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The intracellular parasite Leishmania is a unicellular protozoan belonging to the 

trypanosomatidae family (WHO, 2010) and is transmitted through the female phlebotomine 

sand flies between vertebrate hosts. The dimorphic forms of parasites are motile flagellated 

promastigotes and non-motile non-flagellated amastigotes. The infective metacyclic 

promastigotes develop in the gut of sandfly vectors, inoculated into the mammalian skin during 

a blood meal. They gain access to the mononuclear phagocytes through phagocytosis and are 

transformed into round, non-motile forms called amastigotes (Bogdan et al., 2000). According 

to WHO, about 20 species of Leishmania infect more than 70 species of animals, including 

humans, and over 90 species of sandflies can transmit the parasites (WHO, retrieved on 12 

January 2023). Globally, 70,000 to 1 million new cases are reported annually; 20,000 to 30,000 

deaths occur yearly (WHO, 12 January 2023; retrieved on 01 October 2023). Primary clinical 

forms are: (i) Visceral Leishmaniasis (VL), and VL is invariably fatal if neglected medical 

care. Post Kala-azar Dermal Leishmaniasis (PKDL) is a complicated medical condition of the 

VL that occurs majorly after the treatment regime; (ii) chronic Cutaneous Leishmaniasis (CL) 

and is mostly self-healing; and (iii) Mucosal or Mucocutaneous Leishmaniasis (MCL), usually 

affect the mucosal membrane. Even though CL is endemic in the South Asian region, VL and 

PKDL are primary forms here. The causative species of Visceral Leishmaniasis (VL) by 

Leishmania donovani (L. donovani) and Leishmania infantum; L. donovani found in the Old 

World (OW), where it is associated with VL, mainly in the Northeastern region of the Indian 

subcontinent, and is a notifiable Neglected Tropical Disease (NTD) in India; Uttar Pradesh, 

Bihar, Jharkhand and West Bengal are four states in India endemic to Leishmaniasis (Alvar et 

al., 2012). L. donovani transmissions are mostly anthroponotic, and L. infantum transmission 

is mostly zoonotic, from canine reservoir hosts to humans (Lukeš et al., 2007). The VL 

affecting the visceral organs, particularly the spleen, liver, and bone marrow, can cause disease 

with different severity, including chronic, sub-acute, or acute forms. The symptoms include 

weight loss, irregular bouts of fever, anaemia, and hepatosplenomegaly. The parasite L. 

donovani is the causative species of VL, primarily in Northeastern India and the East African 

region. Besides, L. infantum is responsible for causing disease, mainly in Latin American and 

Mediterranean regions(Ready, 2014). Most VL cases are reported from India (90%), Ethiopia, 

South Sudan, Bangladesh, Sudan, and Brazil (Alvar et al., 2012). Asymptomatic patients and 

PKDL are the significant problems in the early diagnosis of the disease. In the absence of a 

promising human vaccine, the treatment option majorly depends on the chemotherapeutics, and 

it has limitations such as being time-consuming, expensive, and toxic to the drugs. PKDL is 
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the complication of the VL, a sequel of VL, and occurs like macular or nodular rashes. The 

majority are from East Africa and the Indian subcontinent, and the potential risk factor is people 

with PKDL, considered a potential source of Leishmania infection. Another potential threat of 

the disease is Leishmaniasis-HIV co-infection and sporadic reports of disease in non-endemic 

regions due to many factors (WHO retrieved on 01 October 2023). 

The immune response is initiated from the moment of inoculation of the parasites into the host, 

and then opsonization and complement activation occur, leading to the lysis of the parasites. 

Parasite secretes various effector molecules to prevent this complement system-mediated lysis 

of the parasite (Filho et al., 2021). Moreover, sandflies also induce the immune response by 

various secretory molecules present in the saliva of the fly as well as secretory products of the 

parasite. Overall, this contributes to immune responses such as coagulation inhibition, 

vasodilation, and immunomodulatory effects, and the infection zone is invaded by immune 

cells (Andrade et al., 2007; Giraud et al., 2018). Then, the resident cells and various recruited 

immune cells initiate innate and acquired immune responses (Rossi & Fasel, 2018). The PRRs 

(Pattern Recognition Receptors) are expressed by the various recruited immune cells, and they 

uphold the binding of the PAMPs (Pathogen-associated molecular patterns) and activate 

immune response cascades. These activated mononuclear phagocytic cells phagocytose the 

parasite and its secretory product, eliciting an oxidative stress response like reactive oxygen or 

nitrogen species formation (Filardy et al., 2014).The parasite and its effector molecule response 

induce various cytokines, especially IL-8, that mediate the recruitment of neutrophils and act 

as a trojan horse for the silent entry of the parasite to its primary host cells (Passelli, Billion, 

and Tacchini-Cottier, 2021).After the initial encounter with neutrophils, the mononuclear 

phagocytes (Goundry et al., 2018), including macrophages, are sentinel in the parasite 

clearance by inducing an immune defence against the parasites. It also plays an essential role 

as an innate resistant sensor. Furthermore, macrophages also participate in the adaptive 

immune response initiated by exposure of microbial peptides to the T cells by processing and 

antigen presentation (Kaushal et al., 2017). 

Macrophages are crucial for the survival and proliferation of parasites. In contrast, it also 

involves the elimination of the parasites by their immune response, such as pro-inflammatory 

cytokines producing cell recruitment and production, and antimicrobial molecules such as ROS 

and NO production (Liew and Cox,1991; Horta et al., 2012). Parasite adopts diverse strategies 

such as poor antigenic presentation, large antigenic pools, and modulating immune responses 
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by secretory molecules for their survival inside the host macrophages. The parasites follow 

many evasion strategies to reach the macrophages and effectively inactivate the host immune 

defence by silencing macrophage activation. The few proposed strategies are the “trojan horse 

strategy” with neutrophils (Laskay, Van Zandbergen, and Solbach, 2003), the silent entry of 

parasites by “apoptotic death and mimicry” (Wanderley et al., 2020), proteophosphoglycan 

mediated arginase expression and survival (Rogers, 2012), another is immediately after the 

parasite infection, they intersect with the endocytic pathway but resist the fusion with early 

endosomes or lysosomes, thereby retarding endosomal maturation for better survival (Duclos 

& Desjardins, 2000). In brief, Leishmania parasites gain entry into the host macrophages either 

by neutrophil-dependent or independent mechanisms (Ritter, Frischknecht, and van 

Zandbergen, 2009; Chouhan et al., 2014). Once inside the macrophages, promastigotes 

transform into amastigote form inside the phagolysosome vacuoles, a process for which hosts 

have levied a hefty fee as many of their microbicidal functions. The cell signalling pathways 

are down-modulated and impaired to favour Leishmania parasite survival inside the host cell. 

The Toll-like receptor (TLR) is a PRR that interacts with the PAMPs and damage-associated 

molecular patterns (DAMPs). TLR comes first as an innate immune response against pathogens 

by the host, so Leishmania manipulates the receptor cascade of TLR (Sauter et al., 

2019). Leishmania exploits the negative regulator of TLR, that is, Interleukin -1 receptor-

associated Kinase-1 (Hoogerwerf et al., 2012), and is inhibited by the direct participation of 

the SHP-1-containing SH2 domain through a Kinase Tyrosyl–based Inhibitory Motif (KTIM) 

for the better survival of parasite (Abu-Dayyeh et al., 2008). The NLRP3 protein 

inflammasome complex is another host innate immune response mechanism the L. 

donovani parasite exploits for safely residing inside the host cell (Saha, Basu, and Ukil, 2018). 

Innate immune responses are mediated by the inactivation of the gene family of Suppressor of 

Cytokine Signaling (SOCS) in human macrophages by L. donovani to curb cytokine production 

(Bertholet et al., 2003). The Leishmania parasite induces the host immunosuppressive 

molecules like prostaglandins 2 (PGE2) by Cyclooxygenase 2 (COX 2) dependant pathway 

(Rabhi et al., 2012). It creates a parasite-favouring environment through the Prostaglandin E2 

receptor 2 (EP2 receptor) of PGE2 (Saha et al., 2014). Leishmania preferably inhibits the host 

serine/threonine kinase, which is the AKT pathway for regulating apoptosis as well as 

immunosuppression (Yang et al., 2004). The inhibition of apoptosis and neutralizing 

antimicrobial molecules, especially ROS, is another parasitic survival strategy inside the harsh 

niche of the host cells (Paiva & Bozza, 2014). Elevation in the free radical formation hampers 
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the major components of parasites, so maintaining redox homeostasis is the primary defence 

mechanism of parasites (Singh et al., 2016). 

The humoral response is responsible for antigen-specific antibody production by B 

lymphocytes. B-1 lymphocytes are a sub-type of B lymphocytes taking part in the immune 

response of humoral immunity. It is characterized as regulatory B cells, presents antigens, and 

produces IL-10 (Firmino-Cruz et al., 2018). Previously, the scientific community believed that 

the antibody-mediated immune response has limitations in phagolysosomes residing as an 

obligatory intracellular parasite Leishmania (Vannier-Santos, Martiny, and Souza, 

2005).However, recent studies show that the B lymphocyte-secreted antibody plays a major 

role in neutralizing, opsonizing, and activating the complement system as an immune response 

in Leishmania infection. Moreover, the cognate interaction of T and B cells in protective 

immunity is of utmost importance in Leishmania pathogenesis and immune response (Conde 

et al., 2022). The cell-mediated immune response is mediated primarily by T-cells and B-cells 

partly involved, and the characteristic feature of cell-mediated immunity is acquired immunity. 

Even though the B-cells participate in cell-mediated immunity, it is majorly contributed by the 

T cells of the CD4+ and CD8+ cell populations (Reiner & Locksley, 1995). Cell-mediated 

immunity is crucial in Leishmania infection because it determines the cytokine production in 

the early innate immune response and its subsets, which link the innate and adaptive immunity 

of the host. Furthermore, it decides the disease’s fate and duration and the infection’s clinical 

manifestation (H. Rabb et al., 2002). The MHC-mediated antigen presentation of Antigen 

Presentation Cells (APCs) to the T cell, and the T cell recognizes the antigen and the naive T 

cells become activated. The T cells crosstalk with APCs, eliciting the secondary signal and 

introducing local cytokine secretion and CD4+ T lymphocyte memory sub-cells (Jawed, Dutta, 

and Majumdar, 2019). Moreover, the proliferating CD4+ T differentiated form of effector T 

cells are the Th1 and Th2 subtypes(Luckheeram et al., 2012). The CD4+ cell population takes 

part in a bidirectional function in Leishmaniasis, the disease persistence through IL-4 and other 

disease-progressing cytokines (Examples. TGF-β, IL-10) (Novais & Scott, 2015), or the 

prevention of disease through IFN-γ mediated protective immunity (Kemp et al.,2000). In the 

case of VL, the predominant levels of IL-10 and TGF-β might significantly contribute more to 

the VL pathogenesis than other cytokines (Caldas et al., 2005; Kupani et al., 2021). A recent 

study demonstrated that the immunology of granuloma during VL. The sustained parasitic 

antigens or their effector molecule exposure enhances the inflammatory cytokines, stimulating 

the regulatory cytokine IL-10. Furthermore, it involves developing and proliferating cells that 
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produce IL-10 (Nylén & Sacks, 2007). CD8+ T cells mediated degradation of infected 

macrophages and FasL-mediated apoptosis of macrophages are the other functions of the 

cellular immune response (Hill, Awwad, and North; Stäger and Rafati, 2012). The CD4+ and 

CD8+ cell-mediated immune response is highly debatable because of its controversial role in 

the pathology. In general, Th-17, IL-12+ CD4+ T cell, and CD8+ cell populations participated 

in a protective role during the Leishmania infection (Cardoso et al., 2015; Esch et al., 2013; 

Jawed et al., 2019), and few T cells especially IL-10+ CD4+ T cells, and CD4+ TGFβ+ NKT 

and FoxP3+ T reg cells progress the disease (Bunn et al., 2018; Hohman et al., 2021; Jawed et 

al., 2019). The T-cell immune response can resolve the infection and give protective, long-

lasting immunity. On the other hand, it can exacerbate the diseases.  

Macrophages are Leishmania parasite resident host cells, and their functional activation state 

decides the outcome of the infection. The functional activation of macrophages is distinct and 

is classical and alternative activation, and the microenvironmental stimuli decide their 

phenotypic fate. Macrophage polarization is a microbe-specific phenomenon, and the link 

between Leishmania-induced macrophage polarization and immune metabolic profile remains 

elusive. Macrophages are dynamic cells whose cellular metabolism decides their activation 

states (Verberk et al., 2022). The metabolic pathways are closely interconnected with the 

immune signalling pathways. The SAM (acetyl-CoA, S-adenosylmethionine), polyamines, and 

α-ketoglutarate are the major metabolites that are involved in the chromatin modification of 

many pathways, including major immune signalling pathways (Baardman et al., 2015). For 

example, polyamine governs the differentiation of CD4+ populations into distinct subsets, and 

the polyamine-hypusine axis maintains the fidelity of TH cell differentiation through epigenetic 

regulation (Carriche et al., 2021; Puleston et al., 2021). The macrophage activation is strongly 

linked to the polyamine pathway; the inhibition of the polyamine-hypusine axis blunts the 

macrophage alternative activation and acts as a metabolic switch. Furthermore, the polyamine 

spermidine is involved in macrophage anti-inflammatory induction through AMPK pathway 

activation (Liu et al., 2020; Puleston et al., 2019). Metabolic modulations in immune cells are 

described in infectious diseases, and in particular, macrophage immunometabolism has a major 

impact on its phenotype and functional plasticity regulation (Van den Bossche, O’Neill, and 

Menon, 2017). Macrophages are the phagocytic cells that patrol most tissues, encounter 

pathogens, recognize the pathogen-associated molecular pattern, and activate the TLR 

pathways as the first innate immune defence. This molecular recognition and activation of 

downstream pathways of innate and cell-mediated immunity are the core immune response 
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against pathogens and their host metabolism regulations (Fitzgerald & Kagan, 2020; Pollard, 

2009). The metabolic rewiring of macrophages modulates cellular homeostasis in various 

diseases, including infections; the highly plastic macrophage phenotypes and their functional 

polarization from classically activated M1 to alternatively activated M2 is a major hallmark of 

pathogen elimination or sustainability (Sica et al., 2015). 

Targeting immunometabolism pathways is a major emerging therapeutic approach such as 

editing the polarization status in various diseases like atherosclerosis, cancer, and obesity, 

including infectious diseases recently in COVID-19 infection (Geeraerts et al., 2017; O’Carroll 

& O’Neill, 2021). Leishmania is a pathogen that resides inside a hostile environment of 

macrophages that manipulates the host’s metabolic pathways by metabolic reprogramming 

through immune response modulation. The parasite remodels the dynamic macrophage 

functionality by sensing the host nutrient or metabolite resources. The Leishmania metabolic 

dependency on the host and the molecular mechanism behind it remain elusive (Goldman-

Pinkovich et al., 2020; Ferreira, Estaquier, and Silvestre, 2021). It is clear that the Leishmania 

parasite preferentially depends on oxidative phosphorylation rather than the glycolytic 

pathway, and it also prefers to live in an anti-inflammatory milieu. On the other hand, the 

parasite suppresses the inflammatory cytokines during infection by altering various immune 

metabolism pathways with effector molecules (Huang et al., 2016; Ty et al., 2019). The 

Leishmania granuloma immunometabolism perspective emphasizes the parasite dependency 

on host metabolism and the metabolic rewiring of major host metabolic pathways for the 

parasite survival by preventing the parasite-induced protective solid immunity of the host 

(Saunders & McConville, 2020). Arginine metabolism is a major metabolic pathway that 

Leishmania manipulates the most, and it is a crossroad of parasite for life and death either by 

activation of the iNOS-mediated NO production and parasite elimination or the arginase-

mediated polyamine synthesis for the parasite survival (Goldman-Pinkovich et al., 2020). 

Arginase I is a major enzyme that enforces the immune-metabolism interaction of the parasite 

and host for the disease progression. It is reported that the Leishmania infection induces the 

activity of Arginase I, and it positively correlates with the secretion of IL-10. The elevated 

level of IL-10 is a feedback loop that enhances the expression of arginase I (Mandal et al., 

2017). The arginine supplement has improved the parasites’ growth and fitness (Wanasen & 

Soong, 2008). 
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Leishmania exosomes alter many signalling pathways of the host for its survival and 

multiplication (Tomiotto-Pellissier et al., 2018). The modulation of the host-pathogen 

interaction via exosome is another primary survival strategy of the parasite in the harsh niche 

of the host macrophage (Dong, Filho, and Olivier, 2019). Exosomes are Extracellular Vesicles 

(EVs) with a particle diameter size of ~30-150 nm that originate through an endosomal pathway 

and mimic the parental physiology (Coakley, Maizels, and Buck, 2015). The EVs involve 

various cellular processes such as chromosome silencing, splicing, and post-translational 

modifications. They are also involved in pathophysiological processes such as host-pathogen 

interaction, immune modulation by transcriptional and translational regulation of immune 

response genes, and drug resistance mechanisms. The small EVs produced by most prokaryotes 

and eukaryote cells, the Leishmania parasite also has exosomes through the endocytic exosome 

pathway retained in the evolution (Douanne et al., 2022). The Leishmania EVs associated 

molecular cargos, including proteins, lipids, nucleic acids, and metabolites, some of which have 

immunomodulatory properties (Douanne et al., 2022; Kusakisako et al., 2023; Marshall et al., 

2018; Statello et al., 2018). These EVs associated with cargo play a major role in infection 

establishment and disease progress. A recent report shows that LRV1 (Leishmania RNA Virus 

1) is a Leishmania-infecting non-enveloped double-stranded RNA virus that exploits 

Leishmania exosomes as a protective envelope. It enhances the disease sensitivity toward the 

parasitic diseases of the host by causing more severe and aggressive mucocutaneous 

Leishmaniasis (Atayde et al., 2015). Some studies report that the parasite-infected host EVs 

communicate with the neighbouring naive cell, making the cell more susceptible to diseases 

through intracellular communication (Dong et al., 2021). Furthermore, the EVs are efficient 

mediators of many virulence genes through the Leishmania parasite’s Horizontal Gene 

Transfer (HGT)(Douanne et al., 2022). 

The principal goal of the current investigation was to study the host macrophage polarization 

by Leishmania exosomes of both sensitive and resistant strains of the parasites from an 

immunometabolism perspective. Since Leishmania exosomes mimic the parasites, it could lead 

to polarization from the M1 to the M2 macrophage phenotype. The study also emphasizes the 

Leishmania exosome-induced immune-metabolic modulation as an immune inhibitory 

mechanism to dominate the host immune response. 
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2.1 Origin and History of Leishmaniasis 

Leishmaniasis is an age-old parasitic disease; the presence of Leishmania-like organisms was 

documented over the prehistoric era from the fossil ambers. Furthermore, fossil evidence is 

explored in the extinct sandflies, Cretaceous Burmese amber (100 million years old), and 

Dominican amber (20–30 million years old). Both preserved pieces of evidence are the 

proboscis and alimentary tract of the extinct sandfly Palaeomyia burmitis, with blood filled in 

the proboscis, called Paleoleishmania neotropicum (Poinar et al., 2004; Poinar., 2008). The 

fossil records prove that the neotropical sand fly was the vector for the Leishmania-like species. 

The speciation of different Leishmania species based on geography is an ongoing topic of 

debate. There are three main hypotheses: (i) The Palaearctic hypothesis of Lysenko in 1971 

proposed the origin of Leishmania in the Palaeocene epoch of the Palaearctic region. The 

diversity of the NW (new world) Leishmania from the OW (old world) is explained by the 

adoption of vectors to the new host due to environmental factors and climate change (Kerr SF 

et al., 2000a; Kerr SF et al., 2000b; Lysenko, 1971). (ii) The Neotropical hypothesis was put 

forward in 1987 by Lainson & Shaw (Noyes H, 1998)and further explained by Noyes in 1998 

and its hypothesis that the Neotropical origin of Leishmania. The speciation and substantial 

diversity of NW Leishmania are because of climate change, wide and expanded host range, 

and isolated geographical areas in the Neotropical region. Further, in the Eocene period, the 

parasite entered through infected porcupines in the Nearctic region and later spread to the 

Palaearctic region. However, the hypothesis could not explain the two scientific facts: 

porcupines’ presence in the Nearctic was reported in the late Pliocene period. Secondly, only 

the Neotropical sand fly vector, Lutzomyia, originated in the Oligocene in the Nearctic (Noyes 

et al., 1998; Lysenko, 1971). (iii) Supercontinent hypothesis by Momen & Cupolilli in 2000, 

Africa is where the subgenera Leishmania and Sauroleishmania evolved, while the subgenus 

Viannia evolved in South America following the breakup of the supercontinent Gondwana 

during the Mesozoic era. Furthermore, this subspecies of Leishmania evolved into an American 

Leishmania species during the Eocene while travelling from Asia to the Neoarctic (Momen and 

Cupolillo, 2000). The ancient human history with leishmaniasis was with recorded evidence 

and descriptions of tablets in the 7th century Before the Common Era (BCE) library of 

Ashurbanipal of Assyrian King, for oriental sore (Manson-Bahr, 1996). The 

paleoparasitological study in West Thebes (2050–1650 BCE) of the Middle Kingdom tomb 

found Leishmania donovani mitochondrial DNA fragments in mummies of Egypt (Zink AR et 
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al.,2006). The Ebers Papyrus, an ancient Egyptian medical document of 1500 BCE, mentioned 

Leishmaniasis (Maspero G, 1910). There were also reports in 800 BCE Peruvian mummy 

specimens that Leishmania infected macrophages (Frías L et al., 2013) 

In the 16th century, reports were there for Cutaneous and Mucocutaneous Leishmaniasis. A 

book published by Alexander Russell (1715–1768), a Scottish physician and naturalist, about 

different types of oriental sore, which is of zoonotic wet Cutaneous Leishmaniasis (CL) by 

Leishmania major (L. major) and anthroponotic dry lesion of CL by Leishmania tropica (L. 

tropica) (Schnur LF, 1987). The first Mucocutaneous Leishmaniasis (MCL) was reported in 

the Peruvian Andes and showed disfiguration of the lips and noses in571 (Lainson, 2010). In 

1827, William Twining (1790–1835), the earliest reports of kala-azar in the 19th century 

mentioned in his article. Further, he noted the patients in Bengal, India, with symptoms of 

intermittent fever enlarged, acute anaemia, and spleen enlargement. Then, he published a book 

with more detailed signs of Kala-azar. Later, in 1824-25, the first outbreak of the disease was 

in the village of Mahomedpore in Bengal, India. In later years, the disease spread in Assam and 

West Bengal as an epidemic. Since the skin discolouration became grey, the disease was named 

Kala-azar in the 19th century. The word’s literal meaning is ‘Black disease’ (Gibson, 1983). 

The search for a causative agent of the disease begins at the end of the 19th century. Scottish 

doctor David Douglas Cunningham (1843–1914) handled similar cases of the disease in Delhi 

Boil but could not explain the causative agent. Piotr Fokich Borovsky (1863–1932) was first 

recognized as the causative agent of the oriental sore lesion caused by a protozoan (Hoare CA, 

1938). In the 20th century, William Boog Leishman (1865–1926), a Scottish Pathologist, was 

in the service as a British medical officer for an army wing and observed Leishmaniasis cases 

at Dum Dum town of Calcutta, India. The biopsy samples of the soldier spleen reveal the 

causative organism of the disease. The ovoid-shaped bodies he observed were trypanosomes, 

and the disease was termed Dum Dum fever. During the same period, Charles Donovan in the 

period of 1863–1951, an Irish doctor and professor at Madras Medical College, reported about 

the ovoid bodies that he found in splenic tissue samples of live and autopsy samples of Indian 

subjects with enlarged spleens and remittent fever. Donovan sent his tissue samples to a 

protozoan Biologist, Charles Louis Alphonse Laveran (1845–1922), to confirm the species. 

The observation was it’s a new species of the genus Piroplasma. In 1898, by order of the 

Government of India, Ronald Ross (1857–1932), a British doctor, started an investigation on 

Kala-azar. His investigation reports through a paper commenting on Leishman and Donovan’s 

observation that ovoid bodies are not degenerate trypanosomes but are also not the new species 
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of the Piroplasma genus. The novel protozoan causative agent resembles the clinical symptoms 

of Kalz-azar, and He named it Leishmania donovani (L. donovani) (Ross R,1903). Later, 

Charles Jules Henry Nicolle in the period 1866–1936, a bacteriologist of France, found 

Leishmania infantum (L. infantum), a similar causative agent of Visceral Leishmaniasis in dogs 

of Tunis and concluded that dog is a crucial reservoir host (Nicolle C, 1908). In later years, the 

discovery and classification of different species and subspecies were mentioned in the 

publication of Bray et al. in 1973, such as L. tropica and their subspecies called L. tropica 

major and L. tropica minor according to their epidemiology of the infection. The same report 

shows a new Leishmania species from Ethiopia named Leishmania ethiopica (L. ethiopica) 

(Bray RS et al.,1973). In the Brazilian state of Sao Paulo, Buru ulcers were dominant, and the 

examination of skin lesions of Buru ulcer patients by Antonio Carini (1872–1950 an Italian 

doctor also at the same period as Adolpho Carlos Lindenberg (1872–1944), the Brazilian doctor 

described NW parasites (Carini A, 1909). Alfonso Splendore (1871–1953), an Italian 

Bacteriologist, reported similar parasites in the mucocutaneous lesion of an Espundia patient 

(Splendore A,1911). It was found that the apparent morphological dissimilarities compared to 

the old-world L. tropica parasites by Brazilian clinical scientist Gaspar de Oliveira Vianna from 

1885 to 1914. He named it Lapsus calami Leishmania brazilienses, now known as Leishmania 

braziliensis, and renamed it by Alfredo Augusto da Matta in 1916 (Vianna G, 1911). 

2.2 Taxonomic Classification of Species Leishmania Parasites 

The Leishmania species complex and the Vianna species complex are the two main taxonomic 

groups into which the parasite Leishmania genus is classified according to a hierarchy. The 

Leishmania species complex contains five species, while Viannia contains three (Figure 2.1). 
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Figure 2.1: Represents the taxonomical classification of the Leishmania parasite (Raj et al., 

2020) 

2.3 Epidemiology and Geographical Distribution 

Historically, the disease was limited to the tropical and subtropic regions; due to many factors 

such as climate change, deforestation, urbanization, tourism, migration, immigration, etc., it 

disseminates to various parts of the world. So, often, it is classified based on regions of 

occurrence; the Old World (OW) Leishmaniasis occurs in Africa, Asia, and Europe’s southern 

part and exists in the Eastern Hemisphere as an endemic disease. The Western Hemisphere is 

home to the endemic NW leishmaniasis from Central Texas South to Central and South 

America (Kevric, Cappel, and Keeling, 2015).  

The female sandflies belonging to the genera Phlebotomus (OW) and Lutzomyia (NW) are the 

carriers of Leishmania parasites. Until 1921, it was not clear, and French Biologists Etienne 

Sergent and Edmond Sergent proved this by applying the suspension of a sandfly to a volunteer 

and developing the oriental sore on his skin; the scientific communities did not accept it as 

proof that the sandfly was the mode of transmission of the parasites (Sergent, 1921). Then, 
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Saul Adler, in 1941, proved the mode of spread of Leishmania through the sandfly bite by 

experimentally infecting the sandfly with Leishmania parasites in the laboratory (Adler S and 

Ber M, 1941) 

According to the Global Leishmaniasis Surveillance 2022, the Eastern Mediterranean Region 

(EMR) reported 76% of CL cases, and 18% are from the American Region (AMR). Eight 

countries, namely, the Syrian Arab Republic, Iraq, Brazil, Colombia, Iran (Islamic Republic), 

Afghanistan, Algeria, and Peru, have reported more than 5000 cases yearly and represent 85% 

worldwide. In 2022, 44% and 33% of new VL cases will be from EMR and the African Region 

(AFR), respectively. 14% is from AMR, and 8% is from South-East Asia Region (SEAR). The 

11 countries, Eritrea, Ethiopia, India, Nepal, Somalia, Uganda, and Yemen, reported 95% of 

all VL cases globally. The demographic and geographical risk factors, as are the diversity and 

distribution of the host and pathogen biological concerns, are also notable. For example, high 

levels of leishmaniasis in Ethiopia are associated with people who are sleeping outdoors for 

their occupation. Similarly, Kenya and Argentina also reported increasing leishmaniasis cases 

due to vector exposure because of the living conditions and many other environmental factors 

(Gadisa et al., 2015; Ngere et al., 2020). 

 

Table 2.1 Classification of Human Parasitic Leishmania (Adopted and modified from 

the references (Kevric, Cappel and Keeling, 2015; Steverding, 2017). 

Region Subgenus Species Clinical 

Manifestation 

Distribution 

Old 

World 

Leishmania L.aethiopica LCL, DCL East Africa (Ethiopia 

& Kenya) 

  L. donovani VL, PKDL Central Africa, South 

Asia, the Middle East, 

India, China 
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  L. infantum (syn. L. 

chagasi)  

 

VL, CL Mediterranean 

countries (North Africa 

and Europe), South-

east Europe, Middle 

East, Central Asia, 

North, Central and 

South America 

(Mexico, Venezuela, 

Brazil, Bolivia) 

  L. major CL North and Central 

Africa, Middle East, 

Central Asia 

  L. tropica   LCL, VL North and Central 

Africa, Middle East, 

Central Asia, India 

 Mundinia  L. martiniquensis  LCL, VL Martinique, Thailand 

New 

World 

Leishmania L. amazonensis   LCL, DCL, 

MCL 

South America (Brazil, 

Venezuela, Bolivia 

  L. infantum 

 

VL Mediterranean 

countries (North Africa 

and Europe), South-

east Europe, Middle 

East, Central Asia, 

North, Central and 

South America 
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(Mexico, Venezuela, 

Brazil, Bolivia) 

  L. mexicana  LCL, DCL USA, Ecuador, 

Venezuela, Peru 

  L. venezuelensis  LCL Northern South 

America, Venezuela 

  L. waltoni DCL Dominican Republic 

 Viannia L. braziliensis LCL, MCL Western Amazon 

Basin, South America 

(Guatemala, 

Venezuela, Brazil, 

Bolivia, Peru) 

  L. guyanensis  LCL, MCL Northern South 

America (French 

Guinea, Suriname, 

Brazil, Bolivia) 

  L. lainsoni  LCL Brazil, Bolivia, Peru 

  L. lindenbergi  LCL Brazil 

  L. naiffi  

 

LCL Brazil, French Guinea 
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  L. panamensis  LCL, MCL Central and South 

America (Panama, 

Columbia, Venezuela, 

Brazil) 

  L. peruviana  LCL, MCL Peru, Bolivia 

  L. shawi  LCL Brazil 

 Mundinia  L. martiniquensis  LCL, VL Martinique, Thailand 
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Figure 2.2: Schematic represents the Global Distribution of new cases of Cutaneous Leishmaniasis (CL),2022 (Ruiz-Postigo et al., 2022)

 

Map 1 Distribution of new cases of cutaneous leishmaniasis (CL) worldwide, 2022 

Carte 1 Répartition des nouveaux cas de leishmaniose cutanée (LC) dans le monde, 2022 
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Figure 2.3: Schematic represents the Global Distribution of new cases of Visceral Leishmaniasis, 2022 (Ruiz-Postigo et al., 2022)

 

Map 2 Distribution of new cases of visceral leishmaniasis (VL) worldwide, 2022 

Carte 2 Répartition des nouveaux cas de leishmaniose viscérale (LV) dans le monde, 2022 
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2.4 Global Burden of Leishmaniasis 

Leishmaniasis is a public health threat among the top ten neglected tropical diseases. Americas, 

West and South-East Asia, East and North Africa are the world’s four eco-epidemiological 

regions for leishmaniasis that continue to be a public threat. Worldwide, 99 (49%) countries 

are endemic to leishmaniasis. Among them, 90 (45%) were considered for CL and 80 (40%) 

for VL. The four countries, India, Sudan, Brazil, and Kenya, contribute more than 68% of cases 

of VL, and the nine countries report 85% of CL cases. The increment in cases of PKDL is 

another major issue in the clinical management of the disease. Globally, 771 PKDL cases were 

reported from 8 countries. Forty-two countries reported the Leishmaniasis-HIV co-infection 

that further intensified the disease burden (WHO, 12 January 2023; retrieved on 01 October 

2023). 

2.5 Diagnosis, prophylactic treatment, and vaccination of leishmaniasis 

Leishmaniasis diagnosis is a major challenge for many reasons: the clinical resemblance of the 

disease’s symptoms with other diseases, a broad spectrum of clinical manifestations, and co-

infections (immunocompromised patients). The proper and scientific diagnosis of the disease 

is the primary step towards the sustainable preventive measure of disease management. 

Diagnosis of various forms of leishmaniasis is mainly based on clinical symptoms and 

parasitological or serological (rapid diagnostic tests) or its combination (WHO). Leishmaniasis 

diagnosis is majorly categorized into three categories: (i) Parasitological methods 

(Histopathology, microscopic examination, culturing techniques, isolation in experimental 

animals) are considered as a golden standard of diagnosis of leishmaniasis, but since it is an 

invasive procedure, risk is always associated and require technical experts to carry out. (ii) 

immunological methods (ELISA, DAT, ICT, immunoblotting, LST, FAT, and LAT), the 

diagnosis majorly depends on the specific humoral response of the diseases, and it is not always 

reliable in the case of CL and MCL since it shows a meager humoral response. Another major 

disadvantage is that the technique’s sensitivity depends on the method; most serological assays 

do not distinguish the quiescent and active cases of infection. (iii) Molecular methods (PCR, 

LAMP, AFLP, NASBA, RAPD, MLEE) are more reliable than conventional methods because 

of their species-specific identification associated with disease. The information of DNA 

sequence-based PCRs are major techniques in molecular diagnosis, though others like gel 

electrophoresis for multi-locus enzymes pulse-field electrophoresis exist. The reliable 

molecular tools, accuracy, safety, and feasibility of the molecular method of diagnosis are used 
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as supplementary or alternative methods of diagnosis in leishmaniasis, even though 

sophisticated equipment and skilled individuals are the prior requirements of this method 

(Thakur et al., 2020). 

There are no promising vaccines for human leishmaniasis, so chemotherapy treats the disease 

in humans. Pentavalent antimonials of meglumine antimoniate and sodium stibogluconate are 

the first choices in the therapeutic approach. However, when first-line medications show poor 

efficacy in treating leishmaniasis, second-line medications should be considered (Croft, Seifert, 

and Yardley; Alviano et al., 2012; Sundar and Chakravarty, 2015). Other common medications 

that have been introduced for the treatment of leishmaniasis include amphotericin, miltefosine, 

and paromomycin. The first orally administered medication that was successful against VL was 

miltefosine. Even though the mechanism of the anti-leishmanial action of miltefosine is 

unknown, it has been reported that intracellular drug accumulation precedes apoptosis-like 

death by creating ROS. Additional potential pathways involve the inhibition of cytochrome c 

oxidase, resulting in immunomodulation and mitochondrial pathway regulations (Dorlo et al., 

2012). The aminoglycoside antibiotic paromomycin has demonstrated encouraging outcomes 

when treating leishmaniasis, especially in its cutaneous form(Chouhan et al., 2014). 

Nevertheless, paromomycin cannot be used as a complete anti-leishmanial medication, and it 

might be a threat due to reports of the emergence of paromomycin-resistant parasites from in 

vitro research (Jhingran et al., 2009). In addition, the toxicity of paromomycin and miltefosine 

is a major concern (Sundar & Chakravarty, 2015). Except for miltefosine, all other drugs such 

as antimonials (1st line of drugs), amphotericin B (AmB) (2nd line of drugs), and paromomycin 

require parenteral administration and continuous monitoring, which is a considerable 

disadvantage for leishmaniasis afflicted poverty-stricken population. The cure is often 

associated with awful side effects, and emerging drug resistance presents a grave issue, which 

has already led to the abolition of antimonials from Bihar, India (Morato et al., 2014). Anti-

leishmanial chemotherapeutic treatments have transitioned from single-drug formulations to 

synergistic drug therapy approaches in the absence of a vaccine. These approaches were 

initially successful but were later shown sensitivity to the drugs. (Serezani et al., 2006). A 

major issue with the current systemic medications is the emergence of resistance against drugs 

and the severe side effects of the medications that are currently available. SAG alters the thiol 

profile by inhibiting the parasite’s thiol metabolic enzyme trypanothione reductase. It also 

inhibits bioenergetics pathways such as glycolysis, fatty acid β-oxidation, and ADP 

phosphorylation to eliminate the parasite (Berman, Waddell, and Hanson, 1985; Berman, 
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Gallalee, and Best, 1987; Haldar, Sen, and Roy, 2011; Singh et al., 2016). Adverse effects of 

SAG include vomiting, cardiac arrhythmias, hepatotoxicity, nephrotoxicity, nausea, cough, 

pain, and stiffness in the injection site muscles. Besides this, it shows unresponsiveness and 

relapse in previously treated patients (Sundar and Chakravarty, 2015; Singh et al., 2016). 

Amphotericin B is a primary second-line treatment drug, but the unresponsiveness of the SAG 

in endemic areas currently makes AmB a first-line drug. The possible mechanism of inhibition 

of AmB binds strongly with a high affinity to the parasitic membrane ergosterol and alters its 

permeability (Chattopadhyay & Jafurulla, 2011; Ramos et al., 1996; O. P. Singh et al., 2016). 

Nephrotoxicity, high fever, aches, vomiting, nausea, dysponea, hypokalemia, and 

thrombophilitis are the side effects of this second-generation drug. Amphotericin shows drug 

resistance by the up-regulation of thiol cascade protein and MDR1 (Chattopadhyay & Jafurulla, 

2011; O. P. Singh et al., 2016; Wasan et al., 2009). The aminoglycoside drug paromomycin is 

another drug for treating leishmaniasis, and it mainly acts against parasites by inhibiting 

ribosomes in protein biosynthesis (Chawla et al., 2011). Paramycin shows side effects such as 

nephrotoxicity, hepatotoxicity, and pains in the injection area muscles (Sinha et al., 2011). 

Overexpression of ABC transporter and protein phosphates 2A makes this drug resistant to the 

parasite (Bhandari et al., 2014). Miltefosine is the first oral drug effective against Leishmania, 

and its action mechanism might inhibit the biosynthesis of phosphatidylcholine; it also hampers 

the phospholipid and sterol composition (Dorlo et al., 2012). Parasites raise resistance against 

this systemic drug by lowering the expression of the LdMT efflux transporter and LdRos3 

complex (Perez-Victoria et al., 2003 and 2006) and upregulation ABC transporter to pump out 

the drug (Castanys-Munoz et al., 2008). There are side effects of miltefosine and 

gastrointestinal problems such as vomiting and diarrhoea, nephrotoxicity, and hepatotoxicity, 

and it mainly acts as a teratogen (Dorlo et al., 2012). 
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Figure 2.4: The chemical structures of prophylactic chemotherapeutics of leishmaniasis 

(https://pubchem.ncbi.nlm.nih.gov) 

  Sodium Stibogluconate                                         Meglumine antimoniate    

Pentamidine Paromomycin 

Amphotericin B Miltefosine 

https://pubchem.ncbi.nlm.nih.gov/
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2.6 Prevention and control strategies 

Preventing and controlling the disease leishmaniasis is a multifaceted process with a strategic 

approach. Preventive and control strategies such as (i) vector control are paramount in 

controlling the disease by reducing the transmission rate by reducing sandflies. Leishmaniasis 

typically affects the poorest and most marginalized populations with inadequate housing and 

domestic sanitation conditions. To attain sustainable vector control, integrated vector 

management and surveillance are necessary, including improving the housing and sanitation 

facilities with adaptation of screening for windows and doors, insecticide painting, and 

plastering. In many endemic regions of leishmaniasis, lack/unscientific waste management or 

open sewerage is a potential hindrance to vector control, which may increase the breeding of 

sandflies and provide resting sites for them. Deforestation and Climate change are implicated 

as primary risks associated with endemicity in a few regions. So, monitoring and preventing 

this may improve vector management. (ii) Diagnosis and treatment: leishmaniasis is a curable 

disease with early, precise diagnosis and proper treatment. In the absence of the promised 

vaccine, the field-friendly rapid and early diagnosis (rk39) and safe and effective anti-

leishmanial medicines prevent disease transmission and burden. (iii) Disease surveillance, the 

treatment entirely relies on the effective surveillance of active and passive cases by early 

detection. (iv) Prevention of disease by animal reservoir host control. According to WHO, 

approximately 70 animal species, including humans, serve as the Leishmania parasite natural 

reservoir hosts. Preventing the zoonotic transmission of the disease is an integral part of the 

sustainable preventive strategy of the disease. (v) Social mobilization and partnership, as well 

as behavioural changes, have a significant impact on the prevention of diseases. Hence, 

implementing social awareness programs to educate the community about the disease is vital 

in eliminating and controlling the disease. Along with public mobilization, the various 

partnerships and collaborations in research and innovation and its implementation at the 

grassroots level, policy-making, and its practices, operational human resource networking for 

timely help and support for access and delivery of diagnostic aids, essential drugs, and other 

medical interventions (World Health Organization. Regional Office for South-East Asia, 

2022). Vaccines are an imperative preventive strategy, although no promising vaccines have 

yet been approved for human use. Vaccines are available for canine leishmaniasis in many 

countries, such as Europe has CaniLeish® and LetiFend®, and Leish-Tec® in Brazil (Velez et 

al., 2020). There are many hindrances and difficulties in effectively controlling leishmaniasis, 

even when diagnosed in time, because of the limitations of the chemotherapeutics (Volpedo et 
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al., 2021). Research shows that those who are recovered from the infection are protected from 

subsequent infections. Interestingly, the protective immunity they achieve is lifelong and 

emphasizes the vaccine feasibility as an economically favourable preventive strategy. The 

recent mathematical model of VL transmission dynamics and effectiveness of the vaccination. 

The study was conducted in the anthroponotic transmission of the Indian subcontinent 

population, and it shows 60% vaccine efficiency, which means it is very close to the elimination 

target, which is less than one VL case per 10,000 people annually. Interestingly, the stimulated 

vaccine in this study shows the infected individual lower infectiousness to sandfly, reduces 

post-infection symptoms and is effective against PKDL cases. Here, there is a need for a 

prophylactic vector-based pan-Leishmania vaccine against the all-pathogenic Leishmania 

species (Cecílio et al., 2020). 

2.7 The Leishmania parasite 

Leishmania, the unicellular protozoan trypanosomatid parasite with a dimorphic life cycle in a 

mammalian host as well as in sandfly vector host, motile flagellated promastigote, and 

immotile non-flagellated amastigote. Promastigote resides inside the sandfly midgut 

(Phlebotominae subfamily), serving as a vector and intermediate host. At the same time, 

amastigote resides in the mammalian host and replicates intracellularly. This stage is 

responsible for the symptoms in the infected host and is also involved in manipulating the host 

immune system and causing secondary infections (Kima, 2007). Leishmaniasis encompasses a 

spectrum of diseases in humans, and 20 species of Leishmania are pathogenic to humans. The 

various molecular and isoenzyme analysis distinguishes Leishmania at the species: L. tropica, 

L. major, L. aethiopica, L. donovani, L. infantum, and L. chagasi; three species make up the L. 

donovani complex; L. amazonensis, L. mexicana, and L. venezuelensis; and the Viannia 

subgenus, which contains species of L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, 

and L. (V.) peruviana (CDC retrieved on 01 October 2023). 
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Figure 2.5: (A) Schematic description of promastigote and amastigote form of Leishmania 

parasite with intracellular organelles and flagellar pocket considers the anterior end of the cell 

(adapted from (Besteiro et al., 2007)). (B) Microscopic image of Giemsa-stained promastigote 

(left) and amastigote (right) images. 

2.8 Leishmania Parasite Life Cycle 

The female phlebotomine sandfly, a 2-3 mm-long vector insect of Leishmania, is how the 

disease is spread. During a blood meal, sandflies inject the infectious stage, or promastigote, 

into their mammalian hosts (WHO, retrieved on 01 October 2023). Host macrophages and 

mononuclear phagocytic cells phagocytized promastigotes on the skin wound. Then, 

amastigotes, or tissue stage, develop from promastigotes, and these parasites are divided by 

simple division and infect other phagocytic cells. The infection symptoms are based on the 

parasite, host, and other factors and develop as Cutaneous skin lesions or Visceral 

Leishmaniasis with parasitaemia. Sandfly takes blood from the host with active cutaneous 

lesions (in the case of CL) and parasitaemia (in the case of VL), and the sandfly becomes 

infected. The ingested amastigotes transform into infectious metacyclic promastigotes in the 

sandfly gut (the Viannia subgenus is in the hindgut, whereas the subgenus Leishmania is in the 

midgut) and migrate to the sandfly proboscis. Even though the dimorphic life stages and cycle 

A 

B 
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are similar in all forms of Leishmania, the disease pathology varies from species to species and 

with geographical location (Teixeira et al., 2013). 

 

 

Figure 2.6: The life cycle of the Leishmania parasite. (Adapted from Esch & Petersen, 2013). 

2.9 Clinical Forms of Leishmaniasis 

Classified the different forms of disease based on the clinical symptoms, human leishmaniasis 

is clinically classified into three main types: (i) Cutaneous Leishmaniasis (CL), (ii) 

Mucocutaneous Leishmaniasis (MCL), and (iii) Visceral leishmaniasis (VL). Since the clinical 

manifestations differ with different types of diseases, identifying the specific causative species 

is important, and the host immunity and geographical location facilitate clinical management 

of the disease. CL is a form of the disease showing lesions or scars on the skin. It is primarily 

self-curable or chronic in <10% of patients (WHO). The symptom of CL starts with a papule 

on the skin, then grows as nodules with time and becomes an open ulcer. The symptoms are 

variable in patients since the misdiagnosis with other diseases that show skin malformation is 

a major problem of disease management. MCL is another type similar to CL; disfigurement of 

skin around the mucosal membrane, especially nose and mouth, is the major symptom. Even 
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though the CL and MCL are not lethal, the permanent scars and disability of the body create 

social stigma among the patients. VL is the most significant public health threat because more 

than 95% of cases are fatal if left untreated due to the systemic consequences. The clinical 

symptoms in the initial stages of VL are fever, weight loss, anaemia with reduction platelets, 

erythrocytes, and leukocytes, hepatosplenomegaly later it leads to death by sepsis from the 

secondary infection with a drastic reduction of platelets, severe anaemia, and rapid weight loss 

(CDC retrieved on 01 October 2023)  

Types of Leishmaniasis 

 

 

 

 

 

 

Figure 2.7: Clinical classification of ulcerative cutaneous leishmaniasis (left), mucocutaneous 

leishmaniasis with nasal skin erythematous patch (middle), and Visceral leishmaniasis with 

splenomegaly (Right).   

(adapted from https://www.cdc.gov/parasites/leishmaniasis/disease.html). 

2.10 Challenges of Leishmaniasis 

Despite the milestone achievements in preventing and controlling leishmaniasis, the eco-

epidemiological, socioeconomic, and biological challenges in eliminating the disease are 

considerable. According to a recent case study conducted in the Brazilian state of Sao Paulo, 

leishmaniasis and deforestation are related; in deforested areas, vector, canine, and human VL 

significantly increased by 2.63, 2.07, and 3.18 times, respectively. Additionally, the study 

discovered that the incidence of vector, CVL (Canine Visceral Leishmaniasis), and HVL 

(Human Visceral Leishmaniasis) decreased by 11%, 6.67%, and 29.87%, respectively, with a 

hypothetical 50% reduction in deforestation (Santos et al., 2021). Malnourishment (chronic 

Mucocutaneous Visceral leishmaniasis Cutaneous leishmaniasis 

https://www.cdc.gov/parasites/leishmaniasis/disease.html
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and acute), co-infections and co-morbidities, host genetics, parasitic adaptions, and virulence 

enhancement are the major biological challenges that accelerate the disease’s progression 

(Volpedo et al., 2021). The currently available diagnostic tools are not adequate for the 

prevention of the disease; for example, the rk39 rapid diagnosis kit has a problem that cannot 

distinguish the current and past infection (false positivity rate is high), and it has limitations in 

detecting PKDL and the co-infection cases (WHO, regional report). Treatment relapse cases 

due to various reasons is a major challenge in disease control because of this sporadic 

occurrence in the non-endemic area (endemicity expansion), and drug-resistant, asymptomatic 

cases are continuously reported.  

2.11 Immunology of Leishmaniasis  

The immune biology of leishmaniasis, especially the immune defence against the parasite by 

the host, is complex. The coordinated contributions of several effector molecules and immune 

cells to manage the disease progress. The innate immunity is the front-line defence system of 

immunity against various pathogens. It is through the various mono and polymorphonuclear 

phagocytes, lymphocytes, and natural killer cells along with its effector functions such as TLRs 

and myeloid differentiation factor 88 (myd88) activation, complement system response, 

microbial effector molecules such as ROS, Chemokines and pro-inflammatory cytokines and 

nitric oxide (Carneiro et al., 2016; Tosi, 2005). The immune defence of the host starts at the 

bitten area of the sandfly; the promastigotes, along with their secretory products in the dermis 

of the mammalian host, elicit an immunological response by activating both the classical and 

alternative complement activation pathways by the interaction with serum and are very rapid 

and efficient (Mosser & Edelson, 1984). 

The complement activation plays a crucial part in the opsonization of the parasite; C3b/opsonin 

binds to glycoprotein GP63 (Surface metallopeptidase of parasite) and turns C3b into iC3b, an 

inactive form (Hermoso et al., 1991). It helps invade the intracellular parasite Leishmania to 

the host through a broad range of phagocytic cells, including monocytes, neutrophils, and 

dendritic cells. However, the preferred primary host cells of Leishmania are macrophages. 

Leishmania invades the host cells and survives inside the macrophages. The recognition and 

invasion of parasites to the host by using the parasitic secretory product proteophoshoglycans 

and lipophosphoglycan is also a macrophage recruitment machinery stimulator (Giraud et al., 

2018). Leishmania lipophosphoglycan signal to switch on the ERK 1/2 to enhance the 

production of IL-10 to counteract the secretion of IL-12, and this through MAPKs is a major 
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survival strategy of the parasite (G.-J. Feng et al., 1999; Mathur et al., 2004). After that, the 

transient infection occurs in neutrophils, which act as trojan horses to the parasite to escape 

from the host immunological defence and successfully interact with macrophages (Shapira & 

Zinoviev, 2011). The persistent initial interaction and infection in macrophages by intracellular 

survival factors released by parasitic flagellum and its zone is critical for the survival of the 

parasites (Halliday et al., 2020; Sunter et al., 2019). The choice of macrophage receptors such 

as CR1 and CR3 for the Leishmania uptake is another survival strategy of Leishmania to inhibit 

the inflammation as well as the oxidative damage of the parasite. The CR-mediated uptake 

accumulates the lysosome markers LAMP1 and Cathepsin D; it creates a favourable condition 

for the parasite inside the macrophage phagosome (Ueno & Wilson, 2012). The phagocytized 

parasites were differentiated and replicated as amastigotes inside the host phagolysosome. The 

parasite prevents the cells of the host from apoptotic clearance. It spreads the infection to 

neighbouring uninfected macrophages through the membrane extrusions, which helps to attract 

and internalize uninfected macrophages (Real et al., 2014). The colonization of infected 

macrophages in CL is in the skin and mucous membrane in the case of MCL, whereas, in VL, 

it is majorly in the lymph node, spleen, bone marrow, and liver (V. Rodrigues et al., 2016).  

The complex cross-talk of parasite distinct stages and immune cells, especially APCs of the 

host, is the deciding factor of the disease’s after-effects and progression. TLR is a PRR 

expressed in phagocytes and APCs and recognizes the pathogen-associated molecular pattern. 

The macrophage TLR activation takes part in the Leishmania immunological response, and the 

Leishmania immunological response is categorized as a type 1 immune response, the T cell-

mediated Th1 response by the APCs produced IL-12 via TLR signalling (Becker et al., 2003; 

Muller et al., 1989). These will initiate the macrophage-mediated ROS or NO production as an 

effector response (Carneiro et al., 2016). In addition, NK cell-activated chemokines mediated 

by IFN-γ are chemotactic protein (MCP)-1, lymphotactin, and protein-10 (IP) also produce the 

effector molecules against parasites (Nylén & Sacks, 2007). The IFN-γ induced iNOS-

dependent NO production and classically activated M1 phenotype, a major pathway involved 

in the parasite killing. In contrast, the arginase-mediated M2 polarization is involved in 

polyamine biosynthesis and parasite survival (Tomiotto-Pellissier et al., 2018). Numerous 

studies investigated the preventive role of TLRs in Leishmania infection. By way of 

illustration, in various species of Leishmania, TLR2 produced protective effector molecules of 

ROS and NO, TNF-α, IL-12, and NK cell activation via the NF-κB pathway (Becker et al., 
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2003). Moreover, TLR2 induces Th1 and Th17 cells from CD4+ T cells and produces pro-

inflammatory cytokines like CXCL1 and NO (Sacramento et al., 2017). 

 

 

Figure 2.8: Immune biology of Leishmania spp. Schematic shows the various immune cells 

and their effector mechanism in Leishmania infection (Elmahallawy et al., 2021). 

In leishmaniasis, innate and adaptive immunity plays a significant role, even though the 

humoral response has little effect on removing parasites, as the parasites reside inside 

phagolysosome as an obligatory intracellular pathogen. The divergent observations are that the 

humoral immune response, such as IgG2, is protective or exacerbation of pathogenesis. Indeed, 

some studies show the detection of Leishmania antigen-specific IgG, IgM, and IgE antibody 

titters during active leishmaniasis (Anam et al., 1999; Sacramento et al., 2017). Another study 

demonstrated that the B lymphocyte immune response favours some species of Leishmania 

infection (Firmino-Cruz et al., 2020). The B-cell deficient mice show a later appearance of 

symptoms and less disease severity (Smelt et al., 2000). Interestingly, animals deficient in B-

cell activating factor (BAFF) efficiently control splenomegaly in the L. donvani-infected 
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experimental model of VL (Omachi et al., 2017). However, it takes part in a significant part in 

the serological diagnosis of VL by detecting antigen-specific antibody titters (Lévêque et al., 

2020). Detailed and defined studies on humoral response might reveal its role in Leishmania 

pathogenesis. 

The adaptive or cell-mediated immune response majorly decides the outcome of the 

Leishmania infection. The early innate immune response as cytokine secretions will shape the 

adaptive immune response either to progress the diseases or to eliminate the parasite. 

Removing the parasites and enduring memory to prevent re-infection are functional 

perspectives of the cell-mediated immunological response. The adaptive or cell-mediated 

immunity is indispensably by the T cells that are CD8+ memory and CD4+ effector cells, 

respectively (Reiner & Locksley, 1995). Interestingly, the Treg (T regulatory) cells are a 

specialized subtype population of the CD4+ population of cells, and they suppress the 

immunological response for homeostasis and immune tolerance (O. R. Rodrigues et al., 2009). 

In the experiments in the murine model of Leishmaniasis, Treg cells suppress the Leishmania-

specific T cell response of effector CD4+ cells and progression of diseases by persistence of 

parasites and loss of memory cells (Mendez et al., 2004; Sacks & Noben-Trauth, 2002). In 

human leishmaniasis, it prevents cytokine production by hampering the proliferation of 

cytokine-producing effector cells Campanelli et al., 2006). The Foxp3-negative CD4+ effector 

cells are actively involved in the secretion of the regulatory IL-10 cytokine in VL (Nylén & 

Sacks, 2007). The T cell-mediated Th1 response protects against parasites by majorly inducing 

the pro-inflammatory IFN-γ and TNF-α by host resistance. The Th2 response induces a 

susceptible phenotype with the persistence of the parasites (Kemp et al., 1994). The active VL 

cases predominantly induce the regulatory and ant-inflammatory TGF- β and IL-10 cytokines 

and sustained levels of cytokine IFN-γ (Kemp et al.,1994; Kupani et al., 2021). However, this 

polarization paradox is more complex in human leishmaniasis; for example, the Th1-mediated 

hyper-inflammatory state in diffuse cutaneous leishmaniasis leads to metastatic infection 

(Silveira et al., 2009). Furthermore, the IL-17-producing Th17 regulatory T cell population is 

also involved in leishmaniasis, and its response is mainly linked to the tissue or parasite species 

specificity. Recent reports reveal it plays a major role in CL disease progression and lesion 

formation(Gonçalves-de-Albuquerque et al., 2017). The TGF- β and IL-10-producing Treg 

cells, such as CD4+CD25+FoxP3+, are involved in the disease progression in VL patients (P. 

Kumar et al., 2017). The CD8+ T cell population in leishmaniasis depends on the disease’s 

manifestations. It is mainly involved in a protective role by clearing parasites through IFN-γ 
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production (Nateghi Rostami et al., 2010). The CTLs of CD8+ T cells are majorly responsible 

for forming granulomas in Leishmania parasite infection (Rossi & Fasel, 2018). In contrast, it is 

observed that the IL-10-secreting CD8+ cells in disease development in MCL, DCL, and PKDL 

(Bourreau et al., 2007; Faria et al., 2009; Hernández-Ruiz et al., 2010; Mukherjee et al., 2019). 

The T cell response in leishmaniasis is highly divergent and complex and associated with the 

Th1/Th2 dogma of immune response. Overall, it elicits responses based on species and forms 

of the diseases as well as the host immune competence, and a large amount of data suggests 

the multifaceted role of T cell immunity is to balance the immunological response during the 

parasite infection.  

 2.12 Intracellular Survival Mechanisms of Leishmania Parasite by Modulation of 

immune-response of host 

Survival of the parasites inside the hostile environment of the macrophages is through adopting 

various exploitive mechanisms. The dimorphic stage promastigote first comes in contact with 

host mononuclear phagocytic cells to escape the host’s immunological response and propagate 

successfully by modulating the host’s immune response (Matte & Olivier,2002). Macrophages 

are the primary host cells for Leishmania, even though other mononuclear phagocytic cells take 

part in the initiation of the infection, so the modulation of host macrophages is predominant. 

The multifaceted modulation of immunological response includes regulation of the immune 

signalling, secretion of immune modulatory molecules or degradation of microbicidal 

molecules, regulation of transcription/translational factors, and poor antigen presentation (Liu 

& Uzonna, 2012). The TLR-mediated early host innate immune defensive response against the 

parasite by the macrophage is initiated via the MyD88 independent or dependent pathway and 

leads to the activation of MAPK. The MAPK cascades produce pro-inflammatory cytokines 

(Soares-Silva et al., 2016). The pro-inflammatory cytokines eliminate the parasites, so the 

parasites exploit the TLR pathway for their better survival. The successful establishment of 

infection through the TLR pathway by using modulators or negative regulators that tightly 

regulate the TLR-mediated immune response of the host at the time of infection (Srivastava et 

al., 2012). The SHP-1 is a negative regulator protein encoded by the gene PTPN 6, and the 

phosphatase activity of the SHP-1 is to dephosphorylate the phosphate group from the tyrosine 

residue of IL1 Receptor-Associated Kinase 1 (IRAK1). SHP 1 and IRAK 1 interact through an 

evolutionarily conserved motif of IRAK 1, KTIM. This interaction will inactivate the IRAK 1 

intrinsic kinase activity. Hence, the kinase cannot dissociate from the MyD88 complex, thereby 
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preventing the MyD88-TRAF6 association, leading to the inactivation of TLR signalling. The 

double knockdown of SHP-1 shows better IRAK 1 kinase activity (Abu-Dayyeh et al., 2008). 

The absence of SHP will induce the Th1 inflammatory molecules like IL-1β, IL-6, and TNF-

α, eliminating parasites (Forget et al., 2005). The overexpression of TGF-ß-1 down-regulates 

the expression of TLR4. The recombinant TGF-ß-1 enhances the expression of the phosphatase 

SHP-1 and inactivates the IRAK1 and subsequent cascades (S. Das et al., 2012). The SOCS is 

a negative JAK-STAT pathway regulator, suppressing cytokine production. The SOCS family 

has eight members: CIS, SOCS 1 and SOCS 7 (Chandrakar et al., 2020). SOCS 1 has a well-

known role in apoptosis, and it negatively regulates the apoptotic pathway by suppressing the 

apoptosis-inducing cytokines like TNF-α and IFN-γ, so it is majorly involved in infection 

(Delgado-Ortega et al., 2013). The virulence factor and various effector molecules, such as 

GP63 and EF-1α, to host cells through the exosomes activate phosphatase SHP-1 and PTP1B. 

These disrupt the signalling pathways of IFN-γ/Jak-STAT1; subsequently, they dampen the 

antigen presentation and create a presumptive environment for the parasite (J. M. Silverman et 

al., 2010). The efficient Protein Quality Control (PQC) machinery of intracellular protozoan 

parasites contributes to keeping the parasite’s metastable aggregation-prone proteome 

functionally stable against hostile environmental challenges. Heat Shock Proteins (HSPs) are 

the major form of PQC, and in Leishmania parasites, many HSPs such as HSP90, HSP70, 

HSP60, HSP100, HSP40, HSP23, SGT, ST11, TCP20 have multifaceted roles of proteome 

protection by folding and degradation regulations. The autophagy machinery ATG 3 and ATG 

4 are other components of the PQC network of the Leishmania parasite (Morales et al., 2010; 

Requena et al., 2015). The HSPs in the Leishmania exosome ensure the target-specific and 

protective export of its cargo proteins to the host (J. M. Silverman et al., 2010). Iron is 

paramount in the survival of intracellular pathogens and the host cells for their better survival, 

as it plays many roles in cellular mechanisms such as maintaining cellular homeostasis, 

erythropoiesis, and cofactors for many enzymes. L. donovani employs novel strategies to 

extract iron directly from the labile iron pool of macrophages. The parasite exploits the 

acquisition of sequestered iron of macrophage by altering the TfR1 (Transferrin Receptor 1 

pathway) of the host cell. Leishmania infection induces the expression of TfR1 by sensing the 

iron depletion in the LIP of the host macrophage with iron sensory proteins that lead to the 

activation of IRP1 & 2. After that, the IRP forms a complex with iron-responsive elements 

(IRE) that upregulate TfR1 by posttranscriptional regulation (Wilson et al., 2012). L. donvani 

directly scavenges the iron from LIP and enhances the production of intracellular iron through 

the TfR1 pathway mediated by the IRP-IRE interaction of host macrophages in both cell culture 
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and animal models (N. K. Das et al., 2009). The immune inhibitory/modulatory mechanisms 

are major survival mechanisms of parasites and are of two types: (i) extrinsic and (ii) intrinsic 

immune checkpoints. The extrinsic immune inhibitory agent, mainly by the T-regulatory cell’s 

recruitment and production of anti-inflammatory and regulatory cytokines, counteracts the T-

cell population-mediated host immunological response against the parasites (Kubo & 

Motomura, 2012). MDSCs (Myeloid-derived suppressor Cells) are myeloid in origin and are 

natural suppressors that elicit a suppressive functional effect on the T cell population 

(Gabrilovich & Nagaraj, 2009). The isolated MDSCs from BALB/c mice that are challenged 

with L. donovani parasites are highly immunosuppressive, and the repressive mechanism of 

MDSCs by the suppression of the T cell population function through depleting L-arginine and 

inactivation of protective cytokine production. MDSCs from Leishmania-infected mice show 

high-level expression of suppressive molecules such as cyclooxygenase-2 and Arginase I, 

iNOS, and PGE 2 (Bandyopadhyay et al., 2015). In the intrinsic inhibitory mechanism, the 

recruitment of inhibitory receptors such as CTLA-4, PD-1, CD47, CD300a, and CD200 and 

their subsequent binding sends an inhibitory signal through Tyrosine-based Inhibitory Motif 

(ITIM) (de Freitas e Silva & von Stebut, 2021; R. K. Singh et al., 2018; Vaine & Soberman, 

2014).  
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Figure 2.9:  Schematic represents the Leishmania parasite intracellular evasion and molecular 

pathway alteration (https://www.genome.jp/pathway/hsa05140)

https://www.genome.jp/pathway/hsa05140
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Over the decades, it has been well-defined that the immune cell and amino acid metabolism 

cross-talk play a significant role in immune cell functions, especially the arginine metabolism 

of macrophage activation to produce nitric oxide in inflammatory stimuli (Kung et al.,1977). 

However, there is no attention to the other side of the macrophage alternative activation through 

Arginase I. Later, it was clear that IL-4 and IL-13 inhibit NO production through the arginase 

(Doyle et al., 1994). Macrophages are represented as the primary cells for the innate immune 

response, and the Leishmania parasite uses these as the first choice of host cells. The primary 

effector cells phagocytose the parasite, activating the DC and complement system (Wozencraft 

et al.,1982). Macrophages are functionally plastic with distinct phenotypes: M1 is the pro-

inflammatory subtype with microbicidal activity, whereas M2 is the anti-inflammatory subtype 

with tissue repair and resolution of inflammation and is proposed by Mills et al. (Mills CD et 

al. 2000; Tomiotto-Pellissier et al., 2018). The iNOS and ARG1 are two enzymes that use the 

same amino acid, which creates an ‘arginine dichotomy’ in the macrophages that classically 

activated M1 and alternatively activated M2. The relative expression of these genes is pivotal 

for their distinct functional phenotype (Kieler et al., 2021; Mori & Gotoh, 2004). The classical 

activation of macrophages induces microbicidal molecules such as ROS, RNS, and NO and 

eliminates the parasite (Mosser & Zhang, 2008). 

On the other hand, the alternative activation of the macrophages drives the infection with 

parasite regulatory molecules such as TGF-β and IL-10, which dampens the effects of the 

microbicidal molecules (Rossi & Fasel, 2018). The M1 phenotype upregulates the expression 

of iNOS, CD40, CD80, and CD86 and is involved in parasite killing (Takiguchi et al., 2021). 

M2 phenotype expresses CXCL14, CD163, CD206, and arginase I and promotes parasite 

survival (A. Kumar et al., 2018). Recently, it has been proven that many metabolic 

intermediates play a considerable role in cellular and molecular immunological events. 

Metabolic pathways are pivotal in the pathophysiology of many diseases, especially infectious 

diseases, and any dysregulations in the metabolic pathways might enhance disease 

susceptibility (Kaushal et al., 2017; H. Kumar, 2020). The highly dynamic interplay between 

metabolism and immunity is predominant in various infectious diseases, and it manipulates the 

immune cell population metabolism of the host for better survival. Immunometabolism of the 

macrophages is strongly linked to their state and fate, especially their functional phenotype 

(Chapman & Chi, 2022). The fate of the macrophage phenotype and functions mainly depends on 

the cues, such as obligatory metabolites or nutrients in the microenvironment, pathogens, and 

their effector molecules. Macrophages are highly versatile immune cells, and 
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immunometabolism reprogramming modulates their polarization. For example, the metabolic 

rewiring of L-arginine metabolism and functional plasticity of macrophages. The semi-

essential L-arginine amino acid and its fate determine the state of the macrophages’ classical 

activation or alternative activation (Thapa & Lee, 2019). Interestingly, editing the macrophage 

polarization with immunometabolism modulators is an emerging therapeutic approach in many 

diseases (Geeraerts et al., 2017). 

Immunometabolism in protozoan parasites is a budding area of research; the cross-talk between 

metabolism and immunity decides the disease resolution or progression. The harmonious 

symbiosis of intracellular pathogens residing inside the immune cells is largely due to the 

strategic immunometabolism exploitation of the host. The parasites regulate the immune-

metabolic pathways of the host, or they rely on their metabolic enzymes to exploit the host 

metabolites (Moreira et al., 2018). Leishmania spp. manipulate the equilibrium of host 

immunometabolism and proliferate inside the host phagolysosomes. It demonstrated with an 

experiment that infection of human monocyte-derived macrophages with L.  amazonensis or 

L. donovani shows an increased level of oxidative phosphorylation over glycolysis and 

diminished secretion of inflammatory cytokines, as the similar phenotypic pattern of M2. 

Interestingly, the pre-stimulation of LPS and IFN-γ significantly enhances the glycolysis and 

inflammatory cytokines. The results indicate that the M1 to M2 polarization of macrophages 

during the parasite infection might be due to the parasite and the effector molecules, which 

highly contribute to the strict M1 to M2 polarization and are also microbe-specific. 

Leishmania-mediated immunosuppression is due to the metabolic manipulation of the host 

macrophages (Huang et al., 2016; Ty et al., 2019). The metabolic reprogramming of the host 

macrophage decides the permissive or non-permissive host reservoir for the better infection of 

the parasite. The immunometabolism of Leishmania granuloma is composed of a 

heterogeneous population of infected and non-infected macrophages, and parasite survival 

depends on its functional fate, and it again depends on the nutrient/metabolite resources of the 

niche. The phagolysosome compartment is relatively nutrient or metabolite-limited and 

sometimes rich with host defence effector substances to overcome these hurdles through the 

metabolic adaptations of parasites (Saunders & McConville, 2020). It is observed that in the 

phagolysosome compartment, there are various biomarkers and signal peptides for the 

vesicular fusion, suggesting that the highly dynamic compartment always fuses with endo-

lysosome or various secretory vesicles to compensate for the energy requirement and parasites 

exploit it by rewiring of the various immunometabolism pathways (Young & Kima, 2019). The 
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macrophage polarization is regulated by local effectors such as growth factors, chemotactic 

substances, cytokines, and nutrient or metabolite levels. It reprogrammed the metabolic and 

immune pathways and geared the cellular effector functions. The mTOR, AMPK and HIF1α 

are some major pathways that the Leishmania parasite alters for the polarization of the 

macrophages toward the parasite’s favour (Batista-Gonzalez et al., 2020). The Leishmania 

granuloma model is excellent in that the immune cells meet the metabolic pathways for the 

defence and elimination of the parasite. However, the intimate interconnection of host and 

parasite alternatively activates many immunometabolism pathways, making naive cells more 

susceptible in the microenvironment. It impacts functionally highly dynamic macrophages to 

compromise, resulting in disease progression (Saunders & McConville, 2020). Another study 

highlights that the early immune response is ineffective during splenic infection of L. infantum 

and is coupled with the down-regulation of metabolic markers of pathways such as AMPK, 

Adipocytokine, and icosanoid biosynthesis. It hampers the parasitic control (Palacios et al., 

2023). The exposure of the parasite to the host makes immune cell recruitments, and its immune 

response is initiated to eliminate the parasites. The highly plastic macrophages exhibit various 

activation stages based on the signal from the local microenvironment that resides (Xue et al., 

2014). Leishmania senses the activation state of the macrophage and its nutritional or metabolic 

resources and manipulates these local clues to regulate macrophage immune-metabolic 

pathways (Ty et al., 2019). The alteration in the metabolite availability and its concentration 

decides the outcome of infection by immune-metabolic modification of various signal 

transduction pathways. It initiates and gears the long-term epigenetic and transcriptional 

reprogramming of the M1 to M2 transition of the macrophages (Ivashkiv, 2013). The System 

biology approached mathematical models of macrophage polarization. It deals with the 

relevant immune-metabolic networks behind the Leishmania-mediated immunometabolism 

reprogramming. The transition state of the macrophage, i.e., M1 and M2 (Fig.2.10). The 

immunometabolism mathematical model of macrophage polarization shows that the arginase I 

mediated M2 polarization by conversion of arginine to polyamines, which are precursors of 

trypanothione for the parasite defence against ROS and NO. On the other hand, it inhibits the 

NOS2 activation by using various parasitic effector molecules (Bogdan, 2020).  
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Figure 2.10: System biology approach of mathematical models of immunometabolism 

reprogramming of host pathways and macrophage polarization (Khandibharad & Singh, 2023). 

Polyamines (PAs) are polycationic organic molecules with positively charged amine groups 

essential for all eukaryotes. Pathogenic protozoans use polyamines to survive and infect the 

host (Phillips, 2018). The metabolic state of immune cells influences immune modulation of 

the immune system. Spermidine is a crucial metabolite impacting the metabolic fitness of 

macrophages during protozoan parasitic infections (Mahalingam et al., 2023). The spermidine 

treatment induces the anti-inflammatory cytokines and their genes. Interestingly, the 

pretreatment of spermidine before the LPS treatment induces the iNOS gene and Nitric Oxide 

(NO) production (Choi & Park, 2012). The reciprocal regulation of the iNOS and ARG I is 

crucial for the parasite’s survival by driving the polyamine pathway (Fig.2.11). 
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Figure 2.11: Schematic representation of “arginine dichotomy” of Leishmania parasite 

and immunometabolism cross-talk of host-pathogen interaction. Leishmania is 

auxotrophic for the semi-essential amino acid arginine and is very crucial in the intracellular 

survival of parasites by for the synthesis of polyamines. Moreover, the parasite lacks the de 

novo pathway for the polyamines and entirely depends on the host or the media. The 

phagolysosome compartment is a nutrient-deplete niche. Hence, inside the host macrophage, 

Leishmania is at a crossroads of win or lose the “hunger game”. Arginine is a double-edged 

sword converted to highly microbicidal NO that eliminates the parasite or parasite-favouring 

polyamines that help parasite survival and disease progress. The polyamine biosynthetic 

pathway is distinct in Leishmania and host macrophages. In Leishmania, the pathway end 

product is spermidine (indicated in green), and they lack the back conversion enzymes for 

spermine to spermidine and spermidine to putrescine like other mammals. However, parasites 

have a unique conversion of spermidine into trypanothione (only in trypanosome parasites) as 

an oxidative stress-mediated free radical escape mechanism (indicated in red). (adapted from 

Carter et al., 2022). 

In the host-pathogen interaction, the secretion of microbial effector components and its targeted 

delivery is theorized as a major part of the discussion on the pathophysiology of diseases 

(Gomez et al., 2009; Nandan et al., 2002; Nandan & Reiner, 2005). EVs are one such kind that 

previously underappreciated organelle because they are considered a mechanical death of cells 
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or a result of apoptosis. In contrast, in the 20th century, it was firmly established that vesicles 

originated due to biological events and served as a communicator to enhance or dampen 

cellular responses (J. M. Silverman et al., 2010). EVs are nanometric membranes secreted by 

most prokaryotic and eukaryotic organisms (Gurung et al., 2021). The modulation of the host-

pathogen interaction via EVs is a major survival strategy of the parasite inside the host 

macrophage’s harsh environment. This might be due to the protective packaging and delivery 

of exosome contents to the host (Wei et al., 2020). The Scanning Electron Microscopy (SEM) 

based secretion of EVs by the Leishmania parasite was demonstrated (Hassani et al., 2011). 

EVs are formed by plasma membrane blebs and shedding to the extracellular space or secretion 

inside the Multi Vesicular Bodies (MVB) and secreted out to extracellular space by fusion of 

plasma membrane (Atayde et al., 2016; Tkach & Théry, 2016). Different types of EVs are 

classified based on their origin, location, size, and morphology. Even though no sophisticated 

scientific technologies distinguish the exact classification of EVs (Raposo & Stoorvogel, 2013; 

Tkach & Théry, 2016). However, the provenance of EVs is from the cellular membrane and 

shed off to extracellular space, known as microvesicles or exosomes, with sizes 50 to 2000 nm. 

In contrast, exosomes are a small round or cup-shaped heterogenous population of EVs 

originating from an endocytic pathway with 30-150 nm in size (Tkach & Théry, 2016). EVs 

can be fused to the plasma membrane of recipient cells or transfer the message by simple 

binding; for example, the exosomes expressing MHC II interact with the T cell populations 

without any internalization or fusion (Yang et al., 2011). Another important way of uptake was 

the receptor-mediated endocytosis or phagocytosis of the recipient cells (Bastos-Amador et al., 

2012; D. Feng et al., 2010; J. M. Silverman & Reiner, 2011). EVs play a major part in the 

intracellular communication of various infections, making the naive cells more susceptible to 

infection. However, extensive studies on EVs in infection are still progressing, and one such 

interesting role of exosomes in host-pathogen interaction is HIV infection. In the case of HIV 

infection, the infected cell producing the exosomes contains the HIV co-receptor that helps the 

virus enter into the neighbouring cells (M. Mack et al. 2000). It is also noted in many other 

intracellular pathogens such as Mycobacterium (Cheng & Schorey, 2013), Plasmodium yoelii 

(Martin-Jaular et al., 2011), Toxoplasma gondii (Li et al., 2018). Protozoan pathogens, such as 

Trypanosoma (Li et al., 2018; Nogueira et al., 2015), Leishmania spp. (Atayde et al., 2015; 

Hassani et al., 2011; J. M. Silverman et al., 2010), can produce EVs with their cargos containing 

virulence components. Leishmania produces exosomes through the endocytic exosome 

pathway retained in the evolution time and is a small heterogenous population of EVs with 

sizes ~30-150 nm. The parasitic EVs mimic parental physiology and carry parasite-specific 
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cargo such as proteins, lipids, metabolites, and nucleic acids, some of which have 

immunomodulatory properties (Xu et al., 2019). The Leishmania RNA Virus 1 (LRV1) is a 

Leishmania-infecting double-stranded non-enveloped RNA virus that exploits the Leishmania 

exosome pathway. The LRV1 uses exosomes as a protective envelope to facilitate the effective 

transport and infectivity toward the host (Atayde et al., 2019). Leishmania alters many internal 

molecular mechanisms for its survival and multiplication. The Leishmania exosome-treated 

monocyte and dendritic cells show a high Th2 cytokine gene expression (J. M. Silverman et 

al., 2010). The Leishmania exosome contains many RNA and RNA-binding proteins (RBP) that 

help the RNAsack inside the exosome (Statello et al., 2018b). The highly enriched small 

fragments of rRNA and tRNAs inside the exosomes of many species of Leishmania suggest 

the specific and conserved mechanism of the RNA packaging exists and plays a significant role 

in the infection exacerbation (Statello et al., 2018). The virulence factors or drug-resistant 

proteins from the parental parasitic strain are specifically enriched in small EVs (Douanne et 

al., 2022). A recent report shows that the Leishmania drug-resistant genes are associated with 

EVs of the Leishmania, and it transfers drug-resistant genes through the EVs. Interestingly, the 

study demonstrated that the transfer assay of EVs from the resistant strain of parasites to naive 

parasites improved the growth and fitness of parasites and efficiently controlled oxidative 

stress. The study provides evidence that the Leishmania EVs are efficient mediators of genetic 

materials; they constitute the Horizontal Gene Transfer in parasites (Fig. 2.12) (Douanne et al., 

2022). 
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Figure 2.12: The Leishmania EVs constitute the Horizontal Gene Transfer (HGT) in 

Leishmania parasites. The transfer assay shows that the EVs associated with drug-resistant 

genes (amplicons) from the parental drug-resistant Leishmania parasite to the recipient drug-

sensitive (naive) strain showed the exchanges of the amplicon. The drug-resistant genes 

enriched EVs induce drug resistance in the naive strain to encounter stressful environments 

(Douanne et al., 2022). 

The Leishmania exosome membrane orientation is similar to the parasite’s, following the same 

molecular interaction with the host cells. The Leishmania binds to CR3 and mannose receptors 

for phagocytosis, and Leishmania exosomes preferentially phagocytosed by the host cells as 

similar receptor-ligand interaction (D. Feng et al., 2010). An alternative hypothesis is that the 

Leishmania exosomes fuse to the host cell and release the cargo. The macrophages engulf the 

fluorescently labelled Leishmania exosomes mainly through an actin-based mechanism. 

Leishmania exosomes are delivery vehicles that deliver cargo to the host cells through receptor-

mediated endocytosis (J. M. Axwell Silverman & Reiner, 2011). The studies demonstrated that 

Leishmania secretes exosomes as a mechanism of non-conventional secretion of protein and 

its delivery. The targeted delivery of the exosome cargos to long-distance delivery and immune 

modulation through intracellular communications. The studies prove, in vitro cell culture and 

in vivo models of animals, that the Leishmania exosomes mimicked the infection per se in the 

host (J. M. Axwell Silverman & Reiner, 2011). The L. donovani exosomes stimulation of 

dendritic cells derived from monocytes failed to differentiate the naive CD4+ population of T 

cells to the Th1 subtype, dampening the inflammatory cytokines, especially IFN-γ. 

Furthermore, the exposure of parasite L. donovani exosomes to BALB/c mice and then parasite 

infection increases the parasite burden and exacerbation of the infection. The worsening of the 

diseases by producing high levels of IL-10 with Th2 polarization demonstrates that the 

Leishmania exosomes are predominantly immunosuppressive (J. M. Silverman et al., 2010). 

Macrophages are highly functionally plastic to the microenvironment stimuli and show 

phenotypic diversification. The distinct phenotypic diversification is known as polarization, as 

it is macrophages’ response against the microbes or tissue repair. For example, Leishmania-

infected cells derived EVs used to stimulate the peritoneal macrophages. Peritoneal 

macrophage exudate expresses transcripts of M2 polarization signature molecules (Emerson et 

al., 2022). In conclusion, Leishmania EVs play a major role in intracellular communication, 

non-conventional protein secretion, and its targeted delivery, packaging, and delivery of drug-
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resistant genes and virulence factors (Fig. 2.13). Overall, it modulates the host’s immune 

response for establishing successful survival in the host. 

 

 

Figure 2.13: Schematic representation of promastigotes derived exosomes and their 

cargos transfer to host during the blood meal of a sandfly. Leishmania promastigote secrete 

exosomes inside the midgut of the sandfly and co-egestion to the host skin during the blood 

meal, and the magnified graphical representation shows the Leishmania exosomes with the 

lipid bilayer and its internal cargos (Adapted from Atayde et al., 2015). 
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The secretory effector molecules of Leishmania parasites impact the disease fate and parasite 

survival. Exosomes are carriers of various effector molecules to the host and the parasite. 

According to WHO, asymptomatic cases of leishmaniasis are a noticeable threat. In addition, 

the PKDL and HIV-VL co-infection are important parasite reservoirs as per the WHO South-

East Asia regional report 2022-2026 (World Health Organization. Regional Office for South-

East Asia, 2022). The sporadic and rapid reports of chemotherapeutic resistance, comorbidities, 

and malnutrition-associated disease progress, relapse, and silent transmission through 

asymptomatic carriers are possibly linked with the immune-metabolic state of the host. The 

parasite invasion, disease establishment, and survival inside the host are strongly linked to the 

immune state of the host. Interestingly, recent studies emphasize the immune profile of the host 

is firmly connected to the metabolism status of the host. Since the Leishmania parasite survives 

in the macrophage phagolysosomes, and this microenvironment is harsh, the nutrient or 

metabolite is limited, and the parasite exploits various host immune-metabolic pathways to 

withstand and survive. In assumption, Leishmania exosomes are carriers of various effectors, 

including the essential metabolites that decide the intracellular parasite survival. Moreover, it 

also manipulates the host immunometabolism pathways for better survival and multiplication. 

The metabolic adaptation and the rewiring of host metabolism correlate to the Leishmania 

exosomes. We assumed that the polarization of macrophage towards the Leishmania favouring 

M2 state from the M1 state during the exosome stimulation is by the host immunometabolism 

reprogramming. We designed three primary objectives to investigate the Leishmania-derived 

exosomes and host immunometabolism status. 

I. Characterization of L. donovani- specific exosomes and metabolite enrichment 

in its cargo 

a. Physio-chemical and molecular characterization of L. donovani exosomes 

b. To identify the enriched metabolites in L. donovani exosomes 

II. Studying the role of polyamines in L. donovani promastigote survival 

a. Study of the pharmacological depletion of polyamine pathway in L. donovani 

promastigotes  
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III. Elucidation of the molecular mechanism of L. donovani exosome-mediated host 

macrophage polarization 

a. Study of the uptake and infectivity of sensitive and resistant L. donovani exosomes by 

host macrophages  

b. Study metabolic pathway switching during macrophage polarization from M1 to M2 

by exosome stimulation 

 

 

Figure 3.1: Schematic representation of the hypothesis. The scheme indicates that the L. 

donovani parasite produces exosomes and can polarize the macrophages from the M1 to M2 

state. The microbicidal M1 to pro-parasitic M2 state is mainly through the polyamine 

biosynthetic pathway rewiring of the host immunometabolism. 
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4.1 Exosomes depletion of FBS to eliminate the cross-contamination of EVs 

The functional EVs from the FBS might transfer various molecules while culturing the parasite 

for exosome isolation. So, it is important to deplete the exosomes of FBS before using it as a 

media supplement. The decomplemented FBS (Invitrogen) was briefly passed through a 0.2 

µm membrane filter. After that, the FBS was ultracentrifuged at 120,000xg with an MLA 150 

fixed angle ultracentrifuge rotor type (MAX-XP, Beckman Coulter Optima) for 18 hours 

(overnight). After that, the exosomes-free supernatant was carefully collected and used for the 

parasite culture (Shelke et al., 2014). 

4.2 Media preparation for parasite and THP-1 cell culture 

The RPMI and M199 media were used to culture macrophages and Leishmania parasites. For 

incomplete media preparation, 2.2 and 3.7g of NaHCO3 were added in 1L Milli Q (MQ) water 

for RPMI and M199, respectively, and after that, autoclaved at 12oC at 15lb for 20 minutes. 

After that, the bottle was kept for cooling at room temperature inside the laminar hood, and 

one pack (for one litter) of powdered RPMI/M199 medium was added. Then, the media was 

thoroughly mixed and stored at 4oC until use. The incomplete media was used for complete 

media preparation by adding 10-20% fetal bovine serum (FBS), which was decomplemented 

in a water bath at 57oC for 30 minutes. Antibiotics penicillin 100U/ml and streptomycin 

100mg/ml (pen/strep) were added and filtered; the complete media was with a 0.22μM 

membrane filter by using a media filter assembly under a vacuum condition, the filter unit was 

autoclaved and dried in a hot air oven before use. Sterile 1N NaOH & 1N HCl were used to 

maintain the complete media’s pH (M199 pH-7.2 and RPMI pH-7.4) and stored at 4oC for 

further use. The exosome-depleted FBS was used for the M199 media for parasite culture for 

the purification of exosomes. 

4.3 Parasites culture 

The L. donovani strain DD8 (MH0M/IN/80/DD8) was obtained from ATCC (USA), and Prof. 

Shyam Sundar of the Department of Medicine at the Institute of Medical Sciences at Banaras 

Hindu University in Varanasi, India, kindly gifted the Miltefosine drug-resistant L. donovani 

clinical isolate BHU875 parasite. The promastigote stage of L. donovani was cultured at 24oC 

in the M199 medium. Parasite virulence was maintained in Hamster or BALB/c mice. Apart 
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from this, the parasite-free spent media for exosome purification from the stationary phase 

promastigote was cultured in exosome-depleted FBS-supplemented M199 media to avoid 

exosome cross-contamination from FBS.  

4.4 Macrophage cell line culture 

The THP-1 was cultured in the complete medium of RPMI-1640 (Sigma Aldrich, Cat. No. 

R4130-10X1L) containing 10% FBS at 37oC in a humidified incubator with the supply of 5% 

CO2. 

4.5 Soluble Leishmanial Antigens (SLA) preparation 

Soluble Leishmania Antigens (SLA) for the study were prepared from the stationary phase of 

promastigote parasites. Briefly, the promastigote parasites were washed 3-4 times with a sterile 

filtered 1X PBS by centrifuging at 2000-3000 rpm for 10 minutes at 4oC to remove the spent 

medium. After that, 2 × 108 promastigotes parasites per ml were resuspended into the lysis 

buffer, and lysis was carried out for 10 minutes at 4oC, then freeze and thaw in liquid nitrogen 

for 3-4 times and sonicate for 2 minutes to extract the integral membrane protein out of the 

cell. Then, the lysed parasite suspension was centrifuged at 6000xg for 15 minutes at 4oC. After 

that, the lysed supernatant was obtained, and the BCA method was used to estimate the protein 

concentration. 

4.6 The L. donovani EVs secretion by using Scanning Electron Microscopy (SEM) 

The stationary stage parasites of L. donovani were processed as previously described culture 

conditions for SEM analysis, and we followed the method of Elizabeth R. Fischer et al. (Fischer 

et al., 2012) with minor modifications. Briefly, promastigotes were harvested at the stationary 

stage (2 × 105 cells) and washed with gentle centrifugation of 1000xg for 10 minutes in a 

microfuge tube with filtered 1X PBS. Samples were then added to coverslips in a 12-well cell 

culture plate. Then, fixed in 2.5% glutaraldehyde solution in filtered 1X PBS of pH of 7.4 for 

60 minutes at RT (Room Temperature) and washed with rinsing buffer for 3 × 2 minutes. After 

that, post-fixation was done with a secondary fixative of 1% OsO4 in sterile filtered dH2O for 

60 minutes at RT. Then, washed with dH2O and dehydrated with a graded ethanol series by 

subsequent exchange of following dilutions in dH2O, such as 25% for 1 × 5 minutes, 50% for 

1 × 5 minutes, then 75% for 1× 5 minutes, followed by 95% for 1 × 5 minutes finally 100% 
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anhydrous ethanol 3 × 10 minutes. Dehydrated samples were coated with gold metal and 

visualized using a scanning electron microscope (Philips). 

4.7 Purification of Leishmania-derived exosomes by using ultracentrifugation 

The cell-free supernatant of L. donovani of both sensitive and resistant parasites was collected 

at the stationary stage of the parasite culture and then purified the exosomes as per the method 

of Ricard J. Lobb et al. (Lobb et al., 2015)with minor modifications. Briefly, harvest the cell 

culture media and centrifuge at 2000xg for 30 minutes at 4oC to remove the cells and debris. 

Filter the cell-free supernatant passed through a 0.2µm filter. The cell-free culture media was 

centrifuged at 150,000xg at 4oC for 90 minutes with a rotor type MLA-150 fixed angle 

centrifuge rotor (MAX-XP, Beckman Coulter Optima instrument) to pellet exosomes. After 

that, the supernatant was discarded carefully without disturbing the pellet. The pellet was 

pooled from different tubes, resuspended in 1X filtered ice-cold PBS, and centrifuged at 

150,000xg for 90 minutes at 4°C. Then, the resulting pellet was mixed in a filtered 1X PBS 

(ice cold) and stored in a deep freezer at -80oC. 

 

Figure: 4.1 Schematic representation of L. donovani exosomes purification and its 

characterization. (Adapted from Gioseffi et al., 2020) 
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4.8 Physicochemical and Molecular Characterization of L. donovani Promastigote 

Derived Exosomes 

4.8.1 Protein concentration estimation and Western Blot (WB) 

The quantification of Leishmania-derived exosome concentration was obtained from the BCA 

assay using a reference protein concentration standard curve of the known quantity of BSA 

(Bovine Serum Albumin). The concentration obtained from the BCA was considered the 

concentration of the Leishmania exosomes. Western blot analysis was carried out to identify 

the exosome marker of the Leishmania parasite with anti-GP63 (Cat. No. MA1-81830, 

Invitrogen). The exosome sample was resolved in 12% SDS-PAGE, and a PVDF membrane 

was used to transfer the resolved protein bands by semidry blotting. The blot was blocked with 

5% skimmed milk for one hour at RT in a TBS buffer (20 mM Tris and 150 mM NaCl with pH 

of 8.0) and then incubated with primary antibody anti-GP63 antibody (1:3000) overnight at 

4oC. After TBST buffer (20 mM Tris and 150 mM NaCl, 0.1% Tween 20), washes lasted for 

10 minutes each twice, then incubated with HRP-conjugated secondary mice antibody in the 

dilution of 1: 5000 for one hour in RT. Then, wash the blot thrice, develop it using 

chemiluminescence reagents, and visualize it using the ChemiDoc instrument (Bio-Rad, 

California, USA). 

4.8.2 Semi-quantitative flow cytometry characterization of Leishmania exosomes 

The bead-based flow cytometry characterization of Leishmania exosomes was done by 4% w/v 

latex beads of Aldehyde/Sulfate (Cat. No. A37304, Thermo Fisher Scientific) with a slight 

modification of Suarez et al.  (Suárez et al., 2017),and Biocompare protocols. Briefly, 0.5µl of 

Aldehyde/Sulfate Latex Beads to 4-10µl of exosomes in 1X PBS. Then, 1 ml of 1X PBS was 

added to the samples and was incubated on rotation overnight. Block the binding by adding 

glycine to the mixture and incubate for 30 minutes in RT. Bead-bounded exosomes were 

pelleted down at 2,000xg spin for 10 minutes of centrifugation, washed twice with 1X PBS 

supplemented with 0.5% exosome-depleted filtered FBS) and spun down again. The pellet was 

resuspended in 1X PBS containing 0.5% FBS. The samples were stained with anti-GP63 

(Invitrogen, Cat. No. MA1-81830) as the primary antibody (1:1000). Then, it was washed once 

and incubated with a secondary antibody that conjugated with FITC (GeNei) for a time of 30 

minutes at RT. After that, the samples were washed out twice to eliminate unbounded 

antibodies. Beads without antibody incubation served as a negative control, and the primary 
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antibody omitted bead-coated exosome suspension, which acted as a pre-absorbed antibody 

control (absence of primary monoclonal antibody). Data were acquired in a conventional flow 

cytometer (LSR Fortessa, BD Biosciences, USA) and analyzed with the analysis software 

FlowJo.  

 

Figure: 4.2 Schematic representation of aldehyde-sulfate latex bead-based semi-

quantitative flow cytometry characterization of Leishmania exosomes (Scheme Adapted 

from Suárez et al., 2017; Volgers et al., 2017).  

4.8.3 Confocal microscopy of L. donavani exosomes 

The Confocal Microscopy characterization of Leishmania exosomes was done by adding 1X 

PBS to the exosome suspension, and the sample was fixed with 4% paraformaldehyde. Then, 

it was incubated in 1X PBS for 20 minutes on rotation. After that, the samples were washed 

twice, adhered to the cleaned coverslips in a cell culture plate, and air dried. After drying, the 

slides were immersed in ice-cold methanol for 5 minutes and block samples by 1% BSA, made 

in 1X PBS for 20 minutes incubation. Then, the primary antibody of anti-GP63 in the dilution 



Chapter 4                                                                                                  Materials and Methods 

Page | 51  
 

ratio of 1:200 to the sample on a coverslip was dipped in a cell culture plate (6 wells). Then, it 

was washed for 1 hour and washed thrice with 1 ml of 1X PBS. The pre-absorbed antibody 

control sample was omitted, and primary antibody incubation was done. Then, a secondary 

antibody of anti-mouse IgG was conjugated with fluorochrome FITC in a dilution ratio 1:200 

and incubated for one hour in the dark. Then, the unbound non-specific background antibodies 

were washed out with 1X PBS. Then, mounted on a slide with a mounting agent and analyzed 

in a confocal microscope (Leica, Wetzlar, Germany). 

4.8.4 Dynamic Light Scattering (DLS) and zeta potential measurements of Leishmania 

exosome 

Physical characterization of Leishmania-derived exosomes was done with DLS to detect the 

approximate range of the size and zeta potential measurements. Leishmania exosomes (5μg/μl 

concentration) diluted in 1X PBS with a volume of 1 ml and determined the size distribution 

by using the DLS method in a particle analyzer (Zetasizer Nano ZS, Malvern, Herrenberg, 

Germany). Then, the Zeta Potential of Leishmania exosome by default settings of 25oC is 

measured at a 632 nm laser with 120 seconds as an equilibration time. 

4.8.5 Morphological characterization of Leishmania donovani exosomes by Transmission 

Electron Microscopy (TEM) 

The detection of morphological characterization of the Leishmania-derived exosomes was 

done with TEM-negative staining, and we followed the method of Peter Cizmar and Yuana 

Yuana (Patrick et al.,2017) with minor changes. Briefly, the Leishmania exosomes 

(concentration of 1μg/μl) were fixed to a Formvar carbon-coated copper grid (Formvar/carbon 

Copper grids with mesh size 200, ~ 10µl of the sample). The exosome-coated grids were dried 

in a culture dish at room temperature overnight. After that, the completely dried grids were 

applied to 2% uranyl acetate (2.5 μL) and the copper grids were washed thoroughly in ultra-

pure water to remove uranyl acetate. Then, the grids were allowed to air dry and examined 

using the TEM facility (FEI Technai G2S-Twin). 

 

 



Chapter 4                                                                                                  Materials and Methods 

Page | 52  
 

4.9 Detection of PAs in Leishmania exosomes by chromatographic techniques (TLC and 

HPLC) 

Leishmania-derived exosome polyamine was detected in TLC following the dansyl chloride 

conjugation method, and the samples for TLC were extracted with toluene and methanol. After 

that, the samples were quantified by HPLC with polyamines standards. We followed Dion and 

Herbst’s protocol (Dion & Herbst, 1997). Polyamines were extracted with toluene, and the 

organic solvent-mediated separated polyamine supernatant was collected and derivatized with 

dansyl chloride (3 mg ml -1) using a flash rotatory evaporator. After that, proline (50 mM) was 

added to remove the unbounded dansyl chloride, and the evaporated and separated polyamine 

sample was dissolved in HPLC-grade methanol. Polyamines standards (Sigma Aldrich), such 

as spermine, spermidine, and putrescine, were also derivatized, as previously mentioned. The 

polyamine was detected in the Shimadzu HPLC instrument with a C-18 Luna (5µm, 250 × 4.6 

mm) column containing the PDA (Photo Diode Array) detector. A linear gradient technique 

separates the polyamines; the mobile phase was 1% (v/v) acetic acid in water (solvents A) and 

acetonitrile: methanol: 4:1 (solvent B) with a 0.8 ml/minutes flow rate. The polyamines are 

detected and confirmed with the alignment of standards, peak retention time and absorption. 

4.10 Quantification of spermidine levels in Leishmania exosomes by Liquid 

Chromatography (LC-MS) 

To extract the metabolites for LC-MS analysis, we followed Palviainen et al. (Palviainen et al., 

2019). Briefly, Metabolites were extracted from exosomes of DD8 sensitive 

(MH0M/IN/80/DD8) and drug-resistant (BHU875) parasites exosomes by adding 400μl 

acetonitrile to 100μl each sample, mixed thoroughly by vertexing. After that, the samples were 

centrifuged for 10 minutes at 16000xg, and the supernatant of the centrifuged sample was 

analyzed for metabolites in LC-MS (Agilent instrument for total metabolites and Shimadzu 

instrument for targeted quantification).  

4.11 Semi-quantitative flowcytometry for spermidine of exosomes 

The bead-based flow cytometry characterization of Leishmania exosomes was done by 

Aldehyde/Sulfate Latex Beads 4% w/v (Thermo Fisher Scientific, Cat. No. A37304) with a 

slight modification of Suárez et al. 2017 protocol. The analysis scheme is represented (Fig. 

4.2). Briefly, 0.5µl of Aldehyde/Sulfate Latex Beads to 4-10µl of exosomes in 1X PBS. Then, 
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it was mixed with 1 ml of 1X PBS, and the sample was incubated on a rotor for rotation. Block 

the binding by adding glycine to the mixture and incubate for 30 minutes in RT. Centrifugation 

at 2,000xg for 10 minutes was used to pellet bead-coupled exosomes. After that, they were 

twice washed with 1 ml of 1X PBS supplemented with 0.5% exosome-depleted filtered FBS 

and centrifuged again. The pellet was resuspended in 1X PBS+0.5% FBS and stained with anti-

spermidine antibody (Novus Biologicals, Cat. No. NB100-1847) as the primary antibody in the 

dilution ratio of 1:1000. Then, it was washed twice and incubated with FITC-conjugated 

secondary antibody in the dilution ratio of 1:500 (GeNei) for 30 minutes at RT. After that, the 

unbounded antibody was washed out twice. Negative control with incubating the beads and the 

exosome suspension with a pre-absorbed antibody control (absence of primary monoclonal 

antibody). Data were analyzed and acquired in conventional flow cytometers (LSR Fortessa, 

BD Biosciences, USA).  

4.12 MTT: metabolic cell viability assay upon polyamine depletion 

The metabolic viability of parasites upon hypericin treatment was done with the MTT index. 

The MTT was transformed to purple formazan crystals by mitochondrial reductase, and the 

OD was calculated at 570 nm to determine the concentration and extrapolate the metabolic 

activity. We followed the protocols (Kumar et al., 2018; Minor, 2004). Briefly, exponentially 

grown L. donovani miltefosine sensitive and resistant strains (1 × 106/ml) were seeded in a 96-

well microplate with 100μL M199 medium. Then parasites were treated with different 

concentrations of hypericin (diluted with M199: 0, 3.12, 6.25, 12.5, 25, 50μM), miltefosine 

(PBS pH-7.4, 0, 3.12, 6.25, 12.5, 25, 50, 100μM), polyamine media supplement (1, 0.5, 

0.25,0.125, 0.062 and 0.031X concentrations) for 24 hours. Miltefosine was used as the 

standard reference drug, and 0.01% DMSO was kept as Vehicle Control of hypericin. 

Following the drug treatment, 20μL of MTT (5mg/ml) was added, and the suspension was 

incubated at 26ºC in the dark for 4 hours. Then, the parasites were spun for 10 minutes at 3000 

rpm, the supernatant was discarded, and the pellets were collected. The formazan crystals are 

water-insoluble, and they were dissolved in DMSO. A multimode plate reader (Molecular 

Devices, USA) was used to measure absorbance at wavelength 540nm. The following formulae 

were used to determine the viability percentage of the parasites: 
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Parasite Viability % = Test sample absorbance – Control absorbance 

                                          100 

4.13 The growth curve of MIL-resistant L. donovani BHU875 during hypericin-based 

depletion of polyamines: a cell number-based viability assay 

The effect of hypericin on the parasite growth pattern, the parasite growth curve was analyzed, 

and we followed the protocol of  (Perdeh et al., 2020) with minor modifications. We performed 

a growth curve by exponentially grown parasites (MIL sensitive and MIL Resistant) 1 × 10 5 

cells/ml and seeded in 12-well plates with MI99 media. Parasites were treated with IC50 

concentration of drugs for five days. The Live parasites were counted in a hemocytometer with 

Trypan blue dye for 24, 48, 72, 96, and 120 hours. Then, a Giemsa staining and microscopy-

based cell morphology study on drug treatment was done. 

4.14 Giemsa staining of hypericin-treated L. donovani promastigote parasites 

The stationary stage parasite was treated with IC50 concentration of hypericin (18µM), Vehicle 

control (DMSO 0.01%), and media supplement of the polyamine (1X concentration) served as 

a control. After the treatment, the parasites were harvested and stained with Giemsa staining 

(Himedia, Cat. No. S011). We followed the staining protocol of the manufacturer. Briefly, the 

thin film of the parasite sample smear is made in a clean glass slide and allowed to dry; then, 

the slides are dipped in methanol for 3-5 minutes. We followed the staining of slides with 

Giemsa Stain stock solution (0.67 ml) to diluted stain (~ 30 ml volume distilled water). Then, 

the slides were dipped into a container with diluted stain for 30 minutes to stain the sample 

smear on the slide. After that, the slides were washed with distilled water to differentiate the 

stain of the prepared slides, and washing was done for ~ 1 to 3 minutes. The slides were air-

dried and examined under the light microscope (Leica, Wetzlar, Germany) with a 100X 

magnification. 

4.15 Intracellular ROS analysis with H2DCFDA upon pharmacological inhibition with 

hypericin 

The damage to DNA, RNA, proteins, and lipids by the oxidation of free radicals is detrimental. 

The ROS roles and consequences in several pathological conditions are essential in basic and 

clinical research. Detecting and measuring ROS levels is complicated because of its short half-
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life. Flow cytometry is a simple, fast, and affordable technique that gives information on cell 

viability and the percentage of ROS-producing cells. The Carboxy-H2DCFDA is the dye to 

detect intracellular ROS. The non-fluorescent reagent oxidized in the presence of ROS, 

emitting green fluorescence. Then, the green fluorescence’s Mean Fluorescent Intensity (MFI) 

was measured. Here, we performed ROS analysis for hypericin-mediated polyamine-depleted 

parasites. The complete cell culture media was added by adding 10% decomplemented FBS 

and 1% penicillin-streptomycin antibiotic. Prepared the media fresh on the day and harvested 

the cells. After that, 5 × 105 cells/well with different control groups and experiments were 

incubated at 26°C. The exponentially grown parasites were divided into different groups, and 

a fresh medium containing the drug of choice was used for 6 hours. The naive, polyamine 

supplemented, hypericin, vehicle control for hypericin (0.01% DMSO), and miltefosine 

(standard reference drug) are served as different sample groups. Then, the parasites were 

harvested by aspirating the supernatant and washing the parasites in the HBSS buffer. Then, 

the parasites were stained with the Carboxy-H2DCFDA dye at a final concentration of 10μM 

in a regular culture medium (~500 µl in volume). After that, the parasites were incubated in a 

conventional BOD incubator for 30 minutes in the dark (26°C), and stained parasites were 

protected from light. After that, the carboxy-H2DCFDA-containing medium was removed and 

washed twice with HBSS. Then, we detected and measured the ROS by flow cytometry using 

the channel with green fluorescence (Here, we used fluorochrome FITC with 495 nm / 519 nm 

excitation and emission, respectively, in the BD LSR Fortessa instrument. 

4.16 Propidium Iodide (PI) uptake study of parasite upon hypericin treatment 

To study the membrane integrity and parasite death upon pharmacological inhibition for 

polyamine depletion mediated by the hypericin, follow the protocol of Lisa C. Crowley et 

al.(Crowley et al., 2016) with modification. Both strains of parasites (2 × 106 parasite/well) 

were treated with hypericin (18µM) and naive, Vehicle Control (DMSO), miltefosine treated 

(positive control), and polyamine media supplement (1X) as different groups for 24 hours 

treatment. After the treatment, the parasite was harvested in a microcentrifuge tube and 

centrifugated for 5 minutes at 700xg. Then, parasites were incubated in HBSS buffer containing 

PI (20µl from the 0.5mg/ml stock) for 15 minutes in the culture condition of promastigote 

parasite (25oC in a BOD incubator) to avoid stress-induced death. A flow cytometry instrument 

(BD FACS LSR Fortessa) determined the percentage of PI-positive parasites in different 

groups.  
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4.17 JC-1 mediated mitochondrial membrane potential (Ψm or MMP) upon polyamine 

depletion 

To understand the Mitochondrial membrane potential status upon Hypericin treatment, we 

performed a Mitochondrial membrane potential assay using JC1 dye (Invitrogen, Cat. No. 

T3168). The mitochondrial potential-dependent accumulation of the aggregates is 

demonstrated by the specific dye called JC-1. This cationic carbocyanine dye indicates the 

accumulation of aggregates by changing the ratio of the fluorescence emission from green 

(~525 nm) to red (~590 nm). The changes in the ratio, such as a reduction in the red/green ratio 

of fluorescence intensity, indicate mitochondrial membrane depolarization; if it increases, it 

shows mitochondrial hyperpolarization. The concentration-dependent red fluorescent J-

aggregates are responsible for the potential changes mediated by colour shift. So, JC-1 dye is 

an excellent indicator of the mitochondrial membrane potential. Exponentially grown 

promastigotes were treated for 48 hours with polyamine (1X), hypericin, and miltefosine with 

the IC50 concentrations determined earlier. Miltefosine is used for positive control as its 

treatment reduces mitochondrial potential. After treatment, parasites were washed in 1X HBSS 

buffer, and the mixture was resuspended thoroughly with pipettes. After that, it was stained 

with 10μM JC1 dye for 10 minutes at 26ºC. Further, the wash was repeated, resuspended in 

1ml HBSS buffer, and then analyzed in flow cytometry (BD FACS LSR Fortessa). The dye’s 

MFI (fluorescence ratio of Red 560 nm and Green 530 nm fluorescence) is represented as a 

Ψm (MMP). The DMSO (0.01%) was kept as a vehicle control for the hypericin.  

4.18 L. donovani exosomes uptake of host macrophage (THP-1) and confocal microscopy 

To differentiate into macrophages, the THP-1 cells (3 × 106 cells/ml) were seeded in 6-well 

plates, differentiated with PMA (10 ng/ml) for 24 hours, and rested for an additional 24 hours 

at 37oC and 5% CO2. The differentiated macrophages were then stimulated with 10µg/ml 

exosome of the resistant parasite strains (BHU875), sensitive (MH0M/IN/80/DD8), and 

unstimulated macrophages as a control. Following exosome stimulation, adhered cells were 

detached from the culture plate using a 0.25% trypsin EDTA solution, and excess exosome and 

trypsin were removed using 1X PBS wash before the detachment of the cells. After that, the 

cells were fixed for 15 minutes in a 2% paraformaldehyde solution. 0.1% Triton-X was added 

to PBS and allowed to permeabilize the cells for 15 minutes at RT. Then, the PBS containing 

Triton X (0.1%) and 3% BSA was used to wash the fixed, permeabilized cells by spinning the 
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cells for 5 minutes at 2000 rpm. Next, the cells were incubated with a 1:200 antibody dilution 

of the primary antibody, Anti-GP63, for 1 hour at RT. After that, washed three times, the cells 

were incubated in the dark for 30 minutes at RT with a secondary antibody of fluorochrome 

FITC-conjugated (1:200 dilution). The cells were rinsed three times with PBS following 

incubation. As previously stated, exosome-stimulated THP-1 macrophage samples (3 × 106 

cells/well) were used for the immunofluorescence assay. Thus, coverslips on glass slides were 

allowed to air dry after fixed cells were washed three times in PBS for 5 minutes, and ice-cold 

methanol (-20oC) was poured over these coverslips. After three more washings, the coverslips 

were positioned in Vectashield antifade mounting medium onto the glass slides containing the 

nuclear stain DAPI. The fluorescence on the slides was inspected using a confocal microscope 

(Leica). 

4.19 The quantitative exosome intake of macrophages by flow cytometry analysis 

The THP-1 cells (3 × 106 cells/well) were seeded, and PMA (10 ng/ml) for 24 hours to 

differentiate the monocyte cell line. Then, it was washed and rested for the remaining 24 hours 

at 37oC and 5% CO2. After that, stimulated the differentiated macrophages with a concentration 

of 10µg/well exosomes of the resistant (BHU875) and DD8 sensitive (MH0M/IN/80/DD8) 

strains of parasites. Unstimulated macrophages as a control. After exosome stimulation, the 

adhered cells detached from the culture plate with trypsin EDTA solution (0.25%), washed out 

of excess exosomes and trypsin with 1X PBS. Then, macrophages were washed thrice with 1X 

PBS to remove the non-internalized exosomes. After that, the exosome internalized cells were 

incubated with anti-GP63 as the primary antibody for 1 hour at room temperature with an 

antibody dilution ratio of 1: 200. Following three 1X PBS washes, the cells were exposed to a 

1:200 dilution of the FITC conjugated secondary antibody for 30 minutes at RT in the dark. 

After the incubation, cells were rinsed 1X PBS three times, resuspended in 500µl 1X PBS, and 

subjected to analysis with the BD FACS LS Fortessa flow cytometer. 

4.20 Phagocytic activity in exosomes stimulated macrophages 

To analyze phagocytic activity in exosomes-stimulated macrophages, we followed the protocol 

of (Dayakar et al., 2017) with minor modifications. The monocytes were differentiated into 

macrophages, 5 × 105 THP-1 cells/well were seeded in 6-well cell culture plates and treated 

with PMA (10 ng/ml) for 24 hours at 37oC and 5% CO2 and additional resting for 24 hours. 

Then, 50µg/ml exosomes of the DD8-sensitive (MH0M/IN/80/DD8) and resistant (BHU875) 
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parasite strains were used for macrophage stimulation. After that, it was co-cultured for 6 hours 

with 5 × 106 parasites/well or a 10:1 parasite to macrophage MOI (multiplicity of infection 

ratio). Subsequently, fresh, complete RPMI media were used to incubate for an additional 18 

hours. After that, the non-internalized parasites and exosomes were thoroughly washed off with 

1X PBS. Following incubation per the manufacturer’s protocol, the cells adhered to the 

coverslips were stained with Giemsa (Himedia). Using a microscope (Leica), the infected 

macrophage count and phagocytosed parasite count per a total of 50 macrophages were 

determined. The following formulae are used to determine the phagocytic index of 

macrophage:  

Phagocytic index (PI) = (Total number of internalized parasites/number of macrophages 

containing internalized parasites) × (number of macrophages containing internalized 

parasites /total number of counted macrophages) × 100 

4.21 The CFSE-based infectivity assay upon Leishmania exosome stimulation 

The infectivity of Leishmania-derived exosomes stimulated human monocyte differentiated 

THP-1 was determined by CFSE-based flow cytometry analysis. We followed the method of 

Agostinho Goncalves Viana et al. (Viana et al., 2018) with minor modifications. Briefly, the 

stationary stage of promastigote forms from L. donovani was stained with the 

carboxyfluorescein diacetate succinimidyl ester dye (Invitrogen, Cat. No. C34554). Then, 

Leishmania parasites (2 × 107 parasites/ml) were stained in a tube at a final 5µM CFSE dye 

concentration, and the mixture was well resuspended. The parasites were incubated for 20 

minutes at 37oC in a CO2 incubator for staining. After that, the parasites were centrifuged three 

times at 200xg using ice-cold 1X PBS to wash parasites. After that, the CFSE staining was 

quenched by adding 10% decomplemented fetal bovine serum (Invitrogen) and resuspended in 

complete RPMI. Then, the PMA-stimulated THP-1 macrophage cell line (2 × 106 cells/well) 

was infected with CFSE-labelled parasites (2 × 107 parasites/well) in a complete RPMI 

medium in a MOI ratio of 1:10 (THP-1: parasites) for 24 hours. Un-infected, unstained 

exosome stimulation, then infection (Both sensitive and resistant parasite exosomes), and 

exosome stimulation without parasite infection served as controls. Samples were run on the 

flow cytometer (BD FACS LSR Fortessa) to determine the infectivity of the various 

experimental groups. 
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4.22 Detection of intracellular Reactive Oxygen Species (ROS) of THP-1 macrophages by 

carboxy- H2DCFDA   

Detecting and measuring ROS levels is complicated because of its short half-life. Flow 

cytometry is a simple, fast, and affordable technique that gives information on cell viability 

and the percentage of ROS-producing cells. Carboxy-H2DCFDA is the dye that detects 

intracellular ROS. The generation ROS, the non-fluorescent reagent, oxidizes and emits green 

fluorescence. Then, the green fluorescence, or Mean Fluorescent Intensity (MFI), was 

measured. The THP-1 was grown in the complete cell culture media with 10% 

decomplemented FBS and 1% Antibiotic (pen/strep). Prepared the media fresh on the day and 

harvested the cells. After that, seeded 5 × 105 cells/ well with different groups of experimental 

variables such as unstained, naive stained, DD8 exosomes stimulated (50µg/ml), BHU875 

exosomes stimulated (50µg/ml), polyamine supplemented and lipopolysaccharide (100ng/ml 

LPS), and incubated in 37oC temperature with the supply of 5% CO2 in an incubator, and 

harvested the macrophages by supernatant aspiration. Wash the cells once with incomplete 

media. Then, the cells were stained with the Carboxy-H2DCFDA dye at a final concentration 

of 10μM in a regular culture medium (~500µl in volume). After that, the cultures were placed 

in a conventional incubator in the dark for 30 minutes (37oC, 5% CO2). Detected and measured 

the ROS by immediate acquisition of the samples by flow cytometry using the channel with 

green fluorescence (Here we used fluorochrome FITC with 495 nm / 519 nm excitation and 

emission, respectively, in LSR Fortessa instrument) 

4.23 Estimation of Nitric Oxide (NO) production upon Leishmania exosomes stimulation 

to macrophage cell line (THP-1) 

NO was estimated using the Griess assay method (Invitrogen Griess Reagent Kit, Cat. No. 

G7921). We followed the manufacturer’s protocol. Briefly, THP-1 macrophages (5 × 105 cells 

/ml) were seeded and stimulated with PMA (10ng/ml) at 37oC in a supply of 5% CO2. It was 

stimulated with exosomes of both strains (50μg/ml), naive and polyamine supplemented, and 

LPS (100 ng/ml) kept as controls. Then, the samples were incubated at 37oC temperature with 

a 5% CO2 supply for 72 hours in an incubator. The cultured supernatant was used for the Griess 

assay-based NO estimation. In brief, the culture supernatant (100µl) was mixed with 100µl of 

the Griess reagent (Invitrogen Griess Reagent Kit, Cat. No. G7921) and was incubated for 10 
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minutes in RT. After that, the OD-based absorbance at 548 nm will be measured in a microplate 

reader. Nitric oxide (µM) was calculated from a sodium nitrate standard curve. 

4.24 Macrophage polarization study of Leishmania exosomes with anti-arginase I by flow 

cytometry analysis 

The seeding volume of 2 × 106 cells/ml of THP-1 cell line in 6-well cell culture plates was 

differentiated using PMA (10ng/ml) for 24 hours at 37oC and 5% CO2 to convert into 

macrophages. After that, PMA differentiated macrophages with a concentration of 10µg/well 

exosomes of the BHU875 resistant and DD8 sensitive (MH0M/IN/80/DD8) strains of parasites 

and unstimulated macrophages as a control. After 24 hours of exosome stimulation, cells were 

detached mechanically/ chemically and washed with 1X PBS. The fixation and 

permeabilization were then done with 4% paraformaldehyde and 0.1% triton X for 20 minutes. 

After that, the primary antibody, i.e., anti-arginase antibody (Rabbit Monoclonal Antibody of 

CST, Cat. No. 93668), was added in a 1:200 dilution. Then, it was rinsed twice with 1X PBS, 

incubated with a secondary antibody in a 1:500 dilution of fluorochrome FITC, and incubated 

for 30 minutes at RT in rotation. Then, the cells were washed thrice, and 0.5 ml of staining 

buffer was added to each tube. The flow cytometry analysis proceeded in the flow cytometer 

(BD LSR Fortessa). 

4.25 Macrophage polarization study of Leishmania exosomes with anti-arginase I by WB 

Analysis 

The THP-1 cells (2 × 106 cells/ml) were in 6-well plates and differentiated with stimulation of 

PMA (10ng/ml) for 12 hours at 37oC and 5% CO2. After that, PMA differentiated macrophages 

with a concentration of 10µg/well exosomes of the BHU875 resistant and DD8 sensitive 

(MH0M/IN/80/DD8) strains of parasites and unstimulated macrophages as a control. After 

exosome stimulation, cells were chemically detached by trypsin EDTA (0.25%) treatment and 

rinsed using 1X PBS. The RIPA buffer was used to lyse the macrophages (containing 1% 

Proteinase Inhibitor Cocktail), 12% SDS-PAGE technique-based resolving of proteins and 

transferred the proteins that resolved in the gel onto the nitrocellulose membrane by voltage-

mediated semidry-blotting. The membrane was blocked in 5% skimmed milk that lacked fat 

for 1 hour in RT in TBS buffer. Then, the incubation of anti-arginase I antibody (1:3000) was 

overnight at 4oC. The blot was washed thrice with TBST, lasting 10 minutes each, and 

incubated with an anti-rabbit HRP-conjugated antibody as a secondary antibody (1:5000) for 
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1 hour at RT. After that, wash the blot thrice in TBST, develop it using chemiluminescence 

reagents, and visualize it using the ChemiDoc instrument (Bio-Rad, California, USA). 

4.26 Arginase activity in exosomes stimulated THP-1 macrophage 

The activity of the arginase I upon Leishmania exosome stimulation was done by following the 

method of (Dayakar et al., 2017) with minor modifications. Briefly, THP-1 macrophages (5 × 

105 cells/ml) were seeded in a cell culture plate by PMA (10ng/ml) at 37oC in 5% CO2 to 

convert monocytes to macrophages. Then, stimulated with Leishmania exosome of both strains 

(50μg/ml), naive and polyamine supplemented, and LPS (100ng/ml) kept as a control and 

incubated in a 5% CO2 supplying CO2 incubator at 37oC for a time of 24 hours. Then, the 

treated macrophage was lysed with RIPA buffer (100μl) containing 1% PIC (proteinase 

inhibitor cocktail) and kept overnight at -80oC. The 100μl of cell lysates (5×105 cells/ml) was 

added with the volume of 10μl MnCl2 (10 mM) and incubated for a time last for 10 minutes at 

56oC in a dry bath to arginase enzyme activation. The 100μl L-arginine (0.5 M, pH- 9.7) was 

hydrolyzed by incubating the activated lysates at 37oC for 20 minutes. The 900μl of H2SO4 

(96%)/ H3PO4 (85%)/H2O (1v/3v/7v) ratio was used for terminating the reaction and followed 

by 9% α-iso nitroso propiophenone (40μl) incubation was done (Made in 100% ethanol) at 

95oC for 30 min. L-arginine hydrolysis produces urea as an end product by arginase enzymes. 

The intensity of the urea’s colour was detected and measured at wavelength 540nm in a 

spectrophotometer. The urea concentration from arginase activity was calculated from a urea 

standard curve of known concentration. 

4.27 Flowcytometry-based intracellular spermidine levels upon Leishmania exosome 

stimulation 

The PMA (10ng/ml) differentiated THP-1 macrophages of 5 ×106 cells/ml were prepared in 

complete RPMI 1640 and incubated at 37oC temperature condition with the supply of 5% CO2 

in an incubator. Then, it was washed and re-poured with fresh media and rested for 24 hours. 

After that, the cells were stimulated with 50µg of Leishmania-derived exosomes for 24 hours 

for the intracellular secretion of spermidine. Following the manufacturer’s protocol, the 

fixation and permeabilization were done with cytofix/cytosperm (BD Biosciences). Briefly, the 

harvested cells were added with cytofix/cytosperm solution and incubated at 4oC for 30 

minutes. Subsequently, the macrophage was thoroughly washed with wash buffer (BD 

Biosciences) and spun at 200xg for a time lasting for 5 minutes. After that, the primary 
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antibody, i.e., anti-spermidine antibody, was added in 1:200 dilution. Then, it was rinsed twice 

with cytosperm wash buffer (BD Biosciences), incubated with Alex flour conjugated secondary 

antibody in 1:500 dilution, and incubated the antibody for 30 minutes at 4oC. Then, the 

macrophages were washed thrice, and 0.5 ml of staining buffer was added to each tube. The 

flow cytometry analysis proceeded in the flow cytometer (BD LSR Fortessa). 

4.28 Gene expression analysis upon exosome stimulation 

The targeted gene expression of our study of Leishmania-derived exosomes-stimulated THP-1 

macrophage by (RT-qPCR). Briefly, the THP-1 cell lines (1.2 × 107 cells/ml) were stimulated 

to differentiate into macrophages by PMA (10ng/ml). The different experimental variables 

were naive, DD8 exosomes stimulated (50µg/ml), BHU875 exosomes stimulated (50µg/ml), 

polyamine supplemented, and lipopolysaccharide (100ng/ml LPS). After that, they harvested 

the cells, washed the pellets twice with sterile 1X PBS, and isolated the RNA using the RNA 

isolation kit protocol (Qiagen). Then, the RNA was quantified by nano spectrophotometer 

(Thermos Scientific), and complementary DNA (cDNA) was prepared from 2μg of the 

template by using the kit method (Takara). The appropriate primers for the study were used 

and listed in the table (Table 2). The cDNA of targeted genes with an SYBR green Premix Ex 

Taq (2X) (Takara) was amplified in the condition of 50oC primary incubation for 2 minutes, 

then the denaturation at 95oC for 10 minutes and kept for 40 cycles of 30 seconds at 95oC, 60oC 

for 1 min, and 72oC for 45 seconds. The reaction was done in Sequence Detector (ABI Prism 

7300). The CT values were obtained, relative fold expression (2-ΔΔct) was calculated by 

normalizing with GAPDH control, and un-modified RNA was retained as a negative control. 
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Table 4.1:  Human gene-specific primers used in the present study for the expression analysis 

of various genes amplification of the target mRNA by the qRT-PCR 

 

 

 

Sl.No. Gene Sequence (5’-3’) 

1 Human RT Slc3a2  FP: GCATTGCGGCTTGGTTTTCT 

RP: CAGCTCAGAACAGGGTTAGA 

2 

 

Human RT iNOS  FP:  TGCAGACACGTGCGTTACTCC 

RP:  GGTAGCCAGCATAGCGGATG 

3 

 

Human RT IL-10  FP: GTGATGCCCCAAGCTGAGA 

RP: CACGGCCTTGCTCTTGTTTT 

4 Human RT TGF-β FP FP: TGCAGACACGTGCGTTACTCC 

RP: GGTAGCCAGCATAGCGGATG 

5 

 

Human RT IFN-γ  FP: TCAGCTCTGCATCGTTTTGG 

RP: GTTCCATTATCCGCTACATCTGAA 

6 Hu RT GAPDH  FP: CCCATGTTCGTCATGGGTGT 

RP: TGGTCATGAGTCCTTCCACGA 
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4.29 Data Interpretation and Statistical Analysis 

The experiments of the current study were repeated twice, and technical duplicates/triplicates 

were kept. The statistics software GraphPad Prism 7.0 was used for the statistical analysis and 

data representation. The significance of a P value p< 0.05 was considered as the significance 

levels of different experiment groups, and it was carried out using parametric tests (Unpaired 

students t-test or ANOVA). Data is presented in mean ± standard deviation (SD). 
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5.1 L. donovani parasites secrete Extracellular Vesicles (EVs): Leishmania exosomes are 

small vesicles of cellular communicator 

Leishmania is a eukaryotic protozoan parasite that produces EVs through evolution (Douanne 

et al., 2022); the heterogenous population of vesicles is round or cup-shaped and contains a 

cytosol and lipid membrane layer similar to the parental cell that it originated (J. M. Axwell 

Silverman & Reiner, 2011). L. donovani promastigotes released EVs, and the SEM images 

confirmed the bleb of vesicles throughout the membrane surface of the parasite (Fig. 5.1). The 

studies indicate that the vesicle secretion induced the mimic of the infection-like condition such 

as 37oC and acidic pH ~5.5 (J. M. Axwell Silverman & Reiner, 2011). However, our study 

used the stationary phase of the L. donovani parasite cultured under the axenic condition that 

mimics the sandfly midgut physiological conditions. Briefly, the temperature at 26–27oC in 

M199 media containing EV-depleted decomplemented fetal bovine serum and the stationary 

stage of parasites were used for the experiment. It is proven that altering the culture condition 

is strongly related to the intracellular packaging of cargo. The biogenesis mechanism of plasma 

membrane blebs and exosomes results in cytosol within them, and their outer surface is coated 

with the extracellular plasma membrane leaflet, which is also the luminal leaflet of the origin 

of intracellular vesicles. 

 

 

 

 

 

 

Figure 5.1: Scanning Electron Microscopic image of EVs release of L. donovani 

Promastigote. The arrows indicate EVs on the surface of the parasites, and the right panel is 

the zoomed image of the vesicle at the membrane surface of the parasite. The axenic stationary 

phase parasite was cultured at 26oC, similar to the sandfly midgut condition. 
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5.2 The parasite metallopeptidase GP63: beyond the virulence factor, it confirms the 

parasitic specific exosomes  

L. donovani parasites secrete exosomes inside the sandfly gut, axenic culture condition, and 

mammalian host. The secretion of exosomes is intended to function as intracellular 

communicators. So, it carries many parasitic virulence factors, including the metallopeptidase 

GP63 (Atayde et al., 2015). In our study, the scanning electron microscopic images presume 

that L. donovani secretes the extracellular vesicles, and it confirms that the axenic promastigote 

culture isolated exosomes were authentic Leishmania exosomes; we confirmed with a western 

blot of GP63, a parasite-specific marker. The L. donovani parasite exosomes were obtained, 

SDS-PAGE was performed (Fig. 5.2 A), and then probing with Leishmania exosome markers 

such as GP63 by western blot assay. The detection of GP63 was seen in exosomes of the L. 

donovani parasite (Fig. 5.2 B). The total extract from L. donovani was used as a positive 

control. Interestingly, L. donovani exosomes carry many parasite proteins, as observed in the 

SDS-PAGE (Fig. 5.2 A). The enrichment of GP63 in the parasite’s exosomes was especially 

marked. Studies show that enriching GP63 protein in Leishmania exosomes involves 

macrophage functional plasticity.  

 

Figure: 5.2 Leishmania-derived exosomes SDS-PAGE and Western Blot. The 12.5 % SDS-

PAGE of L. donovani DD8 (MH0M/IN/80/DD8) and resistant BHU875 strain promastigote 
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exosome lysate and a total extract of the parasite (Figure: 5.2 A). The image shows the western 

blot of L. donovani exosome and parasite lysate by the anti-GP63 antibody against Leishmania 

surface marker protein GP63 (Leishmania specific exosome marker) for the confirmation of 

Leishmania-derived exosomes (Figure. 5.2 B). 

5.3 Bead-based semi-quantitative flow cytometry: a way to quantify the protein 

expression of nano molecules 

The EVs originate from the parental cell’s plasma membrane, so it is essential to show a 

specific transmembrane protein to characterize the EVs, and flow cytometry-based 

characterization is one of the suggestable methods as per the International Society for the Extra 

Cellular Vesicles guidelines (Tkach & Théry, 2016). The conventional characterization 

techniques are restricted and have limitations in contaminating particles or protein aggregates 

because of their size and heterogenicity. The flow cytometry-based semi-quantification helps 

to overcome a few of these problems and is an additional characterization technique for 

homogenous and heterogenous populations of EVs. Bead-assisted flow cytometry was 

performed by incubating the samples with aldehyde/sulfate latex beads 4μm in diameter 

(Suárez et al., 2017). The isolated exosomes were characterized by bead-assisted flow 

cytometry using antibodies against Leishmania exosome-marker GP63 (Fig. 5.3). The 

background noise signal was resolved with pre-absorbed antibody and unstained bead-bound 

exosome control (Fig. 5.3). The 91.9 % of bead-bound Leishmania promastigote exosomes 

were gated for the quantification of GP63 positive exosomes (Fig. 5.3 A) among that 66.4 % 

population shows GP63 positive percentage as compared to the pre-absorbed antibody control 

that is 2.23% with p value< 0.0038 (Fig. 5.3 B & C). 

 

 

 

 

 

A 

Gating Strategy 
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Figure. 5.3 Represent the bead-based semi-quantitative flow cytometry analysis of L. 

donovani exosome. The dot plot shows the gating strategy of bead-bound exosomes and the 

antibody-based quantification; the first dot plot shows the total population gate; the other two 

show the pre-absorbed antibody control and antibody-labelled bead-bound exosomes. (Fig. 5.3 

A). The bead-bound exosome population of promastigote was labelled with a Leishmania 

exosome-specific marker GP63, and the overlay histogram shows the shift of GP63-FITC.of 

pre-absorbed antibody control vs GP63-FITC stained Leishmania derived exosome (Fig. 5.3 

B). The percentage of GP63 positive exosomes was quantified and shown in the bar graph with 

a p-value < 0.0038 of **P <0.05, a significant difference with pre-absorbed antibody control 

(Fig. 5.3 C) and the data represented in mean ± SD. 

5.4 Isolated Leishmania exosomes visualization: single object Imaging in the heterogenic 

EVs population by fluorescence microscopy 

The high-resolution fluorescence microscopy enables the single object visualization of the 

characterization of the highly heterogenic EVs with specific dye staining or antibody labelling, 

which would otherwise be a tedious task to visualize (Ter-Ovanesyan et al., 2017). Western 

blot and Flow cytometry confirmed L. donovani exosomes, and the visualization of exosomes 

through confocal microscopy was carried out. The primary anti-GP63 antibody was used to 

observe exosomes alongside the secondary anti-mouse IgG-FITC antibody. The absence of 

background noise of the FITC fluorescence was observed in the pre-absorbed antibody 

B C 

P
re

-A
bso

rb
ed

 A
b C

ontr
ol

A
nti-

G
P
63

0

20

40

60

80

Leishmania Exosome
quantification

P
e

rc
e

n
ta

g
e

 o
f 

G
P

6
3

**



Chapter 5                                                                                                                        Results 

Page | 69  
 

(primary antibody omitted) control (Fig. 5.4 A). Exosomes are visualized as green fluorescence 

spots above the background (Fig. 5.4 B).  

 

Figure: 5.4 Confocal microscopic images of Leishmania exosome (A) Pre-absorbed 

antibody control omitted with primary antibody to eliminate background noise of antibody (B) 

Leishmania promastigote exosome with anti-GP63 antibody shown as green fluorescent spots. 

5.5 Physical characterization of L. donovani exosomes by DLS and TEM analysis 

The average size determination of isolated exosomes from the stationary phase parasite was 

done with DLS and TEM. The isolated exosomes were taken for physical characterization in 

DLS, and our result found that the particle size and the density were similar to exosomes. The 

average size of the isolated exosomes was 42. 75nm, with a moderate percentage intensity of 

62.25% (Fig. 5.5 A, B). The zeta potential of the exosomes was 197.5 d. nm, and the 

Polydispersity index (PDI) was 0.299nm for the isolated exosomes (Table. 5.1 B). Although 

the TEM analysis shows that the global size distribution ranged from 10 to 200nm, the 

maximum number of exosomes was in the predicted size of 50-70 nm (Fig. 5.5 C & D).  

A B 

A 
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Table 5.1: The Dynamic Light Scattering Analysis 

 

 

 

         

 

 

 

 

Figure: 5.5 Physical characterization of L. donovani exosome with Dynamic Light 

Scattering and Transmission Electron Microscopy (TEM) (A) Size distribution plot with 

the intensity of the size of the exosomes in nanometre X-axis and percentage of intensity in the 

Y-axis. (B) The average of zeta potential, PDI, intercept, size (d. nm), percentage of intensity, 

and standard deviation of independent experiments were shown in the table (Table. 5.1 B). 

Representative images of TEM of parasite exosomes of sensitive DD8 and resistant BHU875 

with average particle size dispersion in diameter (nm) (Fig. 5.5 C & D). 

5.6 Leishmania exosomes highly enriched in polyamines reflecting the exosomes mediated 

polyamine carrier in parasite 

The Leishmania pathogen is signified by altering the host’s metabolic pathways by 

manipulating host or parasite metabolomics. Recent reports emphasize the intra-exosome 

metabolome in the pathophysiology of Leishmania. The metabolic signatures of parasite 

exosomes have attracted far less attention. However, from the perspective of the 

immunometabolism approach in the Leishmania infection potentiates the dynamic changes 

induced by the small metabolites in the proteomic as well as genetic regulation of the 

pathogenesis of various diseases by intracellular communication (Dong et al., 2019). 

Interestingly, we spotted many metabolites in our LC-MS-based chromatographic study (Fig. 

5.7 A); furthermore, metabolites are major contributors that decide the macrophage functional 

Z-average (d. nm) PDI Intercept Size (d. nm) % intensity St.Dev.(d. nm) 

146 0.299 0.98 42.75 62.25 15.99 

C D 

B 
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fate and Leishmania disease progression, especially the arginine-mediated polyamine synthesis 

(Latour et al., 2020). Further, we focused on the polyamine biosynthesis pathway mediated by 

the Leishmania-derived exosomes. Our interest lies in the parasite and host polyamine pathway 

in the immunometabolism perspective of host-pathogen interaction. We checked the targeted 

metabolites of polyamine pathways to confirm that Leishmania-derived exosomes carry the 

polyamines. TLC has been used for the separation of Leishmania exosome polyamines. Dansyl 

chloride conjugated derivatization and extraction of L. donovani isolated exosome PAs 

(Madhubala, 1998). Interestingly, our result TLC supports the existence of polyamines in L. 

donovani exosomes. Also, the enrichment of polyamine is comparatively higher in exosomes 

than in the cell-free supernatant of the parasite (Fig. 5.6 A). Furthermore, we found that the 

polyamines are enriched in the Leishmnia-derived exosomes and need to be elucidated what 

the polyamines are in it. To address this, we did a High-Performance Liquid Chromatography 

(HPLC) of promastigote-derived exosomes of L. donovani parasites. The dansyl chloride 

conjugated derivative samples were injected, and two peaks were found in exosomes. The 

peaks were aligned with the standards of polyamines, and they adequately aligned with the 

standard peaks of spermidine and putrescine at an Rt value of 26.5 for spermidine and 28.0 for 

putrescine. Leishmania exosome shows peaks of spermidine and putrescine, the Y-axis 

represents the absorbance at 270 nm, and Rt (Minutes) is on the X-axis (Fig. 5.6 B). Our results 

found that the Leishmania-derived exosomes carry major and essential polyamine spermidine, 

the end product of the Leishmania polyamine biosynthesis pathway. Moreover, we also found 

its substrate putrescine. Surprisingly, as reflected in our result, the recent literature also shows 

that there is no report of the presence of spermine synthesis in the parasite. Also, the polyamine 

pathway of Leishmania lacks the back conversion enzymes of spermine to spermidine and 

putrescine like other mammalian cells (Carter et al., 2022). 
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Figure 5.6 Detection of polyamine in Leishmania-derived exosome by Thin Layer 

chromatography and HPLC. Shows the dansyl chloride derivatized polyamine bands of cell-

free supernatant, Leishmania exosome, and media as the negative control. PAs enrichment in 

Leishmania exosome compared to cell-free supernatant was in lane 2 of TLC (Fig. 5.6 A). The 

High-Performance Liquid Chromatography of the Promastigote exosome of the L. donovani 

parasite with control and polyamine standards (Spermidine and Putrescine). Peaks show the 

presence of polyamines spermidine and putrescine in L. donovani exosomes at a Retention 

Time (Rt) of 26.5 for spermidine and 28.0 for putrescine in the X-axis and the absorbance at 

270 nm. The peak colour red indicates Promastigote exosomes, green is for polyamine 

standards of spermidine and putrescine, and blue shows the media control (Fig. 5.6 B). 

5.7 LC-MS-based qualitative and quantitative metabolic analysis revealed the presence 

and levels of spermidine in L. donovani exosomes 

The chromatographic study-based exosome metabolic analysis is a sensitive technique that 

gives much input into the Leishmania parasite’s immunobiology. The non-targeted LC-MS 

analysis was done for the metabolic profile analysis. Based on the mass charge ratio, we spotted 

the metabolite of our interest, especially our targeted metabolite spermidine, was there in our 

non-targeted metabolic chromatogram profile of both parasitic exosomes of sensitive DD8 

(MH0M/IN/80/DD8) and resistant BHU875 strains spotted with many other metabolites. The 

chromatogram metabolic profiles A and B show the metabolites inside the exosomes of the 

sensitive and resistant strains, respectively, with an m/z value of 145 and the peaks marked as 

A B 
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spermidine (Fig. 5.7 A & B). The preliminary observation of the metabolic profile data reveals 

that many metabolites are carried over through the exosome, and their profile is varied in 

sensitive DD8 and resistant BHU875 strains. Based on the molecular weight and mass charge 

ratio, we spotted polyamine spermidine in both strains of parasitic exosomes. However, a 

detailed data analysis is needed to identify other specific metabolites carried in the exosomes 

of both strains and their quantification. Spermidine plays a significant role in Leishmania 

infection, and its exogenous supplement progresses the parasite’s survival because spermidine 

is the end product of the Leishmania parasite (Zanatta et al., 2023). The targeted analysis of 

spermidine quantification in both parasite-derived exosome strains confirms the crucial 

polyamine spermidine in the targeted LC-MS with the known standard of spermidine. Biogenic 

spermidine of Leishmania-derived exosomes of both strains of parasites was determined and 

quantified by the Shimadzu LC-MS Solution instrument, using standard curves integrated with 

the particular curve obtained in the retention time and calculated the peak area and height and 

estimated the quantity of the spermidine. Biogenic polyamine spermidine in DD8 and BHU875 

parasite exosomes are 15.458 and 16.073 mg. L-1, respectively, with the retention time of the 

peaks 5.291 and 5.308. The percentage of RSD was considered a quality index of the analysis 

and represented the variations in the concentrations and Rt. The Guideline of the FDA (2001) 

recommends an RSD <15% for appropriate robustness of the analysis, and our results show a 

percentage of RSD value of ≤ 13.197 (Table. 5.2 F). Moreover, samples and standards show 

similar retention times in the chromatogram (Fig. 5.7 C-E). Overall, we confirmed the presence 

of spermidine in the Leishmania-derived exosomes and quantified it with LC-MS analysis. The 

result indicates that the Leishmania exosome carries the crucial polyamine spermidine, which 

might supplement the host during infection. 

DD8 Chromatogram  

BHU 875 chromatogram  

B

0 

A 



Chapter 5                                                                                                                        Results 

Page | 74  
 

 

Table 5.2 The LC-MS Analysis 

 

Figure: 5.7 Shows the LC-MS analysis of parasite exosomes (MH0M/IN/80/DD8) sensitive 

vs. BHU 875 resistant). The L. donovani LC-MS spectral images of (Fig. 5.7 A & B) peaks, 

show polyamines spermidine with mass charge ratio (m/z) of 145 ± 1 in L. donovani exosomes 

of sensitive and resistant parasites, respectively. Figure 5.7 C-E shows the LC-MS 

Sample Retention time 

(Rt) 

Area Height Concentration 

(mg. L-1) 

Spermidine Standard 6.611 1037267 20778 100 

DD8 Exosomes 5.291 160336 2951 15.458 

BHU875 Exosome 5.308 166717 3027 16.073 

% RSD 13.197 110.927 115.158 110.927 

Standard Deviation 0.757 504464 10270 48.634 

E 

F 

C D 
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chromatograms of spermidine standard, sensitive and resistant parasite-derived exosomes peak 

of polyamine spermidine with retention time. The biogenic polyamine spermidine 

concentrations of DD8 and BHU875 parasite exosomes are 15.458 and 16.073 mg. L-1, 

respectively, with the retention time of the peaks 5.291 and 5.308. The percentage of RSD 

value was ≤ 13.197 (Table. 5.2 F). The calculation was done with the area and height of a 

particular peak aligned with the standard peak of the spermidine Shimadzu LC-MS Solution 

software. 

5.8 The presence and bead-based semi-quantitative flow cytometry analysis of spermidine 

in the L. donovani exosomes with anti-spermidine antibody 

The bead-based semi-quantitative flow cytometry analysis was performed, and positive signals 

from the anti-spermidine antibody-labelled exosomes were observed. The semi-quantitative 

flow cytometry analysis of the presence of polyamine with anti-spermidine antibody as primary 

and Alexa Flour 488 as secondary antibody. The total bead-bound promastigote parasite 

exosome was 98.4% in the dot plot gate (Fig. 5.8 A, E). The overlay histogram analysis shows 

an increment of spermidine labelled population with a percentage of 79.7 %. The Promastigote 

exosomes MFI (Mean Fluorescence Intensity) difference of spermidine with unstained bead 

and pre-absorbed antibody control was plotted. The MFI of anti-spermidine-FITC conjugated 

promastigotes exosomes shows a higher trend of MFI with 3456 compared to pre-absorbed 

antibody control of the MFI of 265 (Fig. 5.8 C). The background noise of the secondary 

antibody was eliminated by pre-absorbed antibody control. The auto-fluorescence of beads and 

exosomes was avoided with unstained bead control. It confirms the presence of spermidine in 

the exosomes by the specific binding of anti-spermidine antibodies.  
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Figure 5.8 The bead-based semi-quantitative flow cytometry analysis of L. donovani 

exosome. The dot plots (Fig. 5.8 A) show the bead-bound exosome population of promastigote 

was labelled with an anti-spermidine (SPD) antibody with a 98.4 % bead-bound population. 

The overlay histogram of the unstained bead control, pre-absorbed antibody control and stained 

exosomes of promastigote with primary anti-spermidine antibody and the secondary anti-FITC 

antibody shows a 79.7% positive population (Fig. 5.8 B). The plot represents the MFI of pre-

absorbed antibody control Vs anti-spermidine-FITC antibody labelled exosome bounded beads 

(Fig. 5.8 C).  

5.9 Metabolic viability of the mitochondria during hypericin-mediated polyamine 

depletion 

Hypericin is a plant-derived natural product and showed a competitive inhibition mode with its 

substrate putrescine. The L. donovani promastigote was inhibited by hypericin at an IC50 

concentration of 18μM, and it was found to inhibit spermidine synthase activity (Singh & Dubey, 

2016). In contrast, our result of metabolic cell viability assay of hypericin 18μM with the L. 

donovani promastigotes (2 x 105 cells/ml) of both sensitive and resistant parasites for a 72 hours 

treatment does not show any change in the MTT viability assay (Fig. 5.9 B & D), it could be 

due to the higher activity of the mitochondria as a compensatory mechanism of spermidine 

depletion. In the treatment of the reference drug, the IC50 was 12.19µM for sensitive DD8 strain 

and 35.43µM for resistant BHU875 (Fig. 5.9 A & C), whereas we are unable to calculate the 

IC50 for hypericin. Studies show that mitochondrial metabolic activity is high, and MTT won’t 

be an excellent technique to check viability compared to cell number-based viability analysis 

(Murad et al., 2018). Even the higher concentration of the hypericin treatment does not show 

any changes in the metabolic viability index (Fig. 5.9 B & D). So, we strongly presumed that 

hypericin reduces growth, but there is still no compromise in the metabolic activity in case of 

polyamine depletion due to the hyperpolarization of the mitochondria. 
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Figure: 5.9 Cell viability Assay by MTT Method on MIL sensitive and resistant L. 

donovani promastigotes upon hypericin (72 hours). The formazan crystals formed per 

parasite were quantified spectro-photometrically and depicted as a percentage of viability with 

different drug concentrations. The plot shows the percentage of viability and IC50 concentration 

of the reference drug miltefosine of sensitive and resistant BHU875, respectively (Fig. 5.9 A 

& C). The plots show the parasite’s metabolic viability by MTT while treating it with 

hypericin, and it did not show any significant differences compared to the control (Fig. 5.9 B 

& D). 

5.10 Cell number-based growth curve analysis shows the reduction of parasite growth 

upon hypericin-mediated polyamine starvation 

As we noted, the mitochondrial metabolic activity by the MTT index does not show any 

changes in the viability of the L. donovani parasites (Fig 5.9). So, it is vital to cross-verify that 

the polyamine depletion of the parasites with hypericin reduces the parasite’s growth by true 

numbers. The cell number-based viability assay was done for hypericin-mediated polyamine 

depletion and media supplementation of the polyamine over five days, with other experimental 

controls such as naive, vehicle control (0.01% DMSO), and miltefosine as an anti-leishmanial 

positive control. The proliferation of hypericin-treated L. donovani promastigote is reduced in 
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both parasite strains. The reduction was slightly higher in the case of BHU875 resistant strain 

of parasites (Fig. 5.10 A & B). In contrast, the naive parasite, DMSO vehicle control (0.01%), 

and polyamine-supplemented (1X) parasites were grown optimally throughout the experiment 

for five days (Fig. 5.10 A & B). Interestingly, hypericin (18µM) has shown an inhibitory effect 

till the 5th day constantly compared to control groups in both strains, it is important to note that 

the growth curve of MIL-resistant L. donovani BHU875 promastigotes has shown apparent 

sensitivity towards growth upon hypericin-mediated polyamine depletion as compared to DD8 

sensitive strain (Fig. 5.10 A & B). Our result of hypericin sensitivity towards the resistant strain 

interprets that the polyamines might have a solid link to the maintenance of virulence as well 

as the resistance of the parasites. Possibly, it is linked to trypanothione-mediated oxidative 

stress regulation. It is reported that the Sb (III) or arsenate resistance is linked to increased 

trypanothione levels in Leishmania (Author et al., 1996). The metabolic activity-based MTT 

index and true number-based growth curve results show contradictory results. So, further 

studies are suggested for the mitochondrial activity and the link of hypericin-mediated 

polyamine depletion. 

 

 

 

 

 

 

Figure: 5.10 The hypericin-mediated polyamine (Spermidine) starvation of L. donovani 

promastigote parasites. Promastigote parasites were seeded at 5 × 105 parasites/ml for 5 days, 

and the proliferation and number of parasites under a microscope were observed using a 

hemocytometer. The proliferation of different groups is plotted for both sensitive as well as 

resistant parasites (Fig. 5.10 A & B). Hypericin (18µM) has shown an inhibitory effect till the 

5th day constantly compared to control groups in both strains (Fig. 5.10 A & B) line indicated 

with the colour yellow. The reference drug, shown with a green colour line, heavily affected 

the sensitive parasite compared to the resistant BHU875 (Fig. 5.10 A). The resistant strain 
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regained the growth fitness during the treatment period (Fig. 5.10 B). The polyamine 

supplementation shows a similar trend of both controls and the vehicle control (0.01% DMSO), 

indicated by the black line (Fig. 5.10. A & B). Data from independent experiments with error 

bars representing standard error.  

5.11 Hypericin-induced morphological changes in L. donovani promastigote parasite  

Microscopy-based Giemsa stained hypericin treated parasites exhibited a round or spindle-

shaped morphology with loss of flagellum (Fig. 5.11 B & E). It is also observed that the treated 

parasite was less motile and formed the cluster. Meanwhile, the control and polyamine-

supplemented parasites show normal morphology and motility (Fig. 5.11 A, C, D, F). Another 

important observation of our study is that the hypericin-treated parasites were more granular 

(Fig. 5.11 B & E). Interestingly, as reflected in the growth curve, the phenotypical changes are 

more visible in the BHU875-resistant strain, showing that the resistant strain is more prone to 

hypericin-mediated polyamine depletion (Fig. 5.11 E). 

. 

 

 

 

 

 

 

 

 

 

 

 

D E F 

A B

 

C 

DD8 DMSO Control DD8 Hypericin DD8 Polyamine 

BHU875 DMSO Control BHU875 Hypericin BHU875 Polyamine 



Chapter 5                                                                                                                        Results 

Page | 80  
 

Figure: 5.11 Morphological changes of hypericin-mediated polyamine depletion. The 

representative bright-field images of Giemsa-stained parasites were taken on a Leica trinocular 

microscope after 72 hours of incubation of hypericin. DMSO vehicle control and polyamine-

supplemented parasites were shown normal phenotypes (Fig. 5.11 A, C, D, F). In contrast, the 

hypericin-treated parasites were round or spindled in shape with loss of flagellum and were 

more granulated (Fig. 5.11 B & E). The experiment was repeated more than three times, and 

visual observations were consistent. 

5.12 Polyamine depletion mediated by hypericin in L. donovani triggered the generation 

of elevated levels of ROS 

Promastigotes of L. donovani were treated with an IC50 dose of hypericin (18μM) for 6 hours, 

then analyzed with flow cytometry and dot plot and histogram shows the gating strategy of the 

experiment (Fig. 5.12 A). The bar graphs of both sensitive DD8 and resistant BHU875 strains 

show increased intracellular ROS levels compared to untreated Leishmania promastigotes with 

p-value < 0.0014 for DD8 (sensitive strain) and p-value < 0.0217 for BHU875 (resistant strain), 

respectively (Fig. 5.12 B & C). It is associated with oxidative stress, stunted growth, and 

reduction of parasite numbers, as reflected in our previous results of the growth curve (Fig. 

5.10 A & B). The parasites under the starvation of polyamine were compared to those of 

parasites grown in the polyamine-supplemented condition. Polyamine supplementation did not 

induce reactive oxygen species similar to naive parasites (Fig. 5.12 B & C). Indeed, it indicated 

that the hypericin induces elevated levels of ROS in the sensitive and resistant strains of the 

parasites. The reference drug control, the antileishmanial drug miltefosine, has been shown to 

exert its cytotoxic effect via the secretion of ROS in the L. donovani parasite. 
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Figure: 5.12 The polyamine-depleted promastigote Leishmania parasite intracellular 

ROS estimation by H2DCFDA mediated flow cytometry analysis. The exponentially grown 

parasites were treated with hypericin (18µM) for 6 hours and then stained with 10µM 

H2DCFDA for analysis by flow cytometry. The plots represent the intracellular ROS upon 

polyamine depletion, especially spermidine, through hypericin treatment and naive control, 

vehicle control (0.01% DMSO), polyamine media supplement, and miltefosine (reference 

drug) serve as different experiment groups. The intracellular ROS in a fold change relative to 

the controls was measured. The dot plot shows the population gate of total macrophages 

(10,000 events), and the histogram represents the gating strategy for the MFI measurement 

(Fig. 5.12 A). The barograph shows the fold change of ROS in various experiment groups, and 

it shows a significant difference in the treatment hypericin of both parasite strains compared to 

the control groups (Fig. 5.12 B). The hypericin treatment leads to significance with p-

value<0.0014 and indicated ***p <0.0001; in the case of DD8, p-value <0.0217 and indicated 

with *p <0.05 in the case of BHU875 (Fig. 5.19 C). The standard reference drug miltefosine 

shows significance in the case of sensitive DD8 with p-value<0.0165 and indicated with *p 

<0.05. There is no significant difference in the case of BHU875 resistant strain and represented 

mean ± SD of independent experiments (n=2). H2DCFDA=FITC excitation and emission 

range, i.e., 525/495nm. 
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5.13 Membrane permeability and viability assay of L. donovani parasites upon hypericin 

treatment 

The promastigotes’ viability of hypericin-treated parasites for 48 hours was analyzed with the 

dye propidium iodide (PI) based viability assay. Propidium Iodide (PI) is a stoichiometric 

membrane non-permeable dye, i.e., it binds in proportion to the amount of DNA present in the 

cell and is based on the membrane permeability of the cells. The parasite viability of 

promastigotes of both MIL-sensitive and MIL-resistant parasite strains was treated and stained 

with hypericin (18µM), naive, vehicle control (0.01% DMSO), polyamine supplement (1X), 

and miltefosine (reference drug) the different groups. The representative dot plots indicate the 

gating strategy of the experiment of sensitive and resistant strains, respectively (Fig. 5.13 A & 

B). In the untreated naive promastigotes parasites, the binding percentage of PI was 1.30% and 

1.34% in DD8 (sensitive) and BHU875 (resistant), respectively. In hypericin, treatment of 

sensitive DD8 promastigotes shows 11.7% PI-positive cells. The resistant BHU875 strain 

shows 31.40% as compared with the hypericin vehicle control, i.e., 1.08 % and 1.24 %, 

respectively, with p-value <0.0001 for DD8 and BHU875 (Fig. 5.13 C & D). Interestingly, 

upon hypericin treatment, the BHU875-resistant strain shows more sensitivity towards the drug 

than the sensitive strain. The polyamine supplement showed a similar percentage in naive 

parasites of both strains, 1.52% and 1.13%, respectively (Fig. 5.13 C & D). Our results confirm 

that hypericin-mediated polyamine starvation compromises the membrane integrity and growth 

of the parasites and is more prominent in drug-resistant parasites than in sensitive parasites. It 

indicated that the polyamine is essential for the survival of drug-resistant parasites. The level 

of parasite growth is firmly connected to the polyamine metabolism of the parasites. 
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Figure: 5.13 PI-stained Leishmania promastigote parasites for viability assay. The 

exponentially grown parasites were treated with hypericin (18µM) for 48 hours and then 
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stained with PI for analysis by flow cytometry. The plots represent the viability index with the 

percentage of PI-positive parasites with permeable membranes of naive control, vehicle control 

(0.01% DMSO), polyamine supplemented, hypericin, and miltefosine as a reference drug. 

Figure 5.13 A & B represents the gating strategy with a dot plot of total parasite gating and 

gating of PI negative and positive populations of unstained and naive control as a representative 

plot of groups. The bar diagram represents the percentage of PI-positive parasites of different 

groups of sensitive DD8 and resistant BHU875 parasite stains (Fig. 5.13 C & D). The data 

depicts the percentage of PI-taken parasites of independent experiments (n=2) with mean ± SD. 

The p-value <0.0001 indicated with **** p<0.0001 compared to controls. PE in the FSC is 

excited at 565 nm, and its emission is 574 (PE laser channel used and PI excitation/emission 

maxima is ~532/674). 

5.14 Hypericin modulates mitochondrial membrane potential (MMP): The link between 

polyamine depletion and mitochondrial energy metabolism 

Since the MTT viability index doesn’t show any effect upon treatment of hypericin, whereas 

an apparent growth compromise and membrane disruption were observed upon treatment, it 

was a hint to determine and link the mitochondrial action by the impact of hypericin on the 

mitochondrial membrane potential (ΔΨm). Moreover, mitochondria are a significant source of 

ROS, and Leishmania has a single mitochondrion. Therefore, mitochondrial energy 

metabolism is essential for parasite survival. So, the maintenance of MMP is crucial for the 

parasites. To evaluate the MMP, the exponentially grown promastigotes were exposed to IC50 

hypericin concentration (18µM) to both strains of parasites for 48 hours. The experimental 

groups were naive parasite control, vehicle control (0.01 % DMSO), polyamine-supplemented 

control, hypericin, and miltefosine as reference drugs. The plots show the gating strategy of 

the experiment with total parasites and representative histograms of the JC-1 PI and FITC of 

the control (Fig. 5.14 A & B). We observed that the miltefosine reference drug depolarizes the 

mitochondrial membrane potential as expected upon treatment with 1.249 ± 0.02 and 2.37 ± 

0.23 compared to naive control, which is 9.89 ± 1.08 and 4.72 ± 1.48 for sensitive and resistant 

parasites, respectively (p-value <0.0001 for DD8 and p-value <0.0197 for BHU875). In 

contrast, the hypericin treatment increases the mitochondrial membrane potential with a 

red/green ratio of both sensitive and resistant strains of parasites were 4.728 ± 0.10 and 5.765 

± 0.74 in comparison to the vehicle control, i.e., 4.35 ± 0.14 and 4.38 ± 0.74, respectively with 

p-value <0.0079 for DD8 and p-value <0.0379 for BHU875 (Fig. 5.14 C & D). However, no 
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significant changes were observed in the polyamine-supplemented parasites of both strains, 

and the ratio was 11.33 ± 1.432 and 4.10 ± 1.04, respectively, for both strains of parasites with 

naive control (Fig. 5.14 C & D). Our data red/green ratio for each strain shows a significant 

increment that indicates the parasite MMP led to the hyperpolarization of the mitochondria. It 

suggests that polyamine depletion demands a high energy requirement. In addition, oxidative 

stress-related changes are reflected in the mitochondrial energy metabolism upon hypericin 

treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 5.14 The mitochondrial membrane potential (MMP) of L. donovani promastigotes 

upon hypericin treatment. The exponentially grown parasites were treated with IC50 
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concentration of hypericin (18µM), naive parasites, polyamine media supplemented parasites 

(1X concentration), vehicle control (0.01% DMSO), and reference drug miltefosine as positive 

control serves as different groups. The parasites were treated for 48 hours, then the JC-1 dye 

(10µM) staining and observed the MFI of red/green ratio (590nm/530nm), the elevated 

red/green value is for hyperpolarization, and the lower levels of red/green ratio indicates the 

depolarization of the MMP (Ψm). The dot plots represent the gating strategy of the DD8 and 

BHU875 strains (Fig. 5.14 A & B). The hypericin treatment shows an increment of red/green 

ratio in a sensitive and resistant strain of parasite upon hypericin treatment (Fig. 5.14 C & D). 

The sensitive DD8 shows a significant increase in red/green ratio with p-value<0.0079 

indicated with **p<0.01(Fig. 5.14 C), and the resistant BHU875 show a p-value<0.0379 and 

indicated with *p<0.05 (Fig. 5.14 D) as compared with hypericin vehicle control (0.01% 

DMSO). The miltefosine reference drug shows depolarization with a reduction of red/ green 

ratio in sensitive DD8 p-value<0.0001 depicted with ****p<0.001(Fig. 5.14 C) and in resistant 

BHU875, it was p-value<0.0197 and defined with *p<0.05 (Fig. 5.14 D) as compared with 

naive parasite control. The data of independent experiments (n=2) are represented as mean ± 

SD.  

5.15 Leishmania parasite-derived exosomes as a cargo carrier and communicator: an 

immunometabolism approach in the immunobiology of host-pathogen interaction 

We investigated L. donovani exosomes from drug-sensitive (MH0M/IN/80/DD8) and resistant 

strain (BHU875) parasites and their role in the macrophage polarization from M1 to M2 state. 

Here, we approached the hypothesis using an immunometabolism of the host and the parasites. 

Since metabolites play a major role in the immune modulation by metabolic reprogramming of 

the host by the effector molecules of the parasites. So, here we explore the role of Leishmania 

exosomes in macrophage functional plasticity and phenotype changes during its stimulation as 

a survival strategy during the infection. Interestingly, the Leishmania exosomes act as a 

regulatory switch that rewires the host’s immune-metabolism pathways. Arginine metabolism 

is the early investigated immune-metabolism interaction of host and parasite. However, the 

molecular insights of macrophage metabolic reprogramming and immune response regulation 

are poorly studied. This study focused on the polyamine biosynthesis pathway and its 

importance in the infection by an immunometabolism approach. 
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Leishmania secretes exosomes to extracellular space, and it is available to interact with host 

cells. The various studies of Hassani et al. and Silverman et al. prove that the vesicles of 

secretory supernatant carry the virulence factors of Leishmania; for example, GP63 is 

metallopeptidase, and it can be a biomarker for Leishmania-derived extracellular vesicle 

delivery to the host (Hassani et al., 2011; J. M. Silverman et al., 2010; J. M. Axwell Silverman & 

Reiner, 2011). Another report by Gomez et al. explains the immunofluorescence of the punctate 

structure of GP63 inside the host cell, suggesting that GP63 was taken in vesicles (Gomez et 

al., 2009). There is a different way of vesicle-mediated cargo delivery proposed by various 

scientific studies, and the exosomes can bind to the recipient cell surface and deliver the cargo, 

plasma membrane fusion, or by receptor-mediated endocytosis (J. M. Axwell Silverman & 

Reiner, 2011). Our results corroborate these observations and show that the L. donovani 

parasites secrete exosomes and deliver the exosomes cargos to the human monocyte 

differentiated macrophages (THP-1). We found the punctate structure of green fluorescence 

that the FITC labelled exosomes against the GP63 transmembrane protein inside the host 

macrophages. The images depict the confocal microscopy-based immunofluorescence 

analysis, and it was confirmed the uptake of Leishmania exosomes, and shows the naive 

macrophage unstained unstimulated control, pre-absorbed antibody control for DD8 

(MH0M/IN/80/DD8) sensitive and BHU875 resistant strains, respectively (Fig. 5.15 A, B & 

C). The green fluorescence inside the macrophage indicates the uptake of the sensitive and 

resistant strain exosomes at 6 hours of stimulation (Fig. 5.15 D & E). The fluorescence 

background noise was eliminated with pre-absorbed antibody controls (Fig. 5.15 B & C).  
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Figure: 5.15 Shows the macrophage (THP-1) uptake of Leishmania exosomes. The 

immunofluorescence image showing the naive macrophage control (Fig. 5.15 A) and images 

(Fig. 5.15 B & C) show the pre-absorbed antibody control of sensitive Vs resistant parasites, 

respectively. The confocal images of (Fig. 5.15 D & E) show the fluorescence of anti-GP63 

labelled exosomes of L. donovani sensitive DD8 and resistant BHU875 strains inside the 

macrophage cells labelled with the nuclear stain DAPI. 

5.16 Leishmania promastigote-derived exosomes a cargo carrier to the host macrophage 

In corroboration with our confocal microscopy-based uptake study, we analyzed the flow 

cytometry data as supporting evidence, demonstrating that the exosomes were uptake by host 

macrophages and carried out with the Leishmania exosomes-specific marker anti-GP63 

antibody. The FSC and SSC populations were gated on unstained control, doublets were 

eliminated, and singlets were chosen (Fig. 5.16 A). The overlay histogram was shown with 
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different groups representing a shift of the peaks (Fig. 5.16 B). The background noise of the 

secondary antibody was eliminated by pre-absorbed antibody control. The uptake of exosomes 

by macrophages stimulated with DD8 (MH0M/IN/80/DD8) sensitive strain and BHU875 

resistant strain (p-value < 0.0018) (Fig. 5.16 C), and it was confirmed with FITC fluorescence 

of GP63 protein cargo inside the cells and exosomes are the cargo carrier. Our result suggests 

that the delivery is probably through receptor-mediated endocytosis because the macrophage 

expresses the ligand for the identification of the parasite-specific molecular patterns, especially 

GP63, which is a transmembrane protein that acts as a ligand for the endocytosis of the 

exosomes (J. M. Axwell Silverman & Reiner, 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 5.16 Flow cytometry analysis of macrophage uptake of Leishmania Exosomes by 

human macrophage (THP-1) with specific Leishmania exosome marker anti-GP63. The 
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dot plots show the FSC and SSC population and doublet elimination, respectively (Fig. 5.16 

A). The overlay histogram of different groups indicated the shift of GP63 positive THP-1 

macrophages due to the uptake of sensitive DD8 and resistant BHU875 parasites exosomes 

(Fig. 5.16 B). The bar graph represents the MFI of GP63-FITC-488nm. It shows the pre-

absorbed antibody control subtracted DD8 (MH0M/IN/80/DD8) sensitive and BHU875 

resistant strain GP63 positive macrophage with green punctate structures of Leishmania 

exosomes (Fig. 5.16 C). The representative data of independent experiments (n=2) with mean 

± SD. The resistant BHU875 p-value < 0.0018 and indicated with **p <0.01 as compared with 

DD8 sensitive strain. 

5.17 Leishmania promastigote-derived exosome stimulation induces the phagocytic 

activity of host macrophage 

The Leishmania-derived exosome stimulation delivers the parasite effector molecules to create 

a presumptive environment for the parasites. It also might help the parasite intake to establish 

a successful infection. To analyze whether the promastigote-derived exosomes can enhance the 

L. donovani parasite phagocytosis by human monocyte differentiated THP-1 macrophages. The 

pre-stimulation of Leishmania exosomes on the macrophages was for 6 hours, and then the 

subsequent infection of L. donovani promastigotes parasites was for the remaining 18 hours. 

Then, the Giemsa staining was done, and the parasite-infected and uninfected macrophages 

were observed. After that, the intracellular parasites were counted through a trinocular light 

microscope (Leica). The phagocytic index was shown as 281.53 ± 48.75 and 161.88 ± 44.16 

for sensitive DD8 and resistant BHU875 infection, respectively, without prior exosome 

stimulation in THP-1. Prior exosome (50µg) stimulation for 6 hours and subsequent parasite 

infection show the phagocytic index of 354.2 ± 0.69 and 535 ± 32.37 for the DD8 and BHU875 

parasite, respectively. Interestingly, the BHU875-resistant exosome stimulation and parasite 

challenge increase the phagocytic index significantly with a p-value <0.0106 (Fig. 5.17 E). 

Overall, the Leishmania-derived exosome promotes macrophage phagocytic activity, and it 

helps the parasite evade the macrophages without any hindrance from the host immune 

defence. 
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Figure: 5.17 Giemsa-Stained microscopic study of Leishmania derived exosomes 

stimulated and unstimulated human macrophage (THP-1) with parasite challenge. The 

human monocyte differentiated THP-1 cell line was stimulated with sensitive DD8 and 

resistant BHU875 Leishmania derived exosomes (50µg), then the respective parasite strain 

infection in the MOI ratio of 10:1 parasite to macrophage. Then, it was stained with Giemsa 

stain and counted in a trinocular light microscope with 100X magnification. The phagocytosed 

promastigotes were indicated with an arrow inside the macrophages. The representative images 

of post-infected macrophages of both stimulated and unstimulated exosomes of parasites from 

both strains (Fig. 5.17 A, B, C, D). The representative microscopic image shows the post-

infected macrophages with sensitive DD8 and resistant BHU875 without any prior exosome 

stimulation (Fig. 5.17 A & B). microscopic image shows the post-infected macrophages with 

DD8 and BHU875 with prior stimulation of Leishmania derived exosomes (Fig. 5.17 C & D). 

The bar diagram represents the calculated phagocytic index of macrophages with different 

groups, and a significant difference was observed in the BHU875 exosomes stimulation and 

parasite challenge with p-value < 0.0106 and indicated with *p <0.05 (Fig. 5.17 E) of 

independent experiments with mean ± SD. 
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5.18 Leishmania-derived exosome stimulation to the macrophages intensifies the 

infectivity of L. donovani parasites 

Our results reveal that the phagocytic activity of the Leishmania parasites by macrophages 

increased upon exosome stimulation of the parasites. Next, we investigated the infectivity of 

the parasite upon exosome stimulation prior to the infection. The CFSE-based infection 

intensity (MFI) is a better method to measure the percentage of infection, and previous studies 

used this method to calculate the infectivity of Leishmania. Briefly, the Leishmania 

promastigotes were labelled with CSFE viable dye, then infected the macrophages, quantified 

the fluorescence intensity of the CFSE dye and correlated it with the infectivity (Viana et al., 

2018). The infectivity was measured as a percentage of CFSE-positive cells within the total 

THP-1 macrophages, and the dot plot indicated the total population of macrophage gate and 

the representative gating strategy for CFSE-positive and negative population of both strains of 

parasite infection (Fig. 5.18 A & B). The infection intensity was measured after 24 hours of 

infection with CFSE labelled L. donovani promastigotes. Our results show that both strains of 

Leishmania-derived exosome stimulation increase the infectivity. The CFSE+ THP-1 

macrophage infection percentage with sensitive (DD8) parasites without exosome stimulation 

was 46.10%, and with exosome-stimulated infection for sensitive parasites was 54.80% with 

p-value <0.0019 (Fig. 5.18 C). The percentage of infectivity in the BHU875-resistant strain 

was 56.98% and 64.85 % unstimulated and stimulated, respectively, with p-value <0.0102 (Fig. 

5.18 D). overall, our results found that the Leishmania-derived exosomes create a pro-parasitic 

environment that promotes the infectivity and survival of the parasites. 
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Figure: 5.18 CFSE dye-based L. donovani promastigote parasites THP-1 infectivity upon 

Leishmania exosomes stimulation. The macrophage cell line THP-1 was stimulated with 

Leishmania exosomes (50µg) for 6 hours and then challenged with CFSE-stained L. donovani 

promastigotes for 24 hours. Afterwards, the uninfected parasites were washed out and analyzed 
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in flow cytometry. The dot plots represent the gating strategy with the percentage of THP-1 

infectivity with DD8 and BHU875 infection alone, and THP-1 stimulated with Leishmania 

exosomes prior and then infection with both strains of parasites. (Figure 5.18 A & B). The bar 

graphs represent the percentage of THP-1 infection upon stimulation and without stimulation 

of exosomes of sensitive DD8 and resistant BHU875 strain of parasites. The results show that 

Leishmania exosome stimulation significantly increases the infectivity of both parasite strains 

(Figure 5.18 C & D). The data depicts the percentage of THP-1 infectivity of independent 

(n=2) experiments with mean ± SD. The p-value <0.0019 for DD8 was indicated with 

**p<0.01, and the p-value <0.0102 for BHU875 was indicated as * p<0.05 compared to 

controls. CFSE dye is excited at 488nm, and we acquired 10000 events. 

5.19 Reactive oxygen species (ROS) depletion by Leishmania exosome stimulation to 

avoid the detrimental side effects and create a presumptive environment for the infection 

ROS and NO are the two primary microbial killing agents of host defence. In the case of 

Leishmania infection, ROS is negatively regulated by using parasite-specific secretory effector 

molecules, and one such molecule is Leishmania metallopeptidase GP63 (Isnard et al., 2012). 

The generation of ROS is strongly linked to the metabolic alterations of the host. For example, 

immediately after the phagocytosis of the pathogen, the respiratory burst and generation of 

ROS by NADPH oxidase, Electron Transport Chain (ETC). The metabolic effector response 

of glycolysis fuels ROS production and is a pattern of classically activated M1 polarized 

macrophages (Ganeshan & Chawla, 2014). ROS production is induced earlier than NO, so 

ROS plays a significant role in the functional plasticity of the macrophages, and it is observed 

that the elevated level of ROS during M1 polarization substantially increases the pro-

inflammatory cytokines (Kelly & O’Neill, 2015; Kieler et al., 2021; West et al., 2011). So, we 

investigated the Leishmania-derived exosomes and the role of ROS in the metabolic alterations 

of the host macrophage plasticity of function and phenotype. Our result suggests that the 

Leishmania-derived exosome-mediated metabolic alteration protects the parasite from the 

early innate response as a major prevention of ROS generation. We found no significant change 

in intracellular ROS during exosome stimulation of both parasite strains (Fig. 5.19 B). It 

indicates that the pattern of macrophage function and phenotype are more towards the 

alternatively activated M2 polarization. In contrast, the LPS-induced macrophages showed 
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significant levels of ROS production (p-value <0.0362), as the previously published reports 

(Fig. Fig. 5.20 B) 

 

 

Figure: 5.19 Intracellular ROS analysis with H2DCFDA upon Leishmania derived 

exosome stimulation by flow cytometry. The Leishmania-derived exosome of both strains, 

such as sensitive DD8 and resistant BHU875 (50µg) stimulated for 6 hours, was measured for 

generation of intracellular ROS in a fold change relative to the controls. The dot plot and 

histogram show the gating strategy of macrophages (10,000 events) (Fig. 5.19 A). The 

barograph shows the fold change of ROS in different experimental groups, and it did not show 

any significant difference in the stimulation of both strains of parasite exosomes (Fig. 5.19 C). 

The LPS stimulation leads to a significant difference (p-value <0.0362) and *p <0.05 (Fig. 5.19 
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C). The represented mean ± SD of independent experiments (n=2). H2DCFDA=FITC 

excitation/emission range, i.e., 525/495nm, we used FITC 488nm laser. 

5.20 Impaired nitric oxide (NO) production in the M2 polarization of the macrophage 

from the perspective Leishmania derived exosome stimulation 

The innate immune effector molecule-mediated killing of the parasite is the major immune 

defence mechanism of the host in Leishmania infection; NO plays a major deciding molecule 

in the killing of the parasite (Carneiro et al., 2016). NO is the molecule that connects the 

immune system with metabolism, first presented by Drapier et al. (Drapier & Hibbs, 1988). 

Then, the arginine-derived NO-mediated distinct metabolic phenotype macrophages were 

studied in detail. Another study shows that the lower level of NO in the VL patients’ plasma 

and, in contrast, the elevated arginase activity strongly correlates with the metabolic rewiring 

of host macrophages during infection (Kupani et al., 2021). In this study, we checked the level 

of NO upon Leishmania-derived exosome stimulation of the human monocyte differentiated 

macrophage (THP-1). We discovered that the expression of the iNOS did not change 

significantly while stimulated with both strains of parasite-derived exosomes (Fig. 5.20 A). In 

continuous with this observation, we found that there are no significant shifts in the NO levels 

in the exosomes stimulated (50µg) macrophage supernatant (Fig. 5.20 B), and a substantial 

change of NO level was observed in the LPS (100 ng/ml) stimulated control (p-value <0.0407) 

(Fig. 5.20 B). In general, our result indicates that the NO secretion is strongly impaired by the 

stimulation of Leishmania-derived exosomes of both strains of parasites, and it suggests that 

the metabolic alteration of arginine metabolism is the hallmark of Leishmania exosomes. This 

result supports the arginine dichotomy by a parasite and its effector molecules. Our result also 

suggests that this might lead to the activation of arginase and polyamine synthesis for the 

parasite survival by the alternative activation of the highly dynamic macrophage.  
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Figure: 5.20 The expression of iNOS and NO production upon Leishmania-derived 

exosome stimulation. The western blot and its densitometric analysis show that upon 

stimulation of L. donovani exosomes sensitive DD8 and resistant BHU875 (50µg) for 12 hours 

did not show any significant change in the expression of iNOS as compared to the controls 

(Fig. 5.20 A). The same was reflected in the NO (µM) production in the human THP-1 cell 

line supernatant and showed no significant difference in the NO production during Leishmania 

exosome stimulation (Fig. 5.20 B). the LPS stimulation induces significant levels of NO 

production in the human THP-1 cell line. (Fig. 5.20 B). The data analysis with one-way 

analysis of variance of independent experiments (n=2) is represented as mean ± SD with p-

value <0.0407 and indicated with *p < 0.05. 

5.21 L. donovani exosome-stimulated macrophages show a higher level of Arginase I 

expression: an innate immune metabolic checkpoint that drives polyamine biosynthesis 

Arginine is a common substrate for the enzymes iNOS and ARG1; the reciprocal modulative 

activity of ARG 1 and iNOS decides the fate of macrophage activation (Modolell M and 

Munder M, Eichmann K,1950). The pattern of M2 polarization and its effector function is 

majorly dependent on the arginine to polyamine conversion by ARG1. Furthermore, an isotype 

tracing of arginine has proven that it acts as a major substrate for polyamines (spermidine and 

putrescine) (Miller-Fleming et al., 2015). Many pathogens exploit the arginase-mediated blunt 

of NO production to escape from the host’s immune defence. It either induces the arginase 

expression in their genome or the pathogen co-opts macrophage arginase I expression and 

activity (El Kasmi et al., 2008; Gobert et al., 2001; Monin et al., 2015). The flow cytometry-

based MFI, and western blot analysis of our study observed that the L. donovani exosome-

stimulated macrophages show a higher level of Arginase I expression, showing the initiation 

of the polyamine pathway. Both strains (DD8 and BHU875) of parasite-derived exosomes 

show significant changes in the Mean Fluorescence Intensity (MFI) of arginase I in the 

macrophages (p-value <0.0072 for DD8 and p-value <0.0039 for BHU875) (Fig. 21 B). It also 

indicates a higher expression in the western blot and its densitometric analysis (Fig. 21 C). 

Surprisingly, we observed that the LPS (100ng/ml) shows a higher expression of arginase I (p-

value <0.0090) (Fig. 21 B & C). Reports indicate that stimulating LPS/IFN-γ or the bacteria-

challenged macrophage induces the arginase I expression (Zhang et al., 2019). Another study 

demonstrated that the arginase I expression is dose- and time-dependent. While stimulated with 

LPS, the arginase I expression is significantly higher 24 hours post-stimulation of 20ng or 
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200ng/ml LPS. In contrast, the 2000ng/ml LPS stimulation does not show any significant 

changes in the expression of arginase I expression (Menzies et al., 2010). 
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Figure: 5.21 L. donovani derived exosome stimulation to the host macrophage cell line 

(THP-1) induces the arginase I expression. Shows the flow cytometry-based MFI of arginase 

I expression with anti-arginase I antibody (1:200 dilution). The first figure represents a dot plot 

and overlay histogram with different groups and their MFI (Fig. 21 A). The stimulation of L. 

donovani exosomes from sensitive DD8 and resistant BHU875 were stimulated (50µg) with a 

human macrophage cell line (THP-1) and checked the expression of the arginase I. Both strains 

of parasite exosome along with LPS (100ng/ml) show a significant difference of expression 

with p-value< 0.0090, p-value< 0.0072 and p-value< 0.0039 for LPS, DD8 and BHU875 

exosomes stimulation depict with **p< 0.01 (Fig. 21 B) and the data of independent 

experiments (n=2) with representation of mean ± SD. The western blot and its densitometric 

analysis of L. donovani exosomes stimulated macrophage lysate by the anti-Arginase I 

(alternatively activated macrophage marker) antibody for confirming Leishmania exosomes 

mediated macrophage M2 polarization. The Leishmania exosome stimulation from both strains 

of parasite shows a trend of increment in the expression arginase I, β-tubulin act as a 

housekeeping control (Fig. 21 C)  

5.22 L. donovani-derived exosomes stimulated macrophage metabolic adaptation and 

reciprocal regulation of iNOS and ARG I 

Arginase I is an alternative activated immune response marker gene, and more than that, its 

effector function plays a major role in the pathophysiology of various infections (Kieler et al., 

2021). The arginase I activity drives polyamine biosynthesis and is involved in multiple 

downstream cell-intrinsic signalling pathways of the cell (Puleston et al., 2019). So, here we 

investigated the arginine dichotomy and its reciprocal regulation by iNOS-mediated NO 

production and ARG I activity. We found that naive macrophage’s arginase I enzyme activity 

without exosome stimulation was 28.74 mU/mg protein. For sensitive parasite-derived 

exosomes stimulated macrophages, it was 33.39 mU/mg protein (p-value<0.0278) (Fig. 22 A). 

The case of resistant BHU875 parasite-derived exosome stimulation of macrophages shows a 

significant arginase I activity with 35.36 mU/mg protein compared to the naive macrophages 

without exosome stimulation (p-value <0.0130) (Fig. 22 A). The arginase activity increases 

during the Leishmania exosome stimulation condition, so there might be a hunger game to win 

for the host macrophage to produce NO. We have done a correlation analysis with the arginase 

I activity Vs NO production upon Leishmania-derived exosome stimulation, and we found a 

robust negative correlation with an r-value of -0.2893 (Fig. 22 B). Our results from this study 
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confirmed a significant increment of arginase I activity during exosome stimulation, whereas 

the nitric oxide level showed a reduction. The result indicates that the exosome stimulation 

might drive the polyamine pathway instead of the iNOS pathway to create a pro-parasitic niche 

inside the host macrophage for better survival and proliferation of the parasite. 

 

Figure: 5.22 The correlation analysis of arginase I enzyme activity Vs NO production 

upon L. donovani exosomes stimulation. The indirect arginase I enzyme activity (one unit of 

Arg I activity equal to the amount of enzyme-catalyzed to produce one µmol of urea) of the 

human macrophage cell line (THP-1) was measured with stimulation of parasite exosomes 

(50µg) from sensitive DD8 and resistant BHU875 parasites. Both strains of parasite exosome 

stimulation for 24 hours show a significant difference with p-value <0.278 and p-value <0.0130 

for DD8 and BHU875, respectively. It represented as *p< 0.05, and there are no changes in the 

naive macrophage and LPS (100ng/ml) control (Fig. 5.22 A). The increased level of arginase 

I activity is reflected in the production of NO, and it is observed that the arginase I activity Vs 

NO production correlation shows a robust negative correlation with r value -0.2893 (Fig. 5.22 

B). The data of independent experiments (n=2) with mean ± SD. 

5.23 L. donovani derived exosome ensure the intracellular levels of polyamine in the host 

polyamine pool  

The Leishmania parasite survival inside the host macrophage is strongly dependent on 

polyamine biosynthesis, particularly spermidine (SPD) because it is the end product of the 
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Leishmania polyamine biosynthesis pathway. Moreover, spermidine has a multifaceted role in 

the parasite survival inside the phagolysosome niche. For example, it serves as a precursor for 

trypanothione, a free radical scavenging molecule of the parasite during the macrophage 

infection. The spermidine uptake and de novo synthesis are needed for parasite survival and 

virulence maintenance (Mamani-Huanca et al., 2021). In the current study, we checked the 

intracellular spermidine level by spermidine antibody-based MFI calculation in the flow 

cytometry, and the dot plot represents the gating strategy (Fig.5.23 A). We found that the 

intracellular spermidine was significantly elevated in the Leishmania-derived exosomes from 

both strains of parasites while stimulating the macrophage as compared to the naive 

macrophage, which does not have any exosome stimulation with p-value < 0.0473 for DD8 

and p-value < 0.0340 for BHU875 (Fig. 5.23 B). Interestingly, we observed that the stimulation 

of macrophages with recombinant IL-10 also significantly increases the intracellular 

spermidine levels in the host macrophages with p-value < 0.0124 (Fig. 5.23 B). It is important 

to note that the polyamines reduce the NO production and shift the macrophage effector 

functions more towards an M2 polarized state, and our result of intracellular spermidine levels 

emphasizes the fact that macrophages are transporting the polyamine or it is actively inducing 

the intracellular polyamine pathway. However, the case of a higher level of polyamines 

enhances the macrophage to go in an alternative activation by subsides NO and favours the 

parasite’s favourable condition. A recent study reported that at the time of L. donovani 

infection, the L-arginine transporter expression was upregulated, leading to a metabolic 

alteration of arginine metabolism and elevated polyamine levels, leading to an M2 polarization 

state (Mandal et al., 2017). So, we checked the polyamine transporter gene expression, that is, 

Slc3a2 of macrophage, and we observed that the expression is higher during the stimulation of 

L. donovani exosomes stimulation of DD8 with p-value < 0.0115 and BHU875 shows a higher 

trend of increment of expression of the transporter (Fig. 5.23 C) overall, the L. donovani 

derived exosome stimulation induced the intrinsic polyamine biosynthesis pathway. It also 

enhances the polyamine transporter expression to ensure enough polyamine supplementation 

for the parasite’s survival inside the nutrient or metabolite-deplete environment of the 

phagolysosome compartment. 
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Figure: 23 The L. donovani-derived exosome contributes to the intracellular polyamine 

pool. Both strains of parasite that are sensitive as well as the resistant Leishmania exosome (50 

µg) stimulation to host macrophage (THP-1) shows elevated levels of intracellular spermidine 

level and is measured by the detection of FITC fluorescence (MFI) of anti-spermidine 

antibody-based quantification. The MFI of spermidine was increased upon Leishmania-derived 

exosome treatment as well as recombinant IL-10 stimulation (20µM) with p-value <0.0124, p-

value <0.0473, and p-value <0.0340 for IL-10, DD8 and BHU875 exosomes stimulation, 

respectively. The significance is represented with * p< 0.05 (Fig. 5.23 A). The polyamine pool 

replenishment by the induction of the expression of polyamine transporter of the host by the 

Leishmania exosomes, the DD8 exosomes show significant difference of expression with p-

value < 0.0115 and represented as *p <0.05 and BHU875 show a higher trend of increment in 
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the expression of the transporter (Slc3a2) (Fig. 5.23 B). Data of independent experiment (n=2) 

and mean ± SD. 

5.24 Anti-Inflammatory Milieu by L. donovani derived Exosomes: Polarization of 

Macrophages from M1 to M2 

The elevated levels of IL-10 and TGF- β in the clinical VL might play a major role in the 

pathogenesis than other cytokines, which regulate the arginase activity in various immune cells 

(Kupani M et al., 2021). The pathogen-induced autocrine cytokines of IL-10 and TGF- β 

mediate the induction of ARG 1 (Qualls et al.,2010). This study assumed that the L. donovani-

derived exosomes might stimulate the autocrine production of cytokines TGF-β and IL-10. In 

turn, it induces the arginase expression as well as the activity. We found an increment of 

expression of these cytokines in the exosomes-stimulated macrophages (Fig. 5.24). 

Interestingly, it strongly corroborated with the results that we observed in the NO production 

upon exosome stimulation (Fig. 5.20). The Leishmania infection induces IL-10 and TGF- β 

cytokine that contributes to higher levels of arginase activity and elevated levels of NO 

production (Kupani et al., 2021; Mondanelli et al., 2017). Our correlation analysis also 

emphasizes that the higher activity of arginase I negatively correlates with NO production (Fig. 

5.22 B). So, it is clear that the autocrine secretion of the IL-10 and TGF- β might enhance the 

arginase expression and activity, reducing or maintaining the basal levels of NO during 

Leishmania-derived exosome stimulation to the macrophage. On the other hand, our results 

interpret that the Leishmania exosomes of both strains significantly reduce the expression of 

iNOS and IFN-γ of macrophage with p-value < 0.0001 and p-value < 0.0006 for DD8 and 

BHU875 strains, respectively (Fig. 5.24 A). The clinical study on VL patients demonstrates 

that IL-10 and TGF- β are the major cytokines that blunt the activity of the IFN-γ (Caldas et 

al., 2005). This study correlated to our observation that the IFN-γ is not fully capable of 

exerting its action in the case of Leishmania-derived exosomes stimulation; further, it induces 

the counter-regulatory IL-10 that blunts the activity of the IFN-γ during persistent Leishmania 

exosomes stimulation (Fig. 5.24 B). Our results confirmed the crosstalk of IL-10 and TGF-β 

in arginase-mediated suppression of NO production. Interestingly, the reduction in the 

expression of iNOS and IFN-γ proved that the Leishmania-derived exosomes actively drive the 

polyamine pathway instead of iNOS pathway-mediated NO production. Furthermore, it 

induces the autocrine production of anti-inflammatory TGF-β and regulatory IL-10 cytokines 

upon exosome stimulation (Fig. 5.24 C & D). These immunometabolism pathway switching 
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by Leishmania-derived exosomes create a pro-parasitic environment for the infection 

establishment as well as the sustained persistence of the parasite inside the nutrient or 

metabolite-depleted microenvironment of the host phagolysosomes.  

 

 

 

 

 

 

 

 

 

 

 

Figure: 5.24 M2 polarization state of macrophage cell line (THP-1) mediated by anti-

inflammatory and regulatory cytokines and macrophage reduction of iNOS expression. 

The L. donvani exosomes stimulation (50µg) creates a pattern of alternatively activated M2 

polarization state of macrophage by reducing the expression of iNOS (Fig. 5.24 B), and it did 

not change the expression of pro-inflammatory cytokine IFN-γ that initiates the M1 mediated 

immune response against the pathogen (Fig. 5.24 A). In contrast, the stimulation of parasite 

exosome creates a milieu of regulatory and anti-inflammatory cytokines such as   IL-10 and 

TGF-β by elevating its expression levels (Fig. 5.24 C & D). the data of independent expression 

(n=2) with p-values depicted in the plot indicates *p<0.05, **p < 0.01 and ***p < 0.001 and 

****p < 0.0001 respectively with mean ± SD 
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Extracellular vesicles (EVs) are nanosized membrane-bound vesicles produced by almost all 

the living kingdoms of organisms. EVs originated as endocytic or plasma membrane blebs and 

are involved in intercellular communication (Dong et al., 2021). EVs are categorized based on 

their origin or location of cellular provenance, morphology, and size; EVs shed from plasma 

membranes are exosomes or microvesicles, whereas endocytic origin is known as exosomes 

(Tkach & Théry, 2016). Despite all the above features and information, scientific technologies 

still need to distinguish the types of EVs. In the literature, the exosomes are referred to as a 

small heterogenous population of EVs with sizes ranging from 30-150 nm (Dong et al., 2019). 

Leishmania produces exosomes through the exosome endocytic pathway retained in evolution, 

and it creates a suitable niche for infection by enrichment of parasites with virulence factors in 

the early infection and exacerbations of disease (Atayde et al., 2015; da Silva Lira Filho et al., 

2022). Scanning Electron Microscope (SEM) of our study shows that the stationary phase of 

L. donovani promastigotes grows in the axenic conditions that mimic sandfly gut release 

extracellular vesicles to the extracellular space (Fig. 5.1 & 5. 2), and the physical 

characterization confirms that these vesicles are heterogenous population EVs with ~ 42.75 nm 

in size with average percentage intensity of 62.25% (Fig. 5.5 A & B) same as reflected in the 

TEM analysis predicted size of 50-70 nm in diameter (Fig. 5.5 C & D). studies show that the 

small EVs cargos of many parasites have the essential components of their life cycle that help 

in the survival. The transmission of virulence factors, adhesion to host cells and subsequent 

evasion. After that, immunological responses in host cells were initiated (Ofir-Birin & Regev-

Rudzki, 2019; Whitehead et al., 2020). The Leishmania metallopeptidase GP63 enrichment in 

the vesicles of the parasites, as well as the intra-macrophage vesicle clustering, confirms the 

secretion of the EVs or exosomes of the Leishmania. Then, it was demonstrated that 

the Leishmania exosome proteins were secreted non-conventionally, and they carry many 

virulence factors that help the establishment of infection and increase survivability inside the 

host (Atayde et al., 2019; Gomez et al., 2009; Hassani et al., 2011; Lambertz et al., 2015; J. M. 

Silverman et al., 2010; J. M. Axwell Silverman & Reiner, 2011). Our SDS-PAGE also shows 

that the Leishmania exosomes carry many proteins, and western blot analysis 

displayed Leishmania surface protein GP63 enriched in the exosome of the parasite. It confirms 

the specificity of the origin of exosomes that are from Leishmania by serving as a biomarker 

(Fig. 5.2 A & B and Fig. 5.3 B & C). This result was significant. It is supportive of evidence 

for the third objective of the present study, as L. donovani exosomes polarize the macrophages 

from the classical M1 to alternative M2 activation owing to the surface protease GP63, which 
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is a major virulence factor of Leishmania (Chang et al., 1990). Furthermore, a study 

demonstrates that the GP63 deficient exosomes alter the packaging of its protein content and 

show a decreased immunosuppression in the host. It emphasizes that it is a crucial virulence 

factor of Leishmania (Hassani et al., 2014). The immunoblot of the Leishmania exosomes with 

GP63 is compelling evidence that the in vitro isolated exosome comes from 

the Leishmania parasites and is a biomarker for Leishmania EVs (Atayde et al., 2015) 

Here, we assess the intracellular metabolites of Leishmania parasite exosomes indispensable 

for its viability, fitness, and growth. Interestingly, our preliminary study found that the 

polyamines (PAs) spermidine and putrescine were enriched in the L. donovani exosomes (Fig. 

5.6 A & B, Fig. 5.7 A-F and Fig. 5.8 A-C). These polyamines are critical for parasites that 

impact the metabolic fitness of the parasite. It is established that the null mutants of polyamine 

biosynthetic enzymes compromise the growth and virulence of the parasites (Gilroy et al., 

2011; Perdeh et al., 2020). The polyamines bind to the RNAs and stabilize them, and also help 

polyamines to form the lipid curvature through the formation of vesicle aggregation (Acosta-

Andrade et al., 2017; Trachman & Draper, 2013). Another study demonstrated that in the 22v1 

cells, the secretion of EVs is mediated by spermidine synthase as a key regulator (Urabe et al., 

2020). Exosomes are one of the non-conventional ways of protein secretion in 

Leishmania parasites; their cargos and packaging can be discussed in the pathophysiology of 

the disease. Even though there is a lack of well-defined studies on the exact mechanism of 

delivery of vesicles to the recipient cells, the possibility of direct dumping of packaged cargo 

to the plasma or phagolysosomes membrane, the effector molecules or nutrients inside the 

vesicles might help the intracellular parasite (J. M. Axwell Silverman & Reiner, 2011). In host-

pathogen interaction, the requirement of parasite nutrients, especially in the host micronutrient 

environment, is a major concern. The phagolysosomes residing in Leishmania parasites are 

auxotrophic for many of these nutrients. Moreover, the limited nutrients and metabolites in the 

phagolysosomes raise an existential threat to the parasite, probably because the nutrients or 

metabolites are delivered to phagolysosome via the fusion of endocytic or phagocytic vesicles 

(Saunders & McConville, 2020). Our result of enrichment of polyamines in the 

Leishmania exosomes, along with other effector molecules packaging in the exosomes (Fig. 

5.6 A & B, Fig. 5.7 A-F, and Fig. 5.8 A-C), might help in the better survival of the parasites 

inside the host by exosome-mediated polyamine supplementation and induction of polyamine 

production in the host. The Deprivation Response (ADR) pathway is activated during arginine 

deprivation in the host arginine pool and is sensed by the macrophage-residing 
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Leishmania amastigotes (Goldman-Pinkovich et al., 2020). The parasites would be exploiting 

the polyamine pathway for their protective and efficient survival inside the harsh environment 

in the host macrophage at the time of infection either by the parasite-derived specific effector 

molecules or by the parasite EV-induced effector molecules. The parasite-encoded arginase 

expression is increased in the alternatively activated macrophage, a major exploitive 

mechanism that the parasite adapted to enhance the polyamine biosynthesis for amastigote 

growth (Gaur et al., 2007; Naderer & McConville, 2008). So, the crosstalk between Leishmania 

exosomes, polyamines, and macrophage polarization might be important in the Leishmania 

parasite’s pathophysiology. The unique polyamine biosynthetic pathway of Leishmania from 

its primary host macrophages emphasizes its immune-metabolic crosstalk with the 

macrophages (Colotti & Ilari, 2011). For example, the Δodc auxotrophic polyamine parasites 

are not overcome by supplementing spermine and other diamines (Jiang et al., 1999). 

Interestingly, Leishmania parasites lack spermine synthesis from spermidine and its back-

conversion of spermine to spermidine and putrescine like other mammalian cells (Carter et al., 

2022). These substantial differences, along with other structural and molecular differences, 

open a new avenue for polyamines biosynthetic pathway enzyme-based therapeutic targets, and 

it circumvents the drug distance issue in leishmaniasis treatment (Abirami et al., 2023; Carter 

et al., 2022). Even though various studies highlight the importance of polyamines for 

the Leishmania parasite survival, very few pharmacological approaches are there to elaborate 

the molecular mechanism behind the polyamine biosynthetic pathway inhibition. The 

integrated computational and biochemical drug study shows that hypericin, a plant-derived 

natural compound, has anti-leishmanial activity. It depletes spermidine production by 

specifically inhibiting the spermidine synthase of the L. donovani parasite and is rescued by 

spermidine supplementation (S. Singh et al., 2017). However, to our knowledge, there are no 

studies about the molecular events during the hypericin-mediated depletion of spermidine in 

the drug-resistant L. donovani parasites (clinically isolated BHU875). Our results show that 

hypericin-mediated polyamine depletion heavily affects parasite growth and fitness. 

interestingly, the BHU875-resistant strain shows more sensitivity toward hypericin treatment 

(Fig. 5.10 A & B and Fig. 5.11 B & E). It indicates that the synergistic anti-leishmanial drug 

approach might restore the sensitivity towards the available chemotherapeutic drugs that 

already have drug resistance. Polyamine biosynthetic pathway is linked to the drug resistance 

mechanism in Leishmania, and the alteration in the parasite anti-oxidative pathway is a major 

hallmark of drug resistance (Equbal et al., 2014; Kulshrestha et al., 2014; Ponte-Sucre et al., 

2017). Miltefosine is an alternative or sometimes a combinational drug in treating antimony or 
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amphotericin-resistant leishmaniasis, and its resistance is linked to the polyamine pathway. The 

study elucidates the metabolome of the miltefosine-resistant and sensitive strains, and it shows 

the perturbation of polyamine metabolites such as arginine, ornithine, and S-

adenosylmethionine in sensitive strains. In contrast, the increment of these metabolites, along 

with spermidine, was observed in the metabolic profile. The probable mechanism is to adapt 

to oxidative stress (Rojo et al., 2015). Spermidine is one of the major polyamines essential for 

the parasite and is the final product of the Leishmania polyamine biosynthetic pathway (Heby 

et al., 2007; Reguera et al., 2009). Spermidine synthase knockout (∆spdsyn) is auxotrophic for 

polyamines. It is required for the insect vector form growth, and the impaired spermidine 

production is negatively reflected in the mice infection (Gilroy et al., 2011). The 

trypanosomatid parasitic specific antioxidant molecule trypanothione is synthesized using 

spermidine as a substrate (Colotti & Ilari, 2011). Additionally, inhibition of spermidine 

synthase shows parasitic death; spermidine supplementation rescued the parasite. Interestingly, 

the hypericin-mediated spermidine synthase inhibition does not rescue the parasite, indicating 

the multifaceted functions of spermidine in the parasite. Furthermore, the study found that the 

death is due to decreased trypanothione levels, leading to ROS generation and parasite killing 

(S. Singh et al., 2015). In correlation to this study, our result shows that the polyamine depletion 

induced intracellular ROS in both strains, possibly due to the impaired polyamine metabolic 

activity upon hypericin treatment (Fig. 5.12 B & C). Unexpectedly, our result of the MTT 

viability assay does not show any significant changes. In contrast, clear morphological 

alterations such as granulation, loss of motility due to flagella loss, spindle-shaped morphology, 

and parasite growth and fitness are heavily hampered. Moreover, growth reduction was 

prominent in the resistant BHU875 strain of the parasite (Fig. 11 B & E). A study demonstrated 

the relationship between cell number reduction (growth inhibition) And MTT assay (metabolic 

viability of mitochondria) in different tumorigenic and non-tumorogenic cell lines. Briefly, the 

cell lines were exposed to different ionizing radiation doses at different time points, and the 

cell numbers and MTT indexes were correlated. The correlation analysis shows that after the 

48-hour irradiation, there was a 20-30% reduction compared to un-irradiated cell lines, whereas 

the cell number was reduced by 70-90% upon irradiation. Along with this study, many other 

studies indicate that the accurate indicator of growth inhibition is the number of cells rather 

than metabolic viability-based MTT assay (Rai et al., 2018; Stepanenko & Dmitrenko, 2015). 

It indicates that the hypericin treatment might alter the mitochondrial activity. So, we further 

checked the MMP and found that the MMP is towards hyperpolarization (Fig. 5.14 C & D). 

Subsequently, we checked the membrane integrity upon hypericin-mediated polyamine 
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depletion. It disrupted the membrane integrity (Fig. 13 C & D), which might be due to the 

higher levels of ROS generation (Fig. 5.12 B & C). Overall, our results emphasize that 

polyamines are essential metabolites for the survivability of the Leishmania parasites. Its 

starvation heavily affected both parasite strains and is more sensitive towards the resistant 

strain than the sensitive strain. 

The growth and fitness of the parasite largely contribute to the establishment of successful 

infection, intracellular survival, and drug resistance. The molecular modification of parasites 

is a major survival clue for insect vectors and mammalian hosts. Besides, the secretory effector 

molecules have a tremendous role in parasite-to-parasite, vector-to-parasite, and parasite-to-

host communication (Wu et al., 2019). The immunosuppressive role of Leishmania exosomes 

is well characterized; many effector cargos inside the vesicle contribute to the host-pathogen 

interaction. However, the exact molecular interaction of exosomes cargos initiated in the host 

cell remains elucidated. We elucidate the molecular mechanism of host macrophage 

polarization from M1 to M2 during the Leishmania promastigote-isolated exosome stimulation 

from both sensitive and resistant parasites. Our immunometabolism approach to the 

functionally plastic macrophages during exosome stimulation creates a presumptive 

microenvironment for the parasites. The macrophages and other mononuclear phagocytes 

efficiently take the parasite exosomes are well documented, and there are different ways of 

internalization occurs, such as phagocytosis, micropinocytosis, receptor-mediated endocytosis, 

and direct cargo release by simple fusion to the plasma membrane (Sabatke et al., 2023). Our 

fluorescent conjugated antibody-labelled exosomes confirmed the uptake of exosomes by the 

host macrophages. As shown in (Fig. 5.15), we found the presence of higher fluorescence in 

the flowcytometry-based Mean Fluorescent Intensity (MFI) calculation of exosomes-

stimulated macrophages as compared with un-stimulated cells (Fig. 5.16 B & C). The 

heterogenicity and small size made individual exosome visualization quite difficult in 

immunofluorescent imaging; nevertheless, the fluorescence of the punctuate structure was 

visible (J. M. Axwell Silverman & Reiner, 2011). The same was reflected in the 

immunofluorescence imaging of our study; stimulated macrophages contained green 

fluorescence of labelled exosomes with punctate structures, and due to the multiple labelled 

exosomes accessing and appearing in the cytoplasm of the host cell, it confirmed the uptake 

of Leishmania exosomes by the human monocyte-derived macrophages (Fig. 5.15 D & E). In 

the current study, our observation was that the Leishmania-derived exosomes are uptake by 

stimulated macrophages. Moreover, these results interpret that the exosomes deliver the 
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parasite cargo to the host to communicate with the broad and highly versatile host 

microenvironment. The stimulation of Leishmania-derived exosomes induces the production 

of IL-8 in the host (J. M. Silverman et al., 2010), and it recruits the neutrophils as an early 

response to infection. It supports the recently emerged “trojan horse model” of Leishmania 

infection (Peters et al., 2008). The L. donovani exosomes treatment before the infection in the 

C57BL/6 mice exacerbated the infection (J. M. Silverman et al., 2010). So, we checked the 

parasite phagocytic activity of macrophages stimulated with Leishmania exosomes before the 

infection. We observed the uptake of promastigotes to the macrophages in the early hours of 

infection. As expected, we found a higher trend of phagocytosis in the sensitive parasites and 

a significantly higher phagocytic index in resistant parasites (Fig. 5.17 E). It reassures that the 

parasite exosomes create a pro-parasitic environment, predominantly immunosuppressive, 

favourable to the successful establishment of infection and survival. It is important to note that 

only a few miltefosine clinical isolate was isolated and described in detail; two were from India, 

and another two were from an HIV infected patients from France (Cojean S et al., 2012; 

Mondelaers et al., 2016; S. Srivastava et al., 2017). According to WHO, as of 2021, 45 

countries reported HIV-Leishmaniasis co-infection, and also there is a surge of asymptomatic 

cases. It indicates a warning sign that co-morbidities and immunosuppression are major risk 

factors for leishmaniasis infection. In connection with this, another study demonstrated that the 

infectivity and disease progression are higher in drug-resistant strains of parasites than in 

sensitive ones (Bulté et al., 2021). We found that the infectivity of human monocyte 

differentiated macrophages showed significantly higher infectivity upon Leishmania-derived 

exosome stimulation prior to the parasite challenge (Fig. 5.18). It might be due to the 

immunosuppressive effect of Leishmania exosome stimulation. Since ROS generation is the 

early innate response of the host and parasite, molecular adaptations against oxidative stress 

are a major survival strategy of the parasites (H. W. Murray, 2006). The initial burst of ROS 

during parasite exposure very much decides the successful establishment of infection and 

differentiation of promastigotes to amastigote conversion. The priming of an anti-oxidative 

defence system is correlated with virulence and the development of parasites for better 

tolerance (Alzate et al., 2007). Exosome exposure mimics the parasite infection condition and 

makes the silent phagocytosis of the parasite during infection by recruiting the neutrophils 

through IL-8 secretion (Peters et al., 2008). 
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The priming of exosomes also alters the signalling pathways, especially the JAK-STAT-

mediated pathways. It subsidizes the microbicidal molecules such as TNF-α, ROS, and NO (J. 

M. Axwell Silverman & Reiner, 2011). A recent report demonstrated that drug-resistant EVs 

exposed parasites are better tolerant to ROS-mediated stress than unexposed parasites 

(Douanne et al., 2022). So, we checked the macrophage intracellular ROS upon exosome 

stimulation, and there was no significant shift in the ROS levels. (Fig. 19 B). It is speculated 

that high ROS levels produce inflammatory cytokine response and M1 polarization (Kelly & 

O’Neill, 2015; Kieler et al., 2021; Rendra et al., 2019; West et al., 2011). The Gch1 knockout 

of macrophage induces the production of cellular ROS (McNeill et al., 2015). So, ROS initiates 

the Electron Transport Chain (ETC) rewiring and M1 polarization of macrophages (Seim et 

al., 2019; Tan et al., 2016). At the same time, our result indicates no change in ROS levels, so 

the phenotype of macrophages is more towards the M2 than M1. 

The present study explores the emerging area of immunometabolism in rewiring macrophage 

functional phenotype by the Leishmania-derived exosomes. This approach unveils the parasite 

and its secretory effector’s crosstalk with the host macrophage immunometabolism and its 

modulation. For example, the Leishmania infection rewires the macrophage’s energy 

metabolism, preferably the macrophage’s increased oxidative phosphorylation over glycolysis. 

The same pattern of energy metabolism found in the M2 polarized macrophages and this strict 

phenotype change from M1 to M2 is majorly due to the metabolic rewiring of the parasitic 

effector molecules and the microenvironmental factors of the macrophage-deplete niche 

(Huang et al., 2016; P. J. Murray & Wynn, 2011). The metabolic reprogramming of the 

polyamine biosynthetic pathway from the perspective of macrophage polarization is crucial to 

the parasite survival. Therefore, functional plasticity is strongly connected to the metabolic 

reprogramming of polyamine biosynthesis. The Leishmania parasite resides and proliferates 

inside the phagolysosome vacuole and is highly acidic (pH 5.5) and nutrient or metabolite-

limited compartment. Hence, Leishmania auxotrophs for many nutrients or metabolites depend 

entirely on the host for their persistence and proliferation in the nutrient-depleted 

microenvironment. So, parasites must exploit the host metabolic pathways for their existence 

through the upregulation of parasitic or host metabolic pathways to wisely utilize the limited 

sources of nutrients or metabolites in the phagolysosome compartment. The semi-essential 

amino acid L-arginine stands at a crossroads of life and death of the intracellular parasite, and 

it is a double-edged sword that can resolve the infection by microbicidal action. On the other 

hand, it can synthesize the microbial regulatory molecules that enhance infection (Ilari et al., 
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2015). It is also reported that the mutation in the promoter of arginine solute carrier (SLC7a2) 

from the macrophages of C57BL/6 mice reduced the Leishmania infection, mainly due to the 

unavailability of the arginine for the utilization macrophages for its classical activation (Sans-

Fons et al., 2013). However, the reduction of the host arginine pool is a doubtful advantage for 

the parasite because the de novo pathway synthesis of arginine is absent in Leishmania and 

purely depends on the exogenous arginine (Shaked-Mishan et al., 2006). AAP3.2 is the 

Leishmania transporter for the exogenous arginine and the deletion of AAP3.2 mutant parasites 

unable to survive in both disease models in vitro and in vivo. Since Leishmania loses the 

“hunger game” of arginine for polyamine synthesis, intracellular survival is heavily hampered 

(Goldman-Pinkovich et al., 2020). The iNOS and arginase are the keystone enzymes in the 

arginine metabolism that decide the fate of the parasite because they are cross-inhibiting 

pathways (Mamani-Huanca et al., 2021). Our experiments demonstrated that the Leishmania 

promastigote-derived exosomes stimulation from both sensitive and resistant parasite strains 

to the human monocyte differentiated macrophages preferentially polarize towards the M2 

phenotype, and it might be due to the driving of polyamine pathway instead of iNOS pathway 

by Leishmania exosomes. As shown (Fig. 5.20 A & B), there are no significant changes in the 

expression of iNOS during the exosome stimulation, and it is reflected in the secretion of Nitric 

oxide. The arginine-derived NO is responsible for the reduction of mitochondrial complexes I 

(NADH-Q oxidoreductase) as well as the complex II (SDH) and concomitant increment of 

glycolytic activity (Drapier2 & Hibbs, 1986). Later, the arginine dichotomy demonstrated that 

the polarization of the M1 phenotype is marked by the inhibition of mitochondrial complexes 

I and II and is mediated by NO (Kieler et al., 2021). Interestingly, LPS or IFN-γ mediated M1 

polarized macrophage phenotype cannot be repolarized to M2 because of the NO-mediated 

rewiring of ETC complexes. In contrast, the knockout of the NOS2 gene or pharmacological 

inhibition of iNOS partially restored the macrophage plasticity of M1 to M2 (Van den Bossche 

et al., 2016). Here, the reciprocal regulation of the single substrate-dependent, independent 

pathway enzymes such as iNOS and arginase is important. Many intracellular pathogens 

strategically use this dichotomy. For example, the arginine depletion via arginase-mediated 

polyamine pathway in the Mycobacterium tuberculosis infection compromised the iNOS 

activity, which hampered the NO-mediated macrophage function against the Mycobacterium 

(Schreiber et al., 2009). In Trypanosoma cruzi infection promotes alternative activation of the 

macrophages by inducing the arginase I (Stempin et al., 2004). The alternatively activated 

macrophage-mediated intracellular polyamine by the arginase I provides a metabolic 

supplement to the intracellular Brucella abortus and is taken through the transporters that 
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express in the B. abortus. subsequently, it contributes to chronic infection in the host (Kerrinnes 

et al., 2018). Another study revealed that the specific inhibitors inhibiting NO production 

during Trypanosoma cruzi infection of macrophages show an M2 profile and enhance the 

parasite’s survival rate (Sanmarco et al., 2017). Arginase I is a major enzyme in the polyamine 

biosynthesis pathway and is a marker for alternatively activated macrophages (Abdelaziz et al., 

2020). Our result of flow cytometry-based and western blot-based arginase I expression 

analysis confirms that the expression of arginase I in Leishmania exosomes of resistant strain 

is high compared to the naive macrophage (Fig. 5.21 B & C). Furthermore, L. donovani 

exosome-stimulated macrophages show a significantly higher level of Arginase I activity 

showing that the initiation of the polyamine pathway (Fig. 5.22 A). It shows that Leishmania 

exosomes induce the co-opt mechanism of induction arginase I activity to macrophage polarize 

the macrophages from M1 (classically activated) to M2 (alternatively activated). It blunts the 

NO production and creates a pro-parasitic environment in the macrophages. Moreover, our 

result of correlation assay of arginase I activity with an intracellular level of NO for the cross 

verification of “the arginine paradox”. Our data indicates that the correlation analysis showed 

a strong negative correlation with an r-value of -0.2893. The result suggested that the exosome 

stimulation drives the polyamine pathway instead of the iNOS pathway upon Leishmania-

derived exosome stimulation (Fig. 5.22 B). The study speculates that the LPS-mediated 

arginase I expression is time and species-dependent (Menzies et al., 2010). It is observed that 

bacteria-challenged and LPS/IFN-γ stimulated macrophages show arginase expression (Zhang 

et al., 2019). A study demonstrates that murine bone marrow-derived macrophages express 

arginase I in the case of both innate (LPS) and alternative (IL-4) stimulation. Still, it is in the 

later hours (> 24 hours) and indicates the arginase I expression is additive. It is suggested that 

this delay in the expression is the regulatory role of the arginase I, a highly endotoxic LPS-

induced NO and its inflammatory spike (Nagasaki et al., 1999). However, ROS is the early 

innate response capable of showing the pattern of M1 polarization independent of NO 

production by an experiment; in the knockout that expresses iNOS but does not produce NO 

(McNeill et al., 2015). We observed in our study that there are no significant changes of ROS 

in the early hours of exosome stimulation (Fig. 5.19), and it shows that Leishmania exosomes 

initiated the polarization and shows preferably an M2 pattern of polarization, independent of 

iNOS-mediated NO. Similarly, in the later hours, the exosome stimulation reduces NO levels, 

which might be why the arginase I expression and activity enhance and polarize the 

macrophages into an M2 polarized state (Fig. 5.20 B). All these studies suggest that arginase I 

is more than an M2 marker; it significantly impacts the conversion of arginine to polyamines 
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and is involved in the effector function of the macrophage. Spermidine is a critical polyamine 

in macrophage polarization, and it is involved in the polarization of the macrophages (R. Liu 

et al., 2020; Puleston et al., 2021; Zanatta et al., 2023). Our results show that the L. donovani-

derived exosomes stimulation of macrophages from both strains contributes to the host 

polyamine pool by elevated levels of intracellular spermidine (Fig. 5.23 B). The intracellular 

polyamine pool has a noteworthy effect on the intracellular survival of the Leishmania parasite 

in the metabolite as well as the oxidative stress-induced environment of the phagolysosome 

(Saunders & McConville, 2020). A hunger game exists between the parasite and host to win 

the war for survival metabolites, especially in the arginine metabolism (Goldman-Pinkovich et 

al., 2020). There is the possibility that the parasite can supply its metabolites to 

phagolysosomes through the vesicles; it is reported that the various endo-lysosome and 

secretory vesicle markers and signal peptides for the fusion of phagolysosomes compartment 

(Young & Kima, 2019). So, we strongly presumed that the metabolic cargos, especially the 

polyamine in the Leishmania-derived exosomes we found in our study (Fig. 5.7 & 5.8), 

possibly supplement to host polyamine pool. The other possibility is the induction of the 

polyamine pathway by parasite effector molecules, and we found that the L. donovani 

exosomes drive the polyamine pathway through arginase I and contribute to the polyamine 

pool of the host for the better survival of the parasite inside the polyamine-limited condition of 

the phagolysosome. Moreover, our results show that the host polyamine transporter (Slc3a2) 

expression elevated during the Leishmania exosome stimulation (Fig. 5.23 B).The reports also 

suggest that during the time of infection of Leishmania, the polyamine transporter expression 

was higher, and the parasite could sense the deprivation of the polyamine resources. According 

to that, they metabolically adapt or regulate the various pathways to increase the polyamine 

pool or scavenge it from the host through transporters (Goldman-Pinkovich et al., 2020; 

Kerrinnes et al., 2018; Zanatta et al., 2023). Overall, polyamine is an essential metabolite 

needed for the Leishmania parasite, and it follows various immunometabolism mechanisms in 

the reprogramming of macrophages. Our results of this study also strongly corroborated that 

the parasitic effector molecules, especially metabolites inside the exosomes, and cargos from 

the parasite contribute to the polyamine biosynthesis of the host by supplementation, 

scavenging through elevated expression of transporters as well as drives the polyamine 

pathway through the induced activity of the arginase I. finally the elevated levels of polyamines 

shows a pattern of alternatively activated M2 phenotype and effector functions of highly 

dynamic macrophages by metabolic reprogramming and exploiting mechanism that parasite 

induces on the host immunometabolism pathways. 
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The pattern of alternatively activated M2 state of macrophage is hallmarked with elevated 

levels of various regulatory and anti-inflammatory cytokines. The classically activated 

macrophages generate a lot of ROS and NO as an effector response against parasites, and it 

geared the pro-inflammatory cytokine secretion (Martinez & Gordon, 2014; Mosser & 

Edwards, 2008). To prevent this, the parasite alters many signalling pathways to hamper the 

production of ROS and NO, and it also preferentially creates an anti-inflammatory milieu in 

the host. Interestingly, VL patient serum shows elevated cytokine IL-10 and TGF-β levels in 

various clinical samples of different studies (Caldas et al., 2005; Kupani et al., 2021). Our result 

also correlated with elevated TGF- β and IL-10 levels in the Leishmania-derived exosome-

treated host macrophage cell line (THP-1) (Fig. 5.24 C & D). On the other hand, we show that 

the reduction in the expression of iNOS (Fig. 5.20 A and Fig. 5.24 A) and there is not a 

noticeable difference in the levels of IFN-γ upon Leishmania-derived exosome stimulation to 

the macrophages (Fig. 5.24 B) strengthened our hypothesis that the pattern of alternative 

activation of macrophage by Leishmania derived exosomes. It has already been reported that 

the IL-10 and TG-β in the VL induce the expression of arginase I during the infection, and in 

turn, the arginase I upregulation correlates with these cytokines production, acting as a positive 

feedback loop (Kupani et al., 2021; Mandal et al., 2017). Indeed, it is linked to the macrophage 

functional activation from M1 to M2 during exosome stimulation by driving the polyamine 

pathway. 
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In conclusion, L. donovani promastigotes produce exosomes and carry many virulence factors, 

especially the metabolites that are essential for the survival of the parasites. The 

immunometabolism perspective of our study focused on the polyamine biosynthesis pathway 

of a parasite and the host. Interestingly, we found that the essential metabolite polyamines 

(Spermidine and Putrescine) are enriched in the L. donovani exosomes, and it might be a carrier 

that transports and supplements the polyamine to the host to create a pro-parasitic environment 

in the metabolites and nutrient depleted niche of the phagolysosomes. Our pharmacological 

inhibition and polyamine depletion of drug-sensitive DD8 (MH0M/IN/80/DD8) and resistant 

BHU875 are heavily affected. Interestingly, the MIL-resistant L. donovani BHU875 

promastigotes have shown more sensitivity towards growth upon hypericin treatment. 

Interestingly, the hypericin-mediated polyamine starvation hampered the mitochondrial 

metabolic fitness and observed a ROS-mediated necrotic death of the parasite. So, we conclude 

that the polyamine and its biosynthesis play a major role in parasite growth and fitness. Next, 

we investigated the metabolic reprogramming of the L. donovani-derived exosome from 

sensitive (MH0M/IN/80/DD8) and resistant (BHU875) from the perspective of host 

macrophage (THP-1) polyamine biosynthesis. Macrophages induce the innate immune 

response upon infection, and Leishmania preferentially resides inside the macrophages. So, 

studying the immune system crosstalk with metabolism is important to understand the 

metabolic adaptation and activation/deactivation of the immunometabolism pathways during 

the Leishmania-derived exosome stimulation. Since the Leishmania parasite survival is 

essentially linked to the polyamines, we primarily focused on the metabolic rewiring of the 

host polyamine biosynthesis pathway. We found that the Leishmania-derived exosome 

stimulation increases the phagocytic index and infectivity in the host macrophages upon 

infection with parasites. Then, we address the primary question of the present study: the 

metabolic reprogramming of the host polyamine biosynthesis. Our results found that the L. 

donovani exosomes induce the expression and activity of arginase I, which ensures that the 

polyamine biosynthesis pathway is active during infection and the exosome stimulation doesn’t 

show significant changes in Nitric Oxide and ROS levels. It proves that the exosome 

stimulation drives the polyamine pathway instead of the iNOS pathway as reciprocal regulation 

of a single substrate for two enzymes. We also observed that Leishmania exosomes contribute 

to the intracellular spermidine pool, induce the expression of the polyamine transporter, and 

help in the hunger game of the parasite during metabolic adaptation. The Leishmania exosomes 
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stimulation creates a presumptive environment for the establishment of infection by driving the 

arginase I mediated polyamine synthesis, and it regulates the arginase I expression through the 

elevated levels of TGF-β and IL-10 and reduction of the iNOS and IFN-γ expression. In turn, 

it follows a pattern of alternatively activated M2 polarization of the highly metabolically 

dynamic macrophages. 

 

 

Figure 7.1: Schematic represents the summary of the study. The L. donovani parasite 

evolutionary produces an exosome and is uptaken by the host macrophage cell line. It rewires 

the immunometabolism of the macrophages by inducing the expression and activity of the 

arginase I and reducing the expression of iNOS. It hampers the production of NO. On the other 

hand, the arginase I-mediated polyamine biosynthesis pathway drives and contributes to the 

intracellular polyamine pool of the host. The Leishmania-derived exosomes also lower the 

early innate response by hindering the elevated production of intracellular ROS. The exosome 

from the parasite creates a pro-parasitic milieu by inducing various regulatory and anti-

inflammatory cytokines (TGF-β and IL-10). In contrast, it lowers the expression of pro-

inflammatory cytokine (IFN-γ). The Leishmania exosome contributes to the intracellular pool 
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of polyamine by supplementation, induction, and transport of polyamine by inducing the 

expression of the host polyamine transporter (Slc3a2). Overall, the Leishmnia-derived exosome 

manipulates the host immunometabolism by altering the polyamine biosynthesis, and it shows 

a pattern of alternatively activated macrophage effector function and phenotype. Moreover, it 

helps parasite evasion, infection establishment, and intracellular survival inside the nutrient or 

metabolite-deplete niche of the host macrophage. 
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Chapter 12

Extracellular vesicle-associated
microRNA in human parasitic
diseases

Radheshyam Maurya and Prince Sebastian

Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad,
India

12.1 Introduction

Parasitic infections are a global problem in the tropics, subtropics, and tem-

perate climates. There are three main types of parasites that infect humans

and cause disease: helminths, parasitic worms (e.g., Schistosomes, Wuchere-
ria bancrofti, etc.), protozoan unicellular eukaryotic parasites (e.g., Plasmod-
ium, Leishmania, and Trypanosoma), and ectoparasites, an organism that lives

on the skin of their hosts, such as Sarcoptes scabiei. Nearly 1 billion people

worldwide suffer from various parasitic diseases. EVs are vesicles of endo-

cytic origin secreted by all eukaryotic cells, which contain a variety of mole-

cules, including lipids, proteins, and nucleic acids (RNAs), some of which have

immunomodulatory properties. Extracellular vesicles (EVs) produced through

the endocytic pathways are known as exosomes, whereas microvesicles are

formed by the shedding of the plasma membrane. Exosomes usually range in

size from 50 to 150 nm, have a distinctive cup-shaped morphology, and ex-

press markers related to their formation, which comprises the inward budding

of multivesicular structures. However, extracellular fission and outward bud-

ding of the plasma membrane result in the formation of microvesicles, whereas

apoptotic bodies occur when cells undergo apoptosis. These subtypes have a

larger size range (50–2000 and 50–5000 nm) and lack the cup-shaped mor-

phology unique to exosomes. Despite the above features, it is difficult to dis-

tinguish exosomes from other EVs, and there is no appropriate marker for

their detection. Numerous studies have shown that the synthesis of EVs by

parasites is an essential component of their life cycle and the progression of

the infection; it follows that these are required for their survival. EVs of-

fer a reliable delivery method to promote parasite development, the transmis-

sion of virulence factors, adhesion to host tissues, and the evasion of im-

mune responses in host cells. They are successful in controlling the immune
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COVID-19 Severity in Obesity: Leptin
and Inflammatory Cytokine Interplay
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and Arieh Gertler2
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Obesity is one of the foremost risk factors in coronavirus infection resulting in severe illness
and mortality as the pandemic progresses. Obesity is a well-known predisposed chronic
inflammatory condition. The dynamics of obesity and its impacts on immunity may change
the disease severity of pneumonia, especially in acute respiratory distress syndrome, a
primary cause of death from SARS-CoV-2 infection. The adipocytes of adipose tissue
secret leptin in proportion to individuals’ body fat mass. An increase in circulating plasma
leptin is a typical characteristic of obesity and correlates with a leptin-resistant state. Leptin
is considered a pleiotropic molecule regulating appetite and immunity. In immunity, leptin
functions as a cytokine and coordinates the host’s innate and adaptive responses by
promoting the Th1 type of immune response. Leptin induced the proliferation and
functions of antigen-presenting cells, monocytes, and T helper cells, subsequently
influencing the pro-inflammatory cytokine secretion by these cells, such as TNF-a, IL-2,
or IL-6. Leptin scarcity or resistance is linked with dysregulation of cytokine secretion
leading to autoimmune disorders, inflammatory responses, and increased susceptibility
towards infectious diseases. Therefore, leptin activity by leptin long-lasting super active
antagonist’s dysregulation in patients with obesity might contribute to high mortality rates
in these patients during SARS-CoV-2 infection. This review systematically discusses the
interplay mechanism between leptin and inflammatory cytokines and their contribution to
the fatal outcomes in COVID-19 patients with obesity.

Keywords: COVID-19, leptin, obesity, inflammation, cytokine, mortality

INTRODUCTION

Obesity is marked as redundant fat accumulation in the body. Obesity is considered an increased
circulating fatty acid that is causing low-grade chronic inflammation due to macrophages’
chemoattraction and its expansion in the adipose tissue (1, 2). An individual with obesity
presents with increased TNF-a cytokine, changed T-cell subset, and suppressed T-cell responses
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A B S T R A C T   

Visceral leishmaniasis (VL) is the deadliest form of leishmaniasis without a safer treatment option. This study 
implies drug repurposing to find a novel antileishmanial compound, namely febrifugine dihydrochloride (FFG) 
targeting Leishmania antioxidant system. Starting with virtual screening revealed the high binding affinity and 
lead likeness of FFG against the trypanothione reductase (TR) enzyme of Leishmania donovani, followed by 
experimental validation. The promastigotes inhibition assay gave the IC50 concentration of FFG and Miltefosine 
(positive control) as 7.16 ± 1.39 nM and 11.41 ± 0.29 μM, respectively. Their CC50 was found as 451 ± 12.73 
nM and 135.9 ± 5.94 μM, respectively. FFG has been shown to increase the reactive oxygen species (ROS), 
leading to apoptosis-like cell death among L. donovani promastigotes. Spleen touch biopsy resulted in 62% and 
55% decreased parasite load with FFG and miltefosine treatment, respectively. Cytokine profiling has shown an 
increased proinflammatory cytokine response post-FFG treatment. Moreover, FFG is safe on the liver toxicity 
parameter in mice post-treatment.   

1. Introduction 

Visceral leishmaniasis (VL) or kala-azar is the fatal form of leish
maniasis caused by the obligate intracellular protozoan parasite of genus 
Leishmania, mainly L. donovani and L. infantum (Terefe et al., 2015). The 
former affects the population of the Indian subcontinent and Africa, 
while later affects the population of the Mediterranean basin, South and 
Central America (Torres-Guerrero et al., 2017). Sandflies, mainly Phle
botomus argentipes and Lutzomyia longipalpis are the vectors to spread this 
disease severity in the old world (Indian subcontinent and Africa) and 
the new world (Mediterranean basin, South and Central America), 
respectively (Maroli et al., 2013). VL targets the cells of the reticulo
endothelial system, and increasing parasite load leads to the swelling of 
the liver and spleen (Alemayehu and Alemayehu, 2017). Its symptoms 
include fever, weight loss, anemia, hepatosplenomegaly, and thrombo
cytopenia (Lainson and Shaw, 1978). Even after such a severe clinical 
manifestation, none of the vaccine candidates have been registered to 

prevent this disease. The treatment of VL only relies upon the countable 
number of chemotherapeutic drugs. These drugs are pentavalent anti
monials, amphotericin B, Miltefosine, and paromomycin. 

Antimonial has been the first-line treatment for the VL since the 
1970s; later on, a gradual decrease in its clinical efficacy and more than 
70% resistance within only two decades restricted its use in the Bihar 
state of India. Later, amphotericin B (AmB) was introduced as a second- 
line treatment, yet soon it turned into a mainline treatment. Still, it has 
shown resistance and adverse events like myocarditis, infusion reaction, 
hypokalemia, and nephrotoxicity (Messori et al., 2013). Further, paro
momycin was reported from Kenya in the 1990s, having good efficacy 
and showing side effects like pain at the injection site. At the same time, 
few patients experienced reversible ototoxicity (2%) and hepatotoxicity 
(6%) (Sundar et al., 2007). Later in 2002s, Miltefosine was approved as 
the first oral antileishmanial drug in India but was also associated with 
various adverse events like gastrointestinal toxicity, recurrent hepato
toxicity, nephrotoxicity, and teratogenicity (Sundar et al., 2012). 
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