Cloud Virtual Machine Forensics - An

Anti-forensic Perspective

A thesis submitted to University of Hyderabad in partial fulfilment

for the degree of

Doctor of Philosophy
by

Sanda Pranitha

Reg. No. 19MCPCO01

SCHOOL OF COMPUTER AND INFORMATION SCIENCES
UNIVERSITY OF HYDERABAD
HYDERABAD -500046

Telangana

India

March, 2023



CERTIFICATE

This is to certify that the thesis entitled “Cloud Virtual Machine Foren-
sics - An Anti-forensic Perspective” submitted by Sanda Pranitha bearing
Reg. No. 19MCPCO1 in partial fulfilment of the requirements for the award
of Doctor of Philosophy in Computer Science is a bonafide work carried out
by him under my supervision and guidance. This thesis is free from plagiarism
and has not been submitted previously in part or in full to this or any other
University or Institution for award of any degree or diploma. Parts of this thesis
have been published online in the following publications:

1. Sanda P, Pawar D, Radha V. An insight into cloud forensic readiness
by leading cloud service providers: a survey. Computing. 2022 Apr
17:1-26. https://doi.org /10.1007/s00607-022-01077-2. [Indexed: SCI,
SCIE, SCOPUS, DBLP, UGC-CARE List(India)]. This publication
is reported as part of Chapter 2.

2. Sanda P, Pawar D, Radha V. Blockchain-based tamper-proof and
transparent investigation model for cloud VMs. The Journal of
Supercomputing. 2022 May 25:1-29. https://doi.org/10.1007/s11227-022-
04567-4. [Indexed: SCIE, SCOPUS, UGC-CARE List(India)]. This
publication is reported as part of Chapter 5.

and

has made presentations in the following conferences.



1. Sanda P, Pawar D, Radha V. VM Anti-forensics: Detecting File
Wiping Using File System Journals. In ICCET 2022, International
Conference on Computing in Engineering & Technology 2022 (pp. 497-
508). Springer, Singapore. https://doi.org/10.1007/978-981-19-2719-5.
[Indexed: SCOPUS, EI, DBLP]. This publication is reported as part
of Chapter 3.

2. Sanda P, Pawar D, Radha V. WiDeS: Wiping Detection
using System-calls - An Anti-forensic Resistant Ap-
proach. In 2023 IEEE 22nd International Conference on
Trust, Security and Privacy in Computing and Communica-
tions (TrustCom) (pp. 1695-1703) (Core ranking conference).
https://doi.ieeecomputersociety.org/10.1109/Trust Com60117.2023.00231
[Indexed: EI]. This publication is reported as part of Chapter 3.

Further, the student has passed the following courses towards fulfilment of
coursework requirement for Ph.D.

Course Code Name Credits | Pass/Fail
1 CS402 Algorithms 4 Pass
2 CS800 Research Methods in Computer Science 4 Pass
3 CS803 Data structures and Programming Lab 2 Pass
4 (CS858 Ethical Hacking and Computer Forensics 3 Pass
Dr. Digambar Pawar Dr. Radha Vedala Prof. Atul Negi
Supervisor Co-Supervisor Dean of School
SCIS, University of Hyderabad IDRBT SCIS, University of Hyderabad

Hyderabad-500 046, India Hyderabad-500 057, India Hyderabad-500 046, India



DECLARATION

[, Pranitha Sanda, hereby declare that this thesis entitled “Cloud Virtual
Machine Forensics - An Anti-forensic Perspective” submitted by me under
the supervision of Dr. Digambar Pawar and Dr. Radha Vedala, is a bonafide
research work and is free from plagiarism. I also declare that it has not been
submitted previously in part or in full to this University or any other University

or Institution for the award of any degree or diploma. I hereby agree that my
thesis can be deposited in Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Librarian is en-
closed.

Signature of the Student
Date:

(Pranitha Sanda)

Reg. No.: 19MCPCO01

//Countersigned//

Signature of the Supervisors

(Dr. Digambar Pawar) (Dr. Radha Vedala)



Dedicated To My Family €5 Teachers



Acknowledgements

[ am deeply indebted to Dr. Digambar Pawar and Dr. Radha
Vedala, my thesis supervisors for their meticulous guidance, wisdom,
and support during the course of my Ph.D. at University of Hyder-
abad in collaboration with Institute for Development and Research
in Banking Technology. Their consistent encouragement and positive
reinforcement have made it a gratifying experience. 1 am especially
grateful for their emphasis on time management. Their guidance in
meeting deadlines and prioritizing tasks has not only improved the
quality of my research but has also equipped me with essential skills
for life beyond academia. Moreover, I am indebted to them for their
insights into balancing personal and professional life. Their encour-
agement to maintain a healthy equilibrium has been transformative,
teaching me to nurture relationships, pursue passions, and prioritize
well-being alongside scholarly pursuits. I extend my heartfelt thanks
to Dr. Digambar Pawar and Dr. Radha Vedala for their sup-
port, wisdom, and mentorship. Their influence has left an indelible
mark on my academic journey and beyond.

I thank my doctoral review committee members, Assoc.Prof. Y.V.
Subba Rao and Asst.Prof. P. Syam Kumar for their encouragement,
insightful comments, and questions, which strengthened my knowl-
edge.

It is my privilege to thank Prof. Atul Negi, Dean, SCIS, University
of Hyderabad for his considerate support and encouragement through-
out the tenure of my research work and for extending the facilities to
pursue my research. It is my privilege to thank Dr. Deepak Ku-
mar Director, IDRBT for his considerate support and encouragement
throughout the tenure of my research work and for extending the fa-
cilities to pursue my research.



I extend my heartfelt thanks to each member of IDRBT for fostering
a seamless and rewarding atmosphere that made my tenure at the
institute truly enjoyable. I am grateful to every individual in my lab
for contributing to a wonderful experience during my time here.

I especially thank my family members and friends for their support
and inspiration during the Ph.D work. I would like to express my
deepest gratitude to my mother, Rajitha Sanda, for her unwavering
support both personally and professionally. She has been my great-
est support system throughout this journey. Without her, this thesis
would not have been possible. She selflessly took care of my chil-
dren, allowing me the time and peace of mind to focus on my research
and writing. Her love, encouragement, and belief in me have been
the foundation upon which all my achievements stand. Thank you,
Amma, for everything. I am also profoundly grateful to my father,
Prabhakar Sanda, for his tireless efforts and sacrifices. His dedica-
tion in ensuring I had the necessary support to pursue my studies has
been invaluable. His sacrifices and belief in me have been a constant
source of motivation. Thank you, Pappa, for your boundless support
and for always being there for me. Lastly, I would like to thank my
husband, Prashanth Durki, and acknowledge my children, Yashika
and Gitanshi, who are my strength and motivation. Their love and
patience have inspired me to persevere, and their smiles have been
a constant reminder of why I embarked on this journey. Thank you
for your understanding and for being my greatest source of joy and
purpose.

At the end, I am grateful to University of Hyderabad and Insti-
tute for Development and Research in Banking Technology
(IDRBT), for making it a memorable experience.



Abstract

Cloud has become indispensable due to its meteoric increase in utiliza-
tion. An increase in the utilization of cloud resources has also fueled
an increase in cyber incidents in the cloud. This alarming increase in
cloud incidents emphasizes the need for the readiness of CSP for cloud
forensics and anti-forensics. Handling anti-forensics in the cloud VMs
is imperative, as it is mostly overlooked. Anti-forensic approaches
used in traditional systems are equally applicable in cloud VMs, and
artifact wiping is one such approach. The world has witnessed artifact
wiping as a Wiper attack in recent warfare between Israel and Hamas,
Ukraine, and Russia. Wiper attacks are considered destructive mal-
ware as they cause permanent damage to data. Thus, detecting, mit-
igating, and restoring the effect of such anti-forensic techniques used
in cloud incidents becomes crucial to ensure the completeness of the
evidence collected for investigation.

Despite the challenges, identifying and countering anti-forensic tech-
niques in a cloud VM also offers advantages. Monitoring cloud VM
activity is generally easier compared to detecting user activity on per-
sonal computers due to limited visibility and privacy concerns in per-
sonal and non-regulated environments. This is because the cloud typ-
ically offers centralized administration with monitoring tools, provid-
ing administrators with comprehensive visibility into VM activities,
resource usage, and performance metrics. These integrated tools can
be used to streamline the monitoring process and enable proactive
detection and mitigation of anti-forensic techniques.

Our research objective is to address the anti-forensic practice of ar-
tifact wiping in the cloud VMs. It is proposed to provide a solution
to detect wiping and withstand it by restoring the wiped contents
from cloud VMs by exploiting the underlying file system data recovery
mechanism. Further, we propose an investigation model to preserve

viil



the cloud VMs and investigation findings. For this, we have con-
sidered the existing cloud forensic frameworks by the leading CSPs,
i.e., Amazon, Azure, and Google Cloud, as well as other challenges
associated with cloud forensics. We address these challenges by incor-
porating blockchain technology in our model to ensure immutability,
transparency, and integrity of the evidence and investigation proceed-
ings across the stakeholders involved in the investigation.

iX



Contents

Acknowledgments
Abstract

List of Figures
List of Tables

1 Introduction
1.1 Digital Forensics . . . . . . ... ... oo
1.2 Anti-forensics . . . . . . . ...
1.2.1  Artifact Wiping . . . . . . ... oL
1.2.2  Gaps in Existing Literature for Wiping . . . . . . . . . ..
1.3 Cloud Forensics . . . . . . . . . ... .
1.3.1 Gaps in Existing Literature for Cloud Forensics . . . . . .
1.4 Research Objectives . . . . . . . . .. .. .. ... ... ...
1.5 Scope and Problem Definition . . . . . ... ... ... ... ...
1.6 Contribution of the Thesis . . . . . . .. ... ... ... .....
1.6.1 Detection of Wiping Activity . . . . . . ... .. ... ..
1.6.2  Recovery of Wiped Files . . . . . ... ... ... .. ...
1.6.3 Preservation of Evidential Artifacts . . . . . ... ... ..
1.7 Organization of the Thesis . . . . . . . . .. ... ... ... ...

CENENNSEDEEE BB EJ E E?I Kl

2 Background and Literature Survey 11l
2.1 Anti-forensics . . . . . .. .. 1T
2.1.1 DataHiding . . . . . ... ... ... ... ... 11

2.1.2  Trail Obfuscation . . . . . . .. .. ... ... ... ...

2.1.3 Artifact Wiping . . . . . . ... 12]



CONTENTS

2.1.3.1 Types of Artifact Wiping . . . . .. ... .. ..

2.1.3.2 Related Work for Wiping Detection . . . . . . . .

2.1.3.3 Limitations . . . .. ... ... ... ... ...

2.2 Cloud Forensics . . . . . . . . . ...
2.2.1 Cloud Forensics by the Leading[CSPs . . . . . .. ... ..
2.2.1.1  Forensic Workflow of Leading [CSPk . . . . . . ..

2.2.1.2  Evaluating Cloud Forensic Challenges Across Pro-

posed Solutions by Leading[CSPs . . . . . . . ..

2.2.2  Limitations of Cloud Forensics . . . . . . . . ... ... ..

2.3 SUMMATY . . . . o e

Detecting File Wiping
3.1 Challenges in Existing Literature . . . . . . . ... .. ... ...
3.2 Contributions . . . . . . ...
3.3 Prelimnaries . . . . . . ...
3.3.1 Data Sanitization . . . . . . ... ..o
3.3.2 File System Journaling . . . . ... ... ... ....
3.3.3 System Calls . ... ... ... ... ... ... .
3.4  Detecting Wiping Using File System Journals and Data Blocks . .
3.4.1 Proposed ModelWiDeJ| . . . . .. .. ... ... ... ...
3.4.1.1 Journal Analysis . . . . ... ... ... ...
3.4.1.2 Using Shanon’s Entropy . . . . . ... ... ...
3.4.2 Results and Discussion . . . . . . .. ... ... ... ...
3.5 Detecting Wiping using System-calls . . . . .. .. .. ... ...
3.5.1 Role of System-calls in Behavior Analysis . . . . . . . . ..
3.5.2  Proposed ModelWiDeS| . . . . ... ... ... ... ...
3.5.2.1 Profiling Process Behaviour . . . . ... ... ..
3.5.2.2  Filtering Driven by Write() System-call . . . . . .
3.5.2.3  Analysis of Buffer Data Entropy . . . . ... ..
3.5.3 Workflow . . . . ...
3.5.4 Results and Discussion . . . . . ... ... ... ... ...
3.6 Summary . . ...

xi



CONTENTS

4 Recovery of Wiped Files 63
4.1 Challenges in Recovering Wiped Files . . . . . . .. .. ... ... 64}
4.2 Contributions . . . . . . ... L o (61§
4.3 Prelimnaries . . . . . . . ... Lo GOl

4.3.1 Chunks . . . . . ... ... ... GGl
4.3.2 Trees . . . . . . 67
4.3.3 Data Structures . . . . . . ... ... ... .... 67
4.4 Recovery Using Journals . . . . . .. ... ... ... ... ... 71
4.5 Proposed Model[ReWinD| . . . .. ... ... ... ... . ... 72
4.5.1 Using btrfs-progs . . . . ... ... ... . ... 2]
4.5.2 by Logging [PAJof Files . . . ... ... .. ... 78
4.6 Results and Discussion . . . . . .. . ... 0L 901
4.7 Usecase: Recovery of a file encrypted by Gonnacry ransomware . [0
4.8 SUMMATY . . . . . o oo 95}

5 Investigation Model to Preserve Cloud [VMEk and Investigation

Proceedings on Blockchain 97
5.1 Challenges in Existing System . . . . . .. . ... ... ... ... 98]
5.2 Contributions . . . . . .. ... 99]
5.3 Prelimnaries . . . . . . .. ... 100l
5.3.1 Blockchain . . . . . .. ..o 100!
5.3.2 Hyperledger Fabric (HLF) . . . ... ... ... ... ... )
5.4 Application of Blockchain in Digital Forensics . . . . . .. .. .. 102
5.4.1 Log Integrity . . . . . . .. . . ... ... ... ... 102
5.4.2 Metadata Integrity . . . . . . ... ... ... ... ... 103
54.3 Chain of Custody . . . . . . .. .. .. ... ... ... [103]
5.5 Proposed Model Investigation-Chain . . . . . . .. ... ... ..
5.5.1 Blockchain Participants . . . . . . .. ... ... ... .. 107
5.5.2 Investigation-Chain Workflow . . . . . .. ... ... ... T3]
5.6 Proof of Concept . . . . . . . . ... ...
5.6.1 Case Study (Child Pornography) . . . ... ... ... ..
5.7 Results and Discussion . . . . . ... .. ... ... ... ... 118

5.8

5.7.1 Analysis of computational cost and communication overheadII§

5.7.2 Comparative analysis of the recent research with
Investigation-Chain . . . . . . . ... ... ... 126

SUMMATY . . . o o o o e e e 1291

xii



CONTENTS

6 Conclusion and Future Work 130]
6.1 Summary of Contributions . . . . . . . .. ... .. ... .. ... 130
6.1.1 List of Contributions . . . . . . . . . . .. . ... .. .. 31

6.2 Future Work . . . . . . . .
References 138
A Cloud Forensic Workflows of Leading CSP 149!
A1 AWS Workflow . . . . . . . ., T49
A2 Azure Workflow . . . . . . . .., 51
A3 GCP Workflow . . . . . . . . 153

xiil



List of Figures

1.1 Phases in Digital Forensics . . . . . . . ... ... ... ... ...
1.2 Objectives and Contribution of the Thesis . . . . . .. ... ... i
2.1 Forensics Workflow . . . . . ... ... .. ... ....... 19
2.2 Azure Forensics Workflow . . . . . ... ... ... L. 201
2.3 Forensics Workflow . . . . . .. . ... ... ... . ..... 211
2.4 Thesis reseach direction in the context of anti-forensics in compar-

ison to the existing systems . . . . . . ... ... ... ... ...
3.1 Journal after mounting the file system . . . . ... ... .. ... 20|
3.2 Journal after copyingafile . . . . .. ... ... 301
3.3 File’s inode data captured in journal block . . . . . .. ... ... 301
3.4 Block content of a file at specific block pointer (i.e 9216) . . . . . 311
3.5 Journal after wiping afile . . . ... ... ... ... ...
3.6 Block content after wiping a file with zero . . . . . . . ... ... 351
3.7 Content at data block when wiped with random characters . . . . [30]
3.8 Scope of recovering wiped file data blocks using file system journals

by varying wiping tools and file size. . . . . . .. ... ... ... B7
3.9 Difference between regular file and file wiped with Os . . . . . . . 3]
3.10 Difference between regular file and file wiped with random characters [39
3.11 File layout (reproduced from [I]) . . . ... ... ... ... ... Z0)
3.12 Subset of [SoS| for benign process 'Is’ . . . . . ... 0]
3.13 Unique patterns of benign process Is” . . . . . . .. ... .. ... 5]
3.14 Subset of [SoS| for wiping process 'Shred” . . .. .. ... ... .. 0]
3.15 Unique patterns of wiping process 'Shred” . . . . ... ... ... 406}
3.16 Workflow . . . . ... 50
3.17 Descision tree for (WiDeSl . . . . . . . . . .. ... ... ... ... By
3.18 Benign and wiping processes entropies . . . . . .. .. ... ... Hhol

Xiv



LIST OF FIGURES

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

4.17

4.18
4.19
4.20

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

[BTRFS key and [BTRFS|item in leaf node . . . . . ... .. ..
BTRES header of chunk tree . . . . . . ... ... ... ... ..

items captured for a chunk tree leaf node . . . . . . ..
Traversing journal entries to recover previous versions of the
file . . . .
Superblock output using btrfs-progs . . . . . ... ... ... ..
Root backup from superblock . . . ... ... ... ... ....
FS tree dump using btrfs-progs . . . . . .. .. ...
File data after wiping . . . . . . . . . ... ... L.
File Content before wiping . . . . . . . .. .. ... ... ...
Superblock layout for bootstrapping the file system . . . . . ..
Root tree and chunk tree [LA] from superblock . . . .. ... ..
sys_arr_chunk from superblock . . . . ... ... ... .. ...
Chunk tree leaf node layout . . . . . .. ... .. ... ... ..
Root Tree Leaf Node Layout . . . . . . ... .. ... ... ...
Fs tree leaf node layout . . . . . . ... ... ... ... .. ...
Comparing the scope of file recovery between [Ext| and [BTRES]

under different scenarios as listed in Table 3] . . . . . ... ..
Scope of recovering wiped files from by varying the DATA-
CHUNK and file sizes . . . . . . ... ... ... .. ......
Superblock after encryption . . . . .. .. ... L.

F'S Tree before and after encrypting the file using Gonnacry

File content at physical address before and after encryption . . . .

Existing Investigation Procedure. . . . . . . . .. ... .. ...
Architecture of Investigation-Chain . . . . . .. ... ... ...
Operational workflow of Investigation-Chain . . . . . . . . . ..
Hash value of snapshot computed using Autopsy tool . . . . . .

Cloud instance image file findings using Autopsy tool

Time vs size of the snapshot . . . . . . ... .. ... ... ...

vs avg latency and throughput for 5-organizations-1-peer

vs avg latency and throughput for 4-organizations-1-peer . . .
vs avg latency and throughput for 3-organizations-1-peer . . .
Average latency comparison for three network models . . . . . .
Throughput comparison for three network models . . . . . . ..

XV

9]



List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6

3.7

4.1
4.2
4.3

5.1

5.2
5.3

5.4
5.9
5.6

5.7

Evaluating Cloud Forensic Challenges across proposed solutions by

Leading[CSPk . . . . . . . .. .

Entropy values for different file types . . . . . . . ... ... ...
Comparison of and [2] . ...
Benign processes’ patterns and their frequencies . . . . . . . . ..
Wiping processes’ patterns and their frequencies . . . . . . . . ..
of wiping and benign processes . . . .. ... .. ... ...
Processes classified as wiping (from module 1) and their patterns
with maximum frequencies . . . . . . . . ... ... ... .. ...
List of benign processes, falsely classified as wiping processes with
high-frequency patterns . . . . . . . . . . .. ... ... ... ...

trees and their object IDs . . . . . . . .. ... ... ...
BTRES Tree items . . . . . . .. ... oL

Experimental setup for different scenarios to evaluate BTRFS]

Digital Forensic Solutions based on Blockchain: Summary of
strengths and weakness . . . . . . . ... ... L.
Operational cost in milliseconds . . . . . . . ... .. .. ... ..
Avg latency and throughput for a network with 5-organizations-1-
PEET . o
Avg latency and throughput for 4-organizations-1-peer . . . . . .
Avg latency and throughput for 3-organizations-1-peer . . . . . .
Average resource utilization for 5-organization-1-peer for all trans-
action send rate . . . . ..o
Digital Forensic Solutions based on Blockchain: A Comparative
Analysis of security elements . . . . . . . .. ...

xXvi

11 20

112



Chapter 1

Introduction

1.1 Digital Forensics

Digital Forensics is a process done as a part of investigation post the occurrence
of an incident to find evidence over digital media, it was initially developed for
data recovery [3]. Digital forensics involves examining digital media related to an
incident. This examination aims to uncover traces of evidence left on digital de-
vices. These traces result from actions taken during the incident. Digital forensics
involves five crucial phases, i.e., identification, collection, analysis, preservation,
and presentation of digital evidence (see Figure in a way that is admissible in
a court of law. Digital forensics is not just limited to cyber incidents but applies
to other regular criminal offenses as the involvement of digital media, such as
computers, laptops, mobiles, (Internet of Things) devices, etc, is unavoid-
able. It would be more appropriate to say that digital media is becoming the
core component of investigation in many cases. Based on the type of evidence
being examined, we classify digital forensics as cloud forensics, network forensics,
multimedia forensics, and mobile forensics. It is multidisciplinary as it involves
technology, law, psychology, etc. According to the National Crime Records Bu-
reau report, India has witnessed a 24% increase in cybercrime cases
recorded in 2022 compared to cases in 2021 [4]. The global reports show an
increase in the digital forensic market by 10% by 2032 [5]. Even during the pan-
demic Covid 19 the world has witnessed the sudden rise of cyber incidents and
an increase in investment in digital forensic tools and expertise, thus raising the
scope of the need for digital forensics.



1.2 Anti-forensics

Acquisition and

| Identification of Digital — Duplication of Digital ‘

Isolation of Digital

Evidence Evidence I =
| Labelling & Packaging of . Analysis and Preservation
Digital Evidence 2 Bosumentation 2 of Digital Evidence

v

| Admissibility of Evidence
in Court of Law

Figure 1.1: Phases in Digital Forensics

There are many challenges in digital forensics, including the rapid evolution of
technology, global jurisdictions, lack of skilled forensic analysts, and many more;
However, we would like to highlight a few of them that we believe are crucial: anti-
forensics, cloud environment and virtualization, fragile nature of digital evidence.

1.2 Anti-forensics

Anti-forensics is a process used by malicious users to challenge the investigation
procedure. It includes the tools and techniques to obstruct forensic analysis.
Anti-forensics is an attempt to compromise the availability or usefulness of evi-
dence to the forensic process [6]. Anti-forensics involves either destroying data or
data misdirection, false/falsified data leading to wrong and inappropriate forensic
analysis [7]. The adversary adopts anti-forensic techniques to interrupt the inves-
tigation proceedings, thereby leading to inappropriate or incomplete investigation
findings. Encryption, artifact wiping, and data hiding are some of the well-known
anti-forensic approaches. There has been limited research in anti-forensics, but it
becomes crucial to detect anti-forensics early to ensure the completeness of inves-
tigation proceedings. Therefore, there is a pressing need to explore anti-forensics
further.

We aim to explore artifact wiping, an anti-forensic technique that deletes data
permanently by overwriting file content multiple times, making data recovery
impossible. Also, it has not only been adapted as an anti-forensic approach but
has also been used in wiper attacks. Wiper attacks are considered destructive as
they target to cause permanent damage to data. Unlike other cyber attacks, the



1.2 Anti-forensics

motive of the wiper attack is not to get financial benefits but to affect the other
involved party with irrecoverable damage. Wiper attacks are posing national level
security threats and are exercised in cyber war fares [§], [9]. Thus, detecting such
attacks and restoring the affected files becomes crucial to minimize the effect of
the damage caused.

1.2.1 Artifact Wiping

In the context of anti-forensics, artifact wiping refers to the intentional secure
deletion of activity traces from digital media. One cannot recover the file when it
is securely deleted. Several tools, such as Eraser, Wipe, Sfill, SRM, etc., perform
secure-delete tasks. Secure-delete is a suite of command-line utilities for securely
deleting files on Linux systems. These utilities are designed to ensure that files
are overwritten and irrecoverable, thus enhancing security and privacy. Secure
deletion is practiced to ensure user data privacy regulations such as the General
Data Protection Regulation (GDPRI), Health Insurance Portability and Account-
ability Act , etc, but unfortunately, it is being practiced by adversaries
to remove the traces of an incident. Based on the type of artifact wiped, it can be
classified as 1) disk wiping and 2) file wiping. Our research focuses on detecting
file wiping and restoring wiped files, with future work planned to address disk
wiping.
File Wiping

A file is a collection of data stored as a single unit with a unique name and location
within a file system. The data corresponding to the file is stored in blocks; they
are consecutive sectors on the disk that store the file content. Each file occupies
certain blocks based on its size. In Linux-based machines, an inode is the data
structure that stores files’” metadata (e.g., file size, file type, data block pointers,
timestamps). We use an inode to locate the file on the disk. Upon deleting a
file, the file’s corresponding block pointer references from the inode are removed;
because of this, we shall not be able to access the file directly. However, the
file’s content is still available in the data blocks. Thus, it is possible to recover
the deleted files because in file deletion, the metadata corresponding to the file
is deleted, but the actual file content is still available on the disk. Unfortunately,
as the file system ages, deleted files cannot be recovered as new data overwrites
the unallocated space containing their content. However, if a file is only partially
overwritten, there is still a chance to recover part of it. Therefore, through the
use of suitable forensic tools, we can potentially retrieve deleted files either in full



1.3 Cloud Forensics

or partially. On the other hand, wiping is a secure deletion method. It involves
not only removing metadata information from the inode but also overwriting the
content of the corresponding file with random or specific characters (such as 0s or
1s), or repeating patterns of characters multiple times, resulting in the complete
loss of data associated with the file.

1.2.2 Gaps in Existing Literature for Wiping

o The current literature has placed relatively less emphasis on anti-forensics
when compared to digital forensics. However, it becomes crucial to detect
anti-forensics even before starting the investigation to ensure the investiga-
tion is complete.

o The existing literature speaks only about detecting artifact wiping but does
not show the procedure to restore them. Whereas, restoring wiped files
could be very crucial as files serves as the basic artifact for any case.

o Current literature detects wiping using the signatures of the tools used to
perform anti-forensics. But as the signature of the tools evolve these tools
go undetected by the forensic tools.

1.3 Cloud Forensics

Cloud forensics is extending the application of digital forensics, which oversees
the crime committed over the cloud and investigates it [I0]. It emphasizes on
collection, analysis, preservation, and presentation of cloud evidential artifacts as
admissible in a court of law.

In this thesis, we would like to address the challenges corresponding to file wip-
ing in cloud Virtual Machines ); this can also be extended to cloud storage
solutions, personal systems, or systems in the corporate environment. We focus
on the cloud environment as we see it as an opportunity for the benefit of law
enforcement agencies and Cloud Service Providers (CSP) to curb anti-forensics
in cloud [VMk. Cloud environments, being centrally monitored and administered,
present an opportunity to deploy our scripts for detection and recovery across tar-
geted efficiently. These scripts can operate in the background, continuously
monitoring artifact-wiping. However, while we acknowledge the advantages of



1.3 Cloud Forensics

cloud technology in combating anti-forensics, it is imperative to recognize the as-
sociated challenges in cloud forensics. Digital forensics, when extended to cloud
resources, considers the challenges in the cloud, such as virtualization, multi-
tenancy, data privacy, geographical jurisdictions, etc., and is known as cloud
forensics. In cloud forensics, one of the crucial and primary evidential artifacts
are cloud [VMk. Cloud [VMk are pivotal in cloud forensics due to their role as
primary data carriers, the availability of snapshots for preserving evidence, and
the ability to leverage cloud’s scalable and remote capabilities. Hence, in this
thesis, we explore cloud [VM] forensic challenges and present appropriate solutions
for preserving cloud in a sound forensic manner.

1.3.1 Gaps in Existing Literature for Cloud Forensics

» Increased response time to identify the malicious behavior in the context of
file wiping in and mitigate the effect of an incident.

« Dependency on [CSP| for the evidential artifacts. Law Enforcement Agency
(LEA) has to depend on unlike traditional cybercrime cases. Owner-
ship of evidence is with [CSP], who cannot be trusted completely.

» Recovery of deleted or overwritten data. Due to the multi-tenant nature of
the cloud most of the data is either overwritten to support other customer
requirements or deleted due to data retention policy by [CSP] If any delay
occurs in sending the notice to preserve the evidence, then the crucial data
required for investigation may be lost. Also, the forensic tools available for
the cloud have many limitations in the retrieval of deleted or overwritten
data.

« Trust on [CSP| and data integrity. Evidence stored in the cloud is always
vulnerable to insider threats; it can be done intentionally to protect a com-
pany’s reputation or by a former company employee.

o Lack of Standard Operating Procedure . There is no single valid ap-
proved process for digital forensics, this may challenge [LEA]in their investi-
gation proceedings. Moreover, each may have its own forensic process,
which may or may not be valid.



1.4 Research Objectives

« Forensic data acquisition and preservation. Due to a lack of cloud forensic
tools, trainers, and trained professionals, forensically acquiring data and
preserving it without compromising the integrity of evidence is a challenge.

1.4 Research Objectives

The main objective of this thesis is to uncover file wiping in cloud [VMk. In this
direction, the three main objectives of the thesis include;

1. Detection of wiping activity in cloud [VMk.
2. Recovery of wiped files in cloud [VMk.

3. Preservation of the cloud [VMk.

1.5 Scope and Problem Definition

Cloud has become indispensable due to its meteoric increase in utilization. Gart-
ner’s prediction shows a 70% increase in the utilization of cloud resources by 2027,
which currently in 2023 is around 15% [11]. A report by Thales [12] shows that
75% of businesses save 40% of their sensitive data on the cloud; it also, states
that cloud assets are the biggest targeted resources for cyberattacks as 39% of
businesses suffer from data breaches on the cloud. This alarming increase in cloud
cyber attacks emphasizes the need for the readiness of [CSP| for cloud forensics.
At the same time, we should also be prepared to detect, mitigate, and restore the
effect of any anti-forensic techniques used in cyber-cloud attacks. Anti-forensic
approaches applicable in traditional systems are equally applicable in cloud envi-
ronments, artifact wiping is one such approach. The world has witnessed artifact
wiping as a Wiper attack in recent warfare between Israel and Hamas, Ukraine,
and Russia, also Saudi Arabia energy sectors were targeted [§], [9], [13].

Our objective is to walk through the challenges of cloud forensics while si-
multaneously addressing the anti-forensics approaches like artifact wiping in the
cloud [VME. Further, devised an investigation model to collect and preserve the
cloud evidential artifacts such that it ensures transparency and integrity of the
investigation proceedings across the stakeholders involved in the investigation.



1.6 Contribution of the Thesis

1.6 Contribution of the Thesis

The objective of the stated research has been discussed in three different aspects
of file wiping i.e., detection, recovery, and preservation. This section briefly elab-
orates on the contributions towards each objective. Figure provides the big
picture of the contributions aligned with the objectives of the thesis.

Problem : Uncovering File Wiping in Cloud VM

l I

‘ Detection ‘ ‘ Recovery ‘ ‘ Preservation ‘
]
1 l |
Contribution 1 Contribution 3

Contribution 2 Contribution 4

Detecting file wiping Detecting file winin Recovering files using
using data blocks and & ping Journals and CoW Using Blockchain to preserve the

journals using system calls Principle cloud VM and corresponding

investigation findings.

Figure 1.2: Objectives and Contribution of the Thesis

1.6.1 Detection of Wiping Activity

The first objective of the thesis focuses on detecting wiped files using the two
approaches. The first approach (Contribution 1) includes wiping detection us-
ing file system journals, data blocks, and information theory metrics, and the
second approach (Contribution 2) includes wiping detection using a Sequence
of system calls and information theory metrics. In the first approach, we use file
system journals to locate wiped file’s data blocks on the disk. Further, we deter-
mine the block content byte-by-byte at each block allocated to the file. Likewise,
we consider all blocks allocated to the file. We look at the frequency distribution
of characters at these blocks and detect file wiping using Shannon’s entropy.

In the second approach, we detect wiping using the sequence of system calls
and information theory metrics and analyze the behavior of the benign and wip-
ing process. Early study shows that system calls played a significant role in
classifying normal process behavior from malicious process behavior [14], [15],
[16]. We detect wiping by profiling the benign process behavior and the wiping
process behavior. We monitor the system behavior at the process level by us-
ing short patterns from the sequence of system calls invoked by these processes.
We observe how often a pattern is repeated in a process. Processes with a high



1.6 Contribution of the Thesis

frequency of patterns indicate characteristic behavior associated with the wiping
process’s activity. As wiping involves overwriting the contents multiple times, the
same patterns of system calls are invoked multiple times, thereby increasing the
probability of patterns in the wiping process. Conversely, processes that exhibit
infrequent patterns that reflect diverse or random patterns with less probability
are often found in benign processes. Thus, we can classify the process based on
the degree of randomness of patterns; here, we use Shanons’ entropy to measure
the randomness of patterns.

1.6.2 Recovery of Wiped Files

The second objective of the thesis focuses on restoring wiped files using file system
recovery mechanisms. We recovered wiped files using two different file systems
i.e., 1) Journal-based file system (Extended file system ([Ext|)) and 2) Copy-on-
Write based file system (B-Tree file system (BTREFS) (Contribution
3). The existing literature has discussed detecting wiping using signature-based
approaches but does not discuss restoring the wiped files. We restore the wiped
files using both journaling in the [Ext|(3/4) file system and [CoW|in BTRFS]|
Journals are used to track the changes committed on the disk even before

they are executed on the disk to ensure file system consistency. In case of system
failures, the journal is replayed to restore the file system. In the process of recov-
ery, the committed transactions on the journal are executed on the disk, and the
incomplete transactions are rolled back to the previous state. Thus, by traversing
the journal back we can restore the previous version of the file. However, due to
the cyclic queue data structure of the journal, the journal contents are overwrit-
ten by itself. Thus, if the journal contents are not recovered in time we may not
be able to restore the wiped file.

On the other hand, in a [CoW}based file system, when a file is updated or
modified, instead of overwriting the existing file, the file’s content is copied to
a new location, and the changes are done at the new location [I7]. Thus, the
original file remains unchanged. This allows multiple file versions to be stored
simultaneously, which can be useful for keeping track of changes made over time.
If the operating system itself overwrites the file we cannot recover the older version
of the file. However, this limitation is also applicable to other file systems as well.



1.7 Organization of the Thesis

1.6.3 Preservation of Evidential Artifacts

The third objective of the thesis focuses on using blockchain to preserve the evi-
dential artifacts (like cloud and investigation findings of the cloud incidents.
Blockchain is a promising technology that will ensure data integrity, immutabil-
ity, trust, and transparency among multiple stakeholders. To ensure the integrity
of evidence in the cloud, most of the researchers in this domain have proposed
applying blockchain on cloud forensic artifacts (i.e., cloud logs, chain of custody,
metadata) [I§], [19]. Thus, we propose an investigation model to preserve cloud
and their findings on blockchain (Contribution 4).

Summary of Contributions

o An approach to detect file wiping on virtual machines using disk contents
(i.e., virtual disk) and information theory metrics.

o A novel approach to detect file wiping on virtual machines using the se-
quence of system calls and information theory metrics.

o An approach to restore the wiped files using file system journals.

« A novel approach to restore the wiped files using [CoW}based file system

BTRES

o A usecase for extending our proposed model for recovery of encrypted files
using Gonnacry application.

A big picture of cloud forensic approaches adopted by the leading [CSPE.

e An investigation model to preserve evidential artifacts cloud VM that is
tamper-proof and transparent across the stakeholders involved in the inves-
tigation.

1.7 Organization of the Thesis

The contributions presented as part of the thesis entitled "Cloud Virtual Ma-
chine Forensics- An Anti-forensics Perspective” are structured into six different
chapters. In this section, a brief overview of the chapters is illustrated. The



1.7 Organization of the Thesis

four contributions are presented in Chapter 3 (which includes two contributions),
Chapter 4, and Chapter 5.

Chapter 1. Introduction: A brief introduction to the thesis is given in this
chapter. It introduces digital forensics, anti-forensics, and cloud forensics. It also
briefly identifies the research gap and establishes the motivations to achieve the
objectives of the thesis. Finally, the chapter is concluded with the organization
of the thesis followed by the list of contributions to the thesis.

Chapter 2. Related Work: In this chapter, we discuss current literature
and the challenges in the context of the research objectives of this thesis.

Chapter 3. Detecting File Wiping: In this chapter, we propose a method
to detect file wiping in cloud using two approaches: 1. Using journals, data
blocks, and information theory metrics, 2. Using system calls and information
theory metrics. The first approach is to detect wiping post-occurrence of the
incident, and the second approach is to detect wiping when the incident is active.

Chapter 4. Recovery of Wiped Files: In this chapter, we propose an
approach to recover wiped files from cloud [VMg using the file system’s data
recovery mechanisms. Data recovery mechanisms are used to restore the file
system to a consistent state in case of power failure, system crashes, or hardware
errors. Two major data recovery mechanisms used in file systems include 1)
Journaling and 2) In this chapter, we present two different approaches for
file recovery using these file system recovery procedures. Additionally, we present
a usecase for recovery of unencrypted file versions following a ransomware attack
launched by Gonnacry.

Chapter 5. Investigation Model to Preserve Cloud and Inves-
tigation Proceedings on Blockchain: In this chapter, we detail the procedure
of preserving the cloud and the investigation findings using a blockchain.
The proposed model also addresses additional challenges in cloud forensics, such
as trust on [CSP], transparency in the investigation, collusion across the involved
stakeholders, and integrity of evidence.

Chapter 6. Conclusion and Future Scope : This chapter summarizes the
contributions made to address the aforementioned objectives to achieve the overall
problem statement with substantial evidence. Finally, this chapter concludes with
future research directions.

10



Chapter 2

Background and Literature

Survey

In Chapter 1, we discussed digital forensics, anti-forensics in the context of artifact
wiping, and how the cloud can be considered as an opportunity for the proposed
solutions to detect wiping, recover wiped content, and preserve the evidential
artifacts. We also listed the gaps and challenges corresponding to anti-forensics
and cloud forensics. In this chapter, we provide the background and related
research in the context of anti-forensics and cloud forensics.

2.1 Anti-forensics

Anti-forensics is a process used by malicious users to challenge the investigation
procedure. It includes the tools and techniques to obstruct forensic analysis.
According to Harris [6], anti-forensics is an attempt to compromise the availability
or usefulness of evidence to the forensic process. Anti-forensics involves either
destroying data or data misdirection, false/falsified data leading to wrong and
inappropriate forensic analysis [7]. Based on early studies [6], [20], [21], [22],
[23], [24] we generalized anti-forensic techniques broadly as data hiding, trail
obfuscation, and artifact wiping.

2.1.1 Data Hiding

Data hiding is an approach adapted intentionally to hide the data inorder to
bypass the investigation findings. The authors in [6], [20], and [21] lists many

11



2.1 Anti-forensics

approaches for data hiding. Commonly used data-hiding approaches include en-
cryption and steganography [21]. Encryption is altering the plain text into the
encoded text to avoid unauthorized access. In digital forensics, encryption is used
by adversaries to prevent the readability of evidential artifacts unless an appro-
priate decryption key is available. The authors of [25], [26], and [27] details the
impact of encryption on digital forensics and the procedure to recover encrypted
files. Steganography is the way to hide data in other files like documents, images,
audio, and videos for privacy and confidentiality. Also, steganography is mostly
known for illicit purposes by adversaries to hide evidential artifacts from direct
access. The authors in papers [28], [29] show the application of steganography
and its detection for forensic investigation.

2.1.2 Trail Obfuscation

Trail obfuscation is the practice of misleading the investigator intentionally by al-
tering the evidential artifacts or destroying the evidential artifacts, thereby mak-
ing investigation difficult or impossible. It predominantly includes metadata ma-
nipulations, IP/MAC address spoofing, proxy servers, log cleaners, compression
bomb, DDoS attacks, etc [21], [30]. By altering the metadata, they mislead the
investigator resulting in inappropriate timeline analysis and event reconstruction.
IP/MAC address spoofing, proxy server, and P2P networks ensure anonymity
and conceal the adversary’s identity. Log cleaners remove the traces of the trails
left behind upon execution of cyber incidents. Compression bombs and DDoS
attacks exploit the computational resources, thereby causing the system to crash
or freeze, hindering and delaying the investigation.

2.1.3 Artifact Wiping

Artifact wiping typically involves overwriting the content stored with random
data multiple times, making it extremely difficult to recover. The act of wiping
files itself may be evidence of criminal intent. Detection and analysis of artifact
wiping may be used to establish the intent and motive of the cyber incident. From
the existing anti-forensics techniques, wiping is the commonly adapted technique
[21], [31], because it is supported by many commercial and freeware that is easy
to install and use. The authors in paper [3I] explain the integration of anti-
forensics approaches in other attacks whose primary purpose is to delete evidence
(e.g., Wiper attacks). A report by Fortiguard shows an increase in the wiper

12



2.1 Anti-forensics

attacks by 50% [32]. This motivates us to consider artifact wiping as our research
objective. Based on the type of artifact being wiped, it can be further classified
as disk wiping and file wiping.

2.1.3.1 Types of Artifact Wiping

Based on the type of artifact wiped, it can be classified as 1) disk wiping and 2)
file wiping. In this research, we have investigated file wiping and restored wiped
files.

Disk Wiping:
Disk wiping overwrites the disk space on the storage media multiple times, making
data recovery impossible. Here, disk space can be a few blocks allocated to a file, a
disk partition, or the entire disk. It is used to ensure data protection regulations
for organizations’ securely deleting content while disposing of old system hard
disks. The authors in paper [2] used the block contents to detect wiping on disk.
It uses statistical methods such as entropy and a statistical test suite developed
by NIST to determine the randomness of block content and detect wiped data
fragments on disk compared to standard data fragments.

File Wiping:
We discussed file wiping in Chapter 1; it involves overwriting the contents of the
targetted file. Unlike disk wiping, in file wiping, the adversary targets only specific
files that may contain sensitive data crucial for investigation. Adversary adapts
file wiping to minimize detection risk. It challenges forensic investigators, leaving
the entire system intact and making it difficult to identify which specific file was
wiped. Unlike disk wiping, file wiping doesn’t draw one’s attention. Also, file
wiping is time and resource-efficient compared to disk wiping. Thus, adversaries
prefer file wiping over disk wiping. Hence, it becomes crucial to detect file wiping
and mitigate its effect.

2.1.3.2 Related Work for Wiping Detection

The existing techniques to detect wiping are based on the traces left by the wiping
tool following their execution. We classified all such approaches as signature-
based wiping detection models. The authors in [33] detect wiping based on the
entries found in various metadata structures of the windows file system like [FATB2
(File Allocation Table), glsexfat (Extended File Allocation Table), (New
Technology File System). For 2 and , the directory structure entries
were used, and for the file system, $MFT, $LogFile, $UsnJrnl files were

13



2.1 Anti-forensics

analyzed to detect wiping for four different wiping tools. Horsman in [34], used
Digital Tool Marks left behind by the seven different wiping tools following
their usage to detect file wiping. He determined the impact of eight wiping tools
on NTES and FAT32 file systems. Wiping detection was done based on the
differences identified between regular and wiped file’s metadata using the file
system artifacts $Logfile and $SMFT. Unlike the above-mentioned papers, Joo et
al. [35] used window artifacts instead of file system artifacts. Total 13 window
artifacts (like Prefetch, AmCache, Jumplist, ShimCache, etc) were analysed by
varying 10 different wiping tools. Further, they consolidated their results in a
database for investigators quick reference. Park et al. [36] used signatures of an
anti-forensic tool (eraser) under the action, i.e., the traces left during installation,
execution, and uninstallation. The systems monitoring tool collects system logs.
These logs are used to collect the signatures of the tools. The signatures captured
are then compared with known anti-forensic tool signatures. If the signatures
match, anti-forensics is detected.

Most studies have focused on detecting wiping but not on recovering wiped
content. Recovery of wiped files will be of significant importance in the forensic
investigation as it can provide crucial evidence. We could find papers [37], [38]
that restore the previous versions of the file. Swenson et al. [37] restores the
previous version of the file using the ExT file system journal, but due to the
cyclic queue data structure of the Journal, the journal content gets overwritten.
Thus, recovery of the previous file version is only possible upon restoring the
journal at the appropriate time. Peterson et al. [38] enabled Ext file systems
with capabilities for file versioning. They used snapshots for versioning at
the file level. This motivates us to use a[CoW}based file system to explore further
for recovery of wiped files.

2.1.3.3 Limitations

We explored file wiping and summarized the limitations observed based on the
above discussion specific to file wiping below,

» To continuously be updated about the emerging wiping tools signature. If
any signature of the tool is unknown, it goes undetected.

« If the wiping tools erase its traces from the referenced artifacts leaving no
trace of its execution then detecting wiping becomes challenging.

14



2.2 Cloud Forensics

o Most of the literature has focused on the detection of file wiping, but the
scope of recovering the wiped files is yet to be explored.

o Shortfall of literature for investigating the recent file systems in use for
detecting and recovering wiped files.

2.2 Cloud Forensics

Simson Garfinkel, in his paper [3], discussed the golden age of digital forensics and
emphasized the need to upgrade the existing forensic tools for the next generation.
By using traditional forensic tools, data residing in the computer’s digital media
can be retrieved, but these tools are not showing promising results when applied
on cloud [3]. Dykstra, in his paper [39], presents two hypothetical case studies
of crime committed over the cloud and further details the challenges encountered
due to the usage of existing standard forensic tools used for the investigation of
these cases. As there is a substantial increase in demand for cloud computing, the
need for the tools addressing the challenges encountered in the cloud is needed.

A survey by K. Ruan [40] on critical criteria and definitions for cloud foren-
sics publishes the results of a survey conducted across 257 forensic experts and
practitioners. This survey focuses on fundamental questionnaires regarding cloud
forensics, such as its definition, challenges, usage, significance, opportunities, re-
quired criteria, etc. The majority of the respondents supported cloud forensic
definition as - "Cloud forensics is a mixture of traditional computer forensics,
small-scale digital device forensics, and network forensics” and ”"Cloud forensics
is an application of digital forensics in cloud computing.” Increased usage of cloud
technology has opened gateways for hackers to commit crimes over the cloud with
much ease[41], at the same time increasing the risks and challenges in the inves-
tigation procedure for LEAs and [CSPk. Investigation procedure, the nature of
evidence, and many other artifacts corresponding to crimes committed over the
cloud vary from traditional crime involving digital media. The Investigating Of-
ficer will neither have direct access to the physical resources nor will be
involved in evidence collection due to various privacy constraints in the cloud.
The IO has to depend on the for evidence completely. There is a lack
of standard operating procedures for conducting forensics in the cloud as every
crime over the cloud differs by cloud architecture, type of service, and deployment
model being used [10].

15



2.2 Cloud Forensics

There are multiple challenges in cloud forensics as the cloud supports multi-
tenancy, infinite storage, virtualization, remote accessibility, etc. Thus, [CSP
play a major role in the identification, collection, and preservation of evidence
by ensuring the integrity of the evidence. Earlier published survey papers by
researchers in this domain have detailed the challenges in cloud forensics. Also,
the National Institute of Standards and Technology has published two
reports i.e., [42] and [43]. These technical reports elaborate an exhaustive list
of challenges corresponding to architecture, data collection, data analysis, anti-
forensics, trust in incident first responders , role management, standard
operating procedures, training, and legal challenges. Survey paper by Bharat
Manral [44] details cloud forensic challenges. It illustrates the work accomplished
in cloud forensics and the challenges by categorizing them as incident-driven,
provider-driven, consumer-driven, and resource-driven cloud forensics. Ameer
Pichan, in his paper [45], details a comparative analysis of technical challenges
and solutions in cloud forensics. This paper lists the challenges for each phase
of the digital forensic process, i.e., identification, preservation, collection, anal-
ysis, and presentation. It provides a comparative analysis of available solutions
proposed by researchers, [NIST| and Amazon. A survey paper by Shams Zawoad
[10] summarizes the challenges in cloud forensics based on cloud service mod-
els, i.e., Infrastructure as a Service , Platform as a Service ([PaaS|), and
Software as a Service . It lists the earlier proposed forensic solutions for
[[aaS| [PaaS| [SaaS| and corresponding challenges. Ben Martini, in his paper [41],

discusses cloud forensic technical challenges and reviews the proposed models by
researchers. This paper details the challenges and areas of improvement in public
and private cloud storage applications. K.Ruan, in her paper [46], discusses cloud
forensics and elaborates on challenges in three different dimensions, i.e., techni-
cal, organizational, and legal. Further, Expert review on cloud forensic readiness
framework by organizations [47], this study is motivated by a particular gap in
research on the technical, legal, and organizational factors that facilitate forensic
readiness in organizations that utilize an (laaS|) model.

The authors of the paper highlight the need for existing forensic procedures
to withstand anti-forensics in the cloud [48], [49]. Radha, et al. [48] proposed
a taxonomy for anti-forensics in cloud. They proposed a framework for cloud
forensic investigation that included a module to check for anti-forensics before
reporting and presenting the evidence. However, the authors didn’t disclose the
details of the implementation. Prasad and Vrushali [49], discussed the demand for
a framework that mitigates anti-forensics in cloud forensics. Further, the author

16



2.2 Cloud Forensics

also emphasizes the need for blockchain-based solutions to ensure the integrity of
the investigation process due to the increased application of anti-forensics.

We observed that most of the papers on cloud forensics are focused on the
cloud forensic challenges and contributions by the research community to address
those challenges. However, we aim to understand the current cloud forensic pro-
cedure in practice by the leading[CSPp and examine if the current procedures can
address any of the existing challenges, further identify the gaps in real-time, and
try to address the gap accordingly.

2.2.1 Cloud Forensics by the Leading [CSPs

In this section, we compare the forensic readiness of leading [CSPk. Based on
Gartner, Inc. magic quadrant on leading [CSPs published in 2020 [50], Amazon
Web Services , Azure, and Google Cloud Platforms are the lead-
ing [CSPk. These [CSPf are compared against various parameters based on the
provisioning of cloud forensic procedures. Comparison parameters are selected
based on essential cloud characteristics for collection, analysis, and preservation
of evidential data for investigation. The information is obtained from the official
websites of the respective [CSPF, conferences, and workshops. On analysis of cloud
forensic procedure of[AWS| [51] [52], Azure [53] [54] and [55] it is found that
the providers are implementing cloud forensics by performing, Log, Disk, and
Memory Forensics. However, we could not find a supporting document regarding
memory forensics by Azure, but as stated in the incident response document [54]
that memory forensics is implemented by Azure.

o Log Forensics- Log forensics is the analysis of cloud logs to mitigate and
investigate malicious behavior of the attacker [56]. The captured cloud logs
are preserved and presented such that it is admissible and used in court
trials.

o Disk Forensics- Disk forensics in the cloud involves creating the snapshot of
the suspected virtual instance along with its attached disk volumes. It also
involves ensuring the integrity of the acquired snapshots and analyzing the
disk contents by using forensic tools, and presenting the admissible evidence
to the court of law.

e Memory Forensics- Memory forensics is capturing and analyzing volatile
data of the affected cloud resource (i.e., VM]s Random Access Memory

17



2.2 Cloud Forensics

(RAM))). The memory captured (memory dump) is analyzed preserved and
presented to the court of law such that it is admissible. It is also known as
live forensics.

2.2.1.1 Forensic Workflow of Leading [CSPk

We analyzed that forensics in the cloud environment are carried out on three main
cloud artifacts by these leading [CSPf; they are logs, disk, and volatile memory of
virtual instances involved in the incident. Thus, we analyzed the forensic proce-
dures for log, disk, and memory forensics by leading [CSPg by referring publicly
available official documentation. Forensic workflow is the sequence of tasks that
processes the evidential data in every step of each [CSP|and presents a bird’s eye
view of end-to-end forensic workflow for each [CSPl i.e. forensic workflow
in Fig 2.1 Azure Forensic workflow in Fig and GCP forensics Workflow in
Figure ( see Appendix [A| for a detailed description of the workflows by each
CSP)).

18



2.2 Cloud Forensics

\WS| Forensics Workflow

D

'

type of incident

l

| Service Domain incident |

v

| Create Support Ticket |

¥

Collect logs for analysis ‘

]

¥

AWS Security logs

on-prem, other
cloud logs

v

Install AWS
CloudWatch agent on
non-cloud resource

Inccident Isolation

Infrastructure Domain incident

¥

Create Support Ticket

Capture Instance Metadata

¥

Protect instance from accidental termination

¥

Change security group of the instance to restricted
security group

¥

Deregister instance from elastic load balancer

L

‘ Push logs to AWS CloudWatch |

l

| Analyse AWS CloudWatch ‘

]

Use AWS Kenesis for

big data log analytics

Prepare for

Remediation

']

Alert security team on isolation of incident

Create snapshot of target instance and attached
volumes by using target instance's ID and volume IDs

¥

Create new forensic instance by using forensic
instance AMI_ID

¥

Set security group of forensic instance to
Forensic_SecurityGroup

¥

Install AWS S5M on forensic instance

¥

Create new storage volume for analysis using target
snapshot 1D and availability zone.

¥

Attach newly created volume to forensic instance by
using forensic instance 1D

Use S5M agent to trigger Forensic analysis

In Memory Forensics SSM agent,

1. Loads tools to trigger memory dump process
(e.g LIME kernel for Linux maching)

2. Compress the data

3. Generate Hash Values

4. Unloads the tool

5. Store the analysis reports in AWS 53 bucket.

bucket.

In Disk Forensics SSM agent,

1. Validate Hash Walue of the snapshot.

2. Use forensic tools for analysis (e.g. SIFT
for Linux, Encase for Windows)

3. Store the analysis reports in AWS S3

Alert security team regarding job completion

Figure 2.1:

> Stop

AWS| Forensics Workflow

19



2.2 Cloud Forensics

Azure Forensics Workflow

Start

Request to SOC team to Capture Digital
evidence snapshot

¥

SOC team access SOC subscription using

¥

S0C Subscription

SOC VMNET SOC Automation Account SOC Storage Account S0OC Key Vault
v | Hybrid Runbook |Cupy_wnDigitalEuidence e | | A Fio oo maics
workspace

Worker WM Runbook legal hold policy Share
Hybrid runbook worker hosted on target

Log Acqguisition ¥

v 3

gzure_Pl?tfarm logs, Azure On-prem, other cloud lags Access Hybrid runbook worker WM and trigger
ecurity logs copy-vmDigitalEvidence runbook with necessary

l PErMissions

Mounts Azure File share to calculate hash
Install log analytics agent on values of snapshot.
non- cloud resources ¥

Create the snapshot of the VM and associated
data disks

¥

Copy the snapshot to Azure file share and
l immutable blob storage containers

¥

Use Azure monitor logging feature to Apply legal hold policy on storage containers
analyse logs

Store the logs to log analytics workspace

Compute the hash values using SHA-256 in
Azure file share

v

Use Azure HDInsight for big Copy hash value, secret keys to SOC keyvault
1 data log analytics 24 vs 4
¥

Use log analytics to monitor the activities of
OC team

¥

| Delete the snapshot from azure file share |

¥

|Reuieve the snapshaot from SOC Biob Storagel

Attach the snapshot as a data disk to WM used to
analyze the evidence by using Azure managed
disk.

| Analyse the Evidence |
¥

| Access to investigators and LEAs |

v v

By using shared access Grant time limited ready only
signature access to account

N

Figure 2.2: Azure Forensics Workflow

20



2.2 Cloud Forensics

Forensics Workflow

Identification of incident

¥

l

Log Acquisition

h 4

Install Cloud logging agent on cloud
and non-cloud instance

h 4

Centralize the logs from infrastructure,
application, on-premises and other
clouds using logging agent.

h 4

Big Query is used to analyze the
logs

h 4

Google cloud aperation suite is used
to customize metrics for log analysis.

Acquisition of evidence

v

Disk Acquisition

v

Create a new project under secure
environment

¥

Enable restricted access with GCP
1AM

¥

Create the snapshot of the disk

¥

Create the image of the snapshot

v

Calculate the hash values

¥

Use Plaso framework to retrieve the
timestamp from the snapshot

v

Plaso file is given as input to
timesketch

v

Timesketch creates super timeline
with incidents arranged
chronologically

v

A 4

Consolidate the evidence

l

Memory Acquisition

!

Install GRR server agent on security
server of Google VPC

A 4

Install GRR Client agent on target
VM instance

¥

GRR client polls GRR server for
work

v

GRR Server shares the process 1D
of the suspicious process

A 4
GRR Client triggers the memaory
dump process with the given
suspicious 1D

v
Analysis of the acquired evidence is
done by using thrid party tools like
Rekall, Volatility

i

Store the evidence in GCS incident
buckets

Y

¥

Motify the security team

Figure 2.3: |GCP| Forensics Workflow

21



2.2 Cloud Forensics

2.2.1.2 Evaluating Cloud Forensic Challenges Across Proposed Solu-

tions by Leading

We now discuss and compare some of the cloud forensic challenges listed in the
technical report published by NIST in 2020 [43]. NIST has listed 65 challenges
corresponding to cloud forensics in its report. In our survey, we found that none of
the leading [CSPk are addressing all the 65 challenges. However, we observed that
12 of these 65 challenges (suggested in the NIST technical report) are addressed
by these [CSPk. These 12 challenges are listed below along with the proposed
solutions by Leading [CSPk (detailed in table [2.1]).

1.

2.

10.

11.

12.

Decentralized logs- Collecting cloud logs from distributed cloud resources.

Log format unification- Collecting logs and making them convertible to
other formats used to centralize them.

Lack of transparency- Cloud operational details are not transparent to the
user.
Data available for a limited time- Data associated with cloud resources are
available for a limited time.
Isolation of evidence- Isolation of cloud resources from the scalable cloud
environment.
. Imaging the evidence- Imaging large volumes of data.
Reconstruction of virtual storage- To create the image from a physical disk.
. Data integrity and preservation- To preserve data and ensure data integrity

for evidence admissibility.

. Validation of forensic image- Ensure integrity of the image captured for

analysis.

Authentication and access control- Access control approach and policies in
the cloud environment.

Reliance on [CSP} Dependency on [CSP)| for evidence.
Confidentiality and Personally Identifiable Information (PII)- Ensuring the

confidentiality of [PII] upon receiving a legal request for disclosure of infor-
mation.

22



2.2 Cloud Forensics

Table 2.1: Evaluating Cloud Forensic Challenges across proposed solutions by

Leading

Cloud Forensic Proposed Solution Amazon | Azure | Google | References
Challenge
Decentralized logs Centralize logs form v v v b7 B8] K9] [60]
cloud resources
Log format unification | Convert logs to v v v 58] [59] [60]
a standard format
Lack of transparency Provide transparency v v v b2] [53] [61]
to users
Data available for Data retention policy v v v [62] [63] [64]
a limited time
Isolation of evidence Deregister the instance from | v/ X X [65]
scalable cloud resources
Imaging the evidence | Scalable storage service v v v B2] [65] 53] [55]
Reconstruction of Creating snapshot of v v v [52] [65] [53] [55]
virtual storage attached disk volumes
Data integrity and Apply retention policies v v v [62] [63] [64]
preservation for legal investigation
Validation of Forensic | To use hash values v v v 52] [65] 53] [55)
image of the image
Authentication and Access control mechanism v v v [65] [53][66]
access control
Reliance on [CSP Provide LEA access X v X B3]
to evidential resources
Confidentiality and [PII|| Disclosure ofmonly v v v [67] [68] [69]
upon receiving Legal request

2.2.2 Limitations of Cloud Forensics

The above workflows by the leading [CSPF, i.e., Amazon, Azure, and [GCP}, show
that there is a lack of standard operating procedures for conducting forensics
in the cloud. Each has its own approach. However, log, disk, and memory
forensics are common evidential artifacts considered by the leading[CSPk for cloud
forensics, as shown in Figure Also, one of the major drawbacks noticed in
the forensics approach adopted by the leading is that they have ignored
anti-forensics. Thus, in this thesis, we bridge this gap. Figure highlights the
research direction of this thesis in the context of anti-forensics in comparison to
the existing cloud forensic approach adopted by leading [CSPk.

23



2.3 Summary

QOur Contribution in Context Existing Cloud Forensics
of anti-forensics in Cloud i By Leading CSPs
Cloud Forensics l
—lCIoud artifacts Anti-Forensics : 4{ Cloud artifact Forensics li
: h 4 Y
¥ - - - -
‘ Log Forensics ‘ ‘ Disk Forensics ‘ ‘f\-"lemor)r Forensms‘

‘ Data Hiding ‘ | Artifact wiping | ‘Trailobfuscation‘ :

| Detect Wiping | |RecoverWiping| |Preserve EvidenceI:

Figure 2.4: Thesis reseach direction in the context of anti-forensics in comparison

to the existing systems

2.3 Summary

Adoption of the cloud computing model must inherently support auditing fa-
cilities to monitor anti-forensics activities in the cloud, which still doesn’t have
much-needed attention. We evaluated the forensic procedures implemented by
the leading considering the cloud forensic challenges reported by NIST
[43]. Out of 65 challenges, only 12 are addressed, and still, a fair amount of work
needs to be done to accomplish other challenges. Anti-forensics is also one of
the 65 listed challenges that have not yet been addressed. Moreover, the current
forensic strategies of leading [CSP fail to address the associated challenges with
anti-forensics. Considering the increased adoption of artifact wiping (an anti-
forensic technique) [21], [31], [32], we considered wiping detection, recovery, and
preservation in cloud [VMk as the main objectives of our thesis.

24



Chapter 3
Detecting File Wiping

Wiping has a significant effect on file systems. A file system systematically ar-
ranges files and directories on the storage media for easy and quick access. Thus,
in digital forensics, file systems are accountable for the files stored on digital me-
dia and their recovery. Wiping overwrites the contents of the file system data
structures (e.g., Master Boot Record and Master File Table in
the file system, superblock, and inode in the file system) and makes
data recovery impossible. The significant application of wiping in organizations
is to ensure that they comply with data protection regulations like- a) European
Union’s [GDPR} an individual is given the right to erase their data held with
organizations securely). b) United State’s for by securely erasing Pro-
tected Health Information from storage media before they are disposed
of or repurposed. However, wiping is not just confined to securely deleting the
content by authorized users. The adversaries resort to wiping tools to remove the
traces of evidence or make data unrecoverable permanently. Wiping attacks are
considered the most destructive attacks. Thus, our first objective is to detect file
wiping in cloud to ensure the integrity of the evidence. In this chapter, we
delve into the intricacies of file wiping detection.

3.1 Challenges in Existing Literature

The forensic tools fail to detect some anti-forensic approaches like artifact wiping
and trial obfuscation [70]. The four leading forensic tools AccessData’s Forensic

Tool Kit (FTK]), The Sleuth Kit (TSK]), Encase, and OSForensics, could not
detect file wiping [70]. Techniques like data carving can help identify wiping, but

25



3.2 Contributions

it is time-consuming. Also, it cannot determine which specific file was wiped,
which is crucial to understand the adversary’s intent.

Also, it is observed that most of the earlier works [33], [34], [35], and [36], are
detecting file wiping based on the signature of the file wiping tool left behind when
the tool is in action. If tool is altered, its corresponding signature also changes,
bypassing the security scans. Hence, we need approaches that are independent of
tool signatures. As the signatures depend on the hash values, installation traces,
deletion traces, etc., it would be challenging to detect wiping as the signatures
corresponding to the tools may change over a period of time. Moreover, there
are also tools that wipe the traces left behind. Thus, we propose to detect file
wiping independent of the traces or signatures left behind by the anti-forensic
wiping tools. In this direction, we propose two different approaches. i.e., [WiDeJ

and [WiDeS| to detect wiping.

3.2 Contributions

In this chapter, we detect file wiping in cloud using two different approaches:

o A static approach to detect wiping using file system journals and data
blocks. We name this model (Wiping Detection using Journals).

o A dynamic approach to detect wiping using system-calls on cloud snap-
shot. We name this model as [WiDeS| (Wiping Detection using System-
calls)

3.3 Prelimnaries

3.3.1 Data Sanitization

Data sanitization is a specific way in which data overwrites the data on a hard
drive or other storage device. There are a number of data sanitization methods
that can be used. These methods are also often referred to as data wipe methods,
wipe algorithms, and data wipe standards [71].

Most of the wiping tools use these data sanitization methods to overwrite the
content in the addressable location multiple times, either with a specific value
(i.e., 00/11/AA) or with random characters; this ensures that the original data is

26



3.3 Prelimnaries

completely unrecoverable. 1-pass overwriting involves overwriting the actual con-
tent on the disk for a single time. 2-pass overwriting involves overwriting twice.
Likewise, multiple passes involve overwriting the content multiple times (e.g., 3-
pass, 7-pass, 35-pass). There are many data wiping standards used by the wiping
tools to wipe the content on the storage media. Some of the most adapted stan-
dards include- 1) Peter Gutmann, which uses 35-passes to overwrite the content;
it uses both random characters and specific characters for wiping; it is the earli-
est wiping standard. 2) 5220.22-M by United States Department of Defense
uses 3-passes; it overwrites the contents with Os in the first pass and 1s
in the second pass, and random characters in the third pass. 3) 5220.22-M
ECE is another variant of 5220.22-M which uses 7-passes. 4) 800-88
provides media sanitization guidelines based on the storage media using three
ways clear, purge, and destroy; of these, the clear technique is the approach used
to overwrite the content using multiple passes. 5) HMG Infosec Standard 5 by
the government of the United Kingdom has two variants i.e., a) HMG IS5 stan-
dard (overwrites using 0s) b) HMG IS5 “Enhanced” Standard (overwrites with
0s followed by 1s. 6) GOST R 50739-95 by Russia uses either 1-pass (overwrite
with 0s) or 2-pass (overwrite with Os followed by random characters) 7)Random
data is used to overwrite the storage media with random characters. 8) Write
zeros it is used to overwrite the content with Os.

3.3.2 File System Journaling

Journals are used to record the changes that are destined for the disk before their
execution to ensure file system consistency. In case of system failures, the journal
is replayed to restore the file system. The journal entries are grouped as journal
transactions. Each transaction begins at the descriptor block and ends with a
commit block. Each transaction is further given a sequence number. Only the
committed transactions are executed on the disk.

The journal can either capture metadata or both data and metadata corre-
sponding to a file. file system journals come with three journaling modes;
based on the content being captured, they are classified as - data journaling, or-
dered, and writeback modes [72]. Based on the user’s requirement, the user can
opt for either of these journaling modes.

In data journaling mode, both data and metadata are journaled. This en-
sures data and metadata consistency with minimal data loss in case of system

27



3.4 Detecting Wiping Using File System Journals and Data Blocks

failures. This is more reliable for a consistent file system than the other journal-
ing modes. However, this consistency comes with a performance overhead as the
write operations are to be repeated twice, i.e., for journal and disk.

In ordered mode, only metadata is journaled; the metadata corresponding to
a file is updated in the journal after the data changes are executed on the disk.
The data is updated directly at the disk location. In case of system failure, since
the metadata changes are captured later the file system consistency is ensured.
It is the default journaling mode as it has less overhead and ensures consistency.
In write-back mode, only metadata is journaled; unlike in ordered mode the data
order is not preserved.

3.3.3 System Calls

We use system-calls in to analyze the behavioral characteristics of wiping
tools and detect wiping activity. System-call acts as an interface between the user
application and the Linux kernel. Based on their functionality and the type of
resource system-calls can be classified as process control, file management, device
management, information maintenance, communication, and protection. For ex-
ample, open(), close(), read(), write(), etc., are a few system-calls corresponding
to file management. System-calls play a crucial role in malware behavior analysis.
In this chapter, we use system-calls to detect wiping activity dynamically.

3.4 Detecting Wiping Using File System Jour-
nals and Data Blocks

In the proposed model WiDelJ, we detect file wiping by analyzing the file content
at the block level. We use the file system journal to trace the data blocks allocated
to the file. Further, we analyze the data blocks and project the difference between
the regular file and wiped file. Thus, we detect file wiping independent of the
traces or signatures left behind by the anti-forensic tool.

3.4.1 Proposed Model

We propose a model to detect file wiping using file system journals. Here,
we shall discuss how to analyze the journal to capture the file’s data blocks,
followed by the types of wiping and algorithms used to detect file wiping.

28



3.4 Detecting Wiping Using File System Journals and Data Blocks

3.4.1.1 Journal Analysis

Now, let us analyze the file system journal to trace the file’s data blocks. To
browse the journal, we used jls command-line tool from [TSK] We execute the jls
command on the [Ext}based [VM] image. We initialized the image with file
system using the mkfs (make file system) command and mounted it for simplicity
and a better understanding of the journal. Figure shows the journal content
just after mounting the file system.

(base) :~/Workspace$ jls dfr-10-ext.dd |more
JB1lk Description
G: Superblock (seq: @)

sb version: 4

sb version: 4

sb feature_compat flags 0x00006006

sb feature_incompat flags Ox00600600
sb feature_ro_incompat flags Gx00600680

1: Allocated Descriptor Block (seq: 2)
2: Allocated FS Block &7
3: Allocated Commit Block (seg: 2, sec: 1633839853.2023353600)

Figure 3.1: Journal after mounting the file system

The seq: 2 in Figure|3.1|represents the transaction corresponding to file system
mounting. Now let us copy a file 'Demo.txt’ to the file system and analyze the
journal.

As shown in Figure we can observe that the sequence number is increasing.
Each sequence number represents a single transaction, from line 4 (Allocation of
descriptor block) to line 11 (Allocation of commit block) is considered as one
complete transaction. This transaction is represented by seq : 3. To analyze
the activities performed on the file system, we need to exploit every transaction
captured in the journal. The transaction with seq : 3 here corresponds to copying
Demo.txt to the file system. Now let us analyze how to access the metadata of
this file from the journal transactions.

29



3.4 Detecting Wiping Using File System Journals and Data Blocks

(base) :~[Workspace$ jls dfr-10-ext.dd |[more
JBlk Description
0: superblock (seq: @)

sb version: 4

sb version: 4

sb feature compat flags 9x00000000

sb feature incompat flags 0x00000000

sb feature ro_incompat flags 8x00000000

1z Allocated Descriptor Block (seqg: 2)

2 Allocated FS Block 67

3 Allocated Commit Block (seq: 2, sec: 1633804460.3490855936)
4: Allocated Descriptor Block (seqg: 3)

5: Allocated FS Block 66

6: Allocated FS Block 1

7 Allocated FS Block 67

8

H Allocated FS Block 579
9: Allocated FS Block @
10: Allocated FS Block 65
alin b Allocated Commit Block (seq: 3, sec: 1633804904,2253113088)
12: Unallocated F5 Block Unknown

Figure 3.2: Journal after copying a file

We use jeat command-line tool from [TSK] to interpret the contents for each
journal entry from journal blocks. To carve the data from journal block we use
command-line utility dd. Figure|3.3|represents the journal block content for inode
data of Demo.txt. This entry captures the file metadata such as file size, data
block pointers, and other file attributes updated in the file’s inode data structure.

The content presented in Figure [3.3]is inode data for the Demo.txt file. We
here interpret the data block pointers corresponding to this file. In inode data
structure, file data block pointers are from 40 to 87 bytes (direct block pointer),
88 to 91 bytes (single indirect block pointer) 92 to 95 bytes(double indirect block
pointers), 95 to 99 bytes (triple indirect block pointers) [73]. By applying this,
we have the following block pointers of the file in hexadecimal; 0x0024, 0x0124,
0x0224, 0x0324, 0x0424, 0x0524 (9216, 9217, 9218, 9219, 9220, 9221 are corre-
sponding decimal equivalent values, respectively).

(base) :~/Workspace$ jcat dfr-10-ext.dd 8 7 |dd bs=256 skip=11 count=1]|xxc
1+0 records in

1+0 records out

256 bytes copied, 0.0300427 s, 8.5 kB/s

00000000: a481 0000 6a59 0000 63e2 6161 63e2 6161 ....JjY..c.aac.aa

00000010: 63e2 6161 0000 0000 GOOO 0100 3000 0000
00000020: 0000 0000 0100 0OOO 0024 0000 0124 0000
00000030: 0224 0000 0324 0000 0424 0000 0524 0000
00000040: 0000 0000 0000 0OOO OOOO OO0 QOOO 0000
00000050: 0000 OOOO 0000 GOOO DOOO GOOO GOOEO 0000
00000060: 0POO 0000 4b2a cblf 0OPO HEEO BOOAO BOOO
00000070: 0000 OOOO 0000 OOOO OOOO OOOO GOEO DOOO
00000080: 2000 00DO ©40b dB82e 040b dB2e B40b dB2e
00000090: 63e2 6161 ©40b d82e ©DPEO ©OEO BOOO BOOO
00000030: 0O0O OOOO 0000 GOOO DOOO OOOO GOOO DOOO

Figure 3.3: File’s inode data captured in journal block

30



3.4 Detecting Wiping Using File System Journals and Data Blocks

Now that we have the data block pointers for Demo.txt, we analyze its content.
For this, we use the blkcat command-line tool from [TSK| We pass the image name
and the data block pointer as arguments to read the block content. Figure (3.4
shows the content at block pointer 9216.

(base) : ispaceS blkcat dfr-10-ext.dd 9216 |xxd

pOEEOEAR: 4465 6669 6269 7469 6f6e Badl 6e74 692d Definition.Anti-
pEEERE1e: 666T 7265 6e73 6963 7320 6861 7320 o6f6e forensics has on
pEEBRER208: 6CTY 2072 6563 656e T46c 7920 6265 6568 1y recently been
pEOERE30: 2072 6563 6f67 6e69 Tags 6420 6173 2061 recognized as a
gEEERR4R: 206C 6567 6974 696d 6174 6520 6669 656c legitimate fiel
pEEBERSA: 6420 6f66 2073 T4T75 6479 2e20 5769 7468 d of study. With
gEnRRER6A: 696e 2074 63869 T320 6669 656c 6420 6f66 1in this field of
POEERATE: 2073 7475 6479 2c20 6e75 6d6S 726f 7573 study, numerous
oeREERAAE: 2064 6566 696e 6974 6961 6e73 206f 6620 definitions of
QEEEER9A: 6l16e 7469 2d66 6f72 656e 7369 6373 2061 anti-forensics a
pOEERRaR: 626F 756e 642e 204f Ge65 206 6620 7468 bound. One of th
OEEEERbAE: 6520 6d6f 7265 2077 6964 656C 7920 6b6e e more widely kn

Figure 3.4: Block content of a file at specific block pointer (i.e 9216)

We determine the block content byte-by-byte at each block allocated to
Demo.txt. The block size of file system is 4096 bytes. Hence, we deter-
mined that 4096 characters were present in each block and repeated the same
for all blocks allocated to the file. The file content here will be in hexadecimal
format. We analyze this file content to detect file wiping. Algorithm (1| details
the procedure for analyzing the journal, capturing the file content from the file’s
data blocks, and detecting file wiping.

31



3.4 Detecting Wiping Using File System Journals and Data Blocks

Algorithm 1 Analyze journal for file data blocks and detect file wiping

procedure ANALYSEJOURNAL(VM_img)
JrnlFile < getJrnl(V M -img)
JrnlTranSeqNuml|] < getSeqNum(JrnlFile)
for all JrnlTranSeqNum do

jrolEntry < getInode Entry()
dataBlkAddr|| < get Blk Pointer(jrnl Entry)
for all dataBlkAddr do

t hex File < readBlkDatal()

Dict <+~ UPDATEDICTIONARY (hexFile)
entropy <—COMPUTEENTROPY (Dict)

if entropy == 0 then

print file wiped with specific character
else if entropy == 0.99 then

check file header to detect wiping

if header has random characters then

B t print file wiped with random characters

return

3.4.1.2 Using Shanon’s Entropy

Every character from data blocks in hexadecimal format is converted to
(American Standard Code for Information Interchange) equivalent decimal value,
i.e., between 0 and 255. We create a dictionary to store these characters.
The dictionary’s key stores the values from 0 to 255, and the corresponding
values store each character’s cumulative sum of their occurrence in all blocks
allocated to the file. Algorithm [2] details the procedure for the same. We further
compute each character’s probability of occurrence and the entropy for the entire
file. Based on the file entropy obtained, we determine file wiping.

32



3.4 Detecting Wiping Using File System Journals and Data Blocks

Algorithm 2 Initialize the dictionary to store the |ASCII| values and frequencies
procedure UPDATEDICTIONARY (hexFile)

Dictionary Dict{ascii, frequency}

while |EOF (hexFile) do

char < readChar(hexFile)

ascii < covertToASCII(char)

frequency < Dict.get(ascii)

if frequency == 0 then
frequency < frequency+1
Dict.add(key, frequency)

else

t Dict.add(key, frequency+1)

.~ return Dict

Shannon’s entropy is a good metric for measuring the randomness in char-
acters [74]. Shanon was the first person to propose a measure of uncertainty or
randomness of probability distribution and termed it as "entropy” [75]. We use
Shanon’s entropy to detect file wiping in the proposed model. We further nor-
malize the computed entropy value as normalized measures of entropy are much
closer to one another when compared with absolute entropy. The Shannon’s en-
tropy is shown in Equation and normalized Shannons entropy is shown in
Equation |3.2] Here, E is the Shanon’s entropy, and is Normalized Entropy,
X is the character, and P(X) is the probability of the character X in the
given file.

N
E=—=> p(X;)logyp(X;) (3.1)
i=1

NFE = i)l (X; 2
logz ZP ) logs p( ) (3)

We computed probabilities for each m character of the file stored in the
dictionary. Later, we computed the entropy of the file using the formula shown
in Equation and normalized the entropy using the formula shown in Equation
3.2l The value of normalized entropy lies between 0 and 1 and is used to detect
file wiping. Algorithm [3| details the procedure to compute entropy.

33



3.4 Detecting Wiping Using File System Journals and Data Blocks

Algorithm 3 Compute file entropy

procedure COMPUTEENTROPY (Dict)
for all key € Dict do
t totalCharCount < totalCharCount + Dict.getV alue(key)
for all key € Dict do
L char Probability < Dict.getV alue(key)/totalCharCount
entropy <— entropy + char Probability x log(char Probability)
N 256 ©> N is assigned with fm‘a/ characters 256 (.i.e 0 to 255)
entropy < entropy/log(N)

return entropy

We now wipe the contents of the file and interpret the file content. We exper-
imented the proposed model with tools, i.e., Shred, and Wipe. By default, these
tools wipe the file with random characters unless the user explicitly specifies to
wipe the file with a specific character like 0 or 1.

The wiping tools overwrite the file either with random characters or with
specific characters like Os or 1s [70]. Thus, we have designed two cases based on
how a file can be wiped.

o (Case 1: Wiping a file with a specific character.

o Case 2: Wiping a file with random characters.

Case 1: Wiping a file with specific character

Wiping a file with Os or 1s overwrites the content of regular readable data with
either 0 or 1. To perform file wiping with 0Os, we used Shred, a command-line tool
that securely deletes files by wiping them. After wiping the file, we analyzed the
journal entries again and traced the block pointers. Figure shows the journal
entries after wiping the file. Here we are interested in journal entries 13, 16, and
19. Likewise, we edit the jcat command with corresponding journal entries (i.e.,
13, 16, and 19) to view the file’s data block pointers.

34



3.4 Detecting Wiping Using File System Journals and Data Blocks

fbasej :~/Workspace$ jls dfr-10-ext.dd |more
JBlk Description
:H Superblock (seq: 8)

sb version: 4

sb version: 4

sb feature compat flags GxGE000000

sb feature_incompat flags GxGEE0R000

sb feature_ro_incompat flags OxEeG00G0000

b | Allocated Descriptor Block (seq: 2)
2: Allocated FS Block 67

3 Allocated Commit Block (seq: 2, sec: 1633839853.2023353600)
4: Allocated Descriptor Block (seq: 3)
52 Allocated FS Block 66

6: Allocated FS Block 1

7 Allocated FS Block &7

8 Allocated FS Block 579

= Allocated FS Block @

10: Allocated FS Block 65

b Allocated Commit Block (seq: 3, sec: 1633839868.3453514496)
12: Allocated Descriptor Block (seq: 4)

Az Allocated F5 Block &7

14: Allocated Commit Block (seq: 4, sec: 1633839891.3510770176)
15: Allocated Descriptor Block (seq: 5)

16: Allocated FS Block 67

17z Allocated Commit Block (seq: 5, sec: 1633839892.41928784)
18: Allocated Descriptor Block (seq: 6)

19: Allocated FS Block &7

20: Allocated Commit Block (seq: 6, sec: 1633839898.1270903040)

21: Unallocated FS Block Unknown

Figure 3.5: Journal after wiping a file

Further, upon examining the block content by using blkcat command for jour-
nal entries 13, 16, and 19, we found that the entire file content was wiped with
0s. Figure shows the block content of the file wiped with Os at block address
9216. An important observation from Figure [3.6|is that the frequency of charac-
ter 0 is equivalent to file size, and the frequency of all other characters is 0. This
is because all the characters in the file are overwritten with a specific character
‘0’ Thus, we detect file wiping using journals and Shanon’s entropy by applying

Algorithm and [3]

(base) 1~[/Workspace$ blkcat dfr-10-ext.dd 9216 |xxd |[more
QEOEO006: 0000 0000 GO0 OO00 0000 OOOO OBOO BBBE ..........c.0....
POGOGO10: O0OBO ODOD DOBO ODOD DODO DOOD 00O BOBE ......ccvvvenans
QEOEO026: 0000 0000 GO0 OO00 0000 OOO0 OBOO BBBD ............0.0..
POGOGA30: OO0 ODOD DODO ODOD DODO DOOD OO0 BOBE ......ccvvvevens
0EOEO046: 0000 0000 G000 OO00 0000 OOO0 OBOO BOBD .........c0.0.0..
POGOOAS0: O0OBO ODOD DODO ODOD DODO DOOD OO0 BOBD ......ccvveenens
QEOEO06E: 0000 0000 G000 OO00 0000 ODOO OBOO BBBE .........cc.0....
POGOBOTO: OOBO ODOD DOBO ODOD DODO DOOD OO0 BOBE .....cccvvvevens
POROEAAB6: OODO OOOO NOOO OOOO OO0 OOOD OOOO BOOD .....cccvvvenans
0EEEO%0: 0000 0000 G000 OO00 0000 OOO0 OBOO BBBD .........c..0.0..
POGOO0a0: OO0 ODOD DOBO ODOD DODO DOOD OO0 BOBE ......ccvvvevens
0OOEAAEDA: GEAO AORO GO0 0000 POOO AEAE GO BBBE ........cccceeea.

Figure 3.6: Block content after wiping a file with zero

35



3.4 Detecting Wiping Using File System Journals and Data Blocks

Case 2: Wiping a file with random characters

By default, the wiping tools wipe the file with random characters. Figure (3.7
shows the block content of the file when wiped with random characters. Detecting
file wiping when wiped with random characters is more challenging than detecting
file wiping when wiped with specific characters. The reason for the same is
discussed in Section 3.4.2]

(base) ] S blkcat dfr-18-ext.dd 9216 |xxd |more
DOPAPORO: B8aad dabe d26f d37f 2382 988f 99a5 33fa ..In.o..#.....3.
pEAEAR16e: 267d 11c3 99b0 @%b 3bcb be98 2551 fdaf &)...... ;ee Q.0
BEEEEE268: 7fel ffcy 985c fos6f 4c3d 8fbS c49b 6a56 ..... \.ol=....3V
BDEEEOB36: 5116 6b96 294F 9313 cd43c e38c bBef 726a (.k.)0...<....rj
AEAEER4E: AdfI e09 eeSd ¢332 SeS5a Tbec d89d belb ..... JIE
AEARAESA: 82e6 4714 362b 64a9 8ec9 dd99 2das azZef ..G.6+d..... =aaa
AEAEAR6E: Bcbld cbde chae 24ad 434d 281c 1016 dfes ...... S.OM(.....
pEARAATAE: 3faa 89%e5 T893 9198 cf7f 7972 1deb cefe 72......... [
pERRARES8A: 9cl6 cold 22a5 e41f 18b6 6674 6163 f9a4 ...."..... ftac..
AEAEAE98: A74e ac9a ca54 7328 A5ae 093f 3716 0%a4 . M...Ts(...?7...
pOPEPGEaR: B8ad4 98f1 2e06 2772 997d 1433 bage 152b ...... 'r.}.3...+

DEEEEEbe: 2f91 2147 aeda c7d9 49ca 5713 d4cd 258F /.!G.J..I.W...%.

Figure 3.7: Content at data block when wiped with random characters

3.4.2 Results and Discussion

In this section, we present the results of our model WiDeJ] We initially evaluate
the scope of recovering the journal entries corresponding to a file when the files
are wiped. We cannot fetch the data blocks corresponding to a wiped file if the
journal entries are overwritten. Thus, it becomes crucial to determine the scope
of recovering journal entries corresponding to a wiped file. This depends on two
major factors, i.e., the wiping tool and file size; to support this statement, we
have executed an experiment with a cloud [VM] image whose size is 1 GB and its
journal size is 8 MB. We initialize the image to a clean state using mkfs command.
Later, we used two different wiping tools, Shred and Wipe alternatively, to wipe
the file by varying file size from 1 MB to 30 MB. For each file, after wiping it, we
checked for the journal entries to see if they were overwritten. Figure |3.8| shows
the result of this experiment.

From Figure [3.8] we observe that the scope of recovering the journal entries
for wiped files decreases as the file size increases; smaller file sizes result in fewer
journal entries (less no.of write operations) when wiped, while larger file sizes lead
to more journal entries and potentially overwriting early journal entries. Also,
we notice that we have more scope of recovery when a file is wiped with a Shred
tool compared to a Wipe tool. This is because the Shred tool uses a trivial data

36



3.4 Detecting Wiping Using File System Journals and Data Blocks

wiping standard i.e.,[DoD]| 5220.22-M, compared to the Wipe tool that uses Peter
Gutmann’s algorithm. The increased number of passes in the Wipe tool results
in more write operations, leading to increased journal entries. As the journal
entries increase, there may be a chance that the earlier journal entries may get
overwritten. The results in Figure |3.8] show that we can recover the journal
entries corresponding to a file whose size is less than 30 MB when wiped using
basic wiping tools like Shred, but we can recover a file with its size less than 1
MB when wiped with a rigorous wiping tool (like Wipe tool).

wipe

shred

Wiping tool

0 10 20 30 40 50 60
File size in MB
m Successful recovery of wiped file m failed to recover wiped file

Figure 3.8: Scope of recovering wiped file data blocks using file system journals

by varying wiping tools and file size.

Let us assume that we could fetch the data blocks allocated to the file using
the journals. We now compute the entropy of characters on these data blocks.
We compute the file’s entropy using Shanon’s entropy using the Equations
and 3.2 We considered 54 files, which included 20 different file types. Table
[3.1] shows the entropy value for different file types before and after wiping with
random characters.

37



3.4 Detecting Wiping Using File System Journals and Data Blocks

Table 3.1: Entropy values for different file types

File Type | Entropy before wiping | Entropy after wiping | File type | Entropy before wiping | Entropy after wiping
.dat 0.83 0.99 .pptx 0.99 0.99
log 0.31 0.99 .eps 0.51 0.99
.png 0.94 0.99 .exe 0.99 0.99
.bmp 0.98 0.99 .obj 0.58 0.99
.ipg 0.99 0.99 .aspx 0.96 0.99
.pdf 0.99 0.99 .mp3 0.98 0.99
.eml 0.62 0.99 .mp4 0.84 0.99
.docx 0.86 0.99 .zip 0.99 0.99
xlsx 0.94 0.99 .odt 0.93 0.99
.ods 0.99 0.99 .odp 0.99 0.99

For case 1, where a file is wiped with specific characters like Os and 1s the
computed file entropy is equivalent to 0. Figure and show the character
distribution in a file Demo.txt before and after wiping. Here, we can see that the
frequency of characters is unevenly distributed before wiping the file Demo.txt,
but after wiping, the frequency of the character 0’ is equivalent to the file size
on the disk. In this case, for Demo.txt, the frequency of the character 0 is 16384
(i.e., file size is 16 KB), and the probability of occurrence of character '0’
is 1; upon substituting the probability in Equation and [3.2], the entropy is 0.
Thus, if the entropy of a file is 0, we conclude that the file has been wiped with
a specific character.

17250
L]

3000 + 17000

2500 5. 16750 -
= g
5 g

€ 5000 J . & 16500 -

g = .

i 5

& 1500 1 S 16250
c [} ]
5 2

G 1000 . “ 16000 -

ool
500 ¢ 4
.:.~. 15750
04 L] sotmnaintn® $00° o * 15500 4
0 50 100 150 200 0 50 100 150 200
ASCII Character ASCII Character
(a) Frequency of |ASCII| characters in regular (b) Frequency of [ASCII| characters in file after
file wiping with 0

Figure 3.9: Difference between regular file and file wiped with Os

For case 2, detecting file wiping when a file is wiped with random characters is

38



3.4 Detecting Wiping Using File System Journals and Data Blocks

quite challenging as the entropy value of regular files, e.g., .jpg, .pdf, .mp4, .mp3,
and other file formats would be close to 1 (i.e., 0.96, 0.97, 0.98, and 0.99), as
shown in the Table 3.1} and the entropy values when the file wiped with random
characters is 0.99; making it difficult to differentiate between regular files and
files wiped with random characters. Figure [3.10a], and shows the character
distribution before file wiping and after wiping a file with random characters.
We can see that the distribution of characters is quite evenly distributed across
256 characters in Figure [3.10b] More randomness leads to higher entropy
because entropy is the average of the logarithmic function of the probability i.e.,
when p(X;) is small, logs p(X;) is large. Thus, when a file is wiped with random
characters, the file entropy is high, i.e.; 0.99.

90

L ]
3000 A . o °
801 ‘ L] ° . . [ ]
2500 ° L4 : ®s o ® °
g g . : ° ' °p® ® b 2 o.
= £ 70 - o0 @ L ]
£ 2000 . E] . W o0, 4 op %
g g s ." h e 2 ...— »'.‘.'#‘-‘.
= = o f o0 Vo .90, %0 ...".o‘ °
S 1500 & 60 oo » %% ) L) ;‘ ® °
E ° % b ] .' 8, ® o °® e *° »
2 2 o 8l - ¢ e @ °
G 1000 . G e " oo e o 2 ® .
ool 50 ° b
500 ° ° °
s
a0 .
04 L4 sotmnmintn® ¢00° o ® °
6 5‘0 160 15‘0 2 60 6 5'0 lll)ﬂ 15‘0 2 60 2 5‘0
ASCII Character ASCII Character
(a) Frequency of |ASCII| characters in regular (b) Frequency of [ASCII| characters after wiping
file with random characters

Figure 3.10: Difference between regular file and file wiped with random characters

Based on the observed values from Table [3.1, we notice that when a file is
wiped with random characters, the entropy is 0.99. Thus, we fixed the threshold
at 0.99 to detect wiping. We classify the files with an entropy value of 0.99 as file
wiping. However, to reduce false positives, we further check the file header and
classify the file as a regular or wiped file.

File header can play a crucial role in determining file wiping. Figure [3.11
taken from paper [I] shows file structure layout. The initial few bytes of the
file constitute the file header. It contains file type, file size, and other metadata
corresponding to a file. If a file is wiped with random characters, the header and
footer are overwritten with random characters. On the other hand, for regular
files (e.g., .jpg, .pdf, .ppt, etc.), though the file data has random characters and

39



3.4 Detecting Wiping Using File System Journals and Data Blocks

an entropy of 0.99, they have a well-defined header structure that can be used to
determine the file type and fetch metadata corresponding to the file. However,
there are chances that the adversary may tamper with the file header, a basic
anti-forensic approach adapted to hide the file type and mislead the investigator.
Thus, we consider both file entropy and file header to detect wiping. If the file’s
entropy is 0.99 and even the header contains random characters, we classify the
file as a file wiped with random characters.

OFFSET 00 01 02 03 04 05 06 07 08 09 0A 0B OC OD OE OF

F EO|[00 LUI4A 46 49 46 00 01 01 01 00 &0

E| 00 43 00 03 02 02 03 02 02 03
04 05 08 05 05 04 04 05 DA 07
L OC OB OA OB OB OD OE 12 10 OD
16 10 11 13 14 15 15 15 OC OF

14 15 14 [FF DB

0L 00 42 11 03 X1 00 3F 00 FB

an/hC 74 C6 OO AD 74 8E DO FE

06 F1 35 BY¥ 54 5E 50 85 DC SF
DS AC D4 J6 74 60 71 95 6B 49

00 Q4 00 00 O 00 00 00 00

@ 00 00 OUPSEL 08 00D OO0 OO0 00 O OO0 OO0 Q0

File Signature Marker Size S0S Data Footer

\ J
|

File Header

Figure 3.11: File layout (reproduced from [I])

We also compared our model with the approach by Savoldi et al. [2],
which is closely related to our work. Savoldi et al. used data blocks and a statis-
tical test suite developed by NIST to determine the randomness of block content
and detect wiped data fragments on disk in comparison to standard data frag-
ments. Table highlights the differences between and their approach.
However, the objectives of and the method by Savoldi et al. differ.
detects wiping at the file level, identifying which specific file has been wiped, which
helps investigators understand the adversary’s intent. In contrast, Savoldi et al.’s

40



3.5 Detecting Wiping using System-calls

method identifies wiped data fragments on disk. Therefore, while their approach
indicates that wiping was used, it does not specify which file was wiped.

Table 3.2: Comparison of and [2]

Existing approach [2] WiDeJ
1. Disk level wiping detection. 1. File-level wiping detection.
2. Uses NIST statistical tests 2. Used file system journals
to detect wiping. and entropy to detect wiping.
3. Considered 15 file types. 3. Considered 22 file types.
4. Use an additional 5 statistical tests | 4. Use file header to reduce
to reduce false positives. false positives.
5. Detection time is prolonged as ) ) ) )
o 5. Detection time is less as we consider
five statistical tests are repeated ) ) )
. only the files listed in the journal.
on the whole disk.

Finally, we could detect file wiping using our model [WiDeJ| For case 1, we
were able to detect file wiping with 100% accuracy. For Case 2, based on entropy,
we were able to detect file wiping with 90% accuracy (here, we computed the
accuracy using the equation [3.9] discussed in section on our dataset of 54
files. Further, we reduced the false positives and detected file wiping with 100%
accuracy by considering file’s header. However, fails to detect wiping
in two scenarios i.e., 1 ) if the journal entries corresponding to a wiped file are
overwritten, 2) if the file header is tampered. Thus, we need an approach which is
independent of these dependencies. Hence, we propose our next approach [WiDeS|
where we detect file wiping using system-calls.

3.5 Detecting Wiping using System-calls

An approach that detects an anti-forensic wiping tool based on its behavior rather
than relying on its signature can be more robust and reliable. Thus, in the

proposed model, [WiDeS| we use Sequence of System-calls (SoS) and information
theory metrics to analyze the behavior of wiping tools and detect wiping attacks.

41



3.5 Detecting Wiping using System-calls

3.5.1 Role of System-calls in Behavior Analysis

Early study shows that system-calls played a significant role in classifying normal
process behavior from malicious process behavior [I4]. The author in the paper
[16] builds a database of a short sequence of system-calls and compares every
new sequence of system-calls with these patterns. The distance between them
determines the deviation between normal and abnormal behavior. Contrary to
work proposed in the paper [16], the author in paper [76] proposes maintaining a
dictionary for anomalous patterns using the sequence of system-calls and deter-
mining if these patterns of the system-calls are normal or abnormal. The author
in [I5] proposed a solution for an anti-detection feature the malware uses, i.e.,
system-call injection attack. The author used the information theory property
Asymptotic Equipartition Property to extract system-calls rich in informa-
tion for malware detection. The authors in [77] proposed ShieldFS, an approach
to detect ransomware attacks and revert their effects on Windows machines using
I/O Request Packets (IRPp). To detect ransomware attacks, they used features
like frequency of read and write operations, write entropy, file renamed, files
accessed, and folder listing.

3.5.2 Proposed Model

The proposed model, WiDeS] detects wiping by carefully profiling the benign
process behavior and the process behavior perturbed by wiping. We monitor the
system behavior at the process level by using short patterns from [SoS| invoked by
these processes. contains three modules, as listed below; the output of
each module is the input for the next module.

1. Profiling Process behavior: In the first module, we build a short pat-
terns using [SoS| corresponding to a process. Based on these patterns and
their frequencies, we compute the entropy for each process and classify the
process as a wiping or benign process. There may be cases where the benign
process may be falsely classified as a wiping; thus, the processes determined
as wiping are sent to the next module for further classification.

2. Filtering driven by write() system-call: In the second module, we get
the pattern with maximum frequency for each process classified as wiping.
We check if this pattern contains the write() system-call. If the pattern con-
tains a write() system-call, we consider it wiping, as it involves overwriting

42



3.5 Detecting Wiping using System-calls

content multiple times. Conversely, we classify the process as benign if the
pattern does not contain a write() system-call.

3. Analysis of buffer data: We further improve the classification in the
third module by considering the buffer data pulled from write() system-call
parameters. Buffer data is the content stored in the buffer as received from
an input device or other process; later, this content is pushed to the file
using the write() system-call. In wiping, we know that the file content is
wiped with specific characters, random characters, or repeated patterns of
characters; thus, we determine wiping based on buffer content.

Algorithm [ gives the abstract view of [WiDeS| A detailed explanation with ex-
amples is discussed in the subsequent sections.

Algorithm 4 [WiDe§| Algorithm
procedure WIDES (processes|P;])

for all processes[P;] do

patterns|| <— Create Patterns(SoS(P;))
Dict{ptn, freq} < CreateDict(patterns)
Entropy < Compute Entropy(Dict)

if Entropy <= Threshold then > Module 1
ptn < get PtnWithMax Freq(Dict)
if write() € ptn then > Module 2
buff[]<— read Buf fer Data(write)
if buff]] € {specific,random,pattern} then > Module 3
N Classify as wiping process

return

3.5.2.1 Profiling Process Behaviour

A. Collect [SoS| and build patterns

We profile the process behavior using its [SoS| To collect the [SoS| we used the
Sysdig tool. Sysdig tool is an open-source tool used to perform system monitoring
[78]. We deployed the Sysdig tool on the target virtual machine to gather the
[SoS| associated with each process. Using process IDs, we obtained the [SoS| for all
processes within the given time frame. In[WiDeS| we profiled benign activity using

43



3.5 Detecting Wiping using System-calls

79 randomly selected user processes and wiping activity using 5 different wiping
tools (Shred, SRM, Scrub, Sfill, and Wipe). We collected the corresponding
to all these processes. Further, we build patterns with short[SoS|to profile process
behavior.

Early literature suggests that short [SoS| are good classifiers that distinguish
between normal activity and abnormal activity [I6]. Thus, we have opted for
short patterns from the system-call sequence as observable discriminators. These
patterns include three consecutive system-calls. We construct patterns composed
of three consecutive system-calls for each given process, denoted as P;, where ¢
ranges from 1 to N, N representing the total number of processes within the given
time frame. We collect the corresponding as SoS(P;) = s1,52,83, ..., Sn, where
each s represents a system-call (e.g., open(), read(), write(), etc.). We consider
the system-calls s; to build patterns, where j € 1 ton. Here, sj—1 denotes the first
system-call, s;;1 denotes the next consecutive system-call, and s;—, denotes the
last system-call corresponding to each process. We create pattern ptn, using three
consecutive system-calls, i.e., ptn=s;,s;y1,5j42. By iterating over the values of
j from 1 to n we get k no.of patterns (here, k =n —2) as shown below,

ptny = s1+ 52+ 53
ptng = S9 4+ 83+ S4
ptnsg = s34 54+ S5

ping = Sk + Sgy1+ Sk42

Algorithm[5]details the steps in creating patterns. The CreatePatterns method
accepts the input as SoS(P;), here i € 1 to N, where N is the total number of
processes executed in the given time frame and P; denotes the i*" process. We
create an array for every process and store these patterns.

Algorithm 5 Create patterns from [SoS| for each process

procedure CREATEPATTERNS(S0S(P;))
patternsi|
for all j=1ton—2do
t patterns|j] <= s;+sj41+ Sj+2
return patterns

44



3.5 Detecting Wiping using System-calls

B. Profiling Benign Process Behavior

In profiling benign process behavior, we collect the [SoS| of 79 randomly selected
user processes (e.g., vi, Is, cp, pwd, etc.) and build a repository of these system-
calls. We now create an array of patterns corresponding to each process, using
Algorithm |5l Example [I] elaborates the pattern construction for a benign process
Is”.

Example 1. Process ’ls’ lists the files and sub-directories in the current directory.
We collect [So§ for the process ’ls” using the Sysdig tool. Figure shows the
subset of for this particular process (for better readability, we listed only a

few initial system-calls).

map clpse openat
ping ___ 4 L
ptno e

execve brk mmap agcess openat newfstatat m
1
1
1

ptn5 L

ptng  I—

ptn7z

Figure 3.12: Subset of [SoS| for benign process ’ls’

We now take a window of size 3 to capture 3 consecutive system-calls to create
1 pattern. Likewise, we slide the window across the [SoS and create multiple
patterns, as shown in Figure[3.13. We now have 7 unique patterns as shown in
Figure |5.15,

ptn,: execve brk mmap

ptn,: brk mmap access

ptn,: mmap access openat
ptn,: access openat newfstatat
ptns: openat newfstatat mmap
ptns: newfstatat mmap close

ptn,: mmap close openat

Figure 3.13: Unique patterns of benign process ’ls’

45



3.5 Detecting Wiping using System-calls

C. Profiling Wiping Process Behavior

Similar to benign process profiling, we profile the behavior of the wiping process
using 5 different wiping tools (Shred, SRM, Scrub, Sfill, and Wipe). Example
shows pattern construction for a wiping process ’Shred’.

Example 2. Shred is a common file-wiping process used to delete a file securely.
We collect[Sod for the Shred process. For the convenience of reading, we present

the subset of [So for the Shred process in Figure [3.14 Here, we use a sliding
window of size 3 to capture patterns as shown in Figure[3.1]]

Iseek write fdatasync Isegk write fdatagync Isegk  wyite fdatasync
1 [ 1 '
ptn{ 1 ) : 1 :
ptng o+ |
L e S—

ptng
ptns

ptng
ptnz

Figure 3.14: Subset of [SoS|for wiping process 'Shred’

Figure shows the unique pattern obtained from the Shred process. Un-
like in the case of the benign process ’ls’ shown in Example |1| where we get 7
unique patterns, here we get only 3 unique patterns. From Figure we see
that ptng, ptns, ptng and ptny are similar to ptny, ptno, and ptns, we get only

three unique patterns.

ptn1: Iseek write fdatasync
ptno: write fdatasync Iseek
ptna: fdatasync Iseek write

Figure 3.15: Unique patterns of wiping process "Shred’

Using these patterns as a basis, we found an interesting characteristic that set
apart benign and wiping processes, i.e., randomness in patterns. Using Example
and [2 we can determine that the randomness of patterns is higher in the benign
process than in the wiping process. Hence, we profile the behavior of processes
by carefully examining the degree of randomness in the generated patterns. We
store these patterns and their frequencies in a dictionary.

46



3.5 Detecting Wiping using System-calls

Algorithm 6 Build the dictionary to store the patterns and their frequencies

procedure CREATEDICT(patterns]])
Dict{ptn, freq}
for all patterns do
ptn < getPtn(patterns)
freq < Dict.get(ptn)
if frequency =0 then
freq+ freq+1
Dict.add(ptn, freq)
else
B t Dict.add(ptn, freq +1)

. return Dict

Algorithm @ builds a dictionary Dict{ptn, freq} for each process to map the
patterns with their frequencies. In Dict, the pattern ptn is the key, and the
frequencies are the values. We initially check if the pattern exists in the dictionary;
if so, we increment the frequency of the corresponding pattern. If the pattern is
not yet present, we add it to the dictionary with its frequency as 1. We built the
dictionary for all 79 benign processes and 5 wiping processes.

Table Table lists the patterns and their frequencies for benign and
wiping processes, respectively (we included only a few patterns and their fre-
quencies in the tables due to space constraints). Table , Table shows the
difference between the benign and wiping processes’ patterns frequencies, i.e., in
wiping processes, the patterns’ frequency is much higher than benign processes.

In the context of detecting wiping, we observe how often a pattern is repeated
in a process. Processes with a high frequency of patterns indicate characteristic
behavior associated with the wiping process’s activity. As wiping involves over-
writing the contents multiple times, the same system-call patterns are invoked
multiple times, increasing the probability of occurrence of patterns in the wip-
ing process. Conversely, processes that exhibit infrequent patterns that reflect
diverse or random patterns with less probability are often found in benign pro-
cesses. Thus, we can classify the process based on the degree of randomness
of patterns. In we use Shanons’ entropy to measure the randomness of
patterns.

47



3.5 Detecting Wiping using System-calls

Table 3.3: Benign processes’ patterns and their frequencies

Process | Patterns Frequency of patterns

Touch | archprctl access openat
access openat fstat
openat fstat mmap

fstat mmap close

cut brk archprctl access
archprctl access openat
openat fstat mmap

fstat mmap close

rm openat read pread64
read pread64 pread64
pread64 pread64 pread64

cmp pread64 pread64 pread64
pread64 pread64 fstat
pread64 fstat mmap

echo pread64 pread64 pread64
pread64 pread64 fstat
pread64 fstat mmap

— o= N == NN = RN NN - RN NN =

48



3.5 Detecting Wiping using System-calls

Table 3.4: Wiping processes’ patterns and their frequencies

Process | Patterns Frequency of Patterns
Shred fentl lsee‘k Wri‘te 35
Iseek write write 35
write write write 3584
write write fdatasync 35
write fdatasync fentl 34
fdatasync fentl lseek 34
Iseek write write 38
SRM , _ ,
write write write 15428
write write fsync 38
write fsync lseek 37
fsync lseek write 37
) write lseek write 35
Wipe _ _
Iseek write write 35
write write write 16623
write write fdatasync 35
write fdatasync write 34
fdatasync write Iseek 34
scrub | Istat stat openat 35
write write write 1666
write write fsync 35
write fsync fadvise64 35
fsync fadvise64 close 35
fadvise64 close write 34
close write ioctl 33
sfill write write write 1002928

49



3.5 Detecting Wiping using System-calls

D. Computing Entropy

Shannon entropy is one of the well-known approaches to measure randomness or
uncertainty in the given data. In digital forensics, entropies are commonly used
to determine the file type disguised as other file types [79]. In earlier works [2],
[74], Shannon entropy was used to detect wiping. In paper [2], entropy values
were used to detect disk fragments wiped with random characters. In paper [74],
they detect file wiping using machine learning algorithms. They used the entropy
value of the file name overwritten multiple times with random characters as one
of the features in their model to detect wiping. In paper [77], the entropy of
the write operation is used to determine ransomware attacks. In we
use the entropy of the patterns to determine wiping. We used entropy values to
compute the probability distribution of patterns created using[SoS| corresponding
to a process.

To determine the probability of a pattern in a process, we compute the ratio
of the frequency of a pattern to the sum of frequencies of all patterns (S) in a
process. We compute S using the Equation , here, p(ptn;) is the probability of
occurrence of the i pattern, and k is the total no.of patterns in a process. We
compute the probability of the pattern using the Equation [3.4]

k
S =>" frequency(ptn;) (3.3)
i=1
plptng) = TTAUCn PR (3.4

The Shannon entropy for the process is denoted as Ep and is computed using
Equation We further normalize the entropies between 0 and 1, allowing us
to compare the entropy of different processes, even if they have different possi-
ble outcomes. We compute [NE] for each Process P denoted as N Ep using the
Equation |3.6

k
Ep=—=> p(ptn;)logy p(ptn;) (3.5)
=1
Ep
NEp = 3.6
P = o8, 5 (3.6)

20



3.5 Detecting Wiping using System-calls

Algorithm [7] details the steps for computing the entropy values in[WiDeS| The
computed entropy values for the wiping and benign processes are shown in Table
[3.5] Due to space constraints and improved readability, we have included entropy
values of a few benign processes. This table gives us fundamental insight into
how the entropy values of the wiping and benign processes differ. It is observed
that the entropy values for wiping processes are less in comparison to the entropy
values of the benign processes. This difference between the entropies is due to
the random occurrence of patterns. In the wiping process, the patterns are more
frequent and less random; conversely, the patterns are more random and less
frequent in benign processes. Hence, benign processes have higher entropies than
wiping processes.

Algorithm 7 Compute entropy of each process

procedure COMPUTEENTROPY (Dict{ptn,freq})
S<+0
for all ptn in Dict do
t S « S+ Dict.get PtnFreq(ptn)
for all ptn in Dict do
> Here ‘P’ is the process and p’ is the probability
p < Dict.get PtnFreq(ptn)/S
Ep < Ep+pxlog(p)
NEp «+ Ep/log(S)
return NEp

Table 3.5: . of wiping and benign processes

Wiping Process NE Benign Process | NE
Shred 0.42 touch 0.95

SRM 0.011 cut 0.92
Scrub 0.44 rm 0.93

Wipe 0.018 echo 0.94

Sfill 0.000077 cmp 0.95

We need to determine the Threshold (Th) to classify the processes as wiping
or benign based on NEp value. In [WiDeS| to determine Th, we used Confi-
dence Interval . We assume that the entropies of the processes are normally

51



3.5 Detecting Wiping using System-calls

distributed; thus, we use [C]] to define the range of values likely to include the
actual population of interest (benign processes). However, if the values devi-
ate significantly from the range, we consider them outliers. We define as
Cl =unNg*zoNE, here uyg and oyp are the mean and standard deviation of
all NEs associated with benign processes computed by using Equation [3.7 and

respectively. In we considered |CI| with 90% acceptance, for which the
value of z is equivalent to 1.645). By using uyg, ong and z we now compute .

1 N
HNE = 3 > NEp (3.7)
P=1
1 N
oNE= |~ > (NEp—puNE)? (3.8)
N -1 1

range is defined by [CIy,Cl,;] where Cly, is the lower bound, Cly, =
ung —zong and Cl, is the upper bound, Cl, = uyg + zong. However, to
detect wiping, we consider only C'Ij; as the entropy values corresponding to wiping
processes are far less than benign processes, as shown in Table [3.5| Hence, Th
is equivalent to Clj, i.e., Th=C1Ij,. If the entropy NFEp is less than Th, i.e.,
NFEp < Th, we detect the process as a wiping process. Conversely, the other
processes are classified as benign processes. We create the baseline behavior of
the system with benign processes. We use the mean puyg and oyg of benign
processes to compute [CI] and determine Th.

3.5.2.2 Filtering Driven by Write() System-call

In this module, we examine the processes classified as wiping (from the first
module) to determine if any process is falsely classified. As shown in Algorithm
, it receives the input as Dict{ptn, freq} corresponding to processes classified as
wiping. For each of these processes, we fetch the pattern with maximum frequency
(PtnmazFreq) from the dictionary Dict{ptn, freq} associated with each process.

Subsequently, we retrieve the list of system-calls from ptn,;q.Freq, Which can
be represented as ptngazFreq = Sk, Sk+1, Sk+2- Since wiping activities primarily
involve writing operations, we expect the ptnq,rreq to include a write() system-
call. Therefore, we check if sp or sgy1 or sgyo corresponds to a write() system-
call. If the ptngaurreq indeed contains a write() system-call, it suggests that
the process will likely belong to the wiping category. Conversely, the process is
classified as benign if no write() system-call is present in ptn,qFreq-

52



3.5 Detecting Wiping using System-calls

Algorithm 8 Fetch pattern with maximum frequency

procedure GETPTNWITHMAXFREQ(Dict{ptn,freq})
maxFreq <0
Ptz Freq < NULL
for all ptn, freq in Dict do
if maxFreq < freq then
maxFreq <+ freq

ptnmaacFreq <« ptn
return ptngae Freq

Table lists the processes determined as wiping in the first module. The
table shows that processes host, dig, userdel, and vi contain high-frequency pat-
terns but do not contain the write() system-call. On the other hand, processes
Shred, SRM, Scrub, Wipe, and Sfill contain write() system-call. Thus, we classify
Shred, SRM, Scrub, Wipe, and Sfill as wiping processes and other processes, vi,
host, and dig, as benign.

Table 3.6: Processes classified as wiping (from module 1) and their patterns with

maximum frequencies

Process | Pattern with Max Frequency | Frequency
Host mmap mmap mmap 61

Dig mmap mmap mmap 61

userdel stat stat stat 109

vi select select select 110227
Shred write write write 3584

SRM write write write 15428
Wipe write write write 16623

scrub write write write 1666

sfill write write write 1002928

3.5.2.3 Analysis of Buffer Data Entropy

In the second module, there is a possibility that a benign process may include a
write() system-call in ptn,,qzFreq- In such cases, a benign process is misclassified

93



3.5 Detecting Wiping using System-calls

as a wiping process. To address this, we aim to distinguish between the benign
and wiping processes based on the write() system-call arguments. The write()
system-call is invoked by user applications to use kernel services to write content
to a file. The syntax for write() system-call [80] is given as,

size_t write(int fd, const void buff.count], size_t count);

The write() system-call contains three parameters, i.e., file descriptor, buffer,
and count. The file descriptor represents the open file to which the content will
be written. The buffer contains the data to be written to the file; it temporarily
holds the content shared by 1/O devices or other processes. The count represents
the no.of bytes of data to be written from the buffer to the file.

In[WiDeS| we consider the second parameter, the buffer data, to detect wiping.
It is an array of characters where each character is equivalent to 1 byte, i.e., 8 bits.
We observed that the character array contains Octal Escape Sequences in
wiping processes. An contains a backslash followed by one, two, or three
octal digits (0-7) like \377 (see Examples [3] [4] [5] for reference).

We initially check if are present in the buffer data to detect wiping. If
the probability of occurrence of p(OES) is greater than or equal to the prob-
ability of occurrence of characters p, ie., p(OES) >= p,
we suspect wiping activity. However, to confirm wiping, we proceed further to
check if buff[] contains a specific character, as demonstrated in Example [3} or if
it contains a sequence of random characters, as illustrated in Example |4} or if
it contains repeated patterns of characters, as exemplified in Example [f] Once
either condition is met, the process is classified as wiping.

Example 3. This example shows buff[] data for write() system-call with a specific
character. Here, ’377 is an octal notation, and *\’ signifies the start of an escape
sequence. Fach octal value '377 represents a byte in octal notation equivalent to
255 in decimal and 111111117 in binary; this ensures that all bits are set to 1 in
a byte. The below write() system-call signifies wiping, where all the bytes in the
data are set to 1s in binary notation.

write (4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377
\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377
\377\377" ..., 28672) = 28672

o4



3.5 Detecting Wiping using System-calls

Below is another example of wiping with a specific character; here, the string
rgvvvvvvvoooovvvvvvvvvvvvvvuvvvvUU” consists of the charac-
ter "U’ repeated 16,38/ times, i.e., the entire content is written with the character
U

write(3, "UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU". .., 16384) = 16384

Example 4. This example of write() system-call shows wiping with random char-
acters. Here, the buffer data contains both characters and octal values.
FEach backslash followed by digits represents an octal value. Here,\ 206, \3, \ 21,
etc., are octal values. Other characters like y’, ’9°, 'V, ’c’, u’, “a’, "%’, )’ 'A’,
b, v’ T, hY, e’ are characters. We can see that all the characters in

the buffer data are random, signifying the wiping process.

write(3, "\277\332\231\335y9\347\273V\206\3\21\225\16\226c\342u
\300\331a%4Ab\306\322\200vJhc" ..., 16384) = 16384

Example 5. This ezample of write() system-call shows wiping with a repeated
pattern of characters. These characters include octal values \ 266 and \ 333, and
ASCII character 'm’. The sequence of \266\333m’ is repeated in the buffer data

multiple times, signifying the wiping process.

write(3, "\266\333m\266\333m\266\333m\266\333m\266\333m\266\333m
\266\333m\266\333m\266\333m\266\333m\266\333" ..., 28672) = 28672

3.5.3 [WiDeS| Workflow

As mentioned earlier, contains three modules. The first module classifies
the process as benign or wiping based on the entropy values. The second module
classifies the processes identified as wiping in the first module and conducts further
classification by determining the presence of write() system-call in a pattern with
maximum frequency. In module 3, we further exploit the arguments (buff]] )
corresponding to write() system-call to ascertain if the process belongs to wiping

or benign. Figure [3.16] gives a brief of workflow.

95



3.5 Detecting Wiping using System-calls

| List all the processes in the given time frame |

i

| For every process, collect the SoS |

i

Build patterns using SoS

v

| Build Dictionary with patterns and frequencies |

Compute normalized entropy(NEp)

Module1: Profiling process behaviour

| Get pattern with max frequency |

'

| Get system-calls for pthmaxFreq |

system-call

contains
write()

Get the buff[ ] from write()

Yes
p(ASCII)

buff[ ] contains | case 1
TSpecific Characters

buff[ ] contains | case 2
—Trandom Characters|

Module 3: Analysis of buffer data

case 3

buff[ ] contains
—[repeated pattern of
characters

Benign process Wiping process

Figure 3.16: [WiDeS| Workflow




3.5 Detecting Wiping using System-calls

3.5.4 Results and Discussion

We assess by applying it to our repository of processes. To construct this
repository, we execute 79 benign processes 5 wiping processes, and gather their
respective [SoS| using the Sysdig tool. Additionally, we collected [SoS| for wiping
processes Shred, Scrub, and Wipe by varying the number of passes as 3, 5, 7,
and 35 following data wiping standards. For SRM tool, we collected [SoS| in two
modes, i.e., regular and fast modes. By altering the number of passes for each
wiping process, we collected [SoS| for 15 processes. We denote Shred with 3-passes
as Shred-3, and Shred with 35 passes as Shred-35; similarly, Scrub-35 signifies
wiping with Srcub using 35 passes.

To determine the accuracy of we compute the total number of correct
observations (i.e., True Positive (TP)), True Negative (TN])) with the total no. of
observations (i.e., False Positives , and False Negatives ) We

compute the accuracy using Equation [3.9]

TP+TN
= *
TP+ FP+TN+FN

In the context of wiping, we define[TP] [TN] and as follows: (1) When
a process is wiping, and identifies it as wiping, it is [TP} (2) If a process
is benign and identifies it as benign, it is . (3) If the process is benign,
but identifies it as wiping, it is [FP} (4) If the process is wiping, but
identifies it as benign, it is [FN| [FP] causes inconvenience to the users by
misinterpreting a benign process as a wiping process. On the other hand, [FN]is

Accuracy(%) 100 (3.9)

more dangerous as the wiping process is detected as benign.

Using [WiDeS| we could determine three characteristic behaviors correspond-
ing to the wiping process; they are- (1) the wiping process has less entropy, (2) the
pattern with maximum frequency will include write() system-call, (3) the buff]]
of the write() system-call will contain random, or specific, or repeated pattern of
characters. Based on these characters, we constructed a decision tree for [WiDeS|
Figure [3.17] shows the decision tree for [WiDeS| We map three decision-making
conditions to three modules of

The initial decision is taken based on the entropy values. We now compute

the accuracy of for classification based on entropies by applying to
our repository of processes. If the entropy N Ep <=Th, we determine the process

as wiping (see Section [3.5.2.1| for details); results based on this condition show
that identified 19 processes as wiping. Of these 19 processes, 15 belong
to wiping (i.e., = 15). Additionally, 4 benign processes (vi, userdel, host, dig)

o7



3.5 Detecting Wiping using System-calls

Processes

NEp<=Th

write() in PtNmaxFreq

buff[ ] contains
random, or specific, or
repeated pattern

buff[ ] do not contain
random, or specific, or
repeated pattern

Figure 3.17: Descision tree for [WiDeS

were incorrectly classified as wiping (i.e., = 4). Other 75 benign processes
were correctly identified as benign (i.e., = 75), and no wiping processes were
mistakenly classified as benign (i.e., = 0). Upon computing the accuracy
using Equation for these values, we get an accuracy of 92.78%.

Figure shows the distribution of entropy values across the processes; the
data points plotted below the threshold line represent wiping, and the data points
plotted above the threshold line represent benign processes. From Figure |3.18]
we can see four data points corresponding to benign processes misinterpreted as
wiping. The processes vi, userdel, host, and dig are detected as wiping processes
due to the presence of some patterns with high probability. Table shows
patterns and frequency of processes falsely classified as wiping; from this table,
we can infer that benign processes with repetitive patterns are classified as wiping
processes falsely. We further classify the wiping process using the second decision
based on the write() system-call to avoid false positives.

o8



3.5 Detecting Wiping using System-calls

Wiping NEp @ Benign NEp % Threshold
1 TTTTTTT T T I I T T I T T T T T T T T T I T T T T T T T T I T T T T T T T T T I T T T T T T T T T T T T T T T T I T T T T T I T T T T T T I T T T T TTITTTTT
HRK * * WK x * K *
*
09k * % y *&SK % * x * « x|
* * * * K

* ;e%x**;xxx*;e *
0.8 |- x X * **S&* *

* * * " * % %
0.7 |- * * Pl

*
*
x*
X

0.6 = o

0.5 1

0.4 1

Normalized Entropies

03 1

Processess

Figure 3.18: Benign and wiping processes entropies

The second decision is taken based on the presence of write() system-call in the
pattern with maximum frequency (ptnmezrreq). If PtimazFreq contains write()
system-call, we classify the process as wiping (see Section for details). At
this stage, we get 19 processes identified as wiping based on the first decision.
For these 19 processes, we check if the ptn,,qzpreq contains the write() system-
call. It is observed that the four processes vi, userdel, host, and dig do not
contain write() system-call (see Table for reference). These four processes
were initially classified as wiping based on the first decision. However, they are
now identified as benign processes using the second decision. The remaining 15
processes identified as wiping in the second module are further examined using
the subsequent third decision based on buffer data.

The third decision is based on the buffer data content (i.e., write() parameter).
If the write() parameter buff]] contains random characters or a specific character
or a repeated pattern of characters, we determine the process as wiping (see
Section for details). Here, we get 15 processes identified as wiping based
on the second decision. We observe the buff[] data of the write() system-call
to determine wiping. We observed that all the 15 processes classified as wiping
contained the buffer data as shown in Example and [o} thus, all the 15
processes were correctly identified as wiping processes.

29



3.5 Detecting Wiping using System-calls

Table 3.7: List of benign processes, falsely classified as wiping processes with

high-frequency patterns

Process | Pattern Frequency of Patterrn

Host mmap close openat 31
close openat read 31

openat read fstat 29

read fstat mmap 29

fstat mmap mmap 22

mmap mmap mmap 61

mmap mmap close 31
mprotect mprotect mprotect 29

Dig mmap close openat 31
close openat read 31

openat read fstat 29

read fstat mmap 29

fstat mmap mmap 22
mprotect mprotect mprotect 29

mmap mmap mmap 61

mmap mmap close 31

userdel | stat stat stat 109
mmap mmap mmap 23

vi select select write 1218

select write select 1226

write select read 1039

read select select 1325

select select read 298

select read select 1335

select select select 110227
write select select 187

60



3.6 Summary

At the first decision, we had 94 processes as input for classification; at the
second decision, we had 19 processes for classification; and at the third decision,
we had 15 processes for classification. At every decision, we reduce the input size
and get output that is more relevant to wiping. This improves the accuracy after
every stage; also, as the input size is reduced, it leads to faster processing.

From the results, we notice that after the first decision, we get an accuracy
of 92.78%:; [WiDeS§] classified 75 processes as benign and 19 as wiping, of which 4
benign processes were wrongly identified as wiping. However, by the end of the
third decision, classified 79 processes as benign and 15 as wiping processes
with 100% accuracy. Thus,[WiDeS|determined wiping with 100% accuracy for the
given 94 processes. We believe that can classify wiping with acceptable
accuracy in real-time scenarios.

3.6 Summary

In this chapter, we propose two different models, i.e., and [WiDeS| In
WiDelJ| (static approach), we exploited the file system journaling and the data

blocks corresponding to the file to detect file wiping while investigating the cloud
(post the occurrence of the incident). In we used system-calls to
detect wiping while the attack is active by capturing the system-calls of the
using logging agents like sysdig.

In WiDeJ| we analyze the journal of cloud snapshot and fetch the data
blocks corresponding to a file. Further, based on the file content, we categorized
file wiping as case 1- wiping a file with a specific character, and case 2- wiping a
file with random characters. We used Shanon’s entropy and file system layout to
detect wiping. We computed the file entropy using the frequency distribution of
[ASCTI| characters; further, to reduce false positives, we used file layout to analyze
the file header to detect wiping. We evaluated the proposed model[WiDelJusing 54
files by varying file type. Initially, we could determine wiping with 90% accuracy.
Further, based on file layout, we reduced the false positives and could determine
wiping with 100% accuracy.

In [WiDeS], we used system-calls captured from cloud to determine file
wiping. Our proposed model, [WiDeS] presents a comprehensive and effective ap-
proach to classify processes as benign or wiping using system-calls and information
theory metrics. By utilizing three distinct modules, achieves a multi-step
classification process that enhances the accuracy and reliability of its results. The

61



3.6 Summary

first module lays the foundation by initially classifying processes as benign or wip-
ing using entropy values as a primary criterion. This module broadly categorizes
processes and is a starting point for further analysis. The second module takes
the processes identified as wiping in the first module and delves deeper into their
behavior. It conducts additional classification by analyzing the presence of the
write() system-call in the pattern with maximum frequency. This approach helps
to differentiate wiping processes more precisely from benign ones, adding an extra
layer of refinement to the classification process. Lastly, the third module extends
the analysis even further by examining the arguments (buff[]) corresponding to
the write() system-call. By exploiting these arguments, [WiDeS| gains valuable
insights into the process’s nature and additional evidence to determine whether
it belongs to the wiping category or is genuinely benign. The three modules work
in synergy, enabling to achieve accurate classification of wiping processes
from benign ones.

Thus, in this chapter, we proposed two different models to detect file wiping.
In both the models, we were able to detect wiping accurately. However,
had few limitations such as its dependency on journals and file header. We could
avoid such dependencies in[WiDeS| Further, in the upcoming chapters, we discuss
how to recover the wiped files and preserve them to ensure the integrity of the
evidence.

62



Chapter 4
Recovery of Wiped Files

In Chapter 3, we discussed how to detect file wiping in the cloud using
static and dynamic approaches. In this chapter, we discuss our next objective,
i.e., recovery of wiped files from cloud [VMk. We propose deploying our scripts in
a cloud [VM] that runs in the background to monitor and log cloud [VM]activity for
the purpose of recovering wiped files. We exploit the data recovery mechanisms of
file systems to restore the wiped files. Data recovery mechanisms in file systems
are used to restore them to a consistent state in case of power failure, system
crashes, or hardware errors. Major data recovery mechanisms used in file systems
include file system journaling and Thus, we explored a journal-based file
system ([Extp) and based file system for restoring wiped files.

As discussed in the earlier chapter, a journal in the file system keeps track
of changes not yet committed to the disk. By recording such changes, the file
system recovers quickly in case of a system crash. Updates in the file system
are captured in the journal as transactions. Each transaction contains details
corresponding to the file’s metadata including data block addresses allocated to
a file. We traverse back through these journal entries to fetch the data block
address corresponding to a file and restore deleted or previous versions of a file.
However, data recovery is possible when the journal is analyzed at the appropriate
time; this is due to the cyclic queue data structure of the journal, and the journal
content gets overwritten. [Ext|(3/4), NTFS| ResierFS, and XFS (Extended File
System) are a few journal-based file systems.

On the other hand, [BTRFS| is a [CoW}based file system. In a [CoW}based

file system, when a file is updated or modified, instead of overwriting the ex-

isting file, the file’s content is copied to a new location, and the changes are

63



4.1 Challenges in Recovering Wiped Files

done at the new location. Thus, the original file remains unchanged. This al-
lows multiple file versions to be stored simultaneously, which can be useful for

recovering file system to a consistent state incase of an unexpected system crash.
Examples of a few based file systems are (Write Anywhere File Layout),
ZFS| (Zettabyte file System), and BTRFS We used the file system, an
open-source [CoWpbased file system for Linux. It includes checksums, metadata
duplication, snapshots, and RAID support built into the file system.

We emphasize file recovery from [BTRFS|more, considering the increased adop-
tion of [BTRFS| for storage environments. BTRES| is widely being adapted and
is considered as the next major file system for Linux distributions [81], [82], [83].
Currently, it is the default file system for Fedora [84] and OpenSUSE [85]; it is
given as an option for many Linux distributions. Facebook [86] deploys it for
millions of servers to increase resource utilization and efficiency. The NAS (Net-
work Attached Storage) storage servers by Netgear [87], Rockstor [88], Synology
[89] are using for fault-tolerance, easy maintenance, and data protection.
Docker [90] and Canonical [91] are using it for container management. Consid-
ering increased usage of file system, we exploited it for the benefit of

recovering wiped files.

4.1 Challenges in Recovering Wiped Files

Journal Based Recovery

In the context of forensics, journal entries can be used to identify recent activities
of the file system. Analyzing a file system journal at the appropriate time can
help recover previous file versions and deleted files [37]. Gregorio, in his paper
[73] details the behavior of the and file system upon deleting a file.
does not support file system journaling, unlike (3/4). Thus, he details
the procedure to recover deleted files using both and file systems. In
the file system, the metadata corresponding to files is used for data recovery,
whereas the file system journal is used in the [Ext} file system. Kevin, in his paper
[92] provides a comprehensive analysis of the file system for data recovery
from a forensic perspective. He details the behavior of various data structures
upon file deletion. He proposed using journal to gather empirical evidence
and recover deleted data from persistent data captured from file system changes.

64



4.1 Challenges in Recovering Wiped Files

Existing literature has demonstrated the recovery of deleted files from the
journal by utilizing previous file versions. However, there has been a lack of
emphasis on recovering wiped files using journals. Here, we demonstrate the
recovery of wiped files from the journal and discuss its limitations in detail, thus
emphasizing the need to look for a [CoW}based file system for the purpose of
recovering wiped files.

BTRFES| Forensics

[BTRFS| addresses the challenges of the latest storage solutions. However, in the
realm of forensics [ BTRFS| has not gained the necessary attention. The existing
literature for has a handful of papers that provide in-depth details about
file system layout and underlying data structures-[17], [82], [93], [04], and [95]. As
per our literature, there are only a few papers in the context of forensics,
which include [81], [83], [96].

Bhat et al., in their paper [81], detail artifacts that are rich in infor-
mation for forensics. They detail the scope of recovering files considering B-trees
node balancing in the file system. Hilgert et al. in [83] emphasizes the shortfall
of the existing tools for forensics in and adds support to the file
system to TSK tool. It also extends support for multiple device configurations.
Only one paper on is available in the context of anti-forensics [96]; it
explains [BTRFS[s capabilities to stand against anti-forensic approaches such as
file wiping and data hiding using checksum and features of file
system. checksums prevent data, metadata corruption, and data hiding.
Similarly, BTRFS| withstand wiping using the feature. Multiple versions of
the same file exist as the original content remains untouched.

[BTRFS|is a modern file system with limited support from established forensic
tools. Although it is used in well-established organizations and is available as
a default/optional file system in Linux distributions, it falls short of tools for
proper forensic analysis. Considering the increased utilization of the BTRFS and
the limited literature in the context of anti-forensics in we propose to
fill this gap by addressing the issues corresponding to file wiping in [BTRFS] This
work’s primary findings contribute in the direction of recovering the wiped and
deleted files from the BTRFY|file system in the context of anti-forensic practices.

65



4.2 Contributions

4.2 Contributions

We name our proposed model as i.e., Recovering Wiped and Deleted
files. In this direction, the significant contributions of this work include,

o An approach to restore wiped files using BTRFS|utility program btrfs-progs.

« A novel approach to restore the wiped files in[BTRFS| by logging the physical
address of the file using superblock.

o Comparing the scope of data recovery between the journal-based file system

and the file system.
e Usecase of for recovery of the unencrypted version of the files

following a ransomware attack.

4.3 Prelimnaries

4.3.1 [BTRFS|I Chunks

uses extents for efficient file management, unlike in early Linux-based file
systems where the disk space was divided into blocks. To avoid file fragmentation
and improve the performance of the file system, extents are used in the latest file
systems. Extent is a collection of contiguous blocks. This enables the storage of
large files without any file fragmentation. These extents are logically separated
as [BTRFS| chunks. Each chunk may contain one or many extents. Based on the
type of data stored in them, these chunks are classified as SYSTEM-CHUNK,
METADATA-CHUNK, and DATA-CHUNK.

o The SYSTEM-CHUNK is used by the [BTRFY file system for the initial
Physical Address (PA)) to Logical Address (LA) mapping when the system
is bootstrapped.

o METADATA-CHUNK holds the metadata; it includes information such as
inodes, timestamps, extent offsets, backup information, device information,
checksum, etc. In the file system, all the trees used to traverse
the file system are considered as metadata and are stored in METADATA-
CHUNK.

o« DATA-CHUNK includes the user files stored on the disk using the file sys-
tem.

66



4.3 Prelimnaries

4.3.2 [BTREFS Trees

Chunk tree: The chunk tree contains the logical start address and size

of the chunks in the file system. It contains details corresponding to the
SYSTEM, METADATA, and DATA chunks. This tree is used to perform
logical address-to-physical address mapping.

Root tree: The root tree contains the logical root addresses of all other trees
in the file system.

File System (FYS) tree: trees store information about the user files and
their metadata, such as inode, timestamps, offset values, etc.

Extent tree: The extent tree holds the information corresponding to the
extent allocation to the files.

Device tree: The device tree performs [PA] to mapping. Also, it holds
the details corresponding to the different devices configured on the BTRES]
file system.

Checksum tree: The checksum tree stores the checksum values and ensures
the integrity of the file system.

Tree Object ID of Tree
ROOT_TREE 1
EXTENT_TREE
CHUNK_TREE
DEV_TREE
FS_-TREE
CSUM_TREE

N Ot e W

Table 4.1: BTRFS| trees and their object IDs

4.3.3 [BTRFS| Data Structures

BTRF'S|file system contains three crucial data structures [97]: 1) header,
2) key, and 3) item . The nodes in the tree are classified as internal
nodes and leaf nodes. Each internal node contains header, followed by
key, and block pointer (to point to the next subsequent node) [98]. The

67



4.3 Prelimnaries

Leaf node contains BTRFS| header, followed by [BTRFY] item, and [BTRFY data

corresponding to each item. Figure [4.1] shows the leaf node layout in [ BTRFS| file
system.

Free space between the arrays growing
in opposite direction towards each other

—

Leaf node items array Leaf node items’ data array
A A
[ ) [ |
BTRFS BTRFS | BTRFS BTRFS BTRFS Item BTRFS ltem BTRFS Item
Header | Item1 | Item?2 | "**| Item N N data 2 data 1 data
BTRFS Item 4

A

BTRFS Iltem Data . ‘
Key Offset AlLE The size of BTRFS

‘ ‘ ' | item data
/ Item offset is the starting

address of items’ data

ID Type | Offset

T

BTRFS key

Figure 4.1: BTRFS|key and [BTRFS|item in leaf node

header contains fields like checksum, UUID, tree [LA] tree ID,
generation, level etc. We can differentiate between the leaf nodes and internal
nodes by the value stored in the block headers ’level’ field. If the level field
contains the value 1, it signifies the internal node; else, if it contains 0, it signifies
the leaf node. Figure [£.2] shows the header data structure layout.

The items are stored in the leaf nodes; each item has a specific sig-
nificance. The associated data with each item varies based on the type of item.
The key is an integral part of the item; it contains the object
ID, the type of the item, and the offset, as shown in Figure [1.1} The offset value
in the key depends on the item type; for example, in the chunk_item,
the offset value in the key signifies the [LA] of the chunk. We have listed a few
important items and their hex values in Table 1.2} we determine the item type

68



4.3 Prelimnaries

a 20 30

) 7A 00 00|00 OO0 OO
00 00 00|00 00 00

00 00|00 0O

FE 49 F4 D7 38 20 47 JF Bl AC BF'BS 77|9F BGIFE

D8 01 00

Figure 4.2: BTRFS| header of chunk tree

based on these values. For example, let us consider the chunk tree leaf node as
shown in Figure [£.3} the item type in this example is E4, which signifies it is a

chunk_item (see Table |4.2]).

Item type Hex Value
ROOT_ITEM 84
DIR_.ITEM 54
DIR_INDEX 60
INODE_ITEM 01
CHUNK_ITEM E4
DEV_ITEM D8
EXTENT_DATA 6C
Table 4.2: BTRFS| Tree items

69



4.3 Prelimnaries

0B B4 7B 7A 00 00 00 00 00 0O 0O 0O 00 0D 00 00 .'{
00 00 00 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00|i7-

30 A9 A2 A3 98 FD 4C FD 87 02 3D 69 C2 68 2A CC| 0OCE™yLy#.=iAh*I
00 40 50 01 00 00 00 00 01 0O 00 00 00 0D 00 01| .@P.............

68 49 F4 D2 38 20 47 2E B1 AC BF 85 22 9F 86 FE

Block Header ) ObjectiD () hem Type Key Offset Data Offset Data Size

Figure 4.3: BTRFS|items captured for a chunk tree leaf node

BTRFS| Traversal

[BTRFY traversal begins at the superblock, similar to other Linux file systems.
The superblock is considered the core file system component that holds the meta-
data corresponding to file systems. It helps in file system traversal by giving
high-level overview of how the data is organized on-disk. The following are the
steps involved in BTREY] traversal. Further, in section we shall discuss file
system traversal in detail.

e Step 1: Locate the Superblock at its physical address.
o Step 2: Capture the[LA]of the chunk tree and root tree from the superblock.
o Step 3: Capture the [FS] tree [LA] from the root tree.

o Step 4: Capture the[LA]of the chunk items for METADATA-CHUNK from
the chunk tree.

« Step 5: Compute the [PA] of the [F'] tree.
e Step 6: Locate Extent Data item in File system tree.

 Step 7: Compute the [PA] of the data block.

70



4.4 Recovery Using Journals

4.4 Recovery Using Journals

We used journal in data journaling mode (see Chapter 3 for details on jour-
naling modes) as it captures the metadata and data blocks allocated to the file.
Figure 4.4] shows journal entries in data journaling mode. To analyze the activi-
ties performed on the file system, we need to exploit every transaction captured
in the journal. To parse the journal, we used jls command-line tool from The
Sleuth Kit (TSK); further, to read the data block content allocated to a file, we
used blkcat command-line tool from TSK.

Earlier file version content at block #9216 before modifying the file.

File content at Block #9729 after wiping the file

Journal entries after wiping the file (The file is overwritten multiple times)

Figure 4.4: Traversing [ExtB journal entries to recover previous versions of the file

Now let us try to recover a wiped file using the journal. For this, we first
create a file demo.txt with some content; then, we modify the file content, and
lastly, we wipe the file demo.txt using the wiping tool Shred. We now try to
analyse all the journal and fetch the relevant transactions (i.e., file creation, file
modification, and file wiping) to recover the wiped file. Figure highlights
the transactions for the above actions. The seq: 11 in the journal entries, as
shown in Figure [f.4] represents the transaction corresponding to the creation of
file demo.txt. The highlighted block 9216 corresponds to a data block allocated to
file demo.txt. This block will store the file content. We read the block contents at

71



4.5 Proposed Model ReWinD

9216 using the blkcat tool. We now fetch the journal transaction corresponding
to file modification, i.e., seq: 29 from the journal. We can see that the file
demo.txt now has block 9729 allocated to it. We use the blkcat command-line
tool to view the contents at block 9729. Figure [£.4] shows the content of the file
after modification at block 9729. Further, Seq: 44 from the journal transaction
represents the activity corresponding to file wiping. Upon viewing the block
content 9729 after wiping, we see that the file content is completely overwritten
with ’0’s. However, we can still recover the previous version of the file from block
9216, which was captured by the journal earlier during demo.txt file creation.
We were able to recover wiped files from the journal, but the journal has a
cyclic queue data structure with a fixed size; the journal entries get overwritten
as the file system utilization increases. Thus, recovery using a journal is only
feasible till the journal entries corresponding to the files are available. Thus, we

explored the [CoW}based file system, [BTRFS] for data recovery.

4.5 Proposed Model ReWinD

In , we propose two different approaches to recover wiped and deleted
files. In the first approach, we use an existing BTREY utility tool, btrfs-progs,
and in the second approach, we propose to log the [PA] of the files upon their

creation by traversing the BTRFS] file system. We explain these approaches in
detail in the subsequent sections.

4.5.1 Using btrfs-progs

In we use btrfs-progs utility to recover deleted and wiped files. Btrfs-
progs is a utility program for the file system. It contains a set of com-
mand line tools used to manage and display internal structures of BTRES This
approach is beneficial as we leverage the default tools of for the purpose
of forensics without depending on third-party forensic tools. We parse data struc-
tures of using btrfs-progs utility and traverse the file system to locate the
targeted file’s data blocks.

To demonstrate recovery of the wiped file, we created an image of 1.1 GB with
file system and btrfs-progs utility on it. Subsequently, we created a file
F1.txt with some content, and later wiped it using Shred tool. Let us now see
the various steps involved in for file recovery using btrfs-progs utility.

72



4.5 Proposed Model |ReWinD|

1. The first step is to fetch the contents of the superblock using the btrfs-progs
utility command, i.e., dump-super, as shown below. This lists the contents
of the superblock in an organized manner. We divided the output generated
in two different Figures i.e., Figure and Figure for improved read-
ability. We further discuss superblock data structure in detail in Section
Figure can be referred for the generic overview of superblock data
structure. A few important fields from superblock considered for
include root, chunk_root, generation (see Figure, and backup_roots (see
Figure . Here, root and chunk_root display the of the root tree and
chunk tree [LAL

$ btrfs inspect-internal dump-super -f image.dd

L—$ btrfs inspect-internal dump-super -7 dfr-18-ext.dd
superblock: bytenr=65536, device=dfr-10-ext.dd

csum_type @ {(crciZc)
csum_size &
csum 0x82ebefl13 [match]
bytenr 65536
flags B=1

{ WRITTEN )}
magic _BHRfS_M [match]
fsid Tbhcabd3c-0713-40b2-ac3B8-8Bdc3bec2ledd
metadata_uuid CRoDOAR0-0R00-0000-0000-D000RDOGDRRG
label
generation 12
root 31145984
sys_array_size 129
chunk_root_generation 5
root_level o
chunk_root 22036480
chunk_root_level 1]
log_root o
log_root_transid (deprecated) i
log_root_level [}
total_bvytes 1073725440
bytes_used 135168
sectorsize 4096
nodesize 16384
leafsize (deprecated) 16384
stripesize LO96
root_dir &

Figure 4.5: Superblock output using btrfs-progs

73



4.5 Proposed Model |ReWinD|

2. We now analyse backup_roots of superblock. The superblock contains
backup_roots to ensure file system consistency. The four backup_roots are
labeled as backup 0, backup 1, backup 2, and backup 3 (see Figure .
Each backup contains the BTRFS| tree root node [LAE, generation number,
and level. The generation numbers are used to track the changes. They
get incremented for any change in the corresponding tree, the new [LAE of
root nodes are captured, and the corresponding generation number is incre-
mented in the backups. Superblock stores the most recent four generations
of backup_tree_root(i.e., of root tree). For any change in the file system,
if the root tree [LA] gets updated, the backup with the minimum generation
number in the superblock gets overwritten with the latest [LA] of the trees.

backup_roots[4]:

backup B:
backup_tree_root: I0BETALSE gen: 10 level: @
backup_chunk_root: 12036480 gen: 5 level: @
backup_extent_root: iBE51072 gen: 16 level: @
backup_fs_root: iBTE9152 gen: 16 level: @
backup_dev_root: 38556160 gen: & level: @
csum_root: IBTES536 gen: 18 level: @
backup_total_bytes: 1873725440
backup_bytes_used: 131872
backup_num_devices: 1

backup 1:
backup_tree_root: 31129600 gen: 11 level: @
backup_chunk_root: 22036480 gen: 5 level: @
backup_extent_root: 31113216 gen: 11 level: @
backup_fs_root: 3IBEB3IBLD gen: 11 level: @
backup_dev_root: 38556160 gen: 6 level: @
csum_root: 30996516 gen: 11 level: @
backup_total _bytes: 1073725440
backup_bytes used: 135168
backup_num_devices: 1

backup 2:
backup_tree_root: 31145984 gen: 12 level: @
backup_chunk_root: 22036480 gen: 5 level: @
backup_extent_root: 31162368 gen: 11 level: @
backup_fs_root: 10BB3BAD gen: 11 level: @
backup_dev_root: 18556160 gen: & level: @
CSuUm_root: ID9GBE52E gen: 11 level: @&
backup_total_bytes: 1873725440
backup_bytes_used: 135168
backup_num_devices: 1

backup 3t
backup_tree_root: 0752768 gen: 9 level: @
backup_chunk_root: 22036480 gen: & level: @
backup_extent_root: IBTI6EIBA gen: 9 level: @
backup_fs_root: iB7T20000 gen: 9 level: @
backup_dev_root: 3IB556160 gen: 6 lewvel: @

Figure 4.6: Root backup from superblock

74



4.5 Proposed Model ReWinD

3. Now, we try to fetch the [LA] of the [F5 tree from the backup root nodes.
Select the backup whose backup_fs_root generation number is maximum; it
contains the [LA] of the [F'S| tree for the current state of the file system. For
example, from Figure 4.6, we can see that backup 2 contains the generation
number gen: 11, which is maximum compared to other backup_fs_root gen-
eration numbers; but backup 1 also contains backup_fs_ root with gen: 11.
This is because there were no changes in the [FS| tree but the other trees
may have been modified; in this example the extent tree has been updated.
Thus, the extent tree generation number is incremented to 12, which also
increments the root tree generation number to 12. In scenarios where the
[F'Y tree generation number remains the same across multiple backups, as
shown in Figure 4.6, we can fetch the backup_fs_root from either backup 1
or 2, which is equivalent to 30883840.

4. Once we have the of the |[F'S| tree, we try to capture the data blocks cor-
responding to the targetted file by analyzing the [F'S|tree. For this, we parse
the [F'S] tree using btrfs-progs utility command dump-tree at 30883840
as shown below. Figure [4.7] shows the items of the [F5| tree. The dir_index
lists the available files and sub-directories. Further, we use inode_item and
extent_data of the file names listed by dir_index items to compute the [PA]
of the data blocks corresponding to the file. Here, we compute the [PA] of
file F1.txt. The computation of [PA] using the is discussed in detail in
the section [4.5.2

$ btrfs inspect-internal dump-tree -b 30883840 image.dd

75



4.5 Proposed Model |ReWinD|

L btrfs inspect-internal dump-tree -b 30883840 dfr-10-ext.dd

btrfs-progs v6.6.3
leaf 30883840 items 7 free space 15635 generation 11 owner FS_TREE
leaf 30883840 flags 0x1(WRITTEN) backref revision 1
fs uuid 7bcabd3c-0713-40b2-ac38-8dc3bec21e39
chunk uwuid 7cffb064-cdf6-408b-a092-4176ad98f0fb
item @ key (256 INODE_ITEM 0) itemoff 16123 itemsize 160
generation 3 transid 10 size 12 nbytes 16384
block group @ mode 40755 links 1 uid 0 gid 0@ rdev ©
sequence 21 flags 0x0(none)
atime 1703932590.876732441 (2023-12-30 05:36:30)
ctime 1703932589.176231862 (2023-12-30 05:36:29)
mtime 1703932589.176231862 (2023-12-30 05:36:29)
otime 1703932335.0 (2023-12-30 05:32:15)
item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12
index @ namelen 2 name: ..
item 2 key (256 DIR_ITEM 892701812) itemoff 16075 itemsize 36
location key (265 INODE_ITEM ©) type FILE
transid 10 data_len @ name_len 6
name: F1l.txt
item 3 key (256 DIR_INDEX 11) itemoff 16039 itemsize 36
location key (265 INODE_ITEM @) type FILE
transid 10 data_len @ name_len 6
name: F1.txt
item 4 key (265 INODE_ITEM 0) itemoff 15879 itemsize 160
generation 10 transid 11 size 4096 nbytes 4096
block group 0 mode 100644 links 1 uid 0 gid 0 rdev ©
sequence 10 flags 0x0(none)
atime 1703932702.626144117 (2023-12-30 05:38:22)
ctime 1703932684.572766039 (2023-12-30 05:38:04)
mtime 1703932684.572766039 (2023-12-30 05:38:04)

item 5 key (265 INODE_REF 256) itemoff 15863 itemsize 16
index 11 namelen & name: Fl.txt

item 6 key (265 EXTENT_DATA 0) itemoff 15810 itemsize 53
generation 11 type 1 (regular)
extent data disk byte 13639680 nr 4096
extent data offset @ nr 4096 ram 4096
extent compression @ (none)

Figure 4.7: FS tree dump using btrfs-progs

5. As we have the[PA]of the data blocks corresponding to a file, we now analyze
the hex dump of the image at the computed [PA] The Figure [4.§ shows the
contents of the file F1.txt. This shows that the file content is wiped.

76



4.5 Proposed Model ReWinD

EE 00 98 27 95 D2 98 51 E4 1C AB 8D CC €9 28 96 i.”"+07Qa.«.IE(-
9C SF E1 C7 27 B2 46 42 47 37 40 26 1F 8F 16 CA w®_&(C'*FBG7@&...E
72 7D C4 38 9C A2 73 72 FD EE 74 4A 8F 1B DA €9 r}A8ecsryitJ..0E
70 9F AA 1E DC 60 68 34 27 11 35 9C D8 39 94 ED p¥°.U h4".5e@9"1
FE 52 BA 9D A9 06 7C 07 77 DA 21 A1 2C D8 2B E0 pR°.©. |.wl!j,@+3
80 F9 EB 84 BB 54 E3 A1 AB A3 D1 12 53 AB 2E 91 .0&, »Taj«£fN.S«."
57 7F E1 A9 49 71 51 OD BE E2 E2 14 91 04 04 DA W.30IgQ.%as.'..u
87 EF 71 23 CB (B DB 1B C1 B89 22 58 16 BF F1 51 fiq#EED.A%"X.:0Q
AB B3 CO F1 B7 29 6F 76 CO FB B7 66 74 7D 89 3B !?AfA-)ovAl-ftlk;
AD BA C2 B9 E7 BS 7F A2 A3 B9 5C F5 E1 32 25 €3 -SA'qp.CE'\0a2%A
OB DB 65 22 4C 3B D4 20 61 CA 13 AC 85 28 47 B0 .Ue"L:0 aE.-..(G"°
33 43 04 5B 66 29 5B 69 CF 24 56 2F 9C 21 FA 3D 3C.[F)[ifs$v/eld=
6D 9F FE 9A A3 96 DE 01 C4 01 7A 1C D2 7E AC E8 m¥ps£-p.A.z.0~-8
AS D6 24 63 79 B2 B85 B4 A8 11 26 40 26 82 AA 6B ¥0%cyZ2.,  .B@&, °k
2C 9A D7 8A BE FF 4B 11 F4 ED AE BE E2 18 39 9E ,&xSnyK.6i873.93
D7 03 99 DC A2 38 F8 EC AF 34 (B 94 5A B8 4D 7E x.™UCBai 4E"Z M~
66 B5 A6 92 40 D6 96 07 38 D8 DO 9C E3 75 68 27 fy! '@0-.8@Bwsuh’

Figure 4.8: File data after wiping

6. Now, we try to fetch the previous version of the file to recover the original
contents of file F1.txt. For this, we look at the superblock backup_roots
for a backup_fs_root whose generation number is one less than the current
backup_fs_root generation number i.e., 11. This is because the earlier gen-
eration number would contain the metadata corresponding to the previous
version of the file. For example, in backup 0, the backup_fs_root with gen:
10 has the [LA] of backup_fs_root equivalent to 30769152, which refers to the
earlier state of the file system, which may contain the previous version of
the file F1.txt. The limitation of this approach is if the generation number
of the current backup_fs_root is the same in all four backups, then we can-
not recover the previous version of the file as the reference to the previous
version is lost. This happens when there are modifications in other trees of
the file system with no changes in the [F5 tree.

7. Now we again parse the [F'S] tree at [LA] 30769152 and locate the [PA] of the
data blocks of the targetted file F1.txt. This gives us the of the data
blocks corresponding to the previous version of the file. We parse the[FS|tree
for dir_index, inode_item , extent_data for file F1.txt. Further, we compute
the [PA] for file F1.txt and locate the file content on the Disk. Figure
shows the content of the file before wiping (i.e., for backup_fs_root: 30769152
and gen:10), and Figure shows the content of the file after wiping (i.e.,
for backup_fs_root: 30883840 and gen:11). Thus, we can recover wiped files
by traversing through the previous state of the file system.

77



4.5 Proposed Model ReWinD

10h 00 00 00 00 OO0 00 00 00 00 00 OA 00 QO 00 00 Q0 ........c.cucunn
00 00 2D 00 00 OO0 OO OO0 0O OO OO0 OO OO OO OO 48 . .-.........-.- H
65 6C 6C 6F 21 21 20 54 68 69 73 20 69 73 20 66 ello!! This is f
69 6C 65 20 46 31 20 61 66 74 65 72 20 6D 6F 64 ile F1 after mod
1 69 66 69 63 61 74 69 6F 6E 2E 20 OA OB 00 00 00 ification. .....
60h 00 00 00 00 06 00 46 31 2E 74 78 74 CA 00 00 00 ...... | B e
Oh 00 00 00 00 OA 00 Q0 00 00 OO OO0 00 2D 00 QO OO0 ............ S

o
- =

[¥;]

mmmmmTmm
|
-

F
M mmmiDmiomim

Figure 4.9: File Content before wiping

Thus, we recovered the wiped files using btrfs-progs. However, it depends on the
availability of [FS|tree[LAlfrom backup_roots of the superblock. If we have frequent
changes in the file system, then we lose reference to the previous state of the file
system as the backups get overwritten, and the file recovery becomes difficult. To
overcome this limitation, we propose our next approach, i.e.,[ReWinD| by logging
[PA] of the files.

4.5.2 by Logging [PA] of Files

In the [BTRES| file system, like many other Linux-based file systems, traversal
begins at the superblock. Superblock is a predefined data structure with a fixed

location on the disk. Even though the file system is a [CoW}based file
system, the superblock is not CoWed, as frequent changes in the [PA] of the su-

perblock may result in an inconsistent file system. Thus, the superblock content
is overwritten for changes in the file system. We can access all the files in the file
system at a given time T using the superblock’s contents. Let us understand this
better by considering an example.

Example 6. Data blocks corresponding to file Fy at time T4, can be retrieved by
computing the [PA| of the file using the contents of the superblock SBi. Now let
us assume that at time Ty, the contents of the file F'y have been modified; being a
-based file system, it creates a copy of file Fy as F| and updates the changes
to Fy{. As there are changes in the file system, the superblock is updated to SBs.
Using the contents of SBa, one can retrieve the of file F| but cannot retrieve
of the original file Fy. If we want to fetch the contents of the file F1, i.e.,
the previous version of the file, then we need to have SBy. If the contents of SBy
are available, one can still compute the [PA] of the file F1, but the contents of the
superblock SBy at time Ty is overwritten as SBy at Time Ts; thus, the reference
for the file Fy is lost.

78



4.5 Proposed Model ReWinD

From the above Example [6, we understand the possibility of recovering the
previous version of the file provided we have the [PA] of the file. Therefore, it
is proposed to compute the of the files upon their creation using superblock
contents and log the [PA] of the file along with the file’s metadata for future
reference. We check the superblock content(i.e., root tree for every 30 seconds
because the superblock undergoes updates at this frequency [17]. If there are no
alterations in the file system, the contents of the superblock remain unchanged.
Thus, for every 30 seconds, we check for the root tree in the superblock.
If the root tree [LA] is updated, we traverse the file system and log the [PA] of
newly created files and their corresponding metadata, else we wait for the next
30 seconds and check for updates. Thus, by recording the [PA] of the files, we can
traverse the file system back in time to recover deleted and wiped files.

Thus, we write a script to compute and log the [PA] of the files and deploy
them on the cloud [VMk. These scripts run in the background and monitor the
file system activity of cloud [VMk. Upon the creation of files, the script computes
the file’s [PA] and logs the file’s [PA] and its metadata. Later, in the future, we
can refer to the log file for the corresponding file [PA] and recover the wiped file
content.

A.BTRFS| Traversal Using Superblock

As we compute the [PA] of a file using the superblock, let us understand how we
traverse the file system using the superblock without using any utility programs
and third-party tools. We initially analyze the superblock data structure located
at a pre-defined location on disk, i.e., 0x10000 [94], and parse its contents. Figure
shows the superblock data structure layout. Further, we fetch the following
from the superblock to compute 1) sys_chunk_array, 2) Chunk Tree [LA] and
3) Root tree Let us now understand the significance of each item listed in
detail below,

79



4.5 Proposed Model ReWinD

Superblock
A
( |
0X10000 0X10048 0X10050 0X10058 0X10060 OX10328 0X10B28B OX10DCB  0X11000

Gener- | Root | Chunk
g LA LA sys_chunk_array 4 root backup

K Chunk K Chunk Backup | Backup| Backup| Backup

Y1 item Y 1 item 1 2 3 4

0X10328 0X£0‘33C OX10B2B  OX10BD3.0X10C7B  0X10D23 0x10DCB

ID Type | Offset

OX1032B 0X10333 0X10334  OX1033C

4

Root Gener- | Chunk | Gener-| Extent | Gener-| FStree | Gener-
tree LA ation tree LA ation tree LA ation LA ation

OX10B2B  0X10B33 OX10B3B  OX10B43 OX10B4B  OX10B53 OX10BSB  0X10B63 OX10B68  OX10BD3

Figure 4.10: Superblock layout for bootstrapping the file system

1) The chunk tree is responsible for to mapping. The chunk tree resides
in the SYSTEM-CHUNK. To get the [PA] of the chunk tree, we use chunk_ item
from sys_chunk_array of superblock. Thus, we initially parse the sys_chunk_array
in the superblock and compute the [PA] of the chunk tree.

2) The chunk tree contains the chunk_items corresponding to SYSTEM-
CHUNK, METADATA-CHUNK, and DATA-CHUNK. These chunk_items con-
tain the logical start, size, and other metadata corresponding to each chunk. All
the trees in reside in the METADATA-CHUNK. We use the chunk_item
corresponding to METADATA-CHUNK to compute the of other trees using
chunk tree.

3) The root tree contains the of root nodes associated with different trees
in file system. We get the [LA] of the [F'S| tree from the root tree. Further,
using the of the [F'5] tree, we capture the user files and directories.

B. Compute Physical Address

To compute the of a tree (PAr), we need the following values- 1) of the
tree (LAT), 2) the logical start of the chunk (LA¢), and 3) the stripe offset. A
stripe is associated with a chunk item, representing a portion of allocated space
on the disk. Each stripe contains information such as its starting offset (where it
begins on the disk). We get LA from root tree, LA¢, and stripe offset from the
chunk tree’s chunk_item. To get PAr we first compute the difference between

80



4.5 Proposed Model ReWinD

LAp and LA¢, as shown in the Equation 4.1} Since all the trees are located
within a logical chunk (i.e., METADATA-CHUNK), we calculate the difference
between the chunk’s starting address and the tree’s address within the chunk, i.e.,
A. Later, we add A to the stripe offset as shown in Equation to get PArp.

A=LAp—LA¢ (4.1)
PAr = A+ StripeOf fset (4.2)

After computing the PAr we look for items and their corresponding
offset data in the leaf node. Based on the type of the item, the offset data differs.
To compute the of item’s offset data, we use Equation [£.3] Here,
PAp is the of the data, size(header) is the size of header, which is
equivalent to 101 bytes. The data_offset corresponds to the item’s data
in the leaf node at the given offset (see Figure for reference).

PAp = PAp + size(header) + data_of fset (4.3)

C. Compute the Physical Address of the Chunk Tree

To compute the [PA] of the chunk tree using Equation [4.1] and [£.3] we need LAy
of the chunk tree, LAc of SYSTEM-CHUNK, and its corresponding stripe offset.
Let us further discuss the details specific to each of them and the sources to fetch
these values in detail.

We get the LA of the chunk tree from the superblock at [PA]0x10058 address
(see Figure . Additionally, Figure shows the hex dump of the superblock
with root tree [LA] and chunk tree [LA] From Figure [£.11] we observe that the [LA]
of the chunk tree LAz is 0x00040501000000 (in big-endian); upon converting it in
little-endian it is equivalent to 0x0000000001504000, and it’s decimal equivalent
is 22036480 i.e., LA = 22036480.

81



4.5 Proposed Model |ReWinD|

0001:0000 82 EB EF 13 00 00 00 00 00 00 00 00 00 00 00 00 ,€i.............
0001 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........vvvuunnn
7B CA 6D 3C 07 13 40 B2 AC 38 8D C3 BE C2 1E 39 {Em<..@2-8.A%A.9
00 00 01 00 00 00 00 00 O1 00 00 00 00 00 OO 00 ................
5F 42 48 52 66 53 5F 4D 0C 00 00 00 00 00 00 00 _BHRfS_M........
[00 40 DB 01 00 00 00 00]00 40 50 01 00 00 00 00 .@U...... P, s
00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 .........cvnvnvnnn
00 CO FF 3F 00 00 00 00 00 10 02 00 00 00 00 00 .Ay?............
06 00 00 00 00 00 00 00 O1 00 00 00 00 00 00 00 .........vvuuunn
00 10 00 00 00 40 00 00 00 40 00 00 00 10 00 00 ..... e...e......
81 00 00 00 05 00 00 00 00 00 00 00 00 00 00 00 ........vvvunnns
00 00 00 00 00 00 00 00 00 00 00 00 41 01 00 00 ............ A...
00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 ................

0001
0001
0001
0001

0001

0001
0001
0001
0001

0001

0001:00C0

@ Root Tree LA (O Chunk Tree LA

Figure 4.11: Root tree and chunk tree from superblock

Further, to compute the LA¢, we need to fetch the details corresponding to
SYSTEM-CHUNK because the chunk tree resides in SYSTEM-CHUNK whereas
all the other trees, like root tree, [F'S| tree, extent tree, checksum tree, etc., reside
in METADATA-CHUNK. Thus, we need LA of SYSTEM-CHUNK and its cor-
responding stripe offset to compute the [PA] of the chunk tree. We get LA¢ of
SYSTEM-CHUNK from sys_array_chunk of superblock. Figure shows that
the sys_array_chunk begins at physical address 0x1032B. The sys_array_chunk
contains the data as a pair of (Key,chunk_items). As discussed earlier, the key
contains object id, item type, and offset; here, the type of item is chunk_item,
and the corresponding offset value is the LA¢ of SYSTEM-CHUNK (see
items in section for details). Also, using the sys_array_chunk, we get the
stripe offset value. The figure shows the hex dump for sys_array_chunk. The val-
ues in the Figure are highlighted based on the data structure for chunk_item

[94].

320h 00 00 00 00 00 00 00 00 00 00 00 (@ONGHNGENGENGD ................
v230h (00N00N00 E4 00 00 50 01 00 00 00 00 00 00 80 00 ...3..P....... €.
)340h 00 00 00 00 02 00 00 00 00 00 00 00 00 00 01 00 ..........eovn.s
350h 00 00 00 00 22 00 00 00 00 00 00 00 00 00 01 00 ...."...........
)360h 00 00 01 00 00 10 00 00 02 00 00 00 01 00 00 00 ................
)370h 00 00 00 0000 00 50 01 00 00 00 00 29 8B F9 96 ...... Bbocs:: ) <0-
380h DO 05 45 83 AC 9F 72 5D OA 84 19 BE 01 00 00 00 D.Ef-Vr].,.%....

. Object ID Item type offset stripe offset

Figure 4.12: sys_arr_chunk from superblock

82



4.5 Proposed Model ReWinD

From superblock, we get L A7 of chunk tree (see Figure , and we get LA¢
and stripe offset of SYSTEM-CHUNK from sys_array_chunk (see Figure {4.12)).
Here, both LA and stripe offset values are equivalent i.e., 020000500100000000
(in big-endian) equivalent to 0x0000000001500000 (in little-endian), and its dec-
imal equivalent is 22020096 i.e., LAc = 22020096 and StripeO f f set = 22020096
now substitute LAp and LA in Equation ie.,

A=LAr - LAc
A = 22036480 — 22020096
A =16384

Now substitute A in Equation to get the PA7 of the chunk tree. We
observe the PAp of the chunk tree is equivalent to its LAy, i.e., 22036480 (i.e.,
0x1504000). However, this differs with other trees as the LAc and physical
stripe address differ.

PApr = A+ StripeOf fset
PApr =16384 + 22020096
PAp =22036480

We parse the chunk tree at [PA] 0x1504000 on disk to get the details corre-
sponding to the METADATA-CHUNK, as it contains other trees of the
file system. To differentiate between METADATA, DATA, and SYSTEM chunk
items in the chunk tree, we look at chunk_item’s offset data for the type field
as shown in Figure .13 For this, we first need to compute PAp of every
chunk item to determine its type. However, here we present computing PAp for
METADATA-CHU NK, similar approach can be adopted to determine the PAp
of other chunk_items(i.e., SYSTEM, DATA chunks). Fetch the data_offset for
chunk_item as shown in Figure i.e., 0x093E0000(in big-endian); equivalent
to 0x00003E09 (in little-endian) and, its decimal equivalent is 15881 i.e.,
data_of fset = 15881. In Equation 4.3] we now substitute PAp = 22036480,
size(header) =101, data_of fset = 15881.

PAp = PAr + size(header) +data_of fset

PAp =22036480+ 101+ 15881
PAp = 22052462

83



4.5 Proposed Model |ReWinD|

Chunk Tree PA

87
00
7B
00
7C
05
04
00
00
3E
00
00 01 00
00 09 3E
00 E4[00

a
00
6D
50
BO
00
00
00
00
00
50

00
00
07
00
(€]
00
00
00
00
00
00
00
00
D0
00

00 00 00
00 00
13 40
00 00
F6 40
00“00
01
00
00
00
00
00
70
01
00

00
00
AC
01
A0
03
00
00
00
01
79
E4
00

00
00
38
00
92
00
00
00
DO
00
3E

00
00
8D
00
a1
00
00
62
00
00
00

00
00
(e
00
76
00
00
00
00
00
00
00 00/D0 01 00 G0 00

00 0100 00 00 QO 00<-
00] 09' 3600 00 70 00

00 E4 00 00 DO 01 0O

00 00

00

Chunk
Item Key

00
01

00

w«ﬁ
LA of

METADATA-CHUNK

Chunk Tree

DATA Chunk

SYSTEM

METADATA

METADATA
Data

No.of
Stripes

Sub
Stripes

16 46

48

32 44

| 24 i

03 A4 70 09 4E Q2 BA D3 8B 45 DS 53 9D SF-QUNOOD
¥ 00" 00

01 00 00 00 00 00 24NOONOONOONOONODIOVNOD) 00 00

01 00 00 00 01 00 00 10 00 00 02,00 00,00 01 00

00 00 00 00 00 00 (OONOONSONOZN00}OON00ND0«F3F -

Figure 4.13: Chunk tree leaf node layout

Thus, we get PAp = 22052462 equivalent to 0x1507E6E in hex. From Figure
we can see that the METADATA chunk_ item starts at [PA] 0x1507EGE.
The type field in chunk_item offset contains value 01 for DATA-CHUNK, 02
for SYSTEM-CHUNK, and 04 for METADATA-CHUNK [99]. But, in Figure
we see the value of the "type’ field for METADATA-CHUNK is 0x24. This
is because the type field also includes the information corresponding to data
redundancy supported by the file system.

In BTRFS| we associate data redundancy with the following profiles: single,
DUP, RAID. In a single profile, the data is stored on a single device without
redundancy. In the DUP profile, the data is mirrored (i.e., two copies) of the same
data are available. DUP can be implemented on single or multiple devices. In a
RAID profile, data redundancy is achieved using RAID features such as stripping,
mirroring, and parity; it is suitable when multiple devices are configured. Each

84



4.5 Proposed Model ReWinD

profile has a specific value, e.g., the DUP profile has a value of 32 in decimal
and 0x20 in hexadecimal notation [99]. For example, let us say the file
system uses the DUP profile whose value is equivalent to 20, then the type field
of METADATA-CHUNK contains 20 + 04, i.e., 0x24, which justifies the value
shown in the Figure [4.13] The type field for SYSTEM-CHUNK contains 20 + 02
i.e., 0x22. If we notice that the type value for the DATA-CHUNK is 01. This
signifies that the METADATA and the SYSTEM chunks are mirrored, but the
DATA-CHUNK is not. Thus, one can configure these settings based on their
requirement while initializing the file system.

D. Parsing the Root Tree

After parsing the superblock and the chunk tree, we now parse the root tree. The
root tree holds the [LAl of all other trees’ root nodes. The root tree contains the
of the file system tree, chunk tree, extent tree, device tree, checksum tree,
and others for various file system-relevant activities. We focus on fetching the [FS|
tree [LAl from the root tree.

To parse the root tree, we initially need to compute the physical address of the
root tree. To compute the physical address of the root tree, we need LA7 of the
root tree, LA of the METADATA-CHUNK, and its corresponding stripe offset.
We get the LAp of the root tree from the superblock (see Figure . LAc
of the METADATA-CHUNK and stripe offset from the chunk tree (See Figure
1.13).

Figure [4.11] shows the hex dump of root tree logical address from the
superblock i.e., 0x0040DB0100000000 (in big-endian); which is equivalent to
0x0000000001DB4000 in little-endian and in decimal is equivalet to 31145984,
ie., LAp = 31145984. From Figure 4.13) we fetch the METADATA-CHUNK
logical starting address i.e., offset LAc = 020000500200000000 (in big-endian)
equivalent to 0x000000025000 (in little-endian) and, its decimal equivalent is
30408704 i.e., LAc = 30408704. Now substitute LA and LA¢ in Equation [4.1
ie.,

A=LAp- LAo
A = 31145984 — 30408704
A = 7372807

85



4.5 Proposed Model ReWinD

Now substitute A in Equation to get the PAp of the root tree. Here, the
stripe offset of METADATA-CHUNK from chunk tree as shown in Figure [4.13
is 0x02500000 (in little-endian), equivalent to 38797312 in decimal.

PAp = A+ StripeOf fset
PAp="7372807+ 38797312
PAp = 39534592

Thus, the [PA] of the root tree PAp = 39534592 is equivalent to 0x25B4000
as shown in Figure [1.14. We now fetch FS tree logical address. For this, we
first need to compute PAp of tree in the root tree; thus, we fetch the
data_offset for [FS] tree i.e., 0x653A0000(in big-endian); equivalent to 0x00003A65
(in little-endian) and, its decimal equivalent is 14949 i.e., data_of fset = 14949.
In Equation 4.3, we now substitute PAp = 39534592, size(header) = 101,
data_of fset = 14949.

PAp = PAp+ size(header) + data_of f set
PAp = 39534592+ 101 + 14949
PAp = 39549642

Thus, from the root tree, we get PAp = 39549642 (equivalent to 0x25B7TACA)
of the tree; we parse the data at this PAp to retrieve the of the
tree. From Figure [£.14] we can see that the [FS tree [LA] is 0x0040D70100000000
(in big-endian), equivalent to 0x01D74000 (in little-endian) and 30883840 in
decimal. Thus, using the root tree we fetch the [LA|] of the [FS tree which is
equivalent to 30883840. We now have the [LA] of the [F'S tree, but we need the
[PA] of the [FS tree to parse the [FS] tree, for this we again compute the [PA] of [F']
tree using the Equations and as shown below, Here, LAy of [FS] tree is
30883840, and LAs = 30408704 (i.e., LAc of METADATA-CHUNK from chunk

tree).

A=LAr - LAc

A = 30883840 — 30408704
A =475136

PAp = A+ StripeOf fset
PAp =475136 4 38797312
PAp = 39272448

86



4.5 Proposed Model |ReWinD|

00 00 00 00 OO0 00 00 00 0O
00 00 00 00 00 00 00 00 00
B2 AC 38 8D C3 BE C2 1E 39
00 01 00 00 00 00 00 00 O1
8B A0 92 41 76 AD 98 FO FB
»0C 00 00 00 00 00 00 00 O1 00 00 00 00 00 00 00
0258:4060 OA 00 00 00 00 02 00 00 00 00 00 OO 00 84 00 00
0258:4070 00 00 00 00 00 00 E4 3D 00 00 B7 01 00 00 04 00
0258:4080 00 00 00 OO0 00 00 84 00 00 00 00 0O 00 00 00 2D
025B:4090 3C 00 00 B7 01 00 00 05 00 00 00 00 00 00 00 OC
025B:40A0 06 00 00 00 00 00 00 00 1C 3C 00 00 11 00 OO0 00
025B:40B0 5 00 00 00 00 00 OO 00 84 00 00 OO0 00 00 00 0O

0258:40c0 (¢o &5 3A 00 00 B7 01 00,00 06 00 00 00 0O 00 0O
025B:40D0 0O 01 00 00|00 00 0O 00[00 00 C5 39 00 00 AO 00
FS Tree ,
Size
Root Item
\ %
Root Tree Extent Dev FS Tree
FS Tree
Header Tree Tree Offset Data
BTRFS Inode .
Generation
Item
0 160 168 176 184

0258 74C0 8F|65 00 00 00|00 00 00 00 00 01|00 00 00 00
0258 7AD0 00|00 00 00 00|00 00 00 0O 00 03|00 00 00 00
0258 7AEC 00|00 00 40 00|00 00 00 DO 00 00|00 00 00 00
0258 7AF0 00|00 01 00 00|00 0O 00 DO 00 00|00 00 00 ED
02587800 00|00 00 00 00|00 0C 00 D0 00 00|00 00 80 FF
U755 78TTFF|FF 00 00 00|00 00 00 DO 00 00|00 00 00 00
02587820 00|00 00 00 00|00 0C 00 00 00 00|00 00 00 00
0258B:7B30 00/00 00 0O 0D 00 OC OO0 DO OO0 00|00 00 0D OO
0258 7840 00|00 00 00 00|00 0C 00 00 00 00|00 00 00 00
0258 7850 00|00 00 00 00|00 0C 00 DO 00 00|00 00 00 00
0258 7860 00|00 00 00 00|00 00 00 DO 00 OB|00'00 00 00 00
0258:7870 00 00
0258 7880 GOMOOP 00 00 0D 00 00 00 DO 00 0O 40 00 00 00 00

8888872888

Figure 4.14: Root Tree Leaf Node Layout

87



4.5 Proposed Model ReWinD

Thus, the computed [PA] of the [F'S] tree is 39272448, equivalent to 0x02574000.
Now that we have the [PA] of the [FY tree we can parse the [FS tree to get the
metadata and data corresponding to files. We further detail the procedure to
capture the [PA] of a file in the subsequent section.

E. Parsing the File System Tree

The File system tree contains the details corresponding to user files and direc-
tories. It contains different items corresponding to file data and metadata. e.g.,
dir_item, dir_index, inode_ref, inode_item, extent_data, etc. Using the [FS|tree, we
try to fetch file metadata and data. Figure demonstrates the leaf node layout
for [FS] tree. We use three important items from the [F'5 tree to locate the data
blocks corresponding to a file- 1) dir_index, 2) inode_item, and 3) extent_data.
From Figure [4.15 we observe that these three items, dir_index, inode_item, and
extent_data, have an inode number in common; using the inode number, we cor-
relate these items corresponding to a specific file.

1) The dir_index is used as a lookup for directory entries. The dir_index
items’ corresponding offset data in leaf node will include the file name, the inode
number of the file, and other metadata. We can detect the deleted file entries
using dir_index. Let us consider files F1.txt, F2.txt, F3.txt created at time T7.
The [FS tree will contain three dir_index entries, each entry corresponding to a
file. Now, let us assume that at time 75, the file F2.txt is wiped or deleted. As
there is a change in the file system, these changes are CoWed to a new location.
Now, the [F'S| tree dir_index will not contain F2.txt entry. Thus, by comparing the
dir_index entries at time T} and 15, we can list the deleted files.

2) The inode_item contains the metadata corresponding to the user file. It
contains the inode number, the file size, MAC timestamps associated with the
file, and other additional information.

3) The extent_data item contains the of the file extent. Along with this,
it also includes additional information regarding compression, encryption, gener-
ation, transaction, etc., As shown in Figure [£.15] If the file is small, it is accom-
modated as an inline file in the leaf node at extent_data’s offset. For large files,
they are stored in the extents; the [LA] of the file extent is stored in extent_data’s
offset.

38



4.5 Proposed Model ReWinD

Object ID of Hash of
owning Inode Type name
— - INODE T Offset
,,,,,,,,,,,, Number v in file
\ e » g
DIR_ITEM Data Size )
Key Offset \ e \
/,"' Extent Data Size
Data Key Offset
. S = —
~ / .
FSTree | [
‘ Heazleei ‘ DIR Item ‘ DIR INDEX ‘ ‘ INODE ‘ we | Extent Data ‘ Extent Offset Data ‘ ‘
| DIREINDEX ‘ Cl)l:ta ‘ Size INODE IT | Data | . Gen | SiZeof | Compres | Encryp | Other | .
&y set EM Key Offset ize Extent sion tion Encoding ¥p
AN P s 16 17 18 0 21
B Parent Index in ' l""‘-\ Incase of inline files thel{followmg structure is used
Obj ID Type Parent INODE Type Offset to store the data bytes corresponding to inline files
VVVVV Number
LA of Size of Offset in Bytes in file
Extent Extent Extent v
21 29 37 15 53

( J
!

This structure is used incase of regular files

Figure 4.15: Fs tree leaf node layout

To compute the [PA]of inline files, we consider LA of METADATA-CHUNK,
but for regular files, we consider LAc of DATA-CHUNK. This is because the
inline files are stored in the leaf node of the tree; as discussed in section 4.5.2]
the tree and other trees of are stored in METADATA-CHUNK. on
the other hand, regular files are stored in the extents. These extents are stored
in the DATA-CHUNK; thus, we use the LAc of DATA-CHUNK for regular files.
We compute the [PA] of inline files using the Equations [4.3] and for regular files,
we use the Equations [4.4] [£.5], and [4.6]

In Equation [£.4] the LAg is the [LA] of the extent where the file is stored, and
LA¢ is the of the DATA-CHUNK. We get LA from tree (see Figure m
for of Extent ) and LA¢ from Chunk tree.

A=LAp—LAc (4.4)

We now compute the [PA] of the extent i.e., PAg by substituting the A from
Equation [4.4] in Equation 4.5, We get the stripe offset of DATA-CHUNK from
chunk tree.

PAp = A+ Stripe Offset of DATA-CHUNK (4.5)

In Equation 4.6 the PAp contains the [PA] of regular file on the extent. To
compute PAp we sustitute PAg from Equation 4.5 and extent_offset from

89



4.6 Results and Discussion

tree (See Figure for offset in extent) in Equation to compute the of
regular file.

PAp = PAg+extent_of fset (4.6)
In[ReWinD]| we use the dir_index to list the deleted and wiped files, inode_item

to get the files’ metadata like inode number and timestamps, and finally, we use
the extent_data to retrieve the [PA] of the files. We have the [PAl of files and
corresponding metadata; we now log them in a separate log file periodically for
every 30 seconds, as discussed earlier in the section [1.5.2] Later, we use this log
file to recover the of wiped or deleted files. However, there is a limitation: the
contents of unreferenced files may be overwritten by the file system itself, which
is common across all the file systems. Thus, it becomes imperative to determine
the scope of recovery using which we discuss in the next subsequent

section.

4.6 Results and Discussion

increases the scope of recovering wiped files because it is based on
principle, but it also comes with the associated challenges. As the entire file
system is organized in the form of b-tree, the creation of new file or the deletion
of a file may result in node splitting or merging to balance the tree [8I]. The
merging of nodes especially creates challenges as it overwrites the content when
the files are deleted.

To evaluate the proposed model, we have experimented the scope of recovering
wiped files in by varying the image size, file size, and the DATA-CHUNK
size. Table [£.3] details the experimental setup for BTRFY|file system for different
scenarios. In file system, the user files are stored in the DATA-CHUNK.
The space allocated to the DATA-CHUNK dynamically increases as its utilization
increases.

90



4.6 Results and Discussion

. . . X Block group profiles
Scenario Image Size | File Size
System | Metadata | Data
Scenario 1 | 1 GB 5KBtol MB | 8 MB 51.19 MB | 8 MB
Scenario 2 | 1 GB 5 KB to 50 MB | 8 MB 51.19 MB | 232 MB
Scenario 3 | 1 GB 0 KB to 50 MB | 8 MB 128.19 MB | 532 MB
Scenario 4 | 3 GB 5KB to 50 MB | 8 MB 153.56 MB | 2.37 GB

Table 4.3: Experimental setup for different scenarios to evaluate BTRFS

£ £
: :
a s
5 5
: :
z z
: ;
H H
g
g oo s con |
g g
) 02 04 06 08 1 12 0 10 20 30 40 50 60
Fil MB Fil MB
® Successful recovery of wiped file m failed to recover wiped file m Successful recovery of wiped file = failed to recover wiped file
(a) Scenario 1 (b) Scenario 2

H
%

s
a

i g oo |
; ;
:
S
2 =
£ E
o 10 20 30 40 50 60 0 10 20 30 40 50 60
Fil MB Fil MB
m Successful recovery of wiped file  m failed to recover wiped file  ® m Successful recovery of wiped file W failed to recover wiped file ~ ®
(c) Scenario 3 (d) Scenario 4

Figure 4.16: Comparing the scope of file recovery between |Ext| and |BT RFSl under
different scenarios as listed in Table Flzl

We further compared the scope of recovering wiped files between (journal-
based) file system and BTRFS| (CoWlbased). For the journal-based file system,
we created an image of size 1 GB with the file system, whose journal size is
equivalent to 8 MB with default journaling mode, i.e., ordered mode. We used
the Shred tool to wipe files using 35 passes.

It is observed that when the allocated DATA-CHUNK unit is small, i.e., 8
MB (scenario 1), it becomes difficult to recover the wiped files. This is because
when we wipe a file with 35 passes, for every pass file is copied to a new location
and overwritten with specific or random characters. We can say this because

91



4.6 Results and Discussion

we could observe patterns like "11111°, "UUUUU’, and random characters (e.g:
's/OiYhpa@A2S') in different locations when analyzing the hex dump of the im-
age. When we wipe the file multiple times there is a possibility that due to the
limited space, the original file content is overwritten.

In BTRES] the unallocated space within the 8MB of the DATA-CHUNK is
utilized to overwrite the contents; we say this because upon analyzing the original
file’s physical address, it was found at 0XD00000, and upon wiping the file with 3
passes we found that the original file content is not overwritten, but the content
with specific pattern like "11111111” equivalent to the file size was observed at
physical address 0xD01000 followed by specific patterns at location 0xD2000 and
0xD3000. This shows that when a file is wiped, the files system initially uses the
unallocated space equivalent to file size. In case of wiping with multiple passes,
it may overwrite the file content due to unavailability of space.

Thus the scope of recovery depends upon three factors- 1) image size, 2)
DATA-CHUNK size, and file size. Let us assume the size of the DATA-CHUNK
is 8 MB, and the file size is 1MB, and if we wipe the file with 35 passes, we
cannot recover the wiped file. This is because, during each pass, the 1MB file
is replicated to a new location, eventually occupying 35MB of space. but given
that only 8MB of space is available, the content gets continuously overwritten,
leaving no scope for file recovery. On the other hand, let us consider a file of size
3 KB when wiped with 35 passes, the file of size 3kb is copied to new locations 35
times, consuming space close to 105 KB, but as the size of the DATA-CHUNK
is 8 MB we can recover the file. We tested the proposed model by varying the
DATA-CHUNK size and the file size. The results for the same are presented in
Figure [4.17} with the DATA-CHUNK size equivalent to 232 MB, we were able to
recover the wiped files whose file size< 5M B. Similarly, for DATA-CHUNK sizes
of 532 MB and 1.3 GB, we were able to recover the wiped files whose sizes were
less than 30 MB and 50 MB, respectively. This shows that as the DATA-CHUNK
size increases, it increases the scope of recovering files with a larger size. The size
of DATA-CHUNK depends on the image size. Further, the DATA-CHUNK size
increases dynamically based on file system utilization to store user files depending
on the availability of unallocated space of the image.

92



4.7 Usecase: Recovery of a file encrypted by Gonnacry ransomware

50
a0
20
10
0

232MB 532MB 1.3GB

File sizein MB
[¥5]
o

Size of Data-chunk

m Successful recovery of file m Failed recovery of file

Figure 4.17: Scope of recovering wiped files from [BTRES| by varying the DATA-
CHUNK and file sizes

Also, we compared the scope of recovering wiped files using the and
file systems. The results in Figure show that the scope of recovery
from journals is higher when the file system is newly initialized and eventually
decreases. Further, the scope for recovery of the wiped files increases in
and reduces in as the file system ages; this is because the journal size is fixed
when the file system is initialized; but, in BTRFS|file system, the DATA-CHUNK

size changes based on file system utilization.

4.7 Usecase: Recovery of a file encrypted by

Gonnacry ransomware

In this section, we present a usecase by applying the proposed model
to recover the files affected by ransomware attacks. We try to recover encrypted
files without using any decryption keys. To test the application on [ReWinDJ on
ransomware we create an image file of 1.1 GB with [BTRFY file system. We
create a file Hello.txt of size 31 bytes, with DATA_CHUNK size of SMB. We
used Gonnacry, a Linux-based ransomware, to launch the ransomware attack. It
initially traverses different paths of the file system and lists the files that can
be encrypted. Once a list is created, it encrypts the files sequentially. The files
encrypted by Gonnacry have file extension as .GNNCRY, for example the original
file Hello.txt is renamed as Hello.txt. GNNCRY.

93



4.7 Usecase: Recovery of a file encrypted by Gonnacry ransomware

backup 2:
backup_tree_root: 3p507088 gen: 7 Tlevel: @
backup chunk root: 22936439 gen [ leve'l.: [:]
g pot: ]
[:]
: H
backup :sm root: 39499514 gen: 5 level: ©
backup_total bytes: 1073725440
backup_bytes_used: 147456
backup_num_dewvices: 1
backup 3:
backup_tree_root: 3DETEB4B gen: B level: ©
bar_kup chunl: root: 1293545&) gen 6 level: ©
- = = a
L]
A geni : 0
hackup csum_root: 36495524 gen: 5 Tlevel: @
backu p_total_byrtes ' 1073725440
backup_bytes_used: 147456
backup_num_devices: 1

Figure 4.18: Superblock after encryption

Let us use with the btrfs-progs utility (see section for details)
and try to recover the unencrypted version of the file using the backup root

nodes of the superblock. Figure [4.18 shows the backup root contents of the
superblock. Considering the space constraint, we have not included backup 0 and
backup 1 in Figure We try to fetch the details corresponding to the current
state of the file system. Thus, we capture the details corresponding to the latest
generation number of the [F'S|tree root node. Form the Figure[d.18 we can see that
backup 3 contains the latest generation number i.e., gen: 8 with LA = 30621696.
Subsequently, we parse the tree using its LA7 and list the files using the
dir_index item. Here, we find a file with file name as Hello.txt. GNNCRY. We
suspect this file to be encrypted; further, we get the inode_item and extent_data
item for this file as shown in Figure to compute the [PA] of the file. We
compute the [PA] of the files using the Equation [4.1] and as discussed in
section [4.5.2] Figure shows the file contents of Hello.txt. GNNCRY at its
[PA} we see that the file content is encrypted. Thus, we try to get the previous
original version of the file Hello.txt using the superblock backup root nodes whose
generation number is one less than the current generation number(gen: 8) i.e.,
gen: 7.

From Figure 4.18} we see that the|F'S|tree root node at generation number
gen: 7 is 30441472. Next, we parse the [FS|tree and lookup for the file Hello.txt as
shown in Figurd4.19. We get the inode_item and extent_data item corresponding
to the file Hello.txt and compute its [PA] Figure shows the original content

of the unencrypted file. Thus, the principle enables the file system

94



4.8 Summary

item 4 key (257 INODE_ITEM @) itemoff 15873 itemsize 160 item 4 key (258 INODE_ITEM @) itemoff 15859 itemsize 160
generation T transid 7 size 31 nbytes 31 generation B transid 8 size 64 nbytes &4
block group © mode 100644 links 1 vid @ gid @ rdev @ block group @ mode 188644 links 1 vid © gid © rdev ©
sequence 12 flags @x8(none) sequence T flags @xB(none)
atime 1700202510.856500000 (2024-02-29 15:58:30) atime 1700203008.864613045 (2024-02-20 16:86:48)
ctime 1700202510.B60500108 (2024-62-20 15:58:138) ctime 1700203008.864613045 (2024-02-29 16:86:48)
mtime 170B061443,812223800 (2024-02-26 21:00:43) mtime 1760203608.B645613045 (2024-62-29 16:06:48)
otime 1706202510.B56500108 (2024-02-29 15:58:38) otime 17009203088.864613045 (2024-02-29 16:06:48)

item 5 key (257 INODE_REF 256) itemo B854 itemsize 19 item 5 key (258 INODE_REF 256) itemoff 15833 itemsize 26
index 2 namelen O n: index 3 namelen 16 name: Hello. txt.GNNCRY

item 6 keueno T892 itemsize 52 item 6 key 'uem T5 1temsize 85
generation [ type © (inline) generation B type © (inline)
inline extent data size 31 ram_bytes 31 compression @ inline extent data size €4 ram bytes £4 compression ©

Figure 4.19: FS Tree before and after encrypting the file using Gonnacry

00 00 00 00 00 00 00 00 00 08 00 00 00 00 00 00 ................
00 40 00 00 00 00 00 00 00 00 00 00 00 00 67 38 .@............ g8
4B 69 46 4B 73 66 35 2F 65 4E 4E 2F 78 78 54 62 KiFKsf5/eNN/xxTb
57 50 61 64 7A 74 52 65 76 62 SA 78 78 77 63 73 WPadztRevbZxxwcs

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 07 ..........cvvnenn
00 00 00 00 00 00 00 1F 00 00 00 00 00 00 00 00 ...............n

00 00 00 00 48 65 6C 6C 6F 20 74 68 69 73 20 69 ....Hello this i
73 20 74 65 73 74 69 6E 67 20 67 6F 6E 6E 61 63 s testing gonnac 52 72 30 53 39 4F 77 51 4B 63 6B 71 68 52 64 72 Rr0S90wQKckghRdr
72 79 0A 02 00 00 00 00 00 00 00 09 00 48 65 6C ry........... Hel 4C 63 57 41 6B 34 46 7A 2B 2F 41 36 5A 55 03 00 LCWAK4Fz+/A6ZU..

00 00 00 00 00 00 10 00 48 65 6C 6C 6F 2E 74 78 ........ Hello.tx
74 2E 47 4E 4E 43 52 59 08 00 00 00 00 00 00 00 t.GNNCRY........

6C 6F 2E 74 78 74 07 00 00 00 00 00 00 00 07 00 lo.txt....
00 00 00 00 00 00 1F 00 00 00 00 00 00 00 1F 00 ............c...

Figure 4.20: File content at physical address before and after encryption

to hold the original file content even before encryption. By traversing to the
previous version of the file we can recover the unencrypted file content.

This usecase of still needs to be analyzed rigorously under different
complex ransomware attack scenarios. In our future work, we shall try to ex-
plore the restoration of encrypted files from ransomware attacks under different
scenarios.

4.8 Summary

We introduce a novel model for recovering wiped and deleted files in
cloud [VMk backed by BTRES|file system. We have analyzed two distinct methods
for recovering wiped files from the file system. Initially, we utilized
the existing utility program, btrfs-progs, for file recovery. During this
process, we observed that the superblock stores up to four backups of the root tree.
Leveraging this feature allows us to navigate to previous file versions. However,
there is a limitation: these backup roots are overwritten for the changes in the
file system, causing a loss of data to access the previous file version.
Subsequently, we propose another novel approach, which is logging the [PA]
of files. This method entails logging the [PA] of files every time the superblock
is updated. We maintain a separate log file that captures the [PA] of the files,

95



4.8 Summary

which mitigates the risk of losing reference to the earlier versions of files. We
compared the scope of data recovery between [Ext| and [BTRFS| under different
scenarios, which reveals that [BTRFES| has greater potential to recover wiped files

as the file system ages. Furthermore, we demonstrate the application of
on a ransomware attack launched by Gonnacry, where we recover the previous

unencrypted version of the file using the proposed model. This highlights the
practical relevance of our work in addressing real-world data recovery challenges,
especially in the context of anti-forensics (i.e., artifact wiping) and threats like
ransomware.

96



Chapter 5

Investigation Model to Preserve
Cloud [VMS5s and Investigation

Proceedings on Blockchain

In this chapter, we provide an approach to preserve the evidential artifact (i.e,
cloud in a forensic sound manner such that the integrity of the evidence
is preserved using blockchain technology. Involving blockchain in the preserva-
tion of cloud evidential artifacts addresses some additional challenges associated
with cloud forensics. The most critical problem is the evidence’s validity and
trustworthiness when multiple stakeholders are involved [I00]. These stakehold-
ers can always collude among themselves and tamper with the evidence [I01] for
various reasons. Also, centralized ownership of the evidence is with [CSP] who
cannot be trusted completely. To decentralize ownership and ensure evidence’s
integrity, immutability, authenticity, availability, and transparency among the
involved stakeholders, we propose a blockchain-based, tamper-proof, and trans-
parent investigation model using permissioned blockchain.

Blockchain technology is a game-changer in digital forensics, especially when
multiple stakeholders are involved [I00]. Blockchain is a series of append-only, im-
mutable, transparent data structures (i.e., blocks) that store the details of every
transaction on the peer-to-peer network [100] [102]. Blockchain has become the
most promising technology for achieving integrity, auditability, transparency, se-
curity, authenticity, etc. Thus, the usage of blockchain to ensure cooperation and
transparent exchange of information among the authentic stakeholders involved
in the investigation makes it an optimal technology for forensics.

97



5.1 Challenges in Existing System

5.1 Challenges in Existing System

Let us initially understand the existing investigation procedure in case of an
incident on cloud [VM] Upon receiving an incident report, the assigns an
for it. The[[O]then issues legal notice to[CSP|to immediately restrain the current
services offered by [CSP)| to the suspected [VM] Later, [[O] issues another notice
to [CSP] to provide the requested evidential artifacts like target [VM] snapshot,
relevant logs (system, user activity logs), etc., and preserve the evidential artifacts
for future investigation and court trials.

Figure |5.1] shows the phases involved in the existing system cloud incident
investigation. It mainly involves; 1. Issuing legal notice to to furnish the
required details, 2. Evidence Identification, 3. Evidence Collection, 4. Evidence
preservation, 5. Submission of evidence by [CSP| to [LEA] 6. Evidence Analysis,
and 7. Reporting and presentation of evidence.

Upon receiving notice from [LEA] [CSPk identify the cloud resources involved
in crime from the pool of resources distributed across the globe involved in the
incident. After identifying the evidential resources, [CSP| collects evidential ar-
tifacts across the cloud environment. will neither have direct access to the
physical resources nor be involved in evidence collection due to various privacy
constraints in the cloud. [[O] ultimately has to depend on the [CSPp for evidence.
shares evidence with through the proper channel. After the evidence
is shared with [LEA] both [CSP| and [LEA] start the analysis of the evidence for
further investigation.

Suppose other stakeholders (forensic analyst, prosecutor, defender) are in-
volved in the investigation and need access to evidence. It takes much time as it
involves many legal proceedings to ensure proper Chain of Custody and
ensure the integrity of evidence. Moreover, the investigation procedure is not

transparent to the members involved in the incident. There is always a possi-
bility that the organizations, legal entities, and other members involved in the
incident may collude and tamper with the evidence for their benefit, resulting in
a lack of confidence in the legal system.

98



5.2 Contributions

Legal notice by LEA to CSPs to restrain services
of (or) to suspicious users

y

Legal notice by LEA to CSPs involved to furnish
» details corresponding to crime.

v

Legal notice by LEA to CSP to preserve
evidence.

J

Evidence identification by CSP

v

Collection of Evidence by CSP ‘

¥

Forensic Data Acquisition and Preservation

!

‘ Submission of Evidence by CSP to LEA |

y

| Analysis and Investigation by LEA and CSP |

UBRILELIN IO

!

Additional
Information
Reauired

|, Ne

Presentation of Evidence in Court of Law | ¥

Figure 5.1: Existing Investigation Procedure.

5.2 Contributions

To overcome the existing challenges, as discussed, we propose an investigation
model using blockchain. We name our proposed model as Investigation-Chain.
The significant contributions of our model Investigation-Chain includes:

o A tamper-proof and transparent investigation model for cloud and
ensure the availability of snapshots to multiple stakeholders using per-
missioned blockchain.

o We validated the proposed model using a case study and evaluated its per-

99



5.3 Prelimnaries

formance for the proof of concept using Hyperledger Caliper.

« Finally, we present a comparative analysis of recent research with our model
and prove that our proposed model fulfills all the essential security aspects
of evidence preservation compared to other research works.

5.3 Prelimnaries

5.3.1 Blockchain

A decentralized platform for information sharing through a ledger enables multi-
ple authoritative domains that do not trust each other to coordinate, cooperate,
and collaborate in decision-making. The information is shared across the network
by a ledger. A ledger is an immutable data structure used to capture the transac-
tions chronologically, thereby maintaining the history of all transactions across the
network. Based on the access given to the participating nodes in the blockchain
network, they are classified as permissionless and permissioned blockchains. The
permissionless blockchains are also known as public blockchains; any member
providing Proof-of-Work can be included in the network without knowing their
identity. Also, the ledger is transparent and open to all network members. On
the other hand, permissioned blockchain is also known as a private blockchain,
an access control layer that ensures only authorized members access the network.

5.3.2 Hyperledger Fabric (HLF)

[103] is a permissioned blockchain framework to implement private
blockchain. contains members who are legally separate entities known as
organizations. Kach organization can host multiple nodes. Nodes initiate the
transaction that leads to the execution of a smart contract. Transaction privacy
and confidentiality is ensured by using channels in [HLF] A

channel is a subset of peers who want to share the information confidentially.

Components of [HLF}

o Certificate Authority: Certificate Authority issues identity and access con-
trol certificates using public and private keys to network components and
users.

100



5.3 Prelimnaries

« [HLEF] Client: [HLF] Client is the client application that interacts with the
blockchain. The application can be developed using Software Development
Kit (SDK]), which supports Node Java Script , Java, Python, and Go
languages.

o Chaincode: Chaincode is the smart contract deployed on the blockchain
network that details the business logic. The [HLF] client application invokes
and queries the functions on the chaincode. The chaincode is deployed on
the peer binaries of the blockchain network.

o Peer: Peers are the blockchain’s nodes; they are the fundamental entities
of the blockchain that host the ledger and chaincode. An organization can
host one or many peers.

— Anchor Peer: Discoverable outside the organization.
— Leader Peers: Connect to the orderer to receive new blocks.

— Endorsing peers: Special peers that sign the transactions before the
transaction is committed.

e Orderer: Ensure consistency across the network by determining the se-
quence of transactions. It also prepares a block of transactions and broad-
casts the new block in the network.

[HLF] workflow: The client application submits a transaction to endorsing peers;
the peers will execute the transaction, agree the output is the same across other
peers, and add their signature. The client application has to collect endorsements
from multiple peers in the network to say it is a valid transaction as all the
outputs are the same. Later, submit the transaction for ordering; this ensures the
transactions are ordered across all the nodes to validate that no two transactions
should try to change the value of a variable simultaneously. If done, then the first
transaction is allowed, and the later transaction is invalidated. Orderer broadcasts
the new block to peers in the network. The peers validate if the new transaction
has received the required endorsements and later commit the transaction. Finally,
the committed block is added to the blockchain, and the ledger is updated.

101



5.4 Application of Blockchain in Digital Forensics

5.4 Application of Blockchain in Digital Foren-
sics

In cloud forensics, evidence accessibility, availability, transparency, and integrity
have always been a challenge. Earlier proposed solutions are using blockchain to
address these challenges to some extent [104]. Also, most of these works focus
on ensuring the integrity and auditability of evidence by storing the hash value
and series of timestamps of the forensic artifacts on the blockchain. Most cloud
artifacts considered for forensics include cloud logs, [CoC|, and files’ metadata. Let
us further discuss the existing solutions for each of these artifacts in detail and
summarize the strengths and weaknesses of each work (see Table [5.1)).

5.4.1 Log Integrity

Park in his paper [105] proposed a solution for a blockchain-based data logging
and integrity management system for cloud forensics. The proposed solution
involves blockchain across multiple [CSPE. It compares the proposed method with
other cryptocurrencies-based blockchains. The log data is collected from instances
and encrypted from each Later, the hash values for the data corresponding
to each are generated and stored on the block. The participating
determine the time taken to generate a block. After the permitted time, a block
integrity check is performed on each block and added to the blockchain; this
ensures data integrity even before the data is used as evidence by investigators
using a permissioned blockchain.

The author in paper [I01] proposes secure logging as a service using blockchain
to avoid altering logs by un-trusted cloud stakeholders. Node Controller (controls
the log activity of all virtual machines) collects the logs from all virtual environ-
ments and encrypts them. After every day, the Node controller publishes the en-
crypted logs, the hash of encrypted logs, and the hash of the previous encrypted
log on the blockchain; this ensures the integrity, availability, and chronology of
the logs. In case of an incident on the cloud, forensic investigators can access
the blockchain, decrypt the logs, and access them as mentioned in Service Level
Agreement, . The proposed solution achieves integrity, confidentiality, and
availability using permissioned blockchain. However, vast volumes of cloud logs
are stored on the blockchain, increasing the computational cost and communica-
tion overhead.

102



5.4 Application of Blockchain in Digital Forensics

5.4.2 Metadata Integrity

Liang proposes Provchain [18], which mainly focuses on data provenance of files
stored on cloud storage using blockchain. The corresponding file operations, such
as file creation, modification, and deletion, are maintained on the blockchain by
storing a file’s metadata every time an event is performed. Provchain is built on
an open-source application ownCloud, to collect provenance data. ownCloud is
a web-based cloud storage service. As the user acts on the data files on their
ownCloud, the metadata, including username, filename, and actions performed,
are recorded. A provenance auditor uses the chainpoint protocol to publish
data records on the blockchain network and generate blockchain receipts. The
blockchain receipt contains the transaction information and is used to validate
the data. Cloud customers have to pay a fee as a reward for blockchain miners
to opt for data provenance services.

Tian, in his paper [I06], proposes an approach to store the information cor-
responding to the evidence on the blockchain and store the actual evidence on a
trusted storage platform; this avoids blockchain bloat and optimizes the perfor-
mance of the system.

5.4.3 Chain of Custody

It is found that most of the work in forensics using blockchain focuses on auditabil-
ity by ensuring the integrity of as proposed in papers [19], [102], [107], [108],
[109].

Zhang, in his paper [I07], proposes process provenance for the i.e., proof
of existence and privacy of the process records using blockchain and cryptography
group signature. The receiver sends a request to the sender to collect forensic data;
the sender responds to the request with a submission list. The submission list
records the hash values of transferred forensic data files and the group signatures
of the sender and receiver. The receiver verifies the hash values of the files and
confirms the submission list by signing it. Later, the process auditor verifies
the process records using a group signature and collects the records to a certain
number. Finally, the process records are published on the blockchain network,
and the corresponding blockchain receipt is stored.

The author Bonomi proposes a model B{Co(] i.e., blockchain-based [CoC]| [10§]
using a permissioned blockchain, where only authorized entities can access the
evidence. Only one authorized owner can access or own the evidence at a given

103



5.4 Application of Blockchain in Digital Forensics

time. If any other authorized entity needs access, the current owner needs to
raise a transfer request. This transfer request is recorded on the blockchain as
an evidence log. The actual evidence is stored in a distributed database across
trusted parties (court, police officials, etc.). The evidence log and ownership
transfer details hold the details of evidence creation and deletion. The Evidence
log acts as[CoC] The results show that this method has an acceptable performance
overhead. However, one authorized owner at a given point of time is good for
ensuring valid [CoC| but this causes a delay in the investigation process as only
one among authorized entities can access the evidence.

Lone proposed two different models [109], [102] to ensure integrity of
using blockchain. In his first model [I09], he implements a forensic chain using
Ethereum and smart contracts. Details corresponding to the incident, i.e., the
hash of digital evidence, location, date, and time, are recorded on the blockchain
using a smart contract. A new block is added to the blockchain whenever dig-
ital evidence is accessed or transferred. The paper lacks the implementation of
the proposed model. The author proposes Forensic-chain for [CoC| using Hyper-
ledger composer in his later paper [102]. Hyperledger Composer is an open-source
framework built on [HLF] blockchain infrastructure. Evidence creation, transfer,
deletion, and display are captured on the blockchain. These details are used for
auditing [CoC] Hyperledger Caliper is used to evaluate the performance of the
proposed model.

The paper LEChain [19] details supervising the entire evidence flow. It mainly
emphasizes ensuring the privacy of the witness and juror by using randomizable
signatures. The proposed model has been tested on the Ethereum blockchain
network. The communication overhead and computational cost have been evalu-
ated. However, the evidence is stored off-chain in the distributed database, but
all stakeholders’ transaction details performed on the evidential data, such as
upload, access, and request, are stored on the blockchain.

104



5.5 Proposed Model Investigation-Chain

Table 5.1: Digital Forensic Solutions based on Blockchain: Summary of strengths

and weakness

Publication | Strength ‘Weakness
[10T] 1. Addresses multi-stakeholder collusion. | 1. Huge volumes of cloud logs are
2. Storage of cloud logs on-chain. replicated on block.
2. High storage overhead.
[102] 1. Ensures auditability of @ 1. Access to distributed storage system
2. Acceptable overhead in terms of used to store the evidence is not discussed.
resource utilization and throughput.
3. Used Hyperledger Caliper framework
for performance evaluation.
[105] 1. Data integrity is ensured even before | 1. Interoperability among I@
the data is used as evidence. 2. Performance evaluation is done based
2. Reduce dependency on for on expected data size.
integrity check. 3. Role of investigator is not discussed.
[18] 1. Enables cloud auditing for the files 1. Not all cloud customers show interest to publish
stored on the cloud. provenance data on public blockchain.
2. Data provenance is achieved with less | 3 Dependency on provenance auditor.
overhead.
3. Performance overhead is independent
of file size.
[106] 1. Ensure evidence availability and 1. Depends on trusted third party for storage.
integrity with reduced storage overhead.
[107] 1. Provenance of tamper-proof forensic 1. Dependency on certification authority
artifacts submission list. and process auditor.
2. Negligible time overhead for group 2. Storage overhead depends on the
signature as it is executed only a couple | on the no.of files in submission list.
of times.
[108] 1. The proposed model is synchronous 1. At a given point of time only one
this ensures consistency of data in authorized user can access the evidence.
2. Acceptable storage overhead. 2. Increased communication overhead.
[109] 1. Ensures auditable |CoC 1. Lacks proof of concept.
2. Usage of public blockchain may not be
recommended for forensics.
[19] 1. Ensures privacy of witness and Juror. | 1. Dependency on trusted authority.
2. Usage of randomized signatures 2. Usage of public blockchain may not be
to ensure privacy. recommended for forensics.
3. Supervised evidence management.

5.5 Proposed Model Investigation-Chain

This section discusses our proposed Investigation-Chain, its architecture, and
workflow. Our model addresses three major problems of the existing system
discussed in Section i.e., 1. to ensure the integrity of evidence and avoid col-

105



5.5 Proposed Model Investigation-Chain

lusion among multiple stakeholders involved in case investigation, 2. dependency
on [CSP] 3. delay in exchange of evidence legally.

We preserve evidential artifact cloud snapshot using Investigation-Chain.
Cloud [VM] plays a significant role in cloud forensics. A [VM] instance involved
in an incident can effectively restore the machine’s state. It is a logical copy
of the content on the virtual disk at a given time. We can analyze and access
the files and folders stored on the by mounting the snapshot on a forensic
workstation. The hash value of the snapshot is captured while collecting the
evidence. It is used to ensure the integrity of the snapshot. In forensics, we can
use snapshots for the following traces of evidence - hash list of files, recently
modified files, deleted files recovery, list of malicious files and software, unusual
start-up scripts, system logs, web activity, etc. The three main objectives of the
proposed model are,

1. Ensure the integrity of the cloud [VM] snapshot.
2. Tamper-proof and transparent investigation model.
3. Availability of the snapshot to for the investigation.

To achieve the above objectives, we use permissioned blockchain, where all
the stakeholders involved in the investigation are the blockchain network partici-
pants. The section details the roles and responsibilities of each participant.
The main idea is to update the investigation findings of each authenticated par-
ticipant on the blockchain and ensure the availability of snapshot for analysis
using the blockchain; this would help in transparent and quick court trials. Also,
the transparent investigation procedure would increase public confidence in [CSP
and the legal system. The architecture of the Investigation-Chain is shown in
Figure [5.2

106



5.5 Proposed Model Investigation-Chain

DD DD PP
1 ! 1 ; 1
v v v v ]

Blockchain

Court.peerd

TPA
FSL

peer-peer
network
Court

o =
] ‘ CSP.peerl TPA.peerl LEA peerl FSL.peerl
£ upleadS?apshm() updateFindings() viewCaseHistory() downloadSnapshot() —
8 { 1 { | |
2
e S
£ } s % F =
Shared
I Storage
‘ Frontend Application ‘
] (] [ [ oo i
[~} [~ [ ) ] [ )
First incident Investigating Third party Security Forensic Tl
Responder Officer Auditor Experts
L J
T
in Network par

Figure 5.2: Architecture of Investigation-Chain

5.5.1 Blockchain Participants

In the event of the occurrence of a regular cyber incident, first incident responders,
forensic investigators, prosecutor, defense, and court are the stakeholders involved
in the investigation [I02]. In the case of the cloud, we have additional stakeholders
from [CSP|and trusted third parties. We analyzed the main stakeholders involved
in handling cloud incidents by following the incident response guides of the leading
cloud service providers like Amazon [65] and Google [110]. Further, we identified
the organizations participating in the network and listed the participants from
each organization below.

(Organization 1)

o First Incident Responder: A first incident responder is responsible for
identifying the incident first and reporting the incident to the next level.
The member is responsible for capturing the snapshot of the suspected vir-
tual instance, uploading the snapshot in a secured shared folder, capturing
the snapshot’s hash value, metadata of the snapshot, and updating all this
information on the blockchain network.

107



5.5 Proposed Model Investigation-Chain

The member should specify initial findings on the blockchain; this includes-
1. Target instance ID subscription ID or project ID. 2. Region of the target
instance. 3. Time of occurrence of the incident. 4. Incident ticket no. 5.
Intrusion detection system alerts, if any.

« Security Analyst: A security analyst is a peer member of the [CSP] orga-
nization on the blockchain. The member is responsible for downloading the
snapshot from the shared path location on the blockchain, validating the
snapshot’s integrity by using the hash values recorded on the blockchain, an-
alyzing the snapshot, and updating the member findings on the blockchain.
The findings include- 1. Analysis of relevant logs, i.e., system logs, user
activity logs, access logs, network flow logs. 2. Analysis of system configu-
ration. 3. Analysis of boot history. 4. Identifying IP addresses.

o Forensic Analyst: A forensic analyst is a peer member of the organi-
zation on the blockchain. The responsibilities of this member are similar to
that of a security analyst. Additionally, this member examines the evidence

forensically using forensic tools (e.g., [FTK| Encase, [I'SK] Autopsy, etc.).

The findings include- 1. Hash list of the files from the snapshot. 2. List
of new or modified files. 3. List of files recovered from unallocated space.
4. Determine if any private keys are present. 5. Ignored security alerts
generated by antivirus software. 6. Third-party hash lookups if any. 7.

Timeline analysis, 8. List of unusual startup scripts. 9. List of suspicious
files.

e Incident Manager: An incident manager is responsible for communicat-
ing the activities that correspond to the incident through the lifecycle of
an incident. The Incident Manager is given the admin role for the [CSP]
organization in the blockchain network. They are not involved much in the
analysis of evidence; they are more involved in maintaining communica-
tion with other peer members in the network and auditing the transaction
history.

(Organization 2)

o [0} [O]is a peer member of the [LEA| organization. An [[O] is responsible
for the proceedings in the investigation. Every may not be a technical
expert, but they are required to have basic knowledge of handling digital
evidence. captures his findings on the blockchain.

108



5.5 Proposed Model Investigation-Chain

The findings of an [[O] include- 1. Details of the complainant. 2. Analysis
of physical crime scene location. 3. List of physical evidence found at the
crime scene. 4. Details of the suspect, if any. 5. Details acquired during
the interrogation. 6. Technical details such as metadata of snapshot
and suspicious file.

+ Reporting Officer: Reporting officer is responsible for communicating the
activities corresponding to the incident through investigation. The report-
ing Officer is given the admin role for the organization in the blockchain
network. They are not much involved in analyzing evidence; instead, they
maintain communication with other peer members in the network and audit
the transactions.

Third Party Security Auditor (TPA| (Organization 3)

e Security Auditor: A security auditor is a peer member of the or-
ganization on the blockchain. They are involved in analyzing evidence by
the for their expertise. The security auditor captures his findings on
the blockchain. Their findings mainly involve assessing the cloud services if
appropriate controls have been implemented.

Forensic Science Laboratory (FSL) (Organization 4)

o Digital Forensic Analyst: A forensic analyst is a peer member of
[FSLprganization. This member performs forensics on behalf of the [LEA]
As may or may not be technically sound, the forensic analyst does a
complete forensic analysis of the snapshot. The member is responsible for
downloading the snapshot from the shared path location on the blockchain,
validating the integrity of the snapshot by using the hash values recorded
on the blockchain, analyzing the snapshot, and recording his/her findings
on the blockchain.

Most of the findings updated on the blockchain are similar to those of the
forensic analyst (CSP| organization). However, these findings can be used
to cross-validate the forensic analysis performed by the [CSP]

Court(Organization 5)

o Juror: A juror is a member of the court organization in the blockchain net-
work. The member holds the court trials and cross-validates the integrity

109



5.5 Proposed Model Investigation-Chain

of the snapshot by using the hash values in the blockchain network. Audit
the integrity of a snapshot and its findings stored on the blockchain net-
work. They analyze the case presented by the prosecutor and defender and
make appropriate judgments. This member is not involved in the snapshot
analysis.

o Prosecutor: Prosecutor is a member of the blockchain network’s court
organization. During the court trials, they present the case against the
accused. They download the snapshot, validate its integrity, and audit the
findings updated by the other blockchain participants.

o Defender: A defender is a member of the court organization in the
blockchain network. During the court trials, they defend the prosecution.
They download the snapshot, validate its integrity, and audit the findings
updated by the other blockchain participants. The member cross-validates
the findings and checks if any inappropriate accusations have been made.

Based on their roles and responsibilities, the blockchain participants use the
four main functions, i.e., 1. Upload snapshot, 2. Download snapshot, 3. Update
findings, 4. View case history.

Upload snapshot uploads the snapshot in the shared folder so that all other
blockchain participants can access the snapshot and download it. The first inci-
dent responder is responsible for uploading the snapshot. Algorithm [0 details the
steps involved in uploading the snapshot. It takes the snapshot’s metadata and
the snapshot itself as input. The snapshot’s metadata includes- the instance
ID, the region where the instance is hosted, the path of the snapshot on the shared
folder, the date and time of uploading the snapshot, etc. The algorithm initially
computes the hash value of the snapshot to be uploaded Hyrg. We assign the hash
value of the snapshot Hyg to the caselD (i.e., casel D = Hyrg); this ensures that
each caselD is unique and pulls the data corresponding to a specific snapshot.
The algorithm checks if a caselD already exists by querying the blockchain. If
the caselD does not exist, then a new caselD’s value equivalent to Hyrg is created,
and the snapshot is uploaded to the shared folder. Thus, by using caselD, we can
add investigation findings and view case history specific to a snapshot from the
blockchain. Also, it ensures that no snapshot is uploaded to the blockchain more
than once, as caselD is equivalent to the hash value of the snapshot uploaded, so
it avoids duplicates.

110



5.5 Proposed Model Investigation-Chain

Algorithm 9 Upload Snapshot
procedure UPLOADSNAPSHOT(snapshot, snapshot’s metadata)

Hyg < computeHash(snapshot) > Hyrg: Hash value of snapshot to be
uploaded
casel D < query(Hyg)
if caselD # NULL then
L Case 1D already exist
return
caselD = Hyg
Set case attributes using snapshot’s metadata
Upload snapshot to the shared folder

_ return

Download snapshot is used to download the snapshot from the shared path
location by other blockchain participants. Algorithm [10|details the steps involved
in downloading the snapshot; it takes caselD as input. If the caselD requested
by the blockchain participant exists, then the snapshot is downloaded. Once the
blockchain participant downloads the snapshot, its hash value Hpg is computed
again. We compare the hash value of the uploaded snapshot Hirg, which is
equivalent to caselD, with the hash value of the downloaded snapshot Hpg (i.e.,
if casel D = Hpg). If the hash values are equal, then we can say that the evidence
has not been tampered with and can be analyzed for further investigation. By
this, we ensure the integrity of the snapshot. The blockchain participants can now
continue to analyze the downloaded snapshot and update their findings using the
Update findings (Algorithm . Else, if the hash values are not found equal
(i.e., caselD # Hpg), we can say that the snapshot has been tampered. This
information is updated on the blockchain by using Update Findings to alert other
blockchain participants. Thus making the model tamper-proof and transparent.

111



5.5 Proposed Model Investigation-Chain

Algorithm 10 Download Snapshot

procedure DOWNLOADSNAPSHOT(caselD)
if caselD # NULL then

Download snapshot

Compute Hpg > Hpg: Hash value of downloaded snapshot
if Hpg == caselD then

Analyze the snapshot and update findings

return

else

Update finding as Snapshot is tampered

. return
else

Case ID does not exist

| return

Update findings is used by the blockchain participants to add their investi-
gation findings as transactions to the blockchain. Algorithm [11] details the steps
involved in update findings; it takes caselD as input. Participant invokes the
query method with case ID as an argument. The query method returns NULL if
the snapshot with a specific case ID does not exist. If caselD exists, the partici-
pant submits the findings as a new transaction. The findings will be in descrip-
tive format. As these findings are submitted as blockchain transactions, they
are appended to the blockchain’s immutable ledger; this ensures transparency,
immutability, and integrity in the investigation.

Algorithm 11 Update Investigation Findings

procedure UPDATEFINDINGS(caselD)
casel D < query(casel D)

if caselD # NULL then

‘ Update the findings

else

L Case ID does not exist

return

View case history is used by the participants to view all the transactions
corresponding to a specific caselD recorded on the blockchain ledger by other

112



5.5 Proposed Model Investigation-Chain

participants. Algorithm [I2| details the steps involved in viewing case history; it
takes caselD as input. Participant invokes the query method with case ID as an
argument. The query method returns NULL if the snapshot with a specific case
ID does not exist. If the caselD exists, the ledger corresponding to a specific
caselD is downloaded. The ledger entries are audited by cross-validating with the
entries by other participants. By this, we can avoid collusion among participants
to tamper with evidence. This ledger is audited for judgment during court trials.
Thus, this ensures the auditability of the Investigation-Chain.

Algorithm 12 View Case History
procedure VIEWHISTORY (caselD)

casel D < query(casel D)
if caselD # NULL then
‘ View case history

else

L Case ID does not exist

return

5.5.2 Investigation-Chain Workflow

The workflow diagram in Figure shows a graphical overview of the
Investigation-Chain. Step 1 in Figure details the steps involved in uploading
the snapshot by the first incident responder, and step 2 involves the details corre-
sponding to downloading the snapshot, updating case finding, and accessing case
history by other blockchain participants.

113



5.5 Proposed Model Investigation-Chain

First incident

[£2)
=
:L)

Request from LEA to capture
cloud WYIM snapshot

Compute VM snaphot hash
value Hysg

l

caselD=query{Hys)

responder |

caselD=Hys

|

upl

set snapshot attributes and
oad snapshot in shared folder

S
—

'{’m
\4

No

Case ID with the current
snapshot already exist.

| Download Snapshot

EEEEEEEEEEEL AR

-
|"n

v

‘ Query(caselD)

| View case history |

¥

| Query(caselD) |

No Yes
° compute the Hps caselD does not exist
'~
Other
b;‘:;':?“:r;’t‘q Enter snapshot tampered on ¥
Rarcpans blockchain: return Download case History
Update the findings on
blockchain network

Note:

S 4 5 8 8 8 B E S B B S E B E S B E S S EE S S B E S S BSOS EE S EE S EE S EE SRS SRS EE RS

= Hyg: Hash value of the uploaded snapshot. ( Hys is equivalent to caselD)
» Hpsg: Hash value of the downloaded snapshot.
« query(Hys) Query the blockchain for snapshot with hash value Hys.

Figure 5.3: Operational workflow of Investigation-Chain

114



5.6 Proof of Concept

5.6 Proof of Concept

To validate the application of Investigation-Chain, we apply the model to a case.
For simplicity, we considered a child pornography case. To simulate the cloud
environment, we created a private cloud using Openstack (version: Wallaby) [111]
on a single host machine. Further, we created an instance on the Openstack cloud
using the Ubuntu cloud image (.qcow2). This instance is used as the target virtual
instance in the case for analysis. For the blockchain network, we used [HLF]| with
five organizations, each organization with a single peer (5-organizations-1-peer).

5.6.1 Case Study (Child Pornography)

A victim of child sexual abuse approaches the local police station to file a com-
plaint against the accused. An [[O]at the police station receives a complaint and
interviews the victim. The then obtains a search warrant for the accused
home to gather the evidence. The [[O]recovers a laptop, mobile phone, and other
electronic storage media from the crime scene (i.e., the accused home). The
uses forensic tools like FTK, Solo, Encase, etc, for data acquisition to capture the
image of digital evidence found at the crime scene. Later, the digital evidence is
seized and sent to the forensic lab for analysis.

Upon receiving the evidence, the forensic analyst analyzes the electronic de-
vices seized. The analyst uses forensic tools like [FTK]| Encase, etc., to perform
forensic analysis. The analysis is based on the nature of the incident, i.e., as the
case is specific to child pornography, the analyst looks for images and video files,
performs a keyword search, and checks if any photo morphing tools are present.
In this case, to the surprise of the analyst, no illegal content specific to child
sexual abuse is found on the suspect machine. Thus, the analyst further analyzes
the accused web activities and finds that the accused has been using cloud ser-
vices. The analyst suspects that the accused might be using cloud services for
illegal activities. The forensic analyst now generates a report and summarizes the
analysis. This report is shared with the [[O] Based on the report, [[O]sends a legal
notice to and requests them to provide a snapshot of the virtual instance
used by the accused to perform illegal activities. The notice issued consists of the
details corresponding to the accused username/subscription ID, date, and time of
the incident. The [CSP] uses these details to identify the target virtual instance.
Investigation-Chain application for this scenario is detailed below.

115



5.6 Proof of Concept

Hex File Metadata Results
Name fimg_Case Study E01
Type EO01
Size 10737418240
MD5 1c7380a3b66ccb6623719a1b316c93b7
SHA1 6046fc212b4137b7ee38805d9310776c4d4aa466
SHA-256 Not calculated
w | €

Figure 5.4: Hash value of snapshot computed using Autopsy tool

Step 1: Upon receiving the request from , the first incident responder(at
CSP)) captures the snapshot of the target virtual instance hosted on the cloud.
The first incident responder creates a new case ID and updates it with details
corresponding to the incident on the blockchain. The details include the tar-
get instance ID, region, the path of the snapshot on the shared folder, and the
hash value of the snapshot on the blockchain. Finally, submit the transaction
with these details on the blockchain. When we query this transaction on the
blockchain, it returns the submitted transaction in the JSON format, as shown
below. Here, the key represents the caselD (hash of the snapshot).

{

"Key": "1c7380a3b66ccb6623719a1b316c93b7",

"Record": {
"participant": "First Incident Responder",
"targetInstanceID": "ac2lafab-4044-4fde-9bcd-28b82828b5d6",
"region": "nova",
"path": "/home/HyperLedger/snapshots/",
"snap_hash": "1c7380a3b66ccb6623719a1b316c93b7",

Step 2: The other blockchain participants can download the snapshot and
analyze it. To validate the integrity of the snapshot, the participant compares
the hash values of the snapshot, i.e., validate if the hash value of the snapshot
computed after downloading it from the shared path location is the same as the
hash value of the snapshot updated on the block. We computed the hash value
of the downloaded snapshot by using the Autopsy tool (Figure . It is found

116



5.6 Proof of Concept

that the hash value in Figure is the same as the hash value of the snapshot
on the blockchain (see JSON object above)

Step 3: The forensic analyst from the organization now downloads the
snapshot from the blockchain using the case ID. The downloaded snapshot is in
"VMDK"’ format. We used this file as input to the forensic tool. In this case,
we used Autopsy, an open-source tool to perform forensic analysis. The forensic
analyst analyses the reports generated by the Autopsy tool and looks for images
and videos containing child porn content. The analyst finds an image named
”child2.jpeg” related to child pornography. Figure [5.5 shows the screenshot of
the Autopsy tool for metadata corresponding to the child2.jpeg image.

Details

Attribute Value
% Name child2 jpeg
Analyzed true
= Category
Tags
% Path J/img_Forensic Projectvmdk/vol_vol2/home/student/Documents/Childimages(2-5yrs)/

3 Created Time 2021-07-02 12:58:03 IST

& Modified Time  2021-07-02 12:58:03 IST
n MD5 Hash 7812bcfb8595f3013d964e2cc481%ale
® Hashset
@l Camera Make

Figure 5.5: Cloud |CSP|instance image file findings using Autopsy tool

Step 4: The forensic analyst from the [CSP| organization now updates his
findings regarding the child2.jpeg image on the blockchain; this includes the file
name, its path on the snapshot, its hash value, file type, and date & time of
creation. These details are updated on the blockchain as a new transaction, as
shown below,

{
"Key": "1c7380a3b66ccb6623719a1b316c93b7",

117



5.7 Results and Discussion

"Record": "{
"snap_hash": "1c7380a3b66ccb6623719a1b316c93b7",
"path": "/home/HyperLedger/snapshots/",
"Findings": \"Name: child2. jpeg;
File path: /img Case Study.E01/vol_vol2/home/imgs/;
Created Time : 2021-07-01 13:18:03 IST;
Modified Time: 2021-07-01 13:18:03 IST ;
MD5: 1a31589db2cfceaeb65eee7bd93a1371 ;
MIME/type: image/png\",
\"DateTime\":\"Thu 01 Jul 2021 06:47:12 PM IST\"}"

Step 5: The forensic analyst from the organization downloads the snap-
shot and validates its integrity, as mentioned in step 2. Further, the forensic
analyst (from FSL) now performs the analysis using the forensic tool and up-
dates his findings on the blockchain.

Step 6: Like the incident manager (CSP)), reporting officer, juror, prosecutor,
and defender, the other participants can view the ledger and cross-validate the
updated findings. For example, the hash value of the image file "child2.jpeg”
updated by the forensic analyst (from can be compared with the hash
value updated by the forensic analyst (from [FSL). Similarly, every participat-
ing organization can view the entire ledger and validate the entire investigation
proceedings.

5.7 Results and Discussion

5.7.1 Analysis of computational cost and communication

overhead

We created a blockchain network on a laptop with 16 GB of RAM, Intel(R)
Core(TM) i5-8265U CPU @1.60GHz, Ubuntu 18.04.6 LTS, and Visual Studio
2010. To set up the[HLF|network, we used the docker 20.10.7 and cloned the latest
version of from GitHub [I03]. We created a blockchain network with five
organizations and an orderer, each organization with one peer node. We generated
the certificates for the participating nodes by using the certificate authorities.

118



5.7 Results and Discussion

To ensure privacy and confidentiality, we use channels. Channels are the
subnets among the network participants; only authenticated participants can join
the channel and have private communication. Blockchain transactions are exe-
cuted on these channels. The participants join the channel using the certificates
created by the certificate authorities. We used Node.js to write the chaincode for
the smart contract.

We analyzed the computational cost for the four main activities: uploading
snapshots, updating findings, downloading the snapshots, and view case history.
We compute the performance of Investigation-Chain by using the following terms,

o Gy~ Generate the hash value of the snapshot uploaded.

o Qp- Query the hash value of the snapshot on the blockchain.
e (;4- Create new case ID.

e Us- Upload the snapshot in the shared folder.

o Qiq- Query the case ID.

o (G4~ Generate the hash value of the downloaded snapshot.

o V- Validate the integrity of the snapshot by comparing the hash value of
both uploaded and downloaded snapshots.

e Dg- Download the snapshot.
o A;s- Access the case History of a specific case ID from the blockchain.
« Uy- Update findings on the blockchain.

Uploading a snapshot involves- 1. Generating the hash value of the snapshot,
2. query the snapshot to see if it already exists on the blockchain network, 3.
creating a new case ID, 4. uploading the snapshot. Thus, the time taken to upload
the snapshot can be computed by (G, +Qp, + C;q+ Us), which takes approximately
2.6 seconds for a snapshot of size 40 MB. We have experimented with our model
by varying the snapshot size from 40 MB to 500 MB. It is observed that as the size
of the snapshot increases, the time required to upload the snapshot also increases.
The graph in Figure presents the time taken to upload a snapshot for each
varying snapshot size.

119



5.7 Results and Discussion

10 25
—— Upload Snapshot ——Download Snapshot
. 81 8 —;; 20 | 8
E
S 6l 12 15} /—’/
A =
= -
o) 4+ 4.2 10 R
g /»/—/\/4\; =
a =
2 1B 5f .
100 200 300 400 500 0 100 200 300 400 500
Size of Snapshot in MB Size of Snapshot in MB

Figure 5.6: Time vs size of the snapshot

Downloading the snapshot involves- 1. Query the blockchain for the avail-
ability of the snapshot with the specific hash value. 2. Download the snapshot.
3. Generate the hash value of the downloaded snapshot. 4. Validate the in-
tegrity of the snapshot using hash values. Thus, the time taken to download the
snapshot can be computed by (Qp + G4+ Ds+ V), which takes approximately
13 milliseconds for the snapshot of size 40 MB. The graph in Figure presents
the time taken to download the snapshot for each varying snapshot’s size from
40 MB to 500 MB. It is observed that there is not much variation in the time
taken to download the snapshot, as the time variation is in milliseconds. The
snapshot is available in the blockchain network’s application server (i.e., shared
folder); downloading takes less time than uploading a snapshot.

Other operations such as update findings and view case history involve- 1.
Query the case ID, 2. update findings or view case history. Thus, the time
taken to update finding can be computed by (Qiq+ Uy), which is approximately
18 milliseconds, and the time taken to view case history can be computed by
(Qiq+ Ajq) which is approximately 11 milliseconds.

Table lists the time taken by the Investigation chain for above discussed
operations. It is seen that the time taken to upload the snapshot is longer com-
pared to other operations as it involves copying the snapshot to the shared folder.
The size of the snapshot considered for this experiment is 40MB. On the other

120



5.7 Results and Discussion

hand, the time taken to download the snapshot, access, and verification is com-
paratively acceptable.

Table 5.2: Operational cost in milliseconds

Operation Time (in ms)
Upload snapshot 2679
Download snapshot | 13.0
Update Findings 18.0
View History 11.0

We further evaluated the performance of Investigation-Chain using Hyper-
ledger Caliper. It is a benchmark framework for performance evaluation of
blockchain solutions [I02]. Caliper generates reports on various performance in-
dicators such as transactions per second , latency, and resource utilization
[T12]. These reports help us determine the performance of blockchain under differ-
ent scenarios and make choices based on user-specific requirements. We integrate
the existing blockchain network with the caliper framework. Caliper provides
interfaces to invoke the chaincode methods deployed on the blockchain network’s
peer nodes. We generate performance reports for Investigation-Chain by varying
and network size from caliper interfaces. We computed blockchain perfor-
mance indicators (generated by caliper), i.e., latency in seconds, throughput in
[tps, CPU utilization in percentage, memory utilization in MB, traffic in, and
traffic out in KB.

We evaluated Investigation-Chain by varying the network size with 5-
organization-1-peer, 4-organization-1-peer, and 3-organization-1-peer based on
two functions, update findings and view the investigation history. These two
functions involve submitting and querying transactions from the blockchain in-
dependent of storage services required to upload and download snapshots. We
varied the transaction sending rate from 6 [tps] to 51 [tps| with an interval of 5. We
repeated the experiment multiple times for each value of transaction send rate
and computed the average values to reduce the error.

The Table[5.3| Table[5.4] and Table|5.5[shows average latency and throughput
for 5-organizations-1-peer, 4-organizations-1-peer, and 3-organizations-1-peer, re-
spectively. The results show that the latency gradually increases as we increase
the transaction send rate. In contrast, the throughput rises to a point and pro-
gressively decreases after a certain transaction send rate (see Figure .

121



5.7 Results and Discussion

The maximum throughput observed for 5-organizations-1-peer, 4-organizations-
1-peer, and 3-organizations-1-peer is 14 15 [tps] and 16 (approximately).

Table 5.3: Avg latency and throughput for a network with 5-organizations-1-peer

Send Rate(tps) | Max Latency(s) | Min Latency(s) | Avg Latency(s) | Throughput(tps
6 [tps 2.30 1.06 1.49 4.46
11 [tps 2.1 0.63 1.25 6.63
16 tps 1.90 0.92 1.36 10.06
21 tps 2.97 0.73 1.42 11.88
26 [tps 3.03 0.80 1.50 13.63
31 tps 3.78 0.89 1.88 11.4
36 [tps 4.99 1.20 2.88 9.02
41 ftps 5.69 1.20 3.35 8.18
46 [tps 6.93 2.11 4.61 7.06
51 [tps 8.53 3.59 6.07 6.19
s ——send rate vs avg latency —+—send rate vs throughput

151 :

é 6

3 ) %10 f 1

=

=

SIS iy o |
0 : ‘ : : : 0 | ‘ | | |

10 20 30 40 50 60 10 20 30 40 50 60
Send rate in Send rate in

Figure 5.7: vs avg latency and throughput for 5-organizations-1-peer

122



5.7 Results and Discussion

Table 5.4: Avg latency and throughput for 4-organizations-1-peer

Send Rate | Max Latency(s) | Min Latency(s) | Avg Latency(s) | Throughput(tps
6 [tps 1.57 0.65 1.11 4.38
11 tps 1.81 0.48 1.04 6.83
16 tps 1.13 0.55 0.83 11.11
21 [tps 2.14 0.51 1.02 12.35
26 [tps 2.25 0.56 1.16 15.33
31 [tps 3.47 0.53 1.40 13.94
36 [tps 3.84 0.69 2.01 10.95
41 [tps 4.77 1.02 2.70 9.85
46 [tps 5.56 1.14 3.28 8.71
51 [tps 6.68 1.54 4.08 7.85
6 20
——send rate vs avg latency ——send rate vs throughput
= 15| :
g 4 1
S 2
: T0) 1
k=
<]
2 [ -
g
= 5| 1
O | | | | | O | | | | |
10 20 30 40 50 60 10 20 30 40 50 60
Send rate in Send rate in

Figure 5.8: vs avg latency and throughput for 4-organizations-1-peer

123




5.7 Results and Discussion

Table 5.5: Avg latency and throughput for 3-organizations-1-peer

Send Rate | Max Latency(s) | Min Latency(s) | Avg Latency(s) | Throughput(tps
6 [tps 1.25 0.33 0.79 4.75
11 tps 1.36 0.52 0.92 7.16
16 tps 1.00 0.48 0.73 11.68
21 [tps 1.83 0.56 1.02 12.88
26 [tps 2.14 0.44 1.06 15.80
31 [tps 3.45 0.43 1.67 10.24
36 [tps 3.56 0.66 1.97 11.26
41 [tps 4.33 0.62 2.25 10.78
46 [tps 5.25 1.04 2.95 9.31
51 [tps 5.87 1.43 3.62 8.91

6 20
——send rate vs avg latency ——send rate vs throughput

n 15 |

e |

2 .

£ S ]

]

2 2r :

. 5 |

O | | | | | O | | | | |
10 20 30 40 50 60 10 20 30 40 50 60
Send rate in Send rate in

Figure 5.9: vs avg latency and throughput for 3-organizations-1-peer

Figure compares the average latency, and Figure [5.11| compares the
throughput for the above mentioned three network models. From Figure [5.10
and Figure [5.11] we observe that the throughput decreases and the average la-
tency increases as the blockchain network size increases, which complies with the

property of Hyperledger-based blockchain [102].

124




5.7 Results and Discussion

10 »
5-organizations-1-peer
g | —=—4-organizations-1-peer
z —— 3-organizations-1-peer
g
z 0
0
g
o 4+t
=
=
2 ;s
0 + + t t t {
10 20 30 40 50 60
Send rate in

Figure 5.10: Average latency comparison for three network models

20
5-organizations-1-peer
—&—4-organizations-1-peer
15 | —— 3-organizations-1-peer

10 20 30 40 50 60
Send rate in

Figure 5.11: Throughput comparison for three network models

To analyze the communication overhead, we used Hyperledger Caliper and
analyzed the resources consumed by each component involved in Investigation-
Chain’s blockchain network (5-organizations-1-peer). The table details the
resources used by each component of the proposed model for all transaction send
rates. We initially repeated the test multiple times and computed the average
CPU, average memory, and average traffic for every transaction send rate (for

125



5.7 Results and Discussion

each component). Further, we computed the average of CPU, memory, traffic in,

and traffic out fields of the Table[5.6]for all transaction send rates (see Table [5.6)).

Table 5.6: Average resource utilization for 5-organization-1-peer for all transaction

send rate
Component Name CPU%(avg) | Memory (avg) | Traffic In (avg) | Traffic Out (avg)
[MB] [KB] [KB|
dev-peer(.csp.example.com 32.06 715.85 508.91 216.91
dev-peer(.lea.example.com 5.42 623.85 378.33 70.90
dev-peer(.tpa.example.com 0.02 587.21 1.72 0.69
dev-peer0.fsl.example.com 0.02 578.64 1.73 0.72
dev-peer(.court.example.com 0.11 586.39 1.70 0.68
peer(.csp.example.com 127.60 1282.07 2481.30 1301.67
peer(.lea.example.com 50.25 1167.11 1931.94 808.55
peer(.tpa.example.com 45.17 941.59 1508.74 445.23
peer0.fsl.example.com 45.08 1104.22 1513.00 439.71
peer(.court.example.com 44.98 1108.80 1510.06 444.26
orderer.example.com 5.13 682.12 1088.86 2295.95
csp_db 515.80 952.77 79.23 489.57
lea_db 46.65 901.40 57.84 29.37
tpa_db 49.90 712.42 68.92 38.28
fsl_.db 46.21 715.53 68.73 38.45
court_db 48.61 710.96 68.80 38.17
ca_csp 4.08 109.74 11.09 23.39
ca_lea 4.05 224.22 11.06 23.29
ca_tpa 2.91 106.46 11.02 23.46
ca_fsl 1.79 105.42 10.96 23.43
ca_court 1.84 108.44 10.95 23.43
ca_orderer 0.08 214.11 0.81 0.00
cli 0.00 226.10 0.85 0.00

5.7.2 Comparative analysis of the recent research with

Investigation-Chain

We present a comparative analysis of the recent research and our proposed model
Investigation-Chain for the security of cloud evidential artifacts, such as integrity,
auditability, privacy, confidentiality, transparency, and availability, in Table [5.7
The security elements listed in Table|5.7]are the common security aspects observed
and mentioned explicitly across the recently published works. This comparative

126



5.7 Results and Discussion

analysis proves that Investigation-Chain fulfills all the essential security aspects
compared to other research work.

« Integrity (Protection of block content from unauthorized modification):

By its nature, Blockchain technology ensures an immutable ledger; we
can ensure that the investigation findings and hash value of the snapshot
recorded by blockchain participants are tamper-proof. Even if any peer
tampers the ledger, it would not be able to convince all the other peers
of the blockchain as the ledger is distributed throughout a network of in-
dependent peers. Hence, this makes this model tamper-proof and ensures
integrity.

« Auditability (Ensuring the data on the blockchain can be used for au-
dit trails): The investigation proceedings are available as transactions on
the blockchain’s immutable ledger. Blockchain participants can use the
ledger to examine the transaction history(i.e., case investigation proceed-
ings). Thus, the ledger allows blockchain participants to audit the case
history and judge based on all transactions recorded on the blockchain.

« Privacy (Ensuring that only authorized members have access to the net-
work): Maintaining data privacy is essential in the investigation, and only
authentic users should participate in core functionalities. Investigation-
Chain uses with authorized blockchain participants. We used the cer-
tificate authorities to create the certificates to validate the identity of the
blockchain participants. As all the participants are authenticated, privacy
is ensured.

» Confidentiality (Protection of block content from unauthorized disclo-
sure): ensure confidentiality through channels. In Investigation-
Chain, we created the channel and deployed our smart contract on it. The
Blockchain transactions are executed on this channel. Only authenticated
network participants who joined the channel using their certificates can ac-
cess the ledger and smart contract. Thus, our model ensures confidentiality.

« Transparency (Ensuring all the peer members in the blockchain network
can view all the transactions on the blockchain): The proposed model in-
creases transparency in the investigation procedure by enabling the stake-
holders to update their findings on the blockchain as transactions. Each

127



5.7 Results and Discussion

peer of the organization participating in the blockchain network has a local
copy of the entire ledger, which the authenticated members of the organi-
zation can view. Thus, our model ensures transparency.

» Availability (Ensuring that the digital evidence is always available for anal-
ysis and examination by peer members): Availability of the evidence is en-
sured with reduced block size, i.e., without replicating the actual snapshot
on the blockchain, which consumes a lot of network storage, we share the
path of the shared folder and enable the user to download the snapshot.
Thus, the evidence is available to all the blockchain participants, reducing
the time required to access evidence, unlike in the existing system discussed

in Section (.11

Table 5.7: Digital Forensic Solutions based on Blockchain: A Comparative Anal-

ysis of security elements

BT
Z CRR-RIS
o | B ERRAE:
SEEER
Publications | Blockchain type Forensic artifact Content on Block S| < C: CRE=RP]
[107] HLF Cloud logs Encrypted cloud logs VI IX|IVIVIVI|V
[102] Hyperledger Composer CoC History of ownership VIiVvIiVvIiVv|v|X
evidence creation,
transfer & deletion
details
[105] Permissioned blockchain | Cloud logs Hash values of logs VI IXIVIiVv|Vv|X
[18] Permissionless blockchain | Metadata of a file hash values of metadata | v | v | X | v |V | X
[106] Permissioned Blockchain | Files Metadata of the file VIiVvIiVvI iV V|V
[107] Permissionless blockchain | Submission list of hash values of files in VIiVvIX|Vv|Vv]|X
files submission list
[108] Private permissioned CoC History of ownership, VIiviIiviv|iv]|X
blockchain evidence creation,
transfer, & deletion
details
[109] Ethereum CoC hash values of digital VIV IX|X|v|X
evidence, transfer &
access request
[19] Ethereum CoC Evidence upload, access, | v | v | X |V | v | X
request details
Investigation- | |[HLF cloud |CSP|Snapshot | Hash value of snapshot, VIiVvI IV VI V|V
Chain shared folder path of the
snapshot, investigation
findings

128



5.8 Summary

5.8 Summary

Blockchain is a platform that provides multiple stakeholders who do not trust
each other to share the information transparently and also ensure integrity, au-
thenticity, and security by design. It is best suited for cloud forensics, where
many stakeholders are involved. There is always a possibility that multiple stake-
holders may collude among themselves to tamper with the digital evidence. This
work presents a tamper-proof and transparent investigation model using the
framework. Investigation-Chain avoids multi-collusion problems among the stake-
holders and ensures integrity, transparency, authenticity, privacy, and availability.
We have seen that the Investigation-Chain enables the participating entities to
upload [CSP|snapshots, push their findings by analysis of snapshots, and view the
investigation findings updated by other participants using the immutable ledger.

Finally, we validated Investigation-Chain using a case study and Hyper-
ledger caliper(a performance benchmark tool to evaluate the performance of a
Hyperledger-based blockchain network). We compared our model with the com-
putational cost of various operations such as upload, download, and access with
other models. Further, computed the average latency, throughput, and resource
utilized by varying the network size of Investigation-Chain by using Hyperledger
caliper. The results show acceptable computational and communication overhead
over the benefits offered by our model. Our analysis and experiments demonstrate
a tamper-proof and transparent investigation model for the preservation of evi-
dence and investigation proceedings.

129



Chapter 6

Conclusion and Future Work

In this chapter, concluding remarks are presented on the research work which
is being carried out in this thesis. This chapter contains the summary of the
contributions of this thesis and finally, a few glimpses of future research directions.

6.1 Summary of Contributions

Anti-forensics analyzes evidential artifacts to ensure their integrity and complete-
ness of evidence so that it is admissible in a court of law. From our detailed survey
of the existing cloud forensic procedures adopted by the leading [CSP}, it was ob-
served that the anti-forensics is ignored. In this thesis, we address one of the
anti-forensic practices of artifact wiping. We focused on detecting wiping, recov-
ery of wiped files from cloud [VMk, and preservation of evidential artifacts like
cloud snapshots.

To detect wiping on cloud [VME, we proposed two solutions using information
theory metrics: a static approach and a dynamic approach In
[WiDeJ] we fetch the file system journal from the cloud snapshot and analyze
the data blocks corresponding to a file to detect wiping. In [WiDeS| we fetch
the system-calls from cloud using Sysdig and detect wiping by analyzing
patterns in system-calls. Since there is no benchmark dataset available to check
the accuracy of our model, we have used our own synthetic data. For the static
approach, we have tested our model on the data set with 54 files (which includes
22 different file types). For , we have tested it on our dataset with 93
processes (including both 70 benign and 15 wiping processes). In both cases, our
models could determine wiping with 100% accuracy.

130



6.1 Summary of Contributions

For the recovery of wiped files, we exploited the data recovery mechanism of
the underlying file system of the cloud In this thesis, we explored the journal-
based file system and the [CoW}based file system BTRES We evaluated

both file systems. We discussed recovery from the journal-based file system and

its limitations. Further, we proposed using in cloud with our script
preinstalled that keeps running in the background and logs the PA of the files

upon their creation. Since is based on the principle, it contains

multiple file versions. However, the reference for the previous version of the file
is lost. Using [ReWinD] we captured the PA of the file’s previous versions. There
are a few associated challenges with[BTRES] like node splitting and merging. We
detailed the associated challenges and scope of recovery of files upon wiping the
file.

Finally, we propose Investigation-Chain to preserve cloud [VM] and investiga-
tion proceedings using blockchain technology. This investigation model also ad-
dresses the challenges corresponding to cloud forensics, such as evidence integrity,
transparency, immutability, and availability. We have identified the prime stake-
holders in cloud incident investigation and defined their roles and responsibilities
in detail. Further, we proposed the system architecture for cloud investigation
by incorporating blockchain technology in cloud forensics. We also evaluated
the performance of Investigation-Chain using the Hyperledger Caliper. The re-
sults show that our model’s performance overhead is acceptable, considering the
additional benefits offered.

6.1.1 List of Contributions

o An approach to detect file wiping on virtual machines using journals, data
blocks, and information theory metrics.

o A novel approach to detect file wiping on virtual machines using the SoS
and information theory metrics.

« An approach to restore the wiped files using file system journals.

« A novel approach to restore the wiped files using [CoW}based file system

BTRES.

o A usecase for extending ReWinD for recovery of encrypted files using
Gonnacry application.

131



6.2 Future Work

A big picture of cloud forensic approaches adopted by the leading [CSPE.

o An investigation model to preserve evidential artifacts and capture investi-
gation proceedings that is tamper-proof and transparent across the stake-
holders involved in the investigation.

6.2 Future Work

In this thesis, we have limited the scope of our work to artifact wiping. However,
we wish to extend our work to encryption. Encryption is also considered as a
major anti-forensic approach, where the adversary tries to encrypt the file content,
obfuscating the investigator to conduct a smooth investigation. Also, we found
many similar characteristics between encryption and wiping (e.g., encrypted files
contain random characters, like wiped files).

As we explore encryption, we also consider ransomware attacks due to their
similarity with wiping attacks. This is because of ransomware behavioral charac-
teristics like- mass file encryption, unusual file renaming activities, and frequent
repetitive file access events are similar to wiping attacks. For example, to encrypt
a single file, the ransomware performs three basic activities, i.e., 1) Opening the
file, 2) reading the contents of the file, and 3) encrypting the file. Now, this
pattern is repeated for multiple files that are available in the user space. This
causes the same pattern of system-calls to be repeated multiple times, similar to
wiper attacks. Thus, the proposed model, which uses system-calls and
entropy, can be extended to detect ransomware attacks.

Also, in[ReWinD] we have seen a usecase where we extend [ReWinD|to recover
encrypted files affected by ransomware Gonnacry. In this direction, we propose to
extend our work to determine the file system behavior under mass file encryption
and the scope for recovering encrypted files when affected by ransomware attacks.

132



List of Publications

Journals

1. Sanda P, Pawar D, Radha V. An insight into cloud forensic readiness
by leading cloud service providers: a survey. Computing. 2022 Apr
17:1-26. https://doi.org /10.1007/s00607-022-01077-2. [Indexed: SCI,
SCIE, SCOPUS, DBLP, UGC-CARE List(India)]

Status: Accepted and Published

2. Sanda P, Pawar D, Radha V. Blockchain-based tamper-proof and
transparent investigation model for cloud VMs. The Journal of
Supercomputing. 2022 May 25:1-29. https://doi.org/10.1007/s11227-022-
04567-4. [Indexed: SCIE, SCOPUS, UGC-CARE List(India)]
Status: Accepted and Published

3. Sanda P, Pawar D, Radha V. ReWinD: Recovering Wiped and
Deleted Files - An Anti-forensic Perspective to Forensic Science In-
ternational: Digital Investigation. [Indexed: SCIE, SCOPUS]

Status: Under Review

133



Conference Proceedings

1. Sanda P, Pawar D, Radha V. VM Anti-forensics: Detecting File
Wiping Using File System Journals. In ICCET 2022, International
Conference on Computing in Engineering & Technology 2022 (pp. 497-
508). Springer, Singapore. https://doi.org/10.1007/978-981-19-2719-5.
[Indexed: SCOPUS, EI, DBLP]

2. Sanda P, Pawar D, Radha V. WiDeS: Wiping Detection
using System-calls - An Anti-forensic Resistant Ap-
proach. In 2023 IEEE 22nd International Conference on
Trust, Security and Privacy in Computing and Communica-
tions (TrustCom) (pp. 1695-1703) (Core ranking conference).
https://doi.ieeecomputersociety.org/10.1109/Trust Com60117.2023.00231
[Indexed: EI]

134



Acronyms

AEP Asymptotic Equipartition Property.
ASCII American Standard Code for Information Interchange.

AWS Amazon Web Services.
BTRFS B-Tree File System.

CI Confidence Interval.
CoC Chain of Custody.
CoW Copy-on-Write.

CSP Cloud Service Provider.

DoD Department of Defense.

DTM Digital Tool Marks.

exFAT Extended File Allocation Table.

Ext Extended File System.

FAT File Allocation Table.
FN False Negative.

FP False Positive.

FS File System.

FSL Forensic Science Laboratory.

135



Acronyms

FTK Forensic Tool Kit.

GCP Google Cloud Platforms.

GDPR General Data Protection Regulation.

HIPPA Health Insurance Portability and Accountability Act.

HLF Hyperledger Fabric.

TaaS Infrastructure as a Service.
10 Investigating Officer.
IoT Internet of Things.

IRP I/0 Request Packets.
JS Java Script.

LA Logical Address.

LEA Law Enforcement Agency.

MBR Master Boot Record.

MFT Master File Table.

NCRB National Crime Records Bureau.
NE Normalized Entropy.
NIST National Institute of Standards and Technology.

NTFS New Technology File System.
OES Octal Escape Sequences.

PA Physical Address.

PaaS Platform as a Service.

136



Acronyms

PHI Protected Health Information.

PII Personally identifiable information.

RAM Random Access Memory.

ReWinD Recovering Wiped and Deleted files.

SaaS Software as a Service.

SDK Software Development Kit.
SLA Service Level Agreement.

SOP Standard Operating Procedure.

SoS Sequence of System-calls.

TN True Negative.
TP True Positive.
TPA Third Party Security Auditor.

tps transactions per second.

TSK The Sleuth Kit.
VM Virtual Machine.

WiDeJ Wiping Detection using Journals.

WiDeS Wiping Detection using System-calls.

ZFS Zettabyte File System.

137



References

1]

DicaMBAR PovAR AND VK BHADRAN. Forensic data carving. In
Digital Forensics and Cyber Crime: Second International ICST Confer-
ence, ICDF2C 2010, Abu Dhabi, United Arab Emirates, October /-6, 2010,
Revised Selected Papers 2, pages 137-148. Springer, 2011.

ANTONIO SAVOLDI, MARIO PICCINELLI, AND PAOLO GUBIAN. |A statis-

tical method for detecting on-disk wiped areas. Digital Investigation,
8(3-4):194-214, May 2012.

SIMSON L GARFINKEL. Digital forensics research: The next 10 years.
digital investigation, 7:564—-S73, 2010.

JIGNASA SINHA MAHENDER SINGH MANRAL. 24% rise in cybercrime
in 2022, 11% surge in economic offences: NCRB report, December
2023.

AcuMEN. Digital Forensics Market Size - Global Industry, Share,
Analysis, Trends and Forecast 2023 - 2032, April 2023.

RyAN HARRIS. Arriving at an anti-forensics consensus: Examin-
ing how to define and control the anti-forensics problem. digital
investigation, 3:44-49, 2000.

ADEYINKA ODEBADE, THOMAS WELSH, SIYAKHA MTHUNZI, AND EL-
HADJ BENKHELIFA. Mitigating anti-forensics in the cloud via
resource-based privacy preserving activity attribution. In 2017
Fourth International Conference on Software Defined Systems (SDS), pages
143-149. IEEE, 2017.

SECURITY JOES. BiBi-Linux: A New Wiper Dropped By Pro-
Hamas Hacktivist Group, October 2023.

138


https://doi.org/10.1016/j.diin.2011.06.005
https://doi.org/10.1016/j.diin.2011.06.005
https://doi.org/10.1016/j.diin.2010.05.009
https://indianexpress.com/article/india/rise-cybercrime-2022-economic-offences-ncrb-report-9053882/
https://indianexpress.com/article/india/rise-cybercrime-2022-economic-offences-ncrb-report-9053882/
https://www.acumenresearchandconsulting.com/digital-forensic-market
https://www.acumenresearchandconsulting.com/digital-forensic-market
https://www.securityjoes.com/post/bibi-linux-a-new-wiper-dropped-by-pro-hamas-hacktivist-group
https://www.securityjoes.com/post/bibi-linux-a-new-wiper-dropped-by-pro-hamas-hacktivist-group

REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

[15]

JUAN ANDRES GUERRERO-SAADE. HermeticWiper— New Destruc-
tive Malware Used in Cyber Attacks on Ukraine. Sentinel Labs,
2022.

SHAMS ZAWOAD AND RAGIB HAsAN. Cloud forensics: a meta-
study of challenges, approaches, and open problems. arXiv preprint

arXiv:1302.6512, 2013.

GARTNER. |Gartner Forecasts Worldwide Public Cloud End-User
Spending to Reach $679 Billion in 2024, November 2023.

THALES. CLOUD ASSETS THE BIGGEST TARGETS FOR CY-
BERATTACKS, AS DATA BREACHES INCREASE, Jul 2023.

RAWAN ABDULAZIZ AL-MULHIM, LAMA ADNAN AL-ZAMIL, AND
Fay MOHAMMED AL-DOSSARY. Cyber-attacks on Saudi Arabia en-

vironment. International Journal of Computer Networks and Communi-
cations Security, 8(3):26-31, 2020.

SANJEEV DaAs, YANG Liu, WEI ZHANG, AND MAHINTHAM CHAN-
DRAMOHAN. Semantics-based online malware detection: Towards
efficient real-time protection against malware. IEEF transactions on
information forensics and security, 11(2):289-302, 2015.

SMiTA NAVAL, VDAY Laxmi, MUTTUKRISHNAN RAJARAJAN,
MANOJ SINGH GAUR, AND MAURO CoNTI. Employing program
semantics for malware detection. I[EEE Transactions on Information
Forensics and Security, 10(12):2591-2604, December 2015.

STEVEN A HOFMEYR, STEPHANIE FORREST, AND ANIL SOMAYAJI. In-
trusion detection using sequences of system calls. Journal of com-

puter security, 6(3):151-180,JCS-980109, 1998.

OHAD RODEH, JOSEF BAcCIK, AND CHRIS MASON. BTRFS: The Linux
B-tree filesystem. ACM Transactions on Storage (TOS), 9(3):1-32, 2013.

XUEPING LIANG, SACHIN SHETTY, DEEPAK ToOSH, CHARLES
KamuaouaA, KEVIN KWIAT, AND LAURENT NJILLA. Provchain: A
blockchain-based data provenance architecture in cloud envi-
ronment with enhanced privacy and availability. In 2017 17th

139


https://www.sentinelone.com/labs/hermetic-wiper-ukraine-under-attack/
https://www.sentinelone.com/labs/hermetic-wiper-ukraine-under-attack/
https://arxiv.org/pdf/1302.6312.pdf
https://arxiv.org/pdf/1302.6312.pdf
https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-billion-in-20240
https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-billion-in-20240
https://www.thalesgroup.com/en/worldwide/security/press_release/cloud-assets-biggest-targets-cyberattacks-data-breaches-increase
https://www.thalesgroup.com/en/worldwide/security/press_release/cloud-assets-biggest-targets-cyberattacks-data-breaches-increase

REFERENCES

[19]

[20]

[21]

22]

[25]

[26]

[27]

IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), pages 468-477. IEEE, 2017.

MEeENG Li, CHHAGAN LAL, MAUrRO CONTI, AND DoNGHUI Hu.
LEChain: A blockchain-based lawful evidence management

scheme for digital forensics. Future Generation Computer Systems,
115:406-420, 2021.

SIMSON GARFINKEL. Anti-forensics: Techniques, detection and
countermeasures. In 2nd International Conference on i- Warfare and Se-
curity, 20087, pages 77-84, 2007.

KeEvIN CONLAN, IBRAHIM BAGGILI, AND FRANK BREITINGER. Anti-
forensics: Furthering digital forensic science through a new ex-
tended, granular taxonomy. Digital investigation, 18:566-S75, 2016.

HUsseIN MAJED, HASSAN N NOURA, AND ALI CHEHAB. Overview
of Digital Forensics and Anti-Forensics Techniques. In 2020 8th
International Symposium on Digital Forensics and Security (ISDFS), pages
1-5. IEEE, 2020.

ANU JAIN AND GURPAL SINGH CHHABRA. Anti-forensics techniques:

An analytical review. In 2014 Seventh International Conference on Con-
temporary Computing (IC3), pages 412-418. IEEE, 2014.

BRYAN SARTIN. ANTI-Forensics—distorting the evidence. Computer
Fraud & Security, 2006(5):4-6, 2006.

EoGcHAN CASEY. Practical approaches to recovering encrypted dig-
ital evidence. International Journal of Digital Evidence, 2002.

EoGHAN CASEY, GEOFF FELLOWS, MATTHEW GEIGER, AND GERASI-
MOS STELLATOS. The growing impact of full disk encryption on
digital forensics. Digital Investigation, 8(2):129-134, 2011.

ADEDAYO M BALOGUN AND SHAO YING ZHU. Privacy impacts of
data encryption on the efficiency of digital forensics technology.
arXiv preprint arXiw:1312.3183, 2013.

140


https://doi.org/10.1016/j.diin.2016.04.006
https://doi.org/10.1016/j.diin.2016.04.006
https://doi.org/10.1016/j.diin.2016.04.006

REFERENCES

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[37]

ANIELLO CASTIGLIONE, ALFREDO DE SANTIS, AND CLAUDIO SORI-
ENTE. Taking advantages of a disadvantage: Digital forensics and

steganography using document metadata. Journal of Systems and
Software, 80(5):750-764, 2007.

MERRILL WARKENTIN, ERNST BEKKERING, AND MARK B SCHMIDT.

Steganography: Forensic, security, and legal issues. Journal of Dig-
ital Forensics, Security and Law, 3(2):2, 2008.

GARY C KESSLER. Anti-forensics and the digital investigator. 2007.

KAMAL DAHBUR AND BaAssi. MoHAMMAD. The anti-forensics chal-
lenge. In Proceedings of the 2011 International Conference on Intelligent
Semantic Web-Services and Applications, pages 1-7, 2011.

DEREK MANKY. FortiGuard Labs Reports Destructive Wiper Mal-
ware Increases Over 50%), 2023.

RAYED ALHARBI, ALl ALZAHRANI, AND WASIM AHMAD BHAT. Foren-
sic analysis of anti-forensic file-wiping tools on Windows. Journal
of forensic sciences, 67(2):562-587, October 2022.

GRAEME HORsMAN. Digital tool marks (DTMs): a forensic anal-
ysis of file wiping software. Australian Journal of Forensic Sciences,

53(1):96-111, 2021.

DaBIN JOO, JIWON LEE, AND DOOWON JEONG. A reference database
of Windows artifacts for file-wiping tool execution analysis. Journal
of Forensic Sciences, 2023.

Kyounc JEA PARK, JUNG-MIN PARk, EUN-JIN KiM, CHANG GEUN
CHEON, AND JOsHUA I JAMES. Anti-forensic trace detection in digi-

tal forensic triage investigations. Journal of Digital Forensics, Security
and Law, 12(1):8, March 2017.

CHRISTOPHER SWENSON, RAQUEL PHILLIPS, AND SUJEET SHENOI. File
system journal forensics. In [FIP International Conference on Digital
Forensics, pages 231-244. Springer, 2007.

141


https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2023/fortiguard-labs-reports-destructive-wiper-malware-increases-over-50-percent
https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2023/fortiguard-labs-reports-destructive-wiper-malware-increases-over-50-percent

REFERENCES

[38]

[39]

[40]

[41]

[42]

[43]

[44]

ZACHARY PETERSON AND RANDAL BURNS. Ext3cow: A time-shifting
file system for regulatory compliance. ACM Transactions on Storage

(TOS), 1(2):190-212, 2005.

JOsIAH DYKSTRA AND ALAN T SHERMAN. Understanding issues in
cloud forensics: two hypothetical case studies. UMBC Computer
Science and FElectrical Engineering Department, 2011.

KEYUN RUAN, JOE CARTHY, TAHAR KECHADI, AND IBRAHIM BAGGILI.
Cloud forensics definitions and critical criteria for cloud foren-
sic capability: An overview of survey results. Digital Investigation,
10(1):34-43, 2013.

BEN MARTINI AND KiM-KWANG RAYMOND CHOO. Cloud forensic
technical challenges and solutions: A snapshot. [FEE Cloud Com-
puting, 1(4):20-25, 2014.

NIST CrLoup COMPUTING FORENSIC SCIENCE WORKING GROUP
ET AL. Nist cloud computing forensic science challenges. Technical
report, National Institute of Standards and Technology, 2014.

MARTIN HERMAN, MICHAELA IORGA, AHSEN MICHAEL SALIM,
RoBERT H JACKSON, MARK R HURsT, ROss LEO, RICHARD LEE,
NANCY M LANDREVILLE, ANAND KUMAR MISHRA, YIEN WANG, ET AL.
NIST Cloud Computing Forensic Science Challenges. Technical re-
port, National Institute of Standards and Technology, 2020.

BHARAT MANRAL, GAURAV SOMANI, KiM-KWANG RAYMOND CHOO,
MAURO CONTI, AND MANOJ SINGH GAUR. A Systematic Survey

on Cloud Forensics Challenges, Solutions, and Future Directions.
ACM Computing Surveys (CSUR), 52(6):1-38, 2019.

AMEER PICHAN, MIHAI LAZARESCU, AND SIE TENG SOH. Cloud foren-
sics: Technical challenges, solutions and comparative analysis. Dig-
ital investigation, 13:38-57, 2015.

KEYUN RUAN, JOE CARTHY, TAHAR KECHADI, AND MARK CROSBIE.
Cloud forensics. In IFIP International Conference on Digital Forensics,
pages 35—46. Springer, 2011.

142


https://doi.org/10.1109/MCC.2014.69
https://doi.org/10.1109/MCC.2014.69
https://doi.org/10.6028/NIST.IR.8006
https://doi.org/10.1145/3361216
https://doi.org/10.1145/3361216
https://doi.org/10.1016/j.diin.2015.03.002
https://doi.org/10.1016/j.diin.2015.03.002

REFERENCES

[47]

[48]

AHMED ALENEZI, HANY F ATLAM, AND GARY B WILLS. Experts
reviews of a cloud forensic readiness framework for organizations.
Journal of Cloud Computing, 8(1):11, 2019.

DeEeEvi RADHA RANI AND G GEETHA KUMARI. A framework for
detecting anti-forensics in cloud environment. In 2016 Interna-

tional Conference on Computing, Communication and Automation (IC-
CCA), pages 1277-1280. IEEE, 2016.

PRASAD PURNAYE AND VRUSHALI KULKARNI. A comprehensive study
of cloud forensics. Archives of Computational Methods in Engineering,

29(1):33-46, 2022.

BavLA RaAJ, GiLL BoB, SMITH DENNIS, WRIGHT DAVID, AND KEVIN JI.
Magic Quadrant for Cloud Infrastructure as a Service, Worldwide,
sep 2020.

AMAZON. Simplify Security Incident Response and Digital Foren-
sics on AWS| 2020.

MORGAN ARUNDELL BARRY CONWAY. Automated Forensics and In-
cident Response on AWS, May 2019.

MicrROSOFT. Computer Forensics in Azure, 2020.

FRANK SIMORJAY BEN RIDGWAY. Microsoft Azure Security Re-
sponse in the Cloud, April 2016.

SAMI ZUHURUDDIN. Cloud Forensics, Jul 2018.

SULEMAN KHAN, ABDULLAH GANI, AINUDDIN WAHID ABDUL WAHAB,
MUSTAPHA AMINU BAGIWA, MUHAMMAD SHIRAZ, SAMEE U KHAN,
RAJKUMAR Buyva, AND ALBERT Y ZOMAYA. [Cloud log forensics:

Foundations, state of the art, and future directions. ACM Comput-
ing Surveys (CSUR), 49(1):1-42, 2016.

AMAZON. Amazon CloudWatch Logs User Guide, 2020.
AMAZON. Centralized Logging, Dec 2020.

WREN Brian, RiTA, COULTER DAVID, AND MUTHA PIYUSH. Azure
Monitor overview, Nov 2019.

143


https://www.gartner.com/en/documents/3989743/magic-quadrant-for-cloud-infrastructure-and-platform-ser
https://aws.amazon.com/mp/scenarios/security/forensics/
https://aws.amazon.com/mp/scenarios/security/forensics/
https://anz-resources.awscloud.com/aws-summit-sydney-2019-secure/automated-forensics-and-incident-response-on-aws-3
https://anz-resources.awscloud.com/aws-summit-sydney-2019-secure/automated-forensics-and-incident-response-on-aws-3
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/forensics/
https://gallery.technet.microsoft.com/azure-security-response-in-dd18c678/file/150826/4/MicrosoftAzureSecurityResponseinthecloud.pdf
https://gallery.technet.microsoft.com/azure-security-response-in-dd18c678/file/150826/4/MicrosoftAzureSecurityResponseinthecloud.pdf
https://cloud.withgoogle.com/next18/sf/sessions/session/156791
https://doi.org/10.1145/2906149
https://doi.org/10.1145/2906149
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://aws.amazon.com/solutions/implementations/centralized-logging/
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview

REFERENCES

73]

[74]

GoocLE. CLOUD LOGGING DOCUMENTATION, 2020.
GOOGLE. Google Available Logs, Jan 2020.

AMAzZON. How S3 Object Lock works, 2020.

MiCROSOFT. Corporate Social Responsibility, September 2018.
GOOGLE. Google Transparency Report, February 2021.
AMAZON. AWS Security Incident Response Guide, June 2020.
GOOGLE. Identity and Access Management, March 2021.
AMAZON. Amazon Law Enforcement Guidelines, 2021.
MicROSOFT. |Corporate Social Responsibility, 2021.

GOOGLE. Google Transparency Report, 2021.

WasiM AHMAD BHAT, ALl ALZAHRANI, AND MOHAMAD AHTISHAM
WAaNI. Can computer forensic tools be trusted in digital investi-
gations? Science & Justice, 61(2):198-203, 2021.

Tim FisHER. Data Sanitization Methods, 2021.

VIJAYAN PRABHAKARAN, ANDREA C ARPACI-DUSSEAU, AND REMZI H
ARPACI-DUSSEAU. Analysis and Evolution of Journaling File Sys-
tems. In USENIX Annual Technical Conference, General Track, 194,
pages 196-215, 2005.

GREGORIO NARVAEZ. Taking advantage of Ext3 journaling file sys-
tem in a forensic investigation. SANS Institute Reading Room, 2007.

DonGg BIN OH, KyunG HO PARrRkK, aAND Huy KanNG Kim. De-

Wipimization: Detection of data wiping traces for investigating
NTEFS file system. Computers € Security, 99:102034, 2020.

UmA KUuMAR, VINOD KUMAR, AND J N KAPUR. Normalized measures
of entropy. International Journal Of General System, 12(1):55-69, 1986.

JoAao BD CABRERA, LUuNDY LEwWIS, AND RAMAN K MEHRA. Detec-
tion and classification of intrusions and faults using sequences of
system calls. Acm sigmod record, 30(4):25-34, 2001.

144


https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs/view/available-logs
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lock-overview.html##object-lock-legal-holds
https://azure.microsoft.com/en-in/blog/immutable-storage-for-azure-storage-blobs-now-generally-available/
https://cloud.google.com/storage/docs/object-holds
https://d1.awsstatic.com/whitepapers/aws_security_incident_response.pdf
https://cloud.google.com/iam/docs/overview
https://d1.awsstatic.com/certifications/Amazon_LawEnforcement_Guidelines.pdf
https://www.microsoft.com/en-us/corporate-responsibility/us-national-security -orders-report ? activetab=pivot_1:primaryr3
https://transparencyreport.google.com/user-data/us-national-security?hl=en
https://www.lifewire.com/data-sanitization-methods-2626133
https://doi.org/10.1145/604264.604269
https://doi.org/10.1145/604264.604269
https://doi.org/10.1145/604264.604269

REFERENCES

[77]

ANDREA CONTINELLA, ALESSANDRO GUAGNELLI, GIOVANNI ZINGARO,
GiuLio DE PASQUALE, ALESSANDRO BARENGHI, STEFANO ZANERO,
AND FEDERICO MAGGI. ShieldFS: A Self-healing, Ransomware-
aware Filesystem. In Proceedings of the 32nd Annual Computer Security
Applications Conference. ACM, 2016.

LORIS DEGIOANNI. The Fascinating World of Linux System
Calls, dec 2014.

CALVIN B PAUL. Entropy-based file type identification and partitioning.
PhD thesis, Monterey, California: Naval Postgraduate School, 2017.

MicHAEL KERRISK. Linux/UNIX System Programming Essentials,
jun 2023.

WASIM AHMAD BHAT AND MOHAMAD AHTISHAM WANI. Forensic anal-
ysis of B-tree file system (Btrfs). Digital Investigation, 27:57-70, 2018.

DEVYANT GURJAR AND SATISH S KUMBHAR. A review on perfor-
mance analysis of ZFS & BTRFS. In 2019 International Conference on
Communication and Signal Processing (ICCSP), pages 0073-0076. IEEE,
2019.

JAN-NICLAS HILGERT, MARTIN LAMBERTZ, AND SHUJIAN YANG.
Forensic analysis of multiple device BTRFS configurations using
The Sleuth Kit. Digital Investigation, 26:521-529, 2018.

FEDORA. Fedora Workstation Documentation Disk Configuration,
2024. Accessed on Jan 22, 2024.

OPENSUSE. SUSE Linux Enterprise Server Release Notes, 2022.
Accessed on Jan 22, 2024.

FACEBOOK. Improving machine learning iteration speed with faster
application build and packaging, 2024. Accessed on Jan 28, 2024.

NETGEAR. Netgear Software Manual, 2019. Accessed on Jan 28, 2024.
ROCKSTOR. Linux Btrfs NAS Server, 2024. Accessed on Jan 28, 2024.

SYNOLOGY. How Btrfs protects your company’s data, 2024. Accessed
on Jan 28, 2024.

145


https://sysdig.com/blog/fascinating-world-linux-system-calls/
https://sysdig.com/blog/fascinating-world-linux-system-calls/
https://man7.org/linux/man-pages/man2/write.2.html
https://docs.fedoraproject.org/en-US/workstation-docs/disk-config/##_btrfs
https://www.suse.com/releasenotes/x86_64/SUSE-SLES/12-SP5/index.html##all-architecture-filesystems
https://engineering.fb.com/2024/01/29/ml-applications/improving-machine-learning-iteration-speed-with-faster-application-build-and-packaging/
https://engineering.fb.com/2024/01/29/ml-applications/improving-machine-learning-iteration-speed-with-faster-application-build-and-packaging/
https://www.netgear.com/support/product/readynas_os_6##docs
https://rockstor.com/
https://www.synology.com/en-global/dsm/Btrfs

REFERENCES

[90]

[91]

[92]

[93]

[97]

[98]

[99]

[100]

[101]

[102]

DocKER. Use the BTRF'S storage driver, 2024. Accessed on Jan 30,
2024.

LXD. BTRFS driver in LXD) 2024. Accessed on Jan 30, 2024.

KEVIN D FAIRBANKS. A technique for measuring data persistence
using the ext4 file system journal. In 2015 IEEFE 39th Annual Computer
Software and Applications Conference, 3, pages 18-23. IEEE, 2015.

HowArD POwWELL. ZFS and Btrfs: a quick introduction to modern
filesystems. Linuz Journal, 2012(218):5, 2012.

BTRFS READTHEDOCS. BTRFS Documentation, 2023. Accessed on Jan
27, 2024.

BTRFS WIKI. BTRFS Wiki, 2017. Accessed on Jan 19, 2024.

MOHAMAD AHTISHAM WANI, WASIM AHMAD BHAT, AND ALl DE-
HCGHANTANHA. An analysis of anti-forensic capabilities of B-tree
file system (Btrfs). Australian Journal of Forensic Sciences, 52(4):371-
386, 2020.

BTRFS READTHEDOCS. BTRFS Documentation, 2023. Accessed on Jan
27, 2024.

DANIEL. Understanding btrfs internals part 3, 2020. Accessed on Jan
27, 2024.

KAREL ZAK. btrfs-progs, 2024. Accessed on Jan 27, 2024.

THOMAS K DASAKLIS, FRAN CASINO, AND CONSTANTINOS PAT-
SAKIS. Sok: Blockchain solutions for forensics. arXiv preprint
arXiv:2005.12640, 2020.

SAGAR RANE AND ARATI DixiT. BlockSLaaS: Blockchain assisted
secure logging-as-a-service for cloud forensics. In International Con-
ference on Security & Privacy, pages 77-88. Springer, 2019.

AuQiB HaAMID LONE AND ROOHIE NaAAz MIR. Forensic-chain:
Blockchain based digital forensics chain of custody with PoC in
Hyperledger Composer. Digital Investigation, 28:44-55, 2019.

146


https://docs.docker.com/storage/storagedriver/btrfs-driver/
https://documentation.ubuntu.com/lxd/en/latest/reference/storage_btrfs/
https://btrfs.readthedocs.io/en/latest/
https://btrfs.wiki.kernel.org/
https://btrfs.readthedocs.io/en/latest/dev/On-disk-format.html
https://btrfs.readthedocs.io/en/latest/dev/On-disk-format.html
https://github.com/karelzak/btrfs-progs/blob/autoconf/ctree.h

REFERENCES

103]

[104]

[105]

[106]

[107]

108

109]

[110]
[111]

[112]

113]

[114]

HYPERLEDGER. Hyperledger Fabric, 2020.

OMI AKTER, ARNISHA AKTHER, MD ASHRAF UDDIN, AND
MD MANOWARUL ISLAM. Cloud Forensics: Challenges and
Blockchain Based Solutions [J]. International Journal of Modern Edu-
cation and Computer Science, 10(8):1-12, 2020.

JUN HAK PARK, JUN YOUNG PARK, AND Eul NAM HuUH. Block chain
based data logging and integrity management system for cloud
forensics. Computer Science € Information Technology, 149, 2017.

ZHIHONG TIAN, MOHAN L1, MEIKANG QIU, YANBIN SUN, AND SHEN
Su. Block-DEF: A secure digital evidence framework using
blockchain. Information Sciences, 491:151-165, 2019.

YONG ZHANG, SONGYANG Wu, Bo JiN, AND JiAYING Du. A
blockchain-based process provenance for cloud forensics. In 2017

3rd IEEE International Conference on Computer and Communications
(ICCC), pages 2470-2473. IEEE, 2017.

SiLviA BoNnomi, MARCO CASINI, AND CLAUDIO CICCOTELLI. B-coc: A
blockchain-based chain of custody for evidences management in
digital forensics. arXiv preprint arXiv:1807.10359, 2018.

AuqQiB HaMiD LONE AND ROOHIE NaAz MIR. Forensic-chain:
Ethereum blockchain based digital forensics chain of custody. Sci-
entific and Practical Cyber Security Journal, 1(2):21-27, 2018.

GOOGLE. Data incident response process, September 2018.
OPENSTACK. Installation guide, 2021.

HYPERLEDGER CALIPER. Hyperledger Caliper Getting Started,
2021.

AMAZON. Collecting Metrics and Logs from Amazon EC2 Instances
and On-Premises Servers with the CloudWatch Agent, 2020.

WREN BRIAN, COULTER DAvID, STOLZ HENRY, AND DHANWADA
SWATHI. rview of Azure Monitor agents, Jan 2021.

147


https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://cloud.google.com/security/incident-response
https://docs.openstack.org//install-guide/InstallGuide.pdf
https://hyperledger.github.io/caliper/v0.4.2/getting-started/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview

REFERENCES

[115]

[116]
[117)
[118]
[119]

[120]

Davip COULTER BRIAN WREN. Log Analytics agent overview, Jan
2021.

AZURE. Azure Log Analytics, 2021.

MicrosOFT. Digital Evidence Capture, oct 2020.

GOOGLE. Google Cloud’s operations suite, 2020.

GooGLE. CLOUD MONITORING DOCUMENTATION, 2020.

GOOGLE. Google Rapid Response, Oct 2020.

148


https://docs.microsoft.com/en-us/azure/azure-monitor/agents/log-analytics-agent
https://azure.microsoft.com/en-in/blog/tag/log-analytics/
https://github.com/mspnp/solution-architectures/tree/master/forensics
https://cloud.google.com/products/operations
https://cloud.google.com/monitoring/docs
https://github.com/google/grr

Appendix A

Cloud Forensic Workflows of
Leading CSP

A.1 AWS Workflow

In AWS the cloud incidents are initially classified as service domain incidents and
infrastructure domain incidents. Service domain incidents refer to the incidents
associated with AWS services, and infrastructure incidents are associated with
the physical or the virtual infrastructure supporting AWS services.

For service domain incidents, the logs corresponding to the specific service
are collected and analyzed using Amazon Cloud Watch. Amazon, for effective
log analysis, has implemented Amazon CloudWatch, which centralizes the logs
from different sources and enables automation of alerts based on the occurrence
of specific events [57] [58]. Cloudwatch collects the monitoring data in the form
of logs, metrics, events and provides a unified view of AWS resources. It col-
lects, analyzes, and displays logs and log metrics on a single dashboard. Amazon
CloudWatch Agent [113] is used to collect the logs from AWS and on-premise
resources running either Linux or Windows Server. The metrics collected by the
CloudWatch agent are stored and viewed on AWS CloudWatch. The metrics
collected by the CloudWatch agent are considered customized metrics and are
billable. Amazon Kinesis is used by AWS to perform big data analytics on cloud
logs [65].

Other resources used for forensics on AWS platform include - 1. Amazon step
function - these are used for automating decision-based workflow. 2. Amazon

149



A.1 AWS Workflow

Machine Images (AMI) - these are used to launch new instances with the re-
quired configuration. 3. Amazon storage services (AWS S3, AWS S3 Glacier)
- these services are used for archiving the evidence for the long term. 4. AWS
SSM (System Management Agent) - this service is used to manage instances and
automate operational tasks on AWS or on-premise resources. 5. Amazon Simple
Notification Service (AWS SNS) - this service is used for sending notifications to
the incident response team for forensic process updations. Forensics at AWS is
performed by incident response teams and security teams.

Forensics at AWS is automated by using AWS step functions. The following
step functions are used to perform forensics at AWS - 1. triage step function,
2. disk step function, 3. processing step function. The Triage step function de-
termines the type of acquisition needed, i.e., either disk acquisition or memory
acquisition. This decision is taken based on the metadata captured by the mali-
cious incident. For disk forensics, the triage step function invokes the disk step
function and shares the target VM instance ID for which the snapshot is to be
captured.

Disk step function initially protects the targeted instance from getting ter-
minated (i.e., deletion of an instance, its associated data disk, and volumes) by
enabling termination protection of instance. Later, the instance is isolated by
changing the security group of the instance to restricted mode. The security
group of an instance controls in and out network traffic to the instance. Further,
detach the instance from the auto-scaling group by deregistering the instance from
the Elastic Load Balancer (ELB). Next, create the snapshot of the target instance
and its attached disk volumes and generate the hash values using SHA-256, MD5
algorithms. Create a new AWS EC2 instance in AWS security teams’ Virtual
Private Cloud (VPC) by using forensic workstation AMI. Attach the snapshot
and disk volumes to forensic workstation AMI. Install AWS SSM on the forensic
instance. This is used in the processing step function to automate data prepro-
cessing for analysis. Finally, the disk step function triggers the processing step
function.

The processing step function automates the basic investigation needed. The
AWS SSM installed on the forensic instance prepares the data on the snapshot
for analysis by using forensic tool, i.e., for Windows instance, Encase forensic tool
is used, and for Linux instance, SANS Investigative Forensic Toolkit (SIFT) is
used. This processing generates web history, timeline construction and restores
data on the disk snapshot for analysis. The post-processed data is later pushed
to AWS S3 buckets. The State tracking database is updated after the completion

150



A.2 Azure Workflow

of this process; this database is used to update the customer regarding the status
of the jobs being executed on acquired data to ensure transparency. Finally, the
incident response team is notified about the process completion by using the AWS
SNS service. For further analysis, forensic experts and security teams work on the
processed data. Finally, the processed data is stored in an AWS storage account
with a proper data retention policy. AWS applies legal hold policy [62] to preserve
the data for investigation upon receiving a request from LEAs. This ensures that
the data is retained with CSP until the policy is removed explicitly. Legal hold
policy also ensures data integrity hence, making the evidence admissible.

A.2 Azure Workflow

The Azure monitor is used for collecting and analyzing data from Azure cloud
resources. It is used to centralize data from cloud resources (i.e., user applications,
operating system, Azure services, Azure subscription, etc.) to perform analytics
and metrics [59]. To collect monitoring data from VM and other computing
resources, it uses monitoring agents [I14]. Based on the type of data required
the Azure monitoring agent can be selected. More than one monitoring agent
can be used based on the requirement. Azure monitoring agents are - Azure
Monitor agent, Diagnostics extension, Log Analytics agent, Dependency agent.
Log Analytics agent [I15] is used to collect logs from Azure, other clouds, on-
premise resources and store them in the log analytics workspace. Azure Monitor
Logs feature of Azure Monitor is used to collect and analyze logs stored in the
log analytics workspace. Further, Azure HDInsight is used to perform big data
analytics on huge volumes of cloud logs [116].

We analyzed the forensic framework for Azure, based on Azure official docu-
mentation for forensics [53] [I17]. The Security Operation Center (SOC) team is
responsible for handling forensic procedures at Azure and ensures a valid chain of
custody. The SOC team at Azure maintains different SOC subscriptions. Azure
services with Role-Based Access Control (RBAC) to each subscription include
the following services - 1. SOC VNet - this is a secure Azure virtual network.
2. SOC Automation Account - this is used for process automation and configu-
ration services. It hosts Hybrid Runbook Worker VM; this provides all control
mechanisms to capture the target VM snapshot. 3. SOC Storage Account - this
is used to host Azure fileshare to compute the hash value of the target virtual
instance and host copies of the target disk snapshots in immutable blob storage

151



A.2 Azure Workflow

in WORM state (i.e., Write Once and Read Many) to avoid data modification
and deletion. 4. SOC Key vault - this is used to store snapshots’ hash values and
encryption keys to ensure integrity and confidentiality of disk content. 5. Log
analytics workspace - this is used to store the activity logs to monitor all events
on Azure SOC subscription to Azure Monitor.

In case of occurrence of an incident, the SOC team receives a request to cap-
ture digital evidence. SOC team member signs in to Azure SOC subscription and
uses Hybrid Runbook Worker VM [52] in Azure Automation to trigger the foren-
sic process. Hybrid Runbook Worker(HRW) is used to manage the resources
on Azure, other clouds, or on-premise resources. It sits locally on on-premise
resources or target VM and accesses the local resources. HRW runs Azure run-
books(Automated scripts) on target VM. In Azure forensics, HRW is exclusively
used to execute CopyVMDigitalEvidence runbook on the target VM to collect
the target VM disk snapshot. HRW is hosted on the target VM, in the same
subnet that grants access to the SOC storage account using the service endpoint
mechanism. HRW must have managed identity or service principal to access tar-
get VM'’s subscription to provide snapshot rights on target VM disks, access to
SOC storage account, access policy for SOC key-vault to get and set secret keys.
Hybrid runbook worker also ensures that Copy-VMDigitalEvidence runbook has
all required permissions to access target virtual instance and SOC subscription.

Copy-VmDigitalEvidence runbook is responsible for collecting the snapshot
from the target instance and storing it on the SOC storage account. Copy-
VmDigitalEvidence runbook initially signs in to target virtual instance and SOC
subscription. It creates a snapshot of the operating system and data disks, copies
it to subscriptions immutable blob storage containers, and Azure temporary file
share. Azure file share is used as a temporary repository to calculate the hash
values of the snapshot and generate secret keys by using SHA-256, and AES-
256 algorithms, respectively. Later, Copy-VmDigitalEvidence runbook copies the
generated hash values and encryption keys to the SOC key vault and deletes
all the copies of the snapshot from the temporary file share. The snapshot on
immutable storage is used for further analysis by using Azure security services.

To provide access to evidence for investigators Storage Shared Access Signa-
tures (SAS) URI is used to ensure granular control over access policy. Also, the
investigators are provided with required encryption keys in the SOC key vault to
decrypt the data for analysis. Alternatively, time-limited read-only SOC Storage
account access to IP addresses from outside, on-premises networks are given to

152



A.3 GCP Workflow

investigators to download digital evidence. Further, Legal hold policy [63] is ap-
plied on the immutable storage containers for preserving the data and ensuring
its integrity for legal proceedings.

A.3 GCP Workflow

Google Cloud’s operations suite [118] is used to collect and monitor data from
Google cloud resources. Google cloud logging [60] service in Google cloud oper-
ation suite is a fully managed service used to collect logs from the application,
VM, Google cloud services. Google cloud logging service centralizes logs from
all sources and performs advanced and custom filtering to identify suspicious ac-
tivity. To collect logs from other clouds and on-premise resources Google cloud
logging agent is installed on the target instance. Big Query is used for perform-
ing log analytics in the Google cloud. Further, the Google cloud monitoring [119]
service in the Google cloud operation suite is used for performing analytics and
monitoring the data collected by the Google logging service.

Forensics at GCP have been detailed in Google Cloud Next "18 annual event.
A session by Sami Zuhuruddin, Solution Architect at Google, demonstrated the
incident preparedness and forensic procedure implemented at GCP [55]. Forensics
at Google include gathering forensic artifacts, identifying tools and processes,
analysis pipeline, and process automation. The resources required to perform
forensics on Google include - 1. Google Compute Engine (GCE) - this is the
forensic virtual instance used to attach the disk snapshot for analysis. 2. Plaso -
this is a framework used to retrieve timestamps from the source (disk snapshot)
and arrange the events in chronological order to construct a super timeline. 3.
Timesketch - this is a third-party tool for timeline analysis. This tool takes the
Plaso file as input and organizes the timelines in a presentable manner. 4. Google
Cloud Storage (GCS)- This is used to store the acquired disk snapshot for analysis
and to preserve the evidence for the long term.

Create a new project under a secured environment for operational isolation,
such that it enables one-way flow of data with restricted personnel access. Initially
creates the snapshot of the target virtual instance and later a disk image from the
snapshot. Calculate the hash value of the image file and encrypt the image file.
Export the image file to GCS, and hash values, encryption keys to Google secret
manager storage service. Restore the image file and use third-party forensic tools
for analysis. Super timeline is created by using third-party tools like Plaso and

153



A.3 GCP Workflow

Timesketch. Super timeline details the occurrence of the events in chronological
order; this helps in incident reconstruction.

Similar to the legal hold policy used by AWS and Azure, GCP uses Object
hold [64] to retain the data. In case of legal investigation, it applies temporary
object hold on the evidential data. Temporary object hold along with appropriate
data retention policies ensures data integrity and preservation until the temporary
object hold is removed exclusively by the CSP.

Google Cloud uses Google Rapid Response (GRR) [55] for memory foren-
sics. GRR started as a project at Google and is now available as open-source
at Github [120]. GRR is an agent-based application that can be installed on
Windows, Macintosh, Linux. GRR has two main functionalities, Start flow and
Hunt manager. Start flow is used to retrieve the memory dumps based on the
target instance and process ID. Hunt manager is used for threat hunting in live
suspicious environments.

GRR has a server agent and a client agent. The GRR server agent is installed
on the security server of the Google Virtual Private Cloud (VPC), and the GRR
client agent is deployed on the targeted virtual instance. The GRR client agent
continuously polls the GRR server agent for work. We can trigger the memory
dump process by sharing the process id of the suspicious process to get the mem-
ory dump of the associated process. Analysis of the acquired data is done by
using third-party tools like Rekall, Volatility, etc.

154



Cloud Virtual Machine
Forensics - An Anti-forensic
Perspective

by Pranitha Sanda

Submission date: 27-May-2024 10:45AM (UTC+0530)
Suhmissinn 1D 23RRGOQRL?

File name: 19MCPCO01_Thesis-1.pdf (6.34M)

Word count: 36254

Character count: 184194



Cloud Virtual Machine Forensics - An Anti-forensic
Perspective

(hemstte
324 28« 31w 1w [

SIMILARITY INDEX INTERNET SOURCES ~ PUBLICATIONS STUDENT PARERSiate Professc

School of CIS
Prof. C.R. Rao Road
Central University

Hyderabad-46 (India,

PRIMARY SOURCES

link.springer.com e 25
Internet Source This is owy own Fu\o“ca e W %

Pranitha Sanda, Digambar Pawar, V. Radha. 49/
"Blockchain-based tamper-proof and °
transparent investigation model for cloud
VMs", The Journal of Supercomputing, 2022

Publication This (s ©WY own ?ub\?CcLHm'\-

Pranitha Sanda, Digambar Pawar, V. Radha. 1 "
"Chapter 47 VM Anti-forensics: Detecting File °
Wiping Using File System journals", Springer

Science and Business Media LLC, 2022 .

Publication This (8 euy ewn Pwoucqh‘em- W

Jan-Niclas Hilgert, Martin Lambertz, Shujian - <’| "
Yang. "Forensic analysis of multiple device

BTRFS configurations using TheSleuth Kit",

Digital Investigation, 2018

Publication

<1%

\
Pranitha Sanda, Digambar Pawar, V. Radha.
"An insight into cloud forensic readiness by



leading cloud service providers: a survey”,
Computing, 2022

Publication

Submitted to University of Hyderabad,

< 1o
ﬂ Hyderabad 1 &
Student Paper
I Submitted to Colorado Technical Universi
Student Paper ty < 1 %
B Niranjan Reddy. "Practical Cyber Forensics", <1 o
Springer Science and Business Media LLC, ’
2019
Publication
www.mdpi.com —
Internet Sourcep <1 %
www.slideshare.net
Internet Source <1 %
core.ac.uk
Internet Source <1 %
ebin.pub
Internet Eource <1 %
| www.researchgate.net
Internet Source g <1 %
B bloqg.vidizmo.com
Entemget Source <1 %

e
Ui

web.mit.edu

Internet Source



<1%

yxgmgg::rsehero,com <1 "
www.qgeeksforgeeks.or
Internet Sgurce g g <1 %
Yuding Wang, Kacem Chehdi, Claude Cariou, <1 "
Benoit Vozel. "Data Stream Unsupervised °
Partitioning Method", IGARSS 2022 - 2022
IEEE International Geoscience and Remote
Sensing Symposium, 2022
Publication
inst.eecs.berkeley.edu
Internet Source y <1 %

Exclude guotes On Exclude matches < 14 words

Exclude bibliography On



	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Digital Forensics
	1.2 Anti-forensics
	1.2.1 Artifact Wiping
	1.2.2 Gaps in Existing Literature for Wiping

	1.3 Cloud Forensics
	1.3.1 Gaps in Existing Literature for Cloud Forensics

	1.4 Research Objectives
	1.5 Scope and Problem Definition
	1.6 Contribution of the Thesis
	1.6.1 Detection of Wiping Activity
	1.6.2 Recovery of Wiped Files
	1.6.3 Preservation of Evidential Artifacts

	1.7 Organization of the Thesis

	2 Background and Literature Survey
	2.1 Anti-forensics
	2.1.1 Data Hiding
	2.1.2 Trail Obfuscation
	2.1.3 Artifact Wiping
	2.1.3.1 Types of Artifact Wiping
	2.1.3.2 Related Work for Wiping Detection
	2.1.3.3 Limitations


	2.2 Cloud Forensics
	2.2.1 Cloud Forensics by the Leading csps
	2.2.1.1 Forensic Workflow of Leading csps
	2.2.1.2 Evaluating Cloud Forensic Challenges Across Proposed Solutions by Leading csps

	2.2.2 Limitations of Cloud Forensics

	2.3 Summary

	3 Detecting File Wiping
	3.1 Challenges in Existing Literature
	3.2 Contributions
	3.3 Prelimnaries
	3.3.1 Data Sanitization
	3.3.2 ext File System Journaling
	3.3.3 System Calls

	3.4 Detecting Wiping Using File System Journals and Data Blocks
	3.4.1 Proposed Model widej
	3.4.1.1 ext Journal Analysis
	3.4.1.2 Using Shanon's Entropy

	3.4.2 Results and Discussion

	3.5 Detecting Wiping using System-calls
	3.5.1 Role of System-calls in Behavior Analysis
	3.5.2  Proposed Model wides
	3.5.2.1 Profiling Process Behaviour
	3.5.2.2 Filtering Driven by Write() System-call
	3.5.2.3 Analysis of Buffer Data Entropy

	3.5.3 wides Workflow
	3.5.4 Results and Discussion

	3.6 Summary

	4 Recovery of Wiped Files
	4.1 Challenges in Recovering Wiped Files
	4.2 Contributions
	4.3 Prelimnaries
	4.3.1 btrfs Chunks
	4.3.2 btrfs Trees
	4.3.3 btrfs Data Structures

	4.4 Recovery Using Journals
	4.5 Proposed Model rewind 
	4.5.1  rewind Using btrfs-progs
	4.5.2  rewind by Logging pa of Files

	4.6 Results and Discussion
	4.7 Usecase: Recovery of a file encrypted by Gonnacry ransomware
	4.8 Summary

	5 Investigation Model to Preserve Cloud vms and Investigation Proceedings on Blockchain
	5.1 Challenges in Existing System
	5.2 Contributions
	5.3 Prelimnaries
	5.3.1 Blockchain
	5.3.2 Hyperledger Fabric (hlf)

	5.4 Application of Blockchain in Digital Forensics
	5.4.1 Log Integrity
	5.4.2 Metadata Integrity
	5.4.3 Chain of Custody

	5.5 Proposed Model Investigation-Chain
	5.5.1 Blockchain Participants
	5.5.2 Investigation-Chain Workflow

	5.6 Proof of Concept
	5.6.1 Case Study (Child Pornography)

	5.7 Results and Discussion
	5.7.1 Analysis of computational cost and communication overhead
	5.7.2 Comparative analysis of the recent research with Investigation-Chain

	5.8 Summary

	6 Conclusion and Future Work
	6.1 Summary of Contributions
	6.1.1 List of Contributions

	6.2 Future Work

	References
	A Cloud Forensic Workflows of Leading CSP
	A.1 AWS Workflow
	A.2 Azure Workflow
	A.3 GCP Workflow


