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Abstract

Classification is a fundamental task in supervised machine learning where
the goal is to assign input data points to one of several predefined categories
or classes. During classification, a model undergoes training on a labeled
dataset, wherein each data point is linked with a class label. The machine
learning model learns patterns and relationships in the input features to
make predictions about the class labels of unseen data. Some of the primary
challenges that one encounters during classification tasks are, they often
require considerable time to execute, high dimensionality, datasets of significant
size, The data is not always numeric. Sometimes data could be Binary,
Image, Ordinal etc., Considering these challenges, we have designed five
algorithms which addresses various issues in performing classification. These

algorithms address the mentioned challenges.

In the initial two approaches, we propose classification algorithms based
on coresets. The first approach introduces a hybrid algorithm aimed at
accelerating the identification of the k-nearest neighbors for a given query
point g using Lightweight Coreset algorithm. The second proposed scheme
also uses the Lightweight Coreset algorithm to reduce the actual data size
to be used to build the tree index, resulting in a faster index building time.
We improve on already available Nearest Neighbor based Classification
techniques and compare our classification method against the widely accepted,

state of the art data structures such as VP-Tree, R-Tree and KD-Tree.

Next, we propose a scheme that classifies the data when it is binary in
nature and has high dimensions. We propose a low-rank binary matrix
approximation algorithm that finds relevant attributes for classification
task. Given a binary matrix A low-rank binary matrix approximation is to

find a matrix A’ such that it’s rank is less than or equal to a given constant.



We use this matrix to classify the given query ¢. Several algorithms exist
in the literature to solve this problem. Some of these are exponential
in time complexity. We try to achieve the similar results in polynomial
time complexity. As an application to the proposed algorithm Autism
Spectrum Disorder Detection problem is considered. Most of the machine
learning algorithms assume the data to be available in complete when the
model is learning from the data. The situation occurs when the data is
available as a stream of data. We propose a modified version of the Winnow
algorithm designed for online learning scenarios. The proposed algorithm is
capable of handling real-valued data, updates the learning function based
on the input feature vector. Situation occurs when there is vast amount of
data, and also out of which has less labeled data. Constructing supervised
classifiers from such data can be both a costly and time-consuming. Active
learning is a particularly useful machine learning technique in domains
where labeled data is scarce and expensive to obtain. We propose two
algorithms, “IncrementalActiveSVM” and “ActiveSVM”, to address issues
such as selecting the initial labeled data samples that the model will use
to begin learning, selecting samples at intermediate stages of the learning
process, and slow model updating. We propose two novel data initialization
techniques based on K-means++ and coresets, an uncertainty sampling
method, and a new SVM model update method applied at each iteration
of the learning process. All proposed algorithms were evaluated on diverse
datasets. Experimental results demonstrate the superiority of our algorithms
over both traditional and contemporary approaches across various performance

metrics.
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Chapter 1

Introduction

In Computational Geometry, objects considered are set of points in Euclidean space.
Collection of points in a higher-dimensional space is called multidimensional data,
that represent locations and objects in space. Representing multidimensional data
and accessing is an important issue in various fields that include computer graphics,
computer vision, computational geometry, image processing, machine learning, pattern
recognition and more. Number of different representations and methods for accessing
multidimensional data were proposed[125]. Some of these include, Inverted Lists[76],
Fixed Grid[17], Quad Tree[43], PR Quad-tree[I17], EXCELL[I36], Grid File[115].
Machine learning algorithms use multidimensional data to solve problems like classifying

the data, predicting the values of dependent variables, infering new knowledge, finding
nearest neighbors in a range, and suggesting products to customers. These algorithms

can be classified into 6 categories:

1. Supervised learning algorithms: These algorithms are given a training set of
examples with the correct answers. These algorithms infer new knowledge from
the data. This kind of learning is also called as learning from examples. Example
algorithms are Find-S, List-then-eliminate, Candidate Elimination, Regression,

and Classification.

2. Unsupervised learning algorithms: These algorithms are given a training
set of examples with no responses, but instead the algorithm tries to identify
commonalities between the inputs so that inputs that have something similar are

categorized together. One example is clustering by K-Means algorithm.
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3. Reinforced learning algorithms: They are told only when the answer is wrong
but not how to correct it. The algorithm has to find out a way to get the answer

right. These algorithms are always monitored and the answers are scored.

4. Evolutionary learning algorithms: They work on an idea of fitness, which
corresponds to a score for how good the current solution is. Genetic algorithm is

an example of evolutionary learning.

5. Online Learning: In the online learning scenario, there are multiple rounds
comprising training and testing phases. During each round, the learner is presented
with an unlabeled training point, predicts its label, receives the true label, and
experiences a loss. The primary goal in the online setting is to minimize the

cumulative loss incurred across all rounds.

6. Active Learning: The learner dynamically acquires training examples through
interaction, typically by querying an oracle to request labels for new points.
The aim in active learning is to attain a level of performance similar to that
of the standard supervised learning scenario, but with a fewer number of labeled

examples.

The next section will delve into various techniques and methodologies employed in
classification tasks, laying the foundation for the detailed discussion of the research

work in this domain.

1.1 Classification

Classification is a fundamental task in supervised machine learning where the goal is to
assign input data points to one of several predefined categories or classes. During
classification, a model undergoes training on a labeled dataset, wherein each data
point is linked with a class label. The machine learning model learns patterns and
relationships in the input features to make predictions about the class labels of unseen
data.

Classification in machine learning can be categorized into several types based on

various factors. Some common classification types include:
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Binary Classification: In binary classification, the task involves classifying instances
into one of two classes or categories. Examples include spam detection (spam or not
spam), disease diagnosis (positive or negative), and sentiment analysis (positive or
negative sentiment).

Multi-class Classification: In multi-class classification, the task involves classifying
instances into one of more than two classes. Each instance can belong to only one class.
Examples include image recognition (classifying images into different categories such
as cat, dog, bird, etc.) and document classification (categorizing documents into topics
like politics, sports, technology, etc.).

Multi-label Classification: In multi-label classification, each instance can belong
to multiple classes simultaneously. This type of classification is common in tasks where
instances can have multiple labels. Examples include tagging images with multiple
labels (e.g., person, dog, beach) and categorizing news articles with multiple topics
(e.g., politics, economy, sports).

Imbalanced Classification: In imbalanced classification, the distribution of classes
in the dataset is highly skewed, with one class significantly outnumbering the others.
This can pose challenges for traditional classification algorithms, as they may tend to
favor the majority class. Techniques such as resampling, class weighting, and anomaly
detection are often used to address class imbalance.

Hierarchical Classification: In hierarchical classification, classes are organized
into a hierarchical structure or taxonomy, where each class may have sub-classes.
The goal is to predict the most specific class label possible based on the available
information. Examples include species classification in biology (e.g., kingdom, phylum,
class, order, family, genus, species) and product categorization in e-commerce (e.g.,
electronics — smartphones — iPhones).

Ordinal Classification: In ordinal classification, classes have a natural ordering
or ranking. The task involves predicting the order or ranking of instances among the
classes. Examples include customer satisfaction surveys (poor, fair, good, excellent)
and movie ratings (1 star, 2 stars, 3 stars, etc.).

In this study, we undertake both binary classification and multi-class classification

tasks. Consequently, our focus is confined to these specific categories.
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1.1.1 Binary Classification

Binary classification is a fundamental task in machine learning, where data points are
assigned to one of two distinct classes. The labels associated with the data points
come from a set containing two different elements, such as {0, 1} or {-1, 1}. For
instance, in the context of email classification, the task is to determine whether an
email is classified as spam or ham. In this scenario, the machine learning model
predicts whether an email falls into the category of spam or ham. The linear binary
classifier learns a linear threshold function, which enables it to make decisions. This
function separates the data points into the two classes by drawing a linear boundary
in the feature space. The objective of the binary classification task is to train a model
that can accurately classify new, unseen data points into the appropriate class based
on their features or attributes. Most widely used binary classification algorithms in
machine learning are support vector machines[32], which tries to place the classifier
such that it maximizes the distance from the two classes of the labelled points, Gradient
Boosting[48][29] is an ensembling algorithm that build models sequentially and these
subsequent models try to reduce the errors of the previous model, Random Forest[22]
which is a combination of tree predictors such that each tree depends on the values of
a random vector sampled independently and with the same distribution for all trees in
the forest, Neural Networks[124] which is a multilayered regression containing layers of
weights, biases, and nonlinear functions that reside between input variables and output
variables. Additionaly, one of our work[I11], uses nearest neighbors and clustering for
binary classification, and also [I12] proposed a coreset based Kd-Tree to binary classify
the data.

In order to achieve optimal results, most of the machine learning algorithms typically
require all the available features. However, not all features contribute equally to
the classification task. Some features may hold more relevance and usefulness in the
classification process compared to others. As a result, the identification of prominent
features that significantly contribute to the classification has become increasingly important.
This process is also called as feature selection. Feature selection is a crucial step in
machine learning, where the objective is to select a subset of features that are most
relevant and informative from a larger set of available features. The main goal of feature

selection is to identify the subset of features that have the strongest influence on the
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predictive power of a machine learning model. By carefully choosing the most relevant
features, feature selection helps enhance model performance, reduce overfitting, enhance
interpretability, and decrease computational complexity. There are two types of feature
selection models: filter models and wrapper models. In filter models, each feature
or a subset of features is evaluated based on a specific criterion to determine their
relevance for classification tasks. Common criteria used in filter models include the
Gini Index, Entropy, Lasso, and Fisher’s Index. On the other hand, wrapper models
treat feature selection as a search problem, where different combinations of features
are created, evaluated, and compared against each other. The algorithm is trained
iteratively using different subsets of features in the search space to identify the optimal
feature subset. So, this problem is equivalent to subset selection problem, which is NP-
hard. Hence we need a polynomial time algorithm, and we present one such algorithm
in chapter 5.

Apart from feature selection, there are feature extraction algorithms which transform
the original features into a new set of features that are more informative and compact.
Feature extraction techniques aim to map the original feature space to a lower-dimensional
feature space. Popular examples of feature extraction techniques include Principal
Component Analysis(PCA)[94], Linear Discriminant Analysis(LDA)[I48], and Canonical
Correlation Analysis(CCA)[56]. Feature selection and feature extraction are considered
as dimensionality reduction techniques.

One challenge with the aforementioned methods and algorithms is that they typically
assume the availability of the complete dataset before the learning process begins. In
this type of computing, data is supplied to the algorithm as a whole or in batches.
When the entire training data is given at once to the learner, it is referred to as batch

processing. In batch processing:

e The learner is trained on the entire dataset in one go, allowing it to potentially

capture complex patterns and relationships.

e It requires significant computational resources since all the data needs to be loaded

into memory during training.

e It requires collecting and preprocessing the entire dataset before training, which

means that the model cannot be updated in real-time as new data arrives.
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e The entire dataset is known in advance, batch learning models generally offer

stable and reproducible results.

However, in certain scenarios, data may arrive in a streaming fashion. In such
cases, the above mentioned methods may not be directly applicable. Therefore, it
becomes necessary to develop methods or algorithms that can process streaming data

in real-time. These algorithms are called as online learning algorithms.

1.1.2 Multi-class Classification

Multi-class classification is a type of classification problem where the task involves
classifying instances into one of more than two classes or categories. Each instance is
assigned a single class label from a predefined set of multiple possible classes. Unlike
binary classification, where there are only two possible classes, multi-class classification
deals with scenarios where there are three or more distinct classes.

In multi-class classification:

Number of Classes: There are more than two classes in the dataset, and each
instance belongs to one and only one of these classes.

Single Label Assignment: Each instance is assigned a single class label from the
set of multiple classes. This means that an instance cannot belong to multiple classes
simultaneously.

In this study, we undertake both binary classification and multi-class classification
tasks. Consequently, our focus is confined to these specific categories. Chapter 4 is
dedicated to multiclass classification algorithms; wherein, we present two coreset based
algorithms that classify data. Chapter 5, 6, and 7 are dedicated to binary classification.

Here we propose three binary classification algorithms.

1.2 Contributions of the Thesis

Some of the primary challenges that one encounters during classification tasks include:
e Time: Classification algorithms often require considerable time to execute.

e High Dimensionality: Dataset containing too many features which contribute very

less for classification.
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e Data Availability: Data is available as a continuous stream and not as a batch.

e Large Datasets: Challenges arise when dealing with datasets of significant size,

making classification challenging.

e Data Type: The data is not always numeric. Sometimes data could be Binary,

Image, Ordinal etc.,

Major contributions of the thesis is that we have designed five algorithms which
addresses various issues in performing classification. These algorithms address the
above mentioned challenges and show that the proposed algorithms are better than the

contemporary algorithms.

In the initial two approaches, we propose classification algorithms based on coresets.
The first approach introduces a hybrid algorithm aimed at accelerating the identification
of the k-nearest neighbors for a given query point g. Using the information obtained
from these neighbors, g is classified. In order to reduce the time to search for the
nearest neighbors the data is divided into clusters by using K-Means algorithm. K-
Means algorithm takes more time to converge if the initial data points are not chosen
properly. The proposed algorithm uses light-weight coreset algorithm to sample K
points. These points are then used as a seed to the K-Means clustering algorithm to
cluster the dataset. Once the clusters are formed the nearest neighoring cluster for the
query point is chosen to search. The search time is further reduced by constructing a kd-
tree using the data points in the cluster. The algorithm finally determines the nearest
neighbors of a query point by searching the kd-tree to the query point and then classify
it. While analyzing the performance of the proposed algorithm, the time consumed
for constructing the coreset and K-Means algorithms is not taken in to account. This
is because these algorithms are used only once. The proposed method is compared
with the existing algorithms in the literature. The comparative results prove that the
proposed algorithm that uses nearest neighbors reduces the time to classify the query
point.

Data structures such as VP-Tree, R-Tree and KD-Tree builds an index of all the
data available in the offline phase and uses that indexed tree to search for and answer
nearest neighbor queries or to classify the input query. The second proposed sheme uses

the Lightweight Coreset algorithm to reduce the actual data size to be used to build the
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tree index, resulting in a faster index building time. We improve on already available
Nearest Neighbor based Classification techniques and pit our classification method
against the widely accepted, state of the art data structures such as VP-Tree, R-Tree
and KD-Tree. In terms of speed the proposed method out performs the compared data

structures, as the size of the data increases.

Next, we propose a scheme that classifies the data when it is binary in nature and has
high dimensions. We propose a low-rank binary matrix approximation algorithm that
finds relevant attributes for classification task. Low-rank binary matrix approximation(LRBMA)
is a special case of matrix approximation. LRBMA is, in general, a NP-Hard problem.
Given a binary matrix A low-rank binary matrix approximation is to find a matrix A’
such that it’s rank is less than or equal to a given constant. We use this matrix to classify
the given query ¢. Several algorithms exist in the literature to solve this problem.
Some of these are exponential in time complexity. We try to achieve the similar
results in polynomial time complexity. As an application to the proposed algorithm
Autism Spectrum Disorder Detection problem is considered. Results show that the
proposed algorithm is comparable to the existing algorithms that have exponential

time complexity.

Most of the machine learning algorithms assume the data to be available in complete
when the model is learning from the data. But, this is not true in all the situations. The
situation occurs when the data is available as a stream of data. Winnow is an efficient
binary classification algorithm that effectively learns from data even in the presence of
a large number of irrelevant attributes. It is specifically designed for online learning
scenarios. Unlike the perceptron algorithm, Winnow employs a multiplicative weight
update function, which leads to fewer mistakes and faster convergence. However, the
original winnow algorithm is designed only for binary data. Also, it has a limitations
in that the weight updates are constant and do not depend on the input features. In
this work, we propose a modified version of the Winnow algorithm that addresses these
limitations. The proposed algorithm is capable of handling real-valued data, updates
the learning function based on the input feature vector. To evaluate the performance
of our proposed algorithm, we compare it with seven existing variants of the Winnow
algorithm on datasets of varying sizes. We employ various evaluation metrics and

parameters to assess and compare the performance of the algorithms. The experimental



1.3 Preliminaries

results demonstrate that our proposed algorithm outperforms all the other algorithms
used for comparison, highlighting its effectiveness in classification tasks.

Situation occurs when there is vast amount of data, and also out of which has
less labeled data. Constructing supervised classifiers from such data can be both
a costly and time-consuming. This process is not only tedious and laborious but
also requires certain level of expertise. We propose a active learning algorithm in
overcoming these issues. Active learning is a particularly useful machine learning
technique in domains where labeled data is scarce and expensive to obtain. Omne of
the most common applications of active learning is data classification, where it can
be used to accelerate the training of classification models by strategically selecting
the most informative samples from the unlabeled data. However, active learning faces
several challenges. One challenge is selecting the initial labeled data samples that
the model will use to begin learning. Poor initial sample selection can hinder the
model’s performance and lead to time and cost inefficiencies. Another challenge is
selecting samples at intermediate stages of the learning process. The efficiency of
model updating also plays a pivotal role in the overall process. Slow model updating
prolongs the number of iterations to converge, leading to an inefficient learning model.
We propose two algorithms, “IncrementalActiveSVM” and “ActiveSVM”, to address
the aforementioned challenges within the active learning environment. We propose two
novel data initialization techniques based on K-means++ and coresets, an uncertainty
sampling method, and a new SVM model update method applied at each iteration of the
learning process. The Incremental ActiveSVM algorithm has initialization and sampling
techniques similar to the other proposed algorithm but incorporates a general model
update function. We evaluated the two proposed algorithms and the SVM algorithm on
nine datasets. The experimental results show that the proposed ActiveSVM algorithms
outperform the general model update SVM and the traditional SVM algorithms in
terms of time efficiency, accuracy, and the number of samples required to achieve the

desired accuracy.

1.3 Preliminaries

This section introduces the preliminary algorithms required for our proposed schemes.

The algorithms include Coreset Construction algorithm, K-Means algorithm, Quadtree
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and kd-tree, Matrix Approximation, Singular Value Decomposition, LR Decomposition,

Online Learning algorithm, Support Vector Machines and Active Learning algorithm.

1.3.1 Coreset Construction Algorithm

Machine learning algorithms accuracy increases as the input data size increases. Processing
a huge data by these algorithms brings a new kind of problem concerning the time
complexity. Reducing the data size may cause the loss of valuable information. One
of the major challenges for the researchers is, to bound the trade-off between reducing
the data size and the loss of valuable information. Coresets are one such way of solving
this trade-off problem.

A coreset is a reduced data set which can be used as a proxy for the full data set.
Hence, they are known as summaries of the big data available[I2]. Coresets can be
computed in linear time and more intricate algorithms can be run on these sets to
provide approximate results to their counteroarts on the full data set. Models that are
trained on these subsets are provably competitive in the results they produce with the
models that are trained on full data. Roughly, Coreset is obtained by sampling the

data while honoring the distribution.

Algorithm 1: lightwieght-coreset-construction(X,K)

Input:
X : Unsupervised complete data set
K : Number of points to be sampled.

Output:
Returns C
1: u = mean of X.
2: for x € X do ,
3 ) = g+ bt
4: end for
5. C = Sample K weighted points from X where each point x has weight —— and

. . . K.q(x)
is sampled with probability q(x)

6: Return set C with K points that were sampled.

Algorithm 1 contains a procedure[I13] to construct coresets. The algorithm calculates
mean of the data and then uses it to compute the distribution ¢(x) for each point

and assigns it as weight to each point. Finally, it samples K weighted points from

10
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X (complete data set) where each point x € X has weight and is sampled with

1
K.q(x)
probability q(x). The function d(x, u) is a distance function from x to mean u.

The function g(x) consists of two components:

e In the first term %ﬁ, |x| denotes the magnitude or norm of the data point. %

times the reciprocal of the magnitude of x, captures how “large” or “small” the
data point x is in terms of its norm. The reciprocal ﬁ gives more weight to

smaller norms and less weight to larger norms.

1_ dxp?
2Yexd(x,u)?’

the mean(u), d(x,u)? is the squared distance, emphasizing larger values more

e In the second term d(x, u) is the distance between the point x and
heavily. 3, cx d(x’, u)? is the sum of squared distances of all the data points in
X from the mean u. This term normalizes the squared distance of x relative to

the entire dataset.

The first term assesses the contribution of the data point based on its magnitude.
Points with smaller magnitudes contribute more. The second term evaluates the
contribution based on the squared distance from the mean. Points that are farther
from the mean contribute more, but this is normalized by the total squared distance
in the dataset. The first term focuses on the size of the data points, while the second
term focuses on their distribution relative to the mean. By combining these two terms
with equal weight (%), q(x) provides a balanced measure that accounts for both the
magnitude of the data point and its distance from the mean. This equal weight ensures
that neither the size nor distribution is dominant in the calculation of g(x).

The time complexity of the algorithm is O(nd), where n is the size of the data,
d is the number dimensions. One of the advantages of using coresets is, the size of
the coreset is independent to the size of the original data. Added advantage of the

algorithm is, it can be implemented with ease.

1.3.2 K-MeansPP

Unsupervised data does not contain labels, then the task of generalisation becomes
difficult and the algorithm has to completely rely on the data itself. The kind of
algorithms that rely on data properties to learn are called unsupervised learning algorithms.

In one of the proposed method, K-Means[12] is performed on unsupervised data to form
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clusters that have similar properties. One aspect to be specified while determining the
similarity among the data is the distance measure.. If the Euclidean distance between
the points x € X and y € X is minimum then they are considered to be similar. The
data point x; is assigned to a cluster K; when the distance between the point x; and

cluster mean y; is minimum. The objective function to form the clusters is

K n
min > 3 o=y

j=1i=1
K-Means algorithm assigns data points to the nearest cluster centers. Using the
distance measure and mean, K-Means learns to find the cluster centers. The process
of finding best cluster centers starts by selecting them randomly and fine tuning until
the cluster centers stop changing. The cluster centers stop changing when the error

criterion is minimum, called converging time.

Algorithm 2: kMeansPP (X, K)
Input:
X : Unsupervised complete data set
K : Number of points to be sampled.
Output: Returns K number of coreset indices
1: queryPoints = []
2: Choose a random number in a range(1, len(X)) and append it to the list,
queryPoints;
while len(queryPoints) < K do
distances = Compute distances from each data point to the nearest center;
nextCenterIndex = maxIndex(distances);
Append the nextCenterIndex to queryPoints list
end while

The algorithm’s complexity is dependent on initial centroids that are considered.
K-Means algorithm is relatively slow, because it has to calculate the Euclidean distance
between each cluster center and each data point. When the centres change after an
iteration, Euclidean distance has to be recomputed making the algorithm inefficient.
The general K-Means algorithm is NP-Hard[96], which takes exponential time to converge.
However, with a fixed ‘¢’ number of iterations, ‘c’ centroids, ‘n’ points, and ‘d’ dimensions,

K-Means takes O(tcnd) time.

12
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Addressing the above limitations the authors in [59] proposed ‘KMeans++’', a
carefully seeding algorithm for efficient data clustering. The K-Means++ algorithm:

e Selects ‘K’ initial centroids in a strategical manner and

e [t subsequently changes the centroids such that the final clusters formed minimizes
the overall sum of squared distances between data points and their assigned

centroids, leading to well-separated and better cluster configuration.

To initialize a couple of our proposed algorithms, we propose a modified version of
K-means++ to establish a well-chosen starting sample set. Our proposed algorithms
incorporate a customized implementation of K-Means++, that strategically chooses
informative starting points for model training. Inspired by the above centroid selection
method, we propose an algorithm that chooses the data points that are well separated
across the dataset. The modified version is referred to as ‘kMeansPP’, which returns
only the final centroids that are found after processing the data. These centroids are
called queryPoints in the ‘kMeansPP’ algorithm which is outlined in Algorithm 2. One
of the primary drawbacks of using kMeansPP initialization for active learning is its
computational overhead, yet it helps the active learning model to achieve enhanced

accuracy which is empirically demonstrated in Section 6.4.

1.3.3 Quadtree and kdtree

Quadtree[43] is a hierarchical spatial tree data structure. Quadtree represents two
dimensional data on the geometric space by recursively decomposing the space using
separators parallel to coordinate axis. The initial decomposed four regions correspond
to four children of the root node, hence the term quad. Decomposition of the space into
regions helps in solving problems efficiently such as, range query, spherical query, and
nearest neighbors query. Range query finds all points that are present within a range.
Spherical region query finds all the points that lie within a distance r from query gq.
Nearest neighbour query finds the nearest neighbors of a certain quantity k from the
query gq.

Because of the principle of equal subdivision, the height of the quadtree cannot be
estimated as the data may fall more in any of the quadrants. Height of the tree can

be in balance only when the data is distributed uniformly. The time to search, update
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is mostly based on the height of the tree. If tree is skewed the performance degrades.
Hence the division point can be a median of all the data or it can be a mid point of
the data[99], if the data is known in advance.

A height balanced quadtree can be constructed in O(dnlogn) runtime, where d is
number of dimensions and with O(n) storage. Searching for an element in tree takes
O(dh) run time, where A is the height of the tree. Insertion is restricted to O(dh). It

takes more time to re-adjust the tree after deleting the points from it.

438) ¢ ® (7,8)

(11,6)

(3:4)
T ¢ (10,4)

| (2,2) | | (4,8) | | (20,4) |

® @2)

Figure 1.1: kd-tree for 6 points in the cartesian plane

The notion of quadtree can be extended to k, where k is the number of dimensions
and hence is called as a kd-tree[I28]. In a 2-dimensional case, where k = 2, each
point has 2 values, x-coordinate and y-coordinate. Constructing a quadtree involves
recursively subdividing a 2D space into four quadrants or regions until each region
contains a specified number of points or becomes smaller than a defined threshold.

The construction process involves alternating splits between the x-coordinate and
y-coordinate at each level of the tree. The root node splits the space based on the
x-coordinate, dividing the points into two subsets: left and right. These subsets have
roughly equal size on the x-axis. The left and right subsets are further split based
on the y-coordinate. This alternation between splitting on the x-coordinate and y-
coordinate continues down the tree until no further splits are required, typically when
each node contains a single point or no points at all. The depth of the tree depends
on the number of points and the alternating axis used for splits. Each level of the tree

alternates between the x-axis and y-axis as shown in the Figure 1.1.
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1.3.3.1 Operations on kd-tree

Insertion: To insert a new point into a kd-tree, start at the root node and compare the
new point’s x-coordinate with the root’s x-coordinate. If the new point’s x-coordinate
is less than the root’s, move to the left child; otherwise, move to the right child. At
each subsequent level, alternate the comparison axis. For example, at the second level,
compare the y-coordinates, then x-coordinates at the third level, and so on. Continue
this process until you find an appropriate leaf node where the new point can be inserted.

Search: To search for a point in a kd-tree, start at the root and compare the target
point with the root based on the root’s splitting axis. If the target point’s coordinate
on the splitting axis is less than the root’s, move to the left child; otherwise, move to
the right child. Continue this process, alternating the comparison axis at each level.
If a matching point is found, return it. If a leaf node is reached without finding the
point, conclude that the point is not in the tree.

Deletion: To delete a point from a kd-tree, first search for the point to be deleted
using the search process described above. If the point is found and it has no children,
simply remove it. If the point has children, find a replacement point to maintain the
tree structure. This replacement is typically the minimum point in the subtree rooted
at the right child if the split is on the x-coordinate, or in the left child if the split is on
the y-coordinate. Replace the deleted point with the replacement point found. Finally,

recursively adjust the tree to maintain the kd-tree properties.

1.3.3.2 Properties

e Each level of the tree splits the space based on a specific dimension
e A kd-tree is a binary tree, meaning each node has at most two children.

e The left child contains points that are less than or equal to the node’s splitting

value in the current dimension, and the right child contains points that are greater.

e A kd-tree is balanced tree.

Another kd-tree based searching algorithm[I21] which runs close to O(logn) is
proposed, which guarantees a theoretical proof of search accuracy as close as to Randomized

Partitioning Tree(RPTree).
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1.3.4 Matrix Approximation

Matrix approximation tries to find a similar matrix to the original matrix but with some
special properties like low-rank. Low-rank matrix approximation is a general problem
where one seeks an approximation of a given matrix with another matrix which is of
lower rank. Let A € R be a given matrix, n > m and A’ € R™" be the approximated
matrix then our aim is to minimize the distance between A and A’. That is, we try to

find A’ that minimizes

n m 1/p
( 1Ai; — A I (1.1)
i =1

=1 j

where the distance function used in this case is [, metric.

In few cases, A" can also be equal to };_; C; * B} such that C; € R™1 and B € RLsm
are rank-1 matrices, here r is the rank of the matrix A’ where r < min{n,m}. The
problem of finding A’ such that it is a product of two matrices of lower rank is
called ‘Matrix Factorization or Matrix Decomposition’. There are many variants of
this problem. Some of them include Non-negative matrix factorization(NMF), Rank-
constrainded matrix factorization, Weighted rank matrix factorization, Boolean matrix
factorization, Binary matrix factorization, GF-2 matrix factorization, generalized low-
rank matrix approximation, etc. Most of the factorization and approximation variants
are NP-Hard problems. These minimization problems are widely used in areas such
as data compression, clustering, recommendation systems, matrix completion, and
factor analysis. Finding A’ is one of the most challenging tasks in the field of linear
algebra, and it is achieved using some of the popular techniques namely Singular Value
Decomposition(SVD)[55], Principal Component Analysis[46], and Eigen Decomposition.
SVD is generally applied on a non-sysmmetric and non-squared matrices.

In Chapter 4, we introduce a method for low-rank binary matrix approximation,
aimed at approximating a given binary matrix. Additionally, we expand upon this
concept to facilitate classification task. Here we classify whether a person is suffering
with autism or not. Autism Spectrum Disorder(ASD) is a neural development disorder
that involves delays in development of many basic skills and functions. It is also said to
be a “behavioral disease” and the symptoms are usually observed in the initial stages

of one’s life. This disorder may limit a persons linguistic, communicative, cognitive,
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social skills and the abilities. Autism must be detected early in the initial days of life.
Children with autism may feel difficulty in learning the meaning of the words and have
trouble in interacting with others. ASD can be detected using screening methods or by
diagnosis. It is suggested to screen all the children at regular intervals by a doctor. It is
most common to screen of age 9, 18, and 30 months. Screening might be helpful when

a child is at high risk. Whereas diagnosis is done either clinically or non-clinically.

1.3.5 Singular Value Decomposition

Singular Value Decomposition(SVD) is considered as the fundamental theorem of linear
algebra[I34]. It is a matrix decomposition method which can even be applied on a non-
squared matrix.
Let A € R™" be a matrix with rank r € [0, min(n, m)], then the decomposition of
A using SVD is
A=UaV"

Here U = [u1,us,...,u,|, V=[v1,va,...,v,] and each u; and v; are called left singular

and right singular vectors of A that correspond to the singular value o;(A), where
012022 2 Opmin(n,m) =0

The pictorial representation of SVD is shown in figure 1.2(a). The procedure for

constructing SVD is as follows:

e Computing SVD of A € R™" requires us to find right singular vectors v;, left

singular vectors u;, and singular values oy.

e Identify the eigen vectors(normalized) for the matrix ATA. These are the right

singular vectors v; of the decomposition.

e Identify the eigen vectors(normalized) for the matrix AAT. These are the left

singular vectors u; of the decomposition.
e The singular values o; are the square roots of eigen values of ATA.

The SVD shown in figure 1.2(a) is the SVD of a matrix, whereas SVD shown in figure
1.2(b) is the truncated SVD of the matrix. For a given n*m matrix, SVD decomposes
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Figure 1.2: (a) Full SVD (b) Trim SVD

the matrix such that their dimensions are n * n, n % m, m * m. The dimensions of the

truncated SVD are n*r, r«r, r = m.

1.3.6 LU Decomposition

LU decomposition is yet another matrix factorization method[24]. This method decomposes

the given matrix A into two matrices namely, L and U, that is,
A=LU

Here in this decomposition both the decomposed matrices are triangular matrices. L
is a lower triangular matrix, which means all the entries above the main diagonal are
zero. U is upper triangular, which means all the entries below the main diagonal are
Zero.

While decomposing the matrix A into two traingular matrices, LU decomposition
requires to interchange the rows. These interchanges are represented in a permutation
matrix called P. Initially, the permutation matrix is an identity matrix. When two

rows i and j are interchanged in the matrix A, then the i’ and j'* rows in permutation
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matrix also interchange. That is the permutation matrix P helps us to keep track of
the interchanging of the rows that are taken place while factorizing. If no interchanges
are made during the process then the matrix P remains same or else it is no more
an Identity matrix. The factorization of A into LU starts by converting the matrix A
into a row-echelon form U using a sequence of elementary row operations. This can be
accomplished by multiplying A on the left by an appropriate sequence of elementary
matrices, that is

Ey...E9E1A=U

Since elementary matrices are invertible, we have
A=EJ'Ey' . EJ'U= LU

where,

L=E'E;' .. E;?

Here in this work LU decomposition is used to find the linearly independent rows at an
intermediate stage of the work. Because the matrix A is reduced to row echelon form,
the number of non-zero rows in U is equivalent to number of independent rows in the

matrix A.

1.3.7 Online Learning

When the entire training data is given at once to the learner, it is referred to as batch
processing. However, in certain scenarios, data may arrive in a streaming fashion. In
such cases, it becomes necessary to develop methods or algorithms that can process
streaming data in real-time. Identifying the relevant attributes that have the most
influence on the classification task as the data arrives is a challenge. The type of
algorithms that work on streaming data are called ‘online algorithms’[89]. Here, the
data is not available all at once and the learner learns from incoming data instances
sequentially, one at a time. In online learning, the model is continuously updated as
new data becomes available, enabling it to adapt and improve its predictions over time.
This iterative process of updating the model with each new data instance allows for

dynamic adjustments and real-time learning. Online learning;:
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e Allows for efficient processing of large datasets since the model does not require

all the data to be loaded simultaneously.

e The learner can adapt to concept drift, which refers to changes in the underlying

data distribution over time.

e It can be trained on low-resource systems or embedded devices as they don’t

require all the data to be present at once.

e It computes successive hypotheses incrementally, avoiding the need to calculate

each hypothesis from scratch.

Outline of an online learning algorithm for classification is presented in Algorithm 3.

Algorithm 3: onlineLearning()

Input: X e R™" Y € {-1,1}"

Output: Classifier w

1: for example recieved do

y = Predict the class of the example
y = Recieve the original class
if y # y then

Update the classifier weights accordingly
end if
7: end for
8: return Classifier w

The online setting involves total K rounds. At k" < K round the algorithm
recieves a vector x; € X and attempts to predict the appropriate response y. Following
each prediction, the learner receives feedback y, € Y, indicating the correctness of
its prediction, which is utilized to improve its hypothesis. As long as new examples
are received, the learner continues to engage in the learning process by analyzing
the provided information to refine its hypothesis. This incremental approach enables
efficient computation of successive hypotheses while minimizing redundant work. One
such an algorithm that employs incremental approach for learning and refines its
hypothesis is Perceptron[122]. Perceptron employs a additive update function which
is slow in learning and allows it to make more mistakes in the learning phase. The
computational complexity of the perceptron is linear with the dataset size, which is

O(mn)[122]. Another algorithm that focuses on feature selection and takes polynomial
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time is classic winnow algorithm[89]. This algorithm is extended to classification in
the context of online learning with multiplicative updates to the weight vector. The
approach adopted here is as same as the perceptron that involves determining the
significance of different features, and update them accordingly. The computational
complexity of the winnow algorithm is logarithmic to the dataset size, i.e; O (rmn)[39][88],
where n, m specify the dimensions of the matrix and ¢ specify number of epochs.

The update function is a critical component of both the perceptron and winnow
algorithms. The perceptron uses an additive update function, while winnow uses a
multiplicative update function. The learning rate of the perceptron is too slow, so our
focus is on the multiplicative update function. This includes variants of the winnow
algorithm. A additive update function adds a constant value to the weights after each
iteration, thus it will be slow to converge. The multiplicative update function multiplies
the weights by a constant value after each iteration, thus can converge more quickly than
the additive update function. So in our discussion, we will focus on the multiplicative
update function because it is more efficient and can converge more quickly. We will
also discuss variants of the winnow algorithm that use this update function in Chapter

D.

Figure 1.3: SVM Classification
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1.3.8 Support Vector Machines

Support Vector Machines(SVMs) have emerged as a prominent algorithm for data
classification, initially introduced in [32] for tackling binary classification problems.
SVMs aim to separate two linearly separable classes with the widest possible margin,
utilizing a subset of data points known as support vectors. The solid line represents the
hyperplane that divides the classes, while the dotted lines indicate the support vectors
defining the class boundaries, as shown in figure 1.3. A comprehensive discussion on

SVMs and their applications can be found in [108] and [133].

1.3.9 Primal Formulation:

For a given input vector x, if the expression
w-x)+b2>1 (1.2)

the point x is classified as a positive point, corresponding to the class y = 1. Conversely,
if
(w-x)+b<1 (1.3)

the point x is classified as a negative point, belonging to the class y = —1. Hence from

equations (1.2) and (1.3), for all the samples we have,

yilw-xi+b) > 1 (1.4)
Margin equation is
& (15)
I wl '

Our goal is to maximize equation (1.5). Equation (1.5) can also be rewritten as
miniw W (1.6)

Based on Equations (1.4), (1.5), and (1.6), the SVM objective emerges as a dual
optimization problem that seeks to simultaneously achieve accurate data classification

and maximize the margin between classes, adhering to the principle of maximal margin.
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The objective function of SVM can be expressed mathematically as:

min —-w.w
2 (1.7)
subject to y;(w-x;+b) = 1,Viel,...,n

Equation (1.7) represents a constrained optimization problem, which is also called
as ‘primal problem’. A ‘dual problem’ representation is introduced such that
solving both problems gives the same optimal hyperplane, but the dual problem is

often easier. In a problem involving ‘d’

variables and ‘n’ constraints, solving the
problem becomes computationally challenging, particularly when the value of ‘d’ is
considerable. However, in the context of the dual formulation of the same problem,
the computational complexity is independent of ‘d’. This characteristic represents a
significant time-saving benefit, especially when ‘d’ is exceptionally large. An additional

advantage is that the dual perspective of the problems allows for the utilization of the

kernel trick, which is particularly beneficial in the case of a non-linear classification.

1.3.9.1 Dual Formulation

The Lagrange multiplier method can be employed to convert the primal problem to
a dual problem. The solution to the dual can then be used to derive the optimal
solution to the original constrained optimization problem. The lagrangian £ is defined
as follows:

Consider an optimization problem with an objective function f(x) to be minimized
or maximized, subject to some constraints gi(x), k € {1,...,m}. The Lagrangian is
a way to turn this constrained optimization problem into an unconstrained one by

introducing the Lagrange multipliers as follows

L(x, ) = f(x)+ ) Agex) (1.8)

k=1

Here,
e ‘x’ is the vector of variables we want to find.

e 1 are the lagrange multipliers associated with constraints g (x).
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The goal is to find values of ‘x’ and ‘A’ that minimize or maximize the Lagrangian.

This leads to the solution of the original optimization problem.

Karush-Kuhn-Tucker(KKT) Conditions:

The solution to the lagrangian is subject to the KK'T conditions, which are necessary

conditions for optimality in the presence of constraints. The conditions include:

e Stationary condition: The partial derivatives of the lagrangian with respect

to the variables must be zero.
oL 0
ox
e Primal Feasibility: All constraints must be satisfied.
e Dual Feasibility: Each lagrange multiplier is non-negative.

A =0

e Complementary Slackness: The product of each Lagrange multiplier and its

corresponding constraint function is zero.

Akgic(x) =0
The lagrangian for this problem using (1.7) and (1.8) is:

S0nb.A) = 5w I = D il 3y + ) = 1] (1.9)

Finding the partial derivatives of the lagrangian with respect to w and b, setting them

to zero, and substituting them back into the lagrangian.
0L
T Z Ajyjx;
J

0L
3 - Z/ljyj'
7

24



1.3 Preliminaries

After setting the above equations to zero, we then have:

W =20 AYjX;
1.10
XAy =0 (1.10)

Substituting (1.10) in (1.9)
1 n n
L@ = | Z‘ Ly I1* - Z A [yl-«; Ajyjxj) - xi+b) = 1]

Simplifying the above equation

n n o n
1
L(/l) = E A + 5 E E /ll-/ljy,-ijixj (111)
1 i

The dual formulation of the SVM optimization problem involves maximizing the dual
objective function W (1), which is expressed as:

n n n
1
max £ (1) =le,-+§z AidjYiyjXiX;
i J

i

subject to 0<A; <C (1.12)
n
Z/L')’i =0
i=1

This constrained optimization problem can be effectively solved using quadratic programming
techniques. The ultimate goal is to determine the optimal values of A; that maximize
dual objective function £(4). Once the optimal values of A; are obtained, the decision

function for classifying new data points can be derived as:

w-x+b= Z/liyi(xi-x)+b
i=1

A; = Represents the Lagrange multiplier

y = Class label of data point x

xX; = The support vector (1.13)
x = The data point we want to classify

b = The bias term

n = Number of support vectors
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1.3.10 Active Learning

Active learning helps the learner to learn from a small set of data. A high-level view
of active learning procedure is presented in Algorithm 4. Active learning framework is

presented in Figure 1.4.

Algorithm 4: ActiveLearning(X)

Input: X : Unsupervised complete data set
Output: Returns Accuracy
1: Initialize a labeled training dataset with a small number of representative
samples.
2: Employ the initial labeled dataset to train a machine learning model.
3: Utilize the trained model to predict labels for an extensive pool of unlabeled
examples.
4: Calculate a measure of uncertainty for each prediction
5: while Termination condition is not met do
6:  Select a subset of examples from the pool based on their respective uncertainty
scores.
7. Request labels for the selected examples from an oracle, typically a human
expert or a reliable labeling source.
:  Incorporate the newly labeled examples into the training dataset.
9:  Retrain the model using the updated training dataset.
10: end while
11: Evaluate the final model’s performance on a separate test dataset to assess its
accuracy.
12: Return model’s performance.

Train L @ ‘ Query
) Selection
Classifier
Ve Model ~
Pool of Pool of
‘ Labeled 1 ( Unlabeled ’
Instances Instances
- @ - @@
A Human
Annotator
Label Query

A

Figure 1.4: Active Learning Framework

The purpose of Active Learning is to select the most useful samples for model
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training from the unlabelled pool, then use an oracle(a human annotator) to label the
selected samples, and finally add the labelled samples to the labelled pool to update
the task model. The above process is repeated until the performance of the task model
meets the requirements or the label budget is exhausted. Active Learning has been
widely used in image classification[I6] and segmentation[68], and some achievements

have been made.

1.4 Structure of the Thesis

The thesis is organized into seven chapters.

Chapter 1 briefly describes the topic, importance of the work, preliminary knowledge

required in understanding the proposed algorithms, and arrangement of the thesis.

Chapter 2 presents the literature survey of the proposed work, motivation behind

it, problem identification and methodology of the proposed work.

Chapter 3 provides two coreset based classification algorithms. First algorithm
uses nearest neighbors approach, while the second builds a coreset based kd-tree to

perform classification. Both these algorithms use light-weight coreset algorithm.

Chapter 4 proposes a low-rank binary matrix approximation scheme which approximates
a given matrix with another matrix of low rank. Later we use this matrix for classifying.

The scheme is applied to detect Autism Spectrum Disorder.
Chapter 5 presents an algorithm that works on stream data. We revisit the most
popular winnow algorithm and modify it such that it works on real valued data and

also make it more efficient than the previous version.

Chapter 6 presents a SVD based active learning algorithm for binary classification

with novel initialization and model update methods
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Chapter 7 provides the concluding remarks of the research work and gives an
insight into the future work along with the further extensions and future directions

possible of the proposed schemes.
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Chapter 2

Related Work

2.1 Nearest Neighbors and Classification: Survey

Various techniques are commonly employed for data classification. Among the prevalent
methods are K-NN technique, decision trees, rule-based approaches, probabilistic techniques,
instance-based methods, and neural networks.

K-Nearest Neighbors technique:

The K-NN (K-Nearest Neighbors) technique is one of the earliest and simplest
machine learning classification algorithms. Typically, K-NN classifiers utilize straightforward
distance metrics to assess the dissimilarity between examples represented as vector
inputs. These distance measures encompass Euclidean, Minkowski, Chebyshev, and
other formulations such as Xing distance calculations[I51]. One observation in [150]
about nearest neighbor classifiers was that feature selection and document representation
play an important part in the effectiveness of the classification process. Protein kinase
inhibitor’s classification is performed using nearest neighbors is presented in [8]. Some
of the other applications include public sentiment snalysis[67], fake news detection on
social media[72], and breast cancer detection[I0].

Feature Selection Methods: Feature selection algorithms can be categorized
into supervised [162][71][130], unsupervised[3][130] and semi-supervised[129]. In many
scenarios, a variety of features are collected, potentially including numerous irrelevant
ones. These irrelevant features can significantly hinder modeling efforts as they lack
meaningful relationships with the class label. Indeed, such features often exacerbate

classification accuracy issues due to overfitting. This challenge can be handled through
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the process of selecting features [57] [50]. One such work was proposed by the authors in
[131]. This model aims to reduce data dimensions, minimize training time, and enhance
classification performance using selected features, leveraging principal components and
Information Gain. A review on how different filter methods work, compare their
performance with respect to both run time and predictive accuracy, and also provide
guidance for applications is presented in [21].

Decision Trees: Decision trees establish a hierarchical partitioning of the dataset,
associating distinct partitions at the leaf level with various classes. The hierarchical
division at each level is generated using a split criterion, which may entail a condition
(or predicate) on a single attribute or a condition on multiple attributes. The authors in
[75] proposed a method using decision tree to perform classification and regression. An
application to predict diabetes disease using decision trees was proposed in [118] and
for detecting breast cancer in [51]. The authors in [51] also introduces useful new tools,
based on Random Forest(RF) and Extremely Randomized Trees or Extra Trees(ET)
algorithms to classify breast cancer.

Probabilistic Methods: Probabilistic methods are the most fundamental among
all data classification methods. Probabilistic classification algorithms use statistical
inference to find the best class for a given example. The work by [146][36] present the
applications of Naive Bayes[27][102] and discusses its variations in different settings.
Furthermore, recommendations are made regarding the applicability of Naive Bayes
while exploring the robustness of the algorithm. Finally, they discuss the pros and cons
of Nalve Bayes algorithm and some vulnerabilities. A systemetic review on Hidden
Markov Model and their applications is presented in [110]. Along with Hidden Markov
Model the authors in [73] made use of Recurrent Neural Networks to event detection
and localization in biomedical signals. Other applications of Markov model include
intelligent fault diagnosis of wind energy converter systems [77], Spam detection[149],
and breast cancer detection [109].

Rule-BasedClassification: Rules offer a straightforward and efficient means of
representing information or knowledge. They furnish a clear data model that is easily
comprehensible to humans, often depicted in the logical form of IF-THEN statements.
Numerous machine learning and data mining methods have been developed to autonomously
derive rules from data. Rule-based systems have been widely employed as an effective

mechanism for storing knowledge and performing logical inference. Most popular
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algorithms in rule based learning include[30], RIPPER[31], FOIL[119], I-REP[49], and
RFP[23].

Neural Networks: In recent times, neural networks have regained prominence as
a significant alternative to several conventional classification techniques. This resurgence
can be attributed to the robust theoretical framework supporting neural network research,
as well as the notable practical successes achieved in addressing complex real-world
challenges. A review on image classification using neural networks is presented in
[28], Classifying large-scale networks into several categories and distinguishing them
according to their fine structures is presented in [150]. Applications of neural networks
include brain tumor classification[14], skin disease classification [4], stock price pattern

classification[I58] and others.

2.2 Lowrank Binary Matrix Approximation and Autism

Spectrum Disorder(ASD): Survey

Among the widely studied data mining and machine learning algorithms, data clustering
is one of them. Some of the common applications of data clustering include collaborative
filtering, customer segmentation, data summarization, dynamic trend detection, multimedia
data analysis, biological data analysis, and social network analysis.

Approximating one matrix by another matrix is solved initially in [40]. It transforms
the matrix to canonical form and produces the unique solution. Later many methods
for solving, improving and also methods for variants of the problem are proposed
in[38] [37)[79][70][I59]. Some of which are discussed below.

Non-negative matrix factorization(NMF) has the ability to solve the challenges in
clustering. For this purpose many algorithms were proposed in [38]. G-orthogonal
NMF theorem in [37] demonstrate that there is an inherit relationship between the
NMF and the K-means clustering algorithm.

Binary matrix factorization is a NP-Hard problem. Its hardness is shown in [79].
Binary matrix factorization(BMF) may or may not require the product matrix to be
binary. Factorization techniques that does not require the matrix factors to be binary
are called “unconstrained BMF(UBMF)”, whereas the other which requires the matrix
factors to be binary is called as “constrained BMF(CBMF)”. In [70] they proposed
two CBMF algorithms, and also alternate update procedures for CBMF. In the same
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paper they also show the relation between BMF and clustering. A detailed survey
of the variants of BMF and their appications are presented in [I59]. A theorem that
establishes the relationship between the Binary r-Means along with cluster selection
is presented in [45]. The other adoptations of matrix approximations with respect to
binary components are also presented in [I59]. [45] presents three forms of binary

approximations, namely:
e Parameterized low rank Binary Matrix approximation
e Parameterized low rank Boolean Matrix approximation
e Parameterized low rank GF(2) Matrix approximation

It also presents variants with additional constraints such as the sum of inter and intra
cluster distance is not greater than a constant factor, and restrict the number of clusters
to another constant. In [44] the authors present approximation schemes for constrained
clustering problems. These schemes produce a (1 + €) approximation solution with a
probability of atleast (1 — %). Other approximation schemes for clustering problem is
published in [81]. They yield (1+ €) approximations with probability > % for k-means,
k-median and discrete k-means problems. When a binary matrix is approximated with
a product of two binary matrices but their factors are computed using the rules of
boolean algebra then such factorization is called Boolean Matrix Factorization. Recent
developments and a concise survey on boolean matrix factorization is done in [107].
A biparpite graph based algorithm that approximates using weighted rank-one binary
matrix factorization and its applications are presented in [92]. A divide and conquer
based matrix factorization was recently presented in [93]. This method divides the
larger problem into sub-problems, solves each subproblem independently and finally
combines them into one. A bayesian probabilty based approach to factorize the boolean
matrix is introduced in [123].

The authors in [97] introduced a novel linear least squares approach for tackling
quadratic unconstrained binary optimization(QUBO) formulations on D-Wave quantum
annealing processors, a quantum-inspired hardware. This technique offers a promising
alternative to traditional methods, potentially paving the way for more efficient and
accurate solutions to complex optimization problems. The Binary Matrix Completion(TBMC)

technique produces an interpretable output by providing binary factors that depict a
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matrix’s decomposition into tiles. The approach presented in [I5] extends “PROXimal
Interior-point Method for Structured matrix factorization(PROXIMUS)” to handle
missing data, employing a recursive partitioning approach. This algorithm depends on
rank-one approximations of incomplete binary matrices, introducing a linear programming
approach to solve this approximation problem.

Reconstructing corrupted data is a crucial challenge in various fields. Addressing
this the authors in [I6I] propose a low-rank matrix recovery algorithm specifically
tailored for highly corrupted observation matrices. The algorithm employs the unconstrained
nonconvex relaxed minimization model to recover low-rank and sparse matrices via
the process of low-rank decomposition. An application of this algorithm is in the
recovery from highly noisy data, such as face denoising. In their work [78], the authors
present a non-heuristic algorithm for decomposing a given matrix into a low-rank
matrix using boolean arithmetic. They suggest a column generation approach that
effectively explores an exponential space, and this method is also suitable for binary
matrix completion.

The study discussed in [35] explores factorization techniques for binary matrices
utilizing both standard arithmetic and logical operations. The analysis includes examining
relationships between various ranks and discussing conditions under which factorization
is unique in the above scenarios. The authors put forward BMFy, a boolean model
selection method, to accurately determine the correct number of boolean latent features.
The authors in [83] present an efficient (1+4€)-approximation algorithms for the binary
matrix approximation problem, where € > 0. The algorithm factorizes the given matrix
Ae {0,1}"*? into a product of low-rank factors Ue {0, 1}"** and Ve {0, 1}**¢ such that
it minimizes the Frobenius loss of || UV — A ||2F. The algorithm can be alternatively
perceived as seeking a least-squares approximation of matrix A. Other approaches that
leverage the least-squares method for matrix factorization are outlined in [87] and [52].

Machine learning algorithms for autism have proven to

e Provide new ways in diagnosing ASD.
e Lessen the time associated to diagonize ASD.
e Reduce the number of features.

e Identify best features that help in detection.
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e Identify the overlapping features.

Diagnosis of autism using brain imaging method that employ ML techniques are
presented in [116]. This work provides a comprehensive study on how ML is useful for
the diagnosis of ASD based on structural magnetic resonance image (MRI), functional
MRI, and hybrid imaging. Another review on recent advances that utilize machine
learning approaches to classify individuals with and without ASD is presented in
[152]. In this work the authors present a detailed study on neuro-imaging based ASD

classification.

The author of the paper [138] shows that the studies that applied machine learning
in ASD research have not considered conceptual, implementation, evaluation, and data
related issues. Another work [I37] shows the issues related to reliability with the tools
such as, Diagnostic and Statistical Manual of Mental Disorders(DSM), when using ML

models.

The algorithm presented in the paper[I37] factorizes the ASD data matrix using
clustering for classifying the test samples. Techniques used for solving the clustering
problem include probabilistic and generative models[34] [103][104][120], distance based
methods such as k-Means[I11][112], k-Medians, k-Mediods, and Hierarchical, Density
and grid based methods such as DBSCAN[41], DENCLUE[62], OPTICS[7], GRIDCLUS[126],
STING[I44], CLIQUE[I] and dimensionality reduction method PLSI[63], matrix factorization
and co-clustering methods such as SVD[55],NMF[19], spectral methods[132].

Clinical diagnosis is done to test the social behaviour, communication, regular
activities and language of a person. Some of the examples of clinical diagnosis are
Autism Diagnosis Interview-Revised(ADI-R)[135], Autism Diagnostic Observation Schedule-
Generic(ADOS-G)[01], Childhood Autism Rating Scale (CARS)[142], and Gilliam Autism
Rating Scale — Second Edition (GARS-2)[53]. Most of these diagnosis methods are
based on the rules that rely on the statistical methods. These require extreme care while
performing diagnosis which requires expert clinicians and also require huge amount of

time.
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2.3 Online Feature Selection Algorithm for Efficient Binary

Classification: Survey

The initial works on binary classification in an online setting can be found in the
papers by Littlestone [89][90] and Rosenblatt [122]. These papers laid the groundwork
for binary classification in the online learning domain. In the work by Michael et
al[106], active learning is used along side with online learning algorithms. Active
learning helps to reduce the training time by excluding the training using the data
points that are not significant. An adaptive online learning algorithm was presented
by the authors in [84] which adapts to the unknown structure of the tasks. In the work
presented in [122], an additive update function was proposed for learning from data.
In contrast, Littlestone [89] introduced a multiplicative update function for learning.
Building upon this, we present an algorithm that implements the multiplicative learning
function and compare its performance with seven other algorithms that also employ
the multiplicative update function for learning. They include Binary Elimination[122],
Binary Demotion[122], Real Elimination, Real Demotion, Exponential Winnow[I0§],
Reparameterized Winnow[5], Mesterham Winnow[105].

Table 2.1 provides an overview of the weight update operations employed in the
algorithms which are here under comparison. Both the proposed algorithm and the
other algorithms share two common operations: demotion and promotion. During
the demotion operation, the weight vector is reduced, while the promotion operation
increases it. Additionally, there is a variant of the demotion operation known as
elimination, where the element of the weight vector is set to zero. In Table 2.1, the
“Prediction” column represents the class that each algorithm assigns to the data point
x, while the ”Response” column indicates the actual class to which x belongs.

In the paper by Rosenblatt [122], two variations of the winnow algorithm are
introduced, referred to here as Binary Elimination and Binary Demotion. These
two variants work on binary data, whereas the algorithms Real Elminiation and Real
Demotion are similar to binary vaiants of them. The Binary variants are modified to
operate on real dataset. All the algorithms utilize a prediction function, denoted as
w - x > 0, to make predictions for a given data point x. If this condition is met, the
algorithms predict that x belongs to class 1; otherwise, it is predicted to belong to

class 0. If the prediction is different from the actual class of x the algorithms modify w
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such that the prediction error is reduced. The weight modifications are presented by the
column name ‘Weight Update’ in table 2.1. If the prediction is correct all the algorithms
keeps the weight vector unchanged. Reparameterized winnow and Exponential winnow
updates the entire weight vector at once, whereas the other algorithms update each
element of the weight vector individually based on the x value. In the Exponential
Winnow algorithm, Z is referred to as the normalization factor, while n > 0 serves as a
learning parameter. Similarly, the Masterham Winnow algorithm includes a parameter
a that restricts the learning process, and € ensures that the weight vector doesn’t

become zero.

2.4 ActiveSVM: Survey

Active learning algorithms effectively select the most informative unlabeled data points
for labeling, thereby reducing the overall labeling effort required for training supervised
classifiers. Pool-based active learning, as proposed in [85], maintains a pool of unlabeled
data from which the learner can request labels for a specified number of instances.
One of the primary challenges in active learning lies in devising an intelligent strategy
for selecting query points. Several approaches have been developed to address this

challenge. Some of the most widely used approaches include:

e Random Sampling: This strategy randomly selects unlabeled data points from the
pool without considering any specific criteria. While simple and computationally
efficient, random sampling may not prioritize the most informative data points,

potentially leading to suboptimal classification performance.

e Uncertainty Sampling: This strategy focuses on selecting data points about which

the current model is most uncertain.[I1].

— Margin Sampling: This approach prioritizes data points that lie close to the

decision boundary between classes[80].

— Entropy Sampling: This approach selects data points with the highest entropy,
a measure of uncertainty. Reducing entropy leads to a more confident

model[64].

e Others
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— Density Sampling: This strategy aims to select data points from regions
with high data density[147], this makes them more informative for training

the model.

A disagreement-based active learning algorithm for classifying logged data is introduced

in [I53]. In this work, the author proposes a candidate set of classifiers that contain the
optimal classifier with high probability. For each instance, the algorithm determines
whether it belongs to a disagreement region, where the predictions of the classifiers
differ. If so, the algorithm actively queries the true label for that instance. Otherwise,
it assumes that all classifiers agree on the prediction and no further labeling is required.
The utilization of active learning techniques for ordinal data classification has been
explored in [61]. This approach considers the inherent ordering among the data classes
during the query selection process. An uncertainty sampling criterion is employed
to ensure that the selected query instances provide the most informative data for
improving the classification model. The work proposed in [6] introduces a fairness-
aware active learning framework to address the issue of bias in machine learning
models. The framework utilizes proxy attributes to quantify fairness and employs an
accuracy-fairness optimizer to select informative samples for labeling. This approach
alms to construct fair and accurate classification models. An importance-weighted
active learning framework that provably achieves PAC-style label complexity bounds
is proposed in [20]. This framework assigns a probability p; to each data point x;,
considering its identity and the history of observed labels. The points are then selected
for labeling based on their weighted probabilities, with higher weights given to points
deemed more informative for constructing the optimal hypothesis. The applicability
of active learning extends beyond binary classification to encompass various tasks,
including regression and clustering. Comprehensive surveys on query strategies for
active learning in classification, regression, and clustering are provided in [82] and
[154]. While our proposed active learning algorithm is specifically tailored for binary
classification, the broader field of active learning encompasses algorithms for multi-class

classification as well.
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2.5 DMotivation and Contribution

2.5.1 Problem Identification and Motivation

In the realm of machine learning, the focus revolves around crafting prediction algorithms
that are both efficient and precise. Similar to other domains within computer science,
crirical benchmarks for evaluating the efficacy of these algorithms include the time,
and accuracy. The factors that affect these measures are high dimensionality, non-
availability of data, dataset size, and the type of the data as mentioned in Chapter 1.2.
As a result, there has been a requirement in research efforts aimed at solving the afore
mentioned challenges and exploiting opportunities. The motivation behind this thesis
stems to address the key challenges. This thesis seeks to address these challenges and

contribute novel insights to the field by proposing efficient algorithms.

2.5.2 Contributions:

The primary contributions of this thesis are manifolded as follows:

2.5.2.1 Contribution 1: Nearest Neighbors via a Hybrid Approach in Large
Datasets: A Speed Up

In the first contribution, we have addressed the issue related to time for data classification
using nearest neighbors. Classification using nearest neighbors requires for atleast ‘k’
searches in the entire dataset. An efficient data structure can reduce this time and
help us to perform the task sooner. One such data structure is kd-tree. A Spatial data
structure such as kd-tree is a proven data structure in searching Nearest Neighbors of a
query point. However constructing a kd-tree for determining the nearest neighbors
becomes a computationally difficult task as the size of the data increases both in
dimensions and the number of data points. So, we need a method that overcomes
this shortcome. This work presents a hybrid algorithm aimed at speeding up the
identification of k-nearest neighbors for a specific query point g. The proposed approach
employs a lightweight coreset algorithm to sample K points efficiently. Subsequently,
these points serve as the initial seed for the K-Means clustering algorithm, facilitating
the clustering of data points. Ultimately, the algorithm identifies the nearest neighbors
of a query point by examining the clusters closest to the query point. During the

evaluation of the proposed algorithm’s performance, the time required for constructing
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the coreset and K-Means algorithms is omitted from consideration. This omission stems
from the fact that these algorithms are employed only once. The proposed approach
is benchmarked against two existing algorithms documented in the literature. The

proposed scheme is discussed in detail in Chapter 3.

2.5.2.2 Contribution 2: CKD-Tree: An improved KD-Tree Construction
Algorithm

Second contribution to this thesis, also depends on lighweight coresets which helps
in reducing the indexing time for search operations. Data structures like VP-Tree,
R-Tree, and KD-Tree create an index of the entire dataset during the offline phase
and utilize this indexed tree to respond to nearest neighbor queries or classify input
queries. To reduce the time in index building process, we employ a Lightweight Coreset
algorithm by reducing the dataset’s size, thereby reducing the time required for index
construction. We enhance existing Nearest Neighbor-based classification techniques
and compare our classification method against widely acknowledged, state-of-the-art

data structures. The proposed scheme discussed in detail in Chapter 3 of this study.

2.5.2.3 Contribution 3: Low-rank Binary Matrix Approximation using
SVD Based Clustering Technique: Detecting Autism Spectrum
Disorder (ASD)

Low-rank binary matrix approximation (LRBMA) falls under the category of matrix
approximation, and it is generally considered a NP-Hard problem. The objective of
LRBMA is to find a matrix A’ from a given binary matrix A such that the rank of A” is
less than or equal to a specified constant. Various algorithms have been proposed in the
literature to address this challenge. While some existing algorithms have exponential
time complexity, our goal is to achieve similar results within polynomial time complexity.
As an application, we apply the proposed algorithm to the problem of Autism Spectrum
Disorder Detection. Results demonstrate that the proposed algorithm is comparable to
the existing algorithms that have exponential time complexity. The proposed scheme

is discussed in the detail in Chapter 4 of this thesis.
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2.5.2.4 Contribution 4: Revisiting Winnow: A Modified Online Feature
Selection Algorithm for Efficient Binary Classification

We introduce a classification algorithm designed to handle streaming data. ML algorithms
that work on streaming data are known as online learning algorithms. The proposed
work modifies the well-known online learning algorithm Winnow, which operates on
binary data streams. Winnow is a binary classification algorithm known for its efficiency
in learning from data, even when confronted with numerous irrelevant attributes. It
is tailored specifically for online learning settings. Winnow relies on a multiplicative
weight update mechanism, resulting in fewer errors and faster convergence. Nevertheless,
the original Winnow algorithm is constrained in several aspects: it exclusively handles
binary data, and its weight updates remain constant irrespective of input features. In
this contribution, we present a modified version of the Winnow algorithm that addresses
these limitations. This enhanced version can process real-valued data and adjusts the
learning function dynamically based on the input feature vector. The proposed scheme

is discussed in detail in Chapter 5.

2.5.2.5 Contribution 5: ActiveSVM: An Active Learning Algorithm With
Novel Initialization, and SVM Model Update Techniques

The subsequent contribution tackles the challenge of learning with limited labeled data.
In domains where labeled data is scarce and expensive to obtain, it presents numerous
challenges for classification algorithms to accurately classify unseen data points. Active
learning can be used to accelerate the training of classification models by strategically
selecting the most informative samples from the unlabeled data. Nonetheless, active
learning encounters various challenges, including the selection of initial labeled data
samples and samples at intermediate stages. The efficiency of model updating also
plays a pivotal role in the overall process. Slow model updating prolongs the number
of iterations to converge, leading to an inefficient learning model. This work presents
two active learning algorithms, “Incremental ActiveSVM” and “ActiveSVM” | to address
the aforementioned challenges. These algorithms propose two novel data initialization
techniques based on K-means++ and coresets, an uncertainty sampling method, and
a new SVM model update method applied at each iteration of the learning process.

The experimental outcomes indicate that the ActiveSVM algorithms surpass both the
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general model update SVM and traditional SVM algorithms in performance. The

detailed explanation of these algorithms are given in Chapter 6.

2.6 Summary

In this chapter, we have discussed basic definitions, preliminaries that help to understand
the various classifications schemes proposed and their efficiency. Later, we presented
an extensive literature survey on classification algorithms and its related work. After

that motivation and contribution of work are discussed at the end.
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Table 2.1: Weight Update Steps

Algorithm Name Operation
Prediction | Response Weight Update
1 0 0 if X = 1
w; = .
Binary Elimination unchanged, otherwise
0 1 a.w; if Xi = 1
Wi =
' unchanged, otherwise
1 0 w;/a ifx; =1
Wi =
Binary Demotion ' unchanged, otherwise
0 1 Wi = if Xi = 1
' unchanged otherwise
1 0 - 0 if x; > mean(col;)
Real Elimination ' unchanged, otherwise
0 1 a.w; if x; > mean(col;)
Wi =
' unchanged, otherwise
1 0 wila if x; > mean(col;)
Wi =
Real Demotion ' unchanged, otherwise
0 1 if x; > mean(col;)
Wi =
' unchanged otherwise
Exponential Winnow y#EY Z= Z?:ln:tj(,_-e”y *i
Wi — wie'rL
Reparametereized Winnow y#EY w =w + ny;(W.x)
1 0 w; = aw;
Masterham Winnow
0 1 a=a *.w;
w; = max(€, a)
1 1 L if x; > mean(col;)
w; =
Proposed Winnow ' unchanged, otherwise
1 1 (wixg).a if x; > mean(col;)
wW; =
' unchanged, otherwise
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Chapter 3

Coreset Based Approaches to
Find Nearest Neighbors and

Classification.

In the preceding chapter, we explored various nearest neighbor and classification
algorithms. In the current chapter, two novel algorithms that we proposed are discussed.
One presents a hybrid method for identifying nearest neighbors, while the other introduces

the "CKD-Tree’, tailored specifically for classification tasks.

3.1 Introduction

This chapter concentrates on unsupervised learning which finds k-nearest neighbors[I§]
of a query point g. k-Nearest Neighbor (kNN) problem refers to the problem of finding
k points or samples in the data which are closest to the query point. Nearest Neighbor
algorithm finds its use in several machine learning areas, such as classification and
regression and it is also the most time-consuming part of these applications. In different
use cases such as in recommendation systems, computer vision and robotics etc, fast
response times are critical and using brute force approaches such as linear search is not
feasible. Hence there are several approaches to solve these Nearest Neighbor problems
which are based on Hashing, Graphs or Space-Partitioning Trees. Space-partitioning
methods are generally more efficient due to less tunable parameters.

One such algorithm is KD-Tree. It is a space partitioning algorithm which divides
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space recursively using a hyper-plane based on a splitting rule, trying to reduce search
space by almost half every time it does that. The KD-tree is discussed in chapter 1.3.3
in detail. Another space partitioning algorithm is Vantage Point Tree(VP-Tree)[157],
which divides the data in a metric space by selecting a position in the space called
vantage point and partitions the data into two parts. The first part contains data that
are closer to vantage point and the other part which are not closer to the point. The
division process continues until there are smaller sets. Finally a tree is constructed such
that the neigbors in the tree are also neigbors in the real space. R-Tree[58] is another
data structure that is most commonly used to store spatial objects such as location of

gas stations, restaurants, outlines of agricultural lands and much more.

3.2 Motivation and Contribution

Problem Identification and Motivation

Finding the k nearest neighbors for a given instance x’ involves computing the distance
to every data point, which is a time-consuming process. This exhaustive distance
calculation for each data item during every query can be highly time-intensive. However,
this computational burden can be mitigated by adopting strategies that avoid computing
distances for all data points. By selectively choosing data points and utilizing efficient
data structures for searching, the overall time complexity can be significantly reduced.
Similarly, determining the class to which a given data point x’ belongs is also a time-
consuming task. However, by considering only a subset of relevant data points, the

classification process can be reduced.

Contribution

In this work we consider kNN for classification, where nearest neighbors of a query
point in the dataset are used to classify the query point. Nearest neighbor in essence is
a lazy learning algorithm, i.e. it memorizes the whole training dataset to provide the
nearest neighbors of an incoming query point. Consequently, though the algorithms
provide very efficient solutions to the nearest neighbor problem, they might run into
problems. This is because data size becomes too large due to the high magnitudes of

data available today to process. In critical systems where time is of essence, loosing
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even a few seconds while processing all that data might cause issues. The author in [65]
uses SVM to tackle a similar problem by reducing the size of data on which Nearest
Neighbor algorithm runs. We use coresets for a similar effect, but on very large datasets.

The concept of coresets follows a data summarization approach. Coresets are small
subsets of the original data. They are used to scale clustering problems in massive
data sets. Models trained on Coresets provide competitive results against a model
trained on full original dataset. Hence these can be very useful in speeding up said
models while still keeping up theoritical guarantees upto a level. Coresets are often
used in clustering algorithms to improve their speed even further. To achieve this, first
construct a coreset — usually in linear time — and then use an algorithm that works
on coreset to solve the clustering problem. As the coreset size is very small compared
to the actual data size, this can provide significant speed in the said algorithms. The
coreset construction algorithm is presented in chapter 1.3.1.

We use a state of the art lightweight coreset construction algorithm to improve
time in the case of solving Nearest Neighbor problem using KD-Tree space partitioning
algorithm. We use the end result of Nearest Neighbor query to classify our input query
point based on its nearest neighbor points found.

The two proposed algorithms analyze the common properties in the data, categorize

the data, and finds the nearest neighbors.

3.3 Proposed Method

3.3.1 Nearest Neighbors:

In order to seek k-nearest neighbors, we may not require the entire data because we
are not worried to return all points. Hence we assume that k < n. Using this as the
driving principle, the proposed algorithm presented in Algorithm 5, considers only a
subset of the data. This work does not propose to classify or try to classify a query
point to a particular class but returns its k nearest neighbors. The time complexity of
the proposed algorithm is O(nd) + O(tcnd) + O(dnlogn), which is asymptotically equal
to O(dnlogn), where d is the number of dimensions, ¢ is a constant, ¢ is the number of
clusters, and n is the number of data points.

Flow diagram of the entire work is presented in Figure 3.1. The process starts by

considering unsupervised data and constructing a coreset of size K. The value of K
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Figure 3.1: Procedure for k-nearest neighbors

decides the number of clusters that are needed to form. It would be better if K is

known in prior which helps in producing accurate results. When a wrong K is assumed

the results could be wrong. So, the K value for the datasets that were considered in

this paper is known in advance.

Algorithm 5: k-nearestneighbors(X,k,K,q)

Input:

k:
X :
K :
q:

Number of nearest points to be found.
Unsupervised complete data set.
Number of clusters to be created.
Query point.

Output:
Returns distance, knnindices

1:
2:
3:

Let C be a set of K coreset points;

C = lightwieght-coreset-construction(X,K);
Using C as the initial centroids, K-Means constructs the new centriods that
satisfy the criterian function and returns the new centriods;

C = K-Means(X,K,C);

Identify the nearest cluster center from set C to the query point g;

Fetch the cluster data and store it in ‘x’;

Construct KD-tree for data x and query the tree with g; tree = KD-tree(x);

distance, knnlndices = tree.query(q);
return distance, knnlndices

Using the K points as the initial centroids for K-Means, clusters are created. It is

observed that time taken for K-Means with some random points as initial centroids is

much greater than the time taken for K-Means with coreset points as initial centroids.

The results are shown in Section 3.4. Using the clusters generated by the K-Means

we find the closest cluster to the query point. The KD-tree is constructed using the

closest cluster data. The KD-tree algorithm generates a tree and this tree is given a

query point g and k value to produce the final k-nearest points to the query point. In
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3. NEAREST NEIGHBORS AND DATA CLASSIFICATION

the proposed method, data fed to KD-tree algorithm is less when compared with the
normal method, hence reducing the time for construction.

In order to prove the results produced by the proposed method is better, a comparative
study has been carried by considering two other approaches which we called them as
‘normal method’ and ‘without using coresets’. Another comparison is also done to
prove that coreset points fed K-Means is better than straight forward K-Means. It
is very clearly depicted that the proposed method outperforms the standard method.
Next section provides the complete results and a comparative study of the following

three methods.

1. Normal method: Uses KD-tree on full data and query it.

2. Without using coresets: Uses K-means, KD-tree on clustered data and query

the KD-tree

3. Proposed method: Uses K-Means using coreset data and kd-tree on cluster data.

Normal method does not require K-Means hence, K-Means comparison for the

normal method is not presented.

3.3.2 Classification:

Though KD-Tree for classification is a pretty fast algorithm in itself, it may not be so for
very larger datasets. To improve on the already fast KD-Tree classification algorithm,
and to create an even faster version of KD-Tree we use similar approach as in the case
of clustering algorithms, i.e. make use of Coresets. We first use a Coreset algorithm
to create a representative set of points from the original data set. This representative
set is then fed to the KD-Tree algorithm to build a tree index (offline phase) based on
the representative set. When a query point arrives, we feed it into the tree, where it
traces down to one of the leaf nodes in the tree index. At this point any suitable search
method can be used to find nearest neighbors to the query point in the leaf node.

We use Algorithm 1, Lightweight Coreset Construction[I3] (LWCS) to create the
set of representative points from the actual dataset. This algorithm takes as input a
dataset X and the coreset size K, i.e. the number of representative points in the coreset.
It creates a probabilty distribution based on a point’s distance from the mean, w.r.t.

the total of all such distances. Distance metric used here is euclidian distance. Once
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every point has a probability assigned to it, we sample K points with weight and

1
K.q(x)
probabiltiy g(x).

Algorithm CKD-Tree Algorithm is our second proposed algorithm for classification.
It uses Algorithm Lightweight Coreset Construction (LWCS), to process and get a
compact version of the original large dataset repData. This coreset repData is then
used to build the tree index at line 2 of the algorithm. To build the tree index we use
sliding-midpoint[I00] technique. The tree index can then be used to query the index
with a query point. Query requires you to specify k i.e. number of nearest neighbors
required along with the point to query with, i.e. queryPoint.

In our specific use case, we use nearest neighbors to classify the query point into a

class. This can be done easily based on the majority class in nearest neighbors returned.

Algorithm 6: CKD-Tree())
Input:
Large dataset X,
Coreset size m
Output: Classification

1: repData «lightweightCoresetAlgo(LargeDataset X, coresetsize m)
2: tree = KDTree(repData)

3: dist, NNIndices = tree.query(queryPoint, k = numO fNeighbors)

4: for index € NNIndices do

5:  print point at index in repData i.e. Nearest Points

6: end for

7: queryPointClass « Majority class of Nearest Neighbor Points.

3.4 Results:

This section showcases the outcomes achieved by both the algorithms when applied
to different datasets. We first present the results for Classification based on nearest

neighbors, later we present the CKD-Tree results.

3.4.1 Nearest Neighbors:

Details of the datasets[42] that are used for experimentation are given in Table 3.1.
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3. NEAREST NEIGHBORS AND DATA CLASSIFICATION

Table 3.1: Datasets and their properties

Name of the Dataset | No. of Dimensions | No. of | No. of Classes
Instances

Breast Cancer Data 30 569 2
Digits Data 64 1797 10
CovType Data 54 581012 7
Smartphone Data 562 10299 6
Kddcup Data 36 494020 23
Miniboone Data 50 130062 7

Comparisons on K D-tree construction time, K-Means time, input data size initially

displayed in the following tables.

and at KD-tree construction point for all datasets that are present in the table 3.1 are

Table 3.2: K-Means Construction time for Breast Cancer Data

Name of the Dataset | Name of the Method | K-Means
Construction
Time
Without Using Coresets | 0.021596901
Breast Cancer Data Proposed Work 0.00489233

Table 3.3: KD-tree Construction time for Breast Cancer Data

Name of the Dataset

Name of the Method

KD-Tree
Construction
Time

Breast Cancer Data

Normal Method
Without Using Coresets
Proposed Work

0.000900756
0.000555496
0.000510688

Table 3.4: Datasize Variation for Breast Cancer Data

Name of the Dataset | Initial Data size Data size at
search time
Breast Cancer Data 569 438

Table 3.3 presents variatons in the times of constructing KD-tree for the three
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Figure 3.2: Comparisons on Breast Cancer Data

and coreset points as initial centroids. Table 3.4 displays the initial data size considered
and final data size drawn from Breast Cancer Data. Figure 3.2 is the graphical
representation for the tables 3.2, 3.3 and 3.4 provided above. It is clearly observed
from the above figure that the proposed algorithm performed better than the other

methods.

Table 3.5: K-Means Construction time for Digits Data

Name of the | Name of the Method | K-Means
Dataset Construction
Time
Without Using Coresets | 0.177046333
Proposed Work 0.018532348

Digits Data

As in the case of Breast Cancer Data, the tables 3.6, 3.9, 3.12, 3.15, and 3.18
present the comparison of KD-tree construction time on Digits data, CovType data,
Smartphone data, Kddcup data, and Miniboone data respectively.

The tables 3.5, 3.8, 3.11, 3.14, and 3.17 present the comparison of K-Means construction
time on Digits data, CovType data, Smartphone data, Kddcup data, and Miniboone
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3. NEAREST NEIGHBORS AND DATA CLASSIFICATION

Table 3.6: KD-tree Construction time for Digits Data

Name of the | Name of the Method | KD-tree
Dataset Construction
Time
Normal Method 0.002147111
Digits Data Without Using Coresets | 0.000293409
Proposed Work 0.000220433

Table 3.7: Datasize Variation for Digits Data

Name of the | Initial Data size Data size at
Dataset search time
Digits Data 1797 252

KD-Tree Construction Time K-Means Time
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Figure 3.3: Comparisons on Digits Data

data respectively.

The tables 3.7, 3.10, 3.13, 3.16, and 3.19 present the comparison of initial data size
and final data size for tree construction on Digits data, CovType data, Smartphone
data, Kddcup data, and Miniboone data respectively.

The figures 3.3, 3.4, 3.5, 3.6, and 3.7 presents the pictorical representation of the
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Table 3.8: K-Means Construction time for CovType Data

Name of the

Dataset

Name of the Method

K-Means
Construction
Time

CovType Data

Without Using Coresets
Proposed Work

58.320359221
3.57142'7582

Table 3.9: KD-tree Construction time for CovType Data

CovType Data

Without Using Coresets
Proposed Work

Name of the | Name of the Method | KD-tree
Dataset Construction
Time
Normal Method 2.81545425

0.557287733
0.528879423

Table 3.10: Datasize Variation for CovType Data

Name of the | Initial Data size Data size at
Dataset search time
CovType Data 581012 159981

Table 3.11: K-Means Construction time for Smartphone Data

Name of the

Dataset

Name of the Method

K-Means
Construction
Time

Smartphone Data

Without Using Coresets
Proposed Work

9.235056832
0.746759341

Table 3.12: KD-tree Construction time for Smartphone Data

Name of the | Name of the Method | kd-tree
Dataset Construction
Time
Normal Method 0.402041996
Smartphone Data | Without Using Coresets | 0.01072642
Proposed Work 0.0068364

comparisons done for Digits data, CovType data, Smartphone data, Kddcup data, and

Miniboone data respectively.
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Figure 3.4: Comparisons on CovType Data

Table 3.13: Datasize Variation for Smartphone Data

Name of the | Initial Data size Data size at
Dataset search time
Smartphone Data | 10299 686

Table 3.14: K-Means Construction time for Kddcup Data

Name of the | Name of the Method | K-Means

Dataset Construction
Time
Without Using Coresets | 51.760765204
Kddeup Data Proposed Work 8.746508095

3.4.2 Classification:

We implement the CKD-Tree using the above methodology and compare it against
KD-Tree[I00] [127], R-Tree[58] to see the performance difference it can provide and the

cost.

All of the datasets in table 3.20 have two target classes. While datasets bio_train and
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Figure 3.5: Comparisons on Smartphone Data

Table 3.15: KD-tree Construction time for Kddcup Data

Name of the | Name of the Method | KD-tree
Dataset Construction
Time
Normal Method 1115.123546068
Kddcup Data Without Using Coresets | 1071.968181827
Proposed Work 198.936803207

Table 3.16: Datasize Variation for Kddcup Data

Name of the | Initial Data size Data size at
Dataset search time
Kddcup Data 494020 190107

MiniBooNe Particle are both very large datasets, HITRU2 and spambase are relatively
very small. This helps in showing the relative performance of CKD-Tree algorithm on
different types of datasets. Dataset default of credit card clients is a more balanced
dataset in terms of sample size and dimensionality.

We kept 1000 samples from each dataset as test dataset for testing the models.
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Figure 3.6: Comparisons on Kddcup Data

Table 3.17: K-Means Construction time for Miniboone Data

Name of the | Name of the Method | K-Means
Dataset Construction
Time
Without Using Coresets | 3.630400168
Proposed Work 1.522944811

Miniboone Data

Table 3.18: KD-tree Construction time for Miniboone Data

Name of the | Name of the Method | KD-tree
Dataset Construction
Time
Normal Method 0.765435536
Miniboone Data | Without Using Coresets | 0.412943829
Proposed Work 0.332265506

These samples are used to check the accuracy of the prediction made by the algorithm.
While testing the VP-Tree and R-Tree, we considered test sample sizes to 10, 50, 100,
200, and 500. Later we calculated the average times for them. While building the tree
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Table 3.19: Datasize Variation for Miniboone Data

Name of the | Initial Data size Data size at
Dataset search time
Miniboone Data 130062 85649
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Figure 3.7: Comparisons on Miniboone Data

Table 3.20: Datasets Used

Dataset Number of Instances | Dimensions/Attributes
bio_train 145,751 74
MiniBooNE Particle 130065 50
default of credit card clients 30,000 24
HTRU2 17898 9
spambase 4601 57

index for KD-Tree, lea f Size was kept same as the number of nearest neighbors queried
(k). i.e., leafSize = k. Here leafSize is the number of points in each leaf node of the
tree index.

We measure the performance based on three factors, Accuracy of the results, average

time(in seconds) taken in building the tree index and average time(in seconds) taken
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3. NEAREST NEIGHBORS AND DATA CLASSIFICATION

in answering the query. Each of these factors are compared and tabulated separately
for all the data structures that were used and also for the proposed work.

Table 3.21 shows the results of CKD-Tree for £ = 10. We use 3 different coreset
sizes m = 1000, m = 2000 and m = 5000 and find the average of all of them(Avg. 1).
For spambase dataset coreset size m = 5000 is not generated as data size itself is only
4601. Consider the bio_train dataset, here in table the average value of 'Indexing time’
is calculated by adding the Indexing time of m = 1000, m = 2000 and m = 5000 and
finally dividing it by 3. The same is applied for Querying time and Accuracy of Avg.

1.

Table 3.21: Proposed work comparison among various coreset sizes for k = 10

m=1000 m=2000
k=10 Indexing| Querying | Accuracy | Indexing| Querying| Accuracy
time time time time
spambase | 0.1318461| 0.0021619 75.1 0.140629 | 0.0026555 75
bio_train | 9.0258531| 0.0030399 97.6 9.0603537| 0.0042803 97.8
HTRU2 0.3931405| 0.0020605 98.9 0.3280704| 0.0017182 98.7
credit card | 0.7381072| 0.0029010 73.8 0.5936195| 0.0027962 74.2
MiniBooNE | 4.8205866| 0.0018341 94.8 4.8667891| 0.0017652 94.8
m=5000 Avg. 1(of m = 1000,2000,5000)
Indexing| Querying | Accuracy | Indexing| Querying| Accuracy
time time time time
spambase | N/A N/A N/A 0.136237 | 0.0024087 75.05
bio_train | 9.3965253| 0.0065609 98.4 9.1609107| 0.0046270 97.933
HTRU2 0.3124518| 0.0020776 98.7 0.3445542| 0.0019521 98.766
credit card | 0.702998 | 0.0034210 75.1 0.678241 | 0.0030394 74.366
MiniBooNE | 4.6552073| 0.0020463 94.8 4.780861 | 0.0018819 94.8

Table 3.22 show the results of CKD-Tree for k = 50. We consider 3 different coreset

sizes m = 1000, m = 2000 and m = 5000 and find the average of all of them(Avg. 2).
For spambase dataset coreset size m = 5000 is not generated as data size itself is only
4601. Consider the bio_train dataset, here in table the average value of 'Indexing time’

is calculated by adding the Indexing time of m = 1000, m = 2000 and m = 5000 and
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finally dividing it by 3. The same is applied for Querying time and Accuracy of Avg. 2.
Table 3.23 presents the average of Avg. 1 and Avg. 2. This average is called 'Overall

Table 3.22: Proposed work comparison among various coreset sizes for k = 50

k= 50 m=1000 m=2000
Dataset Indexing| Querying| Accuracy | Indexing| Querying| Accuracy
Name time time time time
spambase | 0.1595964| 0.0090645 73.6 0.1561918| 0.0103101 71.4
bio_train | 9.686898 | 0.0181283 97.6 9.0135078| 0.0131375 97.6
HTRU2 0.3469042| 0.0069853 98.7 0.3124022| 0.0074826 98.6
credit card | 0.8793613| 0.0061233 75.4 0.6092357| 0.0072013 75.2
MiniBooNE | 4.9481484| 0.0110027 94.8 4.7645080| 0.0087479 94.8
m=>5000 Avg. 2(of m = 1000,2000,5000)
Indexing| Querying | Accuracy | Indexing| Querying| Accuracy
time time time time
spambase | N/A N/A N/A 0.1578941| 0.0096873 72.5
bio_train | 9.3727755| 0.0155745 97.6 9.3577272| 0.0156134 97.6
HTRU2 0.3280866| 0.0077481 98.8 0.3291310| 0.0074053 98.7
credit card | 0.6561336| 0.0084042 75.2 0.7149102| 0.0072429 75.26
MiniBooNE | 4.7176454| 0.008154 94.8 4.8101006| 0.0093016 94.8

Avg’. Indexing time of 'Overall Avg’ is obtained by averaging the ’Indexing time’ of

Avg. 1 and Avg. 2. The same is applied for ’Querying time’ and ’Accuracy’.

The Table 3.24, given below, is the final comparison table. The table presents the

comparison among R-Tree, VP-Tree, KD-Tree and the proposed work.

It is observed from Table 3.24 that the proposed work out performs all the data

structures in Querying time. Considering the Indexing time, the proposed work also

performed very well than VP-Tree and R-Tree. The accuracy of the proposed work is

approximatley close to other data structures.

The Figures 3.8 and 3.9, show the comparison of Indexing time and Querying time

respectively among R-Tree, VP-Tree,KD-Tree and Proposed Work.

Among the data structures that were used for comparison, KD-Tree is considered

to be the best. So we concentrated mostly on KD-Tree. Here in Table 3.25 we present
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Table 3.23: Overall Average of proposed work

Cumulative Overall Avg.((Avg. 1+Avg. 2)/2)
Dataset Name | Indexing time | Querying time | Accuracy
spambase 0.147065997 0.006048057 73.775

bio_train 9.259319027 0.010120274 97.76666667

HTRU2 0.336842656 0.004678772 98.73333333
credit card 0.696575999 0.005141219 74.81666667
MiniBooNE 4.795480847 0.005591781 94.8

Table 3.24: Comparison among R-Tree, VP-Tree, KD-Tree and Proposed Work

R-Tree VP-Tree
Dataset Indexing | Querying | Accuracy | Indexing | Querying| Accuracy
Name time time time time
spambase | 46.018334 | 0.0258165 66.63 0.967827 | 0.008726 88.21
bio train | 300.39212 | 0.6743266 98.6 46.72081 | 0.0278521 98.6
HTRU?2 | 98.001380 | 0.0021421 96.6 4.266090 | 0.0111634 93
credit 151.04745 | 0.083858 79.8 6.71667 0.048709 79.4
card
MiniBooNE 250.05962 | 0.0997930 99.8 41.54717 | 0.0213432 99.8
KD-Tree Proposed Work
spambase | 0.097132 | 0.0096216 71.2 0.147065 | 0.006048 73.77
bio_train | 13.378065 | 0.0795586 99.3 9.259319 | 0.010120 97.76
HTRU?2 | 0.088246 | 0.006940 98.6 0.336842 | 0.004678 98.73
credit 0.799064 | 0.012309 75 0.696575 | 0.005141 74.81
card
MiniBooNE 7.8424010 | 0.0226877 94.8 4.7954808 | 0.005591 94.8

the indexing time comparison of the KD-Tree and proposed work. As the size of the

data increases the performance of the proposed work increases and at a point of time

it even starts performing better than the KD-Tree. So, for large datasets the proposed

work takes less time for creating index.
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The breakover point, 30000(credit card dataset), of the proposed work is shown in
the figure 3.10. Additional experimentation on the CKD-Tree algorithm is performed
while assigning the parameters m = 20% of the data, and k = 25. The results are

presented in Table 3.26.

3.5 Conclusions

This chapter proposes a k-nearest neighbors algorithm, which reduces the K D-tree time

by performing two constant operations, coreset construction and K-Means. Comparitive
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Table 3.25: Indexing time comparison between KD-Tree and Proposed Work

Dataset Dataset KD-Tree Proposed Work

Name Size Indexing time Indexing time
spambase 4601 0.097132921 0.147065997
HTRU2 17898 0.088246346 0.336842656
credit card 30000 0.799064255 0.696575999
MiniBooNE 130065 7.842401028 4.795480847
bio_train 145751 13.37806582 9.259319027
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Figure 3.10: KD-Tree and Proposed Work Comparison

Table 3.26: Proposed Algorithm Querying time, Indexing Time, and Accuracy for
m=20% of the data and k = 25

Proposed Work
Dataset Name Indexing time guerying time | Accuracy
spambase N/A N/A 73.77
bio_train 9.3727755 0.0155745 97.76
HTRU2 0.3124518 0.0020776 98.73
credit card 0.702998 0.0034210 74.81
MiniBooNE 4.6552073 0.0020463 94.8
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3.5 Conclusions

results proved that the proposed method has performed better in terms of time to
construct KD-tree and also to retrieve the nearest neighbors. It also showed that
the size of the data for the KD-tree is reduced. In the next work proposed, CKD-
Tree algorithm, the tables show that for at least one value of m each dataset showed
competitive or in some cases better accuracy (default credit card and HTRUZ2) when
used with coresets. In case of larger Datasets such as bio_train and MiniBooNFE, the
coreset size is very less compared to the original dataset size. But they still manage to
provide almost same results in terms of accuracy as the original dataset. Also KD-Tree
built on the coresets of these datasets see a significant speed boost in offline (indexing)
and Online (Query) phases. We can also notice that as the dataset size starts to
decrease, the gap in indexing and query speeds starts to become smaller and smaller.
For smaller datasets (spambase and HTRUZ2), this might even lead to higher query or

indexing times.
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Chapter 4

Low-rank Binary Matrix
Approximation Scheme and

Application

In the previous chapters, we have proposed two classification schemes that are based
on coresets. In the current chapter we work on the same problem of classification in a
binary environment. Here we perform binary classification of binary data by finding an
approximation of the input matrix. Later, the proposed algorithm is applied to check

its credibility to predict the Autism Spectrum Disorder.

4.1 Introduction

Classification is not just done on that contains real values, a special case of the problem
occurs when the data is binary. That is the entries are from the set {0,1}. In this work

we have considered the following generic case of the problem:

Given

ail aig oo A1m
asl a2 ... dAom

A=1431 as2 ... dsm ,a;pj € {0,1}
_anl ano2 ... anm_
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}P¥M with rank atmost r, such that

and a positive integer r, the task is to find A’ € {0, 1
1A - A% (4.1)

is minimum, where |.||r denotes Frobenius Norm and it is the extensively used norm

function. Symbolically, the frobenius norm of a matrix is

IAllF =

Since we are approximating the binary matrix, minimizing the frobenius norm is
equivalent to minimizing the [y norm. /y norm counts the number of non-zero elements
in a vector. Another equivalent measure considered in this work as the distance

measure is the Hamming Distance. Hamming distance between two binary vectors

X={x1,x9,...,xptand Y = {y1,y2,...,Vm} is
m
D i =yl (4.3)
i=1

which can be viewed as the number of locations where the vectors X and Y differ.
The problem of matrix approximation is equivalent to clustering problem|[86]. The

equivalence is as follows:

Given a matrix A with rows {ay,as,...,a,} where a; € R™. The task is
to partition rows into r groups such that the total sum of distance between
the vectors to their cluster centers is as minimum as possible. Using the
clusters obtained from clustering, we can build the approximated matrix.
The approximated matrix in its i’ row contains the cluster center to which

the i row of A belongs.

A related work that approximates a given binary matrix using the clustering technique

is presented in [45]. The problem is called as “Binary r-Means” and is as follows:

PP with rows {ai,as,...,a,}, a positive

Given a binary matrix A € {0,1
integer r, and a non-negative integer k, the goal is to find whether there is

a positive interger r’ < r, a partition of {1,2,...,n} into {I1, lo,...,I,»} and
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4. LOW-RANK BINARY MATRIX APPROXIMATION

vectors {c1,ca,...,c} € {0,1}" such that

r

Z Z HDist(c;,aj) < k.

i=1 jel;

where HDist() is the hamming distance function.

4.2 Motivation and contribution

The method presented in [45] to find approximated binary matrix runs in exponential
time. Here in this work we try to achieve the same result in the context of Autism
Spectrum Disorder(ASD) in polynomial time complexity. Following is a high level view

of the problem statement.

Let A € R™" be a binary matrix and r be a constant. Find a binary
approximation A’ of A, whose rank is r’, r’ < r, and the hamming distance

between A and A’ is as minimum as possible.

Most of the literature presented in chapter 2 works either on real numbers, or
the complex numbers. There are very few algorithms that work on binary data. We
hardly find algorithms that work on binary data and classify it using clustering. This
motivated us to propose the lowRankBinaryMatrix A pproximation() algorithm.

Here we present an overview of our method which uses clustering as a subsidary

part.

Let A be a matrix with rows {ai,as,...,a,}, where a; € {0,1}'" is a
row vector, and r be a constant. In this method A is partitioned into r’
partitions, r’ < r. Each partition is called a cluster and it has a representative
called as cluster center. These cluster centers are such that the total sum
of the hamming distances between the vectors to their cluster centers is
minimum. Using these cluster centers A’; which is an approximate of Aj; is

built.

The clusters are said to be optimal if the total sum of distance between the vectors

to their cluster centers is minimum. If the clusters are optimal, then the approximated
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4.3 Proposed Scheme

matrix will also be optimal, as the approximated matrix is formed using these cluster
centers.

Here in this work as an application, we have experimented our algorithm on detecting
Autism Spectrum Disorder(ASD). We used this matrix approximation method to classify

whether a person is suffering with ASD or not.

4.3 Proposed Scheme

The goal of our work is to approximate a given binary matrix with another binary
matrix satisfying the given constraints, and use it to classify whether or not a person
is suffering from ASD and analyze its performance against the methods “Binary r-
Means”, K-Means, and K-Medoids. Note that all these four methods cluster the data
and then classify.

To start with the proposed algorithm that approximates a matrix with another
matrix using clustering is presented. Later in the section we present a study on Binary
r-Means algorithm by [45]. Along with this algorithm K-means, and K-medoids are used
for comparing the proposed work. High level description of the proposed algorithm to

determine A’ is as follows:

4.3.1 Procedure

Given a Binary matrix A € R™™ and a constant r, the goal is to find A" whose rank is

Step 1 Find a matrix B € R™™" that is an r—rank approximation of A. B may not be a

binary matrix.

Step 2 Binarize B, call it B’ € {0,1}". Earlier the rank of B is r and becuase of

binarization the rank of the matrix may go down and it may atmost be r.

Step 3 Identify the linearly independent rows in B’. Let the number of linearly independent

rows be r’.

Step 4 Partition A into r’ clusters, using the independent rows obtained in the above
step. An ' row in the matrix A is assigned to the j* cluster only when the

h

distance from i’ row in A to j'* independent row, which is obtained in the Step

3, is minimum.
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4. LOW-RANK BINARY MATRIX APPROXIMATION

Step 5 Approximation matrix A’ of the given matrix A is formed as follows:

An i"" row in A’ contains j'" independent row, which is obtained in Step 3, when

the distance from the " row in A and the j** independent row is minimum.

4.3.2 Correctness of the Proposed Method

The roots of our method come from [47][143][26]. The methods given in the works of
these references use SVD to find X that optimizes the objective function, given in (4.4)
is as follows. Given binary matrices A € R™" B € R™P C € R4, the problem is to
find X such that

miny cgra|A - BXC||12;, r < min(p,q) (4.4)

Let the Singular Value Decomposition of a matrix D € R™™ be

D=UcV" (4.5)
Let
rank (D) rank(D)
Ppp = Z u; * uiT and Pp g = Z Vv * viT (4.6)
i=1 i=1

Note that Pp ; and Pp g are the orthogonal projections on the range of D and DT

respectively. Also if rank(D) is k, then
Ppr=DD"=Up U}, and Pp r = D™D = Vp (V) | (4.7)

where D' denotes the pseudoinverse of D, Up x and Vp i are formed with first k columns

of U, and V respectively.

The r—truncated SVD of the matrix D is

)
LDJy = UporVE = ) oy(D) s ui s ] (4.8)
i=1

and
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4.3 Proposed Scheme

Given A B, and C matrices, the matrix X that satisfies equation (4.4) is given by
X =B Pg APc g],CT (4.9)

where B' is the pseudo inverse of B. The detailed proof of the correctness of this is
given in [47] and [26]. So, from equations (4.6), (4.7), (4.8), (4.9), and (4.10) we see
that

X =B'|BBTACTC|,CT (4.10)

If the matrices B and C are identity matrices, then we have
X = LAJr

So, the proposed Algorithm is based on this and computes | A],, the r-rank approximation
of A.
Following steps form the high level description of the proposed algorithm:

Step 1 Given a matrix A € R™™ and a constant r.

Step 2 Perform SVD of A and select Ry singular values so that the sum of these Ry
singular values is greater than or equal to p% of the sum of all the singular values

of A.
Step 3 If Ry is less than or equal to ‘r’ then proceed.
Step 4 Obtain Ry rank approximation of the given matrix A.

Step 5 The obtained Ry rank approximation is, in general, not binary. Hence we binarize

it.

Step 6 Find the linear independent rows of the binarized approximation. The number

of independent rows may be less than Ry in some cases.
Step 7 These independent rows act as the centers of the clusters to be formed.

Step 8 Using the cluster centers we form the matrix approximation for A and use it for

classification.
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4. LOW-RANK BINARY MATRIX APPROXIMATION

4.3.3 Motivation

Our proposed work is driven by two key considerations:

e Addressing the computational bottleneck: Recognizing the NP hardness of
binary matrix factorization, we sought an alternative approach with guaranteed
polynomial time complexity. This resulted in a novel binary factorization method

that efficiently tackles this challenging problem.

¢ Leveraging SVD while mitigating its limitations: While Singular Value
Decomposition (SVD) offers a theoretical polynomial-time solution, its limitations
for binary data pose practical challenges. Our approach ingeniously integrates
SVD within a binary factorization framework, yielding reasonable results despite

these limitations.

The proposed work is presenetd in Algorithm 7. This algorithm takes a matrix as
input and finds the approximated low rank binary matrix and returns the statistics of

it. The implementation details are presented in the next subsection.

4.3.4 Implementation

In order to achive the target matrix we follow the steps presented in the high level
description of the proposed algorithm. Step 2 performs the SVD of the given matrix
A and selects the first(from the top left corner) Ry singular values so that the sum
of these Ry singular values is greater than or equal to a pre-specified percentage(p%)
of the sum of all the singular values of A. Fig. 4.1(a) depicts the SVD of a matrix.
From the work presented in [55], it is known that the o is a diagonal matrix. The
diagonal entries are arranged in non-decreasing order. The o matrix is truncated to
contain only the Ry prominent singular values, if there are ‘Ry’ diagonal elements that
are greater than a specified percentage ‘p’. So, Ry is the number of rows left over
after truncating the matrix. Here, R specifies the number of significant rows that help
in best approximating the given matrix. If Ry > r, then the algorithm returns ‘NO’
asserting that there is no approximation such that the rank of the approximate matrix,
Ry < r. If there is an Ry then the algorithm proceeds. In the next step we pick and
multiply the Ry largest singular values and its corresponding truncated right and left

singular vectors. This resultant matrix Arsyp is Ry rank approximated matrix and this
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4.3 Proposed Scheme

is, in general, a real matrix. As we are working with the binary data we convert this
real matrix to the binary matrix. So we binarize Aysyp. Let the resulting matrix be
AginTsvp- Once the matrix Argyp is modified into a binary matrix Ag;,_rsvp the rank
may change and become less. The algorithm proceeds to find a R, < Ry < r, where R, is
the rank after binarization of the product matrix. The next step determines the actual
rank R, which satisfies the inequality, R, < Ry, and also finds the independent rows
in the Ap;,_rsvp matrix. Using these independent rows we construct the approximate
matrix. The independent rows are considered as the representatives of the clusters that
are going to be formed. Later, the approximation matrix A’ is built. The i’ row of A’

contains a center that is closest to i'" row of matrix A.

m n m
m
o
n A — U n n v m
0
(2)
m T
T m
n o T |4 r
n A = U
(b)

Figure 4.1: (a) Full SVD (b) Trim SVD

The lowRankBinaryMatrix A pproximation() implements the proposed algorithm.

The algorithm returns the R, < r number of centers, or else it will return a NO
instance. A NO instance states that there is no such R, < r or the given matrix
cannot be clustered into R, clusters. The conversion of A7gyp into a binary matrix is
done by calling the function converToBinary(Arsyp, 7). 7 is the threshold for
the binary transformation. Any entry greater than 7 is considered 1 else 0. To
determine the actual rank R, which satisfies the inequality, R, < Ry, and also to
find the independent rows in the Apg;, rsyp matrix, we perform LU decomposition

on Agin rsvp and use the upper traingular matrix Uar and the permutation matrix
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4. LOW-RANK BINARY MATRIX APPROXIMATION

Par. To find which rows are independent we use Par. If Par is an identity matrix,
it indicates that the LU decomposition is performed with out any rows interchanged
and the linearly independent rows of Ag;, rsyp are the first R, rows. If Par # I,
then the rows are interchanged while decomposition. We identify the actual order
and this is maintained/stored in order. In order to find the changed rank or the
number of independent rows of Agi, rsvp, we convert the Uar to Up;, binary matrix.
The rank of A, 7svp, which we call R,, is number of non-zero rows in Upg;,. It
may be noted that rank(Apinrsvp) < rank(Arsyp), that is R, < Ry. The method
getRankAndCenters() returns the rank of Ug;;, and also R, number of index numbers
of the centers. The method getFinalCenters() will return the rows of Ay rsvp
with these index numbers. These rows are taken to be the linearly independent rows.

Using these independent rows we construct the approximate matrix. For the clear

understanding we present an example work out in the next subsectio.

4.3.5 An Example

To keep the task simple we have choosen to assume that A is a binary matrix and lets

preassume few constants that were used in the algorithm Let,

= o O =

1
1
1
1

O = = O
_— O = =

be the matix and the number of clusters in the matrix is 2, i.e., r = 2 and percent = 0.5.

We run Full-SVD on the given matrix.

1.00000000e + 00 2.77555756¢ — 16 1.00000000e + 00 1.00000000e + 00

4 | 5.55111512¢ =17 1.00000000e + 00 1.00000000e + 00 1.00000000e + 00
FSVD = 1_1.11022302¢ — 16  1.00000000¢ + 00 1.00000000e + 00 1.66533454¢ — 16
1.00000000e + 00 1.66533454¢ — 16 1.00000000¢ + 00 1.00000000e + 00

2.91423041e + 00 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
Z _ 0.00000000e + 00 1.47774832e¢ + 00 0.00000000e + 00 0.00000000e + 00
0.00000000e + 00 0.00000000e + 00 1 0.00000000e + 00
0.00000000e + 00  0.00000000e + 00 0.00000000e + 00 2.73910471e — 17

72
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Algorithm 7: lowRankBinaryMatrix Approximation()

Input: A € {0, 1} r
Output: Confusion Matrix, Accuracy, Recall, Precision, F1-score, Distance,
Cluster Allocation Count, Number of Samples Predicted Correctly

order ={1,2,3,...,n};
g, gm ymam — fullSVD(A);
AFSVD <=[_/V>X<O'>$<V7
Choose an ‘r’ from the diagonal values of o such that, the sum of the first r
values is greater than the fixed percentage ‘p’;
if there is no such possibility then

return NO;

Terminate;
end if
umr, 3 vrm < trimSVD(A);
10: Arsyp U xo xV;
11: Ainrsvp < converToBinary(Arsyp,7);
12: Pat, Lar, Uar < factorLU (A, 1svD);
13: if Par # I then
14:  order & Rearrange Par such that Par = @
15: end if
16: Upin < converToBinary(Uar,7) ;
17: rank, centers & getRankAndCenters(Ug;y);
18: finalCenters < getFinalCenters(Ag;, rsvp, centers);
19: allocation < Allocate each vector in A to a center in finalCenters

that is closest;
20: approxDistance & distanceMeasure(A, allocation);
21: Based on the centers obtained construct the Approximated Matrix A’;
22: Construct Confusion Matrix using allocation;
23: Using Confusion Matrix, Accuracy, Recall, Precision, F1-score, Distance,
Cluster Allocation Count, Number of Samples Predicted Correctly;

24: return (PS*);

Algorithm 8: getVecHDistance()

Input: a€ {0,1}, b e {0,1}'
Output: Hamming Distance between a and b
1: for i in range(len(a)) do
2:  hamDistance += abs(ali] - b[i]);
3: end for
4: return hamDistance;
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4. LOW-RANK BINARY MATRIX APPROXIMATION

Algorithm 9: MatHDistance()

Input: X € {0,1}"™", Y € {0, 1}"™"
Output: Hamming Distance between matrices X and Y
matrixHDistance & [ ][ [;
: for i in range(len(X)) do
for j in range(i, len(Y)) do
dist & getVecHDistance(X[i],Y[j]);
matrixHDistanceli][j] < matrixHDistance[j][i] < dist;
end for
end for
return matrixHDistance;

Algorithm 10: converToBinary()

Input: A e R™™ 1.
Output: Binary converted A matrix
: Be= A
2: for i in range(B.rows) do
for j in range(B.cols) do
if BJi][j] > 7 then
Alilfj] = 1;
else
Afi][j] = 0;
end if
9: end for
10: end for
return A;

Algorithm 11: getRankAndCenters()

Input: Ug;, Matrix
Output: Indices of Centers
1: rank < n;
2: for i in range(len(Ug;,)) do

3:  for j in range(len(Ug;,)) do
4: if UBm[l] == 0 then
5: rank -= 1;
else
6: centers.append(i);
7 end if
8: end for
9: end for

10: return rank, centers;
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Algorithm 12: getFinalCenters()

Input: Apg;, rsvp, centers

Output: finalCenters

: finalCenters < [ |;

:j=0;

: for i in centers do
finalCenters|j| <;
ﬁnalCenters[j] = ABin,TSVD [1],
J++;

end for

return finalCenters;

S AN S o e

Algorithm 13: distanceMeasure()

Input: X € {0,1}™", Y € {0, 1}/"™"
Output: Sum of Hamming Distance between matrices X and Y
1: finalHDistance = 0;
2: for i in range(len(X)) do
3:  for j in range(len(Y)) do
4: finalHDistance += getVecHDistance(X[i],Y[j]);
5:  end for
6: end for
7: return finalHDistance;

Algorithm 14: preProcess()

Input: A€ {0,1,A-Z,a-z,R}"™"

Output: Binary A

: Correct missplet attribute names;

Remove unncessary attributes;

Convert categorical attributes to binary attributes using one-hot encoding;
Convert R attributes to binary;

Delete rows with empty values;
return A € {0, 1}"""™;
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4. LOW-RANK BINARY MATRIX APPROXIMATION

Here r = 2, as the sum of the first 2 values in Y is greater than 87% of the total
sum of the values in diagonals. Hence Ry = 2. Apply trimSVD with r = 2.

0.96794923  0.00193708 0.96988631 1.05697992
A 1 0.17806137  0.98923836 1.16729973 0.68344219
TSVD = 1_0.17418722 1.01052749 0.83634028 0.30967032
0.96794923  0.00193708 0.96988631 1.05697992

Now, perform LU-Decomposition on Arsyp, we present Par and Uar

1 0 0 O 1 0 0 0
P = 0 0 0 1 " 01 00
AT=101 000710 010
0 010 00 0 1
The interchanging order is = {1,3,4,2 }

9.67949229¢ — 01  1.93707836e — 03 9.69886307e — 01 1.05697992¢ + 00
0.00000000e + 00 1.01087608e + 00 1.01087608e + 00 4.99879051e — 01
0.00000000¢ + 00  0.00000000e +00 3.33066907e — 16 2.76945225¢ — 16
0.00000000e + 00  0.00000000e + 00 0.00000000e + 00 4.97179011e — 17

Uar =

Convert Arsyp and Uar to Binary

1 01 1

01 1 1

Usin=10 0 0 o

0 0 0O

Rank of the matrix is 2.

1 011
01 1 1
ABinTSVD = 01 10
1 01 1

Choose the centers from Apg;, rsvp. Choose the 1,3 rows as centers, hence the

centers are

1 011

Centers = [0 11 O}
1 011
. . 0110
Approximated Matrix = 101 1
0110
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Distance from approximated matrix to A is 1 Clusters are

(1 0 1 1]
Clusterl—_1 01 1
[0 1 0]
Cluster 2 = 01 1 1

4.4 Application: Detecting ASD

To make the Autism detection process of analysis easy and time efficient experts have
started using computer based analysis methods such as rule based or heuristic based
approaches and machine learning approaches. Rule based or heuristic based approach
for identifying autism may require huge number of rules. Machine learning models
such as decision trees, logistic regression, clustering, matrix approximation, neural
networks and others are used for identifying ASD. Analysing ASD using machine
learning models require the dataset to be in a matrix form. Data collected from the
screening or diagnosis must be tranformed into a matrix and apply any of the models
to classify the test samples. Usually all the machine learning models require huge
data to learn. This data requires high processing and huge storage. Hence there is
a need to reduce the data size and yet keep the important information intact. The
algorithms that address this issue are called Dimensionality Reduction and Feature
Selection algorithms. Dimensinality reduction algorithms reduce the data size yet they
give promising results[46].

Here as an application of our work we calculate an approximation of the matrix
containing the screening data. The datasets were developed by Dr Fadi Fayez Thabtah
using a mobile application called ASDTests [139] to screen autism. The details of the
datasets are presented in the next section.

Here in the application the datasets are not completely binary. If the input matrix
is real-valued or categorical, the proposed algorithm will convert it into a binary matrix.
The algorithm preProcess() will transform a matrix into a binary matrix. The
threshold value 7 in the converToBinary() is used to determine whether an entry
in the matrix should be a 0 or 1.

The proposed algorithm is run on the ASD dataset and other datasets. The

complete results and their analysis is presented in Section 4.5. Other algorithms, K-
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Means, K-Medoids and Binary r-Means are also run on the ASD dataset and these
results are used for comparison purpose. The performance of our method is measured
using various performance metrics. The proposed method finds the cluster centers in
such a way that each row of the given matrix is associated with one of the cluster
centers; i.e every row a; € A, i = 1,2,...,n is associated with a cluster center c; for

some j.

4.4.1 Performace Metrics

Performance of the proposed algorithm is measured based on the predictions the algorithm
made. Figure 4.2 shows the confusion matrix.

[ 1

Actuals

Predictions

Figure 4.2: General Look of Confusion Matrix

Here 0 is considered Negative and 1 is considered Positive. The prediction combinations
are TrueNegative, TruePositive, FalseNegative, FalsePositive. Using the values in the
confusion matrix we evaluate our work with the measures Accuracy, Recall, Precision,

F1-Score, Distance, Cluster Allocation Count, Number of Samples Predicted Correctly.

4.5 Results

This section presents the results of the numerical experiments conducted on the algorithms
we have implemented. The experiments are run on a desktop with a 3.50GHz processor
and 8GB RAM. The algorithms that are presented in the paper are implemented in
python programming language. These algorithms are run on 4 datasets with varying
sizes. The list of datasets and their respective number of clusters in each dataset is
presented in table 4.1. All the datasets are downloaded from [42]. The experiments are

run for multiple times and the average of those values are presented in the tables.
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4.5 Results

Table 4.1: Datasets and their properties

Name Description Size CI\II::S' t;):s
ASD Adolescent | Adolescent Autism Spectrum Disorder 98*26 2
ASD Child Child Autism Spectrum Disorder 249*28 2
ASD Toddler Toddler Autism Spectrum Disorder 1054*30 2
ASD Adult Adult Autism Spectrum Disorder 609*29 2
wla Web Linear 2477*300 2
wla.t Web Linear 47272*300 2

Table 4.2: Accuracy Comparison for ASD Datasets

Binary
r-Means

ASD Adolescent 26.15 26.50 33.21 48.15
ASD Child 19.60 18.17 18.47 32.12
ASD Toddler 25.14 15.76 12.39 47.34
ASD Adult 48.60 31.30 47.23 65.51

Dataset Name K-Means | K-Medoids | Proposed Work

70
65 |
60 |
55 . g
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40 |
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ASD Adolescent ASD Child ASD Toddler ASD Adult
Dataset

48.15
47.34
48.60

33.21

Accuracy
26.50
32.12
31.30

19.60

18.17

12.39

loBinary r-Means 00K-Means [0K-Medoids 0EProposed Work

Figure 4.3: Accuracy Comparison.

The algorithms that are chosen for comparison with the proposed method are Binary

r-Means, K-Means, K-Medoids, and “Binary Matrix factorization using Alternating
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4. LOW-RANK BINARY MATRIX APPROXIMATION

Least Squares(BMF-ALS)”. All these five algorithms use hamming distance as the
distance measure. These algorihms are run on these datasets and their accuracy,
approximated distance from the original matrix, cluster allocation, precision, recall,
f1_score and confusion matrices are presented in this section.

Table 4.2 presents the accuracy of the four methods for all the ASD datasets. The
accuracy of the proposed work has out performed all the three comparison algorithms.
In few cases the accuracy is two times better than those algorithms. The graphical

representation of the accuracy comparison is presented in figure 4.3.

Table 4.3: Approximated Matrix Distance Comparison

Proposed
Work

ASD Adolescent 540 512 544 475
ASD Child 1175 1085 1148 1193
ASD Toddler 6287 4531 4827 7368
ASD Adult 3461 2856 2876 4565

Dataset Name | Binary r-Means | K-Means | K-Medoids
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Figure 4.4: Approximated Distance Comparison.

Table 4.3 and Figure 4.4 displays the distance between the original matrix and the
approximated matrix in a table and graphical format respectively. The proposed work

is better than all the algorithms for ASD Adolesence dataset and in the case of other
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Table 4.4: Cluster Allocation Comparison

Dataset Ground Binary . Proposed
Name Truth r-Means K-Means | K-Medoids Work

ASD (62,36) | (76,22) | (72, 26) (73,25) | (41, 57)

Adolescent

ASD | (196, 123) | (169, 80) | (145, 104) | (152, 97) | (158, 91)
Child

ASD (728, 326) | (947, 107) | (562, 492) (598, 456) (229, 825)
Toddler

ASD

(429, 180) | (468, 141) | (365, 244) | (460, 149) | (387, 222)

Adult

datasets it has fallen short. One of the reasons for this short fall is that the chosen center
is a row from the original dataset. But the center choosen by the algorithm is the best
possible one that is available to become a center. All the datasets has two clusters in
them. The cluster names are 0 and 1. The actual number of datapoints in each cluster
is presented in the column titled ‘Ground Truth’ of table 4.4. The cluster allocation for
each dataset when ran on all the four algorithms is presented in the same table. It is
clearly observed that the allocation by the proposed work is a lot better in most of the
cases, by the observation made from true instances. Though the allocation in the case
of ASD Toddler dataset for our algorithm may not look convincing but the actual rows
choosen are better than the other algorithms as shown in precision, f1_score, and recall
measures. To prove that the allocation is better we show the confusion matrices and
the count of number of correctly predicted datapoints. All these values are averaged
and then presented.

The running time of all the algorithms for each dataset is presented in table 4.5
and its pictorical representation is shown in the Figure 4.5. The confusion matrices of
all the methods for all the datasets is presented in Figures 4.6, 4.7, 4.8, and 4.9. The
conclusion drawn out of these confusion matrices is presented in tables 4.6 to 4.9. The
total number of correct predictions by all the algorithms is presented in table 4.6. The
proposed work correctly predicted count is greater in all the occasions.

Recall, Precision, and F1-Score for all the methods are presented in tables 4.7, 4.8,

and 4.9 respectively. The statistics clearly show that proposed work has out performed
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Table 4.5: Time Comparison

Dataset Name Binary K-Means | K-Medoids | Proposed Work
r-Means
ASD Adolescent 0.36126 0.31462 4.93948 0.031256
ASD Child 1.76485 0.40617 35.21963 0.16794
ASD Toddler 31.64124 2.61890 64.822567 0.44258
ASD Adult 11.64972 1.52416 20.07542 0.48993
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Figure 4.5: Time Comparison.

Table 4.6: Number of Data Points Predicted Correctly Comparison

Dataset Name r]-31\i/il§:r}1’s K-Means | K-Medoids | Proposed Work
ASD Adolescent 26 26 33 47
ASD Child 49 47 46 80
ASD Toddler 265 166 130 499
ASD Adult 296 189 288 399

all the algorithms. The closest competition for the proposed work is sometimes K-

Means and sometimes K-Medoids.
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Table 4.7: Recall Comparison

Dataset Name r]—31\i/il§;r}1’s K-Means | K-Medoids | Proposed Work
ASD Adolescent 0.096 0.12 0.17 0.54
ASD Child 0.023 0.11 0.079 0.19
ASD Toddler 0.031 0.22 0.17 0.68
ASD Adult 0.022 0.011 0.016 0.53

Table 4.8: Precision Comparison

Dataset Name r].gl\i/_r[l::]f}l’s K-Means | K-Medoids | Proposed Work
ASD Adolescent 0.27 0.30 0.44 0.59
ASD Child 0.0037 0.13 0.103 0.26
ASD Toddler 0.21 0.33 0.28 0.60
ASD Adult 0.028 0.008 0.009 0.43

Table 4.9: F1_score Comparison

Dataset Name r]—gl\i/?::r}lls K-Means | K-Medoids | Proposed Work
ASD Adolescent 0.14 0.18 0.25 0.57
ASD Child 0.029 0.12 0.089 0.22
ASD Toddler 0.055 0.27 0.21 0.64
ASD Adult 0.024 0.009 0.012 0.47

4.5.1 Additional Experimental Results

Although the main study analyzed 4 algorithms on 4 ASD datasets, we further

investigated their performance on larger datasets and the results are presented in tables
4.10, and 4.11. These “wla” and “wla.t” datasets provided a new lens to assess the
algorithm’s generalizability. Interestingly, the observations made on the ASD datasets,
such as Accuracy, Distance, Cluster Allocation, Time Consumption, No. of Correct
Predictions, Recall, Precision, F1-Score, appear consistent with the results on these

larger datasets, suggesting potentially similar algorithm behavior across data sizes.
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Table 4.10: Results for dataset ‘wla’

Algorithm Name | Accuracy ‘ Distance | Cluster Allocation | Time Consumption | Correct Predictions | Recall ‘ Precision | F1-Score
K-Means 63.50 25317 (1555, 922) 61.5466 1573 0.628 0.047 0.088
K-Medoids 59.66 29978 (1465, 1012) 1523.391 1478 0.591 0.041 0.077
Binary r-Means 65.32 23562 (1595, 882) 743.7794 1617 0.657 0.052 0.096
BMF-ALS 71.98 21924 (1752, 725) 10.8503 1783 0.718 0.070 0.128
Proposed Work 70.08 19419 (1707, 770) 10.4010 1736 0.704 0.064 0.118
Table 4.11: Results for dataset ‘wla.t’
Algorithm Name | Accuracy ‘ Distance | Cluster Allocation | Time Consumption | Correct Predictions | Recall ‘ Precision | F1-Score ‘
K-Means 64.28 180964 (29989,17283) 1174.57 30391 0.642 0.052 0.096
K-Medoids 52.36 194342 (24685,22857) 29072.97 24751 0.523 0.032 0.061
Binary r-Means 59.14 183396 (27699,19573) 14191.12 27956 0.591 0.042 0.079
BMF-ALS 63.92 172410 (29829,17443) 207.07 30220 0.639 0.051 0.095
Proposed Work 69.91 167642 (32488,14784) 198.497 33047 0.698 0.066 0.121

4.6 Conclusions

In this chapter, we presented an SVD based clustering algorithm to approximate a given
binary matrix with another binary matrix such that the rank of the approximated
matrix is less than or equal to a given constant. As an application the proposed
algorithm is experimented and run on ASD datasets and performed classification on
it. The algorithm is compared with other contemporary algorithms and comparative
analysis is also presented. Also as an extension we would like to apply heuristics to

improve the accuracy of the proposed algorithm.

85



Chapter 5

Online Feature Selection
Algorithm for Efficient Binary

Classification

In the previous chapter we proposed an online classification algorithm on binary data
based on binary matrix approximation technique. In the present chapter we propose
another binary classification algorithm that works when the data is linearly separable
and is a streaming data. The proposed algorithm makes necessary modification to the
most popular winnow algorithm such that it works on real-data and also helps learn

faster.

5.1 Introduction

Traditional machine learning paradigms often work in a batch learning, where a model
is trained by some learning algorithm from an entire training data set at once and
then the model is deployed for inference. Such learning methods suffer from expensive
re-training cost when dealing with new training data, and thus are poorly scalable for
real-world applications. In the era of big data, traditional batch learning paradigms
become more and more restricted, especially when live data grows and evolves rapidly.
Making machine learning scalable and practical especially for learning from continuous
data streams has become an open grand challenge in machine learning and AI. Online

learning is a subfield of machine learning and includes an important family of learning
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techniques which are devised to learn models incrementally from data in a sequential
manner. Online learning overcomes the drawbacks of traditional batch learning in that
the model can be updated instantly and efficiently by an online learner when new
training data arrives. In online learning, instead of learning from a training set and
then testing on a test set, the on-line learning scenario mixes the training and test
phases. Here in on-line learning, no distributional assumption about the data is made,
and thus there is no notion of generalization.

Learning from relevant attributes refers to the process of identifying and utilizing
only the most informative features or attributes of a dataset for building machine
learning models. In many real-world datasets, not all features contribute equally to
the prediction task. Some features may be redundant, noisy, or irrelevant, leading to
increased computational complexity and decreased model performance. So in many
cases the correct response is dependent on few attribues rather than on all. Finding
those attributes is a challenge and is initially addressed by perceptron[122], which
works on real-valued data and winnow algorithm[88], which works on binary-valued
data. Both these algorithms are online learning algorithms. The detailed review of
the online learning is presented in chapter 2.3. Here in this work we present an online
learning algorithm that is a modified version of the winnow algorithm. The proposed
algorithm works on real-valued data, where as winnow works on binary data. The
algorithm identifies the attributes that are more relevant to the target variable. In the
next section we present the motivation and the contribution of the work, in Section 5.3
we present the proposed work, section 5.4 presents the results and the final section in

this chapter ends with a conclusion.

5.2 Motivation and contribution

The winnow algorithm update is poor or is slow in updating the weights. Since the
winnow algorithm is usually designed for feature selection, it only works on binary data
and is not applicable on data with real values. The update does not take into account
the input instance, and it updates the weights with some constant factor.

Our primary result is the development of an algorithm that effectively handles
irrelevant attributes. We propose a modified winnow algorithm that employs multiplicative

updates while learning from the data with real values in an online mode. The proposed
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algorithm shares similarities with the classical perceptron algorithms and the winnow
algorithm. It incorporates a multiplicative weight-update scheme that updates based
on the current input instance. This enables it to outperform traditional winnow
algorithms in the case where numerous attributes are irrelevant. The algorithm is
primarily assessed by tracking the number of mistakes it makes during the learning
process, as well as its accuracy when tested on unseen data. These evaluations are then

compared to the evaluations of seven different variants of the winnow algorithm.

5.3 Proposed scheme

This section outlines the algorithm proposed for data classification. We consider the
following notation: X € R™ represents the collection of data instances, ¥ € {-1,1}"
or Y € {0, 1}" represents the class labels to which each data point belongs. The binary
classifier denoted by w € R is m-dimensional weight vector, x € R represents an
m-dimensional instance from X, and x; represent the i*" feature of the vector x. It is
also to be noted that, if x; is the i vector in X, then x;;j represent the j'h feature
in the vector x;. Usually x represents a datapoint comprising features that have been
quantitatively measured from an object or event for which the classifier aims to learn.
For instance, in the case of an image, the features typically correspond to the pixel
values within the image. The i’ feature of an instance x is represented as x; € R. The
class label of x is denoted as y, where y € {0,1} or {-1,1}. A binary linear classifier
is defined by a pair of values: a weight vector w € R™ and a threshold 8 € R. The
classifier assigns a value of 1 to an instance x if the dot product of w and x is greater
than or equal to 6, and assigns a value of -1 otherwise.

Algorithm 15 serves as the primary algorithm that accepts a dataset as input and
invokes Algorithm 16. Algorithm 16 is a modified version of the winnow algorithm,
which is responsible for classifying the data, specifically when they exhibit linear
separability. The primary emphasis of this work does not center on addressing the
classification of data that are not linearly separable. Input parameters for the algorithm
are w € R" X € R"™ y € {-1,1}"", @ > 2, and 6. Here, w the weight vector is
randomly assigned, X is the dataset, Y is the set of target variables, @, and 6 are fixed
paramaters that are useful in the algorithm. In the proposed algorithm, « is a constant

that regulates the learning. Algorithm 16 is presented such that it works in an online
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scenario. At the initial step of the Algorithm 15, the data X € R™ is normalized such
that each value within the dataset falls within the range of [-1,1].

Algorithm 15: main()
Input: X e R Y € {-1,1}"
Output: Number of correct predictions, Mistake count, Accuracy, Precision,
Recall, F1-score
1: Normalize X;
X-train, y-train, X-test, y-test = split(X, Y);
Set w; =5 Vi, 1<i<m,seta,set
w, mistake_count = modified Winnow(X-train, y-train, w, a, 6);
predictions = predict TestData(w, 6, X-test, y-test);
Using predictions, compute number of correct predictions, Mistake count,
Accuracy, Precision, Recall, and F1-score;
7: return Number of correct predictions, Mistake count,
Accuracy, Precision, Recall, and F1-score;

The data is treated as a continuous stream, with one data point being selected
and processed at a time. Let x; be the data point recieved for processing. In lines
3, 4, 5, and 6 the algorithm predicts whether the data point x; belongs to a positive
class(+1) or to a negative class(-1). The actual class of the data point, which is y;,
is supplied in line 8. When the predicted class of a data point matches the actual
class, the algorithm does not engage in any learning process. This signifies that the
data point has been correctly classified, and as a result, the weight adjustments are
unnecessary. Conversely, if the predicted class differs from the actual class, the weight
vector must be updated to reflect the necessary modifications.

Lines 9 to 28 entail the adjustment of the weight vector based on the predicted and
actual classes. If the prediction is positive (+1) and the actual class is negative (-1),
the weight vector is modified by rotating it in the direction of the misclassified data
point. Since the misclassified data point lies in the negative direction, the weight vector
is reduced to facilitate a rotation in the negative direction.

The binary winnow algorithm, as described in [89], decreases the weight vector by
a constant factor. However, in the proposed algorithm, the weight vector is not altered
by a fixed constant. Instead, it is adjusted based on the values of each individual
data point. Specifically, if the distance between the weight vector w and x; is large,

then the algorithm takes this into account and modifies the weight vector accordingly.
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Algorithm 16: modified Winnow ()
Input: we R™, X e R"™ Y € {-1,1}", @ > 2, and 0.
Output: w
1: mistake_count = 0;
2: for i in range(n) do
3:  if ;- w> 6 then

4 pred = +1

5:  else

6: pred = -1

7. end if

8 resp = True class label y; € {+1,-1};
9:  if pred ! = resp then

10: mistake_count—+-;

11: if resp == -1 and pred =1 then
12: for j in range(m) do

13: mean = mean of j* column;
14: if x;; > mean then

15: wi=(wj*x;)/a;

16: end if

17: end for

18: end if

19: if resp == land pred = -1 then
20: for j in range(m) do
21: mean = mean of j* column;
22: if x;; < mean then
23: wi=(w;*x;;)*a;
24: end if
25: end for
26: end if
27:  end if
28: end for

29: return w, mistake_count;

This means algorithm takes into account the information provided by the data point.
Conversely, if the distance is small, the adjustment to the weight vector is also relatively
small. It is important to notice that, it is not necessary that the entire weight vector
need to be updated but only the relevant index locations are updated. Whichever data
index has a value less than the column mean of the data point, only the corresponding

element of the weight vector is updated. The process outlined in steps 11 to 18 of the
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algorithm is referred to as the demotion operation. So the update is:

wi=(w;*x;;)/a

In the scenario where the prediction is negative(-1) and the actual class is positive(+1)
the weight vector need to be rotated in the direction of the misclassified data point,
which lies in the positive direction. Therefore, the weight vector is multiplied to
facilitate rotation in the positive direction. The process outlined in steps 19 to 26

of the algorithm is referred to as the promotion operation. Hence the update is:

wi=(w;*x;) *«a

Steps 3 to 27 are iteratively applied to each data point within the training dataset.
This repetition encompasses the processing of all data points, and upon completion,
the algorithm returns the final weight vector w. Once the main algorithm recieves the
weight vector, it is operated on the test data and calculates the required metrics for

evaluation. The evaluation algorithm is presented as Algorithm 17.

Algorithm 17: predictTestData()
Input: w, X-test, y-test, 6
Output: Confusion Matrix
: for  in X-test do
if z.w > 6 then
y=+L
y = Obtain true class label of x;
Update Confusion Matrix based on y and y;
else
y=-1
y = Obtain true class label of x;
Update Confusion Matrix based on y and y;
end if
end for
: return Confusion Matrix;

—_ = =
Mo
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5.4 Results

This section showcases the outcomes obtained from conducting numerical experiments
on the algorithms presented in the previous section. The experiments were performed
on a desktop equipped with a 3.50GHz processor and 8GB RAM. The algorithms
described in the paper were implemented using the Python programming language. The
experiments encompassed seven datasets of different dimensions, as listed in Table 5.1.
The dimensions are represnted in rows*column format, where rows represent number of
instances and columns represent number of features in each instance. All the datasets
were obtained from [42]. One of our objectives is to operate in an online setting. To
assess the effectiveness of the proposed algorithm, we divide the data into two distinct
sets: the training set and the testing set. The algorithm is fed one example at a
time from the training set to facilitate the learning process. On the other hand, the
testing set is employed to evaluate the algorithm’s performance using various metrics.
The experiments were conducted multiple times using different data splits, and the
minimum, maximum and average values obtained from these runs are presented in the

tables within this section.

Table 5.1: Dataset Size

Dataset Name | Dataset Dimensions
Inosphere 351%34
Cleveland 303*13
Australian 690*14

Divorce 170*55
Leukemia 38%7129
Cod-rna 59,535*8
Segmentation 1243*21

In order to demonstrate the efficiency of the proposed algorithm, it is compared

against various other variations of the winnow algorithm. They include

e Binary Elimination

e Binary Demotion
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Real Elimination

Real Demotion

Exponential Winnow

Reparameterized Winnow

Mesterham Winnow

The distinctiveness of these algorithms from the proposed algorithm lies in their
respective approaches to update the classifier. Binary Elimination and Binary Demotion
algorithms specifically operate on binary data, requiring preprocessing of the datasets
prior to their application. On the other hand, the remaining algorithms are designed to
handle real-valued (R) datasets. The algorithms are evaluated and compared based on
metrics such as Accuracy, Number of Correct Predictions, Mistake Count, Precision,
Recall, and Fl-score. These evaluations are conducted on all the datasets, and the
algorithms are run for a fixed number of iterations. The average values obtained from
these runs are presented in the tables below. It’s important to note that the parameters
used in the algorithms are assigned the values proposed by the respective authors in
their original works. In the proposed work 6 is assigned with 3 and « is set to 2.

Table 5.2 summarizes the accuracy of all algorithms on all datasets. It shows the
minimum, maximum, and average accuracy for each algorithm. Figure 5.1 provides a
graphical representation of the average accuracy results. It is evident that the proposed
algorithm exhibits superior performance in terms of accuracy for the Inosphere, Segmentation,
Cleveland, and Australian datasets, surpassing all other algorithms. Furthermore, the
proposed algorithm achieves comparable accuracy with the Divorce, Leukemia, and
Cod-rna datasets. In the majority of cases, it is noticeable that the average accuracy
of the proposed algorithm tends to be close to both the minimum and maximum
accuracies. In contrast, for other algorithms, the minimum and maximum accuracies
tend to be somewhat distant from the average accuracy. This observation provides an
insight that the proposed algorithm performace is consistent and better than all the
algorithms considered.

Also, when considering additional factors, it becomes apparent that the proposed

algorithm outperforms all other algorithms, which are discussed later. Table 5.3 exhibits
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Table 5.2: Accuracy Comparison

Algorithm Name —

Binary Elimination

Binary Demotion

Real Elimination

Real Demotion

Dataset| Min | Avg Max Min | Avg Max Min | Avg Max Min | Avg | Max
Inosphere 31.20 | 39.43 52.63 64.83 | 77.46 85.56 33.90 | 39.43 | 49.40 76.0 | 81.69 | 86.4
Divorce 100 100 100 92.36 | 97.05 100 100 100 100 100 100 100
Segmentation 73.64 | 77.51 81.92 60.54 | 61.44 63.67 69.86 | 78.31 | 82.35 39.32 | 51.00 | 63.41
Cleveland 50.10 | 53.33 59.81 58.61 | 61.66 64.79 46.82 | 55.00 | 59.93 48.39 | 53.33 | 59.82
Leukemia 49.20 | 62.00 74.90 57.42 | 62.50 65.75 69.20 | 75.00 | 82.40 71.22 | 75.00 | 79.36
Cod-rna 66.51 | 67.04 68.90 53.6 | 57.81 62.30 57.77 | 66.75 | 72.49 26.83 | 33.00 | 49.52
Australian 42.30 | 59.42 73.72 71.29 | 76.08 81.40 46.62 | 55.79 | 64.09 75.52 | 78.26 | 79.87

Algorithm Name —

Exponential Winnow

Reparameterized Winnow

Masterham Winnow

Proposed Work

Dataset | Min | Avg Max Min | Avg Max Min | Avg Max Min | Avg | Max
Inosphere 59.82 | 70.42 83.39 50.21 | 64.00 75.46 53.81 | 60.56 | 68.92 | 83.46 | 87.32 | 89.36
Divorce 36.9 | 58.82 74.23 44.11 | 44.11 44.11 44.11 | 44.11 | 44.11 100 100 100
Segmentation 68.54 | 75.10 82.93 71.89 | 77.51 81.26 25.23 | 26.10 | 28.15 | 73.79 | 78.50 | 81.26
Cleveland 29.26 | 45.00 62.44 | 48.91 | 55.00 59.40 44.12 | 46.66 | 49.86 | 77.36 | 80.00 | 82.99
Leukemia 55.65 | 62.50 69.42 11.86 | 12.50 13.48 32.46 | 37.50 | 41.39 | 73.42 | 75.01 | 79.85
Cod-rna 63.59 | 67.04 72.36 60.24 | 66.77 69.99 31.60 | 33.41 | 39.32 | 63.92 | 67.05 | 73.60
Australian 51.72 | 63.76 73.94 73.12 | 78.26 82.26 58.54 | 63.04 | 67.82 | 79.95 | 84.78 | 89.36
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the number of correct predictions, which is the combined total of true-positive and true-
negative predictions. The observations derived from this metric correspond with the
accuracy comparison outlined earlier. Additionally, Figure 5.2 graphically illustrates

the distribution of the number of correct predictions.
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Figure 5.1: Accuracy Comparison

Table 5.3: Number of Correct Predictions

Algorithm Name | Dataset Name | Inosphere | Divorce | Segmentation | Cleveland | Leukemia | Cod-rna | Australian
Binary Elimination 28 34 193 32 5 7983 82
Binary Demotion 55 33 153 37 5 6884 105
Real Elimination 28 34 195 33 6 7948 7
Real Demotion 58 34 127 32 6 3937 108
Exponential Winnow 50 20 187 27 5 7983 88
Reparameterized Winnow 46 15 193 33 1 7951 108
Mesterham Winnow 43 15 65 28 3 3979 87
Proposed Work 62 34 196 48 6 7985 117

Another metric taken into consideration for comparison is the Mistake Count. It
represents the number of incorrect predictions made by the algorithm when compared
with the actual responses. This metric provides insights into the effectiveness of weight
updates. A lower mistake count suggests that the algorithm is updating the weights
effectively, while a higher count indicates that the weights are not being updated
adequately. Additionally, the mistake count offers information about the speed at
which the classifier reaches the convergence point.

The Mistake Count is displayed in Table 5.4, and its corresponding bar graph is
illustrated in Figure 5.3. Throughout the process of building the classifier, the proposed
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Figure 5.2: No. of Correct Predictions Comparison

algorithm consistently exhibits fewer mistakes. Despite achieving similar accuracy to
some other algorithms, the proposed algorithm demonstrates a lower mistake count.
These mistakes, also referred to as learning mistakes, are not simply classification errors,

but rather reflect the algorithm’s ability to learn and adapt.

The performance of the proposed algorithm is further evaluated using additional
metrics including Precision, Recall, and F1-Score. These metrics are presented in
Table 5.5, 5.6, and 5.7 respectively. The precision and F1-Score of the proposed
algorithm consistently outperform those of all other algorithms compared. However, in
certain instances, the Recall of the proposed algorithm has shown a relatively lower
performance. Overall, the proposed algorithm demonstrates superior performance

across almost all of the evaluated factors when compared to other algorithms.
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Table 5.4: Mistake Count

Algorithm Name | Dataset Name | Inosphere | Divorce | Segmentation | Cleveland | Leukemia | Cod-rna | Australian
Binary Elimination 169 5 212 103 8 15923 252
Binary Demotion s 4 266 55 13 20388 120
Real Elimination 173 5 207 106 14 15887 235
Real Demotion 78 5 356 132 12 31696 142
Exponential Winnow 198 43 300 96 24 15921 139
Reparameterized Winnow 90 69 752 93 20 15955 117
Mesterham Winnow 98 67 763 128 7 31762 255
Proposed Work 88 4 192 48 6 14617 96
- o -
i ¥e)
260 | S 8 N
w240 =
£ 220 ¢
= 200+
2 180 + g2
= 160 + S ==
o 140 — =
© 120 + 2
s 100 t =
Z 80+ - S
60 + < <
40 | eI,
20 + OO oo~ Do
0 e ) =] = P
Inosphere Cleveland Australian Divorce Leukemia
104
g 3
2 g
3.9 1 o =
90}
< o
= 25+ 3
3 S
= 2 TE :
Gy = <
S N
S 1.5+
z 1.2 ¢
1 1
0.8 1
0.6 +
0.4 + a e e o o 08 a
0.2 = 8 8 3 8 Eo2
'O ! T }
Cod-rna Segmentation

00Binary Elimination [0Binary Demotion [ 0Real Elimination
I B Real Demotion I8 Exponential Winnow I I Reparameterized Winnow
0 Mesterham Winnow [l 1 Proposed Work
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Table 5.5: Precision

Algorithm Name | Dataset Name | Inosphere | Divorce | Segmentation | Cleveland | Leukemia | Cod-rna | Australian
Binary Elimination 0 1 1 0 0.57 0 0
Binary Demotion 0.75 0.94 0.36 0.51 1 0.35 0.64
Real Elimination 0 1 1 0 1 0 1
Real Demotion 0.8 1 0.3 0.53 1 0.33 0.7
Exponential Winnow 0.67 0.52 0 0.47 0 0 0.58
Reparameterized Winnow 0.63 0.44 0.8 0.67 0 0 0.69
Mesterham Winnow 0.61 0.44 0.26 0.47 0.75 0.33 0
Proposed Work 0.84 1 1 0.68 1 0.6 0.82

Table 5.6: Recall

Algorithm Name | Dataset Name | Inosphere | Divorce | Segmentation | Cleveland | Leukemia | Cod-rna | Australian

Binary Elimination 0 1 0.14 0 1 0 0

Binary Demotion 0.95 1 0.68 0.92 0.25 0.29 0.97

Real Elimination 0 1 0.13 0 0.71 0 0.02

Real Demotion 0.93 1 0.65 1 0.6 1 0.82

Exponential Winnow 1 1 0 0.87 0 0 0.68

Reparameterized Winnow 1 1 0.13 0.07 0 0 0.97
Mesterham Winnow 1 1 0.98 1 0.43 1 0

Proposed Work 0.98 1 0.13 1 0.6 0 0.77

Table 5.7: F1-Score

Algorithm Name | Dataset Name | Inosphere | Divorce | Segmentation | Cleveland | Leukemia | Cod-rna | Australian

Binary Elimination 0 1 0.24 0 0.73 0 0

Binary Demotion 0.84 0.97 0.47 0.66 0.4 0.31 0.77

Real Elimination 0 1 0.23 0 0.83 0 0.03

Real Demotion 0.86 1 0.41 0.7 0.75 0.5 0.75

Exponential Winnow 0.8 0.68 0 0.61 0 0 0.63

Reparameterized Winnow 0.77 0.61 0.22 0.13 0 0 0.81
Mesterham Winnow 0.75 0.61 0.41 0.64 0.55 0.5 0
Proposed Work 0.9 1 0.23 0.81 0.75 0 0.8

5.5 Conclusions

In this chapter, we have introduced a novel online learning algorithm, a modified

version of the Winnow algorithm. Additionally, the proposed algorithm is a polynomial
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time feature selection algorithm that leverages feature correlations to achieve improved
accuracy in binary classification tasks. To validate its effectiveness, we conducted
extensive experiments on multiple datasets and compared it against seven variants of
the Winnow algorithm. The results clearly demonstrate that our proposed algorithm
outperforms all other variants in various evaluation metrics, such as accuracy, mistake

count, number of correct predictions, precision, recall, and F1-score.
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Chapter 6

An Active Learning Algorithm
With Novel Initialization, and
Model Update Techniques

In the previous chapters, we have proposed a scheme for classification on stream data.
Now in this chapter we present another linearly separable binary classification algorithm
that works on real-data. The algorithm works in a challenging environment where
labeled data is hard and expensive to obtain. We present an active learning algorithm
and also present novel initialization and model update techniques in an active learning

situation.

6.1 Introduction

Given a set of n two-dimensional data points X = {(x11,x12),..., (xn1,Xn2)}, Where
x;j € R. Any line defined by the equation (w -x) + b = 0 (where (w - x) is the dot
product between w = (w1, we) and x = (x1,x2)) will separate the plane into two distinct
regions: (w-x)+b >0 and (w-x)+b < 0. This allows us to determine the label of the

corresponding data point x based on its location relative to the line by:
y = f(x) = sign((w - x) +b);

where sign function sign(-) is defined as,
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sign(x) = {1’ @2 0. (6.1)

-1, otherwise.

Here, a value of 1 indicates the positive class, while a value of -1 is the negative
class. Consider a classification problem in m-dimensional space, where X € R™ ™
represents the collection of data instances and Y € {—1, 1}" represents the corresponding
class labels. The objective of a classification problem is to determine whether the
corresponding y for a given point x is 1 or -1 based on the training set. This can be
achieved by finding a decision function g(x) = (w - x) + b that effectively partitions the
R™ space into two regions according to the training set.

The classification problem discussed above is specifically a binary classification
problem. In binary classification, the goal is to assign one of two labels, typically
denoted as 1 and -1, to each data point. When the decision function g(x) is restricted
to a linear function, the corresponding classification method is referred to as linear
classification. In this case, the hyperplane (w - x) + b = 0 partitions the R space into
two distinct regions, as illustrated in Figure 6.1(b). In contrast, nonlinear classification
allows for nonlinear decision functions g(x), leading to more complex decision boundaries.
Additionally, multi-class classification problems involve partitioning the data space into
more than two regions, each corresponding to a distinct class. However, our discussion

here is limited to linear binary classification.

80 80 80
70 + 70

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

(a) (®) (©)

Figure 6.1: Binary Classification

The chapter is organised such that the next section deals with the motivation and
contribution of the work. Section 6.3 presents the proposed scheme, Section 6.4 presents

the results, and the last section 6.5 concludes the chapter.
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6.2 Motivation and contribution

The advent of inexpensive digital storage, ubiquitous sensing devices, and the ever-
expanding web has facilitated the accumulation of vast amounts of unlabeled data,
which includes raw speech, images, text documents, and a myriad of other forms.
However, harnessing this data and the construction of supervised classifiers from such
data can be both a costly and time-consuming task. This process is not only tedious and
laborious but also demands a certain level of expertise. To alleviate these challenges,
active learning strategies can be employed. In active learning model, the selection of
initial data points to begin the learning plays a vital role in the further learning of the
model. In the next stages of the algorithm finding the most impactful data points is
necessary, these data points impact the overall performance of the algorithm.

In our contribution, we present two active learning algorithms that addresses the
above mentioned issues. The first algorithm name is ‘IncrementalActiveSVM’, which
addresses the issue of initial sample selection and impactful data points at the intermediate
stages. the second algorithm is ‘ActiveSVM’ which addresses initial sample selection,
impactful datapoints and also presents a novel model update method that is time

efficient.

6.3 Proposed scheme

The primary emphasis of this study revolves around addressing data classification

challenges associated with linearly separable data. We herewith propose two algorithms:

e IncrementalActiveSVM

o ActiveSVM

GeneralSVM is a classic SVM algorithm that is used for comparison. All these
algorithms classify the data linearly only when the dataset is linearly separable. All
of the above algorithms commence by partitioning the data into distinct training and
testing sets. In the case of the GeneralSVM algorithm, upon the data partitioning,
the Support Vector Machine (SVM) undergoes training using the designated training
dataset. Subsequently, the trained SVM is assessed on the test data. The parameters
estimated during the SVM training phase are then employed to compute both the
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accuracy and the duration expended in the training procedure. Here, “noOfSamples”
denotes the number of instances on which the SVM undergoes training. The GeneralSVM
algorithm corresponds to the standard SVM algorithm[32], as described in the preceding
section 1.3.8. The algorithm GeneralSVM() is outlined in Algorithm 18.

Algorithm 18: GeneralSVM()

Input: X e R™™ Y € {-1,1}"

Output: Accuracy, Time, No. of Samples

: Split the data into training and testing set;
model = SVM.fit(XTrain, yTrain);

Calculate Accuracy, and Time;

noOfSamples = len(XTrain);

Accuracy = accuracy(model.predict(XTest), yTest);
return Accuracy, Time, and noOfSamples;

Algorithm 19: generateSamples(X, method, nSamples)

Input:
X: Dataset
method : Name of the method to generate samples
nSamples : Number of points to be sampled.
Output: Returns nSamples number of coreset points indices
1: if (method == ‘Random’) then
2:  queryPoints = Generate nSamples random numbers in
the range(0, len(X));

3: else if (method == ‘kMeansPP’) then

4:  queryPoints = kMeansPP (X, nSamples);

5: else

6: queryPoints = coresetSamples(X, nSamples);
7: end if

8: Return queryPoints;

The issues that any active learning algorithm needs to address are:

e A careful approach to initial data points selection

e Prioritizing crucial data points that facilitate rapid model learning and

e Minimizing the computational burden of the model update function.
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We propose Incremental ActiveSVM an active learning algorithm that addresses
the first two concerns. The algorithm is outlined in Algorithm 20.

Initial Data Points Selection:

The efficacy of an active learning algorithm is notably affected by the initial samples
chosen for model training. The proposed algorithms employ three distinct techniques
for selecting initial samples: Random Sampling, Coreset Sampling, and kMeansPP
Sampling. Each of these methods adopts a unique approach to sampling the data points.
Algorithm generateSamples(), which is presented as Algorithm 19, is responsible for

selecting these initial samples.

Figure 6.2: IncrementalActiveSVM’s Traditional Update Function

The proposed IncrementalActiveSVM algorithm carefully chooses the initial
data points from the dataset using any of the three methods mentioned above for
training. The generateSamples() function takes the sampling method and the desired
number of samples as arguments. The supported sampling methods are ‘Random’,
‘Coreset’, and ‘kMeansPP’. Based on the specified sampling method, the function
selects the appropriate sampling strategy and returns the requested number of samples.
These samples serve as the initial training set for the SVM model. IncrementalActiveSVM’s
‘Random’ variant for initial sample selection is adopted from the literature. This variant
helps us to compare the proposed schemes and test their credibility. Once these samples
are chosen, the next step is to identify the data points that help the learning model to
learn quickly
Prioritizing Crucial Data Points:

For the purpose of clear understanding, the update method of Incremental ActiveSVM
is visually illustrated in Figure 6.2. The initial training set is depicted in Figure 6.2(a).
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From this set, initial data points are selected using one of the three specified methods.
These selected points are marked in green-filled rectangles and circles in Figure 6.2(b).
The SVM model is then trained on these green points, while the remaining untrained
points are represented by dashed empty circles and rectangles. Upon training the SVM
model on these initial samples, support vectors are identified, and the maximum margin
is determined. Figure 6.2(b) also displays the hyperplane, support vectors, and the
margin. Data points within the margin are identified, and among the untrained data
points, then ‘k’ points closest to the hyperplane are selected. Figure 6.2(b) illustrates
these ‘k’ closest points as orange-filled circles and rectangles inside the margin. If
the number of data points within the margin exceeds ‘k’, the ‘k’ points closest to the
separating hyperplane are chosen. If the number of data points falls between 0 and ‘k’
(non-inclusive), all data points are selected. If no data points lie within the margin, the
algorithm has successfully identified the exact hyperplane that accurately segregates
the data. In this scenario, the algorithm terminates. IncrementalActiveSVM algorithm
retains the traditional training and update procedures proposed in the literature. We
identify the ‘k’ nearest data points within the margin that are closest to the hyperplane
from the data points that are not used for training. The data points closest to the
hyperplane are added to the previous training set, forming the training set for the next
iteration. In the subsequent iteration, a new set of support vectors is identified, followed
by the determination of the maximum margin between these support vectors. Next,
the points closest to the new hyperplane within the margin are identified and added to
the existing training set. Finally, the SVM model is trained on this updated training
set. The motivation for naming the algorithm ’IncrementalActiveSVM’ is because of
the increased training dataset size at each iteration. A visual depiction of this approach
is illustrated in Figure 6.2.

This iterative process continues until one of the following termination criteria is

satisfied:
e Accuracy Threshold: The classification accuracy reaches 100%

e Accuracy Stagnation: The classification accuracy remains unchanged for the

past ten consecutive iterations.

e Training Set Size: The size of the training set exceeds a certain percentage of

the entire dataset.
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Algorithm 20: IncrementalActiveSVM()

Input: X e R Y € {-1,1}",count € Z
Output: Accuracy, Time, No. of Samples

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

: Split the data into training and testing set;
samples = generateSamples(’Random’,/’Coreset’ /’kMeansPP’, count);
noOfSamples = len(samples);
trainData.append ([XTrain[samples], yTrain[samples]|]);
model = SVM.fit(trainData);
supportVectors = model.support_vectors_;
while (Termination condition is met) do
marginPoints = Identify the data points inside the margin and not in
trainData;
if (marginPoints > k) then
queryPoints = Find k points that are closest to the hyperplane;
else if (0 > marginPoints < k) then
queryPoints = Select all points inside the margin;
else
break;
end if
trainData.append ([XTrain[queryPoints], yTrain[queryPoints]);
model = SVM. fit(trainData);
supportVectors = model.support_vectors_;
Calculate the accuracy.
end while
noOfSamples += len(trainData);
Calculate Accuracy, and Time;
return Accuracy, Time, and noOfSamples;

Attainment of any of the termination criteria or the absence of data points within

the margin indicates algorithm convergence. Upon convergence, the relevant performance

metrics are computed.

A significant drawback of the IncrementalActiveSVM algorithm is that in each

iteration, ‘k’ nearest data points to the hyperplane are appended to the training set,

and the entire training set is employed for training purposes. This iterative approach

leads to a continuous increase in the training set size with each iteration, consequently

escalating the SVM training time. Considering the computational workload, we expand

on the existing concept and propose a new algorithm to reduce the computational time.

We use this algorithm to establish a comparable environment.

The second algorithm that we propose is named as ‘ActiveSVM’. This algorithm
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Figure 6.3: Proposed Update Function

is exactly the same as IncrementalActiveSVM, except that the computational burden
is reduced. The ActiveSVM algorithm also works in an active learning environment. It
utilizes the three proposed sample initialization techniques, namely ‘random’, ‘kMeansPP’,
and ‘Coreset’, within this work to enhance the algorithm’s starting sample selection
capabilities and also propose novel training and update procedures. The ActiveSVM
algorithm emphasizes the significance and demonstrates the substantial performance
gains achieved by minimizing computational costs in large-scale data scenarios. Both
the IncrementalActiveSVM and the ActiveSVM algorithms showcase how the Initial
data point selection, prioritizing crucial data points, and minimizing the computational
burden are important, especially in active learning-based environments. A detailed
comparison of ActiveSVM and IncrementalActiveSVM’s performance is presented in
the following section. The proposed ActiveSVM works a bit differently from the
Incremental ActiveSVM algorithm at the model training and updation phase. ActiveSVM
depends on the same initial samples, and it incorporates novel SVM update functions.
The ActiveSVM algorithm is outlined in Algorithm 21.

ActiveSVM algorithm begins by partitioning the dataset for training and testing,
initial sample generation by any of the three methods, model training using the
initial data points, coefficient extraction, intercept determination, support vector
identification, margin calculation, and selection of the ‘k’ crucial data points closest
to the hyperplane. One of the motivations for including these novel initialization
methods in this algorithm is to establish a comparable environment for evaluation.
The update process of ActiveSVM is visualized in Figure 6.3. The initial dataset

with the decision boundary resulting after the update function is presented in Figure
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Algorithm 21: ActiveSVM()

Input: X e R Y € {-1,1}",count € Z
Output: Accuracy, Time, No. of Samples

1: Split the data into training and testing set;

2: samples = generateSamples('Random’,/’Coreset’/’kMeansPP’, count);

3: noOfSamples = len(samples);

4: trainData.append([XTrain[samples], yTrain[samples]]);

5: model = SVM.fit(trainData);

6: finalCoef, finallntercept = model.coef_, model.intecept_;

7. Identify the support vectors;

8: while (Termination condition is met) do

9:  Calculate the margin boundaries;

10:  marginPoints = Identify the data points that are not in trainData and within

the margin;
11:  if (marginPoints > k) then

12: queryPoints = Find k points that are closest to the hyperplane;
13:  else if (0 > marginPoints < k) then

14: queryPoints = Select all points inside the margin;

15:  else

16: break;

17:  end if

18:  noOfSamples += len(queryPoints);

19:  model = SVM.fit(XTrain[queryPoints], yTrain[XTrain[queryPoints]]);

20:  tempCoef, templntercept = model.coef_, model.intecept_;

21:  finalCoef += tempCoef;

22:  finallntercept += templntercept;

23:  Determine the support vectors corresponding to the finalCoef and
finallntercept;

24:  Calculate the accuracy using finalCoef and finallntercept.;

25: end while

26: Calculate Accuracy, and Time;

27: return Accuracy, Time, and noOfSamples;

6.3(a), while in Figure 6.3(b), the initial data points are highlighted with green-colored
rectangles and circles. Additionally, in Figure 6.3(b), the support vectors and the
separating plane corresponding to the initial points are also depicted.
Minimizing the Computational Burden:

The algorithm employs a more efficient approach by training the SVM solely on the
newly identified ‘k’ data points. These points are highlighted in orange. Utilizing

these newly selected points, we train a new SVM model. This process results in
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the determination of a new hyperplane, a new margin, and a new set of support
vectors. This selective training strategy significantly reduces the computational burden
compared to training the SVM on the entire training set. We then combine the old
coefficients and intercept obtained from the initial data points with the newly derived
coefficients and intercept from the ‘k’ nearest points. Following the training on the ‘k’
data points, the overall coefficient and intercept values are updated by incorporating
the newly obtained coefficients and intercept from the ‘k’-point training. This selective
training approach, coupled with efficient coefficient and intercept updates, contributes
to substantial time savings compared to traditional training methods. To acquire the

revised coeflicients and intercept, the subsequent update function is utilized:

tempCoef, templntercept = model.coef_, model.intecept_;
finalCoef + = tempCoef;

finallntercept + = templntercept;

The variables model.coef- and model.intercept_ represent the new coefficients and
intercept derived from SVM training using the ‘k’ data points. The global coefficients
and intercept are denoted by finalCoef and finallntercept, respectively.

Following the addition step, we recalculate the support vectors and margin associated
with the updated coefficients and intercept. Figure 6.3 illustrates this process visually.
Subsequently, in the next iteration, we identify the ‘k’ nearest data points closest to
the hyperplane within the newly established margin. A new SVM is trained using these
points, and their parameters are added to the existing parameters. The termination
conditions for the ActiveSVM algorithm are identical to those employed by the
Incremental ActiveSVM algorithm.

In the following section, we present and analyze the performance results obtained

from the three algorithms and their variants discussed in this section.

6.4 Results

This section presents the experimental findings obtained from conducting numerical

evaluations of the algorithms introduced in the preceding section. These algorithms
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were applied to nine datasets, with their names and dimensions detailed in Table
6.1[42]. The number of initial samples generated by the generateSamples algorithm for
each dataset is specified in Table 6.2. The number of initial samples was maintained
constant for all runs. To investigate the algorithms’ performance under limited initial
data conditions, the initial sample count was maintained constant. Although some
experiments employed a larger initial sample count, the algorithms converged rapidly
in these scenarios. For this study, the aim is to train with a minimal number of points;

hence, the initial dataset size is deliberately kept small and reasonable.

Table 6.1: Dataset Size

Dataset Name Dataset Size
Cod-rna 59535 % 8
germannumer 1000 x 24
diabetes 768 X 8
madelon 2000 x 500
gisette 6000 x 5000
mushrooms 8124 x 112
wla 2477 x 300
wla.t 47272 x 300
Skin_Nonskin 245057 x 3

All algorithms were executed five times, and the average values are presented in
the following tables. Table 6.3 presents the average time required to generate initial
samples for each dataset. The initial sample selection operation was performed only
once for all algorithms. As shown in Table 6.3, generating random samples consumed
significantly less time compared to other sampling techniques. It is understandable
that randomly generating locations within a data range is less time-consuming than
generating locations that are more crucial for rapid learner training. Coreset is the
second-best algorithm for sample selection, but as demonstrated in the subsequent
tables, the coreset method of generating samples is superior in other aspects as well.

The ‘kMeansPP’ algorithm consumes considerable time for sample generation due to

the need for distance computation at each stage. Even for smaller datasets, ‘kMeansPP’
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Table 6.2: Number of Initial Samples Selected for Each Dataset

Dataset Name Initial Sample Size
Cod-rna 100
germannumer 50
diabetes 50
madelon 100
gisette 50
mushrooms 100
wla 200
wla.t 200
Skin_Nonskin 1000

Table 6.3: Time Consumed to Generate Initial Samples

Dataset Name Method
Random Samples | kMeansPP | Coreset
Cod-rna 0.00012 114.84 0.8112
germannumer 0.000113 5.355 0.01402
diabetes 0.00011 3.9724 0.0139
madelon 0.00016 46.5546 0.0288
gisette 0.00011 101.54 0.2056
mushrooms 0.000142 174.82 0.0817
wla 0.00018 256.007 0.0345
wla.t 0.0002 513.14 0.5463
Skin_Nonskin 2.9325 751 2.255

incurred substantial time overhead. Table 6.4 presents a comprehensive comparison
of the accuracy achieved by each algorithm. One of the primary objectives of this
study was to attain the same accuracy as the ‘FullSVM’ algorithm while utilizing
a reduced amount of training data. When using the ‘Random Samples’ method in
‘Incremental ActiveSVM’, the accuracy matched that of ‘FullSVM’ in certain instances
while falling short in others. In a few cases, it even surpassed the ‘FullSVM’ accuracy.

Employing ‘kMeansPP’ for initial sample generation in ‘IncrementalActiveSVM’ led to
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successful accuracy attainment in most cases, with a few exceptions. When the ‘Coreset’
method was used for initial sample generation in ‘IncrementalActiveSVM’, accuracy
was achieved in all but two instances. For the proposed ‘ActiveSVM’ algorithm, the
‘Random Samples’ method resulted in accuracy attainment for a few datasets, while
the ‘kMeansPP’ method achieved accuracy for most datasets, falling short in only a
few cases and they remaining close to the target accuracy. The ‘Coreset’ method,
when used with the proposed algorithm, it consistently achieved the desired accuracy
and even exceeded for some datasets. In cases where accuracy was not achieved, the

proposed algorithm’s performance remained very close to the required accuracy.

Table 6.4: Accuracy Comparison

Dataset Name | Full SVM IncrementalActiveSVM ActiveSVM
Random Samples | kMeansPP | Coreset | Random Samples | kMeansPP | Coreset

Cod-rna 66.58 66.58 66.58 66.58 66.58 66.58 66.58

germannumer 70.5 70.5 73.5 75 71.5 71 75
diabetes 35.71 35.71 35.71 35.71 37.66 35.71 38.96
madelon 52.25 54.5 52 52.25 52.75 52.25 53.01
gisette 72.25 83.09 85.91 89.63 84.04 86.5 90.03
mushrooms 100 98.8 97.9 98.45 98.88 98.46 98.9
wla 91.9 91.33 92.86 94.02 87.02 91.8 93.75
wla.t 96.4 84.35 86.03 88.1 88.21 86.4 88.21
Skin_Nonskin 44.13 51.33 54.1 60.5 47.89 54.9 62.79

Table 6.5: Time Consumed by Each Method to Reach Accuracy

Dataset Name | Full SVM IncrementalActiveSVM ActiveSVM
Random Samples | kMeansPP | Coreset | Random Samples | kMeansPP | Coreset
Cod-rna 985.46 1593 32.5792 13.43621 7.6736 0.01506 7.7463
germannumer 0.5053 0.0836 0.5758 0.0586 0.0215 0.17 0.0335
diabetes 0.9208 0.0797 0.033 0.135 0.0245 0.0236 0.0312
madelon 10.5486 2.8161 2.7645 0.6912 0.6923 0.2684 0.6477
gisette 18.5088 192.867 249.5042 373.6551 2.1191 3.2852 1.4461
mushrooms 1.4822 1.2688 11.2346 0.748 2.3508 0.0318 0.0318
wla 0.2891 4.061 1.5031 2.5334 0.5855 0.0873 0.1786
wla.t 20.441 4.2883 1.2498 4.7684 3.5285 0.0149 3.5285
Skin_Nonskin 8.5hrs 524.621 549.153 359.197 240.5825 315.451 126.2887

Visual representations of the accuracy comparisons are presented in Figure 6.4.
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Figure 6.4: Accuracy Comparison

Table 6.5 summarizes the average time required for each method to achieve the accuracy
attained by ‘FullSVM’, and the time taken by ‘FullSVM’ itself is presented in Table
6.5. Time comparisons for all algorithms are provided in seconds unless otherwise
explicitly stated in the tables. It is evident that the ActiveSVM algorithm consumes

significantly less time than the other algorithms used for comparison. Notably, the
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‘Coreset’ sampling method emerges as the superior algorithm in terms of both time
efficiency and accuracy. The ActiveSVM approach utilizing ‘kMeansPP’ also demonstrates
admirable accuracy performance, though it falls slightly behind the ActiveSVM ‘Coreset’
method. Further analysis of the combined ”time required for initial sample generation”
and subsequent ”accuracy attainment” reveals substantially longer durations for ‘kMeansPP’-
related algorithms. In some instances, these algorithms even exceeded the time consumed
by the ‘FullSVM’ algorithm. ‘Random sampling’ algorithms exhibit superior time
performance compared to ‘kMeansPP’. All ‘Coreset’-based algorithms consistently generate
samples efficiently and achieve accuracy faster, as demonstrated in Table 6.6.

Table 6.7 presents the number of samples required to achieve the desired accuracy.
Achieving high accuracy with fewer data samples is a crucial objective of active learning,
and it is also a primary goal of our work, as mentioned earlier. The sample count
is presented in Table 6.7, and it is observed that the ActiveSVM approach using
‘Random Samples’ and ‘Coreset’-based sampling effectively selects samples that enable
the learner to learn rapidly. Other methods sometimes require a smaller or even
significantly higher number of data points. Figure 6.6 illustrates the number of samples
required for each algorithm using a bar graph. Plotting these values directly results in

a visually unappealing bar graph; therefore, the graph is plotted on a logarithmic scale.

Table 6.6: Time Required to Produce Initial Samples and Achieve the Accuracy

Execution Time
Algorithm — Full SVM | IncrementalActiveSVM ActiveSVM
Dataset Name| | Init Method — | Random Samples | kMeansPP | Coreset | Random Samples | kMeansPP | Coreset
Cod-rna 985.46 1593.00012 147.4192 14.24741 7.67372 114.85506 8.5575
germannumer 0.5053 0.083713 5.9308 0.07262 0.021613 5.525 0.04752
diabetes 0.9208 0.07981 4.0054 0.1489 0.02461 3.996 0.0451
madelon 10.5486 2.81626 49.3191 0.72 0.69246 46.823 0.6765
gisette 18.5088 192.86711 351.0442 373.8607 2.11921 104.8252 1.6517
mushrooms 1.4822 1.268942 186.0546 0.8297 2.350942 174.8518 0.1135
wla 0.2891 4.06118 257.5101 2.5679 0.58568 256.0943 0.2131
wla.t 20.441 4.2885 514.3898 5.3147 3.5287 513.1549 4.0748
Skin_Nonskin 8.5hrs 527.5535 1300.153 361.452 243.515 1066.451 128.5437

The convergence time for each algorithm is detailed in Table 6.8, with time consumption
presented in seconds, except for a few datasets where time is noted in hours. The

convergence time presented in Table 6.8 is equivalent to the time the algorithm has
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Table 6.7: Number of Samples Required to Reach Accuracy

Dataset Name | Full SVM Incremental ActiveSVM ActiveSVM
Random Samples | kMeansPP | Coreset | Random Samples | kMeansPP | Coreset

Cod-rna 47628 1450 1250 1150 1150 1100 1150
germannumer 800 100 264 100 50 227 100
diabetes 614 150 150 100 90 88 69
madelon 1600 500 449 200 450 149 200
gisette 4800 1350 1200 1500 50 1597 250
mushrooms 6499 350 2052 200 1300 150 150
wla 1981 650 542 550 300 220 300
wla.t 37817 550 399 400 400 399 400

Skin_Nonskin 196045 23356 34124 17750 11500 18429 13750

Table 6.8: Time Consumed to Converge

Dataset Name | Full SVM IncrementalActiveSVM ActiveSVM

Random Samples | kMeansPP | Coreset | Random Samples | kMeansPP | Coreset

Cod-rna 985.46 3985.7512 325.2159 261.985 35.642 23.431 16.1346
germannumer 0.5053 0.5275 0.6169 0.3712 0.1656 0.2166 0.1582
diabetes 0.9208 1.9743 8.0051 0.6599 0.1805 0.1983 0.2227
madelon 10.5486 3.0931 3.582 3.1243 0.7827 0.6622 1.6951
gisette 18.5088 249.142 355.2526 404.988 4.6675 3.568 3.9496
mushrooms 1.4822 36.0748 11.5306 26.1652 3.2968 2.3601 0.4242
wla 0.2891 4.5285 2.5689 3.7941 0.6163 0.1285 0.1941
wla.t 20.441 9.6458 2.9584 9.2145 3.8338 5.9567 6.9417
Skin_Nonskin 8.5hrs 3.31hrs 5.5hrs 2.42hrs 584.67 1.52hrs 0.37hrs

taken to terminate. Our observations reveal that ‘FullSVM’ and all ‘Incremental ActiveSVM’
variants require significantly longer convergence times. All variants of the ActiveSVM
algorithm exhibit significantly shorter convergence times compared to all other algorithms
used for comparison. Notably, the ‘Coreset’-based sampling method within the ActiveSVM

approach consistently demonstrates the fastest convergence among all algorithms.

6.5 Conclusions

In this work, we introduce two innovative variations of initial sample generation algorithms
for active learning utilizing SVM. Additionally, we present a novel model update

technique aimed at reducing SVM training time. Also, we provide strategies to select
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Figure 6.5: Number of Samples Comparison, Presented in log scale

query points. Our results demonstrate that the proposed algorithms achieve the required
accuracy with fewer data samples and in less time. This study demonstrates that the
novel initial sample generation method accelerates the learning process of the machine

learning model.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we focused on the design of classification algorithms, which is one of
the important research areas in the domain of Data Science and Machine Learning.
We address the challenges while designing classification algorithms and proposed five
classification algorithms each addressing different issues.

First, in Chapter 3, we introduced two algorithms: one to find nearest neighbors
and the other for classification. Initially, we proposed an approach to find nearest
neighbors for a given query point and later another algorithm for classifying a given
query point. We introduced a hybrid algorithm that leveraged a lightweight coreset to
sample points for K-Means clustering, thus speeding up the process of identifying k-
nearest neighbors. This approach was shown to be computationally efficient compared
to traditional methods. In the same chapter, we built a KD-Tree on the lightweight
coreset and then used the tree to classify the test data. This algorithm was compared
with contemporary algorithms and shown to be efficient in terms of time and to
outperform them in classification.

In Chapter 4, we proposed a Low-rank binary matrix approximation scheme which
is used for classification. This algorithm is designed to find approximation for a given
binary matrix. The existing binary matrix approximation algorithms solve the problem
in exponential time. In this work we achieved the similar results in polynomial time
using singular value decomposition as an underlying algorithm. While Singular Value

Decomposition (SVD) offers a theoretical polynomial-time solution, its limitations for
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7. CONCLUSIONS AND FUTURE WORK

binary data pose practical challenges. Our approach ingeniously integrates SVD within
a binary factorization framework, yielding reasonable results despite these limitations.

Chapter 5 presented a novel online classification algorithm. Unlike traditional
batch learning methods, this algorithm handles data streams, where instances arrive
sequentially. The online setting presents unique challenges due to limited data availability
and the need for continuous model updates. To address these issues, the proposed
algorithm extends the classic winnow algorithm. Unlike the original version, which
neglects individual data points for model updates and suffers from slow convergence,
our modified approach incorporates data points effectively and achieves efficient model
updates. Experimental results demonstrate the algorithm’s better performance in terms
of both time efficiency and accuracy. Additionally, we evaluate the algorithm’s error
rate during the learning process.

Chapter 6 introduced two novel active learning algorithms based on support vector
machines. These algorithms tackled key challenges in active learning, including initial
data point selection, crucial data point identification, and model update efficiency.
The IncrementalActiveSVM algorithm addressed the first two challenges, while the
ActiveSVM algorithm addressed all three. We proposed innovative methods like coresets
and kMeansPP for selecting initial data points, a novel update method to reduce
computational overhead, and use k-nearest neighbors to the classifier for training in
subsequent SVM iterations. Our experimental results demonstrate significant improvements

in both time and accuracy.

7.2 Future Scope

There are many interesting directions in which the research work presented in this
thesis can be carried out in the future. In the initial two algorithms, building KD-Tree
for higher dimansional data is more complex and time consuming because KD-Tree
suffers from curse of dimensionality. If data can be reduced in length and dimensions
then results can be achieved in mush less time. The CKD-Tree gives good results
on the experimented datasets. The probability distribution used here is based on the
variance of data. Consequently this approach might not perform well on noisy or
locality sensitive data. In the online phase of the algorithm, implementation of a more

robust and faster search technique could also be useful. LRBMA algorithm doesn’t
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7.2 Future Scope

address the issues like which statistic to choose? to what depth? how to find a limit
for a cluster?. Finally, revisiting winnow, and ActiveAVM algorithms assume that the
data is linearly separable, these algorithms can be extended to explore its behavior in

multiclass classification tasks.
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Nearest Neighbors via a Hybrid ®)
Approach in Large Datasets: A Speed up | &

Y. Narasimhulu, Raghunadh Pasunuri, and V China Venkaiah

Abstract A Spatial data structure such as kd-tree is a proven data structure in
searching Nearest Neighbors of a query point. However, constructing a kd-tree for
determining the nearest neighbors becomes a computationally difficult task as the size
of the data increases both in dimensions and the number of data points. So, we need
a method that overcomes this shortcoming. This paper proposes a hybrid algorithm
to speed up the process of identifying k-nearest neighbors for a given query point
q. The proposed algorithm uses lightweight coreset algorithm to sample K points.
These points are then used as a seed to the K-Means clustering algorithm to cluster
the data points. The algorithm finally determines the nearest neighbors of a query
point by searching the clusters that are closest to the query point. While analyzing
the performance of the proposed algorithm, the time consumed for constructing
the coreset and K-Means algorithms is not taken in to account. This is because
these algorithms are used only once. The proposed method is compared with two
existing algorithms in the literature. We called these two methods as “general or
normal method” and “without using coresets”. The comparative results prove that
the proposed algorithm reduces the time consumed to generate kd-tree and also
K-Means clustering.
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CKD-TREE: AN IMPROVED KD-TREE CONSTRUCTION

ALGORITHM

Y Narasimhulu®, Ashok Suthar?, Raghunadh Pasunuri® and V China Venkaiah®

4SCIS, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, 500046, India
bCSE, Malla Reddy Engineering College(Autonomous), Maisammaguda(H), Gundlapochampally Village, Medchal Mandal,

Medchal-Malkajgiri District, Telangana State, 500100, India

Abstract

Data structures such as VP-Tree, R-Tree and KD-Tree builds an index of all the data available in the offline phase and uses
that indexed tree to search for and answer nearest neighbor queries or to classify the input query. We use a Lightweight
Coreset algorithm to reduce the actual data size used to build the tree index, resulting in a faster index building time. We
improve on already available Nearest Neighbor based Classification techniques and pit our classification method against the
widely accepted, state of the art data structures such as VP-Tree, R-Tree and KD-Tree. In terms of speed the proposed method
out performs the compared data structures, as the size of the data increases.

Keywords
KD Tree, Coresets, Nearest Neighbor, Classification.

1. Introduction

k-Nearest Neighbor (kNN) problem refers to the prob-
lem of finding k points or samples in the data which
are closest to the query point. Nearest Neighbor al-
gorithm finds its use in several machine learning ar-
eas, such as classification and regression and is also
the most time-consuming part of these applications.
In different use cases such as in recommendation sys-
tems, computer vision and robotics etc, fast response
times are critical and using brute force approaches such
as linear search is not feasible. Hence there are sev-
eral approaches to solve these Nearest Neighbor prob-
lems which are based on Hashing, Graphs or Space-
Partitioning Trees. Space-partitioning methods are gen-
erally more efficient due to less tunable parameters.
One such algorithm is KD-Tree. It is a space parti-
tioning algorithm which divides space recursively us-
ing a hyper-plane based on a splitting rul. It reduces
the search space by almost half at every iteration. An-
other space partitioning algorithm is Vantage Point Tree
(VP-Tree)[1], which divides the data in a metric space

ISIC 2021: International Semantic Intelligence Conference, February
25-27, 2021, New Delhi, India
0 narasimedu@gmail.com (Y. Narasimhulu);
ashok.suthar.sce@gmail.com (A. Suthar);
raghupasunuri@gmail.com (R. Pasunuri); venkaiah@hotmail.com
(V.C. Venkaiah)
0 https://github.com/Narasim (Y. Narasimhulu);
https://www.linkedin.com/in/ashok-suthar (A. Suthar);
http://cse.mrec.ac.in/StaffDetails?Facultyld=3072 (R. Pasunuri);
https://scis.uohyd.ac.in/People/profile/vch_profile.php (V.C.
Venkaiah)
@ 0000-0001-5440-0200 (V.C. Venkaiah)
Commons Hoarie Arrbaion 80 nermationsl BV 80,

=] CEUR Conference Proceedings (CEUR-WS.org)

by selecting a position in the space called vantage point
and partitions the data into two parts. The first part
contains data that are closer to vantage point and the
other part which are not closer to the point. The di-
vision process continues until there are smaller sets.
Finally a tree is constructed such that the neigbors in
the tree are also neigbors in the real space. R-Tree[2]
is another data structure that is most commonly used
to store spatial objects such as location of gas stations,
restaurants, outlines of agricultural lands and etc.

In this paper we consider kNN for classification, where
nearest neighbors of a query point in the dataset are
used to classify the query point. Nearest neighbor in
essence is a lazy learning algorithm, i.e. it memorizes
the whole training dataset to provide the nearest neigh-
bors of an incoming query point. Consequently, though
the algorithms provide very efficient solutions to the
nearest neighbor problem, they might run into prob-
lems. This is because data size becomes too large due
to the high magnitudes of data available today to pro-
cess. In critical systems where time is of essence, loos-
ing even a few seconds while processing all that data
might cause issues. The author in [3] uses SVM to
tackle a similar problem by reducing the size of data
on which Nearest Neighbor algorithm runs. We use
coresets for a similar effect, but on very large datasets.

The concept of coresets follows a data summariza-
tion approach. Coresets are small subsets of the orig-
inal data. They are used to scale clustering problems
in massive data sets. Models trained on Coresets pro-
vide competitive results against a model trained on full
original dataset. Hence these can be very useful in
speeding up said models while still keeping up theorit-
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Revisiting Winnow: A modified online feature selection
algorithm for efficient binary classification
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Winnow is an efficient binary classification algorithm that effectively learns
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from data even in the presence of a large number of irrelevant attributes. It
is specifically designed for online learning scenarios. Unlike the Perceptron
algorithm, Winnow employs a multiplicative weight update function, which
leads to fewer mistakes and faster convergence. However, the original Win-
now algorithm has several limitations. They include, it only works on binary
data, and the weight updates are constant and do not depend on the input fea-
tures. In this article, we propose a modified version of the Winnow algorithm
that addresses these limitations. The proposed algorithm is capable of handling
real-valued data, updates the learning function based on the input feature vec-
tor. To evaluate the performance of our proposed algorithm, we compare it with
seven existing variants of the Winnow algorithm on datasets of varying sizes. We
employ various evaluation metrics and parameters to assess and compare the
performance of the algorithms. The experimental results demonstrate that our
proposed algorithm outperforms all the other algorithms used for comparison,
highlighting its effectiveness in classification tasks.

KEYWORDS

binary classification, feature selection, modified Winnow, online learning, Winnow algorithm

1 | INTRODUCTION

classification task is to train a model that can accurately
classify new, unseen data points into the appropriate

Binary classification is a fundamental task in statistics
and machine learning, where data points are assigned to
one of two distinct classes. The labels associated with the
data points come from a set containing two different ele-
ments, usually labeled as {0, 1} or {—1, 1}. For instance, in
the context of email classification, the task is to determine
whether an email is classified as spam or ham. In this
scenario, the model predicts whether an email falls into
the category of spam or ham. Generally, the binary clas-
sifier learns a linear threshold function, which enables it
to make decisions. This function separates the data points
into the two classes by drawing a linear or a nonlinear
boundary in the feature space. The objective of the binary

class based on their features or attributes. Most widely
used binary classification algorithms are support vector
machines [1], which tries to place the classifier such that
it maximizes the distance from the two classes of the
labeled points, Gradient Boosting [2, 3] is an ensembling
algorithm that build models sequentially and these sub-
sequent models try to reduce the errors of the previous
model, Random Forest [4] which is a combination of tree
predictors such that each tree depends on the values of a
random vector sampled independently and with the same
distribution for all trees in the forest, Neural Networks
[5] which is a multilayered regression containing layers
of weights, biases, and nonlinear functions that reside

Stat Anal Data Min: The ASA Data Sci Journal. 2024;17:€11707.
https://doi.org/10.1002/sam.11707
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