A WYSIWYG EDITOR FOR SQL ENABLED
HYPERTEXT MARKUP LANGUAGE (HTML)

A major project report submitted
in partial fulfillment of the requirements
for the award of the degree of

Master of Technology
in
Artificial Intelligence

BY

Sushish Saha
&
N. Raja Subrahmanyam

Department of Computer/Information sciences
School of Mathematics & Computer/Information Sciences
University of Hyderabad
Hyderabad - 500 046, INDIA.

January 1997,

CERTIFICATE

~ This is to certify that the thesis entiled A WYSIWYG editor for -
SQL enabled Hypertext Markup Language (HTML)
being submitted by Sushish Saha & N.Raja Subrahmanyam in partial fulfillment
of the requirements for the award of Master of Technology in Artificial
Intelligence at University of Hyderabad is a record of the bonafide work

carried out by them under my guidance and supervision. The matter embodied in this
thesis has not been submitted in any form to any University or Institution for the

award of any degree or diploma.

P ekt ABe L

Dr. P. V. Reddy Prof. Arun K. Pujari
(Project Supervisor) Head of Department
Department of CIS.
M
me C. M"” 7
Dean,

School of Mathematics, Computer/Information Sciences,
_ University of Hyderabad.

ACKNOWLEDGEMENTS

P.V._Reddy;oma%m&'/r? Ifﬂszouem, amd;wwcdm? TRCRASANLY
?wxlamw.

@m&ada{ﬂzdepmm Prof. A.K.Pujari has bem a sswwce
of inspinalion for us. Ho abse provided us with the compuling facilidion

We alss wirh o thank ol the stase memberselgﬂw,ﬂ.cguamd
Jﬂwco/rwiamfcfuﬁamw and, the w??m(wm G{qu friends and
classmates Pwm,ﬁwrburwaﬂmﬂfeﬁom (A W@WW& themn.

ﬂwwmw%&wmmdparents ﬂy»

Sushish Saha
N. Rajs Subrahmanyam

ABSTRACT

We present a WYSIWYG (What You See Is What You Get) type editor,
which stores WYSIWYG output in HTML format. In the front end user can build
up his hypertext documents in WYSIWYG mode and in the back end each hypertext
page (a bhypertext document contains one or more pages) gets stored in the form of
HTML document. User can also execute his database queries through the same
hypertext documents created by the editor.

In this repbrt we present the design and development of four programs: 1.
HTML DOCUMENT EDITOR, 2. HTML EDITOR, 3. BROWSER, 4. DATABASE

APPLICATION.

The description of these programs is as follows.

HTML DOCUMENT EDITOR:
This is a simple text editor, which helps the users in building their HTML

documents directly.

HTML EDITOR:

This editor works in two modes:

In the first mode of operation, user can create. an HTML document just by
clicking the buttons according to the organization which is provided in the on-line
help of the editor. In this mode, the editor works in front end, which means no
process is in background. User can only see the generated HTML code in the current

window.

In the second mode of operation, the editor works in front end as well as back

end. In the front end, users can create a hypertext document in WYSIWYG mode and
WYSIWYG output will be stored in equivalent HTML code in the back end. Users are

also allowed to take a hard copy of the hypertext documents created by them.

BROWSER :

The browser interprets HTML doouments mnd tums it into a hypertext
document. For generating each page of a hypertext document the browser needs the
corresponding HTML document to be interpreted. It also executes SQL queries on the
database application through a hypertext document. For this purpose we defined
syntax which.is used for action by the browser.

DATABASE APPLICATION:
To demonstrate the execution of SQL queries on a database application
through hypertext, we developed a database application related to the maintenance of

the research grants at the university of Hyderabad.

CONTENTS

Chapter 1. INTRODUCTION

1.1 Problem Statement
1.1.1 System Requirements
1.2 Review of hypertext documents & HTML
1.2.1 Hypertext document
1.2.2 HTML
1.2.3 Relation ship between HTML documents
and a hypertext document
1.3 What is a browser?
1.4 WYSIWYG output
1.5 Motivation
1.6 Our achievements
1.7 Outline of the thesis

Chapter 2. DELPHI SYSTEM OVERVIEW

2.1 Introduction

2.2 What is Delphi ?

2.3 Elements in Delphi’s IDE

2.4 Structure of the object Pascal unit
2.5 Help file creation process

2.6 Components used in this project
2.7 Conclusions

N NN -

w W ~N ~N N o

14
11
12
13
14
14

Chapter 3. HTML SYNTAX

3.1 Introduction 21
3.2 Notion of HTML tags 21
3.3 HTML categories and their respective tags 24
3.4 Conclusions 35

Chapter 4. HTML DOCUMENT EDITOR

4.1 Introduction 36
4.2 MDI Application 36
4.3 Design of the HTML document editor a7
4.4 Implementation details of the editor 38

4.4.1 Components used and their properties 38

4.4.2 Event handlers of the components 40
4.5 Conclusions 42

Chapter 5. HTML EDITOR

5.1 Introduction 43
5.2 Modes of operation 43
5.3 Design and Implementation Details 44
5.3.1 Design of the editor (Operational Mode 1) 44
5.3.2 Implementation details { Operational Mode 1) 45
5.3.3 Design of the editor { Operational Mode 2) 50
5.3.4 Implementation of the editor (Operational Mode 2) 53
5.4 Conclusions 61

Chapter 6. BROWSER

6.1 Introduction

8.2 Design of the browser

6.3 Implementation details
6.3.1 Browser’s actions according to each tag
6.3.2 Components used
6.3.3 Event handlers and their main functions
6.3.4 Important functions

6.4 Query execution
6.4.1 Syntax used
6.4.2 Browser’s action

6.5 Conclusions

Chapter 7. DATABASE APPLICATION

7.1 Introduction
7.2 Problem specification
7.2.1Tables used
7.2.2 Functions to be performed on the database
7.2.3 Reports to be generated
7.2.4 Queries
7.3 Design of the database
7.4 Implementation Details
7.5 Query execution through hypertext
7.5.1 Syntax
' 7.5.2 A database query and its execution in Delphi
7.5.3 Anatomy of the syntax defined by us
7.5.4 General algoritm for execution of
the queries through hypertext
7.6 Conclusions

62
62
63
63
67

69
71
71
71
72

73
73
73
75
76

78
78
80
80
81
82

g8

Chapter 8. CONCLUSIONS AND

FUTURE ENHANCEMENTS
8.1 Conclusions 84
8.2 Future enhancements 85
APPENDIX A RAISE ' 86
APPENDIX B RESULTS 93

APPENDIX C DELPHI's IDE 99

REFERENCES 100

- CHAPTER 1

INTRODUCTION

1.1 Problem Statement
Our main aim is to develop a tool that assists users in generating hypertext
documents in an easy manner. They can as well execute SQL queries on the database

applications through their hypertext documents.

To realize our goal we have implemented four modules: HTML document
editor, HTML editor, Browser and a database application. The details of the modules
are as follows. Firstly, HTML document editor is a text editor which allows the user to
create more than one HTML document simultaneously in different windows and can

switch over from one window to another.

Secondly, HTML editor works in two modes. In first mode, a HTML
document can be created without prior knowledge of HTML. syntax. The second mode
is the WYSIWYG [1.4] mode. Without specifying the structure, content, and
behavior of the hypertext document in HTML,, it allows user to generate hypertext
document directly in the front end and also take a hard copy of the bhypertext pages.
This is the most important feature provided by our implementation and hence our title
‘A WYSIWYG editor for SQL enabled Hypertext Markup Language(HTML)'.

Thirdly, the browser program interprets HTML documents into a hypertext
document. This is not 2 WWW browser [1.3] but one which serves some of the
functions of a HTML browser.)

Finally to execute the SQL queries, we have developed a database agplication
related to the maintenance of the research grants at the University of Hyderabad. This

database application is used to demonstrate how database queries can be executed
through the hypertext documents by incorporating our syntax for query execution in
HTML documents. For specification of the database we resort to RAISE [Appendix
A] as a specification language.

1.1.1 System requirements
To solve the above problem we have chosen Delphi Integrated Development
Environment (IDE) [chapter 2] as our application development environment. This
programming environment supports all the visual components that are required for our

solution.
1.2 Review of hypertext document and HTML

1.2.1 Hypertext document

Hypertext is a representation of non-structured information, with built-in
references called links to related information. This is usefiill because users can just click
on the links and access the required information. The user need not go to each site and
collect the information.

What differentiates a hypertext document from a book is how it is organized; a
hypertext document is nonlinear. With a book, you read from one page to the next. In
a hypertext document, you can randomly jump from one topic to another, and you can

perform fast searches on keywords to locate a particular topic.

A hypertext document is made up of one or more “pages”, often referred as
hypertext pages. A page can actually be as long as you want to be—the equivalent of
the several printed pages. Each hypertext page dedicates itself to a “topic™ that can
consist of text, references to other topics, or any number of things.

~ Fig. 1.1 is a simplified representation of a symbolic hypertext “page”. The
hypertext page ronsists of two parts : i. The header and ii. The page contents.

i. Header
The header consists of three items : label, title and keywords.

The header contains locator information. Because hypertext is a non-linear
system, there must be a way to jump from one topic page to another—in other words,
each page must have an “address™ where the hypertext system can find it. This address

is provided in the form of a unique label assigned to each topic page.

The next item in the header 15 the page’s title. This title appears at the top of
the page when the page is displayed in the Help window, and the same title s also
automatically included in the keyword list available to the help system’s search dialog.

The final item in the header is a list containing zero or more keywords. These
keywords are also made available to the search dialog (which, as the figure shows,
always displ_ay's items in alphabetical order). Instead of limiting a search to exact topic
titles, providing keywords related to topics gives readers a much greater chance of
finding what interests them. It is also possible to assign the same keyword to more than

“one topic.

ii. Page contents
The page contents, which appear in the lower portion of the figure, contains
the topic message. That may be any combination of descriptive text, bitmaps,

references to popup messages, or jump references to other topics.

Popup messages are usually used to display a box containing a definition of a
term that is highlighted in text. Jump references are the most interesting of all. They
provide a means to relate a screen “hot spot” containing highlighted text to the
address (that is, the label) of another topic page. By clicking on the highlighted text,

Search Dialog Keyword List

Topic “Page™
‘ : i D Caffeine
page | pabel Coffeeinfo D Coffee Information
header ‘ ‘
[Colombian
Title [{Coffee
} D Kona
Additional Keywords
Kona

Caffeine //——__,/_‘
. TN

Colombian

Page Descriptive Text ,

Contents Bitmaps , Popups ,
Jump References ,
elc.

Fig. 1.1 Symbolic representation of a topic page.

1.2.2 HTML (Hypertext Markup Language)

HTML (Hypertext Markup language) is a text-based markup language that
provides support for one of the most exciting information search and navigation
environments ever developed such as World Wide Web (WWW) which represents a
major step forward in making all kinds of information accessible to any user.

HTML is basically needed to create the Web pages. The key to building
attrartive, readable Web pages depends on knowing how to use HTML markup to
highlight and organize your content.

HTML is a display specification language with plenty of structuring and layout
controls to manage a document’s appearance, and the linkage mechanisms necessary to
provide hypertext capahili‘ties. HTML combines instructions within the data to tell a
display program, called a browser, how to render the data that the document contains.

HTML represents a way to take ordinary text and convert it into hypertext, just
by adding special elements that instruct Web browsers how to display its contents.
These special elements are called tags. HTML documents are plain—text files that can

be created using any text editor (e.g., Emacs or vi on UNIX machines; BBEdit on a

Macintosh; Notepad on a windows machine).

Example:

We provide below a simple HTML document file.

HTML document file:

<HTML>
<HEAD><TITLE> My Title </TITLE>
</HEAD>
<BODY>
My Heading Text
<p>
My wonderful text and graphics.
<P>
<ADDRESS>
My Name

~ My Mail Address

</ADDRESS>
</BODY>
</HTML>

The tags TITLE, BODY, P and ADDRESS describe an object and its
components [refer section 3.5 for more information on HTML tags]. It’s up to a
browser to render these properly on the screen.

Hypertext page:
Figure 1.2 shows the corresponding hypertext document for the above HTML

document.

[~ I My Title v ‘1

My Heading Text
My wonderful text and graphics.

My Name
My Mail Address

Fig. 1.2 Hypertext page.

What makes HTML particularly interesting is that it’s all pure text. In fact,
HTML can work completely within the confines of the ASCII 7-bit character set (ISO
646), which contains only 128 distinct viewable characters. This lets HTML display
thirigs like accents, umlauts, and other diacritical marks often associated with non-
English languages, by including instructions on what characters to represent as a part
of the markup. In other words, HTML can provide instructions to a browser even if
you can’t always see things in the same format when you are writing the HTML. For
example, and <L1> don’t look like a numbered list inside the text files, but they
do when the browser interprets them.

1.2.3 Relationship between HTML. documents and a hypertext document

A hypertext document is made up of one or more “pages”. For creation of
each hypertext page we should have one HTML document file which contains the
display information of that page and can also containy the links to other HTML
documents. A browser takes one or more HTMIL. documents and interprets them into a
hypertext document.

1.3 What is a browser ?

Browsing is nothing but searching. Browser facilitates searching through a
hypertext document. It is a program that displays the content described by HTML
code. It may provides point-and-click interface for accessing multimedia internet
resources. Inside the browser software ther@‘ésparser that does the work of reading
and constructing the display information. A parser reads information in the HTML file
and decides which elements are markup and which ones aren’t, permitting the browser
to take appropriate action. A HTML browser will read the HTML document and turns

it into hypertext. These browsers expect specific information because they are
programmed according to HTML specifications.

1.4 WYSIWYG Output

Although the term WYSIWYG (What You See Is What You Get) has come to
define hard-copy quality, to a programmer, producing WYSIWYG output is largely a
matter of relative positioning. Unless the display and printer resolutions match exactly,
it’s not possible to produce the same on-screen and printed graphics, but with careful

programming and scaleable TrueType fonts, the results are good enough for most

applications.

When producing a hard copy of the hypertext document it is much more
readable if each page of the hard copy resembles the corresponding hypertext page the
user is developing. In our implementation of HTML editor there is a WYSIWYG
mode in which the user can see the hypertext document during development itself and
also produce a hard copy of the hypertext pages.

1.5 Motivation

Windows help file is a good example of a hypertext document.

Delphi is a windows based application development environment and hence
provides features for developing help files. In Delphi, help files are created [refer
chapter 2, section 2.5 for help file creation process) by compiling Rich Text Format
(RTF) files with a utility provided by Microsoft (for Windows 3.1, this utility is called

HC31.exe, a copy of which is in Delphi). Developing the RTF is not an easy task. It
involves the following.

It normally requires a word processor capable of editing or at least exporting RTF
files.

The RTF file must contain special codes (In Delphi RTF file is nothing but macro
file [2]. This macro file is needed to specify the contents of the help file. We are
using HTML to specify the contents and behaviour of the help file) that describe
the structure and interrelationship of all the topic pages that make up the hypertext

document.

In addition to the RTF file, the help compiler requires a project file that contains

entries specifying settings for the compiler’s options.

Hence in the work presented here, we provide features which overcome these

problems besides providing some additional facilities. Hence, in this context, we are

motivated to provide the following features to the user.

We don’t need to have a single RTF file which contains the structure and

interrelationship of all the topic pages. We can create each topic page separately by
using the WYSIWYG editor in an efficient and easy manner.

We do not go for Windows 3.1 utility 1.e, HC31.exe. Our browser program is a

Delphi system based HTML interpreter used to tumm HTML document into
hypertext.

Generally each hypertext page dedicates itself to a “topic” that can consist of text,
references to other topics, or any number of things. But here, we are trying to
facilitate the user to execute the database queries through their hypertexi
documents too. We can achieve this if we define a syntax of our own and put into
HTML file which the browser recognizes and akes appropriate action.

»

1.6 Our Achievements

We implemented a HTML document editor which helps the user in creating
multiple HTML documents at a time.

We also implemented a HTML editor to facilitate a naive user in building his
hypertext documents easily. This editor works in two operational modes. In the first
mode, the user gets a cursory idea of HTML while creating a HTML document, and in
the second mode (WYSIWYG mode), the user can create a hypertext document easily
without knowing the HTML syntax and can also take a hard copy of the hypertext
pages.

We have implemented a browser in such a way that the browser program takes

HTML documents as the input and interprets them into a hypertext document.

We have developed a database application which demonstrates to the user as to
how database queries can be executed through their hypertext documents by

incorporating our syntax for query execution in HTML documents.

1.7 Outline of the thesis

The organization of the chapter is as follows :

We have first stated the problem of the thesis and then review the required
background of HTML and hypertext document. We have also covered the motivation

for our approach.

We present below the organization of the remaining part of the thesis.

Chapter 2 gives the concepts related to Delphi system. It describes all the
principles by which even a layman can understand the intricacies in the Delphi system.
It also includes all the features of the components which are used in this project.

Chapter 3 talks about the HTML syntax. It describes tags that comprise the
HTML syntax and the categorization of these HTML tags.

Chapter 4 describes the design and implementation details of the HTML
document editor. This editor allows users (familiar with HTML syntax) to create
their HTML documentz directly and generate their hypertext documents by calling the
browser program. ‘

Chapter 5 gives the design and implementation details of the HTML editor.
This editor works in two modes.' In first mode, a HTML document can be created
without prior knowledge of HTML syntax. While creating the HIML document user
gets some cursory idea about HTML.

The second mode is the WYSIWYG mode. In this mode user can create his
hypertext document, as is actually seen when using a browser and also produce a hard

copy of the hypertext pages.

Chapter 6 deals with the design and implementation details of the browser.
The browser takes HTML documents as input and interprets them into a hypertext
document. It uses our syntax for query execution through hypertext.

Chapter 7 deals with the specification and implementation details of the
example database. It also describes the queries involved in the example database and

the execution of queries through hypertext.

Last chapter concludes the project work and suggests the future enhancements
to the system.

10

CHAPTER 2

DELPHI SYSTEM OVERVIEW

2.1 Introduction
In the last chapter we have seen the need of Delphi IDE in this project. We

have also seen the RTF file creation process which is needed to generate help file in
Delphi. This chapter will give you a brief overview of the Delphi’s working principles,

the help file creation process and the components involved in developing this project.

The organization of the chapter is as follows. In sec. 2.2, we present the
features of Delphi. In sec. 2.3, we cover elements in Delphi’s IDE, in sec. 2.4 we give
the structure of the object Pascal unit, in sec. 2.5 we discuss the help file creation

process in Delphi and in sec. 2.6 we give the overview of all the visual components

used in this project. Lastly sec. 2.7 concludes the chapter.

2.2 What is Delphi ?

Delphi is a rapid application development environment, suitable for creating
windows prototypes and finished applications that rival or exceed the speed and
efficiency of programs written in C, C++, Borland Pascal 7.0, Visual Basic. Delphi is a
smart code generator, a visual application designer, and a database tool, providing a
superb interface that’s powerful.

It consists of a front end which is supported by Visual tools and the back end
which is supported by object oniented Pascal. Elements of the Delphi programming
environment are used to create an application interface. There are several main
elements in Delphi’s Integrated Development Environment (IDE) [A graphical view
is shown in Appendix C]. Now we will describe them.

11

2.3 Elements in Delphi’s IDE

1. Speed Buttons

These are point and click buttons for selected menu ¢ommands. Using these

buttons you can save your applicatiorfs development time.

2. Menu bar

This is a standard windows style menu.

3. Component palette

This palette contains icons that represem;}f components in the Visual
Component Library(VCL). By positioning the rnm;se cursor over any component
button you can see the hint box, which telis what component it is. The component can

be inseried into the form by clicking on the component icon and clicking on the form at

the position where it is desired to be inserted.

4. Palette page tabs

To view other component categories click one of the page tabs below the VCL
palette.

5. Form

A form is a visual representation of the program’s main window. By selecting a
visual component from the component palette and clicking the mouse inside the form,
you can insert a component object into the form and you can change the properties and
the events to be triggered through the object inspector.

6. Object Inspector -
This window shows all of the properties and events of one or more selected

components or forms.

7. Properties and events page tabs

Click one of the two page 1abs at the bottom of the object inspector window to
switch between a component or form’s properties and events.

8. Unit window

This window shows the Pascal programming text associated with each form in
the application. Delphi automatically creates this programming to which we can add
Pascal statements that perform actions for events.

In Delphi, the unit window contains the Object Pascal code. This object Pascal

unit follows a particular structure which is given in Fig. 2.1.

2.4 Structure of the object Pascal unit

UNIT <unit name>; These variables may be
INTERFACE [accessed by any procedures
Vanable or functions that uses this unit.
Variable *
Variable ——Only the names and
FUNCTION <func name> parameter lists of the unit’s
- function and procedures

are given here.
PROCEDURES <proc name>

IMPLEMENTATION [—— These vanables may
Variable be used only by the
Variable <+ procedures inside the unit.
Variable

The procedures and

| FUNCTION | functions are given

<+ in their entirety

| PROCEDURESY here, and are thus

implemented
END.

Fig. 2.1 Object Pascal unit.

First and foremost, an Object Pascal unit is a package. It’s a way of associating
data types and variables with the code that works with them. If you create data types
and procedures that act on those data types, a unit helps in keeping everything together
in one comprehensible bundle. The fact that a unit is also a physical file makes it a

13

reusable module. we can define constants, types, variables, procedures, and functions
in a unit.

The interface section of a unit consists of everything between the reserved
word INTERFACE and the reserved word IMPLEMENTATION. The interface
section is for definitions only. This includes not only obvious things like constant, type,

and variable definitions—but also definitions of procedures and functions.

Everything from the reserved word TMPLEMENTATION down to the
closing END. is considered the implementation section of a unit. Two general groups
of things are defined in the implementation section of the unit: i. Function and
procedure bodies implementing the headers defined in the interface section and ii.

Definitions private to the unit as a whole.

Providing a convenient package of data types, variables, and procedures is the
obvious job of a unit. Managing the parts of a package of computation to be revealed
to the public at large and the parts to remain the secrets of the unit itself, is the subtle
job of a unit. Some things are visible, and some things are hidden. By and large, what
is defined in the implementation section of a unit remains hidden, and everything else
(being part of the interface section) is visible to any unit that uses your unit.

2.5 Help file creation process

Here, help files are created by using the HC31.EXE utility, a copy of which is
provided with Delphi. Creating a help file is a two step process. These are:
i. Create the RTF (Rich Text Format) file, using the macro file [2].
ii. Direct HelpGen [2] to call the help compiler. It automatically hands over the
compiler the project file with the RTF file to generate the help file.

2.6 Components used in this project
IheWsualCnmmLibmy(VCL)ismadeupofobjects,mostofwhichm

components. Components are visual objects that you can manipulate at design time.

Componentsamthcb:ﬁldingb]ocksofDelplﬁapphcatmns You build an application

14

by adding components to forms and using the properties, methods, and events of the
components.

There are 89 components in the visual component library (21 are not visible in
the component pallete).We are going to describe only those 25 components which
have been used in this project.

1. Memo

Practically a word processor in its own right, the Memo component adds
Notepad like capabilities to an application. Palette : Standard.

2. ScrollBar
This general-purpose component adds scroll bars to a form, or it can operate

independently as a range-selection control. Palette : Standard.

3. MainMenu

We use this component to create a windows menu bar, which is always
displayed below the top border and caption. If you double-click MainMenu
component, the Menu Designer window will appear. The Menu Designer works in

concert with the Object Inspector to help you build menus. Palette : Standard.

4. PopupMenu

We use this component to create floating pop-up menus, which appear when
the user clicks the right mouse button with the mouse cursor over the windows client
area. Popup menus are in many ways similar to application main menus, but they
normally serve a more limited purpose. Typically, an application will have a single main
menu, and each window in the application will have its own local menu, normally
implemented as a popup menu. This menu is also accessed by pressing ALT+F10.
Palette : Standard.

S. Pane}

This component provides a platform for segmenting a busy window and for
creating toolbars and status panels. Panels never receive the input focus. They are
purely visual, and serve as containers for other controls. Components that are placed

15

on a panel are positioned relative to the panel, which means that if the panel moves, so
do the components on it. This makes it much faster to arrange control groupings on a
form while keeping them aligned with one another. Panels can also be aligned with the
top, left, right, or bottom border of the window, so that when the window is resized,
the panel remains in the same position relative to the border. And since the Panel’s
components are positioned relative to the Panel itself, they.move right along it. Panels
also have built-in support for fly-by hints, and a Caption property that lets you display
text on the panel. All in all, the Panel component is an excellent choice as a foundation

for a tool bar, tool palette, or status bar. Palette : Standard.

6. Edit box
Edit box displays a dialog box into which users can type data. So edit boxes
are used to retrieve information from users, they can also display information.

Palette : Standard.

7. Label

Labels are used to display text on a form. The text of a label is its value of
caption property. Labels are used to display text that users cannot edit.
Palette : Standard.

8. Button
It is used for push button control. Users can use these buttons to initiate

actions for specified commands. Palette : Standard.

9. ComboBox
This standard Windows control combines a ListBox with an Edit object.
Depending on the ComboBox object’s style, users can choose from listed entries,

which optionally appear in a drop-down box, or they can enter new data into the Edit
control.

The ComboBox’s Items property allows you to enter a list of strings that is to
be displayed by the dropdown ListBox portion of the component. You can build this
list of strings into the ComboBox at design time, and you can also modify the List at

-

runtime.

16

A ComboBox has a style property that you can set to change the way that the
ComboBox behaves. Palette: standard.

10. Listbox
It displays a list from which users can select one or more items. The list of

items in the list box is the value of its items property. Palette : Standard.

11. BitBtn

A BitBtn works like a Button component, but can display a colorful icon,
called a glyph, that visually represents the buttons action. This component is having
properties such as Glyph, Kind, and Layout that are used to define the button’s
picture and appearance. Palette : Additional.

12. SpeedButton

Speed buttons, implemented with Delphi’s SpeedButton component, are
special purpose buttons that were designed specifically to be used on a toolbar or tool
palette. The SpeedButton is similar to a standard Button component, but includes
spectal internal machinery that allows it to interact with other SpeedButtons, and also
with the Panel that contains it. These buttons have graphical images on their faces that
users can use to execute commands or set modes. The graphical image that appears on

a speed button is the value of its glyph property. Palette : Additional.

13. Notebook

This is used to display multiple pages ,each with its own set of controls. This is
generally used with Ttabset controls to let users select pages in the Notebook by
clicking a tab. Palette : Additional.

14. Tabset

This component provides a toolbar of selectable tabs, which you can use in
conjunction with other components to provide them with a page turing capability.
Palette: Additional.

17

15, Image

This is used to display graphical images on a form. So, this component is to
picture files what the memo component is to text files. With an Image component you
can load and display bitmaps, icons, and Windows metafiles. The intemal workings of
the Image component are smart enough to figure out what kind of image is loaded, and
take care of all the futzing around with display contexts, palettes, and everything else
associated with displaying pictures in a Windows program With Delphi, displaying a
picture is as easy as displaying a text files. The image that appears is the value of its
picture property. Palette : Additional.

16. Scrollbox

This component makes it possible for the user to create scrolling areas on a
form that are smaller than the entire form. Palette : Additional.

17. DataSource

This component connects dataset components such as Table and Query with
data-aware components such as DBEdit and DBMemo. Every database application
needs at least one DataSource object. This component determines the source of the
data you are using. This enables to connect data-aware controls on different forms to

the same Datasource. Palette : Data Access.

18. Table

This component usually associated with a DataSource object, which connects
the table with data-aware controls. Most database application have atleast one Table
object. A Table component accesses every column in a table when you activate it.
Palette ;: Data Access.

19. Query

This component enables Delphi applications to issue SQL statements to a
database engine. Query co.aponent is used to provide SQL statements that retrieve
data from a physical data base table and send data back to a physical data base table.

18

Users can view data retrieved in a data-aware component (such as DBEGJit or
DBGrid). Palette : Data Access.

20. Batchmove

This component is used to perform operations on groups of records or entire
tables. This is done by setting source property to specify a dataset corresponding to an
existing source table, setting the destination property ‘to specify a dataset
corresponding to a database table and setting the mode property to specify operations
to perform. Palette : Data Access.

21. DBGrid

This component enables to view and edit all the records in a dataset component

(such as Table or Query) in a spreadsheet like form. Palette : Data Controls.

21. DBNavigator
This component is a sophisticated database browsing and editing tool. Users
click it’s buttons to move through the database records , insert records, delete records

and perform other navigational operations . Palette : Data Controls.

22. DBEdit

A data-aware edit single line text entry component. It can be used to display
data from a field in a dataset by specifying a datasource component.
Palette : Data Control.

23. Opendialog

This component makes an open dialog available to the user. The main purpose
is to let a user specify a file to open. Using the execute method, we can display the
open dialog. When the user chooses OK, Users file name selection is stored in the
dialog box file name property. Palette : Dialog.

24. Savedialog _
This component makes available a save file dialog available to the user. The

main purpose is to allow a user to specify a file to save. Palette : Dialog.

i9

25. FontDialog
This component makes available a font dialog box to the user. The main

purbose is to let a user select his font and set attributes of that font. This component
is pretty simple. It only has a handful properties, and just one event. Other than Font,
the only property you’'re likely to change often is Options, which describes the options
and types of fonts that should be displayed in the Font dialog box when it’s displayed.
Options is a set property, and double-clicking on it will display all of its sub-
properties. Most of these sub properties specify what types of fonts should be
displayed in the dialog box. If you set fdWysiwyg to true, then only those fonts that
are available to both the printer and the screen will be displayed in the dialog box.
Palette : Dialog.

2.7 Conclusions
Delphi is a component-based application development system that enables us to
write powerful Window-based programs with a minimum of coding. We use elements

of the Delphi programming environment to create our own application interface.

Units are the basis of modular programming. We use units to create libraries
and to divide large programs into logically related modules. The parts of a unit are unit
heading, interface part, implementation part and initialization part.

In Delphi, help files are created by compiling Rich Text Format (RTF) files
with a utility HC31.exe provided by Microsoft.

Using the objects and components of VCL, we can develop Windows
programs rapidly. Delphi itself was built using VCL.. Delphi objects contain both code
and data. The data is stored in the properties of the objects, and the code is made up of
methods that act upon the property values.

— - - CHAPTER 3

HTML SYNTAX

3.1 Introduction

In introduction chapter we introduced the need for HTML. We came to know
that HTML syntax comes in the form of tags, each tag in a certain syntax and a
meaning associated with each of them. In this chapter we define and describe in detail
all tags used in this project.

The organization of the chapter is as follows. In sec. 3.2, we give the notion of
HTML tags, in sec. 3.3, the HTML categories and their respective tags, and finally we

give the conclusions of the chapter in sec. 3.4,

3.2 Neotion of HTML tags

The following example shows syntactic structure of a basic HTML document.

1. <HTML>

2 <HEAD><TITLE>A HTML DOCUMENT</TITLE></HEAD>

3 <BODY> ’

4 <HI1>Table Of Contents</HI1>

5. <!- an unordered List ->

6.

7. <I- a list item which is a link to another anchor in the same document

named ‘intro’ —>
8. <L1>Introduction
9. <L1>Concepts
10. <L 1><Conclusion
1L
12. </BODY>
13. </HIML>

21

We have numbered the lines above for the purposes of reference in the
following discussions on different tags in HTML.

Function of each tag:

e A pair of tags <HTML> and </HTML> blocks out the HTML document in its
entirety. For an illustration of such a pair, see the lines 1 and 13 of the example.

e A pair of tags, <HEAD> and </HEAD> is used to physically identify the header of
the document. The title of the entire document is specified within the pair of tags,

<TITLE> and </TITLE>. Here the title of the document is: A HTML DOCUMENT.
For illustration of the pairs, see line 2.

e <BODY> and </BODY> tags are used to set off the body of the HTML document.
See lines 3 and 12 for illustration of a pair.

e <H1> and </H1> will tell the browser to print “Table Of Contents” using the first

level heading size. See line number 4 for an illustration of the pair.

e <. .. -> supports author comments. These comments are used for enhancing the

readability of the HTML document. See lines 5 and 7 for an illustration of this tag.

e A pair of tags and numbers the elements by order of occurrence. In the
above document these tags produce the following output when interpreted by the
browser. See lines 6 and 11 for illustration of a pair.

1. Introduction
2. Concepts

3. Conclusion

° <L1>tagmaﬂcsamanb&item within the ordered list. See lines 8, 9 and 10 for an
illustration. In the above document the member items within the ordered list are
Introduction, Concepts and Conclusion

For example, in line 8, Introduction entry makes
the word ‘Introduction’ the hyperlink to the HTML document ‘intro’ vn the same
machine as this HTML document. This ‘intro’ specifies the complete path of the file
and is in this context known as Uniform Resource Locator (URL).

Hypertext document:

HMrepresetusnwaytoukeordinarytext and convert it into hypertext, just
by adding tags that instruct Web browsers how to display its contents. For example,
when the above HTML document will be viewed with the Web browser then the
following hypertext document will be displayed [When viewed with the browser, the
original window displays all the menu options, scroll bars etc. along with the hypertext
document. The following figure displays just the contents of the hypertext document.].

A HTML DOCUMENT VA

Table Of Contents

1. Introduction

2. Concepts

3. Conclusion

Properties of HTML tags:

In the above HTML document we have seen how the text appears between the
opening and closing tags as well as we have seen how the tags appear in the document.
It is necessary to know some of the properties of the HTML tags to construct a
HTML document properly. The properties of the tags are as described below:

e All HTML tags are surrounded by angled brackets ,for example <HEAD>,

e A forward slash following the left angle bracket denotes a closing tag, for instance
</HEAD>,

e All HTML tags require that the characters in a name be contiguous. No extra
blanks can be inserted with in a tag or its surrounding markup with out causing that
tag to be ignored,

e But when assigning values to attributes however spaces are OK ie., when one
space is legal, multiple spaces are legal,

e In a tag, if an attribute is present it shows that the value that is present for that
tag’s attribute can be utilized by it. For instance in the tag .the attribute
Ismap, if present tells that the map is a clickable one. So the default is if the

attributes are not present then the values cannot be utilized.

Sometimes it is necessary to insert one set of markup tags within another set of
tags which is called nesting tags. So when nesting tags, the best rule of thumb is to
close first what you have opened most recently.

3.3 HTML categories and their respective tags

33.1 Comments

Comments give HTML authors a way to annotate their documents and
browsers will not ordinarily display them. Any assumptions , special conditions should
be enclosed in comments to help other readers understand what the document is trying
to accomplish.

Tag wused:

<!- ..>, Supports author’s comments.
Example:
 <! Unnumbered list -->

The comment “Unnumbered list” tells that the tag is used for an unnumbered
list.
332Do cument Structure

There are numerous tags defined to provide structure to HTML document.
ﬁeyproﬁdemwmﬂm,hbduﬂbWPdwwﬂwmwy
section. They also provide markup to establish links to other documents and to indicate
support for electronic indexing capabilities. This markups help in constructing well
designed web pages.

Some of the tags used are 13 follows:

<HTML> </HTML>, Blocks out an entire HTML document.
<HEAD>...</HEAD>, Blocks out a document head.
<BODY>...</BODY>, Blocks out a document body.

Example:

<HTML>
<HEAD>
<TITLE> ... </TITLE>
</HEAD>
<BODY>

</BODY>
</HTML>

333 Document Headings

Headings provide structure for a document’s content ,starting with its title, all
the way down to sixth level headings. They provide meaningful clues for document
navigation and when used in conjunction with a hypertext table of contents can permit

readers to quickly jump to other sections.

Some of the tags used are:

<’;‘ITLE>...<!I'ITLE>, Supplies the title that labels the entire document.
<H1>...</H1>, First level heading,

<H2>...</H2>, Second level heading.

<H3>...</H3> ,Third level heading.

<H4>...</H4>Fourth level heading.

<HS>...</HS5>Fifth level heading

<H6>...</H6> , Sixth level heading.

HTML has above six levels of headings, numbered 1 through 6, with 1 being
the most prominent. Headings are displayed in larger and/or bolder fonts than normal
body text. Do not skip levels of headings in your document. For example, don’t start
with a level-one heading (<H1>) and then next use a level-three (<H3>) heading.

Example :

<HTMI1>
<HEAD><TITLE>A HTML DOCUMENT</TITLE></HEAD>
<BODY>
<H l.>Tab_le Of Contents</H1>

</BODY>

</HTML>

The output of the above document looks like:

[=| A HTML DOCUMENT V [4A
-

Table Of Contents

3.34 Links

Create links to anchor or another document | or create anchor point for another link .
Tag which come under this is:

<A>.., Provides fundamental hypertext link capabilities.

HTML. s single hypertext-related tag is <A>, which stands for anchor. To include an
anchor in your document follow the following steps:

1. Start the anchor with <A (include a space afier the A)

2, Specify the document you're bhnking to by entering the parameter
HREF=filename™ followed by a closing right angle bracket (>-)

3. Enter the text that will serve as the hypertext link in the custrent document

4. Enter the ending anchor tag: (no space is needed before the end anchor tag)

Example:

Here is a sample hypertext reference in a file called Saha htm:
Hello

This entry makes the word ‘Hello’ the hyperlink to the document ‘Saha htm’,
which is in the same machine (in our case) as the first document. Generally,
HREF=“URL” entry means that URL (Uniforrn Resource Locator) specifying the
location of another network resource, usually another HTML file, but this URL can
also be a pointer to services provided by FTP (File Transfer Protocol), Telnet, e-mail
(electronic mail) etc. In our case we are considering that the URL only specifies those
file names which are in the same machine as the current HTML document (which

contains these URL specifications).
335 Layout Elements

Layout elements introduce specific items within the text of a document
including, line breaks, lengthy quotes, and horizontal rules to divide up distinct text

areas. They include a format for building author information on a page. -

Tags used are:

<ADDRESS>...</ADDRESS>, Author contact information for document.
<BLOCKQUOTE>...</BLOCKQUOTE>,Use to set off long quotes or citations.

 , Forces a line break into on-screea text flow.

<HR> , Draws a horizontal line across the page.

Example:

1. <ADRESS>

A beginners guide to HTML / NCSA / pubs@ncsa uinc.edu /revised April 96
</ADRESS>

The result is:
A beginners guide to HTML / NCSA / pubs@ncsa.uiuc.edu /revised April 96

2. <BLOCKQUOTE> * Afler spending the last ten years locked in a cell,

there was no way that Mr. Saha could conceive of not taking advantage of the sudden
earthquake that opened a passage to the outside world, and
freedom.”<YBLOCKQUOTE>

The result is:

“ After spending the last ten years locked in a cell, there was no way that Mr,
Saha could conceive of not taking advantage of the sudden earthquake that opened a
passage to the outside world, and freedom.”
3. Super computing applications

East Avenue

Champaign

The result is:
Super computing applications
East Avenue
Champaign

4. <HR size=2 width="“50%">

The result is:

3.3.6Graphics

Graphics enter an HTML file through the command. points to
the graphics source provides a text alternative for non graphical browsing and indicates
whether the graphic is a clickable map.

Tags used:

, Inserts a referenced image into a document with alternate text,
clickable map, and placement controls.

To include an image enter:

We can include two other attributes on tags to tell the browser the
size of the images it is loading with the text. The HEIGHT and WIDTH attributes let

the browser to load the image of that size.

Example :

To include a self portrait image in a file along with the portrait’s document,
enter .
In this project the browser program is taking care of only .bmp file.

33.7Forms
Forms provides the essential mechanism for soliciting reader feedback and
input on the web. Form tags covers how forms are set up, provide a variety of

graphical and text widgets for soliciting input and supply methods to let readers
select options from various types of pick lists.

Tags used are:

<FORM>...</FORM:>, Marks beginning and end of form block.
<INPUT> ,Defines type and appearance for input widgets.
<TEXTAREA>. . </TEXTAREA> , Multiline text entry widget.
<SELECT>...</ SELECT>, Creates; a menu or scrolling list of input items.

<OPTION>[...</OPTION>], A way of assigning a value or default to an input item.

Example:
<FORM METHOD= “POST” ACTION="/ cgi / txt-ara™
<P> Model Number
<SELECT NAME="mod-num” size="3">
<OPTION>102
<OPTION>103
< /SELECT>
<P>Female <INPUT NAME=“sex™ TYPE =“CHECKBOX™ VALUE = “female™

<P><TEXTAREA NAME ="recipe” ROWS="10" COLS="25">
Banana WafTles

Ingredients

</TEXTAREA>

</FORM>

The formatted output is:

102 A
Model number 103
A 4
Female
Banana Waflles A
Ingredient

33.8Paragraphs

Break up running text into readable chunks.

Tag used:

<P> , Breaks up text into spaced regions.

We can center a paragraph by including the ALIGN= attribute in our source file.

Example:
<P ALIGN=CENTER>

This is a centered paragraph.

Formatted output:
This is a centered paragraph.

3,39 Lists

HTML includes numerous styles for building lists ,ranging from numbered to
bulleted lists All of these provide useful tools for organizing list of items to improve
readability.

Tags used are:

<DIR>...</DIR> , Unbulleted list of short elements(less than 20 characters m length).
 , Within a ﬁﬂ of any type marks a member item.

<QL>.. , Numbered hst of elements.

.. , Bulleted list of elements.
<MENU>...</MENU>, A pickable list of elements .
<DL>..</DL> , A special format for terms and their definitions,
<DT> , The term being defined in a glossary list.

<DD> , The definition for a term in a glossary list.

Examples:

Unnombered Lists:
Below is a three-item list:

<L1> apples
<L 1> bananas
<L1> grapefruit

The output is:

* apples
= bananas
» grapefruit
Numbered Lists :
The following HTML code:

<QL>
<L.1> oranges
<L 1> peaches

<L1> grapes

K J 1

produces this formatted cutput:
1. oranges
2. peaches
3. grapes

Definition Lists :
The following is an example of a definition list:

<DL>

<DT> NCSA

<DD> NCSA, the National center for
supercomputing Applications, is located
on the campus of the University of
Ilinois at Urban-Champaign.

<DT> Comell Theory Center

<DD> CTC is located on the campus of Comell

University in Ithaca, New York.
</DL>

The output looks like:

NCSA
NCSA, the National center for supercomputing
Applications, is located on the campus of the University
of Illinois at Urban-Champaign.

Cornell Theory Center
CTC is located on the campus of Cornell University in
Ithaca, New York.

The <DT> and <DD> entries can contain multiple paragraphs, lists, or other
definition information.

3.3.10 Text controls

HTML offers numerous inline controls for adding emphasis or special
appearance to text. It provides tools for describing user input and for including

samples of computer code, computer output, variables and sample text.
Tags used are:

... ,Produces bold faced text.

<CITE>..</CITE>, Distinctive text for citations.

<CODE>..</CODE>, Used for code samples,

<DFN>...</DFN>, Used to emphasis a term about to be defined in the following text.
..., Adds emphasis to enclosed text.

<J>..,</1>, Produces italicized text.

<KBD>...</KBD>, Text to be typed at keyboard.

<SAMP->...</SAMP> Sample in-line text.

<STRONG=>..., Maximum emphasis to enclosed text.

<TT>...</TT> , Produces a typewriter font.

<VAR>...</VAR> , Vanable or substitution for some other value.
Example:

Hello Friends
Result 1s:
Hello Friends

<CITE>The Iliad</CITE> is arguably Homers greatest epic.
Result is:

The Hliad is arguably Homers greatest epic.

<CODE>

crispy ricel, rice2,rice3,riced;

riced=(rice,rice2,rice3,rice4);
</CODE>

Result is:

crispy ricel,rice2,rice3,riced;
riced=(rice1,rice2,rice3 riced);

 no way out
Result is:

rno way ot

<SAIVIP>
African

Asian

</SAMP> -
Result is:
African
Asian

<KBD>Xcopy A:*.* C: </KBD>
Result is:

Xcopy A*.* C:

I am failure to communicate"

Result is:

I am failure to cormmuurnicate

<I> hello fnends</I>
Result is:
hello friernds

<VAR> filename</VAR>
Result is:

Jilename

For more information on HTML. document and tags refer [4].

3.4 Conclusions:

HTML is a markup language that describes the structure of a Web document's
content plus some behavioral characters. It is a standard language that all Web
browsers are able to understand and interpret. HTML represents a way to take

ordinary text and conven it into hypertext, just by adding tags that instruct Web
browsers how to display its contents.

- — CHAPTER 4

HTML DOCUMENT EDITOR

4.1 Introduction

As we mentioned in section 1.2.4, HTML documents are plain—text files which
can be created using any text editor (e.g., Notepad on Ms Windows). Later, in
section 1.3 we discussed the difficulties involved in creating RTF files (in our case &
RTF file is nothing but a HTML file). It normally requires a word processor capable of
editing or at least exporting RTF files. Again the RTF file must contain special codes
fhat describe the structure and interrelationship of all the topic pages that make up the
bypertext document.

In this chapter we discuss a text editor which allows the user to create all the
HTML files separately at a time which are needed to create a hypertext document. The
user can create more than one HTML document simultaneously in different windows
aﬁd can switch over from one window to another there by providing better
visualization of the relationship between the documents which is not possible in
Notepad.

To provide the above facility we are using MDI (Multiple Document Interface)
as a means for this application to simultaneously open and display two or more HTML
files.

The organization of the chapter is as follows. In sec. 4.2 we provide a brief
overview of MDI application. In sec. 4.3 we give the design of the editor and in sec.
4 4 we give the implementation details. Lastly, sec. 4.5 concludes the chapter.

4.2 MDI Application
In an MDI] application, the main window looks like a normal application
window, with a title bar, menu, resizable border, and other characteristics. The client

area though, isn't used for program output. Rather, the client area is a “workspace” in
which document windows (or more properly, child windows) display information.

Child windows also look like regular windows, except that they don’t have
menus. Only the application window has a menu, but those menu items can be applied
to the child windows as well. Although many child windows can be simultaneously
displayed, only one of them can be active at a time. All child windows are clipped so
that they never appear outside of the main window.

The MDI specification defines what happens when child windows are
manipulated (opened, closed, moved, sized, minimized, maximized), and what special
keystrokes are used to manipulate child windows. There are also suggested standard
menu layouts and many other details defined in the specification. Most of this special
behavior is handled internally by Windows when you create an MDI application. With
traditional Windows programming tools, you havg?jump through a number of hoops to
get MDI applications to respond correctly. Not so with Delphi. Delphi handles all of
the MDI-specific details automatically, leaving you free to concentrate on those things

that are specific to your application.

4.3 Design of the HTML document editor

This editor should allow the user to create all the HTML documents
simultaneously in separate windows such that the user can visualize the relationships
between the documents in a better way. These HTML documents are needed to create
a hypertext document. To create each page of a hypertext document, we need to have

a HTML. document corresponding to that page which contains the structure, content
and behavior of that page.

In order to create multiple HTML documents in separate windows, we are
having one main window which will allow the user 1o create and operate on child
windows. The user can edit ine contents of the HTML documents in those child
windows and can operate on those child windows by using the standard window style
menmu contained in the main window,

37

The interface window provided by the editor is:

LI Main window — I

Child window #1
Child pvindow #2

Child window #3

A sample view of the HTML document editor is shown in section A of the
appendix C.

4.4 Implementation details
In the following section we give the properties of the components used by this
editor. Later we discuss the events to take place by these components.

4.4.1 Components used and their properties
R uses two forms, one is MainForm and ancother is ChildForm. Properties of
the components are given below:

PROPERTIES :

MainForm :
Caption : HTML Document Editor.
FormStyle : §SMDIForm.
Name : mainform.

The mainform uses two components , one is MainMenu arxd OpenDialog.

MainMenu : .
In MainMenu’s Item property we include File and under File we are
having New , Open and Exit command.

OpenDialog :
By double-clicking the Filter property we are including the following
properties in the FilterEditor.
FilterName Filter
All Files(*.htm}) * htm

ChildForm :

Activecontrol : memol
Caption : Untitled
Color : cIWindow
FormStyle : fSMDIChild
Name : childform

The childform uses four components. These are SaveDialog, MainMenu,
FontDialog and a Memo.

SaveDialog :
Filter : like OpenDialog component explained in the sbove.
Name : SaveFileDialog

39

MainMenu :
In MainMenu’s Item property we include File , Edit and Character
command. Under File we are having New, Open, Close, Save, Save-
-as and Exit command. Under Edit we are having Cut, Copy, Paste,
Delete and Select-all command. Under Character we are having Font,
Left, Right and Center command.

FontDialog :
No property has been changed.

Memo :
Align : alChent
Alignment : taLeftJustify
BorderStyle : bsNone
Cursor : criBeam
ParentCtr13D : False
ParentFeont : False

ScrollBars : ssBoth
WordWrap : True

4.4.2 Event handlers of the components
i. Events of the components nsed by MainForm:

OnClick event of MainMenu’s New command :

1. Create the ChildForm
2. Show the ChildForm

OnClick event of MainMenu’s Open command :
If OpenDialog is executing then
1. Create the ChildForm
2. Open the ChildForm with the selected file.
3. —ShowtheChildForm-

OaClick svent of MainMenu's Exit command :

ii. Events of the components used by ChildForm :
OnClick event of MainMenmu’s Font command:

1. Assign memo’s Font to FontDialog component’s Font property .

2. If FontDialog is executing then give FontDialog’s Font to memo’s Font.

3. Set a rectangle as an edit area, which is memo’s client area. So whatever the
user will type in the edit area that will be written in that font only.

OnClick event of MainMenu’s Lefi, Right and Center command :

Set memo’s Alignment property to taleftJustify.

Left :
Right : Set memo’s Alignment property to taRightJustify.
Center : Set memo’s Alignment property to taCenter.

OnClick event of MainMenu’s Copy , Cut , Paste ,Delete and Select-all command :

: Copy the selected text into clipboard using CopyToClipboard

Copy
method.
Cut : Cut the selected text into clipboard using CutToClipboard
method.
Paste : Paste the text from the clipboard into the memo component using
PasteFromClipboard method.

Select-all : Select all of the text using SelectAll method.
Delete : Delete the selected text from the memo component using

ClearSelection method.

OnQlick event of MainMenu’s New , Open ,Close , Save , Save-as and Exit

command :

New : Call the MainForm’s New procedure .

41

Open
Close
Save

Call the MainForm’s Open procedure .
Call the Close method to close the ChildForm.

If filename = * * (blank space) or filename is read-only call
Save-as procedure
* else
Create a backupcopy of the file,
Save all the lines of the memo to that file,
Set the Modified property of the memo component to false.

[1]

e

Save-as : Give the filename to the SaveFileDialog components
Filename property , -
If SaveFileDialog is executing then Change the filename to
the selected filename,
Change the Caption property to the current filename ,
Call save procedure.

Exit : Call the MainForm’s Exit procedure .

4.5 Conclusions :

Using this editor, we can create all HTML documents at a time. We can create
multiple ChildForms and change the focus from one ChildForm to another. The
documents will be saved in HTML format and with the extension .htm (This is
possible by setting the Filter property of OpenDialog and SaveDialog component
properly as discussed in section 4.4.1). This editor uses one form named mainform
which acts as a main window. In this editor, a form named childform acts as a child
window. Multiple copies of child window can be created by using New menu item,
contained in the main window menu bar. Each and every operatmps/on the child
windows ,aré performed by the Window style menu item contained in the main
window. Each child window contains one HTML document. A hypertext document
contains many pages linked together. Each HTML document is needed to generate
each hypertext page. The HTML documents thus created are needed by the browser
to produce a hyperiext document.

[The result is shown in Appendix B.]

42

CHAPTER S

HTML EDITOR

5.1 Introduction

In the last chapter we discussed about a text editor which allows the user to
create all the HTML documents separately at a time which are needed to create a
hypertext document. In section 1.2.7 we mentioned a WYSIWYG editor. In this
chapter we discuss the design and implementation details of a WYSIWYG editor
which gives the WYSIWYG output as pointed out in the section 1.2.7, in the front
end and HTML code at the back end. This editor allows user to create each hypertext
page of a hypertext document directly in an easy fashion. The user need not specify the
content of the page in HTML code and call the browser to display the hypertext page.

This editor has another mode of operation to provide an overview of the

structure of a HTML document t0 a naive user.

The organization of the chapter is as follows. In sec. 5.2, we discuss the main
functions to be performed by this editor in each mode and in sec. 5.3 we give the
design and implementation details of the editor for each mode. Lastly in sec. 5.4, we

concludes the chapter.

5.2 Modes of operation

This editor works in two operational modes.

In the first operational mode, the HTML code is generated by following a
structure of the HTML document (which is provided in the On-line Help) and clicking
the buttons according to that structure. It has only the front end i1.e., we can see the
generated HTML document in the current window. Through this editor a novice can
gain some knowledge of HTML syntax as well about the structure of the HTML
document.

In the second mode of operation, the editor generates WYSIWYG type of
output in the front end and the corresponding HTML code will be generated in the
back end. This editor allows the user to create s hypertext document directly in the
front end. Each page of a hypertext document will be stored in equivalent HTML code
in separate .htm file. Tlis editor also allows the user to take a hard copy of the

hypertext pages.

5.3 Design and implementation details

5.3.1 Design of the editor (Operational mode 1):
Input specification: Text.

Output specification: HTML code.

The block diagram of the editor is given in Fig. 5.1.

HTML
vp editor o/
Text ———— - HTML
(operational mode 1) code
Fig. 5.1.

In this mode, user edits the text and presses buttons to generate its equivalent
HTML code. The interface window provided by the editor is shown in Fig.5.2 below.

[=][=][=]
Window #1
Window ¥4

Window #3
Window #2

Window #] acts as a control panel. It contains the buttons that allow the user
to generate 8 HTML document in window #3. The operations like opening a HTML
document, closing the document, saving the document etc. in window #3, are made
easy by the buttons in window #), which operate like the Window style menu items.
Beside those buttons, there is one button by clicking which the user gets some cursory
idea about the structure of the HTML document and the way of creating a HTML
document.

Window #2 allows the user to enter the text which is required by some
HTML tags such as Hl,.i6, ADDRESS, A [3.3] etc., which appeart’ between the
opening and the closing tags.

Window #3 is required to display the HTML code, generated by using the
conirol panel’s (window #1) buttons and to open a HTML document file.

Window #4 acts as a container of other three windows.

5.3.2 Implementation details {(Operational mode 1):
L Components used and their properties:

We use four forms to implement the above design. The name of the forms are: 1.
MainForm, 2. Text_Entry, 3. Coding, 4. Back

The properties of these forms and the components used by them are given below.

PROPERTIES:
MainForm:

This form is used as a control panel. The properties are:

Caption : Control Panel
Color : ciOlive
FormStyle : iStayOntop
Name s MainForm
WindowState : Normal

its - Designed

45

Notebook :

Tabset :

This MainForm uses the following components. Their
properties are:

pages

Align
color

Align

Background

color
Tabs

call notebook editor and add the
following lines .

page name Help context

standard 0
categories 1

alTop
clOlive

alTop

cIBtnFace

clTeal ‘

call string list editor and

add the following lines.
standard
categories

Under standard tab control we are having SpeedButton components. The

Name property of each of them is set to New file, Open file, Close file, Save, Exit,

Cut, Paste, Previous page and Next page.

Under categories tab control also we are having SpeedButton components.

The Name property of each of them is set to Comments, Document structure,
Document headings, Layout elements, Paragraphs, Graphics, Links, Lists, Text
controls, Query, Help and Code_generator.

We are using SpeedButton component’s Glyph properny to load a TBitmap
object. We are setting Himt property of all the buttons as their Name property and
setting ShowHint property to true. It will show you what each button is for.

ComboBox :

Style
Visible

csDropDown
False

(1 N]]

BitBtn :

kind H bkCustom
Caption 2 OK
MainMenu :
items : Using this property we are
entering the following
items in the Menu
Designer.
The structure of the menu designer is -
New) Cut
_ Open . Copy
File Save Edit Delete
Close Select
Exit Paste

Text Entry :
This form is used for entering multiple lines of text. it’s

properties are :

Text Enitry
Edit Area

Name
Caption

It uses one Memo component whose properties are :

Align : alClient

Alignment : taleft

BorderStyle : bsSingle

Color : cIWindow

Font z Name —>» system
Style — Bold
Size —>» 10
Color — Navy

Name : Editing

ScrollBars 2 ssBoth

WVisible 3 True

WantRetornms : True

WantTabs - True

WordWrap : True

47

Coding :
This form is used to output the HTML code. It's

properties are :
Caption : HTMIL._code
Name : Coding

It uses one Memo component whose properties are:

Align : alClient

Alignment : tal eftJustify

BorderStyle : bsSingle

Color : clGreen

Font s Name —>» system
Style — Bold
Size —>» 10
Color —» Navy

Name : Code

ScrollBars : ssBoth

Visible : True

WordWraps True

Back :
This form is used as a container of all the above three forms. It’s
properties are:

Caption : HTML Editor (operational mode 1)
Color : cINavy

FormStyle : fsNormal

Name : Back

Visible : False

WindowState :

wsMaximized

ii. Fanctions to be performed:

In the first operational mode, on-line help is created by using the HC31.EXE
utility, a copy of which is provided with Delphi. Including the help file in this project is
a three step process.

1. Create the RTF (Rich Text Format) file, using the macro file as the

specification [2].

2. Direct HelpGen [2] to call the help compliier. It automatically hands over the
compiler the project file with the RTF file 1o generate the help file.
3. Now include the help file in the project. The procedure for including the help
file is given below.
e Create on-click event handler of the Help button (under categories page
tab).
» Put the code for calling the help file in that on-click event handler
procedure.

This help file tells the user how the HTML document can be created using this
mode of the editor. It also informs the user how HTML document looks like and what
the structure of the HTML document is.

Create on-click event handler for all the items of the MainMenu component.
The algorithm for all the event handlers (except New) is the same as discussed in the
implementation details of the ‘HTML document editor’ in the last chapter. Here for all
the functions, the focus will be on the memo, named Code. Here, we are using

setfocus function to set the focus on the form, named Coding.

For all the SpeedButton components (except New File, Previous Page and
Next Page) under the standard page tab, we are creating on-click event handlers and
following the same algorithms which are used by the MainMenu component. Here,
our focus is on ‘Code’ memo component. When saving the HTML document, the save
dialog box appears and asks for the name of the document in which it has to be saved
and the contents of the memo component will be saved with the extension of .him.
When a new HTML file is created (by clicking MainMenu’s New command or clicking
New File button) then the strings <HTML> and <HEAD> will be added into this
memo component (Because each and every HTML document contains those two tags,
so these are the default tags). When we want to open a file then only .htm file will be
opened. We are doing this by setting the filter property of the OpenDialog
component, which is also discussed in the previous chapter. keep_track_ previous()
function will keep track of the previous file and keep_track next() will keep track of
the next file. When on-<click event occurs on the SpeedButtons whose Caption

49

properties are Previous Page and Next Page then call the above functions respectively
and load the file into this 'Code’ memo component.

For all the SpeedButton components under the categories page tab we are
creating on-click event handlers. If user clicks any button (except Help, Query
Code_generator) from the categories page tab then the ComboBox will be displayed
and tags from the each category will be assigned to the items property of the
ComboBox (S0, when user will choose drop down list then all tags under that category
will be displayed) . If user selects any tag from the drop down list then BitBtn will be
displayed. If user selects OK (Caption property of the BitBtn component) then
corresponding to that tag, the code will be displayed in the “Code™ memo component.
If corresponding to that tag some text has to be entered then the focus will be
transferred to the “Editing” memo control. After entering some text if user selects
Code_generator button then the HTML code for that, will be displayed in “Code”
memo control. For <TITLE> (category Document Headings) and <A> (category
Links) tag , the dialog boxes will appear and prompt the user to enter the ‘page title’
and to enter the ‘hypertext link with the URL’ respectively. Here, we are using
InputQuery function for displaying the dialog boxes.

Now we will see what should happen if user clicks the Query button from the
categories tab control. On-click event handler for Query button is given in the
following.

1. Open your own dialog box where it asks the name of the database alias,

query file and the text which will act as a hyperlink. [A dialog box is shown
in Appendix B]
2. Add the equivalent code [refer to the syntax for query execution which is

discussed in the next chapter] in ‘Code” memo control.

5.3.3 Design (Operational mode 2):

Input specification : Text.

Output specification : Hypertext document (Front end output).
HTML documents {(Back end output).

pages. This iechnique is analogous to the Depth First Search technique used in Craph
traversals.

This editor allows the user to store the equivalent HTML document of each
and every page in the back end und also allows to teke a hard copy of the hypertext

pages. We can also execute the SQL queries on the database application through the
hypertext document, created in this manner.

5.3.4 Implementation of the editor (Operational mode 2):

i. Components used and their properties :

In this mode, we use two forms. The name of the forms are: 1. ParentForm and 2.
ChildForm.

The properties of these forms and the components used by them are given below.
PROPERTIES:
ParentForm :

This form 1s used as a control panel to allow user to select the

HTML categories and to operate on the current ChildForm. The

properties are :

Caption : HTMLEditor (operational
mode 2)

FormStyle : fsMDIForm

Name : MainForm

WindowState : wsMaximized

This ParentForm uses the following components. Their

properties are :

Memotl :
Align z taCenter
BorderStyle : bsSingle
Color : clWindow
Name : Memol
ScrollBars ssBoth
WantReturns : True

53

WantTabs

t True
WordWrap : True
Visible 1 Falsa
Memo2 :
Align : tal.efiJustify
Color : clTeal
Font : Name -— Arial
Style — Regular
Size — 14
Color — Red
Name : Memo2
ScrollBars : ssBoth
WantReturns: True
. WantTabs : True
WordWrap : True
Visible : False

MainMenu :

Items

Page

l

New Page

Open Page
Close Page
Save Page
Print Page

Bofcl/lltalic

Using this we are entering
the following structure in
the Menu Designer.

Show
Categories Code <
7 Not show
Comments Page Title
Document Body

Document headings=———— Heading level
Layout elements AN

Paragraphs H1l.. H6
Graphics ~

Links Address Horizontal
Lists line break line draw

Text controls

Bulleted Unbulleted Numbered
Query

ChildForm
This form is used to edit and view the hyperiext page. This
form will operate in WYSIWYG modé. Output of this form is
WYSIWYG output and the user can take the hard copy of this

output.
Caption : None
FormStyle : fsMDIChild
Name : ChildForm
WindowState : wsNormal
BorderStyle : bsSizable
Color : clWindow
Position : poDefault
Yisible : True

ii. Functions to be performed:

On-click event handler for New Page:
e Create the ChildForm by writing the statement
child_1 := TChildForm.Create{Application), where child_1 is the
type of TChildForm.
e Put <HTMI > and <HEAD> tag in Memo2 by using
Memo2.Lines.Add method.

On-click event handler for Open Page:
e Open the ChildForm file. That is converting text files into binary file
i.e., .DFM format.

On-click event handler for Close Page:
e Add </BODY> and </HTML> tag in Memo2 component
respectively.
e Save the ChildForm file ((DFM format) into text file (ASCII format).

55

s Close the astive ChildForm. It means disposing the ChildForm by
writing the statement Actlion := ¢aFree , where Action is of type
TCloseAction.

¢ Load the previous ChildForm if any.

On-click event handler for Save Page:
e Save the cumrent ChildForm file (DFM format) into text file (ASCII
format).

» Return to the current ChildForm.

On-click event handler for Print Page:

e To print a ChildForm, call its print method, which paints the form’s
client area on an offscreen bitmap. The method uses the Printer
object’s BeginDoc and EndDoc techniques to print the resulting

bitmap.

« Call NewPage to gject each page after printing.

e Open a page (i.e. another ChildForm) and repeat the above steps.

On-click event handler for Comments:
e Memol component will appear (Visible property is set to true)
asking for your comments.
e [f MemoMouseDown then capture the position. Change the mouse
Cursor.

procedure TParentForm.MemoMouseDown(Sender: TObject; Button
: TMouseButton; Shift : TShiftState; x, y : Integer) ;

begin

start_ pos.x (=X ;

start_pos.y :=Y,

CursorTo(start_pos.x , start_pos.y) ;

cursor = crHsplit ;
end ;3

* Put the corresponding tag and the comments into the Memo2
component at that position.

On-click evont handler for Document Body:

e Put the <BODY> tag Into the Memo2 component.

¢ Qo on capturing the OnKeyPress event and print each character on
the canvas of the ChildForm. Here, we have to keep track of the
current position on the canvas where we want to print our current
KeyPress event. Before start to print the character on the canvas,
give a font to the canvas (In the following section we will call this
font as body’s font).

On-click event handler for Page Title:
e Open the InputQuery dialog box, asking for the page title.
e ChildForm’s Caption property is set to the entered text.
» Correctly place the corresponding opening tag, text and closing tag
into the Memo2 component.
¢ Put </HEAD> tag in Memo2 component (It implies the closing of the
HTML document head).

On-click event handler for all levels of Heading (H1, ..., H6):

e Check the selected heading level with the previous entry in the
heading_Jist. Previous entry will be one level below of the recent
selected heading level. (This is for checking whether any heading
level skipped or not). If this check returns true then follow the next
steps else asks for correct selection.

* Memo1 component will appear asking entry for heading.

¢ Follow second step of the “On-click event handler for comments” to
capture the cursor position to start with.

(Here, if ChildForm FormMouseDown then capture the position).

+ With ChidForm.Canvas do

iL Give a font to the canvas.
ii. Start to print each character on the canvas with that font.

57

s Add the squivalent HTML code into the Memo2 component (We

have 10 consider the starting position of the cursor in step 3 while
adding the code in Memo2).

On-<click event handler for ADDRESS:
e« Memol component will appear asking for author’s address.
e If ChildForm FormMouseDown then capture the position.
¢ Contents of the memol component will start to print in the ChildForm
canvas at the position of (start_pos.x, start_pos. y).
¢ Put the corresponding tag and the address into the memo2

component.

On-click event handler for Line Break:

& Give a line break on the ChildForm and correspondingly update the
value of start_pos.x and start_pos.y.
e Put the equivalent HTML code in Memo2 component.

On-click event handler for Horizontal Line Draw:

® Draw a line on the ChildForm canvas using the method Canvas.Draw
and modify the start_pos.x and start_pos.y value.
e Put the equivalent HTML code in Memo2 component.

On-click event handler for Paragraphs:
= Memol component will appear asking for entering the paragraph.

¢ procedure TChildForm FormMouseDown (Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if (Shift = [ssRight]) then
begin
make a paragraph ;
update the next starting position on the canvas;
end;
end;

(If you press the right mouse button then the paragraph will be made on
the ChildForm and the starting position to print with will be modified).

e Add the correaponding equivalent HTML strings in Memo2
componaent.

On-click event handler for Graphics:
e Create a dialog box which will ask you to enter the source file from
where you want to load the image.
= Capture the mouse cursor position by ‘following second step of the
“On-click event handler for comments™ algorithm.
o Put the image at that position on the canvas.(How to put the image,
is already discussed in the browser module)

e Add the equivalent HTML code in Memo2 component.

On-click event handler for the type of List items {(Bulleted, Unbulleted, Numbered):

e Memol component will appear asking for entering the list items.

e Each line of the Memo1 will be considered as a single item of the
list.

¢ Depending on the type of list we will print lines of the Memol on the
canvas of the ChildForm. For bulleted output we will create our own
image using Delphi’s image editor. We will draw the image on the
canvas (at O,start_pos.y position) as many as times as the number of
lines of Memo1l are. We will print each item of the list and start_pos.y
will be updated. For numbered output we will place a number before
each of the item. Number will start from 1 and go on increasing until
Memol.Lines.Count is equal to zero.

» Place the equivalent code in Memo2 component.

On-click event handler for Bold and Italic:
< Follow the third step of “on-click event handler for all levels of
heading™ algorithm.
For bold : Font.Style := [fsBold]
For italic : Font.Style := [fsItalic]

59

s Whaen ws will press the Text Controls button for the second time
then changs the font styla of the canvas to regular. It means the next
text will be printed using the font which is used by the body.

e Add HTML code into the Memo2 component.

On-click event handler for Links:

» Open the dialog box to enter the text to be highlighted, which will act
as a hyperlink to another page. Next open the dialogbox to enter the
name of the page to be linked with.

e After pressing the OK button of the second dialog box, the
highlighted text (here higlighting the text means underlining it) will be
printed on the canvas. Collect the text boundaries and the page name
for this text (procedures for these are given in the browser module)
and create a ChildForm with that name. (before creating we have to
save the previous ChildForm)}. After the OK button is pressed, the
HTML code will be added into the Memo2 component.

e Now go on making your page by following all the prevoous
algorithms.

For the above link purposes we should have OnMouseMove event handler. If
the mouse cursor comes within the text boundaries (the highlighted hyperlink) and if
OnMouseClick event occurs within this text boundary then display the page which is
linked with that highlighted text (the linking procedure is discussed in the browser

program).

On-click event handler for Show:
e Set the visible property of the Memo2 component to true. (This is to
view the generated HTML document)

On-click event handler for Not Show:
e Set the visible property of the Memo2 component to false. (The
container of the HTML code will be disappeared)

On-tlick svent handler for Query:

s Open the dialog box and enter the following :
¢ text to be highlighted
e database alias and
e query file
o After the OK button of the dialog box is pressed, it will print the
highlighted text on the canvas. Collect all the above three entries
(procedures for this is given in the browser program). After OK

button is pressed, the equivalent syntax for the query execution will
be added into the Memo2 component.

To execute the query through the hypertext document we should have
OnMouseMove event handler. If the mouse cursor comes within the text boundaries
(the highlighted hyperlink) and if OnMouseClick event occurs within this text
boundary then execute the query associated with that highlighted text (procedure for

query execution is discussed in the browser program).

5.4 Conclusions:

This editor works in two operational modes. If the first operational mode is
chosen then the user will get some idea of the stmctﬁre of the HTML document while
creating the HTML documents. These HTML documents are needed by the browser
module to interpret into a hypertext document. If the second operational mode is
chosen then the user can create his hypertext document directly in the front end
without specifying the contents and behavior of the document in HTML format. This
editor does not allow to incorporate other tags which are not discussed in
chapter 3. We used form’s canvas property to print on the form in the second mode of
the editor. We used Memo component for entering the text and storing the generated

HTML code. This Memo component also displays the code by setting it’s visible

property to true.
=,

[The results are shown in Appendix B]

(Y |

CHAPTER 6

BROWSER

6.1 Introduction

In this chapter we will discuss the design and implementation details of the
browser that reads the HTML documents and generates hypertext document. Each
HTML document is needed to generate each page of a hypertext document. This
browser, except the parser part which is taking care of executing queries (for
executing the SQL queries on a database application we are using our own

specification), is programmed according to HTML specifications.

The organization of the chapter is as follows. In sec. 6.2, we provide the
design, in sec. 6.3, we discuss the implementation details of the browser, in sec. 6.4,

we discuss about query execution though hypertext and finally sec. 6.5 concludes the
chapter.

6.2 Design of the browser

Input specification : HTML documents.
Output specification : Hypertext document.
The following diagram shows the block diagram of this module.

P Oo/pP
BROWSER

documents document

HTML —»

Fig. 6.1. Block diagram of the browser

HTML document contains all the tags and the text. The text comes between
the opening and the closing tags. Each tag has a different meaning and a unique syntax.
Browser program interprets each tag and performs an operation on the text which is
enclosed by the opening and the closing tags.

62

6.3 Implementation details

6.3.1 Browser’s actions according to each tag:

We use a function named processtags which has one string type argument.
Depending on the type of arguments, there is an action performed. We summarize
below in a table all actions for different types of tags.

Tags Actions
HTML Recognizes that it is a HTML document.
Recognizes that the document is having a
HEAD header. Here textvis (Boolean variable) is
set to true.

textvis is set to false because for this tag

we don’t want to print the text which is

TITLE enclosed by <TITLE> and </TITLE>.
Store the text which will be used
aflerwards.

textvis is sef to true and change the form
/TITLE caption property to the stored text.

Assigning a value to the variable font (an
integer wvariable defined in public
BODY declaration). This variable is keeping track
of the current font of the current text.
How we are giving the font to the text is
discussed below. The text which comes
after this tag will be printed in that font.
The printing procedure is discussed
below.

63

H1 .. Hé

assigning s value of the variable font.
The text which will come after the tng‘
will be printed in that font.

"For all these six level headings we are.

/H1 .. /H6

When these tags are sppearing (closing
tags of all the six level heading) then we
are assigning body’s font to the current
text. We need that when the structure is
<BODY>

<H1>headingl </H1>

my_body .

Here, headingl will be printed in the font
of H1 and my_body will be in the font of
BODY.

This will make a paragraph. It will skip
two row and five columns and the text

will start printing in the font of body.

This tag supports author’s comments.
Browser should not display them. So the
textvis will be set to false. The syntax of
this tag is <!- Author’s comment.>.So,
the textvis will be false until the next
character is “>‘. Here, ‘Author’s

comment will not be displayed.

ADDRESS

Display the text in a particular font until
you are founding the corresponding
closing tag i.e., /ADDRESS

/ADDRESS

Change the font value to body’s font

value. l

Skip the row and set the focus into the
next row.

HR

Draw a line which will start at (O ,
current_column) and will be extended
upto(form’s clientwidth,

current_column).

DIR

Read each line (length(line) < 20) and
print using body’s font. This will go on
continue until you are finding it’s closing
tag /DIR These lines are acting as a
unbulleted list of short elements.

Set the value of the Boolean type variable

unnumbered_list to true.

OL

Set the value of the Boolean type variable

ordered_list to true.

11

Within a list of any type it marks a
member item. Depending upon the above

- two varnables the member items are to be

printed in the fashion of bulleted list or
numbered list. Bullets can be put by
creating the image of bullet and loading
that image. How to create and load the
image will be discussed below.

DT

This tag represents the term being
defined. Print it like a heading but with a
font of body and the font size is somewhat
bigger than the body’s font size. The term
will be put into the glassary listbox.

m

This tag represents the definition for a
term. Skip some column and start to write
below the term being defined (see the
example (for DT and DD) discussed in
DD | chapter 3). We will store this definition of
the term in a file where the name of the
file is same as term. when we will click
the glossary from the browser main
window, then visible property of the
ComboBox will set to be true. After
selecting one item from the dropdown list,
if we press OK then the file (same as the
name of term) will be loaded into the

memo component .

Go on printing the text using bold style of

B the font.
Change the font style from bold to normal

/B i.e., change the current font of the text to
body’s font.

L Go on printing the text using italic style
of the font.

/L Change the font style from italic to

normal i.e, change the current font of
the text to body’s font.

Check for & IMG string in a tag. If it is |
there then call

Image tag process function

else

call processtags function.

This Image_tag process will display the
image. How it is displaying the image is
discussed below.

This tag provides fundamental hypertext
link capabilities.

* First highlight the text between the
opening and closing tags.

* If mouse cursor comes within this text
then change the cursor shape to upward
pointing hand.

* If we click the text then the next page
whose path is specified in the tag will be
displayed. How we achieve this will be
discussed below.

6.3.2 Components used :

The browser module uses only one Form (This is for printing the characters on
the form’s canvas, using form’s Canvas property), one Memo component (used for

showing the definition of the term which is

defined in the glossary list box) and one

ComboBox component (used as a glossary list box). Another component, Query is

used for execution of database queries.

67

4.3.3 Eveat handiers and their main functions :

Form OnCreate event handler :

L Call a procedure FillFontStruct which creates a TFont object.
For example, to create two objects of this type the code will look like :

for i:t=0to 1do where FontStruct is an
FontStruct[i] := TFont.Create. array of Tfont.

Now to change the font see the following example .

FontStruct[0L.Name := ‘ARCHYLE’ ; /* name of the font */

FontStruct[0].Size := 14; /* size of the font */
FontStruct[0].Color := Cired ; /* color of the font */
FontStruct[0].Style := [fsBold] ; /* font style */

il. Setting the screen cursor by calling the function LoadCursor.

Formn OnActivate event handler ;:

Show a dialog box by calling the InputQuery function. It will ask to enter the
path of the HTML document which is needed to display the first page of the hypertext
document. Store the file in the variable html_file (this variable is keeping track of the
current HTML document) When user will click OK button then call Display Page
function. Display_Page will perform the following functions :

e Load the current html_file into the memo component .
o Perform the actions corresponding to each tag (discussed above)

Form OnMouseMove event handler :

If the mouse pointer comes within the region of the text which will provide
hfpertextﬁnkcapabﬂhythmchangethescremarsormumdpoinﬁnghmd(bad
the cursor which is created by using Delphi’s Imape editor) else set the cursor as
default screen cursor(Screen Cursor := crDefault).To load the cursor, add the
following statement.

Screen_Cursors[cursor_ID]:=LoadCursor(hInstance,
‘HAND CURY;

To load the cursor we have to include the resource file of the cursor just below
the Implementation section by specifying {SR SAHA RES}.

Form OnMouseDown event handler :

If RightButton pressed then

begin
if PtinRect(links[i].rect , POINT(x,y)) then

begin

html_file = links[i].filename ;
Display Page ;

end;

end;

Where, links is an array of link and link is the tybe-of record.

Above algorithm checks whether right mouse button has been presse(_l on the
hotspot or not. If it has been pressed then display the page which is having link to that
hotspot.

The structure of the link is
link = Record
filename : string ;
rect : TRect ;
end;
The above structure of the algorithm is needed to keep track of all the links. It

has to know which file should be linked for a particular highlighted text.

6.3.4 Important functions:

We have given some important functions in the following which are needed by
the browser while processing the tags.

Image tag process function:

This function collects the image source file from the opening tag and
stores it in a variable source of type string. This function also collects the size of the
image from the IMAGE tag attribute (they are HEIGHT and WIDTH). Now it will cafl

the function proeess_source with the argument source, value of HEIGHT attribute
and value of WIDTH attribute.

process_source function:
1t will load the image file and the image will be drawn on the canvas of the
form. The function will look like :

process_source(s:string , height1:integer ; widthl:integer) ;
var

bmp : TBitmap ,

begin

bmp = TBitmap.Create ; /* creating the bitmap */
bmp.height := heightl ; * specifying the bitmap
bmp.width = widthl ; | size.
bmp.LoadFromFile(s), /* loading the image file into
Form1.Canvas.Draw(xc, yc, bmp); -7* bmp */ = -
bmp.Destroy ; /* destroying the bmp */

end;

print_char function:

When textvis is true, calling the function print_char(ch : char). print _char
will read each character and print onto the canvas of the form. Before printing we
have to assign the font of the canvas by writing the statement -

Forml.canvas.Font := FontStruct[font] ;

Now depending on the value of the font, the character will be printed in that
font. print_char has to keep track of the current XY position on the canvas. Here,
the character will be displayed at that current position by calling the function

Form1l.Canvas.Textout(xc , yc, §) 3

where (xc,yc) is the current (X,Y) position on the form’s canvas. s is the string

conversion of the character ch.

"Initially the browser program will ask you to enter the path of the HTML
document which is needed to display the first page of the hypertext document. When
browser program is running, if any requisite HTML document is found missing then it
asks if the document has to be created. If you want to create the file then the program
will call Notepad by calling WinExec() function and allows you to create and save

70

your file in the same directory as your first HTML documenmt. If you don't want to
create the flle then the browser program will continue running but, when the hotspot
(for which the HTML document is missing) is clicked an error message will be

displayed informing that no such file exists with that name which is specified in your
HTML document for that hotspot.

6.4 Query Execution
6.4.1 Syntax used :

We use the following syntax :
<SQL Database alias Query file> Text_to_be highlighted </SQL>
Corresponding the above syntax the way the database queries will be executed

are discussed in chapter 7.

6.4.2 Browser’s action :

s By recognizing the string SQL it will check the next fields. If there are two
entries then it proceeds else displays an error message stating that the syntax
is wrong.

e The form’s OnMouseDown event is the same as discussed before. But here,

the structure of the link is

link = Record
filename : string ;
alias > string |,
rect : TRect ;
end;

Where filename is for storing Query _file (name of the file which contains SQL
script written using SELECT statement only), alias is for storing Database_alias
{name of the database alias) and wrect is for storing the boundary of
Text_to_be highlighted (i.e., the boundary of the hotspot).

When user will click (by using the right mouse button) on the hotspot then the
queries specified in the Query_file will be executed on the database specified by the
Database_alias. The algorithm for executing the queries is given below:

71

Algorithm :

If RightButton pressed then
begin
if PtInRect(links[i].rect , POINT(x,y)) then
begin
query_file .= links[i].filename;
Assign the database alias name to the DatabaseName
property the Query component;
(For example, Queryl.DatabaseName := Database_alias.)
Execute the query on the database and show the result;
(refer to chapter 7) ;
end;
end;

Where Queryl is a component of TQuery type.

6.S Conclusions:

In this chapter we have discussed the actions to be performed by the browser
module when it interprets the tags. We have implemented the browser in such a way
that the browser program takes HTML documents as the input and interprets them
into a hypertext document. Thus, we are successful in providing facilities to the user in
building the hypertext document, just by specifying the contents of the hypertext
document in the HTML syntax. The browser module uses form’s Canvas property to
print the characters on the form’s canvas. While running, depending on the hyperlink
and Uniform Resource locator, the browser will go on loading the HTML files in a

Memo component. This module also interprets the syntax for query execution defined

by us and takes appropriate actions.

[A sample input and output of this browser module is shown in Appendix B.]

72

HAPTER 7
DATABASE APPLICATION

7.1 Introduction

In introduction chapter we mentioned the need for a database application.
Since we want to execute the SQL queries through hypertext on the database. Hence
we have chosen a database problem from the finance section of our university. This is a
sample database application. The procedure for ‘execution of SQL queries on the

database through the hypertext’ is valid for all the database applications.

The organization of the chapter is as follows. In sec. 7.2, we discuss the
problem specification, design of the database in sec. 7.3, implementation details in sec.
7.4, and finally query execution through hypertext in sec. 7.5. Sec. 7.6 concludes the

chapter.

7.2 Problem specification

In this database the accounts are to be maintained on the criterion of funding
body. Separate accounting for receipts and payments is done. In the following we will
give the description the database tables, the functions to be performed, reports to be

generated and the queries involved in this database.

7.2.1 Tables used
This database uses five tables :
1. Funding agency table.
2. Project table.
3. Budget table.
4. Payment Voucher table.
5. Receipt Voucher table.

The fields used by the above database tables are given below.

1. Funding agency table.

Elaids
1. Funding body

2. Funding_body_id
2. Project table:

1. Project_id

2. Voucher

3. Funding_id

4. Project_investigator

5. Department

6. Date of commencement

7. Duration in years
3. Budget table:
Fields
1. Project_id

2. Salary

3. Fellowship

4. Contingency

S. Equipment

6. Books

7. Consumables

8. Overheads

9. Traveling advances(T.A)

10. Miscellaneous advances(M. A)
11. Grant

4. Payment Voucher: |
Fields
1. Project_id.

2. Funding body
3. Voucher_ no
4. Bill_no

5. Cash_book 7/ Cheque no.
6. Date

74

8. Receipt Voucher: 21148
Eields

1. Project_id

2. Cheque_no /DD no.
3. Date

4, Refund

7.2.2 Functions to be performed on the database
Separate accounting for receipts and payments is done in this database, where

payments are of three types. 1. Direct payment, 2. Advances, and 3. Adjustments.

DIRECT PAYMENT

Direct Payment relates to expenditure booked directly to a project. Under each
project there are different subheadings or subaccounts. Therefore all expenditures are
classified under each project and under each subheading. These subheads are :

1. Salary

2, Fellowships

3. Contingency

4. Equipment

S.T.A

6. Books

7. Consumables

8. Overheads

ADVANCES

They are of two types: i. Miscellaneous advances, ii. Temporary advances.
i. Miscellaneous Advances: This is a payment in advance to the supplier pending
receipt of a material, initially booked under advance subhead of a project. After receipt
of a material advance subhead is credited and final subhead like equipment,
consumables etc. are debited.

ii. Temporary Advances: This is an advance paid to the project investigator in cash.
Project account is not debited for this amount. Initially it is shown as an advance i

75

the cash book. Only after account is rendered and bill adjusted it is debited to the
project and corresponding subhead.

ADJUSTMENTS

This relates to rectification’s of mispostings through transfer entry. Correct
head or sub head is debited by giving credit to other account head.

7.2.3 Reports to be generated

The reports to be generated are:
REPORT1:

Project Account:
Funding body:

Name of the project:

Date Cash.Book_ne Voucher no Particulars Subhead Amount

REPORT2

Statement of receipts and expenditure in respect of funding body(ex CSIR) project
Entitled “

of Prof. ... School of ...

1. Receipts:

Year Amount

Total :

76

2.Expenditure;

Year

Salary

Contingency Equipment

Total

Total

7.2.4 Queries

Grants received :
Expenditure incurred :

Balance as on specified date :

Asst Finance Officer(Accounts).

The queries which are involved in this database are:

1. List of project investigators in a department.

2. List of projects of an agency in a department.

3. List of projects of a project investigator in a department.

4. Monthly payments of a project.

S. Monthly receipts of a project.

6. Monthly balances of a project.

7. Projects for which advances were taken but not adjusted.

8. List of projects where there is no progress in terms of expenditure.

77

7.3 Design of the database

Specifications of the database as per RAISE:

The RAISE [Appendix A] specification of the above database is given below.

DATABASE =

Class
type

Kev, Data, Record, Person, Project, Payment, Receipt, Ttype ,Agency,

Table = Record-set,

Tset = Table-set, .

Trype-set = {Funding agency table, Project table, Voucher table,
Receipt table, Budget table }

value

end

Table_type : Table — Tiype,
List_project_investigator : Table — Person-set,
List_project_agency : Table — Project-set,
Project_investigator : Person — Project-set,
Project_monthly payment : Project — Payment,
Project_monthly_receipt : Project — Receipt,
Project_advances _not adjusted : Table — Project,

Project_no_progress : Table — Project

7.4 Implementation Details

Delphi’

s Desktop edition, which includes the Borland Database Engine (BDE).

provides a complete set of programming tools for many popular desktop database
systems such as dBase and Paradox. Delphi's database components put an object-

oriented face on database application development. Even more important, database

components standardize access to databases in a variety of formats. This mecans an

18

application can acoess data in dBasc files, Paradox tables, Microsoft Access and other
Open Database Connectivity (ODBC) systems, or if you have the Client/Server edition,
through remote SQL servers. Best of all, you can use all other Delphi components,
interface technigques, and Object Pascal programming in your database applications.

The components on the Data Access Palette provide access to databases and
objects in your application forms. You have to use these components as gateways to
database information. In most cases, we will need instances of the two components,
Table and Datasource. The other components perform lookups (Query), generate
reports via the Reportsmith program (Report), and perform global operations such as
updating all fields in matching records (BatchMove).

The above implementation had been performed by using Paradox. The first
component to use is Table, which creates a bridge between an application and a
database alias (here, Finance) as shown in the figure 7.1. In addition to a table, we’ll
need a DataSource object, which links data-aware controls to the database. The
DataSource object feeds data to and from other objects and the Table. The Table
object handles the actual transactions for the database. All of this takes place courtesy
of the BDE, which performs the real work of reading and writing data in whatever
format you have selected (here, Paradox). The data-aware controls might be
additionally linked to create interactive data-entry screens. For example, linking a
DBNavigator object to a DataSource, which is connected to a Table, creates a

browsing toolbar that you can use to view, edit, insert, and delete records displayed in

DBEdit and other control windows.

79

——

Alinses |
, @ Table object <:> DataSource
Finance object

Data-aware control objects
C user Interface

A table object forms a bridge between the application and a database,

identified by a registered alias. A DataSource object links the Table with

data-aware controls such as DBEdit and DBNavigator.

Fig. 7.1

7.5 Query Execution through hypertext

In order to execute the SQL queries on the database through hypertext, we
should have a component which takes care of this query execution. Delphi is providing

one such component called Query component. We use the following syntax for query

execution.

7.5.1 Syntax

We defined the following syntax for query execution on the database
application through hypertext.

<SQL Database_alias Query_file> Text_to_be_highlighted </SQL>

Now conaider the fullowing quary and ses how the quary is getting executed in

Deiphi [The browser’'s action corresponding to the above syntax is discussed in
chapter &)

1.5.2 A database query and its execution in Delphi
Query:

“List of project investigators in a department”

Execution procedure of the above query:

Following statements are responsible for executing the above query.

1. Queryl . SQL Clear,
2, Queryl.SQL Add('Select * from pro_tab where');
3. Queryl.SQL Add(Department = "+ department_name+ ™),
4. Query1.Open;
S. Queryl First;
6. While not Queryl EOF do
Begin

7. Listbox1 Items. Add(Query1 FieldByName('project_investigator’).asstring);
8. Queryl Next;

End,

Implications of the above statements:

1: Clears the contents of the SQL property. You should always call Clear before
specifying an SQL statement. Otherwise, Add or LoadFromFile append to the existing
statement.

2,3 : We can specify the text of the SQL statement in one of the following ways:

* Use the Add method of the SQL property. We are using the Add method in the
statement 2 and 3 to specify the SQL statements.

e Use the LoadFromFile method to assign the text in an SQL script file to the SQL
property.

4 : To execute an SQL statement at run time, issue either an Open or an ExecSQL

method. Open for SQL statements return a result set (the SELECT

statement). ExecSQL will be used for all other SQL statements, such as INSERT,
UPDATE, DELETE, and so on.

Queryl.Open; {Retums a result set}

z1

Query 1. KxecS3QL. {Doss not seturn & result set}

8 1 The First method moves the cursor to the first record in the active range of records
of the dataset.

& : This is a while loop checking for the EOF condition, EOF is a Boolean property
that indicates whether a dataset is known to be at its last row.

7 : ListBox1 .Items.Add will add the specified string in the ListBox. The FieldByName
method returns the TField with the name passed as the argument in FieldName. Here it
returns the field with the name project_investigator from the query component.

8 : The Next method moves the cursor forward by one record. If the cursor is already

on the last record, it does not move.

7.5.3 Anatomy of the syntax defined by us:
Now to understand the query execution through hypertext we have to

understand the syntax we specified earlier [7.5.1]. We have given the anatomy of

the syntax in the following.

Database_alias: This specifies the name of the database alias, on which you want to

execute your SQL queries. Alias is a name registered with the BDE (Borland Database
Engine) that hides actual dnives and pathnames that locate database files. Always use
aliases to refer to databases; never hard code file and pathnames in your applications.
By using aliases, you can move your database files to other locations — or transfer

them to a network — and all your applications will work without modifications.

Query_file: This file contains SQL statements. The query should be written in this file
using the SELECT statement only.

Text_to_be highlighted: This is the text which will act as a hyperlink for executing
the specified query.

7.5.4 General algorithm for execution of the queries through hypertext:
If OnClick event occurs on Text_to_be_highlighted then

1. Queryl.SQL Clear;

2. Queryl . DatabaseName = Database_alias;
3. Queryl SQL LoadFromFile(Query_file),
4. Queryl . Open;

8. Queryl Firat,
6. While nol Queryl EOF do
Begin
Access the result from the query component;
Show the resuls;
Query].Next;
End;

7.6 Conclusions:

In this chapter we developed a sample database for maintaining the research
grants for the university of Hyderabad. The queries on this database can be executed
through a hypertext document. The queries are specified in SQL. The specification for
the database has been given in RAISE specification language. This application has been
completely implemented using Delpht’s built in components. Delphi’s Table and
Datasource cornponen"cs are used in this application along with Query, ReportSmith
and BatchMove components as gateways to database information. Query component 1s

also used for execution of the SQL queries.

g3

CHAPTER 8

CONCLUSIONS
AND
FUTURE ENHANCEMENTS

8.1 Conclusions
Our objectives are to develop a HTML document editor, a HTML editor, a

browser and a database application.

Regarding the first objective of “developing a HTML document editor”, we
have implemenied the editor in such a way that the user can create multiple HTML
documents at a time. This is helpful to the users who are conversant with HTML.
Such a user can create HTML documents and use the browser to interpret them into a

hypertext document.

Regarding the second objective of “developing a HTML editor’, our
intention is to facilitate a naive user in building his hypertext documents easily. And
we have addressed this need by implementing this editor such that it works in two
operational modes. If the first operational mode is chosen then the user gets a cursory
idea of HTML while creating a HTML document. And in the second operational
mode, the user can create a hypertext document easily without knowing the HTML
syntax in WYSIWYG (What You See Is What You Get) mode.

Regarding the third objective of “developing a browser”, we have
implemented the browser in such a way that the browser program takes HTML
documents as the input and interprets them into a hypertext document. Thus, we have
achieved considerable success in facilitating the user ia building the hypertext
document, just by specifying the contents of the hypertext document in the HTML

syntax.

Lastly, concerning our fourth objective of “developing a database
application”, we have provided the user the support needed to know how the
database querics can also be executed through their hypertext documents by
incorporating our syntax for query execution in their HTML documents.

8.2 Future enhancements

The following are the future enhancements:

1. The browser program doesn’t acknowledge all the HTML tags. So operation
of those tags can be included in this program.

2. The above extension also applies to HTML editor too.

3. Support for hypermedia application development can be incorporated into
the HITML editor. Currently only hypertext is being supported.

4. Extension to the browser module to handle multimedia features.

8S

— , APPENDIX A

RAISE

1. Raise and its features

1.1 Why RAISE ?

Aim of RAISE is to develop notations, techniques and tools that would enable
industrial usage of formal methods in the construction of large software systems. It
provides a sound notation with a semantic and a proof system for capturing
requirements and expressing the functionality of software. RAISE aims at providing
the software industry with a mature means of developing software correct with respect

to its specifications.

1.2 Features of Raise :

RAISE stands for Rigorous Approach to Industrial Software Engineenng.
RAISE was the name of a CEC funded ESPRIT project, and is now the name for a
wide spectrum specification and design language, an associated method, and a
commercially available tool set. RAISE contains all features such as parameterizable
abstract datatypes, modularity, concurrency, non determinism, subtypes—for full
development from abstraction to programming languages like ADA and C++, and for

formal correctness proofs.

RAISE specification language (RSL) is useful for formal specification, design,
and development of software. RSL is the most versatile and comprehensive language
of its kind available today. RSL permits abstract, property-oriented specification of
sequential as well as concurrent systems. It also permits' specification and design of
large systems to be modularised and permits separate subsystems to be separately
developed. It permits low level operational designs to be expressed, to a level of detail
from which extraction of final code is straightforward i.e., most of the construction of
a system, from specification to design, may be done using one and the same

formalism, thus facllitating precise, mathematical arguments for oorrectness of
development steps and of other critical properties.

2. RAISE specifications
RAISE specification language includes the description of modules. In general a

module definition has the form :
id =
class
declaration 1

wheren >0 .
declaration n

end

A declaration begins with a keyword indicating the kind of declaration to
come, followed by one or more definitions of that kind, separated by commas. The
kind of declaration can be type declaration, value declaration, axiom declaration.

However axiom declaration can be omitted from the module definition.

Consider the following example to understand how a database can be modelled

by using the RSL module.

Example :
~ Consider the following requirements for an election database:

‘The database is supposed to support the administration of an election by

identifying all the people who are currently registered as voters’.

The database must provide the following functions:

1. register : Registers a person in the database.
2. check : Checks whether a person has been registered in the

database. .
3. number : Returns the number of people currently registered in the

database.

Parts of the informal requirements can be modalled by the following RSL module.
DATABASE =

Database = Person-set

value
empty : Database,
register : Person * Database —» Database,
check : Person * Database — Bool

axiom
empty = {},
for all p : Person, db : Database * register(p,db) ={p} u db,
for all p : Person, db : Database * check(p,db)= p e db

end

TYPE DECLARATION

A type is a collection of logically related values. Some types are already built-
in, i.e., pre-defined within RSL. An example of a built-in type is Nat, which contains
all the natural numbers represented by literals: 0,1,2. In addition to the built-in types
one is allowed to define one’s own types. Types can be named in typed declarations. A

type declaration has the form:

type
type_defination 1,

wheren 2 1.

type_defination n

In the above example specification there are two such definitions.
The first type definition has the form :
id
It defines the type Person as an abstract type. That is a type with no pre-defined
operators for generating and manipulating its values, except for = which compares two
values of the type to check whether they are equal.

The fuct that Person is defined as an abstract type reflects the requirements,
whets no information is given about how people are identified in terms of their name

and the like An abatract type is also referred to as sort and a definition of such a type
is referred to as a sort definition.

The next type definition, which has the form :
id = type_expr
is an abbreviation definition where the name /d is specified to be an abbreviation for the

type expression occurring on the right hand side of =.

A database is specified to be a set of people. The type operator -set when

applied to the type Person gives a new type containing as values all (finite) subsets of
the set of values in Person.

A type obtained by applying a type operator to one or more other types is
defined as compound type. Abstract types (like Persorn) are thus not compounds.

VALUE DECLARATION

Values can be named in value declarations . A value declaration has the form :
Value
Value definition 1,

Value definition n.

form = 1.

In the above example specification there are three such definitions.
A value definition has in the simplest case the form :
id : type_expr.
That is the identifier 7id is defined to represent a value within the type
represenied by the type expression. Such a value definition ‘defines the value id’
instead of saying that it “‘defines the identifier id to represent a value’.

The first value definition defines the constant value empty of the type
Database. This value simply represents the empty database.

The sscond value definition defines the function register that adds a person to
the database. Suppose we want to register the person Saha in & database db, then
registor(Saha, db) represents the database after having made the registration.

The type of register is represented by the type expression :
Person * Database — Database

The type operator ¢ (Cartesian product) is thus applied to the pair Person and
Database, and the type operator — (function space) is applied to the pair consisting of
the resulting Cartesian product and Database.

The Cartesian product of Person and Database is the type containing as values
all pairs (p,db) where p : Person and db : Database.

The third value definition defines the function check, that, when applied to a
person and a database, returns a Boolean value within the built-in type Bool. This type
contains two values represented by the literals true and false. The function is supposed

to return true if and only if the person is registered in the database.

AXIOM DECLARATIONS

Axioms express properties of value names. An axiom declaration thus has the

form :
axiom
value_expr_1,
value_expr_n.
forn =2 1.

In the above example there are three axioms.

The first axiom dafines the name empfy to represent the empty set { The type
of empty is Person-set) This axiom states that two value expressions are equivalent,
namely empty and { }.

The second axiom in the example expresses that the function register adds a
person p to a database db by making the set union of the database, which is a set, and

the singleton set containing the person.

The third axiom defines the function check. A person is registered if that person
belongs to the set representing the database.

The collection of axioms is complete in the sense that for each value identifier
the axioms state exactly what value with in its type each identifier represents. For
example empty is defined to be nothing but the empty set. Likewise, the function
register represents the one and only one function that adds its first argument to its

second argument.

Axioms do not, however, need not be complete. The ultimate extreme is the
situation where there are ne axioms at all, in which case the value identifier may

represent any value with in its type.

An identifier that is not completely specified through the axioms is said to be
under-specified. Axioms may be named for documentation purposes and for reference
in justifications. The axioms defining empty , register and check can for example be
written as follows, where axiom names bracketed with [and] precede the axioms:
axiom.

[empty_axiom]

empty ={},

[register_axiom]

for all p : person, db : Database . register(p,db) = { p } u db,
[check_axiom)

for all p : person ,db : database . check(p,db) p £ db.

The three axioms have been named empty axiom, register axiom and
check axiom. Axiom namings do not add to the properties of a specification .

The more generalised form of axiom declarstion now is
axiom
opt-axiom_naming 1 value expr 1,

Opt-axiom_naming n value_expr n.

[For more information on RAISE refer [3]]

_APPENDIX B

RESULTS

B.1 MY DIALOG

My dialog

! .
; Hypedik |projoct_Investigator |

i
-1 .
. Datahase_akas! Finance

-4

T——
) 4

! zﬂuewﬁe SushSubu.sq | |
i |V o X comcel |2 uas |

93

|
B.2 INFERFACE WINDOW OF HTML DOCUMENT EDITOR

HIMI Tcument Editor

File Edit Character

. MAIN.HTN el A [
HTNL> #§ KHTMLY ¢
HEAD> HEAD> [
TITLE> My Contents </TITLE> TITLE> My Text </TITLE>
/HEAD) | [</EEAD>
BODY> BODY>
y_Main Body. y Wonderful Text.
HREF="TEXT.hta"> Text /BODY>
HREF="GRAP.htn"> Graphics </A) JK/HTMLY
/BODY> g
/ALY [v
ey |
<HEAD> |
<TTTLE> My Graphics </TITLE>
{/HEAD? | .
d1 <0 - '
———~—{My Wonderful Graphics. :
</Bony> :
</ |
CITEE S LR SRR
94

B3 INTERFACFE WINDOW OF HTML EDITOR
(OPERATIONAL MODE 1)

= HTML Editor joperational mode 1 ol G
= Control Panel v]a
- HTML cade v|« | File Edit

 NEMEERRREE § v
| \Standard)

= EDTAca »]
= Page Link
Ester The Page Link

gei=] |

95

B.4 INTERFACE WINDOW OF HTML EDITOR
(OPERATIONAL MODE 2)

HIML Lditor [nprrational mode |

£ Cateqories NI

= SUSHISH
Document Body "

<ETEL> ._[
Document headings MY BODY. CHEAD>

Layoutelements) <TITLE>SUSBISE</TITL
Paragraphs y MY WONDERFUL </EEAD>

hics ' <BODY>
Grl'j:s 4 ?-E_}_(.T- ¥Y BODY.<BE>

Lists b, AND EY NONDERFUL
o GRAPHICS. <A EEEFT ™ TENT
<P
<Bi> ART </HI>
P>
& BREF=" " GRAFE
</BLY»
</ ETELY

s

i <4
(]

B.X8 BROWSER'S INPUT AND OUTPUT

Input :
<HTML>
<HEAD>
<TITLE> QUR PAGE (A SAMPLE OUTPUT) </TITLE>
</HEAD>
<BODY>
WE. ARE SUSHISH SAHA AND RAJA
SUBRAHMANYAM DEVELOPED THIS PROJECT.

WE ARE GOING TO JOIN AS ASSISTANT SYSTEM ANALYST IN
T.C.S.

THIS 1S THE SAMPLE OUTPUT BY OUR BROWSER MODULE.

THIS PAGE CONTAINS MAIN MODULES OF OUR PROJECT. THE
MODULES ARE:
 |
<pP>
<QlL>
<L1> HTML DOCUMENT EDITOR.
<L.1> HTML EDITOR.
<L.1> BROWSER. |
<L.1> DATABASE APPLICATION.

</BODY>
</HTML>

Qutput:

- WE SUSHISH SAHA AND RAJA SUBRAHMANYAM DEVELOPED THIS PROJECT.

OUR PAGE (A SAMPLE OUTPUT)

WE ARE GOING TO JOIN AS ASSISTANT SYSTEM ANALYST IN T.C.§

THIS IS THE SAMPLE OUTPUT BY OUR BROWSER MODULE

THIS PAGE CONTAINS MAIN MODULES OF OUR PROJECT THE MODULES ARE :

1. HTML DOCUMENT EDITOR.
2. HTML EDITOR.

3. BROWSER.

4. DATABASE APPLICATION.

M0

APPENDIX C

DELPHI's IDE

Delphi - Projectl

—

Search View Compile Run Options Tools Help

.f"= ‘;.—;_-

U

=[]

" \Standad {Addtonal {Daa Access AData Contools ADidlogs {oystem {VBX {amples |

Object Inspector

4

Form1: TFom1

e A a b &

AN it o |

S N

- 3
v
-
.=
= » V

I I T - - -

T TR 4 EI3 ™R XS L RS TTREE L RS

I T I P

P I e T I T

R = e B 2 @ a

L R]

I

L

I I e I I B S I B

—. EeTan s aw wly

AL L L e R S -1
; > ¥ ‘

a % s s mEe a nam

L LTI . .
P B T e
T L I B S S

. v =9 - & wm ®m & % W s W e g d PR E s s s s T RTR O
- - . - .“-...--.-‘--‘7.--‘----‘..1"..
- s . P % P e 2 R s Eee s EEIETANLTS e TN EA
e o e e R Y e i o L
B I I S
i R e S B e e B e e e il e
- " & - - = e - g . & ® - v = " u =
v aes e owwows e .
e e 2% e anema
AT e T A e
- : o I TP e e S S
; e meia e s drenaraes
» s+ . -.q"'ob_!'75'1'-_1!:-44-‘16'v»_‘410.a - .
S T e B R T e el T e
o"‘(-- “aaie B4 e A~ a e e B L I R .
R T T B R o i i o G
O O G = G Ly R PR PR 4 P
I A RE e T e
F S i
s a-w .
-7-‘I “- * w w - - - - =
-in e . e e T assams
e Y T
T eww o' w cnw o
R ey T
e s s s e vm amsmea e
T g PO PPE JCT- P, 0 S D e SR
> x ® & L R O . I S I W R I I T
R et ms ke ey AL S s s e ma N a e
gl TPt T Iy
Sl e A e e T T T e R | AR
I T I
- s 5 I A R I I e T U N R I
i R A e Ela e e e e WA w e e e e e A e
e L S S S S ey [e S
e . ».-'..o-.'-vo-..—;‘j-'--.’-.
avam .u‘\----ioc—---s§--.v---
5 T R e e R S e o M S s e
e~ ey
P SR B e T S e O S
e L g
- . % m S U U A PRSI R S A

REFERENCES

1. Foundations of Delphi Application develpoment

by
Tom Swan.

A Comdex computer publishing.
A division of Pustak Mahal.

2. Delphi Programming explorer

by
JEFF Duntemann,

Jim Mischel,
Don taylor.

A Comdex computer publishing,
A division of Pustak Mahal, CORIOLIS Group Books.

3. The Raise Specification language

by
The Raise language Group.

Prentice Hall.

4. HTML for Dummies

by
ED Tittel,

Steve James.

Comdex Computer publishing,
A division of Pustak Mahal.

100

