ ppm, CDCl₃) 166.1, 164.8, 139.9, 138.7, 130.9, 129.4, 128.9, 127.5, 10.7

(Spectrum No. 52)


MS (EI) m/z 188 (M^+ , 62%) (**Spectrum No. 53**)


Yield 0.76 g (76%)

mp 108-110 °C

IR (KBr) (cm⁻¹) 2976, 2926, 1844, 1817, 1766, 1728, 1273,

1176, 920, 825, 734

 H_3C

103d

 H_3C

103f

¹H-NMR (δ ppm, CDCl₃) 7.57 (d, J=8.0 Hz, 2H), 7.32 (d, J=8.4 Hz, 2H), 2.42 (s, 3H), 2.30 (s, 3H)

¹³C-NMR (δ ppm, CDCl₃) 166.4, 165.1, 141.7, 139.9, 137.657, 129.7, 129.4, 128.7, 21.5, 10.9

MS (EI) $m/z 202 (M^+, 64\%)$

Yield 0.62 g (62%)

mp 119-120 °C

IR (KBr) (cm⁻¹) 3059, 2916, 1786, 1450, 1371, 1105, 758, 731

¹H-NMR (δ ppm, CDCl₃) 7.68 (d, J=8.8 Hz, 2H), 6.92 (d, J=8.8

Hz, 2H), 3.87 (s, 3H), 2.29 (s, 3H)

¹³C-NMR (δ ppm, CDCl₃) 166.5, 164.7, 161.8, 139.7, 136.5 131.4, 128.9, 114.5, 55.5, 10.9

MS (EI) $m/z 218 (M^+, 74\%)$

2.4.3 General procedure for the reaction of α -keto ester with phenylacetyl chloride using the TiCl₄/n-Bu₃N reagent system

Phenylacetyl chloride (0.66 mL, 5 mmol) and ethyl benzoylformate (0.36 mL, 2.5 mmol) were taken in dichloroethane (25 mL) under N₂, and TiCl₄ (1.65 mL of 1:1 solution of TiCl₄-CH₂Cl₂, 7.5 mmol) was added at 0 °C followed by *N,N,N*-tributylamine (1.43 mL, 7.5 mmol). The contents were stirred at 0 °C for 10 min and then refluxed at 95-

Ö

106

100 °C for 12 h. The mixture was brought to room temperature, saturated NH₄Cl solution (20 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×25 mL). The combined organic extract was washed with 5N HCl (2×20 mL) to remove the unreacted amine, followed by water and brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The diphenylmaleic anhydride **106** was eluted using EtOAc/hexane (2:98) mixture.

Yield 1.1 g (95%)

mp 157-159 °C (Lit⁶⁶ 159-162 °C)

IR (KBr) (cm⁻¹) 3063, 1822, 1757, 1637, 1352, 1273, 698

¹H-NMR (δ ppm, CDCl₃) 7.55-7.25 (m, 10H) (**Spectrum No. 54**)

¹³C-NMR (δ ppm, CDCl₃) 164.8, 138.1, 131.1, 129.7, 128.9, 127.1 (**Spectrum No. 55**)

2.4.4 General procedure for the reaction of α -keto esters with ketones using the TiCl₄/n-Bu₃N reagent system: **Synthesis of** γ -**substituted** γ -**butenolides**

Deoxybenzoin (0.49 g, 2.5 mmol) and ethyl benzoylformate (0.18 ml, 1.25 mmol) were taken in dichloroethane (20 mL) under N₂, and TiCl₄(1.65 mL of 1:1 solution of TiCl₄-CH₂Cl₂, 7.5 mmol) was added at 0 °C followed by *N*,*N*,*N*-tributylamine (1.43 ml, 7.5 mmol). The contents were stirred at 0 °C for 10 min and then refluxed at 95-100 °C for 12 h. The mixture was brought to room temperature, saturated NH₄Cl solution (20 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic extract was washed with 5N HCl (2 × 20 mL) to remove the amine, followed by water and brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. Unidentified less polar compounds and the unreacted ketone were eluted using 1:99 EtOAc/hexane mixture. The butenolide **108a** was eluted using EtOAc/hexane (10:90) mixture.

Yield 0.9 g (82%)

mp 216-218 °C

IR (KBr) (cm⁻¹) 3059, 2924, 1761,

1685, 1597, 1514, 1493, 1448, 1346, 1248, 1174, 1076, 991, 827, 702, 652

¹H-NMR (δ ppm, CDCl₃) 7.83-6.61 (m, 25H), 5.62 (s, 1H), 5.45 (s, 1H) (**Spectrum No. 56**)

¹³C-NMR (δ ppm, CDCl₃) 194.9, 193.1, 170.9, 170.8, 161.1, 160.1, 136.0, 135.8, 132.0, 131.9, 131.4, 131.1, 130.5, 130.2, 128.7, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.7, 127.6, 127.5 127.4, 127.4, 127.3, 127.2, 127.1, 127.1, 127.0, 126.7 125.5, 125.2, 89.0, 89.0, 55.6, 54.1 (**Spectrum No. 57**)

Yield 1.0 g (84%)

mp 197-199 °C

IR (KBr) (cm⁻¹) 3063, 1718,

1660, 1599, 1543,

1496, 1442, 1319,

1251, 1176, 1076, 1030, 964, 904, 754, 694

¹H-NMR (δ ppm, CDCl₃) 7.82-6.59 (m, 19H), 5.66 (s, 1H), 2.22 (s, 3H) (**Spectrum No. 58**)

¹³C-NMR (δ ppm, CDCl₃) 194.3, 172.2, 161.4, 138.3, 137.0, 133.0, 131.6, 131.4, 131.2, 129.6, 129.5, 129.4, 129.3, 129.2, 129.0, 128.9, 128.8, 128.8, 128.7, 128.6, 128.5, 128.5, 128.4, 126.5, 126.0, 90.0, 56.6, 21.4 (**Spectrum No. 59**) (The structure was also confirmed by single crystal X-ray structure analysis)

Yield 0.7 g (78%)
IR (neat) (cm⁻¹) 3053, 2916, 1770,
1664, 1606, 1466, 1282,
1086, 943, 702

¹H-NMR (δ ppm, CDCl₃) 7.93-7.20 (m, 15H), 4.73 (q, J=6.8 Hz, 1H), 4.60 (q, J=6.8 Hz, 1H), 2.18 (s, 3H), 1.85 (s, 3H), 1.40 (d, J=6.8 Hz, 3H), 1.29 (d, J=6.8 Hz, 3H) (**Spectrum No. 60**)

¹³C-NMR (δ ppm, CDCl₃) 199.7, 198.8, 172.3, 172.0, 162.7, 162.4, 138.1, 137.6, 137.0, 133.4, 133.2, 129.2, 129.1, 129.1, 129.0, 128.9, 128.8, 128.7, 128.5, 128.5, 128.4, 128.2, 128.1, 125.9, 125.3, 125.0, 90.3, 44.6, 44.1, 13.8, 13.3, 13.1, 12.9 (**Spectrum No. 61**)

Analysis Calculated for $C_{26}H_{22}O_3$: C, 81.65%; H, 5.80%

Found : C, 81.72%; H, 5.83%

OPh OEt + H₃C O Ar
$$C_2H_4Cl_2$$
 Ph Ar $C_2H_4Cl_2$ reflux, 12 h C_2H_3C CH_3 C

Yield 0.6 g (61%)
IR (neat) (cm⁻¹) 3059, 2928, 2854,
1751, 1687, 1597, 1494,
1448, 1381, 1350, 1265,

1188, 1080, 979, 700

Ph
$$\xrightarrow{Ar}$$
 \xrightarrow{Ar} \xrightarrow

¹H-NMR (δ ppm, CDCl₃) 7.93-7.16 (m, 15H), 4.73 (q, J=6.8 Hz, 1H), 4.60 (q, J=6.8 Hz, 1H), 2.37 (s, 3H), 2.32 (s, 3H), 2.17 (s, 3H), 1.84 (s, 3H), 1.39 (d, J=6.8 Hz, 3H), 1.29 (d, J=6.8 Hz, 3H)

¹³C-NMR (δ ppm, CDCl₃) 199.7, 198.8, 172.4, 172.0, 161.9, 160.5, 138.6, 138.3, 138.3, 137.7, 137.6, 133.3, 133.1, 129.2, 129.1, 129.0, 128.9, 128.9, 128.8, 128.8, 128.4, 128.2, 128.2, 128.1, 126.9, 126.9, 125.3, 125.0, 90.2, 90.2, 44.6, 44.2, 21.4, 21.3, 13.7, 13.3, 13.1, 12.6

Yield 1 g (78 %)

mp 124-126 °C

IR (KBr) (cm⁻¹) 2924, 1751, 1685,

1581, 1491, 1396, 1195,

1070, 695

¹H-NMR (δ ppm, CDCl₃) 7.85-7.22 (m, 13H), 4.54 (q, J=6.8 Hz, 1H), 4.12(q, J=6.8 Hz, 1H), 2.16 (s, 3H), 2.04 (s, 3H), 1.29 (d, J=6.8 Hz, 3H), 1.25 (d, J=6.8 Hz, 3H)

¹³C-NMR (δ ppm, CDCl₃) 198.3, 198.1, 171.5, 169.8, 160.3, 159.8, 150.5, 139.2, 136.8, 135.8, 133.8, 132.3, 131.9, 131.6, 130.2, 129.7, 129.3, 129.1, 129.0, 128.7, 128.3, 128.2, 127.7, 127.1, 126.1, 125.6, 125.2, 122.8, 89.8, 88.6, 52.1, 13.8, 13.1, 11.7, 11.6

2.4.5 Procedure for the reaction of α -keto ester with ketone using the TiCl₄/n-Bu₃N reagent system: **Synthesis of** γ -**keto ester**

Deoxybenzoin (0.49 g, 2.5 mmol) and ethyl benzoylformate (0.375 ml, 2.5 mmol) were taken in dichloroethane (25 mL) under N_2 , and $TiCl_4(1.65 \text{ mL of } 1:1 \text{ solution of } TiCl_4-CH_2Cl_2$, 7.5 mmol) was added at 0 °C followed by $N_1N_2N_2$ -tributylamine (1.43 ml, 7.5 mmol).

The contents were stirred at 0 °C for 10 min and then refluxed at 95-100 °C for 6 h. The mixture was brought to room temperature, saturated NH₄Cl solution (20 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 25 mL). The combined organic extract was washed with 5N HCl (2 × 20 mL) to remove the amine, followed by water and brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. Unidentified less polar compounds and the unreacted ketone were eluted using 1:99 EtOAc/hexane mixture. The γ -keto ester **110a** was eluted using EtOAc/hexane (5:95) mixture.

Yield 0.8 g (92%)

mp 121-123 °C

IR (KBr) (cm⁻¹) 3053, 2976, 1720, 1672, 1610, 1520, 1448, 1267, 1064, 1020, 700

OEt OEt 110a

¹H-NMR (δ ppm, CDCl₃) 8.03-7.11 (m, 15H), 4.05 (q, J=7.2 Hz, 2H), 1.0 (t, J=7.2 Hz, 3H) (**Spectrum No. 62**)

¹³C-NMR (δ ppm, CDCl₃) 195.9, 167.1, 150.6, 136.0, 135.1, 134.8, 133.7, 133.1, 130.7, 129.3, 129.3, 129.1, 128.8, 128.6, 128.5, 128.4, 128.1, 127.9, 61.6, 13.6 (Spectrum No. 63)

(The structure was also confirmed by single crystal X-ray structure analysis)

2.4.6 General procedure for the reaction of ethyl 2-benzoylbenzoate with ketone in the presence of the $TiCl_4$ /nBu₃N regent system: Synthesis of γ -lactones

Ethyl 2-benzoyl benzoate (0.63 g, 2.5 mmol) and deoxybenzoin (0.96 g, 5 mmol) were taken in dichloroethane (25 mL) under N_2 , TiCl₄ (1.65 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 7.5 mmol) was added at 0 °C followed by *N,N,N*-tributylamine (1.43 mL, 7.5 mmol). It was stirred at 0 °C for 10 minutes and then refluxed at 95-100 °C for 6 h. The contents were brought to room temperature, then saturated NH₄Cl solution (20 mL) was added and stirred for 0.5 h. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 25 mL). The combined organic extract was washed with 5N HCl (2×20 mL) to remove the unreacted amine, followed by water and brine solution (10 mL) and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The γ -lactone **112** was eluted using 8:92 EtOAc/hexane mixture.

Yield 0.92 g (92%)

mp 188-190 °C

IR (KBr) (cm⁻¹) 3061, 2926, 1749, 1684, 1597, 1494, 1448, 1261, 1097, 974, 873, 700, 640

¹H-NMR (δ ppm, CDCl₃) 8.49-7.06 (m, 19H), 5.92 (s, 1H), 5.82 (s, 1H) (**Spectrum No. 64**)

¹³C-NMR (δ ppm, CDCl₃) 196.6, 195.1, 169.7, 169.0, 151.2, 148.7, 138.9, 133.5, 133.2, 130.7, 130.3, 129.3, 128.7, 128.6, 128.6, 128.5, 128.5, 128.4, 128.3, 128.0, 126.7, 126.4, 125.3, 125.3, 91.4, 89.3, 62.0, 61.5 (**Spectrum No. 65**)

MS(EI) m/z 404

(The major product *syn* **112a** was also characterized by single crystal X-ray structure analysis)

Analysis Calculated for $C_{28}H_{20}O_3$: C, 83.15%; H, 4.98% Found : C, 83.16%; H, 5.06%

2.4.7 General procedure for the reaction of ethyl 2-benzoylbenzoates with ester using the TiCl₄/Et₃N reagent system: Synthesis of γ-lactones

In dichloromethane (25 mL), ethyl 2-benzoylbenzoate (0.63 mL, 2.5 mmol) and methyl phenylacetate (0.47 ml, 3 mmol) were taken under N_2 . The TiCl₄ (2.2 mL of 1:1 solution of TiCl₄/CH₂Cl₂, 12 mmol) was added and mixture was stirred for 15 min, then added Et₃N (1.4 ml, 15mmol). The reaction mixture was stirred further 8 h. It was brought to 0 °C and a saturated NH₄Cl solution (10 mL) was added and the contents were stirred for 0.5 h. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2×

25 mL). The combined organic extract was washed with water (10 ml), brine solution (10 mL) and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was chromatographed on a silica gel column. The γ -lactone **113b** (85% yield) was collected using EtOAc/hexane (5:95) mixture as eluent.

Yield 0.81g (92%), dr 52:48

mp 176-178 °C

IR (KBr) (cm⁻¹) 3055, 2949, 1768, 1743,

1599, 1466, 1199, 1089, 976, 731, 700

¹H-NMR (δ ppm, CDCl₃) 8.21-7.11 (m, 14H), 4.82 (s, 1H), 4.80 (s, 1H), 3.50 (s, 3H),

3.41 (s, 3H) (**Spectrum No. 66**)

(δ ppm, CDCl₃) 170.2, 169.7, 150.4, 149.2, 139.3, 138.4, 133.7, 131.6, 130.2,

 $130.1,\, 129.5,\, 129.2,\, 128.7,\, 128.5,\, 128.3,\, 126.0,\, 125.6,\, 125.5,\, 125.1,\, 124.7,\, 124.$

OMe

113a

122.9, 89.4, 88.6, 60.3, 60.0, 52.1, 52.0 (**Spectrum No. 67**)

MS (EI) m/z 358

Analysis Calculated for $C_{23}H_{18}O_4$: C, 77.08%; H, 5.06%

Found : C, 77.07%; H, 5.08%

113b

Ar = p-MePh

Yield 0.69 g (76%), dr 50:50

mp 160-162 °C

IR (KBr) (cm⁻¹) 3028, 2949, 1770, 1743,

1602, 1510, 1466, 1356, 1288,

1259, 1192, 1086, 760, 734, 692

¹H-NMR (δ ppm, CDCl₃) 8.22-7.11 (m, 13H), 4.78 (s, 1H), 3.53 (s, 3H), 3.43 (s, 3H),

2.33 (s, 3H), 2.29 (s, 3H)

¹³C-NMR (δ ppm, CDCl₃) 170.4, 169.8, 150.6, 149.3, 138.3, 136.2, 133.7, 133.7,

131.59, 130.2, 130.1, 129.4, 129.2, 128.2, 128.1, 128.1, 128.0, 126.0, 125.6,

125.5, 125.0, 124.8, 122.8, 89.5, 88.6, 60.1, 59.9, 52.2, 52.1, 21.1

(The product was also characterized by single crystal X-ray structure

analysis)

Yield 0.75 g (75%), dr 50:50

mp 161-163 °C

IR (KBr) (cm⁻¹) 3028, 2949, 1770, 1743,

1466, 1356, 1192, 1086, 815,

761, 734, 692

OMe
1-Naphth

113c

OMe
1-Naphth

Ar = p-MePh

¹H-NMR (δ ppm, CDCl₃) 8.24-7.00 (m, 15H), 4.97 (s, 1H), 3.52 (s, 3H), 3.39 (s, 3H), 2.31 (s, 3H) (**Spectrum No. 68**)

¹³C-NMR (δ ppm, CDCl₃) 170.6, 170.2, 169.7, 168.9, 150.4, 150.1, 138.3, 138.2, 133.8,

129.4, 129.2, 129.1, 129.0, 128.9, 128.9, 128.8, 126.6, 126.1, 125.8, 125.6,

125.2, 125.0, 124.9, 124.7, 123.2, 90.1, 88.7, 53.7, 53.5, 52.2, 52.2

(Spectrum No. 69)

Analysis Calculated for $C_{28}H_{22}O_4$: C, 79.60%; H, 5.25%

Found : C, 79.67%; H, 5.25%

2.5 References

- (a) Jackman, L. M.; Lange, B. C. *Tetrahedron* 1977, 33, 2737 (b) Mukaiyama, T. *Israel J. Chem.* 1984, 24, 162. (c) Kuwajima, I.; Nakamura, E. *Acc. Chem. Res.* 1985, 18, 181. (d) Burkhardt, E. R.; Doney, J. J.; Slough, G. A.; Stack, J. M.; Heathcock, C. H.; Bergman, R. G. *Pure Appl. Chem.* 1988, 60, 1. (e) Fujisawa, T.; Makoto, S. *Rev. Heteroatom Chem.* 1996, 15, 203. (f) Saito, S.; Yamamoto, H. *Chem. Eur. J.* 1999, 5, 1959. (g) Yanagisawa, A.; Yamamoto, H. In *Comprehensive Asymmetric Catalysis I-III;* Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds. Springer-Verlag: Berlin, 1999, Vol. III, Chapter 34.2. (h) Benaglia, M.; Cinquini, M.; Cozzi, F. *Eur. J. Org. Chem.* 2000, 563. (i) Schmittel, M.; Haeuseler, A. *J. Organomet. Chem.* 2002, 661, 169. (j) Denissova, I.; Barriault, L. *Tetrahedron* 2003, 59, 10105. (k) Hiyashi, T. *Bull. Chem. Soc. Jpn.* 2004, 77, 13. (l) Tunge, J. A.; Burger, E. C. *Eur. J. Org. Chem.* 2005, 1715.
- 2. *Modern Aldol Reactions;* Mahrwald, R., Ed.; Wiley-VCH Verlag GmbH & Co.: KgaA, Germany, 2004; Vol. 1 & 2.
- 3. Ghosh, A. K.; Shelvin, M. In *Modern Aldol Reactions*; Mahrwald, R., Ed.; Wiley-VCH Verlag GmbH & Co.: KgaA, Germany, 2004; Vol. 1, Chapter 2.
- 4. (a) Reetz, M. T.; Peter, R. *Tetrahedron Lett.* **1981**, 22, 4691. (b) Reetz, M. T. In *Organotitanium Reagents in Organic Synthesis*; Springer-Verlag: Berlin, **1986**
- 5. Nerz-Stormes, M.; Thornton, E. R. *Tetrahedron Lett.* **1986**, 27, 897.
- 6. Murphy, P. J.; Procter, G.; Russell, A. T. *Tetrahedron Lett.* **1987**, 28, 2037.
- 7. Bonner, M. P.; Thornton, E. A. J. Am. Chem. Soc. 1991, 113, 1299.
- 8. (a) Mukaiyama, T. *Angew. Chem. Int. Ed.* **2004**, *43*, 5590. (b) Carreira, E. M. In *Comprehensive Asymmetric Catalysis I-III*; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds. Springer-Verlag: Berlin, **1999**, Vol. III, Chapter 29.1.
- 9. Banno, K.; Mukaiyama, T. Chem. Lett. **1997**, 741.
- 10. Ojima, I.; Toshida, K.; Inaba, S. –I. *Chem. Lett.* **1977**, 429.

168 References

11. (a) Mukaiyama, T.; Narasaka, K.; Banno, K. *Chem. Lett.* **1973**, 1011. (b) Mukaiyama, T.; Banno, K.; Narasaka, K. *J. Am. Chem. Soc.* **1974**, *96*, 7503.

- 12. Palazzi, C.; Colombbo, L.; Gennari, C. Tetrahedron Lett. 1986, 27, 1735.
- 13. Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1983, 24, 3343.
- 14. Chan, T. H.; Aida, T.; Lau, P. W. K.; Gorys, V.; Harpp, D. N. *Tetrahedron Lett.* **1979**, 4029.
- 15. Szlosck, M.; Franck, X.; Figedere, B.; Cave, A. J. Org. Chem. 1998, 63, 5169.
- 16. Angell, P.; Zhang, J.; Belmont, D.; Curran, T.; Davidson, J. G. *Tetrahedron Lett.* **2005**, *46*, 2029.
- 17. Harrison, C. Tetrahedron Lett. 1987, 28, 4135.
- 18. Annunziata, R.; Cinquini, M.; Cozzi, F.; Cozzi, P. G.; Coslandi, E. *Tetrahedron* **1991**, *47*, 7897.
- 19. Annunziata, R.; Cinquini, M.; Cozzi, F.; Borgia, A. L. J. Org. Chem. **1992**, *57*, 6339.
- 20. Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpí, F. J. Am. Chem. Soc. 1991, 113, 1047.
- (a) Tramontini, M.; Angiolini, L. In Mannich-Bases: Chemistry and Uses; CRC: Boca Raton, FL, 1994; Tetrahedron 1990, 46, 1791. (b) Tramontini, M. Synthesis 1973, 703 (c) Overmann, L. E.; Ricca, D. J. In Comprehensive Organic Synthesis; Trost, B. M., Flemming, I., Eds.; Pergamon Press: Oxford, 1991, Vol. 2, p 1007. (d) Arend, M.; Westermann, B.; Risch, N. Angew. Chem. Int. Ed. 1998, 37, 1044. (e) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. (f) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817. (g) Bur, S. K.; Martin, S. F. Tetrahedron 2001, 57, 3221. (h) Martin, S. F. Acc. Chem. Res. 2002, 35, 895. (i) Lui, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991.
- 22. Fujisawa, T.; Ukaji, Y.; Noro, T.; Date, K.; Shimizu, M. *Tetrahedron Lett.* **1991**, *32*, 7563.
- 23. Fujisawa, T.; Ichikawa, M.; Ukaji, Y.; Shimizu, M. *Tetrahedron Lett.* **1993**, *34*, 1307.
- 24. Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 12.

- 25. Ojima, I.; Inaba, S. –i.; Yoshida, K. *Tetrahedron Lett.* **1977**, *18*, 3643.
- 26. Dubois, J.-E.; Axioties, G. Tetrahedron Lett. **1964**, 25, 2143.
- 27. (a) Ojima, I.; Inaba, S. –i. *Tetrahedron Lett.* **1980**, *21*, 2077. (b) Ojima, I.; Inaba, S. i. *Tetrahedron Lett.* **1980**, *21*, 2081.
- 28. Bravo, P.; Fustero, S.; Guidetti, M.; Volonterio, A.; Zanda, M. *J. Org. Chem.* **1999**, *64*, 8731.
- 29. Cinquini, M.; Cozzi, F.; Cozzi, P. G.; Consolandi, E. Tetrahedron 1991, 47, 8767.
- Andrian, J. C. Jr.; Barkin, J. L.; Fox, R. J.; Chick, J. E.; Hunter, A. D.; Nicklow, R. A. J. Org. Chem. 2000, 65, 6264.
- (a) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771. (b) Yamaguchi, M.;
 Shiraishi, T.; Hirama, M. Angew. Chem. Int. Ed. Engl. 1993, 32, 1176. (c) Krause,
 N.; Gerold, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 186. (d) Shibasaki, M.; Sasai,
 H.; Arai, T. Angew. Chem. Int. Ed. Engl. 1997, 36, 1236. (e) Sibi, M. P.; Manyem, S.
 Tetrahedron 2000, 56, 8033.
- 32. Christoffers, J. Eur. J. Org. Chem. 1998, 1259.
- 33. Bernardi, A. Gaz. Chim. Italiana 1995, 125, 539.
- 34. Bernardi, A.; Dotti, P.; Poli, G.; Scolastico, C. Tetrahedron 1992, 48, 5597.
- 35. Saigo, K.; Osaki, M.; Mukaiyama, T. Chem. Lett. 1976, 163.
- 36. Evans, D. A.; Bilodeau, M. T.; Somers, T. C.; Clardy, J.; Cherry, D.; Kato, Y. *J. Org. Chem.* **1991**, *56*, 5750.
- 37. Viteva, L. Z.; Gospodova, T. S.; Stefanovsky, Y. N. *Tetrahedron* **1994**, *50*, 7193.
- 38. Bouhlel, E.; Hassine, B. B. Synthetic Commun. **1992**, 22, 2183.
- 39. Peterson, I. *Tetrahedron* **1988**, *44*, 4207.
- 40. Chen, C. -C.; Chen, S. -T.; Chuang, T. -H.; Fang, J. -M. *J. Chem. Soc.*, *Perkin Trans* 1, **1994**, 2217.
- 41. Ojima, I.; Brandstadter, S. M.; Donovan, R. J. Chem. Lett. 1992, 1591.
- 42. Matsumura, Y.; Nishimura, M.; Hiu, H.; Watanabe, M.; Kise, N. *J. Org. Chem.* **1996**, *61*, 2809.
- 43. Nguyen, P. Q.; Schäfer, H. J. Org. Lett. **2001**, *3*, 2993.

170 References

- 44. Rao, V. D.; Periasamy, M. Tetrahedron: Asymmetry 2000, 11, 1151.
- 45. Suresh, S.; Periasamy, M. *Tetrahedron Lett.* **2004**, *45*, 6291.
- 46. Periasamy, M; Suresh, S.; Ganesan, S. S. Tetrahedron Lett. 2005, 46, 5521.
- 47. Bharathi, P.; Periasamy, M. *Organometallics* **2000**, *19*, 5511.
- 48. Bharathi, P.; Periasamy, M. *Org. Lett.* **1999**, *1*, 857.
- 49. (a) Periasamy, M.; Jayakumar, K. N.; Bharathi, P. *Chem. Commun.* **2001**, 1728. (b) Periasamy, M.; Jayakumar, K. N.; Bharathi, P. *J. Org. Chem.* **2005**, *70*, 5420.
- 50. Periasamy, M.; Srinivas, G.; Bharathi, P. J. Org. Chem. **1999**, 64, 4204.
- 51. Srinivas, G.; Periasamy, M. Tetrahedron Lett. 2002, 43, 2785.
- 52. Periasamy, M.; Srinivas, G.; Karunakar, G. V.; Bharathi, P. *Tetrahedron Lett.* **1999**, 40, 7577.
- 53. Periasamy, M.; Jayakumar, K. N.; Bharathi, P. J. Org. Chem. 2000, 65, 3548.
- 54. Moradi, W. A.; Buchwald, S. L. J. Am. Chem. Soc. **2001**, 123, 7996.
- 55. Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc. **2000**, 122, 1360.
- Ogawa, Y.; Saiga, A.; Mori, M.; Shibata, T.; Takagi, K. J. Org. Chem. 2000, 65, 1031.
- 57. Sibille, S.; Ratovelomanana, V.; Perichon, J. J. Chem. Soc., Chem. Commun. 1992, 283.
- 58. Kreiser, W.; Janitschke, L.; Ernest, V. L.; Scheldrick, W. S. *Chem. Ber.* **1979**, *112*, 397.
- (a) Teomim, D.; Nyska, A.; Domd, A.J. *J. Biomed. Mater. Res.* 1999, 45, 258. (b) Po,
 R.; Fiocca, L.; Abis, L. *J. Polym. Sci., Part A: Polym. Chem.* 1997, 35, 3241. (c)
 Trumbo, D. L. *Polym. Bull.* 1996, 37, 161.
- 60. (a) Slade, R. M.; Branchaud, B. P. *J. Org. Chem.* 1998, 63, 3544. (b) Ratemi, E.S.;
 Dolence, J. M.; Poulter, C. D.; Vederas, J. C. *J. Org. Chem.* 1996, 61, 6296. (c) Bit,
 R.A.; Davis, P. D.; Elliott, L. H.; Harris, W.; Hill, C. H.; Keech, E.; Kumar, H.;
 Lawton, G.; Maw, A.; Nixon, J. S.; Vesey, D. R.; Wadsworth, J.; Wilkinson, S. E. *J.*

- Med. Chem. 1993, 36, 21. (c) Pattenden, G.; Turvill, M. W.; Chorlton, A. P. J. Chem. Soc., Perkin Trans. 1. 1991, 2357.
- 61. Weidenmuller, H. –L.; Cavagna, F.; Fehlhaber, H. –W.; Prave, P. *Tetrahedron Lett.* **1972**, *13*, 3519.
- (a) Heck, R.F. J. Am. Chem. Soc. 1972, 94, 2712. (b) Zargarian, D.; Alper, H. Organometallics 1991, 10, 2914. (c) Li, J.; Li, G.; Jiang, H.; Chen, M. Tetrahedron Lett. 2001, 42, 6923. (d) Sakurai, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 1999, 40, 1701. (e) Gabriele, B.; Salerno, G.; Costa, M.; Chiusoli, G. P. Tetrahedron Lett. 1999, 40, 989. (f) Gabriele, B.; Salerno, G.; Costa, M.; Chiusoli, G. P. Chem. Commun. 1999, 1381. (g) Gabriele, B.; Veltri, L.; Salerno, G.; Costa, M.; Chiusoli, G. P. Eur, J. Org. Chem. 2003, 1722.
- 63. Periasamy, M.; Rameshkumar, C.; Mukkanti, A. *J. Organomet. Chem.* **2002**, *649*, 209. and references therein.
- 64. Dean, D. W.; Blum, M. D. J. Org. Chem. **1993**, 58, 7916.
- 65. Fields, E. K.; Behrend, S. J. J. Org. Chem. 1990, 55, 5165
- 66. Raghavan, P. V.; Srinivas, P; Rao, V. V.; Manojit, P.; Rao, Y. K. Synlett 2002, 947.
- (a) Patt, W. C.; Cheng, X.-M.; Repine, J. T.; Lee, C.; Reisdorph, B. R.; Massa, M. A.; Doherty, A. M.; Welch, K. M.; Bryant, J. W.; Flynn, M. A.; Walkee, D. M.; Schroeder, R. L.; Haleen, S. J.; Keiser, J. A. J. Med. Chem. 1999, 42, 2162. (b) Patt, W. C.; Edmunds, J. J.; Repine, J. T.; Berryman, K. A.; Reisdorph, B. R.; Lee, C.; Plummer, M. S.; Shehripour, A.; Halln, S. J.; Keiser, J. A.; Flynn, M. A.; Welch, K. M.; Reynolds, E. E.; Rubin, R.; Tobias, B.; Hallak, H.; Doherty, A. M. J. Med. Chem. 1997, 40, 1063. (c) Zhang, J.; Blazecka, P. G.; Belmont, D.; Davidson, J. G. Org. Lett. 2002, 4, 4559. (d) Avedissian, H. A.; Sinha, S. C.; Yazbak, A.; Sinha, A.; Neogi, P.; Sinha, S. C.; Keinan, E. J. Org. Chem. 1999, 64, 7067. (f) Sinha, A.; Sinha, S. C.; Sinha, S. C.; Keinan, E. J. Org. Chem. 1999, 64, 2381.
- 68. (a) de March, P.; Figueredo, M.; Font, J.; Raya *J. Org. Chem.* **2000**, *25*, 163; (b) Harekan, C.; Bruckner, R. *Angew. Chem. Int. Ed.* **1997**, *36*, 2750.

172 References

69. Filippi, J. –J.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A. –M. *Tetrahedron Lett.* **2002**, *43*, 6267.

- 70. Zhang, J.; Blazecka, P. G.; Berven, H.; Belmont, D. Tetrahedron Lett. 2003, 44, 5579.
- (a) Rao, Y.S.; *Chem. Rev.* 1976, 76, 625. (b) Bossio, R.; Marcaccini, S.; Pepino, R.;
 Torroba, T. *Synthesis* 1993, 783. (c) Bossio, R.; Marcaccini, S.; Pepino, R. *Liebigs Ann. Chem.* 1994, 5, 527. (d) Marcaccini, S.; Pepino, R.; Marcos, C. F.; Torroba, T. *J. Heterocyc. Chem.* 2000, 37, 1501.
- (a) van Oeveren, A.; Feringa, B. L. J. Org. Chem. 1996, 61, 2920. (b) Evans, D. A.;
 Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.;
 Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669. (b) von der Ohe, F.; Bruckner, R.
 New. J. Chem. 2000, 24, 659.
- 73. Angell, P.; Zhang, J.; Belmont, D.; Curran, T.; Davidson, J. G. *Tetrahedron Lett.* **2005**, *46*, 2029.
- 74. Beck, B.; Magnin-Lachaux, M.; Herdtweck, E.; Domling, A. *Org. Lett.* **2001**, *3*, 2875.

Chapter 3

Efforts Towards the Synthesis of Poly-1,1'-Bi-2-naphthyl Derivatives Containing Pyrrole Spacers

3.1 Introduction

The 2,2'-substituted 1,1'-binaphthyl derivatives exhibit outstanding chiral discrimination properties due to their highly stable chiral configuration. Reagents containing the binaphthyl moiety have been extensively used in many asymmetric syntheses.¹ The rigid structure and the C_2 -symmetry of the chiral binaphthyl moiety play an important role in chiral induction. Asymmetric hydrogenation, hetero-Diels-Alder reaction, Claisen rearrangement and aldol condensation are some of the reactions in which optically active monomeric binaphthyl molecules have been used as asymmetric catalysts.²

The 1,1'-bi-2-naphthol (BINOL) **1**, often serve as the starting material for obtaining chiral binaphthyl derivatives. The 2,2'-hydroxyl groups of BINOL can be readily converted into other functional groups.

In addition, the 3,3', 4,4'and 6,6'-positions can be selectively functionalized to obtain a variety of binaphthyl derivatives. Also, molecules and polymers with unique structures and properties have been synthesized.³

3.1.1 Previous reports on 1,1'-bi-2-naphthol from this laboratory

As a part of research interests of this laboratory, methods have been developed to easily access chiral 1,1'-bi-2-naphthol in optically pure form.

174 Introduction

For example, the racemic 1,1'-bi-2-naphthol **1** was resolved using boric acid and (R)-(+)- α -methylbenzylamine **2** as well as (S)-proline **3** in this laboratory.⁴ Very recently, racemic BINOL was resolved with (S)-amino naphthol **4** and boric acid in CH₃CN solvent (Scheme 1).⁵

Scheme 1

Precipitate
$$\longrightarrow$$
 (S)-(-)-1
29%, 99% ee
B(OH)₃/CH₃CN
refiux, 12h Filtrate \longrightarrow (R)-(+)-1
55%, 56% ee
Precipitate \longrightarrow (S)-(-)-1
46%, 75% ee
Ph OH Filtrate \longrightarrow (S)-(-)-1
30%, 90% ee
(R)-(+)-1
49%, 70% ee
(S)-(-)-1
30%, 90% ee

Chiral 1,1'-bi-2-naphthol **1** in alliance with boric acid was utilized for the purification of diastereomeric mixture **5** as well as for the resolution of trans- (\pm) -2-(pyrrolidinyl)cyclohexanol **6** and its methyl ether derivative (Scheme 2).

Scheme 2

Precipitate

OH

OH

OH

OH

OH

$$1 (R)$$
-(+)

 $B(OH)_3$
 CH_3CN , reflux
 12 h

Precipitate

Filtrate

Mixture

OH

OH

 $1 (R)$ -(+)

 $B(OH)_3$
 CH_3CN or THF

Filtrate

Mixture

Giastereomeric mixture

 CH_3CN or THF

Filtrate

 CH_3CN or THF

Filtrate

As outlined in chapter 2, enantiomerically pure 2,3-diphenyl-1,4-butanediol **8** was synthesized in good yields through intramolecular oxidative coupling of the titanium enolates of phenylacetic acid esters **7** of enantiomerically pure 1,1'-bi-2-naphthol followed by the reduction with the NaBH₄/I₂ reagent system (Scheme 3).⁷

176 Introduction

Convenient methods were developed for the preparation of chiral 1,1'-bi-2-naphthol derived amino ether derivatives **9**, **10** and **11** through opening of aziridinium ion intermediate derived from trans (\pm) -2-(1-pyrrolidinyl)cyclohexanol.⁸

In continuation of these research efforts on the synthesis and applications of chiral bi-2-naphthol derivatives, we became interested in the preparation of 6,6'-diacyl-1,1'-bi-2-naphthol derivatives for use in the synthesis of chiral polymers containing bi-2-naphthyl moiety. Accordingly, it is of interest to briefly review the literature reports on these topics.

3.1.2 Synthesis and utility of 3,3'-poly-1,1'-bi-2-naphthol derivatives

Derivatives of BINOL, particularly 3,3'-disubstituted derivatives, have been used in the asymmetric synthesis. Dramatic increases in enantioselectivities were achieved using 3,3'-disubstituted BINOLs compared to BINOL itself.⁹ Recently, 3,3'-disubstituted BINOLs have been also used to obtain greater enantioselectivities in 1,2-addition of diethylzinc to aldehydes,¹⁰ conjugate addition of diethylzinc to enones, aldol reaction,¹¹ cyanation, silylation, olefin metathesis reactions and hetero-Diels-Alder reactions.¹²

Very recently, Chong *et al.*¹³ reported that 3,3'-disubstituted BINOLs could be prepared from MOM derivative **12** (Scheme 4). Thus, lithiation of **12** followed by trapping of the aryllithium intermediate with appropriate electrophiles gave the compounds **13a-13c**.

The aryl dibromide **13a** underwent Suzuki cross-coupling with arylboric acids to afford the expected diaryl derivatives **13d-13h**.

Scheme 4

13a:
$$Y^{+} = BrCCl_{2}CCl_{2}Br$$
, $Y = Br$

13b: $Y^{+} = I_{2}$, $Y = I_{2}$

13c: $Y^{+} = CH_{3}I$, $Y = CH_{3}$

12

2 = MOM

13d: $Y = Ph$

13e: $Y = 4 - CH_{3}OC_{6}H_{4}$

13f: $Y = 3.5 - (CH)_{3}C_{6}H_{3}$

13g: $Y = 3.5 - (CF)_{3}C_{6}H_{3}$

13h: $Y = 2$ -naphthyl

13a-h: $Z = MOM$

14a-h

Finally, each of the MOM derivatives could be deprotected using Amberlyst 15 in THF/MeOH to obtain the desired substituted BINOLs **14a-14h** in excellent yields.¹³

Pu *et al.*¹⁴ used the 3,3'-diiodo-1,1'-bi-2-naphthol ether **15** for the Suzuki coupling with the arylboronic acids to synthesize monomer **17** as well as the polymers **16** (Scheme 5).

178 Introduction

Scheme 5

The 3,3'-diaryl-1,1'-bi-2-naphthol monomer **17** as well as the polymer **16** were used to catalyze the reaction of diethylzinc with benzaldehyde (Scheme 6).¹⁴

R"CHO +
$$Et_2Zn$$

R"CHO + Et_2Zn

R"CHO + Et_2Zn

RO

R"CHO + Et_2Zn

Several other 3,3'-poly-1,1'-bi-2-naphthol derivatives **18** obtained via Suzuki coupling were used in the reaction of diethylzinc with benzaldehyde as well as ketone reduction reactions. ³

Zhang *et al.*¹⁵ reported the synthesis of 3,3'-diformyl-2,2'-dihydroxy-1,1'-bi-naphthol **19** by starting with a MOM protected optically active (*S*)-BINOL **1** (Scheme7).

180 Introduction

Macrocycle **21** was synthesized using 3,3'-diformyl-2,2'-dihydroxy-1,1'-bi-naphthol **19** and *O*-phenylenediamine **20** and used for UV spectral studies (Scheme 8).¹⁵

Scheme 8

3,3'-Diformyl-1,1'-bi-2-naphthol **19** was also converted to polymer **24** in the presence of biphenyl dialdehyde monomer **22** and diamine derivative **23** using Ni(OAc)₂.4H₂O (Scheme 9).¹⁵

3.1.3 Synthesis and utility of 6,6'-poly-1,1'-bi-2-naphthol derivatives

The 6,6'-dibromo-1,1'-bi-2-naphthol **25** can be easily synthesized by the bromination of 1,1'-bi-2-naphthol (R)-(+)-**1** at low temperatures (Scheme 10). ¹⁶

Scheme 10

Pu *et al.*¹⁷ used the 6,6'-dibromo-1,1'-bi-2-naphthol ether **26** for Suzuki coupling with the arylboronic acids to prepare the polymer **27** (Scheme 11).

182 Introduction

Also, Lin Pu *et al.* have reported a series of the syntheses and studies of binaphthyl polymers of various structures. Among them, polymers **28**, **29** and **30** synthesized by polymerization at the 6,6'-position of binaphthyl monomers have been found to be useful.¹⁸-

As outlined previously, we have undertaken efforts on the synthesis of chiral binaphthol polymers containing pyrrole spacers using synthetic methods developed in this laboratory. The results are discussed in the next section.

3.2 Results and Discussion

3.2 Efforts towards the synthesis of poly-1,1'-bi-2-naphthyl derivatives containing pyrrole spacers

As a part of ongoing research program on the synthesis of chiral polymers, we have undertaken efforts towards the synthesis of chiral polymers containing 1,1'-bi-2-naphthyl moiety. It has been reported from this laboratory that the reaction of ketimines $\bf 31$ with the $\rm TiCl_4/R_3N$ reagent system gives the corresponding pyrroles $\bf 32$ in 8-90% yields (Scheme $\bf 12$). 21

Scheme 12

We have decided to use this transformation for the synthesis of poly-1,1'-bi-2-naphthol derivatives containing pyrrole spacers **35** and **36** from the corresponding diketimines **33** and **34** (Schemes 13a and 13b).

Scheme 13a

184 Results and Discussion

Scheme 13b

The chiral imines could be accessed using the diacyl derivatives of 1,1'-bi-2-naphthols 37 and 38.

Initially, we have carried out the acylation of BINOL 1 using acetyl chloride as well as acetic anhydride in the presence of $TiCl_4$ in dichloromethane and nitrobenzene solvents. In these experiments, only the ester derivative 39 was obtained in 95% yield. Similar reactivity was also observed with other Lewis acids like $AlCl_3$, $ZnCl_2$, $ZrCl_4$ and $F_3B:OEt_2$ (Scheme 14).

Scheme 14

We have made efforts to carry out Fries rearrangement of the diester derivative **39** in a separate step using various Lewis acids like TiCl₄, AlCl₃, ZnCl₂ and ZrCl₄. Unfortunately, these efforts were unsuccessful (Scheme 15).

Scheme 15

Therefore, we have undertaken studies on the acylation of BINOL derivatives. Eventually, it was observed that the hydroxy protected BINOL derivatives are suitable for acylation. The results are presented in the next section.

3.2.1 Acylation of 1,1'-bi-2-naphthyl alkyl ethers with TiCl₄ and acid chlorides

Initially, we have examined the acylation of 1,1'-bi-2-naphthol ether with TiCl₄ and acid chlorides. We have observed the formation of both mono as well as diacylated products, selectively at the 6,6' positions. The acylation was generalized with various acid chlorides. For example, acylation of optically active 1,1'-bi-2-naphthol ether 40 using TiCl₄/acid chloride produced the diacylated compounds 41 as well as the monoacyl derivative 42 (Scheme 16). The use of acetic anhydride in the place of the acyl chloride did not give the acylated products.

Scheme 16

The acylation reaction was carried out using 2.2 equivalents of acetyl chloride and n-pentyl protected BINOL 40a in dichloromethane solvent. The results are summarized in Table 1.

Table 1: Acylation of 1,1'-bi-2-naphthol ether derivative using TiCl₄ and acid chloridesa

S.No.	RCOCI	Substrate	Product ^b	Yield (%) ^c	Product ^b	Yield (%) ^c
1	R = Me	(S) (-) R' = C ₅ H ₁₁ 40 a	H ₃ C	C_5H_{11} C_5H_{11} C_5H_{11} 41a	H ₃ C	O.C ₅ H ₁₁ 22 O.C ₅ H ₁₁ 42a
2	R = Et	40a		O ^{.C₅H₁₁ O.C₅H₁₁ 66 41b}	H ₃ C O	O _{C₅H₁₁ 20 42b}
3	R = Ph	40a		$O^{C_5H_{11}}$ $O_{C_5H_{11}}$ 62 41c		O ^{C₅H₁₁} O _{C₅H₁₁ 21 42c}
4	R = Bn	40 a		O C ₅ H ₁₁ 66 O C ₅ H ₁₁		O C ₅ H ₁₁ 16 C ₅ H ₁₁

^aThe reactions were carried out using BINOL ether **40a** (5 mmol), acid chloride (12 mmol), TiCl₄ (3.3 mL of 1:1 solution of TiCl₄/CH₂Cl₂) (15 mmol)

We have also examined the acylation of (±)-BINOL derived ether 40a with TiCl₄. The results are summarized in Table 2.

^bThe products were identified by ¹H-NMR, ¹³C-NMR and mass spectral data.

^cThe isolated yields are based on the amount of BINOL derivative used.

Table 2: Acylation of (±)-1,1'-bi-2-napthol ether **40b** using TiCl₄/acid chlorides^a

S.No.	RCOCI	Substrate	Product ^b	Yield (%) ^c	Product ^b	Yield (%) ^c
1	R = Me	40b (±) R '= <i>n</i> -butyl		H ₃ C´ 2 ₄ H ₉ 60 2 ₄ H ₉		_i H ₉ 17 _i H ₉
2	R = Ph	40 b	0	C ₄ H ₉ 62	l Q	C ₄ H ₉ 21 C ₄ H ₉

a The reactions were carried out using BINOL ether **40b** (5 mmol), acid chloride (12 mmol), TiCl4 (1.65 mL) (15 mmol)

3.2.2 Acylation of 1,1'-bi-2-naphthyl alkyl ethers using SnCl₄ and acid chlorides

We have also examined acylation of 1,1'-bi-2-naphthyl alkyl ethers **40b** using SnCl₄ as Lewis acid (Scheme 17). The products obtained were diacylated products **41e-f** and monoacylated derivatives **42e-f**.

^bThe products were identified by ¹H-NMR and ¹³C-NMR spectral data.

^cThe isolated yields are based on the amount of BINOL ether used.

Scheme 17

3.2.3 Acylation of 1,1'-bi-2-naphthyl alkyl ethers with AlCl₃ and acid chlorides

Surprisingly, acylation reaction on methyl protected BINOL **43** did not give the desired product using TiCl₄ or SnCl₄ as Lewis acids. In these experiments only starting BINOL dimethyl ether **43** was recovered. Fortunately, the BINOL derivative **43** was successfully acylated using AlCl₃ (Scheme 18). For example, the acylation reaction of optically active (*S*)-(+)-BINOL methyl ether **43** with acetyl chloride in the presence of AlCl₃ in nitrobenzene gave 6,6'-diacyl-2,2'-dimethoxy-1,1'-bi-naphthalene **44** in 84% yield.

3.2.4 Efforts towards the synthesis of chiral bi-2-naphthyl polymers containing pyrrole spacers using the ketimines of 6,6'-diacyl-1,1'-bi-2-naphthol methyl ethers and the TiCl₄/Et₃N reagent system

The diacetyl derivatives **44** were converted to ketimines **45** using arylamines and the TiCl₄/Et₃N reagent system by following the method developed in this laboratory (Scheme 19).²¹

Scheme 19

Conversion of the diimine **45a** derivative to the chiral polymers was carried out using the TiCl₄/Et₃N reagent system. A light brown colored material was obtained (Scheme 20). Unfortunately, the material was insoluble in organic solvents as well as in water and HCl. We have also carried out the conversion of the diimine **45b** to polymers using the TiCl₄/Et₃N reagent system under the same reaction conditions. Again, only insoluble light brown colored product was obtained.

Scheme 20

Ar = Ph, 4-sec-butyl Ph

We have also examined the reaction of the imine 45c containing larger chain alkyl group under the same conditions. Surprisingly, these derivatives failed to react with the TiCl₄/Et₃N reagent system under the same conditions. A more systematic investigation on the polymerization of these derivatives should give fruitful results.

3.3 Conclusions

Acylation reaction was carried on alkyl protected 1,1'-bi-2-naphthol in the presence of TiCl₄. The acylation took place at 6 and 6,6' positions. The acylation reaction was also carried out using other Lewis acids like SnCl₄ and AlCl₃. Also, efforts toward the synthesis of chiral polymers containing bi-2-naphthyl moiety with pyrrole spacers was made using the diimine derivative of 6,6'-diacetyl-1,1'-bi-2-naphthol dialkyl ethers. The materials isolated were insoluble in organic as well as aqueous media. A more systematic studies using ketimines of BINOL ethers containing long chain alkyl groups should give chiral polymers useful for characterization and applications.

3.4 Experimental Section

3.4.1 General procedure for the acylation of 1,1'-bi-2-naphthol ethers using acid chlorides and TiCl₄

Dichloromethane (25 mL), acid chloride (7.5 mmol), and TiCl₄ (1.1 mL, 10 mmol) were taken under N₂ atmosphere, at room temperature. The mixture was stirred for 20 min. To this mixture was added 1,1'-bi-2-naphthol ethers (S)-40a [α]_D²⁵=-53.7 (C 0.6, CHCl₃) or 40b (2.5 mmol) and stirred further for 24 h at 25 °C. It was quenched with water, the organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (2×25 mL). The combined organic layer was washed with brine solution (10 mL) and dried over anhydrous Na₂SO₄. The solvent was removed and the residue was chromatographed on a silica gel column. The acylated compounds 41 and 42 were eluted using 4:96 EtOAc/hexane mixture as highly viscous materials.

Yield 0.8 g (64%)

IR (Neat) (cm⁻¹) 3063, 2953, 1682, 1618, 1466, 1356, 1273,

1051, 941, 866, 736, 698

¹H-NMR (δ ppm, CDCl₃) 8.50 (s, 2H), 8.07 (d, J=8.8 Hz, 2H), 7.76 (d, J=8.8 Hz, 2H), 7.46 (d, J=8.8 Hz, 2H), 7.16 (d, J=8.8 Hz, 2H), 4.01-3.92 (m, 4H), 2.66 (s, 6H), 1.43-1.40 (t, J=7.2 Hz, 4H), 1.04 -0.88 (m, 8H), 0.63 (t, J=6.8 Hz, 6H) (Spectrum No. 70)

¹³C-NMR (δ ppm, CDCl₃) 197.9, 156.7, 136.5, 132.3, 131.3, 130.6, 127.9, 125.5, 124.3, 119.6, 115.6, 69.2, 29.7, 28.9, 27.8, 26.6, 22.1, 13.0 (**Spectrum No. 71**)

LCMS m/z 511 (M+1)

 $[\alpha]_{D}^{25}$ +14.3 (c 1, CHCl₃)

Yield 0.25 g (22%)

IR (Neat) (cm⁻¹) 3055, 2934, 2872, 1680, 1618, 1466, 1348, 1269, 1180, 1051, 736, 702

Hz, 6H) (**Spectrum No. 72**)

¹H-NMR (δ ppm, CDCl₃) 8.50-7.11 (m, 11H), 4.01-3.91 (m, 4H), 2.67 (s, 1H), 1.04-0.98 (m, 4H), 0.94-0.88 (m, 4H), 0.63 (t, J=6.8)

¹³C-NMR (δ ppm, CDCl₃) 198.0, 156.9, 154.6, 145.9, 136.8, 134.1, 132.4, 131.1, 130.53, 129.4, 129.3, 128.9, 128.0, 127.0, 126.3, 126.0, 125.2, 124.2, 123.5, 120.7, 119.9, 117.9, 117.2, 116.0, 115.6, 69.7, 29.1, 28.0, 26.6, 22.2, 13.9 (Spectrum No. 73)

LCMS m/z 469 (M+1

 $[\alpha]_{D}^{25}$ -32.8 (c 1, CHCl₃)

Yield 0.93 g (62%)

IR (Neat) (cm⁻¹) 3061, 2955, 2870, 1653, 1616, 1464,

1278,1140, 1051, 910, 729

¹H-NMR (δ ppm, CDCl₃) 8.35-7.26 (m, 20H), 4.04-3.97

(m, 4H), 1.46 (t, J=6.8 Hz, 4H), 1.09-0.95 (m, 8H), 0.68 (t, J=7.2 Hz, 6H)

(Spectrum No. 76)

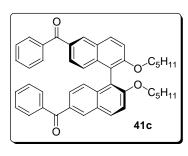
¹³C-NMR (δ ppm, CDCl₃) 196.6, 156.7, 138.3, 136.3, 132.6, 132.5, 132.1, 130.0, 128.4,

127.8, 126.2, 125.5, 119.7, 115.7, 69.3, 29.7, 28.9, 27.9, 22.1, 13.9

(Spectrum No. 77)

LCMS m/z 635 (M+1)

 $[\alpha]_{D}^{25}$ +10.0 (c 1, CHCl₃)


Yield 0.27 g (21%)

IR (Neat) (cm⁻¹) 3063, 2953, 2870, 2671, 2544, 1651,

 $1616,\,1464,\,1271,\,1089,\,728$

¹H-NMR (δ ppm, CDCl₃) 8.33-7.30 (m, 16H), 4.02-3.91

(m, 4H), 1.43 (t, J=6.8 Hz, 4H), 1.27-0.92 (m, 8H), 0.67 (t, J=7.2 Hz, 6H)

¹³C-NMR (δ ppm, CDCl₃) 196.7, 156.7, 154.5, 138.4, 136.5, 134.5, 134.1, 133.7, 132.5, 132.3, 132.0, 130.9, 130.6, 130.2, 130.0, 129.4, 129.3, 128.9, 128.5, 128.2, 127.9, 127.8, 127.3, 126.2, 126.0, 125.8, 123.5, 120.6, 19.8, 115.9, 115.6, 69.6, 69.3, 29.1, 28.9, 27.9, 27.8, 22.2, 22.1, 13.9

LCMS m/z 531 (M+1)

 $[\alpha]_{D}^{25}$ -39.7 (c 1, CHCl₃)

Yield 0.8 g (66%)

IR (Neat) (cm⁻¹) 3063, 2932, 2868, 1684, 1618, 1593, 1471, 1346, 1269, 1041, 736, 696

H₃C O C₅H₁₁
O C₅H₁₁
A1b

¹H-NMR (δ ppm, CDCl₃) 8.51 (s, 2H), 8.07 (d, J=8.8 Hz,

2H), 7.77 (d, J=8.8 Hz, 2H), 7.46 (d, J=8.8 Hz, 2H), 7.15(d, J=8.8 Hz, 2H), 4.01-3.92 (m, 4H), 3.09 (q, J=7.2 Hz, 2H), 1.43-1.40 (m, 4H), 1.26 (t, J=6.8 Hz, 6H), 1.03 - 0.88 (m, 8H), 0.63 (t, J=6.8 Hz, 6H) (**Spectrum No. 74**)

¹³C-NMR (δ ppm, CDCl₃) 200.6, 156.6, 136.4, 132.0, 131.3, 129.9, 128.0, 125.5, 124.41, 119.4, 115.6, 69.3, 31.7, 28.9, 27.8, 22.1, 13.9, 8.5 (**Spectrum No. 75**)

 $LCMS \qquad \quad m/z \; 541 \; (M+1)$

 $[\alpha]_{D}^{25}$ +18.2 (c 1, CHCl₃)

42b

`C₅H₁₁

Yield 0.24 g (20%)

(cm⁻¹) 3055, 2934, 2872, 1680, 1618, 1466, IR (Neat)

1348, 1269, 1180, 1051, 736, 702

¹H-NMR $(\delta \text{ ppm, CDCl}_3) 8.54-7.19 \text{ (m, 12H), } 4.05-3.65$

(m, 4H), 3.06 (q, J=7.2 Hz, 4H), 1.53-1.42 (m, 4H), 1.31 (t, J=6.8 Hz, 6H),

1.10-0.72 (m, 4H), 0.66 (t, J=6.8 Hz, 6H)

¹³C-NMR $(\delta \text{ ppm, CDCl}_3)$ 200.3, 156.6, 154.4, 136.6, 134.0, 131.9, 130.9, 129.7, 129.3,

129.2, 127.9, 127.8, 126.1, 125.8, 125.1, 124.0, 123.3, 120.4, 119.6, 115.7,

115.3, 69.4, 31.5, 29.0, 27.8, 22.0, 13.7, 8.4

LCMS m/z 483 (M+1)

 $[\alpha]_{D}^{25}$ -41.2 (*c* 1, CHCl₃)

Yield 1.0 g (66%)

(cm⁻¹) 3050, 2926, 2663, 1675, 1610, 1469, 939, IR (Neat)

806, 698

¹H-NMR $(\delta \text{ ppm, CDCl}_3)$ 8.73-7.13 (m, 20H), 4.38 (s, 4H), 4.03-3.97 (m, 4H), 1.04 (t,

J=6.0 Hz, 4H) 1.06-0.92 (m, 8H), 0.65 (t, J=7.2 Hz, 6H)

¹³C-NMR (δ ppm, CDCl₃) 197.5, 156.8, 136.6, 135.0, 131.5, 129.8, 129.5, 129.0, 128.7,

128.0, 126.8, 125.7, 124.8, 119.6, 115.6, 69.2, 45.4, 28.9, 27.8, 22.1, 13.9

LCMS m/z 663 (M+1)

 $[\alpha]_{D}^{25}$ -33.7 (*c* 1, CHCl₃)

C₅H₁

42d

Yield 0.2 g (16%)

IR (Neat) (cm⁻¹) 3059, 2932, 2870, 1672, 1618, 1464,

1340, 1269, 1140, 1051, 746

¹H-NMR (δ ppm, CDCl₃) 8.22-8.66 (m, 15H), 4.40 (s,

2H), 4.08-3.94 (m, 4H), 1.47 (t, J=7.2 Hz, 4H), 0.96-1.09 (m, 8H), 0.71 (t,

J=7.2 Hz, 6H)

¹³C-NMR (δ ppm, CDCl₃) 197.4, 157.0, 154.6, 144.5, 136.8, 135.2, 134.2, 131.8, 131.2,

130.9, 129,3, 129.3, 128.7, 128.6, 128.4, 128.01, 126.8, 126.3, 126.1, 125.2,

124.6, 123.6, 121.2, 115.9, 115.5, 69.4, 45.5, 29.0, 27.9, 22.2, 14.1

LCMS m/z 543 (M-1)

 $[\alpha]_{D}^{25}$ -23.8 (c 0.6, CHCl₃)

Yield 0.72 g (60%)

IR (Neat) (cm⁻¹) 2928, 2872, 1672, 1618, 1591, 1462, 1346,

 $1277,\,1242,\,1076,\,1026,\,947,\,889,\,800,\,696$

¹H-NMR (δ ppm, CDCl₃) 8.51 (s, 2H), 8.08-7.13 (m, 8H),

3.99 (t, J=6.8 Hz, 4H), 2.67 (s, 6H), 1.43-1.38 (m, 4H), 1.02-0.97 (m, 4H), 0.62 (t, J=7.2 Hz, 6H) (**Spectrum No. 78**)

¹³C-NMR (δ ppm, CDCl₃) 197.9, 156.7, 136.5, 132.3, 131.4, 130.7, 127.9, 125.5, 124.3, 119.4, 115.6, 68.9, 31.2, 26.6, 18.7, 13.5 (**Spectrum No. 79**)

Yield 0.18 g (17%)

IR (Neat) (cm⁻¹) 3063, 2928, 2874, 1662, 1618, 1458, 1354, 1273, 1091, 806, 748, 694

0 H₃C C₄H₉ O C₄H₉

¹H-NMR (δ ppm, CDCl₃) 8.35 (s, 2H), 7.89-6.98 (m, 10H),

3.86-3.76 (m, 4H), 2.48 (s, 6H), 1.30-1.22 (m, 4H), 0.89-0.81 (m, 4H), 0.58-0.51 (m, 6H) (**Spectrum No. 80**)

¹³C-NMR (δ ppm, CDCl₃) 197.0, 155.2, 153.4, 136.8, 134.1, 132.3, 131.1, 130.6, 130.2, 129.9, 128.0, 126.6, 126.5, 126.3, 126.3, 126.1, 124.2, 123.5, 119.7, 117.9, 69.0, 31.3, 26.6, 18.8, 13.2 (**Spectrum No. 81**)

Yield 0.93 g (62%)

IR (Neat) (cm⁻¹) 3072 2930, 1655, 1616, 1460, 1277, 719

¹H-NMR (δ ppm, CDCl₃) 8.21 (s, 2H), 8.11-7.23 (m, 10H), 4.01 (t, J=6.8 HZ, 4H), 1.52-1.44 (m, 4H), 1.16-0.98 (m, 4H), 0.69 (t, J=6.8 Hz, 6H) (**Spectrum No. 82**)

¹³C-NMR (δ ppm, CDCl₃) 196.7, 156.7, 138.3, 136.3, 133.6, 132.6, 132.4, 132.1, 131.3, 130.2, 130.0, 128.5, 128.3, 127.7, 126.2, 125.5, 119.7, 115.7, 69.0, 31.2, 18.8, 13.6 (**Spectrum No. 83**)

Yield 0.25 g (21%)

IR (Neat) (cm⁻¹) 3059, 2957, 2930, 1653, 1618, 1593, 1508, 1462, 1273, 1244, 723, 698

¹H-NMR (δ ppm, CDCl₃) 8.21 (s, 2H), 8.03-7.05 (m, 10H), 3.90-3.82 (m, 4H), 1.39-

1.18 (m, 4H), 0.92-0.87 (m, 4H), 0.57-0.52 (m, 6H) (**Spectrum No. 84**)

¹³C-NMR (δ ppm, CDCl₃) 200.7, 156.7, 154.6, 136.7, 134.1, 131.0, 129.6, 129.4, 129.3, 129.1,128.0, 126.2, 125.9, 125.1, 124.2, 123.5, 123.1, 120.5, 119.8, 115.6, 115.5, 69.3, 31.7, 31.3, 18.8, 13.6, 8.6 (**Spectrum No. 85**)

3.4.2 Acylation of 1,1'-bi-2-naphthol ethers using acid chlorides and \mbox{SnCl}_4

The above procedure was followed for the acylation of $(\pm)1,1$ '-bi-2-naphthol ether **40b** using SnCl₄ and acid chlorides.

3.4.3 General procedure for the acylation of 1,1'-bi-2-napthol ethers using AICl₃

Anhydrous AlCl₃ (3.32 g, 25 mmol) and acetyl chloride (2 mL, 25 mmol) were added to 75 mL of nitrobenzene at 0 °C. The solution was stirred at 0 °C for 15 min, 2,2'-bis(methoxy)-1,1' –binaphthyl (10 mmol) was added, and the mixture was stirred for 3 h. The reaction mixture was pored into ice cold water, and was shaken with CH₂Cl₂. The water layer was extracted in CH₂Cl₂, and the combined organic phases were dried and evaporated (in vacuum). The residue was recrystallyzed in hexane/EtOAc mixture.to give 6,6'-bis(acetyl)-2,2'-bis(methoxy)-1,1'-binaphthyl 44 in 84% yield.

Yield 3.34 g (84%)

mp 190-192 °C

IR (KBr) (cm⁻¹) 3020, 2980, 1676, 1620, 1523, 1477, 1249,

1176, 1055, 891, 796, 707

¹H-NMR (δ ppm, CDCl₃) 8.25 (s, 2H), 8.13 (d, J=9.8Hz, 2H), 7.77 (d, J=8.8Hz, 2H), 7.52 (d, J=8.8Hz, 2H), 7.26 (d, J=8.8Hz, 2H), 7.11 (d, J=8.8Hz, 2H), 3.80 (s, 6H), 2.67 (s, 6H) (**Spectrum No. 86**)

¹³C-NMR (δ ppm, CDCl₃) 197.8, 157.1, 136.4, 132.6, 131.7, 130.6, 128.0, 125.3, 124.6,

118.9, 114.5, 56.5, 26.5 (**Spectrum No. 87**)

MS(EI) m/z 398 (M⁺, 45%) (**Spectrum No. 88**)

 $[\alpha]_{D}^{25}$ +96.6 (c 1, CHCl₃)

3.4.4 General procedure for the conversion of 6,6'-diacyl-1,1'-bi-2-naphthol ethers to the corresponding ketimines

Dichloromethane (25 mL), Et₃N (0.5 mL, 5 mmol), 6,6'-diacyl-1,1'-bi-2-naphthol ethers **44** (1.25 mmol), and amine (3 mmol) were taken under an N₂ atmosphere, TiCl₄ (1.25 mmol) in CH₂Cl₂ (10 ml) was added dropwise under N₂ at 0 °C for 15 min. The reaction mixture was stirred for 0.5 h at 0 °C and stirred further for 7-8 h at 25 °C. It was quenched with a saturated K₂CO₃ solution (30 mL), and the reaction mixture was filtered through a Buchner funnel. The organic layer was separated from the filtrate, and the remaining aqueous layer was extracted with CH₂Cl₂ (2×25 mL). The combined organic layer was washed with a brine solution (10 mL) and dried over anhydrous Na₂CO₃. The solvent was removed, and the ketimines **45** were isolated.

Yield 0.58 g (85%)

mp 125-127 °C

IR (KBr) (cm⁻¹) 3040, 2970, 1620, 1591, 1477, 1249, 802,

748, 694

¹H-NMR (δ ppm, CDCl₃) 8.45-6.83 (m, 20H), 3.81 (s, 6H),

2.35 (s, 6H) (**Spectrum No. 89**)

¹³C-NMR (δ ppm, CDCl₃) 165.2, 156.2, 152.0, 135.2, 134.8, 130.8, 129.0, 128.6, 128.0,

125.4, 124.8, 123.1, 119.5, 119.4, 114.4, 56.7, 17.2 (**Spectrum No. 90**)

 $[\alpha]_{D}^{25}$ +158.7 (c 1, CHCl₃)

Yield 0.53 g (81%)

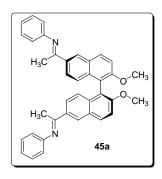
IR (Neat) (cm⁻¹) 2961, 2872, 1620, 1481, 1251, 1217, 831,

688

 1 H-NMR (δ ppm, CDCl₃) 8.40 (s, 2H), 8.08 (d, 2H, J=8.8

Hz),7.95 (d, 2H, J=8.8 Hz), 7.50 (d, 2H, J=8.8 Hz),

7.15 (d, 4H, J=8.0 Hz), 6.97 (d, 2H J=8.8 Hz), 6.71


(d, 4H, J=8.0 Hz), 3.80 (s, 6H), 2.58-2.50 (m, 2H,), 2.34 (s, 6H), 1.62-1.56

(m, 4H), 1.25 (d, 6H, J=7.2), 0.84 (t, 6H, J=7.2 Hz)

¹³C-NMR (δ ppm, CDCl₃) 165.0, 156.2, 149.7, 142.4, 135.2, 130.7, 128.7, 127.8, 127.5,

125.3, 124.9, 119.5, 115.3,114.4, 56.8, 41.2, 40.9, 31.4, 26.6, 22.0, 17.2, 12.3

 $[\alpha]_{D}^{25}$ +86.25 (c 0.6, CHCl₃)

45b

Yield 0.58 g (83%)

IR (Neat) (cm⁻¹) 3065, 2926, 2856, 1620, 1593, 1466, 1363,

1280, 1246, 802, 698

¹H-NMR (δ ppm, CDCl₃) 8.51-7.15 (m, 20H), 4.04-3.98 (m,

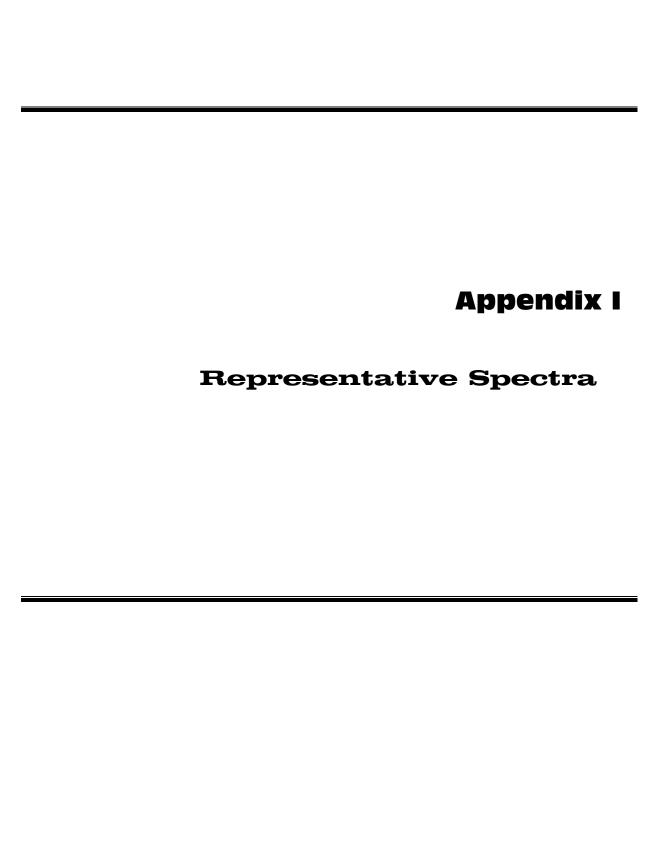
4H), 2.70 (s, 6H), 1.60-0.94 (m, 24H), 0.86 (t, J=7.2, 6H

¹³C-NMR (δ ppm, CDCl₃) 165.1, 155.8, 152, 123.3, 134.5, 134.4, 128.9, 128.5, 127.8,

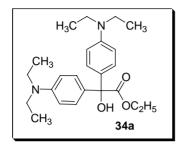
125.9,5 124.5, 123.0, 120.2, 119.5, 115.8, 69.5, 31.7, 29.4, 29.2, 25.7, 22.7,

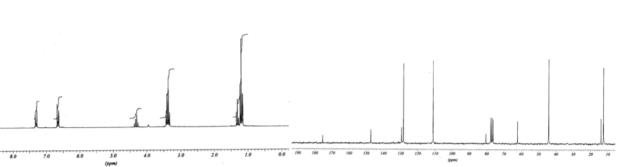
17.2, 14.1

 $[\alpha]_{D}^{25}$ +106 (c 1, CHCl₃)

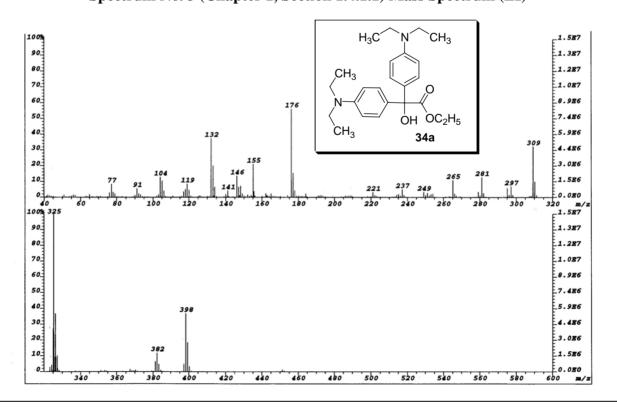

3.4.5 General procedure for the reaction between 6,6'diacetylimine -1,1'-bi-2-naphthol ethers and TiCl₄

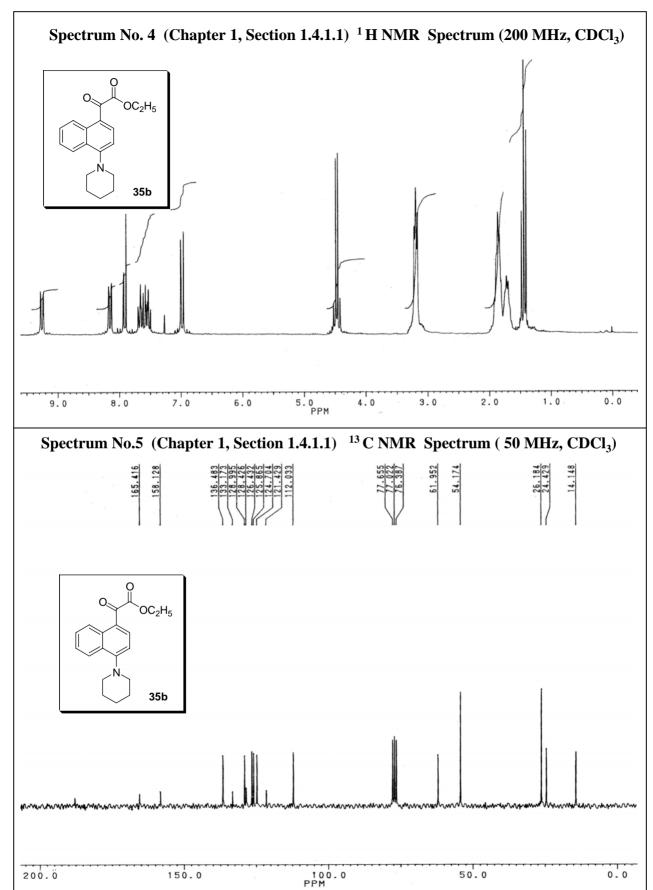
Dichloromethane (25 mL), Et₃N (3 mmol) and ketimine **45** (1 mmol) were taken under an N_2 atmosphere. TiCl₄ (2.5 mmol) in CH₂Cl₂ (10 ml) was added drop wise under N_2 at 0 °C for 15 min. The reaction mixture was stirred for 0.5 h at 0 °C and stirred further for 7-8 h at 25 °C. It was quenched with a saturated K_2CO_3 solution (10 mL), and the reaction mixture was filtered through a Buchner funnel. Insoluble light brown color solid was washed with water and CH₂Cl₂.

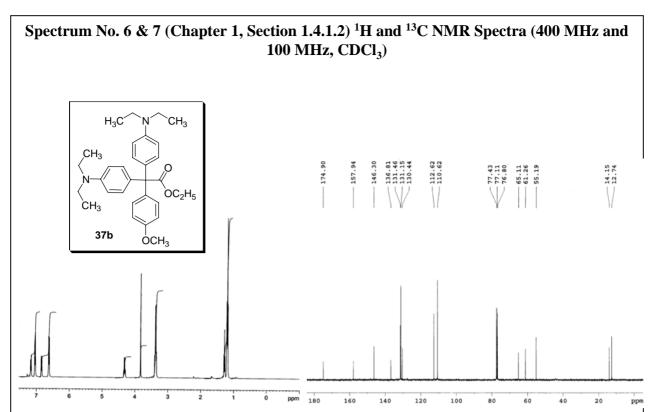

3.5 References

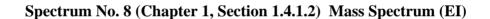

- (a) Rosinic, C.; Franzine, L.; Raffaelli, A.; Salvadori, P. *Synthesis* 1992, 503. (b) Whitesell, J. K. *Chem. Rev.* 1996, 96, 835. (c) Bringmann, G.; Walter, R.; Weirich, R. *Angew. Chem.*, *Int. Ed. Engl.* 1990, 29, 977.
- (a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (b). Ohta, T.; Miyake, T.; Seido, N.; Kumobayashi, H.; Takaya, H. J. Org. Chem. 1995, 60, 357 and references therein. (c) Maruoka, K.; Itoh, T.; Shirasaka, T.; Yamamoto, H. J. Am. Chem. Soc. 1988, 110, 310. (d) Maruoka, K.; Banno, H.; Yamamoto, H. Tetrahedron: Asymmetry 1991, 2, 647. (e) Carreira, E. M.; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649. (f) Carreira, E. M.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 12360.
- 3. Pu, L. *Chem. Rev.* **1996**, 89, 1581 and references therein.
- 4. (a) Raman, L. V.; Periasamy, M.; *Tetrahedron: Asymmetry* **1996**, 7, 2471. (b) Periasamy, M.; Raman, L. V.; Kumar, S., S.; Kumar, N. S.; Ramanathan C. R. *J. Org. Chem.* **1999**, *64*, 7643.
- 5. Periasamy, M.; Reddy, M. N.; Anwar, S. *Tetrahedron: Asymmetry*, **2005**, *7*, 2471.
- 6. (a) Periasamy, M.; Kumar, N. S.; Kumar, S. S.; Rao, V. D.; Ramanathan C. R.; Raman, L. V. *J. Org. Chem.* **2001**, *66*, 3828. (b) Periasamy, M.; Ramanathan C. R.; Kumar, N. S. *Tetrahedron: Asymmetry* **1999**, *10*, 2307.
- 7. Rao, V. D.; Periasamy, M. Tetrahedron: Asymmetry 2000, 11, 1151.
- 8. Rao, V. D. Ph.D Thesis, University of Hyderabad, Hyderabad, India.
- 9. Killy, T. R.; Whiting, A.; Chandrakumar, N. S. J. Am. Chem. Soc. **1986**, 108, 3510.
- 10. Kitajima, H.; Ito, K.; Katsuki, T. Chem. Lett. 1996, 343
- 11. (a) Kang, J.; Lee, J. H.; Lim, D. S. *Tetrahedron: Asymmetry* **2003**, *14*, 305. (b) Yoshikawa, N.; Shibasaki, M. *Tetrahedron* **2001**, *57*, 2569.
- 12. (a) Hamashima, N.; Sawada, D.; Nogami, H.; Kanai, M.; Shibasaki, M. *Tetrahedron* **2001,** *57*, 805. (b) Tsang, W. C. P.; Schrock, R. R.; Hoveyda, A. H. *Organometallics*

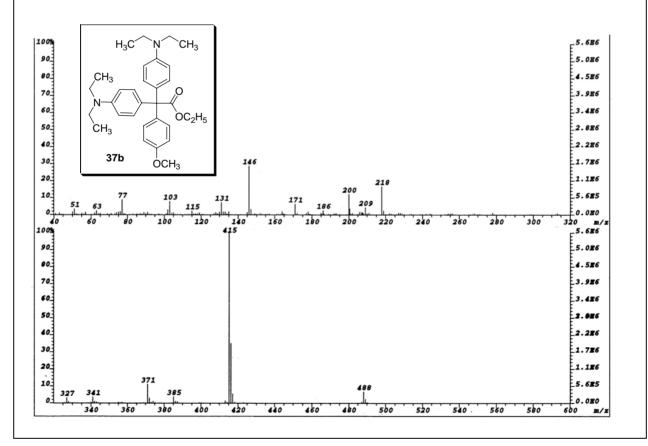
- **2001**, 20, 5658. (c) Long, J.; Hu, J.; Shen, X.; Ji, B.; Ding, K. J. Am. Chem. Soc. **2002**, 124, 10.
- 13. Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. **2004**, *6*, 2701.
- 14. Huang, W. –S.; Hu, Q. –S.; Pu, L. J. Org. Chem. 1998, 63, 1364.
- 15. Zhang, H. -C.; Huang, W. -S.; Pu, L. J. Org. Chem. 2001, 66, 481.
- 16. Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 8180.
- 17. Huang, W. –E.; Hu, Q. –S.; Zheng, X. –F.; Anderson, J.; Pu, L. *J. Am. Chem. Soc.* **1997**, *119*, 4313.
- 18. Hu, Q. -S.; Vitharana, D.; Liu, G.; Jain, V.; Pu, L. *Macromolecules* **1996**, 29, 5075.
- 19. Musick, K. Y.; Hu, Q. -S.; Pu, L. *Macromolecules* **1998**, *31*, 2933.
- 20. Ma, L.; Hu, Q. -S.; Vitharana, D.; Wu, C.; Kwan, C. M. S.; Pu, L. *Macromolecules* **1997**, *30*, 204.
- 21. Periasamy, M.; Srinivas, G.; Bharathi, P. J. Org. Chem. 1999, 64, 4204.

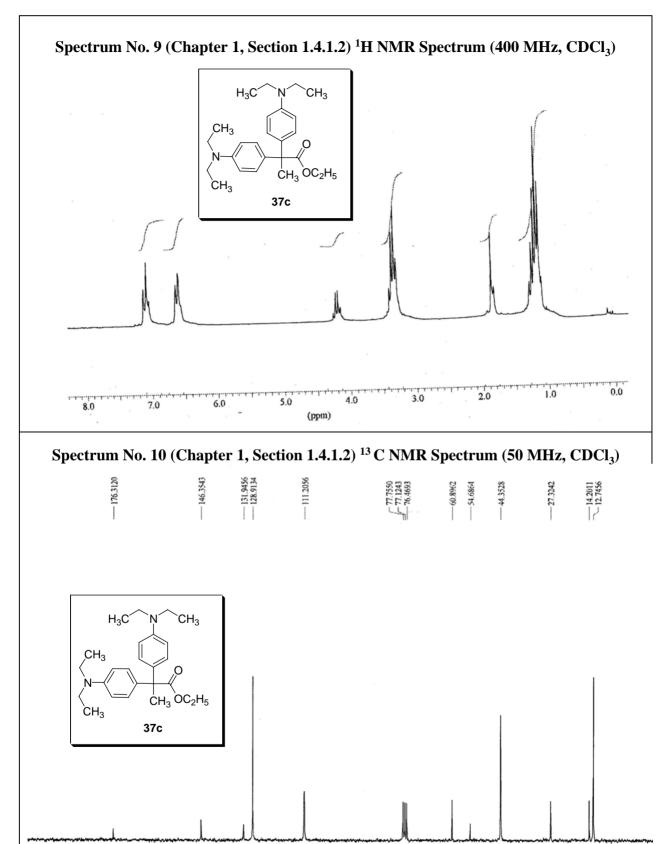



Spectrum No. 1 & 2 (Chapter 1, Section 1.4.1.1) 1H NMR and 13 C Spectra (200 MHz, 50 MHz, CDCl $_3)$

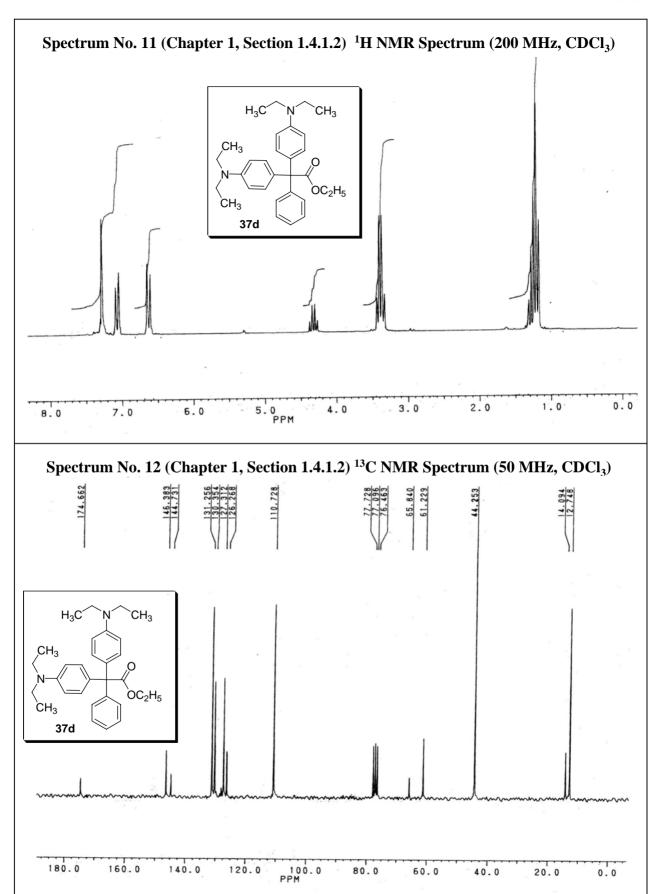


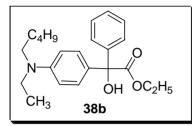

Spectrum No. 3 (Chapter 1, Section 1.4.1.1) Mass Spectrum (EI)

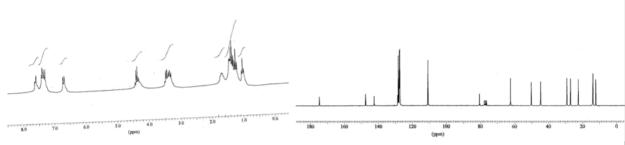




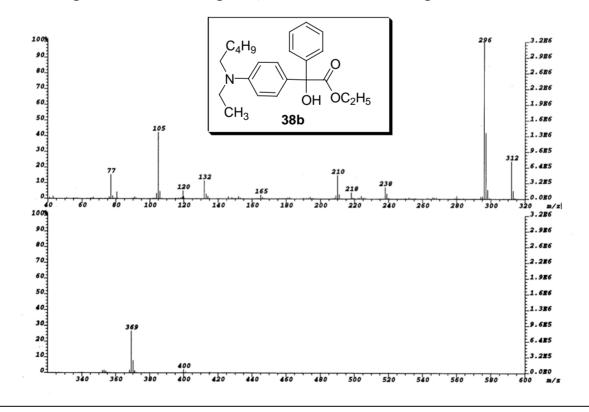
210

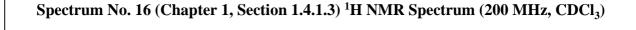


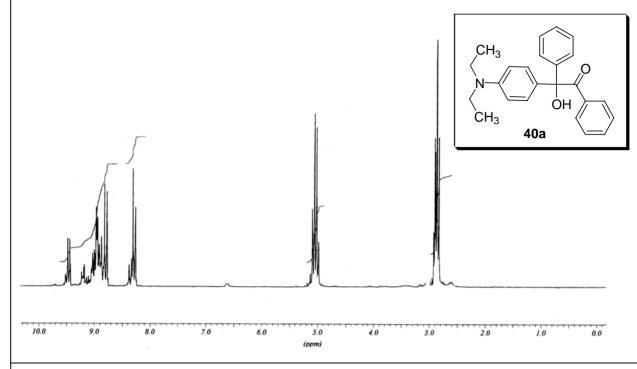


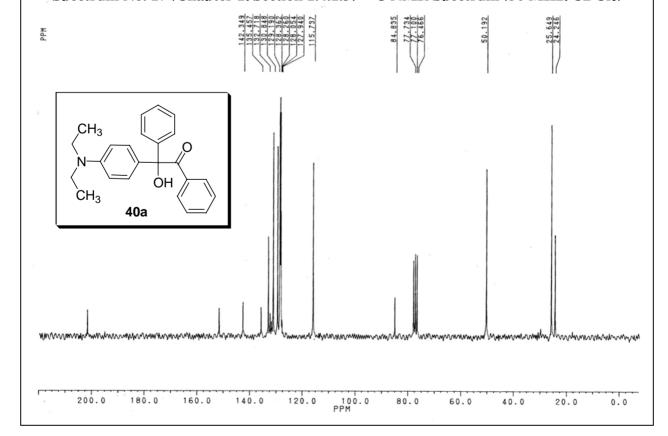

(ppm)

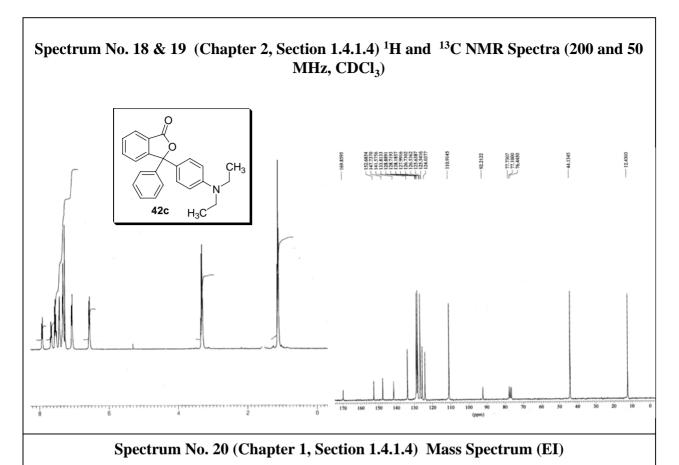
140

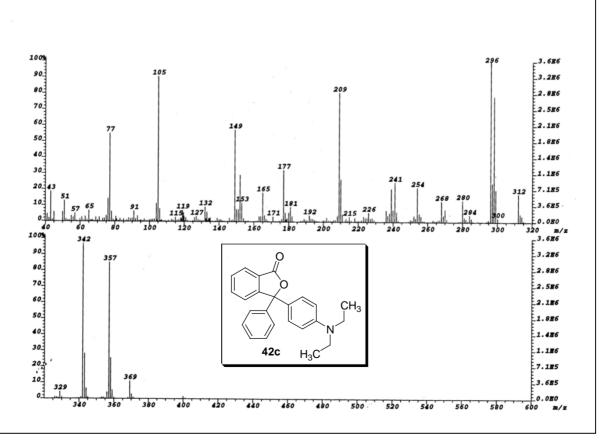


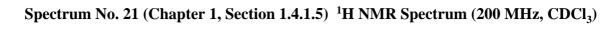

Spectrum No. 13 & 14 (Chapter 1, Section 1.4.1.2) $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra (400 and 100 MHz, CDCl_3)

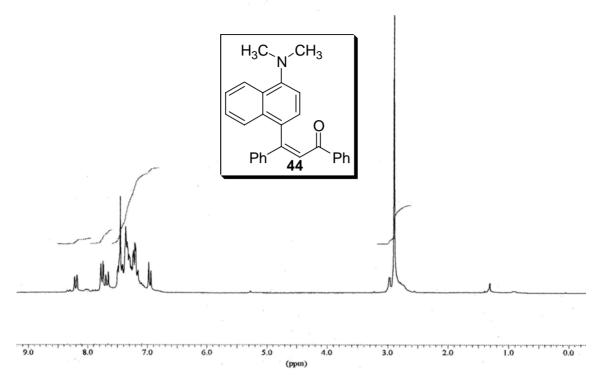


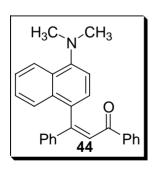

Spectrum No. 15 (Chapter 1, Section 1.4.1.2) Mass Spectrum (EI)

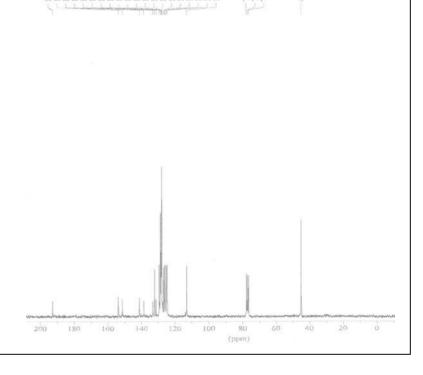


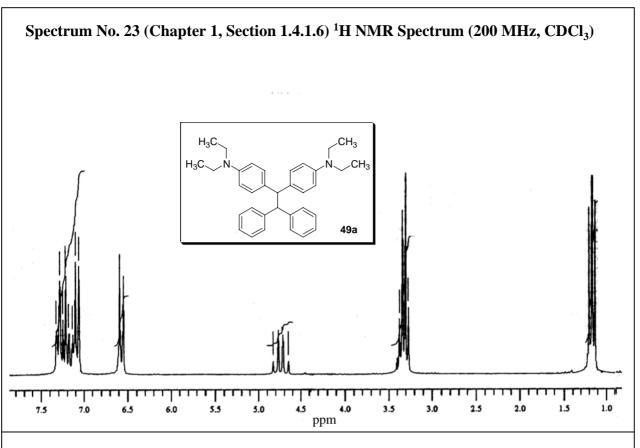


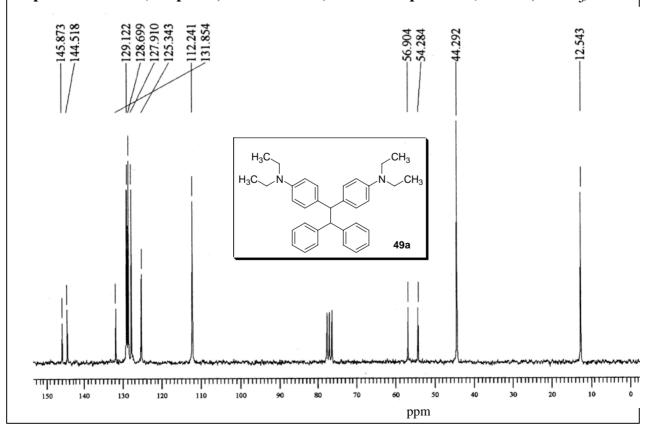


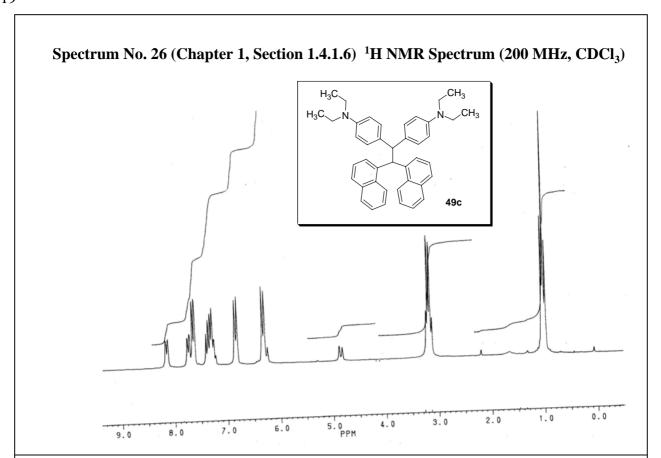

Spectrum No. 17 (Chapter 1, Section 1.4.1.3) ¹³C NMR Spectrum (50 MHz, CDCl₂)

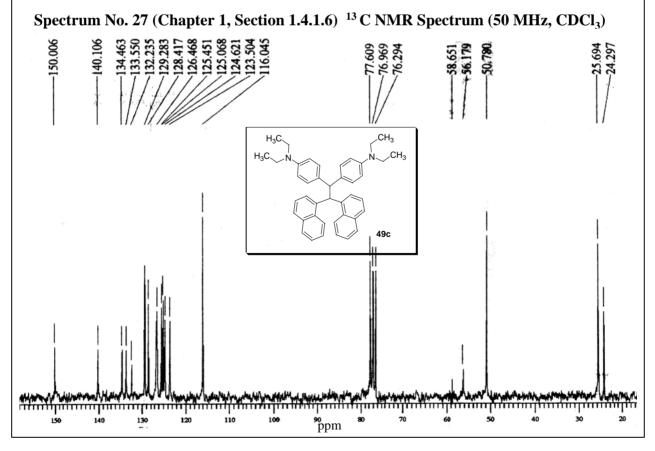


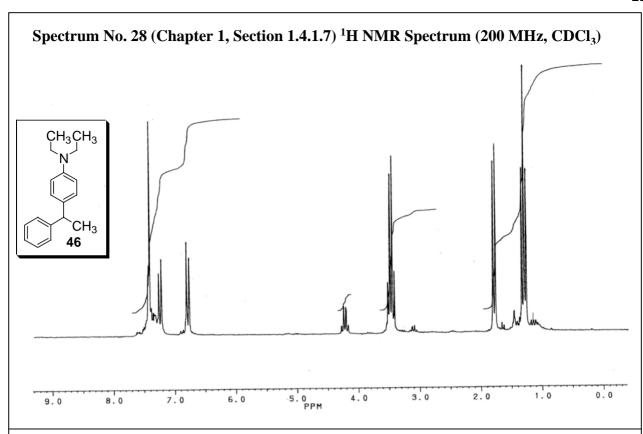


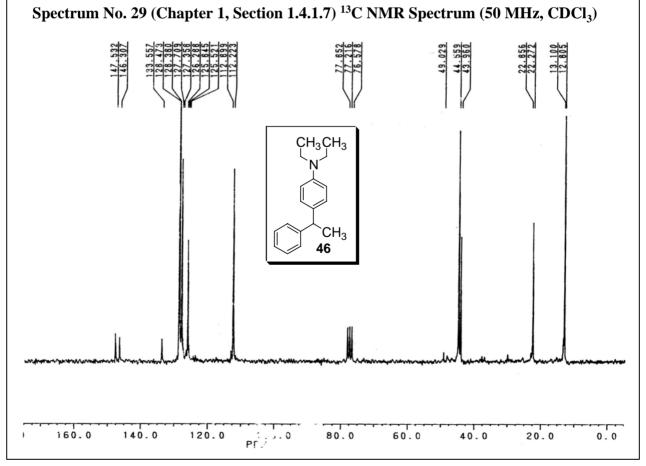


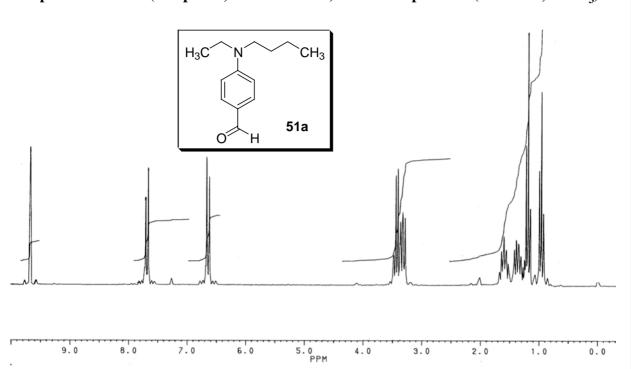

Spectrum No. 22 (Chapter 2, Section 1.4.1.5) ¹³ C NMR Spectrum (50 MHz, CDCl₃)

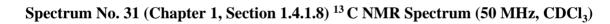


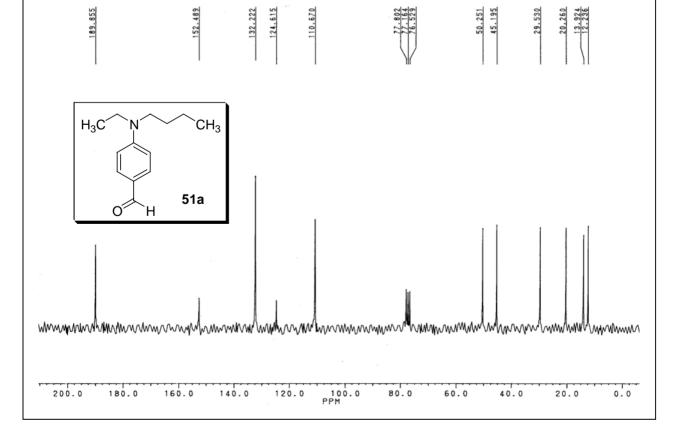


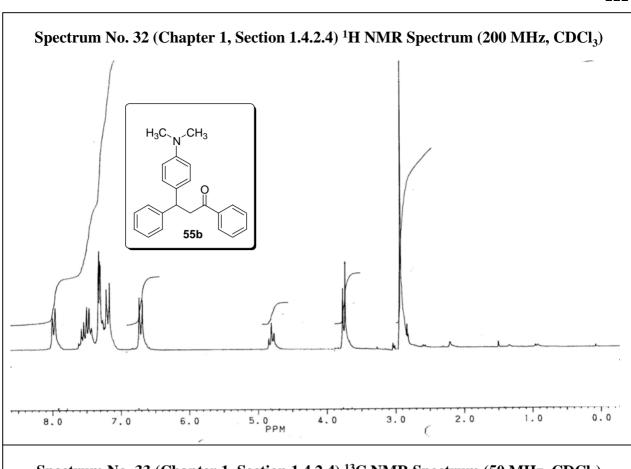

Spectrum No. 24 (Chapter 1, Section 1.4.1.6) ¹³C NMR Spectrum (50 MHz, CDCl₃)

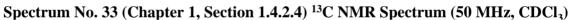


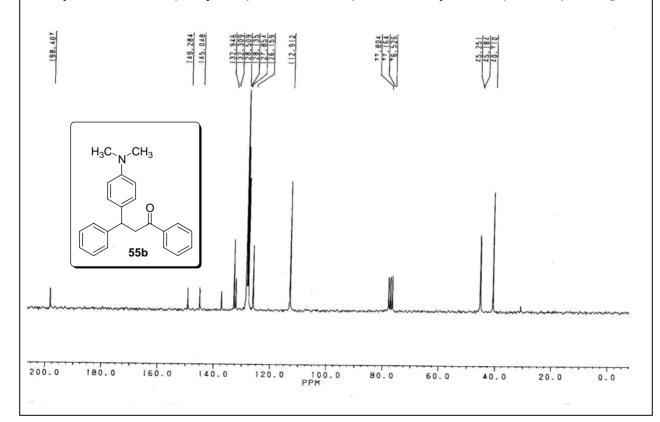


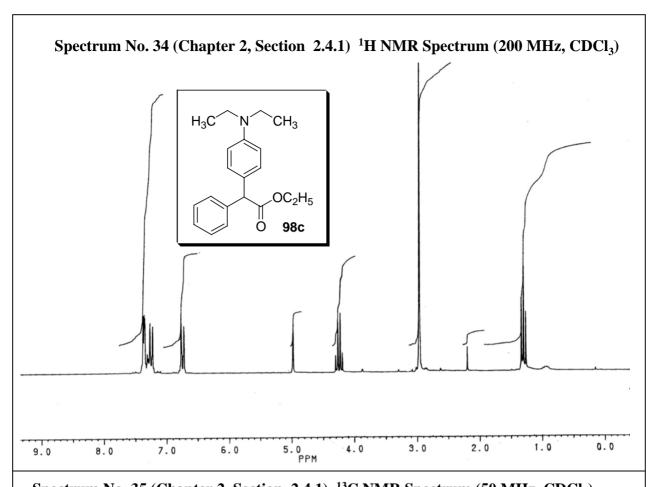


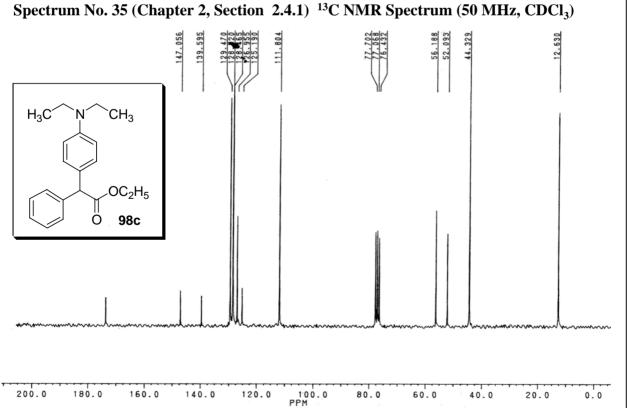


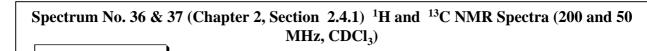


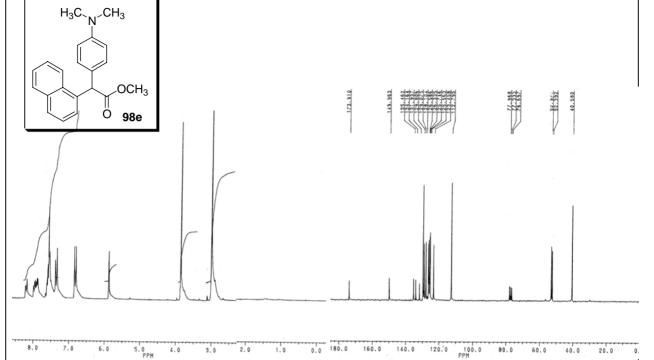


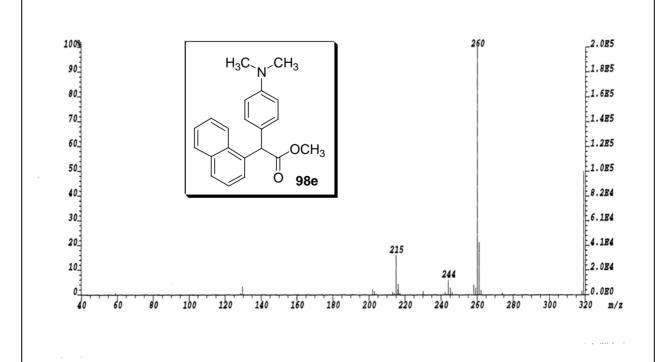


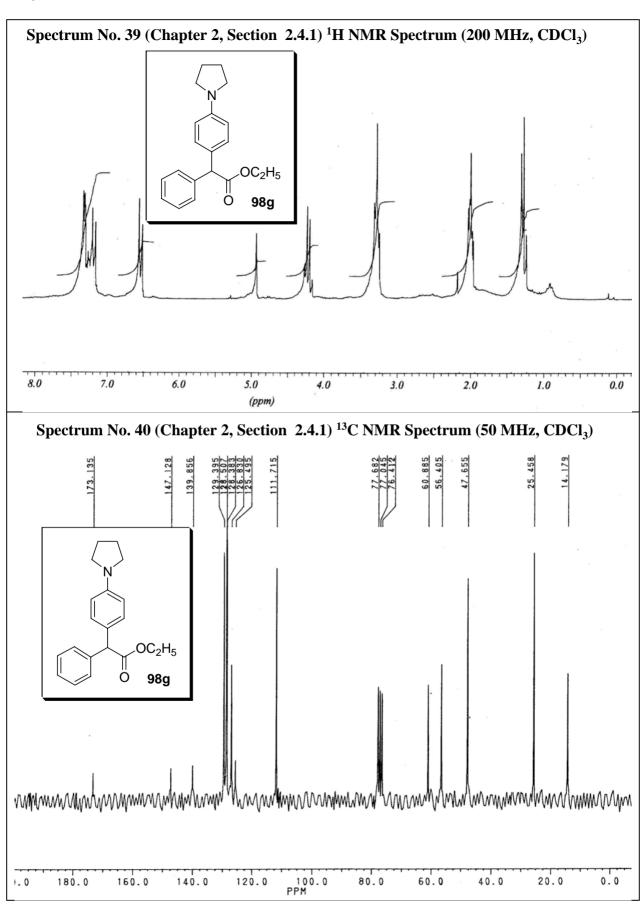


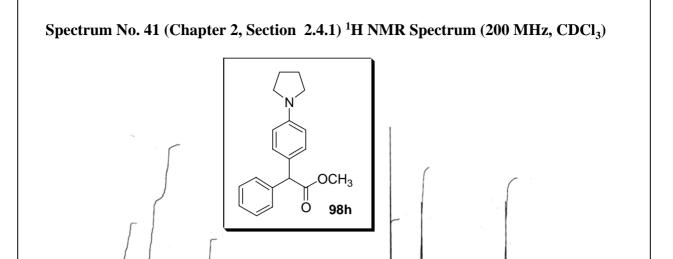


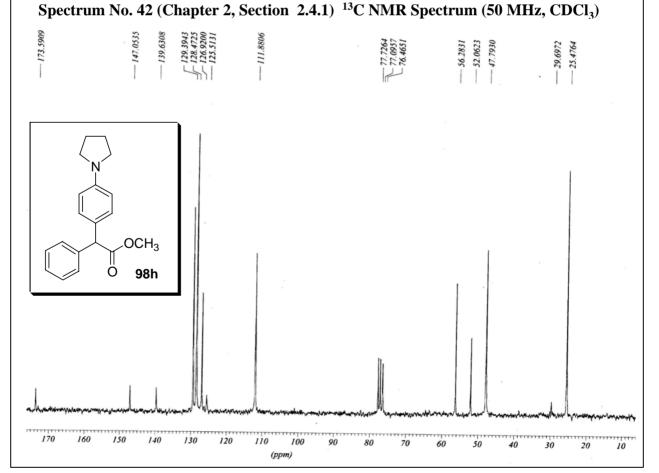


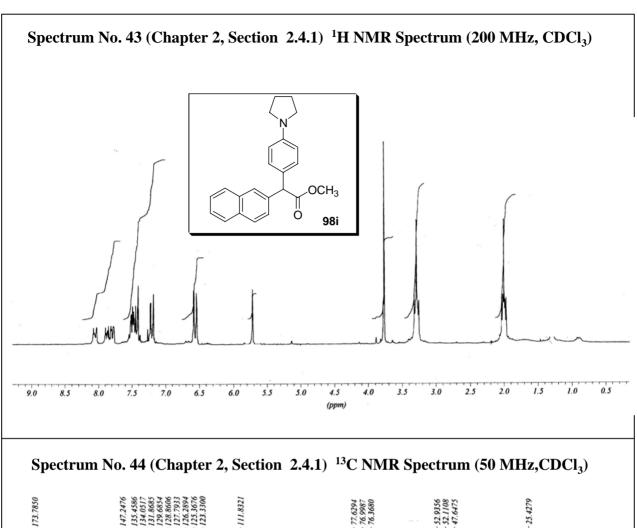


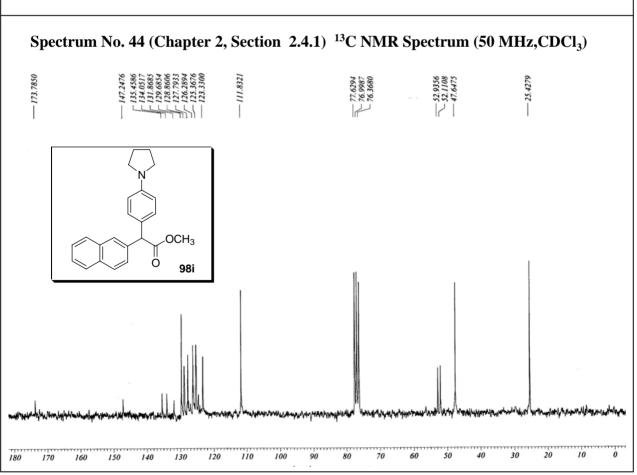


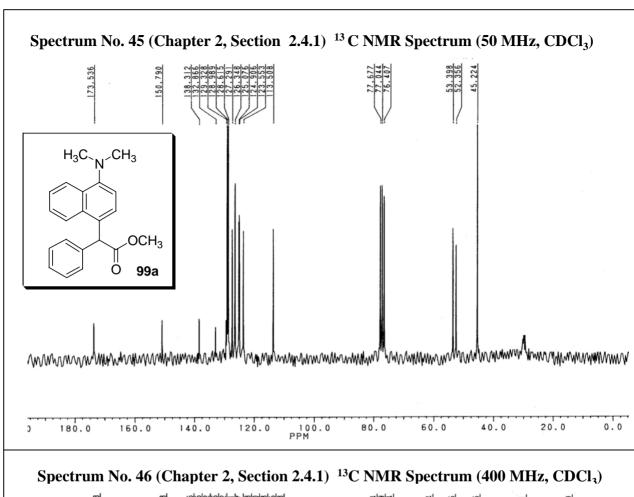


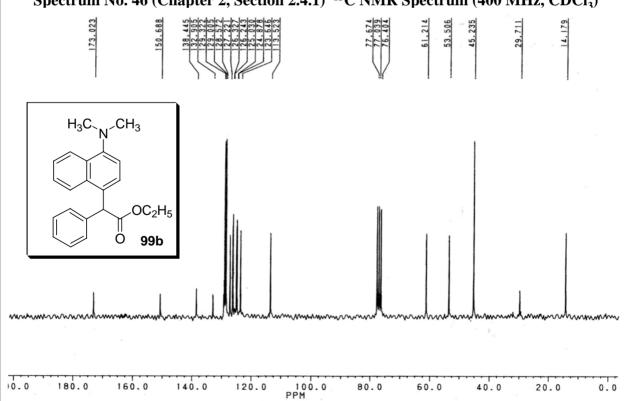



Spectrum No. 38 (Chapter 2, Section 2.4.1) Mass Spectrum (E I)





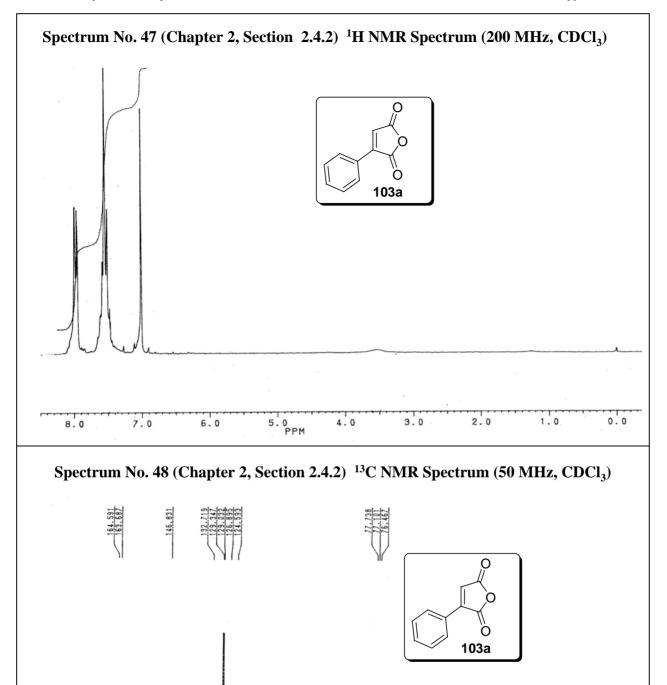



9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 (ppm)

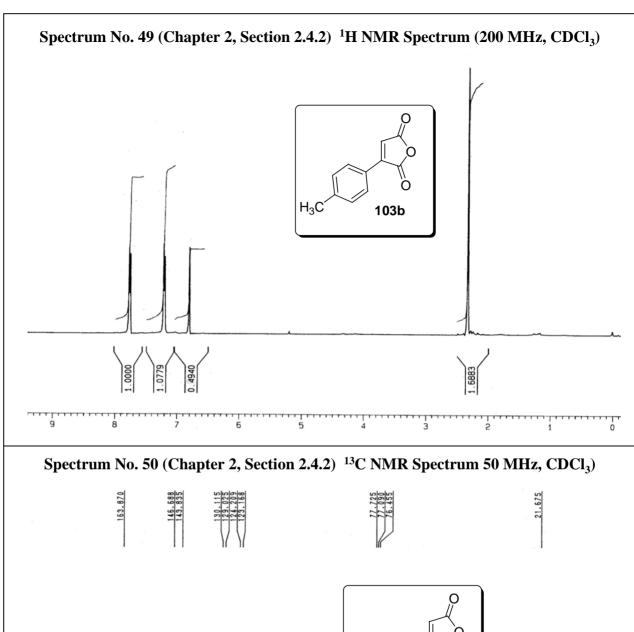
180.0

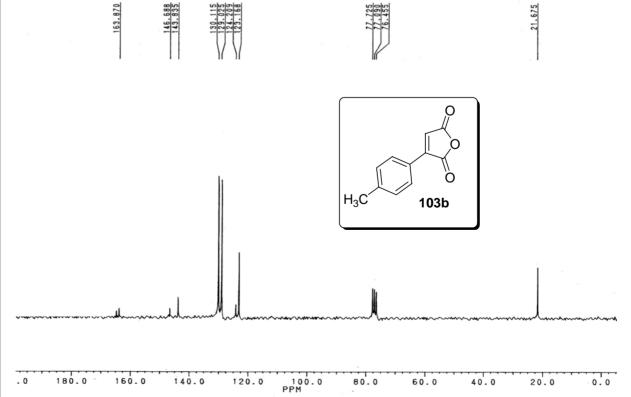
160.0

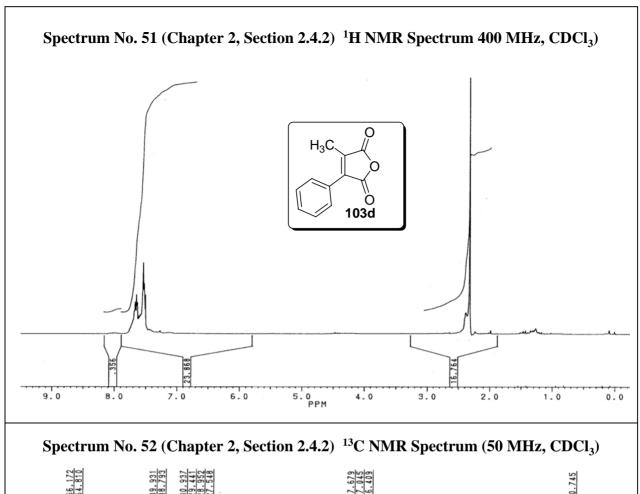
140.0

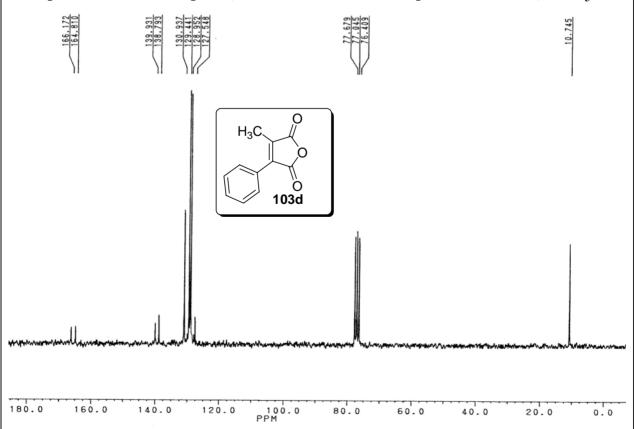

120.0

100.0

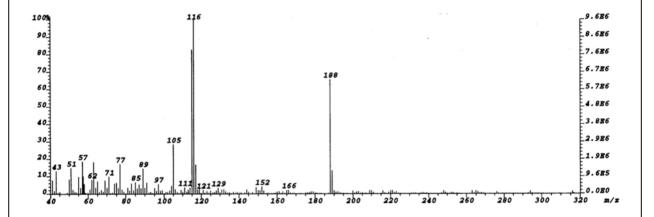

80.0

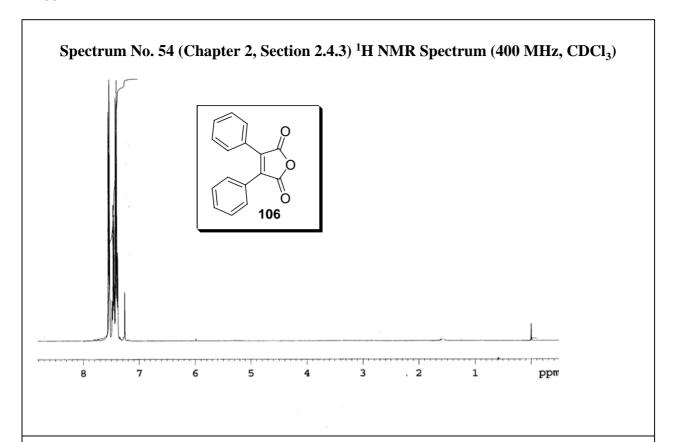

0.0

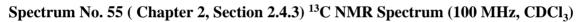

20.0

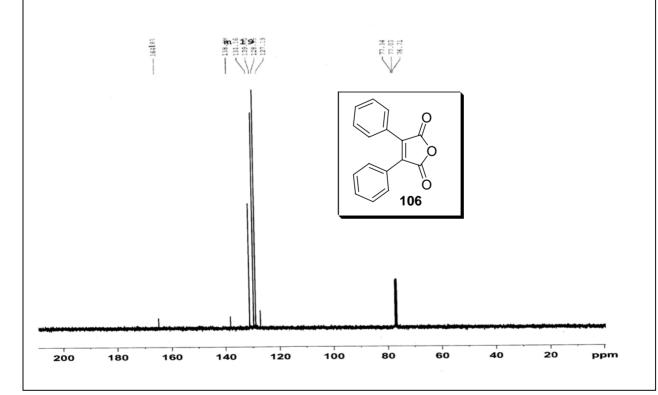


230

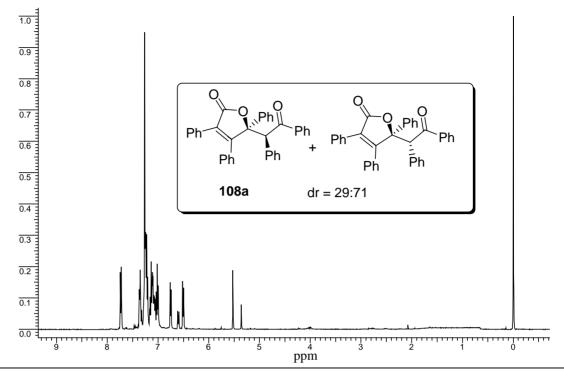


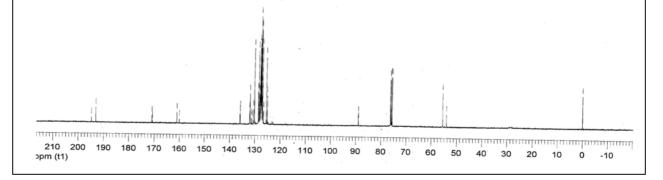


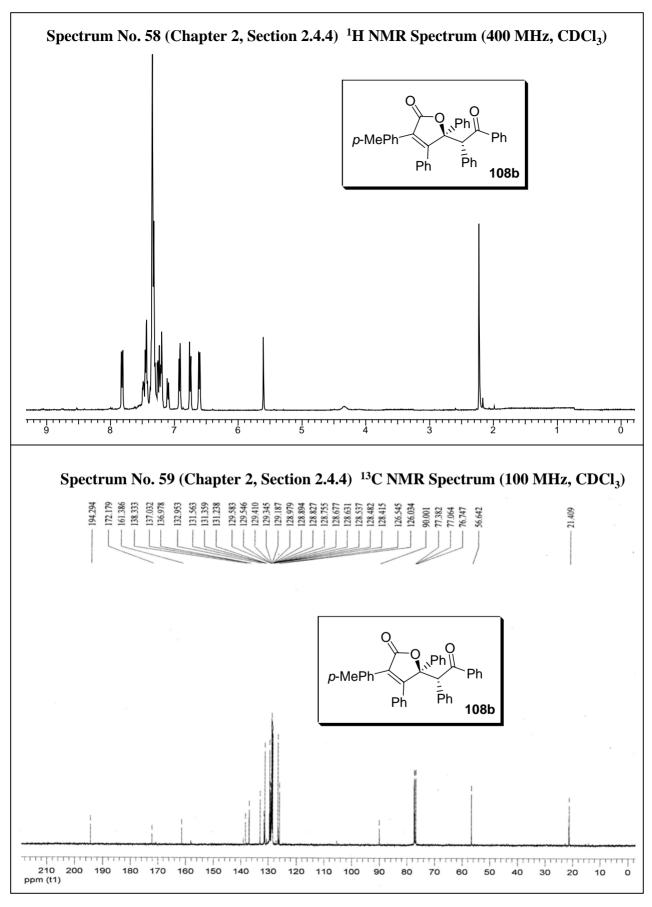


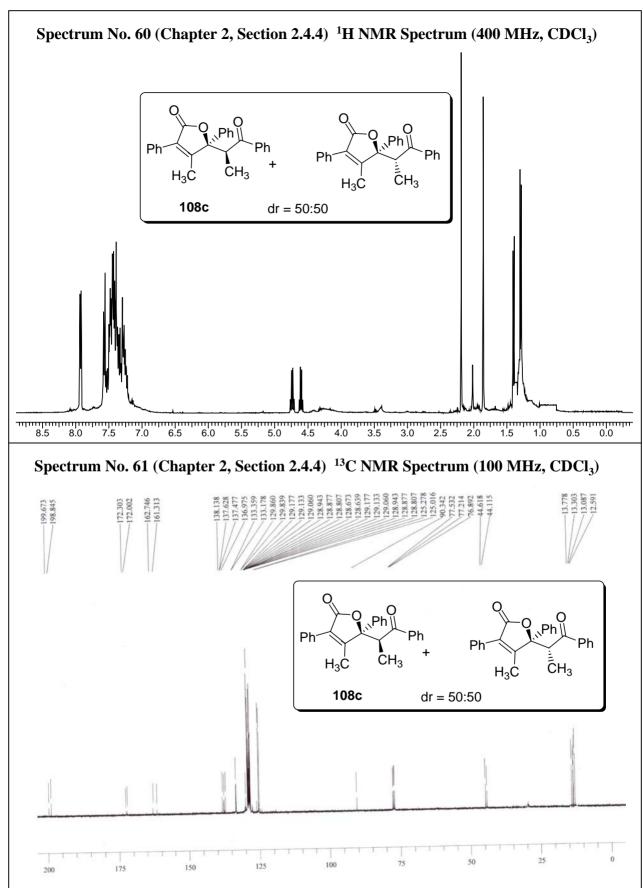

Spectrum No. 53 (Chapter 2, Section 2.4.2) Mass Spectrum (EI)

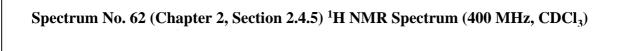
232

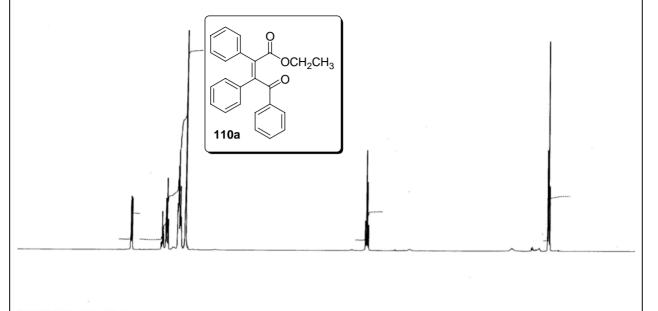


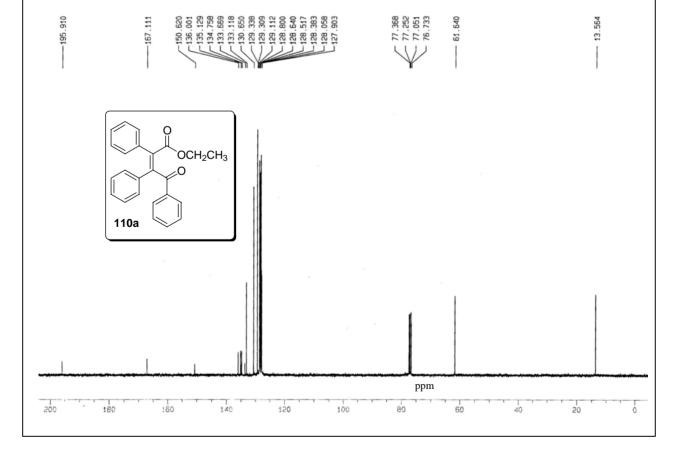


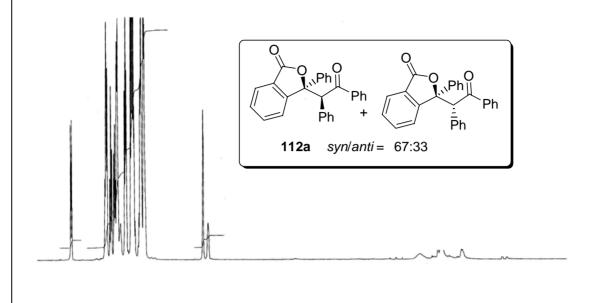

Spectrum No. 56 (Chapter 2, Section 2.4.4) ¹H NMR Spectrum (400 MHz, CDCl₃)

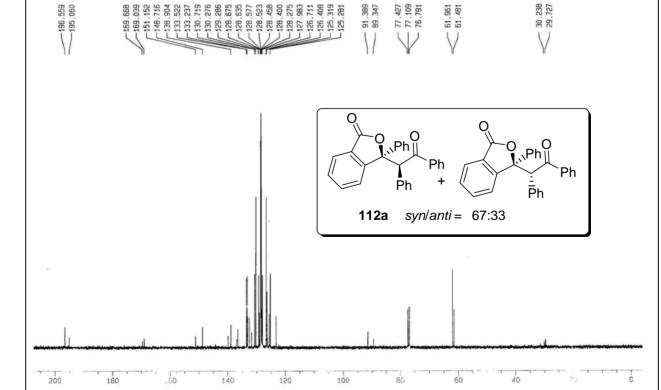


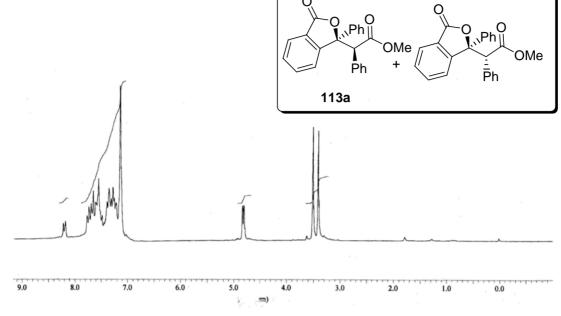

Spectrum No. 57 (Chapter 2, Section 2.4.4) ¹³C NMR Spectrum (100 MHz, CDCl₃)

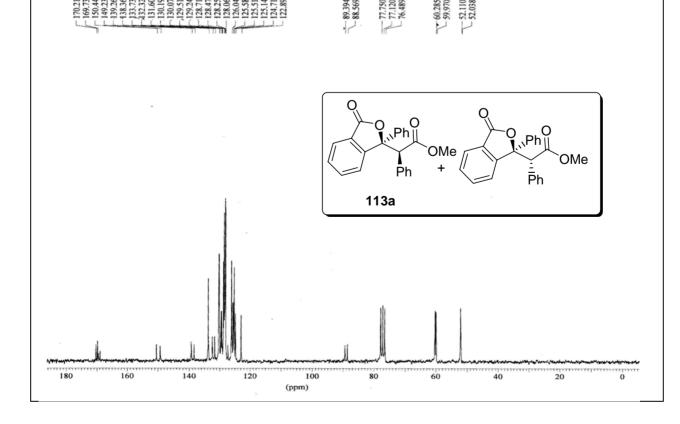


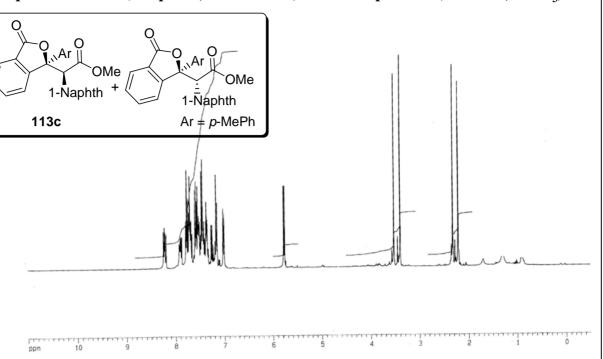


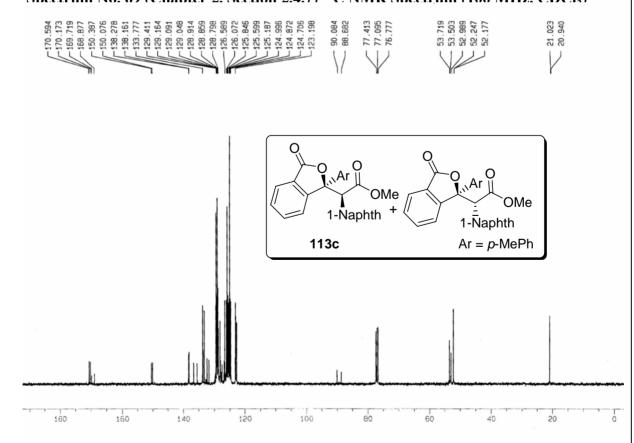


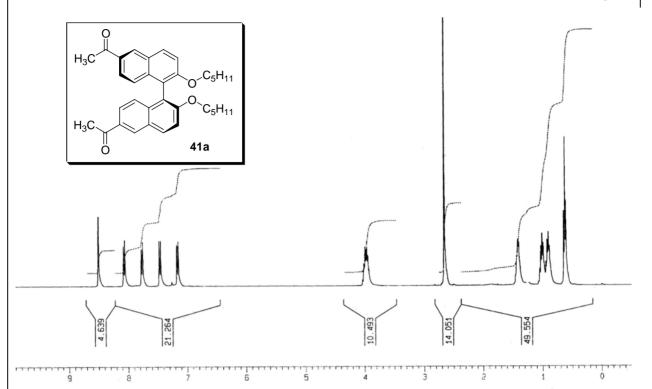

Spectrum No. 63 (Chapter 2, Section 2.4.5) ¹³C NMR Spectrum (100 MHz, CDCl₃)

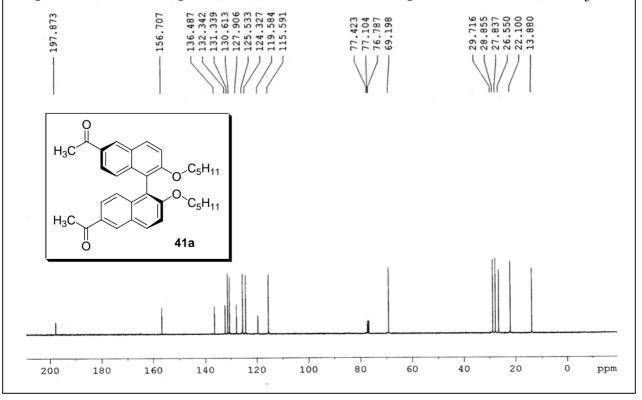

Spectrum No. 64 (Chapter 2, Section 2.4.6) ¹H NMR Spectrum (200 MHz, CDCl₃)

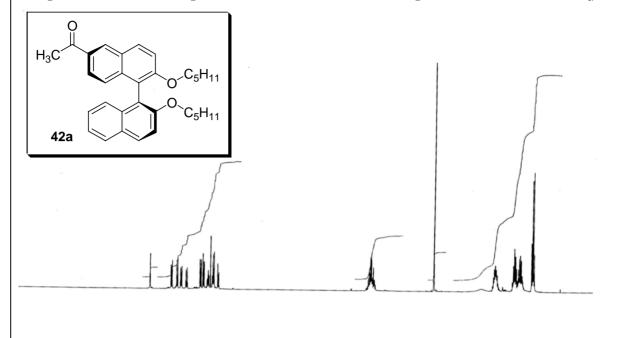

Spectrum No. 65 (Chapter 2, Section 2.4.6) ¹³C NMR Spectrum (100 MHz, CDCl₃)


Spectrum No. 66 (Chapter 2, Section 2.4.7) ¹H NMR Spectrum (200 MHz, CDCl₃)

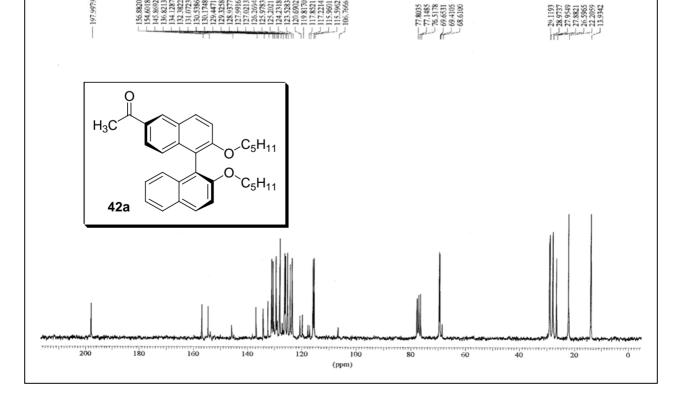

Spectrum No. 67 (Chapter 2, Section 2.4.7) ¹³C NMR Spectrum (50 MHz, CDCl₃)


Spectrum No. 68 (Chapter 2, Section 2.4.7) ¹H NMR Spectrum (400 MHz, CDCl₃)

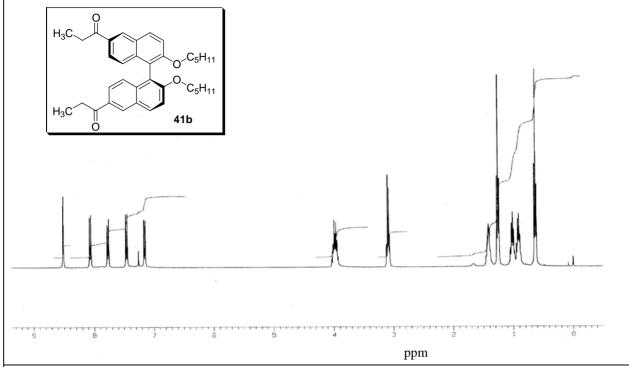

Spectrum No. 69 (Chapter 2, Section 2.4.7) ¹³C NMR Spectrum (100 MHz, CDCL)


Spectrum No. 70 (Chapter 3, Section 3.4.1) ¹H NMR Spectrum (400 MHz, CDCl₃)

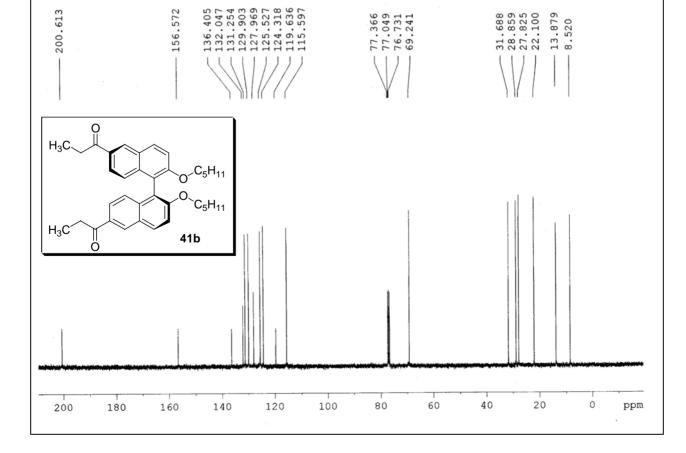
Spectrum No. 71 (Chapter 3, Section 3.4.1) ¹³C NMR Spectrum (100 MHz, CDCl₃)

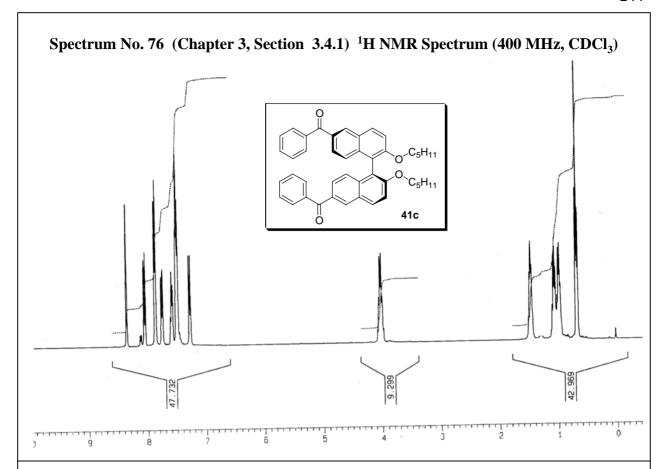


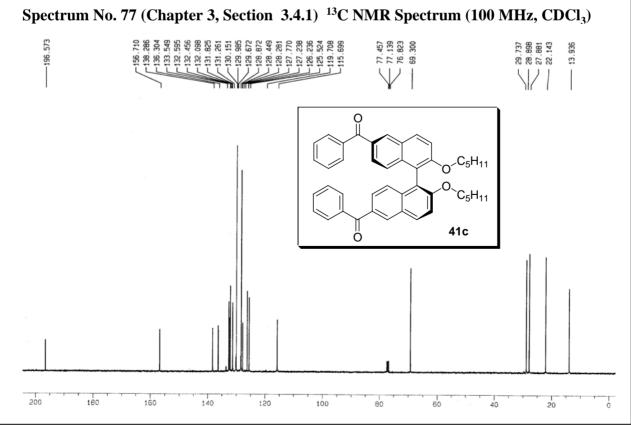
Spectrum No. 72 (Chapter 3, Section 3.4.1) ¹H NMR Spectrum (400MHz, CDCl₃)

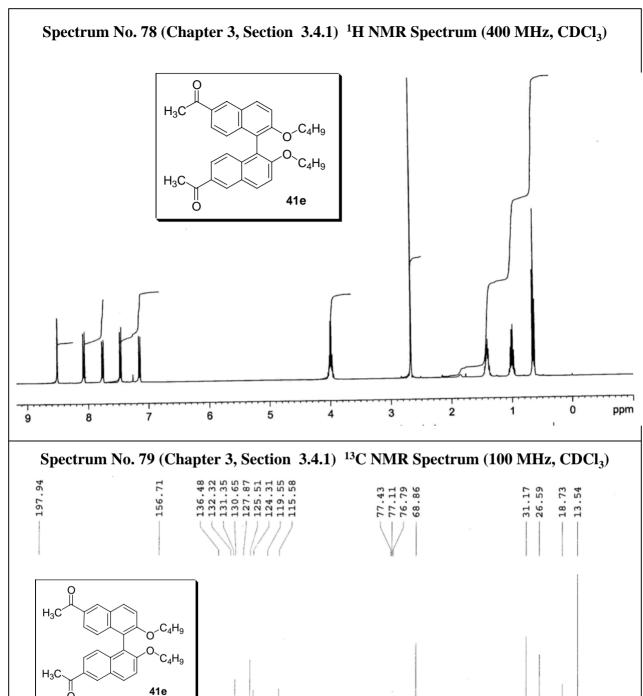


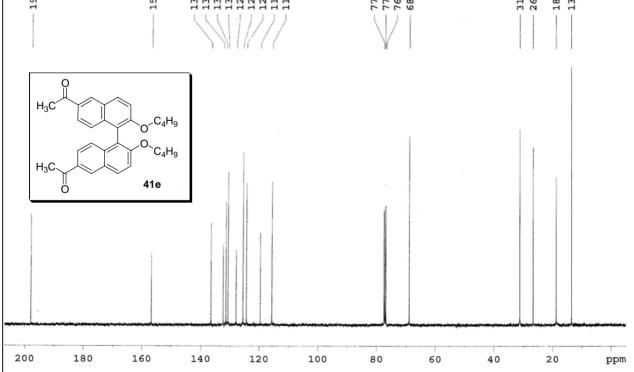
Spectrum No. 73 (Chapter 3, Section 3.4.1) ¹³C NMR Spectrum (100 MHz, CDCl₃)

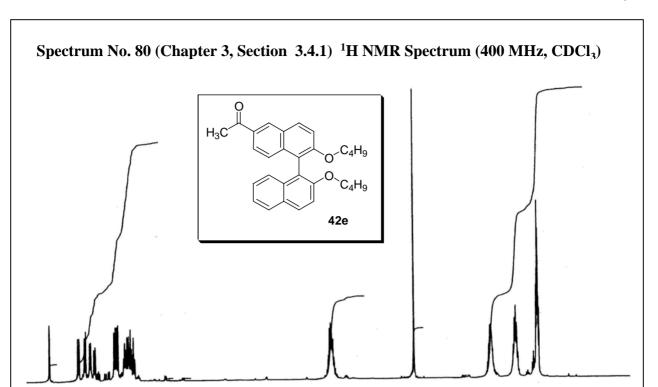

ppm



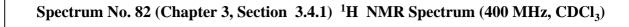

Spectrum No. 74 (Chapter 3, Section 3.4.1) ¹H NMR Spectrum (400 MHz, CDCl₃)

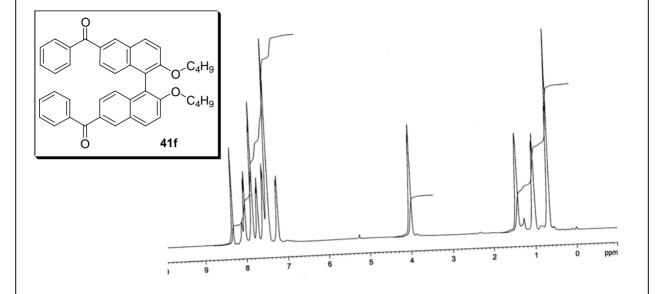



Spectrum No. 75 (Chapter 3, Section 3.4.1) ¹³C NMR Spectrum (100 MHz,CDCl₃)

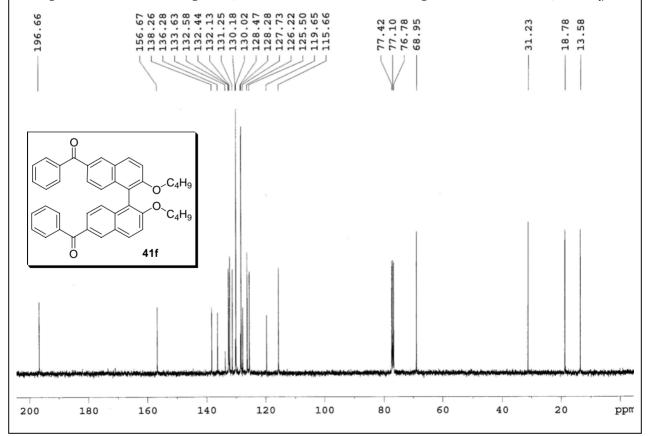


8

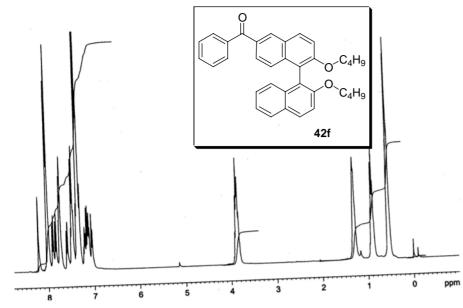

ppm

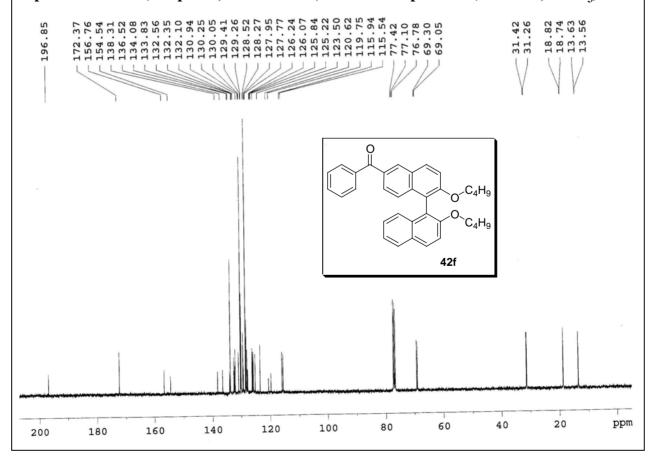


2


3

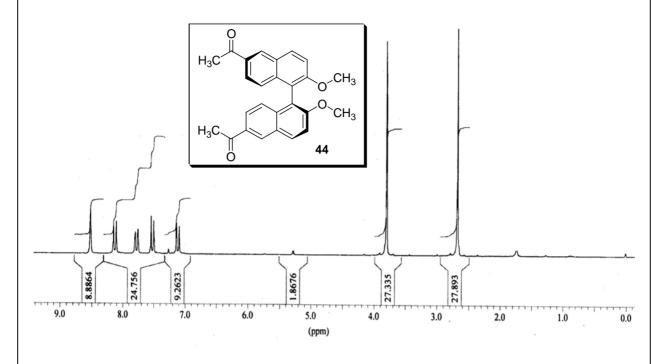
Spectrum No. 81 (Chapter 3, Section 3.4.1) ¹³C NMR Spectrum (100 MHz, CDCl₃) 26.438 197.733 13.493 H_3C `C₄H₉ 42e 100.0 PPM 60.0 40.0 20.0 0.0 160.0 140.0 120.0 80.0 180.0 200.0

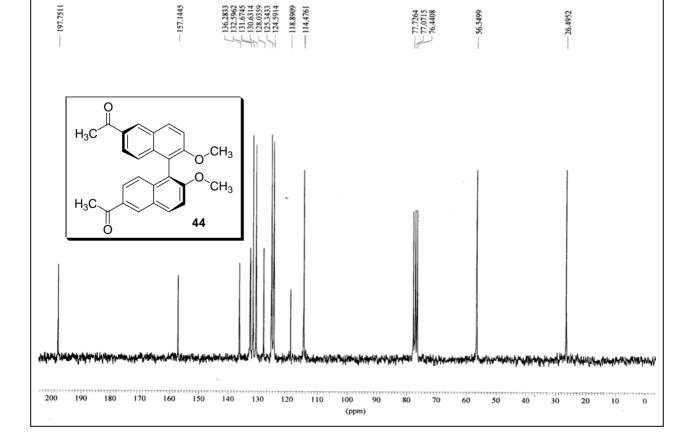



Spectrum No. 83 (Chapter 3, Section 3.4.1) ¹³C NMR Spectrum (100 MHz, CDCl₃)

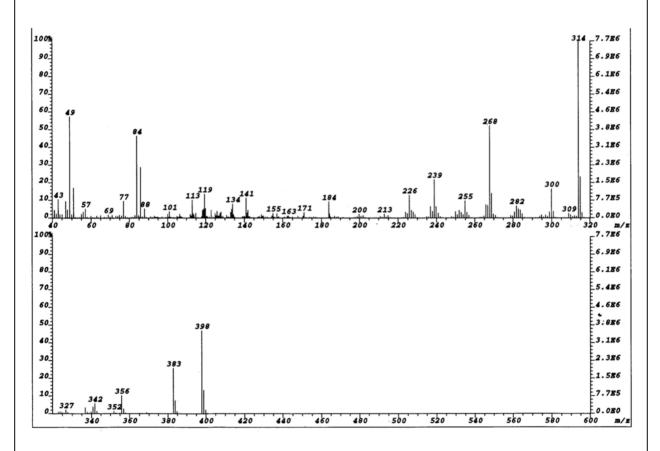
Spectrum No. 84 (Chapter 3, Section 3.4.1) ¹H NMR Spectrum (400 MHz, CDCl₃)



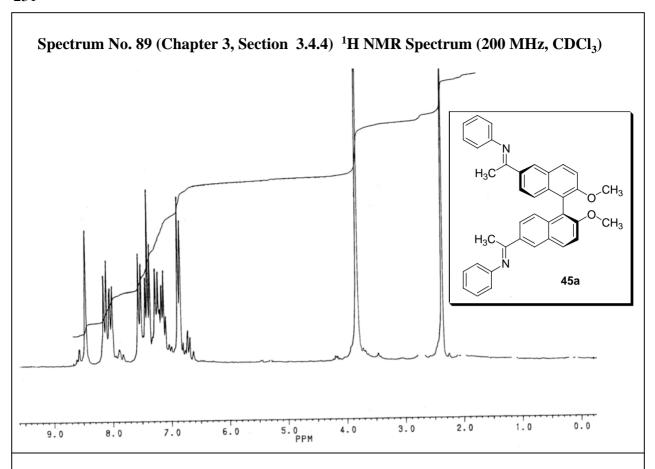

Spectrum No. 85 (Chapter 3, Section 3.4.1) ¹³C NMR Spectrum (100 MHz, CDCl₃)

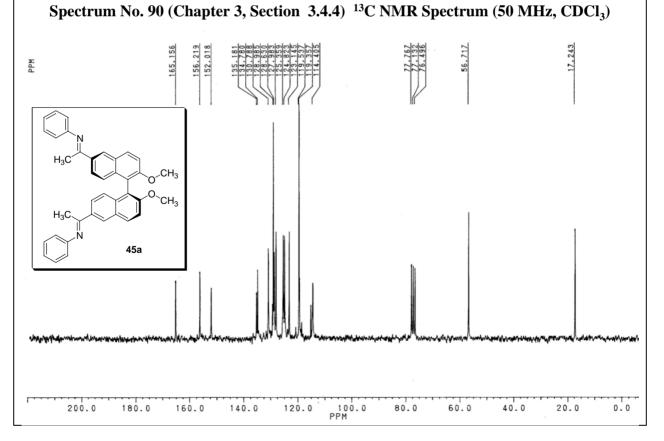

249

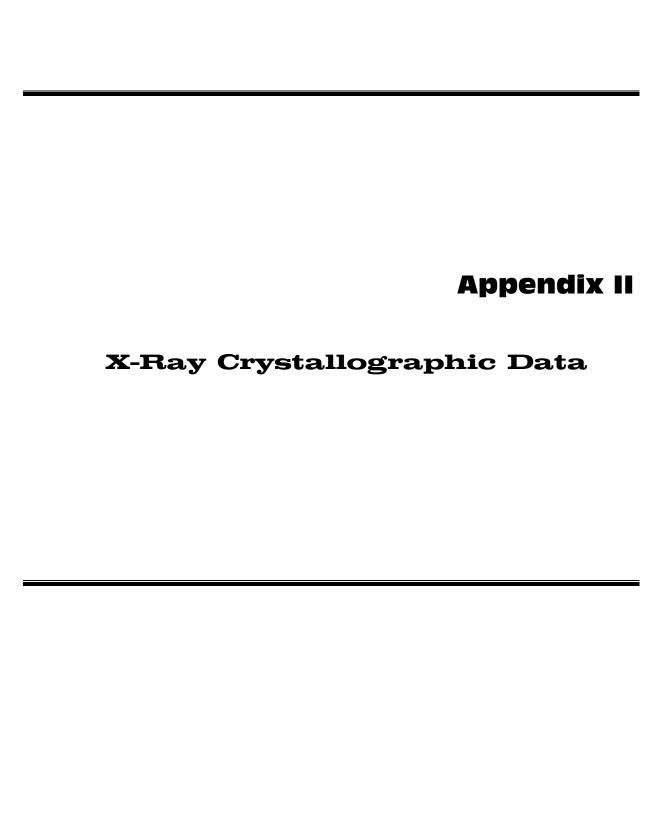
Appendix I



Spectrum No. 87 (Chapter 3, Section 3.4.3) ¹³C NMR Spectrum (50 MHz, CDCl₃)




Representative Spectra Appendix I 250


Spectrum No. 86 (Chapter 3, Section 3.4.3) EI Mass Spectrum

251 Representative Spectra Appendix I

Table 1. Atomic coordinates ($x ext{ } 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 ext{ } x ext{ } 10^3$) for compound **49c (Chapter 1, section 1.2.2.1**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

atom	X	y	z	U(eq)
		J		
C(1)	4811(2)	7447(2)	3853(2)	55(1)
C(2)	4966(3)	7067(2)	4754(2)	69(1)
C(3)	5727(3)	7835(3)	5856(2)	90(1)
C(4)	6371(3)	9015(3)	6120(3)	103(1)
C(5)	6261(3)	9427(3)	5292(3)	90(1)
C(6)	5494(2)	8664(2)	4142(2)	66(1)
C(7)	5379(3)	9084(2)	3283(3)	82(1)
C(8)	4644(3)	8360(2)	2190(3)	76(1)
C(9)	3961(2)	7157(2)	1891(2)	60(1)
C(10)	4021(2)	6686(2)	2682(2)	49(1)
C(11)	3235(2)	5369(2)	2296(2)	47(1)
C(12)	3532(2)	4723(2)	1411(2)	47(1)
C(13)	2609(2)	4283(2)	277(2)	56(1)
C(14)	2887(2)	3704(2)	-538(2)	61(1)
C(15)	4086(3)	3550(2)	-216(2)	62(1)
C(16)	5088(2)	3984(2)	939(2)	54(1)
C(17)	6371(3)	3875(2)	1293(3)	72(1)
C(18)	7371(3)	4359(2)	2389(3)	81(1)
C(19)	7135(3)	4966(2)	3209(2)	77(1)
C(20)	5885(2)	5064(2)	2908(2)	63(1)
C(21)	4824(2)	4597(2)	1767(2)	50(1)
C(22)	1615(2)	4967(2)	1893(2)	47(1)
C(23)	1337(2)	5671(2)	2747(2)	47(1)
C(24)	947(2)	6545(2)	2590(2)	55(1)
C(25)	709(2)	7204(2)	3352(2)	59(1)
C(26)	851(2)	7027(2)	4345(2)	58(1)
C(27)	1251(2)	6150(2)	4510(2)	60(1)
C(28)	1464(2)	5488(2)	3720(2)	54(1)
C(29)	775(3)	7503(2)	6147(2)	86(1)

C(30)	2282(4)	8152(3)	7087(3)	114(1)	
C(31)	168(3)	8586(2)	4930(3)	84(1)	
C(32)	-1404(4)	8142(3)	4246(4)	120(1)	
C(33)	836(2)	3672(2)	1573(2)	49(1)	
C(34)	1429(2)	3039(2)	2084(2)	57(1)	
C(35)	678(2)	1870(2)	1801(2)	64(1)	
C(36)	-738(3)	1259(2)	974(2)	75(1)	
C(37)	-1343(3)	1892(2)	457(2)	87(1)	
C(38)	-569(2)	3063(2)	755(2)	71(1)	
C(39)	-641(6)	-687(4)	1004(3)	192(3)	
C(40)	-733(5)	-541(3)	1927(5)	156(2)	
C(41)	-3301(7)	-498(4)	52(4)	177(2)	
C(42)	-3288(7)	-879(5)	-865(6)	201(3)	
N(1)	596(2)	7672(2)	5115(2)	80(1)	
N(2)	-1477(3)	113(2)	687(3)	128(1)	

Table 2. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (A² \times 10³) for **98e** (**Chapter 2, section 2.2.1**). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

atom	X	у	Z	U(eq)
C(15)	1222(2)	1000(2)	1047(1)	£1/1\
C(15) C(11)	1332(2) 3923(2)	-1980(2) 786(2)	1847(1) 3229(1)	51(1) 51(1)
C(12)	3035(2)	-182(2)	2732(1)	50(1)
C(13)	3742(2)	-1802(2)	2768(1)	54(1)
N(1)	502(2)	-2855(2)	1415(1)	68(1)
C(1)	4700(2)	1579(2)	2388(1)	51(1)
O(1)	2548(2)	1229(1)	4999(1)	73(1)
C(14)	2926(2)	-2687(2)	2343(1)	56(1)
C(9)	5650(2)	2434(2)	2781(1)	54(1)
O(2)	1756(2)	3293(1)	3875(1)	77(1)
C(16)	613(2)	-339(2)	1813(1)	58(1)
C(17)	1446(2)	520(2)	2247(1)	58(1)
C(2)	4548(2)	1451(2)	1263(1)	59(1)

C(20)	2627(2)	1953(2)	4046(1)	54(1)
C(4)	6151(2)	2996(2)	836(2)	75(1)
C(10)	6357(2)	3172(2)	1989(2)	64(1)
C(3)	5286(2)	2153(2)	484(1)	71(1)
C(8)	5934(2)	2581(2)	3927(2)	68(1)
C(5)	7270(2)	4042(2)	2383(2)	82(1)
C(19)	1183(2)	-4517(2)	1534(2)	77(1)
C(7)	6819(2)	3421(2)	4270(2)	86(1)
C(18)	-1097(3)	-2116(2)	883(2)	88(1)
C(6)	7489(2)	4167(2)	3485(2)	92(1)
C(21)	1191(3)	2088(3)	5802(2)	98(1)
_				

Table 3. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for compound **108b** (**Chapter 2, section 2.2.2.3**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

atom	X	у	z	U(eq)
C(1)	-579(3)	3316(1)	11075(2)	77(1)
C(2)	-1695(3)	3721(2)	10908(2)	106(1)
C(3)	-2663(3)	3541(2)	10238(2)	95(1)
C(4)	-2500(2)	2953(2)	9724(2)	80(1)
C(5)	-1356(2)	2541(1)	9890(2)	64(1)
C(6)	-380(2)	2720(1)	10569(1)	50(1)
C(7)	863(2)	2269(1)	10755(1)	46(1)
C(8)	1913(2)	2478(1)	10161(1)	47(1)
C(9)	2450(2)	3244(1)	10344(1)	49(1)
C(10)	2960(2)	3462(1)	11189(1)	60(1)
C(11)	3528(2)	4131(1)	11344(2)	69(1)
C(12)	3608(3)	4595(1)	10665(2)	84(1)
C(13)	3121(3)	4390(1)	9823(2)	96(1)
C(14)	2546(2)	3722(1)	9660(2)	72(1)
C(15)	486(2)	1465(1)	10702(1)	52(1)
C(16)	-114(2)	1139(1)	11447(1)	53(1)

C(17)	-720(2)	466(1)	11312(2)	71(1)
C(18)	-1203(3)	120(1)	12002(2)	89(1)
C(19)	-1079(3)	421(2)	12816(2)	89(1)
C(20)	-510(2)	1088(2)	12962(2)	78(1)
C(21)	-38(2)	1445(1)	12277(1)	64(1)
C(23)	3116(2)	1983(1)	10188(1)	48(1)
C(24)	4013(2)	1809(1)	10998(1)	50(1)
C(25)	3626(2)	1425(2)	11682(1)	78(1)
C(26)	4514(3)	1233(2)	12406(2)	96(1)
C(27)	5798(3)	1402(2)	12455(2)	89(1)
C(28)	6205(3)	1798(2)	11799(2)	104(1)
C(29)	5319(3)	2006(2)	11073(2)	89(1)
C(30)	2118(2)	2073(1)	8769(1)	58(1)
C(31)	3272(2)	1803(1)	9359(1)	54(1)
C(32)	4391(2)	1441(1)	9021(1)	61(1)
C(33)	4972(2)	1740(1)	8360(1)	67(1)
C(34)	6104(2)	1448(2)	8101(2)	77(1)
C(35)	6692(3)	856(2)	8495(2)	91(1)
C(36)	7972(3)	555(2)	8251(2)	132(1)
C(37)	6115(4)	563(2)	9151(2)	170(2)
C(38)	4987(4)	840(2)	9417(2)	147(2)
O(1)	1827(2)	2007(1)	7984(1)	81(1)
O(2)	1318(1)	2444(1)	9251(1)	56(1)
O(3)	667(2)	1109(1)	10066(1)	74(1)

Table 4. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2x\ 10^3$) for compound **110a** (**Chapter 2, section 2.2.2.3**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

atom	Х	у	Z	U(eq)
C(1)	2633(3)	5835(6)	473(1)	47(1)
C(2)	2243(3)	6353(8)	134(2)	67(2)
C(3)	1851(3)	4834(8)	-65(2)	66(2)

C(4)	1861(3)	2755(10)	58(2)	74(2)
C(5)	2260(3)	2213(7)	388(2)	56(1)
C(6)	2650(2)	3727(6)	592(1)	38(1)
C(7)	3077(2)	3019(7)	943(1)	40(1)
C(8)	3253(2)	4628(6)	1266(1)	37(1)
C(9)	2612(2)	5088(5)	1522(1)	33(1)
C(10)	2488(3)	7142(6)	1673(1)	45(1)
C(11)	1883(3)	7563(8)	1896(2)	57(1)
C(12)	1381(3)	5982(8)	1978(2)	57(1)
C(13)	1491(3)	3963(9)	1836(2)	60(1)
C(14)	2112(3)	3523(7)	1608(1)	52(1)
C(15)	3937(2)	5333(7)	1316(1)	38(1)
C(16)	4206(2)	6633(6)	1653(1)	39(1)
C(17)	4202(3)	5796(8)	2031(1)	51(1)
C(18)	4484(3)	7017(11)	2338(2)	72(2)
C(19)	4751(3)	9020(12)	2276(2)	78(2)
C(20)	4743(3)	9879(9)	1907(2)	71(2)
C(21)	4476(2)	8669(8)	1594(2)	56(1)
C(22)	4493(3)	4843(8)	1002(2)	52(1)
C(23)	5737(3)	3872(15)	880(2)	106(3)
C(24)	5784(5)	1498(15)	850(3)	138(4)
C(25)	4886(3)	11054(7)	4504(2)	57(1)
C(26)	5253(4)	11754(11)	4846(2)	83(2)
C(27)	5690(4)	10367(16)	5051(2)	97(3)
C(28)	5768(4)	8306(15)	4927(2)	101(2)
C(29)	5397(3)	7593(9)	4608(2)	74(2)
C(30)	4952(2)	8956(7)	4393(1)	44(1)
C(31)	4557(2)	8061(7)	4049(1)	43(1)
C(32)	4340(2)	9614(6)	3719(1)	37(1)
C(33)	4968(3)	10174(6)	3458(1)	37(1)
C(34)	5069(3)	12219(7)	3314(1)	49(1)
C(35)	5667(3)	12690(8)	3077(2)	54(1)
C(36)	6177(3)	11147(9)	2991(2)	61(1)
C(37)	6094(3)	9133(9)	3137(2)	62(2)
C(38)	5497(2)	8627(8)	3371(1)	52(1)

C(39)	3646(2)	10246(6)	3679(1)	40(1)
C(40)	3365(2)	11570(6)	3341(1)	39(1)
C(41)	3101(3)	13604(7)	3405(2)	55(1)
C(42)	2831(3)	14832(9)	3102(2)	67(2)
C(43)	2816(3)	14034(11)	2728(2)	75(2)
C(44)	3071(3)	11972(11)	2654(2)	73(2)
C(45)	3349(3)	10754(8)	2963(1)	51(1)
C(46)	3092(2)	9600(7)	3976(2)	46(1)
C(47)	1848(3)	8962(17)	4111(2)	113(3)
C(48)	1732(4)	6616(18)	4091(3)	135(4)
O(1)	3252(2)	1160(5)	983(1)	72(1)
O(2)	4365(2)	4784(9)	664(1)	97(2)
O(3)	5150(2)	4495(8)	1154(1)	90(1)
O(4)	4469(2)	6170(5)	3997(1)	69(1)
O(5)	3253(2)	9020(7)	4303(1)	73(1)
O(6)	2425(2)	9661(8)	3845(1)	88(1)

Table 5. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2x\ 10^3$) for compound **112a** (**Chapter 2, section 2.2.3.1**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

atom	X	у	Z	U(eq)
C(1)	1377(2)	241(1)	5954(1)	56(1)
C(2)	1047(2)	-363(1)	5524(1)	69(1)
C(3)	1735(3)	-850(2)	5199(1)	91(1)
C(4)	2762(3)	-740(2)	5297(1)	99(1)
C(5)	2424(2)	348(2)	6052(1)	77(1)
C(6)	3116(2)	-141(2)	5720(1)	100(1)
C(7)	580(2)	755(1)	6279(1)	53(1)
C(8)	923(1)	1381(1)	6791(1)	48(1)
C(9)	1080(1)	948(1)	7453(1)	47(1)
C(10)	410(2)	349(1)	7666(1)	61(1)
C(11)	581(2)	-46(1)	8261(1)	73(1)
C(12)	1399(2)	158(1)	8653(1)	74(1)

C(13)	2064(2)	752(1)	8449(1)	71(1)
C(14)	1911(1)	1141(1)	7848(1)	58(1)
C(15)	-170(2)	2445(1)	6174(1)	58(1)
C(16)	492(2)	2467(1)	5641(1)	76(1)
C(17)	173(3)	2769(2)	5030(1)	95(1)
C(18)	-813(3)	3062(2)	4959(2)	103(1)
C(19)	-1468(2)	3054(2)	5490(1)	96(1)
C(20)	-1155(2)	2746(1)	6095(1)	74(1)
C(22)	1828(2)	3796(1)	7643(1)	70(1)
C(23)	1539(2)	3255(1)	7151(1)	60(1)
C(24)	680(1)	2777(1)	7268(1)	50(1)
C(25)	143(1)	2845(1)	7850(1)	54(1)
C(26)	432(2)	3383(1)	8342(1)	69(1)
C(27)	1283(2)	3855(1)	8231(1)	76(1)
C(28)	188(1)	2122(1)	6844(1)	50(1)
C(29)	-720(2)	2274(1)	7832(1)	56(1)
O(1)	-325(1)	657(1)	6158(1)	69(1)
O(2)	-707(1)	1887(1)	7234(1)	54(1)
O(3)	-1377(1)	2128(1)	8237(1)	77(1)

Table 6. Atomic coordinates ($x ext{ } 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2x ext{ } 10^3$) for compound **113a (Chapter 2, section 2.2.3.2)**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

atom	х	у	Z	U(eq)	
C(1)	3516(2)	8191(2)	2903(1)	47(1)	
C(2)	2232(2)	8361(2)	3087(1)	52(1)	
C(3)	1798(2)	9506(2)	3328(1)	66(1)	
C(4)	604(3)	9646(3)	3439(2)	83(1)	
C(5)	-145(2)	8643(4)	3316(2)	92(1)	
C(6)	286(2)	7507(3)	3090(2)	86(1)	
C(7)	1459(2)	7362(2)	2973(1)	65(1)	
C(8)	3774(2)	8724(2)	2049(1)	47(1)	

C(9)	3054(2)	8004(2)	1407(1)	48(1)	
C(10)	3094(2)	6748(2)	1198(1)	62(1)	
C(11)	2284(2)	6337(3)	600(2)	79(1)	
C(12)	1473(2)	7140(3)	226(2)	83(1)	
C(13)	1450(2)	8383(3)	428(2)	74(1)	
C(14)	2257(2)	8805(2)	1029(1)	55(1)	
C(15)	2427(2)	10059(2)	1375(1)	62(1)	
C(16)	5063(2)	8765(2)	1865(1)	46(1)	
C(17)	5466(2)	9685(2)	1352(1)	58(1)	
C(18)	6612(2)	9685(2)	1131(2)	64(1)	
C(19)	7404(2)	8780(2)	1410(1)	59(1)	
C(20)	7000(2)	7883(2)	1935(1)	60(1)	
C(21)	5852(2)	7857(2)	2152(1)	55(1)	
C(22)	4330(2)	8720(2)	3574(1)	51(1)	
C(23)	5534(3)	8153(3)	4733(2)	88(1)	
C(24)	8648(2)	8769(3)	1142(2)	85(1)	
O(1)	1951(2)	11039(2)	1207(1)	92(1)	
O(2)	3305(1)	9990(1)	1971(1)	55(1)	
O(3)	4597(2)	9794(1)	3657(1)	75(1)	
O(4)	4710(1)	7805(1)	4071(1)	64(1)	

LIST OF PUBLICATIONS

- A novel arylation of arylacetic acid esters using tertiary arylamines and TiCl₄; Periasamy, M.; **Kishorebabu, N.**; Jayakumar, K. N. *Tetrahedron Lett.* **2003**, *44*, 8939-8941.
- A simple, convenient method for the synthesis of maleic anhydrides from *a*-keto esters and alkanoic acid anhydrides using the TiCl₄/*n*-Bu₃N reagent system; **Kishorebabu, N.**; Periasamy, M. *Tetrahedron Lett.* **2006,** *47*, 2107–2109.
- A simple TiCl₄ promoted method of arylation of orthoformate and benzyl ethers by *N*,*N*-dialkylarylamines; Periasamy, M.; **Kishorebabu, N.** Jayakumar, K. N. *Communicated*.
- A novel, simple method of selective arylation of dicarbonyl compounds by aryltitanium species prepared using *N*,*N*-dialkylarylamines and TiCl₄; **Kishorebabu, N.**; Periasamy, M. *Communicated*.
- A new class of γ -lactones from γ -keto esters and aryl aceticacid esters using the TiCl₄/Et₃N reagent system through aldol reaction; **Kishorebabu, N.**; Periasamy, M. *Communicated*.
- A novel synthesis of γ-substituted γ-butenolides using α-ketoesters and ketones with the $TiCl_4/n$ -Bu₃N reagent system; **Kishorebabu, N.**; Periasamy, M. *Communicated*.