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Abstract

Classification is a fundamental task in supervised machine learning where

the goal is to assign input data points to one of several predefined categories

or classes. During classification, a model undergoes training on a labeled

dataset, wherein each data point is linked with a class label. The machine

learning model learns patterns and relationships in the input features to

make predictions about the class labels of unseen data. Some of the primary

challenges that one encounters during classification tasks are, they often

require considerable time to execute, high dimensionality, datasets of significant

size, The data is not always numeric. Sometimes data could be Binary,

Image, Ordinal etc., Considering these challenges, we have designed five

algorithms which addresses various issues in performing classification. These

algorithms address the mentioned challenges.

In the initial two approaches, we propose classification algorithms based

on coresets. The first approach introduces a hybrid algorithm aimed at

accelerating the identification of the 𝑘-nearest neighbors for a given query

point 𝑞 using Lightweight Coreset algorithm. The second proposed scheme

also uses the Lightweight Coreset algorithm to reduce the actual data size

to be used to build the tree index, resulting in a faster index building time.

We improve on already available Nearest Neighbor based Classification

techniques and compare our classification method against the widely accepted,

state of the art data structures such as VP-Tree, R-Tree and KD-Tree.

Next, we propose a scheme that classifies the data when it is binary in

nature and has high dimensions. We propose a low-rank binary matrix

approximation algorithm that finds relevant attributes for classification

task. Given a binary matrix 𝐴 low-rank binary matrix approximation is to

find a matrix 𝐴′ such that it’s rank is less than or equal to a given constant.
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We use this matrix to classify the given query 𝑞. Several algorithms exist

in the literature to solve this problem. Some of these are exponential

in time complexity. We try to achieve the similar results in polynomial

time complexity. As an application to the proposed algorithm Autism

Spectrum Disorder Detection problem is considered. Most of the machine

learning algorithms assume the data to be available in complete when the

model is learning from the data. The situation occurs when the data is

available as a stream of data. We propose a modified version of the Winnow

algorithm designed for online learning scenarios. The proposed algorithm is

capable of handling real-valued data, updates the learning function based

on the input feature vector. Situation occurs when there is vast amount of

data, and also out of which has less labeled data. Constructing supervised

classifiers from such data can be both a costly and time-consuming. Active

learning is a particularly useful machine learning technique in domains

where labeled data is scarce and expensive to obtain. We propose two

algorithms, “IncrementalActiveSVM” and “ActiveSVM”, to address issues

such as selecting the initial labeled data samples that the model will use

to begin learning, selecting samples at intermediate stages of the learning

process, and slow model updating. We propose two novel data initialization

techniques based on K-means++ and coresets, an uncertainty sampling

method, and a new SVM model update method applied at each iteration

of the learning process. All proposed algorithms were evaluated on diverse

datasets. Experimental results demonstrate the superiority of our algorithms

over both traditional and contemporary approaches across various performance

metrics.
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Chapter 1

Introduction

In Computational Geometry, objects considered are set of points in Euclidean space.

Collection of points in a higher-dimensional space is called multidimensional data,

that represent locations and objects in space. Representing multidimensional data

and accessing is an important issue in various fields that include computer graphics,

computer vision, computational geometry, image processing, machine learning, pattern

recognition and more. Number of different representations and methods for accessing

multidimensional data were proposed[125]. Some of these include, Inverted Lists[76],

Fixed Grid[17], Quad Tree[43], PR Quad-tree[117], EXCELL[136], Grid File[115].

Machine learning algorithms use multidimensional data to solve problems like classifying

the data, predicting the values of dependent variables, infering new knowledge, finding

nearest neighbors in a range, and suggesting products to customers. These algorithms

can be classified into 6 categories:

1. Supervised learning algorithms: These algorithms are given a training set of

examples with the correct answers. These algorithms infer new knowledge from

the data. This kind of learning is also called as learning from examples. Example

algorithms are Find-S, List-then-eliminate, Candidate Elimination, Regression,

and Classification.

2. Unsupervised learning algorithms: These algorithms are given a training

set of examples with no responses, but instead the algorithm tries to identify

commonalities between the inputs so that inputs that have something similar are

categorized together. One example is clustering by 𝐾-Means algorithm.

1



1. INTRODUCTION

3. Reinforced learning algorithms: They are told only when the answer is wrong

but not how to correct it. The algorithm has to find out a way to get the answer

right. These algorithms are always monitored and the answers are scored.

4. Evolutionary learning algorithms: They work on an idea of 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠, which

corresponds to a score for how good the current solution is. Genetic algorithm is

an example of evolutionary learning.

5. Online Learning: In the online learning scenario, there are multiple rounds

comprising training and testing phases. During each round, the learner is presented

with an unlabeled training point, predicts its label, receives the true label, and

experiences a loss. The primary goal in the online setting is to minimize the

cumulative loss incurred across all rounds.

6. Active Learning: The learner dynamically acquires training examples through

interaction, typically by querying an oracle to request labels for new points.

The aim in active learning is to attain a level of performance similar to that

of the standard supervised learning scenario, but with a fewer number of labeled

examples.

The next section will delve into various techniques and methodologies employed in

classification tasks, laying the foundation for the detailed discussion of the research

work in this domain.

1.1 Classification

Classification is a fundamental task in supervised machine learning where the goal is to

assign input data points to one of several predefined categories or classes. During

classification, a model undergoes training on a labeled dataset, wherein each data

point is linked with a class label. The machine learning model learns patterns and

relationships in the input features to make predictions about the class labels of unseen

data.

Classification in machine learning can be categorized into several types based on

various factors. Some common classification types include:

2



1.1 Classification

Binary Classification: In binary classification, the task involves classifying instances

into one of two classes or categories. Examples include spam detection (spam or not

spam), disease diagnosis (positive or negative), and sentiment analysis (positive or

negative sentiment).

Multi-class Classification: In multi-class classification, the task involves classifying

instances into one of more than two classes. Each instance can belong to only one class.

Examples include image recognition (classifying images into different categories such

as cat, dog, bird, etc.) and document classification (categorizing documents into topics

like politics, sports, technology, etc.).

Multi-label Classification: In multi-label classification, each instance can belong

to multiple classes simultaneously. This type of classification is common in tasks where

instances can have multiple labels. Examples include tagging images with multiple

labels (e.g., person, dog, beach) and categorizing news articles with multiple topics

(e.g., politics, economy, sports).

Imbalanced Classification: In imbalanced classification, the distribution of classes

in the dataset is highly skewed, with one class significantly outnumbering the others.

This can pose challenges for traditional classification algorithms, as they may tend to

favor the majority class. Techniques such as resampling, class weighting, and anomaly

detection are often used to address class imbalance.

Hierarchical Classification: In hierarchical classification, classes are organized

into a hierarchical structure or taxonomy, where each class may have sub-classes.

The goal is to predict the most specific class label possible based on the available

information. Examples include species classification in biology (e.g., kingdom, phylum,

class, order, family, genus, species) and product categorization in e-commerce (e.g.,

electronics → smartphones → iPhones).

Ordinal Classification: In ordinal classification, classes have a natural ordering

or ranking. The task involves predicting the order or ranking of instances among the

classes. Examples include customer satisfaction surveys (poor, fair, good, excellent)

and movie ratings (1 star, 2 stars, 3 stars, etc.).

In this study, we undertake both binary classification and multi-class classification

tasks. Consequently, our focus is confined to these specific categories.

3



1. INTRODUCTION

1.1.1 Binary Classification

Binary classification is a fundamental task in machine learning, where data points are

assigned to one of two distinct classes. The labels associated with the data points

come from a set containing two different elements, such as {0, 1} or {-1, 1}. For

instance, in the context of email classification, the task is to determine whether an

email is classified as spam or ham. In this scenario, the machine learning model

predicts whether an email falls into the category of spam or ham. The linear binary

classifier learns a linear threshold function, which enables it to make decisions. This

function separates the data points into the two classes by drawing a linear boundary

in the feature space. The objective of the binary classification task is to train a model

that can accurately classify new, unseen data points into the appropriate class based

on their features or attributes. Most widely used binary classification algorithms in

machine learning are support vector machines[32], which tries to place the classifier

such that it maximizes the distance from the two classes of the labelled points, Gradient

Boosting[48][29] is an ensembling algorithm that build models sequentially and these

subsequent models try to reduce the errors of the previous model, Random Forest[22]

which is a combination of tree predictors such that each tree depends on the values of

a random vector sampled independently and with the same distribution for all trees in

the forest, Neural Networks[124] which is a multilayered regression containing layers of

weights, biases, and nonlinear functions that reside between input variables and output

variables. Additionaly, one of our work[111], uses nearest neighbors and clustering for

binary classification, and also [112] proposed a coreset based Kd-Tree to binary classify

the data.

In order to achieve optimal results, most of the machine learning algorithms typically

require all the available features. However, not all features contribute equally to

the classification task. Some features may hold more relevance and usefulness in the

classification process compared to others. As a result, the identification of prominent

features that significantly contribute to the classification has become increasingly important.

This process is also called as feature selection. Feature selection is a crucial step in

machine learning, where the objective is to select a subset of features that are most

relevant and informative from a larger set of available features. The main goal of feature

selection is to identify the subset of features that have the strongest influence on the

4



1.1 Classification

predictive power of a machine learning model. By carefully choosing the most relevant

features, feature selection helps enhance model performance, reduce overfitting, enhance

interpretability, and decrease computational complexity. There are two types of feature

selection models: filter models and wrapper models. In filter models, each feature

or a subset of features is evaluated based on a specific criterion to determine their

relevance for classification tasks. Common criteria used in filter models include the

Gini Index, Entropy, Lasso, and Fisher’s Index. On the other hand, wrapper models

treat feature selection as a search problem, where different combinations of features

are created, evaluated, and compared against each other. The algorithm is trained

iteratively using different subsets of features in the search space to identify the optimal

feature subset. So, this problem is equivalent to subset selection problem, which is NP-

hard. Hence we need a polynomial time algorithm, and we present one such algorithm

in chapter 5.

Apart from feature selection, there are feature extraction algorithms which transform

the original features into a new set of features that are more informative and compact.

Feature extraction techniques aim to map the original feature space to a lower-dimensional

feature space. Popular examples of feature extraction techniques include Principal

Component Analysis(PCA)[94], Linear Discriminant Analysis(LDA)[148], and Canonical

Correlation Analysis(CCA)[56]. Feature selection and feature extraction are considered

as dimensionality reduction techniques.

One challenge with the aforementioned methods and algorithms is that they typically

assume the availability of the complete dataset before the learning process begins. In

this type of computing, data is supplied to the algorithm as a whole or in batches.

When the entire training data is given at once to the learner, it is referred to as batch

processing. In batch processing:

� The learner is trained on the entire dataset in one go, allowing it to potentially

capture complex patterns and relationships.

� It requires significant computational resources since all the data needs to be loaded

into memory during training.

� It requires collecting and preprocessing the entire dataset before training, which

means that the model cannot be updated in real-time as new data arrives.

5



1. INTRODUCTION

� The entire dataset is known in advance, batch learning models generally offer

stable and reproducible results.

However, in certain scenarios, data may arrive in a streaming fashion. In such

cases, the above mentioned methods may not be directly applicable. Therefore, it

becomes necessary to develop methods or algorithms that can process streaming data

in real-time. These algorithms are called as online learning algorithms.

1.1.2 Multi-class Classification

Multi-class classification is a type of classification problem where the task involves

classifying instances into one of more than two classes or categories. Each instance is

assigned a single class label from a predefined set of multiple possible classes. Unlike

binary classification, where there are only two possible classes, multi-class classification

deals with scenarios where there are three or more distinct classes.

In multi-class classification:

Number of Classes: There are more than two classes in the dataset, and each

instance belongs to one and only one of these classes.

Single Label Assignment: Each instance is assigned a single class label from the

set of multiple classes. This means that an instance cannot belong to multiple classes

simultaneously.

In this study, we undertake both binary classification and multi-class classification

tasks. Consequently, our focus is confined to these specific categories. Chapter 4 is

dedicated to multiclass classification algorithms; wherein, we present two coreset based

algorithms that classify data. Chapter 5, 6, and 7 are dedicated to binary classification.

Here we propose three binary classification algorithms.

1.2 Contributions of the Thesis

Some of the primary challenges that one encounters during classification tasks include:

� Time: Classification algorithms often require considerable time to execute.

� High Dimensionality: Dataset containing too many features which contribute very

less for classification.

6



1.2 Contributions of the Thesis

� Data Availability: Data is available as a continuous stream and not as a batch.

� Large Datasets: Challenges arise when dealing with datasets of significant size,

making classification challenging.

� Data Type: The data is not always numeric. Sometimes data could be Binary,

Image, Ordinal etc.,

Major contributions of the thesis is that we have designed five algorithms which

addresses various issues in performing classification. These algorithms address the

above mentioned challenges and show that the proposed algorithms are better than the

contemporary algorithms.

In the initial two approaches, we propose classification algorithms based on coresets.

The first approach introduces a hybrid algorithm aimed at accelerating the identification

of the 𝑘-nearest neighbors for a given query point 𝑞. Using the information obtained

from these neighbors, 𝑞 is classified. In order to reduce the time to search for the

nearest neighbors the data is divided into clusters by using K-Means algorithm. K-

Means algorithm takes more time to converge if the initial data points are not chosen

properly. The proposed algorithm uses light-weight coreset algorithm to sample 𝐾

points. These points are then used as a seed to the 𝐾-Means clustering algorithm to

cluster the dataset. Once the clusters are formed the nearest neigboring cluster for the

query point is chosen to search. The search time is further reduced by constructing a kd-

tree using the data points in the cluster. The algorithm finally determines the nearest

neighbors of a query point by searching the kd-tree to the query point and then classify

it. While analyzing the performance of the proposed algorithm, the time consumed

for constructing the coreset and 𝐾-Means algorithms is not taken in to account. This

is because these algorithms are used only once. The proposed method is compared

with the existing algorithms in the literature. The comparative results prove that the

proposed algorithm that uses nearest neighbors reduces the time to classify the query

point.

Data structures such as VP-Tree, R-Tree and KD-Tree builds an index of all the

data available in the offline phase and uses that indexed tree to search for and answer

nearest neighbor queries or to classify the input query. The second proposed sheme uses

the Lightweight Coreset algorithm to reduce the actual data size to be used to build the
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tree index, resulting in a faster index building time. We improve on already available

Nearest Neighbor based Classification techniques and pit our classification method

against the widely accepted, state of the art data structures such as VP-Tree, R-Tree

and KD-Tree. In terms of speed the proposed method out performs the compared data

structures, as the size of the data increases.

Next, we propose a scheme that classifies the data when it is binary in nature and has

high dimensions. We propose a low-rank binary matrix approximation algorithm that

finds relevant attributes for classification task. Low-rank binary matrix approximation(LRBMA)

is a special case of matrix approximation. LRBMA is, in general, a NP-Hard problem.

Given a binary matrix 𝐴 low-rank binary matrix approximation is to find a matrix 𝐴′

such that it’s rank is less than or equal to a given constant. We use this matrix to classify

the given query 𝑞. Several algorithms exist in the literature to solve this problem.

Some of these are exponential in time complexity. We try to achieve the similar

results in polynomial time complexity. As an application to the proposed algorithm

Autism Spectrum Disorder Detection problem is considered. Results show that the

proposed algorithm is comparable to the existing algorithms that have exponential

time complexity.

Most of the machine learning algorithms assume the data to be available in complete

when the model is learning from the data. But, this is not true in all the situations. The

situation occurs when the data is available as a stream of data. Winnow is an efficient

binary classification algorithm that effectively learns from data even in the presence of

a large number of irrelevant attributes. It is specifically designed for online learning

scenarios. Unlike the perceptron algorithm, Winnow employs a multiplicative weight

update function, which leads to fewer mistakes and faster convergence. However, the

original winnow algorithm is designed only for binary data. Also, it has a limitations

in that the weight updates are constant and do not depend on the input features. In

this work, we propose a modified version of the Winnow algorithm that addresses these

limitations. The proposed algorithm is capable of handling real-valued data, updates

the learning function based on the input feature vector. To evaluate the performance

of our proposed algorithm, we compare it with seven existing variants of the Winnow

algorithm on datasets of varying sizes. We employ various evaluation metrics and

parameters to assess and compare the performance of the algorithms. The experimental

8
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results demonstrate that our proposed algorithm outperforms all the other algorithms

used for comparison, highlighting its effectiveness in classification tasks.

Situation occurs when there is vast amount of data, and also out of which has

less labeled data. Constructing supervised classifiers from such data can be both

a costly and time-consuming. This process is not only tedious and laborious but

also requires certain level of expertise. We propose a active learning algorithm in

overcoming these issues. Active learning is a particularly useful machine learning

technique in domains where labeled data is scarce and expensive to obtain. One of

the most common applications of active learning is data classification, where it can

be used to accelerate the training of classification models by strategically selecting

the most informative samples from the unlabeled data. However, active learning faces

several challenges. One challenge is selecting the initial labeled data samples that

the model will use to begin learning. Poor initial sample selection can hinder the

model’s performance and lead to time and cost inefficiencies. Another challenge is

selecting samples at intermediate stages of the learning process. The efficiency of

model updating also plays a pivotal role in the overall process. Slow model updating

prolongs the number of iterations to converge, leading to an inefficient learning model.

We propose two algorithms, “IncrementalActiveSVM” and “ActiveSVM”, to address

the aforementioned challenges within the active learning environment. We propose two

novel data initialization techniques based on K-means++ and coresets, an uncertainty

sampling method, and a new SVMmodel update method applied at each iteration of the

learning process. The IncrementalActiveSVM algorithm has initialization and sampling

techniques similar to the other proposed algorithm but incorporates a general model

update function. We evaluated the two proposed algorithms and the SVM algorithm on

nine datasets. The experimental results show that the proposed ActiveSVM algorithms

outperform the general model update SVM and the traditional SVM algorithms in

terms of time efficiency, accuracy, and the number of samples required to achieve the

desired accuracy.

1.3 Preliminaries

This section introduces the preliminary algorithms required for our proposed schemes.

The algorithms include Coreset Construction algorithm, K-Means algorithm, Quadtree
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and kd-tree, Matrix Approximation, Singular Value Decomposition, LR Decomposition,

Online Learning algorithm, Support Vector Machines and Active Learning algorithm.

1.3.1 Coreset Construction Algorithm

Machine learning algorithms accuracy increases as the input data size increases. Processing

a huge data by these algorithms brings a new kind of problem concerning the time

complexity. Reducing the data size may cause the loss of valuable information. One

of the major challenges for the researchers is, to bound the trade-off between reducing

the data size and the loss of valuable information. Coresets are one such way of solving

this trade-off problem.

A coreset is a reduced data set which can be used as a proxy for the full data set.

Hence, they are known as summaries of the big data available[12]. Coresets can be

computed in linear time and more intricate algorithms can be run on these sets to

provide approximate results to their counteroarts on the full data set. Models that are

trained on these subsets are provably competitive in the results they produce with the

models that are trained on full data. Roughly, Coreset is obtained by sampling the

data while honoring the distribution.

Algorithm 1: lightwieght-coreset-construction(𝑋,𝐾)

Input:
𝑋 : Unsupervised complete data set
𝐾 : Number of points to be sampled.
Output:
Returns C
1: 𝜇 = mean of 𝑋.
2: for 𝑥 ∈ 𝑋 do
3: 𝑞(𝑥) = 1

2
1
|𝑥 | +

1
2

𝑑 (𝑥,𝜇)2∑
𝑥′ ∈𝑋 𝑑 (𝑥′ ,𝜇)2

4: end for
5: 𝐶 = Sample 𝐾 weighted points from 𝑋 where each point 𝑥 has weight 1

𝐾.𝑞 (𝑥 ) and
is sampled with probability q(x)

6: Return set 𝐶 with 𝐾 points that were sampled.

Algorithm 1 contains a procedure[113] to construct coresets. The algorithm calculates

mean of the data and then uses it to compute the distribution 𝑞(𝑥) for each point

and assigns it as weight to each point. Finally, it samples 𝐾 weighted points from
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𝑋(complete data set) where each point 𝑥 ∈ 𝑋 has weight 1
𝐾.𝑞 (𝑥 ) and is sampled with

probability q(x). The function 𝑑 (𝑥, 𝜇) is a distance function from 𝑥 to mean 𝜇.

The function 𝑞(𝑥) consists of two components:

� In the first term 1
2

1
|𝑥 | , |𝑥 | denotes the magnitude or norm of the data point. 1

2

times the reciprocal of the magnitude of x, captures how “large” or “small” the

data point 𝑥 is in terms of its norm. The reciprocal 1
|𝑥 | gives more weight to

smaller norms and less weight to larger norms.

� In the second term 1
2

𝑑 (𝑥,𝜇)2∑
𝑥′ ∈𝑋 𝑑 (𝑥′ ,𝜇)2

, 𝑑 (𝑥, 𝜇) is the distance between the point 𝑥 and

the mean(𝜇), 𝑑 (𝑥, 𝜇)2 is the squared distance, emphasizing larger values more

heavily.
∑
𝑥′∈𝑋 𝑑 (𝑥′, 𝜇)2 is the sum of squared distances of all the data points in

𝑋 from the mean 𝜇. This term normalizes the squared distance of 𝑥 relative to

the entire dataset.

The first term assesses the contribution of the data point based on its magnitude.

Points with smaller magnitudes contribute more. The second term evaluates the

contribution based on the squared distance from the mean. Points that are farther

from the mean contribute more, but this is normalized by the total squared distance

in the dataset. The first term focuses on the size of the data points, while the second

term focuses on their distribution relative to the mean. By combining these two terms

with equal weight (12), 𝑞(𝑥) provides a balanced measure that accounts for both the

magnitude of the data point and its distance from the mean. This equal weight ensures

that neither the size nor distribution is dominant in the calculation of 𝑞(𝑥).
The time complexity of the algorithm is 𝑂 (𝑛𝑑), where 𝑛 is the size of the data,

𝑑 is the number dimensions. One of the advantages of using coresets is, the size of

the coreset is independent to the size of the original data. Added advantage of the

algorithm is, it can be implemented with ease.

1.3.2 K-MeansPP

Unsupervised data does not contain labels, then the task of generalisation becomes

difficult and the algorithm has to completely rely on the data itself. The kind of

algorithms that rely on data properties to learn are called unsupervised learning algorithms.

In one of the proposed method, 𝐾-Means[12] is performed on unsupervised data to form
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clusters that have similar properties. One aspect to be specified while determining the

similarity among the data is the distance measure.. If the Euclidean distance between

the points 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑋 is minimum then they are considered to be similar. The

data point 𝑥𝑖 is assigned to a cluster 𝐾 𝑗 when the distance between the point 𝑥𝑖 and

cluster mean 𝜇 𝑗 is minimum. The objective function to form the clusters is

𝑚𝑖𝑛

𝐾∑︁
𝑗=1

𝑛∑︁
𝑖=1

√︃
(𝑥𝑖 − 𝜇 𝑗)2

𝐾-Means algorithm assigns data points to the nearest cluster centers. Using the

distance measure and mean, K-Means learns to find the cluster centers. The process

of finding best cluster centers starts by selecting them randomly and fine tuning until

the cluster centers stop changing. The cluster centers stop changing when the error

criterion is minimum, called converging time.

Algorithm 2: kMeansPP(𝑋, 𝐾)

Input:
𝑋 : Unsupervised complete data set
𝐾 : Number of points to be sampled.
Output: Returns 𝐾 number of coreset indices
1: 𝑞𝑢𝑒𝑟𝑦𝑃𝑜𝑖𝑛𝑡𝑠 = [ ]
2: Choose a random number in a range(1, len(X)) and append it to the list,
𝑞𝑢𝑒𝑟𝑦𝑃𝑜𝑖𝑛𝑡𝑠;

3: while len(𝑞𝑢𝑒𝑟𝑦𝑃𝑜𝑖𝑛𝑡𝑠) ≤ 𝐾 do
4: distances = Compute distances from each data point to the nearest center;
5: nextCenterIndex = maxIndex(distances);
6: Append the nextCenterIndex to 𝑞𝑢𝑒𝑟𝑦𝑃𝑜𝑖𝑛𝑡𝑠 list
7: end while

The algorithm’s complexity is dependent on initial centroids that are considered.

K-Means algorithm is relatively slow, because it has to calculate the Euclidean distance

between each cluster center and each data point. When the centres change after an

iteration, Euclidean distance has to be recomputed making the algorithm inefficient.

The general 𝐾-Means algorithm is NP-Hard[96], which takes exponential time to converge.

However, with a fixed ‘𝑡’ number of iterations, ‘𝑐’ centroids, ‘𝑛’ points, and ‘𝑑’ dimensions,

𝐾-Means takes 𝑂 (𝑡𝑐𝑛𝑑) time.
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Addressing the above limitations the authors in [59] proposed ‘KMeans++’, a

carefully seeding algorithm for efficient data clustering. The K-Means++ algorithm:

� Selects ‘K’ initial centroids in a strategical manner and

� It subsequently changes the centroids such that the final clusters formed minimizes

the overall sum of squared distances between data points and their assigned

centroids, leading to well-separated and better cluster configuration.

To initialize a couple of our proposed algorithms, we propose a modified version of

K-means++ to establish a well-chosen starting sample set. Our proposed algorithms

incorporate a customized implementation of K-Means++, that strategically chooses

informative starting points for model training. Inspired by the above centroid selection

method, we propose an algorithm that chooses the data points that are well separated

across the dataset. The modified version is referred to as ‘kMeansPP’, which returns

only the final centroids that are found after processing the data. These centroids are

called 𝑞𝑢𝑒𝑟𝑦𝑃𝑜𝑖𝑛𝑡𝑠 in the ‘kMeansPP’ algorithm which is outlined in Algorithm 2. One

of the primary drawbacks of using kMeansPP initialization for active learning is its

computational overhead, yet it helps the active learning model to achieve enhanced

accuracy which is empirically demonstrated in Section 6.4.

1.3.3 Quadtree and kdtree

Quadtree[43] is a hierarchical spatial tree data structure. Quadtree represents two

dimensional data on the geometric space by recursively decomposing the space using

separators parallel to coordinate axis. The initial decomposed four regions correspond

to four children of the root node, hence the term 𝑞𝑢𝑎𝑑. Decomposition of the space into

regions helps in solving problems efficiently such as, range query, spherical query, and

nearest neighbors query. Range query finds all points that are present within a range.

Spherical region query finds all the points that lie within a distance 𝑟 from query 𝑞.

Nearest neighbour query finds the nearest neighbors of a certain quantity 𝑘 from the

query 𝑞.

Because of the principle of equal subdivision, the height of the quadtree cannot be

estimated as the data may fall more in any of the quadrants. Height of the tree can

be in balance only when the data is distributed uniformly. The time to search, update
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is mostly based on the height of the tree. If tree is skewed the performance degrades.

Hence the division point can be a median of all the data or it can be a mid point of

the data[99], if the data is known in advance.

A height balanced quadtree can be constructed in 𝑂 (𝑑𝑛𝑙𝑜𝑔𝑛) runtime, where 𝑑 is

number of dimensions and with 𝑂 (𝑛) storage. Searching for an element in tree takes

𝑂 (𝑑ℎ) run time, where ℎ is the height of the tree. Insertion is restricted to 𝑂 (𝑑ℎ). It

takes more time to re-adjust the tree after deleting the points from it.

Figure 1.1: 𝑘𝑑-tree for 6 points in the cartesian plane

The notion of quadtree can be extended to 𝑘, where 𝑘 is the number of dimensions

and hence is called as a 𝑘𝑑-tree[128]. In a 2-dimensional case, where 𝑘 = 2, each

point has 2 values, 𝑥-coordinate and 𝑦-coordinate. Constructing a quadtree involves

recursively subdividing a 2D space into four quadrants or regions until each region

contains a specified number of points or becomes smaller than a defined threshold.

The construction process involves alternating splits between the 𝑥-coordinate and

𝑦-coordinate at each level of the tree. The root node splits the space based on the

𝑥-coordinate, dividing the points into two subsets: left and right. These subsets have

roughly equal size on the 𝑥-axis. The left and right subsets are further split based

on the 𝑦-coordinate. This alternation between splitting on the 𝑥-coordinate and y-

coordinate continues down the tree until no further splits are required, typically when

each node contains a single point or no points at all. The depth of the tree depends

on the number of points and the alternating axis used for splits. Each level of the tree

alternates between the 𝑥-axis and 𝑦-axis as shown in the Figure 1.1.

14



1.3 Preliminaries

1.3.3.1 Operations on kd-tree

Insertion: To insert a new point into a 𝑘𝑑-tree, start at the root node and compare the

new point’s 𝑥-coordinate with the root’s 𝑥-coordinate. If the new point’s 𝑥-coordinate

is less than the root’s, move to the left child; otherwise, move to the right child. At

each subsequent level, alternate the comparison axis. For example, at the second level,

compare the 𝑦-coordinates, then 𝑥-coordinates at the third level, and so on. Continue

this process until you find an appropriate leaf node where the new point can be inserted.

Search: To search for a point in a 𝑘𝑑-tree, start at the root and compare the target

point with the root based on the root’s splitting axis. If the target point’s coordinate

on the splitting axis is less than the root’s, move to the left child; otherwise, move to

the right child. Continue this process, alternating the comparison axis at each level.

If a matching point is found, return it. If a leaf node is reached without finding the

point, conclude that the point is not in the tree.

Deletion: To delete a point from a 𝑘𝑑-tree, first search for the point to be deleted

using the search process described above. If the point is found and it has no children,

simply remove it. If the point has children, find a replacement point to maintain the

tree structure. This replacement is typically the minimum point in the subtree rooted

at the right child if the split is on the 𝑥-coordinate, or in the left child if the split is on

the 𝑦-coordinate. Replace the deleted point with the replacement point found. Finally,

recursively adjust the tree to maintain the 𝑘𝑑-tree properties.

1.3.3.2 Properties

� Each level of the tree splits the space based on a specific dimension

� A 𝑘𝑑-tree is a binary tree, meaning each node has at most two children.

� The left child contains points that are less than or equal to the node’s splitting

value in the current dimension, and the right child contains points that are greater.

� A 𝑘𝑑-tree is balanced tree.

Another 𝑘𝑑-tree based searching algorithm[121] which runs close to 𝑂 (𝑙𝑜𝑔𝑛) is

proposed, which guarantees a theoretical proof of search accuracy as close as to Randomized

Partitioning Tree(RPTree).
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1.3.4 Matrix Approximation

Matrix approximation tries to find a similar matrix to the original matrix but with some

special properties like low-rank. Low-rank matrix approximation is a general problem

where one seeks an approximation of a given matrix with another matrix which is of

lower rank. Let 𝐴 ∈ R𝑛∗𝑚 be a given matrix, 𝑛 ≫ 𝑚 and 𝐴′ ∈ R𝑛∗𝑚 be the approximated

matrix then our aim is to minimize the distance between 𝐴 and 𝐴′. That is, we try to

find 𝐴′ that minimizes (
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

∥𝐴𝑖 𝑗 − 𝐴′𝑖 𝑗 ∥ 𝑝
)1/𝑝

(1.1)

where the distance function used in this case is 𝑙𝑝 metric.

In few cases, 𝐴′ can also be equal to
∑𝑟
𝑖=1𝐶

′
𝑖
∗ 𝐵′

𝑖
such that 𝐶′

𝑖
∈ R𝑛∗1 and 𝐵′

𝑖
∈ R1∗𝑚

are rank-1 matrices, here r is the rank of the matrix 𝐴′ where 𝑟 ≤ 𝑚𝑖𝑛{𝑛, 𝑚}. The

problem of finding 𝐴′ such that it is a product of two matrices of lower rank is

called ‘Matrix Factorization or Matrix Decomposition’. There are many variants of

this problem. Some of them include Non-negative matrix factorization(NMF), Rank-

constrainded matrix factorization, Weighted rank matrix factorization, Boolean matrix

factorization, Binary matrix factorization, GF-2 matrix factorization, generalized low-

rank matrix approximation, etc. Most of the factorization and approximation variants

are NP-Hard problems. These minimization problems are widely used in areas such

as data compression, clustering, recommendation systems, matrix completion, and

factor analysis. Finding 𝐴′ is one of the most challenging tasks in the field of linear

algebra, and it is achieved using some of the popular techniques namely Singular Value

Decomposition(SVD)[55], Principal Component Analysis[46], and Eigen Decomposition.

SVD is generally applied on a non-sysmmetric and non-squared matrices.

In Chapter 4, we introduce a method for low-rank binary matrix approximation,

aimed at approximating a given binary matrix. Additionally, we expand upon this

concept to facilitate classification task. Here we classify whether a person is suffering

with autism or not. Autism Spectrum Disorder(ASD) is a neural development disorder

that involves delays in development of many basic skills and functions. It is also said to

be a “behavioral disease” and the symptoms are usually observed in the initial stages

of one’s life. This disorder may limit a persons linguistic, communicative, cognitive,
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social skills and the abilities. Autism must be detected early in the initial days of life.

Children with autism may feel difficulty in learning the meaning of the words and have

trouble in interacting with others. ASD can be detected using screening methods or by

diagnosis. It is suggested to screen all the children at regular intervals by a doctor. It is

most common to screen of age 9, 18, and 30 months. Screening might be helpful when

a child is at high risk. Whereas diagnosis is done either clinically or non-clinically.

1.3.5 Singular Value Decomposition

Singular Value Decomposition(SVD) is considered as the fundamental theorem of linear

algebra[134]. It is a matrix decomposition method which can even be applied on a non-

squared matrix.

Let 𝐴 ∈ R𝑛∗𝑚 be a matrix with rank 𝑟 ∈ [0, 𝑚𝑖𝑛(𝑛, 𝑚)], then the decomposition of

A using SVD is

𝐴 = 𝑈𝜎𝑉𝑇

Here 𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑛], 𝑉 = [𝑣1, 𝑣2, . . . , 𝑣𝑚] and each 𝑢𝑖 and 𝑣𝑖 are called left singular

and right singular vectors of A that correspond to the singular value 𝜎𝑖 (𝐴), where

𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑚𝑖𝑛(𝑛,𝑚) ≥ 0

The pictorial representation of SVD is shown in figure 1.2(a). The procedure for

constructing SVD is as follows:

� Computing SVD of 𝐴 ∈ R𝑛∗𝑚 requires us to find right singular vectors 𝑣𝑖, left

singular vectors 𝑢 𝑗 , and singular values 𝜎𝑘 .

� Identify the eigen vectors(normalized) for the matrix 𝐴𝑇𝐴. These are the right

singular vectors 𝑣𝑖 of the decomposition.

� Identify the eigen vectors(normalized) for the matrix 𝐴𝐴𝑇 . These are the left

singular vectors 𝑢 𝑗 of the decomposition.

� The singular values 𝜎𝑖 are the square roots of eigen values of 𝐴𝑇𝐴.

The SVD shown in figure 1.2(a) is the SVD of a matrix, whereas SVD shown in figure

1 .2(b) is the truncated SVD of the matrix. For a given 𝑛 ∗𝑚 matrix, SVD decomposes
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Figure 1.2: (a) Full SVD (b) Trim SVD

the matrix such that their dimensions are 𝑛 ∗ 𝑛, 𝑛 ∗ 𝑚, 𝑚 ∗ 𝑚. The dimensions of the

truncated SVD are 𝑛 ∗ 𝑟, 𝑟 ∗ 𝑟, 𝑟 ∗ 𝑚.

1.3.6 LU Decomposition

LU decomposition is yet another matrix factorization method[24]. This method decomposes

the given matrix A into two matrices namely, L and U, that is,

A = LU

Here in this decomposition both the decomposed matrices are triangular matrices. L

is a lower triangular matrix, which means all the entries above the main diagonal are

zero. U is upper triangular, which means all the entries below the main diagonal are

zero.

While decomposing the matrix A into two traingular matrices, LU decomposition

requires to interchange the rows. These interchanges are represented in a permutation

matrix called P. Initially, the permutation matrix is an identity matrix. When two

rows i and j are interchanged in the matrix A, then the i𝑡ℎ and j𝑡ℎ rows in permutation
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matrix also interchange. That is the permutation matrix P helps us to keep track of

the interchanging of the rows that are taken place while factorizing. If no interchanges

are made during the process then the matrix P remains same or else it is no more

an Identity matrix. The factorization of A into LU starts by converting the matrix A

into a row-echelon form U using a sequence of elementary row operations. This can be

accomplished by multiplying A on the left by an appropriate sequence of elementary

matrices, that is

𝐸𝑘 . . . 𝐸2𝐸1𝐴 = 𝑈

Since elementary matrices are invertible, we have

𝐴 = 𝐸−11 𝐸−12 . . . 𝐸−1𝑘 𝑈 ⇒ 𝐿𝑈

where,

𝐿 = 𝐸−11 𝐸−12 . . . 𝐸−1𝑘

Here in this work LU decomposition is used to find the linearly independent rows at an

intermediate stage of the work. Because the matrix A is reduced to row echelon form,

the number of non-zero rows in U is equivalent to number of independent rows in the

matrix A.

1.3.7 Online Learning

When the entire training data is given at once to the learner, it is referred to as batch

processing. However, in certain scenarios, data may arrive in a streaming fashion. In

such cases, it becomes necessary to develop methods or algorithms that can process

streaming data in real-time. Identifying the relevant attributes that have the most

influence on the classification task as the data arrives is a challenge. The type of

algorithms that work on streaming data are called ‘online algorithms’[89]. Here, the

data is not available all at once and the learner learns from incoming data instances

sequentially, one at a time. In online learning, the model is continuously updated as

new data becomes available, enabling it to adapt and improve its predictions over time.

This iterative process of updating the model with each new data instance allows for

dynamic adjustments and real-time learning. Online learning:
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� Allows for efficient processing of large datasets since the model does not require

all the data to be loaded simultaneously.

� The learner can adapt to concept drift, which refers to changes in the underlying

data distribution over time.

� It can be trained on low-resource systems or embedded devices as they don’t

require all the data to be present at once.

� It computes successive hypotheses incrementally, avoiding the need to calculate

each hypothesis from scratch.

Outline of an online learning algorithm for classification is presented in Algorithm 3.

Algorithm 3: onlineLearning()

Input: 𝑋 ∈ R𝑛∗𝑚, 𝑌 ∈ {−1, 1}𝑛
Output: Classifier w
1: for example recieved do
2: 𝑦 = Predict the class of the example
3: 𝑦 = Recieve the original class
4: if 𝑦 ≠ 𝑦 then
5: Update the classifier weights accordingly
6: end if
7: end for
8: return Classifier w

The online setting involves total 𝐾 rounds. At 𝑘 𝑡ℎ ≤ 𝐾 round the algorithm

recieves a vector x𝑘 ∈ 𝑋 and attempts to predict the appropriate response 𝑦. Following

each prediction, the learner receives feedback 𝑦𝑘 ∈ 𝑌 , indicating the correctness of

its prediction, which is utilized to improve its hypothesis. As long as new examples

are received, the learner continues to engage in the learning process by analyzing

the provided information to refine its hypothesis. This incremental approach enables

efficient computation of successive hypotheses while minimizing redundant work. One

such an algorithm that employs incremental approach for learning and refines its

hypothesis is Perceptron[122]. Perceptron employs a additive update function which

is slow in learning and allows it to make more mistakes in the learning phase. The

computational complexity of the perceptron is linear with the dataset size, which is

𝑂 (𝑚𝑛)[122]. Another algorithm that focuses on feature selection and takes polynomial
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time is classic winnow algorithm[89]. This algorithm is extended to classification in

the context of online learning with multiplicative updates to the weight vector. The

approach adopted here is as same as the perceptron that involves determining the

significance of different features, and update them accordingly. The computational

complexity of the winnow algorithm is logarithmic to the dataset size, i.e; 𝑂 (𝑡𝑚𝑛)[89][88],

where 𝑛, 𝑚 specify the dimensions of the matrix and 𝑡 specify number of epochs.

The update function is a critical component of both the perceptron and winnow

algorithms. The perceptron uses an additive update function, while winnow uses a

multiplicative update function. The learning rate of the perceptron is too slow, so our

focus is on the multiplicative update function. This includes variants of the winnow

algorithm. A additive update function adds a constant value to the weights after each

iteration, thus it will be slow to converge. The multiplicative update function multiplies

the weights by a constant value after each iteration, thus can converge more quickly than

the additive update function. So in our discussion, we will focus on the multiplicative

update function because it is more efficient and can converge more quickly. We will

also discuss variants of the winnow algorithm that use this update function in Chapter

5.

Figure 1.3: SVM Classification
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1.3.8 Support Vector Machines

Support Vector Machines(SVMs) have emerged as a prominent algorithm for data

classification, initially introduced in [32] for tackling binary classification problems.

SVMs aim to separate two linearly separable classes with the widest possible margin,

utilizing a subset of data points known as support vectors. The solid line represents the

hyperplane that divides the classes, while the dotted lines indicate the support vectors

defining the class boundaries, as shown in figure 1.3. A comprehensive discussion on

SVMs and their applications can be found in [108] and [133].

1.3.9 Primal Formulation:

For a given input vector x, if the expression

(𝑤 · 𝑥) + 𝑏 ≥ 1 (1.2)

the point 𝑥 is classified as a positive point, corresponding to the class y = 1. Conversely,

if

(𝑤 · 𝑥) + 𝑏 < 1 (1.3)

the point 𝑥 is classified as a negative point, belonging to the class 𝑦 = −1. Hence from

equations (1.2) and (1.3), for all the samples we have,

𝑦𝑖 (𝑤 · 𝑥𝑖 + 𝑏) ≥ 1 (1.4)

Margin equation is
2

∥ 𝑤 ∥ (1.5)

Our goal is to maximize equation (1.5). Equation (1.5) can also be rewritten as

𝑚𝑖𝑛
1

2
𝑤 · 𝑤 (1.6)

Based on Equations (1.4), (1.5), and (1.6), the SVM objective emerges as a dual

optimization problem that seeks to simultaneously achieve accurate data classification

and maximize the margin between classes, adhering to the principle of maximal margin.
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The objective function of SVM can be expressed mathematically as:

min
1

2
𝑤.𝑤

subject to 𝑦𝑖 (𝑤 · 𝑥𝑖 + 𝑏) ≥ 1,∀𝑖 ∈ 1, . . . , 𝑛
(1.7)

Equation (1.7) represents a constrained optimization problem, which is also called

as ‘primal problem’. A ‘dual problem’ representation is introduced such that

solving both problems gives the same optimal hyperplane, but the dual problem is

often easier. In a problem involving ‘d’ variables and ‘n’ constraints, solving the

problem becomes computationally challenging, particularly when the value of ‘d’ is

considerable. However, in the context of the dual formulation of the same problem,

the computational complexity is independent of ‘d’. This characteristic represents a

significant time-saving benefit, especially when ‘d’ is exceptionally large. An additional

advantage is that the dual perspective of the problems allows for the utilization of the

kernel trick, which is particularly beneficial in the case of a non-linear classification.

1.3.9.1 Dual Formulation

The Lagrange multiplier method can be employed to convert the primal problem to

a dual problem. The solution to the dual can then be used to derive the optimal

solution to the original constrained optimization problem. The lagrangian L is defined

as follows:

Consider an optimization problem with an objective function 𝑓 (𝑥) to be minimized

or maximized, subject to some constraints 𝑔𝑘 (𝑥), 𝑘 ∈ {1, . . . , 𝑚}. The Lagrangian is

a way to turn this constrained optimization problem into an unconstrained one by

introducing the Lagrange multipliers as follows

L(𝑥, 𝜆) = 𝑓 (𝑥) +
𝑚∑︁
𝑘=1

𝜆𝑘𝑔𝑘 (𝑥) (1.8)

Here,

� ‘x’ is the vector of variables we want to find.

� 𝜆𝑘 are the lagrange multipliers associated with constraints 𝑔𝑘 (𝑥).
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The goal is to find values of ‘x’ and ‘𝜆’ that minimize or maximize the Lagrangian.

This leads to the solution of the original optimization problem.

Karush-Kuhn-Tucker(KKT) Conditions:

The solution to the lagrangian is subject to the KKT conditions, which are necessary

conditions for optimality in the presence of constraints. The conditions include:

� Stationary condition: The partial derivatives of the lagrangian with respect

to the variables must be zero.
𝜕L

𝜕𝑥
= 0

� Primal Feasibility: All constraints must be satisfied.

� Dual Feasibility: Each lagrange multiplier is non-negative.

𝜆𝑘 ≥ 0

� Complementary Slackness: The product of each Lagrange multiplier and its

corresponding constraint function is zero.

𝜆𝑘𝑔𝑘 (𝑥) = 0

The lagrangian for this problem using (1.7) and (1.8) is:

L(𝑤, 𝑏, 𝜆) = 1

2
∥ 𝑤 ∥2 −

𝑛∑︁
𝑖

𝜆𝑖 [𝑦𝑖 (𝑤 · 𝑥𝑖 + 𝑏) − 1] (1.9)

Finding the partial derivatives of the lagrangian with respect to 𝑤 and 𝑏, setting them

to zero, and substituting them back into the lagrangian.

𝜕L

𝜕𝑤
= 𝑤 −

∑︁
𝑗

𝜆 𝑗 𝑦 𝑗𝑥 𝑗

𝜕L

𝜕𝑏
= −

∑︁
𝑗

𝜆 𝑗 𝑦 𝑗

24



1.3 Preliminaries

After setting the above equations to zero, we then have:

𝑤 =
∑
𝑗 𝜆 𝑗 𝑦 𝑗𝑥 𝑗∑

𝑗 𝜆 𝑗 𝑦 𝑗 = 0
(1.10)

Substituting (1.10) in (1.9)

L(𝜆) = 1

2
∥

𝑛∑︁
𝑗

𝜆 𝑗 𝑦 𝑗𝑥 𝑗 ∥2 −
𝑛∑︁
𝑖

𝜆𝑖 [𝑦𝑖 ((
∑︁
𝑗

𝜆 𝑗 𝑦 𝑗𝑥 𝑗) · 𝑥𝑖 + 𝑏) − 1]

Simplifying the above equation

L(𝜆) =
𝑛∑︁
1

𝜆𝑖 +
1

2

𝑛∑︁
𝑖

𝑛∑︁
𝑗

𝜆𝑖𝜆 𝑗 𝑦𝑖𝑦 𝑗𝑥𝑖𝑥 𝑗 (1.11)

The dual formulation of the SVM optimization problem involves maximizing the dual

objective function W(𝜆), which is expressed as:

maxL(𝜆) =
𝑛∑︁
𝑖

𝜆𝑖 +
1

2

𝑛∑︁
𝑖

𝑛∑︁
𝑗

𝜆𝑖𝜆 𝑗 𝑦𝑖𝑦 𝑗𝑥𝑖𝑥 𝑗

subject to 0 ≤ 𝜆𝑖 ≤ 𝐶
𝑛∑︁
𝑖=1

𝜆𝑖𝑦𝑖 = 0

(1.12)

This constrained optimization problem can be effectively solved using quadratic programming

techniques. The ultimate goal is to determine the optimal values of 𝜆𝑖 that maximize

dual objective function L(𝜆). Once the optimal values of 𝜆𝑖 are obtained, the decision

function for classifying new data points can be derived as:

𝑤 · 𝑥 + 𝑏 =

𝑛∑︁
𝑖=1

𝜆𝑖𝑦𝑖 (x𝑖 · 𝑥) + 𝑏

𝜆𝑖 = Represents the Lagrange multiplier

𝑦 = Class label of data point 𝑥

x𝑖 = The support vector

𝑥 = The data point we want to classify

𝑏 = The bias term

𝑛 = Number of support vectors

(1.13)
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1.3.10 Active Learning

Active learning helps the learner to learn from a small set of data. A high-level view

of active learning procedure is presented in Algorithm 4. Active learning framework is

presented in Figure 1.4.

Algorithm 4: ActiveLearning(𝑋)

Input: 𝑋 : Unsupervised complete data set
Output: Returns Accuracy
1: Initialize a labeled training dataset with a small number of representative

samples.
2: Employ the initial labeled dataset to train a machine learning model.
3: Utilize the trained model to predict labels for an extensive pool of unlabeled

examples.
4: Calculate a measure of uncertainty for each prediction
5: while Termination condition is not met do
6: Select a subset of examples from the pool based on their respective uncertainty

scores.
7: Request labels for the selected examples from an oracle, typically a human

expert or a reliable labeling source.
8: Incorporate the newly labeled examples into the training dataset.
9: Retrain the model using the updated training dataset.

10: end while
11: Evaluate the final model’s performance on a separate test dataset to assess its

accuracy.
12: Return model’s performance.

Figure 1.4: Active Learning Framework

The purpose of Active Learning is to select the most useful samples for model
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training from the unlabelled pool, then use an oracle(a human annotator) to label the

selected samples, and finally add the labelled samples to the labelled pool to update

the task model. The above process is repeated until the performance of the task model

meets the requirements or the label budget is exhausted. Active Learning has been

widely used in image classification[16] and segmentation[68], and some achievements

have been made.

1.4 Structure of the Thesis

The thesis is organized into seven chapters.

Chapter 1 briefly describes the topic, importance of the work, preliminary knowledge

required in understanding the proposed algorithms, and arrangement of the thesis.

Chapter 2 presents the literature survey of the proposed work, motivation behind

it, problem identification and methodology of the proposed work.

Chapter 3 provides two coreset based classification algorithms. First algorithm

uses nearest neighbors approach, while the second builds a coreset based kd-tree to

perform classification. Both these algorithms use light-weight coreset algorithm.

Chapter 4 proposes a low-rank binary matrix approximation scheme which approximates

a given matrix with another matrix of low rank. Later we use this matrix for classifying.

The scheme is applied to detect Autism Spectrum Disorder.

Chapter 5 presents an algorithm that works on stream data. We revisit the most

popular winnow algorithm and modify it such that it works on real valued data and

also make it more efficient than the previous version.

Chapter 6 presents a SVD based active learning algorithm for binary classification

with novel initialization and model update methods
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Chapter 7 provides the concluding remarks of the research work and gives an

insight into the future work along with the further extensions and future directions

possible of the proposed schemes.
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Chapter 2

Related Work

2.1 Nearest Neighbors and Classification: Survey

Various techniques are commonly employed for data classification. Among the prevalent

methods are K-NN technique, decision trees, rule-based approaches, probabilistic techniques,

instance-based methods, and neural networks.

K-Nearest Neighbors technique:

The K-NN (K-Nearest Neighbors) technique is one of the earliest and simplest

machine learning classification algorithms. Typically, K-NN classifiers utilize straightforward

distance metrics to assess the dissimilarity between examples represented as vector

inputs. These distance measures encompass Euclidean, Minkowski, Chebyshev, and

other formulations such as Xing distance calculations[151]. One observation in [156]

about nearest neighbor classifiers was that feature selection and document representation

play an important part in the effectiveness of the classification process. Protein kinase

inhibitor’s classification is performed using nearest neighbors is presented in [8]. Some

of the other applications include public sentiment snalysis[67], fake news detection on

social media[72], and breast cancer detection[10].

Feature Selection Methods: Feature selection algorithms can be categorized

into supervised[162][71][130], unsupervised[3][130] and semi-supervised[129]. In many

scenarios, a variety of features are collected, potentially including numerous irrelevant

ones. These irrelevant features can significantly hinder modeling efforts as they lack

meaningful relationships with the class label. Indeed, such features often exacerbate

classification accuracy issues due to overfitting. This challenge can be handled through
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the process of selecting features [57] [50]. One such work was proposed by the authors in

[131]. This model aims to reduce data dimensions, minimize training time, and enhance

classification performance using selected features, leveraging principal components and

Information Gain. A review on how different filter methods work, compare their

performance with respect to both run time and predictive accuracy, and also provide

guidance for applications is presented in [21].

Decision Trees: Decision trees establish a hierarchical partitioning of the dataset,

associating distinct partitions at the leaf level with various classes. The hierarchical

division at each level is generated using a split criterion, which may entail a condition

(or predicate) on a single attribute or a condition on multiple attributes. The authors in

[75] proposed a method using decision tree to perform classification and regression. An

application to predict diabetes disease using decision trees was proposed in [118] and

for detecting breast cancer in [51]. The authors in [51] also introduces useful new tools,

based on Random Forest(RF) and Extremely Randomized Trees or Extra Trees(ET)

algorithms to classify breast cancer.

Probabilistic Methods: Probabilistic methods are the most fundamental among

all data classification methods. Probabilistic classification algorithms use statistical

inference to find the best class for a given example. The work by [146][36] present the

applications of Näıve Bayes[27][102] and discusses its variations in different settings.

Furthermore, recommendations are made regarding the applicability of Näıve Bayes

while exploring the robustness of the algorithm. Finally, they discuss the pros and cons

of Näıve Bayes algorithm and some vulnerabilities. A systemetic review on Hidden

Markov Model and their applications is presented in [110]. Along with Hidden Markov

Model the authors in [73] made use of Recurrent Neural Networks to event detection

and localization in biomedical signals. Other applications of Markov model include

intelligent fault diagnosis of wind energy converter systems [77], Spam detection[149],

and breast cancer detection [109].

Rule-BasedClassification: Rules offer a straightforward and efficient means of

representing information or knowledge. They furnish a clear data model that is easily

comprehensible to humans, often depicted in the logical form of IF-THEN statements.

Numerous machine learning and data mining methods have been developed to autonomously

derive rules from data. Rule-based systems have been widely employed as an effective

mechanism for storing knowledge and performing logical inference. Most popular
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algorithms in rule based learning include[30], RIPPER[31], FOIL[119], I-REP[49], and

RFP[23].

Neural Networks: In recent times, neural networks have regained prominence as

a significant alternative to several conventional classification techniques. This resurgence

can be attributed to the robust theoretical framework supporting neural network research,

as well as the notable practical successes achieved in addressing complex real-world

challenges. A review on image classification using neural networks is presented in

[28], Classifying large-scale networks into several categories and distinguishing them

according to their fine structures is presented in [150]. Applications of neural networks

include brain tumor classification[14], skin disease classification [4], stock price pattern

classification[158] and others.

2.2 Lowrank Binary Matrix Approximation and Autism

Spectrum Disorder(ASD): Survey

Among the widely studied data mining and machine learning algorithms, data clustering

is one of them. Some of the common applications of data clustering include collaborative

filtering, customer segmentation, data summarization, dynamic trend detection, multimedia

data analysis, biological data analysis, and social network analysis.

Approximating one matrix by another matrix is solved initially in [40]. It transforms

the matrix to canonical form and produces the unique solution. Later many methods

for solving, improving and also methods for variants of the problem are proposed

in[38][37][79][70][159]. Some of which are discussed below.

Non-negative matrix factorization(NMF) has the ability to solve the challenges in

clustering. For this purpose many algorithms were proposed in [38]. G-orthogonal

NMF theorem in [37] demonstrate that there is an inherit relationship between the

NMF and the K-means clustering algorithm.

Binary matrix factorization is a NP-Hard problem. Its hardness is shown in [79].

Binary matrix factorization(BMF) may or may not require the product matrix to be

binary. Factorization techniques that does not require the matrix factors to be binary

are called “unconstrained BMF(UBMF)”, whereas the other which requires the matrix

factors to be binary is called as “constrained BMF(CBMF)”. In [70] they proposed

two CBMF algorithms, and also alternate update procedures for CBMF. In the same
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paper they also show the relation between BMF and clustering. A detailed survey

of the variants of BMF and their appications are presented in [159]. A theorem that

establishes the relationship between the Binary r-Means along with cluster selection

is presented in [45]. The other adoptations of matrix approximations with respect to

binary components are also presented in [159]. [45] presents three forms of binary

approximations, namely:

� Parameterized low rank Binary Matrix approximation

� Parameterized low rank Boolean Matrix approximation

� Parameterized low rank GF(2) Matrix approximation

It also presents variants with additional constraints such as the sum of inter and intra

cluster distance is not greater than a constant factor, and restrict the number of clusters

to another constant. In [44] the authors present approximation schemes for constrained

clustering problems. These schemes produce a (1 + 𝜖) approximation solution with a

probability of atleast (1 − 1
𝜖
). Other approximation schemes for clustering problem is

published in [81]. They yield (1 + 𝜖) approximations with probability ≥ 1
2 for k-means,

k-median and discrete k-means problems. When a binary matrix is approximated with

a product of two binary matrices but their factors are computed using the rules of

boolean algebra then such factorization is called Boolean Matrix Factorization. Recent

developments and a concise survey on boolean matrix factorization is done in [107].

A biparpite graph based algorithm that approximates using weighted rank-one binary

matrix factorization and its applications are presented in [92]. A divide and conquer

based matrix factorization was recently presented in [93]. This method divides the

larger problem into sub-problems, solves each subproblem independently and finally

combines them into one. A bayesian probabilty based approach to factorize the boolean

matrix is introduced in [123].

The authors in [97] introduced a novel linear least squares approach for tackling

quadratic unconstrained binary optimization(QUBO) formulations on D-Wave quantum

annealing processors, a quantum-inspired hardware. This technique offers a promising

alternative to traditional methods, potentially paving the way for more efficient and

accurate solutions to complex optimization problems. The Binary Matrix Completion(TBMC)

technique produces an interpretable output by providing binary factors that depict a
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matrix’s decomposition into tiles. The approach presented in [15] extends “PROXimal

Interior-point Method for Structured matrix factorization(PROXIMUS)” to handle

missing data, employing a recursive partitioning approach. This algorithm depends on

rank-one approximations of incomplete binary matrices, introducing a linear programming

approach to solve this approximation problem.

Reconstructing corrupted data is a crucial challenge in various fields. Addressing

this the authors in [161] propose a low-rank matrix recovery algorithm specifically

tailored for highly corrupted observation matrices. The algorithm employs the unconstrained

nonconvex relaxed minimization model to recover low-rank and sparse matrices via

the process of low-rank decomposition. An application of this algorithm is in the

recovery from highly noisy data, such as face denoising. In their work [78], the authors

present a non-heuristic algorithm for decomposing a given matrix into a low-rank

matrix using boolean arithmetic. They suggest a column generation approach that

effectively explores an exponential space, and this method is also suitable for binary

matrix completion.

The study discussed in [35] explores factorization techniques for binary matrices

utilizing both standard arithmetic and logical operations. The analysis includes examining

relationships between various ranks and discussing conditions under which factorization

is unique in the above scenarios. The authors put forward BMF𝑘 , a boolean model

selection method, to accurately determine the correct number of boolean latent features.

The authors in [83] present an efficient (1+𝜖)-approximation algorithms for the binary

matrix approximation problem, where 𝜖 > 0. The algorithm factorizes the given matrix

A∈ {0, 1}𝑛×𝑑 into a product of low-rank factors U∈ {0, 1}𝑛×𝑘 and V∈ {0, 1}𝑘×𝑑 such that

it minimizes the Frobenius loss of ∥ 𝑈𝑉 − 𝐴 ∥2
𝐹
. The algorithm can be alternatively

perceived as seeking a least-squares approximation of matrix A. Other approaches that

leverage the least-squares method for matrix factorization are outlined in [87] and [52].

Machine learning algorithms for autism have proven to

� Provide new ways in diagnosing ASD.

� Lessen the time associated to diagonize ASD.

� Reduce the number of features.

� Identify best features that help in detection.
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� Identify the overlapping features.

Diagnosis of autism using brain imaging method that employ ML techniques are

presented in [116]. This work provides a comprehensive study on how ML is useful for

the diagnosis of ASD based on structural magnetic resonance image (MRI), functional

MRI, and hybrid imaging. Another review on recent advances that utilize machine

learning approaches to classify individuals with and without ASD is presented in

[152]. In this work the authors present a detailed study on neuro-imaging based ASD

classification.

The author of the paper [138] shows that the studies that applied machine learning

in ASD research have not considered conceptual, implementation, evaluation, and data

related issues. Another work [137] shows the issues related to reliability with the tools

such as, Diagnostic and Statistical Manual of Mental Disorders(DSM), when using ML

models.

The algorithm presented in the paper[137] factorizes the ASD data matrix using

clustering for classifying the test samples. Techniques used for solving the clustering

problem include probabilistic and generative models[34][103][104][120], distance based

methods such as k-Means[111][112], k-Medians, k-Mediods, and Hierarchical, Density

and grid based methods such as DBSCAN[41], DENCLUE[62], OPTICS[7], GRIDCLUS[126],

STING[144], CLIQUE[1] and dimensionality reduction method PLSI[63], matrix factorization

and co-clustering methods such as SVD[55],NMF[19], spectral methods[132].

Clinical diagnosis is done to test the social behaviour, communication, regular

activities and language of a person. Some of the examples of clinical diagnosis are

Autism Diagnosis Interview-Revised(ADI-R)[135], Autism Diagnostic Observation Schedule-

Generic(ADOS-G)[91], Childhood Autism Rating Scale (CARS)[142], and Gilliam Autism

Rating Scale – Second Edition (GARS-2)[53]. Most of these diagnosis methods are

based on the rules that rely on the statistical methods. These require extreme care while

performing diagnosis which requires expert clinicians and also require huge amount of

time.
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2.3 Online Feature Selection Algorithm for Efficient Binary

Classification: Survey

The initial works on binary classification in an online setting can be found in the

papers by Littlestone [89][90] and Rosenblatt [122]. These papers laid the groundwork

for binary classification in the online learning domain. In the work by Michael et

al[106], active learning is used along side with online learning algorithms. Active

learning helps to reduce the training time by excluding the training using the data

points that are not significant. An adaptive online learning algorithm was presented

by the authors in [84] which adapts to the unknown structure of the tasks. In the work

presented in [122], an additive update function was proposed for learning from data.

In contrast, Littlestone [89] introduced a multiplicative update function for learning.

Building upon this, we present an algorithm that implements the multiplicative learning

function and compare its performance with seven other algorithms that also employ

the multiplicative update function for learning. They include Binary Elimination[122],

Binary Demotion[122], Real Elimination, Real Demotion, Exponential Winnow[108],

Reparameterized Winnow[5], Mesterham Winnow[105].

Table 2.1 provides an overview of the weight update operations employed in the

algorithms which are here under comparison. Both the proposed algorithm and the

other algorithms share two common operations: demotion and promotion. During

the demotion operation, the weight vector is reduced, while the promotion operation

increases it. Additionally, there is a variant of the demotion operation known as

elimination, where the element of the weight vector is set to zero. In Table 2.1, the

“Prediction” column represents the class that each algorithm assigns to the data point

x, while the ”Response” column indicates the actual class to which x belongs.

In the paper by Rosenblatt [122], two variations of the winnow algorithm are

introduced, referred to here as Binary Elimination and Binary Demotion. These

two variants work on binary data, whereas the algorithms Real Elminiation and Real

Demotion are similar to binary vaiants of them. The Binary variants are modified to

operate on real dataset. All the algorithms utilize a prediction function, denoted as

w · x ≥ 0, to make predictions for a given data point x. If this condition is met, the

algorithms predict that x belongs to class 1; otherwise, it is predicted to belong to

class 0. If the prediction is different from the actual class of x the algorithms modify w
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such that the prediction error is reduced. The weight modifications are presented by the

column name ‘Weight Update’ in table 2.1. If the prediction is correct all the algorithms

keeps the weight vector unchanged. Reparameterized winnow and Exponential winnow

updates the entire weight vector at once, whereas the other algorithms update each

element of the weight vector individually based on the 𝑥 value. In the Exponential

Winnow algorithm, Z is referred to as the normalization factor, while 𝜂 > 0 serves as a

learning parameter. Similarly, the Masterham Winnow algorithm includes a parameter

𝛼 that restricts the learning process, and 𝜖 ensures that the weight vector doesn’t

become zero.

2.4 ActiveSVM: Survey

Active learning algorithms effectively select the most informative unlabeled data points

for labeling, thereby reducing the overall labeling effort required for training supervised

classifiers. Pool-based active learning, as proposed in [85], maintains a pool of unlabeled

data from which the learner can request labels for a specified number of instances.

One of the primary challenges in active learning lies in devising an intelligent strategy

for selecting query points. Several approaches have been developed to address this

challenge. Some of the most widely used approaches include:

� Random Sampling: This strategy randomly selects unlabeled data points from the

pool without considering any specific criteria. While simple and computationally

efficient, random sampling may not prioritize the most informative data points,

potentially leading to suboptimal classification performance.

� Uncertainty Sampling: This strategy focuses on selecting data points about which

the current model is most uncertain.[11].

– Margin Sampling: This approach prioritizes data points that lie close to the

decision boundary between classes[80].

– Entropy Sampling: This approach selects data points with the highest entropy,

a measure of uncertainty. Reducing entropy leads to a more confident

model[64].

� Others
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– Density Sampling: This strategy aims to select data points from regions

with high data density[147], this makes them more informative for training

the model.

A disagreement-based active learning algorithm for classifying logged data is introduced

in [153]. In this work, the author proposes a candidate set of classifiers that contain the

optimal classifier with high probability. For each instance, the algorithm determines

whether it belongs to a disagreement region, where the predictions of the classifiers

differ. If so, the algorithm actively queries the true label for that instance. Otherwise,

it assumes that all classifiers agree on the prediction and no further labeling is required.

The utilization of active learning techniques for ordinal data classification has been

explored in [61]. This approach considers the inherent ordering among the data classes

during the query selection process. An uncertainty sampling criterion is employed

to ensure that the selected query instances provide the most informative data for

improving the classification model. The work proposed in [6] introduces a fairness-

aware active learning framework to address the issue of bias in machine learning

models. The framework utilizes proxy attributes to quantify fairness and employs an

accuracy-fairness optimizer to select informative samples for labeling. This approach

aims to construct fair and accurate classification models. An importance-weighted

active learning framework that provably achieves PAC-style label complexity bounds

is proposed in [20]. This framework assigns a probability 𝑝𝑡 to each data point 𝑥𝑡 ,

considering its identity and the history of observed labels. The points are then selected

for labeling based on their weighted probabilities, with higher weights given to points

deemed more informative for constructing the optimal hypothesis. The applicability

of active learning extends beyond binary classification to encompass various tasks,

including regression and clustering. Comprehensive surveys on query strategies for

active learning in classification, regression, and clustering are provided in [82] and

[154]. While our proposed active learning algorithm is specifically tailored for binary

classification, the broader field of active learning encompasses algorithms for multi-class

classification as well.

38



2.5 Motivation and Contribution

2.5 Motivation and Contribution

2.5.1 Problem Identification and Motivation

In the realm of machine learning, the focus revolves around crafting prediction algorithms

that are both efficient and precise. Similar to other domains within computer science,

crirical benchmarks for evaluating the efficacy of these algorithms include the time,

and accuracy. The factors that affect these measures are high dimensionality, non-

availability of data, dataset size, and the type of the data as mentioned in Chapter 1.2.

As a result, there has been a requirement in research efforts aimed at solving the afore

mentioned challenges and exploiting opportunities. The motivation behind this thesis

stems to address the key challenges. This thesis seeks to address these challenges and

contribute novel insights to the field by proposing efficient algorithms.

2.5.2 Contributions:

The primary contributions of this thesis are manifolded as follows:

2.5.2.1 Contribution 1: Nearest Neighbors via a Hybrid Approach in Large

Datasets: A Speed Up

In the first contribution, we have addressed the issue related to time for data classification

using nearest neighbors. Classification using nearest neighbors requires for atleast ‘k’

searches in the entire dataset. An efficient data structure can reduce this time and

help us to perform the task sooner. One such data structure is 𝑘𝑑-tree. A Spatial data

structure such as 𝑘𝑑-tree is a proven data structure in searching Nearest Neighbors of a

query point. However constructing a 𝑘𝑑-tree for determining the nearest neighbors

becomes a computationally difficult task as the size of the data increases both in

dimensions and the number of data points. So, we need a method that overcomes

this shortcome. This work presents a hybrid algorithm aimed at speeding up the

identification of 𝑘-nearest neighbors for a specific query point 𝑞. The proposed approach

employs a lightweight coreset algorithm to sample 𝐾 points efficiently. Subsequently,

these points serve as the initial seed for the 𝐾-Means clustering algorithm, facilitating

the clustering of data points. Ultimately, the algorithm identifies the nearest neighbors

of a query point by examining the clusters closest to the query point. During the

evaluation of the proposed algorithm’s performance, the time required for constructing
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the coreset and 𝐾-Means algorithms is omitted from consideration. This omission stems

from the fact that these algorithms are employed only once. The proposed approach

is benchmarked against two existing algorithms documented in the literature. The

proposed scheme is discussed in detail in Chapter 3.

2.5.2.2 Contribution 2: CKD-Tree: An improved KD-Tree Construction

Algorithm

Second contribution to this thesis, also depends on lighweight coresets which helps

in reducing the indexing time for search operations. Data structures like VP-Tree,

R-Tree, and KD-Tree create an index of the entire dataset during the offline phase

and utilize this indexed tree to respond to nearest neighbor queries or classify input

queries. To reduce the time in index building process, we employ a Lightweight Coreset

algorithm by reducing the dataset’s size, thereby reducing the time required for index

construction. We enhance existing Nearest Neighbor-based classification techniques

and compare our classification method against widely acknowledged, state-of-the-art

data structures. The proposed scheme discussed in detail in Chapter 3 of this study.

2.5.2.3 Contribution 3: Low-rank Binary Matrix Approximation using

SVD Based Clustering Technique: Detecting Autism Spectrum

Disorder (ASD)

Low-rank binary matrix approximation (LRBMA) falls under the category of matrix

approximation, and it is generally considered a NP-Hard problem. The objective of

LRBMA is to find a matrix 𝐴′ from a given binary matrix A such that the rank of 𝐴′ is

less than or equal to a specified constant. Various algorithms have been proposed in the

literature to address this challenge. While some existing algorithms have exponential

time complexity, our goal is to achieve similar results within polynomial time complexity.

As an application, we apply the proposed algorithm to the problem of Autism Spectrum

Disorder Detection. Results demonstrate that the proposed algorithm is comparable to

the existing algorithms that have exponential time complexity. The proposed scheme

is discussed in the detail in Chapter 4 of this thesis.
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2.5.2.4 Contribution 4: Revisiting Winnow: A Modified Online Feature

Selection Algorithm for Efficient Binary Classification

We introduce a classification algorithm designed to handle streaming data. ML algorithms

that work on streaming data are known as online learning algorithms. The proposed

work modifies the well-known online learning algorithm Winnow, which operates on

binary data streams. Winnow is a binary classification algorithm known for its efficiency

in learning from data, even when confronted with numerous irrelevant attributes. It

is tailored specifically for online learning settings. Winnow relies on a multiplicative

weight update mechanism, resulting in fewer errors and faster convergence. Nevertheless,

the original Winnow algorithm is constrained in several aspects: it exclusively handles

binary data, and its weight updates remain constant irrespective of input features. In

this contribution, we present a modified version of the Winnow algorithm that addresses

these limitations. This enhanced version can process real-valued data and adjusts the

learning function dynamically based on the input feature vector. The proposed scheme

is discussed in detail in Chapter 5.

2.5.2.5 Contribution 5: ActiveSVM: An Active Learning Algorithm With

Novel Initialization, and SVM Model Update Techniques

The subsequent contribution tackles the challenge of learning with limited labeled data.

In domains where labeled data is scarce and expensive to obtain, it presents numerous

challenges for classification algorithms to accurately classify unseen data points. Active

learning can be used to accelerate the training of classification models by strategically

selecting the most informative samples from the unlabeled data. Nonetheless, active

learning encounters various challenges, including the selection of initial labeled data

samples and samples at intermediate stages. The efficiency of model updating also

plays a pivotal role in the overall process. Slow model updating prolongs the number

of iterations to converge, leading to an inefficient learning model. This work presents

two active learning algorithms, “IncrementalActiveSVM” and “ActiveSVM”, to address

the aforementioned challenges. These algorithms propose two novel data initialization

techniques based on K-means++ and coresets, an uncertainty sampling method, and

a new SVM model update method applied at each iteration of the learning process.

The experimental outcomes indicate that the ActiveSVM algorithms surpass both the
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general model update SVM and traditional SVM algorithms in performance. The

detailed explanation of these algorithms are given in Chapter 6.

2.6 Summary

In this chapter, we have discussed basic definitions, preliminaries that help to understand

the various classifications schemes proposed and their efficiency. Later, we presented

an extensive literature survey on classification algorithms and its related work. After

that motivation and contribution of work are discussed at the end.
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Table 2.1: Weight Update Steps

Algorithm Name Operation

Prediction Response Weight Update

Binary Elimination
1 0 𝑤𝑖 =

{
0 if 𝑥𝑖 = 1

unchanged, otherwise

0 1 𝑤𝑖 =

{
𝛼.𝑤𝑖 if 𝑥𝑖 = 1

unchanged, otherwise

Binary Demotion
1 0 𝑤𝑖 =

{
𝑤𝑖/𝛼 if 𝑥𝑖 = 1

unchanged, otherwise

0 1 𝑤𝑖 =

{
𝑤𝑖 .𝛼 if 𝑥𝑖 = 1

unchanged, otherwise

Real Elimination
1 0 𝑤𝑖 =

{
0 if 𝑥𝑖 ≥ 𝑚𝑒𝑎𝑛(𝑐𝑜𝑙𝑖)
unchanged, otherwise

0 1 𝑤𝑖 =

{
𝛼.𝑤𝑖 if 𝑥𝑖 ≥ 𝑚𝑒𝑎𝑛(𝑐𝑜𝑙𝑖)
unchanged, otherwise

Real Demotion
1 0 𝑤𝑖 =

{
𝑤𝑖/𝛼 if 𝑥𝑖 ≥ 𝑚𝑒𝑎𝑛(𝑐𝑜𝑙𝑖)
unchanged, otherwise

0 1 𝑤𝑖 =

{
𝑤𝑖 .𝛼 if 𝑥𝑖 ≥ 𝑚𝑒𝑎𝑛(𝑐𝑜𝑙𝑖)
unchanged, otherwise

Exponential Winnow 𝑦 ≠ 𝑦 𝑍 =
∑𝑛
𝑡=1 𝑤𝑖𝑒

𝜂𝑦𝑥𝑖

𝑤𝑖 =
𝑤𝑖𝑒

𝜂𝑦𝑥𝑖

𝑍

Reparametereized Winnow 𝑦 ≠ 𝑦 w = w + 𝜂𝑦𝑖 (w.x)

Masterham Winnow
1 0 𝑤𝑖 = 𝛼

𝑥𝑖𝑤𝑖

0 1 𝑎 = 𝛼−𝑥𝑖 .𝑤𝑖
𝑤𝑖 = 𝑚𝑎𝑥(𝜖, 𝑎)

Proposed Winnow
1 -1 𝑤𝑖 =

{
𝑤𝑖 .𝑥𝑖
𝛼

if 𝑥𝑖 ≥ 𝑚𝑒𝑎𝑛(𝑐𝑜𝑙𝑖)
unchanged, otherwise

-1 1 𝑤𝑖 =

{
(𝑤𝑖 .𝑥𝑖).𝛼 if 𝑥𝑖 ≥ 𝑚𝑒𝑎𝑛(𝑐𝑜𝑙𝑖)
unchanged, otherwise
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Chapter 3

Coreset Based Approaches to

Find Nearest Neighbors and

Classification.

In the preceding chapter, we explored various nearest neighbor and classification

algorithms. In the current chapter, two novel algorithms that we proposed are discussed.

One presents a hybrid method for identifying nearest neighbors, while the other introduces

the ’CKD-Tree’, tailored specifically for classification tasks.

3.1 Introduction

This chapter concentrates on unsupervised learning which finds 𝑘-nearest neighbors[18]

of a query point 𝑞. 𝑘-Nearest Neighbor (𝑘NN) problem refers to the problem of finding

𝑘 points or samples in the data which are closest to the query point. Nearest Neighbor

algorithm finds its use in several machine learning areas, such as classification and

regression and it is also the most time-consuming part of these applications. In different

use cases such as in recommendation systems, computer vision and robotics etc, fast

response times are critical and using brute force approaches such as linear search is not

feasible. Hence there are several approaches to solve these Nearest Neighbor problems

which are based on Hashing, Graphs or Space-Partitioning Trees. Space-partitioning

methods are generally more efficient due to less tunable parameters.

One such algorithm is KD-Tree. It is a space partitioning algorithm which divides
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space recursively using a hyper-plane based on a splitting rule, trying to reduce search

space by almost half every time it does that. The KD-tree is discussed in chapter 1.3.3

in detail. Another space partitioning algorithm is Vantage Point Tree(VP-Tree)[157],

which divides the data in a metric space by selecting a position in the space called

vantage point and partitions the data into two parts. The first part contains data that

are closer to vantage point and the other part which are not closer to the point. The

division process continues until there are smaller sets. Finally a tree is constructed such

that the neigbors in the tree are also neigbors in the real space. R-Tree[58] is another

data structure that is most commonly used to store spatial objects such as location of

gas stations, restaurants, outlines of agricultural lands and much more.

3.2 Motivation and Contribution

Problem Identification and Motivation

Finding the 𝑘 nearest neighbors for a given instance x’ involves computing the distance

to every data point, which is a time-consuming process. This exhaustive distance

calculation for each data item during every query can be highly time-intensive. However,

this computational burden can be mitigated by adopting strategies that avoid computing

distances for all data points. By selectively choosing data points and utilizing efficient

data structures for searching, the overall time complexity can be significantly reduced.

Similarly, determining the class to which a given data point x’ belongs is also a time-

consuming task. However, by considering only a subset of relevant data points, the

classification process can be reduced.

Contribution

In this work we consider 𝑘NN for classification, where nearest neighbors of a query

point in the dataset are used to classify the query point. Nearest neighbor in essence is

a lazy learning algorithm, i.e. it memorizes the whole training dataset to provide the

nearest neighbors of an incoming query point. Consequently, though the algorithms

provide very efficient solutions to the nearest neighbor problem, they might run into

problems. This is because data size becomes too large due to the high magnitudes of

data available today to process. In critical systems where time is of essence, loosing
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even a few seconds while processing all that data might cause issues. The author in [65]

uses SVM to tackle a similar problem by reducing the size of data on which Nearest

Neighbor algorithm runs. We use coresets for a similar effect, but on very large datasets.

The concept of coresets follows a data summarization approach. Coresets are small

subsets of the original data. They are used to scale clustering problems in massive

data sets. Models trained on Coresets provide competitive results against a model

trained on full original dataset. Hence these can be very useful in speeding up said

models while still keeping up theoritical guarantees upto a level. Coresets are often

used in clustering algorithms to improve their speed even further. To achieve this, first

construct a coreset — usually in linear time — and then use an algorithm that works

on coreset to solve the clustering problem. As the coreset size is very small compared

to the actual data size, this can provide significant speed in the said algorithms. The

coreset construction algorithm is presented in chapter 1.3.1.

We use a state of the art lightweight coreset construction algorithm to improve

time in the case of solving Nearest Neighbor problem using KD-Tree space partitioning

algorithm. We use the end result of Nearest Neighbor query to classify our input query

point based on its nearest neighbor points found.

The two proposed algorithms analyze the common properties in the data, categorize

the data, and finds the nearest neighbors.

3.3 Proposed Method

3.3.1 Nearest Neighbors:

In order to seek 𝑘-nearest neighbors, we may not require the entire data because we

are not worried to return all points. Hence we assume that 𝑘 < 𝑛. Using this as the

driving principle, the proposed algorithm presented in Algorithm 5, considers only a

subset of the data. This work does not propose to classify or try to classify a query

point to a particular class but returns its 𝑘 nearest neighbors. The time complexity of

the proposed algorithm is 𝑂 (𝑛𝑑) +𝑂 (𝑡𝑐𝑛𝑑) +𝑂 (𝑑𝑛𝑙𝑜𝑔𝑛), which is asymptotically equal

to 𝑂 (𝑑𝑛𝑙𝑜𝑔𝑛), where 𝑑 is the number of dimensions, 𝑡 is a constant, 𝑐 is the number of

clusters, and 𝑛 is the number of data points.

Flow diagram of the entire work is presented in Figure 3.1. The process starts by

considering unsupervised data and constructing a coreset of size 𝐾. The value of 𝐾
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Figure 3.1: Procedure for 𝑘-nearest neighbors

decides the number of clusters that are needed to form. It would be better if 𝐾 is

known in prior which helps in producing accurate results. When a wrong 𝐾 is assumed

the results could be wrong. So, the 𝐾 value for the datasets that were considered in

this paper is known in advance.

Algorithm 5: 𝑘-nearestneighbors(𝑋,𝑘,𝐾,𝑞)

Input:
𝑘 : Number of nearest points to be found.
𝑋 : Unsupervised complete data set.
𝐾 : Number of clusters to be created.
𝑞 : Query point.
Output:
Returns 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑘𝑛𝑛𝐼𝑛𝑑𝑖𝑐𝑒𝑠
1: Let 𝐶 be a set of 𝐾 coreset points;
2: 𝐶 = lightwieght-coreset-construction(𝑋,𝐾);
3: Using 𝐶 as the initial centroids, 𝐾-Means constructs the new centriods that

satisfy the criterian function and returns the new centriods;
4: 𝐶 = 𝐾-Means(𝑋,𝐾,𝐶);
5: Identify the nearest cluster center from set 𝐶 to the query point 𝑞;
6: Fetch the cluster data and store it in ‘𝑥’;
7: Construct KD-tree for data 𝑥 and query the tree with 𝑞; 𝑡𝑟𝑒𝑒 = KD-tree(𝑥);
8: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑘𝑛𝑛𝐼𝑛𝑑𝑖𝑐𝑒𝑠 = tree.query(𝑞);
9: return 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑘𝑛𝑛𝐼𝑛𝑑𝑖𝑐𝑒𝑠

Using the 𝐾 points as the initial centroids for 𝐾-Means, clusters are created. It is

observed that time taken for 𝐾-Means with some random points as initial centroids is

much greater than the time taken for 𝐾-Means with coreset points as initial centroids.

The results are shown in Section 3.4. Using the clusters generated by the 𝐾-Means

we find the closest cluster to the query point. The 𝐾𝐷-tree is constructed using the

closest cluster data. The 𝐾𝐷-tree algorithm generates a tree and this tree is given a

query point 𝑞 and 𝑘 value to produce the final 𝑘-nearest points to the query point. In
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the proposed method, data fed to 𝐾𝐷-tree algorithm is less when compared with the

normal method, hence reducing the time for construction.

In order to prove the results produced by the proposed method is better, a comparative

study has been carried by considering two other approaches which we called them as

‘normal method’ and ‘without using coresets’. Another comparison is also done to

prove that coreset points fed 𝐾-Means is better than straight forward 𝐾-Means. It

is very clearly depicted that the proposed method outperforms the standard method.

Next section provides the complete results and a comparative study of the following

three methods.

1. Normal method: Uses 𝐾𝐷-tree on full data and query it.

2. Without using coresets: Uses 𝐾-means, 𝐾𝐷-tree on clustered data and query

the 𝐾𝐷-tree

3. Proposed method: Uses 𝐾-Means using coreset data and kd-tree on cluster data.

Normal method does not require 𝐾-Means hence, 𝐾-Means comparison for the

normal method is not presented.

3.3.2 Classification:

Though KD-Tree for classification is a pretty fast algorithm in itself, it may not be so for

very larger datasets. To improve on the already fast KD-Tree classification algorithm,

and to create an even faster version of KD-Tree we use similar approach as in the case

of clustering algorithms, i.e. make use of Coresets. We first use a Coreset algorithm

to create a representative set of points from the original data set. This representative

set is then fed to the KD-Tree algorithm to build a tree index (offline phase) based on

the representative set. When a query point arrives, we feed it into the tree, where it

traces down to one of the leaf nodes in the tree index. At this point any suitable search

method can be used to find nearest neighbors to the query point in the leaf node.

We use Algorithm 1, Lightweight Coreset Construction[13] (LWCS) to create the

set of representative points from the actual dataset. This algorithm takes as input a

dataset 𝑋 and the coreset size 𝐾, i.e. the number of representative points in the coreset.

It creates a probabilty distribution based on a point’s distance from the mean, w.r.t.

the total of all such distances. Distance metric used here is euclidian distance. Once

48



3.4 Results:

every point has a probability assigned to it, we sample 𝐾 points with weight 1
𝐾.𝑞 (𝑥 ) and

probabiltiy 𝑞(𝑥).

Algorithm CKD-Tree Algorithm is our second proposed algorithm for classification.

It uses Algorithm Lightweight Coreset Construction (LWCS), to process and get a

compact version of the original large dataset 𝑟𝑒𝑝𝐷𝑎𝑡𝑎. This coreset 𝑟𝑒𝑝𝐷𝑎𝑡𝑎 is then

used to build the 𝑡𝑟𝑒𝑒 index at line 2 of the algorithm. To build the tree index we use

sliding-midpoint[100] technique. The 𝑡𝑟𝑒𝑒 index can then be used to 𝑞𝑢𝑒𝑟𝑦 the index

with a query point. Query requires you to specify 𝑘 i.e. number of nearest neighbors

required along with the point to query with, i.e. 𝑞𝑢𝑒𝑟𝑦𝑃𝑜𝑖𝑛𝑡.

In our specific use case, we use nearest neighbors to classify the query point into a

class. This can be done easily based on the majority class in nearest neighbors returned.

Algorithm 6: CKD-Tree())

Input:
Large dataset X,
Coreset size m
Output: Classification
1: repData ←− 𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑟𝑒𝑠𝑒𝑡𝐴𝑙𝑔𝑜(𝐿𝑎𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑋, 𝑐𝑜𝑟𝑒𝑠𝑒𝑡𝑠𝑖𝑧𝑒 𝑚)
2: 𝑡𝑟𝑒𝑒 = 𝐾𝐷𝑇𝑟𝑒𝑒(𝑟𝑒𝑝𝐷𝑎𝑡𝑎)
3: 𝑑𝑖𝑠𝑡, 𝑁𝑁𝐼𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑡𝑟𝑒𝑒.𝑞𝑢𝑒𝑟𝑦(𝑞𝑢𝑒𝑟𝑦𝑃𝑜𝑖𝑛𝑡, 𝑘 = 𝑛𝑢𝑚𝑂 𝑓 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
4: for 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑁𝑁𝐼𝑛𝑑𝑖𝑐𝑒𝑠 do
5: print point at index in repData i.e. Nearest Points
6: end for

7: queryPointClass ←− Majority class of Nearest Neighbor Points.

3.4 Results:

This section showcases the outcomes achieved by both the algorithms when applied

to different datasets. We first present the results for Classification based on nearest

neighbors, later we present the CKD-Tree results.

3.4.1 Nearest Neighbors:

Details of the datasets[42] that are used for experimentation are given in Table 3.1.
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Table 3.1: Datasets and their properties

Name of the Dataset No. of Dimensions No. of
Instances

No. of Classes

Breast Cancer Data 30 569 2
Digits Data 64 1797 10

CovType Data 54 581012 7
Smartphone Data 562 10299 6
Kddcup Data 36 494020 23

Miniboone Data 50 130062 7

Comparisons on 𝐾𝐷-tree construction time, 𝐾-Means time, input data size initially

and at 𝐾𝐷-tree construction point for all datasets that are present in the table 3.1 are

displayed in the following tables.

Table 3.2: 𝐾-Means Construction time for Breast Cancer Data

Name of the Dataset Name of the Method 𝐾-Means
Construction
Time

Breast Cancer Data
Without Using Coresets 0.021596901
Proposed Work 0.00489233

Table 3.3: 𝐾𝐷-tree Construction time for Breast Cancer Data

Name of the Dataset Name of the Method 𝐾𝐷-Tree
Construction
Time

Breast Cancer Data
Normal Method 0.000900756
Without Using Coresets 0.000555496
Proposed Work 0.000510688

Table 3.4: Datasize Variation for Breast Cancer Data

Name of the Dataset Initial Data size Data size at
search time

Breast Cancer Data 569 438

Table 3.3 presents variatons in the times of constructing 𝐾𝐷-tree for the three

methods. Table 3.2 presents the 𝐾-Means time for random points as initial centriods
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(a) 𝐾𝐷-tree construction time comparison (b) 𝐾-Means time comparison

(c) Data size comparison

Figure 3.2: Comparisons on Breast Cancer Data

and coreset points as initial centroids. Table 3.4 displays the initial data size considered

and final data size drawn from Breast Cancer Data. Figure 3.2 is the graphical

representation for the tables 3.2, 3.3 and 3.4 provided above. It is clearly observed

from the above figure that the proposed algorithm performed better than the other

methods.

Table 3.5: 𝐾-Means Construction time for Digits Data

Name of the
Dataset

Name of the Method 𝐾-Means
Construction
Time

Digits Data
Without Using Coresets 0.177046333
Proposed Work 0.018532348

As in the case of Breast Cancer Data, the tables 3.6, 3.9, 3.12, 3.15, and 3.18

present the comparison of 𝐾𝐷-tree construction time on Digits data, CovType data,

Smartphone data, Kddcup data, and Miniboone data respectively.

The tables 3.5, 3.8, 3.11, 3.14, and 3.17 present the comparison of 𝐾-Means construction

time on Digits data, CovType data, Smartphone data, Kddcup data, and Miniboone
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Table 3.6: 𝐾𝐷-tree Construction time for Digits Data

Name of the
Dataset

Name of the Method 𝐾𝐷-tree
Construction
Time

Digits Data
Normal Method 0.002147111
Without Using Coresets 0.000293409
Proposed Work 0.000220433

Table 3.7: Datasize Variation for Digits Data

Name of the
Dataset

Initial Data size Data size at
search time

Digits Data 1797 252

(a) 𝐾𝐷-tree time comparison (b) 𝐾-Means time comparison

(c) Data size comparison

Figure 3.3: Comparisons on Digits Data

data respectively.

The tables 3.7, 3.10, 3.13, 3.16, and 3.19 present the comparison of initial data size

and final data size for tree construction on Digits data, CovType data, Smartphone

data, Kddcup data, and Miniboone data respectively.

The figures 3.3, 3.4, 3.5, 3.6, and 3.7 presents the pictorical representation of the
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Table 3.8: 𝐾-Means Construction time for CovType Data

Name of the
Dataset

Name of the Method 𝐾-Means
Construction
Time

CovType Data
Without Using Coresets 58.320359221
Proposed Work 3.571427582

Table 3.9: 𝐾𝐷-tree Construction time for CovType Data

Name of the
Dataset

Name of the Method 𝐾𝐷-tree
Construction
Time

CovType Data
Normal Method 2.81545425
Without Using Coresets 0.557287733
Proposed Work 0.528879423

Table 3.10: Datasize Variation for CovType Data

Name of the
Dataset

Initial Data size Data size at
search time

CovType Data 581012 159981

Table 3.11: 𝐾-Means Construction time for Smartphone Data

Name of the
Dataset

Name of the Method 𝐾-Means
Construction
Time

Smartphone Data
Without Using Coresets 5.235056832
Proposed Work 0.746759341

Table 3.12: 𝐾𝐷-tree Construction time for Smartphone Data

Name of the
Dataset

Name of the Method 𝑘𝑑-tree
Construction
Time

Smartphone Data
Normal Method 0.402041996
Without Using Coresets 0.01072642
Proposed Work 0.0068364

comparisons done for Digits data, CovType data, Smartphone data, Kddcup data, and

Miniboone data respectively.
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(a) 𝐾𝐷-tree construction time comparison (b) 𝐾-Means time comparison

(c) Data size comparison

Figure 3.4: Comparisons on CovType Data

Table 3.13: Datasize Variation for Smartphone Data

Name of the
Dataset

Initial Data size Data size at
search time

Smartphone Data 10299 686

Table 3.14: 𝐾-Means Construction time for Kddcup Data

Name of the
Dataset

Name of the Method 𝐾-Means
Construction
Time

Kddcup Data
Without Using Coresets 51.760765204
Proposed Work 8.746508095

3.4.2 Classification:

We implement the CKD-Tree using the above methodology and compare it against

KD-Tree[100] [127], R-Tree[58] to see the performance difference it can provide and the

cost.

All of the datasets in table 3.20 have two target classes. While datasets bio train and
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(a) 𝐾𝐷-tree construction time comparison (b) 𝐾-Means time comparison

(c) Data size comparison

Figure 3.5: Comparisons on Smartphone Data

Table 3.15: 𝐾𝐷-tree Construction time for Kddcup Data

Name of the
Dataset

Name of the Method 𝐾𝐷-tree
Construction
Time

Kddcup Data
Normal Method 1115.123546068
Without Using Coresets 1071.968181827
Proposed Work 198.936803207

Table 3.16: Datasize Variation for Kddcup Data

Name of the
Dataset

Initial Data size Data size at
search time

Kddcup Data 494020 190107

MiniBooNe Particle are both very large datasets, HTRU2 and spambase are relatively

very small. This helps in showing the relative performance of CKD-Tree algorithm on

different types of datasets. Dataset default of credit card clients is a more balanced

dataset in terms of sample size and dimensionality.

We kept 1000 samples from each dataset as test dataset for testing the models.

55



3. NEAREST NEIGHBORS AND DATA CLASSIFICATION

(a) 𝐾𝐷-tree construction time comparison (b) 𝐾-Means time comparison

(c) Data size comparison

Figure 3.6: Comparisons on Kddcup Data

Table 3.17: 𝐾-Means Construction time for Miniboone Data

Name of the
Dataset

Name of the Method 𝐾-Means
Construction
Time

Miniboone Data
Without Using Coresets 3.630400168
Proposed Work 1.522944811

Table 3.18: 𝐾𝐷-tree Construction time for Miniboone Data

Name of the
Dataset

Name of the Method 𝐾𝐷-tree
Construction
Time

Miniboone Data
Normal Method 0.765435536
Without Using Coresets 0.412943829
Proposed Work 0.332265506

These samples are used to check the accuracy of the prediction made by the algorithm.

While testing the VP-Tree and R-Tree, we considered test sample sizes to 10, 50, 100,

200, and 500. Later we calculated the average times for them. While building the tree
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Table 3.19: Datasize Variation for Miniboone Data

Name of the
Dataset

Initial Data size Data size at
search time

Miniboone Data 130062 85649

(a) 𝐾𝐷-tree construction time comparison (b) 𝐾-Means time comparison

(c) Data size comparison

Figure 3.7: Comparisons on Miniboone Data

Table 3.20: Datasets Used

Dataset Number of Instances Dimensions/Attributes

bio train 145,751 74
MiniBooNE Particle 130065 50

default of credit card clients 30,000 24
HTRU2 17898 9
spambase 4601 57

index for KD-Tree, 𝑙𝑒𝑎 𝑓 𝑆𝑖𝑧𝑒 was kept same as the number of nearest neighbors queried

(𝑘). i.e., 𝑙𝑒𝑎 𝑓 𝑆𝑖𝑧𝑒 = 𝑘. Here 𝑙𝑒𝑎 𝑓 𝑆𝑖𝑧𝑒 is the number of points in each leaf node of the

tree index.

We measure the performance based on three factors, Accuracy of the results, average

time(in seconds) taken in building the tree index and average time(in seconds) taken
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in answering the query. Each of these factors are compared and tabulated separately

for all the data structures that were used and also for the proposed work.

Table 3.21 shows the results of CKD-Tree for 𝑘 = 10. We use 3 different coreset

sizes 𝑚 = 1000, 𝑚 = 2000 and 𝑚 = 5000 and find the average of all of them(Avg. 1).

For spambase dataset coreset size 𝑚 = 5000 is not generated as data size itself is only

4601. Consider the bio train dataset, here in table the average value of ’Indexing time’

is calculated by adding the Indexing time of 𝑚 = 1000, 𝑚 = 2000 and 𝑚 = 5000 and

finally dividing it by 3. The same is applied for Querying time and Accuracy of Avg.

1.

Table 3.21: Proposed work comparison among various coreset sizes for 𝑘 = 10

m=1000 m=2000

𝑘 = 10 Indexing
time

Querying
time

Accuracy Indexing
time

Querying
time

Accuracy

spambase 0.1318461 0.0021619 75.1 0.140629 0.0026555 75

bio train 9.0258531 0.0030399 97.6 9.0603537 0.0042803 97.8

HTRU2 0.3931405 0.0020605 98.9 0.3280704 0.0017182 98.7

credit card 0.7381072 0.0029010 73.8 0.5936195 0.0027962 74.2

MiniBooNE 4.8205866 0.0018341 94.8 4.8667891 0.0017652 94.8

m=5000 Avg. 1(of m = 1000,2000,5000)

Indexing
time

Querying
time

Accuracy Indexing
time

Querying
time

Accuracy

spambase N/A N/A N/A 0.136237 0.0024087 75.05

bio train 9.3965253 0.0065609 98.4 9.1609107 0.0046270 97.933

HTRU2 0.3124518 0.0020776 98.7 0.3445542 0.0019521 98.766

credit card 0.702998 0.0034210 75.1 0.678241 0.0030394 74.366

MiniBooNE 4.6552073 0.0020463 94.8 4.780861 0.0018819 94.8

Table 3.22 show the results of CKD-Tree for 𝑘 = 50. We consider 3 different coreset

sizes 𝑚 = 1000, 𝑚 = 2000 and 𝑚 = 5000 and find the average of all of them(Avg. 2).

For spambase dataset coreset size 𝑚 = 5000 is not generated as data size itself is only

4601. Consider the bio train dataset, here in table the average value of ’Indexing time’

is calculated by adding the Indexing time of 𝑚 = 1000, 𝑚 = 2000 and 𝑚 = 5000 and

58



3.4 Results:

finally dividing it by 3. The same is applied for Querying time and Accuracy of Avg. 2.

Table 3.23 presents the average of Avg. 1 and Avg. 2. This average is called ’Overall

Table 3.22: Proposed work comparison among various coreset sizes for 𝑘 = 50

𝑘 = 50 m=1000 m=2000

Dataset

Name
Indexing
time

Querying
time

Accuracy Indexing
time

Querying
time

Accuracy

spambase 0.1595964 0.0090645 73.6 0.1561918 0.0103101 71.4

bio train 9.686898 0.0181283 97.6 9.0135078 0.0131375 97.6

HTRU2 0.3469042 0.0069853 98.7 0.3124022 0.0074826 98.6

credit card 0.8793613 0.0061233 75.4 0.6092357 0.0072013 75.2

MiniBooNE 4.9481484 0.0110027 94.8 4.7645080 0.0087479 94.8

m=5000 Avg. 2(of m = 1000,2000,5000)

Indexing
time

Querying
time

Accuracy Indexing
time

Querying
time

Accuracy

spambase N/A N/A N/A 0.1578941 0.0096873 72.5

bio train 9.3727755 0.0155745 97.6 9.3577272 0.0156134 97.6

HTRU2 0.3280866 0.0077481 98.8 0.3291310 0.0074053 98.7

credit card 0.6561336 0.0084042 75.2 0.7149102 0.0072429 75.26

MiniBooNE 4.7176454 0.008154 94.8 4.8101006 0.0093016 94.8

Avg’. Indexing time of ’Overall Avg’ is obtained by averaging the ’Indexing time’ of

Avg. 1 and Avg. 2. The same is applied for ’Querying time’ and ’Accuracy’.

The Table 3.24, given below, is the final comparison table. The table presents the

comparison among R-Tree, VP-Tree, KD-Tree and the proposed work.

It is observed from Table 3.24 that the proposed work out performs all the data

structures in Querying time. Considering the Indexing time, the proposed work also

performed very well than VP-Tree and R-Tree. The accuracy of the proposed work is

approximatley close to other data structures.

The Figures 3.8 and 3.9, show the comparison of Indexing time and Querying time

respectively among R-Tree, VP-Tree,KD-Tree and Proposed Work.

Among the data structures that were used for comparison, KD-Tree is considered

to be the best. So we concentrated mostly on KD-Tree. Here in Table 3.25 we present
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Table 3.23: Overall Average of proposed work

Cumulative Overall Avg.((Avg. 1+Avg. 2)/2)

Dataset Name Indexing time Querying time Accuracy

spambase 0.147065997 0.006048057 73.775

bio train 9.259319027 0.010120274 97.76666667

HTRU2 0.336842656 0.004678772 98.73333333

credit card 0.696575999 0.005141219 74.81666667

MiniBooNE 4.795480847 0.005591781 94.8

Table 3.24: Comparison among R-Tree, VP-Tree, KD-Tree and Proposed Work

R-Tree VP-Tree

Dataset
Name

Indexing
time

Querying
time

Accuracy Indexing
time

Querying
time

Accuracy

spambase 46.018334 0.0258165 66.63 0.967827 0.008726 88.21

bio train 300.39212 0.6743266 98.6 46.72081 0.0278521 98.6

HTRU2 98.001380 0.0021421 96.6 4.266090 0.0111634 93

credit
card

151.04745 0.083858 79.8 6.71667 0.048709 79.4

MiniBooNE 250.05962 0.0997930 99.8 41.54717 0.0213432 99.8

KD-Tree Proposed Work

spambase 0.097132 0.0096216 71.2 0.147065 0.006048 73.77

bio train 13.378065 0.0795586 99.3 9.259319 0.010120 97.76

HTRU2 0.088246 0.006940 98.6 0.336842 0.004678 98.73

credit
card

0.799064 0.012309 75 0.696575 0.005141 74.81

MiniBooNE 7.8424010 0.0226877 94.8 4.7954808 0.005591 94.8

the indexing time comparison of the KD-Tree and proposed work. As the size of the

data increases the performance of the proposed work increases and at a point of time

it even starts performing better than the KD-Tree. So, for large datasets the proposed

work takes less time for creating index.
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Figure 3.8: Indexing Time Comparison

Figure 3.9: Querying Time Comparison

The breakover point, 30000(credit card dataset), of the proposed work is shown in

the figure 3.10. Additional experimentation on the CKD-Tree algorithm is performed

while assigning the parameters m = 20% of the data, and k = 25. The results are

presented in Table 3.26.

3.5 Conclusions

This chapter proposes a 𝑘-nearest neighbors algorithm, which reduces the 𝐾𝐷-tree time

by performing two constant operations, coreset construction and 𝐾-Means. Comparitive
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Table 3.25: Indexing time comparison between KD-Tree and Proposed Work

Dataset

Name

Dataset
Size

KD-Tree
Indexing time

Proposed Work
Indexing time

spambase 4601 0.097132921 0.147065997

HTRU2 17898 0.088246346 0.336842656

credit card 30000 0.799064255 0.696575999

MiniBooNE 130065 7.842401028 4.795480847

bio train 145751 13.37806582 9.259319027

Figure 3.10: KD-Tree and Proposed Work Comparison

Table 3.26: Proposed Algorithm Querying time, Indexing Time, and Accuracy for
m=20% of the data and k = 25

Dataset Name
Proposed Work

Indexing time Querying time Accuracy

spambase N/A N/A 73.77

bio train 9.3727755 0.0155745 97.76

HTRU2 0.3124518 0.0020776 98.73

credit card 0.702998 0.0034210 74.81

MiniBooNE 4.6552073 0.0020463 94.8
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results proved that the proposed method has performed better in terms of time to

construct 𝐾𝐷-tree and also to retrieve the nearest neighbors. It also showed that

the size of the data for the 𝐾𝐷-tree is reduced. In the next work proposed, CKD-

Tree algorithm, the tables show that for at least one value of 𝑚 each dataset showed

competitive or in some cases better accuracy (default credit card and HTRU2 ) when

used with coresets. In case of larger Datasets such as bio train and MiniBooNE, the

coreset size is very less compared to the original dataset size. But they still manage to

provide almost same results in terms of accuracy as the original dataset. Also KD-Tree

built on the coresets of these datasets see a significant speed boost in offline (indexing)

and Online (Query) phases. We can also notice that as the dataset size starts to

decrease, the gap in indexing and query speeds starts to become smaller and smaller.

For smaller datasets (spambase and HTRU2 ), this might even lead to higher query or

indexing times.
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Chapter 4

Low-rank Binary Matrix

Approximation Scheme and

Application

In the previous chapters, we have proposed two classification schemes that are based

on coresets. In the current chapter we work on the same problem of classification in a

binary environment. Here we perform binary classification of binary data by finding an

approximation of the input matrix. Later, the proposed algorithm is applied to check

its credibility to predict the Autism Spectrum Disorder.

4.1 Introduction

Classification is not just done on that contains real values, a special case of the problem

occurs when the data is binary. That is the entries are from the set {0,1}. In this work

we have considered the following generic case of the problem:

Given

A =



𝑎11 𝑎12 . . . 𝑎1𝑚
𝑎21 𝑎22 . . . 𝑎2𝑚
𝑎31 𝑎32 . . . 𝑎3𝑚
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑚


, 𝑎𝑖 𝑗 ∈ {0, 1}
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and a positive integer r, the task is to find A′ ∈ {0, 1}𝑛∗𝑚 with rank atmost r, such that

∥A −A′∥2𝐹 (4.1)

is minimum, where ∥.∥𝐹 denotes Frobenius Norm and it is the extensively used norm

function. Symbolically, the frobenius norm of a matrix is

∥A∥𝐹 =

√√√ 𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

∥𝑎𝑖 𝑗 ∥2 (4.2)

Since we are approximating the binary matrix, minimizing the frobenius norm is

equivalent to minimizing the 𝑙0 norm. 𝑙0 norm counts the number of non-zero elements

in a vector. Another equivalent measure considered in this work as the distance

measure is the Hamming Distance. Hamming distance between two binary vectors

X = {𝑥1, 𝑥2, . . . , 𝑥𝑚} and Y = {𝑦1, 𝑦2, . . . , 𝑦𝑚} is

𝑚∑︁
𝑖=1

∥𝑥𝑖 − 𝑦𝑖 ∥ (4.3)

which can be viewed as the number of locations where the vectors X and Y differ.

The problem of matrix approximation is equivalent to clustering problem[86]. The

equivalence is as follows:

Given a matrix A with rows {𝑎1, 𝑎2, . . . , 𝑎𝑛} where 𝑎𝑖 ∈ R𝑚. The task is

to partition rows into r groups such that the total sum of distance between

the vectors to their cluster centers is as minimum as possible. Using the

clusters obtained from clustering, we can build the approximated matrix.

The approximated matrix in its 𝑖𝑡ℎ row contains the cluster center to which

the 𝑖𝑡ℎ row of A belongs.

A related work that approximates a given binary matrix using the clustering technique

is presented in [45]. The problem is called as “Binary r-Means” and is as follows:

Given a binary matrix A ∈ {0, 1}𝑛∗𝑚 with rows {𝑎1, 𝑎2, . . . , 𝑎𝑛}, a positive

integer r, and a non-negative integer k, the goal is to find whether there is

a positive interger 𝑟 ′ ≤ 𝑟, a partition of {1, 2, . . . , 𝑛} into {𝐼1, 𝐼2, . . . , 𝐼𝑟 ′} and
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vectors {𝑐1, 𝑐2, . . . , 𝑐𝑟 ′} ∈ {0, 1}𝑚 such that

𝑟 ′∑︁
𝑖=1

∑︁
𝑗∈𝐼𝑖

𝐻𝐷𝑖𝑠𝑡 (𝑐𝑖 , 𝑎 𝑗) ≤ 𝑘.

where HDist() is the hamming distance function.

4.2 Motivation and contribution

The method presented in [45] to find approximated binary matrix runs in exponential

time. Here in this work we try to achieve the same result in the context of Autism

Spectrum Disorder(ASD) in polynomial time complexity. Following is a high level view

of the problem statement.

Let 𝐴 ∈ R𝑛∗𝑚 be a binary matrix and 𝑟 be a constant. Find a binary

approximation 𝐴′ of A, whose rank is 𝑟 ′, 𝑟 ′ ≤ 𝑟, and the hamming distance

between 𝐴 and 𝐴′ is as minimum as possible.

Most of the literature presented in chapter 2 works either on real numbers, or

the complex numbers. There are very few algorithms that work on binary data. We

hardly find algorithms that work on binary data and classify it using clustering. This

motivated us to propose the lowRankBinaryMatrixApproximation() algorithm.

Here we present an overview of our method which uses clustering as a subsidary

part.

Let A be a matrix with rows {𝑎1, 𝑎2, . . . , 𝑎𝑛}, where 𝑎𝑖 ∈ {0, 1}𝑚 is a

row vector, and 𝑟 be a constant. In this method A is partitioned into 𝑟 ′

partitions, 𝑟 ′ ≤ 𝑟. Each partition is called a cluster and it has a representative

called as cluster center. These cluster centers are such that the total sum

of the hamming distances between the vectors to their cluster centers is

minimum. Using these cluster centers A′; which is an approximate of A; is

built.

The clusters are said to be optimal if the total sum of distance between the vectors

to their cluster centers is minimum. If the clusters are optimal, then the approximated
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matrix will also be optimal, as the approximated matrix is formed using these cluster

centers.

Here in this work as an application, we have experimented our algorithm on detecting

Autism Spectrum Disorder(ASD). We used this matrix approximation method to classify

whether a person is suffering with ASD or not.

4.3 Proposed Scheme

The goal of our work is to approximate a given binary matrix with another binary

matrix satisfying the given constraints, and use it to classify whether or not a person

is suffering from ASD and analyze its performance against the methods “Binary r-

Means”, K-Means, and K-Medoids. Note that all these four methods cluster the data

and then classify.

To start with the proposed algorithm that approximates a matrix with another

matrix using clustering is presented. Later in the section we present a study on Binary

r-Means algorithm by [45]. Along with this algorithm K-means, and K-medoids are used

for comparing the proposed work. High level description of the proposed algorithm to

determine 𝐴′ is as follows:

4.3.1 Procedure

Given a Binary matrix 𝐴 ∈ R𝑛∗𝑚 and a constant 𝑟, the goal is to find 𝐴′ whose rank is

𝑟 ′, 𝑟 ′ ≤ 𝑟.

Step 1 Find a matrix 𝐵 ∈ R𝑛∗𝑚 that is an 𝑟−rank approximation of A. B may not be a

binary matrix.

Step 2 Binarize 𝐵, call it 𝐵′ ∈ {0, 1}𝑛∗𝑚. Earlier the rank of B is 𝑟 and becuase of

binarization the rank of the matrix may go down and it may atmost be 𝑟.

Step 3 Identify the linearly independent rows in 𝐵′. Let the number of linearly independent

rows be 𝑟 ′.

Step 4 Partition A into 𝑟 ′ clusters, using the independent rows obtained in the above

step. An 𝑖𝑡ℎ row in the matrix A is assigned to the 𝑗 𝑡ℎ cluster only when the

distance from 𝑖𝑡ℎ row in A to 𝑗 𝑡ℎ independent row, which is obtained in the Step

3, is minimum.
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Step 5 Approximation matrix 𝐴′ of the given matrix A is formed as follows:

An 𝑖𝑡ℎ row in 𝐴′ contains 𝑗 𝑡ℎ independent row, which is obtained in Step 3, when

the distance from the 𝑖𝑡ℎ row in A and the 𝑗 𝑡ℎ independent row is minimum.

4.3.2 Correctness of the Proposed Method

The roots of our method come from [47][143][26]. The methods given in the works of

these references use SVD to find 𝑋 that optimizes the objective function, given in (4.4)

is as follows. Given binary matrices 𝐴 ∈ R𝑛∗𝑚, 𝐵 ∈ R𝑛∗𝑝, 𝐶 ∈ R𝑞∗𝑚, the problem is to

find 𝑋 such that

𝑚𝑖𝑛𝑋∈R𝑝∗𝑞
𝑟
∥𝐴 − 𝐵𝑋𝐶∥2𝐹 , 𝑟 ≤ 𝑚𝑖𝑛(𝑝, 𝑞) (4.4)

Let the Singular Value Decomposition of a matrix 𝐷 ∈ R𝑛∗𝑚 be

𝐷 = 𝑈𝜎𝑉𝑇 (4.5)

Let

𝑃𝐷,𝐿 =

𝑟𝑎𝑛𝑘 (𝐷)∑︁
𝑖=1

𝑢𝑖 ∗ 𝑢𝑇𝑖 and 𝑃𝐷,𝑅 =

𝑟𝑎𝑛𝑘 (𝐷)∑︁
𝑖=1

𝑣𝑖 ∗ 𝑣𝑇𝑖 (4.6)

Note that 𝑃𝐷,𝐿 and 𝑃𝐷,𝑅 are the orthogonal projections on the range of 𝐷 and 𝐷𝑇

respectively. Also if rank(D) is k, then

𝑃𝐷,𝐿 = 𝐷𝐷† = 𝑈𝐷,𝑘𝑈
𝑇
𝐷,𝑘 and 𝑃𝐷,𝑅 = 𝐷†𝐷 = 𝑉𝐷,𝑘𝑉

𝑇
𝐷,𝑘 (4.7)

where 𝐷† denotes the pseudoinverse of D,𝑈𝐷,𝑘 𝑎𝑛𝑑 𝑉𝐷,𝑘 are formed with first 𝑘 columns

of 𝑈, and 𝑉 respectively.

The 𝑟−truncated SVD of the matrix 𝐷 is

⌊𝐷⌋𝑟 = 𝑈𝑟𝜎𝑟𝑉𝑇𝑟 =

𝑟∑︁
𝑖=1

𝜎𝑖 (𝐷) ∗ 𝑢𝑖 ∗ 𝑣𝑇𝑖 (4.8)

and

𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑟 ≥ 0
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Given A,B, and C matrices, the matrix X that satisfies equation (4.4) is given by

𝑋 = 𝐵†⌊𝑃𝐵,𝐿𝐴𝑃𝐶,𝑅⌋𝑟𝐶† (4.9)

where 𝐵† is the pseudo inverse of B. The detailed proof of the correctness of this is

given in [47] and [26]. So, from equations (4.6), (4.7), (4.8), (4.9), and (4.10) we see

that

𝑋 = 𝐵†⌊𝐵𝐵†𝐴𝐶†𝐶⌋𝑟𝐶† (4.10)

If the matrices B and C are identity matrices, then we have

𝑋 = ⌊𝐴⌋𝑟

So, the proposed Algorithm is based on this and computes ⌊𝐴⌋𝑟 , the r-rank approximation

of A.

Following steps form the high level description of the proposed algorithm:

Step 1 Given a matrix 𝐴 ∈ R𝑛∗𝑚 and a constant 𝑟.

Step 2 Perform SVD of 𝐴 and select 𝑅 𝑓 singular values so that the sum of these 𝑅 𝑓

singular values is greater than or equal to 𝑝% of the sum of all the singular values

of 𝐴.

Step 3 If 𝑅 𝑓 is less than or equal to ‘𝑟’ then proceed.

Step 4 Obtain 𝑅 𝑓 rank approximation of the given matrix A.

Step 5 The obtained 𝑅 𝑓 rank approximation is, in general, not binary. Hence we binarize

it.

Step 6 Find the linear independent rows of the binarized approximation. The number

of independent rows may be less than 𝑅 𝑓 in some cases.

Step 7 These independent rows act as the centers of the clusters to be formed.

Step 8 Using the cluster centers we form the matrix approximation for 𝐴 and use it for

classification.
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4.3.3 Motivation

Our proposed work is driven by two key considerations:

� Addressing the computational bottleneck: Recognizing the NP hardness of

binary matrix factorization, we sought an alternative approach with guaranteed

polynomial time complexity. This resulted in a novel binary factorization method

that efficiently tackles this challenging problem.

� Leveraging SVD while mitigating its limitations: While Singular Value

Decomposition (SVD) offers a theoretical polynomial-time solution, its limitations

for binary data pose practical challenges. Our approach ingeniously integrates

SVD within a binary factorization framework, yielding reasonable results despite

these limitations.

The proposed work is presenetd in Algorithm 7. This algorithm takes a matrix as

input and finds the approximated low rank binary matrix and returns the statistics of

it. The implementation details are presented in the next subsection.

4.3.4 Implementation

In order to achive the target matrix we follow the steps presented in the high level

description of the proposed algorithm. Step 2 performs the SVD of the given matrix

𝐴 and selects the first(from the top left corner) 𝑅 𝑓 singular values so that the sum

of these 𝑅 𝑓 singular values is greater than or equal to a pre-specified percentage(𝑝%)

of the sum of all the singular values of 𝐴. Fig. 4.1(a) depicts the SVD of a matrix.

From the work presented in [55], it is known that the 𝜎 is a diagonal matrix. The

diagonal entries are arranged in non-decreasing order. The 𝜎 matrix is truncated to

contain only the 𝑅 𝑓 prominent singular values, if there are ‘𝑅 𝑓 ’ diagonal elements that

are greater than a specified percentage ‘𝑝’. So, 𝑅 𝑓 is the number of rows left over

after truncating the matrix. Here, 𝑅 𝑓 specifies the number of significant rows that help

in best approximating the given matrix. If 𝑅 𝑓 > 𝑟, then the algorithm returns ‘𝑁𝑂’

asserting that there is no approximation such that the rank of the approximate matrix,

𝑅 𝑓 ≤ 𝑟. If there is an 𝑅 𝑓 then the algorithm proceeds. In the next step we pick and

multiply the 𝑅 𝑓 largest singular values and its corresponding truncated right and left

singular vectors. This resultant matrix 𝐴𝑇𝑆𝑉𝐷 is 𝑅 𝑓 rank approximated matrix and this
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is, in general, a real matrix. As we are working with the binary data we convert this

real matrix to the binary matrix. So we binarize 𝐴𝑇𝑆𝑉𝐷. Let the resulting matrix be

𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷. Once the matrix 𝐴𝑇𝑆𝑉𝐷 is modified into a binary matrix 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷 the rank

may change and become less. The algorithm proceeds to find a 𝑅𝑟 ≤ 𝑅 𝑓 ≤ 𝑟, where 𝑅𝑟 is
the rank after binarization of the product matrix. The next step determines the actual

rank 𝑅𝑟 which satisfies the inequality, 𝑅𝑟 ≤ 𝑅 𝑓 , and also finds the independent rows

in the 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷 matrix. Using these independent rows we construct the approximate

matrix. The independent rows are considered as the representatives of the clusters that

are going to be formed. Later, the approximation matrix 𝐴′ is built. The 𝑖𝑡ℎ row of 𝐴′

contains a center that is closest to 𝑖𝑡ℎ row of matrix A.

Figure 4.1: (a) Full SVD (b) Trim SVD

The lowRankBinaryMatrixApproximation() implements the proposed algorithm.

The algorithm returns the 𝑅𝑟 ≤ 𝑟 number of centers, or else it will return a NO

instance. A NO instance states that there is no such 𝑅𝑟 ≤ 𝑟 or the given matrix

cannot be clustered into 𝑅𝑟 clusters. The conversion of 𝐴𝑇𝑆𝑉𝐷 into a binary matrix is

done by calling the function converToBinary(𝐴𝑇𝑆𝑉𝐷, 𝜏). 𝜏 is the threshold for

the binary transformation. Any entry greater than 𝜏 is considered 1 else 0. To

determine the actual rank 𝑅𝑟 which satisfies the inequality, 𝑅𝑟 ≤ 𝑅 𝑓 , and also to

find the independent rows in the 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷 matrix, we perform LU decomposition

on 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷 and use the upper traingular matrix 𝑈𝐴𝑇 and the permutation matrix
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𝑃𝐴𝑇 . To find which rows are independent we use 𝑃𝐴𝑇 . If 𝑃𝐴𝑇 is an identity matrix,

it indicates that the LU decomposition is performed with out any rows interchanged

and the linearly independent rows of 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷 are the first 𝑅𝑟 rows. If 𝑃𝐴𝑇 ≠ 𝐼,

then the rows are interchanged while decomposition. We identify the actual order

and this is maintained/stored in 𝑜𝑟𝑑𝑒𝑟. In order to find the changed rank or the

number of independent rows of 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷, we convert the 𝑈𝐴𝑇 to 𝑈𝐵𝑖𝑛 binary matrix.

The rank of 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷, which we call 𝑅𝑟 , is number of non-zero rows in 𝑈𝐵𝑖𝑛. It

may be noted that 𝑟𝑎𝑛𝑘 (𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷) ≤ 𝑟𝑎𝑛𝑘 (𝐴𝑇𝑆𝑉𝐷), that is 𝑅𝑟 ≤ 𝑅 𝑓 . The method

getRankAndCenters() returns the rank of𝑈𝐵𝑖𝑛 and also 𝑅𝑟 number of index numbers

of the centers. The method getFinalCenters() will return the rows of 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷

with these index numbers. These rows are taken to be the linearly independent rows.

Using these independent rows we construct the approximate matrix. For the clear

understanding we present an example work out in the next subsectio.

4.3.5 An Example

To keep the task simple we have choosen to assume that A is a binary matrix and lets

preassume few constants that were used in the algorithm Let,

𝐴 =


1 0 1 1
0 1 1 1
0 1 1 0
1 0 1 1


be the matix and the number of clusters in the matrix is 2, i.e., 𝑟 = 2 and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 0.5.

We run Full-SVD on the given matrix.

𝐴𝐹𝑆𝑉𝐷 =


1.00000000𝑒 + 00 2.77555756𝑒 − 16 1.00000000𝑒 + 00 1.00000000𝑒 + 00
5.55111512𝑒 − 17 1.00000000𝑒 + 00 1.00000000𝑒 + 00 1.00000000𝑒 + 00
−1.11022302𝑒 − 16 1.00000000𝑒 + 00 1.00000000𝑒 + 00 1.66533454𝑒 − 16
1.00000000𝑒 + 00 1.66533454𝑒 − 16 1.00000000𝑒 + 00 1.00000000𝑒 + 00


∑︁

=


2.91423041𝑒 + 00 0.00000000𝑒 + 00 0.00000000𝑒 + 00 0.00000000𝑒 + 00
0.00000000𝑒 + 00 1.47774832𝑒 + 00 0.00000000𝑒 + 00 0.00000000𝑒 + 00
0.00000000𝑒 + 00 0.00000000𝑒 + 00 1 0.00000000𝑒 + 00
0.00000000𝑒 + 00 0.00000000𝑒 + 00 0.00000000𝑒 + 00 2.73910471𝑒 − 17


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Algorithm 7: lowRankBinaryMatrixApproximation()

Input: A ∈ {0, 1}𝑛∗𝑚, r
Output: Confusion Matrix, Accuracy, Recall, Precision, F1-score, Distance,

Cluster Allocation Count, Number of Samples Predicted Correctly
1: 𝑜𝑟𝑑𝑒𝑟 = {1, 2, 3, . . . , 𝑛};
2: 𝑈𝑛∗𝑛, 𝜎𝑛∗𝑚, 𝑉𝑚∗𝑚 ⇐ fullSVD(A);
3: 𝐴𝐹𝑆𝑉𝐷 ⇐ 𝑈 ∗ 𝜎 ∗𝑉 ;
4: Choose an ‘r’ from the diagonal values of 𝜎 such that, the sum of the first r

values is greater than the fixed percentage ‘p’;
5: if there is no such possibility then
6: return NO;
7: Terminate;
8: end if
9: 𝑈𝑛∗𝑟 ,

∑𝑟∗𝑟 , 𝑉𝑟∗𝑚 ⇐ trimSVD(A);
10: 𝐴𝑇𝑆𝑉𝐷 ⇐ 𝑈 ∗ 𝜎 ∗𝑉 ;
11: 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷 ⇐ converToBinary(𝐴𝑇𝑆𝑉𝐷 , 𝜏);
12: 𝑃𝐴𝑇 , 𝐿𝐴𝑇 ,𝑈𝐴𝑇 ⇐ factorLU(𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷);
13: if 𝑃𝐴𝑇 ≠ 𝐼𝑛∗𝑛 then
14: order ⇐ Rearrange 𝑃𝐴𝑇 such that 𝑃𝐴𝑇 = 𝐼𝑛∗𝑛;
15: end if
16: 𝑈𝐵𝑖𝑛 ⇐ converToBinary(𝑈𝐴𝑇 , 𝜏) ;
17: rank, centers ⇐ getRankAndCenters(𝑈𝐵𝑖𝑛);
18: finalCenters ⇐ getFinalCenters(𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑠);
19: allocation ⇐ Allocate each vector in A to a center in finalCenters

that is closest;
20: approxDistance ⇐ distanceMeasure(A, allocation);
21: Based on the centers obtained construct the Approximated Matrix 𝐴′;
22: Construct Confusion Matrix using allocation;
23: Using Confusion Matrix, Accuracy, Recall, Precision, F1-score, Distance,

Cluster Allocation Count, Number of Samples Predicted Correctly;
24: return (𝑃𝑆∗);

Algorithm 8: getVecHDistance()

Input: a ∈ {0, 1}𝑡 , b ∈ {0, 1}𝑡
Output: Hamming Distance between a and b
1: for i in range(len(a)) do
2: hamDistance += abs(a[i] - b[i]);
3: end for
4: return hamDistance;
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Algorithm 9: MatHDistance()

Input: X ∈ {0, 1}𝑚∗𝑛, Y ∈ {0, 1}𝑚∗𝑛
Output: Hamming Distance between matrices X and Y
1: matrixHDistance ⇐ [ ][ ];
2: for i in range(len(X)) do
3: for j in range(i, len(Y)) do
4: dist ⇐ getVecHDistance(X[i],Y[j]);
5: matrixHDistance[i][j] ⇐ matrixHDistance[j][i] ⇐ dist;
6: end for
7: end for
8: return matrixHDistance;

Algorithm 10: converToBinary()

Input: A ∈ R𝑛∗𝑚, 𝜏.
Output: Binary converted A matrix
1: B ⇐ A
2: for i in range(B.rows) do
3: for j in range(B.cols) do
4: if B[i][j] > 𝜏 then
5: A[i][j] = 1;
6: else
7: A[i][j] = 0;
8: end if
9: end for

10: end for
return A;

Algorithm 11: getRankAndCenters()

Input: U𝐵𝑖𝑛 Matrix
Output: Indices of Centers
1: rank ⇐ n;
2: for i in range(len(U𝐵𝑖𝑛)) do
3: for j in range(len(U𝐵𝑖𝑛)) do
4: if U𝐵𝑖𝑛[i] == 0 then
5: rank -= 1;

else

6: centers.append(i);
7: end if
8: end for
9: end for

10: return rank, centers;
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Algorithm 12: getFinalCenters()

Input: A𝐵𝑖𝑛 𝑇𝑆𝑉𝐷, centers
Output: finalCenters
1: finalCenters ⇐ [ ];
2: j = 0;
3: for i in centers do
4: finalCenters[j] ⇐;
5: finalCenters[j] ⇐ A𝐵𝑖𝑛 𝑇𝑆𝑉𝐷[i];
6: j++;
7: end for
8: return finalCenters;

Algorithm 13: distanceMeasure()

Input: X ∈ {0, 1}𝑚∗𝑛, Y ∈ {0, 1}𝑚∗𝑛
Output: Sum of Hamming Distance between matrices X and Y
1: finalHDistance = 0;
2: for i in range(len(X)) do
3: for j in range(len(Y)) do
4: finalHDistance += getVecHDistance(X[i],Y[j]);
5: end for
6: end for
7: return finalHDistance;

Algorithm 14: preProcess()

Input: A ∈ {0, 1, 𝐴 − 𝑍, 𝑎 − 𝑧,R}𝑛∗𝑚
Output: Binary A
1: Correct missplet attribute names;
2: Remove unncessary attributes;
3: Convert categorical attributes to binary attributes using one-hot encoding;
4: Convert R attributes to binary;
5: Delete rows with empty values;
6: return A ∈ {0, 1}𝑛∗𝑚;
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Here r = 2, as the sum of the first 2 values in
∑

is greater than 87% of the total

sum of the values in diagonals. Hence 𝑅 𝑓 = 2. Apply trimSVD with r = 2.

𝐴𝑇𝑆𝑉𝐷 =


0.96794923 0.00193708 0.96988631 1.05697992
0.17806137 0.98923836 1.16729973 0.68344219
−0.17418722 1.01052749 0.83634028 0.30967032
0.96794923 0.00193708 0.96988631 1.05697992


Now, perform LU-Decomposition on 𝐴𝑇𝑆𝑉𝐷, we present 𝑃𝐴𝑇 and 𝑈𝐴𝑇

𝑃𝐴𝑇 =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 ≠


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The interchanging order is = {1,3,4,2 }

𝑈𝐴𝑇 =


9.67949229𝑒 − 01 1.93707836𝑒 − 03 9.69886307𝑒 − 01 1.05697992𝑒 + 00
0.00000000𝑒 + 00 1.01087608𝑒 + 00 1.01087608𝑒 + 00 4.99879051𝑒 − 01
0.00000000𝑒 + 00 0.00000000𝑒 + 00 3.33066907𝑒 − 16 2.76945225𝑒 − 16
0.00000000𝑒 + 00 0.00000000𝑒 + 00 0.00000000𝑒 + 00 4.97179011𝑒 − 17


Convert 𝐴𝑇𝑆𝑉𝐷 and 𝑈𝐴𝑇 to Binary

𝑈𝐵𝑖𝑛 =


1 0 1 1
0 1 1 1
0 0 0 0
0 0 0 0


Rank of the matrix is 2.

𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷 =


1 0 1 1
0 1 1 1
0 1 1 0
1 0 1 1


Choose the centers from 𝐴𝐵𝑖𝑛 𝑇𝑆𝑉𝐷. Choose the 1,3 rows as centers, hence the

centers are

𝐶𝑒𝑛𝑡𝑒𝑟𝑠 =

[
1 0 1 1
0 1 1 0

]

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑀𝑎𝑡𝑟𝑖𝑥 =


1 0 1 1
0 1 1 0
1 0 1 1
0 1 1 0


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Distance from approximated matrix to 𝐴 is 1 Clusters are

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 1 =

[
1 0 1 1
1 0 1 1

]

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 2 =

[
0 1 1 0
0 1 1 1

]
4.4 Application: Detecting ASD

To make the Autism detection process of analysis easy and time efficient experts have

started using computer based analysis methods such as rule based or heuristic based

approaches and machine learning approaches. Rule based or heuristic based approach

for identifying autism may require huge number of rules. Machine learning models

such as decision trees, logistic regression, clustering, matrix approximation, neural

networks and others are used for identifying ASD. Analysing ASD using machine

learning models require the dataset to be in a matrix form. Data collected from the

screening or diagnosis must be tranformed into a matrix and apply any of the models

to classify the test samples. Usually all the machine learning models require huge

data to learn. This data requires high processing and huge storage. Hence there is

a need to reduce the data size and yet keep the important information intact. The

algorithms that address this issue are called Dimensionality Reduction and Feature

Selection algorithms. Dimensinality reduction algorithms reduce the data size yet they

give promising results[46].

Here as an application of our work we calculate an approximation of the matrix

containing the screening data. The datasets were developed by Dr Fadi Fayez Thabtah

using a mobile application called ASDTests [139] to screen autism. The details of the

datasets are presented in the next section.

Here in the application the datasets are not completely binary. If the input matrix

is real-valued or categorical, the proposed algorithm will convert it into a binary matrix.

The algorithm preProcess() will transform a matrix into a binary matrix. The

threshold value 𝜏 in the converToBinary() is used to determine whether an entry

in the matrix should be a 0 or 1.

The proposed algorithm is run on the ASD dataset and other datasets. The

complete results and their analysis is presented in Section 4.5. Other algorithms, K-
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4. LOW-RANK BINARY MATRIX APPROXIMATION

Means, K-Medoids and Binary r-Means are also run on the ASD dataset and these

results are used for comparison purpose. The performance of our method is measured

using various performance metrics. The proposed method finds the cluster centers in

such a way that each row of the given matrix is associated with one of the cluster

centers; i.e every row 𝑎𝑖 ∈ 𝐴, 𝑖 = 1, 2, . . . , 𝑛 is associated with a cluster center 𝑐 𝑗 for

some j.

4.4.1 Performace Metrics

Performance of the proposed algorithm is measured based on the predictions the algorithm

made. Figure 4.2 shows the confusion matrix.

Figure 4.2: General Look of Confusion Matrix

Here 0 is considered 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and 1 is considered 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒. The prediction combinations

are TrueNegative, TruePositive, FalseNegative, FalsePositive. Using the values in the

confusion matrix we evaluate our work with the measures Accuracy, Recall, Precision,

F1-Score, Distance, Cluster Allocation Count, Number of Samples Predicted Correctly.

4.5 Results

This section presents the results of the numerical experiments conducted on the algorithms

we have implemented. The experiments are run on a desktop with a 3.50GHz processor

and 8GB RAM. The algorithms that are presented in the paper are implemented in

python programming language. These algorithms are run on 4 datasets with varying

sizes. The list of datasets and their respective number of clusters in each dataset is

presented in table 4.1. All the datasets are downloaded from [42]. The experiments are

run for multiple times and the average of those values are presented in the tables.

78



4.5 Results

Table 4.1: Datasets and their properties

Name Description Size
No. of
Clusters

ASD Adolescent Adolescent Autism Spectrum Disorder 98*26 2

ASD Child Child Autism Spectrum Disorder 249*28 2

ASD Toddler Toddler Autism Spectrum Disorder 1054*30 2

ASD Adult Adult Autism Spectrum Disorder 609*29 2

w1a Web Linear 2477*300 2

w1a.t Web Linear 47272*300 2

Table 4.2: Accuracy Comparison for ASD Datasets

Dataset Name
Binary
r-Means

K-Means K-Medoids Proposed Work

ASD Adolescent 26.15 26.50 33.21 48.15

ASD Child 19.60 18.17 18.47 32.12

ASD Toddler 25.14 15.76 12.39 47.34

ASD Adult 48.60 31.30 47.23 65.51

ASD Adolescent ASD Child ASD Toddler ASD Adult
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Figure 4.3: Accuracy Comparison.

The algorithms that are chosen for comparison with the proposed method are Binary

r-Means, K-Means, K-Medoids, and “Binary Matrix factorization using Alternating

79



4. LOW-RANK BINARY MATRIX APPROXIMATION

Least Squares(BMF-ALS)”. All these five algorithms use hamming distance as the

distance measure. These algorihms are run on these datasets and their accuracy,

approximated distance from the original matrix, cluster allocation, precision, recall,

f1 score and confusion matrices are presented in this section.

Table 4.2 presents the accuracy of the four methods for all the ASD datasets. The

accuracy of the proposed work has out performed all the three comparison algorithms.

In few cases the accuracy is two times better than those algorithms. The graphical

representation of the accuracy comparison is presented in figure 4.3.

Table 4.3: Approximated Matrix Distance Comparison

Dataset Name Binary r-Means K-Means K-Medoids
Proposed
Work

ASD Adolescent 540 512 544 475

ASD Child 1175 1085 1148 1193

ASD Toddler 6287 4531 4827 7368

ASD Adult 3461 2856 2876 4565
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Figure 4.4: Approximated Distance Comparison.

Table 4.3 and Figure 4.4 displays the distance between the original matrix and the

approximated matrix in a table and graphical format respectively. The proposed work

is better than all the algorithms for ASD Adolesence dataset and in the case of other
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4.5 Results

Table 4.4: Cluster Allocation Comparison

Dataset

Name

Ground
Truth

Binary
r-Means

K-Means K-Medoids
Proposed
Work

ASD

Adolescent
(62, 36) (76, 22) (72, 26) (73, 25) (41, 57)

ASD

Child
(126, 123) (169, 80) (145, 104) (152, 97) (158, 91)

ASD

Toddler
(728, 326) (947, 107) (562, 492) (598, 456) (229, 825)

ASD

Adult
(429, 180) (468, 141) (365, 244) (460, 149) (387, 222)

datasets it has fallen short. One of the reasons for this short fall is that the chosen center

is a row from the original dataset. But the center choosen by the algorithm is the best

possible one that is available to become a center. All the datasets has two clusters in

them. The cluster names are 0 and 1. The actual number of datapoints in each cluster

is presented in the column titled ‘Ground Truth’ of table 4.4. The cluster allocation for

each dataset when ran on all the four algorithms is presented in the same table. It is

clearly observed that the allocation by the proposed work is a lot better in most of the

cases, by the observation made from true instances. Though the allocation in the case

of ASD Toddler dataset for our algorithm may not look convincing but the actual rows

choosen are better than the other algorithms as shown in precision, f1 score, and recall

measures. To prove that the allocation is better we show the confusion matrices and

the count of number of correctly predicted datapoints. All these values are averaged

and then presented.

The running time of all the algorithms for each dataset is presented in table 4.5

and its pictorical representation is shown in the Figure 4.5. The confusion matrices of

all the methods for all the datasets is presented in Figures 4.6, 4.7, 4.8, and 4.9. The

conclusion drawn out of these confusion matrices is presented in tables 4.6 to 4.9. The

total number of correct predictions by all the algorithms is presented in table 4.6. The

proposed work correctly predicted count is greater in all the occasions.

Recall, Precision, and F1-Score for all the methods are presented in tables 4.7, 4.8,

and 4.9 respectively. The statistics clearly show that proposed work has out performed
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4. LOW-RANK BINARY MATRIX APPROXIMATION

Table 4.5: Time Comparison

Dataset Name
Binary
r-Means

K-Means K-Medoids Proposed Work

ASD Adolescent 0.36126 0.31462 4.93948 0.031256

ASD Child 1.76485 0.40617 35.21963 0.16794

ASD Toddler 31.64124 2.61890 64.822567 0.44258

ASD Adult 11.64972 1.52416 20.07542 0.48993

ASD Adolescent ASD Child ASD Toddler ASD Adult
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Figure 4.5: Time Comparison.

Table 4.6: Number of Data Points Predicted Correctly Comparison

Dataset Name
Binary
r-Means

K-Means K-Medoids Proposed Work

ASD Adolescent 26 26 33 47

ASD Child 49 47 46 80

ASD Toddler 265 166 130 499

ASD Adult 296 189 288 399

all the algorithms. The closest competition for the proposed work is sometimes K-

Means and sometimes K-Medoids.
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(a) (b) (c) (d)

Figure 4.6: Binary r-Means Confusion Matrix: (a) Adolescent (b) Child (c) Toddler
(d) Adult

(a) (b) (c) (d)

Figure 4.7: K-Means Confusion Matrix: (a) Adolescent (b) Child (c) Toddler (d) Adult

(a) (b) (c) (d)

Figure 4.8: K-Medoids Confusion Matrix: (a) Adolescent (b) Child (c) Toddler (d)
Adult

(a) (b) (c) (d)

Figure 4.9: Proposed Work Confusion Matrix: (a) Adolescent (b) Child (c) Toddler
(d) Adult
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Table 4.7: Recall Comparison

Dataset Name
Binary
r-Means

K-Means K-Medoids Proposed Work

ASD Adolescent 0.096 0.12 0.17 0.54

ASD Child 0.023 0.11 0.079 0.19

ASD Toddler 0.031 0.22 0.17 0.68

ASD Adult 0.022 0.011 0.016 0.53

Table 4.8: Precision Comparison

Dataset Name
Binary
r-Means

K-Means K-Medoids Proposed Work

ASD Adolescent 0.27 0.30 0.44 0.59

ASD Child 0.0037 0.13 0.103 0.26

ASD Toddler 0.21 0.33 0.28 0.60

ASD Adult 0.028 0.008 0.009 0.43

Table 4.9: F1 score Comparison

Dataset Name
Binary
r-Means

K-Means K-Medoids Proposed Work

ASD Adolescent 0.14 0.18 0.25 0.57

ASD Child 0.029 0.12 0.089 0.22

ASD Toddler 0.055 0.27 0.21 0.64

ASD Adult 0.024 0.009 0.012 0.47

4.5.1 Additional Experimental Results

Although the main study analyzed 4 algorithms on 4 ASD datasets, we further

investigated their performance on larger datasets and the results are presented in tables

4.10, and 4.11. These “w1a” and “w1a.t” datasets provided a new lens to assess the

algorithm’s generalizability. Interestingly, the observations made on the ASD datasets,

such as Accuracy, Distance, Cluster Allocation, Time Consumption, No. of Correct

Predictions, Recall, Precision, F1-Score, appear consistent with the results on these

larger datasets, suggesting potentially similar algorithm behavior across data sizes.
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Table 4.10: Results for dataset ‘w1a’

Algorithm Name Accuracy Distance Cluster Allocation Time Consumption Correct Predictions Recall Precision F1-Score

K-Means 63.50 25317 (1555, 922) 61.5466 1573 0.628 0.047 0.088

K-Medoids 59.66 29978 (1465, 1012) 1523.391 1478 0.591 0.041 0.077

Binary r-Means 65.32 23562 (1595, 882) 743.7794 1617 0.657 0.052 0.096

BMF-ALS 71.98 21924 (1752, 725) 10.8503 1783 0.718 0.070 0.128

Proposed Work 70.08 19419 (1707, 770) 10.4010 1736 0.704 0.064 0.118

Table 4.11: Results for dataset ‘w1a.t’

Algorithm Name Accuracy Distance Cluster Allocation Time Consumption Correct Predictions Recall Precision F1-Score

K-Means 64.28 180964 (29989,17283) 1174.57 30391 0.642 0.052 0.096

K-Medoids 52.36 194342 (24685,22857) 29072.97 24751 0.523 0.032 0.061

Binary r-Means 59.14 183396 (27699,19573) 14191.12 27956 0.591 0.042 0.079

BMF-ALS 63.92 172410 (29829,17443) 207.07 30220 0.639 0.051 0.095

Proposed Work 69.91 167642 (32488,14784) 198.497 33047 0.698 0.066 0.121

4.6 Conclusions

In this chapter, we presented an SVD based clustering algorithm to approximate a given

binary matrix with another binary matrix such that the rank of the approximated

matrix is less than or equal to a given constant. As an application the proposed

algorithm is experimented and run on ASD datasets and performed classification on

it. The algorithm is compared with other contemporary algorithms and comparative

analysis is also presented. Also as an extension we would like to apply heuristics to

improve the accuracy of the proposed algorithm.
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Chapter 5

Online Feature Selection

Algorithm for Efficient Binary

Classification

In the previous chapter we proposed an online classification algorithm on binary data

based on binary matrix approximation technique. In the present chapter we propose

another binary classification algorithm that works when the data is linearly separable

and is a streaming data. The proposed algorithm makes necessary modification to the

most popular winnow algorithm such that it works on real-data and also helps learn

faster.

5.1 Introduction

Traditional machine learning paradigms often work in a batch learning, where a model

is trained by some learning algorithm from an entire training data set at once and

then the model is deployed for inference. Such learning methods suffer from expensive

re-training cost when dealing with new training data, and thus are poorly scalable for

real-world applications. In the era of big data, traditional batch learning paradigms

become more and more restricted, especially when live data grows and evolves rapidly.

Making machine learning scalable and practical especially for learning from continuous

data streams has become an open grand challenge in machine learning and AI. Online

learning is a subfield of machine learning and includes an important family of learning
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techniques which are devised to learn models incrementally from data in a sequential

manner. Online learning overcomes the drawbacks of traditional batch learning in that

the model can be updated instantly and efficiently by an online learner when new

training data arrives. In online learning, instead of learning from a training set and

then testing on a test set, the on-line learning scenario mixes the training and test

phases. Here in on-line learning, no distributional assumption about the data is made,

and thus there is no notion of generalization.

Learning from relevant attributes refers to the process of identifying and utilizing

only the most informative features or attributes of a dataset for building machine

learning models. In many real-world datasets, not all features contribute equally to

the prediction task. Some features may be redundant, noisy, or irrelevant, leading to

increased computational complexity and decreased model performance. So in many

cases the correct response is dependent on few attribues rather than on all. Finding

those attributes is a challenge and is initially addressed by perceptron[122], which

works on real-valued data and winnow algorithm[88], which works on binary-valued

data. Both these algorithms are online learning algorithms. The detailed review of

the online learning is presented in chapter 2.3. Here in this work we present an online

learning algorithm that is a modified version of the winnow algorithm. The proposed

algorithm works on real-valued data, where as winnow works on binary data. The

algorithm identifies the attributes that are more relevant to the target variable. In the

next section we present the motivation and the contribution of the work, in Section 5.3

we present the proposed work, section 5.4 presents the results and the final section in

this chapter ends with a conclusion.

5.2 Motivation and contribution

The winnow algorithm update is poor or is slow in updating the weights. Since the

winnow algorithm is usually designed for feature selection, it only works on binary data

and is not applicable on data with real values. The update does not take into account

the input instance, and it updates the weights with some constant factor.

Our primary result is the development of an algorithm that effectively handles

irrelevant attributes. We propose a modified winnow algorithm that employs multiplicative

updates while learning from the data with real values in an online mode. The proposed
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algorithm shares similarities with the classical perceptron algorithms and the winnow

algorithm. It incorporates a multiplicative weight-update scheme that updates based

on the current input instance. This enables it to outperform traditional winnow

algorithms in the case where numerous attributes are irrelevant. The algorithm is

primarily assessed by tracking the number of mistakes it makes during the learning

process, as well as its accuracy when tested on unseen data. These evaluations are then

compared to the evaluations of seven different variants of the winnow algorithm.

5.3 Proposed scheme

This section outlines the algorithm proposed for data classification. We consider the

following notation: 𝑋 ∈ R𝑛∗𝑚 represents the collection of data instances, 𝑌 ∈ {−1, 1}𝑛

or 𝑌 ∈ {0, 1}𝑛 represents the class labels to which each data point belongs. The binary

classifier denoted by w ∈ R𝑚 is m-dimensional weight vector, x ∈ R𝑚 represents an

m-dimensional instance from 𝑋, and 𝑥𝑖 represent the 𝑖𝑡ℎ feature of the vector x. It is

also to be noted that, if x𝑖 is the 𝑖𝑡ℎ vector in 𝑋, then 𝑥𝑖 𝑗 represent the 𝑗 𝑡ℎ feature

in the vector x𝑖. Usually x represents a datapoint comprising features that have been

quantitatively measured from an object or event for which the classifier aims to learn.

For instance, in the case of an image, the features typically correspond to the pixel

values within the image. The 𝑖𝑡ℎ feature of an instance x is represented as 𝑥𝑖 ∈ R. The
class label of x is denoted as 𝑦, where 𝑦 ∈ {0, 1} or {−1, 1}. A binary linear classifier

is defined by a pair of values: a weight vector w ∈ R𝑚 and a threshold 𝜃 ∈ R. The

classifier assigns a value of 1 to an instance x if the dot product of w and x is greater

than or equal to 𝜃, and assigns a value of -1 otherwise.

Algorithm 15 serves as the primary algorithm that accepts a dataset as input and

invokes Algorithm 16. Algorithm 16 is a modified version of the winnow algorithm,

which is responsible for classifying the data, specifically when they exhibit linear

separability. The primary emphasis of this work does not center on addressing the

classification of data that are not linearly separable. Input parameters for the algorithm

are w ∈ R𝑚, 𝑋 ∈ R𝑛∗𝑚, 𝑦 ∈ {−1, 1}𝑛, 𝛼 ≥ 2, and 𝜃. Here, w the weight vector is

randomly assigned, 𝑋 is the dataset, 𝑌 is the set of target variables, 𝛼, and 𝜃 are fixed

paramaters that are useful in the algorithm. In the proposed algorithm, 𝛼 is a constant

that regulates the learning. Algorithm 16 is presented such that it works in an online
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scenario. At the initial step of the Algorithm 15, the data 𝑋 ∈ R𝑛∗𝑚 is normalized such

that each value within the dataset falls within the range of [−1, 1].

Algorithm 15: main()

Input: 𝑋 ∈ R𝑛∗𝑚, 𝑌 ∈ {−1, 1}𝑛
Output: Number of correct predictions, Mistake count, Accuracy, Precision,
Recall, F1-score
1: Normalize X;
2: X-train, y-train, X-test, y-test = split(X, Y);
3: Set w𝑖 =

𝑚
2 ∀ i, 1 ≤ 𝑖 ≤ 𝑚, set 𝛼, set 𝜃;

4: w, mistake count = modifiedWinnow(X-train, y-train, w, 𝛼, 𝜃);
5: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = predictTestData(w, 𝜃, X-test, y-test);
6: Using 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, compute number of correct predictions, Mistake count,

Accuracy, Precision, Recall, and F1-score;
7: return Number of correct predictions, Mistake count,

Accuracy, Precision, Recall, and F1-score;

The data is treated as a continuous stream, with one data point being selected

and processed at a time. Let x𝑖 be the data point recieved for processing. In lines

3, 4, 5, and 6 the algorithm predicts whether the data point x𝑖 belongs to a positive

class(+1) or to a negative class(-1). The actual class of the data point, which is 𝑦𝑖,

is supplied in line 8. When the predicted class of a data point matches the actual

class, the algorithm does not engage in any learning process. This signifies that the

data point has been correctly classified, and as a result, the weight adjustments are

unnecessary. Conversely, if the predicted class differs from the actual class, the weight

vector must be updated to reflect the necessary modifications.

Lines 9 to 28 entail the adjustment of the weight vector based on the predicted and

actual classes. If the prediction is positive (+1) and the actual class is negative (-1),

the weight vector is modified by rotating it in the direction of the misclassified data

point. Since the misclassified data point lies in the negative direction, the weight vector

is reduced to facilitate a rotation in the negative direction.

The binary winnow algorithm, as described in [89], decreases the weight vector by

a constant factor. However, in the proposed algorithm, the weight vector is not altered

by a fixed constant. Instead, it is adjusted based on the values of each individual

data point. Specifically, if the distance between the weight vector w and x𝑖 is large,

then the algorithm takes this into account and modifies the weight vector accordingly.
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Algorithm 16: modifiedWinnow()

Input: w ∈ R𝑚, 𝑋 ∈ R𝑛∗𝑚, 𝑌 ∈ {−1, 1}𝑛, 𝛼 ≥ 2, 𝑎𝑛𝑑 𝜃.
Output: w
1: mistake count = 0;
2: for i in range(n) do
3: if x𝑖 · w > 𝜃 then
4: pred = +1
5: else
6: pred = -1
7: end if
8: resp = True class label 𝑦𝑖 ∈ {+1,−1};
9: if pred ! = resp then

10: mistake count++;
11: if 𝑟𝑒𝑠𝑝 == −1 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑 = 1 then
12: for j in range(m) do
13: mean = mean of 𝑗 𝑡ℎ column;
14: if 𝑥𝑖 𝑗 ≥ 𝑚𝑒𝑎𝑛 then
15: 𝑤 𝑗 = (𝑤 𝑗 ∗ 𝑥𝑖 𝑗)/𝛼;
16: end if
17: end for
18: end if
19: if 𝑟𝑒𝑠𝑝 == 1 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑 = −1 then
20: for j in range(m) do
21: mean = mean of 𝑗 𝑡ℎ column;
22: if 𝑥𝑖 𝑗 < 𝑚𝑒𝑎𝑛 then
23: 𝑤 𝑗 = (𝑤 𝑗 ∗ 𝑥𝑖 𝑗) ∗ 𝛼;
24: end if
25: end for
26: end if
27: end if
28: end for
29: return w, mistake count;

This means algorithm takes into account the information provided by the data point.

Conversely, if the distance is small, the adjustment to the weight vector is also relatively

small. It is important to notice that, it is not necessary that the entire weight vector

need to be updated but only the relevant index locations are updated. Whichever data

index has a value less than the column mean of the data point, only the corresponding

element of the weight vector is updated. The process outlined in steps 11 to 18 of the
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algorithm is referred to as the demotion operation. So the update is:

𝑤 𝑗 = (𝑤 𝑗 ∗ 𝑥𝑖 𝑗)/𝛼

In the scenario where the prediction is negative(-1) and the actual class is positive(+1)

the weight vector need to be rotated in the direction of the misclassified data point,

which lies in the positive direction. Therefore, the weight vector is multiplied to

facilitate rotation in the positive direction. The process outlined in steps 19 to 26

of the algorithm is referred to as the promotion operation. Hence the update is:

𝑤 𝑗 = (𝑤 𝑗 ∗ 𝑥𝑖 𝑗) ∗ 𝛼

Steps 3 to 27 are iteratively applied to each data point within the training dataset.

This repetition encompasses the processing of all data points, and upon completion,

the algorithm returns the final weight vector w. Once the main algorithm recieves the

weight vector, it is operated on the test data and calculates the required metrics for

evaluation. The evaluation algorithm is presented as Algorithm 17.

Algorithm 17: predictTestData()

Input: w, X-test, y-test, 𝜃
Output: Confusion Matrix
1: for x in X-test do
2: if x.w ≥ 𝜃 then
3: 𝑦 = +1;
4: y = Obtain true class label of x;
5: Update Confusion Matrix based on 𝑦 and y;
6: else
7: 𝑦 = -1;
8: y = Obtain true class label of x;
9: Update Confusion Matrix based on 𝑦 and y;

10: end if
11: end for
12: return Confusion Matrix;
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5.4 Results

This section showcases the outcomes obtained from conducting numerical experiments

on the algorithms presented in the previous section. The experiments were performed

on a desktop equipped with a 3.50GHz processor and 8GB RAM. The algorithms

described in the paper were implemented using the Python programming language. The

experiments encompassed seven datasets of different dimensions, as listed in Table 5.1.

The dimensions are represnted in rows*column format, where rows represent number of

instances and columns represent number of features in each instance. All the datasets

were obtained from [42]. One of our objectives is to operate in an online setting. To

assess the effectiveness of the proposed algorithm, we divide the data into two distinct

sets: the training set and the testing set. The algorithm is fed one example at a

time from the training set to facilitate the learning process. On the other hand, the

testing set is employed to evaluate the algorithm’s performance using various metrics.

The experiments were conducted multiple times using different data splits, and the

minimum, maximum and average values obtained from these runs are presented in the

tables within this section.

Table 5.1: Dataset Size

Dataset Name Dataset Dimensions

Inosphere 351*34

Cleveland 303*13

Australian 690*14

Divorce 170*55

Leukemia 38*7129

Cod-rna 59,535*8

Segmentation 1243*21

In order to demonstrate the efficiency of the proposed algorithm, it is compared

against various other variations of the winnow algorithm. They include

� Binary Elimination

� Binary Demotion
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� Real Elimination

� Real Demotion

� Exponential Winnow

� Reparameterized Winnow

� Mesterham Winnow

The distinctiveness of these algorithms from the proposed algorithm lies in their

respective approaches to update the classifier. Binary Elimination and Binary Demotion

algorithms specifically operate on binary data, requiring preprocessing of the datasets

prior to their application. On the other hand, the remaining algorithms are designed to

handle real-valued (R) datasets. The algorithms are evaluated and compared based on

metrics such as Accuracy, Number of Correct Predictions, Mistake Count, Precision,

Recall, and F1-score. These evaluations are conducted on all the datasets, and the

algorithms are run for a fixed number of iterations. The average values obtained from

these runs are presented in the tables below. It’s important to note that the parameters

used in the algorithms are assigned the values proposed by the respective authors in

their original works. In the proposed work 𝜃 is assigned with 𝑚
2 and 𝛼 is set to 2.

Table 5.2 summarizes the accuracy of all algorithms on all datasets. It shows the

minimum, maximum, and average accuracy for each algorithm. Figure 5.1 provides a

graphical representation of the average accuracy results. It is evident that the proposed

algorithm exhibits superior performance in terms of accuracy for the Inosphere, Segmentation,

Cleveland, and Australian datasets, surpassing all other algorithms. Furthermore, the

proposed algorithm achieves comparable accuracy with the Divorce, Leukemia, and

Cod-rna datasets. In the majority of cases, it is noticeable that the average accuracy

of the proposed algorithm tends to be close to both the minimum and maximum

accuracies. In contrast, for other algorithms, the minimum and maximum accuracies

tend to be somewhat distant from the average accuracy. This observation provides an

insight that the proposed algorithm performace is consistent and better than all the

algorithms considered.

Also, when considering additional factors, it becomes apparent that the proposed

algorithm outperforms all other algorithms, which are discussed later. Table 5.3 exhibits
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the number of correct predictions, which is the combined total of true-positive and true-

negative predictions. The observations derived from this metric correspond with the

accuracy comparison outlined earlier. Additionally, Figure 5.2 graphically illustrates

the distribution of the number of correct predictions.

Inosphere Cleveland Australian Divorce Leukemia Cod-rna Segmentation
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Figure 5.1: Accuracy Comparison

Table 5.3: Number of Correct Predictions

Algorithm Name | Dataset Name Inosphere Divorce Segmentation Cleveland Leukemia Cod-rna Australian

Binary Elimination 28 34 193 32 5 7983 82

Binary Demotion 55 33 153 37 5 6884 105

Real Elimination 28 34 195 33 6 7948 77

Real Demotion 58 34 127 32 6 3937 108

Exponential Winnow 50 20 187 27 5 7983 88

Reparameterized Winnow 46 15 193 33 1 7951 108

Mesterham Winnow 43 15 65 28 3 3979 87

Proposed Work 62 34 196 48 6 7985 117

Another metric taken into consideration for comparison is the Mistake Count. It

represents the number of incorrect predictions made by the algorithm when compared

with the actual responses. This metric provides insights into the effectiveness of weight

updates. A lower mistake count suggests that the algorithm is updating the weights

effectively, while a higher count indicates that the weights are not being updated

adequately. Additionally, the mistake count offers information about the speed at

which the classifier reaches the convergence point.

The Mistake Count is displayed in Table 5.4, and its corresponding bar graph is

illustrated in Figure 5.3. Throughout the process of building the classifier, the proposed
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Figure 5.2: No. of Correct Predictions Comparison

algorithm consistently exhibits fewer mistakes. Despite achieving similar accuracy to

some other algorithms, the proposed algorithm demonstrates a lower mistake count.

These mistakes, also referred to as learning mistakes, are not simply classification errors,

but rather reflect the algorithm’s ability to learn and adapt.

The performance of the proposed algorithm is further evaluated using additional

metrics including Precision, Recall, and F1-Score. These metrics are presented in

Table 5.5, 5.6, and 5.7 respectively. The precision and F1-Score of the proposed

algorithm consistently outperform those of all other algorithms compared. However, in

certain instances, the Recall of the proposed algorithm has shown a relatively lower

performance. Overall, the proposed algorithm demonstrates superior performance

across almost all of the evaluated factors when compared to other algorithms.
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Table 5.4: Mistake Count

Algorithm Name | Dataset Name Inosphere Divorce Segmentation Cleveland Leukemia Cod-rna Australian

Binary Elimination 169 5 212 103 8 15923 252

Binary Demotion 77 4 266 55 13 20388 120

Real Elimination 173 5 207 106 14 15887 235

Real Demotion 78 5 356 132 12 31696 142

Exponential Winnow 198 43 300 96 24 15921 139

Reparameterized Winnow 90 69 752 93 20 15955 117

Mesterham Winnow 98 67 763 128 7 31762 255

Proposed Work 88 4 192 48 6 14617 96
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Figure 5.3: Mistake Count Comparison
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Table 5.5: Precision

Algorithm Name | Dataset Name Inosphere Divorce Segmentation Cleveland Leukemia Cod-rna Australian

Binary Elimination 0 1 1 0 0.57 0 0

Binary Demotion 0.75 0.94 0.36 0.51 1 0.35 0.64

Real Elimination 0 1 1 0 1 0 1

Real Demotion 0.8 1 0.3 0.53 1 0.33 0.7

Exponential Winnow 0.67 0.52 0 0.47 0 0 0.58

Reparameterized Winnow 0.63 0.44 0.8 0.67 0 0 0.69

Mesterham Winnow 0.61 0.44 0.26 0.47 0.75 0.33 0

Proposed Work 0.84 1 1 0.68 1 0.6 0.82

Table 5.6: Recall

Algorithm Name | Dataset Name Inosphere Divorce Segmentation Cleveland Leukemia Cod-rna Australian

Binary Elimination 0 1 0.14 0 1 0 0

Binary Demotion 0.95 1 0.68 0.92 0.25 0.29 0.97

Real Elimination 0 1 0.13 0 0.71 0 0.02

Real Demotion 0.93 1 0.65 1 0.6 1 0.82

Exponential Winnow 1 1 0 0.87 0 0 0.68

Reparameterized Winnow 1 1 0.13 0.07 0 0 0.97

Mesterham Winnow 1 1 0.98 1 0.43 1 0

Proposed Work 0.98 1 0.13 1 0.6 0 0.77

Table 5.7: F1-Score

Algorithm Name | Dataset Name Inosphere Divorce Segmentation Cleveland Leukemia Cod-rna Australian

Binary Elimination 0 1 0.24 0 0.73 0 0

Binary Demotion 0.84 0.97 0.47 0.66 0.4 0.31 0.77

Real Elimination 0 1 0.23 0 0.83 0 0.03

Real Demotion 0.86 1 0.41 0.7 0.75 0.5 0.75

Exponential Winnow 0.8 0.68 0 0.61 0 0 0.63

Reparameterized Winnow 0.77 0.61 0.22 0.13 0 0 0.81

Mesterham Winnow 0.75 0.61 0.41 0.64 0.55 0.5 0

Proposed Work 0.9 1 0.23 0.81 0.75 0 0.8

5.5 Conclusions

In this chapter, we have introduced a novel online learning algorithm, a modified

version of the Winnow algorithm. Additionally, the proposed algorithm is a polynomial
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time feature selection algorithm that leverages feature correlations to achieve improved

accuracy in binary classification tasks. To validate its effectiveness, we conducted

extensive experiments on multiple datasets and compared it against seven variants of

the Winnow algorithm. The results clearly demonstrate that our proposed algorithm

outperforms all other variants in various evaluation metrics, such as accuracy, mistake

count, number of correct predictions, precision, recall, and F1-score.
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Chapter 6

An Active Learning Algorithm

With Novel Initialization, and

Model Update Techniques

In the previous chapters, we have proposed a scheme for classification on stream data.

Now in this chapter we present another linearly separable binary classification algorithm

that works on real-data. The algorithm works in a challenging environment where

labeled data is hard and expensive to obtain. We present an active learning algorithm

and also present novel initialization and model update techniques in an active learning

situation.

6.1 Introduction

Given a set of 𝑛 two-dimensional data points 𝑋 = {(𝑥11, 𝑥12), . . . , (𝑥𝑛1, 𝑥𝑛2)}, where

𝑥𝑖 𝑗 ∈ R. Any line defined by the equation (𝑤 · 𝑥) + 𝑏 = 0 (where (𝑤 · 𝑥) is the dot

product between 𝑤 = (𝑤1, 𝑤2) and 𝑥 = (𝑥1, 𝑥2)) will separate the plane into two distinct

regions: (𝑤 · 𝑥) + 𝑏 ≥ 0 and (𝑤 · 𝑥) + 𝑏 < 0. This allows us to determine the label of the

corresponding data point x based on its location relative to the line by:

𝑦 = 𝑓 (𝑥) = 𝑠𝑖𝑔𝑛((𝑤 · 𝑥) + 𝑏);

where sign function 𝑠𝑖𝑔𝑛(·) is defined as,
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𝑠𝑖𝑔𝑛(𝑥) =
{
1, 𝑎 ≥ 0.

−1, otherwise.
(6.1)

Here, a value of 1 indicates the positive class, while a value of -1 is the negative

class. Consider a classification problem in m-dimensional space, where 𝑋 ∈ R𝑛×𝑚

represents the collection of data instances and 𝑌 ∈ {−1, 1}𝑛 represents the corresponding

class labels. The objective of a classification problem is to determine whether the

corresponding 𝑦 for a given point 𝑥 is 1 or -1 based on the training set. This can be

achieved by finding a decision function 𝑔(𝑥) = (𝑤 · 𝑥) + 𝑏 that effectively partitions the

R𝑚 space into two regions according to the training set.

The classification problem discussed above is specifically a binary classification

problem. In binary classification, the goal is to assign one of two labels, typically

denoted as 1 and -1, to each data point. When the decision function 𝑔(𝑥) is restricted

to a linear function, the corresponding classification method is referred to as linear

classification. In this case, the hyperplane (𝑤 · 𝑥) + 𝑏 = 0 partitions the R𝑚 space into

two distinct regions, as illustrated in Figure 6.1(b). In contrast, nonlinear classification

allows for nonlinear decision functions 𝑔(𝑥), leading to more complex decision boundaries.

Additionally, multi-class classification problems involve partitioning the data space into

more than two regions, each corresponding to a distinct class. However, our discussion

here is limited to linear binary classification.

Figure 6.1: Binary Classification

The chapter is organised such that the next section deals with the motivation and

contribution of the work. Section 6.3 presents the proposed scheme, Section 6.4 presents

the results, and the last section 6.5 concludes the chapter.
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6.2 Motivation and contribution

The advent of inexpensive digital storage, ubiquitous sensing devices, and the ever-

expanding web has facilitated the accumulation of vast amounts of unlabeled data,

which includes raw speech, images, text documents, and a myriad of other forms.

However, harnessing this data and the construction of supervised classifiers from such

data can be both a costly and time-consuming task. This process is not only tedious and

laborious but also demands a certain level of expertise. To alleviate these challenges,

active learning strategies can be employed. In active learning model, the selection of

initial data points to begin the learning plays a vital role in the further learning of the

model. In the next stages of the algorithm finding the most impactful data points is

necessary, these data points impact the overall performance of the algorithm.

In our contribution, we present two active learning algorithms that addresses the

above mentioned issues. The first algorithm name is ‘IncrementalActiveSVM’, which

addresses the issue of initial sample selection and impactful data points at the intermediate

stages. the second algorithm is ‘ActiveSVM’ which addresses initial sample selection,

impactful datapoints and also presents a novel model update method that is time

efficient.

6.3 Proposed scheme

The primary emphasis of this study revolves around addressing data classification

challenges associated with linearly separable data. We herewith propose two algorithms:

� IncrementalActiveSVM

� ActiveSVM

GeneralSVM is a classic SVM algorithm that is used for comparison. All these

algorithms classify the data linearly only when the dataset is linearly separable. All

of the above algorithms commence by partitioning the data into distinct training and

testing sets. In the case of the GeneralSVM algorithm, upon the data partitioning,

the Support Vector Machine (SVM) undergoes training using the designated training

dataset. Subsequently, the trained SVM is assessed on the test data. The parameters

estimated during the SVM training phase are then employed to compute both the
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accuracy and the duration expended in the training procedure. Here, “noOfSamples”

denotes the number of instances on which the SVM undergoes training. TheGeneralSVM

algorithm corresponds to the standard SVM algorithm[32], as described in the preceding

section 1.3.8. The algorithm GeneralSVM() is outlined in Algorithm 18.

Algorithm 18: GeneralSVM()

Input: 𝑋 ∈ R𝑛×𝑚, 𝑌 ∈ {−1, 1}𝑛
Output: Accuracy, Time, No. of Samples
1: Split the data into training and testing set;
2: model = SVM.fit(XTrain, yTrain);
3: Calculate Accuracy, and Time;
4: noOfSamples = len(XTrain);
5: Accuracy = accuracy(model.predict(XTest), yTest);
6: return Accuracy, Time, and noOfSamples;

Algorithm 19: generateSamples(𝑋, method, 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠)

Input:
𝑋: Dataset
method : Name of the method to generate samples
nSamples : Number of points to be sampled.
Output: Returns 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 number of coreset points indices
1: if (method == ‘Random’) then
2: queryPoints = Generate 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 random numbers in

the range(0, len(𝑋));
3: else if (method == ‘kMeansPP’) then
4: queryPoints = kMeansPP(𝑋, 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠);
5: else
6: queryPoints = coresetSamples(𝑋, 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠);
7: end if
8: Return queryPoints;

The issues that any active learning algorithm needs to address are:

� A careful approach to initial data points selection

� Prioritizing crucial data points that facilitate rapid model learning and

� Minimizing the computational burden of the model update function.
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We propose IncrementalActiveSVM an active learning algorithm that addresses

the first two concerns. The algorithm is outlined in Algorithm 20.

Initial Data Points Selection:

The efficacy of an active learning algorithm is notably affected by the initial samples

chosen for model training. The proposed algorithms employ three distinct techniques

for selecting initial samples: Random Sampling, Coreset Sampling, and kMeansPP

Sampling. Each of these methods adopts a unique approach to sampling the data points.

Algorithm 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑠(), which is presented as Algorithm 19, is responsible for

selecting these initial samples.

Figure 6.2: IncrementalActiveSVM’s Traditional Update Function

The proposed IncrementalActiveSVM algorithm carefully chooses the initial

data points from the dataset using any of the three methods mentioned above for

training. The 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑠() function takes the sampling method and the desired

number of samples as arguments. The supported sampling methods are ‘Random’,

‘Coreset’, and ‘kMeansPP’. Based on the specified sampling method, the function

selects the appropriate sampling strategy and returns the requested number of samples.

These samples serve as the initial training set for the SVMmodel. IncrementalActiveSVM’s

‘Random’ variant for initial sample selection is adopted from the literature. This variant

helps us to compare the proposed schemes and test their credibility. Once these samples

are chosen, the next step is to identify the data points that help the learning model to

learn quickly

Prioritizing Crucial Data Points:

For the purpose of clear understanding, the update method of IncrementalActiveSVM

is visually illustrated in Figure 6.2. The initial training set is depicted in Figure 6.2(a).
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From this set, initial data points are selected using one of the three specified methods.

These selected points are marked in green-filled rectangles and circles in Figure 6.2(b).

The SVM model is then trained on these green points, while the remaining untrained

points are represented by dashed empty circles and rectangles. Upon training the SVM

model on these initial samples, support vectors are identified, and the maximum margin

is determined. Figure 6.2(b) also displays the hyperplane, support vectors, and the

margin. Data points within the margin are identified, and among the untrained data

points, then ‘k’ points closest to the hyperplane are selected. Figure 6.2(b) illustrates

these ‘k’ closest points as orange-filled circles and rectangles inside the margin. If

the number of data points within the margin exceeds ‘k’, the ‘k’ points closest to the

separating hyperplane are chosen. If the number of data points falls between 0 and ‘k’

(non-inclusive), all data points are selected. If no data points lie within the margin, the

algorithm has successfully identified the exact hyperplane that accurately segregates

the data. In this scenario, the algorithm terminates. IncrementalActiveSVM algorithm

retains the traditional training and update procedures proposed in the literature. We

identify the ‘k’ nearest data points within the margin that are closest to the hyperplane

from the data points that are not used for training. The data points closest to the

hyperplane are added to the previous training set, forming the training set for the next

iteration. In the subsequent iteration, a new set of support vectors is identified, followed

by the determination of the maximum margin between these support vectors. Next,

the points closest to the new hyperplane within the margin are identified and added to

the existing training set. Finally, the SVM model is trained on this updated training

set. The motivation for naming the algorithm ’IncrementalActiveSVM’ is because of

the increased training dataset size at each iteration. A visual depiction of this approach

is illustrated in Figure 6.2.

This iterative process continues until one of the following termination criteria is

satisfied:

� Accuracy Threshold: The classification accuracy reaches 100%

� Accuracy Stagnation: The classification accuracy remains unchanged for the

past ten consecutive iterations.

� Training Set Size: The size of the training set exceeds a certain percentage of

the entire dataset.
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Algorithm 20: IncrementalActiveSVM()

Input: 𝑋 ∈ R𝑛×𝑚, 𝑌 ∈ {−1, 1}𝑛, 𝑐𝑜𝑢𝑛𝑡 ∈ Z
Output: Accuracy, Time, No. of Samples
1: Split the data into training and testing set;
2: samples = generateSamples(’Random’,/’Coreset’/’kMeansPP’, count);
3: noOfSamples = len(samples);
4: trainData.append([XTrain[samples], yTrain[samples]]);
5: model = SVM.fit(trainData);
6: supportVectors = model.support vectors ;
7: while (Termination condition is met) do
8: marginPoints = Identify the data points inside the margin and not in

trainData;
9: if (𝑚𝑎𝑟𝑔𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 > 𝑘) then

10: queryPoints = Find k points that are closest to the hyperplane;
11: else if (0 > 𝑚𝑎𝑟𝑔𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 < 𝑘) then
12: queryPoints = Select all points inside the margin;
13: else
14: break;
15: end if
16: trainData.append([XTrain[queryPoints], yTrain[queryPoints]);
17: model = SVM.fit(trainData);
18: supportVectors = model.support vectors ;
19: Calculate the accuracy.
20: end while
21: noOfSamples += len(trainData);
22: Calculate Accuracy, and Time;
23: return Accuracy, Time, and noOfSamples;

Attainment of any of the termination criteria or the absence of data points within

the margin indicates algorithm convergence. Upon convergence, the relevant performance

metrics are computed.

A significant drawback of the IncrementalActiveSVM algorithm is that in each

iteration, ‘k’ nearest data points to the hyperplane are appended to the training set,

and the entire training set is employed for training purposes. This iterative approach

leads to a continuous increase in the training set size with each iteration, consequently

escalating the SVM training time. Considering the computational workload, we expand

on the existing concept and propose a new algorithm to reduce the computational time.

We use this algorithm to establish a comparable environment.

The second algorithm that we propose is named as ‘ActiveSVM’. This algorithm
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Figure 6.3: Proposed Update Function

is exactly the same as IncrementalActiveSVM, except that the computational burden

is reduced. The ActiveSVM algorithm also works in an active learning environment. It

utilizes the three proposed sample initialization techniques, namely ‘random’, ‘kMeansPP’,

and ‘Coreset’, within this work to enhance the algorithm’s starting sample selection

capabilities and also propose novel training and update procedures. The ActiveSVM

algorithm emphasizes the significance and demonstrates the substantial performance

gains achieved by minimizing computational costs in large-scale data scenarios. Both

the IncrementalActiveSVM and the ActiveSVM algorithms showcase how the Initial

data point selection, prioritizing crucial data points, and minimizing the computational

burden are important, especially in active learning-based environments. A detailed

comparison of ActiveSVM and IncrementalActiveSVM’s performance is presented in

the following section. The proposed ActiveSVM works a bit differently from the

IncrementalActiveSVM algorithm at the model training and updation phase. ActiveSVM

depends on the same initial samples, and it incorporates novel SVM update functions.

The ActiveSVM algorithm is outlined in Algorithm 21.

ActiveSVM algorithm begins by partitioning the dataset for training and testing,

initial sample generation by any of the three methods, model training using the

initial data points, coefficient extraction, intercept determination, support vector

identification, margin calculation, and selection of the ‘k’ crucial data points closest

to the hyperplane. One of the motivations for including these novel initialization

methods in this algorithm is to establish a comparable environment for evaluation.

The update process of ActiveSVM is visualized in Figure 6.3. The initial dataset

with the decision boundary resulting after the update function is presented in Figure
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Algorithm 21: ActiveSVM()

Input: 𝑋 ∈ R𝑛×𝑚, 𝑌 ∈ {−1, 1}𝑛, 𝑐𝑜𝑢𝑛𝑡 ∈ Z
Output: Accuracy, Time, No. of Samples
1: Split the data into training and testing set;
2: samples = generateSamples(’Random’,/’Coreset’/’kMeansPP’, count);
3: noOfSamples = len(samples);
4: trainData.append([XTrain[samples], yTrain[samples]]);
5: model = SVM.fit(trainData);
6: finalCoef, finalIntercept = model.coef , model.intecept ;
7: Identify the support vectors;
8: while (Termination condition is met) do
9: Calculate the margin boundaries;

10: marginPoints = Identify the data points that are not in trainData and within
the margin;

11: if (𝑚𝑎𝑟𝑔𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 > 𝑘) then
12: queryPoints = Find k points that are closest to the hyperplane;
13: else if (0 > 𝑚𝑎𝑟𝑔𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 < 𝑘) then
14: queryPoints = Select all points inside the margin;
15: else
16: break;
17: end if
18: noOfSamples += len(queryPoints);
19: model = SVM.fit(XTrain[queryPoints], yTrain[XTrain[queryPoints]]);
20: tempCoef, tempIntercept = model.coef , model.intecept ;
21: finalCoef += tempCoef;
22: finalIntercept += tempIntercept;
23: Determine the support vectors corresponding to the finalCoef and

finalIntercept;
24: Calculate the accuracy using finalCoef and finalIntercept.;
25: end while
26: Calculate Accuracy, and Time;
27: return Accuracy, Time, and noOfSamples;

6.3(a), while in Figure 6.3(b), the initial data points are highlighted with green-colored

rectangles and circles. Additionally, in Figure 6.3(b), the support vectors and the

separating plane corresponding to the initial points are also depicted.

Minimizing the Computational Burden:

The algorithm employs a more efficient approach by training the SVM solely on the

newly identified ‘k’ data points. These points are highlighted in orange. Utilizing

these newly selected points, we train a new SVM model. This process results in
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the determination of a new hyperplane, a new margin, and a new set of support

vectors. This selective training strategy significantly reduces the computational burden

compared to training the SVM on the entire training set. We then combine the old

coefficients and intercept obtained from the initial data points with the newly derived

coefficients and intercept from the ‘k’ nearest points. Following the training on the ‘k’

data points, the overall coefficient and intercept values are updated by incorporating

the newly obtained coefficients and intercept from the ‘k’-point training. This selective

training approach, coupled with efficient coefficient and intercept updates, contributes

to substantial time savings compared to traditional training methods. To acquire the

revised coefficients and intercept, the subsequent update function is utilized:

tempCoef, tempIntercept = model.coef , model.intecept ;

finalCoef+ = tempCoef;

finalIntercept+ = tempIntercept;

The variables model.coef and model.intercept represent the new coefficients and

intercept derived from SVM training using the ‘k’ data points. The global coefficients

and intercept are denoted by finalCoef and finalIntercept, respectively.

Following the addition step, we recalculate the support vectors and margin associated

with the updated coefficients and intercept. Figure 6.3 illustrates this process visually.

Subsequently, in the next iteration, we identify the ‘k’ nearest data points closest to

the hyperplane within the newly established margin. A new SVM is trained using these

points, and their parameters are added to the existing parameters. The termination

conditions for the ActiveSVM algorithm are identical to those employed by the

IncrementalActiveSVM algorithm.

In the following section, we present and analyze the performance results obtained

from the three algorithms and their variants discussed in this section.

6.4 Results

This section presents the experimental findings obtained from conducting numerical

evaluations of the algorithms introduced in the preceding section. These algorithms
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were applied to nine datasets, with their names and dimensions detailed in Table

6.1[42]. The number of initial samples generated by the generateSamples algorithm for

each dataset is specified in Table 6.2. The number of initial samples was maintained

constant for all runs. To investigate the algorithms’ performance under limited initial

data conditions, the initial sample count was maintained constant. Although some

experiments employed a larger initial sample count, the algorithms converged rapidly

in these scenarios. For this study, the aim is to train with a minimal number of points;

hence, the initial dataset size is deliberately kept small and reasonable.

Table 6.1: Dataset Size

Dataset Name Dataset Size

Cod-rna 59535 × 8

germannumer 1000 × 24

diabetes 768 × 8

madelon 2000 × 500

gisette 6000 × 5000

mushrooms 8124 × 112

w1a 2477 × 300

w1a.t 47272 × 300

Skin Nonskin 245057 × 3

All algorithms were executed five times, and the average values are presented in

the following tables. Table 6.3 presents the average time required to generate initial

samples for each dataset. The initial sample selection operation was performed only

once for all algorithms. As shown in Table 6.3, generating random samples consumed

significantly less time compared to other sampling techniques. It is understandable

that randomly generating locations within a data range is less time-consuming than

generating locations that are more crucial for rapid learner training. Coreset is the

second-best algorithm for sample selection, but as demonstrated in the subsequent

tables, the coreset method of generating samples is superior in other aspects as well.

The ‘kMeansPP’ algorithm consumes considerable time for sample generation due to

the need for distance computation at each stage. Even for smaller datasets, ‘kMeansPP’
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Table 6.2: Number of Initial Samples Selected for Each Dataset

Dataset Name Initial Sample Size

Cod-rna 100

germannumer 50

diabetes 50

madelon 100

gisette 50

mushrooms 100

w1a 200

w1a.t 200

Skin Nonskin 1000

Table 6.3: Time Consumed to Generate Initial Samples

Dataset Name Method

Random Samples kMeansPP Coreset

Cod-rna 0.00012 114.84 0.8112

germannumer 0.000113 5.355 0.01402

diabetes 0.00011 3.9724 0.0139

madelon 0.00016 46.5546 0.0288

gisette 0.00011 101.54 0.2056

mushrooms 0.000142 174.82 0.0817

w1a 0.00018 256.007 0.0345

w1a.t 0.0002 513.14 0.5463

Skin Nonskin 2.9325 751 2.255

incurred substantial time overhead. Table 6.4 presents a comprehensive comparison

of the accuracy achieved by each algorithm. One of the primary objectives of this

study was to attain the same accuracy as the ‘FullSVM’ algorithm while utilizing

a reduced amount of training data. When using the ‘Random Samples’ method in

‘IncrementalActiveSVM’, the accuracy matched that of ‘FullSVM’ in certain instances

while falling short in others. In a few cases, it even surpassed the ‘FullSVM’ accuracy.

Employing ‘kMeansPP’ for initial sample generation in ‘IncrementalActiveSVM’ led to
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successful accuracy attainment in most cases, with a few exceptions. When the ‘Coreset’

method was used for initial sample generation in ‘IncrementalActiveSVM’, accuracy

was achieved in all but two instances. For the proposed ‘ActiveSVM’ algorithm, the

‘Random Samples’ method resulted in accuracy attainment for a few datasets, while

the ‘kMeansPP’ method achieved accuracy for most datasets, falling short in only a

few cases and they remaining close to the target accuracy. The ‘Coreset’ method,

when used with the proposed algorithm, it consistently achieved the desired accuracy

and even exceeded for some datasets. In cases where accuracy was not achieved, the

proposed algorithm’s performance remained very close to the required accuracy.

Table 6.4: Accuracy Comparison

Dataset Name Full SVM IncrementalActiveSVM ActiveSVM

Random Samples kMeansPP Coreset Random Samples kMeansPP Coreset

Cod-rna 66.58 66.58 66.58 66.58 66.58 66.58 66.58

germannumer 70.5 70.5 73.5 75 71.5 71 75

diabetes 35.71 35.71 35.71 35.71 37.66 35.71 38.96

madelon 52.25 54.5 52 52.25 52.75 52.25 53.01

gisette 72.25 83.09 85.91 89.63 84.04 86.5 90.03

mushrooms 100 98.8 97.9 98.45 98.88 98.46 98.9

w1a 91.9 91.33 92.86 94.02 87.02 91.8 93.75

w1a.t 96.4 84.35 86.03 88.1 88.21 86.4 88.21

Skin Nonskin 44.13 51.33 54.1 60.5 47.89 54.9 62.79

Table 6.5: Time Consumed by Each Method to Reach Accuracy

Dataset Name Full SVM IncrementalActiveSVM ActiveSVM

Random Samples kMeansPP Coreset Random Samples kMeansPP Coreset

Cod-rna 985.46 1593 32.5792 13.43621 7.6736 0.01506 7.7463

germannumer 0.5053 0.0836 0.5758 0.0586 0.0215 0.17 0.0335

diabetes 0.9208 0.0797 0.033 0.135 0.0245 0.0236 0.0312

madelon 10.5486 2.8161 2.7645 0.6912 0.6923 0.2684 0.6477

gisette 18.5088 192.867 249.5042 373.6551 2.1191 3.2852 1.4461

mushrooms 1.4822 1.2688 11.2346 0.748 2.3508 0.0318 0.0318

w1a 0.2891 4.061 1.5031 2.5334 0.5855 0.0873 0.1786

w1a.t 20.441 4.2883 1.2498 4.7684 3.5285 0.0149 3.5285

Skin Nonskin 8.5hrs 524.621 549.153 359.197 240.5825 315.451 126.2887

Visual representations of the accuracy comparisons are presented in Figure 6.4.
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Figure 6.4: Accuracy Comparison

Table 6.5 summarizes the average time required for each method to achieve the accuracy

attained by ‘FullSVM’, and the time taken by ‘FullSVM’ itself is presented in Table

6.5. Time comparisons for all algorithms are provided in seconds unless otherwise

explicitly stated in the tables. It is evident that the ActiveSVM algorithm consumes

significantly less time than the other algorithms used for comparison. Notably, the
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‘Coreset’ sampling method emerges as the superior algorithm in terms of both time

efficiency and accuracy. The ActiveSVM approach utilizing ‘kMeansPP’ also demonstrates

admirable accuracy performance, though it falls slightly behind the ActiveSVM ‘Coreset’

method. Further analysis of the combined ”time required for initial sample generation”

and subsequent ”accuracy attainment” reveals substantially longer durations for ‘kMeansPP’-

related algorithms. In some instances, these algorithms even exceeded the time consumed

by the ‘FullSVM’ algorithm. ‘Random sampling’ algorithms exhibit superior time

performance compared to ‘kMeansPP’. All ‘Coreset’-based algorithms consistently generate

samples efficiently and achieve accuracy faster, as demonstrated in Table 6.6.

Table 6.7 presents the number of samples required to achieve the desired accuracy.

Achieving high accuracy with fewer data samples is a crucial objective of active learning,

and it is also a primary goal of our work, as mentioned earlier. The sample count

is presented in Table 6.7, and it is observed that the ActiveSVM approach using

‘Random Samples’ and ‘Coreset’-based sampling effectively selects samples that enable

the learner to learn rapidly. Other methods sometimes require a smaller or even

significantly higher number of data points. Figure 6.6 illustrates the number of samples

required for each algorithm using a bar graph. Plotting these values directly results in

a visually unappealing bar graph; therefore, the graph is plotted on a logarithmic scale.

Table 6.6: Time Required to Produce Initial Samples and Achieve the Accuracy

Execution Time

Algorithm → Full SVM↓ IncrementalActiveSVM ActiveSVM

Dataset Name↓ Init Method → Random Samples kMeansPP Coreset Random Samples kMeansPP Coreset

Cod-rna 985.46 1593.00012 147.4192 14.24741 7.67372 114.85506 8.5575

germannumer 0.5053 0.083713 5.9308 0.07262 0.021613 5.525 0.04752

diabetes 0.9208 0.07981 4.0054 0.1489 0.02461 3.996 0.0451

madelon 10.5486 2.81626 49.3191 0.72 0.69246 46.823 0.6765

gisette 18.5088 192.86711 351.0442 373.8607 2.11921 104.8252 1.6517

mushrooms 1.4822 1.268942 186.0546 0.8297 2.350942 174.8518 0.1135

w1a 0.2891 4.06118 257.5101 2.5679 0.58568 256.0943 0.2131

w1a.t 20.441 4.2885 514.3898 5.3147 3.5287 513.1549 4.0748

Skin Nonskin 8.5hrs 527.5535 1300.153 361.452 243.515 1066.451 128.5437

The convergence time for each algorithm is detailed in Table 6.8, with time consumption

presented in seconds, except for a few datasets where time is noted in hours. The

convergence time presented in Table 6.8 is equivalent to the time the algorithm has
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Table 6.7: Number of Samples Required to Reach Accuracy

Dataset Name Full SVM IncrementalActiveSVM ActiveSVM

Random Samples kMeansPP Coreset Random Samples kMeansPP Coreset

Cod-rna 47628 1450 1250 1150 1150 1100 1150

germannumer 800 100 264 100 50 227 100

diabetes 614 150 150 100 90 88 69

madelon 1600 500 449 200 450 149 200

gisette 4800 1350 1200 1500 50 1597 250

mushrooms 6499 350 2052 200 1300 150 150

w1a 1981 650 542 550 300 220 300

w1a.t 37817 550 399 400 400 399 400

Skin Nonskin 196045 23356 34124 17750 11500 18429 13750

Table 6.8: Time Consumed to Converge

Dataset Name Full SVM IncrementalActiveSVM ActiveSVM

Random Samples kMeansPP Coreset Random Samples kMeansPP Coreset

Cod-rna 985.46 3985.7512 325.2159 261.985 35.642 23.431 16.1346

germannumer 0.5053 0.5275 0.6169 0.3712 0.1656 0.2166 0.1582

diabetes 0.9208 1.9743 8.0051 0.6599 0.1805 0.1983 0.2227

madelon 10.5486 3.0931 3.582 3.1243 0.7827 0.6622 1.6951

gisette 18.5088 249.142 355.2526 404.988 4.6675 3.568 3.9496

mushrooms 1.4822 36.0748 11.5306 26.1652 3.2968 2.3601 0.4242

w1a 0.2891 4.5285 2.5689 3.7941 0.6163 0.1285 0.1941

w1a.t 20.441 9.6458 2.9584 9.2145 3.8338 5.9567 6.9417

Skin Nonskin 8.5hrs 3.31hrs 5.5hrs 2.42hrs 584.67 1.52hrs 0.37hrs

taken to terminate. Our observations reveal that ‘FullSVM’ and all ‘IncrementalActiveSVM’

variants require significantly longer convergence times. All variants of the ActiveSVM

algorithm exhibit significantly shorter convergence times compared to all other algorithms

used for comparison. Notably, the ‘Coreset’-based sampling method within the ActiveSVM

approach consistently demonstrates the fastest convergence among all algorithms.

6.5 Conclusions

In this work, we introduce two innovative variations of initial sample generation algorithms

for active learning utilizing SVM. Additionally, we present a novel model update

technique aimed at reducing SVM training time. Also, we provide strategies to select
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Figure 6.5: Number of Samples Comparison, Presented in log scale

query points. Our results demonstrate that the proposed algorithms achieve the required

accuracy with fewer data samples and in less time. This study demonstrates that the

novel initial sample generation method accelerates the learning process of the machine

learning model.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we focused on the design of classification algorithms, which is one of

the important research areas in the domain of Data Science and Machine Learning.

We address the challenges while designing classification algorithms and proposed five

classification algorithms each addressing different issues.

First, in Chapter 3, we introduced two algorithms: one to find nearest neighbors

and the other for classification. Initially, we proposed an approach to find nearest

neighbors for a given query point and later another algorithm for classifying a given

query point. We introduced a hybrid algorithm that leveraged a lightweight coreset to

sample points for K-Means clustering, thus speeding up the process of identifying k-

nearest neighbors. This approach was shown to be computationally efficient compared

to traditional methods. In the same chapter, we built a KD-Tree on the lightweight

coreset and then used the tree to classify the test data. This algorithm was compared

with contemporary algorithms and shown to be efficient in terms of time and to

outperform them in classification.

In Chapter 4, we proposed a Low-rank binary matrix approximation scheme which

is used for classification. This algorithm is designed to find approximation for a given

binary matrix. The existing binary matrix approximation algorithms solve the problem

in exponential time. In this work we achieved the similar results in polynomial time

using singular value decomposition as an underlying algorithm. While Singular Value

Decomposition (SVD) offers a theoretical polynomial-time solution, its limitations for
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binary data pose practical challenges. Our approach ingeniously integrates SVD within

a binary factorization framework, yielding reasonable results despite these limitations.

Chapter 5 presented a novel online classification algorithm. Unlike traditional

batch learning methods, this algorithm handles data streams, where instances arrive

sequentially. The online setting presents unique challenges due to limited data availability

and the need for continuous model updates. To address these issues, the proposed

algorithm extends the classic winnow algorithm. Unlike the original version, which

neglects individual data points for model updates and suffers from slow convergence,

our modified approach incorporates data points effectively and achieves efficient model

updates. Experimental results demonstrate the algorithm’s better performance in terms

of both time efficiency and accuracy. Additionally, we evaluate the algorithm’s error

rate during the learning process.

Chapter 6 introduced two novel active learning algorithms based on support vector

machines. These algorithms tackled key challenges in active learning, including initial

data point selection, crucial data point identification, and model update efficiency.

The IncrementalActiveSVM algorithm addressed the first two challenges, while the

ActiveSVM algorithm addressed all three. We proposed innovative methods like coresets

and kMeansPP for selecting initial data points, a novel update method to reduce

computational overhead, and use k-nearest neighbors to the classifier for training in

subsequent SVM iterations. Our experimental results demonstrate significant improvements

in both time and accuracy.

7.2 Future Scope

There are many interesting directions in which the research work presented in this

thesis can be carried out in the future. In the initial two algorithms, building KD-Tree

for higher dimansional data is more complex and time consuming because KD-Tree

suffers from curse of dimensionality. If data can be reduced in length and dimensions

then results can be achieved in mush less time. The CKD-Tree gives good results

on the experimented datasets. The probability distribution used here is based on the

variance of data. Consequently this approach might not perform well on noisy or

locality sensitive data. In the online phase of the algorithm, implementation of a more

robust and faster search technique could also be useful. LRBMA algorithm doesn’t
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7.2 Future Scope

address the issues like which statistic to choose? to what depth? how to find a limit

for a cluster?. Finally, revisiting winnow, and ActiveAVM algorithms assume that the

data is linearly separable, these algorithms can be extended to explore its behavior in

multiclass classification tasks.
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Quiros. Effective implementation to reduce execution time of a low-

rank matrix approximation problem. Journal of Computational and Applied

Mathematics, 401:113763, 2022. (68, 69)

[27] Hong Chen, Songhua Hu, Rui Hua, and Xiuju Zhao. Improved naive

Bayes classification algorithm for traffic risk management. EURASIP

Journal on Advances in Signal Processing, 2021(1):30, 2021. (31)

122



REFERENCES

[28] Leiyu Chen, Shaobo Li, Qiang Bai, Jing Yang, Sanlong Jiang, and

Yanming Miao. Review of Image Classification Algorithms Based on

Convolutional Neural Networks. Remote Sensing, 13(22), 2021. (32)

[29] Tianqi Chen and Carlos Guestrin. Xgboost: a scalable tree

boosting system Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining; 2016: 785-794.

ACM, New York, NY, 2016. (4)

[30] Peter Clark and Tim Niblett. The CN2 Induction Algorithm. Machine

Learning, 3(4):261–283, Mar 1989. (32)

[31] William W. Cohen. Fast Effective Rule Induction. pages 115–123, 1995.

(32)

[32] Corinna Cortes and Vladimir Vapnik. Support-vector networks.

Machine learning, 20:273–297, 1995. (4, 22, 103)

[33] Sanjoy Dasgupta and Yoav Freund. Active learning using region-based

sampling. arXiv preprint arXiv:2303.02721, 2023. ()

[34] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum

likelihood from incomplete data via the EM algorithm. Journal of the

royal statistical society: series B (methodological), 39(1):1–22, 1977. (35)

[35] Derek DeSantis, Erik Skau, Duc P Truong, and Boian Alexandrov.

Factorization of binary matrices: Rank relations, uniqueness and

model selection of boolean decomposition. ACM Transactions on

Knowledge Discovery from Data (TKDD), 16(6):1–24, 2022. (34)

[36] Sanjay Dey, Sarhan Wasif, Dhiman Sikder Tonmoy, Subrina Sultana,

Jayjeet Sarkar, and Monisha Dey. A comparative study of support

vector machine and Naive Bayes classifier for sentiment analysis on

Amazon product reviews. In 2020 International Conference on Contemporary

Computing and Applications (IC3A), pages 217–220. IEEE, 2020. (31)

123



REFERENCES

[37] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of

nonnegative matrix factorization and spectral clustering. In Proceedings

of the 2005 SIAM international conference on data mining, pages 606–610. SIAM,

2005. (32)

[38] Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal

nonnegative matrix t-factorizations for clustering. In Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 126–135, 2006. (32)

[39] Shi Dong. Multi class SVM algorithm with active learning for network

traffic classification. Expert Systems with Applications, 176:114885, 2021. ()

[40] Carl Eckart and Gale Young. The approximation of one matrix by

another of lower rank. Psychometrika, 1(3):211–218, 1936. (32)

[41] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.

A density-based algorithm for discovering clusters in large spatial

databases with noise. In kdd, 96, pages 226–231, 1996. (35)

[42] Rong-En Fan. LIBSVM Data: Classification, Regression, and Multi-

label, 2011. (49, 78, 92, 110)

[43] Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure

for retrieval on composite keys. Acta informatica, 4:1–9, 1974. (1, 13)

[44] Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, Fahad

Panolan, and Saket Saurabh. Approximation schemes for low-rank

binary matrix approximation problems. ACM Transactions on Algorithms

(TALG), 16(1):1–39, 2019. (33)

[45] Fedor V Fomin, Petr A Golovach, and Fahad Panolan. Parameterized

low-rank binary matrix approximation. Data Mining and Knowledge

Discovery, 34:478–532, 2020. (33, 65, 66, 67)

[46] D Frey and R Pimentel. Principal component analysis and factor

analysis. 1978. (16, 77)

124



REFERENCES

[47] Shmuel Friedland and Anatoli Torokhti. Generalized rank-

constrained matrix approximations. SIAM Journal on Matrix Analysis and

Applications, 29(2):656–659, 2007. (68, 69)

[48] Jerome H Friedman. Greedy function approximation: a gradient

boosting machine. Annals of statistics, pages 1189–1232, 2001. (4)

[49] Johannes Fürnkranz and Gerhard Widmer. Incremental Reduced

Error Pruning. pages 70–77, 1994. (32)
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CKD-TREE: AN IMPROVED KD-TREE CONSTRUCTION
ALGORITHM
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Abstract
Data structures such as VP-Tree, R-Tree and KD-Tree builds an index of all the data available in the offline phase and uses
that indexed tree to search for and answer nearest neighbor queries or to classify the input query. We use a Lightweight
Coreset algorithm to reduce the actual data size used to build the tree index, resulting in a faster index building time. We
improve on already available Nearest Neighbor based Classification techniques and pit our classification method against the
widely accepted, state of the art data structures such as VP-Tree, R-Tree and KD-Tree. In terms of speed the proposed method
out performs the compared data structures, as the size of the data increases.

Keywords
KD Tree, Coresets, Nearest Neighbor, Classification.

1. Introduction𝑘-Nearest Neighbor (𝑘NN) problem refers to the prob-
lem of finding 𝑘 points or samples in the data which
are closest to the query point. Nearest Neighbor al-
gorithm finds its use in several machine learning ar-
eas, such as classification and regression and is also
the most time-consuming part of these applications.
In different use cases such as in recommendation sys-
tems, computer vision and robotics etc, fast response
times are critical and using brute force approaches such
as linear search is not feasible. Hence there are sev-
eral approaches to solve these Nearest Neighbor prob-
lems which are based on Hashing, Graphs or Space-
Partitioning Trees. Space-partitioning methods are gen-
erally more efficient due to less tunable parameters.

One such algorithm is KD-Tree. It is a space parti-
tioning algorithm which divides space recursively us-
ing a hyper-plane based on a splitting rul. It reduces
the search space by almost half at every iteration. An-
other space partitioning algorithm is Vantage Point Tree
(VP-Tree)[1], which divides the data in a metric space
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by selecting a position in the space called vantage point
and partitions the data into two parts. The first part
contains data that are closer to vantage point and the
other part which are not closer to the point. The di-
vision process continues until there are smaller sets.
Finally a tree is constructed such that the neigbors in
the tree are also neigbors in the real space. R-Tree[2]
is another data structure that is most commonly used
to store spatial objects such as location of gas stations,
restaurants, outlines of agricultural lands and etc.

In this paper we consider 𝑘NN for classification, where
nearest neighbors of a query point in the dataset are
used to classify the query point. Nearest neighbor in
essence is a lazy learning algorithm, i.e. it memorizes
the whole training dataset to provide the nearest neigh-
bors of an incoming query point. Consequently, though
the algorithms provide very efficient solutions to the
nearest neighbor problem, they might run into prob-
lems. This is because data size becomes too large due
to the high magnitudes of data available today to pro-
cess. In critical systems where time is of essence, loos-
ing even a few seconds while processing all that data
might cause issues. The author in [3] uses SVM to
tackle a similar problem by reducing the size of data
on which Nearest Neighbor algorithm runs. We use
coresets for a similar effect, but on very large datasets.

The concept of coresets follows a data summariza-
tion approach. Coresets are small subsets of the orig-
inal data. They are used to scale clustering problems
in massive data sets. Models trained on Coresets pro-
vide competitive results against a model trained on full
original dataset. Hence these can be very useful in
speeding up said models while still keeping up theorit-
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Abstract
Winnow is an efficient binary classification algorithm that effectively learns
from data even in the presence of a large number of irrelevant attributes. It
is specifically designed for online learning scenarios. Unlike the Perceptron
algorithm, Winnow employs a multiplicative weight update function, which
leads to fewer mistakes and faster convergence. However, the original Win-
now algorithm has several limitations. They include, it only works on binary
data, and the weight updates are constant and do not depend on the input fea-
tures. In this article, we propose a modified version of the Winnow algorithm
that addresses these limitations. The proposed algorithm is capable of handling
real-valued data, updates the learning function based on the input feature vec-
tor. To evaluate the performance of our proposed algorithm, we compare it with
seven existing variants of theWinnow algorithm on datasets of varying sizes.We
employ various evaluation metrics and parameters to assess and compare the
performance of the algorithms. The experimental results demonstrate that our
proposed algorithm outperforms all the other algorithms used for comparison,
highlighting its effectiveness in classification tasks.

KEYWORD S
binary classification, feature selection, modified Winnow, online learning, Winnow algorithm

1 INTRODUCTION

Binary classification is a fundamental task in statistics
and machine learning, where data points are assigned to
one of two distinct classes. The labels associated with the
data points come from a set containing two different ele-
ments, usually labeled as {0, 1} or {−1, 1}. For instance, in
the context of email classification, the task is to determine
whether an email is classified as spam or ham. In this
scenario, the model predicts whether an email falls into
the category of spam or ham. Generally, the binary clas-
sifier learns a linear threshold function, which enables it
to make decisions. This function separates the data points
into the two classes by drawing a linear or a nonlinear
boundary in the feature space. The objective of the binary

classification task is to train a model that can accurately
classify new, unseen data points into the appropriate
class based on their features or attributes. Most widely
used binary classification algorithms are support vector
machines [1], which tries to place the classifier such that
it maximizes the distance from the two classes of the
labeled points, Gradient Boosting [2, 3] is an ensembling
algorithm that build models sequentially and these sub-
sequent models try to reduce the errors of the previous
model, Random Forest [4] which is a combination of tree
predictors such that each tree depends on the values of a
random vector sampled independently and with the same
distribution for all trees in the forest, Neural Networks
[5] which is a multilayered regression containing layers
of weights, biases, and nonlinear functions that reside

Stat Anal Data Min: The ASA Data Sci Journal. 2024;17:e11707. wileyonlinelibrary.com/sam © 2024 Wiley Periodicals LLC. 1 of 12
https://doi.org/10.1002/sam.11707
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