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Chapter 1

OVERVIEW

1.1 INTRODUCTION

Neural networks have been used for wide variety of applications of complex adaptive
systems. The application areas in which neura networks are being extensively applied are
Pattern Recognition, Speech, Vision, Robotics, Industrial Process Control, Knowledge
Data Bases, On-Line Simulation and Decison making, Intelligent Artificial Organ, and
Physiological Software and Services [Soucek89]. Fuzzy reasoning, very high speed signal
processing and process control, high reliability, and high performance-price ratio are
some of the other emerging features of neural networks. Successful application of neural
networks to real world problems depends strongly on the knowledge of learning properties
and performance [Karayiannis93]. This is the main motivation behind the present thesis.
A humble attempt has been made to study Hopfield model and suggest new learning
mechanisms. This could help in a better understanding of functioning of neural networks

and application of neural networks to new aress.

1.2 OVERVIEW OF PRESENT WORK

This thesis makes an extensive study of the Hopfield mode of neural network [Hopfield82]
(hereafter referred to as Hopfield Network ) and reports some new theoretical and experi-
mental results. Much of the efforts in neural networks research is directed at implementa

tion and realization rather than theory. For example, the convergence property of neural
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network are still described by empirical and rule-of-thumb terms, even though mathe-

matical techniques are available for studying the dynamic behaviour of neura networks

[Sezan90]. The major contributions of this thess are listed here.

1.

It reports a survey of the research related to severd modifications to the Hopfield
network, the effect of these changes on the performance of the network, various
definitions of capacity, and capacity estimates. There have been avery large number
of research articles on capacity of Hopfield network and severd modifications to
this network reported in severa diversified disciplines. These results are reported
in this thesis in a unified way. One of the modifications to the Hopfield network

is self-feedback character of neurons. This aspect has been sdected for a detailed
study.

. A study of dynamics of Hopfield network is made based on numerical simulations.

The emphasis of this study ison dynamics of Hopfield network with self-feedback,
which seems to have received less attention by researchers. Some experimental

observations and theoretical conclusions on the study of direct self-feedback in
Hopfield network are reported.

An algorithm is proposed to make any two state vectors stable in the Hopfield
network with self-feedback. These are the only states that are stable states of the
network and spurious states do not exist. This algorithm is generalised to make
more number of state vectors stable in the network. The underlying principle of
this algorithm is based on polyhedral combinatorics. The s&t of stable states defines

a convex polytope and the energy function is desgned to be a facet touching only
the specified stable states.



Chapter 1. OVERVIEW 3

1.3 OUTLINE OF THE DISSERTATION

The dissertation consists of five chapters. Chapter 2 introduces Hopfield network with
various notations, definitions, learning rules and update rules. This chapter dso reports
a survey of the research related to the estimates of the capacity of Hopfield network and
that of several modifications of .this model.

Chapter 3 reports some experimental observations and theoretical conclusons on the
study of Hopfield network with direct self-feedback.

In Chapter 4 the techniques of polyhedral combinatorics are used to anayse the
geometry of stable state vectors and its associated image. This chapter dso describes
construction mechanisms of synaptic matrix to make any one state vector as stable state
and any two state vectors as stabl e states in the Hopfield network with self-feedback. It
aso generdises this algorithm to handle more number of stable vectors. A construction
mechanism t9 make al vectors having a specific number of ones as stable states is dso
given in this chapter.

Chapter 5 summarises the contributions and limitations of the work reported in the

dissertation and considers possible routes for further research work.



Chapter 2

HOPFIELD MODEL OF NEURAL NETWORK

21 INTRODUCTION

Human beings are constantly thinking since ages about the reasons for human capabilities
and incapabilities. Successful attempts have been made to design and deveop systems
that emulate human capabilities or help overcome human incapabilities. The human
brain, which has taken millions of years to evolve to its present architecture excels at tasks
such as vision, speech, information retrieval, complex pattern recognition, al of which
are extremely difficult tasks for conventional computers. A number of mechanisms have
been which seems to enable human brain to handle various problems. These mechanisms
include association, generalisation and self-organisation.

The hope to reproduce at least some of the flexibility and power of human brain
by artificial means has led to the subject of study known as Neural Networks, Neural
Computing, Neurocomputing of Brainlike Computation {Anderson92]. Neurocomputing
is afundamentally new and different approach to information processing. Neurocomput-
ing is concerned with parallel, distributed and adaptive information processing systems
that develop information processing capabilities in adaptive response to an information
environment [Hecht-Nielsen91]. It is not necessary that the architecture of brain is copied
as it is to the extent to which it has been understood. Implementation of the functions

of brain by whatever means possble is the guiding force in neurocomputing.
In this chapter the concept of artificial neural networks is introduced in Section 2.2.
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Hop field network [Hopfield82] is one of the smplest and most widely used neural network
models. This modd is described in Section 2.3. Search for better performance and
application orientation has motivated researchers to condder various modifications to the
Hopfield network. Section 2.4 to Section 2.12 report a survey of research related to various
modifications to the Hopfield network, the effect of these changes on the performance of
the network, various definitions of storage capacity, and capacity estimates. This survey
IS an attempt to present in an unified way the results of research articles reported in
seveard diverdfied disciplines. This survey may help in an extensve study to provide an

insight into dynamics of Hopfield network which may lead to precise design of Hopfield

networks.

2.2 ARTIFICIAL NEURAL NETWORKS

The primary information processing structures of interest in neurocomputing are Artifi-
cial Neural Networks (ANN). The potential of artificial neural network relies on massvely
parallel architecture composed of large but finite number of artificial neurons which act
as simple computational elements connected by edges with variable weights. In thiswork
hereafter artificial neural network is referred to as neural network and artificial neuron
Is referred to as neuron.

There are various models of neural networks which have been reported in literature.
Some of trend setting models of neural networks are Perceptron [Rosenblatt58, Minsky69,
Rumelhart86], Adaptive Neural Network [Widrow60], Linear Associator Model [Kohonen7?,
Anderson72], Little and Shaw modd [Little75], Pattern associating and concept form-
ing model [Amari77), Hopfield model [Hopfield82, Hopfield84, Hopfield86], Grossberg

Models [Grossberg80], Self-organising Network [Kohonen84], and Boltzmann machine
[Hinton84, Ackley83].
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These moddls have certain aspects in common. Eight major aspects of a neura
network have been identified in [Rumelhart86] are a s&t of processing units, a state of
activation, an output function for each unit, a pattern of connectivity among units, a
propagation rule for propagating patterns of activities through the network, an activation
rule for combining the inputs to a unit with its current state to produce a new levd of
activation, a learning rule whereby patterns of connectivity are modified by experience,
and an environment within which the system must operate.

All models of neural networks exhibit some basic characteristics which are differ-
ent from the other computing paradigm. Some of the characteristic features of neural
networks are Mode free estimators (no mathematical modd of how a system output
depends on its input), Self-organisation (network carries out corresponding changes in
its structure when the performance requirements are changed), Distributed encoding of
information (information is superimposed and stored in the weights between neurons),
Generalisation (aneural network is capable of generalising from alimited set of correctly
learned functions to an entire class of gpecid purpose functions), and Geometrization
of computation (neural activity burrows a trajectory in the state space of large dimen-
sion and each point in the state space defines a snapshot of a possible neural network

configuration).

2.3 HOPFIELD MODEL OF NEURAL NETWORK

Many researchers consider the Hopfield network [Hopfield82] as a model which has ex-
tensively influenced thefield of neural networks. This section gives some relevant details
of Hopfield network.

“Topology:- Pattern of connectivity of a neuron with other neurons is referred to as topol -

ogy of neural network. Neura networks can be broadly classified into two dasses based
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on topology of the network. These dasses are feed-back neural networks (architecture
can be described as an undirected graph) and feed-forward neural networks (neurons are
arranged in layers with directed syngpses between one layer and next layer).

A connection (synapses) between a par of neurons in a feed-back neural network
is characterised by a synaptic weight ( connection weight). Higher value of synaptic
weight between a pair of neurons indicate the tendency of the pair of neurons to be
simultaneoudly active. The synaptic weights are determined by the learning rule usad to
train the network and these are represented as a synaptic matrix. If the output of each
neuron is connected to dl the other neurons, the network is said to be a fully connected
network. If the output of a neuron is connected as an input to the same neuron, then
the neuron is said to have a direct self-feedback character. In a fully connected feed-
back neural network if the synaptic weight from neuron j to neuron z (J;;)is same as
the synaptic weight between neuron t to neuron j (Jj)for dl pairs of neurons then
the synaptic matrix is symmetrical. The first subscript associated with J specifies post-
synaptic neuron and second subscript specify pre-synaptic neuron.

Hopfield network is a fully connected, feed-back neural network of N neurons. The
Hopfield network is uniquely defined by (J, ). Where J isa N x N symmetric matrix
and O is N x 1 threshold vector having components é;, which is the threshold for neuron
t. Each choice of Jand O defines a specific Hopfield network with N neurons.

State of a neuron:- Activity level of a neuron (represented as o;) is dso known as its
state. The neurons in [Hopfield82] are two-state neurons. Two-state neurons which are
assgned a value of O for inactive (OFF) state and 1 for active (ON) state are termed as
binary neurons. Two-state neurons which are assgned a value of +1 for active state and

-1 for inactive state of neurons are cdled bipolar neurons. The binary (0,1) and bipolar
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(-1,1) neuron representations are equivaent. States of these neurons are related as

a?ﬂ.pp.!nf:?ﬁ-?‘mf,—.l, Vi = 1,2,...,N

State of Hopfield Network:- The states of al neurons (o;, for al i) a any instant of
time t is the state of the Hopfield network and is represented by a state vector €. The
i** component of the state vector £ is represented by &;. The state of neuron t is same
as the i** component of state vector i.e, & = ¢; a any given instant. In this work &; is
replaced by o; and vice versa without specificaly mentioning it. This is however being
done considering the time interval factor. The state of Hopfield network can be visualised
as a pattern of activities of the neurons and thus the state vector is dso termed as a
pattern. Sable states of a Hopfield network are the states of the network which do not
change under normal functioning of neural network.

Learning:- Learning in Hopfield network is the process of making certain states of net-
work as stable states. This is achieve by determination of the synaptic matrix and
threshold vector. Strategies for learning are broadly divided into two classes. These are
supervised learning and unsupervised learning. In supervised learning the network is
supplied with a sequence of examples. Each example conveys the required output state
vector for agiven input state vector. Usually, the training process is continued until the
neural network learns al the examples. In unsupervised learning the learning set consists
of state vectors that are to be made stable vectors of the network. This work dedls with
unsupervised learning and some of the parameters in terms of which the learning process
of Hopfield network can be specified are listed below.

Candidate state vectors:- The P state vectors €' (u=1,2,...,P; t =1,2,...,N), that
are to be made stable states of N neuron Hopfield network being desgned are known as
candidate state vectors. In thiswork N represents the number of neurons in a network

and P represents the number of candidate state vectors.
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Basin of attraction:- The s¢t of al vectors, that converge to a stable state vector £* is
the basin of attraction of £€#. There is no genera shape of basns of attraction. Learning
in Hopfield network amounts to organizing the space of network states into basns of
attraction of preassigned candidate state vectors.

Radius of direct attraction:- The radius of a sphere around each of the stable state vector,
such that any vector in the sphere converges to the corresponding stable state vector in
one step [Chandru93].

Speed of convergence:- A stable state is recdled if under the influence of a stimulus the
Hopfield network drifts rapidly into the stable state. Speed of convergence is the measure
of number of steps a network takes to converge to afixed point after receiving the initial
state. The dimensionality of the state space and number of basins of attractions in
principle do not effect the speed of convergence [Kosko92].

Sourious state vector:- The stable state vectors of the designed Hopfield network which
do not belong to the set of candidate state vectors are cdled the spurious state vectors.

The learning process has some difficulties. It is not always possible to formulate a
Hopfield network with al members of given learning set as stable states. Some of the
candidate state vectors may not become stable states of the network. Thus the stable
states of a Hopfield network can be seen as belonging to two categories, stored state
vectors (members of learning set) and spurious state vectors. A learning procedure with
the following properties is consdered to be an effective synthesis procedure for Hopfield
networks [Farrell90].

Each candidate state vector is a stable state in the resulting Hopfield network. Each
stable state vector must be attractive. In other words, each stored vector should have
a domain of attraction. Learning rule should attempt to have a precise control on the
extent of the domain of attraction of each stable state vector. Spurious Stable states
should be eliminated or minimized.
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Learning rules can dso be classfied as Local learning rule or Non-local learning
rule depending on the nature of information used to construct the Hopfield network.
Information physically available at a syngpses is cdled the locd information. Synaptic
weight changes in locd learning rule depend only on locd activity. Non-locd learning
rules dso consder the activity in other nearby synapses.

Update rule:- A rulefor evaluating the state of one or more neurons under the existing
conditions and changing them if necessary is cdled a transition rule, activation rule or
update rule. Each neuron receaves ether an externa input in the form of initia state
and/or weighted inputs from other neurons and the resulting state is evaluated using the
update rule.

Dynamics of computation:- After the formulation of Hopfield network, the network
is presented with an initial (probe) state vector. For a Hopfield network with N two-
state neurons, initial state vector can be any one of the 2V possible vectors. The update
rule dong with the order in which it is applied defines the dynamics of computation.
Update rule ;)f Hopfield network uses linear sum of product of connection states and
their connection weights to determine the next state. The sum is caled the locd field of
neuron or potential of neuron. Depending on the relationship between the potential and
the threshold of a neuron the next state of the neuron is determined. In Hopfield network
the update ruleis discrete in time. During each timeinterval, state of one (asynchronous
update) or more than one (synchronous update) neurons is evaluated. For asynchronous
update the neuron to be updated in a unit time interval is sdected randomly or in a
deterministic way (fixed sequence of neuron, neuron receiving maximum locd field, or
neuron receiving maximum loca field). In synchronous update when dl the neurons
are updated in a unit time interval, it is termed as fully parallel operation. When the
synchronous update operation in not fully parald, the sdlection of neurons can be done

using one of the methods used for asynchronous update.
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Traectory on Hypercube:- Network activity is represented by a trgjectory on the
hypercube in the N-dimensional space. The state space of Hopfield network is repre-
sented by a hypercube. Each vertex of the hypercube represents a network state. The
state transitions from initial state to a stable state can be viewed as a trgectory in the
hypercube from one vertex, representing the initial state to another vertex representing a
stable state (equilibrium state). An attract is a specid network state, or arestricted st
of states, to which the dynamica process, governing the time evolution of the network,
brings the network, after a long enough time, from large dasses of initial network states
[Amit89].

In [Amit89] three basic types of trajectory behaviours have been identified for asymp-
totic neural network dynamics are Fixed points (traectories which lead the network to
remain on a single state for an appreciable period), Limit cycles (traectories which lead
rapidly to small cycles of states) and Chaotic (trgjectories which wander aperiodically
in an uncorrelated way in the space of the network states). A two step limit cycle in
dynamics of I‘—Iopfield network is a situation when the network oscillates between two
states of the network. A two step limit cycle can be seen as a bi-directional fixed point.
Energy Function:- The central feature of Hopfield network is that each state of such
networks can be associated with a quantity caled Energy (E). An energy function and a
statistical methodology to describe the relaxation of symmetric network isintroduced in

[Hopfield82]. The energy function of Hopfield network isfunction of its state ¢ at time t.

24 HOPFIELD CLASS NETWORKS

In recent years several modds of neural networks have been proposed. Researchers have
been proposing new models motivated by biological neural systems, application under

study or improvement of performance of an existing modd. A modd may perfectly



Chapter 2. HOPFIELD MODEL OF NEURAL NETWORK 12

suit the purpose for which it has been desgned, but in the presence of many models,
it becomes necessaxy to compare the generd performance of various modds. Such a
study will help in evaluating various modds and dso sarve as a badss for desgning new
modds or modifying existing models. Though presence of many models of neural network
necesstates a comparative study, because of large variations in the nature of these modds
thistask isdifficult. It is more so in the absence of a common criterion. Though common
criterion are necessaxy for detailled comparison of the modds, deciding this meaningful
set of such criteria may itsdf require a separate research.

An estimate of the number of state vectors that can be madefixed points in a Hopfield
network can serve as common criterion for eval uation of Hopfield networksfunctioning as
associative memory. This measure is known as storage capacity or capacity of Hopfield
network. Detail study of different aspects of storage capacity have been of interest to the
researchers. Many different definitions and estimates of the capacity have been reported
in different context.

Hopfield network, like any other neural network model has a limit beyond which the
performanceis not predictable. Search for better performance, higher storage capacity
and application orientation of this model has motivated researchers to consider different
options. The models which vary from the original Hopfield network but fits in its genera
framework can be said to belong to Hopfield class of neural networks or briefly Hopfield
class networks.

The various modifications to Hopfield network till now have been mostly attempted
in isolation. Each of these changes have an impact on the storage capacity. Severa pos
sibilities related with each of these aspects provide a very large number of combinations.
An extensive study of these aspects and hence the various combinations of these aspects
may provide an insight into the dynamics and application of Hopfield class networks.

Such a study may dso help in precise design of Hopfield class networks.
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The following sections of this chapter reports asurvey of theresearch related to various
modifications to the Hopfield network, the effect of these changes on the performance of
the network, various definitions of capacity, and capacity estimates reported in literature.
There have been very large number of research articles related with the above mentioned
issues reported on severa diversified disciplines. Hence, it becomes difficult for any
researcher to have access to dl the results. Hence an attempt has been made to report
these results in a unified way avalable a one place. For the study of Hopfield class
networks the parameters basad on which various modifications and capacity estimates

reported in literature can be characterized are listed below to give an overview.

1. Nature of synaptic matrix:- (i) Fully connected (ii) Diluted (iii) Symmetric
(iv) Asymmetric (v) Binary or clipped (vi) Two-dimensional (vii) Higher order.

2. Learning rules:- (i) Local learning rules (ii) Non-local learning rules.

3. Nature of values assigned to neurons:- (i) Two-state neuron (ia) Binary neuron
(ib) Bipolar neuron (ii) Multi-valued neuron (iia) Multi-state neuron
(q-state Potts Glass neuron, g-state ising Spin neuron, q-state Hopfield neuron)

(1tb) Continuous neuron.

4. Nature of candidate state vectors:- (i) Randomly chosen candidate state vec-
tors (ii) Specific candidate state vectors (iii) Biased candidate state vectors (iv)
Unbiased candidate state vectors (v) Correlated candidate state vectors (vi) Un-
correlated candidate state vectors (vii) Sparse candidate state vectors (viii) Marked
candidate state vectors (ix) Complex candidate state vectors.

5. Retrieval parameters:- (i) Onestep retrieval (ii) Iterativeor fixed point retrieval
(iti) High fidelity retrieva (iv) Low fidelity retrieval (v) Presence of Spurious states.
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6. Update interval:- (i) Discrete time (i1) Continuous time.

25 CAPACITY ESTIMATES OF HOPFIELD NETWORK

2.5.1 Hopfield’s Estimates

The estimate of the number of candidate state vectors that can be stored accurately in
[Hopfield82] is obtained by conducting computer simulations aﬁd some anayss. Brief
description of Hopfield network and storage estimate reported in [Hopfield82] is given
here.

To make randomly selected st of P candidate state vectors as fixed points in the
Hopfield network of N binary neurons, the synaptic weights J;; (¢,7 = 1,2,...,N) ae
obtained as

e
J; =3 (28 —1)(28¥ -1) Vi#j and J;=0 Vi=j

p=1

Neurons are randoml y and asynchronously evaluated using the update rule

1 if X7 ,05(t) > 6;

ot +1) = { i
O if 2% ,05(t) <6,

Under these conditionswith P = 0.5N the assigned candidate state vectors are al\ways
stable and exactly recoverable. With P = 0.15V about half of the candidate state vectors
evolved tofixed pointswith very lesserrors. But the rest evolved to quitedifferent fixed
points. Thus 0.15N candidate state vectors can be simultaneously stored by Hopfield
network with N neurons before error in recal is severe.

DEFINITION 2.1:- The storage capacity (a) of a Hopfield network is defined as the
ratio of number of candidate state vectors (P) that are made stored stable states to the
number of neurons (N) in the network, e < 7. Thus storage capacity is the number

of candidate state vectors made stable state per neuron. Ceritical storage capacity a.
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IS defined as that storage capacity of Hopfield network beyond which it is not possible
to store candidate state vectors without affecting the stability of dready stored tate

Vectors.

The storage capacity a any given leve of accuracy can be increased by a factor of 2
by ajudicious choice of the threshold of individual neurons [Hopfield82]. This can dso be
achieved by using bipolar neurons with synaptic weights, J;; = YF_; £€%,J;; — 0 and all
threshold elements value zero. This modified prescription improves the leve of accuracy
and dl randomly sdected candidate state vectors upto P = 0.15N can be accurately
stored and recdled. The critical storage capacity a. = 0.15.

2.5.2 Estimates Using Hyperplane Counting Argument

In [Abumostafa85], using a hyperplane counting argument from pattern recognition, it
has been shown that the number of candidate state vectors that can be made stable in
Hopfield network is bounded above by the number of neurons N in the network. Bipolar
neurons, fixed real numbers as synaptic weights, and undirected connections (J;; = Jji)
without self-feedback (J;; = 0) are considered in [Abumostafa85]. Given an initial vector,
the neurons are updated randomly and asynchronously until a stable state is reached.
DEFINITION 2.2:- Information capacity of a memory is defined as the logarithm of
the number of casss it can distinguish.

For the Hopfield network, information capacity can be obtained by estimating the
number of different sets of values of J;; and 8; that can be distinguished merely by
observing the state transition scheme of the neurons. This corresponds to the number of
distinct networks of fixed N neurons. The key factor in estimating the number of distinct
networksis the known estimate for the number of threshold functions. By estimating the
upper bound and lower bound on capacity it is concluded that the information capacity

of Hopfield network with N neurons is exactly of the order of N3 bytes. A definition of
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maximum storage capacity is dso proposed in [Abumostafa85].
DEFINITION 2.3:- The number of candidate state vectors that can be made fixed
points in a Hopfield network of N neurons is the maximum vaue of 1C, such that, any
K vectors of N binary entries can be made stable in the network by a proper choice of
synaptic matrix J and threshold vector 9. Then a. = X is the critica storage capacity
of Hopfield network.

It is proved in [Abumostafa85] that the number of stable states K can be atmost N.

In other words, Hopfield network cannot have more than N arbitrary stable states.

2.5.3 Critical Views About Definition 2.3

Different views of the Definition 2.3 of capacity given in [Abumostafa85] is proposed in
[Bruck88, Prados89, Montgomery86]. In [Bruck88] it is proved that for Hopfield networks
with zero diagonal synaptic matrix there exists pairs of state vectors which cannot be
made fixed point simultaneously. Thus according to Definition 2.3, K cannot even be
2 and storage capacity can atmost be 1. In [Montgomery86] it is proved that there
are many (atleast N2¥-1 out of possible 22V) pairs of state vectors for which Hopfield
network cannot be constructed. Thus there is no guarantee for the existence of Hopfield
network for K = 2.

Under these circumstances there is a need for alternate definition of capacity of Hop-
field network. In [Prados89] it is proposed that the capacity of Hopfield networks should
be mentioned only in terms of probability associated with storing randomly chosen candi-
date state vectors. In [Bruck88] an alternative definition of Hopfield networksis proposed
based on notion of descriptor of a set. Descriptor of a set S denoted by Ds is a list of
rules which are true in the st.

DEFINITION 2.4:- The storage capacity of a Hopfield network of order N is defined
as the maximal integer K, such that, for any sst Mof K vectors with descriptor Dags
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there exists synaptic matrix J and threshold vector 9 such that ‘7 is contained in the s
of gtable states of the network M. The storage capacity with respect to the descriptor
D is denoted by CD*

When D is an empty s&t then CD is equivdent to the Definition 2.3 of capacity- D
can be formalised such that it describes a particular and unique st and then the question
of finding the storage capacity turns out to be a question of designing a Hopfield network
such that this st is contained in the sat of stable states of the network M. A smple
upper bound on CD is the dze of the largest st with descriptor D. With D getting
more restrictive the storage capacity tends to increase, but aso the above upper bound
on storage capacity tend to decrease. The main drawback of the Definition 2.3 is that it
does not hold true for the candidate state vectors which differ in one bit only. This can

be avoided in the Definition 2.4 of storage capacity.

2.5.4 Estimates Using Coding Theory

Using techniquesfrom coding theory, especially random coding and spherehardening, the
storage capacity of Hopfield network with bipolar neurons has beenrigorously studied in
[McEliece87]. For randomly sdected P candidate state vectors synaptic matrix is built

using Hebb’s L earning Rule [Hebb49] (sum of outer product learning rule) given below

=

S el Wigjand Ji=0 Vi=)

w=1

1
J.’j F.r'

The definition of capacity given in [McEliece87] in terms of maximum number of
candidate state vectors that can be made stable is
DEFINITION 2.5:- The asymptotic capacity (represented as Pn,.) Of a Hopfield net-
work is the maximum number of randomly chosen candidate state vectors P that are
exactly recoverable by the Hopfield network when the limit of number of neurons N is

infinity.
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One step retrieval and lterative retrieval

Input state vector £#(t = 0) represents the dtate of the network at timet = 0. If
¢&(t = 1) is taken as the output of the network using synchronous update it is known
as one step retrieval. The input state vector is conddered to be not more than pN
(0 < p < 2) bits away from a stored stable state. The asymptotic capacity estimates
[McEliece87] under the condition that any given initial vector should aways converge to
a unique stored stable state with high probability is Pres = @=220 2

The update process (synchronous or asynchronous) can be performed until £(t+1) =
£(t) before the output vector is retrieved. This retrieval is known as fixed point retrieval

or iterative retrieval. In order that any given initial state vector should always converge

to a unique fixed point, the asymptotic capacity is given by Ppnaz = 4:51\:-

Consider the relaxed condition that the unique stored stable state should be recovered
with high probability, for a given initial state vector, except for a vanishingly small
fraction of the fixed points. With this relaxed condition the capacity estimate reported
in [McEliece87] is twice of that with rigid retrieva criterion. The asymptotic storage
capacity for one-step retrieval isless than the storage capacity for iterative retrieval. For
one-step retrieval there is a restriction on the state vectors which can be given as input
state vector to the network. The storage capacity decreases as the number of possble

initial state vectors increases.

2.5.5 Perfect Storage Condition

Estimates of the size of the sat of P vectors to be completely determined by the synaptic
matrix is reported in [Sussmann89]. For agiven P candidate state vectors, perfectstorage
condition is that the synaptic matrix depends only on the st of P, which consists of the

candidate state vectors £€# and their negatives. Exactly recoverable condition is that dl
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members of st P are the only loca minima of the synaptic matrix. The recoverable
condition is that the members of st P are contained in the s&t of locd minima of the
synaptic matrix. Perfect dorage is a necessary but not sufficient condition for exact
recoverability. It is expected that there will be a range of vaues of P for which some
state vectors are perfectly stored but not exactly recoverable. The range for which perfect
storage hold is much larger than the one for which recoverability is proved in [Hopfield82]
and [McEliece87).

The capacity estimate reported in [Sussmann89] is given here. It has been proved
that if P behaves like ﬁ, where «is a constant and P candidate state vectors are
randomly selected, then P is uniquely determined by the synaptic weights with high
probability as N goes to infinity. The randomness of P is more general than the same
given in [McEliece87] and [Hopfield82]. The P candidate state vectors are chosen with
arbitrary probability distribution Py. When the components of ¢* are independent and
equal to+1 or -1 withprobability 1 thenthevalueof K turnsouttobe(2log2)™'i.e. 0.7.
For perfect storage condition with the components of ¢# being +1 or -1 with probability
%, asymptotic storage capacity is given as Pmaz = W%,T\T

This asymptotic storage capacity is higher than that given in Section 2.5.4 for relaxed
retrieval condition. This difference is because the results of Section 2.5.4 are based on
retrieval condition and the results given here are based on perfect storage condition. The

probability condition is samefor both the cases

2.5.6 Upper and Lower Bounds of Capacity

In this section results of upper bound and lower bound on capacity reported in [Houselandert
are described.

DEFINITION 2.8:- Storage capacity is the maximum number of stable binary vectors
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that can be stored on average.

The capacity of Hopfield networks trained using Hebb’s learning rule is limited due
to erors caused by the effective corrdation noise of the initial state vector with each
stable state vector, other than the stable state vector (exemplar) where we want the
initial vector to stabilize. The upper and lower bound of the capacity are established on
the assumption that the maximum error sgna occurs when the correlation noise from
each stable state vector is digned and of the opposite polarity to the sgnd from the
exemplar.

DEFINITION 2.7:- The upper bound of capacity is the number of stable state vectors
required to guarantee atleast one error per network. The lower bound of capacity is the
number of stable state vectors that can be stored before an error occurs.

For Hopfield network with N bipolar neurons, synaptic matrix constructed using

Hebb's |learning rule, and with synchronous update, the bounds on capacity are given as
Pupper =1.25(N —1)5 + 2r

Plowes 2= 0.75(N — 1)3 + 2r

wherer represents the number of stable state vectorsthat are aligned with the exemplar.
A modified version of Hopfield network was dso considered in [Houselander90}. In
the original Hopfield network [Hopfield82] the diagonal elements of the synaptic matrix
are zero. The Hopfield network is modified by allowing non-zero diagona elements in the
synaptic matrix. Diagona elements of synaptic matrix isequal to number of candidate
state vectors, i.e., J;; = P.
The bounds of storage capacity for this modified Hopfield network of N bipolar neu-

rons, with synchronous update are given as

Pupper = {(N- 1) + 0.8(N - 1)¥} x {0.8(NV- 1)} - 1} + 2r
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Prower = {(N- 1) + 14(N- 1)3} x {14V - )T - 1} + 2

It can be obsarved that the capacity of this modified Hopfield network is greater than
the capacity of Hopfield network discussed in Section 25.1.

2.5.7 Capacity Estimates For Delta Learning Rule

The definition of storage capacity, Delta learning rule, the numerica simulations and
capacity estimates reported in [Prados89] are given here.

DEFINITION 2.8:- Storage capacity is the number of randomly sdlected candidate
state vectors that can dmost always be made fixed points in a Hopfield network.

The Delta learning rule for construction of synaptic matrix is based on the process
of adjusting the synaptic weights to make a candidate state vector as a stable state of
the network. A candidate state vector ¢° is made stable state of a Hopfield network by
adjusting the synaptic weights by using the equation AJ;; = 1(€5— o,)¢5 where o; is
calculated as-

I's
. N s
v e Sy > -

l 1 TN, k<0
This procedure is repeated until the given state vector £5 becomes stable state of the

a

network. But in the process of making £° stable, other stable state vectors may be
affected. Ideally, this procedure is repeated until al candidate state vectors become
the stable states of the network. It is not possible to attain this condition for many
sets of candidate state vectors. When such a situation is encountered the procedure is
terminated after few iterations to avoid endless execution of this procedure.

In [Prados89] attempts to make P candidate state vectors as stable states of network
are ds0 reported. A new st of randomly generated P candidate state vectors is usd
in each attempt. The Delta rule is used to make the sdected st of P candidate state
vectors stable. Attempt is sad to be successful if the sdected st of P candidate state
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vectors become stable states. P is gradualy increased to observe the extent to which
candidate state vectors can be made stable states.

At lower values of P more number of attempts are successful. As the number of
candidate state vectors are increased keeping N fixed, the number of attempts that are
successful, decreased. Ultimately, beyond a value of P the number of attempts that are
successful either became zero or negligible. It is found that this critica value of P is
aways more than N. Thus it is possble to store more than N candidate state vectors
in a network.

The capacity estimates in [PradosB89] are better than those reported in [Hopfield82,
Bruck88, McEliece87]. This can be attributed to the following reasons. The Delta
learning rule takes more time in comparison to other rules like Hebb’s learning rule to
make a candidate state vector stable in the Hopfield network. Some capacity estimates
[Bruck88, McEliece87] are applicable to any set of P state vectors, whereas [Prados39]
deals with the severa attempts to make randomly selected different sets of P state vec-
tors as stable states. In Section 2.8 it has been discussed that the presence of correlation
between the state vectors will increase the storage capacity. The random sets of P stable

state vectors with P > N may be the st of vectors with more correlation.

2.5.8 Presence of Spurious Stable States

In the previous sections the results on the capacity estimates are discussed without
considering stable states. In this section the impact of spurious stable states on the
storage capacity is considered. The performance of Hopfield network can be improved
by exploring mechanisms to make more number of candidate state vectors stable or
by reduction of spurious stable states. Continuous unlearning algorithm which enables
continuous unlearning of the spurious stable states that goes along with the learning of

candidate state vectors is reported in [Youn89]. In this algorithm the outer product of
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a spurious stable state multiplied by the unlearning rate is subtracted from the synaptic
weights. The purpose of the unlearning rate is to adjust the synaptic matrix in smal
steps to reflect the incremental unlearning.

By using this algorithm, the number of stored stable states are more and the number
of spurious states are less compared to Hebb’s learning rule and the Deltalearning rule.
The improvement is greater when the network is heavily loaded. With smaler unlearning
rate more number of iterations are required to converge to a stable synaptic matrix.
With large unlearning rate, some example enters in an infinite loop during the process

of adjustment of synaptic weghts.

2.5.9 Hysteretic Property

In Section 2.5.6 it is observed that the presence of non-zero diagonal elements (self-
feedback character of neurons) in the synaptic matrix improves the storage capacity of
Hopfield netvx*/ork. Hysteresis is the lag between releasing of stress and cessation of strain
in materials subjected to magnetism. This property was introduced in neurons of neural
networks in [Braham88)]. Self-feedbackin neurons is equivalent to hysteretic property in
a discrete model. A neuron with self-feedback J;; and hysteresis width b; is equivalent
to a neuron without self-connection and with hysteresis 4. (= b + J;;)- The recalling
ability of an associated memory network composed of two-state neurons with hysteretic
property as investigated in [Yanai90] is described here.

Consider a Hopfield network with N bipolar neurons. Each neuron takes a value of
+1 or -1 with probability % Given P candidate state vectors to be made stable in the
network the synaptic matrix is constructed using Hebb’s learning rule. When hysteresis

width of i** neuron is b; the next state of the i** neuron o; at next time step t + 1 is
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determined using the following equation
N
a;(t+ 1) = sgn()_ Jizoi(t) + bay(t))
=1
In the presence of hysteretic property the response of a neuron is given in the Figure

1.1. Each neuron can have different hysteresis width. For simplicity the hysteresis width

of all the N neurons is considered to be the same, i.e, 4. For the present network

= 145) Y
e = 2109}{\7-_1091091\"

|
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Figure 4.1.: Response property of a neuron with hysteretic property.

The presence of hysteresisimproves recalling ability. The reason for this improvement
IS due to the reluctance of the neurons to change state. When the state of the network
Is not far from a stable state, degradation of recalling process is caused by the neurons
moving from right state to wrong state. With hysteretic property, neuronstend to stay in
their current state. At the same time, there are neurons moving from the wrong state to
the right ones. Hysteresis tends to prevent these changes and hence there is a trade-off.
It is observed that the prevention of neuron state change from right state to wrong state
Is more effective than the prevention of state change from wrong state to a right state
under proper conditions [Yanai90]. Numerical experiments aso suggests that the basin

of attraction is the largest when hysteretic width is close to the value of %
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26 ASYMMETRY IN HOPFIELD NETWORKS

Hopfield network [Hopfield82] has a synaptic matrix which is symmetric. One of the
drawbacks of symmetric networks is the presence of spurious stable states. Much work
has been done on the nature and origin of spurious states {[Amit85a, Feigelman86]. A
smal amount of noise can be useful for escaping from spurious states. Such noise can
be added by introduction of weak random asymmetry into a symmetric well functioning
Hopfield network [Feigelman86]. However, such addition of noise does not change the
qualitative performance very drasticaly, even at high leve of asymmetry.

Hopfield network with asymmetric synaptic matrix can aso be referred to as Asym-
metric Hopfield Network. The dynamics of asymmetric Hopfield network has been dis-
cussed in [Derrida87, Crisanti88, Noest88a, Gardner89e, Mori89, Kree92]. Asymmetry in
Synaptic matrix can be introduced by (i) Asymmetric learning rule, (ii) Random changes,

or (iii) Dilution.

1. Asymmetric learning rule:- There is no differentiation in the post-synaptic and pre-
synaptic neuron in a symmetric learning rule. If pre-synaptic and post-synaptic

neurons are differentiated, then the synaptic matrix will be asymmetrical.

2. Random changes:- In a symmetric synaptic matrix, asymmetry can be introduced
by randomly selecting and changing the synaptic weights to some other vaue.
Random selection of a pair of synaptic weights and swapping the values will dso
introduce asymmetry. The number of random changes depend on the degree to

which asymmetry is to be introduced.

3. Dilution:- Dilution is a specia case of random changes. Synaptic values are ran-

domly sdected from the symmetric synaptic matrix and the sdected values are
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changed to zero. These changes in synaptic matrix can be viewed as represent-
ing Diluted Hopfieldnetwork (network which are not fully connected). Study of
Diluted Hopfield network is reported in [Derrida87, Wong9l, Patrick92, Patrick90,
Evans89, Derrida89, Kuhlmann92, Garces92]. Damage to a Hopfield network (Dam-
aged Hopfield network) can dso be consdered as a case of dilution. Networks are
able to adapt to the damage (up to alimit) introduced by dilution and are able
to recover completely [Hendrich91]. This implies that associative memories using
the Hopfield network paradigm are useful even in the presence of faults. Although
dilution and asymmetry are two different and distinct concepts most of the rele-
vant works reported in literature use dilution as a means of introducing asymmetry
in Hopfield network. In other words, dilution is used to achieve asymmetry but

symmetric dilution does not lead to asymmetry.

Capacity estimates of Asymmetric Hopfield networks where dilution has been used
for introduction of asymmetry is given in Section 2.6.1. Capacity estimates of network

constructed using asymmetric learning rule is given in Section 2.6.2.

2.6.1 Asymmetry and Dilution

An asymmetric and diluted version of Hopfield network as proposed in [Derrida87] is

described here.

For bipolar neurons the synaptic weights are obtained as

P
Jy =C; 3 & (2.1)

p=1
where C;; € {0,1} is an independent random number which represents dilution and

asymmetry. It is drawn from the distribution

Pr(C;;) = %5(::., ~ 1)+ (1 - %]'5{&3‘”] (2-2)
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Where ¢ is a constant representing mean connectivity per neuron. 6(0) = 1 and
86(z)= 0,z # 0. Eq. 2.2 is acase of random dilution. The probability for a synaptic
weight to remain intact is . The probability for a synaptic weight to be made zero is
(1 — £). Because £ —» O as N — » oo, the analysis is carried out under the restriction
that c « InN. This is a cae of extreme dilution. The neurons are updated according

to the following rule

f
+1 with probability(1 + ezpl—2h:()/To])™"
oi(t +At) = < probability(1 + ezpl (¢)/Tol)

(23)
l -1 with probability (1 + ezp[2h;(t)/To]) ™
where h;(t) = S0, Jijo;(t)-Storage capecity a, at reduced temperature T is given by

a=L=! qdT=— (2.4)
C C

At T — O, the critical value of capacity a. = - = 0.6366. The a. is larger than 0.15
for non-diluted symmetric cases. For a < a. two initial configurations close to stable
state vectors, remain close to the stable state vector but do not become identical. When
some of the stable state vectors are correlated there exists regimes for which the system
remembersthestate vectors, but cannot distinguishthem. Theextremely diluted network
can retrieve the stable state vectors that have been stored in it. The storage capacity
measured per remaining synapses, is significantly higher than that of fully connected

synapticmatrix.

2.6.2 Asymmetric Learning Rule

This section describes an asymmetric version of Hopfield network using asymmetric learn-
ing rule reported in [Gardner89e].

The synaptic matrix for network with bipolar neurons is constructed using the mod-
ified Hebb’s rule. The synaptic weight J;; between the post-synaptic neuron : and pre-
synaptic neuron j is changed only if the post-synaptic bit : of the candidate state vector
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IS active (=1). The learning rule has asymmetric synaptic matrix as it differentiates
between post-synaptic and pre-synaptic neurons. In a candidate state vector, if & is +1
and &;is —1, then this pair of neurons contribute to reduce the value of J;; but Jj;:is not
affected.

By introducing the dilution and asymmetry parameter C;; € {0,1} thefina synaptic
weights are obtained as Ji; = CijJij; where Ji; = %Zf;l(f.-" + 1)¢¥. The argument
for extreme dilution in Section 26.1 are a0 gpplicable here. Every neuron o; — 1
contributes to the post-synaptic potential of neuron 2

1 N
MO= £ Jslet)+1)

3=1,(3#4)
If the post-synaptic potential exceeds a threshold é; then the post-synaptic neuron is

activated. For simplicity uniform threshold is considered for al neurons, Oi — 65 > O.
U.'(t + At) = sgn(hi(t)- 90)
Updating procedureis given by

1 withprobability [1+ ezp(3, (=2 )]-1

-1 with probability [1 + exp( m@fﬁ}]—!
The capacity of the network is found to depend on the threshold of the post-synaptic

':rlu + ﬂ!} == =

neuron. Capacity is optimal for 8, ~ 0.1 and no retrieval is possible for 0 > 0.5. Under
the condition — —» 0, N — oo, P —» 0o, With reduced temperature T' = 1} and reduced
threshold 0 — Qﬁ the capacity with respect to existing couplings is obtained as

P-1

e

(2.5)

This value of critical capacity is the same as that given in Eq- 2.4. The capacity
of this model varies with threshold of the post-synaptic neuron. This network classifies
input state vectors according to their mean activity and their overlap with the stable

State vectors.
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2.7 BIASED CANDIDATE STATE VECTORS

The dynamics of Hopfield network is studied by sdection of candidate state vectors ran-
domly or in adeterministic way. For two-state neurons, the randomly sdected candidate
State vectors on an average have 50% active neurons and 50% passive neurons. These
vectors are termed as unbiased candidate state vectors.

The candidate state vectors for which mean percentage of active dements is different
from 50% are cdled biased candidate state vectors. In deterministic way the candidate
state vectors with a particular activity levd or bias can be chosen. All candidate state
vectors with a specific bias are naturally correlated with each other. Such candidate state
vectors are caled correlated candidate state vectors.

The bias parameter or activity level a of a state vector £“ is given by a= % il o
The biased candidate state vectors with low level of activity are known as sparse candidate
state vectors. The total number of active elements in a candidate state vector is called
as magnetization M of a candidate state vectors. Ratio of active neurons to the total
number of neurons is known as magnetization per spin of a candidate state vector.

In Hopfield networks with N, two-state neurons the biased and unbiased state vectors
in terms of activity level are given in Table 2.1. This table dso gives the number of
active elements and excess of active neurons over passive neurons in state vector with
bias parameter a. Study of neural networks with biased candidate state vectors have

been reported in [Evans89, Amit87, Viswanathan93, Penna90, Tsodyks88].
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Table2.1 : The activity level a and bias of state vectors

l] binary neurons | bipolar neurons

Ebiaset‘j state vector a=3 a=0

State vector with fully active bias a=| a=1

State vector with fully inactive bias | 2= 0] a=—1

Number of active dements in aN ra)l

state vector with bias parameter a

Excess of active neurons over passive || (2a - |)N aN

neurons in state vector with bias a

2.8 CORRELATED CANDIDATE STATE VECTORS

A mechanism for selection of candidate state vectors is based on common descriptor.
Only those state vectors with certain description are eligible for selection as candidate

state vectors. Correlation m between two candidate state vectors é* and €* is defined as

1 i
m= EE.‘ &
For bipolar neurons —1 < m < 1 and for binary neurons 0 < m < 1. The correlation
between a sat of P candidate state vectors can be represented in a correlation matrix

1 N
(Cuw) :Cusr=5 €€, iw=1,2:,P (2.6)

Semantic correlation is the correlation between various candidate state vectors. Syn-
tactic correlation is the correlation between neuronal sites. Hierarchical correlation deds
with candidate state vectors grouped into clusters.

Storage and retrieval of corrdated candidate state vectors reduce the number of pos-

sible candidate state vectors that can be made stable. The gpace of interaction is als0



Chapter 2.  HOPFIELD MODEL OF NEURAL NETWORK 31

reduced. The number of candidate state vectors that can be stored in a Hopfield network
with N neurons is more for corrdated candidate state vectors compared to uncorrelated
candidate state vectors. However the information capacity of the network is less for

correlated candidate state vectors compared to uncorrelated candidate state vectors.

29 CAPACITY WITH BIASED AND CORRELATED PATTERNS

2.9.1 Low Leve Activity With Bipolar Neurons

In [Amit87] a modified Hopfield network to alow the storage of biased candidate state
vectors is proposed. This work deds with the study of associative memory whose mean
activities differ from 50%.

State of every element £ in the candidate state vectors can be chosen independently
with probability P(&')= 1(1 + a)é(£- 1) + 5(1 - #)8(&° + 1). The average of each €isa
(< & >) and the mean activity in each candidate state vector is %(1 +a),—-1 <a< 1l
With such aAdistri bution the candidate state vectors are necessarily correlated in asimple
way i.e. < tftf > = a2,

The stored stable states become unstable at very low storage level. Even at small
values of the bias parameter a, the Hopfield dynamics is catastrophic. Thisis due to
the fact that the noise generated by other stable states in the retrieval of each stored
stable state does not average to zero. To overcome this difficulty the synaptic weights
are derived by the following non-local learning rule

B 1 &
Jy= TE[{'H —a)(& —a)

These synaptic weights avoid catastrophe by shifting the noise back to a zero mean.
For finite P, the consequences of traditional dynamics are unsatisfactory. The near

saturation (P = a..V) spurious states are found to dominate energy landscape. Although,
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the stored stabl e states themsaves are stablebalow a.(a) (upto asmal fraction of errors),
their basin of attraction, and hence fault tolerance of the network decrease sharply with
increase in a

To have a network which can effectively store and retrieve candidate state vectors, it
is not only sufficient to modify the synaptic weights but dso to modify the dynamical
process. With mean bias parameter a, the network is constrained so that it wanders
mostly among states that have the preferred mean activity. There must be global control
on the dynamics of the network which prevent too high or too low activity. Thus the
network activity should be much lower than 50% whether or not the network is retrieving.
This control restricts the region in state space in which a heathy neural network can
move. The dynamics is restricted rigidly to states with a given vaue M = ¥ o, =
Na. The number of neurons that are on (+1) is L“:J . The candidate state vectors
are stable states of the network. Spurious states with macroscopic overlaps with small
number of cgndidate state vectors, do not appear. Such a network has a higher storage
capacity a.(a) than that of network storing random or unbiased candidate state vectors

a.(a) > a.(0) for |a|< 0.99.

2.9.2 Low Level Activity With Binary Neurons

Stability of candidate state vectors with low level of activity in Hopfield network with
binary neuronsisreportedin [Tsodyks88]. Themain variation isthe use of binary neurons
instead of bipolar neurons as in Section 2.9.1. Maximal storage capacity obtained for

this model using the meanfieldtheory isa, ~ ,_ ‘—,

2.9.3 Improving Retrieval

A method for retrieving information from Hopfield network storing candidate state vec-
tors with low level activity is proposed in [Penna90]. This method uses the traditional
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Hopfield dynamics by doubling the number of neurons in a suitable manner. For P can-
didate state vectors with bipolar neurons the synaptic matrix is constructed by using

Hebb’s learning rule. The states of neurons is updated using the equation
N
ot +1) =sgn( Y J,o5(t))
3=1,(j#)

lfthe correlation between any two candidate state vectorsis not doseto zeroi.e, | m |<
7% they do not represent fixed points of dynamics. The dynamics of Hopfield network
Cannot distinguish between two similar candidate state vectors for which correlation m
Is not close to zero. In order to satisfy the condition of vanishing correlation a necessary
condition is that al candidate state vectors must have about 50% of active neurons. But
in [Amit87] it has been shown that this may be undesirable in most cases where it is
required to reach retrieval for low activity candidate state vectors.

The method of retrieving information from synaptic matrix storing low level activity

candidate state vectors as reported in [Penna9(] is given below.

1. Candidate state vectorswith 2/N neuron are created by doubling theinitial number
of neurons such that ¢ = (2i41 +€£, where ¢ is the i** neuron state of the doubled

candidate state vector u.
2. A neuron ¢¥ = —1 israndomly sdlected from the original network.

3. One of the corresponding ¢z or {34, neurons of the doubled candidate state vector

is randomly chosen and then its state is changed to active state.

The Steps 2 and 3 are repeated until 50% components of the doubled candidate
state vectors are active for dl the candidate state vectors. Using this prescription P
candidate state vectors with low and different activity levels are stored and it is possble

to retrieve these vectors. The storage capacity is found to be two times the capacity
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given in [Hopfield82]. This is due to hidden neurons. It was dso found that smdler the

fraction of active neurons the better is the quality of retrieval.

2.9.4 Improving Performance By Adaptive Threshold

A modified Hopfield modd with adaptive neura threshold and globd inhibitory inter-
action between neurons is proposed in [Buhmann89]. This network is capable of near
optimal storage of candidate state vectors at low activity. It dso exhibits a high (close
to optimal) storage capacity, no spurious states and a specia state of no recognition. By
adjusting threshold a choice can be made between effective storage and good associativity.

The P candidate state vectors with bias a are chosen according to the distribution
P(&F) = ad(Ef—1)+(1—a)é(£!). The synaptic weights between binary neurons are chosen
according to Hebb’s hypothesis of co-operating neuron assemblies [Hebb49] (assembly
of neurons with mutual excitatory interactions). There is a competition among such
assemblies (inhibitory interaction between neurons belonging to different assemblies).
The synapti c*wei ghts are derived using the equation

1

P
- - A B _ aNMEP — a 3 :
Y= = B e S TR

=1
where, 7 is the inhibition factor.

The synaptic matrix is symmetric and diagonal elements are zero. The neurons are
updated asynchronously according to probabilistic rule. Theruleis based on alocal field
hi = EX.,Ji;o;. With probability f; = {1 + exp[—(hi = 8)/T)}"neuron : fires at time
t + At, otherwise it is quite. O is the threshold and T is the network temperature.

At T = 0 and a parameter range defined by O +7 < 1 — a, al states exhibiting
macroscopic overlap with one candidate state vector are stable states. In the limit of
small a value (a <« 0.1) for sufficiently strong inhibition (7 > 4. = -‘-—;—-‘!) the network

states are always unstable. For alow leve of activity a the storage capacity increases as
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a. = —a(lna)™!. The information stored per synapses could be as large as 0.38 for 9 =
0.75, a= 5.6 x 1077,

2.9.5 Non-local Learning Rules

The loca learning rules have some limitation. While using these rules it may ether
be difficult or not possible to ded with corrdated candidate state vectors. When the
candidate state vectors are uncorrdated random variables, the combined overlap of a
candidate state vector with dl other candidate state vectors is of O(vg. Hence when
P is finite, the stable states of a Hopfield network contains a finite fraction of errors,
which increases with a [Amit85a]. When a reaches a critical vaue a., there is a dramatic
increase in the level of errors and the Hopfield network ceases to function as an effective
associative memory system. The critical value a. depends on details of the modd but it is
aways less than 0.14 [Amit85a, Sompolinsky86]. Non-local learning rules can supress the

adverse effects of the overlaps among the candidate state vectors [Personnaz85, Kanter87].

Pseudo-inverse Learning Rule

In [Personnaz85] a model based on non-local learning rule called Pseudo-inverse learning
ruleis proposed. This model is capable of storing correlated or uncorrelated state vectors
which are linearly independent. The synaptic weights are given by
1 P
JI.F G F Z] E:‘E:(C-‘}w (27)
=
where (C~'),. is inverse of correlation matrix given in Eq. 2.6.
The loca field of a neuron @ is defined as
= M

k, = £Ja_1'5'"1 {25]

J=
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The self-coupling term in EQ- 2.8 restricts severalt the size of basins of attraction of
the stable state vectors especidly for large a. For small values of a < %, the self-coupling
term significantly reduce the basins of attraction.

Above a = } astate vector configuration which differs from a stored stable state
vector by one spin will not flow to that stable state vector. Although the candidate
state vectors can be made stable upto a = 1, the maximum capacity of the system for

providing associative memory is a, =

ST

Eliminating Self-Coupling Term

A modification of the above model by eliminating self-coupling term is proposed in
[Kanter87]. The local field of neuron i is given by hi = Z}V:l(#q Jijo;. The neurons
are updated using the equation o; = sgn(h;).

For synchronous as well as asynchronous update the radius of attraction R decreases
monotonicall_y and vanishes at a. = 1. There is an increase in the number of spurious

stable states as a increases. But the occurrence of linear combinations of stable state

vectors as spurious statesis very rare. Thus the presence of spurious states do not affect

the basin of attraction of the stored stable state,

2.9.6 Generalised Learning Rule

In [Dotsenk091] ageneralised model based on generalised | earning rul e has been proposed.
Hebb’s learning rule [Hebb49] and Pseudo-inverse rule [Kanter87, Personnaz35| are two
special cases of this generalised rule. This subsection deals with model proposed in

[Dotsenko91] and capacity estimates of the model.

Network consists of N bipolar neurons. Synaptic matrix is constructed using the
eguation

..Jui‘lrlr

1 P Tl . —l 14 2
Jy=< N & (L + AC ) ,.f (2.9)
*. Hoe=l

where C',, is correlation matrix given by Eq- .0
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With A = 0, this generdisad rule corresponds to Hebb’s learning rule. In the limit
A —» oo the structure of J tends to the synaptic matrix constructed usng Pseudo-inverse

learning rule. The extreme vaues of a.(A) are a.(A = 0) = 014 and a.(A — 00) = 107.

2.9.7 Biased State Vectors In Clipped Network

This section describes a neural network modd with bipolar synaptic weights {+1, -1}
reported in [Viswanathan93].

The condition for each of the P candidate state vectors with bias a, to befixed point
in a network with N neurons is

u~ Jiks
T =g E

The neurones updated asynchronously using the update rule o;(t+1) = sgn(3-Y 1) Ji55 ().
It is further assumed that the synaptic couplings which each neuron receives are con-
strained to have a bias E;‘;l.],-j = rv/N. The number r (bias of coupling) measures the
excess of excitatory couplings over inhibitory couplings. The storage capacity as afunc-
tion of coupling bias for «k — 0 and the pattern bias ais given in Figure 4.2. The Figure

4.3 maps the capacity as afunction of coupling bias for a = 0.6 with « values 0, 1, 2.

It can be concluded that for every value of k, the storage capacity is optimal for a
value of bias in the couplings which is independent of bias in the candidate state vector,
as long as ais non-zero. For random candidate state vectors (a = 0) the critical capacity
a. = 0.83 is independent of coupling biasr. For K =0, r = 1 (Figure 4.2) is an optimal
value for the coupling bias. The optimal value of r increases slightly to about 2 as K
increases to 2 (Figure 4.3). The peaks in the storage capacity is sharper for candidate
state vectors which are most severely biased, indicating that only a narrow range of

coupling bias vaues store these vectors efficiently.
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Figure 4.2: Capacity as a function of r for x = 0 and a = 0,2, 0.4, 0.6 and 0.8. The higher

peaks are for larger values of a.
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Figure 4.3. Capacity as afunction of r for K = 0, 1, and 2. The upper curves are for smaller

values of K.

2.9.8 Generalised Rule For Correlated Patterns

In {Der92] a model has been proposed, which enables storage of strongly correlated candi-
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couplings, with an intermediate form between Hebb's learning rule and Pseudo-inverse
rule described in Section 2.9.5. This model which combines the probability density func-
tion for generation of candidate state vectors (Section 29.1 and Section 2.9.4) with the
generalised learning rule (Section 2.9.6) is described in this section.

The ¢* (with bias & ae chosen by probability  distribution
P(&)= ab(é- (1 - a))+ (1 - A)é(£+ @), with « £ >=0 and € £ >= a(1 - a)-
The synaptic matrix is constructed using the formulation given in Eq. 2.11.

In the limit A — » O this moddl resembles Hopfield network storing corrdated can-
didate state vectors. In the limit A — » oo, this model resembles the Pseudo-inverse
verson of the model storing strongly correlated candidate state vectors. The threshold

IS considered to be same for al neurons. The next state of the neuron z is obtained as

R kN
1 if iy gy Jiioi(t)X6; < 0
By approptiate adjustment in the threshold 0, optimal capacity can be obtained. The
optimal value of 0 at which maximum capacity is reached is given by
a(l-a)(1+ ,\a)l
@+ mmn )

At this value of O the capacity, a, = , *  for a < 1. Thus the critical capacity

2
of this model does not depend on A, but the optimal value of the threshold depends
on it. The results of this section and Section 2.9.6 show that generalised learning rule
IS very rich in its behaviour and theoretically very robust. For storing uncorrelated
candidate state vectors critical capacity can be increased from a. = 0.14 (at A = 0)
upto a. = 1 (A — 00). For modd storing correlated candidate state vectors the critical

capacity can reach a value mentioned above for any vaue of the parameter A, provided

the threshold is chosen in an optimal way.
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2.9.9 Existence of Required Network

The emphasis of the capacity consideration in this chapter till now has been on the num-
ber of candidate state vectors that can be stored and retrieved with a given prescription
for construction of Hopfield class networks. There is another approach to the study of
storage capacity with emphasis on the availability of a synaptic matrix which will ensure
stability c-:onditi ons for the given st of candidate state vectors.

In [Baldi87] the maximum number of candidate state vectors that can be stored in

the Hopfield networks is given by
Pma:: ~ K2202N (2.10)

where the values of K, = 10505 and C, = 0.2874. This will give a Pnez = 2N. For
correlated candidate state vectors, each with bias a, where 1 — a ~ —-, there is a
prescription where Pra. is of the order of s

In [Gardnér88al the study of space of interactions in the Hopfield network is studied in
detail. The synaptic weights are considered as dynamical variables. The synaptic weights
need not be explicitly prescribed in terms of candidate state vectors. A mechanism to
estimate the storage capacity for optimal network is deviced. The task is to choose
synaptic weights such that P prescribed candidate state vectors are thefixed pointsin a

Hopfield network with bipolar neurons. The dynamics of the system is defined by

ai(t + 1) = sgn(hi(t) — 8,)

where &
1
hi(t) = —= D Jioilt) (2.11)
v NJ'=EU#*"! ’

The synaptic weights J;; # J;- The synaptic weight Ji; are defined so that
S - #n J2 = N @ each site 1. The neuronal configuration oi is thus a fixed point
of dynamics provided the quantity ft = ¢;(h;{o;} 6:) is postive for all sites i
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The requirement that each candidate state vector is a fixed point is not sufficient to

guarantee a finite basin of attraction and a stronger condition

fi(vicf) - 6:) > x (2.12)

where « is a positive constant, which is imposed at each site : and for each candidate
state vector. Larger values of K imply larger basins of attraction.

The typical fractional volumes of the space of solutions for the synaptic weights J;;
to Eq. 212 and Eq. 211 is caculated. The volume vanishes above a vaue a., which
depends on the stability K and this determines the maximum storage capacity of the
network.

For uncorrelated candidate state vectors, the thresholds 6; are set to zero. For AC = 0,
the volume vanishes as a increases towards 2. This determines the maximum storage
capacity ag(maz) — 2. This is in agreement to results of [Badi87] Eg. 2.10. The upper
storage capacity a.(k) isfound to decrease with AC. That is as AC increases and basins of
attraction become larger, then the number of stored stable states decreases.

These calculations are repeated for correlated candidate state vectors with same
activity level. The & are independent random variables with distribution P(£!') —
L1+ a)8(¢- 1) + 3(1 - a)8(él + 1). For AC = 0 and small vaues of a the maxi-
mum storage capacity agmaez) = 2(1 + ZL +0(a*)). As a tends to 1, a. diverges as
A = ~ e

Although the storage capacity increases with correlation between candidate state
vectors, the amount of information per candidate state vector decreases.

DEFINITION 2.9:- The total information capacity I, is the total number of bits stored
in the candidate state vectors.

Total information capacity can be measured using the following equation.

I = Ve ac(a){%(l - a)ln(il(l -a))+ ;1(1 + a)ln(gl(l + a))}
In £ % p’ 2
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For random candidate state vectorsa= 0 f = 2N?2. Theinformation capacity I, however
decreases dlightly with a For small tf, I A = 0.721 N2.

The information capacity of a st of candidate state vectors decreasss as the candidate
state vectors become more corrdlated. A given information cannot be learnt any faster
by introducing redundancy [Wendemuth93]. There is no learning time gain in spreading
the same information over a large st of corrdated candidate state vectors.

In [Gardner88b] it is shown that to go beyond the storage capacity of optimal network
it is necessary to dlow aminimal fraction f of bit errors. For each value of aand AC there

IS a minimum fraction fmi» of wrong bits.

2.9.10 Semantic and Spatial Correlation

The correlation between candidate state vectors has an impact on the synaptic weights.
This section dedls with semantic correlation and spatial correlation between candidate
state vectors

Semantic correlation:- Correlation between different candidate state vectors to be
made stable is called semantic correlation. Semantic correlation between two candidate

state vectors é# and ¥ isof theform
&£ frfr >= Cppaij V ('?])1 V (ﬂs""}

where C,, is the correlation matrix which is formulated using Eq. 2.6.

The correlation of a pattern with itself Cus = 1. Correlation between two candidate
state vectors é* and £* can be cdculated as the Hamming distance between the two
candidate state vectors, Cuo = j € — £¥ |. It has been shown in [Tarkowski92,
Wendemuth93] that for semantic correlation the critical capacity do not depend on the
type of distribution in correlation matrix but depends only on the difference in the

maximum and minimum value Cma: — Cmia) in the correlation matrix.
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Spatial correlation:- Correlation among the different dtes of the network is cdled
spatial correlation. Spatia correlation is of the form

«ff<s = c,6. Y (3G,5), V)

It has been shown in [Wendemuth93, Lewenstein92] that in the case of storage of the
spatially correlated candidate state vectors in the Hopfield network the critical capacity
ratio a. somewhat exceeds a.(k= 0) = 2.

2.9.11 Hierarchical Corredation

The organisation of objects with well defined relations of similarity into hierarchical tree
arises naturally in many cases of data classification and analysis. Such objects are said to
be hierarchically correlated. Attemptsto incorporate such astructurein aneural network
have been reported in [Toulouse86]. Hopfield model has been extended in [Gutfreund88|
to dlow the storage and retrieva of hierarchically correlated candidate state vectors.
The overlap between these candidate state vectors form a hierarchical tree. The proposal
given in [Gutfreund88] is described here.

The hierarchical tree of candidate state vectors is constructed as follows. At the
first level of hierarchy P, candidate state vectors £“(r = 1,2,..., P,), with bias a are
generated. Every component £¥is chosen independently with the probability given by

P(E!) = 5(1+a)B(El 1)+ 50— a)d(El +1) V€

These candidate state vectors serve as ancestors for the next level. At the second level
a new correlation parameter 6, (0 < 6 < 1) is specified. For each of the P, candidate
state vector £#, P, descendants £€*¢ (¢ = 1,2,...,P;), are genegrated. The candidate
state vectors are grouped into the clusters with high correlation between candidate state

vectors within the same cluster and lower correation between candidate state vectors in

different clusters.
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To retrieve a particular candidate state vector £*¢, attempt is made to identify the
ancestor. The information about the ancedtor is transferred to the network as an externa
field hi on each neuron by hi = h&fwhere h is an external field conjugate to the ancestor
state. It is observed that critica storage capacity is reached at value of h dependent on
b. The value of b should not be too smdl, so that the overlap with the ancestor candidate
state vector is sufficiently large. a should not be too large, to ensure a clear separation

from the basins of attraction of the other ancestor candidate state vectors.

210 MARKED CANDIDATE STATE VECTORS

Hebb's learning rule alows the storage of P candidate state vectors ¢, where each com-
ponent takes on one of the two vaues with equal probability. It is reported in [Amit89]
that in thelimit N — oo, it was possible to retrieve the candidate state vectors, with less
than 3% error, aslong as P < 0.1387V. Beyond this value it is not possible to retrieve
the stored stable states. This is caled blackout catastrophe.

It has been argued that such a behaviour is not realistic and modifications of the
original Hebb'slearning rule, to avoid blackout catastrophe have been subjected to many
studies [Parisi86a, Nadal86, Nicolis90, Fontanari88]. In [Fontanari88] it has been shown
that by marking afinite number of candidate state vectorsit is possible to retrieve them,
even when the unmarked candidate state vectors exceed 0.138 N. By marking candidate
state vectors the network is modified in such away that even if the network is overloaded
(e > a.) it will have marked candidate state vectors as stable states. In this approach,
however, blackout is not avoided, but delayed.

Privileged status for a st of candidate state vectors can be introduced within the
Hebb's learning rule. In [Nicolis90] it is proposed that st of candidate state vectors P

is categorized into two groups, P, marked candidate state vectors £€* (u = 1,2,..., ),
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with privilege status having an associated weight one and > unmarked candidate state
vectors ¢¥ (v—1,2,..., F2), having a weightage 7 (0 < 7 < 1). The following equation

Is used to determine the synaptic weights.

P
Jij = T*:fé &g+ %ét:f’-r;j‘

41 is finite s N — oo and P, = a2N. The terms a; and a, represent the storage
capacity of marked and unmarked candidate state vectors respectively. For simplicity
] = Qg = Q.

The conclusion of [Nicolis90] is that under the conditions mentioned above the critical
capacity is lower than that reported in [Fontanari88]. Since 2«. > 0.138, total blackout
is delayed. The critical capacity for retrieval of marked and unmarked candidate state
vectors as a function of 7 is given in Figure 4.4. It can be observed that for a given
value of 7, there corresponds two critical values of ai.e. ap and a,. For a < a,, the
network is capable of retrieving the unmarked as well as marked candidate state vectors.
For a, < a < ap, the network may retrieve only the marked candidate state vectors.
Above a > ap, the network cannot retrieve any candidate state vector, it is a blackout.
Thus the learning rule proposed in [Nicolis90] enables storage and retrieval of certain

candidate state vectors beyond the well established critical storage capacity.
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Figure 4.4. Critical capacity a. for retrieval of marked (solid line) and unmarked

(dashed line) candidate state vectors as a function of -.
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2.11 MULTI-VALUEDNEURAL NETWORKS

In the previous sections Hopfield class networks with two-state neurons are consdered.
Although this choice is often natural and useful, there are severad networks with more than
two neuron states (multi-valued neural states) reported in literature [Kanter88, Bolle91,
Yedidia89, Bolle92, Prados, Stiefvater92, Baram91, Rieger30, Noest38a]. Multi-valued

neurons can be 1) Multi-state neurons or 2) Continuous valued neurons.

2.11.1 g¢-State Potts mode€

The g-state Potts model [Elderfield83] has been introduced in the theory of neural network
in [Kanter88]. In this model state of each neuron o; is viewed as a Potts glass spin. The
neuron can take any one of the ¢ vaues 1,2, . . ., @, where Q is any integer greater than
1. The state of the network is the instantaneous configuration of all the neurons at a
given time. Neural networks based on g¢-state Potts Spin glass neuron have been studied
in [KanterSS*, Vogt92, Bolledl, Elderfield83]. The synaptic weight JX' determines the
contributions of a signal fired by the j** pre-synaptic neuron in state & to the post-
synaptic potential which acts on the :** neuron in state I. The P candidate state vectors
¢+ are taken to be quenched random variables, assuming thevalues 1,2, . . ., Q, with equal

probability. For P candidate state vectors synaptic weights are obtained as

1 P
i =GN El Meates v El€1,2,..,0Q
=

where, ms, IS an operator which obeys the Potts symmetry constraint and is given by
men, = qéen, — 1. £ ris q state Potts variable representing that :** component of
candidate state vector £ is having state r. This synaptic matrix will have .V2¢? entries

and is symmetric i.e, J¥ = Jif.
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The potential k,,0on neuron z (in state o) is
N g
ho; = — E Z J*Ij Ma; ke, 1
i=1k=1
The induced locd fieldsfor each of the ¢ Potts states is calculated. At zero tempera
ture the state of the neuron in the next time step isfixed to be the state which minhnizes
the induced loca field. The stable states of the system are those configurations in which
every neuron state o; is in a Potts state which gives a minimum value of &,
Using replica symmetric theory the theoretical results for storage capacity of g-state

Potts glass modd of neural networks given in [Kanter88] is

| 0 3 | 4|5 |o
ll_c:ritical Capacity a.(q) || 0415 | 082 | 137 | 48

The maximum capacity is represented as o, ~ 1@;'_110.138. The capacity of g-state
Potts glass model is higher than the Hopfield network. This is partially due to the fact
that in the ¢-state Potts glass modd each synapse between a pair of neurons have ¢?
terms in the synaptic matrix. For each candidate state vector the embedded information
between a pair of neurons have ¢? different possibilities. Higher capacity can dso be

attributed to the presence of Nlog, g bits for each candidate state vector.

2.11.2 g-state Ising Spin Networks

In ¢-state Ising Spin Networks the neuron can take any one of the q values in the st
{-1=51<82<...<8g-1 < Sq = +1}. The dements have a zero mean. A state
of the system will be denoted by o — (o1,02...on). Neural networks based on g-state
Ising Spin neurons have been reported in [Rieger30, Bolle92, Yedidia89, Baram9l]. A
fully connected ¢-state Ising spin glass neural network with self-feedback, in case of low

loading (i.e. for a finite number of candidate state vectors) is studied in [Bolle92].
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Capacity Estimates:- The ability of a neura network with multi-state neurons to
store candidate state vectors has been systematicdly studied in [Rieger90]. Some of the
capacity estimates for g-state ISing spin neurons as reported in [Rieger90] are listed here,

1. Using pseudo-inverse learning rule it is possble to store N candidate state vectors

In anetwork with N neurons. However, the basn of attraction for retrieval without

error, shrink with increasing q.

2. Using conventional Hebb’s learning rule it is possble to sore uncorrelated candi-
date state vectors. The critical storage capacity at zero temperature is approxi-
mately given as a.(q) ~ 0.3¢~2 for g> 1.

3. For continuously varying activities dl linear combinations of the candidate state
vectors within the cube [Fmin, Tmaz)”™ are degenerate in energy and the network is

not usable for associative memory or pattern recognition. Thus for these applica-

tions discrete values should be used.

4. With increasing g, spurious states other than linear combinations of the candi-

date state vectors occur. These spurious states have higher energy and are d<o

metastable.

Three-state Ising Spin Network:- A modd of neural network with three states (1,0,-
1) neurons is proposed in [Yedidia89]. The synaptic weights are given by

s A
J-'j=c£7£.-“£;‘ 1=12...,.N
c F‘i

where C;; are random independent parameters (independent of C,;) which take the value
1 with probability & and O with probability 1 — &. c represents the mean number of

-

SyNaPSES per neuron.
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Synchronous or asynchronous dynamics can be used for operating the network. The
local field hi of neuron 1 isgiven by hi = Eﬁ._lJ;,-a,-.The sgate of the neurons are updated

according to rule

3

+1  with probability =ei(t—f)/T)
oi(t+1 =4 0  with probability Z

| —1 with probability =pl{=A—2)/T)

where Z = ezp((h;- 0)/T) + 1 + ezp((—h:- 8)/T), 0 is the threshold, and T is the

temperature.

This moded have identical behaviour with two-state binary neuron modd, in the limit
of low activity of candidate state vectors and nearly optimal thresholds. The reason of
this similarity is that nearly dl the errors of the three-state models will consist of neurons
having O when they should be +1 or -1. These errors are less serious compared to neurons
having value +1 when it should be -1 or vice versa

The three-state model has some advantages over two-state models. Three-state mod-

els stores about twice as much information because the critical capacity a. is nearly the
same, but the active neuron can now be 1 or -1, instead of always 1.
Two-state Representation Of Three-state Network:- The extent to which the dynamical
behaviour of neural network consisting of three-state neurons can be redised in neural
network using twé—state neurons is investigated in [Stark90]. Some observation of the
process of conversion of a three-state neural network to a two-state representation as
reported in [Stark90] are given here.

For every three-state network (with deterministic dynamics) it can be written as a
two-state network with twice the number of neurons. When more noise is added, there
IS NO two-state neural network with equivaent probabilistic dynamics for a given three-
state neural network. However, the three-state network does always have a two-state

representation at suffcient low noise levels. The two-state representation are replacing
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one three-state neuron with two-state neurons. This is fully in accordance with the
observation in [Yedidia89] that the storage capecity of three-state network is roughly
double that of an two-state network. The three-state neural network mode do not have

any new behaviour as aresult of genralizations from two-state tO three-state leves

2.11.3 g-state Hopfield networ k

The state of neurons are Smilar to g-state 1sing Spin neurons, but there are no bounds
of +1 or -1 on highest neuron state and lowest state respectively. The states of neurons
are sdected equidistantly and symmetrically around 0. A neural network mode basd
on such neurons have been proposed in [Prados, Stiefvater92].
Four-state Hopfield Neural Network:- Multi-state neuron with four-states where
any neuron takes on states 3, 1, -1, 3 is considered in {Prados]. The synaptic weights are
obtained as

Jis = i{:‘{;‘ Vi#£j and J;=0Vi=j

u=1

If application of this equation does not store dl candidate State vectors, the synaptic
weights can be modified using alearning rule ssmilar to the Deltalearning rule. Suppose
the bit ¢+ of a candidate state vector £ changes when £* is given as initial input vector
to the neural network. Since the i** row of the weight matrix determines the next state
of neuron 1, each weight in the i** row can be changed in the direction that will cause ¢*
to approach €. The change AJ;; = L(é!~ @:)€,where g, is the output state of neuron

¢ when the input vector £ is given as an input vector. L is alearning constant. Next
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state of neuron 1 is determined as

if Ei—il.’.‘jd‘j >0
1 if@g>= Ei-it.f;jﬂ'j >0
-1 if0 b ol J,'J;ﬂ’j > —0

=1

-3 if -0>EN, J,o,

=1

Large value of convergence ratio 8/L necesdtate more frequent changes in synaptic
weight. If theratio istoo smdl, then it may not be possble to learn the candidate state
vector. For g¢-state neural networks the convergence ratio should be sdected to enable
storage of any candidate state vector. The following convergence ratio will dlow any
candidate state vector to be stored

¥ - Vi V.

7 = VmasVairg(N = 1)
where, Vmaz is the maximum alowable magnitude for the output of a neuron and Viigs
is the maximum difference between any two adjacent output values.

Following conclusions are made based on the experiments. Four-state Hopfield net-
work can store more candidate state vectors for a given number of neurons than the
binary models. A binary model of N neurons used to store NV bit candidate state vectors
can be converted to afour-state modd of N/2neurons to store four-state candidate state
vectors of length N/2. This reduces the number of synaptic weights significantly.

The capécily of the network in terms of candidate state vectors is bounded by the
number of neurons, but the information capacity increaeses as the sze of the neuron
aphabet increases. For a neuron that take k different values, the total information is
the number of candidate state vectors(P) times the information in each state vector
(N logz K). This can be compared to the capacity of the binary Hopfield mode which is
maximum Of N candidate state vectors. The information capacity is .N? bits.
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2.11.4 Continuous Valued Neurons

The output from a continuous vaued (anaogue) neuron and hence its state is any vaue
from continuous range of vaues. The time evolution of the date w; of anaogue neuron
IS described by

U (00 < u; < o0; & = 1,2,...,N) are st of red variables which are output of
neuron having graded response z; = f(u;). The neural networks based on such neurons
are known as Analogue neural network [Hopfield84, Fukai92, Marcus90]. The storage
capacity of analogue neural network decreases with decreasing analogue gain. Decreasing
the analogue gain dramatically suppresses the number of spurious states. Thus it implies
that for analogue neural networks with an appropriately reduced analogue gain Would

considerably improve the network performance in return for the slight decrease in the

storage capacity.
2.12 HIGHER ORDER NEURAL NETWORKS

Severa models for large interconnected networks of neurons with emergent collective
behaviour have been proposed by use of ideas borrowed from statistical mechanics. The
number of candidate state vectors that can be made fixed points in such systems is of
order N. To achieve greater flexibility and programming capability severd researchers
have noticed that Hamiltonians of higher order, i.e, defined by an an algebraic form of
degree d, could easily be introduced. Moreover, such forms arise naturally in optimization
problems.

The capacity estimate of second order Hopfield network is in given Eq.2.10. This
equation is applicable to higher order Hopfield networks by replacing K3 with K4 and



Chapter 2. HOPFIELD MODEL OF NEURAL NETWORK 3

replacing C; with C4. The vaues of Ky and Cy4 for different values of d as given in

[Baldi87] are given below.

ld k. c d K. Cu
1 1 0] 5 1381 05721
2 10506 0.2874 10 1/032 0.7215
3 11320 04265 100 6.67/05 09461
4 121/8 05124 {| 1000 303100 09916

2.13 CONCLUSION

This chapter introduces Hopfield network with various notations, definitions, learning
rules, and update rules. This chapter dso reports a survey of research related to various
modificationsto the Hopfield network, the effect of these changes on the performance of
the network, various definitions of capacity, and capacity estimates. These modifications
to Hopfield network till now have been mostly attempted in isolation. Use of more than
one modification may help in precise design of Hopfield class networks. This chapter
attemptsto provideaunified basisfor such astudy. Neuroneswith self-feedback character
isone of the modificationsto Hopfield network which has been sdected for detailed study
(Chapter 3).

Capacity of aHopfield class network isone of the criterion based on which the perfor-
mance of the network can be ass=ss=d. In this chapter it has been observed that the basic
concept of the capacity is understood in very diversified (and sometimes contradictory)
manner. Further, if the capacity of a network is the measure of performance of a network
then it should dso be one of the guiding force behind the devedlopment of learning rules.
In the absence of a clear and unique concept of capacity it is difficult to use this concept

for design of learning rules.
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Consider alearning rule which makes dl the input vectors to have aunique stable
state. Such a learning rule, if developed will have the highest possble capacity as per
Definition 2.1 . But such an agorithmwill not have any practical value as the output can
give completely accurate indication of what the input was. In Chapter 4, alearning rule
has been proposed based on Definition 2.4 . This rule will enable Al the sate vectors
having upto specific number of bits as 1, stable in the network.

All the definitions of capacity consder the number of candidate state vectors that
can be made stable, but do not consder the presence or absence of spurious states. The
presence of spurious state degrades the performance of a network. Hence measure of per-
formance of network should not exclude this aspect. It has ds0 been observed that most
of the research related with Hopfield dass network has considered the random sdection
of candidate state vectors. Such results are likely to fail to make some specified sat of
candidate state vectors stable in the network. This has motivated us to design learning
rule which eiminates presence of spurious states and make any s&t of two candidate State

vectors stable in the network (Section 4.6).
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CHANGESIN DIAGONAL ELEMENTS

3.1 INTRODUCTION

In the Hopfield network [Hopfield82] a neuron cannot give direct saf-feedback. The ab-
sence of direct self-feedback is based on the concept of stability, capacity and loca minima
of the energy function [Hopfield82, Hopfield84, Amit89]. Although majority of researchers
consider Hopfield network having no direct self-feedback, there is no biologicad evidence
supporting this hypothesis. In fact, in certain biologica studies it is observed that a neu-
ron takes afeedback from itsaf directly [Carpenter90]. Chapter 2 reports results of some
research articles [Houselander90, Prados39, Braham88, Sezan90, Gindi88, Yanai%0] which
consider Hopfield network with direct self-feedback. Moreover, some related concept of
changes in threshold elements [Der92] has dso been reported in Chapter 2.

In this chapter some experimental observations and theoretical conclusions on the
study of direct self-feedback in Hopfield network is reported. Section 3.2 deds with the
motivation for the study of changes in diagona elements. Section 3.3, using an example
introduces the concept of diagonal element changes and its effect on dynamics of Hopfield
network. In Section 34 critical values for diagona elements which provide the condition
for changes of state of bipolar neurons are proposed. Theoretica basis ol increase in value
of diagond eements leading to the neuron attaining no-change-state is given Section 35 .
Section 3.6 deds with the stability of a neuron given fixed state of one or more other

neurons. A geometrical interpretation of neuron State changes is given in Section 3.7 .
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In Section 3.8 the critica values for changes in threshold are obtained and the effect
of such changes is analysed. Section 3.9 illustrates the difference between the threshold
changes and diagond changes. In this section it is shown that these types of changes
are not truly complementary. Section 310 deds with the study of energy function for
changes in the diagonal dements. Section 33 to Section 3.7 and Section 310 reports
the study of diagona dement changes in Hopfield network with bipolar neurons. Section
311 deds with changes in diagona dements of Hopfield network with binary neurons.

The conclusions of study of diagonal eement changes are given in Section 3.12 .

3.2 MOTIVATION FOR STUDY OF DIAGONAL CHANGES

Any learning rule to construct synaptic matrix makes use of the specified st of candidate
state vectors. But the matrix so constructed need not have dl these candidate state
Vectors as its stable states. Moreover, the introduction of new stable state vectors or the
deletion of an existing stable state is done by making necessary changes in the synaptic
matrix. This usually changes the stable status of other state vectors. Further, any
study of dynamics of neural networks not only concentrates on the stable states but adso
concerns with equally important issues like basins of attraction, minimization of energy
function etc. Hence, the learning rule which ams only at having a set of stable states
may not provide proper (adequate) insight to the study of dynamics of neural networks.
It may be required to have a separate study.

In [Gindi88] the Hopfield network with non-zero diagona eements (with Ji; = N)
is considered. It is shown that by dlowing non-zero diagond terms in the synaptic ma-
trix the stable states of the network need not change. On the other hand, the non-zero
diagonal network is shown to outperform the origina Hopfield network [Gindi88). The
non-zero diagona affects dynamics and can be effectively used to improve the recadling
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ability of the Hopfield network [Yanai90]. It is proposed that the changesin the diagond
eements may be useful in obtaining a particular neural dynamics, stability of new can-
didate state vectors of a particular kind with little affect on the existing stable vectors,
and removing the stable status of a particular kind of sable state vectors.

33 AN EXAMPLE

In this section the concept of diagonal dement changes in Hopfield network is being
introduced with the help of an example. Consder two Hopfield networks (A, 8) and
(B, 8). The synaptic matrices A and B, and threshold vector O are given below.

(110 89 54 -76 -76
89 116 12 -5 19
A=l 54 12 110 45 -17
76 -25 -45 64 —15
\ 76 19 -17 -15 0

(110 89 =4 76 -76 )
g 116 12 -5 19
B=| 54 12 0 -4 -17
76 -25 -45 64 —15
\ 76 19 -17 -15 110

r‘ AY

-]
[
g 8 8 8 &
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The matrix A differs from matrix B in only two diagond terms Ja; and Jss. For
matrix A, Jaz = 110 and Jss = O while for matrix B, Ja3 = 0 and Jss = 110.

The neurons are consdered to be bipolar neurons and asynchronous mode is used for
updating the Hopfield network. Changes in neuron states are obsarved by consdering
the neuron state in initial vector (1) and neuron state in the corresponding stable state
vector (SV). Four posshilities for a neuron state changes are

If IV; is 1 and corresponding SV; is 1 then value asociated is 1.

If IV; is 1 and corresponding SV; is -1 then value assodiated is 2.

If IVi is-1 and corresponding SVi is 1 then value associated is 3.

If IVi is -1 and corresponding SV; is -1 then value associates is 4

By observing each input vector and the corresponding stable state, avalue 1,23 or 4
is associated with each neuron of the Hopfield network. For the Hopfield network (A, @)
and (B, O0) the observation of changes in input vector and corresponding stable vector arc
listedin Table 3.1. Summary of observations of neuron state changes in Hopfield network
(A,8)and (B,0)is given in Table 3.2.

It can be obsarved from Table 3.1 and 3.2 that by changing the diagonal element Jas
from 110 in (A, 0) to O in (B, 8)the number of changes in the neuron state of neuron 3
has increased from 2 out of 31 to 13 out of 31. It can a0 be observed that by changing
the diagonal dement Jss from 0 in (A, 6) to 110 in (B, 0) the number of changes in the
neuron state of neuron 5 has decreased from 13 out of 31 to 6 out of 31.

Hence it is observed that by increasing the diagonal element value the corresponding
neuron state is subjected to less changes. By decreasing the diagonal element value the

corresponding neuron state is subjected to more changes.
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TABLE 3.1: OBSERVATION OF CHANGES IN NEURON STATES
IN INPUT VECTOR AND CORRESPONDING STABLE STATE VECTOR

HOPFIELD NETWORK

(A,0) (B, 8)
3

INPUT VECTOR t

-1 -1 -1 -1 +1
-1 -1 -1 +1 -1
-1 -1 -1 +1 +1
-1 -1 41 -1 -1
-1 -1 +1 -1 41
-1 -1 +1 +1 -1
1 -1 +1 41 +1
-1 +1 -1 -1 -1
-1 41 -1 -1 +1
-1 41 -1 +1 -1
-1 +1 -1 +1 +1
-1 +1 +1 -1 -1
-1 +1 +1 -1 +1
-1 41 +1 +1 -1
-1 +1 +1 +1 +1
+1 -1 -1 -1 -1
+1 -1 -1 -1 +1
+1 -1 -1 +1 -1
+1 -1 -1 +1 +1
+1 -1 +1 -1 -1
+1 -1 41 -1 +1
+1 -1 +1 +1 -1
+1 -1 +1 +1 +1
+1 41 -1 -1 -1
+1 +1 -1 -1 +1
+1 +1 -1 +1 -1
+1 41 -1 +1 +1
+1 +1 +1 -1 -1
+1 +1 +1 -1 +1
+1 +1 41 +1 -1
+1 +1 41 41 +1

I
[

R RPRRRRPRRRRPRRRPRRRNNRRrRPOPLOWPAPRREADMIDBEPRARADDA

RPRRPRPRPRPRRPRRARAMRARAMIAMIMIApRpRRRRRRRARARAABIIIIN
RPRRRPARADMRAN PP R DDA PR RRARMRMRANNRRMAAMMNTW
NNARBMNDNPABREANDNNRAPRPRRpRRAANNNPPRARRpRRRARPRRpRPRAPRARRRA EAN
NAEANPEANANENANPRLRWONPR PR, PR WRWRWONPRWR O
RPRRRPRRRRRRRRRRERNNNRpARMOPPAPDPWPSAPAPREDEL IR
bt et et = = O N DNDMDNDMDAEDNRNRRRNRrRrRARMARMDMNDMD N
RPRPRPRPRPROWWOWRRRRAEAERAPRPONNNNRREAAEDRWONNNNRAEADIAD

NNBEANNPAPANNEARARpRpPAMPPpRrDARpRrADdMNpRPOR~=dDA
NBANANBNANANERLRARL AR DRMRRARAMp RN AL DRNRARL O
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TABLE 32 SUMMARY OF OBSERVATIONS I

Hopfield || Number of Observations No. of obvs. No. of obvs.

I Neuron | Network || 1 2 3 4 with No Change | with Change
1 (4,0) 114 |2 |2 |13 27 4
{B,6) || 13 |3 2 13 26 5
2 (A,0) |16 |0 0 15 31 0
# (,8y tuu |2 0 |15 29 2
3 (A4,0) 14 |2 0 15 29 2
(B,9) |9 7 6 9 18 13
4 (A9 8 8 0 15 23° 8
(5,89 |10 |6 |1 |14 24 7
5 (A,0) 8 8 5 10 18 13
(R |10 |6 0 15 25 6

34 CRITICAL VALUE OF J; FOR BIPOLAR NEURONS

It can be observed from the example given in Section 3.3 that the higher the value of
any diagonal dement the lesser is the tendency of the corresponding neuron to change
state. Thus, a critical value can be determined for a diagonal dement J;; so that beyond
this value, the state of the corresponding bipolar neuron does not change. This critical
value can be termed as no-change-critical-value and denoted as J%“for neuron s. This
critical value depends on threshold associated with the neuron and the synaptic weights
with other neurons

Similarly it can a0 be obsrved that decreae in the value of a diagonal element
increases the likdihood of change in the sate of corregponding neuron. Hence, a critical
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value can be reached so that, below this critical value the state of the neuron definitely
changes. This critical value can be termed as sure-change-critical-value and is denoted
for neuron @+ as Jz°. These critical vaues J2<and J2 are edimated usng sufficient
conditions. But however, these are not necessary conditions.

The following Theorem 3.1 gives the estimate of J2¢ and Theorem 3.2 gives estimates
of J2¢.
THEOREM 31 In a Hopfield network with bipolar neurons, if the synaptic matrix
satisfies Ji > Tieajzil Jis | + 1 6; |, then neuron i does not change its state. The critical

value J€is given by

N
JiE= > | Ji |+ 6|
1=1,77%%
Proof:- In order that neuron ¢ does not change its state from ¢; = +1, it is necessary

that
N
Ji+ E Jsoi-6,20
1=13#5

For the above expression to be satisfied it is necessary that

N
Jii 2 —( Z Jijo; — 6; (3.1)
F=1g#
Similarly, in order that neuron i does Nnot change its state from o; = — 1 it is necessary

that
N
'—J;'.' + E J.-JEI"J - ﬂ, < 0

1=l

For the above expression to be satisfied it is necessary that

N
Ji> Y, Jyoi— 8 (3.2)

=g

It can be observed that

| Jii | < Jijoz < | Jizl,  for any o,
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and

S ft < ft < | ft

Hence

S 1Usl-181< E Jyo—b< E 171+ 16 (33

J=1g# F=1g# J=1 g

N
Ji > E | Jii | + | 8|
i=lg#i

then
N

Ji 2 z Jijo; — 8;
J=1g#
This satisfies Condition 3.2.
If
N
Jii> E 1J111+EE1|
J=1 g9

then
N

k<= 3 |dl=1%]

=1g#
1.6,
N
—"J“' < Z JI'JE-'"J — E,'
1=1.7#

Hence
N

Ii> = E slgep—8)
=1k

. This satisfies Condition 3.1

Hence the theorem is proved.
a
THEOREM 3.2 In a Hopfiedd network with bipolar neurons, if the synaptic matrix

satisfies the condition, Ji < —(My g | Jij | + | ft |) then neuron : does change its
state when updated.
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The sure-change-critical-value is given by

N

JE=—( 3 1l +1eD

=1, 5%

Proof:- In order that neuron # changes its state from o; = +1, it is necessxy that

N
Ji + E Jio;—0; <0

I=lg#

For the above expresson to be satisfied it is necessay that

N
g < -—( Z J,‘jdj - ft) (34)

'=|._j#l'

Similarly, in order that neuron @ changes its state from o; = -1 it is necessary that

N
—J:',"i‘ Z J,'J;l?_r—-ﬂ'ign

j=1 g

For the above expression to be satisfied it is necessary that

N
Jii 8 z Ji;o5 — 0; (3.5)

F=1g#

Using similar argument as discussed in Theorem 3.1, it can be observed that,

-1 Ji\ < Jijos < | Ji; 1, for any ff
and
-1 6:1<-06,<| ft|
Hence
N N N
- Y IJGl=l6ls Y Jyoi—-6 < 3 | Jil+|6| (3.6)
=19 SEANE 1=l

N
J.'{"-’:"'{ E T-rijl‘i'lﬂ:l”

=1
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then
N
Ji< Y, Jyo;—68
J=1 g
This satisfies Condition 35.
|f
N
Ji<—(E 13i1+16)
i=tg#i

1.6
—Ju > E | Jii | + | 6 |
y=1, ¥
then from inequality 3.6
N
—Jii > Z Jijo; —6;
jz:]...il-#l-

1.6
N
Ji < —( E o —8&)

=10

This satisfies Condition 3.4.

Hence the Theorem is proved.

64

O

Based on the discussion in Theorem 3.1, it can be observed that each diagona eement

reaches its critical value independent of other diagonal e ements when the off-diagonal

elements are kept unchanged. With dl the diagonal elements greater than the respective

no-change-critical-values, it can be ensured that al the state vectors are stable in the

network.

Similarly based on the discussion in Theorem 3.2, it is observed that by having dl the

diagona eements less than the respective sure-change-critical-value, it can be ensured

that no state vector is stable in the network.
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3.5 IMPACT OF DIAGONAL CHANGES ON NETWORK DYNAMICS

In this section an attempt is made to study the changes in dynamics of Hopfield network
with changes in diagona dements. The next state of a neuron being updated depends on
present state of the neuron, corresponding diagona element, the synaptic weights with
other neurons, and corresponding threshold dement. These factors determine the change
or no-change status of a neuron in a particular time unit. A neuron of a network can

belong to one of the following categories
1. Sure-change state:- The neuron changes its state whenever it is updated.

2. Hexible state:- The neuron is in achange or no-change state in different time units

depending on the factors listed above.
3. No-change state:- The state of a neuron is not subjected to change when updated.

The diagonal lement changes keeping other e ements of synaptic matrix and threshold
vector constant can be used to place a neuron in any one of these categories.

Consider a Hopfield network (D, #) with al diagonal element values less than the
corresponding J2¢. This network does not have any stable state. Any input vector to the
network (D, 0) will oscillate between the vector and its complement. The network can
be considered to have bidirectionally stable states. Bidirectionally Stable states can be
considered equivalent to the concept of stable states if such a situation occurs for some
vectorsinanetwork. But, anetwork like (D, 0) with dl bidirectionally stable states, does
not seem to have much practical vaue. The network with even one neuron in sure-change
state will not have any direct stable state.

Let aHopfield network (E, 9) with dl neuronsinflexiblestateis obtained by increasing
the values of diagona eements of the network (D, 6). The network (E, 9) has some stable

states. By increasing the values of diagona dements the network will have some more
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stable states. Continuing this process further the Hopfield network (F, O) can be attained.
In network (F, 0) dl diagonal elements are greater than corresponding J2¢ and hence dl
possible input state vectors are stable. Any further increese in the vaues of diagona
elements will have no impact on the performance of the network. The cdass of Hopfield
network between (E, 0) and (F, O} are of specid interest. This phenomenon of diagond
changes and changes in the stable states of the network can be used as a learning process,
If at a stage of dynamics it is required that a neuron bdongs to a particular category
then the corresponding diagona vaues can be accordingly changed.

For a 2-neuron Hopfield network this phenomenon isillustrated in Figure 3.1 At the
stage | only one (-1,-1) of the four possible input vectors is stable. Neuron 1 is sdected
and the value of the corresponding diagonal element is increased. When the value of
diagona eement corresponding to neuron 1 becomes more than the no-change-critical-
vaue, (1,-1) dso becomes a stable state of the network. This is due to the fact that
the neuron 1 is in ano-change state. Whatever state that is associated with neuron 1
from the input vector, the neuron remains in the same state which is dso reflected in the

stable state. This is depicted as stage Il of the network.
Similarly starting from stage | and increasing the value of the diagonal correspond-

ing to neuron 2 it can be seen that the state (-1,1) dso becomes a stable state of the
network. Thisisrepresented as stage |11 in Figure 3.1. By having the diagonal e ements
corresponding to both the neurons, having values more than its no-change-critical-values
al the input states become the stable states of the network. This situation is represented
as stage 1V in Figure 3.1
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Figure 3.1: Various stages of dynamics of two-neuron Hopfield network

with changes in diagonal elements
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3.8 CONDITIONAL STABILITY

Increasing the value of a specific sat of diagona dements in a network with large number
of neurons it is possble to ensure that the state of these neurons is not changed. However,
the more desirable feature of such study is to make specific st of sate vectors stable and
not to make specific sat of neurons stable independent of other neurons. For example
in a 3-neuron Hopfield network, the first diagona dement can be incressed so that firgt
neuron does not change its state irrespective of the states of other neurons. Whereas, if
the intention is to make a specific state vector (+1 -1 -1) to be stable and not (+1 +1
+1) then it is necessary to study a kind of conditional stability of individual neurons and
not the independent stability as discussed in earlier sections of this chapter. Conditional
stability of a neuron t can be defined as the stability of a neuron t given afixed state of
one or more other neurons. However, such a study is much more complex than the one
discussed for the independent stability. Another simple case namely pairwise conditional
stability of neurons is considered here, Critical value of the it diagonal element J;; for a
given state of neurony is denoted as (Ji: \ j). The critical value of (Jii|J) is characterised
in the following theorem.

THEOREM 3.3 The critical value of (J39\ j) such that neuron = will not change its

state for a given state o; of neuron j but independent of other neurons is given by

N
Jl-i} Z IJiL-l'l‘IE.'-ﬂjJ.J
k=1 k#F% ;
The critical value (JZ°1 1) 1s given by
N

VEl)= & | Jal+16] =0
k=1 ki
Proof:- In order that neuron t does not change its state from ;. — +1, it is necessary

that

N
Ji + E Jauor—6. 2 0
k=1 ki
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For the above expression to be true it is necessary that

N
Ji = —( E Jior — 03

k=1 ki
This implies
Ju > —( E Juor- 8)- Jijo; (3.7)
k=1,k#i,j
Similarly, in order that neuron ¢ does not change its state from o; = —1 it is necessaxy
that

~Ji+ EJuor - 6; < 0
fc*t
For the above expression to be satisfied it is necessary that

Jii > z Jiaor — 6, + J;;0; (3.8)
ki g
It can be observed that
- i | < Jaoe < | Jue || for ay o
and
— |8 —8; <|86;|
Hence
- Ey | S | =16 | < E" Juok — 0, < E’ | Juc | + 1 6: | (3.9)
k=124 k=1k#ig k=1 ki
If
Ji > E | Jie | + | 8; | — 0,
fe=1,JbNiiJ
then
~Ji < - E | Jie | = | 6; | + 0;J;;
k#i 5
e,
N

—Ji < E Juoe - 0; + J,;0;
k=1.k#j
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This satisfies condition 3,7 .
Similarly it can be shown that for Ji > Tieiesis | Jix | + | 8; | — 05J5,condition
338 is satisfied.

Hence the theorem is proved.

(8]

In the same way as Theorem 3.3 a conditiond, lower critical vaue (J35\ j) for neuron
¢ can be determined so that :** neuron will surdly change its state for dl possble states
of other neurons except neuron j, which is given to be fixed at o;.

It is observed that pairwise conditional no-change-critical-value is smaller than the
independent no-change-critical-value. It is ds0 obsarved that pairwise conditional sure-

change-critical-value is greater than the independent sure-change-critical-value. This is

shown below.
-1 B IS Jijos or | Jii |2 = Jij0;
Hence
(JrE1rn< me
Similarly

1)) > I
3.7 GEOMETRICAL INTERPRETATION

In this section the no-change-state of aneuron is interpreted geometricaly. It is observed

in Theorem 3.1 that, when J;; > J* then due tO no-change-condition we have,

N
Ji+ Y, Jyo,—-6,20

J=1l g
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irrespective of thevalueof ¢;,7 = 1,2, . .., Nandj #i. Theinequality can be rewritten
as

N
Y Jios >k wherek=—Ji+0;
J=1 g9

This inequality is satisfied by dl vaues of ffj when Ji; > J2*. The st of dl pos-
sble values of o; defines a N — 1 dimensona hypercube having vertices defined by
ffi: =+1, ] # i, ] = 1,2,...,N. Inthis space ©IL, ;. J;jo; = k defines a hy-
perplane and hence the inequality Zf:n.j#:J,—,-a,- > k defines a haf-space in which the
complete hypercube is contained. As the value of k increases, the hyperplane gpproaches
the hypercube and hence some vertices of the hypercube tend to violate the constraint
Yz Jij0; > ko With the increase of k more and more vertices of the hypercube
cross over to the other half-space. It is evident that increase in k is dso accomplished by
decrease in J;;. Thus in other words decrease in the value of J;; below J2¢ makes more
and more neurons to deviate from no-change-state. Hence, more and more changes are
observed in this process. This justifies the observation in the example given in section

3.3. The concept is illustrated in Figure 5.2.

3.8 THRESHOLD CHANGES AND CRITICAL VALUES

This section deds with the study of changes in threshold elements and its impact on the
performance of Hopfield network. The observations and the conclusions in this section
are restricted to a Hopfield network with al neurons belonging to the flexible category.
Like critical values of J;’s, there ds0 exist critica values Of 8,’s. The critical values
that can be associated with threshold vectors are defined and an estimate is derived for

these critical vaues. Consder a Hopfield network with dl neurons belonging to flexible
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——

The vertices in halfspaceabove the hyperplane k ’s

represent neurons in the no-change state

N-I
d.:'.m'E-T'I-b-G"““L
h-a‘.pen,an.be, ky = k
k; - ;’-’1
Increasing k
k"‘ = kﬂ_ . .
(equivalent to decreasing Ju)
ks > ka

Figure 3.2: Geometrical interpretation of Hopfield dynamics
for N = 4 neurons.
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category. If the threshold 8; of neuron 2 is increased to a very high vaue then,
N
Ji+ ) Jyo< ¢
j=1g
Hence, the neuron t changes its state only if o; = +1 and it will not change its date
wheneo; = —1.
Smilarly, if 8; takes on very low value, then
Jii + 5N3 Jijo; 2 6;
=159
Hence the neuron t changes its state only if ; = —1 and remains in a no-change-state
for o; = 1.

Thus, the change in the threshold values (keeping the elements of the synaptic matrix
constant) ensures changes in the state of neuron only for one of the possible two states.
That is, with large values of threshold the corresponding neuron will attain a +1 state
irrespective of the state that is associated with it from the input vector. Similarly with
a very low vaue of threshold the corresponding neuron will attain a-1 state irrespective
of the state associated with the neuron from the input vector. The definitions oOf critical
values and its estimates are given below.

Plus one (41) critical value of athreshold of a bipolar neuron (87) :- The value
of threshold of aneuron t such that al vaues of threshold below this value will definitely
guarantee that the neuron attains a +1 state. 8Fis estimated using a sufficient condition,
but however, it is not a necessary condition that 8; should be less than 8 to ensure that
the neuron i definitely attains a +1 state. This critical value is given by
N
0 =-3"1J;1
=1
Minus one (-1) critical value of threshold of a bipolar neuron (8) :- The value
of threshold of a neuron t such that all values of threshold above this value will definitely
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guarantee that the neuron attains a-1 state. #™is estimated using a sufficient condition,
but however, it is not a necessary condition that 8; should be grester than @ to ensure
that the neuron : definitely attains a-1 sate. This critica value is given by
N
oM =1f|J; |
=1
By having threshold vaues of dl neurons greater than 67 it is possble to make the
vector with dl elements as +1, as the only stable state of the network. Similarly by
having threshold vaues of dl neurons less than M it is possble to make the vector with
dl dements as -1, as the only stable state of the network.

3.9 DIAGONAL CHANGES vs THRESHOLD CHANGES

In literature the diagonal eement value and threshold value of aneuron are considered to
be complementary. In [Hecht-Nielsen91] it has been mentioned that instead of having an
explicit threshold, a zero threshold value can be used by changing the diagonal eements
of synaptic matrix. It is proposed here that the diagonal element values and the threshold
vaues are not truly complementary.

As mentioned in earlier sections, the changes in the diagonal elements can lead to &
situation wheredl input vectors are stable or an unstabl e situation where the network has
no stable state. These situations are attained just by diagonal eement changes keeping
al other aspects of the Hopfield network constant. This is different from the effect on
dynamics of Hopfield network due to the changes in the threshold elements keeping dl
other aspects of the network constant. The changes in threshold elements can affect only
one of the vaues associated with the neuron. A threshold value less than 87 ensures
that the neuron t ultimately attains a +1 Sate irrespective of initial state. Similarly
threshold values greater than 8™ ensures that the neuron s ultimately attains a -1 state

irrespective of initial state. With changes in threshold dement it is possble to ensure
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that one type of change of neuron statei.e, +1 to -1 or -1 to 41 does not occur whereas
the changes of other type occurs with high probability. Thus it can be conduded that
changes in diagonal dement are different from changes in the threshold elements for a
neuron. These two changes are not truly complementary.

Adjusting diagona eement vdues and threshold vaues in a Hopfield network may
help in obtaining the required dynamics. These changes can play an important role in

obtaining the required computational performance of the Hopfi.eld network.

3.10 DIAGONAL CHANGES AND ENERGY FUNCTION

The Hopfield network, in fact, performs a locd search where the neighbourhood of the
search is the immediate neighbourhood of a vertex on the N dimensional hypercube. The
asynchronous mode of computation at any node : can be viewed as the comparison of
the energy E at the current vertex and at the adjacent vertex in the #** direction. This
comparison ig not affected if we add a constant term to E.
Let,
E,=E+ %J.—.'

Then, obvioudly the changes in energy function E is same as the changes in the energy

function E; for a Hopfield network i.e, AE = AE,.

3.10.1 Change in Diagonal Elements of Synaptic Matrix

Thus it is observed that if the energy function is changed from E to E,, the difference
in energy at two consecutive network states is not affected. For the energy function E,,
even if some real number is added to the diagond dements, the energy value doe* not
change a any state. Thus it can be concluded that, in asynchronous mode of operation,
the energy function E of any Hopfield network (J,8) converges to aconstant value, if and
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only if, the energy function converges for any other Hopfield network N(r) = (J(r),9)-
In other words, by adding some vaues to the diagona dements of the synaptic matrix,
the st of locally minimizing states of the energy function is not changed. For a synaptic
matrix Jif the s&t of localy minimizing states is denoted by L. The following phenomena

can be obsarved.

1. If J has zero diagonad eements then the st of locd minima L is ds0 the st of
stable stetes.

2. 1f J has strictly positive diagona eements then each dement of L is a stable state
and may be some elements which are not in L are dso stable states. Moreover,
the stability is ensured for asynchronous mode of operation of the Hopfield network
[Bruckss].

3. If there is no restriction on the diagonal elements of J and if J’ is obtained by
adding some eements to the diagona elements so that these become zero then the
st of locdly minimizing states L is same for J and J'. But the stable states of
J' are ds0 the stable states of J and there are some additional stable states in J
which do not correspond to locally minimizing points. The state transition paths
are different for both the matrices as the updating rule is affected by change in
diagonal edements. However, any Hopfield network, having synaptic matrix with
non-zero diagona eements, can be transformed to a Hopfield network having zero
diagona eements so that the stable states of the transformed Hopfield network
corresponds to the localy minimizing states Of original Hopfield network.

4. Asthe updating is affected by the change in the diagonal eements, the state tran-
sition for J and ¥’ are different. Hence for two matrices J and 3* differing oanly

in diagonal entries, the associating functions Of input state vector to output stable
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vector are different, even though the stable states are common to both matrices.
Hence, getting new stable states for any arbitrary matrix (even with unrestricted
diagona elements) is possble by adding large postive number to the diagond d-
ements. But however, such a scheme is useful only when the study is redtricted to
the sat of stable states and not for associating input state to stable sates.

Discussion in this section about the changes in diagona dements of the Hopfield
network is gpplicable when the collection of stable states of the network are congdered.
These observations cannot be directly extended to other areas like associative memory.

The collection of stable states is of interest in the context of capacity of Hopfield network.

3.11 DIAGONAL CHANGESIN NETWORK WITH BINARY NEURONS

This section deds with aspect of diagonal edement changes for Hopfield network with
binary neurons are reported in this section. For the neuron state +1 the analysis is
same as given in the previous sections. But for the neuron state O, its product with the
corresponding diagona eement becomes 0. In this case the locd field of the neuron does
not receive contribution from the diagona element. Thus the diagonal tuning mechanism
used for bipolar neurons have a limited role in case of binary neurons. This requires a
different study of diagonal element changes for binary neurons.

Experiments have been conducted by starting from a high negative value for diagonal
elements in the synaptic matrix for binary and bipolar neurons. The diagona eements
were gradually increased and its effect on the performance of network with bipolar and
binary neurons has been observed. Asynchronous mode of operation With maximum
absolute value of locd field as the basis of sdlection has been used in these experiments.
It has been obsarved that a Hopfield network with binary neurons attain stability earlier
than bipolar neurons. This is because the values of diagonas do not have an impact
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when neuron state is O for binary neurons.

3.12 CONCLUSION

In this chapter some experimental observations and theoretical conclusons of the study
of Hopfield network is reported. It is concluded that the changes in diagona dements
and the threshold elements can be used for tuning the Hopfield network to obtain re-
quired performance. Critical values of diagona eements (no-change-critical value and
sure-change-critical value) and threshold dements (6Fand M) for bipolar neurons have
been estimated. It has been obsarved that pairwise conditional no-change-critical-value
is smaler than the independent no-change-critical-value. It is dso observed that pair-
wise conditional sure-change-critical-value iS greater than the independent sure-change-
critical-value. The effect of diagonal element changes in a network with binary neurons
have been observed to be different from the effect of these changes on a network with
bipolar neurons. The effect of diagonal changes in Hopfield network on the energy func-
tion have been studied.



Chapter 4

POLYHEDRAL COMBINATORICS FOR NEURAL NETWORKS

41 INTRODUCTION

In this chapter the techniques of polyhedral combinatorics are used to anayse the ge-
ometry of stable state vectors and its associative image. Polyhedra combinatorics is a
tool developed during later half of 1970s by OR reserchers. This tool was developed
with the hope of analysing and perhaps developing efficient solution techniques for hard
combinatorial optimization problems. Polyhedral combinatorics, as conventionally used
by OR researchers, can be defined as a set of methodologies to describe the geometrical
and combinatorics aspect of feasible region which is a convex polytope. In this study
the characterization of extreme points and their adjacency relationships are investigated.
In addition the hyperplanes which define aface of a specific dimension for the polytope
are also characterised. This technique proves to be very useful in studying integer and
combinatorial programming problems. It is dso used to analyse the complexity of the
wellknown Simplex method.

The technique polyhedral combinatorics is used in this chapter to propose a possble
learning technique for Hopfield network. The underlying idea is to transform the N
dimensional state vector to £ * dimensions, where the energy function becomes a
linear function, the supporting hyperplanes of the convex hull of 2V state vectors defines
a synaptic matrix having stable states as those points which the hyperplane touches. In

other words, the quadratic character of the energy function is transformed to a linear

79
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function in higher dimension. In this higher dimenson an attempt is made to study the
geometry of the set of 2N state vectors which forms a hypercube in N dimension. The
convex hull of these points are taken as a polytope and the energy function corresponds
to a supporting hyperplane of this polytope. The st of stable states can be visudised
as the points in the polytope which touch the supporting hyperplane. Thus designing
of supporting hyperplane touching a specified set of points will result in constructing a
Hopfield network (J, 0) having specified set of points as stable states. Thus polyhedral
combinatorics approach not only provides a better insight into the problem but aso helps
to a certain extent training of Hopfield network. Basaed on this discussion some results
are presented in this chapter.

In this work the scope of application of polyhedral combinatorics is restricted to
the design of Hopfield with binary neurons (0, 1) operating with asynchronous mode of
updating. Some definitions and notations are given in Section 4.2 to provide a basic
background for polyhedral combinatorics. Earlier attempts to use polyhedral combina-
torics for study and design of neural network are reported in Section 4.3 . In Section
4.4 an attempt is made to explain the basis of the present work. Section4.5 describes
the construction process to make any given state vector as the only stable state in the
Hopfield network. The construction process of Hopfield network with two stable states is
given in Section 4.6 . The sequence in which the two state vectors are considered in the
construction process has a bearing on the dynamical behaviour of the Hopfield network.
This issue is being reported in Section 4.7 . Techniques of polyhedral combinatorics are
further extended to make more than two candidate state vectors stable in Hopfield net-
work. The construction process is given in Section4.8. In this section an attempt is d0
made to study the extent to which the present work can be used. Section 4.9 deds with
the mechanism to make dl the state vectors upto a specific number of 1 bits as stable.

The conclusions of the attempt to use polyhedral combinatorics techniques for design of
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Hopfield network are reported in Section4.10 .

42 POLYHEDRAL COMBINATORICS

In this section provides the basic background for polyhedral combinatorics and necessary
definitions and notations are introduced [Nemhauser88].
Polyhedron:- A polyhedron P C R™ is a s& of points that satisfies a finite number of
linear inequalities.
That is, P = {z€ R" : AXx < b}, where (A, 6) isan m X (n+ 1) matrix.
Polytope:- A polyhedron P C R" is bounded if there exists an w € R} such that
PC{z6R": —w <z, <wforj=1,2,...,n}. A bounded polyhedron is caled a
polytope.
Extreme Point:- X € P isan extremepoint of P if theredo not exist z', z? € P,z # 72
such that x is convex combination of z' and z2
Valid Inequality:- The inequality mz < g [or(w, 7o)] iS a valid inequality for P if it
is satisfied by all pointsin P. It is to be noted that (7, r) 1s a valid inequality if and
only if P lies in the half-space {z € Rn : rz < mp}, Or equivalently if and only if max
{rz:x€ P} < m.
Face:- If (7, m) isavalid inequality of P, and FF = {z€ P : xx = x0}, F 18 called a face
of P, and it is said that (=, o) represents F. A face P is said to be proper if F # ¢ and
F#P.
Supporting Hyperplane:- A face represented by (=, ®o) is nonempty if and only if max
{rz: x 6 P} = mo. When F is nonempty, it can be sad that (», xo) supports P. Some
authors aso term the support as supporting hyperplane.

An extreme point can dso be defined using the concept of supporting byperplane.

Extreme Point:- X is an extreme point of polytope P if and only if there exists a
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supporting hvi.ciplane F of P such that F touches P only at z. In other words, F(=, xo)
Is such that = is only point in P with 7z = =o-

If such a supporting hyperplane is defined as rz = #¢ and if dl points y in P satisfy
Ty > mo then = is a minimizing extreme point of #z in P. Similarly, by the above
argument, if (m, 7o) is asupporting hyperplane touching the extreme points z* 2 ...,z’
then each of these extreme points is a minimizing point of =z in P. In other o¢ds, =z
attains its minimum value at z! 32 ....z".

This particular concept is used in showing that supporting hyperplane aso provides
a set of minimizing points. In the following sections it is shown that energy function
associated with Hopfield network (though quadratic in nature) can be transformed to a
linear function in higher dimension namely * ‘ ) U and the set of convex hull of set of
stable states defines the polytope P. So using the above analysis, that is, by defining a
supporting hyperplane, the minimizing points are identified for a given linear function

which corresponds to a supporting hyperplane. This in turn defines minimizing points

of energy function and hence, defines a set of stable points.

43 SIMILAR WORKS

The design of neural networks amenableto linear programming and combinatorial method-
ology has been noted in literature [Delsatre89, Hao91, Kamp9l, Chandru93. Budinich9l,
Shonkwiler93]. Using the standard techniques of polyhedral combinatorics, a polynomial-
time algorithm for designing a neural network is proposed in [Chandru93]. Thisalgorithm
gives maximum radius of direct attraction around arbitrary input state vectors. A new
sufficient condition that aregion be classifiable by atwo-layer feed-forward network using

threshold activation functions is obtained in [Shonkwiler93]. T'his condition is obtained
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using - I-hedral combinatorics by considering classification as characterising the two-
set-partitions of the vertices of a hypercube which are separable by a hyperplane. The
problems of feed-forward neural networks have been related to the theory of n-dimensional
convex polytopes in [Budinich91]. The typical problem is to synthesize a network that
is capable of reproducing a set of examples. The learning process thus leads a sat of
hyperplanes that isolates atleast the given examples. It is shown in [Budinich91] that the
convex hull of the examples can provide a feed-forward network that solves the problem

without uncontrolled generalizations.

44 BASIS OF THE PRESENT WORK

The energy function E, associated with the Hopfield network is given by

YN W

IE Z J‘I"..fr‘-'r'ﬂ.:l T z Hldl l‘ll-:l

=1 =1 i=1

E=—

Lo || et

where o, is0 or 1.
The stable states of the network also corresponds to the local minima of the energy

function over the hypercube defined by
g; — 0,1 Vi= l,?,...,.V

By introducing a new variable ¢,, and substituting this for the term o,o, (and consid-

ering (o;)% = 0.,V ¢) ) the quadratic energy function E detined by Equation4.1 becomes

= variables (- =

a linear function in — variables of the form #,,,+ # yand N

variables of the form o;). Hence,
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The set vertices of the hypercube is now visualised as a st points in the space —\—,,——‘
and £ = k defines a hyperplane. It may be noted that these points do not form a
hypercube any longer.

Let H be the convex hull of this set of points in * % = dimension. It is shown in
[Pujari83] that each of the 2& state vectors is an extreme point of H. In other words,
given any state vector (§) it is possible to construct a supporting hyperplane for H
touching it at £ only. So based on above discussion a network having just a single stable
state (any one of 2V) can be designed.

For some value of k, the hyperplane E = k defines a face for H if all the points of H
lie on one side of the plane E — k i.e., E < k for all 2 pointsor E > k for all 2** points.
In addition if the face touches the convex set H, then it is said that the face is a support
of H.

Hence if the state vectors &', &2, etc are to be the stable states then any learning rule
would aim at constructing the synaptic matrix (equivalently E), so that the specified set
of state vect(‘)rs are loca minimaof E. In the present context (constructing E) this can
be achieved by obtaining a hyperplane which becomes a support for X touching it at
vertices £!, €2, etc. The aim of this work is to construct such Hopfield network making

use of polyhedral characteristics of H and the supporting hyperplanes.

4.5 HOPFILED NETWORK FOR ONE STABLE VECTOR

In this section a formulation is proposed for construction of a Hopfield uetwork having
any one given binary state vector as the only stable state. This formulation is based
on the concept mentioned in Section 4.4 that given any £ it is possible t0 construct
a supporting hyperplane for H touching it at ¢ only. The proposed formulation 1s for

neural networks with binary neurons. The update mechanism used is asynchronous and
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maximum local field is used as the basis of sdection of neuron to be updated.

4.5.1 Construction of J¢ and O

Let €' be a binary state vector of N dimenson. The am is to construct a Hopfield
network (J¢, 8) such that the state vector £! is the only stable state in the network. Jé¢
IS N x N synaptic matrix and O is N x 1 threshold vector.

Let Sy = {1:€}=1} Vi=1,2,--- ,Nand S; ={i: =0} V1:i=1,2,--- ,N. The
synaptic matrix is constructed using the following formulation. The diagonal eements

J;; are given by

J.-;:{ 1 ifies

-1 ifi:€ 85,

The off diagona elements J;;, i #3j are

12 ifi,j €85,
=

—N? otherwise
The threshold vector 8 isgiven by §; = -05,Vi =1,2,---, N.
Example
Let €' = 1011101100 be a state vector which is to be made as the only stable state of a
Hopfield network with N = 10 neurons. Then S, = {1,3,4,5,7,8}and S; = {2,6,9,10}.
Based on the formul ation mentioned abovethefollowing synaptic matrix J¢ and threshold

vector O are constructed.
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(1 _N3 05 05 05 —N* 05 05 —N3 —N3)

05 —N3 1 05 05 -N® 05 05 —N* —N?3
05 —N3® 05 1 05 —-N* 05 05 —N* _N°®
05 —N3 05 05 1 -N® 05 05 —N® —N3
~N3 _N3 _N® —-N® _N3 -1 —N3 —_N® _N3 _N3
05 -N® 05 05 05 —-N° 1 05 —N® —N?°
05 -N* 05 05 05 —-N* 05 1 -N3 A3
N3 N3 N2 N3 N3 N® V2 N3 1 A3

J€ =

| —N3 —N3 _N® —N® —N® —N® _N® -N® —N® -1,

Threshold vector is given by
¥ =(-05-0.5-05-0.5-0.5-0.5-0.5-0.5-0.5-0.5)

It can be seen that all the 2!¢ input state vectors converge to 1011101100 as the stable
state.

Using this formulation it has been experimentally verified with very large number of
samples that it is possible to make any of the 9N state vectors as the only stable state
in the Hopfield network with N binary neurons. However, state vector with all neuron
states as zero is the only state vector that cannot be made the only stable state of the
Hopfield network with this formulation. But with suitable modification this limitation

may be overcome.

46 HOPFIELD NETWORK WITH TWO STABLE VECTORS

In this section the concept of making any one state vector as a stable state of Hopfield

network is extended to two state vectors. This formulation is based on the concept
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mentioned in Section 4.4 that it is possble to construct an energy function so that the
hyperplane obtained becomes a support for H touching it at two verticesonly. The issue
of Hopfield network having two vectors differing by one bit as stable has been addressed
in [Bruck88, Prados89]. The formulation proposed in this section enables to have any
two state vectors stable in the resulting Hopfield network, even if the two state vectors
differ in. only one bit. The proposed formulation is for Hopfield networks with binary
neurons. The update mechanism used is asynchronous and maximum locd field is used

as the bass of sdection of neuron to be updated.

46.1 Construction of j¢'¢2 and O

Let £ and &2 be two binary vectors of N dimension. The aim is to construct a N x N
synaptic matrix J¢ ¢ and athreshold vector O such that the Hopfield network (J¢'€? 0)
has ¢! and &2 as stable state vectors. The construction process is given below.

Let G(¢7)= {i: & =1} wherei =1,2,---,Nand . Then,

S1 = G(§')NG(£Y)

si = | S|
S2 = G(£')\G(€?)
s2 = | S|
Sy = G\ G(E')
s3 = |5

A temporary threshold vector 6 is constructed as described below.
1 Fori 6 5, é.- = %(31-}- s2 + 1).
2. For t 6 Sz, 8; = L(sy+s2 + 1).

3. For: € Ss, 6; = s2—(s,+ sz + 1).

‘2‘_.1
= A
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4. For i € S, 6; = —N°3.
The synaptic matrix J¢ € is constructed as described below. The diagonal elements
are given by

' 05-8, ifi € G(¢")
Ji=4 05+2—_ - jfi€S;

| =N 3 otherwise

and the off-diagonal elements Ji;, * # 7 are

i

y if i,j € G(£")
7 =3 ifi €51, €ESaori65;,j€5
ij = 4

$1) g
l"';::{_l[%?s? if ¢, € 53

—N3 otherwise

The threshold vector g isgiven by 6; = -05 Vi = 1,2,---,N.

Using thisf*ormulation it has been experimentally verified with large number of samples
that the Hopfield network so constructed has only ¢! and &2 as the stable states. It can
be seen that, the above formulation is valid if s3 > 1.

Example
Let £ = 11111100000 and ¢é%2 _ 11110011100 be two state vectors to be made

as the stable states of a neural network with N = 11 binary neurons. The values of
Sy, S2, 53, 54, 81, 82,83, and s, are given below. The entries are truncated for convenience

of representaion.

Sy = {1,2,3,4}, s, =4
S: = {5,6}, 33 =2
S3={7,8,9}, s3=3
Se={10,11}, s4=2
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The synaptic matrix J&'€* and threshold vector 9 constructed using the formulation
are given below

(30 05 05 05 05 05 03 03 03 —N° —N°)

05 30 05 05 05 05 03 03 03 —N® —N°
05 05 30 05 05 05 03 03 03 —-N® -AN°
05 05 05 -30 05 05 03 03 03 —-N® —N?
05 05 05 05 -30 05 —N*® —N® _N3 _N3 _N3

1.2
o 05 05 05 05 05 -30 —N3 —N® _N3 _N3 _N3

JE
03 03 03 03 —-N* —N3* 42 12 12 -N* -N°
03 03 03 03 —-N3 —-N¥® 12 —-42 12 —-N3 -N3
03 03 03 03 —-N® —-N® 12 12 -42 —-N?* -N?
—-N® —_N3 _N3 _N® —N® _N3 _N3 _N3¥ _N3 _N3 _N?
\ —N® —N?® N3 _N® N3 —N® _N® _N? _N? _N*> N3

#T=(-05-0.5-05-05-05-0.5-05-0.5-0.5-0.5-05)

It can be seen that dl the 2! input state vectors converge to either 11111100000
or 11110011100 as the stable state. Using this formulation it has been experimentally
verified with very large number of samples that it is possible to make any two of the 2¥

state vectors as the only stable states in the Hopfield network with N binary neurons.

4.7 ORDER OF VECTORS IN TWO STABLE STATE FORMULATION

In the formulation of Hopfield network proposed in Section 4.6.1 it is obsarved that the
Hopfield network construction is dependent on the sequence in which the vectors are
considered. Consider two Hopfield networks constructed using the formulation given in
Section 6.6. Hopfield network (Jf 3 ,0) constructed by considering &' as the first vector
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and &? as the second vector in the formulation and Hopfield network (Jfl 3 , 6) constructed
by considering &2 as the first vector and €' as the sscond vector in the formulation.
For the example under consideration the the network {Jflfl, 0) isgiven in Section 6.6

. The network (J¢*¢*, 8) is given here,

(35 05 05 05 08 08 05 05 05 —N° —N°)
05 -35 05 05 08 08 05 05 05 —N® —A?
05 05 -35 05 08 08 05 05 05 —N3 —N°
05 05 05 -35 08 08 05 05 05 —N® —N3
08 08 08 08 -40 25 —N*® —N® —N3 —N3 —N3
3 =1 08 08 08 08 25 -40 —N® —N® —_N® _N3 _N3
05 05 05 05 —N® —N® -35 05 05 —N°® —N?
05 05 05 05 —-N® —N3 05 -55 05 —N® —N®
05 05 05 05 —N® —N® 05 05 -55 —N3 —N?
IN® _N3 _N3 _N3 _N3 _N3 _N3 _N¥ _N3 _N3 _\?

\ —N? —N? AN N _N® N N N N N VY

It is observed that the two networks have the same pair of state vectors as the only

stable states. However, thereis slight differencein the dynamics of the two networks.

Observations

Some observations regarding the dynamics of two Hopfield networks have been made
by conducting severa experiments with asynchronous mode of operation and sdection of
neuron having maximum locd field for updating. For the two networks thereisdifference
N sequence from the input vector to stable vectors for some input vectors. For some input
vectors stable state is not reached. The state of the network oscillates between two states,

i.e., the network reaches a bi-directionally stable state.
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4.7.1 Multiple Weights

The two Hopfield networks (Jflfz, 0) and (J‘fz"El , 0) have the same set of stable states. In
this subsection an attempt is made to visualize these two Hopfield networks as belonging
to a class of Hopfield networks with same sat of stable states. It has been observed that
the networks (J‘f1 ¢ , 9} and (Jz'E , 0) are defined by two extreme matrices which can be
generated using the expression Jé€ = AJ¢ &% (1 — A)J¢ €' Where0 < A < 1.
THEOREM 4.1 :- If (J¢'€2_g) is the Hopfield network memorizing €' followed by ¢2
and (J¢ € ,0) is the Hopfield network memorizing €2 followed by &' then, (3¢, 8) where
Jé = )\Jflf2 + (1 - /\)szil with 0 < A < 1 is dso a Hopfield network memorizing £*
and £2.

Proof:- The energy function of the Hopfield network (J«Elgz .O) IS given by

EQ¢¢* g) = gT3¢'¢ _ g7,
Similarl);, the energy function of the Hopfield network (J5,f1,0) IS given by

E[J{EEI.H} =0 ETJEIEIE = FTf

E(J 0) = £TI% —g7T¢
= ¢TI 4 (1 - A3 _ 0T
= ATICE 4 (1 - 0TI 0T
AETI e _ 00T 4 (1 — Ay TIC¢ e — (1 - 2107
AE(IEE) 4 (1 — M E@IEQ
E(J€) because E(I4 ) = E(I€)

Q

By construction of J? and J?, the values of E(J) a &' and £2 is same as those of
E(J?*) at £ and £? respectively. Since £! and £? are ype minimizing points of E(J*)and
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dso the minimizing point of E(J?), the following can be inferred. E(J')at €is > E(J")
at &' and dso €. Similarly, E(J?) a ¢is > E(J?) a £ and dso €.

Considering the above two observation and dso conddering the property of convex
combinations, it can be concluded that E(J) at ¢! and &2 is same as those of E(J")and
E(J*).

E(J)a ¢ is> E(J)at ¢! and dso £2. Hence £'¢? are the minimizing points of E(J).
Thus the network (J&, 0) dso has £* and £ as the only s&t of stable states.

4.8 HOPFIELD NETWORK WITH MORE STABLE VECTORS

In this section the techniques of polyhedral combinatorics is extended to derive formu-
lation for construction of Hopfield network with three or more candidate state vectors
as stable. However, after the selection of two vectors without restriction there are some

restrictions on the sdlection of the third or subsequent candidate state vectors.

481 Three Stable Vectors

Theformulation for making three candidate state vectors stable in the Hopfield network
IS given in this subsection. The three candidate state vectors satisfying the following

conditions can be made stable in the Hopfield network.

1. If €' = £2 = | then £3 = |

2. &2 should have two additional bits as 1 where the two vectors ¢! and §2 have 0.

4.8.2 Construction of j¢'¢¢ and O

Let €' and &% be two binary vectors of ¥ dimension. A state vector £¥ is sdected

considering the restriction mentioned above. The aim is to construct a -V x N synaptic
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matrixJ '“*** and a threshold vector 0 such that the Hopfield network with (J€'€*¢, 9)
has €', €2 and ¢3 as stable vectors. The construction process is given below.

The sets Si, Sz, 53, 54, s1, s4, s3, and s4 are defined as described in section 4.6.1. Some

more sets of indices are defined as follows.

Ss = G(£')NG(E)
ss = |51
Se = GEY\G(E)
s = |52
S: = G(€) \ G(£)
s7 = |53

A temporary threshold vector O is constructed as described below.

1.Fori€S,,0,— %(51 + 59 + 1).

2. For: e 52, .9,' = 1{51 +£g+1}.

L]

3. Fori € 53,6, = -—"2—-(31+Sz + 1).

2x33

4. Fori € S?, é; = "iﬁ'—'[ﬂﬁ + 55 + l].

B &y

5 Foree Sy, andi & S,0; — —N3.

The synaptic matrix J€ “* is constructed as described below. The diagona elements

are given by

“0.5-0. if: € Gle")

“-54—3'—53-9; |f|€33

05+% —5;,-6, ifi €5;

- N3 otherwise



Chapter 4 POLYHEDRAL COMBINATORICS FOR NEURAL NETWORKS M

and the off-diagonal elements J;;, ¢ #7 are

i

1 if 1,7 € G(£')
% ifz € Sl,j € S3 ori€ Sa,j € S].
14 2t i j e S
Ji_-;i‘i |f?-’€Ssand]€ST
20 f
7 orifi € S;andj € Ss
1+ 2L ifije Sy
— N otherwise

The threshold vector O is given by 8; = -05, V= 1,2,---, N.

The Hopfield network so constructed has only &', €% and €* as the stable states. The
update mechanism used is asynchronous and maximum locd field is used as the basis of
selection of neuron to be updated. The above formulation isvalid if s > 1 and s;3 > 1.
Example
Let, €1 = 11111100000, €2 = 11110011100 and £3 = 11110000010 be three state vectors
which are to be made stable states of a Hopfield network with N = 11 binary neurons.

For this example the following synaptic matrix and threshold vector is constructed

using the formulation given above.
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(30 05 05 05 05 05 03 03 03 10 —N°)
05 30 05 05 05 05 03 03 03 10 —AN?
05 05 -30 05 05 05 03 03 03 10 —N?
05 05 05 -30 05 05 03 03 03 10 -N?
05 05 05 05 -30 05 —N® —N* —N® _N3 _N?
'€~ 05 05 05 05 05 -30 —N® —N® —N® —N® —N®
03 03 03 03 —N® —N® 42 12 12 —N3 —N°
03 03 03 03 —N® —N® 12 -42 12 —N® —N?
03 03 (3 03 —N® —N* 12 12 -42 —N® —N?
—N3 _N® _N3 —N® —_N® —_N¥ _N® _N¥ _N?® 55 -N?
| N3 —N® _N3 —N3 —N® —N3 —N3 -N® -N® _N3 _N?

T = (=05 -05 -05 05 -05 -05-05 -05 -05 -05 -05)

It is observed that al the 910 jnput state vectors have one of the vectors 11111100000,
11110011100 or 11110000010 as the stable state. Using this formulation it has been

experimentally verified with very large number of samples that it is possible to make
three vectors out of the 2V state vectors as the only stable states in the neural network
with N binary neurons. The three state vectors should satisfy the conditions mentioned

above.

483 More Than Three Stable Vectors

The above formulation can be generalised to have more stable vectors. For instance, four
state vectors can be made stable by designing a Hopfield network by having a synaptic
matrix so that the four stable vectors satisfy the following conditions.
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1, HE' =18 =2 =3 then &' =1.

2. €4 must have at least two additiona bits as one where dl three vectors &*, &2, and

€3 have zero.

As long as this condition is vdid it is possble to generdise the formulation of Hopfield
network to have any number of stable vectors as stable. Assume that dl the vectors have
atleast three common bits having one satisfying condition 1. For Hopfield network of N
neurons there is a maximum of % vectors satisfing these conditions. Hence a Hopfield
network can be desgned following the above formulation having ’-‘%‘3 stable vectors. The

capacity of the network in this context can be #

49 STABLE VECTORS WITH SPECIFIC NUMBER OF 1 BITS

The formulations proposed in the previous sections can be extended to store all vectors
characterized by the number of 1 bits. In this section aformulation to make al vectors
with less than or equal to a specific number of 1 bits as stable states of Hopfield network
is proposed. That is to make all vectors having less than or equal to L (0 < L < .V)
number of 1 bits stable in Hopfield network. The Hopfield network for this purpose can
be constructed as follows.

The diagonal elements of synaptic matrix are

* _ 2
L+1

The off-diagonal elements J;;,t #Jj are

\

Ji: = = ———
! L(L+1)

9,' =0.1V: = 1,2,...,1""
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Example
All vectors upto L — 5 bits are to be made stable states of a Hopfiedld network with
N = 10 binary neurons. For this example following synaptic matrix 3% and threshold

vector is constructed.

( 0333 -0067 -0.067 -0067 -0067 -0067 -0.067 -0067 -0067 -0067 )

-0.067
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067

0.333
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067

-0.067

0333
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067

-0.067

-0.067

0.333
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067

-0.067
-0.067
-0.067

0.333
-0.067
-0.067
-0.067
-0.067
-0.067

-0.067
-0.067
-0.067
-0.067
0.333
-0.067
-0.067
-0.067
-0.067

-0.067
-0.067
-0.067
-0.067
-0.067

0.333
-0.067
-0.067
-0.067

-0.067
-0.067
-0.067
-0.067
-0.067
-0.067

0333
-0.067
-0.067

-0.067

-0.067
-0.067
-0.067
-0.067
-0.067
-0.067

0.333
-0.067

-0.067
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067
-0.067

| -0.067 0333 |

#T=(0.1 010101010101 0.1 01 0.1)

It can be seen that al the state vectors with 5 or less number of bits as 1 are the
stable states of the Hopfield network. Using this formulation it has been experimentally
verified with very large number of samples that it iS possible tO construct a Hopfield
network having dl state vectors with L (0 < L < N) number of bits a* 1, as Sable
states.

410 CONCLUSON

The learning rules proposed in this chapter has non-zero diagonal dement* in the synaptic
matrix. The majority of the popular learning rules have additional stable Sates besides
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the candidate state vectors. However, the learning rules proposed in this chapter has

exactly the specified state vectors as the sable states. No other state vector becomes
stable in the network.

In comparision t0 Hebbian learning rule the learning rule proposed in Section 6.4
IS not commutative. A commutative learning rule can be conddered as a rule using
which the Hopfield network so constructed is not affected by the sequence in which the
candidate state vectors are considered. However, in redity, the efficiency of learning is
dependent on the sequence in which the system learns. Hence, a commutative learning

Is adesirable property of learning and hence may give abetter insight to brain function.



Chapter 5

CONCLUSION

An attempt to study and investigate the dynamics of Hopfield network has been made
as part of this research work. This dissertation reports some new theoretical and exper-
imental results of this study. Chapter 2 reports a survey of various capacity estimates
of Hopfield class networks. Results of study of dynamics of Hopfield network with self-
feedback are given in Chapter 3. Analysis of geometry of stable state vectors of Hopfield
network is reported in Chapter 4. Some learning techniques have adso been proposed
based on the results of this analysis in Chapter 4. The achievements, the limitations and

the further research plans are summarized in this chapter.

51 SURVEY ON CAPACITY

In the recent years many models of neural networks have been proposed. A model may
perfectly suit the purpose for which it is designed, but in the presence of many models,
a need for comparative study was felt. Many research articles related to capacity of
neural networks have been reported on severa diversified disciplines. Chapter 2 reports
the various models that have been propsed to attain a better performance of Hopfield
network. The diversification in the research approaches can adso be observed in that
chapter. Large variations in nature of these approaches necessitates a comparative study
to evaluate each approach. This survey has been carried out considering capacity as a
common criteria for evaluating the performance of various modes belonging t0 Hopheld

class networks.
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The survey as reported in chapter 2 congders only one of the severd modds of neurd
networks, namely Hopfield network and there are very large number of research articles
reported in literature concentrating only on thissnglemoded. Only those research articles
which were fitting in the framework have been considered for this survey. The complicated
nature of this task restricted the expanson of the scope of this survey within limited
time and hence, may not be termed as a complete survey. Some aspects of capacity of
Hopfield network have not been included due to. the limited scope of the study. Even
for the aspects consdered, it was not possible to access adl possble related research
literature. As afuture work an attempt to include more aspects of capacity of Hopfield
network can be made. The study can also be extended to include other models of neural
networks. A survey of al neural network modes with a generalized framework can be
attempted to give a better insight into the dynamics of neural networks. This survey is
a humble attempt towards the need for a unified and universal criteria for evaluation of
various neural networks. Such criteriaif devised, will serve as an important tool for the
design, development and application of neural networks. An attempt in this area will be

of significant use in the area of neural networks.

5.2 STUDY OF SELF-FEEDBACK IN HOPFIELD NETWORKS

The concept of self-feedback in Hopfield network has been sdlected for a detailed study.
Some experimental observations and theoretical conclusions of this study are reported
in Chapter 3. An attempt has been made to uderstand the impact of diagonal and
threshold element changes on set of stable states of Hopfield network. Some critical
values of the relationship has been determined. It is concluded that the changes in
diagonal elements and threshold elements can be used for tuning Hopfield networks to

obtain require performance. These results will help in maintaining a baance between
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information storage and equivocation. These results may dso be helpful in desgn of
Hopfield networks with high sdlectivity.

A further study to determine exact tuning mechanism can be attempted. Such an
attempt will atleast partially help in determining the type of diagona dement changes
required to have a particular set of candidate state vectors stable, to diminate specific

or all spurious states and to determine the basins of attraction of a stable state.

53 POLYHEDRAL COMBINATORICS

Analysis of the geometry of stable state vectors using the polyhedral combinatorics tech-
niques is reported in Chapter 4 . Based on this analysis some learning techniques have
been proposed for Hopfield network. The learning rules proposed have non-zero diagonal
eements in the synaptic matrix. These learnig rule have exactly the specified state vec-
tors as the stable states. The set of candidate state vectors and the st of stable states of
network constructed using these learning rules are same. However, there are restrictions
on the selection of candidate state vectors.

As a future work this study can be extended to design learning rules for higher order

and multivalued neural networks.
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