SYNTHESIS, STRUCTURE AND REACTIVITY OF SOME CYCLIC PHOSPHORUS COMPOUNDS

A THESIS
SUBMITTED FOR THE DEGREE OF

Poctor of Philosophy

M. VIJJULATHA

SCHOOL OF CHEMISTRY

UNIVERSITY OF HYDERABAD

HYDERABAD-500 046

INDIA

DECEMBER 1998

Dedicated to my

Mother-in-law
(Late Smt. M. Maisamma)
and
Father-in-law
(Sri M. Narsimha Rao)

CONTENTS

STA	FEMENT	iii						
CER	TIFICATE	iv						
ACK	NOWLEDGMENTS	v						
LIST	OF PUBLICATIONS	vii						
SYN	OPSIS	viii						
PAR	T 1: PHOSPHAZENES							
1.1	Introduction	1						
1.11	Reactions with monofunctional nucleophiles	4						
1.12	Reactions with difunctional nucleophiles	6						
1.13	Other aspects of cyclophosphazene chemistry	16						
1.14	Structural aspects	16						
1.15	Objectives of the present work	19						
1.2	Results and Discussion							
1.21	Synthesis, reactivity and spectra	20						
1.22	Structures	29						
1.23	Conclusions	41						
1.3	Experimental	42						
1.4	References	52						
PAR	T 2: CYCLODIPHOSPHAZANES							
2.1	Introduction	59						
2.11	Relative orientation in [XP-(NR) ₂ -PY]	61						
2.12	Synthesis of diazadiphosphetidines with X and Y							
	as different groups	65						
2.13								
	X and Y form part of the difunctional reagent HXYH							
2.14	Oxidative addition reactions	70						

2.15	X-ray structural studies							
2.16	Objectives of the present work							
2.2	Results and Discussion	76						
2.21	Bis aryloxy/ alkoxy derivatives [(RO)PN-t-Bu] ₂							
2.22	Reaction of $[ClPN-t-Bu]_2(2.1)$ with diols	79						
2.23	Unsymmetrically substituted cyclodiphosphazanes	83						
2.24	Oxidative addition reactions	85						
2.25	X-ray structural studies	89						
2.3	Experimental	101						
2.4	References	115						
PAR	T 3: REACTION OF CHLOROPHOSPHORUS(III)	AND						
	CHLOROPHOSPHORUS(V) COMPOUNDS	WITH						
	LEWIS ACIDS AND BASES							
3.1	Introduction	119						
3.11	Objectives of the present work	126						
3.2	Results and Discussion	127						
3.21	Reactions of chlorophosphates with bases	127						
3.22	Reaction of chlorophosphorus(III) compounds with bases	136						
3.23	Reactions of P(III) compounds (OCH ₂ CMe ₂ CH ₂ O)PCl (3.39)							
	and (2,6-Me ₂ -C ₅ H ₈ N) ₂ PCl (3.45) with antimony pentachloride							
	(a Lewis acid)	137						
3.24	Reaction of (OCH ₂ CMe ₂ CH ₂ O)P(O)Cl (3.24) with							
	antimony trichloride	137						
3.25	X-ray structural studies	138						
3.26	Conclusions	147						
3.3	Experimental	148						
3.4	References	164						
		8						
	Appendix	xvi						

DECLARATION

I hereby declare that the matter embodied in this thesis is the result of investigations carried out by me in School of Chemistry, University of Hyderabad, Hyderabad under the supervision of Dr. K. C. Kumara Swamy.

In keeping with the general practice of reporting scientific observations, due acknowledgments have been made wherever the work described is based on the findings of other investigators. Any omission which might have occurred by oversight or error is regretted.

M. Vijjula loc (M. Vijjulatha)

CERTIFICATE

This is to certify that the work described in this thesis entitled "Synthesis, Structure and Reactivity of Some Cyclic Phosphorus Compounds" has been carried out by M.Vijjulatha, under my supervision and the same has not been submitted elsewhere for any degree.

Hyderabad

December 1998

Kumara Swamyu

K. C.Kumara Swamy

(THESIS SUPERVISOR)

DEAN

Sebool of Chemistry, University of Hyderabad Hyderabad 15080 Prydelabad,

Hyderabad 500 046

INDIA

ACKNOWLEDGMENTS

I wish to express my deepest sense of gratitude and *indebtedness* to the kind and understanding supervisor, Dr. K. C. Kumara Swamy, for his constant guidance, encouragement and abiding interest throughout my tenure here.

I thank Prof. P. S. Zacharias (former Dean), Prof. M. Nagarajan (Dean, School of Chemistry) and all other faculty members for their support and help throughout my Ph. D. tenure.

I thank Dr. J. J. Vittal and L. L. Koh (National University of Singapore), Prof. Dr. M. Veith and Dr. V. Huch (Universität des Saarlandes, Germany) and Prof. Dr. Udo Engelhardt (Universität Berlin) for providing some of the X-ray crystal structures. I also thank Dr. S. Pal for his help in solving one of the structures reported in this thesis.

I also wish to acknowledge all my teachers in my previous courses of study for their guidance.

I thank Mr. S. Sathyanarayana and Mr. V. Bhaskar Rao for patiently recording various NMR spectra. I also thank Mrs. G. Vijayalakshimi, Mr. Ramana and all other nonteaching staff of the school for their cooperation.

I am thankful to my labmate Dr. Sudha Kumaraswamy for her unique help, cooperation and encouragement throughout my stay here. I also thank Dr. S. Nagabrahmanandachari, Dr. Musa A. Said, K. Praveen Kumar, C. Muthiah, K. Praveen, S. Raja and others for their help and cooperation.

I enjoyed the good company of my friends Aneetha, Chandrakala, Anita, Soujanya, Sindhu, Ramalakshmi, Sailaja, Saroja, Sudha, Manjula, Anthony, Raghavaiah, Madhavi, Mangai, Sangeetha, Padmaja, Prasuna and Prabhavathi. I thank them for their support.

I express my profound gratitude to my father-in-law (Sri M. Narsimha Rao) and mother-in-law (Late Smt. M. Maisamma) for their encouragement and cooperation. My mother-in-law and uncle late Sree Ramulu who are no more with us are being missed at all times.

I would like to extend my heartfelt thanks to my brothers-in-law, Sri Vidya Sagar, Mohan Rao, Sudhakar Rao, sisters Smt. Kavitha, Sandhya Rani, Praveena, all my sistersin-law (Smt. Balamani, Krishnaveni and Kalpana) and their families for their love, help and cooperation.

I also enjoyed the cheerful company of Liz, Kiran, Rakku, Rajju, Jasu, Meghna and Pooja.

Words fail to express my feelings towards my husband Sridhar. He has been understanding, caring and cooperative, but for whose motivation I would not have come this far I feel sorry for my daughter Pooja whom I denied the motherly affection and the understanding between me and my little daughter is unforgetable.

I am thankful to my parents (Sri. M. Rameshwara Rao and Smt. B. Parijatha; my mother has always inspired me and took a lot of efforts in molding my career and was always with me whenever I needed her), sister (Rupalatha), brothers (Mahendra and Jithender) and grandmother for their love, affection and encouragement throughout. I also thank my relatives (Late Sri. M. Maheshwar Rao and Smt. M. Shakunthala), sisters (Lakshmi, late Sujatha, Radha, Lavanya, Kausalya), brothers (Srinivas, Shekar, Krishna), brothers-in-law (Sri Sundhar Rao, Babul Rai, Ravi Prasad) and near and dear for their encouragement.

I thank CSIR (New Delhi) for financial support. Single Crystal X-ray Diffractometer Facility at the University of Hyderabad funded by Department of Science and Technology (New Delhi) is also gratefully acknowledged.

y rijjulatta (M. Vijjulatha)

LIST OF PUBLICATIONS

- The 1:1 Antimony Trichloride Adduct of Chloro bis (2,6-dimethylpiperidin-1-yl)phosphine oxide.
 - M. Vijjulatha, K. C. Kumara Swamy, V. Huch and M. Veith, *Acta Crystallogr* 1997, C53, 1789.
- The Reaction of Chlorophosphates with Strong Bases: Synthesis and Characterization of the Phosphonate Salts.
 - M.Vijjulatha, K. Praveen Kumar, K. C. Kumara Swamy and J. J. Vittal, Tetrahedron Lett. 1998, 39, 1819.
- 3 Synthesis, reactivity and structures of spirocyclic products derived from octa chlorocyclotetraphosphazene- Comparison to spirocyclic cyclotriphosphazenes and linear phosphazenes.
 - Sudha Kumaraswamy, M. Vijjulatha, C. Muthiah, K. C. Kumara Swamy and Udo Engelhardt [*J. Chem. Soc.*, *Dalton Trans.* (under revision)].
- Synthesis and X-ray structural studies of new bridged diazadiphophetidines.
 M. Vijjulatha, K. C. Kumara Swamy and U. Engelhardt (to be submitted).
- 5. Synthesis and X-ray structure of 2-cis-4-bis(2,6-dimethylphenoxy)-1,3-di-t-butyldiazadiphosphetidines
 - M. Vijjulatha, K.C. Kumara Swamy and L. L. Koh (to be submitted)

Papers presented in SYMPOSIUM

Rings and Cages Containing Phosphorus, Arsenic and Antimony- New Chemistry.
 Musa A. Said, M. Vijjulatha and K. C. Kumara Swamy, Modern Trends in Inorganic Chemistry (MTIC), August 17-19, 1995, University of Hyderabad, India.

SYNOPSIS

The work embodied in this thesis is divided into three parts:

- Part 1: Cyclic and linear phosphazenes-Reactions with difunctional reagents
- Part 2: Reactions of cyclodiphosphazanes
- Part 3: Reactions of chlorophosphorus(III) and chlorophosphorus(V) compounds with Lewis acids and bases.

Each part is subdivided into four sections: X.1 Literature Survey, X.2 Results and Discussion, X.3 Experimental and X.4 References. Literature survey is done keeping in mind mostly the experimental work done in the present study and recent developments. The compounds obtained in the present study are in general characterized by m.p., IR and NMR techniques followed by elemental analysis. Wherever feasible, X-ray structure determination is undertaken. References are compiled at the end of each chapter.

Part 1:

Although the reactions of hexachlorocyclotriphosphazene, N₃P₃Cl₆ (1.1) with difunctional reagents have been well-documented, studies on octachlorocyclotetraphosphazene, N₄P₄Cl₈ (1.2), are scanty mainly because of the instability of the products. Also the reaction of the linear phosphazene Cl₃PNP(O)Cl₂ (1.3) with difunctional reagents has not been studied so far. To fill in these lacunae we have used the difunctional reagents CH₂[4,6-(*t*-Bu)₂C₆H₂OH]₂ and [HN(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)H] which provide steric protection at the reacting site. Spirocyclic derivatives 2,2-N₄P₄[{O-C₆H₂-4,6-(*t*-Bu)₂}₂ CH₂]Cl₆ (1.99), 2,2-N₄P₄[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)]Cl₆ (1.100) and 2,2,6,6-N₄P₄[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)]₂Cl₄ (1.101) have been synthesized as crystalline solids which are stable under nitrogen; these compounds to our knowledge, constitute the first examples of

spirocyclic cyclotetraphosphazenes to be structurally characterized. We do not have evidence for the formation of *ansa* derivatives in these systems.

Interestingly in the synthesis of 1.101 the other possible spirocyclic isomer, the 2,2,4,4-product, was not observed. The ease of isolation of 1.100 makes it an excellent probe to study further reactions; thus when reacted with excess methylamine in chloroform, it gives the bicyclic phosphazene 1.109 with a 2,2-spiro group. Also, in contrast to the easy fluorination of N₃P₃[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)]Cl₄ (1.102) to N₃P₃[N(*i*-Pr)CH₂CH₂CH₂CH₂N(*i*-Pr)]F₄ (1.106), (this study), compound 1.100 undergoes partial hydrolysis while fluorinating to afford a product formulated as N₄P₄F₅(OH)[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)] (1.107); the tautomeric form is shown in the diagram given below.

Reaction of the linear phosphazene $Cl_3P=NP(O)Cl_2$ (1.3) with $CH_2[4-Me-6-t-Bu-C_6H_2OH]_2$ / Et_3N afforded the cyclic compound 1.103. The other possible products (**R**) and (**S**) are not formed.

Part 2:

The first aspect of study in Part 2 deals with the reaction of (primarily) [ClPN-t-Bu]₂ (2.1) with phenols. In contrast to the isolation of *trans*-[(4-Me-C₆H₄O)PNPh]₂ (reported in the literature) by reacting (ClPNPh)₂ (2.2) with 4-Me-C₆H₄OH/ Et₃N, when

compound 2.1 was treated with ArOH/ Et₃N, only *cis* [(ArO)PN-*t*-Bu]₂ (2.38-2.43) were isolated. The solid state structure of one of these compounds (2.38) has been determined by X-ray crystallography.

ArO P OAr
$$Ar = 2,6-Me_2-C_6H_3$$
 [2.38, X-ray] 2-Napthyl [2.39] Oxinato [2.40] 4-MeO-C₆H₄ [2.41] 4-Bu-C₆H₄ [2.42] 4-Me-C₆H₄ [2.43]

Use of the sodium salt of the phenol also led to the *cis*-isomer; however, when the lithium salt 2,6-Me₂C₆H₃OLi was used, a *trans* isomer was indicated (but not isolated).

Since in the above reactions only *cis* isomers were obtained, it was thought prudent to utilize this result to prepare *ansa* type of compounds by treating 2.1 with bifunctional reagents. Thus the novel compounds 2.47-2.49 were isolated; in addition several others were identified by ³¹P NMR spectroscopy. Interestingly in the reaction of 2.1 with 2,2'-biphenol, the phosphazane ring cleaved end product 2.55 was also isolated (¹H, ³¹P, X-ray).

In contrast to the reaction of 2.47 with excess of sulfur wherein the partially oxidized compound 2.60 was isolated, the analogous reaction with selenium gave the fully oxidized product 2.61.

The last aspect on cyclodiphosphazanes concerns the attempted synthesis of partially substituted derivatives, [(ArO)P(Nt-Bu)₂PCl]. We succeeded in isolating [(2,6-Me₂C₆H₃O)P(Nt-Bu)₂PCl] (2.56) in a state of *ca* 90% purity by vacuum distillation, the other impurity being either the precursor (ClPNt-Bu)₂ (2.1) or the bis derivative [(2,6-Me₂C₆H₃O)₂PNt-Bu]₂ (2.38). Compound 2.56 is quite reactive and in fact when an attempt was made to substitute the residual chlorine by a cyclohexylamino group, the only

compound isolated was the hydrolyzed product 2.59 in which the phosphoryl oxygen is cis to the cyclohexylamino group.

Part 3:

Here the first and the major theme is to study the reaction of cyclic chlorophosphate esters 3.24, 3.25 and 3.26 with strong bases [DBU, DBN, NMI, MI, DMAP] in an effort to isolate the reactive phosphate-base complexes such as **D**.

$$\begin{bmatrix} O & O \\ 0 & \oplus \\ 6,8 & P-NRR'R'' \end{bmatrix} Cl^{-1}$$

$$\mathbf{D}$$

In an unusual reaction, 3.24 reacted with DBU to give the phosphonate salt 3.28 rather than the salt 3.27 containing a P-N bond. A possible pathway involving the intial formation of 3.27 was formulated.

A compound analogous to 3.28 has also been isolated from the reaction of the eight membered chloro compound 3.26 with DBU. However the reaction of 3.24 with DBN (which may be expected to give analogous products) took a different route and gave an air-sensitive product formulated as 3.37 (NMR evidence).

$$\begin{bmatrix}
O & O & 2 & 3 \\
P & N & 3 & 4 \\
O & 8 & 5 & 6
\end{bmatrix}$$
[CI]

In many of these reactions the pyrophosphates, 3.34, 3.35 and 3.38 are also obtained presumably *via* the intermediacy of the salts; in solution the yields of these increase with time suggesting that they are formed by hydrolysis.

In the reaction of chlorophosphorus(III) compounds [2,6-Me₂-C₅H₈N)]₂PCl (3.45), (OCH₂CMe₂CH₂O)PCl (3.39) and CH₂[4-Me-6-*t*-Bu-C₆H₂O]₂PCl (3.40) with bases we expected the salts [2,6-Me₂(C₅H₈N)]₂P-Base]⁺ Cl⁻, [(OCH₂CMe₂CH₂O)P-Base]⁺ Cl⁻ and [CH₂(4-Me-6-*t*-Bu-C₆H₂O)₂P-Base]⁺ Cl⁻; however, due to the extreme sensitivity of the products we could not isolate any well-defined product. The reaction of 3.45 or 3.39 with a Lewis acid such as SbCl₅ may be expected to lead to the phosphenium cations [2,6-Me₂ (C₅H₈N)]₂P⁺ or [OCH₂CMe₂CH₂O]P⁺ with the [SbCl₆]⁻ counterion but the product that could be isolated was the phosphoryl adduct 3.46, probably *via* hydrolysis. Reaction of the Lewis acid SbCl₃ with (OCH₂CMe₂CH₂O)P(O)Cl (3.24) also led to a crystalline acid-base adduct formulated as 3.47 (evidence: analytical data).

PART 1. PHOSPHAZENES

1.1 Introduction

Phosphazenes are a class of compounds with a formal double bond between phosphorus and nitrogen. Among these, the chlorophosph(V)azenes with phosphorus(V) having a formal double bond to a two coordinated nitrogen atom and three additional σ-bonds (\equiv P=N-) are perhaps the most extensively studied; they can be short chain linear acyclic phosphazenes, cyclophosphazenes or long chain linear phosphazenes, more commonly known as poly(phosphazenes). The most straightforward synthetic route to these compounds involves ammonolysis of phosphorus pentachloride and subsequent thermolysis of the initial reaction product (eq 1.1).

$$PCl_{5} + NH_{4}Cl \longrightarrow P_{X}N_{Y}Cl_{Z}^{T}PCl_{6}^{T} \longrightarrow (NPCl_{2})_{n} \xrightarrow{\Delta} (NPCl_{2})_{n}$$

$$Cyclic \qquad Linear high \\ (n = 3, 4, 5, 6) \qquad polymer$$

$$(1.1)$$

Because of the possibility of replacing the chlorines by various other functionalities which may be biologically or technologically useful, these phosphazenes have been attractive substrates for numerous researchers. Several of these derivatives are promising as a) thermally stable polymers¹⁻³ b) antitumour agents^{4,5} c) anticoagulants⁶ d) drug delivery systems^{7,8} e) inhibitors in HIV-I (reverse transcriptase)⁹ and other biochemical applications.⁵

There are several reviews available in the literature that deal with the chemistry of phosphazenes. In this survey we largely confine ourselves to the (i) new developments during the past decade (1988 onwards) and (ii) reactions with di- and polyfunctional reagents. The substrates of interest are 2,2,4,4,6,6-hexachlorocyclotriphosphazene N₃P₃Cl₆ (1.1), 2,2,4,4,6,6,8,8-octachlorocyclotetra-

6

phosphazene $N_4P_4Cl_8$ (1.2) and the linear phosphazene $Cl_2P(O)=NPCl_3$ (1.3).* Whereas the first two can be conveniently prepared by the route shown in eq. 1.1,¹⁴ compound 1.3 can be obtained by treating phosphorus pentachloride with ammonium sulphate (eq 1.2).¹⁵

$$4PCl_5 + (NH_4)_2SO_4 \xrightarrow{140^0C, 1h} 2Cl_2(O)P - N = PCl_3 + 8 HCl + SO_2 + Cl_2$$
 (1.2)

Phosphazene chemistry is predominantly the reactions (of these compounds) with nucleophilic reagents. Reactions of 1.1-1.3 with monofunctional reagents could follow a geminal or a nongeminal replacement pattern or a combination of both. This point is elaborated in Scheme 1.1 which shows the possible isomeric compositions in the reaction using 1.1-1.3 at the *bis* stage of substitution.

Shaw has elegantly summarized the earlier studies on 1.1 and 1.2 and these are given pointwise below; 16 more details from recent literature are added wherever appropriate.

^{*}Note: Numbering of the compounds is done in the following way: Part number followed by the actual compound number in that part. Predicted compounds or possible isomers are designated by letters A. B. etc. or Roman numerals.

Scheme 1.1

1.11 Reactions with monofunctional nucleophiles

(A) Reactions of N₃P₃Cl₆ (1.1)

- (i) Ammonia gives exclusively the geminal product, $N_3P_3(NH_2)_2Cl_4$ at the bis stage.¹⁷
- (ii) Primary amines, RNH₂, depending on their reactivity and the reaction mechanism they follow, give at the *bis* stage, i.e. N₃P₃(NHR)₂Cl₄, either nongeminal (e.g. EtNH₂)¹⁸ or geminal products (e.g. *t*-BuNH₂).¹⁹ Bulky amines (e.g. 1-adamantylamine) may prefer a geminal pathway.²⁰ Geminal structures 2,2,4,4-N₃P₃(NHR)₄Cl₂ are overwhelmingly preferred at the *tetrakis* stage.
- (iii) Secondary amines, R₂NH follow in general a nongeminal pathway, though at the *tris* stage N₃P₃(NR₂)₃Cl₃, solvent effects become important.²¹
- (iv) Both alcohols (ROH) and phenols (ArOH) react almost exclusively by the nongeminal pathway. However recent work by Allcock and coworkers show that sterically hindered phenols (2,6-dichloro and 2,6-dimethyl phenol) prefer to attack by a geminal pathway at the *bis* stage of substitution.²² A possible explanation involving some resonance stabilization in which structure (**O**) is claimed to have a stabilizing effect on the cation, is offered (Scheme 1.2). The leaving group departs with its bonding electron pair, followed rapidly by the attack of the organic nucleophile on the positively charged substrate.

Scheme 1.2

The reaction with β -diketonates, (e.g. acetylacetonate or 1,3-cyclohexanedionate anion) produces both nongeminal and geminal products with the former predominating.²³

(v) Mercaptans (RSH) prefer a geminal pathway throughout; in fact with thiophenol, only the bis 2,2-N₃P₃(SPh)₂Cl₄ and the hexakis N₃P₃(SPh)₆ derivatives are the major products.²⁴

(B) Reactions of N₄P₄Cl₈ (1.2)

Here the potential number of products is much greater at each stage of substitution and hence structure determination is more difficult; thus studies on 1.2 are rather limited.²⁵ Ammonia reacts with 1.2 to give both geminal and nongeminal 2,6-derivatives at the *bis* replacement stage, N₄P₄(NH₂)₂Cl₆.²⁶ Primary amines tend to give a lot of resinous material due to cross-linkage reactions, thus making the amine difunctional. Thus exhaustive ammonolysis of 1.2 leads to the "bicyclic" phosphazenes 1.4 as one of the products.²⁷⁻³⁰

In partial aminolysis, those which give non-geminal *bis* derivatives (e.g. NH_2Et) with the trimer 1.1 give only 2,6-*bis* derivatives, $N_4P_4(NHR)_2Cl_6$ with the tetramer 1.2,³¹ whilst those which give geminal *bis* derivatives with 1.1 tend to give both 2,4- and 2,6-derivatives $N_4P_4(NHR)_2Cl_6$ [R = *t*-Bu] with 1.2, (*cf* Scheme 1.2), with no geminal products.³² Alcoholysis³³ and phenolysis³⁴ of 1.2 follow predominantly a non-geminal pathway. However, in the reaction of 1.2 with 2,6-dichlorophenol the major product at

the *tetrakis* stage is 2,2,6,6-N₄P₄(O-2,6-Cl₂C₆H₃)₄Cl₄ (1.5).²² Mercaptolysis follows a geminal pathway and at the *tetrakis* stage 2,2,6,6-N₄P₄(SR)₄Cl₄ has been isolated.³⁵

(C) Reactions of Cl₂P(O)-N=PCl₃ (1.3)

Treatment of 1.3 with an excess of methylamine affords two products 1.6 and 1.7 (eq 1.3); the latter product probably arises due to partial hydrolysis. The fully substituted amino derivatives, (Me₂N)₂P(O)N=P(NMe₂)₃ and (PhNH)₂P(O)-N=P(NHPh)₃ have also been synthesized. Aryloxy derivatives are in general synthesized by the sodium salt route (eq. 1.4). Only in the case of 2,6-dichlorophenol, a partially substituted derivative 1.9 has been synthesized. 22

$$Cl_{2}(O)P-N=PCl_{3}+10 \text{ MeNH}_{2} \xrightarrow{\hspace{1cm}} (MeNH)_{2}(O)P-N=P(NHMe)_{3}$$

$$1.6$$

$$O \quad O$$

$$\parallel \quad H \quad \parallel$$

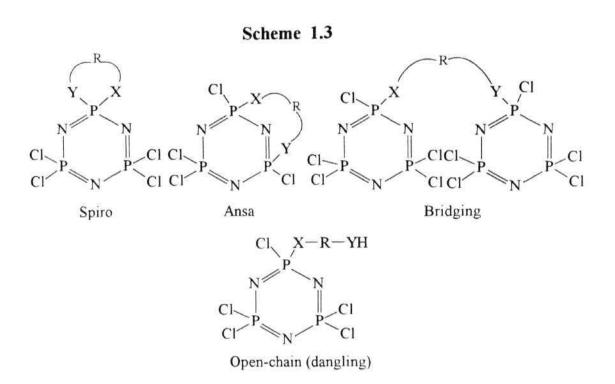
$$+ (MeNH)_{2}P-N-P(NHMe)_{2} \quad (1.3)$$

$$1.7$$

$$Cl_2(O)P-N=PCl_3 \xrightarrow{6NaOAr} (ArO)_2(O)P-N=P(OAr)_3$$

$$1.8$$

$$Cl_2(O)P-N=P \xrightarrow{Cl} Cl$$


$$1.9$$

1.12 Reactions with difunctional nucleophiles

(A) Reactions of N₃P₃Cl₆ (1.1)

Difunctional reagents can react with 1.1 to give, in principle, four types of products: (i) spiro (ii) ansa (two ends of the reagent attached to different P atoms in the same molecule), (iii) bridging (two ends bonded to P atoms from different phosphazene

units) and (iv) dangling (only one end of the difunctional reagent attached to P) (Scheme 1.3). Some of the known monospirocyclic derivatives along with their ³¹P NMR data are shown in Chart 1.1.

The following dispirocycles have been synthesized by analogous routes: $N_3P_3[MeNCH_2CH_2NMe]_2Cl_2$ (1.29), 56 $N_3P_3[HN(CH_2)_3NH]_2Cl_2$ (1.30), 57 $N_3P_3[MeN(CH_2)_3NH]_2Cl_2$ (1.31), 45 $N_3P_3[HN(CH_2)_2NH][HN(CH_2)_3NH]Cl_2$ (1.32), 58 $N_3P_3[HN(CH_2)_4NH]_2Cl_2$ (1.33), 57 $N_3P_3[HNCH_2CH_2NH][HN(CH_2)_4NH]Cl_2$ (1.34), 58 $N_3P_3[HN(CH_2)_4NH][HN(CH_2)_4NH]Cl_2$ (1.35), 58 $N_3P_3[HN(CH_2)_2O]_2Cl_2$ (cis + trans) (1.36), 42 $N_3P_3[MeN(CH_2)_2O]_2Cl_2$ (cis) (1.37), 49 $N_3P_3[HN(CH_2)_3O]_2Cl_2$ (cis + trans) (1.38), 50 N_3P_3 $[MeN(CH_2)_2O]_2Cl_2$ (cis) (1.39), 50 $N_3P_3[HN(CH_2)_3O]_2Cl_2$ (cis + trans) (1.40), 50 $N_3P_3[O(CH_2)_nO]_2Cl_2$ [n = 2 (1.41), 3 (1.42), 4 (1.43)] 16 , $N_3P_3[2,2'-O_2-(C_6H_4)_2]_2Cl_2$ (1.44), 59 $N_3P_3[1,2-(NH)_2-(C_6H_4)]_2Cl_2$ (1.45) 60 and $N_3P_3[1,2-O_2C_6H_4]_2Cl_2$ (1.46). 61

Chart 1.1. Selected spirocyclic cyclotriphosphazenes with their ³¹P NMR data

Structure I

Compd. No.	R	R'	R"	$\delta(PCl_2)$	δ(P) (spiro)	J(P-P) (Hz)	Ref.
1.10	-CH ₂ -CH ₂ -	Н	Н	23.5	22.8	45.7	42
1.11	-CH ₂ -CH ₂ -	Me	Me	20.4	23.8	41.8	38
1.12	-(CH ₂) ₃ -	H	Н	21.5	7.5	45.5	43
1.13	-(CH ₂) ₃ -	Me	Me	16.5	19.6	-	44
1.14	-(CH ₂) ₃ -	H	Me	20.3	9.8	39.1	45
1,15	-(CH ₂) ₄ -	Н	Н	21.2	12.8	46.0	46
1.16	\bigcirc	H	Н	21.3	13.6	70	47
1.17		Н	Н	20.6	15.0	55	47
1.18	Me Me	Н	Н	18.9	13.5	63	47

contd.

Structure II

Compd.	R	R'	δ(РС	l ₂)	δ(P) (spiro)		J(P-P) (Hz)	Ref.
1.19	-CH ₂ -CH ₂ -	H	24.9		24.3		53.9	48
1.20	-CH ₂ -CH ₂ -	Me	25.1		22.4		53.9	49
1.21	-(CH ₂) ₃ -	Н	22.4		7.20		53.9	50
		Stru	icture I	П				
Compd.	R	$\delta(PCl_2)$		δ(P) (spin		- 0.0	P-P) Iz)	Ref.
1.22	-CH ₂ -CH ₂ -	22.5		23.8	3	67	7	51
1.23	-(CH ₂) ₃ -	23.0		2.4,	2.2	70	8.0	52
1.24	-HCMeCH ₂ CH ₂ -	22.10,	25.59	2.74	1	а		53
1.25	-(CH ₂) ₄ -	23.	0	9.3		74	4.3	52
1.26		22.	03	20.5	56	88	3	54
1.27	\$	25.	44	13.5	54	7	1	59
1.28	8-8	23.	.48	14.9	98	70	0.96	55

 $^{^{}a}$ J(A-B) = 57.9, J(A-X) = 61.7, J(B-X) = 78.6 Hz.

Examples of *tris* spiro derivatives include $N_3P_3[MeNCH_2CH_2NMe]_3$ (1.47), ⁵⁶ $N_3P_3[HN(CH_2)_3NH]_3$ (1.48), ⁵⁷ $N_3P_3[MeN(CH_2)_3NH]_3$ (1.49), ⁴⁵ $N_3P_3[1,2-(NH)_2C_6H_4]_3$ (1.50), ⁴⁷ $N_3P_3[HNCH_2CH_2O]_3$ (1.51), ⁴² $N_3P_3[MeNCH_2CH_2O]_3$ (1.52), ⁴⁹ $N_3P_3[O_2C_6H_4]_3$ (1.53), ⁶³ $N_3P_3[1,8-O_2C_{10}H_6]_3$ (1.54), ⁶² $N_3P_3[2,2'-O_2C_{12}H_8]_3$ (1.55) ⁶³ and $N_3P_3[1,2-S_2C_6H_4]_3$ (1.56). ⁴⁷

Ansa compounds have not been so commonly encountered. The derivative 1.57 with a chain of seven atoms between the two phosphorus atoms is prepared by treating 1.1 with 1,5-diaminodiethylether, H₂N(CH₂)₂O(CH₂)₂NH₂.⁶⁴ Reaction of 1.1 with

reported $HO(CH_2)_2O(CH_2)_2OH$ is to yield three products: spiro-2,2 $N_3P_3[O(CH_2)_2O(CH_2)_2O]Cl_4$ (1.58), ansa-2,4- $N_3P_3[O(CH_2)_2O(CH_2)_2O]Cl_4$ (1.59) and the bridged derivative (N₃P₃Cl₅)₂[O(CH₂)₂O(CH₂)₂O] (1.60). The diphosphaza crown 1.61 is another interesting ansa compound and has been reported by Brandt and co-workers. 65.66 However the first ansa compound (1.64) was prepared by Harris and Williams by an indirect route (eq. 1.5).67 Subsequently, the ansa compounds 1.65 and 1.66 have also been synthesized. 16 An elegant approach has been devised by Allcock and coworkers to obtain ansa derivatives (Scheme 1.4).54 Bis ansa compounds 1.74 and 1.75 are also reported recently.68

Scheme 1.4

Compd. No	XX	³¹ P NMR					
		$\delta(A)$	$\delta(B)$	$\delta(C)$	J(PNP) (Hz)		
1.69		22.03	20.56	. 5.7. 1	88		
1.70		26.96	25.61	22.0	79, 88, 91		
1.71		22.77	21.22	***	87		
1.72	QQ NH NH	26.14	21.14	2 <u>002</u> 6	70		
1.73	HN NH	26.96	20.66		73		

In the case of diols $HO(CH_2)_nOH$ (n = 3 or 4) and diamines $H_2N(CH_2)_nNH_2$ (n = 5-10) singly bridged derivatives $N_3P_3Cl_5[O(CH_2)_nO]N_3P_3Cl_5$ (1.76) and $N_3P_3Cl_5[NH(CH_2)_nNH]N_3P_3Cl_5$ (1.77), respectively, have been isolated.⁶⁹ For the diamines where n = 6 or 8 the doubly bridged $N_3P_3Cl_4[NH(CH_2)_nN_3P_3Cl_4]$ (1.78) and the triply bridged $N_3P_3Cl_3[NH(CH_2)_nN_3P_3Cl_3]$ (1.79) are also formed.⁷⁰

Bridged compounds are also common if tri- and tetrafunctional reagents are used. Two examples are compounds 1.80 and 1.81.

Lastly, one of the ends of the di/ polyfunctional reagents may remain unreacted. Examples of this type, other than 1.63, are shown in Chart 1.2.

Chart 1.2

(B) Reactions of N₄P₄Cl₈ (1.2)

The tetramer 1.2 is more reactive than the trimer and gives rise to a much larger number of products. Even after isolation most of the characterization is done by NMR (¹H and ³¹P). The spirocyclic derivatives N₄P₄[MeN(CH₂)₂NMe]₂Cl₄ (1.87)⁷² and N₄P₄[NH(CH₂)₃NH]Cl₆ (1.88)⁷² have been isolated prior to the year 1984. The compounds N₄P₄(NMe₂)₆[O(CH₂)₂NMe] (1.89)⁷³ and N₄P₄(OMe)₆[O(CH₂)₃O] (1.90)⁷³ were characterized after derivatization.⁷² The product from the reaction of 1.2 with ethylene glycol was too unstable to be isolated ⁷² Later work was done mainly by Shaw and coworkers though much of it, to our knowledge, remains unpublished in full form. These results are summarized below. ¹⁶

From the reaction of 1,3-propanediol, one mono derivative $N_4P_4[O(CH_2)_3O]Cl_6$ (1.91), two isomeric *bis* derivatives $[N_4P_4O(CH_2)_3O]_2Cl_4$ (1.92, 1.93) and one *tris* derivative $N_4P_4[O(CH_2)_3O]_3Cl_2$ (1.94) have been isolated.¹⁶ Compounds analogous to 1.91 and 1.93 have also been isolated using 1,4-butanediol; the third compound $N_4P_4[O(CH_2)_4O]_2Cl_4$ showed a single line ³¹P NMR signal and is assigned a structure similar to 1.92. Analysis is done mainly by NMR; as an illustration, the ³¹P NMR spectra

of 1.91(A₂MX) and 1.93 (AA'XX') are shown in Fig 1.1. It is noted that the instability of the product with a given diol is considerably greater for the tetrameric system than for the trimeric system. Other known spirocyclic derivatives of the tetrameric system are 1.95-1.97. ^{16,61}

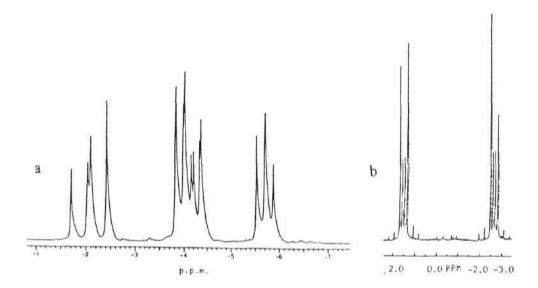


Fig 1.1 ³¹P NMR spectra of (a) compound 1.91 and (b) compound 1.93.

1.13 Other aspects of cyclophosphazene chemistry

Hydrolysis products of cyclophosphazenes undergo tautomerism; for example, in the controlled hydrolysis of N₃P₃Cl₆ (1.1) compound 1.98 is isolated.⁷¹ Even the alkoxy

phosphazenes undergo thermal rearrangement.⁷⁴ For example *cis*-N₃P₃(O-C₆H₄-Me-p)₂(OMe)₄ undergoes thermal rearrangement to *cis*-N₅Me₃P₃O₃(OMe)(OC₆H₄-Me-p)₂.⁷⁵ Since aminophosphazenes provide basic nitrogen sites, complexation is also possible; several papers have appeared in the literature on this aspect.⁷⁶⁻⁸⁰ Polyphosphazenes with various side groups have several potential applications and this aspect has been a subject of study for the past several years.^{18,81-90}

1.14 Structural aspects

³¹P NMR spectroscopy is the most valuable tool for structural characterization of cyclophosphazenes in solution. Selected data that may be useful in analysing the spectra in the present work are listed in Table 1.1 (see also Chart 1.1). X-ray crystallography,

obviously, has been the tool of choice in the solid state. Aspects of bond lengths and bond angles will be brought forth in the Results and Discussion section to avoid duplication. Apart from the structural proof, the interests in these studies include mainly (i) P-N bond lengths and angles and (ii) Phosphazene ring conformations.¹²

Table 1.1 ³¹P NMR spectroscopic data for selected cyclophosphazenes

Compound	Struct.	$\delta(PCl_2)$	δ(PClR)	$\delta(PR_2)$	J(Hz)	Ref.
$N_3P_3Cl_6$		19.3				91
$N_3P_3(NH_2)_2CL_4$	2,2	18.3		9.0	48.5	92
$N_3P_3(HN-i-Pr)_2Cl_4$	2,2	19.8		9.4	49.5	93
$N_3P_3(HN-t-Bu)_2Cl_4$	2,2	17.5		0.7	44.7	91
$N_3P_3(HN-1-ad)_2Cl_4a$	2,2	18.2(d)		1.1(t)		20
$N_3P_3(O-2,6-Cl_2C_6H_4)_2Cl_4$	2,2	22.8		-1.3	70	22
$N_3P_3[O\text{-}CMe\text{=}CH\text{-}C(O)Me]_2Cl_4$	2,4	25.3	13.5		66.3	23
$N_3P_3[O-CMe=CH-C(O)Me]_2Cl_4$	2,2	24.6		-5,62	64.3	23
$N_3P_3[HN(CH_2)_2NH]F_4$		10.2		30.1	990b	50
$N_3P_3(HN(CH_2)_3NH)F_4$		10.6		16.3	910b	50
$N_3P_3(O(CH_2)_3O)F_4$		9.00		15.2	910_p	50
$N_3P_3[O(CH_2CH_2O)_4]CL_4^c$	2,2	15.9(t)		23.2(d)	-62.6	94
$N_3P_3[O(CH_2CH_2O)_4]Cl_4(ansa)^d$	2,4		18.7(d)	25.0(t)	67.4	94
$N_3P_3[HN(CH_2)_4NH]_3$		21.2,		12.8.	46.0	46
		20.8		13.1		
$N_4P_4Cl_8$		-6.5				95
N ₄ P ₄ (NH ₂) ₂ Cl ₆	2,6	-5.8			69.0	96
$N_4P_4(NH_2)_4Cl_4$	2,2,6,6	-13.1		0.0		96

contd..

Table 1.1 contd..

$N_4P_4(NC_2H_4)_2Cl_6$	2,2	-6.5, -5.9	18.8	11.6,26.1	97
$N_4P_4(NMePh)_4Cl_4$	2,2,6,6	-11.5	-5.4	37.1	98
$N_4P_4(NMeCH_2CH_2NMe)Cl_6$		-8.3 (A)	6.1(spiro)	42.1 (AB),	7 2
		-6.2 (B)	(X)	27.1 (AX)	
				-1.1 (BX)	
$N_4P_4(NMe_2)_6[NH(CH_2)_3NH]$			1.6, 7.2,	42.2 (AB)	72
			8.9	36.8 (AX)	
				-1.1 (BX)	
$N_4P_4(O-2,6-Cl_2C_6H_3)_4Cl_4$		·	29.6(2B)	83.0	22
		18.5(2A)			
$Cl_2P(O)N=PCl_3$		-12.7(d)		19.5	99
		-1.1 (d)			
$Cl_2P(O)N=P(O-2,6-Cl_2C_6H_4)$		-22.0	-16.0	58	22
$N_4P_4(NHMe)_6(NMe)^e$		18.5	21.5	39.0	100
$N_4P_4(NHMe)_6(NMe).HC1$		15.6	18.0	37.0	100
$N_4P_4(NMe_2)_5[NEt(NHEt)]^e$		19.7	22.5	42.7, 42.7	101
		18.9		33.0	

^a 1-ad = 1-adamantyl ^{b 1}J(PF); ²J(P-P) could not be determined.

1.15 OBJECTIVES OF THE PRESENT WORK

The main objective of this part of the work is to study the reactions of octachlorocyclotetraphosphazene ($N_4P_4Cl_8$) with difunctional reagents in an effort to isolate structurally (X-ray) characterizable products and to compare the structural features with those obtained by using hexachlorocyclotriphosphazene ($N_3P_3Cl_6$) and the linear phosphazene $Cl_2P(O)N=PCl_3$.

1.2 Results and Discussion

The reaction of N₄P₄Cl₈ (1.2) with the diffunctional reagents 2,2'-methylenebis(4,6-di-*t*-butyl phenol) [as its sodium salt] and N,N'-diisopropyl-1,3-propanediamine gives the spirocyclic products 2,2-N₄P₄{[O-C₆H₂-4,6-(*t*-Bu)₂]₂CH₂}Cl₆ (1.99) and 2,2-N₄P₄[N(*i*-Pr)-CH₂CH₂CH₂N(*i*-Pr)]Cl₆ (1.100). Further reaction of 1.100 with two mole equivalents of N,N'-diisopropyl-1,3-propanediamine affords the novel dispiro derivative 2,2,6,6-N₄P₄[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)]₂Cl₄ (1.101). Analogous reaction of N₃P₃Cl₆ (1.1) with the above diamine gives the monospiro derivative N₃P₃[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)]Cl₄ (1.102) readily. The linear phosphazene, Cl₂P(O)N=PCl₃ (1.3) reacts with CH₂[4- Me-6-*t*-Bu-C₆H₂OH]₂ and Et₃N to give the cyclic product Cl₂P(O)N=P[(O-4-Me-6-*t*-Bu-C₆H₂)₂CH₂]Cl (1.103). The structures of 1.99-1.103 are shown in Chart 1.3. The yields in all these reactions are moderate (60-

Chart 1.3

90%) except in the case of 1.99 (~ 23%); the lower yield of the latter may be due to incomplete formation of the disodium salt of the diol. In fact the compound $[Na]^+[H]^+\{(O-4,6-(t-Bu)_2C_6H_4)_2-CH_2\}^2-.2H_2O$ (1.104), obtained by reacting the diol with an excess of sodium followed by crystallization in air, has been structurally characterized

$$\begin{bmatrix} H \end{bmatrix}^{+} \begin{bmatrix} + & & & \\ & & &$$

in our laboratory. We did not succeed in isolating a compound analogous to 1.99 in a pure state using N₃P₃Cl₆ (1.1). However when the sodium salt of the closely related diol, 2,2'-methylenebis-(4-methyl-6-*t*-butyl-phenol) was used, the major product (~30%) showed a doublet at 21.8 ppm (2P, ²(.*J*(P-P) = 61.0 Hz) and a triplet at 8.2 ppm (1P) in the ³¹P NMR [Fig 1.2]; the monosubstituted structure N₃P₃(O-4-Me-6-*t*-Bu-C₆H₂-CH₂-4-Me-6-*t*-Bu-C₆H₂OH)Cl₅ (1.105) is assigned for this on the basis of mass spectrum and available data on the trends in ³¹P NMR [For a spiro derivative we expect a triplet upfield to 8.2 ppm; for an ansa derivative, an upfield *doublet* and a down field *triplet* is expected ^{11a}]. In addition, in the ¹H NMR spectrum two peaks each for the methyl and *t*-butyl protons are observed, as expected for an unsymmetrically linked diol residue.

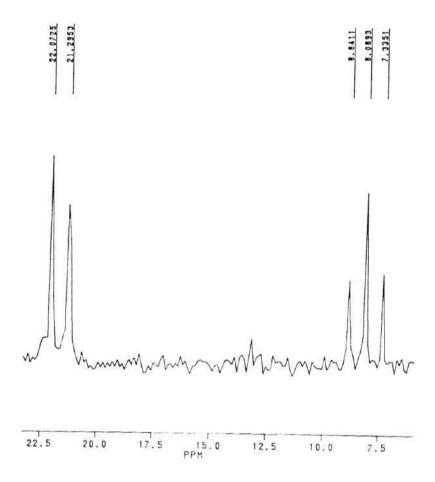


Fig. 1.2 ³¹P NMR spectrum of compound 1.105

Compounds 1.99-1.103 are stable under dry nitrogen in the solid state at room temperature; however the monospiro derivatives 1.99 and 1.100 are very unstable to moisture. The difference in stability between the tetrameric compound 1.100 and the trimeric compound 1.102 is also reflected, to some degree, in the fluorination reactions. While 1.102 can be readily fluorinated by KF/ CH₃CN⁵⁰ to give the new fluorospirocycle N₃P₃[N(*i*-Pr)-CH₂CH₂-N(*i*-Pr)]F₄ (1.106; Fig 1.3(a) shows the ³¹P NMR) the hygroscopic product obtained by fluorinating the tetrameric compound 1.100, had only

one discernible PF_2 triplet [δ : -13.6, ${}^1J(P-F) \sim 850$ Hz) in the ${}^{31}P$ NMR (Fig 1.3(b)] instead of the expected two; this suggests a partial hydrolysis in the latter case. There are also peaks in the region -2.1 to 2.0 ppm and -10.0 to -12.8 ppm which are attributable to the PF(O)-NH group but the spectrum is too complicated to analyse further. The 1H NMR also showed a complex spectrum. A peak corresponding to $[N_4P_4F_5(H) (OH)]^{\dagger}$ is observed in the mass spectrum suggesting that it is probably $N_4P_4F_5(OH)[N(i-Pr)-CH_2CH_2N(i-Pr)]$ (1.107); such a feature has been observed for several spirocyclic

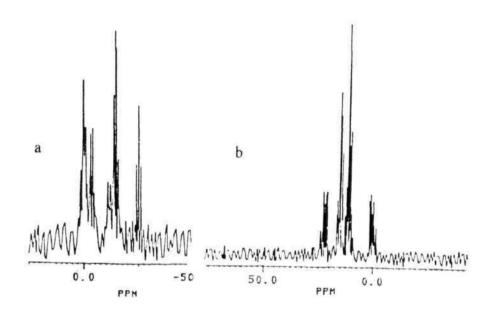


Fig 1.3 ³¹P NMR spectra of a) 1.106 and b) the product 1.107 obtained by fluorinating 1.100.

cyclotriphosphazenes $N_3P_3(X-Y)F_4$ where a peak at $[N_3P_3F_4(H)(OH)]^4$ is always observed. ⁵⁰ Previously also hydrolyzed products were obtained in the attempted dimethylaminolysis of the product from the reaction of 1.1 with 1,2-diaminoethane. ⁷²

Isolation of the spirocyclic products 1.99-1.101 clearly shows that this pathway is favoured in the reaction of 1.1 with diffunctional reagents under the conditions employed. Formation of 2,2,6,6-N₄P₄[N(*i*-Pr)-CH₂CH₂CH₂N(*i*-Pr)]₂Cl₄ (1.101) at the second stage in high yields in preference to the 2,2,4,4- [structure **P**] or a 2,2,4,6- [structure **Q**] product is also a point to be noted; one factor responsible for this observation is the hindrance of the bulky first spirocycle to an incoming reagent at the 4-position.

For the reaction of the linear phosphazene $Cl_2P(O)N=PCl_3$ (1.3) with diol/ Et₃N, two products (**R**, **S**) other than 1.103 are possible, in principle. Isolation of 1.103 as the only product suggests that the = PCl_3 end is more reactive; this observation is similar to that noted by Allcock *et al.*²²

In contrast to other 2,2-disubstituted derivatives that usually show an AB₂C or AB₂X pattern ^{72, 11a, 97} in the ³¹P NMR, compound 1.99 exhibits an AM₂X spectrum [Fig. 1.4(a)] from which the coupling constants can be readily obtained. This is probably a result of the extreme upfield shift caused by the presence of the eight-membered phosphocin ring containing aryloxy substituents. Even in 1.103, which contains a similar ring, the =P(O-Ar-O)Cl [δ : ~-14 ppm] is upfield by *ca* 10 ppm compared to =PCl₃ in 1.3 [δ (P): -4.1]. Other points of interest are as follows:

- (i) The $\delta[P(spiro)]$ value in 1.99-1.101 [Fig. 1.4] is much upfield to $\delta[PCl_2]$, in contrast to the five membered ring containing spirocycle $N_4P_4[N(Me)CH_2CH_2N(Me)]Cl_6$ $\{\delta[P(spiro)]: 6.1; \delta[PCl_2]: -8.3, -6.2\}$, where P(spiro) appears downfield to PCl_2 . This is on expected lines⁷² and is similar to the trends observed in penta- and hexa-coordinated phosphoranes. ¹⁰⁴
- (ii) The signal for P(spiro) moves upfield upon introduction of a second spiro ring into 1.100 (from -14.6 for 1.100 to -19.4 for 1.101; Fig. 1.4) which is a reverse of that observed for the set $N_3P_3[(Me)N(CH_2)_3NH]Cl_4$ { $\delta[P(spiro)]$ 9.8} and $N_3P_3[(Me)N(CH_2)_3NH]_2Cl_2$ { $\delta[P(spiro)]$ 21.6}. However, upon methylamination (see below) the chemical shift range narrows down significantly [Fig.1.4(d)].
- (iii) The ²J(P-N-P) values for the tetrameric compounds 1.100 and 1.101 are lower than that for the trimeric compound 1.102. It appears that this is a general trend

for (amino)cyclophosphazenes, $^{72, 11a}$ and may reflect a weaker π -contribution to bonding in these cyclotetraphosphazenes relative to cyclotriphosphazenes.

The ease of isolation, stability and ready identification of P(spiro) groups by NMR make 1.100 and 1.101 excellent probes for studying further reactions on tetrameric cyclophosphazenes. For example, treatment of 1.100 with methylamine in chloroform leads to both the *normal* (1.108) and *trans-annular fused* (bicyclic)²⁷⁻³⁰ (1.109) products; compound 1.109 is obtained in a pure state as shown by ³¹P NMR [Fig. 1.5(b)] and

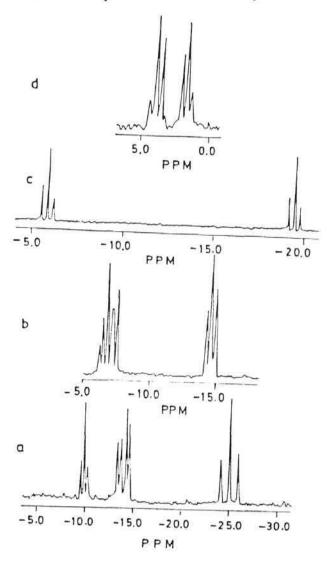


Fig 1.4 31 P NMR spectra of a) 1.99 b) 1.100 c) 1.101 and d) N₄P₄[N(*i*-Pr)CH₂CH₂ CH₂N(*i*-Pr)]₂(NHMe)₄ (1.110).

elemental analysis. The chemical shift range is clearly in the *bicyclic* region^{11a} and as expected, an AB₂C spectrum is obtained. The ¹H NMR (Fig. 1.6) is also consistent with the assigned structure; the two sets of methyls on the 1,3,2-diazaphosphorinane ring show two separate doublets centered at 1.08 and 1.15 ppm since one is facing the bridgehead nitrogen and the other is opposite to it. In the reaction of the dispirocycle 1.101 with methylamine, the fully substituted product N₄P₄(NHMe)₄[N(*i*-Pr)-CH₂CH₂CH₂N(*i*-Pr)]₂ (1.110) is obtained as a crystalline solid; the residue obtained by evaporation of the mother liquor showed a singlet at 18.7 (probably the bicyclic product) and a broad multiplet centred at 3.4 ppm (unassigned) in the ³¹P NMR.

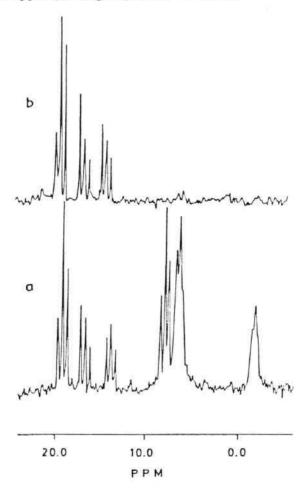


Fig 1.5 31 P NMR spectra of a) mixture of N₄P₄[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)](NHMe)₆ (1.108) and N₄P₄[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)](NHMe)₄(NMe) (1.109) and b) 1.109.

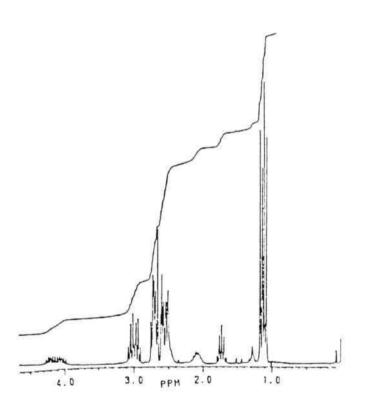


Fig 1.6 ¹H NMR spectrum of 1.109

1.22 Structures

The molecular structures of compounds 1.99·1/2C₄H₈Cl₂ and 1.100-1.103 are shown in Figs. 1.7-1.11. Selected bond parameters are given in Tables 1.2-1.6 and atomic coordinates are available in the Appendix.

Compound 1.99.1/2C₄H₈Cl₂ (Fig. 1.7, Table 1.2) crystallizes in the space group P₁ with the solvent molecule positioned around the centre of symmetry of the unit cell so that only half of it belongs to the asymmetric unit. There is disorder in the solvent

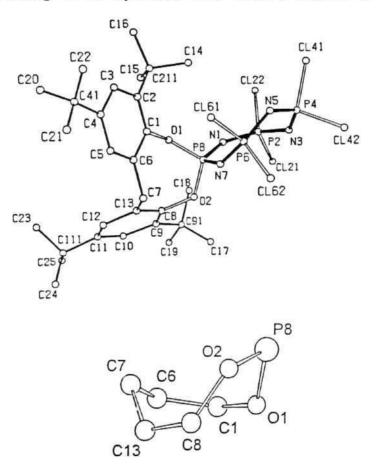


Fig 1.7 Molecular Structure of 1.99·1/2C₄H₈Cl₂. The solvent as well as the hydrogen atoms are omitted for clarity. Also shown at the bottom is the conformation of the eight membered 1,3,2-dioxaphosphocin ring.

Table 1.2. Selected bond lengths (Å) and bond angles (deg) for 1.99.1/2C₄H₈Cl₂ with esd's in parentheses

P(2) - Cl(21)	1.970	0(4)	P(6) - N(7)	1.569(8)
P(2) - CI(22)	1.962	2(6)	P(8) - O(1)	1.579(7)
P(2) - N(1)	1.53(1)	P(8) - O(2)	1.555(7)
P(2) - N(3)	1.565	5(8)	P(8) - N(1)	1.55(1)
P(4) - CI(41)	1.952	2(6)	P(8) - N(7)	1.550(7)
P(4) - Cl(42)	1.982	2(5)	O(1) - C(1)	1.43(1)
P(4) - N(3)	1.552	2(8)	O(2) - C(8)	1.43(1)
P(4) - N(5)	1.56(1)	C(1) - C(2)	1.35(2)
P(6) - Cl(61)	1.982	2(4)	C(6) - C(7)	1.49(1)
P(6) - Cl(62)	1.970	0(5)	C(7) - C(13)	1.50(1)
P(6) - N(5)	1.55(1)	C(8) - C(13)	1.38(2)
Cl(21) - P(2) - C	1(22)	102.8(2)	O(1) - P(8) - O(2)	105.3(4)
Cl(21) - P(2) - N	I(1)	109.1(3)	O(1) - P(8) - N(1)	104.7(5)
Cl(21) - P(2) - N	1(3)	105.2(4)	O(1) - P(8) - N(7)	112.9(4)
Cl(22) - P(2) - N	I(1)	108.4(4)	O(2) - P(8) - N(1)	108.8(4)
Cl(22) - P(2) - N	(3)	109.3(4)	O(2) - P(8) - N(7)	105.5(5)
N(1) - P(2) - N(3	3)	120.5(5)	N(1) - P(8) - N(7)	118.9(5)
Cl(41) - P(4) - C	1(42)	102.2(3)	P(2) - N(1) - P(8)	141.9(5)
Cl(41) - P(4) - N	J(3)	111.8(5)	P(2) - N(3) - P(4)	134.4(6)
Cl(41) - P(4) - N	l(5)	105.7(4)	P(4) - N(5) - P(6)	131.4(6)
Cl(42) - P(4) - N	1(3)	104.1(4)	P(6) - N(7) - P(8)	140.0(7)
Cl(42) - P(4) - N	I(5)	110.2(4)	O(1) - C(1) -C(6)	116.8(9)
N(3) - P(4) - N(3	5)	121.2(5)	P(8) - O(1) - C(1)	127.7(6)
Cl(61) - P(6) - C	1(62)	101.0(2)	P(8) - O(2) -C(8)	127.5(6)
Cl(61) - P(6) - N	1(5)	104.8(4)	C(1) - C(6) - C(7)	123,8(9)
Cl(61) - P(6) - N	1(7)	110.3(4)	C(6) - C(7) -C(13)	116.4(8)
Cl(62) - P(6) - N	I(5)	110.1(4)	O(2) - C(8) -C(13)	116.6(8)
Cl(62) - P(6) - N	1(7)	105.3(4)	C(7) - C(13) -C(8)	124(1)
N(5) - P(6) - N(7)	123.2(5)		

molecule as well as in one of the *t*-butyl groups in the structure. The P-N distances are in the normal range [1.53(1)-1.569(8)] with a mean value of 1.55Å. Bond angles at phosphorus and nitrogen for the phosphazene ring average to 121(1) and $137(2)^{\circ}$ respectively; the angles at the ring nitrogen are thus larger than those generally observed for the trimeric compounds¹² as well as the aminophosphazenes N₄P₄(NMe₂)₈ [130.0(6)°]¹⁰⁵ and N₄P₄(NC₄H₈)₈ [131.7(4)°]¹⁰⁶ but are close to those observed in N₄P₄(O-C₆H₄-2-Me)₈ [mean 138.5°].¹⁰⁷ The P-O bonds in the 1,3,2-dioxaphosphocin ring [mean 1.567(11) Å] are significantly shorter than those observed in the pentacoordinated phosphorus compound (C₆H₁₁NH)P[(O-4,6-(*t*-Bu)₂C₆H₂)₂CH₂](1,2-O₂C₆H₄).1/2Et₂O [mean 1.632(3) Å] or in the tricoordinated derivative (C₆H₁₁NH)P[O-4,6-(*t*-Bu)₂C₆H₂)₂CH₂] [mean 1.666(3) Å].^{104c}

The phosphazene ring is nonplanar as expected and has a 'twisted' conformation. Interestingly, the eight membered 1,3,2-dioxaphosphocin ring in 1.99 has a 'tub' conformation [Fig. 1.7] with atoms O(1), C(1), C(8) and C(13) coplanar to within ±0.026 Å while atoms P(8), O(2), C(6) and C(7) depart at the same side from this plane by 1.18, 1.00, 0.46 and 0.93 Å respectively. So far, such a conformation for this ring has been found only for pentacoordinated phosphoranes in which the ring spans *apical-equatorial* sites 104(C) but not in tetra-108 or tricoordinated 104¢), 109 phosphorus derivatives.

In compound 1.100 [Fig.1.8, Table 1.3] the phosphazenic P-N bonds at P(8), which bears the 1,3,2-diazaphosphorinane ring, are longer than the rest; the next two [N(1)-P(2), N(7)-P(6)] are shorter, followed by longer [P((2)-N(3), P(6)-N(5)] and again by shorter [N(3)-P(4), N(5)-P(4)] bonds. It would be interesting to see whether other 2,2-diaminocyclotetraphosphazenes also exhibit such an alternating long-short-long-short array of bonds to know more about bonding in cyclotetraphosphazenes; to our knowledge, an X-ray structure is not available for any other compound till now.

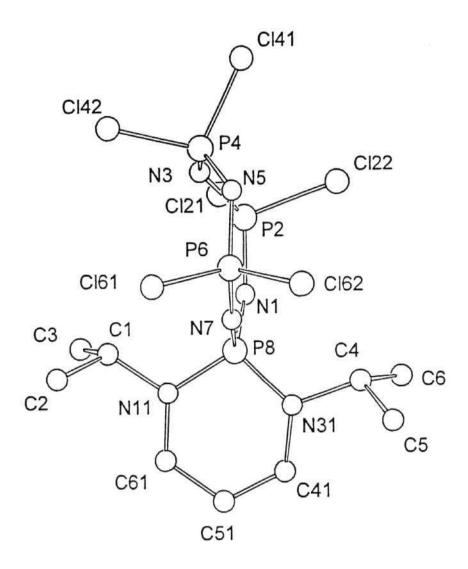


Fig 1.8 Molecular structure of 1.100; only non-hydrogen atoms are shown for clarity.

Another interesting point in the structure of 1.100 is the unusual widening of the angle at N(7) [$160.9(3)^{0}$] towards linearity; even in the acyclic derivative 1.103 [see below] the angle at nitrogen is much lower [$140.5(2)^{0}$]. Since at N(1), which is electronically equivalent to N(7), there is no significant widening, we attribute this observation to conformational effects. The phosphazene ring is nonplanar; if one considers the mean plane of the N₄P₄ ring, P(2), N(1) and N(5) are above this mean plane by 0.54, 0.30 and 0.12 Å whilst P(4), P(6), P(8), N(3) and N(7) are below this plane by

Table 1.3. Selected bond lengths (Å) and bond angles (deg) for 1.100 with esd's in parentheses

P(2) - Cl(21)	1.987	7(2)	P(6) - N(5)	1.562(4)
P(2) - Cl(22)	2.012	2(2)	P(6) - N(7)	1.506(4)
P(2) - N(1)	1.527	7(4)	P(8) - N(1)	1.577(3)
P(2) - N(3)	1.567	7(4)	P(8) - N(7)	1.571(4)
P(4) - Cl(41)	1.99	1(2)	P(8) - N(11)	1.630(4)
P(4) - Cl(42)	1.988	3(2)	P(8) - N(31)	1.621(4)
P(4) - N(3)	1.552	2(4)	N(11) - C(61)	1.414(8)
P(4) - N(5)	1.542	2(3)	N(31) - C(41)	1.43(1)
P(6) - Cl(61)	1.994	1(2)	C(41) - C(51)	1.42(1)
P(6) - Cl(62)	1.994	1(2)	C(51) - C(61)	1.408(9)
Cl(21) - P(2) - 0	Cl(22)	101.25(7)	N(5) - P(6) - N(7)	121.9(2)
Cl(21) - P(2) - 1	N(1)	108.5(2)	N(1) - P(8) - N(7)	111.3(2)
Cl(21) - P(2) - 1	N(3)	104.1(1)	N(1) - P(8) - N(11)	110.5(2)
Cl(22) - P(2) - 1	N(1)	109.8(1)	N(1) - P(8) - N(31)	110.8(2)
Cl(22) - P(2) - 1	N(3)	109.1(2)	N(7) - P(8) - N(11)	109.7(2)
N(1) - P(2) - N((3)	121.9(2)	N(7) - P(8) - N(31)	108.9(2)
Cl(41) - P(4) - (Cl(42)	101.41(9)	N(11) - P(8) - N(31)	105.6(2)
Cl(41) - P(4) - 1	N(3)	109.8(2)	P(2) - N(1) - P(8)	140.1(3)
Cl(41) - P(4) - 1	N(5)	105.5(2)	P(2) - N(3) - P(4)	135.5(2)
Cl(42) - P(4) - 1	N(3)	105.0(1)	P(4) - N(5) - P(6)	130.8(3)
Cl(42) - P(4) - 1	N(5)	110.6(2)	P(6) - N(7) - P(8)	160.9(3)
N(3) - P(4) - N((5)	122.6(2)	P(8) - N(11) -C(61)	124.2(3)
Cl(61) - P(6) - 0	Cl(62)	101.06(7)	P(8) - N(31) -C(41)	123.2(4)
Cl(61) - P(6) - 1	N(5)	108.1(2)	N(31) - C(41) -C(51)	117.6(7)
Cl(61) - P(6) - 1	N(7)	109.0(2)	C(41) - C(51) -C(61)	121.0(7)
Cl(62) - P(6) - N	N(5)	104.8(1)	N(11) - C(61) -C(51)	119.5(6)
Cl(62) - P(6) - N	V(7)	110.0(1)		

0.30, 0.18, 0.15, 0.28 and 0.22 Å respectively. The conformation of the 1,3,2-diazaphosphorinane ring is that of a flattened chair. Atoms P(8) and C(51) are above and below the mean plane containing N(11), N(31), C(41) and C(61) [coplanar to within 0.038 Å] by 0.18 and 0.31 Å respectively.

The exocyclic (to phosphazene ring) P-N bonds in 1.100 [mean: 1.626(4) Å] are shorter than those observed in $N_4P_4(NMe_2)_8$ [1.69(1) Å]¹⁰⁵ or $N_4P_4(NC_4H_8)_8$ [1.677(7) Å],¹⁰⁶ suggesting a greater π -character for such P-N bonds in 1.100. The sums of the angles at N(11) and N(31) are 358.4 and 359.0° respectively, suggesting that the lone pair on nitrogen is involved in further bonding interactions with phosphorus.

In the dispirocyclic compound 1.101 (Fig. 1.9, Table 1.4), the P-N bonds in the phosphazene ring are longer for the phosphorus atoms bearing the 1,3,2-diazaphosphorinane ring than those at P(2) which has a PCl₂ group. Such a significant

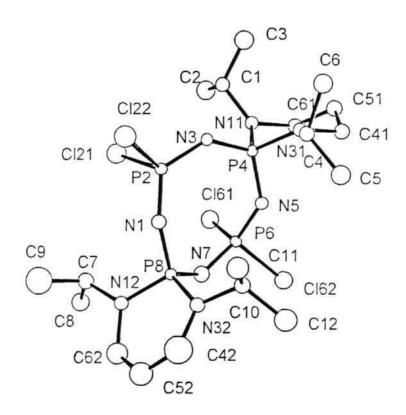


Fig 1.9 Molecular Structure of 1.101; only non-hydrogen atoms are shown for clarity.

Table 1.4. Selected bond lengths (Å) and bond angles (deg) for 1.101 with esd's in parentheses

P(2) - Cl(21)	2.033	6(3)	P(8) - N(1)	1.578(5)
P(2) - Cl(22)	2.000	0(2)	P(8) - N(7)	1.569(5)
P(2) - N(1)	1.517	7(5)	P(8) - N(12)	1.624(5)
P(2) - N(3)	1.530	0(4)	P(8) - N(32)	1.631(5)
P(4) - N(3)	1.590	0(4)	N(11) - C(61)	1.469(8)
P(4) - N(5)	1.603	3(5)	N(31) - C(41)	1.466(7)
P(4) - N(11)	1.642	2(5)	C(41) - C(51)	1.517(10)
P(4) - N(31)	1.642	2(4)	C(51) - C(61)	1.513(9)
P(6) - Cl(61)	2.012	2(2)	N(12) - C(62)	1.440(9)
P(6) - Cl(62)	2.000	0(2))	N(32) - C(42)	1.393(9)
P(6) - N(5) P(6) - N(7)	1.547 1.534		C(42) - C(52) C(52) - C(62)	1.342(14) 1.413(12)
Cl(21) - P(2) - C	CI(22)	100.23(14)	N(1) - P(8) - N(12)	110.1(2)
Cl(21) - P(2) - N	N(1)	109.2(2)	N(1) - P(8) - N(32)	108.9(3)
Cl(21) - P(2) - N	N(3)	107.1(2)	N(7) - P(8) - N(12)	109.7(3)
Cl(22) - P(2) - N	N(1)	106.5(2)	N(7) - P(8) - N(32)	111.5(3)
Cl(22) - P(2) - N	N(3)	104.95(19)	N(12) - P(8) - N(32)	103.2(3)
N(1) - P(2) - N((3)	125.9(3)	P(2) - N(1) - P(8)	151.3(4)
N(3) - P(4) - N((5)	116.7(2)	P(2) - N(3) - P(4)	131.5(3)
N(3) - P(4) - N(11)	111.1(3)	P(4) - N(5) - P(6)	137.0(3)
N(3) - P(4) - N(31)	107.4(2)	P(6) - N(7) - P(8)	134.5(4)
N(5) - P(4) - N(11)	108.7(2)	P(4) - N(11) -C(61)	112.5(4)
N(5) - P(4) - N(31)	107.6(3)	P(4) - N(31) -C(41)	114.1(4)
N(11) - P(4) - N	I(31)	104.6(2)	P(8) - N(12) -C(62)	124.2(3)
N(5) - P(6) - N(7)	122.6(3)	P(8) - N(32) -C(42)	123.1(6)
Cl(61) - P(6) - C	Cl(62)	98.61(13)	N(31) - C(41) -C(51)	111.6(6)
Cl(61) - P(6) - N	N(5)	111.9(2)	C(41) - C(51) -C(61)	113.7(5)
Cl(61) - P(6) - N	N(7)	107.9(3)	N(11) - C(61) -C(51)	112.0(5)
Cl(62) - P(6) - N	N(5)	106.5(2)	N(32) - C(42) -C(52)	123.2(9)
Cl(62) - P(6) - N	N(7)	106.5(3)	C(42) - C(52) -C(62)	123.0(7)
N(1) - P(8) - N(7)	113.0(3)	N(12) - C(62) -C(52)	115.5(7)

variation is absent in the aryloxy compound 2,2,6,6-N₄P₄(O-2,6-Cl₂C₆H₃)₄Cl₄.²² The average P-N bond length of 1.559 Å in 1.101 is close to that in the monospiro compound 1.100 [mean 1.551 Å]. The N-P-N angles in the phosphazene ring at P(spiro) atoms P(4) and P(8) are narrower [116.7(2) and 113.0(3)] than at the PCl₂ ends [125.9(3) and 122.6(3)]; this feature is similar to that in 1.100. Angles at nitrogen vary more [131.5(3)-151.3(4)] possibly as a result of conformational constraints on the phosphazene ring. The P-N bonds in the six-membered rings are longer than the P-N bonds in the phosphazene ring, as expected.⁵⁴

The phosphazene ring in 1.101 has an irregular boat structure with the atoms P(8), N(1) and N(5) on the same side. The two six-membered rings show different conformations. The one at P(4) has a 'chair' conformation with P(4) and C(51) at -0.74 and 0.63 Å from the mean plane of the other four which are coplanar to within 0.01 Å. The corresponding ring at P(8) has a flattened 'boat' conformation with N(12) and C(42) at 0.37 and 0.09 Å above the mean plane of the remaining four [coplanar to within 0.03 Å]. This latter feature is similar to that found in the pentacoordinated phosphorane (C₁₄H₈O₂)(2,6-Me₃C₆H₃O)P[(Me)NCH₂CH₂CH₂ N(Me)]. 110

As is observed in other monospirocyclic diaminocyclotriphosphazenes, ¹² the P-N bond lengths in 1.102 (Fig. 1.10, Table 1.5) vary as $\underline{P}(\text{spiro})$ - \underline{N} -PCl₂ > Cl₂ \underline{P} - \underline{N} -PCl₂ > P(spiro) - \underline{N} -PCl₂. However, the interesting point in the structure of 1.102 is that the P-N bonds to the 1,3,2-diazaphosphorinane ring [mean: 1.623 Å] are nearly of the same length as the phosphazenic P(spiro)-N bonds [mean: 1.623(4) Å]. The phosphazene N-P(spiro)-N angle is close to that observed for the analogous tetrameric derivative 1.101. The phosphazene ring is planar to within ± 0.09 Å and the diazaphosphorinane ring has a chair conformation.

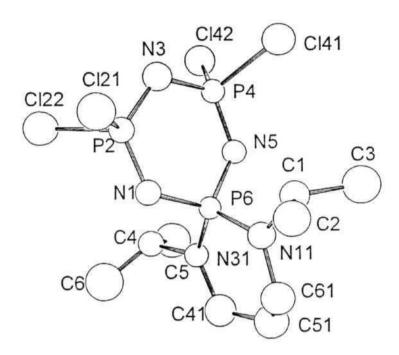


Fig 1.10 Molecular Structure of 1.102, only non-hydrogen atoms are shown for clarity.

The sums of the bond angles at N(11) and N(31) are, respectively, 359.8 and 359.3° and are thus close to planarity; these deviate from the plane of the three atoms to which they are bonded by 0.03 Å and 0.08 Å respectively. In the compound 2,2-N₃P₃[(Me)NCH₂ CH₂CH₂N(Me)]Cl₄⁴⁴ reported by Shaw and coworkers, the corresponding sum of the angles is 351° suggesting an appreciable amount of sp³ character; this was the reason attributed to the lower coupling constants in the ¹³C NMR of this compound. However, in 1.100 also ²J(P-C) and ³J(P-C) values are very low (< 3 Hz; only singlets observed) and hence we believe that other factors may also be operative which lead to this observation.

Table 1.5. Selected bond lengths (Å) and bond angles (deg) for 1.102 with esd's in parentheses

P(2) - Cl(21)	1.994	4(2)	P(6) - N(5)	1.617(4)
P(2) - Cl(22)	2.016	5(2)	P(6) - N(11)	1.622(4)
P(2) - N(1)	1.545	5(4)	P(6) - N(31)	1.623(4)
P(2) - N(3)	1.574	1(4)	N(11) - C(1)	1.472(6)
P(4) - Cl(41)	2.002	27(19)	N(31) - C(4)	1.470(6)
P(4) - Cl(42)	2.002	2(2)	N(31) - C(41)	1.443(6)
P(4) - N(3)	1.585	5(4)	C(41) - C(51)	1.426(8)
P(4) - N(5)	1.550	0(4)	C(51) - C(61)	1.419(9)
P(6) - N(1)	1.629	9(4)		
Cl(21) - P(2) - C	Cl(22)	99,54(10)	N(5) - P(6) - N(11)	109.2(2)
Cl(21) - P(2) - N	N(1)	108.84(17)	N(5) - P(6) - N(31)	110.7(2)
Cl(21) - P(2) - N	N(3)	107.7(2)	N(11) - P(6) - N(31)	105.6(2)
Cl(22) - P(2) - N	N(1)	110.13(17)	P(2) - N(1) - P(8)	124.9(2)
Cl(22) - P(2) - N	N(3)	107.67(19)	P(2) - N(3) - P(4)	117.1(2)
N(1) - P(2) - N(3)	120.9(2)	P(4) - N(5) - P(6)	125.1(2)
Cl(41) - P(4) - C	Cl(42)	99.58(10)	P(6) - N(11) -C(61)	124.2(3)
Cl(41) - P(4) - N	N(3)	106.58(19)	P(6) - N(11) - C(1)	118.1(3)
Cl(41) - P(4) - N	N(5)	110.66(16)	C(1) - N(11) -C(61)	118.2(4)
Cl(42) - P(4) - N	N(3)	108.7(2)	P(6) - N(31) -C(41)	123.2(4)
Cl(42) - P(4) - N	N(5)	108.97(18)	P(6) - N(31) -C(4)	117.5(3)
N(3) - P(4) - N(5)	120.4(2)	C(4) - N(31) -C(41)	117.4(4)
N(1) - P(6) - N(5)	110.35(18)	N(31) - C(41) -C(51)	117.6(7)
N(1) - P(6) - N(11)	111.6(2)	C(41) - C(51) -C(61)	121.0(7)
N(1) - P(6) - N(31)	109.3(2)	N(11) - C(61) -C(51)	119.5(6)

In the monocyclic derivative 1.103 (Fig. 1.11, Table 1.6), the P=N distance is short but close to that in the parent compound $Cl_2P(O)-N=PCl_3$ (1.3) [mean 1.521 Å]¹¹¹

and $Cl_2P(O)-N=P(O-2,6-C_6H_3Cl_2)_3$ (1.111) [1.515(4) Å].²² What is probably more significant is the $Cl_2P(O)-N$ bond length of 1.560(3) Å; this is shorter than that in the

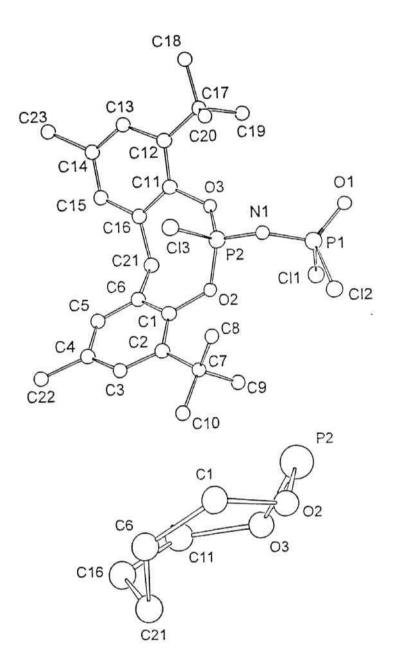


Fig 1.11 Molecular Structure of 1.103; only non-hydrogen atoms are shown for clarity. Also shown at the bottom is the conformation of the eight membered 1,3,2-dioxaphosphocin ring.

parent compound 1.3 [mean 1.587 Å] but is close to that in 1.111 [1.567(4) Å]. Noting that in this linear phosphazene there are no resonance forms available as in cyclotri- or cyclotetraphosphazenes, this P-N bond should be essentially a single bond for book keeping purposes, but still is considerably shorter than the P-N single bond distance of 1.769(19) Å in the phosphoramidate salt NaH₃NPO₃ and 1.800(4) Å in KH₃NPO₃. 112

In contrast to the 'boat' conformation found in 1.99 for the 1,3,2-dioxaphosphocin ring, a 'boat-chair' conformation $^{104(b)}$ is found for the same ring in 1.103 [cf. Fig. 1.11]; the atoms C(1), C(6), C(11) and C(16) are coplanar to within ± 0.02 Å while the atoms P(2), O(2), O(3) and C(2) are above this plane by 0.16, 0.67, 0.61 and 0.76 Å respectively.

Table 1.6. Selected bond lengths (Å) and bond angles (deg) for 1.103 with esd's in parentheses

P(1) - O(1)	1.437(3)	P(2) - Cl(3)	1.9764(13)
P(1) - N(1)	1.560(3)	O(2) - C(1)	1.432(4)
P(1) - CI(1)	2.020(2)	O(3) - C(11)	1.432(4)
P(1) - Cl(2)	2.003(2)	C(1) - C(6)	1.388(5)
P(2) - N(1)	1.526(3)	C(6) - C(21)	1.512(5)
P(2) - O(3)	1.558(2)	C(11) - C(16)	1.390(5)
P(2) - O(2)	1.560(2)	C(16) - C(21)	1.512(5)
O(1) - P(1) - N(1)	119.2(2)	O(3) - P(2) - Cl(3)	106.60(10)
O(1) - P(1) - Cl(2	110.3(2)	O(2) - P(2) - Cl(3)	106.21(10)
N(1) - P(1) - Cl(2	105.62(14)	P(2) - O(2) - C(1)	126.8(2)
O(1) - P(1) - Cl(1	110.8(2)	P(2) - O(3) - C(11)	129.4(2)
N(1) - P(1) - Cl(1	108.07(14)	P(1) - N(1) - P(2)	140.5(2)
Cl(1) - P(1) - Cl(2	101.34(8)	O(2) - C(1) -C(6)	116.5(3)
N(1) - P(2) - O(3)	109.8(2)	C(1) - C(6) -C(21)	122.0(3)
N(1) - P(2) - O(2)	111.5(2)	O(3) - C(11) -C(16)	117.1(3)
O(3) - P(2) - O(2)	110.55(13)	C(11) - C(16) -C(21)	121.6(3)
N(1) - P(2) - Cl(3	112.04(14)	C(6) - C(21) -C(16)	117.2(3)

1.23 CONCLUSIONS

To summarize, this study shows that the formation of spirocyclic derivatives in the reaction of N₄P₄Cl₈ (1.2) with diamines/ diols is a favoured pathway. The relatively greater stability of these compounds may be associated with steric factors that make sites close to P(spiro) hindered. The spirocyclic tetraphosphazenes 1.99-1.101 represent the first members in this series to be studied by X-ray crystallography; these studies are likely to be useful in understanding the nature of the P-N bond in cyclic tri- vs tetraphosphazenes. While considering the bonding in cyclophosphazenes, often an sp² mixing of orbitals¹¹³ for nitrogen is assumed; in view of the wide angles at nitrogen (~160°) observed in the tetrameric series (eg: 1.100) it may be worth reconsidering this model.

1.3 Experimental

Chemicals and solvents were from Aldrich/ Fluka or from local manufacturers. Further purification was done according to standard procedures. All operations, unless stated otherwise, were carried out under dry nitrogen atmosphere using standard Schlenck techniques. H, 13 C and 31 P (operating at 80.961 MHz) NMR spectra were recorded on a Brüker 200 MHz NMR spectrometer in CDCl₃ solutions with shifts referenced to SiMe₄ (1 H, 13 C; $\delta = 0$) and ext. 85 % H₃PO₄ ($\delta = 0$) respectively; J values are in Hz. IR spectra were recorded on either a Perkin-Elmer 1310 spectrophotometer or a JASCO FT-IR 5300 spectrophotometer. Elemental analyses were carried out on a Perkin-Elmer 240C CHN analyser. Melting points are uncorrected.

Syntheses:

a) $2,2-N_4P_4\{[O-4,6-(t-Bu)_2-C_6H_2]_2CH_2\}Cl_6.1/2C_4H_8Cl_2[1.99.1/2C_4H_8Cl_2].$

Methylenebis(4,6-di-*t*-butyl-phenol)¹¹⁶ (0.55 g, 1.3 mmol) was refluxed with excess of sodium leaves in dry THF (20 cm³) for 3 d. Unreacted sodium was then removed by forceps. To the remaining suspension, N₄P₄Cl₈ (1.2) (0.6 g, 1.3 mmol) in THF (10 cm³) was added dropwise (10 min) and the mixture refluxed for 1 d. Then THF was removed *in vacuo* and hexane was added to the residue. The insoluble material was filtered off and the solvent removed from the filtrate. The gummy residue was crystallized from cyclohexane at 25°C to afford 1.99.1/2C₄H₈Cl₂ [*cf.* X-ray structure; the source of 1,4-dichlorobutane (C₄H₈Cl₂) is likely to be THF. It is known that HBr reacts with THF to give 1,4-C₄H₈Br₂. In our case the reaction of THF with HCl is possibly mediated by N₄P₄Cl₈; formation of 1,4-dichlorobutane from THF has been found to occur in the presence of P(O)Cl₃ also. We had earlier experienced facile chlorination of α-hydroxy phosphonates by N₄P₄Cl₈. ¹¹⁹]

Yield: 0.26 g (23%).

M. p. 178-179°C.

Found (after drying at 0.5 mm/ 4 h): C, 42.42; H, 5.28; N, 6.90. $C_{29}H_{42}Cl_6N_4O_2P_4$ requires C, 42.72; H, 5.19; N, 6.87%. $C_{31}H_{46}Cl_7N_4O_2P_4$ requires: C, 42.37; H, 5.28; N, 6.38%.

¹H NMR (after evacuating at 0.5mm/4h): 1.30, 1.42, 1.44, 1.47 (s each, 36H, *t*-Bu-*H*), 4.10 (br, 2H, C*H*₂), 7.20, 7.40 (s each, 4H, Ar-*H*). Two triplets of low intensity at 3.45 and 3.50 ppm, assignable to 1,2-dichlorobutane, were also observed.

³¹P NMR: -25.2 (t, P(spiro), $^2J(\text{P-P}) = 72.0 \text{ Hz}$), -14.1 (dd, $2P\text{Cl}_2$, $^2J(\text{P-P}) = 72.0$, 26.4 Hz), -9.9 (t, $P\text{Cl}_2$, $^2J(\text{P-P}) = 26.4 \text{ Hz}$).

An analogous reaction using 2,2'-methylenebis(4-methyl-6-t-butyl-phenol) did not give any isolable product.

b) 2,2-N₄P₄[(i-Pr)NCH₂CH₂CH₂N(i-Pr)]Cl₆ (1.100). To a stirred solution of 1.2 (0.59 g, 1.27 mmol) in CH₂Cl₂ (10 cm³) at 5°C was added dropwise a solution of N,N'-diisopropyl-1,3-propanediamine (0.40 g, 2.54 mmol) in CH₂Cl₂ (10 cm³). The mixture was stirred at 25°C for 4 h and the solvent removed *in vacuo*. Toluene was added and the insoluble amine hydrochloride filtered off. The filtrate was concentrated to a small volume (0.2 cm³) and kept at -20°C to give crystals of 1.100; on evaporation of the mother liquor more compound was obtained.

Total yield: 0.46 g (66%).

M. p. 90-92°C.

Found: C, 19.82; H, 3.80; N, 15.48. C₉H₂₀N₆P₄Cl₆ requires C, 19.69, H, 3.67; N, 15.31%.

¹H NMR: 1.16 (d, 12H, ³J(H-H) = 6.4 Hz, CH₃), 1.80 (qnt, 2H, ³J(H-H) = 6.0 Hz, CCH₂), 3.05 (dt, 4H, ³J(P-H) ~ 16 Hz, ³J(H-H) = 6.0 Hz, NCH₂), 3.86 (m, 2H, NCHMe₂).

¹³C NMR: 20.6, 27.2, 37.8, 46.5.

c) 2,2,6,6-N₄P₄[(*i*-Pr)-NCH₂CH₂CH₂N(*i*-Pr)]₂Cl₄ (1.101). To compound 1.100 (0.68 g, 1.23 mmol) in CH₂Cl₂ (10 cm³), N,N'-diisopropyl-1,3-propanediamine (0.39 g, 2.47 mmol) in CH₂Cl₂ (10 cm³) was added dropwise (15 min) and the mixture stirred overnight at 30°C. The solvent was completely removed, and hexane (15 cm³) was added to the residue. Filtration followed by concentration of the solution to *ca* 2 cm³ afforded crystalline 1.101.

Yield: 0.4 g (51%).

M.p. 200-202°C.

Found: C, 33.98; H, 6.20; N, 17.60. C₁₈H₄₀Cl₄N₈P₄ requires C, 34.08; H, 6.35; N, 17.66%.

¹H NMR: 1.17 (d, 12H, C H_3), 1.81 (qnt, 2H, CC H_2), 3.10 (dt, 4H, 3J (P-H) = 16.0 Hz, 3J (H-H) ~ 6.0 Hz, NC H_2), 3.60 (m, 2H, NCHMe₂).

¹³C NMR: 19.9, , 26.3, 38.2, 45.7.

³¹P NMR: -19.4 (t, P(spiro), 2 J(P-P) = 25.6 Hz), -5.8 (t, 2 J(P-P) = 25.6 Hz, PCl₂).

d) 2,2-N₃P₃[(*i*-Pr)NCH₂CH₂CH₂N(*i*-Pr)]Cl₄ (1.102). This compound was prepared by a route analogous to that for 1.100 using N₃P₃Cl₆ (1.1) (0.69 g, 2 mmol) and N,N'-diisopropyl-1,3-propanediamine (0.63 g, 4 mmol). Compound 1.102 was crystallized from hexane.

Yield: 0.61 g (70%).

³¹P NMR: -14.6 (t, ${}^{2}J(P-P) = 26.0 \text{ Hz}$, P(spiro)), -6.2 to -7.5 (m, Pcl₂).

M. p. 150-152°C.

Found: C, 24.85,; H, 4.60; N, 16.05. C₉H₂₀Cl₄N₅P₃ requires C, 24.96, H, 4.65, N, 16.17%.

¹H NMR: 1.13 (d, 12H, ${}^{3}J(H-H) = 6.4 \text{ Hz}$, CH_{3}), 1.75 (qnt, 2H, CCH_{2}), 3.00 (dt, J = 16.0, 6.0 Hz, NCH_{2}), 3.95 (m, 2H, $CHMe_{2}$).

¹³C NMR: 19.9, 26.3, 38.2, 45.7.

³¹P NMR: 6.3 (t, ${}^{2}J(P-P) = 36.8 \text{ Hz}$), 20.6 (d, ${}^{2}J(P-P) = 36.8 \text{ Hz}$).

e) Cl₂P(O)-N=P[(O-4-Me-6-t-Bu-C₆H₂)₂CH₂]Cl (1.103). To Cl₂P(O)N=PCl₃ (1.3) (0.78 g, 2.9 mmol) in toluene (25 cm³), a solution of 2,2'-methylene-bis(4-methyl-6-t-butyl phenol) (0.99 g, 2.9 mmol) and triethylamine (0.58 g, 5.8 mmol) in toluene (10 cm³) was added dropwise at 25°C (15 min). The mixture was stirred overnight, filtered and the filtrate concentrated to *ca* 10 cm³. An oily material separated, which was extracted with hot benzene. Cooling the benzene solution to 25°C afforded 1.103.

Yield: 0.9 g (52%).

M. p. 188°C.

Found: C, 49.85; H, 5.37; N, 2.40. C₂₃H₃₀Cl₃NO₄P₂ requires C, 49.97; H, 5.47; N, 2.53%.

¹H NMR: 1.40 (s, 18H, *t*-Bu-*H*), 2.30 (s, 6H, C H_3), 3.60 (d, 1H, ² $J(H_A-H_B) = 18.0$ Hz, ArC H_AH_B), 4.32 (d, ²J = 18.0 Hz, ArC H_AH_B), 7.15, 7.20 (s each, 4H, Ar-H).

³¹P NMR: -15.4, -13.8 [AB quartet; J(AB) ~ 60 Hz].

f) N₃P₃[O-4-Me-6-t-Bu-C₆H₂-CH₂-4-Me-6-t-Bu-C₆H₂OH]Cl₅ (1.105). A procedure similar to (a) above was followed using the diol (1.08 g, 3.1 mmol) and 1.1 (1.06 g, 3.11 mmol). The reaction mixture was chromatographed (hexane, CH₂Cl₂) to

remove the unreacted diol and the residue was heated at $100^{\circ}\text{C}/0.5$ mm to remove most of unreacted 1.1 (ca 0.2 g) to afford 0.3 g of a gummy material. ³¹P NMR: a) 21.7 (d, 2P, ²J(P-P) = 61.0 Hz, 8.2 (t, 1P, ²J(P-P) = 61 Hz, assigned to 1.105, ca 80%); b) 19.3 (assigned to unreacted 1.1, ca. 10 %), c) 21.1 (d, ²J(P-P) ~ 72 Hz), -7.63 (t, ²J(P-P) ~ 72 Hz (unassigned, ca 10%). Pure 1.105 could be obtained as a semisolid by column chromatography using dichloromethane/ hexane as eluant.

Found: C, 42.61; H, 4.91; N, 6.55. C₂₃H₃₁Cl₅N₃O₂P₃ requires C, 42.39; H, 4.79; N, 6.45%).

¹H NMR: 1.42, 1.50 (s each, 18H, t-bu-*H*), 2.22, 2.32 (s each, 6H, Ar-C*H*₃), 4.20 (s, 2H, ArC*H*₂), 6.65, 6.80, 7.20,7.30 (s each, total 4H, Ar-*H*). ³¹P NMR: 21.7 (d, 2P, ${}^{2}J(P-P) = 61.0 \text{ Hz}$, 8.2 (t, 1P, ${}^{2}J(P-P) = 61 \text{ Hz}$. MS: m/z 649 [M(${}^{35}CI$)]⁺, 613 [M(${}^{35}CI$) - HCl]⁺.

g) N₃P₃[(*i*-Pr)NCH₂CH₂CH₂N(*i*-Pr)]F₄ (1.106). To a stirred solution of 1.102 (0.52 g, 1.2 mmol) in methyl cyanide (20 cm³) was added KF (dried at 120°C for 2 d, 1.04 g, 18 mmol) in one portion at 25°C. The mixture was heated under reflux for 36 h, cooled and filtered. Removal of solvent gave a solid that was crystallized from toluene to give compound 1.106.

Yield: 0.35 g (80%).

M. p. 64-66°C.

Found: C, 28.95; H, 5.20; N, 18.58. C₉H₂₀F₄N₅P₃ requires C, 29.43; H, 5.45; N, 19.07%.

¹H NMR: 1.16 (d, J = 6.0 Hz, 12H, CH_3), 1.88 (qnt, J = 6.0Hz, 2H, CCH_2), 3.07 (td, 4H, J = 14.1, 6.6 Hz, NCH_2), 3.56-3.65 (m, 2H, $NCHMe_2$).

¹³C NMR: 20.1, 26.5, 37.9, 45.7.

³¹P NMR: 15.4 (1P, P(spiro), 2 J(P-P) ~ 90 Hz), 11.4 (2P, 1 J(P-F) ~ 965 Hz, PF₂).

h) Fluorination of 1.100. Procedure was the same as in (g) above using 1.100 (0.66 g, 1.2 mmol) and KF (1.04 g, 18 mmol). A very hygroscopic solid (0.35 g), probably N₄P₄F₅(OH)[N(*i*-Pr)CH₂CH₂CH₂N(*i*-Pr)] (1.107, see mass spectrum below), was isolated.

¹H NMR: 1.10-1.30 (br m, \sim 12H, CH₃), 1.60-1.90 (br, 2H, CCH₂), 2.80-3.20 (br, 4H, NCH₂), 3.80-4.20 (br, 2H, NCHMe₂).

³¹P NMR: -14.6 (tt, $1J(P-F) \sim 850 \text{ Hz}$, $^2J(P-P) \sim 81 \text{ Hz}$, PF_2), 0.1 (m, P(spiro)), -11.0 (m, unassigned).

MS: 434 [80%, $\{M-CH_3+H\}^+$], 349 [10%], 334 [25%], 293 [25%, $N_4P_4HF_5(OH)^+$; this type of ion with phosphazene skeleton intact is typical for fluorocyclotriphosphazenes $N_3P_3(X-Y)F_4$. The latter compounds show peaks at m/z corresponding to $\{N_3P_3HF_4\}^+$].

i) Reaction of 1.100 with methylamine: Formation of 1.108 and 1.109

To a stirred solution of excess of methylamine (ca 1 g, 33 mmol) and triethylamine (2 cm³) in chloroform (10 cm³) maintained at -60°C was added 1.100 (0.4 g, 0.7 mmol) all at once with continuous stirring. After the reaction mixture reached 25°C, it was refluxed (using acetone slush on the top) for 2 h. The solvent was removed and toluene (10 cm³) was added to the residue. Filtration followed by concentration of the solution gave a solid. Yield ~ 0.26 g. From this, compound 1.109, m. p. 214-216°C (ca 50 mg) was isolated in a pure state using CH₂Cl₂ solvent.

Found: C, 34.68; H, 8.14; N, 31.82. C₁₄H₃₉N₁₁P₄ requires C, 34.63; H, 8.11, N, 31.74%.

¹H NMR: 1.08 (d, J = 6.7 Hz, 6H, CHC H_3), 1.15 (d, J = 6.6 Hz, 6H, CHC H_3), 1.72 (qnt, J = 6.2 Hz, CC H_2), 2.10 (br, ~2H, NHMe), 2.50-2.75 (complex, 11 lines, 15H, NC H_3), 3.00 (two qrt, 4H, NC H_2), 4.20 (m, 2H, NCH).

³¹P NMR: 19.8 (dd or t, 2P, J = 40 Hz), 17.1 (t, 1P, $J \sim 40$ Hz), 14.7 (t, 1P, $J \sim 40$ Hz).

MS: 485 [M $^{+}$], 473, 442, 426, 411, 384, 361, 330 [100%, {M-(*i*-Pr)NCH₂CH₂CH₂N(*i*-Pr) + H} $^{+}$]. Two peaks of low intensity at m/z 538 and 516 were also observed.

¹H NMR (residue from the mother liquor; 1.**108** + 1.**109**, *ca* 1:1 based on ³¹P NMR): 1.10 (d, $J \sim 6.0$ Hz, CH(C H_3)₂), 1.70 (m, C H_2), 2.45 (d, ³J(P-H) ~ 20 Hz, NC H_3), 2.60 (m, NC H_3), 2.80-3.20 (m, NC H_2) 3.90 - 4.20 (m, CHMe₂). ³¹P NMR (excluding peaks for 1.**109**): 8.0 (t or dd, 1P, ² $J \sim 34$ Hz), 6.2 (t, 1P, ² $J \sim 27$ Hz), -1.92 (t, 1P, ² $J \sim 27$ Hz).

An attempt to isolate pure 1.108 by reacting 1.2 with excess of methylamine in diethyl ether was not successful; only the bicyclic derivative 1.109 was isolated as a crystalline solid.

(j) $2,2,6,6-N_4P_4[(i-Pr)-NCH_2CH_2CH_2N(i-Pr)]_2(NHMe)_4$ (1.110)

To methylamine (ca 1 cm³; taken in excess) in dichloromethane (10 cm³) maintained at -78°C, compound 1.101 (0.19 g, 0.3 mmol) in dichloromethane (10 cm³) was added and the mixture was stirred at this temperature for 4 h. Then the contents were allowed to attain room temperature while stirring (8 h). Solvent was removed, toluene (10 cm³) was added to the residue. Filtration followed by concentration afforded 1.110 as a crystalline solid.

Yield: 0.1 g (53%).

M. p. 163°C.

Found: C, 43.94; H, 9.45; N, 26.49. C₂₂H₅₆N₁₂P₄ requires C, 43.12; H, 9.21; N, 27.4%).

¹H NMR: 1.06 (d, J = 14.0 Hz, 24H, CHC H_3), 1.61 (qnt, J = 6.2 Hz, 4H, CC H_2), 2.50 (d, J = 20.0 Hz, 12H, NC H_3), 3.05 (two qrt, 8H, NC H_2), 4.20 (m, 4H, NC H_3).

¹³C NMR: 21.2, 27.3, 28.5, 39.2, 45.7.

³¹P NMR: 1.8 (t, 2P, $^{2}J = 33 \text{ Hz}$), 4.1 (t, 2P, $^{2}J = 33 \text{ Hz}$).

X-Ray Crystallography

Suitable crystals were mounted inside a capillary (1.99.1/2C4H8Cl2, 1.100, 1.101, 1.103) or on a glass fibre (1.102). Data were collected on an Enraf-Nonius CAD4 [1.99.1/2C₄H₈Cl₂, 1.101, 1.103] or MACH3 [1.99, 1.102] diffractometer using MoK $_{\alpha}$ [λ = 0.7107 Å] radiation. The details pertaining to data collection and refinement are listed in Table 6. The structures were solved by conventional methods. 120 Refinement was done on F for 1.99.1/2C₄H₈Cl₂ and 1.100 (Xtal3)¹²¹ and on F² fo 1.101-1.103 [SHELX93, SHELX97]. Only in the case of 1.103 an absorption correction based on psi scans was applied. All non-hydrogen atoms were refined anisotropically. H atoms were placed at calculated positions and not refined $[U(H) = 0.035\text{Å}^2]$ for $1.99.1/2\text{C}_4\text{H}_8\text{Cl}_2$, whereas for 1.100 H-atoms were refined isotropically except H611 and H612. For 1.101-1.103 H atoms were included at idealized positions using a riding model and not refined. In the structure of 1.99.1/2C₄H₈Cl₂ there is some high residual density in the neighbourhood of two chlorine atoms Cl(01) and Cl(61); this is a consequence of poor quality of the crystals and hence the data. There was 8.5% decay during data collection for 1.99.1/2C₄H₈Cl₂; in the structure there is a highly disordered 1,4-dichlorobutane (half molecule in the asymmetric unit) in addition to a disordered t-butyl group. Hence the R value for this compound is rather high.

contd...

Table 1.7: Crystal data for 1.99.1/2 C₄H₈Cl₂ and 1.100-1.103.

Compound	1.99.1/2C ₄ H ₈ Cl ₂	1.100	1.101	1.102	1.103
Empirical	C29H42Cl ₆ N4O2P4.	$C_9H_{20}C1_6N_6P_4$	$C_{18}H_{40}CI_4N_xP_4$	$C_9H_{20}CI_4N_5P_3$	C23H30Cl3NO3P2
Formula	1/2C4H ₈ Cl ₂				
M	880.80	16'895	634.26	433.01	536.77
Crystal system	Triclinic	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic
Space group	P_1	P2 ₁ /n	P2 ₁ 2 ₁ 2 ₁	P2 ₁ /n	Pbca
a / Å	11.154 (14)	11.373(3)	10.058(11)	12.449(3)	11.188(2)
b/A	11.703 (2)	16.955(6)	16.7959(14)	11.725(3)	17.743(2)
c/Å	17.428 (5)	12.570(4)	18.0196(18)	13.366(3)	26.405(2)
a/ deg	106.34 (2)	0.06	06	06	06
β/ deg	104.25 (5)	111,28(2)	06	90.67(2)	06
γ deg	89.85 (4)	0.06	06	06	06
11/83	2110.9 (9.7)	2259(6)	3044(3)	1950.8(7)	5241.6(12)
Z	2	4	4	4	8
$D_{\rm calc}$ /g cm ⁻³	1.383	1.614	1.384	1.474	1.360
1/A	0.7107	0.7107	0.7107	0.7107	0.7107
TK	293	173	293	293	293
μ/ mm ⁻¹	0.59	1.06	0.623	0.852	0,497

Table 1.7 contd...

F(000)	910	1112	1328	888	2240
Cryst. size [mm]	$0.7 \times 0.5 \times 0.3$	$0.8 \times 0.4 \times 0.3$	$0.4 \times 0.3 \times 0.3$	$0.5 \times 0.4 \times 0.3$	$0.42 \times 0.42 \times 0.4$
Өтах.	25	25	25	25	25
Reflect coll	7632	4304	3051	3576	4539
Indep reflect	7367	3953	3051	3418	4536 ^d
Rint	0.043	0.022	0.000	0.0402	0.0065
Data	3850[1>2 (1)]	3806[1>2 (1)]	>2 (I)]	2228[1>2 (1)]	3059[1>2 (1)]
Parameters	433			194	301
$R^{\mathbf{a}}$	0.106[1>4 (1)] ^b	$0.048[1>2(1)]^{b}$] _c	2 (I)] ^c	0.0562[I>2 (I)] ^C
wR^a	0.062	0.036	0.1187		0.1311
S	2.27	2.60	1.058		1.082
Max. /min peak in 1.3/ -1.6 diff. map [eÅ-³]	1.3/ -1.6	0.55/ -0.59	0.567/ -0.434	0.535/ -0.354	0.414/ -0.615

 ${}^{a}R = \Sigma \mid \mid F_{o} \mid - \mid F_{c} \mid \mid / \mid \Sigma \mid F_{o} \mid ; wR = \{ \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \mid \Sigma [w(F_{o})^{2}] \}^{1/2};$

^bRefinement on F;

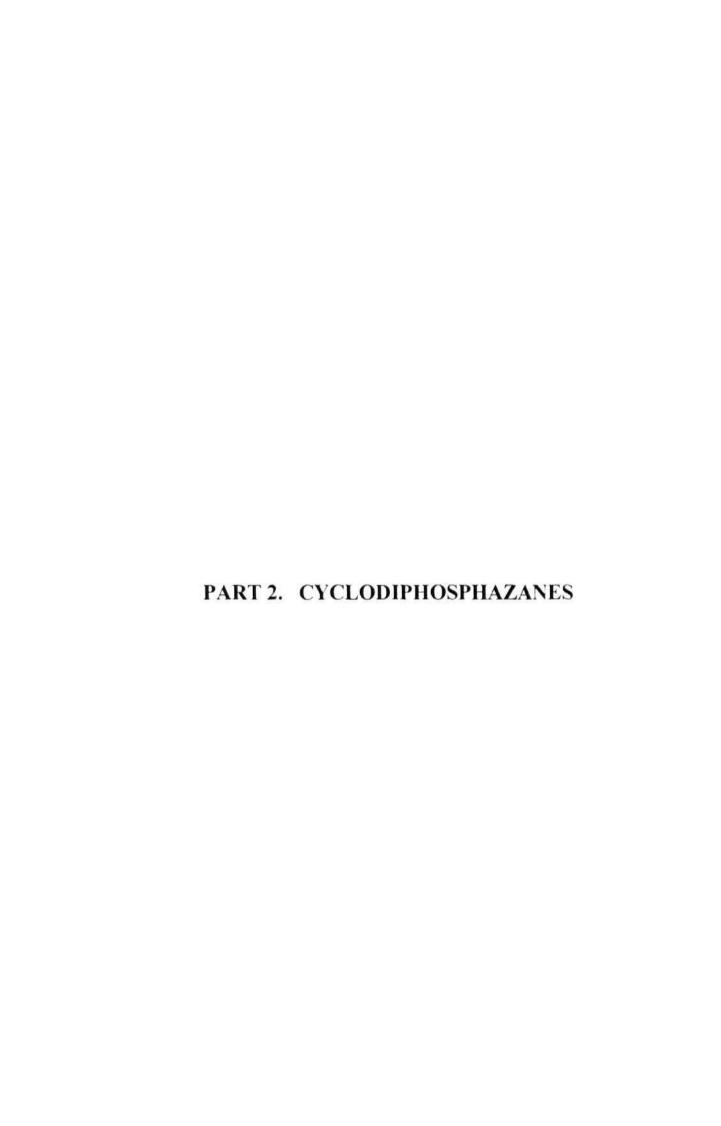
^c Refinement on F²;

dAbsorption correction based on psi scans [T_{max} 0.9998; T_{min} 0.9903] applied. Extinction Coefficient: 0.0044.

1.4 References

- 1. H. Rudoff and W.Johann, B.Chem. Sci., 1994, 49,1774.
- H. R. Allcock, *Inorganic and Organometallic Polymers*; M.Zeldin, K.J.Wynne and H. R. Allcock, Eds.; ACS Symposium Series: Washington DC, 1988, Vol. 360, Chapter 19.
- H. R. Allcock, Inorganic and Organometallic Polymers II. Advanced Materials and Intermediates; P. W. Neilson, H. R. Allcock and K. J. Wynne; Eds., ACS Symposium Series; Washington DC, 1994, Vol 572, Chapter 17.
- 4. J. -F Labarre, Top. Curr. Chem., 1982, 102, 1.
- R. Dejaeger, H. Said, F. Charles and H. Bernard; Eur. J. Med. Chem., 1988, 23, 347.
- 6. T. X. Neenan and H. R. Allcock, Biomaterials, 1982, 3, 78.
- C. W. J. Grolleman, A. C. DeVisser, J. G. C. Wolke, H. Van der Goot, and H. Timmerman, J. Controlled Release, 1986, 3, 143.
- 8. G. Fantin, M. Fagagnolv and A. Midili, Tetrahedron, 1996, 52, 9535.
- Ma. Qifeng, I. Bathurst and B. Philips, J. Med. Chem., 1992, 35, 1938.
- 10 C. W. Allen, Chem. Rev., 1991, 91, 119.
- a) S. S. Krishnamurthy and M. Woods, Ann Rep N.M.R. Spectrosc., 1987, 19,
 b) S. S. Krishnamurthy, A. C. Sau and M. Woods, Adv. Inorg. Chem. Radiochem., 1978, 21, 41.
- 12. V. Chandrasekhar and K. R. J. Thomas, Struct. Bonding, 1993, 81, 41.
- C. W. Allen in *The Chemistry of Inorganic Homo- and Heterocycles*; I. Haiduc and D. B. Sowerby, Eds.; 1987, Vol 2, Chapter 20.
- 14 L. G. Lund, N. L. Paddock, J. E. Proctor and H. T. Searle, J. Am. Chem. Soc., 1960, 2542
- 15. J. Emsley, J. Moore and P. B. Udy, J. Chem. Soc. (A), 1971, 2863.
- 16. R. A. Shaw, Phosphorus Sulfur Silicon, 1989, 45, 103.
- J. K. Fincham, M. B. Hursthouse, H. G. Parkes, L. S. Shaw and R. A. Shaw, Acta Crystallogr., Sect. B, 1986, 42, 462.
- R. N. Das, R. A. Shaw, B. C. Smith and M. Woods, J. Chem. Soc., Dalton Trans., 1973, 709.
- 19. S. K. Das, R. Keat, R. A. Shaw and B. C. Smith, J. Chem. Soc., 1965, 5032.

- W. E. Krause, M. Parvez, K. B. Visscher and H. R. Allcock, *Inorg. Chem.*, 1996,
 35, 6337.
- S. S. Krishnamurthy, M. N. Sundheendra Rao, R. A. Shaw, A. R. Vasudeva Murthy and M. Woods, *Inorg. Chem.*, 1978, 17, 1527.
- 22 H. R. Allcock, D. C. Ngo, M. Parvez and K. B. Visscher, J. Chem. Soc., Dalton Trans., 1992, 1687.
- 23. J. Drozd, K. Brandt and T. Kupka, Inorg. Chem., 1994, 33, 3602.
- 24. A. P. Carroll and R. A. Shaw, J. Chem. Soc., (A), 1966, 914.
- 25. D. Millington and D. B. Sowerby, J. Chem. Soc., Dalton Trans., 1972, 1972.
- P. Ramabrahmam, S. S. Krishnamurthy and M. Woods, Z. Naturforsch., B, 1981, 36, 894.
- 27. S. S. Krishnamurthy, *Phosphorus Sulfur Silicon*, 1989, **41**, 375.
- S. R. Contractor, Z. Kilic and R. A. Shaw, J. Chem. Soc., Dalton Trans., 1987, 2023.
- P. Y. Narayanaswamy, K. S. Dhathathreyen and S. S. Krishnamurthy, *Inorg. Chem.*, 1985, 24, 640.
- 30. P. Ramachandran, K. S. Dhathathreyen, S. S. Krishnamurthy and M. Woods, *Indian. J. Chem., Sect. A*, 1983, 22, 1.
- 31. D. Millington and D. B. Sowerby, J. Chem. Soc., Dalton Trans., 1972, 2035.
- S. S. Krishnamurthy, A. C. Sau, A. R. Vasudeva Murthy, R. Keat, R. A. Shaw and M. Woods, J. Chem. Soc., Dalton Trans., 1977, 1980.
- K. C. Kumara Swamy, S. S. Krishnamurthy, A. R. Vasudeva Murthy, R. Keat, R.
 A. Shaw and M. Woods, *Indian J. Chem.*, Sect. A, 1986, 25, 1004.
- K. S. Dhathathreyen, S. S. Krishnamurthy and M. Woods, J. Chem. Soc., Dalton Trans., 1982, 2151.
- 35. A. P. Carroll R. A. Shaw and M. Woods, J. Chem. Soc., Dalton Trans., 1973, 2736.
- 36. A. Kilic, Z. Kilic and R. A. Shaw, Phosphorus Sulfur Silicon, 1991, 56, 157.
- Z. Kilic, G. Necla, E. Kilic and H. Nazir, Synth. React. Inorg. Metal-Org. Chem., 1989, 19, 453.
- 38. B. D. Ruiter, G. Kuipers, J. H. Bijlaart and J. C. van de Grampel, Z. Naturforsch., B, 1982, 37, 1425.

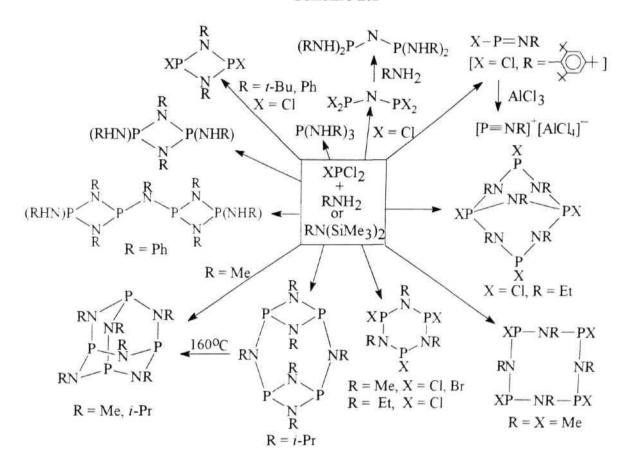

- 39 H. R. Allcock, S. Al-Shali, D. C. Ngo, K. B. Visscher and M. Parvez, J. Chem. Soc., Dalton Trans., 1996, 3549.
- H. R. Allcock, S. Al-Shali, D. C. Ngo, K. B. Visscher and M. Parvez, J. Chem. Soc., Dalton Trans., 1995, 3521.
- H. R. Allcock, D. C. Ngo, M. Parvez and K. B. Visscher, *Inorg. Chem.*, 1994, 33, 2090.
- 42 S. S. Krishnamurthy, K. Ramachandran, A. R. Vasudeva Murthy, R. A. Shaw and M. Woods, J. Chem. Soc., Dalton Trans., 1980, 840.
- V. Chandrasekhar, S. S. Krishnamurthy, A. R. Vasudeva Murthy, R. A. Shaw and M. Woods, *Inorg. Nucl. Chem. Lett.*, 1981, 17, 181.
- A. H. Alkubaisi, W. F. Deutsch, M. B. Hursthouse, H. G. Parkes, L. S. Shaw (neé Gözen) and R. A. Shaw, *Phosphorus Sulfur*, 1986, 28, 229.
- E. Sampath kumar, M. G. Muralidhara and V. Chandrasekhar, *Polyhedron* 1995,
 14, 1571.
- G. Guerch, J. -F.Labarre, R. Roques and F. Sournies, J. Mol. Struct., 1982, 96,
 113.
- 47. H. R. Allcock, U. Diefenbach and S. R. Pucher, Inorg. Chem., 1994, 33, 3091.
- A. H. Alkubaisi, H. A. Al-Madfa, W. F. Deutsch, M. B. Hursthouse, H. G. Parkes L. S. Shaw (neé Gözen) and R. A. Shaw *Phosphorus Sulfur*, 1986, 28, 277.
- V. Chandrasekhar, S. S. Krishnamurthy, H. Manohar, A. R. Vasudeva Murthy, R.
 A. Shaw and M. Woods, J. Chem. Soc., Dalton Trans., 1984, 621.
- K. C. Kumara Swamy and S. S. Krishnamurthy, *Indian J. Chem.*, Sect. A, 1984,
 23, 717.
- S. R. Contractor, M. B. Hursthouse, L. S. Shaw (neé Gözen), R. A. Shaw and H. Yilmaz, Acta Crystallogr., Sect. B, 1985, 41, 122.
- 52. H. Manns and H. Specker, Z. Anal. Chem., 1975, 275, 103.
- M. G. Muralidhara, N. Grover and V. Chandrasekhar, Polyhedron, 1993, 42, 1509.
- 54. H. R. Allcock, M. L. Turner and K. B. Visscher, *Inorg. Chem.*, 1992, **31**, 4354.
- 55 K. Brandt and Z. Jedlinski, J. Org. Chem., 1980, 45, 1672.
- 56. T. Chivers and R. Hedgeland, Can. J. Chem., 1972, 50, 1017.

- N. Elmurr, R. Lahana, J. -F. Labarre and J. P. Declercq, *J. Mol. Struct.*, 1984, 117, 73.
- M. Willson, L. Lafaille, G. Commenges and J. -F. Labarre, *Phosphorus Sulfur*, 1985, 25, 273.
- 59. R. A. Pelc, K. Brandt and Z. Jedlinski, *Phosphorus Sulfur Silicon*, 1990, 47, 375.
- 60. H. R. Allcock and R. L. Kugel, *Inorg. Chem.*, 1966, 5, 1016.
- 61. H. R. Allcock and R. L. Kugel, J. Am. Chem. Soc., 1969, 91, 5452.
- 62. A. H. Alkubaisi, H. G. Parkes, and R. A. Shaw, Heterocycles, 1989, 28, 347.
- 63. H. R. Allcock and E. J. Walsh, *Inorg. Chem.*, 1971, 10, 1643.
- P. Castera, J. -P. Faucher, J. -F. Labarre and B. Perly, J. Mol. Struct., 1987, 160, 365.
- K. Brandt, I. Porwolik, A. Olejnik, R. A. Shaw, D. B. Davies, M. B. Hursthouse and G. D. Sykara, J. Am. Chem. Soc., 1996, 118, 4496.
- K. Brandt, T. Kupka, J. Drozd, J. C. van de Grampel, A. Meetsma and A. P. Jekel, *Inorg. Chim. Acta*, 1995, 228, 187.
- 67. P. J. Harris and K. B. Williams, Inorg. Chem., 1984, 23, 1495.
- K. Brandt, I. P. Czomperlik, M. Siwy, T. Kupka, R. A. Shaw, D. B. Davies, M. B. Hursthouse and G. D. Sykara, J. Am. Chem. Soc., 1997, 119, 12432.
- a) G. Guerch, J. -F. Labarre, R. Lahana, R. Roques and F. Sournies, J. Mol. Struct., 1983, 99, 275;
 b) P. Castera, J. -P. Faucher, G. Guerch, R. Lahana, A. Mahmoun, F. Sournies and J. -F. Labarre, Inorg. Chim. Acta, 1985, 108, 29.
- P. Castera, J. -P. Faucher, M. Granier and J. -F. Labarre, *Phosphorus Sulfur*, 1987, 32, 37.
- 71. J. -F. Labarre, Top. Curr. Chem., 1985, 129, 173.
- V. Chandrasekhar, S. Karthikeyan, S. S. Krishnamurthy and M. Woods, *Indian J. Chem.*, Sect. A., 1985, 24, 379.
- M. Murray, I. M. Rillie and G. Woodward, *Phosphorus Sulfur Silicon*, 1992, 65,
 83.
- S. W. Doughty, B. W. Fitzsimmons and C. A. Reynold, J. Chem. Soc., Dalton Trans., 1997, 367.
- S. Karthikeyan and S. S. Krishnamurthy, J. Chem. Soc., Dalton Trans., 1991,
 299.

- S. S. Krishnamurthy, V. Sreenivasa Reddy, A. Chandrasekharan and M. Nethaji, *Phosphorus Sulfur Silicon*, 1992, 64, 99.
- J. R. J. Thomas, V. Chandrasekhar, P. Zanello and F. Laschi, *Polyhedron*, 1997,
 16, 1003.
- R. Murugavel, S. S. Krishnamurthy and M. Nethaji, J. Chem. Soc., Dalton Trans., 1993, 3635.
- 79. S. S. Krishnamurthy, Phosphorus Sulfur Silicon, 1994, 87, 101.
- C. Guran, M. Barboiu, A. Meghea, I. Jitaru, M. Cimpoesu, D. Berger, P. Diaconescu, M. Bojin, V. Lluc and I. Bita, Rev. Roum, Chim., 1997, 42, 609.
 Chem. Abstr., 1998, 128, 12543e.
- 81. H. R. Allcock, S. E. Kuharcik, K. B. Visscher and D. C. Ngo, J. Chem. Soc., Dalton Trans., 1995, 2785.
- H. Rolland, P. Potin, J. P. Majoral and G. Bertrand, *Inorg. Chem.*, 1993, 32, 4679.
- K. Brandt, Polymer.J. Appl. Chem., 1992, 35, 143. Chem. Abstr., 1992, 118, 246297x
- 84. C. W. Allen, Coord. Chem. Rev., 1994, 130, 137.
- 85. a) U. Diefenbach and H. R. Allcock, *Inorg. Chem.*, 1994, **33**, 4562.
- a) R. Hasserbring, H. W.Roesky and M. Noltemeyer, Angew. Chem. Int. Ed. Engl. 1992, 31, 601.
 b) H. R. Allcock, A. A. Dembek and E. H. Klingenberg, Macromolecules, 1991, 24, 5208.
- a) H. R. Allcock, Studies in Inorganic chemistry, 1992, 14, 145;
 b) H. R. Allcock, S. M. Coley, I. Manners, G. Renner and O. Nuyken, Macromolecules, 1991, 24, 2024.
- 88. K.Inoue, H.Miyamoto and T.Itaya, J.Polym.Sci., Polym.Chem (A)., 1997, 35, 1839.
- 89. C. W. Allen, Organophosphorus Chem., 1997, 28, 285.
- G. Fantin, M. Fagagnolo, A. Medici, D. Pedrini and M. Gleria and F. Minto, *Gazz. Chim. Ital.*, 1997, 127, 287. Chem. Abstr., 1998, 128, 3726p
- 91. R. Keat, R. A. Shaw and M. Woods, J. Chem. Soc (A)., 1976, 1582.
- 92. G. R. Feistel and T. Moeller, J. Inorg. Nucl. Chem., 1967, 29, 2731.

- D. J. Lingley, R. A. Shaw, M. Woods and S. S. Krishnamurthy, *Phosphorus Sulfur*, 1978, 4, 379.
- K. Brandt, I. Porwolik, T. Kupka, A. Olejnik, R. A. Shaw and D. B. Davies, J. Org. Chem., 1995, 60, 7433.
- 95. B. Thomas, W. Bieger and G. Grossmann, Z. Chem., 1981, 21, 292.
- 96. W. Lehr and J. Pietschmann, Chem-Ztg., 1970, 94, 362.
- 97. A. A. van der Huizen, "Aziridinyl cyclophosphazenes", Ph. D. Thesis, University of Groningen, Netherlands, 1984.
- S. S. Krishnamurthy, R. A. Shaw, M. N. Sudheendra Rao, A. R. Vasudeva Murthy and M. Woods, *Inorg. Chem.*, 1978, 17, 1527.
- 99. H. Agahigian, G. D. Vickers and J. Bishop, J. Chem. Phys., 1960, 39, 621.
- S. S. Krishnamurthy, K. Ramachandran and M. Woods, J. Chem. Res. (S), 1979,
 92, 1258.
- 101. S. S. Krishnamurthy, A. C. Sau, A. R. Vasudeva Murthy, R. A. Shaw, M. Woods and R. Keat, J. Chem. Res. (S), 1977, 70, 860.
- 102. S. Kumaraswamy and K. C. Kumara Swamy, unpublished data.
- H. R. Allcock, N. M. Tollefson, R. A. Arcus and R. R. Whittle, J. Am. Chem. Soc., 1985, 107, 5166.
- a) R. R. Holmes, T. K. Prakasha and S. D. Pastor in *Phosphorus-31 NMR-Spectral Properties in Compound Characterization and Sturctural Analysis*: L. D. Quin and J. G. Verkade, Eds.; VCH: New York, 1994; Chapter 3; b) M. A. Said, M. Pülm, R. H-Irmer and K. C. Kumara Swamy, *J. Am. Chem. Soc.*, 1996, 118, 9841; c) M. A. Said, M. Pülm, R. H-Irmer and K. C. Kumara Swamy, *Inorg. Chem.* 1997, 36, 2044.
- 105. G. J. Bullen, J. Chem. Soc., 1962, 3193.
- a) J.-O. Bovin, J. Galy, J.-F. Labarre and F. Sournies, J. Mol. Struct., 1978, 49, 421;
 b) J.-O. Bovin, J. F. Labarre and J. Galy, Acta Crystallogr., Sect. B 1979, 35, 1182.
- H. R. Allcock, A. A. Dembek, M. N. Mang, G. H. Riding, M. Parvez and K. Visscher, *Inorg. Chem.* 1992, 31, 2734.
- M. A. Said, K. C. Kumara Swamy, K. Chandra Mohan and N. Venkata Lakshmi, Tetrahedron, 1994, 50, 6989.

- M. A. Said, K. C. Kumara Swamy, M. Veith and V. Huch, J. Chem. Soc., Perkin Trans.I, 1995, 2945.
- R. R. Holmes, K. C. Kumara Swamy. J. M. Holmes and R. O. Day, *Inorg. Chem.*, 1991, 30, 1052.
- 111. F. Belaj, Acta Crystallogr., Sect. B, 1993, 49, 254.
- a) E. Hobbs, D. E. C. Corbridge, B. Raistrick, Acta Crystallogr. 1953, 6, 621;
 b) T. S. Cameron, R. E. Cordes and B. R. Vincent, Acta Crystallogr., Sect. C, 1986, 42, 1242.
- N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, 1989,
 Hong Kong, p. 629
- D. D. Perrin, W. L. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon, Oxford, 1986.
- 115. D. F. Shriver and M. A. Dresdzon, M. A. The Manipulation of Air-sensitive Compounds, Pergamon, Oxford, 1986.
- 116. P. A. Odorisio, S. D. Pastor and J. D. Spivak, Phosphorus Sulfur, 1984, 19, 285.
- B. S. Furniss, A. J. Hannaford, V. Rogers, P. W. G. Smith and A. R. Tatchell (Eds.), Vogel's Textbook of Practical Organic Chemistry, Fourth Edn, 1978, ELBS, p. 390.
- T. I. Lonshchakova, B. I. Buzykin and V. S. Tsivunin, Zh. Org. Khim. 1974, 10, 2459; From Chem. Abstr. 1975, 82, 57625.
- 119. S. Kumaraswamy, R. S. Selvi and K. C. Kumara Swamy, Synthesis, 1997, 207.
- a) G. M. Sheldrick, SHELXS-90, Acta Crystallogr., Sect. A, 1990, 46, 467; b) G.
 M. Sheldrick, SHELXL-93. University of Göttingen, 1993; c) G. M. Sheldrick, SHELX97, Göttingen.
- 121. S. R. Hall, G. S. D. King and J. M. Stewart, *Xtal3.4*, University of Western Australia: Lamb, Perth.



PART 2. CYCLODIPHOSPHAZANES

2.1 Introduction (Literature survey)

Phosphorus and nitrogen, in contrast to any pair of adjacent elements of the same group in the periodic table, are unique in forming numerous linear and cyclic compounds. The important types of compounds with a formal P(III)-N single bond are shown in Scheme 2.1.3

Scheme 2.1

Among these, λ^3 -cyclodiphosphazanes (diazadiphosphetidines) constitute an important class; their synthesis, structure and reactivity have been a subject of considerable interest. Several synthetic routes, in addition to those shown in Scheme 2.1, are available:

a)
$$4PhNH_2 + 2(Et_2N)_3P$$
 \longrightarrow $6Et_2NH + PhHNP$ $\stackrel{Ph}{N}$ $\stackrel{Ph}{Ph}$ $\stackrel{Ph}{N}$ $\stackrel{P$

The compounds $(XPNR)_2$ [X = Y = Cl; R = t-Bu (2.1), Ph (2.2)] are the most studied and the discussion that follows relates to mainly these two derivatives. Some reactions of 2.1 are shown in Scheme 2.2.²²

2.8 (ref. 21)

Scheme 2.2

Some of the interesting features in these cyclodiphosphazanes are (i) the relative orientation of the groups X and Y (cis and trans), (ii) synthetic routes to compounds with X and Y as different groups, (iii) structural chemistry of compounds in which X and Y form a part of the difunctional reagent HX---YH, (iv) behaviour towards oxidation and (v) co-ordination behaviour. These points are discussed below.

2.11 Relative orientation of [XP-(NR)₂-PY]

In general two geometrical isomers, *cis* and *trans*, which differ in the orientation of the substituents X and Y with respect to the plane of the four-membered N₂P₂ ring (**A** and **B**), are possible. Distinction between the two is best made by ³¹P NMR (solution) or by X-ray crystallography. Selected ³¹P NMR data are presented in Table 2.1.

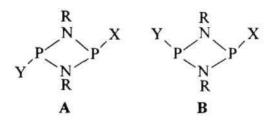


Table 2.1. ³¹P NMR data for the compounds [RNP(X)NRP(Y)]

Sl.No	X, Y	$\delta(cis)$	$\delta(trans)$	Ref
		$\mathbf{R} = t - \mathbf{B}\mathbf{u}$		
1	X = Y = C1	207.9	ē ≅ 3	23
2	X = Y = OMe	133.7	220.4	24
3	$X = Y = OCH_2CF_3$	143.3	222.9	25
4	X = Y = Ot-Bu	129.6	Ē	25
5	$X = Y = O(C_6H_4CHO-p)$	144.7	235.6	26
6	X = Y = F	165.6	-	27
7	X = Y = NHt-Bu	89.4	·	28
8	X = Y = NHMe	98.1	172.4	29
9	$X = Y = NMe_2$	95.0	184.7	29
10	$X = Y = NEt_2$	91.3		29
11	$X = Y = N(Me)(SiMe_3)_2$	89.9		29
12	$X = Y = NC_5H_{10}$	91.9	182.3	29
13	$X = Y = NMe(PPh_2)$	116.7 (X-ray)	205.7	30
		R = Ph		
14	X = Y = CI	199.5	-	8
15	X = Y = OMe	137.2	187.2	28
16	$X = Y = OCH_2CF_3$	142.2	189.8	31
17	$X = Y = NPh_2$	8=8	169.0	8
18	X = Y = NH-i-Pr	97.7	150.5 (trans: cis 11: 1)	8
19	$X = Y = NMe_2$	101.0	166.5 (trans: cis 10: 1)	27, 2
20	$X = Y = N-(n-Bu)_2$	-	164.4	8
21	$X = Y = NEt_2$		162.2	28
22	$X = NPh_2, Y = NHPh$	104.9, 100.9 J = 12.2 Hz	not obsd.	8
23	X = Y = NHPh	104.4	not obsd.	13

It is clear from Table 2.1 that for a given pair, the signal for the *trans* isomer is observed 45-90 ppm downfield to the *cis* isomer in the ³¹P NMR.

In several cases $trans \rightarrow cis$ isomerization is favoured, ^{12,32,33} particularly when traces of amine hydrochloride is present (cf eq. 2.1). ²⁸ On the basis of the equilibrium

$$trans - [Me_2NPNt-Bu]_2 \xrightarrow{\triangle} cis-[Me_2NPNt-Bu]_2$$

$$cis + trans)-[t-BuNP(O-\bigcirc -CHO)]_2 \xrightarrow{\triangle} cis-[t-BuNP(O-\bigcirc -CHO)]_2$$
(2.1)

isomer composition of several compounds in this series Norman and coworkers have made the following generalizations: 12

The N(ring)-aryl diazadiphosphetidines prefer the *trans* isomers when both the *exo*-amino groups are relatively bulky. With smaller substituents the *cis* form becomes more stable. For N(ring)-alkyl-substituted diazadiphosphetidines *cis* isomers are preferred for 2,4-dihalo, 2,4-dialkoxy and 2,4-diamino derivatives. The 2,4-dichloro derivatives [RNPCI]₂ [R = Ph or *t*-Bu] exist as *cis* isomers with no evidence of the *trans* form.

Norman and co-workers have also performed a detailed study of (a) cis/trans isomerism and (b) conformational properties of 2,4-bis(primaryamino)-1,3,2,4-diazadiphosphetidines. The equilibrium constants $K_{cis/trans}$ {= [cis]/ [trans]} for several compounds thus obtained are given in Table 2.2. It can be seen that in most cases the cis isomer is preferred thermodynamically.¹²

The orientation of the substituents on the exocyclic group is also of some interest. For example, in *cis*-[*i*-Pr-NHPN(*i*-Pr)]₂ three possible conformers (**C-E**) based on P-N bond rotation are possible. The The NMR spectrum of this compound shows a singlet at

Table 2.2 Equilibrium constants (K) for the cis/ trans isomer equilibration

Compound	K
[(i-PrNH)PN-i-Pr] ₂	15 ± 1
[Me ₂ NPN-t-Bu] ₂	10
$[t-BuNHPN-t-Bu]_2$	∞
$[Et_2NPN-t-Bu]_2$	00
[EtNHPNEt] ₂	8 ± 1
$[MeNHPNMe]_2$	3 ± 0.5

95.4 ppm at 27°C. At -90°C a pair of equal area singlet resonances at δ 96.0 and 83.3 and a singlet at δ 80.4 ppm are observed. Based on this and the ${}^2J(P-N-H)$ values, the authors have assigned these resonances to the presence of conformers **E** (unsymmetrical) and **D** (symmetrical). The *trans* isomer does not show temperature dependence.

It is interesting in this context to note that with smaller alkoxy groups (OMe, OEt, OCH₂CF₃) the kinetically favoured *trans* isomer is converted to its *cis* counterpart on standing in solution, whereas with a more bulky group such as O-t-Bu only the *cis* isomer is isolated. Certainly, more experimental data is required to unravel the details.

However later studies by Shreeve and coworkers have thrown open some more questions. Instead of using an alcohol or phenol with triethylamine as a base, they used the lithium salts of alcohols.¹¹ Thus when [t-BuNPCl]₂ (2.1) was reacted with two mole equivalents of LiOCH₂CF₃, the trans-isomer ($\delta(P) = 223.0$) was obtained in more than 8-

fold excess relative to the *cis* isomer $(\delta(P): 143.3)$. In earlier studies where triethylamine was used as base, the product was almost entirely the *cis* isomer.²⁵

Thus the *trans* isomer appeared to be the thermodynamically favoured one. No change in isomer distribution occurred when *trans*-[*t*-BuNP(OCH₂CF₃)]₂ was either allowed to stand for a long time at 25°C or when it was heated to 60°C for 12h. Since the use of triethylamine gives Et₃N.HCl as a reaction product, the authors suggest that it could acid-catalyze the isomerization of the *trans* isomer to the *cis* isomer. When the lithiated alcohol was used, the LiCl formed did not play a similar catalytic role, thus, it was concluded that the *trans* isomer is both the kinetically and thermodynamically stable product.

However when sterically more demanding nucleophiles C₆F₅OLi and (F₃C)₂CHOLi are used, *cis* isomers are the predominant products. To add to the confusion, reaction of the bulky (Me₃Si)₂NLi with (*t*-BuNPCl)₂ led to the *trans* isomer as the major product.⁷ Perhaps studies on molecular mechanics may reveal more details on these compounds.

2.12 Synthesis of diazadiphosphetidines with X and Y as different groups

The interest in compounds of this type, particularly when X = Cl and Y = amino, alkoxy or aryloxy stems from the fact that the residual functionality could later be utilized for further reactions (like reaction with Na or AlCl₃ to get new P-P bonded species or phosphenium cations respectively). It can be expected that by suitably controlling the stoichiometry of the nucleophile with respect to $(RNPCl)_2$ partially substituted products [XPNRPY-NR] will be formed. Some known examples of such derivatives are listed in Table 2.3.

Table 2.3. Mixed derivatives [X-PNRPY-NR] with their 31P NMR data

C NI.	n	v	v	n	n	I/D D	D.C
S.No	R	X	Y	$\mathbf{P}_{\mathbf{X}}$	$\mathbf{P}_{\mathbf{Y}}$	J(P-P)	Ref.
1	t-Bu	Cl	OMe	188.0	137.8	37.2	25, 27
2	t-Bu	Cl	O-t-Bu	191.8	163.8	49.7	25
3	t-Bu	Cl	F	197.1	180.3	49.6	27
4	<i>t</i> -Bu	Cl	NMe_2	186.6	131.5	32.5	27, 29
5	t-Bu	F	NMe_2	145.9	116.3	14.0	27
6	Ph	C1	NMe_2	178.6	136.3	-	13
7	t-Bu	Cl	NH-1-Bu	199.0	138.2	45.0	23
8	t-Bu	NC_4H_8O	P(O)H	75.5		=	29
9	<i>t</i> -Bu	O-1-Bu	P(O)H	105.1	-3.2	12.1	25
10	t-Bu	NMe_2	NHMe	170.1	184.3		29

All the compounds listed in Table 2.3 can be considered to be *cis* isomers on the basis of the $\delta(P)$ values as discussed earlier.

When phosphorus trichloride is treated with four molar equivalents of *t*-butylamine, the unsymmetrically substituted compound CIPN(*t*-Bu)P(NH-*t*-Bu)N(*t*-Bu) (entry no.7 in Table 2.3) is obtained as one of the products.²³ The reactions of chlorocyclophosphazanes with amines in a few cases leads to products in which there is partial hydrolysis. For example, compound 2.15 is a minor product along with [(OC₄H₈N]PN(*t*-Bu)]₂ in the reaction of morpholine with [CIPN(*t*-Bu)]₂; the yield of this

$$O N-P \stackrel{t-Bu}{\underset{t-Bu}{\stackrel{N}{\nearrow}}} P O$$

66

product increases upon heating the reaction mixture.²⁹ An explanation based on water induced cleavage of an exocyclic P-N bond is offered for this observation. In the reaction of *t*-butanol with [ClPN(*t*-Bu)]₂ the expected product [(*t*-BuO)PN*t*-Bu]₂ could not be obtained in a pure state. On standing at ambient temperature or heating under reduced pressure the unsymmetrically substituted compound 2.16 formed by butene elimination is isolated.²⁵

$$(t-BuO) - P \xrightarrow{N} P \xrightarrow{N} O$$

$$t-Bu$$

$$t-Bu$$

$$t-Bu$$

$$t-Bu$$

$$t-Bu$$

It is of interest to note that an attempt to prepare $(MeO)P(NPh)_2P(NMe_2)$ by reacting *cis* $[PhNPCl]_2$ with one mole equivalent of methanol in the presence of Et_3N followed by treatment with an excess of Me_2NH at low temperature led only to an equimolar mixture of $[PhNP(OMe)]_2$ $[\delta(P) = 193.0$ (s)] and $[PhNP(NMe_2)]_2$ $[\delta(P) = 166.5$ (s)].⁴

2.13 Structural chemistry of diazadiphosphetidines in which X and Y form part of the difunctional reagent HX----YH.

Keat and Thompson isolated the bicyclic compounds 2.17-2.19 as solids by reacting [CIPN(t-Bu)]₂ (2.1) with the corresponding diamine/ diol (Scheme 2.3).³⁶ Interestingly, in the reaction using N,N'-dimethyl-1-3-propanediamine no bicyclic compound similar to 2.17 could be isolated.

Reaction of 2.1 with lithiated polyfluorodiols $HOCH_2(CF_2)_nCH_2OH$ (n = 2, 3) proceed smoothly to give bridged compounds 2.20 and 2.21 as liquids.⁷ Interestingly the ³¹P NMR chemical shift at $\delta \sim 220$ (s) for 2.20 - 2.21 is well outside the range reported for the other bridged compounds. Later Krishnamurthy and coworkers isolated bicyclic compounds 2.22 - 2.25 using [ClPNPh]₂ as the precursor. They were also successful in characterizing 2.24 and 2.25 in the solid state by X-ray crystallography.⁴

$$\begin{array}{c} \text{CH}_2(\text{CF}_2)_n\text{CH}_2\\ \text{O} \qquad \qquad t\text{-Bu} \qquad \text{O} \qquad \qquad X \text{ t-Bu} \qquad Y\\ \text{P} \qquad \qquad P\\ \text{N} \qquad P\\ \text{I-Bu} \qquad \qquad t\text{-Bu} \qquad \qquad 1\\ \text{2.20 (n = 2; $\delta(P): 221.5)} \qquad \qquad 2.22 \text{ (n = 2, $X = Y = O; $\delta(P): 172.3)}\\ \text{2.21 (n = 3; $\delta(P): 222.3)} \qquad \qquad 2.23 \text{ (n = 2, $X = Y = NMe; $\delta(P): 151.9)}\\ \text{2.24 (n = 2, $X = O, $Y = NMe; $\delta(P): 158.9, 164.4 [J = 25.5Hz]}\\ \text{2.25 (n = 3, $X = Y = O; $\delta(P): 137.3)} \end{array}$$

The tricyclic compound 2.26 is formed by heating the unsymmetrical phosphazane in refluxing acetonitrile solution. A fascinating aspect of compound 2.26 is that it is

thermodynamically unstable with respect to the adamantane-like compound 2.27; the latter is obtained by heating 2.27 at 156-158°C for several days (eq 2.2).³⁷

It is not always necessary to use the difunctional reagent HX--YH to obtain the polycycles with cyclodiphosphazane skeleton. An elegant approach has been developed by Majoral and coworkers for the synthesis of macrocycles (Scheme 2.4). ²⁶

2.14 Oxidative addition reactions

In compound (XPNR)₂, the phosphorus is trivalent and is susceptible to oxidation in several cases.³⁸ The simplest is the addition of oxygen, sulfur, selenium etc. Some reactions are shown in Scheme 2.5.²³ The dimethylamino derivative [Me₂NPN(*t*-Bu)]₂ is unreactive towards DMSO; however *t*-butylhydroperoxide converts it to the dioxide 2.31 smoothly (eq. 2.3).²⁵

Scheme 2.5

C1—P
N
P—C1 + Me₂SO

$$t$$
-Bu
N
P—C1 + Me₂SO

 t -Bu
1/8S₈
 t -Bu
2.29

 t -Bu
 t -Bu

Me₂N-P-NMe₂

$$t-Bu$$
N
$$t-Bu$$
N
$$t-Bu$$
N
$$t-Bu$$
N
$$t-Bu$$
N
$$t-Bu$$
N
$$t-Bu$$

In general, it is found that the *trans* isomers are more reactive than the *cis* isomers towards oxidation.²⁴ For example reaction of a 1:1 mixture of isomers of [Me₂NPN-(t-

Bu)]₂ with half mole equivalent of sulfur, selenium or methyl iodide results in the formation of the *trans* - mono oxidation products $[Me_2NP(Z)-N-(t-Bu)]_2$ (Z = S, Se, MeI) from the *trans* isomer, leaving the *cis* isomer unchanged.³⁹ The reaction is stereospecific; the stereospecificity is also confirmed in the oxidation of *cis*- $[Me_2NPN(t-Bu)]_2$ with sulfur wherein only *cis*- $[Me_2NP(S)N(t-Bu)]_2$ (X-ray) was obtained.

The diselenium derivatives [Me₂NP(Se)N-(t-Bu)]₂ are very labile; this behaviour can be made use of in the preparation of the monoselenides as shown in eq. 2.4.⁴⁰

$$[Me_{2}NPNt-Bu]_{2} + [Me_{2}NP(Se)Nt-Bu]_{2} \longrightarrow 2 [Me_{2}NP(Se)(Nt-Bu)_{2}NMe_{2}]$$

$$cis \ \delta(P): \ 39.8 \qquad cis \ \delta(P): \ 90.0, \ 36.2; \ ^{1}J(P-Se) = 812.4 \ Hz$$

$$trans \ \delta(P): \ 48.9 \qquad trans \ \delta(P): \ 117.7, \ 61.0; \ ^{1}J(P-Se) = 829.8 \ H$$

$$^{2}J(P-P) = -10.1 \ Hz$$

The bicyclic derivative [t-BuNPN(Me)CH₂CH₂N(Me)PN-t-Bu] undergoes ready oxidation with selenium to give the monoseleno derivative [t-BuNP(Se)N(Me)CH₂CH₂N (Me)PN-t-Bu]. However the bicyclic compounds 2.22 - 2.25 failed to react with sulfur or with diketones.⁴¹

Diketones can oxidatively add to P(III) compounds leading, most often, to pentacoordinated phosphorus compounds. When the diazadiphosphetidine (Me₂NPNSiMe₃)₂ is treated with a diketone, the initially formed pentacoordinated compound breaks up into monomeric phosphazenes (Scheme 2.6).⁴² Similarly benzil reacts with [(EtO)PNPh]₂ to yield the phosphorane which breaks down to 2.36 (eq 2.5).⁴³ Schmidpeter and coworkers have been able to obtain the stable pentacoordinated compound 2.37 by reacting [ClPNPh]₂ with benzilmonoanil (eq 2.6).⁴⁴

Scheme 2.6

CIP
$$\stackrel{\text{Ph}}{\underset{\text{Ph}}{\bigvee}}$$
 PC1+ 2 HO $\stackrel{\text{N}}{\underset{\text{Ph}}{\bigvee}}$ Ph $\stackrel{\text{Ph}}{\underset{\text{Ph}}{\bigvee}}$ Ph $\stackrel{\text{Ph}}{\underset{\text{Ph}}{\bigvee}}$ Ph $\stackrel{\text{Ph}}{\underset{\text{Ph}}{\bigvee}}$ Ph $\stackrel{\text{Ph}}{\underset{\text{Ph}}{\bigvee}}$ Ph $\stackrel{\text{Ph}}{\underset{\text{Ph}}{\bigvee}}$ (2.6)

2.15 X-ray structural studies

Solid state structures of several diazadiphosphetidines are known. This data is summarized in Table 2.4. In most cases the N₂P₂ ring is planar; significant puckering is observed only for the *cis* compounds [C₅H₁₀NP-N-*t*-Bu]₂ and [Ph₂P(Me)N-P-N-*t*-Bu]₂. Destabilizing interaction between the lone pairs on nitrogen and phosphorus in the *cis* isomers is reduced by the twisting of the cyclodiphosphazane ring.²⁴ The P-N bonds are in the range 1.69-1.73Å and the ring nitrogen is close to planarity in all the cases.

10 20

2.16 OBJECTIVES OF THE PRESENT WORK

The main objectives of this part of the work are:

- (i) To check whether *cis* and *trans*-[(ArO)PN-*t*-Bu]₂ are the major products in the reaction of [ClPN-*t*-Bu]₂ with phenols in the light of available literature
- (ii) To isolate unsymmetrically substituted phosphazanes of the type [ClP(N-t-Bu)₂-P(OAr)] for further use
- (iii) To introduce large-size rings by reacting [ClPN-t-Bu]₂ with difunctional reagents, and
- (iv) To check the oxidative addition reactions (with S, Se) of cyclodiphosphazanes.

Table 2.4. Structural data on diazadiphoshetidines

cis [CIPN-t-Bu] ₂	<u> </u>	1-1-	V - L - V -	2 N(ring)	Comments	Ref
	1.689(4)	97.3(4)	82.4(4)	356.4	N ₂ P ₂ ring: planar, C,	45
cis [CIPNPh] ₂	1.695(10)	99.7(4)	80.3(4)	359.9	N ₂ P ₂ ring: planar, C _s	•
cis [C ₅ H ₁₀ NPN-/-Bu] ₂	1.735	96.8(1)	80.3(1)	346.3	N_2P_2 ring; puckered ± 0.138 Å; exocyclic P-N 1.679(2) Å	24
cis [Ph2P(Me)NPN-1-Bu]2	1.723(11)	(8)6.96	80.1(6)	359	Puckered	30
cis [t-BuNHPN-t-Bu]2	1.733	0.86	7.08	347.6	endocyclic P-N 1.685	18
cis {PhNHPNPhP NPhP(NHPh)2 NPh}a	1.721(8)	100.2(4)	79.3(4)	359.1	Planar	13
cis [PhNHP(NPh) ₂ PJNPh b	1.722(6). 1.718(7)	100.3(3) 99.8(3)	79.1(3) 79.5(3)	356	P-N(exo): 1.714(7) ^c 1.667(8) ^d	46
{Mo ₂ (CO) ₈ [μ-cis-(Me-4-	1.712(4)	7.86	6.08	360	Puckered	14
C ₆ H ₄ OPNPh) ₂ l ₂ }°						
[PhNP] ₂ [-N(Mc)CH ₂ CH ₂ O-]	1.722(7)	(1)6'66	79.34(2)	360	Exocyclic P-N 1.661(4) Puckered ring	(4) 4
PhNP 2 -OCH2CH2CH2O-	1.714	99.9(1)	79.6(3)	359.3	Planar	4
trans [McOPNPh]2	1.721. 1.734(4)	99,9(2)	80.1(2)	360	Planar	4
trans [PhNP(O-C ₆ H ₄ -4-Mc] ₂	1.717	115.3	8.62	360	Planar	5
trans [(Me ₃ Si) ₂ NPNSiMe ₃] ₂	1.727	5.76	82.5	360	Planar exocyclic P.	P-N 22

	33	∞	12	12	
	Planar	Exocyclic P-N 1.709(9)	Exocyclic P-N 1.631(3)	Exocyclic P-N 1.616(4)	
	359.8	359.9	354.7	356.8	
	79.8(2)	78.9(5)	83.5	83.0(2)	
	100.2(2)	101.1	96.4	97.0(2)	
	1.716(3)	1.713(9)	1.685(3)	1.674(3)	
Table 2.4 contd	trans [(F ₃ CCH ₂ O)PNPh] ₂	trans [PhNP(NPh)]2	trans [t-BuNHPN-t-Bu]2	trans [EtNHP(S)NEt]2	

c p-N-Ph-P ^d p-NHPh ^e 8(P): 155.5

2.2 Results and Discussion

The precursors [ClPN-t-Bu]₂ [2.1; δ (P): 207.9] and [ClPNPh]₂ [2.2; δ (P): 199.5] were prepared by reacting phosphorus trichloride with t-butylamine and aniline hydrochloride respectively, following literature procedures. For most of the reactions in the present study compound 2.1 has been utilized because of the ease of its isolation in a pure state.

2.21 Bis aryloxy/ alkoxy derivatives [(RO)PN-t-Bu]₂

We shall first consider the *bis* aryloxy / alkoxy derivatives [(R'O)PNR]₂. We have used the reaction of [CIPN*t*-Bu]₂ with phenols in the presence of triethylamine (eq. 2.7) to prepare these compounds. Compounds 2.38-2.43 have been assigned the *cis*-geometry based on their ³¹P NMR chemical shifts [Section 2.11] as well as the single crystal X-ray structure performed on 2.38. The δ (P) values are upfield to *cis*-[(C₆F₅O)PN*t*-Bu]₂

- $[\delta(P): 162.6]$ as can be expected due to the lower group electronegativity of these -OAr groups relative to -OC₆F₅. ⁵⁰ Other points of observation are given below:
- (i) Analogous reaction of 2.2 with 2,6-dimethylphenol / Et₃N afforded a product mixture exhibiting two ³¹P NMR peaks at 153.3 and 222.2 ppm in the tricoordinated region in the ratio 4:1; these are assigned to *cis* and *trans*-[(2,6-Me₂C₆H₃O)PN(Ph)]₂ (2.44) respectively.
- (ii) In the reaction mixture using 4-methoxyphenol, a small quantity (~3%) of the trans-isomer [$\delta(P)$: 231.0 ppm] was observed.
- (iii) The reaction of 2.1 with 2,6-Me₂C₆H₃ONa or 4-MeC₆H₄ONa also gave cis-[(2,6-Me₂C₆H₃O)PN(t-Bu)]₂ or [(4-Me-C₆H₄O)PN(t-Bu)]₂ as the only product. However in the reaction of 2,6-Me₂C₆H₃OLi [prepared by treating n-BuLi with the phenol] with 2.1 in THF no cis isomer was detected; only one major peak (>85%) at 214.8 ppm was observed in the ³¹P NMR. This is probably due to trans-[(2,6-Me₂C₆H₃O)PN(t-Bu)]₂; this δ (P) value can be compared with that of trans-[(C₆F₅O)PN(t-Bu)]₂ [δ (P): 252.0 ppm]. However we were not successful in obtaining this compound in a pure state because of hydrolysis [³¹P NMR: peaks at +10 to -3 ppm].
- (iv) The reaction of 2.1 with sodium anthryloxide in THF afforded *cis*-[(1-anthryloxy) P-N(t-Bu)]₂ (2.45); [δ (P): 166.8]. This assignment is based on the closeness of its δ (P) value to the *cis* isomers 2.38-2.43 (eq. 2.7).

Although we have not been able to monitor these reactions with respect to time or temperature because of limited accessibility, two points appear to be clear:

- a) Cis-isomers are the preferred products in the reactions of 2.1 with phenols in the presence of Et₃N or as their sodium salts. In contrast to the isolation of trans-[(4-Me-C₆H₄O)PNPh]₂ in the reaction of 2.2 with 4-MeC₆H₄ONa, we could isolate only cis-[(4-MeC₆H₄O)PN-t-Bu]₂ in the reaction of 2.1 with 4-MeC₆H₄ONa. This observation does indicate that for the sterically more demanding t-butyl precursor 2.1 cis-isomers are favoured.
- b) Reaction using lithium aryloxides may lead to the preferential formation of the *trans* isomer as noted by Shreeve and coworkers.⁷

In contrast to the reaction of 2.1 with phenols, the reaction with two mole equivalents of 9-anthracene methanol using triethylamine as a base apparently takes a different course. Although a crystalline solid, m.p 214°C, was isolated, the ³¹P NMR spectrum (CDCl₃) showed three singlets [Fig.2.1] at 135.2, 84.1 and 4.7 ppm. The intensities of these signals were variable in several batches checked; hence they must arise from different compounds. The signal at 4.7 ppm must arise from a tetracoordinated phosphorus, thus suggesting a rearrangement of P-OCH₂Ar to P(O)CH₂Ar. Whether the peaks at 84.1 and 135.2 ppm are due to cis and trans-{(RO)PN-t-Bu}₂ (2.46) is difficult to say but at least the one at 135.2 ppm must be due to one of the isomers. The ¹H NMR spectrum also showed the presence of more than one compound; although one AX quartet corresponding to OCH_ACH_XAr $[\delta(A): 5.80, \delta(X): 6.40, {}^{2}J(AX) = 10.0 \text{ Hz}]$ was present, no peak corresponding to P(O)H was observed. The analytical (CHN) values were also not very helpful and suggested partial chlorination of the anthracenyl residue or hydrolysis. We attempted to get an X-ray structure of the compound but did not succeed due to its instability in air. In the reaction of 2.1 with 1-naphthalene methanol an oily material was isolated; this showed mainly three peaks at δ 135.0, 84.4, and 1.7 ppm in the ³¹P NMR; however some hydrolyzed products [¹H NMR: P(O)H resonances centred at

 $7.0 (^{1}J = 720 \text{ Hz})$ and $7.7 (^{1}J = 600 \text{ Hz})]$ were also present and hence further analysis was not attempted.

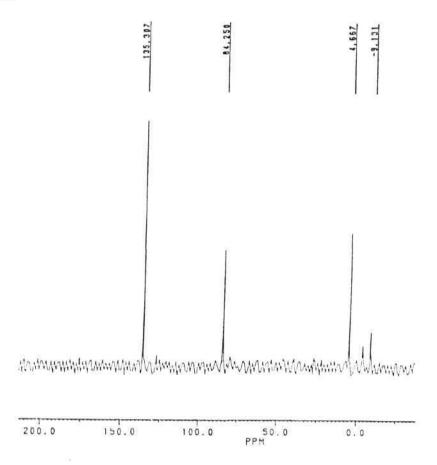
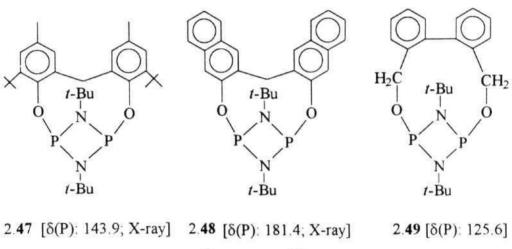
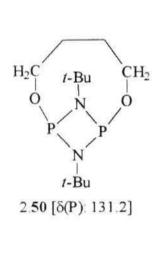
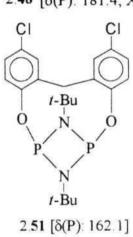


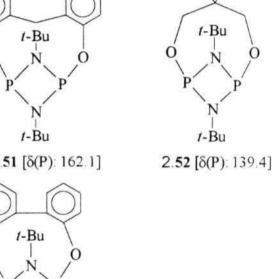
Fig 2.1 ³¹P NMR spectrum of the product from the reaction of 2.1 with two mole equivalents of 9-anthracenemethanol.

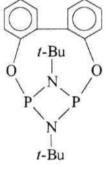
2.22 Reaction of [CIPN-t-Bu]₂ (2.1) with diols


As regards to the reaction of 2.1 with diffunctional reagents, three products (F)-(H) are possible. Since in the reaction of 2.1 with a phenol / Et₃N, the *cis* isomer of (F) [(ArO)PN-*t*-Bu]₂ is overwhelmingly favoured, it should be possible to isolate these compounds preferentially in good yields. We chose the following diols:


- (a) 2,2'-methylenebis(4-methyl-6-t-butyl-phenol)
- (b) bis(2-hydroxy-1-naphthyl)methane⁵¹


- (c) 2,2'-biphenyldimethanol
- (d) 1,4-butanediol
- (e) 2,2'-methylenebis(4-chlorophenol)
- (f) 2,2'-dimethylpropane-1,3-diol
- (g) 2,2'-biphenol


$$X \xrightarrow{t-Bu} Y$$
 $X \xrightarrow{t-Bu} Y$
 $Y \xrightarrow{$


The choice of these reagents was dictated by our desire to introduce large rings into the phosphazane skeleton. We were successful in isolating compounds 2.47-2.49 in pure state; compounds 2.50-2.53 were identified only by NMR. Although compounds 2.47 and 2.49 are fairly stable, 2.48 is not. The yields of 2.47-2.49 are good (65-85%). An interesting point to be noted about these compounds is the variation in the ^{31}P NMR chemical shifts. For example, although all the three compounds 2.47, 2.48 and 2.51 have the same number of atoms (seven) in the bridging loop the chemical shift range span nearly 40 ppm. The $\delta(P)$ values for 2.47, 2.48 and 2.51 are significantly more upfield than for Shreeve's compound 2.54 [$\delta(P)$: 222.3], 11 which contains a fluorinated dioxy bridging group; all of these have a bridging loop of seven atoms. Deshielding by fluorine atoms thus appears to be considerable.

2.**53** [δ(P): 167.2]

$$\begin{array}{c|c} & (CF_2)_3 \\ & & & CH_2 \\ \hline O & N & O \\ \hline P & N & O \\ & & & I-Bu \end{array}$$

2.54 [δ(P): 222.3]

Compound 2.49 represents the first example of a bicyclic phosphazane with an eight atom bridging loop. Its $\delta(P)$ value is the most upfield among all the bicyclic derivatives. Interestingly in the ${}^{1}H$ NMR the methylene protons of the ArCH₂ group show up as two doublets [$\delta(A)$: 4.49, $\delta(B)$: 4.67] with a ${}^{3}J(\underline{P}-\underline{H})$ value of ${}^{\sim}18$ Hz [Fig 2.2] [it is also possible that the two geminal protons are non equivalent (ArCH_ACH_B). However in such a case we expect both ${}^{3}J(\underline{P}-\underline{H})$ and ${}^{2}J(H_{A}-H_{B})$ leading to more peaks; see structural diagrams below], suggesting that they are in slightly different environments.

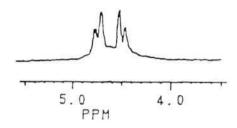


Fig 2.2 ¹H NMR of 2.49 in the -OCH₂Ar region.

$$(A)H_{2}C \xrightarrow{t-Bu} CH_{2}(B) \qquad H_{B}H_{A}C \xrightarrow{t-Bu} CH_{A}H_{B}$$

$$O \qquad N \qquad O \qquad O \qquad N \qquad O$$

$$P \qquad P \qquad P \qquad N \qquad O$$

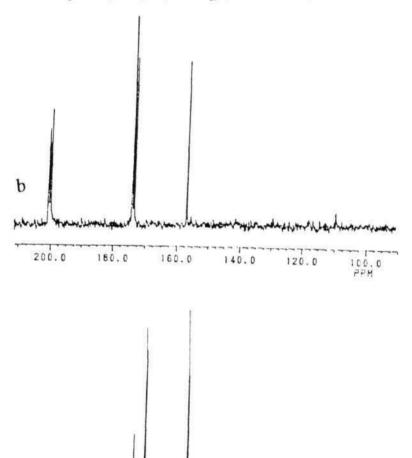
$$t-Bu \qquad t-Bu \qquad t-Bu$$

Unexpectedly, in the reaction of 2.1 with 2,2'-biphenol, in addition to the bicyclic derivative 2.53 we also observed the formation of [2,2'-(C₆H₄O)₂P]₂[2,2'-(OC₆H₄)₂] (eq. 2.8) 2.55; the identity of this compound is also confirmed by the unit cell measurements of a single crystal.⁵² The yield of this compound can be increased by using more biphenol. Although at first look its formation appears serendipitous, replacement of an amino group from a phosphine with an alkoxy/ aryloxy group is an established procedure.⁵³

CIP PCI + 3 OH OH OH

2Et₃N 2.55 + 2Et₃N.HCI + 2*t*-BuNH₂ (2.8)

1-Bu


2.1

$$OH OH OH$$
 $OH OH OH$
 $OH OH$
 OH

2.23 Unsymmetrically substituted cyclodiphosphazanes

The monosubstituted derivatives [CIPN(t-Bu)-P(OR)N(t-Bu)] can be useful precursors for further reactions because of the presence of only one replaceable chlorine which can avoid complications. We have utilized 2,6-dimethylphenol, 2-naphthol and 1-anthracenemethanol for these reactions. Although pure products could not be obtained, the partially substituted derivatives 2.56-2.58 are readily identified by ³¹P NMR; the impurities include the starting material or the *bis* derivative [(RO)PNt-Bu]₂. In the case of 2.56, repeated vacuum distillation (109-111°C/ 0.5 mm) afforded a fraction containing 2.56 upto 90% purity. The ³¹P spectra of two samples, one containing 2.1 as impurity

and the other containing 2.38 as impurity are shown in Fig 2.3. The ${}^2J(\underline{P}-N-\underline{P})$ value of 45.6 Hz is close to that for $[ClPN(t-Bu)_2P(O\ t-Bu)]$ (${}^2J = 49.3\ Hz$).

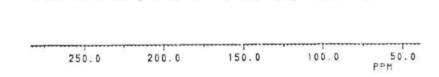
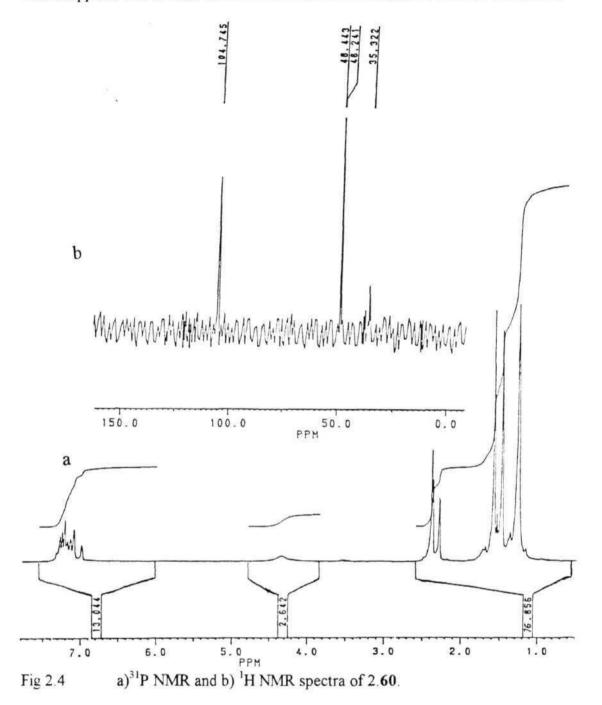


Fig 2.3 ³¹P NMR spectra of 2.56 a) containing 2.1 as impurity b) containing 2.38 as impurity.

a


Compounds 2.56-2.58 were unstable in CDCl₃ solutions in our hands; over a period of 2-3 days complete decomposition had occurred [³¹P NMR evidence]. Suspecting that the residual chlorine was the problem, we attempted to replace it with a cyclohexylamino group by treating 2.56 with excess of cyclohexylamine. However the compound that could be isolated was 2.59 (X-ray) in which the phenoxy group was absent. Although ³¹P NMR showed a broad resonance, ¹H NMR showed the presence of a P(O)H group [δ(H): 7.35, ¹J(P-H) = 580 Hz]. Difficulties in isolating mixed derivatives have been alluded to by Krishnamurthy and coworkers before; ⁴ formation of compounds similar to 2.59 has also been noted before by Keat and coworkers in the reaction of morpholine with 2.1.²⁹

The above reaction shows that the instability of the mixed chloro derivatives 2.56-2.58 is associated with hydrolysis at both the chlorine and aryloxy/ alkoxy ends. In view of this problem we did not proceed further in studying the reaction of 2.56 and 2.57.

2.24 Oxidative addition reactions

Reaction of 2.47 with 3/8 mole equivalents of sulfur in toluene at 80°C for 12 h gives the mono substituted derivative 2.60 in ca 23% yield; the ³¹P NMR of this compound [Fig 2.4(a)] shows two closely spaced doublets at 104.7 [P(III)] and 48.4 [P(V)] ppm [2 J(PNP) \approx 16.0 Hz]. The 1 H NMR [Fig 2.4(b)] spectrum shows mainly the mono substituted product with the *t*-butyl and methyl groups connected to the aromatic residue showing two resonances each. What is significant in this result is that under

analogous conditions selenium reacted with 2.47 to give the *bis* seleno derivative 2.61. Thus it appears that in these addition reactions selenium is more reactive than sulfur.

86

We also reacted the *bis*-aryloxy derivatives 2.41 and 2.42 with sulfur under similar conditions. Whereas the reaction mixture on using 2.42 gave a mixture of both the mono (2.62) and bis (2.63) derivatives in a ratio of ca 2:1 as shown by ³¹P NMR [Fig 2.5(a)] the reaction mixture using 2.41 gave mainly the bis derivative [(4-MeO-C₆H₄O)P(S)(N-t-Bu)]₂ [2.64, δ (P): 45.6] is the major product [Fig 2.5(b)]. This difference is probably due

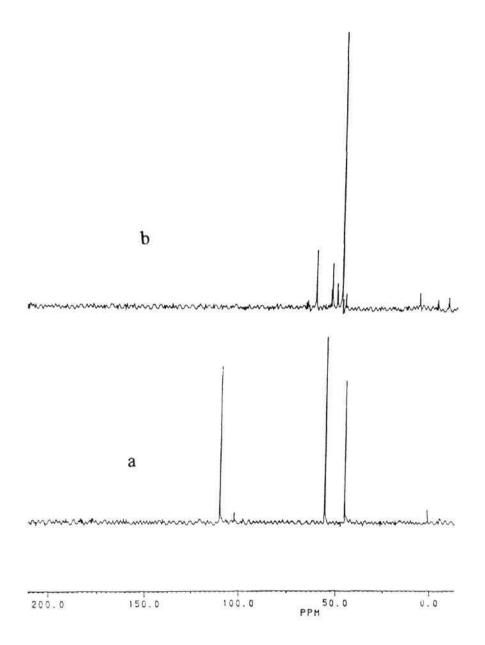


Fig 2.5 a) ³¹P NMR spectrum of both mono (2.62) and bis (2.63) derivatives in a ratio of 2:1. b) ³¹P NMR spectrum of 2.64.

to an electronic effect [Caution:Despite having used selenium inside the fume hood and worn gloves the author had swelling of the hands.⁵⁴ Hence no further reactions were conducted using selenium].

For all the three compounds 2.47, 2.48 and 2.51, the ArCH₂ protons show a broad signal in the ¹H NMR suggesting that the 10-membered ring is nonrigid. This behaviour contrasts the cases in which the two oxygens are connected to the same phosphorus as in the spirocyclic phosphazene 1.99 discussed in Part 1; in these cases we obtain sharper signals (a doublet or an AB quartet).

Finally it should be mentioned that the *bis*-aryloxy derivative 2.38 reacts with *o*-chloroanil to give a pentacoordinated product with a δ(P) of -53.9 ppm which is consistent with the formula [(2,6-Me₂C₆H₃O)(1,2-O₂C₆Cl₄)PN-*t*-Bu]₂ (2.64). This result contrasts those obtained with 2.32 alluded to in the introduction, wherein mainly tetracoordinated phosphorus products were obtained.

2.25 X-ray structural studies

Single crystal X-ray analyses have been performed for compounds 2.38, 2.47.1/2C₆H₆, 2.59 and 2.61.

An ORTEP drawing of a molecule of 2.38 is shown in Fig. 2.6, selected structural parameters are given in Table 2.5. The methyl carbons of the *t*-butyl group at N(2) are disordered, but in Fig 2.6 only one of the possible orientations is shown. This compound to our knowledge represents the second bis-*cis*-aryloxy diazadiphosphetidine to be structurally characterized. Earlier, only the structures of *trans*-[PhNP(OR)]₂ (OR = OMe²⁸, OCH₂CF₃³¹, O-4-Me-C₆H₄⁵⁵) were known.

The P-N distances to a particular phosphorus atom in 2.38 are unequal; the longer P-N bond to one P atom is associated with the shorter bond to the second. Although such a feature is also seen in *trans*-[PhNP(O-4-MeC₆H₄]₂⁵⁵, it is more pronounced in 2.38. However all the P-N distances are in the normal range (1.71-1.73Å) found for analogous compounds (see also Table 2.4). ⁵⁰ The P-O distances in 2.38 (mean: 1.664Å) lie in

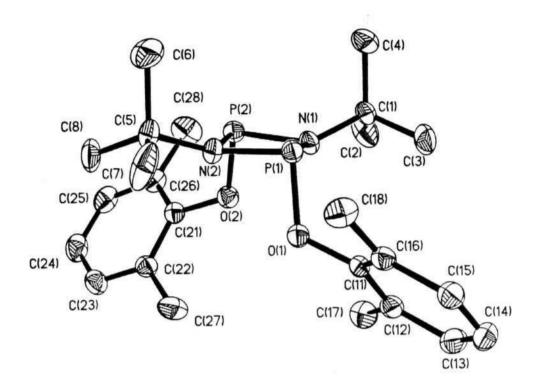


Fig 2.6 Molecular structure of 2.38; only non-hydrogen atoms are shown for clarity.

between those of [PhNP(O-4-MeC₆H₄]₂ (mean: 1.637Å) and *cis*-[C₆F₅OPN*t*-Bu]₂ (mean 1.685 Å); only slight puckering of the diphosphazane ring as in the case of *cis*-[C₆F₅OPN*t*-Bu]₂ is observed.⁵⁰ The atoms P(1) and P(2) deviate from the mean plane containing the four atoms [P(1), P(2), N(1), N(2)] in the same direction to an extent of 0.05Å - 0.06Å respectively, whereas N(1) and N(2) deviate in the other direction by -0.06 and -0.05Å respectively. The planes of the two aromatic rings are (nearly) mutually perpendicular to each other (dihedral angle 88°).

In contrast to the *trans*-[PhNP(OR)]₂ where the ring nitrogens are virtually planar (sum of bond angles = 360°), in 2.38 these are clearly *nonplanar* with the sum of bond angles at N(1) and N(2) being 349.6 and 352.3° respectively. However such a feature is also observed for cis-[(C₅H₁₀N)PN-t-Bu]₂ (sum = 346.3°).²⁴

Table 2.5 Selected bond lengths [Å] and angles [°] for 2.38 with esd's in parentheses

P(1)-O(1)	1.6644 (14)	P(1)-N(2)	1.700 (2)
P(1)-N(1)	1.718 (2)	P(1)-P(2)	2.5635 (7)
P(2) - O(2)	1.664 (2)	P(2)-N(1)	1.704 (2)
P(2) - N (2)	1.716 (2)	O(1)-C(11)	1.399 (2)
O(2) - C(21)	1.396 (2)	N(1) - C(1)	1.493 (2)
N(2) - C(5)	1.485 (3)		
O (1) - P (1) -N (2)	97.92 (8)	O(1) - P(1) - N(1)	105,55 (8)
N(2) - P(1) - N(1)	82.39 (8)	O(2) - P(2) - N(2)	105.81 (8)
O(2) - P(2) - N(1)	97.94 (8)	C (21) - O (2) - P (2)	121.39 (13)
N(1) - P(2) - N(2)	82.33 (8)	C(1) - N(1) - P(1)	125.70 (14)
C (11) - O (1) - P (1)	120.68 (11)	C(5) - N(2) - P(1)	126.77 (14)
C(1) - N(1) - P(2)	126.87 (14)	P(1) - N(2) - P(2)	97.28 (8)
P(2) - N(1) -P(1)	97.05 (8)	N(1)-C(1)-C(4)	110.6 (2)
C (5) - N (2) - P (2)	128.21 (14)		

In the structure of $2.47 \cdot 1/2C_6H_6$, [Fig 2.7; Table 2.6 for structural parameters] the compound crystallizes in the space group P $\bar{1}$ with the unit cell having one molecule of benzene in addition to two molecules of the cyclodiphosphazane. In contrast to [PhNP(-O (CH₂)₃O-)]⁴, the N₂P₂ ring is severely puckered in $2.47 \cdot 1/2.C_6H_6$. The two phosphorus atoms P(2) and P(4) are above the mean plane of the N₂P₂ ring by 0.13 and 0.09Å respectively while the nitrogen atoms N(1) and N(3) are below the plane by 0.16 and 0.02 Å respectively. All the four P-N distances are close (1.710Å) in this compound but the two P-O distances vary more (by > 0.03Å). Interestingly, these P-O distances are much longer than those found in the phosphazene derivatives N₄P₄{[O-4,6-(t-Bu)₂C₆H₂]₂CH₂}Cl₆ (mean: 1.567Å) and Cl₂P(O)N=P[{O-4-Me-6-t-Bu-C₆H₂}₂CH₂] (mean: 1.559Å) which contain analogous aromatic residues on the two oxygens [see

section 1.23]. Both the ring nitrogens in 2.47 are significantly nonplanar as shown by the sum of the bond angles [351.4° at N(1) and 346.9° at N(3)].

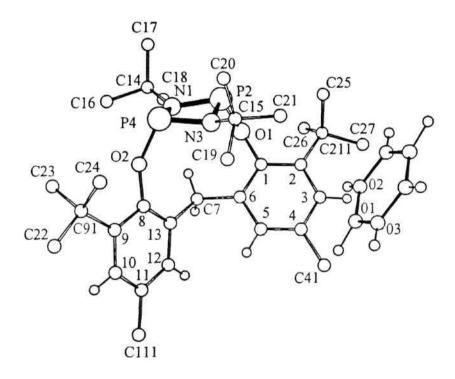


Fig 2.7 Molecular structure of 2.47·1/2C₆H₆; only non-hydrogen atoms are shown for clarity.

Table 2.6 Selected bond lengths [Å] and angles [°] for 2.47·1/2 C₆H₆ with esd's in parentheses

1.664 (2)		P(2) - N(1)	1.706 (2)
1.715 (2)		P (4) - O (2)	1.631 (2)
1.710 (2)		P(4) - N(3)	1.717 (2)
1.400 (3)		O(2) - C(8)	1.390 (2)
1.483 (4)	20	N(3) - C(15)	1.496 (4)
1.393 (3)		C (6) - C (7)	1.522 (4)
1.504 (3)		C (8) - C (13)	1.381 (3)
	1.715 (2) 1.710 (2) 1.400 (3) 1.483 (4) 1.393 (3)	1.715 (2) 1.710 (2) 1.400 (3) 1.483 (4) 1.393 (3)	1.715 (2) P (4) - O (2) 1.710 (2) P (4) - N (3) 1.400 (3) O (2) - C (8) 1.483 (4) N (3) - C (15)

contd..

Table 2.6 contd...

O(1)-P(2)-N(1)	105.19 (9)	O(1) - P(2) - N(3)	107.69 (9)
N(1) - P(2) - N(3)	81.5 (1)	O(2) - P(4) - N(1)	107.81 (9)
O(2) - P(4) - N(3)	109.19 (9)	N(1) - P(4) - N(3)	81.3 (1)
P(2) - O(1) - C(1)	125.4 (2)	P(4) - O(2) - C(8)	150.2 (2)
P(2) - N(1) - P(4)	97.3 (1)	P(2) - N(1) - C(14)	126.7 (1)
P(4) - N(1) - C(14)	127.4 (1)	P(2) - N(3) - P(4)	96.7 (1)
P(2) - N(3) - C(15)	126.9 (2)	P(4) - N(3) - C(15)	123.3 (2)
O(1)-C(1)-C(6)	118.6 (2)	C(1)-C(6)-C(7)	119.4 (2)
C (6) - C (7) - C (13)	118.1 (2)	O(2) - C(8) - C(13)	121.8 (2)
C (7) - C (13) - C (8)	123.1 (2)		

In the structure of 2.48, each molecule is an enantiomer and the unit cell contains two molecules as shown in Fig 2.8; selected bond lengths and bond angles are given in Table 2.7. The P-N and P-O distances are in the same range as in $2.47 \cdot 1/2C_6H_6$. Of the two enantiomers, the first one [shown in Fig 2.8] has a perfectly planar N_2P_2 ring whereas the second one is slightly nonplanar (deviation from the plane $\sim 0.07 \cdot 0.08$ Å), the deviation from planarity being much less pronounced than that found in $2.47 \cdot 1/2C_6H_6$. The sums of the bond angles at N(1A) and N(3A) are 359.5 and 349.4° respectively whereas those at N(1B) and N(3B) are 357.9 and 347.2° respectively; these data show that one of the nitrogen atoms of the four membered ring in each enantiomer of 2.48 [N(3A) and N(3B)] is more pyramidal than the other.

Compound 2.59 [ORTEP in Fig 2.9, bond distances and angles in Table 2.8] represents a unique example of a molecule bearing a P(III) and a P(V) centre. Although there is appreciable disorder for the methyl carbons of both the *t*-butyl groups, the structure is well-refined. Of the two possible dispositions for the phosphoryl oxygen (*cis*

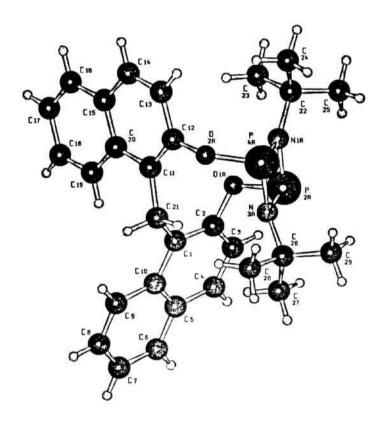


Fig. 2.8 Molecular structure of 2.48; only non-hydrogen atoms are shown for clarity.

Table 2.7 Selected bond lengths [Å] and angles [°] for 2.48 with esd's in parentheses

P (2A) - O (1A)	1.678 (6)	P (2A) - N (1A)	1,689 (7)
P (2A) - N (3A)	1.709 (7)	P (2A) - P (4A)	2.545 (3)
P (4A) - O (2A)	1.646 (7)	P (4A) - N (1A)	1.698 (7)
P (4A) - N (3A)	1.709 (7)	P (2B) - O (1B)	1.667 (6)
P (2B) - N (3B)	1.696 (7)	P (2B) - N (1B)	1.700 (7)
P (4B) - O (2B)	1.653 (7)	P (4B) - N (1B)	1.705 (7)
P (4B) - N (3B)	1.707 (7)	O (1A) - C (2)	1.400 (9)
O (2A) - C (12)	1.402 (11)	O (1B) - C (2B)	1.388 (9)
O (2B) - C (12B)	1.401 (10)	N (1A) - C (22)	1.476 (11)
N (3A) - C (26)	1.497 (11)	N (1B) - C (22B)	1.471 (12)
		con	itd

Table 2.7 contd..

N (3B) - C (26B)	1.512 (11)	C(1)-C(2)	1.362	(11)
C(1)-C(21)	1.508 (10)	C (11) - C (12)	1.361	(11)
C (11) - C (21)	1.502 (11)	C (1B) - C (2B)	1.359	(11)
C (1B) - C (21B)	1.531 (12)	C (11B) - C (12B)	1.382	5 A
C (11B) - C (21B)	1.497 (12)			38-00-00 MB
O (1A) - P (2A) - N (1A) 97.7 (3)	O (1A) - P (2A) - N ((3A)	102.0 (3)
N (1A) - P (2A) - N (3A) 83.3 (3)	O (2A) - P (4A) - N	(1A)	107.4 (4)
O (2A) - P (4A) - N (3A) 104.3 (4)	N (1A) - P (4A) - N	(3A)	83.0 (3)
O (2A) - P (4A) - P (2	2A) 111.5 (2)	C(2)-O(1A)-P(2	A)	117.6 (5)
C (12) - O (2A) - P (4	4A) 129.8 (5)	C (22) - N (1A) - P (2A)	129.1 (6)
C (22) - N (1A) - P (4	4A) 133.0 (6)	P (2A) - N (1A) - P (4A)	97.4 (4)
C (26) - N (3A) - P (4	4A) 125.2 (6)	P (2A) - N (3A) - P (4A)	96.3 (4)
C (22B) - N (1B) - P	(2B) 128.9 (6)	C (22B) - N (1B) - P	(4B)	132.7 (6)
P (2B) - N (1B) - P (4	4B) 96.3 (4)	C (26B) - N (3B) - P	(2B)	127.6 (6)
C (26B) - N (3B) - P	(4B) 123.2 (6)	P (2B) - N (3B) - P (4	4B)	96.4 (4)
C(2)-C(1)-C(21)	122.9 (7)	C (12) - C (11) - C (2	1)	122.3 (9)
C (11) - C (12) - O (2	2A) 123.6 (9)	C (11) - C (21) - C (1)	119.3 (7)
C (2B) - C (1B) - C (10B) 119.0 (8)	C (12B) - C (11B) - C	(21B)	121.3 (9)
C (11B) - C (12B) - C		C (11B) - C (21B) - C		119.1 (7)

and *trans*) with respect to the amino group (**I**, **J**) the former is observed. The ring P-N distances in this compound (mean: 1.760Å) are quite long when compared to the previously discussed structures 2.38, 2.47·1/2C₆H₆ and 2.48, this distance in 2.59 is pretty close to the accepted single P-N bond distance of 1.780(5)Å. The exocyclic P-N distance, however is short and is close to that found in (C₆H₁₁NH)P[O-(4,6-(1-Bu)₂C₆H₂)₂CH₂] (1.635(3)Å). The P-H distance is close to the expected distance of 1.32Å. The four membered N₂P₂ ring is planar to within 0.06Å with the phosphorus atoms above the mean plane and the nitrogens below.

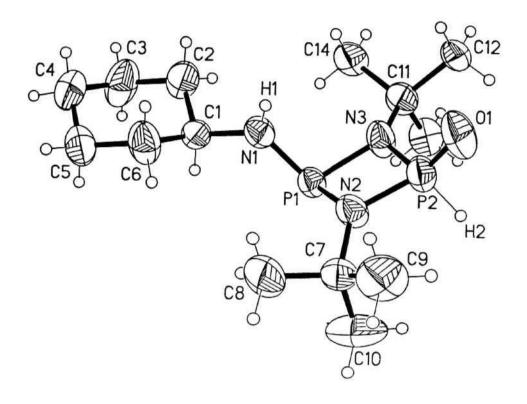


Fig 2.9 Molecular structure of 2.59; only non-hydrogen atoms are shown for clarity.

Table 2.8 Selected bond lengths [Å] and angles [°] for 2.59 with esd's in parentheses

P(1)-N(1)	1.637 (2)	P(1) - N(3)	1.752 (2)
P(1) - N(2)	1.767 (2)	P(1) - P(2)	2.5579 (7)
P(2) - O(1)	1.468 (2)	P(2) - N(3)	1.645 (2)
P (2) - N (2) N (2) - C (7)	1.650 (2) 1.488 (2)	N (1) - C (1) N (3) - C (11)	1.464 (2) 1.482 (2)
N(1) - P(1) - N(3)	104.51 (9)	N(1) - P(1) - N(2)	107.86 (9)
N(3) - P(1) - N(2)	79.01 (8)	N(1) - P(1) - N(2)	115.60 (7)
O(1) - P(2) - N(3)	120.85 (11)	O(1)-P(2)-N(2)	121.59 (10)
N(3) - P(2) - N(2)	85.58 (8)	C(1) - N(1) - P(1)	122.99 (14)
C (7) - N (2) - P (2)	130.07 (14)	C (7) - N (2) - P (1)	127.17 (14)
P(2) - N(2) - P(1)	96.88 (8)	C (11) - N (3) - P (2)	130.63 (14)
C (11) - N (3) - P (1)	130.1 (2)	P(2) - N(3) - P(1)	97.65 (9)

Compared to 2.47·1/2C₆H₆, the ring P-N distances in the diselenium derivative 2.61 [ORTEP in Fig 2.10; bond parameters in Table 2.9] are shorter by *ca* 0.03Å. The P-O distances (mean: 1.577Å) are also short and are comparable to those found in phosphazenes with a similar aromatic residue (section 1.23). The P=Se bond distances (mean: 2.093Å) are in the same range as expected.⁵⁹ The N₂P₂ ring is nonplanar with P(1) and P(2) below the mean plane by 0.07 and 0.08Å respectively; the selenium atoms

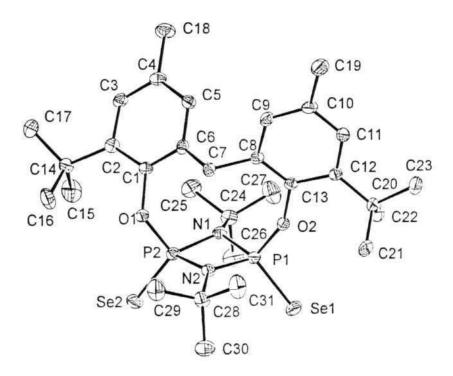


Fig 2.10 Molecular structure of 2.61; only non-hydrogen atoms are shown for clarity

Table 2.9 Selected bond lengths [Å] and angles [°] for 2.61 with esd's in parentheses

Se (1) - P (1)	2.071	4 (16)	Se (2) - P (2)	2.0658 (15)
P(1) - O(2)	1.565	(4)	P(1)-N(2)	1.673 (4)
P(1)-N(1)	1.680	(4)	P(1)-P(2)	2.4861 (19)
P(2) - O(1)	1.590	(4)	P(2)-N(1)	1.680 (4)
P(2) - N(2)	1.677	(4)	O(1)-C(1)	1.432 (6)
O(2) - C(13)	1.417	(6)	N(1)-C(24)	1.520 (7)
N(2) - C(28)	1.512	(7)	C(1)-C(6)	1.391 (7)
C (6) - C (7)	1.524	(7)	C (7) - C (8)	1.505 (7)
C (8) - C (13)	1.378	(7)		
O (2) - P (1) - N (2)		112.8 (2)	O(2) - P(1) - N(1)	112.1 (2)
N(2) - P(1) - N(1)		83.6 (2)	O(2) - P(1) - Se(1)	107.80 (14)
N (2) - P (1) - Se (1)		118.19 (16)	N(1)-P(1)-Se(1)	120.91 (16)
O(1) - P(2) - N(1)		111.0 (2)	O(1)-P(2)-N(2)	109.6 (2)
N(1) - P(2) - N(2)		83.5 (2)	O(1) - P(2) - Se(2)	109.15 (14)
N(1) - P(2) - Se(2)		123.29 (16)	N (2) - P (2) - Se (2)	117.87 (16)
C(1) - O(1) - P(2)		130.1 (3)	C (13) - O (2) - P (1)	153.0 (3)
C (24) - N (1) - P (2)		130.9 (4)	C (24) - N (1) - P (1)	127.6 (4)
P(2) - N(1) - P(1)		95.4 (2)	C (28) - N (2) - P (1)	129.6 (4)
C (28) - N (2) - P (2)		132.3 (4)	P(1) - N(2) - P(2)	95.8 (2)
C (6) - C (1) - O (1)		118.6 (4)	C(1)-C(6)-C(7)	120.1 (4)
C (8) - C (7) - C (6)		118.2 (4)	C (13) - C (8) - C (7)	124.5 (4)
C (8) - C (13) - O (2)		121.6 (4)		

are on the same side of the mean plane as the P atoms. The two nitrogens N(1) and N(2) are above the mean plane by 0.09 and 0.05Å respectively.

As explained by Krishnamurthy and coworkers, for the *cis* disposition of substituents in cyclodiphosphazanes there are two possible conformers (K and L). In K the two atoms X and P are on the same side with respect to the N_2P_2 mean plane whereas in L

atoms X and P are on opposite sides of the mean plane.⁴ It is likely that the non bonded X----X distances vary in these possibilities; a comparison is made in Table 2.10.

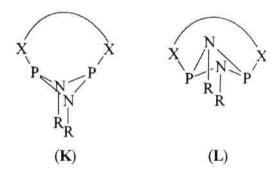


Table 2.10. Nonbonded X---X and P---P distances in selected cis-diazadiphosphetidines.^a

Compound	XX(non- bonded distances)	Disposition of X and P w.r.t. N ₂ P ₂ mean plane	Nonbonded PP distances
2.38	3.750	opposite	2.5635(7)
2. 48 ·1/2C ₆ H ₆	4.32	opposite	2.564(1)
2.49	3.539(2)(A)	opposite	2.546(A)
	3.576(4)(B)	opposite	2.535(B)
2.59	4.422	opposite	2.5579(7)
2.61	4.332	opposite	2.4861(19)
$(PhNP)_2[MeN(CH_2)_2O]^4$	3.272	same	2.64 +/- 0.01
[(PhN 1/2-[O(CH ₂) ₃ O-]*	3.863	opposite	

acalculated using a hpplot programme.

From Table 2.10 it is clear that for the compounds studied in this work, conformation L is the favoured one; in fact conformation K is so far found only for $(PhNP)_2[MeN(CH_2)_2O]^4$ It is to be noted here that the substituents R on the two

nitrogens are always on the same side. The nonbonded X---X distance is most likely determined by the bridging ring size and steric constraints. As far as P---P nonbonded distances are concerned, it is mainly a matter of planarity or the puckering of the N₂P₂ ring; geometrically in the puckered ring we can expect the P---P distance to be shorter than in the planar ring. Since it is the *cis* isomers which are most often puckered, the P---P distance in them can be expected to be shorter than in the *trans* isomers.

2.26 CONCLUSIONS

- (i) The reaction of [ClPN-t-Bu]₂ (2.1) with two mole eqs. of phenols in the presence of triethylamine gives cis-[(ArO)PN-t-Bu]₂ as isolable products.
- (ii) Treatment of [ClPN-t-Bu]₂ with aromatic diols affords the *ansa* type of derivatives (O-Ar-O)(PN-t-Bu)₂. In addition, these reactions may lead to the cleavage of the phosphazane ring.
- (iii) Attempts to prepare *pure* monosubstituted derivatives [ClP(N-t-Bu)₂P(OAr)] were not successful.
- (iv) Under similar experimental conditions, reactions of 2.47 with excess of selenium gives the bis seleno derivative 2.61 whereas with sulfur only the monosubstituted derivative 2.60 is obtained, suggesting that sulfur is less reactive than selenium in these reactions.

2.3 Experimental

The general experimental techniques used are as described in Part 1 (section 1.3).

A) Preparation of 2-cis-4-dichloro-1,3-di-t-butyldiazadiphosphetidine, cis-[CIPN-t-Bu]₂ (2.1)⁴⁸

To phosphorus trichloride (13.9 g, 0.1 mol) in diethylether (100 cm³), *t*-butyl amine (22 g, 0.3 mol) was added dropwise at -78°C over a period of 1 h. The reaction mixture was allowed to come to room temperature, stirred overnight and filtered. The precipitate was washed with diethylether (3 X 25 cm³) and the washings added to the filtrate. Solvent was completely removed from the filtrate and the residue distilled *in vacuo* to afford 2.1.

Yield: 20.4 g (81.6%).

B.p. 111°C/3 mm (lit: 48 110°C/3 mm.).

M.p. 40-42°C (lit: 48 42-44°C).

³¹P NMR: 206.9.

(B) Preparation of 2-cis-4-dichloro-1,3-diphenyl-diazadiphosphetidine, cis-[CIPNPh]₂ (2.2)⁴⁹

Freshly crystallized aniline hydrochloride (25 g, 193 mmol) was dissolved in a refluxing solution of phosphorus trichloride (75 g, 546 mmol) in *sym*-tetrachloroethane (50 cm³) during 24 h. The solution was filtered hot through a frit and evaporated to dryness *in vacuo* at *ca* 110°C; the white residue was extracted with hot benzene and slowly cooled to 20°C to yield 2.2.

Yield: 14 g (48%).

M.p. 150°C (lit: 153-155°C).49

³¹P NMR: 200.4.

C) Preparation of 2-cis-4-bis(aryloxy)-1,3-di-t-butyldiazadiphosphetidines [(ArO)PN-t-Bu]₂ [ArO = 2,6-dimethylphenoxy (2.38), 2-naphthoxy (2.39), oxinato (2.40), 4-methoxyphenoxy (2.41), 4-t-butylphenoxy (2.42)] and 4-methylphenoxy (2.43). Typical procedure for 2.38 is given below [Note: Analytical data for selected compounds only were taken, an X-ray structure is available for 2.38].

To compound 2.1 (0.42 g, 1.7 mmol) in toluene (20 cm³) was added a solution of 2,6-dimethylphenol (0.42 g, 3.41 mmol) and triethylamine (0.34 g, 3.41 mmol) in toluene (15 cm³) over a period of 20 min. Stirring was continued overnight. Filtration followed by concentration (to $\sim 10 \text{ cm}^3$) afforded 2.38 as a crystalline material.

Yield: 0.39 g (79%).

M.p. 158°C.

¹H NMR: 1.25 (s, 18H, t-Bu-H), 2.50 (s, 12H, CH₃), 6.80-7.10 (m, 6H, Ar-H).

³¹P NMR: 156.3.

Found: C, 64.55; H, 8.13; N, 6.27. C₂₄H₃₆O₂N₂P₂ requires C, 64.32 H, 7.95 N, 6.14 %.

The same compound was obtained in the reaction of 2.1 with two mole equivalents of NaO-2,6-Me₂C₆H₃ [³¹P NMR]; but reaction of 2.1 with LiO-2,6-Me₂C₆H₃ [prepared from *n*-BuLi and 2,6-dimethylphenol] in THF led to a product mixture having a ³¹P NMR peak at 214.8 ppm (*ca* 75%.) assigned to the *trans*-[(2,6-Me₂C₆H₃O)PN-*t*-Bu]₂. No *cis* isomer was observed.

Reaction of 2.2 with two mole equivalents of 2,6-dimethylphenol/ Et₃N afforded a solid that showed two peaks in the ³¹P NMR at δ 153.3 (*ca* 60%) and 222.2 (15%) ppm along with some hydrolyzed products [δ (P): -3.0 to +2.5ppm] (*ca* 25%). No pure product could be isolated.

Compounds 2.39-2.43 have been prepared similarly using Et₃N as a base.

Compound 2.39: Quantities used: 2.1 (3.45 g, 13.9 mmol), 2-naphthol (4.09 g, 28 mmol), Et₃N (2.82 g, 28 mmol).

Yield: 3.89 g (87.6%).

M.p. 162°C.

¹H NMR: 1.44 (s, 18H, t-Bu-H), 7.10-7.90 (m, 14H, Ar-H).

¹³C NMR: 31.5 (t, J = 6Hz, CH₃), 50.8 (m, CMe₃), 116.2, 121.9, 124.4, 125.4, 126.2, 127.2, 127.7, 128.3, 129.0, 130.2, 134.3, 151.5.

³¹P NMR: 142.2.

Found: C, 68.56; H, 6.58; N; 5.70. C₂₈H₃₂N₂O₂P₂ requires C, 68.32; H, 6.43; N, 5.35%.

Compound 2.40: Quantities used: 2.1 (2.25 g 10 mmol), 8-hydroxyquinoline (3.00 g, 20 mmol) and Et₃N (2.00 g, 20 mmol).

Oily liquid; solid could not be obtained. A minor impurity (ca 6%) of a hydrolyzed product (³¹P NMR: -4.2 ppm) was present and could not be removed; hence elemental analysis was not obtained.

Yield: 2.97g (90%).

¹H NMR: 1.45 (s, 9H, t-Bu-H), 1.47 (s, 9H, t-Bu-H), 7.32-8.94 (m, 12H, Ar-H).

¹³C NMR: 31.4, 31.5, 50.8 (m), 120.1, 121.2, 122.2, 126.6, 129.6, 135.7, 136.0, 148.9.

³¹P NMR: 141.9.

Compound 2.41: Quantities used: 2.1 (0.99 g, 4 mmol), 4-methoxyphenol (0.99g, 8 mmol) and Et₃N (0.81 g, 8 mmol).

Yield: 1.47 g (87%).

M.p. 110-112°C.

¹H NMR: 1.40 (s, 18H, t-Bu-H), 3.80 (s, 6H, OCH₃), 6.80-7.10 (m, 8H, Ar-H).

³¹P NMR: 142.2. The reaction mixture showed ~ 3% of a peak at 231 ppm (probably the *trans* isomer) was seen.

Found: C, 58.65; H, 7.16; N, 6.72. C₂₂H₃₂N₂O₄P₂ requires C, 58.15; H, 7.25; N, 6.18%.

Compound 2.42: Quantities used: 2.1 (0.53 g; 2.15 mmol), 4-t-butylphenol (0.64 g, 4.3 mmol) and Et₃N (0.44 g, 4.3 mmol)

Yield: 0.99 g (84%).

M.p. 150°C.

¹H NMR: 1.30 (s, 18H, *t*-Bu-*H*), 1,40 (s,18H, *t*-Bu-*H*), 6.90-7.20 (m, 8H, Ar-*H*) ³¹P NMR: 142.5

Found: C, 66.91; H, 8.82; N, 5.57. C₂₈H₄₄N₂O₂P₂ requires C, 66.68; H, 8.27, N; 5.40%.

Compound 2.43: Quantities used: 2.1 (0.39 g, 1.58 mmol), 4-methylphenol (0.34g, 3.15 mmol) and Et₃N (0.32 g, 3.15 mmol).

Yield: 0.49 g (80%).

M.p. gummy.

¹H NMR: 1.40 (s, 18H, *t*-Bu-*H*), 2.39 (s, 6H, C*H*₃), 7.05-7.20 (m, 8H, Ar-*H*).

³¹P NMR: 142 9.

Reaction of 2.1 with two mole equivalents of the LiO-4-*t*-Bu-C₆H₄ led to a mixture. ³¹P NMR: 232.1 (*ca* 15%, assigned to *trans*-[(4-*t*-Bu-C₆H₄O)PN-*t*-Bu)₂, 142.4 [*cis* isomer, 2.42] and 136.7 (unassigned)

D) Preparation of 2-cis-4-bis-(1-anthryloxy)-1,3-di-t-butyl-diazadiphosphetidine [(1-C₁₄H₉O)PN-t-Bu]₂ (2.45)

A solution of 2.1 (0.43 g, 1.74 mmol) in THF (10 cm³) was added slowly to a stirred solution of sodium anthryloxide [prepared by using NaH (0.088 g, 3.67 mmol) and

anthrone (0.68 g, 3.49 mmol)] in THF (25 cm³) at room temperature. The mixture was heated at reflux for 24 h and then cooled to room temperature. Filtration followed by removal of the solvent from the filtrate afforded a solid product (2.45) which was purified by crystallization from benzene (10 cm³).

Yield: 0.49 g (76%).

M.p. 220°C (dec).

¹H NMR: 1.30 (s, 18H, t-Bu-H), 7.20-8.40 (m, 18H, Ar-H).

¹³C NMR: 31.4, 52.0, 124.9, 124.9, 125.4, 125.7, 127.3, 128.3, 129.1, 134.1.

³¹P NMR: 166.8.

Found: C, 66.91; H, 8.82; N, 5.57. C₂₈H₄₄N₂O₂P₂ requires C, 66.45 H, 7.92 N, 4.97%.

E) Attempted preparation of [(RO)PN-t-Bu]₂ [RO = 9-anthracenemethoxy (2.46) and 1-naphthalenemethoxy]

A solution of 2.1 (1-2 mmol) in toluene (10 cm³) was added slowly at room temperature to a stirred solution of two mole equivalents each of alcohol and Et₃N in toluene (25 cm³). The reaction mixture was stirred overnight, filtered and the filtrate concentrated to afford an oil (with naphthalenemethanol) or a solid (with 9-anthracene methanol).

a) Reaction with anthracenemethanol:

Quantities used:

Solid (crystalline), m. p. 214°C.

¹H NMR: (1.30, major peak, ~18H, t-Bu-H), 5.80 (d, $^{2}J = 10$ Hz, 1H, OC $H_{2}(A)$),

6.40 (d, $^{2}J = 10Hz$, 1H, OC $H_{2}(B)$), 7.00 - 8.60 (m, ~18H, Ar-H)

³¹P NMR: 135.2 (35%), 84.1 (35%), 4.6 (30% hydrolyzed); the peak at 135.2 is assigned to *cis*-[ROPN-*t*-Bu]₂ (2.46).

Found: C, 69.92; H, 6.08; N, 4.05. C₃₈H₄₀O₂P₂N₂ requires C, 73.76; H, 6.50; N, 4.52%. The lower values indicate partial hydrolysis.

b) Reaction with naphthlenemethanol:

Quantities used:

Oil. ³¹P NMR (major peaks): 135.0 (35%), 84.4 (15%), 1.7 (35%, hydrolyzed), -8.9 (10%, hydrolyzed). Hydrolysis was also apparent from ¹H NMR which showed a doublet at 7.7 ppm (¹J(P-H) = 600 Hz). The peak at 135.0 may be assigned to *cis* [ROPN-*t*-Bu]₂

- F) Synthesis of the bicyclic derivatives a) $\{[(t-BuN)P]_2[O-6-t-Bu-4-Me-C_6H_2]_2CH_2\}$ (2.47), b) $\{[(t-BuN)P]_2[2-O-1-C_{10}H_6]_2CH_2\}$ (2.48) and c) $\{[(t-BuN)P]_2[2-O-1-C_{10}H_6]_2CH_2\}$ (2.49)
- a) A solution of 2.1 (0.672 g, 2.72 mmol) in toluene (10 cm³) was added dropwise with stirring to a mixture of 2,2'-methylenebis(6-t-butyl-4-methylphenol) (0.92 g, 2.92 mmol) and triethyl amine (0.55 g, 5.44 mmol) in toluene (10 cm³) at 0°C during 10 min. The stirring was continued overnight. Filtration, removal of solvent and crystallization of the residue from benzene (ca 10 cm³) gave 2.47 [caution: benzene is a carcinogen. All operations involving this solvent must be conducted inside the hood].

Yield: 0.97 g (86%).

M.p. 188°C.

¹H NMR: 1.11 (s, 18H, *t*-Bu-*H*), 1.48 (s, 18H, *t*-Bu-*H*), 2.34 (s, 6H, C*H*₃), 4.30 (br, 2H, C*H*₂), 7.04-7.38 (m, 4H, Ar-*H*).

¹³C NMR: 21.3, 31.0, 31.2, 32.0, 35.0, 52.0, 125.8, 128.3, 128.8, 131.3, 133.4, 141.3.

³¹P NMR: 143.9.

Found: C, 68.61; H, 8.91; N, 5.20. C₃₁H₄₈N₂O₂P₂ requires; C, 68.50; H, 8.85; N, 5.16%.

(b) For the synthesis of 2.48, bis-(2-hydroxy-1--naphthyl)methane (0.42 g, 1.4 mmol), 2.1 (0.35 g, 1.4 mmol) and triethylamine (0.28 g, 2.8 mmol) in THF (15 cm³ in all) were used. The crystals of 2.48 were separated from the oily residue. The crystals were rather unstable in various solvents and hence a clear NMR spectrum could not be obtained. After two days in CDCl₃ solution the main peak in the ³¹P NMR was at 5.9 ppm which is most likely a hydrolyzed product.

Yield: 0.44 g, (67%).

M.p. 194°C.

¹H NMR: 1.23 (s, 18H, *t*-Bu-*H*), 4.94 (br s, 2H, C*H*₂), 7.20 - 8.20 (m, 12H, *Ar-H*).

Residual peaks of variable intensity at 1.40 ppm (*t*-Bu-*H*), 3.00 and 3.82 (probably THF) were found.

³¹P NMR: 181.4.

(c) For the synthesis of 2.49, 2.1 (0.8 g, 3.7 mmol), 2,2'-biphenyldimethanol (0.69 g, 3.2 mmol) and triethylamine (0.65 g, 6.4 mmol) were used in a procedure similar to that for 2.47.

Yield: 0.98 g, (78%).

M.p. 165°C.

¹H NMR: 1.08 (s, 18H, *t*-Bu-*H*), 4.49 (d, J = 18.0Hz, 2H, $CH_2(A)$), 4.67 (d, J = 18.0Hz, 2H, $CH_2(B)$), 7.10-7.30(m, 8H, Ar-*H*).

³¹P NMR: 125.7.

Found: C, 63.35; H, 7.30; N, 6.78. C₂₂H₃₀N₂O₂P₂ requires; C, 63.43; H, 7.25; N, 6.75%.

(G) Reaction of 2.1 with other diols

These did not yield sufficiently pure products; however the bicyclic P(III) products were identified by ³¹P NMR. These results are summarized below.

Product	δ(P)	Other peaks in ³¹ P NMR
2.50 ^a	131.2	-8.6, 5.1, 81.4 (total intensity ~20%)
2.51	162.1	188.4 (ca 30%)
2.52	139.4	3.6 (≈ 60%) ^b
2.53	167.2	153.6, 143.5 (2.55)° (total intensity of two peaks is 20%, the rest is for 2.53)
	2.50 ^a 2.51 2.52	2.50° 131.2 2.51 162.1 2.52 139.4

^a A crystalline material, m.p.200°C, was isolated; but it could not be separated free of oil because of solubility and hydrolysis problems.

H) Identification of the monoaryloxy derivatives [ClPN-t-Bu-P(OR)-N-t-Bu] [R = 2,6-Me₂-C₆H₃O (2.56), 2-C₁₀H₇O (naphthyloxy) (2.57), 1-anthracenemethoxy (2.58)]

These compounds were identified mainly by ³¹P NMR. A typical procedure is given for (2.56).

A mixture of 2,6-dimethylphenol (1.43 g, 60 mmol) and triethylamine (6.13 g, 60 mmol) in toluene (50 cm³) was added dropwise to 2.1 (16.6 g, 67.3 mmol) in toluene (250 cm³) at 0°C over a period of 30 min. After stirring at room temperature for 12 h the

^b ¹H NMR spectrum shows hydrolysis [P(O)H at 6.85 ppm 1 J(P-H) \approx 620Hz]

^c This is the bridged compound $\{2,2'-(C_6H_4O)_2P\}_2(2,2'-OC_6H_4)_2$ (2.55) [X-ray evidence].⁵²

solvent was stripped off and the residue analysed by ³¹P NMR which showed ca 80% of 2.56 along with a total of 20% of 2.1 (δ (P): 206.9 ppm) and 2.38 (δ (P): 156.3 ppm).

³¹P NMR data for 2.56 to 2.58 are given below:

- a) 2.56: 173.2 [d, ${}^{2}J(\underline{P}-\underline{P}) = 45.6 \text{ Hz}$, P(OAr)], 199.9 [d, ${}^{2}J(\underline{P}-\underline{P}) = 45.6 \text{ Hz}$, P-Cl]
- b) 2.57: 162.9 [d, ${}^{2}J(\underline{P}-\underline{P}) = 46.0 \text{ Hz}$, P(OAr)], 190.8 [d, ${}^{2}J(\underline{P}-\underline{P}) = 46.0 \text{ Hz}$, P-Cl]
- c) 2.58: 135.9 [d, ${}^{2}J(\underline{P}-\underline{P}) = 32.0 \text{ Hz}$, P(OAr)], 190.3 [d, ${}^{2}J(\underline{P}-\underline{P}) = 32.0 \text{ Hz}$, P-Cl]

The reaction mixture containing 2.56, when subjected to vacuum sublimation (109-111°C/0.5 mm) afforded fractions rich in 2.56 (ca 90%) but containing either 2.1 or 2.38 as impurity (ca 10%). This spectrum is illustrated in the Results and Discussion section [Fig: 2.3].

Compounds 2.56-2.58 appeared to be very unstable in CDCl₃ solutions; over a period of 2 days, the original mixture containing 2.56-2.58 showed almost no 2.56-2.58 remaining. Even repeated and careful fractional vacuum distillation did not help.

We also attempted to prepare mixed aryloxy derivatives by heated together equimolar quantities of 2.38 and 2.39 at *ca* 90°C in toluene for several hours but no exchange occurred (³¹P NMR). Treatment of one mole equivalent each of 2.1, 2,6-dimethylphenol and 2-naphthol in the presence of triethylamine gave only symmetrically substituted products [³¹P NMR evidence].

I) Synthesis of the mixed derivative (C₆H₁₁NH)P(N-t-Bu)₂P(O)H (2.59)

To 2-chloro-4-(2,6-dimethylphenoxy)-1,3-di-t-butyl-diazadiphosphetidine (2.56) (0.69 g, 1.92 mmol) in benzene (25 cm³), cyclohexylamine (0.39 cm³, 0.57 g, 5.76 mmol) in benzene (5 cm³) was added dropwise over 10 min while stirring at room temperature. The mixture was stirred overnight and the salt formed was filtered off. The filtrate was concentrated to ≈ 10 cm³ from which crystals of 2.59 appeared.

Yield: 0.48 g (60%).

M.p. 156°C.

¹H NMR: 1.37 (s, 18H, *t*-Bu-*H*), 1.00-2.20 (m, 10H, C_6H_{11}), 2.95 (brd, 1H, ³J(P-H) = 12Hz, NC*H*), 3.10 - 3.30 (br, 1H, N*H*), 7.35 (d, 1H, ¹J(P-H) \approx 58.0 Hz, P*H*).

I.R: 3230 (v (NH)), 2358 (v (P-H)) cm⁻¹.

³¹P NMR: -9.1 (br); (the P(III) signal was probably too broad).

(J) Reaction of $\{[(t-BuN)P]_2[O-6-t-Bu-4-Me-C_6H_2]_2CH_2\}$ (2.47) with sulfur

To compound 2.47 (0.3 g, 0.55 mmol) in toluene (10 cm³), sulfur (0.056 g, 1.75 mmol) was added and the mixture heated overnight at 80°C. Upon concentration a white solid along with some unreacted sulfur precipitated out. The large yellow crystals of unreacted sulfur were removed by hand-picking.

Yield: 0.080 g [contains ca 95% [(t-BuN)P(S)(O-4-Me-6-t-Bu-C₆H₂)₂CH₂P] (2.60) and <5% of {[(t-BuN)P(S)]₂[O-4-Me-6-t-Bu-C₆H₂]₂CH₂}.

M. p. 206 - 208°C.

¹H NMR:1.26 (br s, 18H, N-*t*-Bu-*H*), 1.47 (s, 9H, C-*t*-Bu-*H*), 1.57 (s, 9H, *t*-Bu-*H*), 2.35, 2.37 (s each, 6H (in all), C*H*₃), 4.30 (br, 2H, ArC*H*₂), 7.00 - 7.40 (m, 4H, Ar-*H*).

 31 P NMR: 104.74, 48.4, 2 J (P-N-P) \approx 16 Hz. A minor peak (< 5%) at 35.3 was also observed.

Analytically pure sample could not be isolated.

(K) Reaction of 2.47 with selenium: Synthesis of $\{(t-BuN)P(Se)\}_2\{O-6-t-Bu-4-Me-C_6H_2\}_2CH_2\}$ (2.61)

To a solution of the bicyclic compound 2.47 (0.37 g, 0.68 mmol) in toluene (10 cm³) selenium (0.107 g, 1.36 mmol) was added and the mixture refluxed for 24 h.

Filtration followed by the evaporation of the solvent from the filtrate afforded a solid. From this pure 2.61 was isolated by crystallization from CH₂Cl₂.

Yield: 0.05g, (13%).

M.p: 260°C (dec).

¹H NMR: 1.30 (s, 18H, *t*-Bu-*H*), 1.52 (s, 18H, *t*-Bu-*H*), 2.40 (s, 6H, Ar-C*H*₃), 4.40 (br, 2H, Ar-C*H*₂), 7.20 (s, 4H, Ar-*H*).

³¹P NMR: 21.7. In principle ⁷⁷Se (7% natural abundance) satellites should be observed. However in these compounds if the signal / noise ratio is not high, which is the case for 2.61, these satellites may not be observed because they will be the AB part of an ABX [X = Se; A, B are the two phosphorus atoms that are chemically but not magnetically equivalent. ⁶⁰

Found: C, 53.14; H, 6.91; N, 4.00. C₃₁H₄₈N₂O₂P₂Se₂ requires C, 53.05; H, 6.30; N, 3.95%.

(L) Reaction of 2.41 and 2.42 with sulfur

Compounds 2.41 and 2.42 were heated with 7/8 mole equivalents of sulfur and the reaction mixture checked by ^{31}P NMR: (a) 2.41 + 7/8 S₈: ^{31}P NMR: 46.2 (70%), 51.4, 59.7 (together $\approx 30\%$). Other peaks of low intensity were also seen. (b) 2.42 + 7/8 S₈: ^{31}P NMR: 109.7 and 55.3 (d each, $^{2}J(P-N-P)\approx 17$ Hz), 45.0 (s). [^{1}H NMR: (2 sets): Set 1 (30%): 1.30 (s, 18H, N-*t*-Bu-*H*), 1.64 (s, 18H, C-*t*-Bu-*H*); Set 2 (70%): 1.33 (s, 18H, N-*t*-Bu-*H*), 1.50 (s, 18H, C-*t*-Bu-*H*); 6.90-7.60 (m, combined intensity *ca* 16 H, Ar*H*)].

(M) Reaction of 2.38 with o-chloroanil. Synthesis of the penta-coordinated derivative [(2,6-Me₂C₆H₃O)(1,2-O₂C₆Cl₄)P-N-t-Bu]₂ (2.64)

Compound 2.38 (0.15 g, 0.35 mmol) was heated upto 150°C and o-chloroanil (0.16 g, 0.65 mmol) was added in small quantities (10 min). The addition was continued

till a light yellow colour persisted. The residue was extracted with toluene, and the solution concentrated to obtain 2.64 as a gummy material.

Yield: 0.172 g, (73%).

¹H NMR: 1.42 (s, 9H, t-Bu-H), 2.60 (s, 6H, CH₃), 6.95-7.30 (m, 6H, Ar-H).

³¹P NMR: -53.9. An impurity peak at -3.2 ppm (ca 5%) was also observed.

X-ray Crystallography

Data were collected on Siemens SMART CCD (2.38 and 2.59), Enraf Nonius CAD4 (2.47 1/2C₆H₆ and 2.48) and Enraf-Nonius MACH3 (2.61) diffractometers. All data was collected at 293K using MoKα (λ = 0.7107Å) radiation. Structure solution and refinement were done by standard techniques. In 2.38 the three carbons of the *t*-butyl group at C(6) are disordered with site occupancies of 0.621 and 0.379; only one of these positions is shown in the ORTEP drawing [Fig. 2.6]. H-atoms were fixed in 2.38, 2.48 and 2.61 by geometry using a riding model and not refined. For 2.47.1/2C₆H₆ all the H-atoms were refined isotropically. The unit cell of this molecule contains one molecule of benzene in addition to two molecules of 2.47. In compound 2.48 all except H(1) and H(2) were fixed by geometry and were not refined; Atoms H(1) (connected to N(1)) and H(2) (connected to P(2)) were located by difference map and refined isotropically. Both the *t*-butyl groups in this molecule are severely disordered with three positions each for the methyl carbons at N(3) and two positions each for the methyl carbons at N(2). Further details are found in Table 2.11. Atomic coordinates are given in the Appendix.

Table 2.11 Crystal data for 2.38, 2.47.1/2C₆H₆, 2.48, 2.59 and 2.61

Compd No	2.38	2.47.1/2C6H6	2.48	2.59	2.61
Emp. formula	$C_{24}H_{36}N_2O_2P_2$	$C_{34}H_{51}N_2O_2P_2$	$C_{29}H_{12}N_2O_2P_2$	$C_{14}H_{31}N_3OP_2$	$C_{31}H_{48}N_2O_2P_2Se_2$
F. wt. (Å)	446.49	581.73	502.51	319.36	700.57
Crystal System	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /C	ΡĪ	$P2_1$	C2/c	P2 ₁ /n
a /Å	12.4190 (2)	9.764 (1)	11.387 (2)	18.6682 (3)	13.891 (2)
b /A	10.9526 (2)	12.964 (1)	18.824 (4)	8.7440 (2)	16.502 (5)
c /A	19.8033 (3)	14.323 (2)	13.428 (2)	24.2120 (3)	14.773 (2)
a lo	0.06	77.25 (8)	0.06	0.06	0.09
β /0	102,3010 (10)	74.15 (7)	111.18 (1)	109.248 (1)	99.27 (2)
of h	0.06	78.25 (6)	0.06	0.06	0.06
>	2631.73 (6)	1681.1 (8)	2683.8 (8)	3731.3 (1)	3342.0 (13)
Z	4	2	4	8	4
D calc/ gcm ⁻³	1.127	1.149	1.244	1.137	1.392
µ/ mm ⁻¹	0.186	0.15	0.190	0.234	2.338
Cryst.size/ mm	$0.50 \times 0.40 \times 0.35$	$0.4 \times 0.5 \times 0.8$	$0.4 \times 0.3 \times 0.2$	$0.30 \times 0.25 \times 0.18$	$0.6 \times 0.5 \times 0.2$
Refins.collected	15783	6280	5071	11399	5875

Table 2.11 contd...

6280 4819 4537° (Birt = 0.0475)		2.62 1.047 1.010	0.0517 a.h 0.045 s 0.0645 h.d 0.0512 0.0581 f	0.1314 0.034 0.1222 0.1374 0.1467	0.3/-0.3 0.643/-0.216 0.2	
6225 (Rint = 0.0262)	6219/300	0.994	0.0517 a.h	0.1314	0.218/ -0.219	
Indep.refins	Data/ Parameters	GooF	R1[(I>2σ (I)]	wR2 [I>2σ (I)]	Largest diff.peak	

*Absorption correction: SADABS (Sheldrick, 1996); max. and min. transmission 0.9661 and 0.5893. Absorption correction: (DIFABS Extinction coeff. 0.0008(6). Refinement on F². Refinement on F. Extinction coeff. 0.0061(10); absolute structure parameter 0.2(2). Statistical) [N. Walker and D. Stuart, Acta Crystallogr., Sect. A. 1983, 39, 159.]

2.4 References

- a) D. E. C. Corbridge, Phosphorus; An Outline of its Chemistry, Biochemistry and Technology, Elsevier, Amsterdam, 1985, 3rd Edn., p. 287; b) J. Emsley and H. Hall, The Chemistry of Phosphorus, Harper and Row, London, 1976, 379; c) R. Keat in The Chemistry of Inorganic Homo- and Heterocycles; I. Haiduc and D. B. Sowerby, Eds., 1987, Vol 2, Chapter 19.
- 2. E. Niecke and D. Gudat, Angew. Chem. Int. Ed. Engl., 1991, 30, 217.
- 3. S. Krishnamurthy, *Phosphorus Sulfur Silicon*, 1994, **87**, 101.
- S. S. Kumaravel, S. S. Krishnamurthy, T. S. Cameron and A. Linden, *Inorg. Chem.*, 1988, 27, 4546.
- V. S. Reddy, S. S. Krishnamurthy and M. Nethaji, J. Chem. Soc. Dalton Trans., 1994, 2661.
- M. L. Thompson, A. Tarassoli, R. C. Haltiwanger and A. D. Norman, *Inorg. Chem.*, 1987, 26, 684.
- A. Kamil, M. R. Bond, R. D. Willet and J. M. Shreeve, *Inorg. Chem.*, 1987, 26, 2829.
- 8. H. J. Chen, R. C. Haltiwanger, T. G. Hill, M. L. Thompson, D. E. Coons and A. D. Norman, *Inorg. Chem.*, 1985, 24, 4725.
- S. S. Kumaravel, S. S. Krishnamurthy, T. S. Cameron and A. Linden, *Inorg. Chem.*, 1987, 26, 684.
- 10 A. M. Caminade and J. P. Majoral, Chem. Rev., 1994, 94, 1183.
- G. Bulloch, R. Keat and D. G. Thompson, J. Chem. Soc. Dalton Trans., 1977
 1044.
- J. G. Hill, R. C. Haltiwanger, M. L. Thompson, S. A. Katz and A. D. Norman, Inorg. Chem., 1994, 33, 1770.
- 13. A. Tarassoli, M. L. Thompson, R. C. Haltiwanger, T. G. Hill, and A. D. Norman, *Inorg. Chem.*, 1988, 27, 3382.
- V. S. Reddy, S. S. Krishnamurthy and M. Nethaji, J. Chem. Soc. Dalton Trans., 1995, 1933.
- 15. G. Bertrand, Angew. Chem. Int. Ed. Engl., 1998, 37, 270.

- a) A. Tarassoli, R. C. Haltiwanger and A. D. Norman, *Inorg. Chem.*, 1982, 21, 2684;
 b) G. Trishin Yu, V. N. Chstokletov, V. V. Kosovtsev, A. V. Petrov, *Zh. Org. Khim.*, 1975, 11, 1752.
- F. L. Bowden, A. T. Dronsfield, R. N. Haszeldine and D. R. Taylor, J. Chem. Soc. Perkin 1, 1973, 516.
- 18. N. D. Reddy, A. J. Elias and A. Vij, J. Chem. Soc. Dalton Trans., 1997, 2167.
- 19. O. J. Scherer and G. Schnabl, Chem. Ber, 1976, 109, 2996.
- 20. O. J. Scherer and P. Klusmann, Angew. Chem. Int. Ed. Engl., 1969, 8, 752.
- 21. E. Niecke, W. Flick and S. Phol, Angew. Chem. Int. Ed. Engl., 1976, 15, 309.
- 22. R. Keat, Top. Curr. Chem., 1982, 102, 89.
- R. Jefferson, J. F. Nixon, T. M. Painter, R. Keat and L. Stobbs, J. Chem. Soc. Dalton Trans., 1973, 1414.
- 24. R. Keat, A. N. Keith, A. Macphee, K. W. Muir and D. G. Thompson, J. Chem. Soc. Chem. Commun., 1978, 372.
- 25 R. Keat, D. S. Rycroft and D. G. Thompson, J. Chem. Soc., 1979, 1224.
- F. Gonce, A. M. Caminade, F. Boutonnet and J. P. Majoral, J. Org. Chem., 1992, 57, 970.
- 27. R. Keat, and D. G. Thompson, J. Chem. Soc. Dalton Trans., 1978, 634.
- 28. G. Bulloch, R. Keat, and D. G. Thompson, J. Chem. Soc. Dalton Trans., 1977, 99.
- R. Keat, D. S. Rycroft and D. G. Thompson, J. Chem. Soc. Dalton Trans., 1980, 321.
- D. A. Harvey, R. Keat, A. N. Keith, K. W. Muir and D. S. Rycroft, *Inorg. Chim. Acta*, 1979, 34, 201.
- 31. S. S. Kumaravel and S. S. Krishnamurthy, Z. Naturforsch., (B) 1986, 41, 1067.
- 32. W. Zeib, C. Feldt, J. Weis and G. Dunkel, Chem. Ber., 1978, 111, 1180.
- 33. R. Keat, L. Murray, D. S. Rycroft, J. Chem. Soc. Dalton Trans., 1982, 1503.
- 34. W. Zeiss and J. Weis, Z. Naturforsch., (B) 1977, 32, 485.
- 35. A. H. Cowley, M. Lattman and J. C. Wilburn, *Inorg. Chem.*, 1981, 20, 2916.
- 36. R. Keat and D. G. Thompson, Angew. Chem. Int. Ed. Engl., 1977, 16, 797.
- O. J. Scherer, K. Andres, C. Kruger, Y. H. Tsay and G. Wohnerhauser, Angew. Chem. Int. Ed. Engl, 1980, 19, 751.

- 38. G. Linti, H. Noth, E. Schneider and W. Storch, Chem. Ber., 1993, 126, 619.
- R. Keat, D. S. Rycroft and D. G. Thompson, J. Chem. Soc., Dalton Trans., 1980, 1858.
- G. Bulloch, R. Keat, D. S. Rycroft and D. G. Thompson, *Org. Mag. Res.*, 1979,
 12, 708.
- 41. R. Keat and D. G. Thompson, J. Chem. Soc., Dalton Trans., 1980, 929.
- 42. W. Zeiss, Angew. Chem. Int. Ed. Engl., 1976, 15, 555.
- 43. T. Kawashima and N. Inamoto, Bull. Chem. Soc., 1976, 49, 1924.
- 44. A. Schmidpeter and J. H. Weinmaier, Chem. Ber., 1978, 111, 2086.
- 45. K. W. Muir and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1971, 1405.
- W. Schwarz, H. Hess and W. Zeiss, Z.Naturforsch., Anorg. Chem., Org. Chem., 1978, 33b, 723.
- M. L. Thompson, R. C. Haltiwanger and A. D. Norman, J. Chem. Soc., Chem. Commun., 1979, 647.
- 48. H. R. Allcock, Inorg. Synthesis, 1972, 25, 8.
- H. R. Davies, A. T. Dronsfield, R. N. Haszeldine and D. R. Tylor, J. Chem. Soc., Perkin Trans. 1, 1973, 379.
- 50. W. A. Kamil, M. R. Bond and J. M. Shreeve, *Inorg. Chem.*, 1987, 27, 2015.
- 51. Y. Ogata, A. Kawasaki and T. Goto, Tetrahedron, 1969, 25, 2589.
- M. J. Baker, K. N. Harrison, A. G. Orpen, P. G. Pringle and G. Shaw, J. Chem. Soc., Chem. Commun., 1991, 803.
- 53. G. S. Bajwa and W. G. Bentrude, Tetrahedron Lett., 1978, 421.
- 54. I. Rosenfeld and O. A. Beath, Selenium, Acacemic press, NewYork, 1964, p. 411.
- Y. S. Reddy, S. S. Krishnamurthy and M. Nethaji, J. Organomet. Chem., 1992,
 438, 99.
- a) E. Hobbs, D. E. C. Corbridge, B. Raistrick, Acta Crystallogr. 1953, 6, 621;
 b) T. S. Cameron, R. E. Cordes and B. R. Vincent, Acta Crystallogr., Sect. C, 1986, 42, 1242.
- M. A. Said, M. Pülm, R. H-Irmer and K. C. Kumara Swamy, *Inorg. Chem.*, 1997,
 36, 2044.
- M. L. Thompson, R. C. Haltiwanger, A. Tarassoli, D. E. Coons and A. D. Norman, *Inorg. Chem.*, 1982, 21, 1287.

- a) J. M. Barendt, R. C. Haltiwanger, C. A. Squier and A.D.Norman, *Inorg. Chem.*, 1991, 30, 2342.
 b) F. H. Allen, O.Kennard, D.G.Watson, L.Brammer and A. G. Orpen and R.Taylor, *J. Chem. Soc. Perkin Trans II*, 1987, S1.
- I. J. Colquhoun, H. Christina, E. McFarlane, W. McFarlane, J. A. Nash, R. Keat,
 D. S. Rycroft and D. G. Thompson, Org. Magn. Reson., 1979, 12, 473.
- a) G. M. Sheldrick, SHELXS-90, Acta Crystallogr., Sect. A, 1990, 46, 467; b) G.
 M. Sheldrick, SHELX-93, University of Göttingen, 1993; c) G. M. Sheldrick, SHELX97, Göttingen.

PART 3. REACTIONS OF CHLOROPHOSPHORUS(III)
AND CHLOROPHOSPHORUS(V) COMPOUNDS
WITH LEWIS ACIDS AND BASES

PART 3. REACTIONS OF CHLOROPHOSPHORUS(III) AND CHLOROPHOSPHORUS(V) COMPOUNDS WITH LEWIS ACIDS AND BASES

3.1 Introduction

Nucleophilic substitution reactions of chlorophosphates are most often carried out in the presence of a base. Since in the absence of the base this reaction will be slow, sometimes the activating base is called a nucleophilic catalyst (rather inappropriately). The mechanism of rate enhancement (nucleophilic catalysis) of the nucleophilic substitution at phosphorus is commonly interpreted by two consequtive SN₂(P) reactions (Scheme 3.1). ¹⁻³

Scheme 3.1

$$P = \begin{pmatrix} O \\ X \end{pmatrix} + Cat \longrightarrow P \begin{pmatrix} O \\ Cat^{+} \end{pmatrix} + X^{-} \xrightarrow{ROH} P \begin{pmatrix} O \\ OR \end{pmatrix} + HX-Ca$$
(A)

The leaving group X is substituted by the nucleopilic catalyst (Cat; can be imidazole, N-methyl imidazole, DBU etc) leading to a very reactive intermediate (A). The nucleophile then reacts with this intermediate giving the product (Scheme 3.1). The general mechanism proposed by Lanneau for the nucleophile assisted substitution is shown in Scheme 3.2.⁴ Although a species of type A has never been detected when the mixture of alcohol and catalyst was added to the chlorophosphates, it is identified by NMR in the absence of alcohol. In the reaction of (RO)(RCH₂O)P(O)Cl with the catalyst (Cat), formation of the betaines C is observed and is assumed to occur *via* the intermediate B (Scheme 3.3).² We have been interested in identifying/ isolating intermediates of types (A)- (C) and hence literature on such species is briefly reviewed here.

Scheme 3.2

Scheme 3.3

$$\begin{array}{c}
RO \\
RCH_{2}O
\end{array}
\xrightarrow{P} Cat \xrightarrow{P} Cat^{+} \longrightarrow RO \xrightarrow{\parallel} RO \xrightarrow{\parallel} Cat^{+} + RCH_{2}CI$$

$$\begin{array}{c}
O \\
\parallel \\
OCH_{2}R
\end{array}$$

$$\begin{array}{c}
O \\
\downarrow \\
OCH_{2}R
\end{array}$$

$$\begin{array}{c}
O \\
OCH_{2}R
\end{array}$$

$$\begin{array}{c}
O \\
OCH_{2}R
\end{array}$$

$$\begin{array}{c}
O \\
OCH_{2}R
\end{array}$$

$$\begin{array}{c}
OCH_{2}R
\end{array}$$

In the reaction of N-methylimidazole with diethylchlorophosphate, (EtO)₂P(O)Cl (3.1) three products (3.2-3.4) are observed (Scheme 3.4). The percentage of these products varies with time and is shown below in Table 3.1.² Reactions such as the one shown in Scheme 3.4 may have relevance in the synthesis of biophosphate esters by the reaction of a chlorophosphate and an alcohol in the presence of a base.⁵ Compounds analogous to 3.2 have been isolated when 4-dimethylaminopyridine was allowed to react with methylphosphorodichloridate 3.5 (Scheme 3.5);⁶⁻⁸ presumably the pyridine nitrogen

displaces chlorine from the phosphorodichloridate to give the salt 3.6 which then loses MeCl to give the betaine 3.7.9

Scheme 3.4

EtO P C1

3.1
$$\delta(P)$$
: 3.6

N NMe

$$\begin{array}{c}
O \\
[(EtO)_2P-N + NMe][CI]^{-1} \\
3.2 \delta(P): -9.9 \\
O \\
V NMe] + [(EtO)_2P(O)_2]O \\
O \\
O \\
3.3 \delta(P): -10.5 \\
3.4 \delta(P): -13.3
\end{array}$$

Table 3.1 Product distribution w.r.t. time in the reaction of 3.1 with N-methylimidazole

Time	3.1	3. 2	3, 3	3.4
3 min	50%	28.6%	21.3%	0%
15 min	33%	12.7%	35.9%	18.4%
2 h	0%	0%	69%	31%

$$MeOPCl2 + \bigcirc N \xrightarrow{CH2Cl2} [Me2N + \bigcirc N - P-Cl] Cl$$

$$3.5 \qquad -MeCl \downarrow 3.6$$

$$+ \bigcirc N = 0$$

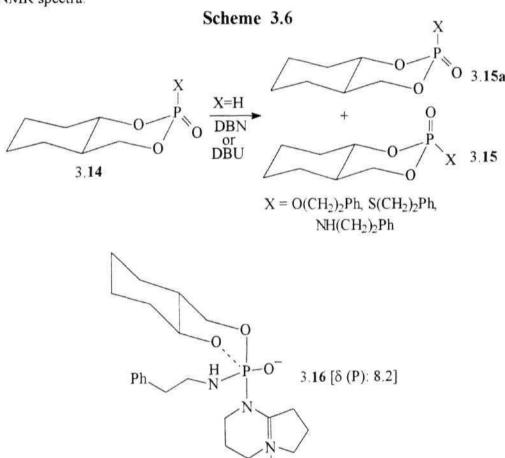
$$-MeCl \downarrow 3.6$$

$$+ \bigcirc N = 0$$

3.7 [95%; δ(P): -8.6]

In a rather unique way, compound 3.8 reacts with 4-dimethylaminopyridine or N-methylimidazole/ CCl₄ to give the betaine 3.9 (eq 3.1). However no other data is available to support the structure 3.9 and the mechanism of its formations is unknown.

$$Me_{3}SiO - P - Ph + N + CCl_{4} \xrightarrow{-Me_{3}SiCl} Me_{2}N = N - P - Ph$$


$$3.8 \qquad 3.9 [\delta(P): 9.2]$$

1,8-Diazabicyclo(5.4.0)undec-7-ene (DBU, 3.10)¹¹ and 1,5-Diazabicyclo(4.3.0) non-5-ene (DBN, 3.11) have one sp² hybridized nitrogen and should be analogous in their behaviour towards phosphorus reagents; both of these are known to be strong bases [pK_a values: DBU 11.5; Et₃N 10.87; N,N-dimethylaniline 5.15].

$$\begin{array}{c|c}
1 \\
N \\
5 \\
3.10
\end{array}$$
311

In an interesting reaction, the phosphine oxide 3.12 reacted with DBU to furnish an (E)-1,2-diphenylvinyl phosphorus derivative 3.13 (eq 3.2). Compound 3.13 is a reactive salt analogous to 3.2 or 3.6; solvolysis of 3.13 in methanol replaces the P-N bond with P-OMe to give the methyl ester.

An article of interest in this connection is that reported by Merckling and Ruedi. ¹³ They reacted the axially substituted chloridate (±) 3.14 with a series of O-, N- and S-nucleophiles under various conditions in an effort to isolate both P-epimers for further investigation. In order to enhance the reactivity, DBN or DBU was added as an auxiliary base. Surprisingly, an unexpected compound was the main product when using DBN as the auxiliary base in the reaction of (±) 3.14 with 2-phenylethylamine. The structure 3.16 is assigned to this compound based on CIMS [m/ z 420.4, (M + H)⁺] as well as ¹H and ¹³C NMR spectra.

In the reactions of chlorophosphorus(III) compounds with nucleophiles also, very often a base is used (eq 3.3). Now the question is about the role of the base in the reaction pathway. Whether a species such as 3.17 is involved in any of these reactions involving a base such as NR₃ is a point to ponder.

$$R_2PCl + ArOH \xrightarrow{Base} R_2POAr + Base.HCl$$
 (3.3)

$$[R_2P - NR_3] Cl^-$$

3.17

A case in point is the only report by Bertrand and coworkers on the reactions of chlorobis(diisopropylamino)phosphane (3.18) with DBN or DBU (Scheme 3.7). In dichloromethane solution 3.18 and DBN or DBU are in equilibrium with 3.19. This equilibrium is shifted towards the products in acetonitrile or by exchanging the chloride for hexafluorophosphate to yield 3.20. Compound 3.20b has been characterized in the solid state by X-ray crystallography, [Fig 3.1]. Although the P-N bond to the DBN moiety is pretty long (compared to the other two P-N bonds), this nitrogen is close to planarity. This is a point that would be of interest in understanding the nature of the P-N bond. Is

Scheme 3.7

$$[(i-Pr)_{2}N]_{2}PC1 + N - (CH_{2})_{n}$$

$$= 1 DBN$$

$$= 3 DBU$$

$$N-P[N(i-Pr)_{2}]_{2}$$

$$KPF_{6}$$

$$N-P[N(i-Pr)_{2}]_{2}$$

$$+N - (CH_{2})_{n}$$

$$(CH_{2})_{n}$$

$$($$

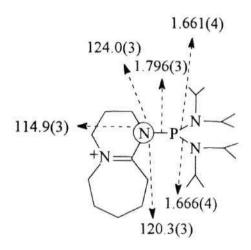


Fig. 3.1 Selected bond parameters in 3.20(b)

The reaction of a chlorophosphorus(III) compound with a halide acceptor can lead to another type of reactive species, the phosphenium cation. An example is shown in (eq. 3.4). It can be noted that the cation in 3.21 is electronically equivalent to a carbene. Although in the present study it was intended to study the synthesis and reactivity of various species like 3.21, the expected results were not obtained and hence the literature on this part is not further elaborated.

Finally, the reaction of chlorophosphates (RO)₂P(O)Cl with a Lewis acid may lead to acid-base adducts in which the lone pairs on the phosphoryl oxygen coordinate to the acid (3.22 and 3.23).¹⁷ The angle at the phosphoryl oxygen varies from 130 to 180° depending on the substitution and acid (or metal centre).¹⁸ Although halide abstraction from the acid (eg.AlCl₃, SbCl₅) is possible, it is not observed.

$$\begin{array}{c|c}
Cl & A & Cl & A \\
RO & P = 0 & RO & P = 0
\end{array}$$
3.22 3.23

3.11 OBJECTIVES OF THE PRESENT WORK

The main objective of this part of the work is to study the reactions of chlorophosphorus(III) and chlorophosphorus(V) compounds with Lewis acids and bases, in particular with strong bases, in an effort to isolate phosphate-base complexes.

3.2 Results and Discussion

3.21 Reactions of chlorophosphates with bases

The cyclic chlorophosphates [OCH₂CMe₂CH₂O]P(O)Cl (3.24), CH₂[4,6-(t-Bu)₂-C₆H₂O]₂P(O)Cl (3.25) and CH₂[4-Me-6-t-Bu-C₆H₂O]₂P(O)Cl (3.26) have been prepared by reacting phosphorus oxychloride with the diol in the presence of a base (*cf* eq. 3.5 for the synthesis fo 3.26). While 3.24 is a known compound, ¹⁹ 3.25 and 3.26 are new. All these compounds are solids and stable under nitrogen atmosphere. The ³¹P NMR chemical shifts vary from -2.4 to -3.4 ppm and are thus in the expected range. ²⁰

OH
$$+ P(O)Cl_3 \xrightarrow{2Et_3N / Toluene} - OO$$

$$- 2Et_3N.HCl$$

$$- 2Et_3N.HCl$$

$$- 3.26 [\delta(P): -3.4]$$

As mentioned in the Introduction (Section 3.1), the main interest here has been to obtain salts such as (**D**), by reacting 3.24-3.26 with the bases 1-8-diazabicyclo(5.4.0)undec-7-ene (DBU), 1,5-diazabicyclo(4.3.0)non-5-ene (DBN), N-methyl imidazole (NMI), imidazole (IM) and 4-dimethylaminopyridine (DMAP). All these have two nitrogens, one sp² hybridized and the second sp³ hybridized.

$$\begin{bmatrix}
O & O \\
O & \parallel & + \\
6,8 & P - NRR'R''
\end{bmatrix} Cl^{-}$$
(**D**)

In the reaction of 3.24 with DBU in toluene, we obtained the product 3.27 rather than the expected compound 3.28; essentially pure 3.27 (³¹P NMR evidence) is immediately precipitated upon addition of DBU to 3.24.

Although the ¹H NMR spectrum of 3.27 [Fig 3.2(a)] is complex, the P-CH signal [$\delta \sim 3.05$, ²J(P-H) ~ 12 Hz] can be readily identified. More characteristic is the ¹³C NMR [Fig 3.2(b)] in which C(7) appears as a doublet [¹J(P-C) = 126.5Hz]. The ³¹P NMR chemical shift value of 10.7 ppm is close to that of several other phosphonates (3.29) prepared in our laboratory. ²¹ This chemical shift value is a point of some interest because the compound 3.16 (*vide supra*) reported by Merckling and Ruedi has a similar ³¹P NMR chemical shift. ¹³

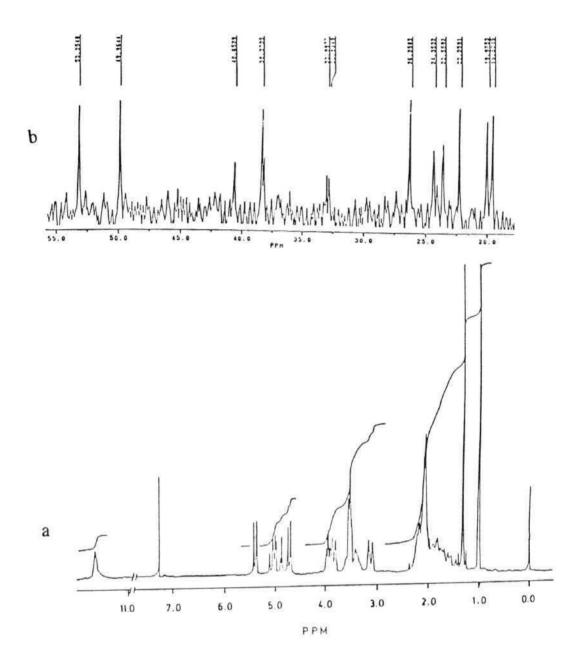


Fig 3.2 a) ¹H and b) ¹³C NMR spectra of 3.27.

O O H
P-C-CHPh
$$X$$

3.29
a) $X = C1 [\delta(P): 8.1]$
b) $X = OH [\delta(P): 13.3]$

Also of interest are the ³¹P NMR chemical shift values of 3.30-3.32. This data in conjunction with that for our compound 3.27 do not fit in well with the ³¹P chemical shift reported for 3.16. Since we have an X-ray structure for 3.27 as a hydrate (see Section 3.25), we believe that more studies on these systems will be needed to clarify this point.

$$\begin{array}{c|c}
\hline
O & Me \\
O & N \\
\hline
O & N \\
O & Me
\end{array}$$

$$\begin{array}{c|c}
C_6H_{11}NH_O \\
O & P \\
O & P \\
O & O
\end{array}$$

$$\begin{array}{c|c}
O & O \\
P - NHC_6H_{11}
\end{array}$$

3.30 [$\delta(P)$: -38.9; ref. 22] 3.31 [$\delta(P)$: -46.2; ref. 23] 3.32 [$\delta(P)$: 4.4; ref. 23]

In the reaction of 3.26 with DBU, compound 3.33 which is also a phosphonate salt, is obtained. In addition to the characteristic ³¹P NMR chemical shift, this compound exhibits a ¹J(P-C) of 126 Hz. In addition to 3.33, the pyrophosphate 3.34 is also obtained in fair yields (33%, NMR, X-ray) from the same reaction.

Isolation of phosphonates such as 3.27 or 3.33 while using DBU is rather unique and so far, to our knowledge, such a pathway has not been inferred. However, it is known that DBU can be lithiated at the C-6 position by n-butyllithium. Formation of these phosphonates (Scheme 3.8) may involve the salt 3.28 which undergoes 1,3-proton shift from C-6 to N-1 to give an enamine; this could reorganize to 3.27 via a cyclic 4-membered transition state involving C-6, C-7, N-8 and P (Scheme 3.8).

Scheme 3.8

In contrast to the above, in the reaction of 3.25 with DBU, we were unable to detect the phosphonate salt. The products that could be identified were 3.35 and 3.36; compound 3.35 has been isolated from a different reaction independently (see below) and

.

compound 3.36 has been obtained in crystalline form as a hydrate (see X-ray section). The main identification in solution is by ¹³C NMR which shows the absence of a ¹J(P-C) doublet (expected for a phosphonate; *cf* compound 3.27); the position of the unsaturated carbon [δ(C): 166.0] is also different from that in 3.25 [δ(C): 161.4] or 3.27 [δ(C): 161.0]. We believe that the formation of 3.36 occurs through an intermediate analogous to 3.28, which, instead of isomerizing to the phosphonate salt, undergoes facile hydrolysis to give the phosphate [CH₂{4,6-(*t*-Bu)₂C₆H₂O}₂]P(O)OH. The proton from the acid is picked up by DBU. The phosphate 3.36 can also react with the chloro precursor 3.25 to lead to the pyrophosphate ester 3.35. Since we have used 1:1 stoichiometry of 3.25 and DBU, isolation of the phosphate salt 3.36 [in addition to DBU.HCI] may also indicate facile hydrolysis of 3.25 in the presence of even traces of moisture; another contributing factor in the ready isolation of 3.36 probably rests with the similar sizes of the cation and anion which could lower its solubility.

Since for reactions at the phosphorus centre, 3.25 and 3.26 have same steric factors operating, formation of different products utilizing them may be due to electronic effects; more studies are required for a detailed explanation for this.

In order to check these reactions further, we also treated benzoyl chloride with DBU and observed immediate precipitation. However the NMR (¹H and ¹³C) was too complicated; in addition to this, precipitate quickly turned into a semisolid and gave a complicated NMR. Therefore further analysis was not performed.

Although DBN is also a dinitrogen base similar to DBU, we did not observe a phosphonate salt in reactions utilizing the former. The reaction mixture (solid) obtained by treating 3.24 with DBN initially showed two peaks in the ^{31}P NMR at -6.8 and -12.0 ppm. From this the product with the downfield shift [$\delta(P)$: -6.8] could be isolated as an air-sensitive solid. Since the product obtained by treating (OCH₂CMe₂CH₂O)P(O)OH²¹ with DBN showed a ^{31}P NMR chemical shift of -4.2 ppm, this product is not the phosphate salt (OCH₂CMe₂CH₂O)P(O)O'(DBNH)*. In the ^{1}H NMR [Fig 3.3] there was no observable peak in the range 8.0-12.0 ppm assignable to NH* or H₃O* protons. In the $^{13}C\{^{1}H\}$ NMR [Fig 3.4(a)] doublets were observed at 43.8 [$^{2}J(P-C) = 15.0$ Hz] and 167.9 [$^{2}J(P-C) \approx 9$ Hz; for comparison the same carbon in $\{(i-Pr_{2}N)_{2}P(DBN)^{+}\}Cl^{-}$ appears at 165.5 ppm]. These two signals are attributable to C2 and C4 in structure 3.37 [Note: The signals at 54.2 and 52.4 ppm do not form a part of the $^{31}P-^{13}CH$ doublet, as inferred from the coupled ^{13}C NMR spectrum, which clearly shows two triplets [Fig 3.4(b)]. We were

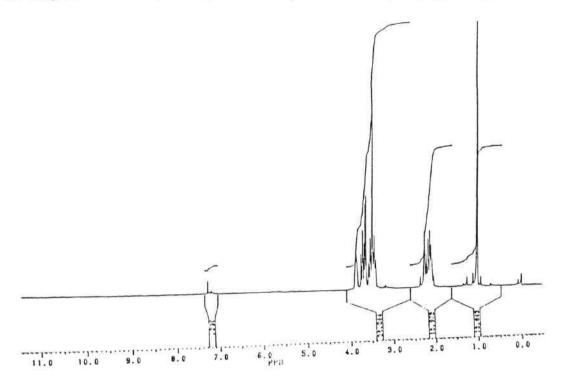


Fig 3.3 ¹H NMR spectrum of 3.37.

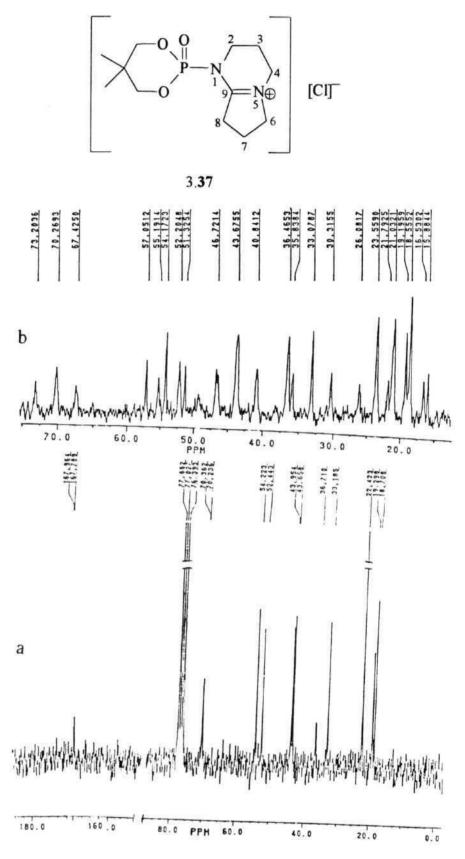


Fig. 3.4 a) ¹³C and b) ¹H coupled ¹³C NMR spectra of 3.37.

unable to obtain the elemental analysis because of the moisture sensitivity of this compound.

The results of other reactions are summarized in Table 3.2. The pyrophosphate 3.38 is a major product in most of these reactions.

Table 3.2 Further details on the reaction of chlorophosphates with bases

Substrate	Base	³¹ P NMR	Remarks
3.24	NMI	-11.4 (90%)	Intensity of peak at -21.9 ppm
		-21.9 (3. 38)	increases with time
3.24	IM*	-14.3, -22.1 (3. 38)	Intensity varies; 3.38 isolated
		$(CDCl_3 + DMSO)$	
3.24	DMAP	-7.1, -21.9 (3. 38)	intensity varies; 3.38 isolated
3. 25	NMI, IM, DMAP	ca -11.0,	(i) intensity variable
		-28.5 (3. 35)	(ii) The peak around -11.0 ppm
			may be phosphate salt similar to
			3.36.
			(iii) Compound 3.35 isolated.

^{*} Note: It is possible that one product could be the aminophosphate (OCH₂CMe₂CH₂O)P(O)(NCH₂CH₂NCH).

3.38 [δ(P): -21.9; lit.: -21.9, ref. 24]

Since the product of (OCCMe₂CH₂O)P(O)OH with these bases generally showed a signal in ³¹P NMR at *ca* -4.5 ppm, the low field peak in the first three entries of Table 3.2 is most likely not the phosphate salt {(OCH₂CMe₂CH₂)P(O)O⁻}{BaseH⁻} as pointed

out before. However since we could not isolate the products in a pure state, it is difficult to ascertain their nature.

3.22 Reaction of chlorophosphorus(III) compounds with bases

We have chosen the substrates 3.39²⁵ and 3.40²⁶ and followed Bertrand's procedure using acetonitrile as a solvent. ¹⁴ In the reaction of 3.39 with DBU three peaks

were observed in the ³¹P NMR spectrum: δ 145.5(s), 108.2(s), 2.4(s). The peak at 2.4 ppm is due to the hydrolysed product (OCH₂CMe₂CH₂O)P(O)H (3.41). ^{21,23} Since Bertrand's compound [{(*i*-Pr)₂N}P-DBU] Cl has a δ(P) of 107 ppm, ¹⁴ we assign the peak at 108.2 ppm to the salt [(OCH₂CMe₂CH₂O)P-DBU] Cl (3.42); the other peak at 145.5 ppm is unassigned. Similarly in the reaction of 3.40 with DBU three peaks at δ(P) 170.1, 124.7 (major) and 0.1 ppm were observed, whereas the peak at 124.7 ppm is ascribable to [CH₂{(4-Me-6-*t*-Bu-C₆H₂O)₂}P-(DBU)] [Cl] (3.43), the peak at 0.1 ppm is due to the hydrolysed product [CH₂-{4-Me-6-*t*-Bu-C₆H₂O)₂}P(O)H (3.44). ²⁷ The reaction mixture obtained by treating 3.40 with 4-dimethylaminopyridine exhibited peaks at 124.6 and 0.1 ppm in the ³¹P NMR; these peaks are ascribable to the salt and hydrolyzed product respectively.

We have not been successful in isolating a pure product from the above reactions, one possible reason is the smaller steric bulk in 3.39 and 3.40 compared to Bertrand's compounds $(R_2N)_2PCl$ [R = i-Pr, cyclohexyl]. We tried to stabilize the salts by adding

KPF₆ to the reaction mixture¹⁴ but were not successful in isolating a pure product and hence did not pursue this aspect further.

3.23 Reaction of P(III) compounds (OCH₂CMe₂CH₂O)PCl (3.39) and (2,6-Me₂C₅H₈N)₂PCl (3.45) with antimony pentachloride (a Lewis acid)

As mentioned before, these reactions were aimed at obtaining the phosphenium cations with the [SbCl₆] counterion. In the reaction using 3.39 there was no product which could be identified clearly [³¹P NMR of the reaction mixture: 145.6, 16.7 (15%), 2.3 ppm (15%, hydrolysed product 3.41)]. In the reaction using 3.45, we obtained the adduct (2,6-Me₂C₅H₈N)₂PCl(O).SbCl₃ (3.46), δ(P): 23.3, as the only isolable product, although the reaction mixture exhibited an additional peak at 43.8 ppm. It is possible that formation of 3.46 took place by hydrolysis of the phosphenium salt; however, since compounds of the type 3.46 did not form the theme of the present work, we did not proceed further.

SbCl₂

P SbCl₆

P SbCl₆

(followed by ligand reorganization)

3.46 [
$$\delta$$
(P): 23.3; X-ray]

3.24 Reaction of (OCH₂CMe₂CH₂O)P(O)Cl (3.24) with antimony trichloride

Antimony trichloride can also act as a Lewis acid²⁸ and form the [SbCl₄] ion. In the reaction with 3.24, SbCl₃ can lead to [(OCH₂CMe₂CH₂O)P(O)] [SbCl₄] (polymeric/oligomeric) or utilize the lone pair on the phosphoryl oxygen to form a simple adduct. Thus a 1:1 reaction of 3.24 with SbCl₃ was conducted; interestingly the hygroscopic

crystalline solid obtained from this reaction analysed as [(OCH₂CMe₂CH₂O)P(O)Cl]₂.SbCl₃ (3.47); however the crystals were not suitable for X-ray studies. The structure 3.47 is assigned to this compound.

Since no interaction with the P-Cl bond is inferred we did not pursue these studies with other chlorophosphate esters.

3.25 X-ray structural studies

X-ray structures for compounds 3.27·H₂O, 3.34, 3.36·1.5 H₂O and 3.46 have been determined. These studies confirm the assigned structures. Selected atomic coordinates for compounds 3.27·H₂O, 3.34, 3.36·H₂O and 3.46 are available in the Appendix. Some details are discussed below.

In the structure of 3.27·H₂O [Fig 3.5; Table 3.3 for bond lengths and bond angles], the 1,3,2-dioxaphosphorane ring has a *chair* conformation and the ring P-O bond lengths [mean: 1.562Å] are shorter than those observed in (OCH₂CMe₂CH₂O)P(NHC₆H₁₁) [mean: 1.633Å, molecule 1of the four molecules present in the asymmetric unit] or in (OCH₂CMeCH₂O)P(1,2-O₂C₆Cl₄)(NHC₆H₁₁) [mean: 1.608Å],²³ the reason for this is not apparent, but the +ve charge caused by the (OCH₂CMe₂CH₂O)P(O)(DBU)]⁺ moiety may be one of the factors. There is some disorder at

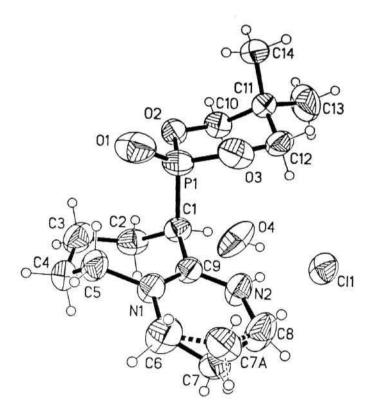


Fig 3.5 Molecular structure of 3.27·H₂O; only non-hydrogen atoms are shown for clarity.

C(7) as shown in Fig 3.5. The N(1)-C(9) and C(9)-N(2) distances are short and interestingly, are close to the analogous distances in $[(i-Pr_2N)_2P(DBU)]^TCl^T[1.293(5)]$ and 1.322(5)Å respectively].

There are some close contacts involving the chloride, water and NH as shown in Fig 3.6; since their effect is mainly in the crystal packing, no further discussion is made here.

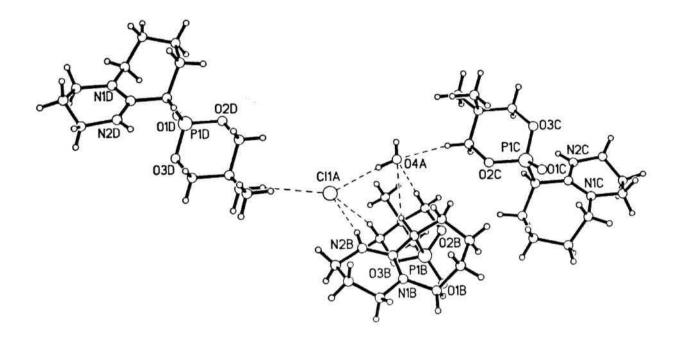


Fig 3.6 Molecular structure of 3.27·H₂O showing some close contacts involving the chloride, water and NH⁺.

Table 3.3 Selected bond lengths [Å] and angles [°] for 3.27·H₂O·with esd's in parentheses

P(1) - O(1)	1.458 (2)	P(1) - O(3)	1.560 (2)
P(1) - O(2)	1.565 (1)	P(1)-C(1)	1.833 (2)
O(2) - C(10)	1.462 (2)	O(3) - C(12)	1.459 (3)
N(1)-C(9)	1.317 (2)	N(1)-C(6)	1.475 (3)
N(1) - C(5)	1.485 (3)	N(2) - C(9)	1.318 (2)
N(2) - C(8)	1.461 (3)	C(1)-C(9)	1.510 (2)
C(1) - C(2)	1.546 (3)	C(2) - C(3)	1.514 (4)
C (3) - C (4)	1.515 (4)	C(4) - C(5)	1.510 (4)
C (6) - C (7A)	1.419 (4)	C (6) - C (7)	1.443 (3)
C (7) - C (8)	1.427 (3)	C (7A) - C (8)	1.427 (4)
C (10) - C (11)	1.517 (3)	C (11) - C (14)	1.532 (3)
C (11) - C (12)	1.527 (3)	C (11) - C (13)	1.532 (4)

contd...

Table 3.3 contd..

O(1) - P(1) - O(3)	111.98 (11)	O(1)-P(1)-O(2)	112.09 (10)
O(3)-P(1)-O(2)	106.64 (8)	O(1)-P(1)-C(1)	115.30 (10)
O(3)-P(1)-C(1)	105.46 (9)	O(2)-P(1)-C(1)	104.67 (8)
C (10) - O (2) - P (1)	121.12 (12)	C (12) - O (3) - P (1)	122.36 (14)
C (9) - N (1) - C (6)	120.4 (2)	C (9) - N (1) - C (5)	124.5 (2)
C (6) - N (1) - C (5)	115.1 (2)	C (9) - N (2) - C (8)	124.7 (2)
C (9) - C (1) - C(2)	115.1 (2)	C (9) - C(1) - P (1)	113.05 (13)
C(2)-C(1)-P(1)	114.45 (13)	C (3) - C (2) - C (1)	117.8 (2)
C(2)-C(3)-C(4)	114.7 (2)	C(5) - C(4) - C(3)	112.7 (2)
N(1) - C(5) - C(4)	114.4 (2)	C (7A) - C (6) - N (1)	115.2 (3)
C (7) - C (6) - N (1)	113.5 (2)	C (8) - C (7) - C (6)	116.9 (2)
C (6) - C (7A) - C (8)	118.5 (4)	C (7A) - C (8) - N (2)	112.5 (3)
C (7) - C (8) - N (2)	109.6 (2)	N(1)-C(9)-N(2)	120.9 (2)
N(1)-C(9)-C(1)	123.0 (2)	N (2) - C (9) - C (1)	116.1 (2)
O(2) - C(10) - C(11)	111.8 (2)	C (10) - C (11) - C (14)	111.8 (2)
C (10) - C (11) - C (12)	108.4 (2)	C (14) - C (11) - C (12)	110.3 (2)
C (10) - C (11) - C (13)	107.5 (2)	C (14) - C (11) - C (13)	109.6 (2)
C (12) - C (11) - C (13)	109.0 (2)	O (3) - C (12) - C (11)	111.9 (2)

The structure of 3.34 [Fig 3.7; selected bond distances in Table 3.4] is straightforward. The two halves of the molecule are symmetrically related through the bridging oxygen O(3). The ring P-O bond lengths are in the expected range [mean: 1.565Å] but again, as in the case of 3.27·H₂O, shorter than those in (OCH₂CMe₂CH₂O)P(NHC₆H₁₁) or in (OCH₂CMe₂CH₂O)P(1,2-O₂C₆Cl₄)(NHC₆H₁₁).²³ The phosphorus to bridging oxygen distance is however, longer [1.591(3)Å]. The 1,3,2-dioxaphosphocin ring has a "tub" conformation similar to that found in the pentacoordinated compound [CH₂{4,6-(*t*-Bu)₂-C₆H₂O)₂}]P(1,2-O₂C₆Cl₄)(NHC₆H₁₁).²³

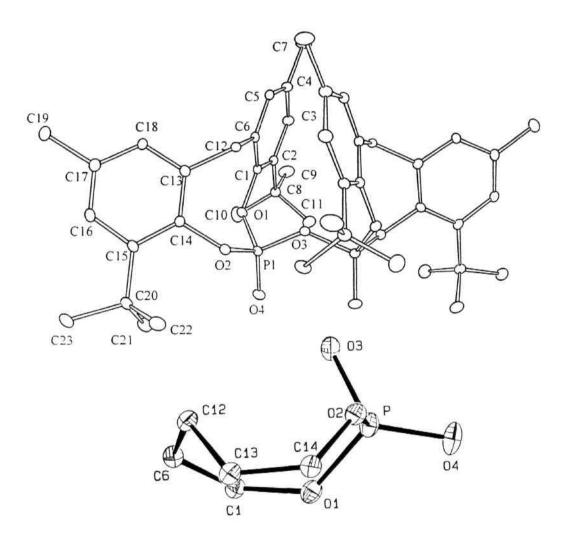


Fig 3.7 Molecular structure of 3.34; only non-hydrogen atoms are shown for clarity.

Also shown at the bottom is the conformation of the eight membered 1,3,2-dioxaphosphocin ring.

In 3.36.1.5H₂O [Fig 3.8; selected distances in Table 3.5] the ring P-O distances [mean: 1.628Å] are longer than those found in 3.34; the other two P-O bonds are significantly shorter [mean 1.471Å] and are close to the phosphoryl bond distance.²⁹ The eight membered 1,3,2-dioxaphosphocin ring has a *boat-chair* conformation similar to several other structures containing this ring in which phosphorus is tricoordinated²³ or pentacoordinated (with diequatorial placement of the oxygens in the TBP geometry).³⁰

Table 3.4 Selected bond lengths [Å] and angles [°] for 3.34 with esd's in parentheses

P - O (4)	1.439 (6)	P - O(1)	.566 (5)
P - O (2)	1.564 (5)	P - O (3)	.591 (3)
O(3) - P# 1	1.591 (3)	O(2) - C(14)	.431 (9)
O(1)-C(1)	1.405 (9)	C(1)-C(6)	.382 (10)
C (6) - C (12)	1.553 (10)	C (12) - C (13)	.525 (10)
C (13) - C (14)	1.393 (11)		
O (4) - P - O (1)	112.6 (4)	O (4) - P - O (2)	114.6 (3)
O(1)-P-O(2)	107.0 (3)	O(4) - P - O(3)	115.2 (4)
O(1) - P - O(3)	103.6 (3)	O(2)-P-O(3)	102.6 (2)
P - O(3) - P#1	135.4 (5)	C (14) - O (2) - P	125.0 (4)
C(1)-O(1)-P	129.9 (5)	C (6) - C (1) - O (1)	119.1 (6)
C(1) - C(6) - C(12)	122.5 (6)	C (13) - C (12) - C(6)	114.8 (6)
C (14) - C (13) - C (12) 121.5 (7)	C (13) - C (14) - O (2	116.9 (6)

The two N-C distances [N(1)-C(2): 1.306(13); N(2)-C(21): 1.337(14)Å] to the unsaturated carbon C(21) in the DBU part are short and similar to those in $3.27 \cdot H_2O$.

Hydrogen bonding is present in 3.36·3/2H₂O [Fig 3.9] with one of the water molecules [at O(5) in special position] H-bonded to two phosphoryl oxygens that are symmetry related [O(5)-O(4,4A), 2.971Å]. There is also another water molecule [not shown in Fig 3.8] with its oxygen [O(6)] H-bonded to another oxygen [O(6A)] of the water molecule from a different asymmetric unit. Overall, in the asymmetric unit one full water molecule [corresponding to O(6)] and one half water molecule [corresponding to O(5)] are present.

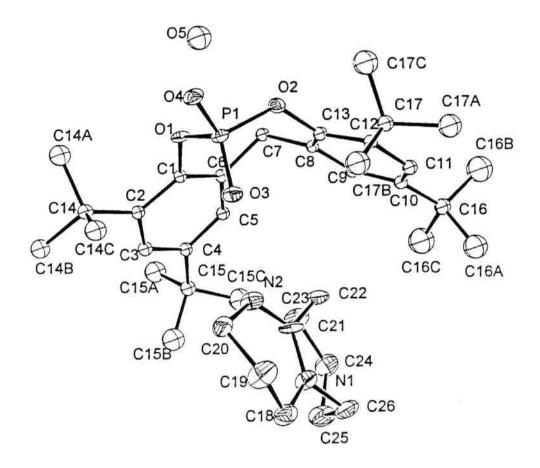


Fig 3.8 Molecular structure of 3.36·1.5H₂O; only non-hydrogen atoms are shown for clarity.

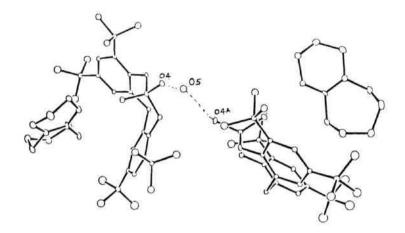


Fig 3.9 A diagram showing hydrogen bonding in 3.36.3/2H₂O showing one of the water molecules [at O(5) in special position] H-bonded to two phosphoryl oxygens that are symmetry related.

Table 3.5 Selected bond lengths [Å] and angles [°] for 3.36·1.5 H₂O with esd's in parentheses

P(1) - O(4)	1.466 (7)	P(1)-O(3)	1.476	5 (7)
P(1)-O(1)	1.627 (7)	P(1)-O(2)	1.630	(7)
O(1)-C(1)	1.395 (11)	O(2)-C(13)	1.401	l (11)
N (1) - C (18)	1.491 (15)	N(1)-C(26)	1.542	2 (17)
N(2) - C(21)	1.337 (14)	N(2) - C(20)	1.443	3 (13)
C (18) - C (19)	1.450 (18)	C (19) - C (20)	1.503	3 (17)
C (21) - C (22)	1.508 (16)	C (22) - C (23)	1.438	3 (18)
C (23) - C (24)	1.532 (17)	C (24) - C (25)	1.56	(2)
C (25) - C (26)	1.45 (2)	C(1)-C(6)	1.394	4 (13)
C (6) - C (7)	1.513 (13)	C (7) - C(8)	1.508	3 (13)
C (8) - C (13)	1.401 (13)			
O (4) - P (1) - O (3)	122.1 (5)	O (4) - P (1) - O	(1)	106.5 (4)
O(3) - P(1) - O(1)	107.8 (4)	O (4) - P (1) - O	(2)	105.4 (4)
O(3) - P(1) - O(2)	109.5 (4)	O(1) - P(1) - O	(2)	104.3 (4)
C(1) - O(1) - P(1)	124.3 (6)	C (13) - O (2) -	P(1)	122.8 (6)
C (21) - N (1) - C (18)	123.1 (11)	C (21) - N (1) -	C (26)	119.9 (11)
C (18) - N (1) - C (26)	116.9 (10)	C (21) - N (2) -	C (20)	123.2 (9)
C (19) - C (18) - N (1)	110.0 (11)	C (18) - C (19) -	C (20)	115.0 (12)
N (2) - C (20) - C (19)	109.2 (10)	N(2) - C(21) - N	V(1)	120.9 (11)
N (2) - C (21) - C (22)	118.4 (9)	N(1)-C(21)-	C (22)	120.6 (12)
C (23) - C (22) - C (21) 110.6 (12)	C (22) - C (23) -	C (24)	114.0 (13)
C (23) - C (24) - C (25		C (26) - C (25) -	C (24)	114.3 (13)
C (25) - C (26) - N (1)				

An ORTEP drawing of molecule 3.46 is shown in Fig 3.10 [selected distances in Table 3.6]. The Sb-O distance of 2.396(4)Å in 3.46 suggests only a moderate interaction of the Sb atom with the phosphoryl O atom; this distance is much longer than that in Cl₃P=OSbCl₅ [2.17(2),³¹ reflecting the lower acidity of SbCl₃ as compared to SbCl₅ and thus leading to a weaker Sb-O bond in the former. The Sb-Cl distances are in the normal

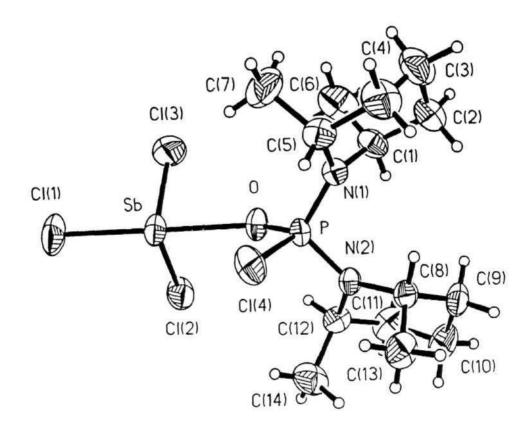


Fig. 3.10 An ORTEP drawing of compound 3.46.

Table 3.6 Selected bond lengths [Å] and angles [°] for 3.46 with esd's in parentheses

Sb - Cl (1)	2.460 (3)	P - O	1.492 (3)
Sb - Cl (2)	2.345 (3)	P - N (1)	1.621 (4)
Sb - C1 (3)	2.348 (3)	P - N (2)	1.613 (4)
Sb - O	2.396 (4)	P Cl (4)	2.037 (3)
Cl (2) - Sb - Cl (3)	95.85 (10)	O - P - N (1)	117.4 (2)
Cl (2) - Sb - O	83.78 (12)	O - P - Cl (4)	106.3 (2)
Cl (3) - Sb - O	83.89 (13)	N (2) - P - Cl (4)	108.9 (2)
Cl (2) - Sb - Cl (1)	92.42 (11)	N(2) - P - N(1)	108.8 (2)
Cl (3) - Sb - Cl (1)	92.10 (12)	N(1) - P - Cl(4)	104.6 (2)
Cl (1) - Sb - O	174.15 (7)	P - O - Sb	133.4 (2)
) - P - N (2)	110.4 (2)		

range. The P=O distance [1.492(3)Å] as well as the P-O-Sb angle [133.4(2)°] are also consistent with mainly σ -donation and moderate or a low π -interaction for the Sb-O bond.

The geometry around antimony, including the lone pair, is distorted trigonal bipyramidal (TBP) [valence shell electron pair repulsion (VSEPR) theory] with the O and Cl(1) atoms *trans* to one another; the deviation from TBP to a square pyramidal structure based on the angles between the planes containing Cl(1), Cl(2), Cl(3) and Cl(2), Cl(3), Cl(4) is *ca* 15%. The Sb-Cl distance [2.460(3)] *trans* to the Sb-O bond is more than the other two Sb-Cl distances [mean; 2.347Å], as expected in the TBP geometry.

3.26 Conclusions

The reaction of chlorophosphates with DBU leads to a *phosphonate* salt rather than a *phosphoramidate* salt. This result contrasts with the previously assumed formation of only phosphoramidate salts. In the reactions with other bases like DBN, NMI etc, *pyrophosphates* are the isolable products formed *via* the phosphoramidate salt.

The attempted synthesis of phosphenium salts of type [(2,6-Me₂C₅H₈N)₂P] [SbCl₆] by reacting (2,6-Me₂C₅H₈N)₂PCl with SbCl₅ led to the isolation of the adduct (2,6-Me₂C₅H₈N)₂PCl(O).SbCl₃ probably formed by hydrolysis of the phosphenium salt.

3.3 Experimental

General description of the experimental methods has already been given in Part 1 (Section 1.3). The compounds $\{CH_2[(t-Bu)_2C_6H_2OH]_2\}$ (m.p. 147-149°C), 32 $\{CH_2[C_{10}H_6OH]_2\}$ (m.p. 200°C), 33 (OCH₂CMe₂CH₂O)PCl (3.39; b.p. 32°C/ 1 mm, δ (P): 120.8)²⁵ and (OCH₂CMe₂CH₂O)P(O)(OH) (3.48, m.p. 174-176°C; δ (P): -4.0)²⁵ were prepared by literature methods. Other syntheses/ reactions are discussed below.

(i) Preparation of (OCH₂CMe₂CH₂O)P(O)Cl (3.24)

2,2-Dimethylpropane-1,3-diol (8.5 g, 82 mmol) in warm benzene (40 cm³) was added dropwise to a mixture of freshly distilled phosphorus oxychloride (12.5 g, 82 mmol) and pyridine (12.9 g, 160 mmol) in benzene (20 cm³) at 40-50°C with continous stirring. The mixture was stirred further for 5 h, poured into cold water and the benzene layer was washed with 2N HCl (2 x 25 cm³) followed by water (2 x 25 cm³) and dried over anhydrous Na₂SO₄. Solvent was removed *in vacuo* and the residue crystallized from 1,2-dichloroethane to afford 3.24.

Yield: 10.2 g, (68%).

M.p. 102-103°C (lit¹⁹. m.p: 102-103°C)

¹H NMR: 0.87 (s, 3H, CH₃), 1.27 (s, 3H, CH₃), 3.80-4.30 (m, 4H, OCH₂)

³¹P NMR: -3.4 (lit¹⁹: -3.4).

(ii) Preparation of $CH_2[4,6-(t-Bu)_2C_6H_2O]_2P(O)Cl(3.25)$

A mixture of 2,2'-methylene-bis(4,6-di-*t*-butylphenol) (3.0 g, 7 mmol) and triethyl amine (1.43 g, 14 mmol) in benzene (20 cm³) was added dropwise (10 min.) to phosphorus oxychloride (1.08 g, 7 mmol) at room temperature with continuous stirring. The mixture, after stirring overnight, was filtered and the solvent removed. The residue was crystallized from ether (10 cm³) to give 3.25.

Yield: 3.2 g (83%).

M.p. 207°C.

¹H NMR: 1.32 (s, 18H, t-Bu-H), 1.46 (s, 18H, t-Bu-H), 4.07 (br, 2H, CH₂), 7.20, 7.30 (s each, 4H, Ar-H).

³¹P NMR: -2.5.

M.S.: 490, 488 [10%, (M-CH₃ + H)⁺], 468 [80%, (M-HCl)], 453 [100%, (M-HCl-CH₃)⁺].

Found: C, 68.96; H, 8.38. C₂₉H₄₂ClO₃P requires C, 68.99; H, 8.33 %.

(iii) Preparation of $CH_2[4-Me-6-t-Bu-C_6H_2O]_2P(O)Cl$ (3.26)

A solution 2,2'-methylene-bis(4-methyl-6-*t*-butyl-phenol) (5.0 g, 14 mmol) and triethylamine (3 g, 30 mmol) in toluene (30 cm³) was added to phosphoryl chloride (2.14 g, 14 mmol) in toluene (15 cm³) over a period 30 min at room temperature and the mixture stirred overnight. Filtration followed by concentration afforded 3.26 (¹H and ³¹P NMR in Fig. 3.11) as a crystalline solid which was recrystallized from toluene.

Yield: 5.3 g (85%).

M.p. 162 - 164°C.

¹H NMR: 1.44 (s, 18H, t-Bu-H), 2.31 (s, 6H, CH₃), 3.85-4.20 (AB qrt., 2H, Ar-CH₂), 7.07, 7.10 (s each, 4H, Ar-H).

³¹P NMR: -3.4.

Found: C, 65.64, H, 7.13. C₂₃H₃₀ClO₃P requires C, 65.80; H, 7.40%.

(iv) Preparation of [(OCH₂CMe₂CH₂O)P(O)(DBU)]⁺Cl⁻ (3.27)

To a solution of 3.24 (0.77 g, 4.21 mmol) in toluene (10 cm³) a solution of DBU (0.64 g, 4.21 mmol) in toluene (10 cm³) was added over a period of 10 min. at 25°C and the mixture stirred overnight. The powder obtained (³¹P NMR: single peak at 10.7 ppm)

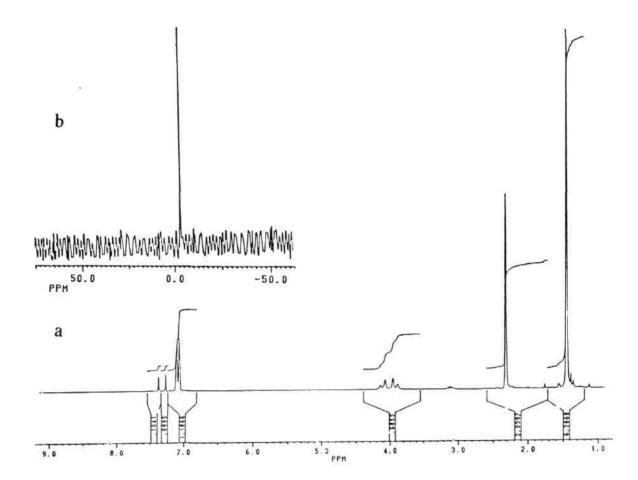


Fig 3.11 a) ¹H and b) ³¹P spectra of 3.26.

was filtered and washed with cold toluene (2 x 5 cm³). Recrystallization was done from hot toluene to obtain $3.27 \cdot H_2O$. The ¹H NMR spectrum of the powder (3.27) was nearly identical to that of the hydrate (3.27· H_2O).

Yield: 1.21 g (84%).

M.p. 184°C.

¹H NMR: 0.95 (s, 3H, CH₃), 1.26 (s, 3H, CH₃), 1.64-2.17 (m, 8H, CH₂), 3.00-3.10 (d, ${}^{2}J \approx 12$ Hz, PCH), 3.41-3.92 (m, 6H, NCH₂), 4.67 (d, ${}^{2}J = 11.1$ Hz, OCH_AH_B), 4.78-4.97 (m, 2H, OCH₂), 5.34 (d, ${}^{2}J = 11.1$ Hz, OCH_ACH_B), 11.48 (br s, 1H NH).

¹³C NMR: 19.5, 20.0, 22.3, 23.6, 23.6, 24.4, 26.3, 32.8, 33.0, 38.4, 39.4 [¹J(P-C)] = 126.5 Hz], 50.0, 53.3, 78.6, 161.4.

³¹P NMR: 10.7.

Found: C, 47.88; H, 8.09; N, 8.60. C₁₄H₃₀ClN₂O₄P (with one molecule of water that probably entered during the process of crystallization) requires C, 47.13; H, 8.41; N, 7.85%.

The filtrate showed a small quantity of the pyrophosphate $[(OCH_2CMe_2 CH_2O)P(O)]_2O$ (3.38, see later).

(v) Preparation of $\{CH_2[4-Me-6-t-Bu-C_6H_2O]_2P(O)(DBU)\}^+Cl^-$ (3.33) and $\{CH_2[4-Me-6-t-Bu-C_6H_2O]_2P(O)\}_2O$ (3.34)

To a solution of 3.26 (0.328 g, 0.78 mmol) in toluene (10 cm³), a solution of DBU (0.118 g, 0.78 mmol) in toluene (10 cm³) was added dropwise at 25°C and the mixture was stirred overnight. Upon concentration to *ca* 10 cm³, compound 3.33 came out as a solid.

Yield: 0.2 g, (45%).

M.p. 220°C.

¹H NMR (Fig. 3.12): 1.38, (s, 9H, t-Bu-H), 1.42, (s, 9H, t-Bu-H). 1.80-2.30 (m, 8H, CH_2), 3.20 (br, 2H, CH_2), 3.45-3.60 (m, 6H, NCH_2), 4.90 (d, 1H, Ar- CH_AH_B), 5.50 (d, 1H, Ar- CH_AH_B), 7.00-7.25 (m, 4H, Ar-H). 11.48 (br, 1H, NH^+). An additional peak of low intensity at 12.00 ppm was also observed.

¹³C NMR (Fig 3.12): 19.2, 19.6, 20.8, 21.3, 23.3, 24.0, 24.4, 25.3, 26.8, 28.9, 31.0, 31.3, 32.1, 34.6, 34.8, 34.9, 39.1, [¹J(P-C) = 126.0 Hz], 43.1, 48.8, 49.3, 52.6, 54.4, 125.3, 127.3, 127.4, 128.2, 129.0, 129.2, 134.1, 134.4, 135.3, 137.8, 140.2, 140.6, 144.7, 161.0. A detailed analysis was not possible.

³¹P NMR: 7.2.

Found: C, 66.56; H, 7.99; N, 4.31. C₃₁H₄₂N₂O₃PCl requires C, 66.81; H, 7.59; N, 5.05%.

Fig 3.12 a) ¹H and b) ¹³C NMR spectra of 3.**33**.

The residue showed two peaks in ³¹P NMR (-12.6, -28.6), with the one at -28.6 as the major component. Further concentration of the mother liquor afforded the latter component (pyrophosphate 3.34) as a crystalline solid.

Yield: 0.15 g, (33%).

Mp. 276°C.

¹H NMR (Fig. 3.13): 1.44 (s, 18H, *t*-Bu-*H*), 2.31 (s, 6H, C*H*₃), 3.70 (d, ²J = 15 Hz, Ar-C*H*_A*H*_B), 4.31 (d, ²J = 15 Hz 1H, Ar-C*H*_A*H*_B), 7.21-7.24 (m, 4H, Ar-*H*). ¹³C NMR (Fig. 3.12): 20.9, 30.9, 34.6, 35.0, 127.7, 129.4, 131.4, 135.2, 141.3, 146.0.

³¹P NMR: -28.6.

Found: C, 70.43; H, 7.81. C₄₆H₆₀O₇P₂ requires C, 70.23; H, 7.63%.

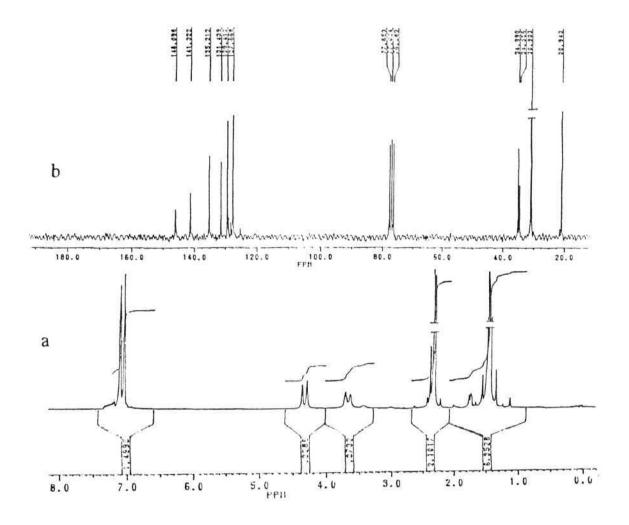


Fig 3.13 a) ¹H and b) ¹³C NMR spectra of 3.34.

(vi) Reaction of (OCH₂CMe₂CH₂O)P(O)Cl (3.24) with other bases [DBN, N-methylimidazole, imidazole and 4-dimethylaminopyridine]. Synthesis of [(OCH₂CMe₂CH₂O)P(O)(DBN)]⁺Cl (3.37) and [(OCH₂CMe₂CH₂O)P(O)]₂O (3.38)

These reactions were conducted in a manner analogous to that given in (iv). A phosphonate salt analogous to 3.27 was not detected. The pyrophosphate [(OCH₂CMe₂CH₂O)P(O)]₂O (3.38) was obtained as the end product in all the reactions except in the case of DBN. It was isolated in several instances in yields of *ca* 50%, after removing the less soluble portions.

```
M.p. 193-195°C (lit.<sup>24</sup> m.p: 194-196°C).

<sup>1</sup>H NMR: 0.90 (s, 3H, CH_3), 1.32 (s, 3H, CH_3), 3.80-4.20 (m, 2H, OCH_2), 4.45 (d, <sup>3</sup>J(P-H) \approx 10Hz, 2H, OCH_2).

<sup>13</sup>C NMR: 19.9, 21.8 (both CH_3), 32.1 (CMe<sub>2</sub>), 79.0 (OCH_2).

<sup>31</sup>P NMR: -21.9 (lit.<sup>24</sup> -21.9).
```

a) In the reaction of 3.24 with DBN, the reaction mixture initially showed two peaks in the ³¹P NMR at -6.8 and -12.0 ppm; the compound 3.37 corresponding to the former was isolated as a crystalline solid.

Yield: 0.35 g, (53%).

M.p. 134°C.

¹H NMR: 1.00 (s, 6H, CH_3), 2.00-2.20 (m, 6H, CH_2), 3.20-3.80 (m, 10H, NCH_2 , OCH_2).

¹³C NMR: 18.7, 19.3, 22.4 (s each, two CH_3 and a CH_2), 33.2 (CH_2), 36.7 (CMe_2), 43.8 [2 J (P-C) = 18.0 Hz, N CH_2], 52.4 (N CH_2), 54.2 (N CH_2), 70.3 (d, J = 6.5 Hz, O CH_2), 167.9 (J = 9.0 Hz, N=C).

³¹P NMR: -6.8.

Elemental analysis could not be obtained due to moisture sensitivity.

- (b) In the reaction of 3.24 with N-methylimidazole in toluene, the solid which precipitated out showed peaks at -11.4 (>90%) and -21.9 (3.38, ca 10%) in the ³¹P NMR. the intensity of the peak at -21.9 increased with time and over a period of 9 days, was found to be the major product (>50%).
- (c) The precipitate obtained in the reaction of 3.24 with imidazole showed two peaks at -14.3 and -22.1 ppm (3.38) (solvent CDCl₃ + DMSO-d₆). Compound 3.38 could be isolated (see above for details).
- (d) The solid obtained by reacting 3.24 with 4-dimethylaminopyridine showed mainly two peaks at -7.1 ppm (unassigned) and -21.9 ppm (3.38); only 3.38 could be isolated (see above for spectral data).

(vii) Reaction of {[CH₂(4,6-(t-Bu)₂-C₆H₂O)₂]P(O)Cl (3.25) with bases (DBU, DBN, N-methylimidazole and 4-dimethylaminopyridine)

As in the case of the reactions given in (vi), the pyrophosphate $\{[CH_2(4,6-(t-Bu)_2-C_6H_2O)_2]_2P(O)\}_2O$ (3.35) was a product that could be readily identified; in the reaction with 4-dimethylaminopyridine it could be isolated readily (yield $\approx 40\%$).

M.p., 220°C.

¹H NMR: 1.30 (s, 18H, *t*-Bu-*H*), 1.45 (s, 18H, *t*-Bu-*H*), 3.75 (d, 2 J = 11.9 Hz Ar-CH_AH_B), 4.41 (d, 2 J = 11.9 Hz, Ar-CH_ACH_B), 7.20, 7.30 (s each, 4H, Ar-*H*).

Found: C, 72.90; H, 8.86. C₅₅H₈₄O₇P₂ requires C, 72.77; H, 9.36%

In the reaction of 3.25 with DBU, DBN and N-methylimidazole, the other major product showed a ³¹P NMR peak at *ca* -11 ppm; in the case of the DBU reaction the compound isolated was found to be {[CH₂(4,6-(t-Bu)₂C₆H₂O)₂]PO₂ }[DBU.H] ·1.5H₂O (3.36·1.5H₂O). An X-ray structure is available for this compound.

M.p. 200°C (dec.).

¹H NMR (Fig. 3.14): 1.29 (s, 18H, *t*-Bu-*H*), 1.48 (s, 18H *t*-Bu-*H*), 1.55-2.10 (m, 6H, C*H*₂), 2.70-2.80 (m, 2H, C*H*₂), 3.15-3.50 (m, 6H, NC*H*₂), 4.08 (br, 2H, Ar-C*H*₂), 7.20 (s, 4H, Ar-*H*).

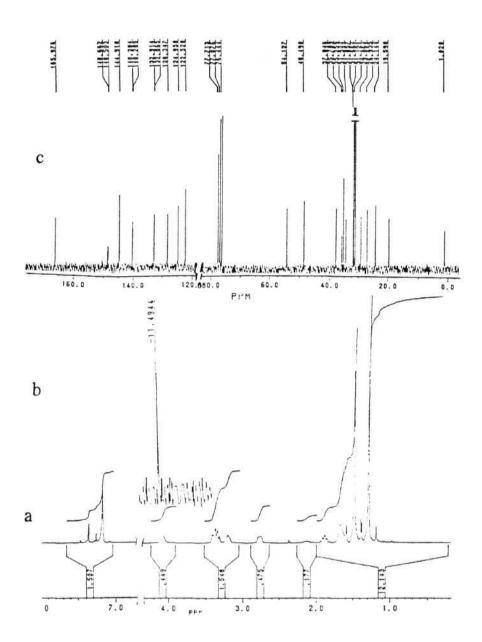


Fig 3.14 a) ¹H, b) ³¹P and c) ¹³C NMR spectra of 3.36.

¹³C NMR (Fig. 3.14): 19.6, 24.1, 26.9, 29.1, 31.1, 31.7, 31.9, 34.3, 35.3, 35.8, 37.8, 48.5, 54.1, 122.5, 125.0, 128.3, 132.9 (d, $J \approx 3$ Hz), 140.3(d, $J \approx 5$ Hz), 144.9, 148.6 (d, J = 7.0 Hz), 166.0 (N=C).

(viii) Reaction of the phosphate (OCH2CMe2CH2O)P(O)(OH) (3.48) with bases

The phosphate and the bases (DBU, NMI, DBN, IM or DMAP) were mixed in 1:1 stoichometry in dichloromethane. Slow evaporation of the solvent afforded an oil or solid which were checked by ³¹P NMR. No clearcut changes that could be used for further analysis were observed in the ¹H NMR spectra; the N⁺H proton was probably too broad to be located clearly.

- (3.48 + DBU) product: oil, ³¹P NMR: -4.4.
- (3.48 + NMI) product: m.p. 82°C; ³¹P NMR: -4.7.
- (3.48 + DBN) product: oil, ³¹P NMR: -4.2.
- (3.48 + IM) product: oil, ³¹P NMR: -4.6.
- (3.48 + DMAP) product: M.p. 116°C; ³¹P NMR: -3.5.

(ix) Reaction of benzoylchloride with DBU

Using the same procedure as in (iv) above, benzoylchloride was treated with DBU [¹H NMR: 1.30 - 1.50 (br, 6H, CH₂), 1.60 (qrt, 2H, CH₂), 2.35 (br m, 2H, C=CH₂), 3.00 - 3.20 (m, 6H, NCH₂). ¹³C NMR: 22.3, 25.6, 28.4, 29.6, 37.0, 43.9, 48.3, 52.8, 161.4]. A precipitate was formed immediately ¹H NMR: 1.60 - 4.30 (br, many peaks, 16H, 8CH₂), 7.10 - 8.30 (m, 5H, Ar-H), 12.0 (br s,ca NH ?). ¹³C NMR: 19.5, 24.0, 25.5, 26.1, 28.1, 28.8, 28.9, 32.1, 37.9, 48.1, 48.8, 53.9, 54.4, 67.8, 119.9, 128.4, 128.8, 129.8, 130.6, 134.1, 160.7, 164.7, 166.3. See Results and Discussion for comments.

This precipitate slowly became a semisolid over a period of 6 h and was not analysed further.

(x) Synthesis of $[C_5H_8(Me)_2N]_2PCl$ (3.45)

A mixture of *cis*-2,6-dimethyl piperidine (8.2 g, 72 mmol) and triethylamine (7.3 g, 72 mmol) in hexane (50 cm³) was added dropwise to a solution of phosphorus trichloride (4.98 g, 36 mmol) in hexane (100 cm³) at 25°C with continuous stirring. The reaction mixture was heated under reflux for 48 h and filtered. Evaporation of the solvent followed by vacuum distillation afforded 3.45 as a liquid.

```
Yield: 6.86 g (65%).

B.p. 100°C/3mm.

<sup>1</sup>H NMR: 1.22 (s, 6H, CH<sub>3</sub>), 1.24 (s, 6H, CH<sub>3</sub>), 1.25 - 1.80 (m, 12H, CH<sub>2</sub>), 3.70 - 3.90 (br, 4H, NCH).
```

The compound was too air sensitive in our hands to obtain CHN analysis.

(xi) Reaction of chlorophosphorus(III) compounds with bases

These reactions were conducted in methyl cyanide following the procedure of Bertrand and coworkers, ¹⁴ using 1:1 stoichiometry of the reactants; no product was isolated. Some details are given below.

- (a) Compound 3.39 + DBU: ³¹P NMR (reaction mixture): 145.5 (s), 108.2 (s), 2.4 [s, assigned to (OCH₂CMe₂CH₂O)P(O)H (3.41). ²⁵].
- (b) Compound [CH₂(4-Me-6-t-Bu-C₆H₂O)]PCl (3.40) δ (P): 153.0 ppm + DBU: ³¹P NMR (reaction mixture): 170.1, 124.7 (major), 0.1 {[CH₂(4-Me-6-t-Bu-C₆H₂O)₂]P(O)H} (3.44). ²⁵

(c) Compounds 3.40 + DMAP: ³¹P NMR (reaction mixture): 124.6, 0.1 {[CH₂(4-Me-6-t-Bu-C₆H₂O)₂]P(O)H} (3.44).

(xii) Reaction of chlorophosphorus(III) compounds 3.39 and 3.45 with antimony pentachloride (a Lewis acid)

(a) Preparation of [C₅H₈Me)₂N]₂PCl(O). SbCl₃ (3.46)

A solution of antimony pentachloride (prepared by reacting the trichloride with excess of chlorine) (0.52 g, 1.75 mmol) in dichloromethane (10 cm³) was added dropwise with continuous stirring to a solution of 3.45 (0.50 g, 1.75 mmol) in dichloromethane (10 cm³) maintained at -78°C. After stirring for a further 2 h, the solvent was completely removed to give an oil [³¹PNMR, 43.8, 24.6]. Attempted crystallization from acetonitrile-hexane (1:10) afforded a small quantity of 3.46.

Yield: 0.1g (10%).

M.p. 146-148°C.

¹H NMR: 1.31 (s, 6H, CH_3), 1.42 (s, 6H, CH_3), 1.45 - 2.10 (m, 12H, CH_2), 3.85 - 4.10 (m, 4H, CHNH).

³¹PNMR: 23.3. [The slight difference in the chemical shift from the reaction mixture is probably due to the influence of solvent or other products].

Found: C, 31.08; H, 5 30; N, 4.90. C₁₄H₂₈Cl₄N₂OPSb requires C, 31.40; H, 5.20; N, 5.20%.

(b) Reaction of (OCH2CMe2CH2O)PCl (3.39) with SbCl5

From this reaction no clearcut product could be isolated. ³¹PNMR: [reaction mixture, 145.6, 16.7, (15%) 2.3 [15%, (OCH₂CMe₂CH₂O)P(O)H, 3.41].

(xiii) Reaction of 3.24 with SbCl₃: Isolation of the adduct [(OCH₂CMe₂CH₂O)P(O)Cl]₂. SbCl₃.(3.47)

Compound 3.24 (0.46 g, 2.02 mmol), was reacted with antimony trichloride (0.46 g, 2.02 mmol) in ether (10 + 10 cm³) for 24 h. Slow removal of solvent afforded 3.47 as a hygroscopic crystalline solid.

Yield: 0.49 g (65%).

M.p. 60°C.

¹H NMR: 0.95 (s, 3H, CH_3), 1.35 (s, 3H, CH_3), 3.90 - 4.36 (m, 4H, OCH_2).

³¹P NMR: -3.4.

Found: C, 19.70; H, 3.25. C₁₀H₂₀Cl₅O₆P₂Sb requires C, 19.57; H, 3.26%.

X-ray Crystallography

X-ray data were collected after a) mounting the crystal at the end of the glass fibre $(3.27 \cdot H_2O \text{ and } 3.34)$ or b) inserting the crystal inside a Lindemann capillary $(3.36 \cdot 1.5 H_2O \text{ and } 3.46)$. All data were collected using MoK_{\alpha} (\(\lambda = 0.7107\hat{\Alpha}\)) radiation at 293(2)K. The structures were solved and refined by using standard methods [SHELXTL for 3.27·H₂O; SHELX86 and SHELXL93 for 3.34 and 3.46; SHELX97 for 3.36·1.5H₂O].

For 3.27·H₂O all nonhydrogen atoms were refined anisotropically, some of the H atoms were located successfully. The positional and common isotropic thermal parameters of the H atoms attached to O(4) were refined and a riding model was used to place the rest of the hydrogen atoms in their idealized positions. Two orientations were found for C(7) [see.Fig 3.5 in Results and Discussion]. For 3.34 all non-hydrogen atoms were refined anisotropically. H atoms were fixed by geometry using a riding model and not refined.

For 3.36·1.5H₂0, the number of observed data was not sufficient to make all the non-hydrogen atoms anisotropic and hence only phosphorus, the four oxygens connected to phosphorus and the C atoms of the DBU ring were refined anisotropically. Two

oxygen atoms [O(5) and O(6)] were located in the Difference Fourier map, with one of them O(5) having half occupancy. Thus the asymmetric unit was assumed to contain 1.5·H₂0 per molecule. While the O(6) was found related to another O(6) from a different asymmetric unit [O(6) - O(6A) 2.388Å], O(5) was symmetrically H bonded to O(4) [O(5) - O(4) 2.971Å]. The quality and amount of the data as well as high thermal parameters for some of the *t*-butyl carbons [at C(15) and C(16)] and the water molecules resulted in a rather high R value for this structure.

For 3.46 all non-hydrogen atoms were refined anisotropically. H atoms were fixed by geometry using a riding model and not refined.

Further details on these compounds are given in Table 3.7.

contd....

Table 3.7 Crystal data for compounds 3.27·H₂O, 3.34, 3.36·1.5H₂O and 3.46

Compound no.	3.27·H ₂ 0	3.34	3.36-1.5H ₂ O	3.46
	$C_{14}H_{28}CIN_2O_4P$	C23H30O3.5P	$C_{38}H_{62}N_2O_{5.5}P$	C ₁₄ H ₂₈ CIN ₂ OP·SbCl ₃
	354.8	393.44	665.87	534.9
	Siemens SMART	Enraf Nonius	Enraf Nonius	Siemens-Stoe AED2
	CCD	MACH3	MACH3	
Crystal system	Monoclinic	Tetragonal	Orthorhombic	Triclinic
	C2/c	P4	Pcca (No. 54)	PĪ
a/ Å	20.7477(3)	15.996(2)	38.3710(11)	10.092(11)
b/ Å	9.6620(1)	15.996(2)	18.3548(10)	10.514(11)
	18.1810(3)	9.3227(7)	11.408(2)	12.415(14)
	0.06	0.06	0.06	70.53(8)
β/。	95.733(1)	0.06	0.06	71.81(8)
٨/ ٥	0.06	0.06	0.06	61.85(7)
V/ Å3	3626.41(8)	2385.4(5)	8034.9(16)	1076(2)
Z	8	4	8	2
Crystal size	$0.32 \times 0.28 \times 0.27$	$0.4 \times 0.3 \times 0.3$	$0.5 \times 0.4 \times 0.4$	$0.3 \times 0.2 \times 0.2$
D calc/ mgm ⁻³	1.300	1.096	1.101	1.651
μ/mm ⁻¹	0.317	0.135	0.110	1.857

Table 3.7 contd...

Indep. refl.	4347 (Rint = 0.0189)	1680 (Rint = 0.0569)	5148 (Rint = 0.000)	2820 (Rint = 0.000)
Data/ restraints	4347/ 6/ 220	1680/ 0/ 249	5148/ 0/ 279	2820/ 0/ 208
parameters GOOF on F ²	1.032	1.573	1.233	1.147
$R1[I > 2\sigma(I)]$	0.0483	8690.0	0.1159 ^b	0.0322
	(3472 refl)		(obsd data 1823)	
wR2	0.1173	0.1811	0.3112	0.0853
Largest diff.	0.31/ -0.33	0.751/ -0.233	0.846/ -0.4	0.966/ -1.289
peak and hole eA-3				
θ range	1.97-79.19	2.18-22.52	2.12-22.47	1.5-22.5
An absorption correcti	ion correction (SADABS	S(Sheldrick, 1996) was	s applied. Max. and M	absorption correction (SADABS(Sheldrick, 1996) was applied. Max. and Min. transmission 0.945 and 0.830.

^bTwo reflections omitted because they were found to be totally inconsistent with the data.

Also an extinction correction of 0.0002(2) was applied.

2.4 References

- L. J. Silverberg, J. L. Dillon and V. Purushotham, Tetrahedron Lett., 1996, 37,
 771.
- 2 R. J. P. Corriu, G. F. Lanneau and D. Leclercq, Tetrahedron, 1989, 45, 1959.
- R. J. P. Corriu, G. F. Lanneau and D. Leclercq, Tetrahedron, 1986, 42, 5591.
- 4 G. F. Lanneau, Phosphorus Sulfur, 1986, 27, 50.
- Y. Hayakawa in *Comprehensive Organic Synthesis*; B. M. Trost, I. Fleming, Eds; 6; E. Winterfeldt (Volume Ed.), Pergamon; Oxford, 1991, p 602.
- 6 M. Meisel, Phosphorus Sulfur Silicon, 1993, 76, 99.
- H. Teichmann, D. Wilbrandt, J. Schulz, *Phosphorus Sulfur Silicon*, 1990, 49/50,
 251.
- 8 H. Teicmann, J. Schulz, B. Constisella and D. Habisch, Z. Anorg. Allg. Chem., 1991, 606, 233.
- 9 L. D. Quin, Coord. Chem. Rev., 1994, 137, 525.
- 10 M. Meisel and C. Donath, *Phosphorus Sulfur Silicon*, 1992, **64**, 63.
- 11 I. Hermeez, Adv Heterocycl. Chem., 1987, 42, 83.
- 12 H. Quast and M. Heuschmann, J. Chem. Soc., Chem. Commun., 1979, 390.
- 13 F. A. Merckling, P. Rüedi, Tetrahedron Lett., 1996, 37, 2217.
- 14 R. Reed, R. Reau, F. Dahan and G. Bertrand, Angew. Chem. Int. Ed. Engl., 1993, 32, 399.
- M. Sanchez, M. R. Maziere, L. Lamande, R. Wolf Multible Bonds and Low Coordination in Phosphorus Chemistry, (Eds. M. Regitz, O.J.Scherer), Thieme, Stuttgart, 1990, p 129.
- 16 A. H. Cowley and R. A. Kemp, Chem. Rev., 1985, 85, 367.
- 17 N. Buford, Coord. Chem. Rev., 1992, 112, 1.
- 18 C. I. Branden and I. Lindguist, Acta. Chem. Scand, 1963, 17, 353.
- 19 R. S. Edmundson, *Tetrahedron*, 1964, **20**, 2781.
- D. G. Gorenstien, Prog. Nucl. Magn. Res. Spectrosc., 1983, 16, 1.
- S. Kumaraswamy, R. Senthamizh Selvi and K.C.Kumara Swamy, Synthesis, 1997,
 207.
- 22 R. R. Holmes, K. C. Kumara Swamy J. M. Holmes, R. O. Day, *Inorg. Chem.*, 1991, 30, 1052.

- 23 M. A. Said, M. Pülm, R. H. Irmer and K. C. Kumara Swamy, *Inorg. Chem.*, 1997, 36, 2044.
- 24 K. D. Bartle and R. S. Edmudson, *Tetrhedron*, 1965, 21, 1701.
- 25 a) A. Zwierzak, Can. J.Chem., 1967, 45, 2501. b) J. F. Brault and P. Savignal, J. Organomet. Chem., 1974, 66, 71.
- N. A. Mukmeneva, V. Kh. Kadyrova, V. M. Zharkava, D. A. Cherkasova, V. O. Voskresenskaya, Zh. Obshch. Khim., 1986, 56, 1267, Chem. Abstr., 1987, 107, 176111d.
- 27 S. Kumaraswamy, S. Raja and K. C. Kumara Swamy, Unpublished data.
- N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press Oxford, 1984, 546.
- 29 C. Muthiah and K. C. Kumara Swamy, Acta Crystallogr. Sect C., 1998, 0000.
- 30 M. A. Said, M. Pülm, R. H. Irmer and K. C. Kumara Swamy, J. Am. Chem. Soc., 1996, 118, 9841.
- 31 O. J. Bovin, Acta Crystallogr., Sect B, 1976, 32, 1771.
- 32 P. A. Odorisio, S. D. Pastor and J. D. Spivack, Phosphorus Sulfur, 1984, 19, 285.
- 33 Y. Ogato, A. Kawasaki and T. Goto, Tetrahedron, 1969, 25, 2589.

APPENDIX

Selected atomic coordinates for compounds $1.99.1/2C_4H_8Cl_2$, 1.100, 1.101, 1.102, 1.103, 2.38, $2.47.1/2C_6H_6$, 2.48, 2.59, 2.61, $3.27.H_2O$, 3.34, $3.36.1.5H_2O$ and 3.46. Except for 1.99, 1.100, 2.47 and 3.46 the coordinates are multiplied by 10^4 and isotropic thermal parameters are multiplied by 10^3 .

Co	mpound 1	.99.1/20	C ₄ H ₈ Cl ₂		Com	pound 1. 1	00		
	×	У	z	Uiso		×	У	z	U_iso
P2 P4 P6 P8 CL21 CL22 CL41 CL42 CL61 CL62 CL01 O1 O2 N1 N3 N5 N7 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C211 C41 C91 C111 C114 C15 C16 C17 C18 C19 C20 C21	1.18479 1.37354 1.24306 1.03999 1.14388 1.39381 1.547664 1.36238 .51043 .99854 1.07346 1.313072 .885568 .82548 .81884 .84208 .87500 .90218 .87895 .70158 .64895 .71420 .83288 .867590 .83288 .78799 .82229 .99239 .78034 .81714 1.00206 .879073 .66887	.47507 .62997 .61028 .46327 .57404 .76700 .59514 .73817 .54665 .24863 .53384 .33271 .46615 .51678 .50587 .61195 .72420 .79807 .75452 .64028 .56325 .43851 .28758 .15266 .20293 .29491 .34174 .77145 .83783 .29491 .2	.63626 .76728 .88427 .752642 .56057 .72743 .80839 .963045 .75296 .74459 .67181 .69516 .84105 .83573 .822669 .88898 .95405 .95251 .88538 .88498 .74769 .67679 .67679 .67970 .74291 .80988 .81076 .74789 .74789 .73757 .66860 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767 .75718 .63767	Uiso .04529 .05998 .03952 .03320 .07814 .10426 .12464 .10905 .06770 .07098 .13319 .03125 .05137 .04881 .03579 .02722 .03937 .04468 .03899 .03600 .03797 .04698 .03619 .06320 .07738 .04107 .05376 .08964 .09007 .12586 .06629 .060059 .359991 .26231	P2 P4 P6 P8 CL21 CL42 CL41 CL42 CL61 CL62 N1 N3 N5 N7 N11 N31 C41 C51 C61 C2 C3 C4 C55 C6	x .26496 .32880 .06750 .01192 .38035 .26343 .44836 .40746 .04737 .13383 .33897 .20287 .018220057011370198062082110361 .09923 .05788 .1708812452509999	y .44074 .36563 .34138 .37299 .45200 .55161 .43192 .25964 .22916 .39533 .4913 .38622 .36897 .35083 .29331 .42534 .4114 .33335 .28065 .23592 .15537 .23325 .50758 .50758 .57126	.88565 .70767 .59292 .80754	U_iso .03328 .03833 .03837 .03315 .05400 .06989 .07863 .08393 .07451 .05977 .04176 .04836 .04593 .05820 .05270 .04126 .10001 .09905 .20236 .06487 .08900 .0845 .05134 .07350 .08604
C22 C23 C24 C25	.80605 .84986 .44546 .53823 .46134	.25909 .10238 .06138	1.10018 1.05651 .76424 .81612 .66978	.45244 .12780 .09713 .11777					
C026	.47917 .54828	.48997 .38995	.53281 .56574	.14061 .12092					

Compound 1.101

	×	Y	Z	Ŭ(eq)
P(2)	-81(1)	5723(1)	1964(1)	37(1)
P(4)	2490(1)	6316(1)	1610(1)	34(1)
P(6)	2086(1)	5268(1)	328(1)	37(1)
P(8)	203(1)	4247(1)	1042(1)	34(1)
C1(21)	-1384(2)	6410(1)	1386(2)	103(1)
C1 (22)	-984(3)	5694(1)	2953(1)	110(1)
C1(61)	1329(3)	6113(1)	-341(1)	101(1)
C1 (62)	3523(2)	4866(2)	-342(1)	89(1)
N(3)	1171(4)	6223 (3)	2088(2)	39(1)
N(5)	2789(4)	5631(3)	1013(2)	44(1)
N(7)	1058(6)	4597(4)	392(3)	71(2)
N(1)	-122(5)	4880(3)	1663(3)	52(1)
N(11)	2532(5)	7182(3)	1187(3)	49(1)
N(31)	3747(4)	6342(3)	2190(2)	47(1)
N(12)	-1165(5)	3873(3)	714(3)	51(1)
N(32)	928 (5)	3482(3)	1426(3)	54(1)
C(61)	3834(6)	7351(4)	854 (4)	60(2)
C(51)	4942 (7)	7325(5)	1422(4)	71(2)
C(41)	5021(6)	6546(5)	1844 (4)	64(2)
C(1)	1680(7)	7855(3)	1409(4)	61(2)
C(2)	1182(12)	8250(5)	705 (6)	112(4)
C(3)	2307(11)	8438(5)	1925(6)	102(3)
C(4)	3821(6)	5815(4)	2845(3)	57(2)
C(5)	4710(8)	5106(5)	2737(5)	88(3)
C(6)	4201(9)	6299(5)	3511(4)	83(2)
C(42)	427 (15)	2710(5)	1380(9)	178(8)
C(52)	-556(12)	2500(4)	917(7)	126 (4)
C(62)	-1267(11)	3055(4)	481(6)	113(4)
2(10)	2140(6)	3620(4)	1847(4)	60(2)
2(11)	1967(10)	3488 (7)	2655 (5)	102(3)
0(12)	3275 (9)	3156(7)	1536(7)	117(4)
2(7)	-2220(6)	4414(4)	481(4)	69(2)
C(8)	-2478 (9)	4419(6)	-326(5)	93 (3)
2(9)	-3497(10)	4206 (12)	895(6)	187(8)

Compound 1.102

	-			
	×	У	z	U(eq)
P(6)	3266(1)	1574(1)	5804(1)	45 (1)
P(4)	1722(1)	3035(1)	4942(1)	53(1)
P(2)	2545(1)	1354(1)	3810(1)	56(1)
Cl (41)	214(1)	3101(2)	5443(1)	90(1)
C1(21)	1798(2)	-8(2)	3243(2)	107(1)
C1(22)	3471(2)	1768(2)	2637(1)	102(1)
C1 (42)	1938(2)	4683(1)	4608(1)	93 (1)
N(5)	2512(3)	2697(3)	5796(3)	52(1)
N(3)	1683(3)	2325 (4)	3933(3)	72(1)
N(1)	3255 (3)	973(3)	4705(3)	53(1)
N(11)	2857(3)	706(4)	6664 (3)	61(1)
N(31)	4493(3)	1899(3)	6115(3)	52(1)
C(61)	3574 (5)	152(6)	7385 (5)	88(2)
C(51)	4461(6)	834 (7)	7691(5)	99(2)
C(41)	5074 (5)	1403(7)	6947 (5)	96 (2)
C(1)	1709(4)	405(5)	6676(4)	66(1)
C(2)	1524 (5)	-871(6)	6598 (5)	93(2)
C(3)	1166(6)	933(7)	7586(6)	111(2)
C(4)	5105(4)	2603(5)	5413(4)	64(1)
C(5)	5425(8)	3718(6)	5859(7)	131(3)
C(6)	6043(7)	2007(7)	4981 (7)	140(4)

Compound 1.103

	×	y	z	U(eq)
P(1)	288(1)	2485(1)	1589(1)	46(1)
P(2)	524 (1)	1039(1)	1082(1)	35(1)
C1(1)	1567(1)	2155(1)	2081(1)	81(1)
C1(2)	-1151(1)	2522(1)	2040(1)	87(1)
C1(3)	-517(1)	513(1)	592(1)	48(1)
0(1)	545 (3)	3222(2)	1392(2)	87(1)
0(2)	582(2)	525(1)	1561(1)	40(1)
0(3)	1779(2)	1104(1)	831(1)	35(1)
N(1)	55 (3)	1823(2)	1212(1)	44(1)
C(1)	486 (3)	-280(2)	1573(1)	39(1)
C(2)	-509(4)	-595(2)	1816(1)	43(1)
C(3)	-544(4)	-1378(2)	1792(2)	50(1)
C(4)	320 (4)	-1818(2)	1563(1)	47(1)
C(5)	1319(4)	-1464(2)	1364(1)	47(1)
C(6)	1431(3)	-682(2)	1367(1)	40(1)
C(7)	-2440 (4)	-134(2)	2108(2)	51(1)
C(8)	- Z15C (4)	388(3)	1762(2)	68(1)
C(9)	-823(5)	324(3)	2524(2)	68(1)
C(10)	-2355(5)	-652(3)	2366(2)	78 (2)
C(11)	2350(3)	608(2)	477(1)	33(1)
C(12)	2594 (3)	886(2)	-5(1)	35(1)
C(13)	3184 (3)	373(2)	-320(1)	40(1)
C(14)	3518 (3)	-346(2)	-171(2)	41(1)
C(15)	3293 (3)	-568(2)	321(1)	41(1)
C(16)	2711.3	-92(2)	657(1)	35 (1)
C(17)	2312 31	1688(2)	-184(1)	43(1)
C(18)	2787(5)	1839(3)	-717(2)	72 (2)
C(19)	2872 51	2271(2)	171(2)	67(1)
C(20)	953 (4)	1822(3)	-211(2)	62(1)
C(21)	2583 (3)	-304(2)	1209(1)	42(1)
C(22)	205 (5)	-2670(2)	1541(2)	66(1)
C(23)	4154 (4)	-862(2)	-542(2)	57(1)

Compound 2.38

	×	y	z	∇(eq)
P(1)	2470(1)	6846(1)	1825(1)	48(1)
P(2)	1675(1)	6938(1)	2917(1)	50(1)
0(1)	3133(1)	5534(1)	1791(1)	50(1)
0(2)	1735(1)	5574(1)	3293(1)	56(1)
N(1)	1276(1)	6466(2)	2082(1)	51(1)
N(2)	2917(1)	7128(2)	2683(1)	51(1)
C(1)	141(2)	6520(2)	1640(1)	60(1)
C(2)	-619(2)	5827(4)	2001(2)	109(1)
C(3)	175(2)	5934(3)	946(1)	95(1)
C(4)	-237(2)	7836(3)	1518(2)	94(1)
C(5)	3851(2)	7927(2)	3008(1)	63(1)
C(6)	3426 (11)	9277 (9)	2877(8)	123(4)
C(7)	4803(8)	7771(13)	2669(6)	110(4)
C(8)	4148(10)	7697(11)	3818(6)	87(3)
C(6')	3881 (21)	9120(22)	2754 (15)	158(12
C(7')	4877 (13)	7136 (26)	2891 (15)	156(10
C(8')	3972 (22)	7896 (26)	3687(11)	146(11
C(11)	3041(2)	4909(2)	1165(1)	48(1)
C(12)	2515(2)	3780(2)	1115(1)	58(1)
C(13)	2451(2)	3125(2)	504(2)	73(1)
C(14)	2897 (2)	3573(3)	-21(1)	79(1)
C(15)	3430(2)	4676(2)	46(1)	68(1)
C(16)	3525(2)	5374(2)	644(1)	54 (1)
	2066 (2)	3272(2)	1706(2)	79(1)
C(17) C(18)	4164(2)	6557(2)	726(1)	72(1)
	2143(2)	5434(2)	4003(1)	52 (1)
C(21)	3113(2)	4767(2)	4202(1)	61(1)
C(22)	3543(2)	4612(2)	4903(1)	77 (1)
C(23)	3025(3)	5083 (3)	5388(1)	85(1)
C(24)	2049(3)	5700(3)	5183(1)	83(1)
C(25)	1572(2)	5881(2)	4484(1)	66(1)
C(26)	3668(2)	4206(3)	3670(2)	85 (1)
C(27) C(28)	469(3)	6500(3)	4266(2)	101(1)

Compound 2.47.1/2C₆H₆

	×	y	2	Uiso						
	U ₁₁	UZZ	2 133	U ₁₂						
ATOM PZ	.46741	.78889			ATO	M C91	.9416	8 .35584	.79600	.04760
UIJ PZ ATOM P4	.03205	.03897		00302	nil		.0406	7 .04169	.06044	.00414
UIJ P4		.03945		00435	LIU	C01	1.0833			01535
ATOM D1	.53147	.86706	.69452			K C02	.9460			.11448
UIJ O1	.03359	-03775		00462	UIJ	C02	.1117	.14473	.08695	07635
UIJ OZ	.73090	.54001		.00158	LIU	C03	1.1370			.09634
ATON N1	.47496	.66763	-76931	.03794		H H3	.05808 .81206	1.10973		.03882
UIJ N1	.02754	.03783		00335	ATO	M H5	1.00623	.81612	.60875	.04094
UIJ N3	.61131	.72080		00542		H K10	1.16617			.04599
ATON C1	.66487	.90318	-66786	.03775		M H12	-68416			.03583
UIJ C1	.03745	1.01052		00779		4 H72	.78349			.04120
UIJ CZ	.04646	.03707		00494	1000	H HO2	.91142			.18570
ATON C3	.80470	1.03787	.65392	.04827		H HO3	1.22089		1.00492	.17805
UIJ C3	.93043	.96523		01349		4 H161	.43225	.47146	.78029	.09122
UIJ C4	.04534	.04501		01348		4 H162			.70625	.06709
ATON C5	.92067	.86419	.62656	.04374		H171			.66781 .81876	.11050
UIJ C5	.03579	.04429		00427	ATO	4 H172	.15141	.62023	.78909	.14072
UIJ C6	.78896	.83137		00600		4 H173			.87679	.15875
ATON CT	.77632	.72751	-61177	.03931		H182			.60102	.23680
UIJ C7	.03646	.03960		00596	ATO	H183	.30590	.77917	.65945	.13447
ATOM CB	.86532	.54633		.03643		H191	.86918		.86496	.15310
ATON C9	.96953	.45440	.71461	.04028		H192			.95956	.10672
UIJ C9	.03141	.03930		00199		H201	.56190		1.04024	.18812
MIJ C10	1.09850	.45465	.64313	.04449		H202	.61007		1.07791	.11165
ATON C11	1.12690	.53667	-56487	.04455		H203	.46809 .55538		.92906	.24304
UIJ C11	.03456	.04882	.05027	0.0000000000000000000000000000000000000		H212	.68253		.97269	.08300
MIJ C12	1.02206	.62447	.55867	.04389		H213	.70923		.85830	.11546
ATOM C13	.88959	.63213	.62788			H221	1.16193	.30206	.80065 .85201	.08361
UIJ C13	.03409	.03772	.04095			H223	1.11024	.24047	.72954	.09581
ATOH C14	.35966	.63037		-04640		H231	-80309	.42206	.91482	.09470
ATOM C15	.66106	.74509	.06016 -	.05384		H232	.88553 .95708	.42996	.95107	.07622
UIJ C15	.05758	.05480	.04915 -			HZ41	.85658	.26809	.71326	.12239
ATON C16	.41141	.51688		.06468	ATOM	H242	.81535	.23889	.82568	.10055
MIJ C16	.05920	.05547	.07936 ·	.13150		H243	-72971	.34956	.78777	.09063
UIJ C17	.04268	.17886	.17296 -			H251 H252		1.08080	.83382 .78853	.09194
ATOM C18	.33724	.70280		. 12578		H253	.39241	1.00806	.80286	.09294
UIJ C18	.15081	.70030	.15953 - .91196	.15605		H261		1.02719	.61866	.08777
UIJ C19	.08605	.20188	.18021	.04616		H262 H263		1.14789	.61311	.13174
ATOM C20	.56972	.70160		.12604		H271		1.22691	.59271	.10734
MIJ CZO	.19971	.86514	.04196 - .92012	.09885		H272		1.26082	.66256	.08621
UIJ C21	.13990		.07808 -			H273	1.13761	1.21870	.71372 .57469	.08162
ATOM CZ2	1.07795	.27120		-07104		H412	1.07272			.12593
MIJ CZZ ATOM CZZ		.05289	.10306	.01090		H413	1.10993	.96919	.68786	.18747
UIJ C23		.38411		.07335		H111	1.29427	.45862		.13826
ATOM C24	.82658	.30313	.77785	.06732		H113	1.33731			.13681
UIJ C24		.04680	.09502 -							
UIJ C25	.43590 1	.06012		.07088						
ATOM C26	.44807 1	.09367	.60417	.07775						
UIJ C26	.07492	.05303		.01134						
ATOH C27	.57063 1 .07999	.04168		.08197 .00083						
ATON C41	1.07456	.99867		.06768						
UIJ C41	.05096	.06900	.08308 -	.02733						
ATOM C111		.52780		.06047						
ATOM CZ11	.53217 1	.07439	.06329 -	.05111						
UIJ C211				.00033						

Compound 2.48

	×	У	z	ປ(eg)
P(2A)	1750(2)	6686(1)	6857(2)	50(1)
P(4A)	336(2)	6287(1)	4998(2)	56(1)
(2B)	5751(2)	10243(1)	9260(2)	53(1)
(4B)	5572(2)	10658(1)	7414(2)	56(1)
(1A)	2844(5)	7184(3)	6621(4)	48(2)
(2A)	903(5)	6536(3)	4086(4)	59 (2)
(1B)	4702(5)	10728(3)	9564(4)	46(2)
(2B)	4443(6)	11255(3)	6934(4)	58(2)
(1A)	484(6)	6987(4)	5834(6)	51(2)
(AE)	1619(6)	5978(4)	6027(6) 8712(5)	51(2) 50(2)
(1B)	6368(7)	10889(4)	7970(5)	49(2)
(3B)	4938(7) 4496(7)	6653(4)	6205(6)	40(2)
(1)	4073 (7)	6917(4)	6959(6)	39(2)
(3)	4780(8)	6950(5)	8046(6)	47(2)
(4)	5970(8)	6694(5)	8407(6)	52(2)
(5)	6503(7)	6399(5)	7712(7)	49(2)
(6)	7726(9)	6104(6)	8086(9)	70(3)
(7)	8239(10)	5826(6)	7395(11)	84 (4)
(8)	7537(10)	5828(6)	6314(9)	71(3)
(9)	6342(9)	6086(5)	5912(8)	58 (3)
(10)	5785(7)	6377(5)	6592(6)	41(2)
(11)	2857(8)	7197(5)	4485(6)	44(2)
(12)	1581(9)	7147(5)	4036(7)	53(2)
(13)	850(10)	7696(6)	3371(8)	66(3)
(14)	1387(10)	8279(6)	3191(7)	68 (3)
(15)	2703(10)	8381(5)	3652(7)	57 (3)
(16)	3303(13)	8991(6)	3492(9)	77 (3)
(17)	4564(14)	9084(6)	3956(10) 4623(9)	80(4) 77(3)
(18)	5312(11)	8549(6) 7950(6)	4763(8)	63(3)
(19)	4728(10)	7841(5)	4325(6)	46(2)
(20)	3442(9) 3668(8)	6581(5)	5044(6)	48(2)
(21)	-306(9)	7617(6)	5788(9)	65(3)
(22) (23)	468(10)	8286(5)	5821(9)	81(4)
(24)	-1454(9)	7576(6)	4777(9)	90(4)
(25)	-710(11)	7610(7)	6753(10)	98 (4)
(26)	1886(9)	5213(5)	6326(8)	53(2)
(27)	3149(9)	5179(6)	7223(8)	73(3)
(28)	1958(11)	4839(6)	5375(9)	83 (3)
(29)	883(11)	4913(6)	6683(11)	102(5)
(1B)	2545(8)	10448(5)	8719(6)	43(2)
(2B)	3639(8)	10369(5)	9567(6)	42(2)
(3B)	3733(9)	9927(5)	10419(7)	56(3)
(4B)	2747(9)	9536(6)	10422(8)	66(3)
(5B)	1584(10)	9570(6)	9544(8)	58 (3)
(6B)	568(10)	9138(7)	9520(9)	79 (4) 90 (4)
(7B)	-547(12)	9151(7)	8669(10) 7830(9)	84 (4)
(8B)	-702(10)	9625(7)	7853(8)	68 (3)
(9B)	287(8)	10052(6)	8692(7)	49(2)
(10B)	1448(8)	11610(5)	7929(6)	47(2)
(11B)	3107(8)	11753(5)	7505(7)	51(2)
(12B)	4021(8)		7551(8)	64(3)
(13B)	4524(10)	12437(6)	8039(9)	78 (3)
(14B)	4150(11)	12969(6) 12865(6)	8517(7)	61(3)
(15B)	3273(10) 2870(12)	13419(6)	9021(9)	76(3)
(16B)	1947(12)	13302(7)	9404(9)	81(3)
(17B) (18B)	1393(10)	12639(7)	9357(8)	72(3)
(19B)	1780(9)	12087(6)	8888 (7)	60(3)
(20B)	2703(8)	12169(5)	8456(7)	48(2)
(21B)	2441(8)	10910(5)	7752(7)	48(2)
(22B)	7476(9)	11341(6)	9228(7)	63(3)
(23B)	8581(10)	10895(7)	9940(10)	97(4)
(24B)	7848(10)	11685(7)	8372(8)	95(4) 99(4)
(25B)	7128(11)	11899(7)	9897(9)	59(4)
(26B)	4609(9)	9282(5)	7507(8) 7521(9)	81(3)
(27B)	5777(9)	8895(6)	8198(9)	77(3)
(28B)	3994(10)	8893(6)	0120(2)	81(3)

Compound 2.59

	×	Y	1	Ŭ (e g)
P(1)	1820(1)	7204 (1)	1167 (1)	43 (1)
P(2)	2583(1)	8614(1)	2101(1)	53(1)
0(1)	3017(1)	8293 (2)	2716(1)	78(1)
N(1)	1741(1)	5353(2)	1232(1)	49(1)
N(2)	2765(1)	7722(2)	1562(1)	51(1)
N(3)	1713(1)	7966 (2)	1804(1)	56 (1)
C(1)	1380(1)	4349 (2)	734(1)	45(1)
C(2)	674 (1)	3595(3)	778(1)	65 (1)
C(3)	303(2)	2543 (3)	260(2)	89(1)
C(4)	854 (2)	1362(3)	183(1)	77 (1)
C(5)	1557 (2)	2108(3)	137(1)	75(1)
C(6)	1923(1)	3149(3)	657(1)	70(1)
C(7)	3400(1)	7935(3)	1325(1)	54 (1)
C(8)	3454 (2)	6491(4)	983 (2)	90(1)
C(9)	4142(2)	8084 (5)	1844(2)	87(1)
C(10)	3277 (2)	9335(5)	941(2)	104(1)
C(8A)	3088 (15)	7803 (30)	634 (7)	77 (7)
C (9A)	3958 (16)	6755 (28)	1593 (12)	98 (10)
C(10A)	3728 (17)	9606 (21)	1450(13)	92 (9)
C(11)	1016(1)	8273 (3)	1951(1)	54(1)
C(12)	1262(4)	8448 (9)	2643 (2)	56(1)
C(13)	689 (4)	9754 (8)	1677(3)	64(2)
C(14)	475(3)	6921(8)	1777(4)	60(2)
C(12A)	990(6)	9796 (12)	2208(6)	70(3)
C(13A)	289 (5)	8196 (14)	1345(4)	58(2)
C(14A)	962 (7)	6953 (12)	2325(6)	69(3)
C(12B)	1188 (13)	7805 (27)	2576 (7)	69 (7)
C(13B)	346 (11)	7392 (22)	1537(9)	62 (6)
C(14B)	861 (12)	10021(15)	1890(10)	53 (5)
C(12C)	667 (12)	6666 (15)	2033 (10)	52 (5)
C(13C)	1224 (12)	9063 (23)	2546 (7)	65 (7)
C(14C)	442 (11)	9176 (24)	1477 (8)	69 (6)

Compound 2.61

	×	У	z	U (eq
Se(1)	3321(1)	1300(1)	1821(1)	53(1
Se (2)	264(1)	232(1)	2586(1)	54 (1
P(1)	3138(1)	155(1)	2343(1)	34 (1
P(2)	1585(1)	-369(1)	2750(1)	33(1
0(1)	1439(2)	-1265(2)	3100(2)	37(1
0(2)	4131(2)	-306(2)	2407(3)	38 (1
N(1)	2631(3)	33(3)	3293(3)	32(1
N(2)	2186(3)	-399(3)	1853(3)	36(1
C(1)	1985 (4)	-1706(3)	3846(3)	30(1)
C(2)	1502(4)	-1958(3)	4562(3)	36(1)
C(3)	2109(4)	-2286(3)	5319(4)	40(1)
C(4)	3101(4)	-2398(3)	5363(4)	40(1)
C(5)	3512(4)	-2219(3)	4591(3)	36(1
C(6)	2954 (4)	-1895(3)	3810(3)	33(1)
C(7)	3325(3)	-1888(3)	2894(3)	32 (1)
C(8)	4389(4)	-1712(3)	2896(3)	32(1)
C(9)	5045(4)	-2363(3)	3068(4)	41(1)
C(10)	6021(4)	-2270(4)	3019(4)	44(1)
C(11)	6343(4)	-1525(4)	2773(4)	43(1)
C(12)	5735(4)	-856(3)	2555 (3)	33(1
C(13)	4749(3)	-982(3)	2644 (3)	30(1
C(14)	387(4)	-1908(4)	4563(4)	41(1)
C(15)	104(5)	-1055(5)	4832(6)	76 (2)
C(16)	-203(4)	-2110(5)	3606(5)	66 (2)
C(17)	76 (5)	-2531(6)	5221(6)	85 (3)
C(18)	3713(5)	-2750(4)	6206 (4)	57(2)
C(19)	6716(5)	-2980(4)	3192(6)	74 (2)
C(20)	6124(4)	-65(3)	2193(4)	40(1
C(21)	5606(5)	74 (4)	1201(4)	53 (2)
C(22)	5997(4)	657(4)	2786 (4)	53 (2)
C(23)	7222(4)	-146(4)	2143 (5)	60 (2)
C(24)	2849(4)	508(3)	4184 (4)	42(1)
C(25)	2378 (5)	63 (4)	4900 (4)	56(2)
C(26)	2429 (6)	1377(4)	4069 (5)	65 (2)
C(27)	3934 (5)	544 (6)	4446 (5)	73 (2)
C(28)	1870(4)	-616(4)	855 (4)	50(2)
C(29)	1154(5)	-1304(5)	821 (4)	68 (2)
C(30)	1395(6)	113(5)	328 (5)	81 (3)
C(31)	2779 (5)	-B77(6)	488 (4)	73 (2)

Compound 3.27.H₂O

	X -1	Y		U(eq)
C1 (1)	3751.2(3)	9660.5(6)	4902.7(4)	69.2(2)
0(4)	5022(1)	9033(3)	4110(1)	105(1)
P(1)	3631.2(2)	6162.0(6)	2897.2(3)	51.4(2
0(1)	3421(1)	4820(2)	2594(1)	83(1)
0(2)	4066(1)	6953(1)	2381(1)	51(1)
0(3)	3047(1)	7130(2)	3008(1)	69(1)
N(1)	3652(1)	4219(2)	4511(1)	54 (1)
N(2)	3519(1)	6480(2)	4845(1)	60(1)
C(1)	4116(1)	6105(2)	3797(1)	44 (1)
C(2)	4804(1)	5501(3)	3775(1)	58(1)
C(3)	4862(1)	4017(3)	3524(1)	72(1)
C(4)	4576(1)	2954(3)	4011(1)	73(1)
C(5)	3853(1)	3107(2)	4018(1)	64(1)
C(6)	3311(2)	3740(3)	5138(2)	81(1)
C(7)	3271(2)	4775 (3)	5703(2)	58(1)
C (7A)	2929(3)	4756 (4)	5453(5)	69(2)
C(8)	3141(2)	6161(3)	5460(2)	78(1)
C(9)	3745(1)	5550(2)	4406(1)	45(1)
C(10)	4113(1)	8463(2)	2397(1)	52(1)
C(11)	3451(1)	9142(2)	2349(1)	51(1)
C(12)	3099(1)	8635(3)	2997(1)	67(1)
C(13)	3556(2)	10707(3)	2420(2)	99(1)
C(14)	3053(1)	8820(3)	1619(1)	59(1)

Compound 3.34

Atem	x	У	Z	Ureq)
P	4919(1)	9083(1)	2717(2)	58-1)
0.37	5000	10000	3364(8)	59,2)
0,41	4670(41	9045(4)	1235(6)	\$1(2)
0,2)	5796(3)	8695(3)	3041(6)	57(1)
O(1)	4277(3)	8645(3)	3739(6)	58:1)
Cili	3977(4)	8894(4)	5088(8)	51(2)
C(2)	3127(5)	9051(5)	5237(9)	56:21
Ciri	2882(5)	9319(6)	6587(10)	72(2)
C(4)	3409(5)	9383(6)	7746(9)	69(2)
C(5)	4233(5)	9198(4)	7533(9)	55(2)
C(6)	4532(5)	8968(4)	6217(8)	53(2)
C(7)	3067(7)	9674(9)	9178(11)	107(4)
C(S)	2484(5)	8969(5)	4000(9)	67(2)
C(9)	1610(6)	9010(9)	4558(13)	112(4)
C(10:	2571(7)	8128(7)	3226(16)	119(4)
C(11)	2627(6)	9703(7)	3003(11)	87(3)
C(12)	5489(4)	8842(4)	6031(8)	52(2)
C(13)	5742(4)	8016(5)	5341(8)	55(2)
C(14)	5938(4)	7963(4)	3888(8)	54(2)
C(15)	6273(4)	7254(5)	3259(8)	57(2)
C(16)	6368(5)	6578(5)	4171(9)	62(2)
C(17)	6138(5)	6592(5)	5584(10)	64(2)
C(18)	5835(5)	7308(4)	6152(9)	56(2)
C(19)	6283(7)	5823(5)	6521(14)	97(3)
(20)	6549(5)	7206(5)	1684(10)	70(2)
2(21)	5780(7)	7233(7)	700(12)	99(4)
(22)	7155(7)	790-1(7)	1379(14)	101(3)
(23)	7011(7)	6385(6)	1358(12)	96(3)

Compound 3.36.1.5H₂O

	x	У	z	U(eq)	
P(1)	5904(1)	3233(2)	818(2)	51(1)	
0(1)	6313(2)	3333(4)	1162(5)	50(2)	
0(3)	5867(2)	3386(4)	-446(6)	63(2)	
0(2)	5825(2)	2373(3)	1063(5)	53(2)	
0(4)	5703(2)	3630(4)	1706(6)	63 (2)	
N(1)	5734(3)	3451(6)	-4586(9)	74 (3)	
N(2)	5732(2)	3795(5)	-2648(8)	69(3)	
C(18)	5534(3)	4105(8)	-4969(12)	86 (4)	
C(19)	5350(4)	4418(8)	-3980(13)	112(5)	
C(20)	5559(3)	4480(6)	-2872(11)	79 (4)	
C(21)	5808(3)	3314(7)	-3489(9)	69(4)	
C(22)	5974(4)	2602(7)	-3142(10)	84 (4)	
C(23)	6334(4)	2586 (9)	-3494(12)	100(5)	
C(24)	6392(4)	2319(9)	-4751(12)	103(5)	
C(25)	6221(4)	2847(11)	-5654(13)	114(7)	
C(26)	5845(4)	2909(9)	-5549(11)	93 (5)	
0(5)	5000	4092(7)	2500	109(4)	
2(1)	6588(2)	3243 (5)	380(9)	44(2)	
2(2)	6760(3)	3842(5)	-69(9)	48 (3)	
(3)	7020(3)	3675(5)	-885(9)	56 (3)	
(4)	7124(3)	2985 (5)	-1210(9)	51(2)	
(5)	6953(3)	2413(6)	-700(9)	54(3)	
(6)	6687(2)	2531(5)	114(9)	49(2)	
(7)	6512(3)	1889(5)	702(9)	48(2)	
(8)	6207(2)	1576(5)	38(8)	43(2)	
2(9)	6257(3)	1029(5)	-789(8)	52(2)	
2(10)	5985 (3)	723 (5)	-1408(9)	52(3)	
2(11)	5652(3)	982 (5)	-1156(9)	57(3)	
(12)	5584(2)	1528(5)	-347(8)	47(2)	
(13)	5867(2)	1835(5)	205(9)	49(2)	
(14)	6686(3)	4618(6)	295(9)	57(3) 71(4)	
(15) (16)	7415(3) 6040(3)	2871(7) 108(7)	-2112(11) -2269(11)	77 (4)	
(17)	5209(3)	1754(6)	-125(10)	60(3)	
(14A)	6669(4)	4698(9)	1626(13)	108(5)	
(14A)	6955 (3)	5160(7)	-137(12)	90 (4)	
(14B)	6336-(3)	4892(8)	-198(12)	99(4)	
(14C)	4956(4)	1214(9)	-621(14)	121(5)	
(17B)	5130(5)	2450(9)	-722(14)	122(6)	
(15A)	7759 (5)	2941(10)	-1486(16)	139(6)	
(16A)	5800(5)	175(12)	-3352(18)	154 (8)	
(17C)	5121(5)	1847(10)	1174 (15)	132(6)	
(17C)	7410(5)	3385(11)	-3139(18)	146(8)	
(15C)	7390(5)	2152(11)	-2817(18)	152(8)	
(16B)	5966 (7)	-614(14)	-1740(2)	195(10)	
(16C)	6380(6)	161(13)	-2900(2)	197(10)	

Compound 3.46

	x	y	z	$U_{ m eq}$
Sb	0.3167 (1)	0.4322 (1)	0.6419 (1)	0.043 (1)
P	-0.0563(1)	0.7097 (1)	0.7213 (1)	0.031 (1)
Cl(1)	0.5719 (1)	0.2780(2)	0.5488 (1)	0.072(1)
Cl(2)	0.2299 (1)	0.2454 (1)	0.6895(1)	0.059(1)
Cl(3)	0.3982(2)	0.3664 (2)	0.8180(2)	0.083 (1)
Cl(4)	0.0011(2)	0.7939 (1)	0.5488 (1)	0.055(1)
O	0.0706 (3)	0.5612(3)	0.7493 (2)	0.042(1)
N(1)	-0.0852(4)	0.8345 (3)	0.7853 (3)	0.033(1)
C(1)	-0.1322(5)	0.7976 (5)	0.9151(3)	0.044(1)
C(2)	-0.2438(6)	0.9377 (6)	0.95S0 (4)	0.059(1)
C(3)	-0.1804(7)	1.0544 (6)	0.9148 (5)	0.067(2)
C(4)	-0.1425(7)	1.0907 (5)	0.7836 (5)	0.064(1)
C(5)	-0.0326(5)	0.9555 (5)	0.7316 (4)	0.045 (1)
C(6)	0.0023 (7)	0.7056 (6)	0.9782 (4)	0.071(2)
C(7)	0.1342 (6)	0.9072 (7)	0.7375 (6)	0.078(2)
N(2)	-0.2147(3)	0.6938(3)	0.7438 (3)	0.031(1)
C(8)	-0.3621(4)	0.8288 (4)	0.7351(4)	0.037 (1)
C(9)	-0.4870(5)	0.7994 (6)	0.8344 (4)	0.054 (1)
C(10)	-0.4963(6)	0.6587 (6)	0.8378 (5)	0.064(1)
C(11)	-0.3425(6)	0.5275 (6)	0.8520 (4)	0.058 (1)
C(12)	-0.2127(5)	0.5475 (4)	0.7545 (4)	0.039(1)
C(13)	-0.4082(6)	0.8833 (5)	0.6174 (4)	0.053 (1)
C(14)	-0.2145(6)	0.5253 (5)	0.6398 (5)	0.060(1)