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Chapter 1

OVERVIEW

1.1 INTRODUCTION

Neural networks have been used for wide variety of applications of complex adaptive

systems. The application areas in which neural networks are being extensively applied are

Pattern Recognition, Speech, Vision, Robotics, Industrial Process Control, Knowledge

Data Bases, On-Line Simulation and Decision making, Intelligent Artificial Organ, and

Physiological Software and Services [Soucek89j. Fuzzy reasoning, very high speed signal

processing and process control, high reliability, and high performance-price ratio are

some of the*other emerging features of neural networks. Successful application of neural

networks to real world problems depends strongly on the knowledge of learning properties

and performance [Karayiannis93]. This is the main motivation behind the present thesis.

A humble attempt has been made to study Hopfield model and suggest new learning

mechanisms. This could help in a better understanding of functioning of neural networks

and application of neural networks to new areas.

1.2 OVERVIEW OF PRESENT WORK

This thesis makes an extensive study of the Hopfield model of neural network [Hopfield82]

(hereafter referred to as Hopfield Network ) and reports some new theoretical and experi-

mental results. Much of the efforts in neural networks research is directed at implementa-

tion and realization rather than theory. For example, the convergence property of neural
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network are still described by empirical and rule-of-thumb terms, even though mathe-

matical techniques are available for studying the dynamic behaviour of neural networks

[Sezan90j. The major contributions of this thesis are listed here.

1. It reports a survey of the research related to several modifications to the Hopfield

network, the effect of these changes on the performance of the network, various

definitions of capacity, and capacity estimates. There have been a very large number

of research articles on capacity of Hopfield network and several modifications to

this network reported in several diversified disciplines. These results are reported

in this thesis in a unified way. One of the modifications to the Hopfield network

is self-feedback character of neurons. This aspect has been selected for a detailed

study.

2. A study of dynamics of Hopfield network is made based on numerical simulations.

The emphasis of this study is on dynamics of Hopfield network with self-feedback,

which seems to have received less attention by researchers. Some experimental

observations and theoretical conclusions on the study of direct self-feedback in

Hopfield network are reported.

3. An algorithm is proposed to make any two state vectors stable in the Hopfield

network with self-feedback. These are the only states that are stable states of the

network and spurious states do not exist. This algorithm is generalised to make

more number of state vectors stable in the network. The underlying principle of

this algorithm is based on polyhedral combinatorics. The set of stable states defines

a convex polytope and the energy function is designed to be a facet touching only

the specified stable states.
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1.3 OUTLINE OF THE DISSERTATION

The dissertation consists of five chapters. Chapter 2 introduces Hopfield network with

various notations, definitions, learning rules and update rules. This chapter also reports

a survey of the research related to the estimates of the capacity of Hopfield network and

that of several modifications of .this model.

Chapter 3 reports some experimental observations and theoretical conclusions on the

study of Hopfield network with direct self-feedback.

In Chapter 4 the techniques of polyhedral combinatorics are used to analyse the

geometry of stable state vectors and its associated image. This chapter also describes

construction mechanisms of synaptic matrix to make any one state vector as stable state

and any two state vectors as stable states in the Hopfield network with self-feedback. It

also generalises this algorithm to handle more number of stable vectors. A construction

mechanism t9 make all vectors having a specific number of ones as stable states is also

given in this chapter.

Chapter 5 summarises the contributions and limitations of the work reported in the

dissertation and considers possible routes for further research work.
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HOPFIELD MODEL OF NEURAL NETWORK

2.1 INTRODUCTION

Human beings are constantly thinking since ages about the reasons for human capabilities

and incapabilities. Successful attempts have been made to design and develop systems

that emulate human capabilities or help overcome human incapabilities. The human

brain, which has taken millions of years to evolve to its present architecture excels at tasks

such as vision, speech, information retrieval, complex pattern recognition, all of which

are extremely difficult tasks for conventional computers. A number of mechanisms have

been which seems to enable human brain to handle various problems. These mechanisms

include association, generalisation and self-organisation.

The hope to reproduce at least some of the flexibility and power of human brain

by artificial means has led to the subject of study known as Neural Networks, Neural

Computing, Neurocomputing or Brainlike Computation [Anderson92]. Neurocomputing

is a fundamentally new and different approach to information processing. Neurocomput-

ing is concerned with parallel, distributed and adaptive information processing systems

that develop information processing capabilities in adaptive response to an information

environment [Hecht-Nielsen91]. It is not necessary that the architecture of brain is copied

as it is to the extent to which it has been understood. Implementation of the functions

of brain by whatever means possible is the guiding force in neurocomputing.

In this chapter the concept of artificial neural networks is introduced in Section 2.2.
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Hop field network [Hopfield82] is one of the simplest and most widely used neural network

models. This model is described in Section 2.3. Search for better performance and

application orientation has motivated researchers to consider various modifications to the

Hopfield network. Section 2.4 to Section 2.12 report a survey of research related to various

modifications to the Hopfield network, the effect of these changes on the performance of

the network, various definitions of storage capacity, and capacity estimates. This survey

is an attempt to present in an unified way the results of research articles reported in

several diversified disciplines. This survey may help in an extensive study to provide an

insight into dynamics of Hopfield network which may lead to precise design of Hopfield

networks.

2.2 ARTIFICIAL NEURAL NETWORKS

The primary information processing structures of interest in neurocomputing are Artifi-

cial Neural Networks (ANN). The potential of artificial neural network relies on massively

parallel architecture composed of large but finite number of artificial neurons which act

as simple computational elements connected by edges with variable weights. In this work

hereafter artificial neural network is referred to as neuraJ network and artificial neuron

is referred to as neuron.

There are various models of neural networks which have been reported in literature.

Some of trend setting models of neural networks are Perceptron [Rosenblatt58, Minsky69,

Rumelhart86], Adaptive Neural Network [WidrowGO], Linear Associator Model [Kphonen72,

Anderson72], Little and Shaw model [LittleTS], Pattern associating and concept form-

ing model [Amari77], Hopfield model [Hopfield82, Hopfield84, Hopfield86], Grossberg

Models [GrossbergSO], Self-organising Network [Kohonen84], and Boltzrnann machine

[Hinton84, AckleySo].
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These models have certain aspects in common. Eight major aspects of a neural

network have been identified in [Rumelhart86] are a set of processing units, a state of

activation, an output function for each unit, a pattern of connectivity among units, a

propagation rule for propagating patterns of activities through the network, an activation

rule for combining the inputs to a unit with its current state to produce a new level of

activation, a learning rule whereby patterns of connectivity are modified by experience,

and an environment within which the system must operate.

All models of neural networks exhibit some basic characteristics which are differ-

ent from the other computing paradigm. Some of the characteristic features of neural

networks are Model free estimators (no mathematical model of how a system output

depends on its input), Self-organisation (network carries out corresponding changes in

its structure when the performance requirements are changed), Distributed encoding of

information (information is superimposed and stored in the weights between neurons),

Generalisation (a neural network is capable of generalising from a limited set of correctly

learned functions to an entire class of special purpose functions), and Geometrization

of computation (neural activity burrows a trajectory in the state space of large dimen-

sion and each point in the state space defines a snapshot of a possible neural network

configuration).

2.3 HOPFIELD MODEL OF NEURAL NETWORK

Many researchers consider the Hopfield network [Hopfield82] as a model which has ex-

tensively influenced the field of neural networks. This section gives some relevant details

of Hopfield network.

Topology:- Pattern of connectivity of a neuron with other neurons is referred to as topol-

ogy of neural network. Neural networks can be broadly classified into two classes based
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on topology of the network. These classes are feed-back neural networks (architecture

can be described as an undirected graph) and feed-forward neural networks (neurons are

arranged in layers with directed synapses between one layer and next layer).

A connection (synapses) between a pair of neurons in a feed-back neural network

is characterised by a synaptic weight ( connection weight). Higher value of synaptic

weight between a pair of neurons indicate the tendency of the pair of neurons to be

simultaneously active. The synaptic weights are determined by the learning rule used to

train the network and these are represented as a synaptic matrix. If the output of each

neuron is connected to all the other neurons, the network is said to be a fully connected

network. If the output of a neuron is connected as an input to the same neuron, then

the neuron is said to have a direct self-feedback character. In a fully connected feed-

back neural network if the synaptic weight from neuron j to neuron i (Jij) is same as

the synaptic weight between neuron t to neuron j (Jji) for all pairs of neurons then

the synaptic matrix is symmetrical. The first subscript associated with J specifies post-

synaptic neuron and second subscript specify pre-synaptic neuron.

Hopfield network is a fully connected, feed-back neural network of N neurons. The

Hopfield network is uniquely defined by (J, 0). Where J is a N x N symmetric matrix

and 0 is N x 1 threshold vector having components 0,, which is the threshold for neuron

t. Each choice of J and 0 defines a specific Hopfield network with N neurons.

State of a neuron:- Activity level of a neuron (represented as <r,) is also known as its

state. The neurons in [Hopfield82] are two-state neurons. Two-state neurons which are

assigned a value of 0 for inactive (OFF) state and 1 for active (ON) state are termed as

binary neurons. Two-state neurons which are assigned a value of -1-1 for active state and

-1 for inactive state of neurons are called bipolar neurons. The binary (0,1) and bipolar



Chapter 2. HOPFIELD MODEL OF NEURAL NETWORK 8

(-1,1) neuron representations are equivalent. States of these neurons are related as

^ V i = 1, 2, . . . , JV

State of Hopfield Network:- The states of all neurons (<j,-, for all t) at any instant of

time t is the state of the Hopfield network and is represented by a state vector f . The

ith component of the state vector f is represented by ft. The state of neuron t is same

as the ith component of state vector i.e., & = <yt- at any given instant. In this work & is

replaced by crt and vice versa without specifically mentioning it. This is however being

done considering the time interval factor. The state of Hopfield network can be visualised

as a pattern of activities of the neurons and thus the state vector is also termed as a

pattern. Stable states of a Hopfield network are the states of the network which do not

change under normal functioning of neural network.

Learning:- Learning in Hopfield network is the process of making certain states of net-

work as stable states. This is achieve by determination of the synaptic matrix and

threshold vector. Strategies for learning are broadly divided into two classes. These are

supervised learning and unsupervised learning* In supervised learning the network is

supplied with a sequence of examples. Each example conveys the required output state

vector for a given input state vector. Usually, the training process is continued until the

neural network learns all the examples. In unsupervised learning the learning set consists

of state vectors that are to be made stable vectors of the network. This work deals with

unsupervised learning and some of the parameters in terms of which the learning process

of Hopfield network can be specified are listed below.

Candidate state vectors:- The P state vectors £* (n = 1, 2, . . . , P\ t = 1, 2, . . . , N), that

are to be made stable states of N neuron Hopfield network being designed are known as

candidate state vectors. In this work N represents the number of neurons in a network

and P represents the number of candidate state vectors.
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Basin of attraction:- The set of all vectors, that converge to a stable state vector £M is

the basin of attraction of f ". There is no general shape of basins of attraction. Learning

in Hopfield network amounts to organizing the space of network states into basins of

attraction of preassigned candidate state vectors.

Radius of direct attraction:- The radius of a sphere around each of the stable state vector,

such that any vector in the sphere converges to the corresponding stable state vector in

one step [Chandru93].

Speed of convergence:- A stable state is recalled if under the influence of a stimulus the

Hopfield network drifts rapidly into the stable state. Speed of convergence is the measure

of number of steps a network takes to converge to a fixed point after receiving the initial

state. The dimensionality of the state space and number of basins of attractions in

principle do not effect the speed of convergence [Kosko92].

Spurious state vector.- The stable state vectors of the designed Hopfield network which

do not belong to the set of candidate state vectors are called the spurious state vectors.

The learning process has some difficulties. It is not always possible to formulate a

Hopfield network with all members of given learning set as stable states. Some of the

candidate state vectors may not become stable states of the network. Thus the stable

states of a Hopfield network can be seen as belonging to two categories, stored state

vectors (members of learning set) and spurious state vectors. A learning procedure with

the following properties is considered to be an effective synthesis procedure for Hopfield

networks [Farrell90].

Each candidate state vector is a stable state in the resulting Hopfield network. Each

stable state vector must be attractive. In other words, each stored vector should have

a domain of attraction. Learning rule should attempt to have a precise control on the

extent of the domain of attraction of each stable state vector. Spurious stable states

should be eliminated or minimized.
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Learning rules can also be classified as Local learning rule or Non-local learning

rule depending on the nature of information used to construct the Hopfield network.

Information physically available at a synapses is called the local information. Synaptic

weight changes in local learning rule depend only on local activity. Non-local learning

rules also consider the activity in other nearby synapses.

Update rule:- A rule for evaluating the state of one or more neurons under the existing

conditions and changing them if necessary is called a transition rule, activation rule or

update rule. Each neuron receives either an external input in the form of initial state

and/or weighted inputs from other neurons and the resulting state is evaluated using the

update rule.

Dynamics of computation:- After the formulation of Hopfield network, the network

is presented with an initial (probe) state vector. For a Hopfield network with N two-

state neurons, initial state vector can be any one of the 2N possible vectors. The update

rule along with the order in which it is applied defines the dynamics of computation.
*

Update rule of Hopfield network uses linear sum of product of connection states and

their connection weights to determine the next state. The sum is called the local field of

neuron or potential of neuron. Depending on the relationship between the potential and

the threshold of a neuron the next state of the neuron is determined. In Hopfield network

the update rule is discrete in time. During each time interval, state of one (asynchronous

update) or more than one (synchronous update) neurons is evaluated. For asynchronous

update the neuron to be updated in a unit time interval is selected randomly or in a

deterministic way (fixed sequence of neuron, neuron receiving maximum local field, or

neuron receiving maximum local field). In synchronous update when all the neurons

are updated in a unit time interval, it is termed as fully parallel operation. When the

synchronous update operation in not fully parallel, the selection of neurons can be done

using one of the methods used for asynchronous update.
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Trajectory on Hypercube:- Network activity is represented by a trajectory on the

hypercube in the N-dimensional space. The state space of Hopfield network is repre-

sented by a hypercube. Each vertex of the hypercube represents a network state. The

state transitions from initial state to a stable state can be viewed as a trajectory in the

hypercube from one vertex, representing the initial state to another vertex representing a

stable state (equilibrium state). An attract is a special network state, or a restricted set

of states, to which the dynamical process, governing the time evolution of the network,

brings the network, after a long enough time, from large classes of initial network states

[Amit89].

In [Amit89] three basic types of trajectory behaviours have been identified for asymp-

totic neural network dynamics are Fixed points (trajectories which lead the network to

remain on a single state for an appreciable period), Limit cycles (trajectories which lead

rapidly to small cycles of states) and Chaotic (trajectories which wander aperiodically

in an uncorrelated way in the space of the network states). A two step limit cycle in
4

dynamics of Hopfield network is a situation when the network oscillates between two

states of the network. A two step limit cycle can be seen as a bi-directional fixed point.

Energy Function:- The central feature of Hopfield network is that each state of such

networks can be associated with a quantity called Energy (E). An energy function and a

statistical methodology to describe the relaxation of symmetric network is introduced in

[Hopfield82]. The energy function of Hopfield network is function of its state £ at time t.

2.4 HOPFIELD CLASS NETWORKS

In recent years several models of neural networks have been proposed. Researchers have

been proposing new models motivated by biological neural systems, application under

study or improvement of performance of an existing model. A model may perfectly
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suit the purpose for which it has been designed, but in the presence of many models,

it becomes necessary to compare the general performance of various models. Such a

study will help in evaluating various models and also serve as a basis for designing new

models or modifying existing models. Though presence of many models of neural network

necessitates a comparative study, because of large variations in the nature of these models

this task is difficult. It is more so in the absence of a common criterion. Though common

criterion are necessary for detailed comparison of the models, deciding this meaningful

set of such criteria may itself require a separate research.

An estimate of the number of state vectors that can be made fixed points in a Hopfield

network can serve as common criterion for evaluation of Hopfield networks functioning as

associative memory. This measure is known as storage capacity or capacity of Hopfield

network. Detail study of different aspects of storage capacity have been of interest to the

researchers. Many different definitions and estimates of the capacity have been reported

in different context.
*

Hopfield network, like any other neural network model has a limit beyond which the

performance is not predictable. Search for better performance, higher storage capacity

and application orientation of this model has motivated researchers to consider different

options. The models which vary from the original Hopfield network but fits in its general

framework can be said to belong to Hopfield class of neural networks or briefly Hopfield

class networks.

The various modifications to Hopfield network till now have been mostly attempted

in isolation. Each of these changes have an impact on the storage capacity. Several pos-

sibilities related with each of these aspects provide a very large number of combinations.

An extensive study of these aspects and hence the various combinations of these aspects

may provide an insight into the dynamics and application of Hopfield class networks.

Such a study may also help in precise design of Hopfield class networks.
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The following sections of this chapter reports a survey of the research related to various

modifications to the Hopfield network, the effect of these changes on the performance of

the network, various definitions of capacity, and capacity estimates reported in literature.

There have been very large number of research articles related with the above mentioned

issues reported on several diversified disciplines. Hence, it becomes difficult for any

researcher to have access to all the results. Hence an attempt has been made to report

these results in a unified way available at one place. For the study of Hopfield class

networks the parameters based on which various modifications and capacity estimates

reported in literature can be characterized are listed below to give an overview.

1. Nature of synaptic matrix:- (i) Fully connected (ii) Diluted (iii) Symmetric

(iv) Asymmetric (v) Binary or clipped (vi) Two-dimensional (vii) Higher order.

2. Learning rules:- (i) Local learning rules (ii) Non-local learning rules.

3. Nature of values assigned to neurons:- (i) Two-state neuron (ia) Binary neuron

(ib) Bipolar neuron (ii) Multi-valued neuron (iia) Multi-state neuron

(q-state Potts Glass neuron, q-state ising spin neuron, q-state Hopfield neuron)

(iib) Continuous neuron.

4. Nature of candidate state vectors:- (i) Randomly chosen candidate state vec-

tors (ii) Specific candidate state vectors (iii) Biased candidate state vectors (iv)

Unbiased candidate state vectors (v) Correlated candidate state vectors (vi) Un-

correlated candidate state vectors (vii) Sparse candidate state vectors (viii) Marked

candidate state vectors (ix) Complex candidate state vectors.

5. Retrieval parameters:- (i) One step retrieval (ii) Iterative or fixed point retrieval

(iii) High fidelity retrieval (iv) Low fidelity retrieval (v) Presence of Spurious states.
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6. Update interval:- (i) Discrete time (ii) Continuous time.

2.5 CAPACITY ESTIMATES OF HOPFIELD NETWORK

2.5.1 Hopfield's Estimates

The estimate of the number of candidate state vectors that can be stored accurately in

[Hopfield82] is obtained by conducting computer simulations and some analysis. Brief

description of Hopfield network and storage estimate reported in [Hopfield82] is given

here.

To make randomly selected set of P candidate state vectors as fixed points in the

Hopfield network of N binary neurons, the synaptic weights Jij (t,j = 1,2, . . . , JV) are

obtained as

j and J«=0 V. = j

Neurons are randomly and asynchronously evaluated using the update rule

1 if £?_,*,-(«) > 0,
3

0 if £^(0 < 0,

Under these conditions with P = 0.57V the assigned candidate state vectors are always

stable and exactly recoverable. With P = 0.157V about half of the candidate state vectors

evolved to fixed points with very less errors. But the rest evolved to quite different fixed

points. Thus 0.15^ candidate state vectors can be simultaneously stored by Hopfield

network with N neurons before error in recall is severe.

DEFINITION 2.1:- The storage capacity (a) of a Hopfield network is defined as the

ratio of number of candidate state vectors (P) that are made stored stable states to the

number of neurons (N) in the network, ct ^ jf. Thus storage capacity is the number

of candidate state vectors made stable state per neuron. Critical storage capacity QC
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is defined as that storage capacity of Hopfield network beyond which it is not possible

to store candidate state vectors without affecting the stability of already stored state

vectors.

The storage capacity at any given level of accuracy can be increased by a factor of 2

by a judicious choice of the threshold of individual neurons [Hopfield82]. This can also be

achieved by using bipolar neurons with synaptic weights, J±j = J2^=i £?£ji Jn — 0 and all

threshold elements value zero. This modified prescription improves the level of accuracy

and all randomly selected candidate state vectors upto P = 0.15JV can be accurately

stored and recalled. The critical storage capacity &c = 0.15.

2.5.2 Estimates Using Hyperplane Counting Argument

In [Abumostafa85], using a hyperplane counting argument from pattern recognition, it

has been shown that the number of candidate state vectors that can be made stable in

Hopfield network is bounded above by the number of neurons N in the network. Bipolar

neurons, fixed real numbers as synaptic weights, and undirected connections (Ji j = Jji)

without self-feedback (Jn = 0) are considered in [Abumostafa85]. Given an initial vector,

the neurons are updated randomly and asynchronously until a stable state is reached.

DEFINITION 2.2:- Information capacity of a memory is defined as the logarithm of

the number of cases it can distinguish.

For the Hopfield network, information capacity can be obtained by estimating the

number of different sets of values of «/„ and 0; that can be distinguished merely by

observing the state transition scheme of the neurons. This corresponds to the number of

distinct networks of fixed N neurons. The key factor in estimating the number of distinct

networks is the known estimate for the number of threshold functions. By estimating the

upper bound and lower bound on capacity it is concluded that the information capacity

of Hopfield network with N neurons is exactly of the order of N3 bytes. A definition of
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maximum storage capacity is also proposed in [Abumostafa85].

DEFINITION 2.3:- The number of candidate state vectors that can be made fixed

points in a Hopfield network of N neurons is the maximum value of 1C, such, that, any

K vectors of N binary entries can be made stable in the network by a proper choice of

synaptic matrix J and threshold vector 0. Then ac = j^ is the critical storage capacity

of Hopfield network.

It is proved in [Abumostafa85] that the number of stable states K can be atmost N.

In other words, Hopfield network cannot have more than N arbitrary stable states.

2.5.3 Critical Views About Definition 2.3

Different views of the Definition 2.3 of capacity given in [Abumostafa85] is proposed in

[BruckSS, Prados89, Montgomery86]. In [BruckSS] it is proved that for Hopfield networks

with zero diagonal synaptic matrix there exists pairs of state vectors which cannot be

made fixed point simultaneously. Thus according to Definition 2.3, K cannot even be

2 and storage capacity can atmost be 1. In [Montgomery86] it is proved that there

are many (atleast N2^~l out of possible 22^) pairs of state vectors for which Hopfield

network cannot be constructed. Thus there is no guarantee for the existence of Hopfield

network for K = 2.

Under these circumstances there is a need for alternate definition of capacity of Hop-

field network. In [Prados89] it is proposed that the capacity of Hopfield networks should

be mentioned only in terms of probability associated with storing randomly chosen candi-

date state vectors. In [BruckSS] an alternative definition of Hopfield networks is proposed

based on notion of descriptor of a set. Descriptor of a set S denoted by D$ is a list of

rules which are true in the set.

DEFINITION 2.4:- The storage capacity of a Hopfield network of order N is defined

as the maximal integer K, such that, for any set \f of K vectors with descriptor DAT
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there exists synaptic matrix J and threshold vector 9 such that .!/ is contained in the set

of stable states of the network Mi*. The storage capacity with respect to the descriptor

D is denoted by CD*

When D is an empty set then CD is equivalent to the Definition 2.3 of capacity* D

can be formalised such that it describes a particular and unique set and then the question

of finding the storage capacity turns out to be a question of designing a Hopfield network

such that this set is contained in the set of stable states of the network Mpf. A simple

upper bound on CD is the size of the largest set with descriptor D. With D getting

more restrictive the storage capacity tends to increase, but also the above upper bound

on storage capacity tend to decrease. The main drawback of the Definition 2.3 is that it

does not hold true for the candidate state vectors which differ in one bit only. This can

be avoided in the Definition 2.4 of storage capacity.

2.5.4 Estimates Using Coding Theory
•

Using techniques from coding theory, especially random coding and sphere hardening, the

storage capacity of Hopfield network with bipolar neurons has been rigorously studied in

[McElieceS?]. For randomly selected P candidate state vectors synaptic matrix is built

using Hebb's Learning Rule [Hebb49] (sum of outer product learning rule) given below

The definition of capacity given in [McElieceS?] in terms of maximum number of

candidate state vectors that can be made stable is

DEFINITION 2.5:- The asymptotic capacity (represented as P^) of a Hopfield net-

work is the maximum number of randomly chosen candidate state vectors P that are

exactly recoverable by the Hopfield network when the limit of number of neurons N is

infinity.
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One step retrieval and Iterative retrieval

Input state vector ^(t = 0) represents the state of the network at time t = 0. If

£(£ = 1) is taken as the output of the network using synchronous update it is known

as one step retrieval. The input state vector is considered to be not more than pN

(0 < P < 2) kits away from a stored stable state. The asymptotic capacity estimates

[McElieceST] under the condition that any given initial vector should always converge to

a unique stored stable state with high probability is Pm«* = (*~'

The update process (synchronous or asynchronous) can be performed until £(t -f-1) =

f (£) before the output vector is retrieved. This retrieval is known as fixed point retrieval

or iterative retrieved. In order that any given initial state vector should always converge

to a unique fixed point, the asymptotic capacity is given by Pmax = 4£ N-

Consider the relaxed condition that the unique stored stable state should be recovered

with high probability, for a given initial state vector, except for a vanishingly small

fraction of the fixed points. With this relaxed condition the capacity estimate reported

in [McElieceST] is twice of that with rigid retrieval criterion. The asymptotic storage

capacity for one-step retrieval is less than the storage capacity for iterative retrieval. For

one-step retrieval there is a restriction on the state vectors which can be given as input

state vector to the network. The storage capacity decreases as the number of possible

initial state vectors increases.

2.5.5 Perfect Storage Condition

Estimates of the size of the set of P vectors to be completely determined by the synaptic

matrix is reported in [Sussmann89]. For a given P candidate state vectors, perfect storage

condition is that the synaptic matrix depends only on the set of P, which consists of the

candidate state vectors £M and their negatives. Exactly recoverable condition is that all
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members of set P are the only local minima of *:he synaptic matrix. The recoverable

condition is that the members of set P are contained in the set of local minima of the

synaptic matrix. Perfect storage is a necessary but not sufficient condition for exact

recoverability. It is expected that there will be a range of values of P for which some

state vectors are perfectly stored but not exactly recoverable. The range for which perfect

storage hold is much larger than the one for which recoverability is proved in [Hopfield82]

and [McElieceS?].

The capacity estimate reported in [Sussmann89] is given here. It has been proved

that if P behaves like K£N, where K is a constant and P candidate state vectors are

randomly selected, then P is uniquely determined by the synaptic weights with high

probability as N goes to infinity. The randomness of P is more general than the same

given in [McElieceST] and [Hopfield82]. The P candidate state vectors are chosen with

arbitrary probability distribution P^. When the components of fM are independent and

equal to +1 or -1 with probability | then the value of K turns out to be (2 Iog2)^1 i.e. 0.7.
* •

For perfect storage condition with the components of £" being +1 or -1 with probability

|, asymptotic storage capacity is given as Pmax = Q7^ogN-

This asymptotic storage capacity is higher than that given in Section 2.5.4 for relaxed

retrieval condition. This difference is because the results of Section 2.5.4 are based on

retrieval condition and the results given here are based on perfect storage condition. The

probability condition is same for both the cases.

2.5.6 Upper and Lower Bounds of Capacity

In this section results of upper bound and lower bound on capacity reported in [Houselanderi

are described.

DEFINITION 2.6:- Storage capacity is the maximum number of stable binary vectors
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that can be stored on average.

The capacity of Hopfield networks trained using Hebb's learning rule is limited due

to errors caused by the effective correlation noise of the initial state vector with each

stable state vector, other than the stable state vector (exemplar) where we want the

initial vector to stabilize. The upper and lower bound of the capacity are established on

the assumption that the maximum error signal occurs when the correlation noise from

each stable state vector is aligned and of the opposite polarity to the signal from the

exemplar.

DEFINITION 2.7:- The upper bound of capacity is the number of stable state vectors

required to guarantee atleast one error per network. The lower bound of capacity is the

number of stable state vectors that can be stored before an error occurs.

For Hopfield network with N bipolar neurons, synaptic matrix constructed using

Hebb's learning rule, and with synchronous update, the bounds on capacity are given as

Pufper **

0.75(#-l)*+2r

where r represents the number of stable state vectors that are aligned with the exemplar.

A modified version of Hopfield network was also considered in [Houselander90]. In

the original Hopfield network [Hopfield82] the diagonal elements of the synaptic matrix

are zero. The Hopfield network is modified by allowing non-zero diagonal elements in the

synaptic matrix. Diagonal elements of synaptic matrix is equal to number of candidate

state vectors, i.e., J^ = P.

The bounds of storage capacity for this modified Hopfield network of N bipolar neu-

rons, with synchronous update are given as

w {(N - 1) + 0.8(,V - 1)*} x {0.8(;V - 1)* - I}-1 + 2r
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Plow w {(N - 1) + 1.4(JV - 1)?} x (1.4(A" - 1)* - I}"1 + 2r

It can be observed that the capacity of this modified Hopfield network is greater than

the capacity of Hopfield network discussed hi Section 2.5.1.

2.5.7 Capacity Estimates For Delta Learning Rule

The definition of storage capacity, Delta learning rule, the numerical simulations and

capacity estimates reported in [Prados89] are given here.

DEFINITION 2.8:- Storage capacity is the number of randomly selected candidate

state vectors that can almost always be made fixed points in a Hopfield network.

The Delta learning rule for construction of synaptic matrix is based on the process

of adjusting the synaptic weights to make a candidate state vector as a stable state of

the network. A candidate state vector £s is made stable state of a Hopfield network by

adjusting the synaptic weights by using the equation AJ.v, = |(ff — <*i)(f > where <7, is

calculated as-

' 1 ^ ££*!.;*• Aitf > °

-1 if EjLij* Jijtf < 0

This procedure is repeated until the given state vector £s becomes stable state of the

network. But in the process of making £s stable, other stable state vectors may be

affected. Ideally, this procedure is repeated until all candidate state vectors become

the stable states of the network. It is not possible to attain this condition for many

sets of candidate state vectors. When such a situation is encountered the procedure is

terminated after few iterations to avoid endless execution of this procedure.

In [Prados89] attempts to make P candidate state vectors as stable states of network

are also reported. A new set of randomly generated P candidate state vectors is used

in each attempt. The Delta rule is used to make the selected set of P candidate state

vectors stable. Attempt is said to be successful if the selected set of P candidate state

<7, = 4
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vectors become stable states. P is gradually increased to observe the extent to which

candidate state vectors can be made stable states.

At lower values of P more number of attempts are successful. As the number of

candidate state vectors are increased keeping N fixed, the number of attempts that are

successful, decreased. Ultimately, beyond a value of P the number of attempts that are

successful either became zero or negligible. It is found that this critical value of P is

always more than N. Thus it is possible to store more than N candidate state vectors

in a network.

The capacity estimates in [Prados89] are better than those reported in [Hopfield82,

BruckSS, McElieceST]. This can be attributed to the following reasons. The Delta

learning rule takes more time in comparison to other rules like Hebb's learning rule to

make a candidate state vector stable in the Hopfield network. Some capacity estimates

[BruckSS, McElieceST] are applicable to any set of P state vectors, whereas [Prados89]

deals with the several attempts to make randomly selected different sets of P state vec-

tors as stable states. In Section 2.8 it has been discussed that the presence of correlation

between the state vectors will increase the storage capacity. The random sets of P stable

state vectors with P > N may be the set of vectors with more correlation.

2.5.8 Presence of Spurious Stable States

In the previous sections the results on the capacity estimates are discussed without

considering stable states. In this section the impact of spurious stable states on the

storage capacity is considered. The performance of Hopfield network can be improved

by exploring mechanisms to make more number of candidate state vectors stable or

by reduction of spurious stable states. Continuous unlearning algorithm which enables

continuous unlearning of the spurious stable states that goes along with the learning of

candidate state vectors is reported in [Youn89]. In this algorithm the outer product of
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a spurious stable state multiplied by the unlearning rate is subtracted from the synaptic

weights. The purpose of the unlearning rate is to adjust the synaptic matrix in small

steps to reflect the incremental unlearning.

By using this algorithm, the number of stored stable states are more and the number

of spurious states are less compared to Hebb's learning rule and the Delta learning rule.

The improvement is greater when the network is heavily loaded. With smaller unlearning

rate more number of iterations are required to converge to a stable synaptic matrix.

With large unlearning rate, some example enters in an infinite loop during the process

of adjustment of synaptic weights.

2.5.9 Hysteretic Property

In Section 2.5.6 it is observed that the presence of non-zero diagonal elements (self-

feedback character of neurons) in the synaptic matrix improves the storage capacity of

Hopfield network. Hysteresis is the lag between releasing of stress and cessation of strain
*

in materials subjected to magnetism. This property was introduced in neurons of neural

networks in [BrahamSS]. Self-feedback in neurons is equivalent to hysteretic property in

a discrete model. A neuron with self-feedback 7,, and hysteresis width 6» is equivalent

to a neuron without self-connection and with hysteresis 6J (= 6, -f- ./,,). The recalling

ability of an associated memory network composed of two-state neurons with hysteretic

property as investigated in [Yanai90] is described here.

Consider a Hopfield network with N bipolar neurons. Each neuron takes a value of

+ 1 or -1 with probability |. Given P candidate state vectors to be made stable in the

network the synaptic matrix is constructed using Hebb's learning rule. When hysteresis

width of itk neuron is b± the next state of the i*A neuron o^ at next time step t + 1 is



Chapter 2. HOPFIELD MODEL OF NEURAL NETWORK 24

determined using the following equation

In the presence of hysteretic property the response of a neuron is given in the Figure

4.1. Each neuron can have different hysteresis width. For simplicity the hysteresis width

of all the N neurons is considered to be the same, i.e., b. For the present network

2logN—loglogN"
I

-I

Figure 4.1: Response property of a neuron with hysteretic property.

The presence of hysteresis improves recalling ability. The reason for this improvement

is due to the reluctance of the neurons to change state. When the state of the network

is not far from a stable state, degradation of recalling process is caused by the neurons

moving from right state to wrong state. With hysteretic property, neurons tend to stay in

their current state. At the same time, there are neurons moving from the wrong state to

the right ones. Hysteresis tends to prevent these changes and hence there is a trade-off.

It is observed that the prevention of neuron state change from right state to wrong state

is more effective than the prevention of state change from wrong state to a right state

under proper conditions [Yanai90j. Numerical experiments also suggests that the basin

of attraction is the largest when hysteretic width is close to the value of ^.
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2.6 ASYMMETRY IN HOPFIELD NETWORKS

Hopfield network [Hopfield82] has a synaptic matrix which is symmetric. One of the

drawbacks of symmetric networks is the presence of spurious stable states. Much work

has been done on the nature and origin of spurious states [Amit85a, Feigelman86]. A

small amount of noise can be useful for escaping from spurious states. Such noise can

be added by introduction of weak random asymmetry into a symmetric well functioning

Hopfield network [Feigelman86]. However, such addition of noise does not change the

qualitative performance very drastically, even at high level of asymmetry.

Hopfield network with asymmetric synaptic matrix can also be referred to as Asym-

metric Hopfield Network. The dynamics of asymmetric Hopfield network has been dis-

cussed in [DerridaST, Crisanti88, NoestSSa, Gardner89e, Mori89, Kree92]. Asymmetry in

synaptic matrix can be introduced by (i) Asymmetric learning rule, (ii) Random changes,

or (iii) Dilution.
•

1. Asymmetric learning rule:- There is no differentiation in the post-synaptic and pre-

synaptic neuron in a symmetric learning rule. If pre-synaptic and post-synaptic

neurons are differentiated, then the synaptic matrix will be asymmetrical.

2. Random changes:- In a symmetric synaptic matrix, asymmetry can be introduced

by randomly selecting and changing the synaptic weights to some other value.

Random selection of a pair of synaptic weights and swapping the values will also

introduce asymmetry. The number of random changes depend on the degree to

which asymmetry is to be introduced.

3. Dilution:- Dilution is a special case of random changes. Synaptic values are ran-

domly selected from the symmetric synaptic matrix and the selected values are
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changed to zero. These changes in synaptic matrix can be viewed as represent-

ing Diluted Hopfield network (network which are not fully connected). Study of

Diluted Hopfield network is reported in [DemdaST, Wong91, Patrick92, Patrick90,

Evans89, Derrida89, Kuhlmann92, Garces92]. Damage to a Hopfield network (Dam-

aged Hopfield network) can also be considered as a case of dilution. Networks are

able to adapt to the damage (up to a limit) introduced by dilution and are able

to recover completely [Hendrich91]. This implies that associative memories using

the Hopfield network paradigm are useful even in the presence of faults. Although

dilution and asymmetry are two different and distinct concepts most of the rele-

vant works reported in literature use dilution as a means of introducing asymmetry

in Hopfield network. In other words, dilution is used to achieve asymmetry but

symmetric dilution does not lead to asymmetry.

Capacity estimates of Asymmetric Hopfield networks where dilution has been used

for introduction of asymmetry is given in Section 2.6.1. Capacity estimates of network

constructed using asymmetric learning rule is given in Section 2.6.2.

2.6.1 Asymmetry and Dilution

An asymmetric and diluted version of Hopfield network as proposed in [Derrida87] is

described here.

For bipolar neurons the synaptic weights are obtained as

(2.1)

where CtJ € {0,1} is an independent random number which represents dilution and

asymmetry. It is drawn from the distribution

(2-2)
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Where c is a constant representing mean connectivity per neuron. £(0) = 1 and

S(x) = 0, x ^ 0. Eq. 2.2 is a case of random dilution. The probability for a synaptic

weight to remain intact is ^. The probability for a synaptic weight to be made zero is

(1 — -^). Because -^ — »• 0 as N — * oo, the analysis is carried out under the restrictioo

that c <C InJV. This is a case of extreme dilution. The neurons are updated according

to the following rule

. +1 with probability(l +
-f At) = < (2.3)

-1 with probability (H- exp[2hi(t)/T0])-1

where h^(t) = I3j=i Jij&jft)- Storage capacity a, at reduced temperature T is given by

a = ^— ^ and T = — (2.4)
c c

At T — 0, the critical value of capacity ac = - = 0.6366. The crc is larger than 0.15

for non-diluted symmetric cases. For a < ac two initial configurations close to stable

state vectors, remain close to the stable state vector but do not become identical. When
* s

some of the stable state vectors are correlated there exists regimes for which the system

remembers the state vectors, but cannot distinguish them. The extremely diluted network

can retrieve the stable state vectors that have been stored in it. The storage capacity

measured per remaining synapses, is significantly higher than that of fully connected

synaptic matrix.

2.6.2 Asymmetric Learning Rule

This section describes an asymmetric version of Hopfield network using asymmetric learn-

ing rule reported in [GardnerSSeJ.

The synaptic matrix for network with bipolar neurons is constructed using the mod-

ified Hebb's rule. The synaptic weight J^ between the post-synaptic neuron t and pre-

synaptic neuron j is changed only if the post-synaptic bit t of the candidate state vector
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is active f-f -1) . The learning rule has asymmetric synaptic matrix as it differentiates

between post-synaptic and pre-synaptic neurons. In a candidate state vector, if & is -hi

and £j is —1, then this pair of neurons contribute to reduce the value of Jij but Jji is not

affected.

By introducing the dilution and asymmetry parameter Cij € {0, 1} the final synaptic

weights are obtained as JtJ = d, Jij , where J^ = |££si(£<* ~*~ *)£/• The argument

for extreme dilution in Section 2.6.1 are also applicable here. Every neuron GJ — 1

contributes to the post-synaptic potential of neuron i

MO = £ -M<*

If the post-synaptic potential exceeds a threshold Oi then the post-synaptic neuron is

activated. For simplicity uniform threshold is considered for all neurons, Oi ~ OQ > 0.

<7t(* 4- AO = sgn(hi(t) - 00)

Updating procedure is given by

1 with probability [1 +

-1 with probability [1 +

The capacity of the network is found to depend on the threshold of the post-synaptic

neuron. Capacity is optimal for 00 % 0.1 and no retrieval is possible for 0 > 0.5. Under

the condition ~ — * 0, N -+ oo, P — >• oo, with reduced temperature T = ̂  and reduced

threshold 0 — ^ the capacity with respect to existing couplings is obtained as

ac = ̂ -i (2.5)
c

This value of critical capacity is the same as that given in E<1- 2.4. The capacity

of this model varies with threshold of the post-synaptic neuron. This network classifies

input state vectors according to their mean activity and their overlap with the stable

state vectors.
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2.7 BIASED CANDIDATE STATE VECTORS

The dynamics of Hopfield network is studied by selection of candidate state vectors ran-

domly or in a deterministic way. For two-state neurons, the randomly selected candidate

state vectors on an average have 50% active neurons and 50% passive neurons. These

vectors are termed as unbiased candidate state vectors.

The candidate state vectors for which mean percentage of active elements is different

from 50% are called biased candidate state vectors. In deterministic way the candidate

state vectors with a particular activity level or bias can be chosen. All candidate state

vectors with a specific bias are naturally correlated with each other. Such candidate state

vectors are called correlated candidate state vectors.

The bias parameter or activity level a of a state vector £" is given by a = ^ TliLi £f •

The biased candidate state vectors with low level of activity are known as sparse candidate

state vectors. The total number of active elements in a candidate state vector is called

as magnetization M of a candidate state vectors. Ratio of active neurons to the total

number of neurons is known as magnetization per spin of a candidate state vector.

In Hopfield networks with N, two-state neurons the biased and unbiased state vectors

in terms of activity level are given in Table 2.1. This table also gives the number of

active elements and excess of active neurons over passive neurons in state vector with

bias parameter a. Study of neural networks with biased candidate state vectors have

been reported in [Evans89, Amit87, Viswanathan93, Penna90, Tsodyks*
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Table 2.1 : The activity level a and bias of state vectors

Unbiased state vector

State vector with fully active bias

State vector with fully inactive bias

Number of active elements in

state vector with bias parameter a

Excess of active neurons over passive

neurons in state vector with bias a

binary neurons

« = 3

a = l

a = 0

aN

(2a - l)N

bipolar neurons

a = 0

a= 1

a=-l

(\+a)N
2

aN

2.8 CORRELATED CANDIDATE STATE VECTORS

A mechanism for selection of candidate state vectors is based on common descriptor.

Only those state vectors with certain description are eligible for selection as candidate

state vectors. Correlation m between two candidate state vectors £M and £" is defined as

For bipolar neurons — 1 < m < 1 and for binary neurons 0 < m < 1. The correlation

between a set of P candidate state vectors can be represented in a correlation matrix

1
(2.6)

Semantic correlation is the correlation between various candidate state vectors. Syn-

tactic correlation is the correlation between neuronal sites. Hierarchical correlation deals

with candidate state vectors grouped into clusters.

Storage and retrieval of correlated candidate state vectors reduce the number of pos-

sible candidate state vectors that can be made stable. The space of interaction is also
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reduced. The number of candidate state vectors that can be stored in a Hopfield net \vork

with N neurons is more for correlated candidate state vectors compared to uncorrelated

candidate state vectors. However the information capacity of the network is less for

correlated candidate state vectors compared to uncorrelated candidate state vectors.

2.9 CAPACITY WITH BIASED AND CORRELATED PATTERNS

2.9.1 Low Level Activity With Bipolar Neurons

In [Amit87] a modified Hopfield network to allow the storage of biased candidate state

vectors is proposed. This work deals with the study of associative memory whose mean

activities differ from 50%.

State of every element £f in the candidate state vectors can be chosen independently

with probability P(tf) = |(1 + aWff - 1) + 5(1 - aW& + 1)- The average of each f is a

(<C £,M ^>) and the mean activity in each candidate state vector is |(1 -f a), — 1 < a < 1.
4

With such a distribution the candidate state vectors are necessarily correlated in a simple

way i.e. < tftf > = a2.

The stored stable states become unstable at very low storage level. Even at small

values of the bias parameter a, the Hopfield dynamics is catastrophic. This is due to

the fact that the noise generated by other stable states in the retrieval of each stored

stable state does not average to zero. To overcome this difficulty the synaptic weights

are derived by the following non-local learning rule

These synaptic weights avoid catastrophe by shifting the noise back to a zero mean.

For finite P, the consequences of traditional dynamics are unsatisfactory. The near

saturation (P = acJV) spurious states are found to dominate energy landscape. Although,
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the stored stable states themselves are stable below ae(a) (upto a small fraction of errors),

their basin of attraction, and hence fault tolerance of the network decrease sharply with

increase in a.

To have a network which can effectively store and retrieve candidate state vectors, it

is not only sufficient to modify the synaptic weights but also to modify the dynamical

process. With mean bias parameter a, the network is constrained so that it wanders

mostly among states that have the preferred mean activity. There must be global control

on the dynamics of the network which prevent too high or too low activity. Thus the

network activity should be much lower than 50% whether or not the network is retrieving.

This control restricts the region in state space in which a healthy neural network can

move. The dynamics is restricted rigidly to states with a given value M = £^i <7i =

Na. The number of neurons that are on (+1) is ^y . The candidate state vectors

are stable states of the network. Spurious states with macroscopic overlaps with small

number of candidate state vectors, do not appear. Such a network has a higher storage
«

capacity ac(a) than that of network storing random or unbiased candidate state vectors

ac(a) > ac(0) for | a | < 0.99.

2.9.2 Low Level Activity With Binary Neurons

Stability of candidate state vectors with low level of activity in Hopfield network with

binary neurons is reported in [TsodyksSS]. The main variation is the use of binary neurons

instead of bipolar neurons as in Section 2.9.1. Maximal storage capacity obtained for

this model using the mean field theory is ac ^ 2a \ >

2.9.3 Improving Retrieval

A method for retrieving information from Hopfield network storing candidate state vec-

tors with low level activity is proposed in [PennadO]. This method uses the traditional
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Hopfield dynamics by doubling the number of neurons in a suitable manner. For P can-

didate state vectors with bipolar neurons the synaptic matrix is constructed by using

Hebb's learning rule. The states of neurons is updated using the equation

N

If the correlation between any two candidate state vectors is not close to zero i.e., | m |<

v^> they do not represent fixed points of dynamics. The dynamics of Hopfield network

Cannot distinguish between two similar candidate state vectors for which correlation m

is not close to zero. In order to satisfy the condition of vanishing correlation a necessary

condition is that all candidate state vectors must have about 50% of active neurons. But

in [Amit87] it has been shown that this may be undesirable in most cases where it is

required to reach retrieval for low activity candidate state vectors.

The method of retrieving information from synaptic matrix storing low level activity

candidate state vectors as reported in [Penna90] is given below.

1. Candidate state vectors with 2N neuron are created by doubling the initial number

of neurons such that C£ = Ca«+i +£?, where £/* is the itH neuron state of the doubled

candidate state vector /*.

2. A neuron £f = — 1 is randomly selected from the original network.

3. One of the corresponding (£• or £2.+! neurons of the doubled candidate state vector

is randomly chosen and then its state is changed to active state.

The Steps 2 and 3 are repeated until 50% components of the doubled candidate

state vectors are active for all the candidate state vectors. Using this prescription P

candidate state vectors with low and different activity levels are stored and it is possible

to retrieve these vectors. The storage capacity is found to be two times the capacity
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given in [Hopfield82] . This is due to hidden neurons. It was also found that smaller the

fraction of active neurons the better is the quality of retrieval.

2.9.4 Improving Performance By Adaptive Threshold

A modified Hopfield model with adaptive neural threshold and global inhibitory inter-

action between neurons is proposed in [BuhmannSQ]. This network is capable of near

optimal storage of candidate state vectors at low activity. It also exhibits a high (close

to optimal) storage capacity, no spurious states and a special state of no recognition. By

adjusting threshold a choice can be made between effective storage and good associativity.

The P candidate state vectors with bias a are chosen according to the distribution

P(£i} = °£(£f — l) + (l~"fl)^(4i*)- The synaptic weights between binary neurons are chosen

according to Hebb's hypothesis of co-operating neuron assemblies [Hebb49] (assembly

of neurons with mutual excitatory interactions). There is a competition among such

assemblies (inhibitory interaction between neurons belonging to different assemblies).
*

The synaptic weights are derived using the equation

where, 7 is the inhibition factor.

The synaptic matrix is symmetric and diagonal elements are zero. The neurons are

updated asynchronously according to probabilistic rule. The rule is based on a local field

ht = E^=lJijCTj. With probability /, = {1 + exp[-(/», -0)/T]}~1 neuron i fires at time

t -f AJ, otherwise it is quite. 0 is the threshold and T is the network temperature.

At T = 0 and a parameter range defined by 0 -f 7 < 1 — a, all states exhibiting

macroscopic overlap with one candidate state vector are stable states. In the limit of

small a value (a <C 0.1) for sufficiently strong inhibition (7 > 7C = ^^) the network

states are always unstable. For a low level of activity a the storage capacity increases as
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ac = —a (In a)"1. The information stored per synapses could be as large as 0.38 for 9 =

0.75, a = 5.6 x 10~7.

2.9.5 Non-local Learning Rules

The local learning rules have some limitation. While using these rules it may either

be difficult or not possible to deal with correlated candidate state vectors. When the

candidate state vectors are uncorrelated random variables, the combined overlap of a

candidate state vector with all other candidate state vectors is of O(\J j^). Hence when

P is finite, the stable states of a Hopfield network contains a finite fraction of errors,

which increases with a [Amit85a]. When or reaches a critical value ac, there is a dramatic

increase in the level of errors and the Hopfield network ceases to function as an effective

associative memory system. The critical value ac depends on details of the model but it is

always less than 0.14 [Amit85a, Sompolinsky86]. Non-local learning rules can supress the

adverse effects of the overlaps among the candidate state vectors [Personnaz85, KanterST].

Pseudo-inverse Learning Rule

In [Personnaz85] a model based on non-local learning rule called Pseudo- inverse learning

rule is proposed. This model is capable of storing correlated or uncorrelated state vectors

which are linearly independent. The synaptic weights are given by

(2-7)

where (C~1)^ is inverse of correlation matrix given in Eq. 2.6.

The local field of a neuron i is defined as

£
3=1
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The self-coupling term in E<1* 2.8 restricts sevrr^lv the size of basins of attraction of

the stable state vectors especially for large a. For small values of a < |, the self-coupling

term significantly reduce the basins of attraction.

Above a = | a state vector configuration which differs from a stored stable state

vector by one spin will not flow to that stable state vector. Although the candidate

state vectors can be made stable upto a = 1, the maximum capacity of the system for

providing associative memory is otc = |.

Eliminating Self-Coupling Term

A modification of the above model by eliminating self-coupling term is proposed in

[KanterST]. The local field of neuron i is given by hi = Z^i^i) -hjGj- The neurons

are updated using the equation 0\ = sgn(hi).

For synchronous as well as asynchronous update the radius of attraction R decreases

monotonically and vanishes at ac = 1. There is an increase in the number of spurious
«

stable states as a increases. But the occurrence of linear combinations of stable state

vectors as spurious states is very rare. Thus the presence of spurious states do not affect

the basin of attraction of the stored stable state,

2.9.6 Generalised Learning Rule

In [Dotsenko91] a generalised model based on generalised learning rule has been proposed.

Hebb's learning rule [Hebb49] and Pseudo- in verse rule [Kanter87, Personnaz85] are two

special cases of this generalised rule. This subsection deals with model proposed in

[DotsenkoOl] and capacity estimates of the model.

Network consists of N bipolar neurons. Synaptic matrix is constructed using the

equation

" (2-9)

where C ̂  is correlation matrix given by Exi- -•"•
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With A = 0, this generalised rule corresponds to Hebb's learning rule. In the limit

A — * oo the structure of J tends to the synaptic matrix constructed using Pseudo-inverse

learning rule. The extreme values of ac(A) are ac(A = 0) = 0.14 and Oc(A — » oo) = 1.07.

2.9.7 Biased State Vectors In Clipped Network

This section describes a neural network model with bipolar synaptic weights {-f 1, -1}

reported in [Viswanathan93].

The condition for each of the P candidate state vectors with bias a, to be fixed point

in a network with N neurons is

The neurones updated asynchronously using the update rule <7,(t+l) =

It is further assumed that the synaptic couplings which each neuron receives are con-

strained to have a bias E^Lj JfJ = r\//V. The number r (bias of coupling) measures the

excess of excitatory couplings over inhibitory couplings. The storage capacity as a func-

tion of coupling bias for K — 0 and the pattern bias a is given in Figure 4.2. The Figure

4.3 maps the capacity as a function of coupling bias for a = 0.6 with /c values Ot 1,2.

It can be concluded that for every value of /c, the storage capacity is optimal for a

value of bias in the couplings which is independent of bias in the candidate state vector,

as long as a is non-zero. For random candidate state vectors (a = 0) the critical capacity

ac = 0.83 is independent of coupling bias r. For K = 0, r = 1 (Figure 4.2) is an optimal

value for the coupling bias. The optimal value of r increases slightly to about 2 as K

increases to 2 (Figure 4.3). The peaks in the storage capacity is sharper for candidate

state vectors which are most severely biased, indicating that only a narrow range of

coupling bias values store these vectors efficiently.
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Figure 4.2: Capacity as a function of r for K = 0 and a = 0,2, 0.4, 0.6 and 0.8. The higher

peaks are for larger values of a.
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Figure 4.3: Capacity as a function of r for K = 0, 1, and 2. The upper curves are for smaller

values of K.

2.9.8 Generalised Rule For Correlated Patterns

In [Der92] a model has been proposed, which enables storage of stron«*lv correlated candi-
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couplings, with an intermediate form between Hebb's learning rule and Pseudo-inverse

rule described in Section 2.9.5. This model which combines the probability density func-

tion for generation of candidate state vectors (Section 2.9.1 and Section 2.9.4) with the

generalised learning rule (Section 2.9.6) is described in this section.

The £M (with bias a) are chosen by probability distribution

P(f) = a6(( - (1 - a)) + (1 - a)6(t + a), with < £ >= 0 and < ? >= a(l - «)•

The synaptic matrix is constructed using the formulation given in Eq. 2.11.

In the limit A — f 0 this model resembles Hopfield network storing correlated can^

didate state vectors. In the limit A — » oo, this model resembles the Pseudo-inverse

version of the model storing strongly correlated candidate state vectors. The threshold

is considered to be same for all neurons. The next state of the neuron i is obtained as

CTi ° if E ' ' * t > Ji'"'(i} ~ 0i ~ °
1 if EjLi.o*) JijffiM - ft < 0

appropriate adjustment in the threshold 0, optimal capacity can be obtained. The

optimal value of 0 at which maximum capacity is reached is given by

p q(l - a)(l + Aq)

(1 +

At this value of 0 the capacity, ac ^ 2 * j. for a <C 1. Thus the critical capacity

of this model does not depend on A, but the optimal value of the threshold depends

on it. The results of this section and Section 2.9.6 show that generalised learning rule

is very rich in its behaviour and theoretically very robust. For storing uncorrelated

candidate state vectors critical capacity can be increased from QC = 0.14 (at A = 0)

upto ac = I (A — »• oo). For model storing correlated candidate state vectors the critical

capacity can reach a value mentioned above for any value of the parameter A, provided

the threshold is chosen in an optimal way.
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2.9.9 Existence of Required Network

The emphasis of the capacity consideration in this chapter till now has been on the num-

ber of candidate state vectors that can be stored and retrieved with a given prescription

for construction of Hopfield class networks. There is another approach to the study of

storage capacity with emphasis on the availability of a synaptic matrix which will ensure

stability conditions for the given set of candidate state vectors.

In [BaldiST] the maximum number of candidate state vectors that can be stored in

the Hopfield networks is given by

PmaX » K#C*N (2.10)

where the values of K2 = 1.0505 and C2 = 0.2874. This will give a Pmax = IN. For

correlated candidate state vectors, each with bias a, where 1 — a ~ ~JT"> there is a

prescription where Pmax is of the order of

In [Gardnei88a] the study of space of interactions in the Hopfield network is studied in

detail. The synaptic weights are considered as dynamical variables. The synaptic weights

need not be explicitly prescribed in terms of candidate state vectors. A mechanism to

estimate the storage capacity for optimal network is deviced. The task is to choose

synaptic weights such that P prescribed candidate state vectors are the fixed points in a

Hopfield network with bipolar neurons. The dynamics of the system is defined by

where

The synaptic weights Jij ^ *#• The synaptic weight JtJ are defined so that

53 _ c±-\J?- = N at each site t. The neuronal configuration cfi is thus a fixed point

of dynamics provided the quantity ft = a^h^j] ~ *0 is positive for all sites i.
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The requirement that each candidate state vector is a fixed point is not sufficient to

guarantee a finite basin of attraction and a stronger condition

ff(*i«f) - «i) > « (2-12)

where K is a positive constant, which is imposed at each site t and for each candidate

state vector. Larger values of K imply larger basins of attraction.

The typical fractional volumes of the space of solutions for the synaptic weights J^-

to Eq. 2.12 and Eq. 2.11 is calculated. The volume vanishes above a value ac, which

depends on the stability K and this determines the maximum storage capacity of the

network.

For uncorrelated candidate state vectors, the thresholds 0t are set to zero. For AC = 0,

the volume vanishes as a increases towards 2. This determines the maximum storage

capacity otc(max) — 2. This is in agreement to results of [Baldi87] Eq. 2.10. The upper

storage capacity ac(>0 is found to decrease with AC. That is as AC increases and basins of

attraction become larger, then the number of stored stable states decreases.

These calculations are repeated for correlated candidate state vectors with same

activity level. The £% are independent random variables with distribution P(^} —

\(l + a)6(tf - 1) + |(1 - a)6(ti + 1). For AC = 0 and small values of a, the maxi-

mum storage capacity ac(max\ = 2(1 + 2a_ -f Q(a4)). As a tends to 1, ac diverges as

Although the storage capacity increases with correlation between candidate state

vectors, the amount of information per candidate state vector decreases.

DEFINITION 2.9:- The total information capacity /, is the total number of bits stored

in the candidate state vectors.

Total information capacity can be measured using the following equation.

AT2 1 1 1 1
/ = «c(a){-(l - a)ln(-(l - a)) + -(1 + a)ln(-(l + a))}
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For random candidate state vectors a = 0 / = 2N*. The information capacity /, however

decreases slightly with a. For small tf, / ̂  ^~ = 0.72 IN2.

The information capacity of a set of candidate state vectors decreases as the candidate

state vectors become more correlated. A given information cannot be learnt any faster

by introducing redundancy [Wendemuth93]. There is no learning time gain in spreading

the same information over a large set of correlated candidate state vectors.

In [GardnerSSb] it is shown that to go beyond the storage capacity of optimal network

it is necessary to allow a minimal fraction / of bit errors. For each value of a and AC there

is a minimum fraction fmin of wrong bits.

2.9.10 Semantic and Spatial Correlation

The correlation between candidate state vectors has an impact on the synaptic weights.

This section deals with semantic correlation and spatial correlation between candidate

state vectors'

Semantic correlation:- Correlation between different candidate state vectors to be

made stable is called semantic correlation. Semantic correlation between two candidate

state vectors £M and " is of the form

>=C^ V (.',», V (,!,

where CM1/ is the correlation matrix which is formulated using Eq. 2.6.

The correlation of a pattern with itself C^ = 1. Correlation between two candidate

state vectors £M and £" can be calculated as the Hamming distance between the two

candidate state vectors, C^ = j £** — £" j. It has been shown in [Tarkowski92,

Wendemuth93] that for semantic correlation the critical capacity do not depend on the

type of distribution in correlation matrix but depends only on the difference in

maximum and minimum value Cmox — £m*n) in the correlation matrix.



Chapter 2. HOPFIELD MODEL OF NEURAL NETWORK 43

Spatial correlation:- Correlation among the different sites of the network is called

spatial correlation. Spatial correlation is of the form

< ff«; > = c^ v (i, j), v (p, „)

It has been shown in [Wendemuth93, Lewenstein92] that in the case of storage of the

spatially correlated candidate state vectors in the Hopfield network the critical capacity

ratio ac somewhat exceeds OC(K = 0) = 2.

2.9.11 Hierarchical Correlation

The organisation of objects with well defined relations of similarity into hierarchical tree

arises naturally in many cases of data classification and analysis. Such objects are said to

be hierarchically correlated. Attempts to incorporate such a structure in a neural network

have been reported in [Toulouse86]. Hopfield model has been extended in [GutfreundSS]

to allow the storage and retrieval of hierarchically correlated candidate state vectors.
•

The overlap between these candidate state vectors form a hierarchical tree. The proposal

given in [GutfreundSS] is described here.

The hierarchical tree of candidate state vectors is constructed as follows. At the

first level of hierarchy PI candidate state vectors f (/* = 1,2, . . . , PI), with bias a are

generated. Every component £f is chosen independently with the probability given by

These candidate state vectors serve as ancestors for the next level. At the second level

a new correlation parameter 6, (0 < 6 < 1) is specified. For each of the PI candidate

state vector £M, jP2 descendants £*** (y> = 1,2, .. . ,/^j), are generated. The candidate

state vectors are grouped into the clusters with high correlation between candidate state

vectors within the same cluster and lower correlation between candidate state vectors in

different clusters.
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To retrieve a particular candidate state vector f w, attempt is made to identify the

ancestor. The information about the ancestor is transferred to the network as an external

field hi on each neuron by hi = hff, where h is an external field conjugate to the ancestor

state. It is observed that critical storage capacity is reached at value of h dependent on

b. The value of b should not be too small, so that the overlap with the ancestor candidate

state vector is sufficiently large, o should not be too large, to ensure a clear separation

from the basins of attraction of the other ancestor candidate state vectors.

2.10 MARKED CANDIDATE STATE VECTORS

Hebb's learning rule allows the storage of P candidate state vectors f, where each com-

ponent takes on one of the two values with equal probability. It is reported in [Amit89]

that in the limit N —> oo, it was possible to retrieve the candidate state vectors, with less

than 3% error, as long as P < 0.1387V. Beyond this value it is not possible to retrieve
«

the stored stable states. This is called blackout catastrophe.

It has been argued that such a behaviour is not realistic and modifications of the

original Hebb's learning rule, to avoid blackout catastrophe have been subjected to many

studies [Parisi86a, Nadal86, Nicolis90, Fontanari88]. In [FontanariSS] it has been shown

that by marking a finite number of candidate state vectors it is possible to retrieve them,

even when the unmarked candidate state vectors exceed 0.138 N. By marking candidate

state vectors the network is modified in such a way that even if the network is overloaded

(a > ac) it will have marked candidate state vectors as stable states. In this approach,

however, blackout is not avoided, but delayed.

Privileged status for a set of candidate state vectors can be introduced within the

Hebb's learning rule. In [Nicolis90] it is proposed that set of candidate state vectors P

is categorized into two groups, PI marked candidate state vectors £** (/* = 1,2,..., PI),
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with privilege status having an associated weight one and P2 unmarked candidate state

vectors £" (y — 1, 2 , . . . , -Pz), having a weightage 7 (0 < 7 < 1). The following equation

is used to determine the synaptic weights.

1 A 7 P*

> i is finite as ^V —> oo and PI = QT2/V. The terms ax and 02 represent the storage

capacity of marked and unmarked candidate state vectors respectively. For simplicity

= C*2 = Ot.

The conclusion of [Nicolis90] is that under the conditions mentioned above the critical

capacity is lower than that reported in [FontanariSSj. Since 20^ > 0.138, total blackout

is delayed. The critical capacity for retrieval of marked and unmarked candidate state

vectors as a function of 7 is given in Figure 4.4. It can be observed that for a given

value of 7, there corresponds two critical values of a i.e. ap and QM. For a < Q^, the

network is capable of retrieving the unmarked as well as marked candidate state vectors.

For c*M < a < ap, the network may retrieve only the marked candidate state vectors.

Above a > ap, the network cannot retrieve any candidate state vector, it is a blackout.

Thus the learning rule proposed in [Nicolis90] enables storage and retrieval of certain

candidate state vectors beyond the well established critical storage capacity.

0.150

0-100

0.050

0.2 0-4 &• !-•

Figure 4.4: Critical capacity ac for retrieval of marked (solid line) and unmarked

(dashed line) candidate state vectors as a function of--.
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2.11 iMULTI- VALUED NEURAL NETWORKS

In the previous sections Hopfield class networks with two-state neurons are considered.

Although this choice is often natural and useful, there are several networks with more than

two neuron states (multi-valued neural states) reported in literature [KanterSS, Bolle91,

YedidiaS9, Bolle92, Prados, Stiefvater92, Baram91, Rieger90, NoestSSa]. Multi-valued

neurons can be 1) Multi-state neurons or 2) Continuous valued neurons.

2.11.1 qr-State Potts model

The q-state Potts model [ElderfieldSS] has been introduced in the theory of neural network

in [KanterSS]. In this model state of each neuron <7, is viewed as a Potts glass spin. The

neuron can take any one of the q values 1, 2, . . . , Q, where Q is any integer greater than

1. The state of the network is the instantaneous configuration of all the neurons at a

given time. Neural networks based on <jr-state Potts Spin glass neuron have been studied
*

in [KanterSS, Vogt92, Bolle91, ElderfieldSS]. The synaptic weight J™ determines the

contributions of a signal fired by the jth pre-synaptic neuron in state k to the post-

synaptic potential which acts on the it/l neuron in state /. The P candidate state vectors

£M are taken to be quenched random variables, assuming the values 1, 2, . . . , Q, with equal

probability. For P candidate state vectors synaptic weights are obtained as

V *,/ e 1, 2, .

where, 7n^ r is an operator which obeys the Potts symmetry constraint and is given by

m^M r = qS^t1. — 1. £f,r is q state Potts variable representing that » t A component of

candidate state vector £M is having state r. This synaptic matrix will have ,V2g2 entries

and is symmetric i.e., J^ = Jj*.
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The potential hffi on neuron t (in state <Ti) is

N q

The induced local fields for each of the q Potts states is calculated. At zero tempera-

ture the state of the neuron in the next time step is fixed to be the state which minhnizes

the induced local field. The stable states of the system are those configurations in which

every neuron state cr,- is in a Potts state which gives a minimum value of hffi .

Using replica symmetric theory the theoretical results for storage capacity of <j-state

Potts glass model of neural networks given in [KanterSS] is

q
Critical Capacity otc(q)

3

0.415

4

0.82

5

1.37

9

4.8

The maximum capacity is represented as ac ^ ill^llo.138. The capacity of q-state

Potts glass model is higher than the Hopfield network. This is partially due to the fact

that in the ^-state Potts glass model each synapse between a pair of neurons have q2

terms in the synaptic matrix. For each candidate state vector the embedded information

between a pair of neurons have q2 different possibilities. Higher capacity can also be

attributed to the presence of N Iog2 q bits for each candidate state vector.

2.11.2 q-state Ising Spin Networks

In <?-state Ising Spin Networks the neuron can take any one of the q values in the set

{ — 1 = 5i < 5*2 < • • • < SQ-I < SQ = +!}• The elements have a zero mean. A staU

of the system will be denoted by & — (<*\-><*i«. .ap)- Neural networks based on q-stat<

Ising Spin neurons have been reported in [Rieger90, Bolle92, Yedidia89, Baram91]. A

fully connected q-state Ising spin glass neural network with self-feed back, in case of low

loading (i.e. for a finite number of candidate state vectors) is studied in [Bolle92J.
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Capacity Estimates:- The ability of a neural network with multi-state neurons to

store candidate state vectors has been systematically studied in [Rieger90]. Some of the

capacity estimates for q-stake Ising spin neurons as reported in [RiegerOO] are listed here,

1. Using pseudo-inverse learning rule it is possible to store N candidate state vectors

in a network with N neurons. However, the basin of attraction for retrieval without

error, shrink with increasing q.

2. Using conventional Hebb's learning rule it is possible to store uncorrelated candi-

date state vectors. The critical storage capacity at zero temperature is approxi-

mately given as ac(g) ̂  0.3^~2 for q >• 1.

3. For continuously varying activities all linear combinations of the candidate state

vectors within the cube [^mtn,<rmax]N are degenerate in energy and the network is

not usable for associative memory or pattern recognition. Thus for these applica-
«

tions discrete values should be used.

4. With increasing q, spurious states other than linear combinations of the candi-

date state vectors occur. These spurious states have higher energy and are also

metastable.

Three-state Ising Spin Network:- A model of neural network with three states (1,0,-

1) neurons is proposed in [Yedidia89j. The synaptic weights are given by

- = —c M=

where C,j are random independent parameters (independent of CJt) which take the value

1 with probability ^ and 0 with probability 1 — JL. c represents the mean number of

synapses per neuron.
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Synchronous or asynchronous dynamics can be used for operating the network. The

local field hi of neuron i is given by hi = Y^Li Jtj&j- The state of the neurons are updated

according to rule

-hi with probability

<Ti(t + 1) = < 0 with probability Z

-I with probability

where Z = exp((hi - 0)/T) + 1 + exp((-hi - &)/T), $ js the threshold, and T is the

temperature.

This model have identical behaviour with two-state binary neuron model, in the limit

of low activity of candidate state vectors and nearly optimal thresholds. The reason of

this similarity is that nearly all the errors of the three-state models will consist of neurons

having 0 when they should be +1 or -1. These errors are less serious compared to neurons

having value +1 when it should be -1 or vice versa.

The three-state model has some advantages over two-state models. Three-state mod-

els stores about twice as much information because the critical capacity ae is nearly the

same, but the active neuron can now be 1 or -1, instead of always 1.

Two-state Representation Of Three-state Network:- The extent to which the dynamical

behaviour of neural network consisting of three-state neurons can be realised in neural

network using two-state neurons is investigated in [Stark90j. Some observation of the

process of conversion of a three-state neural network to a two-state representation as

reported in [Stark90] are given here.

For every three-state network (with deterministic dynamics) it can be written as a

two-state network with twice the number of neurons. When more noise is added, there

is no two-state neural network with equivalent probabilistic dynamics for a given three-

state neural network. However, the three-state network does always have a two-state

representation at suffcient low noise levels. The two-state representation are replacing
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one three-state neuron with two-state neurons. This is fully in accordance with the

observation in [Yedidia89] that the storage capacity of three-state network is roughly

double that of an two-state network. The three-state neural network model do not have

any new behaviour as a result of genralizations from two-state to three-state levels.

2.11.3 q-state Hopfield network

The state of neurons are similar to q-state Ising Spin neurons, but there are no bounds

of -f-1 or -1 on highest neuron state and lowest state respectively. The states of neurons

are selected equidistantly and symmetrically around 0. A neural network model based

on such neurons have been proposed in [Prados, Stiefvater92].

Four-state Hopfield Neural Network:- Multi-state neuron with four-states where

any neuron takes on states 3, 1, -1, 3 is considered in [Prados]. The synaptic weights are

obtained as

/*=!

If application of this equation does not store all candidate state vectors, the synaptic

weights can be modified using a learning rule similar to the Delta learning rule. Suppose

the bit i of a candidate state vector £{* changes when £M is given as initial input vector

to the neural network. Since the ittl row of the weight matrix determines the next state

of neuron x, each weight in the i1* row can be changed in the direction that will cause (*

to approach f M. The change AJ,j = L(tf -" ***){*, where <TJ is the output state of neuron

t when the input vector £M is given as an input vector. L is a learning constant. Next
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state of neuron i is determined as

3 if EjLi Jij^ > *

1 i

-3 if -

Large value of convergence ratio 0/L necessitate more frequent changes in synaptic

weight. If the ratio is too small, then it may not be possible to learn the candidate state

vector. For <jr-state neural networks the convergence ratio should be selected to enable

storage of any candidate state vector. The following convergence ratio will allow any

candidate state vector to be stored

where, Vmax is the maximum allowable magnitude for the output of a neuron and Kb-//
«

is the maximum difference between any two adjacent output values.

Following conclusions are made based on the experiments. Four-state Hopfield net-

work can store more candidate state vectors for a given number of neurons than the

binary models. A binary model of N neurons used to store TV bit candidate state vectors

can be converted to a four-state model of N/2 neurons to store four-state candidate state

vectors of length N/2. This reduces the number of synaptic weights significantly.

The capacity of the network in terms of candidate state vectors is bounded by the

number of neurons, but the information capacity increases as the size of the neuron

alphabet increases. For a neuron that take k different values, the total information is

the number of candidate state vectors(P) times the information in each state vector

(jVlog3 k). This can be compared to the capacity of the binary Hopfield model which is

of N candidate state vectors. The information capacity is ^V3 bits.
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2.11.4 Continuous Valued Neurons

The output from a continuous valued (analogue) neuron and hence its state is any value

from continuous range of values. The time evolution of the state ut- of analogue neuron

is described by

Ui (—00 < Ui < oo; i = 1,2, . , . ,AT) are set of real variables which are output of

neuron having graded response z, = /(**«)• The neural networks based on such neurons

are known as Analogue neural network [Hopfield84, Fukai92, Marcus90j. The storage

capacity of analogue neural network decreases with decreasing analogue gain. Decreasing

the analogue gain dramatically suppresses the number of spurious states. Thus it implies

that for analogue neural networks with an appropriately reduced analogue gain would

considerably improve the network performance in return for the slight decrease in the
«

storage capacity.

2.12 HIGHER ORDER NEURAL NETWORKS

Several models for large interconnected networks of neurons with emergent collective

behaviour have been proposed by use of ideas borrowed from statistical mechanics. The

number of candidate state vectors that can be made fixed points in such systems is of

order N. To achieve greater flexibility and programming capability several researchers

have noticed that Hamiltonians of higher order, i.e., denned by an an algebraic form of

degree tf, could easily be introduced. Moreover, such forms arise naturally in optimization

problems.

The capacity estimate of second order Hopneld network is in given Eq.2.10. This

equation is applicable to higher order Hopfield networks by replacing Kj with K+ and
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replacing C? with C&. The values of Kj and Cd for different values of d as given in

[BaldiST] are given below.

d Kd

1 1 0

2 1.0505 0.2874

3 1.1320 0.4265

4 1.2178 0.5124

d Kd

5 1.3031 0.5721

10 1.7032 0.7215

100 6.6705 0.9461

1000 39.3100 0.9916

2.13 CONCLUSION

This chapter introduces Hopfield network with various notations, definitions, learning

rules, and update rules. This chapter also reports a survey of research related to various

modifications to the Hopfield network, the effect of these changes on the performance of

the network, various definitions of capacity, and capacity estimates. These modifications
•

to Hopfield network till now have been mostly attempted in isolation. Use of more than

one modification may help in precise design of Hopfield class networks. This chapter

attempts to provide a unified basis for such a study. Neurones with self-feedback character

is one of the modifications to Hopfield network which has been selected for detailed study

(Chapter 3).

Capacity of a Hopfield class network is one of the criterion based on which the perfor-

mance of the network can be assessed. In this chapter it has been observed that the basic

concept of the capacity is understood in very diversified (and sometimes contradictory)

manner. Further, if the capacity of a network is the measure of performance of a network

then it should also be one of the guiding force behind the development of learning rule*-

In the absence of a clear and unique concept of capacity it is difficult to uae this concept

for design of learning rules.
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Consider a learning rule which makes all the input vectors to have a unique stable

state. Such a learning rule, if developed will have the highest possible capacity as per

Definition 2.1 . But such an algorithm will not have any practical value as the output can

give completely accurate indication of what the input was. In Chapter 4, a learning rule

has been proposed based on Definition 2.4 . This rule will enable all the state vectors

having upto specific number of bits as 1, stable in the network.

All the definitions of capacity consider the number of candidate state vectors that

can be made stable, but do not consider the presence or absence of spurious states. The

presence of spurious state degrades the performance of a network. Hence measure of per-

formance of network should not exclude this aspect. It has also been observed that most

of the research related with Hopfield class network has considered the random selection

of candidate state vectors. Such results are likely to fail to make some specified set of

candidate state vectors stable in the network. This has motivated us to design learning

rule which eliminates presence of spurious states and make any set of two candidate state

vectors stable in the network (Section 4.6).



Chapter 3

CHANGES IN DIAGONAL ELEMENTS

3.1 INTRODUCTION

In the Hopfield network [Hopfield82] a neuron cannot give direct self-feedback. The ab-

sence of direct self-feedback is based on the concept of stability, capacity and local minima

of the energy function [Hopfield82, Hopfield84, Amit89]. Although majority of researchers

consider Hopfield network having no direct self-feedback, there is no biological evidence

supporting this hypothesis. In fact, in certain biological studies it is observed that a neu-

ron takes a feedback from itself directly [Carpenter90]. Chapter 2 reports results of some

research articles [Houselander90, Prados89, Braham88, Sezan90, Gindi88, YanaiOO] which

consider Hopfield network with direct self-feedback. Moreover, some related concept of

changes in threshold elements [Der92] has also been reported in Chapter 2.

In this chapter some experimental observations and theoretical conclusions on the

study of direct self-feedback in Hopfield network is reported. Section 3.2 deals with the

motivation for the study of changes in diagonal elements. Section 3.3, using an example

introduces the concept of diagonal element changes and its effect on dynamics of Hopfield

network. In Section 3.4 critical values for diagonal elements which provide the condition

for changes of state of bipolar neurons are proposed. Theoretical basis ol increase in value

of diagonal elements leading to the neuron attaining no-change-state is given Section 3.5 .

Section 3.6 deals with the stability of a neuron given fixed state of one or more other

neurons. A geometrical interpretation of neuron state changes is given in Section 3.7 .



Chapter 3. CHANGES IN DIAGONAL ELEMENTS 56

In Section 3.8 the critical values for changes in threshold are obtained and the effect

of such changes is analysed. Section 3.9 illustrates the difference between the threshold

changes and diagonal changes. In this section it is shown that these types of changes

are not truly complementary. Section 3.10 deals with the study of energy function for

changes in the diagonal elements. Section 3.3 to Section 3.7 and Section 3.10 reports

the study of diagonal element changes in Hopfield network with bipolar neurons. Section

3.11 deals with changes in diagonal elements of Hopfield network with binary neurons.

The conclusions of study of diagonal element changes are given in Section 3.12 .

3.2 MOTIVATION FOR STUDY OF DIAGONAL CHANGES

Any learning rule to construct synaptic matrix makes use of the specified set of candidate

state vectors. But the matrix so constructed need not have all these candidate state

vectors as its stable states. Moreover, the introduction of new stable state vectors or the

deletion of an existing stable state is done by making necessary changes in the synaptic

matrix. This usually changes the stable status of other state vectors. Further, any

study of dynamics of neural networks not only concentrates on the stable states but also

concerns with equally important issues like basins of attraction, minimization of energy

function etc. Hence, the learning rule which aims only at having a set of stable states

may not provide proper (adequate) insight to the study of dynamics of neural networks.

It may be required to have a separate study.

In [GindiSS] the Hopfield network with non-zero diagonal elements (with J^ = N)

is considered. It is shown that by allowing non-zero diagonal terms in the synaptic ma-

trix the stable states of the network need not change. On the other hand, the non-zero

diagonal network is shown to outperform the original Hopfield network [Gindi88]. The

non-zero diagonal affects dynamics and can be effectively used to improve the recalling
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ability of the Hopfield network [Yanai90]. It is proposed that the changes in the diagonal

elements may be useful in obtaining a particular neural dynamics, stability of new can-

didate state vectors of a particular kind with little affect on the existing stable vectors,

and removing the stable status of a particular kind of stable state vectors.

3.3 AN EXAMPLE

In this section the concept of diagonal element changes in Hopfield network is being

introduced with the help of an example. Consider two Hopfield networks (A,0) and

(B,0). The synaptic matrices A and J9, and threshold vector 0 are given below.

110 89 54 -76 -76 N

A =

89 116 12 -25 19

54 12 110 -45 -17

-76 -25 -45 64-15

-76 19 -17 -15 0

110 89 54 -76 -76

89 116 12 -25 19

54 12 0 -45 -17

-76 -25 -45 64-15

-76 19 -17 -15 110

40 "

30

20

93

56
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The matrix A differs from matrix B in only two diagonal terms ^33 and Jss- For

matrix A, Jy* =110 and J^s = 0 while for matrix B, Jy* = 0 and J$s = 110.

The neurons are considered to be bipolar neurons and asynchronous mode is used for

updating the Hopfield network. Changes in neuron states are observed by considering

the neuron state in initial vector (IV) and neuron state in the corresponding stable state

vector (SV). Four possibilities for a neuron state changes are

If JVi is 1 and corresponding 5V; is 1 then value associated is 1.

If IVi is 1 and corresponding SVi is -1 then value associated is 2.

If IVi is -1 and corresponding SVi is 1 then value associated is 3.

If IVi is ~1 an<l corresponding 5V; is -1 then value associates is 4

By observing each input vector and the corresponding stable state, a value 1,2,3 or 4

is associated with each neuron of the Hopfield network. For the Hopfield network (A,0)

and (B, 0) the observation of changes in input vector and corresponding stable vector arc

listed in Table 3.1. Summary of observations of neuron state changes in Hopfield network

(A,0) and (B,0) is given in Table 3.2.

It can be observed from Table 3.1 and 3.2 that by changing the diagonal element JM

from 110 in (A, 0) to 0 in (B,0) the number of changes in the neuron state of neuron 3

has increased from 2 out of 31 to 13 out of 31. It can also be observed that by changing

the diagonal element J55 from 0 in (A, 6) to 110 in (B, 0) the number of changes in the

neuron state of neuron 5 has decreased from 13 out of 31 to 6 out of 31.

Hence it is observed that by increasing the diagonal element value the corresponding

neuron state is subjected to less changes. By decreasing the diagonal element value the

corresponding neuron state is subjected to more changes.



Chapter 3. CHANGES IN DIAGONAL ELEMENTS 59

TABLE 3-1: OBSERVATION OF CHANGES IN NEURON STATES

IN INPUT VECTOR AND CORRESPONDING STABLE STATE VECTOR

INPUT VECTOR

-1 -1 -1 -1 +1
-1 -1 -1 +1 -1
-1 -1 -1 +1 +1
-1 -1 +1 -1 -1
-1 -1 +1 -1 4-1
-1 -1 +1 +1 -1
-1 -1 +1 +1 +1
-1 -fl -1 -1 -1
-1 -fl -1 -1 +1
-1 -hi -1 +1 -1
-1 +1 -1 +1 +1
-1 -fl +1 -1 -1
-1 -fl -fl -1 +1
-1 . - f l - +1 -fl -1
-1 -fl +1 +1 +1

+1 -1 -1 -1 -1
-fl -1 -1 -1 -1-1
+1 -1 -1 -fl -1
+1 -1 -1 -fl +1
+ 1 -1 -fl -1 -1
+1 -1 -fl -1 -fl
+ 1 -1 +1 +1 -1
-f-1 -1 +1 -fl -fl
+1 -fl -1 -1 -1
+1 -fl -1 -1 -1-1
+ 1 -fl -1 +1 -1
+1 -fl -1 -fl -fl
41 -fl -fl -1 -1
+1 -fl 41 -1 -hi
+ 1 -fl -fl -fl -1
-hi -fl -hi -hi -hi

HOPFIELD NETWORK

(A,0)

i'=l

4
4
4
4
4
4
4
4
4
4
4
3
4
3
4
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1

2

4
4
4
4
4
4
4
1
1
1
1
1
1
1
1
4
4
4
4
4
4
4
4
1
1
1
1
1
1
1
1

3

4
4
4
1
1
2
2
4
4
4
4
1
1
1
1
4
4
4
4
1
1
1
I
4
4
4
4
1
1
1
1

4

4
1
1
4
4
1
1
4
4
1
1
4
4
2
2
4
4
1
1
4
4
2
2
4
4
2
2
4
4
2
2

5

1
3
1
4
2
3
1
3
1
3
1
4
1
4
1
4
2
3
1
4
2
4
2
4
2
4
2
4
2
4
2

(B,0)

1

4
4
4
4
4
4
4
3
4
4
4
3
4
4
4
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1

2

4
4
4
4
4
4
4
1
1
2
1
1
1
2
1
4
4
4
4
4
4
4
4
1
I
I
I
I
I
I
I

3

4
4
4
2
2
2
2
3
4
4
4
1
2
2
2
3
4
4
4
1
1
1
1
3
3
3
3
1
1
1
1

4

4
1
1
3
4
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
2
2
4
4
2
2
4
4
2
2

5

1
4
4
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
2
4
2
4
2
4
2
4
2
4
2
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TABLE 3.2: SUMMARY OF OBSERVATIONS

Neuron

1

2

3

4

5

Hopfield

Network

(A,»)
( D /1\1 -O« "I

(A,9)
/ D A\

(-V)

(B,9)

(A,9)
f D A\\-D<i v }

(A,0)
( /•? ff\

Number of Observations

1

14

13

16

14

14

9

8

10

8

10

2

2

3

0

2

2

7

8

6

8

6

3

2

2

0

0

0

6

0

1

5

0

4

13

13

15

15

15

9

15

14

10

15

No. of obvs.

with No Change

27

26

31

29

29

18

23

24

18

25

No. of obvs.

with Change

4

5

0

2

2

13

8

7

13

6

3.4 CRITICAL VALUE OF JM FOR BIPOLAR NEURONS

It can be observed from the example given in Section 3.3 that the higher the value of

any diagonal element the lesser is the tendency of the corresponding neuron to change

state. Thus, a critical value can be determined for a diagonal element Ja so that beyond

this value, the state of the corresponding bipolar neuron does not change. This critical

value can be termed as no-cliange-critical-vaJue and denoted as J*f for neuron i. Thim

critical value depends on threshold associated with the neuron and the synaptic weights

with other neurons.

Similarly it can also be observed that decrease in the value of a diagonal element

increases the likelihood of change in the state of corresponding neuron. Hence, a critical
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value can be reached so that, below this critical value the state of the neuron definitely

changes. This critical value can be termed as sure-change-critical-value and is denoted

for neuron t as Jt*
c. These critical values J$f and J£ are estimated using sufficient

conditions. But however, these are not necessary conditions.

The following Theorem 3.1 gives the estimate of J-* and Theorem 3.2 gives estimates

of J*.

THEOREM 3.1 In a Hopfield network with bipolar neurons, if the synaptic matrix

satisfies «/„• > I2j=i,j& I Jij I + I 0; |, then neuron i does not change its state. The critical

value J?f is given by

•*?= E 14,- l + l f t lj=ij&
Proof:- In order that neuron i does not change its state from <7, = +1, it is necessary

that
N

J*+ E -Vj-*.->o
j=it»¥>

For the above expression to be satisfied it is necessary that

J*>-( E JIM-*

Similarly, in order that neuron i does not change its state from <r. = — 1 it is necessary

that

For the above expression to be satisfied it is necessary that

N

It can be observed that

- | Jn I < Ja*j < I J*j I*
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and

- I ft I < -ft < I ft I

Hence

- E \J<i\-\ii\z E Jii°i-»i< E i J k i + 1'.-l (3.3)
If

*> E
then

.«

This satisfies Condition 3.2.

If

J*> E
then

.e.,

Hence

/!.•>-( E

. This satisfies Condition 3.1.

Hence the theorem is proved.

THEOREM 3.2 In a Hopfield network with bipolar neurons, if the synaptic matrix

satisfies the condition, JM < -(EJLij* I «*ij I + I ft I) then neuron « docs c^^S* iu

state when updated.
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The sure-change-critical-value is given by

/V

Proof:- In order that neuron i changes its state from (7j = +1, it is necessary that

N

For the above expression to be satisfied it is necessary that

< -( Z AM - ft) (3-4)

Similarly, in order that neuron t changes its state from <r, = -1 it is necessary that

N

For the above expression to be satisfied it is necessary that

JiM-Oi (3-5)

Using similar argument as discussed in Theorem 3.1, it can be observed that,

- 1 Jij \ < Jij<rj < I Jij I, for any ff3

and

- I * I < -^ < | ft

Hence

If
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then
N

This satisfies Condition 3.5.

If

< -( E I Jii I -H * I)

.e.

-Ja> E
j

then from inequality 3.6
N

.e.

-( E

This satisfies Condition 3.4.
«

Hence the Theorem is proved.

Based on the discussion in Theorem 3.1, it can be observed that each diagonal element

reaches its critical value independent of other diagonal elements when the off-diagonal

elements are kept unchanged. With all the diagonal elements greater than the respective

no-change-critical-values, it can be ensured that all the state vectors are stable in the

network.

Similarly based on the discussion in Theorem 3.2, it is observed that by having all the

diagonal elements less than the respective sure-change-critical-value, it can be ensured

that no state vector is stable in the network.
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3.5 IMPACT OF DIAGONAL CHANGES ON NETWORK DYNAMICS

In this section an attempt is made to study the changes in dynamics of Hopfield network

with changes in diagonal elements. The next state of a neuron being updated depends on

present state of the neuron, corresponding diagonal element, the synaptic weights with

other neurons, and corresponding threshold element. These factors determine the change

or no-change status of a neuron in a particular time unit. A neuron of a network can

belong to one of the following categories.

1. Sure-change state:- The neuron changes its state whenever it is updated.

2. Flexible state:- The neuron is in a change or no-change state in different time units

depending on the factors listed above.

3. No-change state:- The state of a neuron is not subjected to change when updated.

The diagonal element changes keeping other elements of synaptic matrix and threshold

vector constant can be used to place a neuron in any one of these categories.

Consider a Hopfield network (D,0) with all diagonal element values less than the

corresponding J,*c. This network does not have any stable state. Any input vector to the

network (D, 0) will oscillate between the vector and its complement. The network can

be considered to have bidirectionally stable states. Bidirectionally stable states can be

considered equivalent to the concept of stable states if such a situation occurs for some

vectors in a network. But, a network like (D, 0) with all bidirectionally stable states, does

not seem to have much practical value. The network with even one neuron in sure-change

state will not have any direct stable state.

Let a Hopfield network (E, 9) with all neurons in flexible state is obtained by increasing

the values of diagonal elements of the network (D, 6). The network (E, 9) has some stable

states. By increasing the values of diagonal elements the network will have some more
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stable states. Continuing this process further the Hopfield network (F, 0) can be attained.

In network (F, 0) all diagonal elements are greater than corresponding J^ and hence all

possible input state vectors are stable. Any further increase in the values of diagonal

elements will have no impact on the performance of the network. The class of Hopfield

network between (E, 0) and (F, 0} are of special interest. This phenomenon of diagonal

changes and changes in the stable states of the network can be used as a learning process.

If at a stage of dynamics it is required that a neuron belongs to a particular category

then the corresponding diagonal values can be accordingly changed.

For a 2-neuron Hopfield network this phenomenon is illustrated in Figure 3.1. At the

stage I only one (-!,-!) °f the four possible input vectors is stable. Neuron 1 is selected

and the value of the corresponding diagonal element is increased. When the value of

diagonal element corresponding to neuron 1 becomes more than the no-change-critical-

value, (1,-1) also becomes a stable state of the network. This is due to the fact that

the neuron 1 is in a no-change state. Whatever state that is associated with neuron 1

from the input vector, the neuron remains in the same state which is also reflected in the

stable state. This is depicted as stage II of the network.

Similarly starting from stage I and increasing the value of the diagonal correspond-

ing to neuron 2 it can be seen that the state (-1,1) also becomes a stable state of the

network. This is represented as stage III in Figure 3.1. By having the diagonal elements

corresponding to both the neurons, having values more than its no-change-critical-values

all the input states become the stable states of the network. This situation is represented

as stage IV in Figure 3.1.
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2.X

III

(-!,-!) (-1, 1)

stable

i, i) (-:,-
i,-i) (-1, i)
stable ,

IV

II

(-!,-!) stable
II

(-!,-!) ( 1,-1) stable

Figure 3.1: Various stages of dynamics of two-neuron Hopfield network

with changes in diagonal elements
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3.8 CONDITIONAL STABILITY

Increasing the value of a specific set of diagonal elements in a network with large number

of neurons it is possible to ensure that the state of these neurons is not changed. However,

the more desirable feature of such study is to make specific set of state vectors stable and

not to make specific set of neurons stable independent of other neurons. For example

in a 3-neuron Hopfield network, the first diagonal element can be increased so that first

neuron does not change its state irrespective of the states of other neurons. Whereas, if

the intention is to make a specific state vector (+1 -1 -1) to be stable and not (+1 -1-1

+1) then it is necessary to study a kind of conditional stability of individual neurons and

not the independent stability as discussed in earlier sections of this chapter. Conditional

stability of a neuron t can be defined as the stability of a neuron t given a fixed state of

one or more other neurons. However, such a study is much more complex than the one

discussed for the independent stability. Another simple case namely pairwise conditional
t

stability of neurons is considered here. Critical value of the i*A diagonal element Jj, for a

given state of neuron j is denoted as ( Jn \ j). The critical value of (Jn | j ) is characterised

in the following theorem.

THEOREM 3.3 The critical value of (J-f \ j) such that neuron • will not change its

state for a given state <7j of neuron j but independent of other neurons is given by
N

The critical value (J™ I J) »s given

Proof:- In order that neuron t does not change its state from <Ji — + 1, it is necessary

that
N

0 > 0
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For the above expression to be true it is necessary that

J«>-( E -fo**-*
This implies

Jn > ~( E J**k - *•) - Jn*j (3.7)
k=i,k*ij

Similarly, in order that neuron i does not change its state from <r,- = —1 it is necessary

that

-Jx + E •**** - 0< < o
fc*t

For the above expression to be satisfied it is necessary that

It can be observed that

- I «/i* | < Jifc^fc < | Ji* |, for any
«

and

Hence

If

^. > E u*
fc=l,Jb^iiJ

then

-«J» < - E u* i - 1 ** i + ̂ ^j
MM

i.e.,
JV

-J» < E ^̂  - t̂ 4- Jij0j

- E l ^ l - l ^ i < E J**k-&> < E i ^ i + i ^ - l (3-9>
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This satisfies condition 3,7 .

Similarly it can be shown that for J» > £fc=i,Jt^.j I •£* | -f | 0$ | — ^jJij, condition

3.8 is satisfied.

Hence the theorem is proved.

D

In the same way as Theorem 3.3 a conditional, lower critical value (Jfj \ j) for neuron

i can be determined so that ith neuron will surely change its state for all possible states

of other neurons except neuron j, which is given to be fixed at <TJ.

It is observed that pairwise conditional no-change-critical-value is smaller than the

independent no-change-critical-value. It is also observed that pairwise conditional sure-

change-critical-value is greater than the independent sure-change-critical-value. This is

shown below.

- | Jij |< J.jCTj Or | Jij \> -

Hence

v.^ I i} < Tnc

Similarly

*c~ i j) > J*

3.7 GEOMETRICAL INTERPRETATION

In this section the no-change-state of a neuron is interpreted geometrically. It is observed

in Theorem 3.1 that, when «/,-,- > J~* then due to no-change-condition we have,

r*
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irrespective of the value of cr^, j = 1, 2, . . . , N and j ^ i. The inequality can be rewritten

as
N

k = — Jx + 0;

This inequality is satisfied by all values of ffj when Jn > J-f. The set of all pos-

sible values of CFJ defines a N — 1 dimensional hypercube having vertices defined by

ffj ; = ±1, j ^ i, j = 1,2, . . . ,-W- In this space J^jLij^t Jij<?j = * defines a hy-

perplane and hence the inequality 13>=ij^< «/o^7 > k defines a half-space in which the

complete hypercube is contained. As the value of k increases, the hyperplane approaches

the hypercube and hence some vertices of the hypercube tend to violate the constraint

53j=i j^i Jij&j ^ k. With the increase of k more and more vertices of the hypercube

cross over to the other half-space. It is evident that increase in k is also accomplished by

decrease in Jn. Thus in other words decrease in the value of Jn below J™ makes more

and more neurons to deviate from no-change-state. Hence, more and more changes are

observed in this process. This justifies the observation in the example given in section
*

3.3. The concept is illustrated in Figure 5.2.

3.8 THRESHOLD CHANGES AND CRITICAL VALUES

This section deals with the study of changes in threshold elements and its impact on the

performance of Hopfield network. The observations and the conclusions in this section

are restricted to a Hopfield network with all neurons belonging to the flexible category.

Like critical values of J,-t-'s, there also exist critical values of 0i's. The critical values

that can be associated with threshold vectors are defined and an estimate ia derived for

these critical values. Consider a Hopfield network with all neurons belonging to flexible
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The vertices in halfspace above the hyperplane k 's

represent neurons in the no-change state

Increasing k

(equivalent to decreasing

Figure 3.2' Geometrical interpretation of Hopfield dynamics
for N = 4 neurons.
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category. If the threshold 0; of neuron i is increased to a very high value then,

N

Ja + 53 Jijffj < 0*

Hence, the neuron t changes its state only if ^ = +1 and it will not change its state

when <7t- = — 1.

Similarly, if 0» takes on very low value, then

N

J*+ 53 -/«^^0.

Hence the neuron t changes its state only if <T; = —1 and remains in a no-change-state

for <T; = 1.

Thus, the change in the threshold values (keeping the elements of the synaptic matrix

constant) ensures changes in the state of neuron only for one of the possible two states.

That is, with large values of threshold the corresponding neuron will attain a 4-1 state

irrespective of the state that is associated with it from the input vector. Similarly with
«

a very low value of threshold the corresponding neuron will attain a -1 state irrespective

of the state associated with the neuron from the input vector. The definitions of critical

values and its estimates are given below.

Plus one (-hi) critical value of a threshold of a bipolar neuron (0f) :- The value

of threshold of a neuron t such that all values of threshold below this value will definitely

guarantee that the neuron attains a +1 state. Of is estimated using a sufficient condition,

but however, it is not a necessary condition that 0j should be less than 0f to ensure that

the neuron i definitely attains a 4-1 state. This critical value is given by

«f = -£!./.> I
j=l

Minus one (-1) critical value of threshold of a bipolar neuron (0f) :- The value

of threshold of a neuron t such that all values of threshold above this value will definitely
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guarantee that the neuron attains a -1 state. Of1 is estimated using a sufficient condition,

but however, it is not a necessary condition that 0j should be greater than 0^ to ensure

that the neuron t definitely attains a -1 state. This critical value is given by

*F = £ I - fc Ij=i
By having threshold values of all neurons greater than 0? it is possible to make the

vector with all elements as +1, as the only stable state of the network. Similarly by

having threshold values of all neurons less than 0%* it is possible to make the vector with

all elements as -1, as the only stable state of the network.

3.9 DIAGONAL CHANGES vs THRESHOLD CHANGES

In literature the diagonal element value and threshold value of a neuron are considered to

be complementary. In [Hecht-Nielsen91] it has been mentioned that instead of having an

explicit threshold, a zero threshold value can be used by changing the diagonal elements
4

of synaptic matrix. It is proposed here that the diagonal element values and the threshold

values are not truly complementary.

As mentioned in earlier sections, the changes in the diagonal elements can lead to &

situation where all input vectors are stable or an unstable situation where the network has

no stable state. These situations are attained just by diagonal element changes keeping

all other aspects of the Hopfield network constant. This is different from the effect on

dynamics of Hopfield network due to the changes in the threshold elements keeping all

other aspects of the network constant. The changes in threshold elements can affect only

one of the values associated with the neuron. A threshold value less than 9? ensure*

that the neuron t ultimately attains a 4-1 state irrespective of initial state. Similarly

threshold values greater than 0f* ensures that the neuron s ultimately attains a -1 atat^

irrespective of initial state. With changes in threshold element it is possible to ensuf*
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that one type of change of neuron state i.e., +1 to -1 or -1 to -f 1 does not occur whereas^

the changes of other type occurs with high probability. Thus it can be concluded that

changes in diagonal element are different from changes in the threshold elements for a

neuron. These two changes are not truly complementary.

Adjusting diagonal element values and threshold values in a Hopfield network may

help in obtaining the required dynamics. These changes can play an important role in

obtaining the required computational performance of the Hopfield network.

3.10 DIAGONAL CHANGES AND ENERGY FUNCTION

The Hopfield network, in fact, performs a local search where the neighbourhood of the

search is the immediate neighbourhood of a vertex on the AT dimensional hypercube. The

asynchronous mode of computation at any node t can be viewed as the comparison of

the energy E at the current vertex and at the adjacent vertex in the iih direction. This

comparison is not affected if we add a constant term to E.
*

Let,

El = E + i Jn
&

Then, obviously the changes in energy function E is same as the changes in the energy

function E\ for a Hopfield network i.e., A£ = AE\.

3.10.1 Change in Diagonal Elements of Synaptic Matrix

Thus it is observed that if the energy function is changed from E to E\, the difference

in energy at two consecutive network states is not affected. For the energy function E\*

even if some real number is added to the diagonal elements, the energy value doe* not

change at any state. Thus it can be concluded that, in asynchronous mode of operation,

the energy function E of any Hopfield network (J,0) converges to a constant value, if and
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only if, the energy function converges for any other Hopfield network N(r) = (J(r),<

In other words, by adding some values to the diagonal elements of the synaptic matrix,

the set of locally minimizing states of the energy function is not changed. For a synaptic

matrix J if the set of locally minimizing states is denoted by L. The following phenomena

can be observed.

1. If J has zero diagonal elements then the set of local minima L is also the set of

stable states.

2. If J has strictly positive diagonal elements then each element of L is a stable state

and may be some elements which are not in L are also stable states. Moreover,

the stability is ensured for asynchronous mode of operation of the Hopfield network

[BruckSS].

3. If there is no restriction on the diagonal elements of J and if J' is obtained by

adding some elements to the diagonal elements so that these become zero then the

set of locally minimizing states L is same for J and J'. But the stable states of

J' are also the stable states of J and there are some additional stable states in J

which do not correspond to locally minimizing points. The state transition paths

are different for both the matrices as the updating rule is affected by change in

diagonal elements. However, any Hopfield network, having synaptic matrix with

non-zero diagonal elements, can be transformed to a Hopfield network having zero

diagonal elements so that the stable states of the transformed Hopfield network

corresponds to the locally minimizing states of original Hopfield network.

4. As the updating is affected by the change in the diagonal elements, the state tran-

sition for J and J' are different. Hence for two matrices J and J' differing only

in diagonal entries, the associating functions of input state vector to output stable
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vector are different, even though the stable states are common to both matrices.

Hence, getting new stable states for any arbitrary matrix (even with unrestricted

diagonal elements) is possible by adding large positive number to the diagonal el-

ements. But however, such a scheme is useful only when the study is restricted to

the set of stable states and not for associating input state to stable states.

Discussion in this section about the changes in diagonal elements of the Hopneld

network is applicable when the collection of stable states of the network are considered.

These observations cannot be directly extended to other areas like associative memory.

The collection of stable states is of interest in the context of capacity of Hopneld network.

3.11 DIAGONAL CHANGES IN NETWORK WITH BINARY NEURONS

This section deals with aspect of diagonal element changes for Hopfield network with

binary neurons are reported in this section. For the neuron state +1 the analysis is

same as given in the previous sections. But for the neuron state 0, its product with the

corresponding diagonal element becomes 0. In this case the local field of the neuron does

not receive contribution from the diagonal element. Thus the diagonal tuning mechanism

used for bipolar neurons have a limited role in case of binary neurons. This requires a

different study of diagonal element changes for binary neurons.

Experiments have been conducted by starting from a high negative value for diagonal

elements in the synaptic matrix for binary and bipolar neurons. The diagonal elements

were gradually increased and its effect on the performance of network with bipolar and

binary neurons has been observed. Asynchronous mode of operation with maximum

absolute value of local field as the basis of selection has been used in these experiments.

It has been observed that a Hopfield network with binary neurons attain stability earlier

than bipolar neurons. This is because the values of diagonals do not have an impact
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when neuron state is 0 for binary neurons.

3.12 CONCLUSION

In this chapter some experimental observations and theoretical conclusions of the study

of Hopfield network is reported. It is concluded that the changes in diagonal elements

and the threshold elements can be used for tuning the Hopfield network to obtain re-

quired performance. Critical values of diagonal elements (no-change-critical value and

sure-change-critical value) and threshold elements (Of and 0f*)for bipolar neurons have

been estimated. It has been observed that pairwise conditional no-change-critical-value

is smaller than the independent no-change-critical-value. It is also observed that pair-

wise conditional sure-change-critical-value is greater than the independent sure-change-

critical-value. The effect of diagonal element changes in a network with binary neurons

have been observed to be different from the effect of these changes on a network with

bipolar neurons. The effect of diagonal changes in Hopfield network on the energy func-
t

tion have been studied.



Chapter 4

POLYHEDRAL COMBINATORICS FOR NEURAL NETWORKS

4.1 INTRODUCTION

In this chapter the techniques of polyhedral combinatorics are used to analyse the ge-

ometry of stable state vectors and its associative image. Polyhedral combinatorics is a

tool developed during later half of 1970s by OR reserchers. This tool was developed

with the hope of analysing and perhaps developing efficient solution techniques for hard

combinatorial optimization problems. Polyhedral combinatorics, as conventionally used

by OR researchers, can be defined as a set of methodologies to describe the geometrical

and combinatorics aspect of feasible region which is a convex polytope. In this study

the characterization of extreme points and their adjacency relationships are investigated.

In addition the hyperplanes which define a face of a specific dimension for the polytope

are also characterised. This technique proves to be very useful in studying integer and

combinatorial programming problems. It is also used to analyse the complexity of the

wellknown Simplex method.

The technique polyhedral combinatorics is used in this chapter to propose a possible

learning technique for Hopfield network. The underlying idea is to transform the N

dimensional state vector to x'2
 +l' dimensions, where the energy function becomes a

linear function, the supporting hyperplanes of the convex hull of 2"v state vectors defines

a synaptic matrix having stable states as those points which the hyperplane touches. In

other words, the quadratic character of the energy function is transformed to a linear

79
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function in higher dimension. In this higher dimension an attempt is made to study the

geometry of the set of 2^ state vectors which forms a hypercube in N dimension. The

convex hull of these points are taken as a polytope and the energy function corresponds

to a supporting hyperplane of this polytope. The set of stable states can be visualised

as the points in the polytope which touch the supporting hyperplane. Thus designing

of supporting hyperplane touching a specified set of points will result in constructing a

Hopfield network ( J, 0) having specified set of points as stable states. Thus polyhedral

combinatorics approach not only provides a better insight into the problem but also helps

to a certain extent training of Hopfield network. Based on this discussion some results

are presented in this chapter.

In this work the scope of application of polyhedral combinatorics is restricted to

the design of Hopfield with binary neurons (0, 1) operating with asynchronous mode of

updating. Some definitions and notations are given in Section 4.2 to provide a basic

background .for polyhedral combinatorics. Earlier attempts to use polyhedral combina-

torics for study and design of neural network are reported in Section 4.3 . In Section

4.4 an attempt is made to explain the basis of the present work. Section 4. 5 describes

the construction process to make any given state vector as the only stable state in the

Hopfield network. The construction process of Hopfield network with two stable states is

given in Section 4.6 . The sequence in which the two state vectors are considered in the

construction process has a bearing on the dynamical behaviour of the Hopfield network.

This issue is being reported in Section 4.7 . Techniques of polyhedral combinatorics are

further extended to make more than two candidate state vectors stable in Hopfield net-

work. The construction process is given in Section 4.8. In this section an attempt is also

made to study the extent to which the present work can be used. Section 4.9 deals with

the mechanism to make all the state vectors upto a specific number of 1 bits as stable.

The conclusions of the attempt to use polyhedral combinatorics techniques for design of
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Hopfield network are reported in Section4.10 .

4.2 POLYHEDRAL COMBINATORICS

In this section provides the basic background for polyhedral combinatorics and necessary

definitions and notations are introduced [NemhauserSS].

Polyhedron:- A polyhedron P C Rn is a set of points that satisfies a finite number of

linear inequalities.

That is, P = {x € 1C1 : Ax < 6), where (A, 6) is an m x (n + 1) matrix.

Polytope:- A polyhedron P C Rn is bounded if there exists an u> e R\. such that

P C {x 6 Rn : —u < Xj ; < LJ for j = 1,2, ... ,n}. A bounded polyhedron is called a

polytope.

Extreme Point:- x € P is an extreme point of P if there do not exist x1, x2 € P, x1 / x^

such that x is convex combination of x1 and $2

Valid Inequality:- The inequality TTX < TTO [or(7r,7r0)] is a vaJfd inequality for P if it

is satisfied by all points in P. It is to be noted that (7r,7ro) >s a valid inequality if and

only if P lies in the half-space {x € /£n ; TX < TTO}, or equivalently if and only if max

{TTX : x € P} < TTO.

Face:- If (TT, TTQ) is a valid inequality of P, and F = {x € P : TX = *o}, ^ »s called a face

of P, and it is said that (?r, ̂ 0) represents F. A face P is said to be proper if F ^ $ and

Supporting Hyperplane:- A face represented by (T, TO) is nonempty if and only if max

[ifx : x 6 P} = *"o. When F is nonempty, it can be said that (ir, TO) supports P. Some

authors also term the support as supporting nyperpJane.

An extreme point can also be defined using the concept of supporting hyperplan*.

Extreme Point:- x is an extreme point of polytope P if and only if there exists a
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support ing h v i . o i plane F of P such that P touches P only at x. In other words, F(TC, ;TO)

is such that i is only point in P with TTX = TO-

If such a supporting hyperplane is defined as TTX = i\Q and if all points y in P satisfy

ny > TTo then x is a minimizing extreme point of TTX in P. Similarly, by the ab°ve

argument, if (TT, TTO) is a supporting hyperplane touching the extreme points xl, ̂ 2 . . . , xr

then each of these extreme points is a minimizing point of TTX in P. In other \Vo<ds. T2r

attains its minimum value at x1 >2 .... xr.
' *** ^

This particular concept is used in showing that supporting hyperplane also provides

a set of minimizing points. In the following sections it is shown that energy function

associated with Hopfield network (though quadratic in nature) can be transformed to a

linear function in higher dimension namely ; ' ^ ^ and the set of convex hull of set of

stable states defines the polytope P. So using the above analysis, that is, by denning a

supporting hyperplane, the minimizing points are identified for a given linear function

which corresponds to a supporting hyperplane. This in turn defines minimizing points
«

of energy function and hence, defines a set of stable points.

4.3 SIMILAR WORKS

The design of neural networks amenable to linear programming and combinatorial method-

ology has been noted in literature [Delsatre89, Hao91, Kamp91, Chandru93, Budiriich91,

Shonkwiler93]. Using the standard techniques of polyhedral combinatorics, a polynomial-

time algorithm for designing a neural network is proposed in [Chandru93]. This algorithm

gives maximum radius of direct attraction around arbitrary input state vectors. A new

sufficient condition that a region be classifiable by a two-layer feed-forward network using

threshold activation functions is obtained in [Shonkwiler93|. This condition is obtained
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using ; Ivhedral combinatorics by considering classification as characterising the two-

set-partitions of the vertices of a hypercube which are separable by a hyperplane. The

problems of feed-forward neural networks have been related to the theory of n-dimensional

convex polytopes in [Budinich91]. The typical problem is to synthesize a network that

is capable of reproducing a set of examples. The learning process thus leads a set of

hyperpianes that isolates atleast the given examples. It is shown in [Budinich91] that the

convex hull of the examples can provide a feed-forward network that solves the problem

without uncontrolled generalizations.

4.4 BASIS OF THE PRESENT WORK

The energy function E, associated with the Hopfield network is given by

•

where al is 0 or 1.

The stable states of the network also corresponds to the local minima of the energy-

function over the hypercube defined by

<7,- = 0,l V i = 1 , 2 , . . . , . V

By introducing a new variable al} and substituting this for the term <7,<7; (and consid-

ering (cr,)2 = cr,-,V i) ) the quadratic energy function E defined by Equation4.1 becomes

a linear function in -:
 2

+ variables ( ' 2~ variables of the form <T, ; , I ^ j and .V

variables of the form cr,). Hence,
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The set vertices of the hypercube is now visualised as a set points in the space '—?.—

and E = k defines a hyperplane. It may be noted that these points do not form a

hypercube any longer.

Let 1~L be the convex hull of this set of points in ' ^2
+ ' dimension. It is shown in

[Pujari83] that each of the 2'V state vectors is an extreme point of Ti.. In other words,

given any state vector (£) it is possible to construct a supporting hyperplane for 'H

touching it at £ only. So based on above discussion a network having just a single stable

state (any one of 2N) can be designed.

For some value of &, the hyperplane E = k defines a face for H. if all the points of Ji

lie on one side of the plane E — k i.e., E < k for all 2jV points or E > k for all 2jV points.

In addition if the face touches the convex set ?i, then it is said that the face is a support

of H.

Hence if the state vectors £*, £2, etc are to be the stable states then any learning rule

would aim at constructing the synaptic matrix (equivalently E), so that the specified set
«

of state vectors are local minima of E. In the present context (constructing E) th is can

be achieved by obtaining a hyperplane which becomes a support for 7i touching it at

vertices £*, £2, etc. The aim of this work is to construct such Hopfield network making

use of polyhedral characteristics of 7i and the supporting hyperplanes.

4.5 HOPFILED NETWORK FOR ONE STABLE VECTOR

In this section a formulation is proposed for construction of a Hopfield network having

any one given binary state vector as the only stable state. This formulation is ba^ed

on the concept mentioned in Section 4.4 that given any £ it is possible to construct

a supporting hyperplane for Ji touching it at £ only. The proposed formulation is for

neural networks with binary neurons. The update mechanism used is asynchronous and
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maximum local field is used as the basis of selection of neuron to be updated.

4.5.1 Construction of «/€ and 0

Let £l be a binary state vector of N dimension. The aim is to construct a Hopfield

network (J^,0) such that the state vector f1 is the only stable state in the network. Jt

is N x N synaptic matrix and 0 is N x 1 threshold vector.

Let Si = {t:# = l} V i = 1,2,- • - ,N and 52 = {i : g = 0} V i i = 1,2,- - • ,JV. The

synaptic matrix is constructed using the following formulation. The diagonal elements

Jn are given by

1 if i e Sl

-1 if i e 52

The off diagonal elements Jt_,, i ^ j are

1/2 i f i , j € S !

—N3 otherwise

The threshold vector 0 is given by 0, = -0.5, V i = 1,2, • • • , N.

Example

Let £l = 1011101100 be a state vector which is to be made as the only stable state of a

Hopfield network with N = 10 neurons. Then 5! = {1,3,4,5,7,8} and 52 = {2,6,9, 10}.

Based on the formulation mentioned above the following synaptic matrix J* and threshold

vector 0 are constructed.
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1 -N3 0.5 0.5

-AT3 -1 -AT3 -AT3

0.5 -AT3 1 0.5

0.5 -AT3 0.5 1

0.5 -AT3 0.5 0.5

-AT3 -N3 -N3 -N3

0.5 -N3 0.5 0.5

0.5 -A^3 0.5 0.5

yy3 yu3 \f^ j\T3

—N3 —N3 —N^ —N3

0.5

-N3

0.5

0.5

1

-N3

0.5

0.5

-AT3

-TV3

_jV3

-AT3

-N3

-N3

-N3

-1

-AT3

-A^3

-TV3

-TV3

0.5

-N3

0.5

0.5

0.5

-TV3

1

0.5

-.V3

-N3

0.5

-TV3

0.5

0.5

0.5

-N3

0.5

1

-.V3

-N3

-TV3

-AT3

-N3

-AT3

-TV3

-TV3

-AT3

_AT3

-1

-N3

-N3\

-TV3

-AT3

-TV3

-TV3

-TV3

-A'3

-A'3

-A'3

-1

Threshold vector is given by

0T = (-0.5 - 0.5 - 0-5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5)
«

It can be seen that all the 2J° input state vectors converge to 1011101100 as the stable

state.

Using this formulation it has been experimentally verified with very large number of

samples that it is possible to make any of the '2^ state vectors as the only stable state

in the Hopfield network with N binary neurons. However, state vector with all neuron

states as zero is the only state vector that cannot be made the only stable state of the

Hopfield network with this formulation. But with suitable modification this limitation

may be overcome.

4.6 HOPFIELD NETWORK WITH TWO STABLE VECTORS

In this section the concept of making any one state vector as a stable state of Hopfield

network is extended to two state vectors. This formulation is based on the concept
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mentioned in Section 4.4 that it is possible to construct an energy function so that the

hyperplane obtained becomes a support for 7i touching it at two vertices only. The issue

of Hopfield network having two vectors differing by one bit as stable has been addressed

in [BruckSS, Prados89]. The formulation proposed in this section enables to have any

two state vectors stable in the resulting Hopfield network, even if the two state vectors

differ in. only one bit. The proposed formulation is for Hopfield networks with binary

neurons. The update mechanism used is asynchronous and maximum local field is used

as the basis of selection of neuron to be updated.

4.6.1 Construction of J?t* and 0

Let f 1 and £2 be two binary vectors of N dimension. The aim is to construct a, N x N

synaptic matrix J* * and a threshold vector 0 such that the Hopfield network (J^P , 0)

has £l and £2 as stable state vectors. The construction process is given below.

Let G(^j) ^= {«:£/ = 1} where i = 1, 2, • • - , N and . Then ,

Sl =

Si =

S* = G(?)\G(e)

s2 = | Sa |

*3 = |S3 |

A temporary threshold vector 6 is constructed as described below.

1. For i 6 Si, 0, = \(sl -1-32-1- 1).

2. For : 6 S2, ̂  = ^(sl -f 52 -H 1).

3. For t € S3, &i = ??r-(si -4- 32 + 1).
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4. For i € 54, 0* = -N3.

The synaptic matrix J* * is constructed as described below. The diagonal elements

are given by

0.5 - 0, if i € G(?)

~ - i

otherwise

and the off-diagonal elements </«, * ^ J are

I
2

— TV3

if i € Si, j € S3 or i 6 S3, j €

otherwise

The threshold vector 0 is given by 0, = -0.5, V i = 1,2, - - • , N.
*

Using this formulation it has been experimentally verified with large number of samples

that the Hopfield network so constructed has only £l and £2 as the stable states. It can

be seen that, the above formulation is valid if 53 > 1.

Example

Let f1 = 11111100000 and f2 ^ 11110011100 be two state vectors to be made

as the stable states of a neural network with N = 11 binary neurons. The values of

Si, S2, Sa, S4, Si, 32,53, and s+ are given below. The entries are truncated for convenience

of represent aion.

S! = {1,2,3,4}, * i = 4

^={7,8,9}, J3 = 3

54={10,H}, 54 = 2
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The synaptic matrix

are given below

rl«2 and threshold vector 9 constructed using the formulation
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0.5

0.5

-3.0

-N3

-N3

-TV3

-AT3

-N3

0.3

0.3

0.3

0.3

-AT3

-TV3

-4.2

1.2

1.2

-AT3

-AT3

0.3

0.3

0.3

0.3

-TV3

-TV3

1.2

-4.2

1.2

-N3

-N3

0.3

0.3

0.3

0.3

-TV3

-TV3

1.2

1.2

-4.2

-N3

-N3

-TV3

-AT3

-TV3

-TV3

-TV3

-AT3

-TV3

-N3

-TV3

-JV3

-AT3

-TV3

-Af3

-TV3

-TV3

-TV3

-N3

-TV3

-AT3

-N3

-N3

-N3

0T = (-0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5)

It can be seen that all the 210 input state vectors converge to either 11111100000

or 11110011100 as the stable state. Using this formulation it has been experimentally

verified with very large number of samples that it is possible to make any two of the 2*

state vectors as the only stable states in the Hopfield network with N binary neurons.

4.7 ORDER OF VECTORS IN TWO STABLE STATE FORMULATION

In the formulation of Hopfield network proposed in Section 4.6.1 it is observed that th*

Hopfield network construction is dependent on the sequence in which the vectors are

considered. Consider two Hopfield networks constructed using the formulation given io

Section 6.6. Hopfield network (J* * ,0) constructed by considering £l as the first vector
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and £2 as the second vector in the formulation and Hopfield network ( J* ^ , 6) constructed

by considering £2 as the first vector and £l as the second vector in the formulation.

For the example under consideration the the network

. The network (J^1,^) is given here.

, 0) is given in Section 6.6

-3.5

0.5

0.5

0.5

0.8

0.8

0.5

0.5

0.5

-N3

-N3

0

-3

0

0

0

0

0

0

0

.5

.5

.5

.5

.8

.8

.5

.5

.5

-AT3

0.5

0.5

-3.5

0.5

0.8

0.8

0.5

0.5

0.5

-N3

— A^3 — N3

0.5

0.5

0.5

-3.5

0.8

0.8

0.5

0.5

0.5

-TV3

-N3

0.8

0.8

0.8

0.8

-4.0

2.5

-N3

-N3

-N3

-N3

-N3

0.8

0.8

0.8

0.8

2.5

-4.0

-N3

-N3

-N3

-N3

-N3

0.5

0.5

0.5

0.5

-N3

-N3

-3.5

0.5

0.5

-AT3

-N3

0.5

0.5

0.5

0.5

-N3

-N3

0.5

-5.5

0.5

-AT3

-A'3

0.5

0.5

0.5

0.5

-N3

-N3

0.5

0.5

-5.5

-N3

-N3

-N3

-N3

-TV3

-N3

-N3

-N3

-AT3

-A^3

-AT3

-N3

-N3

-N3 1

-N3

-N3

-N3

-N3

-N3

-N3

-N3

-N3

-A'3

-A3 ,

It is observed that the two networks have the same pair of state vectors as the only

stable states. However, there is slight difference in the dynamics of the two networks.

Observations

Some observations regarding the dynamics of two Hopfield networks have been made

by conducting several experiments with asynchronous mode of operation and selection of

neuron having maximum local field for updating. For the two networks there is difference

in sequence from the input vector to stable vectors for some input vectors. For some input

vectors stable state is not reached. The state of the network oscillates between two stales,

i.e., the network reaches a bi-directionally stable state.
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4.7.1 Multiple Weights

1 2 2 1
The two Hopfield networks ( J* * , 0) and ( J* * , 0) have the same set of stable states. In

this subsection an attempt is made to visualize these two Hopfield networks as belonging

to a class of Hopfield networks with same set of stable states. It has been observed that
1 2 2 1

the networks ( J^ ^ , 9} and ( J^ ^ , 0) are defined by two extreme matrices which can be
1 2 2 1

generated using the expression J^ *= AJ* * 4- (1 — A)J* * , where 0 < A < 1.

THEOREM 4.1 :- If (J^2,0) is the Hopfield network memorizing f1 followed by ?

and (J^ * ,6) is the Hopfield network memorizing £2 followed by f1 then, (J**,0) where

J« = AJ*1*2 + (1 - AJJ*2*1 with 0 < A < 1 is also a Hopfield network memorizing £»

and £2.

Proof:- The energy function of the Hopfield network (JK1^ 0) is given by

* 9 1

Similarly, the energy function of the Hopfield network (J* ^ ,^) is given by

because

By construction of Jl and J2, the values of £*(Jl) at ^' and £2 is same as those of

*) at ^l and £2 respectively. Since ^l and £2 are ^jje minimizing points of E(J1} and
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also the minimizing point of £( J2), the following can be inferred. E(Jl) at f is > E(Jl)

at {* and also f 2. Similarly, E( J2) at £ is > £( J2) at f1 and also f 2.

Considering the above two observation and also considering the property of convex

combinations, it can be concluded that E( J) at f1 and f2 is same as those of E(Jl) and

E(J) at £ is > E(J) at £l and also £2. Hence £l£2 are the minimizing points of E(J).

Thus the network ( J^, 0) also has £l and f 2 as the only set of stable states.

4.8 HOPFIELD NETWORK WITH MORE STABLE VECTORS

In this section the techniques of polyhedral combinatorics is extended to derive formu-

lation for construction of Hopfield network with three or more candidate state vectors

as stable. However, after the selection of two vectors without restriction there are some

restrictions on the selection of the third or subsequent candidate state vectors.
«

4.8.1 Three Stable Vectors

The formulation for making three candidate state vectors stable in the Hopfield network

is given in this subsection. The three candidate state vectors satisfying the following

conditions can be made stable in the Hopfield network.

2. £3 should have two additional bits as 1 where the two vectors £l and £2 have 0.

4.8.2 Construction of Jtl?e and 0

l and £2 be two binary vectors of ^V dimension. A state vector £3 is selected

considering the restriction mentioned above. The aim is to construct a -V x .V sy nap tic
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Ic?e3matrix J and a threshold vector 0 such that the Hopfield network with (J^1***3, 9)

has £*, £2 and f3 as stable vectors. The construction process is given below.

The sets 5i, S2,S%, 54, s\, s2,
53, and s4 are defined as described in section 4.6.1. Some

more sets of indices are defined as follows.

sfi =
I

l) \

s7 =

V

A temporary threshold vector 0 is constructed as described below.

*.

1. For 2; € 5"i, &i — |
«

2. For i G 52, 0, = i

3. For i <E Sa, 0t = ^(si -f 52 -f 1).

4. For i € S7, 0. =

5. For z G 5*4, and i $. Sj Oi — —

:1<2 .The synaptic matrix Jt ' is constructed as described below. The diagonal elements

are given by

' 0.5 - 0. if i €

— ^

-N

- ^, if i € 53

- d,- if i € Sr

otherwise
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and the off-diagonal elements Jn, i ^ j are

-2ft.
257

if «' € Si,j € S3 or i € 53> j €

if t € S5 and j € S7

or if i € SV and j €

otherwise

The threshold vector 0 is given by 0* = -0.5, V i = 1,2, • • - , .V.

The Hopfield network so constructed has only f1, £2 and f3 as the stable states. The

update mechanism used is asynchronous and maximum local field is used as the basis of

selection of neuron to be updated. The above formulation is valid if 37 > 1 and 33 > 1.

Example

Let, £l = 11111100000, f 2 = 11110011100 and f3 = 11110000010 be three state vectors

which are to be made stable states of a Hopfield network with Af = 11 binary neurons.

For this example the following synaptic matrix and threshold vector is constructed

using the formulation given above.
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-3.0

0.5

0.5

0.5

0.5

0.5

0.3

0.3

0.3

-N3

, -N3

0.5

-3.0

0.5

0.5

0.5

0.5

0.3

0.3

0.3

-N3

-N3

0.5

0.5

-3.0

0.5

0.5

0.5

0.3

0.3

0.3

-N3

-N3

0.

0.

0.

-3.

0.

0.

0.

0.

0.

5

5

5

0

5

5

3

3

3

-N3

-AT3

0.5

0.5

0.5

0.5

-3.0

0.5

-N3

-N3

-N3

-N3

-N3

0.5

0.5

0.5

0.5

0.5

-3.0

-N3

-N3

-N3

-N3

-N3

0.3

0.3

0.3

0.3

-N3

-N3

-4.2

1.2

1.2

-N3

-N3

0.3

0.3

0.3

0.3

-N*

-N3

1.2

-4.2

1.2

-N3

-N3

0.3

0.3

0.3

0.3

-N3

-N3

1.2

1.2

-4.2

-N3

-N3

1.0

1.0

1.0

1.0

-N3

-N3

-N3

-N3

-N3

-5.5

-N3

-N3'

-N3

-N3

-N3

-N3

-N3

-N3

-N3

-N3

-N3

-N3
.

0T = (-^0.5 - 0.5 - 0.5 ^ 0-5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5)

It is observed that all the 2l° JQPut state vectors have one of the vectors 11111100000,

11110011100 or 11110000010 as the stable state. Using this formulation it has been

experimentally verified with very large number of samples that it is possible to make

three vectors out of the 2^ state vectors as the only stable states in the neural network

with N binary neurons. The three state vectors should satisfy the conditions mentioned

above.

4.8.3 More Than Three Stable Vectors

The above formulation can be generalised to have more stable vectors. For instance, four

state vectors can be made stable by designing a Hopfield network by having a synoptic

matrix so that the four stable vectors satisfy the following conditions.
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2. f4 must have at least two additional bits as one where all three vectors f1,^2, and

f3 have zero.

As long as this condition is valid it is possible to generalise the formulation of Hopfield

network to have any number of stable vectors as stable. Assume that all the vectors have

atleast three common bits having one satisfying condition 1. For Hopfield network of N

neurons there is a maximum of ^y^ vectors satisfing these conditions. Hence a Hopfield

network can be designed following the above formulation having ^y^ stable vectors. The

capacity of the network in this context can be ^y^.

4-9 STABLE VECTORS WITH SPECIFIC NUMBER OF 1 BITS

The formulations proposed in the previous sections can be extended to store all vectors

characterized by the number of 1 bits. In this section a formulation to make all vectors

with less than or equal to a specific number of 1 bits as stable states of Hopfield network

is proposed. That is to make all vectors having less than or equal to L (0 < L < .V)

number of 1 bits stable in Hopfield network. The Hopfield network for this purpose can

be constructed as follows.

The diagonal elements of synaptic matrix are

* - T^T
The off-diagonal elements J,j,» ^ j

6, =0.1Vi = 1,2,...,
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Example

All vectors upto L — 5 bits are to be made stable states of a Hopfield network with

JV = 10 binary neurons. For this example following sy nap tic matrix J1* and threshold

vector is constructed.

0.333 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067

-0.067 0.333 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067

-0.067 -0.067 0.333 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067

-0.067 -0.067 -0.067 0.333 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067

-0.067 -0.067 -0.067 -0.067 0.333 -0.067 -0.067 -0.067 -0.067 -0.067

-0.067 -0.067 -0.067 -0.067 -0.067 0.333 -0.067 -0.067 -0.067 -0.067

-0.067 -0.067 -0.067 -0.067 -0.067 -0.067 0.333 -0.067 -0.067 -0.067

-0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 0.333 -0.067 -0.067

-0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 0.333 -0.067

-0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 -0.067 0.333

0T = (0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1)

It can be seen that all the state vectors with 5 or less number of bits a* 1 are the

stable states of the Hopfield network. Using this formulation it has been experimentally

verified with very large number of samples that it is possible to construct a Hopneld

network having all state vectors with L (0 < L < N) number of bits a* 1, aj stable

states.

4.10 CONCLUSION

The learning rules proposed in this chapter has non-zero diagonal element* in the synapiic

matrix. The majority of the popular learning rules have additional stable states
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the candidate state vectors. However, the learning rules proposed in this chapter has

exactly the specified state vectors as the stable states. No other state vector becomes

stable in the network.

In comparision to Hebbian learning rule the learning rule proposed in Section 6.4

is not commutative. A commutative learning rule can be considered as a rule using

which the Hopfield network so constructed is not affected by the sequence in which the

candidate state vectors are considered. However, in reality, the efficiency of learning is

dependent on the sequence in which the system learns. Hence, a commutative learning

is a desirable property of learning and hence may give a better insight to brain function.
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CONCLUSION

An attempt to study and investigate the dynamics of Hopfield network has been made

as part of this research work. This dissertation reports some new theoretical and exper-

imental results of this study. Chapter 2 reports a survey of various capacity estimates

of Hopfield class networks. Results of study of dynamics of Hopfield network with self-

feedback are given in Chapter 3. Analysis of geometry of stable state vectors of Hopfield

network is reported in Chapter 4. Some learning techniques have also been proposed

based on the results of this analysis in Chapter 4. The achievements, the limitations and

the further research plans are summarized in this chapter.
*

5.1 SURVEY ON CAPACITY

In the recent years many models of neural networks have been proposed. A model may

perfectly suit the purpose for which it is designed, but in the presence of many models,

a need for comparative study was felt. Many research articles related to capacity of

neural networks have been reported on several diversified disciplines. Chapter '2 reports

the various models that have been propsed to attain a better performance of Hopfield

network. The diversification in the research approaches can also be observed in lh,al

chapter. Large variations in nature of these approaches necessitates a comparative study

to evaluate each approach. This survey has been carried out considering capacity as a

common criteria for evaluating the performance of various models belonging to Hopfieid

class networks.

99
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The survey as reported in chapter 2 considers only one of the several models of neural

networks, namely Hopfield network and there are very large number of research articles

reported in literature concentrating only on this single model. Only those research articles

which were fitting in the framework have been considered for this survey. The complicated

nature of this task restricted the expansion of the scope of this survey within limited

time and hence, may not be termed as a complete survey. Some aspects of capacity of

Hopfield network have not been included due to. the limited scope of the study. Even

for the aspects considered, it was not possible to access all possible related research

literature. As a future work an attempt to include more aspects of capacity of Hopfield

network can be made. The study can also be extended to include other models of neural

networks. A survey of all neural network models with a generalized framework can be

attempted to give a better insight into the dynamics of neural networks. This survey is

a humble attempt towards the need for a unified and universal criteria for evaluation of

various neural networks. Such criteria if devised, will serve as an important tool for the
•

design, development and application of neural networks. An attempt in this area will be

of significant use in the area of neural networks.

5.2 STUDY OF SELF-FEEDBACK IN HOPFIELD NETWORKS

The concept of self-feedback in Hopfield network has been selected for a detailed study.

Some experimental observations and theoretical conclusions of this study are reported

in Chapter 3. An attempt has been made to uderstand the impact of diagonal and

threshold element changes on set of stable states of Hopfield network. Some critical

values of the relationship has been determined. It is concluded that the changes in

diagonal elements and threshold elements can be used for tuning Hopfield networks to

obtain require performance. These results will help in maintaining a balance between
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information storage and equivocation. These results may also be helpful in design of

Hopfield networks with high selectivity.

A further study to determine exact tuning mechanism can be attempted. Such an

attempt will atleast partially help in determining the type of diagonal element changes

required to have a particular set of candidate state vectors stable, to eliminate specific

or all spurious states and to determine the basins of attraction of a stable state.

5.3 POLYHEDRAL COMBINATORICS

Analysis of the geometry of stable state vectors using the polyhedral combinatorics tech-

niques is reported in Chapter 4 . Based on this analysis some learning techniques have

been proposed for Hopfield network. The learning rules proposed have non-zero diagonal

elements in the synaptic matrix. These learnig rule have exactly the specified state vec-

tors as the stable states. The set of candidate state vectors and the set of stable states of

network constructed using these learning rules are same. However, there are restrictions

on the selection of candidate state vectors.

As a future work this study can be extended to design learning rules for higher order

and multivalued neural networks.



Bibliography

[Abumostafa85] Abu-Mostafa, Y. S., &; St.Jacques, J. (1985). Information capacity of
the Hopfieid Model. IEEE Transactions on Information Theory, 31,
461-464.

[Ackley85]

[Amari77]

[Amit85a]

[Amit85b]

[Amit87]

[Amit89]

[Anderson72]

[Anderson88]

[Anderson92]

[Baldi87]

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A Learning
Algorithm for Boltzmann machines. Cognitive Science 9, 147-169.

Amari, S. (1977). Neural theory of association and concept formation.
Biological Cybernetics, 26, 175-185.

Amit, D. J., Gutfreud, H., & Sompolinsky, H. (1985). Spin-glass model
of Neural networks. Physical Review A, 32, 1007-1018.

Amit, D. J., Gutfreud, H., & Sompolinsky, H. (1985). Storing infinite
numbers of patterns in a Spin Glass model of neural networks. Physical
Review Letters, 55, 1530-1533.

Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1987). Information
storage in neural networks with low level activity. Physical Review A,
35, 2293-2303.

Amit, D. J. (1989). Modelling Brain Function. Cambridge:Cambridge
University Press.

Anderson, J. A. (1972). A simple neural network generating an inter-
active memory. Mathematical Biosciences, 14, 197-200.

Anderson, J. A., & Rosenfeld, E. (Eds.), (1988). .\eurocomputing:
Foundations of Research. Cambridge:MIT press.

Anderson, J.A. (1992). Foreword. In B. Kosko Neural \etworks and
fuzzy systems: A dynamical systems approach to machine intelligence.
New Jersey iPrintice1-Hall Inc.

Baldi, P., & Venkatesh, S. S. (1987). Number of stable points for spin-
glasses and neural networks of higher orders. Physical Renew .4, 5S,
913-916.

102



Bibliography 103

[Baram91]

[BolleQl]

[Bolle92]

[BrahamSS]

[BruckSS]

[Budinich91]

[Buhmann89]

[Carpenter90]

[Chandru93]

[Chen86]

[Cook89]

[Cooper73]

[Crisanti

Baram, Y. (1991). On the capacity of ternary Hebbian networks. IEEE
Transactions of Information Theory, 37, 528-534.

Bolle, D., Dupont, P., & Mourik, J. V. (1991). Stability properties of
Potts neural network with biased patterns and low loading. Journal of
Physics A, 24, 1065-1081.

Bolle, D., Dupont, P., & Vinck, B. (1992). On the overlap dynamics of
multi-state neural networks with a finite number of patterns. Journal
of Physics A, 25, 2859-2872.

Braham, R., & Hamblen, J. O. (1988). On the behaviour of some
associative neural networks. Biological Cybernetics, 60, 145-151.

Bruck, J., & Sanz, J. (1988). A study of neural networks. International
Journal of Intelligent Systems, 3, 59-75.

Budinich, M., & Milotti, E. (1991). Feed-forward neural networks: A
geometrical perspective. Journal of Physics A, 24, 881-888.

Buhmann, J., Divko, R., & Schulten, K. (1989). Associative memory
with high information content. Physical Review A, 39, 2689-2692.

Carpenter, R. H. S. (1990). Neurophisiology. London: Edward Arnold.

Chandru, V. & Vinay, V. (1993). Constructing highly attractive recur-
sive neural networks. In M. Vidyasagar (Ed). Proceedings of the Inter-
national conference on intelligent Robotics (pp. 307-315). New Delhi:
Tata McGraw-Hill Publishing Company Ltd..

Chen,H. H., Lee,Y. C., Sun,G. Z., Lee, H. Y., Maxwell, T., & Giles,C.
L. (1986). Higher order correlation model for associative memory. AIP
Conference Proceedings, 151, 86-99.

Cook, J. (1989). The mean-field theory of a Q-state neural model.
Journal of Physics A, 22, 2057-2067.

Cooper, L. N. (1973). A possible organization of animal memory
and learning. In B. Lundquist & S. Lundquist (Eds.), Proceeding*
of the Nobel Symposium on Collective Properties (pp252-264). New
York:Academic Press Inc..

Crisanti, A., & Sompolinsky, H. (1988). Dynamics of spin systems
with randomly asymmetric bonds, Ising spins and Glauber dynamics.
Physical Review A, 37, 4865-4874.



Bibliography 104

[Delsatre89]

[Der92]

[DerridaST]

[Derrida89]

[Dotsenko91]

[Eckmiller90]

[Elderfield83]

[Evans89]

[Farrell90]

[Feigelman86]

[Fontanari88]

[Fukai92]

Delsatre, P., & Kamp, Y. (1989). Low rank matrices with given sign
patterns. SI AM Journal of Discrete Mathematics, 2, 51-63.

Der, R., Dotsenko, V. S., &; Tirozzi. (1992). Modified pseudo-inverse
neural network storing correlated patterns. Journal of Physics A, 25,
2843-2857.

Derrida, B., Gardner, E., & Zippelius, A. (1987). An exactly solvable
asymmetric neural network model. Europhysics Letters, 4, 167-173.

Derrida, B. (1989). Distribution of the activities in a diluted neural
network. Journal of Physics A, 22, 2069-2080.

Dotsenko, V. S., Yarunin, N. D., & Dorotheyev, E. A. (1991). Statisti-
cal mechanics of Hopfield-like neural networks with modified interac-
tions. Journal of Physics A, 24, 2419-2429.

Eckmiller, R. (1990). The design of intelligent robots as a federation
of geometric machine. In S. F. Zornetzer, J. L. Davis, C. Lau (Eds),
An introduction to neural and Electronic networks (pp. 109-128). San
Diego: Academic Press Inc..

Elderfield, D., & Sherrington, D. (1983). Spinglass, ferromagnetic and
mixed phases in the disordered Potts model. Journal of Physics A, 16,
L971-L977.

Evans, M. R. (1989). Random dilution in a neural network for biased
patterns. Journal of Physics A, 22, 2103-2118.

Farrell, J. A., & Michel, A. N. (1990). A synthesis procedure for Hop-
field's continuous-time associative memory. IEEE Transactions on Cir-
cuits and Systems, 37, 877-884.

Feigeiman, M. V., & loffe, L. B. (1986). The statistical properties of
the Hopfield model of memory. Europhysics Letters, 1, 197-201.

Fontanari, J. F., & Koberle, R. (1988). Enhancing the learning of a
finite number of patterns in neural networks. Journal of Physics A,
21, L253-L257.

Fukai, T., & Shuno, M. (1990). Comparative study of spurious-stale
distribution in analogue neural networks and Bokzmann machine.
Journal of Physics A, 25, 2873-2887.



Bibliography 105

[Garces92]

[GardnerSSa]

[GardnerSSb]

[Gardner89a]

[Gardner89b]

[Gardner89c]

[Gardner89d]

[Gardner89e]

[Gardner89f]

[Gindi88]

[GrossbergSO]

[Gutfreund88]

[Hao91]

Garces, R., Kuhlmann, P., & Eissfeiler, H. (1992). In search of an op-
timal dilution algorithm for feed-forward networks. Journal of Physics
A, 25, L1335-L1342.

Gardner, E. (1988). The space of interactions in neural network models.
Journal of Physics A, 21, 257-270.

Gardner, E., & Derrida, B. (1988). Optimal storage properties of neural
network models. Journal of Physics A, 21, 271-284.

Gardner, E. (1989). Optimal basins of attraction in randomly sparse
neural network models. Journal of Physics A, 22, 1969-1974.

Gardner, E., & Derrida, B. (1989). The probability distribution of the
partition of the random energy model. Journal of Physics A, 22, 1975-
1981.

Gardner, E., Derrida, B. (1989). Three unfinished works on the optimal
storage capacity of networks. Journal of Physics A, 22, 1983-1994.

Gardner, E., Gutfreund, H., & Yekutieli, I. (1989). The phase space
of interactions in neural networks with definite symmetry, Journal of
Physics A, 22, 1995-2008.

Gardner, E., Mertens, S., &; Zippelius, A. (1989). Retrieval properties
of a neural network with asymetrical learning rule. Journal of Physics
A, 22, 2009-2018.

Gardner, E., Storoud, N., & Wallace, D. J. (1989). Training with noise
and the storage of correlated patterns in a neural network model, Jour-
nal of Physics A, 22, 2019-2030.

Gindi, G. R., Gmitro, A. F., & Parthasarathy, K. (1988). Hopfield
model associative memory with nonzero-diagonal terms in memory ma-
trix. Applied Optics, 27, 129-134.

Grossberg, S. (1980). How does a brain build a cognitive code? Psy-
chological Review, 87, 1-51.

Gutfreund, H. (1988). Neural network with hierarchically correlaU-d
patterns, Physical Review A, 37, 570-577

Hao, J., Tan, S., & Vanderwalle, J. (1991). A new approach to design of
Hopfield associative memory. Proceedings of International Joint Con-
ference on Neural Network, 1705-1710.



Bibliography 106

[Hebb49]

[Hecht-Nielsen91]

[Hendrich91]

[Hinton84]

[Hopfield82]

[Hopfield84]

[Hopfield86]

[Houselander90]

[Kamp91]

[Kanter87]

[Kanter88]

[Karayiannis93]

Hebb, D. (1949) The Organization of Behavior. New York: Wiley.

Hecht-Nielsen, R. (1991). Neuro computing. Addison-Wesley Publish-
ing Company.

Hendrich, N. (1991). Associative memory in damaged neural networks.
Journal of Physics A, 24, 2877-2887.

Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. (1984). Boltzmann
machines: Constraint satisfaction networks that learn. Carnegie Mel-
lon University Technical Report Mtm6erCMU-CS-84-119, Caranegie
Mellon University, USA.

Hopfield, J. J. (1982). Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the National
Academy of Sciences, USA, 79, 2554-2558.

Hopfield, J. J. (1984). Neurons with graded response having collective
computational properties like those of two-state neurons, Proceedings
of the National Academy of Sciences, USA, 81, 3088-3092.

Hopfield, J. J., &; Tank, D. W. (1986). Computing with neural circuits:
A model. Science, 233, 625.

Houselander, P., & Taylor, J. T. (1990). Calculating the upper and
lower bounds on the capacity of two modified Hebbian trained Hopfield
networks, Electronics Letters, 16, 1266-1267.

Kamp, Y., & Hasler, M. (1991). Recursive neural networks as associa-
tive memory. New York: John Wiley & Sons Ltd.

Kanter, J., & Sompolinsky, H. (1987). Associative recall of memory
without errors. Physical Review A, 35, 380-392.

Kanter, J. D. (1988). Potts-glass model of neural networks. Physical
Review A, 37, 2739-2742.

Karayiannis, N. B., & Venetsanopoulos, A. N. (1993). Artificial neural
networks: Learning algorithms, performance evaluation and applica-
tions. Boston:Kluwer Academic Publishers.

[Katz66] Katz, B. (1966). Nerve, Muscle and synapses. New York: McGraw-Hill
Inc.



Bibliography 107

[Kohonen72]

[Kohonen84]

[Kohonen88]

[Kosko92]

[Kree92]

[Kuhlmann92]

[Lewenstein92]

[Little75]

[Marcus90]

[McCulloch43]

[McElieceST]

[Minsky69]

[Miyashita88]

Kohonen, T. (1972). Correlation matrix memories. IEEE Transactions
on Computers, 21, 353-359.

Kohonen, T. (1984). Self-organization and associative memory.
Berlin: S pringer- Verlag.

Kohonen, T. (1988). An introduction to neural computing. Neural Net-
works, 1, 3-16.

Kosko, B. (1992). Neural networks and fuzzy systems: A dynamical
systems approach to machine intelligence. New Jersey: Printice-Hall
Inc.

Kree, R., Widmaier, D., & Zippelius, A. (1992). Spin-glass phase in a
neural network with asymmetric couplings. Journal of Physics A, 21,
L1181-L1186.

Kuhlmann, P., Garces, R., & Eissfeller, H. (1992). A dilution algorithm
for neural networks. Journal of Physics A, 25, L593-L598.

Lewenstein, M., & Tarkowski, W. (1992). Optimal storage of correlated
patterns in neural-network memories. Physical Review A, 46, 2136-
2142.

Little, W. A., & Shaw, G. L. (1975). A Statistical theory of Short and
Long Term Memory. Behaviour Biology, 14, 115-133.

Marcus, C. M., & Westervert, R. M. (1990). Stability and convergence
of analog neural networks with multiple-time-step parallel dynamics.
Physical Review A, 42, 2410-2417.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biosciences, 5,
115-133.

McEliece, R. L., Posner, E. C., Rodemich, E. R., & Venkatesh, S. S.
(1987). The capacity of the Hopfield associative memory. IEEE Trans-
actions on Information Theory, 33, 461-482.

Minsky, M., & Papert, S. (1969). Perceptions. Cambridge, MA: MIT
Press.

Miyashita, Y. (1988). Neuronal correlate of visual associative long terra
memory in the primate temporal cortex. Nature, 335, S17-S19.



Bibliography 108

[Montgomery86] Montgomery, B. L., &: Vijayakumar, B. V. K. (1986). Evaluation of
the use of the Hopfield neural network model in nearest-neighbour
algorithm. Applied Optics, 25, 3759-3766.

[Mori89]

[Nadal86]

[NemhauserSS]

[Newell58]

[Nicolis90]

[Nobre86]

[Noest88a]

[Noest88b]

[Palm90]

[Parisi86a]

[Parisi86b]

[Patrick90]

Mori, Y., Davis, P., & Nara, S. (1989). Pattern retrieval in an asym-
metric neural network with embedded limit cycle. Journal of Physics
A, 22, 2525-2532.

Nadal, J. P. (1986). Networks of formal neurons and memory
palimpsests. Europhysics Letters, 1, 535-542.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and Combinatorical
Optimization. New York: John Wiley & Sons Ltd.

Newell, A., Shaw, J. C., & Simon, H. A., (1958). Elements of the theory
of human problem solving, Physiological Review, 65, 151-166.

Nicolis, S. (1990). Retrieval properties of neural networks with in-
finitely many marked patterns. Europhysics Letters, 12, 583-587.

Nobre, F. D., & Sherrington, D. (1986). The infinite-range clock spin
glass model : An introduction of the relevance of reflection symmetry.
Journal of Physics C, 19, L181-L188.

Noest, A. J. (1988). Discrete-state phasor neural networks. Physical
Review A, 38, 2196-2199.

Noest, A. J. (1988). Associative memory in sparse phasor neural net-
work. Europhysics Letters, 6, 469-474.

Palm, G. (1990). Local learning rules and sparse coding in neural net-
works, In R. Eckmiller (Ed.) Advanced neural computers , (pp 145-150).
Amsterdam: Elsevier Science Publishers.

Parisi, G. (1986). A memory that forgets. Journal of Physics A, 19,
2617-2620.

Parisi, G. (1986). Neural networks and the process of learning. Journal
of Physics A, 19, L675-L680.

Patrick, A. E., & Zagrebnov, V. A. (1990). Parallel dynamic* for
extremely diluted neural network, Journal of Physics A, 23,
L1329.



Bibliography 109

[Patrick91a]

[Patrick91b]

[Patrick92]

[Penna90]

[Personnaz85]

[Prados89]

[Prados]

[Pujari83]

[Rau92]

[Rieger90]

[Rochester56]

[Rosenblatt58]

Patrick, A. E., & Zagrebnov, V. A. (1991). A probabilistic approach
to parallel dynamics for the Little-Hopfield model. Journal of Physics
A, 24, 3413-3426.

Patrick, A. E., Picco, P., Ruiz, J., &: Zagrebnov, V. A. (1991). Main
overlap dynamics for multistate neural networks. Journal of Physics
A, 24, L637-L647.

Patrick, A. E., & Zagrebnov. V. A. (1992). Parallel dynamics for an
extremely diluted network, Journal of Physics A, 25, 1009-1011.

Penna, T. J. P., & de Oliveira, P. M. C. (1990). Enhancing retrieval
of low activity patterns in neural networks. Europhysics Letters, 11,
191-194.

Personnaz, L., Guyon, I., &; Dreyfus, G. (1985). Journal of Physics
(Paris) Letters, 46, 359.

Prados, D. L., &: Kak, S. C. (1989). Neural network capacity using
Delta Rule. Electronic Letters, 25, 197-199.

Prados, D., & Kak, S. Shift invariant associative memory. Technical
Report, Louisiana State University, USA.

Pujari, A. K., Mittal, A. K., & Gupta, S. K. (1983). A convex polytop«
of diameter one. Discrete and Applied Mathematics, 5, 241-242.

Rau, A., Wong, K. Y. M., & Sherrington, D. (1992). Pattern selectivity
in optimized neural networks. Europhysics Letters, 17, 649-654.

Rieger, H. (1990). Storing an extensive number of gray-toned patterns
in a neural network using multistate neurons. Journal of Physics A,
23, L1273-L1279.

Rochester, N., Holland, J. H., Haibt, L. H., & Duda, W. L. (1956).
Tests on a cell assembly theory of action of the brain, using a large
digital computer. IRE Transactions on Information Theory, 2, 8O-93.

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for in-
formation storage and organization in the Brain. Psychological Renew,
65, 386-408.



Bibliography 110

[RumelhartSG]

[Ryle49]

[Sezan90]

[Shonkwiler93]

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A Gen-
eral Framework for Parallel Distributed Processing. In D. E. Rumel-
hart & J. L. McClelland (Eds.), Parallel Distrinuted Processing: Explo-
rations in the Microstructure of Cognition, 1, (pp. 45-76). Cambridge,
MA:MIT Press.

Ryle, G. (1949). The Concept of Mind. London:Hutcheson.

Sezan, M. L, Stark, H., & Yeh, S. (1990). Projection method formu-
lation of Hopfield-type associative memory neural networks. Applied
Optics, 29, 2616-2622.

Shonkwiler, R. (1993). Separating the vertices of N-cubes by hyper-
planes and its applications to artificial neural networks. IEEE Trans-
actions on Neural Networks, 4, 343-347.

[Sompolinsky86] Sompolinsky, H. (1986). Neural Networks with nonlinear synapses and
a static noise. Physical Review A, 34, 2571-2574.

[Soucek89]

[Stark90]

[Stiefvater92]

[Sussmann89]

[Tarkowski92]

[Tarkowski93]

[Thompson85]

[Thoraton92]

Soucek, B. (1989). Neural and concurrent real-time systems: The sixth
generation. New York: John Wiley & Sons Ltd.

Stark, J., &: BresslofF, P. (1990). Two-state representations of three-
state neural networks. Journal of Physics A, 22, 1633-1644.

Stiefvater, Thomas., Muller, & Klaus-Robert. (1992). A finite size scal-
ing investigation for Q-state Hopfield models: storage and capacity and
basin of attraction. Journal of Physics A, 25, 5919-5929.

Sussmann, H. J. (1989). On the number of memories that can be per-
fectly stored in a neural net with Hebb weights. IEEE Transactions on
Information Theory, 35, 174-178.

Tarkowski, W., &: Lewenstein, M. (1992). Estimates of optimal storage
conditions in neural network memories based on random matrix theory.
Journal of Physics A, 25, 6251-6264.

Tarkowski, W., i: Lewenstein, M. (1993). Storage of sets of correlated
data in neural network memories. Journal of Physics .4, 26, 2453-2469.

Thompson, R. F. (1985). The Brain: An introduction to neuro&nence.
New York :W.H. Freeman & Company.

Thronton, C. J. (1992). Techniques in Computational Learning: An
Introduction. London.Chapman & Hall Computing.



Bibliography 111

[Toulouse86] Toulouse, G., Dehaene, S., & Changeux, J. P. (1986). Spin glass model
of learning by selection. Proceedings of National Academy of Sciences,
USA, 83, 1695-1698.

[Tsodyks88] Tsodyks, M. V., & Feigelman, M. V. (1988). The enhanced storage
capacity in neural networks with low activity level. Europhysics Letters,
6, 101-105.

[Viswanathan93] Viswanathan, R. Raju. (1993). Neural networks with biased bipolar
• synapses and biased patterns. Journal of Physics A, 26, 873-881.

[Vogt92] Vbgt, H., & Zippelius, A. (1992). Invariant recognition in Potts-glass
neural networks. Journal of Physics A, 25, 2209-2226.

[Wendemuth93] Wendemuth, A., Opper, M., & Kinzel, W. (1993). The effect of corre-
lations in neural networks, Journal of Physics A, 26, 3165-3185.

[WidrowGO] Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. In 1960
IRE WESCON Convention Record (pp. 96-104). New York.

[Wittgenstein53] Wittgenstein, L. (1953). Philosophical Investigations, (English Third
Edition). New York:Macmillan.

[Wong91] ' Wong, K. Y. M., Kohn, P. E., & Sherrington, D. (1991). A neural
network model of working memory exhibiting primacy and recency.
Journal of Physics A, 24, 1119-1135.

[Yanai90] Yanai, H., & Sawada, Y. (1990). Associative memory composed of
neurons with hysteretic property, Neural Networks, 3, 223-228.

[Yedidia89] Yedidia, J. S. (1989). Neural netwoks that use three state neurons.
Journal of Physics Ay 22, 2265-2273.

[Youn89] Youn, C. H., &: Kak, S. C. (1989). Continuous unlearning in neural
networks. Electronic Letters, 25, 202-203-

[Zornetzer90] Zornetzer, S. F., et al. (Eds.), (1990). ,4n Introduction to Neural and
Electronic Networks Academic Press.



RESEARCH PAPERS

1. Sharma, R. & Pujari, A. K. (1990). Text Retrieval using
Neural Network. In V.P. Bhatkar and K.M. Rege [Eds.],
Frontiers in Knowledge-Based Computing. (187-196), New
Delhi: Narosa Publishing House.

2. Pujari, A. K. , & Sharma, R. (1990). Modified Hopfield
Model of Neural Network, in A. Pedar et.al.[Eds.], Real Time
System. (348-352), SGSITS, Indore.

3. Pujari, A. K. , & Sharma, R. (1990). Hopfield Model of
Neural Networks with Unrestricted Self-Feedback, Proceedings
of International Neural Network Conference INNC-90. (872),
Paris.


