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Abstract

Magnesium has lowest density 1.638 g/cm?® among the structural materials, but also known for
limited ductility at room temperature bearing c/a ratio of 1.624 just lower than ideal value for
any hcp lattice. Addition of Ce in Mg improves the restricted ductility owing to limited number
of deformation components and also being /cp lattice as in pure Mg. Improvement in ductility
is attributed to the weak basal texture as in the starting material in the extruded rod.
Enhancement in the ductility can be understood in term of flow behaviour of Mg-0.5 (wt%) Ce
alloy to justify the deformation mechanisms. In this study, hot compression test of extruded
Mg-0.5wt% Ce alloy was conducted using UTM to locate the deformation regime in the
processing maps requisite for further manufacturing operations. The processing maps were
generated using experimental data of flow stress spread over five temperatures from 523 K,
573 K, 623 K, 673 K to 723 K and five strain rates 0.001 s, 0.01 s, 0.1 s, 1 s and 10 s™".
The deformation behaviour exhibited by the true stress-strain curves depicts flow stress
increases with increase in strain rates but decreases with increase in the temperature and
significantly depended on the strain. The flow stress behaviour of plastic deformation during
hot compression of Mg-Ce alloy is governed by constitutive equations desired for the designing
appropriate manufacturing operation for defect-free component and its service performance. A
new physical model for hot deformation characteristics of Mg-Ce alloy considering constitutive
equations, based on the hyperbolic-sinusoidal Arrhenius-type have been established as a
function of strain rate and deformation temperature and later characterized by a temperature
compensated strain rate parameter known as Zener-Holloman parameter. The authority of
various material constants on true strain ranging from 0.1 to 0.5 was established using a
mathematical correlation. These material constants were found to be suitable to fit the true
strain dependency with 4 order polynomial relations. The average apparent activation energy
for hot deformation is calculated to be 332 kJ/mol. The average absolute relative error (AARE)
and correlation coefficient (R) was used to access the accuracy of the developed constitutive
equations based on the obtained values of AARE was 10.59 % and R was 0.95, resulting
sensible predictions of the modified flow stress. The outcome of predicted flow stress
behaviour of the Mg-0.5wt%Ce alloy shows a substantial approximation over a wide range of
temperature and strain rate and for larger strain using developed constitutive equations. The
processing maps for the Mg-0.5wt%Ce alloy are constructed at strains of 0.1 to 0.5, based on
the dynamic material model and the Prasad's instability criterion. The processing maps exhibit

a domain of dynamic recovery (DRV) occurring at the temperature of 673-723 K and strain



rate of 0.001-0.1s~!, corresponding to the optimum hot working regime. The instability zones
of flow behaviour are also recognized from the maps possibly due to strain localization in form
of shear bands. Optical microstructures and EBSD images (IPF, IQ and GOS) from FESEM
explains the microstructures evolution during this deformation. The XRD-texture pole figures
explain the bulk texture evolution with respect to six important planes i.e., (0002), (1010),
(1011), (1012), (1013), (1120).

Changes in strain path have been known to weaken the basal texture during deformation in of
hot rolling. The effect of change in strain path on the anisotropy of hot rolled sheets made by
two different modes of Uni-Directional Rolling (UDR) and Multi-Step Cross Rolling (MSCR)
were employed on cuboidal samples of as-extruded Mg-0.5wt% Ce alloys. Hot rolling was
induced a true strain of 2.0 at 723 K and at strain of 0.1 per pass. Tensile tests specimens were
sectioned from the rolled sheet samples of UDR and MSCR modes at three (at 0°, at 45°, at
90°) different orientation angles with respect to the final rolling direction. Tensile test was
executed at room temperature and at 10~ s™! strain rate. Dynamic recovery is found to be the
dominant restoration mechanism operating during hot rolling. Both the yield strength and
ultimate tensile strength values of the UDR samples obtained at different angles with respect
to the rolling directions, are higher than the MSCR samples. The yield strength measured along
the transverse direction of the UDR sample is much lower compared to rolling direction. The
anisotropy from tensile strength is less in the MSCR samples than UDR. Ductility was found
to be more for the MSCR samples compared to UDR samples. EBSD images (IPF, IQ and
GOS) and the pole figure from FESEM explain the microstructures and local texture evolution
during this deformation. The XRD-texture pole figures explain the bulk texture evolution with
respect to six important planes (0002), (1010), (1011), (1012), (1013), (1120).

Magnesium is most active structural metal in electromotive series can descend with minor
addition of rare-earth metal (e.g., Ce,). The wrought processing route diminishes intrinsic
defects of cast Mg alloy to enhance significant industrial applications. In this study, Mg-0.5
(wt%) Ce alloy hot rolled sheet with two variants i.e. unidirectional (UDR) and multi-step cross
rolling (MSCR) were subjected to corrosion test using electrochemical techniques investigated
in the 3.5 wt. % NacCl solution saturated with Mg (OH)2 solution. Corrosion behaviour was
evaluated with Tafel’s polarization curve using Potentiodynamic polarization method, while
Bode and Nyquist plots through electrochemical impedance spectroscopy measurements.
Corrosion behaviour was characterized before with FESEM, Vickers Hardness, XRD and after

the test with FESEM. Severity of electrolytes in corrosion test favoured anodic oxidation but



gets passivated in this alloy due to formation of protective film of corrosion products on the
alloy surface clearly impeding the corrosion attributed to Ce addition distinct in extruded and
unidirectional rolled samples. Kinetics of corrosion reaction is predominantly fast in MSCR

than that of extruded and UDR samples.



Chapter 1: INTRODUCTION

1.1 Introduction

Magnesium (Mg) is the 8" most plentiful element, accounts for 2wt% of the
complete weight of the Earth’s crust. Mg is the lowest density structural metal having
density of 1.738 g/cm®. Mg has hcp structure with lattice constant at 20°C as a= 0.32
nm, ¢ = 0.52 nm [1]. Mg is regarded as the best green material of 21 century [2]. Mg
and its alloys additionally exhibit host of numerous favourable properties like high
specific strength and stiffness, excellent damping capabilities with superior machining
abilities, excellent bio-compatibility, substantial hydrogen storage capacity, high
theoretical specific capacity for batteries, impressive castability, low melting
temperature, minimal melting energy, and promising recycling potential [3]. The Mg
alloys are appropriate for many potential uses in the areas of aerospace, automobile and
laptops, mobile and electronic device), bio-medical and batteries energy [4]. Some of
these beneficial properties played a pivotal role in the dawn of World War II for Mg
alloys especially in the aviation in the form of edge flaps in front and rear, regulated
surfaces, actuators, door borders, wheels, housings for engine gear etc. [5]. However,
poor corrosion resistance of Mg alloy has cessed the prospective growth possible in its
application [6]. Post WW 1I, limited applications were seen in aerospace such as
Convair B-36 Peacemaker and Convair XC-99 and also in the spacecraft for example
Vanguard, Jupiter, Titan I etc. [7]. Applications in the automobile manufacturing in the
chassis of the freight truck towards the end of 1950s.

Off lately in past three decades, the need for Mg market surfaced again because
environmental apprehensions and surplus carbon emissions that changed global
outlook. The major reason for this environmental calamity lies on vehicular and thermal
power plant emissions from the exhaust. Consequently, the reason for vehicular exhaust
emissions identified as heavier weighing vehicles. Subsequently, the lightweighting
vehicles became the point of focus. An exceptional rush is perceived in the quest toward
attainting lightweight materials in aerospace, automotive and other industries. In order
develop the lightweighting vehicles, usage of Mg alloy components becomes the most

appropriate answer [8].
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Fig. 1.3 (a) Comparative weight analysis of a Volkswagen Passat boot lid across various
materials [11]. and (b) Assessment of variation of mass savings potential in automobile
sectors for high performance materials with mild steel in body frame panels,
considering the corresponding flexural stiffness and flexural strength [5].

Majority of Mg alloys are extensively used in the cast form where its specific
strength and elongation to fracture is lower than Al alloys and Steel as shown in
Fig.1.1[9]. Although some of wrought Mg alloys shows specific strength and elongation
to fracture is higher than Al alloys and Steel as seen in Fig. 1.1. Generally, strength of
Mg alloy meant to be suitable contender for structural applications compared to other
materials graphically in Fig. 1.2 (a). The specific strength and stiffness of Mg alloys
compared to conventionally used as shown in Fig. 1.2

Numerous applications of Mg alloy components mostly processed by casting
initially and subsequently either extrusion, rolling or even forging is employed. More
than 90% of the structural parts (cars, housings, and electrical) of Mg alloy are
processed by foundry route, especially by die-casting. However, inherent deficiency
[9], such as gas porosity owing to splashing during mould filing and relatively coarser
grains (50-200 um) are the qualifying factors in designing the optimum properties in
cast Mg alloys. The grain sizes reduced (to ~ 15-20 um similar to that of wrought
products) by alloying addition such as Li, Sc, Zr etc. in the development of cast Mg
alloys. [12]. Cast Mg alloys processed by die-casting are used in automobiles as steering
wheels, components for steering column, dashboard, cross beams, pedal supports, seats
frames, gear boxes, air intake system, radiator braces, rear door, engine brackets, body
frames and inner door panels. [5][13].

However, the wrought Mg alloys are required to develop being lower weight
relative to Al and steel as shown in Fig. 1.3 (a) for the structural application desired to
show greater performance in the form of extruded products, rolled sheets and forgings
in comparison to cast components as shown in Fig. 1.3 (b) due to higher strength and
ductility. Such wrought Mg alloys can be processed by optimum design in terms of finer
grain sizes, favourable texture based on product form and correct solute elements
addition in the composition. Despite promising prospect of wrought Mg alloys,
industrial usage is still far below its expectation. The limited usage attributed to
inevitable high temperature deformation to process the wrought products owing to poor
ductility at room temperature. Consequently, relatively low-cost die-castings dominates

over expensive wrought products.



Mg alloys display reduced ductility at RT attributed to deficient number of
deformation components autonomous of each other for accommodating deformation
about the c-axis of the /cp unit cell of Mg, unlike fcc materials bearing 12 slip systems
that provides unrestricted deformation [14]. Even at 498 K, the deformation of Mg alloy
is still limited because of insufficient modes of only basal and prismatic planes for
slipping along with tension twinning to induce strain accommodation along the <a>
axis. [15]. This kind of deformation in the Mg alloys results strong anisotropy
developed due to strong textures ascribed to limited basal slip activity leading to strong
yield asymmetry. Limited deformation in Mg alloy can be improvised by (i) grain
refinement prevents tensile twinning and activates non-basal slip and (ii) texture
weakening promotes easy slip activations.

Modification of texture introduce improvement in mechanical response of Mg
alloys exploring the complex deformation behaviour. Texture in the materials is
influenced by starting texture, alloy composition and processing parameters. Initial
texture depends on the type of processing route, mostly it is casting process. Processing
parameters generally include the operating temperature and applied strain rates. Texture
weakening can be achieved by changing alloy composition, especially the role of rare
earth elements (REEs) gained substantial focus recently [16][17][18]. Lower contents
of REEs resulted in weaker deformation textures in wrought Mg alloys investigated in
many studies. The resultant of these research proves to be suitable solute additions for
developing the structural Mg alloy with better performance. Among the REEs, Cerium
(Ce) addition results in homogeneous deformation at room temperature [19] weakens
the deformed texture during [20][21] and improves ductility better than pure Mg [22]-
[24]]. It is noteworthy that the weakening of texture, rather than the grain size [25],
significantly contributes to the improvement in ductility. Additionally, the addition of
Ce results in reduced yield strength, smaller grain sizes, delayed onset of instability,
and enhanced work hardening. [19][23][26]. The interaction between the modified
alloy composition and processing conditions is not fully comprehended. Optimization
of the processing parameters like strain, strain rate, and deformation temperatures
render apt hot deformation characteristics essential enough to control the desired
structure-property correlation demonstrated by the processing maps [27]. At high
temperature deformation, several metallurgical developments includes strain

hardening, dynamic recovery, and dynamic recrystallization, might take place



concurrently [28], leading to microstructural evolution possibly with grain refinement,
texture evolution and reduction in deformation resistance.

Moreover, a typical basal orientation of many grains where the c-axis aligns
parallel to sheet normal accompanied by tensile twins typically develops in the
conventionally rolled sheet of Mg alloys. Such intense basal orientation causes a limited
deformation potential of sheet thinning [29] and a greater anisotropy [30], and
consequently results in yield asymmetry. Texture softening and suppression of tensile
twin by RE additions, can attained in wrought Mg alloys causes decrease in yield
symmetry. [19][23][31].

The changes in the orientation can be achieved through modifying the starting
microstructure or altering the processing method. A variation in strain path affects the
texture formation strongly brought by cross-rolling when the direction of rolling altered
examined by many researchers. [32][33]. Moreover, modification in processing
conditions such as cross-rolling results into weaker basal texture in plane of sheet with
considerable variation in microstructures. [34]. Such wrought products after their
development, show completely different behaviour toward service environments
response than compared to conventional which remain unexplored. Many studies
reported the reduction in corrosion rates of hot rolled binary Mg alloys due to lowering
of hydrogen evolution [35] and grain size [36]. However, the corrosion rate enhances
rapidly with the presence of the twins [37]. and by increasing the amount of RE alloying
addition [38]. Hence, optimization of the weight % of REEs addition is important to
strike a balance between corrosion resistance and mechanical strength, essential for its
successful applications.

The present work was undertaken with an aim to decrease the plastic anisotropy
and yield asymmetry in the rolled sheet of Mg-0.5wt%Ce alloy by cross-rolling route
and later explore its service environment behaviour. The focus was to process the rolled
sheets by inducing large deformations and investigate subsequent progression in

microstructure and texture.

1.2 Motivation and Objective of the Work
The deformation of the Mg alloy can be attainted effectively at high

temperatures, being limited at ambient temperature because there aren't enough

deformation components



without cracking because of only basal and prismatic planes for slipping along
with tension twinning for strain accumulation along the <a> axis. [15]. Furthermore,
only rare-earth element (Ce) addition as a solute in a binary Mg alloy has been evident
of beneficial effects in same directions. However, the comprehensive picture of
deformation behaviour becomes the immediate challenge for such binary Mg-Ce alloy
as reported from literature review is scarce. [19]-[25].

A quest for enhancing the processing strategy for Mg-Ce alloy appears from this
technical gap. This strategy made by processing temperature and strain rates as a single
entity in the form of processing map. Additionally, the development of texture and
microstructure along with the underlying process fills in to figure out suitable
deformation parameters.

Another alluring task of deformation behaviour is to manufacture useful product
forms design by the regime prescribed by processing map. Apart from product
manufacturing, plastic anisotropy and yield asymmetry in the product needs to be
identified and addressed, due to distinctive presence of basal texture in most of the
grains parallel to sheet normal along c-axis combined with tensile twins is typically
formed in the traditional rolled sheet of Mg alloys. [29]-[31] .

A change in strain path affects the texture formation strongly brought by
changing the processing route studied by many researchers. [32][33]. The resultant
microstructure and texture of the sheet product brings out its various properties desired
for the adaptability in the given application.

Extending a step further in the challenge is the service environment response of
the product manufactured through suitably modified deformation process is altogether
limited for REE containing Mg alloys. Many studies reported the reduction in corrosion
rates of conventional hot rolled binary REE containing Mg alloys [35]-[38] but for
modified routes hardly any studies are seen.

The objective of the present work is illustrated as follows:

% A conclusive outcome drawn as a processing map from hot compressive
deformation carried well above the recrystallization temperature (7deformation™
0.5T7wm) i.e., 523K to 723K, utilizing strain rates ranging from low to high low to
high strain rates from 0.001 to10 s on Mg-0.5wt%Ce alloy. The mechanical
response of the starting material with respect to strain hardening and subsequent

restoration mechanism leading desirable microstructure and texture evolution.



Further, the mechanism of this deformation behaviour analysed based on the
understanding the developed microstructure and texture.

% The regime of manufacturing parameters of hot rolled sheet in conventional
mode of UDR and modified cross-rolling route of MSCR were identified from
processing map. Mechanical properties of both hot rolled sheets were
determined from the ambient temperature tensile test to correlate the
microstructure and texture evolved during the hot rolling processes and
compared with the starting material. Additionally, mechanical properties of both
sheets were utilized to establish the degree of anisotropy and asymmetry
developed during hot rolling to corroborate their applicability for commercial
usage.

% Finally, the response of both hot rolled sheets of UDR and MSCR subjected to
two types of corrosion test electrochemical nature as polarization test and
electrochemical impedance spectroscopy test using a potentiostat. The
polarization test work on DC source provides overall response of both the sheets
given in the form of Tafel plots. On other hand, the electrochemical impedance
spectroscopy test operated on AC source furnishes minute details during
electrochemical reaction occurring between the sheets and electrolyte (3.5%

NacCl) in the forms of Bode plot and Nyquist plot.

1.3 Organization of Thesis

The current thesis can be categorized into 5 chapters.

Chapter 1 acquaint the topic from the perspective of present investigation and its
importance.

Chapter 2 explains the essential theoretical principles relating to plastic deformation
and restoration mechanisms relevant to Mg alloys, especially Ce containing Mg alloys.
In addition, it dealt with the various procedures to induce large scale deformations in
Mg alloy and subsequently their service response from the context of corrosion
behaviour.

Chapter 3 encompasses different experimental techniques executed to initiate large
scale deformation utilizing compression test on the starting material to develop
processing maps to define a regime for hot rolling and subsequently tension test to
figure out anisotropy. Lastly, the hot rolled sheets subjected to corrosion test as

Polarization test and Electrochemical Impedance Spectroscopy test. Extensive



mechanical properties were determined from compression test, tension test, hardness
test, optical profilometry and host of characterization techniques such as XRD, OM,
SEM, EBSD were utilized.

Chapter 4 analyse and interprets the results of experiments in this thesis work categorize
into three sub-divisions. First section interprets the outcome of compressive stress-
strain curve into processing maps to identify the appropriate window of processing
parameters for the hot rolling. Second section assess the hot rolled sheet manufactured
by conventional route of Uni-Directional Rolling (UDR) and new improvised mode of
Multi-Step Cross Rolling (MSCR) utilizing the progress of microstructure, orientation
and the mechanical properties obtained from tensile, and hardness tests. Third section
evaluates the response of the hot rolled sheet on Polarization test and Electrochemical
Impedance Spectroscopy test.

Chapter 5 comprises the summary and conclusions of the entire thesis work.

Future Scope of Work.



Chapter 2: LITERATURE REVIEW

The materials properties governed by individual units of crystals that are
characterizing the polycrystallinity. Eventually, properties defined by microstructure
comprising grain size and its distribution, grain boundary and its distribution, and other
microconstituents. Mere microstructural dependency for properties will not be
sufficient, rather crystallographic texture (preferred orientation) needed for defining
them. Such texture evolution generally occurs during solidification of primary product,
deformation of crystalline nature as well as thermal treatment. The texture evolution
governed by slipping and twinning during deformation, softening mechanism, and
alloying addition (REE/RE texture).

Magnesium and its alloys exhibit restrictive formability yielding plastic
anisotropy at room temperature because of low crystal symmetry for plastic
deformation influenced strongly by processing conditions and initial texture-
microstructure relationship. The present chapter provide a comprehensive outline
concerning deformation and corrosion characteristics in Mg and its alloys. The
mechanics of deformation in Mg and its alloys as well as the corresponding orientation
development are described in Section 2.1. Section 2.2 emphasizes the need of REE
addition and subsequent effect on plastic deformation. Section 2.3 propose the
deformation processing map to identify the suitable region for manufacturing
processes. Based on processing map, hot rolling regime and corresponding plastic
deformation identified in section 2.4. The response of hot rolled products toward
Corrosion behaviour highlights in section 2.5. Finally, the motivation and scope of work

for the present investigation is specified in section 2.6.

2.1 Deformation Behaviour of Mg and its alloys
As seen in Fig. 2.1, magnesium and its alloys exhibit a hcp crystal structure with an
atom stacking sequence of ABABAB. The unit cell shape of such icp crystal structure

bearing axes (a1, a2, and c) are parallel to the edges as seen in Fig. 2.2



Fig. 2.2 Hexagonal prism (a) Unit cell with a1, a; and c axis, (b) atomic position in
special distribution and (c) in basal plane [39].
The hexagonal crystal structure is made of 4-unit cells indicated by solid and

dashed lines in Fig. 2.2 (a). The primitive unit cell of hexagonal shown in Fig. 2.2 (b &

. . 211
c) has 2 atoms of same type located at the fractional co-ordinates 0 0 0, 337 hence

called double lattice structure. In ideal unit cell of /cp structure has 12 number of
nearest — neighbouring atoms where 6 are arranged in basal plane and the remaining 6
atoms are arranged as 3 atoms above and 3 atoms below the basal plane. The shortest

distance between atoms along a; and a» axes considered as ‘a’ and along the c-axis as

. . L 8
‘c’. Then based on the atomic arrangement along c-axis to a-axis is given as c/a = \/ 3

=1.633 [40].
Mg being hcp show strong anisotropic mechanical properties due to low
symmetry, unlike cubic structure metals, consequently limited deformation components

cause difficulty in strain accommodation along c-axis. Similarly, at room temperature,
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magnesium and its alloys show decreased formability and ductility. Moreover, Mg has
c/a ratio = 1.624 very close to 1.633 optimum for Acp. On the basis of c/a ratio, the
deformation mechanism in Acp metals can be categorize into three types [41]: (1)

metals having c/a < 1.632 (Ti, Zr, Be), where deformation is assisted by slipping of
basal and prismatic planes, (ii) metals having c/a ratio between 1.63 to 1.73, where the
deformation is combined effect of slipping and twinning, e.g. magnesium (c/a=1.624),
and (iii) metals with c/a> 1.73 (e.g. Zn, Cd), where the deformation primarily occurs

through twinning mechanisms and basal slip.

2.1.1 Slip Modes of Deformation in Mg and its alloys

Plastic deformation of polycrystalline materials homogeneously as per von
Mises criterion necessitate activation of at least five independent deformation
components [42]. In Mg and its alloy, slip primarily occurs in basal {0002}(1120),
prismatic {1010}(1120), pyramidal <a> {1011}(1210), pyramidal <a+c> type I
{1012}(21 13) and type II {1120}(2113) slip systems [43][44] as shown in Fig. 2.3.
and Table 2.1

[ 3 C [ c
i L | Z |
i 14 ; |
F i | [
[ 1] ! i
ol | | LEN 2 E I o : b |
\\ B s B | 2 | \B . e
* e - ':
apa A aj ala a
Basal Prismatic Pyramidal (a) Pyramidal {a+c) =1  Pyramidal la +c)— I
Fig. 2.3 Slip planes in hcp structures [43].
Table 2.1 Slip systems in Acp [39].
Name Slip systems Slip systems | Independent slip
numbers systems numbers
Basal {0002}(1120) |3 2
Prismatic {1010}1120) |3 2
Pyramidal <a> {1011}1210) |6 4
Pyramidal <a+c>-1 | {1012}2113) | 12 12
Pyramidal <a+c>-1I | {11202 113) | 6 5
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Generally, slip is mostly functional on basal plane (close-packed plane) in
magnesium and its alloys. Furthermore, the activity of every slip system is determined
by the d — spacing. As the d — spacing of slip-plane increases, the Peierls-Nabarro stress
needed for dislocation motion will decreases. The d — spacing is a function of lattice
constant ratio or c¢/a ratio, while Mg show c/a ratio 1.624 close to optimal value c/a
ratio 1.633 indicating difficulty in deformation by slipping. The d — spacing of the
prismatic planes larger than basal planes, correspondingly prismatic slip is most
preferred in Zr and Ti [39], while basal slip in Mg and Co because of stable stacking
faults formation on basal plane which reduces CRSS for basal slip [45]. At 25°C, plastic
deformation in Mg alloy occurs by giving strain only along the <a> = <1120>/3 axis
due to four independent slip systems i.e., 2 from the slip system of basal plane (0002)
<1120> and 2 from slip systems of prismatic (1010) <1120>. Such insufficient
deformation can be added with strain given along c-axis is the {1012} <1011>extension
twinning which 50% of a slip mode influenced by its directional dependence.[15]

Slip trace analysis of single crystals was pioneer, [46][47] about the presence of
basal slip as the effective mode of deformation in Mg and its alloys, thereafter TEM
studies endorsed the existence of basal dislocation by close examination [48]. The
CRSS has been estimated for the studies on slip in single crystal of a basal plane is
nearly 1 MPa [49], while prismatic slip has 50 MPa [50] and pyramidal slip has 100
MPa. [51]-[53]. As the CRSS in basal slip systems are lower, hence should dominate
the deformation, ironically basal slip can provide only 2 independent slip system with
burgers vectors in the <a> direction indicating very poor formability. Room temperature
tensile test of Mg sheet exhibits 10% elongation which is beyond expectation for basal
slip [54][55].

In contrast, initiation of the off-basal slip system (means basal plane does not
carry the shear direction) can provide five independent deformation modes, especially
in the <c + a> directions by slip systems of pyramidal plane. Prismatic and pyramidal
planes slip expected to be more energetic during deformation by Crystal plasticity
modelling and experimentally endorsed by in TEM observation [54]-[56]].

Nevertheless, such activation is governed by temperature dependent
deformation components as CRSS for such slip system is double compared to basal.
[51]. Chances for the substantial activity of slip by prismatic and pyramidal planes

considered to be unbelievable owing to their higher values of CRSS studied on single
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crystal. Nevertheless, stresses developed in the microstructure are highly localize
manner making them incompatible, as a result the grains well aligned for slipping on
basal plane get hindered by neighbouring grains having unfavourable orientation to
cause basal slip. Consequently, local stresses at grain boundaries increases by five times
greater than the applied stress [57] reasonably large for non-basal slip to activate. Such
incompatibility stresses can also result in higher values of CRSS than that expected by
polycrystal plasticity modelling on single crystal. [44][54][56][58]. But Hutchinson et.
al. [59] claimed that the comparative CRSSs of polycrystalline will coincide in Mg
during deformation because the strain hardening grows greater than the proportional
difference between the deformation types.
The actual CRSS's of all slip systems are also deeply related on the deformation
temperature leading to lower values of yield stresses and reasonable ductility [46][47]
[54][60].

Increase in higher temperature elevates the activity of non-basal slip systems by
two basic effects: (i) decrease in the CRSS value required for each slip system and (ii)
Reduction in the required activation energy for cross slip. This decrease in CRSS at
higher temperature is because of the increased thermal energy so that dislocations can
conquer energy barriers of the order ~ kT (thermal energy) even at lower shear stress
practically [45]. Increase in temperature reduces the CRSS but saturates as the energy
barrier is << kT for dislocation movement. This fact is evident in basal slip owing to its
lower energy barrier at lower temperature, henceforth the slip on prismatic and
pyramidal planes is relatively insensitive to temperature than basal slip [61].

The slip on the planes of pyramidal and prismatic are susceptible to increase in
temperature causes the activation energy to lower for the cross-slip of <a> dislocation

from the basal to off-basal planes.

(a)
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(b)

Fig. 2.4: Mechanisms of basal dislocations cross-slipping onto prismatic planes.

(a) Occurrence of cross slip at a restriction of a stacking fault on basal plane known as
Friedel mechanism and (b) the double jog mechanism occurs by the prismatic
dislocations as the jogs between basal planes [62].

Accordingly, the basal dislocations cross-slip from basal plane onto the
prismatic plane forming prismatic dislocations based on the temperatures of
deformation occurs by two mechanisms:

(1) at T<400K, the basal dislocation gets extended during cross-slip may

pinned at two points such that it bends on the prismatic plane as observed
in Fig. 2.4 (a) [62]-[65]]

(i1) at T>400K, the basal dislocation cross-slip onto the prismatic plane on
which the prismatic dislocation undergoes further dissociation back to
basal plane such that dissociation occurs parallel to the original
prismatic plane is observed in Fig. 2.4 (b) as Friedel-Escaig, jog or kink
pair mechanism [62]-[64]].

These pair of jogs from the prismatic dislocations are located at midway of two
stacking fault of basal plane. Subsequently, the jog pairs decide the cross slip by
nucleating and propagating on the prismatic plane based on the activation energy [64].

In comparison to the prismatic dislocations, the formation of pyramidal
dislocations is poorly understood still pyramidal slip is heavily influenced by
temperature [52] and also the mechanism of cross-slip. [66][67]. The nucleation source
of pyramidal dislocations being suggested by two cross slip mechanism:

(1) As basal <a> dislocations after cross-slipping onto the prismatic plane

forms prismatic <a> dislocations, which in turn combine with a sessile
<c> dislocation developing <c+a> dislocation which gets cross-slip onto

the plane of pyramidal [67].
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(i1))  The formation of pyramidal dislocations is proposed free of cross-slip
from the basal plane. After the formation on the pyramidal I (1011)
plane, then the pyramidal dislocations cross slip onto the pyramidal II
(1022) plane [66].

The deciding factor for both the activity of pyramidal slip in Mg and its alloys
is determined by cross-slip of dislocations. In Mg, the <c+a> type of deformation for
the pyramidal slip type IT occurs by slip system (1122) <1123>. The slip system, having
the largest burgers vector as <1123>/3 and the lowest interplanar spacing, considered
as the most retarded for gliding due to largest Peierls stress for the dislocation mobility.
The microscopic processes following generation and movement of non-basal
dislocation slip is not fully understood. The CRSS for <c + a> slip needs to be assessed
based on the dislocation nucleation mechanism or its subsequent movement [15][67]
[68].

Since <c+a> dislocations are linked to huge burgers vectors, hence it appears in
a separate arrangement and core structures of non-planar type. Minonishi et al. [69]
suggested the dislocation dissociation that initiate the faults in stacking sequence in
pyramidal <c+a> type Il slip systems as,

b— ab+ (1-a) (2.1)
<1123>/3 — % <1123>/3 + (1 — '4) <1123>/3 (2.2)

where b = <c+a>=<1123>/3 is the Burgers vector

a =~ 1/2 for symmetric dissociation.

The pyramidal <c+a> type II slip potentially nucleates at the neighbourhood of
grain boundaries or adjacent to twin boundaries with incoherence present within the
grains. Such nucleation sites generate the complete dislocation in single step due to
high stacking fault energy or in two steps brings out partial dislocations one after
another with stacking fault strip in between [68].

Some experimental outcomes confirm such nucleation of partial dislocations
<c+a>/2 adjoining the twin boundaries [52][70]. Transmission electron microscopy
studies by burger vector analysis reports the mechanism of nucleation for such
pyramidal <c+a> dislocations are combined with <c> and <a> types of dislocations.
The screw orientation of <c+a> dislocation shows stable nature but unstable in edge
orientation. The edge orientation so splits into dislocations of the <c> and <a> types.

Thus, the association of <c> and <a> dislocations cause origination of <c+a>
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dislocations. The mechanism of creation of <c+a> slip rely on the intersections of
sessile <c> prismatic dislocations and the slip <a> basal dislocations as observed in Fig.

2.5 [67].

J

Fig. 2.5 Progression of the start of <c+a> dislocation in pyramidal slip system [67]

The basal dislocation's screw portion first cross slips energetically favoured to
the prismatic plane because of the elastic connections of the screw type basal <a>
dislocations and the edge type <c> dislocations as shown Fig. 2.5a. The parameter = 1/
(1-v) (where v = Poisson ratio) determines the magnitude of elastic interaction of an
edge with screw component of a dislocation [52]. For pure Mg, Yoo [52][67] the value
of v = 0.29 implies that the strong desirable force drags out the <a> type dislocation
from the plane of basal. This screw <c+a> dislocation cross slip to the (1122) planes
of pyramidal to produce the <c+a> dislocation on the plane of the pyramidal as
observed in Fig. 2.5 (c). But this cross slip is energetically hostile in Mg from prismatic
planes to pyramidal <c+a> type Il planes even at high temperatures [71]. These
scrutinization contradicts the anticipated nucleation mechanism. Besides, the
generation of <c+a> dislocations by associating <a> and <c> dislocations, results in
less than five independent slip system from <c+a> dislocations because independent
slip system requires an independent dislocation nucleation source [15].

Atomistic studies [69][72] suggest that the screw dislocations have a strong
likelihood of cross slipping on pyramidal planes as the cores of screw dislocations can
dissociates on multiples along with {1122} and {1011} of pyramidal planes II and I
order respectively. Besides, the dissociation of dislocation in creating partials based on
the reduction in overall free energy (AGreduction) because of similar amount of the
stacking fault energies for {1122} and {1011} of pyramidal planes II and I order

respectively.
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AGreduction= AGrotal dislocation — AGpartials (2.3)
where AGtotal dislocation = the undissociated state free energy and

AGpartials = total energy of the partial dislocations

Accordingly, the dissociation of pyramidal slip (type I to II) is dependent on
temperature i.e., dissociation of the pyramidal plane at low temperature is favoured by

one of the types and later at higher temperature dissociation will shift to active other

type [67].

2.1.2 Deformation Twinning

Besides slip, twinning is crucial for accepting deformation in magnesium
systems. Twinning is a shear deformation of the crystal such that a part of the crystal
reorients exhibiting mirror symmetry in relation to the adjacent un-twinned host crystal

along mirror plane as demonstrated in Fig. 2.6

(e
{a} Host crystal (b) /’r _
8- -0"-8 -0 1 |
[ B Bl T R |
e~ -8-0

[ B B Bt B ]
i..'......-.r.‘.“.f!T..Pla.!'.‘.s. - 7__..-_---3!--

Tedfr E-?;I P d P Bl

lamella [ 3 B B 2 Twis ‘—3 _. _,r
Cc o’
LIS s e lameda
W
. A— : (R ¢ —
o RS R T S
& -0 -0-0-80
[ B B B T
[ Bl Bl B Byl )
e~ 8@ "\__l—_:f}.s.!_ rystal I:',,_ﬂ..-'"'

Hiost orysts

[e: r?!
Twinning
directan

Fig. 2.6 Twinning of the host crystal (a) Atomic reorientation in twinned and host
crystal and (b) Part of twinned and host crystal arranged on same twinned plane called
habit plane [73].

The direction along with the atoms move microscopic step is stated as the
twinning direction and the part of twinned and host crystal arranged on same mirror

plane, is called the twin plane, also known as habit plane.
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Fig. 2.7: Planes and directions within a twin. K; represents the twinning plane also

called habit plane and Ko is the reciprocal twinning plane, P is the shear plane. #1 and
n2 are the twinning and reciprocal twinning directions [74].

In slip, each atom on the slip plane moves forwards or backwards whereas in
twinning, simultaneous motion of a huge number of atoms along #; direction on the
shear plane (P) as shown in Fig. 2.7. In twinning, atoms rearrange within the twin to
produce the accurate twin structure inside the twin [75]. The twin plane K; clearly
determines the association between host grain and twin such that it remain constant for
twinned and un-twinned crystals and the shear direction 7. There are different twinning
modes in Mg, given in Table 2.2, where individual twin classified based on
misorientation about <1120> axis rotation between the twin and un-twinned crystal.
Since c/a < 1.732 in Mg, hence during tension along c-axis, tension twins of {1012}
type form and during compression along c-axis, compression twins of {1011} and
{1013} type form. [76]. Two generally double twin systems spotted in Mg is also
outlined in Table 2.2 [77].

Table 2.2 Various twinning modes in Mg, in terms of misorientation about <1120> axis

rotation between the twin and un-twinned crystal [77].

Twin Plane Misorientation Shear
{1012} 86° 0.131
{1011} 56° 0.138
{1013} 64° 0.138
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(1011} - {1012}  38° 0.208
(1013} - {1011}  22° 0.192

At low temperatures, deformation brought by twinning plays a substantial role
in magnesium due to the greater activation stresses required for non-basal slip modes.
These deformation twins form as embryos at grain boundaries or other locations where
source defects and stress concentrations are most prevalent [78]. Deformation twin is
akey mode, particularly in Mg as the {1012} tension twin has a CRSS of approximately
33 MPa [56] (according to polycrystal plasticity modelling), making it the most easily
activated deformation mode after basal slip. Such tension twin is activated along c-axis
producing low yield stress because of high Schmid factor and low CRSS in this
orientation. Usually, compression twins are very hard attributed mostly to active aspects

of atomic rearrangement, more nucleate than tension twins [79][80].

Deformation twinning usually includes,

1) twin initiation and

i) twin development. Thompson and Millard proposed the dislocation

model using the pole mechanism for {10 12} twinning [81], where
twinning initiation site emerges from a pole formed by dislocation
reaction given as
[0001] > @ [1011] + [1010] ---=-nnnmmmmmmmmmmmmmmmemm oo (2.4)
where a value lies between 1/12 and 1/4.

However, above suggestion only justifies for twin growth in contrary to
deformation twin nucleation and growth for bce system using the pole mechanism.
Orowan [82] instead proposed a homogenecous twin embryo nucleation from the
vicinity of elevated stress concentration in the homogeneous lattice shear. Bell and
Cahn [83] gave backing to Orowan’s proposition, with their experimental results on
{1012} twin in Zn (hcp system) based on the concept of homogeneous nucleation.
Nucleation of twin arises from the concentration of stresses caused by sessile
dislocations as a result of basal and pyramidal slip interaction. In addition, Price, [84]
proposed the twin nucleation on Zn whisker which are free of dislocation at the corners
of the specimen and the specimen grips proving the mechanism of homogeneous twin
nucleation. In contrast, Mendelson [85], projected that nucleation of twin urging for

slip of non-planar dissociation. Consequently, heterogeneous nucleation of twin occurs
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at pre-existing dislocation or phase to boundaries of grain or intersection of twins. Such
inhomogeneous initiation of twin usually entails the evolution of twin seed and later
dislocation glide of zone. This sort of situation is energetically favourable owing to
lesser nucleation stresses analogous to a state of equal shear involving all planes.

The occurrence of deformation twinning process includes two important
operations i.e., atomic re-arrangement and shearing. {1012} tension twins work mainly
by re-arranging mechanisms, while {1011} compression twins are controlled by
shearing. Generally, on nucleation additional stress increment promotes twin growth,
but exclusively in {1012} tension twins, twin growth occurs with a drop in stress.
Growth of Twin needs much smaller activation stresses, prolonged through (i) growing
process along the perpendicular to the plane of twin and (ii) growth along twin length.
The mechanism of localized dislocations stated above facilitates the twin growth
process of regional dislocations [15][67][86].

In the process of twin growth along length wise twin increment rely on the
motion of {1012}<1011> twinning dislocations. However, the {1011} compression
twins that are actively unsuitable for rearranging atoms liable to create abundant parallel
strips, slender lamellae having 0.1 — 1 um thickness, devoid of exhibiting a decrease in
stress. Subsequently, the stress increases continuously during strong interaction of the
twin bands with pyramidal <c+a> dislocations. Hence, growth of {1011} compression
twins lengthwise is determined by the motion of {1011} <1012> twinning dislocations.
Shear failure occurs because the slip becomes unsuitable beside Compression twin
boundaries originating from their growth resistance.

In polycrystalline Mg, compression twins show no change in texture during
deformation owing to their low volume fraction, but very evident with tension twins.
In comparison to tension twins, compression twins are not liable to twin growth.
Correspondingly, compression twins are thin and sharp while tension twins are thick
and has wavy structure. On the other hand, twins with compression can acquaint
softening of texture whereby they can lessen the real work hardening within the twinned
material and the flow stress.

Smaller degree work hardening occurs immediately after yielding because such
twins accommodate most of the strain. But the moment twinning gets exhausted
substantial work hardening appears as slip operation takeover the deformation modes.

However, compression along c-axis accommodated most of the strain by slip showing
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hardening behaviour anticipated for deformation mainly by dislocation slip than by
compression twins because of its high CRSS. Such anisotropic behaviour of flow stress
as a function of twins is validated by crystal plasticity modelling similar tom slip, where
the twin activity is controlled by Schmid factor and a distinctive CRSS [56][87][88]
[89].

Primary {101 1} twin ___

B6.2°
Secondary {1012} |

Fig. 2.8 Representation of {1011} - {1012}double twin along the <1120> axis in the
basal planes [90].

Most of the twinning events in Mg is primarily assessed by Schmid factor values
[80]. But the formation of double-twin variants with a deviation in Schmid factor,
increases the strain compatibility with the adjoining matrix as shown in Table 2.2 and
in Fig. 2.8 [90][91]. This concludes that the twinning is understood thoroughly from
macroscopic effects, but the full conceptual understanding of twinning remains partially

known [86].

2.1.3 Detwinning

Deformation in Mg and its alloys exhibit detwinning in a twinned material apart
from dislocation slip. Detwinning can be described using microstructures based on
receding of the existing twin bands or thinning down under reverse loading. Barnett et.
al. [92], observed that during loading and unloading twins appear and disappear using

in-situ tension test investigation of twinning behaviour. The microstructure shown in
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Fig. 2.9 discuss various loading states. Twin disappears from grain 3 with increase in a
strain of ~5% and new twins forms in grain 2. On further unloading causes twins to

reappear and disappear slightly, while a new twin is also formed.

{0001}

£~0.05, unloaded
Fig. 2.9 Microstructures acquired in the course of an in-situ tensile test in various stages

of loading with direction indicated by arrows [92].
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Fig. 2.10 Variation of twin volume fraction and microstructural progression of Mg-Al-

Mn alloy during plastic deformation [93].
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Extruded Mg alloy AZ31B is evident of twinning and de-twinning through at
least 250 cycles in compression-tension cyclic loading [94]. In this case, the initial
texture resulting from extrusion is unsuitable for twin formation in tension. Eventually,
on compression the grain gets twinned such that optimum orientation achieved for
twinning or de-twinning during plastic deformation by tensile mode because the basal
planes after initial compression are parallel to the tensile axis. The stress needed for
detwinning is more than twin growth but less than twin nucleation.

Sarkar et. al. [93] observed de-twinning effect from microstructure through
plastic deformation of Mg-Al-Mn (AM30) alloy after extrusion . The deformation led
to the progression of twin volume fraction and subsequent microstructural changes
shown in Fig. 2.10 as three simple steps:

D as twin formation begins strain hardening decreases.

(IT)  higher the volume fractions of twins, drastic rise in the strain hardening due to
strong interactions of dislocation and twin.

(IT)  These interactions successively initiated the events of de-twinning causes the

twins to disappear resulting low strain hardening regime.

2.1.4 Shear Band Formation

Shear bands are areas of high strain localization, frequently crossing many
grains. The shear bands formation in Mg alloys occurs during compression and double
twinning modes of deformation [95][96]-[99]. Generally, shear band forms during
plane strain compression (highest shear stress plane) at 45° to compression direction
but also examined at angles less than +35° to the RD [100]. Shear bands are predicted
as the primary indication of localized strain and the precursor to failure.

In Mg alloys, undergoing hot rolling or cold rolling shear bands generally be
seen and degrade the formability, even at elevated temperature. Deformation
mechanisms, recrystallization, and texture are significantly influenced by the strain
localization in shear band. Mostly, the microstructure of heterogeneous nature initiated
by shear bands cannot be removed entirely after formation. Enhancement in rolling
capability can be accomplished by realization of the shear bands formation mechanism
and microstructure. Microstructurally, shear bands appear as colonies where the slip
planes within the band readjust themselves by shear direction. As a result, within the
shear band a localize plastic instability occurs exhibiting as strain softening activity.

Accordingly, shear bands initiate from mainly three techniques:
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(i) gathering of slip bands (specifically in HSFE materials) [101].

(i) localized DRX nearby grain boundaries resulting in clusters of strain free
smaller grains that can slip freely than the matrix hardened under strain
[102].

(iii)  clusters of tiny-twin strip formation (generally in LSFE materials) [101]
[103].

Mechanisms (ii) and (iii) are seen in Mg and also strongly related to the working

conditions.

Stress

Fig. 2.11 Shear band formation from the clusters of recrystallized grains [102].

Ion et. al [102], identified the mechanism (ii) in shear band formation during
high temperature deformation attributed to DRX at Mg grain boundaries owing to
unavailability of slip systems. Fig. 2.11 shows schematic procedure for shear band
formation. Fig. 2.11(a) dynamically recrystallized regions at the grain boundaries are
liable to basal slip being favourably oriented for it. Still shear along AB grain boundary
cannot occur because of restrictions from adjoining grains A and B. Subsequently, the
grain boundaries AB and CD may get broaden and unite to form single potential band
for easy slip-on additional extension in strain as shown in Fig. 2.11 (b). On further
continuous deformation causes the single potential band creates shear zones as seen in

Fig. 2.11 (c).
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Fig. 2.12 Shear band structure and {1012} — twins in 30% reduction during cold rolling
of pure Mg shown in EBSD Kikuchi band contrast map [104].

Couling and Pashak et. al. [103], pioneer in identifying (iii) mechanism of shear
band formation in Mg alloys in cold rolled condition which are soft and deformable.
Accordingly, they proposed the evolution of shear bands owing to grouping of
compression and double twins. Such clustering of twins in shear band formation often
noted in Mg-RE alloys. Barnett et. al. [104], stated such shear band formation track in
cold rolled Mg, Mg-Ce and AZ31 alloys and labelled such behaviour especially for Mg-

Ce alloy as a texture softening process.

(10-11)

(11-20)

Fig. 2.13 Shear band observed in a deformed Mg alloy with 3 wt.% Y taken from TEM-
BF images along with corresponding pole figures [96].
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Sandlobes et. al. [96], reported that shear bands constitute narrows bands with
higher density having {1011} - {1012} orientation revealed by TEM — BF investigation

as shown in Fig. 2.13
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Fig. 2.14 Shear band formation model in pure Mg and Mg-Y alloys [96]

Sandlobes et. al. [96], identified that the shear band comprise of fine twins that
are triggered due to strain localization as depicted in the shear band formation model in
Fig. 2.14 [96]. Sandlobes et. al. claimed that increased ductility in Mg-RE alloys can
be justify partially using a fine distribution of fine shear band in the deformed
microstructure [96]. In specifically, smaller accommodation of strain occurs in low
intensity shear band distributed finely leads to higher strain just before failure,
compared to strain accommodated with very large shear band in less number. Spatial
distribution of shear band is notable in estimating the ductility in Mg alloys.

The crucial parameters overseeing the mechanism of shear band are the critical
strain hardening value and suitable orientation of slip planes for shear band formation.
Coarse grained materials predicted to have higher shear band illustrating the impact of
grain size influence on the shear band formation. Shear banding is less likely when the
Zener-Holloman parameter (Z) is less in value. Tendency for shear band formation may

favour due to presence of solutes and particles [101].
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2.1.5 Effect of Grain Size

The tensile elongation to failure has pronounced effect of grain size described
by Yamashita et al. [105], where grain size reduction from 400 um to 17 pm, increases
the elongation to failure up to 15%. The ductility increases up to 55% at room
temperature during ECAP of AZ61 alloys reported by Kim et al. [106]. Annealing
treatment after ECAP technique observed increases the ductility more than 40% in Mg
at room temperature by Mukai et al. [9]. Plastic deformation carried out only by basal
slip system and twinning mechanism, then such larger values of elongation not possible
to achieve.

Mg alloy bearing coarse grain have a off-basal CRSS of nearby 1.1-2.5 times
more compared to a basal slip [55]. Rolled AZ31 alloy possess a CRSS ratio of 2-2.5
and around 14 pm grain size observed by Agnew and Duygulu [54][107] established
the prismatic plane's slip system's CRSS ratio in relation to basal slip system to be
nearly 1.5 according to the Schmid factor in relation to the loading direction. The CRSS
ratio of the prismatic slip system to that of basal slip system around 1.5 based on Schmid
factor as a role of loading direction established by del Valle et al. [107].

Both grain size and texture influence the ductility of Mg. Koike et al. [55]
observed that grain size decides the ductility as very low stress is required for basal slip
to enable microscopic yielding in a large size grain. Hence, activation of other slip
systems is necessary for any additional deformation. Moreover, grain boundaries and
triple junctions [108] experiences the stress concentration due to inhibition for slipping
by many basal dislocations as Mg possess strong plastic anisotropy. As a result, small
grains experiences activation of off-basal slip system and bigger grains twin formation.
In Mg alloys, reduction in the grain size decreases activity of twins owing to reduction
in work hardening was identified by Barnett et al. [109]. Strain suitability (numerous
microns from GB) at grain boundary could be liable for the improved cross-slip from
plane of basal to non-basal observed by Koike et al. [55]. Sliding of grain boundaries
at room temperature could be additional feasible mechanism for improving ductility in
Mg alloys reported by Hauser et al. [110] in for Imm grain. Further, Koike et al. [111]
reported that the sliding by grain boundary adds around 8% of strain relating to total

strain.
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2.1.6 Evolution of Texture

To explore deformation mechanisms, texture evolution and reproduction of the
stress-strain behaviour could be authoritative means. Simulations on the experiment
carried out in uniaxial tension and compression deformation behaviour [112][113] to
show the movements of off-basal slip systems. The rolled Mg alloy under uniaxial
deformation reported that The off-basal to basal slip's CRSS ratio was 5 — 6 [112] and
2-3[113].

The variation in strain as a function of orientation can be used for evaluating the
deformation mechanisms by neutron diffraction [112]. The variation in experimental
strain could be repeated by the activation of <a> slip of prismatic along with existing
the predominant basal <a> slip under tension was shown with the findings of Hauser
et al. [110]. Likewise, activation of <c+a> slip of pyramidal in compression in spite of
smaller contribution [112].

Simulation of Viscoplastic self-consistent (VPSC) modelling [114] was
executed by Agnew et al. [88], on casted Mg alloy under the plane-strain compression.
In this simulation, the movement of <a> slip of basal, <c + a> slip of pyramidal and
twin formation modes of potential deformation mechanisms were assessed by matching
the investigational stress—strain curves and X-ray pole figures [114]. Correspondingly,
the activity of basal slip in relation to the off-basal slip was 3-17, indicating utter need
for the beginning of <c+a> slip in the given deformation components. Moreover,
twinning mode of deformation was primarily active but subsequently restored with
pyramidal <c+a> slip. This pyramidal <c+a> slip activities increase with alloying
additions, conforming with the CRSS determined for single crystal Mg—Li alloys [115].
Perez-Prado et al. [116], expressed that the hot rolled AM60 alloy displays the texture
progression in line with the findings observed by Agnew et al. [88], Visco-plastic Taylor
model [117], used to identify the deformation modes accountable for the texture
development in wrought AZ31 alloy during cold rolling by Styczynski et al. [118]. This
simulation derives the CRSS ratio value 3 for the ratio of non-basal slip to the basal
slip. In addition, prismatic <a> slip and pyramidal <a> slip was incorporated during
the simulation in contrary to the simulation by Agnew et al. [88].

The CRSS ratio value off-basal slip to basal slip in the above simulations for
identifying the deformation mechanisms accountable for the evolution of texture
remarkably smaller than already investigated single crystal CRSS ratio (100:1). The

relative simulated activities of slip systems were conforming to the experimental data
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in Mg alloys [46][53]. The polycrystalline Mg alloys bearing coarse grain (>6.5um)
have the CRSS ratio of the slip of non-basal to basal slip about 1.1 —2.5 [55]. The CRSS
ratio of about 2 — 2.5 determined for the deformed samples of AZ31 alloy having 14
pum grain size under cold rolling by TEM analysis executed by Agnew et al. [54]. Ruano
et. al. [107], confirmed the CRSS ratio value obtained from division of that for the
prismatic slip by the basal slip nearly 1.5 depends on the Schmid factor along the

loading direction.

2.2 Restoration Mechanisms

Deformation of a materials causes to increase the numbers of defects especially
dislocations in the crystal structure such that the stored energy of the system increases
steadily. The driving forces required to reduces this free energy done by specific process
such that the defects eliminated. These processes are referred to as restoration
mechanism and are classified as recovery, recrystallization, and grain growth. The
restoration processes are termed as dynamic, when occur simultaneously with the
deformation and as static, when occur during annealing treatment [119]. These
softening mechanisms cause substantial change in the behaviour of deformed materials.
During deformation of materials such softening mechanism exhibits the dynamic
processes in the flow curves.
Recovery: Recover process shows many dislocations rearrange themselves along low
energy configurations such that annihilation occurs reducing the stored energy of the
system [119]. This rearrangement usually forms cell or sub-grain walls.
Recrystallization: Recrystallization leads to forms completely new grains enclosed by
HAGBs and consisting of a low defect density [119]. Recrystallization occurs due to
various nucleation mechanism of new strain free grains.
Grain growth: Grain boundaries are considered as defects and more the grain
boundaries fractions more will be defects thereby increasing the stored energy of the
materials. Grain growth acts as a driving force to decrease the number of grain
boundaries fractions generating larger grain size. Grain growth is followed once
complete recrystallization occur and hence considered as less prominent than recovery
and recrystallization. [119].

The tendency of most materials goes through restoration mechanism either
recovery or recrystallization generally based on the stacking fault energy (SFE). High

SFE materials experience recovery extensively because of easy movement of
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dislocation (climb and cross-slip) e.g., Al or ferritic steels and even eliminate maximum
stored energy to halt recrystallization. Low SFE materials experience less recovery and
high level of recrystallization due to delay in dislocation climb or cross-slip e.g., Cu or
Ni [119]. But the SFE values for Mg most cited as 78 mJ/m?and 125 mJ/m? [120] such
that Mg has regions with low SFE and medium to high SFE respectively.
Correspondingly, it becomes doubtful whether Mg should go through recrystallization
or recovery. Somekawa et al. [121] stated that additions of solute to Mg alloy reduce
the SFE effectively from 78 mJ/m? to 5.8 mJ/m? for Mg-9wt.%Al alloy. But similar
tendency with other solutes in many of Mg alloys, may or may not impact on the SFE.
The mechanisms of recovery supplement the process of recrystallization by reducing
the stored energy which helps in emerging the potential nuclei and also enhances the

nucleation as it reduces the growth rate. [122]

2.2.1 Recovery in Mg alloys

As the dislocations density and the temperature are adequately high, then
recovery occurs. Koike et al. [55] reported that DRV observed in AZ31 alloys during
deformation at room temperature, usually should appear at higher temperature
deformation. Accordingly, many investigations on various Mg alloys reported about the
recovery and formation of sub-grain boundaries during and after higher temperature
deformation [102][116][123][124]. The density of dislocations within the grains
increases during deformation, thereby the stored energy increases. Thereafter recovery
proceeds by rearranging dislocations in low energy configurations causing annihilation
of dislocations resulting in the stored energy reduction. The mobility of dislocations
during recovery process proceeds by glide, climb or cross-slip varying based on the
material type and temperature. Dynamic recovery especially is based upon the stress
conditions. Every dislocation is exposed to stresses arising from adjoining dislocations
but in dynamic recovery due to the applied stress. Consequently, these dislocations
traverse through the structure, they encounter other dislocations of opposite sign
resulting in annihilating each other. Accordingly, the overall dislocation density will be
reduced, left out with a smaller number of dislocations. Such dislocations continue to
travel through the materials to obtain the potential lowest energy configurations. As a
result, the dislocations appear at LAGBs such tilt boundaries, while in other complex
polycrystalline, the dislocations will generate sub-grain boundaries and cell walls. On

further recovery, cell walls lose the entanglement of dislocations causing decline in
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dislocations inside the cells, transforming into more distinct sub-grain boundaries
comprising of regular arrangement of dislocations [119][125].

The sub-grains formation at the grain boundaries results into serrated grain
boundaries in the final microstructure. However, Mote and Dom [126] identified that
the serration in grain boundaries are the resultant of slip on basal planes having regular
spacing observed in Mg-3wt.%Nd alloy. Hence, the existence of serrated grain
boundaries is not a symbol of recovery initiated sub-grain formation.

2.2.2 Recrystallization in Mg alloys

Recrystallization phenomenon is a process of regenerating microstructure by
nucleating strain free grain in a distorted matrix and subsequently grows at the cost of
the adjoining matrix being completely exhausted. The stored energy in the matrix due
to dislocations pile-up during deformation is the driving force for recrystallization.
After deformation or during deformation causes recrystallization to appear.
Recrystallization after deformation may occur owing to annealing of cold deformation
(also called static recrystallization (SRX)) or due to cooling of hot-deformed product
(after DRX). DRX stands for dynamic recrystallization, which is the occurrence of
recrystallization during deformation. These DRX categorize as discontinuous and
continuous. Discontinuous DRX (DDRX) initiated at localized manner near the
deformation characteristics such as shear band, grain boundaries, second phase particles
etc. Continuous DRX (CDRX) occur throughout the microstructure in homogeneous
manner, as if recovery effectively being extended. Generally, DRX in Mg is observed
very commonly rather at low deformation temperatures T > 400°K. The activation
energy of DRX is dependent on stacking fault energy (SFE) of a material. High rate of
DRX decided by low SFE of a material owing to easy dissociation of dislocations into
partials that prevents cross-slip. As the cross-slip hindered recovery becomes difficult,
consequently DRX occur due to availability of high stored energy.

Despite similar SFEs in Mg and Al [119], DRX is very frequently observed in
Mg than in Al. Stress concentration in the materials is mainly responsible for DRX in
Mg due to strong crystallographic textures along with anisotropies in slips and twins.
Consequently, the degree of dislocations and stored energy enhances in the
microstructure especially at grain boundaries where opposing stress values are highest
between adjoining grains. Such sites permit the occurrence of DRX at relatively low
temperatures due to high stored energy. On contrary, in Al the strain concentration is

comparatively lower and subsequently the deformation roughly uniform along with
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high SFE that avoids DRX. Most of the Mg alloys that processed in industries
experiences substantial DRX which encompasses the growth of nuclei or grain. The
deformation mechanisms are crucial in producing the stored energy in the deformed
microstructure that help DRX to arise and subsequently the DRX mechanism controls
the nucleation of texture components. Therefore, clear understanding of the nucleation

mechanisms of DRX along with corresponding texture evolution becomes critical.

high-angle
grain boundary ~———___

Fig. 2.15 Growth potential of a recrystallization nucleus within a deformed structure
[41].

On contrary to solidification, recrystallization ideally does not include the
nucleation conventionally but can be explained by a process of continuous growth in
grain size in which the nucleating embryo for recrystallization remains stable in relation
to adjoining in all steps of growth. This indicates that the deformed substructure already
contains the nuclei. Nevertheless, the possibility of attaining critical size for
recrystallized embryo so as grow as desired grain depends on 3 main instability criteria
[41][127] as seen in Fig. 2.15

(i)  The thermodynamic instability criterion: Despite growing larger, the nucleus's

Gibbs free energy is seen to decrease as it gets bigger. Mathematically, the

critical size of the recrystallization nucleus that introduce instability; 7. =

2y/pGb?, where y = surface energy, pGb? = the stored energy of dislocations
(1) The mechanical instability criterion: The driving force behind the grain

boundary's movement in a particular direction depends on localize disparity

arising due to heterogeneous dislocation densities and variations in sub-grain

sizes.
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(i) The kinetic instability criterion: The nucleus definitely should have high angle
boundaries i.e., difference in the orientation in relation to its adjoining is greater
than 10°- 15°, so that it remains mobile during the growth process.

A nucleus cannot progress into the typical growth regime unless the aforementioned

three requirements are met.

2.2.2.1 Recrystallisation Mechanisms of Nucleation
Several nucleation mechanisms of recrystallisation in Mg alloys bring about
variations in recrystallization textures and microstructures. In the following we

consider each mechanism and the texture components they nucleate.

2.2.2.1.1 Grain Boundary Nucleation
Activation of non-basal slip mechanism accommodate substantial extent of
plastic strain in localize manner at grain covered regions beside the grain boundaries
causing new fine grain nucleation surrounding the original grain boundaries, as shown
in Fig. 2.16 [102]
{
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Fig. 2.16 DRX at grain boundaries after deformation [102]

33



Fig. 2.17 (a) DRX process shows serration at grain boundaries resulting in (b) smaller
stress free grains [128].

Generally usual wrought alloys experience such dynamic mechanism of
recrystallization. Such nucleation of recrystallization at grain boundaries is of sporadic
nature initiated by bulging mechanism of grains. As the deformation increases,
fluctuations along the grain boundary become evident resulting in serrations and bulges
that alter into strain free new grains as seen in Fig 2.17.

Al-Samman et. al. [128], identified a necklace structure at grain boundaries due
to bulging phenomenon of highly deformed grains in AZ31 alloy exploring DRX
mechanism. Such necklace structure formed newly around grain boundaries are having
5° to 20° of misorientation. Necklace formation during recrystallization is evident by
other mechanism in addition to bulging, mainly due to substantial incoherency in the
orientation of recrystallized and parent grains. The primary mechanism for necklace
formation was ascribed to rotational DRX (RDRX) [129], due to high localized lattice
rotations in the regimes of grain boundaries.

Rotation of lattice generally develops from the sub-grain formation near pre-
existing grain boundaries during deformation resulting into a constant rise in the
disorientation till a HAGB is achieved.

At some point, a certain orientation shows a stronger propensity to rotate in
relation to their grain boundary. The majority of polycrystal grains exhibited tilt or twist
grain boundary characteristics, but when external force was applied, the grains
concurrently rotated their twist characteristics and migrated their tilt character impacts.
Depending on the angle formed by the stress direction and the normal of the grain
boundary plane, the degree of grain rotation may increase or decrease. Such events can

also occur during static annealing using movement of high angle boundaries.
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2.2.2.1.2 Sub-Grain Boundary Migration

The recrystallization nuclei forms attributing to sub-grain boundary movement
via deformation zone along with pile-up of misorientation or merging of sub-grains
resulting in high angle grain boundaries formation [130]. These mechanisms of
nucleation are occurred with extensive recovery and formation of sub-grain. Galiyev
et.al.[123] identified that during deformation of ZK60 alloy at lower temperatures

(higher Zener (Z) values) above types of recrystallization gets activated.
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Fig. 2.18 Meyers et. al [129] model of rotational DRX (RDRX) mechanism
Al-Samman et. al. [131] additionally reported the occurrence of such
recrystallization based on recovery in single crystals of Mg. The recovery develops by
two mechanisms viz. migrational and rotational depending on both static and dynamic
circumstances. These mechanisms of recrystallization usually result in retaining of the
deformation texture and takes place regularly in pure Mg. This mechanism designated
as rotation recrystallization mechanism as shown on Fig. 2.18, similar to grain boundary
nucleation mechanism for recrystallization. Occurrence of such rotation
recrystallization mechanism necessitate the presence of non-homogeneous deformation
to develop essential orientation gradients such that part of the parent grains rotated

creates new grains.
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2.2.2.1.3 Shear Band Nucleation (SBN)

Different types of shear band nucleation sites are observed in Mg for
recrystallization. Kink bands are one of relevant type formed in the grains which are
weakly oriented for slip of basal plane [102], and the twin shear bands occur in the

regions experiencing twinning phenomenon [132] or double twinning [103].

v SB o~ (b)

Fig. 2.19 Nucleation of recrystallized small grains inside shear bands in the TEM
micrograph [133]

Generally, the microstructures of shear band are very heterogeneous showing
huge spread of internal orientation. As seen in Fig. 2.19, this heterogeneous dispersion
is what creates new grain nucleation sites across a wide range of orientations, with just
a small number deforming differently from the typical texture. Shear band mechanism

of recrystallization nucleation has critical role in Mg-REE alloys [98] [134].

2.2.2.1.4 Deformation Twinning Nucleation (DTN)

Deformation twins are appearing as nucleation sites for recrystallization having
substantial potential to adjust the recrystallization texture. This happens because of
more rotations related with fresh orientations corresponding to the orientation of matrix
of deformed structure brought by using different range of primary and secondary

twinning. These recrystallizations are studied extensively which nucleate inside the
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deformation twin and at the intersections of twin-twin or twin-grain boundaries. [46]

[99][128][131][135][136].
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Fig. 2.20 DRX inside twins in AZ31 alloy in (a) SE mode of SEM and (b) Optical
images [128]

AZ31 alloy shows an example of DRX within twins as in Fig. 2.20. Few studies
[99][135] outcomes on the effectiveness of nucleation sites within twins for
recrystallization and their nature of twin is either tensile or contraction and twin
generation of either primary or secondary determines the contribution for texture

evolution

primary particle

zone of high stored energy def & inboraatinial
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Fig. 2.21 (a) Zone of Deformation around the particle [120]; (b) finely recrystallized

grains forming next to the particles [137]
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2.2.2.1.5 Particle Stimulated Nucleation (PSN)

Particles of actually small size in large quantity can pin grain boundaries and
impede recrystallization, However, as Fig. 2.21 illustrates, particles in a different phase
that are larger than about 1 pm can actually act as nucleation starting sites for
recrystallization. [119]. PSN has been regularly recognized in Mg alloys present large
number of nuclei oriented discontinuously such that poor recrystallization textures
[138][139]. PSN recrystallization mechanism is in race with other mechanisms in Mg
alloys. Contribution of PSN to the recrystallized microstructure is usually less in
reference to the volume fraction. In few situations, PSN recrystallized grains fully affect
the bulk texture and manage the microstructure. Even though PSN grain growth usually
has a negligible volume fraction contribution to the microstructure of recrystallized
material, there are situations in which it becomes dominant and greatly affects the bulk
texture as a whole. [137]. Robson et.al [140] presented studies broadly carried out on
recrystallization due to the particle effects in Mg-Mn alloys such that PSN appeared
prominently along clusters of particles rather than coarse particles seen as individual.
Such PSN of recrystallization behaviour ascribed to higher misorientation on
cumulative basis along clusters of particles in comparison with individual coarser
particles. Further, the recrystallized grains nucleated by PSN mechanism are smaller in
sizes while from other mechanism e.g., HAGB nucleates coarser grains. The
effectiveness of PSN on weak random textures during static recrystallization is evident,
but not seen in dynamic conditions. Ultimately, the potential for weak texture during
static annealing was linked to the mechanism of strain-induced boundary migration,

and PSN's influence on the final texture is negligible.

2.2.2.2 Microstructure Evolution during Recrystallization in Mg alloys

Hot processing of most viable Mg alloys manufactured to semi-finished
products can be interpreted by the texture evolving mechanisms. Consequently, major
studies in the literature are more focussed on recrystallization and grain growth to
interpret the DRX behaviour and the corresponding texture evolution in wrought Mg
alloys. Barnett et. al. [141] a studied wrought AZ31 alloy and reported on
recrystallization in static and dynamic conditions on the subsequent grain size
distribution and evolution of texture. This study identified that the kinetic of DRX were
driven by the deformation condition rather than the starting texture. DRX would be

incomplete at higher Z (Zener-Holloman parameter) values, but entirely recrystallized
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microstructure was attained at lower Z values. A complicated relationship involving the
Z value and the size of final grain achieved during the annealing of partially DRX

samples. The resulting observations and corresponding conclusions were initiated:
a) Low Z values: The influence of Z on the microstructure was not significant,
hence the initial grain size during DRX is slightly smaller than the final one. As

a result, the specimens go through grain growth after experiencing full DRX.

b) Intermediate Z values: Abnormal grain growth is generally evident generating
the coarsest grains. Around ~80%-95% grain in the microstructure attained

DRX, while the remaining not yet undergone DRX before annealing process.

Later static annealing causes desirable recrystallized grains to grow beside the

deformed regions and in-turn consume these deformed grains for the growth of

recrystallized grains. The moment recrystallized grains growth is interrupted,
then abnormal grain growth occurs for the newly grown grains.

¢) High Z values: Considerable amount of non DRX regions available prior to
annealing and hence go through static recrystallization on resultant heat
treatment. As the Z value increases, then the overall number of sites for
nucleation increases, subsequently size for final grains would continue
decreasing.

The annealing treatment shows negligible response qualitatively toward
deformation texture except texture weakening.

Cottam et. al. [142] reported comparable interpretations studied on pure Mg and
Mg-Y alloys regarding DRX texture reduced the intensity of texture but no effect on
deformation texture. The deformation conditions control the evolution of DRX texture
in place of special circumstances of nucleation or growth.

Gottstein et. al. [143] also reports similar analogy of no effect of static
recrystallization on deformation texture but decreases the texture intensity in pure Mg
and AZ31 alloy. The recrystallization process considered as continuous usually where
extended recovery occurs because of no qualitative changes in the crystallographic
texture as compared to deformation texture. The progression of recrystallization during
annealing process is discontinuous in Mg alloys shown by nucleation and growth in the
microstructural evolution like fec metals. (0001) fibre texture occurs due to the activity
of two basal slip system mainly i.e., <1120> (0001) and <1010> (0001) systems. Since
the basal plane show 6-fold rotation symmetry, then the changes in texture due to

recrystallization are very tough to examine by macrotexture analysis.
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Fig. 2.22 (a) Together with IPF scatter data, green recrystallized grains predominate
over blue deformed grains with a misorientation of 30" <0001> in magnesium. The
distribution map of grain boundary misorientation (b) displays the maximum
misorientation at 30°. [143].

The discontinuous behaviour of recrystallization in magnesium with a
misorientation of 30° <0001> connection involving the recrystallized and deformed
grains is validated by the EBSD study shown in Fig. 2.22. Liicke et. al. [144] reported
similar results earlier regarding nucleation of recrystallized grain boundaries having
misorientation of 30° <0001> with deformed grains preferentially in pure Mg.
Nevertheless, such preferred orientation was unpredictable either because of preference
in oriented nucleation or during oriented growth develops at competitive stage.

The annealing procedure was carried out on rolled AZ31 alloy at temperatures
of 200° C, 300° C, and 400° C by Jager et al. [137]. Incomplete recrystallization
resulted in very low fraction at 200° C that probably nucleating at the neighbourhood
of twins and twin intersections. Within the first two minutes of the annealing process,
the AZ31 alloy achieved complete recrystallization at 300° C. Grain growth then

started, with the triple junctions progressing to the equilibrium order of 120°. Grain
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growth is influenced by the twins in a way that makes growth at the twin boundaries
more stable than elsewhere.

The twin boundaries most likely act as preferred sites to nucleate recrystallize
grains, accordingly despite being low temperature ~ 150°C - 200°C twin boundaries
are first to recrystallize. Annealing process at 400° C results into complete
recrystallized microstructure developed at a holding time of 60 seconds. After static
recrystallization at 400°C, the texture revealed of huge spread of asymmetric and
significantly weaker intensities. The initial texture along basal plane in as-received

specimen exhibit along TD while the recrystallization texture display along RD

predominantly.

(a)

misorientation angle distribution

200 pm

Fig. 2.23 Twinning behaviour in Mg single crystals at 200 °C [131].
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Fig. 2.24 At 370°C, single crystals of magnesium exhibit distorted and double DRX
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textures. [131].

Al-Samman et. al. [131] examined the DRX activities under c-axis compression
in single crystals of magnesium. Around 200°C, there was a lot of twinning in the
deformation microstructure, with main {1011} and {1013 }compression twins passing
through secondary {1012} tension twinning as noticed in Fig. 2.23(a) generate
preferential orientation for basal slip as seen in Fig. 2.23(c). The misorientation
relationship between LAGB and HAGB being in the range of 80° - 90°.9 as depicted in
grain boundary maps in Fig. 2.23 (b). The HAGB related to the double twinned regions
generally made of primary compression twins and secondary tension twin having
misorientation relationship. These twinned regions go through recrystallization
completely, where the new grain maintain the orientation of parent compression twin
about c-axis having misorientation angle of ~56°+£5° with the host grain along the
[0001] direction as seen in Fig. 2.24 (a)-(c). The DRX mechanism within the twins
pursued the continuous recrystallization process, where intense recovery causes HAGB
formation so that strain free new grains are generated as seen in Fig. 2.24 (d) & (e). The
DRX grains within the twins exhibited their c-axes rotation randomly developing fibre

spread involving [1210 ] and [0110] axes.
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Fig. 2.25 Representation of immediate slip instigated lattice rotation and break up while
DRX in twins of compression and double respectively [145].
Further investigations by Molodov et. al. [145] reported the activity of prismatic
slip responsible for the DRX in twins causes simultaneous fragmentation of twin and

rotation of the lattice surrounding the grain c-axes, as depicted in Fig. 2.25

2.2.2.3 Progression of Textures of Recrystallization

The texture of recrystallization mainly based on (i) the orientations of the new
nuclei or sub-grains, and (ii) the relative nucleation and growth rates of the newly
formed grains. Accordingly, two main possible models for the estimation of texture

development during recrystallization [127].

Theory of orientation-based nucleation:

A particular orientation intensifies for nucleation quicker than other orientations
and hence control the orientation distribution finally. Consider P as preferred
orientations for the nuclei fraction and R as random orientations (except the preferred
orientations) for the nuclei fraction, then for orientation-based nucleation will have
P/R>> 1. Moreover, the abovementioned principle is similar to grain frequency
parameter provides the most repeatedly appearing orientation required for nucleus.
Difficulty in predicating the nucleating orientations appears as a limitation of this model

[127].
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Theory of orientation-based growth:

Some orientations of recrystallized exhibit a distinct relationship of
misorientation referring to the deformed host grains which devour the matrix quicker
than others so that the selection of growth mechanism conforms to grain boundaries
with ~ 40°<111> as seen in fcc systems regularly [146].

Similar analogy applied to Acp systems where the recrystallized grains
experience misorientation of 30°<0001> or 90°<1010> with the deformed host grains
are recognized to grow preferentially than the others [144]. This theory states as a grain
size effect. Consider ‘Ps’ and ‘Rs’ as the average grain size pertaining to Preferred
orientation and non-preferred orientation respectively, then Ps/Rs >> 1 [127]. Efforts
have been made to hypothesise the essential mechanisms that evolve in a situation

where the criterion, Ps/Rs >> 1 is met.
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Fig. 2.26 Pinning and variant inhibition [127].

Pinning based Orientation: As the grain grows, then it starts meeting numerous
grain boundaries having different values of misorientation as showed in Fig. 2.26 (a).
In this process suppose a grain encounters a region having similar orientation, then it
will form LAGB in the deformed materials and consequently its movement will be
significantly reduced, thus slow down its growth. On the contrary, some of the
orientations meet very few similar orientations and consequently such grains
orientation grows relatively quicker than other grains [147].

Types of Inhibition: The deformation of grains takes place parallel to extrusion
direction in plane strain deformation conditions so that deformation bands of stable
orientation initiate along processing direction as observed in Fig. 2.26 (b). The resultant
microstructure illustrated by LAGB between adjacent deformed bands. Such
components of deformation texture initiate the grains that are not capable of thickening

and cause strong inhibition for growth across normal directions. Many nuclei grow in
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a single deformed orientation despite having diverse orientations, hence the growth
rates are determined by the misorientation brought on by the deformed matrix and the
stored energy. On contrary, the nuclei growth rates consist of variation in misorientation
with the deformed grains depicted as compromise growth because the nuclei growth
occur in number of deformed grains. Both competitive and compromise types are
furthermost growth types. In actuality, the first growth stage is identical to the
competitive type, and the growth stage shifts to resemble a compromise growth as soon
as the nucleus develops beyond the deformed grains (i.e., when the diameter of the
nucleus is equal to the smallest grain deformation dimension). Identifying growth based
on orientation from oriented based nucleation is difficult in practical scenario. Besides,
the preferred orientation relationship develops a temporary parameter as the grains

continues to grow in new adjacent regimes [148].

2.2.2.4 Grain Rotation during Recrystallization

The recrystallization texture in Acp metals is associated with rotations of ~30°
about the <0001> axis and ~90° about <1010> [149]. Gottstein et al. [150] identified
that the recrystallization texture in Mg alloys sample is same to the deformation texture.
Such predominant texture remains unchanged even though some other components are
developed during annealing at temperature greater than 400°C. Suwas et al. [151] and
Wagner et al. [152] independently made similar interpretations on TizAl and Ti
respectively, wherein the texture development during static recrystallization appears
rather slow. Based on these findings Biswas et al. [153] reported that during static
recrystallization the deformation texture remain unchanged for pure Mg processed by
ECAE. The texture of recrystallization is determined by the orientation of the newly
produced grains and the relative speeds of their nucleation and development. Retaining
of the texture of deformation can be done either by substantial recovery and
polygonization process or by the nucleation process of grains that gets oriented afresh
during deformation. Gottstein et. al. [150] identified that during annealing of AZ31 and
AZ61 alloys, growth occur preferentially by rotation at 30° along {0002} axis from
<2110> to <1010>. Since the texture components shift from 2= 0° or 60° to @2 = 30°
and finally @1 = 30°, then 30° rotation observed in the ODF plot in ¢ = 90° section of

the Euler space.
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2.3 Magnesium Rare Earth (RE) alloys

Mg alloyed with rare earth (RE) elements usually incorporate La, Ce, Nd, Eu,
Gd, Yb and Y. Primarily Mg with added RE elements impart strengthening through
solid solution and creep resistance at elevated temperatures [154][155]. Poor textures
and decreased yield anisotropy of RE alloys were initially informed by Ball and
Prangnell [139], following studies have explained substantial enhancements in ductility
also appear with RE addition [17][18][156]. RE elements belonging to lanthanide group
elements having alike physical and chemical properties bearing atomic numbers (Z)
from 57 to 71. They are classified into mainly two subgroups such as (i) Light REs
include all the elements beginning with Lanthanum (La, Z=57) to Europium (Eu, Z=63)
and (ii) Heavy REs involving Gadolinium (Gd, Z=64) to Lutetium (Lu, Z=71) along
with Yttrium (Y, Z=39). A typical thumb rule about REs in Mg says that ‘light” REs
usually exhibits low solubilities, while the ‘heavy’ REs displays high solid solubility.
The solid solubility of REs can be explored by heat treatment such that Mg-Nd alloys
exhibit huge reciprocation to age hardening succeeding by Mg-Ce alloys, while Mg-La
alloys display nearly no response to age hardening owing to the less solubility of La in

Mg [154].

2.3.1 Phase Transformations in Mg-REs alloys

There are number of variety of phases in Mg-RE elements alloys potentially
formed common to all such as Mgi:RE, MgisRE;, MgsRE or Mg:RE phases.
Nevertheless, the clarity about such phases in terms of type or form possibly nucleating
under a particular solidification condition. e. g., in the Mg—Nd system, speculation
about the phase Mgi2Nd is either an equilibrium or metastable phase. Similarly, in Mg-
La system the phase Mgi2La forms oppositely to Mgi7La,. Therefore, to identify the
influence of RE element adding on the properties and processing of these alloys
necessitate the urgency to obtain a few backgrounds about the phase transformations
arising in such alloys. In this section, the phase transformations of binary Mg-Ce alloys
will be represented. An extensive information on the Mg-RE element alloy system

pertaining to their physico-chemical properties is reported for further reference [154].

2.3.2 Mg-Ce Phase Diagram
The Mg-Ce phase diagram as seen in Fig. 2.27 is characterized by presence of

six intermetallic systems such as Mgi2Ce, Mgi7Ce>, Mga1Ces, MgzCe, Mg2Ce and
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MgCe phases. Majority of the phases are formed by peritectic reaction except MgsCe,
which is consistently melting compound. Eutectic transformations of two occur on both
the Mg-rich and Ce-rich ends, along with these eutectoid transformations showing as

Mg,Ce 2 a-Mg +MgiCe and  5-Ce = y-Ce + MgCe
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Fig. 2.27 Mg-Ce phase diagram [157]

According to the literature, the two compounds Mg3;Ce, Mg>Ce and MgCe are
very clear effectively. Mgi2Ce displays true orthorhombic crystal structure [158]. At
the eutectic temperature of 590°C in the Mg-rich side displays Ce to 20.5 wt% at the
eutectic point. From the resistivity experiments, the solubility of Ce solid in Mg found
to be maximum of 0.74 wt.% at 590°C but decreases lowest about 0.04wt.% at 200° C.

The solid solubility of Ce in Mg is 0.06 wt. % and 0.08 wt. % at 300° C and 400° C
[154].

2.3.3 Texture Alteration in Mg alloys: Effect of RE Element addition

During deformation and recrystallization alteration in textures is acknowledged
to RE elements addition in Mg alloys. Such changes in textures due to RE element
during deformation is primarily noticed in along with simultaneous DRX. The intention

of RE element addition in Mg for the first time was primarily required to enhance solid
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solution strengthening and impart creep resistance in the system. The development of
weak textures and decreased plastic anisotropy in RE element added alloys containing
Y reported 3 decades before. Similarly, in another RE element i.e., Nd addition induced
large random type textures in contrary to usual Mg alloy during extrusion deformation
process. Enhanced texture randomization effectively decreases the large asymmetry
occurs during tension — compression which essential for improvement in formability
by controlling the texture. Recrystallization based on PSN was attributed for the
randomized texture exhibited in these WE alloys loaded by large addition of Y and RE
elements. [139][159]. Enhancement of PSN for recrystallization due to addition of RE
element is not yet established. Nevertheless, the contribution of PSN mechanism for
recrystallization is comparatively very low (~1%) to the overall texture usually
contemplated as negative feature as a sole mechanism. Even though PSN mechanism
of recrystallization induced weakening of texture was ascribed to suitable growth of
PSN orientations [137].

During deformation and recrystallization alteration in textures is acknowledged
to RE elements addition in Mg alloys. Such changes in textures due to RE element
during deformation is primarily noticed in along with simultaneous DRX. The intention
of RE element addition in Mg for the first time was primarily required to enhance solid
solution strengthening and impart creep resistance in the system. The development of
weak textures and decreased plastic anisotropy in RE element added alloys containing
Y reported 3 decades before. Similarly, in another RE element i.e., Nd addition induced
large random type textures in contrary to usual Mg alloy during extrusion deformation
process. Enhanced texture randomization effectively decreases the large asymmetry
occurs during tension — compression which essential for improvement in formability
by controlling the texture. Recrystallization based on PSN was attributed for the
randomized texture exhibited in these WE alloys loaded by large addition of Y and RE
elements [139][159]. Enhancement of PSN for recrystallization due to addition of RE
element is not yet established. Nevertheless, the contribution of PSN mechanism for
recrystallization is comparatively very low (~1%) to the overall texture usually
contemplated as negative feature as a sole mechanism. Even though PSN mechanism
of recrystallization induced weakening of texture was ascribed to suitable growth of
PSN orientations [137]. Texture modification also identified even though for a very
small addition of RE element (~1wt.%) both in term of quantitative and qualitative

aspects in later studies. Bohlen et al. [17], studied variations in the additions of Zn and
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RE element in six Mg alloys. According to their studies, RE element containing alloys
has lower levels of total textural intensity and the strength of basal pole aligned with
ND of sheet compared to conventional alloys. Moreover, this investigation also
revealed that the anisotropy got reversed for the yield strength and consequently the
planar anisotropy decreased to » ~ 1 than compared with the conventional Mg alloy

sheets.

Full EBSD map

Fig. 2.28 The <1121> directions of shear band orientations parallel to ED in Mg-REs
[98].

Both features modify the texture in the Mg—Zn—RE alloys, where large number
of grains are placed in suitable orientations to be slipped in basal plane and tension
twins. Stanford and Barnett carried an extensive investigation [98], where it was
revealed that the RE element additions resulted in specific texture component along the
<1121> directions parallel to ED in hot extruded Mg alloys as observed in Fig. 2.27
The texture component was conceived as ‘RE-texture’. Emergence of then RE-texture

was ascribed to collective effects of oriented nucleation in kinetics of retarded
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recrystallization and in shear bands. In contrast, texture alteration in Mg-Zn-Ce (ZE10)
hot-rolled alloys [134] during recrystallization by shear band was ascribed to suitable
growth of texture features rotated by ~45° in TD shown by the pole figure data in Fig.
2.28

".v-f’_'”"r? :v'
NE A b5
T 3
(5. Ea-

g b

Fig. 2.29 ZE10 alloy, Recrystallization by shear band in the hot rolled after annealing
at 400°C for (a) 60s and (b)180s, induces suitable growth of texture features rotated by
~45°in TD [134].

Hantzsche et al. [160], reported the investigation of the Mg alloys sheets
revealed that sheet textures get weaken due to enhancing the content of Ce, Nd, and Y
such that shear bands appears consisting of double twins and compression and the
constraint of grain growth through annealing latterly. Nucleation within compression
and double twins deviated primarily from basal orientations stimulate alteration in
texture potentially during subsequent recrystallization. Finally, the inclusion of RE
elements in wrought Mg alloys provide an opportunity to control the textures.

The manifestation of the literature recommends weakening of texture in Mg alloy
ascribed to following main roles of REs:
(i) Changes in the SFE of the Mg matrix features rotated by ~45° in the TD shown

by the pole diagram data in Fig. 2.28

(i1) Produces particle pinning or solute drag effects during deformation and
recrystallization.
However, the definite character of interaction involving RE elements during

deformation and annealing activities in Mg alloys yet remains disguised area. From this
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perspective, systematic investigations insisted to address specifically the following
concerns:

(a) Critical impact of alloying content and choice of RE element needs clarity in
specific.

(b) Moreover, additional investigation required to check the impact of the
processing parameters of both crystallographic deformation and annealing
treatment on the above conditions.

Finally, the further role of non-REEs in helping REE — associated texture alteration has

to be recognized.

2.3.4 Recovery in Mg-RE alloys

The softening mechanism of deformation attributed to process of recovery and
recrystallization. Both recovery and recrystallization behaviour are changed due to
presence of non-basal slip systems. Recovery mechanisms, which annihilate
dislocations and realign them into sub-grain boundaries, reduce the collected energy of
a microstructure during deformation [119]. Many Mg alloys shows formation of sub-
grains that arises through continuous RDRX (Rotational Dynamic Recrystallization)
mechanism [102][123]. RDRX is a quasi-recovery process where representative of
recrystallization, nucleation and growth occurs along with formation of sub-grain at
grain boundaries. Activation of many slip systems are required for sub-grain formation
[161], which happens especially at superior temperatures with the activation of non-
basal slip system [102]. Hadorn et.al. [161], claimed that sub-grain formation in Mg-
RE alloys occurs at low temperatures due to increase in prismatic slip such that RE
texture nucleate within RDRX grains. Prismatic slip mainly responsible for sub-grain
formation and thereafter texture weakening within a contraction twin in CDRX grains
observed in the study of a single crystal [145]. Nevertheless, apart from prismatic slip,
effective pyramidal slip can also increase the sub-grain formation, as both provide the
additional slip systems required for easy sub-grain formation.

Since the recovery rates decides the stored energy in deformed grains depending
on recrystallisation rate, then the recovery rates result in the formation of RE texture
[119]. Fazadfar et.al. [162] suggested prospective forming of RE textures as grains with
RE orientation recrystallizes quicker than others due to initiation of SRX at different

rates based on different grain orientations having differences in stored energy. The
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variations in the stored energy between orientations depending on dissimilarities in
recovery rate between grains causes faster recovery by the non-basal slipping.

Fazadfar et.al. [162] reported that the stored energy in RE orientation grains
along ND-TD is 20 times less than in grain oriented along basal plane in Mg-0.81at%Y
alloy at 50% reduction during hot rolling at 350°C in a single pass. Very finer
substructure is noticed in the basal grain due to higher stored energy than the relatively
in the ND-TD grains with low stored energy. Anyway, such huge variations in stored
energy and substructure occasionally stated in alloys bearing low intensity RE textures.
Stanford et. al. [163] reported that the variations in stored energy using grain
orientations in Mg-Gd alloy is not substantial in plane strain compression at 400°C
operated in wide strain rates. Y Chino et. al. [19] identified the recovery process in Mg-
0.2wt%Ce alloy attributed to Ce addition that causes suppression of DRX and low
diffusion.
2.4 Processing Maps

The processing maps are formulated based on the principles of Dynamic
material modelling (DMM) [164] outlined by Wellstead was founded upon the
important principles of continuum mechanics involving huge plastic flow, physical
systems modelling, and irreversible thermodynamics [165].
In this model, the workpiece was conceptualized as a body dissipating power.

Briefly, they are derived as follows:

P=Gt= [ odé+ [ édo 2.5)
where P = the overall power dissipated by the workpiece, often rewritten as P= G +.J
The power contribution in the workpiece was followed in the following two
corresponding parts during plastic deformation: the visco-plastic heat (the rate of
production of internal entropy) induced by plastic deformation, denoted as G, and the
internal energy alteration in the material due to microstructural changes, denoted as J.
The constitutive equation dictates the comparative values of power dissipation through
heat conduction and microstructural dissipation as the origin of visco-plasticity lies is
in the microstructural dissipation. For materials deforming plastically, the power law:

-m(T,£€)

7 =K(T,& 9t (2.6)

Is extensively utilized to establish a constitutive relation, where 7" = temperature and

&= the effective strain. At a particular 7 and €, and within small variations of £, A J/AG
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and AJ /AP display the alterations in the dissipative mechanism. For smaller values of

K, m, and ?, the instant values of AJ, AG and AP, are given as
AJ/AP = m/(m + 1) 2.7

Strain rate sensitivity (m) is considered a power dividing factor. The sensitivity

index (m) of strain rate of flow stress can be computed based on the strain rate by
establishing a linear correlation between In(c) and In(€) through fitting (as seen in Fig.

2) using a cubic spline function from Eq. (8) for the given range of temperatures [166]

__0ln(o)
= 3me (2.8)
The power dissipation efficiency # in relation to the linear dissipator is expressed as
_ V]/VP __ m/(m+1) _ 2m
n B (V]/VP)linear N 1/2 N (m+1) (29)

where # is a variable associated with temperature of deformation, strain, and strain rate.

For a particular strain, the correlation among m (efficiency), deformation
temperature (T), and strain rate (€) can be illustrated through three-dimensional graphs
drawn as a processing map. The variations of the power dissipation efficiency with
temperature and strain rate in each processing map, shows distinct zones that may be
associated with particular microstructural processes. The zone of dynamic
recrystallization (DRX) is selected for the hot working of metals because this process
results in suitable formability and a defect-free microstructure without instabilities. But
the high values of power dissipation may not always be beneficial for material
workability, since they are generally high in the unstable domains [167]. These power
dissipation maps are employed alongside instability maps, that identify domains of flow
instabilities depends on extreme principles of irreversible thermodynamics as applied
to extensive plastic flow stress suggested by Ziegler, [168].

Ziegler observed that stable flow occurs when,

a D (2.10)

d& £

is satisfied, where D (€) represents the dissipative function of the material. Since
metallurgical stability is of interest, assessing microstructural stability involves
substituting J for D.

In accordance with the criterion established by Prasad, [169] flow instability

will occur if

1y = ]
§(€) = T[é]-l_ m < 0---- (2.11)
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This instability criterion physically suggests that when entropy creation rate of

a system is lower than the strain rate, localized plastic flow will ensue, leading to flow
instability. The domains where the parameter & (€) is less than zero were indicated on
the two-dimensional temperature—strain rate map leading to the instability map.
The fluctuation of & (€)with temperature and strain rate forms the instability map which
may be overlapped on the power dissipation efficiency map to delineate instability
regions characterized by negative & (€)values. This procedure has been employed to
optimize the hot workability of a variety of metals and alloys [170] such as Mg-Li—Al
alloys in their as-cast state, [171] and rolled conditions [172]. The processing maps for
Mg alloys through low stacking faults energy exhibit dynamic recovery (DRV) that
occurs when efficiency of power dissipation (shown by contour lines), #<30%, can
enhance the thermal processing effectiveness by its softening and thus stabilization
functions on flow [173].

The processing map depicts that, there is a higher power dissipation efficiency
zone under the comparatively high-temperature and low-strain rate, because the
elevated deformation temperature accelerates atomic diffusion, facilitating the
occurrence of DRV, thereby improving the driving force for flow softening reported by

Deogade et. al. [174].

2.5 Numerical Methods for Constitute Analysis

Several constitutive models, for instance empirical, semi-empirical,
phenomenological, and physically based models, are proposed to describe deformation
of alloys as a function of the flow behaviour and establish constitutive equations under
diverse hot deformation conditions [175][176][177]. Amid of the suggested models, the
Johnson—Cook (JC) [178] and Zerelli-Armstrong (ZA) [176] models are the utmost
popular for studying the deformation behaviour of alloys. The constitutive model of
Johnson—Cook (JC) is the most extensively known model that incorporates
phenomenological flow stress based on forming temperature, strain, and strain-rate.
This model had been successfully employed on various materials exhibiting diverse
arrays of temperature of deformation and strain rate. The Zerelli-Armstrong (ZA)
model is developed cantered on dislocation mechanisms, which perform a prominent
task in controlling the inelastic behaviour of a metal and its associated flow stress

underneath various loading conditions. The flow behaviour of the metals and alloys
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determined by the results of strain hardening, strain-rate hardening, and thermal
softening are considered. Sellars and McTegart [179] recommended a hyperbolic
sinusoidal Arrhenius-type equation tailored to a large extent of flow stresses. Later,
Arrhenius-type equations were initiated with the Zener-Hollomon parameter to
communicate the relation between the strain rate and the temperature. The flow stress
values can be properly predicted by these Arrhenius-type hyperbolic sinusoidal
constitutive equations throughout a wide range of high temperature working
circumstances.

Gao et al. [180] used the Arrhenius-type statements to get the constitutive
equations of Mg alloy WE43. Changizion et al. [181]. utilized the hyperbolic sinusoidal
Arrhenius-type equations to find the constitutive equations along with error analysis
but without correlating with the processing map for commercially applicable Mg alloy
AZ81. Hadadzadeh et al. [182]. developed the constitutive model in conventional and
as well as modified hyperbolic sine expressions in view of the outcome of strain, strain
rate, and temperature-dependent material parameter for a well-known Mg alloy ZK60,
by dividing hot deformation conditions into 4 regimes based on high and low
temperatures and strain rates. Another commercial Mg alloy AZ31 was used by Hamed
Mirzadeh et al. [183] to describe the peak stress under hot conditions of compression,
torsion, and tension tests using hot working activation energy as a task of Arrhenius-

type hyperbolic sinusoidal equations.

2.5.1 Hyperbolic Sine Arrhenius Model

Arrhenius-type sinusoidal hyperbolic equation determines the hot deformation
flow stress, so as to establish the constitutive equations [177]. This deformation at high
temperatures is based on temperatures and strain rates examined by applying the Zener-
Holloman parameter, Z also called as temperature-compensated strain rate [178].

The corresponding constitutive equations stated as

Z = A.[sinh(ao)]* = £.exp(Q/RT)---- (2.12)
This Equation (2.12) can be noted as

& = A.[sinh(ao)]™ exp(— Q/RT)---- (2.13)
é¢=A.0".exp(—Q/RT) — — — — — where (ag) < 0.8--- (2.14)
& = A.exp(Bo).exp(—Q/RT) — — — — — where (ao) > 1.2 (2.15)
& = A.[sinh(ao)]". exp(—Q/RT) — — — — — forall (ag)---- (2.16)
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where 4, o, and n = materials constants self-reliant of temperature, R = the universal
gas constant, T = absolute temperature (K), and Q = the apparent activation energy
needed for deformation (J/mol), ¢ and o are strain rate (s ') and true stress (MPa)
respectively.

As per the flow stress, ¢ levels, 3 distinct forms of Equation (2.13) given as:
Equation (2.14) for low flow stress, ¢ as power function; Equation (2.15) for high flow
stress, ¢ as exponential function; and Equation (2.16) for any flow stress, ¢ as
hyperbolic sine function.

Equations (2.14 — 2.16) can be modified as

mé =n".lno+InA, —Q/RT — — — — — where (ao) < 0.8 --------mmommoo- (2.17)
né=p.oc+nA,—Q/RT — — — — — where (ao) > 1.2---- (2.18)
Iné =In A+ n.lIn[sinh(ac)] — Q/RT — — — — — for all (ao) (2.19)

where A; and A4, are MC, and n, 5, n” are associated to m indicator.

The apparent activation energy, O required for plastic deformation in hot

compression test is determined by Equation (2.20)

_ dlné din[sinh(ao)]] __
Q=R [aln[sinh(aa)]]T [ d(1000/T) L =Rn.S o (2'20)
where S = [%] , a linear fit slope from In[sinh(ac)] vs 1000/T and
(stress-exponent), n = [%], a linear fit slope from In€ vs In[sinh(ao)].

2.5.1.1 Temperature-Strain rate compensation to calculate predicted flow stress
Taking logarithm on both side of Equation (2.12), we get Equation (2.21)

illustrating the relation between flow stress, o and Zener-Holloman parameter, Z.

InZ =In A+ n.lIn[sinh(ao)] (2.21)
The o can be determined by the MC (n’, f, a, n) and Q in the CE as a function

of Z, thereby taking the Equations (2.12) and (2.16) as follows:

1
1 z 5]
1 Z\n Z\n
o==.In (Z) + [(Z) + 1] J (2.22)
2.5.1.2 Strain-compensation to calculate predicted flow stress
The computed values of the materials constant (a, 5, n, A) and Q obtained from

equations (2.17 — 2.19) varied with 0.1 to 0.5 strain. The corresponding curves
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pertaining to each constant were subjected to polynomial fitting resulting in the
corresponding equations of each materials constant. In these equations, the value of
strain ranging from 0.1 to 0.5 is being introduced, then subsequently, new set of material
constants will be obtained. Consequently, new set of material were replaced in Equation
(2.16) establishing new constitutive equation at various strain rates from Equation
(2.16) and then flow stress from Equation (2.22) evaluated with new set of materials

constants.

2.5.1.3 Strain rate-compensation to calculate predicted flow stress

The accuracy of constitutive equation achieved by strain rate-compensation to
modify the Z. This modification was done by changing the exponent of strain rate, € in
Zener-Holloman parameter, Z equation (2.21) [184] [185]. An exponent of 0.85 was
noticed to be best for the strain rate-compensation for this alloy. The modified Zener-
-0.15

Holloman, Z parameter (Z) obtained on multiplying Eq. (2.12) with &
7 = €985 exp(Q/RT)---- (2.23)

is given as,

The correlation between Zener-Holloman parameter, Z and modified Zener-Holloman
parameter, Z may be stated as:

In(Z) = In (Z) — 0.15 In(¢) (2.24)

Therefore, the flow stress, o needs to be modified using constitutive equation (2.22) as:

1 L2 2
Jzi.ln (E)n+ (E)n+1
a A A

2.5.2 Verification of the constitutive equation accuracy

(2.25)

The reliability of the constitutive equation on the experimental data was
quantified by employing the basic statistical entities stated as the average absolute

relative error (AARE),

Ei~P;

1
AARE = ~¥iL, | B (2.26)
and the correlation coefficient (R),

N B _D
R Yi=1(Ei—E).(P;i—P) (2.27)

\[Z§L1(Ei—5)2-2‘.’i"=1(13i—ﬁ)2

where E and P are experimental and predicted flow stress, o values respectively; E and

P = average E and P values, respectively, N = number of selected quantities.
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2.6 Rolling

Forming of Mg alloys being Acp system at room temperature results in limited
ductility due to highly anisotropic behaviour of basal slip [39] where (0002) basal
planes of many grains are close to plane of the sheet. Accordingly, many grains are in
unsuitable orientation where resolved shear stress value is nil for the basal plane
resulting in stress concentration and premature failure [54][113]. Formation of basal
texture can be avoided by rolling at elevated temperatures results in enhanced
formability and decreases in-plane anisotropy representative of Mg sheet product [186].
Generally, hot deformation of Mg alloys carried out at and above 200°C (T geformation >
0.4Tm) [54] i.e., recrystallization temperature results no grain refinement adequately.
[187]. Coarser grains resulting from high temperature and constraint in room
temperature processing limit wrought products including sheets as inevitably increase
in the cost of production.

On other hand, basal slip orientation causes {1012} tensile twinning to control
during compression in orthogonal direction to the main c-axis orientation, which is
comparatively easy to activate than the tensile mode of deformation, resulting in yield
asymmetry. Accordingly, both anisotropy and yield symmetry in Mg alloys can be
addressed by four aspects i.e., texture softening, solid-solution strengthening,
refinement of grain sizes and precipitation strengthening [188].

The strategy needed for sorting both anisotropy and yield symmetry in Mg
alloys. Texture softening and suppression of tensile twin by RE additions, can attained
in wrought Mg alloys causes decrease in yield symmetry [19][23][31][98][139]. The
sheet forming is related with the evolution of crystallographic texture and has important
effect on its properties. The texture can be modified either by altering the initial
microstructure or by changing the processing route. During texture evolution,
dislocation substructure develops on plastic deformation, where dislocations organize
in low energy configurations. [189]. Both texture evolution and dislocation substructure
are correlated with each other. Increase in texture intensity and reduction in dislocation
cell size with enhancement in strain provided dynamic recovery or recrystallization
mechanism should not step-in. Nevertheless, change in the strain path would create

deviation in the above tendency when presumed boundary conditions were modified.
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[190][191] The extent of change in strain path described by a scalar parameter
anticipated by Schmitt et al. [192]

This parameter is expressed as 8= (&5 : €)/(||&p||||€l]) (2.28)
where ¢, = the strain tensor prior to strain path and

¢ = the strain tensor in the succeeding strain path

The value of # = 0 and 1 corresponding to no change in strain path and orthogonal
change in strain path respectively.

A change in strain path affects the texture formation strongly brought by cross-
rolling where the of change of rolling direction studied by many researchers. [32][193]
[33][191] In cross-rolling operation, rotation of the sample in terms of the first rolling
direction in turn rotates the substructure along new rolling direction. Such change in
the strain path causes disruption of the substructure formed by changing the complete
configurations of dislocations during previous rolling and the moment of dislocations
network gets hindered during the slip process. Simultaneously, these modifications
affect the evolution of deformation texture and in-turn also influence the
recrystallization texture.

These findings involved the understanding of microstructure and texture
through unidirectional rolling, two-step and multi-step cross rolling. Cross rolling (CR)
deviates from the conventional unidirectional rolling (UR) by involving two rolling
directions (RD1 and RD2), i.e., on completing individual rolling step (e.g., RD1), the
sample rotated by 90° keeping the normal direction constant that means rolling direction

changed (RD2).

2.6.1 Anisotropy Calculation

Plastic anisotropy known as the property values of plastic deformation of
materials will be different in different directions. Majority of the polycrystalline
materials demonstrate anisotropy behaviour. During material processing, preferred
orientation (textures) developed in the materials and thereby improves the anisotropy.
The degree of deformation and its type decides the formation of textures; accordingly,
the level of anisotropy fluctuates. Rolling forms more intense textures in the direction
of rolling resulting variation in the property values in the RD and TD.

Lankford coefficient, R, gives a value for plastic anisotropy, mathematically
expressed as the ratio of strain in width direction (gw) to the strain in thickness direction

(g0 in the uniaxial tensile test. Higher the R value, higher will be opposition of the
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material to thinning, therefore the materials can be drawn into larger height. Lankford
coefficients rely on the orientation of tensile axis with respect to the rolling direction,

in the rolling plane and defined by the angle (o) and R= Ra.

_ ln[Wf/Wo]}_ { In[ws/wo] }““ .
= { Inftg/to] J  UnlUorwo)/(pswp)] (2.29)

where wr and w, are final and initial width respectively and #rand ¢, are the final and
initial thickness respectively.
R = 0 shows no widening,
R = o indicate no thinning and
R = 1 meant for isotropic materials.

Subsequently, overall resistance to thin down a sheet will be measured by taking
an average value of R in three a angles generally determined by Normal anisotropy.
Generally, the anisotropy in the materials is defined by average R according to ASTM

E 517, also known as Normal Anisotropy

R = %[ROO + 2R450 + Rgoo]"“ (230)

Any R value more than 1 shows more contraction of the sheet than its thinning
during the elongation, indicating of better formability [194].

Similarly, the amplitude of the in-plane anisotropy is measured by taking
difference in the R values given as variation of Ra becomes crucial in the plane of the

sheet, expressed as coefficient of Planar anisotropy,

AR =~ [Rgo — 2Ry50 + Rggo]-—- (2.31)
Planar anisotropy corresponds to the formation of ears during deep drawing
operation.
(i) AR>0, then formation of ears occurs at 0° and 90° along RD and
(i1) AR<O, ears forms at 45°

Crystallographic texture decides both Normal and Planar coefficients [195].

2.7 Corrosion behaviour of hot rolled Mg alloy

Corrosion occurs in various substances such as natural minerals, polymers, and
ceramics. Broadly defined as, “The deterioration of a substance (usually a metal) or its
properties because of a reaction with its environment”[196]. This indicate that corrosion
changes the properties of the materials from such deterioration. However, deterioration

do not illustrate all events related to corrosion. Under certain conditions in metallic
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corrosion, the creation of an oxide layer on the metal surface acts as a protective shield,
preventing the material from undergoing deterioration. Therefore, a definition based on
the comprehension of the "interaction between material and media and transformation
of properties" might be more than adequate.

As engineering materials, during service, are in contact with the corrosive
environments like moisture, different aqueous solutions including sea water, Corrosion
of these materials, the electrochemical interaction of materials with materials, is a main
concern.

This section provides fundamentals of electrochemical theories of metal and
environment interaction that controls the metallic corrosion shown in many literatures.
[197][196][198][199][200] The conceptual understanding of electrochemical
behaviours of materials is applied to understand the Corrosion behaviour and the rate

of Mg alloys by electrochemical corrosion testing methods.

2.7.1 Fundamentals of Metallic Corrosion

Metal corrosion resulting from exposure to an aqueous solution can be
elucidated by invoking the Second Law of Thermodynamics. The state of ordered atoms
forming metals is not considered the most stable, as substances tend to strive for
maximum disorder. In order to reduce chemical potential, atoms at the metal surface
deviate from the crystalline structure and transition into the solution as ions, leaving
electrons on the metallic surface until the chemical potential (or free energy) of both

states reaches equilibrium. [199]

2.7.1.1 Electrochemical characteristics of Corrosion

Metallic corrosion arises from two or more electrochemical reactions occurring
on the metal surface. These electrochemical reactions are influenced by four essential
factors: an anode (where the oxidation of an atom on the metal surface results in the
release of electrons with a negative charge, while the positively charged ion of this atom
enters the solution, known as the anodic reaction), a cathode (where the electrons
released during the anodic process are consumed by a species in the solution and
undergo reduction, known as the cathodic reaction), an electrolyte (the liquid conductor
responsible for the movement of ionic species between two electrodes when a potential
difference is applied), and a DC power source (to maintain the required potential

difference between the two electrodes).
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The spontaneous occurrence of corrosion process relies on two electrochemical
reactions (that brings change in the valence or oxidation state of the species) need take
place at the same time and the same number of electrons must be exchanged between
anodic and cathodic processes. i.e., rate of oxidation should be equal to the rate of
reduction.

When positive ions migrate from the metallic surface into the solution, the
surface is left with an excess of negative charges, creating an electric field that
influences the surrounding solution. This results in the establishment of an electrode, a
surface formed between the metal and the ion-containing solution. The reactions taking
place at the electrode can be classified into two categories: oxidation and reduction
reactions.

These reactions proceed through their following partial equation reactions:

M- M*™ +ne~ (Anodic reaction or Oxidation reaction) ------------ (2.32)
2H* +2e¢~ > H, (Cathodic reaction of Acidic sol.) (2.33)
0, +4H* + 4e~ - 2H,0 (Cathodic of Acidic sol. with dissolved O2) ------- (2.34)
0, + 2H,0 + 4e™ — 40H™(Cathodic of Acidic sol. with dissolved O3) -------- (2.35)
M*™ 4+ em - Mtnl (Cathodic of higher to lower oxidation state) ------ (2.36)
MM+ e > M (Cathodic reaction of metal reduction) ------------- (2.37)

As positive ions from the metallic surface penetrate the electrolyte, the negative
charge of the electrons on the metallic surface attracts them, leading to the formation
of a double layer. This developed potential pertaining to double layer is called H»
electrode potential and can be measured. In such a system, when H2 gas is evolved
through 1M HCI at a pressure of 1 atm, the electrode formed is referred to as the
Standard Hydrogen Electrode (SHE). The magnitude of the SHE potential is
conventionally considered as zero. SHE is employed to ascertain the electrode potential
of metal-electrode systems and the pH of the solution.

Generally potential measurements are not done by using the Saturated
Hydrogen Electrode (SHE) because of certain limitations: (i) difficult to build and
control the pressure of H» gas to be accurately at 1 atm pressure throughout the
experiment. (ii) challenging to sustain the concentration of HCl at 1M during the
excessive evolution of H> gas carries a small amount of HCI1 with it and decreases the
H" concentration. (iii) cannot be used in the solution containing oxidising and reducing

agents. (iv) impurities in hydrogen and HCI destroy the ideal platinum electrodes and
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reduce the life of SHE. (v) difficult to obtain pure hydrogen gas and an ideal platinum
electrode.

The measurement of potential is typically carried out using liquid (secondary)
electrodes aligned with the Standard Hydrogen Electrode (SHE), whose potentials are
established and constant, allowing easy conversion to an equivalent relative to the SHE.
Commonly employed liquid (secondary) electrodes include the Saturated Calomel
Electrode (SCE), Silver-Silver Chloride Electrode, and the Copper-Copper Sulphate
Electrode, with relative potentials to the SHE of +0.241 V, +0.235 V, and -0.318 [[198]]

respectively.

2.7.1.2 Thermodynamics of Corrosion

The Standard Electrode Potential (E°) designates the potential of a particular
electrode reaction. Various factors impact the electrode potential, including
temperature, partial pressure, and the concentration of chemical species. The Nernst
equation can be employed to calculate the potential variation due to concentration

changes.

0 RT [ox]
(D) E=E"+ — In red]

where £ =the electrode potential, £° = the standard electrode potential, R = the gas
constant, 7 = the absolute temperature, ' = the Faraday constant, n = the number of
moles of electrons exchanged in the half-cell reaction, and [ox] and [red] are the
activities of the oxidized and reduced species, respectively.

In electrochemical corrosion experiments, Three-Electrode Electrochemical
Cell is generally used as seen in Fig. 2.30. The potential of a system at the start can be
measured for such experiments when the currents are typically null, called as open
circuit potential — OCP. In this condition, an electrical contact will be maintained only
with two necessary components i.e., a reference electrode and test electrode.

Conversely, if an electric current freely flows through a galvanic cell established
between two dissimilar metals or is externally imposed, the resultant cell potential
deviates from its equilibrium potential. The determined potential encompasses two
overpotentials from the electrodes, rendering it impossible to measure the potential of
the test electrode independently.

To measure the potential accurately, a third electrode, known as the auxiliary

electrode, is introduced. The reference electrode is connected to a high-resistance
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voltmeter in this configuration. In such an arrangement, the current only flows through
the test and auxiliary electrodes, not through the reference electrode. This setup ensures

the stability and unpolarized state of the reference electrode during potential

measurement.
Potentiostat
RE
Insulator
(nail varnish
coat)
1
Exposed area Electroplating
of deposited solution
spheres

Fig.2.30. Schematic of a three-electrode electrochemical cell setup. [[201]]

The evolution of potential concerning pH gives rise to the development of the
Potential-pH diagram (E-pH), commonly referred to as the Pourbaix diagram.
Determined by the Nernst equation, as outlined in Equation 7 and involving standard
chemical potentials, the Pourbaix diagram is a graphical representation that delineates
the zones of stability for Immunity, Corrosion, and the passive state in water. These
zones are depicted as a function of potential (on the y-axis) and pH (on the x-axis), as

illustrated in Figure 2.31.
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Fig. 2.31 Pourbaix diagram of pure metals (aluminium). [[202]]
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2.7.1.3 Kinetics of Corrosion

An electrochemical reaction inherently involves the generation or consumption of
electrons. The overall current (I), referred to as the exchange current, represents the
flow of electrons during both anodic and cathodic reactions on the anode and cathode,
respectively. The exchange current serves as an effective means for measuring the
corrosion rate, being equivalent to the weight of metal dissolution during the anodic
reaction. Faraday's law establishes a relationship between the measured current and the

mass of corroded metal, expressed as:

tIM
m= 2 (2.39)

Where, F' = the Faraday constant, # (s) = the time elapsed, / (A) = the current generated,
M (g/mol) = the atomic weight, » = the number of electrons exchanged in a reaction
and m (g) = the mass that reacted.

The occurrence of cathodic and anodic reactions, resulting from multiple
electrode processes, requires identification. In such scenarios, the sum of the rates of
all partial reactions within the anodic process should equal that of the cathodic process.

The electrode area is another critical factor in corrosion kinetics. A current
density (i) with units in A/cm? is assigned to electrode processes. In uniform corrosion,
the anodic and cathodic areas, along with their respective current densities, are
considered equal. Regardless of the corrosion type, the anodic and cathodic currents
should be equal. In cases of localized corrosion, if the cathodic area is greater,
demanding more current while the anodic area must supply it, pitting corrosion results
in more localized damage.

Determining exact current densities is not as straightforward as it may seem. In
uniform corrosion, the cathodic and anodic areas may be too small to differentiate, and
the availability of surface for an electrode process cannot accurately predict active
participation in an electrochemical reaction.

Changes in the overall surface reaction led to alterations in the electrode
potential of a half-cell. Such changes induce polarization (#) or overpotential at the
surface. Excessive electrons provided by the surface make the overpotential more
negative, resulting in cathodic polarization (#.) and a negative .. Conversely, removing
electrons from the surface triggers a positive overpotential or anodic polarization (7).

These polarizations occur due to slow reaction rates and are controlled by two
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mechanisms: activation control (known as activation polarization) or mass transport
control (known as concentration polarization), where one is the limiting factor.

The delay in the cathodic reaction, resulting from activation energy at the
electrode surface, gives rise to activation polarization. Likewise, the sluggishness is
attributed to the migration of ionic species from the bulk of the solution to the electrode

surface, leading to concentration polarization.

Potential
. e eat— M= M4 ne
Metal dissolfution
o IR
M 4ne = M
Metal deposition
6.,
t
Cathodic Current Anodic ——*

Fig. 2.32 Theoretical current — potential diagram for a metallic electrode [[196]]

2.7.1.4 Passivation Behaviour of Metals

The concept of passivation has been introduced earlier in this discussion, albeit
without delving into the intricacies of the phenomenon. Passivity is evident in metals
and alloys capable of forming an oxide layer, providing resistance against corrosion.
Certain metals and alloys exhibit corrosion resistance due to the presence of a surface
film. These films develop under highly oxidizing conditions or with high anodic
polarizations. This significance distinguishes metals possessing a simple barrier film
with reduced corrosion at an active potential and minimal anodic polarization.
Furthermore, insoluble compounds formed through dissolution and reprecipitation
offer less protection compared to oxide films that form in-situ on the metal surface.
This is a crucial characteristic observed in various structural metals such as Fe, Cr, Ni,

Ti, and Al, with their specific alloys, notably exemplified by stainless steels.

66



Transpassive

Passive

POTENTIAL

'passy

MM 4+ne” Active

J|c:.'.l‘t
log CORROSION RATE OR CURRENT DENSITY

Fig. 2.33 Polarization diagram exhibiting transitions from active corrosion to passive
behaviour and to the transpassive state. [198]

Metals and alloys exhibiting passive behaviour exhibit a distinct trend in anodic
polarization, as illustrated in Figure 2.33. As the potential increases from the corrosion
potential, the current rises until reaching a critical value (icrit) in accordance with
typical dissolution behaviour, marking the initiation of stability for passive films that
form at potentials higher than the primary passive potential (Epp).

Subsequently, the measured current decreases to a residual current (ipass) by
multiple orders of magnitude. At higher potentials (£;), when the metal enters the
transpassive state, the passive film disintegrates with an increase in anodic reactions.
Conversely, self-passivation can occur when the potential of the cathodic reaction is

nobler relative to the anodic reaction, surpassing the primary passive potential (Epp).

2.7.2 Electrochemistry of Mg and Mg Alloys

Enhancement in the properties of Mg alloys is the real challenge, especially
corrosion resistance is the major weakness and hence actively researched. Despite the
much research on the corrosion mechanism of Mg and its alloys, which remain still
unclear, justifying the efforts to increase more on understanding the process. The
electrochemical corrosion of Mg and Mg alloys is being dealt extensively. However,
the electrochemical behaviour of Mg in passivating media [203][204] or the
characteristics of the passive layer that forms at the surface [205] (spontaneously or in

alkaline solutions) are poorly researched.
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2.7.2.1 Corrosion behaviour of Pure Magnesium

The stability of magnesium bearing negative corrosion potentials, relies on the
disposition of a surface film capable enough to restrain the attack on the surface
following exposure to a corrosive atmosphere. The corrosion of pure Mg deals with
reactions that adheres the overall equation:

Mg+ 2H,0 - Mg(OH), + H, (2.49)

This above equation can be divided into the partial reactions of cathodic (Eq.
2.50) reaction and anodic (Eq. 2.51) reaction:
2H* + 2e~ - H, (2.50)
2Mg - 2Mg* + 2e”---- (2.51)

The hydrogen evolution is very critical in the corrosion mechanism of Mg. H»
molecules can be release in the reduction reaction (Eq. 2.50) and by a chemical reaction
between Mg and water:
2Mg* + 2H,0 - 2Mg?*t + 20H™ + 2H,---- (2.52)
Mg?t + 20H™ - Mg(0OH), (2.53)

The major corrosion product yielded is magnesium hydroxide {Mg (OH)»} (Eq.
22). Nevertheless, variety of conditions and solutions will yield other sorts of corrosion
byproducts including carbonates and hydrated carbonates (in the existence of carbonic
acid or CO; dissolved in water) or sulphites and sulphates (in the existence of diluted
sulphuric acidic or sulphur comprising impurities) [[196].

Analysis of the above equations concludes:

(1) Mg corrosion will not display a major dependency to oxygen

concentration in the electrolyte. [196], [[206]], [[207]]

(i)  Major alkalinization of the media occur in the existence of small volume

of electrolyte.

Mg has a highly active standard potential of -2.37 V (SHE) [[197], [196], [206],
presuming direct contact and equilibrium between the uncovered metallic surface and
the divalent ion. However, the standard potential is much less active in 3% NaCl
solutions -1.63 V (SCE), or -1.38 V (SHE) [[197]], which implies the formation of a
hydroxide layer when the metallic surface is in no direct contact. The covering of a
hydroxide layer on the metallic surface indicates about the protection against corrosion

in alkaline solutions.

68



-2 -1 0 1 2 3 4 5 6 7 B8 9 1011 12 13 14 15 16
i r T N T T 5 T

o e —
08 408
E(V)
08 Mgoz » 406
04 0,4
a] 2| -¢| -5 ®)
02 ) ? 0.2
o & {0
02| -0.2
-0, 4‘ 4-04
-0.6 1-06
-08 -08
-1 -1
1,2 -1,&
14 Mg** Mg (OH), 14
-I,G', -1,6
-1,8L -8
-2 e
22 i -2,2
-2,4-%——-'3 2,4
-2,6— — - 7 426
—z.aL Mg \va,a
gy T RSN . S . =
-2 <1 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 HIG

P

Fig. 2.34 Pourbaix Diagram of pure Mg [202]

The Pourbaix diagram shown in Fig. 2.34 illustrates the thermodynamics of
aqueous solution. As the pH value of the solution exceeds 11, then Magnesium
hydroxide Mg (OH)> develops the stable species but below 11, the divalent ion remains
unchanged in solutions. In pure magnesium, the corrosion processes are usually
accompanying with Localized Corrosion [206]. This corrosion process is the special
grade planned to distinguish from other types of localized corrosion such as pitting as
it develops quite distinctly.

The magnesium hydroxide {Mg (OH).} film covering metallic surface of Mg is
metastable and somewhat protective. As a result, Mg appears to have free corrosion
potential (Ecorr) less negative than a pitting potential (Epir). The corrosion process starts
with the formation uneven and shallow pits. These pits covering the entire metallic
surface extending laterally rather growing in depth as seen in the behaviour of other
systems such as stainless steels or aluminium. This behaviour is result of the
alkalinization of the electrolyte brought about by the cathodic reaction. The magnesium
hydroxide Mg (OH); becomes more stable with an increment in pH value and retards
the dissolution process within the pit. But the attack in the form of anodic dissolution
continues at the edges of the pits due to low value of pH. Such corrosion process is
comprising a self-limiting nature. On other hand, other pitting mechanism are self-

catalytic in character and usually speed up the corrosion action. Since the corrosion
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process extend laterally, it causes the second phase particles in the microstructure get
undermine from their matrix and pops out from the surface. Such process of second

phase particles getting pop out during undermining is usual in Mg alloys.

2.7.3 Electrochemical Techniques

Electrochemical techniques are very dynamic method to examine the corrosion
behaviour using DC or AC source of applied potential. Accordingly, the
electrochemical techniques using DC source in the potentiodynamic polarization test
can investigate the thermodynamic and kinetic of corrosion reactions, including the
corrosion rate, assessment of passivity and hydrogen evolution. On other hand, the AC
source electrochemical methods most extensively used techniques is electrochemical
impedance spectroscopy which investigates the corrosion behaviour from its
mechanism taking part and formation of surface film in the aggressive environment.
The electrochemical impedance spectroscopy can also measure the rate of corrosion

and ability to protect from corrosion [208]

2.7.3.1 Potentiodynamic Polarization Test
The Potentiodynamic Polarization (PDP) test yields a graphical representation
of the variation in current density concerning an applied potential, illustrated in Evans
plots. The electrochemical principles necessary for comprehending this method have
been elucidated in Section 2.6.1.3 (Kinetics of Corrosion). The polarization curve
reveals the behaviour of electrode processes at anodic potentials (more positive than
Ecorr) and cathodic potentials (more negative than Ecorr).
Potentiodynamic Polarization tests can be conducted in two types:
(i) Fast polarization scan: The polarization rates are approximately 60V/h.
(i1) Slow polarization scan: The polarization rates are about 1V/h. [Baboian [14]]
High polarization rates are employed to assess whether surface films are thin or
absent, and to estimate high anodic action. Slow polarization rates are necessary to
investigate the film formation processes and assess film stability. For this study, the
slow scan rate is selected. Analysing a polarization graph yields various parameters
such as Ecorr and icorr, identified by two intersecting tangents on cathodic and anodic
curves in the Tafel region (The Tafel Slope Extrapolation method) or the kinetics of the
anodic and cathodic activities. This analysis reveals the system's behaviour, including

passivation and its breakdown phenomena.
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2.7.3.2 Open Circuit Potential

In an electrochemical system many reactions occur on an electrode, exhibiting
an intermediate potential amongst the equilibrium potentials of cathodic and anodic
reactions. Such potentials obtained by the intersection of polarization curves
corresponding to anodic and cathodic reactions. This potential is known as mixed
potential in electrochemistry, whereas in certain case of corrosion it is described as the
corrosion potential. The actual equilibrium potential is measured as the potential for the
non-corroding metal. The open circuit potential (OCP) is calculated through experiment
by making precise evaluation of the electrode potential in association to a reference

electrode.

2.7.3.3 Potentiodynamic Polarization (PDP) measurement of Mg alloys

The electrochemical techniques of potentiodynamic polarization measurement
on pure Mg immersed in 3.5wt. NaCl as shown in Fig. for 1h and for 1 day reported by
A Pardo et.al. [209] showed higher rate of dissolution due to less protective oxide layer
unable to defend the progression in corrosion.
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Fig. 2.35 Potentiodynamic polarization curve of pure Mg in 3.5wt.% NaCl solution

[209]
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Corrosion resistance of Mg alloys can be improved by deformation is reported
in limited cases. [35][36] [210][211] and addition of alloying elements of Mg. Gu et.
al. reported the reduction in corrosion rates of hot rolled binary Mg alloys due to
lowering of hydrogen evolution when immersed in Hank's solution as well as simulated
bodily fluid. Wang et. al [36] reported the enhancement in corrosion resistance of hot
rolled Mg alloy in Hank’s solution due to grain refinement. Corrosion resistance of
several binary Mg-X alloys (X: Gd, Al, Sn, La, Ca, Mn, Sr, Nd, Ce, etc.) have shown
improvement by hot rolling. Hot rolling not only involves grain refinement but also
leads to twin generation. [211][212]. Birbilis et. al [38]reported that increasing the
amount of RE (Ce, La, and Nd) alloying addition consistently accelerated the corrosion
rate and yield strength of the alloy. Hence, optimization of the wt.% of rare earth metal
addition is important to strike a balance between corrosion resistance and mechanical
strength which is essential for its successful applications. The effect of lower
concentrations (i.e.,<0.5 wt.%) of RE additions recognizes a lower limit threshold to

avoid degradation of corrosion properties significantly. [213].

2.7.3.2 Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy (EIS) is a highly dynamic technique
for acquiring kinetic and mechanistic data across an extensive range of frequencies
through electrical means in electrochemical systems. In EIS measurements, a small
amplitude AC signal is introduced into the system, making it a non-destructive method
suitable for assessing various materials, including coatings, anodized films, and
corrosion inhibitors. The EIS technique explores surface morphology involving two or
more electrode processes with distinct kinetics occurring simultaneously.
Comprehensive evaluations under EIS examination encompass corrosion rates,
dielectric properties, the impact of composition on solid conductance, mass transport,
electrochemical processes, localized corrosion detection, and reaction kinetics [Hamdy,
El-Shenawy [23], Macdonald [24]. EIS measurements are easily conducted, and the
obtained data requires analysis using suitable software.

The concept of impedance is comprehended by establishing a correlation
between resistance and electrical current flowing through a circuit element, as given by

Ohm’s law (Eq. 2.54).

R= - (2.54)
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where R= the electrical resistance, V = the potential applied and I = the electrical circuit

The resistance shown in Eq. 2.54 is independent of the voltage value and
remains unaffected by frequency, continuing in phase with an applied AC voltage
signal, as Ohm’s law is applicable to ideal resistances. This leads to a simplified model
of impedance (Z) (Eq. 2.55), which is unaffected by the same constraint as electrical

resistance:

_Y@® (
= (2.55)

A minor perturbation made to the system in the EIS technique yields a potential
in sinusoidal wave signal form given by

V(t) = Vysin (wt) (2.56)

where V) = the signal amplitude and ®» = angular frequency
The corresponding current of the system is then recorded as

I(t) = Iysin (Wt + 8)-— 2.57)

where [p = amplitude of the current signal and
o0 = difference in phase angle between the two signals.

The overall impedance of the sytem is provided by the following equation:

_ V_(t) _ W sin (wt)
T I sin (wt+6)

(2.58)

The two signals can be indicated as sinusoidal waves with the corresponding
amplitudes, Voand Iy having the same frequency, but out of phase by J angle. In other
word, the two signals can be denoted by two vectors revolving at the same frequency
with ¢ shift in the phase. This suggests, the impedance of a system can be described by

a vector that relates ratio of the other two vectors:

1Z] = % (2.59)

and a phase angle

0= (0)—(ot+8) = -6 (2.60)

The impedance vector can moreover be represented as a complex number with

real and imaginary components:

Z = Zreal +jZimaginary (2.61)
with the common treatment for vector module and angle
|Z| = \[Zfeal + Zizmaginary (2'62)
_ Zimag
tanf = (2.63)
Zreal
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Impedance spectra can be demonstrated through Nyquist plots and Bode plots.
A Nyquist plot displays Cartesian coordinates expressed by Zreal and Zimaginary,
providing information to evaluate polarization resistance and some kinetic data directly.
In Nyquist plots, the Y-axis is often inverted to facilitate understanding, as many
electrochemical systems exhibit a specific type of capacitive behaviour, resulting in
points appearing in the 4th quadrant. To transport these points to the 1st quadrant, axis
inversion is necessary.

The precise analysis of a Nyquist plot is challenging due to the wide range of
magnitudes of impedance values and frequencies of electrode processes, making
electrochemical systems complex. Bode plots illustrate the variation of log |Z| or phase
angle (8) with log (®), where (o) is the angular frequency. Each electrode reaction is
displayed as a maximum in the phase angle plot, known as the absolute value, as phase
angle values are usually negative, hence the Y-axis is inverted.

Other types of illustration are utilized for narrower applications, such as: Zeuvs
log(w), Zimagvs log (w) and Zeaivs @ Zimag. Using the features of Admittance (Y), the
inverse of impedance (Y=1/Z). The electrochemical system exhibits a response similar
to that of passive constituents of an electric circuit such as resistors, capacitors, and

inductors, to the potential perturbation applied while an EIS experiment.
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Fig. 2.36 Schematic illustration of (a) the Nyquist plot and (b) the Bode plot for a
resistor [214][215]

Since the Ohm’s law is precisely applicable for a pure resistance and the
conditions associated with it already discussed earlier, therefore a resistor's impedance
and resistance are directly proportional.[214][215].

Zr =R (2.64)
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The Nyquist plots shown in Fig. 2.36 (a) illustrate the variation of constant
values (Zreal and Zimag) of impedance |Z| and Fig. 2.36 (b) describes the variation of the
absolute value of impedance |Z| and phase angle with the frequency for a resistor.

A capacitor is characterized by constant capacitance (C) can be identified as the
ratio of the charge (positive or negative) Q on each conductor of the parallel plate to
the voltage V between them.

C=Q/V or Q= CV (2.65)

The equation for the impedance of a capacitor can be obtain after few

mathematical simplifications:

Z, = ,%c = —ﬁ (2.66)
The capacitor possesses only the imaginary component and furthermore, the

impedance (Z) is inversely proportional to the frequency (), and the capacitance (C).

On the Nyquist plot, a capacitor in the is depicted by a straight-line coinciding with the

origin and in Bode plot a line with a slope of -1 showing inverse ratio with log |Z| and

log ().
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Fig. 2.37 Schematic illustration of (a) the Nyquist plot and (b) the Bode plot for a
capacitor [214][215]

The response of a capacitor to perturbation with a -90° phase delay is evident
from Fig. 2.37. An inductor, similarly, having only an imaginary component, exhibits
impedance (Z) directly proportional to the frequency (o) of the perturbation and the
inductance (L).

Z, = jwl (2.67)
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The Nyquist and Bode plots for an inductor are the opposite of the capacitor
plots. The impedance (Z) increases with frequency (®) where the log |Z| plot has slope
of 1, with a phase angle of +90°. The analogy of the simple examples mentioned above
can be augmented to the analysis of complicated electrochemical systems only by

connecting several resistors and capacitors in series.
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Fig. 2.38 Nyquist and Bode plots for a R (RC) circuit. [[216], [215]

This kind of analysis is very simple for the impedance data that would only fit
for very simple systems. Extremely complicated systems will have many processes
with fluctuating and superimposing in the working range of frequency meant for
investigation. For these cases, many available software using different algorithms can
be utilize for the fitting procedures following deconvolution of the various
superimposing curves, thereby automatically calculate the electrical circuit parameters.

The principal challenge in the fitting procedures of an electrochemical system
is to identify an optimum equivalent electrical circuit so as to characterize the system
accurately in terms of circuit elements. The accuracy of characterization depends on the
requisite experience and thorough understanding of electrochemical reactions taking
place at the electrode surface.

The analysis of the impedance spectrum data becomes more difficult due to
deviation from ideal behaviour. The semi-circle appeared in the Nyquist plot in an
impedance experiment for the overall frequency range is rarely ideal as in Fig. 2.38
which usually appears depressed as described in Fig. 2.39. The extent of depression

differs depending on the system.
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Fig. 2.39 Nyquist plot with and without depression [214], [215]

The phenomenon of depression, initially identified by Cole and Cole [217]in
their study of dielectric constants using complex graph, is referred to as the Cole-Cole
Depression. This concept was later adapted to electrochemical systems by various
authors [214][215].

The impedance spectra represent a single electrochemical system modelled by
the equivalent circuit. The time constant (7) for this system can be defined as:

T= R.Cy ——(2.70)

The depression in the semi-circle is explained by assuming that the time-
constant 7 of the process has a varying value scattered around an average value, 79. This
scattering of time-constants has been associated with the inconsistency in the electrode
surface, considering it as a grouping of nearby tiny electrodes carrying their individual
values of R.sand Cyg, accordingly individual value of 7 [214][215].

The semi-circle depression in the EIS results can be addressed by another
approach known as the Constant Phase Element (CPE). A Constant Phase Element is
analogous to a capacitor but differs in phase angle by 90°. The application of CPE is
empirical, lacking theoretical justification. This model operates on simple mathematical
concepts and is recognised for fitting the experimental data.

The conclusion for the depression in the semi-circle provided by the above two
approaches is equivalent. This outcome can be confirmed by solving the equations for
the impedance of a R(RC) circuit taking the Cole-Cole depression in account(depicted

in Eq. 2.71) substituting the capacitor by a CPE (given by Eq. 2.72)
R

Zeote = Ro + Trmm=is (2.71)
— R (
Zere = Ra+ oo (2.72)
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where a differs between 0 and 1 and the n=1-a can be assume any value approximately
above 0.75 and up to 1 lies in the interval of -1 to 1.
Experimental results can be fitted by using the CPE but with careful consideration.
Since the CPE is used as a replacement for a capacitor, it does not represent true
capacitance but signifies the property of admittance.

The circuit element becomes very versatile since the phase of a CPE can be
altered to replicate the behaviour of any other passive component in an electrical circuit.
If the value  n =1, then the CPE will respond as a capacitor.

n =0, then the CPE will behave as a resistor.
n =-1, then the CPE will simulate as an inductor.

A diffusion-controlled processes can also be simulated by the CPE when n=0.5,
using an element called Warburg diffusion elements, fitted with electrical circuit. An
equivalent circuit consisting of CPEs only can also be developed, providing a flawless
mathematical result for any electrochemical system but with no physical understanding.

Although the CPE lacks physical understanding of the Cole-Cole depression,
the mathematical outcome for both remains unchanged. This versatility of the CPE and
its ability to be included in majority of fitting algorithms make the CPE an essential
tool for impedance analysis but needs to be used with caution. Hence, the use of CPE
should be considered as starting step of fitting to identify which circuit elements should
be incorporated in the model.

The information collected in EIS scanning across a wide range of spectra can
be challenging to analyse the complex systems, especially to establish the accuracy
between an authentic result and an outcome from experimental error. The validity of
EIS measurements will depend on four conditions: [216][218] (1) Causality, (2)
Linearity , (3) Stability and (4) Impedance . If the above conditions are not validated
the outcomes may not be authentic resulting in misinterpretation of the physical

processes and mechanisms at the interface.

2.6.3.3 Electrochemical Impedance Spectroscopy of Mg and its alloy

The electrochemical impedance spectroscopy measurement of pure Mg and
alumina coated Mg metal showed depressed semi-circle with inductive tail for pure Mg
smaller than that of coated samples reported by I B Singh et.al. [219]. This indicates
that pure Mg is showing less resistance toward corrosion as its real impedance value is

very low than both coated samples. Faster diffusion rates of oxidized Mg*" ions at the
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interface of metal oxide and solution, resulted in low charge transfer resistance R
responsible for yielding protective films. Similarly, lower Rs for pure Mg than the
coated samples indicated its poor resistance toward corrosion attack, which in

agreement with the polarization curve.
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Fig. 2.43 Electrochemical Impedance Spectroscopy — Nyquist plot for (a) pure Mg and
Alumina coated Mg metal in 3.5wt.% NaCl [219] and (b) for pure Mg, AZ31 and AZ91
alloys in 3.5wt.% NaCl after 1 /2 h of exposure.[220]

The electrochemical impedance spectroscopy measurement resulted in Nyquist
plot as shown in Fig. 2.43 (b) for pure Mg , AZ31 and AZ91 alloys contradict to that of
as discussed above in Fig. 2.43 (a). Here, pure Mg has bigger semi-circle than AZ31
and AZ91 indicating pure Mg to be better corrosion resistance. Here all the samples are
observed to form protective oxide film but in pure Mg shows better capacitive
behaviour than its alloys AZ31 and AZ91 and hence shows better corrosion resistance.
AZ31 and AZ91 showed low frequency capacitive loop corresponding to Faradaic
process i.e., diffusion process at the metal/solution interface. Moreover, Cl° anions
adsorption increases due to relaxation of absorbed anion on metallic surface occurring
at low frequency inductive loop. This causes oxidation of metals to increase by
consuming electrons at the adsorbed sites of oxidized metal, subsequently inevitable
beginning of correction reaction particularly at adsorbed sites. While pure Mg has lower
magnitude of inductive loop represents low vulnerability for Cl™ anion adsorption

resisting corrosion attack.
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Chapter 3: EXPERIMENTAL DETAILS

An overview of the various experimental techniques is provided in this chapter
performed to accomplish the objectives of this work are presented. Section 3.1 outlines
the relevant material used. Section 3.2 describes the procedures of the material
processing and testing methods. Section 3.3 discuss the electrochemical testing and
characterization on the processed material. Section 3.4 exhibit the relevant
metallographic practices whereas, Section 3.5 explains the analysis techniques of

materials characterization techniques.

3.1 Materials used

The binary Mg-0.5wt.% Ce alloy (Test material) is chosen as the experimental
material in this study. Test material was received as a semi-finished cast billets and
extruded product in rod shape from the M/s General Motors, Warren, USA. The reason
for the selection of this binary alloy of Mg-RE system was to know the effect of RE on
the material behaviour. The criteria for restricting the composition of 0.5wt% Ce is
based on the solubility up to about 0.52wt% as a terminal phase the eutectic
composition with 20.5wt.% Ce is also observed at temperature 590°C as binary phase
and decreases fo 0.04wt.% as the temperature lowers down to 200°C in the form of

solute and precipitate as in Fig. 2.26 Mg-Ce phase diagram [157]

3.2 Material Processing and Testing Methods
3.2.1 Hot Compression Test

N &

®

ED

Fig. 3.1 Compression test material (a) sample with dimension and (b) test samples

extracted from extruded rod.
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In the hot compression test, Mg - 0.5 wt.% Ce alloy is chosen as the
experimental material. The Test material was received in the form of extruded rods
from the M/s General Motors, Warren, USA. Cylindrical specimens of 6 mm diameter
and 9 mm height were machined from the as-extruded rod via electrical discharge
machining (EDM) such that their faces were parallel during hot compression test. The
specimen edges were chamfered during machining to prevent fold over during the
starting stages of compression. Molybdenum disulphide—graphite paste was applied on
both the faces of the specimen as a lubricant. Uniaxial compression tests were
performed at true strain rates and temperatures using a computerized servo-hydraulic
machine (DARTEC, Stourbridge, West Midlands, UK). The resistance furnace bearing
Kanthal heating element was used for conducting the Isothermal tests of hot
compression. The temperature tolerance limit in the furnace was within + 3 K.
Specimens were subjected to 50% height reduction during hot compression. Five
different combinations of true strain rates from 0.001 s™' to 10 s™' and five different
temperatures from 523 K to 723 K in 50 K increments were employed to assess the
deformation behaviour. The compressed samples were air cooled.

The load versus elongation curves developed from the raw data obtained from
the compression tests at a specific temperature and strain rate were transformed to
engineering stress versus strain curves and finally true stress versus strain curves. The
aforementioned curves provided the flow stress data based on temperature, strain rate,
and strain. The log(flow stress) versus log(strain rate) data were fitted by a cubic
equation and the strain rate sensitivity was calculated at various true strain values. The
of strain rate sensitivity was then utilized to develop the power dissipation maps and

the instability maps, which were superimposed to give the processing maps.

3.2.2 Hot Rolling
Test material was received in the form of extruded square rod of 16 x 16 mm?
dimension. Square rod of the as-received materials was hot extruded at 400°C.
Two modes of hot rolling at 450°C and & = 0.1 per pass using a single stand Two-High
Reversing Rolling Mill till a true strain of 2.0 (total 20 passes) were employed viz.
(i) Uni-Directional Rolling (UDR)
(i) Multi-Step Cross Rolling (MSCR)
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Direction of Rolling

{a) H H gl H 1t E Unidirectional Rolling
(b) H i H Hi H il H Multi-Step Cross Rolling

£=01 £=0.1 £=0.1

Fig. 3.2 Simple representation of the strain paths in rolling routes: (a) UDR and (b)
MSCR

In UDR, Rolling Direction (RD), Transverse Direction (TD), Normal Direction
(ND) are all constant at each pass as shown in figure la. The starting sample has
rectangular shape with 43 mm length, 16 mm width and 8mm thickness was initially
soaked for 45min and subjected to rolling with a € = 0.1 per pass and later intermittent
soaking between two passes was given for 3 min. This cycle repeated till total 20 passes,
where sample attains a true strain, € = 2.

In MSCR, ND remain constant while RD and TD keep on changing after each
pass as shown in figure 1b. The starting sample has cubical shape with 16 mm length,
15 mm width and 7 mm thickness were initially soaked for 45min and subjected to
rolling with a € = 0.1 per pass and later intermittent soaking between two passes was
given for 3 min. This cycle repeated till total 20 passes, where sample attains a true

strain, € = 2.

3.2.3 Room Temperature Uniaxial Tensile Test

Mechanical properties of Mg-0.5wt%Ce alloy hot-rolled sheet samples
processed in different mode carried out by using miniature tensile testing specimens.
Tension test was carried out to measure the ductility, &rand strength (Y'S, UTS) of the
rolled sheet samples. Each test repeated at least 3 times to confirm the recurrence of
similar the stress — strain curves. Tensile test samples were cut using EDM wire
machine in dog-bone shaped with dimension as shown in Fig. 3.3 (a). All the tensile
test samples were taken from rolled sheet of UDR and MSCR after 20" pass along final
RD at 0°, 45°, 90° as shown in the Fig. 3.3 (b).
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o0 (b)

UDR sheet cut along RD at 0°,
45° and 90° for tensile test.

SN e

MSCR sheet cut along RD at 0°, 45°
(c) and 90° for tensile test

Fig. 3.3 Tensile test samples: (a) Tensile test sample dimension, (b) UDR and MSCR
rolled sheets cut along final RD at 0°, 45°, 90°, and (c) UDR and MSCR rolled sheets

cut along marked directions.

Tensile test was carried out at room temperature and at a constant strain rate of

1073 s7! using Instron 5967 testing machine.

3.2.4 Room Temperature Vickers Hardness

Vickers hardness testing were conducted with the help of Shimadzu HMV
Vickers hardness tester worked under 1N (kgf) load. Vickers hardness test was carried
out on as-extruded samples, UDR and MSCR rolled sheets with a dwell time of 10s at
room temperature. Vickers hardness tester operated by square shaped pyramidal
indenter having an angle 136° between opposite faces made of diamond. Before
hardness measurement, each sample was cleaned by 1000 and 2000 grit size SiC
polishing papers followed by cleaning using ultrasonicator stirrer for less than 2 min.

Vickers hardness values are measured using following equation,

_ Load _ FxZSin(g) _ 1_854(

" Area d?

F

HV =

) approximately
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136" between
¥ opposite faces
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Fig. 3.4 Vickers hardness measurement on the sample using diamond indenter having

squared-shaped pyramidal.

3.3 Electrochemical Testing and Characterization

Samples were section from the two modes of hot-rolled sheets of Test material
with respect to final RD. Accordingly, samples to be tested are (i) Extruded sample, (ii)
UDR and (iii) MSCR. Specimen cut in the square dimension of 7 mm x 7 mm from
extruded sample and hot rolled sheets of UDR and MSCR. These samples as seen in
Fig. 2 were soldered with pure copper wire so as to make them conduct during
Polarization and Electrochemical Impedance Spectroscopy test. Copper-wire is
insulated to avoid any metallic interaction during these tests. The soldered specimen
surface was cold mounted using cold setting solution leaving the other surface NOT to
be exposed during the corrosion test. Later specimens were polished till 3000 SiC paper
and followed by diamond paste of 2 um for mirror-finish polishing. Such mirror-finish
polished cold mounted specimens were applied with enamel on the edges to avoid

crevice corrosion during the corrosion test.

3.3.1 Potentiodynamic Polarization (PDP) Test

Potentiodynamic Polarization (PDP) test was conducted using Potentiostat-
Galvanostat equipment of AUTOLAB 302N model. Software used for the measurement
of Potentiostatic and Potentiodynamic behaviour is General Purpose Electrochemical
System (GPES) Manager. Type of normal measurement is Linear Sweep Voltammetry
(Staircase). Polarization curves studies of the samples after immersion test to find their

potentiodynamic polarization and potentiostatic behaviour.
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Electrolyte
3.5 wt% NaCl saturated with Mg(OH)2

Fig. 3.5: Specimens of extruded rod, UDR and MSCR sheet prepared for corrosion
test

Prior to potentiodynamic polarization testing, samples were immersed in the
same electrolyte for 15 minutes at 25 = 1°C to steady the open-circuit potential (OCP).
PDP testing was done with 3 electrodes in an electrolytic solution. Reference Electrode:
Ag/AgCl (Saturated Calomel Electrode). Counter Electrode: Pt. Working Electrode:
Specimen. Electrolytic solution: 3.5 wt% NaCl solution saturated with Mg(OH)2 in
distilled water. The potential of the electrodes was swept through an electrolyte cell at

a rate of 0.1mV/s in the range from initial potential of -250mV versus Ecor.

3.3.2 Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy (EIS) testing was carried out by the
same Potentiostat-Galvanostat equipment of AUTOLAB 302N model. Software used
for the Electrochemical Impedance measurement is GPES (General Purpose
Electrochemical System) Manager. The sinusoidal perturbation amplitude employed
was -10mV. The frequency range covered 0.1 kHz- 10 kHz. Prior to EIS testing,
samples were immersed in the same electrolyte for 15 minutes at 25 + 1°C to steady the
OCP. Electrochemical Impedance measurement was done with 3 electrodes in an

electrolytic solution. Reference Electrode: Ag/AgCl (Saturated Calomel Electrode).
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Counter Electrode: Pt. Working Electrode: Specimen. Electrolytic solution: 3.5wt.%
NaCl solution saturated with Mg(OH): in distilled water.

3.4 Metallography Practices

In this topic of metallographic practices covers different characterization
techniques both microstructural aspects and structural composition to set up the
structure-property co-relationship. The working principle and different parameters in
the operations of characterization equipment are presented so that the structural and

mechanical properties are evaluated in the subsequent chapters.

3.4.1 Optical Microscopy: Metallurgical Microscope

In this current research, the initial microstructure of as-received (extruded form)
samples and experimentally deformed (compressed and rolled) observed using M/s.
OLYMPUS make BX-51 upright Metallurgical microscope with Polarising and
Differential Interference Contrast. The samples for Metallurgical microscope
observations were prepared by standard procedure of paper polishing using 1000, 2000,
3000, 4000, grit size paper with distilled water. Consequently, cloth polishing carried
by using chemical i.e., Glycol-Etch Solution to obtain mirror finish. Glycol-Etch
Solution contains 75ml of Ethylene Glycol, 24ml of Distilled water and 1ml of Nitric
acid. Thereafter the samples were cleaned by methanol for 2 minutes using stirrer of
ultrasonicator type without heating just to remove chemical solution and other
contaminates. Manual etching was carried on by using etchant solution having
composition 1:1:7 ratio of acetic acid: distilled water: 6% picral solution. 6% picral
solution is made by dried 6 g of picric acid and 100 ml of methanol. Samples were
dipped in the etchant for 3 seconds. Subsequently, the samples were cleaned by
methanol for 2 minutes using stirrer of ultrasonicator type without heating just to

remove chemical solution and other contaminates.
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Fig. 3.6 Optical arrangement of (a) Polarized Light microscopy and (b) DIC microscopy

in reflected light illumination.

Metallurgical microscope with Polarizing mode creates contrast in
microstructure of the samples having little or less contrast in brightfield microscopy.
Polarized light vibrates in a specific plane, rather than randomly and such property
reveals the contrast in the microstructure. Polarizing microscope additionally consist of
two filters namely, polarizer and analyzer oriented perpendicular to each other. Light
rays from the source gets linearly polarised after passing through a polariser. This
linearly polarized beam after passing through the specimen generates two rays, ordinary
and extraordinary, perpendicular to each other moving in two different refractive
indices and thereby exhibits phase difference. As a result of the phase difference, the
resultant ray can form elliptical, or spiral or spirally ellipse is allowed from the filter
analyzer but blocks no phase difference resultant rays.

Metallurgical microscope with Differential Interference Contrast (DIC) mode
also introduces contrast in microstructure of the samples having little or less contrast in
brightfield microscopy. Light rays from the source gets linearly polarised after passing
through a polariser. This linearly polarised light ray enters the first DIC prism that
generates two parallel polarized beams vibrating perpendicular to each other. These two
beams are then reflected from the specimen which is having variations in thickness and

refractive indices such that interfere coherently in the image plane and generate two
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slightly displaced images with a phase difference, thereby creating height contrast..
Whereas with no path difference, the resultant light rays will be linearly polarized beam,
showing no contrast at all. The analyzer located after second DIC prism, blocks the
linearly polarized beam but allows the elliptically polarized beam introduces

deceptively 3D images. [221].

3.4.2 Scanning Electron Microscopy
Scanning electron microscopy utilizes electrons beam as an incident radiation
provides huge spatial resolution unlike metallurgical microscopy that uses visible light

source. The wavelength of the electrons is related to their energy E by the equation, A =

1.22/VE, where E = electron energy in eV and A = wavelength of the electron. The
electron beam will penetrate the sample deeper as its wavelength being shorter,
consequently, more will be the resolution for SEM than compared to optical
microscope. In addition, SEM also provide greater depth of field and depth focus even
on a higher magnification and most widely used for fractography.

During operation of SEM, electron beam as a probe scans the specimen to form
a rectangular raster region with the help of scan coils.. Secondary electrons are loosely
bound electrons knocked out from specimen atomic orbital shell due to inelastic
scattering between incident electron and the specimen, whereas the backscattered
electrons are the primary incident electrons that interacts with specimen elastically
loosing very less energy and scattered backside from nucleus of the specimen atom.
Third type of electrons are characteristics X-rays, emitted from the deeper specimen
atoms particularly the inner most orbital shell electron knocked out creating vacancy
which is occupied by adjacent shell electron in the same atom. The excess amount of
electron energy emitted is the characteristic of that atom only that are dispersed in
various channels to stored based on energy. Secondary electrons are used primarily for
topographic contrast imaging, while backscattered electrons are utilized give rise to
variation in density contrast imaging. While EDX gives information regarding
composition of the sample under investigation.

In this current study, SE mode was used for imaging the rolled samples. Fracture
studies of rolled samples after tensile test and also after electrochemical corrosion test.
EDX mode used to examine the chemical composition of the Mg-Ce alloys under

investigation. Scanning electron microscopy (HITACHI S-3400N with Tungsten
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filament) is used to characterize the microstructures of Mg-0.5wt%Ce alloys for all

failure analysis.

3.4.3 Electron Backscattered Diffraction (EBSD)

EBSD technique was employed to acquire the microstructure of the materials in
the present investigation. The SEM model FEI Quanta 200 equipped with EBSD
detector was used. The TSL OIM version 6.0 software was used to collect and analyze
the data. Using a pre-tilted sample holder, the samples were angled 70° to the horizontal
plane. 20 kV of acceleration voltage was employed for the SEM operation. Electro-
polishing method was used to prepare the EBSD samples after standard metallographic
polishing. The electrolyte for electro-polishing contains ethanol and ortho-phosphoric
acid 3:5 ratio in volume. Electro-polishing was conducted at 3 V for 30 sec and 1.5 V
for 2 minutes at less than 5°C temperature.

The area for scanning on the prepared samples were based on deformation
conditions given as:

@) For compressed samples, sectioning was done along compression axis in the
centre of the cylindrical samples such that the scanning of the
microstructural features occurs at the compression plane perpendicular to
the compressive axis. Scanning for EBSD sample done at different step size
varying from the 0.3 — 0.5 um based on grain size at different stages.

(i) For rolled samples EBSD measurements was done along rolling direction
(RD) of sectioned samples using the step size of 0.4 — 0.6 ym.

TSL OIM EBSD software was used for microstructural characteristics such as grain
size distribution and grain boundary character distributions. TSL-OIM version 6 data
analysis software was used for detailed investigation of the scan images.

In this investigation, the average grain orientation spread (GOS) values obtained
for different deformed conditions from the microstructures. The grain orientation
spread (GOS) is determined using the average orientation of each grain. The average
GOS value is used to distinguish the microstructures as softened grains having less
GOS value than average, while deformed grains have larger GOS values.

Such distinction of grains in the microstructures based on following conditions:
(1) Softened grains should be equiaxed, while elongated morphology is seen for

deformed grains.
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(i) Deformed grains contain large fractions of LAGB, while softened grains
have HAGB in large fractions.

(iii))  Softened grains show rotation of grains around c-axis by 10 - 30° relative to
deformed grains, denoted by ¢ = 90° Euler space where rotation of 30° of

maxima along ¢ axis.

3.4.2.3 Surface Profilometer

Surface profilometer are interference microscopes usually used to determine
height differences such as surface roughness with utmost precision as the light
wavelength is considered as the ruler. The path difference of the light rays emerging
from a test surface and a reference surface is generally compared. A light beam divides
into two rays such that one ray reflected from the reference surface (mirror) and other
ray travel through the focal plane of objective lens of the microscope. These two rays
form constructive interference provided when the sample surface and the reference
surface are equally spaced from the beam splitter. On contrary, if the beam splitter is at
varying distances between both the surfaces, then the two reflected beams emit dark
and light bands called as interference fringes. Profilometer employs these fringes for
estimating surface finish and surface roughness, until the large quantity of light ray is
reflected back into the objective from the surface. [222]

In the current investigation, the surface roughness (any defect formation and
surface roughness) of Test material samples in different deformation conditions i.e., as-
extruded, UDR and MSCR were measured. The surface roughness was measured on an
area of 963 x 722 um? at the centre of the samples utilizing the non-contact mode of a

Bruker optical surface profiler (Model: Contour GT-KO).

3.4.3 X-Ray Diffraction

In this study, the phases of Test material were identified from the crystallographic
features point of view using X-Ray diffraction (XRD) techniques. X-ray diffraction is
primarily used as a quantitative technique for material characterization. As the X-rays
are strike on a crystalline material made of periodic array of atoms, then waves scattered
by individual electrons present in each atom will emit in a phase forming a constructive
interference. The Bragg’s Law gave a condition n\ = 2dsin6 for the formation of this
constructive interference and called as diffracted X-rays. 20 is the only measurable

entity during X-ray diffraction techniques. Amongst methods of diffraction, only
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diffractometer is most widely used as a versatile method. [40]. The operating

parameters of X-ray diffractometer are shown in Table 3.2

Table 3.1 Details of operating parameters followed in XRD

X-ray source Cu -Ka
Wavelength 1.54 A

Voltage 40 kV

Current 30 mA

20 10° - 120°

Step size 0.02°

Time/step 0.5 second
Geometry Bragg-Brennato
Model Bruker D8 Advance
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Chapter 4: RESULTS AND DISCUSSIONS

This chapter outlines the results obtained from experimental techniques to

evaluate the deformation and the corrosion behaviour as discussed in chapter 3 for the
Mg-0.5wt% Ce alloy. Subsequently, complete correlation of test results was established
with materials characterization after the analysis for both behaviours.
Section 4.1 describes the results of deformation conditions during compression test are
being represented by flow curves and subsequently generate processing maps and
establish the constitutive equation in accordance with the deformation behaviour. A
detailed analysis of flow curves, processing maps and constitutive equations identified
by using related microstructures and texture development.

Section 4.2 explains the outcome of processing maps reveals the regime of
processing the Test material using hot rolling method performed in two routes viz. UDR
and MSCR. Subsequently, tension test was performed on the hot rolled sheets. The
materials characterization is conducted on hot rolled sheet before and after tension test
describes the deformability of the Test material.

Section 4.3 discusses the response of the rolled sheets in the environment of
applications identified by corrosion test done by Potentiodynamic polarization test and
electrochemical impedance test. Microstructural analysis pertaining to the findings of
both electrochemical test outlines the mechanism proceeding in the corrosion behaviour

of the Test material.

4.1 Hot Deformation Behaviour of Mg-0.5wt% Ce alloy
4.1.1 Starting material

In the present investigation, Test material is chosen as the starting experimental
materials for all types of deformation conditions. Mg-0.5wt% Ce alloy received in the
form of extruded rods from M/s General Motors, Warren, USA. The initial
microstructure of as-extruded specimen of Test material is shown in Fig. 4.1. The
microstructure exhibits average grain size of 25-35 ym in well-defined recovered grain
structure. Few grains are extended in the extrusion direction, while majority are
equiaxed, consequently in-homogeneity in the material increases. Presence of many

second phase (Mgi2Ce) particles was confirmed by the SEM-EDS elemental mapping
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and are observed both at grains and grain boundaries and thus Mg2Ce phase in

microstructure validates the Mg-Ce phase diagram. These precipitates reveal random
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(a) IPF Map (b) (0002) and (1010) Pole Figure Map

Fig. 4.1 Inverse Pole Figure (IPF) (a) and Pole Figure Map of As-extruded samples
from EBSD image.

distribution throughout the microstructure either in elongated rod-shaped or globular
morphologies. The volume fraction of these precipitate very low less than 2% and the
size of precipitates range between 2.58 to 14.00 um while average size is 4.2 ym. The
basal plane inclined at an angle of 40-50° to extrusion axis as seen in fig. 4.1 (b) (0002)
and (1010) pole figures, indicating more suitable orientation for huge numbers of

grains. [22].
4.1.2 Hot Compression Test

The selected material for hot compression test was extruded rod of Test material as the

experiment procedure.
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4.1.2.1 Stress- Strain Curves
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Fig. 4.2 True stress—true strain curves obtained for Test material in hot compression at
5 different temperatures and 5 different strain rates as indicated in each curve.

The true stress—strain curves are developed typically in flow curves nature based
on hot compression test parameters of five distinct temperatures and five different strain

rates as observed in Fig. 4.2.
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Fig. 4.3 Variation of flow stress with temperature from 0.1 and 0.5 strains

Now these true stress-strain curves are employed to establish the variation in
flow stress with the temperature of hot compression as seen in Fig. 4.3. It can be
observed that flow stress reduces with rise in the deformation temperature and decline

in the strain rate. But this fact is true at 623 K, 673 K and 723 K.
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Fig.4.4 True stress—true strain curves obtained for Test material in hot compression at
5 different temperatures and 5 different strain rates as indicated in each curve.

For all the test temperature, the true stress-true strain curves at strain rates of
10" s7!, 1 s7" and 10 s™' exhibited strain hardening, whereas at lower strain rates (10~
s1, 102 s71) flow softening of recovery was observed as shown in Fig. 4.4. The peak
stress at 0.4 strain for lowest strain rates 10 s occurs slightly above the remaining

strains, followed by 0.01 s™! at lowest temperature of 523 K. This deformation in occurs
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by giving strain only along the <a> = <1120>/3 axis due to four independent slip
systems i.e., 2 from the basal slip system (0002) <1120> and 2 from prismatic slip
systems (1010) <1120>. Such inadequate deformation leads to strain given along c-axis
by {1012} <1011> extension twinning brings about half of the slip mode based on
direction. [15]. Later, the peak stress shifts to 0.5-0.6 strain for 10 and 10" s™! with
increase in temperature at 573 K. However, the onset of flow softening occurs at the
lowest strain rate 10~ s™'. This occurs because of either reduction in critical resolved
shear stress (CRSS) of basal slip system or decrease in activation energy required for
cross slip, causing other slip systems (prismatic and pyramidal) to activate. [54]-[56]].
Such activation is driven by temperature dependent deformation components because
prismatic and pyramidal slip systems has the CRSS value double that of basal. [51].

The flow curve shows steady state behaviour upto 0.7 strain for deformation
temperature of 623 K to 723 K for the highest strain rate of 10 s™'. But at 1 s™! strain
rate exhibits onset of steady state behaviour at 673 K and get stabilize steady state at
723 K. The flow stress reduces with increase in temperature from 673 K and 723 K for
all the strain rates. The deformation temperature decides the CRSS of slip system that
causes lower stresses and considerable ductility. [54] [47][60]

The samples cracked for the temperature below 523 K because of highly
localize incompatible stresses are developed in the microstructure that causes the grains
oriented properly for basal slip get obstructed from the adjoining grains not oriented
suitably for basal slip. Subsequently, the stress concentration increases more at the grain
boundaries than the applied stress and high enough even to activate non-basal slip. [57]

The choice of deformation temperature is based upon strain accumulation in the
materials and subsequently restoration of this accumulation. Hence, the selection of
deformation temperature decided by recrystallization temperature considering the
phase diagram of the material under investigation. Simultaneously, the range of strain
rate is estimated by strain accumulation controlled by stacking fault energy of the
materials and an industrial choice between accomplishment of materials processing
with complete structure-property relationship and cost of production. Therefore, this
alloy was tested at a temperature from 523 K, 573 K, 623K, 673 K and 723 K and strain
rates applicable over the range of 102 s! to 10! s”! to obtain sufficient deformation

processing data. . The flow stress values taken at 0.6 strains in all the cases, are
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exhibiting more pronounced strain hardening as it enhances with increase in strain rates

but declines with increase in temperatures.

4.1.2.2 Processing maps:
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Fig. 4.5 Processing maps for Test material at 0.1 to 0.5 strain
Processing map overlapping of efficiency of power dissipation map on

instability map. Fig. 4.5 shows contours lines (blue and red) in a temperature—strain rate

frame for 0.1 to 0.5 strain. The blue coloured contours lines shows constant efficiency
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as a percentage. The number on each blue contour line indicate the efficiency of power
dissipation in percentage. The red contour line shows the instability in the flow stress
for Test material.

In processing maps, the efficiency of power dissipation value at 0.1 strain
exhibit very low, while gradual increment is observed from 0.2 to 0.5 strains. The
processing map at 0.2 strains corresponds to the extensive strain subjected on the
experimental Test material in the vicinity of critical strain for majority of strain rates
and same is also being depicted in the processing map at 0.3 strain. The map at 0.4 and
0.5 strains correlates to the steady state condition.

The processing map demonstrates of two distinct domains:

Domain I: Occurring at 723 K and 102 s 'to 10°° 57! (10 s7! t0 0.316228 s ') with a

peak efficiency of around 40% - 30%.

Domain II: Occurring at range of 623 K — 673 K and 103 s1- 102 s! (102 s7! - 102
s 1) with a peak efficiency of about 50% - 35%.

These maps are unlike to that attained on as-cast magnesium [223], as the first domain

occurred at 698 K and 0.3 s™!, whereas the second domain was more evolved as testing

was continued to 823 K, a higher temperature.

In general, the power dissipation efficiency rates of 30% and greater are regarded
safe for processing. Domain 1 in Mg-0.5wt% Ce alloy appears to be a stable domain as
the concerned efficiency value is above 30%. The region identified as domain 2 also
shows a zone of safer area. However, due to significant grain coarsening, the effect of
deformation heating should not be overlooked at low strain rate and high temperature
regime.

The domain around lower strain rates changes narrowly with increasing strains
and corresponds to higher value of power dissipation efficiency. Processing maps are
2D descriptions of topographic maps in 3D, where the domains represent peaks or
maxima of efficiency, and the contours lines are comparable to the lines of equal height
along the peak. The quantification of shift from stable to unstable zones or vice-versa
cannot be done by number in fraction or percentage of efficiency but needs to detect a
valley. Therefore, the deviation from the optimum value of safe zone by the changes in
processing parameter manifests the gradual decrease in the efficiency points to the
closed contour lines. [26]

The red contour lines of instability map overlap on the blue contour lines of power

dissipation efficiency map developing the processing map observed in Fig.4.5. The
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regime of instability inside the efficiency contour lines shows negative value of £(¢€) as
given by equation (2.11) and exhibits flow instability.

Therefore, the material flow is unstable manner at strain rates greater than 0.1s!
regime that is manifested in the microstructural evolution. The instability maps at 0.1
and 0.2 strains are partially developed than compared to 0.3, 0.4, and 0.5 strains. The
demarcation of unstable and stable regimes shown by region of red coloured contour
lines over blue ones and only blue contour lines respectively.

Lower values of power dissipation efficiency at 523 K — 573 K, irrespective of
the strain rates implies unsuitability for the hot working conditions. However, higher
efficiency values obtained in the 0.001 s! to below 1 s! strain rate region is apt for hot

working of Mg-0.5% Ce alloy.

4.1.2.2.1 Stability Domain

Fig. 4.5, domain I is marked in the range of 107 to 10°3s™! and 673 to 723K,
while domain II is marked within 10~ to 10""*s™ and 623 to 673K. Domain I represents
steady state stress due to DRV, while domain II corresponds to recrystallized regions.
Generally, stable domains characterized by DRV are observed at a maximum power

dissipation efficiency #<30% based on stacking fault energy of the materials [170].

4.1.2.2.2 Instability Domain

Between 523-623K and 107 — 1 s! instability domain is observed with an
efficiency of 25% indicating a larger fraction of power being utilized in heat generation
rather than microstructure refinement. As a result, insufficient DRV occurs at grain
boundaries which are high energy state, and further increase in strain tends to be
localized deformation in terms of deformation bands or shear bands. Higher strain rates
promote the occurrence of such localized deformation resulting in earlier failure [224].

Instability domain at 623—-723K/1-10s™! strikingly identifies high deformation
temperature suitable for DRV or DRX, however, high strain rate restricts uniform
deformation. Simultaneously, the presence of original coarse grain and deformation
induced fine grains will trigger instability extending it to nucleate cracks. At higher
strain rates, the deformation induced heat generation is concentrated along the grain
boundaries resulting in the occurrence of adiabatic shear bands. At high strain rate and

high temperature, the plastic deformation work energy will be transferred to heat energy
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resulting inadequate recrystallization and excessive softening causing reduction in
grain boundary strength. Sometimes, high dislocation density and stress-accumulation
along grain boundary leads to localized flow stress instability which should be avoided

in hot processing. [225].

4.1.3.3 Microstructure evolution:

673 K & 0.001 s1
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TIIK & 0.001s! 500X 723K & 0.1 5! 500X

Fig. 4.6 Optical microstructures of As-extruded specimen at 100X and 500X of
compression tested specimen of Test material.
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Fig. 4.7 EBSD Inverse Pole Figure (IPF) of (a) As-extruded specimen and (b-e)

Compression tested specimen of Test material.
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Fig. 4.8 EBSD Grain orientation spread (GOS) microstructures of (a) As-extruded
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specimen and (b-g) Compression tested specimens of Test material.
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Fig.4.9 Quantification of EBSD data with (a) Grain orientation spread (GOS), (b) Grain
Size distribution and (c) Grain Mis-orientation Angle of as-extruded specimen and
compression tested specimens of Test material.

During hot working the dynamic restoration process is extremely vulnerable to
deformation conditions in Mg alloy because non-basal slip system has strong
dependency on temperature and strain rate. Plastic deformation is carried out by basal
slip (0001) <1120>, prismatic slip {1010} <1120>, and pyramidal I-type {1011}
<1123>, and pyramidal II-type {1122} <1123> system along with tensile twin {1012}
<1011>, and compression twin {1011} <1012>. The non-basal slip system activates
system during hot deformation relies on the union cross slip of glissle screw <a> basal
dislocation with the sessile edge <c> dislocation on the prismatic plane generating
screw type <c+a> dislocation easy to cross slip on the pyramidal plane. [67]. The
microstructures obtained from EBSD are evaluated through IPF and GOS. Fig.4.7
shows IPF images of (a) As-extruded specimen and (b-¢) Compression tested specimen
of Test material.

At 523 K, Mg-Ce alloy exhibit poor ductility than the pure Mg which contains
dislocations nearly parallel to each other resulting parallel slip-band. [19]. The slip
banding in Mg-Ce alloy shows wavy lines indicating of cross slip at 523K due to non-
basal dislocations slips [226]. Many dislocations in Mg-Ce alloys are not parallel
indicating different orientations and activity viz, basal <a>, prismatic <a> at room
temperature as proposed by Koike et. al. [55]. The non-basal slips activate dominantly
at higher temperatures as reported by Reed-Hill et. al. [50], such as prismatic slip at 83-
298 K and pyramidal slip at 423-559 K. This confirms that pyramidal slip is responsible
for deformation at 523 K [19].
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Generally, {1012}tensile twins are more commonly observed during
compression, but even {1011} compression twins are formed. These compression twin
initiates (i) local shear deformation inside twin volume and (ii) crack at their
boundaries, consequently, leads to failure. [227] [86]. Compression twins nucleate at
larger grain size at lower strains, while nucleation of tensile twin is not strongly
dependent on grain size above 15-30 um. Mg-0.5wt% Ce alloy has grain size above this
value. Sometimes, smaller grains twin observed even at higher stress levels. [24].
Double twins when grouped with compression results into shear bands formation
generally observed in Mg-RE alloys (especially in Mg-Ce alloy leading to texture
weakening). [104]

Formation of extensive shear band occurs at highest strain rates and at 523 K ,
whereas small fraction of shear bands are formed at 673 K and 723 K. Shear bands are
basically areas of high strain localization appears to be frequently crossing many grains.
The shear bands formation in Mg alloys occurs during compression and dual twinning
modes of deformation. [95][96][98][99]. Generally, shear band forms during
compression at 45° to the compression direction as seen in Fig. 4.7 (c) at 523K and 10
s'. Such shear bands are projected as the fundamental demonstration of strain
localization and the indication of damage. During hot rolling or cold rolling in Mg
alloys shear bands are generally observed and depreciate the formability, even at above
room temperature. A heterogeneous microstructure develops due to the shear bands
which cannot be removed completely once formed. In such microstructures, shear
bands occur as areas of slip plane segregation (High SFE) reorienting toward shear
direction or grouping of micro-twin band formation (Low SFE).[101]

Still there is decrease in the ductility at 523 K, attributed to the spatial
distribution of shear bands. Larger size shear bands extending along many grains can
accommodate less amount strain accumulation than compared to smaller size shear
bands distributed finely throughout grains within the microstructure [96] Such larger
size (both width and lengthwise) of shear bands is distinctly seen in the IPF
microstructure of 523 K compressed at 10 s™!, where strain accumulation is less and
hence ductility decreases accordingly. Similar trend of shear band formation leading to
flow localization continues even at lower strain rates such as 1 s™!, and 10"' s!, when

tested compressively at 573 K and 623 K. Such kind of shear band formation attributed
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to flow localization resulting in instability zone for these deformation parameters as
seen in processing map shown by red colour lines.

However, narrow size of shear band formation is a resultant of larger amount of
micro-twin bearing {1011} - {1012} orientation disclosed by TEM — BF [96].
Accordingly, smaller size of shear bands is observed in the IPF microstructure of 673
K, and 723 K compressed at 10 s!, having smaller fraction distributed finely. Smaller
extent of strain accommodation occurs in low intensity shear bands in large numbers
resulting in high strain prior to failure. Therefore, the stress — strain curve shows better
ductility for 673 K and 723 K compressed at 10 s}, even at higher strain rate. Similar,
precedence is followed for lower strain rate of 1 s™! at 673 K and 723 K. These shear
band formation even though accommodating large strains resulting better ductility
comparatively but still flow localization persisting. Hence, microstructure with flow
localization results into a regime of instability zone, as depicted in the processing maps
for 673 K and 723 K compressed at 10 s™!, and 1 s™!, strain rates. Thus, at high strain
rates, extensive shear band formation is prevalent.

At 723 K and 10 s!, the accumulation of dislocation is high due to strain
hardening. Fraction of high angle grain boundaries (HAGB) is significant for specimens
deformed at higher strain rates. Specimen deformed at highest strain rate shows large
fraction of fine grains corresponding to sub-grain formation. This indicates the
characteristic of dynamic recovery revealing the onset of flow restoration mechanism.
This fact is also validated by the steady state nature of the stress-strain curve.

At lowest strain rates, grain sizes of the deformed samples are comparable with
as-extruded samples as dynamic recovery occurs without dynamic recrystallization. At
523 K and 107 57! to 107 s™!, parameters show heterogeneity of deformation gradient
inside the grains, more strain at the grain boundaries and less in the centre of the grain.
The variation in this deformation gradient is attributed to activity of numerous slip
system along grain boundaries compared with central region of grain where only basal
plane is active [102]. This development is demonstrated by formation of smaller
fraction of fine equiaxed grain but not recrystallized at the grain boundaries. The
remaining grains stays bigger in size due to larger concentrations of dislocation density
and presence of tensile twins. At lower temperature, fraction of dynamic recovered
grains is lower due to insufficient thermal driving force. Similarly, compression at 573
K and 1072 s to 102 s also shows same behaviour of insufficient dynamically

recovered grains. The microstructures at 523 K and 573 K compressed at lower strain
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rates shows smaller fraction of sub-grains formation appearing as fine grains along
boundaries of bigger grains. On these compression test parameters of 523 K and 107 s~
!, the specimens are observed to have high GOS values as shown by Fig. 4.8 EBSD —
Grain Orientation Spread images and Fig. 4.9 (a) GOS value.

At673 K and 102 s to 107! 5!, the thermal energy is utilized in dynamic recovery
rather than dynamic recrystallization as indicated by steady state flow curve. The grains
in the microstructures shown by Fig. 4.6 (d to ¢) for this regime shows completely
restored from deformed state. As grain interior and grain boundaries both are well
defined to prove the same. As Test material contains very weak texture initially leading
to considerable tensile twinning during hot compression deformation along with non-
basal oriented twinning. Presence of double twins and other twin activity is observed
in the GOS map for 673 K and 107 s™'. The soft oriented grains and twins were not
recrystallized reveals the fact of unable to attain sufficient energy of strain hardening
for recrystallization at this deformation parameters. Consequently, the microstructure
evolved has sub-grain formation due to low deformed region during dynamic recovery
process. Alike, 723 K and 102 s to 107! s!, same trends follow as above parameter
except that of temperature increment makes the grain sizes recovered dynamically. This
type of microstructure evolution represents the steady state behaviour of stress-strain

curve considered as stable zone from the viewpoint of processing map of this material.

4.1.3.4 Constitutive Equation Analysis: Hyperbolic Sine Arrhenius Model

The hot deformation behaviour of flow stress during compression test analysed
by constitutive equations based on Arrhenius-type sinusoidal hyperbolic equation
[177]. In this study, flow stress behaviour at low strain (0.2 strain) and high strain (0.4
strain) are considered. The constitutive equations are established using three ways i.e.,

(1) by applying the Zener-Holloman parameter, Z also called as temperature-
compensated strain rate [178]. Temperature-Strain rate compensation used
to calculate predicted flow stress.

(i1))  the strain — compensation to calculate predicted flow stress.

(iii)  strain rate — compensation to calculate predicted flow stress.
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Fig. 4.10: Estimation of materials constants, (flow stress) vs Ln (strain rate) at (a) 0.2

strain and (b) 0.4 strain and Ln (flow stress) vs Ln (strain rate) at (c) 0.2 strain and (d)

0.4 strain

0.4 strain. MC, a = fi/n’, wherein average of the slope values of n"and f are secured by

Fig. 4.10 (a & b) and Fig. 4.21 (c & d) respectively found by Equations (2.17) and

Fig. 4.10 (a-d) displays the flow stress as a part of strain rate at 0.2 strain and

(2.18) at various strain. The f value obtained as 0.27 MPa™' and 0.19 MPa™! at 0.2 strain

and 0.4 strain respectively. Similarly, the n' value obtained as 7.11 and 6.17 at 0.2 strain

and 0.4 strain respectively. These n’ and f are taken to compute the a value as 0.04 and

0.03 at 0.2 strain and 0.4 strain respectively.
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Fig. 4.11: Determination of apparent activation energy, Q estimated by material
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din[sinh(ao)]

Fig. 4.11 (a-b) estimates materials constants, S =[ 31000 /T)] from

In[sinh(ac)] vs 1000/T and Fig.4.11 (c—d) determines stress-exponent, n =

[ alné

m} from In€ vs In[sinh(ao)] where both are linear fit slopes. The apparent

activation energy, Q required for plastic deformation in hot compression test is

determined by Equation (2.20)
0 =R. [

aln’ ]T ' [6ln[sinh(aa)]

din[sinh(ao)] 3(1000/ ) L =R.n.S ---from (2.20)

The calculated average apparent activation energy, Q is 332 kJ/mol and at 0.2
strain and 0.4 strain are 360 kJ/mol and 335 kJ/mol respectively, while stress-exponent,

n has values 7.06 and 6.52 at 0.2 strain and 0.4 strain respectively.
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Spigarelli et.al. [228] proposed several deformation mechanisms based on
different stress-exponent, n values, such as sliding by grain boundary (n=2), dislocation
glide (n=3), climb-controlled dislocation recovery (n=5) and cross-slip of dislocation
(n=>6). In Mg-0.5wt%Ce alloy, the stress-exponent, n values are between 6 and 7,
demonstrating that the hot deformation mechanism is governed by dislocation cross
slipping and partially by climb-controlled dislocation creep.

Increase in strain rate leads to higher dislocation density resulting in higher
activation energy, Q as the strain hardening makes deformation more challenging. The
calculated activation energy, Q values (360 kJ/mol and 335 kJ/mol at 0.2 strain and
0.4 strain respectively) for Mg-0.5wt%Ce alloy are considerable higher than those for
self-diffusion through grain boundary (92kJ/mol) [171] and lattice-diffusion (135
kJ/mol) [229]. Such larger activation energy, Q in hot deformation is attributed to
dynamic precipitation, second phase particles volume fraction and the pinning effect.
The dissolved Ce in Mg induces the pinning of dislocations, with Ce-rich precipitates

acts as barrier for dislocation slip.

4.1.3.5.1 Temperature - Strain rate compensation to calculate predicted flow
stress

As discuss in the chapter 2 section 2.5.1, taking logarithm on both side of

Equation (2.12), we get Equation (2.21) illustrating the relation between flow stress and

Zener-Holloman parameter, Z.

InZ =In A+ n.In[sinh(ao)] {taken from equation (2.21)}

The flow stress, o can be determined by the materials constants (', 5, a, n) and
Q in the constitutive equations as a function of Zener-Holloman parameter, Z, thereby

taking the Equations (2.12) and (2.16) as follows:

o= é In (E)n + [(E)" + 1] taken from equation (2.22)}

The flow stress, o based on the constitutive equations established by Equation (2.22) at
0.2 strain and 0.4 strain can be determined after calculating all the parameters described

above stated as
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Fig. 4.12: Estimation of materials constants In(A) using In(Z) vs In (sinh (a0)) at (a) 0.2
strain and (b) 0.4 strain.

Consider y-intercept of linear fit as In(A) value [184] [185] from above Fig.
4.12, constitutive equations are established as per strain, temperature and flow stress

by replacing the materials constants (o, 1, 4) and Q values in Equation (2.16)

&= 178 5 10%° x [sinh(0.04  05,2)]"*® exp (22X10) (4.32)
3
¢ = 2.93 * 1026 * [sinh(0.03 * g, ,)]¢%2 exp (335R"T1° ) - (4.3b)

Equation (4.3) work only at 0.2 strain and 0.4 strain.
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Fig. 4.13: Comparison of true stress - strain (a) Experimental flow stress and Predicted
flow stress modified constitutive equation by Temperature-Strain rate compensated and
(b) Consolidated comparison.

The developed constitutive equation was evaluated by comparing predicted
values with experimental findings using materials constant values across different strain
rates and temperature regimes (Fig. 4.13). This comparison ratifies fairly for the strain
rate 10s! but depicts distinctive errors for the other strain rates, as observed in Fig.
4.13a and 4.13b respectively. Consequently, modifications are required in the form of
strain-compensation and strain rate-compensation to improve the predictability of

constitutive equations.

4.1.3.5.2 Strain-compensation to calculate predicted flow stress
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Fig. 4.14: Variation of materials constant (a), (b), (c), (d), and (e) with strain fitted by
4™ degree of polynomial.

The computed values of the materials constants (a, f, n, 4) and Q obtained from
equations (2.17 - 2.19) varied with 0.1 to 0.5 strain as seen in Fig. 4.14. The
corresponding curves pertaining to each constant were subjected to polynomial fitting

as shown by Fig. 4.14 (a to e). The corresponding equations of materials constants are,

a =0.07—0.42.¢ + 1.56.£% — 2.78.£% + 1.89. g% (4.4)
B = 0.83 —5.90.& + 22.26.£% — 39.47. €3 + 26.50. £* (4.5)
n=771-542.¢+15.13.£2 — 20.38.£3 — 5.56. £*-——- (4.6)
Q = 272.14 + 705.01. & — 1333.93.£2 + 102.13. €3 — 499.64. £*--—-ermnenmv (4.7)
InA = 42.07 + 241.32.¢ — 886.11. &2 + 1536.83. &3 — 1337.69. £*--—mremmnm (4.8)

Thereafter, materials constants (o, S, n, A) and Q are recalculated based on
polynomial regression analysis by substituting 0.1 to 0.5 strain values in Equations (4.4
— 4.8) for strain-compensation. Consequently, their values were replaced in Equation
(2.16) establishing new constitutive equation at various strain rates from Equation
(2.16) and then flow stress from Equation (2.2) was evaluated with recalculated
materials constants. The coefficients of materials constants and strain fitted by 4™ order

polynomials are presented in Table 4.1.

Table 4.1: 4" order polynomials coefficients for the fitted materials constants and strain

curves
a p n Q0 kJ/mol InA
Ao 0.07 Bo 0.83 Co 7.71 Do 272.14 Eo  42.07

Ar -042 By -5.90 C -542 D; 705.01 Ei 24132

Ar 1.56 B> 22.26 C, 15.13 D, -1333.93 E>  -886.11

Az -2.78 Bs -3947 Cs -20.38 D; 102.13 Es  1536.83

As 1.89 Bs 26.50 Cs -5.56 Dy -499.64 Es4  -1337.69
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The strain-compensation a-values are narrow-ranging from 0.05 to 0.003, while
stress-exponent, n-values are wide-ranging from 7.30 to 5.89 relating to 0.1 to 0.5
strain. These values decrease with increase in strain. Apparent activation energy, Q-
values are varying from 272 kJ/mol to 362 kJ/mol at 0.1 to 0.5 strain. The In(A)-values
are fluctuating from 65.05 to 60.94 at 0.1 to 0.5 strain. These strain-compensation
values of a, n, Q, In(4) at 0.2 strain is 0.04, 7.07, 360, 65.05 and at 0.4 strain are 0.03,
6.52, 345, 60.94 respectively.
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Fig. 4.15: Comparison of true stress-strain curves (a) Experimental flow stress and
Predicted flow stress modified constitutive equation by strain-compensated and (b)
consolidated comparison.

In Fig. 4.15, the strain-compensated modified predicted data is compared to
experimental findings, showing qualitative agreement with a few deviations under
specific conditions. At lower strain rate significant deviations are observed in the
stress values across different temperatures. These differences arise due to the material
constants (n' and S values) in Equations (2.17) and (2.18). Such tiny deviations
ultimately influence the values calculated by the Equations (4.4 — 4.8) decreasing the
accuracy of the constitutive equations [230].
4.1.3.5.3 Strain rate-compensation to calculate predicted flow stress

The accuracy of constitutive equations achieved by strain rate-compensation to
modify the Z. This modification was done by changing the exponent of strain rate in Z
equation [184] [185]. An exponent of 0.85 was noticed to be best for the strain rate-
compensation for this alloy. The modified Z parameter (Z) obtained on multiplying Eq.
(2.12) with £€7%15 is given as,

7 = €985 exp(Q/RT)----

(20)
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The correlation between Z and Z may be stated as:

In(2) = In (Z) — 0.15 In(¢) (21)

Therefore, the flow stress, o needs to be modified using constitutive equations

(2.22) as:

1
L L2 2
1 Z\n Z\n
o==.In{(=) +|l=)] +1 (22)
a A A
. Strain Rate =10 s
g 190 Experimental Flow Sin s 120
xperimental Flow Stress -
= 1401 (a) —23K = (b) E on: o2
oy —FTIE ”
E . —&3K % 100 2:‘ *ar-""
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= = K bt - ° 5
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Fig. 4.16: Comparison of true stress - strain curves (a) — Experimental flow stress and
Predicted flow stress using modified Zener-Holloman parameter, Z by 0.85 strain rate

compensated and (b) Consolidated comparison.

Fig. 4.16 symbolizes strain rate-compensated modified predicted data and
experimental findings shows considerable agreement observed with few deviations to
verify the modified constitutive equations. At lower strain rate demonstrates sizeable

deviations in the flow stress observed at many temperatures.

4.1.3.6 Verification of the constitutive equations’ accuracy
The reliability of the constitutive equation on the experimental data was
quantified by employing the basic statistical entities stated as the average absolute

relative error (AARE) as discussed in chapter 2 section 2.5.2,

E;-P;
E;

AARE = %Zéil | {taken from (2.26)}

and the correlation coefficient (R),

116



R YN (Ei—E).(P;—P)

\[Z?’:ﬂEi_E)Z-Z?I:l(Pi—IS)Z

{taken from (2.27)}

where E and P are experimental and predicted flow stress, ¢ values respectively; E and

P = average E and P values, respectively, N = number of selected quantities.

At 0.4 strain showed 15.16% peak value of AARE at 723K and 1s™! strain rates
and the corresponding R is 0.89. The cumulative values of AARE at 0.2 strain and 0.4
strain is 10.18% and 10.56% respectively indicate substantial fitting of the constitutive
equation established with the experimental data. The correlation coefficient (R) is 0.95
applying least square fitting line with various data, showing a linear relationship

between values of experimental and predicted -flow stress, despite its fluctuation.
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4.2 Effect of Strain Path on Anisotropic Behaviour of Hot Rolled Mg-0.5wt% Ce
alloy

The processing maps for the Test material provides insight into the potential for
producing various wrought products, including plates and sheets as detailed in section
4.1. Based on the power efficiency obtained from the processing maps, the hot rolling
parameters for the extruded rod of Test material, was carried out using through two
routes: UDR and MSCR. Subsequently, the hot-rolled sheet specimens underwent
various characterization, including X-ray Diffraction, Hardness testing, Microstructural
analysis, Tensile testing, Fractography, etc. The results of these studies are elaborated

in the following sections.

4.2.1 X-Ray diffraction (XRD)
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Fig. 4.17: XRD of As-Extruded rod, UDR and MSCR sheet specimens

The XRD patterns of extruded, UDR and MSCR samples of Mg-0.5wt.%Ce
alloy is illustrated in Fig. 4.17. The XRD pattern reveals the presence of Mgi>Ce as a
minor phase along with Mg as the major phase. Mg2Ce phase has body centred
tetragonal lattice of t126 crystal structure bearing lattice parameters a=10.33 A and

¢=5.96 A and density of 2.25 (g/cm?®) [157]. Significant changes in the intensity of
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{0002} peak could be observed for samples processed under different conditions. The
lowest intensity is observed for the extruded sample and increases in MSCR condition,
and the intensity becomes maximum for the UDR samples.

XRD pattern of extruded, UDR and MSCR samples unveil slight deviation from
the XRD pattern of pure Mg with reference from Powder Diffraction File (PDF)
database. (PDF No. 65-3365) [231]. Ce has a minimal solubility in Mg. Therefore, apart
from the peak shift arising from the solid solution, a significant contribution could be

arising from the residual stresses due to the processing.

4.2.2 Microstructural Analysis

The hot rolled sheets of UDR and MSCR were characterized by SEM in SE
mode for topographical images and Energy Dispersive Spectroscopy mode for
elemental mapping. In addition, dedicated SEM — EBSD (Electron Backscattered
Diffraction) mode was also utilized for both qualitative and quantitative analysis of the

experimental alloy specimens.

4.2.2.1 SEM and SEM-EDS analysis
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Fig. 4.18: FESEM images at 1000X and 5000X of (a) As-Extruded rod, (b) UDR and
(c) MSCR sheet specimens after 20" pass.
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Spectrum 1:

Element | Weight% | Atomic%

OK 8.38 15.58
Mg K 64.26 78.61
Spectrum 1 Cel | 2736 | 581

Totals 100.00 100.00

Spectrum 2:

Spectrum 2

Element | Weight% | Atomic%

MgK 100.00 100.00

Totals 100.00

Spectrum 1 Spectrum 2

keV[Full Scale 4842 cts Cursor: 0.000

Spectrum No.l

Element | Weight% | Atomic%

O 0K 1194 70,01

Mg K 69.30 76.41

CeL 18.75 359

Totals 100.00

10 um

Spectrum No. 4

Spectrum 4

Element | Weight% | Atomic%

MgK 100.00 100.00

Totals 100.00

0 05 1 15 2 :
Full Scale 4842 cts Cursor: 0.000 keV|[Full Scale 4842 cts Cursor: 0.000 keV

121



Spectrum No.l

(c) Flement | Weight% | Atomic%

0K 10.69 17.79

Mg K 7215 78.96

Cel 17.16 3.26

F Totals 100.00
Spectrum 1

Spectrum No. 3

_+_
9
SpeCtrU mJo Tlement | Weight% | Atomic%

6 , l MgK 100.00 100.00

Totals 100.00

Spectrum 3
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Fig. 4.19: SEM-EDS elemental mapping of (a) extruded rod, (b) UDR and (c) MSCR
sheet specimens.

The FESEM microstructure of the Test material samples in different conditions
of extruded, UDR and MSCR is illustrated in Fig. 4.18. The FESEM microstructure of
extruded and hot-rolled UDR and MSCR shows mixed distribution of deformed grains
mostly twinned grains; along with some original grains, smaller grains, along with sub-
grain formation and limited amounts of Mg>Ce precipitates (Mgi>Ce as per Mg — Ce
phase diagram shown in Fig. 2.26) randomly distributed in its matrix phase. As shown
in Fig. 4.19(a), the elemental mapping of spectrum 1 in SEM EDX images gives the

. MgK C . .
ratio value of C—“ZL ~ 28.18, which is exactly the matches with the maximum

composition limit of Mg2Ce precipitates at 590°C. The microstructure of as-extruded
materials shows well defined recovered grains in the order of 25-50 um and some twins
within the grains as shown in Fig. 4.18(a). The extruded sample microstructure reveals
coarser size of the precipitates scattered in a highly disproportionate manner. Many
particles are located within the grain, but very few of the precipitates are also seen at
grain boundaries.

Precipitates appeared within the grains and at the grain boundaries are of

different size ranging from 4 um to 9 um with a volume percentage of 1.5% for as-
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extruded sample, while UDR sample has narrow range of 4.5 ym to 5.6 um with a
volume percentage of 1.6% and 3.4 um to 8.2 um with a volume percentage of 1% for
MSCR sample.

The microstructure of UDR referred in Fig. 4.18(b) shows more homogeneous
distributions of 35-55 um grains. MgixCe precipitate particles are coarser and are
ineffective in pinning the grain boundaries. The precipitate sizes in UDR are in close
range compared to MSCR sample.

In Fig. 4.18(c), the microstructure of MSCR indicates relative grain growth
having grain sizes 40-90 um. Since there is no evidence for the formation of
dynamically recrystallized nuclei near the grain boundaries or flow localized areas, the
grain growth has occurred possibly following dynamic recovery. The precipitate
particles in MSCR are relatively finer than extruded and located within grains but a few

of them could be noticed along the grain boundaries.

4.2.2.2 EBSD Analysis:

A 1010

TD

=

=
-
=

IPF — As-Extruded

[ b %

IPF - UDR at 15th IPF - UDR at 20th pass

Fig. 4.20 EBSD — Inverse Pole Figure maps for (a) As Extruded, (b) UDR at 15" pass
and (c) UDR at 20" pass.

With increasing the deformation strain, the microstructures of the starting
materials (i.e., As-Extruded) develops progressive changes. The microstructures are
characterized with the presence of twinning and in some grains multiple variants of
twins are noticed. Apart from twins, the microstructure also reveals non-indexed areas
because of macro shear bands, where the deformation is localized, possibly due to the

less availability of slip systems. Such localized deformation may also give rise to
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residual elastic stresses in the sample. The elongated extruded grains, mostly having
non-basal orientation rotates along basal planes but not strongly. The grain sizes in UDR
20" pass are very similar to the as-extruded microstructure. The microstructure of UDR
15 in Fig. 4.20(b) shows comparatively coarse grains (45-75 um) than UDR 20 (35-55
pum), due to smaller deformation strain and are strongly oriented towards basal planes.
During these 20 passes of UDR, Test material subjected to very strain of 2.0, assuming
reasonably that the precipitates Mgi2Ce phase will be severely fragmented. As a result,
the sizes of these particles fall in the narrow range of 4.5 to 5.5 um than compared to
the As-Extruded in order 4.0 um to 9.0 um. Moreover, the number fraction of these
precipitates increases marginally over the As-Extruded microstructure indicating of

more likelihood of particle pinning the grains and thereby retarding their coarsening.

1010 1010
| TDA »
RD 0 == —

IPF — As;Etl;uded IPF - MSCR at 15th | IPF - MSCR a 20th
Fig. 4.21 EBSD — Inverse Pole Figure maps for (a) As Extruded, (b) MSCR at 15"

pass and (c) MSCR at 20" pass.

P m— 3 2

The EBSD generated microstructures in terms of inverse pole figures (IPF)
maps are depicted in Fig. 4.21 for As-Extruded sample along with MSCR after 15" pass
and at 20" pass. The microstructures were examined on RD-TD planes of the sheets..
The grains (40-90 pum) of MSCR 20™ pass microstructures are coarser than the MSCR
15" pass (25-45 pm) and As-Extruded (25-50 pm) indicating the possible grain growth
during high temperature rolling. The microstructures of both MSCR shows weak basal
orientation as subjected to changes in rolling plane after each pass compared to the as-
extruded. The size of the second phase precipitates Mgi2Ce phase sizes are remains
nearly similar to that of as-extruded condition, but their number fraction decreased to a
greater extent in MSCR 20" pass microstructure. These Mgi,Ce precipitates are likely

to align themselves with shear band planes with basal orientation becomes
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unaccountable. Consequently, the assumed pinning effect of the precipitates lowers
down leading to coarsening of grains in the MSCR 20" pass.

Majority of the grains aligned them along shear band in the basal orientation.
However, at 20" pass in both UDR and MSCR are exhibiting basal plane orientation
for most of the grains with small amount tilt roughly 10° -15° away from ND of the
rolled sheet in the rolling direction, indicating of basal texture weakening in the final
sheet sample. Both the type of rolling UDR and MSCR exhibited substantial spread of
basal poles in the TD from completely non-basal orientations of the grains in the As-
Extruded rod sample. Additionally, microstructures of UDR and MSCR also shown the
entire network of shear bands distributed uniformly over the RD-ND plane. These shear
bands are wavy extending for a large distance in the microstructure accommodating the

strain accumulation during rolling.[ [20]]
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Fig. 4.22 EBSD — Grain orientation spread maps for (a) As Extruded, (b) UDR at 15®
pass and (c) UDR at 20" pass.
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Fig. 4.23 EBSD — Grain orientation spread maps for (a) As Extruded, (b) MSCR at
15" pass and (c) MSCR at 20'" pass.

The EBSD generated grain orientation spread (GOS) maps of as-extruded, UDR
and MSCR deformation conditions are reported in Fig. 4.22 and Fig. 4.23 respectively.
GOS relates to the deviation in the grain orientation to average grain orientation. A
higher value of GOS indicates a deformed microstructure, while a lower value indicates
recrystallized or extensively recovered microstructure.

The intra-grain misorientation generation in UDR 20™ pass is observed to be
more than MSCR 20™ pass. This could be attributed to the fact that the changes in the
strain path during MSCR activated multiple slip systems and therefore, the chance of
dynamic recovery is high due to the possibility of cross-slip, whereas in UDR since the
strain path is kept constant, the same set of slip systems could be activated for a larger

deformation strain leading to higher orientation gradient.
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Fig. 4.24 EBSD microstructures statistics as Grain Size Distribution of As-Extruded
compared with (a) UDR 15 and UDR 20 and (b) MSCR 15 and MSCR 20
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Fig. 4.25 EBSD microstructures statistics on Misorientation Angle of As-Extruded
compared with (a) UDR 15 and UDR 20 and (b) MSCR 15 and MSCR 20
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Fig. 4.26 EBSD microstructures statistics on Grain Orientation Spread of As-Extruded
compared with (a) UDR 15 and UDR 20 and (b) MSCR 15 and MSCR 20

Grain size distribution in Fig. 4.24 displays the grain size distribution in the
range of 40-60 um for the hot rolled Test material. In Fig. 4.24 (a), UDR 20 is observed

to exhibit a larger variation in grain sizes compared to other conditions, whereas As-
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extruded appears to have well defined average grains in size of 30 um, but with grains
getting coarsen upto 55 um. UDR 15 and MSCR 20 shows more pronounced coarsening
of the grains compared to all other as shown in the Fig. 4.24.

The grain boundary misorientation angles distributions of hot rolled samples are
exhibited in Fig. 4.25. As-extruded samples shows small proportion low angle grain
boundaries (LAGBs). UDR 15, UDR 20 and MSCR develops equal amount of LAGBEs,
indicating a possible similarity in the grain splitting mechanism. MSCR 20 develops
the largest proportions of LAGBs. High angle grain boundary (HAGBs) fraction for
all the rolled and extruded samples is varying between 0.05 to 0.1.

4.2.3 Texture evolution: Local Texture
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Fig. 4.27 Comparison of EBSD - Pole figures at different planes for As-Extruded with
hot rolled sheet specimens of UDR at 15 pass and UDR at 20" pass.
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Fig. 4.28 Comparison of EBSD - Pole figures at different planes for As-Extruded with
hot rolled sheet specimens of MSCR at 15" pass and MSCR at 20" pass.

The micro texture obtained from EBSD scan are plotted in Fig. 4.27 in terms of
for the basal plane (0002), (1010) and (2110) pole figures of as-extruded compared
with hot rolled sheets after UDR 15" Pass and UDR 20" Pass. The (0002) pole figures
of as-extruded sample show deviation of poles from the ND to the ED resulting from

the extrusion process. Thus, the basal plane are inclined to the extrusion axis makes the
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large numbers of grains in a more suitable orientation as reported by Raja K Mishra
et.al. [22] The multiples of random distribution for the shifted basal pole are roughly
7.8, indicating a favourable orientation for the ease of deformation. The (0002) basal
pole figure indicates a split of basal poles towards ED and the deviation is nearly 15-
20° in both modes of rolling, similar to the rolled magnesium as reported by Huang
et.al. [232].

Primarily, the basal pole splitting is more prominent in UDR than in MSCR.
The maximum value of m.r.d. observed for UDR 20 sample is ~ 6.5, while for the
MSCR 20 sample the corresponding value is ~3.2, revealing a much weaker texture
generation for the MSCR process. The significant difference in the intensity of the
(0002) basal texture between the two types of rolling processes is attributed to the
changes in the activated slip systems associated with the strain path changes. In UDR
process, as the rolling reduction continuously increases, then the strength of the basal
poles reduces by a factor of 4. In Fig. 4.27, UDR 15 and UDR 20, the basal poles are
tilted to a same degree towards TD and have a maximum m. r. d. 23.9 and 6.5
respectively. On other hand, for the MSCR sample, while the observed texture
weakening is maximum, the strength of basal poles reduces by a factor of 2. Fig. 4.28
shows movement of (0002) away from ND towards TD in progressive manner as
denoted by maxima of m.r.d. 5.9 for MSCR 15 and 3.2 for MSCR 20.

The (1010) pole figure indicate an axial symmetry of the texture component
through the presence of high intensity rings along the perimeter of the stereogram. This
represents the development of a fiber texture. Along the fiber textures, certain
orientations appear in high intensity. The (1010) pole figures display high intensity
orientation for UDR 15 with a maximum value of m.r.d. ~5.0, while UDR 20 shows ~
2.1. However, in Fig. 4.28, MSCR 15 and MSCR 20 showed similar maximum m.r.d.
~ 1.8, indicating that the MSCR leads to a saturation in texture development.

The (2110) pole figures for as-extruded sample are characterized by a presence
of weak basal texture, spreading along TD-RD plane. In the UDR process a maximum
m.r.d. value of 4.9 is observed for the UDR 15 sample, and this value decreases to 2.1
for the UDR 20 sample. The corresponding values for MSCR 15 and MSCR 20 samples
are 1.9 and 1.7 respectively. The observed differences in the generation of rolling
textures due to the changes in the strain path from UDR to MSCR is similar to the
results reported by [233].
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4.2.2 Hardness Test of As-Extruded, UDR and MSCR
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Fig. 4.29: Variation of Vickers Hardness values with As-Extruded rod, and (a) based on
change in strain path of UDR and MSCR sheet specimens and (b) based on angle of
orientation along RD of UDR and MSCR sheet specimens.

Fig. 4.29 shows graphical representation and the micro-hardness values of the
extruded material and hot rolled UDR and MSCR sheet samples obtained from Vickers
hardness tester respectively. The Vickers hardness value of UDR is higher with large
deviation in individual values than both extruded and MSCR samples. But the hardness
value of extruded samples in comparison to MSCR varies slightly in fraction only.
During UDR, the number of passes (20 passes of 0.1 strain) on the same plane (where
RD, TD, and ND are constant) increases, then strain hardening occurs leading to
increased hardness. For UDR samples, increasing the number of passes (20 passes of
0.1 strain each) on the same plane (0002) (where RD, TD and ND is constant) of applied
compressive stresses during rolling, strain hardening of the grains take place.
Conventionally rolled (UDR) samples indicate formation of (0002) basal plane (c-axis
parallel to ND) as shown in XRD pattern Fig. 4.17 typically present with strong
intensity as that of magnesium. S. Biswas et al. [234] reported that at higher temperature
of 450° C, occurrence of dynamic recovery (DRV) grains in discontinuous manner
attributed is to (0002) basal plane having low stacking fault energies. Consequently,
the ductility of UDR samples being slowed down only to result higher hardness.

In MSCR, the plane of applied compressive stress during rolling were changed
after each pass (i.e., RD becomes TD and TD becomes RD where ND is constant) and
thereby planes are alternately work hardened during rolling. Low fraction of various

microstructural constituents within grains and higher fraction of grain boundaries leads
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to lower micro-strain. Moreover, as strain path are changed in MSCR a greater number
of slip systems gets activated [233]. Consequently, the preferred basal plane gets
weaken shown by its decreased intensity in SEM-EDS elemental mapping Fig. 4.19
compared to UDR. This combined effect of microstructural changes along with
activation of off-basal plane causes improvement in ductility during rolling thereby
decrease in hardness. Hence, MSCR has lower hardness than UDR at the end of 20

passes bearing 2.0 strain.

4.2.3 Tensile Test

4.2.3.1 True Stress-Strain curve
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Fig. 4.30 True Stress-True Strain curves of Tension test of (a) UDR and (b) MSCR
rolled sheets cut along final RD at 0°, 45°, 90°.

The true stress- strain curve as function of the sheet orientation for UDR (a) and
MSCR (b) after 20" pass of rolling as shown in Fig. 4.30. In both the Fig. 4.30 (a) and
Fig. 4.30 (b) shows merely two stages i.e., (i) strain hardening and later (ii) steady state
behaviour in UDR and MSCR curves. UDR shows pronounced strain hardening effect
as strain path remain unchanged and finally the sheet obtained with 2.0 strain with 0.1
strain per pass given upto 20 passes. During hot rolling of UDR process, the second
phase precipitates Mg2Ce undergoes fragmentation decreasing their sizes and
subsequently dispersed both within the grains and also along the grain boundaries. Such
precipitates Mgi2Ce having spheroidal morphology under pinning effect of the grains
[235]. Therefore, the strain accumulation in most of grains having basal orientation will
occur at each pass, but unable to compensate. Simultaneously, profuse twinning activity
appears leading to formation of shear band, further causing strain concentration. The
inherent heterogeneity of shear bands causes continuous increase in strain hardening

effect. As the twinned regions reorient their basal poles consistently along shear
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direction. Moreover, splitting basal poles occurs toward TD and non-basal planes orient
themselves along RD. Such reorientation provides shear bands suitable for slip leading
to plastic flow and finally into dynamic recovery.

On other hand, in MSCR process of cross-rolling allows the strain accumulation
to get compensated by tensile stress and compressive stress due to continuous
interchanging of rolling plane and introduces variety of twins that reorients the basal
poles. Accordingly, the strain hardening effect is lower, whereas the elongation is more.
As the strain path is changing alternately during MSCR causes the basal poles to
reorient and get split-up toward TD. This brings in the activity of off-basal planes and
decreases the internal misorientation than UDR. Compensation of the strain
accumulation during MSCR relates to dynamic recovery caused by constant change in

strain path [34]
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Fig. 4.31 Rolled Sheet along RD at 0°, 45°, 90° Vs (a) Yield Stress, (b) Ultimate

Tensile Stress, (c) % Elongation (d) Fracture Strain

The tensile test of hot rolled sheet specimens of UDR and MSCR renders
mechanical properties summarized in Table 4.2.. The yield stress (YS) in Fig. 4.31 (a)
and ultimate tensile stress (UTS) values in Fig. 4.31(b) is lower for MSCR samples
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compared to UDR samples. Hence, UDR exhibits more strength (YS and UTS) than
compared to MSCR. However, the anisotropy in strength (YS and UTS) values is less
for MSCR than compared to UDR. UDR exhibits less ductility and fracture strain than
compared to MSCR, whereas the anisotropy in ductility as seen in Fig. 4.31(c) and in
Fig. 4.31(d) fracture strain is less for UDR than MSCR. This anisotropic behaviour in
ductility and fracture strain of UDR is a consequence of the basal (0002) texture
splitting by 15 -20° along RD and towards TD, thereby weakening of the basal texture.
On the other hand, the anisotropic behaviour in strength is lower in MSCR than in case
of UDR due to continuous interchanging of rolling plane uniformly distributes the stress
accumulation. The yielding difference in MSCR is 41 MPa, while in UDR it is 86 MPa
between rolling direction (0°) and transverse direction (90°). In general, MSCR samples

are expected to show less anisotropy, but needs to be evaluated.

Table 4.2 Mechanical properties from tensile test on hot rolled UDR and MSCR

samples

Ultimate
Specimen Yield Stress, | Tensile
Elongation % | Fracture Strain
Orientation | MPa Strength,

MPa

UDR | MSCR | UDR | MSCR | UDR | MSCR | UDR | MSCR

0° 227 169 352 300 | 11.23 | 13.92 | 0.5929 | 0.5127
45° 130 119 415 234 110.59 | 19.85 | 0.5295 | 0.8098
90° 141 128 355 242 | 15.55 | 9.55 |0.4894 | 0.6623

4.2.3.2 Anisotropy Calculations

The variation of mechanical properties pertaining to plastic deformation starting
with Vickers hardness value, tensile yield stress and ultimate tensile stress, %
elongation and fracture strain shows certain level of anisotropy, which needs to be

investigated by anisotropy calculations.
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In anisotropy calculations, the variation in gauge length width and thickness is
measured before and after the tensile test. Following the collection of width and
thickness data from the tensile test sample, and then calculated plastic anisotropy
compared with the plastic strain experienced during the tensile test. Based on these data,
the plastic anisotropy calculated as Lankford parameter — ‘R’value, expressed from the
equation (2.29)

(2.29)

R= filel) _ (bl

ln[tf/to] ln[(lo*wo)/(lf*wf)]

where wr and w, are final and initial width respectively and #rand ¢, are the final and

initial thickness respectively.

Table 4.3 Plastic anisotropy values of hot rolled sheet in UDR and MSCR modes of
rolling.

Specimen | pyy i Stpain | Lnford parameter R’
UDR MSCR UDR MSCR
0° 0.05744 | 0.07492 | 0.201529814 | 0.199553502
45° 0.07239 | 0.09137 | 0.222241507 | 0.197165838
90° 0.10087 | 0.04322 | 0.203756883 | 0.180242711

The Lankford parameter (‘R’ value) as depicted in Table 4.3. The R value of
UDR samples at 0° (RD) and 90° (TD) are nearly same but the relative plastic strain
experienced by the tensile specimen is 50% at 0° (RD) compared to 90° (TD). Hence,
the anisotropy in UDR samples at 0° (RD) and 90° (TD) is negligible. On the other
hand, the ‘R’ value in MSCR is decreasing gradually from 0° (RD) to 90° (TD), where
corresponding plastic strain introduced in the tensile specimen of MSCR shows higher
value at 45° followed by 0° (RD) and 90° (TD). Anisotropy in MSCR shows higher at
0° (RD) and lowest at 90° (TD). The MSCR samples have the lowest anisotropy values
because to their huge grain size of 90 um and split in the basal pole distribution is
observed. Strain hardening effect in UDR is prominent as discussed in section 4.2.3.1,
causes higher R value at 45°. Eventually, as seen in Fig. 4.32 (a) the R value is ranging
from 0.1802 (MSCR) to 0.2222 (UDR) depicts that anisotropy is more in UDR than in
MSCR with marginal widening of the sheets.
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Fig. 4.32 Anisotropy calculation give (a) Variation of Lankford parameter (R-value) for
hot rolled UDR and MSCR sheet specimens with the angle of specimen orientation
along RD and (b) Variation of Normal and Planar anisotropy parameters with modes of
hot rolling (i.e., UDR and MSCR)

Subsequently, overall resistance to thin down the sheets (both UDR and MSCR)
also measured by taking an average value of R in three a angles (0°, 45°, 90°) generally

determined by Normal anisotropy expressed from equation (2.30)
Normal Anisotropy, R = %[Roo + 2R,50 + Rggo]

Normal anisotropy value in UDR is 0.212442428 and in MSCR is 0.193531972. Any
R value more than 1 shows more contraction of the sheet than its thinning during the
elongation, indicating of better formability. But in both the cases of UDR and MSCR
hot rolled sheets, as the R value range between 0 to 1 indicating of restricted formability.
Contraction of sheet was observed preferentially than thinning in UDR, but in MSCR
contraction and thinning of sheet occurs simultaneously.

Similarly, the amplitude of the in-plane anisotropy also determined by taking

difference in the R values given by Planar anisotropy shown from equation (2.31)
Planar Anisotropy, AR = %[Roo — 2R, 50 + Rggo]

Planar anisotropy AR, value in UDR is -0.019598159 and in MSCR is -0.007267731.
As AR<O0, then probability of ears formation will occur at 45° [194]. Consequently,
sheet formation at 0° (RD) and 90° (TD) will not show formation of ears (as AR is not
greater than 0) which is most desirable from formability point of view. However, AR
value along 45° is approaching to 0 value as shown in Fig. 4.32 (b) and can be

considered very low. The possibility of negative deviation of AR value along 45° rely
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on shear texture created by dense network of shear bands where localized softening in

the form of dynamic recovery is insufficient than compared to 0° (RD) and 90° (TD).

4.2.3.3 Fractography:
The fractured samples from the tensile test were carried out on hot rolled of
UDR and MSCR sheet specimens observed under SEM having tungsten filament-based

electron gun.

{"yssdo0n 15 0KV 4401y

Fig. 4.33 Fractography of tensile tested UDR sheets cut along final RD at 0°, 45°, 90°.

The intra-granular fracture is observed in UDR samples as shown in Fig. 4.33.
UDR 45° shows shallow dimples and cleavage planes are clearly visible as well as signs
of void formation inside the grains which are signature of near brittle failure. However,
fractured surfaces in UDR 0° and UDR 90° show deep dimples on the fractured surface
can be distinguished by strong slip at boundary region.

During UDR, profuse twinning initiates shear bands which in-turn reorient the

basal poles in shear direction. But the twinned region makes the reoriented basal poles
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to splits and then introduces the non-basal planes along RD. This reorientation brings
in softening of texture leading to dynamic recovery and consequently fracture under
such conditions shows deeper dimples indicating ductile failure in UDR 0° and UDR
90°. However, if the reorientation of basal poles delay, then basal poles orient
themselves toward shear direction with no chance for restoration leading to cleavage

type fracture primarily because of shear band as depicted in UDR 45°.
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Fig. 4.34 Fractography of Tensile Tested MSCR sheets cut along final RD at 0°, 45°,
90°.

All the fractured samples of MSCR shown in Fig. 4.34 planar fracture features
revealing twin boundaries successively to create planar fracture. During MSCR,
continuous interchanging of rolling plane helps to compensate the strain concentration
from tensile stress and compressive stress and simultaneously also introduces variety
of twins. These twins consistently reorient the basal poles leading to localized softening
of dynamic recovery type, cause all the MSCR specimens to fail in a planar fashion

dedicated by twinned region.
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4.3 Effect of Deformation Modes on Corrosion Behaviour of Mg-0.5wt%Ce alloy

The hot rolled sheets of UDR and MSCR obtained from the starting materials
of Mg-0.5wt%Ce alloy (test materials) in the extruded rod form was subjected to hot
rolling. These hot rolled sheets and as-extruded samples were subjected to the material
testing and microstructural characterization as discussed in section 4.2. Now the basic
corrosion response of these samples of UDR and MSCR sheets that were extruded and
hot-rolled becomes imperative. As the extruded and the hot rolled samples are
processed by three different routes such as extrusion, UDR and MSCR, so it becomes
imperative to understand their basic corrosion behaviour. The basic corrosion response
as a function of deformation mode can be identified by electrochemical test carried out
polarization test and electrochemical impedance spectroscopy. Prior to these tests,

surface roughness is also an important aspect to identify.

4.3.1. Surface Roughness Measurement before Corrosion Test
Surface roughness showed in Fig. 1 of extruded rods, UDR and MSCR sheets
specimens of test materials. Evidently, the average surface roughness (Ra) lowered in

relation to the increment in the stress in forming direction.

As-Extruded
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Fig. 4.35: Surface roughness images of extruded rod, UDR and MSCR sheet specimens
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Table 4.4: Surface roughness data of extruded rod, UDR and MSCR sheet specimens

Condition | Ra,pm | Rp, pm Rg, pm | Rg, pm Ry, pm

Extruded 0.20467 | 5.03967 0.265 10.9167 -5.8777

UDR 0 0.06805 | 0.69833 0.0886 2.094 -1.3957

MSCR 0 0.05778 0.555 0.076 1.637 -1.082

Relative peak roughness (R, — Peak to Peak variation from the surface), Root mean
square roughness (Rq — Taking mean value of wavy surface), Transverse surface
roughness (R; — Roughness along transverse direction), and Normal surface roughness
(Ry - Roughness along normal direction). The Surface roughness images of extruded
rod, UDR and MSCR sheet specimens is shown in Fig. 4.35 and the corresponding
values are tabulated in Table 4.4. The rolling technique smoothens the surface of the
test materials sheets. The passivation tendency is impacted by an increase in surface
roughness and subsequently increased the possibility of localize corrosion. [236]. Most
of the metallic system shows development of a continuous corrosion product film forms
more easily on a smooth surface than a rough one. All specimens were wet polished by
3000 grit size SiC polishing paper to remove the effects of surface roughness on

corrosion dynamics before conducting the corrosion tests.
4.3.2 Corrosion/Electrochemical Testing

Potentiodynamic  polarization test and Electrochemical Impedance

measurements is conducted using Potentiostat - Galvanostat equipment of AUTOLAB
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302N model. Software used for the Electrochemical Impedance measurement is GPES

(General Purpose Electrochemical System) Manager.

4.3.2.1 Potentiodynamic Polarization (PDP) Measurements

Potentiodynamic polarization (PDP) curve of test materials samples in extruded
rods, UDR and MSCR sheets were measured in a unstirred test solution made with
3.5wt.% NaCl (Standard Electrolyte) and saturated with Mg(OH)> in distilled water at
2541°C are shown in Fig. 2. Electrochemical data observed during PDP test is displayed
in the table 2 indicates that the polarization occurs at same open circuit potential (OCP)
for extruded rods, UDR and MSCR sheets specimens with marginal variation in Ecorr,
Icorr and corrosion rates.

First, the choice of test solution 3.5wt.% NaCl solution saturated with Mg
(OH)2) (Test Electrolyte) (becomes very crucial in the electrochemical study of the
system. 3.5wt.% NaCl (Standard Electrolyte) in aqueous solution (distilled or deionized
water) corresponds to the concentration similar as that in seawater. According to ASTM
G44 [237], the threshold of the aggressiveness of Cl™ in seawater is observed in standard
electrolyte. Standard electrolyte in aqueous solution has a pH ranging from 6.8 to 7.8
that is used to simulate the corrosion rate because of presence of Cl ions in aggressive
environment, more abundant as corrosive reagent, dissociation of CI” ions from Na+
ions is easy through the electron emission, salinity is high and easy formation of
corrosion product.

When magnesium or its alloy is immersed in standard electrolyte solution, then
there is a tendency for it to spontaneously transform into its oxidized states (MgO or
Mg (OH)y), in presence of oxygen or water content. As a result, this solution containing
NaCl with Mg (OH): increases the pH from 6.8 - 7.8 to approximately 10.5 which does
not remain stable in the electrode surface causing unstability in the corrosion
conditions. [238] [239][240]. But when standard electrolyte contains saturated Mg
(OH)z, then the pH value increases to about 11 which is equal to the pH of Mg (OH):
formation that indicates the formation of Mg (OH)> film on electrode surface. [241]

Whereas, MgO develops incomplete surface oxide film or porous film because
the Pilling-Bedworth value of MgO is less than 1 [242]. On other hand, Cl ions in 3.5
wt.% NaCl solution are sufficient to break Mg (OH): layer developed on the surface of
Mg alloy and hence, unable to establish even OCP. But with saturated Mg (OH): in

standard electrolyte solution, the dissolved Mg (OH): forms a robust film on the
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specimen surface such that a barrier develops toward the action of Cl ions to break the
film. Since the definite proportion (1M or 3M or 5M solution) of Mg (OH)> required to
carry out this exercise remains unknown, hence saturated Mg (OH)2 in NaCl works for
this task. As dissolved Mg (OH), depletes from the solution, then saturated particles of
Mg (OH):2 goes into solution and in turn avoids the breakage of film by Cl” ions [240].
Meanwhile, oxidation reaction occurs by giving Mg?* ions to the electrolyte which
reacts with 2(OH)™ ions to form Mg (OH),. As a result, an OCP gets stabilized and
electrochemical cells will become stable to show response as cathodic and anodic

reactions occurring in the system.
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Fig. 4.36 PDP curves of extruded, UDR and MSCR specimens after 12 h immersed in
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142



Table 4.5: Electrochemical data observed during Polarization test.

Mode of Deformation

Parameters

Extruded UDR MSCR
Open Circuit Potential, (OCP), V -1.63 -1.63 -1.63
Corrosion Potential, (Ecorr), V -1.587 -1.609 -1.607

Corrosion Current, (Icorr), A/lem?  4.187x 10 5.963x10* 9.633x10*

Corrosion Rates, mpy 0.00209 0.00296 0.00480
. .. M .
Corrosion rate in mil per year, r=C—i,, )
where

Conversion factor, C=1.29

Atomic wt.(g/mol), M =24.305 for Mg and 140.115 for Ce
Valency e, n =2 for Mg and 3 for Ce

Density (g/cc), p = 1.738 for Mg and 6.78 for Ce

Based on these attributes, 3.5 wt.% NaCl solution saturated with Mg (OH). was
chosen as test electrolyte. Mg(OH), film is developed on the surface of magnesium
alloy [243]. The PDP curve as shown in Fig. 4.36 is obtained after 15 min to stabilize
the open-circuit potential (OCP) at -1.63 V in the same solution at 25 + 1° C.

The PDP test parameters obtained are tabulated in Table 4.5. The corrosion rates
were determined for small deviation from Icorr according to Eq.1. The obtained Icorr
values are 4.187 x 10 A/em?, 5.963 x 10* A/em?, 9.633 x 10™* A/em? for extruded,
UDR, and MSCR respectively, but high purity Mg has 3.04 x 10" A/cm? at lowest
immersion time of 3 h. The corrosion rate values are 0.00209 mpy, 0.00296 mpy, and
0.00480 mpy for extruded, UDR, and MSCR respectively, but high purity Mg has ~0.3
to 0.5 mmpy [244] and 0.38 mmpy [245].

Table 4.6 consolidates the electrochemical data of PDP test after Tafel fitting of
polarization curve. Fig. 4.37 (a) represents the corrosion rates in mil per year (mpy)
deduced from Eq. (1) and /corr from Table 4.5 and Table 4.6. The corrosion rates of
UDR sample exhibits intermediate value between highest of MSCR and lowest of

extruded. On a relative basis, UDR sample shows slight increment in corrosion rates
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than that observed in extruded sample. Higher rates of corrosion are seen in MSCR
sample in comparsion with extruded verified by the higher slope for the MSCR curve
and low for UDR.

In the PDP curve, the anodic curve for MSCR becomes steeper than the curves
of UDR and Extruded samples. This fact indicates that corrosion rates are on rise at
greater rates. At the same time, anodic curve of Extruded, UDR and MSCR also gets
parallel to electrode potential indicating some sort of passivation behaviour without
decreasing the current density deviating from ideal behaviour of passivation. Such kind
of ‘breakdown’ event being displayed at potentials above -1.4 Vscg causes the anodic

current to escape leading to spontaneous passivity attributable to the behaviour of

intermetallic compound Mg12Ce [38].

Table 4.6: Electrochemical data of Polarization test after Tafel Fitting

Deformation Modes

Parameters

Extruded UDR MSCR
ILcorr, Acm 4.55x 10™ 6.28 x 10 9.48 x 10
Ecorr, V -1.588 -1.601 -1.605
e,V decade! 0.073 0.067 0.452
Ba,V decade! 0.445 0.429 0.053
Rp (Tafel fitting) 31.1 19.8 10.9
B=(fa.pc)/2.3(fatpc)) V | 0.0272662 0.02519548 0.020625054
Rp=B / Icorr, Q (Calc) 59.952158 40.0946481 21.76327299
I, Acm? 0.0017111 0.0017027 0.00107644
I, Acm™ 0.0003659 0.0005378 0.00031981
He, V -0.042008 -0.029005 -0.0250045
Ha, V -0.042008 -0.029005 -0.0250045
Corrosion Rates, mpy 0.00226 0.00313 0.00472
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Fig. 4.37 (a) Corrosion rates and (b) Polarization resistance (Rp) of extruded, UDR and
MSCR specimens after 1'% h immersion in the test electrolyte during Potentiodynamic
Polarization test.

Corrosion rates of extruded, UDR and MSCR samples as illustrated in Fig. 4.37
(a) indicate the experimental plots exhibit a two-stage linear agreement with Tafel
fitting plots. Extruded and UDR samples shows minor difference in their corrosion rates
values but for MSCR corrosion rates accelerates.

Polarization resistance (Rp) measurements are used to determine the ability to
form protective layer on the specimen to avoid the oxidation when potential is applied
externally. Polarization resistance (Rp) of extruded, UDR and MSCR samples as
depicted in Fig. 4.37 (b) indicate the experimental plot are in linearly co-related with
slight agreement for Tafel fitting plot. The Polarization Resistance (Rp) is the slope of

the potential-current density plot near Ecorr,

Ry, = b here AE ==> 0
p g where AE ==
Reaction under activation, R, = _IB
: (BaBe)
tern- t B = —kafc)
Stern-Geary equation, 73Bat B)

where, f, pc Tafel constants for calculated values from the anodic and cathodic
segments of the Tafel plots. Polarization Resistance (Rp) derived from experimental
data deviates slightly with the calculated value of Rp, whereas a large gap is seen with
Tafel (conventional) fitting. The higher the polarization resistance (Rp) corresponds to
lower corrosion current, Icorr and vice-versa as seen in Table 4.6. MSCR shows the
lowest value of polarization resistance corresponds to highest anodic current, while

extruded sample has completed reverse order.
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Fig. 4.38 (a) Corrosion current and (b) Corrosion potential of As-Extruded, UDR and
MSCR specimens after 1'% h submersion in the test electrolyte during Potentiodynamic
Polarization (PDP) test.

Current density (Icorr) as demonstrated in Fig. 4.38 (a) during the occurrence
of corrosion is low in extruded, but rather varies with different modes of rolling. MSCR
samples has comparatively more current density than UDR, thereby imply its
vulnerability towards corrosive environment.

Corrosion potential (Ecorr) displayed in Fig. 4.38 (b) for extruded is slightly
less negative than rolled sheet samples of UDR and MSCR. Ecorr values for UDR and
MSCR vary marginally, indicating higher susceptibility for corrosion.

The corrosion current density and corrosion potential both significantly rely on
the parameters of deformations (stress and temperature). Extruded material processed
from hot extrusion, by applying stress under controlled condition on hot cast ingot. Hot-
rolled UDR sheets were produced without changing RD, TD, and ND at each pass,
whereas hot-rolled MSCR sheets were processed by maintaining ND is constant while
RD and TD interchanging at each pass on the hot extruded starting material samples.

In extruded material low corrosion rate is attributed to the more uniform stress
distribution and well-annealed sizes of the grains (25-50 um) in the microstructure is
the primary requirement even though in non-basal orientation. The precipitates
(Mg12Ce) appeared within the grains and grain boundaries are ranging in different sizes
from 4 um to 9 um with a volume percentage of 1.5% for as-extruded sample. Smaller
grain size and wide range of precipitate sizes decreases the anodic reaction resulting in

low corrosion rates.
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The hot rolled UDR also shows low corrosion rates because the microstructure
contains strong basal orientation (higher atomic density plane) delays anodic reaction
and has marginally coarser grain sizes (35-55 um) than that of extruded but consist of
same area fraction of 26%. The precipitates (Mg2Ce) in UDR sample have narrow size
range of 4.5 um to 5.6 um with a volume percentage of 1.6% indicating their
fragmentation during 20 passes of hot rolling with a total true strain of 2.0. The finer
size and slight increase in the volume percentage of precipitates (Mgi2Ce) and in UDR
compared to extruded sample resulted in marginal increase in corrosion rates because
the matrix undergo anodic dissolution preferentially beneath the precipitates.

The hot rolled MSCR microstructure consists of weak basal orientation with
substantially coarser grain sizes (40-90 um) with a larger area fraction 36%. The
precipitate (Mgi2Ce) particles sizes range from 3.4 um to 8 um with a volume
percentage of 0.9% for MSCR sample. These particles get entrapped in the shear bands
formed in weaker basal planes (highest atomic density) orientation during hot rolling
which are not visible to be counted. The smaller content of precipitates in the matrix
and weaker basal orientation causes more corrosion rates in MSCR.

The corrosion rates of MSCR are higher than UDR and extruded samples
because anodic dissolution kinetics is faster where its coarser grains weakly oriented
toward basal planes in more quantity. The corrosion parameters evaluate the
electrochemical response to mechanical behaviour, indicating an increase in anodic

current densities and a decrease in potential values due to deformation. [239].

4.3.2.2 Electrochemical Impedance Spectroscopy (EIS) Measurements:
Electrochemical Impedance Spectroscopy (EIS) is an effective method to
characterize metal corrosion behaviour [215]. A simple electrochemical system
involves double layer capacitance (Ca), a solution resistance (Ry), capacitance (Cu),
and a charge transfer resistance (R.;) (understood with Polarization resistance (Rp).
Electrochemical Impedance Spectroscopy (EIS) is an AC signal-based test gives more
data than that of a DC polarization. Later impedance values are given from the variation
of potential with current when sinusoidal potential is applied to potentiostatic circuit.
The EIS measurement of the Mg-0.5wt.% Ce alloy samples obtained from different
modes of deformation extruded, UDR and MSCR in 3.5 wt.% NacCl solution saturated
with Mg (OH); (test electrolyte) in distilled water at 25+1°C showed more or less

identical behaviour as indicated in Fig. 4.39.
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Fig. 4.39 Bode Plot - Variation of Frequency with Impedance (a) and Phase Angle (b)
from Electrochemical Impedance Spectroscopy Test of As-Extruded, UDR and MSCR
specimens after 172 h immersion in the test electrolyte.

The Bode plot in Fig. 4.39 displays the variation of the frequency with the
impedance (a) and with the phase angle (b) after exposure to the open-circuit potential
at Ecorr in the test electrolyte. The increment levels of impedance signify the variation
in the corrosion resistance. These outcomes confirms that the generation of a passive
film on the specimens was possible irrespective of deformation modes i.e., samples of
extruded and hot-rolled sheets of UDR and MSCR. In the 1'% hour test period, the
impedance at low frequencies increased by a very tiny order of magnitude, showing an
increase in the corrosion resistance offered by the protective film. The magnitude of
impedance spectra and its spread on the frequency range for MSCR is much higher than
that of extruded and UDR.

When the test samples of extruded and hot-rolled sheets of UDR and MSCR are
immersed in test electrolyte, then three time-constant observed in Bode plot. The
corrosion potential (Ecorr) consisted of one capacitive loop in the high-frequency (HF),
another capacitive loop in the medium-frequency (MF) and one inductive loop in the
low-frequency (LF). The HF spectra lines corresponds to the corrosion process carried
by double layer capacitance and a charge transfer resistance which recognizes the
localized surface defects. The MF spectra lines corresponds to induced film effect that
recognizes the incomplete layer of the corrosion products over the entire specimen
surface influenced by the successive developments by mass transport inside the film
based on the values of capacitance and resistance obtained. The LF impedance spectra

lines increased by very small range of magnitude identifies the sequence of progression
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(such as reduction of species absorbed) at the metal-film interface depending on the
metastable Mg+ concentration identifies by inductive loop [208][244][246] [250] [247]

A wide frequency range of capacitive response can be seen especially in MSCR
covering HF, MF, and LF. The two capacitive arcs at HF and MF reveals that their
diameters depend on the modes of processing and in-turn subsequent microstructure of
these alloys. The diameter of capacitive arc for MF is linked to the charge transfer
resistance which signifies the resistance related to the addition or removal of electron.
The MF capacitive response was followed by a LF resistive behaviour. The HF spectra
lines in UDR and extruded are reasonably smaller than MSCR and display considerable
spread, whereas extruded shows minimal spread.

The phase angle represents the phase difference between the voltage and current
in a circuit. The variation of frequency with the phase angle illustrates that increase in
frequency decreases the phase angle, because the response of the circuit component is
more evident than their resistance. The impedance spectra display a capacitive response
with a range of phase angle between -40° and -30°, which is consistent with the
presence of passive film Chen, Wang [5], The maximum phase angle of high-frequency
capacitive arc goes beyond -30° in Bode plots, where UDR shows maximum phase
angle of -40°. The capacitive response of extruded and MSCR angular phase is similar

throughout the frequency range except at the extremities.
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Fig. 4.40 Nyquist Plot — Variation between Real and Imaginary parts of Impedance
from Electrochemical Impedance Spectroscopy Test of As-Extruded, UDR and MSCR
specimens after 172 h immersion in the test electrolyte.

The typical Nyquist plots displayed in Fig. 4.40 drawn in a complex plane shows
variation in the real value and imaginary value of the impedance data measured from
Electrochemical Impedance Spectroscopy Test of extruded, UDR and MSCR samples
of Mg-0.5 wt.% Ce alloy. All the samples shows the existence of depressed semi-circles
with presence of capacitive loop. The area enclosed by Nyquist plots corresponds to the
resistance against corrosion rates in the present electrochemical system. The wider the
area enclosed by Nyquist plot, higher will be the resistance toward corrosion attack.

The radius of semi-circle increases in MSCR, while extruded shows marginally
more than UDR. The Nyquist plots exhibits MSCR capacitive loop extends to larger
frequency range about ~ 45 Qcm? of real impedance magnitude. The depressed semi-
circle (deviating from Cole-Cole Diagram) of MSCR approaches 15 Qcm? of positive
imaginary impedance making a shape of near parabolic curve. UDR and extruded
samples exhibit smaller semi-circle just exceeding 30 Qcm? of real impedance
magnitude. The depressed semi-circle of UDR and extruded samples exceeds 10 Qcm?
of positive imaginary impedance magnitude, while MSCR loop approaches 30 Qcm?.
Larger impedance in MSCR corresponds to proportionate resistance to the anodic
dissolution is attributed to shear band network dispersed homogeneously along rolling
direction in weakly oriented basal plane and few fragmented Mg2Ce precipitate
particles during hot rolling get distributed within planes of shear band.

The EIS spectra exhibit one capacitive loop followed by the sharp ending with
arc in negative range of imaginary impedance. Such values of imaginary branch
proceed below zero representing the inductive behaviour of the circuit represented by
negative slope in the real part of the plot corresponding to inductor (a circuit element)
which stores energy. The inductor initiates a change in phase angle between the voltage
and current which results in negative impedance value of real part in the Nyquist plot.
[215][216]

UDR and extruded exhibit their capacitive loop ends below -5 Qcm?, whereas
MSCR loop exceeds -15 Qcm? values of negative imaginary impedance. These values
suggest that MSCR continues to have more inductive behaviour than UDR and extruded
samples. In such cases, an inductor might be used in combination with other circuit

elements such as capacitor, and switches to control the flow of electrical energy, control
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voltage, and regulate current within the system. At low frequencies (LF), an arc or tail
in the Nyquist plots indicates an inductive behaviour for all systems, with this arc
occasionally being less noticeable [215]. The outcome of Nyquist plot from

Electrochemical Impedance Spectroscopy test results is displayed in Table 4.7.

Table 4.7. Electrochemical Impedance Spectroscopy Test results

S. No. OCP |Z| (minimum) |Z| (maximum)
Extruded -1.62 1.09 x 10° 1.77 x 10°
UDR -1.62 9.96 x 10! 1.72 x 10°
MSCR -1.63 1.17 x 10° 1.95x 10°
- C{]z R1 CPlai
R/4/ ' ?/ CPE1

VN W
(a) L1 R3

(b) L1 R3

Fig. 4.41 Equivalent Circuit Model for fitting Electrochemical Impedance
Spectroscopy Test data of (a) UDR, (b) Extruded, and MSCR specimens after 1'% h

immersion in the test electrolyte.
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Fig. 4.42 Equivalent Circuit Model values fitted with Electrochemical Impedance
Spectroscopy Test data of (a) UDR, (b) Extruded, and MSCR specimens after 172 h
immersion in the test electrolyte.

EIS data were obtained from 0.1 kHz to 10 Hz and an AC amplitude of +10 mV.
EIS scans were examined and fitted to an equivalent circuit utilizing the software
program ZView Version 2.9C observed in Fig. 4.41 and were fitted to low frequency
limit of 0.09 Hz for extruded, 0.523 Hz for UDR and 0.109 for MSCR. The depressed
semi-circle experimental data from the Electrochemical Impedance Spectroscopy test
was compared with the fitted values of equivalent circuit model as depicted in Fig. 4.42.
The fitted values are in complete agreement with the experimental data for UDR sample
whereas in extruded sample minor deviation is observed. The depressed semi-circle in
MSCR sample is deviated from the fitted values of equivalent circuit model attributed
to shear bands formation in which intermetallic (Mgi2Ce) precipitates get entrapped,
shows scattered response toward electrochemical system created in EIS test.
Consequently, the approximate fitting of experimental data of MSCR with equivalent
circuit model is difficult to identify. The equivalent circuit parameter values of fitted

Nyquist Plots is displayed in Table 4.8.
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Table 4.8: Equivalent Circuit Parameter values of Fitted Nyquist Plots

Modes of Deformation

Parameter
As Extruded UDR MSCR

R1 5.807x10 10.07 14.84
CPE2 7.7882x1077 9.6027x107 1.6901x10°¢
R4 17.32 45.35 19.48

L 12.84 5.124 140.4

R3 176.3 109 8.591

R2 39.83 - 42.54
CPE1 1.7694x107 - 3.7328x10°¢

The equivalent circuit contains of series and parallel sets of resistor, capacitor and
inductor organized in R1/CPE2//R4//CPE1//R2//L/R3 where “/” and “//” symbolizes
series and parallel circuits respectively. R/ is the resistance due to electrolytic solution
between the reference electrode and the working electrode. R2 refer to the resistance of
the pores and other defects in the entire film, and R4 specify to the charge transfer
resistance which emerges due to oxides and hydroxides along with anodic and cathodic
reactions with exchange of electrons on the Mg surface or oxide/film interface
influenced by the local environment [248][249]. The corrosion resistance reduces with
time as the charge transfer resistance value falls.

R3 refers to the charge transfer resistance in series with L specify the inductor
implies initiation of localized corrosion due to metastable Mg" ions. L symbolizes the
inductor of a reaction rate that varies with the reaction [248] varying for different
processing route as shown in Table 4.8.

CPE1, and CPE2 are constant phase elements represents the total capacitance
of the film, and interfacial capacitance two layers electric at electrolyte and Mg
substrate. CPEI constant phase element capacitance associated with the
oxide/hydroxide layers. CPE2, constant phase element capacitance due to formation of
double layer occurs with growth of corrosion layer. [248]. The average value of
corrosion current density is derived from polarization test, whereas EIS measurements
give the instantaneous value. Increasing the immersion time of samples in test
electrolyte, increase the H' ion consumption, thereby increase in local pH value,

suggesting OH™ ions resulted on the alloy surface, leading to passivation of anodic
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event. Corrosion resistance improves because of the defensive film formed on the
metallic surface, thereby inhibiting extended corrosion. The attack of Cl” deteriorates
the alloy surface during the corrosion process but subsides simultaneously by the

formation of defensive corrosion product film at the same alloy.

4.3.2.3 Corrosion product film
The corroded surface of Mg-0.5 wt. % Ce alloy of extruded rod, UDR and
MSCR sheets specimens after PDP test are seen in Fig. 4.43. The appearance of

corrosion product film in extruded, UDR and MSCR samples are distinctly similar.
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Fig. 4.43 SEM microstructure at 500X and 1000X of (a) extruded rod, (b) UDR and (c)
MSCR sheets specimens after 1'% h immersion in the test electrolyte.

The intermetallic compounds (Mg12Ce) in extruded sample appear to be larger
in size than that in MSCR, whilst covered mostly with the film in UDR. This
corresponds to crystal formation of corrosion products on the grain boundaries. After

12 h immersion, an apparent formation of defensive film seen on a matrix, and later
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covers the intermetallic compound phase indicating ennoblement than matrix. Birbilis
et. al. [38] identified the Ecorr value of intermetallic compounds (Mgi2Ce) is -1.5 Vsc,
representing it to be substantially stable than Mg bearing -1.63 Vsce Ecorr value.
Hence, the intermetallic compounds (Mgi2Ce) are inert and act as reduction sites,
initiating the oxidation activity of Mg matrix. In the extruded sample, corrosion occurs
more preferentially due to presence of non-closely packed pyramidal plane as depicted
in its XRD pattern. In UDR sample, corrosion product film completely covers avoiding
further corrosion shows comparatively strong intensity of closely packed basal plane
peak in its XRD pattern. In MSCR sample, breakdown potential reached quickly to
rupture the passive film, leading to corrosion attack because of weak intensity of closely
packed basal plane in its XRD pattern during its mode of deformation. A minor addition
of Ce improves the features of the thin and compact passive film of corrosion product,

delaying the corrosion.

4.3.2.4 Corrosion Morphology

The corrosion morphology of extruded, UDR and MSCR samples are markedly
different. Extruded samples show compact corrosion product with superficial cracks,
whilst in UDR denser feature of corroded surface appears relative no sign of cracks. In
MSCR, cracks and dissolution of corrosion product film is well evident. Cracks and
pores accelerate the corrosion rate by passage for Cl”into Mg matrix. Corroded surface
as seen in Fig. 4.43 of Mg-0.5wt.%Ce alloy exhibits localized form of corrosion on
some selected portion with porous characteristic, whereas other portion inhibits. A
brighter acicular phase appeared in the corroded surface depicts rich content of Ce
(intermetallic compounds (Mgi2Ce), improves the corrosion resistance. In these
electrochemical tests, corrosion attacks more on the Mg matrix, while intermetallic
compounds (Mgi2Ce) remain visually unaffected. Consequently, the matrix corrosion
is more pronounced with intermetallic compounds (Mg12Ce) left intact. [38]. Overall,
minor content of Ce has significant effect on corrosion morphology of Mg-0.5wt% Ce
alloy, irrespective of processing routes because Ce ennobles the Ecorr value, being
thermodynamically stable than the Mg.

The hot rolled product conventional UDR and modified MSCR processed for
this work was essentially to decrease the plastic anisotropy and inhomogeneity in the
cast extruded starting material of Mg-0.5wt.% Ce alloy. Even though plastic anisotropy

decreased to maximum level in MSCR, the corrosion anisotropy appears to be higher.

156



Hence, proportionate balance between improved mechanical properties and corrosion
resistance is required for rational design and development of such Mg alloy considering

its corrosion properties clearly.
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Chapter 5

CONCLUSIONS:

The following are the conclusions made on the study presented in this thesis.

1.

Hot-compression test of Mg-0.5wt%Ce alloy the true stress-strain curves
highlight steady state owing to dynamic softening i.e., DRV. As the strain rate
increases, then flow stress grows but decreases with rise in the deformation
temperature.

Hot deformation behaviour of Mg-0.5wt% Ce alloy used to establish CE. The
cross-slip and dislocation climb controls the deformation mechanism. The Q for
the experimental alloy is very high to that of Mg because of diffusion and
dissolution of Ce atoms in the matrix initiating enhanced obstacles to
dislocation motion.

The peak value of AARE is 15.16% at 723K/1s™! obtained for 0.4 strain . The
cumulative AARE is implying that the Constitutive Equations is fairly fitted to
experimental values. The coefficient (R) showing linear correlation involving
the values of experimental and predicted flow stress.

The stability regimes in processing maps occurs mostly in the low strain rate
zone where the higher efficiency of power dissipation, # which exists at 673—
723K/1073 to 1s™! region. In this region, steady state flow stress curve occurs
owing to the softening mechanism of DRV.

Instability domain occurs at 523-623K/107 to 1s' because the power
dissipation is mostly utilized for plastic deformation rather than required
microstructure development and hence, softening mechanism of DRV during
deformation is insufficient. Shear bands are formed at the boundary of fine and
coarse grains, results into flow instability.

Instability domain also occurs at 623-723 K/1 to 10 s because of high
deformation temperature suitable for DRV, while high strain rate will restrict
growth of grains. The concurrence of original coarse grain and very fine grains
will trigger instability such that crack nucleates.

The microstructure from EBSD-IPF maps of MSCR 15 appears very close to
the As-extruded sample which shows well defined recrystallized grains in order

of 25-50 um with no sign of coarsening. UDR sample has Mg2Ce precipitates
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10.

11.

12.

13.

14.

sizes in narrow range of 4.48 ym to 5.57 ym with a volume fraction of 0.01638
and more homogeneous distributions of 35-55 um grains. MSCR has coarsest
grain size 40-90 pm, while Mgi2Ce precipitates are 3.39 um to 8.19 um in size
with a volume fraction of 0.0087.

MSCR 20 has largest proportions of LAGBs due to large amount of strain
compensation of tensile and compressive stresses during change in strain path,
whereas UDR 15, UDR 20 and MSCR 15 all of them shows equal amount of
LAGBs.

The basal and prismatic poles of starting material (extruded sample) are oriented
towards the extrusion direction, thereby large numbers of grains in a more
suitable orientation for hot working. In UDR and MSCR, basal plane (0001),
shows splitting of poles along RD towards TD, while prismatic plane (1010)
and pyramidal plane (2110) pole figures show alignment of poles along RD.
Anisotropy in ductility and fracture strain is lower for UDR compared to MSCR,
whereas anisotropy in strength (YS and UTS) is lower for MSCR compared to
UDR.

Vickers Hardness values lie in the range between 37 to 47 HV for different mode
of deformation As-Extruded, UDR and MSCR hot rolled sheets at regular
interval of rolling i.e., after 10" pass,15™ pass and 20'" pass,

Fractography images of MSCR shows Planar facets reflecting twin boundary
failure whereas in UDR fractured surface shows deep dimples at 0° and 90° due
to large number of deformation twins and cleavage at 45° because of shear bands
do not under required amount softening and thus shows considerable anisotropy.
Lankford parameter, R-value in MSCR is decreasing gradually from 0° (RD) to
90° (TD). The R-value of UDR samples at 0° (RD) and 90° (TD) are nearly same
but the relative plastic strain experienced by the tensile specimen is 50% at 0°
(RD) compared to 90° (TD). the R value is ranging from 0.1802 (MSCR) to
0.2222 (UDR) depicts that anisotropy is more in UDR than in MSCR with
marginal widening of the sheets.

In both the cases of UDR and MSCR hot rolled sheets, as the Normal anisotropy,
R value range between 0 to 1 indicating of restricted formability. Planar
anisotropy AR, value in UDR is -0.019598159 and in MSCR is -0.007267731.

As AR<Q0, then probability of formation ears will occur at 45° because of shear
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15.

16.

17.

18.

19.

texture created by dense network of shear bands where localized softening in
the form of dynamic recovery is insufficient than compared to 0° (RD) to 90°
(TD).

The anodic current density ascertained by potentiodynamic polarization curves
for extruded, UDR and MSCR samples varies as a function of degree of plastic
deformation. Variation in potentials (E) makes the similar agreement for all the
samples.

Microstructural changes during stages of deformation at various processing
routes set up a correlation with mechano-chemical phenomena.

MSCR samples had a higher corrosion rate than UDR. Extruded samples
showed lower rates of corrosion with UDR and even MSCR. Thus, the anodic
current of MSCR is more active than UDR and extruded.

Polarization resistance (Rp) from potentiodynamic polarization test and the
electric double layer capacitance (CPEa) measured from EIS plots increases
with variation in stress from extruded, UDR and MSCR. Henceforth, EIS
measurements disclose the crucial behaviour of processed Mg-0.5wt.%Ce alloy
with different routes in service application environment.

The cathodic reaction causes the formation of protective film made of corrosion
product appears to be compact with superficial cracks in extruded sample, while
completely covers with no cracks in UDR. In MSCR, breakdown potential

reaches to rupturing the protective corrosion film.
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SCOPE OF FUTURE WORK:

» Bulk texture analysis of hot compression tested samples.

» Bulk texture analysis of hot rolled sheets of UDR and MSCR.

» Effect of Deformation behaviour in Simulated Body Fluid and Hank solution

using Scanning Electrochemical Microscopy.

» Weight Loss Corrosion Test of hot rolled sheets of UDR and MSCR.
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