Heterofunctionalization of olefins by a pendant sulfoxide: Application to the Synthesis of (2R,3R)-HFA-12, (-)-Allosedamine, xylo-(2R,3S,4S), lyxo-(2R,3R,4R)-Phytosphingosines and Synthesis of a Novel Safety-Catch Linker

A THESIS SUBMITTED FOR THE DEGREE OF Doctor of Philosophy

A. RAJENDER

School of Chemistry University of Hyderabad Hyderabad – 500 (46 January 2004

Indian Institute of Chemical Technology

Hyderabad - 500 007, INDIA

भारतीय रासायनिक प्रौद्योगिकी संस्थान

हैदराबाद - 500 007, भारत

Director

निदेशक

CERTIFICATE

This is to certify that the research work presented in the thesis entitled "Heterofunctionalization of olefins by a pendant sulfoxide: Application to the Synthesis of (2R,3R)-HPA-12, (-)-Allosedamine, xylo-(2R,3S,4S), lyxo-(2R,3R,4R)-Phytosphingosines and Synthesis of a Novel Safety-Catch Linker", has been carried out under my supervision and is a bonafide work of Mr. A. Rajender. This work is original and has not been submitted for any other degree or diploma to this or any other University.

- E Demmis 13-1-2004

Dean School of Chemistry University of Hyderabad Hyderabad-500 046, India [J.S. YADAV]

Research Guide

DECLARATION

I hereby declare that the work presented in the thesis entitled

"Heterofunctionalization of olefins by a pendant sulfoxide: Application to

the Synthesis of (2R,3R)-HPA-12, (-)-Allosedamine, xylo-(2R,3S,4S), lyxo-

(2R,3R,4R)-Phytosphingosines and Synthesis of a Novel Safety-Catch

Linker" is entirely original and was carried out by me independently at Indian

Institute of Chemical Technology, Hyderabad under the supervision of Dr. J. S.

Yadav, Director, Indian Institute of Chemical Technology. I declare that this

thesis has not formed the basis for the award of any degree or diploma,

fellowship or associateship or similar title of any university or institution.

Date: 8th Jan., 2004

Division of Organic Chemistry-I

Indian Institute of Chemical Technology

Hyderabad - 500 007.

ACKNOWLEDGEMENTS

It gives me immense pleasure and pride to express my gratitude and respect for my guide, Dr. J. S. Yadav, Director, Indian Institute of Chemical Technology, Hyderabad for his expert and inspiring guidance. I am thankful to him for allowing me to associate with Dr. S. Raghavan, Scientist Organic Cheméistry Division-I.

I proclaim my indebtedness to my teacher Dr. S. Raghavan for his constant encouragement, practical suggestions and for enlightening me on the finer skills of dealing with synthetic problems. The thesis would not have seen the light of the day without his invaluable ideas and intellectual support.

I express my sincere thanks to Dr. H. M. Meshram, Dr. A. C. Kunwar for their support and encouragement.

I am also indebted to Dr. S. Chandrasekhar, Dr. I. A. Ansari, Dr. Ahmed Kamal, Dr. N. W. Fadnavis and Dr. A. Bhaskar Rao for their immense help and support during my tenure at IICT.

I wish to express my profound thanks to all my teachers from CSI High School, Chemistry department of C.O.A.S and I specially thank my teacher **Abdul Aziz** for his motivation and encouragement.

I feel fortunate enough to be blessed with friends like P. Sreedhar and M. Naveen kumar for their unreserved help and support since childhood.

I thank all my senior colleagues Dr. Arup, Dr. Samik, Dr. B.V. Subba Reddy, Dr. P.T. Reddy, Dr. S. Anjaneyulu, Y.S.S. Ganesh, Dr. Anis Banerjee, Dr. R. Satheesh Babu for helpful discussions.

I thank my colleagues Rasheed, Suju, Tony, Ramu, Ch. Naveen, Chandrasekhar, Madhavi, Srikanth, Krishnaiah, Chetia and Mustafa for their help.

I express my wholehearted appreciations to my friends Khanna, Vishu, Radhakishan, Rajkumar, Kondal, Ramesh, Prasad, Vani, Varun, Vani, Shashidher, Srinivas Reddy, Praveen, Maruthi, Sipak, D. Naveen, Venu, Aradhana, Radhika, Sasi, Sunanda, Bindu, Padmaja, Radhika, Sujatha, Swathi, Ganga.

It is a pleasant task to thank my colleagues and friends from Discovery Laboratory, Natural Products Laboratory, Pheromone Laboratory, Fine Chemicals Laboratory, Catalysis Laboratory, Oils and Fats Division, CFC Laboratory, Molecular Modeling and Drug Design Laboratory, Pharmacology Division and Chemical Engineering Division for their help and wholehearted cooperation.

I wish my friend M. Ravi, who always dreamt that I reach great heights, had been alive to see this day (may his soul rest in peace).

Life would have been totally different and difficult but my brother Srinivasa Rao, always stood as a big barrier between difficulties and me. I fall short of words to express my feelings and gratitude towards him. My vocabulary is not sufficient to express my thanks for the encouragement and invaluable support from my brother Balakishan and sister Vijaya Laxmi.

No words from any language can ever express my gratitude towards my mother Sarojani and father Ramachandram for the love and affection showered on me. Help and support from all relatives and well-wishers is sincerely acknowledged.

I fall short of literature to express my feelings towards Madhavi Latha and Vijaya for their support and encouragement.

Excellent technical support of Mr. Krishna Rao and Mrs. Madhuri is remembered. Financial assistance from CSIR, in the form of Junior and Senior Research Fellowships is gratefully acknowledged.

Finally, I thank the Director, IICT for allowing me to submit the work in the form of a Ph.D. thesis.

Raju

Glossary of abbreviations

Ac : Acetyl

AIBN : Azobisisobutyronitrile

Ar : Aryl

BF₃.Et₂O : Boran trifluride diethylether

Bn : Benzyl

Boc : tert-Butoxycarbonyl

Bu : Butyl

^tBu : tert-Butyl

CD : Circular dichroism

CDI : N,N'-Carbonyldiimidazole

CSA : Camphor-10-sulfonic acid

DBU : 1,8-Diazabicyclo[5.4.0]undec-7-ene

DCC : N,N'-Dicyclohexylcarbodiimide

DCM : Dichloromethane

DEAD : Diethylazodicarboxylate

DIBAL : Diisobutylaluminum hydride

DMAP : 4-(Dimethylamino)pyridine

DME : Dimethoxyethane

DMF : Dimethyl formamide

DMP : 2,2-Dimethoxypropane

DMSO : Dimethyl sulfoxide

Et : Ethyl : Gram

h : Hour

HMPA : Hexamethylphosphoramide

HOBt : 1-Hydroxybenzotriazole

Hz : Hertz

IBX : 2-Iodoxybenzoic acid

IR : Infra red

KHMDS : Potassium bis(trimethylsilyl)amide

LDA : Lithiumdiisopropylamine

LAH : Lithium aluminium hydride mCPBA : meta-Chloroperbenzoic acid

Me : Methyl min : Minute mL : Milliliter

Moc : Methoxycarbonyl mp : Melting point Ms : Methane sulfonyl

NBS : N-Bromosuccinimide

NMR : Nuclear magnetic resonance

Ns : Nosyl

OMe : O-Methyl ether

Ph : Phenyl

PMR : Proton magnetic resonance pTSA : para-Toluenesulfonic acid

Py : Pyridine

r.t. : Room temperature

TBS, TBDMS : tert-Butyldimethylsilyl
TBDPS : tert-Butyldiphenylsilyl

TEA : Triethylamine

Tf : Trifluoromethanesulfonyl

TFA : Trifluoroacetic acid

TFAA : Trifluoroacetic anhydride

THF : Tetrahydrofuran

TLC : Thin layer chromatography

TMS : Trimethylsilyl

Tol : Tolyl

TPP : Triphenylphosphine

Ts : Tosyl

GENERAL REMARKS

- Melting points were recorded on either Buchi R-535 apparatus or a Kofler hot plate and are uncorrected.
- Infrared spectra were recorded on Perkin-Elmer Infrared−683 spectrophotometer with NaCl optics. Spectra were calibrated against the polystyrene absorption at 1610 cm⁻¹. Samples were scanned neat, KBr wafers or in chloroform as a thin film.
- PMR and ¹³C NMR spectra were recorded on Varian Gemini 200, AV-300 or Varian Unity 400 spectrometers making a solution of samples in CCl₄/CDCl₃ (1:1) solvent using tetramethylsilane (TMS) as the internal standard unless otherwise mentioned, and are given in the δ scale. The standard abbreviations s, d, t, q, m, dd, dt, brs, bd refer to singlet, doublet, triplet, quartet, multiplet, doublet of a doublet, doublet of a triplet, broad singlet and broad doublet respectively.
- Mass spectra were recorded on either Finnigan MAT 1020B or Micro Mass VG 70-70H spectrometer operating at 70eV using direct inlet system.
- The optical rotations were measured on JASCO DIP-360 digital polarimeter.
- CD-spectra recorded on JASCO J-715 spectropolarimeter.
- CHN analysis was performed on a Vario EL analyzer.
- Analytical thin layer chromatography (TLC) was performed on precoated silica gel-60 F₂₅₄ (0.5 mm) glass plates. Visualization of the spots on TLC plates was achieved either by exposure to iodine vapour or UV light or by dipping the plates to sulphuric acid-α-napthol or to ethanolic anisaldehyde-sulphuric acid-acetic acid or to phosphomolybdic acid-sulphuric acid solution and heating the plates at 120 °C. Column chromatography was performed using silica gel (60-120 mesh) and the column was usually eluted with ethyl acetate-petroleum ether.
- Moisture sensitive reactions were carried out by using standard syringeseptum techniques.
- All solvents and reagents were purified by standard techniques. All evaporation of solvents was carried out under reduced pressure on Buchi-RE-121 rotary evaporator below 50 °C.
- Yields reported are isolated yields of material judged homogeneous by TLC and NMR spectroscopy.
- The names of some compounds given in the experimental section were taken from ACD/Name, Version 1.0.

CONTENTS

	Pa	age No.		
Chapter-I				
	Regio- and stereoselective bromohydrin formation from β -protectedamino- γ , δ -unsaturated sulfoxides mediated by a pendant sulfoxide	1-86		
	A brief account of the applications of sulfoxides in asymmetric synthesis	1		
	Present work	6		
	Experimental	37		
	References	83		
	Spectra			
Chapter-II				
Stere	oselective synthesis of (1R,3R)-HPA-12, (-)-allosedamine			
and f	unctionalized tetrahydrofurans.	87-178		
Section-A: Stereoselective synthesis of (1R,3R)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)-dodecanamide (HPA-12)				
Section-B:	Stereoselective synthesis of (-)-allosedamine			
	Introduction, Earlier approaches and Present work	87		
	Experimental	128		
	References	154		
	Spectra			

Section-C: Synthesis of highly functionalized tetrahydrofurans via silicon promoted Pummerer type reaction.				
Introduction and Earlier contributions	158			
Present work	163			
Experimental	169			
References	177			
Spectra				
Chapter-III				
Stereospecific synthesis of phytosphingosines and sphingosines 179-237				
Section-A: Novel, Short, Stereospecific synthesis of <i>xylo-</i> (2 <i>R</i> ,3 <i>S</i> ,4 <i>S</i>)-phytosphingosine and <i>threo-</i> (2 <i>R</i> ,3 <i>R</i>)-sphingosine				
Section-B: Efficient and Stereospecific synthesis of <i>lyxo</i> -(2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i>)-phytosphingosine and <i>erythro</i> -(2 <i>R</i> ,3 <i>S</i>)-sphingosine				
Introduction, Earlier approaches and Present work	179			
Experimental	211			
References	234			
Spectra				
Chapter-IV				
The design and synthesis of a novel safety-catch linker - Target alcohol/Phenol release by cyclative cleavage 238				
Introduction and earlier contributions	238			
Present work	244			
Experimental	250			
References	256			
Spectra				
Publications	258			

CHAPTER-I

Regio- and stereoselective bromohydrin formation from $\beta\text{-protectedamino-}\gamma,\delta\text{-}$ unsaturated sulfoxides mediated by a pendant sulfoxide

A brief account of the application of sulfoxides in asymmetric synthesis

The use of sulfoxides as chiral synthons in asymmetric synthesis is now a well-established and reliable strategy, and has been the subject of several excellent reviews. The efficiency of the sulfoxide in diastereoselective auxiliary-induced reactions is mainly due to the steric and stereoelectronic differences existing between the substituents of the stereogenic sulfur atom: a lone pair of electron, an oxygen, and two different carbon ligands. Besides the configurational stability of the sulfinyl group, the existence of several efficient methods to obtain homochiral sulfoxides as well as their synthetic versatility has led to a substantial growth of the use of these chiral starting materials in the synthesis of biologically active compounds. Some examples wherein sulfoxides are used for the stereoselective generation of new stereogenic centers are illustrated below.

1) Reduction of β-ketosulfoxides

The stereoselectivity of the reduction of β-ketosulfoxides was first investigated by Annunziata and Cinquini⁴ with NaBH₄ and LAH. This reaction was further investigated and extended to other reducing agents by Solladie.⁵ The best results were obtained with DIBAL, which gave mainly, or exclusively one diastereomer. The opposite absolute configuration at the new stereogenic hydroxy bearing carbon was achieved using DIBAL/ZnCl₂ system. The strategy was employed in the elaboration of the vicinal triol 3 moiety present in aspicillin 4 (Scheme 1).⁶

Scheme 1

2) Reactions of sulfoxide stabilized carbanions

a) 1,2-Asymmetric induction

The first successful application of the alkylation strategy was reported by Marquet and co-workers in the total synthesis of *dl*-biotin 5.7 The bicyclic sulfoxide 6, prepared from *meso*-dibromosuccinic acid 6, was alkylated in the presence of diglyme/HMPA to afford the advanced intermediate 8 with complete stereocontrol (Scheme 2).

Scheme 2

b) Addition to α,β -unsaturated compounds

The application of the addition of sulfoxide stabilized carbanions to α , β -unsaturated compounds in the asymmetric synthesis of natural products were mainly due to Hua. The highly diastereoselective addition of the anion, resulting from the treatment of (S)-allyl p-tolyl sulfoxide 9 with LDA, to 2-methylcyclopentenone 10 was the key step in the total synthesis of the sesquiterpene hirsutene⁸ 12 (Scheme 3).

Neighbouring group participation by sulfinyl oxygen

The participation by the sulfinyl-oxygen as a neighboring group was first demonstrated in the iodolactonisation of *syn-3-endo-*phenysulfinylbicyclo[2,2-1]hept-5-ene-2-*endo-*carboxylic acid **13** using iodine and sodium hydrogen carbonate in CHCl₃-water.⁹ This acid afforded 35% of the iodohydrin **14** together with the expected iodolactone, while the corresponding sulfide and sulfone, afforded only iodolactones. The iodohydrin **16** was the only product from the *syn* ester **15** (Scheme 4). Using ¹⁸O labeled water it was shown that the reaction proceeded through an inversion of sulfur configuration.¹⁰ The ¹⁸O label was observed in the sulfinyl group of the iodohydrin and none at the hydroxy group. The experimental results suggested the existence of a sulfoxonium salt **I**,

resulting from neighbouring group participation by the sulfinyl oxygen, followed by nucleophilic attack by water at sulfur resulting in Walden inversion.

Scheme 4

$$NaHCO_3$$
, I_2
 CO_2R
 $CHCI_3$ - H_2O
 O
 Ph
 $R = H$
 $R = CH_3$
 $R = CH_3$

Neighbouring group participation by sulfinyl oxygen was also demonstrated by Binder *et al.*,¹¹ in the stereoselective bromohydration of 1,2-allenylsulfoxides **17** with Br₂ and H₂O (Scheme 5).

Scheme 5

More recently neighbouring group participation by sulfinyl oxygen was demonstrated by Ma *et al.*,¹² in the highly regio- and stereoselective iodohydroxylation reaction of 1,2-allenylsulfoxides with I⁺ and H₂O. The iodohydroxylation reaction of 1,2-allenyl phenylsulfoxide 19 with I₂ and H₂O was carried out in MeCN/H₂O (7:1) to afford *E*-2-iodo-3-(phenylsulfinyl)-2-propen-1-ol 20 with good selectivity (Scheme 6).

Scheme 6

Ph
$$\stackrel{\circ}{\stackrel{\circ}{\longrightarrow}}$$
 $\stackrel{\circ}{\stackrel{\circ}{\longrightarrow}}$ $\stackrel{\circ}{\stackrel{\circ}{\longrightarrow}}$ $\stackrel{\circ}{\stackrel{\circ}{\longrightarrow}}$ $\stackrel{\circ}{\stackrel{\circ}{\longrightarrow}}$ $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\longrightarrow}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ \stackrel

Based on the result, a mechanism involving the participation of the sulfinyl group was proposed. First, the iodonium ion (I^+) reacts with the electron rich carbon-carbon double bond to form the intermediate III. Intramolecular attack by the sulfinyl oxygen at the C3 position would afford the five membered cyclic intermediate V. Subsequent hydrolysis of V would afford the product 22 stereospecifically (Scheme 7).

Scheme 7

Rayner *et al.*¹³ demonstrated the potential of the sulfoxide group as an intramolecular nucleophile in the opening of 2,3-epoxysulfoxides with high degree of regiocontrol (Scheme 8).

Scheme 8

Present work

1,3-Aminoalcohols are structural units present in many synthetic¹⁴ and natural products¹⁵ possessing potent biological activity. Their potential as chiral auxiliaries and ligands in asymmetric synthesis is also well recognized.¹⁶ Not surprisingly, 1,3-aminoalcohols have attracted the attention of synthetic chemists and a number of different strategies have been devised for their construction.¹⁷ 1,2-/1,3-Stereocontrol, in the reaction of acyclic allylic and homoallylically substituted olefins with electrophiles, by asymmetric induction, constitutes a valuable synthetic tactic.¹⁸

As pointed out in the foregoing discussion the sulfoxide group participates in halohydrin formation from cyclic, simple acyclic olefins and allenes. Its potential to produce functionalized products with stereocontrol at two adjacent centers in substituted acyclic systems remains unexplored. The regio- and stereoselective synthesis of 1,3-aminoalcohol derivatives from allylamine derivatives via internal sulfinyl group participation is disclosed in this chapter.

1. Preparation of β -protectedamino- γ , δ -unsaturated sulfoxides

The β -protectedamino- γ , δ -unsaturated sulfoxides were envisaged to be derived from L-serine (Scheme 9, retro synthetic analysis).

Scheme 9

Aldehyde 30 was readily elaborated from L-serine 25 following the literature procedure.¹⁹ Thus, esterification of 25 with methanol and acetyl chloride afforded 26. The salt 26 on treatment with (Boc)₂O in the presence of excess Et₃N afforded the carbamate 27. Isopropylidene protection of 27 was effected in acetone with 2,2-DMP in the presence of BF₃.Et₂O to furnish 28. Compound 28 on treatment with LiBH₄ in absolute ethanol²⁰ afforded the alcohol 29, which was oxidized to the aldehyde 30 under Swern conditions using diisopropylethylamine as the base to minimize racemization²¹ (Scheme 10).

Scheme 10

HO
$$O$$
 OH O O

Reagents and conditions: (a) AcCl, MeOH, reflux, 6 h, 100%; (b) (Boc)₂O, Et₃N, THF, r.t., 6 h, 91%; (c) 2,2-DMP, acetone, BF₃.Et₂O, r.t.,1 h, 92%; (d) NaBH₄, LiCl, abs. ethanol, r.t., 16 h, 93%; (e) (COCl)₂, DMSO, N,N-diisopropylethyl amine, DCM, -78 °C, 78%.

Reaction of aldehyde 30 with the ylide, generated insitu from npentyltriphenylphosphoniumbromide and n-BuLi²² afforded the Z-alkene 31 as the only product. Deprotection of the acetonide group in 31 by treatment with catalytic amounts of camphor-10-sulfonic acid and methanol yielded the amino alcohol 32, which showed signals at δ 5.57 (dt) and δ 5.25 (dd) for the olefinic protons with $J_{CH=CH} = 10.9$ Hz in its PMR spectrum suggesting the Z-geometry. The signals for the gem-dimethyl groups of the acetonide were absent in the PMR spectrum. Compound 32 was converted into the sulfide 34 following a two-step protocol. Reaction of 32 with methanesulfonyl chloride in the presence of Et₃N and catalytic amounts of DMAP²³ furnished the mesylate 33. The PMR spectrum of 33 revealed a signal at δ 2.99 (s) for the SO₂CH₃. Compound 33 was transformed into the sulfide 34 by treatment with thiophenol in the presence of DBU (Scheme 11).24 The PMR spectrum of the sulfide 34 showed signals at δ 7.50-7.12 (m) integrating for five aromatic protons, δ 3.18 (dd) and δ 2.95 (dd) for the C1 methylene protons. Treatment of the sulfide 34 with aqueous NaIO425 afforded an equimolar mixture of sulfoxides 35a and 35s.

Scheme 11

NHBoc NHBoc
$$C_3H_7$$
 C_3H_7 C_3H_7 C_3H_7 C_3H_7

$$\begin{array}{c} \xrightarrow{\text{C}} & \text{MsO} & \xrightarrow{\mathbb{Z}} & \xrightarrow{\text{NHBoc}} & \xrightarrow{\text{C}} & \text{NHBoc} \\ & & & & \\ & & &$$

O NHBoc

$$Ph \stackrel{S}{\searrow} R$$
 (CH₂)₂CH₃ + $Ph \stackrel{S}{\nearrow} R$ (CH₂)₂CH₃
35a 35s

Reagents and conditions: (a) $Ph_3PCH_2C_4H_9Br$, n-BuLi, -78 °C, THF, 30 min, 0 °C, 1 h, add 30 at -78 °C, r.t. 4 h, 62%; (b) CSA, MeOH, r.t., 16 h, 72%; (c) MsCl, Et_3N , DMAP, DCM, 0 °C, 10 min, 95%; (d) PhSH, DBU, benzene, r.t., 30 min, 91%; (e) aq. $NaIO_4$, MeOH, 0 °C-r.t., 16 h, 94%.

Reaction of the aldehyde 30 with the ylide generated from benzyltriphenylphosphonium bromide and n-BuLi²² at -78 °C afforded a mixture of 36 along with the cis isomer (trans:cis = 4:1). The mixture without purification was subjected to isomerization following the protocol devised by Schwarz et al.²⁶ Thus, refluxing the mixture of olefins in benzene with catalytic amounts of PhSH and AIBN for 16 h furnished the trans isomer 36 exclusively. The PMR spectrum showed signals at δ 6.49 (d) and δ 5.68 (dd) for the double bond protons with a coupling constant $J_{CH=CH} = 12.2$ Hz suggesting an E-geometry for the olefin. Following the same sequence of reactions as outlined for the olefin 31, compound 36 was transformed into the epimeric mixture of sulfoxides 40a and 40s (Scheme 12).

Scheme 12

Reagents and conditions: (a) i) Ph₃PCH₂PhBr, n-BuLi, -78 °C, THF, 30 min then 0 °C 1 h, add 30 at -78 °C, r.t., 4 h; (ii) PhSH, AIBN, benzene, reflux, 16 h, 66% (for the two steps); (b) CSA, MeOH, r.t., 16 h, 75%; (c) MsCl, Et₃N, DMAP, DCM, 0 °C, 10 min, 98%; (d) PhSH, DBU, benzene, r.t., 30 min, 87%; (e) aq. NaIO₄, MeOH, 0 °C-r.t., 16 h, 92%.

Reaction of aldehyde 33 with ethyl(triphenylphosphoranilide)acetate in benzene afforded the trans α , β -unsaturated ester 41 as the sole product. The PMR spectrum of 41 showed resonances at δ 6.83 (dd) and δ 5.87 (d) for the olefinic protons with a coupling constant $J_{CH=CH}=15.8$ Hz proving the trans geometry of the double bond. Following a literature protocol²⁷ the unsaturated ester was reduced with the ate-complex generated insitu from DIBAL and n-BuLi to afford the allylalcohol 42. The PMR spectrum of alcohol 42 showed signals at δ 4.02-3.72 (m) for the CH_2OH and at δ 3.90 (bs) for the OH. Protection of the hydroxy group as the pivalate ester by treatment with pivaloyl chloride in the presence of Et_3N afforded 43. The pivalate ester 43 showed a resonance at δ 1.17 (s) integrating to 9H for the tert-butyl group. The IR spectrum showed an absorption band at 1706 cm⁻¹ for the C=O stretching.

Removal of the acetonide group by treatment with catalytic amounts of CSA in methanol afforded the alcohol 44. Reaction of the alcohol 44 with the Hata reagent under modified conditions²⁸ afforded the desired phenyl sulfide 45 (Scheme 13). The PMR spectrum revealed resonances at δ 7.42-7.15 (m) for the aromatic protons, δ 3.12 (dd) and δ 2.98 (dd) for the methylene protons on C1 carbon. Treatment of the sulfide with aqueous NaIO₄ afforded an equimolar mixture of sulfoxides 46a and 46s.

Scheme 13

Reagents and conditions: (a) Ph₃PCHCO₂Et, benzene, r.t., 30 min, 95%; (b) DIBAL, n-BuLi, toluene, 30 min, added to 41, -78 °C, 30 min, 73%; (c) Piv-Cl, Et₃N, DMAP, 0 °C-r.t., 25 min, 83%; (d) CSA, MeOH, r.t., 16 h, 70%; (e) PhSSPh, Bu₃P, THF, 72 °C, 36 h, 63%; (f) aq. NaIO₄, MeOH, 0 °C-r.t., 16 h, 90%.

The pivalate group in 46a/46s was deprotected individually by saponification using aq. NaOH in methanol to yield the corresponding allylalcohol which was subsequently protected as its silyl ether 47a/47s respectively by treating with *tert*-butyldiphenylchlorosilane in the presence of imidazole (Scheme 14, one of the isomer depicted).

Scheme 14

Reagents and conditions: (a) i) aq. NaOH, MeOH, r.t., 0 °C-r.t., 4 h, 95%; ii) TBDPS-Cl, imidazole, DCM, r.t., 1 h, 47a: 76%; 47s: 75%.

The methyl carbamate derivatives 48a/48s were prepared individually from 35a/35s respectively by treatment with trifluoroacetic acid to yield the ammonium salt, followed by treatment with methyl chloroformate and Et₃N in the same pot (Scheme 15, one of the isomer depicted).

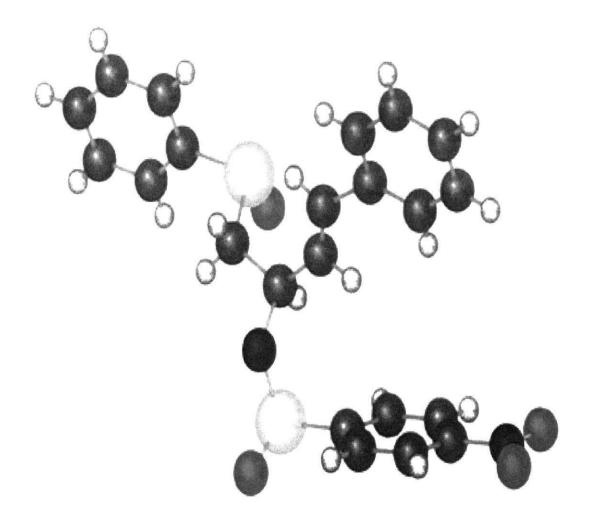
Scheme 15

Ph
$$\sim$$
 NHBoc \sim NHMoc \sim

Reagents and conditions: (a) i) TFA, DCM, 0 °C, 30 min; ii) ClCO₂Me, Et₃N, 0 °C-r.t., 1 h

Assignment of configuration to the isomeric β -protectedamino- γ , δ -unsaturated sulfoxides

Suitable crystals were obtained from the *p*-nitrobenzenesulfonamide derivative **49**s, which was derived from **40**s (Scheme 16) by successive deprotection and reprotection. The structure of **49**s was deduced by X-ray


diffraction (Figure 1). The structure could therefore be assigned to 40s from which 49s was derived. The structures were assigned to 35s and 47s by comparison of their PMR data with 40s which revealed similarities. Likewise the PMR spectra of 35a, and 47a were similar to the PMR of 40a.

Scheme 16

Ph
$$\stackrel{O}{\stackrel{NHBoc}{=}}$$
 Ph $\stackrel{O}{\stackrel{NHNs}{=}}$ Ph $\stackrel{O}{\stackrel{O}{\stackrel{NHNs}{=}}$ Ph $\stackrel{O}{\stackrel{NHNs}{=}}$ Ph $\stackrel{O}{\stackrel{NHNs$

Reagents and conditions: (a) i) TFA, DCM, 0 °C, 30 min, 90%; ii) *p*-NO₂-C₀H₄-SO₂Cl, Et₂N, DCM, r.t., 1 h, 79%.

Figure 1: X-ray structure of 49s

The chemical shift of the methine proton on C2 carbon (C2 H) of the epimeric sulfoxides and their chiroptical properties are diagnostic and help deduce the configuration at sulfur (Table I).²⁹ Inspection of Table I reveals that C2 H of (S_S,R_C) isomers resonate downfield compared to C2 H of the (R_S,R_C) diastereomers. The (S_S,R_C) diastereomers show negative optical rotation where as (R_S,R_C) diastereomers show positive optical rotation.

Table I: Comparison of the $C2\ H$ methine proton resonance and Optical rotations.

Compound	С2 Н	$[\alpha]_D^{25}$	Compound	С2 Н	$[\alpha]_D^{25}$
	δ ррт			δ ррт	
35a	4.81	-168.0	35 <i>s</i>	4.71	+72.4
40 <i>a</i>	4.74	-167.0	40 <i>s</i>	4.63	+13.5
46 <i>a</i>	4.58	-36.6	46s	4.44	+38.3
47 <i>a</i>	4.83	-276.4	47s	4.75	+89.4

Regio- and stereoselective bromohydrin formation

The unsaturated β -protectedamino- γ , δ -unsaturated sulfoxides were reacted with N-bromosuccinimide in toluene in the presence of water to afford the bromohydrins regio- and stereoselectively (Table II).

Examination of the Table II reveals the following trends

- ✓ The carbamate group competes with the sulfinyl group as the intramolecular nucleophile. The pathway involving the carbamate moiety is slightly preferred over the sulfinyl moiety.
- ✓ Opposite stereoselectivity is observed in products arising via carbamate and sulfinyl group participation indicating different reaction pathways.
- ✓ The stereoselectivity of the products resulting from carbamate participation is very high.

- ✓ The reaction pathway involving the sulfinyl group is a highly regioselective affording products from a 6-endo nucleophilic attack, probably as a consequence of the inductive electron withdrawing nature of the allylic amino substituent, which would destabilize any partial positive charge developing at C3 carbon.
- ✓ The reaction is general for different classes of olefins.

Table II: Regio- and stereoselectivity in formation of bromohydrins

Yield *	86	82	25	83	
Ratio ^b Yield ^a	3.2	24	ā	2.3	
C2/C3 Syn/Anti	>>95:<5	>95:<5	<5>95	<5:>95	
Product from Carbamate Participation	Ph S (CH ₂),CH, Br S2a	Ph. S HN O HN	Ph P	Ph S HN O SSs SSs	2
C2/C3 Anti/Syn	83:17	9:1	17:83	6:1	
Product from Sulfinyl group participation	O NHBoc OH S (CH ₂), CH ₃ SO ₃ SO ₃	NHB∞ OH S FIN - S SOa SOa	Ph S Ph Ph S4s	Ph S Ph Ph S4a	
Substrate	Ph S (CH ₂), CH ₃ 35a	0 NHBoc Ph S (CH,), CH, 1 3	Ph S Ph	Ph S Ph Ph Ph A0s	
S. No.	-	4	8	4	

	~	8	70	02
	2.1	31:19	1	17:3
	>95:<5	>>5>:<6	>95:<5	>95:<5
Chapter-1	Ph S OTBDPS	Ph S OTBOPS	Ph 5 (CH ₂), CH ₃	9 HN S HN 0 Ph S S S S S S S S S S S S S S S S S S
	<5>95	<5:>95	92:8	>95:<5
	Ph S S6s	Ph S is see See	9 NHMoc 9 OH 1 3 (CH ₂), CH, 8c 59s	Ph S (CH ₁) ₁ (CH ₁
	Ph S Ta	0 NFBsc ph S 1 3 473	Ph S (CH.), CH, 48a	9 NHMoc Ph S (CH.),CH., 1 3 48s
	w	•	7	∞

^a Yield refers to the combined yield of all the products ^bProduct ratio between sulfinyl participation and carbamate participation

- ✓ The sulfoxides with a relative *syn* orientation of the sulfinyl and amino substituents react more stereoselectively than sulfoxides with an *anti* disposition.
- The methyl carbamate moiety is known to be a poorer nucleophile^{30e} than the *t*-butyl carbamate group. It is clear from entries 7 and 8 in Table II that the products resulting from the sulfinyl group participation, although not formed exclusively, were now the predominant component of the reaction mixture. The nucleophilicity of the sulfinyl group can therefore be assumed to be in between that of the *t*-butyl and methyl carbamates.

The formation of the bromohydrins regio- and stereoselectively can be rationalized by invoking the intermediacy of sulfoxonium salts, formed by the nucleophilic attack of the internal sulfinyl group on the olefin π complexed to the bromonium ion and subsequent hydrolysis by attack of water at sulfur in a S_N2 fashion resulting in products with net inversion of sulfur configuration.

Formation of the predominant product by the sulfinyl group participation from 35s in NBS reaction could be explained by the formation of sulfoxonium salt (VII). Though, both VII and VIII would provide the same product, the latter is destabilized due to repulsion between the amino substituent and alkyl substituent (Scheme 17).

Scheme 17

The products resulting from the diastereomer 35*a* can be rationalized by the intermediacy of sulfoxonium salts XI and XII to yield the major and minor products respectively (Scheme 18).

52*a*

Scheme 18

Formation of products from 40s: The sulfoxonium salt XIV in a twist boat confirmation would explain for the formation of the major isomer 53a. The

XIII

intermediate XV would suffer from steric repulsion of the amino and the phenyl groups. Sulfoxonium salt XVI would explain for the formation of the minor product 54a (Scheme 19).

Scheme 19

In a similar fashion intermediates XVIII and XIV can be invoked to explain the formation of major and minor products 53s and 54s respectively via sulfinyl group participation from 40a.

Scheme 20

Probably the relative energies of the different ground state conformations of the starting material are important in determining the facial selectivity of bromonium ion approach and product selectivity in the pathway involving internal carbamate participation.

The formation of the major and minor products from sulfinyl group participation from 47s can be rationalized through intermediates XXI and XXII. The product from carbamate participation can be explained via the intermediacy of XXIII (Scheme 21).

Scheme 21

O NHP

Ph SO Ph SO Ph SCH₂OP

A7s

$$A7s$$
 $A7s$
 $A7s$

In a similar fashion the intermediate sulfoxonium salts XXIV and XXV can explain formation of the major and minor products from 47a. Product from carbamate participation can be explained by intermediacy of XXVI (Scheme 22).

Scheme 22

Structural assignment to the bromohydrins

The isomeric nature of major bromohydrins 50a/50s and 52a/52s was established by oxidation of the sulfoxides individually to yield identical

sulfones. The structure of 50a, the major stereoisomer from 35s, was assigned by transforming it to the oxazinone 62 by treatment with TFA/CH₂Cl₂ followed by the treatment of the resulting salt with carbonyl di imidazole in the presence of DABCO as the base in THF as the solvent (Scheme 23). The C3 methine proton coupled with C2 and C4 methine protons and the *J* values respectively are 8.7 and 3.6 Hz. Irradiation of C2 H in 52s showed nOe with C4 H confirming the structure assigned to it.

Scheme 23

Reagents and conditions: (a) *m*CPBA, CHCl₃, 0 °C, 10 min, 61: 90%; 63: 87%; (b) i) TFA: DCM, r.t., 30 min; ii) DABCO, CDI, THF, r.t., 24 h.

The minor stereomer 51s from 35a was transformed to the oxazinone which was identical to the product resulting from carbamate participation from 35s. This proves that 51s arises via sulfinyl group participation and the sulfur center is inverted in the process. The PMR data of oxazinone 52a supported the structure assigned to it. The J values for C3 methine proton coupling with the C2 and C4 methine protons were 3.6 and 2.6 Hz respectively.

Oxidation of the bromohydrins 53a and 53s with m-CPBA yielded identical sulfone 64. Oxidation of the carbamate participation products 55a and 55s individually yielded identical sulfone 65. The PMR data of the oxazinone 66, derived from the major bromohydrin 53a arising from 40s, unambiguously confirmed the structure assigned to it and the stereochemistry of 53s. Oxazinone derived from the minor product 54s arising from 40a was found to be identical to 55s (Scheme 24).

Br

65

Reagents and conditions: (a) mCPBA, CHCl₃, 0 °C, 10 min; (b) i) TFA: DCM, r.t., 30 min; ii) DABCO, CDI, THF, r.t., 24 h, 75%.

Br

555

The epimeric nature of major bromohydrins 56a/56s and products arising from carbamate participation 58a/58s was confirmed by transforming into identical sulfones 67 and 68 respectively. Major bromohydrin 56a arising from 47s afforded oxazinone 69 by a two-step reaction sequence. Minor product 60a provided 58s by a two-step protocol (Scheme 25). The PMR spectra of 69 and 58s helped assign the structures to 56a and 57s unambiguously.

Scheme 25

Br

545

Reagents and conditions: (a) i) TFA: DCM, r.t., 30 min; ii) DABCO, CDI, THF, r.t., 24 h, 73%.

The PMR spectra of the products 59a and 59s arising from the methyl carbamates 48a/48s had PMR data similar to the products arising from t-butyl carbamates 35a/35s. Their structure was confirmed by transforming 50a into 59a by a two-step sequence. Thus, removal of t-butyl carbamate group with trifluoroacetic acid and subsequent treatment of the resulting ammonium salt with methylchloro formate in the presence of Et_3N yielded methyl carbamate protected 1,3-amino alcohol derivatives. Again the major products 59s and 59a arising from diastereomeric sulfoxides yielded identical sulfone 70 upon oxidation using mCPBA (Scheme 26).

Scheme 26

Reagents and conditions: (a) i) TFA: DCM, r.t., 30 min; ii) ClCO₂Me, Et₃N, r.t., 1 h, 60%; (b) mCPBA, CHCl₃, 0 °C, 10 min, 83%.

Preparation of sulfonamide diastereomers

In the search for an amino substituent that would not act as a nucleophile in the reaction, the *p*-toluenesulfonyl group was judiciously selected. Thus, the sulfoxide diastereomers **35**, **40** and **46** were individually transformed into

sulfonamide derivatives 71, 72 and 73 respectively by treatment of the individual diastereomers with trifluoroacetic acid followed by *p*-TsCl in the presence of Et₃N and catalytic amounts of DMAP (Scheme 27, one of the isomers illustrated).

Scheme 27

Reagents and conditions: (a) i) TFA, DCM, 0 °C, 30 min; ii) p-TsCl, Et₃N, 0 °C-r.t., 1 h.

The individual pivalate epimers 73a and 73s upon treatment with aq. NaOH in methanol afforded alcohol 74. Subsequently the alcohol was converted into the silyl derivative 75 (Scheme 28) by treatment with TBDPS-CI in the presence of imidazole.

Scheme 28

Reagents and conditions: (a) i) aq. NaOH, MeOH, r.t., 0 °C-r.t., 4 h, 74a: 73%; 74s: 75%; ii) TBDPS-Cl, imidazole, DCM, r.t., 1 h, 75a: 83%, 75s: 81%.

The diastereomeric *p*-toluenesulfonamides also revealed similarities in their PMR spectra (Table III), optical rotation data (Table IV) with the corresponding Boc protected diastereomers. The C2 H of *anti* diastereomers resonated downfield relative to the *syn* diastereomers.

Table III: Chemical shift for the C1 protons

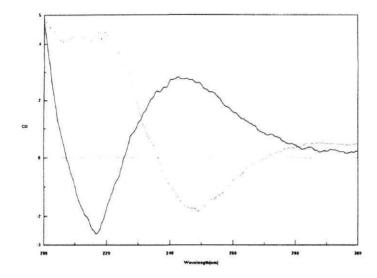
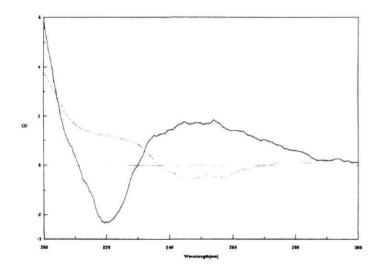

δ (ppm)	Δ	Compound	δ (ppm)	Δ
3.03, 2.69	0.34	71 <i>s</i>	3.13, 2.75	0.38
2.97	0.00	72 <i>s</i>	3.16, 2.92	0.24
2.76	0.00	75 <i>s</i>	2.98, 2.70	0.28
	3.03, 2.69 2.97	3.03, 2.69	3.03, 2.69 0.34 71s 2.97 0.00 72s	3.03, 2.69 0.34 71s 3.13, 2.75 2.97 0.00 72s 3.16, 2.92

Table IV: chemical shift for the C2 H proton and optical rotation

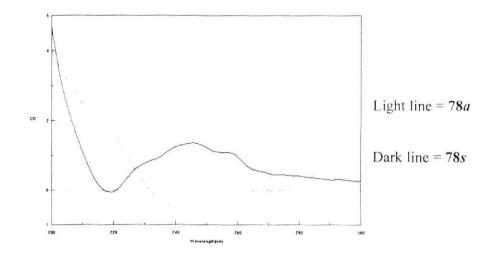
Substrate	C2 H δ ppm	$\left[\alpha\right]_{D}^{25}$	Compound	C2 Η δ ppm	$[\alpha]_{D}^{25}$
71 <i>a</i>	4.45	-118.8	71s	4.38	+168.7
72 <i>a</i>	4.52	-115.9	72 <i>s</i>	4.38	+9.2
73 <i>a</i>	4.40	-90.1	73s	4.21	+92.3
75a	4.34	-75.8	75 <i>s</i>	4.15	+64.5

It has been known for decades that a correlation exists between the absolute configuration of sulfoxides and their chiroptical properties.³¹ It was expressed in terms of the signs and rotational strengths of the appropriate Cotton effects (CE). The phenylsulfinyl group is an inherently chiral chromophore and the sign of CE is determined solely by the chirality of the chromophore. Its primary UV band (usually at 235-255 nm) is optically active with CE, $\Delta \varepsilon$ ca. 20. Also a shorter wavelength absorption band (ca. 210-220 nm) demonstrates CE of similar amplitude but opposite sign. The CD spectra of 71s, 72s and 75s revealed a positive sign for the primary band (235-255 nm) in the cotton effect curve corresponding to the (R)-configuration of the sulfinyl group, while sulfoxides 71a, 72a and 75a showed a negative sign for the primary band (235-255 nm) in their cotton effect curve corresponding to (S)-configuration.


Figure 2: CD spectra

Light line = 71a

Dark line = 71s


CD-Spectra of 71a and 71s

Light line = 72a

Dark line = 72s

CD-Spectra of 72a and 72s

CD-Spectra of 75a and 75s

The spectra were recorded in acetonitrile at the concentration range of 10-4-10-5M.

The sulfonamide derivatives 71,72 and 75 were reacted with NBS at ambient temperature in toluene in the presence of water to afford amino alcohol derivatives (Table V). An observation of the table reveals the following points.

- Compounds from sulfinyl group participation were the only products obtained as expected.
- The product distribution is similar to that observed with Boc and Moc groups indicating that protecting group had little influence on the product stereo- and regioselectivity.

The bromohydrin 50s upon deprotection of the t-butoxycarbonyl group followed by treatment with p-TsCl in DCM in the presence of Et₃N afforded 76s, supporting the structure assigned to 76s. Bromohydrins 76a and 76s yielded identical sulfone 82 upon treatment with mCPBA (Scheme 29).

Table V: Regio- and stereoselectivity in formation of bromohydrins from sulfonamide derivatives

S. No	Sulfoxide	Product	C2/C3 Anti/Syn	Yield
1	Ph S NHTs (CH ₂) ₃ CH ₃	Ph S NHTs OH Br 76s	8.5:1.5	76
2	Ph S NHTs (CH ₂),CH,	Ph S NHTs OH Br (CH ₂),CH,	>95:<5	82
3	Ph S Ph	Ph S NHTs OH Ph Br 78s	1.5:8.5	75
4	p_h $\stackrel{O}{\stackrel{NHTs}{\sim}}$ p_h $72s$	Ph S NHTs OH Ph Br 78a	<5:>95	80
5	Ph S NHTs OTBDPS	Ph S NHT'S OH OTBDPS Br 80s	3:7 ª	70
6	Ph S OTBDPS	Ph S NHTs OH OTBDPS Br 80a	1.5:8.5 b	70

^aBoth the major and minor bromohydrins obtained as a mixture of stereomers in 7:3 ratio; ^bMajor bromohydrin obtained as a mixture of stereomers in 4:1 ratio.

Scheme 29

Reagents and conditions: (a) i) TFA, DCM, $0 \, ^{\circ}$ C, $30 \, \text{min}$; ii) p-TsCl, Et_3N , $0 \, ^{\circ}$ C-r.t., $1 \, h$; (b) mCPBA, CHCl₃, $0 \, ^{\circ}$ C, $10 \, \text{min}$, 82%.

The structure of 78*a* was proven unambiguously by transforming it into a tetrahydrofuran derivative 83 (mechanisitic aspects and structure confirmation by nOe measurements discussed in section C of Chapter II). Oxidation of the sulfoxides 78*s* and 78*a* individually furnished an identical sulfone 84 proving the epimeric nature of the bromonydrins (Scheme 30).

Scheme 30

765

Reagents and conditions: (a) TBDPS-Cl, DMF, r.t., 30 min, 86%; (b) mCPBA, CHCl₃, $0 \circ C$, 10 min, 90%.

Analogous to the *trans* olefin 72, the olefin 75 is expected to afford products wherein the amino and bromo substituents would be syn disposed. The major bromohydrins 80a/80s furnished identical sulfone 85 upon oxidation with mCPBA in chloroform (Scheme 32).

Scheme 32

Reagents and conditions: (a) mCPBA, CHCl₃, 0 °C, 10 min, 78%.

In conclusion, a methodology for the regio- and stereoselective synthesis of 1,3-aminoalcohols from allylamine derivatives via efficient asymmetric induction and intramolecular nucleophilic participation by the sulfinyl group is disclosed. Highly functionalized products are obtained which can be further elaborated by carbon-carbon and carbon-heteroatom bond formations into bioactive target molecules.

Experimental

Methyl N-Boc-serinate, 27.

Acetyl chloride (60 mL) was added dropwise over 10 min to MeOH (400 mL) cooled in ice. The solution was stirred for 5 min then solid (L)-serine 25 (31.0 g, 295 mmol) was added in one portion and the solution slowly heated at reflux. Heating was continued for 2 h, cooling and removal of the solvent by evaporation under reduced pressure gave the crude methyl serinate hydrochloride 26 as a colourless crystalline solid, which was used without further purification. Yield 100%.

Methyl serinate hydrochloride (25 g, 160 mmol) was suspended in THF (500 mL) and Et₃N (35 g, 345 mmol) added. The resulting white suspension was cooled to 0 °C and a solution of (Boc)₂O (35.8 g, 159 mmol) in THF (250 mL) was added dropwise over 30 min. The mixture was allowed to warm to r.t. and stirred for 6 h, and then warmed to 50 °C and stirred further for a period of 2 h. The solvent was removed in vacuo, and the residue partitioned between Et₂O and water. The aqueous phase was extracted with Et₂O and the combined organic phases washed with 3% HCl, 5% NaHCO₃ and brine. Evaporation of the solvent afforded 27 as a colourless oil (32.2 g, 22.8 mmol) in 91% yield.

PMR (C₆D₆, 200 MHz) : 5.60 (bs, NH), 4.42-4.37 (m, 1H), 3.83-3.64 (m, 2H),

3.27 (s, 3H), 1.43 (s, 9H).

 $[\alpha]^{25}$ D : -18.2 (c 5.0, MeOH)

Lit. $[\alpha]^{25}D$: -18.9 (c 5.0, MeOH)

3-(1,1-Dimethylethyl)-4-methyl-(S)-2,2-dimethyloxazolidine-3,4-dicarboxylate, 28.

The ester 27 (30.5 g, 139 mmol) was dissolved in a mixture of acetone (400 mL) and 2,2-DMP (30 mL) to which BF₃.Et₂O (1 mL) was added. The resulting solution was stirred at r.t. for 2 h, after which time TLC showed no

unreacted starting material. The solvent was removed in vacuo, the residual oil taken up in DCM and washed with aq. sat. NaHCO₃ solution, water, brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded the acetonide 28 (33.1 g, 127.8 mmol) in 92% yield.

Pale yellow oil.

PMR (C_6D_6 , 200 MHz) : 4.33-4.21 (m, 1H), 3.83-3.70 (m, 2H), 3.36 (s, 3H),

1.80 (s, 3H), 1.53 (s, 3H), 1.40 (s, 9H).

 $[\alpha]^{25}$ D : -55.2 (c 1.3, CHCl₃)

Lit. $[\alpha]^{25}D$: -54.0 (c 1.3, CHCl₃)

tert-Butyl 4-hydroxymethyl-2,2-dimethyl-1,3-oxazolane-3-carboxylate, 29.

To the solution of the acetonide 28 (7.73 g, 30 mmol) in THF (45 mL) under nitrogen, anhydrous LiCl (2.54 g, 60 mmol) and NaBH₄ (2.27 g, 60 mmol) were added. After the addition of absolute ethanol (80 mL), the mixture was stirred at room temperature overnight. The reaction mixture was cooled in an ice water bath; adjusted to pH 4 by the gradual addition of 10% citric acid solution, and concentrated in vacuo. Water was added to the residue, which was extracted with DCM and dried over Na₂SO₄. Removal of the solvent gave 29 (6.44 g, 27.9 mmol) in 93% yield, which without further purification was taken to the next step.

PMR (CDCl₃, 200 MHz) : 3.73-3.62 (m, 1H), 3.62-3.57 (m, 3H), 3.53-3.48 (m, 1H), 1.57 (s, 3H), 1.45 (s, 3H), 1.39 (s, 9H).

To the solution of (COCl)₂ (3.82 g, 30.1 mmol) in DCM (55 mL) cooled at -78 °C was added DMSO (3.92 g, 50.3 mmol) dropwise via syringe. The resulting solution was stirred for 10 min at -78 °C, and then the solution of alcohol 29 (5.8 g, 25.1 mmol) in DCM (55 mL) was added dropwise via syringe. The reaction mixture was stirred for 15 min at -78 °C and then Hunig's base (17.5 mL, 100 mmol) in DCM (5 mL) was added slowly. The cooling bath was removed and the mixture allowed to warm to 0 °C over 30 min. The reaction

mixture was transferred into a separating funnel charged with ice-cold 1 N HCl solution. The two phases were separated, the aqueous phase was extracted with DCM and the combined organic layers were washed with phosphate buffer (pH 7), water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure afforded the aldehyde 30 (4.48 g, 19.6 mmol) in 78% yield.

Colourless oil.

PMR (C₆D₆, 200 MHz) : 3.90 (m, 1H), 3.65-3.57 (m, 2H), 1.59 (s, 3H), 1.40

(s, 3H), 1.33 (s, 9H).

 $[\alpha]^{25}$ D : -90.4 (c 1.0, CHCl₃)

Lit.¹⁹ [α]²⁵D : -89.0 (c 1.0, CHCl₃)

tert-Butyl 4-[(Z)-1-hexenyl]-2,2-dimethyl-(4S)-1,3-oxazolane-3-carboxylate, 31.

To the suspension of *n*-pentyltriphenylphosphonium bromide (4.45 g, 11 mmol) in dry THF (44 mL) cooled at –78 °C, *n*-BuLi (5 mL, 2M in hexanes, 10 mmol) was added dropwise over 10 min. The mixture was stirred for 30 min gradually allowing the temperature to reach 0 °C and stirred further for a period of 1 h at the same temperature. The dark red solution was cooled to –78 °C and the solution of aldehyde 30 (2.3 g, 10 mmol) in THF (10 mL) was added dropwise over 10 min. The reaction mixture was gradually allowed to attain room temperature over a period of 30 min and stirred for a further period of 4 h at room temperature. Then the reaction mixture was quenched with water and washed successively with aq. 1 N HCl solution, brine and dried over Na₂SO₄. Purification by chromatography on silica gel column using AcOEt/petroleum ether (1:19, v/v) afforded 34 (1.26 g, 6.2 mmol) in 62% yield.

Liquid.

PMR (200 MHz, CDCl₃) : δ 5.52-5.32 (m, 2H), 4.72-4.50 (bs, 1H), 4.02 (dd, J = 9.0, 6.7 Hz, 1H), 3.61 (dd, J = 9.0, 4.2 Hz, 1H), 2.24-

1.98 (m, 2H), 1.56 (s, 3H), 1.54-1.24 (m, 16H), 0.91 (t,

J = 6.7 Hz, 3H).

 $[\alpha]^{25}$ D : +55.0 (c 0.95, CHCl₃)

m/z (EI) : 283 [M]+

IR (neat) cm⁻¹ : 2930, 1695, 1375, 1250, 1175, 1090, 1050, 850.

Elemental analysis : Calcd. for C₁₆H₂₉NO₃: C, 67.81; H, 10.31; N, 4.94.

Found : C, 67.75; H, 10.13; N, 4.72.

2-(tert-Butyloxycarbonylamido)-(2R,3Z)-3-octen-1-ol, 32.

To the substrate 31 (1.41 g, 5 mmol) in methanol (20 mL) was added camphor-10-sulphonic acid (62.5 mg, 0.25 mmol) at room temperature and stirred for 16 h under N_2 atmosphere. The reaction mixture was quenched by the addition of few drops of Et_3N and the solvent evaporated under reduced pressure. The crude product mixture was chromatographed on a silica gel column using AcOEt/petroleum ether (1:24, v/v) as the eluent to afford the aminoalcohol 32 (874 mg, 3.6 mmol) in 72% yield.

Solid.

mp : 65-66 °C

PMR (200 MHz, CDCl₃) : δ 5.57 (dt, J = 10.9, 7.4 Hz, 1H), 5.25 (dd, J = 10.9, 9.1

Hz, 1H), 4.72-4.53 (bs, NH), 4.52-4.35 (m, 1H), 3.64-

3.48 (m, 2H), 2.25-2.05 (m, 2H), 1.45 (s, 9H), 1.45-

1.26 (m, 4H), 0.91 (distorted t, 3H).

 $[\alpha]^{25}$ D : +29.6 (c 1.0, CHCl₃)

m/z (EI) : 243 [M]+

IR (neat) cm⁻¹ : 3420, 2950, 1701, 1500, 1387, 1258, 1145.

Elemental analysis : Calcd. for C₁₃H₂₅NO₃: C, 64.17; H, 10.35; N, 5.76.

Found : C, 64.21; H, 10.28; N, 5.72.

2-(tert-Butyloxycarbonylamido)-(Z)-3-octenyl methanesulfonate, 33.

To the solution of **32** (243 mg, 1 mmol) in dichloromethane (2 mL) cooled at 0 °C was added successively Et₃N (131 mg, 1.3 mmol), DMAP (cat.) and methanesulfonyl chloride (115 mg, 1 mmol) and stirred for 10 min. at the same temperature. The reaction mixture was quenched by the addition of water and then extracted into dichloromethane. The organic layer was washed successively with 10% aq. citric acid, aq. NaHCO₃, water, brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford **33** (303 mg, 0.95 mmol) in 95% yield which was taken to the next step without further purification.

Viscous liquid.

```
PMR (200 MHz, CDCl<sub>3</sub>) : 8 5.63 (dt, J = 10.8, 7.4 Hz, 1H), 5.31 (dd, J = 10.8, 8.8 Hz, 1H), 4.75-4.54 (m, 1H and NH), 4.23 (dd, J = 9.7, 3.7 Hz, 1H), 4.14 (dd, J = 9.7, 5.6 Hz, 1H), 2.99 (s, 3H), 2.23-2.02 (m, 2H), 1.54-1.22 (m, 13H), 0.92 (t, J = 6.7 Hz, 3H).
```

1-Phenylsulfanyl-(2R,3Z)-3-octen-2-tert-butyloxycarbonylamide, 34.

To the solution of 33 (319 mg, 1 mmol) in benzene (2 mL) at room temperature was added successively PhSH (110 mg, 1 mmol) and DBU (228 mg, 1.5 mmol) under N₂ and stirred for 30 min. The reaction mixture was diluted with ether and washed successively with 0.2 N aq. NaOH solution, water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure followed by purification on silica gel column using AcOEt/petroleum ether (3:97, v/v) afforded the thioether 34 (305 mg, 0.91 mmol) in 91% yield. Viscous liquid.

```
PMR (200 MHz, CDCl<sub>3</sub>) : 87.50-7.12 (m, 5H), 5.51 (dt, J = 10.8, 6.7 Hz, 1H), 5.34-5.27 (m, 1H), 4.65-4.45 (m, 1H and NH), 3.18 (dd, J = 14.1, 4.7 Hz, 1H), 2.95 (dd, J = 14.1, 7.0 Hz,
```

1H), 2.12-1.96 (m, 2H), 1.43 (s, 9H), 1.36-1.20 (m,

4H), 0.88 (t, J = 6.7 Hz, 3H).

 $[\alpha]^{25}$ D : -4.0 (c 0.75, CHCl₃)

m/z (LSIMS) : 336 [M+H]⁺

IR (neat) cm⁻¹ : 3312, 2927, 2897, 1698, 1503, 1400, 1245, 1163, 1023.

Elemental analysis : Calcd. for C₁₉H₂₉NO₂S: C, 68.02; H, 8.71; N, 4.17; S,

9.56;

Found : C, 67.85; H, 8.43; N, 4.47; S, 9.23.

General procedure for the preparation of sulfoxides from sulfides:

To the solution of the substrate (1 mmol) in methanol (10 mL) was added dropwise a solution of NaIO₄ (1 mmol) in water (5 mL) at 0 °C and allowed to attain room temperature during a period of 30 min. After stirring for 16 h, the reaction mixture was filtered and the filtrate was evaporated to remove most of methanol under reduced pressure. The aq. residue was extracted into ethylacetate, dried over Na₂SO₄ and evaporated. The diastereomers were separated by column chromatography using AcOEt/petroleum ether (1:3, v/v) as the eluent. The *anti* isomer eluted initially and then the *syn* isomer.

1- (S_s) -Phenylsulfinyl-(2R,3Z)-3-octen-2-tert-butyloxycarbonylamide, 35a. 47%. Solid.

mp : 107-109 °C.

PMR (200 MHz, CDCl₃) : δ 7.68-7.58 (m, 2H), 7.56-7.46 (m, 3H), 5.76-5.41 (m,

2H and NH), 4.90-4.70 (m, 1H), 3.17-3.03 (m, 1H), 2.89 (dd, *J* = 13.5, 4.1 Hz, 1H), 2.25-2.01 (m, 2H),

1.60-1.28 (m, 13H), 0.91 (distorted t, 3H).

 $[\alpha]^{25}$ D : -168.0 (c 1.0, CHCl₃)

m/z (LSIMS) : 353 [M+H]+

IR (neat) cm⁻¹ : 3207, 2972, 2925, 2837, 1703, 1537, 1175, 1044.

Elemental analysis : Calcd. for C₁₉H₂₉NO₃S: C, 64.92; H, 8.32; N, 3.98; S,

42

9.12;

Found : C, 65.13; H, 8.14; N, 3.63; S, 9.34.

1-(Rs)-Phenylsulfinyl-(2R,3Z)-3-octen-2-tert-butyloxycarbonylamide, 35s.

47%. Solid.

mp : 68-69 °C

PMR (200 MHz, CDCl₃) : δ 7.76-7.66 (m, 2H), 7.56-7.45 (m, 3H), 5.60-5.36 (m,

2H), 4.95-4.81 (bs, NH), 4.71 (quintet, *J* = 6.9 Hz, 1H), 3.10 (dd, *J* = 13.9, 6.9 Hz, 1H), 2.98-2.85 (m,

1H), 2.11-1.95 (m, 2H), 1.45 (s, 9H), 1.39-1.09 (m,

4H), 0.85 (distorted t, 3H).

 $[\alpha]^{25}D$: +72.4 (c 1.0, CHCl₃)

m/z (LSIMS) : 353 [M+H]+

IR (neat) cm⁻¹ : 3243, 2975, 2928, 1700, 1540, 1169.

Elemental analysis : Calcd. for C₁₉H₂₉NO₃S: C, 64.92; H, 8.32; N, 3.98; S,

9.12;

Found : C, 64.73; H, 8.47; N, 3.73; S, 9.29.

tert-Butyl2,2-dimethyl-4-[2-phenyl-(*E*)-1-ethenyl]-1,3-oxazolane-3-carboxylate, 36.

Benzyltriphenylphophonium bromide (3.92 g, 11mmol) was suspended in dry THF (44 mL) in a round bottom flask under N₂, cooled at -78 °C and *n*-BuLi (5 mL, 2M in hexanes, 10 mmol) was added dropwise over 10 min. The mixture was stirred for 30 min gradually allowing the temperature to reach 0 °C and stirred further for a period of 1 h at the same temperature. The dark red solution was cooled to -78 °C and the solution of aldehyde 30 (2.3 g, 10 mmol) in THF (10 mL) was added dropwise over 10 min. The reaction mixture was gradually allowed to attain room temperature over a period of 30 min and stirred for a further period of 4 h at room temperature. Then the reaction mixture was quenched with water and washed successively with aq. 1 N HCl

solution, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure afforded the crude product mixture. The PMR of the crude product revealed the presence of *cis* and *trans* olefins in a ratio of 4:1. The product mixture was subjected to isomerisation following the protocol reported by Schwarz et al.⁷ⁱ Thus, PhSH (37 mg, 0.33 mmol) and AIBN (54 mg, 0.33 mmol) were added to the olefin mixture (2.0 g, 6.6 mmol) in benzene (25 mL) and refluxed for 16 h. The reaction mixture was diluted with benzene and washed successively with 0.2 N NaOH soln., water, brine and dried over Na₂SO₄. Evaporation of the volatiles under reduced pressure followed by column chromatography using AcOEt/petroleum ether (1:19, v/v) as the eluent afforded 36 (2.0 g, 6.6 mmol) in 66% overall yield for 2 steps.

Liquid.

PMR (200 MHz, CDCl₃) : δ 7.35-7.10 (m, 5H), 6.49 (d, J = 12.2 Hz, 1H), 5.68

(dd, J = 12.2, 9.5 Hz, 1H), 4.91-4.75 (m, 1H), 4.23-

4.08 (m, 1H), 3.86-3.72 (m, 1H), 1.62 (s, 3H), 1.49 (s,

3H), 1.42 (s, 9H).

 $[\alpha]^{25}$ D : -63.6 (c 1.0, CHCl₃)

m/z (EI) : 304 [M]⁺

IR (neat) cm⁻¹ : 2970, 1700, 1480, 1455, 1380, 1255, 1175, 1100.

Elemental analysis : Calcd. for C₁₈H₂₅NO₃: C, 71.26; H, 8.31; N, 4.62.

Found : C, 70.97; H, 8.13; N, 4.83.

2-(tert-Butyloxycarbonylamido)-4-phenyl-(2R,3E)-3-buten-1-ol, 37.

Following the procedure as detailed for the preparation of **32**, **36** (1.52 g, 5 mmol) on treatment with CSA gave **37** (986 mg, 3.75 mmol) in 75% yield. Solid.

mp : 95-96 °C

PMR (200 MHz, CDCl₃) : δ 7.41-7.17 (m, 5H), 6.60 (d, J = 15.8 Hz, 1H), 6.14

(dd, J = 15.8, 6.3 Hz, 1H), 4.95-4.82 (bs, NH), 4.47-

4.32 (m, 1H), 3.78 (dd, I = 10.2, 4.1 Hz, 1H), 3.73

(dd, J = 10.2, 4.9 Hz, 1H), 1.46 (s, 9H).

 $[\alpha]^{25}D$: -40.6 (c 1.0, CHCl₃)

m/z (EI) : 263 [M]⁺

IR (neat) cm⁻¹ : 3400, 3080, 3005, 1700, 1500, 1270, 1170.

Elemental analysis : Calcd. for C₁₅H₂₁NO₃: C, 68.42; H, 8.04; N, 5.32;

Found : C, 68.32; H, 8.17; N, 5.70.

2-(tert-Butyloxycarbonylamido)-4-phenyl-(E)-3-butenyl methanesulfonate, 38.

Mesylation of 37 (263 mg, 1 mmol) following the procedure detailed for the preparation of 33 yielded 38 (334 mg, 0.98 mmol) in 98% yield. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.38-7.18 (m, 5H), 6.63 (d, J = 15.6 Hz, 1H), 6.12

(dd, J = 15.6, 6.2 Hz, 1H), 4.92 (d, J = 8.6 Hz, NH),

4.60-4.56 (m, 1H), 4.37 (dd, J = 9.8, 4.4 Hz, 1H), 4.29

(dd, J = 9.8, 5.1 Hz, 1H), 3.02 (s, 3H), 1.47 (s, 9H).

3-Phenyl-1-phenylsulfanylmethyl-(1R,2E)-2-tert-butyloxycarbonylamide, 39.

Following the procedure as detailed for the preparation of **34**, **38** (341 mg, 1 mmol) on treatment with PhSH in the presence of DBU afforded **39** (310 mg, 0.87 mmol) in 87% yield.

Solid.

mp : 64-66 °C

PMR (200 MHz, CDCl₃) : δ 7.40-7.10 (m, 4H), 7.33-7.12 (m, 6H), 6.53 (d, J =

15.6 Hz, 1H), 6.13 (dd, J = 15.6, 5.9 Hz, 1H), 4.90-

4.77 (bs, NH), 4.54-4.50 (m, 1H), 3.27 (dd, J = 13.4,

5.2 Hz, 1H), 3.12 (dd, J = 13.4, 5.9 Hz, 1H), 1.46 (s,

9H).

 $[\alpha]^{25}_D$: +14.2 (c 1.1, CHCl₃)

m/z (LSIMS) : 356 [M+H]+

IR (neat) cm⁻¹ : 3375, 2928, 1696, 1500, 1366, 1247, 1167, 1022, 745.

Elemental analysis : Calcd. for C₂₁H₂₅NO₂S: C, 70.95; H, 7.09; N, 3.94; S,

9.02;

Found : C, 70.67; H, 7.19; N, 3.73; S, 9.27.

4-Phenyl-1-(S_S)-phenylsulfinyl-(2R,3E)-3-buten-2-tert-

butyloxycarbonylamide, 40a:

46%. Solid.

mp : 147-148 °C

PMR (200 MHz, CDCl₃) : δ 7.68-7.59 (m, 2H), 7.56-7.46 (m, 3H), 7.41-7.10 (m,

5H), 6.65 (d, J = 16.3 Hz, 1H), 6.37 (dd, J = 16.3, 5.9

Hz, 1H), 5.90-5.76 (bs, NH), 4.74 (quintet, J = 5.9

Hz, 1H), 3.22-3.02 (m, 2H), 1.48 (s, 9H).

 $[\alpha]^{25}D$: -167.0 (c 1.04, CHCl₃)

m/z (LSIMS) : 372 [M+H]+

IR (neat) cm⁻¹ : 3290, 2978, 2925, 1709, 1525, 1147, 1040.

Elemental analysis : Calcd. for C₂₁H₂₅NO₃S: C, 67.90; H, 6.78; N, 3.77; S,

8.63;

Found : C, 67.45; H, 7.04; N, 3.77; S, 8.53.

4-Phenyl-1-(Rs)-phenylsulfinyl-(2R,3E)-3-buten-2-tert-

butyloxycarbonylamide, 40s.

46%. Solid.

mp : 133-134 °C

PMR (200 MHz, CDCl₃) : δ 7.72-7.61 (m, 2H), 7.58-7.46 (m, 3H), 7.36-7.15 (m,

5H), 6.55 (d, J = 15.2 Hz, 1H), 6.19 (dd, J = 15.2, 7.0

Hz, 1H), 5.18-5.04 (bs, NH), 4.63 (quintet, J = 7.0

Hz, 1H), 3.16 (d, J = 7.0 Hz, 2H), 1.46 (s, 9H).

 $[\alpha]^{25}$ D : +13.5 (c 0.70, CHCl₃)

46

m/z (LSIMS) : 372 [M+H]+

IR (neat) cm⁻¹ : 3284, 2968, 1710, 1523, 1157, 1037.

Elemental analysis : Calcd. for C₂₁H₂₅NO₃S: C, 67.90; H, 6.78; N, 3.77; S,

8.63;

Found : C, 67.73; H, 6.64; N, 3.84 S, 8.67.

tert-Butyl 4-[2-ethyloxycarbonyl-(*E*)-1-ethenyl]-2,2-dimethyl-1,3-oxazolane-3-carboxylate, 41.

Ethyl(triphenylphosporanilidine)acetate (8.3 g, 20 mmol) was added portionwise to the solution of aldehyde 30 (4.6 g, 20 mmol) in benzene (60 mL) at room temperature and stirred for 30 min. After evaporation of the solvent under reduced pressure, ether was added to the residue and cooled to 0 °C. Most of the triphenylphosphine oxide formed in the reaction precipitated out and was removed by filtration. The filtrate was concentrated and the residue purified by column chromatography using AcOEt/petroleum ether (1:9, v/v) as the eluent to afford the *trans* unsaturated ester 41 (5.68 g, 19 mmol) in 95% yield.

Liquid.

PMR (200 MHz, CDCl₃) : δ 6.83 (dd, J = 15.8, 8.7 Hz, 1H), 5.87 (d, J = 15.8 Hz,

1H), 4.59-4.34 (m, 1H), 4.20 (q, J = 7.0 Hz, 2H), 4.12-

3.98 (m, 1H), 3.73-3.68 (m, 1H), 1.68-1.39 (m, 15H),

1.25 (t, J = 7.0 Hz, 3H).

 $[\alpha]^{25}$ D : -63.6 (c 1.0, CHCl₃)

m/z (LSIMS) : 300 [M+H]+

IR (neat) cm⁻¹ : 2928, 1742, 1698, 1390, 1256, 1176.

tert-Butyl-4-[3-hydroxy-(*E*)-1-propenyl]-2,2-dimethyl-1,3-oxazolane-3-carboxylate, 42.

In a dry round bottom flask containing dry toluene (32 mL), diisobutylaluminum hydride (47.5 mmol, 47.5 mL, 1M soln. in toluene) was added followed by *n*-BuLi (47.5 mmol, 23.75 mL, 2M in hexanes) dropwise over a period of 10 min at ambient temperature. The mixture was stirred further for a period of 30 min. The above prepared ate complex was added to the solution of the unsaturated ester **41** (5.68 g, 19 mmol) in toluene (38 mL) cooled at -78 °C, over a period of 10 min. The reaction mixture was stirred for 40 min gradually allowing it to attain r.t. and stirred further for a period of 30 min. The reaction mixture was diluted with ether (100 mL) and small ice pieces were added to quench the reaction. The gel that precipitated out was filtered through a sintered funnel and the gel washed with hot ethyl acetate. Evaporation of the filtrate under reduced pressure and column chromatography of the residue using AcOEt/petroleum ether (3:7, v/v) afforded the allylalcohol **42** (3.55 g, 13.87 mmol) in 73% yield.

Liquid.

PMR (200 MHz, CDCl₃) : δ 5.78-5.60 (m, 2H), 4.40-4.23 (m, 1H), 4.16-4.07 (m,

2H), 4.02-3.72 (m, 2H), 3.90 (bs, OH), 1.61-1.42 (m,

15H).

 $[\alpha]^{25}$ D : +23.6 (c 0.75, CHCl₃)

m/z (EI) : 258 [M+H]+

IR (neat) cm⁻¹ : 3445, 2980, 1696, 1392, 1255, 1170.

tert-Butyl-4-[3-(*tert*-butylcarbonyloxy)-(*E*)-1-propenyl]-2,2-dimethyl-1,3-oxazolane-3-carboxylate, 43.

To the stirred solution of allylalcohol **42** (3.55 g, 13.9 mmol) in dry dichloromethane (56 mL) was added successively Et₃N (2.10 g, 20.8 mmol) and pivaloyl chloride (1.81 g, 15 mmol) at 0 °C. The reaction mixture was gradually

allowed to attain r.t. and stirred further for a period of 25 min. The reaction mixture was diluted with DCM, washed successively with water, 10% aq. citric acid soln., brine, dried over Na₂SO₄. The organic layer was evaporated under reduced pressure, and the crude residue was purified by column chromatography using AcOEt/petroleum ether (1:9, v/v) as the eluent to afford the ester **43** (3.91 g, 11.51 mmol) in 83% yield. (58% overall yield from Garner aldehyde).

Liquid.

PMR (200 MHz, CDCl₃) : δ 5.74-5.53 (m, 2H), 4.60-4.47 (m, 2H), 4.30-4.16 (m,

1H), 4.02 (dd, J = 8.9, 6.7 Hz, 1H), 3.72 (dd, J = 8.9,

2.2 Hz, 1H), 1.59 (s, 3H), 1.51-1.31 (bs, 12H), 1.17 (s,

9H).

 $[\alpha]^{25}$ D : +1.6 (c 1.0, CHCl₃)

m/z (LSIMS) : 342 [M+H]+

IR (neat) cm⁻¹ : 3378, 2977, 2877, 1699, 1479, 1383, 1254, 1159, 1097.

Elemental analysis : Calcd. for C₁₈H₃₁NO₅: C, 63.32; H, 9.15; N, 4.10.

Found : C, 63.49; H, 9.42; N, 3.87.

4-(tert-Butyloxycarbonylamido)-5-hydroxy-(E,4R)-2-pentenyl pivalate, 44.

Acetonide deprotection with CSA as detailed earlier afforded **44** (1.05 g, 3.50 mmol) from **43** (1.70 g, 5 mmol) in 70% yield.

Liquid.

PMR (200 MHz, CDCl₃) : δ 5.82-5.60 (m, 2H), 4.78 (d, J = 6.0 Hz, NH), 4.57 (d,

J = 4.0 Hz, 2H, 4.26-4.22 (m, 1H), 3.72-3.53 (m, 2H),

1.47 (s, 9H), 1.22 (s, 9H).

 $[\alpha]^{25}_{D}$: +3.6 (c 1.0, CHCl₃)

m/z (LSIMS) : 302 [M+H]+

IR (neat) cm⁻¹ : 3369, 2975, 1712, 1699, 1518, 1367, 1284, 1163, 1059.

Elemental analysis : Calcd. for C₁₆H₂₉NO₃: C, 59.78; H, 9.03; N, 4.65;

Found : C, 59.66; H, 9.14; N, 4.77.

4-(*tert*-Butyloxycarbonylamido)-5-phenylsulfanyl-(*E*,4*R*)-2-pentenyl pivalate, 45.

A hard glass tube containing the alcohol 44 (2.41 g, 8 mmol), PhSSPh (5.2 g, 24 mmol) and PBu₃ (6.46 g, 32 mmol) in dry THF (32 mL) was sealed at the top at -78° C and after attaining room temperature, heated at 72 °C for 36 h. The reaction mixture was diluted with ethylacetate and washed sequentially with 0.2 N NaOH solution, water, brine and dried over anhydrous Na₂SO₄. After evaporating the solvent on a rotary evaporator the crude product mixture was chromatographed on a silica gel column using AcOEt/petroleum ether (1:9, v/v) as the eluent to afford 45 (1.98 g, 5.04 mmol) in 63% yield. Low melting solid.

PMR (200 MHz, CDCl₃) : δ 7.42-7.15 (m, 5H), 5.79-5.77 (m, 2H), 4.75-4.65 (m,

1H), 4.52 (s, 2H), 4.43-4.32 (m, 1H), 3.12 (dd, *J* = 14.1, 5.8 Hz, 1H), 2.98 (dd, *J* = 14.1, 5.8 Hz, 1H),

1.39 (s, 9H), 1.15 (s, 9H).

 $[\alpha]^{25}$ D : +7.8 (c 1.0, CHCl₃)

m/z (LSIMS) : 394 [M+H]+

IR (neat) cm⁻¹ : 3403, 2953, 1714, 1698, 1510, 1365, 1267, 1159, 1039.

Elemental analysis : Calcd. for C₂₁H₃₁NO₄S: C, 64.09; H, 7.94; N, 3.56; S,

8.15;

Found : C, 64.35; H, 7.63; N, 3.76; S, 8.53.

4-(*tert*-butyloxycarboxamido)-5-(*Ss*)-phenylsulfinyl-(*E*,4*R*)-2-pentenyl pivalate, 46*a*.

45%. Liquid.

PMR (200 MHz, DMSO-d₆): δ 7.68-7.50 (m, 5H), 7.30 (d, J = 8.4 Hz, NH), 5.76-

5.62 (m, 2H), 4.57-4.32 (m, 3H), 3.0-2.80 (m, 2H),

1.40 (s, 9H), 1.12 (s, 9H).

 $[\alpha]^{25}D$: -93.0 (c 0.75, CHCl₃)

m/z (LSIMS) : 410 [M+H]+

IR (neat) cm⁻¹ : 3312, 2968, 1725, 1699, 1517, 1360, 1157, 1037.

Elemental analysis : Calcd. for C₂₁H₃₁NO₅S: C, 61.59; H, 7.63; N, 3.42; S,

7.83;

Found : C, 61.23; H, 7.54; N, 3.57; S, 7.87.

4-(tert-Butyloxycarboxamido)-5-(Rs)-phenylsulfinyl-(E,4R)-2-pentenyl pivalate,

46s.

45%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.73-7.46 (m, 5H), 5.92-5.75 (m, 2H), 5.10-4.95 (bs,

NH), 4.65-4.41 (m, 3H), 3.12-2.96 (m, 2H), 1.46 (s,

9H), 1.22 (s, 9H).

 $[\alpha]^{25}_{D}$: +66.1 (c 0.66, CHCl₃)

m/z (LSIMS) : 410 [M+H]⁺

IR (neat) cm⁻¹ : 3310, 2970, 1728, 1695, 1510, 1457, 1245, 1159, 1040.

Elemental analysis : Calcd. for C₂₁H₃₁NO₅S: C, 61.59; H, 7.63; N, 3.42; S,

7.83;

Found : C, 61.42; H, 7.64; N, 3.33; S, 7.93.

General procedure for the preparation of the silyl ether from the pivaloyl esters:

To the solution of the pivalate ester 46a (820 mg, 2 mmol) in methanol (15 mL) cooled at 0 °C was added dropwise the solution of 0.2 N aq. NaOH (15 mL). The reaction mixture was allowed to attain r.t gradually and stirred for 4 h. The solvent was removed under reduced pressure and the product alcohol was extracted into ethylacetate. The organic layer was washed with water, brine and dried over Na₂SO₄. Evaporation of the solvent followed by column

chromatography using AcOEt/petroleum ether (2:3, v/v) as the eluent afforded the alcohol (722 mg, 1.9 mmol) in 95% yield.

To the solution of the above alcohol (570 mg, 1.5 mmol) in dichloromethane (6 mL) was added imidazole (204 mg, 3 mmol) followed by TBDPS-Cl (453 mg, 1.65 mmol) and stirred at r.t. for 1 h. Dichloromethane (10 mL) was added to the reaction mixture and the organic layer washed with water, brine and dried over Na₂SO₄. Column chromatography using AcOEt/petroleum ether (1:4, v/v) as the eluent afforded the **47a** (857 mg, 1.52 mmol) in 80% yield. (76% overall yield for 2 steps).

Following a similar procedure detailed for the conversion of **46***a* into **47***a*, **46***s* yielded **47***s* in 75% overall yield for 2 steps.

1N-[4-tert-Butyldiphenylsilyloxy-1-(Ss)-phenylsulfinylmethyl-(1R,2E)-2-butenyl]-carbamic acid tert-butylester, 47a.

76%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.71-7.45 (m, 9H), 7.40-7.28 (m, 6H), 5.98-5.62 (m,

2H and NH), 4.65-4.55 (m, 1H), 4.24 (s, 2H), 3.08-

2.84 (m, 2H), 1.45 (s, 9H), 1.05 (s, 9H).

 $[\alpha]^{25}$ D : -36.6 (c 0.61, CHCl₃)

m/z (LSIMS) : 564 [M+H]+

IR (neat) cm⁻¹ : 3323, 2922, 1699, 1519, 1168, 1020.

Elemental analysis : Calcd. for C₃₂H₄₁NO₄SSi: C, 68.17; H, 7.33; N, 2.48;

S, 5.69;

Found : C, 68.13; H, 7.14; N, 2.53; S, 5.84.

1N-[4-tert-Butyldiphenylsilyloxy-1-(Rs)-phenylsulfinylmethyl-(1R,2E)-2-butenyl]-carbamic acid tert-butylester, 47s.

75%. Solid.

mp : 101-103 °C

PMR (200 MHz, CDCl₃) : δ 7.72-7.52 (m, 6H), 7.51-7.27 (m, 9H), 5.76-5.58 (m,

2H), 4.96 (d, J = 6.7 Hz, NH), 4.52-4.36 (m, 1H), 4.17

(s, 2H), 3.10-2.90 (m, 2H), 1.42 (s, 9H), 1.03 (s, 9H).

 $[\alpha]^{25}$ D : +38.3 (c 0.61, CHCl₃)

m/z LSIMS : 564 [M+H]⁺

IR (neat) cm⁻¹ : 3389, 2925, 2854, 1712, 1465, 1111, 703.

Elemental analysis : Calcd. for C₃₂H₄₁NO₄SSi: C, 68.17; H, 7.33; N, 2.48;

S, 5.69;

Found : C, 68.56; H, 7.45; N, 2.49; S, 5.60.

Preparation of the methyl carbamates from the tert-butylcarbamates.

To a stirred solution of sulfoxide 35 (0.5 mmol) in dichloromethane (0.5 mL) was added dropwise a solution of trifluoroacetic acid/dichloromethane (1:1, 0.5 mL) at 0 °C and stirred for 30 min. The solvent was evaporated under reduced pressure, dried under vacuum and without further purification the ammonium salt was taken into dichloromethane (2 mL) and treated with triethylamine (101 mg, 1 mmol) followed by methylchloroformate (47 mg, 0.5 mmol) at 0 °C. After stirring for 1 h at room temperature, the reaction mixture was diluted with dichloromethane and washed successively with aq. citric acid, water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure followed by purification on a silica gel column using AcOEt/petroleum ether (9:11, v/v) afforded 48.

$1-(S_S)$ -Phenylsulfinyl-(2R,3Z)-3-octen-2-methoxycarbonylamide, 48a.

43%. Solid.

mp : 115-117 °C

PMR (200 MHz, CDCl₃) : δ 7.65-7.58 (m, 2H), 7.54-7.45 (m, 3H), 5.93 (d, J =

7.5 Hz, NH), 5.75-5.45 (m, 2H), 4.90-4.74 (m, 1H),

3.67 (s, 3H), 3.20-3.03 (m, 1H), 2.88 (dd, J = 12.9, 2.8

Hz, 1H), 2.21-2.00 (m, 2H), 1.42-1.25 (m, 4H), 0.92

(t, J = 6.7 Hz, 3H).

 $[\alpha]^{25}$ D : -276.4 (c 1.16, CHCl₃)

m/z (LSIMS) : 310 [M+H]+

IR (neat) cm⁻¹ : 3262, 2963, 2921, 1726, 1698, 1527, 1252, 1035.

Elemental analysis : Calcd. for C₁₆H₂₃NO₃S: C, 62.11; H, 7.49; N, 4.53; S,

10.36.

Found : C, 61.98; H, 7.13; N, 4.43; S, 10.09.

1-(R_S)-Phenylsulfinyl-(2R,3Z)-3-octen-2-methoxycarbonylamide, 48s.

43%. Solid.

mp : 143-146 °C

PMR (200 MHz, CDCl₃) : δ 7.72-7.65 (m, 2H), 7.60-7.44 (m, 3H), 5.60-5.39 (m,

2H), 5.26 (d, J = 7.1 Hz, NH), 4.75 (quintet, J = 7.1

Hz, 1H), 3.64 (s, 3H), 3.12 (dd, J = 13.0, 7.1 Hz, 1H),

2.91 (dd, J = 13.0, 5.7 Hz, 1H), 2.12-1.91 (m, 2H),

1.41-1.17 (m, 4H), 0.88 (distorted t, 3H).

 $[\alpha]^{25}$ D : +89.4 (c 0.70, CHCl₃)

m/z (LSIMS) : 310 [M+H]+

IR (neat) cm⁻¹ : 3310, 2970, 2923, 1716, 1520, 1040, 750, 683.

Elemental analysis : Calcd. for C₁₆H₂₃NO₃S: C, 62.11; H, 7.49; N, 4.53; S,

10.36;

Found : C, 62.58; H, 7.33; N, 4.59; S, 10.77.

Preparation of the sulfonamides from the tert-butylcarbamates.

To a stirred solution of sulfoxide (0.5 mmol) in dichloromethane (0.5 mL) was added dropwise a solution of trifluoroaceticacid/dichloromethane (1:1, 0.5 mL) at 0 °C and stirred for 30 min. The solvent was evaporated under reduced pressure, dried under vacuum and without further purification the ammonium salt was taken into dichloromethane (2 mL) and treated with triethylamine (101 mg, 1 mmol) followed by arylsulfonyl chloride (0.5 mmol) at 0 °C. After stirring

for 1 h at room temperature, the reaction mixture was diluted with dichloromethane and washed successively with aq. citric acid, water, brine and dried over Na_2SO_4 . Evaporation of the solvent under reduced pressure followed by purification on a silica gel column using AcOEt/petroleum ether (9:11, v/v) afforded the sulfonamide derivative.

1N-[1-Phenylsulfinylmethyl-(S_S)-(1R,2E)-2-heptenyl]-4-methyl-1-benzenesulfonamide 71a.

82%. Solid.

mp : 112-114 °C

PMR (200 MHz, CDCl₃) : δ 7.72 (d, J = 8.2 Hz, 2H), 7.55-7.40 (m, 5H), 7.28 (d,

J = 8.2 Hz, 2H), 6.31 (d, J = 5.9 Hz, NH), 5.45-5.30

(m, 2H), 4.49-4.40 (m, 1H), 3.03 (dd, J = 13.4, 7.5 Hz,

1H), 2.69 (dd, J = 13.4, 3.0 Hz, 1H), 2.44 (s, 3H),

1.81-1.69 (m, 2H), 1.23-1.10 (m, 4H), 0.86 (distorted

t, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 13.8, 21.4, 22.2, 27.0, 31.1, 48.2, 60.4, 123.9, 127.1,

127.4, 129.2, 129.4, 131.2, 133.5, 137.6, 142.6, 143.2.

 $[\alpha]_D^{25}$: -118.8 (c 1.0, CHCl₃)

m/z (LSIMS) : 406 [M+H]*

IR (neat) cm⁻¹ : 3342, 2928, 2855, 1330, 1159.

Elemental analysis : Calcd. for C₂₁H₂₇NO₃S₂: C, 62.19; H, 6.71; N, 3.45; S,

15.81;

Found : C, 61.86; H, 6.97; N, 3.71; S, 16.10.

1N-[1-Phenylsulfinylmethyl-(Rs)-(1R,2E)-2-heptenyl]-4-methyl-1-benzenesulfonamide, 71s.

84%. Solid.

mp : 114-116 °C

PMR (200 MHz, CDCl₃) : δ 7.75 (d, J = 8.2 Hz, 2H), 7.70-7.45 (m, 5H), 7.28 (d,

J = 8.2 Hz, 2H, 5.49-5.23 (m, 2H), 4.46-4.33 (m, 1H),

3.13 (dd, I = 13.4, 6.7 Hz, 1H), 2.75 (dd, I = 13.4, 6.7)

Hz, 1H), 2.42 (s, 3H), 1.80-1.60 (m, 2H), 1.28-1.08

(m, 4H), 0.91 (distorted t, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 13.8, 21.4, 22.2, 27.1, 31.1, 48.0, 62.9, 124.0, 126.4,

127.4, 129.3, 129.5, 131.2, 134.7, 143.4, 143.7.

 $[\alpha]_D^{25}$: +168.7 (c 1.0, CHCl₃)

m/z (LSIMS) : 406 [M+H]+

IR (neat) cm⁻¹ : 3258, 2924, 2847, 1455, 1327, 1160.

Elemental analysis : Calcd. for C₂₁H₂₇NO₃S₂: C, 62.19; H, 6.71; N, 3.45; S,

15.81;

Found : C, 62.56; H, 6.38; N, 3.01; S, 16.13.

1*N*-[3-Phenyl-1-(*Ss*)-phenylsulfinylmethyl-(1*R*,2*E*)-2-propenyl]-4-methyl-1-benzenesulfonamide, 72*a*.

80%. Solid.

mp : 177-178 °C

PMR (200 MHz, CDCl₃) : δ 7.74 (d, J = 8.2 Hz, 2H), 7.62-7.43 (m, 5H), 7.38-

7.11 (m, 7H), 6.45-6.40 (m, 1H and NH), 6.04 (dd, 1

= 16.3, 7.4 Hz, 1H), 4.56-4.48 (m, 1H), 2.98-2.92 (d, J

= 5.2 Hz, 2H), 2.34 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 20.8, 51.4, 62.2, 123.4, 125.9, 127.4, 127.8, 128.9,

130.6, 131.8, 135. 3, 142.5, 143.1.

 $[\alpha]_D^{25}$: -115.9 (c 0.5, CHCl₃)

m/z (LSIMS) : 426 [M+H]+

IR (neat) cm⁻¹ : 3112, 2929, 1452, 1328, 1157.

Elemental analysis : Calcd. for C₂₃H₂₃NO₃S₂: C, 64.92; H, 5.45; N, 3.29; S,

15.07.

Found : C, 64.67; H, 5.66; N, 3.14; S, 14.90.

1N-[3-Phenyl-1-(Rs)phenylsulfinylmethyl-(1R,2E)-2-propenyl]-4-methyl-1-benzenesulfonamide, 72s.

87%. Solid.

mp : 152-153 °C

PMR (200 MHz, CDCl₃) : δ 7.72 (d, J = 8.2 Hz, 2H), 7.62-7.46 (m, 5H), 7.30-

7.08 (m, 7H), 6.35 (d, *J* = 16.3 Hz, 1H), 5.90 (dd, *J* = 16.3, 9.2 Hz, 1H), 4.44-4.32 (m, 1H), 3.16 (dd, *J* = 13.4, 7.4 Hz, 1H), 2.92 (dd, *J* = 13.4, 5.9 Hz, 1H),

2.35 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.3, 53.2, 62.3, 124.1, 125.8, 127.4, 129.4, 129.5,

131.4, 133.2, 137.5, 143.2, 143.4.

 $[\alpha]_D^{25}$: +9.2 (c 0.7, CHCl₃)

m/z (LSIMS) : 426 [M+H]*

IR (neat) cm⁻¹ : 3062, 2927, 1445, 1331, 1159.

Elemental analysis : Calcd. for C₂₃H₂₃NO₃S₂: C, 64.92; H, 5.45; N, 3.29; S,

15.07.

Found : C, 65.07; H, 5.26; N, 3.55; S, 15.20.

1N-[3-Phenyl-1-(Rs)phenylsulfinylmethyl-(1R,2E)-propenyl]-4-nitro-1-benzenesulfonamide, 49s.

88%. Solid.

mp : 164-165 °C

PMR (200 MHz, DMSO-d₆): δ 8.05 (d, J = 9.1 Hz, 2H), 7.89 (d, J = 9.1 Hz, 2H),

7.62-7.38 (m, 5H), 7.18-6.90 (m, 5H), 6.12 (d, J = 15.6

Hz, 1H), 5.64 (dd, J = 15.6, 8.2 Hz, 1H), 4.48-4.26

(bs, NH), 4.23-4.18 (m, 1H), 3.06 (dd, J = 12.6, 6.7

Hz, 1H), 2.83 (dd, J = 12.6, 7.4 Hz, 1H).

m/z (LSIMS) : 457 [M+H]⁺

IR (neat) cm⁻¹ : 3421, 2927, 1587, 1520, 1327, 1160.

Elemental analysis

: Calcd. for C₂₂H₂₀N₂O₅S₂: C, 57.88; H, 4.42; N, 6.14;

S, 14.05.

Found

: C, 57.92; H, 4.57; N, 6.14; S, 14.12.

4-(4-Methylphenylsulfonamido)-5-(S_s)-phenylsulfinyl-(E,4R)-2-pentenyl pivalate, 73a.

79%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.75 (d, J = 8.2 Hz, 2H), 7.55-7.44 (m, 5H), 7.26 (d,

J = 8.2 Hz, 2H), 6.50 (d, J = 8.2 Hz, NH), 5.72-5.65

(m, 2H), 4.43-4.38 (m, 3H), 2.94-2.74 (m, 2H), 2.43

(s, 3H), 1.18 (s, 9H).

 $[\alpha]_D^{25}$

: −90.1 (*c* 0.75, CHCl₃)

m/z (LSIMS)

: 464 [M+H]+

IR (neat) cm -1

: 3325, 1732, 1332, 1159.

Elemental analysis

: Calcd. for C₂₃H₂₉NO₅S₂: C, 59.59; H, 6.30; N, 3.02; S,

13.83.

Found

: C, 59.69; H, 5.92; N, 3.27; S, 14.22.

4-(4-Methylphenylsulfonamido)-5-(S_R)-phenylsulfinyl-(E,4R)-2-pentenyl pivalate, 73s.

81%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.73 (d, J = 8.2 Hz, 2H), 7.62-7.46 (m, 5H), 7.28 (d,

J = 8.2 Hz, 2H), 6.03 (d, J = 5.9 Hz, NH), 5.62-5.58

(m, 2H), 4.38 (d, J = 3.7 Hz, 2H), 4.23-4.20 (m, 1H),

3.03 (dd, J = 13.4, 7.4 Hz, 1H), 2.83 (dd, J = 13.4, 5.9

Hz, 1H), 2.44 (s, 3H), 1.17 (s, 9H).

 $[\alpha]_{D^{25}}$: +92.3 (c 0.25, CHCl₃)

m/z (LSIMS) : 464 [M+H]+

IR (neat) cm⁻¹ : 3250, 1725, 1337, 1161.

Elemental analysis : Calcd. for C₂₃H₂₉NO₅S₂: C, 59.59; H, 6.30; N, 3.02; S,

58

13.83.

Found : C, 59.93; H, 6.08; N, 3.40; S, 13.62.

1N-[4-Hydroxy-1-(S_s)-phenylsulfinylmethyl-(1R,2E)-2-butenyl]-4-methyl-1-benzenesulfonamide, 74a.

73%. Solid.

mp : 143-145 °C

PMR (200 MHz, CDCl₃) : δ 7.74 (d, J = 8.2 Hz, 2H), 7.50-7.44 (m, 5H), 7.28 (d,

J = 8.2 Hz, 2H), 6.30 (d, *J* = 8.9 Hz, NH), 5.86-5.64 (m, 2H), 4.31-4.29 (m, 1H), 4.08-3.96 (m, 2H), 2.92-

2.78 (m, 2H), 2.43 (s, 3H).

 $[\alpha]_D^{25}$: -119.8 (c 0.25, CHCl₃)

m/z (LSIMS) : 380 [M+H]+

IR (neat) cm⁻¹ : 3270, 1537, 1458, 1328, 1158.

Elemental analysis : Calcd. for C₁₈H₂₁NO₄S₂: C, 56.97; H, 5.58; N, 3.69; S,

16.90.

Found : C, 56.69; H, 5.52; N, 3.97; S, 16.85.

1N-[4-Hydroxy-1-(S₅)-phenylsulfinylmethyl-(1R,2E)-2-butenyl]-4-methyl-1-benzenesulfonamide, 74s.

75%. Low melting solid.

PMR (200 MHz, CDCl₃) : δ 7.72 (d, J = 8.2 Hz, 2H), 7.60-7.40 (m, 5H), 7.25 (d,

J = 8.2 Hz, 2H), 6.66 (d, J = 6.7 Hz, NH), 5.75-5.55

(m, 2H), 4.17-4.13 (m, 1H), 3.94-3.91 (m, 2H), 3.06

(dd, J = 13.4, 6.7 Hz, 1H), 2.92 (dd, J = 13.4, 7.4, 1H),

2.38 (s, 3H).

 $[\alpha]_{D^{25}}$: +112.6 (c 1.0, CHCl₃)

m/z (LSIMS) : 380 [M+H]+

IR (neat) cm -1 : 3145, 2926, 1460, 1330, 1159.

Elemental analysis : Calcd. for C₁₈H₂₁NO₄S₂: C, 56.97; H, 5.58; N, 3.69; S,

59

16.90.

Found

: C, 57.11; H, 5.72; N, 3.47; S, 16.99.

1*N*-[4-*tert*-Butyldiphenylsilyoxy)-1-(*S*s)-phenylsulfinylmethyl-(1*R*,2*E*)-2-butenyl]-4-methyl-1-benzenesulfonamide, 75*a*.

83%. Solid.

mp : 115-116 ℃

PMR (200 MHz, CDCl₃) : δ 7.70 (d, J = 8.2 Hz, 2H), 7.62-7.54 (m, 4H), 7.48-

7.45 (m, 5H), 7.38-7.28 (m, 6H), 7.18 (d, *J* = 8.2 Hz, 2H), 5.80-5.56 (m, 2H), 4.41-4.26 (m, 1H), 4.06 (bs, 2H), 2.76 (d, *J* = 5.2 Hz, 2H), 2.33 (s, 3H), 1.02 (s,

9H).

¹³C NMR (75 MHz, CDCl₃): 8 19.0, 21.2, 26.6, 51.6, 61.8, 63.0, 123.8, 126.1, 127.1,

127.5, 129.2, 129. 3, 129.5, 131.0, 132.4, 133.2, 135.2,

137.9, 142.9.

 $[\alpha]_D^{25}$: -75.8 (c 0.3, CHCl₃)

m/z (LSIMS) : 618 [M+H]+

IR (neat) cm⁻¹ : 3421, 2927, 1168, 1043.

Elemental analysis : Calcd. for C₃₄H₃₉NO₄S₂Si: C, 66.09; H, 6.36; N, 2.27;

S, 10.38.

Found : C, 66.29; H, 5.94; N, 2.63; S, 10.62.

1N-[4-tert-Butyldiphenylsilyoxy-1-(Rs)-phenylsulfinylmethyl-(1R,2E)-2-butenyl]-4-methyl-1-benzenesulfonamide, 75s.

81%. Low melting solid.

PMR (200 MHz, CDCl₃) : δ 7.69 (d, J = 8.2 Hz, 2H), 7.60-7.44 (m, 9H), 7.35-

7.24 (m, 6H), 7.20 (d, J = 8.2 Hz, 2H), 5.58-5.52 (m,

2H), 4.20-4.07 (m, 1H), 4.03 (s, 2H), 2.98 (dd, *J* =

13.4, 7.4 Hz, 1H), 2.70 (dd, J = 13.4, 5.9 Hz, 1H),

2.35 (s, 3H), 0.98 (s, 9H).

¹³C NMR (75 MHz, CDCl₃): δ 19.1, 21.4, 26.7, 52.4, 62.4, 63.1, 124.0, 126.3, 127.3,

127.6, 129.3, 129.5, 129.6, 131.3, 133.1, 135.3, 137.3,

143.3.

 $[\alpha]_D^{25}$: +64.5 (c 0.55, CHCl₃)

m/z (LSIMS) : 618 [M+H]+

IR (neat) cm⁻¹ : 3489, 2925, 2853, 1367, 1157, 1029.

Elemental analysis : Calcd. for C₃₄H₃₉NO₄S₂Si: C, 66.09; H, 6.36; N, 2.27;

S, 10.38.

Found : C, 65.78; H, 6.77; N, 2.23; S, 10.72.

General procedure for the reaction of the sulfoxides with NBS.

To the solution of the sulfoxide (0.5 mmol) in toluene (2.5 mL) were added water (18 μL, 1 mmol) followed by freshly recrystallized *N*-bromosuccinimide (0.107 g, 0.6 mmol) and stirred at r.t. under nitrogen atmosphere. The progress of the reaction was monitored by TLC. When no starting material could be detected (30 min-6h), the reaction mixture was taken into ethyl acetate (10 mL) and washed with aqueous saturated sodium bicarbonate (10 mL), water (2 x 10 mL) and brine (10 mL). The organic layer was dried over sodium sulfate and evaporated under vacuum to afford the crude product mixture. Purification of the crude product by column chromatography on silica gel using AcOEt/petroleum ether as eluent afforded products in 70-85% combined yield.

Products from 35a.

2-(tert-Butyloxycarbonylamido)-3-bromo- $1-(R_S)$ -phenylsulfinyl-(2S,3S,4S)-octan-4-ol, 50s.

40%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.64-7.54 (m, 2H), 7.50-7.40 (m, 3H), 5.38 (d, J =

6.9 Hz, NH), 4.13-3.89 (m, 2H), 3.75-3.63 (m, 1H),

3.40-3.10 (m, 2H), 1.51-1.10 (m, 15H), 0.82 (t, J = 6.8

Hz, 3H).

 $[\alpha]^{25}$ D : +31.7 (c 0.8, CHCl₃)

m/z LSIMS : 449 [M+H]⁺

IR (neat) cm⁻¹ : 3310, 2974, 2923, 1697, 1540, 1030.

Elemental analysis : Calcd. for C₁₉H₃₀BrNO₄S: C, 50.89; H, 6.74; N, 3.12;

S, 7.15;

Found : C, 50.64; H, 6.99; N, 3.19; S, 6.89.

2-(tert-Butyloxycarbonylamido)-3-bromo- $1-(R_S)$ -phenylsulfinyl-(2S,3R,4R)-octan-4-ol, 51s.

8%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.72-7.60 (m, 2H), 7.58-7.45 (m, 3H), 5.12 (d, J =

7.2 Hz, NH), 4.41-4.23 (m, 2H), 3.72 (bs, 1H), 3.31-

3.06 (m, 2H), 1.62-1.40 (m, 6H), 1.41 (s, 9H), 0.91

(distorted t, 3H).

 $[\alpha]^{25}$ D : +25.2 (c 0.64, CHCl₃)

m/z (LSIMS) : 448 [M+H]+

IR (neat) cm -1 : 3310, 2947, 1696, 1546, 1153, 1029.

Elemental analysis : Calcd. for C₁₉H₃₀BrNO₄S: C, 50.89; H, 6.74; N, 3.12;

S, 7.15;

Found : C, 51.04; H, 6.39; N, 3.42; S, 7.08.

5-Bromo-6-butyl-4-(Ss)-phenylsulfinylmethyl-(4S,5R,6R)-1,3-oxazinan-2-one 52a.

33%. Solid.

mp : 129-130 °C

PMR (200 MHz, CDCl₃) : δ 7.68-7.50 (m, 5H), 6.21-6.15 (bs, NH), 4.43 (dd, J =

3.5, 2.5 Hz, 1H), 4.14 (dt, J = 9.3, 3.5 Hz, 1H), 4.02

(dt, J = 10.4, 2.5 Hz, 1H), 3.35 (dd, J = 12.7, 9.3 Hz,

1H), 2.91 (dd, J = 12.7, 3.5 Hz, 1H), 1.90-1.18 (m,

6H), 0.90 (t, I = 6.9 Hz, 3H).

 $[\alpha]^{25}D$: -164.8 (c 1.0, CHCl₃)

m/z (LSIMS) : 375 [M+H]+

IR (neat) cm⁻¹ : 3262, 2960, 2928, 2845, 1757, 1465, 1035.

Elemental analysis : Calcd. for C₁₅H₂₀BrNO₃S: C, 48.14; H, 5.39; N, 3.45;

S, 8.57;

Found : C, 48.33; H, 5.08; N, 3.49; S, 8.98.

Products from 35s.

2-(tert-Butyloxycarbonylamido)-3-bromo-1-(S_S)-phenylsulfinyl-(2S,3S,4S)-octan-4-ol, 50a.

26%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.70-7.59 (m, 2H), 7.57-7.48 (m, 3H), 5.71-5.57 (bs,

NH), 4.40-4.27 (m, 1H and OH), 4.07-3.87 (m, 2H),

3.42 (dd, J = 13.4, 8.3 Hz, 1H), 3.17 (dd, J = 13.4, 2.3

Hz, 1H), 2.08-1.85 (m, 2H), 1.49 (s, 9H), 1.45-1.28

(m, 4H), 0.91 (t, J = 6.7 Hz, 3H).

 $[\alpha]^{25}$ D : -74.3 (c 1.9, CHCl₃)

m/z (LSIMS) : 448 [M+H]+

IR (neat) cm⁻¹ : 3343, 2965, 2855, 1700, 1259, 1043.

Elemental analysis : Calcd. for C₁₉H₃₀BrNO₄S: C, 50.89; H, 6.74; N, 3.12;

S, 7.15;

Found : C, 51.24; H, 6.42; N, 3.37; S, 7.49.

5-Bromo-6-butyl-4-(Rs)-phenylsulfinylmethyl-(4S,5R,6R)-1,3-oxazinan-2-one, 52s.

52%. Solid.

mp : 147-149 °C

PMR (200 MHz, CDCl₃) : δ 7.78-7.54 (m, 5H), 6.08-5.95 (bs, NH), 4.57 (dd, J =

3.4, 2.5 Hz, 1H), 4.46 (dt, J = 7.6, 2.5 Hz, 1H), 4.26

(dt, J = 9.5, 3.4 Hz, 1H), 3.25-3.02 (m, 2H), 2.04-1.86

(m, 2H), 1.79-1.59 (m, 2H), 1.55-1.32 (m, 2H), 0.98

(t, J = 6.7 Hz, 3H).

 $[\alpha]^{25}D$

: +120.0 (c 1.0, CHCl₃)

m/z (LSIMS)

: 375 [M+H]+

IR (neat) cm -1

: 3257, 2962, 2920, 1749, 1261, 1053.

Elemental analysis

: Calcd. for C₁₅H₂₀BrNO₃S: C, 48.14; H, 5.39; N, 3.45;

S, 8.57.

Found

: C, 48.45; H, 5.78; N, 3.48; S, 8.33.

Products from 40a.

2-Bromo-3-(tert-butoxycarbonylamido)-1-phenyl-4-(Rs)-phenylsulfinyl-(1S,2R,3S)-butan-1-ol, 54s.

16%. Viscous liquid.

PMR (200 MHz, CDCl₃)

: δ 7.71-7.61 (m, 2H), 7.58-7.48 (m, 3H), 7.44-7.25 (m,

5H), 5.37 (bd, J = 8.9 Hz, 1H), 4.87-4.73 (m, 2H),

4.62-4.42 (m, 1H), 3.30 (dd, J = 13.5, 3.6 Hz, 1H),

3.10-2.92 (m, 1H), 1.47 (s, 9H).

 $[\alpha]^{25}$ D

: +14.1 (c 1.0, CHCl₃)

m/z (LSIMS)

: 469 [M+H]+

IR (neat) cm -1

: 3403-3168, 2928, 2837, 1714, 1520, 1471, 1163, 1040.

Elemental analysis

: Calcd. for C₂₁H₂₆BrNO₄S: C, 53.85; H, 5.59; N, 2.99;

S, 6.84.

Found

: C, 54.04; H, 5.88; N, 2.78; S, 6.53.

2-Bromo-3-(tert-butoxycarbonylamido)-1-phenyl-4-(Rs)-phenylsulfinyl-(1R,2S,3S)-butan-1-ol, 53s.

5%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.72-7.62 (m, 2H), 7.61-7.50 (m, 3H), 7.41-7.24 (m,

5H), 5.08 (d, J = 9.5 Hz, 1H), 4.88-4.73 (m, 1H), 4.49

(d, J = 10.4 Hz, 1H), 4.04 (d, J = 10.4 Hz, 1H), 3.22

(dd, J = 13.0, 8.5 Hz, 1H), 3.04 (dd, J = 13.0, 5.2 Hz,

1H), 1.51 (s, 9H).

 $[\alpha]^{25}$ D : +19.6 (c 1.0, CHCl₃)

m/z (LSIMS) : 469 [M+H]+

IR (neat) cm⁻¹ : 3498, 2970, 1716, 1456, 1351, 1156, 1041.

Elemental analysis : Calcd. for C₂₁H₂₆BrNO₄S: C, 53.85; H, 5.59; N, 2.99;

S, 6.84.

Found : C, 53.64; H, 5.28; N, 3.19; S, 6.99.

5-Bromo-6-phenyl-4- (S_S) -phenylsulfinylmethyl-(4S,5S,6R)-1,3-oxazinan-2-one, 55a.

63%. Solid.

PMR (200 MHz, CDCl₃) : δ 7.76-7.55 (m, 5H), 7.45-7.30 (m, 5H), 5.27 (d, J =

9.4 Hz, 1H), 4.32 (t, J = 9.4 Hz, 1H), 4.03 (dt, J = 9.4,

1.2 Hz, 1H), 3.40 (dd, J = 13.4, 9.4 Hz, 1H), 3.15 (dd,

J = 13.4, 1.2 Hz, 1H).

 $[\alpha]^{25}_{D}$: -140.7 (c 1.0, THF)

m/z (LSIMS) : 395 [M+H]+

IR (neat) cm⁻¹ : 3281, 2925, 1714, 1447, 1399, 1085, 1031.

Elemental analysis : Calcd. for C₁₇H₁₆BrNO₃S: C, 51.79; H, 4.09; N, 3.55;

S, 8.13.

Found : C, 52.01; H, 4.38; N, 3.76; S, 8.45.

Products from 40s.

2-Bromo-3-(tert-butoxycarbonylamido)-1-phenyl-4-(S_s)-phenylsulfinyl-($1R_1S_2S_1S_3$)-butan-1-ol, $53a_1A_3$.

27%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.72-7.62 (m, 2H), 7.58-7.48 (m, 3H), 7.42-7.24 (m,

5H), 5.30 (bs, 1H), 4.85-4.74 (m, 2H), 4.61-4.43 (m, 1H), 3.31 (dd, *J* = 12.8, 1.2 Hz, 1H), 3.13-2.95 (m,

1H), 1.47 (s, 9H).

 $[\alpha]^{25}$ D : -27.4 (c 0.32, CH₂Cl₃)

m/z (LSIMS) : 469 [M+H]+

IR (neat) cm⁻¹ : 3445, 2970, 1710, 1435, 1351, 1159, 1043.

Elemental analysis : Calcd. for C₂₁H₂₆BrNO₄S: C, 53.85; H, 5.59; N, 2.99;

S, 6.84.

Found : C, 54.10; H, 5.96; N, 3.08; S, 7.04.

2-Bromo-3-(*tert*-butoxycarbonylamido)-1-phenyl-4-(*S*_S)-phenylsulfinyl-(1*S*,2*R*,3*S*)-butan-1-ol, 54*a*.

Liquid.

PMR (200 MHz, CDCl₃) : δ 7.71-7.62 (m, 2H), 7.60-7.48 (m, 3H), 7.38-7.24 (m,

5H), 5.13 (d, J = 8.3 Hz, 1H), 5.0-4.84 (m, 1H), 4.49

(d, J = 9.5 Hz, 1H), 3.99 (d, J = 9.5 Hz, 1H), 3.11-2.90

(m, 2H), 1.53 (s, 9H).

 $[\alpha]^{25}$ D : -53.0 (c 1.0, CH₂Cl₂)

m/z (LSIMS) : 469 [M+H]⁺

IR (neat) cm⁻¹ : 3467, 2974, 1711, 1157, 1041.

Elemental analysis : Calcd. for C₂₁H₂₆BrNO₄S: C, 53.85; H, 5.59; N, 2.99;

S, 6.84.

Found : C, 53.74; H, 5.69; N, 3.17; S, 6.65.

5-Bromo-6-phenyl-4-(Rs)-phenylsulfinylmethyl-(4S,5S,6R)-1,3-oxazinan-2-one, 55s.

52%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.68-7.60 (m, 2H), 7.58-7.46 (m, 3H), 7.43-7.25 (m,

5H), 7.0 (s, 1H), 5.26 (d, J = 10.5 Hz, 1H), 4.47 (dt, J = 10.

= 10.5, 1.2 Hz, 1H), 3.93 (t, J = 10.5 Hz, 1H), 3.25

(dd, J = 12.8, 1.2 Hz, 1H), 2.94 (dd, J = 12.8, 10.5 Hz,

1H)

 $[\alpha]^{25}$ D :+25.4 (c 0.8, CHCl₃)

m/z (LSIMS) : 395 [M+H]+

IR (neat) cm⁻¹ : 3298, 2927, 1718, 1456, 1390, 1097, 1040.

Elemental analysis : Calcd. for C₁₇H₁₆BrNO₃S: C, 51.79; H, 4.09; N, 3.55;

S, 8.13.

Found : C, 51.46; H, 4.23; N, 3.65; S, 7.95.

Products from 47a.

1*N*-[3-Bromo-4-(*tert*-butyldiphenylsilyloxy)-2-hydroxy-1-(*R*s)-phenylsulfinylmethyl-(1*R*,2*R*,3*S*)-butyl]-*tert*-butylcarbamate, 57*s*.

7%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.72-7.48 (m, 9H), 7.43-7.31 (m, 6H), 5.30 (bs,

NH), 4.64-4.47 (m, 1H), 4.20-4.06 (m, 2H), 4.05-3.89

(m, 2H), 3.36 (dd, J = 13.2, 5.1 Hz, 1H), 3.05 (dd, J = 13.2, 5.1 Hz, 1H)

13.2, 2.5 Hz, 1H), 1.42 (s, 9H), 1.07 (s, 9H).

 $[\alpha]^{25}_{D}$: +30.5 (c 0.19, CHCl₃)

m/z (LSIMS) : 661 [M+H]⁺

IR (neat) cm⁻¹ : 3424, 2968, 2864, 1697, 1505, 1373, 1158, 1042.

1N-[2-Bromo-4-(tert-butyldiphenylsilyloxy)-3-hydroxy-1-(Rs)-

 $phenylsulfinylmethyl-(1S,2R,3S)-butyl]-\textit{tert}-butylcarbamate,\ 56s.$

24%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.74-7.50 (m, 9H), 7.43-7.31 (m, 6H), 5.03 (d, J =

8.5 Hz, NH), 4.73-4.59 (m, 1H), 4.26 (d, J = 9.4 Hz,

1H), 3.94 (d, J = 2.4 Hz, 2H), 3.63 (dt, J = 9.4, 2.4 Hz,

1H), 3.23 (dd, J = 12.9, 9.4 Hz, 1H), 3.04 (dd, J =

12.9, 4.7 Hz, 1H), 1.48 (s, 9H), 1.07 (s, 9H).

 $[\alpha]^{25}$ D : +53.9 (c 0.86, CHCl₃)

m/z (LSIMS) : 661 [M+H]+

IR (neat) cm⁻¹ : 3443, 2910, 2841, 1694, 1453, 1160, 1041.

5-[1-Bromo-2-(tert-butyldiphenylsilyloxy)-(1S)-ethyl]-4-(Ss)-

phenylsulfinylmethyl-(4R,5S)-1,3-oxazolan-2-one, 58a. 50%.

Liquid.

PMR (200 MHz, CDCl₃) : δ 7.64-7.53 (m, 8H), 7.48-7.37 (m, 7H), 6.28 (s, NH),

4.54 (dd, J = 8.6, 5.5 Hz, 1H), 4.0-3.95 (m, 2H), 3.90

(ddd, J = 8.6, 4.4, 4.2 Hz, 1H), 3.65 (dd, J = 11.6, 4.2)

Hz, 1H), 3.48 (dd, J = 13.8, 10.6 Hz, 1H), 3.13 (dd, J

= 13.8, 1.5 Hz, 1H), 1.04 (s, 9H).

 $[\alpha]^{25}$ D : -69.0 (c 0.47, CHCl₃)

m/z (LSIMS) : 587 [M+H]+

IR (neat) cm⁻¹ : 3260, 2959, 2843, 1773, 1495, 1157.

Products from 47s.

1N-[3-bromo-4-(*tert*-butyldiphenylsilyloxy)-2-hydroxy-1-(Ss)-

phenylsulfinylmethyl-(1R,2R,3S)-butyl]-tert-butylcarbamate, 57a.

4%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.74-7.45 (m, 9H), 7.45-7.29 (m, 6H), 5.31 (d, J =

7.1 Hz, 1H), 4.91 (d, J = 6.2 Hz, 1H), 4.55-4.41 (m,

1H), 4.25-4.13 (m, 1H), 4.12-3.83 (m, 2H), 3.40 (dd, J

= 13.2, 9.5 Hz, 1H), 3.01 (dd, J = 13.2, 4.7 Hz, 1H),

1.43 (s, 9H), 1.06 (s, 9H).

 $[\alpha]^{25}$ D : -23.6 (c 0.39, CHCl₃)

m/z (LSIMS) : 661 [M+H]+

IR (neat) cm⁻¹ : 3429, 2962, 2842, 1718, 1471, 1158, 1043.

1*N*-[2-bromo-4-(*tert*-butyldiphenylsilyloxy)-3-hydroxy-1-(*S*s)-phenylsulfinylmethyl-(1*S*,2*R*,3*S*)-butyl]-*tert*-butylcarbamate, 56*a*.

24%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.78-7.48 (m, 9H), 7.48-7.29 (m, 6H), 5.09 (d, J =

9.4 Hz, NH), 4.83-4.67 (m, 1H), 4.30 (d, J = 9.4 Hz,

1H), 3.94 (bs, 2H), 3.15-3.07 (m, 1H), 3.10-2.95 (m,

2H), 1.48 (s, 9H), 1.06 (s, 9H).

 $[\alpha]^{25}$ D : -59.7 (c 0.73, CHCl₃)

m/z (LSIMS) : 661 [M+H]+

IR (neat) cm⁻¹ : 3313, 2957, 2849, 1709, 1497, 1149, 1039.

5-[1-bromo-2-(*tert*-butyldiphenylsilyloxy)-(1*S*)-ethyl]-4-(*R*s)-phenylsulfinylmethyl-(4*R*,5*S*)-1,3-oxazolan-2-one, 58*s*.

50%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.74-7.49 (m, 9H), 7.47-7.28 (m, 6H), 6.93 (s, 1H),

4.46-4.28 (m, 2H), 4.27-3.89 (m, 3H), 3.30 (d, J = 13.2

Hz, 1H), 2.98 (dd, J = 13.2, 9.4 Hz, 1H), 1.05 (s, 9H).

 $[\alpha]^{25}_D$: +18.7 (c 0.42, CHCl₃)

m/z (LSIMS) : 587 [M+H]+

IR (neat) cm⁻¹ : 3398, 2959, 2845, 1765, 1501, 1158.

Products from 48a.

2-(Methoxycarbonylamido)-3-bromo-1-(R_S)-phenylsulfinyl-(2S,3S,4S)-octan-4-ol, 59s.

52%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.70-7.60 (m, 2H), 7.59-7.49 (m, 3H), 5.55 (d, J =

7.6 Hz, NH), 4.22-4.05 (m, 2H), 3.86-3.60 (m, 4H),

3.40-3.20 (m, 2H), 2.05-1.70 (m, 2H), 1.60-1.24 (m,

4H), 0.90 (t, J = 6.7 Hz, 3H).

 $[\alpha]^{25}$ D : +47.3 (c 0.47, CHCl₃)

m/z (LSIMS) : 407 [M+H]+

IR (neat) cm⁻¹ : 3334, 2924, 2360, 1700, 1444, 1528, 1027.

Elemental analysis : Calcd. for C₁₆H₂₄BrNO₄S: C, 47.30; H, 5.95; N, 3.45;

S, 7.89;

Found : C, 47.65; H, 6.08; N, 3.79; S, 7.96.

2-(Methoxycarbonylamido)-3-bromo-1-(R_s)-phenylsulfinyl-(2S,3R,4R)-octan-4-ol, 60s.

4%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.75-7.45 (m, 5H), 5.21 (d, J = 8.9 Hz, NH), 4.84-

4.65 (m, 1H), 3.85-3.61 (m, 4H), 3.60-3.44 (m, 1H), 3.29 (dd, *J* = 13.4, 8.9 Hz, 1H), 2.97 (dd, *J* = 13.4, 5.1

Hz, 1H), 2.10-1.80 (m, 1H), 1.70-1.18 (m, 5H), 0.92

(distorted t, 3H).

 $[\alpha]^{25}$ D : +28.4 (c 0.31, CHCl₃)

m/z (LSIMS) : 407 [M+H]+

IR (neat) cm⁻¹ : 3289, 2927, 1708, 1465, 1524, 1032.

Elemental analysis : Calcd. for C₁₆H₂₄BrNO₄S: C, 47.30; H, 5.95; N, 3.45;

S, 7.89;

Found : C, 47.13 H, 5.88; N, 3.09; S, 8.16.

Products from 48s.

2-(Methoxycarbonylamido)-3-bromo-1-(S_S)-phenylsulfinyl-(2S,3S,4S)-octan-4-ol, 59a.

59%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.73-7.60 (m, 2H), 7.59-7.48 (m, 3H), 6.03 (d, J =

7.3 Hz, NH), 4.50-4.25 (m, 1H and OH), 4.20-3.83 (m, 2H), 3.72 (s, 3H), 3.47-3.10 (m, 2H), 2.10-1.83 (m, 2H), 1.70-1.25 (m, 4H), 0.96 (t, *J* = 6.8 Hz, 3H).

 $[\alpha]^{25}$ D : -72.0 (c 0.55, CHCl₃)

m/z LSIMS : 407 [M+H]+

IR (neat) cm⁻¹ : 3355, 2964, 2922, 2843, 1709, 1259, 1037.

Elemental analysis : Calcd. for C₁₆H₂₄BrNO₄S: C, 47.30; H, 5.95; N, 3.45;

S, 7.89;

Found : C, 47.65; H, 6.28; N, 3.07; S, 7.54.

Products from 71a.

1*N*-[2-Bromo-3-hydroxy-3-phenyl-1-(*Rs*)-phenylmethylsulfinyl-(1*S*,2*S*,3*S*)-heptyl]-4-methyl-1-benzenesulfonamide, 76*s*: 65%.

Solid.

mp : 94-96 °C

PMR (200 MHz, CDCl₃) : δ 7.76 (d, J = 8.2 Hz, 2H), 7.69-7.47 (m, 5H), 7.29 (d,

J = 8.2 Hz, 2H), 6.62 (d, *J* = 7.4 Hz, NH), 4.08-3.88 (m, 1H and OH), 3.79-3.61 (m, 2H), 3.47 (dd, *J* = 13.4, 2.2 Hz, 1H), 3.02 (dd, *J* = 13.4, 5.2 Hz, 1H), 2.45 (s, 3H), 1.98-1.74 (m, 1H), 1.74-1.53 (m, 1H),

1.40-1.03 (m, 4H), 0.82 (t, J = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 13.7, 21.4, 21.7, 29.6, 35.5, 54.3, 59.4, 60.0, 73.5,

124.1, 127.1, 129. 3, 129.7, 131.4, 137. 3, 141.9, 143.7

 $[\alpha]_D^{25}$ + : 109.7 (c 0.3, CHCl₃)

m/z (LSIMS) : 502 [M+H]+

IR (neat) cm⁻¹ : 3368, 2928, 1331, 1159.

Elemental analysis : Calcd. for C₂₁H₂₈BrNO₄S₂: C, 50.20; H, 5.62; N, 2.79;

S, 12.76.

Found : C, 50.53; H, 5.22; N, 2.73; S, 12.52.

 $1N\hbox{-}[2\hbox{-Bromo-3-hydroxy-3-phenyl-1-}(Rs)\hbox{-phenylmethylsulfinyl-}(1S,2R,3R)\hbox{-heptyl}]\hbox{-}4\hbox{-methyl-1-benzenesulfonamide}, 77s.$

11%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.64 (d, J = 8.2 Hz, 2H), 7.56-7.44 (m, 5H), 7.28 (d,

J = 8.2 Hz, 2H), 6.16-6.07 (bs, NH), 4.60-4.55 (m, NH)

1H), 3.77-3.68 (m, 1H), 3.50-3.44 (m, 1H), 3.34 (dd, J

= 14.1, 7.0 Hz, 1H), 3.20 (dd, J = 14.0, 5.9 Hz, 1H),

2.42 (s, 3H), 2.04-1.80 (m, 2H), 1.44-1.10 (m, 4H),

0.88 (t, J = 6.7 Hz, 3H).

 $[\alpha]_{D^{25}}$: +78.4 (c 0.2, CHCl₃)

m/z (LSIMS) : 502 [M+H]+

IR (neat) cm -1 : 3281, 2925, 1367, 1158.

Elemental analysis : Calcd. for C₂₁H₂₈BrNO₄S₂: C, 50.20; H, 5.62; N, 2.79;

S, 12.76.

Found : C, 50.43; H, 5.98; N, 2.43; S, 12.99.

Product from 71s.

1*N*-[2-Bromo-3-hydroxy-3-phenyl-1-(*Ss*)-phenylmethylsulfinyl-(1*S*,2*S*,3*S*)-heptyl]-4-methyl-1-benzenesulfonamide, 76*a*.

82%. Solid.

mp : 93-95 °C

PMR (200 MHz, CDCl₃+D₂O): δ 7.83 (d, J = 8.2 Hz, 2H), 7.56-7.44 (m, 5H), 7.30 (d,

I = 8.2 Hz, 2H, 4.46-4.37 (m, 1H), 3.99-3.83 (m, 1H),

) ----, ---, ---- ---- (---, ----, ---- (---, ----)

3.82 (d, *J* = 8.2 Hz, 1H), 2.96 (dd, *J* = 13.4, 5.2 Hz, 1H), 2.65 (dd, *J* = 13.4, 2.3 Hz, 1H), 2.42 (s, 3H),

2.08-1.73 (m, 2H), 1.60-1.23 (m, 4H), 0.91 (t, J = 6.7

Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 13.8, 21.4, 21.9, 29.6, 35.6, 54.5, 56.9, 61.0, 74.0,

123.7, 127.2, 129.3, 129.7, 131.3, 137.8, 143.2, 143.6

 $[\alpha]_{D^{25}}$: -89.6 (c 0.3, CHCl₃)

m/z (LSIMS) : 502 [M+H]+

IR (neat) cm⁻¹ : 3262, 2926, 1328, 1157.

Elemental analysis : Calcd. for C₂₁H₂₈BrNO₄S₂: C, 50.20; H, 5.62; N, 2.79;

S, 12.76.

Found : C, 50.03; H, 5.87; N, 2.59; S, 12.53.

Products from 72a.

1N-[2-Bromo-3-hydroxy-3-phenyl-1-(R_s)-phenylmethylsulfinyl-(1S)-propyl]-4-methyl-1-benzenesulfonamide, 78s.

64%. Solid.

mp : 184-186 °C

PMR (200 MHz, CDCl₃) : δ 7.60 (d, J = 8.2 Hz, 2H), 7.53-7.40 (m, 5H), 7.32-

7.20 (m, 7H), 5.27 (d, J = 8.9 Hz, NH), 4.84 (d, J = 8.9 Hz, 1H), 4.56 (d, J = 8.9 Hz, 1H), 4.24-4.13 (m,

1H), 3.26 (dd, J = 14.1, 9.7 Hz, 1H), 2.78 (dd, J =

14.1, 4.5 Hz, 1H), 2.44 (s, 3H).

m/z (LSIMS) : 523 [M+H]+

IR (neat) cm⁻¹ : 3321, 2927, 1541, 1159.

Elemental analysis : Calcd. for C₂₃H₂₄BrNO₄S₂: C, 52.87; H, 4.63; N, 2.68;

S, 12.27.

Found : C, 53.03; H, 4.92; N, 2.63; S, 12.52.

Product from 72s.

1N-[2-Bromo-3-hydroxy-3-phenyl-1-(S_s)-phenylmethylsulfinyl-(1S,2S,3R)-propyl]-4-methyl-1-benzenesulfonamide, 78a.

80%. Solid.

mp : 172-174 °C

PMR (200 MHz, CDCl₃) : δ 7.78 (d, J = 8.2 Hz, 2H), 7.56-7.46 (m, 5H), 7.38-

7.14 (m, 7H), 5.40 (d, *J* = 10.4 Hz, NH), 4.84 (d, *J* = 9.7 Hz, 1H), 4.71-4.61 (m, 1H), 4.11 (d, *J* = 9.7 Hz, 1H), 2.99 (dd, *J* = 13.4, 5.2 Hz, 1H), 2.73 (dd, *J* =

---/,

13.4, 6.7 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.1, 49.9, 62.0, 62.5, 73.5, 123.7, 127.0, 127.5,

127.8, 128.0, 129.5, 129.7, 131.2, 138.6, 142.6, 143.1,

144.2.

 $[\alpha]_D^{25}$: -48.4 (c 1.0, CHCl₃)

m/z (LSIMS) : 523 [M+H]+

IR (neat) cm⁻¹ : 3291, 2925, 1455, 1157.

Elemental analysis : Calcd. for C₂₃H₂₄BrNO₄S₂: C, 52.87; H, 4.63; N, 2.68;

S, 12.27.

Found : C, 52.63; H, 4.33; N, 2.93; S, 12.42.

Products from 75a.

 $1N\hbox{-}[2\hbox{-Bromo-4-}(\textit{tert-} butyldiphenylsilyloxy)-3-hydroxy-1-(R_S)-phenylsulfinylmethyl-(1S,2R,3S)-butyl]-4-methyl-1-benzenesulfonamide, 79s. 42\%. Liquid.$

PMR (300MHz, CDCl₃) : δ 7.73-7.42 (m, 11H), 7.40-7.16 (m, 8H), 5.10 (d, J =

11.7 Hz, NH), 4.46-4.42 (m, 1H), 4.28-4.10 (m, 1H),

3.82 (dd, J = 12.4, 1.7 Hz, 1H), 3.76-3.43 (m, 2H),

3.16 (d, J = 13.4, 8.2 Hz, 1H), 2.83 (dd, J = 13.4, 2.7)

Hz, 1H), 2.35 (s, 3H), 1.01 (bs, 9H).

m/z (LSIMS) : 714 [M+H]+

IR (neat) cm⁻¹ : 3267, 2924, 2865, 1587, 1156, 1039.

Elemental analysis : Calcd. for C₃₄H₄₀BrNO₅S₂Si: C, 59.47; H, 5.87; N,

2.04; S, 9.34.

Found : C, 59.81; H, 5.62; N, 1.93; S, 9.45.

1N-[3-Bromo-4-(tert-butyldiphenylsilyoxy)-2-hydroxy-1-(R_s)-phenylsulfinylmethyl-(1R,2R,3S)-butyl]-4-methyl-1-benzenesulfonamide, 80s.

15%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.82-7.41 (m, 11H), 7.40-7.20 (m, 8H), 5.32 (d, J =

8.2 Hz, NH), 4.60-4.51 (m, 1H), 4.37-4.10 (m, 1H)

4.04-3.80 (m, 2H), 3.70-3.58 (m, 1H), 3.24 (dd, 1

13.4, 8.7 Hz, 1H), 2.88 (dd, J = 13.4, 3.3 Hz, 1H),

2.41 (s, 3H), 1.08 (bs, 9H).

m/z (LSIMS) : 714 [M+H]+

IR (neat) cm⁻¹ : 3262, 2927, 2834, 1568, 1455, 1158, 1043.

Products from 75s.

1N-[2-Bromo-4-(tert-butyldiphenylsilyloxy)-3-hydroxy-1-(S_s)-phenylsulfinylmethyl-(1S,2R,3S)-butyl]-4-methyl-1-benzenesulfonamide, 79a.

51%. Solid.

mp : 173-175 °C.

PMR (300 MHz, CDCl₃) : δ 7.87-7.51 (m, 11H), 7.56-7.20 (m, 8H), 5.38 (d, J =

11.7 Hz, NH), 4.57-4.40 (m, 1H), 4.34-4.15 (m, 1H),

3.97-3.70 (m, 3H), 3.12 (dd, J = 13.4, 3.0 Hz, 1H),

2.80-2.60 (m, 1H), 2.42 (s, 3H), 1.11 (bs, 9H).

m/z (LSIMS) : 714 [M+H]+

IR (neat) cm⁻¹ : 3298, 2920, 1375, 1158, 1036.

Elemental analysis : Calcd. for C₃₄H₄₀BrNO₅S₂Si: C, 59.47; H, 5.87; N,

2.04; S, 9.34.

Found : C, 59.11; H, 6.20; N, 1.93; S, 9.45.

1N-[3-* *-(tert-butyldiphenylsilyoxy)-2-hydroxy-1-(Ss)-

p¹ cinylmethyl-(1R,2R,3S)-butyl]-4-methyl-1-benzenesulfonamide,

10%. Liquid.

PMR (300 MHz, CDCl₃) : δ 7.68-7.40 (m, 11H), 7.38-7.18 (m, 8H), 5.18 (d, J =

9.5 Hz, NH), 4.30-4.20 (m, 1H), 4.16-4.12 (m, 1H),

3.97 (dd, J = 11.6, 2.0 Hz, 1H), 3.84 (dd, J = 11.6, 4.1

Hz, 1H), 3.77-3.69 (m, 1H), 3.06 (dd, J = 13.4, 8.2

Hz, 1H), 2.86 (dd, J = 13.4, 2.7 Hz, 1H), 2.32 (s, 3H),

0.98 (s, 9H).

 $[\alpha]_{D^{25}}$: -28.4 (c 0.3, CHCl₃)

m/z (LSIMS) : 714 [M+H]+

IR (neat) cm⁻¹ : 3305, 2926, 1569, 1378, 1157, 1038.

Elemental analysis : Calcd. for C₃₄H₄₀BrNO₅S₂Si: C, 59.47; H, 5.87; N,

2.04; S, 9.34.

Found : C, 59.84; H, 6.04; N, 2.23; S, 9.65.

General procedure for the conversion of bromohydrins to oxazinones.

To a cooled -15 °C solution of the bromohydrin (0.1 mmol) in dichloromethane (0.5 mL) was added trifluoroacetic acid (0.5 mL) dropwise and the mixture stirred gradually allowing to attain r.t. and stirred further for a period of 30 min. at the same temperature. The volatiles were removed and the residue taken into THF (0.5 mL). DABCO (0.3 mmol) and CDI (0.2 mmol) were added and the reaction mixture stirred at r.t under nitrogen atmosphere for 24 h. The reaction mixture was concentrated under vacuum and the residue was taken into ethyl acetate (15 mL). The organic layer was washed successively with water (5 mL), brine (5 mL) and dried over sodium sulfate. Evaporation of the solvent afforded the crude product which on purification by chromatography on silica gel using AcOEt/petroleum ether (1:1, v/v) as eluent afforded the oxazinone.

5-Bromo-6-butyl-4-(Ss)-phenylsulfinylmethyl-(4S,5S,6S)-1,3-oxazinan-2-one, 62.

70%. Viscous liquid.

PMR (400 MHz, CDCl₃) : δ 7.66-7.52 (m, 5H), 6.27-6.23 (bs, NH), 4.58 (dd, J =

8.7, 3.6 Hz, 1H), 4.32-4.29 (m, 1H), 3.90 (dt, J = 10.3,

3.6 Hz, 1H), 3.78 (dd, I = 13.4, 10.3 Hz, 1H), 2.84

(dd, J = 13.4, 2.0 Hz, 1H), 2.33-2.29 (m, 1H), 2.05-

1.45 (m, 5H), 0.93 (distorted t, 3H).

 $[\alpha]_D^{25}$: +138.4 (c 0.5, CHCl₃)

m/z (LSIMS) : 375 [M+H]+

IR (neat) cm⁻¹ : 3456, 1745, 1457, 1276, 1120.

Elemental analysis : Calcd. for C₁₅H₂₀BrNO₃S: C, 48.14; H, 5.39; N, 3.45;

S, 8.57;

Found : C, 48.43; H, 5.08; N, 3.49; S, 8.78.

5-Bromo-6-phenyl-4-(Ss)-phenylsulfinylmethyl-(4S,5R,6S)-1,3-oxazinan-2-one, 66.

75%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.51-7.39 (m, 5H), 7.38-7.27 (m, 3H), 7.22-7.13 (m,

2H), 6.72 (bs, 1H), 5.50 (d, *J* = 2.3 Hz, 1H), 4.21-4.15

(bs, 1H), 3.69 (dt, J = 10.2, 2.3 Hz, 1H), 3.28 (d, J =

14.0, 10.2 Hz, 1H), 2.69 (d, J = 14.0, 2.3 Hz, 1H)

 $[\alpha]^{25}$ D : -63.07 (c 0.26, CHCl₃)

m/z (LSIMS) : 395 [M+H]+

IR (neat) cm⁻¹ : 3222, 2926, 2855, 1718, 1530, 1472, 1159.

5-[1-Bromo-2-(*tert*-butyldiphenylsilyoxy)-(1*S*)-ethyl]-4-phenylsulfinylmethyl-(4*R*,5*R*)-1,3-oxazolan-2-one, 69.

73%. Viscous oil.

PMR (400 MHz, CDCl₃) : δ 7.65-7.53 (m, 9H), 7.47-7.37 (m, 6H), 6.42 (s, 1H),

4.55-4.45 (m, 2H), 4.24-4.16 (m, 1H), 3.81 (dd, J =

10.3, 3.9 Hz, 1H), 3.76 (dd, J = 10.3, 5.3 Hz, 1H),

 $3.32 \, (dd, J = 13.8, 9.6 \, Hz, 1H), 2.93 \, (dd, J = 13.8, 2.3)$

Hz, 1H), 1.00 (s, 9H).

 $[\alpha]^{25}$ D : -81.7 (c 0.7, CHCl₃)

m/z (LSIMS) : 587 [M+H]+

IR (neat) cm⁻¹ : 3392, 2973, 2843, 1728, 1356, 1280, 1120.

Preparation of sulfones from predominant sulfoxides formed during bromohydration:

To a solution of sulfoxide (0.05 mmol) in CHCl₃ (0.2 mL) was added *m*-CPBA (12 mg, 0.05 mmol) at 0 °C and allowed to stir for 10 min. The reaction mixture was diluted with ether and washed successively with aq. Sodiumbisulfite solution, aq. NaHCO₃ solution, water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure followed by column chromatography using AcOEt/petroleum ether afforded the sulfone.

2-(tert-Butyloxycarbonylamido)-3-bromo- $1-(S_S)$ -phenylsulfonyl-(2S,3S,4S)-octan-4-ol, 61.

90%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.92 (d, J = 8.2 Hz, 2H), 7.75-7.50 (m, 3H), 5.20 (bs,

NH), 4.43-3.65 (m, 4H), 3.55-3.41 (m, 1H and OH),

2.08-1.78 (m, 2H), 1.70-1.13 (m, 13H), 0.90 (t, J = 6.7

Hz, 3H).

m/z (LSIMS) : 465 [M+H]+

IR (neat) cm⁻¹ : 3189, 2970, 2925, 1701, 1158, 1043.

Elemental analysis : Calcd. for C₁₉H₃₀BrNO₅S: C, 49.14; H, 6.51; N, 3.02;

S, 6.90.

Found : C, 49.41; H, 6.24; N, 3.34; S, 6.76.

2-(Methoxycarbonylamido)-3-bromo-1-(R_S)-phenylsulfonyl-(2S,3S,4S)-octan-4-ol, 70.

83%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.91 (d, J = 8.2 Hz, 2H), 7.71-7.47 (m, 3H), 5.43 (d,

J = 9.4 Hz, NH), 4.48-4.32 (m, 1H), 4.23 (ddd, J =

11.2, 3.7, 1.1 Hz, 1H), 4.13-3.94 (m, 1H), 3.89-3.45

(m, 5H and OH), 2.08-1.75 (m, 2H), 1.70-1.04 (m,

4H), 0.90 (t, J = 6.7 Hz, 3H).

m/z (LSIMS) : 423 [M+H]+

IR (neat) cm⁻¹ : 3289, 2955, 1699, 1543, 1034.

Elemental analysis : Calcd. for C₁₆H₂₄BrNO₅S: C, 45.50; H, 5.73; N, 3.32;

S, 7.59.

Found : C, 45.69, 5.98, 3.22, 7.89.

5-bromo-6-butyl-4-phenylsulfonylmethyl-(4S,5R,6R)-1,3-oxazinan-2-one, 63.

87%. Solid.

mp : 132-134 °C

PMR (200 MHz, CDCl₃) : δ 7.95 (d, J = 8.6 Hz, 2H), 7.80-7.69 (m, 3H), 6.01 (bs,

NH), 4.48 (dd, *J* = 5.9, 3.2 Hz, 1H), 4.34 (q, *J* = 5.9 Hz, 1H), 4.12 (dt, *J* = 10.2, 3.2 Hz, 1H), 3.40 (d, *J* =

5.9 Hz, 2H), 2.06-1.21 (m, 6H), 0.93 (t, J = 6.7 Hz,

3H).

m/z (LSIMS) : 391 [M+H]⁺

IR (neat) cm⁻¹ : 3357, 2962, 2923, 2870, 1764, 1292, 1149.

Elemental analysis : Calcd. for C₁₅H₂₀BrNO₄S: C, 46.16; H, 5.16; N, 3.59;

S, 8.21.

Found : C, 46.31; H, 5.04; N, 3.78; S, 8.60.

2-(*tert*-Butyloxycarbonylamido)-3-bromo-1-(*R*_S)-phenylsulfonyl-(2*S*,3*R*,4*R*)-octan-4-ol, 64.

85%. Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.94 (d, J = 8.4 Hz, 2H), 7.72-7.55 (m, 3H), 7.36-

7.26 (bs, 5H), 4.92 (d, *J* = 9.7 Hz, NH), 4.87-4.75 (m, 1H), 4.48 (d, *J* = 9.7 Hz, 1H), 4.02 (d, *J* = 9.7 Hz, 1H),

 $3.49 \, (dd, J = 14.4, 8.6 \, Hz, 1H), 3.32 \, (dd, J = 14.4, 4.1)$

Hz, 1H).

m/z (LSIMS) : 395 [M+H]+

1N-[2-bromo-4-(*tert*-butyldiphenylsilyloxy)-3-hydroxy-1-

phenylsulfonylmethyl-(1S,2R,3S)-butyl]-tert-butyl carbamate, 67.

83%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.94 (d, J = 8.4 Hz, 2H), 7.72-7.45 (m, 8H), 7.45-

7.28 (m. 5H), 4.85 (d, J = 9.0 Hz, NH), 4.80-4.52 (m,

1H), 4.28 (d, J = 10.4 Hz, 1H), 3.93 (s, 2H), 3.57 (bd,

J = 10.4 Hz, 1H), 3.50-3.27 (m, 2H), 1.44 (s, 9H), 1.07

(s, 9H).

m/z (LSIMS) : 678 [M+H]+

1N-[2-bromo-3-hydroxy-3-phenyl-1-phenylmethylsulfonyl-(15,25,35)-heptyl]-4-methyl-1-benzenesulfonamide, 82.

82%. Solid.

mp : 128-129 ℃

PMR (200 MHz, CDCl₃) : δ 7.87-7.54 (m, 7H), 7.36 (d, J = 8.2 Hz, 2H), 5.86 (d,

J = 10.5 Hz, NH), 4.24-4.01 (m, 2H), 3.85 (d, J = 9.7

Hz, 1H), 3.58 (dd, J = 14.1, 3.7 Hz, 1H), 3.21 (dd, J =

14.1, 3.7 Hz, 1H), 2.46 (s, 3H), 2.18-1.73 (m, 2H),

1.62-1.24 (m, 4H), 0.93 (t, J = 6.7 Hz, 3H).

m/z (LSIMS) : 518 [M+H]+

IR (neat) cm⁻¹ : 3499, 3288, 2929, 1304, 1157.

Elemental analysis : Calcd. for C₂₁H₂₈BrNO₅S₂: C, 48.65; H, 5.44; N, 2.70;

S, 12.37.

Found : C, 48.91; H, 5.34; N, 2.73; S, 12.65.

1N-[2-bromo-3-hydroxy-3-phenyl-1-phenylmethylsulfonyl-(1*S*,2*S*,3*R*)-propyl]-4-methyl-1-benzenesulfonamide, 84.

90%. Solid.

mp : 70-72 °C

PMR (200 MHz, CDCl₃) : δ 7.73-7.40 (m, 7H), 7.37-7.13 (m, 7H), 5.27 (bs,

NH), 4.82 (d, J = 8.6 Hz, 1H), 4.62 (d, J = 8.6 Hz,

1H), 4.16-4.09 (m, 1H), 3.54 (dd, J = 14.1, 10.2 Hz,

1H), 3.20 (d, J = 14.1 Hz, 1H), 2.48 (s, 3H).

m/z (LSIMS) : 539 [M+H]+

IR (neat) cm⁻¹ : 3475, 3282, 2928, 1442, 1310, 1175.

Elemental analysis : Calcd. for C₂₃H₂₄BrNO₅S₂: C, 51.30; H, 4.49; N, 2.60;

S, 11.91.

Found : C, 51.47; H, 4.34; N, 2.93; S, 12.23.

1N-[2-bromo-4-(tert-butyldiphenylsilyoxy)-3-hydroxy-1-

phenylsulfonylmethyl-(15,2R,3S)-butyl]-4-methyl-1-benzenesulfonamide, 85.

78%. Solid.

mp : 173-175 °C

PMR (200 MHz, CDCl₃) : δ 7.89-7.48 (m, 11H), 7.47-7.17 (m, 8H), 4.73 (d, I =

10.4 Hz, NH), 4.31-4.18 (m, 1H), 3.82 (bs, 2H), 3.65-

3.26 (m, 2H), 3.28-2.99 (m, 2H), 2.40 (s, 3H), 1.08 (s,

9H).

m/z (LSIMS) : 730 [M+H]+

Elemental analysis : Calcd. for C₃₄H₄₀BrNO₆S₂Si: C, 58.11; H, 5.74; N,

1.99; S, 9.12.

Found : C, 58.34; H, 5.44; N, 1.93; S, 9.43.

4-Bromo-3-(4-methylphenylsulfonamido)-5-phenyl-2-phenylsulfanyl-(2S,3S,4R,5S)-tetrahydrofuran, 87.

To the bromohydrin 81s (52mg, 0.1 mmol) in dry DMF (0.1 mL) were added imidazole (13 mg, 0.2 mmol) followed by TBDPS-Cl (27 mg, 0.1 mmol) at room temperature under N₂ atmosphere. The reaction mixture was stirred at r.t. until TLC revealed complete consumption of the starting material. The reaction mixture was diluted with ether and washed successively with water, brine and dried over Na₂SO₄. The solvent was evaporated under reduced

pressure to afford the crude product mixture. Purification by column chromatography using EtOAc/petroleum ether (1:24) afforded **16** (43 mg, 0.086 mmol) in 86% yield.

Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.82 (d, J = 8.2 Hz, 2H), 7.38-7.13 (m, 12H), 6.07

(d, J = 8.2 Hz, NH), 5.30 (d, J = 4.6 Hz, 1H), 5.06 (d, J = 4.6 Hz, 1H), 5.06 (d, J = 4.6 Hz, 1Hz)

J = 8.9 Hz, 1H), 4.05 (ddd, J = 8.2, 6.7, 4.6 Hz, 1H),

3.69 (dd, J = 8.9, 6.7 Hz, 1H), 2.36 (s, 3H).

m/z (LSIMS) : 382 [M-STol]⁺

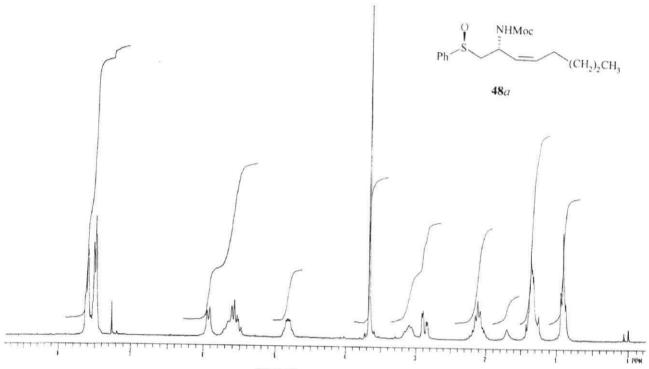
Elemental analysis : Calcd. for C₂₃H₂₂BrNO₃S₂: C, 54.76; H, 4.40; N, 2.78;

S, 12.71.

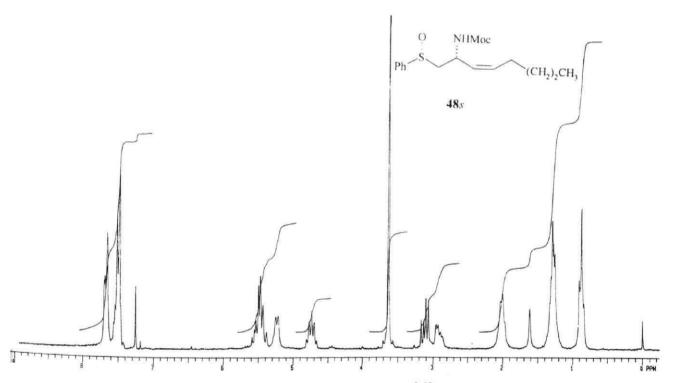
Found : C, 54.63; H, 4.52; N, 2.87; S, 12.62.

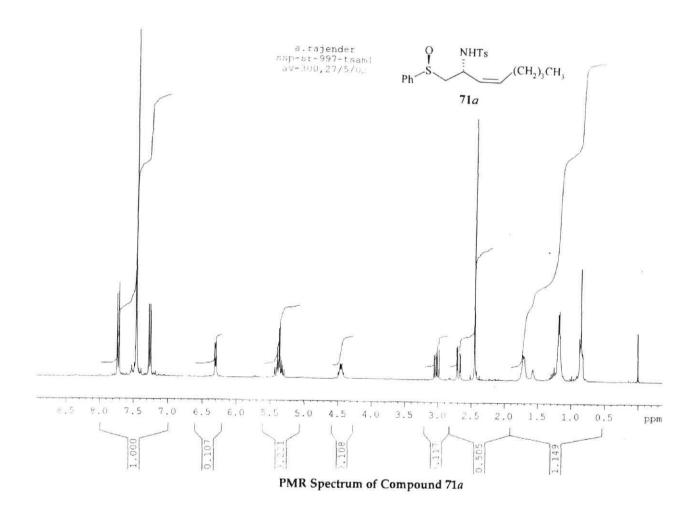
References

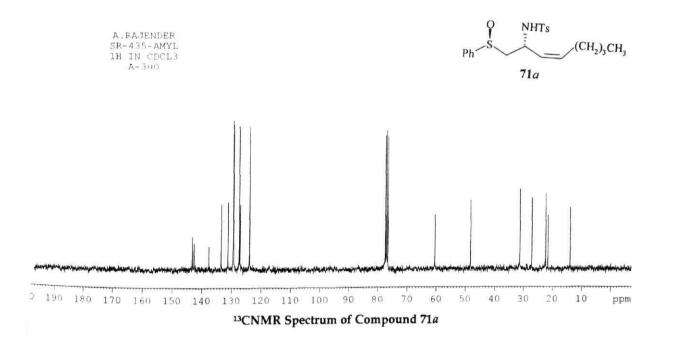
- Mikolajczyk, M.; Drabowicz, J.; Kielbasinsky, P. In: The Chemistry of Sulfones and sulfoxides, Patai, S.; Rappoport, Z.; Stirling, C. J. M. Eds, John Wiley & Sons, Chichester, UK, 1988, Chap. 7, p. 233; (b) Walker, A. J. Tetrahedron: Asymmetry 1992, 3, 961; (c) Carreno, M. C. Chem. Rev. 1995, 95, 1717.
- Mislow, K.; Siegel, J. J. Am. Chem. Soc. 1984, 106, 3319; (b) Solladie, G. Synthesis 1981, 185.
- Solladie, G.; Carreno, M. C. In Organosulphur Chemistry. Synthetic Aspects; Page, P. C. B., Ed.; Academic Press: New York, 1995; Chapter 1, p. 1 and references cited there in.
- 4. Annunziata, R.; Cinquini, M.; Cozzi, F. J. Chem. Soc., Perkin Trans. 1, 1979, 1687.
- (a) Solladie, G.; Greck, C.; Demailly, G. Tetrahedron Lett., 1982, 23, 5047.
 (b) Solladie, G.; Greck, C.; Demailly, G. Tetrahedron Lett., 1985, 26, 435.
- (a) Solladie, G.; Fernandez, I.; Maestro, M. C. Tetrahedron Lett. 1991, 32, 509; (b) Solladie, G.; Fernandez, I.; Maestro, M. C. Tetrahedron: Asymmetry 1991, 32, 801.
- 7. Lavielle, S.; Bory, S.; Moreau, B.; Luche, M. J.; Marquet, A. J. Am. Chem. Soc., 1978, 100, 1558.
- Hua, D. H.; Sinai, G.-Z.; Venkataraman, S. J. Am. Chem. Soc., 1985, 107, 4088; (b) Hua, D. H.; Venkataraman, S.; Ostrander, R. A.; Sinai, G.-Z.; McCann, P. J.; Coulter, M. J.; Xu, M. R. J. Org. Chem. 1988, 53, 507.
- 9. Montanari, F. Tetrahedron Lett., 1964, 38, 2685.
- 10. Hogevean, H.; Maccagnani, G.; Montanari, F. Boll. Sci. Fac. Chim. ind. Bologna., 1963, 21, 257.
- 11. Horner, V.L.; Binder, V. Liebigs Ann. Chem., 1972, 33, 757.
- 12. Ma, S.; Ren, H.; Wei, Q. J. Am. Chem. Soc., 2003, 125, 4817.

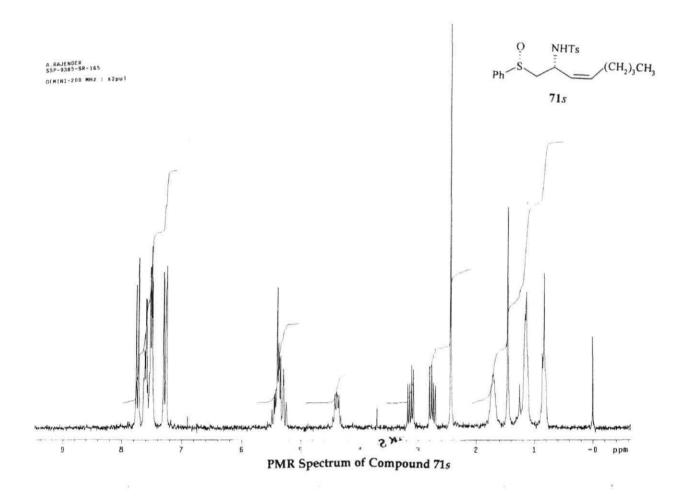

- 13. Westwell, A. D.; Thorton-Pett, M.; Rayner, C. M. J. Chem. Soc. Perkin Trans 1, 1995, 847.
- Friedrichs, E.; Christoph, T.; Buschmann, H. In *Ullmann's Encyclopedia of Industrial Chemistry*, Ed. McGuire, J. L, Wiley-VCH, Weinheim, 2000. (b)
 Gais, H. -J.; Greibel, C.; Buschmann, H. *Tetrahedron:Asymmetry* 2000, 11, 917. (c) Carlier, P. R.; Lo, K. M. Lo, M. M. -C.; Williams, I. D. *J. Org. Chem.* 1995, 60, 7511.
- Benedetti, F.; Norbedo, S. J. Chem. Soc. Chem. Commun. 2001, 203. (b)
 Carlier, P. R.; Lo, M. M. -C.; Lo, P. C. -K.; Richelson, E.; Tatsumi, M.;
 Reynold, J.; Sharma, T. A. Bioorg. Med. Chem. Lett. 1997, 7, 1511. (d)
 Musso, D. L.; Mehta, N. B.; Soroko, F. E. Bioorg. Med. Chem. Lett. 1997, 7,
 (e) Sakai, R.; Kamiya, H.; Murata, M.; Shimamoto, K. J. Am. Chem. Soc. 1997, 119, 4112. (f) Barrett, A. G. M.; Lebold, S. A. J. Org. Chem. 1991, 56, 4875. (g) Hashiguchi, S.; Kawada, A.; Natsugari, H. J. Chem. Soc. Perkin Trans. 1 1991, 2435.
- Vilaplana, M. J.; Molina, P.; Arues, A.; Andres, C.; Pedrosa, R. Tetrahedron: Asymmetry 2002, 13, 5. (b) Li, X.; Yueng, C.; Chan, A. S. C.; Yang, T. -K. Tetrahedron: Asymmetry 1999, 10, 759. (c) Chicchi, S.; Crea, S.; Goti, A.; Brandi, A. Tetrahedron: Asymmetry 1997, 8, 293. (d) Cho, B. T.; Kim, N. Tetrahedron Lett. 1994, 35, 4115.
- For selected recent examples refer: (a) Gais, H. -J.; Loo, R, Roder, D.; Das, P.; Raabe, G. Eur. J. Org. Chem. 2003, 1500. (b) Dudling, T.; Hafez, A. M.; Taggi, A. E.; Wagerle, T. R.; Lectka, T. Org. Lett. 2002, 4, 387. (c) Veenstra, S. J.; Kinderman, S. S. Synlett 2001, 1109. (d) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6578. (e) Toujas, J. -L.; Toupet, L.; Vaultier, M.; Tetrahedron 2000, 56, 2665. (f) Takemoto, Y.; Anzai, M.; Yamada, R.; Fujii, N.; Ohno, H.; Ibuka, T. Tetrahedron Lett. 2001, 42, 1725. (g) Ohno, H.; Hansaguchi, H.; Tanaka, T. J. Org. Chem. 2001, 66, 1867. (h)

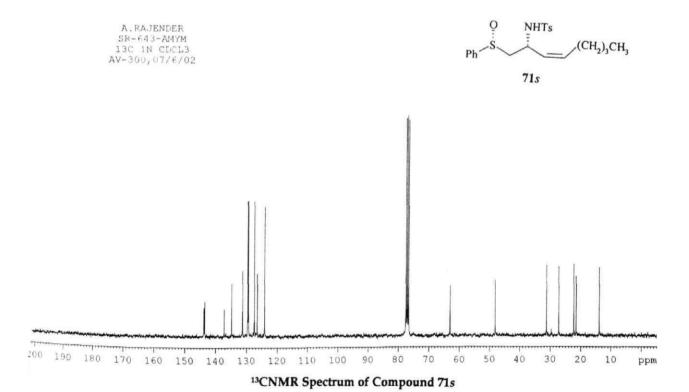
- Kossenjans, M.; Jurgen, M. Tetrahedron: Asymmetry 1999, 10, 3409. (i) Kobayashi, S.; Kawamura, H. J. Am. Chem. Soc. 1998, 120, 5840.
- 18. Cardillo, G.; Orena. M. *Tetrahedron* 1990, 46, 3321 and references cited therein.
- (a) Garner, P.; Park, J. -M. J. Org. Chem. 1987, 52, 2361; (b) Garner, P.;
 Park, J. -M. Org. Synth. 1991, 70, 18; (c) McKillop, A.; Taylor, R. J. K.;
 Watson, R. J.; Lewis, N. Synthesis 1994, 31.
- Hamada, Y.; Shibata, M.; Sugiura, T.; Kato, S.; Shioiri, T. J. Org. Chem. 1987, 52, 1252.
- 21. Dondoni, A.; Perrone, D.; Semola, T. Synthesis, 1995, 181.
- 22. (a) Beaulieu, P, L.; Duceppe, J, -S.; Johnson, C. J. Org. Chem. 1991, 56, 4196; (b) Barco, A.; Benetti, S.; Spalluto, G. J. Org. Chem. 1992, 57, 6279.
- 23. Medina, E.; Moyano, A.; Pericas, M.; Rieva, A. J. Org. Chem. 1998, 23, 8574.
- 24. Ono, N.; Miyake, H.; Saito, T.; Kaji, A. Synthesis, 1980, 952.
- 25. Leonard, N. J.; Johnson, C. R. J. Org. Chem. 1962, 27, 282.
- 26. Schwarz, M.; Gaminski, G. F.; Waters, R. M. J. Org. Chem. 1986, 51, 260.
- 27. Shimamoto, K.; Ohfune, Y. Tetrahedron Lett. 1990, 31, 4049. (b) Kim, S.; Ahn, K. H. J. Org. Chem. 1984, 49, 1717.
- 28. Nakagawa, I.; Hata, T. Tetrahedron Lett. 1975, 1409. (b) Nakagawa, I.; Aki, K.; Hata, T. J. Chem. Soc. Perkin Trans. 1 1983, 1315; (c) Kotsuki, H.; Matsumoto, K.; Nishizawa, H. Tetrahedron Lett. 1991, 32, 4155.
- 29. Lewanowicz, A.; Lipinski, J.; Siedlecka, R.; Skarzewski, J.; Baert, F. *Tetrahedron* **1998**, *54*, 6571.
- (a) Pauls, H.; Fraser-Reid, B. J. Am. Chem. Soc. 1980, 102, 3956. (b)
 Overman, L. E.; McCready R. J. Tetrahedron Lett. 1982, 23, 4887. (c)
 Georges, M.; MacKay, D.; Fraser-Reid, B. J. Am. Chem. Soc. 1980, 102, 3956. (d) Bartlett, P. A.; Tanzella, D. J.; Barstow, J. F. Tetrahedron Lett. 1982, 23, 619. (e) Parker, K. A.; O'Fee, R. J. Am. Chem. Soc. 1983, 105, 654.

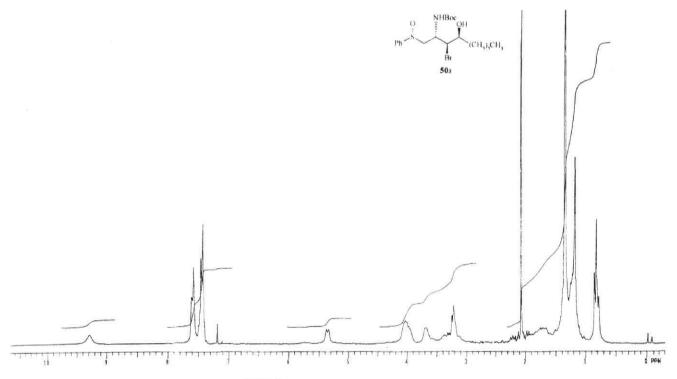

- (f) Kobayashi, S.; Isobe, T.; Ohno, M. Tetrahedron Lett. 1984, 25, 5079. Bongini, A.; Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. Chem. Lett. 1988, 43, 87. (h) Kamiyama, K.; Urano, Y.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1987, 28, 3123. (i) Cardillo, G.; Orena, M.; Sandri, S.; Tomasini, C. Tetrahedron 1987, 43, 2505. (j) Misiti, D.; Zappia, G. Tetrahedron Lett. 1990, 31, 7359. (k) Guindon, Y.; Slassi, A.; Ghiro, E.; Bantle, G.; Jung, G. Tetrahedron Lett. 1992, 33, 4257. (l) Di Giovanni, M. C.; Misiti, D.; Zappia, G. Tetrahedron 1993, 49, 11321. (m) Jorda-Gregori, J. M.; Gonzalez-Rosende, E.; Sepulveda-Arques, J.; Galeazzi, R.; Orena, M. Tetrahedron:Asymmetry 1999, 10, 1135.
- (a) Mislow, K.; Green, M. M.; Laur, P.; Melillo, J. T.; Ternay, A. L. J. Am. Chem. Soc., 1965, 87, 1958; (b) Jones, D. N.; Green, M. J. C. Chem. Soc. (C), 1967, 532.

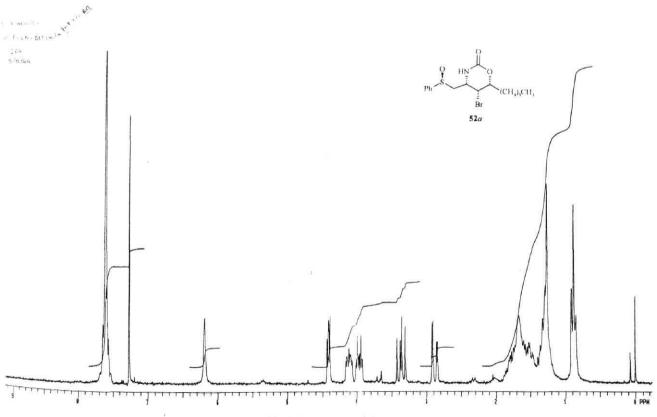


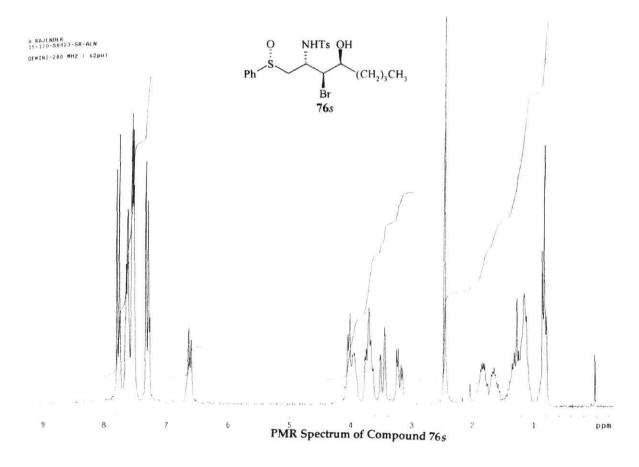


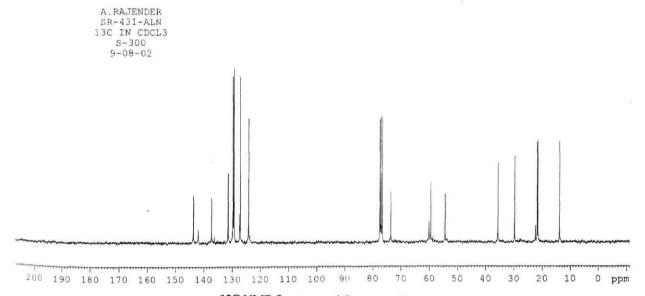

PMR Spectrum of Compound 48a

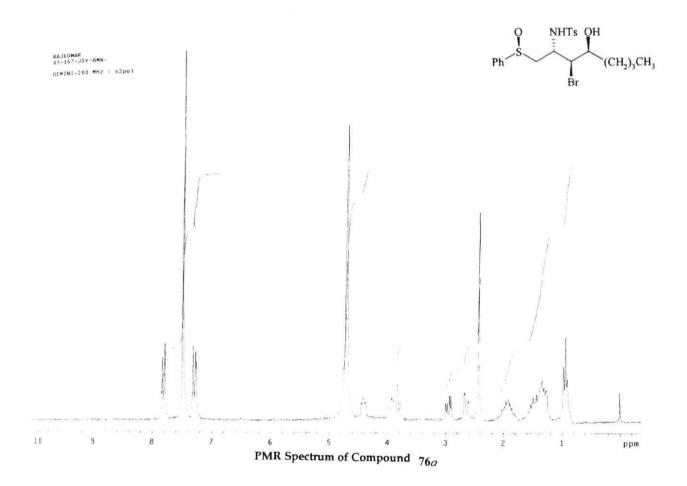


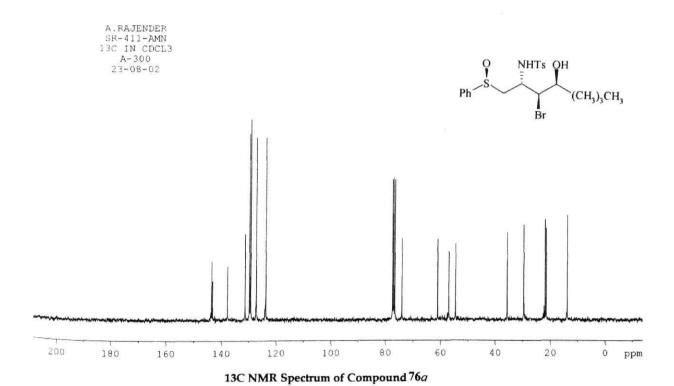

PMR Spectrum of Compound 48s

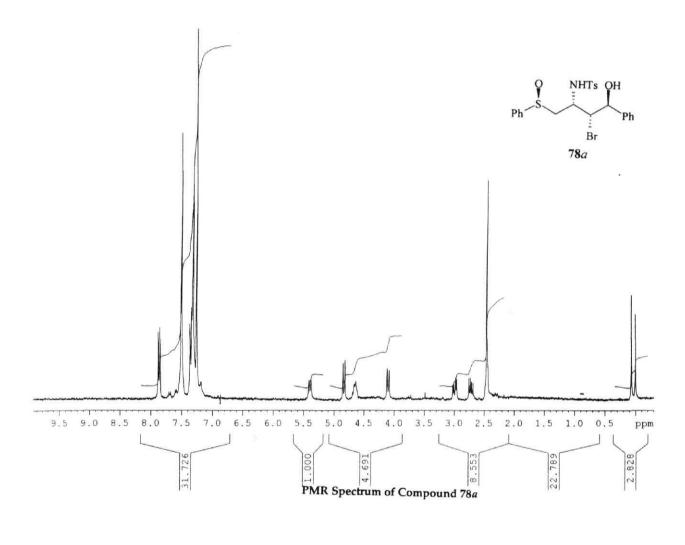


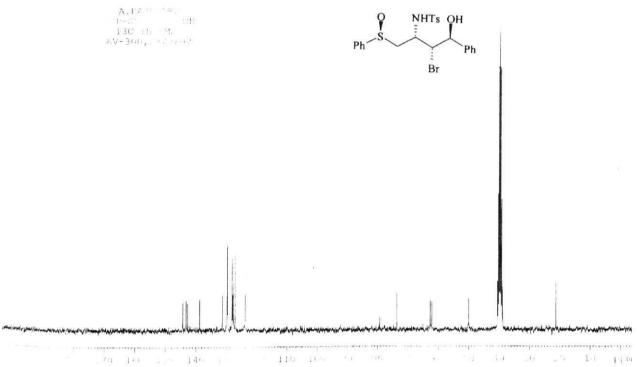


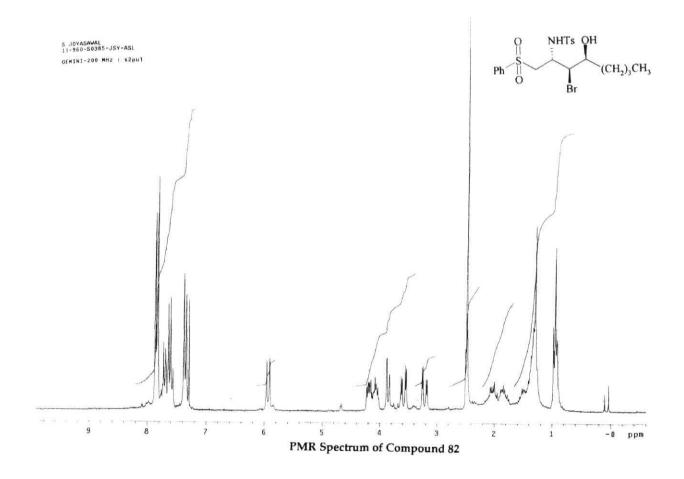

PMR Spectrum of Compound 503


PMR Spectrum of Compound 52a








13C NMR Spectrum of Compound 76s

CHAPTER-II

Stereoselective synthesis of (1*R*,3*R*)-HPA-12, (-)-allosedamine and functionalized tetrahydrofurans

Section-A

Stereoselective synthesis of (1*R*,3*R*)-*N*-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)-dodecanamide (HPA-12)

&

Section-B

Stereoselective synthesis of (-)-allosedamine

Introduction

Sphingolipids are ubiquitous constituents of membrane lipids in mammalian cells and play important roles in cell growth, differentiation, and apoptosis.¹ Moreover, together with cholesterol, sphingolipids in plasma membrane constitute detergent-resistant micro domains termed lipids rafts, which are involved in membrane trafficking and cell signaling.² *De novo* biosynthesis of sphingolipids in mammalian cells proceeds as follows.³ The first step is the condensation of L-serine and palmitoyl-CoA, a reaction catalyzed by serine *palmitoyl transferase*, to generate 3-ketodihydrosphingosine, which is reduced to dihydrosphingosine. Dihydrosphingosine undergoes *N*-acylation followed by desaturation to generate ceramide. These reactions to produce ceramide occur at the cytosolic surface of the endoplasmic reticulum. Then, ceramide is delivered to the luminal side of the Golgi apparatus and converted to sphingomyelin by *sphingomyelin synthase* catalyzing the transfer of phosphocholine from phosphatidylcholine to ceramide.

Various natural and chemically synthesized compounds have been found to be highly selective, even if not strictly specific, inhibitors of sphingolipid synthesis. For example, sphingofungins and ISP-1 appear to be specific and potent inhibitors of serine palmitoyl transferase. Fumonisins seem to inhibit (dihydro)sphingosine-N-acyltransferase specifically. D-threo-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol and some of its derivatives selectively inhibit GlcCer synthase.

N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (HPA-12), a novel analog of ceramide was found to be a specific inhibitor for sphingomyelin synthesis⁸ in mammalian cells. Till date, no drug has been discovered that inhibits intracellular trafficking of sphingolipids, except for broad-spectrum inhibitors such as brefeldin A and energy poisons. HPA-12 inhibits ATP-dependent transport of ceramide from the endoplasmic reticulum to the site of sphingomyelin synthesis

without inhibition of protein trafficking, thereby inhibiting conversion of ceramide to sphingomyelin, but not to GlcCer. HPA-12 can exist in four stereoisomeric forms (Scheme 1).

Scheme 1

$$HO$$
 3
 OH
 $CH_3(CH_2)_{10}$
 NH
 $CH_3(CH_2)_{10}$
 NH

Initial experiments with the mixture of *anti* isomers (2&3) and mixture of *syn* isomers (1&4) revealed that, only the former subgroup inhibited the *de novo* sphingomyelin synthesis. Examination of (1R,3R)-isomer and (1S,3S) individually showed that (1R,3R)-type inhibited *de novo* synthesis of sphingomyelin strongly, whereas (1S,3S)-type did so moderately. (1R,3R)-HPA-12 was also effective against HeLa cells, a human cervical carcinoma cell line, and HuH7 cells, a human hepatoma cell line.¹

Earlier approaches to the synthesis of (1R,3R)-HPA-12

Three syntheses of (1R,3R)-HPA-12 are reported till date. Kobayashi and co-workers reported all of these. Asymmetric Mannich-type reaction was used as the key step.

First approach9:

Kobayashi *et al.* reported the first total synthesis of (1*R*,3*R*)-HPA-12 in 2001. This approach includes a chiral zirconium-catalyzed enantioselective Mannich-type reaction as the key step. A three component condensation of α-tert-butyldimethylsilyloxy acetalaldehyde 5, 2-amino-3-methylphenol 6, and 1-ethylthio-1-trimethylsiloxyethene 7 in the presence of a catalytic amount of a chiral zirconium complex afforded the adduct 8 in 47% yield in 80% ee. The compound 8 on treatment with cericammoniumnitrate afforded amino compound 9. Acetylation of 9 under standard reaction conditions followed by treatment with diphenylcopper lithium in THF afforded the ketone 10 in 37% yield with 55% recovery of starting material. The *anti*-selective reduction of the ketone 10 using L-selectride proceeded in 54% de (Scheme 2). Removal of the silyl protection in major diastereomer 11a furnished (1*R*,3*R*)-HPA-12.

Second approach10:

HO

HPA-12

The second approach to (1R,3R)-HPA-12 reported in 2002, was achieved by enantioselective Mannich-type reaction catalyzed by a chiral copper catalyst.

Mannich-type reaction of the N-acyliminoester 12, prepared from the corresponding α -chloroglycine derivative, with the silyl enol ether 13, derived from acetophenone, in the presence of catalyst 'C' afforded the adduct 15 in 94% ee. The Mannich-type adduct was treated with K-Selectride and then LiBEt₃H to afford (1R,3R)-HPA-12 in 62% de.

Third approach¹¹:

Kobayashi *et al.* reported yet another synthesis of (1*R*,3*R*)-HPA-12 in 2002 employing the asymmetric Mannich-type reaction as the key step. The reaction between ester 17 and silyl enol ether 13 in the presence of ligand L and ZnF₂ afforded the adduct 18 in 94% ee. Mannich adduct 18 was *N*-acylated and the keto and ester groups were reduced by NaBH₄ in ethanol to afford the diols 19a and 19b in 47:53 ratio. Cleavage of N-N bond in *anti* diol 19a using SmI₂ afforded (1*R*,3*R*)-HPA-12 (Scheme 4).

Diastereoselective additions of sulfoxide anion to imines:

The use of chiral sulfoxide-stabilized carbanions for asymmetric carbon-carbon bond formation, *via* alkylation or addition reactions to C=O and activated C=C double bonds, is the most synthetically powerful application of this chiral auxiliary and has been studied extensively.¹² However, the addition of chiral sulfoxide anions to the C=N bond of an achiral imine has received much less attention.¹³

In 1973, Tsuchihashi^{13a} reported that the addition of the lithium carbanion of (R)-(+)-methyl p-tolyl sulfoxide to N-benzylidine aniline at 0 °C to -20 °C was a highly diastereoselective process. The generality of this method, however, was not demonstrated. Kagan¹⁴ reported the diastereoselective addition of the lithium

carbanion of **20** to **21** and *N*-benzylidenealkylamines. Employing the optimal conditions (0 °C for carbanion generation and –78 °C for addition of imine), diastereomeric sulfoxides **22** and **23** were obtained in a ratio of 92:8 (Scheme 4).

Scheme 4

Reagents and conditions: (a) LDA, THF, 0 °C, add 21 at -78 °C, 10 min.

Pyne and co-workers¹⁵ reported the synthesis of (*R*)-(+)-tetrahydropalmitate via diastereoselective addition of anion derived from **20** to **24**. Generation of the carbanion and addition of the imine at –78 °C followed by stirring at 0 °C for 12 h afforded the diastereomers **25a** and **25b** in 92:8 ratio (Scheme 5).

Scheme 5

Reagents and conditions: (a) LDA, THF, -78 °C, add 20, 1 h, then add 24, 1 h, warm to 0 °C, 12 h.

A single report by Pyne and co-workers 16 detailed the addition of the carbanion from 26 to α,β -unsaturated imines. Generation of the carbanion from 26 and addition of the imine 27 to the resulting anion at -78 $^{\circ}$ C followed by stirring at

-78 °C for 5 h afforded the *anti* product in a highly diastereoselective fashion (>95% de) (Scheme 6).

Scheme 6

Reagents and conditions: (a) n-BuLi, THF, -78 °C, ZnCl₂, 10 min, add 27, -78 °C, 5 h.

Bravo *et al.*^{13h} reported the asymmetric synthesis of arylglycinols via addition of lithium anion of **20** to *N*-(PMP)arylaldimines. Generation of the carbanion at 0 °C and addition of the imine to the anion at –70 °C followed by stirring at –70 °C for 15 min afforded the diastereomers **30a** and **30b** in 93:7 ratio (Scheme 7).

Scheme 7

Reaction conditions: (a) LDA, THF, -0 °C, add 20, 15 min, cool to -70 °C then add 29, 15 min.

Present work

As disclosed earlier in this section, three asymmetric routes to (1R,3R)-HPA-12 were reported by Kobayashi *et al.* All the approaches used asymmetric Mannich-type reaction as the key step and proceeded with moderate selectivity particularly while attempting to introduce the chiral center bearing the hydroxy group. This section deals with the stereo- and regioselective synthesis of (1R,3R)-HPA-12 by a route that exploits the potential of the sulfinyl moiety as an intramolecular nucleophile to heterofunctionalize olefins.

By a retrosynthetic analysis (Scheme 7), (1R,3R)-HPA-12 was envisioned to be derived from the hydroxy acetate **45**, which in turn can be obtained from the alcohol **43**. The compound **43** can be readily obtained from the β -aminosulfoxide **41**s.

Scheme 7

Preparation of (R)-(+)-Methyl p-tolylsulfoxide

(R)-(+)-Methyl p-tolylsulfoxide 20 was prepared by Andersen's protocol¹⁸ by the nucleophilic addition of MeMgI to diastereomerically pure (Ss)-menthyl p-toluenesulfinate which proceeds with inversion of the configuration at sulfur.

Treatment of p-tolylsulfinyl chloride 33 with (-)-menthol afforded a mixture of diastereomeric menthyl p-tolylsulfinates 34 and 35. Equilibration of the epimers by treatment with catalytic hydrochloric acid in acetone led to the displacement of the equilibrium by precipitation of the (Ss) diastereomer to afford 35 in 80% yield¹⁹ (Scheme 8).

Scheme 8

Reagents and conditions: (a) Na₂SO₃, NaHCO₃, H₂O, 80 °C, 3 h, 90%; (b) SOCl₂, benzene, 0 °C to r.t., 2 h, add (-)-menthol, pyridine, ether, r.t., 1 h, recrystallization in acetone, HCl, -20 °C, 80%; (c) CH₃MgI, benzene, 0 °C, r.t., 2 h, 80%.

The first objective in the synthesis was the preparation of the β protectedaminosulfoxide 41s with good diastereoselectivity via addition of the lithium anion generated from (R)-(+)-methyl p-tolylsulfoxide 20 to imine 40. The imine 40 was synthesized by following the protocol reported by Proctor et al.20 Thus, condensation of cinnamaldehyde 38 with p-toluenesulfonamide 39 in the presence of BF3.Et2O afforded imine 40. The PMR spectrum of 40 showed resonances at δ 8.75 (d) for CHNTs proton, δ 7.82-7.32 (m) for the aromatic protons and one of the olefinic proton. The other olefinic proton resonated at δ 6.97 (dd) and the methyl group appeared as a singlet at 8 2.45 (s). As already noted by Kagan et al.14 the stereoselectivity in the condensation reaction is influenced by the reaction conditions which includes the temperatures of anion generation, temperature of condensation and duration of the reaction. Therefore preparation of β-toluenesulfonamido sulfoxides (41a and 41s) was investigated by varying the temperature of a) the anion generation and b) the condensation of the resulting anion with the imine. Addition of the anion derived from 20 (1.0 eq.), using LDA to the imine 40 (1.1 eq.) cooled at -43 °C, proceeded with 62% conversion in 30 min (entry 1), to yield a mixture of the diastereomers 41s and 41a in a ratio of 58/42, respectively. Next, a series of reactions were performed varying the temperature of deprotonation of the starting sulfoxide and addition of imine. Thus, addition of lithium anion of 20, prepared at -30 °C, to the imine at -78 °C gave a mixture of 41s and 41a in 70/30 ratio (entry 2). Under the same reaction conditions, addition of 1 eq. of BF3.Et2O to the imine did not improve the ratio of formation of 41s isomer (entry 3). The reaction of lithium anion of 20, prepared at -70 °C, with the imine 40 at -70 °C gave 41s and 41a in a ratio of 75/25 (entry 4). Addition of the anion prepared at -70 °C, to the imine at -70 °C followed by stirring 0 °C for 1.5 h afforded almost a 1:1 mixture of diastereomers (entry 5).

Table I: Addition reactions between imine 40 and lithium (R)-methyl p-tolyl sulfoxide 20

Entry	T1a oC	Т²ь оС	Time min	Yield (%)	Ratio ^c (2 <i>R</i> , <i>R</i> _S) (2 <i>S</i> , <i>R</i> _S)	
1	-43 °C	-4 3 ℃	30	62e	58	42
2	-30 °C	-78 °C	15	82	70	30
3	-30 °C	-78 °C	15	78	68	32
4	-70 °C	-70 °C	15	81	77	23
5	-70 °C	-70-0 °C	90	71	55	45

^a Temperature at which lithium (*R*)-methyl *p*-tolyl sulfoxide was formed using LDA; ^b Temperature at which the anion condensed with the imine; ^c Ratios were determined by PMR analysis of the crude reaction mixture; ^d 1 eq. of BF₃.Et₂O was added along with imine; ^e Some unreacted imine also observed.

Observation of the table reveals the following characteristics.

- The reactions proceeds under kinetic control at -78 °C. -70 °C show kinetic control.
- Equilibration of the diastereomers occurs at higher temperatures and is completed in 1.5-2 h time at 0 °C temperature (entry 5) affording almost equal amounts of the diastereomers.
- The reaction conducted in the presence of BF₃.Et₂O did not improve the diastereomeric ratio.

The approach of the α -sulfinyl carbanion to the si face and re face of the imine group would furnish the diastereomers **41s** and **41a** respectively (Scheme 9). The sulfoxides were separated by column chromatography and the configuration

assigned by comparing the chemical shift for the C2 H proton with the diastereomers **40**s and **40**a reported in Chapter I, Table I.

Scheme 9

Reagents and conditions: (a) BF₃.Et₂O, benzene, reflux (Dean and Stark apparatus), 2 h, 73%; (b) LDA, THF, -78 °C, add 20, 20 min, then add 40, 15 min, 81%.

The (R_S , R_C) diastereomer showed resonances at δ 6.30 (d) for CHPh, δ 6.09 (d) for the NH, δ 5.88 (dd) for C3 H, δ 4.43-4.26 (m) for the CHNTs, δ 3.11 (dd) and 2.89 (dd) for CH₂SO in its PMR spectrum. The (R_S , S_C) diastereomer showed resonances at δ 6.48 (d) for the NH, δ 6.41 (d) for CHPh, 6.03 (dd) for C3 H proton,

 δ 4.58-4.42 for the CHNTs proton, δ 2.94-2.85 for CH₂SO. The CHN proton of 40s also appears upfield at δ 4.38 relative to the CHN of **40***a* which resonates at δ 4.52.

Upon subjecting 41s to treatment with NBS in toluene in the presence of water at ambient temperature, the bromohydrin 42 was obtained regio- and stereoselectively. The structure assigned to it was supported by its PMR spectrum, which showed resonances at δ 7.86 (d) for the aromatic protons ortho to the sulfoxide group, δ 4.85 (dd) for the benzylic proton, δ 4.70-4.56 (m) for CHNTs, δ 4.06 (d) for CHBr and the absence of signals for the olefinic protons. The structure assigned to 42 was further supported by its mass spectrum which showed m/z 536 [M+H]⁺ and 538 [M+2+H]⁺ peaks. The observed regio- and stereoselectivity can be explained through the intermediacy of a sulfoxonium salt (III) formed by the 6-endo nucleophilic attack by the sulfinyl group onto the olefin π -complexed to the bromonium ion, followed by the attack of water on sulfur in a S_N2 fashion resulting in inversion of configuration at sulfur (Scheme 10).²² The orientation as indicated for the hydroxy group and bromine at C-3 and C-4 respectively is expected from an overall trans addition of the electrophile and nucleophile across the double bond.²³ A coupling constant of J = 9.7 Hz for the C3 methine proton with C4 methine proton further supported the geometry of the substituents at C3 and C4 carbon. The regioselective 6-endo attack by the internal sulfinyl nucleophile could be attributed to the stabilization of the partial positive charge at the C4 (benzylic) carbon by the phenyl group.

Reagents and conditions: (a) NBS, H₂O, toluene: CHCl₃, r.t., 1 h, 84%.

The bromine atom in 42 was removed by treatment with $n\text{-Bu}_3\text{SnH}$ in the presence of catalytic amounts of AIBN in benzene. The PMR spectrum of the compound 43 showed resonances at δ 4.87 (d) for the benzylic proton, δ 4.58-4.52 (m) for CHNTs, C3 methylene protons appeared at δ 2.12-1.96 (m) and δ 1.91-1.75 (m) and the signal for CHBr was absent. Acetylation of the benzylic hydroxy group in 43 by treatment with acetic anhydride in the presence of pyridine yielded 44. The benzylic proton appeared downfield at δ 5.71 (dd) and the methyl of the acetyl group appeared at δ 2.02 (s) in the PMR spectrum of compound 44 (Scheme 11).

Reagents and conditions: (a) n-Bu₃SnH, AIBN (cat.), benzene, reflux, 1.5 h, 76%; (b) Ac₂O, pyridine, r.t., 1 h, 96%.

The next step in the synthesis warranted the transformation of the toluenesulfinyl moiety to a hydroxy group. This was achieved by subjecting 44 to Pummerer reaction²⁴ conditions. Thus, 44 on treatment with TFAA and 2,6-lutidine in acetonitrile afforded the intermediate (IV) which without isolation was subjected to treatment with aqueous K_2CO_3 solution followed by NaBH₄ to afford alcohol 45. The structure assigned to the compound 45 was confirmed by its PMR spectrum, which showed signals at δ 5.60 (dd) for the benzylic proton, δ 4.13-4.04 (m) for CHNTs, δ 3.38-3.16 (m) for CH₂OH and absence of the signals corresponding to the CH₂SO. Alcohol 45 was acetylated by treatment with acetic anhydride in the presence of pyridine to yield the diacetate 46 (Scheme 12), which revealed resonances for CH₂O at δ 4.0-3.84 (m) and presence of the two-acetyl methyl groups in its PMR spectrum.

Reagents and conditions: (a) TFAA, 2,6-lutidine, 5 min, K₂CO₃, NaBH₄, CH₃CN, 0 °C, 15 min, 78%; (b) Ac₂O, pyridine, r.t., 2 h, 97%.

Acylation of **46** with lauryl chloride in the presence of Et₃N and catalytic amounts of DMAP afforded the amide **47** (Scheme 13). The CHN signal appeared downfield at δ 4.73-4.58 (m), and the CH₂O resonated downfield at δ 4.50-4.32 (m) relative to **46**. The PMR spectrum also clearly revealed the protons corresponding to the long alkyl chain.

Scheme 13

AcO

NHTs OAc

a

$$CH_3(CH_2)_{10}$$

AcO

Ph

46

47

Reagents and conditions: (a) C₁₁H₂₃COCl, Et₃N, DMAP, 0 °C to r.t., 30 min, 91%.

Finally the synthesis of (1R,3R)-HPA-12, was achieved by reductive removal of the p-toluenesulfonyl protection on nitrogen with concomitant deacetylation under the workup conditions. Thus, diacetate 47 was reacted with freshly prepared

sodium naphthanilide²⁵ in dimethoxyethane to afford (1*R*,3*R*)-HPA-12 (Scheme 14), which had physical characteristics in full agreement to that reported in the literature.

Scheme 14

Reagents and conditions: (a) Na-Naphthalinide, DME, -23 °C, 2 min, K₂CO₃, 24 h, 55%.

In summary, a stereoselective synthesis of *N*-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (HPA-12) is detailed in this section. The key transformations include, diastereoselective addition of carbanion derived from 20 to imine the **40**, regio- and stereospecific bromohydrin formation via intramolecular nucleophilic participation of the sulfinyl group.

Stereoselective Synthesis of (-)-Allosedamine

Introduction

A large numbers of alkaloids have been isolated from various *Sedum* and *Lobelia* species. Both one-armed and two-armed derivatives, containing every combination of C=O or CHOH functionality, *cis/trans* geometry and chirality exist, combined with a variety of terminal R groups, both similar and different, and occasionally bearing extra OH or unsaturated features in the region of the 3, 4, 5-carbons. The group includes both *N*H and *N*Me analogues (Scheme 1).

Scheme 1

Summary of various types of alkaloids found in Sedum and Lobelia species

Piperidine alkaloids constitute a large family of compounds, many of which exhibit a wide range of physiological activities.²⁶ As a result, intense attention has been devoted to the isolation and structure determination of bases of this class and to the development of general routes for their synthesis (Scheme 2).²⁷

Representative piperidine alkaloids

(-)-Allosedamine is a piperidine alkaloidal constituent²⁸ of *Lobelia inflata*, which is also known as *Rapuntium inflatum*, Indian weed, puke weed, asthma weed, gagroot, vomitwort, bladderpod, eyebright, and Indian tobacco. The herb was named after Matthias de Lobel, a famous French botanist. The name "Indian tobacco" could have been derived from the tobacco-like sensation imparted to the tongue and stomach upon chewing the plant leaves, or from the fact that the American Indians smoked the dried leaves to obtain the CNS effects of the alkaloids in the plant. Schoepf noted application of *L. inflata* as an emetic and for sore eyes in 1787. In 1813, *L. inflata* was introduced to the medical profession by Reverend D. Cutler as a valuable remedy for asthma.²⁹ The first documentation of the pharmacological actions of the plant was obtained from a liquid alkaloid extract, first prepared by Proctor in 1838. Extract of *L. inflata* were used as an expectorant, emetic, anti-asthmatic, anti-spasmodic, respiratory stimulant, general muscular relaxant, diaphoretic, diuretic, and stimulant and also to treat narcotic overdose. Allosedamine was also isolated from many *Sedum acre* species, exceptions.

Sedum oryzifolium.³⁰ In the study of interactions of *Pea Seedlings Amine Oxidase* (PSAO, EC 1.4.3.6) with sedamine derivatives,³¹ all compounds exhibited a competitive inhibition with the inhibition constants in the range 0.03-1.0 mM. The inhibitory potential is as follows.

Allosedamine < Sedamine < Norallosedamine < Norsedamine

The nor derivatives were found to be five fold stronger compared to the normal. Interestingly, (-) diastereomer of the sedamines were found to be considerably strong inhibitors than the (+)-antipodes.

Earlier approaches toward the synthesis of allosedamine: Ozawa's approach³²:

Ozawa *et al.*, reported the synthesis of racemic sedamine and allosedamine in 1991. Reduction of *N*-methyl glutaramide 54 with NaBH₄ and subsequent treatment with ethanol under acid catalyzed conditions afforded the piperidone 55. Reactions of 55 with 56 in the presence of AlCl₃ afforded 57. Reduction with LAH afforded 1:1 mixture of dl-sedamine 58 and dl-allosedamine 52 b (Scheme 3).

Naito's approach33:

Naito et al., reported the synthesis of (+)- and (-)-coniine, (-)-sedamine and (-)-allosedamine via the diastereoselective alkylation reaction of the chiral 6-ethoxy-piperidinone 63a. The reduction of the imide 62 with NaBH₄ followed by treatment with 2N HCl in ethanol afforded the lactams 63a and 63b in a 1:3 ratio along with 5% of enamide 64. Treatment of 63a with silyl enol ether 14 in the presence of titanium (IV) chloride gave three products 65a, 65b and 64 in 49, 37, and 14% yield respectively after column chromatography. The major product 65a was reduced with LAH to give a 1:1 mixture of the amines 66a and 66b. Carbamoylation with trichloroethyl chloroformate followed by lithium aluminum hydride reduction afforded allosedamine (Scheme 4).

Tanaka's approach34:

Tanaka *et al.*, reported the synthesis of (+)-sedamine and (+)-allosedamine in 1985 starting from L-lysine 67. Condensation of 68 with silyl enol ether 14 afforded the pipecolates 69a and 69b in a ratio of 10:1 respectively. Following a standard reaction sequence, 69a was transformed into the keto-carbamate 71. The keto-carbamate 71 was further reduced with LAH to give two epimeric alcohols sedamine and allosedamine, 72 and 52a, in a 49:51 ratio (Scheme 5).

L-Lysine

$$67$$
 MeO^{N}
 CO_2Me
 CO_2Me

Oppolzer's approach35:

The first diastereo- and enantiocontrolled synthesis of (-)-allosedamine was reported by Oppolzer and co-workers starting from formyl-ester 73 in nine steps. *Exo*-selective 1,3-dipolar addition of nitrone 75 with styrene 76 afforded the cycloadducts 78a and 78b in a ratio of 96.5:3.5 via the transition state 77. Following a standard reaction sequence, the compound 79 was elaborated from 78a in 66% yield. Compound 79 was further transformed into (-)-allosedamine (Scheme 6).

Lebreton's approach36:

Lebreton *et al.*, reported a synthesis of (-)-allosedamine in 2002, in 14 steps with an overall yield of 29% starting from benzaldehyde 80. The enantioselective reduction of the β , γ -unsaturated ketone 81 with (+)-Ipc₂BCl proceeded with >99% ee to afford 82. Diastereoselective iodine-induced electrophilic cyclization of the homoallylic *tert*-butyl carbonate 83 with IBr furnished the iodocarbonate 84 as a single diastereomer, which under basic conditions led to the epoxide 85. Epoxide 85 was transformed into olefin 86 by a standard reaction sequence. Olefin 86 was transformed into (-)-allosedamine following a straightforward reaction sequence (Scheme 7).

Present work

As outlined in the foregoing discussion, several syntheses of racemic allosedamine have been reported. Only Oppolzer *et al.* and Lebreton *et al.* reported a stereoselective asymmetric synthesis of (-)-allosedamine. The potential of the internal sulfinyl moiety to functionalize an olefin is exploited to device a stereoselective synthesis of (-)-allosedamine. The details are presented hereunder.

Retrosynthetically (Scheme 8), (-)-allosedamine 52 was envisaged to be derived by a dialkylation³⁷ reaction of the dianion derived from silyl ether 89 with a 1,3-dielectrophile. The silyl ether itself was envisaged to be derived from the bromohydrin 42, which in turn can be obtained from the β -aminosulfoxide 41s.

Scheme 8

X = Leaving group

As detailed in the previous section, the diastereoselective preparation of β -aminosulfoxide **41**s was achieved via addition of the anion derived from (R)-(+)-methyl p-tolylsulfoxide **20** to the imine **40**. Upon subjecting **41**s to treatment with NBS in toluene at ambient temperature in the presence of water, bromohydrin **42** was obtained regio- and stereoselectively. The bromine atom in **42** was removed

by treatment with *n*-Bu₃SnH in the presence of cat. amount of AIBN in benzene to furnish **43** (Scheme 9).

Scheme 9

Reagents and conditions: (a) LDA, THF, add 20, -78 °C, then add 40, 15 min, 81%; (b) NBS, H₂O, toluene: CHCl₃, r.t., 30 min, 84%; (c) TBTH, AIBN, benzene, reflux, 1.5 h, 76%.

The sulfoxide **43** was oxidized to sulfone **87** by treatment with m-chloroperbenzoic acid in chloroform. The PMR spectrum of the compound **87** showed signals at δ 3.45 (dd) and at δ 3.26 (dd) for the methylene protons at C1, a downfield shift compared to signals for the same protons in sulfoxide **43**. Attempted alkylation of the trianion derived from **87** by treatment with n-BuLi, using 1,3-diiodopropane³⁷ as the dielectrophile to construct the piperidine ring led to the isolation of only the β-eliminated product **88** as the major product without any trace of the desired product (Scheme 10). The structure assigned to the product was confirmed by the presence of the olefinic signals at δ 6.71 (dt) and at δ 5.97 (d), C H_2 CHOH signal at δ 2.50-2.40 (m) and the disappearance of the protons corresponding to the N-Ts group in its PMR spectrum. The product is probably formed via an initial N-alkylation followed by β -elimination.

Reagents and conditions: (a) m-CPBA, CHCl₃, r.t., 10 min, 80%; (b) n-BuLi, I(CH₂)₃I, THF, -78 °C, 2 h.

The hydroxy group in 43 was protected as its silyl ether 89 by treatment with *tert*-butyldiphenylsilyl chloride and imidazole in dichloromethane (Scheme 11). The PMR spectrum of 89 revealed signals for the aromatic protons of the silyl ether and also a signal at δ 1.06 (s) for the *tert*-butyl group.

Scheme 11

Reagents and conditions: (a) TBDPS-Cl, imidazole, DCM, r.t., 2 h, 80%.

Attempted alkylation of the dianion derived from the silyl ether 89, by treatment with n-BuLi, with 1,3-diidopropane afforded the N-allylated product 90 as the major component and none of the desired product. Also the use of other bases like LDA, n-BuLi and KHMDS for the generation of the dianion and in the presence/absence of HMPA proved unsuccessful. The β -elimination product 91 or the N-allylation product 90 were obtained in varying yields without any trace of the desired product (Scheme 12).

Reagents and conditions: (a) n-BuLi (2 eq.), HMPA, I(CH2)3I, -78 °C-20 °C, THF, 2 h.

The formation of the products 90 and 91 may be rationalized by the mechanism depicted in Scheme 13.

Scheme 13

The dialkylation reaction was also investigated employing 1,3-dibromopropane and 1,3-propane di triflate, derived from 1,3-propanediol by treatment with trifluoromethanesulfonic anhydride in the presence of pyridine in

dichloromethane,³⁸ as the dielectrophile. The reaction did not proceed with these dielectrophiles too to afford any piperidine derivative but instead N-allylation or β -elimination products only were isolated in varying yields. Najera *et al.*³⁹ observed formation of N-allylated product as a by-product in the study of lithiated β -aminoalkyl sulfones as mono and dinucleophiles in the preparation of nitrogen heterocycles. The PMR spectrum of the N-allylated compound 90 showed resonances at δ 5.56-5.42 (m), δ 4.82 (d) and at δ 4.57 (d) for the olefinic protons, at δ 4.27 (dd) for the benzylic proton, at δ 3.58 (dd) and at δ 3.51 (dd) for the NCH₂CHCH₂ protons, at δ 3.32 (dd) and δ 2.78 (dd) for the CH_2 SO protons and δ 0.98 (s) for the *tert*-butyl group. The structure assigned to the β -elimination product 91 was confirmed by the presence of resonances at δ 6.27 (dt) for CHCHSO, δ 5.93 (d) for CHSO, δ 4.71 (dd) for CHOTBDPS and at δ 0.98 (s) for the *tert*-butyl group and the absence of the peaks corresponding to the N-Ts group in its PMR spectrum.

The reactions were next attempted on the β -aminosulfone derivative 92 obtained by mCPBA oxidation of sulfoxide 89 (Scheme 14). The PMR spectrum of the sulfone 92 showed resonances at δ 4.80 (t) for CHOTBDPS, at δ 3.63 (dd) and δ 2.77 (dd) for CH₂SO₂, and at δ 0.97 (s) for the *tert*-butyl group.

Scheme 14

Reagents and conditions: (a) m-CPBA, chloroform, 0 °C-r.t., 10 min, 93%.

Again alkylation reactions using different bases, like LDA, n-BuLi for the generation of the dianion in the presence/absence of HMPA (in stoichiometric ratio or as a co-solvent), led to the isolation of only the N-allylated product 93 or

the β -eliminated product 94 in varying amounts without any trace of the desired product (Scheme 15). Change of nucleofuge did not alter the results (Table II). The structure assigned to the *N*-allylated compound 93 was confirmed by the presence of signals at δ 5.49-5.28 (m), δ 4.75 (d) and δ 4.59 (d) for the olefinic protons, δ 4.24 (dd) for CHOTBDPS, δ 3.56-3.50 (m) and δ 3.42 (dd) for *N*-CH₂ protons, δ 3.21 (dd) and δ 2.62 (dd) for CH₂SO₂, 0.97 (s) for the *tert*-butyl group in its PMR spectrum. The PMR spectrum of the β -elimination product 94 showed signals at δ 6.27 (dt) for CHCHSO₂, δ 5.93 (d) for CHSO₂, δ 2.37-2.04 (m) for the *CH*₂CHOTBDPS and δ 0.98 (s) for the *tert*-butyl group.

Scheme 15

Employing a different strategy the piperidine ring was envisaged to be constructed by an intramolecular Pummerer reaction⁴⁰ (Scheme 16).

Table II: Alkylation reactions with dielectrophiles

Entry	Sub.	Dielectrophile	Base	T ºCa	Time	Pro.b
		•			(h)	
1	87	$I(CH_2)_3I$	n-BuLi	-78	4	88
2	87	TfO(CH ₂) ₃ OTf	n-BuLi/HMPA	-78	3	88
3	87	$I(CH_2)_3I$	LDA	-60	3	88
4	89	I(CH ₂) ₃ I	n-BuLi	-20	2	90
5	89	TfO(CH ₂) ₃ OTf	n-BuLi	-40	2	91
6	89	$Br(CH_2)_3Br$	n-BuLi	r.t.	32	91
7	89	$I(CH_2)_3I$	n-BuLi/HMPA	-20	2	90
8	89	$I(CH_2)_3I$	KHMDS	-20	2	mix.f
9	92	$I(CH_2)_3I$	n-BuLi	-20	6	93
10	92	$I(CH_2)_3I$	LDA/HMPAc	-20	3	94
11	92	TfO(CH ₂) ₃ OTf ^d	LDA/HMPA	-20	16	94
12	92	$I(CH_2)_3I^d$	LDA/HMPA	-20	1	93
13	92	$I(CH_2)_3I$	KHMDS	-20	2	mix.f
14	92	I(CH ₂) ₃ I	LDA	-10	3	93
15	92	TfO(CH ₂) ₃ OTf ^e	n-BuLi/HMPA	-10	4	mix.f
16	92	TfO(CH ₂) ₃ OTf	n-BuLi	-20	3	94

^a Anion was generated at -78 °C and warmed gradually to the temperature indicated in the table after adding the electrophile; ^b predominant product mentioned; ^c HMPA used as a co-solvent; ^d 5eq. of dielectrophile was added; ^e 1.5eq. of dielectrophile was added; ^f complex mixture of products observed.

Towards this end alcohol 43 was protected as its tert-butyldimethylsilyl ether 95 by treatment with tert-butyldimethylsilyl chloride in the presence of imidazole in dichloromethane. The PMR spectrum of 95 showed signals at δ 4.97 $\left(t\right)$ for the benzylic proton, δ 0.90 (s) for the tert-butyl group, δ 0.11 (s) and δ -0.21 (s) for the two methyl groups confirming the structure assigned to it. The sulfoxide 95 on treatment with allylbromide 99 in the presence of K₂CO₃ in acetonitrile furnished the N-allylated product 100. Vinylsilane 99 was readily elaborated from propargyl alcohol 96. Thus, treatment of 96 with excess ethyl magnesium bromide, followed by with the trimethylsilyl chloride and acidolysis with aq. hydrogen chloride afforded the alcohol 97. The PMR spectrum of 97 showed signals at δ 0.02 (s) integrating for 9 protons of the trimethyl silyl group. Reduction of 97 with LAH in diethylether afforded the allyl alcohol 98. The PMR spectrum of 98 showed signals corresponding to the olefinic protons at δ 6.17 (dt) and δ 5.88 (d) and δ 4.13 (d) for CH₂OH protons. The allyl alcohol 98 upon treatment with PBr₃ in ether furnished allylbromide 99. The PMR spectrum of 99 showed resonances at δ 6.12 (dt) and δ 5.90 (d) for the olefinic protons and δ 3.91 (d) for CH₂Br (Scheme 17).

Reagents and conditions: (a) TBS-Cl, imidazole, DCM, r.t., 2 h, 85%; (b) EtMgBr, TMS-Cl, 6N HCl, Et₂0, 0 °C-r.t., 85%; (c) LAH, Et₂O, reflux, 6 h, 92%; (d) PBr₃, Et₂O, reflux, 1.5 h, 93%; (e) K₂CO₃, acetonitrile, reflux, 3 h, 67%.

The structure assigned to 100 was confirmed by the presence of signals at δ 6.23 (dt) and δ 6.0 (d) for the olefinic protons, at δ 4.20-3.95 (m) for CH_2N at δ 0.27 (s) integrating for the 9 protons for the trimethylsilyl group, in its PMR spectrum. Compound 100 on subjecting to Pummerer reaction conditions⁴¹ afforded the intermediate 101, which without isolation was treated with SnCl₄ to afford a complex mixture of products without any trace of the desired product (Scheme 18). Pummerer ene reaction done in the presence of Et_3N again afforded a complex mixture of products.

Scheme 18

Reagents and conditions: (a) TFAA, DCM, 0 °C, 50 min; (b) SnCl₄, 0 °C, 5 min.

Attempted elaboration of the *cis* vinyl silane **104**, to try the Pummerer ene reaction, from the acetylenic compound **103** met with failure (Scheme 19). Sulfoxide **95** on treatment with propargyl bromide **102** afforded **103**.

Reagents and conditions: (a) PBr₃, pyridine, ether, 0 °C-reflux, 1.5 h, 85%; (b) K₂CO₃, CH₃CN, reflux, 2 h, 68%; (c) Pd/BaSO₄, quinoline (cat.), ethanol, H₂, 6 h.

The synthesis of (-)-allosedamine was finally achieved by a strategy that included a ring-closing metathesis reaction (Scheme 20, retrosynthetic analysis). (-)-Allosedamine can be obtained from the allylamine 115, which in turn can be readily elaborated from ester 112 via RCM reaction. Compound 112 can be derived from *N*-alkylated compound 105, which can be derived from bromohydrin 42.

Treatment of 43 with acetic anhydride and pyridine in DCM afforded acetate 44. The PMR spectrum of the acetate 44 exhibited a downfield shift for the benzylic proton from δ 4.87 (d) in 43 to δ 5.71 (dd), and a signal at δ 2.02 (s) for the acetyl group. The IR spectrum showed a strong absorption band at 1741 cm-1 for C=O stretching of the acetyl group, a broad band at 3249 cm⁻¹ for N-H stretching and the absence of a broad band at 3540 cm⁻¹ corresponding to the hydroxy group. N-homoallylation on 44 was achieved by treatment of 44 with nosylate 108 in acetonitrile in the presence of K₂CO₃ under reflux temperature to yield 105. The nosylate 108 was prepared from 3-butene-1-ol 106 by treatment with p-nitro benzene sulfonyl chloride 107 in the presence of Et₃N and catalytic amount of DMAP (Scheme 21). The nosylate 108 showed signals at δ 8.41 (d) for the protons ortho to nitro group, δ 8.08 (d) for the protons ortho to sulfonyl group, δ 5.78-5.67 (m) and δ 5.18-5.04 (m) for the olefinic protons in its PMR spectrum. Olefin 105 revealed resonances at δ 5.68-5.48 (m) integrating for two protons (CH₂=CH and CHOAc), δ 5.04-4.90 (m) for CH₂=CH protons, δ 3.28 (dd) and at δ 3.14 (dd) for CH2N protons, 8 2.36-2.10 (m) integrating for 4 protons (CH2CH2N and CH₂CHOAc).

Scheme 21

Reagents and conditions: (a) Et₃N, DMAP (cat.), DCM, r.t., 4 h, 80%; (b) Ac₂O, Pyridine, 0 $^{\circ}$ C-r.t., 1 h, 96%; (c) K₂CO₃, 108, acetonitrile, reflux, 2 h, 90%.

The next objective was the elaboration of a suitable diene as the substrate for the metathesis reaction. Thus, compound 105 on treatment with TFAA in the presence of Et₃N in acetonitrile⁴¹ afforded the intermediate 109, which without isolation was subjected to hydrolysis with aq. NaHCO₃ solution to give the aldehyde 110 and subsequently reduced with NaBH₄ to afford the alcohol 111 in one pot operation. A one-pot oxidation-Wittig olefination of alcohol 111 with Dess-Martin periodinane⁴² and ethyl(triphenylphosphoranylidene)acetate yielded the *trans* ester 112 exclusively. The *trans* olefin could be obtained also by Wittig olefination of the aldehyde 110, obtained by hydrolysis of the intermediate 109 (Scheme 22). The structure assigned for the ester 112 was confirmed by the presence of signals at δ 6.54 (dd) for -CHCHCO₂Et, δ 5.76-5.56 (m) integrating for three protons (-CH=CHCO₂Et, CH₂=CHCH₂- and the benzylic proton), δ 4.12 (q) for -CO₂CH₂CH₃ protons. The mass spectrum indicated the presence of [M+H]⁺ peak at *m/z* 500.

Scheme 22

Reagents and conditions: (a) Et₃N, TFAA, CH₃CN, 0 °C, 50 min; (b) aq. NaHCO₃, 0 °C, 20 min.; (c) NaBH₄ (excess), 0 °C, 1 h, 85% for the two steps; (d) Dess-Martin periodinane, C₆H₅COOH, Ph₃PCH₂CO₂Et, DMSO, DCM, r.t., 3 h, 88%; (e) Ph₃PCH₂CO₂Et, benzene, r.t., 30 min, 75% for the two steps.

The advent of well-defined catalysts for olefin metathesis that combine high activity, durability and excellent tolerance towards polar functional groups has revolutionized the field. The success of this development is witnessed by a plethora of elegant applications to the synthesis of natural and nonnatural products.⁴³ Olefin metathesis of ester 112, which consists a terminal double bond α,β-unsaturated system,44 effected and was toluene bis(tricyclohexylphophine)benzylideneruthenium(IV)dichloride. The reaction afforded the allylamine 114 without any event (Scheme 23). The PMR spectrum of compound 114 showed signals at δ 5.74 (dd) for the benzylic proton and δ 5.66-5.54 (m) olefinic protons integrating for two. The IR spectrum showed an absorption band at 1744 cm⁻¹ for the C=O stretching of the acetyl group. The structure was further supported by mass spectrum, which showed a peak at m/z 400 [M+H]⁺.

Scheme 21

NTS OAC
$$\begin{array}{c}
CI, & Cy_3P \\
CI, & Cy_3P \\
CY_3P & Ph
\end{array}$$

$$\begin{array}{c}
NTS & OAC \\
Ph & a
\end{array}$$

$$\begin{array}{c}
112 & 114
\end{array}$$

Reagents and conditions: (a) 113, toluene, 110 °C, 16 h, 80%.

The formation of the product can be explained by a mechanism where in all individual steps involved and, as a consequence, the overall transformation, are reversible (Scheme 22). Once the substrate is depleted, the active species is recaptured by CH₂=CHPh, and precatalyst 113 is, there by, regenerated.

Scheme 22

114 + 113

(-)-Allosedamine was elaborated from **114** employing a straightforward reaction sequence depicted in Scheme 23. Thus, reductive removal of *p*-toluene sulfonyl group on nitrogen was effected in anhydrous methanol with Na-Hg, buffererd with disodium hydrogen phosphate.⁴⁵ The reaction proceeded with concomitant deacetylation, yielding the alcohol **115**. The assigned structure was confirmed with the aid of PMR spectrum, which revealed resonances at δ 5.12-4.96 (d) for the benzylic proton, resonances corresponding to *N*-Ts group were absent. The IR spectrum showed a strong absorption at 3500-3250 cm⁻¹ corresponding to the amino and hydroxy group. The double bond in **115** was reduced by treatment

over Pt/C in ethylacetate⁴⁶ under an atmosphere of hydrogen affording piperidine 116. Compound 116 revealed absence of signals for the olefinic protons in its PMR spectrum and a peak at m/z 206 [M+H]⁺ in its mass spectrum. Compound 116 was transformed into (-)-allosedamine 52, by reductive alkylation⁴⁷ with formaldehyde in the presence of sodium cyanoborohydride in acetonitrile (Scheme 23). (-)-Allosedamine synthesized above had physical characteristics such as PMR and optical rotation in full agreement to that reported in the literature.³⁵

Scheme 23

Reagents and conditions: (a) Na-Hg, Na₂HPO₄, MeOH, rt -reflux, 6 h, 78%; (b) Pt/C, H₂ (1 atm.), AcOEt, 3 h, 90%; (c) 37% aq. HCHO, NaCNBH₃, AcOH, CH₃CN, r.t., 4 h, 70%.

In conclusion, a stereoselective route to (-)-allosedamine 52 from β -aminosulfoxide 41s is described in this section. The key steps include, stereospecific bromohydrin 42 formation by internal sulfinyl group participation with an efficient 1,2-induction and a olefin metathesis of the α , β -unsaturated ester 112.

Experimental

R-(+)-Methyl p-tolyl sulfoxide, 22.

To the suspension of Na₂SO₃ (71.22 g, 562.2 mmol) and NaHCO₃ (53 g, 630 mmol) in H₂O (1.5 L) heated to a temperature of 80 °C was added, portionwise, tosyl chloride (60 g, 315 mmol) and stirred for 3 h at the same temperature. When the addition was completed the reaction mixture was heated and stirred at 80 °C for a longer period of time until the volume of water was The reaction mixture was then removed from the hot plate and allowed to stand for 5 h. The solid *p*-toluene sulfinate which precipitated was collected by filtration. The residue was dried overnight in a heating oven to remove any traces of water to afford anhydrous sodium salt of *p*-toluene sulfinic acid 32 (50.4 g, 283.5 mmol) in 90% yield.

Powdered sodium salt of *p*-toluenesulfinic acid 32 (50 g, 0.281 mol) was added in small portions to a solution of thionyl chloride (100 mL, 1.4 mol) in benzene (500 mL) at 0 °C. Then the mixture was allowed to reach room temperature over a period of 30 min. The solution was concentrated to 1/4th of its volume by distilling off benzene and excess of thionyl chloride. The residue was diluted with anhydrous ether (500 mL) and cooled at 0 °C. A solution of (-)-menthol (48.3 g, 0.309 mol) in pyridine (50 mL) was then added dropwise. After the addition, the mixture was stirred for 1 h at room temperature and hydrolyzed with water (200 mL). The organic layer was washed with 10% hydrochloric acid (200 mL), brine, dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was dissolved in acetone (200 mL) and few drops of conc. HCl were added. The solution was allowed to crystallize at -20 °C. After filtration of the first crop of crystals, the mother liquor was concentrated, a drop of conc. HCl added and the solution allowed to crystallize again at -20°C. This operation was repeated 4 times. Finally the product was recrystallized once from hot acetone. Yield 66 g (80%).

White crystals

mp : 109 °C

Lit., 18b : 105-107 °C

 $[\alpha]_{D^{25}}$: -203.4 (c 2, acetone)

Lit., 18a : -201 (c 2, acetone)

A solution of methylmagnesium iodide (2 M in ether, 143 mL, 286 mmol) was slowly added to a solution of (-)-menthyl (S)-p-toluenesulfinate (S-35) 60 g, 204 mmol) in anhydrous benzene (200 mL) between 0 °C and 10 °C. After the addition, the mixture was stirred at room temperature for 2 h and then hydrolyzed with saturated aqueous solution of ammonium chloride (200 mL). The aqueous solution was extracted with ether and the combined organic layer washed with brine, dried over anhydrous Na₂SO₄ and evaporated to dryness. The oily residue was mixed with hot hexane till formation of a light white cloudy precipitate. Crystals were obtained on cooling to -15 °C for 16 h. The white crystals were dissolved in minimum amount of hot hexane and cooled to -15 °C. The crystals formed were filtered and the mother liquor concentrated and submitted to the same treatment. Yield 25 g (80%).

White crystals

mp : 74°C

Lit.^{18b} : 73-74°C

 $[\alpha]_{D^{25}}$: +145 (c 2, acetone)

Lit. 18a : +146 (c 2, acetone)

m/z EI : 154 [M⁺]

PMR (CDCl₃, 200 MHz) : δ 7.62-7.54 (d, J = 8.0 Hz, 2H), 7.40-7.34 (d, J = 8.0 Hz,

2H), 2.76 (s, 3H), 2.42 (s, 3H).

1N-[3-Phenyl-(2E)-2-propenylidine]-4-methyl-1-benzenesulfonamide, 40.

To the solution of cinnamaldehyde (1.32 g, 10 mmol) and p-toluenesulfonamide (1.71 g, 10 mmol) in dry benzene (60 mL) under reflux in a Dean Stark apparatus was added BF₃.Et₂O (50 mg, 0.4 mmol). The reflux was continued for 2 h and the solution was cooled to 0 °C. The reaction mixture was diluted with ethylacetate and washed with cold 1 N NaOH solution. The organic layer was washed with water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a solid that was crystallized from chloroform-petroleum ether to afford the imine 40 (2.08 g, 7.3 mmol) as colourless crystals in 73% yield.

Solid.

mp : 202-204 °C

PMR (300 MHz, CDCl₃) : δ 8.75 (d, J = 9.4 Hz, 1H), 7.82 (d, J = 8.3 Hz, 2H),

7.57-7.38 (m, 6H), 7.32 (d, J = 8.3 Hz, 2H), 6.97 (dd, J

= 15.9, 9.4 Hz, 1H), 2.45 (s, 3H).

Experimental procedure for the condensation of sulfoxide 20 with imine 40.

Diisopropylamine (2.4 mL, 18 mmol) in dry THF (27 mL) was cooled at 0 °C and n-BuLi (9 mL, 2.0 M, 18 mmol) was added dropwise over 10 min. The reaction mixture was allowed to stir for 10 min. at 0 °C and then cooled to -78 °C. Methyl p-tolylsulfoxide 20 (1.85 gm, 12 mmol) in dry THF (18 mL) was added dropwise via a syringe and stirred for 20 min. at this temperature. A solution of the imine 40 (2.65 gm, 12 mmol) in dry THF (12 mL) was added dropwise over a period of 5 min. After being stirred for 15 min. at -78 °C, the reaction mixture was quenched by the addition of aq. saturated NH₄Cl solution. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄ and evaporated to dryness under reduced pressure. The diastereomeric sulfonamide 41s and 41a were separated by column chromatography using

AcOEt/chloroform (23:2, v/v) as the eluent. The diastereomer 41a eluted first followed by 41s in 20% and 61% yields respectively (combined yield 81%).

4-Methyl-1-[2- (R_s) -(4-methylphenylsulfonamido)-4-phenyl-(2R,3E)-3-butenylsulfinyl]benzene, 41s.

Solid.

mp : 187-188 °C

 $[\alpha]_{D^{25}}$: + 75.0 (c 0.7, CHCl₃)

PMR (200 MHz, DMSO-d₆): δ 7.74 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H),

7.36-7.04 (m, 9H), 6.30 (d, J = 15.6 Hz, 1H), 6.09 (d, J =

5.9 Hz, NH), 5.88 (dd, J = 15.6, 7.4 Hz, 1H), <math>4.43-4.26

(m, 1H), 3.11 (dd, J = 13.4, 7.4 Hz, 1H), 2.89 (dd, J = 13.4, 7.4 Hz, 1H)

13.4, 6.7 Hz, 1H), 2.40 (s, 3H), 2.32 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 20.8, 20.9, 51.7, 62.2, 124.0,125.6, 126.3, 126.5, 126.7,

127.8, 128.4, 129.2, 129.8, 131.9, 141.1, 141.4, 141.8,

142.6.

m/z (LSIMS) : 440 [M++H]

IR (neat) cm⁻¹ : 3453, 1597, 14.93, 1365, 1338, 1158.

Elemental analysis : Calcd. for C₂₄H₂₅NO₃S₂: C, 65.58; H, 5.73; N, 3.19; S,

14.59.

Found : C, 65.43; H, 5.65; N, 3.12; S, 14.51.

4-Methyl-1-[2-(R_s)(4-methylphenylsulfonamido)-4-phenyl-(2R,3E)-3-butenylsulfinyl]benzene, 41a.

Solid.

mp : 208 °C

 $[\alpha]_D^{25}$: + 91.8 (c 1.5, CHCl₃)

m/z (LSIMS) : 440 [M++H]

PMR (200 MHz, CDCl₃) : δ 7.72 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H),

7.36-7.10 (m, 9H), 6.48 (d, *J* = 6.7 Hz, NH), 6.41 (d, *J* = 15.6 Hz, 1H), 6.03 (dd, *J* = 15.6, 6.7 Hz, 1H), 4.58-4.42 (m, 1H), 2.94-2.85 (m, 2H), 2.43 (s, 3H), 2.33 (s, 3H).

1N-[2-Bromo-3-hydroxy-1-(S_S)(4-methylphenylsulfinylmethyl)-3-phenyl-(1S,2R)-propyl]-4-methyl-1-benzenesulfonamide, 42.

To the solution of sulfoxide 41s (3.07 g, 7 mmol) in toluene/chloroform (2:1, 35 mL) was added water (210 μ L, 11.7 mmol) followed by *N*-bromosuccinimide (1.58 g, 8.4 mmol) and the reaction mixture stirred at room temperature for 1 h. Then the reaction mixture was quenched by the addition of aqueous saturated NaHCO₃ solution. The mixture was diluted with chloroform and the organic layer was washed with water, brine and dried over Na₂SO₄. Evaporation of the solvent afforded the crude bromohydrin, which was purified by column chromatography using AcOEt/petroleum ether (7:13, v/v) as the eluent to yield bromohydrin (3.15 g, 5.88 mmol) in 84% yield.

Solid.

mp : 180-182 ℃

 $[\alpha]_{D^{25}}$: -38.8 (c 1, Acetone)

PMR (200 MHz, CDCl₃) : δ 7.86 (d, J = 8.2 Hz, 2H), 7.48-7.24 (m, 11H),

5.32 (d, J = 10.4 Hz, NH), 4.85 (dd, J = 9.7, 5.2)

Hz, 1H), 4.70-4.56 (m, 1H), 4.06 (d, J = 9.7 Hz,

1H), 3.84 (d, J = 5.2 Hz, OH), 3.01 (dd, J = 13.4,

 $6.0 \,\mathrm{Hz}, 1\mathrm{H}), 2.68 \,(\mathrm{dd}, J = 13.4, 7.4 \,\mathrm{Hz}, 1\mathrm{H}), 2.47$

(s, 3H), 2.43 (s, 3H).

¹³C NMR (75 MHz, DMSO-d₆) : δ 21.0, 21.2, 49.9, 61.9, 62.6, 73.6, 123.8, 127.0,

127.5, 127.9, 128.1, 129.8, 130.1, 138.6, 140.8,

141.4, 142.6, 143.2.

m/z (LSIMS) : 536 [M+H]+

Elemental Analysis : Calcd. for C₂₄H₂₆BrNO₄S₂C, 53.73; H, 4.88; N,

2.61; S, 11.95.

Found : C, 53.69; H, 4.84; N, 2.62; S, 11.95.

1N-[3-Hydroxy-1-(Ss)(4-methylphenylsulfinylmethyl)-3-phenyl-(1R)-propyl]-4-methyl-1-benzenesulfonamide, 43.

To the stirred solution of bromohydrin (2.68 g, 5 mmol) in dry benzene (30 mL) were added successively at room temperature TBTH (1.53 g, 5.25 mmol) and AIBN (41 mg, 0.25mmol). The solution was refluxed for 90 min when TLC examination revealed complete consumption of starting material. The solvent was removed under reduced pressure and the residue was chromatographed on a silica gel column using AcOEt/petroleum ether (2:3, v/v) as the eluent to afford the product (1.73 g, 3.8 mmol) in 76% yield.

White solid.

mp : 55-56 °C

 $[\alpha]_{D^{25}}$: -63.7 (c 1, Acetone)

PMR (200 MHz, CDCl₃) : 87.77 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H),

7.26-7.11 (m, 9H), 6.86 (d, J = 8.9 Hz, NH), 4.87 (d, J

= 8.9 Hz, 1H), 4.58-4.52 (m, 1H), 3.75 (bs, OH), 2.79-

2.67 (m, 2H), 2.39 (s, 6H), 2.12-1.96 (m, 1H), 1.91-1.75

(m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 21.3, 21.4, 43.4, 49.0, 60.9, 70.0, 123.9, 125.5, 127.2,

127.3, 128.3, 129.7, 130.2, 137.6, 139.8, 142.0, 143.4,

143.8.

m/z (LSIMS) : 458 [M+H]+

IR (neat) cm⁻¹ : 3540, 3272, 1598, 1494, 1398, 1327, and 1159.

Elemental Analysis : Calcd. for C₂₄H₂₇NO₄S₂ C, 62.99; H, 5.95; N, 3.06; S,

14.07.

Found

: C, 63.03; H, 5.91; N, 3.05; S, 14.06.

$4-(S_S)(4-Methylphenylsulfinyl)-3-(4-methylphenylsulfonamido)-1-phenyl-(1R,3R)-butylacetate, 44.$

To the stirred solution of 43 (1.37 g, 3 mmol) in dry dichloromethane (12 mL) were added pyridine (474 mg, 6 mmol) followed by acetic anhydride (331 mg, 3.25 mmol). The reaction mixture was stirred for 1 h and then diluted with dichloromethane. The organic layer was washed successively with aqueous saturated CuSO₄ solution, water, 5% aq. NaHCO₃ solution, water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure followed by column chromatography using AcOEt/petroleum ether (1:1, v/v) as the eluent afforded the acetate 44 (1.44 g, 2.88 mmol) in 96% yield as a white solid.

mp : 70-72 °C

 $[\alpha]_{D^{25}}$: -71.8 (*c* 0.75, Chloroform)

PMR (200 MHz, CDCl₃) : δ 7.72 (d, J = 8.2 Hz, 2H), 7.36-7.13 (m, 11H), 6.16 (d, J

= 8.2 Hz, NH), 5.71 (dd, J = 8.9, 4.5 Hz, 1H), 3.98-3.81

(m, 1H), 2.78 (d, J = 5.2 Hz, 2H), 2.45 (s, 3H), 2.42 (s, 3H)

3H), 2.41-2.14 (m, 2H), 2.02 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.0, 21.3, 21.4, 41.2, 48.3, 60.1, 72.4, 123.9, 126.1,

127.2, 128.0, 128.5, 129.7, 130.0, 137.9, 139.8, 139.9,

142.0, 143.3, 169.9.

m/z (LSIMS) : 500 [M+H]+

IR (neat) cm⁻¹ : 3249, 1741, 1596, 1493, 1371, 1327 and 1152.

Elemental analysis : Calcd. for C₂₆H₂₉NO₅S₂: C, 62.50; H, 5.85; N, 2.80; S,

12.83.

Found : C, 62.43; H, 5.91; N, 2.84; S, 12.80.

4-Hydroxy-3-(4-methylphenylsulfonamido)-1-phenyl-(1R,3R)-butylacetate, 45.

To the stirred solution of 44 (1.05 g, 2.1 mmol) and dry 2,6-lutidine (674 mg, 6.3 mmol) in acetonitrile (15 mL) under a nitrogen atmosphere at 0 °C, neat trifluoroacetic anhydride (1.5 mL, 10.5 mmol) was added dropwise. The reaction mixture was stirred at 0 °C for 5 min. Aq. 20% K_2CO_3 solution was added to adjust pH to 7. Then NaBH₄ (400 mg, 10.5 mmol) was added portionwise and the reaction mixture allowed to attain room temperature. After 15 min the reaction was quenched with an aqueous saturated ammonium chloride solution. The reaction mixture was extracted with ethylacetate and the combined organic layers dried over anhydrous sodium sulfate. Evaporation of the solvent followed by purification on a silica gel column using acetone/petroleum ether (1:4, v/v) afforded the β -amino alcohol 45 (617 mg, 1.64 mmol) in 78% yield.

Solid.

mp : 159-161°C

 $[\alpha]_D^{25}$: +13.6 (c 0.6, Acetone)

PMR (200 MHz, CDCl₃) : δ 7.69 (d, J = 8.2 Hz, 2H), 7.34-7.12 (m, 7H), 7.01 (d, J =

8.2 Hz, NH), 5.60 (dd, J = 10.4, 4.4 Hz, 1H), <math>4.13-4.04

(m, 1H), 3.38-3.16 (m, 2H and 1-OH), 2.44 (s, 3H), 2.09-

1.72 (m, 5H).

¹³C NMR (75 MHz, CDCl₃): δ 20.8, 21.1, 38.1, 51.7, 63.7, 72.1, 125.6, 126.4, 127.5,

128.5, 129.7, 138.9, 141.6, 142.6, 169.3.

m/z (LSIMS) : 378 [M+H]⁺

Elemental analysis : Calcd. for C₂₁H₂₅NO₆S: C, 60.46; H, 6.14; N, 3.71; S,

8.49.

Found : C, 60.48; H, 6.03; N, 3.79; S, 8.33.

4-Methylcarbonyloxy-2-(4-methylphenylsulfonamido)-4-phenyl-(2R)-butylacetate, 46.

To the stirred solution of 45 (377 mg, 1 mmol) in dichloromethane (4 mL) was added successively pyridine (158 mg, 2 mmol) and acetic anhydride (122 mg, 1.1 mmol) at room temperature under N₂. The reaction mixture was stirred for a period of 2 h at room temperature. The reaction mixture was then diluted with dichloromethane and washed sequentially with aq. saturated CuSO₄ solution, water, aq. 5% NaHCO₃ solution, water, brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure followed by purification using AcOEt/petroleum ether (1:3, v/v) as the eluent afforded the diacetate (406 mg, 0.97 mmol) in 97% yield.

Viscous liquid.

 $[\alpha]_{D^{25}}$: +11.4 (c 0.75, Chloroform).

PMR (200 MHz, CDCl₃) : δ 7.74 (d, J = 8.2 Hz, 2H), 7.48-7.12 (m, 7H), 5.68 (dd, J

= 9.7, 4.5 Hz, 1H), 5.58 (d, *J* = 8.9 Hz, NH), 4.0-3.84

(m, 2H), 3.76-3.52 (m, 1H), 2.44 (s, 3H), 2.12-1.80 (m,

8H).

¹³C NMR (75 MHz, CDCl₃): δ 20.6, 21.0, 21.5, 39.2, 49.8, 65.7, 72.6, 126.2, 127.0,

128.1, 128.6, 129.8, 137.7, 140.0, 143.6, 169.8, 170.7.

m/z (LSIMS) : 420 [M+H]⁺

Elemental analysis : Calcd. for C₂₁H₂₅NO₆S: C, 60.13; H, 6.01; N, 3.34; S,

7.64.

Found : C, 60.43; H, 5.91; N, 2.94; S, 7.80.

2-Dodecanoyl(4-methylphenyl)sulfonamido-4-methylcarbonyloxy-4-phenyl-(2R)-butyl acetate, 47.

The solution of lauryl chloride (110 mg, 0.5 mmol) in dichloromethane (0.25 mL) was added dropwise to the mixture of the diacetate 46 (210 mg, 0.5 mmol), Et₃N (101 mg, 1 mmol) and DMAP (cat.) in dichloromethane (1.5 mL) at 0 °C under N₂. The reaction mixture was gradually allowed to attain room temperature and stirred further for a period of 30 min. The reaction mixture was diluted with dichloromethane and washed successively with water, 10% aq. citric acid solution, brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography on silica gel with AcOEt/petroleum ether (1:9, v/v) to afford the amide 47 (274 mg, 0.46 mmol) in 91% yield.

Liquid.

 $[\alpha]_{D^{25}}$: +9.7 (c 2.0, acetone)

PMR (200 MHz, CDCl₃) : 87.72 (d, J = 8.2 Hz, 2H), 7.40-7.22 (m, 7H), 5.57 (dd, J = 8.2 Hz, 2H)

= 9.7, 4.5 Hz, 1H), 4.73-4.58 (m, 1H), 4.50-4.32 (m, 2H),

2.60-2.16 (m, 7H), 2.11 (s, 3H), 2.0 (s, 3H), 1.71-1.11 (m,

18H), 0.88 (t, J = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 20.8, 21.2, 21.6, 22.6, 24.7, 28.9, 29.0, 29.2, 29.4,

29.6, 31.9, 38.3, 56.0, 64.2, 73.4, 126.3, 127.7, 128.1,

128.6, 129.9, 137.2, 140.2, 144.9, 170.2, 170.5, 174.1.

m/z (LSIMS) : 542 [M-OAc]+

Elemental analysis : Calcd. for C₃₃H₄₇NO₇S: C, 65.86; H, 7.87; N, 2.33; S,

5.33.

Found : C, 65.66; H, 7.42; N, 2.13; S, 5.47.

1N-[3-Hydroxy-1-hydroxymethyl-3-phenyl-(1R)-propyl]dodecanamide, 1.

To the substrate 47 (30 mg, 0.05 mmol) in dry dimethoxyethane (0.5 mL) was added freshly prepared Na-Naphthanilide in dimethoxyethane (the solution of sodium naphthanilide in dimethoxyethane was prepared by adding dimethoxy ethane (10 mL) to a mixture of Na (300 mg, 13 mmol) and naphthalene (2.05 g, 16 mmol) and stirring the mixture at r.t. for 2 h) at -20 °C under nitrogen atmosphere until light green colour persisted (ca. 2 min). The reaction mixture was quenched by the addition of water. Solid K₂CO₃ (140 mg) was added and the reaction mixture stirred at room temperature for 24 h. The solvent was evaporated under reduced pressure and the residue was extracted into ethylacetate. Column chromatography using hexane/isopropylalcohol (4:1, v/v) afforded the product 1 (10 mg, 0.27 mmol) in 55% yield.

Solid.

mp : 76-78 °C

Lit.8 : 75.5-77 °C

 $[\alpha]_{D^{25}}$: -36.6 (c 0.56, CHCl₃)

Lit.⁸ : -35.1 (c 0.8, CHCl₃)

PMR (200 MHz, CDCl₃) : 7.40-7.12 (m, 5H), 6.19 (d, J = 5.9 Hz, NH), 4.62 (bd, J = 5.9 Hz, J = 5.

7.5 Hz, 1H), 4.08-4.19 (m, 1H), 3.62-3.77 (m, 2H), 2.31-

2.13 (m, 2H), 1.68-1.45 (m, 2H), 1.42-1.20 (m, 18H), 0.86

(t, J = 6.7 Hz, 3H).

1-[4-Hydroxy-2-(4-methylphenylsulfonamido)-4-phenyl-(2R)-butylsulfonyl]-4-methylbenzene, 87.

To the solution of sulfoxide 43 (228 mg, 0.5 mmol) in chloroform (2 mL), m-CPBA (123 mg, 0.5 mmol, 60%) was added at 0 °C and the reaction mixture was stirred at 0 °C for 10 min. The reaction mixture was diluted with chloroform and washed successively with 10% aq. sodium bi sulfite solution, 10% aq. sodium bi

carbonate solution, water and brine. The reaction mixture was dried over anhydrous Na_2SO_4 and evaporated under reduced pressure to afford the crude product. Column chromatography using AcOEt/petroleum ether (1:4, v/v) afforded 87 (189 mg, 0.4 mmol) in 80% yield.

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.74-7.50 (m, 4H), 7.45-7.05 (m, 9H), 6.2 (d, J = 7.4

Hz, NH), 4.95 (dd, J = 9.6, 2.7 Hz, 1H), 3.84-3.78 (m,

1H), 3.45 (dd, J = 13.4, 3.7 Hz, 1H), 3.26 (dd, J = 13.4,

7.4 Hz, 1H), 2.52 (s, 3H), 2.44 (s, 3H), 2.20-1.90 (m, 2H).

m/z (LSIMS) : 474 [M+H]+

4-(4-Methylphenylsulfonyl)-1-phenyl-(1R,3E)-3-buten-1-ol, 88.

To the solution of 87 (47 mg, 0.1 mmol) in THF (1.6 mL) was added dropwise *n*-BuLi (0.48 mL, 0.3 mmol, 1.6M) at -78 °C. After being stirred for 30 min at the same temperature, a solution of 1,3-di iodopropane (66 mg, 0.22 mmol) in THF (0.8 mL) was added dropwise, and stirring was continued for 2 h at -78 °C. The reaction was quenched by the addition of saturated aq. NH₄Cl solution. The solvent was removed and the residue was extracted into ether. The ether extracts were washed with brine, dried and evaporated. Column chromatography on silica gel using AcOEt/petroleum ether (1:9, v/v) as the eluent afforded the product 88. Solid.

mp : 89-91 °C

PMR (200 MHz, CDCl₃) : δ 7.62 (d, J = 8.2 Hz, 2H), 7.45-7.10 (m, 7H),

6.71 (dt, J = 15.7, 7.8 Hz, 1H), 5.97 (d, J = 15.7 Hz, 1H),

4.80 (t, J = 5.7 Hz, 1H), 2.50-2.40 (m, 4H), 2.05 (m, 1H).

m/z (LSIMS) : 303 [M+H]+

1-[4-tert-Butyldiphenylsilyloxy-2-(4-methylphenylsulfonamido)-4-phenyl-(2R)-butyl-(S_S)-sulfinyl]-4-methylbenzene, 89.

To the solution of the sulfoxide 43 (457 mg, 1 mmol) in dichlormethane (4 mL) was added imidazole (136 mg, 2 mmol) and TBDPS-Cl (275 mg, 1 mmol) at ambient temperature. The reaction mixture was stirred for 2 h at room temperature and solvent was removed under reduced pressure. The residue was diluted with ether and washed with water, brine, dried and evaporated to afford the crude product mixture. Purification on silica gel column using AcOEt/petroleum ether (3:17, v/v) as the eluent afforded the silyl ether 89 (557 mg, 0.8 mmol) in 80% yield.

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.72-7.60 (m, 4H), 7.57-6.97 (m, 17H), 6.79 (d, J = 8.2

Hz, 2H), 5.94 (bs, NH), 4.70 (t, J = 4.7 Hz, 1H), 3.32-

3.26 (m, 1H), 2.92-2.85 (m, 2H), 2.47 (s, 3H), 2.45-2.42

(m, 4H), 2.25-2.18 (m, 1H), 1.06 (s, 9H).

m/z (LSIMS) : 696 [M+H]+

Typical experiment for the dialkylation of sulfoxide:

To a solution of sulfoxide 89 (36 mg, 0.05 mmol) in THF (0.5 mL) was added n-BuLi (0.1 mL, 0.1 mmol, 1M) dropwise at -78 °C. After stirring for 30 min at this temperature, a solution of di iodopropane (33 mg, 0.11 mmol) in THF (0.1 mL) was added dropwise, and stirring was continued at the temperature indicated in the Table I. After stirring for appropriate time indicated in the Table I, the reaction mixture was quenched by addition of saturated aq. NH₄Cl solution and extracted with ether. The ether extracts were washed with brine, dried and evaporated. Column chromatography on silica gel eluting with AcOEt/petroleum ether (1:9, v/v) afforded the products.

1-[2-Allyl(4-methylphenyl)sulfonamido-4-(*tert*-butyldiphenylsilyloxy)-4-phenyl-(2R)-butyl-(S_S)-sulfinyl]-4-methylbenzene, 90.

Low melting solid.

PMR (200 MHz, CDCl₃) : δ 7.62-7.57 (m, 2H), 7.46 (d, J = 8.1 Hz, 2H), 7.40-7.08

(m, 19H), 5.56-5.42 (m, 1H), 4.82 (d, J = 9.8 Hz, 1H),

4.57 (d, J = 16.9 Hz, 1H), 4.27 (dd, J = 9.8, 3.7 Hz, 1H),

3.86-3.73 (m, 1H), 3.58 (dd, J = 15.4, 6.4 Hz, 1H), 3.51

(dd, J = 15.4, 6.4 Hz, 1H), 3.32 (dd, J = 15.1, 6.4 Hz,

1H), 2.78 (dd, J = 15.1, 11.7 Hz, 1H), 2.49 (s, 3H), 2.43

(s, 3H), 2.12-1.96 (m, 2H), 0.98 (s, 9H).

m/z (LSIMS)

: 758 [M+Na]+

4-(tert-Butyldiphenylsilyloxy)-1-(S_s)(4-methylphenylsulfinyl)-4-phenyl-(E)-1-butene sulfoxide, 91.

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.73-7.62 (m, 2H), 7.47-7.18 (m, 17H), 6.27 (dt, J =

15.8, 8.2 Hz, 1H), 5.93 (d, J = 15.8 Hz, 1H), 4.71 (dd, J =

7.6, 3.8 Hz, 1H), 2.40 (s, 3H), 2.37-2.04 (m, 5H), 0.98 (s,

9H).

m/z (LSIMS) : 524 [M+H]⁺

1-[4-(*tert*-Butyldiphenylsilyloxy)-2-(4-methylphenylsulfonamido)-4-phenyl-(2R)-butylsulfonyl]-4-methylbenzene, 92.

To the solution of sulfoxide 89 (350 mg, 0.5 mmol) in chloroform (2 mL), m-CPBA (123 mg, 0.5 mmol, 60%) was added at 0 °C and the reaction mixture was stirred at 0 °C for 10 min. The reaction mixture was diluted with chloroform and washed successively with 10% aq. sodium bi sulfite solution, 10% aq. sodium bi carbonate solution, water and brine. The reaction mixture was dried over

anhydrous Na_2SO_4 and evaporated under reduced pressure to afford crude product. Column chromatography using AcOEt/petroleum ether (1:4, v/v) afforded sulfone 92 (330 mg, 0.47 mmol) in 93% yield.

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.77-7.65 (m, 2H), 7.54-7.28 (m, 9H), 7.27-6.97 (m,

10H), 6.76 (d, J = 8.2 Hz, 2H), 5.72 (d, J = 5.9 Hz, NH),

4.80 (t, J = 4.6 Hz, 1H), 3.63 (dd, J = 13.4, 3.1 Hz, 1H),

3.24-3.13 (m, 1H), 2.77 (dd, J = 13.4, 8.9 Hz, 1H), 2.48

(s, 6H), 2.46-2.40 (m, 1H), 2.14-2.07 (m, 1H), 0.97 (s,

9H).

m/z (LSIMS)

: 712 [M+H]+

1-[2-Allyl(4-methylphenyl)sulfonamido-4-(*tert*-butyldiphenylsilyloxy)-4-phenyl-(2R)-butylsulfonyl]-4-methylbenzene, 93.

Low melting solid.

PMR (200 MHz, CDCl₃) : δ 7.78-7.60 (m, 4H), 7.54-7.13 (m, 19H), 5.49-5.28 (m,

1H), 4.75 (d, J = 10.2 Hz, 1H), 4.59 (d, J = 16.5 Hz, 1H),

4.24 (dd, J = 7.9, 4.9 Hz, 1H), 3.90-3.72 (m, 1H), 3.56-

3.50 (m, 1H), 3.42 (dd, *J* = 15.4, 6.8 Hz, 1H), 3.21 (dd, *J*

= 15.1, 6.8 Hz, 1H), 2.62 (dd, *J* = 15.1, 4.5 Hz, 1H), 2.46

(s, 3H), 2.41 (s, 3H), 2.35-2.26 (m, 1H), 2.10-2.01 (m,

1H), 0.97 (s, 9H).

m/z (LSIMS)

: 775 [M+Na]+

4-(2,2-Dimethyl-1,1-diphenylpropoxy)-1-(4-methylphenylsulfonyl)-4-phenyl-(*E*)-**1-butene**, 94.

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.73-7.62 (m, 2H), 7.47-7.18 (m, 17H), 6.27 (dt, I =

15.7, 7.9 Hz, 1H), 5.93 (d, J = 15.7 Hz, 1H), 4.79 (t, J =

6.3 Hz, 1H), 2.47 (s, 3H), 2.37-2.04 (m, 2H), 0.98 (s, 9H).

m/z (LSIMS) : 541 [M+H]+

1-[4-(*tert*-Btyldimethylsilyloxy)-2-(4-methylphenylsulfonamido)-4-phenyl-(2*R*)-butylsulfinyl]-4-methylbenzene, 95.

To the solution of the sulfoxide 43 (228 mg, 0.5 mmol) in dichlormethane (2 mL) was added imidazole (68 mg, 1 mmol) and TBDMS-Cl (75 mg, 0.5 mmol) at ambient temperature. The reaction mixture was stirred for 2 h at room temperature and solvent was removed under reduced pressure. The residue was diluted with ether and washed with water, brine, dried and evaporated to afford the crude product mixture. Purification on silica gel column using AcOEt/petroleum ether (3:17, v/v) as the eluent afforded the silyl ether 95 (243 mg, 0.42 mmol) in 85% yield.

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.73 (d, J = 8.2 Hz, 2H), 7.32-7.10 (m, 11H), 6.36 (d, J

= 6.7 Hz, NH), 4.97 (t, J = 6.0 Hz, 1H), 3.91 (q, J = 6.0 Hz

Hz, 1H), 2.81 (dd, J = 13.4, 5.2 Hz, 1H), 2.69 (dd, J =

13.4, 6.0 Hz, 1H), 2.47 (s, 3H), 2.43 (s, 3H), 2.13 (t, *J* =

6.0 Hz, 2H), 0.90 (s, 9H), 0.11 (s, 3H), -0.21 (s, 3H).

m/z (LSIMS) : 572 [M+ H]⁺

3-Trimethylsilyl-2-pentyne-1-ol, 97.

A 3-necked round bottom flask was fitted with a pressure equalizing funnel, reflux condenser and a N₂ inlet. The flask was flushed with N₂ and charged with 3-butyn-1-ol **96** (2.51 g, 44.8 mmol) and 90 mL of dry THF. The stirred solution was cooled to 0 °C under N₂ and to it was added over 20 min a solution of EtMgBr in THF (50 mL, 2 M in THF). The resulting heterogeneous mixture was rapidly stirred at 0 °C for 1 h, allowed to warm to room temperature and stirred for 1 h and

then recooled to 0 °C. To this mixture was slowly added over 30 min with rapid stirring freshly distilled TMS-Cl (10.7 g, 98.6 mmol). The reaction mixture was stirred at 0 °C for 1 h and allowed to attain room temperature. At this temperature, the reaction mixture was stirred for 2 h. The reaction mixture was then poured slowly with rapid stirring into a 1 L conical flask containing ice-cold 3 M HCl and stirred for an additional 2 h. The organic phase was separated and aq. phase was extracted with ether. The combined organic layers were washed with water, 10% aq. NaHCO₃ solution, water, brine, dried and evaporated to afford 97 (4.93 g, 38.5 mmol) in 85% yield.

Viscous oil.

PMR (400 MHz, CDCl₃) : δ 4.23 (d, J = 6.2 Hz, 2H), 1.44 (bs, OH), 0.02 (s, 9H).

3-Trimethylsilyl-(E)-2-penten-1-ol, 98.

To a stirred suspension of LAH (1.12 g, 29.6 mmol) in dry THF (20 mL) was added the acetylenic compound 97 (1.89 g, 14.8 mmol) in dry THF (20 mL) under nitrogen atmosphere at 0 °C. The reaction mixture was allowed to warm to room temperature and slowly heated to reflux. After being stirred at reflux for 6 h, it was cooled to 0 °C, diluted with ether and quenched with small ice pieces. The resulting white suspension was filtered through a sintered funnel. The residual white cake was washed repeatedly with hot ethylacetate and the filtrate was concentrated in vacuo. The crude product mixture was purified by column chromatography to furnish the *trans*-allylic alcohol 98 (1.77 g, 13.6 mmol) in 92% yield.

Light yellow oil.

PMR (300 MHz, CDCl₃) : δ 6.17 (dt, J = 16.7, 4.2 Hz, 1H), 5.88 (d, J = 16.7 Hz, 1H), 4.13 (d, J = 4.2 Hz, 2H), 1.53 (bs, OH), 0.10 (s, 9H).

1-Bromo-3-trimethylsilyl-(*E*)-2-pentene, 99.

To a solution of allylic alcohol 98 (260 g, 2 mmol) in anhydrous ether (2 mL) was added catalytic amount of pyridine. The reaction mixture was cooled to 0 ℃ and PBr₃ (180 mg, 0.67 mmol) in anhydrous ether (0.67 mL) was added dropwise. The reaction mixture was refluxed for 1.5 h and allowed to return to room temperature. The reaction mixture was poured into ice. The crude product mixture was extracted into ether and washed successively with water, 5% aq. NaHCO₃, brine, dried over anhydrous Na₂SO₄ and evaporated. Distillation of the crude product at reduced pressure afforded pure bromide 99 (3.59 g, 1.86 mmol) in 93% yield.

Colourless oil.

```
PMR (300 MHz, CDCl<sub>3</sub>) : \delta 6.12 (dt, J = 17.8, 8.6 Hz, 1H), 5.90 (d, J = 17.8 Hz, 1H), 3.91 (d, J = 8.6 Hz, 2H), 0.10 (s, 9H).
```

1-[2-[3-Trimethylsilyl-(E)-2-propenyl(4-methylphenyl)sulfonamido]-4-phenyl-4-(tert-butyldimethylsilyloxy)butyl- (S_S) sulfinyl]-4-methylbenzene, 100.

To the mixture of 95 (572 mg, 1 mmol), K₂CO₃ (166 mg, 1.2 mmol) in dry acetonitrile (4 mL) was added 99 (193 mg, 1 mmol) at room temperature and slowly heated to reflux. After being stirred at reflux for 2 h, the reaction mixture was allowed to return to room temperature and water was added. The organic layer was separated. The aq. layer was extracted with ethylacetate and combined organic layers were washed with water, brine, dried over Na₂SO₄ and evaporated under reduced pressure. Column chromatography using AcOEt/petroleum ether (1:4, v/v) as the eluent afforded 100 (458 mg, 0.67 mmol) in 67% yield.

Viscous oil.

```
PMR (200 MHz, CDCl<sub>3</sub>) : 87.93 (d, J = 8.2 Hz, 2H), 7.80-7.43 (m, 11H), 6.23 (dt, J = 18.6, 6.1 Hz, 1H), 6.0 (d, J = 18.6 Hz, 1H), 4.97 (dd, J = 8.7, 4.6 Hz, 1H), 4.78-4.51 (m, 1H), 4.20-3.95 (m, 2H),
```

3.37-3.22 (m, 2H), 2.74 (s, 6H), 2.58-2.20 (m, 2H), 1.12

(s, 9H), 0.40 (s, 3H), 0.27 (s, 9H), 0.0 (s, 3H).

m/z (LSIMS)

PMR (200 MHz, CDCl₃)

: 681 [M+H]+

1-Bromo-3-trimethylsilyl-prop-2-yne, 102.

To a solution of alcohol 97 (1.28 g, 10 mmol) in anhydrous ether (10 mL) was added catalytic amount of pyridine. The reaction mixture was cooled to 0 °C and PBr₃ (900 mg, 3.35 mmol) in anhydrous ether (4 mL) was added dropwise. The reaction mixture was refluxed for 1.5 h and allowed to return to room temperature. The reaction mixture was poured into ice. The crude product mixture was extracted into ether and washed successively with water, 5% aq. NaHCO₃, brine, dried over anhydrous Na₂SO₄ and evaporated. Distillation of the crude product at reduced pressure afforded pure bromide 102 (1.62 g, 8.5 mmol) in 85% yield.

1-[2-[3-Trimethylsilyl-2-propynyl(4-methylphenyl)sulfonamido]-4-phenyl-4-(*tert*-butyldimethylsilyloxy)butyl-(S_S)-sulfinyl]-4-methylbenzene, 103.

: δ 3.75 (s, 2H), 0.0 (s, 9H).

To the mixture of 95 (286 mg, 0.5 mmol), K₂CO₃ (83 mg, 0.6 mmol) in dry acetonitrile (2 mL) was added 102 (95 mg, 0.5 mmol) at room temperature and slowly heated to reflux. After being stirred at reflux for 2 h, the reaction mixture was allowed to return to room temperature and water was added. The organic layer was separated. The aq. layer was extracted with ethylacetate and combined organic layers were washed with water, brine, dried over Na₂SO₄ and evaporated under reduced pressure. Column chromatography using AcOEt/petroleum ether (1:4, v/v) as the eluent afforded 103 (232 mg, 0.34 mmol) in 68% yield. Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.68 (d, J = 9.0 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 7.37-7.18 (m, 9H), 4.72 (dd, J = 8.5, 4.6 Hz, 1H), 4.67-4.44

(m, 1H), 4.32-3.90 (m, 2H), 3.10 (dd, *J* = 13.4, 6.3 Hz, 1H), 2.96 (dd, *J* = 13.4, 4.9 Hz, 1H), 2.40 (s, 6H), 2.38-2.0 (m, 2H), 0.83 (s, 9H), 0.08 (s, 3H), -0.06 (s, 9H), -0.32

(s, 3H).

m/z (LSIMS)

: 682 [M+H]+

$4-(S_S)(4-Methylphenylsulfinyl)-3-(4-methylphenylsulfonamido)-1-phenyl-(1R,3R)-butylacetate, 44.$

To a stirred solution of 43 (1.37 g, 3 mmol) in dichloromethane (12 mL) were added pyridine (474 mg, 6 mmol) and acetic anhydride (331 mg, 3.25 mmol). The reaction mixture was stirred at room temperature for 1 h and then diluted with dichlormethane. The organic layer was washed successively with aqueous saturated CuSO₄ solution, water, 5% aq. NaHCO₃ solution, water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure followed by column chromatography using AcOEt/petroleum ether (1:1) as the eluent afforded the acetate (1.44 g, 2.88 mmol) in 96% yield.

White solid.

mp : 70-72 °C

 $[\alpha]_{D^{25}}$: -71.8 (c 0.75, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.72 (d, J = 8.2 Hz, 2H), 7.36-7.13 (m, 11H), 6.16 (d, J

= 8.2 Hz, NH), 5.71 (dd, J = 8.9, 4.5 Hz, 1H), 3.98-3.81

(m, 1H), 2.78 (d, J = 5.2 Hz, 2H), 2.45 (s, 3H), 2.42 (s, 2H)

3H), 2.41-2.14 (m, 2H), 2.02 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.0, 21.3, 21.4, 41.2, 48.3, 60.1, 72.4, 123.9, 126.1,

127.2, 128.0, 128.5, 129.7, 130.0, 137.9, 139.8, 139.9,

142.0, 143.3, 169.9.

m/z (LSIMS) : 500 [M+H]+

IR (neat) cm⁻¹ : 3249, 1741, 1596, 1493, 1371, 1327, 1152.

Elemental analysis : Calcd. for C₂₆H₂₉NO₅S₂: C, 62.50; H, 5.85; N, 2.80; S,

12.83.

Found : C, 62.43; H, 5.91; N, 2.84; S, 12.80.

3-Butenyl 4-nitro-1-benzenesulfonate, 108.

To the solution of 3-butene-1-ol (360 mg, 5mmol) in dry dichloromethane (20 mL) was added successively Et₃N (10 mmol), DMAP (cat.) and p-nitrobenzenesulfonyl chloride (5 mmol) at room temperature under N₂. The reaction mixture was stirred for a period of 4 h. The reaction mixture was washed with water, brine and evaporated to dryness under reduced pressure. The crude product mixture was chromatographed on silica gel using AcoEt/petroleum ether (1:4, v/v) as the eluent to afford the nosylate 17 (1.03 g, 4 mmol) in 80% yield. Solid.

mp : 122 ℃

PMR (200 MHz, CDCl₃) : 8.42 (d, J = 8.8 Hz, 2H), 8.19 (d, J = 8.8 Hz, 2H), 5.78-

5.55 (m, 1H), 5.18-5.05 (m, 2H), 4.21-4.11 (m, 2H), 2.51-

2.36 (m, 2H).

m/z (LSIMS) : 258 [M++H]

3-[3-Butenyl(4-methylphenylsulfonamido)-4- (S_s) (4-methylphenylsulfinyl)-1-phenyl-(1R,3R)-butylacetate, 105.

Homoallynosylate 108 (566 mg, 2.2 mmol) was added to a stirred mixture of acetate 44 (1.1 g, 2.2 mmol) and K₂CO₃ (456 mg, 3.3 mmol) in dry acetonitrile (8.8 mL) and the reaction mixture was allowed to reflux for 2 h. The reaction mixture was diluted with ethylacetate and washed with water followed by brine solution. After drying over Na₂SO₄, column chromatography using AcOEt/petroleum ether (3:7, v/v) as the eluent afforded the *N*-alkylated product (1.1 g, 1.98 mmol) in 90% yield.

Viscous oil.

 $[\alpha]_{D^{25}}$: -45.5 (c 2.2, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.67 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 7.36-

7.11 (m, 9H), 5.68-5.48 (m, 2H), 5.04-4.90 (m, 2H), 4.21-4.04 (m, 1H), 3.28 (dd, *J* = 15.6, 8.2 Hz, 1H), 3.14 (dd, *J*

= 15.6, 7.4 Hz, 1H), 2.94 (dd, J = 13.4, 7.4 Hz, 1H), 2.79

(dd, J = 13.4, 6.7 Hz, 1H), 2.42 (s, 6H), 2.36-2.10 (m, 6H)

4H), 2.02 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.0, 21.4, 21.5, 34.1, 40.9, 47.1, 52.1, 62.5, 72.8,

117.2, 123.9, 126.3, 127.5, 128.1, 128.5, 129.8, 130.0,

134.2, 137.5, 139.8, 140.4, 141.7, 143.7, 169.8.

m/z (LSIMS) : 554 [M++H]

IR (neat) cm⁻¹ : 2977, 1752, 1595, 1488, 1449, 1337, 1142, 1083.

Elemental analysis : Calcd. for C₃₀H₃₅NO₅S₂: C, 65.07; H, 6.37; N, 2.53; S,

11.58.

Found : C, 65.43; H, 5.75; N, 2.21; S, 12.01.

Ethyl-4-[3-butenyl(4-methylphenyl)sulfonamido]-6-methylcarbonyloxy-6-phenyl-(*E*,4*R*)-2-hexenoate, 112.

To the solution of the *N*-homoallyl compound (664 mg, 1.2 mmol) in acetonitrile (6 mL) cooled at 0 °C was added triethylamine (364 mg, 3.6 mmol) followed by trifluoroacetic anhydride (1.26 g, 6 mmol) and the mixture stirred for 50 min. An aq. 5% NaHCO₃ solution (2 mL) was added at 0 °C and stirred for another 20 min. The reaction mixture was then extracted into benzene (10 mL) and washed successively with water, brine and dried over Na₂SO₄. The benzene solution of the aldehyde was directly taken ahead to the next step and reacted with ethyl(triphenylphosporanilidine)acetate (498 mg, 1.2 mmol). The reaction was

stirred at r.t. for 30 min. The solvent was removed under reduced pressure to afford a residue which was purified by column chromatography using EtOAc/petroleum ether (1:9) as the eluent to afford the α , β -unsaturated ester (449 mg, 0.9 mmol) in 75% yield (for the two steps).

Solid.

mp : 59-61 °C

 $[\alpha]_{D^{25}}$: +58.7 (c 2.25, Chloroform)

PMR (200 MHz, CDCl₃) : δ 7.63 (d, J = 8.2 Hz, 2H), 7.39-7.20 (m, 7H), 6.54 (dd, J = 8.2 Hz, 2H)

= 15.6, 5.2 Hz, 1H), 5.76-5.56 (m, 3H), 5.08-4.93 (m,

2H), 4.64-4.47 (m, 1H), 4.12 (q, J = 6.7 Hz, 2H), 3.18

(ddd, J = 15.6, 11.1, 5.9 Hz, 1H), 2.92 (ddd, J = 15.6,

10.4, 5.9 Hz, 1H), 2.56-2.16 (m, 6H), 2.06-1.91 (m, 4H),

1.24 (t, J = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.6, 21.5, 21.9, 36.0, 39.5, 45.2, 55.8, 61.0, 73.0,

117.7, 124.3, 126.8, 127.7, 128.7, 129.1, 130.2, 134.8,

137.5, 140.1, 144.0, 144.7, 165.9, 170.3.

m/z (LSIMS) : 500 [M++H]

Elemental analysis : Calcd. for C₂₇H₃₆NO₆S: C, 64.91; H, 6.66; N, 2.80; S,

6.42.

Found : C, 65.08; H, 6.85; N, 2.71; S, 6.46.

2-[1-(4-Methylphenylsulfonyl)-(6R)-2,3-dihydro-6-pyridinyl]-1-phenyl-(1R)-ethylacetate, 114.

Bis(tricyclohexylphophine)benzylideneruthenium(IV)dichloride (10 mg, 0.013 mmol) was added to a solution of diene 112 (324 mg, 0.65 mmol) in toluene and refluxed for 16 h., when TLC revealed the complete consumption of the starting material. The solvent was removed under reduced pressure. Column

chromatography using AcOEt/petroleum ether (1:4, v/v) as the eluent afforded the product (207 mg, 0.52 mmol) in 80% yield.

Solid.

mp

: 75-76 °C

 $[\alpha]D^{25}$

: -119.0 (c 0.75, Chloroform)

PMR (200 MHz, CDCl₃)

: δ 7.67 (d, J = 8.9 Hz, 2H), 7.36-7.16 (m, 7H), 5.74 (dd, J

= 9.7, 4.5 Hz, 1H), 5.66-5.54 (m, 2H), 4.54-4.41 (m, 1H),

3.77 (dd, J = 14.9, 5.2 Hz, 1H), 3.08 (ddd, J = 14.9, 11.9,

5.2 Hz, 1H), 2.42 (s, 3H), 2.20-1.60 (m, 7H).

¹³C NMR (75 MHz, CDCl₃): δ 21.2, 21.5, 29.7, 38.0, 41.4, 50.2, 72.7, 125.5, 126.5,

127.2, 127.3, 128.0, 128.5, 129.5, 138.1, 140.5, 143.2,

170.1.

m/z (LSIMS)

: 400 [M+H]+

IR (neat) cm⁻¹

: 3032, 2925, 2853, 1744, 1598, 1494, 1374, 1345, 1159,

1096.

Elemental analysis

: Calcd. for C₂₇H₂₅NO₄S: C, 66.14; H, 6.31; N, 3.51; S,

8.02.

Found

: C, 66.03; H, 6.55; N, 3.41; S, 8.07.

2-[(6R)-2,3-Dihydro-6-pyridinyl]-1-phenyl-(1R)-ethan-1-ol, 115.

Freshly prepared Na-Hg (6%, 150 mg) was added to a well-stirred mixture of 114 (179 mg, 0.45 mmol), anhydrous Na₂HPO₄ (319 mg, 2.25 mmol) in methanol (9 mL) at room temperature and allowed to reflux for 6 h. The reaction mixture was quenched with water and extracted into ethylacetate. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude product was chromatographed on a small pad of silica gel using CH₂Cl₂: MeOH (50:1 then 1:10, v/v) as the eluent to afford 115 (71 mg, 0.35 mmol) in 78% yield.

Viscous liquid.

 $[\alpha]_{D^{25}}$: -39.1 (c 0.8, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.40-7.12 (m, 5H), 5.97-5.82 (m, 1H), 5.58-5.44 (m,

1H), 5.12-4.96 (m, 1H), 4.04-3.88 (m, 1H), 3.43-3.24 (m,

1H), 3.03-2.83 (m, 1H), 2.56-1.85 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 29.6, 40.3, 41.3, 51.1, 69.4, 125.4, 126.3, 127.1, 128.3,

144.0.

m/z (LSIMS) : 204 [M++H]

Elemental analysis : Calcd. for C₁₃H₁₇NO: C, 76.81; H, 8.43; N, 6.89.

Found : C, 76.57; H, 8.15; N, 6.66.

1-Phenyl-2-[(6S)-tetrahydro-6-pyridinyl]-(1R)-ethan-1-ol, 116.

To a solution of 115 (15 mg, 0.075 mmol) in ethylacetate (1.5 mL) was added Pt/C (5 mg, 10% wt/wt) and the reaction mixture was allowed to stir under H_2 atmosphere for 3 h. The reaction mixture was filtered through celite and evaporated to dryness under reduced pressure to afford 115 (14 mg, 0.068 mmol) in 90% yield.

 $[\alpha]_{D^{25}}$: -28.1 (c 0.2, Methanol)

PMR (200 MHz, CDCl₃) : δ 7.42-7.18 (m, 5H), 5.22 (bd, J = 7.4 Hz, 1H), 3.44 (bd, J = 7.4 Hz, 1H), 3.44 (bd, J = 7.4 Hz, 1H), 3.45 (bd, J = 7.4 Hz, 1H), 3.45 (bd, J = 7.4 Hz, 1H), 3.46 (bd, J = 7.4 Hz, 1H), 3.46 (bd, J = 7.4 Hz, 1H), 3.47 (bd, J = 7.4 Hz, 1H), 3.48 (bd, J = 7.4 Hz, 1H), 3.49 (bd, J = 7.4 Hz, 1

= 11.7 Hz, 1H), 3.36-3.21 (m, 1H), 2.91-2.71 (m, 1H),

2.42-2.22 (m, 1H), 2.04-1.66 (m, 6H), 1.51-1.32 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 22.0, 22.5, 29.6, 42.1, 44.9, 54.4, 68.4, 125.5, 127.2,

128.4, 143.6.

m/z EI : 206 [M++H]

Elemental analysis : Calcd. for C₁₃H₁₉NO, C, 76.06; H, 9.33; N, 6.82.

Found : C, 76.57; H, 9.15; N, 6.66.

2-[1-Methyl-(6S)-tetrahydro-6-pyridinyl]-1-phenyl-(1R)-ethan-1-ol, 52.

To a solution of the substrate 115 (12mg, 0.06 mmol) in acetonitrile (0.9 mL) was added 37% aq. HCHO (0.28 mL), AcOH (20 μ L) and NaCNBH3 (19 mg). The resulting reaction mixture was stirred at r.t. for 4 h and then concentrated under reduced pressure. The residue was extracted into dichloromethane and the solvent was evaporated under reduced pressure. Column chromatography using MeOH: DCM (first with 1:10 v/v then methanol alone) as the eluent afforded the product in 70% yield as a solid.

mp : 78-80 °C Lit.³⁵ : 80-81 °C

 $[\alpha]_{D^{25}}$: -27.8 (c 0.4, Methanol)

Lit.³⁵ $[\alpha]_D^{25}$: -29.8 (c 0.2, Methanol)

PMR (200 MHz, CDCl₃) : δ 7.40-7.21 (m, 5H), 5.10 (dd, J = 10.4, 3.4 Hz, 1H), 3.02

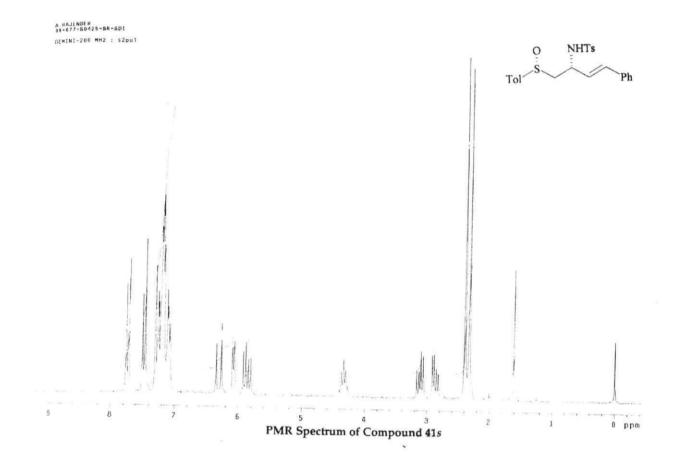
(d, J = 10.4 Hz, 1H), 2.46 (s, 3H), 2.45-3.32 (m, 1H), 2.17

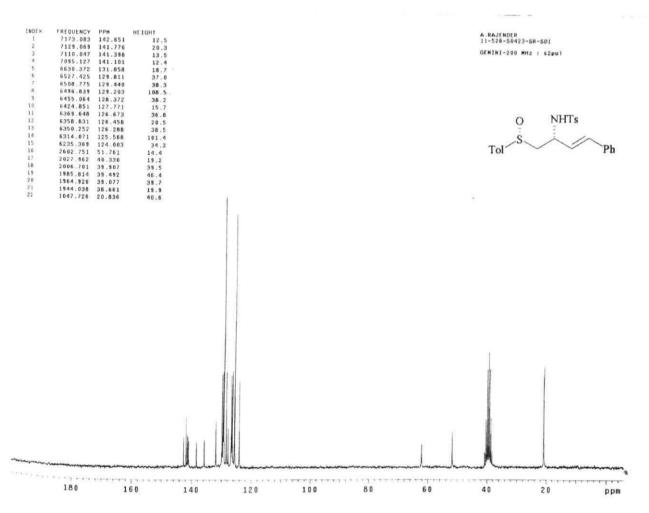
(ddd, J = 14.9, 10.9, 4.3 Hz, 1H), 1.96-1.53 (m, 6H),

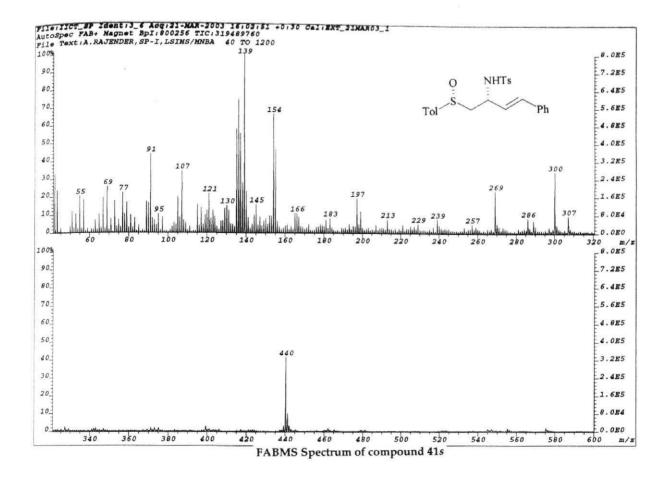
1.32-1.20 (m, 2H).

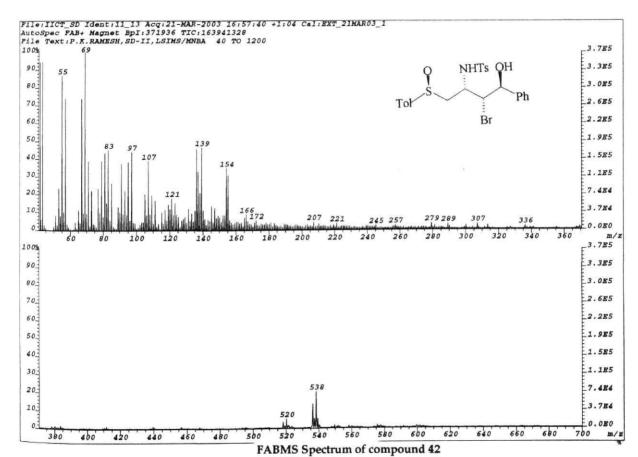
m/z (LSIMS) : 220 [M+H]+

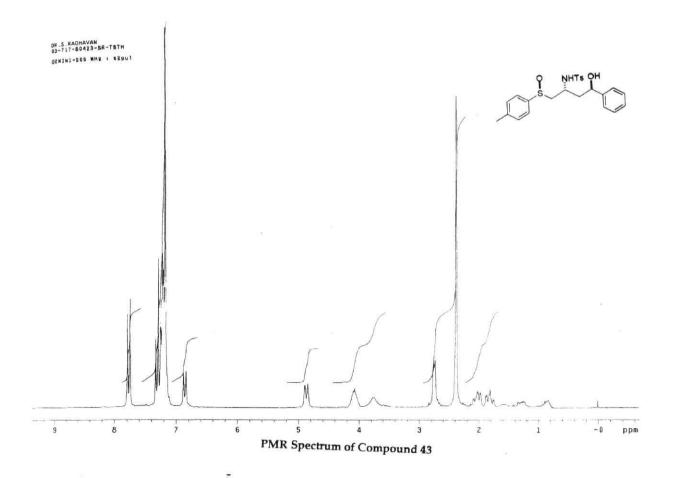
References

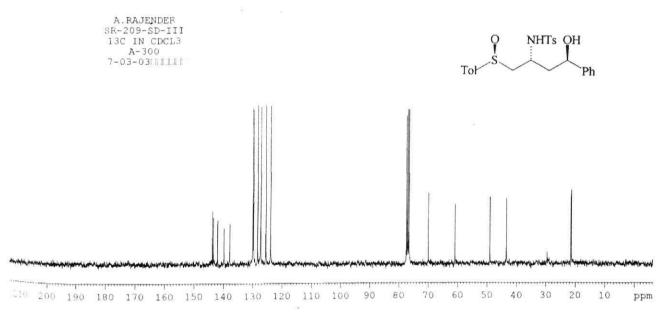

- Hanada, K.; Nishijima, M.; Kiso, M.; Hasegawa, A.; Fujita, S.; Ogawa, T.;
 Akamatsu, Y. J. Biol. Chem., 1992, 267, 23527; (b) Siegel, S.; Merill, A. H., Jr.
 FASEB J. 1996, 10, 1388; (c) Hannun, Y. A. Science, 1996, 274, 1855.
- Simons, K.; Ikonen, E. Nature, 1997, 387, 569; (b) Brown, D. A., Jr.; London,
 E. J. Biol. Chem., 2000, 275, 17221.
- Merill, A. H., Jr.; Jones, D. D. Biochim. Biophys. Acta, 1990, 1044, 1; (b)
 Mandon, E. C.; Ehses, I.; Rother, J.; van Echten, G.; Sandhoff, K. J. Biol. Chem., 1992, 267, 11144.
- Zweerink, M. M.; Edison, A. M.; Wells, G. B., into, W.; Lester, R. L. J. Biol. Chem., 1992, 267, 25032.
- 5. Merill, A. H., Jr.; Liotta, D. C.; Riley, R. T. Trends Cell Bio. 1996, 6, 218
- 6. Lee, L.; Abe, A.; Shayman, J. A. J. Biol. Chem. 1999, 274, 14662.
- Yasuda, S.; Kitagawa, H.; Ueno, M.; Ishitani, H.; Fukasawa, M.; Nishijima,
 M.; Kobayashi, S.; Hanada, K. J. Biol. Chem., 2001, 276, 43994.
- 8. Ueno, M.; Kitagawa, H.; Ishitani, H.; Yasuda, S.; Hanada, K.; Kobayashi, S. *Tetrahedron Lett.* **2001**, 42, 7863.
- 9. Kobayashi, S.; Matsubara, R.; Kitagawa, H. Org. Lett. 2002, 4, 143.
- 10. Kobayashi, S.; Hamada, T.; Manabe, K. J. Am. Chem. Soc. 2002, 124, 5640.
- 11. Pyne, S. G.; Bloem, P.; Chapman, S. L.; Dixon, C. E.; Griffith, R. J. Org. Chem, 1990, 55, 1086, and references cited therein.
- 12. Walker, A. J. Tetrahedron: Asymmetry 1992, 3, 961.
- 13. (a) Tsuchihashi, G. I.; Iriuchijam, S.; Maniwa, K. Tetrahedron Lett. 1973, 3389;
 - (b) Pyne, S. G.; Dikic, B. J. Chem. Soc., Chem. Commun. 1989, 826; (c) Mahidol,
 - C.; Reutrakul, V.; Prapansiri, V.; Panyachotipum, C. Chem. Lett. 1984, 969;
 - (d) Satoh, T.; Oohara, T.; Yamakawa, K. Tetrahedron Lett. 1988, 29, 4093; (e) Satoh, T.; Sato, T.; Oohara, T.; Yamakawa, K. J. Org. Chem. 1989, 54, 3973; (f)

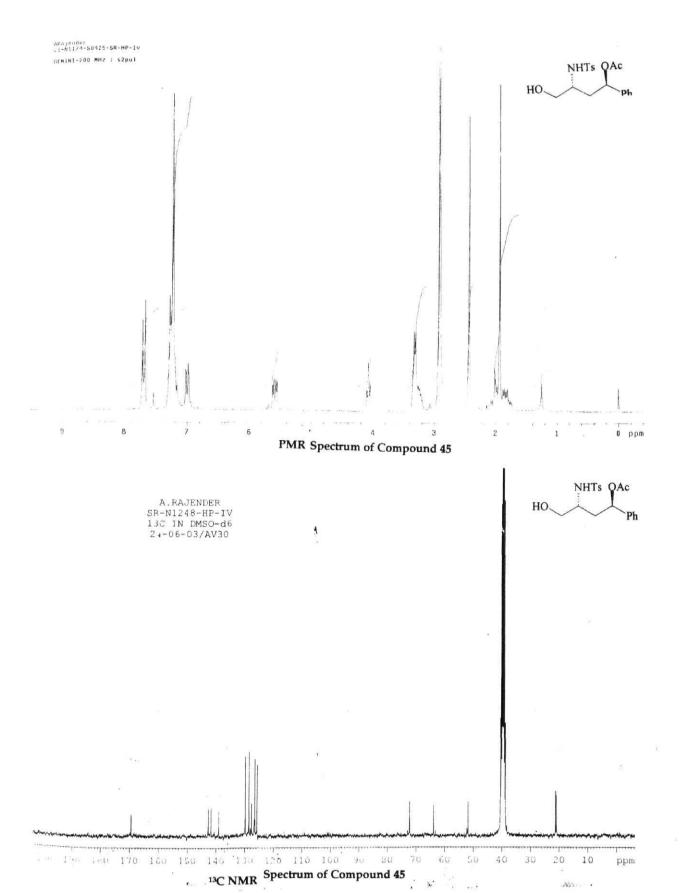

- Bravo, P.; Farina, A.; Kukhar, V. P.; Markovsky, A. L.; Meille, S. V.; Soloshonnok, V. A.; Sorochinsky, A. E.; Viani, F.; Zanda, M.; Zappla, C. J. Org. Chem. 1997, 62, 3424; (g) Bravo, P.; Guidetti, M.; Viani, F.; Zanda, M.; Markovsky, A. L.; Sorochinsky, A. E.; Soloshonok, I. V.; Soloshonok, V. A. Tetrahedron 1998, 54, 12789; (h) Bravo, P.; Capelli, S.; Crucianelli, M.; Guidetti, M.; Markovsky, A. L.; Meille, S. V.; Soloshonok, V. A.; Sorochinsky, A. E.; Viani, F.; Zanda, M. Tetrahedron, 1999, 55, 3025.
- 14. Ronan, B.; Marchalin, S.; Samuel, O.; Kagan, H. B. Tetrahedron Lett. 1988, 29, 6101.
- 15. Pyne, S. G.; Dikic, B. J. Org. Chem. 1990, 56, 1932.
- 16. Pyne, S. G.; Boche, G. J. Org. Chem. 1989, 54, 2663.
- Raghavan, S.; Rasheed, M. A.; Joseph, S. C.; Rajender, A. J. Chem. Soc.,
 Chem. Commun., 1999, 1845; (b) Raghavan, S.; Ramakrishna Reddy, S.; Tony,
 K. A.; Naveen Kumar, Ch. Varma, A. K.; Nangia, A. J. Org. Chem., 2002, 67, 5838.
- 18. Andersen, K. K. Tetrahedron Lett. 1962, 93; (b) Andersen, K. K.; Gaffield, W.; Papanicolau, N. E.; Foley, J. W.; Perkins, R I, J. Am. Chem. Soc. 1964, 86, 5637.
- 19. Solladie, G.; Hutt, J.; Girardin, A. Synthesis 1987, 173.
- 20. McKay, W. R.; Proctor, G. R. Perkin Trans I. 1981, 2435.
- 21. Lewanowicz, A.; Lipinski, J.; Siedlecka, R.; Skarzewski, J.; Baert, F. *Tetrahedron*, **1998**, *54*, 6571.
- 22. Hogevean, H.; Maccagnani, G.; Montanari, F. Boll. Sci. Fac. Chim. ind. Bologna., 1963, 21, 257.
- 23. Chamberlin, A. R.; Dezube, M.; Dussalt, P.; McMills, M. C. *J. Am. Chem. Soc.*, **1983**, 105, 5819.
- 24. (a) Arnone, A.; Bravo, P.; Capelli, S.; Fronza, G.; Meille, S. V.; Zanda, M.; Cavicchio, G.; Crucianelli, M. J. Org. Chem. 1996, 61, 3375; (b) Bravo, P.;

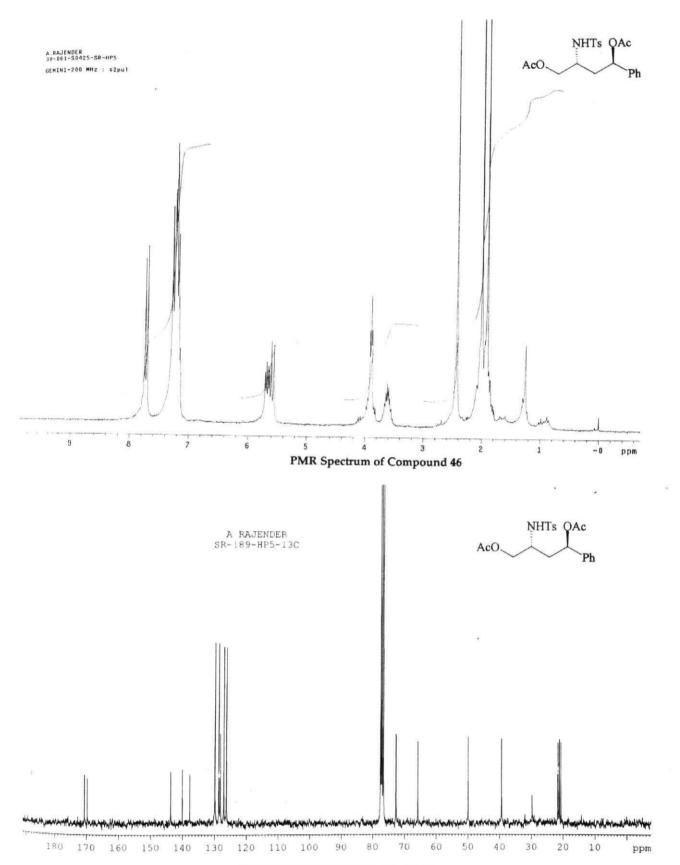

- Cavicchio, G.; Crucianelli, M.; Poggiali, A.; Zanda, M. *Tetrahedron:* Asymmetry, 1997, 8, 2811.
- 25. Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. 1989, 55, 1548.
- 26. Strunz, G. M.; Findlay, J. A.; Pyridine and piperidine Alkaloids. In *The Alkaloids*; Brossi, A., Ed.; Academic Press: New York. **1985**, Vol. 26, 89.
- 27. For an excellent review, refer to; (a) Laschat, S.; Dickner, T. Synthesis, 2000, 1781; (b) Kazmaier, U. Recent Res. Dev. Org. Chem. 1998, 2, 351; (c) Nadin, A. Contemp. Org. Chem. 1997, 4, 387; (c) Numata, A.; Ibuka, T. In The Alkaoids; Brossi, A., Ed.; Academic Press: New York, 1987; Vol. 31 and references cited therein.
- 28. Wieland, H.; Koschara, K.; Dane, E.; Renz, J.; Schwarze, W.; Linde, W. Liebigs Ann. Chem. 1939, 540, 103; (b) Schopf, C.; Kauffmann, T.; Berth, P.; Bundshuh, W.; Dummer, G.; Fett, H.; Habermehl, G.; Wieters, E.; Wust, W. ibid. 1959, 626, 150.
- 29. Millspaugh CF. Lobelia inflata. In: American medicinal plants: New york: Dover, 1974, 385.
- 30. Kim, J. H.; Hart, H. T.; Stevens, J. F. Phytochemistry, 1996, 41, 1319.
- 31. Adamkova, S.; Frebort, I.; Sebela, M.; Pec, P. J. Enzyme Inhib. 2001, 16, 367.
- 32. Ozawa, N.; Nakajima, S.; Zaoya, K.; Hamaguchi, F.; Nagasaka, T. Heterocycles 1991, 32, 889.
- 33. Kiguchi, T.; Nakazono, Y.; Kotera, S.; Ninomiya, I.; Naito, T. Heterocycles 1990, 31, 1525.
- 34. Irie, K.; Aoe, K.; Tanaka, T.; Saito, S. J. Chem. Soc., Chem. Commun. 1985, 633.
- 35. Oppolzer, W.; Deeberg, J.; Tamura, O. Helv. Chim. Acta. 1994, 77, 554.
- 36. Felpin, F.-X; Lebreton, J. Tetrahedron Lett. 2002, 43, 225.
- 37. (a) Eisch, J. J.; Galle, J. E. J. Org. Chem. 1980, 45, 4534; (b) Sasaki, N. A.; Hashimoto, C.; Potier, P. Tetrahedron Lett. 1987, 28, 6069; (c) Sasaki, N. A.;

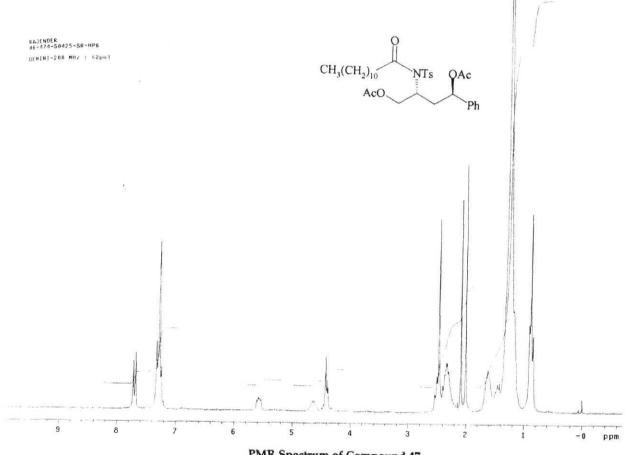

- Pauly, R.; Fontaine, C.; Chiaroni, A.; Riche, C.; Potier, P. Tetrahedron Lett. 1994, 35, 241; (d) Pauly, R.; Sasaki, N. A.; Potier, P. Tetrahedron Lett. 1994, 35, 237; (e) Wang, Q.; Dau, M. -E. T. H.; Sasaki, N. A.; Potier, P. Tetrahedron, 2001, 57, 6455; (f) Wang, Q.; Sasaki, N. A.; Riche, C.; Potier, P. J. Org. Chem. 1999, 64, 8602.
- 38. Lindner, E.; Von Au, G.; Eberle, H.-J. Chem. Ber. 1981, 114, 810.
- 39. Alonso, D. A.; Costa, A.; Mancheno, B.; Najera, C. Tetrahedron, 1997, 53, 4791.
- 40. Padwa, A.; Gunn, E. E. Jr.; Osterhout, M. H. Synthesis, 1997, 1353.
- 41. (a) Sugihara, H.; Tanikaya, R.; Kaji, A. Synthesis 1978, 881; (b) Pummerer, R. Chem. Ber. 1909, 42, 2282; (c) Kennedy, M.; McKervey, M. In Comprehensive Organic Chemistry; Trost, B. M.; Fleming, I., Eds; Pergamon: Oxford, 1991; Vol. 7, p 193.
- 42. (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155; (b) Barette, A. G. M.; Hamprechet, D.; Ohkubo, M. J. Org. Chem. 1997, 62, 9372.
- For and excellent review, refer to (a) Schuster, M.; Blechert, S. Angew. Chem.,
 Int. Ed. 1997, 36, 2036; (b) Schuster, M.; Blechret, S. Angew. Chem. 1997, 109,
 2124; (c) Furstner, A. Top. Catal. 1997, 4, 285; (d) Armstrong, S. K. J. Chem.
 Soc., Perkin Tran. I, 1998, 371.
- Overkleeft, H. S.; Pandit, U. K. Tetrahedron Lett. 1996, 37, 547; (b) Huwe, C.
 M.; Blechert, S. Synthesis, 1997, 61; (c) Grubbs, R. H.; Chang, S. Tetrahedron, 1998, 54, 4413.
- 45. Stragies, R.; Blechert, S. Tetrahedron, 1999, 55, 8179.
- 46. Cossy, J.; Wills, C.; Bellosta, V.; BouzBouz, S. J. Org. Chem. 2002, 67, 1982.
- 47. Bach, T.; Brummerhol, H.; Harms, K. Chem. Eur. J. 2000, 6, 3848.



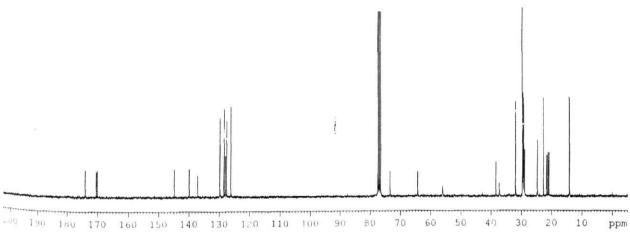




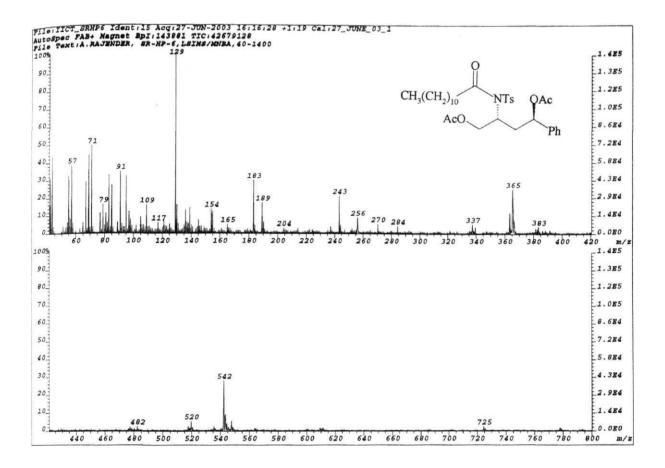


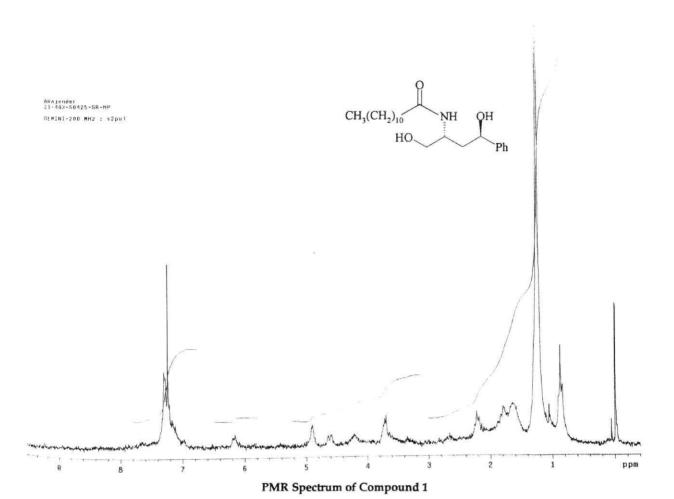


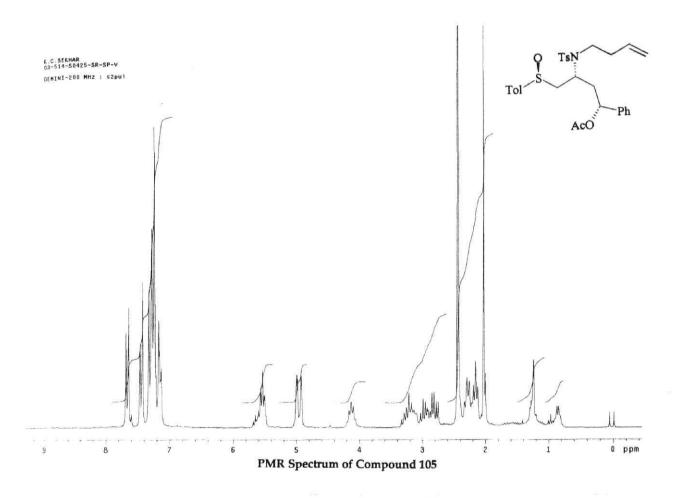
¹³C NMR Spectrum of Compound 43

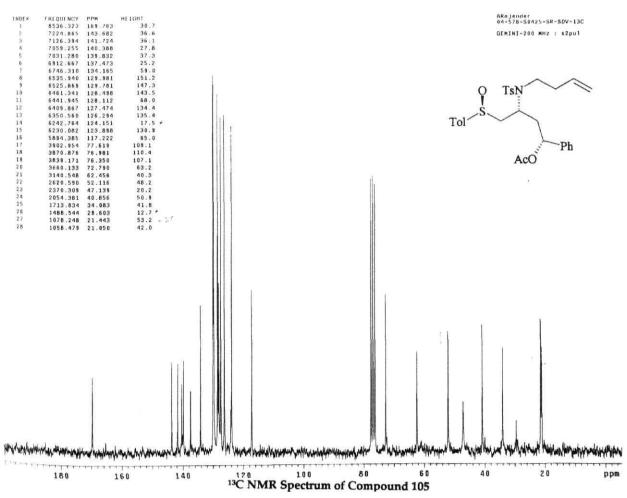


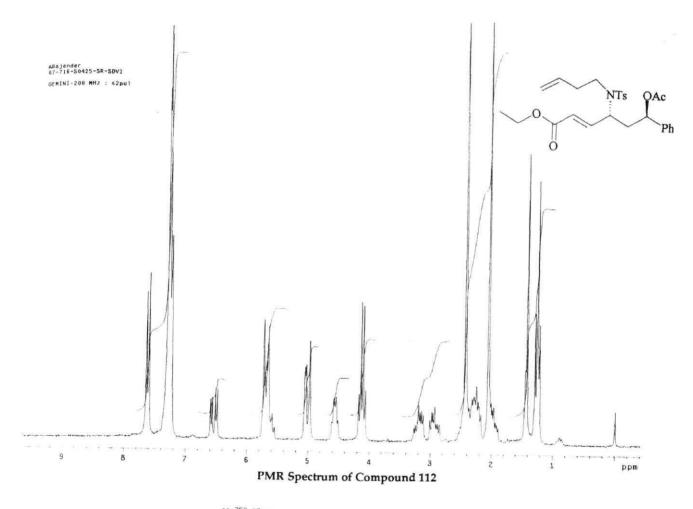
¹³C NMR Spectrum of Compound 46



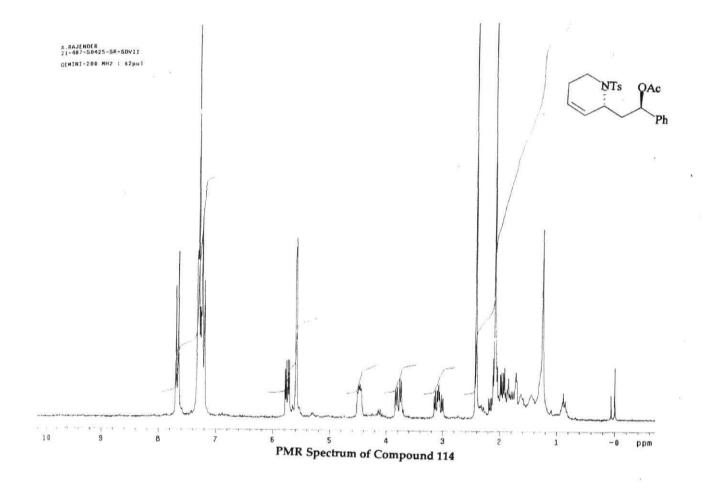

PMR Spectrum of Compound 47

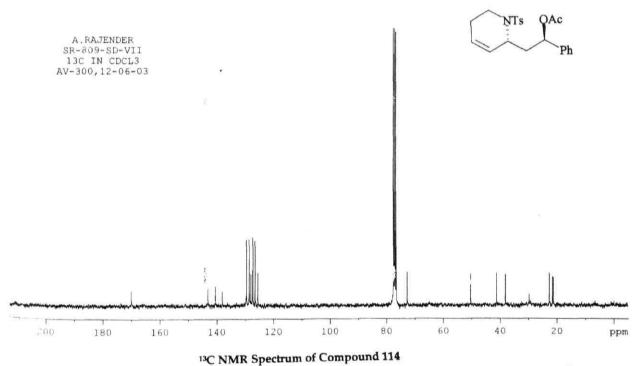

A.RAJENDER SR-655-HP6 13C IN CDCL3 AV-300,10-06-03

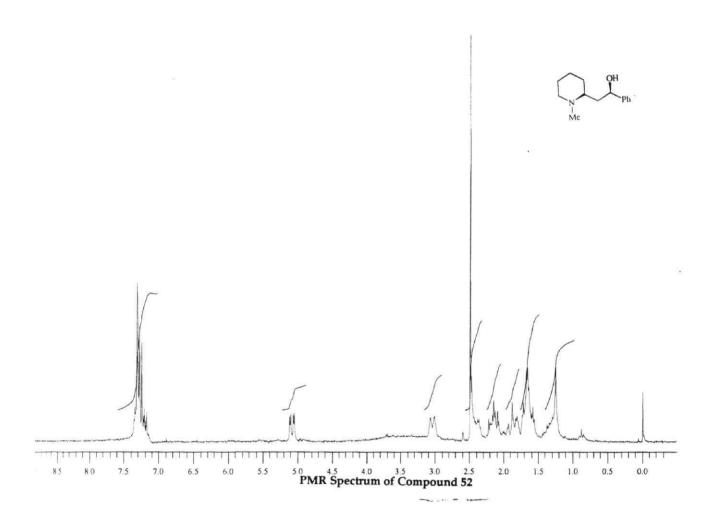



¹³C NMR Spectrum of Compound 47









Section-C

Synthesis of highly functionalized tetrahydrofurans via silicon promoted Pummerer type reaction.

Introduction

The tetrahydrofuran ring system is widely distributed in nature and has attracted the attention of the synthetic community relating to the total synthesis of natural products.¹ The stereocontrolled construction of substituted tetrahydrofurans is challenging, prompting the development of new methodologies for its efficient elaboration.²

The well-known Pummerer rearrangement of sulfoxides, is of significant interest from both synthetic and mechanistic point of view, because it would provide means for the synthesis of enantiomerically pure α-substituted sulfides.³ The Pummerer reaction has been initiated with a variety of electrophilic reagents.4 The most commonly used Pummerer reaction conditions require sodium acetate in refluxing acetic anhydride as the activating agent for the sulfoxide. In case of thermally sensitive sulfoxides, trifluoroacetic anhydride (TFAA), another sulfoxide activating agent, promotes almost spontaneously a mild Pummerer reaction at low temperature. Intramolecular Pummerer type cyclization was reported for the first time and independently by Allenmark⁵ and Oae⁶ with a chirality transfer from sulfur to the adjacent carbon atom. Further examples showed induction with 10-30% enantiomeric excess when acetic anhydride was used to effect this rearrangement.⁷ In one case, although the stereoselectivity was improved up to 70% ee by the addition of 1,3-dicyclohexyldicarbodiimide (DCC) as an efficient scavenger of acetic acid, the chemical yield decreased to 10%.8 Later, Marino et al.9 reported the first example under Pummerer conditions of an intramolecular cycloaddition between a vinyl sulfoxide and dichloroketene. The stereochemistry was dependent on the E or Z configuration of the vinylic component. β -Lactams were also obtained by ring closure of β-amidosulfoxides under Pummerer conditions with either TMSOTf or O-silylated ketene acetals. 10 In most of the cases, the observed enantioselectivity for these cycloadditions was moderate (30 to 85%). A very highly enantioselective Pummerer type reaction was reported by Bravo et al. Solladie et al. reported the stereoselective synthesis of β -hydroxy- γ -sulfenyl- γ -butyrolactone by asymmetric Pummerer type cyclization.

Earlier contributions: Ketene methyl *t*-butyldimethylsilyl acetal, chlorotrimethyl silane, t-butyldimethylsilyl triflate, trimethylsilyl triflate and TFAA in the presence of sodiumtrifluoroacetates are the some of the reagents used as the activating reagents in the preparation of the heterocycles via intramolecular Pummerer rearrangement. Few Pummerer type reactions reported in the literature are detailed below.

Taylor's contribution12:

Taylor *et al.* reported chlorotrimethylsilane as the activating agent in the Pummerer type reaction for the conversion of sulfoxides into α,β-unsaturated sulfides in the absence of base (Scheme 1). Saturated sulfides were also formed in the reaction. Treatment of ketosulfoxide 117 with Me₃SiCl in CCl₄ afforded the unsaturated sulfides 118 and 119 in 72% and 16% yields respectively. Saturated sulfides 120 and 121 were also isolated in 7% combined yield.

Scheme 1

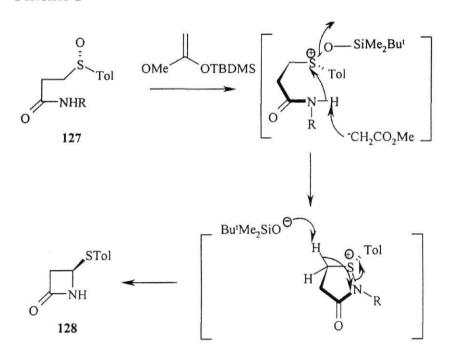
Ando's contribution¹³:

Ando *et al.* reported a stereospecific formation of α -silyloxy sulfides from optically active thiozolidine S-oxides using trialkylsilyl triflate in the Pummerer reaction. Thus, treatment of **122** with *tert*-butyldimethylsilyl triflate in the presence of Et₃N afforded the desired α -silyloxy sulfide **123** in 27% yield along with 50% of α , β -unsaturated sulfide **124** (Scheme 2).

Scheme 2

Kaneko's contribution14:

Kaneko *et al.*, reported the preparation of optically active β -lactams via Pummerer type cyclization reaction. Treatment of the sulfoxide **125** with excess trimethylsilyl triflate in the presence of Hunig's base afforded the β -lactam **126** in 74% yield and in 67% de (Scheme 3).


Scheme 3

Kita's contribution15:

Optically pure S-sulfoxides 127 were transformed into R- β -lactams 128 under silicon promoted Pummerer type reaction. Upon treatment with tert-

butyldimethylsilyl acetal, sulfoxide with a chiral amido group **127a** afforded β -lactam **128a** in 60% de. Sulfoxides with an achiral amido group provided β -lactams in >80% de (Scheme 4).

Scheme 4

Alkyl group		de
R = CH(Me)Ph	127a	60
$R = CH_2Ph$	127b	82
$R = CHPh_{2}$	127c	83

Solladie's contribution16:

Synthesis of β-hydroxy-γ-sulfenyl-γ-butyrolactone by asymmetric Pummerer type cyclization was reported. Treatment of sulfoxide **130** with TFAA in the presence of *sym*-collidine in acetonitrile followed by treatment with aq. NaHCO₃ afforded the aldehyde **131** and the lactone **132** in almost equal amounts. When sodium trifluoroacetate used as the base, only lactone **132** was formed. Under the

similar conditions methyl ester **133** yielded the aldehyde **134** as the only product (Scheme 5). This methodology is limited to *tert*-butyl esters only.

Scheme 5

Kita's contribution¹⁷:

Kita and co-workers reported the synthesis of α -silyloxy sulfides by Pummerer type reaction. Ketene methyl t-butyldimethylsilyl acetal was used as the activating agent (Scheme 6).

Present work

In this section, a novel methodology leading to α -sulfenyl tetrahydrofurans from the δ -hydroxy sulfoxides by silicon promoted Pummerer reaction is discussed.

In the course of the synthesis of *dl*-allosedamine, the hydroxy group in 43 required to be protected as its silyl ether. Thus, compound 43 was treated with *tert*-butyldimethylchlorosilane in DMF in the presence of imidazole. Surprisingly, two products were observed, the major product (60%) was not the expected silyl ether, but the tetrahydrofuran 137; the minor product (30%) turned out to be the silyl ether 95 (Scheme 7). The cyclized product showed resonances at δ 5.17 (d) for anomeric CHS, δ 4.76 (d) for the benzylic proton, δ 3.96-3.90 (m) for CHN, δ 2.72 (dt) for one of the C4 H protons and at δ 1.71 (ddd) for the other C4 H proton.

Reagents and conditions: (a) TBS-Cl, imidazole, DMF (0.33 M), r.t., 2 h, 70% (combined yield of two products).

The encouraging result gave the impetus to explore the generality of this simple, rapid and convenient cyclization of δ -hydroxysulfoxides into tetrahydrofurans, using a mild reagent. In an effort to optimize the reaction conditions to afford the substituted tetrahydrofurans as the only product, the bulky tert-butyldiphenylchlorosilane was employed at higher concentration of the solvent. Thus, compound 43 was treated with tert-butyldiphenylchlorosilane in the presence of imidazole in DMF (1 M). The reaction proceeded smoothly to afford 138 as the only product. The generality of the reaction was investigated on other δ-hydroxy sulfoxides. To this end, the substrates 139a and 139s were prepared by N-benzylation of 41a and 41s (racemic samples) respectively. Thus, treatment of the sulfoxides individually with benzyl bromide, K2CO3 in the presence of tetrabutylammonium iodide in acetonitrile afforded 139a and 139s (Scheme 8). The PMR spectrum of 139a revealed signals at δ 6.24 (d) for C4 H, δ 6.02 (dd) for C3 H, 4.61 (q) for CHN, δ 4.46 (d) and 4.33 (d) for -NCH₂. The PMR spectrum of 139s showed resonances at δ 6.24 (d) for C4 H proton, δ 6.04 (dd) for C3 H proton, δ 4.69 (m) for CHN, δ 4.47 (d) and δ 4.30 (d) for NCH₂.

Reagents and conditions: (a) BnBr, TBAI, K2CO3, CH3CN, reflux, 1 h, 90%.

Upon subjecting 139a and 139s to treatment with NBS in toluene in the presence of water at ambient temperature afforded bromohydrins 140s and 140a respectively as the only products (Scheme 9).

Scheme 9

Reagents and conditions: (a) NBS, toluene, water, r.t., 30 min, 140s: 80%; 140a: 76%.

Table 1: Formation of tetrahydrofurans.				
Entry	Hydroxysulfoxide	Tetrahydrofuran	Yieldb	
			0/0	
1	Tol Brints OH Ph	Tols O Ph	90%	
2	Tol Br Ph	141	90%	
3	Tol S NHT's OH Ph	Tols Ph	86%	
4	Ph S NHTs OH (CH ₂) ₃ CH ₃	Tols O $(CH_2)_3CH_3$	90%	
5	Ph S Me OH Ph	Tols O Ph	93%	
6	Tol S OTBDPS Ph	Tols O Ph	82%	
7	Tol OTBDPS Ph	Tols O Ph	90%	

a) All reactions were done on racemic substrates on 0.2 mmol scale in the presence of 1 eq. of *t*-butyldiphenylchlorosilane and 2 eq. of imidazole in DMF as the solvent. b) Yield refers to the isolated yield.

The structure of **141** and **143** was tentatively established by nOe experiments. Thus irradiation of the methine proton at C2 in **141** revealed nOe with the *N*-benzyl protons and C4 methine proton. Irradiation of the C5 methine proton revealed nOe with C3 methine proton (Figure 1).

Figure 1

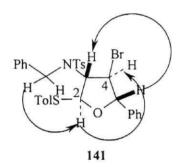
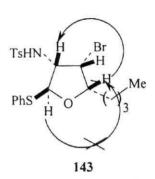



Figure 2

The PMR spectrum of **143** showed resonances at δ 4.99 (d) for C5 methine proton, δ 4.24 (dd) for C3 methine proton, δ 3.85 (ddd) for C4 methine proton and δ 3.74 (dt) for C2 methine proton. Structure of **143** was confirmed by nOe studies. Thus, irradiation of C2 methine proton revealed nOe with C4 methine proton. Irradiation of C5 methine proton did not reveal nOe with C2 methine and C3 methine protons (Figure 1). The structures of the other tetrahydrofurans (entry no 3, 5, 6 and 7) were assigned by comparison of their PMR spectra with **141**.

The formation of tetrahydrofuran can be rationalized by coordination of the sulfoxide oxygen to silicon to afford the sulfoxonium salt, which on elimination of *t*-butyldiphenylsilyloxy group (OTBDPS) would yield the sulfonium ion which would then be attacked intramolecularly by the hydroxy group. The substituent at C3 would direct the sulfenyl moiety away from itself, to minimize steric interactions, and afford the observed product. The intermediate from **146** would experience unfavorable steric interactions between the phenyl ring and sulfenyl moiety while the latter is oriented *anti* to the C3 OTBDPS substituent, which would probably explain for the obtention of a mixture of sulfides in this case (Scheme 9).

The intermediacy of the sulfonium ion was confirmed by the fact that the same product is obtained from reactions done individually on diastereomeric sulfoxides 138a and 138s.

In summary a highly stereoselective route for the elaboration of tetrahydrofurans from δ -hydroxy sulfoxides under very mild conditions in a Pummerer like reaction is disclosed. It is worthwhile to note that the sulfenyl group provides a suitable handle for further elaboration into more complex molecules.¹⁹

Experimental

Procedure for the preparation of 139a and 139s.

To a solution of acetonitrile (2 mL) containing 41a/41s (215 mg, 0.5 mmol), K₂CO₃ (138 mg, 1 mmol) and tetrabutylammonium iodide (10 mg, 0.05 mmol) was added neat BnBr (78 mg, 0.5 mmol). The reaction mixture was heated at reflux for 1 h and then gradually allowed to attain room temperature. After evaporation of the solvent under reduced pressure, the residue was taken into ethylacetate and washed with water, brine and dried over anhydrous Na₂SO₄. Ethylacetate was removed under reduced pressure and the residue chromatographed on silica gel using AcOEt/petroleum ether (1:4, v/v) as the eluent to afford 139a/139s in 90% yield.

1*N*-Benzyl-1*N*-[3-phenyl-1-phenylsulfinylmethyl-(1*S*,2*E*)-2-propenyl]-4-methyl-1-benzenesulfonamide, 139*a*.

90%. Solid.

mp : 155-157 ℃

PMR (200 MHz, CDCl₃) : δ 7.71 (d, J = 8.4 Hz, 2H), 7.45-7.07 (m, 16H), 6.24 (d, J = 8.4 Hz, 2H)

= 16.7 Hz, 1H), 6.04 (dd, J = 16.7, 6.9 Hz, 1H), 4.61 (q, J)

= 6.9 Hz, 1H, 4.46 (d, J = 16.2 Hz, 1H), 4.33 (d, J = 16.2 Hz)

Hz, 1H), 3.08-2.85 (m, 2H), 2.42 (bs, 6H).

m/z (LSIMS) : 516 [M + H]+

1N-Benzyl-1N-[3-phenyl-1-phenylsulfinylmethyl-(1R,2E)-2-propenyl]-4-methyl-1-benzenesulfonamide, 139s.

90%. Solid.

mp : 168-169 °C

PMR (200 MHz, CDCl₃) : δ 7.79 (d, J = 8.4 Hz, 2H), 7.40-7.01 (m, 16H), 6.11 (d, J = 8.4 Hz, 2H)

= 17.2 Hz, 1H), 5.95 (dd, J = 17.2, 7.0 Hz,1H), 4.79-4.65

(m, 1H), 4.61 (d, J = 16.3 Hz, 1H), 4.32 (d, J = 16.3 Hz,

1H), 3.23 (dd, J = 13.4, 8.9 Hz, 1H), 2.77 (dd, J = 13.4,

6.7 Hz, 1H), 2.43 (s, 3H), 2.37 (s, 3H).

m/z (LSIMS) : 516 [M + H]+

1N-Benzyl-1N-[2-bromo-3-hydroxy-3-phenyl-1- (R_s) -phenylsulfinylmethyl-(1S,2R)-propyl]-4-methyl-1-benzenesulfonamide, 140a.

74%. Solid.

mp : 196-198 °C

PMR (200 MHz, CDCl₃) : δ 7.83 (d, J = 8.2 Hz, 2H), 7.46-7.21 (m, 16H), 5.16 (d, J

= 10.8 Hz, 1H), 5.04 (dd, J = 9.6, 4.8 Hz, 1H), 4.68 (d, J

= 4.8 Hz, OH), 4.51 (d, J = 16.2 Hz, 1H), 4.35 (d, J = 9.6

Hz, 1H), 4.09 (d, J = 16.2 Hz, 1H), 3.08 (dd, J = 13.4,

10.8 Hz, 1H), 2.49 (s, 3H), 2.41 (s, 3H), 2.08 (d, J = 13.4)

Hz, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 21.4, 21.6, 49.7, 53.1, 58.9, 59.7, 73.5, 123.7, 127.4,

128.1, 128.2, 128.3, 130.1, 130.3, 134.3, 137.5, 140.2,

140.6, 142.3, 144.6.

m/z (LSIMS) : 612 [M+ H]⁺

1N-Benzyl-1N-[2-bromo-3-hydroxy-3-phenyl-1-(R_s)-phenylsulfinylmethyl-(1R,2R)-propyl]-4-methyl-1-benzenesulfonamide, 140s.

83%. Solid.

mp : 75-76 °C

PMR (200 MHz, CDCl₃) : δ 7.70 (d, J = 8.2 Hz, 2H), 7.37-7.13 (m, 16H), 5.14-5.06

(m, 1H), 4.96 (dd, J = 8.9, 4.5 Hz, 1H), 4.71 (d, J = 4.5)

Hz, 1H), 4.62 (d, J = 16.2 Hz, 1H), 4.05 (d, J = 16.2 Hz,

1H), 3.98 (bs, OH), 3.22 (dd, J = 13.4, 7.4 Hz, 1H), 2.55

(dd, I = 13.4, 4.5 Hz, 1H), 2.47 (s, 3H), 2.42 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.4, 21.6, 50.4, 53.8, 59.1, 61.0, 74.2, 123.9, 127.3,

127.6, 128.0, 128.1, 128.4, 130.0, 135.5, 137.1, 139.3,

140.8, 142.2, 144.4.

m/z (LSIMS)

: 612 [M + H]+

2-Bromo-3-methyl-1-phenyl-4-(S_S)-phenylsulfinyl-(1S,2R,3S)-butan-1-ol, 144s.

Solid.

mp

: 160-162 °C

PMR (200 MHz, CDCl₃)

: δ 7.58-7.45 (m, 5H), 7.34 (bs, 5H), 4.80 (d, J = 8.9 Hz,

1H), 4.25 (dd, J = 8.9, 2.0 Hz, 1H), 3.13-3.01 (m, 1H),

 $2.89 \, (dd, J = 13.2, 3.8 \, Hz, 1H), 2.61 \, (dd, J = 13.2 \, 8.9 \, Hz,$

1H), 1.33 (d, I = 6.3 Hz, 3H).

¹³C NMR (50 MHz, CDCl₃): δ 14.3, 30.0, 65.3, 66.0, 76.0, 124.0, 127.0, 128.4, 128.5,

129.3, 131.1, 141.6, 144.0.

m/z (LSIMS)

: 367 [M + H]+

2-Bromo-3-methyl-1-phenyl-4-(R_S)-phenylsulfinyl-(1S,2R,3S)-butan-1-ol, 144a. Liquid.

PMR (200 MHz, CDCl₃)

: δ 7.60-7.31 (m, 10H), 4.82 (d, J = 8.1 Hz, 1H), 4.72 (d, J = 8.1 Hz, 1H)

= 8.1 Hz, 1H, 3.07 (m, 2H), 2.77 (dd, J = 10.1, 8.0 Hz,

1H), 1.18 (s, J = 6.3 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 15.4, 29.7, 64.1, 64.2, 76.0, 123.9, 127.0, 128.5, 128.6,

129.4, 131.1, 141.5, 143.7.

m/z (LSIMS)

: 367 [M+H]+

2-Bromo-3-(tert-butyldiphenylsilyloxy)-1-phenyl-4-(S_S)-phenylsulfinyl-(1R,2R,3S)-butan-1-ol, 146.

Liquid.

PMR (300 MHz, CDCl₃) : δ 7.68-7.65 (m, 4H), 7.48-7.2 (m, 13H), 7.08-7.03 (m,

2H), 4.96-4.91 (m, 1H), 4.52 (d, J = 9.1 Hz, 1H), 4.14-

4.09 (m, 1H), 3.24 (dd, J = 13.6, 3.0 Hz, 1H), 2.88 (dd, J

= 13.6, 6.8 Hz, 1H), 2.43 (s, 3H), 1.13 (s, 9H).

¹³C NMR (75 MHz, CDCl₃): δ 19.5, 21.4, 27.0, 64.4, 64.8, 67.5, 75.1, 123.8, 127.0,

127.9, 128.1, 128.2, 130.1, 132.8, 133.1, 136.0, 140.2,

140.6, 141.8.

m/z (LSIMS)

: 621 [M+H]+

2-bromo-3-(*tert*-butyldiphenylsilyloxy)-1-phenyl-4-(*R*_S)-phenylsulfinyl-(1*S*,2*S*,3*S*)-butan-1-ol, 148.

Liquid.

PMR (200 MHz, CDCl₃) : δ 7.80-7.63 (m, 4H), 7.54-7.21 (m, 13H), 7.17-7.04 (m,

2H), 4.84 (d, J = 9.7 Hz, 1H), 4.69-4.61 (m, 1H), 4.52

(dd, J = 9.7, 1.5 Hz, 1H), 3.27 (dd, J = 13.4, 9.7 Hz, 1H),

2.86 (dd, J = 13.4, 3.0 Hz, 1H), 2.38 (s, 3H), 1.09 (s, 9H).

¹³C NMR (75 MHz, CDCl₃): δ 19.6, 21.4, 26.9, 60.2, 62.4, 67.1, 74.9, 124.0, 127.1,

127.8, 127.9, 128.2, 128.3, 129.9, 130.1, 130.2, 132.4,

133.2, 135.9, 136.0, 139.3, 141.3, 141.6.

m/z (LSIMS)

: 621 [M+H]+

General procedure for the cyclization:

To the substrate (0.2 mmol) in dry DMF (0.2 mL) were added imidazole (27 mg, 0.4 mmol) followed by TBDPS-Cl (55 mg 0.2 mmol) at room temperature under N₂ atmosphere. The reaction mixture was stirred at room temperature until TLC revealed complete consumption of the starting material. The reaction mixture was diluted with ether and washed successively with water, brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to afford the crude

product mixture. Purification by column chromatography using AcOEt/hexane (1:24, v/v) afforded the pure product.

2-(4-Methylphenylsulfanyl)-3-(4-methylphenylsulfonamido)-5-phenyl-(2S,3R,5R)-tetrahydrofuran, 138.

74%. Solid.

mp

: 153-154 °C

PMR (300 MHz, CDCl₃)

: δ 7.74 (d, J = 8.2 Hz, 2H), 7.30-7.20 (m, 9H), 7.03 (d, J =

8.2 Hz, 2H), 5.17 (d, J = 6.5 Hz, 1H), 4.76 (d, J = 8.7 Hz,

1H), 3.98-3.89 (m, 1H), 2.72 (dt, J = 14.0, 7.6 Hz, 1H), 2.42 (s, 3H), 2.32 (s, 3H), 1.71 (ddd, J = 14.0, 8.7, 5.4 Hz,

1H).

¹³C NMR (75 MHz, CDCl₃): δ 21.0, 21.5, 40.9, 59.6, 78.6, 92.1, 125.9, 127.3, 127.9,

128.5, 129.6, 129.8, 132.9, 134.7, 137.0, 137.8, 139.9,

143.7.

m/z (LSIMS)

: 316 [M+-STol]

1-[4-(tert-Butylsilyloxy)-2-(4-methylphenylsulfonamido)-4-phenyl-(2R)butylsulfinyl]-4-methylbenzene, 95.

Viscous liquid.

PMR (200 MHz, CDCl₃)

: δ 7.73 (d, J = 8.2 Hz, 2H), 7.32-7.10 (m, 11H), 6.36 (d, J

= 6.7 Hz, NH), 4.97 (t, J = 6.0 Hz, 1H), 3.91 (q, J = 6.0 Hz)

Hz, 1H), 2.81 (dd, J = 13.4, 5.2 Hz, 1H), 2.69 (dd, J =

13.4, 6.0 Hz, 1H), 2.47 (s, 3H), 2.43 (s, 3H), 2.13 (t, I = 1)

6.0 Hz, 2H), 0.9 (s, 9H), 0.11 (s, 3H), -0.21 (s, 3H).

m/z (LSIMS)

: 572 [M + H]+

3-Benzyl(4-methylphenyl)sulfonamido-4-bromo-2-(4-methylphenylsulfanyl)-5phenyl-(2S,3S,4R,5S)-tetrahydrofuran, 141.

90%. Solid.

mp

: 107-108 °C

PMR (200 MHz, CDCl₃)

: δ 7.84 (d, J = 8.2 Hz, 2H), 7.32-7.20 (m, 14H), 7.04 (d, J

= 8.2 Hz, 2H, 5.48 (d, I = 6.0 Hz, 1H), 4.96 (d, I = 9.7 d)

Hz, 1H), 4.50 (dd, J = 8.2, 5.2 Hz, 1H), 4.55 (d, J = 15.6

Hz, 1H), 4.36 (d, J = 15.6 Hz, 1H), 4.13 (dd, J = 9.7, 8.2

Hz, 1H), 2.44 (s, 3H), 2.32 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.1, 21.5, 50.2, 51.0, 72.5, 83.4, 88.3, 127.0, 128.1,

128.2, 128.4, 128.7, 128.9, 129.6, 129.7, 130.0, 132.7,

135.7, 136.0, 136.9, 138.1, 143.9.

m/z (LSIMS)

: 484 [M+-STol]

4-Bromo-2-(4-methylphenylsulfanyl)-3-(4-methylphenylsulfonamido)-5-phenyl-(2S,3S,4R,5S)-tetrahydrofuran, 142.

86%. Viscous liquid.

PMR (300 MHz, CDCl₃)

 δ 7.81 (d, J = 8.2 Hz, 2H), 7.36-7.22 (m, 9H), 7.02 (d, J =

8.2 Hz, 2H), 5.34 (d, J = 4.3 Hz, 1H), 5.24 (d, J = 7.6 Hz,

1H), 5.16 (d, I = 8.7 Hz, 1H), 4.04 (ddd, I = 7.6, 6.5, 4.3

Hz, 1H), 3.69 (dd, J = 8.7, 6.5 Hz, 1H), 2.43 (s, 3H), 2.32

(s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 20.9, 21.3, 53.3, 68.2, 84.0, 91.1, 126.6, 127.3, 128.4,

128.8, 129.5, 129.6, 132.7, 135.6, 136.9, 137.9, 143.8.

m/z (LSIMS)

: 394 [M+-STol]

4-Bromo-5-butyl-3-(4-methylphenylsulfonamido)-2-phenylsulfanyl-(2S,3S,4S,5S)-tetrahydrofuran, 143.

90%. Low melting solid.

PMR (300 MHz, CDCl₃) : δ 7.76 (d, J = 8.2 Hz, 2H), 7.36-7.19 (m, 7H), 5.14 (d, J =

10.5 Hz, 1H), 4.99 (d, *J* = 8.2 Hz, 1H), 4.24 (dd, *J* = 4.8, 2.2 Hz, 1H), 3.85 (ddd, *J* = 10.5, 8.2, 4.8 Hz, 1H), 3.74

(td, J = 6.7, 2.2 Hz, 1H), 2.48 (s, 3H), 1.80-1.50 (m, 2H),

1.36-1.24 (m, 4H), 0.90 (t, J = 6.7 Hz, 3H).

m/z (LSIMS) : 375 [M+-STol]

3-Bromo-4-methyl-2-phenyl-5-phenylsulfanyl-(2*S*,3*R*,4*S*,5*S***)-tetrahydrofuran**, **14**5. 93%. Solid.

mp : 53-54 °C

PMR (200 MHz, CDCl₃) : δ 7.56-7.22 (m, 10H), 5.25 (d, J = 7.4 Hz, 1H), 5.02 (d, J

= 9.7 Hz, 1H), 3.5 (dd, J = 9.7, 8.9 Hz, 1H), 2.54-2.47

(m, 1H), 1.36 (d, J = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 15.1, 50.5, 56.6, 85.4, 92.2, 126.8, 127.4, 128.4, 128.7,

128.9, 131.7, 134.6, 137.1.

m/z (LSIMS) : 239 [M⁺-STol]

3-Bromo-4-(*tert*-butyldiphenylsilyloxy)-2-phenyl-5-(4-methylphenylsulfanyl)-(2*R*,3*R*,4*S*)-tetrahydrofuran, 147 (Anomeric mixture).

82%. Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.88-7.62 (m, 12H), 7.52-6.97 (m, 26H), 5.62 (d, J =

5.9 Hz, 1H), 5.41 (d, J = 2.9 Hz, 1H), 5.34 (d, J = 5.9 Hz,

1H), 5.11 (d, J = 8.9 Hz, 1H), 4.55-4.43 (m, 2H), 4.06-

3.86 (m, 2H), 2.33 (s, 6H), 1.12 (s, 9H), 1.04 (s, 9H).

m/z (LSIMS) : 479 [M⁺-STol]

3-Bromo-5-(4-methylphenylsulfanyl)-4-(*tert*-butyldiphenylsilyloxy)-2-phenyl-(2*S*,3*S*,4*S*,5*S*)-tetrahydrofuran, 149.

90%. Liquid.

PMR (200 MHz, CDCl₃) : δ 7.76-7.59 (m, 4H), 7.50-7.28 (m, 11H), 7.14 (d, J = 8.2

Hz, 2H), 6.98 (d, J = 7.4 Hz, 2H), 5.38 (d, J = 3.0 Hz,

1H), 5.10 (d, J = 8.9 Hz, 1H), 4.48 (dd, J = 5.2, 3.0 Hz,

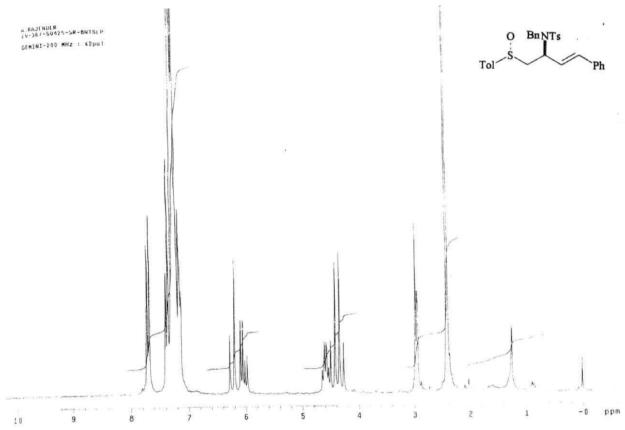
1H), 3.92 (dd, J = 8.9, 5.2 Hz, 1H), 2.32 (s, 3H), 1.09 (s,

9H).

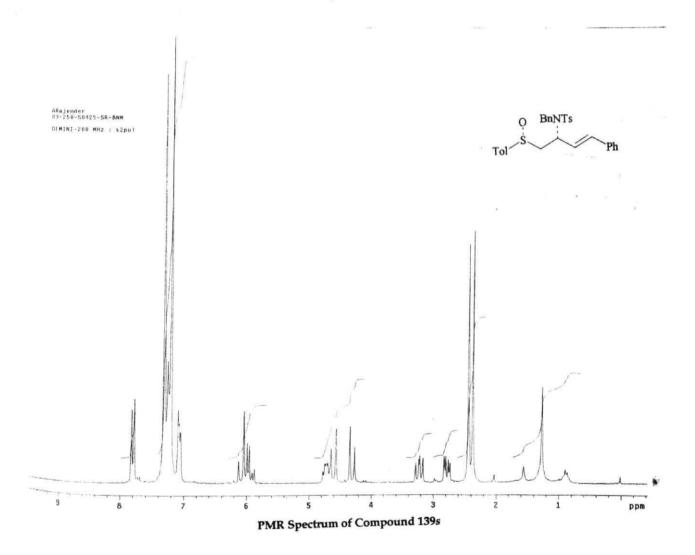
¹³C NMR (75 MHz, CDCl₃): δ 19.1, 21.1, 26.9, 57.0, 85.1, 86.0, 93.6, 126.8, 127.7,

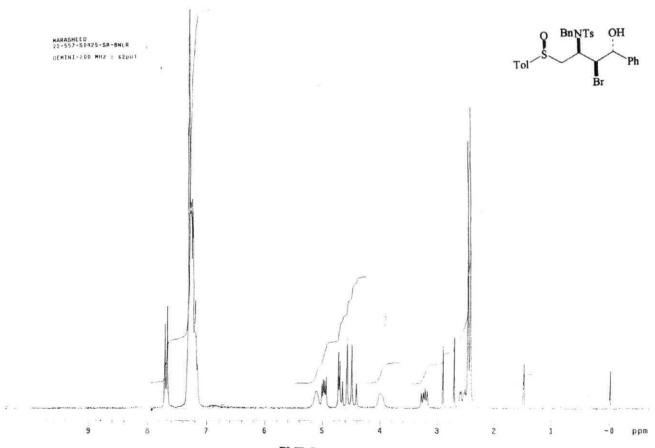
127.7, 128.5, 128.6, 129.5, 130.0, 130.3, 132.4, 132.6,

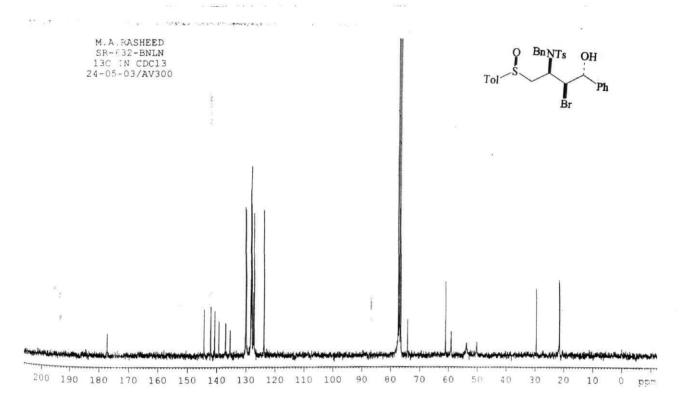
136.0, 137.0, 137.7.


m/z (LSIMS) : 479 [M+-STol]

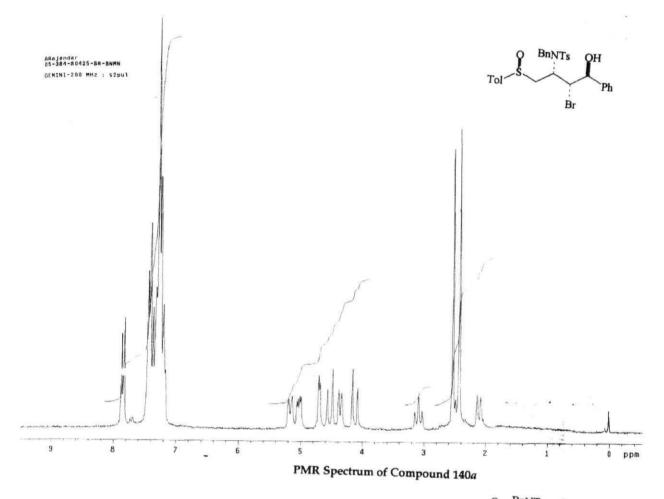
References

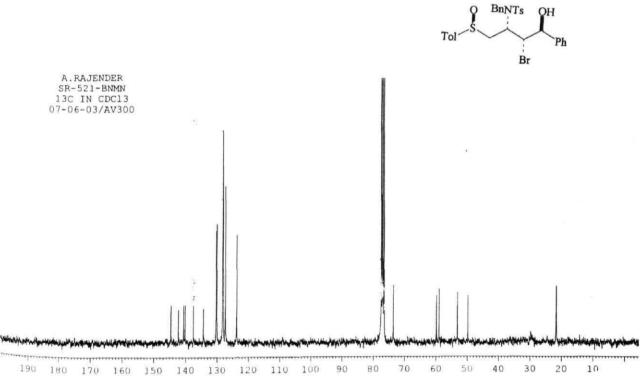

- Harmange, J. C.; Figadere, B. Tetrahedron: Asymmetry 1993, 4, 1711. (b) Boivin,
 T. L. B. Tetrahedron 1987, 43, 3309.
- 2. For a review refer: Elliott, M. C. J. Chem. Soc., Perkin Trans. 1 2002, 2301.
- Pummerer, R. Chem. Ber. 1909, 42, 2282. (b) Kennedy, M.; McKervey, M. In Comprehensive Organic Chemistry; Trost, B. M.; Fleming, I., Eds; Pergamon: Oxford, 1991; Vol. 7, p 193. (c) Russell, G. A.; Mikol, G. J. In Mechanisms of Molecular Migration; Thyagarajan, B. S., Ed.; Wiley: New York, 1968; Vol. 1, pp 157-207. (d) Padwa, A.; Gunn, D. E. Jr.; Osterhout, M. H. Synthesis 1997, 1353. (e) Mislow, K. "Introduction to Stereo chemistry", 1966, Benjamin W. A.
- 4. De Lucchi, O.; Miotti, U.; Modena, G. *Organic Reactions*; Paquette, L. A., Ed.; Wiley: New York, 1991, pp 157-184, Chapter 3.
- Strisberg, B.; Allenmark, S. Acta Chim. Scand. 1974, B28, 591; (b) Strisberg, B.;
 Allenmark, S. Acta Chim. Scand. 1976, B30, 219.
- 6. Oae, S.; Numata, T. Tetrahedron 1974, 30, 2641.
- 7. Numata, T.; Oae, S. Tetrahedron Lett., 1977, 1337; (b) Mikolajczyk, M.; Torski, A.; Grzejszczak, S.; Costisella, B.; Midura, W. J. Org. Chem, 1978, 43, 2518.
- 8. Numata, T.; Itoh, O.; Oae, S. J. Chem. Soc., Chem. Commun. 1979, 1869.
- Marino, J. P.; Neisser, M. J. Am. Chem. Soc. 1981, 103, 7687; (b) Marino, J. P.;
 Perez, A. D. J. Am. Chem. Soc. 1984, 106, 7643.
- Kita, Y.; Shibata, N.; Yoshida, N.; Fukui, S.; Fujimori, C. Tetrahedron Lett.
 1994, 35, 2569; (b) Kita, Y.; Shibata, N.; Fukui, S.; Fujita, S. Tetrahedron Lett.
 1994, 35, 9733; (c) Kita, Y.; Tamura, O.; Miki, T.; Tono, H.; Shibata, N.; Tamura, Y. Tetrahedron Lett. 1989, 30, 729.
- 11. Bravo, P.; Arnone, A.; Bandiera, P.; Bruche, L.; Ohashi, Y.; Ono, T.; Sekine, A.; Zanda, M. *Eur. J. Org. Chem.* **1999**, 111.


- 12. Lane, S.; Quick, S. J.; Taylor, R. J. K. Tetrahedron Lett. 1984, 25, 1039.
- 13. Tokitoh, N.; Igarashi, Y.; Ando, W. Tetrahedron Lett. 1987, 28, 5903.
- 14. Kaneko, T.; Okamoto, Y.; Hatada, K. J. Chem. Soc., Chem. Commun. 1987, 1151.
- 15. Kita, Y.; Shibata, N.; Kawano, N.; Tohjo, T.; Matsumoto, K. *Tetrahedron Lett*. **1995**, *36*, 115.
- 16. Solladie, G.; Wilb, N.; Bauder, C. Tetrahedron Lett. 2000, 41, 4189.
- 17. Kita, Y.; Yasuda, H.; Tamura, O.; Itoh, F.; Tamura Y. *Tetrahedron Lett.* **1984**, 25, 4681.
- 18. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
- 19. Brown, D. S.; Bruno, M.; Davenport, R. J.; Ley. S. V. *Tetrahedron* 1989, 45, 4293. Review: Chemla, F. *J. Chem. Soc., Perkin Trans.* 1. **2002**, 275.

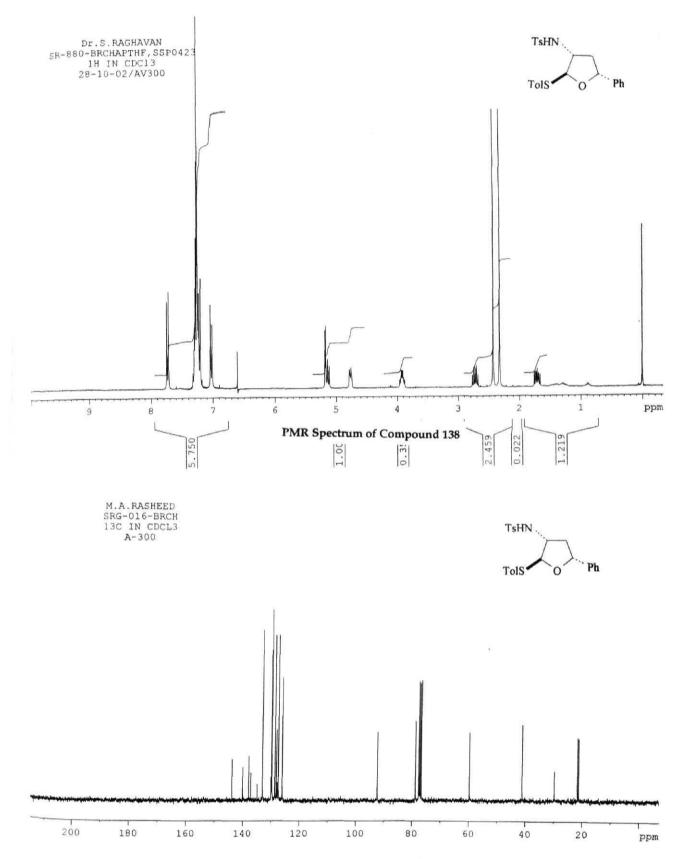


PMR Spectrum of Compound 139a

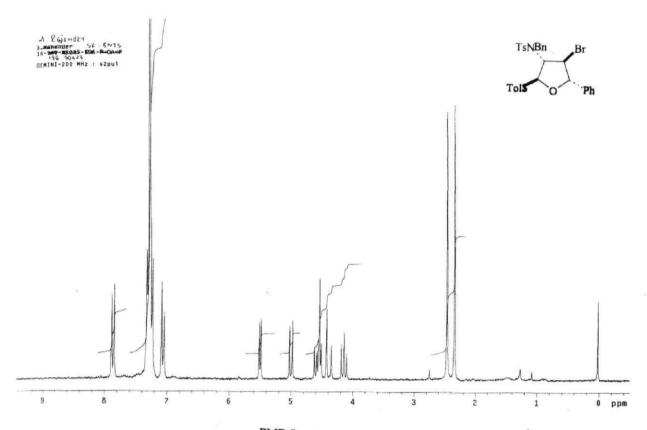


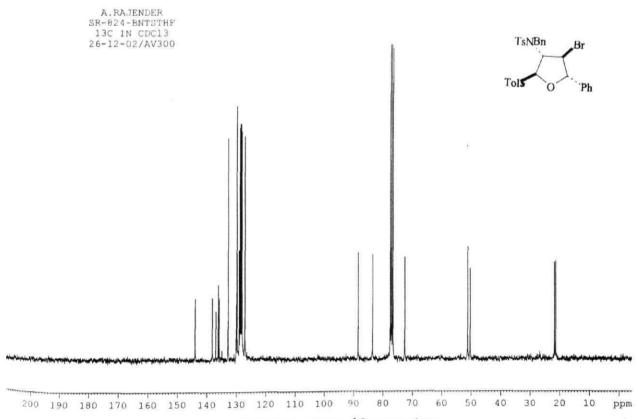


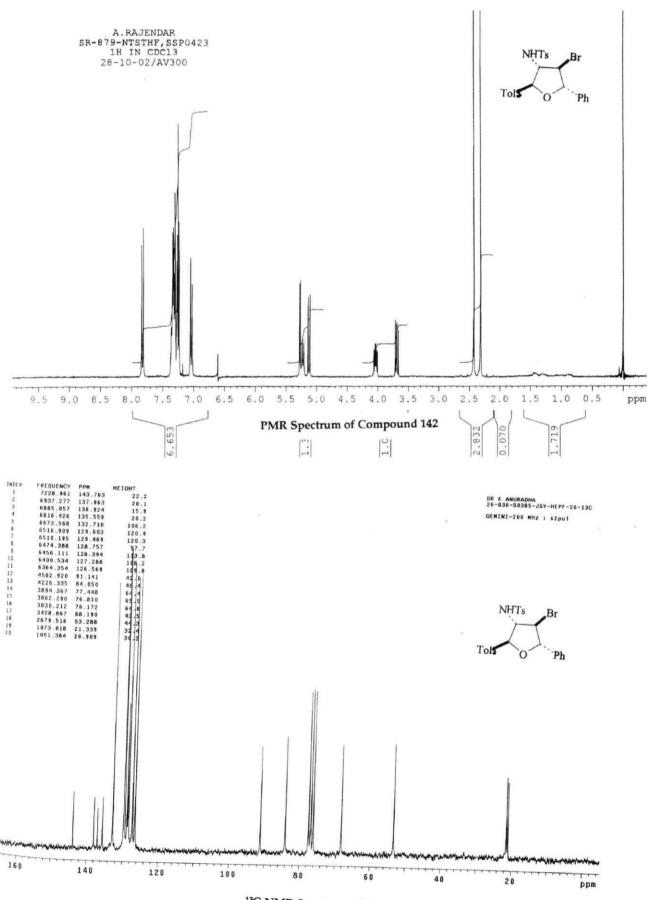
PMR Spectrum of Compound 140s

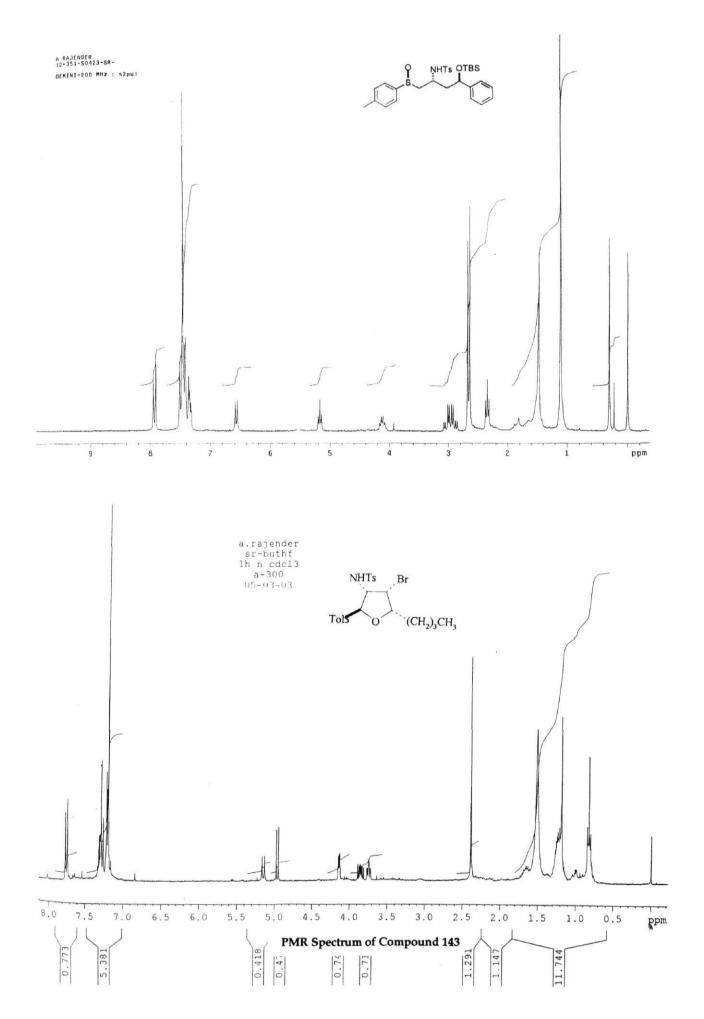


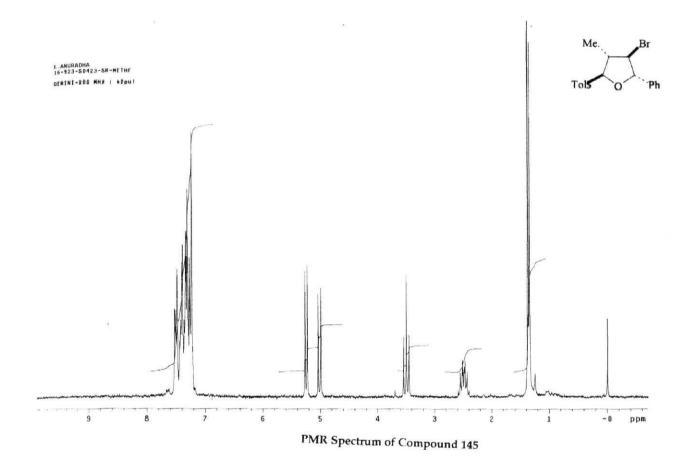
¹³C Spectrum of Compound 140s

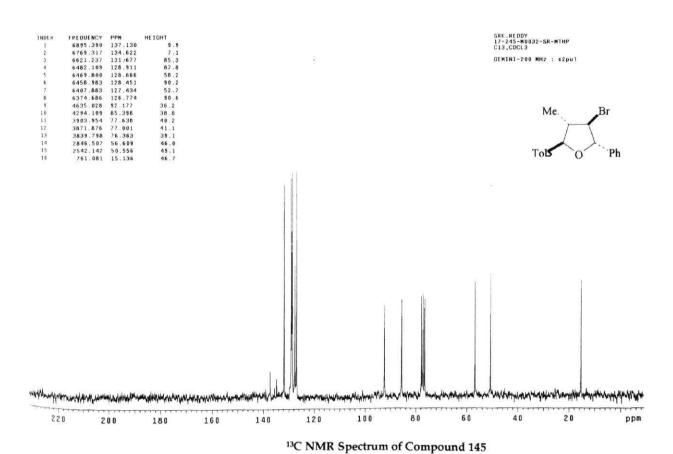


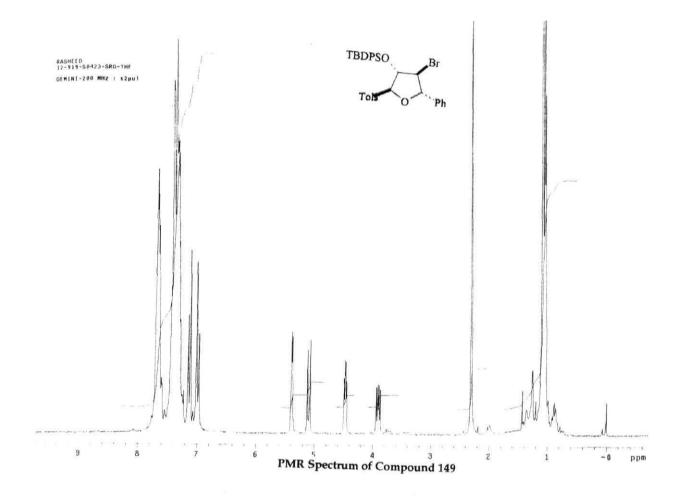

¹³C Spectrum of Compound 140a

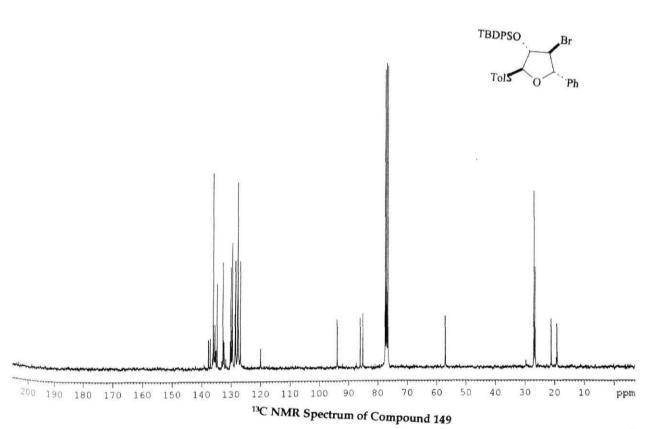

¹³C NMR Spectrum of Compound 138


PMR Spectrum of Compound 141




¹³C NMR Spectrum of Compound 141




¹³C NMR Spectrum of Compound 142

CHAPTER-III

Stereospecific synthesis of phytosphingosines and sphingosines

Section-A

Stereospecific synthesis of *xylo-*(2*R*,3*S*,4*S*)-phytosphingosine and *threo-*(2*R*,3*R*)-sphingosine

&

Section-B

Efficient and Stereospecific synthesis of *lyxo*-(2*R*,3*R*,4*R*)-phytosphingosine and *erythro*-(2*R*,3*S*)-sphingosine

General introduction

Sphingolipid is a derivative of sphingosine, a long chain unsaturated amino alcohol. It has a polar head group as well as two hydrophobic hydrocarbon chains, one is the sphingosine chain and the other is the fatty acid chain. Sphingolipids are ubiquitous membrane components of essentially all eukaryotic cells and are abundantly located in all plasma membranes as well as in some intracellular organelles (endoplasmic reticulum, Golgi complex and mitochondria). Sphingolipids (Figure 1) have been implicated in a vast variety of physiological functions but are not readily obtained from natural sources in homogenous form. They have also been shown to play critical roles as secondary messengers in cell signaling. Interest in glycosphingolipids has increased in recent years due to the recognition that they modulate immune responses.

Figure 1

Phytosphingosines

$$O \longrightarrow O \longrightarrow O \longrightarrow (CH_2)_{\Pi}CH_3$$

$$O \longrightarrow (CH_2)_$$

NHCO(CH2) CH3

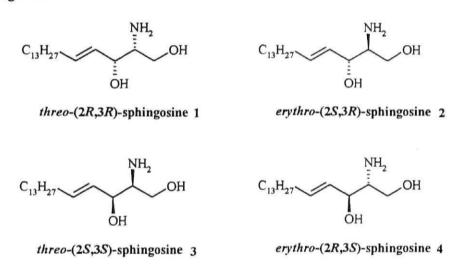
Sphingolipids

Sphingosines:

There are currently over 300 known sphingolipids with distinct head groups all containing the sphingoid baseback bone.² The discovery of the sphingomyelin cycle has stimulated numerous studies on sphingolipids as potential mediators of signaling pathways.^{1b}

The word sphingosine is derived from the Greek word "sphingein" meaning to bind tightly, implying that these are bound tightly to tissues, particularly in the brain.

Figure 2


Key structural features of sphingosine

Sphingosine was first isolated in 1884 by Thudicum³ as a waxy unstable substance obtained from the hydrolysate of a lipid fraction of the brain tissue. In the early decades of this century investigators recognized it as "dihydroxyaminooctadecane". Apart from being the backbone component of the cerebrosides, reports have also established⁴ sphingosines to be potent inhibitors of protein kinase C *in vitro* and *in vivo*. Sphingosines also block cellular responses to agonist that are thought to act via this enzyme. To date, many syntheses of sphingosines have been reported. Many of them used naturally occurring chiral substrates such as D-galactose, D-glucose and D-xylose as starting material. The carbohydrates mentioned above possess the D-threo-diol sub-structure and therefore at some stage the nitrogen atom was introduced with inversion of configuration to obtain the natural sphingosine geometry. Likewise, D-tartaric acid an unnatural substrate possessing the D-

threo-diol structure has also been employed. Chiral auxiliaries such as Evans oxazolidinone and Enders' SAMP hydrazone have been used for the synthesis of sphingosines. There are few reports based on chemoenzymatic approaches for the synthesis of sphingosine.⁵

The sphingosine has two asymmetric centers and exists in four stereoisomeric forms (Figure 3). Comparison of the four stereoisomers showed that all had approximately the same potency as the inhibitors of PKC.

Figure 3

Phytosphingosines

Phytosphingosines are found in various glycosphingolipids such as cerebrosides and gangliosides.⁶ The first phytosphingosine was isolated from the mushroom *Amanita muscaria* in 1911 by Zellner⁷ as a nitrogen-containing "fungus cerebrin" and subsequently from higher plants,⁸ yeast,⁹ fungi,¹⁰ marine organisms¹¹ and mammalian tissues¹² such as kidney, liver, uterus, intestine, skin, blood plasma and thymocytes. Structure of the "cerebrin base" was established as 2-amino-1,3,4-trihydroxyoctadecane in 1952. Because of its plant origin and structural similarity to sphingosine, the term "phytosphingosine" was proposed for this base. Phytosphingosines have also been found in human kidney cerebrosides and some cancer cell types.

The first synthesis of all the four racemic phytosphingosines was reported in 1970,¹³ while optically active *ribo*, *arabino*, *xylo* and *lyxo*-phytosphingosines were synthesized in 1990.¹⁴ Phytosphingosines can exist in eight stereoisomeric forms depicted below (Figure 3).

Figure 3

OH NH₂
OH OH

$$C_{14}H_{29}$$
OH

 $C_{14}H_{29}$

Due to subtle biostereoselectivities of the individual sphingosines and phytosphingosines,¹⁵ a great deal of effort has been devoted towards the synthesis of the individual phytosphingosines and sphingosines. Synthetic efforts have been primarily focused on the preparation of *arabino*- and *ribo*-phytosphingosines starting from compounds of the chiral pool¹⁶ or by asymmetric induction.¹⁷ In contrast, the *xylo*- and *lyxo*-phytosphingosines have attracted less attention from the synthetic community.¹⁸

Since differences in the various phytosphingosines and sphingosine occur mainly in the aliphatic substituent, any synthesis of phytosphingosine or sphingosine has to take into consideration the establishment of chiral centers and chain elongation.

Previous approaches to the synthesis of sphingosines:

Few earlier approaches to sphingosines reported in the literature⁵ are detailed below.

Nimkar's approach19:

Nimkar *et al.*, reported the synthesis of D-*erythro*- and L-*threo*-sphingosine starting from L-serine 13. Thus, chelation controlled addition of lithiated pentadecyne provided a 9:1 diastereomeric mixture of alcohols 15a and 15b respectively. Alcohol 15a was transformed using routine steps into L-*threo*-sphingosine (Scheme 1).

Scheme 1

HO NH₂

OH
NBoc
$$C_{13}H_{27}$$

15a

Major

9

1 Minor

NH₂

Murakami's approach20:

NBoc

15a

 $C_{13}H_{27}$

Murakami *et al.*, disclosed the synthesis of D-*erythro*-sphingosine starting from D-glucosamine **16**. D-Glucosamine was transformed into the tosyloxy derivative **18**, which was then substituted by dodecyl chain to afford **19**. This

ÕH 3 was further elaborated to the target molecule using a series of reactions (Scheme 2).

Scheme 2

Kobayashi's approach21:

Kobayashi *et al.*, chose the chiral tin (II)-catalyzed asymmetric aldol reaction for the synthesis of *erythro*-sphingosine. Reaction between trimethylsilylpropynal 20 and α -benzyloxyacetate derived ketenesilyl acetal 21 was carried out in the presence of tin (II) triflate and the diamine ligand L* to afford the adduct 22 in 94% de and 91% ee. The alkyl chain was introduced by alkylation of alkyne 23 to yield 24, which was transformed into *erythro*-sphingosine using standard reactions (Scheme 3).

Me₃Si — CHO

20

$$CHO$$
 CHO
 CH

Yamanoi's approach22:

Yamanoi *et al.*, reported the synthesis of *erythro*-sphingosine relying on *E*-selective modified Horner-Wadsworth-Emmons chemistry. Reaction between the tetradecanal and β -ketophosphonate derived from methyl 2,3-O-isopropylidene-D-glycerate 26 yielded enone 27. Diastereoselective reduction of 27 with L-selectride furnished diastereomeric alcohols 28a and 28b in 82% de. Alcohol 28a was further transformed into *erythro*-sphingosine (Scheme 4).

Previous approaches to the synthesis of xylo-phytosphingosine and lyxo-phytosphingosine.

Nakamura's approach23:

28a

Nakamura *et al.*, reported the synthesis of *lyxo*-(2S,3S,4S)-phytosphingosine starting from chiral β -lactam 30 obtained in 9 steps from commercially available D-(-)-tartaric acid 29. The tetradecyl chain was introduced by reacting with n-tetradecyl p-toluenesulfone in the presence of n-BuLi to afford 31. The reduction of ketone 31 with lithium triethylborohydride in THF afforded the alcohol 32 as the only product, which was subsequently transformed following a straightforward sequence of reactions into *lyxo*-(2S,3S,4S)-phytosphingosine (Scheme 5).

Wu's approach24:

Wu *et al.*, reported the synthesis of *lyxo*-(2*S*,3*S*,4*S*)-phytosphingosine starting from D-xylose **33** in an overall 8% yield. D-Xylose was transformed into the alkyne **35** via diacetonide **34** by treatment with CBr₄-PPh₃-Zn followed by debromination. Regioselective transformation of the terminal acetonide **35** into the *tert*-butyl ether **35** proceeded in moderate yield. Alkyne **36** was subsequently transformed by a sequence of routine reactions into *lyxo*-(2*S*,3*S*,4*S*)-phytosphingosine (Scheme 6).

Bloch's approach25:

Bloch *et al.*, reported an enantioselective synthesis of *lyxo*-(2*R*,3*R*,4*R*)-phytosphingosine starting from the chiral lactol **37**. Grignard reaction of **37** with tetradecylmagnesium bromide afforded **38** in 90% de. Protection of the hydroxy group in **38a** as its silyl ether, retro Diels-Alder reaction followed by reaction with trichloroacetonitrile furnished **39**. (*Z*)-Alkene **39** was transformed into (*E*)-allylic trichloroacetamide **40** by Overman rearrangement in 93% ee. *Cis*-dihydroxylation of **40** furnished the diol **41** in 94% de. Trichloroacetamide **41** was further transformed into *lyxo*-(2*R*,3*R*,4*R*)-phytosphingosine (Scheme 7).

Scheme 7

Pradeep Kumar's approach26:

Pradeep Kumar *et al.*, reported the synthesis of *xylo-*(2*R*,3*S*,4*S*)-phytosphingosine starting from pentadecanol in 13 steps. The olefin 44 was obtained from pentadecanol in 7 steps. Double diastereoselective

dihydroxylation of enantiomerically enriched terminal olefin **44** using (DHQD)₂-PHAL ligand afforded the diastereomeric polyols **45a** and **45b** in 66% de. The major diastereomer **45a** was transformed into *xylo*-(2R,3S,4S)-phytosphingosine (Scheme 8).

Scheme 8

$$H_{29}C_{14}$$
 OH $H_{29}C_{14}$ OE $H_{29}C_{14}$ OH $H_{29}C_{1$

ŌН

Howell's approach²⁷:

45a

Howell et al., reported the synthesis of xylo-(2S,3R,4R)-phytosphingosine in 13 steps using serine-derived 1,5-dioxaspiro[3,2]hexane template as the precursor. Dioxaspirohexane 46 was prepared from L-serine 13 in four steps in 33% yield. Stereoselective reduction of the ketoacetonide 47 with NaBH4 afforded the diastereomeric alcohols 48a and 48b in 80% de. Protection of the hydroxy group in 48a, selective deprotection of the acetyl group followed by oxidation of the resulting primary alcohol afforded the aldehyde 49. Nucleophilic addition of tetradecylmagnesium chloride to 49 followed by deprotection of the silyl ether provided the diols 50a and 50b in 66% de (Scheme 9). The major diastereomer 50a was transformed into the target molecule.

Minor

Scheme 9

NBoc OH
OH
OH
$$C_{14}H_{29}$$
OH
OH
 $C_{14}H_{29}$
OH
 $C_{14}H_{29}$
OH
 $C_{14}H_{29}$
OH

Section A: Efficient and stereospecific synthesis of xylo-(2R,3S,4S)phytosphingosine and threo-(2R,3R)-sphingosine

As it is clear from the foregoing discussion sphingolipid constituents have attracted the attention of synthetic chemists and a number of strategies have been devised for their synthesis. Synthetic efforts have primarily focused on the preparation of *arabino*- and *ribo*- phytosphingosines starting from compounds of the chiral pool or by asymmetric induction. In contrast, the *xylo*- and *lyxo*- phytosphingosines have attracted less attention from the synthetic community. Therefore, there is a need for the development of a practical approach to the synthesis of *xylo*- and *lyxo*-phytosphingosines. In this section, the elaboration of *xylo*-(2*R*,3*S*,4*S*)-phytosphingosine and *threo*-(2*R*,3*R*)-sphingosine from a common intermediate is disclosed. The key step in the reaction sequence involves stereo- and regiospecific functionalization of an olefin by intramolecular nucleophilic sulfinyl group participation.

By retrosynthetic analysis (Scheme 10), xylo-(2R,3S,4S)-phytosphingosine was envisaged to be synthesized from the sulfide 62, which in turn can be obtained from bromohydrin 59. The bromohydrin 59 can be readily elaborated from the β -ketosulfoxide 56.

Scheme 10

The synthesis commenced with the condensation of the lithium anion derived from (R)-(+)-methyl p-tolylsulfoxide 55 with the ester 54 following the protocol devised by Solladie et al., to afford the β-ketosulfoxide²⁸ 56 (Scheme 11). The identity of 56 was confirmed by its PMR spectrum, which showed resonances at δ 6.81 (dt) and 6.38 (dd) for the olefinic protons, and at δ 4.19 (d) and 3.98 (d) for the methylene protons of β-ketosulfoxide group. The ester 54 was readily elaborated from cis-but-2-en-1,4-diol 51. Thus, the diol 51 on treatment with sodium hydride followed by an excess of benzyl bromide afforded the dibenzylated ether 52. The PMR spectrum of 52 showed resonances at δ 4.51 (s) for the benzylic protons and at δ 5.78 (t) for the olefinic protons. The compound 52 on ozonolysis in dichloromethane at -78 °C followed by treatment with dimethylsulfide afforded the aldehyde 53, which without purification was used in the next step. Treatment of 53 with ethyl(triphenylphosphoranylidene)acetate in benzene as the solvent at r.t., afforded the trans ester 54 as the only product. The PMR spectrum of 54 exhibited resonances at δ 6.94 (dt) and 6.10 (d) corresponding to the olefinic protons with a coupling of 14.6 Hz between the olefinic protons, confirming the (E)-geometry.

Scheme 11

Reagents and conditions: (a) NaH, n-Bu₄NI, 0 °C, 30 min, then BnBr, 0 °C to r.t., 4 h, 88%; (b) O₃, CH₂Cl₂, -78 °C, 30 min then Me₂S, -78 °C – r.t., 8 h; (c) Ph₃PCHCO₂Et, PhH, r.t., 30 min, 82% (for two steps); (d) LDA, THF, -40 °C, 30 min then add 54 at 0 °C, 1 h, 60%.

Diastereoselective reduction²⁹ of 56 with diisobutylaluminum hydride (DIBAL) in the presence of anhydrous zinc chloride yielded 57 as a single diastereomer, the structure of which, was confirmed by its PMR spectrum which showed resonances at δ 5.87 (dt) and 5.72 (dd) corresponding to the olefinic protons and at δ 4.82-4.69 (m) corresponding to the -CH(OH) proton. The methylene protons at C1 appeared as two sets of doublet of doublet at δ 2.94 and 2.76. The β -hydroxysulfoxide 57 had physical characteristics that were in full agreement to that reported in the literature.²⁹ The high stereoselectivity observed in the reduction using DIBAL/ZnCl₂ can be explained by the formation of a chelated intermediate (TS I) formed between the ketosulfoxide and ZnCl₂ followed by transfer of hydride ion intermolecularly from the less hindered side of the half chair conformation adopted by the chelated species (Scheme 11).

Scheme 11

Reagents and conditions: (a) DIBAL, ZnCl2, THF, -78 °C, 2 h, 91%.

The hydroxy group in 57 was protected as its silyl ether by treatment with tert-butyldimethylsilyl chloride in the presence of imidazole in dichloromethane. The PMR spectrum of the silyl ether 58 revealed signals at δ 5.59 (dt) and at δ 5.45 (dd) for the olefinic protons, δ 4.56-4.48 (m) for the CHOTBDMS, δ 0.74 (s) for the tert-butyl group and two singlets for the methyl groups on silicon at δ 0.0 and δ -0.11. Subjecting silyl ether 58 to treatment with NBS in toluene at ambient temperature afforded bromohydrin 59 regio- and

stereospecifically.³⁰ The structure of 59 was confirmed by its PMR spectrum which revealed a signal at δ 3.92-3.80 (m) integrating for four protons i.e., C3 H, C4 H and C5 H_2 and the disappearance of olefinic peaks in its PMR spectrum. The observed stereo- and regioselectivity can be rationalized through the intermediacy of the sulfoxonium salt (II) (Scheme 12). The 5-exo nucleophilic attack by the sulfinyl group onto the olefin π -complexed to the bromonium ion would result in the formation of the sulfoxonium salt, which upon hydrolysis by attack of water on sulfur in a S_N2 fashion would yield the bromohydrin 59, with inversion of sulfur configuration. The orientation as indicated for the hydroxy group and bromine at C3 and C4 respectively is expected from an overall trans addition of the electrophile and nucleophile across the double bond.³¹ It has been reported that the electron withdrawing substituent at the allylic position has a significant stereodirecting effect on electrophilic additions to double bonds.³² Onium intermediates formed by the addition of electrophiles to the double bonds are generally freely reversible, hence the relative energies of the diastereomeric transition states is important in determining product stereoselectivity.32f Having an electron withdrawing allylic substituent in an orthogonal position (axial as in TS II) with respect to the π -system would make TS II lower in energy due to stereoelectronic effects as compared to the TS III in which the allylic substituent is oriented parallel to the π -system although both would afford the same product. An electron withdrawing allylic substituent at the equatorial position (TS III) is better aligned to maximize conjugation of the σ^* co orbital with the π -system, which results in the increasing its energy, thereby decreasing the rate of product formation.

Reagents and conditions: (a) TBS-Cl, imidazole, DCM, rt, 1 h, 97%; (b) NBS, H₂O, toluene, 30 min, 80%.

Submitting the resulting bromohydrin 59 to treatment with acetic anhydride in dichloromethane in the presence of Et₃N and catalytic amounts of DMAP furnished acetate 60. The structure of acetate was confirmed by its PMR spectrum, which revealed a downfield shift for the C3 H from δ 4.56-4.52 (m) to δ 5.42 (dd) and a singlet at δ 1.89 corresponding to -OCOCH₃. The C3 methine proton showed a coupling of 8.9 Hz with the C4 methine proton and coupling of 2.9 Hz with the C2 methine proton. The S_N2 displacement of the bromide with azide was achieved by treatment of 60 with excess NaN₃ in DMF (Scheme

13). The structure assigned to the azidoacetate **61** was confirmed by its PMR spectrum, which revealed signals at δ 5.28 (dd) for the CHOAc and at δ 3.96-3.88 (m) for the CHN₃. The presence of azido functionality in **61** was further confirmed by its IR spectrum, which revealed an absorption band at 2103 cm⁻¹.

Scheme 13

Tol
$$\stackrel{O}{\stackrel{}{\stackrel{}}}$$
 OTBS Br $\stackrel{O}{\stackrel{}{\stackrel{}{\stackrel{}}}}$ OBn $\stackrel{A}{\stackrel{}{\stackrel{}{\stackrel{}}}}$ OBn $\stackrel{D}{\stackrel{}{\stackrel{}{\stackrel{}}}}$ OBn $\stackrel{D}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}}}}}$ OAc $\stackrel{O}{\stackrel{}{\stackrel{}{\stackrel{}}}}$ OAc $\stackrel{O}{\stackrel{}{\stackrel{}{\stackrel{}}}}$

Reagents and conditions: (a) Ac₂O, Et₃N, DMAP, r.t., 1 h, 96%; (b) NaN₃, DMF, 80 °C, 6 h, 65%.

The elaboration of the alkyl chain onto the azidoacetate 61 was envisaged to be achieved via the Pummerer ene³³ reaction. Thus, compound 61 was subjected to treatment with TFAA to afford the intermediate 62. Ene reaction on the Pummerer intermediate with 1-tridecene in the presence of SnCl₄ afforded a complex mixture of products from which the desired product could not be isolated (Scheme 14).

Scheme 14

Reagents and conditions: (a) TFAA, DCM, 0 °C, 50 min; (b) $C_{13}H_{26}$, $SnCl_4$, 0 °C, 5 min.

In the next approach, the acetonide 67 derived from the bromohydrin 63, was envisaged as the substrate for attempting the Pummerer ene reaction. Retrosynthesis (Scheme 15) is depicted below.

Scheme 15

OH NH₂
OH OH

TolS
OBn

$$C_{14}H_{29}$$
OH

 $C_{14}H_{29}$
OBn

 $C_{14}H_{29}$
OBn

 $C_{14}H_{29}$
OBn

 $C_{14}H_{29}$
OBn

 $C_{14}H_{29}$
OBn

 $C_{14}H_{29}$
OBn

 $C_{14}H_{29}$
OBn

Subjecting the allylalcohol 57 to treatment with NBS in toluene at ambient temperature in the presence of water, afforded bromohydrin 63 regioand stereospecifically. The structure of 63 was confirmed by its PMR spectrum which revealed a double doublet at δ 3.98 corresponding to the -CH(OH) at C3, a doublet of triplet (dt) at δ 3.61 corresponding to the -CH(Br) and the disappearance of signals for the olefinic protons in its PMR spectrum. The bromodiol 63 was transformed into the acetonide 64, by reaction with 2,2dimethoxypropane catalyzed by CSA, which showed a singlet at δ 1.40 in the PMR spectrum corresponding to the gem-dimethyl group. The ¹³C spectrum of 64 revealed signals for the methyl groups of the acetonide at δ 27.0, 27.4 and for the quaternary ketal carbon at δ 110.5 proving beyond doubt the syn disposition34 of the hydroxy groups in 63. The acetonide 64 was then converted into the azido acetonide 65 by treatment with excess sodium azide in DMSO (Scheme 16). The structure of 65 was confirmed by its PMR spectrum which showed a resonance at δ 3.74-3.61 (m) corresponding to the -CH(N₃) proton. The IR spectrum showed a strong absorption band at 2100 cm-1 corresponding to N-

N stretching of the azido group. The azido acetonide 65 has all the three stereogenic centers disposed as in target molecule, both in a relative and an absolute sense.

Scheme 16

Tol
$$\stackrel{\circ}{S}$$
 $\stackrel{\circ}{\longrightarrow}$ OBn $\stackrel{\circ}{\longrightarrow}$ OBn

Reagents and conditions: (a) NBS, H_2O , toluene, r.t., 15 min, 88%; (b) 2,2-DMP, CSA, acetone, r.t., 2 h, 86%; (c) NaN₃, DMSO, 85 °C, 8 h, 75%.

The next step in the proposed synthetic sequence was to introduce C_{13} hydrocarbon chain. This was achieved by the Pummerer ene reaction on 65. Thus, azidoacetonide 65 was treated with TFAA in dichloromethane to afford the intermediate 66, which was reacted in the same vessel with 1-tridecene and SnCl4 to yield the sulfide 67 as the sole product (Scheme 17). The PMR and 13 C NMR spectrum of 67 revealed the presence of only one isomer although four isomers are theoretically expected; two that differ due to the configuration at the newly created stereogenic center and two geometrical isomers. The structure of the sulfide was not rigorously established since the tolylthio group on the newly created center had to be removed eventually. The structure assigned to the sulfide was discerned with the aid of its PMR spectrum, which showed resonance at δ 6.95 (d) for the protons *ortho* to the sulfanyl group, δ 5.50-5.20 (m) integrating for two olefinc protons, δ 2.90 (td) for the CHSTol and the presence of aliphatic chain. The 13 C spectrum of 67 showed resonances at

 δ 126.4 and 132.4 for the olefinic carbons and an upfield shift for the C 1 carbon from δ 141.7 to δ 137.0.

Scheme 17

Reagents and conditions: (a) TFAA, DCM, 0 °C, 1 h; (b) $C_{13}H_{26}$, SnCl₄, 0 °C, 65% for the two steps.

Five transformations were effected in a one-pot operation, by treatment of the sulfide 67 with Ra-Ni in methanol in the presence of di-tert-butyl dicarbonate under an atmosphere of hydrogen to yield the acetonide 68 (Scheme 18). The azido group was reduced and transformed into a urethane, the double bond reduced and the toluenethio group and the benzyl ether was hydrogenolysed under the reaction conditions. The structure assigned to urethane 68 was confirmed by its PMR spectrum, which revealed signals at δ 5.04 (d) for NH proton, δ 3.82-3.55 (m) integrating for five protons i.e., methylene protons on C1 carbon, C2 H, C3 H and C4 H. The signals corresponding to the *tert*-butyl group and aliphatic chain were also observed.

Tol
$$C_{13}H_{27}$$
 O $C_{13}H_{27}$ O

Reagents and conditions: (a) Ra-Ni, (Boc)2O, H2, MeOH, r.t. to reflux, 68%.

The acetonide hydrolysis and removal of *tert*-butoxycarbonyl group on nitrogen was effected by treatment of the urethane 68 with trifluoroacetic acid and water to afford ammonium salt 69, which was subsequently acetylated by treatment with acetic anhydride in the presence of pyridine and catalytic amount of DMAP³⁵ to afford the tetraacetate 70 (Scheme 19) which had physical characteristics similar^{18b} (except for the sign of rotation) to that reported in the literature.

Scheme 19

Reagents and conditions: (a) TFA:H₂O, 0 °C, 3 h; (b) Ac₂O, DMAP (cat.), pyridine, r.t., 16 h, 78%.

Synthesis of threo-(2R,3R)-sphingosine

The Pummerer ene product 67 served as the key intermediate for the synthesis of *threo*-sphingosine. Thus, the sulfide 67, on treatment with oxone³⁶ in a solvent mixture of THF, MeOH and water afforded the sulfone 71, which

showed a downfield resonance for the protons *ortho* to sulfonyl moiety from δ 6.95 to δ 7.74 (d) and a down field shift for the -CHS from δ 2.90 to δ 3.28 in its PMR spectrum confirming the structure assigned to it. One-pot four-step transformation of sulfone 71 to the urethane 72 was effected in ethanol with Pd(OH)₂ in the presence of di-*tert*-butyl dicarbonate under an atmosphere of H₂. The absence of olefinic protons, benzyl ether protons and the presence of *tert*-butyl group in its PMR spectrum confirmed the structure. Finally, submission of urethane 72 to treatment with Na-Hg in the presence of Na₂HPO₄ in methanol³⁷ afforded the sphingosine derivative 73 (Scheme 20), which possessed physical characteristics similar to that reported in the literature.³⁸

Scheme 20

Tol
$$N_3$$
 OBn N_3 OBn N_3 OBn N_3 OBn $C_{0}H_{19}$ $C_{0}H_{19}$

Reagents and conditions: (a) 2KHSO₅.KHSO₄.K₂SO₄, MeOH:H₂O:THF, 0 °C to r.t., 4 h, 82%; (b) Pd(OH)₂/C, (Boc)₂O, H₂ (1 atm.), EtOH, r.t., 16 h, 71%; (c) Na-Hg, Na₂HPO₄, MeOH, -20 °C-r.t., 2 h, 65%.

In conclusion, a flexible (use of different olefins in the Pummerer ene reaction would permit the introduction of variable carbon chains), stereospecific synthesis of xylo-(2R,3S,4S)-C₁₈-phytosphingosine and threo-(2R,3R)-C₁₈-sphingosine is disclosed. The key step of the synthesis are i) asymmetric induction from sulfur to C₂ in the transformation of 56 to 57, ii)

asymmetric induction from C_2 to C_3 and C_4 in the transformation of 57 to 63, iii) ene reaction for the introduction of the hydrocarbon chain, iv) one pot multi step transformation of 67 to 68 and 71 to 72. It is pertinent to mention that starting from the C_2 diastereomer of alcohol (6), the xylo-(2S,3R,4R)-phytosphingosine and threo-(2S,3S)-sphingosine can be synthesized, essentially following an identical reaction sequence.

Section B: Stereospecific synthesis of lyxo-(2R,3R,4R)-phytosphingosine and erythro-(2R,3S)-sphingosine.

A strategy similar to that detailed for the synthesis of xylo-(2R,3S,4S)- C_{18} -phytosphingosine and threo-(2R,3R)- C_{18} -sphingosine was envisaged for the synthesis of the lyxo-(2R,3R,4R)-phytosphingosine derivative (Scheme 21, retrosynthetic analysis). lyxo-(2R,3R,4R)-Phytosphingosine was envisaged to be synthesized from sulfide 81, which in turn can be obtained from bromohydrin 75. The bromohydrin can be readily elaborated from the β -ketosulfoxide 51.

Scheme 21

The diastereoselective reduction of **56** using diisobutylaluminum hydride²⁹ (DIBAL) yielded **74** as a single product. The structure of **74** was confirmed by its PMR spectrum which showed resonanaces at δ 5.87 (dt) and 5.70 (dd) corresponding to the olefinic protons and at δ 4.75-4.63 (m) corresponding to the CH(OH). The methylene protons at C 1 appeared as two sets of doublet of doublet at δ 3.0 and at 2.68. The high stereoselectivity observed in the reduction can be explained on the basis of the Lewis acidic character of DIBAL, which is able to complex with the Lewis basic sulfinyl oxygen. Intramolecular hydride transfer via stable chair like transition state (TS **IV**) adopted by the chelated species would yield alcohol **74** (Scheme 22).

Reagents and conditions: (a) DIBAL, THF, -78 °C, 15 min, 92%.

Treatment of 74 with *N*-bromosuccinimide in toluene in the presence of water afforded bromohydrin 75 regio- and stereospecifically. The structure of 75 was confirmed by its PMR spectrum, which revealed signals at δ 4.23-4.17 (m) for the C 3 methine proton, δ 4.01-3.81 (m) for the C 5 methylene protons and the C 4 methine proton. The signals due to the olefinic protons were characteristically absent. The observed regio- and stereoselectivity of the reaction can be explained by the intermediacy of the sulfoxonium salt (Scheme 23).

Scheme 23

Reagents and conditions: (a) NBS, H₂O, toluene, 30 min, 88%.

To confirm the relative stereochemistry of the hydroxy groups on the adjacent carbons, the bromodiol 75 was transformed into the acetonide 76 by reaction with 2,2-dimethoxypropane catalyzed by camphor-10-sulfonic acid. The 13 C NMR spectrum of compound 76 revealed signal at δ 27.2 and 27.5 for the methyl groups of the acetonide and at δ 110.5 for the ketal carbon proving unequivocally the *syn* disposition of the hydroxy group in 75 (Scheme 24).³⁴

Scheme 24

Reagents and conditions: (a) 2,2-DMP, CSA, acetone, r.t., 1 h, 86%.

The next objective was to introduce the amino functionality onto bromodiol 75 with retention of relative stereochemistry. This was achieved by a two-step transformation. Thus, the bromohydrin 75 was converted into the epoxide 77 by treatment with K₂CO₃ in methanol. The structure of the compound 77 was confirmed by the presence of the signals at δ 3.24-3.18 (m) and 3.08 (dd) corresponding to C4 H and C3 H respectively in its PMR spectrum and signals at δ 54.4 and 57.3 in the ^{13}C spectrum corresponding to C4 and C3 FAB (HRMS) further supported the structural assignment. carbon. epoxide 77 was regio- and stereoselectively transformed into the azidodiol 78 employing the Sharpless protocol.³⁹ Thus, compound 77 was treated with excess NaN3, NH4Cl in MeOH/H2O to yield 78. The structure of 78 was confirmed by the presence of signals at 8 60.1 and 70.5 corresponding to C-4 and C-3 carbons in its ¹³C spectrum. The IR spectrum showed an absorption band at 2107 cm⁻¹ corresponding to the N-N stretching indicating the presence of azide group. Treatment of 78 with 2,2-dimethoxypropane in the presence of catalytic amounts of CSA afforded the acetonide 79, which showed resonances at δ 1.43 (s) and 1.37 (s) corresponding to the gem-dimethyl groups in the PMR spectrum. The 13 C spectrum of the compound showed resonances at δ 26.7 and 26.9 corresponding to the *gem*-dimethyl groups and at δ 110.3 corresponding to the ketal carbon thereby proving unambiguously the *syn* disposition of the two hydroxy groups on the adjacent carbons in 78 (Scheme 25). The epoxide opening by azide nucleophile was therefore regiospecific since the 13 C spectrum did not reveal any signals for anti 1,3-acetonide that would be expected from the azide attack at C3.

Scheme 25

Tol
$$\stackrel{O}{\stackrel{O}{\stackrel{}}}$$
 $\stackrel{Br}{\stackrel{}}$ $\stackrel{O}{\stackrel{}}$ $\stackrel{\stackrel{}}{\stackrel{}}$ $\stackrel{\stackrel{}}{\stackrel{}}$ $\stackrel{\stackrel{}}{\stackrel{}}$ $\stackrel{\stackrel{}}{\stackrel{}}$ $\stackrel{\stackrel{}}{\stackrel{}}$ $\stackrel{\stackrel{}}{$

Reagents and conditions: a) K_2CO_3 , methanol, r.t., 1 h, 83%; b) NaN_3 , NH_4Cl , MeOH: H_2O , reflux, 6 h, 85%; c) 2,2-DMP, CSA (cat.), r.t., 1 h, 87%.

The next step called for the introduction of the aliphatic chain onto the acetonide 79. This was achieved by the Pummerer ene reaction.³³ Thus, treatment of the acetonide 79 with TFAA in DCM afforded the intermediate 80, which without isolation was reacted in the same pot with 1-tridecene and SnCl₄ to yield the sulfide 81. The PMR spectrum of the sulfide showed signals at δ 7.02 (d) corresponding to the aromatic protons *ortho* to sulfanyl group, δ 5.47 (dt) and 5.32 (dt) for the olefinic protons, δ 3.14 (m) for CH(STol) and the signals for the protons corresponding to the aliphatic chain were also evident. The ¹³C

NMR spectrum showed peaks at δ 126.6 and 134.0 for the olefinic carbons (Scheme 26).

Scheme 26

Tol
$$\overset{\circ}{S}$$
 $\overset{\circ}{O}$ \overset

Reagents and conditions: a) TFAA, DCM, 0 °C; b) $C_{13}H_{26}$, SnCl₄, 0 °C, 76% for the two steps.

Treatment of the sulfide \$1 with Ra-Ni in methanol in the presence of ditert-butyl dicarbonate under an atmosphere of hydrogen afforded the aminoalcohol \$2 in a one-pot five-step transformation. The absence of the olefinic protons, protons corresponding to the benzyl ether and the toluenethio group protons and the presence of the signal at \$5.05 (d) corresponding to NH proton and additional proton count in the aliphatic region (\$1.51-1.01) corresponding to the *tert*-butoxy group in the PMR spectrum of the compound \$2 confirmed the structure assigned to it. Finally, deprotection of the acetonide and the *tert*-butoxycarbonyl group on nitrogen by treatment with a mixture of trifluoroacetic acid and water afforded the ammonium salt \$3 which was subsequently converted into the tetraacetate \$4 by treatment with acetic anhydride in the presence of pyridine and catalytic amounts of DMAP (Scheme 27). The physical characteristics of \$4 such as PMR, 13 C NMR, mass and optical rotation (enantiomer) were in full agreement with that reported in the literature.

Scheme 27

Tol S
$$N_3$$
 OBn $C_{13}H_{27}$ OH OH OH OH

Reagents and conditions: a) Ra-Ni, H₂, (Boc)₂O, methanol, r.t. to reflux, 75%; b) TFA:H₂O; c) Ac₂O, DMAP (cat.), pyridine, r.t., 70% for the two steps.

Synthesis of *erythro-(2R,3S)-C*₁₈-sphingosine

Sulfide 81 was elaborated to *threo*-sphingosine in a straightforward reaction sequence depicted in Scheme 28. Thus, oxidation of the sulfanyl moiety in 81 with Oxone³⁵ in a mixture of THF: MeOH: H_2O solvent afforded the sulfone 85. The PMR spectrum of sulfone showed resonances at δ 7.76 (d) for the protons *ortho* to sulfonyl moiety, δ 3.42-3.34 (m) for CHSO₂ indicating a downfield shift. All the remaining proton resonances were consistent with the assigned structure. The sulfone 85 was transformed in a one-pot four-step operation into the aminoalcohol 86 by reaction with $Pd(OH)_2/C$ in the presence of $(Boc)_2O$ under an atmosphere of H_2 in ethanol (Scheme 28). The PMR spectrum of urethane revealed signals at δ 7.78 (d) for the protons *ortho* to sulfonyl moiety, δ 7.31 (d) for the protons *meta* to sulfonyl moiety. The signals corresponding to olefinic protons and benzyl ether were characteristically absent.

Scheme 28

Tol
$$N_3$$
 OBn C_9H_{19} 81 85

Reagents and conditions:(a) $2KHSO_5.KHSO_4.K_2SO_4$, MeOH: H_2O : THF, $0 \circ C$ to r.t., 82%; (b) $Pd(OH)_2/C$, $(Boc)_2O$, H_2 (1 atm.), EtOH, r.t., 71%.

Treatment of sulfone 86 with Na-Hg,³⁷ buffered with sodiumdihydrogen phosphate in methanol, afforded the sphingosine derivative 87 with concomitant loss of acetone (Scheme 29). Compound 87 had physical characteristics such as PMR and ¹³C in excellent agreement to that reported in the literature except for the sign of rotation.³⁸

Scheme 29

Tol
$$C_{12}H_{23}$$
 $C_{13}H_{27}$ $C_{13}H_{27}$

Reagents and conditions: (a) Na-Hg, Na₂HPO₄, MeOH, -20 °C- r.t., 60%.

In conclusion, an efficient, flexible, atom economical and stereospecific synthesis of *lyxo*-phytosphingosine and *erythro*-sphingosine is described in this section. The key steps include stereoselective bromohydrin formation using the sulfinyl moiety as an intramolecular nucleophile, stereo- and regioselective opening of epoxide, chain extension by Pummerer ene reaction, one pot atom economical five/four step transformations. It is worthwhile to note that starting from the C₂ diastereomer of the alcohol (2), the *lyxo*-(2S,3S,4S)-phytosphingosine and *erythro*-(2S,3R)-sphingosine can be synthesized following

an identical reaction sequence as detailed above. Also the strategy is flexible and would permit the synthesis of sphingolipids with different chain lengths (C_{16}/C_{20}) by using olefins of different chain lengths (C_{11}/C_{15}) .

EXPERIMENTAL

1,4-Di(benzyloxy)-(Z)-2-butene, 52.

To the suspension of sodium hydride (60% dispersion in nujol, 1 g, 31.5 mmol) in anhydrous THF (15 mL) at 0 °C was added *n*-Bu₄NI (297 mg, 10 mol%, 1.5 mmol) followed by the addition of *cis*-2-butene-1,4-diol (1.32 g, 15 mmol) in THF (15 mL) and stirred at the same temperature for 30 min. This was followed by the dropwise addition of neat benzyl bromide (3.75 mL, 31.5 mmol) over a period of 10 min at 0 °C. The reaction mixture was stirred at r.t., for 4 h and then quenched using saturated aq. NH₄Cl solution (20 mL). The layers were separated and the aqueous layer was extracted with diethyl ether (4 x 35 mL). The combined organic layers were successively washed with water, brine and dried over Na₂SO₄. Evaporation of the solvent afforded the crude product, which was purified by column chromatography using AcOEt/petroleum ether (1:1, v/v) as the eluent to yield dibenzyl ether 47 (3.55 g, 13.2 mmol) in 88% yield.

Viscous oil.

PMR (CDCl₃, 200 MHz)

: δ 7.38-7.20 (m, 10H), 5.78 (t, J = 4.6 Hz, 2H),

4.51 (s, 4H), 3.98 (d, J = 4.6 Hz, 4H).

m/z (LSIMS)

: 270 [M+H]+

Ethyl-4-benzyloxy-(E)-2-butenoate, 54.

Ozone gas was bubbled into the solution of the dibenzylether 52 (2.9 g, 10 mmol) in DCM (20 mL) cooled at -78 °C until the reaction mixture showed a pale blue coloration. Dimethyl sulfide (1.20 g, 20 mmol) was added to the reaction mixture at the same temperature and stirred for 30 min. The reaction mixture was then brought to r.t., and stirred further for a period of 8 h. The reaction mixture was washed with water and the solvent was evaporated to afford the aldehyde 53, which was taken ahead without further purification. Thus, the aldehyde 53 was taken into benzene (60 mL) and treated with ethyl(triphenylphosphoranylidene)acetate (7.64 g, 20 mmol) and stirred at r.t. for 30 min. The solvent was evaporated and diethylether (100 mL) was added and the reaction mixture was cooled to 0 °C. The precipitated Ph₃P(O) was filtered and the filtrate was evaporated to dryness. The residue on column chromatography using AcOEt/petroleum ether (1:9, v/v) afforded the ester 54 (3.38 g, 16.4 mmol) in 82% (for two steps) yield.

Viscous oil.

PMR (CDCl₃, 200 MHz) : δ 7.38-7.28 (m, 5H), 6.94 (dt, J = 14.6, 4.3 Hz,

1H), 6.10 (d, J = 14.6 Hz, 1H), 4.55 (s, 2H), 4.25-

4.12 (m, 4H), 1.30 (t, J = 6.7 Hz, 3H).

m/z (LSIMS) : 221 [M+H]+

5-Benzyloxy- $(1R_s)$ -(4-methylphenylsulfinyl)-(E)-3-penten-2-one, 56.

A 1.38 M solution of *n*-BuLi in hexane (11.7 mL, 16.2 mmol) was added to a solution of diisopropylamine (2.37 mL, 16.9 mmol) in dry THF (42 mL) at 0 °C. After 15 min the resulting lithium diisopropylanide solution was cooled to –40 °C and the solution of (*R*)-(+)-methyl *p*-tolylsulfoxide 55 (1.20 g, 7.8 mmol) in 10 mL of dry THF was added dropwise and stirred at the same temperature for 30 min. Then the temperature was allowed to reach 0 °C and the ester 54 (1.59 g, 7.7 mmol) in THF (8 mL) added dropwise. The reaction was stirred further for a period of 1 h at 0 °C. The reaction was quenched by the addition of an aq.

saturated NH₄Cl solution (50 mL) and then the solution adjusted to pH 2 by the addition of 5% aq. H₂SO₄ solution. The two layers were separated and the aqueous phase extracted with ether (2 x 20 mL). The combined organic layer was washed successively with water, brine and dried over Na₂SO₄. Evaporation of the solvent afforded the crude product, which was purified by column chromatography using AcOEt/petroleum ether (2:3, v/v) as the eluent to afford β-ketosulfoxide 50 (1.52 g, 4.62 mmol) in 60% yield.

Viscous oil.

 $[\alpha]_{D^{25}}$: +133 (c 3.2, CHCl₃)

PMR (CDCl₃, 200 MHz) : δ 7.52 (d, J = 8.2 Hz, 2H), 7.46-7.21 (m, 7H),

6.81 (dt, J = 16.0, 4.0 Hz, 1H), 6.38 (dd, J =

16.0, 1.7 Hz, 1H), 4.55 (s, 2H), 4.19 (dd, J = 4.0)

1.7 Hz, 2H), 4.08 (d, J = 13.6 Hz, 1H), 3.85 (d, J = 13.6 Hz

J = 13.6 Hz, 1H), 2.40 (s, 3H).

m/z (LSIMS) : 329 [M+H]⁺

5-Benzyloxy-1- (S_R) -(4-methylphenylsulfinyl)-(2R,3E)-penten-2-ol, 57.

The β-ketosulfoxide 56 (1.56 g, 4.76 mmol) in dry THF (12 mL) was added to a well-stirred solution of ZnCl₂ (935 mg, 5.7 mmol) in dry THF (36 mL). The reaction mixture was stirred for 30 min. The reaction mixture was cooled to -78 °C, and DIBAL (2M solution in toluene, 3.6 mL, 7.2 mmol) was added dropwise over a period of 10 min. After being stirred further for a period of 2 h at -78 °C, methanol (48 mL) was added and the reaction mixture allowed to attain room temperature. The solvent was evaporated under reduced pressure. The residue was diluted with 5% aq. HCl solution and extracted into CH₂Cl₂. The organic layer was washed with 5% aq. NaOH solution, brine and dried over Na₂SO₄. Removal of the solvent under reduced pressure afforded the crude product which was purified by column chromatography using

AcOEt/petroleum ether (1:1, v/v) as the eluent to afford the β -hydroxysulfoxide 57 (1.41 g, 4.3 mmol) as a single diastereomer in 91% yield. Pale yellow liquid.

 $[\alpha]_D^{25}$: +118.9 (c 0.75, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.53 (d, J = 8.2 Hz, 2H), 7.36-7.22 (m, 7H), 5.87 (dt,

J = 14.9, 5.9 Hz, 1H), 5.72 (dd, J = 14.9, 4.6 Hz, 1H),

4.82-4.72 (m, 1H), 4.52 (s, 2H), 4.06 (d, J = 4.6 Hz,

2H), 2.94 (dd, J = 13.4, 9.6 Hz, 1H), 2.76 (dd, J =

13.4, 3.0 Hz, 1H), 2.43 (s, 3H).

m/z (LSIMS) : 331 [M+H]+

5-Benzyloxy-2-(*tert*-butyldimethylsilyloxy)-(2*R*,3*E*)-3-pentenyl4-methylphenyl sulfoxide, 58.

To the solution of 57 (660 mg, 2 mmol) in dry dichloromethane (8 mL) was added imidazole (204 mg, 3 mmol) followed by tert-butyldimethylsilyl chloride (300 mg, 2 mmol) at ambient temparature and stirred for 1 h. The reaction mixture was diluted with dichloromethane, washed with water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure afforded the crude product mixture. Purification on a silica gel column using EtOAc/petroleum ether (1:9, v/v) as the eluent afforded 58 (861 mg, 1.94 mmol) in 97% yield.

Viscous oil.

PMR (300 MHz, CDCl₃) : δ 7.26 (d, J = 8.3 Hz, 2H), 7.10-6.97 (m, 7H), 5.59 (dt,

J = 15.5, 5.3 Hz, 1H), 5.45 (dd, <math>J = 15.5, 6.4 Hz, 1H),

4.56-4.48 (m, 1H), 4.23 (s, 2H), 3.70 (d, J = 5.3 Hz,

2H), 2.54 (dd, J = 12.8, 2.6 Hz, 1H), 2.46 (dd, J =

12.8, 10.2 Hz, 1H), 2.18 (s, 3H), 0.74 (s, 9H), 0,0 (s,

3H), - 0.11 (s, 3H).

m/z (LSIMS) : 447 [M+H]+

1-Benzyloxy-2-bromo-5-(4-methylphenylsulfinyl)-4-(tert-butyldimethylsilyloxy)-(2S,3R,4R)-pentan-3-ol, 59.

To the solution of the sulfoxide 58 (843 mg, 1.90 mmol) in dry toluene (8 mL) was added water (68 μ L, 3.8 mmol) followed by *N*-bromosuccinimide (406 mg, 2.3 mmol) and the reaction mixture stirred at room temperature for 30 min. The reaction was quenched by the addition of an aqueous saturated NaHCO₃ solution. The layers were separated and the aqueous layer was extracted with ethylacetate. The combined organic layers were successively washed with water, brine and dried over Na₂SO₄. Evaporation of the solvent afforded the crude product, which was purified by column chromatography using AcOEt/hexane (2:3, v/v) as the eluent to yield bromohydrin 59 (822 mg, 1.52 mmol) in 80% yield.

Solid.

mp : 129-132 °C

PMR (300 MHz, CDCl₃) : δ 7.38 (d, J = 8.3 Hz, 2H), 7.24-7.09 (m, 7H), 4.56-

4.52 (m, 1H), 4.50 (s, 2H), 3.92-3.80 (m, 4H), 3.04

(dd, J = 15.6, 9.4 Hz, 1H), 2.64 (dd, J = 15.6, 2.6 Hz,

1H), 2.29 (s, 3H), 0.76 (s, 9H), 0.0 (s, 3H), -0.14 (s,

3H).

m/z (LSIMS) : 542 [M+H]+

3-Benzyloxy-2-bromo-1-[2-(4-methylphenylsulfinyl)-1-(*tert*-butyldimethylsilyloxy)-(1*R*)-ethyl]-(1*R*,2*S*)-propyl acetate, 60.

To the solution of 59 (649 mg, 1.2 mmol) in dichloromethane (5 mL) were added successively EtsN (242 mg, 2.4 mmol), DMAP (cat.) and acetic anhydride (122 mg, 1.2 mmol). The reaction mixture was stirred at room temperature for 1 h when TLC examination revealed completion of the reaction. The reaction mixture was diluted with dichloromethane and washed successively with water, 10% aq. citric acid followed by brine. Volatiles were removed under reduced pressure and chromatographed on a silica gel column using

AcOEt/petroleum ether (1:4, v/v) as the eluent to afford acetate 60 (671 mg, 1.15 mmol) in 96% yield.

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.44 (d, J = 8.2 Hz, 2H), 7.32-7.14 (m, 7H), 5.42

(dd, J = 8.9, 2.9 Hz, 1H), 4.72-4.62 (m, 1H), 4.51 (d, J)

= 12.6 Hz, 1H), 4.40 (d, J = 12.6 Hz, 1H), 4.24 (dt J =

8.9, 5.2 Hz, 1H), 3.68 (d, J = 5.2 Hz, 2H), 2.74-2.66

(m, 2H), 2.34 (s, 3H), 1.89 (s, 3H), 0.80 (s, 9H), 0.40

(s, 3H), 0.05 (s, 3H).

m/z (LSIMS)

: 583 [M+H]+

2-Azido-3-benzyloxy-1-[2-(4-methylphenylsulfinyl)-1-(*tert*-butyldimethylsilyloxy)-(1*R*)-ethyl]-(1*S*,2*R*)-propyl acetate, 61.

To the solution of the acetate **60** (583 mg, 1 mmol) in dimethylformamide (4 mL) was added NaN₃ (325 mg, 5 mmol) and heated at 80 °C for 6 h. The reaction mixture was diluted with ether and washed with water, brine and dried over Na₂SO₄. Solvent was evaporated under reduced pressure to afford the crude product. Purification on a silica gel using AcOEt/petroleum ether (1:4, v/v) as the eluent afforded the azide **61** (354 mg, 0.65 mmol) in 65% yield. Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.52 (d, J = 8.2 Hz, 2H), 7.58-7.28 (m, 7H), 5.28

(dd, J = 5.2, 2.9 Hz, 1H), 4.55 (s, 2H), 4.34-4.26 (m,

1H), 3.96-3.88 (m, 1H), 3.72 (dd, J = 10.4, 5.2 Hz,

1H), 3.64 (dd, J = 10.4, 7.4 Hz, 1H), 3.04 (dd, J =

13.4, 6.7 Hz, 1H), 2.94 (dd, J = 13.4, 4.6 Hz, 1H),

2.44 (s, 3H), 2.03 (s, 3H), 0.90 (s, 9H), 0.08 (s, 3H),

0.06 (s, 3H).

m/z (LSIMS)

: 545 [M+H]+

5-Benzyloxy-4-bromo-1-(S_s)-(4-methylphenylsulfinyl)-(2R,3R,4S)-pentane-2,3-diol, 63.

To the solution of the sulfoxide 57 (1.32 g, 4 mmol) in dry toluene (16 mL) was added water (144 mg, 8 mmol) followed by *N*-bromosuccinimide (850 mg, 4.8 mmol) and the reaction mixture stirred at room temperature for 15 min. The reaction mixture was quenched by the addition of aqueous saturated NaHCO₃ solution. The layers were separated and the aqueous layer was extracted with ethylacetate. The combined organic layers were successively washed with water, brine and dried over Na₂SO₄. Evaporation of the solvent afforded the crude product, which was purified by column chromatography using AcOEt/petroleum ether (2:3, v/v) as the eluent to yield bromohydrin 63 (1.5 g, 3.52 mmol) in 88% yield.

White solid.

mp : 136-137 °C

 $[\alpha]_{D^{25}}$: -129.5 (c 1.0, CHCl₃)

PMR (300 MHz, CDCl₃) : δ 7.53 (d, J = 8.2 Hz, 2H), 7.35-7.27 (m, 7H), 4.64-

4.56 (m, 3H), 4.17 (dt, J = 7.6, 4.8 Hz, 1H), 3.98 (dd,

J = 10.3, 4.8 Hz, 1H), 3.85 (dd, <math>J = 10.3, 4.8 Hz, 1H),

3.65-3.58 (m, 1H), 3.38-3.17 (m, 1H, OH), 2.66 (dd, J

= 13.4, 1.88 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (50 MHz, CDCl₃): δ 21.3, 51.2, 61.0, 65.9, 71.6, 73.3, 75.1, 124.0, 127.6,

127.7, 128.4, 130.0, 137.5, 139.6, 141.6.

m/z (LSIMS) : 427 [M+H]+

4-[2-Benzyloxy-1-bromo-(1S)-ethyl]-2,2-dimethyl-5-(S_S)-(4-methylphenylsulfinyl-methyl)-(4R,5R)-1,3-dioxolane, 64.

To a solution of the diol 63 (1.45 g, 3.4 mmol) in a mixture of 2,2-dimethoxypropane and acetone (1:3, 13 mL) was added CSA (32 mg, 0.14 mmol) and the reaction mixture stirred at ambient temperature for 2 h. The organic layer was evaporated under reduced pressure to afford the crude

product which was purified by column chromatography using 20% AcOEt/petroleum ether as the eluent to yield acetonide **64** (1.35 g, 2.92 mmol) as a colourless crystalline solid in 86% yield.

Solid.

mp : 147-149 °C

 $[\alpha]_{D^{25}}$: -152.4 (c 1.0, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.56 (d, J = 8.2 Hz, 2H), 7.37-7.27 (m, 7H), 4.65-

4.53 (m, 3H), 4.12-3.96 (m, 2H), 3.80-3.70 (m, 2H),

3.35 (dd, J = 13.2, 2.9 Hz, 1H), 2.84 (dd, J = 13.2,

10.3 Hz, 1H), 2.41 (s, 3H), 1.40 (s, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 21.3, 27.0, 27.4, 51.9, 63.6, 71.1, 73.3, 74.9, 79.8,

110.5, 123.9, 127.6, 127.7, 128.3, 130.0, 137.6, 141.4,

141.5.

m/z (LSIMS) : 467 [M+H]+

4-[1-Azido-2-benzyloxy-(1R)-ethyl]-2,2-dimethyl-5-(S_s)-(4-methylphenylsulfinyl-methyl)-($4S_s$)-1,3-dioxolane, 65.

To a solution of acetonide 64 (1.33 g, 2.85 mmol) in DMSO (12 mL) was added NaN₃ (925 mg, 14.2 mmol). The reaction mixture was stirred at 85 °C for 8 h. The reaction mixture allowed to attain room temperature and diluted with ether. The organic layer was washed successively with water, brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure followed by purification by column chromatography of the crude product using AcOEt/petroleum ether (1:4, v/v) as the eluent afforded azido acetonide 65 (915 mg, 2.14 mmol) in 75% yield.

White solid.

mp : 82-84 °C

 $[\alpha]_{D^{25}}$: -49.5 (c 0.65, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.52 (d, J = 8.2 Hz, 2H), 7.33-7.26 (m, 7H), 4.60-

4.50 (m, 3H), 3.88 (dd, J = 7.4, 4.6 Hz, 1H), 3.74-3.61

(m, 2H), 3.58-3.52 (m, 1H), 2.95 (dd, J = 13.4, 3.7 Hz,

1H), 2.81 (dd, J = 13.4, 8.2 Hz, 1H), 2.43 (s, 3H), 1.48

(s, 3H), 1.42 (s, 3H).

¹³C NMR (50MHz, CDCl₃): δ 21.4, 26.6, 27.2, 60.1, 62.2, 69.6, 72.0, 73.4, 80.0,

110.4, 123.8, 127.7, 127.8, 128.9, 130.0, 137.4, 141.1,

141.7.

m/z (LSIMS)

: 430 [M+H]+

2-Azido-2-[2,2-dimethyl-5-[1-(4-methylphenylsulfanyl)-(E)-3-tetradecenyl]-(4S,5R)-1,3-dioxolan-4-yl]ethylbenzylether, 67.

To the mixture of the acetonide 65 (880 mg, 2.05 mmol) and 1-tridecene (560 mg, 3.08 mmol) in dichloromethane (16 mL) cooled at 0° C was added trifluoroacetic anhydride (1.3 g, 6.15 mmol) dropwise over 5min. and stirred for 1 h at the same temperature. SnCl₄ (550 mg, 2.05 mmol) was added, and after 10 min. at 0° C, the reaction mixture was quenched by slow addition of aq. saturated Na₂CO₃ solution. Extraction into diethylether followed by purification by column chromatography using AcOEt/petroleum ether (1:49) afforded 67 (790 mg, 1.33 mmol) in 65% yield.

Pale yellow Liquid.

 $[\alpha]_{D^{25}}$: 13.1 (c 0.2, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.31-7.16 (m, 7H), 6.95 (d, J = 8.2 Hz, 2H), 5.50-

5.20 (m, 2H), 4.50 (s, 2H), 4.25-4.10 (m, 2H), 3.70-

3.45 (m, 3H), 2.90 (td, J = 7.4, 2.2 Hz, 1H), 2.56-2.24

(m, 2H), 2.22 (s, 3H), 1.96-1.82 (m, 2H), 1.36 (s, 3H),

1.32 (s, 3H), 1.24-1.11 (m, 16H), 0.78 (t, J = 6.7 Hz,

3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 21.0 22.6, 26.7, 27.1, 29.1, 29.3, 29.5, 29.6,

31.9, 32.5, 35.6, 60.8, 70.4, 73.5, 76.7, 77.0, 77.3,

109.7, 126.4, 127.7, 127.8, 128.3, 128.4, 129, 129.7,

132.2, 132.4, 133.0, 137.0.

m/z (LSIMS)

: 594 [M+H]+

2N-(tert-Butoxycarbonylamido)-2-(2,2-dimethyl-5-tetradecyl(4S,5R)-1,3dioxalan-4-yl) -1-ethanol, 68.

To the mixture of 67 (118 mg, 0.2 mmol), (Boc)₂O (87 mg, 1 mmol) in methanol (2 mL) was added Ra-Ni (1 g). The reaction mixture was stirred under H₂ pressure for 2 h at room temperature. Then the reaction mixture was refluxed for 6 h when TLC revealed the completion of reaction. The reaction mixture was allowed to attain room temperature and filtered through a small pad of celite. The celite pad was repeatedly washed with methanol (10 x 5). Evaporation of the solvent under reduced pressure followed by purification by column chromatography using AcOEt/petroleum ether (1:4, v/v) afforded the aminoalcohol 68 (62 mg, 0.14 mmol) in 68% yield.

Pale yellow liquid.

 $[\alpha]$ D²⁵

: -9.1 (c 0.6, CHCl₃)

PMR (200 MHz, CDCl₃)

: $\delta 5.04$ (d, J = 6.9 Hz, 1H, NH), 3.82-3.55 (m, 5H),

1.95 (bs, 1H, OH), 1.60-1.43 (m, 2H), 1.41-1.10 (m,

39H), 0.86 (t, J = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.6, 25.6, 26.1, 26.7, 27.2, 28.2, 29.3, 29.6,

30.8, 31.8, 32.4, 33.2, 52.9, 63.0, 71.3, 80.0, 81.2,

108.7, 156.4.

m/z (LSIMS)

: 458 [M+H]+

 ${\it 3,4-} Di (methyl carbonyloxy) - 2-methyl carboxamido-(2R, 3S, 4S) - octade cylacetate,$ 70.

To the solution of 68 (40 mg, 0.09 mmol) in dichloromethane (0.1 mL) was added a 20:1 solution of TFA/water (0.4 mL) at 0 °C and stirred for 3 h. The solvent was evaporated under reduced pressure and then azeotroped with benzene. The aminotriol was directly taken to the next step without further purification. Pyridine (0.9 mL), and acetic anhydride (0.1 mL) were added to

the reaction vessel and the resulting mixture stirred at r.t. overnight. The reaction mixture was concentrated, and the residue was chromatographed on a silica gel column using EtOAc/petroleum ether (7:3, v/v) system as the eluent to give the tetraacetylderivative **70** (34 mg, 0.07 mmol) in 78% yield.

Viscous liquid.

 $[\alpha]_{D^{25}}$: -6.9 (c 0.9, CHCl₃)

Lit.^{18b} [α] $_{D^{21}}$: +7.0 (c = 0.86, CHCl₃) for the enantiomer

PMR (300 MHz, CDCl₃) : δ 5.73 (d, J = 9.5 Hz, 1H, NH), 5.11 (dd, J = 6.5, 4.3

Hz, 1H), 5.03 (dd, J = 12.7, 6.5 Hz, 1H), 4.52-4.46

(m, 1H), 4.03 (dd, J = 11.3, 6.0 Hz, 1H), 3.97 (dd, J =

11.3, 5.9 Hz, 1H), 2.08 (s, 3H), 2.06 (s, 6H), 2.01 (s,

3H), 1.67-1.51 (m, 2H), 1.39-1.15 (m, 24H), 0.88 (t, J

= 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 20.6, 20.7, 20.9, 22.7,23.2, 24.8, 29.2, 29.3,

29.5, 29.6, 30.5, 31.9, 48.0, 62.9, 71.9, 72.2, 169.9.

LSIMS m/z : 485 [M+H]⁺

1-[5-[1-Azido-2-benzyloxy-(1R)-ethyl]-2,2-dimethyl-5-[1-(4-methylphenylsulfonyl)-(E)-3-tetradecenyl]-(4S,5R)-1,3-dioxolane,71.

To the solution of the sulfide 67 (296 mg, 0.5 mmol) in a mixture of MeOH:water:tetrahydrofuran (1:1:2, 0.5 mL) was added Oxone® (153 mg, 1.0 mmol) at 0° C and allowed to attain room temperature during 30 min. After complete conversion to the sulfone, which was revealed by TLC examination (ca. 4 h), the solvent was evaporated under reduced pressure and the residue extracted into ethylacetate. Column chromatography using AcOEt/petroleum ether (1:6, v/v) afforded sulfone 71 (250 mg, 0.4 mmol) in 82% yield.

Viscous liquid.

 $[\alpha]_{D^{25}}$: -12.7 (c 1.6, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.74 (d, J = 8.2 Hz, 2H), 7.39-7.22 (m, 7H), 5.35 (dt,

J = 13.4, 6.7 Hz, 1H), 5.16 (dt, J = 13.4, 6.7 Hz, 1H),

4.58 (s, 2H), 4.50 (dd, J = 8.2, 3.7 Hz, 1H), 4.28 (dd, J = 8.2, 2.2 Hz, 1H), 3.85-3.68 (m, 3H), 3.32-3.24 (m, 1H), 2.60-2.40 (m, 5H), 1.96-1.76 (m, 2H), 1.55-1.15

(m, 22H), 0.88 (t, J = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 21.6, 22.6, 26.5, 26.9, 28.8, 29.1, 29.2, 29.3,

29.5, 29.6, 31.9, 32.3, 59.6, 65.4, 70.5, 73.3, 74.4, 77.2,

109.5, 124.8, 127.7, 127.8, 128.4, 128.9, 129.5, 134.7,

136.4, 137.7, 144.7, 144.8.

m/z (LSIMS) : 626 [M+H]⁺

2N-(tert-Butoxycarbonylamido)-2-{2,2-dimethyl-5-[1-(4-methylphenylsulfonyl)-tetracetyl](4S,5S)-1,3-dioxalan-4-yl}-1-ethanol, 72.

To the mixture of sulfone 71 (188 mg, 0.3 mmol) and (Boc)₂O (130 mg, 0.60 mmol) in absolute ethanol (0.6 mL) was added Pd(OH)₂/C (20 mg, 0.03 mmol, 10 mol%). After evacuating, the reaction mixture was stirred under H₂ atmosphere for 16 h. The reaction mixture was filtered through a small pad of celite and repeatedly washed with ethanol. Evaporation of the solvent afforded the crude product which was purified by column chromatography using 30% AcOEt/petroleum ether as the eluent to yield 72 (134 mg, 0.22 mmol) in 71%. Low melting oily solid.

 $[\alpha]_{D^{25}}$: -3.4 (c 2.4, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.78 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H),

5.09 (d, J = 8.9 Hz, NH, 1H), 4.70 (d, J = 8.3 Hz, 1H),

4.04 (dd, J = 8.3, 3.8 Hz, 1H), 3.93 (dd, J = 9.7, 4.5

Hz, 1H), 3.86-3.79 (m, 1H), 3.69 (dd, J = 11.1, 4.5

Hz, 1H), 3.33-3.26 (m, 1H), 2.45 (s, 3H), 1.76-1.63

(m, 2H), 1.44-1.16 (m, 37H), 0.88 (t, J = 6.7 Hz, 3H)

¹³C NMR (50 MHz, CDCl₃): δ 14.2, 21.7, 22.7, 26.8, 28.4, 29.2, 29.4, 29.7, 32.0,

50.1, 65.0, 75.2, 78.7, 79.9, 109.1, 129.1, 129.5, 136.9,

144.4, 155.9.

m/z (LSIMS)

: 612 [M+H]+

2-(N-tert-butoxycarbonyl)amino-(2R,3R,4E)-4-octadecene-1,3-diol, 73.

6% Na-Hg (250 mg) was added to the solution of 72 (100 mg, 0.16 mmol) and Na₂HPO₄ (29 mg, 0.32 mmol) in methanol (3.2 mL) at -20° C and allowed to attain r.t. during 30 min. After being stirred for 2 h, the reaction mixture was extracted with ethylacetate and the solvent was evaporated under reduced pressure to afford the crude product mixture. Purification by column chromatography using 25% AcOEt/petroleum ether afforded the sphingosine 73 (41 mg, 0.104 mmol) in 65% yield.

Low melting solid.

 α D²⁵

: +0.41 (c 0.9, CHCl₃)

Lit.³⁸ $\left[\alpha\right]_{D^{25}}$

: -0.41 (c = 1.0, CHCl₃) for the enantiomer

PMR (200 MHz, CDCl₃)

: δ 5.71 (dt, J = 15.6, 6.7 Hz, 1H), 5.46 (dd, J = 15.6, 6.7

Hz, 1H), 5.1 (bs, 1H, NH), 4.29 (dd, J = 5.9, 3.7 Hz,

1H), 3.80-3.71 (m, 2H), 3.58 (m, 1H), 2.08-1.88 (m,

2H, OH), 1.44-1.12 (m, 31H), 0.85 (t, J = 6.5 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 22.7, 28.3, 29.1, 29.2, 29.3, 29.5, 29.7, 31.9,

32.3, 55.6, 64.5, 73.6, 79.8, 129.0, 134.2, 156.4.

m/z (LSIMS)

: 400 [M+H]+

5-Benzyloxy-1-(4-methylphenylsulfinyl)-(2S,3E)-penten-2-ol, 74.

To the solution of the β-ketosulfoxide 56 (1.8 g, 5.5 mmol) in dry tetrahydrofuran (27 mL) cooled at -78 °C was added DIBAL (2M solution in toluene, 4.15 mL, 8.3 mmol) dropwise over a period of 20 min. After the addition, the reaction mixture was stirred at -78 °C for another 15 min. Methanol (27 mL) was then added at -78 °C, the reaction mixture was allowed to warm to r.t. and the solvent was evaporated under vacuum. The residue was dissolved in CH2Cl2 (50 mL) and treated with 5% H2SO4 (15 mL) solution. The organic layer was separated and washed with brine, dried over Na₂SO₄ and evaporated under reduced pressure to afford the crude product. Column chromatography using AcOEt/petroleum ether (3:2, v/v) afforded the alkenol 74 (1.67 g, 5.1 mmol) in 92% yield.

Viscous oil.

 $[\alpha]_{D^{25}}$: +122.6 (c 1.0, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.51 (d, J = 8.2 Hz, 2H), 7.38-7.23 (m, 7H), 5.87 (dt,

I = 14.9, 5.2 Hz, 1H), 5.70 (dd, I = 14.9, 4.5 Hz, 1H),

4.75-4.63 (m, 1H), 4.46 (s, 2H), 3.97 (d, J = 5.2 Hz,

2H), $3.0 \, (dd, J = 13.4, 10.4 \, Hz, 1H)$, $2.68 \, (dd, J = 10.4 \, Hz)$

13.4, 1.5 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (50 MHz, CDCl₃): δ 21.2, 62.9, 66.0, 69.6, 72.1, 123.8, 127.4, 127.5,

127.9, 128.1, 128.9, 129.9, 137.9, 139.6, 141.4.

m/z (LSIMS) : 331 [M+H]+

Elemental analysis : Calcd. for C₁₉H₂₂O₃S C, 69.06; H, 6.71; S, 9.70.

Found : C, 69.18; H, 6.93; S, 9.40.

5-Benzyloxy-4-bromo-1-(4-methylphenylsulfinyl)-(2S,3S,4R)-pentane-2,3-diol, 75.

To the solution of the sulfoxide **74** (1.56 g, 4.75 mmol) in dry toluene (19 mL) was added water (171 μ L, 9.5 mmol) followed by *N*-bromosuccinimide (1.01 g, 5.7 mmol) and the reaction mixture stirred at room temperature for 15 min. The reaction was quenched by the addition of an aqueous saturated NaHCO₃ solution. The layers were separated and the aqueous layer was extracted with ethylacetate. The combined organic layers were successively washed with water, brine and dried over Na₂SO₄. Evaporation of the solvent afforded the crude product, which was purified by column chromatography using AcOEt/petroleum ether (2:3, v/v) as the eluent to yield bromohydrin 75 (1.95 g, 4.18 mmol) in 88%.

White solid.

mp : 137-139 °C

 $[\alpha]_{D^{25}}$: -120.0 (c 1.0, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.52 (d, J = 8.2 Hz, 2H), 7.40-7.25 (m, 7H), 4.72-

4.66 (m, 1H), 4.59 (s, 2H), 4.24-4.16 (m, 1H), 4.01-

3.81 (m, 3H), 3.10 (dd, J = 13.4, 8.2 Hz, 1H), 2.84

(dd, J = 13.4, 3.7 Hz, 1H), 2.80-2.50 (bs, 2-OH), 2.44

(s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.4, 51.0, 61.1, 67.9, 71.4, 73.3, 74.7, 124.1, 127.7,

127.8, 128.4, 130.1, 137.4, 139.7, 142.0.

HRMS-FAB $(m/z)[M+H]^+$: calcd for C₁₉H₂₂BrO₄S 427.0578, found 427.0573.

4-[2-Benzyloxy-1-bromo-(1R)-ethyl]-2,2-dimethyl-5-(4-methylphenylsulfinyl methyl)-(4S,5S)-1,3-dioxolane, 76.

To the solution of the diol 75 (47 mg, 0.11 mmol) in a mixture of 2,2-dimethoxypropane and dry acetone (1:3, 0.50 mL) was added CSA (1.0 mg, 0.004 mmol) and the reaction mixture was stirred at ambient temperature for 2 h. The organic layer was evaporated under reduced pressure to afford the crude product, which was purified by column chromatography using AcOEt/petroleum ether (1:4, v/v) as the eluent to yield acetonide 76 (44 mg, 0.095 mmol) as a viscous liquid in 86% yield.

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.56 (d, J = 8.2 Hz, 2H), 7.36-7.24 (m, 7H),

4.56 (s, 2H), 4.28-4.20 (m, 1H), 4.04 (dd, J =

7.4, 3.7 Hz, 1H), 3.95 (dd, J = 8.2, 4.5 Hz, H),

3.80-3.74 (m, 2H), 3.32 (dd, J = 13.4, 7.4 Hz,

1H), 3.16 (dd, J = 13.4, 3.7 Hz, 1H), 2.44 (s,

3H), 1.46 (s, 3H), 1.36 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.5, 27.2, 27.5, 52.3, 61.9, 71.2, 73.3, 75.9,

79.6, 110.5, 124.6, 127.7, 128.4, 129.9, 137.6,

140.9, 141.4.

HRMS-FAB $(m/z)[M+H]^+$: calcd for C₂₂H₂₇BrO₄S 467.0880, found 427.0891.

1-[3-Benzyloxymethyl-3(S)-oxiran-2-yl]-2-(methylphenylsulfinyl)-1-(S)-ethan-1-ol, 77.

To the solution of **76** (1.8 g, 4.05 mmol) in methanol (16 mL) was added K₂CO₃ (615 mg, 4.45 mmol) at 0 °C and the temperature allowed to rise to r.t. during 45 min. After stirring the reaction mixture at r.t. for a further period of 1 h, TLC revealed the complete conversion of starting material. Ether (15 mL) was added to the reaction mixture, and after 10 min. reaction mixture was filtered and the filtrate evaporated to afford the epoxide **77** (1.16 g, 3.35 mmol) in 83% yield. This was taken ahead to the next step without further purification.

Solid.

mp : 104-106 °C

 $[\alpha]_{D^{25}}$: -104.3 (c 0.75, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.51 (d, J = 8.2 Hz, 2H), 7.36-7.22 (m, 7H), 4.52 (s,

2H), 4.29-4.20 (m, 1H), 3.72 (dd, J = 11.2, 3.0 Hz,

1H), 3.48 (dd, J = 11.2, 5.2 Hz, 1H), 3.30 (d, J = 4.5

Hz, 1H), 3.24-3.18 (m, 1H), 3.08 (dd, J = 3.7, 2.2 Hz,

1H), 3.03-2.96 (m, 1H), 2.86 (dd, J = 13.4, 4.5 Hz,

1H), 2.43 (s, 3H).

 13 C NMR (75 MHz, CDCl₃) : δ 21.4, 54.4, 57.3, 59.7, 66.7, 69.1, 73.3, 124.1, 127.1,

127.7, 128.4, 130.2, 137.7, 140.1, 142.1.

HRMS-FAB $(m/z)[M+H]^+$: calcd for C₁₉H₂₇O₄S 347.1317, found 347.1332.

4-Azido-5-benzyloxy-1-(4-methylphenylsulfinyl)-(2S,3R,4R)-pentane-2,3-diol, 78.

To the epoxide 77 (1.04 g, 3.1 mmol) in a solvent mixture of MeOH: H_2O (8:1, 18 mL) was added NH₄Cl (498 mg, 9.3 mmol) followed by NaN₃ (1.21 g, 18.6 mmol) and the mixture heated at reflux for 6 h. The reaction mixture was

allowed to attain r.t. and the solvent was evaporated. The residue was extracted with ethylacetate ($2 \times 30 \text{ mL}$). The crude reaction mixture was purified by column chromatography using AcOEt/petroleum ether (2:3, v/v) to afford the azidodiol 78 (1.03 g, 2.64 mmol) in 85% yield.

White solid.

mp : 95-96 °C

 $[\alpha]_{D^{25}}$: -103.4 (c 0.8, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.51 (d, J = 8.2 Hz, 2H), 7.38-7.24 (m, 7H), 4.57 (s,

2H), 4.46-4.42 (m, 1H), 3.94-3.86 (m, 1H), 3.76-3.64

(m, 2H), 3.50 (d, J = 8.2 Hz, 1H), 3.22 (bs, 2-OH),

 $3.10 \, (dd, J = 13.4, 6.7 \, Hz, 1H), 2.90 \, (dd, J = 13.4, 4.5)$

Hz, 1H), 2.41 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.4, 60.1, 62.0, 65.2, 70.5, 73.5, 124.4, 127.5, 127.7,

128.4, 130.1, 137.7, 139.2, 141.9.

HRMS-FAB $(m/z)[M+H]^+$: calcd for C₁₉H₂₃N₃O₄S 390.1487, found 390.1478.

4-[1-Azido-2-benzyloxy-(1R)-ethyl]-2,2-dimethyl-5-(4-methylphenylsulfinyl methyl)-(4R,5S)-1,3-dioxolane, 79.

To the solution of the azidodiol 78 (973 mg, 2.5 mmol) in a mixture of 2,2-dimethoxypropane and acetone (1:3, 10 mL) was added CSA (24 mg, 0.1 mmol) and the reaction mixture stirred at ambient temperature for 1 h. The organic layer was evaporated under reduced pressure to afford the crude product which was purified by column chromatography using AcOEt/petroleum ether (1:4, v/v) as the eluent to yield acetonide 79 (925 mg, 2.15 mmol) in 87% yield. Viscous liquid

 $[\alpha]_{D^{25}}$: -47.5 (c 0.6, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.55 (d, J = 8.2 Hz, 2H), 7.38-7.25 (m, 7H), 4.52 (s,

2H), 4.02-3.90 (m, 2H), 3.70 (dd, J = 9.4, 3.1 Hz, 1H),

3.67-3.54 (m, 1H), 3.54 (dd, J = 9.4, 7.3 Hz, 1H), 3.22

(dd, J = 13.4, 7.3 Hz, 1H), 3.07 (dd, J = 13.4, 3.1 Hz,

1H), 2.42 (s, 3H), 1.43 (s, 3H), 1.37 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 21.4, 26.7, 26.9, 60.7, 62.7, 70.2, 73.4, 74.4, 78.2,

110.3, 124.4, 127.6, 127.8, 128.4, 129.9, 137.3, 140.0,

141.9.

m/z (LSIMS) : 430 [M+H]+

Elemental analysis : Calcd. for C₂₂H₂₇N₃O₄S C, 61.52; H, 6.34; N, 9.78; S,

7.46.

Found : C, 61.39; H, 6.52; N, 9.97; S, 7.49.

2-Azido-2-[2,2-dimethyl-5-[1-(4-methylphenylsulfinyl)-(E)-3-tetradecenyl]-(4R,5S)-1,3-dioxolan-4-yl]-ethylbenzylether, 81.

To the mixture of the acetonide 79 (885 mg, 2.05 mmol) and 1-tridecene (560 mg, 3.08 mmol) in dichloromethane (10 mL) cooled at 0 °C was added trifluoroacetic anhydride (1.3 g, 6.15 mmol) dropwise over 5min. and stirred for 1h at the same temperature. SnCl₄ (550 mg, 2.05 mmol) was added and after being stirred for 10 min. at 0 °C, the reaction mixture was quenched by the addition of aq. saturated Na₂CO₃ solution. Extraction into diethyl ether and usual workup followed by purification by column chromatography using AcOEt/petroleum ether (1:49, v/v) afforded 81 (930 mg, 1.57 mmol) in 76% yield.

Pale yellow liquid.

 $[\alpha]_{D^{25}}$: +15.8 (c 1.0, CHCl₃).

PMR (200 MHz, CDCl₃) : δ 7.34-7.25 (m, 7H), 7.02 (d, J = 7.2 Hz, 2H), 5.47 (dt,

= 15.3, 6.6 Hz, 1H), 5.32 (dt, J = 15.3, 6.8 Hz, 1H),

4.54 (s, 2H), 4.19-4.1 (m, 2H), 3.77 (dd, J = 9.7, 3.1

Hz, 1H), 3.66 (td, J = 7.5, 3.1 Hz, 1H), 3.54 (dd, J =

9.7, 7.5 Hz, 1H), 3.18-3.10 (m, 1H), 2.46-2.41 (m,

2H), 2.32 (s, 3H), 1.97-1.92 (m, 2H), 1.45 (s, 3H),

1.44-1.40 (m, 2H), 1.35 (s, 3H), 1.32-1.2 (m, 17H),

0.88 (t, J = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 21.0, 22.6, 26.9, 27.0, 29.1, 29.3, 29.5, 29.6,

31.9, 32.5, 37.6, 52.1, 63.8, 70.8, 73.4, 76.6, 80.0,

109.8, 126.6, 127.5, 127.7, 128.4, 129.6, 132.0, 132.3,

134.0, 137.0, 137.6.

m/z (LSIMS)

: 593 [M⁺]

Elemental analysis

: Calcd. for C₃₅H₅₁N₃O₃S C, 70.79; H, 8.66; N, 7.08;

S, 5.40.

Found

: C, 70.56; H, 8.91; N, 7.12; S, 5.44.

2-(N-tert-butyloxycarbonyl)amino-2-[2,2-dimethyl-5-tetradecyl-(4R,5S)-1,3dioxalan-4yl]-1-ethanol, 82.

To the mixture of 81 (297 mg, 0.5 mmol), (Boc)₂O (218 mg, 1.0 mmol) in methanol (5 mL) was added Ra-Ni (2.5 g). The reaction mixture was stirred under H₂ pressure for 2 h at room temperature and then refluxed for 6 h when TLC examination revealed completion of the reaction. The reaction mixture was allowed to attain room temperature and filtered through a small pad of Celite pad was repeatedly washed with methanol (25 mL x 5). celite. Evaporation of the solvent under reduced pressure followed by purification of the crude product by column chromatography using AcOEt/petroleum ether (1:4, v/v) afforded the aminoalcohol 82 (169 mg, 0.37 mmol) in 75% yield.

White solid.

mp

: 47-49 °C

 $[\alpha]_D^{25}$

: +12.8 (c 2.5, CHCl₃)

PMR (200 MHz, CDCl₃)

: δ 5.05 (bs, NH), 3.88-3.72 (m, 2H), 3.62-3.47 (m,

3H), 1.92 (bs, OH, 1H), 1.51-1.01 (m, 42H), 0.8 (t, J =

6.7 Hz, 3H).

¹³C NMR (50 MHz, CDCl₃): δ 14.0, 22.6, 26.2, 27.0, 27.2, 28.3, 29.3, 29.6, 31.9,

33.8, 52.9, 62.6, 79.3, 81.8, 108.7, 156.0.

m/z (LSIMS)

: 458 [M+H]+

Elemental analysis

: Calcd. for C₂₆H₅₁NO₅ C, 68.23; H, 11.23; N, 3.06.

Found

: C, 68.62; H, 11.41; N, 3.09.

3,4-(Dimethylcarbonyloxy)-2-methylcarboxamido-(2R,3R,4R)-octadecylacetate, 84.

To the protected amino alcohol 82 (90 mg, 0.2 mmol) in dichloromethane (0.2 mL) was added a 20:1 solution of TFA/water (0.4 mL) at 0° C and stirred for 3 h. The solvent was evaporated under reduced pressure and then azeotroped with benzene. The aminotriol was taken directly to the next step without further purification. Pyridine (2 mL) was added followed by DMAP (2.5 mg, 0.02 mmol) and finally Ac₂O (0.2 mL). After stirring at rt for 16 h., pyridine was evaporated under vacuum and the reaction mixture extracted into ethylacetate. The organic layer was successively washed with aq. CuSO₄ solution, aq. sat. NaHCO₃ solution, water, brine and dried over Na₂SO₄. Evaporation of the solvent afforded the crude tetraacetylphytosphingosine. Purification using AcOEt/petroleum ether (1:4, v/v) afforded 84 (69 mg, 0.14 mmol) in 70% yield.

White crystalline solid.

mp : 58-60 °C

 $[\alpha]_{D^{25}}$: +3.2 (*c* 1, CHCl₃)

lit^{18b} $[\alpha]_D^{21}$: -3.1(c 1.1 CHCl₃) for the enantiomer

PMR (300 MHz, CDCl₃) : δ 5.75 (d, J = 9.8 Hz, 1H, NH), 5.08 (m, 2H), 4.51 (m,

1H) 4.23 (dd, J = 11.7, 4.6 Hz, 1H), 3.91 (dd, J = 11.7,

3.1 Hz, 1H), 2.12 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H),

1.96 (s, 3H), 1.52-1.38 (m, 2H), 1.33-1.18 (m, 24H),

0.88 (t, I = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 20.7, 20.8, 21.0, 22.7, 23.3, 25.2, 29.3, 29.4,

29.5, 29.7, 30.9, 31.9, 47.5, 63.1, 71.2, 71.8, 169.6,

170.3, 170.6, 170.8.

m/z (LSIMS) : 486 [M+H]+

Elemental analysis : Calcd. for C₂₆H₄₇NO₇ C, 64.30; H, 9.75; N, 2.88.

Found

: C, 64.02; H, 9.93; N, 2.97.

1-[5-[1-Azido-2-benzyloxy-(1R)-ethyl]-2,2-dimethyl-5-[1-(4methylphenylsulfonyl)-(E)-3-tetradecenyl]-(4R,5S)-1,3-dioxolane, 85.

To the solution of the sulfide 81 (297 mg, 0.5 mmol) in a mixture of MeOH: water: tetrahydrofuran (1:1:2, 2 mL) was added oxone (614 mg, 1.0 mmol) at 0 °C and allowed to attain room temperature during a period of 30 min. After complete conversion to the sulfone as revealed by TLC examination (ca. 4h), the solvent was evaporated under reduced pressure and the residue extracted into ethylacetate. Column chromatography using AcOEt/hexane (3:17, v/v) afforded sulfone 85 (257 mg, 0.41 mmol) in 82% yield.

Viscous Liquid.

 $[\alpha]_D^{25}$

: +11.7 (*c* 0.3, EtOAc)

PMR (300 MHz, CDCl₃)

: δ 7.76 (d, J = 8.3 Hz, 2H), 7.36-7.24 (m, 7H), 5.46 (dt,

J = 13.6, 6.8 Hz, 1H), 5.14 (dt, <math>J = 13.6, 6.8 Hz, 1H),

4.59 (s, 2H), 4.53 (dd, J = 7.6, 6.8 Hz, 1H), 4.23 (dd, J

= 7.6, 3.0 Hz, 1H), 3.84 (m, 1H), 3.71-3.62 (m, 2H),

3.38 (m, 1H), 2.58 (m, 1H), 2.48 (s, 3H), 2.4 (m, 1H),

1.98-1.88 (m, 2H), 1.33-1.22 (m, 22H), 0.88 (t, J 6.8

Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 21.5, 22.6, 26.8, 26.9, 29.1, 29.2, 29.2, 29.4,

29.5, 30.7, 31.8, 32.4, 63.5, 64.8, 70.5, 76.1, 77.1,

110.1, 124.4, 127.6, 127.7, 128.4, 129.1, 129.3, 136.9,

137.5, 144.3.

m/z (LSIMS)

: 626 [M+H]+

Elemental analysis

: Calcd. for C₃₅H₅₁N₃O₅S C, 67.17; H, 8.21; N, 6.71; S,

5.12.

Found

: C, 67.49; H, 8.48; N, 6.79; S, 5.23.

2-(*N-tert*-butoxycarbonyl)amino-2-{2,2-dimethyl-5-[1-(4-methylphenylsulfonyl)-tetracecyl]-(4*S*, 5*R*)-1,3-dioxalan-4-yl}-1-ethanol, 86.

To the mixture of sulfone 85 (188 mg, 0.30 mmol) and (Boc)₂O (130 mg, 0.60 mmol) in absolute ethanol (0.6 mL) was added Pd(OH)₂ (20 mg, 10% by wt.). The reaction mixture was evacuated, subsequently filled with H₂ and stirred for 16 h. The reaction mixture was filtered through a small pad of celite and repeatedly washed with ethanol. Evaporation of the solvent afforded the crude product, which was purified by column chromatography using AcOEt/petroleum ether (3:7, v/v) as the eluent to yield 86 (136 mg, 0.2 mmol) in 71% yield.

Viscous liquid.

 $[\alpha]_{D^{25}}$: +9.5 (c 1, CHCl₃)

PMR (200 MHz, CDCl₃) : δ 7.78 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H),

5.40 (d, J = 8.9 Hz, 1H, NH), 4.52 (m, 1H), 4.31 (dd, J)

J = 6.7, 3.7 Hz, 1H), 3.90-3.68 (m, 2H), 3.17 (m, 1H),

2.46 (s, 3H), 1.84-1.68 (m, 2H), 1.46-1.11 (m, 38H),

0.88 (t, I = 6.8 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 21.6, 22.7, 26.8, 27.2, 27.6, 28.3, 28.4, 29.1,

29.2, 29.3, 29.4, 29.6, 30.9, 31.9, 53.9, 63.0, 66.0, 69.1,

70.2, 79.9, 109.6, 128.9, 129.5, 136.7, 144.5, 155.8.

m/z (LSIMS) : 612 [M+H]+

Elemental analysis : Calcd. for C₃₅H₅₇NO₇S C, 64.78; H, 9.39; N, 2.29; S,

5.24.

Found : C, 64.39; H, 9.72; N, 2.32; S, 5.31.

2-(N-tert-butoxycarbonyl)amino-(2R,3S,4E)-4-octadecene-1,3-diol, 88.

6% Na-Hg (250 mg) was added to the solution of **86** (100 mg, 0.16 mmol) and Na₂HPO₄ (58 mg, 0.32 mmol) in methanol (3.2 mL) at -20° C and allowed to attain r.t. during a period of 30 min. After further stirring for 1 h, the reaction mixture was cooled to 0 °C, diluted with water and evaporated under reduced

pressure. The residue was extracted with ethylacetate to afford the crude product. After evaporating the solvent, purification by column chromatography using AcOEt/petroleum ether (1:4, v/v) afforded the sphingosine derivative 88 (38 mg, 0.097 mmol) in 60% yield.

Low melting oily solid.

 $[\alpha]_D^{25}$: +1.4 (c 1, CHCl₃)

lit.³⁸ $[\alpha]$ D²⁴ : -1.4 (c 1.0 CHCl₃) for the enantiomer

PMR (200 MHz, CDCl₃) : δ 5.77 (dt, J = 15.1, 6.7 Hz, 1H), 5.52 (dd, J = 15.1,

6.7 Hz, 1H), 4.33-4.19 (m, 1H), 3.98-3.82 (m, 1H),

3.76-3.61 (m, 1H), 3.60-3.45 (m, 1H), 2.6-2.24 (bs,

OH), 2.10-1.88 (m, 2H), 1.44-1.11 (m, 31H), 0.88 (t, J

= 6.7 Hz, 3H).

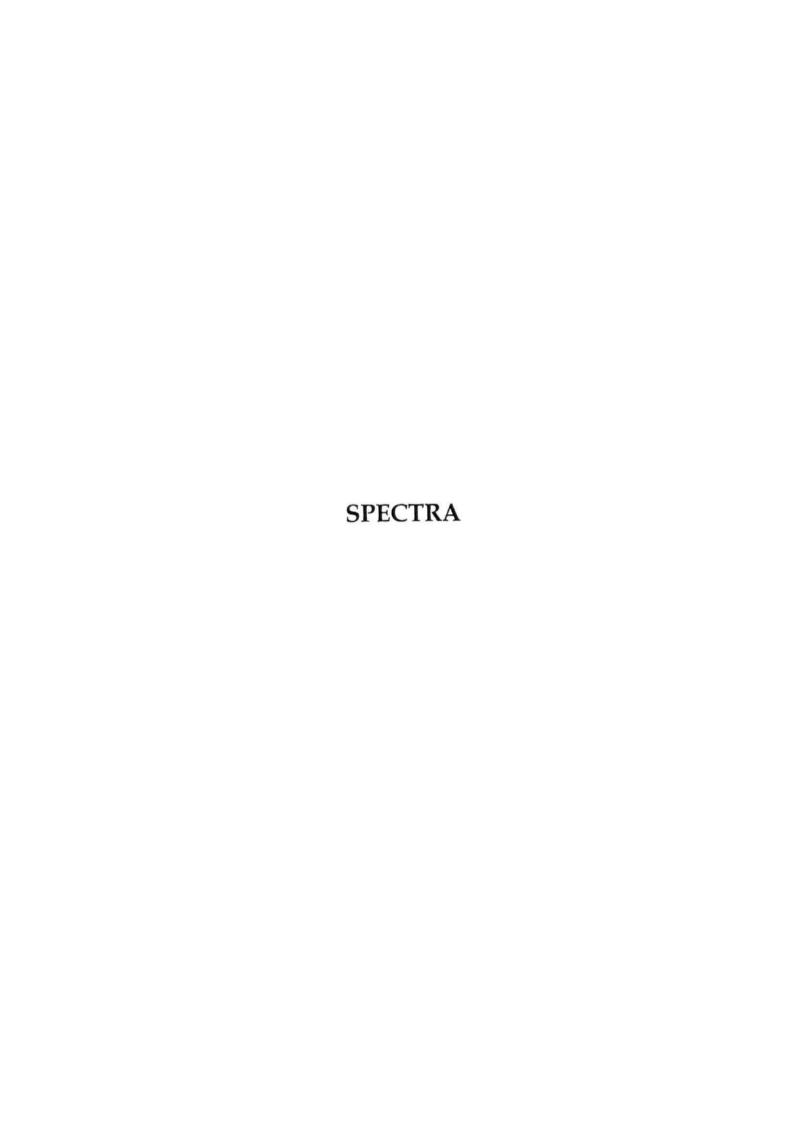
¹³C NMR (75 MHz, CDCl₃): δ 14.1, 22.7, 28.4, 29.1, 29.2, 29.3, 29.5, 29.6, 29.7,

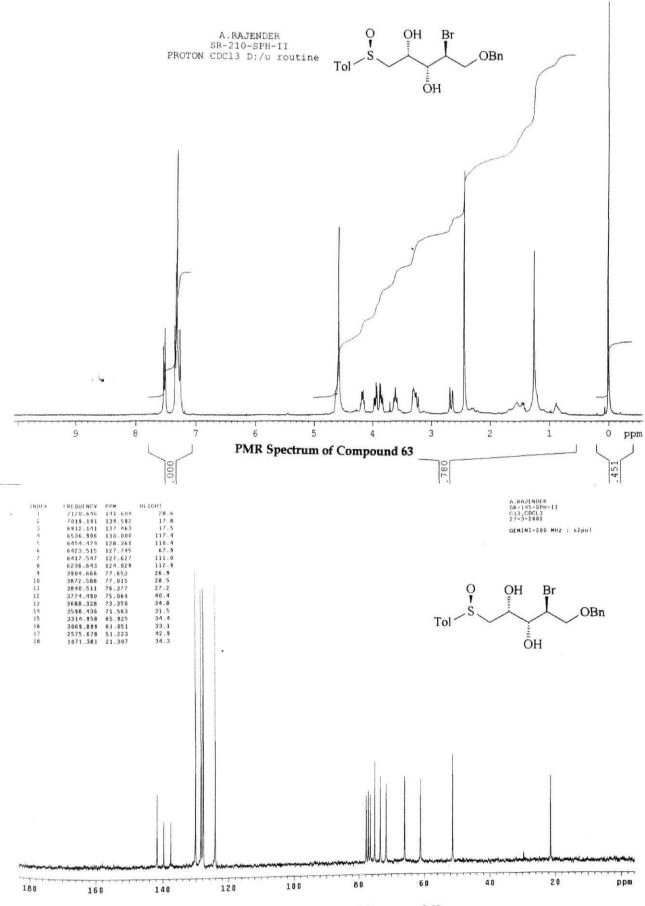
31.9, 32.3, 55.5, 62.7, 74.8, 79.9, 128.9, 134.2, 156.2.

m/z (LSIMS) : 400 [M+H]⁺

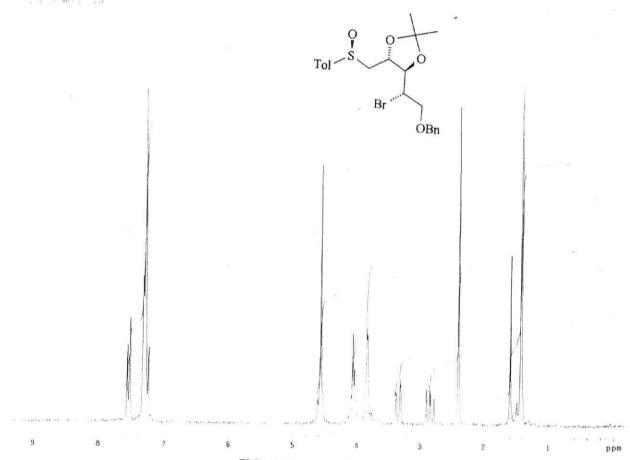
Elemental analysis : Calcd. for C₂₃H₄₅NO₄ C, 69.13; H, 11.35; N, 3.51.

Found : C, 69.45, H, 11.62, N, 3.59.

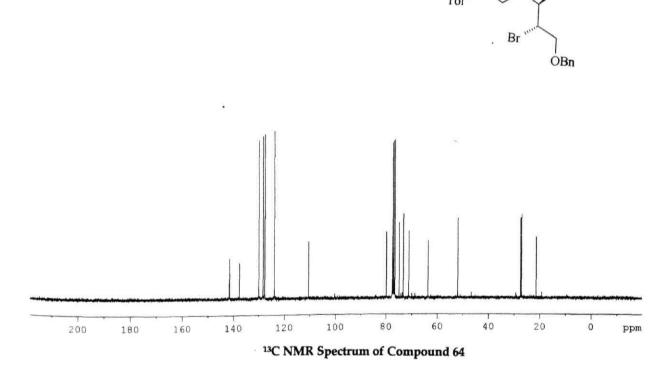

References

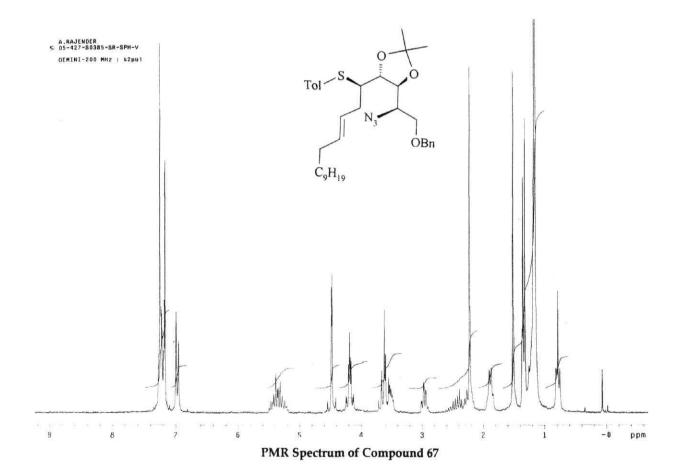

- Sweeley, C. C. Biochemistry of Lipids, Lipoproteins and Membranes; D. E. Vance, J. E. Vance, Elsevier, Amsterdam, 1991. Hannun, Y. A.; Bell, R. M. Science 1989, 243, 500. b) Hannun, Y. A. J. Biol. Chem. 1994, 269, 3125. c) Hannun, Y. A. Sphingolipid-Mediated Signal Transduction. In Molecular Biology Intelligence Unit; R. G. Landes Company and Chapman and Hall: New York, 1997, pp 188. Hakomori, S. J. Boil. Chem. 1990, 265, 18713.
- Advances in Lipid Research: Sphingolipids and Their Metabolites, Vol. 25 & 26;
 Bell, R. M.; Hannun, Y. A.; Merill, Jr. A. H., Eds.; Academic Press: Orlando FL. 1993.
- Thudichum, J. L. W. A Treatise on the Chemical Constitution of the Brain 1884, Lontoo: Bailliere. New edition 1962, Archon Books, Hamden, Connecticut, USA.
- (a) Hakomori, S. Sci. Amer. 1986, 154, 44. b) Merrill, A. H.; Nimkar, S.;
 Menaldino, D.; Hannun, Y. A.; Looms, C.; Bell, R. M.; Tyahi, S. R.; Lambetti,
 J. B.; Stevens, V. L.; Hunter, R.; Liotta, D. C. Biochemstry 1989, 281, 3138.
- (a) For earlier synthesis of sphingosine refer: Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075; (b) Review: "Sphingolipid" including sphingosine, K.-H. Jung and R.R. Schmidt, in lipid synthesis and manufacture (Ed: F.D.Gunstone), CRC press, Sheffield, 1999, p.p.208-249.
- Fattorusso, E.; Mangoni, A. Marine Glycolipids; Springer-Verlag: Wien/New York, 1997; 72.
- 7. Zellner, J. Monatschr. Chem. 1911, 32, 133.
- Carter, H. E.; Celmer, W. D.; Lands, W. E. M.; Mueller, K. L.; Tomizawa, H. H. J. Biol. Chem. 1954, 204, 613.
- 9. Oda, T. J. Pharm. Soc. Jpn. 1952, 72, 142.
- 10. Reindel, F. Annalen 1930, 480, 76.
- Li, Y. -T; Hirabayashi, Y.; DeGasperi, R.; Yu, R. C.; Ariga, T.; Koerner, T. A.
 W.; Li, S. -C. J. Biol. Chem. 1984, 259, 8984.

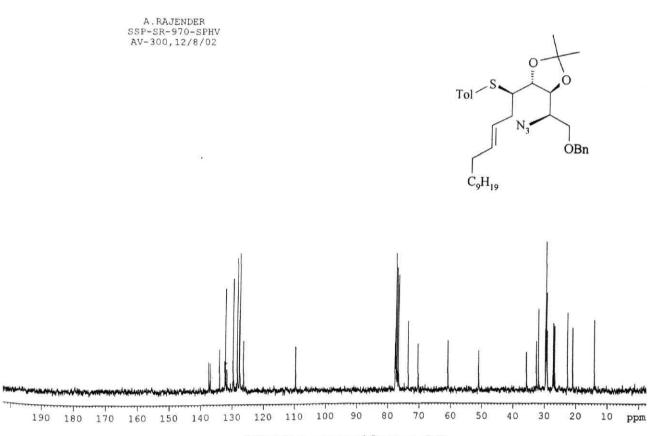
- Karlsson, K. A.; Samuelsson, B. E.; Steen, G. O. Acta Chem. Scand. 1968, 22, 1361; (b) Barenholz, Y.; Gatt, S. Biochem. Biophys. Res. Commun. 1967, 27, 319; (c) Takamatsu, K.; Mikami, M.; Kiguchi, K.; Nozawa, S.; Iwamori, M. Biochem. Biophys. Acta 1992, 1165, 177; (d) Okabe, K.; Keenan, R. W.; Schmidt, G. Biochem. Biophys. Res. Commun. 1968, 31, 137; (e) Wertz, P. W.; Miethke, M. C.; Long, S. A.; Stauss, J. S.; Downing, D. T. J. Invest. Dermatol. 1985, 84, 410; (f) Vance, D. E.; Sweeley, C. C. Lipid Res. 1967, 8, 621; g) Bouchon, B.; PortonKalion, J.; Origazzi, J.; Bornet, H. Biochem. Biophys. Res. Commun. 1987, 143, 827.
- 13. Sisido, K.; Hirowatari, N.; Tamura, H.; Kobata, H. J. Org. Chem. 1970, 35, 350.
- 14. Sugiyama, S.; Honda, M.; Komori, T. Liebigs Ann. Chem. 1990, 1069.
- Motoki, K.; Kobayashi, E.; Uchida, T.; Fukushima, H.; Koezuka, Y. Bioorg. Med. Chem. Lett., 1995, 5,705; (b) Puskareva, M.; Chao, R.; Bielavska, A.; Merrill, A. H.; Crane, H. M.; Lagu, B.; Liotta, D.; Hannun, Y. A. Biochemistry, 1995, 34, 1885; (c) Inokuchi, J.; Usuhi, S.; Jimbo, M. J. Biochem. (Tokyo), 1995, 117, 766; (d) Kok, J. W.; Nikolavakarakashian, M.; Klappe, K.; Alexander, C.; Merrill, A. H. J. Biol. Chem., 1997, 272, 21128.
- Martin, C.; Prunck, W.; Bortolussi, M.; Bloch, R. Tetrahedron: Asymmetry.,
 2000, 11, 1585 and references cited therein; (b) He, L.; Byun, H. -S.; Bittman,
 R. J. Org. Chem. 2000, 65, 7618 and references cited therein; (c) Nugent, T. C.;
 Hudlicky. T. J. Org. Chem. 1998, 63, 510 and references cited therein; (d)
 Imashiro, R.; Sakurai, O.; Yamashita, T.; Horikawa, H. Tetrahedron 1998, 54,
 10657. e) Takikawa, H.; Muto, S.; Mori, K. Tetrahedron 1998, 54, 3141. f) Li, S.;
 Pang, J.; Wilson, W. K.; Schroepfer, Jr. G. C. Tetrahedron: Asymmetry 1999, 10,
 1697.
- Kobayashi, S.; Hayashi, T.; Kawasuji, T. Tetrahedron Lett. 1994, 35, 9573.b)
 Lin, G. Q.; Shi, Z. C. Tetrahedron 1996, 52, 2187. c) Murakami, M.; Ito, H.; Ito,
 Y. Chem Lett. 1996, 185. d) Wee, A. G. H.; Tang, F. Tetrahedron Lett. 1996, 37, 6677.


- (a) Schmidt, R. R.; Maier, T. Carbohydr. Res. 1988, 174, 169; (b) Shirota, O.;
 Nakanishi, K.; Berova, N.; Tetrahedron 1999, 55, 13643; (c) Ref. 10; (d)
 Nakamura T.; Shiozaki, M. Tetrahedron 2001, 57, 9087 and references cited therein.
- Nimkar, S.; Menaldino, D.; Merill, A. H.; Liotta, D. Tetrahedron Lett. 1988, 29, 3037.
- 20. Murakami, T.; Minamikawa, H.; Hato, M. Tetrahedron Lett. 1994, 35, 745.
- 21. Kobayashi, S.; Hayashi, T.; Kawasuji, T. Tetrahedron Lett. 1994, 35, 9573.
- 22. Yamanoi, T.; Akiyama, T.; Ishida, E.; Abe, H.; Amemiya, M.; Inazu, T. Chem. Lett. 1989, 335.
- 23. Nakamura T.; Shiozaki, M. Tetrahedron Lett. 1999, 40, 9063.
- 24. Li, Y. L.; Mao, X. H.; Wu, Y. L. J. Chem. Soc., Perkin Trans I 1995, 1559.
- 25. Martin, C.; Prunck, W.; Bortolussi, M.; Bloch, R. Tetrahedron: Asymmetry., 2000, 11, 1585.
- 26. Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2000, 41, 10309.
- Ndakala, A. J.; Hashemzadeh, M.; So, R. C.; Howell, A. R. Org. Lett. 2002, 4, 1719.
- 28. (a) Solladie, G.; Hutt, J.; Frechou, C. Tetrahedron Lett. 1987, 28, 61. b) Solladie, G.; Frechou, C.; Hutt, J.; Demailly, G. Bull. Soc. Chim. Fr. 1987, 827.
- (a) Solladie, G.; Demailly, G.; Greck, C. Tetrahedron Lett. 1985, 26, 435. b)
 Solladie, G.; Demailly, G.; Greck, C. J. Org. Chem. 1985, 50, 1552. c) Solladie,
 G.; Frechou, C.; Demailly, G.; Greck, C. J. Org. Chem. 1986, 51, 1912. d)
 Carreno, M. C.; Garcia Ruano, J. L.; Martin, A.; Pedregal, C.; Rodrigues, J. H.;
 Rubio, A.; Sanchez, J.; Solladie, G. J. Org. Chem. 1990, 55, 2120.
- 30. Raghavan, S.; Rasheed, M. A.; Joseph, S. C.; Rajender, A. J. Chem. Soc. Chem. Commun., 1999, 1845.
- 31. Chamberlin, A. R.; Dezube, M.; Dussalt, P.; McMills, M. C. J. Am. Chem. Soc., 1983, 105, 5819.
- 32. (a) Rollison, S. W.; Amos, R. A.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1981, 103, 4114; (b) Ref. 32; (c) Tamaru, Y.; Mizutani, M.; Furukawa, Y.;

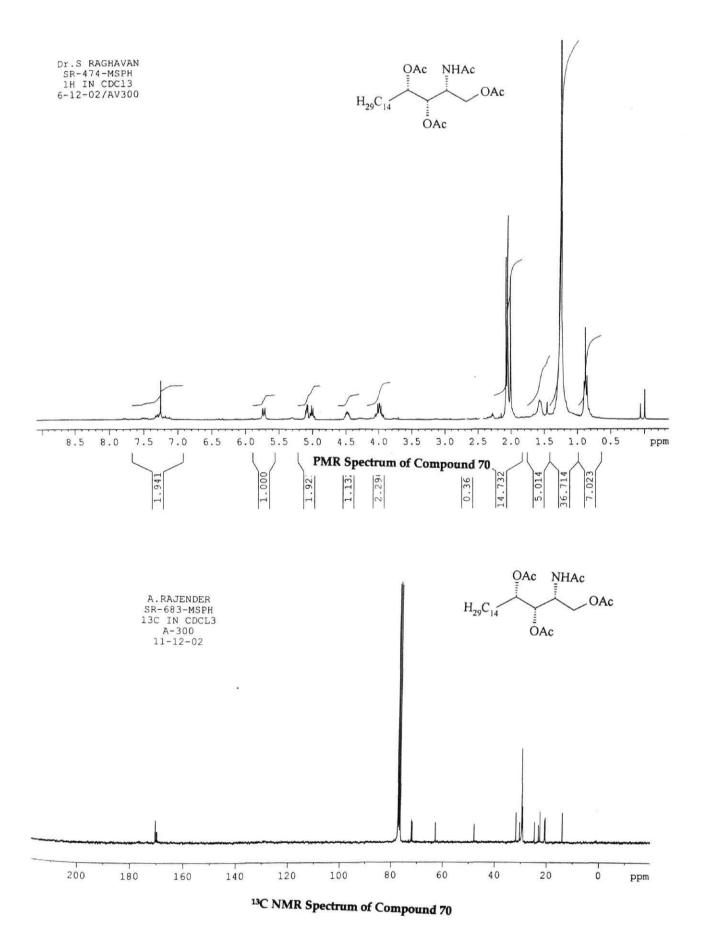
- Kawamura, S.; Yoshida, Z.; Yanagi, K.; Minabe, M. J. Am. Chem. Soc. 1984, 106, 1079.; (d) Tamaru, Y.; Higashimura, H.; Naka, K.; Hojo, M.; Yoshida, Z. Angew. Chem., Int. Ed. Engl. 1985, 24, 1045; (e) Ohfune, Y.; Kurokawa, N. Tetradedron Lett. 1985, 26, 5307; (f) Guindon, Y.; Soucy, F.; Yoakim, C.; Ogilvie, W. W.; Plamondon, L. J. Org. Chem. 2001, 66, 8992.
- 33. Ishibashi, H.; Komatsu, H.; Ikeda, M. J. Chem. Res. (S) 1987, 296.
- 34. Dana, G.; Danechpajouh, H. Bull. Soc. Chim. Fr., 1980, 395.
- 35. Azuma, H.; Tamagaki, S.; Ogino, K. J. Org. Chem. 2000, 65, 3538.
- 36. Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 1287.
- Trost, B. M.; Arndt, H. C.; Strege, P. E.; Verhoeven, T. R. Tetrahedron Lett.
 1976, 3477.
- 38. Herold, P. Helv. Chim. Acta. 1988, 71, 354.
- 39. Caron, M.; Sharpless, K.B. J. Org. Chem. 1985, 50, 1557.

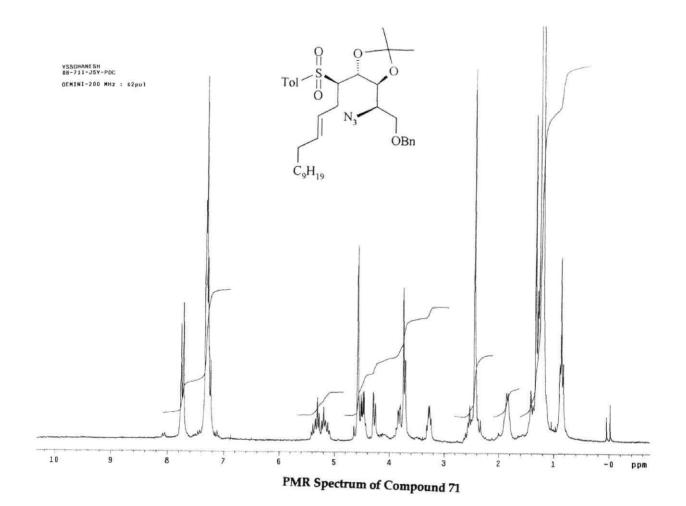


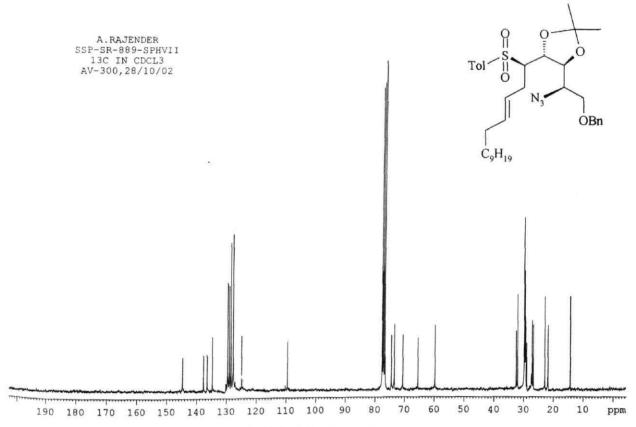

¹³C NMR Spectrum of Compound 63

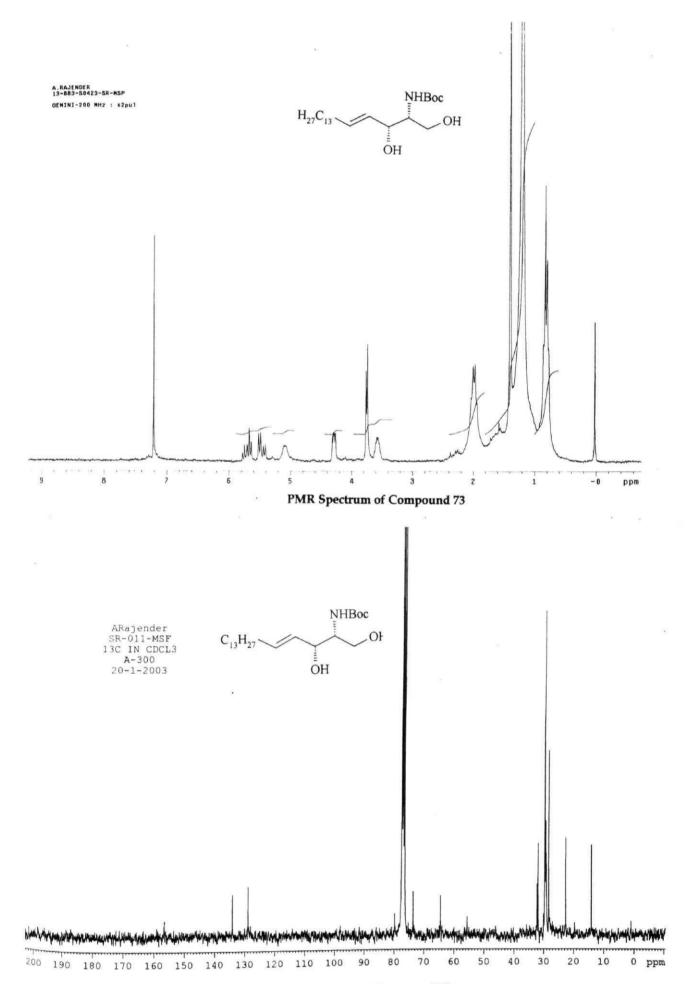


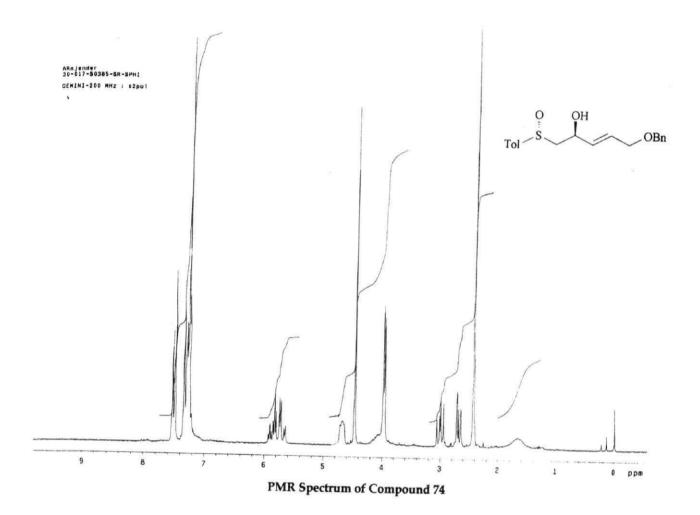
PMR Spectrum of Compound 64

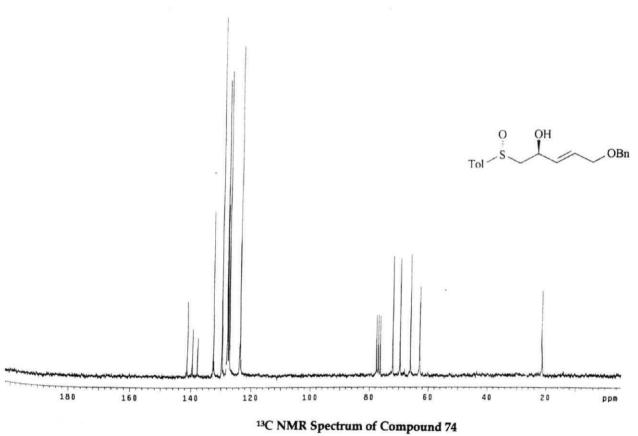

RAJENDER SR-59-SPHB 13C

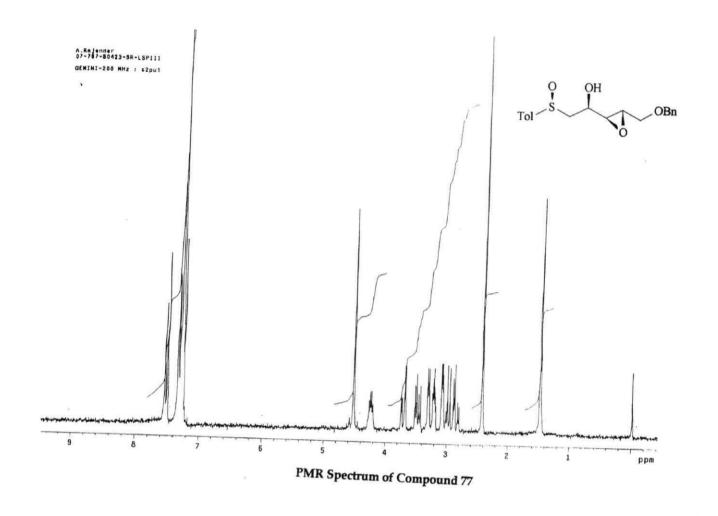


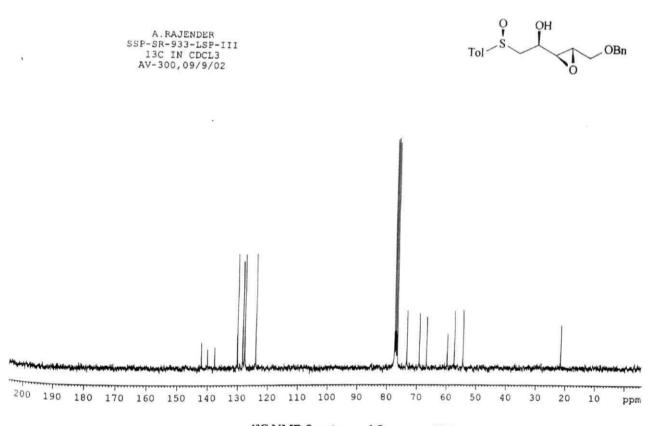


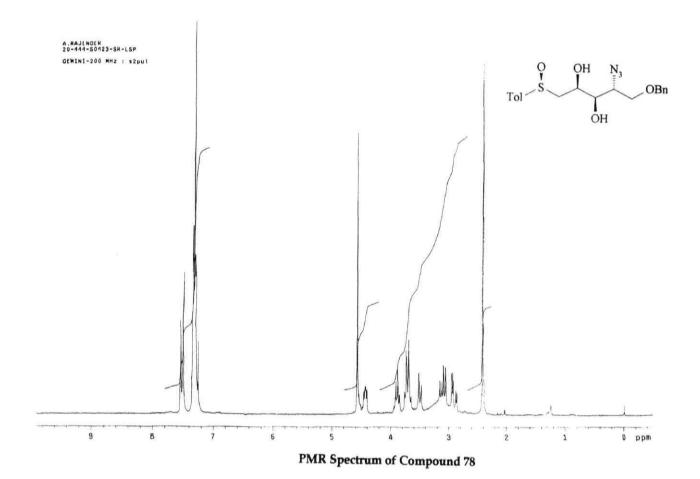

¹³C NMR Spectrum of Compound 67

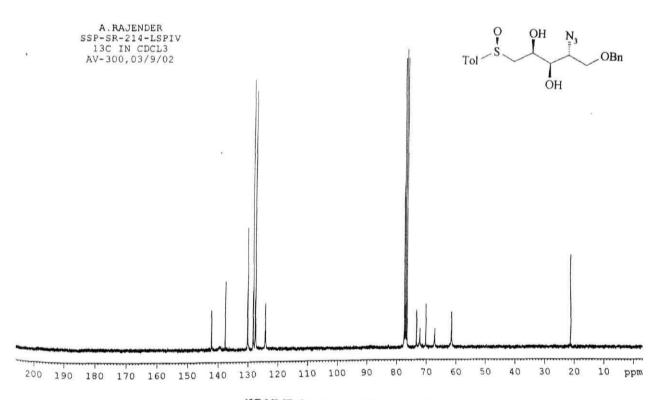







¹³C NMR Spectrum of Compound 71





¹³C NMR Spectrum of Compound 77

¹³C NMR Spectrum of Compound 78

Elemental Composition

File:IICT_HR_LSPIII Ident:4_15 SMD(1,7) PKD(7,3,7,0.50%,0.0,0.00%,F,F) AutoSpec FAB+ Voltage BpI:2659011 TIC:335131136 Flags:NORM

File Text: A RAJENDER LSP-III FAB HRMS

Heteroatom Max: 20 Ion: Both Even and Odd Limits:

347.000 349.000	0.0		5.0		-0.5 20.0	0 19	0	0 4 00	0	0
Mass	ERA	mDa	PPM	Calc. Mass	DBE	C	13C	Н	0	S
348.136261 347.133214	2.1 3.9	-1.2 -1.5	-3.4 -4.3	348.135061 347.131706	8.5 8.5	18 19	1	23 23	4	1

Statistic calculations

	mDa	١	PPM	
Mean	-1.35	1	-3.89	n = 2
RMS	1.36	1	3.92	
SD	0.22	1	0.63	

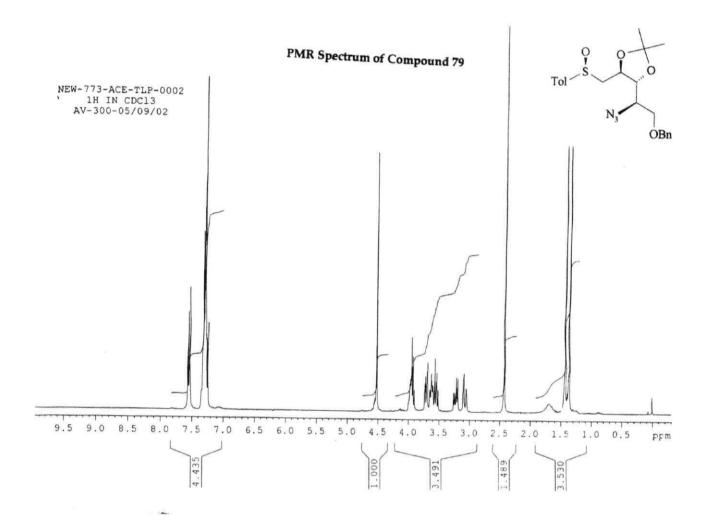
Date: 29-APR-2003

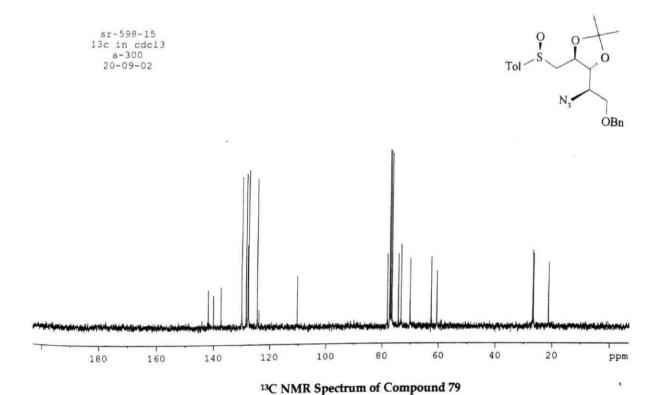
Date: 29-APR-2003

Elemental Composition

File:IICT_HR_LSPIV Ident:9_18 SMD(1,7) PKD(7,3,7,0.50%,0.0,0.00%,F,F) AutoSpec FAB+ Voltage BpI:396640 TIC:72530256 Flags:NORM

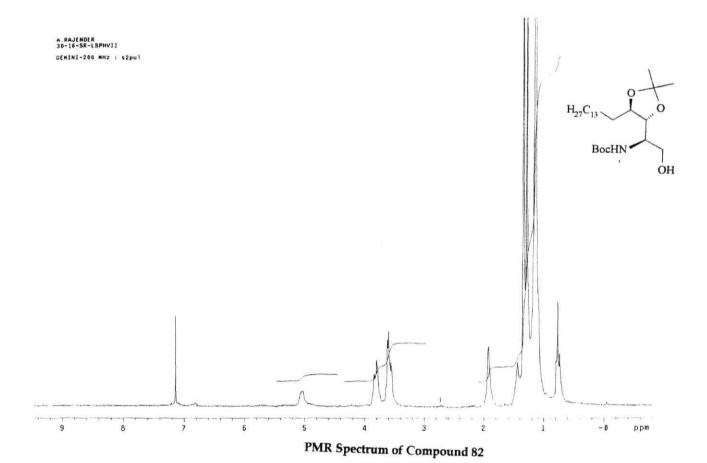
File Text: A RAJENDER LSP-IV FAB HRMS

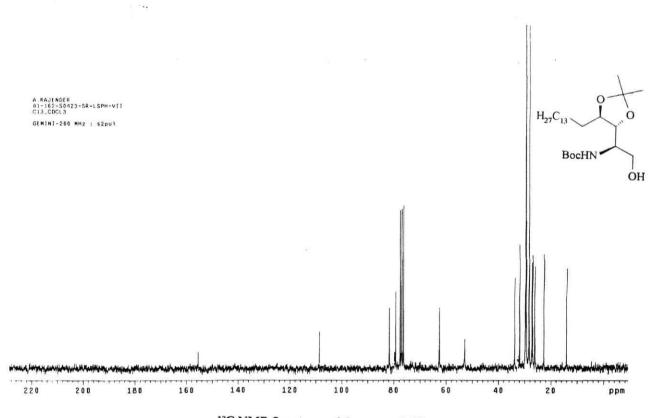

Heteroatom Max: 20 Ion: Both Even and Odd

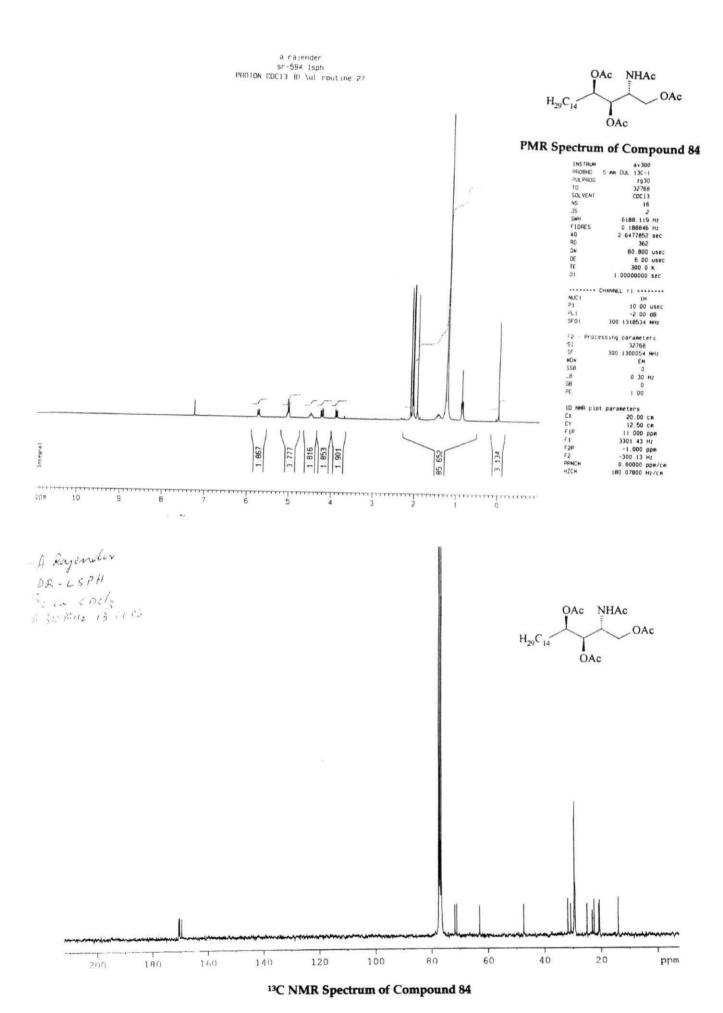

Limits:

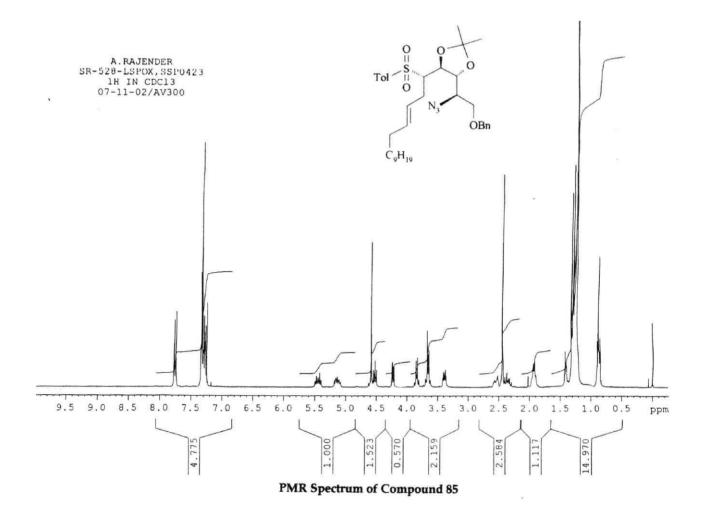

390.000 391.000	0.0 100.0		5.0		-0.5 20.0		30	0	0 4	0
Mass	%RA	mDa	PPM	Calc. Mass	DBE	C	Н	N	O	S
390.147874	16.0	0.9	2.3	390.148753	9.5	19	24	3	4	1

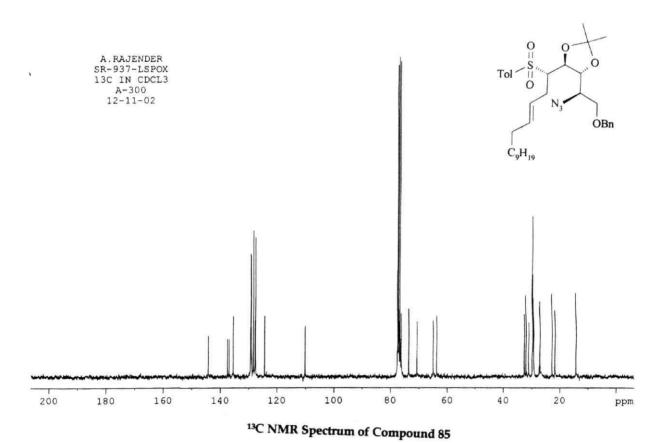
Statistic calculations

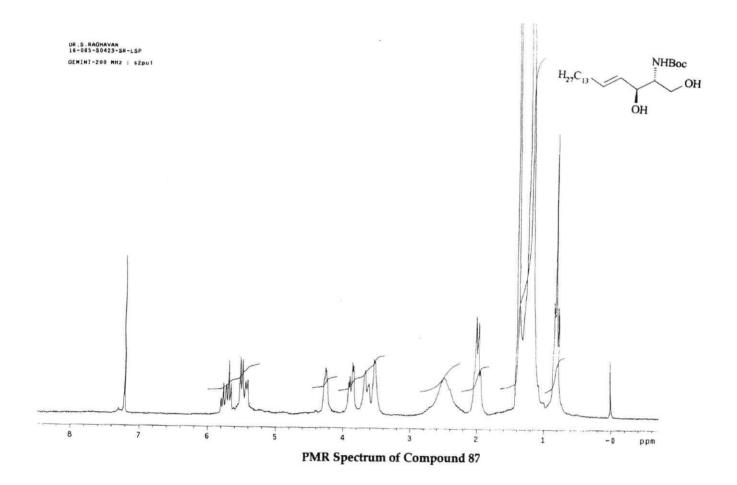

	mDa F	PM				
Mean RMS	0.88 I 0.88 I	2.26 2.26	n = 1	Tol	OH	N ₃ OBn

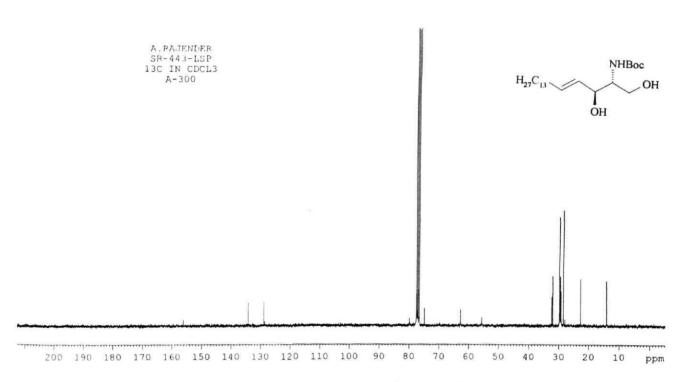





¹³C NMR Spectrum of Compound 81






¹³C NMR Spectrum of Compound 82

¹³C NMR Spectrum of Compound 87

CHAPTER-IV

The design and synthesis of a novel safety-catch linker

Introduction

Over 30 years, solid phase chemistry has been practiced for the synthesis of molecules, first for peptide, and then nucleotide synthesis.¹ The advent of combinatorial techniques for the small molecule synthesis has brought about a major consciousness in the study of solid-phase organic synthesis.² Large numbers of reactions have been translated from solution-phase to solid-phase and more continue to be developed.³

Critical to this process is the attachment of the molecule to the solid phase. Solid phase synthesis usually requires the use of a linker⁴ to attach the compound of interest to the solid support. A linker has been described as a bifunctional protecting group – it is attached to the molecule being synthesized through a bond labile to the cleavage conditions (e.g. silyl ethers, esters, etc.) and is attached to the solid phase polymer through a more stable bond (alkyl ethers, amides or alkanes). The cleavage may involve a range of techniques and give a range of functional groups. The functional group obtained may be dependent not only on the linker but also on the method of cleavage.

The ideal linker should fulfill a number of important features.

- It should be inexpensive and readily available
- > The attachment of starting material would be readily achieved in high yield
- > The linker should be stable to the chemistry used in the synthesis
- Cleavage should be efficient under conditions that do not damage the final product
- ➤ The cleavage method should involve easy workup conditions to enable preparing libraries of compounds and should not introduce impurities that are difficult to remove.

Many work up procedures add to the number of post-cleavage manipulations. Most cleavage methods use excess reagents to ensure complete cleavage. Many use reagents that are volatile, and excess reagent is removed by evaporation. Other methods use reagents that may be removed by lyophilization, for example, NH4OH. A number of cleavage methods, though, use reagents that are not readily removed by simple methods, for example cleavage using lithium aluminum hydride. However, new techniques of high throughput purification, the use of disposable short columns and solid phase reagents to remove impurities may make the introduction of impurities in the cleavage step less problematic than it was only a few years ago.

It is not surprising that a wide range of linkers have been reported in recent years given the range of reactions that a linker may have to survive during the synthesis of a molecule, the different types of molecules and functional groups that may have to survive the cleavage conditions, and the wide range of functional groups through which a substrate may be attached to the solid phase.

The choice of base polymer and linker needs careful consideration when planning a reaction sequence on the solid phase because they may affect the outcome of a synthesis. Poor solvation of the base polymer or the presence of the functional groups may interfere with the planned chemistry. Successful attachment of the linker to the solid-phase is one the important aspects to concentrate.

Types of linkers: The following are most commonly used types of linkers, which are categorized according to the method of cleavage.

- 1. Acid Labile
- 2. Base Labile
- 3. Photo Labile
- 4. Traceless Linkers

5. Safety catch Linkers

Safety-Catch linkers

Safety catch linkers are those that rely on a two-step cleavage process. The first step involves activation of the linker, the second step involves the actual cleavage. The main advantage of these linkers is that if there is a need to use conditions similar to the cleavage conditions during the synthesis, this can be accommodated, as the linker is stable until activated. However, the product being cleaved must be stable to both the activation and cleavage conditions.

Bradley's contribution8:

The linker was designed to cleave acids into the solution and leave the diketopiperazine on the resin. Activation of 1 was achieved by removing the BOC protecting group with TFA, and then cleavage was achieved by neutralization at pH 7-8 to release the phenol 3, which then underwent elimination to give the acid (Scheme 1). A similar approach has been used with BOC protected imidazoles, which then cyclized cleaving the ester bond after deprotection and neutralization.

Pascal's contribution9:

Linker 5 was stable to acidic and neutral conditions. It was activated by treatment with sodium phenoxide and formed the cyclic urea 6 via the isocyanate (Scheme 2). The urea 6 was labile to nucleophiles and was cleaved by treatment with NaOH in 70% iPrOH in water to release the acid.

Scheme 2

Balasubramanian's contribution¹⁰:

Activation of the linker 7 involved removal of the dithioacetal using mercury(II) perchlorate, cleavage of the linker was achieved by irradiation at 350 nm (Scheme 3). The linker was used for attaching carboxylic acids via the ester linkage and alcohols via the carbonate.

Suto's contribution¹¹:

A sulfide linker 9 has been used for pyrimidines. The sulfide linker was stable to both acidic and basic conditions, however, once oxidized to the sulfone 10 with mCPBA, it was cleaved by nucleophilic aromatic substitution by amines to yield substituted pyrimidines (Scheme 4).

Scheme 4

$$CF_3$$
 CO_2Et
 CF_3
 CO_2Et
 CO_2E

Wieland's contribution12:

The diphenylhydrazide linker 12 was activated by oxidation with NBS (Scheme 5). The resulting product was then base labile and was cleaved by treatment with an amine to release the product as an amide. Oxidation and cleavage was achieved in one step, using copper (II) acetate in the presence of the nucleophile and base by Lowe et al.

Kenner's contribution¹³:

The acyl sulfonamide linker developed by Kenner is stable to both acidic and basic conditions prior to activation. Under basic conditions the acidic acyl sulfonamide proton of 15 was removed protecting the acyl group from nucleophilic cleavage. To activate the linker for cleavage the nitrogen was alkylated with either diazomethane, or iodoacetonitrile (Scheme 6). It was then cleaved using nucleophiles, such as hydroxide to afford the carboxylic acid 18, or amines to yield the corresponding amides 19.

Present work

Paramount to the success of solid-phase organic synthesis approach is the availability of suitable polymers and widely applicable linker groups for the attachment of the desired compounds to the polymeric carrier. Recent research in this field has focused on and achieved the successful transfer of a steadily growing number of reaction types to synthesis on solid supports. The demands on the linker groups concerning their stability under different reaction conditions and selective cleavage have risen accordingly. Therefore, new and broadly applicable linkers which are stable under a variety of reaction conditions, but which at the same time allow release of the synthesized products under the mildest conditions, are of great interest in organic synthesis and combinatorial chemistry. This chapter deals with the development of glycine as a new safety catch linker¹⁴ for solid-phase organic synthesis allowing for the attachment to polymer support and release of the alcohol/phenol under mild conditions.

The central idea of the design was product alcohol/phenol release by cyclative cleavage via hydantoin formation on the solid support. Activation of the linker, involves reaction with an isocyanate to afford a urea, which upon treatment with a base would undergo cyclization releasing the target alcohol (Scheme 7).

The polymer carrier chosen for attachment to the linker was commercially available aminomethylpolystyrene resin 23 with an average loading capacity of 1.2 mmol/g. Piperonyl alcohol 20 was reacted with chloroacetyl chloride in the presence of Et₃N to afford the chloroacetate 21, which was then subjected under Finkelstein's reaction conditions to yield the iodoacetate 22. Iodoacetate 22 was attached to aminomethylpolystyrene resin 23 by reacting in DMF at ambient temperature in the presence of Hunig's base. Resin 24 showed a strong absorption at 1734 cm⁻¹ corresponding to the C=O stretching in its FTIR spectrum. The linker 24 was activated by treatment with benzyl isocyanate in a mixture of DMF/toluene. Upon treatment with neat diisopropyl amine 25 released piperonyl alcohol 20 via cyclative cleavage (Scheme 8).

Scheme 8

Reagents and conditions: (a) ClCH₂COCl, Et₃N, DCM, 0 °C, 20 min, 100%; (b) NaI, acetone, r.t., 4 h, 96%; (c) ¹Pr₂NEt, DMF, r.t., 16 h, 80%; (d) PhCH₂NCO, toluene/DMF (1:1), r.t., 8 h; (e) ¹Pr₂NH, r.t., 1 h, 75%.

Fmoc quantitation¹⁶ is commonly used for determining the amount of amine present on solid support. Thus, amino functionality of the resin 24 was protected as its Fmoc derivative by treatment with Fmoc-Cl in the presence of a base. The resulting Fmoc derivative was then treated with piperidine in DMF to afford Fmoc adduct. Submitting the values in equation 1, it was observed that loading was achieved in 80% in the coupling reaction of 23 with 22.

procedure:

5 mg of resin was weighed into a 10 mL volumetric flask. To the flask were added 0.4 mL Piperidine and 0.4 mL of dichloromethane. The mixture was allowed to cleave for 30 min., at which point MeOH (1.6 mL) and dichloromethane (7.6 mL) were added to bring the total volume to 10 mL. The spectrophotometer was zeroed with a blank solution containing 0.4 mL of piperidine, 1.6 mL of MeOH, and dichloromethane to make 10 mL. The absorbance was measured at 301nm and the loading level was calculated by using the following equation.

$$A_{301} \times 10$$
Loading (mmol/g) = ---- Eqn. 1
$$7800 \times Wt$$

A = Absorbance measured at 301nm

Wt = weight of the resin taken

In another approach the *tert*-butylglycine ester **28** was attached to Merrifield resin **27** in the presence of Hunig's base and NaI in DMF. *tert*-Butyl ester **29** was deprotected by treating the resin with trifluoroacetic acid in dichloromethane to afford the amine hydrochloride which on treatment with Et₃N yield the free amino acid **30**. The suitability of the polymer-linker-conjugate **30** for solid-phase

synthesis was investigated for a variety of synthetic transformations. To this end, first the carboxyl group of the linker 30 was esterified with *p*-iodobenzylalcohol 31 and the polymer bound aryl iodide 32 generated was then further transformed by Suzuki¹⁷ and Sonogoshira¹⁸ reactions to furnish 33 and 34. Two-step activation and cleavage protocol afforded the products 35 and 36 (Scheme 9).

Scheme 9

Reagents and conditions: (a) ¹Pr₂NEt, NaI, DMF, 65 °C, 36 h; (b) TFA/DCM (1:1), r.t., 3h; (c) DCC, HOBt, cat. DMAP, DCM, r.t., 8 h; (d) Pd(OAc)₂, PhB(OH)₂, K₂CO₃, dioxane/H2O, (7:1), 100 °C, 24 h; (e) PdCl₂(PPh₃)₂, CuI, Et₃N, dioxane, r.t., 24 h; (f) i) PhCH₂NCO, toluene/DMF (1:1), r.t., 8 h, ii) ¹Pr₂NH, r.t., 1 h.

In a further experiment to test the nitile oxide cycloaddition reaction, the polymer-linker 30 was esterified with methyl-3-hydroxycinnamate 37 resulting polymer bound unsaturated ester 38. The polymer bound unsaturated ester was then treated with nitropropane, 4-methoxyphenylisocyanate¹⁹ in the presence of catalytic amounts of triethylamine to provide 39 and 40. Cleavage from solid-support afforded the regioisomeric cycloadducts 41 and 42 in a ratio of 4:1 (Scheme 10).

Scheme 10

Reagents and conditions: (a) DCC, HOBt, cat. DMAP, DCM, r.t., 8 h; (b) PrNO₂, 4-OMe-PhNCO, cat.Et₃N, benzene, r.t., 16 h; (c) i) PhCH₂NCO, toluene/DMF (1:1), r.t., 8 h, ii) iPr₂NH, r.t., 1 h.

In another experiment Mitsunobu esterification^{14c} was investigated (Scheme 11). For this reaction, hydroquinone 43 was coupled to linker 30 and the resulting polymer bound phenol 44 was reacted with *p*-iodobenzylalcohol under Mitsunobu reaction conditions to yield the phenyl ether 45. Subsequent activation and cleavage reactions afforded the alcohol 46.

Scheme 11

OH
$$\frac{a}{43}$$
 OH $\frac{a}{44}$ OH $\frac{a}{6}$ PO $\frac{45}{46}$ P = C(O) $\frac{45}{46}$ P = H

Reagents and conditions: (a) DCC, HOBt, cat. DMAP, DCM, r.t., 8 h; (b) DEAD, PPh3, THF, r.t., 16 h; (c) i) PhCH₂NCO, toluene/DMF (1:1), r.t., 8 h, ii) iPr₂NH, r.t., 1 h.

Experimental

benzo[d][1,3]dioxol-5-ylmethyl 2-iodoacetate, 22.

To the solution of the piperonyl alcohol **20** (304 mg, 2 mmol) in dichloromethane (8 mL) at 0 °C, triethylamine (0.56 mL, 4 mmol) and chloroacetyl chloride (226 mg, 2 mmol) were added and maintained at the same temperature for 25 min. The reaction mixture was diluted with dichloromethane and washed successively with 10% aq. citric acid solution, water and brine. Drying over sodium sulfate and concentration afforded the chloroacetyl ester **21** in nearly quantitative yield, which was taken ahead to the next step without further purification. PMR (CDCl₃, 200 M Hz), δ 6.90-6.78 (m, 3H), 6.0 (s, 2H), 5.12 (s, 2H), 4.04 (s, 2H).

To the above compound in acetone (4 mL), NaI (1.5 g, 10 mmol) was added and stirred at r.t. for 4 h. The solvent was evaporated, the residue taken into ethyl acetate, washed with water and brine. Evaporation of the solvent under reduced pressure afforded the iodoacetyl ester 22 in 96% yield. PMR (CDCl₃, 200 M Hz), δ 6.89-6.78 (m, 3H), 6.0 (s, 2H), 5.07 (s, 2H), 3.71 (s, 2H).

Immobilization of iodoacetyl ester 22, by alkylation Preparation of 24.

To the suspension of the aminomethyl polystyrene resin 23 (500 mg, 0.6 mmol) in DMF (4 mL) was added the solution of iodoacetyl ester 22 (384 mg, 1.2 mmol) in DMF (1 mL) followed by Hunig's base (1.0 mL, 6 mmol). The reaction mixture was shaken at room temperature for 16 h. The resin was filtered and washed sequentially with DMF (2×10 mL), dioxane/water (9:1, 2×10 mL), dioxane (2×10 mL), MeOH (2×10 mL), MeOH/DCM (1:1, 2×10 mL), DCM (3×10 mL) and finally with ether (2×10 mL). The resin 24 was dried under vacuum and weighed 610 mg.

Immobilisation of alcohols/phenols directly to the solid support Preparation of 29.

To the suspension of Merrifield resin 27 (500 mg, 1 mmol) in dry DMF (4 mL) was added NaI (150 mg, 1 mmol), t-butyl glycine.HCl 28 (502 mg, 3 mmol) followed by Hunig's base (1.0 mL, 6 mmol). The reaction mixture was heated at 65 ℃ for 36 h and cooled to r.t. The resin was filtered, washed as detailed earlier and dried under vacuum to yield 580mg of 29. The loading of glycine ester was found to be 80% by the Fmoc quantitation assay.

Preparation of 30.

The resin 29 (500 mg, 0.69 mmol) was suspended in TFA/DCM (1:1, 5 mL) at 0 °C and allowed to attain r.t. gradually and let stir at the same temperature for a further 3 h period. The resin was washed with Et₃N/DCM (0.5: 9.5, 2×25 mL), DCM (2×25 mL) and dried under vacuum to yield 30 (465 mg).

General procedure for the DCC coupling:

Preparation of 32.

To the suspension of the resin 30 (500mg, 0.67 mmol) in DCM (5 mL), were added HOBt (89 mg, 0.67mmol) and *p*-iodo benzyl alcohol 31 (467 mg, 2.0 mmol). The mixture was cooled to 0 °C, DCC (139 mg, 0.67mmol) was added and allowed to attain r.t. Stirring was continued for another 6 h at r.t. The resin was then washed sequentially with MeOH (5×15 mL), MeOH/DCM (1:1, 3×20 mL), DCM (2×15 mL) and dried under vacuum to yield 601mg of the resin 32.

Preparation of 38.

The above-mentioned procedure was used for the immobilization of *m*-hydroxy methyl cinnamate 37 onto 500 mg of the resin 30 to yield 580 mg of the resin 38.

Preparation of 44.

Following the general procedure hydroquinone was tagged onto the resin 30 (500 mg, 0.67 mmol) to yield 543mg of 44.

General procedure for activation and cleavage from the solid-support:

To the suspension of the resin 24 (500mg, 0.49 mmol) in DMF/Toluene (1:1, 10 mL) was added benzyl isocyanate (0.62 mL, 5 mmol). The mixture was shaken at r.t. for 6 h. The resin was then washed as described earlier and dried. The vacuum dried resin was suspended in dry diisopropyl amine (1 mL) and shaken for 1 h at r.t. The resin was filtered and washed with CH₂Cl₂ (2x10 mL). The combined filtrates were evaporated to afford piperonyl alcohol (56 mg) in 75% yield.

4-phenylphenylmethanol, 35.

To the suspension of the resin 32 (500 mg, 0.39 mmol) in dioxane (5 mL), phenyl boronic acid (475 mg, 3.9 mmol), K₂CO₃ (1.15 g, 8.3 mmol) dissolved in water (2.5 mL) was added and the resulting suspension was degassed for 30 min. Pd(OAc)₂ (2mg, 0.01 mmol) was added and the reaction mixture was maintained at 100 °C for 24 h. The reaction mixture was allowed to attain r.t., the resin filtered, washed sequentially with dioxane (6x5 mL), water (6x5 mL), water/EtOH (1:1, 3x5 mL), EtOH (3x5 mL) and ether (3x5 mL). The resin was dried under vacuum and subjected to the same reaction conditions once again. Filtration and drying afforded 481mg of resin 33. The resin was subjected to the same reaction conditions once again. Following the general procedure for cleavage, the crude Suzuki coupling product 35 was obtained. Purification by column chromatography using 12% EtOAc/petroleum ether afforded pure 35 (71 mg) in 70% yield.

PMR (200 MHz, CDCl₃) : δ 7.59-7.52 (m, 4H), 7.43-7.20 (m, 5H), 4.71 (s, 2H), 1.66 (bs, 1H).

¹³C NMR (50 MHz, CDCl₃): δ 64.6, 126.9, 127.0, 127.3, 127.7, 128.6, 139.7, 140.3,

140.6.

m/z(EI)

: 184 [M+]

4-(2-Phenyl-1-ethynyl)phenylmethanol, 36.

The mixture of the resin 32 (500 mg, 0.39 mmol), Et₃N (5.15 mL, 38mmol), CuI (14mg, 0.08 mmol) and phenyl acetylene (118 mg, 1.16 mmol) in dioxane (10 mL) was degassed for 30 min. and then Pd(PPh₃)₂Cl₂ (27 mg, 0.04 mmol) was added in one portion and shaken at 25 °C for 24 h. The resin was filtered, washed and dried. The resin was subjected to the same reaction conditions once again to afford 490 mg of 34. Following the general cleavage protocol the crude Sonogoshira product 36. Purification by column chromatography using 12% EtOAc/pet. ether afforded pure 36 (58 mg) in 72% yield.

PMR (200 MHz, CDCl₃) : δ 7.57-7.49 (m, 4H), 7.38-7.30 (m, 5H), 4.64 (s, 2H), 1.85

(bs, 1H).

¹³C NMR (50 MHz, CDCl₃): δ 64.7, 89.1, 89.4, 122.4, 123.1, 126.8, 128.2, 128.3, 131.5,

131.7, 140.9.

m/z (EI)

: 208 [M+]

Preparation of 40&42:

To the suspension of the resin 38 (500 mg, 0.43 mmol) in benzene (10 mL) were added nitropropane (115 mg, 1.29 mmol), *p*-methoxyphenyl isocyanate (577 mg, 2.58 mmol) and Et₃N (70 μL, 0.5 mmol). The resulting mixture was shaken at r.t. for 24 h. The resin was washed sequentially with MeOH (5×10 mL), MeOH/DCM (1:1, 3×5 mL), DCM (2×5 mL) and finally with ether (2×5 mL). The weight of the resin after drying was 524mg. Cleavage from solid-support afforded the crude product mixture. Purification by column chromatography using 8%

EtOAc/pet. ether as the eluent afforded 40 (50 mg) and 42 (13 mg) in a 4:1 ratio in 70% combined yield.

Methyl 3-ethyl-5-(3-hydroxyphenyl)-4,5-dihydro-4-isoxazolecarboxylate, 40.

Viscous liquid.

PMR (200 MHz, CDCl₃) : δ 7.21 (t, J= 5.71 Hz, 1H), 6.9 (bs, 2H), 6.8 (m, 2H), 5.81

(d, J = 8.57 Hz, 1H), 4.01 (d, J = 8.57 Hz, 1H), 3.82 (s, J = 8.57 Hz, 1Hz), 3.82 (s, J = 8.57 Hz), 3.82 (s, J = 8.57 Hz), 3.82 (s, J

3H), 2.52 (m, 1H), 2.35 (m, 1H), 1.2 (t, J= 9.1 Hz, 3H).

¹³C NMR (50 MHz, CDCl₃): δ 10.5, 20.7, 53.0, 63.0, 84.6, 112.4, 115.7, 117.3, 130.1,

140.9, 156.7, 156.8, 168.8.

m/z(EI)

: 249 [M+]

 $Methyl\ 3-ethyl-4-(3-hydroxyphenyl)-4, 5-dihydro-5-isoxazolecarboxylate,\ 42.$

Viscous oil.

PMR (200 MHz, CDCl₃) : δ 7.10 (d, J= 7.12 Hz, 1H), 6.91-6.66 (m, 4H), 4.85 (d, J

= 5 Hz, 1H), 4.45 (d, J = 5 Hz, 1H), 3.79 (s, 3H), 2.39-

2.04 (m, 2H), 1.08 (t, J = 6.6 Hz, 3H).

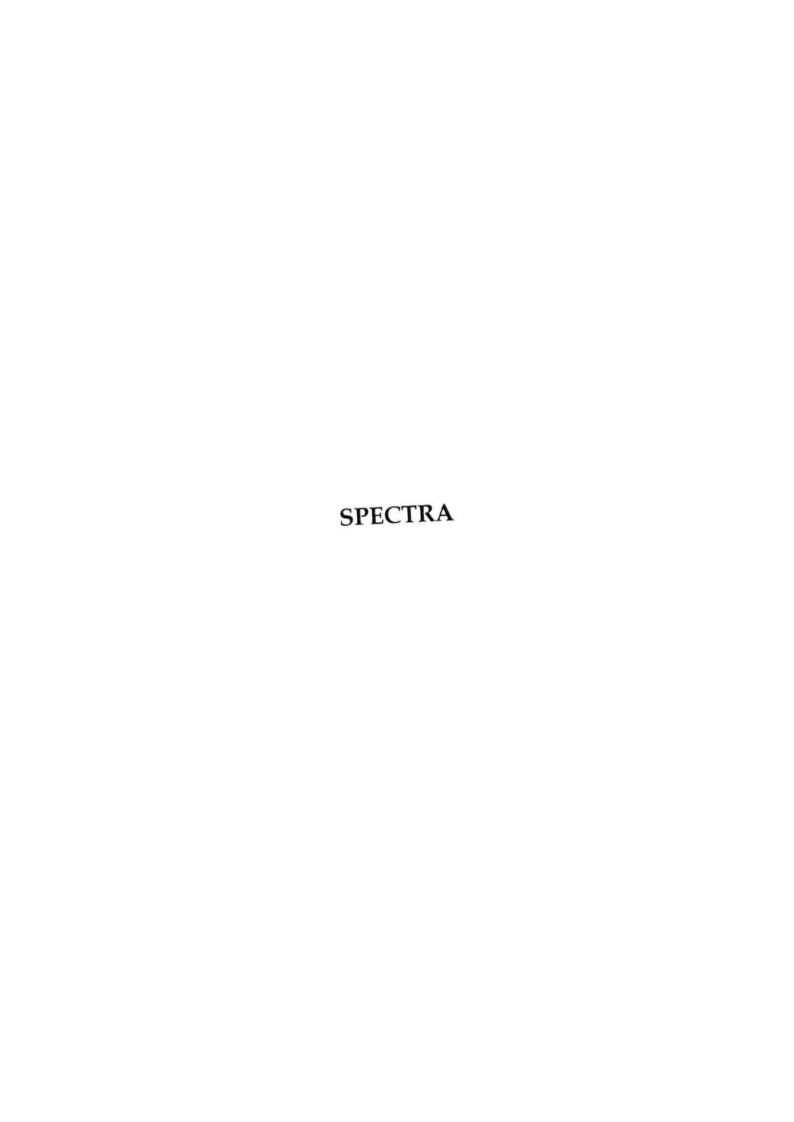
m/z (EI) : 249 [M⁺]

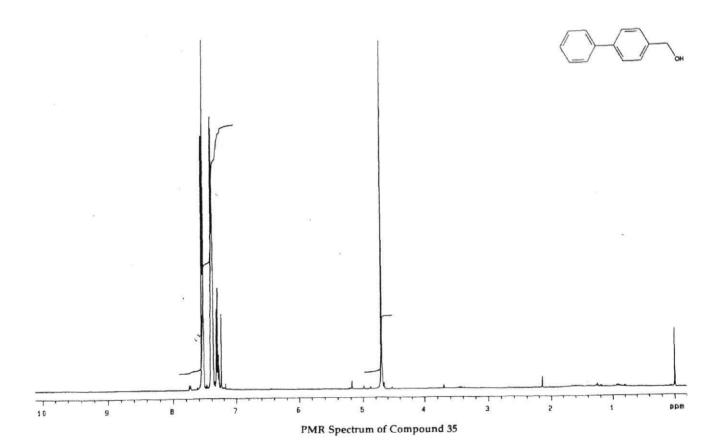
4-(4-Iodobenzyloxy)phenol, 46.

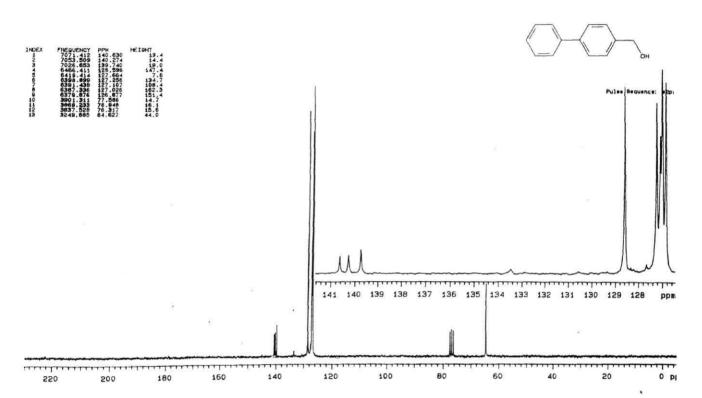
To the suspension of the resin 44 (500 mg, 0.43 mmol) in THF (5 mL) were added TPP (282 mg, 1.08 mmol), *p*-iodo benzyl alcohol (251mg, 1.08 mmol) and cooled to 0 °C. DEAD (187 mg, 1.08 mmol) was added, the temperature allowed to rise to r.t and stirred for further 8 h. The resin was filtered and washed successively with dioxane (3x5 mL), MeOH (3x5 mL), MeOH/DCM (1:1, 3x5 mL) and then with DCM (2x5 mL). The resin was dried to afford 45 (565 mg). Cleavage from the solid-support afforded the crude product 46. Purification by column chromatography using 15% EtOAc/petroleum ether as the eluent afforded pure 16 (51mg) in 60% yield.

PMR (200 MHz, CDCl₃) : δ 7.68 (d, J= 7.59 Hz, 2H), 7.14 (d, J= 7.59 Hz, 2H),

6.8-6.63 (m, 5H), 4.92 (s, 2H).

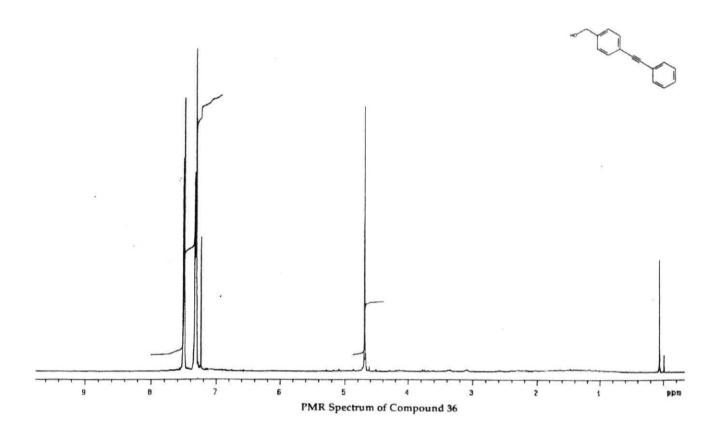

¹³C NMR (75 MHz, CDCl₃): δ 151.0, 150.9, 136.8, 136.7, 128.7, 115.4, 115.3, 69.4.

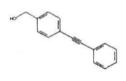

m/z (EI) : 327 [M⁺]

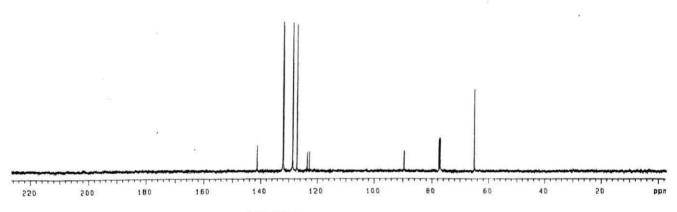

References

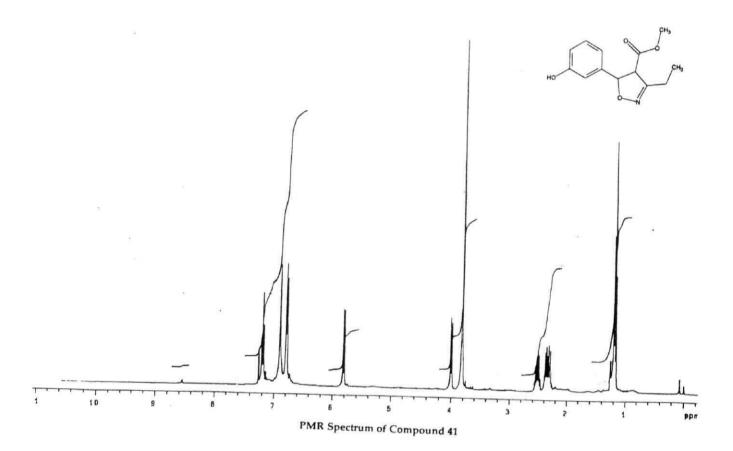
- Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149; (b) Atherton, E.; Sheppard, R.
 C. Solid Phase Peptide Synthesis A Practical Approach; IRL Press: Oxford, 1989.
- For excellent reviews on solid-phase synthesis refer: a) Special issue on combinatorial chemistry, Chem. Rev. 1997, 97, 349; b) Acc. Chem. Res. 1996, 29, No. 3; c) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1996, 52, 5427; d) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1997, 53, 5643; e) Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1998, 54, 15385; f) Lebl, M. J. Comb. Chem. 1999, 1, 3.
- James, I. W. A Compendium of Solid-Phase Chemistry Publications. In Annual Reports in Combinatorial Chemistry and Molecular Diversity; Moos, W. H.; Pavia, M. R.; Ellington, A. D.; Kay, B. K. Eds; ESCOM: Leiden, The Netherlands, 1997; Vol. 1, 326; (b) James, I. W. *Tetrahedron* 1999, 55, 4855 and references cited therein; (c) Backes, B. J.; Ellmann, J. A. *Curr. Opin. Chem. Biol.* 1997, 1, 86; (d) Stieber, F.; Grether, U.; Waldmann, H. *Angew. Chem. Int. Ed. Engl.* 1999, 38, 1073.
- 4. Morphy, J. R. Current Opinion in Drug Discovery and Development 1998, 1, 59.
- 5. Zeng, L.; Burton, L.; Yung, K.; Shushan, B.; Kassel, D. B. *J. Chromatography* 1998, 794, 3.
- Booth, R. J.; Hodges, J. C. J. Am. Chem. Soc. 1997, 119, 4882; (b) Dressman, B. A.;
 Singh, U.; Kaldor, S. W. Tetrahedron Lett. 1998, 39, 3631; (c) Kulkarni, B. A.;
 Ganesan, A. Tetrahedron Lett. 1998, 39, 4369.
- 7. Patek, M. Int. J. Peptide Protein Res. 1993, 42, 97.
- 8. Atrash, B.; Bradley, M. J. Chem. Soc., Chem. Commun. 1997, 1397

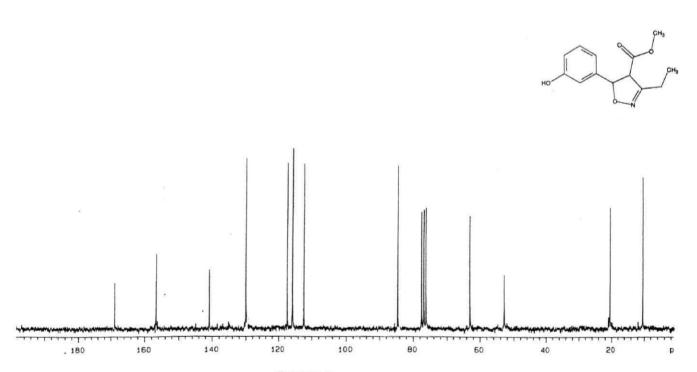
- Sola, R.; Saguer, P.; David, M.; Pascal, R. J. Chem. Soc., Chem. Commun. 1993, 1786.
- 10. Routledge, A.; Abell, C.; Balasubramanians, S. Tetrahedron Lett. 1997, 38, 1227.
- 11. Gayo, L. M.; Suto, M. J. Tetrahedron Lett. 1997, 38, 211.
- 12. Wieland, T.; Lewalter, J.; Birr, C. Liebigs Ann. Chem. 1970, 740, 31.
- Kenner, G. W.; McDermott, J. R.; Sheppard, R. C. J. Chem. Soc., Chem. Commun. 1971, 636; (b) Backes, B. J.; Ellman, J. A. J. Am. Chem. Soc. 1994, 116, 11171; (c) Backes, B. J.; Virgilio, A. A.; Ellman, J. A. J. Am. Chem. Soc. 1996, 118, 3055; (d) Link, A.; van Calenbergh, S.; Herdewijn, P. Tetrahedron Lett. 1998, 39, 5175.
- Osborn N. J.; Robinson, J. A. *Tetrahedron* 1993, 49, 2873; b) Xiao, X. -Y.; Nova,
 M. P.; Czarnik, A. W. *J. Comb. Chem.* 1999, 1, 379; c) Grether, U.; Waldmann, H.
 Angew. Chem. Int. Ed. Engl. 2000, 39, 1629.
- 15. Kim, S. W.; Ahn, S. Y.; Koh, J. S.; Lee, J. H.; Ro, S.; Cho, H. Y. *Tetrahedron Lett.* 1997, *38*, 4603.
- 16. Bunin, B. A. The Combinatorial Index, Academic Press, San Diego, 1998, 219.
- 17. Miyaura, N.; Yanagi, T.; Suzuki, A. *Synth. Commun.* 1981, 11, 513; b) Wendeborn, S.; Berteina, S.; Brill, W. K. -D.; DeMesmaeker, A. *Synlett* 1998, 671 and references cited therein.
- De Meijere, A.; Meyer, F. E. Angew. Chem. Int. Ed. Engl. 1994, 33, 2379. b)
 Berteina, S.; Wendeborn, S.; Brill, W. K. -D.; DeMesmaeker, A. Synlett 1998, 676 and references cited therein.
- 19. Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339.

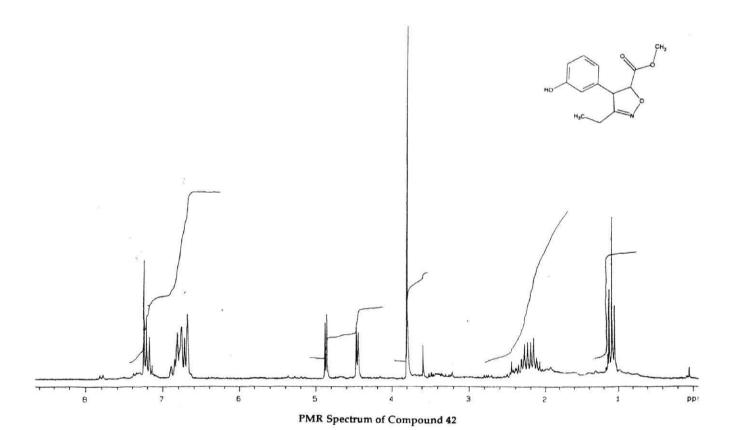





¹³C NMR Spectrum of Compound 35







¹³C NMR Spectrum of Compound 36

¹³C NMR Spectrum of Compound 41

PMR Spectrum of Compound 46

List of publications

- Stereoselective bromohydrin formation from β-hydroxysulfoxides mediated by the pendant sulfoxide group
 Raghavan, M. Abdul Rasheed, Suju C. Joseph and A. Rajender Chem. Commun., 1999, 42, 1845.
- Catalytic Oxidation of Thiols to Disulfides with Vanadyl Acetylacetonate (VO(acac)₂)
 Sadagopan Raghavan, A. Rajender, Suju C. Joseph and M. Abdul Rasheed
 Synth. Commun., 2001, 31, 1477.
- Target alcohol/phenol release by cyclative cleavage using glycine as a safety-catch linker
 Sadagopan Raghavan and A. Rajender Chem. Commun., 2002, 1572.
- 4) Novel, Short, Stereospecific Synthesis of *lyxo-*(2*R*,3*R*,4*R*)-phytosphingosine and *erythro-*(2*R*,3*S*)-sphingosine Sadagopan Raghavan and **A. Rajender** *J. Org. Chem.* **2003**, 68, 7094.
- 5) Novel, Efficient and Stereospecific Synthesis of *xylo-*(2*R*,3*S*,4*S*)-phytosphingosine and *threo-*(2*R*,3*R*)-sphingosine Sadagopan Raghavan, A. Rajender and J. S. Yadav *Tetrahedron Asymmetry*, **2003**, 14, 2093.
- 6) Synthesis of Tetrahydrofurans via Silicon Promoted Pummerer Type Reaction Sadagopan Raghavan, A. Rajender, M. Abdul Rasheed and S. RamakrishnaReddy Tetrahedron Lett. 2003, 44, 8253.
- Regio- and stereoselective synthesis of 1,3-aminoalcohol derivatives from allyamine derivatives via internal sulfinyl group participation
 Raghavan, A. Rajender, Suju C. Joseph and M. Abdul Rasheed Tetrahedron Asymmetry, 2004, 15, ASAP.
- 8) Stereoselective synthesis of (-)-allosedamine Sadagopan Raghavan and A. Rajender Tetrahedron Lett. 2004, 45, ASAP.
- 9) Stereoselective synthesis of (1*R*,3*R*)-HPA-12 via diastereoselective addition of (*R*)-(+)-methyl *p*-tolyl sulfoxide anion to an imine. Sadagopan Raghavan and **A. Rajender** (Communicated).

ABOUT THE AUTHOR

A. Rajender was born in Kamareddy, a village in Nizamabad district of Andhra Pradesh, India, in 1974. He received his elementary and secondary school education in Kamareddy. After completion of B.Sc. and M.Sc. degrees from Osmania University, Hyderabad, he joined the School of Chemistry, University of Hyderabad for his Ph.D. degree in 1998.