COOPERATIVE PROBLEM SOLVING: A
KNOWLEDGE PARTITIONING APPROACH

THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

OMTRI NALINI KUMARI

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES
SCHOOL OF MATHEMATICS & COMPUTER / INFORMATION SCIENCES

UNIVERSITY OF HYDERABAD

HYDERABAD - 500 134
INDIA

December 1994

CERTI FI CATE

This is to certify that the thesis work entitled "Cooperative Problem
Solving: A Knowledge Partitioning Approach" being submitted by
O. Nalini Kumari in partial fulfilment of the requirements for the award of
the degree of Doctor of Philosophy (Computer Science) of the University of
Hyderabad, is a record of bonafide work carried out by her under our

supervision.

The matter embodied in this thesis has not been submitted for the
award of any other research degree.

|52 yonse

Prof. B. E. Prasad 0. G Um

/ M M
\“\ \\ \V \fM
Prof. A. K. Pujari
Head

Dept. of C. I. S.

University of Hyderabad

Supervisors
Dept. of Computer and Information Sciences
University of Hyderabad

N« Ko vwe=

Prof. V. Kannan

Dean

School of M. C. I. S.
University of Hyderabad

DECLARATION

I, Omtri Nalini Kumari, hereby declare that the thesis work entitled Cooper ative
Problem Solving: A Knowledge Partitioning Approach is the bonafide work
carried out by me, as per the Ph.D. ordinances of the university. The matter em-
bodied in this thesis has not been submitted for the award of any other research

degree to the best of my knowledge.

!

Omtri Naini Kumari

To my parents

Smt T.C. Laithamma
&
Si O. Chenna Kesavulu

ACKNOWLEDGEMENTS

Though it is difficult to enunciate clearly dl the concern expressed for me by
several people, this is a small attempt to acknowledge their direct or indirect con-
tribution and support in making me complete the research programme.

In dl my humbleness, | express my sincere gratitude to my supervisors Prof.
B. E. Prasad and Dr. G. Uma for their guidance and support. | have benefited
from discussions with them and their valuable suggestions. | thank them for getting
important literature and providing me with necessary facilities.

Further, Prof. Prasad's confidence in me and concern for me brought me back
to this university for doctoral work. He has been very kind to sit for long hours and
advise me inspite of his busy schedule and administrative responsibilities a8 UOH.
| thank him for doing the needful even being oversess.

Dr. Uma has dways been friendly, ready to discuss any time (even at home)
and give hepful hints in many ways. She gave high priority to my work and has
been very keen on the successful and fast submission of thesis. | specially thank her
for patiently going through various versions of the thesis and making appropriate
corrections.

| thank Dr T S Perrgju for taking trouble to come over here and helping with
corrections to earlier drafts of the thesis, for giving me aerospace application rules
and other help. | thank Dr G Saraswati for being mK domain expert for the medical
diagnosis case study. Further, | thank Dr Ing-Ray Chen, Dr Klaus Fischer, Dr Denis
G rrlleel Dr K S Trivedi, Dr Narahari, Dr Sharma, and Dr Murthy for their papers
an p.

| thank Prof AK Pujari, Head, Dept of Computer Science for his suggestions
and encouragement. Further | express my thanks to Dr PS Rao, Mr Atul Negi, Dr
PV Reddy and Mr KN Murthy who were dways ready with their suggestions and
heI(J). | dso thank Prof PG Reddy, Dr AS Red ty Dr Arun Agarwal, Dr KC Reddy
anelf Dr P N Girija and other faculty members for their concern and interest in my
welfare.

Further, | wish to express my thanks to Prof V Kannan, Dean, School of MCIS,
and Dr Upendra Rao, Director, Computer Centre for providing me with necessary
facilities and encouragement.

My thanks are dso due to Mr Kameswara Rao, Mr Balakrishna, Mr EA Vinod
Kumar, and the gaff of Al Lab, department, school, computer center, hostel and
administration for their cooperation.

| thank my friends (and co-research scholars) Mr EVRC Mohan Reddy and Mr
Vasudev Varma for the patient proof reading of the thesis and other suggestions.
Mohan needs additional mention tor books and kind help in various ways particularly
during the last stages of thesis completion. | aso thank Dr Phanindra Babu, Mr
Prem Kumar and Ms Savita for sending the necessary papers, Mr Ananth Rao and
Mr Sateesh for figures.

| thank my close friend Ms P UmaRani for her company at HCU and al the help
she would be ready with even before | could realize the need. | aso thank her family
members Shri Ramgopal, Akhila, Smt Bhavani and Shri Radha Krishna Chetty, and

Dr Saraswati’s family members Dr G S Raman and Arunkumar for their help and
affectionate treatment.

Our family friends Dr. Mohan C. Vemuri and Mrs Aruna have been a source
of encouragement and mora support and made me fed a home during my stay at
Hyderabad. Their daughters Bindu and Sindu made me reoice in their affectionate
wr;pmy. | thank dl of them, other family members, Dr Mohan's students and
Kishan.

Then, | thank Dr Ravindra Kumar for his kind help at HCU. My thanks are also
due to the families of both Prof Prasad and Dr Uma.

Then, | take this opportunity to thank Dr M M Naidu, Mrs Satya and their
family for their help and support at Tirupati ever since | joined SVU. | am lucky
to be cared for by them. My thanks are aso due to Dr K V Madhumurthy, Mr P
Anganeyulu, Dr Raman Rao, and many other professors at Tirupati.

| also thank my co-research scholars Shiny, Ravindra Sharma, Lakshmi Narayana,
U.V.Ramanaiah, Rg{)u and Bharadwag] for being kind to me. My stay in the hos-
tel is made memorable in the company of Rukmini Devi, Nancy Sailgja, Nirmala,
Hema, Rama Devi, Anuradha, Srikala, Indira(s), Poornima, Uma(s) and other hostel
mates. My thanks olse te Chakravarthy, Ramesh Babu, Bhanu Murthy, Vijaya Lak-
shmi, Vedavathi, Geetha, Saigeetha, Vijaya, Radha, Nirupama, Rekha, Jayaprabha,
Saro and so many others.

| am grateful to my parents Smt Lalithamma and Si Chenna Kesavulu for be-
ing my firg teachers and for the careful planning of my studies and career. Along
with an;z parents, my sisters Bhanumathi, Swarna Latha, Revathi, and my brothers
Subhash Chandra Bose and Diwakar Babu are aways with me with their abun-
dant affection and support to see me succeed in adl my endeavours. | acknowledge
their direct help in the completion of my Ph D work as well. My (maternal) grand
father S Chengaraya Naidu, and ‘(faternal) grandmother Smt Govindamma de-
serve mention for their protection and affection. | thank Bhanu's husband Mr Surya
Prakash, several of my aunts and uncles and other relatives who helped us. My
neice Neeharika deserves speciad mention for dl her love and good wishes for me.

Finaly, | thank the Council for Scientific and Industrial Research for provid-
ing the financial support by awarding their Senior Research Fellowship and Sri
Venkatesvara University, Tirupati for being kind enough to grant me two years
of study leave to complete my doctoral work.

| kneel before the Almighty for his kind blessings and helping me reach this stage,
and mother Nature for dl the inspiration.

ABSTRACT

Knowledge distribution plays an important role in Cooperative Problem Solv-
ing. It is very closdly related to, and actually leads to task decomposition in some
domains like monitoring appllcanons However, the eolproblem of task decomposi-
tion has not been adequately addressed by Distributed Al (DAI) community. An
appropriate knowledge distribution also balances the load, prowdes fast access to
the knowledge base, reduces pattern matching time for reasoning, and reduces in-
formation exchange and inconsistency problems. Further, it facilitates distributed
reasoning and modelling of agents.

This thesis proposes a knowledge distribution approach to Cooperative Problem
Solving. The man objective is to partition domain knowledge and allocate the
resulting subsets to agents in a distributed production system statically as wel as
dynamically. Both production rules and data are distributed to agents in order
to speed up processing and minimize communication. The second objective is to
provide mechanisms for distributed reasoning to seek data and partial results from
other agents during actual problem solving.

The need for the present work arises due to the following reasons:

* Many distributed A1 domains like Hearsay Il adopt a general functional de-
composition strat?y which is domain dependent. Also, efficency issues like
load balancing and faster processing are usualy not considered.

» Related work in single processor and multiprocessor siéstems IS not suitable
for DAl systems per se. Besdes considering factors like distance, heteroge-
neous partitioning and working memory distribution, distributed reasoning
has to be facilitated for effective ,oroblem solving. Moreover, the complex in-
terdependencies among the knowledge subsets in DAI systems require specia
consideration while distributing knowledge dynamically.

» Since optimal partitioning is an NP-complete problem, heuristics which obtain
agood partition quickly may some times be preferable to costly techniques that
obtain a better solution. In case an optimal partition is aso necessary, the
partition obtained as above can be used as agood initial partition to generate
the optimal one. Such a partition can speed up the process of obtaining
optimal partition and/or improve the quality of the solution. However, there
IS no proper heuristic to do this.

In this thesis, an attempt has been made to solve these in three stages.

First, a linear time static knowledge base partitioning heuristic is proposed.
Given a rulebase and the proportion in which rulebase subsets are to be obtained,
it constructs a knowledge graph, generates a long spanning tree and partitions the
rules in the given ratio by cutting along its chain. Rules are assigned to subsets such
that interdependencies and data Inconsistencies are minimized, and load is balanced.
The metaknowledge maintained with each subset facilitates distributed reasoning.

The static partitioning algorithm is extended for distributing knowledge dynam-
ically. Techniques for distributing knowledge dynamically for load balancing, i.e.,
with minimum loca changes and by repartitioning the entire knowledge graph based
on the run time behaviour, are proposed. Dynamic distribution for catering to
changes to the knowledge base, and problem based dynamic allocation are also dis-

cussed.

Finaly, a distributed reasoning heuristic is proposed for obtaining information
from other agents. This iS necessary when an agent cannot proceed with local
inferencing and needs nonloca information. The decison of what information has
to be asked for is made based on rule firing likelihoods and dynamic occurrence of
data. Reguests are sent to agents with high utility value which is calculated based
on the agent's past performance and the ability to generate or send that particular
piece of information.

‘Working of these algorithms is tested with an aerospace vehicle checkout appli-
cation and a medical diagnosis application.

Table of Contents

Abstract i
List of Figures IX
List of Tables X
1 Introduction 1
11 Motivation = . . . 1
12 Distributed Artificial Intelligence(DAD. . =~ . . . 2
121 Arenas L 3

122 Distributed Al vs. Decentralized Al 4

13 Cooperative Problem Solving(CPS). 5
131 Cooperation 5

132 Styles of cooperation 6

133 Modes of cooperation 6

134 Forms of cooperation . .~ 7

14 Role of Knowledge DistributioninCPs = . = . . .~ 8
141 Task Decompostion and Allocation = . = 8

142 Coherence and Coordination . . .~ 10

143 Interaction 11

144 Agent Moddling .~ 12

145 Reconciling Disparities . . = 13

146 Knowledge and Structures for Task Decomposition . .~ . 13

147 Knowledge Base Access =~ = 14

15 Our Modd of the System and Agents . . .~ 14
16 Objectives of the Research . .~ 16

17 Organization of the thesss =~ 16

2 Knowledge Distribution

21
22

2.3

24

25

Types of Knowledge
Knowledge Distribution . .~~~ . . .

221 Tasks involved in Knowledge Distribution

222 Types of Knowledge Distribution . .~ . . = . = . .
Partitioning/Allocation Techniques = =~ = . . = . .

231 Information-theoretic and Probabilistic Approaches

232 Clustering
233 Graph Partitioning
234 Smulaed Anneding

235 Knowledge Distribution Vs. Program Distribution
Related work on Knowledge Partitioning and Allocation

241 Knowledge Partitioning
242 Knowledge Allocation = .~
Conclusons

3 Static Knowledge Base Partitioning and Allocation

31
32
33

34

35

Introduction
Cutset Based Knowledge Base Partitioning = = .
itway Partitioning of the Knowledge Graph = . .
331 Generation of a Spanning tree
332 Finding Chain .~
333 Making edges for decompositon . .~
334 Initid Decompostion
335 Boundary Refinement
336 Partitioning Algoritm .~ .~ .~
Examples =

341 Case 1. Two subsets in the proportion 2: 1

342 Case 2. Three subsets in proportion 12121 =~ . . .

Disconnected Components in the Knowledge Graph
35.1 Partitioning Disconnected Knowledge Graphs

Vi

36
3.7

38

Obtaining Functional Decomposition. 78

Knowledge Subset Allocation 79
371 Allocation Algorithm 80
372 Example2 82
Conclusons . .~ . . . 83

Static Knowledge Base Partitioning and Allocation: Case Studies 90

41 Case Study 1 : An Aerospace Vehicle Checkout Application = . . 90
411 Partitioning in the given ratio for Load Balancing = = . . = 90
412 Functional Decomposition 99
413 Discusson . . . 101

42 Case Study 2 Medica Diagnosis of Acute Abdominal Pains =~ . . 101
421 Partitioning in the given ratio for Load Balancing = . = . = 102
422 Functiona Decompostion 104
423 DISCUSSON e e e 105

Dynamic Knowledge Distribution 107

51 Introduction 107

52 Dynamic Partitioning and Allocation with Load Balancing = . = . 111
521 Locd transfer of Knowledge for Load Baancing = = . = = . . 114

522 Repartitioning and Reallocation of the Entire Knowledge Graph 124
523 Adaptive Reorganization for accommodating Changes to Knowl-

edgeBase = = 130

524 Locd Reorganization using Active and passve sets . = . . 132

53 Problem Based Knowledge Distribution 133
54 Conclusons 137
Distributed Reasoning with Incomplete Information 138
6.1 Introduction 138
62 Related Work = . 139
6.3 Reasoning in Distributed Production Systems = =~ = .~ . = = . = . 143
6.31 Reasoning in Production Systems 143

Vii

6.3.2 Reasoning with incomplete information in Distributed Pro-

duction Systems 145

6.3.3 Algorithm = 150

64 Case Studies . . . 153
64.1 Aerospace Vehicle Checkout Application = = .~ . = 14

6.42 Medicd Diagnosis Application 156

65 Conclusons . = . . . 161

7 Conclusions 163
71 Summary. . . 163
72 Discusson . 165
73 Future Directions . .~ . . . 167

A Rules and Object Structure for Aerospace Application 168
B Rules for Medical Diagnosis Application 173
C Test Results 183
193

Bibliography

viii

List of Figures

31 Knowledge Graph for Example Rulebase 2 =~ = = = = .~ = . . 43
32 Components obtained with cutset {GI,BC}for Example Rulebase 1 . 45
3.3 A Spanning Tree for the Knowledge Graph of Example Rulebase 1 . . 47

34 Knowledge Graph for the Example Rulebase 2 =~ = = = =~ =~ . = . 83
35 A Spanning Tree for the Knowledge Graph of Example Rulebase2 . . 84
36 A 2121 Partition of the Example Rulebase2 = = = . = = 85
4.7 Knowledge Graph for a portion of Aerospace Rulebase ©= =~ = = . = 92
48 A Spanning Tree for the Knowledge Graph of Aerospace Rulebase . . 93
49 Knowledge Graph for a portion of Medical KB. . =~~~ = . .~ . . | 103

510 A 2:1:2:1 Dynamic Partitioning of Rulebase 2 using Loca Changes . . 123
511 A 21:2.1 Dynamic Repartitioning of Rulebase2 =~ . =~ = = = . = 129

A. 12 Object Structure for the Aerospace Syssem = =~ . .~ . . = | 10

List of Tables

3.1 Degree information for the Knowledge Graph for Example Rulebase 1 44

3.2 A 21 Partition of Example 1 Rulebase . . = 711
3.3 A 111 Partition of the Example 1 Rulebase = 73
34 A 2:1:2:1 Partition of Example Rulebase2 . . .= 86
45 A 11 Partition of the knowledge graph of Aerospace Rulebase 95
4.6 A 21 Partition of the Knowledge Graph for Aerospace Rulebase ... 97
4.7 A 121 Partition of the Knowledge Graph for Aerospace Rulebase . . 99
4.8 A Functional Decomposition for the Aerospace Rulebase . . = . . 100
49 A 21 Partition of the Medical Diagnosis Application Rulebase 105

5.10 A 2:1:2:1 Dynamic Partitioning of Rulebase 2 using Local Changes . . 124
5.11 A 2:1:2:1 Dynamic Repartitioning of Rulebase2 = = = 130

Chapter 1

| ntroduction

This chapter presents the motivation and the need for research on knowledge distri-
bution. Section 11 presents the motivation. Section 12 gives a brief introduction
to Distributed Artificia Intelligence (DAI) and its subareas. Section 13 describes
the styles, modes and forms of cooperation used in Cooperative Problem Solving
(CPS). Section 14 discusses the issues involved in CPS and explains the role of
knowledge distribution in each. Section 15 describes our model of the CPS system
and section 16 defines the objectives of the research. Finaly, section 17 presents
the organization of the thesis.

1.1 Motivation

The area of Distributed Al has gained importance as a mgjor paradigm for prob-
lem solving in computer science as wel as in a variety of disciplines like robotics,
linguistics, organization theory, biology and psychology [30, 50, 113]. This can be
attributed mainly to the following reasons.

» Unlike traditional AI systems, DAI offers advantages like reliability, availability
and speedup through parallelism.

* It concentrates on the aspects of communication and cooperation which are
very important for solving complex rea life problems. For example, diagnosis
and treatment of a patient, military decison making and interpretation of ge-
ologica data require cooperation among the participating experts [131]. Even
a smple task such as diagnosis of a minor aillment often needs cooperation
between a physician and a laboratory technician. DAI helps to understand
the cooperation that is essential among (groups of) problem solvers.

Chapter 1. Introduction

* DAI helps to develop new theories, methods and tools that are needed to
understand, design, construct and test such complex systems.

In order to exploit the advantages of DAI, tasks must be decomposed and dis-
tributed t0 the problem solving entities caled agents. Task decomposition and
alocation are, therefore, important issues in DAI. However, the difficulty in decom-
posing a given DAI problem into independent subproblems, the uncertainty present
in the problem domain and the possible geographic separation of agents necessitate
alot of interaction among the agents. Since communication is costly and will remain
so a least in the foreseeable future, it must be kept at a low level such that the
improved performance due to paralelism does not get abrogated due to excessive
communication. In this regard, it is observed that information exchange can be min-
imized by distributing tasks, knowledge and data with minimum interdependencies.

Once knowledge, data and tasks are distributed to agents, in the course of prob-
lem solving, the agents need to reason about what information they need to exchange
in order to solve the problem, with whom, and when. Requesting for the most useful
information from potential donors at the appropriate time, and acceptance of roles
by agents permit smoother cooperation without much communication.

Proper distribution of knowledge and data helps in task decomposition and alo-
cation, and facilitates distributed reasoning if metaknowledge about other agents is
provided with each agent. Further, it improves the efficiency of the system in terms
of faster processing, load balancing with less communication, minimizing data in-
consistencies and sometimes the maintenance of the knowledge base.

However, in the earlier work reported in literature, knowledge partitioning is
ignored as a tool for obtaining optimal task decomposition besides having advantages
like efficent distributed inference. This thesis explores the knowledge partitioning
approach for achieving these in Cooperative Problem Solving.

1.2 Distributed Artificial Intelligence(DAI)

DAl is concerned with the collaborative solution of a globa task by a distributed
group of entities. Entities range from simple processing elements to complex ones
exhibiting rational behaviour. Problem solving is a collaborative process in the sense

Chapter 1. Introduction 3

that mutual sharing of information is necessary to dlow the group as a whole to pro-
duce a solution, or to successfully accomplish the global task. The group of entities
Is distributed in that both control and data are logicaly, and often geographically
distributed. According to Bond and Gasser [9], DAI is concerned with distributing
and coor dinating knowledge and actionsin multiple agent environments.

1.2.1 Arenas

Depending on the number of problems being solved, their nature and the way in
which they are distributed, three arenas are identified: Distributed Problem Solving,
Multi Agent systems and Parallel Al. Each of these is elaborated below.

Distributed Problem Solving (DPS)

A single problem is envisioned for the entire system of agents and typical problem
solving involvesproblem decomposition, subproblem allocation, subproblem solution
and solution synthesis. Depending on the application, the complexity and the im-
portance of each of these phases vary. DPS mainly deas with interactions of groups
of intelligent agents which act together.

DPS differs from Distributed Processing in many ways [115, 120]. In Distributed
Processing, activities of agents carrying out independent and disparate tasks are to
be synthesized. Mgor motivation is to reconcile conflicts arising from these activities
for exploiting advantages of multiprocessing. Distribution implies spatial distribu-
tion of data, and usualy there is no distribution of function or control. Further,
most processing is done at a central site, while remote processors are basically data
collecting entities. There is a lack of substantial cooperation in most Distributed
Processing systems.

In DPS, available resources do not have predefined roles, agents are homogeneous
and can solve any of the subproblems. The main issue is to develop frameworks for
cooperation between willing entities rather than enforcing cooperation as a compro-
mise between unwilling or incompatible entities. A DPS system may be adaptive to
uncertainty in problem solving knowledge, but not to alternative problem contexts
or to changing problem solving roles for modules [9].

Chapter 1. Introduction 4

Multi Agent Systems(MAS)

These are dso caled as Collaborative Reasoning Systems [109] and are concerned
with coordinating the knowledge, goals, skills and plans of autonomous intelligent
agents so that they can jointly take actions or solve problems [9]. Agents may work
towards a single globa goad or multiple gods that interact in some way. Like DPS
system agents, these agents also share knowledge. Achieving coordination is quite
difficult, for there may be situations as in open systems [60, 61, 62] where there is no
possibility for having globa control, globally consistent knowledge, globally shared
goas or god success criteria, or even agloba representation of the system. A multi
agent system may be able to form and restructure coordination frameworks based
on emerging contexts and changing problem solving roles without the intervention
of a programmer.

Parallel AI

This is concerned with developing parallel computer architectures, languages and
algorithms which are primarily directed towards solving performance problems of
Al. Examples of such systems include AGORA [8] and AF [56]. Paralel Al dif-
fers from the other two arenas because it does not am to advance the conceptual
understanding of the nature of reasoning and intelligent behaviour among multiple
agents. For example, Connectionist systems comprise a collection of a large number
of computation elements which need not be intelligent. These systems may be able
to adapt to tempora uncertainty, but not to alternate solution paths and loss of
problem solving knowledge [9].

However, DAI focusses mainly on approaches to the problems of distributing and
coordinating knowledge and actions, and hence on DPS systems and Multi agent
systems.

1.2.2 Distributed AI vs. Decentralized AI

A very closdy related and much talked about areain 1990’s, particularly in Europe
is Decentralized Al (DzAI) [30]. It is concerned with the activity of an autonomous
agent in amulti agent world. The term agent is used in a broader sense to designate

Chapter 1. Introduction

an intelligent entity which acts rationally and intentionally with respect to its own
gods and the current state of the knowledge. Each agent has its own existence, which
Is not affected by the existence of other agents. Severa autonomous intelligent agents
coexist and may collaborate with other agents in a common world. Each agent may
accomplish its own tasks, or cooperate with other agents to perform a personal or
globd task [30, 112].

Both DAI and DzAI have common interest in the behaviour of distributed enti-
ties. However, in DAI, a globa task is initially defined and the problem is then to
desgn distributed entities to solve this globa task. The main issue here is to study
the distribution and collaborative solution of the given task. In contrast, DzAI is
concerned with how a group of predefined decentralized autonomous agents are able
to achieve tasks that may be of interest to a single agent or several agents. The main
issue in DZAI is the study of the structure of the autonomous entities to provide
insights into what kinds of problems these entities are able to solve.

1.3 Cooperative Problem Solving(CPS)

Problem solving in both DAl and DzAI can be divided along the axis of cooperation.
Though agents cooperate most of the time, due to reasons like conflicting goals,
agents may be noncooperative in some domains [106, 132]. In this thesis, we are
concerned about agents that cooperate to solve a single problem, and therefore about
Cooperative Problem Solving.

1.3.1 Cooperation

Cooperation is required for coordinating the actions of multiple problem solvers.
Werner [122, 123] defines cooperation as the process of mutual social action that
leads to individual and social goals. It emerges out of the mutual adjustment of
intentions of the participating agents which results from communication, from the
proclivity to engage in a cooperation style, and from the cooperation style itself.

Though cooperation is usually considered to be aform of interaction which results
from communication, Genesereth, Rosenschein, Ginsberg et al. [52, 54] discuss about
cooperation that is essential when communication is not possible between agents.

Chapter 1. Introduction 6

Ther model is based on game theory techniques and makes use of payoff matrices.
Certain assumptions about rationality of the agents helps to make reasonabl e choices
without communication.

1.3.2 Styles of cooperation

Depending on the degree of cooperation extended to another agent, agents can in-
teract in avariety of styles, viz., totally cooperative, self-interested, antagonistic, and
self-destructive, or a combination of these [122]. These styles reflect the intentions
and the compromise an agent is willing to make. However, these styles are agent
and context dependent. They evolve based on the ranking and evaluations an agent
makes of its own and other agents' goals.

1.3.3 Modes of cooperation

In an orthogonal direction, Zhang and Bell [131] classfy cooperation among experts
into four predominant modes based on their interdependence relationships. horizon-
tal cooperation, tree cooperation, recursive cooperation and hybrid cooperation.

Horizontal cooperation is seen when each expert in the cooperative group can
get solutions to problems without depending on other experts. But, if the experts
cooperate, possibly using different expertise and data, they can increase confidence
in their solutions. For example, the cooperation between doctors for diagnosing
patients often illustrates horizontal cooperation (eg. the second opinion syndrome).
Consultation and comparison of opinions add significantly to the value of the diag-
nosis.

Tree cooperation is demonstrated in situations where a senior expert depends on
ajunior expert in order to get solutions to problems. For example, a chief engineer's
decision often depends on the work of junior engineers.

Recursive cooperation is seen in situations when differcnt experts depend on
each other in order to get solutions to problems. For example, in order to interpret
geological data, geophysica experts and geochemica experts often depend on each
other in arecursive way. There is a recursive dependence when a geophysicist asks
ageologist to perform a subtask who in turn depends on the geophysicist for solving

Chapter 1. Introduction 7

some other (sub)subtask.

Hybrid cooperation is manifested in situations where different experts use hori-
zontal cooperation at some leve in an overal tree or recursive mode of cooperation.
On the other hand, they could equally use tree or recursive cooperation at some
point in an overal horizontal cooperation. An example of the former is where sev-
eral opinions are obtained in order to optimize the quality of the find result coming
from the engineers a a given leve of seniority in the tree cooperation.

1.3.4 Forms of cooperation

According to Smith and Davis [115], cooperation among agents may be exhibited
in the form of task sharing and result sharing. This refers to the content or what
(information) IS t0 be communicated between agents, and its use by an agent for
cooperative problem solving.

In task sharing, the given problem (or task) is divided into suitable subproblems
(subtasks) and allotted to different agents for solving. Agents cooperate by sharing
the subtasks to achieve the main task. However, this requires that a problem be
decomposable into more or less independent subproblems.

If the given problem cannot be easily decomposed into nonoverlapping subprob-
lems, there may be a necessity to share the temporary partial results obtained by
different experts. Thisis cdled result sharing. Recursive or hybrid cooperation may
be necessary in that the individual agents must cooperate by exchanging partial
results and other information. In Functionally Accurate/Cooperative approach to
problem solving [38, 82, 83], network problem solving is structured so that nodes co-
operatively exchange and integrate partial, tentative, high-level results to construct
a consistent and complete solution.

While the exchange of intermediate results is the main thrust in result sharing,
sharing of external input data may be treated as data sharing. In this thesis, we
consder sharing of both intermediate results and data, and cal it as information
sharing.

Joint action [73] is another form of cooperation when the actions of agents are
intertwined, the problem is not decomposable into independent subproblems and

Chapter 1. Introduction 8

agents must share partial results and future plans. However, this differs from task
and result sharing because it is a reciprocal process in which participating agents
augment their actions to comply with those of others. Relevant examples include
severd agents lifting a heavy object, musicians in an archestra, driving in a convoy,
and playing cricket. Jennings proposes joint intentions as a model of Multi-Agent
cooperation [73].

14 Role of Knowledge Distribution in CPS

The important issues in CPS are task decomposition and allocation, coordination,
coherence, communication, resolution of disparities and modelling of other agents.
Knowledge distribution plays a crucia role in most of these issues as explained

beow.

141 Task Decomposition and Allocation

Task decomposition becomes necessary when atask requires more knowledge or more
resources than what are available with an agent. A task must be properly described
and formulated so that it can be decomposed and its subtasks are allocated to
agents [9, 109]. Task description is the statement of the problem and the expres-
gon of dependencies among subtasks in a suitable language. Task formulation is a
representation of the problem which decides on the boundaries of the problem and
on what is known and what is not. Depending on the task description and formula-
tion used, a task may give rise to different subtasks and different interdependencies.
Dynamically changing patterns and contexts may require decomposition to undergo
revison. Therefore, intelligent approaches to task decomposition must consider rep-
resentation of tasks as well as dimensions of decomposition.

The dimensions of decomposition include knowledge, location, abstraction, time
and available operators that can be applied to perform subtasks. Along these di-
mensions, decomposition can be done based on abstraction, data dependency and
data partitioning, effective use of resources, divison by function or product

and other organizational and management criteria. Commonly used methods
to obtain such decompositions are inherent decomposition, hierarchical planning,

Chapter J. Introduction

decomposition by programmer, load balancing, minimally connected subgraphs and
subtask aggregation [9].

Once the main task is divided into suitable subtasks, task allocation involves the
assgnment of tasks to agents that will actually perform them. Criteria for task
alocation include bottleneck avoidance, fitness to specification, overlap in roles,
uncertainty avoidance, reliability, urgency and resource consumption. Resource
alocation is arelated problem and is a way of prioritizing subtasks. An example is
the Scientific Community [78] in which a sponsor based resource allocation is made.

There is little work reported in DAI literature that addresses automated prob-
lem formulation and decomposition. Greater effort has been put into task aloca
tion mechanisms assuming a priori knowledge and task decomposition. For exam-
ple, Contract Nets [115] and DVMT [36, 37, 84] address opportunistic allocation
of tasks assuming the subtasks and knowledge partitioning ara provided by the de-
signer. Actors [78] treat the alocation decison as dynamic but task description and
decomposition decisions are not addressed by them.

In this context, we see that al the conceptua distances that define distribution
in a DAl system, as mentioned in [9)], refer to the use of knowledge in some form or
the other. For instance, computational cost, spatial distance and temporal distance
define distribution based on the cost of using a piece of knowledge with respect to
location or time; the others, viz., logicd distance and semantic distance use logica
dependency between portions of knowledge base and their practical use respectively.

Further, tasks that have strong knowledge production and consumption relation-
ships may be grouped together. This introduces task coordination and precedence
constraints that affect allocation decisons because a node cannot work until another
has finished its task [36]. These task precedences are atype of task interdependency.
Without adequate interaction capacity, matters of consistency, definition or direc-
tion should be addressed by the node with the most global view [124].

In addition to knowledge, data plays an important role in task distribution. Data
dependencies among the tasks along the axes of semantics, logica dependencies or
temporal dependencies can serve as bases for decomposition choices. Tasks can be
decomposed by taking into account the natural or dependency related partitions in
input data. In Distributed Sensor Nets (DSN) [83, 85], spatial distribution of data

Chapter 1. Introduction 10

provides a natural basis for task decomposition. It is adso related to divison by
product or function and resource minimization. Further, metrics may be defined to
measure these dependencies among data and to obtain a suitable task decomposition.

From the foregoing discussion, it can be observed that task distribution is closaly
related to distribution of knowledge and data (input data or intermediate results).
Knowledge/data distribution may itsdf lead to task distribution. This is partic-
ularly true for some applications like data driven distributed expert systems and
distributed data bases. Therefore, we approach task decomposition problem from
the knowledge/data base partitioning perspective.

142 Coherence and Coordination

Coherence refers to how wel the system behaves as a unit with respect to the
solution quality, efficency, clarity, or graceful degradation [9] of the whole system
or only some part of it. Coherent behaviour requires satisfying three conditions
namely coverage, connectivity and capability. Coverage must ensure that al neces-
sary portions of the overdl problem are included in the activities of a least one
agent; connectivity implies that agents must interact in a manner which permits the
solutions for the covering activities to be developed and integrated into an overall
solution; finally, coverage and connectivity must be achievable within the network's
capability such as communication and computation resource limitations.

Coordination is a property of interaction among groups of agents performing some
task collectively [122, 123]. The degree of coordination exhibited is the extent to
which agents can avoid extraneous activity in achieving their primary ends. Effective
coordination implies some degree of mutual predictability and lack of conflict.

Coordination and coherence can be increased by reducing the dependencies
among agents through a good task decomposition and increasing the supply of re-
sources. Better coordination leads to greater efficiency in coherence through reduc-
tion in articulation work.

We facilitate better coordination and coherence by a good task decomposition
which in turn is achieved through partitioning data and knowledge with minimum
dependencies. Task decomposition and allocation done considering capacities of
agents, communication links and distance between agents, with an aim to minimize

Chapter 1. Introduction

the interdependencies ad the information exchange ensure capability, connectivity
and coverage. A static alocation reduces the need for coordinating the task alloca-
tion. If the situation changes dynamically, dynamic distribution is the solution. We
consider both static and dynamic distributions of knowledge and data, and reasoning
about nonloca information that is required for solving a subproblem.

In this context, it is both important and interesting to note that Malone and
Crowston [90] aso define coordination as a process of managing interdependencies
among activities. They explain the possibility of managing the activities and mon-
itoring solution progress by making use of dependencies like producer/consumer
relationships, simultaneity constraints and task/subtask relationships.

1.4.3 Interaction

It is usualy difficult to decompose a given DAI problem into nonoverlapping sub-
problems. Because of this, agents are required to interact so that they can combine
their efforts and solve the problem. Interaction may be defined as a type of collec-
tive action in MA or DPS systems wherein one agent takes an action, or makes a
decision that has been influenced by knowing about another agent [9]. Multiagent
interaction needs to consider issues like

» among whom the interaction takes place

when the interaction occurs (temporal or causal)

what the context is

how the interaction is accomplished

why the interaction occurs

what the basis of communication is.

Interaction for cooperation needs additional features like sharing of common
knowledge and a communication protocol that dlows for differences when agents
possess disparate knowledge and use different knowledge representation schemes.

One of the mgor goals of knowledge distribution is minimizing interaction. In
this thesis, we are mainly concerned with information exchange that is essential for

Chapter 1. Introduction

resolving the incompleteness of loca knowledge or data. Seeking and sharing of
partial results can be minimized by reducing the dependencies among the subtasks.
In data driven expert systems, the communication required for task decomposition
and allocation can be completely eliminated by a good partitioning of knowledge
and data which takes care of such dependencies. In other systems, it leads to task
decomposition with less communication. We provide strategies for reducing the
communication for information exchange further and for better coordination.

144 Agent Modelling

Moddling of other agents (by an agent) is important for meaningful interaction,
communication, coordination, control and task allocation. Agent models are use-
fu for predicting the requirements and effects of events that cannot be directly
sensed. This results in reduced communication by reducing the necessity of sharing
conforming information, and leaving communication channels free for surprising,
unpredictable information. Agent models are also ussful for evaluating credibility,
usefulness, reliability and timeliness of data.

Task alocation requires knowledge of what potential tasks the agents can per-
form. Knowledge of agent capabilities and responsibilities provide a way of reducing
task-allocation overhead. Coordination requires an agent to reason about its own
activity, its effects on other agents as wel as those of others and thus have network
awareness [36]. Knowledge about solution progress is important to detect deadlocks
and liveness, and to predict whether it will be useful to exchange any informa
tion with another agent. Knowledge of beliefs, plans, gods and actions of others
IS necessary for reasoning about communication and synchronization of plans. For
meaningful interaction, agents must have at least implicit knowledge about each
other on communication protocols or languages and should know what reaction to
expect from another on sending a message. Further, modelling requires knowledge
about whether agents are sdf-organizing or adaptive, their interrelationships, de-
fault expectations, knowledge and beliefs of others, and about the communication
links. However, completeness of models of other agents is difficult to achieve because
it requires duplication of processing and consideration of several conflicting issues
like communication, computation, speed and efficiency.

Examples of agent models include acquaintance data bases of MACE [49], partial

Chapter 1. Introduction

globd plans [34, 35], production lattice models, process assembly networks and
problem solution graphs [9].

As indicated earlier, agent models improve eficiency by focussing activity or by
directing search. Knowledge of the data and resource requirements of other agents
prevents unnecessary communication, and may engender early communication of
important data. Agent models aso help to know where to get particular information
and about its availability [29, 65]. Focussed addressing reduces bidding delays and
overheads. We achieve this by providing metaknowledge [65] with each agent and
using utilities of agents for obtaining information. In addition, agents are defined
by the knowledge and data assigned to them and hence the subtasks to be carried
out.

1.45 Reconciling Disparities

Disparities that result from incomplete knowledge can be resolved by identifying
and communicating the required knowledge. This may require reasoning about the
knowledge state of separate agents [9]. Achieving common knowledge among agents,
however, can be impossible in the face of communication unreliability. Provision of
metaknowledge about the information requirements of other agents, and the knowl-
edge of agents which could provide the required information help to resolve the
incompleteness of local data or knowledge.

146 Knowledge and Structures for Task Decomposition

There has been very little research into what kinds of knowledge and what structures
are required for automatic task description and decomposition. These are necessary
if agents in a DAI system are to jointly construct and recognize their own problems.
Integrating multiple perspectives and ideas from other disciplines like distributed
computing is essential to solve the problem [9]. In this direction, we have developed
graph-theoretic techniques and successfully used them for this purpose [9g, 99].

Chapter 1. Introduction 14

1.4.7 Knowledge Base Access

In generd, it is difficult for agents to have easy and fast access to large and possibly
shared knowledge[9]. A few attempts have been made to integrate knowledge base
access methods with DAI blackboard shells like GBB [23, 48] and BB1 [94] which
incorporate high level knowledge structuring and knowledge access mechanisms, and
pattern-directed retrieval of data. MACE [49] provides associative data bases within
agents. For rule bases, about 90% of the time is consumed in pattern matching [44].

Knowledge base partitioning is an attempt in this direction to make access faster
with smaller subsets. However, arbitrary partitioning will increase communication
overhead. Therefore, techniques which can partition and allocate knowledge such
that both access time and resulting communication overheads are reduced are of
paramount importance. We make an attempt in this direction.

15 Our Model of the System and Agents

A Cooperative Problem Solving system may belong to any of the following cat-
egories. DPS, MA, Parald Al or DzAl systems with cooperating agents. The
assumptions about our modd of agent and the Cooperative Problem Solving system
are given below.

Agent

An agent has its own local memory and processor. Communication among agents is
by message passing. Agents could be heterogeneous with respect to their capacities,
and the knowledge possessed by each. Each agent is assigned a different portion of
the knowledge base. However, the reasoning model and the knowledge representation
scheme (production rules) used by dl the agents are assumed to be same.

External input data may be obtained through sensors. The extent of duplication
of datamay vary from nil to full. Similarly, knowledge may or may not be duplicated.
However, unless functional completeness is required, we do not prefer duplication of
knowledge. Therefore, our agents can be considered as semi-autonomous problem
solvers which cooperate by exchanging the required information.

Chapter J. Introduction

Cooperation

As long as there are no other pending tasks, agents answer other s’ requests for
information immediately.

Mode of cooperation could be horizontal, tree or recursive, depending on the
type of data or partial result exchange between agents. Both task sharing and
result (information) sharing forms of cooperation are used. However, task sharing is
made implicit by the distribution of knowledge and data, predefining the subtask to
be carried out by each agent, particularly when knowledge is distributed statically.
Even if knowledge is distributed dynamically, the task assignment remains fixed
until knowledge distribution is changed again.

A single problem is considered for solving by the entire system of agents. There
Is no duplication of processing by the agents. But, the questions to be answered are:
How is the main task decomposed and allocated? What criteria need to be consid-
ered in this? What is the objective? How can tasks be distributed evenly among the
agents with minimum communication? When should the agents be interacting with
each other? How should their activities be coordinated? Knowledge partitioning
provides solutions to these and leads to effective cooperation.

Subarea

Since our interest is in solving a single task, the goa of dl agents is the same. Each
agent attempts the subtask assigned to it while cooperating with others. Futher,
as knowledge partitioning helps to decompose the main problem, knowledge
partitioning may be considered as a DPS problem.

Besides making task decomposition and allocation easier, in our approach, co-
ordination is facilitated by a proper distribution of knowledge and data, providing
metaknowledge and distributed reasoning algorithms to resolve incompleteness of
information. Coordination, communication, cooperation and resolution of dispari-
ties are achieved by exchanging useful information. The distributed reasoning and
coordination problems are applicable to MA and DzAI systems as well.

The proposed knowledge distribution techniques for fast access to knowledge and
data, and the methods for reducing communication are a step towards improving

Chapter 1. Introduction 16

the performance of the system. This aspect is specific to Parallel Al systems.

Similarly, knowledge distribution can be considered as a DzAI problem as it helps
to define agents by allotting portions of knowledge, data and some metaknowledge
about the information requirements of agents. This is also true as we assume a fixed
number of agents to be already existing in severa cases of distribution.

Since we assume that agents attempt to solve a single problem in a cooperative
fashion, it is basically a contribution to Cooperative Problem Solving.

1.6 Objectives of the Research

The main objectives of this research are to develop

» afast domain independent, heterogeneous knowledge base partitioning tech-
nique which doesn't duplicate knowledge, balances load, reduces communica-
tion, facilitates reasoning, task decomposition and reduces inconsistency prob-
lems, the partition obtained can be used as it is or serve as a good initial

partition for generating an optimal partition
* techniques for dynamic distribution of knowledge and data

» adistributed reasoning strategy for further effective information exchange by
seeking useful information from satisfactory and potential donors.

1.7 Organization of the thesis

Chapter 2 surveys related work on knowledge distribution. It gives an account of
the types of knowledge, importance of kncwledge distribution in general, and tasks
involved in knowledge distribution. Further, it discusses various types of distributing
knowledge and data and their effect on exchange of partial results. Lastly, it presents
a survey of earlier work in DAl as wdl as related areas like parallel production

systems and single agent systems.
Chapter 3 describes domain independent techniques for statically distributing

knowledge based on data dependencies. It proposes a linear time knowledge par-
titioning heuristic for a connected knowledge graph and another for dealing with

Chapter 1. Introduction 17

disconnected components. Further, obtaining functional decomposition is discussed.
Then, another method is presented for allocating the resulting subsets to different

agents.

Chapter 4 presents two case studies, viz., an aerospace vehicle monitoring ap-
plication, and a medica diagnosis application.

Chapter 5 deals with dynamic distribution of knowledge. It presents techniques
developed for baancing the load dynamically by limiting the necessary changes
to neighbouring agents as far as possible, by repartitioning and reallocating the
knowledge base, and for adaptive reorganization to accommodate the changes to
the knowledge base as a result of newly acquired knowledge. Finally, problem based
dynamic knowledge distribution is discussed usng examples from medical diagnosis

domain.

Chapter 6 presents the distributed forward reasoning strategy to resolve the
incompleteness of knowledge which arises due to distribution. Distributed forward
chaining production systems are considered, and examples from the above domains
are presented.

Finally, chapter 7 summarizes the main contributions and concludes with direc-
tions for further research.

Chapter 2

Knowledge Distribution

This chapter introduces the terminology and concepts, and discusses the related
work on knowledge distribution. Section 2.1 presents the different types of knowl-
edge. Section 2.2 discusses the tasks involved in knowledge distribution and ex-
plains the various types of knowledge distribution with emphasis on communication
aspects. Section 2.3 presents the techniques used for partitioning and allocating
knowledge. Section 24 gives an account of the related work on knowledge parti-
tioning in single agent problem solving systems, parallel production systems, and
Distributed A1 systems.

2.1 Types of Knowledge

Knowledge can be broadly classfied into two types. domain specific knowledge
and control knowledge. While domain specific knowledge is useful in solving the
actual problems posed to the system from the external world, control knowledge is
used for task distribution, result synthesis, monitoring, coordinating, organizing or
improving the efficiency of the system [88]. Lun and Mac Leod [88] describe severa
classes of agents based on the specific activities carried out by them, viz., domain
specidlists, knowledge managers, knowledge facilitators, knowledge transformers,
knowledge monitors, and interface agents. Similary, knowledge can also be divided
into severd types based on the specific activity it is intended to perform.

» Domain knowledge is application specific and is usually static. The other types
of knowledge are general.

» Management knowledge is used to control the problem solving cycle. Typical
activities include creation and termination of agents, and scheduling and co-
ordinating their activities. It can aso aid in negotiations, decomposing and

18

Chapter 2. Knowledge Distribution 19

allocating tasks, synthesizing results, and intelligent deployment of resources.

» Monitoring knowledge is used for monitoring and analyzing intelligent be-
haviour by tracing and debugging. It is important for identifying bottlenecks
and inefficiencies. However, this is not part of problem solving.

* Facilitating knowledge facilitates and expedites problem solving by reconciling
conflicting information, merging disparate perspectives, resolving uncertainty
and managing voting schemes.

» Transformation knowledge converts information from one form to another ac-
ceptable to user agents. This is done by maintaining continuous flow of infor-
mation across various data levels that arise from multiple levels of abstraction
in problem solving.

Ishida [71] proposes another type of knowledge called organization knowledge
necessary for interactions among agents. It is used to dynamically decompose or
combine agents based on the utilization of the (idle) resources, message traffic and
communication overheads for better performance of the system. It is a combination
of management knowledge and monitoring knowledge.

In a different direction, knowledge is also classfied as procedural krnowledge, and
problemsolving knowledge [126].

» Procedural knowledge is intended to maximize the use of data processing tech-
nology to provide efficient processing of the activities. It contains well-thought
out, well-tested and well-structured organizational knowledge. In MOAP [126],
this is described in terms of tasks which can be broken down into a hierarchy
of subtasks.

* Problem solving knowledge is intended to maximize the use of A1 technology
to provide reasoning capabilities. It describes the strategies and serves as
advice to the activity coordinator when procedural knowledge is insufficient
to perform an organizational activity. This consists of knowledge related to
facts and knowledge related to the missing parts of procedural knowledge.

As mentioned in chapter 1, modelling knowledge [9], i.e., knowledge required
by an agent for having models of other agents can aso be considered as another

Chapter 2. Knowledge Distribution 20

type of knowledge. This, in turn, can be classfied as knowledge about capabilities,
resources, solution progress, beliefs, plans, goals and intentions of agents, their sdf-
organizing or adaptive nature, the interagent relationships and the communication
protocols.

Knowledge may exist in various forms and representations [126] requiring trans-
formation for use by different agents. For example, knowledge may exist in the
form of C programs, Pascal programs, rules and cases. To support organizational
activities, an agent may need to contain knowledge in more than one type and/or
form.

Our interest is in domain knowledge represented in the form of rules and other
information in the form of facts, external input data and partial results (derived
data) obtained during the problem solving. We chose rules to represent knowledge as
these are the most widely used knowledge representation scheme in expert systems.
In order to differentiate domain knowledge in the form of rules from the information
available in the working memory (data and partial results), we refer to the former
as knowledge or ezpertise, and the latter as partial results or information.

2.2 Knowledge Distribution

Knowledge distribution plays an important role in problem solving in several do-
mains.

 In Distributed Al systems dealing with massive data and/or knowledge, data
and knowledge must be distributed such that interdependencies are minimized
among subsets for minimizing communication and efficient problem solving.
In some cases, an inherent decomposition may be possible while in others an
explicit partitioning strategy is necessary.

* In pardlel production systems, a good partitioning facilitates faster pattern
matching and parallel exploration of the search tree by many processing ee-
ments.

* In single agent problem solving systems, when the knowledge base is too large
to be accommodated at once in the main memory, suitable portions have to
be dynamically |oaded.

21
Chapter 2. Knowledge Distribution

Further, when appropriately done, knowledge distribution helps in task decompo-
sition, load balancing, agent modelling, distributed reasoning with less information
exchange and knowledge base maintenance.

2.2.1 Tasks involved in Knowledge Distribution

Distribution of knowledge involves two tasks: knowledge (base) partitioning and
knowledge (subset) allocation.

Knowledge partitioning refers to obtaining suitable subsets/parts that can be
given to agents while knowledge allocation refers to actually allotting these subsets to
individual agents. Either or both partitioning and allocation may be done based on
the agent's capacity (memory size, cpu speed, etc.), its distance from other agents,
and problem specific factors, if any. Knowledge partitioning can also be referred to
as knowledge decomposition Or knowledge grouping. Similarly, the terms assignment
and allocation are synonymous.

Some of the other terms used in this context are knowledge organization, and
indexing [114]. In the Contract net frame work proposed by Smith [114], knowledge
organization component comprises of partitioning, indexing and distribution. While
the term partitioning is used in the same sense as ours, i.e, the way in which
knowledge is broken up into modules, indexing is the provison of handles placed on
the knowledge modules for fast access. The term distribution is used here to refer
to allocation.

2.2.2 Types of Knowledge Distribution

Knowledge distribution depends on severa factors like organization of the agents,
distance between them, distribution of tasks and data, use of global memory or local
memories, and the extent of duplication of data or knowledge allowed.

The communication required for distributed reasoning in turn depends on how
data and knowledge are distributed, viz., whether statically or dynamically, with or
without duplication, and the criteria used for distribution. Considering the model
of agents described in chapter 1, the possible types of knowledge distribution are
explained below.

Chapter 2. Knowledge Distribution 22

1) Full (static) duplication of knowledge

A copy of the whole knowledge base is kept with each agent. Any subproblem
can be alotted to any agent as its knowledge is sufficient to solve it. Therefore.
communication for knowledge importation is nil if the subproblems are independent.
Depending on the degree of overlap and the availability of the required data, there
may be requests for data and partial results. The distribution of knowledge is
static and the issue of dynamic distribution with full duplication does not arise.
Distributed Hearsay [40] is an example of this.

2) Static distribution without duplication of knowledge

Knowledge is partitioned and allocated to agents statically. Usualy, the given prob-
lem Is dso partitioned to suit the knowledge distribution and the subproblems are
alocated to agents possessing the most suitable knowledge (expertise) subset. The
average number of requests for partial results (measured over a number of problems
solved) could be high if knowledge is distributed arbitrarily. Alternatively, the par-
tially solved subproblem itsdlf, with its temporary solution (partial result) can be
sent to the agent with the required knowledge. For example, in Distributed Knowl-
edge Modd [86], knowledge is distributed statically, without any overlap. There
is no sharing of knowledge and inference is distributed to the agents with the re-
quired knowledge. Static distribution is useful for efficient reasoning and statically
balancing the load on the agents. If desired, an a priori estimate of dynamic as-
pects like the frequency of use of a knowledge base subset can be used in the static
distribution[127].

3) Static distribution with partial duplication of knowledge

Knowledge is distributed statically, as in case (2), but common knowledge is dupli-
cated at appropriate places. The most frequently used data is also kept in memory
reserved for global or shared information, or duplicated and kept with each agent.
However, data updation overheads and inconsistency problems will be more if data
is distributed. Medica knowledge [55] for diagnosis can be organized in this way.

Chapter 2. Knowledge Distribution 23

4) Dynamic knowledge distribution

The given problem is divided into subproblems and then the chunks of knowledge,
probably complete with respect to the subproblem being solved, are dynamically
alotted to agents. Reasonable amount of duplication of knowledge is expected as
these chunks can have overlapping portions. Communication for knowledge impor-
tation is minimal. Both knowledge decomposition and allocation are dynamic. As
in case(l), requests for partial results may be required to a small extent. However,
dynamic distribution is costly because of the computation and communication re-
quired from time to time. Contract net [115] considers such problem based dynamic
distribution of knowledge if the contractor for a subproblem does not possess the
required knowledge already.

Redistribution of knowledge at run-time is necessary for dynamic load balancing
also. In this case, however, knowledge need not be duplicated.

5) Semi-dynamic distribution with partial duplication of knowledge

After initial distribution of knowledge, knowledge base of an agent may undergo
changes from time to time. New knowledge may be acquired as a result of learning.
Knowledge which is being frequently requested from another agent may be added to
an agent's loca knowledge base (subset). Conversely, knowledge which is not being
used by it may be deleted and transferred to the appropriate agent. When this
process continues over a period of time, a stable state (with few requests for infor-
mation exchange) that closay resembles case (3) can be reached. Otherwise, small
changes to the initial distribution for dynamic load balancing result in semidynamic
distribution resembling case (4).

6) Completely random distribution of knowledge

Knowledge may be distributed without considering the extent of duplication or
relevance to the subproblem. Distribution could be done statically or dynamically,
and with or without any regard to the suitability of agents. Problem decomposition
and alocation may aso be random. Dynamic changes to the local knowledge base
may or may not take place. As it leads to total chaos with requests for knowledge

Chapter 2. Knowledge Distribution 24

importation and information exchange, more on an average than in any other case,
this may be adopted only in the initial stages of problem solving and in a very
uncertain environment.

We can see from the above discussion that, in Cooperative Problem Solving, it is
difficult to come up with a distribution in which both the information exchange and
duplication of dataor knowledge are eliminated. However, duplication of data should
be kept at a low levd for minimizing the associated concurrency and inconsistency
problems. It is desirable to keep the duplication of knowledge aso to a minimum for
advantages like faster access (pattern matching time), less communication, a good
task partitioning, and load balancing as mentioned in the beginning of this section
and in chapter 1. Therefore, we consider a distribution in which knowledge is not
duplicated unless functional decomposition is the criterion and data duplication is
kept at a minimum leve.

We discuss the cases (2) and (3) further in chapter 3, and cases (4) and (5) in
chapter 5. Obvioudy, there is no need for explicit techniques for cases (1) and (6).
A strategy for information exchange is the subject of chapter 6.

2.3 Partitioning/Allocation Techniques

Use of decomposition as a line of attack against complexity, and for advantages like
performance, maintainability and understandability is ubiquitous in systems design
and implementation. Though the literature is sparse, recognition of decomposition
as a vauable concept in Al is long-standing. According to Stefik and Conway
[11, 118], the idea was first quantified with Minsky's planning islands which when
strategically placed are intended to reduce search in combinatorial problems.

Associated with partitioning are the cost of partitioning, problems of how to par-
tition, what degree of partitioning is best and how to measure the effectiveness of the
partitioning process. Some of the criteria for partitioning are maximum indepen-
dence, minimum interface complexity, minimum subsystem complexity, minimum
overal complexity and maximum comprehensibility [103].

Information-theoretic approach, cluster analysis, probabilistic and graph based

Chapter 2. Knowledge Distribution 25

approaches are the commonly used partitioning and alocation techniques. Simu-
lated Annealing is a more recent technique.

2.3.1 Information-theoretic and Probabilistic Approaches

Information-theoretic approach aims at minimizing coupling and maximizing cohe-
son [11] by considering

* locad and globd information flow among system components through proce-
dures and global data structures respectively [59],

» cost, benefit, relative complexity of partitions at program specification level
to guide decomposition [24], and

« common coupling, content coupling, and information paths to measure the
strength of connections for testing modifiability of partitions [95].

Probabilistic approaches are used for both static and dynamic partitioning and
alocation. Myers [95] describes first order and complete dependency matrices based
on high probability paths to calculate the expected number of subsets that must be
changed when some subset undergoes a change.

In the context of dynamic load balancing, Evans and Butt [42] indicate that ser-
vice and arrival rates result in poor load balancing for long update interval lengths
whereas queue lengths provide better estimates for load balancing and give an im-
proved load balancing performance for a wide range of interva lengths. Shin and
Chang [17, 110] use probability and queueing theories for dynamic load sharing in
a distributed real-time system.

However, determination of exact probabilities is usually difficult.

2.3.2 Clustering

A clustering problem is smply that of separating or partitioning a finite collection
of objects into subsets so as to satisfy some criteria [117]. Clustering algorithms are
broadly dassfied as ezclusive and nonexclusive (overlapping) schemes. Exclusive

Chapter 2. Knowledge Distribution 26

technidues are further divided into extrinsic (supervised) and intrinsic(unsupervised)
types. Intrinsic techniques are in turn divided into hierarchical and partitional types.

In order to use a clustering algorithm, a measure of distance or relatedness be-
tween the given objects must be defined. Measuring the similarities between all
pairs of objects, closest pair is selected and merged to form one cluster. The proce-
dure is repeated grouping objects with other objects or possibly with already formed
clusters. A stopping criterion is necessary to halt the process when optimal number
of clusters are obtained.

A drawback to algorithms of this type is that on each iteration, the algorithm
makes the best possible agglomeration of two groups, but it never backtracks even
when a better grouping is possible [72].

2.3.3 Graph Partitioning

In this approach, the entire knowledge base is first represented as a graph, and then
the graph is partitioned into subsets [18]. Graph partitioning requires the number of
subsets, k, the gzes of subsets sy, s2, .., sk and other constraints, if any, to be given.

A procedure for obtaining an optimal partition is NP-hard. Supposing G has n
nodes of sSze 1 to be partitioned into k subsets of size p where kp = n, the number of
cases to be evaluated is (1/k!)(5)(377).-(77)(2) which yields a very large number for
most values of n, k,p. For example, if n= 40, k = 4, and p = 10, this value will be
greater than 10%° [74]. Because of such inordinate amount of computation required
in direct approaches, fast heuristics are required.

A wdl known heuristic due to Kernighan and Lin [74] starts with an arbitrary
partition A,B of the origina set S (of vertices and the associated edges in the graph
G)-By a series of interchanges of subsets of A and B, the method tries to decrease
the external cost corresponding to the weights of edges that connect the vertices
in different subsets of the partition. The first pair of vertex subsets from A and
B is chosen such that their interchange results in maximum gain representing the
decrease in external cost. Eliminating these subsets from further consideration, the
interchange process continues with a new subset pair whose interchange results in
the next highest gain until no further improvement is possible.

27
Chapter 2. Knowledge Distribution

The process is repeated for other arbitrary starting partitions (or ones obtained
as above) to obtain as many locally minimum partitions as we desire. Examination
of dl pairs of sets for exchange, and evaluation of the costs requires time proportional
to (n2/2)47((1/x * n)!/2for large n resulting in a complexity of O(n®?4™). fc-way
partitioning can be done either by repeated bisection, or by making an initial fc-way
partition and optimizing it using the generalized (KL) fc-way partitioning heuristic.

Another technique used for partitioning graphs, viz., Simulated Annealing, is
discussed in the next subsection.

Dunlop et a. [33], Fiduccia[43] et al., and Bui et a. [12] proposed improvements
to these basic methods.

2.3.4 Simulated Annealing

This method is firgt introduced by Kirkpatrick et al. [77]. It is based on statistical
mechanics and is used to solve combinatorial optimization problems like physical
design of computers, graph partitioning, and Travelling Salesman problem. This can
actually both partition and alocate the resulting subsets onto multiple processors

[127].

Simulated Annealing (SA) consists of four elements : system configuration, cost
function, generating mechanism and cooling policy. The scheme begins with an
arbitrary configuration and an initial value of the cost function at a certain tem-
perature. A new configuration generated from the previous one is accepted based
on Metropoli’s criterion [77] which occassionaly accepts new configurations with
higher cost for escaping loca minima. At each temperature, the generation process
Is repeated to produce a sequence of configurations representing states in a Markov
chain until the probability distribution of the system states approaches Boltzmann
distribution. If the temperature T is set sufficiently high and is decreased dowly
enough, the Boltzmann distribution tends to converge to a uniform distribution on
the set of globaly minimal states.

However, in any implementation of the algorithm, Markov chain is of finite
length. Therefore, asymptotic convergence can only be approximated and Sim-
ulated Annealing is not guaranteed to find a global minimum with probability 1.
Moreover, both quality of the final solution and speed cannot be achieved in practice

Qapter 2. Knowledge Distribution 28

Though Genetic Algorithms [6) and Annealing Genetic approaches [87] are also
wed fOr SOlVing combinatorial optimization problems, these too are costly and con-
sme |0t Of space to store populations of solutions.

23.5 Knowledge Distribution Vs. Program Distribution

Trough SPecific to software modules, program (task) partitioning is related to knowl-
edge base partitioning. This has been extensively studied in the areas of parallel
aad distributed computing, and software engineering. Following are some of the
rethods Used in task partitioning and allocation.

Stanfel's [117] partitioning method using cluster analysis involves finding the
siortest path between system components by elementary graph theory and opti-
mization techniques. For process assignment, Arora et al. [3 reduce a graph of
process and processor nodes connected by edges whose weights represent the cost
to be minimized. A process node connected to another process (or processor) node
b an edge having maximum weight is merged with the latter node. The reduction
process continues with the new graph (with fewer edges and process nodes) until no
process nodes are Ieft in the graph.

Sadayappan et a. [39, 107, 108] propose a nearest neighbour approach, and a
recursive clustering approach based on clustering and KL-graph partitioning heuris-
tics. The nearest neighbour strategy [39, 107] is found to be more effective on
hypercube systems with high message startup times, especialy for finite element
graphs, the recursive partitioning heuristic [39, 108] is generaly better on hyper-
cubes with lower message startup times and more effective on random task graphs.

In the dynamic load sharing method of Shin and Chang [17, 110], when a node
becomes fully loaded or underloaded, it broadcasts this change to a set of its neigh-
bouring nodes caled a buddy set, and selects the first available node from its preferred
list, an ordered set of nodes in its buddy set. Cybenko [25] discusses a dimension
exchange method for dynamic load balancing.

For distributed online scheduling of periodic tasks, Ramamritham € al. [105]
propose methods in which atask is sent to a node that is randomly selected (random

Chapter 2. Knowledge Distribution 2

scheduling), a node estimated to have sufficient surplus resources to complete the
task before its deadline (focussed addressing), based on the bids received for the
task from nodes in the system (bidding), or based on a technique that combines
both bidding and focused addressing (flexible algorithm).

Xu and Hwang [128] propose four heuristic methods for sending a newly arrived
task from a heavily loaded node to its neighbours based on the range (location
policy) viz., local or global, and heuristic discipline (transfer policy) viz., least recently
migrated node (LRM)or a minimum load maintained node(MLM) combinations.

Alok Choudhry et a [20] propose a heuristic for dynamic remapping of data
paralel programs where the task graph is a chain of modules and only the adjacent
modules interact. After assigning the first fev modules whose total load approx-
imately equals the global average load 4 on a processor, a new average load avg
congdering only the unassigned modules and the rest of processors is computed.
The procedure is repeated with the new average avg instead of u.

However, most of these techniques assume the processors or agents to be having
equal capacity and hence are for homogeneous partitioning and allocation [17, 25,
39, 66, 75, 107, 108, 127, 128]. Usualy any task can be executed on any processor
without depending much on the execution of other tasks. Otherwise, the interac-
tion pattern is ssimple as manifested in between adjacent modules in chain-like task
graphs for data paralel programs [15, 17, 79 or finite element graphs [39, 108].
However, CPS problems exhibit more complex interaction patterns because of the
interdependencies among subproblems. The problems associated with knowledge
(rule) base partitioning are more complicated than those encountered in task par-
titioning for data parallel programs and other domains due to the grain size aso.
The techniques used for partitioning tasks are not adequate and directly suitable
for knowledge base partitioning. Therefore, more general mechanisms are required
for CPS systems.

Finally, data base partitioning and allocation has similarities with knowledge
base partitioning and allocation. Normalization ensuring lossess join decomposi-
tion and dependency preservation keeps database redundancy under control and
maintains semantic integrity. Depending on the application, horizontal fragmenta-
tion, vertical fragmentation or a mixture of these is used to partition and distribute

Chapter 2. Knowledge Distribution 30

data base files [27, 79]. For more complex and large databases, file allocation prob-
lem is generalized to file alocation problem, viz., for the given queries, updates, and
the sites where the results have to be sent, one should determine i) the fragments to
be allocated, ii) alocate these possibly redundant fragments and the operations on
them to the sites of the computer network such that a cost function is minimized.
MINDS [65] is an example for such system for intelligent retrieval and reallocation
of documents.

However, knowledge base partitioning is more complex than data partitioning.
Data partitioning deals with relatively static data representing the physica world
objects. In contrast, knowledge base partitioning has to consder both static data
and temporary data (intermediate or partial results). Moreover, it needs to ded
with the data as well as the code that acts upon data.

Therefore, knowledge base partitioning can be considered a sort of superset of
program partitioning and data partitioning, and new techniques taking care of data
distribution, homogeneous partitioning and distance dong with the complex inter-
dependencies need to be devel oped.

2.4 Related work on Knowledge Partitioning and Allocation

To accrue the advantages of distributing knowledge as mentioned in section 2.2, a
good partitioning strategy has to be selected to minimize replication and related in-
consistency problems. This requires complete knowledge of the domain and a study
of the dependencies among the subsets. Also, a balance must be struck between
the number of subsets and the size of each subset so that total access overhead is
minimum. In arule-based system, this refers to the balancing of process-level and
rule-level overheads [18] which are associated with the selection of arule group (when
too many rule group processes are involved), and the selection of a rule within that
group (when too many rules are present in it) respectively. Therefore, techniques
which can partition knowledge and data to meet these requirements, independent of
the domain, are of great help. However, literature on such techniques is very sparse.

A brief account of the relevant work in DAI as wdl as in other related areas like
Al and paralel production systems is given below.

Chapter 2. Knowledge Distribution 31

2.4.1 Knowledge Partitioning

Broadly, knowledge base partitioning techniques can be categorized as (bottom-up)
synthesis approaches and (top-down) decomposition approaches.

Synthesis approach

In the synthesis approach, knowledge subsets are obtained by grouping individual
rules together based on some criteria. Use of common facts, distance between rules,
rule context and rule spaces are examples of such criteria to cluster or group rules
[11]. Groups of rules with a common fact are referred to as rooted trees. Those
groups formed on the basis of distance between rules (measured as the number
of different condition or action elements) are called concepts. Rule context is the
specific circumstance under which arule set gets activated. Rule spaceis a collection
of rules pertaining to functiona characteristics like phase of activity, god and system

type.

The work under synthesis approach in single agent Al systems, parale produc-
tion systems and Distributed A1 systems is presented beow in that order.

Single Agent systems

Jacob and Froscher [72] describe a software engineering methodology to facilitate
knowledge base maintenance. After separating control variables, their method par-
titions rules into a collection of rooted trees based on relatedness. Relatedness is a
function of the non-monotonic facts shared by rules and a weight factor given based
on the type of sharing. Rule pairs with a shared fact B as in

« if A then B, if B then C,
« if Athen B, if Cthen B, and
« if Bthen A if Bthen C

are assgned weights of LO, 0.75 and 0.5 respectively. Rule pairs without any
common fact are assgned a weight of -0.25. Starting with each rule as a separate

Chapter 2. Knowledge Distribution 32

group, each time a pair of groups with largest relatedness is combined into a single
group until either the relatedness is negative or a predetermined number of groups
are obtained.

Cheng and Fu [19] dso use aclustering based partitioning approach where knowl-
edge in the form of rules is clustered into a higher levd construct termed concept.
Concepts are either tangible or intermediate ones. Tangible concepts represent man-
ifestations and treatments that are inputs or outputs of the system. Intermediate
concepts smplify the knowledge structure to accelerate reasoning procedure and to
extend the applicable domain of knowledge either generated by the system or given
by experts. Distance between two rules R; and R; is calculated based on the number
of (condition or action) elements that are different between rules.

In the context of knowledge acquisition, Davis TIERESIAS [28] assembles rules
interactively based on the rules already present in the knowledge base. It constructs
rule models which are tree structures having al rules that conclude about the same
attribute at the root level. Models of rules which conclude affirmatively and nega-
tively about the attribute appear below the root, and under each of these are models
of rules that dedl with specific values of the attribute. Each model has pointers to
models of more general and more specific subsets of rules.

In the context of knowledge engineering (for transferring inferential knowledge
from an expert), Gaines and Shaw [47] use logical-cluster-analaysis techniques for
deriving and encoding inference relations from fuzzy sets which represent decision
making processes of experts. An information theoretic measure of uncertainty reduc-
tion due to a hypothesized relation is used to compare hypotheses and determine the
optimum tradeoff between fuzzy truth values and the probability of being correct.
Gaglio et a. [46] dso use fuzzy sets for encoding knowledge from multiple experts
viewing the construction of the expert system as a multiperson decison process.

Niizuma's successve problem decomposition method [101] parallelizes partition-
ing the knowledge base with solving an abstracted verson of the given problem.
The abstracted problem is caled the quotient problem, and ;= constructed through
certain information about relationship between differences and means. As the in-
termediate subproblems (subgoas) may not be smpler than the origina one, and
may not be solvable, methods have been suggested to make them so. The simplest
problem is the one in which only one difference exists between the initial state and

Chapter 2. Knowledge Distribution 33

the goad. AND/OR tree type problem trees and difference equations are used for
doing this.

Paralle Production Systems

In parallel production system environment, Sohn and Gaudiot [116] partition the
set of patterns namely condition, action or working memory elements. They use,
in decreasing order of importance, the number of attribute vaue pairs (AVPS) in a
pattern, similarity in attribute part and similarity in vaue part of patterns. Patterns
that have the same number of AVPs and are similar in attributes form a cluster in a
two-dimensional feature space and can be trained to achieve 0(1) pattern matching
time.

Basu et a. [4 partition the rulebase into clusters named rule spaces depend-
Ing on the functional characteristics derived from the phase of activity, goal to be
established and the type of the system. Clustering criterion of an individual rule
gpace is defined as a triplet belonging to the cartesian product of the phase, goa
and type sets. The rule spaces are aso caled as rule blocks [5]. These rule blocks
store the corresponding inference flow graph and are used for fast pattern matching
and parallel rule firing.

On amessage passing computer, instead of partitioning production rules, Acharya
and Tambe [1] partition and distribute hashtables of tokens (incoming data and
nemly generated data) into hashbuckets for parallel processing of the tokens des-
tined for different hash buckets. Their system consists of a set of match processors
and a control processor. The control processor performs al conflict resolutions and
broadcasts one packet containing dl the working memory elements to al match pro-
cessors. Match processors perform al constant tests (in the premise parts of rules),
hash the new tokens generated and send to the processors which own the correspond-
ing hashbuckets. Hash function uses the node-id of the destination two-input node
and the values bound to the variables being tested for equality at the destination
node as key. Produced instantiations are sent back to the control processor and the
control processor starts the match phase of a new cycle when the current cycle ends.

Chapter 2. Knowledge Distribution 34

Distributed AI

In Distributed A1 domains like speech understanding and medica diagnosis, a do-
main specific functiona approach to decomposition of knowledge base is considered.
Decomposition of overall task into various knowledge sources (KSs) is regarded as
natural. A KS has three parts. the conditions under which it is to be activated
(in terms of the conditions in the blackboard in which it is interested), kinds of
changes it makes to the blackboard, and a procedural statement of the algorithm
which accomplishes these changes. A KS usualy deals with one or a few levels of
the blackboard to apply its knowledge. These levels of abstraction (along which
the blackboard is also partitioned) hold different representations of the problem
gpace. Examples of levels in the speech problem are syntactic, lexical, phonetic and
acoudtic [40, 41].

Smith's contract net frame work [114] aso deas with knowledge organization.
They divide the organization task into partitioning, indexing and distribution (al-
location in our terminology). In this framework, partitioning is made by trial and
error, and handles are provided for accessing the knowledge subsets. Knowledge
distribution is either static or dynamic. Dynamic distribution is necessary when an
agent requests another directly for knowledge transfer, when the task of knowledge
transfer is announced, or when bidder on award of the task transfers the knowledge.
There are no explicit partitioning techniques mentioned.

Gomez and Chandrasekaran [55] distribute medical knowledge through a hierar-
chy of concepts which are clusters of production rules pertaining to diseases, their
causes or other notions that are relevant to diagnosis. The rules under each concept
are further organized into three groups : exclusionary, confirmatory and recommen-
dation rules. While the first two refer to rules that establish, postulate, or rule out
the possibility of a disease and hence invoke a concept, the third type of rules are
applied to manifestations found by confirmatory rules and anticipate subconcepts
or superconcepts to suggest the possibility of related diseases.

Their more recent use of decomposition involves hierarchies of smple and com-
plex knowledge structures to model generic categories of expert reasoning processes
[16]. These generic tasks involve hierarchical classification, hypothesis matching,

Chapter 2. Knowledge Distribution 35

knowledge-directed information processing, abductive assembly of hypotheses, ob-
ject synthesis by plan sdection and refinement, and state abstraction. While some
are specific to diagnostic reasoning, al Sx can be considered as building blocks for
the construction of knowledge based systems for other types of problem solvers, eg.,
routine design.

Lenat [81] organizes knowledge as a community of interacting modules called
Beings, to simulate a particular expert in some domain. A Beings module possesses
acorpus of specific facts and strategies for its designated speciality and can recognize
when it is relevant. In the domain of automatic programming, as a result of its
interaction with other Beings, final code of a Being reflects the knowledge of the
expert member it is representing. This is similar to a concept formation.

In Distributed Knowledge Model(DKM) [86], agents are organized as a hier-
archy with possible lateral connections among agents in different subtrees. Their
knowledge in the form of Prolog predicates is classfied as local, group and global.
Knowledge is distributed, not duplicated, and not shared among agents. Inference
is distributed to agents with required knowledge. However, method of partitioning
knowledge is not discussed.

Adler [2] proposes a framework, called OMNI, for integrating existing, hetero-
geneous, knowledge-based systems that are deployed in a distributed computing
environment. It integrates the otherwise digoint, problem-solving components with-
out atering them before incorporating into the framework. Integration is achieved
by associating a broker with each existing problem-solving component, caled the
specialist

Welhmayer et a. [121] discuss about the issues in cooperation when agents
with dissmilar domain knowledge and knowledge representation schemes are in-
volved. Knowledge sources are partitioned into a two-level agent structure: loca
expertise/planning levd and metaknowledge/agent control.

Intelligent Agent (IA) of Pan and Tenenbaum [102] supports a clearly discernible
task or job function, automating what it can and calling on the services of other JAs
when necessary. Complex enterprise operations are divided into a collection of ele-
mentary tasks or activities, which, after modelling in cognitive terms, are entrusted
to 1As for execution. One of their gods is to integrate independently developed

Chapter 2. Knowledge Distribution 36

software packages into the framework so that they inter-operate seamlessly and are
easly used and maintained. I As interact directly via a message bus or through
a distributed, shared knowledge base called MKS. MKS serves as a repository for
shared knowledge and a center for information exchange among agents. This com-
mon knowledge is represented once and shared by al applications that need it.

These approaches, however, have no provison for balancing the process-level
overhead and rule-level overheads.

Decomposition Approaches

In the decomposition appreach, a partition is obtained by considering the entire
knowledge base as one unit and splitting it into smaller ones. Usudly, this corre-
sponds to a graph partitioning problem where nodes of a graph G with costs on its
nodes and edges, are partitioned into k subsets of specified Szes s, s;,..¢ sx SO as
to minimize the total cost of the edges cut. Minimizing the total cost of edges cut
when the graph is partitioned into k subsets corresponds to minimizing the message
flow between these k subsets, thereby reducing the process-level overhead. However,
determination of the best k, sy, s,, ..., sx IS important to balance both process-level
overhead and rule-level overheads [18]. However, as mentioned earlier in section 2.3,
optimal partitioning is an NP-complete problem.

Harvey et al. [58] differentiate task-level parallelism from match-level parallelism
[70, 116]. Task-level paralelism can be obtained by a high-level decomposition of the
production system aong three dimensions, viz., implicit vs. explicit, synchronous
vs. asynchronous production firing, and distribution of production rules and work-
ing memory elements vs. no distribution at all. It is suggested that speed-ups
obtained from task-level paralelism multiply with speed-ups obtained from match
level parallelism. However, the choice of vhich to partition depends on whether one
can readily identify a partitioning and whether its subsets have enough uniformity
in their processing times to achieve a good parallelism.

Chen et a. [18] use KL graph partitioning heuristic as a subroutine to obtain k-
way balanced partition for uniprocessor environment. In the graph for the knowledge
base, each node corresponds to a rule with its cost proportional to the size of the
rule. Each edge going from rule R; to rule R} is assigned a cost of one if R; uses a

Chapter 2. Knowledge Distribution 37

fact generated by rule i, or zero otherwise. Varying k, these parts are evaluated to
determine the best partition usng a performance equation derived from a Markov
modd of an event driven, message passing real-time expert system.

2.4.2 Knowledge Allocation

Knowledge allocation approaches can be classfied into onephase approachesand two
phase approaches. In one phase approach, knowledge all ocation subsumes knowledge
partitioning, whereas in a two phase approach, explicit knowledge base partitioning
precedes knowledge allocation. Both these approaches have relative merits and
demerits.

All the work related to knowledge decomposition discussed above comes under
two phase approach.

Under the one phase approach, Dixit and Moldovan [32] formulate the problem
of alocation of production systems onto a multiprocessor as a 0-1 linear-quadratic
programming problem and reduce it to a 0-1 linear programming problem. They
present techniques to detect paralelism and communication requirements among
rules. A heuristic is proposed to solve the allocation problem using the A* algorithm.
However, their method introduces an overhead, which increases rapidly with the
number of rules in the system [127].

Xu and Hwang propose a method that achieves a nearly optimal solution with
reduced overhead using Simulated Annealing [127] for a balanced processing of rule-
based expert systems on multicomputers (could be DAI systems also). Their main
purpose is to maximize paralelism by distributing the work load evenly and to
minimize communication cost in message passing among nodes. Starting with a
random configuration in which al processors get amost equa number of rules,
new configurations are generated by making trial changes to the previous ones.
The cost function comprises of loss of parallelism, load imbalance and internode
communication and is optimized to reach a global minimum.

Ishidaet al. [51, 71] reorganize a collection of problem solvers to track changes in
response requirements, problem solving requests and resource requirements. Agents
are created and destroyed dynamically, and domain knowledge is continually real-
located using decomposition and composition. Decomposition divides an agent into

Chapter 2. Knowledge Distribution 38

two, and composition combines two agents into one. These force reorganize ac-
tions by modifying the distribution of problem solving knowledge and organizational
knowledge in the organization, and modifying the particular association between
resources and problem solving knowledge. The decomposition and composition are
performed by arbitrarily halfing the rules of an agent (to create two agents), and
clubbing two agents (to make one agent) respectively. However, the need for better
partitioning techniques has been emphasized.

Tout and Evans [119] propose amodel in which production rules are distributed
a run-time. Rules in a processor do not migrate to other processors during exe-
cution. If the queue of tasks to be investigated is not empty, each idle processor
requests and gets a predefined number of rules, and investigates to find the appli-
cable rules. From among the applicable rules, some or dl the rules may be selected
and fired resulting in updates to the database which further initiate a new cycle
and define a new task queue. Their performance anaysis indicates that the design
of paralel expert systems with loca working memories improves speedup as wdl as
effidency and the results are dightly better when the size of the rulebase is larger.

2.5 Conclusions

Many distributed A1 domains like Hearsay 1l adopt a genera functiona decom-
position strategy which is domain dependent. Moreover, efficiency issues like load
balancing and faster processing are usually not considered in these systems.

The work of Chen et a. [18land Xu et al. [127] for static partitioning of rulebases
ams a a balanced fc-way partitioning in which al subsets are of equal size. We
refer to this as homogeneous partitioning. The dynamic scheduling of rules in equal
numbers to processors by Tout et a. [119] again refers to homogeneous partitioning.
Similarly, the adaptive decomposition and composition by Ishida et al. [71] can be
considered as homogeneous partitioning.

Homogeneous partitioning is applicable to systems in which al agents have the
same capacity. However, if agents have different computing capabilities, homoge-
neous partitioning necessarily limits performance. Since cooperating agents need to
exchange results, a faster agent may have to wait till a dow communicating partner
finishes. Also, there could be probably a better partition with different component

Chapter 2. Knowledge Distribution 39

gzes that results in less information exchange. This problem can be solved by het-
erogeneous partitioning where atask is divided according to performance capabilities
of individual agents.

Further, as both KL [74] and SA [77] are computationally intensive, a sub-optimal
solution obtained quickly can be of great use if optimality is not that important and
cpu timeis at a premium. A good starting partition reduces the time taken in both
these methods for obtaining the find solution or improves its quality. Also, there
Is no explicit support for distributed reasoning to resolve incompleteness of local
information in both the algorithms.

In the next chapter, techniques for obtaining fc-way heterogeneous partitions
statically and allocating the resulting subsets are presented. The partition so ob-
tained can dso be used as good starting partition for the KL and SA techniques.
Metaknowledge is abstracted by the technique so that distributed inferencing can
be effectively performed.

Dynamic distribution of knowledge is considered in Chapter 5.

Chapter 3

Static Knowledge Base Partitioning and
Allocation

Our objective in this chapter is to develop a graph-based heuristic for a fc-way
heterogeneous partitioning of the knowledge base which overcomes the problems
mentioned in the last chapter by using data dependencies. We follow the decompo-
gtion approach to obtain a given number of subsets in the specified proportion of
gzes. In addition, methods for obtaining functional decomposition and allocating
the resulting subsets are aso discussed and developed.

The chapter is organized as follows. Section 3.1 gives an introduction and section
3.2 explains the issues involved in cutset based knowledge base partitioning. Section
3.3 discusses the k-way partitioning of a connected knowledge graph. Section 3.3.6
gives the linear time heuristic for static partitioning, analyzes its time complexity
and section 34 illustrates the heuristic with a fev examples. Sections 35 and
36 ded with disconnected components in the graph, and functiona decomposition
respectively. Section 3.7 presents a heuristic for allocating the rulebase subsets ob-
tained as above to k agents with a given topology and interagent distances. Finadly,
the last section presents the conclusions.

3.1 Introduction

Earlier work on static rulebase partitioning for load balancing used techniques like
KL graph partitioning [18] and Simulated Annealing [127] for obtaining- a homo-
geneous partition. Considering graph-based approaches, literature on graph par-
titioning usualy refers to vertex partitioning, particularly two-way partitioning or
bisection [12, 43, 74]. The techniques are originaly developed for VLS circuit de-
ggn and even the improvements are oriented towards the same. If more than two
subsets, say k subsets are required, it is done by repeated bisection of the graph.

40

Chapter 3. Satic Knowledge Base Partitioning and Allocation 41

There is no direct procedure to perform fc-way heterogeneous partitioning. However,
in distributed (AT) systems, agent capacity and speeds may not be equal. If al the
agents are alotted subsets of the same size, the dowest agent will be a bottleneck
for the entire network [15].

Further, earlier work on rule partitioning for load balancing considers a single
processor or multiple processors with shared memory, as only rules were to be dis-
tributed [18, 127]. Data is either centralized or fully duplicated in loca memories.
But when data is dso to be distributed and kept in the locd memories of agents
which are possibly geographically separated, data updates and inconsistencies asso-
ciated with rapidly changing data (eg. in a monitoring system) become important.
Often the techniques used in other domains ignore data distribution, resulting in run
time communication delays while accessing data at remote sites [111]. To remedy
these problems, it is necessary to distribute both rules and required data.

We am at obtaining a heterogeneous partition without repeated bisection such
that both rules and data are partitioned using a graph-theoretic approach [98, 99].
Data are represented as vertices and rules are represented as labels on the edges
connecting data. As rules are a kind of semantic constraints and can be treated
as functional or multivalued dependencies [27, 79], this representation dlows us to
exploit the dependencies and the adjacency of data and rules in the graph. Our
objective then becomes that of partitioning both vertices and edges such that rules
are in the given proportion with less communication overhead and data duplication.
Further, as part of the partitioning process itsef, metaknowledge directories are
generated to facilitate distributed reasoning.

For developing forma methods covering various cases of static partitioning and
alocation, we shall first give few definitions and discuss how cutsets can be used to
obtain partitions from the knowledge graph representing the rulebase.

3.2 Cutset Based Knowledge Base Partitioning

We shdl use the following example rulebase with sx rules to explain the possibilities
and issues in partitioning the knowledge base using cutsets.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 42

Rl1. AB—=C R2. BDE—F
R3. BG — H RA4. 1 — J
R5. FG — K R6. AG —1

The left hand side (LHS) of each rule is cadled the premise part, and the right
hand side (RHS) the action part. For smplicity, we have shown only attribute names
and boolean and relationship among the attributes in dl rules. However, thereis no
loss of generality because, irrespective of the values of the operands (even if they are
not boolean) and the relationship between them, the expressions must be evaluated
to proceed with rule enabling and firing. Therefore, it is enough for our purposes to
know in which rules an attribute participates in the RHS part and in which rules it
participates in the LHS part.

Def 1.1 Knowledge Graph

A knowledge graph G — (V,EL) is a directed, acyclic, labelled graph which consists
of a set V of data elements (attributes or objects) as vertices, a set E of edges such
that E: V— V, and a set L of edge labels corresponding to the rule identifiers to
which the edge belongs.

To construct a knowledge graph, a directed arc is drawn from each of the at-
tributes in the LHS part of a rule to (each of) the attributes in its RHS part. The
rule id is given as the corresponding edge label. The knowledge graph for the above
rulebase is shown in figure 3.1.

In an acyclic graph, the indegree of a vertex v; is the number of incoming edges
incident on »;. Similarly, the outdegree of a vertex »; in an acyclic graph is the
number of outgoing edges incident on »;. The degree or incidence of v, isthe number
of edges incident on the vertex. Table 3.1 givesthe indegree, ¢ utdegree and incidence
pertaining to each attribute in the knowledge graph.

Chapter 3. Satic Knowledge Base Partitioning and Allocation

Figure 3.1: Knowledge Graph for Example Rulebase 1

Chapter 3. Satic Knowledge Base Partitioning and Allocation 44

AIB|C|D|E[F|G|H|T|J]|k

Indegree ([0 [0 (2|00 |30 (|2]|2]|1]2
Outdegree || 2 |3 |0 |1 |1 [1]|3|0|1|0|0O
Degree 21312111143]2|3]|1]|2

Table 3.1: Degree information for the Knowledge Graph for Example Rulebase 1

Def 1.2 Cutset

In a connected graph G, a cutset is a set of edges whose removal from G leaves G
disconnected, such that no proper subset of these edges disconnects G.

Since a cutset is the minimum set of edges whose remova leaves a connected
graph disconncted, it is also called as minimal cutset.

For instance, the set of edges {GI, BC} forms a cutset and divides the vertices
into two sets {1, J, A, C} and {B, D, E, F, G, H, K} shown in figure 3.2a. The only
rule that is completely associated with the first subgraph is R,; the rules associated
with the second subgraph are R,, B3, and Rs. R, does not belong to either of them
completely as neither has al the data required by it. Similarly Rs aso does not
appear in either of the subgraphs.

Def 1.3 Rule Completeness

If R = {f, R,,..R.}is the set of rules associated with the knowledge graph G
corresponding to the complete knowledge base, then the rule subsets R S; associated
with each of the subgraphs G; must ensure that \R\ = |U%_, RS;|, where \R\ stands
for the cardinality of the set R.

In order to achieve rule completeness in the above example, we need to dupli-
cate attributes B and G with the first component aso. Now, as shown in figure
3.2b, the resulting subgraphs have their component data sets as {1,J,A,B,C,G} and
{B,D,EF,GH,K} and rules sets {R:, R.R¢} and {R;, Rs, Rs} completely associ-
ated with them. This duplication is similar to the duplication of attributes in files
for database referential integrity, and dependency preservation [27, 79). It indicates
the need for keeping copies of data in working memories of agents.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 45

{b) Components in (o) with B,G duplicoted

Figure 3.2: Components obtained with cutset {GI,BC} for Example Rulebase 1

Chapter 3. Satic Knowledge Base Partitioning and Allocation 46

However, for avoiding the data inconsistency problems, if rules are to be assigned
to subsets without duplicating data, some more constraints need to be considered.
In this case, after the rule is assigned to some subset, the corresponding agent has
to receive the required data from other agents for enabling and firing that rule.
Sdection of a suitable subset (and hence an agent) for the assignment of a rule is
discussed in the next section.

We choose the later option and, hereafter, instead of showing the duplication of
attributes in the graph, the information regarding the required data will be stored
in the directories (after assigning the rule to a suitable subset). As we shall see in
the forthcoming chapters, this metaknowledge is useful to dynamically redistribute
the knowledge and to facilitate distributed reasoning.

Mathematically, computation oOf a cutset is closdy associated with a spanning
tree.

Def 14 Spanning Tree

A tree T is said to be a spanning tree of a connected graph G if T is a subgraph
of G and T contains all vertices of G. (It is also called a skeleton, scaffolding, or
maximal tree (subgraph) of G.)

A spanning tree has n — 1 edges where n is the number of vertices in the original
graph. Remova of any edge from a spanning tree separates it into two disconnected
parts. The set of solid arcs in figure 3.3 is an example for a spanning tree. The
dashed arcs are those which are present in the origina graph but not in the spanning
tree and are cdled aschords of that spanning tree. (The meaning and use of integer
markings given on edges will be explained in the next section.)

It is quite possible that a knowledge graph is not connected and has components
in it. However, we postpone the discussion of disconnected components in the graph
till section 3.5 and assume that the knowledge graph is conrected till then.

A cutset can be obtained by removing an edge belonging to the spanning tree
giving two digoint vertex (node) sets, and selecting the chords, if any, which connect
the vertices in the two digoint vertex sets. The spanning tree edge and the chords
together form the cutset. For example, remova of edge BC from the spanning tree

Chapter 3. Satic Knowledge Base Partitioning and Allocation

Figure 3.3: A Spanning Tree for the Knowledge Graph of Example Rulebase

47

Chapter 3. Satic Knowledge Base Partitioning and Allocation 48

shown in figure 3.3 yields two vertex sets {A,C}, and {B,D,E,F,G,H,I,JK}. To
obtain disconnected components with the same partitioning of the vertices, chord
Al ds0 must be removed. Therefore, the set of edges Al and BC forms a cutset.
This is dso cdled afundamental cutset.

Def 1.5 Fundamental Cutset

A cutset S containing exactly one brunch of a spanning tree T is called a fundamental
cutset with respect to T.

Though the number of subsets (parts) obtained as above using cutsets is two,
this method of obtaining cutsets [31] does not bear any relationship with the number
of rules required in each subset. Moreover, obtaining k subsets in the required ratio
Is not straight forward. In order to develop such a method for knowledge graph
partitioning (in the next section), we shall first define the terms semipath, length of
a semipath, pendant vertex, spandegree and chain.

Def 1.6 Semipath

A semipath from vertex »; to vertex v; is a path from v; to v; in the corresponding
undirected (knowledge) graph.

In the knowledge graph shown in figure 3.3, JIG is a semipath from J to G.
JGHBFK is another semipath, i.e, from J to K.

Def 1.7 Length of a semipath

Length of a semipath is the sum of weights of edges incident in the semipath.

We assume unit weights for edges unless otherwise explicitly mentioned. Length
of the semipath JGHBFK is 6.

Chapter 3. Static Knowledge Base Partitioning and Allocation 49

Def 1.8 Pendant vertex

A vertex with degree 1 is a pendant vertex.

J is a pendant vertex in the above graph.

Def 1.9 Spandegree

Soandegree of a vertex w.r.t. a spanning tree is the degree Of a vertex considering
the edges in that spanning tree only.

Def 1.10 Chain

A Chain is the longest semipath in the spanning tree.

The semipath JGHBFK is the chain for the spanning tree shown in the figure
3.3.

Now we shal classfy the spanning tree edges into two types. those which lie
on the chain, and those which do not. We call the former type of edges the chain
edges, and the latter type of edges the branch edges. A branch emanates (in the
corresponding undirected graph) from a vertex whose spandegree is greater than 2.
Semipath BCA is a branch on the chain JIGHBFK.

A branch in turn may have subbranches in it. The number of branches of a
branching vetex is cdled its branching factor. Branching factor of vertex B is 1. For
a branching vertex lying on the chain, branching factor is 2 less than its spandegree.
For example, if a vertex has a spandegree of 4, then it has two branches.

3.3 kway Partitioning of the Knowledge Graph

The proposed k-way partitioning consists of two phases. initial decomposition and
boundary refinement. In the first phase, knowledge graph is initially cut into k
digoint components by cutting the graph at k - 1 places usng spanning trees and
cutsets. This involves determining the position of the cut and an approximate
partitioning of the rules and data. In the second phase, boundaries are smoothened

Chapter 3. Satic Knowledge Base Partitioning and Allocation 50

to get a required partitioning leaving the inner portions of the subsets undisturbed
as far as possible.

To enable partitioning, initial decomposition phase requires

* the generation of a spanning tree from the knowledge graph (constructed as
described in section 3.2) and

« marking of its edges suitably.

The same spanning tree, chain, and edge markings can be used to obtain parti-
tions in any desired proportion. However, partitions obtained using different span-
ning trees may be of different sizes and exhibit different characteristics. Therefore,
for obtaining a particular partition, selection of the spanning tree and determina-
tion of the cutsets are non-trivial. Since, exhaustive enumeration is not practical,
we propose a heuristic for this.

3.3.1 Generation of a Spanning tree

Since a spanning tree encompasses al the vertices, it has a large number of rules
on its edges. A spanning tree with a long chain facilitates partitioning due to its
linearity. Therefore, we consider generating a spanning tree with a long chain.

Selection of starting vertex

We choose either a pendant vertex or a vertex with zero indegree or zero outdegree
as a starting vertex, to generate a spanning tree with a long chain. We shall cdll
this the root of the spanning tree.

There will be at least one candidate root in any knowledge graph as dl external
input data items will have zero indegree, and al final result attributes will have zero
outdegree. A vertex with degree 1 may be preferred as candidate root because this
will not have another edge incident on it, and hence it is quite possible that this
may be forming one end of the chain.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 51

Inclusion of edges

Since every spanning tree has a chain, identifying a spanning tree with the longest
chain is computationally intensive. Hence the following heuristic is adopted. Start-
ing with the root, edges are included in the spanning tree such that spandegree of
vertices is kept less than or equal to 2 as far as possible. This heuristic gives a span-
ning tree with a reasonably long chain. Considering the root as the current vertex,
an edge incident on it and the other end vertex (adjacent vertex) are included in
the spanning tree if the adjacent vertex is not aready in the spanning tree vertex
list. The newly added vertex now becomes the current vertex and the process is
repeated with the new current vertex until n— 1 such edges covering dl the vertices
in the spanning tree are included.

The following procedure gives the detailed steps involved.

procedur e generate_spanning _tree();
(* generate a spanning tree with along chain for a connected knowledge graph *)
begin
initialize spandegree of adl vertices to zero;
select a vertex v; as root;
add v; in open list a the end;
add v; in the spanning tree vertex list;
k:=2;
while (k <= n) and (open list not empty) do
begin
if 3 an edge v;v, or v,v; in the knowledge graph such that
v, IS NOt in the spanning tree vertex list aready then
(* if v, is dready in the spanning tree vertex list, mark the edges
unsuitable for further consideration *)
include the edge in the spanning tree edges list;
include ruleset RS, on the edge in the spanning tree rule set;

Chapter 3. Satic Knowledge Base Partitioning and Allocation 52

include v¢ in the spanning tree vertex list;
k=k+1,
increment spandegree of v; and v,;
if spandegree of v; is equal to the degree of »; then
delete v; from open list;
endif;
if spandegree of v, < degree of v, then
add v, in open list;
endif
dse
delete v; from open list;
endif;
if open list not empty then
let v; be the (most recently added but undeleted)
vertex at the end of the open list;
(* dseif open list empty and k < n then there are
disconnected components in the graph
sdect anew v; asroot from the rest of the vertices in the knowledge graph;
mark the previous component with its rules and number of rules for indexing;
endif;*)
endif;
end; (* end of while*)

end; (* end of procedure *)

3.3.2 Finding Chain

Though a spanning tree has n-1 edges of the origina graph, there need not be only
one single semipath in the spanning tree. Also, the (longest) semipath from the root

Chapter 3. Satic Knowledge Base Partitioning and Allocation 53

to the last vertex (included during spanning tree generation) need not be the chan
in the spanning tree.

Finding the chain is done in two steps:

1. finding the longest semipath from root, and

2. finding the chain using the longest semipath obtained ., step 1.

The longest semipath from root may be found using depth firs search starting
from root. Lengths of semipaths from a vertex to leaf vertices (which are not in
the longest semipath) in spanning tree are stored while backtracking in the search
process in order to find the chain in step 2.

The spanning tree can now be divided into three parts, viz., the longest semi-
path portion sp; from root to the first branching vertex, portion mp from the first
branching vertex to the last branching vertex including dl the branches incident on
each branching vertex, and the portion of (the same) longest semipath sp, from the
last branching vertex to the last vertex in the longest semipath. Each branching
vertex will have first and second longest branches bp; and bp, if its branching factor
isat least two. Let 1y, 1,, b, and b, be the lengths of sp,,sp,, bp, and bp, respectively.
Now, the longest semipath in the entire spanning tree, i.e., chain, may be found as
follows:

If the longest semipath portion till the branching vertex under consideration sp;
Is shorter than its first longest branch, the branch becomes part of the chain (longest
semipath), and vice versa. If the new branch is shorter than the second longest
branch, then these two are interchanged. Adjoining the portion of the semipath
from this branching vertex to the next branching vertex, if any, with sp,, the process
is repeated for all the branching vertices. The new sp;, adjoined with sp; will be the
longest semipath in the entire spanning tree and hence the chain.

The procedure for finding the chain using the longest semipath from the root is
given below.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 55

branch point dv; and the next branch point bv to /,;
make bv the new bv,;
endif;
until the last branch point bv, is encountered;
chain is the semipath sp\ adjoined with spy;
length of the chain I, =1; + I3;
let RS, be the st of rules present on the chain edges,

end; (* of the procedure *)

We have already mentioned that many of the rules in rulebase appear on the
edges of the spanning tree. Even if there are any rules which do not belong to
the spanning tree rule set, this does not affect the fina decomposition and the rule
completeness. These rules will be included when chords are considered in the cutset
— chain is used only to facilitate decomposition.

To determine the actual cutsets, the spanning tree edge to be removed first must
be found out for each cutset. In order to identify these, spanning tree edges need to
be marked suitably.

3.3.3 Marking edges for decomposition

Integer markings on edges indicating their position in the spanning tree are useful
in determining the positions where the graph is to be cut to obtain an approximate
partitioning in the given proportion. We give below the steps for marking (Iabelling)
the edges to enable suitable decomposition.

Chapter 3. Satic Knowledge Base Partitioning and Allocation

procedure mark_edges();
begin
Mark the edges with 1,2,... to indicate their position
from one end of the chain to the firg branching vertex on the chain;
Let the rules corresponding to edges in the chain be denoted by RS.;
repeat
If a branching vertex is encountered then
for al branches of the branching vertex
mark a branch edge with the next integer;
include RS, in RS.
only if the rule labels RS, on it do not belong to RS.;
endfor;
endif;
continue marking chain edges with the next integer without
looking for the corresponding rule label
till another branching vertex is encountered
until the other end of the chain is reached;

Let / be the highest label (i.e., number of edges labelled in this way);

end;

56

The value of I indicates the number of marked edges in the spanning tree. It can
be seen that the set of rules on the marked edges is nothing but the spanning tree
rule set. The value of / can be used now to determine the position of the edges to

be cut and thus find the subsets.

The vertices and the edges numbered this way are stored in an array of size n
to facilitate decomposition. Starting from the edge marked 1, all edges including

the branch edges without any markings, and the associated vertices along with the

integer marking information in increasing order are stored in the spanning tree. For
the spanning tree and its chain shown in figure 3.3, the linear representation would
be the set of edges {J1,1G, GH, HB, BC, CA, BF, FD, FE, FK}, with the associated

Chapter 3. Satic Knowledge Base Partitioning and Allocation 57

vertex ordering {J,1,G,H,B,C,A,F,D,E,K}.

3.3.4 Initial Decomposition

For the initial decomposition, we must compute the size of each subset, determine
whether balanced partitiong, i.e., partitioning exactly in the given ratio, is possible,
and then determine the cutsets to be used for decomposing the graph.

Size of subset

Let N be the total number of rules, and p; : p: : .. : px be the proportion in which

rulebase subsets are to be obtained. We can obtain size of each knowledge subset z

as [pi* (N/Zh_,pi)].

procedur edetermine_size_of_subset();

begin
fori:=1tokdo

zi = [pi* (N/ T5= 23]
endfor;

end;

Is balanced partitioning possible?

| f Nmodzle p; = 0 then, it may be possible to obtain a balanced partitioning in
the given ratio. Otherwise there may be a small difference in the desired sizes calcu-
lated for the given ratio and the actual sizes of the subsets obtained. The following

procedure does the same.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 58

procedure check_if_balance_possible (bal_possible);

(* check if required partitioning is possible *)
begin
if NmodE_L, p; = 0 then
bal_possible = true
else bal_possible = false;
endif;
return(bal_possible);

end;

Determining the position of the edges to be cut

If / is the number of marked (labelled) edges of the spanning tree, we can divide it
approximately in the given ratio by cutting at edges e,, €3, .., ex_; Where

€ = [(E;:] pJ/Z:i:l ps) * 1];

If an edge to be cut, e;, happens to be a branch edge, and if the number of rules on
the chain RS, happens to be smal compared to the total number of rules N, then
e; istaken as it is. Otherwise, the following possibilities exist depending on whether

Pi 2= Pi41,00 Pi < Piy1-

* In the first case, i.e, if p; >= p;y;, we skip the branch, go in the forward
direction, i.e., in the direction of increasing integer markings, and make e; the
first edge in the chain immediately after the branch so that rules on the branch
edges are added to F,.

» Otherwisg, if p; <p;yy, then we makee; the last edge in the chain just before
the branch so that branch rules are added to Piyi.

This is to retain the sizes of subsets (to be obtained) closer to the proportion
given. Further, if any two edges ¢; and ¢;4; have no marked edges in between

Chapter 3. Satic Knowledge Base Partitioning and Allocation 59

them, then we must increment or decrement the number appropriately depending
on whether p; >= p;31 or not. However, this is done only if the new edge does
not belong to a branch again and violate the branch criterion described above. The
branch skipping keeps the resulting cutset as a fundamental cutset and can reduce

information exchange between subsets.

procedur e determine_edges_to_cut();

(* determine the position of edges ¢, to be cut to make the graph digoint *)

begin
i) for each subset do
& = [(Therpi/ Tie1 p) + 1)
endfor;
i) if RS;iscloseto N then
(* the number of rules on the chain edges is closeto N *)
fori := 1 to k-1 do (* for each subset *)
if p; >=piy1 then
e; 1S the first edge in the chan immediately after the branch
dse
e; IS the last edge in the chan just before the branch;
endif;
endfor;
endif;
iii) for i := 1 to k-1 do (* for each subset *)
if (e;41-€ - 1) =0 then
if (p; >=piy1)20d (e; + 1 does not belong to a branch) then
e, =¢e +1

éseif (p, < p;;,) and (e, - 1 does not belong to a branch) then

Chapter 3. Satic Knowledge Base Partitioning and Allocation 60

e =e -1
endif;
endif;
endfor;

end;

Once the edges in the spanning tree to be cut are identified for including them
in the cutsets, we can determine the actual cutsets by including the chords (and
other spanning tree edges) aso. Removd of these cutset edges leaves the graph
as k components. The data and rules which belong to the individual components
form an approximate partition. Retaining the same partition of data obtained by
the spanning tree decomposition, rules may be assigned to the subsets based on the
data available with the subsets and the data required for the rules. We first find a
proposed set of rules for each subset and do the actual assignment in the boundary
refinement phase. We shal denote the data (vertex) set and the proposed rule set
of asubset by VS;and PRS respectively. Steps for finding these are given below.

procedur efind-data .and_proposed_rule _sets();
(* Form digoint vertex sets V' S;’s and *)
(* proposed rulesets PRS;’sfor the k subsets *)
(* by cutting at e;s aong the chain; *)
begin
fori ;= 1 tok do (* for each subset do *)
VS;={ v/ visthe second end vertex of e, or
v is the first end vertex of ¢; or
v is a vertex incident on edges between e;_, and €;};
if i = 1 then ¢, is the very first edge in the chain;
if i = k then e, is the last edge in the chain;
PRS = { RS./ RS, is the set of rule labels on the edges between ei-1 and c,};
endfor;

end;

Chapter 3. Satic Knowledge Base Partitioning and Allocation 61

The set of rules present on the cutset edges is cdled the Conflict Rule Set and is
denoted by CRS. These rules correspond to the spanning tree edges as wel as the
chords in dl the k - 1 cutsets. Since these are the likely candidates for inclusion in
more than one subset, the exact subset in which a rule in CRS is to be placed has
to be determined in the boundary refinement phase.

Rules corresponding to a chord (or to those edges other than the es calculated
for cutting) and found to be using and producing data belonging entirely to one
subset p; are included in the PRS, of that subset; otherwise, if the end vertices of
the chord (or another spanning tree edge of cutset) are in two different components,

the rule is included in the CRS. The following procedure does this.

procedur efind-proposcd”*and.cutseijrules()\

(* Compute the cutset rules (Conflict Rule Set) CRS, and associated subsets; *)
begin
fori:= 1tok- 1 do (* for each subset *)
for each vertex v»; of the set V' 5; do
for each edge v;v; with rule set RSe do
(* in the corresponding undirected graph *)
if v, € VS,,where m <> i then (* m not equal to i *)
store RS, and the the subset ids + and m in CRS
de PRS; = PRS;U{RS.};
endif;
endfor; (* edge *)
endfor; (* vertex *)
endfor; (* subset *)

end;

Chapter 3. Satic Knowledge Base Partitioning and Allocation 62

It may be observed that (al) the cutsets formed like this are not necessarily
fundamental cutsets with respect to that spanning tree. If an edge ¢, belongs to a
branch, it will not form a fundamental cutset. The vertices for the first subset are
separated first, those for the second subset next and so on, until al vertex subsets are
identified. Then the cutset edges are those which have end vertices in two different
vertex sets.

3.3.5 Boundary Refinement

In this phase, we determine the subsets to which the rules in the CRS are to be
assigned. Among the rules in CRS, a rule with largest number of attributes is
consdered firs. To resolve the conflict and actually assign the rule, sdection of
the appropriate subset can be done by caculating the number of data elements
(pertaining to this rule done) available in each candidate subset. Let us cadl this
its attribute count. Now, aruleis assgned to a subset with highest attribute count
and dtill has not got its share of rules z;. However, if dl the candidate subsets have
got their share of rules, the rule is assgned to a subset with highest attribute count.
The partition obtained above ensures rule completeness.

Metaknowledge Directories

Once a CRS rule is assgned to a subset, it is necessary for the agent (to which that
subset is alocated) to know what other relevant data is required from other agents
(having other subsets) in order to fire that rule. Alternatively, data generated by
firing this rule may be used by some other agent also. Hence, it is necessary that the
agent knows which other agents require this data. For each subset F;, we maintain
two areas in the directory, viz.,, NRFi and M RB;for this purpose.

N RF, represents the data that Needs to be Requested From other agents. It
has the details of data name and the id of the subset (agent) from which the data
is to be requested (obtained). Similarly, M RB; represents the data that May be
Required By other agents. The details of data name and the id of the subset (agent)
which may be requiring this data are stored in M RB;. Assuming a rule in subset
Pi requires some attribute v, in subset P; (v, € VSj,i.e, owned by agent having
subset P;), NRFi has an entry (v,,j),and MRBj has an entry (va,?).

Chapter 3. Satic Knowledge Base Partitioning and Allocation 63

The NRFs and M RBsrepresent the coupling between agents and thus help in
the alocation of knowledge subsets to agents, redistributing knowledge dynamically
and requesting for nonlocal information. This will be discussed in section 3.7 and
the forthcoming chapters.

The procedure assign_rules assigns the rules in CRS to the subsets as described
above and updates the NRF and MRB parts of each subset.

procedur eassign.rules();

(* Asdgn rules to subsets and store directory information *)
(* NRF;:Needs to be Requested From other agents, alist (attribute, agent) *)
(* M RB;:May be Required By other agents, alist (attribute, agent) *)
begin
1) fori :=1 tok do (* for each subset i *)
nonconflicting rule set RS, = PRS — CRS;
NRF; ={};
MRB; = {};
if \RS\ >= z; then
mark it okay and add it to okay list;
endif;
endfor;
i) sort the c rules in CRS in decreasing order of rule size,
(* i.e, on the number of attributes in the rule *)
for each rule in CRS do
sort the candidate subset ids involved based on number of
attributes of this rule (in that subset)
fori:= 1tos-1 do (* each subset id i in the sorted list*)
if \RSI\ < z; then

Chapter 3. Satic Knowledge Base Partitioning and Allocation

include the rule in RS (e of that subset *);
\RS\ =\RS\ + 1,

endif;
if \RS\ = z; then
mark it okay; .

add the subset in okay list;
break;
endif;
endfor;
endfor;
if the rule is not alotted to any of these subsets and bal_possible = fdse then
dlot the rule to the first subset with an id i at the beginning of the lit;
|RSi| = |RS:| + 1
if \RS\ >= z; then
mark the subset okay and add it in okay list;
endif;
endif;
let P; be the subset to which the rule is allotted;
for each attribute v, Of the rule,
such that v, € V; wherej <> |
(* P; isacandidate subset which did not get the rule *)
NRF; = NRE;J(va,7);
MRB; = MRB;(va4,1);
(* update NRF of the subset to which the rule was allotted
and MRBs of the remaining candidate subsets *)
endfor;

end;

Chapter 3. Satic Knowledge Base Partitioning and Allocation 65

The procedure check_if balance_obtained()checks whether the partitioning ob-
tained is exactly in the given ratio. If a balanced partitioning is possible, but is not
obtained with the above spanning tree edges cut, e,,..ex_;,then it shifts some of
them so as to shift few of the extra rules from the subsets whose sizes are greater

than their desired sizes.

procedur echeck_if_balance_obtained(balance_obtained):

(* Check if required partitioning is obtained *)
begin
balance obtained := fdse
for each subset i do
if |RS;| =z then
put the subset in the balanced subset list;
endif;
endfor;
return(balance_obtained);

end;

After the find vertex sets and rule sets are found, the following procedure finds
the exclusive vertex sets EFV S;s and dupliate vertex sets DV S;s. While V' S; repre-
sents the data owned by the subset P;, EV S; represents the data that belongs to
subset P, and is used only by the rules in P;. However, DV S; represents al the data
required by the agent to fire the ruleset RS;. If data duplication is alowed, updates
should be propagated to al the places.

The following procedure calculates the EVSS and DV Sis and completes the
filling of dots in the metaknowledge of agents.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 66

procedur e create_metaknowledge();

(* Compute the attributes which are exclusively owned by this agent(EV S;),
and dl the attributes needed (DV S;)for firing its loca ruleset RS; *)
begin
fori ;= 1tok do (* for each subset do *)
EVS;= VS§,— vertex set pertaining to M RB;;
DV S, = V§;Uvertex set pertaining to NRF;;
endfor:

end;

It may be seen that the number of entries in the union of al N RF;sis equal to the
number of entries in the union of al MRB;s and gives the total number of attribute
duplications required for the partition, if data duplication is alowed. Otherwise it
represents the total communication coupling between agents. The number of entries
of the form (v,, j)in NRF;and those of the form (v, i) in M RB;indicates the data
to be exchanged between the agents having F; and F;, and hence the communication
coupling between them. The communication coupling is useful for reasoning as well
as dynamic distribution of the knowledge.

3.3.6 Partitioning Algorithm

The complete algorithm is given below.

Algorithm connected_static_partitioning

Assumptions:
The algorithm requires the knowledge graph to be connected

Inputs:
Rulebase consisting of N rules
Proportion p, :p, : ... px in Which rulebase subsets are to be obtained

Chapter 3. Satic Knowledge Base Partitioning and Allocation 67

Outputs:
Rulebase subsets P, P, .., Pwith rules in the given ratio
Directories for the rulebase subsets with attributes details - owned or shared

Steps:

1 Construct the knowledge graph in the form of adjacency list with attributes as nodes,
and arcs connecting dl input attributes of arule to each of its output attributes as edges
with rule number(s) as the label(s) on each edge.

Compute indegree, outdegree, and degree for each attribute.
2 (* spanning tree generation and marking *)
(a) generate_spanning._tree();
(b)find.chain();
(c) mark_edges ();
3 (* check whether balanced partitioning is possible *)
() determine _size_of_subset();
(b) check._if_balance_possible (bal_possible);
4 (* partitioning *)
(a) determine_edges_to_be_cut(); (* initial decomposition *)
(b) balance_obtained = fase;
Her := O;
(c) repeat
i find-data.and.proposed.rulesats(); (* initial decomposition *)
il find-proposed.and-CutscLrules(); (* initial decomposition *)
iii assign_rules(); (* boundary refinement *)
IV check_if_balance_obtained(balance_obtained);
if (balance-obtained = fase) and (iter < maxiter) and (balLpossible = true) then
(* maxiter is a constant defined by the user *)
for subsets that do not balance do
shift e; by one such that

Chapter 3. Satic Knowledge Base Partitioning and Allocation 68

it isin asubset P; whose |RS;| > z;;
endfor,
Her :=iter + 1;
endif;
until (balance_obtained = true) or (bal_possible = fase) or (Her > maxiter)
5 (a) create_metaknowledge();
(b) for i:= 1 to k do (* for each subset*)
print the lists RS;,VS;,
NRF;,,MRB;,EVS,axd DVS;;
6 sop;

Complexity of the Partitioning Algorithm

Construction of the adjaceny list for the graph corresponding to the rulebase requires
N e atime where TV is the number of rules and a is the average number of attributes
in arule. However, this is trivial for any partitioning algorithm and need not be
congidered in the calculation of complexity of the algorithm.

By using an adjacency list for representing the knowledge graph, step 2(a), i.e,
generation of a spanning tree (also an adjacency list) can be done in O(n) time where
n is the number of attributes. By storing the semipath lengths for each intermediate
vertex from leaf vertices in step 2(a) itsdf, each of steps 2(b) and 2(c) requires O(n).

Steps 3(a) and 3(b) together require k + 1 computations where k is the number
of subsets required. Hence step 3 is 0(K).

Step 4(a), i.e., determination of edges to be cut, requires k iterations and is of
O(k), 4(b) requires two computations.

Step 4(c)(i), finding the vertex sets (and the initial proposed rule sets) for the
subsets requires examination of al the n vertices. Hence this is O(n).

Step 4(c)(ii) for finding the complete proposed rule set and conflict rule set
requires k iterations as there are k vertex sets. For each vertex dl the edges incident
on it are to be examined. Assuming the average number of vertices is n/k, average

Chapter 3. Satic Knowledge Base Partitioning and Allocation 69

number of edges for a vertex is \E\VVn where E is the set of edges in the knowledge
graph, for k iterations in the outermost loop, the time complexity is O(|E|).

Step 4(c)(iii) involves finding the nonconflicting rulesets and then assigning the
CRS rules to subsets. Determination of nonconflicting rulesets is O(k). Assuming
that there are c rules in CRS, each rule usually has 2 to 3 subsets as candidates to
which it can be assigned. In the worst case, which usually does not occur in practice,
the number of candidate subsets would be k. Updation of NRFs and MRBs requires
time O(k). Therefore this step is O(ck). However, since ¢ « TV, ¢ << n, and
c <<[Ejoveral complexity of step 4(c) is the maximum of O(n) and O(|E|). The
number of iterations in the repeat loop is constant, usually about two or three, and
hence need not be added to the complexity.

So, the overdl complexity of step 4 is O(maz(n\E\)).
Steps 5(a) and 5(b) are of O(k); 5(b) is in fact mere outputting of the results.

Therefore, the overall complexity of the algorithm is O(maz(n,\E\)).

3.4 Examples

We shall illustrate our approach with the the help of a fev examples using the
rulebase we considered in section 3.2,

3.4.1 Case 1. Two subsetsin the proportion 2 : 1

1. The knowledge graph is shown in figure 3.1 and the degree information is
given in table 3.1.

2. (a) One of the attributes with zero outdegree is J. It is dso a pendant vertex
to serve as aroot. The spanning tree generated starting with it is shown
in Figure 3.3. This has the edges J1, GI, GH, BH, BC, AC, BF, DF, EF
and FK.

(b) The chain is computed as the set of edges JI, GI, GH, BH, BF and FK.

(c) The highest edge marking in this spanning tree / is computed as 7. The
edges belonging to branches are BC, AC, DF and EF. While the first

Chapter 3. Satic Knowledge Base Partitioning and Allocation 70

two belong to the same branch emanating from B, the last two are two
different branches emanating from F. Edge BA is marked 5 to indicate its
position in the semipath. Arcs AC, DF and EF are not labelled because
they do not belong to new rules.

3 (a), (b) Required rule partitioning with sizesz;, = 4, z, = 2 is possible;

4 (a). e; = 5; Arc 5 happens to be a branch. Since the number of rules on the
chain |RS.| (=5) isclose to N (=6), and since p; > pi41, € is advanced by one
more edge. This is equivalent to adding one more edge to the bigger subset,
€1 = 6;

(b) The variable balance_obtained is initialized to false, and the number of
iterations, iter = 1.

()

Disjoint vertex sets VS, = {A,B,C,GH,1.J}; VS,={D,E,F,K};

Proposed rule sets PRS, ={R1,R3,R4,R6}; PRS; ={R2,R5}.

Cutset edges are BF,GK; Associated rules make the conflict rule set CRS ={
R2, R5};

Initial rule sets for the subsets RS, ={ R1,R3,R4,R6} (with corresponding rule
count |RS;| = 4) and RS, ={} (with [RS;] = 0). All the four rules belong
exclusively to subset P,. P, is marked okay as it has the required number if
rules. P, does not have any rulesin it so far.

Of the rules in CRS, for R2, of the atttributes B,D,E and F, only B is needed
by subset P, from P,. Hence this rule can be allotted to F.

Hence, RS, ={R2}; NRF, ={B(1)}; MRB,={B(2)};

For R5, of G,F and K, only G is required by P, from Pi. Assigning this
rule to P, makes RS, ={R2,R5}; NRF, ={B(1), G(I)}, and MRB,={B(2),
G(2)}. Now, P, has got 2 rules and the agent with P, may need to request for
attributes B and G from agent with P,. P, is marked okay.

Since both the subsets are in the required proportion, balance is obtained.

5 Final Partition:
After filling the remaining metaknowledge slots, the final partition is shown

Chapter 3. Satic Knowledge Base Partitioning and Allocation 71

P] -PQ
VS, ={A,B,C,G,H],)}; | VS, ={D,EFK});

EVS, ={A,C,H,J}; EVS; ={ D,EFF K};
DVS; ={A,B,C,GH,1J}; | DVS; ={ B,D,E,F,G,K};
NRF, ={}; NRF, ={B(1), G(1)};

MRB, ={B(2), G(2)}; MRB, ={};

Table 3.2. A 2.1 Partition of Example 1 Rulebase

in table 3.2.

If no duplication is dlowed in the working memories of agents with these subsets,
each of the digoint vertex sets V' S; represents the data owned by the agent having
subset P, NRF:s and MRB;s give the information about the data that needs
to be requested from other agents (attribute and from whom to request), and the
attributes that may be requested by others (attribute and from whom the request
may be sent). There is a possibility that an item generated (as a result of firing the
corresponding rules) by one agent may actually be owned by some other agent. Then
the first agent may have to send the value immediately to the owner on generating
it.

If duplication is dlowed to some extent, DV S;s represent the attribute st re-
quired by agents for firing the rule sets. M RB;scan be used to send copies to the
other agents that require the item as soon as it is generated, and N RFis can be till
used to request in advance if necessary.

We can see that the agent with subset P, does not need any information from
others and the agent with subset P, does not have any attributes that may be
requested by other agents.

34.2 Case 2. Three subsetsin proportion 1:1:1
Steps 1 and 2 are same as for case 1.

3 (a),(b) Required rule partitioning with sizesz; =22 = 23 = 2 is possible.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 72

4 (a)(b). e5=3 €, =5 As e, happens to be a branch edge, and since dl the
subsets are to be in the same proportion, we simply advance forward making
€2 = 6. The variable balance_obtained is initialized to false, and the number
of iterations, iter is made O.

()

VS ={G,LJ}; VS, ={A,B,C,H}; VS3={D,E,FK};

PRS, ={R4,R6}; PRS, ={R3,R1}; PRS; ={R2,R5};

Cutset edges are Al,BF,GH,GK;

Corresponding rule set CRS = {R2, R3, R5, R6};

RS, ={R4}; RS; ={R1}; RS; ={};

For R2, of B,D,E,F, only B is required by P; from P,. Assigning it to Ps, RS,
={R2}; NRF3;={B(2)}; MRB,={B(3)};

For R3, of B,G,H, only G is required by P, from P;; RS, ={ R1,R3};
NRF,={G(1)}; MRB,={G(2)}; Since |RS,|= 2, P, is marked okay.

For R5, only G is required by P; from P;; RS; ={R2,R5};

NRF;={B(2), G(I)}; MRB,={G(2),G(3)}; Same attribute G is required by
subset P, as well as subset P;. Since |RS3|= 2, P3 is marked okay.

Lastly, for R6, of A,G,I, only A is needed by /4 from FP.. Therefore, RS;
={R4, R6}; NRFi={A(2)}; MRB,={B(3), A(1)};

All the subsets are in the specified proportion;hence balance is obtained.

5 Final Partition:
After filling the metaknowledge slots,the algorithm exits. The final partition

is shown in table 3.3.

Rulebase partitions obtained for an aerospace vehicle checkout system and med-
ical diagnosis application using our approach are encouraging. These will be dis-
cussed in the next chapter.

Chapter 3. Static Knowledge Base Partitioning and Allocation 73

P P, 3

RS, ={R4,R6}; RS, ={R1, R3}; RS; ={R2,R5};

VS ={G,1J}; VS; ={A,B,C,H}; VSs ={D,E,F,K};

EVS, ={1,J}; EVS, ={CH}; EVS; ={D,E,F K};

DV S, ={A,G,1,J}; DV S, ={A,B,C,GH}; | DVS; ={ B,D,E,F,GK};
NRF, ={A(2)}; NRF, ={G(1)}; NRF; ={B(2), G(1)};
MRB, =(G(2).G(3)); | MRB, =(A(1)B@)); | MRB, ={);

Table 3.3: A 1:1:1 Partition of the Example 1 Rulebase

35 Disconnected Components in the Knowledge Graph

Knowledge graphs can aso have disconnected components in them. The disconnect-
edness implies the absence of communication among the agents when each compo-
nent (or a group of components together) is treated as a subset in some partition
and is given to one agent. This actually represents afunctional decomposition where
each component pertains to some subsystem in the whole system, or the components
respresent procedures which do not interact at all. Therefore, it is important to be
able to identify such components and make use of them appropriately.

Identification of a Component

While generating the spanning tree, if we encounter a vertex that doesn't have
another new reachable vertex (from it in the corresponding undirected graph), and
none of its predecessors in the spanning tree generated so far have, but there are still
some vertices of the knowledge graph which are not included in the spanning tree,
it means there are disconnected comporents in the knowledge graph. These may
be indexed with useful information like number of rules in the component for easy
retrieval and efficient processing. We shal call the number of rules in a component
as the size of the component, and the number of rules required for a subset (in the
partition to be obtained in the given proportion) as the size of the subset.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 74

Identification of Knowledge Graph Components forming Balanced Sub-
sets

A partition with perfect balancing and zero communication is possible in either of
the following two cases:

* number of subsets = number of components, and each subset has one compo-
nent of the same size

* number of subsets < number of components, and each subset has one or more
(groups of) components together equalling the subset size.

In al other cases, one or more components need to be broken to get partitioning
in therequired ratio. In particular, if the number of subsets is more than the number
of components, some components must be cut to obtain rule base subsets whose sizes
are in the given ratio. However, (even if perfect partitioning is not possible,) it is
desirable to identify the subsets and the group of components, if any, with matching
sizes. Let us call a subset which is assigned rules satisfying its size requirement a
balanced subset.

These balanced subsets and the components assigned to them should be sep-
arated from the rest of their respective groups and should not be considered for
further partitioning. This is because communication among such components is
nil. The new proportion (with fewer subsets when compared to the number of
subsets in the original proportion) representing the remaining subsets and the unas-
signed components should be calculated for giving it as input to our partitioning
heuristic. We propose a heuristic to identify such balanced subsets and the cor-
responding components when the knowledge graph is not connected. Partitioning
in the modified proportion can be obtained by making minor modifications to the
connected._static_partitioning heuristic discussed in section 3.3.6.

The procedure balanced_subset_components()identifies the balanced subsets which

can be formed from components.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 75

procedur e balanced_subset_components();

begin

let k be the number of rulebase subsets required in the proportion p,, ..px;

let ¢ be the number of components in the knowledge graph;

let 21, 22, .., 2k be the Szes of (rulebase) subsets, sorted in decreasing order;

let g1,92,..,9. be the component sizes, sorted in decreasing order;

let bs be the number of balanced subsets which have the exact number of rules as its desired Sze;
let rc¢ be the number of remaining components whose rules have to be assigned to subsets still;
i,7,sum,difohd temp are temporary variables;

let open list represent the unassigned components;

let temp list be a temporary list of components for assignment to a particular subset.

begin

bs=0;

rc =G,

for::=1tokdo

J:=0;
diff = z;
temp := O;

initialize temp listto null;
while (j < r¢) and (diff > 0) do
J:=1+1
if (g; <= diff}hen
diff :=diff-g;;
temp :=temp + 1,
copy thejth component in the open component list to temp lst;
endif;
endwhile;

Chapter 3. Satic Knowledge Base Partitioning and Allocation 76

if (diff = 0) then
rc 1= re¢ —temp;
bs:= bs+ 1,
delete components in temp list from open component list;

assign the rules and vertices in temp list to RS;, and V S; respectively;

NRF; ={};
MRB;={};
endif;
endfor;

if (bs < K) then

proceed from step 2h of connected_static_partitioning agorithm
considering the remaining subset ratios and the remaining components
Qn-jl‘l::]

end;

3.5.1 Partitioning Disconnected Knowledge Graphs

Following are the changes required to the static partitioning heuristic developed for
a connected knowledge graph, to accommodate multiple components.

Spanning tree generation

If a new vertex is not reachable, in the corresponding undirected knowledge graph,
from any of the vertices in the spanning tree forest generated so far, there is another
component in the knowledge graph. A new vertex may be chosen as the root for the
spanning tree of the next component in the graph, and its spanning tree generation
may be continued in the same fashion in the same loop.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 77

Marking of edges

Though chain of the spanning tree in each component has to be identified separately,
marking of edges in the spanning tree proceeds continuously with consecutive in-
tegers as though there is only one spanning tree present in the entire graph. Both
marking of edges and partitioning commence from the largest unassigned compo-
nent and continue with the next largest until there are no more components in the

graph.

Computation of the edges to be cut, and desired sizes of rulebase subsets

Since edges of a component are given integer labels continuing with those given for
the earlier component, edges to be cut can be determined in the same way as we
did for partitioning a connected graph.

Complexity of the augmented version of partioning algorithm

Besides the additional checking required for identifying the components that form
balanced subsets, changes are required to the procedures

e Spanning tree generation
* Finding chain

* Marking of edges

so that partitioning heuristic can be applied on the knowledge graph with mul-
tiple components.

Time required for spanning tree generation is the same except that when the
open list becomes empty, a new root vertex is chosen for the next component before
proceeding with the inclusion of edges in the spanning tree for the new component.
Since degree information is stored with vertices while constructing the knowledge
graph itsdf, this doesn't require extra time. Extra time is required only for the
selection of new root and to store the component itsdf. This, however, is negligible
as backtracking is minimized by deleting the vertices from the open list the very

Chapter 3. Satic Knowledge Base Partitioning and Allocation 78

first time the vertex is found not to be having new vertices on its edges. Therefore,
the time complexity does not increase for this step.

Chains have to be found for each spanning tree separately. However, as both
the depth first search for finding the longest semipath from the root and finding the
chain from it are of O(n) as mentioned earlier, the total time required for finding
al chains will also be of O(n).

Storing the spanning forest information in a linear array form after finding the
chains (as done for a single spanning tree) keeps its time complexity O(n) only.

The extrastep balanced_subset_components for finding the components that form
balanced subsets requires O(kc) time. However, the number of components ¢ will
certainly be less than the number of data elements n, infact ¢ should be less than
n/2. Therefore, the overall complexity of the modified verson of our heuristic to
deal with disconnected components remains the same, i.e., O(maz(n,|E)).

3.6 Obtaining Functional Decomposition

Instead of concentrating on the load balancing aspect (by obtaining rulebase subsets
in the given proportion of rules), we may aso consider a partition that will result
in a functional decomposition. There are three possibilities here.

As mentioned in the previous section, if there are disconnected components, the
partition representing the components indicates a natural functional decomposition.

However, if the graph is connected, for obtaining a functional decomposition, we
need to group rules fredly based on the coupling among rules on the edges by relaxing
the constraint on the number of rules per subset. Some times, this may result in
duplication of few rules in the subsets. An accurate representation of the data and
the hierarchy among the objects involved, if considered in the steps of the algorithms
already discussed, gives us a partitioning close to afunctional decomposition without
duplication of rules. For this, we also take into account the coupling among the rules
incident on edges. The coupling can be clearly seen if we observe the rule labels on
the edges. The data connected by an edge, and edges emanating from and leaving
some data node are closdly connected and have some dependency. A graph as the
representation scheme for the knowledge base depicts the dependencies clearly and

Chapter 3. Satic Knowledge Base Partitioning and Allocation 79

enables our partitioning algorithm exploit the adjacency and dependencies inherent
in the structure. All rules corresponding to an edge should be preferably assigned to
the same subset, and if two or more edges have some rules common, they indicate
some amount of coupling, i.e., communication between the rules, the precise quantity
being proportional to the number of common rules.

Alternatively, functional decomposition can be obtained by considering a fina
result (attribute with zero outdegree), including al the rules incident, on its in-
coming edges, and proceeding backwards in the same way until al external input
attributes (with zero indegree) are considered. This gives dl the rules and data
corresponding to a subsystem concluding with the final attribute considered above.
There may or may not be some overlap among the rules in different subsets indicat-
ing the interaction required among subsets, the latter being the case of disconnected
components.

3.7 Knowledge Subset Allocation

Once partitioning is completed, the next step is to assign the subsets to individual
agents. We discuss the alocation of subsets obtained in a given ratio representing
capacities of agents using the heuristics discussed in sections 3.3.6 and 3.5. We do
not discuss the allocation of subsets in a functional decomposition as this may not
require load balancing. Even if the subsets have to be allocated in that way, load
balancing may be given secondary importance and techniques similar to assignment
of components to subsets may be used.

The subsets obtained using our heuristic can be easily assigned if dl the agents
are situated at equal distances from one another. The allocation problem becomes
trivial to that of smply assigning the largest subset to the agent with maximum
capacity, the second largest to agent with next highest capacity and so on.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 80

procedure equal_distance-allocation();

(*Pi is the list of subsets sorted in the decreasing order of size; *)

(* A; is the list of agents sorted in decreasing order of capacity; *)

begin
fori ;= 1tokdo

assign the subset P; to agent A;;
endfor;

end;

In this case, the allocation becomes optimal also. However, the distance between
agents need not be equal in real life problems. Hence, the allocation strategy must
consider both capacities of agents and distance between them.

3.7.1 Allocation Algorithm

Since our partitioning heuristic partitions the rulebase according to the capacities
of agents, the subsets obtained and the agents have a one to one mapping where
sizes of subsets match with capacities of agents.

Therefore, the allocation problem can be stated as a mapping problem where
there is exact correspondence between the size of a partition and capacity of an
agent, and the communication overhead is to be minimized based on the coupling
(data transfer required) between subsets and the distance between agents.

Given a partition in theratiop; : p2 : .. : px, the coupling between subsets as the
amount of data transfer, and the network of agents with capacities sy, s2,--, Sur
objective is to map same size subsets onto agents of correspondingly same capacity
such that communication overhead is minimized.

We propose a heuristic solution as follows:

Chapter 3. Satic Knowledge Base Partitioning and Allocation

procedur e allocate();

begin

sort the agents on the decreasing order of capacity;

sort the subsets on the decreasing order of Sze;

sort subset pairs in the decreasing order of coupling between the pairs;
(* group them together based on the amount of coupling *)

sort agent pairs in the increasing order of distance between the agents;

(* group them together based on the distance *)

select the firgt pair of subsets with the maximum coupling;
select the first pair of agents separated by the first minimum distance;
repeat (* with each subset pair *)
repeat (* with agent pair *)
if subset 9zes match with agent capacities then

assign the subsets to agents of corresponding capacity;

mark the assignment okay;

endif;

consider the next agent pair
until the assignment is okay;
(* both subsets of the subset pair are assigned *)
consider the next subset pair preferably having

one subset from (previous pair or) assgned subset list

until (k-1) subsets are assigned;

end;

81

Chapter 3. Satic Knowledge Base Partitioning and Allocation 82

3.7.2 Example 2

To explain the alocation agorithm, we shall consder an enlarged rulebase.

The rulebase after adding sx more rules to the example rulebase 1 is shown
below.

Rl. AB —C R2. BDE— F
R3. BG-—H R&. I —)
R5. FG — K R6. AG —1
R7. KM—L R&. M =N
R). O —N R10. O —P
R1l. Q —P R12. KQ — R

The knowledge graph for the example rulebase 2 is shown in figure 3.4.
A spanning tree for the Example rulebase 2 is shown in figure 3.5.

The find partition obtained after the initial partitioning and boundary refine-
ment of the connected_static_partitioningheuristic is shown in figure 3.6 and in table
34.

Now this partition can be considered as input along with the network topology
for illustrating the allocation algorithm.

Given:

the above partition Py, P,, Ps, Pwith szes of the parts in the proportion 2:1:2:1,
communication coupling among the subsets PP, = 2, P,P3=1,P, P, =1, and P, Ps
=1

and a network of agents A,, A,, Az, Ayith capacities in the proportion 2:2:1:1
and distance between the nodes as A,4,= 2, AjAs— 2, AjA= 1, A;A3= 2, A Ay
= 1, and Az3A4 = 1,

we shall use our algorithm to find an alocation with less communication overhead,
and load balancing.

Chapter 3. Satic Knowledge Base Partitioning and Allocation

Figure 3.4: Knowledge Graph for the Example Rulebase 2

83

Chapter 3. Satic Knowledge Base Partitioning and Allocation

Figure 3.5: A Spanning Tree for the Knowledge Graph of Example Rulebase 2

Chapter 3. Satic Knowledge Base Partitioning and Allocation

Figure 3.6: A 2:1:2:1 Partition of the Example Rulebase 2

Chapter 3. Satic Knowledge Base Partitioning and Allocation 86

P P,

RS, =[RIR3.RAR6); | RS, =(RZ, Rb);

VS ={A,B,C,GHL)}; | VS, ={DEFK);
EVS, ={A,C,H,1,]}: EVS, ={D,EF};
DVS, ={A,B,C,G,H,J}; | DVS, ={B.D,E,F,G,K};
NRF, ={}; NRF, ={B(1), G(1)};
MRB, ={B(2),G(2))}; MRB, ={K(3),K(4)};
P P,

RS: =(R7,RB,RO.R10); | RS: =(R11, R12)
VS8, ={L,M,N,0}; VS, ={P,Q,R};
EVS; ={LM,N,0}; EVS; ={Q,R};
DVS; ={K,LM,N,0,P}; | DVS, ={P,Q,RK}:
NRF; ={K(2),P(4)}; NRF; ={K(2)};
MRB; ={); MRB, ={P(3)}:

Table 34: A 2:.1:2:1 Partition of Example Rulebase 2

We can see that the subsets P\ and P; are of Sze 2 units, and these have to be
alotted only to agents of the corresponding capacity, viz., A\ and A,. Interchanges
in allocation are possible only between them. The remaining subsets can be assigned
among themselves to any of the remaining agents.

The sorted lists of subset pairs and agent pairs are shown below.

Coupling between subset pairs Distance between agents
i) PiPy=2 i) AjAy =1
ii) PP =1 ii) AAq =1
iii) PPy =1 : iii) AzAs =1
iv) PPy =1 iv) AjA; =2
v) A1Az =2
vi) A2Az =2

We shdl illustrate three different cases of allocation.

Considering the firgt pair of subsets P, and P,, and the first pair of agents A;
and A,, P, can be assigned to A, and P, can be assgned to A4. We show this by

Chapter 3. Satic Knowledge Base Partitioning and Allocation 87

P, — Ajand P, - Ag. There are two more subsets to be assigned to two more
agents. Leaving this assignment undisturbed, we proceed with the next subset pair
in the list.

If we select P,P; as the next pair of subsets for consideration, it will result in
P, — Asand Ps — A,. Now that three of the subsets are assigned to three agents,
and that the unassigned subset has an assignment compatible with the remaining
agent, the final assignment is as shown below.

P - A
P,— Ay
Py—= A,
Py — Aj

Had we selected P,P; instead of P,P; we could have got the same result though
with an extra step.

Considering Ay A4, P, is already assigned to Ay; Py and A, are incompatible
as they belong to groups of different size and capacity respectively. P, belongs to
the group of subsets of size 1, and A; belongs to the group of agents of capacity 2.
Therefore, this assignment is not compatible.

Considering the next agent pair A3A4 for mapping the subset pair PPy, the
assignment P, — A, still holds; Py can be safely assigned to Asas both of them
belong to compatible groups, i.e., of size 1. Now, Py — Aj.

As already three out of the four subsets have been assigned to three of the agents,
and as P; and A, are compatible, we can make the assignment P; — A,.

The fina assignment is shown below:

P1—> Al
P2—P A.{
.P“—? A;

Chapter 3. Satic Knowledge Base Partitioning and Allocation 88

It can be verified that the this assgnment holds true with the other subset and
agent pairs in the list.

Similarly, another mapping

P—- A,
P,— A4
Pi— A;
P, — A,

aso is aminimal communication overhead assignment with the load balanced evenly
among the agents.

3.8 Conclusions

We have proposed heuristics for statically partitioning knowledge basesby represent-
ing them as knowledge graphs. The partitioning algorithm presented handles both
homogeneous and heterogenous partitioning cases and is independent of the graph
structure and application domain. A partition in the required rule ratio can be
obtained quickly and may be used as it is. Other wise, it may be used as a good
starting partition for optimizing performance of algorithms KL and SA. It reduces
data duplication and the related inconsistency and communication problems by tak-
ing care of the data dependencies. Also, the partition obtained helps in deciding and
organizing the working memory contents. When an agent cannot proceed with local
problem solving due to insufficient or incomplete data which may be available with
other agents, directory information in the form of NRFs and MRBs help to reason,
and send requests in a directed fashion. The heuristic for partitioning connected
graphs is extended to deal with graphs having components.

The allocation heuristic assgns knowledge subsets with maximum coupling to
a closest pair of agents of suitable capacity and minimizes communication while
achieving load balancing and less communication.

Task decomposition can be done based on the partitioning of knowledge and
data, and subtasks can be assigned to agents accordingly.

Chapter 3. Satic Knowledge Base Partitioning and Allocation 89

The static partitioning algorithm described assumes that al rules have equal
probability of being fired. This is because determination of rule firing frequencies at
compiletime is difficult. However, the varying rule firing frequencies may cause
load imbalance during run time and hence dynamic load balancing is necessary.
Knowledge distribution for dynamic load balacing is discussed in chapter 5.

The next chapter presents two case studies highlighting the various aspects of
the static partitioning algorithm developed in this chapter.

Chapter 4

Static Knowledge Base Partitioning and
Allocation: Case Studies

This chapter presents two case studies, viz., Aerospace Vehicle Checkout Application
in section 4.1 and Medica Diagnosis of Abdomina Pains in section 4.2. Results
of usng our partitioning heuristics on the rulebases for the two applications are
discussed. Finadly the last section gives the conclusions.

4.1 Case Study 1 : An Aerospace Vehicle Checkout Application

A rulebase for an aerospace vehicle checkout application is chosen to test our ap-
proach. Thirty seven rules in an encoded form (given in Appendix A) are considered
for illustration. Since this is a monitoring application, the system has to continu-
oudy keep on firing rules during countdown till the launch takes place. The launch
cannot take place if there is any malfunction of some part in the physical system.
A fault in a system component is indicated by the expert syslem REX [104] using
a Hold operation, which is very much like action part of a rule. Hold essentially
displays a message indicating a fault in a subsystem and suggests corrective action.
Performing of this action may be automated or done manualy. After waiting for
a specified a period of time, the expert system REX resumes the inference process.
As a result of taking the corrective action, the new data will be sent to the expert
system's working memory as external input.

4.1.1 Partitioning in the given ratio for Load Balancing
Since this is a monitoring application, many rules corresponding to fault diagnosis

are for controlling the system, and use the Hold operation. Therefore, wetreat this as
a control variable and use it as a don't care attribute during the actual assignment

D0

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 91

of rules. The rulebase follows OPS5 syntax in other aspects. It is observed that
about 40% of the rules are complements of another set of rules. Treating al the
Hold parts of rules as a single variable, the knowledge graph constructed for these
37 rulesis as shown in figure 4.7. It may be noted that attributes are shown as big
dots in the knowledge graph.

While attempting to generate a spanning tree for the knowledge graph, it is
found that there are three components in the knowledge graph. Each of them has
33, 2 and 2 rules respectively. After generating a spanning forest, finding chains for
the components, and continuing marking of edges of the components with the same
seguence of integers, we have the resulting situation as shown in figure 4.8. The
number of rules present on the chain edges is smal compared to the total number
of rules in the rulebase; branches have more rules. Hence, in the examples discussed
below, if some edge to be cut happens to be a branch, we shal not skip it, but take
asitis.

Case 1
Partitioning in the ratio 1.1

Desred szes of rulebase subsets to be obtained are z; = 19 and z; = 18.

On applying the heuristic balanced_subset_components discussed in section 35
of chapter 3, it is found that the components do not form subsets with rules in the
given ratio.

Since the largest component has more rules than required for the first subset, it
has to be cut. The edges of the spanning trees for components are labelled as
though there is a single spanning tree for al the components.

The total number of rules = 37, and total number of labelled edges = 17.

Edge to be cut e¢; = 9.

Cutting at 9th edge gives the proposed rule sets, nonconflicting rule sets and the

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 92

Rag Rag

Rau Ras Rag Ryp Rae Rag Mao
£ - et
Ry Ry, R33Ry RasRag Ry,
R33

bv2 eml bs7 bst em2

Figure 4.7: Knowledge Graph for a portion of Aerospace Rulebase

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Studies

opl nZtp bvi ci Ipt m2rp N2tp bhp bv3
L] L]
> 6
A Ryg | Rg Ry 8| Rz O/r,, R LPY)
1 J
; Ry YRy f R Re 4R JrRis §R7 Ry
%% 1
Ry
16 17
bsy bs2 . bs3 ¢bs, ®bs;
R
r n‘. ns K2 26
Ry, ‘°"R" R27 Ry
R2s Rn| ™7
ot R24 Ras R2¢ Ry Rae “zsm
Myy 7 A 10 Ry, Ryg Ry R3g Rys Ryg Ry
\ R
w2 N\
/ 3 Rac A 36
30 Ry b
15”5;, Rae Ras | b3
Raz [¢ R
Rig 37 “ 23 R
Ris 14| Ry, L1 &
\
13
bv2 em) bs7 bs8 cm2

cty

93

Figure 4.8: A Spanning Tree for the Knowledge Graph of Aerospace Rulebase

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 94

conflict rule sets as

I)RS] = {R]; ey R]3a R24_\ ey R29}
RS, = {Ry,.., B3}
|RS| =13

PRSQ = {RlEh --1337}
RSQ = {len ey }.iz\'ia HSO: Va3 R37]

CRS — {R14:R15’R24, st, Rj6, Ry7, Ras, Rzg}

All the rules in CRS except for Hysand R;s are of the same size (number of at-
tributes in arule), i.e., 3 attributes (including the holds i.e., h6, h7, h8, h9, 10 and
h11. R,y and Rjshave 2 attributes each.

Both the rules K24 and R3s, have one attribute each, i.e., bs; and ¢ty (excluding
the control variable Hold), in P\ and P; respectively. Therefore, these rules can be
allotted to any of the subsets P, and P,. Since P, requires some more rules for its
desired size, these are allotted to P,. Now, RS; = {R,., Ris, R24, R25} with its size
|RS;| = 15.

Similarly, the rules Ry, Ry7, Rog and R,e should be assigned to P,. This gives
RS — {Ri,.., i3, Raa, .., R29} making the size of RS; equal to 2, i.e., \RS\ — 19,
P, is marked okay.

The remaining rules for which the conflict is to be resolved are R;4R;s. Both
P, and P, have an attribute count of 1 for these rules. Since F; is in the okay
list, and P, still needs some more rules for its desired size, these may be assigned
to P,. This means, we should duplicate bs; in P, and as soon any of these rules
isfired, the result may have to be sent to P;. If P, requires, it will request it from FP.

RS2 = {R14!"$R233R3{}, ..,R37]; |R82| — 18

Hence P, is marked okay.

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 95

Susbset P,

VS, = {apy, bsy,n2tp, bvy, 1, bsy, Ip;, n2rp, bss }

RSl = {Rl,-les,Ru,--,Rm}

NRF] = {(Cil,Q)}

MRB] = {(533,2)}

DV S, = {apy, bs;,n2tp, bvy, ¢;, bsy, Ipy, n2rp, bsa, ct, }
EV S, = {ap,, bs;,n2tp, bvy, ¢;, bsy, Ip;, n2rp}

|RS;| =19

Susbset P,

VS, = {n2iip,ctl, bsy, cmy, by, bus, bsy, bss, bsg, bsg, cmy, bsg, bhp}

RS: = {RH, aey R23,R30, vy Rg',r}

NRF, = {(bsa, 1)}

MRB; = {(ct;,1)}

DV S, = {n2itp, ctl, bsy, cmy, bvy, bug, bsa, bsy, bss, bsg, bsg, bsg, ey, bhp)
EV S; = {n2itp, bsy, cmy, buy, bug, bsy, bss, bsg, bsg, ey, bsg, bhp}

|RS;| = 18

Table 4.5: A 11 Partition of the knowledge graph of Aerospace Rulebase
Final Partition:

The find partition is as given in table 4.5. Communication between the agents is
necessary for 8 rules with the number of attributes to be duplicated as 2, i.e., for
ct\ and bss.

Case 2

Partitioning in the ratio 2.1
As seen in the previous case, there are 3 components in the knowledge graph and
the components have 33, 2 and 2 rules respectively.

Desired szes of rulebase subsets to be obtained are z; = 25 and z2 = 12.

Component sizes and the subset szes do not match in this case aso. Hence, we
give integer markings to the edges and cut the graph as though there is only one
spanning tree.

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 96

The total number of rules is 37, and total number of marked edges /is 17.
Edge to be cut ¢; = 12.

Cutting at 12th edge gives the following proposed rule sets, exclusive rule sets and
the conflict rule sets.

PRS: &= {Rla --5R15,Rz31 -~1H37}
RS, = { Ry, .., Rys, Ra3, .., Rye, Ra1, Ras, Ras, Rag)

PR52 - {Rlﬁg vey R??) R3'21 R341 RST}
RS; = {Rié, .., Ra2}

CRS = {Rao, R32, R34, R37}

Since subset P\ is aready possessing enough number of rules for its required size,
al the rules in the CRS will be assigned to P,. This adso has an advantage that
strongly coupled rules are in the same subset. Since balanced partitioning is nat,
possible, the extra rule with P, is kept with P, itsdf and the algorithm exits.

Final Partition:

The resulting partition is shown in table 4.6.

Communication between the agents is necessary for 4 rules, i.e., Rso, Raz, R34,
and Rs;. Number of attributes to be duplicated is 1, i.e., for ct.

Case 3

Partitioning in the ratio 1.2.1
We can see that the total number of rules = 37, and total nhumber of labelled edges

Chapter 4. Static Knowledge Base Partitioning and Allocation: Case Sudies 97

Susbset P,
V‘Sl = {ﬂp-]] bS]] nzip! bU] »C1, bs?s ilpl] ﬂ2'f'p, b‘931 '-"12”]’: Ctl 3 b."is, Ciy, 559}
RSI = {Rl L) Rll’n Rz:-;; “ey Rzg, R.’.’lh Rss, Rsﬁ, Rs,o}

NRF, = {}
MRB, = {(cty,2)}
Susbset P,

V Sy = {bs7, cmy, bhp, buy, bug, bsq, bss, bse}
RS, = {th‘n ..,Rzz,R:}o,R:i‘ZaR:S‘I!RE'?}
NRF, = {(Ctla 1)}

MRB; = {}

IRSQ' =11

Table 4.6: A 2.1 Partition of the Knowledge Graph for Aerospace Rulebase
= 17.

Desired szes of rulebase subsets to be obtained are z;, = 10, z; — 19, and 23 =
8.

Component sizes do not match subset sizes. Hence we proceed in the same way
as explained in the previous cases.

Edgestobecut e; — 5and e; = 13.

Cutting at 5th and 13th edges gives the proposed rule sets, exclusive rule sets and
the conflict rule sets as

VS, = {ap,, bs;,n2tp, bs,}

PRS, = {Ry, Rz, Rs, Re, Rz, R10, R11, Raa, Ras}
RS, = {Rls Ry, Rs, Ry, Ry, Rn]

|RS;| =6

VS, = {bvy, c1,1p1,n2rp, bss, n2itp, cty, bsg, emz, bs7}
-PRS2 = {R61 RSuth“sR]ﬁaR??s "sRST}
RS, = {Ry2, .., Rys, Ra3, Ras, .., H3y, Ras, Ras, Rss}

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Studies 98

VS5 = {emy, bvy, bss, bhp, bsy, bva, bsg)
PRS; = ‘[Rm, =y Rzz: Rio, Raa, Rag, Ra?}
RS3 = {Rlﬁa "y R211R32}

|RSs| =7

CRS = {Rs, Ry, R, R, Ry, Ry, Ry4, Rys, Rao, Rsq, Raz)

The rules Rs, R4,Rg and Ry are of size 2; Rg, Ry, R24 and R,s are of size 3; Rs4and
R37 are of size 4.

The rules Rssand R37 have P, and P3 as candidate subsets. P, has a higher at-
tribute count, and still requires 5 rules for its desired size. Hence these two rules
are assigned to F. RS; = {Ry.., Rys, Rys, R, -+, Ry, Ras, .., Rar}; |RS,| = 16.

The next set of rules with size 3 are He, R2,R24,R2s.

Rule Rg can go to either P, or P,. Hence it is assigned to P,. RS, = {R;,R,, Rs,R¢, R
Now |R5'1|: 1.

For the rule R,;,P3 has the highest attribute count. Hence, the rule is assigned to
Ps. RS3= {Rye,.., Ry, Rs,}; |RS3|= 8. Ps is marked okay.

The rules R,4, Rysshould go to P, as it has got 2 out of their 3 attributes with it
and still requires 4 rules for its share. RS, = {Ri, RiRs, Re,R7, Rio, Ru1, Ra4, Ros}
Hence, |RS;| = 9.

The new CRS has only rules of size 2 attributes, i.e., R, R4, Rg and Rj.

Rules R3 and R4 can go to either P, or P,. Assigning them to P, makes RS; =
{R3,&,R12,..,R15,R23, st,..,Rm,R:;a,..,qur} and |R52| = 18 "

Remaining rules Ry and R, can go to either P, or P,. However, since both of
them require one rule each, P, is given Rg and P, is given RQ making them okay.

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 99

Susbset P,

VS, = {ap,, bsy,n2ip, bs,}

RS1 = {Rl,R?.,Rs, R, R?,RB,RM Rn,Ru‘st]

}VRFI = {(Cth?)? (bv112)1(C112)}

MRB; = {(bs,,2)}

|RS;| =10

Susbset P,

VS, = {bvy, 1, lp1,n2rp, bss, n2itp, cty, bsg, cmy, bsz, bsg}
RSQ = {Ra, R4, Rg, le ey Rls, R’za, R'za, ey Rah R33, "1R37}
NRF, = {(bs;,1), (bs7,3)}

MRB; = {(cty,1), (ct;,3), (bvy,1),(¢1,1)}

|RS,| =19

Susbset P

VS3 = {bhp, bsy, bss, bsg, bvy, bvs, cm, }

RSa — {Rlﬁa ey R22a R32]’

NRF; = {(ct1,2)}

MRB; = {(bs7,2)}

|RSs| = 8

Table 4.7. A 121 Partition of the Knowledge Graph for Aerospace Rulebase

|RS;| = 10; P, is marked okay.
|RS2| = 19; P, is marked okay.

Final Partition:

The fina partition is given in table 4.7.

Communication between the agents is necessary far 7 rules with the number of
attributes to be duplicated as 5. Actualy, the number of duplications required for
ct; is 2, and one each for ¢;, bvy, bs, and bss.

4.1.2 Functional Decomposition

A free grouping of rules connected with and nodes forming clusters of branches gives
us the decomposition shown in table 4.8. The rule set pertaining to a subset F; is

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 100

Subset | Rules

RS, {Ry, Ry, Ra4, R3s}

RS, {Rs, R4, Rs, Re, Ry, Rg, Ro, Ryo, R11}
RS, {Ry2, Ri3, Ry4, Ris, Rae, Ra7, Rag, Rao)
RSy { Ris, Ry9, Ra2, Rso, Raz, R34, Rar}
RSE {-H23& RS] ’ R33$ R35, H3{:}

RSe { R, Ri7}

RSy {Ra0, R21}

Table 4.8: A Functional Decomposition for the Aerospace Rulebase

denoted as

When we considered the objects involved in the physical system, and their hierar-
chy (please see Appendix A), it is observed that RS, corresponds to those connected
with bs.ftc.hydraulic.system, RS, to External Supply object of the sc.current sub-
system, and RS; tO bs.sitve Subsystem. However, RS; and RS: are interacting
subsystems as the rule numbered R uses data pertaining to both. Smilarly, RS3
needs the rules R,¢ and R,; which belong to RSe to completely represent its subsys-
tem . Then, RS, corresponds to sc_battery and cpif_battery objects of the subsystem
bs.sc ad RS, corresponds to bs.cpif_bat Object. It is adso observed that a branch
within a cluster of branches (the latter pertaining to one big object) represents the
rules pertaining to a subsystem within the bigger object.

Finaly, the sets RSy and RS, corresponding to the disconnected components
in the graph actually belong to the bs.sitvc and bs.sc objects. These would have
been assigned to the appropriate subsets if it is known that the data used by these
rules actually belong to the bs.sitvc and bs.sc objects. Therefore, when knowledge
of relationships between data and the physical objects (subsystems) is considered
while grouping the rules, the result is a functional decomposition pertaining to the
objects of the physical system.

However, it is to be noted that, inspite of the absence of knowledge about object
structure and the incompleteness of the rulebase, we are able to get a decomposition
that is very close to functiona decomposition. Considering the knowledge about
objects associated with the datayields better results. In this case study, it is actually
the functional decomposition.

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 101

Also the partitions obtained using the heuristic with load balancing as the ob-
jective are close to functional decomposition.

4.1.3 Discussion

This application presents two situations which were not discussed in the examples
of the previous chapter. Edges have multiple rules as labels, and there are three dis-
connected components in the knowledge graph corresponding to this rule set. The
partitions obtained using our agorithm achieve both load balancing and reduced
communication. Some of these partitions obtained are very close to functiona de-
composition also.

4.2 Case Study 2: Medical Diagnosis of Acute Abdominal Pains

Abdominal problems are one major wing of medical therapeutics and surgery. These
can be dassified as chronic and acute abdominal problems. Acute abdominal prob-
lems are the most common and the most challenging, and many times life threat-
ening to the patient who comes to the emergency department. The physician on
duty has to be very diligent and distinguish between medical and surgica abdomi-
na emergencies. In the latter group, crucia decisions have to be taken in favour of
surgery to save patient's life. For example, cases like ruptured spleen and ruptured
appendix need immediate surgica intervention. To achieve this goal, the phys-
cian has to perform various clinica tests. With the help of lab investigations and
advanced techniques like X-ray and Ultrasonography, physician can reach at the
accurate diagnosis, and patient can be treated in an appropriate way.

Many abdominal problems present themselves with sgns and symptoms common
to most of them, with some clinching diagnostic features unique to each disease.
The physician has to distinguish between those signs and symptoms to arrive at
the correct diagnosis [21, 26, 89, 92]. In this context, Expert systems can help to
avoid mistakes and improve the efficdency in diagnosis. Partitioning the knowledge
base and paralel exploration of multiple diseases can further speed up the process
of diagnosis.

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 102

4.2.1 Partitioning in the given ratio for Load Balancing

This knowledge base has 400 rules pertaining to 25 diseases. Rules for three dis-
eases viz., Acute Cholecystitis, Perforated Peptic Ulcer and Pancreatitis are given
in Appendix B. These are again given in an encoded form for accommodating and
visudizing in the foom of knowledge graph on the paper. We consider a subset of
the rules, i.e.,, from R, to R3; corresponding to Acute Cholecydtitis for discussion
here. The knowledge graph for these rules is given in figure 4.9. It is important to
note that unlike in aerospace application, the percentage of data to be shared by the
knowledge subsets corresponding to different diseases is considerably more. Even in
this case study, as there are a large number of rules present on branch edges, if an
edge determined to be cut, e,, happens to be a branch edge, it is left as it is without
skipping the branch portion.

Partitioning in theratio 2 : 1

There is a single component in the knowledge graph.
Number of integer marked edges in the spanning tree / = 31.
Size of the rulebase subsets to be obtained are z; — 21, and z, = 10.

Edge to be cut e; = 20.

Cutting at edge labelled 20 gives the following vertex sets and rule sets.

vS,= { vp, M, 1i, lif, liq, hpc, po, pot, pi, pl, pr, di, abt, abrt, cvt, cvts, ps, pp,
xil, xcal, j, prp, sp, ACl,.., AC9, AC11, AC12, AC13, AC16, AC18, AC19,AC}
PRSIZ {Rla o0y RQ,RII, RlQa R13, Rlﬁ, R18a #197? R25, R?G, R28a RSI }

RS, = {#1, .. .#9, #n, #12? #13? #16? #18? #25? #26? Mg }

|RS|= 17

vS,= {dp, fc, fr, fs, prt, sgb, esr, Ic, sal, ecg, sgotl, sd, abwr, abwg, ms, ACI0,
AC14, AC15, AC17, AC20, AC21, PPU, ACPAN, MI}

PRSZ = {RIOa R]41R157 Rl7, R211R22y R23’ R24}

RS; = {Rio,Ri4, R1s, Ra7, R, Raa, Ras, 124}

|RS;|=8

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 103

sw bmqo Jmqe ps |jobs 6oe oS 3] J4s%s

qbs

el

[103% 11x dd

Wy QC
By Zl
71 .

$d S1A) 1Ad}uqp jq@

Sy A%y fly LSy

Il Ol |6 |8

1P ad

by

14

1d

iod od

™

[]
ady b1l 4

Figure 4.9: Knowledge Graph for a portion of Medica KB

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 104

CRS = (o9, #0, #27, #29, Rao, #31 }

Among the rules in CRS, R3; has the highest number of attributes. Since 9 of
the attributes (out of 11) are present with Py, it should be assigned to P,. Now,
|RS;| = 18.

For Ris, PA has 2 out of 3 attributes pertaining to R, with it. The rule is as-
Slgned to P]. IRS]I = 19.

Similarly, R2e should go to P, based on attribute count. Assuming R, to P, makes
RS = 9.

R,; can go to either P, or P,. Therefore, it is assigned to P, making |RS,| =
20.

Similarly, Ry is assigned to Py; |RS:|= 21. P, is marked okay.

R3, can go to either P, or P,. It is assigned to P, making |RS,| = 10. P, is
marked okay.

RS] — {#1, ... #9, #11, #12, #13, #16, #18, #19) R25’ °y R293 #31/

IRS,| = 21

Both P, are P, marked okay; since the required partitioning is obtained, the a-
gorithm exits.

Final Partition:

The find partition is given in table 4.9.

4.2.2 Functional Decomposition

A funcionad decomposition may be obtained easily by considering the degree of the
attributes. For example, when we encounter an attribute that has zero outdegree,

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Sudies 105

Susbset P,

VS, { vp, v, Ii, Iif, liq, hpc, po, pot, pi, pl, pr,

di, abt, abrt, cvt, cvts, ps, pp, xil, xcal, j, prp, sp,
ACl,.., AC9, AC11, AC12, AC13, AC16, AC18, AC19,AC}
RS, {Ri, .., Re, R11, .., Ri2, R13, Rye, Ris, Rio, Ras, .., Rag, R31 }
NRF, | {(AC10,2), (AC14,2), (AC15,2), (AC17,2),(AC20,2)}
MRB, | {(AC,2), (AC19,2)}

|RS;| |21

Susbset P,

VS, {afp, fc, fr, fs, prt, sgb, esr, lc, sal, ecg,

sgotl, sd, abwr, abwg, ms, AC10, AC14, AC15, AC17,
AC20, AC21, PPU, ACPAN, MI}

RS, { R0, Ry4, Rys, Ry7, Rao, -, Raq, R0}

|RS,| |10

NRF, | {(AC,1), (AC19,1)}

MRB, | {(AC10,1), (AC14,1), (AC15,1),(AC17,1),(AC20,1)}

Table 4.9: A 2.1 Partition of the Medical Diagnosis Application Rulebase

considering dl rules incident on the incoming edges while traversing back to data
with zero indegree in the branches (connected to it) gives afunctional decomposition.

If we consider the rules pertaining to the three diseases given in Appendix B, the
above strategy separates rules for each disease. Some rules using data associated
with more than one disease were duplicated in al the concerned subsets.

4.2.3 Discussion

Our partitioning algorithm discussed in section 3.3.6 dways guarantees static load
balancing. It gives good results with respect to both load balancing and communi-
cation for information exachange if an appropriate proportion of the szes of rulebase
subsets is given as input.

However, in this application, a large number of attributes (data) are shared by
closdy related diseases. Therefore, communication will be more for some subset sizes
because data is distributed without any replication in our model. This is true in
situations where rules pertaining to one disease are spread over multiple agents. An

Chapter 4. Satic Knowledge Base Partitioning and Allocation: Case Studies 106

example is a partition in which the rules corresponding to the diseases Cholecystitis,
Pancreatitis and Perforated Peptic Ulcer are partitioned into three subsets using the
static load balancing partitioning algorithm, and the subsets are alocated to three
agents. This problem may be remedied by alowing duplication of necessary data at
the required places. The data updation overheads will aso be less as most of the
values remain same for a large percent of data. Otherwise, checking once for the
already obtained data eliminates unnecessary communication.

To summarize, functional decomposition is more suitable to this application with
respect to the information exchange required. Pure load balancing yields good re-
sults with respect to information exchange also when the necessary datais duplicated
a al places. Instead, partitioning for load balancing within a partition correspond-
ing to afunctional decomposition is a better choice. Futher, in an application like
medical diagnoss, the entire knowledge base need not be active at the same
time. Therefore, a control component may first be initiated and then the process
corresponding to the related diseases be invoked dynamically.

Hence, dynamic knowledge distribution becomes appropriate not only for dy-
namic load balancing but for dynamic invocation of knowledge subsets depending
on the actual problem being solved and the solution progress. Dynamic distribution
of knowledge is the subject of the next chapter.

Chapter 5

Dynamic Knowledge Distribution

In Chapter 3, we have seen how knowledge can be partitioned and allocated stat-
icdly. However, dynamic knowledge distribution becomes important for dynamic
load balancing, problem based knowledge allocation and for adapting to changes to
the knowledge base from time to time. As with static partitioning, many of the
technigques aim at homogeneous partitioning and do not take data distribution into
account. Besides heterogeneous partitioning and data distribution, the complex in-
terdependencies among the knowledge subsets require specia attention. Considering
these three aspects,we develop new techniques for dynamic knowledge distribution
in this chapter. The chapter is organized as follows. Section 5.1 gives an introduc-
tion to the problem; it explains the importance of dynamic knowledge distribution
and the need for new techniques. Section 5.2 discusses the various heuristics to par-
tition and allocate knowledge dynamicaly for dynamic load balancing. This covers
making local exchange of rules between (neighbouring) knowledge subsets, reparti-
tioning and reallocating the entire knowledge base, and adapting to changes to the
knowledge base from time to time. Section 5.3 discusses problem based dynamic
knowledge distribution and the last section gives the conclusions.

5.1 Introduction

Dynamic knowledge distribution becomes important for the following reasons:

» Some Al programs exhibit a rapidly changing computational requirement and
have unpredictable run time behaviour [128] because they must respond to
changes in external environment. Due to this characteristic, scalability is hard
to achieve unless both static and dynamic load balancing are done. Even if
the run time situation does not change so quickly and unpredictably, in initial
stages of problem solving, knowledge and data may have to be distributed

107

Chapter 5. Dynamic Knowledge Distribution 108

arbitrarily as it may be difficult to have a compile time estimate of the run-
time behaviour. In such cases, redistribution (reorganization or remapping)
of knowledge is needed to balance the load, minimize communication and im-
prove performance. Organizational sdf design [71] is an example for adaptive
reorganization of the agents and their knowledge for better performance in
Distributed Al systems.

* When new knowledge is being aguired either by local learning or from the
external world, knowledge base in its entirety undergoes changes. Assigning
new knowledge to appropriate agents, and checking for load balance become
crucia in such situations.

* When agents are created dynamically as problems arrive, as in Contract Net
Protocol [114, 115], an agent may have to be provided with appropriate knowl-
edge for solving a task assigned to it. Knowledge exchange in such situa-
tions may be either directly done between two contractor agents themselves
or through a manager. This knowledge transfer may also be considered as a
separate task by itsdf.

* When the main memory is insufficient to accommodate the entire knowledge
base, dynamic relocation of the modules or subsets of knowledge may be nec-
essary.

» Knowledge distributed to agents for solving a particular task may not be suit-
able for solving another task. Therefore, knowledge of an agent may undergo
revisions in the foom of exchanging portions of knowledge subsets already
available with other agents. Knowledge may need to be duplicated (where
often required) or deleted (where not required). The god is to make the par-
tition sdf-sufficient for solving most of the tasks, thus minimizing information
exchange. The new distribution is expected to be better suited for a set of
constraints and load at a given time. This is similar to the dynamic allocation
of documents based on their use a a node and other constraints [65].

Keeping in view the goals of load balancing and minima communication, dynamic
knowledge distribution can be done in the following ways.

Chapter 5. Dynamic Knowledge Distribution 109

1. Minor redistribution in the form of loca exchanges between neighbouring
agents (with or without duplication).

2. Repartitioning and reallocating the entire knowledge base periodically over
fixed or varying length time intervals based on the run-time statistics. If run-
time behaviour becomes stable after certain time, static distribution itself may
include an estimate of this.

However, if pure functiona decomposition is the objective, there is no need for
reorganization. The knowledge remains where it belongs.

In other cases, knowledge distribution involves the following.

1. Distributing the required chunk of knowledge after the problem arrival (if the
required knowledge is not aready available with the agent).

2. Limiting the changes due to additions (or deletions) as a result of new knowl-
edge acquired, to the knowledge subset that is closdy associated with the
change and its neighbouring subsets. If this leads to severe imbalance over a
period of time, complete redistribution may be necessary.

Dynamic load balancing has been addressed in areas like parallel and distributed
computing [3, 17, 20, 25, 42, 66, 105, 110, 128]. However, these are suitable basically
for data parald programs and specific types of task interaction patterns.

Dynamic distribution of knowledge in production systems has been dealt with
by Ishida et a. [7]] in the context of organizational self design. Knowledge rep-
resenting agents is composed or decomposed adaptively depending on the varying
performance changes in the system. This has already been discussed in chapter 2.
It was aso noted that though two agents are composed to form one agent, and one
agent is decomposed into two by arbitrarily clubbing and halfing rules in the agents,
need for better methods has been emphasized. This leads to unnecessary commu-
nication overheads but the problem is less severe when agents are not separated by
physical distance and a shared memory is used. For effective reorganization and
communication, the interdependencies need to be taken into account.

Dynamic scheduling of production rules (distribution at run-time) is discussed
by Tout and Evans [119]. If the queue of tasks to be investigated is not empty, each

Chapter 5. Dynamic Knowledge Distribution 110

idle processor requests and gets a predefined number of rules, and investigates to
find the applicable rules. Their performance analysis indicates that the design of
paralel expert systems with locd working memories improves speedup as well as
effidency.

However, both organizational sdf design [71] and dynamic scheduling of forward
chaining systems [119] assume a homogeneous partitioning. Further, interprocessor
distance is not considered and any agent can process any rule. While the first does
not consider data distribution, the second dlows full duplication or no duplication
of the database. Shared memory systems aso have synchronization and concurrency
problems [57].

However, in distributed Al systems, agents could be separated by physica dis-
tance and communicate may be by message passing. Further, dependencies among
rules must be taken into account.

Keeping locd copies of the entire database involves updation of al copies in
locd memories after every cycle. Instead, an incremental update followed by peri-
odic reorganization with necessary data stored only in the local copies can reduce
the update overhead and inconsistency problems. In this case at the end of every
cycle, there might be only a few changes from each node and the total number
of changes will have an upper bound equal to the number of data elements in the
working memory. This is beneficid especially when the amount of data shared is not
large. Shared memory systems have problems like synchronization and concurrency
control.

Further, the work by the above two groups assumes dynamic creation of processes
(agents) to select and assgn a set of rules. When agents are fixed (with a given
capacity), the changing knowledge and data make different instances of the agents.
This situation, however, requires new techniques for dynamic distribution to be
developed.

Unlike in data parallel programs,where the interaction is only between adjacent
modules (when the task graph is a chain of modules) or there is no interaction
a dl [15, 20, 75], knowledge subsets in Distributed AI problems exhibit complex
interdependencies. Therefore, mechanisms are needed for other domains to take care
of more complex relationships among modules.

Chapter 5. Dynamic Knowledge Distribution 111

First, we attempt to see how our static partitioning heuristics can be modified to
suit dynamic load balancing with reduced communication. Then, we discuss about
the dynamic reorganization which becomes necessary with changes to the knowledge
base and the problem based distribution of knowledge [97].

5.2 Dynamic Partitioning and Allocation with Load Balancing

A dynamic load balancing scheme consists of four policies. control policy (who makes
the load transferring decision), information policy (method of exchanging load sta-
tus), location policy (determining the possible candidates to whom the task has
to be transferred) and transfer policy (when exactly the dynamic load balancing
procedure has to be invoked) [128]. The terms agent, rnode, and process are used
synonymously.

There are various overlapping approaches to dynamic load balancing. In a cen-
tralized approach, control is authorized to a single controller whereas in a decen-
tralized approach, control is distributed to each node or multiple nodes [128]. In
a deterministic (or state dependent) approach, balancing is done based on current
system state, utilization of CPU and memory, average response time, etc., whereas
in a probabilistic (or nondeterministic) approach, ajob is despatched according to
a set of branching probabilities [42, 128]. Similarly, a distribution scheme could
be either adaptive or nonadaptive. In the former, load balancing policies are mod-
ified as the system state changes while in the latter, the balancing policy remains
unchanged. Finaly, in a coopecrative approach, nodes coordinate with each other
in making a decision, while in a noncooperative approach (isolated), this is done
without considering states of other nodes in the system [128].

In dl the heuristics to be discussed, we make a fev assumptions about the
physical network of agents. The network protocol is assumed to be taking care of
the data exchange format and other communication aspects. It is also assumed that
the distance metric used incorporates factors like communication via other nodes
and that infinite buffer space is available at the sender, receiver and intermediate
nodes thus implying no queueing delays.

Further, we differentiate between a physical network and a logical network in

Chapter 5. Dynamic Knowledge Distribution 112

the system. The physical network is the actual collection of agents with given in-
terconnections. A mapping of the possibly interdependent knowledge subsets onto
physical network gives us the logical network. Thus the logica network may be a
subgraph of the physical network. It represents the physica communication links
which become active as a result of the communication required among knowledge
subsets assigned to agents in a particular allocation. When there is a change in the
knowledge possessed by an agent, either due to redistribution (repartitioning and
allocation) or because of transfer of small portions, the logicd network aso may
change. The new distribution may have new coupling between subsets and hence a
new logical network may become active.

We shall now explain the load balancing policies used in our heuristics.

Control, Information and Transfer Policies

The control policy is centralized in al the heuristics to be presented.

The general strategy used in information and transfer policies is to measure the
load on each agent during a certain time interval and use this information to predict
and balance the load in the next interval. An update policy is used to exchange load
information among the agents and compute the desired load for each agent using
the available (actual) load information. Agents are categorized as heavily loaded or
lightly loaded depending on whether the difference between the actual load and the
desired load is positive or not. This information is used to bring loads on agents
close to their desired loads in the next interval.

Depending on the variance in the load imbalances in the previous intervals, length
of the time interval is changed to achieve an adaptive load distribution. Adaptive
load balancing can be achieved by invoking the particular balancing heuristic when-
ever the load crosses a predefined threshold also.

L ocation policy

In a CPS system using distributed local memories and message passing, load transfer
should be done between neighbouring agents to the maximum possible extent.

Chapter 5. Dynamic Knowledge Distribution 113

After identifying the heavily loaded and lightly loaded nodes, if the execution
of tasks is independent of the node as wdl as other tasks, it is ssmple to transfer
load from a heavily loaded node to a lightly loaded node. However, when there
Is interdependence among the tasks, transferring excessive load from one node to
another is not straightforward. The dependencies impose some constraints.

If the load is transferred arbitrarily between a heavily loaded and alightly loaded
node, particularly when there is no connection between them in the logica network,
it leads to unnecessary communication and excessive delays. Therefore, while trans-
ferring rules, it is necessary to falow the logical network considering the interdepen-
dencies among the subsets in the knowledge graph. This implies that for rules to be
transferred between agents, the corresponding subsets should have a dependency arc
between them. This is adso because firing frequencies of rules with input or output
dependency are interdependent and an arbitrary transfer will increase the commu-
nication. Secondly, this implies that when a heavily loaded node is not adjacent to
a lightly loaded node in the logicad network, the transfer cannot take place directly
between them, but should ripple through the nodes in between.

Imbalance vs. Communication Delays

Achieving perfect load balance is not possible because a rule cannot be subdivided
to make its firing frequency exactly match the desired load. Therefore, the god is
to have a farly optimal load distribution with less communication. Either of these
requirements may be considered as primary and the other secondary in a given
situation. Transferring of knowledge or data for load balancing should not result in
more delay due to extra communication than that caused by executing the excess
load locally. Therefore, information policy should consider and compare the delays
involved in both imbalance and communication as above.

Every node can be alowed to take an extraload (defined as a threshold) r that
can be tolerated by the system. Only when the threshold is exceeded, aload transfer
decison may be taken. Similarly, data updation overheads may also be taken into
account. The threshold value is taken as some constant in the examples discussed
below.

Chapter 5. Dynamic Knowledge Distribution 114

Starting point

Our dynamic load balancing and distribution start a a node with the heaviest
imbalance. The option of starting the balancing process a a heavily loaded node is
chosen because heavily loaded nodes cause more delays in problem solving.

Stop criterion

Since perfect load balancing is not possible, as discussed earlier, we must be able to
determine when to stop. One method is to specify a threshold r as discussed earlier,
another is to limit the number of iterations. We shal use the firs method in our
heuristics.

5.2.1 Local transfer of Knowledge for Load Balancing

The heuristic presented below first computes the load on each agent during an
interval, determines the load imbalance, and adjusts the load imbalances starting at
a heavily loaded node.

Load on an agent A; in an interval A is calculated as the product of the average
rule processing time (average rule matching time ¢,, + average rule firing time)
and sum of the firing frequencies of al rules assigned to A,.

Sum of the loads and agent capacities are used to calculate the ided loads for
agents. Imbalance with an agent, /,, is determined as the difference between ideal
(or desired) load D; and actual load L; corresponding to the previous interval, i.e.,
I, = L; — D;. If I; is positive, the node is consdered to be heavily loaded, and
if 1, is negative the load is considered to be lightly loaded. Obvioudy, if there is
an imbalance, there must be atleast one node which is heavily loaded and another
which is lightly loaded.

Starting at a subset (and hence the concerned agent) with the heaviest imbalance,
loads are adjusted by transferring some excessive load from the heavily loaded node
to alightly loaded node such that the resulting loads on the agents are close to their
ideal loads in the previous interval.

Chapter 5. Dynamic Knowledge Distribution 115

Load transfer has to be made by shifting a few rules from the heavily loaded
node to a lightly loaded node. A rule should be chosen for transfer such that it is
close to the rules in the lightly loaded node, i.e., the semipath between this rule and
another in the lightly loaded node is as short as possible (=1). After selecting such
arule, it is transferred only if any of the following is true:

» theimbalance vanishes, i.e., when the product of its rule firing frequency (sum
of frequencies) and the average processing time is equa to the excessive load

» the (more) heavily loaded node becomes less heavily loaded, i.e., when the
load corresponding to the rules as described in the above case is less than
excessve load

* theresulting magnitude of imbalance is less than the magnitude of the present
imbalance at least at the heavily loaded node, i.e., when the load corresponding
to the rule is only dightly greater than the excessve load.

However, since the knowledge subsets will have interdependencies, it is necessary
to follow the logicd network and transfer the load only to its closest neighbours.
Supposing more than one neighbour is a candidate for transferring the load, the
closest neighbour with closest imbalance in the opposite sensg, i.e., lightly loaded
node (for a heavily loaded one) is chosen for transferring the excessive load.

If the heavily loaded node doesn't have a lightly loaded node as its neighbour in
the logical network, the load changes ripple through the intermediate neighbours. It
is preferable to keep the number of such intermediate nodes small. Also, balanced
nodes are kept undisturbed as far as possible.

After the transfer is made, the directories of agents including the rule sets, vertex
sets, NRFs and MRBs are updated to reflect the change.

The process is repeated with the new heaviest node until the load imbalance is
below the threshold r (some constant in our discussion). If the variance in the load
imbalances in successive time intervals of observation increases, the length of the
interval is shortened, otherwise it is increased by an appropriate amount.

Chapter 5. Dynamic Knowledge Distribution

Algorithm dyndistl
(* dynamic distribution of knowledge using local changes to knowledge subsets *)

1. perform initial partitioning and allecation:
2. after a time imtermall A
a. for each agent (part) A;
let fi; be the number of times R, c A;is fired;
actual load L, =((tm—+tts) 5 fi;

JEA|
endfor;

b. for each agent A;

let the desired load D; = Y L; » H—;

i=1 Z P;

j=1
where P; corresponds to the capacity of agent A;;
imbalance I; = L, = D;;
if I; > 0 then include A; in heavily loaded node list HL
else if I; < 0 include A, in lightly loaded node list LL;
endif;
endif;
endfor;

c. let the variance of imbalances be VI, = z |2 n;
=1

d. let A, be an agent with highest imbalance in HL
repeat
let RS), and V' S}, be the rule set and vertex set respectively of A;
if 3 a neighbour in LL then
select a node A, such that |Ij,| — |I,] is the smallest
else select the closest neighbour A, in the logical network;

(* the changes in the load ripple through the agents between *)

Chapter 5. Dynamic Knowledge Distribution 117

(* Ay and A; where A; is in LL *)
endif;
let RS, be the rules on the edges E. between A, and A,;
if RS.N RS}, is a null list then
pull out a few edges from Aj into A, such that
the new RS.N RSy is not null;
update V5§,V S,;
update RS,, RS,;
update MRBs and NRFs;
endif;
let R. be a rule in RS,;
let f. be the firing frequency of R.;
let f; be the corresponding load;
Jo= fe* (tm +1y);
let v; and v; be the end vertices of e,
(*associated with R.*) in A, and A, respectively *)
while (|1, — fi| > 7) do
RS, = RS, U R¢;
RSy = RS, — R;
VS, =VS, —v;
VS, =V8iU v
Ly=Lp~— fi;
Ly = Lo + fi
Ih=1In - fi;
I = I + fis
let vy and v; be the end vertices of the new
outcoming edge where vy € A and v; € Aq;

(* v; is the common vertex for the corresponding undirected edges

Chapter 5. Dynamic Knowledge Distribution 118

v;v; and vxv; where v; now belongs to 4, *)
NRF, = NRF;, - (vj, Ag) U (v;, A);
NRF, = NRF, — (v, Ap) U (vg, Ap);
MRB), = MRB), — (v, Aa) U (vk, Ap);
MRB, = MRB, — (vj,Ax) U (v;, Ap);
select the next suitable rule R, for transferring, if any,
let f. be the firing frequency of R.;
let v; and v; be the end vertices of e, on which R, is incident;
endwhile;
mark Ay unsuitable for futher transfer of load;
choose the next node in HL;
until the maximum of all node imbalances is 7;
3. if the variance in the load imbalances over the past few intervals
is increasing, then set the next interval shorter;
else if it is decreasing, set the next interval longer,;

4. Start the new interval, and go to step 2

Example

We shall consider the 2:1:2:1 partition of rulebase 2 discussed in section 3.7. How-
ever, interagent distances are consdered to be 1, and we cdl the agents having
subsets Py, P,, Py and Py as A,, Az, Aand A4 respectively.

Now the problem can be formally stated as below.

Given

1. the network of agents A,, Az, Aand A4 with capacities in the proportion
2:1:2:1,

2. the communication coupling PPz = 2, PPs=1, P,F4=1, P4P3 = 1 and

Chapter 5. Dynamic Knowledge Distribution 119

3. the distance between agents as A;4,= 1, A1;Az3= 1, AjAq= 1, A2A3 = 1,
AA, =1 and AzAy = 1,

4. the average rule processing time (t,,+ ;) as 1, and the firing frequency vector
of rules {R,,..R;2}in a given time interval as

Ry | Ry | s | Ra | By | Rg | Rr | Rs | Ry | Rio | R | Ruz
1 (2 |1 |2 (2 |2 |2 (2 |1 |3 |3 |3

5. the allocation of rule subsets P, = {R;, Rs, Ry, R}, P» = {Ry,Rs}, Ps =
{R';,Rg, Rg,R]o} and P.q = {Ru,R]Q} to A],Az,Ag and A4 respcctively

6. rulebase subset interaction graph obtained for the 2:1:2:1 partition of the ex-

ample rulebase 2 as shown in section 3.7 of chapter 3,

let us find a snapshot of the dynamic allocation at the next time interval based on
the previous interval statistics using our heuristic dyndistl.

Load situation on agents is given as

Agents A, A, As Ay
Desired Loads 8 4 8 4
Actual Loads 6 4 8 6
Imbalance -2 0 0 +2

The node with the heaviest imbalance is P4. P, is lightly loaded and can take
another 2 units. However, these two are not neighbours in the logica network. Pz,
and P, are perfectly balanced.

Starting the load balancing process at P, its neighbours are P, and Ps in the
logicd network. Since both are balanced evenly, it is not possible to achieve load

Chapter 5. Dynamic Knowledge Distribution 120

balancing without disturbing at least one of them temporarily. We consider P, as
an intermediate node for allowing load changes to ripple through it from P, to P,
and balance the load.

Now, the edge KR between Py and Py has rulle R,, on iitt. Therefare, L), = L, =
6, and R. = Rj,, [\ = jfe=1f12= 3 units;

Uy = R; v; =—1K;1‘Uk=—CQ;IL4= 6,]4= +2,, _LL2= 4 and]2 =1

VS, = {P,Q, R}

RS = {Ru, Rz}

NRF, = {K(2)) NRF, = {B(1),G(1))
MRB, = {P(3)} MRB, = {K(3),K(4))

Since the new imbalance value |I, — fi2| <= 7, after shifting the edge KR corre-
sponding to R;;to P, the new P, and P, will be as shown below.

RS, = {Ru) RS, = {Ry, Rs, Rz}

VS = {P,Q} VS, = {D,E,F,K,R}
NRF, = {R(2)} NRF, = {B(1),G(1),Q(4)}
MRB, = {Q(2), P(3)) MRB, = {K(3), R(4)}
Li=3 L,=1

= I = +3

The new load status of the agents is as shown below.

Chapter 5. Dynamic Knowledge Distribution 121

Agents A, A, Az A,
Desired Loads 8 4 8 4
Actua Loads 6 7 8 3
Imbalance -2 +3 0 -1

The node with the new heaviest imbalance 3, is P,. P, and P, are lightly loaded
with imbalances of -1 and -2 respectively. Since the lightly loaded neighbour with
the closest imbaance is P;, P, is consdered for the load transfer.

Now, the edge BF (labelled 6) between P, and P, has rule R, on it.

Therefore, the heavily loaded agent is A, = P,; The accepting agent A, is P;.
R. = Ry, fc = fa= 2 units;

The set of vertices (each is a v;) pertaining to al edges belonging to R, to be
transferred from P, to P, = {D,E,F};

After dl these are transferred from P, to P, v; = B vy = K, v, = F; L, = 6,
L=-2,L,=7 and I, =+3.

Snce |(I;— f2)|<= T, we dlow the transfer of rule and some vertices.
Before the transfer of the rule R,, subsets P, and P, are as shown below:

RSy = {Ry, RsRy, Re} RS, = {Ry, Rs, Ry3)

VS, = {A,B,C,G,H,1,J} VS, = {D,E,F,K,R)
NRF, = {} NRF; = {B(1),G(1),Q(4)}
MRB, = {G(2), B2)} MRB, = {K(3), R(4)}
L=6 Ly=T

I]'_*——2]27—‘-{'-3

Chapter 5. Dynamic Knowledge Distribution 122

The new CRS edge is the edge FK labelled 6. All the vertices between edges 6 and
7 in the spanning tree (the unmarked ones here) are transferred from P, to P,.
However, D and E do not appear in the NRFs and MRBs as they are not present
on the new edge FK.

VS ={A,B,C,D,E,F,G,H,1I,J} VS, ={K,R)}

RS, = {Ry, Ry, Ra, Ry, Re) RS; = {Rs, Riz)

NRF, = {) NRFE, = {F(1),G(1), Q(4)
MRB, = {G(2), F(2)} MRB, = {K(3), R(4)}
Li=8 L, =5

IL=0 I = +1

The new load status of the agents is as shown below:

Agents A; A, A3 A4
Desired Loads 8 4 8 4
Actual Loads 8 5 8 3
Imbalance 0 +1 0 -1

We stop at this stage as the magnitude of imbalance with each agent is equal to
1 here.

The resulting partitioning of the knowledge graph is shown in figure 510

Chapter 5. Dynamic Knowledge Distribution 123

Figure 5.10: A 2:1:2:1 Dynamic Partitioning of Rulebase 2 using Loca Changes

Chapter 5. Dynamic Knowledge Distribution

P] -P2

VS, =1{4,B,C,D.E,F,G,H,1,J] | VS, = {K,R)

RSI ={R11R21R31R45}?ﬁ} RSQ={R5,R]2}

NRF, = {} NRF; = {F(1),G(1),Q(4)}
MRB, = {G(2), F(2)} MRB; = {K(3), R(4)}

Ll =8 Lz =9

11 =0 12 = +1

.P3 P4

RS; ={ R7,R8,R9,R10} VSs= {P,Q}

VS; ={ L,M,N,0} RSy = {Ry}

NRF; ={ K(2),P(4)}
MRB; ={}

L;=8

Iy=1

NRFd = {}’i’(?)}
MRB,; = {Q(2), P(3)}
Li=3

14 — +1

124

Table 5.10: A 2:1:2:1 Dynamic Partitioning of Rulebase 2 using Locd Changes

Final Partition:

The resulting partition is shown in table 5.10.

5.2.3 Repartitioning and Reallocation of the Entire Knowledge Graph

The static partitioning heuristic discussed in chapter 3 can be modified to partition
the rules based on the load by considering rule firing frequencies. Changes are
required for some of the procedures as described below.

Instead of just counting on the number of rules, we should sum the firing fre-
guencies (multiplied with average rule firing time) of rules. Mainly the procedures
dealing with determination of the sizes of the subsets and checking whether balanced
partitioning is obtained need some changes for dynamic repartitioning.

Chapter 5. Dynamic Knowledge Distribution

procedure determine_size_of_subset();

begin
fori:=1tokdo
Desired load of ith rulebase subset
Z=35L;+ fﬁ‘z;
endfor;
end;

procedure check_if_balance_possible (bal_possible);

(* check if required partitioning is possible *)

begin
n k
if Z L,'modz p; = 0 then bal_possible = true
=1 =1
else bal_possible = false;
endif;
return(bal_possible);
end;

procedure check_if_balance_obtained(balance_obtained):

(* Check if required partitioning is obtained *)
begin
balance_obtained = false;

for i := 1 to k do (* for each subset *)

Li=(m+ty)s Y. fis

R,ERSI

if (|I;| <= 7) then put the subset in the okay list;

125

Chapter 5. Dynamic Knowledge Distribution ' 126

endfor;

if (size of okay list < k) and (bal_possible = true) then
balance_obtained = false;

endif;

end;

The following changes are to be incorporated in step 4 of the static partitioning

algorithm discussed in chapter 3 (sections 3.3.6 and 3.5).

4 (* partitioning *)
(a) determine_edges_to_be_cut(); (* initial decomposition *)
(b) balance_obtained = false;
iter := 0;
(¢) repeat
i find data_and_proposed_rule_sets(); (* initial decomposition *)
ii find_proposed_and_cutset_rules(); (* initial decomposition *)
ili assign_rules(); (* boundary refinement *)
iv check_if_balance_obtained(balance_obtained);
if (balance_obtained = false) and (iter < maxiter) and (bal_possible = true) then
(* maxiter is a constant defined by the user *)
call dyndistl;
iter := iter 4+ 1;
endif;

i

until (balance_obtained = true) or (bal_possible = false) or (iter > maxiter)

Example

Considering the same rulebase with 12 rules in the previous section, let us obtain a
partition with the rulebase subset loads in the ratio 2:1:2:1.

Chapter 5. Dynamic Knowledge Distribution 127

Desired loads of the subsets, D, = 8, D, = 4, D; = 8, and D, = 4.
Edges to be cut are ¢; = 6, e; = 8, and €3 = 12.

Cutting the graph at the edges labelled 6, 8, and 12, we get the conflict rule set,

vertex sets, proposed rule sets and nonconflict rule sets as below.

The Conflict Rule Set CRS = {Rg,Rs, Rz, Ryo, R]g}.

VS, = {A,B,C,G, H,1,J) VS, = {F,K)
PRS, = {Ry, R3, Ry, Re} PRS, = {R3, R;s)
RS, = {Ry, R3, Ry, Re} RS, = {}

L,=6 L,=0

VSs = {L,M,N,0} VS, = {P,Q, R)
PRS; = {R7, Rg, Rg, Ry} PRS; = {Ru1, Ry}
RS; = {Rs, Ry} RS, = {Rn}

I = ;=3

The rule R, on the edge between P, and P, has a firing frequency f; = 2. Since
P, needs some rules with a load of 2 units for its desired load D, = 8, R, may be

assigned to P;. Shifting the edges corresponding to Ry, ¢, = 7.

The new VS, = {A,B,C,D,E,F,G,H,1,J} and VS; = {K}. Since L; = 8 now,
P, is kept in the okay list.

Since the number of edges in between €, and e; (excluding both) is zero, ¢, is made

9. This makes VSQ = {}{, L}, VS3 = {M, N,O} and CRS = {R5, R}',R][),R]g}.

Considering Rs first, it should go to P, according to the attribute count corre-
sponding to that rule. However, since P; is marked okay, and since P, still requires

rules whose total load will be less than or equal to 4 units, Rs (with f5 = 2) units

can be assigned to P;.

Chapter 5. Dynamic Knowledge Distribution 128

R; should go to P, based on the attribute count, and it can be safely assigned
to P, as after adding this rule, its load becomes equal to its desired load, i.e.,
Ly= D, = 4. P, is marked okay and is kept in the okay list.

The new CRS = {Rio, R12}.

Considering rule Ro,it should go to any of P; and P,. Since P; requires some
more rules for its share, assigning R;oto P; will bring its load L, closer to Dj.
Therefore, assigning the rule to Ps, RS; = {Rs, Rg, Ry0};L3 = 6. However, it till
needs 2 units for its desired load.

With the CRS — {R;,},R\7 may be assigned to any of Py and P, based on the
attribute count. However, since P, is marked okay, it should be assigned only to P;.
Now, RSy = {Ry;, Riz}and Ly = 6 with an excessive load of 2 units making it a
heavily loaded node.

Using step 3(d) of the heuristic dyndistl the load imbalance is adjusted such that
Ry190es to Ps making RSs = {Rs, Rg, Rio, R11}L3 = 9,RS4= {Ri2},andLs— 3.
Since the individual imbalances are beow 1, with a total imbalance of 2 units, the
algorithm stops.

Final Partition

The resulting partition of the knowledge graph is shown in figure 511 and table
5.11.

Chapter 5. Dynamic Knowledge Distribution 129

Figure 5.11: A 2:1:2:1 Dynamic Repartitioning of Rulebase 2

Chapter 5. Dynamic Knowledge Distribution

.Pl P?
VS ={A,B,C.D,E,F,G. HT,7) | VS = {K, I}
RS}- = {R11R21R31 R41 }{6} RS2 = {Rﬁv R?}

NRF, = {} NRF, = {(F,1),(G,1),(M,3)}
MRB, = {(F,2),(G,2)} MRB, = {(K,3),(K,4)}
L,=8 L,=4

Ps P,

VSs={M,N,O, P} VS, ={Q, R}

RS:; = {RE,RQ, Rl(thl} RSd = {Rw}

MRB; = {(M:Z)}
La :9

NRF; = {(K,2)}
L4 =3

130

Table 5.11: A 2:1:2.1 Dynamic Repartitioning of Rulebase 2

5.2.4 Adaptive Reorganization for accommodating Changes to Knowl-
edge Base

As mentioned in the first section of this chapter, when the knowledge base under-
goes changes in the form of additions and deletions of rules due to sdf learning
capability or acquisition of new knowledge from the external world, say from knowl-
edge engineer, adaptive reallocation (reorganization) becomes necessary. This can
be done by adding a new rule to a subset which has the maximum number of at-
tributes corresponding to its premise and action parts. If the addition results in an
imbalance, and if the imbalance exceeds a threshold, either of local reorganization
or repartitioning heuristics can be used to balance the load.

Similarly, if some rule is deleted from a part, reorganization or redistribution
may be done afresh. If necessary, a copy of the rule may be stored in the back up
for historical or statistical purposes.

The metaknowledge directories of the corresponding agents have to be updated
for reasoning and further dynamic distribution.

The steps are given in the following algorithm.

Chapter 5. Dynamic Knowledge Distribution

Algorithm dynreorg
1. Define a time window and a global threshold
2. Within each window,
a if addition of a rule then
choose a subset with maximum attribute count corresponding to that rule;
assign the rule to that subset if threshold is not exceeded;
b. if deletion of arule,
delete it from the corresponding part;
store it in the backup copy for future use;
if the sze fdls below a certain minimum
and if there is a rule which belongs more closdly to this subset
bring and add it to this part;
c. update the directories of corresponding agents;
propagate the changes to the user agents;
3. At the end of window,
perform repartitioning and reallocation;
using algorithms described in section 5.2.3;
4. Check the number of changes in the previous intervals;
if the number of updates are increasing over a few intervals then
set the window size shorter
else
if the variance is decreasing and changes are few in number then
set the window longer;
endif;
endif;
5. Start the new window and go to step 2.

131

Chapter 5. Dynamic Knowledge Distribution 132

5.25 Local Reorganization using Active and passive sets

Another way of doing the allocation is by defining active and passive sets of the
rulebase. An agent may or maynot have the entire knowledge base with it. However,
to reduce the pattern matching time and to achieve paralelism, a partition may be
made. Each agent can then have its active set as the subset assigned to it and
the remaining portion of the rulebase as its passive set. However, as the probelm
solving proceeds, if the partitioning proves to be either imbalanced, or inefficient
with respect to communication we may make a fev modifications to the active and
passive sets. Depending on the number of requests for data items from other agents,
if the other agent does not seem to be using the data generated by the corresponding
rule, the rule can be shifted to a requesting agent. The steps at an abstract leve
are listed below.

Algorithm Active_and_Passive_Sets
1. make an initial partition and allocation;
let the subsets assigned to the agents be Py, P, .., Py;
fori := 1tok do
Active set AS; = F;;
Passive set PS = P - F;

endfor;
2. within a time window,
keep a count of communication requests for a partial results (or data item)
from an agent A, to dl sending agents A.,;
3. if the agent A, generating the data item has a smaler utilization count then

assign the rule generating the data item
to a user agent with highest utilization count provided
the communication due to this does not increase

get the rule from the passive set and include it in the active set;

endif;

Chapter 5. Dynamic Knowledge Distribution 133

The same policy may be used for dynamic relocation of rules.

5.3 Problem Based Knowledge Distribution

When the knowledge base partitioning is fixed as we did for monitoring applications,
the task partitioning involves just matching and firing the rules enabled; task par-
titioning is implicit. However, in domains like medica diagnosis, a problem based
distribution of knowledge and hence dynamic creation of agents is essential. In such
applications, depending on the symptoms, we will have to explore the possibility
of severd diseases. Knowledge can be partitioned statically based on the disease
or physical organs. When more than one disease is likey and the answer must be
obtained quickly (using forward chaining), smultaneously multiple paths may have
to be explored. Based on the confidence factors, if any, find decison may be arrived
at. Backward chaining may be used for differentia diagnosis.

For example, in acute abdomina pains, if the pain is in the epigastrium, RU
or LU, the related diseases could be Acute Cholecystitis, Acute Pancreatitis, Perfo-
rated Peptic (Duodenal) Ulcer, Acute Hepatitis, Acute Pyelonephritis and the like.
Considering only the first three for illustration, Acute Pancreatitis (AcPan) and
Perforated Peptic Ulcer (PPU) could cause pain in any of the right or left upper
guadrants or epigastrium. This may require the doctor to keep dl three in mind
and simultaneouly explore the possibilities and decide on which should be the actual
problem. However, as Acute Cholecystitis (AcCh) has its pain mainly in the right
upper quadrant, if the pain is experienced in any other region, Acute Cholecystitis
may be given secondary importance. With pain in the right upper quadrant area,
al the three have to be smultaneously explored.

In al the threeg, i.e., PPU, AcCh, AcPan, the symptom vomiting may be present
in the order of increasing frequency. In the first the frequency may be absent to
few times, in the second it may be few to many times and in the last it may be
multiple and persistent. Therefore, unless vomiting is absent, al the three have
to examined, and only if vomiting is persistent implying AcPan, al the modules
corresponding to the three diseases should be kept active. There are many other
symptoms which are commonly present in amost dl these diseases, but the degree
(or level) of frequency may be different. Since patients may not give correct details,

Chapter 5. Dynamic Knowledge Distribution 134

it is difficult to determine the level unless the doctor is experienced and patient is
under direct examination.

The features specific to a particular disease help in the excluson of some possibil-
ities. But, sometimes multiple problems may be smultaneoudy present. Therefore,
simultaneous activation of the related modules is essential. Apart from this, con-
firmation with data obtained from laboratory tests, X-ray and Sonogram is needed
for a correct diagnosis. In case of a wrong diagnosis, recomputation is necessary.

For example, arule like

(location _of _pain = epigastruim)
(patient _position = flat)
(abdominal_wall_rigidity = boardlike)
(previous_ history = ulcer)
(vomiting_frequency = nil)
(peristaltic_ sounds = absent)
(dietary. intolerance_to = cabbage)
then
(disease PPU)
(confidence factor = 95%)

may indicate Perforated Peptic Ulcer to a large extent. Confirmation with X-ray
may indicate 75% free air in the ileus.

The invocation of modules dynamically depending on the current status of prob-
lem solving requires estimation of the probabilities of a module being (the most)
relevant. Determination of these probabilities and corre~t invocation of suitable
modules is the task in hand. Confidence factors, and probability and uncertainty
theories may be considered for the calculation of probabilites.

For example, the following rules may be used to activate the modules corre-
sponding to the diseases appearing in the conclusion part of the rule.

Chapter 5. Dynamic Knowledge Distribution 135

then

then

then

then

(location_of_pain = epigastruinVRUQ(0.9))

(radiation_of_pain = around to back, angle of scapula, right shoulder)

(disease may be AC)

epigastrium/RUQ/LUQ)

(location-oL pain

(radiation_of pain = diffused)

(disease may be PPU)

(location_of_pain = epigastruim)

(radiation_of pain = slow, spreading through back)

(disease may be AcPan)

(location_of _pain = chest)

(sensation_of_pain = band around chest)

(radiation-of_pain = arms, left epigastrium, neck, head)

(disease may be MI)

(location_of pain = RUQ))

Chapter 5. Dynamic Knowledge Distribution 136

(dze _of Jiver = enlarged)

(liver _palpability =yes)

(liver-tenderness = yes)
then

(disease may be AH)

Only the portions of the corresponding diseases may be activated by considering
the disease name as the final result attribute and including al rules incident on the
edges leading to external input attributes (ignoring the edge direction) or using a
static functional decomposition obtained in the same way.

However, as the datais processed, rules excluding the possibility of some diseases
may get fired. This can inactivate the modules corresponding to the disease whose
name has been removed from the working memory.

For example the following rules exclude the possibility of the diseases Myocardial
Infarction, Perforated Peptic Ulcer, and Acute Pancreatitis respectively.

if

(ECG = normal)

(SGOT _Level = insignificant)
then

MI

(Degree of Shock <> not profound)

(abdominal. wall_rigidity = boardlike)
then

PPU

Chapter 5. Dynamic Knowledge Distribution 137

(Serum_Amylase Level < 1000 units/litre)
then
AcPan

After this has been done, checking for al the symptoms, and seeking data if
necessary from the user and other modules, correct diagnosis can be arrived at.

5.4 Conclusions

We have discussed various methods for distributing knowledge dynamically far load
balancing, problem based allocation, and for adaptive reorganization to accommo-
date changes to the knowledge base. For load balancing, we have developed several
methods like making minimal changes to the knowledge subsets and repartition-
ing/reallocation of entire knowledge base, adaptive reorganization to accommodate
changes to the knowledge base, and the use of active and passive sets of rules. Dy-
namic invocation of appropriate knowledge subsets depending on the problem being
solved is discussed for medical diagnosis domain.

Apart from partitioning programs, data and knowledge, system partitioning, i.e.,
clustering the nodes, can also improve performance. This simplifies the management
of resources and diminishes the overhead in dynamic load balancing as communica-
tion between processors belonging to the same cluster is less expensive than those
belonging to different clusters [13]. Assuming newly created tasks are initially as-
signed randomly to clusters and processors, with periodic exchange of load infor-
mation, tasks can be eventually redirected to another processor of the same cluster.
This is a compromise between load balancing and minimizing communication.

One of the mgjor goals of knowledge distribution is minimizing information ex-
change. While a good distribution of knowledge and data facilitates task decom-
position, allocation and problem solving, actual problem solving in CPS systems
involves reasoning by multiple agents. Since task sharing is made implicit by the
distribution of knowledge, agents need to cooperatively exchange results of local
problem solving. Reasoning for seeking information from other agents is discussed
in the next chapter.

Chapter 6

Distributed Reasoning with Incomplete
Information

In the previous chapters we have seen how knowledge can be partitioned and dlo-
cated to different agents. This reduces the communication necessary for information
exchange between agents. However, if they cannot proceed with loca problem solv-
ing during the actual problem solving, it is important for the agents to reason about
when they should seek nonlocal information and what exactly to request and from
whom. In this chapter, we present a distributed reasoning Strategy to seek informa
tion from other agents for resolving loca incompleteness in distributed production
systems. The organization of the chapter is as follows. Section 6.1 gives an intro-
duction to the problem and section 6.2 presents a brief review of the related work.
Section 6.3 explains our distributed reasoning strategy and section 6.4 discusses
the case studies. Finadly, the last section presents the summary and conclusions.

6.1 Introduction

As mentioned in chapter 1, DAl systems are often geographically distributed with
many natural or tempora dependencies among overlapping subproblems [67, 120].
In general, it is aso difficult to decompose the main problem into nonoverlapping
subproblems. Agents may not have a complete and correct view of the global situa-
tion, and knowledge or information available with an agent may not be adequate to
solve all (sub)problems. Therefore, agents need to get information from others by
explicit message passing or by accessng the shared memory.

However, one should see that the improved performance due to parallelism is not
nullified by the additional communication required or chaos created due to incor-
rect solution paths. There should be coordination among agents actions. Agents
must know when they should concentrate on loca problem solving and when they

138

Chapter 6. Distributed Reasoning with Incomplete Information 139

should seek information or help from other agents. Since information exchange is
influenced by the way data, knowledge and subproblems are distributed, an ap-
propriate and careful distribution certainly reduces communication and increases
the efficiency besides having other advantages mentioned in the previous chapters.
Further, metaknowledge about the data and knowledge available with other agent;,
facilitates distributed reasoning by focussed addressing.

Monitoring applications such as real-time aerospace vehicle checkout systems are
data driven and require forward chaining as the reasoning mechanism. However, re-
search on distributed reasoning with incomplete information for data driven systems
Is very little. In this direction, we propose a strategy for an agent to reason with
incomplete information in distributed forward chaining systems. It answers three
important questions concerned with information exchange — when should an agent
ask others for information, what exactly to ask, and whom to ask [96,100]. Our
assumption about incompleteness of a loca knowledge/data base resulting from an
agent's need for more information is similar to the proposal of Smon and Li [86]
and can be resolved by allowing feedback from other agents' knowledge bases.

6.2 Related Work

Though distributed reasoning, particularly with respect to forward chaining, has not
been adequately addressed in the literature, lot of work has been done on issues re-
lated to communication that may facilitate distributed reasoning. Various architec-
tures, strategies and protocols have been suggested and used [22, 36, 37, 40, 115, 129).
Their main emphasis is on cooperation, control, task distribution, and distributed
planning.

DAI communication aides developed by Huhns et al. [64] provide low level com-
munication and reasoning primitives necessary for beneficid interaction between
heterogeneous expert systems. Their computational agents consst of two parts: a
reasoner and a communication aide. Aides aso help to detect deadlocks.

HECODES [7, 131] is another architecture for problem solving by a set of het-
erogeneous, cooperating expert systems where paralel execution opportunities are
exploited. It supports various kinds of cooperation, avoids deadlocks, and provides
communication ability.

Chapter 6. Distributed Reasoning with Incomplete Information 140

If individual expert systems use different inexact reasoning models, it is necessary
to transform the uncertainties of propositions from one model to another. This
involves dealing with aspects like competing hypotheses, cooperation and decision
making [76]. Zhang et a.[130, 131] recognize semigroups as algebraic structures of
inexact reasoning models and use homomorphic and heterogeneous transformations
of these uncertainties. Different solutions are synthesized based on the mean and
uniformity of the uncertainty values.

When agents are heterogeneous with respect to the domain knowledge possessed
or knowledge representation schemes used by them, cooperation and interagent com-
munication for reasoning about other agents become complex. Wehmayer et al.
[121] restrict agent diversity by requiring that agents must possess common seman-
tics of two sorts, viz., knowledge of action effects and knowledge of god intentions,
for dealing with cooperation and communication iSsues.

If agents that are nonmonotonic reasoners share different view points, exchange
beliefs and then make inferences based on the exchanged beliefs, ensuring knowledge
base integrity is important. Whenever there is a change made to ajustification in
one agent, consistency must be ensured among the bdliefs in different agents. Huhns
et a.[63] propose an algorithm for multi agent truth maintenance in this context.

Mazer [91] uses temporal and epistemo lOgics to examine (as externa observers
and designers) and characterize knowledge and its evolution among interacting
agents in these systems. Reasoning about knowledge helps to understand the role
of communication in achieving coherence and coordination: coherence and coordi-
nation are achieved when certain knowledge states (propositions about one set of
agents to be known by other agents) are communicated.

Singh et al.[113] propose a declarative representation scheme based on tempo-
ral logic for specifying the acting, percelving, communicating and reasoning abili-
ties of agents. It specifies different kinds of protocols viz., command, information,
request, permission, prohibition and explanation protocols in terms of constraints
among agents for communicating at the problem solving leve.

Campbell et d.[14] discuss knowledge interchange protocols to keep the knowl-
edge interchange under control by structuring the possible acts of communication in

Chapter 6. Distributed Reasoning with Incomplete Information 141

advance. Itissimilar to the way communication and actions are structured in formal-
ized public activities like traditional ceremonies, behaviour by diplomats etc. Their
tones of communication include many of the types discussed in [63, 64, 113, 125];
€g., action requesting, information seeking, and warning.

Woo et a. [126] propose an architecture, MOAP, for supporting knowledge
communication in information systems. Three forms of knowledge communication,
knowledge acquisition (receiving knowledge from another agent), knowledge dissemi-
nation (making knowledge available to another agent) and knowledge transformation
(changing knowledge of one type into another type) are discussed. Similarly commu-
nication within an agent itself among agents within the same organization, among
agents in different organizations, and between users and agents are discussed.

Bulletin board model, proposed by Lun et a. [88], combines attributes of in-
tegrative systems and blackboard models emphasizing on real-time dialogue and
interaction. Agent dialogue refers to the genera information transformation which
does not require immediate action and leads to augment knowledge of other agents
for improving the performance. Agent interaction is meant for imperative informa
tion that results in the form of commitment to action by senders and receivers. Both
public and private communications are supported for heterogeneous agents that use
different types of knowledge representation.

COSMO [129] is a generd scheme for communication in cooperative knowledge
based systems to notify and query agents, for executing and discarding messages.
It uses organizationa roles and the past performance to calculate the utility vaues
of agents in order to query for information. It gives a definition of communicative
acts and the resulting set of communication strategies and protocols. It is a gen-
eral scheme in that, communication comprises of dl types of action and response
messages dealing with inquiries, informing, and complaints.

Genesereth et al.[53],in their agent-based approach to software inter-operation
(ability of programs that can exchange information and other services with other
programs or other software products and thereby solve problems that cannot be
solved alone), developed an Agent Communication Language (ACL) for exchange
of knowledge (information) and other services among agents. The ACL consists of
three parts, viz., vocabulary, an inner language called KIF (Knowledge Interchange
Format) and an outer language called KQML (Knowledge Query and Manipulation

Chapter 6. Distributed Reasoning with Incomplete Information 142

Language).

In Distributed Knowledge Moddl(DKM) [86], agents are organized as a hier-
archy with possible lateral connections among agents in different subtrees. Their
knowledge in the form of Prolog predicates is classfied as local, group and global
Knowledge is distributed, not duplicated, and not shared among agents. Instead,
inference is distributed to agents with the required knowledge. Their inference pro-
cedure assures that knowledge incompleteness problem is propagated from parent
agent to grand parent agent and so on, if it cannot be resolved within a subtree.
A similar scheme PARTHENON is proposed by Bose et d.[10] for parallel theorem
proving.

DARES [67] experiments with various types of knowledge distribution alowing
duplication and dynamic additions to the knowledge subsets. It is assumed that
agents do not know whom to ask for the knowledge. If proof advancement is un-
certain and the number of predicate symbols is nondecreasing in successive levels of
resolution, a knowledge importation request is made by the agent. This is done by
first calculating the possible likelihoods for its clause set and broadcasting requests
for clause sets which resolve with the local clause sets of highest likelihood. If these
requests fal to import nonlocal knowledge, it relaxes the likelihood constraint and
repeats the same process until the agent is either successful in importing the required
knowledge or the agent has exhausted its clause set.

However, both DKM and DARES are logic based distributed intelligent back-
ward chaining systems. Some systems like AIDEs, HECODES dea with deadlocks,
uncertain information and bdiefs of multiple agents. Rest of the work including
MOAP, COSMO, Bulletin Board model concentrates on communication, but rea-
soning for incomplete information, particularly in forward chaining systems, needs
more specific strategies. Our work is related to reasoning in distributed forward
chaining systems. Its emphasisis on how to determine what information is required,
and whom to ask when an agent in a distributed intelligent system cannot proceed
with the reasoning thread. It is general enough to take care of any type of knowl-
edge distribution. Metaknowledge is used to reduce communication for information
exchange.

Chapter 6. Distributed Reasoning with Incomplete Information 143

6.3 Reasoning in Distributed Production Systems

Before discussing about reasoning with incomplete information in distributed pro-
duction systems, we shall briefly explain the reasoning process in production sys-
tems.

6.3.1 Reasoning in Production Systems

A (forward chaining) production system [70, 71] is defined by a set of rules or pro-
ductions called production memory (PM) together with an assertion data base called
working memory (WM) that contains a set of working memory elements(WMEs).
Each rule comprises of a conjunction of condition elements called the left-hand side
(LHS) of therule, and a set of actions called the right-hand side (RHS). The LHS and
the RHS are dso cdled as premise and conclusion parts of the rule. Conditional
elements consist of attribute, operator and value sets. The value of an attribute
can be either constant or variable. Positive condition elements are satisfied when
a matching WME exists, and negative condition elements are satisfied when no
matching WME is found. The RHS specifies assertions to be added to or deleted
from the WM. WMESs consist of attribute value pairs(AVP's).

In a conventional (single agent) production system, an inference cycle consists
of match, select, and act phases. In the match phase, the set of rules for which
LHS parts match the current environment of WM is computed. As 90% of the
total computation time may be consumed in matching patterns, several algorithms
like RETE [44] and TREAT [93] are used to speed up pattern matching. Further,
as the number of working memory elements increases, efficiency of the production
system decreases due to cost of join operations to be performed in the match process.
Ishida [68] optimizes the total cost of join operations by using statistics measured
from earlier runs of the program and optimizing the sharing of join operations.
Acharya et al. [1] partition and distribute hash tables of working memory elements.
In this context, the rulebase partitioning along with working memory distribution
discussed in this thesis also improves the performance of the system by reducing the
pattern matching time. This is achieved by reducing the search space with smaller
rulebase subsets.

Chapter 6. Distributed Reasoning with Incomplete Information 144

A rule is sad to be enabled when dl its condition elements match with the
working memory contents. (A set of WME's that satisfy the positive condition
elements is called as an instantiation of that rule.) If there are only afew conditional
elements of a rule matching with WME's then, that rule is sad to be partially
matched. Hence, a rule with a partial match may get enabled in the course of
execution if either external input data or previous rule firings cause suitable changes
to the WM.

If asingle rule is enabled, the rule is fired in the act phase by performing addi-
tions and deletions on the WM as specified by the RHS of the selected rule. If there
are many rules matched, in a single rule firing strategy, the select phase chooses ex-
actly one of the matching instantiations of the rules using some predefined criterion.
However, in order to fire multiple rules, interference among the rule instantiations
must be checked. Interference exists among rule instantiations when the result of
paralel execution of the rules is different from the result of sequential executions
applied in any order. This analysis can be done using dependency graphs either
a compile time or a run time [69, 70]. Rules which do not interfere may then
be fired concurrently. However, firing compatible rules without taking the problem
solving strategy into consideration can easly result in incorrect solutions (conver-
gence problem). This needs to consider the rule dependencies and the context,i.e,
the conditions under which the conflict resolution can be eliminated [80].

In a distributed production system, if two interfering rules are distributed to
different agents, the agents must aso synchronize their actions to prevent the rules
from being fired in parallel and thus maintain consistency [71].

However, multiple rule firing within an agent is part of locd inferencing, and
synchronization of actions of different agents is concerned with paralel firing of rules
in different agents. The distributed reasoning and thus the information exchange,
however, are independent of the rule firing strategy used within agents. Hence, we
do not discuss these aspects hereafter.

Chapter 6. Distributed Reasoning with Incomplete Information 145

6.3.2 Reasoning with incomplete information in Distributed Production
Systems

In real-time expert systems, in order to meet the deadlines, faster processing is
required. For example, in an aerogpace vehicle checkout application [104], health
of the system has to be continuously monitored before checkout. This requires the
system to fire as many rules as possible and maximize the performance. Throughput
of such a system can be measured as the number of rules fired in unit time. Even
in a medica diagnosis application, in case of acute pains, it is essentia to arrive at
the correct diagnosis fast and save life.

In a single agent system, as long as there are some enabled rules, the agent will
be busy firing them. If there are no enabled rules, then the system might have either
completed the given task and is waiting for another, or is waiting for some data that
can be obtained from the user or sensors in the external world. In both the cases,
as soon as new data arrives, some rules may get enabled and fired.

In a distributed production system, the situation becomes more complex be-
cause other agents may have the required information. The incompleteness of loca
information can be resolved with information available with other agents.

When to ask?

Knowing when exactly to ask others requires us to differentiate between the suc-
cessful task completion and lack of progress due to nonavailability of required infor-
mation. Therefore, we introduce a new rule type, viz., a termination rule, to denote
rules that result in (successful) completion of a task from the system's point of view.
These can be identified by domain experts. If no termination rule is fired and the
agent doesn't have any enabled rules, it is necessary to identify the information use-
ful in enabling the partially matched rules. Assuming that acquisition of data from
the local user or sensor is automatic (as part of loca inferencing), we consider only
the distributed reasoning part to seek partial results and data from other agents.
Thus, the inference cycle in a distributed production system environment has steps
1 and 3 extra as shown in the steps below.

Chapter 6. Distributed Reasoning with Incomplete Information 146

1. If atermination rule is fired then
report the result to the sender of the task
(* user or another agent *)
exit (* current task is completed *)

endif

2. Match

3. If there are no enabled rules then
seek information from other agents

4. Sdect

5. Act

Step 3 is required for distributed reasoning, i.e., deciding on when to ask, what
exactly to ask and whom to ask.

What to ask?

When there are no enabled rules, the reason could be the nonavailability of the
required dataor partial results with the agent. The information to be sought depends
on two aspects:

 which rules can be fired by requesting as less information as possible?

» what information can increase the probability of firing a large number of rules,
and how easly can it be obtained?

Firstly, among the partially matched rules, fever the unmatched Attribute Op-
erator Vaue Sets (AOVS's), higher the likelihood of that rule getting enabled.
Definition 1

Let pn be the number of attributes participating in the premise part of arule R and
mn the number of matched attributes in it at the time of observation in a production

Chapter 6. Distributed Reasoning with Incomplete Information 147

cycle.

Then, likelihood! of the rule R getting enabled in the next production cycle is
defined as follows

l=1if mn=pn;

mn

l:p—nifmn < pn.

A rule with likelihood 1 is enabled. Likelihood vaue of a rule can increase or
decrease in the course of execution. Requesting for values of attributes, which do
not have matching value in AOV'S belonging to a rule with a high likelihood results
in greater chances of that rule being fired.

Secondly, an attribute participating in many partially matched rules can be
considered important and its chances of increasing likelihoods of a large number of
rules is high. Usudly, it also has a high probability of being obtained excepting
a few cases where it may be very costly to get, eg., the result of a costly test or
exceptional cases in medical diagnosis, or when it is involved in rules meant for
exception handling.

Thus, obtaining values for this attribute results in increasing the likelihood values
of a large number of partially matched rules of which some may even get enabled.

If some data that is local to the agent is obtained, some rules may get enabled
and fired in the next cycle. The inference process continues like this.

However, there are a few issues applicable to domains like medical diagnosis to

be considered in this context.

» Some data may have a probability of occurrence. Whether the data has a high
probability or low probability of occurrence, once the data is obtained, the
confidence factor(CF) of the possibility of the disease may become high.

For example, in the diagnosis of Acute Cholecystitis, X-ray may be positive
for calculus in ga bladder as most of these stones are opague to X-ray. How-
ever, if present (only in very rare cases)gal bladder calculus confirms Acute
Cholecystitis. The rules with high confidence factors (CFs) may be given high
priority as they are more important.

Chapter 6. Distributed Reasoning with Incomplete Information 148

» Some data is important for diagnosis and has to be supplied by the user when
asked by the system. This data may be easily obtained without involving much
cost. However, some data may not be easlly available. Even if it is available,
it may be costly.

For example, the presence of shock and prostration (sp,pp) or jaundice (j) in
Acute Cholecystitis may be seen only in a very few cases. Such data is not
very important for the diagnosis. Similarly, The onset of pain (po) may not be
clearly noted by the patient and hence can't dways be obtained with accuracy
by the doctor; it may be even ignored in the diagnosis. In contrast, data about
the location or radiation of pain (pl, pr) is important for the diagnosis, and it
can be easily obtained also.

* Among the rules with same likelihood value, or in general, some rules may
have high priority of being fired. The data required for such rules may have
to be requested from other agents even over-riding the likelihoods of the other
partially matched rules.

The uncertainty associated with the incompleteness of loca data (which can be
obtained from the external world localy on request) may be resolved usng Bayesian
Probability theory, Certainty theory [45], and the other uncertainty management
techniques discussed in [76, 130]. Multi agent truth maintenance [63] is dso very
important because the changes in the bdiefs of an agent must be handled carefully.
However, we concentrate here on information that may be obtained from other
agents.

Definition 2

Let RS, be the set of partially matched rules with likelihood /;
Dynamic count dc of an attribute a is the number of rules in RS; (computed most
recently) in which a appears in the premise (LHS) part.

Hence, requesting for an attribute with highest dc in arule set with highest like-
lihood increases the probability of getting the required information and in enabling
the rules.

Chapter 6. Distributed Reasoning with Incomplete Information 149

Whom to ask?

This may be determined based on the number of satisfactory responses from other
agents. A satisfactory response to a query (request) for the value of an attribute a
is the response with a vaue for a.

Definition 3

Utility u; of an agent A] from another agent A;’s point of view for a particular
attribute a is the ratio of number of satisfactory responses (those with values for
the requested attribute) n, from Aj to the number of queries n, from A; regarding
values of a over a period of time.

uj = — (6.1

When the problem solving just begins, since no queries and responses (informa
tion exchanges) would have taken place, utility vaues cannot be computed using the
above formula. Therefore, an initial estimate can be obtained using the number of
rules in A; having a in the conclusion part and the premise parts respectively, and
their (expected) rule firing frequencies. Suitable weights may be assigned to rules
of each type depending on whether a is in the conclusion part or premise part.

Let RS, and RS, denote the sets of rules in Aj having a in their conclusion
parts and premise parts respectively. Let w. be the weight assigned to arule R; if
R; € RS.. Smilarly, let w, be the weight assigned to arule R; if R, € RS,. Let f;
be the firing frequency of the rule R;. Now the initial estimate of the utility u; of
an agent A; can be calculated as

i k

w=wer 3 fitwpr Y Ji (6.2)

R.€RS. RkERSv
where rule firing frequencies are summed over al rules belonging to that category,
and w, » w,, &y w, = 0.9 and w, = 0.1.

Both (6.1) and (6.2) can even be combined to calculate the utility if it proves to
be beneficial depending on the situation and application.

Chapter 6. Distributed Reasoning with Incomplete Information 150

6.3.3 Algorithm

We now present our strategy for distributed reasoning in forward chaining systems.

Strategy DRFCS

1. For each partially matched rule R,
compute the likelihood ¢
add the rule to the set of rules RS; with likelihood /;
endfor;
2. Sort the rule sets RS; on decreasing order of /;
Let Imaz be the highest likelihood value computed;
Let RSima-be the set of rules with likelihood Imaz
3. Repeat (*For dl rule sets with Imaz*),
3.1 for each unmatched attribute a present in the ruleset RSimaz
(* rules with maximum likelihood *)
dc = number of rules in RSi..- in Which a is present in premise part;
add ato the attribute set AS;. (all attributes with the same de value);
endfor;
3.2 sort the attribute sets AS;. on decreasing order of de;
let dmaz be the highest de value;
3.3 if there is a high priority rule then
add dl its unmatched attributes to an attribute list of that priority;
endif;
3.4 repeat
3.4.1
repeat (* for each attribute @ in AS dmaz *)
if there is a high priority attribute then
ais ahigh priority attribute

Chapter 6. Distributed Reasoning with Incomplete Information 151

else aisthefirst attributein ASgmaz;
endif;
34.1.1
if a€ VS;and has its indegree = 0 then
request localy; (* loca inference *)
3.4.1.2 dse if 3 somej and an entry (a,j) € NRF, or (a,]) € MRB;
(* a can be obtained from another agent Aj, second possibility being rare *)
let umax be the highest value of utilities of al such agents A4, that can give a
repeat
send requests to the agents with utility umax;
if an answer with a vaue for a is recieved then
update utility vaues of agents;
if an answer with a matching vaue is received then
update likelihoods of al rules which will get
affected by the new vaue of a asin step 1;
if any rule is enabled then
add it to the enabled rule list;
exit; (* execute the enabled rules *)
endif;
endif
else umax = next highest utility u
endif;
until an answer is received or al agents report failure;
(* to send values for a *)
endif;
endif;
3.4.1.3 ais the next unconsidered attribute in ASdmas

until al attributesin ASemaer are over

Chapter 6. Distributed Reasoning with Incomplete Information 152

3.4.2 dmaz = next highest dc
until al dec values corresponding to RS, ., are exhausted;
(* for dl attribute sets of RS;,,..are over *)
3.5 Imaz = next highest /
until al likelihood values / are exhausted;
(* for Al rulesets*)

The distributed inferencing strategy DRFCS is invoked by the local inferencing
cycle, when some nonlocal data, possibly available with other agents, is required.
Likelihood computation for al rules is done only the first time the distributed in-
ferencing step is invoked while solving a particular problem. Later on, likelihood
computation is required only for the rules that get affected by the changes to the
working memory either through local user or sensor, or other agents.

When likelihood of a rule changes, it is automatically deleted from the list of
partially matched rules previously it belonged to, and is added to the corresponding
partially matched rule set with the new likelihood value. Dynamic count values for
attributes are computed only when the corresponding rule set is being considered
for getting data and enabling rules. In fact, even if a is present in a lower likelihood
rule set, it will not be taken into account for computing dynamic count then. There
is no need to compute it as soon as the likelihood of the rule (in which a is present)

changes.

Once value of an attribute a is obtained, likelihood values of rules using this AOV
set will be updated. It must be noted that the requests are sent in the decreasing
order of likelihoods, but a suitable value obtained can update likelihood of rules in
other rule sets irrespective of their likelihood. A value for a received previously while
trying with a higher likelihood rule set does not eliminate the need for requesting it
with a rule set of lower likelihood as old values might have been updated. Hence, a
is still considered without discarding.

Also, in our strategy, requests for attribute values are sequentially processed in
the order of dynamic count values of attributes and utility values agents. This can
be parallelized by having all attributes with same dynamic count value requested at

Chapter 6. Distributed Reasoning with Incomplete Information 153

once from the respective highest utility agents. Upon failure to get vaues for some
attributes from highest utility agents, requests for these can be sent to next high-
est utility agents dong with requests for attributes with lower dynamic coumnt
addressed to their highest utility agents.

In the absence of this knowledge about donors, i.e., NRFs and MRBs, and the
utility values of agents, requests would have to be broadcast and sender has to wait
till some useful information is obtained. Instead, by maintaining the metaknowledge
in the form of NRFs and MRBs aong with utility values, information incompleteness
is resolved by sending the requests in a directed fashion. The distribution of knowl-
edge and data with minimum dependencies using the partitioning and alocation
heuristics Of chapter 3 reduces communication required for information exchange
and thus facilitates reasoning.

6.4 Case Studies

We shdl explain the working of the distributed reasoning strategy considering the
rules for aerospace and medical diagnosis applications.

Chapter 6. Distributed Reasoning with Incomplete Information 154

6.4.1 Aerospace Vehicle Checkout Application

Consider the fallowing partition in the ratio 1:1.

Part P]

VS, = {apy, bsy, n2tp, bvy, ¢, bsy, Ip; , n2rp, bsa}

RSy = {R,, .., Ri3, Ry, .., Ry}

NRF, = {(ct,2)}

MRB, = {(bs,,2}

DV Sy = {apy, bsy,n2tp, bvy, ¢;, bsy, Ip; ,n2rp, bs, cty }
EV S = {apy, bsy,n2tp, bvy, c;, bsy, Ipy, n2rp}

|RS;| =19

Part P,

V Sy = {n2itp, ctl, bsy, cmy, bug, bus, bsy, bss, bsg, bsg, emy, bsg, bhp}

RS; = {Ry4, .., Ra3, Rao, .., Raz}

MRB; = {(ct1,1)}

NRF, = {(bs3, 1)}

EV Sy = {n2itp, bsy, emy, buy, bus, bsy, bsg, bsg, bsg, cma, bsg, bhp}

DV S, = {n2itp, ctl,bsz, cmy, bvg, bug, bsy, bss, bse, bss, bsg, cma, bsg, bhp}
|RS,| =18

Let p, and P, be assigned to agents A; to A,respectively. There is no need to apply
the alocation algorithm as there are only two agents involved. Further we assume
that there are no high priority rules and high priority data.

Let us assume a working memory instance of A, as shown below.

Working memory instance of A, in the beginning

ap, = 30,ipy =3, ¢, = 0.3.

Chapter 6. Distributed Reasoning with Incomplete Information

155

The inference process in each cycle is explained below.

Cycle 1

Rule fired

Change to the working memory

R,
Ry

bsl = '"LACPR’
bs2 = 'NOK’

The list of the rules which are matched = {R,, R;}and the list of partially
matched rules = {R¢}. Since there are some enabled rules, loca inferencing contin-
ues and the distributed inferencing algorithm DRFCS doesn't get invoked. Firing
these rules results in changes to the working memory.

Working memory instance of A; at the end of Cycle 1

ap; = 30,Ip; = 3,¢; = 0.3,bs, =' LACPR', bs; =' NOK'

These changes initiate a new cycle.

Cycle 2
Rule fired | Change to the working memory
R, bsl = "LACPR’ (no new change)
R; bs3 = 'NOK’ (no new change)
R Hold (no change to working memory elements’ values)

The list of partially matched rules = {Rg, Ry4}- Since rules R, and Hs have been
fired and do not result in new changes to the working memory, we shall not consider
them again. Firing R, resultsin a hold condition which does not change the working

memory.

Chapter 6. Distributed Reasoning with Incomplete Information 156

Cycle 3
There are no enabled rules, and the DRFCS is invoked from the loca inferencing
procedure.

Partially matched rule | Likelihood

Re 0.5
R4 0.5

For rule Rg, attribute required for afull match is bs, and the conditional element
bs, =" OK'should be satisfied. Since bs, is aloca data item, there is no need for
asking for this from others. An externa input for c\ in the range 0.6 to 15 will
enable R, and its firing will result in changes to the working memory satisfying the
above condition. Otherwise, it may be that bs, =" NOK' because of some vaue of
bv, or ¢.

The rule R,, has a likeihood of 0.5 of being fired. The only data item needed
for this ruleis ¢t,. However, ct, isnonlocal. There is an entry (cty,2) in NRF; ligt
of the agent implying that ct; belongs to A,. Dynamic count of ct; is 1. It may
be noted that it is present in 14 rules. Since there are only two agents, Az is the
only highest utility agent to seek vaue for ct;. Azis actually owning ct;. Therefore,
value of ¢t ; has to be requested from A,.

A request is sent to A,,and let us say A, receives a vaue of 300 for ct1- Utility
of agent 4, from the point of view of A, will now be increased because of this. Now,
the rule R,, gets enabled, and with the control transferred to the loca inference
procedure, the ruleis fired resulting in a hold again.

Depending on whether some external input is obtained resulting in some changes
to loca working memory, the next inference cycle may have some enabled rules for
firing by A,. The process continues this way.

6.4.2 Medical Diagnosis Application

Let us consider the 2 : 1 partition (for the rules corresponding to the disease Acute
Cholecystitis) obtained in section 4.2 of chapter 4. Assuming subsets Py gng P2

Chapter 6. Distributed Reasoning with Incomplete Information 157

are assigned to agents A; and A, respectively, a working memory instance of A, is
shown below.

Part Pl

VS, { vp, vi, li, lif, lig, hpc, po, pot, pi, pl, pr,

di, abt, abrt, cvt, cvts, ps, pp, xil, xcal, j, prp, sp,

ACl, .., AC9, AC11, AC12, AC13, AC16, AC18, AC19,AC}
RS, {R1,.., Ry, R11,.., R12, R13, Ri6, Ris, Rag, Ras, .., Rag, R}
|RS:| |21

NRF, | {(AC10,2), (AC14,2), (AC15,2), (AC17,2),(AC20,2)}
MRB, | {(AC,2), (AC19,2)}

Part Pz

VS, {afp, Ic, fr, fs, prt, sgb, esr, lc, sal, ecg,

sgotl, sd, abwr, abwg, ms, AC10, AC14, AC15, AC17,
AC20, AC21, PPU, ACPAN, MI}

RS, {Ry0, R14, Rys, Ry7, Rao, .., R4, Rao}

|RS,;| |10

NRF, | {(AC,1), (AC19,1)}

MRB, | {(AC10,1), (AC14,1), (AC15,1),(AC17,1),(AC20,1)}

Chapter 6. Distributed Reasoning with Incomplete Information 158

Working memory instance of agent having subset P,

pl = RUQ, pr = arcund to back and angle of scapula, right shoulder,
Pt = maximum, pot = early;

vp = yes, vf = few; li = yes; sp = yes;

di = fatty foods;

abt = present, abrt = present;

cvl = present;

zil = true, zcal = absent;

hpc = similar to current episode;

The inference process of agent A\ is explained below.

Cycle 1:

The rules fired and the resulting changes to working memory are:

Rule fired | Change to the WM
R, AC, = true
Rs ACs = true
R, AC; = true
Rs ACg = true
Ria ACy3 = true

Since xcal = present only in 10%, R.; is enabled and fired. The partially matched
rule sets with a likelihood > 0 and their exact likelihoods vaues are:

Chapter 6. Distributed Reasoning with Incomplete Information 159

Partially matched rules

Likelihood | Attributes required

R,
Re
Ry
Ry
R,

0.8 po

0.5 pry

0.5 cuts

0.33 lif, lig

0.25 AC1,AC2,AC3

The next cycle proceeds as below.

Cycle 2:

AC; increases likelihood of R, to 0.5, and AC,3 = true enables R, and creates a
working memory dement AC = true (CF = 0.95). CF = 0.95 indicates the corfi-
dence associated with the possibility of Acute Cholecystitis.

The new rules enabled and the resulting changes to working memory arc:

Rule fired

Change to the WM l

R?.S

AC = true (CF = QS)J

The new partially matched rule sets with likelihood > 0 and their exact like-

lihoods vaues are:

Partially matched rules

R,
R,
Rs
Re

Ry
R3

Likelihood | Attribute required

0.8 po

0.5 AC1, AC3

0.33 lif, lig

0.5 prp

0.5 cuts

0.27 AC6, AC9, AC10, AC11,
AC12,AC15,AC16,ACI8

Chapter 6. Distributed Reasoning with Incomplete Information 160

Cycle 3:

There are no enabled rules. Therefore, we should determine the data that has
to be obtained for enabling some rules. The highest likelihood value lmax = 0.8.

The partially matched rule set with highest likelihood value 0.8 has only one rule,
i.e., R].

However, the attribute required by it, i.e., po has a dynamic count de — 1. However,
thisis alocal data item. (Since thisis an attribute which is not very important for
diagnosis, this may be ignored by the loca inference procedure if desired.)

Since al attributes and al de values corresponding to RSi—os are exhausted, we
examine the next likelihood rule set.

There are no more attributes in ASy,..; and there is no other dec value. The next
highest likelihood value lmaz = 0.5.

RSimaz = RSi—0s5 = {R4, R¢, Rg}. The attributes for which values are required
are prp,cvts, AC1, AC3. All these attributes have the same dc value, i.e., dc =
dmaz = 1. Therefore, ASymaz=1 = {prp,cvt, AC1, AC3}.

Among the attributes in ASy,.., prp 1s local. (Since it has a probability of 0.1
of being true in the rule. Corresponding to the possibility of appearing in Acute
Cholecystitis cases, the rule may be fired by the loca inference engine without ob-
taining it.)

cvts IS aso local. (Since cuts is not very important for the diagnosis, it may be
ignored and Ry may be fired localy.)

AC\ is local, but it is not an externa data item. Similarly, AC3 is a local, in-

termediate result.

Exhausting all the attributes and the de values corresponding to RSi=o.5,
the next highest likelihood value for the partially matched rules, Imaz = 0.33,

Chapter 6. Distributed Reasoning with Incomplete Information 161

The only rule in RSi=o33 = {R3}. Theattributes required lif,liq have a d¢ vaue of
1.0; ASamaz = {lif,1iq}. Both are local. (Rs may be fired by the loca reasoner if

these are ignored.)

The next highest likelihood value Imazr = 0.27 and the corresponding rule set
RSimar = RSi=0.27 = Ra1.

The attributes required are {AC6, AC9, AC10, AC12, AC15, AC16, AC18}.

The highest and the only de value = 1.

ASumaz = {AC6, ACY, AC10, AC12, AC15, AC16, AC18}

AC6, AC9, AC12, AC16 and ACI18 are locd, intermediate results. AC10 and AC15
are nonlocal. Thereis an entry (AC10, 2) belonging to N RF; indicating that agent
Az may be having this value. Since NRF; entries show that the only agent that
can give AC10 is A,,the request is passed on to A,. Supposing the vaue obtained
for AC10 is true, utility vaue of AC10 will be increased. This dso increases the
likelihood of the rule Rs;. Since AC15 is dso a nonlocal data item to be requested
from A, (thereis an entry (AC10,2) in NRF})as discussed earlier, request for both
the data items may be sent at once to A,.

Depending on the vaues received from A, and the uncertainty mangement tech-
nique used by the locd inference procedure, some more rules may get enabled and
the resulting changes to working memory may update likelihoods of rules and enable
new rules. The diagnosis may be confirmed on firing a few more rules which increase
the confidence that the disease is Acute Cholecydtis.

6.5 Conclusions

Reasoning in distributed forward chaining systems consists of local inferencing and
distributed inferencing. The distributed inferencing step is embedded in the loca
inferencing, and is invoked only when there are no enabled rules to be fired by an
agent. The information to be obtained is decided based on the rule firing likelihood
and dynamic count of attributes in the rule set with highest likelihood value. Each
agent has an idea of the utilities of other agents for information that is shared and
needed for local problem solving. Utilities of agents are calculated based on the

Chapter 6. Distributed Reasoning with Incomplete Information 162

number rules having a particular attribute in the concluson part,of the requested
agent, their rule firing frequencies and the satisfactory responses to the requests for
the same.

The reasoning strategy works irrespective of whether knowledge is distributed
statically or dynamically, and with or without duplication. Metaknowledge about
information which should be obtained from other agents and the utility vaues of the
concerned agents help in reducing communication required for information exchange
by focussing the requests.

Chapter 7

Conclusions

This chapter summarizes the main contributions of the thesis and concludes with a
discusson and future directions.

7.1 Summary

Knowledge distribution plays an important role in several aspects of Cooperative
Problem Solving. It is shown that an appropriate distribution of knowledge and data
leads to a good task decomposition. Minimizing the interdependencies among the
knowledge and data subsets reduces the communication required for information
exchange. Metaknowledge about the rules and data possessed by an agent, and
about the information that would be required by other agents provides a good model
of agents and helps in requesting for nonlocal information by focussed addressing.
Good knowledge partitioning also achieves load balancing, speedup through faster
pattern matching and concurrent processing. We considered rule-based production
systems to represent our CPS systems.

However, there are no direct and fast domain independent techniques for het-
erogeneous k-way partitioning of the knowledge base. Standard graph partitioning
techniques like Kernighan-Lin heuristic and Simulated Annealing concentrate on
two-way partitioning and are usualy oriented towards VLS circuit design. More-
over, the techniques are computationally expensive. Therefore, fast heuristics that
can obtain reasonably good solutions are preferable to their costly counterparts that
produce near-optimal solutions. Further, most of the partitioning techniques ignore
data distribution, the interdependencies among subsets, and heterogeneous parti-
tioning which are important for Cooperative Problem Solving systems. In this the-
sis, we proposed new heuristics based on graph theory for distributing knowledge
statically. The techniques consider data distribution, heterogeneous partitioning

163

Chapter 7. Conclusions 164

and interdependencies among rules while partitioning knowledge. Further, these are
extended to deal with dynamic distribution of knowledge.

The proposed static partitioning heuristic partitions the rules by representing
the rulebase as a knowledge graph where vertices represent data elements and edges
are drawn from input attributes to output attributes in each rule. The edge labels
represent the corresponding rule identifiers. The partitioning process consists of
two phases, viz., initial partitioning and boundary refinement. This is done by
generating a spanning tree with a long chain. The chain edges and some branch
edges are marked with integer numbers to enable suitable decomposition. Once the
rules and data belonging to different subsets are identified approximately, subset
boundaries are refined by assigning rules to subsets which possess a mgjor portion of
the data corrsponding to the rule. This minimizes the interdependencies and reduces
communication. Given the ratio in which the rulebase subsets are to be obtained,
the heuristic obtains the samein linear time. The partition obtained is good enough
to be used as it is or can serve as a good initial partition for obtaining near-optimal
parition using the Kernighan-Lin and Simulated Annealing techniques. As part of
the partitioning process, metaknowledge about the data and rules possessed by each
agent is abstractred. The metaknowledge also has information about data that may
be required by other agents (MRBs) and data that needs to be requested from other
agents (NRFs) for efficient reasoning. This aso implies some estimation of other
agent's requirement for nonlocal information, and helps to define agents and achieves
better coordination as well.

Such a partition can improve the performance of the near-optimal paritioning
techniques like Smulated Annealing and KL heuristic. This algorithm is further
extended to deal with disconnected components in the knowledge graph such that
it makes use of the noncommunicating components, if any, in obtaining balanced
subsets. Further, ways of obtaining functional decomposition from the knowledge
graph are discussed.

In addition to the partitioning heuristics, a method for allocating the subsets ob-
tained in the given proportion (which represents the capacities of agents) to agents
Is also proposed. Considering the interagent distance, the information transfer be-
tween the subsets, and the capacities of agents, knowledge subsets are assigned to
compatible agents (agents of corresponding capacity) only. The method guarantees

Chapter 7. Conclusions 165

a minimal communication alocation for the given partition.

Since static partitioning is not sufficient for applications with unpredictable run
time requirements, dynamic distribution(partitioning as wel as allocation) becomes
essential for load balancing. Dynamic distribution is necessary dso for accommo-
dating changes to knowledge base and distributing knowledge as the problems arrive
a run time. We developed heuristics for distributing knoweldge dynamically. The
static partitioning algorithms have been extended to incorporate the run time as-
pects. These make use of the information about loads on agents during the previous
time interval. The length of the time interval can be changed for adaptive reorga-
nization. Loads on the agents are calculated by considering the firing frequencies of
rules assigned to them. After the load information about all the agents is obtained,
imbalance with respect to the desired load is calculated for each agent. Making use
of the MRBs and NRFs, and the rules in the (overlap of) boundaries of subsets,
rules are transferred to lightly loaded neighbours. Two main heuristics are proposed
for this.

The firg heuristic makes minor changes to the present distribution in order
to bring the loads closer to the ideal (or desired) loads in the previous intervals.
Since the subsets assigned to the agents will have interdependencies among them,
it is not possible to arbitrarily transfer the rules from a heavily loaded agent to a
lightly loaded agent. Therefore, the rule transfer has to occur between and via the
agents (including the heavily loaded and lightly loaded ones) in the logical network.
The MRBs and NRFs are updated to reflect the changes. The second heuristic
does repartitioning of the entire knowledge graph considering the run time aspects.
Methods for catering to updates (additions and deletions) to the knowledge base,
and dynamic problem based knowledge distribution are aso discussed.

The proposed distributed reasoning strategy makes requests for nonlocal infor-
mation from potential donors. This is done by sdecting the data (with highest
dynamic count) required for enabling the partially matched rules having highest
likelihood of being fired and requesting from an agent with highest utility. However,
if higher priority rules are present, the likelihoods may be ignored temporarily, and
data for the high priority rule may be requested first. The information exchange is
made easy and decreases the communication required with the NRFs and MRBs of
agents. The utilities of agents that reply with useful information are increased.

Chapter 7. Conclusions 166

7.2 Discussion

It is seen that the linear time heuristic works well for various input ratios with
several examples considered. Case studies of aerospace vehicle checkout application
and medical diagnosis applications represent two different cases of kviowledge
distribution and provide ample number of cases for tesing various features.

Aerospace application presents itself with multiple rules as edge labels and dis-
connected components. As this is a monitoring application, al rules have equa
probability of being fired and hence are to be tested and fired without any dis-
crimination. Therefore, this proves to be a perfect example where the partitions
obtained using our heuristic balanced the load and implied task distribution as well.
Partitions are adso close to functional decomposition for appropriate input ratios.
However, use of coupling and free grouping of rules and nodes as such or in the
static partitioning algorithm for load balancing further enhanced the quality of the
functional decomposition. However, on alowing duplication, this can exactly be-
come a functional decomposition. There was no uncertainty associated with rules
in the reasonig process.

Unlike the aerospace application, in medical diagnosis, lot of data is shared by
many subsets corresponding to diseases (or concepts). Therefore, it is important
to keep the rules of the closely related diseases at the same place and reduce com-
munication. Partitioning for load balancing within a functiona decomposition is
better than pure load balancing as this may result in more communication for small
subset sizes and inappropriate proportions. Duplication of common knowledge and
the associated data reduce the information exchange between subsets. Secondly,

since the entire knowledge base is not active at the same time, only some subset,
to

not all, need to be examined diagnose a problem. Dynamic invocation of modules
Is also important for this type of application. Another difference is the presence of
uncertainty involved with the data as wel as rules. This may be taken care of by
the inferencing procedure.

Chapter 7. Conclusions 167

7.3 Future Directions

The partitioning heuristics consider production rules as the knowledge graph rep-
resentation scheme. These can be extended to suit other knowledge representation
schemes. Similarly, suitability of Petri Nets to represent the knowledge base is to
be investigated.

Further, the knowledge graph representation we have used is chosen to facilitate
reasoning for incomplete information that is available with other agents, as wdl as
the dynamic distribution of knowledge such that exact information about data and
rules involved is known while transferring data and knowledge. The knowledge graph
representation may be slightly modified such that rules are nodes in the graph and
edges represent the amount of information transfer or dependencies between rules.
In such arepresentation the exact data shared between the rules is not known, but it
abstracts the amount of data shared in a simpler way. Performance of the respective
algorithms with these two representations can be evaluated.

The dynamic distribution algorithms were simulated with some values for firing
frequencies of rules. However, integration of the reasoning process with dynamic
distribution of knowledge based on the actual firing of rules is not done because
of the time limit. This can give more accurate idea of state of the system a a
given time, thus resulting in better load balancing in a practical system. Use of
probabilistic models for dynamic knowledge transfer corresponding to the excessive
load can also be investigated. Possibility of optimal distribution of knowledge to
maximize the number of problems solved locally as in distributed data bases needs
to be looked into.

The distributed reasoning algorithm considers a single reasoning model. Dealing
with inexact, heterogeneous reasoning models and multiple view points is very im-
portant for large, practical systems. Inexact reasoning models like Baye’s probability
theory and Certainity theory, and multi agent truth maintenance can be appropri-
ately incorporated. Similarly, the distribted reasoning algorithm can be extended
to include time factor and the answering agent's perspective also to achieve more
efficient coordination.

Appendix A

Rules and Object Structure for
Aerospace Application

Thirty seven rules from the rulebase of Aerospace Vehicle Checkout System are given
below. Meanings of the attributes and the object structure of the systems involved
are given a the end.
Rl1. if (ap! < 130) then bs! = 'LACPR’
R2. if (apl > 170) then bsi = "HACPR’
R3. if (¢ < 0.5) then bs2 = '"NOK’
R4. if (cI > 1.5) then bs2 = 'NOK’
R5. if (bs2 = 'NOK’) then k!
R6. if (bs2 = 'OK’) and (Ip! > 1) then k2
R7. if (bs2 = '"NOK’) and (n2tp < 210) then hS
R8. if (bv! < 25) then bs2 = 'NOK’
R9. if (bv! > 31) then bs2 = 'NOK’
R10. if (bs2 = 'NOK’) and (n2tp < 210) then h{
R11. if (bs2 = 'OK’) and (n2tp < 210) then h5
R12. if (n2rp < 10) then bs$ = 'LRJPR’
R13. if (n2rp > 50) then bs? = '"HRGPR’

R14. if (n2itp < 10) then 653 = "LINJPR’

168

Appendix A. Rules and Object Structure for Aerospace Application 169

R15.
R16.
R17.
R18.
R19.
R20.
R21.
R22.
R23.
R24.
R25.
R26.
R27.
R28.
R29.
R30.
R31.
R32.
R33.

R34.

R35.

if (n2itp > 10) then bs8 = "HINJPR’

if (bhp < 10) then bs4 = 'LHOLPR’

if (bhp > 50) then bs{ = '"HHOLPR’

if (bv2 < 25) then bs5 = 'LBV’

if (bv2 > 31) then bs5 = "OBV’

if (bv3 < 25) then bs6 = 'LBV’

if (bv3 > 31) then bs6 = "OBV?

if (cm1 <> bs?) then bs5 = 'BIES’

if (em2 <> bs8) then bs9 = 'BIES’

if (ct1 <= 450) and (ct! > 150) and (bs! = '"LACPR’) then h6

if (¢t <= 450) and (ct! > 150) and (bs! = '"HACPR’) then h7

if (et! <= 450) and (ctl > 150) and (bs3 = 'LRGPR’) then A8

if (¢t <= 450) and (ctl > 150) and (bs§ = '"HRGPR’) then h9

if (ctl <= 450) and (ct! > 150) and (bs8 = 'LINJPR’) then k10
if (et] <= 450) and (ct! > 150) and (bs3 = "HINJPR’) then h11
if (ct1 <= 150) and (ct! > 27) and (bs7 = 'EXT’) then h12

if (et! <= 150) and (ct1 > 27) and (bs8 = "EXT’) then h13

if (ct1 <= 150) and (ct! > 27) and (bss = 'BIES’) then h14

if (ct <= 150) and (ct! > 27) and (bs9 = 'BIES’) then h15

if (ct1 <= 150) and (ct! > 27) and (bs5 = 'OVB’) and (bs7 = "INT’) then
hi6

if (ct1 <= 150) and (ct! > 27) and (bs9 = 'OBV’) and (bs8 = 'INT’) then
h17

Appendix A. Rules and Object Sructure for Aerospace Application 170

R36. if (ct! <= 150) and (ct! > 27) and (bs8 = 'INT’) and (bs9 = '"LBV’) then
h18

R37. if (ct1 <= 150) and (ct! > 27) and (bs5 = 'LBV’) and (bs7 = 'INT’) then
h19

Appendix A. Rules and Object Structure for Aerospace Application 1M

Attribute codes and their actual names in the system REX

apl = bs.ftc.hyd-systeml.acc.pressure
bs! = bs.ftc.hyd-systeml.in-acc.status
¢l = bs.sc.sc-current
bs2 = bs.sc.sc-status
Ip1 = bs.ftc.hyd-systeml.line-pr
n2tp = bs.sitvc.n2-system.tank-pr
bv! = bs.sc.ext-supply.voltage
bs8 = bs.sc.status
n2rp = bs.sitvc.n2-system.reg-pr
bs4 = bs.sitvc.n2-system.reg-pr.status
n2itp = bs.sitvc.n2-system.innjectant-tank-pr
bhp = bs.sitvc.hyd oil line-pr
bs5 = bs.sitvc.n2-system.tankpr-status bs6 = bs.sitvc.tve-status
bv2 = bs.sc.sc-battery.voltage
bs7 = bs.sc.sc-battery.status
bv3 = bs.sc.cpif-bat.voltage
bs8 = bs.sc.cpif-bat.status
eml = bs.sc.sc-battery.intonoff cmd
cm2 = bs.cpif-bat.intonoff cmd
bs9 = bs.sc.sc-battery.intonoff status

ctl = system.cdt

All of h1, h2, k8, k4, h5, h6, h7, h8, h9, h10, h11, h12, h13, h14, h15, h16, h17,
h18 and h19 stand for various Hold conditions.

172

Appendix A. Rules and Object Structure for Aerospace Application

SN |P\S

SNiD}S JJO UO-} Ul

“Pu |40 ~ug-jul

1
Aiejjog
$N}0|s-28
judsind kiayi1049
abojjoa s3
Aiddns- xe as 4

snjois
: sSnipis
ad-3uo} :
: ad-lui id 230
19q-41da dd=64. ddauj)
4 b y
waysAs-Fu weysks- phy
jda
¥ J
109 - j1d>
Aiajioq
38
ETSIT
21
5q [
1p2 we shg
12140

Figure A. 12: Object Structure for the Aeospace System

Appendix B

Rules for Medical Diagnosis Application

Rules corresponding to three disorders viz., Acute Cholecystitis, Acute Pancreatitis
and Perforated Peptic Ulcer, pertaining to medical diagnosis of acute abdominal
pains are given below. The decodification of the attributes is aso given after the
rules.

R1. if (po — sudden or gradual) and (pot = early) and (pi = maximum) and (pl =
RUQ(0.9)) and (pr = around to back,angle of scapula, right shoulder) then
AC1

R2. if (vp = yes) and (vf = few to many) then AC2

R3. if (li = yes) and (lif = occasional) and (liq <> heavy) then AC3

R4. if AC1 and AC2 and AC3 and (hpc = similar to current episode) then ACA
R5. if (di = fatty foods and cabbage) then AC5

R6. if (sp = yes(O.l)) and (prp = yes(O.l)) then AC6

R7. if (abt = present) then AC7

R8. if (abrt = present) then AC8

R9. if (cvt = present) and (cvts = right) then AC9

R10. if (abwr = present) and (abwg = unilateral rectus) and (ms = present) then
ACI10

R11. if (ps = normal to hypoactive) then AC11
R12. if (pp = flatsupine) then AC12

R13. if (z: = true) and (zcal = present(O.IO0)) then AC13

173

Appendix B. Rules for Medical Diagnosis Application 174

R14.

R15.

R16.

R17.

R18.
R109.
R20.
R21.
R22.
R23.
R24.
R25.
R26.
R27.
R28.
R29.
R30.

R31.

R32.

R33.

if (sgb = stones) then AC14

if (sal= minimal elevation) and (lc = moderate increase) and (esr= increases)
then AC15

if § = present(0.2)) then ACI16

if (afp = present) and (fc — present) and (fr = present) and (fs = present)
and (prl= present) then AC17

if (pp = onside) then AC18

if AC1 and AC17 then AC19

if ACM and AC19 then AC20

if (ecg = normal) and (sget! = insignicant) then MI
if (sd <> profound) and (abwr <> boardlike) then PPU
if (sal < 2000 units) then AcPan

if AC20 and MI and PPU and AcPan then AC21
if AC1 then AC (CF = 0.80)

if AC13 then AC (CF = 0.95)

if AC14 then AC (CF = .95)

if AC19 then AC (CF = .85)

if AC20 then AC (CF = 0.97)

if AC21 then AC (CF = 0.98)

if AC5 and AC6 and AC7 and AC8 and AC9 and AC10 and ACII and AC12
and AC15 and AC16 and AC18 then AC

if (po = sudden and sharp) and (p! = epigastrium/RUQ/LUQ) and (pr =
diffused) then PPU1

if (vp = yes) and (vf = absent to few) and (vn = retching) then PPU2

Appendix B. Rules for Medical Diagnosis Application 175

R34.
R35.
R36.
R37.
R38.
R39.
R40.
R41.
R42.
R43.
R44.
R45.
R46.
R47.

R48.

R49.
R50.
R51.
R52.
RS53.
R54.

R55.

if (It =yes) and (lif = variable) then PPU3

if (hpu = yes) then PPU4

if (di = spices and acohal) then PPU5

if (st =early) and (sd = common or high) and (prp = yes) then PPUG6
if (abt = yes) and (abtn = diffused) then PPU7

if (abrt <=4 hours) then PPU8

if (cvt = true) and (cvts = hilateral) then PPU9

if (abwr = boardlike) then PPUIO

if (ps = absent) then PPUII

if (pp = flat supine) then PPU12

if (za = free ar) and (xgsud = yes) then PPU13

if (sal — elevated) and (hc¢ = elevated) and (lc — high) then PPU14
if PPUIO and PPUIl and PPU12 and PPU14 then PPU15

if (vv = blood) then PPU16

if PPUI and PPU2 and PPU4 and PPU5 and PPUIO and PPUIIl and PPU12
then PPU17

if PPUI then PPU (CF=0.7)
if PPU2 then PPU (CF=0.9)
if PPU6 then PPU (CF=0.7)
if PPU13 then PPU (CF = 0.7)
if PPU15 then PPU (CF =0.95)
if PPU17 then PPU (CF=0.9)

if (po = gradual) and (pl = epigastrium) and (pr - dow, spreading through
back) then AcPanl

Appendix B. Rules for Medical Diagnosis Application 176

R56.

R57.
RS58.
R59.
R60.
R61.
R62.
R63.
R64.
R65.
R66.
R67.
RG8.
R69.
R70.
R71.
R72.
R73.
R74.

R75.

if (vp = yes) and (vf = multiple) and (vn = persistent) and (fp = yes) then
AcPan2

if (=yes) and (lig = heavy) and (lit = preceding attack) then AcPan3
iIf AcPanl and AcPan2 and (hpu — similar) then AcPan4

if (di = fatty foods) then AcPan5

if (st = late) then AcPan6

if (abta = epigastrium) and (abtt = early) and (abtd = late) then AcPan7
if (abrt > 24hrs) then AcPan8

if (cvt = true) and (cvts = left) then AcPan9

If (abwr = moderate to severe) then AcPanlO

If (ps = hypoactive) then AcPanll

if (pp = hipsflexed) then AcPan12

if (zil = true) and (zsl = true) and (xcc — true) then AcPanl3

if (spm = true) then AcPanl4

if (sal>= 1000 unitg/litre) then AcPanl5

iIf (pp = onside) then AcPanl6

if AcPanl then AC (CF = 0.8)

if AcPan4 then AC (CF = 0.85)

if AcPanl4 then (CF = 0.95)

if AcPan5 and AcPan6 and AcPan7 and AcPan8 and AcPan9 and AcPanlO
and AcPanll and AcPanl2 and AcPanl3 and AcPar15 and AcPanl6 then
AC

if (fc = present) and (n = present(0.9)) and (m= present(0.9)) and (an =
present (0.9)) and (vp = present (0.9)) and (acg — yes) and (acgd = severe)
then AH1

Appendix B. Rules for Medical Diagnosis Application 177

R76.

R77.

R78.

R79.

R80.

R81.

R82.

R83.

R84.

R85.

R86.

R87.

R88.

R89.

R90.

R91.

R92.

R93.

RA4.

R95.

if AH1 and (dp= yes) then AH2

if AH1 and (cp = yes) then AH3

if (pl = RUQ) and (Is = enlarged) and (Ip = yes) and (It - yes) then AH4
if AH2 and AH4 then AH5

if AH3 and AH4 then AH6

if (uc =dark) and (sct = ydlow) and (stc = pale) then AH7

if (sbl = increased) and (sail = increased) and (sata > 400 unitg/litre) and
(sap <= 250) then AH8

if (sbsl = increased) and (ubs! — increased) and (pt = increased) then AH9

if AH9 and (esr = increased) and (lc = normal) and (lc = mild to moderate)
then AHI10

If (bul = increases) and (ubl — increased) then AH11

if AH4 and AH5 and AH7 and AH8 and AH10 and AH11 then AH
if AH4 and AH6 and AH7 and AH8 and AH10 and AH11 then AH
if AH1 then AH (CF = 0.9)

if AH5 then AH (CF = .80)

if AH6 then AH (CF = .80)

if AH7 then AH (CF = .95)

if AH8 then AH (CF = .95)

if AH9 then AH (CF = .95)

if (chp = yes) and (ps = band around chest) and (pr = arms, left epigastrium,
neck, head) then MI1

if (vp — yes) and (vn — protracted) and (bp! = decreased) and (pir = fast and
feeble) and (pn = thready) then MI2

Appendix B. Rules for Medical Diagnosis Application 178

R96.

R97.

R98.

R99.

R100.

R101.

R102.

R103.

R104.

R105.

R106.

R107.

R108.

R109.

R110.

RI111.

R112.

R113.

if (bn = short) and (anx — present) and (sw = present) and (ha — present)
then MI3

if (ot = early) and (ecgst = elevated) then Ml4

if (ot = moderately late) and (ecgrws = diminished) then MI5

if (ot = late) and (tw = inverted) then MI6

if (ot >= 4hrs) and (ot <= 6hrs) and (ckl = raises) then MI7

if (ot = 12hrs (approx.)) and (ckl = peak) and (sgotl = raises) then MI8
if (ot >= 24hrs) and (ot <= 48hrs) and (sgotl = peak) then MI9

if (ot >= 48hrs) and (ot <= 72hrs) and (ckl = normal) then MI10

if (ot — 168hrs (approx.)) and (sgotl — high) and (sgotn — prolonged) then
MI11

if (cprwr = yes) then MI 12

if (cprwr = no) then MI13

if M17 and MIS and MI9 and MI10 then MI (CF = .98)
if MI1 then MI (CF = .90)

if MI2 then AP (CF = .95)

if M4 then MI (CF = .90)

if MI5 then MI (CF = .90)

if MI12 then AP (CF = .98)

if MI13 then AP

Appendix B. Rules for Medical Diagnosis Application 179

Attribute codes and their meanings

po — onset of pain (abdominal pain)
pot = (abdominal) pain onset time
pi — (abdominal) pain intensity
pl — (abdominal) pain location
pr = (abdominal) pain radiation
vp — whether vomiting present
vf — vomiting frequency
vn = vomiting nature
vv = vomitus
fp — presence of fever
fc = fever with chills
fr = fever with rigors
fs = fever with sweating
Ii — acohal intake
Iif = aochol intake frequency
lig = acohol intake quantity
lit = time of alcohol intake (eg., preceding attack)
hpc = history of similar attacks (of cholecystitis)
hpu = history of previous attacks (of ulcer)
di = dietary intolerance
sp — presence of shock

st = time of shock

Appendix B. Rules for Medical Diagnosis Application

sd = degree of shock

prp = presence of prostration

abt — abdominal wall tenderness

abrt = abdominal wall rebound tenderness

abtn = abdominal tenderness nature

abta = abdominal tenderness area

abtt = time at which abdominal tenderness is felt
abtd = abdominal tenderness degree

cvt = costoverterbal angle tenderness

cvts = costoverterbal angle tenderness side

abwr — abdominal wall rigidity

abwg — abdominal wall guarding area

ms = Murphy's sign

ps = peristaltic sounds

(ps = Psoa's sign)

pp = patient position

xil = X-ray positive for ileus (eg. air, fluid)

zcal = X-ray positive for calculus in gall bladder
xgsud — X-ray showing gas shadow under diagphram
zsl = X-ray Sentinel loop

xcc = X-ray Colon Cutoff sign

spm — Sonogram positive for Pancreatic mass
sgb — Sonogram positive for stones in gall bladder

sal = Serum Amylase level

Appendix B. Rules for Medical Diagnosis Application

le = Leukocyte count

he — Haematocrite count

esr = ESR
] = jaundice
n — nausea

m = malaice

an = anarexia

acg = averson to cigaretts

acgd = degree of averson to cigaretts
dp = Diarrhoea presence

cp — constipation presence

Is = szeof liver

Ip = liver palpability

It = liver tenderness

uc = urin colour

tint of sclera

sct
stc = stools colour

ubsl — bile saltsleve in urine

bul = Biluribin urealeve

ubl =Urobilinogen leve

chp = pain in chest

cprwr = chest pain relief with rest

bpl = BP leve

p/r = pulse rate

181

Appendix B. Rules for Medical Diagnosis Application 182

pn = pulse nature

bn = breath nature

anx — anxiety

ot — observation time

sbl = Serum Biluribin leve
satl = SAT (SGOT/SGPT) levd
sata = SAT activity

sbsl = SB salts leve

ecg= ECG

ecgst = ECG ST

ecgrws = ECG RWS

tw — T wave

ckl = CK leve

sgotl = SGOT levels
sgotn = SGOT nature

afp = facies palor

Sw = swesting

pt = Prothrornbin present

prl presence of restlessness

ha

hyperacidity

AC, AcPan, PPU, Ml and AH stand for the disease names Acute Cholecystitis,
Acute Pancreatitis, Perforated Peptic Ulcer, Mycardial Infarction and Acute Hep-
atitis respectively. The numerals after the disease code indicate the satisfaction of
some symptoms related to the disease. For example, AC1 and AC2 indicate the
presence of some symptoms related to Acute Cholecydtitis.

Appendix C

Test Results

The partitioning heurigtic is implemented in Turbo Pascal. Results of some sample
runs are given below. Partitions obtained for three different input ratios are shown
after generating the spanning tree and preparing it for the initial decomposition.

Input rulebase:
ab— >c

bde— >f

bg— >h

1— >]

fg— >k

ag— >1i

$

Spanning tree generated:

1j10——>i2
2321~ >g3
3g22-—>h4
4h23——>bd

5b34—— >cb6—— >f8

b c2d5—— >al

183

Appendix C. Test Results

Taléb

814 5—— >d9—— >el0—— >kll
9d18

10e18

11k18

spanning tree after processing

node structure : attr sdeg prev plen dir rule
1j100—=>120 -4
21210-—>g30-6
3g220--~>h40+43
4h230—->b650-3
5b342——>c62+1——>f80 +2
6c251-—>aTl-1]

Tal6o0
8f451——>d91-2——>el101-2—=>k 11045
9d180

10e180

11k180

spanning tree array elements:

ji0

ig0

gho

hbo0

beb2

Appendix C. Test Results 185

cabl
bfo0
fdb1
febl
fko

spanning tree array elements with information about edge, branch, length,
dir, rule, arclabel

j11-40
ig2-60
gh3 430
hb4-30
bcb2+4+10
cabl-10
bf5+4+20
fdb1-20
feb1-20
fk6+50
Rules in the set RS excluding branches

4 6325

spanning tree array elements after l1abelling with information about edge, branch,
length, dir, rule, arclabel:

jil-41
ig2-62

gh3+33

endix C. Test Results

bib+26
fdbl1-20
bl=20

ik6+57

Appendix C. Test Results 187

Ratio of rules in which rule base parts areto be made : 1 1
arctobecut4

Vertex set for partition 1 : jigh

Proposed ruleset : 46 3

Vertex set for partition 2: bcafdek

Proposed rule set : 125

Conflict rule set 3 (1,2); (2,1); 5 (1,1); (2,2); 6 (2,1); (1,1);
12,21;22,11;211 1,

CRS nodes sorted on degree of the rules :

Rule 3with degree 3;

and its cp nodes sorted on the attribute count : 1 2,2 1;

Rule 5with degree 3;
and its cp nodes sorted on the attribute count : 2 2,1 1;

Rule 6with degree 3;
and its cp nodes sorted on the attribute count : 2 11 1;

Final Partition

Ratio of rules in which rule base partitions areto be made : 1 1

PART P1:

VERTEXSET, VS1: | igh
RULE SET, RS1: 463
RULECOUNT =3, OKAY = TRUE

Appendix C. Test Results 188

Attributes that MAY BE REQUIRED BY OTHERS, MRB 1: g (2)

Attributes that NEED TO BE REQUESTED FROM OTHERS: b(2)a(2)

PART P2:

VERTEX SET, VS2 bcafdek

RULE SET, RS2: 125

RULECOUNT = 3, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 2: b (1)a (1)
Attributes that NEED TO BE REQUESTED FROM OTHERS: g(1)

Required partitioning obtained

Appendix C. Test Results -

Ratio of rules in which rule base parts areto be made : 2 1
arc to be cut 6 Vertex set for partition 1 : jighbca
Proposed ruleset : 46312

Vertex set for partition 2: fd ek

Proposed ruleset : 25

Conflict rule st 2 (1,1); (2,3); 5 (1,2); (2,2);
23112211

CRS nodes sorted on degree of the rules :

Rule 2with degree 4,

and its cp nodes sorted on the attribute count : 2 31 1;

Rule 5with degree 3;
and its cp nodes sorted on the attribute count : 2 2,1 1;

Final Partition

Ratio of rules in which rule base partitions are to be made : 2 1

PART P1:

VERTEX SET, VSl jighbca

RULE SET, RS1: 4 63 1

RULECOUNT = 4, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 1: b (2)g (2)

Attributes that NEED TO BE REQUESTED FROM OTHERS:

PART P2:

Appendix C. Test Results

VERTEX SET, VS2 fdek

RULE SET, RS2 25

RULECOUNT = 2, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 2:

Attributes that NEED TO BE REQUESTED FROM OTHERS: b()g(1)

Required partitioning obtained

Appendix C. Test Results

191

Ratio of rules in which rule base partsaretobemade : 1 1 1

arctobecut 3

arcto becut 6

Vertex set for partition 1: j i g
Proposed ruleset : 46 3

Vertex set for partition 2. hbca
Proposed ruleset : 312

Vertex set for partition 3: fd ek

Proposed ruleset : 25

Conflict rule set 3 (1,1); (2,2); 2 (2,1); (3,3); 5(1,1); (3,2); 6 (2,1); (1,1);

2211;,3321;,32;1 12121 1; CRS nodes sorted on degree of the rules :

Rule 2with degree 4;

and its cp nodes sorted on the attribute count :

Rule 3with degree 3;

and its cp nodes sorted on the attribute count :

Rule 5with degree 3;

and its cp nodes sorted on the attribute count :

Rule 6with degree 3;

and its cp nodes sorted on the attribute count :

Final Partition

3321,

221 1,

321 1;

2111,

Ratio of rules in which rule base partitions aretobemade: 11 1

Appendix C. Test Results 192

PART P1:

VERTEX SET, VS1:jig

RULE SET, RS1: 4 6
RULECOUNT = 2, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 1: g (2)g (3)
Attributes that NEED TO BE REQUESTED FROM OTHERS: a(2)

PART P2:

VERTEX SET, VS2 hbcaRULE SET, RS2 31

RULECOUNT =2, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 2: b (3)a (1)
Attributes that NEED TO BE REQUESTED FROM OTHERS: g(1)

PART P3:

VERTEX SET, VS3: fd ek

RULE SET, RS3: 25

RULECOUNT = 2, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 3:

Attributes that NEED TO BE REQUESTED FROM OTHERS: b(2)g(1)

Required partitioning obtained

Bibliography

[1 A. Acharya and M. Tarnbe. Production Systems on Message Passing Comput-

[2

[3]

[4

[5

[6]

[

[8]

El

[10]

ers: Simulation Results and Analysis. In Proc. Int. Conf. Parallel Processing,
pages 246-254, 1989.

M. R. Adler and E. Simoudis. Integrating Distributed Expertise. In Proc
10th International Workshop on Distributed Artificial Intelligence, chapter 24.
MCC, Bandera, Texas, 1990.

R. K. Aroraand S. P. Rana. Heuristic Algorithms for Process Assignment in
Distributed Computing Systems. Information Processing Letts, 11(4-5):199-
203, Dec 1980.

A. Basu, A. K. Mazumdar, and S. Sinha. An Expert System Approach to
Control System Design and Analysis. |IEEE Trans. on Systems, Man and
Cybernetics, 18(5):685-694, Sep/Oct 1988.

A. Basu, T. K. Nayak, and S. Mukherjee. Design and Simulation of A Parallel
Inference Machine Architecture for Rule Based Systems. Data and Knowledge
Engineering, 4:267-285, 1989.

D. Beasley, D. R. Bull, and R. R. Martin. An Introduction to Genetic Algo-
rithms. Vivek, pages 3-19, Jan. 1994.

D. A. Bdl and C. Zhang. Description and Treatment of Deadlocks in The
HECODES Distributed Expert System. IEEE Trans. on Systems, Man and
Cybernetics, 20(3):654-664, May/Jun 1990.

R. Bisiani, F. Alleva, A. Forin, R. Lerner, and M. Bauer. The Architecture
of the AGORA Environement. In M. N. Huhns, editor, Distributed Artificial
Intelligence Vol |, chapter 4, pages 99-118. Pitman / Morgan Kaufmann, 1987.

A. H. Bond and L. Gasser. An Analysis of Problems and Research in DAI. In
A. H. Bond and L. Gasser, editors, Readings In Distributed Artificial Intelli-
gence, chapter 1. San Mateo, CA: Morgan Kaufmann, 1988.

S. Bose, E. M. Clarke, D. E. Long, and S. Michaylov. PARTHENON: A Par-
alel Theorem Prover for Non-Horn Clauses. Journal of Automated Reasoning,
8:153-181, 1992.

193

Bibliography 194

[11] N. Botten, A. Kusiak, and T. Raz. Knowledge Bases : Integration, Verifica-

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

tion and Partitioning. European Journal of Operational Research, 42:111-128,
1989.

T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the Performance
of the Kernighan Lin and Simulated Annealing Graph Bisection Algorithms.
In 86th ACM/IEEE Design Automation Conference, pages 775-778, 1989.

R. Calinescu and D. J. Evans. A Parallel Simulation Model for Load Balancing
in Clustered Distributed Systems. Parallel Computing, 20:77-91, 1994.

J. A. Campbell and M. P. Dinverno. Knowledge Interchange Protocols. In
Y. Demazeau and J. P. Muller, editors, Decentralized A.l. Elsevier Science
Publishers, B.V., 1990.

C. H. Cap and V. Strumpen. Efficient Parallel Computing in Distributed
Workstation Environments. Parallel Computing, 19:1221-1234, 1993.

B. Chandrasekaran. Generic Tasks in Knowledge Based Reasoning: High
Level Building Blocks for Expert System Design. |EEE Expert, 1(3):23-30,
Fall 1986.

Y .-C. Chang and K. G. Shin. Optimal Load Sharing in Distributed Real-Time
Systems. Journal of Parallel and Distributed Computing, 19:38-50, 1993.

[.-R. Chen and B. L. Poole. Performance Evaluation of Rule Grouping on a
Real-Time Expert System Architecture. to appear in IEEE Trans. on Knowl-
edge and Data Engineering, 1994.

Y. Cheng and K.-S. Fu. Conceptual Clustering in Knowledge Organization.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(5):592-598, Sep
1985.

A. N. Choudhary, B. Narahari, and R. Krishnamurti. An Efficient Heuristic
Scheme for Dynamic Remapping of Parallel Computations. Parallel Comput-
ing, 19:621-632, 1993.

R. E. Condon and L. M. Nyhus. Manual of Surgical Therapeutics. Little
Brown and Company, Boston, 5 edition, 1982.

S. E. Conry, R. A. Meyer, and V. R. Lesser. Multistage Negotiation in Dis-
tributed Planning. In A. H. Bond and L. Gasser, editors, Readings in Dis
tributed Artificial Intelligence, pages 367-384. San Mateo, CA: Morgan Kauf-
mann, 1988.

D. D. Corkill. Design Alternatives for Parallel and Distributed Blackboard
Systems. In V. Jagannathan, R. Dodhiawala, and L. S. Baum, editors, Black-
board Architectures and Applications, pages 99-136. Academic Press Inc, 1989.

Bibliography 195

[24] N. S. Coulter, R. B. Cooper, and M. K. Solomon. Information-Theoretic
Complexity of Program Specifications. The Computer Journal, 30(3):223-227,
1987.

[25] G. Cybenko. Dynamic Load Balancing for Distributed Memory Multiproces-
sors. Journal of Parallel and Distributed Computing, 7:279-301, 1989.

[26] K. Das. Clinical Methods in Surgery. Eastern Type Foundry & Oriental
Printing Works (P) Ltd, Calcutta, 9 edition, 1976.

[27] C. J. Date. An Introduction to Database Systems,volume 1. Narosa Publish-
ing House, India, 3 edition, 1986.

[28] R. Davis. Interactive Transfer of Expertise. In B. G. Buchanan and E. H.
Shortliff, editors, Principles of Rule Based Ezrpert Systems, pages 171-205.
Addison Wedey Publishing Company, 1985.

[29] R. Davisand R. G. Smith. Negotiation as a Metaphor for Distributed Problem
Solving. Artificial Intelligence, 20(1):63-109, 1983.

[30] Y. Demazeau. Decentralized Artificia Intelligence. In Y. Demazeau and J.-P.
Muller, editors, Decentralized A.l. (Proceedings of the First European Work-
shop on Modelling Autonomous Agents in a Multiagent World), volume 2.
Elsevier Science Publishers B.V., The Netherlands, 1990.

[31] N. Deo. Graph Theory with Applications to Engineering and Computer Sci-
ence. Prentice Hall of India Private Limited, New Delhi, 1986.

[32] V. V. Dixit and D. |I. Moldovan. The Allocation Problem in Parallel Produc-
tion Systems. Journal of Parallel and Distributed Computing, 8:20-29, 1990.

[33] A. E. Dunlop and B. W. Kernighan. A Procedure for Placement of Standard-
Cell VLSI Circuits. IEEE Trans. on Computer Aided Design, 4(1):92-98, Jan
1985.

[34] E. H. Durfee and V. R. Lesser. Using Partial Global Plans to Coordinate
Distributed Problem Solvers. In A. H. Bond and L. Gasser, editors, Readings
in Distributed Artificial Intelligence, pages 285-293. San Mateo, CA: Morgan
Kaufmann, 1988.

[35] E. H. Durfee and V. R. Lesser. Negotiating Task Decomposition and Allo-
cation Using Partial Global Planning. In M. N. Huhns, editor, Distributed
Artificial Intelligence, volume 2, chapter 10, pages 229-243. London: Pit-
man/Morgan Kaufmann, 1989.

[36] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Coherent Communica-
tion Among Communicating Problem Solvers. |IEEE Trans. on Computers,
36(11):1275-1291, Nov 1987.

Bibliography 19

[37]

[33]

[39]

[40]

[41]

[42)

[43]

[44]

[49]

[46]

[47]

[48]

E. H. Durfee, . R. Lesser, and D. D. Corkill. Cooperation Through Commu-
nication in A Distributed Problem Solving Network. In M. N. Huhns, editor,
Distributed Artificial Intelligence, volume 1, chapter 2, pages 29-58. Pitman
Publishing / Morgan Kaufmann Publishers, 1987.

E. H. Durfee, V. R. Lesser, and D. D. Corkill. Trends in Cooperaive Dis-
tributed Problem Solving. |IEEE Trans. on Knowledge and Data Engineering,
1(1):63-83, Mar. 1989.

F. Ercal, J. Ramanujam, and P. Sadayappan. Task Allocation onto A Hyper-
cube by Recursive Mincut Bipartitioning. Journal of Parallel and Distributed
Computing, 10:35-44, 1990.

L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The Hearsay-11
Speech Understanding System: Integrating Knowledge to Resolve Uncertainty.
Computing Surveys, 12(2):213-253, Jun 1980.

L. D. Erman and V. R. Lesser. A Multi-Level Organization for Problem
Solving using Many, Diverse, Cooperating Sources of Knowledge. In Proc. of
1JCAl 4, pages 483-490, 1975.

D. J. Evans and W. U. N. Butt. Dynamic Load Balancing Using Task-Transfer
Probabilities. Parallel Computing, 19:897-916, 1993.

C. M. Fiducciaand R. M. Mattheyses. A Linear-Time Heuristic for Improving
Network Partitions. In 19th Design Automation Conference, pages 175-181,
1982.

C. L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19:17-37, 1982.

R. A. Frost. Introduction to Knowledge Base Systems. Collins Professional &
Technical Books, William Collins Sons & Co Ltd., 8 Grafton Street, London
W1X 3LA, 1986.

S. Gaglio, R. Minciardi, and P. P. Puliafito. Multiperson Decision Aspects
in the Construction of Expert Systems. |EEE Trans. on Systems, Man and
Cybernetics, 15(4):536-539, Jul/Aug 1985.

B. R. Gaines and M. L. G. Shaw. Induction of Inference Rules for Expert
Systems. Fuzzy Sets and Systems, 18:315-328, 1986.

K. Q. Gallagher and D. D. Corkill. Performance Aspects of GBB. In V. Ja-
gannathan, R. Dodhiawala, and L. S. Baum, editors, Blackboard Architectures
and Applications, pages 323-346. Academic Press Inc, 1989.

Bibliography 197

[49]

[30]

[51]

[52]

[53]

[54]

[59]

[56]

[57]

[58]

[59)

30]

[61]

L. Gasser, C. Braganza, and N. Herman. MACE: A Flexible Testbed for
Distributed Al Research. In M. N. Huhns, editor, Distributed Artificial Intel-
ligence, volume 1, chapter 5, pages 119-152. Pitman/Morgan Kaufmann, San
Mateo, CA, 1987.

L. Gasser and M. N. Huhns, editors. Distributed Artificial Intelligence, Volume
[1. London : Pitman/Morgan Kaufmann, 1989.

L. Gasser and T. Ishida. A Dynamic Organizational Architecture for Adaptive
Problem Solving. In Proc. AAAI-91 pages 185-190, 1991.

M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein. Cooperation with-
out Communication. In A. H. Bond and L. Gasser, editors, Readings In Dis-
tributed Artificial Intelligence, pages 220-226. Morgan Kaufmann, 1988.

M. R. Genesereth and S. P. Ketchpel. Software Agents. Communicationsof
the ACM, 37(7):48-53 k 147, Jul 1994.

M. L. Ginsberg. Decision Procedures. In M. N. Huhns, editor, Distributed Ar-
tificial Intelligence, chapter 1, pages 3-28. Pitman/Morgan Kaufmann, 1987.

F. Gomez and B. Chandrasekaran. Knowledge Organization and Distribu-
tion for Medical Diagnosis. |IEEE Trans. on Systems, Man and Cybernetics,
[1(1):34-43, Jan 1981.

P. E. Green. AF: A Framework for Real-Time Distributed Cooperative Prob-
lem Solving. In M. N. Huhns, editor, Distributed Artificial Intelligence, chap-
ter 6, pages 153-175. Pitman/Morgan Kaufmann, 1987.

A. Gupta. Parallelism in Production Systems. PitmanMorgan Kaufmann
Publishers, 1 edition, 1987.

W. Harvey, D. Kalp, M. Tambe, D. McKeown, and A. Newell. The Effective-
ness of Task-Level Parallelism for Production Systems. Journal of Parallel
and Distributed Computing, 13:395-411, 1991.

S. Henry and D. Kafura. Software Structure Metrics Based on Information
Flow. IEEE Trans. on Software Engineering, 7(5):510-517, 1981.

C. E. Hewitt. Offices are Open Systems. In A. H. Bond and L. Gasser, editors,
Readings in Distributed Aritificiallintelligence, pages 321-329. San Mateo, CA:
Morgan Kaufmann, 1988.

C. E. Hewitt. Open Information Systems Semantics for Distributed Artificial
Intelligence. Artificial Intelligence, 47:79-106, 1991.

Bibliography 198

[62]

[63]

[64]

[65]

[66]

[67]

[63]

[69]

[70]

[71]

[72]

[73]

[74]

C. E. Hewitt and J. Inman. DAI Betwixt and Between: From Intelligent
Agents’ to "Open Systems Science'. |EEE Trans. on Systems, Man and
Cybernetics, 21 (6): 1409-1419, Nov/Dec 1991.

M. N. Huhns and D. M. Bridgeland. Multiagent Truth Maintenance. |EEE
Trans. Systems, Man and Cybernetics, 21 (6): 1437-1445, Nov/Dec 1991.

M. N. Huhns, D. M. Bridgeland, and N. V. Ami. A DAI Communication
Aide. In M. N. Huhns, editor, Proceedings of 10th International Workshop on
Distributed Artificial Inlelligence, MCC, Bandera, Texas, 1990.

M. N. Huhns, U. Mukhopadhyay, L. M. Stephens, and R. D. Bonnell. DAI for
Document Retrieval: The MINDS Project. In M. N. Huhns, editor, Distributed
Artificial Intelligence, chapter 9, pages 249-283. Pitman/Morgan Kaufmann,
1987.

B. Indurkhya, H. S. Stone, and L. Xi-Chcng. Optimal Partitioning of Ran-
domly Generated Distributed Programs. IEEE Trans. on Software. Engineer-
ing, 12(3):483-495, Mar 1986.

D. J M. Intosh, S. E. Conry, and R. A. Meyer. Distributed Automated
Reasoning: Issues in Coordination, Cooperation, and Performance. |EEE
Trans. on Systems, Man and Cybernetics, 21(6):1307-1316, Nov/Dec 1991.

T. Ishida. Optimizing Rules in Production Systems Programs. In AAAI-88,
pages 699-704, 1988.

T. Ishida. Methods and Effectiveness of Parallel Rule Firing. In Proc. of IEEE
Conf. on Artificial Intelligence Applications, pages 116-122, 1990.

T. Ishida. Parallel Rule Firing in Production Systems. |IEEE Trans. on
Knowledge and Data Engineering, 3(1):11-17, Mar 1991.

T. Ishida, L. Gasser, and M. Yokoo. Organization Self-Design of Distributed
Production Systems. |EEE Trans. on Knowledge and Data Engineering,
4(2):123-133, Apr 1992.

R. J. K. Jacob and J. N. Froscher. A Software Engineering Methodology
for Rule-Based Systems. |EEE Trans. on Knowledge and Data Engineering,
2(2):173-189, Jun 1990.

N. R. Jennings. Joint Intentions as a Model of Multi-Agent Cooperation. PhD
Thesis, Dept. of Electronic Engineering, Queen Mary and Westficld College,
University of London, Mile End Road, London El 4NS, UK, Aug 1992.

B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell System Technical Journal, 49:291-307, Feb 1970.

Bibliography 199

[79]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

J. D. Keyser and D. Roose. Load Balancing Data Parallel Programs on Dis-
tributed Memory Computers. Parallel Computing, 19:1199-1219, 1993.

N. A. Khan and R. Jain. Uncertainty Management in a Distributed Knowl-
edge Based System. In Proc. 9th InternationalJoint Conference on Artificial
Intelligence, pages 318-320, 1985.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671~680, May 1983.

W. A. Kornfeld and C. E. Hewitt. The Scientific Community Metaphor. |IEEE
Trans. on Systems, Man and Cybernetics, 11(1):24 33, Jan 1981.

H. F. Korth and A. Silberschatz. Database System Concepts. Mc-Graw Hill
Inc., 2 edition, 1991.

S. Kuo and D. Moldovan. Implementation of Multiple Rule Firing Produc-
tion Systems on Hypercube. Journal of Parallel and Distributed Computing,
13:383-394, 1991.

D. B. Lenat. BEINGS: Knowledge as Interacting Experts. In A. Il. Bond
and L. Gasser, editors, Readings in Distributed Artificial Intelligence, pages
161-168. San Mateo, CA: Morgan Kaufmann, 1988.

V. R. Lesser. A Retrospective View of FA/C Distributed Problem Solving.
IEEE Trans. on Systems, Man and Cybernetics, 21 (6):1347-1362, Nov/Dec
1991.

V. R. Lesser and D. D. Corkill. Functionally Accurate, Cooperative Dis-
tributed Systems. IEEE Trans. on Systems, Man and Cybernetics, 11(1):81-
96, Jan/Feb 1981.

V. R. Lesser and D. D. Corkill. The Distributed Vehicle Monitoring Testbed:
A Tool for Investigating Distributed Problem Solving Networks. AIMagazine,
4:15-33, Fall 1983.

V. R. Lesser and L. D. Erman. Distributed Interpretation: A Model and
Experiment. IEEE Trans. on Computers, 29(12):1144-1163, Dec. 1980.

Y. P. Li. A Distributed Knowledge Model for Multiple Intelligent Agents. PhD
Thesis, Computer & Information Systems Research Program, Graduate School
of Manangement, UCLA, Sep 1987.

F. T. Lin, C. Y. Kao, and C. C. Hsu. Applying the Genetic Approach to Sim-
ulated Annealing in Solving Some NP-Hard Problems. IEEE Trans Systems,
Man and Cybernetics, 23(6):1752-1767, Nov/Dec 1993.

Bibliography 200

[88]

[89]

[90]

[o1]

[92]

[93]

[94]

[99]

[96]

[97]

[98]

[99]

[100]

V. Lun and I. M. MacLeod. Strategies for Real-Time Dialogue and Inter-
action in Multiagent Systems. |EEE Trans. Systems, Man and Cybernetics,
22(4):671-679, Jul/Aug 1992.

J. MacLeod, editor. Davidsons Principles and Practice of Medicine. English
Language Book Society/Churchill Livingstone, 14 edition, 1984.

T. W. Maone and K. Crowston. The Interdisciplinary Study of Coordination.
ACM Computing Surveys, 26(1):87-119, Mar 1994.

M. S. Mazer. Reasoning About Knowledge to Understand Distributed Al
Systems. |EEE Trans. on Systems, Man and Cybernetics; 21(6):1333-1346,
Nov/Dec 1991.

J. Mills, M. T. Ho, P. R. Salber, and D. D. Trunkey, editors. Current Emer-
gency Diagnosis & Treatment. Lange Medical Publications, Los Altos, Cali-
fornia 94023, 1985.

D. P. Miranker. TREAT: A Better Match Algorithm for Al Production Sys-
tems. In Proc. AAAI-87,pages 42-47, 1987.

W. R. Murray. Dynamic Instructional Planning in the BB1 Blackboard Ar-
chitecture. In V. Jagannathan, R. Dodhiawala, and L. S. Baum, editors,
Blackboard Architectures and Applications, pages 455-480. Academic Press
Inc, 1989.

G. Myers. Reliable Software through Composite Design. Petrocelli/Charter,
Newyork, 1975.

O. Nalini Kumari, G. Uma, and B. E. Prasad. Distributed Reasoning in
Cooperative Problem Solving. communicatedto IEEE Trans. Systems, Man
and Cybernetics.

0. Nalini Kumari, G. Uma, and B. E. Prasad. Dynamic Knowledge Distribu-
tion in Distributed Production Systems. to be communicated to |IEEE Trans.
Knowledge and Data Engineering.

O. Nalini Kumari, G. Uma, and B. E. Prasad. Knowledge Distribution in
Distributed Production Systems. communicated to IEEE Trans. Knowledge
and Data Engineering.

0. Nalini Kumari, G. Uma, and B. E. Prasad. Knowledge Base Partitioning in
Distributed Intelligent Systems. In Canadian Workshop on DAI (CWDAI’9}),
May 1994.

0. Nalini Kumari, G. Uma, and B. E. Prasad. Reasoning with incomplete
information in Distributed Forward Chaining Systems. In ECA| Workshop
on Decision Theory for DAI Applications, Aug. 1994.

Bibliography 201

[101]

[102]

[103]

[104]

[105]

[106]

[107]

S. Niizuma and T. Kitahasi. A Problem Decomposition Method Using Differ-
ences or Equivalence Relations Between States. Artificial Intelligence, 25:117-
151, 1985.

J. Y. C. Panand J. M. Tenenbaum. An Intelligent Agent Framework for Enter-
prise Integration. |EEE Trans. on Systems, Man and Cybernetics, 21(6):1391-
1408, Nov/Dec 1991.

D. L. Parnas. On the Criteria To Be Used In Decomposing Systems Into
Modules. Communicationsof the ACM, 15(12):1053-1058, Dec 1972.

B. E. Prasad, T. S. Perrgju, G. Uma, and P. Umarani. An Expert System
Shell for Aerospace Applications. |IEEE Expert, pages 56-64, Aug 1994.

K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed Scheduling of
Tasks with Deadlines and Resource Requirements . |IEEE Trans. on Comput-
ers, 38(8):1110-1123, Aug. 1989.

J. S. Rosenschein and M. R. Genesereth. Deals Among Rational Agents. In
A. H. Bond and L. Gasser, editors, Readings in Distributed Artificial Intelli-
gence, pages 227-234. San Mateo, CA: Morgan Kaufmann, 1988.

P. Sadayappan and F. Ercal. Nearest Neighbor Mapping of Finite Element
Graphs onto Processor Meshes. |EEE Trans. on Computers, 36(12):1408-
1424, Dec 1987.

[108] P. Sadayappan, F. Ercal, and J. Ram an u jam. Cluster Partitioning Approaches

[109]

[110]

[111]

[112]

to Mapping Parallel Programs onto a Hypercube. Parallel Computing, 13:1-
16, 1990.

M. J. Shaw. Mechanisms for Cooperative Problem Solving and Multi-Agent
Learning in Distributed Artificial Intelligence Systems. In M. N. Huhns, ed-
itor, Proc, 10th International Workshop on Distributed A/, Bandera, Texas,
1990.

K. G. Shin and Y.-C. Chang. Load-Sharing in Distributed Real-Time Systems
with State-Change Broadcasts. |IEEE Trans. on Computers, 38(8):1124-1142,
Aug 1989.

B. Shirazi and A. R. Hurson. Guest Editor's Introduction to Special Issue on
Scheduling and Load Balancing. Journal of Parallel and Distributed Comput-
ing, 4(16):271-273, Dec 1992.

J. S. Sichman, Y. Demazeau, and 0. Boissier. When can Knowledge Based
Systems be called Agents? In 9th Brazlian Symposium on Artificial Intelli-
gence, Rio De Janeiro, Sep 1992.

Bibliography 202

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]

M. P. Singh, M. N. Huhns, and L. M. Stephens. Declarative Representations
of Multiagent Systems. |EEE Trans. on Knowledge and Data Engineering,
5(5):721-739, Oct 1993.

R. G. Smith. A Framework for Distributed Problem Solving. In Proc. 1JCAI,
pages 836-841, 1979.

R. G. Smith and R. Davis. Frameworks for Cooperation in Distributed Prob-
lem Solving. |EEE Trans. on Systems, Man and Cybernetics, 11(1):61-70,
Jan. 1981.

A. Sohn and J. L. Gaudiot. A Survey on the Parallel Distributed Processing
of Production Systems. InternationalJournal on Artificial Intelligence Tools,
1(2):279-331, 1992.

L. E. Stanfel. Applications of Clustering to Information System Design. In-
formation Processing and Management, 19(1):37-50, 1983.

M. Stefik and L. Conway. Towards the Principled Engineering of Knowledge.
The AI Magazine, 3(2):4-6, 1982.

K. R. Tout and D. J. Evans. Paralel Forward Chaining Technique with
Dynamic Scheduling, for Rule-Based Expert Systems. Parallel Computing,
18:913-930, 1992.

G. Uma, B. E. Prasad, and O. Nalini Kumari. Distributed Intelligent Systems:
Issues, Perspectives and Approaches. Knowledge Based Systems, 6(2):77-86,
J un 1993.

R. Weihmayer and R. Brandau. Modes of Diversity : Issues in Cooperation
among Dissimilar Agents. In M. N. Huhns, editor, Proceedings of the 10th
International Workshop on Distributed Artificial Intelligence, MCC, Bandera,
Texas, 1990.

E. Werner. Distributed Cooperation Algorithms. In Y. Demazeau and J.-P.
Muller, editors, Decentralized A.l. (Proceedings of the First European Work-
shop on Modeling Autonomous Agents in a Multiagent World), Vol 1, pages
17-31. Elsevier Science Publishers B.V., North-Holland, 1990.

E. Werner and A. Reinefeld. Distributed Algorithms for Cooperating Agents.
In M. N. Huhns, editor, Proceedings of 10th International Workshop on Dis-
tributed Artificial Intelligence, MCC, Bandera, Texas, 194%0.

R. B. Wesson, F. A. Hayes-Roth, J. W. Burge, C. Stasz, and C. A. Sunshine.
Network Structures for Distributed Situation Assessment. |IEEE Trans. on
Systems, Man and Cybernetics, I1(1):5-23, Jan. 1981.

Bibliography 203

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

S. T. C. Wong. COSMO: A Communication Scheme for Cooperative
Knowledge-Based Systems. |IEEE 7Trans. on Systems, Man and Cybernetics,
23(3):809-824, May/Jun 1993.

C. C. Woo and F. H. Lochovsky. Knowledge Communicatin in Intelligent
Information Systems. International Journal of Intelligent and Cooperative
Information Systems, 1(1):203-228, 1991.

J. Xu and K. Hwang. Mapping Rule-Based Systems onto Multicomputers
Using Simulated Annealing. Journal of Parallel and Distributed Computing,
13:442-455, 1991.

J. Xu and K. Hwang. Heuristic Methods for Dynamic Load Balancing in a
Message-Passing Multicomputer. Journal of Parallel and Distributed Comput-
ing, 18:1-13, 1993.

J. D. Yang, M. N. Huhns, and L. M. Stephens. An Architecturefor Control and
Communications in Distributed Artificial Intelligence Systems. IEEE Trans.
on Systems, Man and Cybernetics, 15(3):316-325, May/Jun 1985.

C. Zhang. Cooperation under Uncertainty in Distributed Expert Systems.
Artificial Intelligence, 56:21-69, 1992,

C. Zhang and D. A. Bell. HECODES: A Frame Work for HEterogeneous
Cooperative Distributed Expert Systems. Data and Knowledge Engineering,
6:251-273, 1991.

G. Zlotkin and J. S. Rosenschein. Cooperation and Conflict Resolution via
Negotiation Among Autonomous Agents in Noncooperative Domains. |EEE
Trans. on Systems, Man and Cybernetics, 21 (6):1317-1324, Nov/Dcc 1991.

