
Cloud Virtual Machine Forensics - An
Anti-forensic Perspective

A thesis submitted to University of Hyderabad in partial fulfilment

for the degree of

Doctor of Philosophy
by

Sanda Pranitha

Reg. No. 19MCPC01

SCHOOL OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITY OF HYDERABAD
HYDERABAD -500046

Telangana

India

March, 2023

CERTIFICATE
This is to certify that the thesis entitled “Cloud Virtual Machine Foren-

sics - An Anti-forensic Perspective” submitted by Sanda Pranitha bearing
Reg. No. 19MCPC01 in partial fulfilment of the requirements for the award
of Doctor of Philosophy in Computer Science is a bonafide work carried out
by him under my supervision and guidance. This thesis is free from plagiarism
and has not been submitted previously in part or in full to this or any other
University or Institution for award of any degree or diploma. Parts of this thesis
have been published online in the following publications:

1. Sanda P, Pawar D, Radha V. An insight into cloud forensic readiness
by leading cloud service providers: a survey. Computing. 2022 Apr
17:1-26. https://doi.org /10.1007/s00607-022-01077-2. [Indexed: SCI,
SCIE, SCOPUS, DBLP, UGC-CARE List(India)]. This publication
is reported as part of Chapter 2.

2. Sanda P, Pawar D, Radha V. Blockchain-based tamper-proof and
transparent investigation model for cloud VMs. The Journal of
Supercomputing. 2022 May 25:1-29. https://doi.org/10.1007/s11227-022-
04567-4. [Indexed: SCIE, SCOPUS, UGC-CARE List(India)]. This
publication is reported as part of Chapter 5.

and

has made presentations in the following conferences.

1. Sanda P, Pawar D, Radha V. VM Anti-forensics: Detecting File
Wiping Using File System Journals. In ICCET 2022, International
Conference on Computing in Engineering & Technology 2022 (pp. 497-
508). Springer, Singapore. https://doi.org/10.1007/978-981-19-2719-5.
[Indexed: SCOPUS, EI, DBLP]. This publication is reported as part
of Chapter 3.

2. Sanda P, Pawar D, Radha V. WiDeS: Wiping Detection
using System-calls - An Anti-forensic Resistant Ap-
proach. In 2023 IEEE 22nd International Conference on
Trust, Security and Privacy in Computing and Communica-
tions (TrustCom) (pp. 1695-1703) (Core ranking conference).
https://doi.ieeecomputersociety.org/10.1109/TrustCom60117.2023.00231
[Indexed: EI]. This publication is reported as part of Chapter 3.

Further, the student has passed the following courses towards fulfilment of
coursework requirement for Ph.D.

Course Code Name Credits Pass/Fail
1 CS402 Algorithms 4 Pass
2 CS800 Research Methods in Computer Science 4 Pass
3 CS803 Data structures and Programming Lab 2 Pass
4 CS858 Ethical Hacking and Computer Forensics 3 Pass

Dr. Digambar Pawar Dr. Radha Vedala Prof. Atul Negi
Supervisor Co-Supervisor Dean of School

SCIS, University of Hyderabad IDRBT SCIS, University of Hyderabad
Hyderabad-500 046, India Hyderabad-500 057, India Hyderabad-500 046, India

DECLARATION

I, Pranitha Sanda, hereby declare that this thesis entitled “Cloud Virtual
Machine Forensics - An Anti-forensic Perspective” submitted by me under
the supervision of Dr. Digambar Pawar and Dr. Radha Vedala, is a bonafide
research work and is free from plagiarism. I also declare that it has not been
submitted previously in part or in full to this University or any other University
or Institution for the award of any degree or diploma. I hereby agree that my
thesis can be deposited in Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Librarian is en-
closed.

Date:
Signature of the Student

(Pranitha Sanda)

Reg. No.: 19MCPC01

//Countersigned//

Signature of the Supervisors

(Dr. Digambar Pawar) (Dr. Radha Vedala)

Dedicated To My Family & Teachers

Acknowledgements

I am deeply indebted to Dr. Digambar Pawar and Dr. Radha
Vedala, my thesis supervisors for their meticulous guidance, wisdom,
and support during the course of my Ph.D. at University of Hyder-
abad in collaboration with Institute for Development and Research
in Banking Technology. Their consistent encouragement and positive
reinforcement have made it a gratifying experience. I am especially
grateful for their emphasis on time management. Their guidance in
meeting deadlines and prioritizing tasks has not only improved the
quality of my research but has also equipped me with essential skills
for life beyond academia. Moreover, I am indebted to them for their
insights into balancing personal and professional life. Their encour-
agement to maintain a healthy equilibrium has been transformative,
teaching me to nurture relationships, pursue passions, and prioritize
well-being alongside scholarly pursuits. I extend my heartfelt thanks
to Dr. Digambar Pawar and Dr. Radha Vedala for their sup-
port, wisdom, and mentorship. Their influence has left an indelible
mark on my academic journey and beyond.
I thank my doctoral review committee members, Assoc.Prof. Y.V.
Subba Rao and Asst.Prof. P. Syam Kumar for their encouragement,
insightful comments, and questions, which strengthened my knowl-
edge.
It is my privilege to thank Prof. Atul Negi, Dean, SCIS, University
of Hyderabad for his considerate support and encouragement through-
out the tenure of my research work and for extending the facilities to
pursue my research. It is my privilege to thank Dr. Deepak Ku-
mar Director, IDRBT for his considerate support and encouragement
throughout the tenure of my research work and for extending the fa-
cilities to pursue my research.

I extend my heartfelt thanks to each member of IDRBT for fostering
a seamless and rewarding atmosphere that made my tenure at the
institute truly enjoyable. I am grateful to every individual in my lab
for contributing to a wonderful experience during my time here.
I especially thank my family members and friends for their support
and inspiration during the Ph.D work. I would like to express my
deepest gratitude to my mother, Rajitha Sanda, for her unwavering
support both personally and professionally. She has been my great-
est support system throughout this journey. Without her, this thesis
would not have been possible. She selflessly took care of my chil-
dren, allowing me the time and peace of mind to focus on my research
and writing. Her love, encouragement, and belief in me have been
the foundation upon which all my achievements stand. Thank you,
Amma, for everything. I am also profoundly grateful to my father,
Prabhakar Sanda, for his tireless efforts and sacrifices. His dedica-
tion in ensuring I had the necessary support to pursue my studies has
been invaluable. His sacrifices and belief in me have been a constant
source of motivation. Thank you, Pappa, for your boundless support
and for always being there for me. Lastly, I would like to thank my
husband, Prashanth Durki, and acknowledge my children, Yashika
and Gitanshi, who are my strength and motivation. Their love and
patience have inspired me to persevere, and their smiles have been
a constant reminder of why I embarked on this journey. Thank you
for your understanding and for being my greatest source of joy and
purpose.
At the end, I am grateful to University of Hyderabad and Insti-
tute for Development and Research in Banking Technology
(IDRBT), for making it a memorable experience.

Abstract

Cloud has become indispensable due to its meteoric increase in utiliza-
tion. An increase in the utilization of cloud resources has also fueled
an increase in cyber incidents in the cloud. This alarming increase in
cloud incidents emphasizes the need for the readiness of CSP for cloud
forensics and anti-forensics. Handling anti-forensics in the cloud VMs
is imperative, as it is mostly overlooked. Anti-forensic approaches
used in traditional systems are equally applicable in cloud VMs, and
artifact wiping is one such approach. The world has witnessed artifact
wiping as a Wiper attack in recent warfare between Israel and Hamas,
Ukraine, and Russia. Wiper attacks are considered destructive mal-
ware as they cause permanent damage to data. Thus, detecting, mit-
igating, and restoring the effect of such anti-forensic techniques used
in cloud incidents becomes crucial to ensure the completeness of the
evidence collected for investigation.
Despite the challenges, identifying and countering anti-forensic tech-
niques in a cloud VM also offers advantages. Monitoring cloud VM
activity is generally easier compared to detecting user activity on per-
sonal computers due to limited visibility and privacy concerns in per-
sonal and non-regulated environments. This is because the cloud typ-
ically offers centralized administration with monitoring tools, provid-
ing administrators with comprehensive visibility into VM activities,
resource usage, and performance metrics. These integrated tools can
be used to streamline the monitoring process and enable proactive
detection and mitigation of anti-forensic techniques.
Our research objective is to address the anti-forensic practice of ar-
tifact wiping in the cloud VMs. It is proposed to provide a solution
to detect wiping and withstand it by restoring the wiped contents
from cloud VMs by exploiting the underlying file system data recovery
mechanism. Further, we propose an investigation model to preserve

viii

the cloud VMs and investigation findings. For this, we have con-
sidered the existing cloud forensic frameworks by the leading CSPs,
i.e., Amazon, Azure, and Google Cloud, as well as other challenges
associated with cloud forensics. We address these challenges by incor-
porating blockchain technology in our model to ensure immutability,
transparency, and integrity of the evidence and investigation proceed-
ings across the stakeholders involved in the investigation.

ix

Contents

Acknowledgments vi

Abstract viii

List of Figures xiv

List of Tables xvi

1 Introduction 1
1.1 Digital Forensics . 1
1.2 Anti-forensics . 2

1.2.1 Artifact Wiping . 3
1.2.2 Gaps in Existing Literature for Wiping 4

1.3 Cloud Forensics . 4
1.3.1 Gaps in Existing Literature for Cloud Forensics 5

1.4 Research Objectives . 6
1.5 Scope and Problem Definition . 6
1.6 Contribution of the Thesis . 7

1.6.1 Detection of Wiping Activity 7
1.6.2 Recovery of Wiped Files 8
1.6.3 Preservation of Evidential Artifacts 9

1.7 Organization of the Thesis . 9

2 Background and Literature Survey 11
2.1 Anti-forensics . 11

2.1.1 Data Hiding . 11
2.1.2 Trail Obfuscation . 12
2.1.3 Artifact Wiping . 12

x

CONTENTS

2.1.3.1 Types of Artifact Wiping 13
2.1.3.2 Related Work for Wiping Detection 13
2.1.3.3 Limitations . 14

2.2 Cloud Forensics . 15
2.2.1 Cloud Forensics by the Leading CSPs 17

2.2.1.1 Forensic Workflow of Leading CSPs 18
2.2.1.2 Evaluating Cloud Forensic Challenges Across Pro-

posed Solutions by Leading CSPs 22
2.2.2 Limitations of Cloud Forensics 23

2.3 Summary . 24

3 Detecting File Wiping 25
3.1 Challenges in Existing Literature 25
3.2 Contributions . 26
3.3 Prelimnaries . 26

3.3.1 Data Sanitization . 26
3.3.2 Ext File System Journaling 27
3.3.3 System Calls . 28

3.4 Detecting Wiping Using File System Journals and Data Blocks . . 28
3.4.1 Proposed Model WiDeJ 28

3.4.1.1 Ext Journal Analysis 29
3.4.1.2 Using Shanon’s Entropy 32

3.4.2 Results and Discussion . 36
3.5 Detecting Wiping using System-calls 41

3.5.1 Role of System-calls in Behavior Analysis 42
3.5.2 Proposed Model WiDeS 42

3.5.2.1 Profiling Process Behaviour 43
3.5.2.2 Filtering Driven by Write() System-call 52
3.5.2.3 Analysis of Buffer Data Entropy 53

3.5.3 WiDeS Workflow . 55
3.5.4 Results and Discussion . 57

3.6 Summary . 61

xi

CONTENTS

4 Recovery of Wiped Files 63
4.1 Challenges in Recovering Wiped Files 64
4.2 Contributions . 66
4.3 Prelimnaries . 66

4.3.1 BTRFS Chunks . 66
4.3.2 BTRFS Trees . 67
4.3.3 BTRFS Data Structures 67

4.4 Recovery Using Journals . 71
4.5 Proposed Model ReWinD . 72

4.5.1 ReWinD Using btrfs-progs 72
4.5.2 ReWinD by Logging PA of Files 78

4.6 Results and Discussion . 90
4.7 Usecase: Recovery of a file encrypted by Gonnacry ransomware . 93
4.8 Summary . 95

5 Investigation Model to Preserve Cloud VMs and Investigation
Proceedings on Blockchain 97
5.1 Challenges in Existing System . 98
5.2 Contributions . 99
5.3 Prelimnaries . 100

5.3.1 Blockchain . 100
5.3.2 Hyperledger Fabric (HLF) 100

5.4 Application of Blockchain in Digital Forensics 102
5.4.1 Log Integrity . 102
5.4.2 Metadata Integrity . 103
5.4.3 Chain of Custody . 103

5.5 Proposed Model Investigation-Chain 105
5.5.1 Blockchain Participants 107
5.5.2 Investigation-Chain Workflow 113

5.6 Proof of Concept . 115
5.6.1 Case Study (Child Pornography) 115

5.7 Results and Discussion . 118
5.7.1 Analysis of computational cost and communication overhead118
5.7.2 Comparative analysis of the recent research with

Investigation-Chain . 126
5.8 Summary . 129

xii

CONTENTS

6 Conclusion and Future Work 130
6.1 Summary of Contributions . 130

6.1.1 List of Contributions . 131
6.2 Future Work . 132

References 138

A Cloud Forensic Workflows of Leading CSP 149
A.1 AWS Workflow . 149
A.2 Azure Workflow . 151
A.3 GCP Workflow . 153

xiii

List of Figures

1.1 Phases in Digital Forensics . 2
1.2 Objectives and Contribution of the Thesis 7

2.1 AWS Forensics Workflow . 19
2.2 Azure Forensics Workflow . 20
2.3 GCP Forensics Workflow . 21
2.4 Thesis reseach direction in the context of anti-forensics in compar-

ison to the existing systems . 24

3.1 Journal after mounting the file system 29
3.2 Journal after copying a file . 30
3.3 File’s inode data captured in journal block 30
3.4 Block content of a file at specific block pointer (i.e 9216) 31
3.5 Journal after wiping a file . 35
3.6 Block content after wiping a file with zero 35
3.7 Content at data block when wiped with random characters 36
3.8 Scope of recovering wiped file data blocks using file system journals

by varying wiping tools and file size. 37
3.9 Difference between regular file and file wiped with 0s 38
3.10 Difference between regular file and file wiped with random characters 39
3.11 File layout (reproduced from [1]) 40
3.12 Subset of SoS for benign process ’ls’ 45
3.13 Unique patterns of benign process ’ls’ 45
3.14 Subset of SoS for wiping process ’Shred’ 46
3.15 Unique patterns of wiping process ’Shred’ 46
3.16 WiDeS Workflow . 56
3.17 Descision tree for WiDeS . 58
3.18 Benign and wiping processes entropies 59

xiv

LIST OF FIGURES

4.1 BTRFS key and BTRFS item in leaf node 68
4.2 BTRFS header of chunk tree . 69
4.3 BTRFS items captured for a chunk tree leaf node 70
4.4 Traversing Ext3 journal entries to recover previous versions of the

file . 71
4.5 Superblock output using btrfs-progs 73
4.6 Root backup from superblock . 74
4.7 FS tree dump using btrfs-progs 76
4.8 File data after wiping . 77
4.9 File Content before wiping . 78
4.10 Superblock layout for bootstrapping the file system 80
4.11 Root tree and chunk tree LA from superblock 82
4.12 sys arr chunk from superblock 82
4.13 Chunk tree leaf node layout . 84
4.14 Root Tree Leaf Node Layout . 87
4.15 Fs tree leaf node layout . 89
4.16 Comparing the scope of file recovery between Ext and BTRFS

under different scenarios as listed in Table 4.3 91
4.17 Scope of recovering wiped files from BTRFS by varying the DATA-

CHUNK and file sizes . 93
4.18 Superblock after encryption . 94
4.19 FS Tree before and after encrypting the file using Gonnacry . . . 95
4.20 File content at physical address before and after encryption 95

5.1 Existing Investigation Procedure. 99
5.2 Architecture of Investigation-Chain 107
5.3 Operational workflow of Investigation-Chain 114
5.4 Hash value of snapshot computed using Autopsy tool 116
5.5 Cloud CSP instance image file findings using Autopsy tool 117
5.6 Time vs size of the snapshot . 120
5.7 tps vs avg latency and throughput for 5-organizations-1-peer . . 122
5.8 tps vs avg latency and throughput for 4-organizations-1-peer . . . 123
5.9 tps vs avg latency and throughput for 3-organizations-1-peer . . . 124
5.10 Average latency comparison for three network models 125
5.11 Throughput comparison for three network models 125

xv

List of Tables

2.1 Evaluating Cloud Forensic Challenges across proposed solutions by
Leading CSPs . 23

3.1 Entropy values for different file types 38
3.2 Comparison of WiDeJ and [2] . 41
3.3 Benign processes’ patterns and their frequencies 48
3.4 Wiping processes’ patterns and their frequencies 49
3.5 NEs of wiping and benign processes 51
3.6 Processes classified as wiping (from module 1) and their patterns

with maximum frequencies . 53
3.7 List of benign processes, falsely classified as wiping processes with

high-frequency patterns . 60

4.1 BTRFS trees and their object IDs 67
4.2 BTRFS Tree items . 69
4.3 Experimental setup for different scenarios to evaluate BTRFS . . 91

5.1 Digital Forensic Solutions based on Blockchain: Summary of
strengths and weakness . 105

5.2 Operational cost in milliseconds 121
5.3 Avg latency and throughput for a network with 5-organizations-1-

peer . 122
5.4 Avg latency and throughput for 4-organizations-1-peer 123
5.5 Avg latency and throughput for 3-organizations-1-peer 124
5.6 Average resource utilization for 5-organization-1-peer for all trans-

action send rate . 126
5.7 Digital Forensic Solutions based on Blockchain: A Comparative

Analysis of security elements . 128

xvi

Chapter 1

Introduction

1.1 Digital Forensics
Digital Forensics is a process done as a part of investigation post the occurrence
of an incident to find evidence over digital media, it was initially developed for
data recovery [3]. Digital forensics involves examining digital media related to an
incident. This examination aims to uncover traces of evidence left on digital de-
vices. These traces result from actions taken during the incident. Digital forensics
involves five crucial phases, i.e., identification, collection, analysis, preservation,
and presentation of digital evidence (see Figure 1.1) in a way that is admissible in
a court of law. Digital forensics is not just limited to cyber incidents but applies
to other regular criminal offenses as the involvement of digital media, such as
computers, laptops, mobiles, IoT (Internet of Things) devices, etc, is unavoid-
able. It would be more appropriate to say that digital media is becoming the
core component of investigation in many cases. Based on the type of evidence
being examined, we classify digital forensics as cloud forensics, network forensics,
multimedia forensics, and mobile forensics. It is multidisciplinary as it involves
technology, law, psychology, etc. According to the National Crime Records Bu-
reau (NCRB) report, India has witnessed a 24% increase in cybercrime cases
recorded in 2022 compared to cases in 2021 [4]. The global reports show an
increase in the digital forensic market by 10% by 2032 [5]. Even during the pan-
demic Covid 19 the world has witnessed the sudden rise of cyber incidents and
an increase in investment in digital forensic tools and expertise, thus raising the
scope of the need for digital forensics.

1

1.2 Anti-forensics

Figure 1.1: Phases in Digital Forensics

There are many challenges in digital forensics, including the rapid evolution of
technology, global jurisdictions, lack of skilled forensic analysts, and many more;
However, we would like to highlight a few of them that we believe are crucial: anti-
forensics, cloud environment and virtualization, fragile nature of digital evidence.

1.2 Anti-forensics
Anti-forensics is a process used by malicious users to challenge the investigation
procedure. It includes the tools and techniques to obstruct forensic analysis.
Anti-forensics is an attempt to compromise the availability or usefulness of evi-
dence to the forensic process [6]. Anti-forensics involves either destroying data or
data misdirection, false/falsified data leading to wrong and inappropriate forensic
analysis [7]. The adversary adopts anti-forensic techniques to interrupt the inves-
tigation proceedings, thereby leading to inappropriate or incomplete investigation
findings. Encryption, artifact wiping, and data hiding are some of the well-known
anti-forensic approaches. There has been limited research in anti-forensics, but it
becomes crucial to detect anti-forensics early to ensure the completeness of inves-
tigation proceedings. Therefore, there is a pressing need to explore anti-forensics
further.

We aim to explore artifact wiping, an anti-forensic technique that deletes data
permanently by overwriting file content multiple times, making data recovery
impossible. Also, it has not only been adapted as an anti-forensic approach but
has also been used in wiper attacks. Wiper attacks are considered destructive as
they target to cause permanent damage to data. Unlike other cyber attacks, the

2

1.2 Anti-forensics

motive of the wiper attack is not to get financial benefits but to affect the other
involved party with irrecoverable damage. Wiper attacks are posing national level
security threats and are exercised in cyber war fares [8], [9]. Thus, detecting such
attacks and restoring the affected files becomes crucial to minimize the effect of
the damage caused.

1.2.1 Artifact Wiping
In the context of anti-forensics, artifact wiping refers to the intentional secure
deletion of activity traces from digital media. One cannot recover the file when it
is securely deleted. Several tools, such as Eraser, Wipe, Sfill, SRM, etc., perform
secure-delete tasks. Secure-delete is a suite of command-line utilities for securely
deleting files on Linux systems. These utilities are designed to ensure that files
are overwritten and irrecoverable, thus enhancing security and privacy. Secure
deletion is practiced to ensure user data privacy regulations such as the General
Data Protection Regulation (GDPR), Health Insurance Portability and Account-
ability Act (HIPPA), etc, but unfortunately, it is being practiced by adversaries
to remove the traces of an incident. Based on the type of artifact wiped, it can be
classified as 1) disk wiping and 2) file wiping. Our research focuses on detecting
file wiping and restoring wiped files, with future work planned to address disk
wiping.

File Wiping
A file is a collection of data stored as a single unit with a unique name and location
within a file system. The data corresponding to the file is stored in blocks; they
are consecutive sectors on the disk that store the file content. Each file occupies
certain blocks based on its size. In Linux-based machines, an inode is the data
structure that stores files’ metadata (e.g., file size, file type, data block pointers,
timestamps). We use an inode to locate the file on the disk. Upon deleting a
file, the file’s corresponding block pointer references from the inode are removed;
because of this, we shall not be able to access the file directly. However, the
file’s content is still available in the data blocks. Thus, it is possible to recover
the deleted files because in file deletion, the metadata corresponding to the file
is deleted, but the actual file content is still available on the disk. Unfortunately,
as the file system ages, deleted files cannot be recovered as new data overwrites
the unallocated space containing their content. However, if a file is only partially
overwritten, there is still a chance to recover part of it. Therefore, through the
use of suitable forensic tools, we can potentially retrieve deleted files either in full

3

1.3 Cloud Forensics

or partially. On the other hand, wiping is a secure deletion method. It involves
not only removing metadata information from the inode but also overwriting the
content of the corresponding file with random or specific characters (such as 0s or
1s), or repeating patterns of characters multiple times, resulting in the complete
loss of data associated with the file.

1.2.2 Gaps in Existing Literature for Wiping
• The current literature has placed relatively less emphasis on anti-forensics

when compared to digital forensics. However, it becomes crucial to detect
anti-forensics even before starting the investigation to ensure the investiga-
tion is complete.

• The existing literature speaks only about detecting artifact wiping but does
not show the procedure to restore them. Whereas, restoring wiped files
could be very crucial as files serves as the basic artifact for any case.

• Current literature detects wiping using the signatures of the tools used to
perform anti-forensics. But as the signature of the tools evolve these tools
go undetected by the forensic tools.

1.3 Cloud Forensics
Cloud forensics is extending the application of digital forensics, which oversees
the crime committed over the cloud and investigates it [10]. It emphasizes on
collection, analysis, preservation, and presentation of cloud evidential artifacts as
admissible in a court of law.

In this thesis, we would like to address the challenges corresponding to file wip-
ing in cloud Virtual Machines (VMs); this can also be extended to cloud storage
solutions, personal systems, or systems in the corporate environment. We focus
on the cloud environment as we see it as an opportunity for the benefit of law
enforcement agencies and Cloud Service Providers (CSPs) to curb anti-forensics
in cloud VMs. Cloud environments, being centrally monitored and administered,
present an opportunity to deploy our scripts for detection and recovery across tar-
geted VMs efficiently. These scripts can operate in the background, continuously
monitoring artifact-wiping. However, while we acknowledge the advantages of

4

1.3 Cloud Forensics

cloud technology in combating anti-forensics, it is imperative to recognize the as-
sociated challenges in cloud forensics. Digital forensics, when extended to cloud
resources, considers the challenges in the cloud, such as virtualization, multi-
tenancy, data privacy, geographical jurisdictions, etc., and is known as cloud
forensics. In cloud forensics, one of the crucial and primary evidential artifacts
are cloud VMs. Cloud VMs are pivotal in cloud forensics due to their role as
primary data carriers, the availability of snapshots for preserving evidence, and
the ability to leverage cloud’s scalable and remote capabilities. Hence, in this
thesis, we explore cloud VM forensic challenges and present appropriate solutions
for preserving cloud VMs in a sound forensic manner.

1.3.1 Gaps in Existing Literature for Cloud Forensics
• Increased response time to identify the malicious behavior in the context of

file wiping in VMs and mitigate the effect of an incident.

• Dependency on CSP for the evidential artifacts. Law Enforcement Agency
(LEA) has to depend on CSP, unlike traditional cybercrime cases. Owner-
ship of evidence is with CSP, who cannot be trusted completely.

• Recovery of deleted or overwritten data. Due to the multi-tenant nature of
the cloud most of the data is either overwritten to support other customer
requirements or deleted due to data retention policy by CSP. If any delay
occurs in sending the notice to preserve the evidence, then the crucial data
required for investigation may be lost. Also, the forensic tools available for
the cloud have many limitations in the retrieval of deleted or overwritten
data.

• Trust on CSP and data integrity. Evidence stored in the cloud is always
vulnerable to insider threats; it can be done intentionally to protect a com-
pany’s reputation or by a former company employee.

• Lack of Standard Operating Procedure (SOP). There is no single valid ap-
proved process for digital forensics, this may challenge LEA in their investi-
gation proceedings. Moreover, each CSP may have its own forensic process,
which may or may not be valid.

5

1.4 Research Objectives

• Forensic data acquisition and preservation. Due to a lack of cloud forensic
tools, trainers, and trained professionals, forensically acquiring data and
preserving it without compromising the integrity of evidence is a challenge.

1.4 Research Objectives
The main objective of this thesis is to uncover file wiping in cloud VMs. In this
direction, the three main objectives of the thesis include;

1. Detection of wiping activity in cloud VMs.

2. Recovery of wiped files in cloud VMs.

3. Preservation of the cloud VMs.

1.5 Scope and Problem Definition
Cloud has become indispensable due to its meteoric increase in utilization. Gart-
ner’s prediction shows a 70% increase in the utilization of cloud resources by 2027,
which currently in 2023 is around 15% [11]. A report by Thales [12] shows that
75% of businesses save 40% of their sensitive data on the cloud; it also, states
that cloud assets are the biggest targeted resources for cyberattacks as 39% of
businesses suffer from data breaches on the cloud. This alarming increase in cloud
cyber attacks emphasizes the need for the readiness of CSP for cloud forensics.
At the same time, we should also be prepared to detect, mitigate, and restore the
effect of any anti-forensic techniques used in cyber-cloud attacks. Anti-forensic
approaches applicable in traditional systems are equally applicable in cloud envi-
ronments, artifact wiping is one such approach. The world has witnessed artifact
wiping as a Wiper attack in recent warfare between Israel and Hamas, Ukraine,
and Russia, also Saudi Arabia energy sectors were targeted [8], [9], [13].

Our objective is to walk through the challenges of cloud forensics while si-
multaneously addressing the anti-forensics approaches like artifact wiping in the
cloud VMs. Further, devised an investigation model to collect and preserve the
cloud evidential artifacts such that it ensures transparency and integrity of the
investigation proceedings across the stakeholders involved in the investigation.

6

1.6 Contribution of the Thesis

1.6 Contribution of the Thesis
The objective of the stated research has been discussed in three different aspects
of file wiping i.e., detection, recovery, and preservation. This section briefly elab-
orates on the contributions towards each objective. Figure 1.2 provides the big
picture of the contributions aligned with the objectives of the thesis.

Figure 1.2: Objectives and Contribution of the Thesis

1.6.1 Detection of Wiping Activity
The first objective of the thesis focuses on detecting wiped files using the two
approaches. The first approach (Contribution 1) includes wiping detection us-
ing file system journals, data blocks, and information theory metrics, and the
second approach (Contribution 2) includes wiping detection using a Sequence
of system calls and information theory metrics. In the first approach, we use file
system journals to locate wiped file’s data blocks on the disk. Further, we deter-
mine the block content byte-by-byte at each block allocated to the file. Likewise,
we consider all blocks allocated to the file. We look at the frequency distribution
of characters at these blocks and detect file wiping using Shannon’s entropy.

In the second approach, we detect wiping using the sequence of system calls
and information theory metrics and analyze the behavior of the benign and wip-
ing process. Early study shows that system calls played a significant role in
classifying normal process behavior from malicious process behavior [14], [15],
[16]. We detect wiping by profiling the benign process behavior and the wiping
process behavior. We monitor the system behavior at the process level by us-
ing short patterns from the sequence of system calls invoked by these processes.
We observe how often a pattern is repeated in a process. Processes with a high

7

1.6 Contribution of the Thesis

frequency of patterns indicate characteristic behavior associated with the wiping
process’s activity. As wiping involves overwriting the contents multiple times, the
same patterns of system calls are invoked multiple times, thereby increasing the
probability of patterns in the wiping process. Conversely, processes that exhibit
infrequent patterns that reflect diverse or random patterns with less probability
are often found in benign processes. Thus, we can classify the process based on
the degree of randomness of patterns; here, we use Shanons’ entropy to measure
the randomness of patterns.

1.6.2 Recovery of Wiped Files
The second objective of the thesis focuses on restoring wiped files using file system
recovery mechanisms. We recovered wiped files using two different file systems
i.e., 1) Journal-based file system (Extended file system (Ext)) and 2) Copy-on-
Write (CoW) based file system (B-Tree file system (BTRFS) (Contribution
3). The existing literature has discussed detecting wiping using signature-based
approaches but does not discuss restoring the wiped files. We restore the wiped
files using both journaling in the Ext(3/4) file system and CoW in BTRFS.

Journals are used to track the changes committed on the disk even before
they are executed on the disk to ensure file system consistency. In case of system
failures, the journal is replayed to restore the file system. In the process of recov-
ery, the committed transactions on the journal are executed on the disk, and the
incomplete transactions are rolled back to the previous state. Thus, by traversing
the journal back we can restore the previous version of the file. However, due to
the cyclic queue data structure of the journal, the journal contents are overwrit-
ten by itself. Thus, if the journal contents are not recovered in time we may not
be able to restore the wiped file.

On the other hand, in a CoW-based file system, when a file is updated or
modified, instead of overwriting the existing file, the file’s content is copied to
a new location, and the changes are done at the new location [17]. Thus, the
original file remains unchanged. This allows multiple file versions to be stored
simultaneously, which can be useful for keeping track of changes made over time.
If the operating system itself overwrites the file we cannot recover the older version
of the file. However, this limitation is also applicable to other file systems as well.

8

1.7 Organization of the Thesis

1.6.3 Preservation of Evidential Artifacts
The third objective of the thesis focuses on using blockchain to preserve the evi-
dential artifacts (like cloud VM) and investigation findings of the cloud incidents.
Blockchain is a promising technology that will ensure data integrity, immutabil-
ity, trust, and transparency among multiple stakeholders. To ensure the integrity
of evidence in the cloud, most of the researchers in this domain have proposed
applying blockchain on cloud forensic artifacts (i.e., cloud logs, chain of custody,
metadata) [18], [19]. Thus, we propose an investigation model to preserve cloud
VMs and their findings on blockchain (Contribution 4).

Summary of Contributions
• An approach to detect file wiping on virtual machines using disk contents

(i.e., virtual disk) and information theory metrics.

• A novel approach to detect file wiping on virtual machines using the se-
quence of system calls and information theory metrics.

• An approach to restore the wiped files using file system journals.

• A novel approach to restore the wiped files using CoW-based file system
BTRFS.

• A usecase for extending our proposed model for recovery of encrypted files
using Gonnacry application.

• A big picture of cloud forensic approaches adopted by the leading CSPs.

• An investigation model to preserve evidential artifacts cloud VM that is
tamper-proof and transparent across the stakeholders involved in the inves-
tigation.

1.7 Organization of the Thesis
The contributions presented as part of the thesis entitled ”Cloud Virtual Ma-
chine Forensics- An Anti-forensics Perspective” are structured into six different
chapters. In this section, a brief overview of the chapters is illustrated. The

9

1.7 Organization of the Thesis

four contributions are presented in Chapter 3 (which includes two contributions),
Chapter 4, and Chapter 5.

Chapter 1. Introduction: A brief introduction to the thesis is given in this
chapter. It introduces digital forensics, anti-forensics, and cloud forensics. It also
briefly identifies the research gap and establishes the motivations to achieve the
objectives of the thesis. Finally, the chapter is concluded with the organization
of the thesis followed by the list of contributions to the thesis.

Chapter 2. Related Work: In this chapter, we discuss current literature
and the challenges in the context of the research objectives of this thesis.

Chapter 3. Detecting File Wiping: In this chapter, we propose a method
to detect file wiping in cloud VMs using two approaches: 1. Using journals, data
blocks, and information theory metrics, 2. Using system calls and information
theory metrics. The first approach is to detect wiping post-occurrence of the
incident, and the second approach is to detect wiping when the incident is active.

Chapter 4. Recovery of Wiped Files: In this chapter, we propose an
approach to recover wiped files from cloud VMs using the file system’s data
recovery mechanisms. Data recovery mechanisms are used to restore the file
system to a consistent state in case of power failure, system crashes, or hardware
errors. Two major data recovery mechanisms used in file systems include 1)
Journaling and 2) CoW. In this chapter, we present two different approaches for
file recovery using these file system recovery procedures. Additionally, we present
a usecase for recovery of unencrypted file versions following a ransomware attack
launched by Gonnacry.

Chapter 5. Investigation Model to Preserve Cloud VMs and Inves-
tigation Proceedings on Blockchain: In this chapter, we detail the procedure
of preserving the cloud VMs and the investigation findings using a blockchain.
The proposed model also addresses additional challenges in cloud forensics, such
as trust on CSP, transparency in the investigation, collusion across the involved
stakeholders, and integrity of evidence.

Chapter 6. Conclusion and Future Scope : This chapter summarizes the
contributions made to address the aforementioned objectives to achieve the overall
problem statement with substantial evidence. Finally, this chapter concludes with
future research directions.

10

Chapter 2

Background and Literature
Survey

In Chapter 1, we discussed digital forensics, anti-forensics in the context of artifact
wiping, and how the cloud can be considered as an opportunity for the proposed
solutions to detect wiping, recover wiped content, and preserve the evidential
artifacts. We also listed the gaps and challenges corresponding to anti-forensics
and cloud forensics. In this chapter, we provide the background and related
research in the context of anti-forensics and cloud forensics.

2.1 Anti-forensics
Anti-forensics is a process used by malicious users to challenge the investigation
procedure. It includes the tools and techniques to obstruct forensic analysis.
According to Harris [6], anti-forensics is an attempt to compromise the availability
or usefulness of evidence to the forensic process. Anti-forensics involves either
destroying data or data misdirection, false/falsified data leading to wrong and
inappropriate forensic analysis [7]. Based on early studies [6], [20], [21], [22],
[23], [24] we generalized anti-forensic techniques broadly as data hiding, trail
obfuscation, and artifact wiping.

2.1.1 Data Hiding
Data hiding is an approach adapted intentionally to hide the data inorder to
bypass the investigation findings. The authors in [6], [20], and [21] lists many

11

2.1 Anti-forensics

approaches for data hiding. Commonly used data-hiding approaches include en-
cryption and steganography [21]. Encryption is altering the plain text into the
encoded text to avoid unauthorized access. In digital forensics, encryption is used
by adversaries to prevent the readability of evidential artifacts unless an appro-
priate decryption key is available. The authors of [25], [26], and [27] details the
impact of encryption on digital forensics and the procedure to recover encrypted
files. Steganography is the way to hide data in other files like documents, images,
audio, and videos for privacy and confidentiality. Also, steganography is mostly
known for illicit purposes by adversaries to hide evidential artifacts from direct
access. The authors in papers [28], [29] show the application of steganography
and its detection for forensic investigation.

2.1.2 Trail Obfuscation
Trail obfuscation is the practice of misleading the investigator intentionally by al-
tering the evidential artifacts or destroying the evidential artifacts, thereby mak-
ing investigation difficult or impossible. It predominantly includes metadata ma-
nipulations, IP/MAC address spoofing, proxy servers, log cleaners, compression
bomb, DDoS attacks, etc [21], [30]. By altering the metadata, they mislead the
investigator resulting in inappropriate timeline analysis and event reconstruction.
IP/MAC address spoofing, proxy server, and P2P networks ensure anonymity
and conceal the adversary’s identity. Log cleaners remove the traces of the trails
left behind upon execution of cyber incidents. Compression bombs and DDoS
attacks exploit the computational resources, thereby causing the system to crash
or freeze, hindering and delaying the investigation.

2.1.3 Artifact Wiping
Artifact wiping typically involves overwriting the content stored with random
data multiple times, making it extremely difficult to recover. The act of wiping
files itself may be evidence of criminal intent. Detection and analysis of artifact
wiping may be used to establish the intent and motive of the cyber incident. From
the existing anti-forensics techniques, wiping is the commonly adapted technique
[21], [31], because it is supported by many commercial and freeware that is easy
to install and use. The authors in paper [31] explain the integration of anti-
forensics approaches in other attacks whose primary purpose is to delete evidence
(e.g., Wiper attacks). A report by Fortiguard shows an increase in the wiper

12

2.1 Anti-forensics

attacks by 50% [32]. This motivates us to consider artifact wiping as our research
objective. Based on the type of artifact being wiped, it can be further classified
as disk wiping and file wiping.

2.1.3.1 Types of Artifact Wiping

Based on the type of artifact wiped, it can be classified as 1) disk wiping and 2)
file wiping. In this research, we have investigated file wiping and restored wiped
files.

Disk Wiping:
Disk wiping overwrites the disk space on the storage media multiple times, making
data recovery impossible. Here, disk space can be a few blocks allocated to a file, a
disk partition, or the entire disk. It is used to ensure data protection regulations
for organizations’ securely deleting content while disposing of old system hard
disks. The authors in paper [2] used the block contents to detect wiping on disk.
It uses statistical methods such as entropy and a statistical test suite developed
by NIST to determine the randomness of block content and detect wiped data
fragments on disk compared to standard data fragments.

File Wiping:
We discussed file wiping in Chapter 1; it involves overwriting the contents of the
targetted file. Unlike disk wiping, in file wiping, the adversary targets only specific
files that may contain sensitive data crucial for investigation. Adversary adapts
file wiping to minimize detection risk. It challenges forensic investigators, leaving
the entire system intact and making it difficult to identify which specific file was
wiped. Unlike disk wiping, file wiping doesn’t draw one’s attention. Also, file
wiping is time and resource-efficient compared to disk wiping. Thus, adversaries
prefer file wiping over disk wiping. Hence, it becomes crucial to detect file wiping
and mitigate its effect.

2.1.3.2 Related Work for Wiping Detection

The existing techniques to detect wiping are based on the traces left by the wiping
tool following their execution. We classified all such approaches as signature-
based wiping detection models. The authors in [33] detect wiping based on the
entries found in various metadata structures of the windows file system like FAT32
(File Allocation Table), glsexfat (Extended File Allocation Table), NTFS (New
Technology File System). For FAT32 and exFAT, the directory structure entries
were used, and for the NTFS file system, $MFT, $LogFile, $UsnJrnl files were

13

2.1 Anti-forensics

analyzed to detect wiping for four different wiping tools. Horsman in [34], used
Digital Tool Marks (DTM) left behind by the seven different wiping tools following
their usage to detect file wiping. He determined the impact of eight wiping tools
on NTFS and FAT32 file systems. Wiping detection was done based on the
differences identified between regular and wiped file’s metadata using the file
system artifacts $Logfile and $MFT. Unlike the above-mentioned papers, Joo et
al. [35] used window artifacts instead of file system artifacts. Total 13 window
artifacts (like Prefetch, AmCache, Jumplist, ShimCache, etc) were analysed by
varying 10 different wiping tools. Further, they consolidated their results in a
database for investigators quick reference. Park et al. [36] used signatures of an
anti-forensic tool (eraser) under the action, i.e., the traces left during installation,
execution, and uninstallation. The systems monitoring tool collects system logs.
These logs are used to collect the signatures of the tools. The signatures captured
are then compared with known anti-forensic tool signatures. If the signatures
match, anti-forensics is detected.

Most studies have focused on detecting wiping but not on recovering wiped
content. Recovery of wiped files will be of significant importance in the forensic
investigation as it can provide crucial evidence. We could find papers [37], [38]
that restore the previous versions of the file. Swenson et al. [37] restores the
previous version of the file using the ExT file system journal, but due to the
cyclic queue data structure of the Journal, the journal content gets overwritten.
Thus, recovery of the previous file version is only possible upon restoring the
journal at the appropriate time. Peterson et al. [38] enabled Ext file systems
with CoW capabilities for file versioning. They used snapshots for versioning at
the file level. This motivates us to use a CoW-based file system to explore further
for recovery of wiped files.

2.1.3.3 Limitations

We explored file wiping and summarized the limitations observed based on the
above discussion specific to file wiping below,

• To continuously be updated about the emerging wiping tools signature. If
any signature of the tool is unknown, it goes undetected.

• If the wiping tools erase its traces from the referenced artifacts leaving no
trace of its execution then detecting wiping becomes challenging.

14

2.2 Cloud Forensics

• Most of the literature has focused on the detection of file wiping, but the
scope of recovering the wiped files is yet to be explored.

• Shortfall of literature for investigating the recent file systems in use for
detecting and recovering wiped files.

2.2 Cloud Forensics
Simson Garfinkel, in his paper [3], discussed the golden age of digital forensics and
emphasized the need to upgrade the existing forensic tools for the next generation.
By using traditional forensic tools, data residing in the computer’s digital media
can be retrieved, but these tools are not showing promising results when applied
on cloud [3]. Dykstra, in his paper [39], presents two hypothetical case studies
of crime committed over the cloud and further details the challenges encountered
due to the usage of existing standard forensic tools used for the investigation of
these cases. As there is a substantial increase in demand for cloud computing, the
need for the tools addressing the challenges encountered in the cloud is needed.

A survey by K. Ruan [40] on critical criteria and definitions for cloud foren-
sics publishes the results of a survey conducted across 257 forensic experts and
practitioners. This survey focuses on fundamental questionnaires regarding cloud
forensics, such as its definition, challenges, usage, significance, opportunities, re-
quired criteria, etc. The majority of the respondents supported cloud forensic
definition as - ”Cloud forensics is a mixture of traditional computer forensics,
small-scale digital device forensics, and network forensics” and ”Cloud forensics
is an application of digital forensics in cloud computing.” Increased usage of cloud
technology has opened gateways for hackers to commit crimes over the cloud with
much ease[41], at the same time increasing the risks and challenges in the inves-
tigation procedure for LEAs and CSPs. Investigation procedure, the nature of
evidence, and many other artifacts corresponding to crimes committed over the
cloud vary from traditional crime involving digital media. The Investigating Of-
ficer (IO) will neither have direct access to the physical resources nor will be
involved in evidence collection due to various privacy constraints in the cloud.
The IO has to depend on the CSPs for evidence completely. There is a lack
of standard operating procedures for conducting forensics in the cloud as every
crime over the cloud differs by cloud architecture, type of service, and deployment
model being used [10].

15

2.2 Cloud Forensics

There are multiple challenges in cloud forensics as the cloud supports multi-
tenancy, infinite storage, virtualization, remote accessibility, etc. Thus, CSPs
play a major role in the identification, collection, and preservation of evidence
by ensuring the integrity of the evidence. Earlier published survey papers by
researchers in this domain have detailed the challenges in cloud forensics. Also,
the National Institute of Standards and Technology (NIST) has published two
reports i.e., [42] and [43]. These technical reports elaborate an exhaustive list
of challenges corresponding to architecture, data collection, data analysis, anti-
forensics, trust in incident first responders (CSP), role management, standard
operating procedures, training, and legal challenges. Survey paper by Bharat
Manral [44] details cloud forensic challenges. It illustrates the work accomplished
in cloud forensics and the challenges by categorizing them as incident-driven,
provider-driven, consumer-driven, and resource-driven cloud forensics. Ameer
Pichan, in his paper [45], details a comparative analysis of technical challenges
and solutions in cloud forensics. This paper lists the challenges for each phase
of the digital forensic process, i.e., identification, preservation, collection, anal-
ysis, and presentation. It provides a comparative analysis of available solutions
proposed by researchers, NIST and Amazon. A survey paper by Shams Zawoad
[10] summarizes the challenges in cloud forensics based on cloud service mod-
els, i.e., Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). It lists the earlier proposed forensic solutions for
IaaS, PaaS, SaaS, and corresponding challenges. Ben Martini, in his paper [41],
discusses cloud forensic technical challenges and reviews the proposed models by
researchers. This paper details the challenges and areas of improvement in public
and private cloud storage applications. K.Ruan, in her paper [46], discusses cloud
forensics and elaborates on challenges in three different dimensions, i.e., techni-
cal, organizational, and legal. Further, Expert review on cloud forensic readiness
framework by organizations [47], this study is motivated by a particular gap in
research on the technical, legal, and organizational factors that facilitate forensic
readiness in organizations that utilize an (IaaS) model.

The authors of the paper highlight the need for existing forensic procedures
to withstand anti-forensics in the cloud [48], [49]. Radha, et al. [48] proposed
a taxonomy for anti-forensics in cloud. They proposed a framework for cloud
forensic investigation that included a module to check for anti-forensics before
reporting and presenting the evidence. However, the authors didn’t disclose the
details of the implementation. Prasad and Vrushali [49], discussed the demand for
a framework that mitigates anti-forensics in cloud forensics. Further, the author

16

2.2 Cloud Forensics

also emphasizes the need for blockchain-based solutions to ensure the integrity of
the investigation process due to the increased application of anti-forensics.

We observed that most of the papers on cloud forensics are focused on the
cloud forensic challenges and contributions by the research community to address
those challenges. However, we aim to understand the current cloud forensic pro-
cedure in practice by the leading CSPs and examine if the current procedures can
address any of the existing challenges, further identify the gaps in real-time, and
try to address the gap accordingly.

2.2.1 Cloud Forensics by the Leading CSPs
In this section, we compare the forensic readiness of leading CSPs. Based on
Gartner, Inc. magic quadrant on leading CSPs published in 2020 [50], Amazon
Web Services (AWS), Azure, and Google Cloud Platforms (GCP) are the lead-
ing CSPs. These CSPs are compared against various parameters based on the
provisioning of cloud forensic procedures. Comparison parameters are selected
based on essential cloud characteristics for collection, analysis, and preservation
of evidential data for investigation. The information is obtained from the official
websites of the respective CSPs, conferences, and workshops. On analysis of cloud
forensic procedure of AWS [51] [52], Azure [53] [54] and GCP [55] it is found that
the providers are implementing cloud forensics by performing, Log, Disk, and
Memory Forensics. However, we could not find a supporting document regarding
memory forensics by Azure, but as stated in the incident response document [54]
that memory forensics is implemented by Azure.

• Log Forensics- Log forensics is the analysis of cloud logs to mitigate and
investigate malicious behavior of the attacker [56]. The captured cloud logs
are preserved and presented such that it is admissible and used in court
trials.

• Disk Forensics- Disk forensics in the cloud involves creating the snapshot of
the suspected virtual instance along with its attached disk volumes. It also
involves ensuring the integrity of the acquired snapshots and analyzing the
disk contents by using forensic tools, and presenting the admissible evidence
to the court of law.

• Memory Forensics- Memory forensics is capturing and analyzing volatile
data of the affected cloud resource (i.e., VM’s Random Access Memory

17

2.2 Cloud Forensics

(RAM)). The memory captured (memory dump) is analyzed preserved and
presented to the court of law such that it is admissible. It is also known as
live forensics.

2.2.1.1 Forensic Workflow of Leading CSPs

We analyzed that forensics in the cloud environment are carried out on three main
cloud artifacts by these leading CSPs; they are logs, disk, and volatile memory of
virtual instances involved in the incident. Thus, we analyzed the forensic proce-
dures for log, disk, and memory forensics by leading CSPs by referring publicly
available official documentation. Forensic workflow is the sequence of tasks that
processes the evidential data in every step of each CSP and presents a bird’s eye
view of end-to-end forensic workflow for each CSP i.e. AWS forensic workflow
in Fig 2.1, Azure Forensic workflow in Fig 2.2 and GCP forensics Workflow in
Figure 2.3 (see Appendix A for a detailed description of the workflows by each
CSP).

18

2.2 Cloud Forensics

AWS Forensics Workflow

Figure 2.1: AWS Forensics Workflow

19

2.2 Cloud Forensics

Azure Forensics Workflow

Figure 2.2: Azure Forensics Workflow

20

2.2 Cloud Forensics

GCP Forensics Workflow

Figure 2.3: GCP Forensics Workflow

21

2.2 Cloud Forensics

2.2.1.2 Evaluating Cloud Forensic Challenges Across Proposed Solu-
tions by Leading CSPs

We now discuss and compare some of the cloud forensic challenges listed in the
technical report published by NIST in 2020 [43]. NIST has listed 65 challenges
corresponding to cloud forensics in its report. In our survey, we found that none of
the leading CSPs are addressing all the 65 challenges. However, we observed that
12 of these 65 challenges (suggested in the NIST technical report) are addressed
by these CSPs. These 12 challenges are listed below along with the proposed
solutions by Leading CSPs (detailed in table 2.1).

1. Decentralized logs- Collecting cloud logs from distributed cloud resources.

2. Log format unification- Collecting logs and making them convertible to
other formats used to centralize them.

3. Lack of transparency- Cloud operational details are not transparent to the
user.

4. Data available for a limited time- Data associated with cloud resources are
available for a limited time.

5. Isolation of evidence- Isolation of cloud resources from the scalable cloud
environment.

6. Imaging the evidence- Imaging large volumes of data.

7. Reconstruction of virtual storage- To create the image from a physical disk.

8. Data integrity and preservation- To preserve data and ensure data integrity
for evidence admissibility.

9. Validation of forensic image- Ensure integrity of the image captured for
analysis.

10. Authentication and access control- Access control approach and policies in
the cloud environment.

11. Reliance on CSP- Dependency on CSP for evidence.

12. Confidentiality and Personally Identifiable Information (PII)- Ensuring the
confidentiality of PII upon receiving a legal request for disclosure of infor-
mation.

22

2.2 Cloud Forensics

Table 2.1: Evaluating Cloud Forensic Challenges across proposed solutions by
Leading CSPs

Cloud Forensic
Challenge

Proposed Solution Amazon Azure Google References

Decentralized logs Centralize logs form
cloud resources

✓ ✓ ✓ [57] [58] [59] [60]

Log format unification Convert logs to
a standard format

✓ ✓ ✓ [58] [59] [60]

Lack of transparency Provide transparency
to users

✓ ✓ ✓ [52] [53] [61]

Data available for
a limited time

Data retention policy ✓ ✓ ✓ [62] [63] [64]

Isolation of evidence Deregister the instance from
scalable cloud resources

✓ X X [65]

Imaging the evidence Scalable storage service ✓ ✓ ✓ [52] [65] [53] [55]
Reconstruction of
virtual storage

Creating snapshot of
attached disk volumes

✓ ✓ ✓ [52] [65] [53] [55]

Data integrity and
preservation

Apply retention policies
for legal investigation

✓ ✓ ✓ [62] [63] [64]

Validation of Forensic
image

To use hash values
of the image

✓ ✓ ✓ [52] [65] [53] [55]

Authentication and
access control

Access control mechanism ✓ ✓ ✓ [65] [53][66]

Reliance on CSP Provide LEA access
to evidential resources

X ✓ X [53]

Confidentiality and PII Disclosure of PII only
upon receiving Legal request

✓ ✓ ✓ [67] [68] [69]

2.2.2 Limitations of Cloud Forensics
The above workflows by the leading CSPs, i.e., Amazon, Azure, and GCP, show
that there is a lack of standard operating procedures for conducting forensics
in the cloud. Each CSP has its own approach. However, log, disk, and memory
forensics are common evidential artifacts considered by the leading CSPs for cloud
forensics, as shown in Figure 2.4. Also, one of the major drawbacks noticed in
the forensics approach adopted by the leading CSPs is that they have ignored
anti-forensics. Thus, in this thesis, we bridge this gap. Figure 2.4 highlights the
research direction of this thesis in the context of anti-forensics in comparison to
the existing cloud forensic approach adopted by leading CSPs.

23

2.3 Summary

Figure 2.4: Thesis reseach direction in the context of anti-forensics in comparison
to the existing systems

2.3 Summary
Adoption of the cloud computing model must inherently support auditing fa-
cilities to monitor anti-forensics activities in the cloud, which still doesn’t have
much-needed attention. We evaluated the forensic procedures implemented by
the leading CSPs considering the cloud forensic challenges reported by NIST
[43]. Out of 65 challenges, only 12 are addressed, and still, a fair amount of work
needs to be done to accomplish other challenges. Anti-forensics is also one of
the 65 listed challenges that have not yet been addressed. Moreover, the current
forensic strategies of leading CSPs fail to address the associated challenges with
anti-forensics. Considering the increased adoption of artifact wiping (an anti-
forensic technique) [21], [31], [32], we considered wiping detection, recovery, and
preservation in cloud VMs as the main objectives of our thesis.

24

Chapter 3

Detecting File Wiping

Wiping has a significant effect on file systems. A file system systematically ar-
ranges files and directories on the storage media for easy and quick access. Thus,
in digital forensics, file systems are accountable for the files stored on digital me-
dia and their recovery. Wiping overwrites the contents of the file system data
structures (e.g., Master Boot Record (MBR) and Master File Table (MFT) in
the NTFS file system, superblock, and inode in the Ext file system) and makes
data recovery impossible. The significant application of wiping in organizations
is to ensure that they comply with data protection regulations like- a) European
Union’s GDPR; an individual is given the right to erase their data held with
organizations securely). b) United State’s HIPPA for by securely erasing Pro-
tected Health Information (PHI) from storage media before they are disposed
of or repurposed. However, wiping is not just confined to securely deleting the
content by authorized users. The adversaries resort to wiping tools to remove the
traces of evidence or make data unrecoverable permanently. Wiping attacks are
considered the most destructive attacks. Thus, our first objective is to detect file
wiping in cloud VMs to ensure the integrity of the evidence. In this chapter, we
delve into the intricacies of file wiping detection.

3.1 Challenges in Existing Literature
The forensic tools fail to detect some anti-forensic approaches like artifact wiping
and trial obfuscation [70]. The four leading forensic tools AccessData’s Forensic
Tool Kit (FTK), The Sleuth Kit (TSK), Encase, and OSForensics, could not
detect file wiping [70]. Techniques like data carving can help identify wiping, but

25

3.2 Contributions

it is time-consuming. Also, it cannot determine which specific file was wiped,
which is crucial to understand the adversary’s intent.

Also, it is observed that most of the earlier works [33], [34], [35], and [36], are
detecting file wiping based on the signature of the file wiping tool left behind when
the tool is in action. If tool is altered, its corresponding signature also changes,
bypassing the security scans. Hence, we need approaches that are independent of
tool signatures. As the signatures depend on the hash values, installation traces,
deletion traces, etc., it would be challenging to detect wiping as the signatures
corresponding to the tools may change over a period of time. Moreover, there
are also tools that wipe the traces left behind. Thus, we propose to detect file
wiping independent of the traces or signatures left behind by the anti-forensic
wiping tools. In this direction, we propose two different approaches. i.e., WiDeJ
and WiDeS, to detect wiping.

3.2 Contributions
In this chapter, we detect file wiping in cloud VMs using two different approaches:

• A static approach to detect wiping using file system journals and data
blocks. We name this model WiDeJ (Wiping Detection using Journals).

• A dynamic approach to detect wiping using system-calls on cloud VM snap-
shot. We name this model as WiDeS (Wiping Detection using System-
calls)

3.3 Prelimnaries

3.3.1 Data Sanitization
Data sanitization is a specific way in which data overwrites the data on a hard
drive or other storage device. There are a number of data sanitization methods
that can be used. These methods are also often referred to as data wipe methods,
wipe algorithms, and data wipe standards [71].

Most of the wiping tools use these data sanitization methods to overwrite the
content in the addressable location multiple times, either with a specific value
(i.e., 00/11/AA) or with random characters; this ensures that the original data is

26

3.3 Prelimnaries

completely unrecoverable. 1-pass overwriting involves overwriting the actual con-
tent on the disk for a single time. 2-pass overwriting involves overwriting twice.
Likewise, multiple passes involve overwriting the content multiple times (e.g., 3-
pass, 7-pass, 35-pass). There are many data wiping standards used by the wiping
tools to wipe the content on the storage media. Some of the most adapted stan-
dards include- 1) Peter Gutmann, which uses 35-passes to overwrite the content;
it uses both random characters and specific characters for wiping; it is the earli-
est wiping standard. 2) DoD 5220.22-M by United States Department of Defense
(DoD) uses 3-passes; it overwrites the contents with 0s in the first pass and 1s
in the second pass, and random characters in the third pass. 3) DoD 5220.22-M
ECE is another variant of DoD 5220.22-M which uses 7-passes. 4) NIST 800-88
provides media sanitization guidelines based on the storage media using three
ways clear, purge, and destroy; of these, the clear technique is the approach used
to overwrite the content using multiple passes. 5) HMG Infosec Standard 5 by
the government of the United Kingdom has two variants i.e., a) HMG IS5 stan-
dard (overwrites using 0s) b) HMG IS5 “Enhanced” Standard (overwrites with
0s followed by 1s. 6) GOST R 50739-95 by Russia uses either 1-pass (overwrite
with 0s) or 2-pass (overwrite with 0s followed by random characters) 7)Random
data is used to overwrite the storage media with random characters. 8) Write
zeros it is used to overwrite the content with 0s.

3.3.2 Ext File System Journaling
Journals are used to record the changes that are destined for the disk before their
execution to ensure file system consistency. In case of system failures, the journal
is replayed to restore the file system. The journal entries are grouped as journal
transactions. Each transaction begins at the descriptor block and ends with a
commit block. Each transaction is further given a sequence number. Only the
committed transactions are executed on the disk.

The journal can either capture metadata or both data and metadata corre-
sponding to a file. Ext file system journals come with three journaling modes;
based on the content being captured, they are classified as - data journaling, or-
dered, and writeback modes [72]. Based on the user’s requirement, the user can
opt for either of these journaling modes.

In data journaling mode, both data and metadata are journaled. This en-
sures data and metadata consistency with minimal data loss in case of system

27

3.4 Detecting Wiping Using File System Journals and Data Blocks

failures. This is more reliable for a consistent file system than the other journal-
ing modes. However, this consistency comes with a performance overhead as the
write operations are to be repeated twice, i.e., for journal and disk.

In ordered mode, only metadata is journaled; the metadata corresponding to
a file is updated in the journal after the data changes are executed on the disk.
The data is updated directly at the disk location. In case of system failure, since
the metadata changes are captured later the file system consistency is ensured.
It is the default journaling mode as it has less overhead and ensures consistency.
In write-back mode, only metadata is journaled; unlike in ordered mode the data
order is not preserved.

3.3.3 System Calls
We use system-calls in WiDeS to analyze the behavioral characteristics of wiping
tools and detect wiping activity. System-call acts as an interface between the user
application and the Linux kernel. Based on their functionality and the type of
resource system-calls can be classified as process control, file management, device
management, information maintenance, communication, and protection. For ex-
ample, open(), close(), read(), write(), etc., are a few system-calls corresponding
to file management. System-calls play a crucial role in malware behavior analysis.
In this chapter, we use system-calls to detect wiping activity dynamically.

3.4 Detecting Wiping Using File System Jour-
nals and Data Blocks

In the proposed model WiDeJ, we detect file wiping by analyzing the file content
at the block level. We use the file system journal to trace the data blocks allocated
to the file. Further, we analyze the data blocks and project the difference between
the regular file and wiped file. Thus, we detect file wiping independent of the
traces or signatures left behind by the anti-forensic tool.

3.4.1 Proposed Model WiDeJ
We propose a model WiDeJ to detect file wiping using file system journals. Here,
we shall discuss how to analyze the Ext journal to capture the file’s data blocks,
followed by the types of wiping and algorithms used to detect file wiping.

28

3.4 Detecting Wiping Using File System Journals and Data Blocks

3.4.1.1 Ext Journal Analysis

Now, let us analyze the file system journal to trace the file’s data blocks. To
browse the journal, we used jls command-line tool from TSK. We execute the jls
command on the Ext-based VM image. We initialized the image with Ext file
system using the mkfs (make file system) command and mounted it for simplicity
and a better understanding of the journal. Figure 3.1 shows the journal content
just after mounting the file system.

Figure 3.1: Journal after mounting the file system

The seq: 2 in Figure 3.1 represents the transaction corresponding to file system
mounting. Now let us copy a file ’Demo.txt’ to the file system and analyze the
journal.

As shown in Figure 3.2 we can observe that the sequence number is increasing.
Each sequence number represents a single transaction, from line 4 (Allocation of
descriptor block) to line 11 (Allocation of commit block) is considered as one
complete transaction. This transaction is represented by seq : 3. To analyze
the activities performed on the file system, we need to exploit every transaction
captured in the journal. The transaction with seq : 3 here corresponds to copying
Demo.txt to the file system. Now let us analyze how to access the metadata of
this file from the journal transactions.

29

3.4 Detecting Wiping Using File System Journals and Data Blocks

Figure 3.2: Journal after copying a file

We use jcat command-line tool from TSK to interpret the contents for each
journal entry from journal blocks. To carve the data from journal block we use
command-line utility dd. Figure 3.3 represents the journal block content for inode
data of Demo.txt. This entry captures the file metadata such as file size, data
block pointers, and other file attributes updated in the file’s inode data structure.

The content presented in Figure 3.3 is inode data for the Demo.txt file. We
here interpret the data block pointers corresponding to this file. In inode data
structure, file data block pointers are from 40 to 87 bytes (direct block pointer),
88 to 91 bytes (single indirect block pointer) 92 to 95 bytes(double indirect block
pointers), 95 to 99 bytes (triple indirect block pointers) [73]. By applying this,
we have the following block pointers of the file in hexadecimal; 0x0024, 0x0124,
0x0224, 0x0324, 0x0424, 0x0524 (9216, 9217, 9218, 9219, 9220, 9221 are corre-
sponding decimal equivalent values, respectively).

Figure 3.3: File’s inode data captured in journal block

30

3.4 Detecting Wiping Using File System Journals and Data Blocks

Now that we have the data block pointers for Demo.txt, we analyze its content.
For this, we use the blkcat command-line tool from TSK. We pass the image name
and the data block pointer as arguments to read the block content. Figure 3.4
shows the content at block pointer 9216.

Figure 3.4: Block content of a file at specific block pointer (i.e 9216)

We determine the block content byte-by-byte at each block allocated to
Demo.txt. The block size of Ext file system is 4096 bytes. Hence, we deter-
mined that 4096 characters were present in each block and repeated the same
for all blocks allocated to the file. The file content here will be in hexadecimal
format. We analyze this file content to detect file wiping. Algorithm 1 details
the procedure for analyzing the journal, capturing the file content from the file’s
data blocks, and detecting file wiping.

31

3.4 Detecting Wiping Using File System Journals and Data Blocks

Algorithm 1 Analyze journal for file data blocks and detect file wiping
procedure AnalyseJournal(VM img)

JrnlF ile← getJrnl(V M img)
JrnlTranSeqNum[]← getSeqNum(JrnlF ile)
for all JrnlTranSeqNum do

jrnlEntry← getInodeEntry()
dataBlkAddr[]← getBlkPointer(jrnlEntry)
for all dataBlkAddr do

hexFile← readBlkData()
Dict←UpdateDictionary(hexFile)
entropy←ComputeEntropy(Dict)
if entropy == 0 then

print file wiped with specific character
else if entropy == 0.99 then

check file header to detect wiping
if header has random characters then

print file wiped with random characters
return

3.4.1.2 Using Shanon’s Entropy

Every character from data blocks in hexadecimal format is converted to ASCII
(American Standard Code for Information Interchange) equivalent decimal value,
i.e., between 0 and 255. We create a dictionary to store these ASCII characters.
The dictionary’s key stores the ASCII values from 0 to 255, and the corresponding
values store each character’s cumulative sum of their occurrence in all blocks
allocated to the file. Algorithm 2 details the procedure for the same. We further
compute each character’s probability of occurrence and the entropy for the entire
file. Based on the file entropy obtained, we determine file wiping.

32

3.4 Detecting Wiping Using File System Journals and Data Blocks

Algorithm 2 Initialize the dictionary to store the ASCII values and frequencies
procedure UpdateDictionary(hexFile)

Dictionary Dict{ascii,frequency}
while !EOF(hexFile) do

char← readChar(hexFile)
ascii← covertToASCII(char)
frequency←Dict.get(ascii)
if frequency == 0 then

frequency← frequency +1
Dict.add(key,frequency)

else
Dict.add(key,frequency +1)

return Dict

Shannon’s entropy is a good metric for measuring the randomness in char-
acters [74]. Shanon was the first person to propose a measure of uncertainty or
randomness of probability distribution and termed it as ”entropy” [75]. We use
Shanon’s entropy to detect file wiping in the proposed model. We further nor-
malize the computed entropy value as normalized measures of entropy are much
closer to one another when compared with absolute entropy. The Shannon’s en-
tropy is shown in Equation 3.5, and normalized Shannons entropy is shown in
Equation 3.2. Here, E is the Shanon’s entropy, and NE is Normalized Entropy,
X is the ASCII character, and P (X) is the probability of the character X in the
given file.

E =−
N∑

i=1
p(Xi) log2 p(Xi) (3.1)

NE =− 1
log2 N

N∑
i=1

p(Xi) log2 p(Xi) (3.2)

We computed probabilities for each ASCII character of the file stored in the
dictionary. Later, we computed the entropy of the file using the formula shown
in Equation 3.1 and normalized the entropy using the formula shown in Equation
3.2. The value of normalized entropy lies between 0 and 1 and is used to detect
file wiping. Algorithm 3 details the procedure to compute entropy.

33

3.4 Detecting Wiping Using File System Journals and Data Blocks

Algorithm 3 Compute file entropy
procedure ComputeEntropy(Dict)

for all key ∈Dict do
totalCharCount← totalCharCount+Dict.getV alue(key)

for all key ∈Dict do
charProbability←Dict.getV alue(key)/totalCharCount

entropy← entropy + charProbability ∗ log(charProbability)
N ← 256 ▷ N is assigned with total ASCII characters 256 (.i.e 0 to 255)
entropy← entropy/log(N)
return entropy

We now wipe the contents of the file and interpret the file content. We exper-
imented the proposed model with tools, i.e., Shred, and Wipe. By default, these
tools wipe the file with random characters unless the user explicitly specifies to
wipe the file with a specific character like 0 or 1.

The wiping tools overwrite the file either with random characters or with
specific characters like 0s or 1s [70]. Thus, we have designed two cases based on
how a file can be wiped.

• Case 1: Wiping a file with a specific character.

• Case 2: Wiping a file with random characters.

Case 1: Wiping a file with specific character

Wiping a file with 0s or 1s overwrites the content of regular readable data with
either 0 or 1. To perform file wiping with 0s, we used Shred, a command-line tool
that securely deletes files by wiping them. After wiping the file, we analyzed the
journal entries again and traced the block pointers. Figure 3.5 shows the journal
entries after wiping the file. Here we are interested in journal entries 13, 16, and
19. Likewise, we edit the jcat command with corresponding journal entries (i.e.,
13, 16, and 19) to view the file’s data block pointers.

34

3.4 Detecting Wiping Using File System Journals and Data Blocks

Figure 3.5: Journal after wiping a file

Further, upon examining the block content by using blkcat command for jour-
nal entries 13, 16, and 19, we found that the entire file content was wiped with
0s. Figure 3.6 shows the block content of the file wiped with 0s at block address
9216. An important observation from Figure 3.6 is that the frequency of charac-
ter 0 is equivalent to file size, and the frequency of all other characters is 0. This
is because all the characters in the file are overwritten with a specific character
’0’. Thus, we detect file wiping using journals and Shanon’s entropy by applying
Algorithm 1, 2 and 3.

Figure 3.6: Block content after wiping a file with zero

35

3.4 Detecting Wiping Using File System Journals and Data Blocks

Case 2: Wiping a file with random characters

By default, the wiping tools wipe the file with random characters. Figure 3.7
shows the block content of the file when wiped with random characters. Detecting
file wiping when wiped with random characters is more challenging than detecting
file wiping when wiped with specific characters. The reason for the same is
discussed in Section 3.4.2.

Figure 3.7: Content at data block when wiped with random characters

3.4.2 Results and Discussion
In this section, we present the results of our model WiDeJ. We initially evaluate
the scope of recovering the journal entries corresponding to a file when the files
are wiped. We cannot fetch the data blocks corresponding to a wiped file if the
journal entries are overwritten. Thus, it becomes crucial to determine the scope
of recovering journal entries corresponding to a wiped file. This depends on two
major factors, i.e., the wiping tool and file size; to support this statement, we
have executed an experiment with a cloud VM image whose size is 1 GB and its
journal size is 8 MB. We initialize the image to a clean state using mkfs command.
Later, we used two different wiping tools, Shred and Wipe alternatively, to wipe
the file by varying file size from 1 MB to 30 MB. For each file, after wiping it, we
checked for the journal entries to see if they were overwritten. Figure 3.8 shows
the result of this experiment.

From Figure 3.8, we observe that the scope of recovering the journal entries
for wiped files decreases as the file size increases; smaller file sizes result in fewer
journal entries (less no.of write operations) when wiped, while larger file sizes lead
to more journal entries and potentially overwriting early journal entries. Also,
we notice that we have more scope of recovery when a file is wiped with a Shred
tool compared to a Wipe tool. This is because the Shred tool uses a trivial data

36

3.4 Detecting Wiping Using File System Journals and Data Blocks

wiping standard i.e., DoD 5220.22-M, compared to the Wipe tool that uses Peter
Gutmann’s algorithm. The increased number of passes in the Wipe tool results
in more write operations, leading to increased journal entries. As the journal
entries increase, there may be a chance that the earlier journal entries may get
overwritten. The results in Figure 3.8 show that we can recover the journal
entries corresponding to a file whose size is less than 30 MB when wiped using
basic wiping tools like Shred, but we can recover a file with its size less than 1
MB when wiped with a rigorous wiping tool (like Wipe tool).

Figure 3.8: Scope of recovering wiped file data blocks using file system journals
by varying wiping tools and file size.

Let us assume that we could fetch the data blocks allocated to the file using
the journals. We now compute the entropy of characters on these data blocks.
We compute the file’s entropy using Shanon’s entropy using the Equations 3.1,
and 3.2. We considered 54 files, which included 20 different file types. Table
3.1 shows the entropy value for different file types before and after wiping with
random characters.

37

3.4 Detecting Wiping Using File System Journals and Data Blocks

Table 3.1: Entropy values for different file types

File Type Entropy before wiping Entropy after wiping File type Entropy before wiping Entropy after wiping
.dat 0.83 0.99 .pptx 0.99 0.99
.log 0.31 0.99 .eps 0.51 0.99
.png 0.94 0.99 .exe 0.99 0.99
.bmp 0.98 0.99 .obj 0.58 0.99
.jpg 0.99 0.99 .aspx 0.96 0.99
.pdf 0.99 0.99 .mp3 0.98 0.99
.eml 0.62 0.99 .mp4 0.84 0.99
.docx 0.86 0.99 .zip 0.99 0.99
.xlsx 0.94 0.99 .odt 0.93 0.99
.ods 0.99 0.99 .odp 0.99 0.99

For case 1, where a file is wiped with specific characters like 0s and 1s the
computed file entropy is equivalent to 0. Figure 3.9a and 3.9b show the character
distribution in a file Demo.txt before and after wiping. Here, we can see that the
frequency of characters is unevenly distributed before wiping the file Demo.txt,
but after wiping, the frequency of the character ’0’ is equivalent to the file size
on the disk. In this case, for Demo.txt, the frequency of the character 0 is 16384
(i.e., file size is 16 KB), and the probability of occurrence of ASCII character ’0’
is 1; upon substituting the probability in Equation 3.1 and 3.2, the entropy is 0.
Thus, if the entropy of a file is 0, we conclude that the file has been wiped with
a specific character.

(a) Frequency of ASCII characters in regular
file

(b) Frequency of ASCII characters in file after
wiping with 0

Figure 3.9: Difference between regular file and file wiped with 0s

For case 2, detecting file wiping when a file is wiped with random characters is

38

3.4 Detecting Wiping Using File System Journals and Data Blocks

quite challenging as the entropy value of regular files, e.g., .jpg, .pdf, .mp4, .mp3,
and other file formats would be close to 1 (i.e., 0.96, 0.97, 0.98, and 0.99), as
shown in the Table 3.1, and the entropy values when the file wiped with random
characters is 0.99; making it difficult to differentiate between regular files and
files wiped with random characters. Figure 3.10a, and 3.10b shows the character
distribution before file wiping and after wiping a file with random characters.
We can see that the distribution of characters is quite evenly distributed across
256 ASCII characters in Figure 3.10b. More randomness leads to higher entropy
because entropy is the average of the logarithmic function of the probability i.e.,
when p(Xi) is small, log2 p(Xi) is large. Thus, when a file is wiped with random
characters, the file entropy is high, i.e., 0.99.

(a) Frequency of ASCII characters in regular
file

(b) Frequency of ASCII characters after wiping
with random characters

Figure 3.10: Difference between regular file and file wiped with random characters

Based on the observed values from Table 3.1, we notice that when a file is
wiped with random characters, the entropy is 0.99. Thus, we fixed the threshold
at 0.99 to detect wiping. We classify the files with an entropy value of 0.99 as file
wiping. However, to reduce false positives, we further check the file header and
classify the file as a regular or wiped file.

File header can play a crucial role in determining file wiping. Figure 3.11
taken from paper [1] shows file structure layout. The initial few bytes of the
file constitute the file header. It contains file type, file size, and other metadata
corresponding to a file. If a file is wiped with random characters, the header and
footer are overwritten with random characters. On the other hand, for regular
files (e.g., .jpg, .pdf, .ppt, etc.), though the file data has random characters and

39

3.4 Detecting Wiping Using File System Journals and Data Blocks

an entropy of 0.99, they have a well-defined header structure that can be used to
determine the file type and fetch metadata corresponding to the file. However,
there are chances that the adversary may tamper with the file header, a basic
anti-forensic approach adapted to hide the file type and mislead the investigator.
Thus, we consider both file entropy and file header to detect wiping. If the file’s
entropy is 0.99 and even the header contains random characters, we classify the
file as a file wiped with random characters.

Figure 3.11: File layout (reproduced from [1])

We also compared our model WiDeJ with the approach by Savoldi et al. [2],
which is closely related to our work. Savoldi et al. used data blocks and a statis-
tical test suite developed by NIST to determine the randomness of block content
and detect wiped data fragments on disk in comparison to standard data frag-
ments. Table 3.2 highlights the differences between WiDeJ and their approach.
However, the objectives of WiDeJ and the method by Savoldi et al. differ. WiDeJ
detects wiping at the file level, identifying which specific file has been wiped, which
helps investigators understand the adversary’s intent. In contrast, Savoldi et al.’s

40

3.5 Detecting Wiping using System-calls

method identifies wiped data fragments on disk. Therefore, while their approach
indicates that wiping was used, it does not specify which file was wiped.

Table 3.2: Comparison of WiDeJ and [2]

Existing approach [2] WiDeJ
1. Disk level wiping detection. 1. File-level wiping detection.
2. Uses NIST statistical tests
to detect wiping.

2. Used file system journals
and entropy to detect wiping.

3. Considered 15 file types. 3. Considered 22 file types.
4. Use an additional 5 statistical tests
to reduce false positives.

4. Use file header to reduce
false positives.

5. Detection time is prolonged as
five statistical tests are repeated
on the whole disk.

5. Detection time is less as we consider
only the files listed in the journal.

Finally, we could detect file wiping using our model WiDeJ. For case 1, we
were able to detect file wiping with 100% accuracy. For Case 2, based on entropy,
we were able to detect file wiping with 90% accuracy (here, we computed the
accuracy using the equation 3.9 discussed in section 3.5.4) on our dataset of 54
files. Further, we reduced the false positives and detected file wiping with 100%
accuracy by considering file’s header. However, WiDeJ fails to detect wiping
in two scenarios i.e., 1) if the journal entries corresponding to a wiped file are
overwritten, 2) if the file header is tampered. Thus, we need an approach which is
independent of these dependencies. Hence, we propose our next approach WiDeS,
where we detect file wiping using system-calls.

3.5 Detecting Wiping using System-calls
An approach that detects an anti-forensic wiping tool based on its behavior rather
than relying on its signature can be more robust and reliable. Thus, in the
proposed model, WiDeS, we use Sequence of System-calls (SoS) and information
theory metrics to analyze the behavior of wiping tools and detect wiping attacks.

41

3.5 Detecting Wiping using System-calls

3.5.1 Role of System-calls in Behavior Analysis
Early study shows that system-calls played a significant role in classifying normal
process behavior from malicious process behavior [14]. The author in the paper
[16] builds a database of a short sequence of system-calls and compares every
new sequence of system-calls with these patterns. The distance between them
determines the deviation between normal and abnormal behavior. Contrary to
work proposed in the paper [16], the author in paper [76] proposes maintaining a
dictionary for anomalous patterns using the sequence of system-calls and deter-
mining if these patterns of the system-calls are normal or abnormal. The author
in [15] proposed a solution for an anti-detection feature the malware uses, i.e.,
system-call injection attack. The author used the information theory property
Asymptotic Equipartition Property (AEP) to extract system-calls rich in informa-
tion for malware detection. The authors in [77] proposed ShieldFS, an approach
to detect ransomware attacks and revert their effects on Windows machines using
I/O Request Packets (IRPs). To detect ransomware attacks, they used features
like frequency of read and write operations, write entropy, file renamed, files
accessed, and folder listing.

3.5.2 Proposed Model WiDeS
The proposed model, WiDeS, detects wiping by carefully profiling the benign
process behavior and the process behavior perturbed by wiping. We monitor the
system behavior at the process level by using short patterns from SoS invoked by
these processes. WiDeS contains three modules, as listed below; the output of
each module is the input for the next module.

1. Profiling Process behavior: In the first module, we build a short pat-
terns using SoS corresponding to a process. Based on these patterns and
their frequencies, we compute the entropy for each process and classify the
process as a wiping or benign process. There may be cases where the benign
process may be falsely classified as a wiping; thus, the processes determined
as wiping are sent to the next module for further classification.

2. Filtering driven by write() system-call: In the second module, we get
the pattern with maximum frequency for each process classified as wiping.
We check if this pattern contains the write() system-call. If the pattern con-
tains a write() system-call, we consider it wiping, as it involves overwriting

42

3.5 Detecting Wiping using System-calls

content multiple times. Conversely, we classify the process as benign if the
pattern does not contain a write() system-call.

3. Analysis of buffer data: We further improve the classification in the
third module by considering the buffer data pulled from write() system-call
parameters. Buffer data is the content stored in the buffer as received from
an input device or other process; later, this content is pushed to the file
using the write() system-call. In wiping, we know that the file content is
wiped with specific characters, random characters, or repeated patterns of
characters; thus, we determine wiping based on buffer content.

Algorithm 4 gives the abstract view of WiDeS. A detailed explanation with ex-
amples is discussed in the subsequent sections.

Algorithm 4 WiDeS Algorithm
procedure WiDeS(processes[Pi])

for all processes[Pi] do
patterns[]← CreatePatterns(SoS(Pi))
Dict{ptn,freq}← CreateDict(patterns)
Entropy← ComputeEntropy(Dict)
if Entropy <= Threshold then ▷ Module 1

ptn← getP tnWithMaxFreq(Dict)
if write() ∈ ptn then ▷ Module 2

buff[]← readBufferData(write)
if buff[] ∈ {specific,random,pattern} then ▷ Module 3

Classify as wiping process
return

3.5.2.1 Profiling Process Behaviour

A. Collect SoS and build patterns

We profile the process behavior using its SoS. To collect the SoS, we used the
Sysdig tool. Sysdig tool is an open-source tool used to perform system monitoring
[78]. We deployed the Sysdig tool on the target virtual machine to gather the
SoS associated with each process. Using process IDs, we obtained the SoS for all
processes within the given time frame. In WiDeS, we profiled benign activity using

43

3.5 Detecting Wiping using System-calls

79 randomly selected user processes and wiping activity using 5 different wiping
tools (Shred, SRM, Scrub, Sfill, and Wipe). We collected the SoS corresponding
to all these processes. Further, we build patterns with short SoS to profile process
behavior.

Early literature suggests that short SoS are good classifiers that distinguish
between normal activity and abnormal activity [16]. Thus, we have opted for
short patterns from the system-call sequence as observable discriminators. These
patterns include three consecutive system-calls. We construct patterns composed
of three consecutive system-calls for each given process, denoted as Pi, where i

ranges from 1 to N , N representing the total number of processes within the given
time frame. We collect the corresponding SoS as SoS(Pi) = s1, s2, s3, ..., sn, where
each s represents a system-call (e.g., open(), read(), write(), etc.). We consider
the system-calls sj to build patterns, where j ∈ 1 to n. Here, sj=1 denotes the first
system-call, sj+1 denotes the next consecutive system-call, and sj=n denotes the
last system-call corresponding to each process. We create pattern ptn, using three
consecutive system-calls, i.e., ptn=sj , sj+1, sj+2. By iterating over the values of
j from 1 to n we get k no.of patterns (here, k = n−2) as shown below,

ptn1 = s1 + s2 + s3

ptn2 = s2 + s3 + s4

ptn3 = s3 + s4 + s5
...

ptnk = sk + sk+1 + sk+2

Algorithm 5 details the steps in creating patterns. The CreatePatterns method
accepts the input as SoS(Pi), here i ∈ 1 to N, where N is the total number of
processes executed in the given time frame and Pi denotes the ith process. We
create an array for every process and store these patterns.

Algorithm 5 Create patterns from SoS for each process
procedure CreatePatterns(SoS(Pi))

patterns[]
for all j = 1 to n−2 do

patterns[j]← sj + sj+1 + sj+2

return patterns

44

3.5 Detecting Wiping using System-calls

B. Profiling Benign Process Behavior

In profiling benign process behavior, we collect the SoS of 79 randomly selected
user processes (e.g., vi, ls, cp, pwd, etc.) and build a repository of these system-
calls. We now create an array of patterns corresponding to each process, using
Algorithm 5. Example 1 elaborates the pattern construction for a benign process
’ls’.

Example 1. Process ’ls’ lists the files and sub-directories in the current directory.
We collect SoS for the process ’ls’ using the Sysdig tool. Figure 3.12 shows the
subset of SoS for this particular process (for better readability, we listed only a
few initial system-calls).

execve brk mmap access openat newfstatat mmap close openat

ptn1
ptn2

ptn3
ptn4

ptn7

ptn5
ptn6

Figure 3.12: Subset of SoS for benign process ’ls’

We now take a window of size 3 to capture 3 consecutive system-calls to create
1 pattern. Likewise, we slide the window across the SoS and create multiple
patterns, as shown in Figure 3.12. We now have 7 unique patterns as shown in
Figure 3.13.

ptn1: execve brk mmap

ptn2: brk mmap access

ptn3: mmap access openat

ptn4: access openat newfstatat

ptn5: openat newfstatat mmap

ptn6: newfstatat mmap close

ptn7: mmap close openat

Figure 3.13: Unique patterns of benign process ’ls’

45

3.5 Detecting Wiping using System-calls

C. Profiling Wiping Process Behavior

Similar to benign process profiling, we profile the behavior of the wiping process
using 5 different wiping tools (Shred, SRM, Scrub, Sfill, and Wipe). Example 2
shows pattern construction for a wiping process ’Shred’.

Example 2. Shred is a common file-wiping process used to delete a file securely.
We collect SoS for the Shred process. For the convenience of reading, we present
the subset of SoS for the Shred process in Figure 3.14. Here, we use a sliding
window of size 3 to capture patterns as shown in Figure 3.14.

lseek write fdatasync lseek write fdatasync lseek write fdatasync

ptn1
ptn2

ptn3

ptn5
ptn6

ptn4

ptn7

Figure 3.14: Subset of SoS for wiping process ’Shred’

Figure 3.15 shows the unique pattern obtained from the Shred process. Un-
like in the case of the benign process ’ls’ shown in Example 1 where we get 7
unique patterns, here we get only 3 unique patterns. From Figure 3.14 we see
that ptn4, ptn5, ptn6 and ptn7 are similar to ptn1, ptn2, and ptn3, we get only
three unique patterns.

ptn1: lseek write fdatasync

ptn2: write fdatasync lseek

ptn3: fdatasync lseek write

Figure 3.15: Unique patterns of wiping process ’Shred’

Using these patterns as a basis, we found an interesting characteristic that set
apart benign and wiping processes, i.e., randomness in patterns. Using Example
1 and 2, we can determine that the randomness of patterns is higher in the benign
process than in the wiping process. Hence, we profile the behavior of processes
by carefully examining the degree of randomness in the generated patterns. We
store these patterns and their frequencies in a dictionary.

46

3.5 Detecting Wiping using System-calls

Algorithm 6 Build the dictionary to store the patterns and their frequencies
procedure CreateDict(patterns[])

Dict{ptn,freq}
for all patterns do

ptn ← getPtn(patterns)
freq ← Dict.get(ptn)
if frequency = 0 then

freq← freq +1
Dict.add(ptn, freq)

else
Dict.add(ptn, freq +1)

return Dict

Algorithm 6 builds a dictionary Dict{ptn,freq} for each process to map the
patterns with their frequencies. In Dict, the pattern ptn is the key, and the
frequencies are the values. We initially check if the pattern exists in the dictionary;
if so, we increment the frequency of the corresponding pattern. If the pattern is
not yet present, we add it to the dictionary with its frequency as 1. We built the
dictionary for all 79 benign processes and 5 wiping processes.

Table 3.3, Table 3.4 lists the patterns and their frequencies for benign and
wiping processes, respectively (we included only a few patterns and their fre-
quencies in the tables due to space constraints). Table 3.3, Table 3.4 shows the
difference between the benign and wiping processes’ patterns frequencies, i.e., in
wiping processes, the patterns’ frequency is much higher than benign processes.

In the context of detecting wiping, we observe how often a pattern is repeated
in a process. Processes with a high frequency of patterns indicate characteristic
behavior associated with the wiping process’s activity. As wiping involves over-
writing the contents multiple times, the same system-call patterns are invoked
multiple times, increasing the probability of occurrence of patterns in the wip-
ing process. Conversely, processes that exhibit infrequent patterns that reflect
diverse or random patterns with less probability are often found in benign pro-
cesses. Thus, we can classify the process based on the degree of randomness
of patterns. In WiDeS, we use Shanons’ entropy to measure the randomness of
patterns.

47

3.5 Detecting Wiping using System-calls

Table 3.3: Benign processes’ patterns and their frequencies

Process Patterns Frequency of patterns
Touch archprctl access openat 1

access openat fstat 1
openat fstat mmap 2
fstat mmap close 2

cut brk archprctl access 1
archprctl access openat 1
openat fstat mmap 2
fstat mmap close 2

rm openat read pread64 1
read pread64 pread64 1
pread64 pread64 pread64 2

cmp pread64 pread64 pread64 2
pread64 pread64 fstat 1
pread64 fstat mmap 1

echo pread64 pread64 pread64 2
pread64 pread64 fstat 1
pread64 fstat mmap 1

48

3.5 Detecting Wiping using System-calls

Table 3.4: Wiping processes’ patterns and their frequencies

Process Patterns Frequency of Patterns

Shred
fcntl lseek write 35
lseek write write 35
write write write 3584
write write fdatasync 35
write fdatasync fcntl 34
fdatasync fcntl lseek 34

SRM
lseek write write 38
write write write 15428
write write fsync 38
write fsync lseek 37
fsync lseek write 37

Wipe
write lseek write 35
lseek write write 35
write write write 16623
write write fdatasync 35
write fdatasync write 34
fdatasync write lseek 34

scrub lstat stat openat 35
write write write 1666
write write fsync 35
write fsync fadvise64 35
fsync fadvise64 close 35
fadvise64 close write 34
close write ioctl 33

sfill write write write 1002928

49

3.5 Detecting Wiping using System-calls

D. Computing Entropy

Shannon entropy is one of the well-known approaches to measure randomness or
uncertainty in the given data. In digital forensics, entropies are commonly used
to determine the file type disguised as other file types [79]. In earlier works [2],
[74], Shannon entropy was used to detect wiping. In paper [2], entropy values
were used to detect disk fragments wiped with random characters. In paper [74],
they detect file wiping using machine learning algorithms. They used the entropy
value of the file name overwritten multiple times with random characters as one
of the features in their model to detect wiping. In paper [77], the entropy of
the write operation is used to determine ransomware attacks. In WiDeS, we
use the entropy of the patterns to determine wiping. We used entropy values to
compute the probability distribution of patterns created using SoS corresponding
to a process.

To determine the probability of a pattern in a process, we compute the ratio
of the frequency of a pattern to the sum of frequencies of all patterns (S) in a
process. We compute S using the Equation 3.3, here, p(ptni) is the probability of
occurrence of the ith pattern, and k is the total no.of patterns in a process. We
compute the probability of the pattern using the Equation 3.4.

S =
k∑

i=1
frequency(ptni) (3.3)

p(ptni) = frequency(ptni)
S

(3.4)

The Shannon entropy for the process is denoted as EP and is computed using
Equation 3.5. We further normalize the entropies between 0 and 1, allowing us
to compare the entropy of different processes, even if they have different possi-
ble outcomes. We compute NE for each Process P denoted as NEP using the
Equation 3.6.

EP =−
k∑

i=1
p(ptni) log2 p(ptni) (3.5)

NEP = EP

log2 S
(3.6)

50

3.5 Detecting Wiping using System-calls

Algorithm 7 details the steps for computing the entropy values in WiDeS. The
computed entropy values for the wiping and benign processes are shown in Table
3.5. Due to space constraints and improved readability, we have included entropy
values of a few benign processes. This table gives us fundamental insight into
how the entropy values of the wiping and benign processes differ. It is observed
that the entropy values for wiping processes are less in comparison to the entropy
values of the benign processes. This difference between the entropies is due to
the random occurrence of patterns. In the wiping process, the patterns are more
frequent and less random; conversely, the patterns are more random and less
frequent in benign processes. Hence, benign processes have higher entropies than
wiping processes.

Algorithm 7 Compute entropy of each process
procedure ComputeEntropy(Dict{ptn,freq})

S← 0
for all ptn in Dict do

S← S +Dict.getP tnFreq(ptn)
for all ptn in Dict do

▷ Here ’P’ is the process and ’p’ is the probability
p←Dict.getP tnFreq(ptn)/S

EP ← EP +p∗ log(p)
NEP ← EP /log(S)

return NEP

Table 3.5: NEs of wiping and benign processes

Wiping Process NE Benign Process NE
Shred 0.42 touch 0.95
SRM 0.011 cut 0.92
Scrub 0.44 rm 0.93
Wipe 0.018 echo 0.94
Sfill 0.000077 cmp 0.95

We need to determine the Threshold (Th) to classify the processes as wiping
or benign based on NEP value. In WiDeS, to determine Th, we used Confi-
dence Interval (CI). We assume that the entropies of the processes are normally

51

3.5 Detecting Wiping using System-calls

distributed; thus, we use CI to define the range of values likely to include the
actual population of interest (benign processes). However, if the values devi-
ate significantly from the range, we consider them outliers. We define CI as
CI = µNE ± zσNE , here µNE and σNE are the mean and standard deviation of
all NEs associated with benign processes computed by using Equation 3.7 and
3.8 respectively. In WiDeS, we considered CI with 90% acceptance, for which the
value of z is equivalent to 1.645). By using µNE , σNE and z we now compute CI.

µNE = 1
N

N∑
P =1

NEP (3.7)

σNE =

√√√√√ 1
N −1

N∑
P =1

(NEP −µNE)2 (3.8)

CI range is defined by [CIlb,CIub] where CIlb is the lower bound, CIlb =
µNE − zσNE and CIub is the upper bound, CIub = µNE + zσNE . However, to
detect wiping, we consider only CIlb as the entropy values corresponding to wiping
processes are far less than benign processes, as shown in Table 3.5. Hence, Th
is equivalent to CIlb, i.e., Th=CIlb. If the entropy NEP is less than Th, i.e.,
NEP < Th, we detect the process as a wiping process. Conversely, the other
processes are classified as benign processes. We create the baseline behavior of
the system with benign processes. We use the mean µNE and σNE of benign
processes to compute CI and determine Th.

3.5.2.2 Filtering Driven by Write() System-call

In this module, we examine the processes classified as wiping (from the first
module) to determine if any process is falsely classified. As shown in Algorithm
8, it receives the input as Dict{ptn, freq} corresponding to processes classified as
wiping. For each of these processes, we fetch the pattern with maximum frequency
(ptnmaxF req) from the dictionary Dict{ptn,freq} associated with each process.

Subsequently, we retrieve the list of system-calls from ptnmaxF req, which can
be represented as ptnmaxF req = sk, sk+1, sk+2. Since wiping activities primarily
involve writing operations, we expect the ptnmaxF req to include a write() system-
call. Therefore, we check if sk or sk+1 or sk+2 corresponds to a write() system-
call. If the ptnmaxF req indeed contains a write() system-call, it suggests that
the process will likely belong to the wiping category. Conversely, the process is
classified as benign if no write() system-call is present in ptnmaxF req.

52

3.5 Detecting Wiping using System-calls

Algorithm 8 Fetch pattern with maximum frequency
procedure GetPtnWithMaxFreq(Dict{ptn,freq})

maxFreq← 0
ptnmaxF req←NULL

for all ptn, freq in Dict do
if maxFreq < freq then

maxFreq← freq

ptnmaxF req← ptn

return ptnmaxF req

Table 3.6 lists the processes determined as wiping in the first module. The
table shows that processes host, dig, userdel, and vi contain high-frequency pat-
terns but do not contain the write() system-call. On the other hand, processes
Shred, SRM, Scrub, Wipe, and Sfill contain write() system-call. Thus, we classify
Shred, SRM, Scrub, Wipe, and Sfill as wiping processes and other processes, vi,
host, and dig, as benign.

Table 3.6: Processes classified as wiping (from module 1) and their patterns with
maximum frequencies

Process Pattern with Max Frequency Frequency
Host mmap mmap mmap 61
Dig mmap mmap mmap 61
userdel stat stat stat 109
vi select select select 110227
Shred write write write 3584
SRM write write write 15428
Wipe write write write 16623
scrub write write write 1666
sfill write write write 1002928

3.5.2.3 Analysis of Buffer Data Entropy

In the second module, there is a possibility that a benign process may include a
write() system-call in ptnmaxF req. In such cases, a benign process is misclassified

53

3.5 Detecting Wiping using System-calls

as a wiping process. To address this, we aim to distinguish between the benign
and wiping processes based on the write() system-call arguments. The write()
system-call is invoked by user applications to use kernel services to write content
to a file. The syntax for write() system-call [80] is given as,

size t write(int fd, const void buf[.count], size t count);
The write() system-call contains three parameters, i.e., file descriptor, buffer,

and count. The file descriptor represents the open file to which the content will
be written. The buffer contains the data to be written to the file; it temporarily
holds the content shared by I/O devices or other processes. The count represents
the no.of bytes of data to be written from the buffer to the file.

In WiDeS, we consider the second parameter, the buffer data, to detect wiping.
It is an array of characters where each character is equivalent to 1 byte, i.e., 8 bits.
We observed that the character array contains Octal Escape Sequences (OES) in
wiping processes. An OES contains a backslash followed by one, two, or three
octal digits (0-7) like \377 (see Examples 3, 4, 5 for reference).

We initially check if OESs are present in the buffer data to detect wiping. If
the probability of occurrence of OES p(OES) is greater than or equal to the prob-
ability of occurrence of ASCII characters p(ASCII), i.e., p(OES) >= p(ASCII),
we suspect wiping activity. However, to confirm wiping, we proceed further to
check if buff[] contains a specific character, as demonstrated in Example 3; or if
it contains a sequence of random characters, as illustrated in Example 4; or if
it contains repeated patterns of characters, as exemplified in Example 5. Once
either condition is met, the process is classified as wiping.

Example 3. This example shows buff[] data for write() system-call with a specific
character. Here, ’377’ is an octal notation, and ’\’ signifies the start of an escape
sequence. Each octal value ’377’ represents a byte in octal notation equivalent to
255 in decimal and ’11111111’ in binary; this ensures that all bits are set to 1 in
a byte. The below write() system-call signifies wiping, where all the bytes in the
data are set to 1s in binary notation.

write(4,"\377\377\377\377\377\377\377\377\377\377\377\377\377\377
\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377
\377\377"..., 28672) = 28672

54

3.5 Detecting Wiping using System-calls

Below is another example of wiping with a specific character; here, the string
”UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU” consists of the charac-
ter ’U’ repeated 16,384 times, i.e., the entire content is written with the character
’U’.

write(3, "UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU"..., 16384) = 16384

Example 4. This example of write() system-call shows wiping with random char-
acters. Here, the buffer data contains both ASCII characters and octal values.
Each backslash followed by digits represents an octal value. Here,\206, \3, \21,
etc., are octal values. Other characters like ’y’, ’9’, ’V’, ’c’, ’u’, ’a’, ’%’, ’4’, ’A’,
’b’, ’v’, ’J’, ’h’, ’c’ are ASCII characters. We can see that all the characters in
the buffer data are random, signifying the wiping process.

write(3, "\277\332\231\335y9\347\273V\206\3\21\225\16\226c\342u
\300\331a%4Ab\306\322\200vJhc"..., 16384) = 16384

Example 5. This example of write() system-call shows wiping with a repeated
pattern of characters. These characters include octal values \266 and \333, and
ASCII character ’m’. The sequence of ’\266\333m’ is repeated in the buffer data
multiple times, signifying the wiping process.

write(3, "\266\333m\266\333m\266\333m\266\333m\266\333m\266\333m
\266\333m\266\333m\266\333m\266\333m\266\333"..., 28672) = 28672

3.5.3 WiDeS Workflow
As mentioned earlier, WiDeS contains three modules. The first module classifies
the process as benign or wiping based on the entropy values. The second module
classifies the processes identified as wiping in the first module and conducts further
classification by determining the presence of write() system-call in a pattern with
maximum frequency. In module 3, we further exploit the arguments (buff[])
corresponding to write() system-call to ascertain if the process belongs to wiping
or benign. Figure 3.16 gives a brief of WiDeS workflow.

55

3.5 Detecting Wiping using System-calls

Start

Build patterns using SoS

Compute normalized entropy(NEP)

Build Dictionary with patterns and frequencies

List all the processes in the given time frame

Get pattern with max frequency

if
 system-calls

contains
 write()

Get system-calls for ptnmaxFreq

Get the buff[] from write()

Yes

Yes

For every process, collect the SoS

 if

NEP<=Th

stop

M
o

d
u

le
1
:

P
ro

fi
li
n

g
 p

ro
c
e
s
s
 b

e
h

a
v
io

u
r

M
o

d
u

le
 2

:
F

il
te

ri
n

g
 d

ri
v
e
n

 b
y
 w

ti
te

()

s
y
s
te

m
-c

a
ll

M
o

d
u

le
 3

:
A

n
a
ly

s
is

 o
f

b
u

ff
e
r

d
a
ta

Yesif

p(OES) >= p(ASCII)

Wiping processBenign process

case 1

case 2

case 3

buff[] contains

Specific Characters

buff[] contains

random Characters

buff[] contains

repeated pattern of

characters

No

No

No

Figure 3.16: WiDeS Workflow

56

3.5 Detecting Wiping using System-calls

3.5.4 Results and Discussion
We assess WiDeS by applying it to our repository of processes. To construct this
repository, we execute 79 benign processes 5 wiping processes, and gather their
respective SoS using the Sysdig tool. Additionally, we collected SoS for wiping
processes Shred, Scrub, and Wipe by varying the number of passes as 3, 5, 7,
and 35 following data wiping standards. For SRM tool, we collected SoS in two
modes, i.e., regular and fast modes. By altering the number of passes for each
wiping process, we collected SoS for 15 processes. We denote Shred with 3-passes
as Shred-3, and Shred with 35 passes as Shred-35; similarly, Scrub-35 signifies
wiping with Srcub using 35 passes.

To determine the accuracy of WiDeS, we compute the total number of correct
observations (i.e., True Positive (TP), True Negative (TN)) with the total no. of
observations (i.e., TP, TN, False Positives (FP), and False Negatives (FN)). We
compute the accuracy using Equation 3.9.

Accuracy(%) = TP +TN

TP +FP +TN +FN
∗100 (3.9)

In the context of wiping, we define TP, TN, FP, and FN as follows: (1) When
a process is wiping, and WiDeS identifies it as wiping, it is TP. (2) If a process
is benign and WiDeS identifies it as benign, it is TN. (3) If the process is benign,
but WiDeS identifies it as wiping, it is FP. (4) If the process is wiping, but
WiDeS identifies it as benign, it is FN. FP causes inconvenience to the users by
misinterpreting a benign process as a wiping process. On the other hand, FN is
more dangerous as the wiping process is detected as benign.

Using WiDeS, we could determine three characteristic behaviors correspond-
ing to the wiping process; they are- (1) the wiping process has less entropy, (2) the
pattern with maximum frequency will include write() system-call, (3) the buff[]
of the write() system-call will contain random, or specific, or repeated pattern of
characters. Based on these characters, we constructed a decision tree for WiDeS.
Figure 3.17 shows the decision tree for WiDeS. We map three decision-making
conditions to three modules of WiDeS.

The initial decision is taken based on the entropy values. We now compute
the accuracy of WiDeS for classification based on entropies by applying WiDeS to
our repository of processes. If the entropy NEP <= Th, we determine the process
as wiping (see Section 3.5.2.1 for details); results based on this condition show
that WiDeS identified 19 processes as wiping. Of these 19 processes, 15 belong
to wiping (i.e., TP = 15). Additionally, 4 benign processes (vi, userdel, host, dig)

57

3.5 Detecting Wiping using System-calls

write() in ptnmaxFreq

BenignWiping

BenignWiping

Wiping Benign

Processes

NEP<= Th NEP> Th

write() not in ptnmaxFreq

buff[] contains

random, or specific, or

repeated pattern

buff[] do not contain

random, or specific, or

repeated pattern

Figure 3.17: Descision tree for WiDeS

were incorrectly classified as wiping (i.e., FP = 4). Other 75 benign processes
were correctly identified as benign (i.e., TN = 75), and no wiping processes were
mistakenly classified as benign (i.e., FN = 0). Upon computing the accuracy
using Equation 3.9 for these values, we get an accuracy of 92.78%.

Figure 3.18 shows the distribution of entropy values across the processes; the
data points plotted below the threshold line represent wiping, and the data points
plotted above the threshold line represent benign processes. From Figure 3.18,
we can see four data points corresponding to benign processes misinterpreted as
wiping. The processes vi, userdel, host, and dig are detected as wiping processes
due to the presence of some patterns with high probability. Table 3.7 shows
patterns and frequency of processes falsely classified as wiping; from this table,
we can infer that benign processes with repetitive patterns are classified as wiping
processes falsely. We further classify the wiping process using the second decision
based on the write() system-call to avoid false positives.

58

3.5 Detecting Wiping using System-calls

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

W
ipe-5

W
ipe-7

W
ipe-35

SRM
SRM

-F
sfill
Shred-3
Shred-5
Shred-7
Shred-35
Scrub-3
Scrub-5
Scrub-7
Scrub-35
vi pwd
touch
Cat
Com

m
cp cut
groupadd
head
id less
m
kdir

m
ore

m
v

od passwd
rm sed
su tail
tee
uniq
useradd
wc cal
cm
p

date
Df echo
gunzip
gzip
host
m
an

ping
service
sleep
sort
tim

e
chage
chpasswd
dig
ftp groupdel
halt
Install
lastLog
reboot
scp
shutdown
userdel
wall
arch
arp
bc chattr
chm

od
chown
chsh
csplit
debugfs
dom

ainnam
e

fdisk
fm
t

fold
hdparm
hexdum

p
m
kfs

nc runlevel
split
sudo
tar
tcpdum

p
uptim

e
vm
stat

zcat
zdiff
file
ls

No
rm
al
ize
d	
En
tro
pi
es

Processess

Wiping	NEP Benign	NEP Threshold

Figure 3.18: Benign and wiping processes entropies

The second decision is taken based on the presence of write() system-call in the
pattern with maximum frequency (ptnmaxF req). If ptnmaxF req contains write()
system-call, we classify the process as wiping (see Section 3.5.2.2 for details). At
this stage, we get 19 processes identified as wiping based on the first decision.
For these 19 processes, we check if the ptnmaxF req contains the write() system-
call. It is observed that the four processes vi, userdel, host, and dig do not
contain write() system-call (see Table 3.6 for reference). These four processes
were initially classified as wiping based on the first decision. However, they are
now identified as benign processes using the second decision. The remaining 15
processes identified as wiping in the second module are further examined using
the subsequent third decision based on buffer data.

The third decision is based on the buffer data content (i.e., write() parameter).
If the write() parameter buff[] contains random characters or a specific character
or a repeated pattern of characters, we determine the process as wiping (see
Section 3.5.2.3 for details). Here, we get 15 processes identified as wiping based
on the second decision. We observe the buff[] data of the write() system-call
to determine wiping. We observed that all the 15 processes classified as wiping
contained the buffer data as shown in Example 3, 4, and 5; thus, all the 15
processes were correctly identified as wiping processes.

59

3.5 Detecting Wiping using System-calls

Table 3.7: List of benign processes, falsely classified as wiping processes with
high-frequency patterns

Process Pattern Frequency of Patterrn
Host mmap close openat 31

close openat read 31
openat read fstat 29
read fstat mmap 29
fstat mmap mmap 22
mmap mmap mmap 61
mmap mmap close 31
mprotect mprotect mprotect 29

Dig mmap close openat 31
close openat read 31
openat read fstat 29
read fstat mmap 29
fstat mmap mmap 22
mprotect mprotect mprotect 29
mmap mmap mmap 61
mmap mmap close 31

userdel stat stat stat 109
mmap mmap mmap 23

vi select select write 1218
select write select 1226
write select read 1039
read select select 1325
select select read 298
select read select 1335
select select select 110227
write select select 187

60

3.6 Summary

At the first decision, we had 94 processes as input for classification; at the
second decision, we had 19 processes for classification; and at the third decision,
we had 15 processes for classification. At every decision, we reduce the input size
and get output that is more relevant to wiping. This improves the accuracy after
every stage; also, as the input size is reduced, it leads to faster processing.

From the results, we notice that after the first decision, we get an accuracy
of 92.78%; WiDeS classified 75 processes as benign and 19 as wiping, of which 4
benign processes were wrongly identified as wiping. However, by the end of the
third decision, WiDeS classified 79 processes as benign and 15 as wiping processes
with 100% accuracy. Thus, WiDeS determined wiping with 100% accuracy for the
given 94 processes. We believe that WiDeS can classify wiping with acceptable
accuracy in real-time scenarios.

3.6 Summary
In this chapter, we propose two different models, i.e., WiDeJ and WiDeS. In
WiDeJ (static approach), we exploited the file system journaling and the data
blocks corresponding to the file to detect file wiping while investigating the cloud
VM (post the occurrence of the incident). In WiDeS, we used system-calls to
detect wiping while the attack is active by capturing the system-calls of the VM
using logging agents like sysdig.

In WiDeJ, we analyze the journal of cloud VM snapshot and fetch the data
blocks corresponding to a file. Further, based on the file content, we categorized
file wiping as case 1- wiping a file with a specific character, and case 2- wiping a
file with random characters. We used Shanon’s entropy and file system layout to
detect wiping. We computed the file entropy using the frequency distribution of
ASCII characters; further, to reduce false positives, we used file layout to analyze
the file header to detect wiping. We evaluated the proposed model WiDeJ using 54
files by varying file type. Initially, we could determine wiping with 90% accuracy.
Further, based on file layout, we reduced the false positives and could determine
wiping with 100% accuracy.

In WiDeS, we used system-calls captured from cloud VMs to determine file
wiping. Our proposed model, WiDeS, presents a comprehensive and effective ap-
proach to classify processes as benign or wiping using system-calls and information
theory metrics. By utilizing three distinct modules, WiDeS achieves a multi-step
classification process that enhances the accuracy and reliability of its results. The

61

3.6 Summary

first module lays the foundation by initially classifying processes as benign or wip-
ing using entropy values as a primary criterion. This module broadly categorizes
processes and is a starting point for further analysis. The second module takes
the processes identified as wiping in the first module and delves deeper into their
behavior. It conducts additional classification by analyzing the presence of the
write() system-call in the pattern with maximum frequency. This approach helps
to differentiate wiping processes more precisely from benign ones, adding an extra
layer of refinement to the classification process. Lastly, the third module extends
the analysis even further by examining the arguments (buff[]) corresponding to
the write() system-call. By exploiting these arguments, WiDeS gains valuable
insights into the process’s nature and additional evidence to determine whether
it belongs to the wiping category or is genuinely benign. The three modules work
in synergy, enabling WiDeS to achieve accurate classification of wiping processes
from benign ones.

Thus, in this chapter, we proposed two different models to detect file wiping.
In both the models, we were able to detect wiping accurately. However, WiDeJ
had few limitations such as its dependency on journals and file header. We could
avoid such dependencies in WiDeS. Further, in the upcoming chapters, we discuss
how to recover the wiped files and preserve them to ensure the integrity of the
evidence.

62

Chapter 4

Recovery of Wiped Files

In Chapter 3, we discussed how to detect file wiping in the cloud VMs using
static and dynamic approaches. In this chapter, we discuss our next objective,
i.e., recovery of wiped files from cloud VMs. We propose deploying our scripts in
a cloud VM that runs in the background to monitor and log cloud VM activity for
the purpose of recovering wiped files. We exploit the data recovery mechanisms of
file systems to restore the wiped files. Data recovery mechanisms in file systems
are used to restore them to a consistent state in case of power failure, system
crashes, or hardware errors. Major data recovery mechanisms used in file systems
include file system journaling and CoW. Thus, we explored a journal-based file
system (Ext3) and CoW-based file system (BTRFS) for restoring wiped files.

As discussed in the earlier chapter, a journal in the file system keeps track
of changes not yet committed to the disk. By recording such changes, the file
system recovers quickly in case of a system crash. Updates in the file system
are captured in the journal as transactions. Each transaction contains details
corresponding to the file’s metadata including data block addresses allocated to
a file. We traverse back through these journal entries to fetch the data block
address corresponding to a file and restore deleted or previous versions of a file.
However, data recovery is possible when the journal is analyzed at the appropriate
time; this is due to the cyclic queue data structure of the journal, and the journal
content gets overwritten. Ext(3/4), NTFS, ResierFS, and XFS (Extended File
System) are a few journal-based file systems.

On the other hand, BTRFS is a CoW-based file system. In a CoW-based
file system, when a file is updated or modified, instead of overwriting the ex-
isting file, the file’s content is copied to a new location, and the changes are

63

4.1 Challenges in Recovering Wiped Files

done at the new location. Thus, the original file remains unchanged. This al-
lows multiple file versions to be stored simultaneously, which can be useful for
recovering file system to a consistent state incase of an unexpected system crash.
Examples of a few CoW-based file systems are (Write Anywhere File Layout),
ZFS (Zettabyte file System), and BTRFS. We used the BTRFS file system, an
open-source CoW-based file system for Linux. It includes checksums, metadata
duplication, snapshots, and RAID support built into the file system.

We emphasize file recovery from BTRFS more, considering the increased adop-
tion of BTRFS for storage environments. BTRFS is widely being adapted and
is considered as the next major file system for Linux distributions [81], [82], [83].
Currently, it is the default file system for Fedora [84] and OpenSUSE [85]; it is
given as an option for many Linux distributions. Facebook [86] deploys it for
millions of servers to increase resource utilization and efficiency. The NAS (Net-
work Attached Storage) storage servers by Netgear [87], Rockstor [88], Synology
[89] are using BTRFS for fault-tolerance, easy maintenance, and data protection.
Docker [90] and Canonical [91] are using it for container management. Consid-
ering increased usage of BTRFS file system, we exploited it for the benefit of
recovering wiped files.

4.1 Challenges in Recovering Wiped Files

Journal Based Recovery
In the context of forensics, journal entries can be used to identify recent activities
of the file system. Analyzing a file system journal at the appropriate time can
help recover previous file versions and deleted files [37]. Gregorio, in his paper
[73] details the behavior of the Ext2 and Ext3 file system upon deleting a file.
Ext2 does not support file system journaling, unlike Ext (3/4). Thus, he details
the procedure to recover deleted files using both Ext2 and Ext3 file systems. In
the Ext2 file system, the metadata corresponding to files is used for data recovery,
whereas the file system journal is used in the Ext3 file system. Kevin, in his paper
[92] provides a comprehensive analysis of the Ext4 file system for data recovery
from a forensic perspective. He details the behavior of various data structures
upon file deletion. He proposed using Ext4 journal to gather empirical evidence
and recover deleted data from persistent data captured from file system changes.

64

4.1 Challenges in Recovering Wiped Files

Existing literature has demonstrated the recovery of deleted files from the
journal by utilizing previous file versions. However, there has been a lack of
emphasis on recovering wiped files using journals. Here, we demonstrate the
recovery of wiped files from the journal and discuss its limitations in detail, thus
emphasizing the need to look for a CoW-based file system for the purpose of
recovering wiped files.

BTRFS Forensics
BTRFS addresses the challenges of the latest storage solutions. However, in the
realm of forensics BTRFS has not gained the necessary attention. The existing
literature for BTRFS has a handful of papers that provide in-depth details about
file system layout and underlying data structures-[17], [82], [93], [94], and [95]. As
per our literature, there are only a few papers in the context of BTRFS forensics,
which include [81], [83], [96].

Bhat et al., in their paper [81], detail BTRFS artifacts that are rich in infor-
mation for forensics. They detail the scope of recovering files considering B-trees
node balancing in the file system. Hilgert et al. in [83] emphasizes the shortfall
of the existing tools for forensics in BTRFS and adds support to the BTRFS file
system to TSK tool. It also extends support for multiple device configurations.
Only one paper on BTRFS is available in the context of anti-forensics [96]; it
explains BTRFS’s capabilities to stand against anti-forensic approaches such as
file wiping and data hiding using checksum and CoW features of BTRFS file
system. BTRFS checksums prevent data, metadata corruption, and data hiding.
Similarly, BTRFS withstand wiping using the CoW feature. Multiple versions of
the same file exist as the original content remains untouched.

BTRFS is a modern file system with limited support from established forensic
tools. Although it is used in well-established organizations and is available as
a default/optional file system in Linux distributions, it falls short of tools for
proper forensic analysis. Considering the increased utilization of the BTRFS and
the limited literature in the context of anti-forensics in BTRFS, we propose to
fill this gap by addressing the issues corresponding to file wiping in BTRFS. This
work’s primary findings contribute in the direction of recovering the wiped and
deleted files from the BTRFS file system in the context of anti-forensic practices.

65

4.2 Contributions

4.2 Contributions
We name our proposed model as ReWinD i.e., Recovering Wiped and Deleted
files. In this direction, the significant contributions of this work include,

• An approach to restore wiped files using BTRFS utility program btrfs-progs.

• A novel approach to restore the wiped files in BTRFS by logging the physical
address of the file using superblock.

• Comparing the scope of data recovery between the journal-based file system
and the BTRFS file system.

• Usecase of ReWinD for recovery of the unencrypted version of the files
following a ransomware attack.

4.3 Prelimnaries

4.3.1 BTRFS Chunks
BTRFS uses extents for efficient file management, unlike in early Linux-based file
systems where the disk space was divided into blocks. To avoid file fragmentation
and improve the performance of the file system, extents are used in the latest file
systems. Extent is a collection of contiguous blocks. This enables the storage of
large files without any file fragmentation. These extents are logically separated
as BTRFS chunks. Each chunk may contain one or many extents. Based on the
type of data stored in them, these chunks are classified as SYSTEM-CHUNK,
METADATA-CHUNK, and DATA-CHUNK.

• The SYSTEM-CHUNK is used by the BTRFS file system for the initial
Physical Address (PA) to Logical Address (LA) mapping when the system
is bootstrapped.

• METADATA-CHUNK holds the metadata; it includes information such as
inodes, timestamps, extent offsets, backup information, device information,
checksum, etc. In the BTRFS file system, all the trees used to traverse
the file system are considered as metadata and are stored in METADATA-
CHUNK.

• DATA-CHUNK includes the user files stored on the disk using the file sys-
tem.

66

4.3 Prelimnaries

4.3.2 BTRFS Trees
• Chunk tree: The chunk tree contains the logical start address and size

of the chunks in the file system. It contains details corresponding to the
SYSTEM, METADATA, and DATA chunks. This tree is used to perform
logical address-to-physical address mapping.

• Root tree: The root tree contains the logical root addresses of all other trees
in the file system.

• File System (FS) tree: FS trees store information about the user files and
their metadata, such as inode, timestamps, offset values, etc.

• Extent tree: The extent tree holds the information corresponding to the
extent allocation to the files.

• Device tree: The device tree performs PA to LA mapping. Also, it holds
the details corresponding to the different devices configured on the BTRFS
file system.

• Checksum tree: The checksum tree stores the checksum values and ensures
the integrity of the file system.

Tree Object ID of Tree
ROOT TREE 1
EXTENT TREE 2
CHUNK TREE 3
DEV TREE 4
FS TREE 5
CSUM TREE 7

Table 4.1: BTRFS trees and their object IDs

4.3.3 BTRFS Data Structures
BTRFS file system contains three crucial data structures [97]: 1) BTRFS header,
2)BTRFS key, and 3) BTRFS item . The nodes in the tree are classified as internal
nodes and leaf nodes. Each internal node contains BTRFS header, followed by
BTRFS key, and block pointer (to point to the next subsequent node) [98]. The

67

4.3 Prelimnaries

Leaf node contains BTRFS header, followed by BTRFS item, and BTRFS data
corresponding to each item. Figure 4.1 shows the leaf node layout in BTRFS file
system.

Figure 4.1: BTRFS key and BTRFS item in leaf node

BTRFS header contains fields like checksum, FS UUID, tree LA, tree ID,
generation, level etc. We can differentiate between the leaf nodes and internal
nodes by the value stored in the block headers ’level’ field. If the level field
contains the value 1, it signifies the internal node; else, if it contains 0, it signifies
the leaf node. Figure 4.2 shows the BTRFS header data structure layout.

The BTRFS items are stored in the leaf nodes; each item has a specific sig-
nificance. The associated data with each item varies based on the type of item.
The BTRFS key is an integral part of the BTRFS item; it contains the object
ID, the type of the item, and the offset, as shown in Figure 4.1. The offset value
in the BTRFS key depends on the item type; for example, in the chunk item,
the offset value in the key signifies the LA of the chunk. We have listed a few
important items and their hex values in Table 4.2; we determine the item type

68

4.3 Prelimnaries

Figure 4.2: BTRFS header of chunk tree

based on these values. For example, let us consider the chunk tree leaf node as
shown in Figure 4.3; the item type in this example is E4, which signifies it is a
chunk item (see Table 4.2).

Item type Hex Value
ROOT ITEM 84
DIR ITEM 54
DIR INDEX 60
INODE ITEM 01
CHUNK ITEM E4
DEV ITEM D8
EXTENT DATA 6C

Table 4.2: BTRFS Tree items

69

4.3 Prelimnaries

Figure 4.3: BTRFS items captured for a chunk tree leaf node

BTRFS Traversal
BTRFS traversal begins at the superblock, similar to other Linux file systems.
The superblock is considered the core file system component that holds the meta-
data corresponding to file systems. It helps in file system traversal by giving
high-level overview of how the data is organized on-disk. The following are the
steps involved in BTRFS traversal. Further, in section 4.5.2 we shall discuss file
system traversal in detail.

• Step 1: Locate the Superblock at its physical address.

• Step 2: Capture the LA of the chunk tree and root tree from the superblock.

• Step 3: Capture the FS tree LA from the root tree.

• Step 4: Capture the LA of the chunk items for METADATA-CHUNK from
the chunk tree.

• Step 5: Compute the PA of the FS tree.

• Step 6: Locate Extent Data item in File system tree.

• Step 7: Compute the PA of the data block.

70

4.4 Recovery Using Journals

4.4 Recovery Using Journals
We used Ext3 journal in data journaling mode (see Chapter 3 for details on jour-
naling modes) as it captures the metadata and data blocks allocated to the file.
Figure 4.4 shows journal entries in data journaling mode. To analyze the activi-
ties performed on the file system, we need to exploit every transaction captured
in the journal. To parse the journal, we used jls command-line tool from The
Sleuth Kit (TSK); further, to read the data block content allocated to a file, we
used blkcat command-line tool from TSK.

Figure 4.4: Traversing Ext3 journal entries to recover previous versions of the file

Now let us try to recover a wiped file using the journal. For this, we first
create a file demo.txt with some content; then, we modify the file content, and
lastly, we wipe the file demo.txt using the wiping tool Shred. We now try to
analyse all the journal and fetch the relevant transactions (i.e., file creation, file
modification, and file wiping) to recover the wiped file. Figure 4.4 highlights
the transactions for the above actions. The seq: 11 in the journal entries, as
shown in Figure 4.4, represents the transaction corresponding to the creation of
file demo.txt. The highlighted block 9216 corresponds to a data block allocated to
file demo.txt. This block will store the file content. We read the block contents at

71

4.5 Proposed Model ReWinD

9216 using the blkcat tool. We now fetch the journal transaction corresponding
to file modification, i.e., seq: 29 from the journal. We can see that the file
demo.txt now has block 9729 allocated to it. We use the blkcat command-line
tool to view the contents at block 9729. Figure 4.4 shows the content of the file
after modification at block 9729. Further, Seq: 44 from the journal transaction
represents the activity corresponding to file wiping. Upon viewing the block
content 9729 after wiping, we see that the file content is completely overwritten
with ’0’s. However, we can still recover the previous version of the file from block
9216, which was captured by the journal earlier during demo.txt file creation.

We were able to recover wiped files from the journal, but the journal has a
cyclic queue data structure with a fixed size; the journal entries get overwritten
as the file system utilization increases. Thus, recovery using a journal is only
feasible till the journal entries corresponding to the files are available. Thus, we
explored the CoW-based file system, BTRFS, for data recovery.

4.5 Proposed Model ReWinD
In ReWinD , we propose two different approaches to recover wiped and deleted
files. In the first approach, we use an existing BTRFS utility tool, btrfs-progs,
and in the second approach, we propose to log the PA of the files upon their
creation by traversing the BTRFS file system. We explain these approaches in
detail in the subsequent sections.

4.5.1 ReWinD Using btrfs-progs
In ReWinD we use btrfs-progs utility to recover deleted and wiped files. Btrfs-
progs is a utility program for the BTRFS file system. It contains a set of com-
mand line tools used to manage and display internal structures of BTRFS. This
approach is beneficial as we leverage the default tools of BTRFS for the purpose
of forensics without depending on third-party forensic tools. We parse data struc-
tures of BTRFS using btrfs-progs utility and traverse the file system to locate the
targeted file’s data blocks.

To demonstrate recovery of the wiped file, we created an image of 1.1 GB with
BTRFS file system and btrfs-progs utility on it. Subsequently, we created a file
F1.txt with some content, and later wiped it using Shred tool. Let us now see
the various steps involved in ReWinD for file recovery using btrfs-progs utility.

72

4.5 Proposed Model ReWinD

1. The first step is to fetch the contents of the superblock using the btrfs-progs
utility command, i.e., dump-super, as shown below. This lists the contents
of the superblock in an organized manner. We divided the output generated
in two different Figures i.e., Figure 4.5 and Figure 4.6 for improved read-
ability. We further discuss superblock data structure in detail in Section
4.5.2, Figure 4.10 can be referred for the generic overview of superblock data
structure. A few important fields from superblock considered for ReWinD
include root, chunk root, generation (see Figure 4.5), and backup roots (see
Figure 4.6). Here, root and chunk root display the LA of the root tree and
chunk tree LA.

$ btrfs inspect-internal dump-super -f image.dd

Figure 4.5: Superblock output using btrfs-progs

73

4.5 Proposed Model ReWinD

2. We now analyse backup roots of superblock. The superblock contains
backup roots to ensure file system consistency. The four backup roots are
labeled as backup 0, backup 1, backup 2, and backup 3 (see Figure 4.6).
Each backup contains the BTRFS tree root node LAs, generation number,
and level. The generation numbers are used to track the changes. They
get incremented for any change in the corresponding tree, the new LAs of
root nodes are captured, and the corresponding generation number is incre-
mented in the backups. Superblock stores the most recent four generations
of backup tree root(i.e., LA of root tree). For any change in the file system,
if the root tree LA gets updated, the backup with the minimum generation
number in the superblock gets overwritten with the latest LA of the trees.

Figure 4.6: Root backup from superblock

74

4.5 Proposed Model ReWinD

3. Now, we try to fetch the LA of the FS tree from the backup root nodes.
Select the backup whose backup fs root generation number is maximum; it
contains the LA of the FS tree for the current state of the file system. For
example, from Figure 4.6, we can see that backup 2 contains the generation
number gen: 11, which is maximum compared to other backup fs root gen-
eration numbers; but backup 1 also contains backup fs root with gen: 11.
This is because there were no changes in the FS tree but the other trees
may have been modified; in this example the extent tree has been updated.
Thus, the extent tree generation number is incremented to 12, which also
increments the root tree generation number to 12. In scenarios where the
FS tree generation number remains the same across multiple backups, as
shown in Figure 4.6, we can fetch the backup fs root from either backup 1
or 2, which is equivalent to 30883840.

4. Once we have the LA of the FS tree, we try to capture the data blocks cor-
responding to the targetted file by analyzing the FS tree. For this, we parse
the FS tree using btrfs-progs utility command dump-tree at LA 30883840
as shown below. Figure 4.7 shows the items of the FS tree. The dir index
lists the available files and sub-directories. Further, we use inode item and
extent data of the file names listed by dir index items to compute the PA
of the data blocks corresponding to the file. Here, we compute the PA of
file F1.txt. The computation of PA using the LA is discussed in detail in
the section 4.5.2.

$ btrfs inspect-internal dump-tree -b 30883840 image.dd

75

4.5 Proposed Model ReWinD

Figure 4.7: FS tree dump using btrfs-progs

5. As we have the PA of the data blocks corresponding to a file, we now analyze
the hex dump of the image at the computed PA. The Figure 4.8 shows the
contents of the file F1.txt. This shows that the file content is wiped.

76

4.5 Proposed Model ReWinD

Figure 4.8: File data after wiping

6. Now, we try to fetch the previous version of the file to recover the original
contents of file F1.txt. For this, we look at the superblock backup roots
for a backup fs root whose generation number is one less than the current
backup fs root generation number i.e., 11. This is because the earlier gen-
eration number would contain the metadata corresponding to the previous
version of the file. For example, in backup 0, the backup fs root with gen:
10 has the LA of backup fs root equivalent to 30769152, which refers to the
earlier state of the file system, which may contain the previous version of
the file F1.txt. The limitation of this approach is if the generation number
of the current backup fs root is the same in all four backups, then we can-
not recover the previous version of the file as the reference to the previous
version is lost. This happens when there are modifications in other trees of
the file system with no changes in the FS tree.

7. Now we again parse the FS tree at LA 30769152 and locate the PA of the
data blocks of the targetted file F1.txt. This gives us the PA of the data
blocks corresponding to the previous version of the file. We parse the FS tree
for dir index, inode item , extent data for file F1.txt. Further, we compute
the PA for file F1.txt and locate the file content on the Disk. Figure 4.9
shows the content of the file before wiping (i.e., for backup fs root: 30769152
and gen:10), and Figure 4.8 shows the content of the file after wiping (i.e.,
for backup fs root: 30883840 and gen:11). Thus, we can recover wiped files
by traversing through the previous state of the file system.

77

4.5 Proposed Model ReWinD

Figure 4.9: File Content before wiping

Thus, we recovered the wiped files using btrfs-progs. However, it depends on the
availability of FS tree LA from backup roots of the superblock. If we have frequent
changes in the file system, then we lose reference to the previous state of the file
system as the backups get overwritten, and the file recovery becomes difficult. To
overcome this limitation, we propose our next approach, i.e., ReWinD, by logging
PA of the files.

4.5.2 ReWinD by Logging PA of Files
In the BTRFS file system, like many other Linux-based file systems, traversal
begins at the superblock. Superblock is a predefined data structure with a fixed
location on the disk. Even though the BTRFS file system is a CoW-based file
system, the superblock is not CoWed, as frequent changes in the PA of the su-
perblock may result in an inconsistent file system. Thus, the superblock content
is overwritten for changes in the file system. We can access all the files in the file
system at a given time T using the superblock’s contents. Let us understand this
better by considering an example.

Example 6. Data blocks corresponding to file F1 at time T1, can be retrieved by
computing the PA of the file using the contents of the superblock SB1. Now let
us assume that at time T2, the contents of the file F1 have been modified; being a
CoW-based file system, it creates a copy of file F1 as F ′

1 and updates the changes
to F ′

1. As there are changes in the file system, the superblock is updated to SB2.
Using the contents of SB2, one can retrieve the PA of file F ′

1 but cannot retrieve
PA of the original file F1. If we want to fetch the contents of the file F1, i.e.,
the previous version of the file, then we need to have SB1. If the contents of SB1

are available, one can still compute the PA of the file F1, but the contents of the
superblock SB1 at time T1 is overwritten as SB2 at Time T2; thus, the reference
for the file F1 is lost.

78

4.5 Proposed Model ReWinD

From the above Example 6, we understand the possibility of recovering the
previous version of the file provided we have the PA of the file. Therefore, it
is proposed to compute the PA of the files upon their creation using superblock
contents and log the PA of the file along with the file’s metadata for future
reference. We check the superblock content(i.e., root tree LA) for every 30 seconds
because the superblock undergoes updates at this frequency [17]. If there are no
alterations in the file system, the contents of the superblock remain unchanged.
Thus, for every 30 seconds, we check for the root tree LA in the superblock.
If the root tree LA is updated, we traverse the file system and log the PA of
newly created files and their corresponding metadata, else we wait for the next
30 seconds and check for updates. Thus, by recording the PA of the files, we can
traverse the file system back in time to recover deleted and wiped files.

Thus, we write a script to compute and log the PA of the files and deploy
them on the cloud VMs. These scripts run in the background and monitor the
file system activity of cloud VMs. Upon the creation of files, the script computes
the file’s PA and logs the file’s PA and its metadata. Later, in the future, we
can refer to the log file for the corresponding file PA and recover the wiped file
content.

A. BTRFS Traversal Using Superblock

As we compute the PA of a file using the superblock, let us understand how we
traverse the file system using the superblock without using any utility programs
and third-party tools. We initially analyze the superblock data structure located
at a pre-defined location on disk, i.e., 0x10000 [94], and parse its contents. Figure
4.10 shows the superblock data structure layout. Further, we fetch the following
from the superblock to compute PA- 1) sys chunk array, 2) Chunk Tree LA, and
3) Root tree LA. Let us now understand the significance of each item listed in
detail below,

79

4.5 Proposed Model ReWinD

Figure 4.10: Superblock layout for bootstrapping the file system

1) The chunk tree is responsible for LA to PA mapping. The chunk tree resides
in the SYSTEM-CHUNK. To get the PA of the chunk tree, we use chunk item
from sys chunk array of superblock. Thus, we initially parse the sys chunk array
in the superblock and compute the PA of the chunk tree.

2) The chunk tree contains the chunk items corresponding to SYSTEM-
CHUNK, METADATA-CHUNK, and DATA-CHUNK. These chunk items con-
tain the logical start, size, and other metadata corresponding to each chunk. All
the trees in BTRFS reside in the METADATA-CHUNK. We use the chunk item
corresponding to METADATA-CHUNK to compute the PA of other trees using
chunk tree.

3) The root tree contains the LA of root nodes associated with different trees
in BTRFS file system. We get the LA of the FS tree from the root tree. Further,
using the LA of the FS tree, we capture the user files and directories.

B. Compute Physical Address

To compute the PA of a tree (PAT), we need the following values- 1) LA of the
tree (LAT), 2) the logical start of the chunk (LAC), and 3) the stripe offset. A
stripe is associated with a chunk item, representing a portion of allocated space
on the disk. Each stripe contains information such as its starting offset (where it
begins on the disk). We get LAT from root tree, LAC , and stripe offset from the
chunk tree’s chunk item. To get PAT we first compute the difference between

80

4.5 Proposed Model ReWinD

LAT and LAC , as shown in the Equation 4.1. Since all the trees are located
within a logical chunk (i.e., METADATA-CHUNK), we calculate the difference
between the chunk’s starting address and the tree’s address within the chunk, i.e.,
∆. Later, we add ∆ to the stripe offset as shown in Equation 4.2 to get PAT .

∆ = LAT −LAC (4.1)

PAT = ∆+StripeOffset (4.2)

After computing the PAT we look for BTRFS items and their corresponding
offset data in the leaf node. Based on the type of the item, the offset data differs.
To compute the PA of BTRFS item’s offset data, we use Equation 4.3. Here,
PAD is the PA of the data, size(header) is the size of BTRFS header, which is
equivalent to 101 bytes. The data offset corresponds to the BTRFS item’s data
in the leaf node at the given offset (see Figure 4.1 for reference).

PAD = PAT + size(header)+data offset (4.3)

C. Compute the Physical Address of the Chunk Tree

To compute the PA of the chunk tree using Equation 4.1 and 4.3 we need LAT

of the chunk tree, LAC of SYSTEM-CHUNK, and its corresponding stripe offset.
Let us further discuss the details specific to each of them and the sources to fetch
these values in detail.

We get the LAT of the chunk tree from the superblock at PA 0x10058 address
(see Figure 4.10). Additionally, Figure 4.11 shows the hex dump of the superblock
with root tree LA and chunk tree LA. From Figure 4.11 we observe that the LA
of the chunk tree LAT is 0x00040501000000 (in big-endian); upon converting it in
little-endian it is equivalent to 0x0000000001504000, and it’s decimal equivalent
is 22036480 i.e., LAT = 22036480.

81

4.5 Proposed Model ReWinD

Figure 4.11: Root tree and chunk tree LA from superblock

Further, to compute the LAC , we need to fetch the details corresponding to
SYSTEM-CHUNK because the chunk tree resides in SYSTEM-CHUNK whereas
all the other trees, like root tree, FS tree, extent tree, checksum tree, etc., reside
in METADATA-CHUNK. Thus, we need LAC of SYSTEM-CHUNK and its cor-
responding stripe offset to compute the PA of the chunk tree. We get LAC of
SYSTEM-CHUNK from sys array chunk of superblock. Figure 4.10 shows that
the sys array chunk begins at physical address 0x1032B. The sys array chunk
contains the data as a pair of (Key,chunk items). As discussed earlier, the key
contains object id, item type, and offset; here, the type of item is chunk item,
and the corresponding offset value is the LAC of SYSTEM-CHUNK (see BTRFS
items in section 4.3.3 for details). Also, using the sys array chunk, we get the
stripe offset value. The figure shows the hex dump for sys array chunk. The val-
ues in the Figure 4.12 are highlighted based on the data structure for chunk item
[94].

Figure 4.12: sys arr chunk from superblock

82

4.5 Proposed Model ReWinD

From superblock, we get LAT of chunk tree (see Figure 4.11), and we get LAC

and stripe offset of SYSTEM-CHUNK from sys array chunk (see Figure 4.12).
Here, both LAC and stripe offset values are equivalent i.e., 0x0000500100000000
(in big-endian) equivalent to 0x0000000001500000 (in little-endian), and its dec-
imal equivalent is 22020096 i.e., LAC = 22020096 and StripeOffset = 22020096
now substitute LAT and LAC in Equation 4.1 i.e.,

∆ = LAT - LAC

∆ = 22036480−22020096
∆ = 16384

Now substitute ∆ in Equation 4.2 to get the PAT of the chunk tree. We
observe the PAT of the chunk tree is equivalent to its LAT , i.e., 22036480 (i.e.,
0x1504000). However, this differs with other trees as the LAC and physical
stripe address differ.

PAT = ∆+StripeOffset

PAT = 16384+22020096
PAT = 22036480

We parse the chunk tree at PA 0x1504000 on disk to get the details corre-
sponding to the METADATA-CHUNK, as it contains other trees of the BTRFS
file system. To differentiate between METADATA, DATA, and SYSTEM chunk
items in the chunk tree, we look at chunk item’s offset data for the type field
as shown in Figure 4.13. For this, we first need to compute PAD of every
chunk item to determine its type. However, here we present computing PAD for
METADATA-CHU NK, similar approach can be adopted to determine the PAD

of other chunk items(i.e., SYSTEM, DATA chunks). Fetch the data offset for
chunk item as shown in Figure 4.13 i.e., 0x093E0000(in big-endian); equivalent
to 0x00003E09 (in little-endian) and, its decimal equivalent is 15881 i.e.,
data offset = 15881. In Equation 4.3, we now substitute PAT = 22036480,
size(header) = 101, data offset = 15881.

PAD = PAT + size(header)+data offset

PAD = 22036480+101+15881
PAD = 22052462

83

4.5 Proposed Model ReWinD

Figure 4.13: Chunk tree leaf node layout

Thus, we get PAD = 22052462 equivalent to 0x1507E6E in hex. From Figure
4.13, we can see that the METADATA chunk item starts at PA 0x1507E6E.
The type field in chunk item offset contains value 01 for DATA-CHUNK, 02
for SYSTEM-CHUNK, and 04 for METADATA-CHUNK [99]. But, in Figure
4.13, we see the value of the ’type’ field for METADATA-CHUNK is 0x24. This
is because the type field also includes the information corresponding to data
redundancy supported by the file system.

In BTRFS, we associate data redundancy with the following profiles: single,
DUP, RAID. In a single profile, the data is stored on a single device without
redundancy. In the DUP profile, the data is mirrored (i.e., two copies) of the same
data are available. DUP can be implemented on single or multiple devices. In a
RAID profile, data redundancy is achieved using RAID features such as stripping,
mirroring, and parity; it is suitable when multiple devices are configured. Each

84

4.5 Proposed Model ReWinD

profile has a specific value, e.g., the DUP profile has a value of 32 in decimal
and 0x20 in hexadecimal notation [99]. For example, let us say the BTRFS file
system uses the DUP profile whose value is equivalent to 20, then the type field
of METADATA-CHUNK contains 20 + 04, i.e., 0x24, which justifies the value
shown in the Figure 4.13. The type field for SYSTEM-CHUNK contains 20+02
i.e., 0x22. If we notice that the type value for the DATA-CHUNK is 01. This
signifies that the METADATA and the SYSTEM chunks are mirrored, but the
DATA-CHUNK is not. Thus, one can configure these settings based on their
requirement while initializing the file system.

D. Parsing the Root Tree

After parsing the superblock and the chunk tree, we now parse the root tree. The
root tree holds the LA of all other trees’ root nodes. The root tree contains the
LAs of the file system tree, chunk tree, extent tree, device tree, checksum tree,
and others for various file system-relevant activities. We focus on fetching the FS
tree LA from the root tree.

To parse the root tree, we initially need to compute the physical address of the
root tree. To compute the physical address of the root tree, we need LAT of the
root tree, LAC of the METADATA-CHUNK, and its corresponding stripe offset.
We get the LAT of the root tree from the superblock (see Figure 4.11). LAC

of the METADATA-CHUNK and stripe offset from the chunk tree (See Figure
4.13).

Figure 4.11 shows the hex dump of root tree logical address from the
superblock i.e., 0x0040DB0100000000 (in big-endian); which is equivalent to
0x0000000001DB4000 in little-endian and in decimal is equivalet to 31145984,
i.e., LAT = 31145984. From Figure 4.13, we fetch the METADATA-CHUNK
logical starting address i.e., offset LAC = 0x0000500200000000 (in big-endian)
equivalent to 0x000000025000 (in little-endian) and, its decimal equivalent is
30408704 i.e., LAC = 30408704. Now substitute LAT and LAC in Equation 4.1
i.e.,

∆ = LAT - LAC

∆ = 31145984−30408704
∆ = 7372807

85

4.5 Proposed Model ReWinD

Now substitute ∆ in Equation 4.2 to get the PAT of the root tree. Here, the
stripe offset of METADATA-CHUNK from chunk tree as shown in Figure 4.13
is 0x02500000 (in little-endian), equivalent to 38797312 in decimal.
PAT = ∆+StripeOffset

PAT = 7372807+38797312
PAT = 39534592

Thus, the PA of the root tree PAT = 39534592 is equivalent to 0x25B4000
as shown in Figure 4.14. We now fetch FS tree logical address. For this, we
first need to compute PAD of FS tree in the root tree; thus, we fetch the
data offset for FS tree i.e., 0x653A0000(in big-endian); equivalent to 0x00003A65
(in little-endian) and, its decimal equivalent is 14949 i.e., data offset = 14949.
In Equation 4.3, we now substitute PAT = 39534592, size(header) = 101,
data offset = 14949.
PAD = PAT + size(header)+data offset

PAD = 39534592+101+14949
PAD = 39549642

Thus, from the root tree, we get PAD = 39549642 (equivalent to 0x25B7ACA)
of the FS tree; we parse the data at this PAD to retrieve the LA of the FS
tree. From Figure 4.14, we can see that the FS tree LA is 0x0040D70100000000
(in big-endian), equivalent to 0x01D74000 (in little-endian) and 30883840 in
decimal. Thus, using the root tree we fetch the LA of the FS tree which is
equivalent to 30883840. We now have the LA of the FS tree, but we need the
PA of the FS tree to parse the FS tree, for this we again compute the PA of FS
tree using the Equations 4.1, and 4.2 as shown below, Here, LAT of FS tree is
30883840, and LAC = 30408704 (i.e., LAC of METADATA-CHUNK from chunk
tree).
∆ = LAT - LAC

∆ = 30883840−30408704
∆ = 475136

PAT = ∆+StripeOffset

PAT = 475136+38797312
PAT = 39272448

86

4.5 Proposed Model ReWinD

Figure 4.14: Root Tree Leaf Node Layout

87

4.5 Proposed Model ReWinD

Thus, the computed PA of the FS tree is 39272448, equivalent to 0x02574000.
Now that we have the PA of the FS tree we can parse the FS tree to get the
metadata and data corresponding to files. We further detail the procedure to
capture the PA of a file in the subsequent section.

E. Parsing the File System Tree

The File system tree contains the details corresponding to user files and direc-
tories. It contains different items corresponding to file data and metadata. e.g.,
dir item, dir index, inode ref, inode item, extent data, etc. Using the FS tree, we
try to fetch file metadata and data. Figure 4.15 demonstrates the leaf node layout
for FS tree. We use three important items from the FS tree to locate the data
blocks corresponding to a file- 1) dir index, 2) inode item, and 3) extent data.
From Figure 4.15 we observe that these three items, dir index, inode item, and
extent data, have an inode number in common; using the inode number, we cor-
relate these items corresponding to a specific file.

1) The dir index is used as a lookup for directory entries. The dir index
items’ corresponding offset data in leaf node will include the file name, the inode
number of the file, and other metadata. We can detect the deleted file entries
using dir index. Let us consider files F1.txt, F2.txt, F3.txt created at time T1.
The FS tree will contain three dir index entries, each entry corresponding to a
file. Now, let us assume that at time T2, the file F2.txt is wiped or deleted. As
there is a change in the file system, these changes are CoWed to a new location.
Now, the FS tree dir index will not contain F2.txt entry. Thus, by comparing the
dir index entries at time T1 and T2, we can list the deleted files.

2) The inode item contains the metadata corresponding to the user file. It
contains the inode number, the file size, MAC timestamps associated with the
file, and other additional information.

3) The extent data item contains the LA of the file extent. Along with this,
it also includes additional information regarding compression, encryption, gener-
ation, transaction, etc., As shown in Figure 4.15. If the file is small, it is accom-
modated as an inline file in the leaf node at extent data’s offset. For large files,
they are stored in the extents; the LA of the file extent is stored in extent data’s
offset.

88

4.5 Proposed Model ReWinD

Figure 4.15: Fs tree leaf node layout

To compute the PA of inline files, we consider LAC of METADATA-CHUNK,
but for regular files, we consider LAC of DATA-CHUNK. This is because the
inline files are stored in the leaf node of the FS tree; as discussed in section 4.5.2,
the FS tree and other trees of BTRFS are stored in METADATA-CHUNK. on
the other hand, regular files are stored in the extents. These extents are stored
in the DATA-CHUNK; thus, we use the LAC of DATA-CHUNK for regular files.
We compute the PA of inline files using the Equations 4.3 and for regular files,
we use the Equations 4.4, 4.5, and 4.6.

In Equation 4.4, the LAE is the LA of the extent where the file is stored, and
LAC is the LA of the DATA-CHUNK. We get LAE from FS tree (see Figure 4.15
for LA of Extent) and LAC from Chunk tree.

∆ = LAE−LAC (4.4)

We now compute the PA of the extent i.e., PAE by substituting the ∆ from
Equation 4.4 in Equation 4.5. We get the stripe offset of DATA-CHUNK from
chunk tree.

PAE = ∆+Stripe Offset of DATA-CHUNK (4.5)

In Equation 4.6, the PAD contains the PA of regular file on the extent. To
compute PAD we sustitute PAE from Equation 4.5; and extent offset from FS

89

4.6 Results and Discussion

tree (See Figure 4.15 for offset in extent) in Equation 4.6 to compute the PA of
regular file.

PAD = PAE + extent offset (4.6)

In ReWinD, we use the dir index to list the deleted and wiped files, inode item
to get the files’ metadata like inode number and timestamps, and finally, we use
the extent data to retrieve the PA of the files. We have the PA of files and
corresponding metadata; we now log them in a separate log file periodically for
every 30 seconds, as discussed earlier in the section 4.5.2. Later, we use this log
file to recover the PA of wiped or deleted files. However, there is a limitation: the
contents of unreferenced files may be overwritten by the file system itself, which
is common across all the file systems. Thus, it becomes imperative to determine
the scope of recovery using ReWinD which we discuss in the next subsequent
section.

4.6 Results and Discussion
BTRFS increases the scope of recovering wiped files because it is based on CoW
principle, but it also comes with the associated challenges. As the entire file
system is organized in the form of b-tree, the creation of new file or the deletion
of a file may result in node splitting or merging to balance the tree [81]. The
merging of nodes especially creates challenges as it overwrites the content when
the files are deleted.

To evaluate the proposed model, we have experimented the scope of recovering
wiped files in BTRFS by varying the image size, file size, and the DATA-CHUNK
size. Table 4.3 details the experimental setup for BTRFS file system for different
scenarios. In BTRFS file system, the user files are stored in the DATA-CHUNK.
The space allocated to the DATA-CHUNK dynamically increases as its utilization
increases.

90

4.6 Results and Discussion

Scenario Image Size File Size
Block group profiles
System Metadata Data

Scenario 1 1 GB 5 KB to 1 MB 8 MB 51.19 MB 8 MB
Scenario 2 1 GB 5 KB to 50 MB 8 MB 51.19 MB 232 MB
Scenario 3 1 GB 0 KB to 50 MB 8 MB 128.19 MB 532 MB
Scenario 4 3 GB 5KB to 50 MB 8 MB 153.56 MB 2.37 GB

Table 4.3: Experimental setup for different scenarios to evaluate BTRFS

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4.16: Comparing the scope of file recovery between Ext and BTRFS under
different scenarios as listed in Table 4.3

We further compared the scope of recovering wiped files between Ext (journal-
based) file system and BTRFS (CoW-based). For the journal-based file system,
we created an image of size 1 GB with the Ext file system, whose journal size is
equivalent to 8 MB with default journaling mode, i.e., ordered mode. We used
the Shred tool to wipe files using 35 passes.

It is observed that when the allocated DATA-CHUNK unit is small, i.e., 8
MB (scenario 1), it becomes difficult to recover the wiped files. This is because
when we wipe a file with 35 passes, for every pass file is copied to a new location
and overwritten with specific or random characters. We can say this because

91

4.6 Results and Discussion

we could observe patterns like ’11111’, ’UUUUU’, and random characters (e.g:
’s/Ôı̈Yhpâ@ÁèS’) in different locations when analyzing the hex dump of the im-
age. When we wipe the file multiple times there is a possibility that due to the
limited space, the original file content is overwritten.

In BTRFS, the unallocated space within the 8MB of the DATA-CHUNK is
utilized to overwrite the contents; we say this because upon analyzing the original
file’s physical address, it was found at 0XD00000, and upon wiping the file with 3
passes we found that the original file content is not overwritten, but the content
with specific pattern like ’11111111’ equivalent to the file size was observed at
physical address 0xD01000 followed by specific patterns at location 0xD2000 and
0xD3000. This shows that when a file is wiped, the files system initially uses the
unallocated space equivalent to file size. In case of wiping with multiple passes,
it may overwrite the file content due to unavailability of space.

Thus the scope of recovery depends upon three factors- 1) image size, 2)
DATA-CHUNK size, and file size. Let us assume the size of the DATA-CHUNK
is 8 MB, and the file size is 1MB, and if we wipe the file with 35 passes, we
cannot recover the wiped file. This is because, during each pass, the 1MB file
is replicated to a new location, eventually occupying 35MB of space. but given
that only 8MB of space is available, the content gets continuously overwritten,
leaving no scope for file recovery. On the other hand, let us consider a file of size
3 KB when wiped with 35 passes, the file of size 3kb is copied to new locations 35
times, consuming space close to 105 KB, but as the size of the DATA-CHUNK
is 8 MB we can recover the file. We tested the proposed model by varying the
DATA-CHUNK size and the file size. The results for the same are presented in
Figure 4.17; with the DATA-CHUNK size equivalent to 232 MB, we were able to
recover the wiped files whose file size< 5MB. Similarly, for DATA-CHUNK sizes
of 532 MB and 1.3 GB, we were able to recover the wiped files whose sizes were
less than 30 MB and 50 MB, respectively. This shows that as the DATA-CHUNK
size increases, it increases the scope of recovering files with a larger size. The size
of DATA-CHUNK depends on the image size. Further, the DATA-CHUNK size
increases dynamically based on file system utilization to store user files depending
on the availability of unallocated space of the image.

92

4.7 Usecase: Recovery of a file encrypted by Gonnacry ransomware

Figure 4.17: Scope of recovering wiped files from BTRFS by varying the DATA-
CHUNK and file sizes

Also, we compared the scope of recovering wiped files using the Ext and
BTRFS file systems. The results in Figure 4.16 show that the scope of recovery
from journals is higher when the file system is newly initialized and eventually
decreases. Further, the scope for recovery of the wiped files increases in BTRFS
and reduces in Ext as the file system ages; this is because the journal size is fixed
when the file system is initialized; but, in BTRFS file system, the DATA-CHUNK
size changes based on file system utilization.

4.7 Usecase: Recovery of a file encrypted by
Gonnacry ransomware

In this section, we present a usecase by applying the proposed model ReWinD
to recover the files affected by ransomware attacks. We try to recover encrypted
files without using any decryption keys. To test the application on ReWinD on
ransomware we create an image file of 1.1 GB with BTRFS file system. We
create a file Hello.txt of size 31 bytes, with DATA CHUNK size of 8MB. We
used Gonnacry, a Linux-based ransomware, to launch the ransomware attack. It
initially traverses different paths of the file system and lists the files that can
be encrypted. Once a list is created, it encrypts the files sequentially. The files
encrypted by Gonnacry have file extension as .GNNCRY, for example the original
file Hello.txt is renamed as Hello.txt.GNNCRY.

93

4.7 Usecase: Recovery of a file encrypted by Gonnacry ransomware

Figure 4.18: Superblock after encryption

Let us use ReWinD with the btrfs-progs utility (see section 4.5.1 for details)
and try to recover the unencrypted version of the file using the backup root
nodes of the superblock. Figure 4.18 shows the backup root contents of the
superblock. Considering the space constraint, we have not included backup 0 and
backup 1 in Figure 4.18. We try to fetch the details corresponding to the current
state of the file system. Thus, we capture the details corresponding to the latest
generation number of the FS tree root node. Form the Figure 4.18 we can see that
backup 3 contains the latest generation number i.e., gen: 8 with LAT = 30621696.
Subsequently, we parse the FS tree using its LAT and list the files using the
dir index item. Here, we find a file with file name as Hello.txt.GNNCRY. We
suspect this file to be encrypted; further, we get the inode item and extent data
item for this file as shown in Figure 4.19b to compute the PA of the file. We
compute the PA of the files using the Equation 4.1, 4.2 and 4.3 as discussed in
section 4.5.2. Figure 4.20b shows the file contents of Hello.txt.GNNCRY at its
PA; we see that the file content is encrypted. Thus, we try to get the previous
original version of the file Hello.txt using the superblock backup root nodes whose
generation number is one less than the current generation number(gen: 8) i.e.,
gen: 7.

From Figure 4.18, we see that the FS tree root node LA at generation number
gen: 7 is 30441472. Next, we parse the FS tree and lookup for the file Hello.txt as
shown in Figure4.19a. We get the inode item and extent data item corresponding
to the file Hello.txt and compute its PA. Figure 4.20 shows the original content
of the unencrypted file. Thus, the CoW principle enables the BTRFS file system

94

4.8 Summary

Figure 4.19: FS Tree before and after encrypting the file using Gonnacry

Figure 4.20: File content at physical address before and after encryption

to hold the original file content even before encryption. By traversing to the
previous version of the file we can recover the unencrypted file content.

This usecase of ReWinD still needs to be analyzed rigorously under different
complex ransomware attack scenarios. In our future work, we shall try to ex-
plore the restoration of encrypted files from ransomware attacks under different
scenarios.

4.8 Summary
We introduce ReWinD, a novel model for recovering wiped and deleted files in
cloud VMs backed by BTRFS file system. We have analyzed two distinct methods
for recovering wiped files from the BTRFS file system. Initially, we utilized
the existing BTRFS utility program, btrfs-progs, for file recovery. During this
process, we observed that the superblock stores up to four backups of the root tree.
Leveraging this feature allows us to navigate to previous file versions. However,
there is a limitation: these backup roots are overwritten for the changes in the
file system, causing a loss of data to access the previous file version.

Subsequently, we propose another novel approach, which is logging the PA
of files. This method entails logging the PA of files every time the superblock
is updated. We maintain a separate log file that captures the PA of the files,

95

4.8 Summary

which mitigates the risk of losing reference to the earlier versions of files. We
compared the scope of data recovery between Ext and BTRFS under different
scenarios, which reveals that BTRFS has greater potential to recover wiped files
as the file system ages. Furthermore, we demonstrate the application of ReWinD
on a ransomware attack launched by Gonnacry, where we recover the previous
unencrypted version of the file using the proposed model. This highlights the
practical relevance of our work in addressing real-world data recovery challenges,
especially in the context of anti-forensics (i.e., artifact wiping) and threats like
ransomware.

96

Chapter 5

Investigation Model to Preserve
Cloud VMs and Investigation
Proceedings on Blockchain

In this chapter, we provide an approach to preserve the evidential artifact (i.e,
cloud VM) in a forensic sound manner such that the integrity of the evidence
is preserved using blockchain technology. Involving blockchain in the preserva-
tion of cloud evidential artifacts addresses some additional challenges associated
with cloud forensics. The most critical problem is the evidence’s validity and
trustworthiness when multiple stakeholders are involved [100]. These stakehold-
ers can always collude among themselves and tamper with the evidence [101] for
various reasons. Also, centralized ownership of the evidence is with CSP, who
cannot be trusted completely. To decentralize ownership and ensure evidence’s
integrity, immutability, authenticity, availability, and transparency among the
involved stakeholders, we propose a blockchain-based, tamper-proof, and trans-
parent investigation model using permissioned blockchain.

Blockchain technology is a game-changer in digital forensics, especially when
multiple stakeholders are involved [100]. Blockchain is a series of append-only, im-
mutable, transparent data structures (i.e., blocks) that store the details of every
transaction on the peer-to-peer network [100] [102]. Blockchain has become the
most promising technology for achieving integrity, auditability, transparency, se-
curity, authenticity, etc. Thus, the usage of blockchain to ensure cooperation and
transparent exchange of information among the authentic stakeholders involved
in the investigation makes it an optimal technology for forensics.

97

5.1 Challenges in Existing System

5.1 Challenges in Existing System
Let us initially understand the existing investigation procedure in case of an
incident on cloud VM. Upon receiving an incident report, the LEA assigns an IO
for it. The IO then issues legal notice to CSP to immediately restrain the current
services offered by CSP to the suspected VM. Later, IO issues another notice
to CSP to provide the requested evidential artifacts like target VM snapshot,
relevant logs (system, user activity logs), etc., and preserve the evidential artifacts
for future investigation and court trials.

Figure 5.1 shows the phases involved in the existing system cloud incident
investigation. It mainly involves; 1. Issuing legal notice to CSP to furnish the
required details, 2. Evidence Identification, 3. Evidence Collection, 4. Evidence
preservation, 5. Submission of evidence by CSP to LEA, 6. Evidence Analysis,
and 7. Reporting and presentation of evidence.

Upon receiving notice from LEA, CSPs identify the cloud resources involved
in crime from the pool of resources distributed across the globe involved in the
incident. After identifying the evidential resources, CSP collects evidential ar-
tifacts across the cloud environment. IO will neither have direct access to the
physical resources nor be involved in evidence collection due to various privacy
constraints in the cloud. IO ultimately has to depend on the CSPs for evidence.
CSP shares evidence with LEA through the proper channel. After the evidence
is shared with LEA, both CSP and LEA start the analysis of the evidence for
further investigation.

Suppose other stakeholders (forensic analyst, prosecutor, defender) are in-
volved in the investigation and need access to evidence. It takes much time as it
involves many legal proceedings to ensure proper Chain of Custody (CoC) and
ensure the integrity of evidence. Moreover, the investigation procedure is not
transparent to the members involved in the incident. There is always a possi-
bility that the organizations, legal entities, and other members involved in the
incident may collude and tamper with the evidence for their benefit, resulting in
a lack of confidence in the legal system.

98

5.2 Contributions

Figure 5.1: Existing Investigation Procedure.

5.2 Contributions
To overcome the existing challenges, as discussed, we propose an investigation
model using blockchain. We name our proposed model as Investigation-Chain.
The significant contributions of our model Investigation-Chain includes:

• A tamper-proof and transparent investigation model for cloud VMs and
ensure the availability of VM snapshots to multiple stakeholders using per-
missioned blockchain.

• We validated the proposed model using a case study and evaluated its per-

99

5.3 Prelimnaries

formance for the proof of concept using Hyperledger Caliper.

• Finally, we present a comparative analysis of recent research with our model
and prove that our proposed model fulfills all the essential security aspects
of evidence preservation compared to other research works.

5.3 Prelimnaries

5.3.1 Blockchain
A decentralized platform for information sharing through a ledger enables multi-
ple authoritative domains that do not trust each other to coordinate, cooperate,
and collaborate in decision-making. The information is shared across the network
by a ledger. A ledger is an immutable data structure used to capture the transac-
tions chronologically, thereby maintaining the history of all transactions across the
network. Based on the access given to the participating nodes in the blockchain
network, they are classified as permissionless and permissioned blockchains. The
permissionless blockchains are also known as public blockchains; any member
providing Proof-of-Work can be included in the network without knowing their
identity. Also, the ledger is transparent and open to all network members. On
the other hand, permissioned blockchain is also known as a private blockchain,
an access control layer that ensures only authorized members access the network.

5.3.2 Hyperledger Fabric (HLF)
HLF [103] is a permissioned blockchain framework to implement private
blockchain. HLF contains members who are legally separate entities known as
organizations. Each organization can host multiple nodes. Nodes initiate the
transaction that leads to the execution of a smart contract. Transaction privacy
and confidentiality is ensured by using channels in HLF. A

channel is a subset of peers who want to share the information confidentially.
Components of HLF:

• Certificate Authority: Certificate Authority issues identity and access con-
trol certificates using public and private keys to network components and
users.

100

5.3 Prelimnaries

• HLF Client: HLF Client is the client application that interacts with the
blockchain. The application can be developed using Software Development
Kit (SDK), which supports Node Java Script (JS), Java, Python, and Go
languages.

• Chaincode: Chaincode is the smart contract deployed on the blockchain
network that details the business logic. The HLF client application invokes
and queries the functions on the chaincode. The chaincode is deployed on
the peer binaries of the blockchain network.

• Peer: Peers are the blockchain’s nodes; they are the fundamental entities
of the blockchain that host the ledger and chaincode. An organization can
host one or many peers.

– Anchor Peer: Discoverable outside the organization.
– Leader Peers: Connect to the orderer to receive new blocks.
– Endorsing peers: Special peers that sign the transactions before the

transaction is committed.

• Orderer: Ensure consistency across the network by determining the se-
quence of transactions. It also prepares a block of transactions and broad-
casts the new block in the network.

HLF workflow: The client application submits a transaction to endorsing peers;
the peers will execute the transaction, agree the output is the same across other
peers, and add their signature. The client application has to collect endorsements
from multiple peers in the network to say it is a valid transaction as all the
outputs are the same. Later, submit the transaction for ordering; this ensures the
transactions are ordered across all the nodes to validate that no two transactions
should try to change the value of a variable simultaneously. If done, then the first
transaction is allowed, and the later transaction is invalidated. Orderer broadcasts
the new block to peers in the network. The peers validate if the new transaction
has received the required endorsements and later commit the transaction. Finally,
the committed block is added to the blockchain, and the ledger is updated.

101

5.4 Application of Blockchain in Digital Forensics

5.4 Application of Blockchain in Digital Foren-
sics

In cloud forensics, evidence accessibility, availability, transparency, and integrity
have always been a challenge. Earlier proposed solutions are using blockchain to
address these challenges to some extent [104]. Also, most of these works focus
on ensuring the integrity and auditability of evidence by storing the hash value
and series of timestamps of the forensic artifacts on the blockchain. Most cloud
artifacts considered for forensics include cloud logs, CoC, and files’ metadata. Let
us further discuss the existing solutions for each of these artifacts in detail and
summarize the strengths and weaknesses of each work (see Table 5.1).

5.4.1 Log Integrity
Park in his paper [105] proposed a solution for a blockchain-based data logging
and integrity management system for cloud forensics. The proposed solution
involves blockchain across multiple CSPs. It compares the proposed method with
other cryptocurrencies-based blockchains. The log data is collected from instances
and encrypted from each CSP. Later, the hash values for the data corresponding
to each CSP are generated and stored on the block. The participating CSPs
determine the time taken to generate a block. After the permitted time, a block
integrity check is performed on each block and added to the blockchain; this
ensures data integrity even before the data is used as evidence by investigators
using a permissioned blockchain.

The author in paper [101] proposes secure logging as a service using blockchain
to avoid altering logs by un-trusted cloud stakeholders. Node Controller (controls
the log activity of all virtual machines) collects the logs from all virtual environ-
ments and encrypts them. After every day, the Node controller publishes the en-
crypted logs, the hash of encrypted logs, and the hash of the previous encrypted
log on the blockchain; this ensures the integrity, availability, and chronology of
the logs. In case of an incident on the cloud, forensic investigators can access
the blockchain, decrypt the logs, and access them as mentioned in Service Level
Agreement (SLA). The proposed solution achieves integrity, confidentiality, and
availability using permissioned blockchain. However, vast volumes of cloud logs
are stored on the blockchain, increasing the computational cost and communica-
tion overhead.

102

5.4 Application of Blockchain in Digital Forensics

5.4.2 Metadata Integrity
Liang proposes Provchain [18], which mainly focuses on data provenance of files
stored on cloud storage using blockchain. The corresponding file operations, such
as file creation, modification, and deletion, are maintained on the blockchain by
storing a file’s metadata every time an event is performed. Provchain is built on
an open-source application ownCloud, to collect provenance data. ownCloud is
a web-based cloud storage service. As the user acts on the data files on their
ownCloud, the metadata, including username, filename, and actions performed,
are recorded. A provenance auditor uses the chainpoint protocol to publish
data records on the blockchain network and generate blockchain receipts. The
blockchain receipt contains the transaction information and is used to validate
the data. Cloud customers have to pay a fee as a reward for blockchain miners
to opt for data provenance services.

Tian, in his paper [106], proposes an approach to store the information cor-
responding to the evidence on the blockchain and store the actual evidence on a
trusted storage platform; this avoids blockchain bloat and optimizes the perfor-
mance of the system.

5.4.3 Chain of Custody
It is found that most of the work in forensics using blockchain focuses on auditabil-
ity by ensuring the integrity of CoC as proposed in papers [19], [102], [107], [108],
[109].

Zhang, in his paper [107], proposes process provenance for the CoC, i.e., proof
of existence and privacy of the process records using blockchain and cryptography
group signature. The receiver sends a request to the sender to collect forensic data;
the sender responds to the request with a submission list. The submission list
records the hash values of transferred forensic data files and the group signatures
of the sender and receiver. The receiver verifies the hash values of the files and
confirms the submission list by signing it. Later, the process auditor verifies
the process records using a group signature and collects the records to a certain
number. Finally, the process records are published on the blockchain network,
and the corresponding blockchain receipt is stored.

The author Bonomi proposes a model B-CoC, i.e., blockchain-based CoC [108]
using a permissioned blockchain, where only authorized entities can access the
evidence. Only one authorized owner can access or own the evidence at a given

103

5.4 Application of Blockchain in Digital Forensics

time. If any other authorized entity needs access, the current owner needs to
raise a transfer request. This transfer request is recorded on the blockchain as
an evidence log. The actual evidence is stored in a distributed database across
trusted parties (court, police officials, etc.). The evidence log and ownership
transfer details hold the details of evidence creation and deletion. The Evidence
log acts as CoC. The results show that this method has an acceptable performance
overhead. However, one authorized owner at a given point of time is good for
ensuring valid CoC, but this causes a delay in the investigation process as only
one among authorized entities can access the evidence.

Lone proposed two different models [109], [102] to ensure integrity of CoC
using blockchain. In his first model [109], he implements a forensic chain using
Ethereum and smart contracts. Details corresponding to the incident, i.e., the
hash of digital evidence, location, date, and time, are recorded on the blockchain
using a smart contract. A new block is added to the blockchain whenever dig-
ital evidence is accessed or transferred. The paper lacks the implementation of
the proposed model. The author proposes Forensic-chain for CoC using Hyper-
ledger composer in his later paper [102]. Hyperledger Composer is an open-source
framework built on HLF blockchain infrastructure. Evidence creation, transfer,
deletion, and display are captured on the blockchain. These details are used for
auditing CoC. Hyperledger Caliper is used to evaluate the performance of the
proposed model.

The paper LEChain [19] details supervising the entire evidence flow. It mainly
emphasizes ensuring the privacy of the witness and juror by using randomizable
signatures. The proposed model has been tested on the Ethereum blockchain
network. The communication overhead and computational cost have been evalu-
ated. However, the evidence is stored off-chain in the distributed database, but
all stakeholders’ transaction details performed on the evidential data, such as
upload, access, and request, are stored on the blockchain.

104

5.5 Proposed Model Investigation-Chain

Table 5.1: Digital Forensic Solutions based on Blockchain: Summary of strengths
and weakness

Publication Strength Weakness
[101] 1. Addresses multi-stakeholder collusion.

2. Storage of cloud logs on-chain.
1. Huge volumes of cloud logs are
replicated on block.
2. High storage overhead.

[102] 1. Ensures auditability of CoC.
2. Acceptable overhead in terms of
resource utilization and throughput.
3. Used Hyperledger Caliper framework
for performance evaluation.

1. Access to distributed storage system
used to store the evidence is not discussed.

[105] 1. Data integrity is ensured even before
the data is used as evidence.
2. Reduce dependency on CSP for
integrity check.

1. Interoperability among CSPs.
2. Performance evaluation is done based
on expected data size.
3. Role of investigator is not discussed.

[18] 1. Enables cloud auditing for the files
stored on the cloud.
2. Data provenance is achieved with less
overhead.
3. Performance overhead is independent
of file size.

1. Not all cloud customers show interest to publish
provenance data on public blockchain.
3. Dependency on provenance auditor.

[106] 1. Ensure evidence availability and
integrity with reduced storage overhead.

1. Depends on trusted third party for storage.

[107] 1. Provenance of tamper-proof forensic
artifacts submission list.
2. Negligible time overhead for group
signature as it is executed only a couple
of times.

1. Dependency on certification authority
and process auditor.
2. Storage overhead depends on the
on the no.of files in submission list.

[108] 1. The proposed model is synchronous
this ensures consistency of data in CoC.
2. Acceptable storage overhead.

1. At a given point of time only one
authorized user can access the evidence.
2. Increased communication overhead.

[109] 1. Ensures auditable CoC. 1. Lacks proof of concept.
2. Usage of public blockchain may not be
recommended for forensics.

[19] 1. Ensures privacy of witness and Juror.
2. Usage of randomized signatures
to ensure privacy.
3. Supervised evidence management.

1. Dependency on trusted authority.
2. Usage of public blockchain may not be
recommended for forensics.

5.5 Proposed Model Investigation-Chain
This section discusses our proposed Investigation-Chain, its architecture, and
workflow. Our model addresses three major problems of the existing system
discussed in Section 5.1 i.e., 1. to ensure the integrity of evidence and avoid col-

105

5.5 Proposed Model Investigation-Chain

lusion among multiple stakeholders involved in case investigation, 2. dependency
on CSP, 3. delay in exchange of evidence legally.

We preserve evidential artifact cloud VM snapshot using Investigation-Chain.
Cloud VM plays a significant role in cloud forensics. A VM instance involved
in an incident can effectively restore the machine’s state. It is a logical copy
of the content on the virtual disk at a given time. We can analyze and access
the files and folders stored on the VM by mounting the snapshot on a forensic
workstation. The hash value of the snapshot is captured while collecting the
evidence. It is used to ensure the integrity of the snapshot. In forensics, we can
use VM snapshots for the following traces of evidence - hash list of files, recently
modified files, deleted files recovery, list of malicious files and software, unusual
start-up scripts, system logs, web activity, etc. The three main objectives of the
proposed model are,
1. Ensure the integrity of the cloud VM snapshot.
2. Tamper-proof and transparent investigation model.
3. Availability of the snapshot to for the investigation.

To achieve the above objectives, we use permissioned blockchain, where all
the stakeholders involved in the investigation are the blockchain network partici-
pants. The section 5.5.1 details the roles and responsibilities of each participant.
The main idea is to update the investigation findings of each authenticated par-
ticipant on the blockchain and ensure the availability of snapshot for analysis
using the blockchain; this would help in transparent and quick court trials. Also,
the transparent investigation procedure would increase public confidence in CSPs
and the legal system. The architecture of the Investigation-Chain is shown in
Figure 5.2.

106

5.5 Proposed Model Investigation-Chain

Figure 5.2: Architecture of Investigation-Chain

5.5.1 Blockchain Participants
In the event of the occurrence of a regular cyber incident, first incident responders,
forensic investigators, prosecutor, defense, and court are the stakeholders involved
in the investigation [102]. In the case of the cloud, we have additional stakeholders
from CSP and trusted third parties. We analyzed the main stakeholders involved
in handling cloud incidents by following the incident response guides of the leading
cloud service providers like Amazon [65] and Google [110]. Further, we identified
the organizations participating in the network and listed the participants from
each organization below.

CSP (Organization 1)

• First Incident Responder: A first incident responder is responsible for
identifying the incident first and reporting the incident to the next level.
The member is responsible for capturing the snapshot of the suspected vir-
tual instance, uploading the snapshot in a secured shared folder, capturing
the snapshot’s hash value, metadata of the snapshot, and updating all this
information on the blockchain network.

107

5.5 Proposed Model Investigation-Chain

The member should specify initial findings on the blockchain; this includes-
1. Target instance ID subscription ID or project ID. 2. Region of the target
instance. 3. Time of occurrence of the incident. 4. Incident ticket no. 5.
Intrusion detection system alerts, if any.

• Security Analyst: A security analyst is a peer member of the CSP orga-
nization on the blockchain. The member is responsible for downloading the
snapshot from the shared path location on the blockchain, validating the
snapshot’s integrity by using the hash values recorded on the blockchain, an-
alyzing the snapshot, and updating the member findings on the blockchain.
The findings include- 1. Analysis of relevant logs, i.e., system logs, user
activity logs, access logs, network flow logs. 2. Analysis of system configu-
ration. 3. Analysis of boot history. 4. Identifying IP addresses.

• Forensic Analyst: A forensic analyst is a peer member of the CSP organi-
zation on the blockchain. The responsibilities of this member are similar to
that of a security analyst. Additionally, this member examines the evidence
forensically using forensic tools (e.g., FTK, Encase, TSK, Autopsy, etc.).
The findings include- 1. Hash list of the files from the snapshot. 2. List
of new or modified files. 3. List of files recovered from unallocated space.
4. Determine if any private keys are present. 5. Ignored security alerts
generated by antivirus software. 6. Third-party hash lookups if any. 7.
Timeline analysis, 8. List of unusual startup scripts. 9. List of suspicious
files.

• Incident Manager: An incident manager is responsible for communicat-
ing the activities that correspond to the incident through the lifecycle of
an incident. The Incident Manager is given the admin role for the CSP
organization in the blockchain network. They are not involved much in the
analysis of evidence; they are more involved in maintaining communica-
tion with other peer members in the network and auditing the transaction
history.

LEA (Organization 2)

• IO: IO is a peer member of the LEA organization. An IO is responsible
for the proceedings in the investigation. Every IO may not be a technical
expert, but they are required to have basic knowledge of handling digital
evidence. IO captures his findings on the blockchain.

108

5.5 Proposed Model Investigation-Chain

The findings of an IO include- 1. Details of the complainant. 2. Analysis
of physical crime scene location. 3. List of physical evidence found at the
crime scene. 4. Details of the suspect, if any. 5. Details acquired during
the interrogation. 6. Technical details such as metadata of VM snapshot
and suspicious file.

• Reporting Officer: Reporting officer is responsible for communicating the
activities corresponding to the incident through investigation. The report-
ing Officer is given the admin role for the CSP organization in the blockchain
network. They are not much involved in analyzing evidence; instead, they
maintain communication with other peer members in the network and audit
the transactions.

Third Party Security Auditor (TPA) (Organization 3)

• Security Auditor: A security auditor is a peer member of the TPA or-
ganization on the blockchain. They are involved in analyzing evidence by
the CSP for their expertise. The security auditor captures his findings on
the blockchain. Their findings mainly involve assessing the cloud services if
appropriate controls have been implemented.

Forensic Science Laboratory (FSL) (Organization 4)

• Digital Forensic Analyst: A forensic analyst is a peer member of
FSLorganization. This member performs forensics on behalf of the LEA.
As IO may or may not be technically sound, the forensic analyst does a
complete forensic analysis of the snapshot. The member is responsible for
downloading the snapshot from the shared path location on the blockchain,
validating the integrity of the snapshot by using the hash values recorded
on the blockchain, analyzing the snapshot, and recording his/her findings
on the blockchain.
Most of the findings updated on the blockchain are similar to those of the
forensic analyst (CSP organization). However, these findings can be used
to cross-validate the forensic analysis performed by the CSP.

Court(Organization 5)

• Juror: A juror is a member of the court organization in the blockchain net-
work. The member holds the court trials and cross-validates the integrity

109

5.5 Proposed Model Investigation-Chain

of the snapshot by using the hash values in the blockchain network. Audit
the integrity of a snapshot and its findings stored on the blockchain net-
work. They analyze the case presented by the prosecutor and defender and
make appropriate judgments. This member is not involved in the snapshot
analysis.

• Prosecutor: Prosecutor is a member of the blockchain network’s court
organization. During the court trials, they present the case against the
accused. They download the snapshot, validate its integrity, and audit the
findings updated by the other blockchain participants.

• Defender: A defender is a member of the court organization in the
blockchain network. During the court trials, they defend the prosecution.
They download the snapshot, validate its integrity, and audit the findings
updated by the other blockchain participants. The member cross-validates
the findings and checks if any inappropriate accusations have been made.

Based on their roles and responsibilities, the blockchain participants use the
four main functions, i.e., 1. Upload snapshot, 2. Download snapshot, 3. Update
findings, 4. View case history.

Upload snapshot uploads the snapshot in the shared folder so that all other
blockchain participants can access the snapshot and download it. The first inci-
dent responder is responsible for uploading the snapshot. Algorithm 9 details the
steps involved in uploading the snapshot. It takes the snapshot’s metadata and
the snapshot itself as input. The snapshot’s metadata includes- the VM instance
ID, the region where the instance is hosted, the path of the snapshot on the shared
folder, the date and time of uploading the snapshot, etc. The algorithm initially
computes the hash value of the snapshot to be uploaded HUS . We assign the hash
value of the snapshot HUS to the caseID (i.e., caseID = HUS); this ensures that
each caseID is unique and pulls the data corresponding to a specific snapshot.
The algorithm checks if a caseID already exists by querying the blockchain. If
the caseID does not exist, then a new caseID’s value equivalent to HUS is created,
and the snapshot is uploaded to the shared folder. Thus, by using caseID, we can
add investigation findings and view case history specific to a snapshot from the
blockchain. Also, it ensures that no snapshot is uploaded to the blockchain more
than once, as caseID is equivalent to the hash value of the snapshot uploaded, so
it avoids duplicates.

110

5.5 Proposed Model Investigation-Chain

Algorithm 9 Upload Snapshot
procedure UploadSnapshot(snapshot, snapshot’s metadata)

HUS ← computeHash(snapshot) ▷ HUS: Hash value of snapshot to be
uploaded
caseID← query(HUS)
if caseID ̸= NULL then

Case ID already exist
return

caseID = HUS

Set case attributes using snapshot’s metadata
Upload snapshot to the shared folder
return

Download snapshot is used to download the snapshot from the shared path
location by other blockchain participants. Algorithm 10 details the steps involved
in downloading the snapshot; it takes caseID as input. If the caseID requested
by the blockchain participant exists, then the snapshot is downloaded. Once the
blockchain participant downloads the snapshot, its hash value HDS is computed
again. We compare the hash value of the uploaded snapshot HUS , which is
equivalent to caseID, with the hash value of the downloaded snapshot HDS (i.e.,
if caseID = HDS). If the hash values are equal, then we can say that the evidence
has not been tampered with and can be analyzed for further investigation. By
this, we ensure the integrity of the snapshot. The blockchain participants can now
continue to analyze the downloaded snapshot and update their findings using the
Update findings (Algorithm 11). Else, if the hash values are not found equal
(i.e., caseID ̸= HDS), we can say that the snapshot has been tampered. This
information is updated on the blockchain by using Update Findings to alert other
blockchain participants. Thus making the model tamper-proof and transparent.

111

5.5 Proposed Model Investigation-Chain

Algorithm 10 Download Snapshot
procedure DownloadSnapshot(caseID)

if caseID ̸= NULL then
Download snapshot
Compute HDS ▷ HDS: Hash value of downloaded snapshot
if HDS == caseID then

Analyze the snapshot and update findings
return

else
Update finding as Snapshot is tampered
return

else
Case ID does not exist
return

Update findings is used by the blockchain participants to add their investi-
gation findings as transactions to the blockchain. Algorithm 11 details the steps
involved in update findings; it takes caseID as input. Participant invokes the
query method with case ID as an argument. The query method returns NULL if
the snapshot with a specific case ID does not exist. If caseID exists, the partici-
pant submits the findings as a new transaction. The findings will be in descrip-
tive format. As these findings are submitted as blockchain transactions, they
are appended to the blockchain’s immutable ledger; this ensures transparency,
immutability, and integrity in the investigation.

Algorithm 11 Update Investigation Findings
procedure UpdateFindings(caseID)

caseID← query(caseID)
if caseID ̸= NULL then

Update the findings
else

Case ID does not exist
return

View case history is used by the participants to view all the transactions
corresponding to a specific caseID recorded on the blockchain ledger by other

112

5.5 Proposed Model Investigation-Chain

participants. Algorithm 12 details the steps involved in viewing case history; it
takes caseID as input. Participant invokes the query method with case ID as an
argument. The query method returns NULL if the snapshot with a specific case
ID does not exist. If the caseID exists, the ledger corresponding to a specific
caseID is downloaded. The ledger entries are audited by cross-validating with the
entries by other participants. By this, we can avoid collusion among participants
to tamper with evidence. This ledger is audited for judgment during court trials.
Thus, this ensures the auditability of the Investigation-Chain.

Algorithm 12 View Case History
procedure ViewHistory(caseID)

caseID← query(caseID)
if caseID ̸= NULL then

View case history
else

Case ID does not exist
return

5.5.2 Investigation-Chain Workflow
The workflow diagram in Figure 5.3 shows a graphical overview of the
Investigation-Chain. Step 1 in Figure 5.3 details the steps involved in uploading
the snapshot by the first incident responder, and step 2 involves the details corre-
sponding to downloading the snapshot, updating case finding, and accessing case
history by other blockchain participants.

113

5.5 Proposed Model Investigation-Chain

Figure 5.3: Operational workflow of Investigation-Chain

114

5.6 Proof of Concept

5.6 Proof of Concept
To validate the application of Investigation-Chain, we apply the model to a case.
For simplicity, we considered a child pornography case. To simulate the cloud
environment, we created a private cloud using Openstack (version: Wallaby) [111]
on a single host machine. Further, we created an instance on the Openstack cloud
using the Ubuntu cloud image (.qcow2). This instance is used as the target virtual
instance in the case for analysis. For the blockchain network, we used HLF with
five organizations, each organization with a single peer (5-organizations-1-peer).

5.6.1 Case Study (Child Pornography)
A victim of child sexual abuse approaches the local police station to file a com-
plaint against the accused. An IO at the police station receives a complaint and
interviews the victim. The IO then obtains a search warrant for the accused
home to gather the evidence. The IO recovers a laptop, mobile phone, and other
electronic storage media from the crime scene (i.e., the accused home). The IO
uses forensic tools like FTK, Solo, Encase, etc, for data acquisition to capture the
image of digital evidence found at the crime scene. Later, the digital evidence is
seized and sent to the forensic lab for analysis.

Upon receiving the evidence, the forensic analyst analyzes the electronic de-
vices seized. The analyst uses forensic tools like FTK, Encase, etc., to perform
forensic analysis. The analysis is based on the nature of the incident, i.e., as the
case is specific to child pornography, the analyst looks for images and video files,
performs a keyword search, and checks if any photo morphing tools are present.
In this case, to the surprise of the analyst, no illegal content specific to child
sexual abuse is found on the suspect machine. Thus, the analyst further analyzes
the accused web activities and finds that the accused has been using cloud ser-
vices. The analyst suspects that the accused might be using cloud services for
illegal activities. The forensic analyst now generates a report and summarizes the
analysis. This report is shared with the IO. Based on the report, IO sends a legal
notice to CSP and requests them to provide a snapshot of the virtual instance
used by the accused to perform illegal activities. The notice issued consists of the
details corresponding to the accused username/subscription ID, date, and time of
the incident. The CSP uses these details to identify the target virtual instance.
Investigation-Chain application for this scenario is detailed below.

115

5.6 Proof of Concept

Figure 5.4: Hash value of snapshot computed using Autopsy tool

Step 1: Upon receiving the request from LEA, the first incident responder(at
CSP) captures the snapshot of the target virtual instance hosted on the cloud.
The first incident responder creates a new case ID and updates it with details
corresponding to the incident on the blockchain. The details include the tar-
get instance ID, region, the path of the snapshot on the shared folder, and the
hash value of the snapshot on the blockchain. Finally, submit the transaction
with these details on the blockchain. When we query this transaction on the
blockchain, it returns the submitted transaction in the JSON format, as shown
below. Here, the key represents the caseID (hash of the snapshot).

{
"Key": "1c7380a3b66ccb6623719a1b316c93b7",
"Record": {

"participant": "First Incident Responder",
"targetInstanceID": "ac21afab-4044-4fde-9bcd-28b82828b5d6",
"region": "nova",
"path": "/home/HyperLedger/snapshots/",
"snap_hash": "1c7380a3b66ccb6623719a1b316c93b7",

}

Step 2: The other blockchain participants can download the snapshot and
analyze it. To validate the integrity of the snapshot, the participant compares
the hash values of the snapshot, i.e., validate if the hash value of the snapshot
computed after downloading it from the shared path location is the same as the
hash value of the snapshot updated on the block. We computed the hash value
of the downloaded snapshot by using the Autopsy tool (Figure 5.4). It is found

116

5.6 Proof of Concept

that the hash value in Figure 5.4 is the same as the hash value of the snapshot
on the blockchain (see JSON object above)

Step 3: The forensic analyst from the CSP organization now downloads the
snapshot from the blockchain using the case ID. The downloaded snapshot is in
’.VMDK’ format. We used this file as input to the forensic tool. In this case,
we used Autopsy, an open-source tool to perform forensic analysis. The forensic
analyst analyses the reports generated by the Autopsy tool and looks for images
and videos containing child porn content. The analyst finds an image named
”child2.jpeg” related to child pornography. Figure 5.5 shows the screenshot of
the Autopsy tool for metadata corresponding to the child2.jpeg image.

Figure 5.5: Cloud CSP instance image file findings using Autopsy tool

Step 4: The forensic analyst from the CSP organization now updates his
findings regarding the child2.jpeg image on the blockchain; this includes the file
name, its path on the snapshot, its hash value, file type, and date & time of
creation. These details are updated on the blockchain as a new transaction, as
shown below,

{
"Key": "1c7380a3b66ccb6623719a1b316c93b7",

117

5.7 Results and Discussion

"Record": "{
"snap_hash": "1c7380a3b66ccb6623719a1b316c93b7",
"path": "/home/HyperLedger/snapshots/",
"Findings": \"Name: child2.jpeg;
File path: /img_Case Study.E01/vol_vol2/home/imgs/;
Created Time : 2021-07-01 13:18:03 IST;
Modified Time: 2021-07-01 13:18:03 IST ;
MD5: 1a31589db2cfceae565eee7bd93a1371 ;
MIME/type: image/png\",
\"DateTime\":\"Thu 01 Jul 2021 06:47:12 PM IST\"}"

}
}

Step 5: The forensic analyst from the FSL organization downloads the snap-
shot and validates its integrity, as mentioned in step 2. Further, the forensic
analyst (from FSL) now performs the analysis using the forensic tool and up-
dates his findings on the blockchain.

Step 6: Like the incident manager (CSP), reporting officer, juror, prosecutor,
and defender, the other participants can view the ledger and cross-validate the
updated findings. For example, the hash value of the image file ”child2.jpeg”
updated by the forensic analyst (from CSP) can be compared with the hash
value updated by the forensic analyst (from FSL). Similarly, every participat-
ing organization can view the entire ledger and validate the entire investigation
proceedings.

5.7 Results and Discussion

5.7.1 Analysis of computational cost and communication
overhead

We created a blockchain network on a laptop with 16 GB of RAM, Intel(R)
Core(TM) i5-8265U CPU @1.60GHz, Ubuntu 18.04.6 LTS, and Visual Studio
2010. To set up the HLF network, we used the docker 20.10.7 and cloned the latest
version of HLF from GitHub [103]. We created a blockchain network with five
organizations and an orderer, each organization with one peer node. We generated
the certificates for the participating nodes by using the certificate authorities.

118

5.7 Results and Discussion

To ensure privacy and confidentiality, we use HLF channels. Channels are the
subnets among the network participants; only authenticated participants can join
the channel and have private communication. Blockchain transactions are exe-
cuted on these channels. The participants join the channel using the certificates
created by the certificate authorities. We used Node.js to write the chaincode for
the smart contract.

We analyzed the computational cost for the four main activities: uploading
snapshots, updating findings, downloading the snapshots, and view case history.
We compute the performance of Investigation-Chain by using the following terms,

• Gu- Generate the hash value of the snapshot uploaded.

• Qh- Query the hash value of the snapshot on the blockchain.

• Cid- Create new case ID.

• Us- Upload the snapshot in the shared folder.

• Qid- Query the case ID.

• Gd- Generate the hash value of the downloaded snapshot.

• Vs- Validate the integrity of the snapshot by comparing the hash value of
both uploaded and downloaded snapshots.

• Ds- Download the snapshot.

• Aid- Access the case History of a specific case ID from the blockchain.

• Uf - Update findings on the blockchain.

Uploading a snapshot involves- 1. Generating the hash value of the snapshot,
2. query the snapshot to see if it already exists on the blockchain network, 3.
creating a new case ID, 4. uploading the snapshot. Thus, the time taken to upload
the snapshot can be computed by (Gu +Qh +Cid +Us), which takes approximately
2.6 seconds for a snapshot of size 40 MB. We have experimented with our model
by varying the snapshot size from 40 MB to 500 MB. It is observed that as the size
of the snapshot increases, the time required to upload the snapshot also increases.
The graph in Figure 5.6 presents the time taken to upload a snapshot for each
varying snapshot size.

119

5.7 Results and Discussion

100 200 300 400 5000

2

4

6

8

10

Size of Snapshot in MB

T
im

e
in

Se
co

nd
s

Upload Snapshot

100 200 300 400 5000

5

10

15

20

25

Size of Snapshot in MB
T

im
e

in
M

ill
ise

co
nd

s

Download Snapshot

Figure 5.6: Time vs size of the snapshot

Downloading the snapshot involves- 1. Query the blockchain for the avail-
ability of the snapshot with the specific hash value. 2. Download the snapshot.
3. Generate the hash value of the downloaded snapshot. 4. Validate the in-
tegrity of the snapshot using hash values. Thus, the time taken to download the
snapshot can be computed by (Qh + Gd + Ds + Vs), which takes approximately
13 milliseconds for the snapshot of size 40 MB. The graph in Figure 5.6 presents
the time taken to download the snapshot for each varying snapshot’s size from
40 MB to 500 MB. It is observed that there is not much variation in the time
taken to download the snapshot, as the time variation is in milliseconds. The
snapshot is available in the blockchain network’s application server (i.e., shared
folder); downloading takes less time than uploading a snapshot.

Other operations such as update findings and view case history involve- 1.
Query the case ID, 2. update findings or view case history. Thus, the time
taken to update finding can be computed by (Qid + Uf), which is approximately
18 milliseconds, and the time taken to view case history can be computed by
(Qid +Aid) which is approximately 11 milliseconds.

Table 5.2 lists the time taken by the Investigation chain for above discussed
operations. It is seen that the time taken to upload the snapshot is longer com-
pared to other operations as it involves copying the snapshot to the shared folder.
The size of the snapshot considered for this experiment is 40MB. On the other

120

5.7 Results and Discussion

hand, the time taken to download the snapshot, access, and verification is com-
paratively acceptable.

Table 5.2: Operational cost in milliseconds

Operation Time (in ms)
Upload snapshot 2679
Download snapshot 13.0
Update Findings 18.0
View History 11.0

We further evaluated the performance of Investigation-Chain using Hyper-
ledger Caliper. It is a benchmark framework for performance evaluation of
blockchain solutions [102]. Caliper generates reports on various performance in-
dicators such as transactions per second (tps), latency, and resource utilization
[112]. These reports help us determine the performance of blockchain under differ-
ent scenarios and make choices based on user-specific requirements. We integrate
the existing blockchain network with the caliper framework. Caliper provides
interfaces to invoke the chaincode methods deployed on the blockchain network’s
peer nodes. We generate performance reports for Investigation-Chain by varying
tps and network size from caliper interfaces. We computed blockchain perfor-
mance indicators (generated by caliper), i.e., latency in seconds, throughput in
tps, CPU utilization in percentage, memory utilization in MB, traffic in, and
traffic out in KB.

We evaluated Investigation-Chain by varying the network size with 5-
organization-1-peer, 4-organization-1-peer, and 3-organization-1-peer based on
two functions, update findings and view the investigation history. These two
functions involve submitting and querying transactions from the blockchain in-
dependent of storage services required to upload and download snapshots. We
varied the transaction sending rate from 6 tps to 51 tps with an interval of 5. We
repeated the experiment multiple times for each value of transaction send rate
(tps) and computed the average values to reduce the error.

The Table 5.3, Table 5.4, and Table 5.5 shows average latency and throughput
for 5-organizations-1-peer, 4-organizations-1-peer, and 3-organizations-1-peer, re-
spectively. The results show that the latency gradually increases as we increase
the transaction send rate. In contrast, the throughput rises to a point and pro-
gressively decreases after a certain transaction send rate (see Figure 5.7- 5.9).

121

5.7 Results and Discussion

The maximum throughput observed for 5-organizations-1-peer, 4-organizations-
1-peer, and 3-organizations-1-peer is 14 tps, 15 tps, and 16 tps (approximately).

Table 5.3: Avg latency and throughput for a network with 5-organizations-1-peer

Send Rate(tps) Max Latency(s) Min Latency(s) Avg Latency(s) Throughput(tps)
6 tps 2.30 1.06 1.49 4.46
11 tps 2.1 0.63 1.25 6.63
16 tps 1.90 0.92 1.36 10.06
21 tps 2.97 0.73 1.42 11.88
26 tps 3.03 0.80 1.50 13.63
31 tps 3.78 0.89 1.88 11.4
36 tps 4.99 1.20 2.88 9.02
41 tps 5.69 1.20 3.35 8.18
46 tps 6.93 2.11 4.61 7.06
51 tps 8.53 3.59 6.07 6.19

10 20 30 40 50 600

2

4

6

8

Send rate in tps

T
im

e
in

Se
co

nd
s

send rate vs avg latency

10 20 30 40 50 600

5

10

15

Send rate in tps

tp
s

send rate vs throughput

Figure 5.7: tps vs avg latency and throughput for 5-organizations-1-peer

122

5.7 Results and Discussion

Table 5.4: Avg latency and throughput for 4-organizations-1-peer

Send Rate Max Latency(s) Min Latency(s) Avg Latency(s) Throughput(tps)
6 tps 1.57 0.65 1.11 4.38
11 tps 1.81 0.48 1.04 6.83
16 tps 1.13 0.55 0.83 11.11
21 tps 2.14 0.51 1.02 12.35
26 tps 2.25 0.56 1.16 15.33
31 tps 3.47 0.53 1.40 13.94
36 tps 3.84 0.69 2.01 10.95
41 tps 4.77 1.02 2.70 9.85
46 tps 5.56 1.14 3.28 8.71
51 tps 6.68 1.54 4.08 7.85

10 20 30 40 50 600

2

4

6

Send rate in tps

T
im

e
in

se
co

nd
s(

s)

send rate vs avg latency

10 20 30 40 50 600

5

10

15

20

Send rate in tps

tp
s

send rate vs throughput

Figure 5.8: tps vs avg latency and throughput for 4-organizations-1-peer

123

5.7 Results and Discussion

Table 5.5: Avg latency and throughput for 3-organizations-1-peer

Send Rate Max Latency(s) Min Latency(s) Avg Latency(s) Throughput(tps)
6 tps 1.25 0.33 0.79 4.75
11 tps 1.36 0.52 0.92 7.16
16 tps 1.00 0.48 0.73 11.68
21 tps 1.83 0.56 1.02 12.88
26 tps 2.14 0.44 1.06 15.80
31 tps 3.45 0.43 1.67 10.24
36 tps 3.56 0.66 1.97 11.26
41 tps 4.33 0.62 2.25 10.78
46 tps 5.25 1.04 2.95 9.31
51 tps 5.87 1.43 3.62 8.91

10 20 30 40 50 600

2

4

6

Send rate in tps

T
im

e
in

se
co

nd
s

send rate vs avg latency

10 20 30 40 50 600

5

10

15

20

Send rate in tps

tp
s

send rate vs throughput

Figure 5.9: tps vs avg latency and throughput for 3-organizations-1-peer

Figure 5.10 compares the average latency, and Figure 5.11 compares the
throughput for the above mentioned three network models. From Figure 5.10
and Figure 5.11, we observe that the throughput decreases and the average la-
tency increases as the blockchain network size increases, which complies with the
property of Hyperledger-based blockchain [102].

124

5.7 Results and Discussion

10 20 30 40 50 60
0

2

4

6

8

10

Send rate in tps

T
im

e
in

se
co

nd
s

5-organizations-1-peer
4-organizations-1-peer
3-organizations-1-peer

Figure 5.10: Average latency comparison for three network models

10 20 30 40 50 60
0

5

10

15

20

Send rate in tps

tp
s

5-organizations-1-peer
4-organizations-1-peer
3-organizations-1-peer

Figure 5.11: Throughput comparison for three network models

To analyze the communication overhead, we used Hyperledger Caliper and
analyzed the resources consumed by each component involved in Investigation-
Chain’s blockchain network (5-organizations-1-peer). The table 5.6 details the
resources used by each component of the proposed model for all transaction send
rates. We initially repeated the test multiple times and computed the average
CPU, average memory, and average traffic for every transaction send rate (for

125

5.7 Results and Discussion

each component). Further, we computed the average of CPU, memory, traffic in,
and traffic out fields of the Table 5.6 for all transaction send rates (see Table 5.6).

Table 5.6: Average resource utilization for 5-organization-1-peer for all transaction
send rate

Component Name CPU%(avg) Memory (avg)
[MB]

Traffic In (avg)
[KB]

Traffic Out (avg)
[KB]

dev-peer0.csp.example.com 32.06 715.85 508.91 216.91
dev-peer0.lea.example.com 5.42 623.85 378.33 70.90
dev-peer0.tpa.example.com 0.02 587.21 1.72 0.69
dev-peer0.fsl.example.com 0.02 578.64 1.73 0.72
dev-peer0.court.example.com 0.11 586.39 1.70 0.68
peer0.csp.example.com 127.60 1282.07 2481.30 1301.67
peer0.lea.example.com 50.25 1167.11 1931.94 808.55
peer0.tpa.example.com 45.17 941.59 1508.74 445.23
peer0.fsl.example.com 45.08 1104.22 1513.00 439.71
peer0.court.example.com 44.98 1108.80 1510.06 444.26
orderer.example.com 5.13 682.12 1088.86 2295.95
csp db 515.80 952.77 79.23 489.57
lea db 46.65 901.40 57.84 29.37
tpa db 49.90 712.42 68.92 38.28
fsl db 46.21 715.53 68.73 38.45
court db 48.61 710.96 68.80 38.17
ca csp 4.08 109.74 11.09 23.39
ca lea 4.05 224.22 11.06 23.29
ca tpa 2.91 106.46 11.02 23.46
ca fsl 1.79 105.42 10.96 23.43
ca court 1.84 108.44 10.95 23.43
ca orderer 0.08 214.11 0.81 0.00
cli 0.00 226.10 0.85 0.00

5.7.2 Comparative analysis of the recent research with
Investigation-Chain

We present a comparative analysis of the recent research and our proposed model
Investigation-Chain for the security of cloud evidential artifacts, such as integrity,
auditability, privacy, confidentiality, transparency, and availability, in Table 5.7.
The security elements listed in Table 5.7 are the common security aspects observed
and mentioned explicitly across the recently published works. This comparative

126

5.7 Results and Discussion

analysis proves that Investigation-Chain fulfills all the essential security aspects
compared to other research work.

• Integrity (Protection of block content from unauthorized modification):
By its nature, Blockchain technology ensures an immutable ledger; we
can ensure that the investigation findings and hash value of the snapshot
recorded by blockchain participants are tamper-proof. Even if any peer
tampers the ledger, it would not be able to convince all the other peers
of the blockchain as the ledger is distributed throughout a network of in-
dependent peers. Hence, this makes this model tamper-proof and ensures
integrity.

• Auditability (Ensuring the data on the blockchain can be used for au-
dit trails): The investigation proceedings are available as transactions on
the blockchain’s immutable ledger. Blockchain participants can use the
ledger to examine the transaction history(i.e., case investigation proceed-
ings). Thus, the ledger allows blockchain participants to audit the case
history and judge based on all transactions recorded on the blockchain.

• Privacy (Ensuring that only authorized members have access to the net-
work): Maintaining data privacy is essential in the investigation, and only
authentic users should participate in core functionalities. Investigation-
Chain uses HLF with authorized blockchain participants. We used the cer-
tificate authorities to create the certificates to validate the identity of the
blockchain participants. As all the participants are authenticated, privacy
is ensured.

• Confidentiality (Protection of block content from unauthorized disclo-
sure): HLF ensure confidentiality through channels. In Investigation-
Chain, we created the channel and deployed our smart contract on it. The
Blockchain transactions are executed on this channel. Only authenticated
network participants who joined the channel using their certificates can ac-
cess the ledger and smart contract. Thus, our model ensures confidentiality.

• Transparency (Ensuring all the peer members in the blockchain network
can view all the transactions on the blockchain): The proposed model in-
creases transparency in the investigation procedure by enabling the stake-
holders to update their findings on the blockchain as transactions. Each

127

5.7 Results and Discussion

peer of the organization participating in the blockchain network has a local
copy of the entire ledger, which the authenticated members of the organi-
zation can view. Thus, our model ensures transparency.

• Availability (Ensuring that the digital evidence is always available for anal-
ysis and examination by peer members): Availability of the evidence is en-
sured with reduced block size, i.e., without replicating the actual snapshot
on the blockchain, which consumes a lot of network storage, we share the
path of the shared folder and enable the user to download the snapshot.
Thus, the evidence is available to all the blockchain participants, reducing
the time required to access evidence, unlike in the existing system discussed
in Section 5.1.

Table 5.7: Digital Forensic Solutions based on Blockchain: A Comparative Anal-
ysis of security elements

Publications Blockchain type Forensic artifact Content on Block In
te

gr
it

y

A
ud

it
ab

ili
ty

P
ri

va
cy

C
on

fid
en

ti
al

it
y

Tr
an

sp
ar

en
cy

A
va

ila
bi

lit
y

[101] HLF Cloud logs Encrypted cloud logs ✓ X ✓ ✓ ✓ ✓

[102] Hyperledger Composer CoC History of ownership
evidence creation,
transfer & deletion
details

✓ ✓ ✓ ✓ ✓ X

[105] Permissioned blockchain Cloud logs Hash values of logs ✓ X ✓ ✓ ✓ X
[18] Permissionless blockchain Metadata of a file hash values of metadata ✓ ✓ X ✓ ✓ X
[106] Permissioned Blockchain Files Metadata of the file ✓ ✓ ✓ ✓ ✓ ✓

[107] Permissionless blockchain Submission list of
files

hash values of files in
submission list

✓ ✓ X ✓ ✓ X

[108] Private permissioned
blockchain

CoC History of ownership,
evidence creation,
transfer, & deletion
details

✓ ✓ ✓ ✓ ✓ X

[109] Ethereum CoC hash values of digital
evidence, transfer &
access request

✓ ✓ X X ✓ X

[19] Ethereum CoC Evidence upload, access,
request details

✓ ✓ X ✓ ✓ X

Investigation-
Chain

HLF cloud CSP Snapshot Hash value of snapshot,
shared folder path of the
snapshot, investigation
findings

✓ ✓ ✓ ✓ ✓ ✓

128

5.8 Summary

5.8 Summary
Blockchain is a platform that provides multiple stakeholders who do not trust
each other to share the information transparently and also ensure integrity, au-
thenticity, and security by design. It is best suited for cloud forensics, where
many stakeholders are involved. There is always a possibility that multiple stake-
holders may collude among themselves to tamper with the digital evidence. This
work presents a tamper-proof and transparent investigation model using the HLF
framework. Investigation-Chain avoids multi-collusion problems among the stake-
holders and ensures integrity, transparency, authenticity, privacy, and availability.
We have seen that the Investigation-Chain enables the participating entities to
upload CSP snapshots, push their findings by analysis of snapshots, and view the
investigation findings updated by other participants using the immutable ledger.

Finally, we validated Investigation-Chain using a case study and Hyper-
ledger caliper(a performance benchmark tool to evaluate the performance of a
Hyperledger-based blockchain network). We compared our model with the com-
putational cost of various operations such as upload, download, and access with
other models. Further, computed the average latency, throughput, and resource
utilized by varying the network size of Investigation-Chain by using Hyperledger
caliper. The results show acceptable computational and communication overhead
over the benefits offered by our model. Our analysis and experiments demonstrate
a tamper-proof and transparent investigation model for the preservation of evi-
dence and investigation proceedings.

129

Chapter 6

Conclusion and Future Work

In this chapter, concluding remarks are presented on the research work which
is being carried out in this thesis. This chapter contains the summary of the
contributions of this thesis and finally, a few glimpses of future research directions.

6.1 Summary of Contributions
Anti-forensics analyzes evidential artifacts to ensure their integrity and complete-
ness of evidence so that it is admissible in a court of law. From our detailed survey
of the existing cloud forensic procedures adopted by the leading CSPs, it was ob-
served that the anti-forensics is ignored. In this thesis, we address one of the
anti-forensic practices of artifact wiping. We focused on detecting wiping, recov-
ery of wiped files from cloud VMs, and preservation of evidential artifacts like
cloud VM snapshots.

To detect wiping on cloud VMs, we proposed two solutions using information
theory metrics: a static approach WiDeJ and a dynamic approach WiDeS. In
WiDeJ, we fetch the file system journal from the cloud VM snapshot and analyze
the data blocks corresponding to a file to detect wiping. In WiDeS, we fetch
the system-calls from cloud VMs using Sysdig and detect wiping by analyzing
patterns in system-calls. Since there is no benchmark dataset available to check
the accuracy of our model, we have used our own synthetic data. For the static
approach, we have tested our model on the data set with 54 files (which includes
22 different file types). For WiDeS, we have tested it on our dataset with 93
processes (including both 70 benign and 15 wiping processes). In both cases, our
models could determine wiping with 100% accuracy.

130

6.1 Summary of Contributions

For the recovery of wiped files, we exploited the data recovery mechanism of
the underlying file system of the cloud VM. In this thesis, we explored the journal-
based file system Ext3 and the CoW-based file system BTRFS. We evaluated
both file systems. We discussed recovery from the journal-based file system and
its limitations. Further, we proposed using BTRFS in cloud VMs with our script
preinstalled that keeps running in the background and logs the PA of the files
upon their creation. Since BTRFS is based on the CoW principle, it contains
multiple file versions. However, the reference for the previous version of the file
is lost. Using ReWinD, we captured the PA of the file’s previous versions. There
are a few associated challenges with BTRFS, like node splitting and merging. We
detailed the associated challenges and scope of recovery of files upon wiping the
file.

Finally, we propose Investigation-Chain to preserve cloud VM and investiga-
tion proceedings using blockchain technology. This investigation model also ad-
dresses the challenges corresponding to cloud forensics, such as evidence integrity,
transparency, immutability, and availability. We have identified the prime stake-
holders in cloud incident investigation and defined their roles and responsibilities
in detail. Further, we proposed the system architecture for cloud investigation
by incorporating blockchain technology in cloud forensics. We also evaluated
the performance of Investigation-Chain using the Hyperledger Caliper. The re-
sults show that our model’s performance overhead is acceptable, considering the
additional benefits offered.

6.1.1 List of Contributions
• An approach to detect file wiping on virtual machines using journals, data

blocks, and information theory metrics.

• A novel approach to detect file wiping on virtual machines using the SoS
and information theory metrics.

• An approach to restore the wiped files using file system journals.

• A novel approach to restore the wiped files using CoW-based file system
BTRFS.

• A usecase for extending ReWinD for recovery of encrypted files using
Gonnacry application.

131

6.2 Future Work

• A big picture of cloud forensic approaches adopted by the leading CSPs.

• An investigation model to preserve evidential artifacts and capture investi-
gation proceedings that is tamper-proof and transparent across the stake-
holders involved in the investigation.

6.2 Future Work
In this thesis, we have limited the scope of our work to artifact wiping. However,
we wish to extend our work to encryption. Encryption is also considered as a
major anti-forensic approach, where the adversary tries to encrypt the file content,
obfuscating the investigator to conduct a smooth investigation. Also, we found
many similar characteristics between encryption and wiping (e.g., encrypted files
contain random characters, like wiped files).

As we explore encryption, we also consider ransomware attacks due to their
similarity with wiping attacks. This is because of ransomware behavioral charac-
teristics like- mass file encryption, unusual file renaming activities, and frequent
repetitive file access events are similar to wiping attacks. For example, to encrypt
a single file, the ransomware performs three basic activities, i.e., 1) Opening the
file, 2) reading the contents of the file, and 3) encrypting the file. Now, this
pattern is repeated for multiple files that are available in the user space. This
causes the same pattern of system-calls to be repeated multiple times, similar to
wiper attacks. Thus, the proposed model, WiDeS, which uses system-calls and
entropy, can be extended to detect ransomware attacks.

Also, in ReWinD, we have seen a usecase where we extend ReWinD to recover
encrypted files affected by ransomware Gonnacry. In this direction, we propose to
extend our work to determine the file system behavior under mass file encryption
and the scope for recovering encrypted files when affected by ransomware attacks.

132

List of Publications

Journals
1. Sanda P, Pawar D, Radha V. An insight into cloud forensic readiness

by leading cloud service providers: a survey. Computing. 2022 Apr
17:1-26. https://doi.org /10.1007/s00607-022-01077-2. [Indexed: SCI,
SCIE, SCOPUS, DBLP, UGC-CARE List(India)]
Status: Accepted and Published

2. Sanda P, Pawar D, Radha V. Blockchain-based tamper-proof and
transparent investigation model for cloud VMs. The Journal of
Supercomputing. 2022 May 25:1-29. https://doi.org/10.1007/s11227-022-
04567-4. [Indexed: SCIE, SCOPUS, UGC-CARE List(India)]
Status: Accepted and Published

3. Sanda P, Pawar D, Radha V. ReWinD: Recovering Wiped and
Deleted Files - An Anti-forensic Perspective to Forensic Science In-
ternational: Digital Investigation. [Indexed: SCIE, SCOPUS]
Status: Under Review

133

Conference Proceedings
1. Sanda P, Pawar D, Radha V. VM Anti-forensics: Detecting File

Wiping Using File System Journals. In ICCET 2022, International
Conference on Computing in Engineering & Technology 2022 (pp. 497-
508). Springer, Singapore. https://doi.org/10.1007/978-981-19-2719-5.
[Indexed: SCOPUS, EI, DBLP]

2. Sanda P, Pawar D, Radha V. WiDeS: Wiping Detection
using System-calls - An Anti-forensic Resistant Ap-
proach. In 2023 IEEE 22nd International Conference on
Trust, Security and Privacy in Computing and Communica-
tions (TrustCom) (pp. 1695-1703) (Core ranking conference).
https://doi.ieeecomputersociety.org/10.1109/TrustCom60117.2023.00231
[Indexed: EI]

134

Acronyms

AEP Asymptotic Equipartition Property.

ASCII American Standard Code for Information Interchange.

AWS Amazon Web Services.

BTRFS B-Tree File System.

CI Confidence Interval.

CoC Chain of Custody.

CoW Copy-on-Write.

CSP Cloud Service Provider.

DoD Department of Defense.

DTM Digital Tool Marks.

exFAT Extended File Allocation Table.

Ext Extended File System.

FAT File Allocation Table.

FN False Negative.

FP False Positive.

FS File System.

FSL Forensic Science Laboratory.

135

Acronyms

FTK Forensic Tool Kit.

GCP Google Cloud Platforms.

GDPR General Data Protection Regulation.

HIPPA Health Insurance Portability and Accountability Act.

HLF Hyperledger Fabric.

IaaS Infrastructure as a Service.

IO Investigating Officer.

IoT Internet of Things.

IRP I/O Request Packets.

JS Java Script.

LA Logical Address.

LEA Law Enforcement Agency.

MBR Master Boot Record.

MFT Master File Table.

NCRB National Crime Records Bureau.

NE Normalized Entropy.

NIST National Institute of Standards and Technology.

NTFS New Technology File System.

OES Octal Escape Sequences.

PA Physical Address.

PaaS Platform as a Service.

136

Acronyms

PHI Protected Health Information.

PII Personally identifiable information.

RAM Random Access Memory.

ReWinD Recovering Wiped and Deleted files.

SaaS Software as a Service.

SDK Software Development Kit.

SLA Service Level Agreement.

SOP Standard Operating Procedure.

SoS Sequence of System-calls.

TN True Negative.

TP True Positive.

TPA Third Party Security Auditor.

tps transactions per second.

TSK The Sleuth Kit.

VM Virtual Machine.

WiDeJ Wiping Detection using Journals.

WiDeS Wiping Detection using System-calls.

ZFS Zettabyte File System.

137

References

[1] Digambar Povar and VK Bhadran. Forensic data carving. In
Digital Forensics and Cyber Crime: Second International ICST Confer-
ence, ICDF2C 2010, Abu Dhabi, United Arab Emirates, October 4-6, 2010,
Revised Selected Papers 2, pages 137–148. Springer, 2011.

[2] Antonio Savoldi, Mario Piccinelli, and Paolo Gubian. A statis-
tical method for detecting on-disk wiped areas. Digital Investigation,
8(3-4):194–214, May 2012.

[3] Simson L Garfinkel. Digital forensics research: The next 10 years.
digital investigation, 7:S64–S73, 2010.

[4] Jignasa Sinha Mahender Singh Manral. 24% rise in cybercrime
in 2022, 11% surge in economic offences: NCRB report, December
2023.

[5] Acumen. Digital Forensics Market Size - Global Industry, Share,
Analysis, Trends and Forecast 2023 - 2032, April 2023.

[6] Ryan Harris. Arriving at an anti-forensics consensus: Examin-
ing how to define and control the anti-forensics problem. digital
investigation, 3:44–49, 2006.

[7] Adeyinka Odebade, Thomas Welsh, Siyakha Mthunzi, and El-
hadj Benkhelifa. Mitigating anti-forensics in the cloud via
resource-based privacy preserving activity attribution. In 2017
Fourth International Conference on Software Defined Systems (SDS), pages
143–149. IEEE, 2017.

[8] Security Joes. BiBi-Linux: A New Wiper Dropped By Pro-
Hamas Hacktivist Group, October 2023.

138

https://doi.org/10.1016/j.diin.2011.06.005
https://doi.org/10.1016/j.diin.2011.06.005
https://doi.org/10.1016/j.diin.2010.05.009
https://indianexpress.com/article/india/rise-cybercrime-2022-economic-offences-ncrb-report-9053882/
https://indianexpress.com/article/india/rise-cybercrime-2022-economic-offences-ncrb-report-9053882/
https://www.acumenresearchandconsulting.com/digital-forensic-market
https://www.acumenresearchandconsulting.com/digital-forensic-market
https://www.securityjoes.com/post/bibi-linux-a-new-wiper-dropped-by-pro-hamas-hacktivist-group
https://www.securityjoes.com/post/bibi-linux-a-new-wiper-dropped-by-pro-hamas-hacktivist-group

REFERENCES

[9] Juan Andrés Guerrero-Saade. HermeticWiper— New Destruc-
tive Malware Used in Cyber Attacks on Ukraine. Sentinel Labs,
2022.

[10] Shams Zawoad and Ragib Hasan. Cloud forensics: a meta-
study of challenges, approaches, and open problems. arXiv preprint
arXiv:1302.6312, 2013.

[11] Gartner. Gartner Forecasts Worldwide Public Cloud End-User
Spending to Reach $679 Billion in 2024, November 2023.

[12] Thales. CLOUD ASSETS THE BIGGEST TARGETS FOR CY-
BERATTACKS, AS DATA BREACHES INCREASE, Jul 2023.

[13] Rawan Abdulaziz Al-Mulhim, Lama Adnan Al-Zamil, and
Fay Mohammed Al-Dossary. Cyber-attacks on Saudi Arabia en-
vironment. International Journal of Computer Networks and Communi-
cations Security, 8(3):26–31, 2020.

[14] Sanjeev Das, Yang Liu, Wei Zhang, and Mahintham Chan-
dramohan. Semantics-based online malware detection: Towards
efficient real-time protection against malware. IEEE transactions on
information forensics and security, 11(2):289–302, 2015.

[15] Smita Naval, Vijay Laxmi, Muttukrishnan Rajarajan,
Manoj Singh Gaur, and Mauro Conti. Employing program
semantics for malware detection. IEEE Transactions on Information
Forensics and Security, 10(12):2591–2604, December 2015.

[16] Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. In-
trusion detection using sequences of system calls. Journal of com-
puter security, 6(3):151–180,JCS–980109, 1998.

[17] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux
B-tree filesystem. ACM Transactions on Storage (TOS), 9(3):1–32, 2013.

[18] Xueping Liang, Sachin Shetty, Deepak Tosh, Charles
Kamhoua, Kevin Kwiat, and Laurent Njilla. Provchain: A
blockchain-based data provenance architecture in cloud envi-
ronment with enhanced privacy and availability. In 2017 17th

139

https://www.sentinelone.com/labs/hermetic-wiper-ukraine-under-attack/
https://www.sentinelone.com/labs/hermetic-wiper-ukraine-under-attack/
https://arxiv.org/pdf/1302.6312.pdf
https://arxiv.org/pdf/1302.6312.pdf
https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-billion-in-20240
https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-billion-in-20240
https://www.thalesgroup.com/en/worldwide/security/press_release/cloud-assets-biggest-targets-cyberattacks-data-breaches-increase
https://www.thalesgroup.com/en/worldwide/security/press_release/cloud-assets-biggest-targets-cyberattacks-data-breaches-increase

REFERENCES

IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), pages 468–477. IEEE, 2017.

[19] Meng Li, Chhagan Lal, Mauro Conti, and Donghui Hu.
LEChain: A blockchain-based lawful evidence management
scheme for digital forensics. Future Generation Computer Systems,
115:406–420, 2021.

[20] Simson Garfinkel. Anti-forensics: Techniques, detection and
countermeasures. In 2nd International Conference on i-Warfare and Se-
curity, 20087, pages 77–84, 2007.

[21] Kevin Conlan, Ibrahim Baggili, and Frank Breitinger. Anti-
forensics: Furthering digital forensic science through a new ex-
tended, granular taxonomy. Digital investigation, 18:S66–S75, 2016.

[22] Hussein Majed, Hassan N Noura, and Ali Chehab. Overview
of Digital Forensics and Anti-Forensics Techniques. In 2020 8th
International Symposium on Digital Forensics and Security (ISDFS), pages
1–5. IEEE, 2020.

[23] Anu Jain and Gurpal Singh Chhabra. Anti-forensics techniques:
An analytical review. In 2014 Seventh International Conference on Con-
temporary Computing (IC3), pages 412–418. IEEE, 2014.

[24] Bryan Sartin. ANTI-Forensics–distorting the evidence. Computer
Fraud & Security, 2006(5):4–6, 2006.

[25] Eoghan Casey. Practical approaches to recovering encrypted dig-
ital evidence. International Journal of Digital Evidence, 2002.

[26] Eoghan Casey, Geoff Fellows, Matthew Geiger, and Gerasi-
mos Stellatos. The growing impact of full disk encryption on
digital forensics. Digital Investigation, 8(2):129–134, 2011.

[27] Adedayo M Balogun and Shao Ying Zhu. Privacy impacts of
data encryption on the efficiency of digital forensics technology.
arXiv preprint arXiv:1312.3183, 2013.

140

https://doi.org/10.1016/j.diin.2016.04.006
https://doi.org/10.1016/j.diin.2016.04.006
https://doi.org/10.1016/j.diin.2016.04.006

REFERENCES

[28] Aniello Castiglione, Alfredo De Santis, and Claudio Sori-
ente. Taking advantages of a disadvantage: Digital forensics and
steganography using document metadata. Journal of Systems and
Software, 80(5):750–764, 2007.

[29] Merrill Warkentin, Ernst Bekkering, and Mark B Schmidt.
Steganography: Forensic, security, and legal issues. Journal of Dig-
ital Forensics, Security and Law, 3(2):2, 2008.

[30] Gary C Kessler. Anti-forensics and the digital investigator. 2007.

[31] Kamal Dahbur and Bassil Mohammad. The anti-forensics chal-
lenge. In Proceedings of the 2011 International Conference on Intelligent
Semantic Web-Services and Applications, pages 1–7, 2011.

[32] Derek Manky. FortiGuard Labs Reports Destructive Wiper Mal-
ware Increases Over 50%, 2023.

[33] Rayed AlHarbi, Ali AlZahrani, and Wasim Ahmad Bhat. Foren-
sic analysis of anti-forensic file-wiping tools on Windows. Journal
of forensic sciences, 67(2):562–587, October 2022.

[34] Graeme Horsman. Digital tool marks (DTMs): a forensic anal-
ysis of file wiping software. Australian Journal of Forensic Sciences,
53(1):96–111, 2021.

[35] Dabin Joo, Jiwon Lee, and Doowon Jeong. A reference database
of Windows artifacts for file-wiping tool execution analysis. Journal
of Forensic Sciences, 2023.

[36] Kyoung Jea Park, Jung-Min Park, Eun-jin Kim, Chang Geun
Cheon, and Joshua I James. Anti-forensic trace detection in digi-
tal forensic triage investigations. Journal of Digital Forensics, Security
and Law, 12(1):8, March 2017.

[37] Christopher Swenson, Raquel Phillips, and Sujeet Shenoi. File
system journal forensics. In IFIP International Conference on Digital
Forensics, pages 231–244. Springer, 2007.

141

https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2023/fortiguard-labs-reports-destructive-wiper-malware-increases-over-50-percent
https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2023/fortiguard-labs-reports-destructive-wiper-malware-increases-over-50-percent

REFERENCES

[38] Zachary Peterson and Randal Burns. Ext3cow: A time-shifting
file system for regulatory compliance. ACM Transactions on Storage
(TOS), 1(2):190–212, 2005.

[39] Josiah Dykstra and Alan T Sherman. Understanding issues in
cloud forensics: two hypothetical case studies. UMBC Computer
Science and Electrical Engineering Department, 2011.

[40] Keyun Ruan, Joe Carthy, Tahar Kechadi, and Ibrahim Baggili.
Cloud forensics definitions and critical criteria for cloud foren-
sic capability: An overview of survey results. Digital Investigation,
10(1):34–43, 2013.

[41] Ben Martini and Kim-Kwang Raymond Choo. Cloud forensic
technical challenges and solutions: A snapshot. IEEE Cloud Com-
puting, 1(4):20–25, 2014.

[42] NIST Cloud Computing Forensic Science Working Group
et al. Nist cloud computing forensic science challenges. Technical
report, National Institute of Standards and Technology, 2014.

[43] Martin Herman, Michaela Iorga, Ahsen Michael Salim,
Robert H Jackson, Mark R Hurst, Ross Leo, Richard Lee,
Nancy M Landreville, Anand Kumar Mishra, Yien Wang, et al.
NIST Cloud Computing Forensic Science Challenges. Technical re-
port, National Institute of Standards and Technology, 2020.

[44] Bharat Manral, Gaurav Somani, Kim-Kwang Raymond Choo,
Mauro Conti, and Manoj Singh Gaur. A Systematic Survey
on Cloud Forensics Challenges, Solutions, and Future Directions.
ACM Computing Surveys (CSUR), 52(6):1–38, 2019.

[45] Ameer Pichan, Mihai Lazarescu, and Sie Teng Soh. Cloud foren-
sics: Technical challenges, solutions and comparative analysis. Dig-
ital investigation, 13:38–57, 2015.

[46] Keyun Ruan, Joe Carthy, Tahar Kechadi, and Mark Crosbie.
Cloud forensics. In IFIP International Conference on Digital Forensics,
pages 35–46. Springer, 2011.

142

https://doi.org/10.1109/MCC.2014.69
https://doi.org/10.1109/MCC.2014.69
https://doi.org/10.6028/NIST.IR.8006
https://doi.org/10.1145/3361216
https://doi.org/10.1145/3361216
https://doi.org/10.1016/j.diin.2015.03.002
https://doi.org/10.1016/j.diin.2015.03.002

REFERENCES

[47] Ahmed Alenezi, Hany F Atlam, and Gary B Wills. Experts
reviews of a cloud forensic readiness framework for organizations.
Journal of Cloud Computing, 8(1):11, 2019.

[48] Deevi Radha Rani and G Geetha Kumari. A framework for
detecting anti-forensics in cloud environment. In 2016 Interna-
tional Conference on Computing, Communication and Automation (IC-
CCA), pages 1277–1280. IEEE, 2016.

[49] Prasad Purnaye and Vrushali Kulkarni. A comprehensive study
of cloud forensics. Archives of Computational Methods in Engineering,
29(1):33–46, 2022.

[50] Bala Raj, Gill Bob, Smith Dennis, Wright David, and Kevin Ji.
Magic Quadrant for Cloud Infrastructure as a Service, Worldwide,
sep 2020.

[51] Amazon. Simplify Security Incident Response and Digital Foren-
sics on AWS, 2020.

[52] Morgan Arundell Barry Conway. Automated Forensics and In-
cident Response on AWS, May 2019.

[53] Microsoft. Computer Forensics in Azure, 2020.

[54] Frank Simorjay Ben Ridgway. Microsoft Azure Security Re-
sponse in the Cloud, April 2016.

[55] Sami Zuhuruddin. Cloud Forensics, Jul 2018.

[56] Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab,
Mustapha Aminu Bagiwa, Muhammad Shiraz, Samee U Khan,
Rajkumar Buyya, and Albert Y Zomaya. Cloud log forensics:
Foundations, state of the art, and future directions. ACM Comput-
ing Surveys (CSUR), 49(1):1–42, 2016.

[57] Amazon. Amazon CloudWatch Logs User Guide, 2020.

[58] Amazon. Centralized Logging, Dec 2020.

[59] Wren Brian, Rita, Coulter David, and Mutha Piyush. Azure
Monitor overview, Nov 2019.

143

https://www.gartner.com/en/documents/3989743/magic-quadrant-for-cloud-infrastructure-and-platform-ser
https://aws.amazon.com/mp/scenarios/security/forensics/
https://aws.amazon.com/mp/scenarios/security/forensics/
https://anz-resources.awscloud.com/aws-summit-sydney-2019-secure/automated-forensics-and-incident-response-on-aws-3
https://anz-resources.awscloud.com/aws-summit-sydney-2019-secure/automated-forensics-and-incident-response-on-aws-3
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/forensics/
https://gallery.technet.microsoft.com/azure-security-response-in-dd18c678/file/150826/4/MicrosoftAzureSecurityResponseinthecloud.pdf
https://gallery.technet.microsoft.com/azure-security-response-in-dd18c678/file/150826/4/MicrosoftAzureSecurityResponseinthecloud.pdf
https://cloud.withgoogle.com/next18/sf/sessions/session/156791
https://doi.org/10.1145/2906149
https://doi.org/10.1145/2906149
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://aws.amazon.com/solutions/implementations/centralized-logging/
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview

REFERENCES

[60] Google. CLOUD LOGGING DOCUMENTATION, 2020.

[61] Google. Google Available Logs, Jan 2020.

[62] Amazon. How S3 Object Lock works, 2020.

[63] Microsoft. Corporate Social Responsibility, September 2018.

[64] Google. Google Transparency Report, February 2021.

[65] Amazon. AWS Security Incident Response Guide, June 2020.

[66] Google. Identity and Access Management, March 2021.

[67] Amazon. Amazon Law Enforcement Guidelines, 2021.

[68] Microsoft. Corporate Social Responsibility, 2021.

[69] Google. Google Transparency Report, 2021.

[70] Wasim Ahmad Bhat, Ali AlZahrani, and Mohamad Ahtisham
Wani. Can computer forensic tools be trusted in digital investi-
gations? Science & Justice, 61(2):198–203, 2021.

[71] Tim Fisher. Data Sanitization Methods, 2021.

[72] Vijayan Prabhakaran, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. Analysis and Evolution of Journaling File Sys-
tems. In USENIX Annual Technical Conference, General Track, 194,
pages 196–215, 2005.

[73] Gregorio Narváez. Taking advantage of Ext3 journaling file sys-
tem in a forensic investigation. SANS Institute Reading Room, 2007.

[74] Dong Bin Oh, Kyung Ho Park, and Huy Kang Kim. De-
Wipimization: Detection of data wiping traces for investigating
NTFS file system. Computers & Security, 99:102034, 2020.

[75] Uma Kumar, Vinod Kumar, and J N Kapur. Normalized measures
of entropy. International Journal Of General System, 12(1):55–69, 1986.

[76] Joao BD Cabrera, Lundy Lewis, and Raman K Mehra. Detec-
tion and classification of intrusions and faults using sequences of
system calls. Acm sigmod record, 30(4):25–34, 2001.

144

https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs/view/available-logs
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lock-overview.html##object-lock-legal-holds
https://azure.microsoft.com/en-in/blog/immutable-storage-for-azure-storage-blobs-now-generally-available/
https://cloud.google.com/storage/docs/object-holds
https://d1.awsstatic.com/whitepapers/aws_security_incident_response.pdf
https://cloud.google.com/iam/docs/overview
https://d1.awsstatic.com/certifications/Amazon_LawEnforcement_Guidelines.pdf
https://www.microsoft.com/en-us/corporate-responsibility/us-national-security -orders-report ? activetab=pivot_1:primaryr3
https://transparencyreport.google.com/user-data/us-national-security?hl=en
https://www.lifewire.com/data-sanitization-methods-2626133
https://doi.org/10.1145/604264.604269
https://doi.org/10.1145/604264.604269
https://doi.org/10.1145/604264.604269

REFERENCES

[77] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro,
Giulio De Pasquale, Alessandro Barenghi, Stefano Zanero,
and Federico Maggi. ShieldFS: A Self-healing, Ransomware-
aware Filesystem. In Proceedings of the 32nd Annual Computer Security
Applications Conference. ACM, 2016.

[78] LORIS DEGIOANNI. The Fascinating World of Linux System
Calls, dec 2014.

[79] Calvin B Paul. Entropy-based file type identification and partitioning.
PhD thesis, Monterey, California: Naval Postgraduate School, 2017.

[80] Michael Kerrisk. Linux/UNIX System Programming Essentials,
jun 2023.

[81] Wasim Ahmad Bhat and Mohamad Ahtisham Wani. Forensic anal-
ysis of B-tree file system (Btrfs). Digital Investigation, 27:57–70, 2018.

[82] Devyani Gurjar and Satish S Kumbhar. A review on perfor-
mance analysis of ZFS & BTRFS. In 2019 International Conference on
Communication and Signal Processing (ICCSP), pages 0073–0076. IEEE,
2019.

[83] Jan-Niclas Hilgert, Martin Lambertz, and Shujian Yang.
Forensic analysis of multiple device BTRFS configurations using
The Sleuth Kit. Digital Investigation, 26:S21–S29, 2018.

[84] Fedora. Fedora Workstation Documentation Disk Configuration,
2024. Accessed on Jan 22, 2024.

[85] openSUSE. SUSE Linux Enterprise Server Release Notes, 2022.
Accessed on Jan 22, 2024.

[86] Facebook. Improving machine learning iteration speed with faster
application build and packaging, 2024. Accessed on Jan 28, 2024.

[87] Netgear. Netgear Software Manual, 2019. Accessed on Jan 28, 2024.

[88] Rockstor. Linux Btrfs NAS Server, 2024. Accessed on Jan 28, 2024.

[89] Synology. How Btrfs protects your company’s data, 2024. Accessed
on Jan 28, 2024.

145

https://sysdig.com/blog/fascinating-world-linux-system-calls/
https://sysdig.com/blog/fascinating-world-linux-system-calls/
https://man7.org/linux/man-pages/man2/write.2.html
https://docs.fedoraproject.org/en-US/workstation-docs/disk-config/##_btrfs
https://www.suse.com/releasenotes/x86_64/SUSE-SLES/12-SP5/index.html##all-architecture-filesystems
https://engineering.fb.com/2024/01/29/ml-applications/improving-machine-learning-iteration-speed-with-faster-application-build-and-packaging/
https://engineering.fb.com/2024/01/29/ml-applications/improving-machine-learning-iteration-speed-with-faster-application-build-and-packaging/
https://www.netgear.com/support/product/readynas_os_6##docs
https://rockstor.com/
https://www.synology.com/en-global/dsm/Btrfs

REFERENCES

[90] Docker. Use the BTRFS storage driver, 2024. Accessed on Jan 30,
2024.

[91] LXD. BTRFS driver in LXD, 2024. Accessed on Jan 30, 2024.

[92] Kevin D Fairbanks. A technique for measuring data persistence
using the ext4 file system journal. In 2015 IEEE 39th Annual Computer
Software and Applications Conference, 3, pages 18–23. IEEE, 2015.

[93] Howard Powell. ZFS and Btrfs: a quick introduction to modern
filesystems. Linux Journal, 2012(218):5, 2012.

[94] btrfs readthedocs. BTRFS Documentation, 2023. Accessed on Jan
27, 2024.

[95] btrfs wiki. BTRFS Wiki, 2017. Accessed on Jan 19, 2024.

[96] Mohamad Ahtisham Wani, Wasim Ahmad Bhat, and Ali De-
hghantanha. An analysis of anti-forensic capabilities of B-tree
file system (Btrfs). Australian Journal of Forensic Sciences, 52(4):371–
386, 2020.

[97] btrfs readthedocs. BTRFS Documentation, 2023. Accessed on Jan
27, 2024.

[98] Daniel. Understanding btrfs internals part 3, 2020. Accessed on Jan
27, 2024.

[99] Karel Zak. btrfs-progs, 2024. Accessed on Jan 27, 2024.

[100] Thomas K Dasaklis, Fran Casino, and Constantinos Pat-
sakis. Sok: Blockchain solutions for forensics. arXiv preprint
arXiv:2005.12640, 2020.

[101] Sagar Rane and Arati Dixit. BlockSLaaS: Blockchain assisted
secure logging-as-a-service for cloud forensics. In International Con-
ference on Security & Privacy, pages 77–88. Springer, 2019.

[102] Auqib Hamid Lone and Roohie Naaz Mir. Forensic-chain:
Blockchain based digital forensics chain of custody with PoC in
Hyperledger Composer. Digital Investigation, 28:44–55, 2019.

146

https://docs.docker.com/storage/storagedriver/btrfs-driver/
https://documentation.ubuntu.com/lxd/en/latest/reference/storage_btrfs/
https://btrfs.readthedocs.io/en/latest/
https://btrfs.wiki.kernel.org/
https://btrfs.readthedocs.io/en/latest/dev/On-disk-format.html
https://btrfs.readthedocs.io/en/latest/dev/On-disk-format.html
https://github.com/karelzak/btrfs-progs/blob/autoconf/ctree.h

REFERENCES

[103] Hyperledger. Hyperledger Fabric, 2020.

[104] Omi Akter, Arnisha Akther, Md Ashraf Uddin, and
Md Manowarul Islam. Cloud Forensics: Challenges and
Blockchain Based Solutions [J]. International Journal of Modern Edu-
cation and Computer Science, 10(8):1–12, 2020.

[105] Jun Hak Park, Jun Young Park, and Eui Nam Huh. Block chain
based data logging and integrity management system for cloud
forensics. Computer Science & Information Technology, 149, 2017.

[106] Zhihong Tian, Mohan Li, Meikang Qiu, Yanbin Sun, and Shen
Su. Block-DEF: A secure digital evidence framework using
blockchain. Information Sciences, 491:151–165, 2019.

[107] Yong Zhang, Songyang Wu, Bo Jin, and Jiaying Du. A
blockchain-based process provenance for cloud forensics. In 2017
3rd IEEE International Conference on Computer and Communications
(ICCC), pages 2470–2473. IEEE, 2017.

[108] Silvia Bonomi, Marco Casini, and Claudio Ciccotelli. B-coc: A
blockchain-based chain of custody for evidences management in
digital forensics. arXiv preprint arXiv:1807.10359, 2018.

[109] Auqib Hamid Lone and Roohie Naaz Mir. Forensic-chain:
Ethereum blockchain based digital forensics chain of custody. Sci-
entific and Practical Cyber Security Journal, 1(2):21–27, 2018.

[110] Google. Data incident response process, September 2018.

[111] Openstack. Installation guide, 2021.

[112] Hyperledger Caliper. Hyperledger Caliper Getting Started,
2021.

[113] Amazon. Collecting Metrics and Logs from Amazon EC2 Instances
and On-Premises Servers with the CloudWatch Agent, 2020.

[114] Wren Brian, Coulter David, Stolz Henry, and Dhanwada
Swathi. rview of Azure Monitor agents, Jan 2021.

147

https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://cloud.google.com/security/incident-response
https://docs.openstack.org//install-guide/InstallGuide.pdf
https://hyperledger.github.io/caliper/v0.4.2/getting-started/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview

REFERENCES

[115] David Coulter Brian Wren. Log Analytics agent overview, Jan
2021.

[116] Azure. Azure Log Analytics, 2021.

[117] Microsoft. Digital Evidence Capture, oct 2020.

[118] Google. Google Cloud’s operations suite, 2020.

[119] Google. CLOUD MONITORING DOCUMENTATION, 2020.

[120] Google. Google Rapid Response, Oct 2020.

148

https://docs.microsoft.com/en-us/azure/azure-monitor/agents/log-analytics-agent
https://azure.microsoft.com/en-in/blog/tag/log-analytics/
https://github.com/mspnp/solution-architectures/tree/master/forensics
https://cloud.google.com/products/operations
https://cloud.google.com/monitoring/docs
https://github.com/google/grr

Appendix A

Cloud Forensic Workflows of
Leading CSP

A.1 AWS Workflow
In AWS the cloud incidents are initially classified as service domain incidents and
infrastructure domain incidents. Service domain incidents refer to the incidents
associated with AWS services, and infrastructure incidents are associated with
the physical or the virtual infrastructure supporting AWS services.

For service domain incidents, the logs corresponding to the specific service
are collected and analyzed using Amazon Cloud Watch. Amazon, for effective
log analysis, has implemented Amazon CloudWatch, which centralizes the logs
from different sources and enables automation of alerts based on the occurrence
of specific events [57] [58]. Cloudwatch collects the monitoring data in the form
of logs, metrics, events and provides a unified view of AWS resources. It col-
lects, analyzes, and displays logs and log metrics on a single dashboard. Amazon
CloudWatch Agent [113] is used to collect the logs from AWS and on-premise
resources running either Linux or Windows Server. The metrics collected by the
CloudWatch agent are stored and viewed on AWS CloudWatch. The metrics
collected by the CloudWatch agent are considered customized metrics and are
billable. Amazon Kinesis is used by AWS to perform big data analytics on cloud
logs [65].

Other resources used for forensics on AWS platform include - 1. Amazon step
function - these are used for automating decision-based workflow. 2. Amazon

149

A.1 AWS Workflow

Machine Images (AMI) - these are used to launch new instances with the re-
quired configuration. 3. Amazon storage services (AWS S3, AWS S3 Glacier)
- these services are used for archiving the evidence for the long term. 4. AWS
SSM (System Management Agent) - this service is used to manage instances and
automate operational tasks on AWS or on-premise resources. 5. Amazon Simple
Notification Service (AWS SNS) - this service is used for sending notifications to
the incident response team for forensic process updations. Forensics at AWS is
performed by incident response teams and security teams.

Forensics at AWS is automated by using AWS step functions. The following
step functions are used to perform forensics at AWS - 1. triage step function,
2. disk step function, 3. processing step function. The Triage step function de-
termines the type of acquisition needed, i.e., either disk acquisition or memory
acquisition. This decision is taken based on the metadata captured by the mali-
cious incident. For disk forensics, the triage step function invokes the disk step
function and shares the target VM instance ID for which the snapshot is to be
captured.

Disk step function initially protects the targeted instance from getting ter-
minated (i.e., deletion of an instance, its associated data disk, and volumes) by
enabling termination protection of instance. Later, the instance is isolated by
changing the security group of the instance to restricted mode. The security
group of an instance controls in and out network traffic to the instance. Further,
detach the instance from the auto-scaling group by deregistering the instance from
the Elastic Load Balancer (ELB). Next, create the snapshot of the target instance
and its attached disk volumes and generate the hash values using SHA-256, MD5
algorithms. Create a new AWS EC2 instance in AWS security teams’ Virtual
Private Cloud (VPC) by using forensic workstation AMI. Attach the snapshot
and disk volumes to forensic workstation AMI. Install AWS SSM on the forensic
instance. This is used in the processing step function to automate data prepro-
cessing for analysis. Finally, the disk step function triggers the processing step
function.

The processing step function automates the basic investigation needed. The
AWS SSM installed on the forensic instance prepares the data on the snapshot
for analysis by using forensic tool, i.e., for Windows instance, Encase forensic tool
is used, and for Linux instance, SANS Investigative Forensic Toolkit (SIFT) is
used. This processing generates web history, timeline construction and restores
data on the disk snapshot for analysis. The post-processed data is later pushed
to AWS S3 buckets. The State tracking database is updated after the completion

150

A.2 Azure Workflow

of this process; this database is used to update the customer regarding the status
of the jobs being executed on acquired data to ensure transparency. Finally, the
incident response team is notified about the process completion by using the AWS
SNS service. For further analysis, forensic experts and security teams work on the
processed data. Finally, the processed data is stored in an AWS storage account
with a proper data retention policy. AWS applies legal hold policy [62] to preserve
the data for investigation upon receiving a request from LEAs. This ensures that
the data is retained with CSP until the policy is removed explicitly. Legal hold
policy also ensures data integrity hence, making the evidence admissible.

A.2 Azure Workflow
The Azure monitor is used for collecting and analyzing data from Azure cloud
resources. It is used to centralize data from cloud resources (i.e., user applications,
operating system, Azure services, Azure subscription, etc.) to perform analytics
and metrics [59]. To collect monitoring data from VM and other computing
resources, it uses monitoring agents [114]. Based on the type of data required
the Azure monitoring agent can be selected. More than one monitoring agent
can be used based on the requirement. Azure monitoring agents are - Azure
Monitor agent, Diagnostics extension, Log Analytics agent, Dependency agent.
Log Analytics agent [115] is used to collect logs from Azure, other clouds, on-
premise resources and store them in the log analytics workspace. Azure Monitor
Logs feature of Azure Monitor is used to collect and analyze logs stored in the
log analytics workspace. Further, Azure HDInsight is used to perform big data
analytics on huge volumes of cloud logs [116].

We analyzed the forensic framework for Azure, based on Azure official docu-
mentation for forensics [53] [117]. The Security Operation Center (SOC) team is
responsible for handling forensic procedures at Azure and ensures a valid chain of
custody. The SOC team at Azure maintains different SOC subscriptions. Azure
services with Role-Based Access Control (RBAC) to each subscription include
the following services - 1. SOC VNet - this is a secure Azure virtual network.
2. SOC Automation Account - this is used for process automation and configu-
ration services. It hosts Hybrid Runbook Worker VM; this provides all control
mechanisms to capture the target VM snapshot. 3. SOC Storage Account - this
is used to host Azure fileshare to compute the hash value of the target virtual
instance and host copies of the target disk snapshots in immutable blob storage

151

A.2 Azure Workflow

in WORM state (i.e., Write Once and Read Many) to avoid data modification
and deletion. 4. SOC Key vault - this is used to store snapshots’ hash values and
encryption keys to ensure integrity and confidentiality of disk content. 5. Log
analytics workspace - this is used to store the activity logs to monitor all events
on Azure SOC subscription to Azure Monitor.

In case of occurrence of an incident, the SOC team receives a request to cap-
ture digital evidence. SOC team member signs in to Azure SOC subscription and
uses Hybrid Runbook Worker VM [52] in Azure Automation to trigger the foren-
sic process. Hybrid Runbook Worker(HRW) is used to manage the resources
on Azure, other clouds, or on-premise resources. It sits locally on on-premise
resources or target VM and accesses the local resources. HRW runs Azure run-
books(Automated scripts) on target VM. In Azure forensics, HRW is exclusively
used to execute CopyVMDigitalEvidence runbook on the target VM to collect
the target VM disk snapshot. HRW is hosted on the target VM, in the same
subnet that grants access to the SOC storage account using the service endpoint
mechanism. HRW must have managed identity or service principal to access tar-
get VM’s subscription to provide snapshot rights on target VM disks, access to
SOC storage account, access policy for SOC key-vault to get and set secret keys.
Hybrid runbook worker also ensures that Copy-VMDigitalEvidence runbook has
all required permissions to access target virtual instance and SOC subscription.

Copy-VmDigitalEvidence runbook is responsible for collecting the snapshot
from the target instance and storing it on the SOC storage account. Copy-
VmDigitalEvidence runbook initially signs in to target virtual instance and SOC
subscription. It creates a snapshot of the operating system and data disks, copies
it to subscriptions immutable blob storage containers, and Azure temporary file
share. Azure file share is used as a temporary repository to calculate the hash
values of the snapshot and generate secret keys by using SHA-256, and AES-
256 algorithms, respectively. Later, Copy-VmDigitalEvidence runbook copies the
generated hash values and encryption keys to the SOC key vault and deletes
all the copies of the snapshot from the temporary file share. The snapshot on
immutable storage is used for further analysis by using Azure security services.

To provide access to evidence for investigators Storage Shared Access Signa-
tures (SAS) URI is used to ensure granular control over access policy. Also, the
investigators are provided with required encryption keys in the SOC key vault to
decrypt the data for analysis. Alternatively, time-limited read-only SOC Storage
account access to IP addresses from outside, on-premises networks are given to

152

A.3 GCP Workflow

investigators to download digital evidence. Further, Legal hold policy [63] is ap-
plied on the immutable storage containers for preserving the data and ensuring
its integrity for legal proceedings.

A.3 GCP Workflow
Google Cloud’s operations suite [118] is used to collect and monitor data from
Google cloud resources. Google cloud logging [60] service in Google cloud oper-
ation suite is a fully managed service used to collect logs from the application,
VM, Google cloud services. Google cloud logging service centralizes logs from
all sources and performs advanced and custom filtering to identify suspicious ac-
tivity. To collect logs from other clouds and on-premise resources Google cloud
logging agent is installed on the target instance. Big Query is used for perform-
ing log analytics in the Google cloud. Further, the Google cloud monitoring [119]
service in the Google cloud operation suite is used for performing analytics and
monitoring the data collected by the Google logging service.

Forensics at GCP have been detailed in Google Cloud Next ’18 annual event.
A session by Sami Zuhuruddin, Solution Architect at Google, demonstrated the
incident preparedness and forensic procedure implemented at GCP [55]. Forensics
at Google include gathering forensic artifacts, identifying tools and processes,
analysis pipeline, and process automation. The resources required to perform
forensics on Google include - 1. Google Compute Engine (GCE) - this is the
forensic virtual instance used to attach the disk snapshot for analysis. 2. Plaso -
this is a framework used to retrieve timestamps from the source (disk snapshot)
and arrange the events in chronological order to construct a super timeline. 3.
Timesketch - this is a third-party tool for timeline analysis. This tool takes the
Plaso file as input and organizes the timelines in a presentable manner. 4. Google
Cloud Storage (GCS)- This is used to store the acquired disk snapshot for analysis
and to preserve the evidence for the long term.

Create a new project under a secured environment for operational isolation,
such that it enables one-way flow of data with restricted personnel access. Initially
creates the snapshot of the target virtual instance and later a disk image from the
snapshot. Calculate the hash value of the image file and encrypt the image file.
Export the image file to GCS, and hash values, encryption keys to Google secret
manager storage service. Restore the image file and use third-party forensic tools
for analysis. Super timeline is created by using third-party tools like Plaso and

153

A.3 GCP Workflow

Timesketch. Super timeline details the occurrence of the events in chronological
order; this helps in incident reconstruction.

Similar to the legal hold policy used by AWS and Azure, GCP uses Object
hold [64] to retain the data. In case of legal investigation, it applies temporary
object hold on the evidential data. Temporary object hold along with appropriate
data retention policies ensures data integrity and preservation until the temporary
object hold is removed exclusively by the CSP.

Google Cloud uses Google Rapid Response (GRR) [55] for memory foren-
sics. GRR started as a project at Google and is now available as open-source
at Github [120]. GRR is an agent-based application that can be installed on
Windows, Macintosh, Linux. GRR has two main functionalities, Start flow and
Hunt manager. Start flow is used to retrieve the memory dumps based on the
target instance and process ID. Hunt manager is used for threat hunting in live
suspicious environments.

GRR has a server agent and a client agent. The GRR server agent is installed
on the security server of the Google Virtual Private Cloud (VPC), and the GRR
client agent is deployed on the targeted virtual instance. The GRR client agent
continuously polls the GRR server agent for work. We can trigger the memory
dump process by sharing the process id of the suspicious process to get the mem-
ory dump of the associated process. Analysis of the acquired data is done by
using third-party tools like Rekall, Volatility, etc.

154

Clcud Vi rtual Machine
Forensics r An Anti-forensic

Perspective
&y Pranitha Sanda

g$hm issio n d ate: 27' M ay -2fr24 1 *:49AM {UTC+S530}
gr*rqisiE}rr IE}: ?388qeq55?

File name: 1 9MCPC01_Thesis-'l.pdf (6.34M)

Wsrd ceunfi 36254

Charaster {sun* 184194

Cloud Virtual Machine Forensics - An Anti-forensic
Perspective
oRrcrNAuryREporr 'Iha ove.vat\ p\agia+isrn is 32'1" * 3a'l'(asY' +{{' + t'/') = 2- '/'

\oto' L
sIMILARTTv INDEx INTERNET souRCES puBLICATIoNS sruDENT pggS&iite Frofessrr

Schoolof CIS-*"***TrfdfT. Rl"Kao Road
PRIMARY SOURCES

- -Centratl"lnivemi$

E ll[h?PJ'.[sff::y.*, own pw,orica-Hon

Pranitha Sanda, Digambar Pawa[V. Radha.
"Blockchain-based tarnper-proof and
transparent investigation model for cloud
VMs", The Journal of Supercomputing, Zqzz
Publication Thls t's ouY oLrrh lu,.bltcakiun' W

Pranitha Sanda, Digambar Pawar; V. Radha.
"Chapter 47 VM Anti-forensics: Detecting File

Wiping Using File System Journals", Springer
Science and Business Media LLC, 2022 .r.{,

Publication This is aLry @r-Lyrl pubtica-h'r" * W

Jan-Niclas Hilgert, Mlartin Lambertz, Shujian
Yang. "Foreftsic analysis sf multiple device
BTRFS configurations using TheSleuth Kit"n

Digital Investigation, 201 I
Publiration

Hyderabad46 (lndia,

25,,

4,,

1,,

a1 oa

Pranitha Sanda,
'An insight into

Digambar Pawa6 V. Radha.
cloud forensic readiness by

<1 ,o

leading cloud service providers: a survey",
Computing, 2022
Publication

lil Submitted to University of Hyderabad,r Hyderabad
Student Pap*r

<1 ,o

Submitted to Colorado Technical University
Student F*per <1 o

tr I;:?X111: H::l;' ili'S:::"Hl :ffi ?l::"'
2419
Publication

<1 ,o

tr HHy;ngpi'com <'l ,,

www.slideshare.net
lnternet Source <1 ,

core.ac.uk
Internet 5*urre <1 ,,

E fi3JI;rJ,?. <1 o

E H,Y3;lesearchsate.net <1 ,o

@ PPg;y:,l:r*ocom <1 ,o

web.mit.edu
Internet Scurce

<1 ,"

www.coursehero.com
Internet Source <1 ,,

d Hffi3,:.:ksforgeeks'
ors <1 ,o

Yuding Wang, Kacem Chehdi, Claude Cariou, <1 ,oBenoit Vozel. "Data Stream Unsupervised
Partitioning Method", IGARSS 2022 - ZO22

IEEE International Geoscience and Remote
Sensing Symposium, 2022
Publication

E i3-tl;ifcs'berkelev'edu <'l *

Exclude quotes {}*

Exclude bibliography *li
Exclude matches .r .! 4 ,,;;;*r*s

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Digital Forensics
	1.2 Anti-forensics
	1.2.1 Artifact Wiping
	1.2.2 Gaps in Existing Literature for Wiping

	1.3 Cloud Forensics
	1.3.1 Gaps in Existing Literature for Cloud Forensics

	1.4 Research Objectives
	1.5 Scope and Problem Definition
	1.6 Contribution of the Thesis
	1.6.1 Detection of Wiping Activity
	1.6.2 Recovery of Wiped Files
	1.6.3 Preservation of Evidential Artifacts

	1.7 Organization of the Thesis

	2 Background and Literature Survey
	2.1 Anti-forensics
	2.1.1 Data Hiding
	2.1.2 Trail Obfuscation
	2.1.3 Artifact Wiping
	2.1.3.1 Types of Artifact Wiping
	2.1.3.2 Related Work for Wiping Detection
	2.1.3.3 Limitations

	2.2 Cloud Forensics
	2.2.1 Cloud Forensics by the Leading csps
	2.2.1.1 Forensic Workflow of Leading csps
	2.2.1.2 Evaluating Cloud Forensic Challenges Across Proposed Solutions by Leading csps

	2.2.2 Limitations of Cloud Forensics

	2.3 Summary

	3 Detecting File Wiping
	3.1 Challenges in Existing Literature
	3.2 Contributions
	3.3 Prelimnaries
	3.3.1 Data Sanitization
	3.3.2 ext File System Journaling
	3.3.3 System Calls

	3.4 Detecting Wiping Using File System Journals and Data Blocks
	3.4.1 Proposed Model widej
	3.4.1.1 ext Journal Analysis
	3.4.1.2 Using Shanon's Entropy

	3.4.2 Results and Discussion

	3.5 Detecting Wiping using System-calls
	3.5.1 Role of System-calls in Behavior Analysis
	3.5.2 Proposed Model wides
	3.5.2.1 Profiling Process Behaviour
	3.5.2.2 Filtering Driven by Write() System-call
	3.5.2.3 Analysis of Buffer Data Entropy

	3.5.3 wides Workflow
	3.5.4 Results and Discussion

	3.6 Summary

	4 Recovery of Wiped Files
	4.1 Challenges in Recovering Wiped Files
	4.2 Contributions
	4.3 Prelimnaries
	4.3.1 btrfs Chunks
	4.3.2 btrfs Trees
	4.3.3 btrfs Data Structures

	4.4 Recovery Using Journals
	4.5 Proposed Model rewind
	4.5.1 rewind Using btrfs-progs
	4.5.2 rewind by Logging pa of Files

	4.6 Results and Discussion
	4.7 Usecase: Recovery of a file encrypted by Gonnacry ransomware
	4.8 Summary

	5 Investigation Model to Preserve Cloud vms and Investigation Proceedings on Blockchain
	5.1 Challenges in Existing System
	5.2 Contributions
	5.3 Prelimnaries
	5.3.1 Blockchain
	5.3.2 Hyperledger Fabric (hlf)

	5.4 Application of Blockchain in Digital Forensics
	5.4.1 Log Integrity
	5.4.2 Metadata Integrity
	5.4.3 Chain of Custody

	5.5 Proposed Model Investigation-Chain
	5.5.1 Blockchain Participants
	5.5.2 Investigation-Chain Workflow

	5.6 Proof of Concept
	5.6.1 Case Study (Child Pornography)

	5.7 Results and Discussion
	5.7.1 Analysis of computational cost and communication overhead
	5.7.2 Comparative analysis of the recent research with Investigation-Chain

	5.8 Summary

	6 Conclusion and Future Work
	6.1 Summary of Contributions
	6.1.1 List of Contributions

	6.2 Future Work

	References
	A Cloud Forensic Workflows of Leading CSP
	A.1 AWS Workflow
	A.2 Azure Workflow
	A.3 GCP Workflow

