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ABSTRACT

Knowledge distribution plays an important role in Cooperative Problem Solv-
ing. It is very closely related to, and actually leads to task decomposition in some
domains like monitoring applications. However, the problem of task decomposi-
tion has not been adequately addressed by Distributed Al (DAI) community. An
appropriate knowledge distribution also balances the load, provides fast access to
the knowledge base, reduces pattern matching time for reasoning, and reduces in-
formation exchange and inconsistency problems. Further, it facilitates distributed
reasoning and modelling of agents.

This thesis proposes a knowledge distribution approach to Cooperative Problem
Solving. The main objective is to partition domain knowledge and allocate the
resulting subsets to agents in a distributed production system statically as well as
dynamically. Both production rules and data are distributed to agents in order
to speed up processing and minimize communication. The second objective is to
provide mechanisms for distributed reasoning to seek data and partial results from
other agents during actual problem solving.

The need for the present work arises due to the following reasons:

• Many distributed Al domains like Hearsay II adopt a general functional de-
composition strategy which is domain dependent. Also, efficiency issues like
load balancing and faster processing are usually not considered.

• Related work in single processor and multiprocessor systems is not suitable
for DAI systems per se. Besides considering factors like distance, heteroge-
neous partitioning and working memory distribution, distributed reasoning
has to be facilitated for effective problem solving. Moreover, the complex in-
terdependencies among the knowledge subsets in DAI systems require special
consideration while distributing knowledge dynamically.

• Since optimal partitioning is an NP-complete problem, heuristics which obtain
a good partition quickly may some times be preferable to costly techniques that
obtain a better solution. In case an optimal partition is also necessary, the
partition obtained as above can be used as a good initial partition to generate
the optimal one. Such a partition can speed up the process of obtaining
optimal partition and/or improve the quality of the solution. However, there
is no proper heuristic to do this.

In this thesis, an attempt has been made to solve these in three stages.

First, a linear time static knowledge base partitioning heuristic is proposed.
Given a rulebase and the proportion in which rulebase subsets are to be obtained,
it constructs a knowledge graph, generates a long spanning tree and partitions the
rules in the given ratio by cutting along its chain. Rules are assigned to subsets such
that interdependencies and data inconsistencies are minimized, and load is balanced.
The metaknowledge maintained with each subset facilitates distributed reasoning.
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The static partitioning algorithm is extended for distributing knowledge dynam-
ically. Techniques for distributing knowledge dynamically for load balancing, i.e.,
with minimum local changes and by repartitioning the entire knowledge graph based
on the run time behaviour, are proposed. Dynamic distribution for catering to
changes to the knowledge base, and problem based dynamic allocation are also dis-
cussed.

Finally, a distributed reasoning heuristic is proposed for obtaining information
from other agents. This is necessary when an agent cannot proceed with local
inferencing and needs nonlocal information. The decision of what information has
to be asked for is made based on rule firing likelihoods and dynamic occurrence of
data. Requests are sent to agents with high utility value which is calculated based
on the agent's past performance and the ability to generate or send that particular
piece of information.

Working of these algorithms is tested with an aerospace vehicle checkout appli-
cation and a medical diagnosis application.
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Chapter 1

Introduction

This chapter presents the motivation and the need for research on knowledge distri-

bution. Section 1.1 presents the motivation. Section 1.2 gives a brief introduction

to Distributed Artificial Intelligence (DAI) and its subareas. Section 1.3 describes

the styles, modes and forms of cooperation used in Cooperative Problem Solving

(CPS). Section 1.4 discusses the issues involved in CPS and explains the role of

knowledge distribution in each. Section 1.5 describes our model of the CPS system

and section 1.6 defines the objectives of the research. Finally, section 1.7 presents

the organization of the thesis.

1.1 Motivation

The area of Distributed Al has gained importance as a major paradigm for prob-

lem solving in computer science as well as in a variety of disciplines like robotics,

linguistics, organization theory, biology and psychology [30, 50, 113]. This can be

attributed mainly to the following reasons.

• Unlike traditional Al systems, DAI offers advantages like reliability, availability

and speedup through parallelism.

• It concentrates on the aspects of communication and cooperation which are

very important for solving complex real life problems. For example, diagnosis

and treatment of a patient, military decision making and interpretation of ge-

ological data require cooperation among the participating experts [131]. Even

a simple task such as diagnosis of a minor ailment often needs cooperation

between a physician and a laboratory technician. DAI helps to understand

the cooperation that is essential among (groups of) problem solvers.
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• DAI helps to develop new theories, methods and tools that are needed to

understand, design, construct and test such complex systems.

In order to exploit the advantages of DAI, tasks must be decomposed and dis-

tributed to the problem solving entities called agents. Task decomposition and

allocation are, therefore, important issues in DAI. However, the difficulty in decom-

posing a given DAI problem into independent subproblems, the uncertainty present

in the problem domain and the possible geographic separation of agents necessitate

a lot of interaction among the agents. Since communication is costly and will remain

so at least in the foreseeable future, it must be kept at a low level such that the

improved performance due to parallelism does not get abrogated due to excessive

communication. In this regard, it is observed that information exchange can be min-

imized by distributing tasks, knowledge and data with minimum interdependencies.

Once knowledge, data and tasks are distributed to agents, in the course of prob-

lem solving, the agents need to reason about what information they need to exchange

in order to solve the problem, with whom, and when. Requesting for the most useful

information from potential donors at the appropriate time, and acceptance of roles

by agents permit smoother cooperation without much communication.

Proper distribution of knowledge and data helps in task decomposition and allo-

cation, and facilitates distributed reasoning if metaknowledge about other agents is

provided with each agent. Further, it improves the efficiency of the system in terms

of faster processing, load balancing with less communication, minimizing data in-

consistencies and sometimes the maintenance of the knowledge base.

However, in the earlier work reported in literature, knowledge partitioning is

ignored as a tool for obtaining optimal task decomposition besides having advantages

like efficient distributed inference. This thesis explores the knowledge partitioning

approach for achieving these in Cooperative Problem Solving.

1.2 Distributed Artificial Intelligence(DAI)

DAI is concerned with the collaborative solution of a global task by a distributed

group of entities. Entities range from simple processing elements to complex ones

exhibiting rational behaviour. Problem solving is a collaborative process in the sense

Chapter 1. Introduction 2



that mutual sharing of information is necessary to allow the group as a whole to pro-

duce a solution, or to successfully accomplish the global task. The group of entities

is distributed in that both control and data are logically, and often geographically

distributed. According to Bond and Gasser [9], DAI is concerned with distributing

and coordinating knowledge and actions in multiple agent environments.

1.2.1 Arenas

Depending on the number of problems being solved, their nature and the way in

which they are distributed, three arenas are identified: Distributed Problem Solving,

Multi Agent systems and Parallel Al. Each of these is elaborated below.

Distributed Problem Solving (DPS)

A single problem is envisioned for the entire system of agents and typical problem

solving involves problem decomposition, subproblem allocation, subproblem solution

and solution synthesis. Depending on the application, the complexity and the im-

portance of each of these phases vary. DPS mainly deals with interactions of groups

of intelligent agents which act together.

DPS differs from Distributed Processing in many ways [115, 120]. In Distributed

Processing, activities of agents carrying out independent and disparate tasks are to

be synthesized. Major motivation is to reconcile conflicts arising from these activities

for exploiting advantages of multiprocessing. Distribution implies spatial distribu-

tion of data, and usually there is no distribution of function or control. Further,

most processing is done at a central site, while remote processors are basically data

collecting entities. There is a lack of substantial cooperation in most Distributed

Processing systems.

In DPS, available resources do not have predefined roles, agents are homogeneous

and can solve any of the subproblems. The main issue is to develop frameworks for

cooperation between willing entities rather than enforcing cooperation as a compro-

mise between unwilling or incompatible entities. A DPS system may be adaptive to

uncertainty in problem solving knowledge, but not to alternative problem contexts

or to changing problem solving roles for modules [9].

Chapter 1. Introduction 3
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Multi Agent Systems(MAS)

These are also called as Collaborative Reasoning Systems [109] and are concerned

with coordinating the knowledge, goals, skills and plans of autonomous intelligent

agents so that they can jointly take actions or solve problems [9]. Agents may work

towards a single global goal or multiple goals that interact in some way. Like DPS

system agents, these agents also share knowledge. Achieving coordination is quite

difficult, for there may be situations as in open systems [60, 61, 62] where there is no

possibility for having global control, globally consistent knowledge, globally shared

goals or goal success criteria, or even a global representation of the system. A multi

agent system may be able to form and restructure coordination frameworks based

on emerging contexts and changing problem solving roles without the intervention

of a programmer.

Parallel Al

This is concerned with developing parallel computer architectures, languages and

algorithms which are primarily directed towards solving performance problems of

Al. Examples of such systems include AGORA [8] and AF [56]. Parallel Al dif-

fers from the other two arenas because it does not aim to advance the conceptual

understanding of the nature of reasoning and intelligent behaviour among multiple

agents. For example, Connectionist systems comprise a collection of a large number

of computation elements which need not be intelligent. These systems may be able

to adapt to temporal uncertainty, but not to alternate solution paths and loss of

problem solving knowledge [9].

However, DAI focusses mainly on approaches to the problems of distributing and

coordinating knowledge and actions, and hence on DPS systems and Multi agent
systems.

1.2.2 Distributed Al vs. Decentralized Al

A very closely related and much talked about area in 1990's, particularly in Europe

is Decentralized Al (DzAI) [30]. It is concerned with the activity of an autonomous

agent in a multi agent world. The term agent is used in a broader sense to designate



an intelligent entity which acts rationally and intentionally with respect to its own

goals and the current state of the knowledge. Each agent has its own existence, which

is not affected by the existence of other agents. Several autonomous intelligent agents

coexist and may collaborate with other agents in a common world. Each agent may

accomplish its own tasks, or cooperate with other agents to perform a personal or

global task [30, 112].

Both DAI and DzAI have common interest in the behaviour of distributed enti-

ties. However, in DAI, a global task is initially defined and the problem is then to

design distributed entities to solve this global task. The main issue here is to study

the distribution and collaborative solution of the given task. In contrast, DzAI is

concerned with how a group of predefined decentralized autonomous agents are able

to achieve tasks that may be of interest to a single agent or several agents. The main

issue in DzAI is the study of the structure of the autonomous entities to provide

insights into what kinds of problems these entities are able to solve.

1.3 Cooperative Problem Solving(CPS)

Problem solving in both DAI and DzAI can be divided along the axis of cooperation.

Though agents cooperate most of the time, due to reasons like conflicting goals,

agents may be noncooperative in some domains [106, 132]. In this thesis, we are

concerned about agents that cooperate to solve a single problem, and therefore about

Cooperative Problem Solving.

1.3.1 Cooperation

Cooperation is required for coordinating the actions of multiple problem solvers.

Werner [122, 123] defines cooperation as the process of mutual social action that

leads to individual and social goals. It emerges out of the mutual adjustment of

intentions of the participating agents which results from communication, from the

proclivity to engage in a cooperation style, and from the cooperation style itself.

Though cooperation is usually considered to be a form of interaction which results

from communication, Genesereth, Rosenschein, Ginsberg et al. [52, 54] discuss about

cooperation that is essential when communication is not possible between agents.
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Their model is based on game theory techniques and makes use of payoff matrices.

Certain assumptions about rationality of the agents helps to make reasonable choices

without communication.

1.3.2 Styles of cooperation

Depending on the degree of cooperation extended to another agent, agents can in-

teract in a variety of styles, viz., totally cooperative, self-interested, antagonistic, and

self-destructive, or a combination of these [122]. These styles reflect the intentions

and the compromise an agent is willing to make. However, these styles are agent

and context dependent. They evolve based on the ranking and evaluations an agent

makes of its own and other agents' goals.

1.3.3 Modes of cooperation

In an orthogonal direction, Zhang and Bell [131] classify cooperation among experts

into four predominant modes based on their interdependence relationships: horizon-

tal cooperation, tree cooperation, recursive cooperation and hybrid cooperation.

Horizontal cooperation is seen when each expert in the cooperative group can

get solutions to problems without depending on other experts. But, if the experts

cooperate, possibly using different expertise and data, they can increase confidence

in their solutions. For example, the cooperation between doctors for diagnosing

patients often illustrates horizontal cooperation (eg. the second opinion syndrome).

Consultation and comparison of opinions add significantly to the value of the diag-

nosis.

Tree cooperation is demonstrated in situations where a senior expert depends on

a junior expert in order to get solutions to problems. For example, a chief engineer's

decision often depends on the work of junior engineers.

Recursive cooperation is seen in situations when different experts depend on

each other in order to get solutions to problems. For example, in order to interpret

geological data, geophysical experts and geochemical experts often depend on each

other in a recursive way. There is a recursive dependence when a geophysicist asks

a geologist to perform a subtask who in turn depends on the geophysicist for solving
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some other (sub)subtask.

Hybrid cooperation is manifested in situations where different experts use hori-

zontal cooperation at some level in an overall tree or recursive mode of cooperation.

On the other hand, they could equally use tree or recursive cooperation at some

point in an overall horizontal cooperation. An example of the former is where sev-

eral opinions are obtained in order to optimize the quality of the final result coming

from the engineers at a given level of seniority in the tree cooperation.

1.3.4 Forms of cooperation

According to Smith and Davis [115], cooperation among agents may be exhibited

in the form of task sharing and result sharing. This refers to the content or what

(information) is to be communicated between agents, and its use by an agent for

cooperative problem solving.

In task sharing, the given problem (or task) is divided into suitable subproblems

(subtasks) and allotted to different agents for solving. Agents cooperate by sharing

the subtasks to achieve the main task. However, this requires that a problem be

decomposable into more or less independent subproblems.

If the given problem cannot be easily decomposed into nonoverlapping subprob-

lems, there may be a necessity to share the temporary partial results obtained by

different experts. This is called result sharing. Recursive or hybrid cooperation may

be necessary in that the individual agents must cooperate by exchanging partial

results and other information. In Functionally Accurate/Cooperative approach to

problem solving [38, 82, 83], network problem solving is structured so that nodes co-

operatively exchange and integrate partial, tentative, high-level results to construct

a consistent and complete solution.

While the exchange of intermediate results is the main thrust in result sharing,
sharing of external input data may be treated as data sharing. In this thesis, we
consider sharing of both intermediate results and data, and call it as information

sharing.

Joint action [73] is another form of cooperation when the actions of agents are

intertwined, the problem is not decomposable into independent subproblems and
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agents must share partial results and future plans. However, this differs from task

and result sharing because it is a reciprocal process in which participating agents

augment their actions to comply with those of others. Relevant examples include

several agents lifting a heavy object, musicians in an archestra, driving in a convoy,

and playing cricket. Jennings proposes joint intentions as a model of Multi-Agent

cooperation [73].

1.4 Role of Knowledge Distribution in CPS

The important issues in CPS are task decomposition and allocation, coordination,
coherence, communication, resolution of disparities and modelling of other agents.
Knowledge distribution plays a crucial role in most of these issues as explained
below.

1.4.1 Task Decomposition and Allocation

Task decomposition becomes necessary when a task requires more knowledge or more

resources than what are available with an agent. A task must be properly described

and formulated so that it can be decomposed and its subtasks are allocated to

agents [9, 109]. Task description is the statement of the problem and the expres-

sion of dependencies among subtasks in a suitable language. Task formulation is a

representation of the problem which decides on the boundaries of the problem and

on what is known and what is not. Depending on the task description and formula-

tion used, a task may give rise to different subtasks and different interdependencies.

Dynamically changing patterns and contexts may require decomposition to undergo

revision. Therefore, intelligent approaches to task decomposition must consider rep-

resentation of tasks as well as dimensions of decomposition.

The dimensions of decomposition include knowledge, location, abstraction, time

and available operators that can be applied to perform subtasks. Along these di-

mensions, decomposition can be done based on abstraction, data dependency and

data partitioning, effective use of resources, division by function or product

: and other organizational and management criteria. Commonly used methods

to obtain such decompositions are inherent decomposition, hierarchical planning,



decomposition by programmer, load balancing, minimally connected subgraphs and

subtask aggregation [9].

Once the main task is divided into suitable subtasks, task allocation involves the

assignment of tasks to agents that will actually perform them. Criteria for task

allocation include bottleneck avoidance, fitness to specification, overlap in roles,

uncertainty avoidance, reliability, urgency and resource consumption. Resource

allocation is a related problem and is a way of prioritizing subtasks. An example is

the Scientific Community [78] in which a sponsor based resource allocation is made.

There is little work reported in DAI literature that addresses automated prob-

lem formulation and decomposition. Greater effort has been put into task alloca-

tion mechanisms assuming a priori knowledge and task decomposition. For exam-

ple, Contract Nets [115] and DVMT [36, 37, 84] address opportunistic allocation

of tasks assuming the subtasks and knowledge partitioning art provided by the de-

signer. Actors [78] treat the allocation decision as dynamic but task description and

decomposition decisions are not addressed by them.

In this context, we see that all the conceptual distances that define distribution

in a DAI system, as mentioned in [9], refer to the use of knowledge in some form or

the other. For instance, computational cost, spatial distance and temporal distance

define distribution based on the cost of using a piece of knowledge with respect to

location or time; the others, viz., logical distance and semantic distance use logical

dependency between portions of knowledge base and their practical use respectively.

Further, tasks that have strong knowledge production and consumption relation-

ships may be grouped together. This introduces task coordination and precedence

constraints that affect allocation decisions because a node cannot work until another

has finished its task [36]. These task precedences are a type of task interdependence

Without adequate interaction capacity, matters of consistency, definition or direc-

tion should be addressed by the node with the most global view [124].

In addition to knowledge, data plays an important role in task distribution. Data

dependencies among the tasks along the axes of semantics, logical dependencies or

temporal dependencies can serve as bases for decomposition choices. Tasks can be

decomposed by taking into account the natural or dependency related partitions in

input data. In Distributed Sensor Nets (DSN) [83, 85], spatial distribution of data
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provides a natural basis for task decomposition. It is also related to division by

product or function and resource minimization. Further, metrics may be defined to

measure these dependencies among data and to obtain a suitable task decomposition.

From the foregoing discussion, it can be observed that task distribution is closely

related to distribution of knowledge and data (input data or intermediate results).

Knowledge/data distribution may itself lead to task distribution. This is partic-

ularly true for some applications like data driven distributed expert systems and

distributed data bases. Therefore, we approach task decomposition problem from

the knowledge/data base partitioning perspective.

1.4.2 Coherence and Coordination

Coherence refers to how well the system behaves as a unit with respect to the

solution quality, efficiency, clarity, or graceful degradation [9] of the whole system

or only some part of it. Coherent behaviour requires satisfying three conditions

namely coverage, connectivity and capability. Coverage must ensure that all neces-

sary portions of the overall problem are included in the activities of at least one

agent; connectivity implies that agents must interact in a manner which permits the

solutions for the covering activities to be developed and integrated into an overall

solution; finally, coverage and connectivity must be achievable within the network's

capability such as communication and computation resource limitations.

Coordination is a property of interaction among groups of agents performing some

task collectively [122, 123]. The degree of coordination exhibited is the extent to

which agents can avoid extraneous activity in achieving their primary ends. Effective

coordination implies some degree of mutual predictability and lack of conflict.

Coordination and coherence can be increased by reducing the dependencies
among agents through a good task decomposition and increasing the supply of re-
sources. Better coordination leads to greater efficiency in coherence through reduc-
tion in articulation work.

We facilitate better coordination and coherence by a good task decomposition

which in turn is achieved through partitioning data and knowledge with minimum

dependencies. Task decomposition and allocation done considering capacities of

agents, communication links and distance between agents, with an aim to minimize

Chapter 1. Introduction 10



the interdependencies and the information exchange ensure capability, connectivity

and coverage. A static allocation reduces the need for coordinating the task alloca-

tion. If the situation changes dynamically, dynamic distribution is the solution. We

consider both static and dynamic distributions of knowledge and data, and reasoning

about nonlocal information that is required for solving a subproblem.

In this context, it is both important and interesting to note that Malone and

Crowston [90] also define coordination as a process of managing interdependencies

among activities. They explain the possibility of managing the activities and mon-

itoring solution progress by making use of dependencies like producer/consumer

relationships, simultaneity constraints and task/subtask relationships.

1.4.3 Interaction

It is usually difficult to decompose a given DAI problem into nonoverlapping sub-

problems. Because of this, agents are required to interact so that they can combine

their efforts and solve the problem. Interaction may be defined as a type of collec-

tive action in MA or DPS systems wherein one agent takes an action, or makes a

decision that has been influenced by knowing about another agent [9]. Multiagent

interaction needs to consider issues like

• among whom the interaction takes place

• when the interaction occurs (temporal or causal)

• what the context is

• how the interaction is accomplished

• why the interaction occurs

• what the basis of communication is.

Interaction for cooperation needs additional features like sharing of common

knowledge and a communication protocol that allows for differences when agents

possess disparate knowledge and use different knowledge representation schemes.

One of the major goals of knowledge distribution is minimizing interaction. In

this thesis, we are mainly concerned with information exchange that is essential for
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resolving the incompleteness of local knowledge or data. Seeking and sharing of

partial results can be minimized by reducing the dependencies among the subtasks.

In data driven expert systems, the communication required for task decomposition

and allocation can be completely eliminated by a good partitioning of knowledge

and data which takes care of such dependencies. In other systems, it leads to task

decomposition with less communication. We provide strategies for reducing the

communication for information exchange further and for better coordination.

1.4.4 Agent Modelling

Modelling of other agents (by an agent) is important for meaningful interaction,

communication, coordination, control and task allocation. Agent models are use-

ful for predicting the requirements and effects of events that cannot be directly

sensed. This results in reduced communication by reducing the necessity of sharing

conforming information, and leaving communication channels free for surprising,

unpredictable information. Agent models are also useful for evaluating credibility,

usefulness, reliability and timeliness of data.

Task allocation requires knowledge of what potential tasks the agents can per-

form. Knowledge of agent capabilities and responsibilities provide a way of reducing

task-allocation overhead. Coordination requires an agent to reason about its own

activity, its effects on other agents as well as those of others and thus have network

awareness [36]. Knowledge about solution progress is important to detect deadlocks

and liveness, and to predict whether it will be useful to exchange any informa-

tion with another agent. Knowledge of beliefs, plans, goals and actions of others

is necessary for reasoning about communication and synchronization of plans. For

meaningful interaction, agents must have at least implicit knowledge about each

other on communication protocols or languages and should know what reaction to

expect from another on sending a message. Further, modelling requires knowledge

about whether agents are self-organizing or adaptive, their interrelationships, de-

fault expectations, knowledge and beliefs of others, and about the communication

links. However, completeness of models of other agents is difficult to achieve because

it requires duplication of processing and consideration of several conflicting issues

like communication, computation, speed and efficiency.

Examples of agent models include acquaintance data bases of MACE [49], partial

12



global plans [34, 35], production lattice models, process assembly networks and

problem solution graphs [9].

As indicated earlier, agent models improve efficiency by focussing activity or by

directing search. Knowledge of the data and resource requirements of other agents

prevents unnecessary communication, and may engender early communication of

important data. Agent models also help to know where to get particular information

and about its availability [29, 65]. Focussed addressing reduces bidding delays and

overheads. We achieve this by providing metaknowledge [65] with each agent and

using utilities of agents for obtaining information. In addition, agents are defined

by the knowledge and data assigned to them and hence the subtasks to be carried

out.

1.4.5 Reconciling Disparities

Disparities that result from incomplete knowledge can be resolved by identifying

and communicating the required knowledge. This may require reasoning about the

knowledge state of separate agents [9]. Achieving common knowledge among agents,

however, can be impossible in the face of communication unreliability. Provision of

metaknowledge about the information requirements of other agents, and the knowl-

edge of agents which could provide the required information help to resolve the

incompleteness of local data or knowledge.

1.4.6 Knowledge and Structures for Task Decomposition

There has been very little research into what kinds of knowledge and what structures

are required for automatic task description and decomposition. These are necessary

if agents in a DAI system are to jointly construct arid recognize their own problems.

Integrating multiple perspectives and ideas from other disciplines like distributed

computing is essential to solve the problem [9]. In this direction, we have developed

graph-theoretic techniques and successfully used them for this purpose [9fl, 99].
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1.4.7 Knowledge Base Access

In general, it is difficult for agents to have easy and fast access to large and possibly

shared knowledge[9]. A few attempts have been made to integrate knowledge base

access methods with DAI blackboard shells like GBB [23, 48] and BB1 [94] which

incorporate high level knowledge structuring and knowledge access mechanisms, and

pattern-directed retrieval of data. MACE [49] provides associative data bases within

agents. For rule bases, about 90% of the time is consumed in pattern matching [44].

Knowledge base partitioning is an attempt in this direction to make access faster

with smaller subsets. However, arbitrary partitioning will increase communication

overhead. Therefore, techniques which can partition and allocate knowledge such

that both access time and resulting communication overheads are reduced are of

paramount importance. We make an attempt in this direction.

1.5 Our Model of the System and Agents

A Cooperative Problem Solving system may belong to any of the following cat-

egories: DPS, MA, Parallel Al or DzAI systems with cooperating agents. The

assumptions about our model of agent and the Cooperative Problem Solving system

are given below.

Agent

An agent has its own local memory and processor. Communication among agents is

by message passing. Agents could be heterogeneous with respect to their capacities,

and the knowledge possessed by each. Each agent is assigned a different portion of

the knowledge base. However, the reasoning model and the knowledge representation

scheme (production rules) used by all the agents are assumed to be same.

External input data may be obtained through sensors. The extent of duplication

of data may vary from nil to full. Similarly, knowledge may or may not be duplicated.

However, unless functional completeness is required, we do not prefer duplication of

knowledge. Therefore, our agents can be considered as semi-autonomous problem

solvers which cooperate by exchanging the required information.
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Cooperation

As long as there are no other pending tasks, agents answer other sf requests for

information immediately.

Mode of cooperation could be horizontal, tree or recursive, depending on the

type of data or partial result exchange between agents. Both task sharing and

result (information) sharing forms of cooperation are used. However, task sharing is

made implicit by the distribution of knowledge and data, predefining the subtask to

be carried out by each agent, particularly when knowledge is distributed statically.

Even if knowledge is distributed dynamically, the task assignment remains fixed

until knowledge distribution is changed again.

A single problem is considered for solving by the entire system of agents. There

is no duplication of processing by the agents. But, the questions to be answered are:

How is the main task decomposed and allocated? What criteria need to be consid-

ered in this? What is the objective? How can tasks be distributed evenly among the

agents with minimum communication? When should the agents be interacting with

each other? How should their activities be coordinated? Knowledge partitioning

provides solutions to these and leads to effective cooperation.

Subarea

Since our interest is in solving a single task, the goal of all agents is the same. Each

agent attempts the subtask assigned to it while cooperating with others. Futher,

as knowledge partitioning helps to decompose the main problem, knowledge

partitioning may be considered as a DPS problem.

Besides making task decomposition and allocation easier, in our approach, co-

ordination is facilitated by a proper distribution of knowledge and data, providing

metaknowledge and distributed reasoning algorithms to resolve incompleteness of

information. Coordination, communication, cooperation and resolution of dispari-

ties are achieved by exchanging useful information. The distributed reasoning and

coordination problems are applicable to MA and DzAI systems as well.

The proposed knowledge distribution techniques for fast access to knowledge and

data, and the methods for reducing communication are a step towards improving
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the performance of the system. This aspect is specific to Parallel Al systems.

Similarly, knowledge distribution can be considered as a DzAI problem as it helps

to define agents by allotting portions of knowledge, data and some metaknowledge

about the information requirements of agents. This is also true as we assume a fixed

number of agents to be already existing in several cases of distribution.

Since we assume that agents attempt to solve a single problem in a cooperative
fashion, it is basically a contribution to Cooperative Problem Solving.

1.6 Objectives of the Research

The main objectives of this research are to develop

• a fast domain independent, heterogeneous knowledge base partitioning tech-

nique which doesn't duplicate knowledge, balances load, reduces communica-

tion, facilitates reasoning, task decomposition and reduces inconsistency prob-

lems; the partition obtained can be used as it is or serve as a good initial

partition for generating an optimal partition

• techniques for dynamic distribution of knowledge and data

• a distributed reasoning strategy for further effective information exchange by

seeking useful information from satisfactory and potential donors.

1.7 Organization of the thesis

Chapter 2 surveys related work on knowledge distribution. It gives an account of

the types of knowledge, importance of kncwledge distribution in general, and tasks

involved in knowledge distribution. Further, it discusses various types of distributing

knowledge and data and their effect on exchange of partial results. Lastly, it presents

a survey of earlier work in DAI as well as related areas like parallel production

systems and single agent systems.

Chapter 3 describes domain independent techniques for statically distributing
knowledge based on data dependencies. It proposes a linear time knowledge par-
titioning heuristic for a connected knowledge graph and another for dealing with



disconnected components. Further, obtaining functional decomposition is discussed.

Then, another method is presented for allocating the resulting subsets to different

agents.

Chapter 4 presents two case studies, viz., an aerospace vehicle monitoring ap-

plication, and a medical diagnosis application.

Chapter 5 deals with dynamic distribution of knowledge. It presents techniques

developed for balancing the load dynamically by limiting the necessary changes

to neighbouring agents as far as possible, by repartitioning and reallocating the

knowledge base, and for adaptive reorganization to accommodate the changes to

the knowledge base as a result of newly acquired knowledge. Finally, problem based

dynamic knowledge distribution is discussed using examples from medical diagnosis

domain.

Chapter 6 presents the distributed forward reasoning strategy to resolve the
incompleteness of knowledge which arises due to distribution. Distributed forward
chaining production systems are considered, and examples from the above domains
are presented.

Finally, chapter 7 summarizes the main contributions and concludes with direc-
tions for further research.
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Chapter 2

Knowledge Distribution

This chapter introduces the terminology and concepts, and discusses the related

work on knowledge distribution. Section 2.1 presents the different types of knowl-

edge. Section 2.2 discusses the tasks involved in knowledge distribution and ex-

plains the various types of knowledge distribution with emphasis on communication

aspects. Section 2.3 presents the techniques used for partitioning and allocating

knowledge. Section 2.4 gives an account of the related work on knowledge parti-

tioning in single agent problem solving systems, parallel production systems, and

Distributed Al systems.

2.1 Types of Knowledge

Knowledge can be broadly classified into two types: domain specific knowledge

and control knowledge. While domain specific knowledge is useful in solving the

actual problems posed to the system from the external world, control knowledge is

used for task distribution, result synthesis, monitoring, coordinating, organizing or

improving the efficiency of the system [88]. Lun and Mac Leod [88] describe several

classes of agents based on the specific activities carried out by them, viz., domain

specialists, knowledge managers, knowledge facilitators, knowledge transformers,

knowledge monitors, and interface agents. Similary, knowledge can also be divided

into several types based on the specific activity it is intended to perform.

• Domain knowledge is application specific and is usually static. The other types
of knowledge are general.

• Management knowledge is used to control the problem solving cycle. Typical

activities include creation and termination of agents, and scheduling and co-

ordinating their activities. It can also aid in negotiations, decomposing and
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allocating tasks, synthesizing results, and intelligent deployment of resources.

• Monitoring knowledge is used for monitoring and analyzing intelligent be-

haviour by tracing and debugging. It is important for identifying bottlenecks

and inefficiencies. However, this is not part of problem solving.

• Facilitating knowledge facilitates and expedites problem solving by reconciling

conflicting information, merging disparate perspectives, resolving uncertainty

and managing voting schemes.

• Transformation knowledge converts information from one form to another ac-

ceptable to user agents. This is done by maintaining continuous flow of infor-

mation across various data levels that arise from multiple levels of abstraction

in problem solving.

Ishida [71] proposes another type of knowledge called organization knowledge

necessary for interactions among agents. It is used to dynamically decompose or

combine agents based on the utilization of the (idle) resources, message traffic and

communication overheads for better performance of the system. It is a combination

of management knowledge and monitoring knowledge.

In a different direction, knowledge is also classified as procedural knowledge, and

problem solving knowledge [126].

• Procedural knowledge is intended to maximize the use of data processing tech-

nology to provide efficient processing of the activities. It contains well-thought

out, well-tested and well-structured organizational knowledge. In MOAP [126],

this is described in terms of tasks which can be broken down into a hierarchy

of subtasks.

• Problem solving knowledge is intended to maximize the use of Al technology

to provide reasoning capabilities. It describes the strategies and serves as

advice to the activity coordinator when procedural knowledge is insufficient

to perform an organizational activity. This consists of knowledge related to

facts and knowledge related to the missing parts of procedural knowledge.

As mentioned in chapter 1, modelling knowledge [9], i.e., knowledge required

by an agent for having models of other agents can also be considered as another
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type of knowledge. This, in turn, can be classified as knowledge about capabilities,

resources, solution progress, beliefs, plans, goals and intentions of agents, their self-

organizing or adaptive nature, the interagent relationships and the communication

protocols.

Knowledge may exist in various forms and representations [126] requiring trans-

formation for use by different agents. For example, knowledge may exist in the

form of C programs, Pascal programs, rules and cases. To support organizational

activities, an agent may need to contain knowledge in more than one type and/or

form.

Our interest is in domain knowledge represented in the form of rules and other

information in the form of facts, external input data and partial results (derived

data) obtained during the problem solving. We chose rules to represent knowledge as

these are the most widely used knowledge representation scheme in expert systems.

In order to differentiate domain knowledge in the form of rules from the information

available in the working memory (data and partial results), we refer to the former

as knowledge or expertise., and the latter as partial results or information.

2.2 Knowledge Distribution

Knowledge distribution plays an important role in problem solving in several do-
mains.

• In Distributed Al systems dealing with massive data and/or knowledge, data

and knowledge must be distributed such that interdependencies are minimized

among subsets for minimizing communication and efficient problem solving.

In some cases, an inherent decomposition may be possible while in others an

explicit partitioning strategy is necessary.

• In parallel production systems, a good partitioning facilitates faster pattern
matching and parallel exploration of the search tree by many processing ele-
ments.

• In single agent problem solving systems, when the knowledge base is too large
to be accommodated at once in the main memory, suitable portions have to
be dynamically loaded.
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Further, when appropriately done, knowledge distribution helps in task decompo-

sition, load balancing, agent modelling, distributed reasoning with less information

exchange and knowledge base maintenance.

2.2.1 Tasks involved in Knowledge Distribution

Distribution of knowledge involves two tasks: knowledge (base) partitioning and

knowledge (subset) allocation.

Knowledge partitioning refers to obtaining suitable subsets/parts that can be

given to agents while knowledge allocation refers to actually allotting these subsets to

individual agents. Either or both partitioning and allocation may be done based on

the agent's capacity (memory size, cpu speed, etc.), its distance from other agents,

and problem specific factors, if any. Knowledge partitioning can also be referred to

as knowledge decomposition or knowledge grouping. Similarly, the terms assignment

and allocation are synonymous.

Some of the other terms used in this context are knowledge organization, and

indexing [114]. In the Contract net frame work proposed by Smith [114], knowledge

organization component comprises of partitioning, indexing and distribution. While

the term partitioning is used in the same sense as ours, i.e., the way in which

knowledge is broken up into modules, indexing is the provision of handles placed on

the knowledge modules for fast access. The term distribution is used here to refer

to allocation.

2.2.2 Types of Knowledge Distribution

Knowledge distribution depends on several factors like organization of the agents,

distance between them, distribution of tasks and data, use of global memory or local

memories, and the extent of duplication of data or knowledge allowed.

The communication required for distributed reasoning in turn depends on how
data and knowledge are distributed, viz., whether statically or dynamically, with or
without duplication, and the criteria used for distribution. Considering the model
of agents described in chapter 1, the possible types of knowledge distribution are
explained below.
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1) Full (static) duplication of knowledge

A copy of the whole knowledge base is kept with each agent. Any subproblem

can be allotted to any agent as its knowledge is sufficient to solve it. Therefore,

communication for knowledge importation is nil if the subproblems are independent.

Depending on the degree of overlap and the availability of the required data, there

may be requests for data and partial results. The distribution of knowledge is

static and the issue of dynamic distribution with full duplication does not arise.

Distributed Hearsay [40] is an example of this.

2) Static distribution without duplication of knowledge

Knowledge is partitioned and allocated to agents statically. Usually, the given prob-

lem is also partitioned to suit the knowledge distribution and the subproblems are

allocated to agents possessing the most suitable knowledge (expertise) subset. The

average number of requests for partial results (measured over a number of problems

solved) could be high if knowledge is distributed arbitrarily. Alternatively, the par-

tially solved subproblem itself, with its temporary solution (partial result) can be

sent to the agent with the required knowledge. For example, in Distributed Knowl-

edge Model [86], knowledge is distributed statically, without any overlap. There

is no sharing of knowledge and inference is distributed to the agents with the re-

quired knowledge. Static distribution is useful for efficient reasoning and statically

balancing the load on the agents. If desired, an a priori estimate of dynamic as-

pects like the frequency of use of a knowledge base subset can be used in the static

distribution[127].

3) Static distribution with partial duplication of knowledge

Knowledge is distributed statically, as in case (2), but common knowledge is dupli-

cated at appropriate places. The most frequently used data is also kept in memory

reserved for global or shared information, or duplicated and kept with each agent.

However, data updation overheads and inconsistency problems will be more if data

is distributed. Medical knowledge [55] for diagnosis can be organized in this way.
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4) Dynamic knowledge distribution

The given problem is divided into subproblems and then the chunks of knowledge,

probably complete with respect to the subproblem being solved, are dynamically

allotted to agents. Reasonable amount of duplication of knowledge is expected as

these chunks can have overlapping portions. Communication for knowledge impor-

tation is minimal. Both knowledge decomposition and allocation are dynamic. As

in case(l), requests for partial results may be required to a small extent. However,

dynamic distribution is costly because of the computation and communication re-

quired from time to time. Contract net [115] considers such problem based dynamic

distribution of knowledge if the contractor for a subproblem does not possess the

required knowledge already.

Redistribution of knowledge at run-time is necessary for dynamic load balancing

also. In this case, however, knowledge need not be duplicated.

5) Semi-dynamic distribution with partial duplication of knowledge

After initial distribution of knowledge, knowledge base of an agent may undergo

changes from time to time. New knowledge may be acquired as a result of learning.

Knowledge which is being frequently requested from another agent may be added to

an agent's local knowledge base (subset). Conversely, knowledge which is not being

used by it may be deleted and transferred to the appropriate agent. When this

process continues over a period of time, a stable state (with few requests for infor-

mation exchange) that closely resembles case (3) can be reached. Otherwise, small

changes to the initial distribution for dynamic load balancing result in semidynamic

distribution resembling case (4).

6) Completely random distribution of knowledge

Knowledge may be distributed without considering the extent of duplication or

relevance to the subproblem. Distribution could be done statically or dynamically,

and with or without any regard to the suitability of agents. Problem decomposition

and allocation may also be random. Dynamic changes to the local knowledge base

may or may not take place. As it leads to total chaos with requests for knowledge
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importation and information exchange, more on an average than in any other case,

this may be adopted only in the initial stages of problem solving and in a very

uncertain environment.

We can see from the above discussion that, in Cooperative Problem Solving, it is

difficult to come up with a distribution in which both the information exchange and

duplication of data or knowledge are eliminated. However, duplication of data should

be kept at a low level for minimizing the associated concurrency and inconsistency

problems. It is desirable to keep the duplication of knowledge also to a minimum for

advantages like faster access (pattern matching time), less communication, a good

task partitioning, and load balancing as mentioned in the beginning of this section

and in chapter 1. Therefore, we consider a distribution in which knowledge is not

duplicated unless functional decomposition is the criterion and data duplication is

kept at a minimum level.

We discuss the cases (2) and (3) further in chapter 3, and cases (4) and (5) in
chapter 5. Obviously, there is no need for explicit techniques for cases (1) and (6).
A strategy for information exchange is the subject of chapter 6.

2.3 Partitioning/Allocation Techniques

Use of decomposition as a line of attack against complexity, and for advantages like

performance, maintainability and understandability is ubiquitous in systems design

and implementation. Though the literature is sparse, recognition of decomposition

as a valuable concept in Al is long-standing. According to Stefik and Conway

[11, 118], the idea was first quantified with Minsky's planning islands which when

strategically placed are intended to reduce search in combinatorial problems.

Associated with partitioning are the cost of partitioning, problems of how to par-

tition, what degree of partitioning is best and how to measure the effectiveness of the

partitioning process. Some of the criteria for partitioning are maximum indepen-

dence, minimum interface complexity, minimum subsystem complexity, minimum

overall complexity and maximum comprehensibility [103].

Information-theoretic approach, cluster analysis, probabilistic and graph based
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approaches are the commonly used partitioning and allocation techniques. Simu-

lated Annealing is a more recent technique.

2.3.1 Information-theoretic and Probabilistic Approaches

Information-theoretic approach aims at minimizing coupling and maximizing cohe-

sion [11] by considering

• local and global information flow among system components through proce-

dures and global data structures respectively [59],

• cost, benefit, relative complexity of partitions at program specification level

to guide decomposition [24], and

• common coupling, content coupling, and information paths to measure the

strength of connections for testing modifiability of partitions [95].

Probabilistic approaches are used for both static and dynamic partitioning and

allocation. Myers [95] describes first order and complete dependency matrices based

on high probability paths to calculate the expected number of subsets that must be

changed when some subset undergoes a change.

In the context of dynamic load balancing, Evans and Butt [42] indicate that ser-

vice and arrival rates result in poor load balancing for long update interval lengths

whereas queue lengths provide better estimates for load balancing and give an im-

proved load balancing performance for a wide range of interval lengths. Shin and

Chang [17, 110] use probability and queueing theories for dynamic load sharing in

a distributed real-time system.

However, determination of exact probabilities is usually difficult.

2.3.2 Clustering

A clustering problem is simply that of separating or partitioning a finite collection

of objects into subsets so as to satisfy some criteria [117]. Clustering algorithms are

broadly classified as exclusive and nonexclusive (overlapping) schemes. Exclusive
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technidues are further divided into extrinsic (supervised) and intrinsic(unsupervised)

types. Intrinsic techniques are in turn divided into hierarchical and partitional types.

In order to use a clustering algorithm, a measure of distance or relatedness be-
tween the given objects must be defined. Measuring the similarities between all
pairs of objects, closest pair is selected and merged to form one cluster. The proce-
dure is repeated grouping objects with other objects or possibly with already formed
clusters. A stopping criterion is necessary to halt the process when optimal number
of clusters are obtained.

A drawback to algorithms of this type is that on each iteration, the algorithm
makes the best possible agglomeration of two groups, but it never backtracks even
when a better grouping is possible [72].

2.3.3 Graph Partitioning

In this approach, the entire knowledge base is first represented as a graph, and then
the graph is partitioned into subsets [18]. Graph partitioning requires the number of
subsets, k, the sizes of subsets si,S2, ..,Sk and other constraints, if any, to be given.

A procedure for obtaining an optimal partition is NP-hard. Supposing G has n

nodes of size 1 to be partitioned into k subsets of size p where kp = n, the number of

cases to be evaluated is (l/&!)(£)(£~p)..(pP)(p which yields a very large number for

most values of n, k,p. For example, if n= 40, k = 4, and p = 10, this value will be

greater than 1020 [74]. Because of such inordinate amount of computation required

in direct approaches, fast heuristics are required.

A well known heuristic due to Kernighan and Lin [74] starts with an arbitrary
partition A,B of the original set S (of vertices and the associated edges in the graph
0)- By a series of interchanges of subsets of A and B, the method tries to decrease
the external cost corresponding to the weights of edges that connect the vertices
in different subsets of the partition. The first pair of vertex subsets from A and
B is chosen such that their interchange results in maximum gain representing the
decrease in external cost. Eliminating these subsets from further consideration, the
interchange process continues with a new subset pair whose interchange results in
the next highest gain until no further improvement is possible.
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The process is repeated for other arbitrary starting partitions (or ones obtained

as above) to obtain as many locally minimum partitions as we desire. Examination

of all pairs of sets for exchange, and evaluation of the costs requires time proportional

to (n2/2)4n((l/7r • nf'2 for large n resulting in a complexity of 0(n3/24n). fc-way

partitioning can be done either by repeated bisection, or by making an initial fc-way

partition and optimizing it using the generalized (KL) fc-way partitioning heuristic.

Another technique used for partitioning graphs, viz., Simulated Annealing, is

discussed in the next subsection.

Dunlop et al. [33], Fiduccia [43] et al., and Bui et al. [12] proposed improvements

to these basic methods.

2.3.4 Simulated Annealing

This method is first introduced by Kirkpatrick et al. [77]. It is based on statistical

mechanics and is used to solve combinatorial optimization problems like physical

design of computers, graph partitioning, and Travelling Salesman problem. This can

actually both partition and allocate the resulting subsets onto multiple processors

[127].

Simulated Annealing (SA) consists of four elements : system configuration, cost

function, generating mechanism and cooling policy. The scheme begins with an

arbitrary configuration and an initial value of the cost function at a certain tem-

perature. A new configuration generated from the previous one is accepted based

on Metropolis criterion [77] which occassionaly accepts new configurations with

higher cost for escaping local minima. At each temperature, the generation process

is repeated to produce a sequence of configurations representing states in a Markov

chain until the probability distribution of the system states approaches Boltzrnann

distribution. If the temperature T is set sufficiently high and is decreased slowly

enough, the Boltzmann distribution tends to converge to a uniform distribution on

the set of globally minimal states.

However, in any implementation of the algorithm, Markov chain is of finite

length. Therefore, asymptotic convergence can only be approximated and Sim-

ulated Annealing is not guaranteed to find a global minimum with probability 1.

Moreover, both quality of the final solution and speed cannot be achieved in practice
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Though Genetic Algorithms [6] and Annealing Genetic approaches [87] are also

ued for solving combinatorial optimization problems, these too are costly and con-

ssnne lot of space to store populations of solutions.

2L3.5 Knowledge Distribution Vs. Program Distribution

Though specific to software modules, program (task) partitioning is related to knowl-

edge base partitioning. This has been extensively studied in the areas of parallel

aad distributed computing, and software engineering. Following are some of the

methods used in task partitioning and allocation.

Stanfel's [117] partitioning method using cluster analysis involves finding the

siortest path between system components by elementary graph theory and opti-

mization techniques. For process assignment, Arora et al. [3] reduce a graph of

process and processor nodes connected by edges whose weights represent the cost

to be minimized. A process node connected to another process (or processor) node

b? an edge having maximum weight is merged with the latter node. The reduction

process continues with the new graph (with fewer edges and process nodes) until no

process nodes are left in the graph.

Sadayappan et al. [39, 107, 108] propose a nearest neighbour approach, and a

recursive clustering approach based on clustering and KL-graph partitioning heuris-

tics. The nearest neighbour strategy [39, 107] is found to be more effective on

hypercube systems with high message startup times, especially for finite element

graphs; the recursive partitioning heuristic [39, 108] is generally better on hyper-

cubes with lower message startup times and more effective on random task graphs.

In the dynamic load sharing method of Shin and Chang [17, 110], when a node
becomes fully loaded or underloaded, it broadcasts this change to a set of its neigh-
bouring nodes called a buddy set, and selects the first available node from its preferred

list, an ordered set of nodes in its buddy set. Cybenko [25] discusses a dimension
exchange method for dynamic load balancing.

For distributed online scheduling of periodic tasks, Ramamritham et al. [105]

propose methods in which a task is sent to a node that is randomly selected (random



scheduling), a node estimated to have sufficient surplus resources to complete the

task before its deadline (focussed addressing), based on the bids received for the

task from nodes in the system (bidding), or based on a technique that combines

both bidding and focused addressing (flexible algorithm).

Xu and Hwang [128] propose four heuristic methods for sending a newly arrived

task from a heavily loaded node to its neighbours based on the range (location

policy) viz., localor global, and heuristic discipline (transfer policy) viz., least recently

migrated node (LRM)or a minimum load maintained node(MLM) combinations.

Alok Choudhry et al [20] propose a heuristic for dynamic remapping of data

parallel programs where the task graph is a chain of modules arid only the adjacent

modules interact. After assigning the first few modules whose total load approx-

imately equals the global average load fi on a processor, a new average load avg

considering only the unassigned modules and the rest of processors is computed.

The procedure is repeated with the new average avg instead of pi.

However, most of these techniques assume the processors or agents to be having

equal capacity and hence are for homogeneous partitioning and allocation [17, 25,

39, 66, 75, 107, 108, 127, 128]. Usually any task can be executed on any processor

without depending much on the execution of other tasks. Otherwise, the interac-

tion pattern is simple as manifested in between adjacent modules in chain-like task

graphs for data parallel programs [15, 17, 75] or finite element graphs [39, 108].

However, CPS problems exhibit more complex interaction patterns because of the

interdependencies among subproblems. The problems associated with knowledge

(rule) base partitioning are more complicated than those encountered in task par-

titioning for data parallel programs and other domains due to the grain size also.

The techniques used for partitioning tasks are not adequate and directly suitable

for knowledge base partitioning. Therefore, more general mechanisms are required

for CPS systems.

Finally, data base partitioning and allocation has similarities with knowledge

base partitioning and allocation. Normalization ensuring lossless join decomposi-

tion and dependency preservation keeps database redundancy under control and

maintains semantic integrity. Depending on the application, horizontal fragmenta-

tion, vertical fragmentation or a mixture of these is used to partition and distribute
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data base files [27, 79]. For more complex and large databases, file allocation prob-

lem is generalized to file allocation problem, viz., for the given queries, updates, and

the sites where the results have to be sent, one should determine i) the fragments to

be allocated, ii) allocate these possibly redundant fragments and the operations on

them to the sites of the computer network such that a cost function is minimized.

MINDS [65] is an example for such system for intelligent retrieval and reallocation

of documents.

However, knowledge base partitioning is more complex than data partitioning.

Data partitioning deals with relatively static data representing the physical world

objects. In contrast, knowledge base partitioning has to consider both static data

and temporary data (intermediate or partial results). Moreover, it needs to deal

with the data as well as the code that acts upon data.

Therefore, knowledge base partitioning can be considered a sort of superset of

program partitioning and data partitioning, and new techniques taking care of data

distribution, homogeneous partitioning and distance along with the complex inter-

dependencies need to be developed.

2.4 Related work on Knowledge Partitioning and Allocation

To accrue the advantages of distributing knowledge as mentioned in section 2.2, a

good partitioning strategy has to be selected to minimize replication and related in-

consistency problems. This requires complete knowledge of the domain and a study

of the dependencies among the subsets. Also, a balance must be struck between

the number of subsets and the size of each subset so that total access overhead is

minimum. In a rule-based system, this refers to the balancing of process-level and

rule-level overheads [18] which are associated with the selection of a rule group (when

too many rule group processes are involved), and the selection of a rule within that

group (when too many rules are present in it) respectively. Therefore, techniques

which can partition knowledge and data to meet these requirements, independent of

the domain, are of great help. However, literature on such techniques is very sparse.

A brief account of the relevant work in DAI as well as in other related areas like
Al and parallel production systems is given below.
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2.4.1 Knowledge Partitioning

Broadly, knowledge base partitioning techniques can be categorized as (bottom-up)

synthesis approaches and (top-down) decomposition approaches.

Synthesis approach

In the synthesis approach, knowledge subsets are obtained by grouping individual

rules together based on some criteria. Use of common facts, distance between rules,

rule context and rule spaces are examples of such criteria to cluster or group rules

[11]. Groups of rules with a common fact are referred to as rooted trees. Those

groups formed on the basis of distance between rules (measured as the number

of different condition or action elements) are called concepts. Rule context is the

specific circumstance under which a rule set gets activated. Rule space is a collection

of rules pertaining to functional characteristics like phase of activity, goal and system

type.

The work under synthesis approach in single agent Al systems, parallel produc-

tion systems and Distributed Al systems is presented below in that order.

Single Agent systems

Jacob and Froscher [72] describe a software engineering methodology to facilitate

knowledge base maintenance. After separating control variables, their method par-

titions rules into a collection of rooted trees based on relatedness. Relatedness is a

function of the non-monotonic facts shared by rules and a weight factor given based

on the type of sharing. Rule pairs with a shared fact B as in

• if A then B, if B then C,

• if A then B, if C then B, and

• if B then A, if B then C

are assigned weights of LO, 0.75 and 0.5 respectively. Rule pairs without any

common fact are assigned a weight of -0.25. Starting with each rule as a separate
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group, each time a pair of groups with largest relatedness is combined into a single

group until either the relatedness is negative or a predetermined number of groups

are obtained.

Cheng and Fu [19] also use a clustering based partitioning approach where knowl-
edge in the form of rules is clustered into a higher level construct termed concept.

Concepts are either tangible or intermediate ones. Tangible concepts represent man-
ifestations and treatments that are inputs or outputs of the system. Intermediate
concepts simplify the knowledge structure to accelerate reasoning procedure and to
extend the applicable domain of knowledge either generated by the system or given
by experts. Distance between two rules Ri and Rj is calculated based on the number
of (condition or action) elements that are different between rules.

In the context of knowledge acquisition, Davis' TIERES1AS [28] assembles rules

interactively based on the rules already present in the knowledge base. It constructs

rule models which are tree structures having all rules that conclude about the same

attribute at the root level. Models of rules which conclude affirmatively and nega-

tively about the attribute appear below the root, and under each of these are models

of rules that deal with specific values of the attribute. Each model has pointers to

models of more general and more specific subsets of rules.

In the context of knowledge engineering (for transferring inferential knowledge

from an expert), Gaines and Shaw [47] use logical-cluster-analaysis techniques for

deriving and encoding inference relations from fuzzy sets which represent decision

making processes of experts. An information theoretic measure of uncertainty reduc-

tion due to a hypothesized relation is used to compare hypotheses and determine the

optimum tradeoff between fuzzy truth values and the probability of being correct.

Gaglio et al. [46] also use fuzzy sets for encoding knowledge from multiple experts

viewing the construction of the expert system as a multiperson decision process.

Niizuma's successive problem decomposition method [101] parallelizes partition-

ing the knowledge base with solving an abstracted version of the given problem.

The abstracted problem is called the quotient problem, and i* constructed through

certain information about relationship between differences and means. As the in-

termediate subproblems (subgoals) may not be simpler than the original one, and

may not be solvable, methods have been suggested to make them so. The simplest

problem is the one in which only one difference exists between the initial state and
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the goal. AND/OR tree type problem trees and difference equations are used for

doing this.

Parallel Production Systems

In parallel production system environment, Sohn and Gaudiot [116] partition the

set of patterns namely condition, action or working memory elements. They use,

in decreasing order of importance, the number of attribute value pairs (AVPs) in a

pattern, similarity in attribute part and similarity in value part of patterns. Patterns

that have the same number of AVPs and are similar in attributes form a cluster in a

two-dimensional feature space and can be trained to achieve 0(1) pattern matching

time.

Basu et al. [4] partition the rulebase into clusters named rule spaces depend-

ing on the functional characteristics derived from the phase of activity, goal to be

established and the type of the system. Clustering criterion of an individual rule

space is defined as a triplet belonging to the cartesian product of the phase, goal

and type sets. The rule spaces are also called as rule blocks [5], These rule blocks

store the corresponding inference flow graph and are used for fast pattern matching

and parallel rule firing.

On a message passing computer, instead of partitioning production rules, Acharya

and Tambe [1] partition and distribute hashtables of tokens (incoming data and

newly generated data) into hashbuckets for parallel processing of the tokens des-

tined for different hash buckets. Their system consists of a set of match processors

and a control processor. The control processor performs all conflict resolutions and

broadcasts one packet containing all the working memory elements to all match pro-

cessors. Match processors perform all constant tests (in the premise parts of rules),

hash the new tokens generated and send to the processors which own the correspond-

ing hashbuckets. Hash function uses the node-id of the destination two-input node

and the values bound to the variables being tested for equality at the destination

node as key. Produced instantiations are sent back to the control processor and the

control processor starts the match phase of a new cycle when the current cycle ends.
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Distributed Al

In Distributed Al domains like speech understanding and medical diagnosis, a do-

main specific functional approach to decomposition of knowledge base is considered.

Decomposition of overall task into various knowledge sources (KSs) is regarded as

natural. A KS has three parts: the conditions under which it is to be activated

(in terms of the conditions in the blackboard in which it is interested), kinds of

changes it makes to the blackboard, and a procedural statement of the algorithm

which accomplishes these changes. A KS usually deals with one or a few levels of

the blackboard to apply its knowledge. These levels of abstraction (along which

the blackboard is also partitioned) hold different representations of the problem

space. Examples of levels in the speech problem are syntactic, lexical, phonetic and

acoustic [40, 41].

Smith's contract net frame work [114] also deals with knowledge organization.

They divide the organization task into partitioning, indexing and distribution (al-

location in our terminology). In this framework, partitioning is made by trial and

error, and handles are provided for accessing the knowledge subsets. Knowledge

distribution is either static or dynamic. Dynamic distribution is necessary when an

agent requests another directly for knowledge transfer, when the task of knowledge

transfer is announced, or when bidder on award of the task transfers the knowledge.

There are no explicit partitioning techniques mentioned.

Gomez and Chandrasekaran [55] distribute medical knowledge through a hierar-

chy of concepts which are clusters of production rules pertaining to diseases, their

causes or other notions that are relevant to diagnosis. The rules under each concept

are further organized into three groups : exclusionary, confirmatory and recommen-

dation rules. While the first two refer to rules that establish, postulate, or rule out

the possibility of a disease and hence invoke a concept, the third type of rules are

applied to manifestations found by confirmatory rules and anticipate subconcepts

or superconcepts to suggest the possibility of related diseases.

Their more recent use of decomposition involves hierarchies of simple and com-

plex knowledge structures to model generic categories of expert reasoning processes

[16]. These generic tasks involve hierarchical classification, hypothesis matching,
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knowledge-directed information processing, abductive assembly of hypotheses, ob-

ject synthesis by plan selection and refinement, and state abstraction. While some

are specific to diagnostic reasoning, all six can be considered as building blocks for

the construction of knowledge based systems for other types of problem solvers, eg.,

routine design.

Lenat [81] organizes knowledge as a community of interacting modules called
Beings, to simulate a particular expert in some domain. A Beings module possesses
a corpus of specific facts and strategies for its designated speciality and can recognize
when it is relevant. In the domain of automatic programming, as a result of its
interaction with other Beings, final code of a Being reflects the knowledge of the
expert member it is representing. This is similar to a concept formation.

In Distributed Knowledge Model(DKM) [86], agents are organized as a hier-

archy with possible lateral connections among agents in different subtrees. Their

knowledge in the form of Prolog predicates is classified as local, group and global.

Knowledge is distributed, not duplicated, and not shared among agents. Inference

is distributed to agents with required knowledge. However, method of partitioning

knowledge is not discussed.

Adler [2] proposes a framework, called OMNI, for integrating existing, hetero-
geneous, knowledge-based systems that are deployed in a distributed computing
environment. It integrates the otherwise disjoint, problem-solving components with-
out altering them before incorporating into the framework. Integration is achieved
by associating a broker with each existing problem-solving component, called the
specialist

Weihmayer et al. [121] discuss about the issues in cooperation when agents

with dissimilar domain knowledge and knowledge representation schemes are in-

volved. Knowledge sources are partitioned into a two-level agent structure: local

expertise/planning level and metaknowledge/agent control.

Intelligent Agent (IA) of Pan and Tenenbaum [102] supports a clearly discernible

task or job function, automating what it can and calling on the services of other IAs

when necessary. Complex enterprise operations are divided into a collection of ele-

mentary tasks or activities, which, after modelling in cognitive terms, are entrusted

to IAs for execution. One of their goals is to integrate independently developed
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software packages into the framework so that they inter-operate seamlessly and are
easily used and maintained. I As interact directly via a message bus or through
a distributed, shared knowledge base called MKS. MKS serves as a repository for
shared knowledge and a center for information exchange among agents. This com-
mon knowledge is represented once and shared by all applications that need it.

These approaches, however, have no provision for balancing the process-level

overhead and rule-level overheads.

Decomposition Approaches

In the decomposition approach, a partition is obtained by considering the entire

knowledge base as one unit and splitting it into smaller ones. Usually, this corre-

sponds to a graph partitioning problem where nodes of a graph G with costs on its

nodes and edges, are partitioned into k subsets of specified sizes S],s2j-- • $k so as

to minimize the total cost of the edges cut. Minimizing the total cost of edges cut

when the graph is partitioned into k subsets corresponds to minimizing the message

flow between these k subsets, thereby reducing the process-level overhead. However,

determination of the best A:,5j,52, ...,5^ is important to balance both process-level

overhead and rule-level overheads [18]. However, as mentioned earlier in section 2.3,

optimal partitioning is an NP-complete problem.

Harvey et al. [58] differentiate task-level parallelism from match-level parallelism

[70, 116]. Task-level parallelism can be obtained by a high-level decomposition of the

production system along three dimensions, viz., implicit vs. explicit, synchronous

vs. asynchronous production firing, and distribution of production rules and work-

ing memory elements vs. no distribution at all. It is suggested that speed-ups

obtained from task-level parallelism multiply with speed-ups obtained from match

level parallelism. However, the choice of vhich to partition depends on whether one

can readily identify a partitioning and whether its subsets have enough uniformity

in their processing times to achieve a good parallelism.

Chen et al. [18] use KL graph partitioning heuristic as a subroutine to obtain k-

way balanced partition for uniprocessor environment. In the graph for the knowledge

base, each node corresponds to a rule with its cost proportional to the size of the

rule. Each edge going from rule #, to rule Rj is assigned a cost of one if Rj uses a
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fact generated by rule i, or zero otherwise. Varying k, these parts are evaluated to

determine the best partition using a performance equation derived from a Markov

model of an event driven, message passing real-time expert system.

2.4.2 Knowledge Allocation

Knowledge allocation approaches can be classified into one phase approaches and two

phase approaches. In one phase approach, knowledge allocation subsumes knowledge

partitioning, whereas in a two phase approach, explicit knowledge base partitioning

precedes knowledge allocation. Both these approaches have relative merits and

demerits.

All the work related to knowledge decomposition discussed above comes under

two phase approach.

Under the one phase approach, Dixit and Moldovan [32] formulate the problem

of allocation of production systems onto a multiprocessor as a 0-1 linear-quadratic

programming problem and reduce it to a 0-1 linear programming problem. They

present techniques to detect parallelism and communication requirements among

rules. A heuristic is proposed to solve the allocation problem using the A* algorithm.

However, their method introduces an overhead, which increases rapidly with the

number of rules in the system [127].

Xu and Hwang propose a method that achieves a nearly optimal solution with

reduced overhead using Simulated Annealing [127] for a balanced processing of rule-

based expert systems on multicomputers (could be DAI systems also). Their main

purpose is to maximize parallelism by distributing the work load evenly and to

minimize communication cost in message passing among nodes. Starting with a

random configuration in which all processors get almost equal number of rules,

new configurations are generated by making trial changes to the previous ones.

The cost function comprises of loss of parallelism, load imbalance and internode

communication and is optimized to reach a global minimum.

Ishida et al. [51, 71] reorganize a collection of problem solvers to track changes in

response requirements, problem solving requests and resource requirements. Agents

are created and destroyed dynamically, and domain knowledge is continually real-

located using decomposition and composition. Decomposition divides an agent into
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two, and composition combines two agents into one. These force reorganize ac-
tions by modifying the distribution of problem solving knowledge and organizational

knowledge in the organization, and modifying the particular association between
resources and problem solving knowledge. The decomposition and composition are
performed by arbitrarily halfing the rules of an agent (to create two agents), and
clubbing two agents (to make one agent) respectively. However, the need for better
partitioning techniques has been emphasized.

Tout and Evans [119] propose a model in which production rules are distributed

at run-time. Rules in a processor do not migrate to other processors during exe-

cution. If the queue of tasks to be investigated is not empty, each idle processor

requests and gets a predefined number of rules, and investigates to find the appli-

cable rules. From among the applicable rules, some or all the rules may be selected

and fired resulting in updates to the database which further initiate a new cycle

and define a new task queue. Their performance analysis indicates that the design

of parallel expert systems with local working memories improves speedup as well as

efficiency and the results are slightly better when the size of the rulebase is larger.

2.5 Conclusions

Many distributed Al domains like Hearsay II adopt a general functional decom-

position strategy which is domain dependent. Moreover, efficiency issues like load

balancing and faster processing are usually not considered in these systems.

The work of Chen et al. [18]and Xu et al. [127] for static partitioning of rulebases

aims at a balanced fc-way partitioning in which all subsets are of equal size. We

refer to this as homogeneous partitioning. The dynamic scheduling of rules in equal

numbers to processors by Tout et al. [119] again refers to homogeneous partitioning.

Similarly, the adaptive decomposition and composition by Ishida et al. [71] can be

considered as homogeneous partitioning.

Homogeneous partitioning is applicable to systems in which all agents have the

same capacity. However, if agents have different computing capabilities, homoge-

neous partitioning necessarily limits performance. Since cooperating agents need to

exchange results, a faster agent may have to wait till a slow communicating partner

finishes. Also, there could be probably a better partition with different component
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sizes that results in less information exchange. This problem can be solved by het-

erogeneous partitioning where a task is divided according to performance capabilities

of individual agents.

Further, as both KL [74] and SA [77] are computationally intensive, a sub-optimal
solution obtained quickly can be of great use if optimality is not that important and
cpu time is at a premium. A good starting partition reduces the time taken in both
these methods for obtaining the final solution or improves its quality. Also, there
is no explicit support for distributed reasoning to resolve incompleteness of local
information in both the algorithms.

In the next chapter, techniques for obtaining fc-way heterogeneous partitions
statically and allocating the resulting subsets are presented. The partition so ob-
tained can also be used as good starting partition for the KL and SA techniques.
Metaknowledge is abstracted by the technique so that distributed inferencing can
be effectively performed.

Dynamic distribution of knowledge is considered in Chapter 5.



Chapter 3

Static Knowledge Base Partitioning and
Allocation

Our objective in this chapter is to develop a graph-based heuristic for a fc-way

heterogeneous partitioning of the knowledge base which overcomes the problems

mentioned in the last chapter by using data dependencies. We follow the decompo-

sition approach to obtain a given number of subsets in the specified proportion of

sizes. In addition, methods for obtaining functional decomposition and allocating

the resulting subsets are also discussed and developed.

The chapter is organized as follows. Section 3.1 gives an introduction and section

3.2 explains the issues involved in cutset based knowledge base partitioning. Section

3.3 discusses the &-way partitioning of a connected knowledge graph. Section 3.3.6

gives the linear time heuristic for static partitioning, analyzes its time complexity

and section 3.4 illustrates the heuristic with a few examples. Sections 3.5 and

3.6 deal with disconnected components in the graph, and functional decomposition

respectively. Section 3.7 presents a heuristic for allocating the rulebase subsets ob-

tained as above to k agents with a given topology and interagent distances. Finally,

the last section presents the conclusions.

3.1 Introduction

Earlier work on static rulebase partitioning for load balancing used techniques like

KL graph partitioning [18] and Simulated Annealing [127] for obtaining-a homo-

geneous partition. Considering graph-based approaches, literature on graph par-

titioning usually refers to vertex partitioning, particularly two-way partitioning or

bisection [12, 43, 74]. The techniques are originally developed for VLSI circuit de-

sign and even the improvements are oriented towards the same. If more than two

subsets, say k subsets are required, it is done by repeated bisection of the graph.

40



Chapter 3. Static Knowledge Base Partitioning and Allocation 41

There is no direct procedure to perform fc-way heterogeneous partitioning. However,

in distributed (Al) systems, agent capacity and speeds may not be equal. If all the

agents are allotted subsets of the same size, the slowest agent will be a bottleneck

for the entire network [15].

Further, earlier work on rule partitioning for load balancing considers a single

processor or multiple processors with shared memory, as only rules were to be dis-

tributed [18, 127]. Data is either centralized or fully duplicated in local memories.

But when data is also to be distributed and kept in the local memories of agents

which are possibly geographically separated, data updates and inconsistencies asso-

ciated with rapidly changing data (eg. in a monitoring system) become important.

Often the techniques used in other domains ignore data distribution, resulting in run

time communication delays while accessing data at remote sites [111]. To remedy

these problems, it is necessary to distribute both rules and required data.

We aim at obtaining a heterogeneous partition without repeated bisection such

that both rules and data are partitioned using a graph-theoretic approach [98, 99].

Data are represented as vertices and rules are represented as labels on the edges

connecting data. As rules are a kind of semantic constraints and can be treated

as functional or multivalued dependencies [27, 79], this representation allows us to

exploit the dependencies and the adjacency of data and rules in the graph. Our

objective then becomes that of partitioning both vertices and edges such that rules

are in the given proportion with less communication overhead and data duplication.

Further, as part of the partitioning process itself, metaknowledge directories are

generated to facilitate distributed reasoning.

For developing formal methods covering various cases of static partitioning and

allocation, we shall first give few definitions and discuss how cutsets can be used to

obtain partitions from the knowledge graph representing the rulebase.

3.2 Cutset Based Knowledge Base Partitioning

We shall use the following example rulebase with six rules to explain the possibilities
and issues in partitioning the knowledge base using cutsets.
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The left hand side (LHS) of each rule is called the premise part, and the right

hand side (RHS) the action part. For simplicity, we have shown only attribute names

and boolean and relationship among the attributes in all rules. However, there is no

loss of generality because, irrespective of the values of the operands (even if they are

not boolean) and the relationship between them, the expressions must be evaluated

to proceed with rule enabling and firing. Therefore, it is enough for our purposes to

know in which rules an attribute participates in the RHS part and in which rules it

participates in the LHS part.

Def 1.1 Knowledge Graph

A knowledge graph G — (V,E,L) is a directed, acyclic, labelled graph which consists

of a set V of data elements (attributes or objects) as vertices, a set E of edges such

that E : V —> V, and a set L of edge labels corresponding to the rule identifiers to

which the edge belongs.

To construct a knowledge graph, a directed arc is drawn from each of the at-
tributes in the LHS part of a rule to (each of) the attributes in its RHS part. The
rule id is given as the corresponding edge label. The knowledge graph for the above
rulebase is shown in figure 3.1.

In an acyclic graph, the indegree of a vertex vt is the number of incoming edges
incident on ?;,. Similarly, the outdegrce of a vertex t>, in an acyclic graph is the
number of outgoing edges incident on V{. The degree or incidence of v, is the number
of edges incident on the vertex. Table 3.1 gives the indegree, outdegree and incidence

pertaining to each attribute in the knowledge graph.
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Figure 3.1: Knowledge Graph for Example Rulebase 1
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Table 3.1: Degree information for the Knowledge Graph for Example Rulebase 1

Def 1.2 Cutset

In a connected graph G, a cutset is a set of edges whose removal from G leaves G

disconnected, such that no proper subset of these edges disconnects G.

Since a cutset is the minimum set of edges whose removal leaves a connected
graph disconncted, it is also called as minimal cutset.

For instance, the set of edges {GI, BC} forms a cutset and divides the vertices

into two sets {I, J, A, C} and {B, D, E, F, G, H, K} shown in figure 3.2a. The only

rule that is completely associated with the first subgraph is i?4; the rules associated

with the second subgraph are R2Jl?,, and Rb. Rx does not belong to either of them

completely as neither has all the data required by it. Similarly RQ also does not

appear in either of the subgraphs.

Def 1.3 Rule Completeness

If R = {Rx,R2,..Rn} is the set of rules associated with the knowledge graph G
corresponding to the complete knowledge base , then the rule subsets RS, associated
with each of the subgraphs Gt must ensure that \R\ = | uf=1 RSi\, where \R\ stands
for the cardinality of the set R.

In order to achieve rule completeness in the above example, we need to dupli-
cate attributes B and G with the first component also. Now, as shown in figure
3.2b, the resulting subgraphs have their component data sets as {I,J,A,B,C,G} and
{B,D,E,F,G,H,K} and rules sets {RUR4, R*} and {^2,^3,^5} completely associ-
ated with them. This duplication is similar to the duplication of attributes in files
for database referential integrity, and dependency preservation [27, 79). It indicates
the need for keeping copies of data in working memories of agents.
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Figure 3.2: Components obtained with cutset {GI,BC} for Example Rulebase 1
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However, for avoiding the data inconsistency problems, if rules are to be assigned

to subsets without duplicating data, some more constraints need to be considered.

In this case, after the rule is assigned to some subset, the corresponding agent has

to receive the required data from other agents for enabling and firing that rule.

Selection of a suitable subset (and hence an agent) for the assignment of a rule is

discussed in the next section.

We choose the later option and, hereafter, instead of showing the duplication of

attributes in the graph, the information regarding the required data will be stored

in the directories (after assigning the rule to a suitable subset). As we shall see in

the forthcoming chapters, this metaknowledge is useful to dynamically redistribute

the knowledge and to facilitate distributed reasoning.

Mathematically, computation of a cutset is closely associated with a spanning

tree.

Def 1.4 Spanning Tree

A tree T is said to be a spanning tree of a connected graph G if T is a subgraph

of G and T contains all vertices of G. (It is also called a skeleton, scaffolding, or

maximal tree (subgraph) of G.)

A spanning tree has n — 1 edges where n is the number of vertices in the original

graph. Removal of any edge from a spanning tree separates it into two disconnected

parts. The set of solid arcs in figure 3.3 is an example for a spanning tree. The

dashed arcs are those which are present in the original graph but not in the spanning

tree and are called as jphords of that spanning tree. ( The meaning and use of integer

markings given on edges will be explained in the next section.)

It is quite possible that a knowledge graph is not connected and has components

in it. However, we postpone the discussion of disconnected components in the graph

till section 3.5 and assume that the knowledge graph is connected till then.

A cutset can be obtained by removing an edge belonging to the spanning tree
giving two disjoint vertex (node) sets, and selecting the chords, if any, which connect
the vertices in the two disjoint vertex sets. The spanning tree edge and the chords
together form the cutset. For example, removal of edge BC from the spanning tree
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Figure 3.3: A Spanning Tree for the Knowledge Graph of Example Rulebase
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shown in figure 3.3 yields two vertex sets {A,C}, and {B,D,E,F,G,H,I,J,K}. To

obtain disconnected components with the same partitioning of the vertices, choid

Al also must be removed. Therefore, the set of edges Al and BC forms a cutset.

This is also called a fundamental cutset.

Def 1.5 Fundamental Cutset

A cutset S containing exactly one brunch of a spanning tree T is called a fundamental

cutset with respect to T.

Though the number of subsets (parts) obtained as above using cutsets is two,

this method of obtaining cutsets [31] does not bear any relationship with the nmmber

of rules required in each subset. Moreover, obtaining k subsets in the required ratio

is not straight forward. In order to develop such a method for knowledge graph

partitioning (in the next section), we shall first define the terms semipath, length of

a semipath, pendant vertex, spandegree and chain.

Def 1.6 Semipath

A semipath from vertex u, to vertex Vj is a path from vt to Vj in the corresponding

undirected (knowledge) graph.

In the knowledge graph shown in figure 3.3, JIG is a semipath from J to G.
JIGHBFK is another semipath, i.e, from J to K.

Def 1.7 Length of a semipath

Length of a semipath is the sum of weights of edges incident in the semipath.

We assume unit weights for edges unless otherwise explicitly mentioned. Length
of the semipath JIGHBFK is 6.
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Def 1.8 Pendant vertex

A vertex with degree 1 is a pendant vertex.

J is a pendant vertex in the above graph.

Def 1.9 Spandegree

Spandegree of a vertex w.r.t, a spanning tree is the degree of a vertex considering

the edges in that spanning tree only.

Def 1.10 Chain

A Chain is the longest semipath in the spanning tree.

The semipath JIGHBFK is the chain for the spanning tree shown in the figure

3.3.

Now we shall classify the spanning tree edges into two types: those which lie

on the chain, and those which do not. We call the former type of edges the chain

edges, and the latter type of edges the branch edges. A branch emanates (in the

corresponding undirected graph) from a vertex whose spandegree is greater than 2.

Semipath BCA is a branch on the chain JIGHBFK.

A branch in turn may have subbranches in it. The number of branches of a

branching vetex is called its branching factor. Branching factor of vertex B is 1. For

a branching vertex lying on the chain, branching factor is 2 less than its spandegree.

For example, if a vertex has a spandegree of 4, then it has two branches.

3.3 A^way Partitioning of the Knowledge Graph

The proposed Jfc-way partitioning consists of two phases: initial decomposition and

boundary refinement. In the first phase, knowledge graph is initially cut into k

disjoint components by cutting the graph at k - 1 places using spanning trees and

cutsets. This involves determining the position of the cut and an approximate

partitioning of the rules and data. In the second phase, boundaries are smoothened
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to get a required partitioning leaving the inner portions of the subsets undisturbed
as far as possible.

To enable partitioning, initial decomposition phase requires

• the generation of a spanning tree from the knowledge graph (constructed as
described in section 3.2) and

• marking of its edges suitably.

The same spanning tree, chain, and edge markings can be used to obtain parti-

tions in any desired proportion. However, partitions obtained using different span-

ning trees may be of different sizes and exhibit different characteristics. Therefore,

for obtaining a particular partition, selection of the spanning tree and determina-

tion of the cutsets are non-trivial. Since, exhaustive enumeration is not practical,

we propose a heuristic for this.

3.3.1 Generation of a Spanning tree

Since a spanning tree encompasses all the vertices, it has a large number of rules

on its edges. A spanning tree with a long chain facilitates partitioning due to its

linearity. Therefore, we consider generating a spanning tree with a long chain.

Selection of starting vertex

We choose either a pendant vertex or a vertex with zero indegree or zero outdegree

as a starting vertex, to generate a spanning tree with a long chain. We shall call

this the root of the spanning tree.

There will be at least one candidate root in any knowledge graph as all external

input data items will have zero indegree, and all final result attributes will have zero

outdegree. A vertex with degree 1 may be preferred as candidate root because this

will not have another edge incident on it, and hence it is quite possible that this

may be forming one end of the chain.
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Inclusion of edges

Since every spanning tree has a chain, identifying a spanning tree with the longest

chain is computationally intensive. Hence the following heuristic is adopted. Start-

ing with the root, edges are included in the spanning tree such that spandegree of

vertices is kept less than or equal to 2 as far as possible. This heuristic gives a span-

ning tree with a reasonably long chain. Considering the root as the current vertex,

an edge incident on it and the other end vertex (adjacent vertex) are included in

the spanning tree if the adjacent vertex is not already in the spanning tree vertex

list. The newly added vertex now becomes the current vertex and the process is

repeated with the new current vertex until n — 1 such edges covering all the vertices

in the spanning tree are included.

The following procedure gives the detailed steps involved.

procedure generate.spanning Jree();

(* generate a spanning tree with a long chain for a connected knowledge graph *)

begin

initialize spandegree of all vertices to zero;

select a vertex t;t as root;

add Vi in open list at the end;

add Vi in the spanning tree vertex list;

k : = 2 ;

while (k <= n) and (open list not empty) do

begin

if 3 an edge ViVt or vtvi in the knowledge graph such that

Vf is not in the spanning tree vertex list already then

(* if vt is already in the spanning tree vertex list, mark the edges

unsuitable for further consideration *)

include the edge in the spanning tree edges list;

include ruleset RSe on the edge in the spanning tree rule set;
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include vt in the spanning tree vertex list;

* = * + l ;

increment spandegree of r, and vt;

if spandegree of Vi is equal to the degree of t>, then

delete vt from open list;

endif;

if spandegree of vt < degree of vt then

add vt in open list;

endif

else

delete vt from open list;

endif;

if open list not empty then

let Vi be the (most recently added but undeleted)

vertex at the end of the open list;

(* else if open list empty and k < n then there are

disconnected components in the graph

select a new t;, as root from the rest of the vertices in the knowledge graph;

mark the previous component with its rules and number of rules for indexing;

endif;*)

endif;

end; (* end of while*)

end; (* end of procedure *)

3.3.2 Finding Chain

Though a spanning tree has n-1 edges of the original graph, there need not be only

one single semipath in the spanning tree. Also, the (longest) semipath from the root
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to the last vertex (included during spanning tree generation) need not be the chain
in the spanning tree.

Finding the chain is done in two steps:

1. finding the longest semipath from root, and

2. finding the chain using the longest semipath obtained m step 1.

The longest semipath from root may be found using depth first search starting

from root. Lengths of semipaths from a vertex to leaf vertices (which are not in

the longest semipath) in spanning tree are stored while backtracking in the search

process in order to find the chain in step 2.

The spanning tree can now be divided into three parts, viz., the longest semi-

path portion spi from root to the first branching vertex, portion mp from the first

branching vertex to the last branching vertex including all the branches incident on

each branching vertex, and the portion of (the same) longest semipath sp2 from the

last branching vertex to the last vertex in the longest semipath. Each branching

vertex will have first and second longest branches bpi and bp2 if its branching factor

is at least two. Let /1? /2,&i and b2 be the lengths of spi, sp2,bpx and bp2 respectively.

Now, the longest semipath in the entire spanning tree, i.e., chain, may be found as

follows:

If the longest semipath portion till the branching vertex under consideration spi

is shorter than its first longest branch, the branch becomes part of the chain (longest

semipath), and vice versa. If the new branch is shorter than the second longest

branch, then these two are interchanged. Adjoining the portion of the semipath

from this branching vertex to the next branching vertex, if any, with spi, the process

is repeated for all the branching vertices. The new spi adjoined with sp2 will be the

longest semipath in the entire spanning tree and hence the chain.

The procedure for finding the chain using the longest semipath from the root is

given below.
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branch point bvi and the next branch point bv to / j ;

make bv the new bvi;

endif;

until the last branch point 6u2 is encountered;

c/»atn is the semipath sp\ adjoined with sp2;

length of the chain lc = h + h',

let RSC be the set of rules present on the chain edges;

end; (* of the procedure *)

We have already mentioned that many of the rules in rulebase appear on the

edges of the spanning tree. Even if there are any rules which do not belong to

the spanning tree rule set, this does not affect the final decomposition and the rule

completeness. These rules will be included when chords are considered in the cutset

— chain is used only to facilitate decomposition.

To determine the actual cutsets, the spanning tree edge to be removed first must

be found out for each cutset. In order to identify these, spanning tree edges need to

be marked suitably.

3.3.3 Marking edges for decomposition

Integer markings on edges indicating their position in the spanning tree are useful

in determining the positions where the graph is to be cut to obtain an approximate

partitioning in the given proportion. We give below the steps for marking (labelling)

the edges to enable suitable decomposition.
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procedure mark-edges();

begin

Mark the edges with 1,2,... to indicate their position

from one end of the chain to the first branching vertex on the chain;

Let the rules corresponding to edges in the chain be denoted by RSC;

repeat

If a branching vertex is encountered then

for all branches of the branching vertex

mark a branch edge with the next integer;

include RSe in RSC

only if the rule labels RSe on it do not belong to RSC;

endfor;

endif;

continue marking chain edges with the next integer without

looking for the corresponding rule label

till another branching vertex is encountered

until the other end of the chain is reached;

Let / be the highest label (i.e., number of edges labelled in this way);

end;

The value of / indicates the number of marked edges in the spanning tree. It can

be seen that the set of rules on the marked edges is nothing but the spanning tree

rule set. The value of / can be used now to determine the position of the edges to

be cut and thus find the subsets.

The vertices and the edges numbered this way are stored in an array of size n

to facilitate decomposition. Starting from the edge marked 1, all edges including

the branch edges without any markings, and the associated vertices along with the

integer marking information in increasing order are stored in the spanning tree. For

the spanning tree and its chain shown in figure 3.3, the linear representation would

be the set of edges {JI, IG, GH, HB, BC, CA, BF, FD, FE, FK), with the associated
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vertex ordering {J,I,G,H,B,C,A,F,D,E,K}.

3.3.4 Initial Decomposition

For the initial decomposition, we must compute the size of each subset, determine

whether balanced partitiong, i.e., partitioning exactly in the given ratio, is possible,

and then determine the cutsets to be used for decomposing the graph.

Size of subset

Let N be the total number of rules, and p\ : p2 : .. : Pk be the proportion in which

rulebase subsets are to be obtained. We can obtain size of each knowledge subset z;

procedure determincsize^of.subset()]

Is balanced partitioning possible?

If NmodJ2kj=i Pj = 0 then, it may be possible to obtain a balanced partitioning in

the given ratio. Otherwise there may be a small difference in the desired sizes calcu-

lated for the given ratio and the actual sizes of the subsets obtained. The following

procedure does the same.



Determining the position of the edges to be cut

If / is the number of marked (labelled) edges of the spanning tree, we can divide it

approximately in the given ratio by cutting at edges e.\,e2, -.,
eJt-i where

If an edge to be cut, e;, happens to be a branch edge, and if the number of rules on

the chain RSC happens to be small compared to the total number of rules N, then

e, is taken as it is. Otherwise, the following possibilities exist depending on whether

Pi >= pi+i, or pi < p,-+1.

• In the first case, i.e., if p, >= p;+i, we skip the branch, go in the forward

direction, i.e., in the direction of increasing integer markings, and make e, the

first edge in the chain immediately after the branch so that rules on the branch

edges are added to P,.

• Otherwise, if p, < p,+i, then we make e, the last edge in the chain just before

the branch so that branch rules are added to P,+i.

This is to retain the sizes of subsets (to be obtained) closer to the proportion

given. Further, if any two edges e, and el+1 have no marked edges in between
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them, then we must increment or decrement the number appropriately depending

on whether p, >= p1+1 or not. However, this is done only if the new edge does

not belong to a branch again and violate the branch criterion described above. The

branch skipping keeps the resulting cutset as a fundamental cutset and can reduce

information exchange between subsets.

procedure determinc-edge$_to-cut();

(* determine the position of edges e, to be cut to make the graph disjoint *)

endfor;

ii) if RSC is close to TV then

(* the number of rules on the chain edges is close to N *)

for i := 1 to k-1 do (* for each subset *)

if p, >= pi+i then

e; is the first edge in the chain immediately after the branch

else

e, is the last edge in the chain just before the branch;

end if;

endfor;

endif;

iii) for i := 1 to k-1 do (* for each subset *)

if (e,+i - e, - 1) = 0 then

if (p, >= pi+l) and (e, + 1 does not belong to a branch) then

c, = e, + 1

else if (p, < p t + i) and (e, - 1 does not belong to a branch) then

begin

i) for each subset do
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e, = e, - 1;

endif;

endif;

endfor;

end;

Once the edges in the spanning tree to be cut are identified for including them

in the cutsets, we can determine the actual cutsets by including the chords (and

other spanning tree edges) also. Removal of these cutset edges leaves the graph

as k components. The data and rules which belong to the individual components

form an approximate partition. Retaining the same partition of data obtained by

the spanning tree decomposition, rules may be assigned to the subsets based on the

data available with the subsets and the data required for the rules. We first find a

proposed set of rules for each subset and do the actual assignment in the boundary

refinement phase. We shall denote the data (vertex) set and the proposed rule set

of a subset by VSi and PRSi respectively. Steps for finding these are given below.

procedure find-data .andaproposed_ru/e _sets()\

(* Form disjoint vertex sets V5,''s and *)

(* proposed rulesets PRS^s for the k subsets *)

(* by cutting at e,s along the chain; *)

begin

for i := 1 to k do (* for each subset do *)

VSi = { v / v is the second end vertex of e,_i or

v is the first end vertex of e, or

v is a vertex incident on edges between e,_i and c,};

if i = 1 then e0 is the very first edge in the chain;

if i = k then ejt is the last edge in the chain;

PRSi = { RSe I RSe is the set of rule labels on the edges between e,-_i and c,};

endfor;

end;
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The set of rules present on the cutset edges is called the Conflict Rule Set and is

denoted by CRS. These rules correspond to the spanning tree edges as well as the

chords in all the k - 1 cutsets. Since these are the likely candidates for inclusion in

more than one subset, the exact subset in which a rule in CRS is to be placed has

to be determined in the boundary refinement phase.

Rules corresponding to a chord (or to those edges other than the e,.s calculated

for cutting) and found to be using and producing data belonging entirely to one

subset pi are included in the PRSt of that subset; otherwise, if the end vertices of

the chord (or another spanning tree edge of cutset) are in two different components,

the rule is included in the CRS. The following procedure does this.

procedure find-proposcd^and.cutseijrules()\

(* Compute the cutset rules (Conflict Rule Set) CRS, and associated subsets; *)

begin

for i := 1 to k - 1 do (* for each subset *)

for each vertex VJ of the set VS{ do

for each edge VjVt with rule set RSe do

(* in the corresponding undirected graph *)

if vt e VSm where m <> i then (* m not equal to i *)

store RSe and the the subset ids t and m in CRS

else PRSi = PRSi\J{RSe};

endif;

endfor; (* edge *)

endfor; (* vertex *)

endfor; (* subset *)

end;
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It may be observed that (all) the cutsets formed like this are not necessarily
fundamental cutsets with respect to that spanning tree. If an edge c, belongs to a
branch, it will not form a fundamental cutset. The vertices for the first subset are
separated first, those for the second subset next and so on, until all vertex subsets are
identified. Then the cutset edges are those which have end vertices in two different
vertex sets.

3.3.5 Boundary Refinement

In this phase, we determine the subsets to which the rules in the CRS are to be

assigned. Among the rules in CRS, a rule with largest number of attributes is

considered first. To resolve the conflict and actually assign the rule, selection of

the appropriate subset can be done by calculating the number of data elements

(pertaining to this rule alone) available in each candidate subset. Let us call this

its attribute count. Now, a rule is assigned to a subset with highest attribute count

and still has not got its share of rules 2t. However, if all the candidate subsets have

got their share of rules, the rule is assigned to a subset with highest attribute count.

The partition obtained above ensures rule completeness.

Metaknowledge Directories

Once a CRS rule is assigned to a subset, it is necessary for the agent (to which that

subset is allocated) to know what other relevant data is required from other agents

(having other subsets) in order to fire that rule. Alternatively, data generated by

firing this rule may be used by some other agent also. Hence, it is necessary that the

agent knows which other agents require this data. For each subset P,, we maintain

two areas in the directory, viz., NRFi and MRBt for this purpose.

NRFt represents the data that Needs to be Requested From other agents. It

has the details of data name and the id of the subset (agent) from which the data

is to be requested (obtained). Similarly, MRBi represents the data that May be

Required By other agents. The details of data name and the id of the subset (agent)

which may be requiring this data are stored in MRBi. Assuming a rule in subset

Pi requires some attribute t;a in subset Pi ( va € VSj, i.e., owned by agent having

subset P,), NRFi has an entry {va,j), and MRBj has an entry (va,z).
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The NRFs and MRBs represent the coupling between agents and thus help in
the allocation of knowledge subsets to agents, redistributing knowledge dynamically
and requesting for nonlocal information. This will be discussed in section 3.7 and
the forthcoming chapters.

The procedure assign-rules assigns the rules in CRS to the subsets as described

above and updates the NRF and MRB parts of each subset.

procedure assign^rule.s();

(* Assign rules to subsets and store directory information *)

(* NRFiiNeeds to be Requested From other agents, a list (attribute, agent) *)

(* MRBi'.M&y be Required By other agents, a list (attribute, agent) *)

begin

i) for i := 1 to k do (* for each subset i *)

nonconflicting rule set RSi = PRSi — CRS;

NRFX = {};

if \RSi\ >= zt then

mark it okay and add it to okay list;

endif;

endfor;

ii) sort the c rules in CRS in decreasing order of rule size,

(* i.e., on the number of attributes in the rule *)

for each rule in CRS do

sort the candidate subset ids involved based on number of

attributes of this rule (in that subset)

for i := 1 to s-1 do (* each subset id i in the sorted list*)

if \RSi\ < Zi then

MRBi = {);
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include the rule in RSi (• of that subset *);

\RSi\ = \RSi\ + 1;

endif;

if \RSi\ = 2t- then

mark it okay; M

add the subset in okay list;

break;

endif;

endfor;

endfor;

if the rule is not allotted to any of these subsets and baLpossible = false then

allot the rule to the first subset with an id i at the beginning of the list;

if \RSi\ >= zx then

mark the subset okay and add it in okay list;

endif;

endif;

let Pi be the subset to which the rule is allotted;

for each attribute va of the rule,

such that va € V3 where j <> i

(* Pj is a candidate subset which did not get the rule *)

(* update NR.F of the subset to which the rule was allotted

and MRBs of the remaining candidate subsets *)

endfor;

end;

|Jtf<| = |/Wi| + l;

NRFi = NRFt{J(va,j);

MRBj = MRBj\J(va,i);
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The procedure checkJj.balance.obtainedQ checks whether the partitioning ob-

tained is exactly in the given ratio. If a balanced partitioning is possible, but is not

obtained with the above spanning tree edges cut, cA,,.ek_i, then it shifts some of

them so as to shift few of the extra rules from the subsets whose sizes are greater

than their desired sizes.

procedure checkJf^balance.obtained(balance-obtaincd):

(* Check if required partitioning is obtained *)

begin

balancejobtained := false;

for each subset i do

if \RS{\ = Z{ then

put the subset in the balanced subset list;

endif;

endfor;

return(balance_obtained);

end;

After the final vertex sets and rule sets are found, the following procedure finds

the exclusive vertex sets EVSiS and dupliate vertex sets DVS{S. While VS{ repre-

sents the data owned by the subset Pt, EVSi represents the data that belongs to

subset Pi and is used only by the rules in P{. However, DVSi represents all the data

required by the agent to fire the ruleset RS%. If data duplication is allowed, updates

should be propagated to all the places.

The following procedure calculates the EVSiS and DVSts and completes the

filling of slots in the metaknowledge of agents.
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procedure create-metaknowledge();

(* Compute the attributes which are exclusively owned by this agent(.EVS,-),

and all the attributes needed (DVSi) for firing its local ruleset RSi *)

begin

for i := 1 to k do (* for each subset do *)

EVSi = VSi— vertex set pertaining to MRBi\

DVSt = VSi\J vertex set pertaining to NRF\;

endfor;

end;

It may be seen that the number of entries in the union of all NRFjS is equal to the

number of entries in the union of all M RB{S and gives the total number of attribute

duplications required for the partition, if data duplication is allowed. Otherwise it

represents the total communication coupling between agents. The number of entries

of the form (va,j) in NRFt and those of the form (i^, i) in MRBj indicates the data

to be exchanged between the agents having P, and Pj, and hence the communication

coupling between them. The communication coupling is useful for reasoning as well

as dynamic distribution of the knowledge.

3.3.6 Partitioning Algorithm

The complete algorithm is given below.

Algorithm conncctedstatic-partitioning

Assumptions:

The algorithm requires the knowledge graph to be connected

Inputs:

Rulebase consisting of N rules

Proportion p\ : p? : . . . : Pk in which rulebase subsets are to be obtained
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Outputs:

Rulebase subsets Pi,P2,..,Pk with rules in the given ratio

Directories for the rulebase subsets with attributes details - owned or shared

Steps:

1 Construct the knowledge graph in the form of adjacency list with attributes as nodes,

and arcs connecting all input attributes of a rule to each of its output attributes as edges

with rule number(s) as the label(s) on each edge.

Compute indegree, outdegree, and degree for each attribute.

2 (* spanning tree generation and marking *)

(a) generate.spanningJree()]

(b) find.chain();

(c) mark-edges ();

3 (* check whether balanced partitioning is possible *)

(a) determine size.o]'.subset();

(b) checkJf-.balance-possible(baLpossible);

4 (* partitioning *)

(a) determine^edgesJ,oJ>e-cut(); (* initial decomposition *)

(b) balancejobtained = false;

Her := 0;

(c) repeat

i find-data.and.proposed.rule.sets(); (* initial decomposition *)

ii find-proposed.and-CutscLrules(); (* initial decomposition *)

iii assign-rules(); (* boundary refinement *)

iv checkJf.balance-obtained(balance-obtained);

if (balance-obtained = false) and (iter < maxiter) and (baLpossible = true) then

(* maxiter is a constant defined by the user *)

for subsets that do not balance do

shift e, by one such that
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it is in a subset P, whose |jR,St| > 2,;

endfor;

Her := Her + 1;

endif;

until (balancejobtained = true) or (baLpossible = false) or (Her > maxiter)

5 (a) create^metaknowledgef);

(b) for i:= 1 to k do (* for each subset*)

print the lists RSi,VSi,

NRFi,MRB%,EVSt and DVSi\

6 stop;

Complexity of the Partitioning Algorithm

Construction of the adjaceny list for the graph corresponding to the rulebase requires

N • a time where TV is the number of rules and a is the average number of attributes

in a rule. However, this is trivial for any partitioning algorithm and need not be

considered in the calculation of complexity of the algorithm.

By using an adjacency list for representing the knowledge graph, step 2(a), i.e.,

generation of a spanning tree (also an adjacency list) can be done in O(n) time where

n is the number of attributes. By storing the semipath lengths for each intermediate

vertex from leaf vertices in step 2(a) itself, each of steps 2(b) and 2(c) requires O(n).

Steps 3(a) and 3(b) together require k + 1 computations where k is the number

of subsets required. Hence step 3 is 0(k).

Step 4(a), i.e., determination of edges to be cutf requires k iterations and is of

O(fc), 4(b) requires two computations.

Step 4(c)(i), finding the vertex sets (and the initial proposed rule sets) for the

subsets requires examination of all the n vertices. Hence this is O(n).

Step 4(c)(ii) for finding the complete proposed rule set and conflict rule set

requires k iterations as there are k vertex sets. For each vertex all the edges incident

on it are to be examined. Assuming the average number of vertices is n/k, average
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number of edges for a vertex is \E\/n where E is the set of edges in the knowledge

graph, for k iterations in the outermost loop, the time complexity is O(\E\).

Step 4(c)(iii) involves finding the nonconflicting rulesets and then assigning the

CRS rules to subsets. Determination of nonconflicting rulesets is O(k). Assuming

that there are c rules in CRS, each rule usually has 2 to 3 subsets as candidates to

which it can be assigned. In the worst case, which usually does not occur in practice,

the number of candidate subsets would be k. Updation of NRFs and MRBs requires

time O(k). Therefore this step is O(ck). However, since c « TV, c << n, and

c «(E{, overall complexity of step 4(c) is the maximum of O(n) and O(\E\). The

number of iterations in the repeat loop is constant, usually about two or three, and

hence need not be added to the complexity.

So, the overall complexity of step 4 is O(max(n, \E\)).

Steps 5(a) and 5(b) are of O(k); 5(b) is in fact mere outputting of the results.

Therefore, the overall complexity of the algorithm is O(max(n, \E\)).

3.4 Examples

We shall illustrate our approach with the the help of a few examples using the

rulebase we considered in section 3.2.

3.4.1 Case 1: Two subsets in the proportion 2 : 1

1. The knowledge graph is shown in figure 3.1 and the degree information is

given in table 3.1.

2. (a) One of the attributes with zero outdegree is J. It is also a pendant vertex

to serve as a root. The spanning tree generated starting with it is shown

in Figure 3.3. This has the edges JI, GI, GH, BH, BC, AC, BF, DF, EF

and FK.

(b) The chain is computed as the set of edges JI, GI, GH, BH, BF and FK.

(c) The highest edge marking in this spanning tree / is computed as 7. The

edges belonging to branches are BC, AC, DF and EF. While the first
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two belong to the same branch emanating from B, the last two are two

different branches emanating from F. Edge BA is marked 5 to indicate its

position in the semipath. Arcs AC, DF and EF are not labelled because

they do not belong to new rules.

3 (a) , (b) Required rule partitioning with sizes zx = 4, z2 = 2 is possible;

4 (a), ei = 5; Arc 5 happens to be a branch. Since the number of rules on the

chain \RSC\ (=5) is close to N (=6), and since p, > p,-+i, e, is advanced by one

more edge. This is equivalent to adding one more edge to the bigger subset,

ei = 6;

(b) The variable balance.obtained is initialized to false, and the number of

iterations, iter = 1.

(c)

Disjoint vertex sets VS, = {A,B,C,G,H,I,J}; VS2 ={D,E,F,K};

Proposed rule sets PRSX ={R1,R3,R4,R6}; PRS2 ={R2,R5).

Cutset edges are BF,GK; Associated rules make the conflict rule set CRS ={

R2, R5};

Initial rule sets for the subsets RSX ={ R1,R3,R4,R6} (with corresponding rule

count \RSX\ = 4) and RS2 ={} ( with \RS2\ = 0). All the four rules belong

exclusively to subset P,. P\ is marked okay as it has the required number if

rules. P2 does not have any rules in it so far.

Of the rules in CRS, for R2, of the atttributes B,D,E and F, only B is needed

by subset P2 from P,. Hence this rule can be allotted to P2.

Hence, RS2 ={R2}; NRF2 ={B(1)}; MRS, ={B(2)};

For R5, of G,F and K, only G is required by P2 from P,. Assigning this

rule to P2 makes RS2 ={R2,R5}; ^ ^ ^ 2 ={B(1), G(l)}, and MRBX ={B(2),

G(2)}. Now, P2 has got 2 rules and the agent with P2 may need to request for

attributes B and G from agent with P1. P2 is marked okay.

Since both the subsets are in the required proportion, balance is obtained.

5 Final Partition:
After filling the remaining metaknowledge slots, the final partition is shown
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Table 3.2: A 2:1 Partition of Example 1 Rulebase

in table 3.2.

If no duplication is allowed in the working memories of agents with these subsets,

each of the disjoint vertex sets VSi represents the data owned by the agent having

subset Pi. NRFiS and MRBiS give the information about the data that needs

to be requested from other agents (attribute and from whom to request), and the

attributes that may be requested by others (attribute and from whom the request

may be sent). There is a possibility that an item generated (as a result of firing the

corresponding rules) by one agent may actually be owned by some other agent. Then

the first agent may have to send the value immediately to the owner on generating

it.

If duplication is allowed to some extent, DVSfi represent the attribute set re-

quired by agents for firing the rule sets. MRB{s can be used to send copies to the

other agents that require the item as soon as it is generated, and NRF{s can be still

used to request in advance if necessary.

We can see that the agent with subset Px does not need any information from

others and the agent with subset P2 does not have any attributes that may be

requested by other agents.

3.4.2 Case 2: Three subsets in proportion 1:1:1

Steps 1 and 2 are same as for case 1.

3 (a),(b) Required rule partitioning with sizes zx = z2 = z3 = 2 is possible.
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4 (*)(b). e i = 3, e2 = 5; As e2 happens to be a branch edge, and since all the

subsets are to be in the same proportion, we simply advance forward making

e2 = 6. The variable balance_obtained is initialized to false, and the number

of iterations, iter is made 0.

VS, = {G,I,J); VS2 ={A,B,C,H}; VS3 = {D,E,F,K};

PRSi ={R4,R6}; PRS2 ={R3,R1}; PRS3 ={R2,R5};

Cutset edges are AI,BF,GH,GK;

Corresponding rule set CRS = {R2, R3, R5, R6};

RSi ={R4}; RS2 ={R1}; RS3 ={};

For R2, of B,D,E,F, only B is required by P3 from P2. Assigning it to P3, RS3

= {R2}; NRF3 = {B(2)}; MRB2 ={B(3)};

For R3, of B,G,H, only G is required by P2 from A ; RS2 ={ R1,R3};

NRF2 ={G(1)}; MRB1 = {G(2)}; Since \RS2\ = 2, P2 is marked okay.

For R5, only G is required by P3 from Pi; RS3 ={R2,R5);

NRF3 ={B(2), G(l)}; MRBX ={G(2),G(3)}; Same attribute G is required by

subset P2 as well as subset P3. Since \RS3\ = 2, P3 is marked okay.

Lastly, for R.6, of A,G,I, only A is needed by P\ from P2. Therefore, RS\

={R4, R6}; NRF, ={A(2)}; MRB2 ={B(3), A(l)};

All the subsets are in the specified proportion-,hence balance is obtained.

5 Final Partition:
After filling the metaknowledge slots,the algorithm exits. The final partition

is shown in table 3.3.

Rulebase partitions obtained for an aerospace vehicle checkout system and med-

ical diagnosis application using our approach are encouraging. These will be dis-

cussed in the next chapter.

(c)
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Table 3.3: A 1:1:1 Partition of the Example 1 Rulebase

3.5 Disconnected Components in the Knowledge Graph

Knowledge graphs can also have disconnected components in them. The disconnect-

edness implies the absence of communication among the agents when each compo-

nent (or a group of components together) is treated as a subset in some partition

and is given to one agent. This actually represents a functional decomposition where

each component pertains to some subsystem in the whole system, or the components

respresent procedures which do not interact at all. Therefore, it is important to be

able to identify such components and make use of them appropriately.

Identification of a Component

While generating the spanning tree, if we encounter a vertex that doesn't have

another new reachable vertex (from it in the corresponding undirected graph), and

none of its predecessors in the spanning tree generated so far have, but there are still

some vertices of the knowledge graph which are not included in the spanning tree,

it means there are disconnected comporents in the knowledge graph. These may

be indexed with useful information like number of rules in the component for easy

retrieval and efficient processing. We shall call the number of rules in a component

as the size of the component, and the number of rules required for a subset (in the

partition to be obtained in the given proportion) as the size of the subset.
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Identification of Knowledge Graph Components forming Balanced Sub-
sets

A partition with perfect balancing and zero communication is possible in either of

the following two cases:

• number of subsets = number of components, and each subset has one compo-

nent of the same size

• number of subsets < number of components, and each subset has one or more

(groups of) components together equalling the subset size.

In all other cases, one or more components need to be broken to get partitioning

in the required ratio. In particular, if the number of subsets is more than the number

of components, some components must be cut to obtain rule base subsets whose sizes

are in the given ratio. However, (even if perfect partitioning is not possible,) it is

desirable to identify the subsets and the group of components, if any, with matching

sizes. Let us call a subset which is assigned rules satisfying its size requirement a

balanced subset.

These balanced subsets and the components assigned to them should be sep-

arated from the rest of their respective groups and should not be considered for

further partitioning. This is because communication among such components is

nil. The new proportion (with fewer subsets when compared to the number of

subsets in the original proportion) representing the remaining subsets and the unas-

signed components should be calculated for giving it as input to our partitioning

heuristic. We propose a heuristic to identify such balanced subsets and the cor-

responding components when the knowledge graph is not connected. Partitioning

in the modified proportion can be obtained by making minor modifications to the

connected_static_partitioning heuristic discussed in section 3.3.6.

The procedure balanccd-subset-components() identifies the balanced subsets which

can be formed from components.
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procedure balancedsubseLcomponentsQ;

begin

let k be the number of rulebase subsets required in the proportion p\,..pk\

let c be the number of components in the knowledge graph;

let zi,Z2,..,Zk be the sizes of (rulebase) subsets, sorted in decreasing order;

let <7i,<72»">0c be the component sizes, sorted in decreasing order;

let 65 be the number of balanced subsets which have the exact number of rules as its desired size;

let re be the number of remaining components whose rules have to be assigned to subsets still;

i,j,sum,diff and temp are temporary variables;

let open list represent the unassigned components;

let temp list be a temporary list of components for assignment to a particular subset.

begin

bs = 0;

re = c;

for t := 1 to k do

j : = 0 ;

diff := zt;

temp := 0;

initialize temp listto null;

while (j < re) and (diff > 0) do

J := J + 1;

if (gj <= diff) then

diff :=diff-gy,

temp := temp -f 1;

copy the jth component in the open component list to temp list]

endif;

endwhile;
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if (diff = 0) then

re := re — temp;

bs := bs+ 1;

delete components in temp list from open component list;

assign the rules and vertices in temp list to RSt, and VS, respectively;

NRFi - {};

MRBi = {};

endif;

endfor;

if (bs < k) then

proceed from step 2h of connectedstatic-partitioning algorithm

considering the remaining subset ratios and the remaining components

end;

3.5.1 Partitioning Disconnected Knowledge Graphs

Following are the changes required to the static partitioning heuristic developed for

a connected knowledge graph, to accommodate multiple components.

Spanning tree generation

If a new vertex is not reachable, in the corresponding undirected knowledge graph,

from any of the vertices in the spanning tree forest generated so far, there is another

component in the knowledge graph. A new vertex may be chosen as the root for the

spanning tree of the next component in the graph, and its spanning tree generation

may be continued in the same fashion in the same loop.
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Marking of edges

Though chain of the spanning tree in each component has to be identified separately,

marking of edges in the spanning tree proceeds continuously with consecutive in-

tegers as though there is only one spanning tree present in the entire graph. Both

marking of edges and partitioning commence from the largest unassigned compo-

nent and continue with the next largest until there are no more components in the

graph.

Computation of the edges to be cut, and desired sizes of rulebase subsets

Since edges of a component are given integer labels continuing with those given for

the earlier component, edges to be cut can be determined in the same way as we

did for partitioning a connected graph.

Complexity of the augmented version of partioning algorithm

Besides the additional checking required for identifying the components that form

balanced subsets, changes are required to the procedures

• Spanning tree generation

• Finding chain

• Marking of edges

so that partitioning heuristic can be applied on the knowledge graph with mul-

tiple components.

Time required for spanning tree generation is the same except that when the

open list becomes empty, a new root vertex is chosen for the next component before

proceeding with the inclusion of edges in the spanning tree for the new component.

Since degree information is stored with vertices while constructing the knowledge

graph itself, this doesn't require extra time. Extra time is required only for the

selection of new root and to store the component itself. This, however, is negligible

as backtracking is minimized by deleting the vertices from the open list the very
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first time the vertex is found not to be having new vertices on its edges. Therefore,

the time complexity does not increase for this step.

Chains have to be found for each spanning tree separately. However, as both

the depth first search for finding the longest semipath from the root and finding the

chain from it are of 0(n) as mentioned earlier, the total time required for finding

all chains will also be of O(n).

Storing the spanning forest information in a linear array form after finding the

chains (as done for a single spanning tree) keeps its time complexity 0(n) only.

The extra step balanced.subset.components for finding the components that form

balanced subsets requires O(kc) time. However, the number of components c will

certainly be less than the number of data elements n, infact c should be less than

n/2. Therefore, the overall complexity of the modified version of our heuristic to

deal with disconnected components remains the same, i.e., O(max(n,\E§).

3.6 Obtaining Functional Decomposition

Instead of concentrating on the load balancing aspect (by obtaining rulebase subsets

in the given proportion of rules), we may also consider a partition that will result

in a functional decomposition. There are three possibilities here.

As mentioned in the previous section, if there are disconnected components, the

partition representing the components indicates a natural functional decomposition.

However, if the graph is connected, for obtaining a functional decomposition, we

need to group rules freely based on the coupling among rules on the edges by relaxing

the constraint on the number of rules per subset. Some times, this may result in

duplication of few rules in the subsets. An accurate representation of the data and

the hierarchy among the objects involved, if considered in the steps of the algorithms

already discussed, gives us a partitioning close to a functional decomposition without

duplication of rules. For this, we also take into account the coupling among the rules

incident on edges. The coupling can be clearly seen if we observe the rule labels on

the edges. The data connected by an edge, and edges emanating from and leaving

some data node are closely connected and have some dependency. A graph as the

representation scheme for the knowledge base depicts the dependencies clearly and
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enables our partitioning algorithm exploit the adjacency and dependencies inherent

in the structure. All rules corresponding to an edge should be preferably assigned to

the same subset, and if two or more edges have some rules common, they indicate

some amount of coupling, i.e., communication between the rules, the precise quantity

being proportional to the number of common rules.

Alternatively, functional decomposition can be obtained by considering a final

result ( attribute with zero outdegree), including all the rules incident, on its in-

coming edges, and proceeding backwards in the same way until all external input

attributes (with zero indegree) are considered. This gives all the rules and data

corresponding to a subsystem concluding with the final attribute considered above.

There may or may not be some overlap among the rules in different subsets indicat-

ing the interaction required among subsets, the latter being the case of disconnected

components.

3.7 Knowledge Subset Allocation

Once partitioning is completed, the next step is to assign the subsets to individual

agents. We discuss the allocation of subsets obtained in a given ratio representing

capacities of agents using the heuristics discussed in sections 3.3.6 and 3.5. We do

not discuss the allocation of subsets in a functional decomposition as this may not

require load balancing. Even if the subsets have to be allocated in that way, load

balancing may be given secondary importance and techniques similar to assignment

of components to subsets may be used.

The subsets obtained using our heuristic can be easily assigned if all the agents

are situated at equal distances from one another. The allocation problem becomes

trivial to that of simply assigning the largest subset to the agent with maximum

capacity, the second largest to agent with next highest capacity and so on.
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procedure equaLdistance,allocation();

(*Pi is the list of subsets sorted in the decreasing order of size; *)

(* Ai is the list of agents sorted in decreasing order of capacity; •)

begin

for i := 1 to k do

assign the subset Pi to agent >!,;

endfor;

end;

In this case, the allocation becomes optimal also. However, the distance between

agents need not be equal in real life problems. Hence, the allocation strategy must

consider both capacities of agents and distance between them.

3.7.1 Allocation Algor i thm

Since our partitioning heuristic partitions the rulebase according to the capacities

of agents, the subsets obtained and the agents have a one to one mapping where

sizes of subsets match with capacities of agents.

Therefore, the allocation problem can be stated as a mapping problem where

there is exact correspondence between the size of a partition and capacity of an

agent, and the communication overhead is to be minimized based on the coupling

(data transfer required ) between subsets and the distance between agents.

Given a partition in the ratio px : p2 : .. : />*, the coupling between subsets as the

amount of data transfer, and the network of agents with capacities sus2,..,Sk, our

objective is to map same size subsets onto agents of correspondingly same capacity

such that communication overhead is minimized.

We propose a heuristic solution as follows:
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procedure allocate()\

begin

sort the agents on the decreasing order of capacity;

sort the subsets on the decreasing order of size;

sort subset pairs in the decreasing order of coupling between the pairs;

(* group them together based on the amount of coupling *)

sort agent pairs in the increasing order of distance between the agents;

(* group them together based on the distance *)

select the first pair of subsets with the maximum coupling;

select the first pair of agents separated by the first minimum distance;

repeat (* with each subset pair *)

repeat (* with agent pair *)

if subset sizes match with agent capacities then

assign the subsets to agents of corresponding capacity;

mark the assignment okay;

endif;

consider the next agent pair

until the assignment is okay;

(* both subsets of the subset pair are assigned *)

consider the next subset pair preferably having

one subset from (previous pair or) assigned subset list

until (k-1) subsets are assigned;

end;
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3.7.2 Example 2

To explain the allocation algorithm, we shall consider an enlarged rulebase.

The rulebase after adding six more rules to the example rulebase 1 is shown
below.

The knowledge graph for the example rulebase 2 is shown in figure 3.4.

A spanning tree for the Example rulebase 2 is shown in figure 3.5.

The final partition obtained after the initial partitioning and boundary refine-

ment of the connectedstatic-partitioning heuristic is shown in figure 3.6 and in table

3.4.

Now this partition can be considered as input along with the network topology

for illustrating the allocation algorithm.

Given:
the above partition Pi,P2,P3,P4 with sizes of the parts in the proportion 2:1:2:1,

communication coupling among the subsets P1P2 = 2, P2Ps=\, -P2̂ 4 = 1, and P4P3

= 1

and a network of agents Ai,A2,A3,A4, with capacities in the proportion 2:2:1:1

and distance between the nodes as A1A2 = 2, A\A3 — 2,AiA4 = l, A2A3 = 2, A2A4

= 1, and A3A4 = 1,

we shall use our algorithm to find an allocation with less communication overhead,

and load balancing.
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Figure 3.4: Knowledge Graph for the Example Rulebase 2
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Figure 3.5: A Spanning Tree for the Knowledge Graph of Example Rulebase 2
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Figure 3.6: A 2:1:2:1 Partition of the Example Rulebase 2
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Table 3.4: A 2:1:2:1 Partition of Example Rulebase 2

We can see that the subsets P\ and P3 are of size 2 units, and these have to be

allotted only to agents of the corresponding capacity, viz., A\ and A2. Interchanges

in allocation are possible only between them. The remaining subsets can be assigned

among themselves to any of the remaining agents.

The sorted lists of subset pairs and agent pairs are shown below.

We shall illustrate three different cases of allocation.

Considering the first pair of subsets P1 and P2, and the first pair of agents Ax

and A4, Px can be assigned to Ax and P2 can be assigned to A4. We show this by
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P\ —• A\, and P2 —•> A4. There are two more subsets to be assigned to two more

agents. Leaving this assignment undisturbed, we proceed with the next subset pair

in the list.

If we select P2P3 as the next pair of subsets for consideration, it will result in

P% —•* A4, and P3 —• A?. Now that three of the subsets are assigned to three agents,

and that the unassigned subset has an assignment compatible with the remaining

agent, the final assignment is as shown below.

Had we selected P2P4 instead of P2P3 we could have got the same result though

with an extra step.

Considering A2A4, P2 is already assigned to A4; P4 and A2 are incompatible

as they belong to groups of different size and capacity respectively. P4 belongs to

the group of subsets of size 1, and A% belongs to the group of agents of capacity 2.

Therefore, this assignment is not compatible.

Considering the next agent pair A3A4 for mapping the subset pair P2P4, the

assignment P2 —* A4 still holds; P4 can be safely assigned to A3 as both of them

belong to compatible groups, i.e., of size 1. Now, P4 —* A3.

As already three out of the four subsets have been assigned to three of the agents,

and as P3 and A2 are compatible, we can make the assignment P3 —+ A2.

The final assignment is shown below:
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It can be verified that the this assignment holds true with the other subset and
agent pairs in the list.

Similarly, another mapping

also is a minimal communication overhead assignment with the load balanced evenly
among the agents.

3.8 Conclusions

We have proposed heuristics for statically partitioning knowledge basesby represent-

ing them as knowledge graphs. The partitioning algorithm presented handles both

homogeneous and heterogenous partitioning cases and is independent of the graph

structure and application domain. A partition in the required rule ratio can be

obtained quickly and may be used as it is. Other wise, it may be used as a good

starting partition for optimizing performance of algorithms KL and SA. It reduces

data duplication and the related inconsistency and communication problems by tak-

ing care of the data dependencies. Also, the partition obtained helps in deciding and

organizing the working memory contents. When an agent cannot proceed with local

problem solving due to insufficient or incomplete data which may be available with

other agents, directory information in the form of NRFs and MRBs help to reason,

and send requests in a directed fashion. The heuristic for partitioning connected

graphs is extended to deal with graphs having components.

The allocation heuristic assigns knowledge subsets with maximum coupling to

a closest pair of agents of suitable capacity and minimizes communication while

achieving load balancing and less communication.

Task decomposition can be done based on the partitioning of knowledge and

data, and subtasks can be assigned to agents accordingly.



Chapter 3. Static Knowledge Base Partitioning and Allocation 89

The static partitioning algorithm described assumes that all rules have equal

probability of being fired. This is because determination of rule firing frequencies at

compile time is difficult. However, the varying rule firing frequencies may cause

load imbalance during run time and hence dynamic load balancing is necessary.

Knowledge distribution for dynamic load balacing is discussed in chapter 5.

The next chapter presents two case studies highlighting the various aspects of

the static partitioning algorithm developed in this chapter.



Chapter 4

Static Knowledge Base Partitioning and
Allocation: Case Studies

This chapter presents two case studies, viz., Aerospace Vehicle Checkout Application

in section 4.1 and Medical Diagnosis of Abdominal Pains in section 4.2. Results

of using our partitioning heuristics on the rulebases for the two applications are

discussed. Finally the last section gives the conclusions.

4.1 Case Study 1 : An Aerospace Vehicle Checkout Application

A rulebase for an aerospace vehicle checkout application is chosen to test our ap-

proach. Thirty seven rules in an encoded form (given in Appendix A) are considered

for illustration. Since this is a monitoring application, the system has to continu-

ously keep on firing rules during countdown till the launch takes place. The launch

cannot take place if there is any malfunction of some part in the physical system.

A fault in a system component is indicated by the expert system REX [104] using

a Hold operation, which is very much like action part of a rule. Hold essentially

displays a message indicating a fault in a subsystem and suggests corrective action.

Performing of this action may be automated or done manually. After waiting for

a specified a period of time, the expert system REX resumes the inference process.

As a result of taking the corrective action, the new data will be sent to the expert

system's working memory as external input.

4.1.1 Partitioning in the given ratio for Load Balancing

Since this is a monitoring application, many rules corresponding to fault diagnosis

are for controlling the system, and use the Hold operation. Therefore, we treat this as

a control variable and use it as a don't care attribute during the actual assignment

90
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of rules. The rulebase follows OPS5 syntax in other aspects. It is observed that

about 40% of the rules are complements of another set of rules. Treating all the

Hold parts of rules as a single variable, the knowledge graph constructed for these

37 rules is as shown in figure 4.7. It may be noted that attributes are shown as big

dots in the knowledge graph.

While attempting to generate a spanning tree for the knowledge graph, it is

found that there are three components in the knowledge graph. Each of them has

33, 2 and 2 rules respectively. After generating a spanning forest, finding chains for

the components, and continuing marking of edges of the components with the same

sequence of integers, we have the resulting situation as shown in figure 4.8. The

number of rules present on the chain edges is small compared to the total number

of rules in the rulebase; branches have more rules. Hence, in the examples discussed

below, if some edge to be cut happens to be a branch, we shall not skip it, but take

as it is.

Case 1

Partitioning in the ratio 1:1

Desired sizes of rulebase subsets to be obtained are ^i = 19 and z2 = 18.

On applying the heuristic balanced-subset.components discussed in section 3.5

of chapter 3, it is found that the components do not form subsets with rules in the

given ratio.

Since the largest component has more rules than required for the first subset, it

has to be cut. The edges of the spanning trees for components are labelled as

though there is a single spanning tree for all the components.

The total number of rules = 37, and total number of labelled edges = 17.

Edge to be cut ej = 9.

Cutting at 9th edge gives the proposed rule sets, nonconflicting rule sets and the
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Figure 4.7: Knowledge Graph for a portion of Aerospace Rulebase
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Figure 4.8: A Spanning Tree for the Knowledge Graph of Aerospace Rulebase
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conflict rule sets as

CRS — \R\Ai R\b, R24, ^25, ^26, R27, ^28, ^29}

All the rules in CRS except for Ru and i?15 are of the same size (number of at-

tributes in a rule), i.e., 3 attributes (including the holds i.e., h6, h7, h8, h9, hlO and

fill. R14 and Ri5 have 2 attributes each.

Both the rules R24 and R2s, have one attribute each, i.e., bsi and ct\ (excluding

the control variable Hold), in P\ and P2 respectively. Therefore, these rules can be

allotted to any of the subsets } \ and P2. Since Pj requires some more rules for its

desired size, these are allotted to P\. Now, RS\ = {R\, --, /?i3, R24, R25} with its size

Similarly, the rules -#26,-#27,-#28 and R2Q should be assigned to P\. This gives

RS\ — {Ri,..,i?i3,/?24,.-,^#29} making the size of RSi equal to zx i.e., \RS\\ — 19.

Pi is marked okay.

The remaining rules for which the conflict is to be resolved are Ri4, Rlb. Both

Pi and P2 have an attribute count of 1 for these rules. Since Pi is in the okay

list, and P2 still needs some more rules for its desired size, these may be assigned

to P2. This means, we should duplicate 6s3 in P2, and as soon any of these rules

is fired, the result may have to be sent to Pi. If Pi requires, it will request it from P2.
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Table 4.5: A 1:1 Partition of the knowledge graph of Aerospace Rulebase

Final Partition:

The final partition is as given in table 4.5. Communication between the agents is

necessary for 8 rules with the number of attributes to be duplicated as 2, i.e., for

ct\ and 653.

Case 2

Partitioning in the ratio 2:1
As seen in the previous case, there are 3 components in the knowledge graph and

the components have 33, 2 and 2 rules respectively.

Desired sizes of rulebase subsets to be obtained are Zi = 25 and z2 = 12.

Component sizes and the subset sizes do not match in this case also. Hence, we

give integer markings to the edges and cut the graph as though there is only one

spanning tree.
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The total number of rules is 37, and total number of marked edges / i s 17.

Edge to be cut e^ = 12.

Cutting at 12th edge gives the following proposed rule sets, exclusive rule sets and

the conflict rule sets.

Since subset P\ is already possessing enough number of rules for its required size,

all the rules in the CRS will be assigned to P2. This also has an advantage that

strongly coupled rules are in the same subset. Since balanced partitioning is not,

possible, the extra rule with Pi is kept with Pi itself and the algorithm exits.

Final Partition:

The resulting partition is shown in table 4.6.

Communication between the agents is necessary for 4 rules, i.e., R3OiR32,R34,

and R37. Number of attributes to be duplicated is 1, i.e., for ct\.

Case 3

Partitioning in the ratio 1:2:1
We can see that the total number of rules = 37, and total number of labelled edges
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Table 4.6: A 2:1 Partition of the Knowledge Graph for Aerospace Rulebase

= 17.

Desired sizes of rulebase subsets to be obtained are Z\ = 10, z2 — 19, and 23 =

8.

Component sizes do not match subset sizes. Hence we proceed in the same way

as explained in the previous cases.

Edges to be cut e.\ — 5 and e2 = 13.

Cutting at 5th and 13th edges gives the proposed rule sets, exclusive rule sets and

the conflict rule sets as



The rules J?3, R4, R8 and RQ are of size 2; Re, R22, R24 and R25 are of size 3; R34 and

R37 are of size 4.

The rules RM and i?37 have P2 and P3 as candidate subsets. P2 has a higher at-

tribute count, and still requires 5 rules for its desired size. Hence these two rules

are assigned to P2. RS2 = {Ri2, ..,/?is, #23, Rae, --,#31, #33, ..,#37}; \RS2\ = 16.

The next set of rules with size 3 are Re, R22, R24, R2s.

Rule RQ can go to either Pi or P2. Hence it is assigned to Pj . RSi = {RI,R2IR5,RQ^R

Now \RSi\ = 7.

For the rule R22, P3 has the highest attribute count. Hence, the rule is assigned to

P3- RS3 = {i216,..,i222,^2}; | ^ 3 | = 8. P3 is marked okay.

The rules R24,R25 should go to P\ as it has got 2 out of their 3 attributes with it

and still requires 4 rules for its share. RS\ = {R\,R2, Rs,Re, R7, Rio, Pu, #24? ^25}

Hence, IRS^ = 9.

Remaining rules # 8 and i^ can go to either Px or P2. However, since both of

them require one rule each, P\ is given R8 and P2 is given RQ making them okay.
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Table 4.7: A 1:2:1 Partition of the Knowledge Graph for Aerospace Rulebase

Final Partition:

The final partition is given in table 4.7.

Communication between the agents is necessary for 7 rules with the number of

attributes to be duplicated as 5. Actually, the number of duplications required for

cti is 2, and one each for Ci,bi>i,bs2 and bs7.

4.1.2 Functional Decomposition

A free grouping of rules connected with and nodes forming clusters of branches gives
us the decomposition shown in table 4.8. The rule set pertaining to a subset P{ is
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Table 4.8: A Functional Decomposition for the Aerospace Rulebase

denoted as i

When we considered the objects involved in the physical system, and their hierar-

chy (please see Appendix A), it is observed that RSi corresponds to those connected

with bs.fie.hydraulic.system, RS2 to External Supply object of the sc.current sub-

system, and RS3 to bs.sitvc subsystem. However, RSi and RS2 are interacting

subsystems as the rule numbered Re uses data pertaining to both. Similarly, RS3

needs the rules R16 and R17 which belong to RS6 to completely represent its subsys-

tem . Then, RS4 corresponds to sc.battery and cpij.battery objects of the subsystem

bs.se and RSb corresponds to bs.cpif.bat object. It is also observed that a branch

within a cluster of branches (the latter pertaining to one big object) represents the

rules pertaining to a subsystem within the bigger object.

Finally, the sets RS6 and RS7 corresponding to the disconnected components

in the graph actually belong to the bs.sitvc and bs.se objects. These would have

been assigned to the appropriate subsets if it is known that the data used by these

rules actually belong to the bs.sitvc and bs.se objects. Therefore, when knowledge

of relationships between data and the physical objects (subsystems) is considered

while grouping the rules, the result is a functional decomposition pertaining to the

objects of the physical system.

However, it is to be noted that, inspite of the absence of knowledge about object

structure and the incompleteness of the rulebase, we are able to get a decomposition

that is very close to functional decomposition. Considering the knowledge about

objects associated with the data yields better results. In this case study, it is actually

the functional decomposition.
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Also the partitions obtained using the heuristic with load balancing as the ob-
jective are close to functional decomposition.

4.1.3 Discussion

This application presents two situations which were not discussed in the examples

of the previous chapter. Edges have multiple rules as labels, and there are three dis-

connected components in the knowledge graph corresponding to this rule set. The

partitions obtained using our algorithm achieve both load balancing and reduced

communication. Some of these partitions obtained are very close to functional de-

composition also.

4.2 Case Study 2: Medical Diagnosis of Acute Abdominal Pains

Abdominal problems are one major wing of medical therapeutics and surgery. These

can be classified as chronic and acute abdominal problems. Acute abdominal prob-

lems are the most common and the most challenging, and many times life threat-

ening to the patient who comes to the emergency department. The physician on

duty has to be very diligent and distinguish between medical and surgical abdomi-

nal emergencies. In the latter group, crucial decisions have to be taken in favour of

surgery to save patient's life. For example, cases like ruptured spleen and ruptured

appendix need immediate surgical intervention. To achieve this goal, the physi-

cian has to perform various clinical tests. With the help of lab investigations and

advanced techniques like X-ray and Ultrasonography, physician can reach at the

accurate diagnosis, and patient can be treated in an appropriate way.

Many abdominal problems present themselves with signs and symptoms common

to most of them, with some clinching diagnostic features unique to each disease.

The physician has to distinguish between those signs and symptoms to arrive at

the correct diagnosis [21, 26, 89, 92]. In this context, Expert systems can help to

avoid mistakes and improve the efficiency in diagnosis. Partitioning the knowledge

base and parallel exploration of multiple diseases can further speed up the process

of diagnosis.
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4.2.1 Partitioning in the given ratio for Load Balancing

This knowledge base has 400 rules pertaining to 25 diseases. Rules for three dis-

eases viz., Acute Cholecystitis, Perforated Peptic Ulcer and Pancreatitis are given

in Appendix B. These are again given in an encoded form for accommodating and

visualizing in the form of knowledge graph on the paper. We consider a subset of

the rules, i.e., from R\ to i?31 corresponding to Acute Cholecystitis for discussion

here. The knowledge graph for these rules is given in figure 4.9. It is important to

note that unlike in aerospace application, the percentage of data to be shared by the

knowledge subsets corresponding to different diseases is considerably more. Even in

this case study, as there are a large number of rules present on branch edges, if an

edge determined to be cut, e,, happens to be a branch edge, it is left as it is without

skipping the branch portion.

Partitioning in the ratio 2 : 1

There is a single component in the knowledge graph.

Number of integer marked edges in the spanning tree / = 31.

Size of the rulebase subsets to be obtained are Z\ — 21, and z2 = 10.

Edge to be cut ei = 20.

Cutting at edge labelled 20 gives the following vertex sets and rule sets.

VSi = { vp, vf, li, lif, liq, hpc, po, pot, pi, pi, pr, di, abt, abrt, cvt, cvts, ps, pp,

xil, xcal, j, prp, sp, ACl,.., AC9, ACll, AC12, AC13, AC16, AC18, AC19,AC}

PRSi = {#1,..,#9, #11, #12? #13? #16? #18, #19? #25, #26, #28, #31 }

RS\ = {#1, ..,#9, # n , #12? #13? #16? #18? #25? #26? #28/

\RSj\ = 17

VS2 = {afp, fc, fr, fs, prt, sgb, esr, lc, sal, ecg, sgotl, sd, abwr, abwg, ms, AC10,

AC14, AC15, AC17, AC20, AC21, PPU, ACPAN, MI}

PRS2 = {#io,#14,#15,#17,#21,#22,#23,#24}

#52 = {#10, #14, #15, #17, #21? #22, #23, #24}

\RS2\ = 8
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Figure 4.9: Knowledge Graph for a portion of Medical KB
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CRS = {#19, #20, #27, #29, #30, #31 }

Among the rules in CRS, R3i has the highest number of attributes. Since 9 of
the attributes (out of 11) are present with Ply it should be assigned to />,. Now,

For RIQ, Pi has 2 out of 3 attributes pertaining to 7?19 with it. The rule is as-
signed to Px. \RSi\ = 19.

Similarly, R2o should go to P2 based on attribute count. Assuming R2o to P2 makes

)RS2\ = 9.

R27 can go to either P2 or P2. Therefore, it is assigned to Pi making |#5i | =

20.

Similarly, R2Q is assigned to Pf, \RSi\ = 21. Pj is marked okay.

i?3o can go to either Pi or P2. It is assigned to P2 making |#52| = 10. P2 is
marked okay.

RSi — {#1, ..,#9, #11, #12, #13, #16, #18, #19) #25i -,#29, #31/

|J*S,| = 21

Both Pi are P2 marked okay; since the required partitioning is obtained, the al-

gorithm exits.

Final Partition:

The final partition is given in table 4.9.

4.2.2 Functional Decomposition

A funcional decomposition may be obtained easily by considering the degree of the

attributes. For example, when we encounter an attribute that has zero outdegree,



Chapter 4. Static Knowledge Base Partitioning and Allocation: Case Studies 105

Table 4.9: A 2:1 Partition of the Medical Diagnosis Application Rulebase

considering all rules incident on the incoming edges while traversing back to data

with zero indegree in the branches (connected to it) gives a functional decomposition.

If we consider the rules pertaining to the three diseases given in Appendix B, the

above strategy separates rules for each disease. Some rules using data associated

with more than one disease were duplicated in all the concerned subsets.

4.2.3 Discussion

Our partitioning algorithm discussed in section 3.3.6 always guarantees static load

balancing. It gives good results with respect to both load balancing and communi-

cation for information exachange if an appropriate proportion of the sizes of rulebase

subsets is given as input.

However, in this application, a large number of attributes (data) are shared by

closely related diseases. Therefore, communication will be more for some subset sizes

because data is distributed without any replication in our model. This is true in

situations where rules pertaining to one disease are spread over multiple agents. An
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example is a partition in which the rules corresponding to the diseases Cholecystitis,

Pancreatitis and Perforated Peptic Ulcer are partitioned into three subsets using the

static load balancing partitioning algorithm, and the subsets are allocated to three

agents. This problem may be remedied by allowing duplication of necessary data at

the required places. The data updation overheads will also be less as most of the

values remain same for a large percent of data. Otherwise, checking once for the

already obtained data eliminates unnecessary communication.

To summarize, functional decomposition is more suitable to this application with

respect to the information exchange required. Pure load balancing yields good re-

sults with respect to information exchange also when the necessary data is duplicated

at all places. Instead, partitioning for load balancing within a partition correspond-

ing to a functional decomposition is a better choice. Futher, in an application like

medical diagnosis, the entire knowledge base need not be active at the same

time. Therefore, a control component may first be initiated arid then the process

corresponding to the related diseases be invoked dynamically.

Hence, dynamic knowledge distribution becomes appropriate not only for dy-

namic load balancing but for dynamic invocation of knowledge subsets depending

on the actual problem being solved and the solution progress. Dynamic distribution

of knowledge is the subject of the next chapter.



Chapter 5

Dynamic Knowledge Distribution

In Chapter 3, we have seen how knowledge can be partitioned and allocated stat-

ically. However, dynamic knowledge distribution becomes important for dynamic

load balancing, problem based knowledge allocation and for adapting to changes to

the knowledge base from time to time. As with static partitioning, many of the

techniques aim at homogeneous partitioning and do not take data distribution into

account. Besides heterogeneous partitioning and data distribution, the complex in-

terdependencies among the knowledge subsets require special attention. Considering

these three aspects,we develop new techniques for dynamic knowledge distribution

in this chapter. The chapter is organized as follows. Section 5.1 gives an introduc-

tion to the problem; it explains the importance of dynamic knowledge distribution

and the need for new techniques. Section 5.2 discusses the various heuristics to par-

tition and allocate knowledge dynamically for dynamic load balancing. This covers

making local exchange of rules between (neighbouring) knowledge subsets, reparti-

tioning and reallocating the entire knowledge base, and adapting to changes to the

knowledge base from time to time. Section 5.3 discusses problem based dynamic

knowledge distribution and the last section gives the conclusions.

5.1 Introduction

Dynamic knowledge distribution becomes important for the following reasons:

• Some Al programs exhibit a rapidly changing computational requirement and

have unpredictable run time behaviour [128] because they must respond to

changes in external environment. Due to this characteristic, scalability is hard

to achieve unless both static and dynamic load balancing are done. Even if

the run time situation does not change so quickly and unpredictably, in initial

stages of problem solving, knowledge and data may have to be distributed
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arbitrarily as it may be difficult to have a compile time estimate of the run-

time behaviour. In such cases, redistribution (reorganization or remapping)

of knowledge is needed to balance the load, minimize communication and im-

prove performance. Organizational self design [71] is an example for adaptive

reorganization of the agents and their knowledge for better performance in

Distributed Al systems.

• When new knowledge is being aquired either by local learning or from the

external world, knowledge base in its entirety undergoes changes. Assigning

new knowledge to appropriate agents, arid checking for load balance become

crucial in such situations.

• When agents are created dynamically as problems arrive, as in Contract Net

Protocol [114, 115], an agent may have to be provided with appropriate knowl-

edge for solving a task assigned to it. Knowledge exchange in such situa-

tions may be either directly done between two contractor agents themselves

or through a manager. This knowledge transfer may also be considered as a

separate task by itself.

• When the main memory is insufficient to accommodate the entire knowledge

base, dynamic relocation of the modules or subsets of knowledge may be nec-

essary.

• Knowledge distributed to agents for solving a particular task may not be suit-

able for solving another task. Therefore, knowledge of an agent may undergo

revisions in the form of exchanging portions of knowledge subsets already

available with other agents. Knowledge may need to be duplicated (where

often required) or deleted (where not required). The goal is to make the par-

tition self-sufficient for solving most of the tasks, thus minimizing information

exchange. The new distribution is expected to be better suited for a set of

constraints and load at a given time. This is similar to the dynamic allocation

of documents based on their use at a node and other constraints [65].

Keeping in view the goals of load balancing and minimal communication, dynamic

knowledge distribution can be done in the following ways.
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1. Minor redistribution in the form of local exchanges between neighbouring
agents (with or without duplication).

2. Repartitioning and reallocating the entire knowledge base periodically over
fixed or varying length time intervals based on the run-time statistics. If run-
time behaviour becomes stable after certain time, static distribution itself may
include an estimate of this.

However, if pure functional decomposition is the objective, there is no need for

reorganization. The knowledge remains where it belongs.

In other cases, knowledge distribution involves the following.

1. Distributing the required chunk of knowledge after the problem arrival (if the
required knowledge is not already available with the agent).

2. Limiting the changes due to additions (or deletions) as a result of new knowl-

edge acquired, to the knowledge subset that is closely associated with the

change and its neighbouring subsets. If this leads to severe imbalance over a

period of time, complete redistribution may be necessary.

Dynamic load balancing has been addressed in areas like parallel and distributed

computing [3, 17, 20, 25, 42, 66, 105, 110, 128]. However, these are suitable basically

for data parallel programs and specific types of task interaction patterns.

Dynamic distribution of knowledge in production systems has been dealt with

by Ishida et al. [71] in the context of organizational self design. Knowledge rep-

resenting agents is composed or decomposed adaptively depending on the varying

performance changes in the system. This has already been discussed in chapter 2.

It was also noted that though two agents are composed to form one agent, and one

agent is decomposed into two by arbitrarily clubbing and halfing rules in the agents,

need for better methods has been emphasized. This leads to unnecessary commu-

nication overheads but the problem is less severe when agents are not separated by

physical distance and a shared memory is used. For effective reorganization and

communication, the interdependences need to be taken into account.

Dynamic scheduling of production rules (distribution at run-time) is discussed

by Tout and Evans [119]. If the queue of tasks to be investigated is not empty, each
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idle processor requests and gets a predefined number of rules, and investigates to

find the applicable rules. Their performance analysis indicates that the design of

parallel expert systems with local working memories improves speedup as well as

efficiency.

However, both organizational self design [71] and dynamic scheduling of forward

chaining systems [119] assume a homogeneous partitioning. Further, interprocessor

distance is not considered and any agent can process any rule. While the first does

not consider data distribution, the second allows full duplication or no duplication

of the database. Shared memory systems also have synchronization and concurrency

problems [57].

However, in distributed Al systems, agents could be separated by physical dis-

tance and communicate may be by message passing. Further, dependencies among

rules must be taken into account.

Keeping local copies of the entire database involves updation of all copies in

local memories after every cycle. Instead, an incremental update followed by peri-

odic reorganization with necessary data stored only in the local copies can reduce

the update overhead and inconsistency problems. In this case at the end of every

cycle, there might be only a few changes from each node and the total number

of changes will have an upper bound equal to the number of data elements in the

working memory. This is beneficial especially when the amount of data shared is not

large. Shared memory systems have problems like synchronization and concurrency

control.

Further, the work by the above two groups assumes dynamic creation of processes

(agents) to select and assign a set of rules. When agents are fixed (with a given

capacity), the changing knowledge and data make different instances of the agents.

This situation, however, requires new techniques for dynamic distribution to be

developed.

Unlike in data parallel programs,where the interaction is only between adjacent

modules (when the task graph is a chain of modules) or there is no interaction

at all [15, 20, 75], knowledge subsets in Distributed Al problems exhibit complex

interdependencies. Therefore, mechanisms are needed for other domains to take care

of more complex relationships among modules.
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First, we attempt to see how our static partitioning heuristics can be modified to

suit dynamic load balancing with reduced communication. Then, we discuss about

the dynamic reorganization which becomes necessary with changes to the knowledge

base and the problem based distribution of knowledge [97].

5.2 Dynamic Partitioning and Allocation with Load Balancing

A dynamic load balancing scheme consists of four policies: control policy (who makes

the load transferring decision), information policy (method of exchanging load sta-

tus), location policy ( determining the possible candidates to whom the task has

to be transferred ) and transfer policy (when exactly the dynamic load balancing

procedure has to be invoked) [128]. The terms agent, node, and process are used

synonymously.

There are various overlapping approaches to dynamic load balancing. In a cen-

tralized approach, control is authorized to a single controller whereas in a decen-

tralized approach, control is distributed to each node or multiple nodes [128]. In

a deterministic (or state dependent) approach, balancing is done based on current

system state, utilization of CPU and memory, average response time, etc., whereas

in a probabilistic (or nondeterministic) approach, a job is despatched according to

a set of branching probabilities [42, 128]. Similarly, a distribution scheme could

be either adaptive or nonadaptive. In the former, load balancing policies are mod-

ified as the system state changes while in the latter, the balancing policy remains

unchanged. Finally, in a cooperative approach, nodes coordinate with each other

in making a decision, while in a noncooperativc approach (isolated), this is done

without considering states of other nodes in the system [128].

In all the heuristics to be discussed, we make a few assumptions about the

physical network of agents. The network protocol is assumed to be taking care of

the data exchange format and other communication aspects. It is also assumed that

the distance metric used incorporates factors like communication via other nodes

and that infinite buffer space is available at the sender, receiver and intermediate

nodes thus implying no queueing delays.

Further, we differentiate between a physical network and a logical network in
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the system. The physical network is the actual collection of agents with given in-

terconnections. A mapping of the possibly interdependent knowledge subsets onto

physical network gives us the logical network. Thus the logical network may be a

subgraph of the physical network. It represents the physical communication links

which become active as a result of the communication required among knowledge

subsets assigned to agents in a particular allocation. When there is a change in the

knowledge possessed by an agent, either due to redistribution (repartitioning and

allocation) or because of transfer of small portions, the logical network also may

change. The new distribution may have new coupling between subsets and hence a

new logical network may become active.

We shall now explain the load balancing policies used in our heuristics.

Control, Information and Transfer Policies

The control policy is centralized in all the heuristics to be presented.

The general strategy used in information and transfer policies is to measure the

load on each agent during a certain time interval and use this information to predict

and balance the load in the next interval. An update policy is used to exchange load

information among the agents and compute the desired load for each agent using

the available (actual) load information. Agents are categorized as heavily loaded or

lightly loaded depending on whether the difference between the actual load and the

desired load is positive or not. This information is used to bring loads on agents

close to their desired loads in the next interval.

Depending on the variance in the load imbalances in the previous intervals, length

of the time interval is changed to achieve an adaptive load distribution. Adaptive

load balancing can be achieved by invoking the particular balancing heuristic when-

ever the load crosses a predefined threshold also.

Location policy

In a CPS system using distributed local memories and message passing, load transfer

should be done between neighbouring agents to the maximum possible extent.
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After identifying the heavily loaded and lightly loaded nodes, if the execution

of tasks is independent of the node as well as other tasks, it is simple to transfer

load from a heavily loaded node to a lightly loaded node. However, when there

is interdependence among the tasks, transferring excessive load from one node to

another is not straightforward. The dependencies impose some constraints.

If the load is transferred arbitrarily between a heavily loaded and a lightly loaded

node, particularly when there is no connection between them in the logical network,

it leads to unnecessary communication and excessive delays. Therefore, while trans-

ferring rules, it is necessary to follow the logical network considering the interdepen-

dencies among the subsets in the knowledge graph. This implies that for rules to be

transferred between agents, the corresponding subsets should have a dependency arc

between them. This is also because firing frequencies of rules with input or output

dependency are interdependent and an arbitrary transfer will increase the commu-

nication. Secondly, this implies that when a heavily loaded node is not adjacent to

a lightly loaded node in the logical network, the transfer cannot take place directly

between them, but should ripple through the nodes in between.

Imbalance vs. Communication Delays

Achieving perfect load balance is not possible because a rule cannot be subdivided

to make its firing frequency exactly match the desired load. Therefore, the goal is

to have a fairly optimal load distribution with less communication. Either of these

requirements may be considered as primary and the other secondary in a given

situation. Transferring of knowledge or data for load balancing should not result in

more delay due to extra communication than that caused by executing the excess

load locally. Therefore, information policy should consider and compare the delays

involved in both imbalance and communxation as above.

Every node can be allowed to take an extra load (defined as a threshold) r that

can be tolerated by the system. Only when the threshold is exceeded, a load transfer

decision may be taken. Similarly, data updation overheads may also be taken into

account. The threshold value is taken as some constant in the examples discussed

below.
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Starting point

Our dynamic load balancing and distribution start at a node with the heaviest

imbalance. The option of starting the balancing process at a heavily loaded node is

chosen because heavily loaded nodes cause more delays in problem solving.

Stop criterion

Since perfect load balancing is not possible, as discussed earlier, we must be able to

determine when to stop. One method is to specify a threshold r as discussed earlier,

another is to limit the number of iterations. We shall use the first method in our

heuristics.

5.2.1 Local transfer of Knowledge for Load Balancing

The heuristic presented below first computes the load on each agent during an

interval, determines the load imbalance, and adjusts the load imbalances starting at

a heavily loaded node.

Load on an agent A{ in an interval A is calculated as the product of the average

rule processing time (average rule matching time tm + average rule firing time tj)

and sum of the firing frequencies of all rules assigned to A{.

Sum of the loads and agent capacities are used to calculate the ideal loads for

agents. Imbalance with an agent, /,, is determined as the difference between ideal

(or desired) load Z), and actual load Li corresponding to the previous interval, i.e.,

7, = Li — £),-. If 7, is positive, the node is considered to be heavily loaded, and

if 7, is negative the load is considered to be lightly loaded. Obviously, if there is

an imbalance, there must be atleast one node which is heavily loaded and another

which is lightly loaded.

Starting at a subset (and hence the concerned agent) with the heaviest imbalance,

loads are adjusted by transferring some excessive load from the heavily loaded node

to a lightly loaded node such that the resulting loads on the agents are close to their

ideal loads in the previous interval.
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Load transfer has to be made by shifting a few rules from the heavily loaded

node to a lightly loaded node. A rule should be chosen for transfer such that it is

close to the rules in the lightly loaded node, i.e., the semipath between this rule and

another in the lightly loaded node is as short as possible (=1). After selecting such

a rule, it is transferred only if any of the following is true:

• the imbalance vanishes, i.e., when the product of its rule firing frequency (sum

of frequencies) and the average processing time is equal to the excessive load

• the (more) heavily loaded node becomes less heavily loaded, i.e., when the

load corresponding to the rules as described in the above case is less than

excessive load

• the resulting magnitude of imbalance is less than the magnitude of the present

imbalance at least at the heavily loaded node, i.e., when the load corresponding

to the rule is only slightly greater than the excessive load.

However, since the knowledge subsets will have interdependencies, it is necessary

to follow the logical network and transfer the load only to its closest neighbours.

Supposing more than one neighbour is a candidate for transferring the load, the

closest neighbour with closest imbalance in the opposite sense, i.e., lightly loaded

node (for a heavily loaded one) is chosen for transferring the excessive load.

If the heavily loaded node doesn't have a lightly loaded node as its neighbour in

the logical network, the load changes ripple through the intermediate neighbours. It

is preferable to keep the number of such intermediate nodes small. Also, balanced

nodes are kept undisturbed as far as possible.

After the transfer is made, the directories of agents including the rule sets, vertex

sets, NRFs and MRBs are updated to reflect the change.

The process is repeated with the new heaviest node until the load imbalance is

below the threshold r (some constant in our discussion). If the variance in the load

imbalances in successive time intervals of observation increases, the length of the

interval is shortened, otherwise it is increased by an-appropxiate-amount.
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Algorithm dyndistl

(* dynamic distribution of knowledge using local changes to knowledge subsets *)

1. perform initial partitioning and allocation;

2. after a time interval A

a. for each agent (part) A,

let fj be the number of times Rj € ^4,is fired;

actual load X, = (tm -f tj) •
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Example

We shall consider the 2:1:2:1 partition of rulebase 2 discussed in section 3.7. How-

ever, interagent distances are considered to be 1, and we call the agents having

subsets P\,P2,Pz and P4 as A!,A2,A3 and A4 respectively.

Now the problem can be formally stated as below.

Given

1. the network of agents AuA2iA3 and A4 with capacities in the proportion

2:1:2:1,

2. the communication coupling P\P2 = 2, P2^3=l, ^2^4=1, A^3 = 1 and
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3. the distance between agents as A\A2 = 1, AiA3 = 1, A}A4 = 1, ^2^3 = 1>
A2A4 = 1 and A3A4 = 1;

4. the average rule processing time (tm + </) as 1, and the firing frequency vector

of rules {Ri, ..Ru} in a given time interval as

let us find a snapshot of the dynamic allocation at the next time interval based on

the previous interval statistics using our heuristic dyndistl.

Load situation on agents is given as

The node with the heaviest imbalance is P4. Pi is lightly loaded and can take

another 2 units. However, these two are not neighbours in the logical network. P2,

and P3 are perfectly balanced.

Starting the load balancing process at P4, its neighbours are P2 and P3 in the

logical network. Since both are balanced evenly, it is not possible to achieve load
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balancing without disturbing at least one of them temporarily. We consider P2 as

an intermediate node for allowing load changes to ripple through it from P4 to P^

and balance the load.

Now, the edge KR between P4 and P2 has rule R12 on it. Therefore, Lh = L4 =

6, and Rc — /212, j\ — j c — fu = 3 units;

Vi = R\ Vj — K\ vk — Q] L4 = 6, I4 = + 2 , L2 = 4 and 72 = 0

Since the new imbalance value |/4 — / 1 2 | <= r, after shifting the edge KR corre-

sponding to R\2 to P2 , the new P4 and P2 will be as shown below.

The new load status of the agents is as shown below.
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Agents A l A 2 A 3 AA

Desired Loads 8 4 8 4

Actual Loads 6 7 8 3

Imbalance -2 +3 0 -1

The node with the new heaviest imbalance 3, is P2. PA and P\ are lightly loaded

with imbalances of -1 and -2 respectively. Since the lightly loaded neighbour with

the closest imbalance is Pi, Px is considered for the load transfer.

Now, the edge BF (labelled 6) between P\ and P2 has rule R2 on it.

Therefore, the heavily loaded agent is A^ = P2; The accepting agent Aa is Pt.

Re = R2, fc = h = 2 units;

The set of vertices (each is a v,) pertaining to all edges belonging to R2, to be

transferred from P2 to P\ = {D,E,F};

After all these are transferred from P2 to Pj, Vj = B Vk = A", t\ = F\ L\ = 6,

h = - 2 , L2 = 7 and 72 - +3.

Since |(/2 — f2)\ <= T, we allow the transfer of rule and some vertices.

Before the transfer of the rule i?2, subsets Pl and P2 are as shown below:



The new load status of the agents is as shown below:

Agents Ai A2 A3 A4

We stop at this stage as the magnitude of imbalance with each agent is equal to

1 here.

The resulting partitioning of the knowledge graph is shown in figure 5.10
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The new CRS edge is the edge FK labelled 6. All the vertices between edges 6 and

7 in the spanning tree ( the unmarked ones here) are transferred from P2 to Pj.

However, D and E do not appear in the NRFs and MRBs as they are not present

on the new edge FK.
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Figure 5.10: A 2:1:2:1 Dynamic Partitioning of Rulebase 2 using Local Changes
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Table 5.10: A 2:1:2:1 Dynamic Partitioning of Rulebase 2 using Local Changes

Final Partition:

The resulting partition is shown in table 5.10.

5.2.3 Repartitioning and Reallocation of the Entire Knowledge Graph

The static partitioning heuristic discussed in chapter 3 can be modified to partition

the rules based on the load by considering rule firing frequencies. Changes are

required for some of the procedures as described below.

Instead of just counting on the number of rules, we should sum the firing fre-

quencies (multiplied with average rule firing time) of rules. Mainly the procedures

dealing with determination of the sizes of the subsets and checking whether balanced

partitioning is obtained need some changes for dynamic repartitioning.





Example

Considering the same rulebase with 12 rules in the previous section, let us obtain a

partition with the rulebase subset loads in the ratio 2:1:2:1.
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R7 should go to P2 based on the attribute count, and it can be safely assigned

to P2 as after adding this rule, its load becomes equal to its desired load, i.e.,

L2 = D2 = 4. P2 is marked okay and is kept in the okay list.

The new CRS = {Rio,Ru}.

Considering rule i?iO,it should go to any of P3 and P4. Since P3 requires some

more rules for its share, assigning Rw to P3 will bring its load L3 closer to D3.

Therefore, assigning the rule to P3, RS3 = {Rg,Rg,R10}', L3 = 6. However, it still

needs 2 units for its desired load.

With the CRS — {Ru}, R\7 may be assigned to any of P4 and P2 based on the

attribute count. However, since P2 is marked okay, it should be assigned only to P4.

Now, RS4 = {Rn,R\2}, and X4 = 6 with an excessive load of 2 units making it a

heavily loaded node.

Using step 3(d) of the heuristic dyndistl, the load imbalance is adjusted such that

Ru goes to P3 making RS3 = {jR8,i^9, Rio,Rn}, L3 = 9,RS4 = {Ri2},andL4 — 3.

Since the individual imbalances are below 1, with a total imbalance of 2 units, the

algorithm stops.

Final Partition

The resulting partition of the knowledge graph is shown in figure 5.11 and table

5.11.
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Figure 5.11: A 2:1:2:1 Dynamic Repartitioning of Rulebase 2
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Table 5.11: A 2:1:2:1 Dynamic Repartitioning of Rulebase 2

5.2.4 Adaptive Reorganization for accommodating Changes to Knowl-

edge Base

As mentioned in the first section of this chapter, when the knowledge base under-

goes changes in the form of additions and deletions of rules due to self learning

capability or acquisition of new knowledge from the external world, say from knowl-

edge engineer, adaptive reallocation (reorganization) becomes necessary. This can

be done by adding a new rule to a subset which has the maximum number of at-

tributes corresponding to its premise and action parts. If the addition results in an

imbalance, and if the imbalance exceeds a threshold, either of local reorganization

or repartitioning heuristics can be used to balance the load.

Similarly, if some rule is deleted from a part, reorganization or redistribution

may be done afresh. If necessary, a copy of the rule may be stored in the back up

for historical or statistical purposes.

The metaknowledge directories of the corresponding agents have to be updated

for reasoning and further dynamic distribution.

The steps are given in the following algorithm.
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Algorithm dynreorg

1. Define a time window and a global threshold

2. Within each window,

a. if addition of a rule then

choose a subset with maximum attribute count corresponding to that rule;

assign the rule to that subset if threshold is not exceeded;

b. if deletion of a rule,

delete it from the corresponding part;

store it in the backup copy for future use;

if the size falls below a certain minimum

and if there is a rule which belongs more closely to this subset

bring and add it to this part;

c. update the directories of corresponding agents;

propagate the changes to the user agents;

3. At the end of window,

perform repartitioning and reallocation;

using algorithms described in section 5.2.3;

4. Check the number of changes in the previous intervals;

if the number of updates are increasing over a few intervals then

set the window size shorter

else

if the variance is decreasing and changes are few in number then

set the window longer;

endif;

endif;

5. Start the new window and go to step 2.
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5.2.5 Local Reorganization using Active and passive sets

Another way of doing the allocation is by defining active and passive sets of the

rulebase. An agent may or maynot have the entire knowledge base with it. However,

to reduce the pattern matching time and to achieve parallelism, a partition may be

made. Each agent can then have its active set as the subset assigned to it and

the remaining portion of the rulebase as its passive set. However, as the probelm

solving proceeds, if the partitioning proves to be either imbalanced, or inefficient

with respect to communication we may make a few modifications to the active and

passive sets. Depending on the number of requests for data items from other agents,

if the other agent does not seem to be using the data generated by the corresponding

rule, the rule can be shifted to a requesting agent. The steps at an abstract level

are listed below.

Algorithm Active^and-Passive^Sets

1. make an initial partition and allocation;

let the subsets assigned to the agents be P\,P2,..,Pk',

for i := 1 to k do

Active set ASi = P%\

Passive set PS, = P - P,;

endfor;

2. within a time window,

keep a count of communication requests for a partial results (or data item)

from an agent AT to all sending agents As\

3. if the agent As generating the data item has a smaller utilization count then

assign the rule generating the data item

to a user agent with highest utilization count provided

the communication due to this does not increase

get the rule from the passive set and include it in the active set;

endif;
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The same policy may be used for dynamic relocation of rules.

5.3 Problem Based Knowledge Distribution

When the knowledge base partitioning is fixed as we did for monitoring applications,

the task partitioning involves just matching and firing the rules enabled; task par-

titioning is implicit. However, in domains like medical diagnosis, a problem based

distribution of knowledge and hence dynamic creation of agents is essential. In such

applications, depending on the symptoms, we will have to explore the possibility

of several diseases. Knowledge can be partitioned statically based on the disease

or physical organs. When more than one disease is likely and the answer must be

obtained quickly (using forward chaining), simultaneously multiple paths may have

to be explored. Based on the confidence factors, if any, final decision may be arrived

at. Backward chaining may be used for differential diagnosis.

For example, in acute abdominal pains, if the pain is in the epigastrium, RU

or LU, the related diseases could be Acute Cholecystitis, Acute Pancreatitis, Perfo-

rated Peptic (Duodenal) Ulcer, Acute Hepatitis, Acute Pyelonephritis and the like.

Considering only the first three for illustration, Acute Pancreatitis (AcPan) and

Perforated Peptic Ulcer (PPU) could cause pain in any of the right or left upper

quadrants or epigastrium. This may require the doctor to keep all three in mind

and simultaneouly explore the possibilities and decide on which should be the actual

problem. However, as Acute Cholecystitis (AcCh) has its pain mainly in the right

upper quadrant, if the pain is experienced in any other region, Acute Cholecystitis

may be given secondary importance. With pain in the right upper quadrant area,

all the three have to be simultaneously explored.

In all the three, i.e., PPU, AcCh, AcPan, the symptom vomiting may be present

in the order of increasing frequency. In the first the frequency may be absent to

few times, in the second it may be few to many times and in the last it may be

multiple and persistent. Therefore, unless vomiting is absent, all the three have

to examined, and only if vomiting is persistent implying AcPan, all the modules

corresponding to the three diseases should be kept active. There are many other

symptoms which are commonly present in almost all these diseases, but the degree

(or level) of frequency may be different. Since patients may not give correct details,
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it is difficult to determine the level unless the doctor is experienced and patient is
under direct examination.

The features specific to a particular disease help in the exclusion of some possibil-

ities. But, sometimes multiple problems may be simultaneously present. Therefore,

simultaneous activation of the related modules is essential. Apart from this, con-

firmation with data obtained from laboratory tests, X-ray and Sonogram is needed

for a correct diagnosis. In case of a wrong diagnosis, recomputation is necessary.

For example, a rule like

if

(location _oLpain = epigastruim)

(patient .position = flat)

(abdominal_wall_rigidity = boardlike)

(previous-history = ulcer)

(vomiting-frequency = nil)

(peristaltic, sounds = absent)

(dietary. intolerance_to = cabbage)

then

(disease PPU)

(confidenceJactor = 95%)

may indicate Perforated Peptic Ulcer to a large extent. Confirmation with X-ray

may indicate 75% free air in the ileus.

The invocation of modules dynamically depending on the current status of prob-

lem solving requires estimation of the probabilities of a module being (the most)

relevant. Determination of these probabilities and correct invocation of suitable

modules is the task in hand. Confidence factors, and probability and uncertainty

theories may be considered for the calculation of probabilites.

For example, the following rules may be used to activate the modules corre-

sponding to the diseases appearing in the conclusion part of the rule.
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if

(location_of_pain = epigastruim/RUQ(0.9))

(radiation_of_pain = around to back, angle of scapula, right shoulder)

then

(disease may be AC)

if

(location-oLpain = epigastrium/RUQ/LUQ)

(radiation_of_pain = diffused)

then

(disease may be PPU)

if

(location_of_pain = epigastruim)

(radiation_of_pain = slow, spreading through back)

then

(disease may be AcPan)

if

(location_of_pain = chest)

(sensation_of_pain = band around chest)

(radiation.of.pain = arms, left epigastrium, neck, head)

then

(disease may be MI)

if

(location_of_pain = RUQ))
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(size_of Jiver = enlarged)

(liver -palpability = yes)

(liver-tenderness = yes)

then

(disease may be AH)

Only the portions of the corresponding diseases may be activated by considering

the disease name as the final result attribute and including all rules incident on the

edges leading to external input attributes (ignoring the edge direction) or using a

static functional decomposition obtained in the same way.

However, as the data is processed, rules excluding the possibility of some diseases

may get fired. This can inactivate the modules corresponding to the disease whose

name has been removed from the working memory.

For example the following rules exclude the possibility of the diseases Myocardial

Infarction, Perforated Peptic Ulcer, and Acute Pancreatitis respectively.

if

(ECG = normal)

(SGOTXevel = insignificant)

then

MI

if

(Degree_of_Shock <> not profound)

(abdominal. wall_rigidity = boardlike)

then

PPU

if
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(Serum_Amylase_Level < 1000 units/litre)

then

AcPan

After this has been done, checking for all the symptoms, and seeking data if

necessary from the user and other modules, correct diagnosis can be arrived at.

5.4 Conclusions

We have discussed various methods for distributing knowledge dynamically far load

balancing, problem based allocation, and for adaptive reorganization to accommo-

date changes to the knowledge base. For load balancing, we have developed several

methods like making minimal changes to the knowledge subsets and repartition-

ing/reallocation of entire knowledge base, adaptive reorganization to accommodate

changes to the knowledge base, and the use of active and passive sets of rules. Dy-

namic invocation of appropriate knowledge subsets depending on the problem being

solved is discussed for medical diagnosis domain.

Apart from partitioning programs, data and knowledge, system partitioning, i.e.,

clustering the nodes, can also improve performance. This simplifies the management

of resources and diminishes the overhead in dynamic load balancing as communica-

tion between processors belonging to the same cluster is less expensive than those

belonging to different clusters [13]. Assuming newly created tasks are initially as-

signed randomly to clusters and processors, with periodic exchange of load infor-

mation, tasks can be eventually redirected to another processor of the same cluster.

This is a compromise between load balancing and minimizing communication.

One of the major goals of knowledge distribution is minimizing information ex-

change. While a good distribution of knowledge and data facilitates task decom-

position, allocation and problem solving, actual problem solving in CPS systems

involves reasoning by multiple agents. Since task sharing is made implicit by the

distribution of knowledge, agents need to cooperatively exchange results of local

problem solving. Reasoning for seeking information from other agents is discussed

in the next chapter.



Chapter 6

Distributed Reasoning with Incomplete
Information

In the previous chapters we have seen how knowledge can be partitioned and allo-

cated to different agents. This reduces the communication necessary for information

exchange between agents. However, if they cannot proceed with local problem solv-

ing during the actual problem solving, it is important for the agents to reason about

when they should seek nonlocal information and what exactly to request and from

whom. In this chapter, we present a distributed reasoning strategy to seek informa-

tion from other agents for resolving local incompleteness in distributed production

systems. The organization of the chapter is as follows. Section 6.1 gives an intro-

duction to the problem and section 6.2 presents a brief review of the related work.

Section 6.3 explains our distributed reasoning strategy and section 6.4 discusses

the case studies. Finally, the last section presents the summary and conclusions.

6.1 Introduction

As mentioned in chapter 1, DAI systems are often geographically distributed with

many natural or temporal dependencies among overlapping subproblems [67, 120].

In general, it is also difficult to decompose the main problem into nonoverlapping

subproblems. Agents may not have a complete and correct view of the global situa-

tion, and knowledge or information available with an agent may not be adequate to

solve all (sub)problems. Therefore, agents need to get information from others by

explicit message passing or by accessing the shared memory.

However, one should see that the improved performance due to parallelism is not

nullified by the additional communication required or chaos created due to incor-

rect solution paths. There should be coordination among agents' actions. Agents

must know when they should concentrate on local problem solving and when they

138
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should seek information or help from other agents. Since information exchange is

influenced by the way data, knowledge and subproblems are distributed, an ap-

propriate and careful distribution certainly reduces communication and increases

the efficiency besides having other advantages mentioned in the previous chapters.

Further, metaknowledge about the data and knowledge available with other agent;,

facilitates distributed reasoning by focussed addressing.

Monitoring applications such as real-time aerospace vehicle checkout systems are

data driven and require forward chaining as the reasoning mechanism. However, re-

search on distributed reasoning with incomplete information for data driven systems

is very little. In this direction, we propose a strategy for an agent to reason with

incomplete information in distributed forward chaining systems. It answers three

important questions concerned with information exchange — when should an agent

ask others for information, what exactly to ask, and whom to ask [ %,l00]. Our

assumption about incompleteness of a local knowledge/data base resulting from an

agent's need for more information is similar to the proposal of Simon and Li [86]

and can be resolved by allowing feedback from other agents' knowledge bases.

6.2 Related Work

Though distributed reasoning, particularly with respect to forward chaining, has not

been adequately addressed in the literature, lot of work has been done on issues re-

lated to communication that may facilitate distributed reasoning. Various architec-

tures, strategies and protocols have been suggested and used [22, 36, 37, 40, 115,129].

Their main emphasis is on cooperation, control, task distribution, and distributed

planning.

DAI communication aides developed by Huhns et al. [64] provide low level com-

munication and reasoning primitives necessary for beneficial interaction between

heterogeneous expert systems. Their computational agents consist of two parts: a

reasoner and a communication aide. Aides also help to detect deadlocks.

HECODES [7, 131] is another architecture for problem solving by a set of het-

erogeneous, cooperating expert systems where parallel execution opportunities are

exploited. It supports various kinds of cooperation, avoids deadlocks, and provides

communication ability.
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If individual expert systems use different inexact reasoning models, it is necessary

to transform the uncertainties of propositions from one model to another. This

involves dealing with aspects like competing hypotheses, cooperation and decision

making [76]. Zhang et al.[130, 131] recognize semigroups as algebraic structures of

inexact reasoning models and use homomorphic and heterogeneous transformations

of these uncertainties. Different solutions are synthesized based on the mean and

uniformity of the uncertainty values.

When agents are heterogeneous with respect to the domain knowledge possessed

or knowledge representation schemes used by them, cooperation and interagent com-

munication for reasoning about other agents become complex. Weihmayer et al.

[121] restrict agent diversity by requiring that agents must possess common seman-

tics of two sorts, viz., knowledge of action effects and knowledge of goal intentions,

for dealing with cooperation and communication issues.

If agents that are nonmonotonic reasoners share different view points, exchange

beliefs and then make inferences based on the exchanged beliefs, ensuring knowledge

base integrity is important. Whenever there is a change made to a justification in

one agent, consistency must be ensured among the beliefs in different agents. Huhns

et al.[63] propose an algorithm for multi agent truth maintenance in this context.

Mazer [91] uses temporal and epistemo logics to examine (as external observers

and designers) and characterize knowledge and its evolution among interacting

agents in these systems. Reasoning about knowledge helps to understand the role

of communication in achieving coherence and coordination: coherence and coordi-

nation are achieved when certain knowledge states (propositions about one set of

agents to be known by other agents) are communicated.

Singh et al.[113] propose a declarative representation scheme based on tempo-

ral logic for specifying the acting, perceiving, communicating and reasoning abili-

ties of agents. It specifies different kinds of protocols viz., command, information,

request, permission, prohibition and explanation protocols in terms of constraints

among agents for communicating at the problem solving level.

Campbell et al.[14] discuss knowledge interchange protocols to keep the knowl-

edge interchange under control by structuring the possible acts of communication in
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advance. It is similar to the way communication and actions are structured in formal-

ized public activities like traditional ceremonies, behaviour by diplomats etc. Their

tones of communication include many of the types discussed in [63, 64, 113, 125];

eg., action requesting, information seeking, and warning.

Woo et al. [126] propose an architecture, MOAP, for supporting knowledge

communication in information systems. Three forms of knowledge communication,

knowledge acquisition (receiving knowledge from another agent), knowledge dissemi-

nation (making knowledge available to another agent) and knowledge transformation

(changing knowledge of one type into another type) are discussed. Similarly commu-

nication within an agent itself among agents within the same organization, among

agents in different organizations, and between users and agents are discussed.

Bulletin board model, proposed by Lun et al. [88], combines attributes of in-

tegrative systems and blackboard models emphasizing on real-time dialogue and

interaction. Agent dialogue refers to the general information transformation which

does not require immediate action and leads to augment knowledge of other agents

for improving the performance. Agent interaction is meant for imperative informa-

tion that results in the form of commitment to action by senders and receivers. Both

public and private communications are supported for heterogeneous agents that use

different types of knowledge representation.

COSMO [125] is a general scheme for communication in cooperative knowledge

based systems to notify and query agents, for executing and discarding messages.

It uses organizational roles and the past performance to calculate the utility values

of agents in order to query for information. It gives a definition of communicative

acts and the resulting set of communication strategies and protocols. It is a gen-

eral scheme in that, communication comprises of all types of action and response

messages dealing with inquiries, informing, and complaints.

Genesereth et al.[53],in their agent-based approach to software inter-operation

(ability of programs that can exchange information and other services with other

programs or other software products and thereby solve problems that cannot be

solved alone), developed an Agent Communication Language (ACL) for exchange

of knowledge (information) and other services among agents. The ACL consists of

three parts, viz., vocabulary, an inner language called KIF (Knowledge Interchange

Format) and an outer language called KQML (Knowledge Query and Manipulation
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Language).

In Distributed Knowledge Model(DKM) [86], agents are organized as a hier-

archy with possible lateral connections among agents in different subtrees. Their

knowledge in the form of Prolog predicates is classified as local, group and global

Knowledge is distributed, not duplicated, and not shared among agents. Instead,

inference is distributed to agents with the required knowledge. Their inference pro-

cedure assures that knowledge incompleteness problem is propagated from parent

agent to grand parent agent and so on, if it cannot be resolved within a subtree.

A similar scheme PARTHENON is proposed by Bose et al.[10] for parallel theorem

proving.

DARES [67] experiments with various types of knowledge distribution allowing

duplication and dynamic additions to the knowledge subsets. It is assumed that

agents do not know whom to ask for the knowledge. If proof advancement is un-

certain and the number of predicate symbols is nondecreasing in successive levels of

resolution, a knowledge importation request is made by the agent. This is done by

first calculating the possible likelihoods for its clause set and broadcasting requests

for clause sets which resolve with the local clause sets of highest likelihood. If these

requests fail to import nonlocal knowledge, it relaxes the likelihood constraint and

repeats the same process until the agent is either successful in importing the required

knowledge or the agent has exhausted its clause set.

However, both DKM and DARES are logic based distributed intelligent back-

ward chaining systems. Some systems like AIDEs, HECODES deal with deadlocks,

uncertain information and beliefs of multiple agents. Rest of the work including

MOAP, COSMO, Bulletin Board model concentrates on communication, but rea-

soning for incomplete information, particularly in forward chaining systems, needs

more specific strategies. Our work is related to reasoning in distributed forward

chaining systems. Its emphasis is on how to determine what information is required,

and whom to ask when an agent in a distributed intelligent system cannot proceed

with the reasoning thread. It is general enough to take care of any type of knowl-

edge distribution. Metaknowledge is used to reduce communication for information

exchange.
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6.3 Reasoning in Distributed Production Systems

Before discussing about reasoning with incomplete information in distributed pro-

duction systems, we shall briefly explain the reasoning process in production sys-

tems.

6.3.1 Reasoning in Production Systems

A (forward chaining) production system [70, 71] is defined by a set of rules or pro-

ductions called production memory (PM) together with an assertion data base called

working memory (WM) that contains a set of working memory e/emcnfe(WMEs).

Each rule comprises of a conjunction of condition elements called the left-hand side

(LHS) of the rule, and a set of actions called the right-hand side (RHS). The LHS and

the RHS are also called as premise and conclusion parts of the rule. Conditional

elements consist of attribute, operator and value sets. The value of an attribute

can be either constant or variable. Positive condition elements are satisfied when

a matching WME exists, and negative condition elements are satisfied when no

matching WME is found. The RHS specifies assertions to be added to or deleted

from the WM. WMEs consist of attribute value pairs(AVP's).

In a conventional (single agent) production system, an inference cycle consists

of match, select, and act phases. In the match phase, the set of rules for which

LHS parts match the current environment of WM is computed. As 90% of the

total computation time may be consumed in matching patterns, several algorithms

like RETE [44] and TREAT [93] are used to speed up pattern matching. Further,

as the number of working memory elements increases, efficiency of the production

system decreases due to cost of join operations to be performed in the match process.

Ishida [68] optimizes the total cost of join operations by using statistics measured

from earlier runs of the program and optimizing the sharing of join operations.

Acharya et al. [1] partition and distribute hash tables of working memory elements.

In this context, the rulebase partitioning along with working memory distribution

discussed in this thesis also improves the performance of the system by reducing the

pattern matching time. This is achieved by reducing the search space with smaller

rulebase subsets.
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A rule is said to be enabled when all its condition elements match with the

working memory contents. (A set of WME's that satisfy the positive condition

elements is called as an instantiation of that rule.) If there are only a few conditional

elements of a rule matching with WME's then, that rule is said to be partially

matched. Hence, a rule with a partial match may get enabled in the course of

execution if either external input data or previous rule firings cause suitable changes

to the WM.

If a single rule is enabled, the rule is fired in the act phase by performing addi-

tions and deletions on the WM as specified by the RHS of the selected rule. If there

are many rules matched, in a single rule firing strategy, the select phase chooses ex-

actly one of the matching instantiations of the rules using some predefined criterion.

However, in order to fire multiple rules, interference among the rule instantiations

must be checked. Interference exists among rule instantiations when the result of

parallel execution of the rules is different from the result of sequential executions

applied in any order. This analysis can be done using dependency graphs either

at compile time or at run time [69, 70]. Rules which do not interfere may then

be fired concurrently. However, firing compatible rules without taking the problem

solving strategy into consideration can easily result in incorrect solutions (conver-

gence problem). This needs to consider the rule dependencies and the context,i.e,

the conditions under which the conflict resolution can be eliminated [80].

In a distributed production system, if two interfering rules are distributed to

different agents, the agents must also synchronize their actions to prevent the rules

from being fired in parallel and thus maintain consistency [71].

However, multiple rule firing within an agent is part of local inferencing, and

synchronization of actions of different agents is concerned with parallel firing of rules

in different agents. The distributed reasoning and thus the information exchange,

however, are independent of the rule firing strategy used within agents. Hence, we

do not discuss these aspects hereafter.
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6.3.2 Reasoning with incomplete information in Distributed Production
Systems

In real-time expert systems, in order to meet the deadlines, faster processing is

required. For example, in an aerospace vehicle checkout application [104], health

of the system has to be continuously monitored before checkout. This requires the

system to fire as many rules as possible and maximize the performance. Throughput

of such a system can be measured as the number of rules fired in unit time. Even

in a medical diagnosis application, in case of acute pains, it is essential to arrive at

the correct diagnosis fast and save life.

In a single agent system, as long as there are some enabled rules, the agent will

be busy firing them. If there are no enabled rules, then the system might have either

completed the given task and is waiting for another, or is waiting for some data that

can be obtained from the user or sensors in the external world. In both the cases,

as soon as new data arrives, some rules may get enabled and fired.

In a distributed production system, the situation becomes more complex be-

cause other agents may have the required information. The incompleteness of local

information can be resolved with information available with other agents.

When to ask?

Knowing when exactly to ask others requires us to differentiate between the suc-

cessful task completion and lack of progress due to nonavailability of required infor-

mation. Therefore, we introduce a new rule type, viz., a termination rule, to denote

rules that result in (successful) completion of a task from the system's point of view.

These can be identified by domain experts. If no termination rule is fired and the

agent doesn't have any enabled rules, it is necessary to identify the information use-

ful in enabling the partially matched rules. Assuming that acquisition of data from

the local user or sensor is automatic (as part of local inferencing), we consider only

the distributed reasoning part to seek partial results and data from other agents.

Thus, the inference cycle in a distributed production system environment has steps

1 and 3 extra as shown in the steps below.
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1. If a termination rule is fired then

report the result to the sender of the task

(* user or another agent *)

exit (* current task is completed *)

endif

2. Match

3. If there are no enabled rules then

seek information from other agents

4. Select

5. Act

Step 3 is required for distributed reasoning, i.e., deciding on when to ask, what

exactly to ask and whom to ask.

What to ask?

When there are no enabled rules, the reason could be the nonavailability of the

required data or partial results with the agent. The information to be sought depends

on two aspects:

• which rules can be fired by requesting as less information as possible?

• what information can increase the probability of firing a large number of rules,

and how easily can it be obtained?

Firstly, among the partially matched rules, fewer the unmatched Attribute Op-

erator Value Sets (AOVS's), higher the likelihood of that rule getting enabled.

Definition 1

Let pn be the number of attributes participating in the premise part of a rule R and

mn the number of matched attributes in it at the time of observation in a production
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cycle.

Then, likelihood I of the rule R getting enabled in the next production cycle is

defined as follows:

A rule with likelihood 1 is enabled. Likelihood value of a rule can increase or

decrease in the course of execution. Requesting for values of attributes, which do

not have matching value in AOVS belonging to a rule with a high likelihood results

in greater chances of that rule being fired.

Secondly, an attribute participating in many partially matched rules can be

considered important and its chances of increasing likelihoods of a large number of

rules is high. Usually, it also has a high probability of being obtained excepting

a few cases where it may be very costly to get, eg., the result of a costly test or

exceptional cases in medical diagnosis, or when it is involved in rules meant for

exception handling.

Thus, obtaining values for this attribute results in increasing the likelihood values

of a large number of partially matched rules of which some may even get enabled.

If some data that is local to the agent is obtained, some rules may get enabled

and fired in the next cycle. The inference process continues like this.

However, there are a few issues applicable to domains like medical diagnosis to

be considered in this context.

• Some data may have a probability of occurrence. Whether the data has a high

probability or low probability of occurrence, once the data is obtained, the

confidence factor(CF) of the possibility of the disease may become high.

For example, in the diagnosis of Acute Cholecystitis, X-ray may be positive

for calculus in gal bladder as most of these stones are opaque to X-ray. How-

ever, if present (only in very rare cases),gal bladder calculus confirms Acute

Cholecystitis. The rules with high confidence factors (CFs) may be given high

priority as they are more important.
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• Some data is important for diagnosis and has to be supplied by the user when
asked by the system. This data may be easily obtained without involving much
cost. However, some data may not be easily available. Even if it is available,
it may be costly.

For example, the presence of shock and prostration (sp, pp) or jaundice (j) in

Acute Cholecystitis may be seen only in a very few cases. Such data is not

very important for the diagnosis. Similarly, The onset of pain (po) may not be

clearly noted by the patient and hence can't always be obtained with accuracy

by the doctor; it may be even ignored in the diagnosis. In contrast, data about

the location or radiation of pain (pi, pr) is important for the diagnosis, and it

can be easily obtained also.

• Among the rules with same likelihood value, or in general, some rules may

have high priority of being fired. The data required for such rules may have

to be requested from other agents even over-riding the likelihoods of the other

partially matched rules.

The uncertainty associated with the incompleteness of local data (which can be

obtained from the external world locally on request) may be resolved using Bayesian

Probability theory, Certainty theory [45], and the other uncertainty management

techniques discussed in [76, 130]. Multi agent truth maintenance [63] is also very

important because the changes in the beliefs of an agent must be handled carefully.

However, we concentrate here on information that may be obtained from other

agents.

Definition 2

Let RSi be the set of partially matched rules with likelihood /;

Dynamic count de of an attribute a is the number of rules in RSi (computed most

recently) in which a appears in the premise (LHS) part.

Hence, requesting for an attribute with highest de in a rule set with highest like-

lihood increases the probability of getting the required information and in enabling

the rules.
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Whom to ask?

This may be determined based on the number of satisfactory responses from other
agents. A satisfactory response to a query (request) for the value of an attribute a

is the response with a value for a.

Definition 3

Utility Uj of an agent Aj from another agent ,4,'s point of view for a particular

attribute a is the ratio of number of satisfactory responses (those with values for

the requested attribute) nr from Aj to the number of queries nq from A{ regarding

values of a over a period of time.

(6.2)

where rule firing frequencies are summed over all rules belonging to that category,

and wc » wp, say wc = 0.9 and wp = 0.1.

Both (6.1) and (6.2) can even be combined to calculate the utility if it proves to

be beneficial depending on the situation and application.

(6.1)

When the problem solving just begins, since no queries and responses (informa-

tion exchanges) would have taken place, utility values cannot be computed using the

above formula. Therefore, an initial estimate can be obtained using the number of

rules in Aj having a in the conclusion part and the premise parts respectively, and

their (expected) rule firing frequencies. Suitable weights may be assigned to rules

of each type depending on whether a is in the conclusion part or premise part.

Let RSC and RSP denote the sets of rules in Aj having a in their conclusion

parts and premise parts respectively. Let wc be the weight assigned to a rule i?, if

Ri € RSC. Similarly, let wp be the weight assigned to a rule /?, if Rt £ RSP. Let /,

be the firing frequency of the rule R{. Now the initial estimate of the utility u, of

an agent Aj can be calculated as
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6.3.3 Algorithm

We now present our strategy for distributed reasoning in forward chaining systems.

Strategy DRFCS

1. For each partially matched rule R,

compute the likelihood /

add the rule to the set of rules RSi with likelihood /;

endfor;

2. Sort the rule sets RSi on decreasing order of /;

Let Imax be the highest likelihood value computed;

Let RSimax be the set of rules with likelihood Imax

3. Repeat (*For all rule sets with Imax*),

3.1 for each unmatched attribute a present in the ruleset RSimax

(* rules with maximum likelihood *)

de = number of rules in RSimax in which a is present in premise part;

add a to the attribute set ASdc. (&& attributes with the same de value);

endfor;

3.2 sort the attribute sets ASdc °n decreasing order of de;

let dmax be the highest de value;

3.3 if there is a high priority rule then

add all its unmatched attributes to an attribute list of that priority;

endif;

3.4 repeat

3.4.1

repeat (* for each attribute a in AS dmax *)

if there is a high priority attribute then

a is a high priority attribute
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else a is the first attribute in ASdmax]

endif;

3.4.1.1

if a € VSi and has its indegree = 0 then

request locally; (* local inference *)

3.4.1.2 else if 3 some j and an entry (a,j) € NRFt or (a, j) € MRB,

(* a can be obtained from another agent Aj, second possibility being rare *)

let umax be the highest value of utilities of all such agents A3 that can give a

repeat

send requests to the agents with utility umax;

if an answer with a value for a is recieved then

update utility values of agents;

if an answer with a matching value is received then

update likelihoods of all rules which will get

affected by the new value of a as in step 1;

if any rule is enabled then

add it to the enabled rule list;

exit; (* execute the enabled rules *)

endif;

endif

else umax = next highest utility u

endif;

until an answer is received or all agents report failure;

(* to send values for a *)

endif;

endif;

3.4.1.3 a is the next unconsidered attribute in ASdmax

until all attributes in ASdmax are over
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3.4.2 dmax = next highest de

until all de values corresponding to RStmax are exhausted;

(* for all attribute sets of RSimax are over *)

3.5 Imax = next highest /

until all likelihood values / are exhausted;

(* for all rulesets*)

The distributed inferencing strategy DRFCS is invoked by the local inferencing

cycle, when some nonlocal data, possibly available with other agents, is required.

Likelihood computation for all rules is done only the first time the distributed in-

ferencing step is invoked while solving a particular problem. Later on, likelihood

computation is required only for the rules that get affected by the changes to the

working memory either through local user or sensor, or other agents.

When likelihood of a rule changes, it is automatically deleted from the list of

partially matched rules previously it belonged to, and is added to the corresponding

partially matched rule set with the new likelihood value. Dynamic count values for

attributes are computed only when the corresponding rule set is being considered

for getting data and enabling rules. In fact, even if a is present in a lower likelihood

rule set, it will not be taken into account for computing dynamic count then. There

is no need to compute it as soon as the likelihood of the rule (in which a is present)

changes.

Once value of an attribute a is obtained, likelihood values of rules using this AOV

set will be updated. It must be noted that the requests are sent in the decreasing

order of likelihoods, but a suitable value obtained can update likelihood of rules in

other rule sets irrespective of their likelihood. A value for a received previously while

trying with a higher likelihood rule set does not eliminate the need for requesting it

with a rule set of lower likelihood as old values might have been updated. Hence, a

is still considered without discarding.

Also, in our strategy, requests for attribute values are sequentially processed in

the order of dynamic count values of attributes and utility values agents. This can

be parallelized by having all attributes with same dynamic count value requested at
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once from the respective highest utility agents. Upon failure to get values for some

attributes from highest utility agents, requests for these can be sent to next high-

est utility agents along with requests for attributes with lower dynamic coutii

addressed to their highest utility agents.

In the absence of this knowledge about donors, i.e., NRFs and MRBs, and the

utility values of agents, requests would have to be broadcast and sender has to wait

till some useful information is obtained. Instead, by maintaining the metaknowledge

in the form of NRFs and MRBs along with utility values, information incompleteness

is resolved by sending the requests in a directed fashion. The distribution of knowl-

edge and data with minimum dependencies using the partitioning and allocation

heuristics of chapter 3 reduces communication required for information exchange

and thus facilitates reasoning.

6.4 Case Studies

We shall explain the working of the distributed reasoning strategy considering the

rules for aerospace and medical diagnosis applications.
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6.4.1 Aerospace Vehicle Checkout Application

Consider the following partition in the ratio 1:1.

Let P, and P2 be assigned to agents A± to A2 respectively. There is no need to apply

the allocation algorithm as there are only two agents involved. Further we assume

that there are no high priority rules and high priority data.

Let us assume a working memory instance of A1 as shown below.
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The inference process in each cycle is explained below.

Cycle 1

The list of the rules which are matched = {RUR3}, and the list of partially

matched rules = {R$}. Since there are some enabled rules, local inferencing contin-

ues and the distributed inferencing algorithm DRFCS doesn't get invoked. Firing

these rules results in changes to the working memory.

These changes initiate a new cycle.

Cycle 2

The list of partially matched rules = {Re, R24}. Since rules Rx and R3 have been

fired and do not result in new changes to the working memory, we shall not consider

them again. Firing Rs results in a hold condition which does not change the working

memory.
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Cycle 3

There are no enabled rules, and the DRFCS is invoked from the local inferencing
procedure.

For rule Re, attribute required for a full match is 6̂ 2 and the conditional element

bs2 =' OK' should be satisfied. Since bs2 is a local data item, there is no need for

asking for this from others. An external input for c\ in the range 0.6 to 1.5 will

enable R7 and its firing will result in changes to the working memory satisfying the

above condition. Otherwise, it may be that bs2 =' NOK' because of some value of

bvi or c\.

The rule R24 has a likelihood of 0.5 of being fired. The only data item needed

for this rule is ct^. However, ctx is nonlocal. There is an entry (c<a,2) in NRF^ list

of the agent implying that ct^ belongs to A2. Dynamic count of ct\ is 1. It may

be noted that it is present in 14 rules. Since there are only two agents, A2 is the

only highest utility agent to seek value for ctx. A2 is actually owning c^. Therefore,

value of et 1 has to be requested from A2.

A request is sent to A2, and let us say Ax receives a value of 300 for ctx. Utility

of agent A2 from the point of view of A\ will now be increased because of this. Now,

the rule R24 gets enabled, and with the control transferred to the local inference

procedure, the rule is fired resulting in a hold again.

Depending on whether some external input is obtained resulting in some changes

to local working memory, the next inference cycle may have some enabled rules for

firing by A\. The process continues this way.

6.4.2 Medical Diagnosis Application

Let us consider the 2 : 1 partition (for the rules corresponding to the disease Acute

Cholecystitis) obtained in section 4.2 of chapter 4. Assuming subsets Pl and P2
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are assigned to agents Ai and A2 respectively, a working memory instance of Ax is

shown below.



Chapter 6. Distributed Reasoning with Incomplete Information 158

The inference process of agent A\ is explained below.

Cycle 1:

The rules fired and the resulting changes to working memory are:

Since xcal = present only in 10%, R*3 is enabled and fired. The partially matched

rule sets with a likelihood > 0 and their exact likelihoods values are:
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The next cycle proceeds as below.

Cycle 2:

AC2 increases likelihood of R4 to 0.5, and ACi3 = true enables R2e and creates a

working memory element AC = true (CF = 0.95). CF = 0.95 indicates the confi-

dence associated with the possibility of Acute Cholecystitis.

The new rules enabled and the resulting changes to working memory arc:

The new partially matched rule sets with likelihood > 0 and their exact like-

lihoods values are:
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Cycle 3:

There are no enabled rules. Therefore, we should determine the data that has

to be obtained for enabling some rules. The highest likelihood value Imax = 0.8.

The partially matched rule set with highest likelihood value 0.8 has only one rule,

i.e., Rx.

However, the attribute required by it, i.e., po has a dynamic count de ~ 1. However,

this is a local data item. (Since this is an attribute which is not very important for

diagnosis, this may be ignored by the local inference procedure if desired.)

Since all attributes and all de values corresponding to RSi=o.g are exhausted, we

examine the next likelihood rule set.

There are no more attributes in AS<imax and there is no other de value. The next

highest likelihood value Imax = 0.5.

Among the attributes in ASdmaXi PrP 1S local. (Since it has a probability of 0.1

of being true in the rule. Corresponding to the possibility of appearing in Acute

Cholecystitis cases, the rule may be fired by the local inference engine without ob-

taining it.)

cvts is also local. (Since cuts is not very important for the diagnosis, it may be

ignored and RQ may be fired locally.)

AC\ is local, but it is not an external data item. Similarly, AC3 is a local, in-

termediate result.

Exhausting all the attributes and the de values corresponding to RSl=0.5,

t he next highest likelihood value for the partially matched rules, Imax = 0.33.
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The only rule in RSl=0.33 = {R3}.The attributes required lif,liq have a de value of
l.tyASdmax = {Hf,liq}. Both are local. (R3 may be fired by the local reasoner if
these are ignored.)

AC6, AC9, AC12, AC16 and AC18 are local, intermediate results. AC10 and AC15

are nonlocal. There is an entry (AC10, 2) belonging to NRFy indicating that agent

A2 may be having this value. Since NRF} entries show that the only agent that

can give ACIO is A2, the request is passed on to A2. Supposing the value obtained

for ACIO is true, utility value of ACIO will be increased. This also increases the

likelihood of the rule R^\. Since AC\b is also a nonlocal data item to be requested

from A? (there is an entry (AC10,2) in NRFt), as discussed earlier, request for both

the data items may be sent at once to A2.

Depending on the values received from A2 arid the uncertainty mangement tech-

nique used by the local inference procedure, some more rules may get enabled and

the resulting changes to working memory may update likelihoods of rules and enable

new rules. The diagnosis may be confirmed on firing a few more rules which increase

the confidence that the disease is Acute Cholecystis.

6.5 Conclusions

Reasoning in distributed forward chaining systems consists of local inferencing and

distributed inferencing. The distributed inferencing step is embedded in the local

inferencing, and is invoked only when there are no enabled rules to be fired by an

agent. The information to be obtained is decided based on the rule firing likelihood

and dynamic count of attributes in the rule set with highest likelihood value. Each

agent has an idea of the utilities of other agents for information that is shared and

needed for local problem solving. Utilities of agents are calculated based on the
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number rules having a particular attribute in the conclusion part^of the requested

agent, their rule firing frequencies and the satisfactory responses to the requests for

the same.

The reasoning strategy works irrespective of whether knowledge is distributed

statically or dynamically, and with or without duplication. Metaknowledge about

information which should be obtained from other agents and the utility values of the

concerned agents help in reducing communication required for information exchange

by focussing the requests.
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Conclusions

This chapter summarizes the main contributions of the thesis and concludes with a

discussion and future directions.

7.1 Summary

Knowledge distribution plays an important role in several aspects of Cooperative

Problem Solving. It is shown that an appropriate distribution of knowledge and data

leads to a good task decomposition. Minimizing the interdependencies among the

knowledge and data subsets reduces the communication required for information

exchange. Metaknowledge about the rules and data possessed by an agent, and

about the information that would be required by other agents provides a good model

of agents and helps in requesting for nonlocal information by focussed addressing.

Good knowledge partitioning also achieves load balancing, speedup through faster

pattern matching and concurrent processing. We considered rule-based production

systems to represent our CPS systems.

However, there are no direct and fast domain independent techniques for het-

erogeneous k-way partitioning of the knowledge base. Standard graph partitioning

techniques like Kernighan-Lin heuristic and Simulated Annealing concentrate on

two-way partitioning and are usually oriented towards VLSI circuit design. More-

over, the techniques are computationally expensive. Therefore, fast heuristics that

can obtain reasonably good solutions are preferable to their costly counterparts that

produce near-optimal solutions. Further, most of the partitioning techniques ignore

data distribution, the interdependencies among subsets, and heterogeneous parti-

tioning which are important for Cooperative Problem Solving systems. In this the-

sis, we proposed new heuristics based on graph theory for distributing knowledge

statically. The techniques consider data distribution, heterogeneous partitioning

163
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and interdependencies among rules while partitioning knowledge. Further, these are

extended to deal with dynamic distribution of knowledge.

The proposed static partitioning heuristic partitions the rules by representing

the rulebase as a knowledge graph where vertices represent data elements and edges

are drawn from input attributes to output attributes in each rule. The edge labels

represent the corresponding rule identifiers. The partitioning process consists of

two phases, viz., initial partitioning and boundary refinement. This is done by

generating a spanning tree with a long chain. The chain edges and some branch

edges are marked with integer numbers to enable suitable decomposition. Once the

rules and data belonging to different subsets are identified approximately, subset

boundaries are refined by assigning rules to subsets which possess a major portion of

the data corrsponding to the rule. This minimizes the interdependencies and reduces

communication. Given the ratio in which the rulebase subsets are to be obtained,

the heuristic obtains the same in linear time. The partition obtained is good enough

to be used as it is or can serve as a good initial partition for obtaining near-optimal

parition using the Kernighan-Lin and Simulated Annealing techniques. As part of

the partitioning process, metaknowledge about the data and rules possessed by each

agent is abstractred. The metaknowledge also has information about data that may

be required by other agents (MRBs) and data that needs to be requested from other

agents (NRFs) for efficient reasoning. This also implies some estimation of other

agent's requirement for nonlocal information, and helps to define agents and achieves

better coordination as well.

Such a partition can improve the performance of the near-optimal paritioning

techniques like Simulated Annealing and KL heuristic. This algorithm is further

extended to deal with disconnected components in the knowledge graph such that

it makes use of the noncommunicating components, if any, in obtaining balanced

subsets. Further, ways of obtaining functional decomposition from the knowledge

graph are discussed.

In addition to the partitioning heuristics, a method for allocating the subsets ob-

tained in the given proportion (which represents the capacities of agents) to agents

is also proposed. Considering the interagent distance, the information transfer be-

tween the subsets, and the capacities of agents, knowledge subsets are assigned to

compatible agents (agents of corresponding capacity) only. The method guarantees
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a minimal communication allocation for the given partition.

Since static partitioning is not sufficient for applications with unpredictable run

time requirements, dynamic distribution(partitioning as well as allocation) becomes

essential for load balancing. Dynamic distribution is necessary also for accommo-

dating changes to knowledge base and distributing knowledge as the problems arrive

at run time. We developed heuristics for distributing knoweldge dynamically. The

static partitioning algorithms have been extended to incorporate the run time as-

pects. These make use of the information about loads on agents during the previous

time interval. The length of the time interval can be changed for adaptive reorga-

nization. Loads on the agents are calculated by considering the firing frequencies of

rules assigned to them. After the load information about all the agents is obtained,

imbalance with respect to the desired load is calculated for each agent. Making use

of the MRBs and NRFs, and the rules in the (overlap of ) boundaries of subsets,

rules are transferred to lightly loaded neighbours. Two main heuristics are proposed

for this.

The first heuristic makes minor changes to the present distribution in order

to bring the loads closer to the ideal (or desired) loads in the previous intervals.

Since the subsets assigned to the agents will have interdependencies among them,

it is not possible to arbitrarily transfer the rules from a heavily loaded agent to a

lightly loaded agent. Therefore, the rule transfer has to occur between and via the

agents (including the heavily loaded and lightly loaded ones) in the logical network.

The MRBs and NRFs are updated to reflect the changes. The second heuristic

does repartitioning of the entire knowledge graph considering the run time aspects.

Methods for catering to updates (additions and deletions) to the knowledge base,

and dynamic problem based knowledge distribution are also discussed.

The proposed distributed reasoning strategy makes requests for nonlocal infor-

mation from potential donors. This is done by selecting the data (with highest

dynamic count) required for enabling the partially matched rules having highest

likelihood of being fired and requesting from an agent with highest utility. However,

if higher priority rules are present, the likelihoods may be ignored temporarily, and

data for the high priority rule may be requested first. The information exchange is

made easy and decreases the communication required with the NRFs and MRBs of

agents. The utilities of agents that reply with useful information are increased.
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7.2 Discussion

It is seen that the linear time heuristic works well for various input ratios with

several examples considered. Case studies of aerospace vehicle checkout application

and medical diagnosis applications represent two different cases of knowledge

distribution and provide ample number of cases for tesing various features.

Aerospace application presents itself with multiple rules as edge labels and dis-

connected components. As this is a monitoring application, all rules have equal

probability of being fired and hence are to be tested and fired without any dis-

crimination. Therefore, this proves to be a perfect example where the partitions

obtained using our heuristic balanced the load and implied task distribution as well.

Partitions are also close to functional decomposition for appropriate input ratios.

However, use of coupling and free grouping of rules and nodes as such or in the

static partitioning algorithm for load balancing further enhanced the quality of the

functional decomposition. However, on allowing duplication, this can exactly be-

come a functional decomposition. There was no uncertainty associated with rules

in the reasonig process.

Unlike the aerospace application, in medical diagnosis, lot of data is shared by

many subsets corresponding to diseases (or concepts). Therefore, it is important

to keep the rules of the closely related diseases at the same place and reduce com-

munication. Partitioning for load balancing within a functional decomposition is

better than pure load balancing as this may result in more communication for small

subset sizes and inappropriate proportions. Duplication of common knowledge and

the associated data reduce the information exchange between subsets. Secondly,

since the entire knowledge base is not active at the same time, only some subset,
to

not all, need to be examined diagnose a problem. Dynamic invocation of modules

is also important for this type of application. Another difference is the presence of

uncertainty involved with the data as well as rules. This may be taken care of by

the inferencing procedure.
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7.3 Future Directions

The partitioning heuristics consider production rules as the knowledge graph rep-

resentation scheme. These can be extended to suit other knowledge representation

schemes. Similarly, suitability of Petri Nets to represent the knowledge base is to

be investigated.

Further, the knowledge graph representation we have used is chosen to facilitate

reasoning for incomplete information that is available with other agents, as well as

the dynamic distribution of knowledge such that exact information about data and

rules involved is known while transferring data and knowledge. The knowledge graph

representation may be slightly modified such that rules are nodes in the graph and

edges represent the amount of information transfer or dependencies between rules.

In such a representation the exact data shared between the rules is not known, but it

abstracts the amount of data shared in a simpler way. Performance of the respective

algorithms with these two representations can be evaluated.

The dynamic distribution algorithms were simulated with some values for firing

frequencies of rules. However, integration of the reasoning process with dynamic

distribution of knowledge based on the actual firing of rules is not done because

of the time limit. This can give more accurate idea of state of the system at a

given time, thus resulting in better load balancing in a practical system. Use of

probabilistic models for dynamic knowledge transfer corresponding to the excessive

load can also be investigated. Possibility of optimal distribution of knowledge to

maximize the number of problems solved locally as in distributed data bases needs

to be looked into.

The distributed reasoning algorithm considers a single reasoning model. Dealing

with inexact, heterogeneous reasoning models and multiple view points is very im-

portant for large, practical systems. Inexact reasoning models like Baye's probability

theory and Certainity theory, and multi agent truth maintenance can be appropri-

ately incorporated. Similarly, the distribted reasoning algorithm can be extended

to include time factor and the answering agent's perspective also to achieve more

efficient coordination.



Appendix A

Rules and Object Structure for
Aerospace Application

Thirty seven rules from the rulebase of Aerospace Vehicle Checkout System are given

below. Meanings of the attributes and the object structure of the systems involved

are given at the end.
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Attribute codes and their actual names in the system REX

apl = bs.ftc.hyd-systeml.ace.pressure

bsl = bs.ftc.hyd-systeml .in-acc.status

cl = bs.sc.se-current ^

bs2 = bs.sc.sc-status

Ipl = bs.ftc.hyd-systeml.line-pr

n2tp = bs.sitvc.n2-system.tank-pr

bvl = bs.sc.ext-supply. voltage

bs3 = bs.se.status

n2rp = bs.sitvc.n2-system.reg-pr

bs4 = bs.sitvc.n2-system.reg-pr.status

n2itp = bs.sitvc.n2-system.innjectant-tank-pr

bhp = bs.sitvc.hyd oil line-pr

bs5 = bs.sitvc.n2-system.tankpr-status bs6 = bs.sitvc.tvc-status

bv2 = bs.sc.sc-battery. voltage

bsl = bs.sc.sc-battery.status

bv3 — bs.sc.cpif-bat. voltage

bs8 — bs.sc.cpif-bat.status

cml = bs.sc.sc-battery.intonoff cmd

cm2 — bs.cpif-bat.intonofF cmd

bs9 = bs.sc.sc-battery.intonofF status

ctl = system.cdt

All of hi, h2, h3, hi h5, h6, hi, h8, h9, hlO, hll, hl2, hl3, hl4, hl5, hl6, hl7,

hl8 and hl9 stand for various Hold conditions.
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Figure A. 12: Object Structure for the Aeospace System



Appendix B

Rules for Medical Diagnosis Application

Rules corresponding to three disorders viz., Acute Cholecystitis, Acute Pancreatitis
and Perforated Peptic Ulcer, pertaining to medical diagnosis of acute abdominal
pains are given below. The decodification of the attributes is also given after the
rules.

Rl. if (po — sudden or gradual) and (pot = early) and (pi = maximum) and (pi =

RUQ(0.9)) and (pr = around to back,angle of scapula, right shoulder) then
AC1

R2. if (vp = yes) and (vf = few to many) then AC2

R3. if (li = yes) and (lif = occasional) and (liq <> heavy) then AC3

R4. if ACl and AC2 and AC3 and (hpc = similar to current episode) then AC4

R5. if (di = fatty foods and cabbage) then AC5

R6. if (sp = yes(O.l)) and (prp = yes(O.l)) then AC6

R7. if (abt = present) then AC7

R8. if (abrt = present) then AC8

R9. if (cvt = present) and (cvts = right) then AC9

RIO. if (abwr = present) and (abwg = unilateral rectus) and (ms = present) then

AC10

Rll. if (ps = normal to hypoactive) then AC11

R12. if (pp = flatsupine) then AC12

R13. if (xil = true) and (xcal = present(O.lO)) then AC13
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R14. if (sgb = stones) then AC14

R.15. if (sal = minimal elevation) and (Ic = moderate increase) and (esr = increases)
then AC15

R16. if (j = present(0.2)) then AC16

R17. if (afp = present) and (fc — present) and (fr = present) and (fs = present)
and (prl = present) then AC17

R18. if (pp = onside) then AC18

R19. if AC1 and AC17 then AC19

R20. if ACM and AC19 then AC20

R21. if (ecg = normal) and (sgotl = insignicant) then MI

R22. if (sd <> profound) and (abwr <> boardlike) then PPU

R23. if (sal < 1000 units) then AcPan

R24. if AC20 and MI and PPU and AcPan then AC21

R25. if ACl then AC (CF = 0.80)

R26. if AC13 then AC (CF = 0.95)

R27. if AC14 then AC (CF = .95)

R28. if AC19 then AC (CF = .85)

R29. if AC20 then AC (CF = 0.97)

R30. if AC21 then AC (CF = 0.98)

R31. if AC5 and AC6 and AC7 and AC8 and AC9 and AC10 and ACll and AC12

and AC15 and AC16 and AC18 then AC

R32. if (po = sudden and sharp) and (pi = epigastrium/RUQ/LUQ) and (pr =

diffused) then PPU1

R33. if (vp = yes) and (vf = absent to few) and ( vn = retching) then PPU2
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R34. if (li = yes) and (lif = variable) then PPU3

R35. if (hpu = yes) then PPU4

R36. if (di = spices and alcohol) then PPU5

R37. if (st = early) and (sd = common or high) and (prp = yes) then PPU6

R38. if (abt = yes) and (abtn = diffused) then PPU7

R39. if (abrt <= 4 hours) then PPU8

R40. if (cvt = true) and (cvts = bilateral) then PPU9

R41. if (abwr = boardlike) then PPUIO

R42. if (ps = absent) then PPUll

R43. if (pp = flat supine) then PPU12

R44. if (xil = free air) and (xgsud = yes) then PPUl3

R45. if (sal — elevated) and (he = elevated) and (Ic — high) then PPU14

R46. if PPUIO and PPUll and PPU12 and PPU14 then PPU15

R47. if (vv = blood) then PPU16

R48. if PPUl and PPU2 and PPU4 and PPU5 and PPUIO and PPUll and PPU12

then PPU17

R49. if PPUl then PPU (CF=0.7)

R50. if PPU2 then PPU (CF=0.9)

R51. if PPU6 then PPU (CF=0.7)

R52. if PPU13 then PPU (CF = 0.7)

R53. if PPU15 then PPU (CF - 0.95)

R54. if PPU17 then PPU (CF=0.9)

R55. if (po = gradual) and (pi = epigastrium) and (pr - slow, spreading through

back) then AcPanl
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R56. if (vp = yes) and (vf = multiple) and (vn = persistent) and (fp = yes) then
AcPan2

R57. if (li = yes) and (liq = heavy) and (lit = preceding attack) then AcPan3

R58. if AcPanl and AcPan2 and (hpu — similar) then AcPan4

R59. if (di = fatty foods) then AcPan5

R60. if (st = late) then AcPan6

R61. if (abta = epigastrium) and (abtt = early) and (abtd = late) then AcPan7

R62. if (abrt > 24hrs) then AcPan8

R63. if (cvt = true) and (cvts = left) then AcPan9

R64. if (abwr = moderate to severe) then AcPanlO

R65. if (ps = hypoactive) then AcPanl 1

R66. if (pp = hipsflexed) then AcPanl2

R67. if (xil = true) and (xsl = true) and (xcc — true) then AcPanl3

R68. if (spm = true) then AcPanl4

R69. if (sal>= 1000 units/litre) then AcPanl5

R70. if (pp = onside) then AcPanl6

R71. if AcPanl then AC (CF = 0.8)

R72. if AcPan4 then AC (CF = 0.85)

R73. if AcPanl4 then (CF = 0.95)

R74. if AcPan5 and AcPan6 and AcPan7 and AcPan8 and AcPan9 and AcPanlO

and AcPanl 1 and AcPanl2 and AcPanl3 and AcPanl5 and AcPanl6 then

AC

R75. if (fc = present) and (n = present(0.9)) and (m= present(0.9)) and (an =

present (0.9)) and (vp = present (0.9)) and (acg — yes) and (acgd = severe)

then AH1
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R76. if AH1 and (dp= yes) then AH2

R77. if AH1 and (cp = yes) then AH3

R78. if (pi = RUQ) and (Is = enlarged) and (lp = yes) and (It - yes) then AH4

R79. if AH2 and AH4 then AH5

R80. if AH3 and AH4 then AH6

R81. if (uc = dark) and (set = yellow) and (stc = pale) then AH7

R82. if (sbl = increased) and (sail = increased) and (sata > 400 units/litre) and

(sap <= 250) then AH8

R83. if (sbsl = increased) and (ubsl — increased) and (pt = increased) then AH9

R84. if AH9 and (esr = increased) and (Ic = normal) and (Ic = mild to moderate)

then AH10

R85. if (bul = increases) and (ubl — increased) then AH11

R86. if AH4 and AH5 and AH7 and AH8 and AH10 and AH11 then AH

R87. if AH4 and AH6 and AH7 and AH8 and AH10 and AHll then AH

R88. if AH1 then AH (CF = 0.9)

R89. if AH5 then AH (CF = .80)

R90. if AH6 then AH (CF = .80)

R91. if AH7 then AH (CF = .95)

R92. if AH8 then AH (CF = .95)

R93. if AH9 then AH (CF = .95)

R94. if (chp = yes) and (ps = band around chest) and (pr = arms, left epigastrium,

neck, head) then Mil

R95. if (vp — yes) and (vn — protracted) and (bpl = decreased) and (plr = fast and

feeble) and (pn = thready) then MI2
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R96. if (bn = short) and (anx — present) and (sw = present) and (ha — present)
then MI3

R97. if (ot = early) and (ecgst = elevated) then MI4

R98. if (ot = moderately late) and (ecgrws = diminished) then MI5

R99. if (ot = late) and (tw = inverted) then MI6

R100. if (ot >= 4hrs) and (ot <= 6hrs) and (ckl = raises) then MI7

R101. if (ot = 12hrs (approx.)) and (ckl = peak) and (sgotl = raises) then MI8

R102. if (ot >= 24hrs) and (ot <= 48hrs) and (sgotl = peak) then MI9

R103. if (ot >= 48hrs) and (ot <= 72hrs) and (ckl = normal) then MHO

R104. if (ot — 168hrs (approx.)) and (sgotl — high) and (sgotn — prolonged) then

Mill

R105. if (cprwr = yes) then MI 12

R106. if (cprwr = no) then MI13

R107. if MI7 and MIS and MI9 and MHO then MI (CF = .98)

R108. if Mil then MI (CF = .90)

R109. if MI2 then AP (CF = .95)

R110. if MI4 then MI (CF = .90)

Ri l l , if MI5 then Ml (CF = .90)

. R112. if MI12 then AP (CF = .98)

R113. if MI13thcn AP
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Attribute codes and their meanings

po — onset of pain (abdominal pain)

pot = (abdominal) pain onset time

pi — (abdominal) pain intensity

pi — (abdominal) pain location

pr = (abdominal) pain radiation

vp — whether vomiting present

vf — vomiting frequency

vn = vomiting nature

w = vomitus

fp — presence of fever

fc = fever with chills

fr = fever with rigors

fs •=• fever with sweating

li — alcohol intake

lif = alochol intake frequency

liq = alcohol intake quantity

lit = time of alcohol intake (eg., preceding attack)

hpc = history of similar attacks (of cholecystitis)

hpu = history of previous attacks (of ulcer)

di = dietary intolerance

sp — presence of shock

st = time of shock
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sd = degree of shock

prp = presence of prostration

abt — abdominal wall tenderness

abrt = abdominal wall rebound tenderness

abtn = abdominal tenderness nature

abta = abdominal tenderness area

abtt = time at which abdominal tenderness is felt

abtd = abdominal tenderness degree

cvt = costoverterbal angle tenderness

cvts = costoverterbal angle tenderness side

aburr — abdominal wall rigidity

abwg — abdominal wall guarding area

ms = Murphy's sign

ps = peristaltic sounds

(ps = Psoa's sign)

pp = patient position

xil = X-ray positive for ileus (eg. air, fluid)

xcal = X-ray positive for calculus in gall bladder

xgsud — X-ray showing gas shadow under diagphram

xsl = X-ray Sentinel loop

xcc = X-ray Colon Cutoff sign

spm — Sonogram positive for Pancreatic mass

sgb — Sonogram positive for stones in gall bladder

sal = Serum Amylase level
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Ic = Leukocyte count

he ~ Haematocrite count

esr = ESR

j = jaundice

n — nausea

m = malaice

an = anarexia

acg = aversion to cigaretts

acgd = degree of aversion to cigaretts

dp = Diarrhoea presence

cp — constipation presence

Is = size of liver

Ip = liver palpability

It = liver tenderness

uc = urin colour

set = tint of sclera

stc = stools colour

ubsl — bile salts level in urine

bul = Biluribin urea level

ubl =Urobilinogen level

chp = pain in chest

cprwr = chest pain relief with rest

bpl = BP level

p/r = pulse rate
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pn = pulse nature

bn = breath nature

anx — anxiety

ot — observation time

sbl = Serum Biluribin level

satl = SAT (SGOT/SGPT) level

sata = SAT activity

sbsl = SB salts level

ecg = ECG

ecgst = ECG ST

ecgrws = ECG RWS

tw — T wave

ckl = CK level

sgotl = SGOT levels

sgotn = SGOT nature

a/p = facies pallor

sw = sweating

pt = Prothrornbin present

prl = presence of restlessness

ha = hyperacidity

AC, AcPan, PPU, Ml and AH stand for the disease names Acute Cholecystitis,

Acute Pancreatitis, Perforated Peptic Ulcer, Mycardial Infarction and Acute Hep-

atitis respectively. The numerals after the disease code indicate the satisfaction of

some symptoms related to the disease. For example, ACl and AC2 indicate the

presence of some symptoms related to Acute Cholecystitis.



Appendix C

Test Results

The partitioning heuristic is implemented in Turbo Pascal. Results of some sample

runs are given below. Partitions obtained for three different input ratios are shown

after generating the spanning tree and preparing it for the initial decomposition.

Input rulebase:

Spanning tree generated:
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spanning tree array elements with information about edge, branch, length,

dir, rule, arclabel

Rules in the set RS excluding branches

4 6 3 2 5

spanning tree array elements after labelling with information about edge, branch,

length, dir, rule, arclabel:
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Ratio of rules in which rule base parts are to be made : 1 1

arc to be cut 4

Vertex set for partition 1 : j i g h

Proposed rule set : 4 6 3

Vertex set for partition 2: b c a f d e k

Proposed rule set : 1 2 5

Conflict rule set 3 (1,2); (2,1); 5 (1,1); (2,2); 6 (2,1); (1,1);

1 2;2 1; 2 2;1 1; 2 1;1 1;

CRS nodes sorted on degree of the rules :

Rule 3with degree 3;

and its cp nodes sorted on the attribute count : 1 2;2 1;

Rule 5with degree 3;

and its cp nodes sorted on the attribute count : 2 2;1 1;

Rule 6with degree 3;

and its cp nodes sorted on the attribute count : 2 1;1 1;

Final Partition

Ratio of rules in which rule base partitions are to be made : 1 1

PART PI:

VERTEX SET, VS1: j igh

RULE SET, RSI: 4 6 3

RULECOUNT = 3, OKAY = TRUE
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Attributes that MAY BE REQUIRED BY OTHERS, MRB 1: g (2)

Attributes that NEED TO BE REQUESTED FROM OTHERS: b( 2)a( 2)

PART P2:

VERTEX SET, VS2: b c a f d e k

RULE SET, RS2: 1 2 5

RULECOUNT = 3, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 2: b (l)a (1)

Attributes that NEED TO BE REQUESTED FROM OTHERS: g( 1)

Required partitioning obtained
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Ratio of rules in which rule base parts are to be made : 2 1

arc to be cut 6 Vertex set for partition 1 : j i g h b c a

Proposed rule set : 4 6 3 1 2

Vertex set for partition 2: f d e k

Proposed rule set : 2 5

Conflict rule set 2 (1,1); (2,3); 5 (1,1); (2,2);

2 3;1 1; 2 2;1 1;

CRS nodes sorted on degree of the rules :

Rule 2with degree 4;

and its cp nodes sorted on the attribute count : 2 3;1 1;

Rule 5with degree 3;

and its cp nodes sorted on the attribute count : 2 2;1 1;

Final Partition

Ratio of rules in which rule base partitions are to be made : 2 1

PART PI:

VERTEX SET, VS1: j i g h b c a

RULE SET, RSI: 4 63 1

RULECOUNT = 4, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 1: b (2)g (2)

Attributes that NEED TO BE REQUESTED FROM OTHERS:

PART P2:
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VERTEX SET, VS2: f d e k

RULE SET, RS2: 2 5

RULECOUNT = 2, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 2:

Attributes that NEED TO BE REQUESTED FROM OTHERS: b( l)g( 1)

Required partitioning obtained
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Ratio of rules in which rule base parts are to be made : 1 1 1

arc to be cut 3

arc to be cut 6

Vertex set for partition 1: j i g

Proposed rule set : 4 6 3 4

Vertex set for partition 2: h b c a

Proposed rule set : 3 1 2

Vertex set for partition 3: f d e k

Proposed rule set : 2 5

Conflict rule set 3 (1,1); (2,2); 2 (2,1); (3,3); 5 (1,1); (3,2); 6 (2,1); (1,1);

2 2;1 1; 3 3;2 1; 3 2;1 1; 2 1;1 1; CRS nodes sorted on degree of the rules :

Rule 2with degree 4;

and its cp nodes sorted on the attribute count : 3 3;2 1;

Rule 3with degree 3;

and its cp nodes sorted on the attribute count : 2 2;1 1;

Rule 5with degree 3;
and its cp nodes sorted on the attribute count : 3 2;1 1;

Rule 6with degree 3;

and its cp nodes sorted on the attribute count : 2 1;1 1;

Final Partition

Ratio of rules in which rule base partitions are to be made : 1 1 1
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PART PI:

VERTEX SET, VSl: j i g

RULE SET, RSI: 4 6

RULECOUNT = 2, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 1: g (2)g (3)

Attributes that NEED TO BE REQUESTED FROM OTHERS: a( 2)

PART P2:

VERTEX SET, VS2: h b c a RULE SET, RS2: 3 1

RULECOUNT - 2, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 2: b (3)a (1)

Attributes that NEED TO BE REQUESTED FROM OTHERS: g( 1)

PART P3:

VERTEX SET, VS3: f d e k

RULE SET, RS3: 2 5

RULECOUNT = 2, OKAY = TRUE

Attributes that MAY BE REQUIRED BY OTHERS, MRB 3:

Attributes that NEED TO BE REQUESTED FROM OTHERS: b( 2)g( 1)

Required partitioning obtained
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