AN OBJECT ORIENTED APPROACH TO
LIBRARY INFORMATION SYSTEM
(O O LIS)

A PROJECT REPORT SUBMITTED IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR
THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE

BY

K. SESHAGIRI R. BALAJI

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES
SCHOOL OF MATHEMATICS & COMPUTER / INFORMATION SCIENCES

UNIVERSITY OF HYDERABAD
HYDERABAD - 300 134, INDIA
JANUARY 1993

CERTIFICATE

This 1s to certify that the project titled “An Object Onented
Approach to Library Information System (OOLIS)” submitted to the
school of Mathematics and Computer / Information sciences, in partial
fulfillment for the award of MASTER OF TECHNOLOGY degree in
COMPUTER SCIENCE, is the bonafide work of R.BALAJI and
K.SESHAGIRI under my guidance.

The matter embodied 1n this report is the original work of above
said and has not been submitted to any other University / Institution for

the award of any other degree / diploma.

J J .
el bl o

Dr. P.R.K. Murthy, Prof. A.K.Pujari,
Internal Guide Head

Reader, Dept. of Computer/ Dept.of Computer/
Information sciences, Information sciences,
Umiversity of Hyderabad., Unaversity of Hyderabad.

f -

-

-

Il

Prof. V.Kannan,

Dean, School of MCIS,
Umniversity of Hyderabad,
Hyderabad-500 134

ACKNOWLEDGEMENT

! .- Q‘J— - ey . &l ll —~ - ~ "' - - __i'- . "

n »w - T A T —.1.:_.1.:‘:&_3':. ,.._ﬁ:ﬁ ol] t— ._.___ el LY ey 1 l om woE_ T e
i W R H L BT ||' - || it lfw'é" j,fﬁ'{" 2k (A R ECORLS:
T ARG mamusScrpE-with .. 1111 B vwhoe pSuweld -over eviiv-meh of tixr picie
‘Setnaemi e “ntmber™of=- = painsiaking atienttor 1o -detaill - end " niade-¥

iy, Reader, H.C.U, who

mentation and suggested

Ip extended to us by Dr.
Prof. A.LK.Pujari, Head,
f time like to thank the
and A.l.Lab, HC.U. for

s project wouldn’t have

» Ms. ArunPriya for ably
on, Mr.D.S.Somayajulu,
atima,Mr.R.Narayanan,

ve were crossing troubled

R. Balaji
K. Seshagiri

netpfil suggestions.

Next our thanks go to Dr. A, S, Red
reviewed the design, its suitability for 1imple
many excellent improvements,

We acknowledge with reverence the he
V.Kannan, Dean , School of MCIS and
Dept.of CIS,. We would also at this point ¢
members of Indira Gandhi Memonal Library
providing invaluable help without which th
reached fruition.

Finally, we would place our gratitude tc
shepherding the manuscript through producti
Mr.V.Sreeram, Ms. N.Sudha, Ms.K.V.Pi
and OUR PARENTS who stood by us when

waters.

FOREWORD

As computer professionals, we strive to build systems that are
useful and that work, as software engincers, we are faced with the task
of creating complex systems in the presence of scarce computing and
human resources. Over the past several years, OO technology has
evolved 1n diverse segments of the computer science as means of
managing the complexity inherent in many different kinds of systems.
The object model has proven to be a very powerful and unifying
concept.

Object Oriented Programming (OQP) 1s the most dramatic
_innovation in software develgpment in the last decade. It ranks in

imRitinee: wathh the utgéfqmmm ot jiiee frvsit th eyl o]l Enmpaainse ati

rrrrrr

IR | ¥ *ﬂ;mdw thic prafaviinn ahiact nrigptad BorTaRei e thaa e tin e
infeomation sysienhas besrrmade. To
s 10 the werkings of 1) obtain am higher level of abstraction that appeal
human cognition,
t also the entire 2) make the reusability of not only the software b
desigr,
3) make the system be resilient to changes,
nformation system has an obiect onented approach to the library

been ventured upon.

ABSTRACT

Object Oriented Design is the cumrent trend in the design of
complex software systems. Many object oriented methodologies have
emerged, based on the same fundamental concepts and differing only in
stress on certain principles and heuristics during the development of the
System.

In this project the Library Information System 1s being captured
using an object model. The various components in this organisation
(Library) are thought of as objects, and an Object Oriented design is
evolved. For example, Book can be thought of as an object with its own
attributes like Number, Title, Author, Price etc.,and a Class Template
Books with Member Data and Functions can be defined. Further
Bormrowable Books, Reference Books, Periodicals, Backvolumes are all
basically Books, but have some extra features for themselves. To quote a
few, Borrowable Books can be borrowed for stipulated time period, have
fine for late returns or renewals, Reference Books cannot be taken out of
the library, have some fixed time penod for refermng them, Penodicals
have penodicity, subscription information assoctated with them
Backvolumes have a set of penodicals bound together and so on. So
Books class becomes a Base class and all other types of Books(
Borrowable/ Reference/ Periodicals/ Backvoelumes) are denved from this
Base class and add their own extensions. In this manner the vanous
objects in a typical library are identified and suitable class definitions
given. Then the relationship amongst these classes, how they interact
with each other by passing messages are established.

A Class diagram captunng all essental details 1s evolved, and

based upon this design implementation 1s done.

The various features of Object Oriented Programming(OOP), like
Data Hiding and Encapsulation, Inheritance, Containership, Reusability,
Polymorphism, Opecrator and Function overloading are all being
exploited in the design and implementation of the Object Oriented
Library Information System (OOLIS).

CONTENTYS

Chapter 1. Introduction
1.1 Why Design Methodologies ?
1.2 Why Object Oriented Design Methodologies ?
1.3 Overview of Booch Methodology of OOD.
1.4 Problem Definition.
1.5 Organization of the report.
Chapter 2, System study
2.1 System : Definition and Charactenstics.
2.2 Information System.
2.3 A Tnp into the World of Libranes.
Chapter 3. Design
3.1 Constructing Problem Domain Classes.
3.2 Class Diagram of the Design.
3.3 Descniption of the Design.
Chapter 4. Implementation
4.1 Concepts involved in Implementation.
4.2 Implementation Details.
Chapter 5. Conclusions
5.1 Observations.
5.2 Limitations.

5.3 Future.

Appendix A - Bibliography.

1-2
2-4
4 -7
8-8
9-9

10-10
10-11
12 - 19

20-29
30-30
31 - 38

39 - 55
56 - 99

100 - 100
100 - 101
101 - 101

Chapter 1

INTRODUCTION

1.1 Why design methodologies 7

What is design ?

In sunple terms, design is the disciplined approach we use to
invent a solutton for some problem, thus prowviding a path from
requirements to implementation.

As Stroustrup suggests, “the purpose of design is to create a clean
and relatively simple internal structure, some times also called an
architecture™ [3].

Design involves balancing a set of competing requirements. The
products of design are models that enable us to reason about our

structure, make trade-offs when requirements conflict and 1 general,

nemicacaddnocnnnt fosenaracnizgaca.

What.is methodology ?

A method 1s a disciplined process for generation of a set of

maodels that describe wvarious aspects of a software svstem under
development, using some well defined notanon. A methodology 1s a
collection of methods applied across the software development hife cycle
and unified by some general approach.

If a project is small, or non-critical, or say both., a methodology

may not be important. But software is being used increasingly in

applications(generally very big) where reliability and safety are
essential.

We can systematically and predictably artive at solutions that are
pragmatic, cost-effective, and timely to real world problems only if we

follow certain set of well defined and tested techniques.

1.2 Why Object Oriented design methodologies 7

"Catastrophy is a friend of mine " - Any complex system.

Complexity:

The challenge of developing industrial strength software,
applications that exhibit a very rich set of behaviors as, for example,
system that have to maintain integrity of hundreds of thousands of
records of information while allowing concurrent updates and quernes
for command and control of real world entities, such as the air or rail
traffic.

The unique and distinguishing characteristics of industrial
strength software is that it is intensely difficult, if not impossible for the
individual developers to comprehend all the subtleties of the design.
Plainly, Complexity i1s an essential property of all large software
systems. Complexity of such systeins exceed the human intellectual
capacity.

As we first begin to analyze a complex software system, we find
many parts that must interact in a mulaitude of intricate ways with little
perceptible commonality among either part or their interactions we
work. To bring organizaton to the complexity through the process of
design, we must think about many things at once, thus complexity of
software system we are asked to develop is increased, yet there are basic

limits upon our ability to cope with this complexity.

How to manage the complexity ?

It is natural for us to look how the problems we face, are solved

by others or by nature itself.
"Divide et impera "' - classic principle.

As the above principle advocates if you can't face problems in the
complete form, divide and conquer 1t

We view the world as a set of autonomous agents(or objects) that
collaborate to perform some higher level of behavior. Each object in
solution embodies its own unique behavior and each one models some
object in the real world. From this perspective, an object is simply a

.. ... tanmble entitv which exhihits some well defined behavior.__ e e

t Oriented design: Benefits of Objec
nalogy between objects 1n object onented design and The direct &
blem domain result in systems that are easier to the objects 1n pre
makes the design more intuitive and simplifies understand. This
- requirements and software code, traceablity betweer
1 approach results 1n software that 15 easily extended, e (Object Oniente:
aintained. modified and or
d decomposition yields smaller syvstems through the e Object Onernte
n mechanisms thus providing an imporant ecoromy use of commic
of expression.
? systems are more restizent to changes and thus are ¢ Object Oriente
over a pennod of time because their design 1s based able to evolve

rmediate forms. upon staple intt

o Object Onented decomposition greatly reduces the nisk of building
complete software systern because they are designed to evolve

increasingly from smaller system in which already have confidence.

1.3 Overview of Booch methodology of OOD
Booch methodology

Process Design:

Clean internal structure i1s essential to construct a system that is
understandable, can be extended, reorganized, maintainable and testable.

An iIterative and incremental development life cycle 1s the
antithesis of traditional waterfall life cyvcle, and so represent neither a
strictly top down nor a bottom up process

Object Ornented development is neither strictly top down nor
strictly bottom up, but is round trip gestalt design which emphasizes the
incremental iterative development of the system through the retirement

of daifferant 1o L;i!_l and Y‘}'IL-E’ELAI vaesws of the Sstem 2 A whole Round-

tre gt ﬁtﬁl“@i‘f""‘;f“ FTthy proosss O Uivecr €3nennadidesazm

Eooch s sslnctant fo piescoite: 2 fized erdermng of phases for
object onenied design: Kather he recomssends. that the amalyst work
iteratively, and incrementally aggment formal diagram withr informal
techniques as appropriawe to the problem at hand. Nevertheless, Booch
delineates four steps that must be performed durning the cousse of object
onented design.

In this context, Rumbaugh remarks that = when you think that the
design 1s complete at one level of abstraction. add more details and flesh
at the design further at a finer level of details. You may find that new
operations and attributes must be added to classes and possibly new
classes will be idenufied”.[14]

The development process:

The different phases of the soiftware project, such as design,

implementation and testing can be strictly separated.

1. Identify the classes and objects at a given level of abstraction.

2. ldentify the semantics of these classes and objects.

3. Identify the relationship among these classes and objects.

4. Specify the interface and then the implementation of the

classes and objects.
Identify the classes and objects at a given level of abstraction:
Purpose:

The purpose of identifying classes and objects is to establish the
boundaries of the problem . This activity is the first step in devising an
object oriented decomposition of the system under the development.

As a part of the analysis we apply this step to discover those
abstraction that form the vocabulary of the problem domain and by so
doing we begin to constrain our problem by what 1s what 1s not of
interest. As part of design we apply this step to invent new abstractions
that form elements of lower level abstraction that we can use to
construct high level ones and to discover commonality among existing
abstractions, which we can exploit 1 order to simplify the system’s
architecture.

Some of the classes and objects we 1dentify early in the life cycle
will be wrong , but that 1s not necessarily a bad thing. As we learm more
about the problem, we will probably change the boundanes of certain
abstracnons by allocating responsibilittes, c¢ombining similar
abstractions, and dividing larger abstracnons i1nto groups of

collaborating ones.

Identifying the semantics of classes and objects:

Purpose:

The purpose of 1dentifying the semantics of classes and objects 1s
to establish the behavior and attributes of each abstraction identified 1n
the previous phase. Here we refine our candidate abstractions through an
intelligent and measurable distnbution of responsibilities.

As part of analysis we apply this step to allocate the
responsibilities for different system behaviors. As part of design, we
apply this step to achieve a clear separation of concerns among the
part of our solution. As implementation proceeds, we move from free
form descriptions of roles and responsibilities to specifying a concrete
protocol for each abstraction.

Early 1in the development process, we may specify the semantics
of classes and objects by wnting the responsibilities for each
abstraction in free form text. As we refine the protocol of each
abstraction, we can 1mtroduce finite state machine for certain classes,
especially for those that involve event dnven state ordered behawvior so

as to capture the dynamic semantics of the protocols.

Identifying the relationships among classes and objects:
Purpose:

The purpose of identufying the relationships among classes
and objects 1s to sohdity the boundanes , and to recognize the
collaborations with each other abstractions identified earlier.

As part of analysis we apply this step to specify the
association among classes and objects. As part of design, we apply this
step to specify the collaborations that form the mechanisms of our
architecture, as well as the higher level clustening of classes into
categories and modules into subsystems. As implementation proceeds,
we refine relationships such as association into more implementation

oriented relatonship like 1instantiation and use.

Implementing classes and objects:
Purposc:

During analysis, the purpose of implementing classes and objects
is to provide a refinement of existing abstraction, sufficient to umvies]
classes and objects at the next level of abstractions. During design the
purpose of this activity i1s to create tangible representations of our
abstractions.

Primary activity associated with this step is the selection of the
structure and algonthm that provide the semantics of the abstraction we
identified earlier. We may capture our analysis and design decisions
regarding these classes and objects and their collaborating according to
two dimensions: their logical/physical view, and their siatic / dynamic
vView.,

Both dimensions are necessary to specify the structure and
behavior of on object oriented system.

Logical view of a system descnibe the existence and meaning of
the key abstraction and mechanism that form the problem space or that
define the system’s architecture. The physical/ model of a system
describes the concrete software and hardware composition of the
system’s context of implementation.

Events happen dynamically in all software intensive system.
Objects are created and destroyed, objects send messages to one another
in an orderly fashion and in some systems, external tripger operations
upon certain objects. In object onented development, we express the
dynamic semantics of a problem or its tmplementation in this dynamic

view of the system.

1.4 Problem Definition

The aim of this project is to capture the Library Information
System using an Object model. The various objects present in LIS are
identified and the relationships amongst them established using Booch
methodology of Object Oniented Design.

The end result 1s to develop a software system satisfying and

solving the operations of a typical Library.

End users:

Library personnel and the users of library service.

Environment:

Implementation is done using Borland C++ , version 3.1.

Assumplion:
Reader 1s familiar with Object-Oriented Methodology. For an
exhaustive treatment of Object Onented concepts, please refer to

Bibliography.

Scope:
Vast scope 1s present to extend the project. As the Design is given
1t can be refined, redefined etc., Windows interface can be given for

making the software user friendly.

1.5 Organization of the report

Organization of the report is as follows,

Chapter 1 Introduction : In this chapter, need for design
methodologies, reason for object oriented approach, overview of Booch
methodology, its advantages are all presented. Finally the problem 1is
defined.

Chapter 2 System study : This chapter goes into the details of a typical
hbrary information system and the essential features that are to be

captured in the design.

Chapter 3 Design : This chapter starts with an overview of the
construction of the problem domain classes. Then the design itself is
presented as a class diagram, after which a descriptive explanation of the

design follows.

Chapter 4 Implementation : This chapter gives the essential details
about the concepts involved 1 the Implementation and the

implementation 1tself.

Chapter 5 Conclusions : This chapter gives highlights about the

observations, limitations and future scope of the system.

At the end Bibliography 1s given as Appendix

Chapter 2

SYSTEM STUDY

2.1 Systemn

Definition:

In simple words “System” is defined as, “collection of inter-
related elements which work together to achieve a common

goal”.[21]

Characteristics:

A System mainly consists of three components. They are the
input,output and the process. The System i1s supphied with data and
instructions known as the input. Then it processes the information to
produce the output. Hence the system may also be considered as a set of

elements responding to produce output.

SR Lo o) T T PRARTS BRPRAE 0o T) | [et s (% it R TETM | tewrt bt Rk abey v vraa X tan ooy INNIIR Rl I N h DI A RV R T 01 B1
1 slement STitie=systent beongt 1o the-envTrenmeent. . ’ (S TIOES
‘ormation System 2.2In
An informanon system is a set of organized procedures that,

xecuted, provide the necessany information for decision making when ¢
contro] of the orgamization. Informaton System is one that and/or
ses 1nput, maintains files of data and produces information, proces

and other output. Teports

Information systemn consist of subsystems, including hardware,
software and data storage for files and databases. The particular set of
subsystems wused - the specific equipments, programs, files and

procedures - constitutes an information systems application.

Types of information systems :
There are several different types of information systems to meet a

variety of needs. Some of them are

Transaction Processing System:
The most fundamental computer based information system
pertains to the processing of business transactions. Transaction

processing, svstems (TPS) are. aimed_at imnroving, the rontine business..

” or activity that affoets the srganizationn
Management Information System:
TR o1 Sl -3 U , T‘““““““' - o '"]‘“““" o T Ad I ETE T %f%’iﬁ?:iﬁiiéi—- E?}E:E'_?:’iﬁzﬁg;:f;:ﬂll;ff@w., . n
iir decrsionr - Managzroent Infoumatione Sysicme (M15) 23s5isi managens
2 result of making and problemr soiving. They draw-on data stored as
Cn. iransactror processing, dutthey mmay also use other informat:
Decision Support system:

) must make Decision Suppor: Systems (DSS) assist managers wh
tructured or decisions that are not highly structured, cften called uns
ured if thers semi-structured decisions. A decision 1s considered unstruct
| the factors are no clear procedures for making the decision and :f not &l
advance. A to be considered 1in the decision can be readily 1dentfied in
nining what key factor in the use of Decision support svstem is deten

information 1s needed.

2.3 A trip into the world of libraries

Library i1s a social institution charged with the most enviable

function of dispensing knowledge to the 1gnorant and the informed alike.

“vidya dan” ,1.e.

imparting of knowledge has been considered as the

most sacred task in ancient India and Manu rightly allotted this job to

s W P L RTINS SO TS W p (At e s ot emnen N du e T beadie D A 1S e
IIIIIIIIIIIIIII|||I||J||If[ﬁllﬂff|I|I|I|r|l|l:|l|l|l|l|I|'|||||I|IJIIul|I|IJI|I1I|I|I1I|IJI||1'1Il!g,ll(|r|l|du::|mrl”mmm‘ﬂ o Mt \\-IIIIIIIIIIIEIIIIJIIIIIIlllllllllllllllllllll'Ill[lllm'l'I'I'I'I'I'I'Ilr'l'I'E;:JIIlllllILI:'I'I'T'IJI'I'I'I'Iff|'|'|'|'|'|'|'[|'|'|'[f|'|'|'|'|'|'|'1'1'ii|I1I|I|I|I|I|I|I|IIL|IW|I|I|I|IIllll|I|I|||||||||||I|”LL|I|IJI|I|I|I|I||||lIlIiillillllllllllllll|I|I|I|IJI|I|I| IIIIIIII Jl
Al rSreationcieE. f | || Tyl s s S et afx‘**-«ﬁfrm
Il I ||||||||||||||||| IHHHHHH\HHHHH\HH ‘ UW AT ||||¥||||||||,!||!||||lHl!!HH.HH!HJ|||_,!,,_,|1u&|||1||||,|||@|,|L|||
ISsr=earar Atreiion)| Il Hl|i=Erest wii- T 4N Ef‘ﬁﬁ‘ser iarpisooial uisiuiss et d ymidera
M ||||||||| |||

HHHHHH“”| """ hrLéLﬁFT!' '|t |i|||ii i

I ||||||||||||||||||||||||||||||||||J|||||||||||||||||||||||||||||||||| ‘HH A M
_______________________ I P L L L Y Ty Ay gy
!!!!!!!!%‘E%guupuu |§¢WQFI! |||||i||||||||||||||||||||||||||||||”” Aﬁ! | III'IIIIII IFIIQHIIII I ||| ||||||||||||||||||| Hllllkllltllssﬂllllﬁlﬁ?ll"f'll‘:'lﬁlg
Eﬁmﬁ|;'%ﬁ»"&iimﬁiﬁ;;;'..;;;‘?;;;hﬁ..|||l.””..m”m”miim sinofikNOWeden lﬁﬁnﬁ?mﬁﬁumu Ilte consetya
T nimi i‘fTirﬁ'IHﬁrm...........iim;;;;mm:u:m:;;éééééééé;ééééééééééééi‘;‘;‘;‘;‘;‘;‘;‘i‘i‘i‘i‘i‘i‘ii‘i‘iiiiiiiiiiiiiiiiiii

into three important

- divided into sections.

Departments of library:

The entire lhibrary can be broadly fit
departments[17]). each of which can furthier be
They are
Technical department

Acquisition section

Processing section

Classification
Cataloguing

Penodicals section
Service department

Circulanon section

Reference section

Miscellaneous department

Personnel Administration section

Finance & Budgeting section

2.3.1 Technical department

s

This section, generally does not deal with the reading public
directly. Its work is properly described as “ behind the scene work™. The
staff employed here are engaged in processing the books and other
kindred materials by using accepted techniques such as accessioning,

classifying and cataloguing so that these are used by the public.

Acquisition Section:

Knowledge 1s power and libraries are the reservoirs of this power.
This power is contained in Books in the form of kinetic power.
"Acquisition of Books 1s a prerequisite for a library”.

Acquisition 1s so unportant that it should be organized in such a
manner that the reading material of maximum utility 1s acquired without
any delay and at a minumum cost. This can be ensured only if a suitable
section 1s organized and the latest Acquisition techniques are used. Some

of the functions of the Acquisition Section are the

1. Maintenance and use of bibliographies aids peculiar to

acquisition work (e.g. Dealers Catalogues, Trade Lists etc.,).

¥

o - :_ _ T W, o . - .-‘-,-".r_.- - —— vl s Y - T, A T s -2 ol iy T ;; -
2 dlasprerancr of L2nder Fibes and adffverr eocesds foeemiig] S

J

{

. Makang up, Despatchmg: and Filing of orders for Boeks .

id

. Recewpt, Handhing and Inspecthion of armvals

W b

. Preparation of Blls for paymeni, Beok Keepimg and other
activities
6. Imforming individuals regarding the purchase of Books and s

status.

7. Following up on items not promptly recerved.

Thus Acquisition Section assumes a pivotal position in the

Organization of Libranes.

Processing Section:
Classification:

Classification is the foundation of librarianship. Classification, in
common parlance means arrangement. To state 1t more clearly it means
"to bring order out of chaos”. If a permanent order of classification of
books i1s not brought in to the library, the time spent in arranging,
rearranging ,dearranging will be so much that the readers will become
sore¢ about the libraries and will begin to detest the library service.
Vanous classificanion schemes have been devised each of which has its

AT YR . B CHET

. Dewey Decimal Classification by Melvil Dewey.

. Unmiversal Decimal Classification .

. Library of Congress Classification.

. Bibliographic Classification by H E Biiss

. Rider's International Classification by Fremont Rider.

The Classifying process goes as beiow.
1. Duplicate Checking.
2. Deterrmining Specific Subject of the books.

L

. Allotting Class numbers by refernng to the Classification
Schedule.

4. Assigming Book Numbers

5. Assigning Subject Headings.

6. Checking of Class Numbers and Subject Headings by the

Chuef Classifier.
7. Maintenance of Staff Manual.

Cataloguing:

Classification determines the place of a Book on the Shelves.
Physically, Book can be placed only at one place according to Subject
contents of the Book, but the readers seek the Book through various
approaches such as Author, Title, Senies and other Collaborators like
Translators, Editors etc.,. Classification 1s not capable of fulfilling these
varied approaches of the readers. The catalogue comes to the rescue of
the readers.

Catalogue 1s a guide to the Blind Alley. As a City without a map
is difficult to be known about, so is a library without a Catalogue. It is
needless to emphasize the importance of a Catalogue because without it
the whole purpose of libraries will be lost. Books will not be put to as

best use as s desirable.

Cataloguing Procedure:
1. Preparation of Main entry.
2. Preparation of Shelf list.

. LLabel Pasting.

tad

. Label Writing and assigning location marks.

Checking of the Catalogue cards by the Chief Cataloguer
Alphabetizanon of cards.

. Card Filing.

IS IC SV I

Maintenance of Staff Manual and Authonny files.

Periodicals Section:
The Peniodical Section deals with the Selection, Procuring and

Maintenance of Penodicals and Joumnals. Perniodicals can be

distinguished amonpg themselves on the grounds of their literary contents

or their sponsoring bodies. Keeping 1n view the former cntenon

periodicals may be classified as under:-
v .1 ' Those intended to foster the interest of Knowledge .
i=isTun O i 7, Those rdsmgeat
zociety.

S SN o tehe S ety
Sirresis{n ETIade. Tod

entures.(Intended for popular appeal} _ 3. Money making v
. According to the
broad division of Penodic:

econd criterion and the Bntish practice. the
. The Publications

<

1ls may-be as under:-
of Societies and other organizations. |
_ 2. House Journals.
3. The independent
Magazines, Peniod
intervals. Taeir frequenc

Periodicals.
Weekly, Fortnightly, Mc

icals and Journals are published at wvarious

nthly, Bi-Monthly, Quarterly, Half-Yearly,
Annual or uregular.
Perniodicals and Ma

1. Subscriptior

y of publication may be Daily, Bi-weekly,

cazines can be acquired by,
iember of Socieues and learmed Institutions. 2. By becoming a n
3. By Gift.
4. By exchange.

Before procuning P

eriodicals and Magazines the types of users of
the library are iaken intc a

ccount and based upon it the seiection 1s done.
2.3.2 Service Departmen

Circulation Section:

"Of all the library
use represents by far the 3

actnvities, the Circuiation of Books for home
Following are the importa

najor Public Sernvice rendered by libraryv™(16].

1t Jobs of Circulation Section of libraries.

1. Registration of Members.
. Lending of Books.
. Charging of Overdues.
. Reservation of Books.

. Renewal of Books.

. Maintenance of Statistics.

2
3
4
5
6. Maintenance of Records.
7
8. Lending of Books on Inter Library Loan Basis.
9

. Miscellaneous jobs.

Thus the Circulation Section can be thought of as the heart of

library service.
Reference Section:

“"Reference is to library service as intelligence is to military service”

Reference Section 1s hub of all the activittes of the hbrany.

Reference Service 1s " A Svympathetic and informed personal aid in

interpreting library collection for study and research”™ William Wamer
Bishop[24] defines reference work as " the service rendered by the
librarian in aid of some sort of study. lt 15 not the study itselt-thar is

done by the reader, but the help given to the reader engaged in research

et 221 aEEaE il niime e o aadGiEEe i LI o S R N ks

}}LUHE_\H_uHH_\H_Uwﬂ\ﬂ__\\\H\\H\\\H\\H\HU\HULU\\HHH\HHHH\HHHH MUH\HH\HHHH WL UJ\\ﬂwHHHH\HHHHJHH
R L PO 1 kgmﬂ—; “Sarsiae sho
ﬂl@ A AR L_ HHHHHHHH (L] L Q,UJ_ I IPMML

adCes STty S TN RS, TJF.L\ PGl aﬁli‘f“‘%é‘;‘ﬁilﬁllwﬁﬂ»lg
pdll cllancous' Depantmen

Even though the following sections are termed the Miscellaneous

they also form complimentary part of the hibrary organization

Personnel Administration Section:

It 1s men who run an organization. It i1s they who convert
materials into salable commodities. The energies of these men are to be
channeled in right directions. Personnel administration implies a process
of getting the best out of the employees of an organization by means of
judicious selection. tactfully dealing and by selecting their replacement,
if necessary. The functions of personnel management are

1. Job analysis and Evolution
. Staffing
. Recruitment and selection
. Tests
. Placement

- Induction

~ G b A W N

. Training

Financial Section:

Finance 1s the motive power. libranes, unhke other state or
central govt. and/or local govt. departments, are not revenue fetching
agencics, Rather, on the otherhand, these are spending 1nstitutions,
because these partake the nature of nation-building departments. Further
libraries are growing organizations, munphies that, the books, readers,
staff, buildings and fumiture grow day by dayv.

So to effectively manage such an organism the finance secnon
should identify, the various incomes and expenditure and to maintain an
equilibrium among them.

The main source of the public library revenues are

| Subscriptions
2. Endowments and private benefactions.
3. Library rates
4, Government grants.
5. (nfts.
6. Fees and Fnes.
The expenditure 15 divided as under
. Salaries and Wages.
2. Books.
3. Pentodicals and News papers.
4. Binding.
5. Heating and Lighting efc ,
6. Rents, Loans, Insurances etc.,

7.0ther Miscellaneous charges ,

The above chapter gives us the gist of a typical library and the

essential details that are to be captured in the design

Chapter 3

DESIGN

“Great designs come from great designers, not from great tools”

Overview:
To achieve the aim described in the earlier chapter, as in the case
of any system, initially problem domain classes are constructed by

analyzing the concepts advocated by the methodology.

3.1 Constructing Problem Domain Classes

Introduction

Problem Domain Classes represent the abstractions and relations
among these abstractions using which designer describes the static
aspects of his design e.g. class, class utility, object inhentance etc.,

As explained earlier, the problem domain classes for this project
are nothing but absiractions and relations among these abstractions,
Structure of these Classes consist of those details that are captured from
the designer as suggested by the methodology 1n not so exact manner,
Functionality of those classes include wavs to get data trom the user,
ways to validate this information, ways to present themselves back to the
user.

Here, how the structure of these classes 15 established 1s

descnbed,

3.1.1 Elements of the Object model:

Each of the stvles of programming ‘design 1s based upon its own
conceptual framework. For all things object-onented, the conceptual
frame work 1s the object model The elements of Objecr AMode! are

descnibed here.

eAbstraction, Encapsulation and Hierarchy:

edbstraction -

One of the fundamental ways with which humans cope up with
complexity is through abstractions. Hoare suggests that " Abstractions
anse from a recognition of similarities between certain objects,
situations or processes.in the real world, and the decision to concentrate
upon these similarities and to ignore for the time being the
differences".[13]

An abstraction focuses on the outside view of an object and so
serves to separate an object’s essential behavior from its implementation.

Some kind of abstractions observed are
Entiry abstraciion:

An object that represents a useful model of a problem domain or
solution domain entity.
Action abstraction:

An object that provides a generalized set of operations, all of
which perform the same kind of function

We strive to build entity abstractions, because they directly

ey ARy 1L Iy Ry N TeF .
| 01 ER3 SN i EChan = 22 6) [DES R B

==,

LB PTG TR G
o CGEE G HGRE e

Aostrachon and - eneapsulanon are -<omplizientans - CcoRcepts._ ..
Abstracuon: focuses upon the obsen able behaviom of danobject whereas
encapsulation focuses upon the' implementation that gives nse to this
behaviour. While abstrachions help people to-think about what thev are
doing, encapsulation allows program changes to be rehiably made waih
limated effort.

Liskov remarks that "for abstractions to work implementations

must be encapsulated”[15]. In practice. this means that each class must

have two parts one interface and another implementation. The interface
of a class captures only its outside view, encompassing our abstractions
of the behaviour common to all instances of the class, the
implementation of the class comprises the representation of the
abstraction as well as the mechanisms that achieve the desired behavior.
o Hierarchy:

We may find many abstractions in problem domain more than
what we can comprehend at one time. A set of abstractions often forms a
hierarchy, and by identifying these hierarchies in our design, we greatly
simplify the understanding of the problem.

The above three principles results in to abstractions like classes.

objects and relations among the abstractions.

3.1.2 Fundamental Principles:

3.1.2.1 Object:

In simpler terms, Object can be defined as “A 7angible entity that
exhibits some well-defined behavior™. But real world objecis are not the
only kind of objects that are of interest to us dunng the software
development. Other important kinds of objects are inventions of the
design process whose collaborations with other such objects serve as the
mechanisms that provide some higher level behaviour

Objects possess starfe which reflects values of data abstracted at
that particular instant and befravior which 1s the role of the object
Behavior is how and Object acts and reacts. in terms of 1ts state changes

and message passing.,

Life-span of an object
The life-time of an Object extends from the time 1t 15 first created

until that space is reclaimed. But certain objects mayv be persisient

meaninmg that their lifetime transcends the life time of the program that
created them.
As we 1dentify many objects whose structure and functionality

are alike, we characterize the objects with its class.

Relationship among Objects:

These relationships are typical client/server relationships.
Objects communicate with one and other by sending/receiving messages.
The messages that one object sends to another object depends upon the
methods accessible to 1ts class,

Relation 1s characterized by the set of messages attached to 1t.

Visibility of objects across a link:

Consider two objects A and B with a link between the two.
Inorder for A to send message to B, B must be visible to A in some
manner. Visibility of an object across a link may be one of the following

four.

(Supplicr object 1s the object whose services arc utilised. Client
Object 1s the object using the services.)
o The Supplier object 1s global to the Client.
e The Supplicr object is a parameter to some operation of the Jiens.
e The Supplicr object 15 a part of the Clivnr object.

o The Supplier object is a locally declared object Iin some operation of
the Cien:.

Syvnchronization:

Whenever one object passes a message to another across a link,
the two objects are said to be synchronized For objects 1n a completely

sequential applicaton, this synchromzation is usually accomplished by

simplc method invocation. However in the presence of multiple threads
of control, objects require more sophisticated message passing in order
to deal with the problem of mutual exclusion that can occur in the
concurrent systems.

Synchronization details are just captured, no checks are
employed. To employ checks and facilitate other editing{delete, move...)

features, objects should have references to object-object relationships.

Rekrnce

Some of the checks that may be performed in an object diagram

where the designer describes messages flow among the objects are

o If an object that is created, belongs to a valid class(in the class
diagram,that class should be deleted during the refinement of the
process).

¢ When an object A sends a message to B, that corresponding
message should be 1n B's class and 15 accessible to A's class.

e If the persistence 1s compatible with the class persistence.

e If objects are without relationships{completeness check)

3.1.2.2 Class:

Class 15 an Abstracuon over objecis,’the very essence’” of an
object. While an individual object 15 a concrete entity that performs
some role in the overall svstem, the class captures the structure and

behavior common to all related objects.

freerface of a class provide its outside view and therefore
emphasizes the abstraction while hiding its structure and its behavior.
This interface primarily consists of the declaration of all the operations
applicable to instances of this class, but may also include declaration of
constants, variable and exceptions as needed to complete the abstraction.

The implementarion of a class primarily consists of the
implementation of all the operations defined in the interface of the class.

Thus fundamentally the class should capture the above ideas
through information about data and methods together with cardinality,
constraints, nature of access for other classes. As design evolves this can
be refined by adding details hike concurrency, space complexity.

The methods that are captured as part of semantics of the class
are designed to capture the usual details like parameters(formal, retum).
advanced details like time complexity, space complexity etc.,

“Class’ object contains data and method objects as shown

Class utility:

Class utility denote collection of free subprograms(non member
functions 1n the system--legacy from the procedural programming stvle)
together with some common data members. Free subprograms provide

some common algorithmic senvices built upon two disparate lower-level

abstractions. Rather than associating these operations with a higher-level
class, we choose to collect them in a class utility to increase their chance

of reuse, because this provides a finer granulanty of abstraction.

Relationships among the classes:

Classes are usually related in a vanety of 1nteresting ways,
forming the class structure of our design. We establish relationships
between two classes for one of the reasons
e A class relationship might indicate some sort of shanng.

e A class relationship might indicate some kind of semantic condition.

1. Association:

Association denotes a semantic dependency and does not siate
either the direction or the exact way 1n which one class relates 10
another. As we continue our design and ymplementation, we will ofien

refine these weak associations by tuming them into one of the other

more concrete class relationships. Muluplicity is attached at each end to
signify the cardinality across an association. This 1s allowed from

class/class utility to class/class utility.

2. Inheritance:
Simply stated, inherntance is a relationship among classes,
wherein one class shares the structure and/or behaviour defined in one or

more classes.

3. Aggregation(Has):
An aggregation relationship corresponds to whole or part
hierarchy. As 1t 1s containment relattonship this is allowed from

class/class utility to class.

4, Using:

A using relationship among classes parallels the peer-to-peer
links among the corresponding instances of these classes. whereas an
association denotes a bi-directional semantic connection. A using
relation is one possible refinement of an association. Typically, a using
relation manifests itselt by the implementation of some operation

declarations This i1s allowed from class utility'class to ¢lass ¢lass nnhity

5. Instantiation:
This cormresponds to template faciliny in CU--. A parametensed

class cannot have nstances unless we first tnstantiate 1t

6. Meta:
Meta class 15 a class whose instances are themselves classes.

Robson observes © In a svstem under development a class provides an

imterface for the programmer to interface with the definition of objects

7181
All the above relations share some common properties like,

relations are between some entities, are attached with some

responsibilities etc.,

RELATION

ASSOCIATION

META

HAS

Class Categories:

A class category 15 an agpgregate contaiming classes and other
class categories. Each class n the system rmust Iine 1 a single class
category or at the top level of a svstem. Unlike class, catepony does not
directly contribute state or operation to the model, 1t dees so only
indirectly through its contained classes

Class categones serve to pamition the logical model of the
system. These categones are also known as subsvstems, subject areas,
modules in other methodologies other than Booch

Some of the classes enclosed by a class category mas be public,

meaning that they are exported from the category and hence usable

outside the class category. Other classes may be private. meaning that
they are not usable by any other class outside the category.

But sometimes, a category containing some classes may need to
be used by many categonies in the system(E.g., applicanon framework

classes). To denote that, global attnbute 1s useful.

Relationships Among Categories:

Using:

. 1f one gr. more_class/class nnlity in_a cateeone uses one or more

ll]:l J-?"th! FI;IJ:|J|lli;ﬁﬁil[iLﬁirliiii!![Iihiiliiil-lIl-;Ii-jﬁ[-::-IIIIIIIIIIIIIIIIIIIIIII.IIIIIIIII;L;U;!IIILLLIIIIIIIIIIIIIIIIII||| .E E{i{:;ﬁfjiiﬁhim Wt 1: Lﬁl:yltrlclyl:lqlillrlrﬂéll ﬁjﬁﬂﬂﬁiﬁiii@ﬁﬂll@iﬂﬂ llTlﬂllrlTlllmluill m“n:
e T T |'|'|'|' / ﬁ/wmfﬂﬂeg qmrrm_ffr_r_r_fmrrmrrmrmrrmmmmrmummr il
| |

.. II_.............I [AR R AR AR AANR
””” [t e TN MR
[1TH "
)hi'l'hiiuiiiiiiii III

il
| il
ﬂu ‘| | |
e G—G—— |
i IL&ij-éié;.i;if!!!!!!!!IJ!!!...ﬁiiiiiiiii!!!!!!!!.l!l!!!\\\“\\“\\“\\\\\\""""""‘IIIIIIII"II"II"I"""""mm"""" “““““l mui Ji.a

~m o _CEEERRNRNRNReC -~ —_ -zz=z==zz===----

oihn) (LY sy |
— W G = Thas e i
A ez, TN

IIIII|IIiﬁi..............innn’.’.’.’.’.’.’.’.’.’.’.’.’.’.’.’n.mmnmnmnmm;m;u

3.3 Description of the design

Let us walk through the design and see how the essential features
of the library are captured in the Object Model A descriptive

explanation follows:

1. Books Class:

This Class can be thought of as the heart of the entire design. The
entire hibrary operations are centered around this Class. Bomrowable
Books, Reference Books, Penodicals and Back volumes are all basically
Books. They have certain properties like Book-Number, Title, Author(s).
Price etc., in common. These commonalities are captured i the Base
Class called Books.

Each Book speaks about a particular subject(ideally). Hence each
Book contains an instance(containership) of Subject Class (to be
elaborated later).

Also every Book has to be published by some pubhsher Hence
the Books Class also contams an instance of Publisher Class(explained
later).

This Class contains Virtual Functions(explained in chapter 4) that

execute different functions in different classes for the same function call

2. Borrowable Books Class:

This class 1s denved from base class Books. It has all the qualmes
of books and adds 1t's own extensions, for ¢ g . Barrowable books can be
taken out of Library, have fine for dereliction of due dates |, date of 1ssue,

renewal datzss etc.,

3. Reference Books Class:

This class is dernived (or inhented) from the base class Books. It
has all the qualities of books and adds its own extensions (both data and
functions) to the base class. For e.g. Reference books are books that
cannot be taken out of the library, have hours allotted for refernng them

etc..

4. Periodicals Class:

This class is derived (or inherited) from the base class Books. It
has all gualities that a book can have and adds its own extensions(both
data and functions).Periodicals are books that have periodicity, Issue-nr.

Issue-date, Subscniption Amount, Subscription-period etc.,

5. Back volumes Class:

e e wesd Bachark _vohime clare ir darnmvad foeredlecsBaalic clegs . Pasb oo 0

afoesEwiithnpertodiaTian s, i, e o Gl VOIRPRERTEYE bovk sirand | sharersameacamin?

DB G- ISSULSEPTESEnt D" =~ e Further thev hiaves theiv owan - features, ke nuwr

suesinthiat bavk solume. . s that backxollwhe $HantThp-and endung dates-o0.7 18
EtLI n" ||'|"|iiii“E

6. Pulblisher Class:

< nublisher infermation The publisher class 13 used to capture it
T tu publishers 30 the Normally ubranes puyv sooks by plzcing ord
ored through this class mformation pernaming to the publisher s st

Il publishers from whom template. If a person wants to know the set of a
- class Also informanon the library orders he/she can get it so from thie
aiso be had. about who published a particular book etc.. can

1n the books class. An Instance of this class 1s containzad wit

7. Subject Class:

The subject class 1s used to capture subject information. Each
book is about a particular subject and sometimes with a sub area. For
example a book can be on computer science and deal about Databases (
a sub area of computer science). All this information are stored using the
subject template.

An Instance of this class 1s contained within the books class.

The classes that are enclosed within dotted lines are thought of as

the technical services offered by the library. (see the design in Sec 3 2).

8. Location:

The location class i1s used to help user's in locating a particular
book 1n the library. Each book can be kept in only one place (even
though there may be multiple copies each copy can occupy one place
only).So there 15 a one to one relationship between Books and Location
Class.

By entering books informiation { or what all he knows, say. 1t may
be Book-nr or Title or etc..) and pressing a key he can pet the location

imformation.

9. New arrivals class:

Libraries normally order for boaks from publishers. The books
placed in the order arc delivered to them. To capture this acquisition
process the new amvals class 1s used. The senvics manager class (to be
explained later) calls on the new amvals class to keep track of new

Books acquired by the hbrany.

Information like Invoice number, Publisher particulars. Date of
placing the orders and receiving the books. list of books etc., are some of
the fields 1n the class. If a person wants to know the set of all books
newly bought before or afier a particular date, latest amvals from a
particular publisher etc., he can get those information from the new

arrivals class.

10. Catalogue class:

. .~ _Astold in the Sec 2.3 cataloeue is likg a guidg. Jt hel

I T ERT T T T AR R T TR e e e e Sy T T e e

K fop Ll o ggte s, "f-‘“‘l—(—;'.:- e W OO 150 LI) o L3 o e N, W o i = T3 e e P S
- easiN GegarrE s e Por= hicivantin Do WA= 0 sl courassosiadad

= ket B

Cwith 1T Sotthieré dsoa-omeste~ane teiaiorship Vetween books- and.
catalegue. -Atthe press of akey the-Catalogne inforimation of a-boaok ean 1

behad.

11. Service Manager:

The service manager class 1s incharge ot the services offered in
the library. It updates and kzep consistent data about Books, Publishers,
Location, New arrivals and Catalogues A user can get inforination from

Service Manager, by telling his query, which calls upon the other classes

hl i £ R A IR0 P ST N IR A NFESHLTS.]
tal-
axt- membB&rS served, Total no-ofrbooks, Fotal-ro~ofiperiodicals;—Toutal-¢
his of-books, No-of-publishers e¢te | to nanve a few of the armmbuates.in
class.
12. Borrower Class:
S5 Borrowable books are taken from the Librann by bomow
on, Borrower information Iitke Bommower-number, MName, Profess
all Address, No-of-cards, Cards availed. List of books held etc., are
stored using the Borrower class template

The Bommower transacts with the library through transaction

manager to acquire borrowable books (subject to availability)

Information regarding a particular Borrower who has borrowed a

particular book, fines to be paid by the borrower etc., are all available

through this class.

13. Transaction:

ito

iype(lssue/reiurm/renewal) Books-involved eic., in_the transaction.

these details are captured wsing the Base class called Transaction.
Transaction class consists of wvirtual functions that exe
different functions in Issues. Returns, Renewals ciass for the s;

function calls.

14. Issues Class:

This class is derived from the Transaction class Issue i
transaction in the hibrary, so 12 mmhents all the qualiies of the base ¢
and adds 1ts own extensions like Issuing-clerk-nr. date-ot-rssuing, <

numbers upon which issue 15 done »tc

15. Returns Class:

This class 1s denved (or inhented) from the Transacthon ol
Return is a transaction in the horary 5So 1t inhents all the features
mansaction and adds i1ts own features hke return-clerk-nr, due-date
return, date-of-actuat-return. fine collected for delav in returming .car

be returned etc.,.

16. Renewals Class:

This class 1s denved (or inhented) from the transaction class.
Renewal 15 a transaction in the library. It has all the charactenistics of a
Transachon and adds i1s own like actnal-date-to-renew. date-of repewal.

- o i = e E_ . . e "l S - 4-1—-_-’ LhL o r~oum N
fne-dive-ta-ttesemessar &3 fa e Base Uisss

IHHMHARR0NL- A FaSd€tion-Manager:

transaction, tramsaction:on..a. particular date; transaction=made=by—a~
particular clesk ete., can be had ®v interacting~with this class: The-
Transaction manager also sees-whether a partioular book 1s-available-or

not when requested by borrowers and if so 1ssues 1t.(if requested)

18. Circulation Manager:

The entire circulation operation of the hbrary hike Issues, Retums,
Renewals, keeping track of Borrower information etc, are all looked
after by this class. The circulation manager calls appropnate classes
based upon the quenes given. If a person wants borrower information
borrower class is called | or if a person wants transaction informauaon |
transaction class s called and so on.

Further this class contains attnbutes hike. total number of
borrowers, average books 1ssued darly, average engunes-daly | averape
visitors-per-day . average returns | renewals, assues per dav, fines

collected etc

19. Employee Class:
The employee class sermves as a templats to store information

about the employegs present in the librany. This class ¢an be used as

base class if a library wants to differentate people nto workers,
assistants, libranans, deputy librarians, head librarian etc.,
Employee information like Employee number, Name,

Designation, Pay, Duties are stored using this class as template.

20. Income class:

The income c¢lass i1s used to capture the information about the
revenues to the hibrary. A library may get funds through state or central
govt, endowments, fines and fees, interests etc,. The date of getuing
income, from whom, by which media {(cheques. cash. DD etc.,) are all

the attﬁbutes 1n this class.

21. Expenditure class:

Similar to the Income class, the library allocates 1ts funds n
different ways like buving Books, giving Salanes and Wages. paving
Electncity charges, Maintenance charges. Subscrniption to News papers

etc., .All these information are stored using this ¢lass template

22. Finance and Budgeting class:
This class which 1s a container class of Income and Expenditure

deals with the financial operations of the hbrar

23. Miscellaneous Manager class:

From the chapter 2.3 we saw that personne!l admuusuwation and
finance come under the Miscellancous operations 1n a hbran All the
operations under this banner are looked after by this c¢lass It 1s a

container class of Employee class and Finance and Budeetunz class

24. Library Manager Class:
This class can be told as the head of the design. This class is

incharge of the entire library operations. It is incharge of maintaining
data that is complete, consistent and reasonable about the library. The
user interface is also stored in this class to make the design hierarchical.
This class also contatns information general to library like name
of the library, nature of the library, area occupied, population served,

working hours, days closed, type of service offered etc.,.

Chapter 4

IMPLEMENTATION

4.1 Concepts involved in the implementation

As mentioned in earlier chapters the vanous features of 0O
programming have been exploited to achieve the goal. Now, let us see
where and how in the design and implementation these concepts are

being encompassed.

Objects & Classes:

An Object is said to be an instance of a Class. in the same way as
chevrolet 1s an 1nstance of a vehicle. A Class 1s an abstraction that
consists of data items and functions which capture the structure and
behavior common to all related objects. The data members of a class can
be accessed from outside using only the member functions in that Class
Placing data and functions together into a single entiey 1s the central 1dea

of Object-Onented programming.

Eﬁ ol
hih' L
L
B 4
;rl"'\
'f
Llr'u
H|
Y

CATA L F 7700 &E
AS 4 FEMNTT

In Our Desipn and Implementation:

The wvanous classes that are present in our design have been
presented 1n chapter 3.2. The Implementation details are given in chapter
4.2 .

Inheritance:

A Class, called the denived class, can inherit the features of
another class, called the base class. The dernved class can add other
features of its own, so it becomes a specialized version of the base class.

Inheritance provides a powerful wav te extend the capabilities of

nirr e £XA8HNG classes. and ta desion nroorams using g hierarchical annraach

b‘eatun B

ACT e
W AN
¥
el

—w—#

-
>
li‘

1
ature B

-

ature O
-

DERINED CLASS 8

For the situation shown in the diagram the syniax will be,

T T e T

(lass A4

s
?

Fearure A, - Base Class 4
Feature B:
}'.

Class B: Public A

{
Feature C: “ Derived Class B

IS

Access Specifiers:
An important topic in inheritance is knowing what the dernived
class(es) can (data and functions) access from their base class{es). There

are a whole raft of possibilities depending upon the kevwords used.

Access Accessible from Accessible from Accessible from
Specifier Own Class dernived Class Objects outside
Public Yes Yes Ye
Protected Yes Yes N
Private Yes MO No

Note:

Class Members(which can be data or funcnons) can always be
accessed by functions within the own ¢lass, whether the members arc
private or protected. But Objects of a Class defined outside the Class
can access class members onlyv 1f the members are public

A Protected member, on the other hand, can be accessed by

member functions in 1ts own c¢lass or- here’s the key- 1 any class

denved from its own Class It can’t be accessed from functions outside
the classes such as main().

When we are writing a class that we suspect mught be used, at
any point in the future, as a Base class, for other classes, then any data
or functions that the derived classes might need to access should be
made protected rather than private. This ensures that the Class is

“inheritance ready”.(to adapt a phrase from TV set advertising).

In Qur Design and Implementation:

Inhernitance 1s used at the very heart of our design. One can see
that Borrowable Books, Reference Books, Perniodicals, Back volumes are
all basically Books. So a base class capturing the essential qualities of
Books like Number, Title, Author, Price, Edition etc., 1s defined. All the
other books are derived from this Base class and add their own
extensions say Borrowable Books have some fine on them, Reference
Books cannot be borrowed, Pernodicals come in stipulated time peniods,
have subscriptions and so on--- to name a few of them.

Furthermore see the Issues, Retums and Renewals classes. All
these three are Transactions made by the borrower with the library.

There are some basic qualities for each of these transactions hke

el AT T P T RE T T e T TSR e T e e e Bl
g <IN JEIRS R =i g et g N N . nme @ P T}
vobved v ZEETTRIkacOnR Dand . soc 0ieeSs a2 Bass: @gses — zaled

ansacinamitc imcarcerate fhese commanalities is: defimed and - the-other
rce classes. are-denved from 1t. The derived classes have their own
iitributions to make, say, Issues hava the Issue-date of ithe book, Due-
ie for return os renewal(as the case may be), Retums and Renewals

ve fine mvolved for dereliction of duty om the pare of the Borrower

-
Vag o+

-
-

Trix

CT
da
ha

et

From these descriptions we can see, how Inhernitance concept is
being taken advantage of. The implementation details of inheritance are

given in chapter 4.2
Multiple Inheritance:
A Class can be derived from more than one Base class. This is

called multiple inheritance. This i1s shown in the diagram where a Class

C 1s derived from the base classes A and B.

BASE CLASS A BASE CLASS B

DERNED
CLASS C

The syntax for multiple inhentance i1s similar to that of single
inheritance. For the situation shown in the figure, the relationship is
expressed like as shown below

Class A
{

member data and functions.

I
Class B

{

member data and functions.

} :

Class (7 Public A, Public B
{
“Class C derived from A and B

}!.

In our Design and Implementation:

Multiple Inheritance can be wused in our design and
implementation if the library wants to differentiate employees into Head

Librarians, Deputy Libranans, workers etc., .

Data Hiding & Encapsulation:

The above term does not refer to the activities of particularly
paranoid programmers; rather it means that data is concealed within a
class, so that it cannot be accessed mistakenly by functions outside the
class. Their primary mechanism for hiding data 1s to put it in a class and
make 1t private. Pnvate data or functions can only be accessed from
within the class. Public data or functions, on the other hand, are

accessible from outside the class.

This is shown in the figure.

DATA HIDING

No! accessible Coa T PRIVATE
from » oR
oculkide the FusaoTIONS

class

Accassible PUBLIC
ft‘or‘n .‘ CaATa,

outside == oF
Ciass P TICNS

One should not confuse data hiding with the security techniques
used to protect computer databases. To provide a securnity we might, for
example, require a user to supply a password before granting access to a
database. The password is meant to keep unauthonzed or malevolent

users from altering (or often even reading) the data.

Data Hiding, on the other hand, 1s designed to protect well-
intentioned programmers from honest mistakes. Programmers who
really want to can figure out a way to access private data, but they will

find it hard to do so by accident.

In Our Design and Implementation:

The above concept i1s involved 1n all the class definitions.

Containership:

In inheritance, if a class B 1s denived from a class A, we can say
that ' B is a kind of A". This is because B has all the characteristics of A.
and 1n addition some of 1ts own. It's like sayving that a Starling 1s a kind
of bird: A Starling has the characteristics shared by all birds(wings,
feathers and so on) but has some distinctive charactenstics of 1ts
own(such as dark indescent plumage) For this reason inhernitance 1s
something called a "kind of™ relationship.

There’s another kind of relationship, called a "has a" relationship,
or containership. We sav that a Starling has a tail, meaning that each
Starling includes an instance of a tail. In OOP, the "has a” relationship
occurs when one object 1s contained 1n another. Here's a case where an

object of class A 1s contained 1n a class B.

(lass A

Class B
{

A a; / aisanobject of Class A.

};

In Our Design and Implementation:

Containership feature of OOP is usurped in our design at two

pivotal places.

One 15,
Every Book has to be published by a publisher(ideally)
and talks about a particular subject. So in the Books class there will be

an instance of publisher class and Subject class contained.

Class Book
{
Book-Nr;
fitle:
Publisher P:
Subject 8.

Price:

As given above, one can sce that an object of Publisher class and
Subject class 1s contained within the class Book giving rise to

containership.

Trekking into the design further we can see containership 1in
another place also. The Miscellaneous Manager Class is a container

class of Employee class and Finance and Budgeting class.

Class Miscellaneous-Manager

{
Employee emp;
Finance fin,

A

But it doesn't end here, the Finance & Budgeting Class itself
contains Income and Expenditure classes as 1ts two eyve s(so as to tell it's

importance).

Class Finance
/
Income inc;
Expenditure exp,
Iz

Containership 1s clearly useful with classes that act like a data
type.

Constructors:

Automatic Imtiahization of objects of a particular class can be
done using member functions called Constructors. These special
member functions are executed whenever an object of that class is
created. There can be more than one constructor in a class depending
upon how initialization 1s to be done.

For example,

Class Counter

7
¢

private:
int couni;
Public:
Counter()
y
count—0;
Ix
/
defines a constructor called Counter that imtializes count to zero. The
only restriction 1s that the Constructor name should be same as that of
Class declaranon. Moreover Constructors do not return any value.
Constructors are pretty amazing. when you tlhunk about 1t
Whoever wrnites language compiler(be 1t for C or Basic or even C~—)
must execute the equivalent of a constructor when user defines a
variable. If you define an inr, for example, somewhere there's a

constructor allocating 2 bytes for it.

Destructors:

We've seen a special member function- the constructor - is called
automatically when an object 1s first created One might guess that
another function is called automatically when an object is destroyed.
This 1s indeed the case. Such a function 1s called a Destructor. A
Destructor has the same name as the constructor(which has the same
name as the constructor, which is the class name) but preceded by a
tilde(~).

In last example 1t would be

{
Public:
Counter() { count = 0 }; /i constructor
~Counter() { }: 7/ destructor
¥

Like constructors, destructors do not have a return value. They
also take no arguments. The most common use of destructors 1s to
deallocate memory that was allocated for the object by the constructor.

In Our Implementation:

Quite a few constructors and destructors have been used 1n our

implementation,the details of which are given in Chapter 4.2

Virtual Functions:

Virtual means existing in effect but notr in reality. A Virtual
function, then, 1s one that does not really exist but nevertheless appears
real to some parts of a program.

Why are virtual Functions needed? Suppose you have a number
of objects of different classes but you want to put them all on a list and
perform a particular operation on them using the same function call. For

e.g., suppose a graphics program includes several different shapes, a

tnangle, a ball, a square and s¢ on. Iach of these classes has a member
tunction draw() that causes the object to be drawn on the screen.

Now suppose you plan to make a picture by grouping a number
of these elements together, and vyou want to draw a picture in a
convenient way. One approach is to create an array that holds pointers to
all the different objects in the picture. The array might be defined like
this

Shape * Prrarr{100], /7 array of 100 pointers to shapes.

If you insert pointers to all the shapes into this array, you can

then draw an entire picture using a simple loop;

for(int j=0; j < N; j+—)
ptrarrfjj->draw();

This 1s an amazing capability; completely difterent functions are
executed by the same function call. If the pointer in Ptrarr points to a
ball, the function that draws a ball is called; if it points to a mangle, the
tnangle-drawing function is called. This 1s an important example of
polymorphism or giving different names to same thing.

But for this Polymorphic approach to work. several conditions
must be met. First of all, the different classes of Shapes, such as balls
and triangles, must be derived from a single base class. Second the
draw() functon must be declared to be Virtual 1n the base class.

For e.g., if Shape was 1o be the base class from which all the
other classes (square, mangle, etc.,) are derived. then in Shape class we

should define draw() as below,

Virtual Return-tvpe draw();

In Our himplementation:

In our mmplementation wvirtual functions are present at places
where inheritance has been used. After all both of them go hand in hand.
Don't they?.

Reference Books, Borrowable Books etc., are derived from Base
class Books satisfying the first requirement of the previous para. Then
within this Base class functions like Showbook(), Modifybook() etc.,
are declared Virtual thereby satisfying the second requirement.

Virtual functions are facilities provided by the language compiler
by deferming certain decisions until run time. At run time, the appropriate
version of the function to be executed is found out. This is called Late
Binding or Dynamic Binding (choosing functions in the normal way,
during compilation, is called early, or static binding). Late binding

requires some overheads but provides increased power and flexibility.

Operator Overloading:

Operator Overloading ts one of the most exciting features of
Object Ornented Programming. It can transform complex, obscure
program listings into mntitutively obvious ones.

For example, a statement like

d3. addobjects(d!, d2y;

can be changed to the much more readable,

d3 =dl - d2;

The rather forbidding term operator overloading refers to giving
the normal C++ operators, such as —,- * <= +— etc., addinonal meanings

when they are applied to user defined data rvpes.

In Opceraton Overloading, that anvolves conversions of user
defined types, the programmer has to do some part by giving new
definitions for the operators. For example 1if the ++ operator has to be
redefined for the user application then he has to do so as follows:

Void Operator ++ ()

;
Programmer defined statements 1o be
executed for —— operator;

2

Here operator 1s the keyword that is to be used to overload
operators.

Overloaded Operators are not all Beer and skittles even though
they give high flexibility. They have their own drawbacks as if too many
are used the listing may not be comprehensive, thereby defying their

Very use.

In Our Implementation:

On experimental basis the = (assignment operator) was
overloaded to assign a book object to another book object (e.g., bl = b2

where bl and b2 are objects of iype Books).

Overloaded functions:

An overloaded funcnhon appears to perform different activities
depending upon the kind of data sent to 1t. Overloading 1s like the joke
about the famous scientist who insisted that Thermos Bottle was the
greatest invention of all tmes. Why? * It 15 a miracle device,” he said. *
It keeps hot things hot, but cold things 1t keeps cold How does it

know?".

[t may scem equally mysterious how an overloaded function
knows what to do It perforins onc operabbon on one kind of data but
another operation on a different kind.

For example, consider the following segment of Listing

void repchar():
void repchar(char),
void repchar(char , int),
void main()
{
repchar();
repchar('="°):
repchar('+’ 30);
2
and three repchar() functions each doing different operations. Say one
repchar prints 45 asterisks, the next prnints 45 times the char given as
argument, and the final one prints the char given 1nt times.

The compiler on seeing several functions with same name but
different number of arguments, could decide the programmer had made a
mistake. Instead, it very patiently sets up a separate function for everv
such definition. Which one of the function will be called depends upon

the number of arguments supplied in the call.

In OQur Implementanon:

The wvarious Overloaded functions that are present in our
implementation are given in Chapter 4.2. To name a few of them the
Modify Catalogue() function in the Catalogue Class, Show publisher{)

in the Publisher Class, Show_ Location{) in Location class etc., .

Inline functions:

An anline function looks hike a normal function in the source file
~but anserts the function’s_code directlv into. the calling. proeram. Inline
fcivers oxecre it Bal e renuiee e ere IEsy . thiaTy, Al -

...

frmctrons wnicss they ane swrall,

In Our Implementation:

Only one or two Inline functions have been used. For example the
function that calculates fine to be paid by a borrower is an /nline

function, the details of which are given in chapter 4.2.

Friend Functions:

The concepts of encapsulation and data hiding dictate that non-
member functions should not be able to access an Object's private or
protected data. The policy 1s, if you're not a member, you can't get in.
However, there are situations where such rigid discnmination leads to
considerable tnconvenience.

For example, if you want a function to operate on objects of two
different classes. Perhaps the function will take objects of the two
classes as arguments, and operate on their private data. If the two classes
are inhented from the same base class, then you may be able to put the
functions in the base class. But what if the classes are unrelated?

In this situation there's nothing like a friend function. A fnend
function acts as a bridge between the two classes.

To access the private data in both the classes, say Class A and
Class B, the function should be declared as friend withun both the

classes, as shown below

fricmd retirn-type funcname(A a .13 by,

wheic a and b are objects of type Class A and B respectively.

Simmdarly f Class A must access Class B's private data then,
within Class B we should declare Class A as fnend class. This 1s shown

below

friend class Class A;

In Our Implementation:

The details of vanious friend functions and classes used in our

implementation are given in chapter 4.2.

Persistence:

Persistence is essential for information to reside on the permanent
memory. The mmformation stored in the disk needs to be read and written
to satisfy queries, to make modifications etc.,. File Streams of Borland
C++, 1s used to achieve the purpose of persistence.

Borland C++ provides a wealth of classes to achieve persistence.
Classes are arranged in the Class Library in a rather complex hierarchy.
We've made extensive use of these classes. For example ifstream,
ofstream and fstream classes defined in the FSTREANM H header file

The class ifstream is used for input operations on files, ofstream

1s used for output operations on files and fstream for tiles that will be

v Tl op oo i ? st o B GRESEICN, - KEEITDE T AN G WTTHRE <00,
nfmagsinerifitom ths 50 ﬁé‘:é'IWf‘dle sl gdarrenin e - form Gf ‘JJ?_"E 15,

In Qur Implementation:

As told earlier persistence 1s achieved using disk files. The

various files used in our implementation are given in chapter 4.2,

4.2 Implementation details

4.2.1 Class LibraryManager
{
Private :
char * Name of the library;
char * Nature of the lhbrary;
date day established; //date is mm/dd/vy
float Area;
int Population_served;
int Working_hours;
it Days closed,
Struct Miscellaneous
{
int No_of xerox;
int No-of racks;
char *publications;

int No_of coolers;

b,

Public :
1. void LibraryManager()
Purpose:
This member function is a constructor and is used to assign
general information about the library.
2. void ShowDetails{)
Purpose:
This member function is used to show general information about
the Library.
3.LibraryManager ModifyDetails()

Purposc,

To modify the general information of the library, say a new
cooler could have been bought or a new set of racks added etc ,this
mcember function 1s used. It returns the modified object.

4. void diskinlib()
Purpose:

This member function is used to write the information present in
this class’s object to the disk.
5. LibraryManager diskoutlib()
Purpose:

This member function is used to retrieve the information present
in this class’s object from the disk.
6. friend int LibMenu()

Purpose:

This declaration specifies that the LibMenu(). which 1s the user
interface function for OOLIS, 1s a friend of this class.
7. ~LibraryManager()

Purpose:

This member function 1s a destructor and is used to deallocate

MEemory.

File associated with this class 1s LibraryManager.dat .

{_.

Private:

int No_ of borrowers;
mt Ave enquiries_daily;
int Ave wasitors daily;

int No_ of books referred:

sfroct usapce
{
int ave_issues_datly;
int ave returns_daily;
int ave_renewals daily;
i

float ave fines per day;

public:
1.void CirculationManager()
Purpose:

This member function is a constructor and 1s used to assign 1mfial
values.

2. void showinfo()
Purpose:

This member function 1s used to display circulation information
of the library.

3. circulationmanager modifyinfo()
Purpose:

This member function s used to modify information present 1n
the circulation manager class. It returms the modified crculanon
manager object.

4. void diskincirman()
Purpose:
This member function is used to write circulation information
onto the disk.
5. circulationmanager diskoutcirman()
Purpose:
This member function 1s used read circulation information from

the disk. It returns the read circulation manager object.

O friend class LaibrarvAtanager
Purpose.

This declaration specifies that the circulation manager class is a
{fricnd of hibrary manager class.

7. friend int cirmenu()
Purpose:

This declaration specifies that the cirmenu(), which a menu
function for circulation operations(borrower operations, transaction
operations etc.,), is a friend of circulation manager class.

8. ~CirculationManager()
Purpose:
This member function is a destructor and is used to deallocate

memory.

File associated with this class 1s Circulation.dat .

}

4.2.3 Class ServiceManager
{
Private:
int Total members served;
int Total borrowable books;
int Total periodicals;
int Total backvolumes ;
int Total Reference Books:
int Total cost of books;
int Total cost_of Subscriptions;
char *Magazines ordered|[|:

int No of publishers;

public
Lovoid NerviceAManagern()
purposc

- This, memhber fuiinchion is.a constroctar and-i1g used tnassiom sape

i vaieEs s i prisatesada
O -l i . . '.__.__—.l_ R, _

@ voe S howy MFo .\} .

PUIPOSE::.

This- member - functionn 1s:: usedii te-+ display the information:
centained in the:Service manager class.
3. ServiceManager Modifyinfo()
purpose:

This member function i1s wused to modify the nformation
contained in the service manager class. It returns the modified object.
4. void diskinSer()
Purpose:

This member function is used to wnte the data i1n Service
Manager class on to the disk.
5. ServiceManager diskoutSer()
Purpose:

This member function 1s used retnieve Service Manager
information from the disk.
6.friend class LibraryManager
Purpose:

This declaration specifies that Service Manager class is a fnend
of Library Manager class.
7 friend int SerAenu()
Purpose:

This declaration specifies that SerMenu(). which is a menu
function for Service Manager operations | is a friend of this class.

8. ~ServiceManager()

Purposc

The above member function s a destructor and is used to reclaim

space,

File associated with this class 1s ServiceManager.dat .

H

4.2.4 Class TransactionManager

{
Private:
int Clerks incharge return] };
it Clerks incharge renewal] |;
int Clerks-incharge-issue{];
date Transaction day;
Float Fines collected for the day:
imt No_Transactions for the day;
Public:

1. Void TransactionManager()
Purpose:
This member function is a constructor and 1s used to assi1gn nial
values,
2. void Showinfo()
Purpose:
This member function is used to display information present 1n
the Transaction manager class.
3. TransactionManager Modifvinfo()
Purpose:
This member function is used to modify information present in

the transaction manager class and retum the modified transacton.

4. void diskintrans()

Purpasc:

This member function 1s used to write information in the
transaction manager class on to the disk.
5. Transaction\Manager diskouttrans()
Purpose:

This member function is used to read information contained in
the transaction manager class from the disk.
6.friend class CirculationManager
Purpose:

This declaration specifies that Transaction manager class 1s a
friend of circulation manager class.
7. friend int TranmardMenii{)
Purpose:

This declaration specifies that TranmanMenu(), which 1s a2 menu
function for Transaction Manager operations, is a friend of this class.
8. Boolean IsAvailable(int Book no)
Purpose:

This member function 1s used to check for the availability of a
Book by calling the appropriate function in Borrowable Books class.
9. void Sendreminder(Int Borr_no)
Purpose:

This member function i1s used to send a reminder to a Borrower
for return or renewal ot Book(s).
10. void ShowTrans(int clerk_no, char *clerk type, date day)
Purpose:

This member function 1s used to get the Transaction informaton
of the particular clerk for a particular day by calling the appropnate
function 1n the Issues or Returns or Renewals class based on the second

and third argument.

File used tor stonmmg Transaction Manager information is Transman.dat.

’

4.2.5 Class Transaction

{
Protected:
int Transaction no;
char *Transaction type; //issues or returns etc.,
date Transaction date;
int Borrower nr;
char *Books involved[];
Publiec:

1.a. Virtual void Showtransaction(int Tran no) = 0
b. Virtual void Showrransaction(int Borr_no,date day) =
Purpose:
These overloaded member functions are pure virtual functions
and are used to show the transaction details of a particular transaction.
2. Virtual void Addiransaction() =
Purpose:
This member function 1s an overloaded pure virtual function and
1s used to add a new transaction,
3.a. Virtual void Modifytransaction(int Tran no) = 0O
b. Virtual void Modifytransaction{int Borr_no.date day) = 0
Purpose:

These overloaded member functions are pure virtual functions

re used o mad1ﬁ. A tranca

TEm T N l'-'lll'l']-’[lII

=)
2

iz M ran NG = O D A Viriuoi worn Deidlelndy

s LR 1180) w TN TTrAm g mne magr g ‘M ot cmaiE ocw

LB

Purpose: ¥ . T,

[his member Tunchon s a pure virtual function and i1s used to

delete a transaction

Note:

The appropriate function in the derived classes(Issues, Returns,
Renewals) are called based upon the value in the Transactuon_type field.
5. virtual void diskiniran() = 0
Purpose:

This member function is a pure virtual function and is used to
write transaction information onto the disk.

6. virtual void diskouttran() = 0
Purpose:

This member function is a pure virtual function and 1s used to
read transaction information from the disk.
7. friend int Tranmenu()

Purpose:

This declaration specifies that the Tranmenu(). which 1s a menu
function that gives options to the user to enter the type of transaction
needed (issues/returns/renewals) as the case may be and returns the nvpe
of transaction, is a frnend of Transaction class.

8. friend class TransactionManager
Purpose:

This declaration specifies that the Transaction class 1s a fiend of

Transaction Manager class.

}

4.2.6 Class Issues : Public Transaction
{
Private:

date Issue date;

int Issue clerk no;

mt Card nof |.
date date to return;

date date_to renew,

Public:
1.a. void Showiransaction(int Tran_no)
b. void Showtransaction(int Borr_no,date day)
Purpose:
These overloaded member functions are used to show the
transaction details of a particular [ssues.
2.void Addtransaction()
Purpose:
This member function 1s used to add a new Issues transaction.
3.a. void Modifytransaction(int Tran_no)
b. void Modifytransaction(int Borr_no,date day)
Purpose:
These overloaded member functions are used to modify an Issues
transaction.
4. void Deletetransaction(int Tran no)
Purpose:
This member function is used to delete an Issues transaction.
5. void diskinissue()
Purpose:
This member function 1s used to wnte Issues information onto the
disk.
6 Issues diskoutissue()
Purpose:
This member function 15 used to read Issues information from the
disk. It returns the Issues object.

7. friend int Issuesmenu()

L

Puipose

This declaration specifies that the Issuesmenu(), which is a menu

function lor Issues operations. is a fmend of Issues class.

——
LI Ry - N g Py R T L s A e aewe g L .
E_'_, :;'-fﬁ%..-ef-__lm};ﬂg;—a=—:‘4:.‘f,¥}3‘-3i¥}-§-;~f ,[_}"-- Qijﬁi;fgﬁg - - - - | N [TN R TR |

l_lj[uw!lj_llﬁl_llllllll !!!!!!_H!!!!!!!!!!!!LlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII [IIIIIIIIIIIIII1IIIIIIIIIIIIIIIIIIIIIIIIIIHIIIII|||||||||||LIJIIIIIIIIIIIIIIIIII1L1_.Il!_|_iIIIIIIIIII (T e

Il

[ransaonion Manaoer

T ----- ﬁerf-'ﬁ'mﬂ:ﬁrr::::f;};ag-;-)-l*ieszaaa..t rats | gsuesssmelass =1sa T Tnend; ol

)
il

:.l ;;1;..
o gy -

:l_.
=
-

L

e
A
"y
-
o
A,

o[kt atoall4rs

3OS

&
u | HI “
e soiichltes ghCE
AT i sear] s ofild T

g0 Qs H

e
|

NI Il !
“DuoTLs s et sE s tosEEsE s Y@

pr
— i i—

X)—'_!.‘
1 "~
Liy
yot
o=

£

ks

—) E—

il

WHBHEH TSI, A d 0 & HER RS SR E) ST § 2 OLRTt

M mmmeemmmssesesspEEEEEEEESAR _ == eEss e g EE s EEEEEEEEEEEEEEE

bEVoid Modify ransaetion(int Bormiuno,datgiday: i I

Purposc

member functiens are used 1o modify @

nt Tran_ no)

on is used to delete a Renewal transaction.

on 1s used to write renewals information on to

on is used to read renewals information from

wals object.

)

ecifies that the Renewalmenu(), which 1s a
ls operations, 1s a friend of Renewals class.

t No_of days, float fine per dayv)

on defines that fine() function, which 1s an

culate the fine for a book. 1s a fnend of this

Manager

yecifies that Renewals class 1s a fnend of

FES S (o TTR R s aiat

These averlodlded

Renewal transact'on.
4. void Deleietransaction(s
Purpose:

This member functi
5. void diskinrenew()
Purpose:

This member functi
the disk.
6.Renewal diskoutrenewall
Purpose:

This member funct
the disk. It returns the rene
7. friend int Renewalmenu
Purpose:

This declaration sp
menu function for Renewa
8. friend inline float fine(ir
Purpose:

The above declarat
inline function used to cal
class.

9. friend class Transactior
Purpose:
This declaration s)

Transaction Manager class

4.2.8 C'lass Returns @ Pablic Transaction
{
Private:

date Due date-of return;

int Returns clerk no;

date Returned;

float Fines;

int card to be ret;

Public:
i.a. void Showtransaction{ int Tran_no)
b. void Showtransaction(int Borr_no,date day)
Purpose:
These overloaded member functions are used to show the
transaction details of a particular Return.
2.void Addtransaction()
Purpose:
This member function i1s used to add a new Retums transaction.
3.a. void Modifytransaction(int Tran_no)
b. void Modifytransaction(int Borr no,date dav)
Purpose:
These overloaded member functions are used to modify a Returns

transaction.
4. void Deletetransaction(int Tran_no)
Purpose:
This member function 1s used to delete a Returmns transaction
5. void diskinreturn()

Purpose:

This member function 1s used to wrnite Returns information onto

the disk.
6. Retirns diskoutreturns()
Purpose:

This member function 1s wused to read Returns information from
the disk. It returns the Returns object.
7. friend int Returnsmenu()

Purpose:

This declaration specifies that the Returnsmenu(), which is a
menu function for Returns operations, is a friend of Returns class.
8. friend inline float fine(int No_of days, float fine per day)
Purpose:

The above declaration defines that fine() function, which 1s an
inline function used to calculate the fine for a book, is a fmend of this
class.

9. friend class TransactionManager
Purpose:
This declaration specifies that Returns class 1s a frniend of

Transaction Manaeer rlass..

Fiie associated with this class 1s Retumns. dat

}

4.2.9 Class Borrower

{

Private:
int Borrower nr;
char *Borrower name;
char *Profession;
char *Address;

int No of cards:
it Clards avaitled;

mt Books-held[].// Numbers of Book are stored in this array.

Public:
1. void Borrower()
Purpose:
This member function 1s a constructor and 1s used to assign 1mmtial
values.
2.a void showborrower(int borr_no)
b. void showborrower(char *borr name)
c. void showborrower(int book no)
Purpose:

The above member functions are overloaded functions and are
used to show the information about borrower(s) based upon the
argument given.

3. Borrower modifyborrower{ int borr_no)
Purpose:

This member function is used to modify information about a
borrower. [t returns the modified borrower object.
4. void deleteborrower(int borr_no)

Purpose:

This member function 1s used to delete a borrower.
5.void sendreminde(int borr_no)
Purpose:

This member function 1s used to send a reminder to the borrower
regarding books held by him.
6. void diskinborr()

Purpose:

This member function is used to write borrower information onto

the disk
7. Borrower diskoutborr{)
Purpose:
This member function is used to read borrower information from
the disk.
8. friend int Borrmenu()
Purpose:
This declaration specifies that the Borrmenu(), which ts a menu
function for borrower operations, is a friend function of this class.
9. friend class CirculationManager
Purpose:
This declaration specifies that Borrower class 15 a friend of
Circulation Manager class.
10. ~Borrower()
Purpose:
The above member function 1s a destrucior and is used to reclaim

space.

File used for persistence 1s Borrower.dat |

}

4.2.10 Class Newarrivals

{

Private:
int Invoice nr,
int Publisher nr;
date Invoice date;
date Amval date,
float Amount;

char *list of books[].

Public:
1. void Newarrivals ()
Purpose :
This member function is a constructor and 1s used to assign 1nttial
values.
2.a. void ShowNewarrival(int Pub_no)
b. void ShowNewarrival(int Invoice _no)
c. void ShowNewarrival(date Invoice date)
d. void ShowNewarrival(date from this date, int Pub no)
Purpose:
These member functions are overloaded and are to used to
retrieve mformation about new arrivals based upon the argument.
3.a. Newarrival ModifyNewarrival(int Pub_no)
b. Newarrival ModifyNewarrival(int Invoice no)

c. Newarrival ModifyNewarrival(date Invoice date)

Purpose:
- PR, T -~ Sty e -y ~ 't
. Loty 4 .. T e e 2 1 _ SNy,
1.* Elllllmﬂll IIIIIIIImIIiIII]?ii I f-_I-l hllll IIIIIIIIIiIﬁII IIIIIII(IJIIIII_ILIII IE“TIIIITIII“—IIlIlﬁlIllﬂlll:ii.iég'.—(——-————!——l——i——?i*! -u ! Flm |llj] ILI:I Ij-l-l.li'll.t .Iii_.—Jnl
llllllllllllllllll!!!!!!J!!!!!!!!!_!!_I!_I!I_ll_I,I_llUllIIIIIIIIII||IIIIIIIIIIIIIIIIIIIIIIIIIJU|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH!III[IIIIIIIIIIIIIIIIIIIIIIIIIIIIII||l||“JIIIIIII ! IIIIIIIIJIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIlIII
T Do L BV) e oS ol ET R V-] 0 V=g A FRTO MR o el i T =1 OFi RO
j ject " :
2 15 AnSPATREFTY o SITIEHH mn ||I i it

Mﬁﬂ fIA['JI 1071 1S “TEF X0 a|duj IR RN pIMEE Y R €0 110 o Kt o 9 (L0 cHbagting
|“ﬂ e v A d dadi *i:’:nl arttvall oot 34 borsliigaisbin
Kl > ¥ e i l’l FLere
Inbar 11TIIE1 o)y BRI P ECta R ittt ol Ctillii o iy ot DY - g R U R ES 11 !IIT

™
1
-
L

"urposc:

This member function s used to retrieve the New arrivals
information from the disk.
7. friend int Newmenu()
Purpose:

This declaration specifies that Newmenu{), which is function
that presents a menu to the user for New armvals operations, 1s a friend
of this class.

8. void Sendreminder(int Pub_no)
Purpose:

This member function 1s used to send a reminder to a particular
publisher regarding despatch of books.
9. friend class ServiceManager
Purpose:

This declaration specifies that New arrivals class is a friend of
Service Manager class.
10.~Newarrivals()

Purpose:

This member function 1s a destructor and 1s used to reclanm space

File associated with this class 1s Newarrivals. dat

}

4.2.11 Class Catalogue

{

Private:
float Call no;
mmt Acc_no;
int Book no,

char *Book_i¥pe! (reference periodical borrowable etc..)

char *Title;

int No of copies:

Public:

1. void Catalague()

Purpose:
This member function 1s a constructor and is used to assign initial

values.

2.a. void ShowCatalogue(int Acc_no)
b. void ShowCatalogue(float Call no)
c. void ShowCatalogue(char *title)

d. void ShowCatalogue(int Book no)

Purpose:
The above member functions are overloaded and are used to

retrieve catalogue information about a book .

3. a Catalogue ModifyCalalogue(int Acc_no)

7 v o M , .
T ilf_i}.' '-s,.—'ggg._-{.{a;'-%—?j.; e “:ﬁi"f?_@; (__’\?&L{j Frs _-;_. _;‘L:?;'ﬁ:;i‘é_i_r_ TR e s e .
B - o = -) ' ;_?_----:---E{T-—----’ -------------- L v R IIIIIIIII|||||"””"””||||
e SE T ameak o e T IRLEN ST e T A R PR N
O Targvagee MLORTRG owgueedtar Twiley - o
1 L T = A/?f} o ,3‘. """" Facrs? ‘rrr = =, Wi o {)-[
d L}g w-ﬂ.‘.g}‘ﬁ j Iﬁ La's Lgf £\ —————— LB ————— ﬁ——ﬂl bbbt Tt L L L L TN

The - above overloaded member functions are used to modify

mmformation about a cataiogue.
4. Caralogue AddCatalogue()
Purpose:

This- member function 1s used to add a new catalogue and retumn
the newly added catalogue object.
S void diskincat()

Pupose:
This member function 1s used to write the catalogue information

onto the disk.

G Catadogne diskoutear()
Purpose

This member function 1s used to retneve catalogue information
from the disk.

7. friend class ServiceManager
Purpose:

This declaration specifies that the Catalogue class 1s a friend of
Service Manager class.

8.a. void DeleteCatalogue(int Book no)
b. void DeleteCatalogue(int Acc_no)
c. void DeleteCatalogue(char *title)

d. void DeleteCatalogue(float call no)

Purpose:

These overloaded member functions are used to delete a
catalogue information..
9. friend int Catmenu()
Purpose:

This declaration specifies that CatMenu{), which 1s menu
function for catalogue operations, 1s a friend of this class.
10.~Catalogue()

Purpose:

This member function is a destructor and 1s used to reclaim space

File associated with this class 1s Catalogue . dat

}

4.2.12 Class Publisher
{

Private:

int Publisher no;

char *Publisher namce:
char *Address,

tnd Telephone no;
it Telex;

char *Cable/gram;

char *Currency accepted;

Public:
1. void Publisher()
Purpose:

This member function is a constructor and is used to assign mital

values.
2.a. void ShowPublisher{ 1nt Pub_no)

b. void ShowPublisher(char *Pub_name)

c. void ShowPublisher()

tions are used to gct inforranon

o add a new publisher. and return

b no)

Pub_ name)

nctions are used 1o modify the

the modified publisher object,

) delete a publisher.

LT
(5 T

Oe

These OVerloaded member fun
aboui a publishier(s}..

3. Publisher AddPublisher()
Purpose:

This member function is used 1
the newly added publisher.

4.a. Publisher ModifyPublishier{ int Pu
b. Publisher ModifyPublisher(char *
Purpose:

These overloaded member fu
Particulars of a publisher. They return
5.void DeletePublishe{ 1nt Pub_no)
Purpose:

This member function is used t

O vendd dikinpia()
Putposc.
This member function i1s used to wnite the publisher details on to
the disk
7. Publisher diskautpuhb()
Purpose:
This member function is used to retrieve publisher details from
the disk.
8. friend int PubAdenu()
Purpose:
This declaration specifies that PubMenu(),which 1s menu
function for Publisher operations, is a friend of this class.
9. friend class ServiceManager
Purpose:
This declaration specifies that Publisher class 1s a frend of
service manager class.
10. ~Publisher()
Purpose:

This member function 1s a destructor and 1s used to reclaim space.

File associated with this class i1s Publisher.dat.

}

4.2.13 Class Location
{
Private:
int Loc_no:
mt Book no;
int floor no;

int rack no;

mmi row noy,

1t column no,

Public:
1. void Location()
Purpose:
This member function is a constructor and is used to assign initial
values.
2.a. void ShowLocation(int Loc_no)
b. void Showlocation(int Book no)
Purpose:
These overloaded member functions are used to get the location
information of a book.
3.a. Location Modifylocation(int Loc_no)
b. Location Modifylocation(int Book no)
Purpose:
These overloaded member functions are used to modify the
location information of a particular book
4. void DeleteLocarion(int Loc_no)
Purpose:
This member function 1s used delete a location information.

5. void diskinloc()
Purpose:
This member function 1s used write location iformation on to the
disk.
6. Location diskoutloc(}
Purpose:
This member is used to retneve locauon information from the
disk. It returns the location object.
7. friend int LocMenu()

Fuepose
s declaration specihes that LocMenu(), which 1s a menu
function for location operations, 1s a friend of this class.
8. fricnd class ServiceManagrer
Purpose:
This declaration specifies that location class is a friend of Service
Manager class.
9. ~Location()
Purpose:
This member function is a destructor and is used to reclaim the

allocated memory.

File associated with this class is Location.dat .

}

4.2.14 Class Subject

{
Private:
int Subject no;
char *Subject name;
char *Sub area;
Public:
1.void Subject()
Purpose:
This member function 1s a constructor and 1s used to assign unnal
values.

2.a. void Showsubject(int sub_no)

b. void Showsubject(char *sub name)

Purpose:

These overloaded member functions are used to retrieve

wiormation about a particular subject.
3.a Subject Modifysubjeci(int sub_no)

b. Subject Modifysubject(char *sub_name)
Purpose:

These overloaded member functdons are used to modify
information about a particular subject. These functions return the
modified subject object.

4. Subject Addsubject()
Purpose:

This member function which returns a subject object 1s used to

add a new subject.
5. void Deletesubject(int sub_no)
Purpose:

This member function is used to delete a subject.

6. void diskinsub()
Purpose:

This member function is used to write subject information on to
the disk.

7. Subject diskontsub()
Purpose:

This member function 1s used to retrieve subject tnformanon trom
the disk.
8. friend int SubMenu()
Purpose:

This declaration specifies that SubMenu{), which is a menu
function for subject operations, 1s a friend of this class.
9. ~Subjeci()
Purpose:

Fhis oemb Co ! vt w0 psed to deallocate

space

File associated with . vl geot dur

)

4.2.15 Class Books

{

Protected:
int Acc no;
int Book no,
char *Title;
char *authors[];
Publisher Pub;
Subject Sub;
float Price;
it No_ of copies:
int No_of pages:
char *Book type;; " moawoide iiiere o periodical ete)

Public:

1. void Books()

Purpose:
This member functi + - = ¢ ~xrvcor a0 1s used to assign iniual

values.

2.a virtual void Showwbook 0~ w

b. virtual void Showboul S e
c. virtual void Showhbook L

d. virtual void Showbook

Purpose:

The sbove ovetloaded member functions are pure virtual
funchons and are used to retrieve book information
3.a virtual void AModifybook(int book _no) = 0
b virtual void Modifybook(int Acc_ no) =0
c. virtual void Modifybook(char *utle) = 0
d. virtual void Modifybook(char *author) = 0
Purpose:
The above overloaded member functions are pure virntual
functions and are used to modify book information.
4. virtual void Addbook(Y= 0
Purpose:
The above member function is a pure virtual function and 1s used
to add a new book.
5. virtual void Deletebook(int Book no) =0

Purpose:

The above pure virtual member function is used to delete a book.

The appropnate function in the derived classes are called based
upon the first digit of the Book no or Acc_no.
6. friend int BookMernu()
Purpose:

This declaration specifies that BookMenu(), which i1s a menu

fiimchon. taor Boak.operahons, is a tnend of.this class. ...

__

This declaration specifies that the overloaded = operaior funciion
15 ‘a friend of this class.
8. ~Pooks()
Purpose:

Fhis micosher tonction s a destiactor and is used to deallocate

NP E 00 e

4.2.16 Class Barrowablebooks : Public Books

{
Private:
date Date borrowed.
int Borrower _nr;
mt Card nr;
int Copy nr;
date renewal date;
date return date;
float Fine for the book:

Pubilic:
1. void Borrowablebooks()

Purpose:

This member function is a constructor and is used to assign mitial

values.

2.a. void Showbook(int book no)
b. void Showbook(int Acc_no)
c. void Showbook(char *title)
d void Showbook(char *author)

Purpose:
The above member functions are overloaded functions and are

used to retrieve Borrowable book information.

3.a. void Modifybook(int book no)
b. void Modifybook(int Acc_no)

C

vaid Allodifvhook{char *title)

d void Modifvbook(char *author)

Purposc:

The above member functions are overlppaded functions and are

used to modify Borrowable book information.

4. void Addbook()

The above member function i1s used to add new borrowable

5. void Deletebook(int Book no)

Purpose:
book(s).
_ _ Pumns<e:
e '||n i
ok
JMHHHHHIT
[T

TSl

(U
AT

Siiyn

“thiass

&-0n

e

The above member Tunction is used o delete 7 horrowaile Bo
6. friend imt BorrBookidenu()

T2 mpﬂsc ''' “ ““““““w
wwuumm r|||| q|| U __IlllI!!!!!II|IlllllllllII|IllIIIIIIIIIIIIIIIIIIIIII IR
hiss=déelaranon: efe\,x 1es atiiiBorrBock feienu(. whiichii
L ||L|l|||||||_||||||||||pmu||||||||||||||||||uulllllllll i |||J|h||||l ||||||1|||| il

el tuncHidii 1o Borrow - operaiion 22 \
| ||%§| A0 l T A
puerpro el el e Nepmpr c oA oy e il
0GR
DITDOSE: e -
TECET TR IIIIIII I
W e e L
I @!ﬂ!ﬂl ||
ﬁﬁﬂl?ﬁﬁ 'iuﬁ’ Iﬁﬁ i ﬁlﬁ’||||||alﬁﬂﬂm|iﬁm'|ulrf ﬁﬁm il I g
ICheabove -decHIATTEHIE afiiie S tha tfinEe Jifuncnen, which:o

PR EEEEE e . . T Bl REEEEEEEED e tiiaiiiiaiaiiaity SN Eaptiiaiaiitt T & 11 1111111111

Purpose::

The abovesmemlier function is-used to write borrowable bool
to the disk:
10 Borrowablebooks diskoutborrbook():

PMurposc

The above member function is used to retrieve borrowable book
mformation {from the disk.
11, ~Borrowablebooks()
Purpose:

This member function is a destructor and is used to reclaim space.
12. friend class TransactionManager
Purpose:

This declaration specifies that Borrowable Books class 1s a fmend

of Transaction Manager class.

File associated with this class is Borrowable dat .

}

4.2.17 Class ReferenceBooks : Public Books
{
Private:

int hours_ allotted;

Public:
1. void Referencebooks()
Purpose:
This member function is a constructor and 1s used to assign 1nitial

values.
2.a. void Showbook(int book no)

b. void Showbook(int Acc_no)

c. void Showbook(char *title)

d. void Showbook(char *author)

Purpose:

i'te above member functions are overloaded functions and are
nsed to retireve Reference book information.
Ra vord Modifvbook(int book 1o)
b void Modifybook(int Acc no)
c. void Modifybook(char *title)
d. void Modifybook(char *author)
Purpose:
The above member functions are overloaded functions and are
used to modify Reference book information.
4. void Addbook()
Purpose:
The above member function 1s used to add new reference book(s).
5. void Deletebook(int Book no)
Purpose:
The above member function is used to delete a reference book.
6. friend int RefBookMenu()
Purpose:
This declaration specifies that RefBookMenu(), which 1s a menu
function for Reference Book operations, is a fnend of this class.
7. friend class ServiceManager
Purpose:
The above declaration specifies that Reference class 1s a friend of
Service Manager class.
8. void diskinrefbook()
Purpose:
The above member ftunction 1s used to write reference books
information on to the disk.

9. Referencebooks diskoutrefbook{)
Purpose:

| he ahove member function s used to retrieve reference book
miormatien trom the disk
10 Referencebooks()
Purposc,

This member function is a destructor and is used to reclaim space.

File associated with this class 1s Reference.dat .

}

4.2.18 Class Periodicals : Public Books

{
Private:
char *Periodicity;
int Issue nr;
date issue_date;
date Subcription_started,
date Subscription end;
Public:

1. void Periodicals()
Purpose:
This member function is a constructor and is used to assign initial
values.
2.a. void Showbook(int book no)
b. void Showbook(int Acc_no)
c. void Showbook(char *periodicity)
Purpose:
The above member functions are overloaded functions and are
used to retrieve Periodicals information.

3.a. void Modifybook(int book _1no)

b void Madifvbaok(int Ace no)
¢ void Modifvbook(char *periodicity)
Purposc:
The above member functions are overloaded functions and are
used to modify Periodicals inforination.
4. vaoid Addbook()
Purpose:
The above member function is used to add new peniodical(s).
5. void Deletebook(int Book no)
Purpose:
The above member function is used to delete a periodical.
6. friend int PerBookMenu()
Purpose:
This declaration specifies that PerBookMenu(), which 1s a menu
function for Penodicals operations, 1s a friend of this class.
7. friend class ServiceManager
Purpose:
The above declaration specifies that Penodicals class 1s a fnend
of Service Manager class.
8. void diskinper()
Purpose:
The above member function is used to write penodicals
information on to the disk.

S. Periodicals diskoutper()

Purpose:
_ - e) VASURINE, I, SR gy P I P ot at am Y e me e
T IRIEN | B Jercor V) et dages arss FUb SERMI V10 Fe=15) (Nt S I AVEm il b 2 JOS T Feronpinb bttt el B T B [11

190=friend oiass -Backvotunies =

Purposg:

I he nbove declmagion speaifies that Peniodicals. class is_a foend
Y R STPRVIE SRR} N 1) ki £ oA
117 Pernmdicalst)
Putposc:
The avove member function is a destructor and is used to reciaim
space.
Note:

Some fields in the base class Books will take Null values in the

Periodicals ¢lass.

File associat=d with this ciass 1s Pertodicals.dat .

!
3

4.2.19 Class Backvolumes : Public Books

{
Private:
int No_of issues;
date Starting date;
date ending_date;
char *Binding_ type;
char *Periodical name;
Public:

1. void Backvolumes()
Purpose:
This member function i1s a constructor and is used to assign mminhal
values.
2.a void Showbook{(int book no)
b. void Showbook(int Acc_no)
¢. void Showbook(date starting_date)

d voud Shonwhaok(char *1P’eriodical name)
Purpose:
The above member functions are overloaded functions and are
used to retrieve Backvolumes information.
3.a void AModifvbook(int book no)
b. void Modifybook(int Acc_no)
c. void Modifybook(date starting_date)
d. void Modifybook(char *Periodical name)
Purpose:
The above member functions are overloaded functions and are
used to modify Backvolumes information.
4. void Addbook()
Purpose;
The above member function is used to add new Backvolume(s).
5. void Deletebook(int Book no)
Purpose:
The above member function is used to delete a backvolume.
6. friend int BackBookMenu()
Purpose:
This declaration specifies that BackBookMenu(), which 1s a
menu function for Backvolumes operations, 1s a friend of this class
7. friend class ServiceManager
Purpose:
The above declaration specifies that Backvolumes class 1s a
friend of Service Manager class.
8. void diskinbackbook()
Purpose:

The above member function 15 used to wnte backvolumes
mformation on to the disk.

9. Backvolumes diskoutbackbook()

Purpose

The above member function i1s used to retrieve backvolumes
information from the disk.
10. ~Backvolumes()
Purpose:

This member function is a destructor and is used to deallocate
space.
Note:

Some fields of the base class Books will take Null values in the

Backvolumes class.

File associated with this class 1s Backvolume.dat .

}

4.2.20 Class Employee

{

Private:
int Employee no;
char *Employee name;
char *Qualification;
char *Designation,;
int pay_ scale;

char *responsibilities;

Public:
1. void Employee()
Purpose:
This member function is a constructor and is used to assign iniial
values.

2.a. void showemployee(int emp_no)

b vord shovemployee(char *emp _name)
c. voidd showemplovee(int pay_scale)
Purpose:

These member functions are overloaded functions and are used to
retrieve informmation about an employee or set of employees based upon
the argument.

3. Employee Modifyemployee(1nt emp no)
Purpose:

This member function is used to modify information about and
employee. It returns the modified employee object.
4. Employee *Addemployee()

Purpose:
This member function is used to add new employee(s) and return

&
i

flessrentees tronmavkhy saded ol v sasinest{s

& veidiDalecempigpestinramp_nm, '
Parpose: " - % b

THis member function.is: used to delete. an. employee fmom the
Employee:dat file.
6. void diskinemployee?) 7
Purpose:

This member function 1s used to wrnte the employee information
onto the Employee.dat file for persistence.
7. Employee diskoutemployee()
Purpose:

This member function is used to read the employee information
from the disk.
8. void PrintPaybifi()
Purpose:

This member function is used to print the pay bl of the

employee.

Y Srrendd it Fmprnenu()
Putpaose:
This declaration specifies that the Empmenu(), which is a menu
function for employee transactions, i1s a fnend of this class.
10, ~Employee()
Purpose:
This member function 1s a destructor.

File associated with this class is Employee.dat .

;

4.2.21.Class Income
{
Private:
Int Month/Year;
Float Localfunds;
Float State contribution;
Float Central contnbution;
Float Interest_ on_endowments;
Float Fines and fees;
Struct Other
{
Float Xerox revenue:
Float Binding revenue;

Float etc:

%
Public:

1. void Income()

formation on to

ne informanon

ton. which is a

of this ¢class

Purpose

This meember funclion 1s a constructor and is used to assign initial
values
2. void ShowIncome(Int Month/year)

Purpose:

This member function is used to retrieve Income information for
the particular month of a year.

3. Income ModifyIncome(Int Month/year)
Purpose:

This member function is used to modify income information for
the particular month in a year. It returns the newly modified income
object.

4. Income Addincome()
Purpose:
This member function is used to add new income object, and

return the newly added Income object.

-~ PR IR TR DR A

o I,,I,,‘IIJ,‘,I,,I,,,,I ,,,,,,,,,,,,,,, L. 3. YOIG Gisknincomes

Purpose:

I This member function is used to write Income m

6. Income diskoutincome()

Purpose:

the' income.dat file for persistence.

This member function 1s used to retrieve Inco

from the Income.dat file.

7. friend int IncMenu()
Purpose:

This declaration specifies that the IncMenu() fung

8. ~Income()

Purpose:

menu function for Income operations, is a friend function

This member function 15 a destructor,

File associated with ths ¢lass 1s Income . dat .

}

4.2.22 Class Expenditure

{

Private:
int Month/year; (mm/yy)
Float Salary and wages,
Float Amount_on_books;
Float Amount _on_periodicals;
Float Amount on newspapers,
Float Electricity charges;
Float Maintenance charges;
Float Miscellaneous;

Public:

1. void Expenditure()

Purpose:
This member function is a constructor and is used to assign mihal

values.

2. void Showexpenditure(int month/year)

Purpose:

This member function 15 used to modify the information about the
expenditure of a particular month 1in a year. It returns the modified
expenditure object.

4. Expenditure AddExpenditure()
Purpose:

This member function 1s used to add new expenditure
information, and returns the newly added expenditure object.
5. void diskinexp()

Purpose:

This member function is used to write information on to the
Expenditure.dat file for persistence.

6. Expenditure diskoutexp()
Purpose:

This member function is used to read information from the
Expenditure.dat file.

7. friend int ExpMenu()
Purpose:

This declaration specifies that the ExpMenu(), which 15 a
function that presents a menu to the user to choose any of the different
options in expenditure fransactions, is a friend function of this class.

8. ~Ixpenditure()
Purpose:

This member fucntion 1s a destructor.

File associated with this class is Expenditure . dat .

}

4.2.23 Class Finance
{

Private:

Income nc;

Expenditure exp;

Public:
1. friend int finmenu()
Purpose:
This declaration specifies that the finmenu(), which i1s a menu for
Finance operations, is a friend of this class.
2. void showfinance(int month/year)
Purpose:
This member function used to display financial information calls
the show functions of Income and Expenditure classes.
3. void Modifyfinance(int month/year)
Purpose:
This member function used to modify financial information calls
the modify functions of Income and Expenditure classes.
4. void Addfinance()
Purpose:
This member function used to add new financial information calls
the add functions in Income and Expenditure classes.
5. void diskinfinance()
Purpose:
This member function calls the diskin function of Income and
Expenditure classes to store mnformation on the disk.
6. void diskoutfinance()
Purpose:
This member function calls the diskout functions of Income and

Expenditure classes to read information from the disk.
1

4.2.24 C'lass MiscellaneousManager
{
private:

Employee emp;

Finance fin;

public:
1. friend int Miscmenu()
Purpose:

This declaration specifies that the Miscmenu(), which 1s a menu
function for the user to choose from different options based upon his
transaction (could be finance or employee based transactions), is a friend
function of this class.

2. void Showmisc(int choice)
Purpose:

This member function used to display employee information or
finance information or both depending upon the choice given, calls the
show function(s) in the Employee and/or Finance classes. The choice 1s
obtained from the Miscmenu() function.

3. void Modifymisc(int choice)
Purpose: |

This member function used to modif)' employee or finance

AT

Gillimnmaada o aisp wthe *;u-_sﬁfi:: sedor dFamzness minstes. The - Chome s
obrazed Trom the Miscmiem:{) fusction. '

Awnoid diskibmise(C) -

Pdmose:
- bt i T T VR, GRS 1 PR, | SIS LN A ISR, Sy AN 3-SR £y
_ oI ey JeneooiinemIsEdie T ekl Pieriher iong s oy 60 T Tiir i
plovec and Fiadde cdasses. . .

5-void diskontmisc()

Purpose:
This member function calls the diskout member functions of

Employee and Finance classes.
6. friend class LibraryManager.

Purpose:
This declaration specifies that Miscellaneous Manager class is

friend of Library Manager class.

The above descriptions give the member data and functions of each class
given in the design. Other than these there are a few unlines that are

used to maintain the flow of information in the software developed.

Chapter §

CONCLUSIONS

5.1 Observations

An Object Oniented Approach to the Library Information System
gives a higher level of abstraction that appeals to the workings of the
human cognition.

The Inherent Complexity involved in a big system like Library
can be easily usurped using an Object Model. As said earlier not only
the software but also the entire OOD can be used thus increasing
reusability.

The Object Model is more resilient to changes which means
that this system can evolve over a period of time, rather than be
abandoned or completely redesigned in response to the first change 1n
the requirements.

Furthermore the Object Model is more smaller than its Non-
Object-Onented implementations. Not only does this mean less code to
write and maintain but also translates into cost and schedule benefits.

Finally as Robson [8] says " Many pcople who have no idea of
how a Computer works find the idea of Object Oniented Systems quite

natural”.

5.2 Limitations

No performance analysis is made about the read and wnte

operations of the file streams 1n Borland C=—+.

A few utilities and Indexing of records could not be done due

to severe time constraints.

5.3 Future

Extensions be easily made as the entire design is readily
available. For example, a person may want to add Binding operations of
the library to the existing system. He can do so by creaunng a Class
called Binding and accommodate it in to the design available with
minimum fuss.

Classes may be removed, coerced or split as the specifications
and requirements for different libraries change.

Windows interface can be given, as the mmplementation 1s in
Borland C+—+, thus making the software user friendly.

Indexing of records can be done to enhance the software

performance.

Appendix A
BIBLIOGRAPHY

[1].A. K. Mukherji, “Book selection & systematic bibliography <,
World press, 1968.

[2]. B.Guha, "Journal of Library & Information Sciences”,

PP 108-117, June 1976.

[3]. Bjarne Stroustrup, "The C++ Programming Language”
I Edition, Addison Wesley, 1986.

[4]. Brad.J.Cox, “Object Oriented programming , An evolutionary
approach”, I edition, Addinon-Wesley, 1987,

[5}). Bruce Eckel, "C++ Inside Out”, McGraw Hill.

[6). David E.Monarchi, "A Research Typology for Oriented Analysis
& Design”, CACM][35-47], September 1992.

[7]- David L.Clark, "Database Design”, McGraw Hill, 1991

[8]. D.Robson, "Object-Oriented Software System™,

Byte, Vol6(8), August 1991,
[9]. Edward V.Berard, “Essays in Object-Oriented Software Engg”,
I Editton, PHI, 1993.

[10]. Grady Booch, "Object-Oriented Design with Applications™,
Benjamin/Cummings Publishing Company, 1992,

[11}). Grady Booch, " Object-Oriented Analysis & Design With
Applications”, [T Editton, Benjamin/Cummings Publishing
Company, 1993.

[12]). Greenfell David, “Periodicals and serials %, London, ASLIB. 1953
pll4. |

[13]). Hoare.C, “ Program: Sorcery or Science”. Software, April 84

Voll(2), IEEL.

[14]. Jarmes Rumbanugh et.al, "Object-Oriented Modelling & Design™,
I edition, PLHI, 1991,

115]. Liskev- L3, “Data Abstraction & Hierarchy”,
SIGPLAN Notices V0l.23(5), May 1988.

[16]. P.S.G.Kumar, "Computerization in Indian Libraries” ,
| e B R nublishine Corporation, 1987._
[1E, RifferaidiDansdaminisiatiich Thear m BEPMaStca Lo, - 7 i

Tl

MERropo} tan-Brbk- Sompay/(Eve) EAnedl Bag75 1

Analysis-&-Desien Methodoleg, ¢8= LORT

1992-TFEERT
[20]. S.P.Sirigh, “Automation in Indian Libraries ¢,
Metropolitan, New Delhi, 1975.
[21]. Senn A.James, “Analysis and Design of Information Systems™,
IT Edition, McGraw Hill, 1989.
[22]). S.R.Ranganarhan & Gopinath.” Library Book Acquisition &
Cataloguing”, Asia Publishing House, 1866,
(23]. Stanley B.Lippman, “C++ Primer™,
I Edition, Addison Wesley Publishing Company, 1991
[24]. Williarm Bishop Warner , "Hand book of Modern library

Cataloguing”, Balomore, williams and wilkuns, 1984

