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Introduction and Outline of Thesis 

This chapter provides an introduction to spectroscopy, with a specific emphasis 

on two major techniques: Laser Induced Breakdown Spectroscopy (LIBS) and 

Raman Spectroscopy. The chapter aims to examine in detail these approaches, 

in order to uncover the underlying principles, technological breakthroughs, and 

many applications that define each spectroscopic methodology. This chapter 

concludes with an overview of the entire thesis and a summary of each 

individual chapter. 
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 Chapter 1 

Spectroscopy is a scientific discipline that specifically investigates the interaction between 

electromagnetic radiation and matter. It involves the dispersion of light into its constituent 

colours and the measurement of absorbed or emitted radiation at specific wavelengths. The 

fundamental foundation of spectroscopy is the observation of light after the interaction with 

matter, i.e., when light encounters matter, it undergoes modifications of properties such as 

wavelength, intensity, or polarization. These modifications are due to the interaction of the 

molecules, atoms, electrons, or ions present in the material. The changes in the properties of 

light provide crucial insights into the material’s chemical composition, molecular structures 

and various other physical properties. Therefore, spectroscopy is a very useful tool for the 

characterization of various materials and is widely used in many disciplines of science, 

including physics, chemistry, astronomy, biology, etc. Several spectroscopic techniques exhibit 

significant variations in their methodologies depending on the specific properties of interest of 

the material and the type of light source used. Some of the important spectroscopic techniques 

are Raman spectroscopy, fluorescence spectroscopy, atomic absorption spectroscopy (AAS), 

mass spectroscopy, infrared (IR) spectroscopy, laser induced breakdown spectroscopy (LIBS), 

etc.  

1.1 Laser Induced Breakdown Spectroscopy (LIBS) 

LIBS is an advanced analytical technique that offers real-time detection of elemental species. It 

is more convenient and versatile than other conventional methods because of its ability to 

identify and analyze various materials in any form with no or minimal sample preparation, and 

it is ideal for on-site analysis. LIBS is an atomic emission spectroscopy (AES) technique that 

employs a high-energy pulsed laser to generate laser-induced plasma (LIP). Due to its 

utilization of high-energy optical radiation for producing LIP, this method has several 

advantages compared to other conventional AES techniques that rely on adjacent physical 

devices (such as electrodes, coils, etc.) to generate vaporization/excitation sources like flames, 

arcs, sparks, etc. 

The origins of LIBS can be traced back to the 1960s, just after the discovery of the laser, when 

researchers began studying LIP[1]. However, in the 1980s, LIBS began to get significant 

attention and development. In the early years, LIBS was focused on basic spectroscopic 

measurements and basic understanding of plasma formation dynamics. After that, LIBS was 

only used for the investigation of solid samples. Later, developments in laser, detectors, and 

spectroscopic instruments drove the advancement of LIBS towards a wide range of fields 
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beyond traditional material analysis, including environmental monitoring[2], forensic 

science[3], geological exploration[4], space exploration[5], waste management[6], biomedical 

research[7], food chemistry[8], homeland security[9], industrial and nuclear applications, etc. 

The traditional LIBS used only nanosecond (ns) lasers and with time, short pulse lasers like 

picosecond (ps) and femtosecond (fs) lasers were incorporated into LIBS to achieve enhanced 

spatial resolution with low energy damage threshold. Over time, LIBS analysis has become 

more sensitive, more resolved, and more accurate because of developments in advanced 

spectrometers. These days, the LIBS system is often incorporated with sophisticated 

spectrometers like echelle spectrometers or time-of-flight spectrometers, along with sensitive 

low-cost detectors like charged coupled devices (CCDs) or photomultiplier tubes (PMTs). 

Other significant developments have also been made, such as double pulse LIBS, standoff 

LIBS, microwave LIBS, etc. There are also numerous significant developments from an 

analytical perspective. Several researches have been carried out to understand the fundamental 

aspects of LIBS and enhance the limit of detection (LOD) to enable trace elemental analysis. 

Furthermore, the development of LIBS combined with machine learning (ML) opened up 

new possibilities for data analysis and interpretation, boosting the capabilities and efficacy of 

LIBS methods. Researchers also combine LIBS with various other analytical techniques like 

Raman spectroscopy, infrared (IR) spectroscopy, laser induced fluorescence (LIF), laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), etc., to acquire 

complementary information about the sample with improvised sensitivity, LOD, and other 

analytical capabilities. 

1.1.1 Process Involved in LIBS  

The interaction between a high-energy pulsed laser beam and matter is an intricate and not 

completely understood phenomenon that continues to be extensively researched. When the 

laser pulse is focused on the surface of any material with irradiance over the breakdown 

threshold (often on the order of GW/cm2), it leads to the removal of some materials from the 

surface of the material and the creation of shockwave. This process encompasses a diverse 

range of phenomena, including as rapid localised heating, liquefaction, and intense 

vaporisation. The vaporized materials then expand as a plume over the surface of the sample, 

where it encounters extremely high temperatures and laser induced plasma (LIP) is formed. 

Figure 1.1 provides a schematic of several mechanisms that contribute to the creation of the 

LIP. 
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Figure 1.1. Various processes involved in the formation of LIP. (Figure adopted from Steven Rehse et 

al.[10]) 

LIP is a localized collection of free electrons, ions, atoms and molecules where the charged 

species often act collectively, yet the system as a whole is electrically neutral. LIP can be 

characterized by various parameters like degree of ionization, plasma electron temperature, 

plasma electron density, etc. Typically, LIP is a weakly ionized plasma, i.e., the ratio of 

electrons and other species is less than 10%[11]. A schematic explaining the formation and 

temporal evolution of LIP initiated by a single laser pulse is described in figure 1.2.  

1.1.1.1  Ablation and Ionization 

The ionization of species is primarily governed by two mechanisms, i.e., by multiphoton 

ionization (MPI) and inverse Bremsstrahlung (IB) absorption process[12–14].  

MPI is required to achieve direct ionization of species with ionization energy far greater than 

the photons typically employed in the laser pulse[15]. The multiphoton ionisation (MPI) of 

electrons can take place when a significant number of photons are absorbed simultaneously by 

atoms or molecules (or when electrons are ejected from the valence to conduction band in the 

case of metals), which can be given by, 

( )M m h M e + −+ → +     (1.1) 

where m is the photon population and M refers to the atom or molecule. MPI is significant at 

high laser irradiance (greater than1010 W/cm2 for gases) and at shorter wavelengths (less than 

~1 µm). The probability of an atom or molecule absorbing a sufficient number of photons 

with a wavelength much greater than ~1 µm to increase the energy of the neutrals beyond 

their ionization potential is statistically improbable. However, this procedure becomes 
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particularly significant at low pressure, when the low particle density of the medium results in 

low collision frequencies between species. 

In the IB process, the photon is absorbed by one or more electrons (known as seed electrons) 

that are initially located within the focal volume at the begining of the laser pulse. The seed 

electrons can be produced by cosmic rays or by the interaction of the initial laser pulses with 

dust, oxygen, or organic vapors[11]. It can also originate from the atoms or molecules in the 

environment through MPI. 

In the IB process, electrons acquire energy from photons in collision with ions, atoms or 

molecules. When the energy of the electron is greater than the ionization potential of neutral 

species, it can ionize atoms or molecules (M) through collision and produces two lower 

energy electrons which again acquire more energy and cause more ionization of other neutrals 

and two more electrons as 

2e M e M− ++ → +      (1.2) 

With an increase in the number of electrons and ions, there is a corresponding rise in the 

collisions between electrons, photons, and ions. This leads to a greater probability of electron 

multiplication and, consequently, cascade ionization. During the IB process, all elemental 

species of the sample can be ionized to create plasma and the laser pulse energy can be coupled 

into the plasma which combinedly increases the plasma density to a point where it becomes 

optically thin. When the density of the plasma is more than the critical density (where plasma 

frequency becomes equal to laser frequency), the laser cannot enter inside the plasma; this is 

called plasma shielding. 

An accurate description of the breakdown threshold of LIP is very difficult as it depends on 

many parameters, including laser parameters (wavelength, irradiance, pulse duration), nature of 

the medium (density, ionization threshold)[11]. The dominance of IB absorption mechanism 

occures at high pressures when the influence of collision is significant and wavelength is longer 

than 1 µm. In case of low-density molecules or at shorter wavelength (≤ 1 µm), the possibility 

of electrons colliding with neutral species collision is minimal. In these cases, the MPI process 

dominates, i.e., in general, MPI will predominate if the breakdown threshold is independent 

of pressure. Ultimately, cascade ionization continues over the entire duration of the laser pulse 

until plasma shielding takes place. 
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1.1.1.2  Plasma Expansion 

After the termination of the laser pulse, the luminous plasma expands outwards in all directions 

from the point of laser interaction. The expansion of the plasma depends on several factors, 

including the amount of mass ablated, energy transferred to the mass, laser spot size, nature of 

the environment (solid, liquid, or gas), and pressure. The laser energy can be transmitted, 

dispersed, or absorbed depending on the irradiance at the focus point. So, in that direction, 

photon absorption is asymmetric and the plasma expands more towards the laser pulse, 

resulting in the plasma’s shape being slightly oval[11]. 

At the early time of plasma formation, the level of ionization in the LIP is extremely high, and 

there is a huge continuous background that decays rapidly over time, even quicker than the 

spectral lines. Continuum emission is generated by the transitions between free state and 

stationary state Ej of the atom whose frequencies are[15], 

21

2
jh E mv = − +       (1.3)  

where ½ mv2 and  are the kinetic energy of the free electron and ionization of the atom, 

respectively. 

The plasma continuum is mainly caused by radiative recombination (free–bound) and 

Bremsstrahlung (free–free) processes. Recombination is the process in which a free electron is 

absorbed into an atomic or ionic energy state, Ej, by releasing its extra kinetic energy as 

radiation. Bremsstrahlung process refers to free–free emission transition which occurs when an 

electron is accelerated or decelerated in collision with other charged particles due to the loss of 

kinetic energy. 

It is difficult to distinguish between emissions caused by radiative recombination and those 

caused by the Bremsstrahlung process. Besides, the former exhibits greater prominence at 

higher frequencies, whereas the latter is more pronounced at lower frequencies[15]. 

In vacuum, the LIP follows adiabatic expansion. The speed of the expansion can be expressed 

by[15,16] 

4 10

3
p

v

E
v

M

 +
=       (1.4)  

where vp, , E and Mv are the specific heat ratio, plum energy and total vaporized sample mass, 

respectively. 



 

7 

 Introduction and Outline of the Thesis 

When the laser ablation occurs, the surrounding media is compressed by the ablated mass and 

shockwave is produced. The plasma is the mixture of atoms and ions of both sample and 

surrounding media. The rate of plasma expansion decreases once it interacts with the 

surrounding media. The expansion distance of the shockwave can be described by Sedov’s 

theory. The time-dependent expansion distance H(t) in air can be expressed as[15,17] 

1/(2 )

2/(2 )0
0( )

d

dE
H t t



+

+ 
=  

 
     (1.5)  

where 0 represents a constant without units. E0 represents the energy per area for one-

dimensional expansion, energy per length for two-dimensional expansion, and energy for 

three-dimensional expansion.  is the density of air and d the symbol d represents the 

dimensionality of the propagation. For spherical propagation, d=3, for cylindrical propagation, 

d=2, and for planar propagation, d=1. 

Once the pressure of the plasma plume equals the pressure of the surrounding media, the 

expansion of the shockwave ceases, and the ultimate distance determines the volume of the 

plasma plume. The duration and size of the vapour plume can be represented as[15,18] 

1/3

1
s s

g

E
t

p c

 

=  
 

     (1.6)  

1/3

s s

E
R

p

 

=  
 

      (1.7)  

where s and s are constants, p is the pressure and cg is the sound velocity of the gas. 

1.1.1.3  Plasma Emission 

Emission of intense electromagnetic radiation occurs in the UV-VIS-NIR regions with 

generation of sound and shockwave as the plasma evolves. The ns laser generates a continuum 

that emerges during the laser pulse, which typically has a duration of several hundred 

nanoseconds. In the ns range, ionic emissions are most prominent, while atomic and molecular 

emissions are seen in the microsecond range (typically after 1 µs). Later the presence of 

molecular line emission observed resulting from the recombination of species within the 

plasma. In organic samples like explosives, plastics, drugs, etc., the CN violet and C2 swan 

bands are often observed on the microsecond time scale. The formation of these molecules in 

LIP is complex to understand; however, extensive studies have reported that the molecular 
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formation of CN band could be due to the recombination of C and N atoms[19,20]. The C2 

bond was observed due to the C = C linkage of the analyte[19,20]. 

1.1.2 Difference between short (ns) and Ultra-short (ps and fs) 

pulse LIBS 

The difference between the ablation mechanism of short (ns) and ultra-short (ps and fs) pulses 

are different because of large variations in peak power and pulse duration. The formation of 

LIP involves ablation, atomization, and excitation. In short pulses (ns), the absorption process 

is initiated at the fs time scale by the seed electron in the focal region of the laser pulse, 

followed by the IB process[21]. And in the case of the short pulse, ionization, sample heating, 

and vaporization all occur during the formation of plasma and the matter undergoes a transient 

change in thermodynamic regime from solid to plasma state through liquid state[22]. In this 

case, the poor coupling of laser to material requires higher pulse energies, which forms scars 

on the material surface due to melting.   

 

Figure 1.2. Time scale of various processes involved in ns and fs LIP during and after the laser – matter 

interaction. (Figure adopted from Harilal et al.[23]) 
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In the case of ultra-short pulses (ps and fs), the ablation mechanism is driven by various 

mechanisms depending on the availability of free electrons i.e., multiphoton absorption, 

impact ionization, avalanche ionization, and coulomb expansion. Ultrafast pulses rapidly form 

a hot plasma without a liquid phase with a low ablation threshold and less damage threshold 

on the sample. Moreover, ultrafast interactions have exciting features as the plasma shielding 

effect is absent, leading to improvement in sensitivity compared to short pulse. Short pulses 

result in high temperature and dominance of ionic and atomic emissions at the initial time, 

whereas ultrashort pulses form plasma with low temperature and favor molecular 

emissions[19]. The time scale of short and ultra-short energy absorption, laser ablation, and 

other related processes that occur during or after the interaction of laser with matter exhibits 

significant variation. The approximate time scale of ns and fs plasma processes are depicted in 

figure 1.2, adopted from the work of Harilal et al.[23]. 

1.2 Raman Spectroscopy 

Raman spectroscopy is a molecular spectroscopic technique that involves studying the 

vibrational (phonon) states of molecules by observing the inelastic scattering of light. This 

technique provides exceptional insights into molecular vibrations. This approach provides a 

powerful tool for molecular fingerprinting and monitoring changes in molecular bond 

structures. Raman spectroscopy offers unique advantages compared to other vibrational 

spectroscopy techniques like Fourier Transform Infrared (FTIR) and Near-infrared (NIR) 

spectroscopy. This is because Raman spectroscopy involves analyzing the light scattered off a 

material rather than the light absorbed by it. Consequently, Raman spectroscopy necessitates 

minimal sample preparation and is not affected by absorption bands in aqueous environments. 

This allows for direct measurement of solids, liquids, and gases, even when they are contained 

in transparent materials such as plastic, transparent crystals, glasses, etc. The great selectivity of 

this approach, similar to FTIR, enables the identification and discrimination of molecules and 

chemical species that have similar structures. Additionally, it allows for the exact assessment of 

small changes in materials. 

Raman spectroscopy is an indispensable analytical technique used to identify and monitor 

changes in molecular bond structure across various materials, such as solids, liquids, and gases. 

Its non-destructive nature, minimal sample preparation requirements, and ability to identify 

substances make Raman spectroscopy indispensable in diverse scientific fields such as 

chemistry, materials science, pharmaceuticals, forensics, and biomedical research. 
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1.2.1 Theory of Raman Scattering 

When studying Raman scattering, two viewpoints arise: classical wave and quantum particle 

interpretation. Each perspective provides a distinct and valuable understanding of the 

fundamental physics involved. Light is considered as electromagnetic radiation in the classical 

wave model, distinguished by a fluctuating electric field that interacts with molecules via their 

polarizability. The polarizability is dictated by the electron cloud’s capacity to engage with an 

electric field. Softer molecules, such as benzene, exhibit pronounced Raman scattering, 

whereas harder molecules like water tend to display lesser scattering tendencies.  

In contrast, the quantum particle perspective defines light as photons engaging in interactions 

with molecules, leading to inelastic scattering. In this scenario, the quantity of scattered 

photons is directly correlated with the size of the bonds. Consequently, molecules possessing a 

significant quantity of Pi bonds, such as benzene, exhibit a pronounced scattering of photons, 

whereas molecules with modest single bonds, such as water, display a feeble Raman scatterer. 

1.2.1.1  Classical Theory of Raman Scattering 

When a molecule is subjected to an electric field, it experiences polarization as the negatively 

charged electron cloud is drawn towards the positive pole, while the positively charged nuclei 

are drawn towards the negative pole. The induced polarization, denoted as P, has a direct 

proportionality to the amount of the applied electric field., E [24]. The expression can be 

given by, 

P E=       (1.8)  

where the proportionality constant, α represents the polarizability. 

When electromagnetic radiation having frequency of 0 interacts with molecules, each 

molecule experiences a varying electric field, 

0 0cos 2E E t=       (1.9)  

To simplify, let us consider the vibrational motion of the molecule. Let Q be the normal 

coordinate associated with a specific mode of vibration of frequency m. In the harmonic 

approximation, Q can be expressed as: 

0 cos2 mQ Q t=       (1.10)  

Expanding α using Taylor expansion in the normal coordinate Q, 
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0

0

...Q
Q


 

 
= + + 

 
      (1.11)  

Substituting equations 1.9, 1.10 & 1.11 in equation 1.8 and neglecting higher-order terms, 
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Using the trigonometric relation 2cos cos cos( ) cos( )     = + + − , 
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       

 
= + + + − 

 
  (1.12) 

Therefore, the induced polarization comprises three distinct frequency comoponents. 

(i)  = 0  Rayleigh line 

(ii)  = 0 – m Raman Stokes line 

(iii)  = 0 + m Raman anti-Stokes line 

1.2.1.2  Quantum Theory of Raman Scattering 

In the quantum realm, electromagnetic radiations exhibit both wave and particle nature. In 

discussing Raman scattering, incident radiation with frequency 0 is considered as a 

continuous flow of particles (photons) that collide with molecules. In the case of a perfectly 

elastic collision, there is no exchange of energy between the photons and the molecule, called 

Rayleigh scattering. In an inelastic collision, energy is exchanged between the two entities. 

The molecule can undergo energy transfer by either gaining or losing an amount of energy 

equivalent to the disparity between its final and initial states. When the molecule absorbs 

energy, the frequency of the scattered photons becomes 0 – m, known as the Stokes line. 

Conversely, when the molecule experiences a decrease in energy, the frequency of the 

scattered photon changes to 0 + m, which is known as the anti-Stokes line. Figure 1.3 

illustrates the different mechanisms responsible for the generation of Rayleigh, Stokes, and 

anti-Stokes lines. 

When a system interacts with radiation of frequency 0, it has the potential to undergo a 

transition to a virtual state within the system. A virtual state, discrete from the stationary states 

of the molecule, represents a combined state of both the molecule and radiation. During 

Raman scattering, most molecules return to their initial state from the virtual state, leading to 
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the occurrence of Rayleigh scattering. Nevertheless, a small portion undergoes a change to 

states with greater and lesser levels of energy, resulting in the emergence of Stokes and anti-

Stokes lines, respectively. When the virtual state coincides with the real state of the system, it 

leads to resonance Raman effect. It is worth mentioning that the annihilation of the incident 

photon and the formation of the scattered photon happen simultaneously. 

 

Figure 1.3. Energy level diagram of Rayleigh and Raman scattering. 

The spectral line intensity depends on various parameters, with the primary factor being the 

initial population of the state from which the transition begins. The Stokes line, originating 

from  = 0, and the anti-Stokes line, originating from  = 1 exhibit same Raman shift m. 

1.3 Outline of the Thesis 

The thesis focuses on the fundamental studies of LIBS towards development of Simplified 

LIBS-based Intensity-ratio approach for Concentration Estimation (SLICE) and harnessing 

machine learning for the classification of materials such as explosives and post-consumer 

plastics. It also discusses the dependence of various plasma parameters on the hardness of 

materials. Moreover, it delves into the applications of machine learning in Raman 

spectroscopy, aiming for the quantitative detection of explosives in mixtures. 

Chapter 2 provides a comprehensive overview of the different instruments (lasers, 

spectrometers, etc.) and experimental configurations used for the thesis work. 
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Chapter 3 presents fundamental studies of LIBS towards temporal modeling of LIP for 

elemental analysis. Elemental analysis of materials is pivotal across diverse scientific domains 

and industries, serving several critical purposes. It plays a crucial role in identifying elemental 

composition and ensuring stringent product quality control across industries, including 

pharmaceuticals and food production. It is also used widely for characterizing materials in 

fields like materials science and nanotechnology while finding diverse applications in 

archaeology, environmental monitoring, pharmaceuticals, and more sectors. In essence, 

elemental analysis is indispensable for understanding the composition, properties, and 

behaviors of the materials, influencing a wide array of scientific studies, industrial processes, 

and practical applications.  

Elemental analysis using LIBS is one of the most demanding disciplines due to its robust 

experimental setup since late 1980s[25–27]. Several LIBS techniques have been developed for 

the elemental analysis of various materials in different forms (solids, liquids, and gases). The 

first method proposed uses a calibration curve approach to estimate the concentration of each 

element present in a sample. This method, however, is constrained by the requirement of 

calibration curves for each matrix element, which can only be used for samples with the same 

matrix and must be reconstructed for samples with different matrices. Therefore, in real-life 

applications, while calibration LIBS excels in detecting species concentrations within a well-

defined matrix, it is not suitable for complex situations like multi-elemental analysis of 

unknown materials. To overcome these limitations, A. Ciucci et al. introduced a new method 

called calibration-free LIBS (CF-LIBS), where the matrix-matched standard samples are not 

required for concentration estimation[28]. However, in CF-LIBS, the self-absorption (SA) 

effect is a major disruption of emission intensities at respective wavelengths. The SA of a 

certain emission line occurs when the emitted radiation of that atom is absorbed by another 

atom, resulting in a decrease in emission peak intensity. For CF-LIBS, it is essential to estimate 

plasma temperature using the Boltzmann/ Saha-Boltzmann plot method[28–30]. In principle, 

these methods require at least two SA free emission lines with a well-separated upper energy 

level for each constituent element in the sample. However, in the practical scenario, 

researchers always consider several emission lines from each element to retain accurate 

temperature values[29,31]. The availability of such quantities of SA free lines is difficult to 

observe for many elements (e.g., C, H, N, O, Na, B, etc.) in the UV – VIS – NIR range of 

LIBS spectrum. Also, the observable emission lines are scarce in the case of trace elements. 

Therefore, SA correction becomes essential for the universal adoption of CF-LIBS for 

elemental analysis. The involvement of the SA correction procedure makes the CF-LIBS 
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more complex and time-consuming. In specific scenarios where SA correction is not 

necessary, CF-LIBS may be quick and easy to use in practice. 

To overcome these limitations, a new, robust, more straightforward method for fast 

quantitative elemental analysis was proposed which has several notable advantages. This 

method relies on the temporal modeling of intensity ratio using radiative relaxation 

mechanism of plasma[32,33]. Since the method relies on intensity ratios to determine 

concentrations, it is named Simplified LIBS-based Intensity-ratio approach for Concentration 

Estimation (SLICE). The major advantage of this technique is that it doesn’t involve 

Boltzmann/Saha-Boltzmann plot in the calculation. The requirement of a few emission lines 

makes this method more robust and straightforward. To be precise, it demands only two 

emission lines from any one of the elements and a single line from all other elements. For 

example, a sample of n elements requires only n+1 emission intensity lines, giving an 

advantage for choosing emission lines conveniently. Since only one emission line is needed 

from every element except any element in the sample, now there is a great flexibility of 

choosing emission lines unaffected by SA. Also, SLICE reduces the complexity of the 

calculation as fewer steps are involved. 

The LIBS experiment was performed on two Cu based alloys (binary and ternary). The 

kinetic LIBS spectra were recorded and the temporal behavior of emission intensity, plasma 

temperature and electron number density were studied. The radiative relaxation mechanism 

was used to model the temporal behavior of intensity ratio and plasma temperature in order to 

determine the plasma decay parameters (PDPs): the initial plasma temperature and the 

radiation decay constant. These estimated PDPs were used to estimate the concentration of 

each species in both samples using SLICE. Also, the results were cross-validated using CF-

LIBS and electron dispersive X-ray Spectroscopy (EDS). The results obtained from SLICE 

show good agreement with CF-LIBS and EDS. At last, the advantages and limitations of 

SLICE were discussed. 

Chapter 4 explores the dependence of plasma parameters on the hardness of the materials. 

Estimating the hardness of alloys stands as a critical endeavor across industries and scientific 

realms owing to its multifaceted significance. Beyond assessing durability and reliability, 

hardness testing guides material selection, aids in design precision and ensures quality control. 

The correlation between hardness and various mechanical properties empowers engineers to 

predict material behavior, wear resistance, and overall performance in diverse applications, 

from heavy machinery to critical aerospace components. Moreover, hardness estimation fosters 
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innovation in material development, enabling researchers to tailor alloys for specific 

requirements and enhance their mechanical characteristics. In essence, the assessment of alloy 

hardness serves as a linchpin in guaranteeing material integrity, safety, and reliability, 

fundamentally influencing product performance and longevity. Traditional methods for 

hardness estimation encompass several established techniques like the Vickers hardness test, 

Rockwell hardness test, Brinell hardness test, etc. Most of these techniques involve creating an 

indentation on the material surface and require specific sample preparations, such as smooth 

and flat surfaces, which might be challenging or impractical for certain materials or irregularly 

shaped samples. Additionally, the sample size or shape limitations can restrict the applicability 

of these methods. Moreover, these processes are time-consuming. Due to the rapid detection 

capability and requirement of no or minimal sample preparation, LIBS can provide insights 

into the relationship between various plasma parameters and material hardness, offering a non-

invasive means to estimate hardness characteristics across different materials.  

Several researchers tried to correlate the plasma parameters such as plasma temperature, 

electron number density, and intensity ratios (atomic to ionic), etc., with the hardness of 

materials[34–36]. Despite these efforts, a consistent relationship between plasma parameters 

and hardness is difficult to describe. 

This chapter explores the dependence of plasma parameters with material hardness. For the 

experiment, five different iron-based alloys with same elemental compositions and varying 

hardness were considered. The hardness of each sample was initially determined by using 

Vicker’s hardness tester. Then temporal LIBS spectra for each sample were recorded and 

subsequently, various parameters like plasma temperature, electron density, radiation decay 

constant, crater dimension, etc., were estimated for all five alloys. When the change in plasma 

parameters was compared against the change in hardness, a linear (both increasing and 

decreasing) trend of all the parameters were observed w.r.t. the change in hardness. The results 

serve to underline the capability of LIBS for rapid estimation of material hardness without or 

with minimal sample preparation. 

Chapter 5 delves into the application of machine learning in conjunction with LIBS for the 

identification/classification of explosives and post-consumer plastics.  

In the last few decades, the threat to homeland security around the world, as well as in India, 

urged the need for an automated portable device for the rapid detection of high energy 

materials (HEMs), including explosives, improvised explosive devices (IEDs), etc. Especially in 

crowded places like airports, railway stations, metro stations, shopping malls, worship places, 
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etc., an advanced explosive detection device based on modern analytical techniques is essential 

for detecting HEMs with high confidence. LIBS is a potential tool for the on-site detection of 

explosives with numerous advantages over other techniques. These advantages include robust 

signal acquisition, standoff detection, trace level identification, rapid prediction when 

combined with machine learning, etc., which can make LIBS an indispensable tool in 

explosive detection. 

With increasing population and modernization, the widespread adaptation of plastics in our 

day-to-day lives has experienced a substantial surge. Human society heavily relies on plastics as 

it is widely used in packaging, food safety, domestic equipment, industry, transport, 

electronics, etc. Its demand and use are continuously increasing because of its notable 

advantages such as cost-effectiveness, durability, low weight, flexibility in shape, etc. [37]. On 

the contrary, due to its high durability and low-degrading nature, it generates large amount of 

waste every year[38]. Thus, the management of plastic waste has now become essential. 

Traditional plastic waste management techniques like incineration and landfills are 

inconvenient as they cause colossal resource waste and adverse effects on the environment and 

ecosystem. Also, the toxic substances released in these processes severely pollute the soil, 

water, and air. Therefore, recycling is the most viable way to reduce final waste output. 

Classification/sorting post-consumer plastics is the most critical step in recycling. The sorting 

process is essential to retain the quality and properties of recycled plastics [39]. The prevalent 

method for sorting plastics involves manual visual inspection, where identification relies on 

recognizing the recycling number assigned to each plastic type. However, this is labor-

intensive, more time-consuming, and error-prone. Also, hazardous contamination is harmful 

to workers. Other classification techniques based on the physical properties are also developed, 

like the floating technique [40], an electrostatic technique [41], differential scanning 

calorimetric (DSC) [42], etc. These conventional methods greatly depend on the physical state 

of the sample and are more time-consuming and prone to errors. Besides these technologies, 

LIBS combined with machine learning can provide a promising solution for sorting plastic 

waste efficiently and accurately. 

In the context of in situ application, an ideal classifying instrument should be cost-effective, 

compact, reliable, and capable of providing a fast identification rate with higher accuracy. This 

chapter explores the potential of handheld picosecond (ps) LIBS setup for discrimination of 

explosives and post-consumer plastics using artificial neural network (ANN), a robust machine 

learning classifier. Further, from a spectral perspective, it is noteworthy that in LIBS spectra, 
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most of the wavelength regions (more than 80%) contain only noise, especially in organic 

samples. All the wavelengths/ variables/ features representing noise are statistically 

insignificant. Therefore, it might be advantageous to confine the analysis to the chosen features 

of significance. There are two approaches to reducing the dimension of the input data, i.e., 1) 

feature selection, where unwanted features are removed from the dataset manually or by using 

statistical/machine learning models, and 2) feature extraction, where machine learning 

algorithms are used to transform the original data into a new smaller dataset. Feature selection/ 

extraction is crucial in real-time applications as it reduces the dimensionality of the data, 

improves model performance, mitigates overfitting, and expedites computational processes. 

Additionally, they enhance data interpretability and visualization, and address multicollinearity, 

thus enabling more effective decision-making and insights. Therefore, in this chapter, various 

feature selection and feature extraction approaches were explored in conjunction with ANN 

to determine the most effective classification strategy in terms of accuracy, computational time, 

and storage requirement. 

Five explosive and 12 non-explosive samples with similar chemical composition were 

considered for detection. Multiple spectra (200 for each sample) were recorded for all the 

samples. The total spectra were divided randomly for training (70%), validation (15%), and 

testing (15%). Initially, every spectrum within both the train and validation datasets is 

categorized into their respective groups, either explosive or non-explosive. The test phase 

involves utilizing test data to predict whether a given spectrum corresponds to an explosive or 

non-explosive category. Following this, a separate training model is constructed specifically 

focusing on the explosive samples, which are labeled to explosive sample names. Once a 

spectrum is identified as explosive, it proceeds to a secondary model designed to determine the 

specific type of explosive it belongs. The same training, validation and testing architecture is 

used for all the feature selection and feature extraction approaches. The results were compared 

from full spectra and various feature selection and feature extraction approaches as input to the 

ANN model. And it has been observed that ANN combined with linear discriminant analysis 

(LDA) feature extraction achieved a flawless 100% accuracy in distinguishing between 

explosive and non-explosive. In classification within explosives, maximum accuracy (99.8%) 

was obtained for full spectrum and manual feature selection with peak area. Moreover, in this 

study, both the training and testing were performed on the LIBS spectra obtained from the 

same samples. However, in real-world scenarios, the model encounters unknown samples that 

haven’t been seen by the model during the training process. Given the limited types of 

explosive samples available, the training and testing were conducted using the same set of 
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samples. Multiple spectra were recorded and then randomly divided for training, validation 

and testing purposes. However, it would be interesting to extend this considering a large set of 

samples and performing testing on unknown samples not seen by the trained network earlier. 

Within the framework of plastic sorting, two distinct approaches were employed: firstly, nine 

different post-consumer plastics were collected from a local recycling unit, and both training 

and testing were performed on the same sample. Secondly, 30 post-consumer plastics 

representing six commonly used types (HDPE, LDPE, PP, PET, PS, and PVC), and five 

samples from each category were collected from garbage. Testing was performed on unknown 

plastic, mimicking real-world scenarios for identifying unfamiliar post-consumer plastics. 

ANN models were utilized, incorporating various feature selection and extraction methods. 

Their performances were compared in accuracy, testing time, data size, and model size to find 

the most effective strategy. The results demonstrate that in the first case (training testing on the 

same sample), nearly all feature selection and extraction methods achieved outstanding 

classification accuracy in distinguishing nine distinct plastics. However, when confronted with 

the second case involving testing on unfamiliar samples, the ANN model encountered 

difficulty in distinguishing between HDPE, LDPE, and PP. Remarkably, it effectively 

differentiated between PET, PS, and PVC. 

In discussing the real-time implementation of LIBS combined with machine learning for 

sorting post-consumer plastics, it becomes evident that employing the same sample for training 

and testing purposes renders the former scenario ineffective when encountering unknown 

samples. Conversely, testing on unknown samples in real-time applications proves more 

relevant and practical. Despite this, it’s important to note that this approach efficiently 

identifies three out of six types of plastics. As such, it currently stands as a viable solution for 

real-time identification of PET, PS, and PVC, which could significantly reduce the manual 

sorting workforce by half. 

Chapter 6 discusses the development of a low-cost, compact, and portable Raman 

spectroscopic setup for detecting explosive mixtures. Initially, the Raman experiment was 

performed on the mixture of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and ammonium 

nitrate (AN) mixed at different concentrations. Various machine learning regression analyses, 

such as linear regression, partial least square regression (PLSR), support vector regression 

(SVR), decision tree regression (DTR) and random forest regression (RFR) were employed 

on the Raman spectra of mixtures to quantify the amount of each sample present in the 

mixture. The Raman spectra were analyzed with and without background correction. Also, 
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various feature/variable selection strategies were explored to find out the best analysis 

protocol. Finally, results obtained from all the regression models in conjunction with various 

feature selection approaches with or without background correction were compared in terms 

of accuracy, computational time and limit of detection. The results demonstrate that Raman 

technique combined with machine learning can work as an efficient tool for rapid detection of 

explosive mixtures. Overall, a portable Raman spectroscopic tool is demonstrated for the 

quantitative detection of explosive mixtures with a high accuracy rate, which can have great 

importance in homeland security and the military. 

Chapter 7 of this thesis presents the culmination of the research findings and outlines the 

future prospects based on this research work. 

1.4 Reference 

[1] D.A. Cremers, L.J. Radziemski, T.R. Loree, Spectrochemical analysis of liquids using the laser 

spark, Appl. Spectrosc. 38 (1984) 721–729. 

[2] R. Kumar, A.K. Rai, D. Alamelu, S.K. Aggarwal, Monitoring of toxic elements present in 

sludge of industrial waste using CF-LIBS, Environ. Monit. Assess. 185 (2013) 171–180. 

[3] A.K. Tarai, R. Junjuri, A. Dhobley, M.K. Gundawar, Classification of human tooth using laser-

induced breakdown spectroscopy combined with machine learning, J. Opt. (2023) 1–11. 

[4] S.-L. Lui, A. Koujelev, Accurate identification of geological samples using artificial neural 

network processing of laser-induced breakdown spectroscopy data, J. Anal. At. Spectrom. 26 

(2011) 2419–2427. 

[5] F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G.G. Ori, L. Marinangeli, A. Baliva, 

Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock 

analogues, Planet. Space Sci. 52 (2004) 117–123. 

[6] S.-B. Roh, S.-B. Park, S.-K. Oh, E.-K. Park, W.Z. Choi, Development of intelligent sorting 

system realized with the aid of laser-induced breakdown spectroscopy and hybrid preprocessing 

algorithm-based radial basis function neural networks for recycling black plastic wastes, J. 

Mater. Cycles Waste Manag. 20 (2018) 1934–1949. 

[7] X. Chen, Y. Zhang, X. Li, Z. Yang, A. Liu, X. Yu, Diagnosis and staging of multiple myeloma 

using serum-based laser-induced breakdown spectroscopy combined with machine learning 

methods, Biomed. Opt. Express. 12 (2021) 3584–3596. 

[8] R. Agrawal, R. Kumar, S. Rai, A.K. Pathak, A.K. Rai, G.K. Rai, LIBS: a quality control tool 

for food supplements, Food Biophys. 6 (2011) 527–533. 



 

 

20 

 

 Chapter 1 

[9] J. Handke, F. Duschek, K. Gruenewald, C. Pargmann, Standoff detection applying laser-

induced breakdown spectroscopy at the DLR laser test range, in: Chem. Biol. Radiol. Nucl. 

Explos. Sens. XII, SPIE, 2011: pp. 212–217. 

[10] Steven Rehse, A LIBS Primer, (n.d.). https://www.uwindsor.ca/people/rehse/299/libs. 

[11] D.A. Cremers, L.J. Radziemski, Handbook of laser-induced breakdown spectroscopy, John 

Wiley & Sons, 2013. 

[12] Y.M. Li, J.N. Broughton, R. Fedosejevs, T. Tomie, Formation of plasma columns in 

atmospheric pressure gases by picosecond KrF laser pulses, Opt. Commun. 93 (1992) 366–377. 

[13] D. Von der Linde, H. Schüler, Breakdown threshold and plasma formation in femtosecond 

laser–solid interaction, JOSA B. 13 (1996) 216–222. 

[14] J.J. Camacho, J.M.L. Poyato, L. Diaz, M. Santos, Optical emission studies of nitrogen plasma 

generated by IR CO2 laser pulses, J. Phys. B At. Mol. Opt. Phys. 40 (2007) 4573. 

[15] J.P. Singh, S.N. Thakur, Laser-induced breakdown spectroscopy, Elsevier, 2020. 

[16] Y.B. Zel’Dovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic 

phenomena, Courier Corporation, 2002. 

[17] L.I. Sedov, Similarity and dimensional methods in mechanics, CRC press, 1993. 

[18] N. Arnold, J. Gruber, J. Heitz, Spherical expansion of the vapor plume into ambient gas: an 

analytical model, Appl. Phys. A. 69 (1999) S87–S93. 

[19] R. Junjuri, M.K. Gundawar, Femtosecond laser-induced breakdown spectroscopy studies for 

the identification of plastics, J. Anal. At. Spectrom. 34 (2019) 1683–1692. 

[20] S.A. Kalam, N.L. Murthy, P. Mathi, N. Kommu, A.K. Singh, S.V. Rao, Correlation of 

molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS 

plasma of high energy materials, J. Anal. At. Spectrom. 32 (2017) 1535–1546. 

[21] D.N. Patel, P.K. Pandey, R.K. Thareja, Stoichiometric investigations of laser-ablated brass 

plasma, Appl. Opt. 51 (2012) B192–B200. 

[22] J.R. Freeman, S.S. Harilal, P.K. Diwakar, B. Verhoff, A. Hassanein, Comparison of optical 

emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum 

conditions, Spectrochim. Acta Part B At. Spectrosc. 87 (2013) 43–50. 

[23] S.S. Harilal, J.R. Freeman, P.K. Diwakar, A. Hassanein, Femtosecond laser ablation: 

Fundamentals and applications, Laser-Induced Break. Spectrosc. Theory Appl. (2014) 143–166. 

[24] G. Aruldhas, Molecular structure and spectroscopy, PHI Learning Pvt. Ltd., 2007. 

[25] D.A. Cremers, The analysis of metals at a distance using laser-induced breakdown spectroscopy, 



 

21 

 Introduction and Outline of the Thesis 

Appl. Spectrosc. 41 (1987) 572–579. 

[26] T.L. Thiem, R.H. Salter, J.A. Gardner, Y.I. Lee, J. Sneddon, Quantitative simultaneous 

elemental determinations in alloys using laser-induced breakdown spectroscopy (LIBS) in an 

ultra-high vacuum, Appl. Spectrosc. 48 (1994) 58–64. 

[27] R.W. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, Laser-induced breakdown 

spectroscopy for detection of heavy metals in environmental samples, in: Int. Conf. Monit. 

Toxic Chem. Biomarkers, SPIE, 1993: pp. 2–15. 

[28] A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, New procedure for 

quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53 (1999) 

960–964. 

[29] V.K. Unnikrishnan, K. Mridul, R. Nayak, K. Alti, V.B. Kartha, C. Santhosh, G.P. Gupta, 

B.M. Suri, Calibration-free laser-induced breakdown spectroscopy for quantitative elemental 

analysis of materials, Pramana. 79 (2012) 299–310. 

[30] L.M. John, R.C. Issac, S. Sankararaman, K.K. Anoop, Multi-element Saha Boltzmann plot 

(MESBP) coupled calibration-free laser-induced breakdown spectroscopy (CF-LIBS): an 

efficient approach for quantitative elemental analysis, J. Anal. At. Spectrom. 37 (2022) 2451–

2460. 

[31] E. Mal, R. Junjuri, M.K. Gundawar, A. Khare, Optimization of temporal window for 

application of calibration free-laser induced breakdown spectroscopy (CF-LIBS) on copper 

alloys in air employing a single line, J. Anal. At. Spectrom. 34 (2019) 319–330. 

[32] A.K. Tarai, R. Junjuri, S.A. Rashkovskiy, M.K. Gundawar, Time-Dependent Intensity Ratio-

Based Approach for Estimating the Temperature of Laser Produced Plasma, Appl. Spectrosc. 

(2022) 00037028221117534. 

[33] R. Junjuri, S.A. Rashkovskiy, M.K. Gundawar, Dependence of radiation decay constant of 

laser produced copper plasma on focal position, Phys. Plasmas. 26 (2019) 122107. 

[34] Z.A. Abdel-Salam, A.H. Galmed, E. Tognoni, M.A. Harith, Estimation of calcified tissues 

hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced 

breakdown spectra, Spectrochim. Acta Part B At. Spectrosc. 62 (2007) 1343–1347. 

[35] R.D. Pilkington, J. Astin, J. Cowpe, Application of laser-induced breakdown spectroscopy for 

surface hardness measurements, Spectrosc. Eur. 27 (2015) 13–15. 

[36] J.S. Cowpe, R.D. Moorehead, D. Moser, J.S. Astin, S. Karthikeyan, S.H. Kilcoyne, G. Crofts, 

R.D. Pilkington, Hardness determination of bio-ceramics using laser-induced breakdown 

spectroscopy, Spectrochim. Acta Part B At. Spectrosc. 66 (2011) 290–294. 

[37] U.K. Adarsh, V.B. Kartha, C. Santhosh, V.K. Unnikrishnan, Spectroscopy: A promising tool 



 

 

22 

 

 Chapter 1 

for plastic waste management, TrAC Trends Anal. Chem. (2022) 116534. 

[38] Q. Zeng, J.-B. Sirven, J.-C.P. Gabriel, C.Y. Tay, J.-M. Lee, Laser induced breakdown 

spectroscopy for plastic analysis, TrAC Trends Anal. Chem. 140 (2021) 116280. 

[39] J.A. Brydson, Plastics materials, Elsevier, 1999. 

[40] S. Pongstabodee, N. Kunachitpimol, S. Damronglerd, Combination of three-stage sink–float 

method and selective flotation technique for separation of mixed post-consumer plastic waste, 

Waste Manag. 28 (2008) 475–483. 

[41] G.L. Hearn, J.R. Ballard, The use of electrostatic techniques for the identification and sorting 

of waste packaging materials, Resour. Conserv. Recycl. 44 (2005) 91–98. 

[42] B. Luijsterburg, H. Goossens, Assessment of plastic packaging waste: Material origin, methods, 

properties, Resour. Conserv. Recycl. 85 (2014) 88–97. 

 

 



23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
h
ap

te
r 

2
 

 

Experimental Details 

This chapter delves into the examination of laser systems, spectrometers, LIBS 

experimental setups, Raman spectroscopy settings, and LabVIEW program 

creation for spectrum measurements. The chapter thoroughly analyses the 

specifications and operational principles of nanosecond (ns) and picosecond (ps) 

laser systems, explaining in detail their components and functions. Moreover, it 

explores the technological attributes of Mechelle ICCD and Czerny-Turner 

CCD spectrometers, which are crucial for spectroscopic studies. The 

experimental configurations for both gated and non-gated LIBS detections are 

comprehensively explained, coupled with a meticulous description of the 

Raman experimental arrangement. One noteworthy aspect of the chapter is the 

creation of a LabVIEW program that aims to optimize spectrum measurements, 

improving productivity and reducing experimental inaccuracies. 
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2.1 Details of Lasers 

In the present thesis work, two high energy lasers were used for the LIBS experiments. The 

specifications of the two laser systems are presented in table 2.1. 

Table 2.1. Specifications of nanosecond (ns) and picosecond (ps) laser systems. 

Sl. 
No. 

Parameters Nanosecond laser Picosecond laser 

1 Laser model SpitLight 1200 (M/s Innolas) PL 2250 (M/s Ekspla) 

2 Wavelength (nm) 1064 / 532 / 355 / 266 1064 / 532 / 355 

3 Pulse duration ~ 7 ns ~ 30 ps 

4 
Maximum output energy at 

1064 nm (mJ) 
~ 1200 ~ 100 

5 Repetition rate (Hz) 1 – 10 10 

6 Beam diameter (mm) ~ 6.5 ~ 12 

2.1.1  Nanosecond Laser 

A Nd:YAG solid state laser (SpitLight 1200, M/s Innolas) was used for nsLIBS experiments in 

this thesis[1]. The laser system comprises of three main parts i.e., oscillator, pre-amplifier and 

amplifier. The schematic of the optical layout of the laser is depicted in figure 2.1. 

 

Figure 2.1. Schematic of optical layout of the nanosecond laser system. 1, 2 & 3 represent the beam 

path through oscillator, pre-amplifier and main amplifier respectively. F, SHG, and THG represent the 

Faraday isolator, second and third harmonic crystals, respectively. 

The laser oscillator consists of a rear mirror of high reflectivity and a variable reflectivity 

output coupler (high reflectivity in the center, low reflectivity around the outside). This 

combination ensures well collimated monochromatic oscillator output which allows only 

TEM00 mode resulting a very smooth Gaussian beam profile. The gain medium of the cavity 

uses a Nd: YAG rod which is optically pumped by a single xenon-filled flashlamp driven by a 
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high stability power supply. Q-switching is achieved by a Pockels cell and a polarizer. The 

drive circuit is designed to produce one or two Q-switched pulses per flashlamp pulse and the 

pulse separation is adjustable between 1 – 10 Hz. In between the laser rod and output coupler, 

there is a mechanical shutter which is actuated by a rotary solenoid used to block or pass the 

oscillator output. The output of the oscillator passes through a pre-amplifier to further 

enhance the power. The pre-amplified rod is mounted in the same pumping chamber as the 

oscillator in a double elliptical cavity and share the same flashlamp. The output beam of the 

pre-amplifier is again directed to the amplifier chamber which consists of an amplifier rod 

pumped by two flashlamps in a double elliptical cavity. The laser works at fundamental 

wavelength 1064 nm and can achieve a maximum output power of 1200 mJ. However, it can 

be operated at first (532 nm), second (355 nm) or third (266 nm) harmonics with the help of 

harmonic generation assembly (HGA). 

2.1.2  Picosecond Laser 

A picosecond (ps) laser system (PL 2250, M/s Ekspla) was also used along with the ns laser[2]. 

The laser system is comprised of four functional parts, i.e. 1) master oscillator, 2) regenerative 

amplifier, 3) power amplifier, and 4) harmonic generators. The schematic of the optical layout 

of the ps laser system is depicted in figure 2.2. 

 

Figure 2.2: Schematic of optical layout of picosecond laser system. 
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The master oscillator uses Nd: YVO4 laser material as the gain medium which is pumped by a 

temperature controlled 2.5 W laser diode. The mode-locking is achieved by means of a 

saturable absorber. The master oscillator generates two output beams, with one beam serving 

as a seed for the regenerative amplifier and the other beam used to signal a photo-detector to 

ensure synchronization with the Pockels cell. The seed pulse passes through a sequence of 

optical elements: polarizers P1 & P2, half-wave plate HWP2, and Faraday rotator FR1, before 

being guided into a regenerative amplifier through polarizers P3 & P4. Within the 

regenerative amplifier system, a laser diode functions as the pump for the Nd: YAG rod R2. 

The configuration has two mirrors, M8 and M9, which serve as cavity mirrors, while M10-

M12 act as a retroreflector pair to enhance stability. The utilization of polarizer P4 and Pockels 

cell PC1 enables the injection and extraction of pulses into and out of the regenerative 

amplifier cavity. To prevent the occurrence of free-running mode while allowing pulse 

injection, a quarter-wave plate QWP1 is utilized. The procedure entails injecting an oscillator 

pulse from a series of pulses, rapidly increasing the voltage on PC1 to confine the beam within 

the cavity. The highest level of amplification usually happens after 25-28 cycles, at which 

point the PC1 voltage is turned off, allowing the fully amplified pulse to be released. In order 

to avoid the amplified pulse from returning to the master oscillator, Faraday rotator FR1, half-

wave plate HWP2, and polarizer P1 were used. These components also help to guide the 

amplified pulse towards the power amplifier. The regenerative amplifier emits picosecond 

pulses which are then guided towards the three-pass amplification stage using mirrors M3 - 

M6. In this stage, a flash lamp is used to pump a Nd: YAG rod R3, which has dimensions of 

Ø12 × 85 mm. The Pockels cell PC2 and polarizer P6 work together as a pulse picker. When 

a high voltage is provided to PC2, it rotates the vertical polarization to horizontal. This 

rotation enables the amplified pulse from the regenerative amplifier to pass through polarizer 

P6. The pulse can then undergo additional amplification in the power amplifier. Afterward, 

the amplified pulse with vertical polarization is reflected by polarizer P5 and mirror M17 

towards the harmonic generation stage. 

The laser emits with fundamental wavelength of 1064 nm and has vertical polarization. The 

use of nonlinear crystals enables the creation of the second (532 nm) and third (355 nm) 

harmonics. The mirrors M18-M20 are deliberately placed to separate the harmonics from the 

primary radiation. The output pulses of the fundamental, second, and third harmonics are 

directed via three openings on the laser frame. The second harmonic is characterized by a 

horizontal polarization, while the third harmonic has a vertical polarization. 
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2.2 Details of Spectrometers 

The LIBS studies performed in this thesis utilize a Mechelle spectrometer coupled with an 

intensified charge-coupled device (ICCD) detector and a Czerny-Turner (CT) spectrometers 

coupled with charge-coupled device (CCD) detector. All spectrometers are constructed to be 

durable and do not have any moving components in their optical elements, which ensures 

strong performance during experiments. Table 2.2 contains detailed technical characteristics 

for all the spectrometers. 

Table 2.2. Various parameters of the Mechelle ICCD spectrometer and Czerny-turner (CT) CCD 

spectrometer. 

S. No. Parameter ICCD System CCD System 

1 Spectrograph model 
ME-5000 (M/s Andor) istar, DH334T-

18U-E3, & DH734-18U-03 

AvaSpec ULS2048L-

USB2 (M/s Avantes) 

2 Resolution @ 500 nm 0.1 0.29 

3 Spectral range (nm) 220-850 200-750 

4 Weight (Kg) ~ 15 ~1 

5 Size (103 cm-3) ~ 9.1 ~1 

6 
Minimum integration 

time 
2 ns 9 µs 

2.2.1 Mechelle Spectrometer 

The Mechelle spectrometer (ME-5000, M/S Andor) connected to ICCD has become a 

crucial instrument in gated LIBS investigations, providing exceptional durability and a wide 

range of spectral options for various applications. The iStar ICCD (DH334T-18U-E3, M/S 

Andor) is utilized for ps LIBS, while the iStar ICCD (DH734-18U-03, M/S Andor) is used 

for ns LIBS experiments. This system offers an impressive minimum time resolution of 2 

nanoseconds, allowing for accurate study of elemental emissions across time. The spectrometer 

utilizes an Echelle grating and prism structure to disperse light in a two-dimensional space, 

which is effectively caught by the ICCD. The spectrometer has 0.1 nm optical resolution at 

500 nm wavelength. The device is capable of capturing a broad spectrum of wavelengths, 

spanning from ultraviolet (220 nm) to near-infrared (850 nm), in a single measurement. The 

process of calibration involves the use of a standard lamp containing Hg-Ar to assure accurate 

measurement of wavelengths. Additionally, a Deuterium-Halogen lamp is used for calibration 

of the intensity. The calibration operations are performed at a constant temperature of 25 

degrees Celsius. As a result, the system runs within a restricted temperature range of 25 ± 3 

degrees Celsius, which guarantees optimal performance. 
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2.2.2 Czerny-turner (CT) Spectrometer 

A Czerny-Turner CCD spectrometers, namely AvaSpec ULS2048L-USB2 (M/s Avantes), 

was used for non-gated detection systems in the LIBS experiments. These spectrometer offers 

promising advantages that make them suitable for real-time use in various applications. Their 

high cost-effectiveness makes them very appealing for real-time use, while their small size and 

lightweight design enhance portability, making them perfect for miniaturized LIBS 

applications. The spectrometer has the capability to measure wavelengths ranging from 200 to 

750 nm. It has a remarkable resolution of 0.29 nm at 500 nm and requires a minimum 

integration time of 9 microseconds to capture spectra. Another benefit of this spectrometer is 

its capacity to function without a cooling system for the CCD, which improves its practicality 

and usability in different experimental environments. 

2.3 LIBS Experimental Setup 

This thesis involved conducting LIBS experiments using both ns and ps lasers. The spectra 

were obtained using both gated and non-gated detectors. Figure 2.3 depicts the temporal 

processes that take place in LIBS over time in relation to the laser pulse, but the time scale 

shown is not to scale. 

 

Figure 2.3: Timing diagram for data acquisition using gated LIBS setup. 

Gating functionality proves crucial as it effectively mitigates the overwhelming continuum 

emissions from the plasma during earlier time intervals, preventing detector saturation and 

damage. In this thesis, delay periods ranging from around 0.2 to 0.5 μs were employed for the 
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experiments. The implementation of the gated detection system enables the capture of spectra 

at different delay periods, which is essential for accurately characterizing the temporal behavior 

of plasma parameters such as plasma temperature, intensity ratio, etc. Comprehending the 

temporal changes in plasma characteristics is especially relevant in elemental analysis. 

2.3.1 Gated LIBS Setup 

The typical diagram of the gated LIBS experimental setup, shown in Figure 2.4, demonstrates 

the primary components used in the experimental setup. The experimental setup for the ns 

and ps setups is largely similar, with the exception of the laser wavelength and the ICCD 

camera used. Essentially, the laser beam (ns/ps) is guided by a sequence of mirrors originating 

from the laser head, and a Plano-convex lens focuses it onto the surface of the sample. The 

sample, placed on an X-Y translational stage, is controlled by a motion controller (ESP-300 

M/s Newport), which is interfaced by a self-developed LabView program in order to provide 

a fresh spot for every laser shot. This prevents the creation of deep craters on the surface of the 

sample and improves the consistency of acquiring LIBS spectra, shot by shot. 

 

Figure 2.4: Schematic of gated LIBS experimental setup. 

The speed of movement of the stage varies in accordance with the experimental settings. The 

emissions were accumulated by a collection optics assembly (ME-OPT-007, M/s Andor) and 

transmitted to spectrometers via an optical fibre with a core diameter of 600 µm. The 

collecting system was oriented at a 45° angle in accordance with the incident laser beam. 

The spectra were recorded using a Mechelle spectrograph that was configured with ICCD 

detectors. The 'i-Star DH334T-18U-E3' detector was used for ps measurements, while the 'i-
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Star DH734-18U-03' detector was used for ns measurements. The laser pulse was 

synchronized to the ICCD using a delay generator (DG-645, M/S Stanford Research 

Systems). Initially, the delay generator was triggered by by a photodiode or the Pockels cell 

signal of the laser. Then, it produced a TTL pulse (0-5 V, rise time approximately 2 ns) which 

further triggers the ICCD. The temporal events were seen and recorded using an oscilloscope 

(TDS-2024B by M/S Tektronix). A visual representation of the different temporal events of 

data acquisition can observed from the oscilloscope as displayed in figure 2.5.  

 

Figure 2.5: Oscilloscope screenshots for monitoring the gate delay and gate width for (a) ns and (b) ps 

LIBS data acquisition [figure (a) adopted from Ph.D. thesis of Dr. Rajendhar Junjuri]. 

2.3.2 Non-gated LIBS Setup 

Figure 2.6 illustrates the optical configuration of the non-gated LIBS experimental setup. It 

comprises a ps laser delivering energy of 10 mJ per pulse at 10 Hz repetition rate. The laser 

operated at its fundamental wavelength of 1064 nm with a pulse duration of ~30 ps. The laser 

pulse was focused on the sample surface through a plano-convex lens (focal length of 15 cm) 

to produce the plasma. An XY-translation stage controlled by a motion controller (Newport, 

ESP 300) was used to move the sample to avoid deep crater formation at the same spot. The 

emissions from the plasma were collected by a collection optics assembly (Andor, ME OPT 

007) and sent through an optical fiber of core diameter 600 µm to a non-gated Czerny Turner 

CCD spectrometer (Avantes, AvaSpec – ULS2048L – USB2) of optical resolution of ~0.29 

nm. The spectrometer produces the LIBS spectra in the 200 – 750 nm wavelength range. 
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Figure 2.6: Schematic of non-gated LIBS experimental setup. 

2.4 Raman Experimental Setup 

The schematic diagram of the Raman experimental setup is pictured in figure 2.7. In detail, a 

compact portable diode-pumped continuous-wave (CW) laser (M/s, OceanOptics – 

I0785MM0350MS) emitting monochromatic light at 785 nm and delivering a maximum 

power of ~350 mW was used[3]. The laser light was focused onto the sample surface using a 

Raman probe (M/s, (OceanOptics – RIP-RPB-785-FC-SMA) of a working distance of 7.5 

mm and spectral range of 300 – 3900 cm-1. The same probe collects the Raman scattering and 

delivers them to a Czerny-Turner CCD spectrometer (M/s, Ocean Optics – QEPro) which 

has a detection range of 300 – 3000 cm-1 and optical resolution of 11 cm-1. 

 

Figure 2.7: Schematic of Raman experimental setup. 

The manufacturer provided software for capturing spectra, which was synchronized with the 

PC using a USB link. Nevertheless, the act of conserving is both time-consuming and tedious. 
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In order to optimize this task, a LabVIEW program was specifically designed for spectrum 

measurements. This customized software not only speeds up the process of obtaining Raman 

spectra but also decreases the probability of experimental errors occurring during the 

acquisition process. Figures 2.8 and 2.9 depict the LabVIEW graphical user interface (GUI) 

and block diagram, respectively. 

 

Figure 2.8: LabView GUI for recording Raman spectra. 

 

Figure 2.9: LabView block diagram for recording Raman spectra. 
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2.5 Summary 

This chapter explores the complex aspects of laser systems used, with a specific emphasis on 

nanosecond (ns) and picosecond (ps) laser configurations. Table 2.1 presents a comprehensive 

comparison of their specifications, encompassing the laser model, pulse duration, wavelength, 

repetition rate and maximum output energy,. The nanosecond laser system, SpitLight 1200 

manufactured by Innolas, and the picosecond laser system, PL 2250 manufactured by Ekspla, 

are thoroughly explained, providing detailed information about their structures and 

operational principles. The chapter delves more into the spectrometers used in the 

experiments, specifically focusing on the Mechelle ICCD spectrometer and the Czerny-

Turner CCD spectrometer. It discusses their technical features and many applications. In 

addition, this text provides detailed explanations of the experimental setups for both gated and 

non-gated detections in LIBS, including information about their temporal processes and 

instrumental configurations. The Raman experimental setup includes a diode-pumped 

continuous-wave laser and a Czerny-Turner CCD spectrometer, which are described in 

detail. The chapter focuses on the creation and operation of a LabVIEW program designed 

specifically for spectrum measurements, with the goal of improving efficiency and reducing 

experimental mistakes. 

2.6 Reference 
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Simplified LIBS-based Intensity-
ratio approach for Concentration 

Estimation 

This chapter presents the application of plasma diagnostics and elemental 

analysis in the examination of two distinct alloy samples, one binary and one 

ternary. A brief summary of the experimental methods and the spectral 

interpretation of plasma is provided in the initial sections. The basics of 

thermodynamic equilibrium, as well as the determination of plasma parameters 

and plasma decay parameters (PDPs), are covered in depth. The temporal 

behavior of LIP is characterized by modeling the decay of plasma temperature 

and intensity ratio. The last section focuses on the elemental analysis using 

calibration-free LIBS (CF-LIBS), Electron Dispersive X-ray Spectroscopy 

(EDS), and a newly proposed  

method, Simplified LIBS-based  

Intensity-ratio approach for  

Concentration Estimation (SLICE).  

The elemental concentrations estimated 

by SLICE for both binary and ternary  

alloys are in good agreement 

with CF-LIBS and EDS. Additionally,  

the chapter briefly discusses the benefits 

and drawbacks of these analytical  

techniques, providing insightful  

information on how they might  

be used for elemental 

analysis. 
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3.1 Introduction 

Elemental analysis using LIBS is one of the most demanding disciplines due to its robust 

experimental setup. Several LIBS techniques have been developed for elemental analysis of 

various materials in different forms (solids, liquids, and gases). Quantitative elemental analysis 

was first introduced in LIBS in the late 1980s and early 1990s[1–3]. The first method uses 

calibration curve to estimate the concentration of each element in a sample. This method, 

however, is constrained by the need for calibration curves for each matrix element, which can 

only be used for samples with the same matrix and must be reconstructed for samples with 

different matrices. Therefore, in real-life applications, while calibration LIBS excels in 

detecting species concentrations within a well-defined matrix, it is not suitable for complex 

situations like multi-elemental analysis of unknown materials. 

To overcome these problems, A. Ciucci et al. introduced a new method called calibration-free 

LIBS (CF-LIBS), where the need for a calibration curve or matrix-matched standard was 

eliminated in the concentration estimation[4]. Since then, this technique has been extensively 

used to analyze alloys[5], meteorites[6], soils[7], rocks[8], minerals[9], organic materials[10], 

etc. This technique has been evolving as a powerful multi-elemental analysis tool enabling 

quantitative analysis of various materials in laboratory setups. However, in CF-LIBS, the self-

absorption (SA) effect is a major disruption of emission intensities at respective wavelengths. 

The SA of a certain emission line occurs when the emitted radiation of that atom is absorbed 

by another atom, resulting in a decrease in emission peak intensity. For CF-LIBS, it is essential 

to estimate plasma temperature using the Boltzmann/ Saha-Boltzmann plot method[4,11,12]. 

In principle, these methods require at least two SA free emission lines with a well-separated 

upper energy level for each constituent element in the sample. Still, in the practical scenario, 

researchers always consider several emission lines from each element to retain accurate 

temperature values[11,13]. The availability of such quantities of SA free lines is difficult to 

observe for many elements (e.g., C, H, N, O, Na, B, etc.) in the UV – VIS – NIR range of 

LIBS spectrum. Also, the observable emission lines are scarce in the case of trace elements. 

Therefore, SA correction becomes essential for the universal adoption of CF-LIBS for 

elemental analysis. 

Several approaches and techniques have been devoted to literature for correcting the self-

absorbed lines in the spectra of LIP. Initially, D. Bulajic et al. developed the curve of growth 

(COG) technique[14], which estimates the SA coefficient by an iterative simulation. The SA 
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coefficient was also determined by calculating the ratio of the observed emission intensity to 

the theroretical intensity in the absence of the SA effect[15]. Later, L. Sun et al.[16] 

introduced a technique less complicated than the COG technique, namely the internal 

reference for SA correction (IRSAC). This technique chooses an internal reference line from 

each species and based on its intensity, corrects all other SA lines through a regressive 

algorithm. F. Rezaei et al.[17] used artificial neural network and J. Dong et al.[18] used 

genetic algorithm to correct the self-absorbed lines. Apart from these, I. Karnadi et al.[19] 

proposed a technique to suppress the SA effect by making some modifications to the 

experimental setup, i.e., they used a double pulse LIBS setup to create a vacuum-like 

condition in the air for recording the spectra. Y. Zhang et al.[20] developed SA correction 

method using plasma images and employed it in underwater LIBS. Numerous other methods 

or approaches were devoted to literature concerning SA correction[21–23]. However, these 

techniques are more time-consuming and increase the complexity of the analysis. Certain 

individuals meet challenges in practical use, such as the IRSAC approach, which experiences 

issues when emission lines of various elements are affected by SA differently, resulting in 

inconsistent plasma temperatures. The genetic algorithm method is also not optimum as it 

requires a standard sample. Moreover, most of these studies require different theoretical 

parameters which may not be available for the emission lines of interest limiting the SA 

correction. More importantly, the involvement of the SA correction procedure makes the 

CF-LIBS more complex and time-consuming. In specific scenarios where SA correction is not 

necessary, CF-LIBS may be quick and easy to use in practice. Likewise, CF-LIBS several other 

calibration-free approaches have been developed like columnar density CF-LIBS, one line 

CF-LIBS (OLCF-LIBS), inverse CF-LIBS etc. However, the above-mentioned techniques 

also follow Boltzmann or Saha-Boltzmann plot method for estimation of plasma temperature 

in its procedure likewise CF-LIBS and also share its limitations. 

To overcome these limitations, a new, robust, more straightforward method for fast 

quantitative elemental analysis is proposed in this chapter. The major advantage of this 

technique is that it doesn't involve Boltzmann/Saha-Boltzmann plot in the calculation. The 

requirement of a few numbers of emission lines makes it a more robust and straightforward 

technique. It demands only two emission lines from any one of the elements and a single line 

from all other elements. For example, a sample of n elements requires only n+1 emission 

intensity lines. Since only one emission line is needed from every element except any one 

element in the sample, now there is a great flexibility of choosing emission lines that are not 

affected by SA. Also, this approach significantly reduces the complexity of the calculation as 
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fewer steps are involved. Since the method relies on intensity ratios to determine 

concentrations, it is named as SLICE (Simplified LIBS-based Intensity-ratio approach for 

Concentration Estimation). 

In this chapter, the plasma diagnostics and temporal characterization of plasma parameters are 

discussed briefly. The estimation of plasma temperature and plasma decay parameters (PDPs) 

of LIP using intensity ratio and radiative relaxation mechanism is discussed, followed by 

elemental analysis of two copper-based alloys using the CF-LIBS and SLICE techniques. The 

theory, working procedure, advantages and limitations of these methods were elaborated. 

3.2 Experimental Details 

The schematic of the experimental setup is shown in chapter 2 (figure 2.4). In brief, it 

comprises a Q-switched Nd:YAG laser (Spitlight 1200, M/s Innolas,) that produces ~7 ns laser 

pulses of energy ~50 mJ/pulse at a wavelength of 532 nm with a repetition rate of 1 Hz. The 

laser pulse was guided by a mirror and focused onto the sample surface using a plano-convex 

lens (focal length: 10 cm) in ambient atmosphere. The sample was mounted on an XY 

translation stage, controlled by a motion controller (Newport, ESP-300) to ensure a fresh 

surface spot for each laser pulse. A collection optics assembly (Andor, ME-OPT-0007) was 

aligned at approximately 45 degrees to the incident laser beam to collect the LIP emission 

light. Further, the light was directed towards an echelle spectrograph (Andor, Mechelle ME-

5000) through an optical fiber of 600 µm core diameter and 2 m length. The spectrograph has 

been equipped with an ICCD (Intensified charge-coupled device) camera as a detector 

(Andor, iSTAR DH734). A delay generator (SRS-DG-645) was used to electronically trigger 

the ICCD with respect to the Pockels cell of the laser in order to avoid electronic interference 

and jitters. The spectrograph covers the spectral range of 220-850 nm. 

LIBS experiment was conducted on two Cu alloys (binary and ternary). The binary alloy 

consists Cu and Zn, whereas the ternary alloy contains Cu, Zn and Ni as elemental 

composition. Temporal kinetic series spectra of the alloys were recorded in ambient air at 

atmospheric pressure. Each spectrum was collected after an initial delay of 0.5 µs to avoid the 

high intensity of continuum radiation at the initial period of plasma formation. The ICCD 

gain was set to 100 to obtain a strong signal. Time evolution spectra were collected in the 0.5 

– 5 µs temporal window with a constant step and gate width of 0.5 µs. Each spectrum was 
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averaged over 10 spectra to increase the signal-to-noise ratio. Likewise, 10 sets of time 

evolution spectral data were recorded for each alloy. 

3.3 Spectral interpretation 

The emission spectra of LIP have been recorded in the temporal window of plasma relaxation 

(0.5 – 5 µs). The spectra corresponding to both the alloys recorded at 1 µs delay with 0.5 µs 

gate width is graphically presented in figure 3.1. Originally, the spectrum was recorded in the 

wavelength range of 220 – 850 nm, where those wavelength ranges having intensity emission 

lines of interest (i.e., 230 – 570 nm) are depicted. All the spectral emission lines in the 

spectrum were identified with the help of the NIST atomic database[24]. After identifying all 

the lines, it has been observed that binary alloy contains Cu and Zn, whereas ternary alloy 

contains Cu, Zn, and Ni as expected. Some of the prominent emission lines were marked in 

the spectra. Very less intense emission signatures of N and O were also observed due to the 

contribution of atmospheric air. It is obvious from Fig. 3.2 that Cu- 324.80, 327.27, 393.39, 

427.58, 465.18, 510.55, 515.29, and 521.86 and Zn- 328.25, 330.27, 334.51, 472.30, and 

481.13 emission lines emit intense radiation. The energy level diagram of some prominent 

transitions is presented in figure 3.2. 

 

Figure 3.1. Emission spectra of binary and ternary alloy recorded at 1 µs delay. 

Investigating the time dependence of LIP emission intensity is crucial because, after plasma 

formation (termination of laser pulse), it expands, resulting in plasma cooling due to thermal 

energy loss. As a result, the plasma temperature and hence the emission intensities gradually 

decrease over time. The time-dependent spectra of both alloys are depicted in figure 3.3 and 
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3.4. From the figures, it can also be noticed that there is a background in the spectra of both 

the alloys at the early stage, i.e., up to 1 µs which is completely absent in the later stage. This 

could be due to the dominance of the plasma continuum at the early stage of plasma 

relaxation. Also, a high signal-to-noise ratio is observed at the early time which decreases 

gradually with the decrease in emission intensities. 

 

Figure 3.2. Energy level diagram of Cu, Zn and Ni transitions. 

 

Figure 3.3. Time-dependent spectra of (a) binary and (b) ternary alloy. 
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Figure 3.4. Expanded view of the time-dependent spectra of (a) binary and (b) ternary alloy in the 

range of 464 – 525 nm. 

3.4 Plasma diagnostic studies 

3.4.1  Thermodynamic equilibrium (TE) and local thermodynamic 

equilibrium (LTE) in LIP 

LIP refers to a localised assembly of atoms, ions, electrons, and radiations. In a condition of 

thermodynamic equilibrium (TE), the distribution of energy among the many states of the 

particle assembly can be characterised by a single temperature. It is possible when the 

‘principle of detailed balance’ holds, i.e., the rate of forward and reverse processes at a given 

energy level is equal. Also, the plasma should be optically thick in order to achieve radiative 

equilibrium. In practice, this situation is rarely complete, so physicists have adopted some 

approximations to to characterize the condition of the plasma, known as local thermodynamic 

equilibrium(LTE)[25,26]. According to LTE approximation, the plasma is in thermal 

equilibrium in a small region of the LIP. 

Under LTE, the velocity distribution of particles follows classical Maxwellian distribution as, 
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where kB is the Boltzmann constant, T is the temperature, v and m are the speed and mass of 

the particle, respectively. 

The relative population of the plasma species (electrons and ions) in the excitation state is 

given by the Boltzmann distribution, 
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where Ni, N0, gi, Z(T), Ei are the population of ith level, population of the total species, 

statistical weight of the ith level, partition function, energy of the ith level respectively. 

The LTE plasma exhibits a single temperature that accounts for the arrangement of species 

across energy levels, the kinetic energy of electrons or ions, and the population of ionization 

states. Hence, the excitation temperature, which regulates the population of atomic energy 

levels, must be equivalent to the ionization temperature, which dictates the distribution of 

atoms across various ionization states. 

The elemental species are populated in ionization states according to by Saha – Eggert 

equation which can be expressed as, 
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where Nj and Nj+1 are the number density of jth and (j+1)th ionization state respectively. ne, h 

and  are the electron number density, Planck’s constant and first ionization energy of an 

isolated system. 

3.4.2  Estimation of plasma temperature (Boltzmann plot) 

Plasma temperature is a characteristic parameter of LIP that influence the spectral emissions of 

the plasma. Under LTE approximation, the population of a neutral ionic species at a particular 

temperature follows Boltzmann distribution as mentioned in equation 3.2. The spectral line 

intensity of the emitted radiation is given by the following expression, 

4
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I




=       (3.4) 

where Iij represents the intensity of emission due transition of species from ith to jth energy 

level,  is the frequency of the emission and Aij is the transition probability of the emission 

line. Substituting equation 3.2 in equation 3.4, 
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where c and  are the speed of light and wavelength of emission, respectively.  
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Simplifying equation 3.5, 
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where F and C are the experimental factor and elemental concentration of the species, 

respectively. 

In equation 3.6, Aij, gi and Ei are the spectroscopic parameters that are available in NIST 

atomic database, Iij and ij are experimental parameters that are observed in the spectra and kB 

is the constant. A plot of the LHS of equation 3.6 vs Ei has a slope of -1/kBT; therefore, 

plasma temperature T can be inferred by straight line fit. 

In the current experimental picture, for the estimation of plasma temperature using the 

Boltzmann plot method (equation 3.6), four neutral emission lines of copper at 465.18, 

510.55, 515.29 and 521.86 nm were considered. These lines were assumed to be self-

absorption free emission lines based on earlier reports[13,27]. The energy level diagram of 

these lines are depicted in figure 3.3 and the spectrometric parameters are listed in table 3.1. 

Table 3.1. Spectroscopic parameters of copper emission lines. 

Sl. No. λij (nm) Ei (eV) Ej (eV) Aij (108 s-1) gi gj 

1 465.18 7.737 5.072 0.38 8 10 

2 510.55 3.816 1.388 0.02 4 6 

3 515.29 6.192 3.785 0.60 4 2 

4 521.86 6.192 3.816 0.75 6 4 

 

Figure 3.5. Boltzmann plot of Cu emission lines for (a) binary and (b) ternary alloy. 

The Boltzmann plot of Cu emission lines for both the alloy sample at each delay is depicted in 

figure 3.5. From the figure, it can be noticed that the straight line fitted well w.r.t. the 
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experimental data at every delay for both the samples and have high R square value close to 

one. The temporal variation of plasma temperature of LIP of both the samples are represented 

in figure 3.6. It is observed that the plasma temperature decreases gradually with time. The 

temperature and intercept obtained from the Boltzmann plot also serve as essential parameters 

for elemental analysis when employing CF-LIBS, a topic that will be further elaborated upon 

in the upcoming sections. 

 

Figure 3.6. Temporal evolution of plasma temperature of LIP of (a) binary and (b) ternary alloy. 

3.4.3 Estimation of electron number density 

Electron number density is another characteristic parameter of LIP that can be determined 

from the width of the spectral line. The primary factor responsible for the broadening of the 

emission lines is the combined effect of natural, Doppler, and Stark broadening. The spectral 

transition’s minimum linewidth is determined by its inherent natural linewidth, which is 

caused by the finite lifetime of species (atoms/ions) in their excited states. The natural 

broadening of the linewidth is very samll can be ignored. Doppler broadening occurs due to 

the Doppler effect caused by the varying velocities of atoms, ions, or molecules. The emitted 

radiation is dependent on the spectral line’s frequency (or wavelength), plasma temperature, 

and the mass of the emitting particles.The expression for Doppler broadening (D) is given 

by, 

77.16 10D ij

T

M
  − =        (3.7) 

where T and M are the plasma temperature and atomic mass of the species, respectively. The 

value of D is found to be in the order of few picometers which is much less compared to 
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the resolution of spectrometers used for LIBS experiments (For example, Andor Mechelle 

5000 spectrometer has resolution of 100 pm at 500 nm), thus, the contribution of Doppler 

broadening can also be neglected. Therefore, only Stark broadening is responsible for the 

broadening of LIBS emission lines. 

The interaction between charged particles within the plasma and the electric field induces 

perturbations in the energy levels of the particles, resulting in the broadening of spectral lines, 

commonly referred to as Stark broadening. This broadening is directly proportional to the 

electron density. The full width at half maximum (FWHM), 1/2 of the Stark broadened line 

is given by the following expression, 
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where w, ne, A and ND are the electron impact width parameter, electron density, ion 

broadening parameter and number of particles in Debye sphere, respectively. w and A can be 

obtained from literature and ND can be calculated using the following expression[28], 
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The first term on the right-hand side of equation 3.7 pertains to electron broadening, while 

the second term corresponds to ion broadening. Given that the impact of ion broadening is 

minimal, equation 3.7 simplifies to, 
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     (3.9) 

 

Figure 3.7. Temporal evolution of electron density (a) binary and (b) ternary alloy. 
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Therefore, the electron density ne can be calculated using equation 3.9 where 1/2 is the 

FWHM of the observed emission line. The electron density values at each temporal delay for 

both the alloy samples were estimated using the Cu emission lines at 515.29 nm. The temporal 

variation of electron density of both the samples are represented in figure 3.7. The electron 

density exhibits a rapid decay during the initial phase of plasma expansion (within the first 2 

µs), followed by a gradual reduction. Following the creation of plasma, the electrons inside the 

plasma undergo recombination with the ions as the plasma expands, resulting in a reduction in 

plasma temperature. 

3.4.4 Theoretical model for temporal evolution of plasma 

temperature and estimation of PDPs 

As the LIP expands in ambient gas, it cools down by emitting electromagnetic radiation and 

generating shockwave[29–31]. The temporal relaxation of LIP depends on various factors, 

including nature of the material, experimental parameters (e.g., laser energy, focusing distance, 

etc.), ambient environment, etc. Temporal dynamics is a complex and not yet completely 

understood phenomenon. At the initial stages of relaxation, the plasma becomes opaque or 

optically thick, leading to the emission of a plasma continuum. Subsequently, it becomes semi-

opaque/ semi-transparent and at the later time, it becomes transparent or optically thin[32–

34]. Nonetheless, for elemental analysis (CF-LIBS), LIP is always assumed as optically thin for 

duration spanning several microseconds. But, the relation between CF-LIBS and optically thin 

approximation is not understood properly. In spite of this, CF-LIBS remains a very successful 

analytical method for precise determination of concentrations and is widely accepted. 

However, according to the recent report by the same group who originally developed the 

CF-LIBS, the optically thin approximation may not be a necessary condition for elemental 

analysis  [35]. 

Owing to the intricate nature of comprehending the temporal dynamics of plasma, the 

temporal decay of plasma temperature was always approximated to exponential decay which 

lacking proper theoretical foundation[36–41]. However, Rajendhar et al. made a significant 

breakthrough by introducing a theory based on radiative cooling of the plasma[42]. This 

approach is based on the optically thick approximation of the LIP which describes the 

relaxation using a one-third power-law expression that incorporates two plasma decay 

parameters (PDPs), namely the initial temperature Tm and radiation decay constant τ. This 
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theoretical model offers a thorough depiction of the kinetic evolution of LIP, taking into 

account the radiative relaxation mechanism. 

In the context of the present experiment, the duration of the laser pulse (tL) is ~7 ns which is 

the characteristic time for the formation of LIP whereas the duration of the plasma relaxation 

(tR) is more than 5 µs; which implies, 
∆tL

∆tR
 ≫ 1. That means the time taken for formation of 

LIP is much smaller compared to the plasma relaxation time and hence, the time at which the 

laser pulse is terminated and plasma is formed can be considered as time, t=0 and the 

temperature at that time can be assumed to be the initial temperature (Tm) of the LIP.  

The heat flux density due to thermal conductivity can be estimated by the following 

expression[27], 

~k

kT
Q

z
      (3.10) 

where k is the coefficient of thermal conductivity of the medium; T is the plasma temperature; 

z is the characteristic distance at which the temperature drops from T to the ambient 

temperature T0<< T. 

The energy flux density due to thermal radiation can be represented by the expression, 

4~rQ T       (3.11) 

where σ is the Stefan-Boltzmann constant. 

The ratio between heat flux density due to thermal conductivity and energy flux density due 

to thermal radiation can be rewritten as the following expression, 

3
~k

r

Q k

Q z T
      (3.12) 

Considering k ≈ 0.5 Wm-1K-1 (which for air corresponds to a temperature of > 3000 K) and T 

= 10,000 K we obtain the estimation 
Qk

Qr
~0.01, which shows that in the process under 

consideration, the thermal conductivity can be neglected in comparison with thermal 

radiation. Hence, by only accounting for the radiative mechanism governing the plasma 

temperature decay, the energy conservation law for the plasma can be expressed as[42], 

 4

v

dT
mc S T

dt
= −      (3.13) 
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where m, cv, T, t, S and σ are the mass of the plasma, specific heat of the plasma cloud, plasma 

temperature, time, surface area of the plasma plume and Stefan-Boltzmann constant, 

respectively. Assuming m, cv, and S constant, the solution to the equation 3.13 can be 

obtained as follow, 

4

v

dT S
dt

T mc


= −       (3.14) 

3

3 v

T S
C t

mc

−

 − + = −      (3.15) 

where C is the integration constant. By applying boundary condition to equation 3.15, i.e., at 

time t=0, T=Tm, 

3

3

T
C

−

=               (3.16) 

By substituting equation 3.16 in equation 3.15, 

33

3 3

m

v

TT S
t

mc

−−

− + = −      (3.17) 

3 33 3
1

3 3

m m

v

T S TT
t

mc

−−  
 = + 

 
    (3.18) 

33

1
3 3

mTT t



−−
 

 = + 
 

     (3.19) 

where 
33

v

m

mc

S T



=  is the radiation decay constant of the plasma or the characteristic time of 

the radiation cooling. 

Simplifying equation 3.19, 

1

3

( ) 1m

t
T t T



−

 
= + 

 
     (3.20) 

The value of PDPs (Tm and τ) can be estimated by comparing the theoretical dependence 

(equation 3.20) with temperature derived from experimental data using the Boltzmann plot 

(section 3.4.2). During data processing, Tm and τ can be considered as the fitting parameters 

and followed by fitting of experimental data as shown in figure 3.8. 
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From figure 3.8, it can be observed that the theoretical dependence fitted well with that of the 

experimental data. In case of binary alloy, the R square of the fitting line is 0.99 and the value 

of Tm and τ were estimated to be 13900 ± 200 K and 1.96 ± 0.23 µs respectively. Similarly, 

for ternary alloy the value of R square, Tm and τ are 0.95, 13300 ± 200 and 4.07 ± 0.34 µs 

respectively. Once PDPs were estimated, the plasma temperature can be calculated at any 

temporal delay using equation 3.20 irrespective of the experiment. 

 

Figure 3.8. Dependence of plasma temperature on time for (a) binary and (b) ternary alloy. 

3.4.5  Theoretical model for temporal evolution of intensity ratio 

and estimation of PDPs 

Using equation 3.20 in equation 3.5, the temporal dependence of intensity ratio can be given 

by, 

1

3
0

( ) exp 1
4 ( ( ))

ij i i
ij

ij B m

hcN A g E t
I t

Z T t k T 

 
−   = +   

 

    (3.21) 

Considering the ratio of emission lines correspond the same species, it is possible to cancel out 

the common parameters from equation 3.21. The temporal dependence of intensity ratio can 

be written as, 

1

3( ) ( )
exp 1

( )

ij mn ij i i m

mn ij mn m B m

I t A g E E t

I t A g k T



 

 
− −   = +   

 

    (3.22) 

Now equation 3.22 is completely free from the temperature term. The nature of the intensity 

ratio will depend on the emission line chosen, i.e., the intensity ratio will decay with time if 

Ei> Em and increase with time if Ei< Em.  
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Hence, equation 3.22 allows determining PDPs without estimating the plasma temperature 

using the Boltzmann/ Saha-Boltzmann plot method. Now, comparing the theoretical 

dependence (equation 3.22) with the experimental data on the intensity ratio, we can estimate 

PDPs as fitting parameters. If the upper energy level of the two emission lines are same i.e. Ei 

= Em, then the equation 3.22 turns out to be 

( )

( )

ij mn ij i

mn ij mn m

I t A g
Constant

I t A g




= =      (3.23) 

Under the special case (equation 3.23), the intensity ratio becomes a constant which is 

independent of time and also it doesn’t contain PDPs. Therefore, in order to estimate PDPs 

accurately, the choice of emission lines is crucial. The emission lines should satisfy the 

following two conditions: 

i. The emission lines should be free from self-absorption. 

ii. The upper energy level of the two emission lines should be well separated. 

In this context, four emission lines of Cu (465.18, 510.55, 515.29, and 521.86) correspond to 

binary and ternary alloy were considered for estimation of PDPs using intensity ratio fit 

(equation 3.22). The spectroscopic parameters of the emission lines are given in table 3.1. 

From table 3.1, it can be seen that upper-level energy Cu-515.38 and Cu 521.86 are same. 

Therefore, except this combination of Cu lines, PDPs were estimated using all other five 

possible intensity ratio combinations for both the samples. The theoretical equation of 

intensity ratio (equation 3.22) is fitted with the experimental data for each combination of 

emission lines as shown in figure 3.9. 

The theoretical dependence of the intensity ratio with time is represented by the solid black 

line in figure 3.9 while the markers indicate the experimental values. The error bars represent 

the standard deviation of 10 measurements. It is evident from figure 3.9 that the proposed 

theoretical model fitted well with the experimental data for different combinations of emission 

lines with R square close to one. The estimated values of PDPs obtained using the intensity 

ratio fit of various combinations of emission lines is represented in figure 3.10. 

From figure 3.10, it can be observed that PDPs estimated using the intensity ratio model show 

good agreement with that of the plasma temperature model. It is expected that the error in the 

estimated values to be smaller compared to the temperature model; however, only few cases 
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resulted in a comparable error. This could be due to the effect of experimental parameters and 

optimization of these parameters may reduce the error. 

 

 

Figure 3.10. Comparison of PDPs obtained using temperature model vs intensity ratio model for (a) 

binary and (b) ternary alloy. 

Figure 3.9. Dependence of intensity ratio on time for (i) 

binary and (ii) ternary alloy. 
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Moreover, the intensity ratio method has an edge over the temperature method as it 

determines the parameters directly from the intensities of the emission lines. This model 

reduces the complexity in the estimation of temperature by avoiding the intermediate 

calculations and can reduce the errors that inevitably arise at each step of the iteration. Apart 

from the various advantages over the existing plasma temperature estimation techniques, the 

proposed model only has one limitation, i.e., it requires the acquisition of temporal evolution 

of LIP spectra which will consume some extra time for the experiment compared to the 

conventional method. However, considering the fact that any calibration-free elemental 

analysis study using LIBS compulsorily uses a gated spectrometer and performs preliminary 

studies to find the best temporal window, this drawback is only artificial. More importantly, as 

will be discussed in the future sections, this analysis can significantly simply the process of 

estimation of concentration. 

3.5 Elemental analysis 

Elemental analyses were performed on two alloy samples (binary and ternary) using electron 

dispersive X-ray spectroscopy (EDS), CF-LIBS, and the newly proposed SLICE technique. 

Subsequently, the results obtained from the SLICE were compared with those from EDS and 

CF-LIBS. 

3.5.1  Elemental analysis using electron dispersive X-ray 

spectroscopy (EDS) 

EDS stands as a firmly established analytical method employed for determining the elemental 

composition of a given sample. It is a non-destructive technique that offers important insights 

into the micro- and nanoscale chemical composition of materials. EDS complements 

techniques like scanning electron microscopy (SEM) by allowing precise identification and 

quantification of the elements present within a sample. 

The basic principle of EDS involves the interaction between high-energy electrons and a 

sample. When a focused electron beam strikes the sample, it generates characteristic X-rays by 

exciting inner-shell electrons of the atoms within the material. These emitted X-rays are 

unique to each element and contain the elemental information. Through the collection and 

analysis of these X-rays, EDS provides a complete elemental profile of the sample enabling to 

study the distribution of elements, detect trace elements, etc. 
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Figure 3.11. SEM image of the surface of (a) binary and (b) ternary alloy. 

 

Figure 3.12. EDS spectra showing the elemental composition of (a) binary and (b) ternary alloy. 

Table 3.2. Elemental concentrations obtained from EDS analysis. 

Concentration (wt%) Binary alloy Ternary alloy 

Cu 62.78 ± 0.72 76.67 ± 0.20 

Zn 37.22 ± 0.72 17.73 ± 0.21 

Ni  5.60 ± 0.18 

EDS analysis was performed on five different regions of each sample. Figure 3.11 shows SEM 

images of one of the regions of each sample where EDS measurements were performed. 

Figure 3.12 represents the EDS spectrum of both the samples. From the spectra, it can clearly 

observe that in case of binary alloy only Cu and Zn are present whereas in case of ternary alloy 

Cu, Zn and Ni are present. The elemental concentrations of both the samples obtained using 

EDS are represented in table 3.2. Here the error factor represents the standard deviations of 

five measurements for each sample. 

Advantages and Limitations of EDS 

EDS has several advantages including capable of elemental analysis of a wide range of 

elements, offers excellent spatial resolution in micro- and nanoscale, highly sensitive in nature, 
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fast and non-destructive, etc. However, it has some limitations in which include necessity of 

sample preparation, imitated to surface investigation only, expensive instrumental setup, etc. 

3.5.2 Calibration-free laser induced breakdown spectroscopy (CF-

LIBS) 

According to CF-LIBS, the concentration of each elemental species can be estimated from the 

intercept of the Boltzmann plot (see equation 3.6 and figure 3.6). The intercept of the 

Boltzmann plot can be represented as, 

ln
( )

FC
q

Z T

 
=  

 
     (3.24) 

Simplifying, 

1
( ) exp( )C Z T q

F
=      (3.25) 

In this equation, Z(T) and q can be obtained from NIST atomic database and Boltzmann plot 

respectively. Therefore, F is the only parameter that needs to be estimated in order to calculate 

the elemental concentration of individual species. 

According to closure condition, the sum of concentrations of all elements detected in a sample 

is 100% or 1 (in fraction). Therefore, 

1
( )exp( ) 1C Z T q

F
= =      (3.26) 

( ) exp( )F Z T q =      (3.27) 

Hence, after calculation of F, the elemental concentration of each element in the sample can 

be estimated using equation 3.25. 

The concentration of all the species were calculated at each time delay for both binary and 

ternary alloy. However, it is necessary to quantify the overall accuracy of this technique for 

which actual value of the elemental composition should be known. The overall accuracies 

have been quantified by distance measure[43] – 

1

( )
N

i i

i

Distance abs M C
=

= −      (3.28) 
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where N, M and C are the number of elements in the sample, measured and standard/certified 

concentrations, respectively. The distance of few units is considered a reasonably good result, 

whereas the distance of the order of tens is a poor result[43]. In this case, the concentrations 

obtained from EDS are considered as actual/reference concentration since EDS is a well-

established technique for the elemental analysis. The elemental concentrations obtained from 

CF-LIBS at each delay are tabulated in table 3.3. From the table, it can be observed that for 

binary alloy, the Cu concentration ranges from 60.83 to 67.90 whereas the actual (EDS 

concentration) value is 62.78. However, considering the standard deviation of both the 

techniques, CF-LIBS results agree well with that of EDS within the error range. Similar 

observations were also noticed in case of Zn and all the elements in ternary alloy. Therefore, it 

can be concluded that the CF-LIBS provides accurate estimation of elemental concentrations 

of the alloys. 

Table 3.3. Elemental concentrations of binary and ternary alloy estimated from CF-LIBS. 

Time 
(µs) 

Binary alloy Ternary alloy 

Cu (wt%) Zn (wt%) Cu (wt%) Zn (wt%) Ni (wt%) 

0.5 67.9 ± 3.73 32.1 ± 3.73 75.84 ± 2.09 19.76 ± 2.36 4.4 ± 1.74 

1 63.49 ± 1.9 36.51 ± 1.9 75.43 ± 1.45 20.41 ± 1.96 4.16 ± 1.04 

1.5 61.6 ± 2.28 38.4 ± 2.28 76.63 ± 0.8 19.23 ± 0.98 4.14 ± 1.19 

2 63.14 ± 1.94 36.86 ± 1.94 77.04 ± 1.24 18.15 ± 0.42 4.81 ± 1.07 

2.5 60.95 ± 3.45 39.05 ± 3.45 77.52 ± 0.94 18.07 ± 0.74 4.41 ± 0.57 

3 60.83 ± 2.25 39.17 ± 2.25 77.07 ± 1.26 18.55 ± 1.05 4.38 ± 0.85 

3.5 62.34 ± 3.81 37.66 ± 3.81 78.19 ± 0.95 17.91 ± 0.91 3.9 ± 0.72 

4 62.02 ± 3.89 37.98 ± 3.89 77.69 ± 1.2 17.36 ± 1.07 4.95 ± 1.65 

4.5 62.35 ± 4.06 37.65 ± 4.06 78.35 ± 0.94 17.63 ± 0.84 4.01 ± 0.81 

5 61.35 ± 5.32 38.65 ± 5.32 77.68 ± 1.67 17.56 ± 1.4 4.77 ± 0.95 

 

Figure 3.13. CF-LIBS distance at each temporal delay for (a) binary and (b) ternary alloy. 
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Moreover, figure 3.13 represents the CF-LIBS distance w.r.t. EDS explaining the overall 

accuracies of CF-LIBS. In the figure, the red dashed line represents the distance value of 10, 

below which the results can be considered as good. From figure 3.13a, it can be noticed that 

in case of binary alloy, the accuracy is poor at 1 µs delay which could be due to the effect of 

the plasma continuum at the early stage of plasma relaxation, as observed in figure 3.3 and 3.4. 

However, except this time window, the results are good for all other temporal regions. 

Furthermore, in case of ternary alloy, the results are good in all the cases as seen in figure 

3.13b. 

Advantages and Limitations of CF-LIBS 

The advantage of CF-LIBS is that it circumvents the requirement of matrix matched standards 

and reference samples, which is a significant challenge in calibration-based LIBS. However, a 

notable limitation of this method is the necessity to identify few spectral lines of every element 

within the plasma with established atomic data and those line shouldn’t be affected by self-

absorption. 

3.5.3  Simplified LIBS-based Intensity-ratio approach for 

Concentration Estimation (SLICE) 

SLICE is significantly easier and straightforward method for elemental analysis using LIBS 

since it requires fewer emission lines. At first, two emission lines from any one of the 

elemental species are needed in order to estimate PDPs using temporal modeling of intensity 

ratio (section 3.4.5). Once the PDPs have been estimated, a single line from each element is all 

that is needed to calculate their concentration. Since a small number of emission lines are 

required, there is a great flexibility in picking lines that are not affected by the self-absorption. 

After the deduction of PDPs, the only difficulty in estimating elemental concentration using 

equation 3.20 is the estimation of experimental factor F. The experimental factor F has been 

taken into account to balance the disruption caused by the optical deficiency of the collection 

system along with plasma density and volume. As a result, this factor affects the entire plasma 

and is unrelated to the emitting species. So, F can be easily ruled out by looking at the 

intensity ratio of two spectral lines that correspond to two different species. In simplified form, 

the intensity ratio of two spectral lines corresponding to different species can be written as, 
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Simplifying, 
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   (3.30) 

Here the subscripts x and y represent the emissions from xth to yth energy level and the 

superscripts P and Q represent two species in the sample. All other parameters have the same 

meaning as before. Now, all the values corresponding to the parameters in the R.H.S. are 

known, so the ratio of elemental concentration between two different species in the same 

sample becomes a constant, i.e., 

P

Q

C

C
=      (3.31) 

where α is a constant. Again, for binary alloys, the closure condition implies[43], 

100%P QC C+ =     (3.32) 

Finally, by solving equation 3.31 & 3.32, we can obtain the individual elemental 

concentration. 

Similarly, for ternary alloy, 

1,
P

Q

C

C
=      (3.33) 

2 ,
P

R

C

C
=      (3.34) 

and  100%P Q RC C C+ + =     (3.35) 

where the superscript R corresponds to the third species. Again, by solving equation 3.33 to 

3.35, the elemental concentration of each species can be determined. The flow chart of the 

working procedure of the proposed SLICE technique is summarized in figure 3.14. 

In this context, the PDPs estimated using Cu 465.18 and Cu 510.55 lines (section 3.4.5) were 

selected for the estimation concentration estimation. For binary sample, the value of PDPs 

were estimated to be 14,183 ± 277 K and 2.37 ± 0.46 µs, respectively, whereas, for ternary 

sample, it was estimated to be 12,853 ± 300 K and 5.06 ± 1.57 µs, respectively. 
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Figure 3.14. Flow chart of the working procedure of SLICE. 

After the estimation of PDPs, the intensity ratio of Cu 465.18 / Zn 328.25 was considered to 

estimate the concentration of Cu and Zn in the binary alloy sample (using equation 3.30 to 

3.32). Similarly, for ternary alloy, ratios of Cu 465.18 / Zn 328.25 and Cu 465.18 / Ni349.29 

were used. The concentrations were obtained at 2 µs delay for both samples. The SLICE 

results are compared to that of CF-LIBS and EDS in table 3.4. Table 3.4 shows that, within 

the margin of error, the quantitative results from SLICE show excellent agreement with the 

other two techniques, one based on LIBS and another a standard technique. Considering the 

EDS result as a standard, the SLICE distance (equation 3.28) for binary alloy was evaluated to 

be 2.5 and for ternary alloy, it is 2.4. Similarly, for CF-LIBS, the distance is 3.2 and 2.5, 

respectively. A small distance of a few units for both binary and ternary samples explain the 

potential of SLICE for quantitative elemental analysis, likewise CF-LIBS. It is worth 

emphasizing that SLICE requires time evolution LIBS signal for estimating PDPs. However, 

in the next step, a spectrum from any one-time window is sufficient, provided the LIBS 

assumptions are valid in that time window. Also, multiple emission lines satisfy the self-

absorption criterion of which Cu 465.18 / Zn 328.25 at 2 µs were considered for estimation 

of concentration.  However, it is worth exploring this technique when different combinations 

of emission lines are used to estimate PDPs and then different lines for each species are used at 

different time windows of collection. The next section presents the results considering these 

parameters. 
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Table 3.4. Comparison of SLICE results with CF-LIBS and EDS. Here the results correspond to 

SLICE and CF-LIBS is the mean ± standard deviation of 10 measurements, and EDS is the mean ± 

standard deviation of 5 measurements. 

Element 
Binary alloy Ternary alloy 

SLICE CF-LIBS EDS SLICE CF-LIBS EDS 

Cu 63.08 ± 1.74 63.14 ± 1.94 62.78 ± 0.72 77.21 ± 1.21 77.04 ± 1.24 76.67 ± 0.20 

Zn 36.92 ± 1.74 36.86 ± 1.94 37.22 ± 0.72 17.90 ± 0.49 18.15 ± 0.42 17.73 ± 0.21 

Ni - - - 4.89 ± 1.14 4.81 ± 1.07 5.6 ± 0.18 

Robustness of SLICE 

In order to investigate the potential of this technique for different emission lines at different 

delays, the PDPs estimated for all different possible combinations of intensity ratios were 

considered. For each pair of PDPs, the elemental analyses have been performed for eight 

combinations of emission lines (as mentioned in table 3.5) at ten different delays for each 

sample. And at each delay, ten spectra were recorded. This implies that in total 4000 

concentrations have been estimated (5 PDPs × 8 combinations of emission lines × 10 delays × 

10 spectra). 

Table 3.5. Various combinations of intensity ratios considered for SLICE analysis. 

Sl. 

No. 

Binary alloy Ternary alloy 

Ratios Label Combinations of ratios Label 

1 Cu 465.18 / Zn 328.25 R1 Cu 465.18 / Zn 328.25 & Cu 465.18 / Ni 349.29 C1 

2 Cu 465.18 / Zn 330.27 R2 Cu 465.18 / Zn 330.27 & Cu 465.18 / Ni 349.29 C2 

3 Cu 510.55 / Zn 328.25 R3 Cu 510.55 / Zn 328.25 & Cu 510.55 / Ni 349.29 C3 

4 Cu 510.55 / Zn 330.27 R4 Cu 510.55 / Zn 330.27 & Cu 510.55 / Ni 349.29 C4 

5 Cu 515.29 / Zn 328.25 R5 Cu 515.29 / Zn 328.25 & Cu 515.29 / Ni 349.29 C5 

6 Cu 515.29 / Zn 330.27 R6 Cu 515.29 / Zn 330.27 & Cu 515.29 / Ni 349.29 C6 

7 Cu 521.86 / Zn 328.25 R7 Cu 521.86 / Zn 328.25 & Cu 521.86 / Ni 349.29 C7 

8 Cu 521.86 / Zn 330.27 R8 Cu 521.86 / Zn 330.27 & Cu 521.86 / Ni 349.29 C8 

The elemental analyses were performed for both the samples for every combination of PDPs 

and intensity ratios at each temporal delay. The distances were estimated for each combination 

by considering EDS as standard/reference. The mean distance estimated using various 

combinations of PDPs and intensity ratios at each delay is depicted in figure 3.15 and 3.16 for 

binary and ternary alloys, respectively. The distance value of 10 is shown by the dashed lines 

in each graph. Distances of fewer than ten units can be regarded as good results, while 

distances of 10 or more are considered poor results[43]. As can be seen from figure 3.15 and 

3.16, a very large number of values fall below the line, which is 3026 (75.65 %) and 3789 
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(94.72 %) of the estimated concentrations out of a total possible 4000 for binary and ternary 

alloy respectively. This implies that any combination of the emission lines and delay can be 

chosen for the estimation of concentration. 

 

Also, it is evident that the SLICE distance in the temporal window of 1.5 – 4 µs, the distance 

value is minimum for almost all combinations for both the samples. To be specific, out of 

2400 possible measurements, 1955 (81.46 %) and 2371 (98.79%) of the estimated 

concentrations fall below the threshold distance for binary and ternary alloy, respectively. The 

larger distance at the initial time (0.5 – 1 µs) could be due to the effect of the plasma 

continuum at the early stage of plasma relaxation, as observed in figure 3.3 and 3.4. And after 

Figure 3.15. Distance estimated at each 

temporal delay for binary alloy. The sub-figures 

correspond to results obtained by using 

intensity-ratio (a) Cu 465.18/Cu 510.55, (b) 

Cu 465.18/Cu 515.29, (c) Cu 465.18/Cu 

521.86, (d) Cu 515.29/Cu 510.55 and (e) Cu 

521.86/I-510.55 for estimation of PDPs. 
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4 µs, the signal-to-noise ratios of emission intensities are low, which may be the reason for 

larger distance at later time. CF-LIBS also showed such behavior in the initial time window. 

 

The results of this section have two important implications. Firstly, for any combination of 

parameters, this technique gives an accurate estimation. Secondly, given data of one temporal 

scan, it is possible to repeat the process of estimation, thereby increasing the precision. In the 

case of binary alloy, there are five different combinations (m) for estimation of PDPs and ten 

different time windows (n), and eight combinations for considering ratios (p). Hence, a total 

of m×n×p estimations (400 in the present case) can be performed. Additionally, if one chooses 

to repeat the data N times (10 times in this case), then a total of N×m×n×p estimations (here 

4000) can be performed. This is crucial as the precision or standard deviation of the mean is 

proportional to 1/N.  

Figure 3.16. Distance estimated at each 

temporal delay for ternary alloy. The sub-

figures correspond to results obtained by using 

intensity-ratio (a) Cu 465.18/Cu 510.55, (b) 

Cu 465.18/Cu 515.29, (c) Cu 465.18/Cu 

521.86, (d) Cu 515.29/Cu 510.55 and (e) Cu 

521.86/I-510.55 for estimation of PDPs. 
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Figure 3.17 shows the distribution of Cu and Zn concentrations estimated for binary with 

only one time-evolution data and ten recordings. In all the cases, the distribution shows strong 

bell-shaped curve. In a typical concentration estimation experiment, one can perform any one 

of these estimations which is very fast and simple. In such a scenario, the error in the 

estimation of the concentration would be the standard deviation obtained from figure 3.17. 

However, if one is interested in finding the concentration with higher precision, one can 

perform either m×n×p estimations or N×m×n×p estimations. The estimated concentration in 

such a scenario can be expected to be very close to the actual value. Similar results were also 

obtained in case of ternary alloy as shown in figure 3.18. 

 

Figure 3.17. Histogram of (i) Cu and (ii) Zn concentrations correspond to binary alloy estimated using 

(a) single time evolution data (400 values) and (b) 10 sets of time evolution data (4000 values). SD 

represents standard deviation. 

SLICE provides the flexibility of multiple measurements for elemental concentration which 

results in better precision. Also, this technique has several other notable advantages, as 

discussed in table 3.6 The accuracy and precision of this technique can further be improvised 

by optimizing different factors that play significant roles in the evolution of laser produced 

plasma. An extensive exploration for the future prospects for enhancing the accuracy and 

precision of SLICE is elaborated in Chapter 7. 
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Figure 3.18. Histogram of (i) Cu, (ii) Zn and (iii) Ni concentrations correspond to ternary alloy 

estimated using (a) single time evolution data (400 values) and (b) 10 sets of time evolution data (4000 

values). SD represents standard deviation. 

Advantages and limitations of SLICE 

SLICE has several notable advantages over other LIBS-based technique for elemental analysis. 

SLICE retains all the benefits of CF-LIBS and offsets some of its limitations. First of all, SLICE 

doesn’t require Boltzmann/Saha-Boltzmann plot methods for the determination of 

concentration. Secondly, it requires fewer spectral lines to perform comprehensive elemental 

analysis; specifically, only n+1 emission lines are sufficient for a sample containing n elemental 

species. This offers a great flexibility in the choice of emission lines which do not suffer from 

self-absorption. Moreover, it is an intensity-ratio based approach and allows estimation of 

concentrations directly from the intensity-ratio of emission lines making it robust, 

straightforward and less time-consuming technique. 

This technique only has one limitation so far i.e., it requires multiple time-dependent spectra 

in order to estimate the PDPs which is the first step in this approach. Nevertheless, the CF-

LIBS approach necessitates the acquisition of temporal window measurements of the 

spectrum, utilizing an ICCD, which can also record time-dependent data for SLICE. 

Considering the rapid pace of LIBS experiments, the additional time required for recording 
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multiple spectra is relatively minimal. The advantages and disadvantages of SLICE compared 

to CF-LIBS are briefly discussed in table 3.6. 

Table 3.6. Comparison of the advantages and disadvantages of SLICE with CF-LIBS technique. 

Sl. No. Properties SLICE CF-LIBS[35,43] 

1 Spectral data acquisition 
Time-dependent 

spectra required 

Single spectrum is 

sufficient 

2 
Temperature estimation through 

Boltzmann/ Saha-Boltzmann Plot 
Not required Essential 

3 
Can self-absorbed emission lines be 

avoided? 
Yes No (In many cases) 

4 Number of spectral lines involved Few Many 

5 Number of steps involved Comparably less More 

6 Time requires for quantitative analysis Very Less More 

7 Complexity in analysis Very Less More 

8 No. of possible measurements Numerous Limited 
9 Accuracy/Precision High/High High/ -  

* The green colored text represents the advantages of one technique over other whereas the red 

colored text represents the disadvantages of the technique. 

3.6 Summary 

In this chapter, plasma diagnostics and elemental analysis are applied to two alloy samples, one 

binary and one ternary. The initial sections provide a concise overview of the experimental 

procedures and spectral interpretation of Laser-Induced Plasma (LIP) for both the samples. 

Subsequently, this chapter provides an overview of thermodynamic equilibrium and 

estimation of plasma parameters and plasma decay parameters (PDPs). The temporal behavior 

of LIP is characterized through the modeling of plasma temperature and intensity ratio decay. 

The concluding section of the chapter focuses on elemental analysis, employing EDS, CF-

LIBS, and SLICE techniques. The elemental concentrations estimated using the proposed 

SLICE method for both binary and ternary alloys demonstrate excellent agreement with those 

obtained using CF-LIBS and EDS. Additionally, the chapter briefly discusses the advantages 

and limitations associated with these analytical techniques. 
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Dependence of Plasma Parameters 
on Material Hardness 

This chapter explores the significance of material hardness in LIBS, providing a 

profound understanding of diverse industrial applications. Material hardness is 

an essential characteristic that determines how resistant a material is to 

deformation, indentation, and penetration. It is critical for building components 

and structures that are trustworthy. The chapter provides a thorough 

examination emphasizing the growing need for non-invasive techniques than 

the conventional approaches, particularly in difficult conditions. LIBS has been 

used to understand the dependence of various plasma parameters on material 

hardness. The experiment involves five iron-based alloy samples with same 

elemental composition and different hardness. The study explores the 

correlation of plasma parameters, plasma decay parameters, and surface 

morphology in relation to changes in material hardness. The results reveal a 

consistent linear correlation between the material’s hardness and the plasma 

temperature, electron density, and initial plasma temperature. In addition, the 

analysis reveals a linear decrease in the radiative decay constant as the hardness 

increases. The chapter concludes by analyzing the correlation between crater 

diameter and material hardness, finding a consistent reduction in crater size as 

material hardness increases. This study improves the comprehension of the 

complex interactions between laser-induced plasma properties and material 

hardness. 
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4.1 Introduction 

The mechanical characteristics of materials significantly influence their applicability across 

diverse sectors[1]. Within this context, hardness emerges as a pivotal parameter of great 

relevance. Hardness, as a fundamental property of materials, provides insights into a material’s 

ability to resist deformation, indentation, or penetration [2,3]. Understanding and 

characterization of material hardness stand as an essential endeavour in industry, scientific 

research, and engineering. Particularly, this is very important for the design and construction 

of robust, dependable components, devices, and structures. 

Various techniques are available for measuring material hardness, including well-established 

techniques like Rockwell, Brinell, Knoop, and Vickers hardness tests, etc.[4]. Significantly, 

these methods mostly consist of mechanical techniques that need direct physical contact with 

the substance being analyzed. The demand for non-intrusive, remote techniques of hardness 

testing is increasing as materials are being used in more difficult situations such as space 

shuttles, TOKAMAKs, nuclear power plant vessels, etc.[5]. This requirement is particularly 

emphasized to minimize physical contact with materials, as ion irradiation, as evidenced by 

numerous studies, can cause significant damage to metals, hence affecting their hardness[6,7]. 

In recent years, LIBS has emerged as a new technique for evaluating material hardness[8–12]. 

It establishes a correlation between the variations in various parameters of laser-induced plasma 

(LIP) and the gradual enhancement in material hardness, providing a potential approach for 

estimating hardness. 

Several researchers have investigated the application of LIBS to correlate the spectroscopic 

parameters of LIP with the hardness of various materials[8–11,13]. Abdel-Salam et al.[9] 

investigated the hardness of different calcified tissues. They discovered a direct correlation 

between the ionic to atomic emission intensities of calcium (Ca) and magnesium (Mg) and the 

hardness of the samples. Cowpe et al.[10] discovered a direct relationship between excitation 

temperature (Te) and sample hardness, highlighting the better consistency of LIBS compared 

to the traditional Vickers method in evaluating the surface hardness of apatite-based bio-

ceramics. In 2014, Khalil et al.[11] discovered a direct correlation between the ionic to atomic 

emission intensity and sample density, which is inversely related to surface hardness. 

Nevertheless, this occurrence was ascribed to the distinctive characteristics of the zeolite 

samples. Yahiaoui et al.[12] made a significant contribution to the area by establishing a 

relationship between the surface hardness of α-alumina ceramics and several plasma parameters 

utilizing the LIBS diagnostic approach. The researchers confirmed the linear progression of the 
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ratio between the intensity of ionic and atomic lines, as well as the electronic temperature, in 

relation to the hardness of the sample’s surface. In addition, they established a correlation 

between the electron density and vibrational temperature of AlO radicals. This correlation 

offers an approach to estimate the hardness of unknown α-alumina by utilizing these 

characteristics. Huang et al. [14] further developed this research by introducing an innovative 

calibration model for measuring hardness using LIBS. Their methodology consisted of 

establishing a correlation between the intensity of emission lines and the hardness of steel 

samples through the utilization of canonical correlation analysis and principal component 

analysis (PCA). The study determined that the combination of LIBS data with chemometrics 

presents a potent tool for examining the mechanical properties of steel samples, yielding a 

thorough comprehension of material hardness. Momcilovic et al. [15] conducted a study on 

cast iron samples to analyze the relationship between hardness and the atomic-to-ionic ratios 

of Mg lines. Furthermore, they investigated the correlation between plasma temperature and 

hardness. Also, they used calibration curve to estimate the hardness. Sattar et al. [16] 

investigated W-Ni-Fe alloy and reported that emission intensity doesn’t depend linearly on 

hardness; however, it increases with increasing hardness up to a certain level. In addition, 

WII/WI intensity ratio and plasma temperature increases linearly with increasing hardness 

electron density decreases linearly with increasing hardness. Apart from these studies, some 

contradicting results were also observed in relation to the plasma parameters and material 

hardness. For example, Galmed et al. [5] conducted a study by considering both nanosecond 

(ns) and femtosecond (fs) lasers. They noticed an exponential pattern: as the hardness 

increased, the plasma temperature in nsLIBS increased exponentially, but in fsLIBS, it 

decreased exponentially. Similarly, the electron density decreases exponentially with increasing 

hardness in case of nsLIBS, but in fsLIBS, it increases exponentially. Yongqi et al. [13] 

observed decrease in plasma temperature with increasing hardness. 

So far, no clear and definite pattern has been established regarding the changes in plasma 

parameters (e.g., plasma temperature) with changes in material hardness. The correlation 

between plasma properties and material hardness is still not fully understood and lacks 

complete clarity. To get a clear understanding, this chapter explores the relationship between 

plasma parameters, plasma decay parameters, and surface morphology in relation to variations 

in hardness. This study used five standard iron-based alloys that have the same chemical 

compositions but different material hardness. 
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4.2 Materials and Methods 

For the experiment, a set of five iron-based alloy samples with same elemental composition 

and varying hardness levels were used.  The hardness of each sample was estimated using the 

Vickers hardness test, and the corresponding results are displayed in table 4.1. The hardness 

values are determined by calculating the average of five measurements obtained from various 

locations on the sample. The reproducibility of the measurements was assessed by estimating 

the standard deviation. 

Table 4.1. List of samples used in the present study, along with their respective hardness values 

determined through the Vickers hardness test. 

Sample Name Vickers Hardness (HV) Standard Deviation 

A1 270 7 

A2 332 8 

A3 631 7 

A4 637 6 

A5 649 4 

 

The schematic of the LIBS experimental setup is shown in chapter 2 (figure 2.4). In brief, it 

comprises a picosecond laser (Ekspla, PL-2250 series) delivering energy of 20 mJ per pulse at 

10 Hz repetition rate. The laser operated at its fundamental wavelength of 1064 nm with a 

pulse duration of ~30 ps. The laser pulse was focused on the sample surface through a plano-

convex lens (focal length of 15 cm) to produce the plasma. An XY-translation stage controlled 

by a motion controller (Newport, ESP 300) was used to hold the sample to avoid deep crater 

formation at the same spot. The emissions from the plasma were collected by a collection 

optics assembly (Andor, ME OPT 007) and sent through an optical fiber of core diameter 600 

µm to an echelle spectrograph (Andor, Mechelle ME-5000). The spectrograph has been 

equipped with an ICCD (Intensified charge-coupled device) camera as a detector (Andor, 

iSTAR DH334T-18U-E3). A delay generator (SRS-DG-645) was used to electronically 

trigger the ICCD with respect to photodiode to avoid electronic interference and jitters. The 

spectrograph covers the spectral range of 220-850 nm. Temporal kinetic series spectra of the 

alloys were recorded in ambient air at atmospheric pressure. Each spectrum was collected after 

an initial delay of 0.2 µs to avoid the high intensity of continuum radiation at the initial period 

of plasma formation. The ICCD gain was set to 3000 to obtain a strong signal. Time 

evolution spectra were collected in the 0.2 – 2 µs temporal window with a constant step and 
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gate width of 0.5 µs. Each spectrum was averaged over 10 spectra to increase the signal-to-

noise ratio. Likewise, 7 sets of time evolution spectral data were recorded for each alloy. 

4.3 Results and Discussion 

The time-dependent LIBS spectra corresponding to sample A1 is graphically presented in 

figure 4.1. Originally, the spectrum was recorded in the wavelength range of 220 – 850 nm, 

where those wavelength ranges having intensity emission lines of interest (i.e., 220 – 600 nm) 

are depicted. All the spectral emission lines in the spectrum were identified with the help of 

the NIST atomic database[17]. Prominent emission lines of Fe at wavelengths at 278.82, 

322.81, 344.11, 349.04, 357.01, 358.15, 361.88, 379.52, 380.67, 384.11, 385.00, and 386.01 

nm were observed. 

 

Figure 4.1. Time-dependent LIBS spectra corresponding to sample A1. 

4.3.1 Dependence of Plasma Temperature and Electron Density 

on Hardness 

In the domain of laser-induced plasma, the complex relationship between plasma temperature 

and material hardness emerges as a critical field of study, providing important insights into the 

underlying dynamics of laser-material interactions[15]. This scientific investigation explores 

the intricate relationship between the characteristics of materials and the subsequent thermal 

response that occurs during the formation of LIP. 
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The plasma temperatures for five alloy samples were calculated using the Boltzmann plot 

method. According to this method, the plasma temperature can be estimated from the slope of 

the ln(I/Ag) vs Ek plot of the Boltzmann distribution which can be represented by [18,19], 

ln ln
( )

k

B

EI FC

Ag k T Z T

   −
= +   

   
    (4.1) 

where I, , A, Ek, kB, T, F, C and Z(T) represent the intensity of emission, wavelength of the 

emission, transition probability, upper energy level, Boltzmann constant, plasma temperature, 

experimental factor, elemental concentration of the species and partition function, 

respectively. 

By plotting the RHS of equation 4.1 vs Ek, the plasma temperature can be estimated form the 

slope (1/kBT). Detailed explanation regarding the estimation of plasma temperature can be 

found in section 3.4.2 of Chapter 3. For the estimation of plasma temperature five neutral 

emission lines of iron were considered based on literature[20]. The spectroscopic parameters of 

these emission lines are tabulated in table 4.2. 

Table 4.2. Spectroscopic parameters of Fe emission lines considered for Boltzmann plot. 

Sl. No. λ (nm) Ek (eV) A (107 s-1) g 

1 346.59 3.686 1.19 3 

2 361.88 4.415 7.72 7 

3 425.08 4.473 1.02 7 

4 426.05 5.308 3.99 11 

5 432.58 4.473 5.16 7 

The Boltzmann plot of Fe emission lines for all the alloy samples at 1.2 µs delay is depicted in 

figure 4.2. From the figure, it can be noticed that the straight line fitted well w.r.t. the 

experimental data and have high R square more than 0.7 for all the alloys. Figure 4.3 depicts a 

graphic representation of the relation between the hardness of a material and the temperature 

of plasma. Upon observation, it becomes evident that the plasma temperature shows a 

consistent increase as the material hardness values increase, following a linear pattern. The 

linear fit precisely matches the experimental data, demonstrating a high level of accuracy, as 

indicated by an R-squared value of 0.99. The strong alignment between the fitted line and 

experimental observations highlights the dependability and uniformity of the established 

correlation between material hardness and plasma temperature. 
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Figure 4.2. Boltzmann plot using Fe emission lines. 

 

Figure 4.3. Dependence of plasma temperature on material hardness. 

Electron number density is another characteristic parameter of LIP that need to be examined 

w.r.t. increasing hardness. The electron density can be determined from the full-width at half 

maximum (FWHM) of the spectral line. The main contribution in the broadening of the 

emission lines is due to Stark broadening. More details regarding the broadening of emission 

lines of LIP can be found in section 3.4.3 of Chapter 3. The FWHM of an emission line due 

to Stark broadening can be given by the equation [21,22], 
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en
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where ne andw are the electron impact width parameter and electron density respectively. 

The electron density values at a 1.2 µs for all alloy samples were measured by using the 

emission lines of Fe at a wavelength of 538.33 nm. Figure 4.4 visually illustrates the 
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correlation between material hardness and electron number density. Upon careful 

examination, it becomes evident that electron density consistently increases as material 

hardness values increase, similar to plasma temperature. The linear fit precisely follows the 

experimental dataset, achieving a high level of accuracy shown by an R-squared value of 0.98. 

The strong agreement observed between the fitted line and experimental results highlights the 

dependability and uniformity of the established relationship between material hardness and 

electron number density. 

 

Figure 4.4. Dependence of electron density on material hardness. 

As the hardness of a material increases, there is linear increase in the plasma temperature and 

electron density. This could be because of the reason that when harder materials are exposed 

to laser irradiation, they tend to undergo more ionization and excitation due to their higher 

densities. This phenomenon, known as electron excitation, enhances the efficiency of 

converting laser energy into thermal energy by facilitating the easy release and elevation of 

electrons to higher energy levels. In addition, the collisional processes occurring within the 

denser plasma produced by harder materials result in more vigorous interactions, hence 

promoting the thermalization of the plasma. As a result, the complex electrical and structural 

characteristics of harder materials contribute to an increased plasma temperature and electron 

density. 

 

300 450 600

8

9

10

11

12

 Linear Fit

E
le

ct
ro

n
 d

en
si

ty
 x

 1
0

1
5
 (

cm
-1

)

Hardness (HV)

Equation y = a + b*x

Intercept 6.93E+15 ± 1.77E+14

Slope 5.88E+12 ± 4.32E+11

R square 0.98



 

77 

 Dependence of Plasma Parameters on Material Hardness 

4.3.2 Dependence of Plasma Decay Parameters (PDPs) on 

Hardness 

The expression for the temporal dependence of plasma temperature can be given by [18,23], 

1

3

( ) 1m

t
T t T



−

 
= + 

 
     (4.3) 

where T is the plasma temperature, Tm is the initial temperature of plasma, τ is the radiation 

decay constant and t is the time.  

 

The value of PDPs (Tm and τ) can be estimated by comparing the theoretical dependence 

(equation 4.3) with temperature derived from experimental data using the Boltzmann plot 

(section 4.3.1). During data processing, Tm and τ can be considered as the fitting parameters 

and followed by fitting of experimental data as shown in figure 4.5. The detailed theory 

regarding the temporal dependence of plasma temperature can be found in section 3.4.4 of 

Chapter 3. From figure 4.5, it can be observed that the theoretical dependence fitted well with 

the experimental data. The value of PDPs estimated from the fitting is plotted against hardness 

as shown in figure 4.6. 

From figure 4.6, it can be noticed that with increasing material hardness, the initial 

temperature of the plasma increases linearly. The linear fit precisely aligns with the 

experimental data, demonstrating a high level of accuracy, as indicated by an R-squared value 

of 0.90. Like the plasma temperature and electron density, strong correlation between material 

Figure 4.5. Dependence of 

plasma temperature on time for 

(a) A1, (b) A2, (c) A3, (d) A4, 

and (e) A5 alloy. 
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hardness and the initial temperature of the plasma provides valuable parameter for predicting 

material hardness. However, from figure 4.6, it can also be observed that with increasing 

material hardness the radiative decay constant decreases linearly with R-square of 0.97. This is 

because with increasing hardness, the value of plasma temperature and initial plasma 

temperature increases. The enhanced thermal energy and excitation processes that occur at 

higher temperatures result in a faster radiative decay. Therefore, increasing hardness, the 

plasma relaxes faster which result in decrease in relaxation time or decay constant. 

 

Figure 4.6. Dependence of PDPs on material hardness. 

4.3.3  Dependence of Crater Diameter on Hardness 

The dimensions of the crater formed in LIP are highly significant in relation to the properties 

of the material. The complexities of crater shape provide useful insights about the material’s 

reaction to intense laser irradiation. Crater diameter and depth are parameters that directly 

indicate the efficacy of material ablation, providing insight into its vulnerability to laser-

induced processes. In addition to its importance in characterizing fundamental properties of 

material, the dimensions of the crater generated during laser interactions are also important for 

understanding the hardness of the material. The shape of the crater serves as an indicator of a 

material’s ability to withstand laser ablation. More durable materials frequently display unique 

crater profiles, which indicate their capacity to endure the high levels of heat and mechanical 

pressures caused by laser irradiation. An analysis of crater diameters in connection to material 

hardness offers a method to evaluate and distinguish materials based on their resilience and 

reaction to the processes of plasma formation and relaxation. 

The diameter of craters formed by laser ablation on all alloy samples was measured by utilizing 

a surface profilometer (M/s. Ambios Technology, XP-200) equipped with a stylus tip 
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featuring a radius of 2 µm. Each ablation involved focusing of five laser pulses at a single spot. 

Likewise, five ablations were created for each sample at five separate places. The size of each 

crater was measured using the profilometer. Figure 4.7 visually depicts the crater profile 

acquired from a representative measurement, providing a detailed understanding of the laser-

induced craters on the alloy samples. 

 

Figure 4.7. Profilometer measurement of crater. Zero on y-scale represents the sample surface. Here d 

represents the diameter of the crater. 

 

Figure 4.8. Dependence of crater diameter on material hardness. 

The dependence of the crater diameter on the hardness of the material is discussed in figure 

4.8. From the figure, it can be noticed that with increasing hardness, the diameter of the crater 

decreases linearly. The decrease in the size of craters as the hardness of the material increases in 

LIP interactions is a subtle process influenced by an intricate combination of thermal and 

mechanical factors. Materials with higher hardness likely results in more efficient energy 
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absorption, reduced lateral plasma expansion, and controlled material removal. The localized 

and precise nature of the ablation process on harder materials highlights the influence of their 

inherent features. 

4.4 Summary 

This chapter explores the crucial importance of material hardness, highlighting its significance 

across many industries. Hardness, as a fundamental characteristic, provides vital information 

about a material’s ability to resist deformation, indentation, or penetration. This information is 

essential for building strong components, devices, and structures. The chapter provides an 

overview of well-established approaches for measuring hardness, with a particular emphasis on 

the increasing need for non-invasive procedures under difficult conditions. LIBS studies have 

shown that changes in the characteristics of LIP are closely related to variations in hardness. 

The experiment investigates the complex correlation between plasma parameters, plasma 

decay parameters, and surface morphology in connection to hardness variations. It involves 

testing five iron-based alloy samples with different levels of hardness. The findings demonstrate 

a direct relationship between the hardness of the material and the plasma temperature, electron 

density, and initial plasma temperature. Furthermore, the study reveals a correlation between 

increasing hardness and a decrease in the radiative decay constant. The chapter concludes by 

analyzing the correlation between crater diameter and material hardness, illustrating a 

consistent reduction in crater size as hardness increases. 
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Machine learning based 
classification using LIBS: Effect of 

feature selection and extraction 

This chapter explores the integration of LIBS with machine learning techniques 

for effective detection of explosives and classification of post-consumer plastics. 

It describes the utilization of a picosecond LIBS (psLIBS) system, equipped 

with a low-cost CCD spectrometer, for real-time applications. The study 

employs a systematic approach to combine Artificial Neural Network (ANN) 

with various feature selection and extraction approaches. This integration aims 

to enhance accuracy, decrease computational time, and optimise resource 

allocation. The initial sections of this chapter involves detection of explosives 

where five explosive and twelve non-explosive samples were considered. For 

plastic classificaiton, two distinct approaches were explored. At first, a total of 

nine plastics were obtained from a local recycling unit and both training and 

testing were performed on the same samples. Nevertheless, this technique is not 

suitable for real-time application since in real-time scenario samples that are 

unknown to the trained model will be encountered. To address this, another 

study was performed on a set of 30 samples from six commonly used groups. 29 

samples out of 30 are utilized for training and validation purposes, while the 

30th sample, which is unfamiliar to the network, is employed for testing. The 

study thoroughly compares outcomes across several approaches, evaluating their 

accuracy, processing speed, and resource utilization to identify the most 

efficient approach for real-time identification of materials. This comprehensive 

analysis  

provides insights  

into the optimal  

method for accurate  

material identification  

while considering 

efficiency and 

resource allocation. 

 

Machine learning based 
classification using LIBS: Effect of 

feature selection and extraction 
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5.1. Introduction 
The fusion of LIBS data with advanced computational techniques has far-reaching 

implications, extending its impact to diverse sectors, including metallurgy[1,2], geology[3–5], 

environmental science[6–8], defence applications[9–11], forensic investigations[12,13], 

archaeological survey[14–16], agriculture[17–19], medical diagnostics[20,21], art and cultural 

heritage[22,23], pharmaceuticals[24,25], manufacturing[26,27], etc. LIBS combined with 

machine learning have shown promising results in identification and classification of materials 

across various sectors. In metallurgy, LIBS has been extensively used to distinguish and 

categorize different metals and alloys[28], while in geology, it aids in the classification of rocks 

and minerals, thereby contributing significantly to mineral exploration and resource 

assessment[29]. Environmental monitoring benefits from its capability in several ways, from 

detecting pollutants and contaminants in soil and water samples to identifying/sorting various 

wastes produced from our day-to-day life[30,31]. It also serves as a potential tool for defence 

applications for the rapid detection of various explosives and high-energy materials (HEMs) in 

bulk and trace amounts[10,32]. Further, it is helpful in archaeological and forensic applications 

for investigating human body remains, material identification, etc.[33,34]. It also has various 

applications in medical diagnostics like classifying tissue samples and detecting 

abnormalities[20,35]. LIBS can also be applied in pharmaceutical and chemical analysis to 

identify and classify compounds, including impurities in drug formulations[24]. Last, but not 

the least, LIBS can be used efficiently in manufacturing and welding for quality control of 

materials, detecting defects, etc.[26,27]. 

This chapter explores the potential of LIBS in identifying and categorizing explosives and 

post-consumer plastics, utilizing machine learning techniques. Identifying and classifying 

explosives and post-consumer plastics are important in defense applications and waste 

management, respectively. The forthcoming sections will briefly elaborate on the importance 

of addressing the aforementioned samples of intrest. However, in the context of in situ 

application, an ideal classifying instrument should be cost-effective, compact, and reliable, 

capable of providing a fast identification rate with higher accuracy. The instrumentation of 

LIBS comprises two major components, i.e., the laser source and the detector. Most LIBS 

research dedicated to identifying explosives and post-consumer plastics utilizes nanosecond (ns) 

lasers as the excitation source. Femtosecond (fs) laser is used in very few studies[36]. 

The difference between ns, picosecond (ps), and fs laser ablation mechanisms are different due 

to a large variation in their pulse duration[36]. Ultrafast pulses (ps and fs) rapidly form a hot 
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plasma without a liquid phase and less damage threshold on the sample. In the case of the long 

pulse (ns pulse), ionization, sample heating, and vaporization occur during plasma formation. 

The matter undergoes a transient change in thermodynamic regime from solid to plasma state 

through liquid state[36]. Moreover, in the case of ns pulse, the material requires higher pulse 

energies, which forms scars on the material surface due to melting. Ultrafast interactions have 

exciting features including the absence of plasma shielding effect and negligible heat transfer 

form the laser interaction zone to the surrounding lattice, leading to improved sensitivity 

compared to long pulse[37]. Long pulses result in high temperature and dominance of atomic 

emissions at the initial time of the plasma formation, whereas ultrashort pulses form plasma 

with low temperature and favour molecular emissions [38]. In the case of ns lasers, emissions 

from organic samples like explosives, plastics, pharmaceuticals, biological specimens, etc., are 

confined to the atomic lines of C, H, N, and O, limiting the number of features in the LIBS 

spectra[39]. Ultrafast lasers yield more pronounced molecular emissions than ns lasers, 

potentially increasing the significant features in the spectra of organic samples, making them 

well-suited for the analysis. However, considering the real-time use, fs lasers pose challenges 

due to their substantial cost and larger physical dimensions than ps lasers. Therefore, the ps 

laser can be a better choice for this application as it provides more significant molecular 

emission compared to the ns laser. This chapter explores psLIBS for the identification and 

classification of explosives and post-consumer plastics. In terms of the detector, both ICCD 

and CCD based spectrometers have been used by researchers for classification studies of similar 

samples. Some comparative studies have been reported on spectrometers, focusing on their 

efficacy and robustness in classifying materials. For example, Rajendhar et al. demonstrated 

using a CCD spectrometer above ICCD for accurate discrimination of plastics, which also 

reduces the cost and time of analysis by many folds[8]. Also, the accuracy and testing time 

comparison between the single-shot ICCD, multi-shot ICCD, and single-shot CCD data 

acquisition were discussed. Therefore, in this study, the selection of CCD over ICCD was 

based on cost-effectiveness and compact size. 

In LIBS, not all data points within the spectra possess high significance[8,40]. Focusing the 

study on the most significant features is beneficial, as it efficiently decreases the complexity of 

the data analysis. This strategy not only enhances the computational efficiency but also 

optimizes the resource usage. There are two approaches to reduce the dimension of the input 

data, i.e., 1) feature selection, where unwanted features are removed from the dataset manually 

or by using statistical/machine learning models, and 2) feature extraction, where machine 

learning algorithms are used to transform the original data into a new dataset. The purpose of 
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this transformation is to present the data in a concise manner, capturing the essential patterns 

or characteristics while reducing the dimension of the dataset. Feature selection/extraction is 

crucial in real-time application as it reduces the dimensionality of the data, improve model 

performance, mitigate overfitting, and expedite computational processes. Additionality, they 

enhance data interpretability, visualization and address multicollinearity, thus enabling more 

effective decision-making and insights. Various feature selection and feature extraction 

approaches have been explored in LIBS for the discrimination of materials. For example, in 

the worldwide contest held during the EMLIBS2019 conference for the classification of soils, 

several groups participated, explored the advantages of feature selection and feature extraction, 

and demonstrated various approaches to obtain higher classification rates[40]. A. K. Myakalwar 

et al. presented judicious feature selection by genetic algorithm approach for explosive 

detection[41]. R. Junjuri et al. have reported using random forest (RF) algorithm along with 

ANN to significantly decrease the analysis time with a minimal decrease in the classification 

accuracy of plastics[8]. F. Ruan et al. also used RF algorithm and hybrid filter/rapper method 

to classify archaeological samples[16]. C. Huffman et al. considered a statistical feature 

selection approach for classification problems in biological applications[42]. T. Vance et al. 

used PCA as a feature extraction tool for classifying different proteins[43]. These 

aforementioned studies stipulate that feature selection and feature extraction are useful in the 

case of in situ applications as higher accuracy can be achieved with minimal time. 

This chapter explores the potential of a compact psLIBS setup for discrimination of explosives 

and post-consumer plastics using ANN coupled with various feature selection and feature 

extraction techniques. Among feature selection approaches, three manual feature selections 

(selection of sub-spectra) were considered, such as 1) wavelength ranges covering peak 

regions, 2) C, H, and N (CHN) peak regions, and 3) peak heights as input to ANN. Also, the 

RF algorithm was used to select the wavelength values with high feature importance. Apart 

from that, feature extraction techniques like principal component analysis (PCA) and linear 

discriminant analysis (LDA) were implemented on the original data with the aim of 

maximizing accuracy. The accuracy and analysis time obtained from various feature selection 

and extraction processes were compared with that of the original data. The flow chart of 

algorithm architecture is depicted in figure 5.1. 
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Figure 5.1. Flow chart of analysis protocol. 

5.2. Experimental Details 

The schematic of the experimental setup is shown in chapter 2 (figure 2.6). In brief, it 

comprises a picosecond laser (Ekspla, PL-2250 series) delivering energy of 10 mJ per pulse at 

10 Hz repetition rate. The laser operated at its fundamental wavelength of 1064 nm with a 

pulse duration of ~30 ps. The laser pulse was focused on the sample surface through a plano-

convex lens (focal length of 15 cm) to produce the plasma. An XY-translation stage controlled 

by a motion controller (Newport, ESP 300) was used to move the sample to avoid deep crater 

formation at the same spot. The emissions from the plasma were collected by a collection 

optics assembly (Andor, ME OPT 007) and sent through an optical fiber of core diameter 600 

µm to a non-gated Czerny Turner CCD spectrometer (Avantes, AvaSpec – ULS2048L – 

USB2) of optical resolution of ~0.29 nm. The spectrometer produces the LIBS spectra in the 

200 – 750 nm wavelength range. 200 spectra for each sample were acquired with an 

integration time of 500 ms. 

5.3. Detection of explosives 

In the last few decades, the threat to homeland security around the world, as well as in India, 

urged the need for an automated portable device for the rapid detection of high energy 

materials (HEMs), including explosives, improvised explosive devices (IEDs), etc. Especially in 

public places like airports, railway stations, metro stations, shopping malls, worship places, etc., 

an advanced explosive detection device based on modern analytical techniques is essential for 

detecting HEMs with high confidence. LIBS is a potential tool for the on-site detection of 
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explosives with numerous advantages over other techniques. These advantages include robust 

signal acquisition, standoff detection, trace level identification, rapid prediction, etc. 

Since the first realization of LIBS application for detecting explosives and propellants in 

2003[44], extensive researches have been carried out in this area. Over time, as LIBS advances 

to explore plasma evolution studies[45–47], molecular dynamics[48], etc., with growing 

development in data analysis by integrating machine learning, it has emerged as a potential 

fingerprint technique for rapid identification of explosives in real-time. Several research studies 

were devoted to literature for detecting explosives using LIBS combined with several 

analytical, statistical, and machine learning algorithms. The summary of the application of 

LIBS combined with various analytical methods for explosive detection is presented in table 

5.1. 

Table 5.1. Summary of LIBS studies devoted to literature for explosive detection. 

S. 

No. 

Reference 

& Year 
Sample(s) Method(s) Results 

1 [49] & 2023 
H2BTE, CL20, TNT, 

TATB, DNAN 

k-means cluster analysis and 

SVM combined with PCA 
Accuracy > 90% 

2 [10] & 2020 
DNT, TNT, RDX, 

NTO 
2D scatter plot, PCA, ANN Accuracy = 94.2% 

3 [50] & 2019 
HMX, CL20, RDX, 

TNT 

semi-supervised learning 

algorithm 
TP = 99. 8%, TN = 99. 9% 

4 [51] & 2017 
CL20, HMX, NTO, 

RDX, TNT 
Ratiometric, PCA Good separation observed 

5 [52] & 2017 
HMX, NTO, TNT, 

RDX, PETN  
kNN-PCA, PLS-DA 

Accuracy = kNN-PCA: 

91.26%, PLS-DA: 90% 

6 [53] & 2017 TNT, RDX, Propellant  PCA-ANN  Accuracy = 100% 

7 [54] & 2016 PETN, UN, RDX, AN Feature line recognition  
Trace detected on various 

substrates 

8 [55] & 2015 
HMX, NTO, PETN, 

RDX, TNT 

PLS-DA combined with 

genetic algorithm feature 

selection 

Accuracy = 94.2% 

9 [56] & 2015 DNT, RDX SUSPECT methodology  
Residues detected on various 

surfaces 

10 [57] & 2014 AP, BPN, AN  Ratiometric 
Good discrimination 

obsedrved 

11 [58] & 2014 
DNT, TNT, RDX, 

PETN  
SVM Accuracy =92%  

12 [59] & 2013 
DNT, TNT, RDX, 

PETN 

Neural network classifier 

trained by the Levenberg- 

Marquardt rule  

Accuracy = 88%, Precision 

=67% 

13 [60] & 2012 
TNT, RDX, HMX, 

PETN, AN 
LDA, SVM 

Accuracy = LDA: 85.9%, 

SVM: 96% 

14 [61] & 2012 TNT PLS-DA, PCA  

PLS-DA shows good 

separation. PCA differentiates 

TNT from organic and non-

organic materials but fails to 

differentiate from plastic. 

15 [62] & 2012 
TNT, RDX and a 

mixture of both 
PLS-DA TP = 99.5%, FP = 1.9% 



 

89 

 Machine learning based classification using LIBS: Effect of feature selection and extraction 

16 [63] & 2011 
DNT, TNT, RDX, 

PETN 
Correlation coefficient 

RDNT = 0.623, RTNT = 

0.498, RRDX = 0.436, RPETN 

= 0.465 

17 [64] & 2011 
DNT, TNT, RDX, 

PETN 
Correlation coefficient  

RDNT = 0.604, RTNT = 

0.420, RRDX = 0.466, RPETN 

= 0.460  

18 [65] & 2009 RDX PLS-DA TP = 97.1%  

19 [66] & 2009 
DNT, TNT, C4 

explosive, H15 explosive 

Decision-making based on 

logical conjunction  
Sensitivity to 8 shot =100%  

20 [67] & 2007 RDX, TNT  PCA TP = 96%, FP = 0% 

21 [68] & 2006 
TNT, RDX, PETN, C4, 

Comp B  
Decision making strategy 

Excellent prediction rate 

obtained 

* H2BTE: Diazomethane, CL20: Hexanitrohexaazaisowurtzitane, TNT: Trinitrotoluene, TATB: 
Triaminotrinitrobenzene, DNAN: 2,4-Dinitroanisole, DNT: 2,4-Dinitrotoluene, RDX: 1,3,5-

Trinitro-1,3,5-triazinane, NTO: Nitrotriazolone, ANN: Artificial neural network, HMX: 1,3,5,7-
Tetranitro-1,3,5,7-tetrazocane, TP: True positive, TN: True negative, PETN: Pentaerythritol 
tetranitrate, kNN: k-nearest neighbours, PLS-DA: Partial least square discriminant analysis, UN: Urea 
nitrate, AN: ammonium nitrate, AP: Ammonium Perchlorate, BPN: Boron Potassium Nitrate, MNT: 
Mononitrotoluene, FP: False positive 

As discussed in the introduction, feature selection and feature extraction can play crucial role 

in the identification/classification of materials using LIBS and machine learning. This aspect 

possess the potential to significantly improve the accuracy. However, very few research studies 

were devoted to literature for the identification of explosives by implementing feature 

selection or feature extraction approaches with machine learning to the LIBS data, as 

evidenced by the observation in table 5.1. The studies employing feature selection or 

extraction approaches tend to utilize only one or two methodologies. This chapter explores 

several feature selection and extraction approaches with ANN to determine the best analysis 

protocol for identifying explosives in terms of accuracy. 

5.3.1.  Sample Details 

Five explosive and 12 non-explosive samples with similar atomic constituents were considered 

for this study. The details of the samples are presented in table 5.2. Before the LIBS 

experiment, the solid samples were first cleaned with water and then methanol to remove 

surface contaminants in case of plastics. The powder samples were first ground with mortar 

and pestle for 15 min. After that, circular pellets with a diameter of 10 mm were prepared for 

each sample by applying 2 tons of hydraulic pressure for 5 minutes. The pellets were prepared 

to give each sample a flat, uniform surface. In total, 3400 (17 × 200) spectra were recorded, 

i.e., 200 spectra for each sample. 
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Table 5.2. Details of the explosive and non-explosive sample used for the study. 

Sl. No. Name 
Chemical 
Formula 

Sample 
form 

Group* 
(E/NE) 

1 Acrylonitrile butadiene styrene (ABS) (C15H17N)n Solid NE 

2 
Poly(methyl methacrylate), also called 

ACRYLIC 
(C5O2H8)n Solid 

NE 

3 DL_Alanine C3H7NO2 Powder NE 

4 DL_Histidine C6H9N3O2 Powder NE 

5 High-density polyethylene (HDPE) (C2H4)n Solid NE 

6 Low-density polyethylene (LDPE) (C2H4)n Solid NE 

7 L_Leucine C6H13NO2 Powder NE 

8 NYLON - Solid NE 

9 Polycarbonate (PC) (C16H14O3) Solid NE 

10 Polyethylene terephthalate (PET) (C10H8O4)n Solid NE 

11 Polypropylene (PP) (C3H6)n Solid NE 

12 SIHET - Solid NE 

13 Ammonium nitrate (AN) NH₄NO₃ Powder E 

14 Hexanitrohexaazaisowurtzitane (CL20) C6N12H6O12 Powder E 

15 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX) C4H8N8O8 Powder E 

16 Nitrotriazolone (NTO) C2H2N4O3 Powder E 

17 1,3,5-Trinitro-1,3,5-triazinane (RDX) C3H6N6O6 Powder E 

*E: Explosive, NE: Non-explosive 

5.3.2.  Results 

The normalized averaged LIBS spectra of all explosives and non-explosives acquired in the 

range of 200 – 750 nm are depicted in figure 5.2. All the emission spectral lines were 

identified with the aid of NIST atomic database. Prominent C, H, and N emission lines were 

observed in the spectral range of acquisition. Strong emission lines of Na are also observed in 

some samples due to the contamination. Also, the molecular structure of CN – violet and C2 – 

swan bands were observed. The formation of molecules in LIP is complex to understand; 

however, extensive studies have reported that the molecular formation of CN band could be 

due to the recombination of C and N atoms [38,69]. The C2 bond was observed due to the C 

= C linkage of the analyte [38,69]. 
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Figure 5.2. LIBS spectra of explosives and non-explosives. 

From figure 5.2, it can be observed that all the spectra look similar due to their similar 

chemical composition. However, since the elemental compositions of C, H and N are 



 

 

92 

 

 Chapter 5 

different in different plastics, the intensities corresponding to these species differ. Moreover, 

the intensities of impurities and contaminated species also differ.  

5.3.2.1.  ANN with full spectrum as input 

ANN is a robust machine learning tool widely used for the classification of various materials, 

including explosives[10], plastics[8], metals[70], etc. The architecture and working procedure 

of ANN have been inspired by the nervous system of the human brain. The main components 

of ANN are the input layer, hidden layer, and output layer. The spectral data of plastics were 

fed to the input layer of the network. The scaled conjugate backpropagation algorithm was 

used to train the model. The number of neurons in the input layer is equal to the number of 

variables and in output layer is equal to the number of classes. The number of neurons in the 

hidden layer was optimized to 30 for a higher classification rate. The analysis was performed 

over 100 iterations and for each iteration, the total data (3400 spectra) was divided randomly 

for training (70%), validation (15%) and testing (15%). Initially, every spectrum within both 

the train and validation datasets is categorized into their respective groups, either explosive or 

non-explosive (refer to table 5.2). The test phase involves utilizing test data to predict whether 

a given spectrum corresponds to an explosive or non-explosive category. Following this, a 

separate training model is constructed specifically focusing on the explosive samples, which are 

labeled to explosive sample names. Once a spectrum is identified as explosive, it proceeds to a 

secondary model designed to determine the specific type of explosive it belongs. The overall 

classification accuracies for both the models obtained from the ANN analyses are presented in 

a confusion matrix in table 5.3. 

Table 5.3. Results obtained from ANN for (a) explosives and non-explosives (b) within explosives. 

     
(b) 

Predicted class 

(a) 

Predicted class  AN CL20 HMX NTO RDX 

Non 

explosive 
Explosive  

A
ct

u
al

 c
la

ss
 

AN 100 0 0 0 0 

A
ct

u
al

 

cl
as

s 

Non 

explosive 
99.98 0.02  CL20 0 99.98 0 0 0.02 

Explosive 4 96  HMX 0 0 100 0 0 

     NTO 1 0 0 99 0 

     RDX 0.005 0.03 0.015 0 99.95 

Table 5.3a shows that explosives are identified accurately at a rate of 96%, with 4% false alarm 

rate. Additionally, non-explosives are almost perfectly classified, close to 100% accuracy. 
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Moreover, table 5.3b reveals that the classification accuracy within explosives surpasses 99% 

for all six kinds of explosives. 

In real-time applications, the testing time is also important in terms of speed and operational 

efficiency. The ANN demonstrates an average testing time of 150 ms when classifying 

explosive and non-explosive items. Conversely, the average testing time and ANN model size 

reduced significantly to 60 ms for predicting explosive type. Ensuring maximum accuracy 

(100%) and zero false alarms is imperative in the realm of explosive detection. The reliability 

of accurate explosive detection systems is pivotal in upholding public trust in security measures 

and the deployed systems safeguarding communities. Maintaining this accuracy reinforces 

confidence in the efficacy of security protocols and safety measures. In this scenario, each 

spectrum comprises 2048 features/variables/wavelength values. However, all the features (data 

points) are not significant since most represent noise. Therefore, it is beneficial to restrict the 

analyses to the selected features of interest by eliminating irrelevant and unwanted features. 

This will help in many ways, such as overfitting reduction, reducing dimension, improving 

generalization, enhancing model performance, etc. There are many ways of selecting relevant 

features by using feature selection and feature extraction approaches.  

In this context, various feature selection and extraction approaches were explored with the 

aim of maximizing the accuracy further. 

5.3.2.2.  ANN with feature selection 

Feature selection is a process that involves the recognition of important features in the original 

data. This can be achieved through manual selection of spectral regions based on the emission 

of elemental compositions or by employing multivariate statistical or machine learning 

techniques which offer insights into the significance of each variable. In this context, different 

approaches selecting different areas of the original spectra were used under manual feature 

selection. Additionally, random forest (RF) feature selection was leveraged with different 

spectra regions, selected based on different threshold values of feature importance. 

5.3.2.2.1. Manual feature selection 

In this section, ANN analyses were performed on some variables of interest that were selected 

manually. Three approaches for manual feature selection were considered. The first approach 

includes the spectral region of all the peaks observed in the spectra, which comprise 59% of 

the total data. Second, those areas where only C, H, and N-based peaks are present and these 

represent 17% of the total data, and lastly, only peak heights, i.e., one data point (maxima) for 
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each peak were considered, which comprises 3% of the total data. The three manual feature 

selection approaches adopted here are graphically presented in figure 5.3. Here, the full 

spectrum (black colored) is a reference spectrum depicted only for graphical demonstration. 

 

Figure 5.3. Graphical representation of features/variables considered under manual feature selection. 

Table 5.4. Results obtained from ANN for (a) explosives and non-explosives (b) within explosives 

with manual feature selection approaches. 

(a) 
Prediction rate (%)  

(b) 
Prediction rate (%) 

Peak 

area 

CHN 

peak area 

Peak 

height 
 

Peak 

area 

CHN 

peak area 

Peak 

height 

Non-

explosive 
99.98 99.82 99.99  AN 100 97.8 92.68 

Explosive 99 99.99 95  CL20 100 99.99 93.01 

     HMX 99 98.74 89 

     NTO 100 99.99 92 

     RDX 99.99 99.24 85.96 

The ANN analyses were performed in the same manner as in the case of the full spectrum. 

The ANN analyses have been performed on two datasets (i.e., explosive and non-explosive, 

within explosive). The ANN results obtained are discussed in table 5.4. From table 5.4a, it is 

evident that ANN shows excellent results in predicting explosives and non-explosives by 

leveraging peak area and CHN peak area as input to the ANN model. Nevertheless, a slightly 

lower prediction rate is observed when considering peak height as an input for the ANN 

model than the other two manual feature selection approaches. This disparity might be 

attributed because of the utilization of a very small dataset (only 3% of the total data) to train 
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the model, resulting in an underfitting scenario. Similar observations can be noticed in the case 

of classification within explosives (see table 5.4b). 

5.3.2.2.2. Random Forest (RF) feature selection 

RF is a sophisticated statistical algorithm comprised of tree-type classifiers. Each tree-type 

classifier within the RF employs a distinct training set generated through the bootstrap 

resampling method[71]. This algorithm has been popularly used as a classification technique. 

However, this is also often used as a feature selection tool by estimating the variable 

importance (VI) of each feature[8,40]. The VI value of each variable is obtained by calculating 

out-of-bag (OOB) error[71]. 

 

Figure 5.4. Variable importance (VI) estimated by RF model for explosive and non-explosive data. For 

visual purpose, each spectrum showcased in this figure represents the average of all spectra. 

Here, the analyses were performed by considering only important features selected from VI as 

inputs to ANN for two datasets. Four sets of features were considered based on various VI 
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threshold values. The analyses were performed with features greater than VI values of 0.001, 

0.002, 0.003 and 0.004 for each dataset. The four sets of features obtained from different VI 

thresholds are graphically presented in figure 5.4 and 5.5. The figures show that with the VI 

threshold of 0.001, the features include almost all the peak areas with some noise. As the VI 

threshold gradually increased, only C, H, N, Ca, and Na peaks were observed as important 

features. The results of ANN analyses obtained are presented in table 5.5. The table shows that 

in both cases, RF with VI > 0.002 exhibits the highest prediction rate, which is close to 

100%. 

 

Figure 5.5. Variable importance (VI) estimated by RF model for explosive data. For visual purpose, 

each spectrum showcased in this figure represents the average of all spectra. 
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Table 5.5. Results obtained from ANN for (a) explosives and non-explosives (b) within explosives 

with RF feature selection. 

(a) 
Prediction rate (%)  

(b) 
Prediction rate (%) 

VI >  VI > 

0.001 0.002 0.003 0.004  0.001 0.002 0.003 0.004 

Non-
explosive 

99.99 99.98 99.99 99.77  AN 98.55 100 98 99 

Explosive 92 99 95.11 96.98  CL20 100 99 100 98 

      HMX 98.57 100 98 96 

      NTO 98 99 99 100 

      RDX 99.27 100 97 94.99 

5.3.2.3.  ANN with feature extraction 

Feature extraction algorithms transform the original data into a new and smaller dataset based 

on the properties of data like variance. It provides a meaningful representation of the original 

data by highlighting the most important features and removing noisy and redundant 

information. In this context, two feature extraction approaches, PCA and LDA, are used to 

transform the original data for the input to the ANN algorithm. 

5.3.2.3.1. Principal Component Analysis (PCA) 

PCA is an unsupervised machine learning algorithm that transforms complex data in lower 

dimensions through dimensionality reduction. It transforms the original data into a new set of 

coordinates that are orthogonal to each other called principal components (PCs). The 

transformed data in the PC space is called scores. The PCs explain the variance in the original 

data in a gradient manner i.e., the first PC explains highest variance, followed by the second, 

third, and so on.  

Figures 5.6 and 5.7 represent 3D score and variance plot, respectively. Figure 5.6 shows that 

the explosives make compact and separate clusters with no overlap with the non-explosives, 

indicating that they can be classified based on the scores rather than the original data. Also, 

there are multiple overlapping clusters within non-explosives. Figure 5.7 shows that the first 

three PCs explain 80, 8 and 7 % of the total variance, respectively, and the first ten collectively 

explain 99.5 % of the total variance. 
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Figure 5.6. 3D score plot of first three PCs for explosive and non-explosive data. 

 

Figure 5.7. Variance plot of first ten PCs for explosive and non-explosive data. 

Further, PCA was performed on the spectra corresponding to five explosives separately. 

Figures 5.8 and 5.9 represent 3D score and variance plot, respectively. From figure 5.8, it can 

be observed that NTO makes compact and separate clusters with no overlap with others. AN 

and CL20 also make separate clusters with minimal overlap and some spread, whereas a partial 

overlap between HMX and RDX is observed. The score plot also indicates the possibility of 

classification between them using the scores. Figure 5.9 shows that the first three PCs explain 

76, 16 and 5 % of the total variance, respectively and the first ten PCs collectively explain 

98.97 % of the total variance. 
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Figure 5.8. 3D score plot of first three PCs for explosive data. 

 

Figure 5.9. Variance plot of first ten PCs for explosive data. 

Further, the ANN analyses were employed on the scores obtained from PCA analysis in a 

similar manner as before. ANN was employed by considering only the scores corresponding to 

the first PC as input data; then, collectively, the first 2, 4, 8, 10, 20, 40, 60, 80 and 100 scores 

were used as input to ANN. The average prediction rate of plastics obtained considering 

different sets of scores is shown in a bar chart in figure 5.10. From the figure, it can be noticed 

that the accuracy of the prediction increases with increasing the number of scores as input to 

the ANN but up to a certain value. After 8 scores, the increase in the number of scores 

doesn’t significantly affect the classification accuracy between explosive and non-explosive. 
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Similarly, the accuracy becomes almost consistent for classification within explosive after 40 

scores as input to the ANN model. 

 

Figure 5.10. Prediction using different scores as input to ANN. 

5.3.2.3.2. Linear Discriminant Analysis (LDA) 

LDA is a supervised machine learning algorithm that effectively projects high-dimensional data 

into a lower-dimensional space by optimizing the separation of classes, thus efficiently 

extracting classification information while reducing the feature dimensionality [72]. The 

projection principle is set to ensure the minimum variance between interclass samples and the 

maximum variance between intraclass samples, i.e., LDA tries to project the sample onto a 

straight line. Unlike PCA, which maintains the information as much as possible, LDA makes 

the data points more distinguishable after dimension reduction. LDA is a good feature 

extraction technique that leads to a good separation in the feature space. The newly 

transformed coordinates are called linear discriminants (LDs), and the number of LDs depend 

on the number of classes, i.e., for n number of classes, the number of LDs are n-1. In a binary 

classification scenario distinguishing between explosive and non-explosive, only one LD is 

involved. However, when classifying within the explosives, the maximum number of LDs is 

four. 

Figure 5.11 represents the 2D and 3D plots of the initial LDs classifying within explosives. A 

clear separation between different explosives with minimal variance between the interclass 

spectra was observed. After LDA, ANN analysis was employed on the only LD for predicting 
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explosive and non-explosive. For prediction within explosive, the ANN analyses were 

employed on the first LD, first two LDs, and so on up to the four LDs.  

For explosive and non-explosive prediction, 100% accuracy was achieved. In case of within 

explosive prediction, the accuracy obtained from ANN analyses was shown in the bar chart in 

figure 5.12. From the figure, it can be noticed that the classification accuracy corresponding to 

the first LD is minimal and with increasing number of cumulative LDs, the accuracy increases 

and is maximum for all 4 LDs. However, for all the cases, the accuracy is below 90%. 

 

Figure 5.11. (a) 2D and (b) 3D plot of initial LDs classifying within explosives. 

 

Figure 5.12. Prediction using different LDs as input to ANN. 

5.3.3.  Discussion 

In this study, ANN analyses coupled with various feature selection and feature extraction 

methods were performed for the purpose of explosive detection. At first, ANN analyses were 

performed to classify explosives and non-explosive. Further, ANN analyses were performed 

only on explosives data to identify particular explosive types. The classification accuracies 

obtained from all the approaches are summarized in figure 5.13.  
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Figure 5.13. Classification accuracies obtained from various feature selection and feature extraction 

methods. Here MF represents manual feature selection. 

The classification accuracy for distinguishing between explosive and non-explosive showcased 

remarkable performance across various feature extraction and selection methods. ANN 

combined with LDA feature extraction achieved a flawless 100% accuracy. Meanwhile, feature 

selection via manual and RF methods consistently achieved more than 96% accuracy. In the 

case of PCA feature extraction, results corresponding to initial PCs are poor, possibly due to 

the underfitting of the ANN model due to smaller datasets. However, the classification 

accuracy becomes more than 94% for PCs with more than four as input. The maximum 

accuracy (97.5%) is obtained for 60 PCs and more as input to the ANN model. 

In classification within explosives, maximum accuracy (99.8%) was obtained for full spectrum 

and manual feature selection with peak area. Feature selection via manual RF methods 

consistently achieved more than 90% accuracy. Similar to the earlier case, poor results were 

observed when employing PCA feature extraction with fewer PCs as input for the model. 

However, for PCs with more than 20 as input, the classification accuracy becomes more than 

91% and the maximum accuracy (96.8%) is obtained for 40 PCs as input to the ANN model. 

LDA demonstrates poor performance, consistently falling below 90%. However, a clear 

separation between different classes of explosives has been observed in the case of LDA (figure 

5.11) as compared to PCA (figure 5.8). This is because PCA tries to preserve the feature 

information as much as possible in the new space, where LDA makes the data more 

distinguishable after dimensionality reduction [72]. Moreover, the number of LDs obtained 

from LDA is limited to the number of classes, and the dataset is too small compared to PCA to 
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train the ANN model, which might lead to the underfitting of the model. Therefore, the 

accuracies are low in the case of LDA compared to PCA. Furthermore, the testing time 

consistently remains between 20 – 150 ms across all methodologies. This swift testing time 

significantly expedites the process of real-time detection. 

In this study, both the training and testing were performed on the LIBS spectra obtained from 

the same samples. However, in real-world scenarios, the model encounters unknown samples 

that haven't been seen by the trained model during the training process. Given the limited 

quantity of explosive samples available, the training and testing were conducted using the same 

set of samples. The next section explores the effect of testing on a new sample by considering 

a large set of plastic samples. 

5.4.  Identification of post-consumer plastics 

With increasing population and modernization, the widespread adaptation of plastics in our 

day-to-day lives has experienced a substantial surge. Human society heavily relies on plastics as 

it is widely used in packaging, food safety, domestic equipment, industry, transport, 

electronics, etc. Its demand and use are continuously increasing because of its notable 

advantages such as cost-effectiveness, durability, low weight, flexibility in shape, etc. [73]. On 

the contrary, due to its high durability and low-degrading nature, it generates millions of tons 

of waste every year [74]. Thus, the management of plastic waste has now become essential. 

Traditional plastic waste management techniques like incineration and landfills are 

inconvenient as they cause colossal resource waste and adverse effects on the environment and 

human beings. Also, the toxic substances released in these processes severely harm soil, water, 

and air. Therefore, recycling is the most viable way to reduce final waste output. 

Classification/sorting of post-consumer plastics is the most critical step in the recycling 

process. The sorting process is essential to retain the quality and properties of recycled plastics 

[75]. For easy and convenient sorting, the Society for Plastic Industries (now called the Plastics 

Industry Association) instituted a labeling system that encodes different plastics [76]. Based on 

the labeling, manual sorting by visual inspection is the most common process, which is labor-

intensive, more time-consuming, and error-prone. Also, it is harmful to the workers in case of 

hazardous contamination. Other classification techniques based on the physical properties are 

also developed, like the floating technique [77], an electrostatic technique [78], differential 

scanning calorimetric (DSC) [79], etc. These conventional methods greatly depend on the 

physical state of the sample and are more time-consuming and prone to errors. Most of these 
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techniques are confined to limited types of plastics. Thus, there is a need for an automated 

process that can increase the recycling rate without involving a large workforce. 

Over the past few years, laser-induced breakdown spectroscopy (LIBS) combined with 

machine learning has shown increasing interest in the rapid identification of plastics regardless 

of the size, shape, and color of the material [8,38,73]. Several analytical approaches have been 

reported for the classification of plastics using LIBS signals. R. Junjuri et al. have investigated 

post-consumer plastics by exploiting atomic and molecular intensity ratios [38]. J. Anzano et 

al. [80–83] and V. K. Unnikrishnan et al. [84] have explored various statistical approaches like 

Euclidean distance, Receiver Operating Characteristic (ROC) analysis, Pearson's correlation 

coefficient, etc. Also, different machine learning algorithms have been widely used for the 

identification of plastics with higher accuracy. Some recent studies reported the classification 

of plastics using principal component analysis (PCA), partial least square discriminant analysis 

(PLS-DA), artificial neural network (ANN), etc. [8,30,38,84–88]. Table 5.6 provides a 

comprehensive summary of LIBS studies conducted in the past years, focusing on the 

identification of plastics. 

Table 5.6. Summary of LIBS studies devoted to literature for identification/sorting of plastics. A: Sl. 

No., B: Reference & Year, C: Samples used, D: Sample collection source, E: Methods used for Identification/ 

Classification, F: Is testing performed on unknown sample?, G: Average accuracy (%). 

A B C D E F G 

1 [89] & 2022 PET, HDPE, LDPE, PP NA kNN and SVM No ~ 100 

2 [90] & 2022 POM, PVC, PA,ABS, PP, and PE Industry 
NCA, PCA 

and SVM 
No > 91 

3 [7] & 2021 

ABS, PA, PC, PMMA, POM, 

PTFE, PU, PP, PS, 

and PVC 

Manufacturer PCA and kNN No 99.6 

4 [91] & 2021 ABS, PA, PMMA, and PVC Manufacturer 
Residual 

network 
Yes 73.34 

5 [8] & 2020 
HIP, SIHET, PC, PP, PS, HDPE, 

PET, LDPE, ABS, and PPCP 
Recycling unit RF and ANN No > 99 

6 [30] & 2019 
HIP, LDPE, ABS, PP, PS, HDPE, 

SIHET, PC, PET, and PPCP 
Recycling unit 

Ratiometric, 

correlation, and 

PLS-DA 

No > 93 

7 [86] & 2019 
HDPE, LDPE, PP, PVC, PS, ABS, 

PTFE, PC, PMMA, PU, and POM 
Industry PLS-DA No 99.55 
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8 [38] & 2019 PET, HDPE, LDPE, PP, and PS Recycling unit ANN No ~ 100 

9 [92] & 2018 
ABS, PA, PMMA, PVC, PC, PE, 

POM, PP, PS, PTFE, and PU 
Industry 

SOM, K - 

means 
No 99.2 

10 [93] & 2018 PP, PS, and ABS 
Recycling 

centre 
PCA and ICA No > 95 

11 [94] & 2018 
PE, PP, PVC, PS, ABS, PTFE, PA, 

PC, PMMA, PU, and POM 
Industry 

K-means 

clustering 
No 99.6 

12 [95] & 2017 ABS, PS, PE, PC, PP PA 

E-waste 

recycling 

company 

kNN and 

SIMCA 
No > 90 

13 [96] & 2014 

PP, PE, PS, PVC, PU, PTFE, ABS, 

POM 

 and PMMA 

NA SVM No ~ 100 

14 [97] & 2013 ABS, PP and HIP Commercial Ratiometric No NA 

15 [84] & 2013 PET, HDPE, PP, and PS NA PCA and MD No > 91 

16 [98] & 2012 
HDPE, LPDE, PP, PET, PS, and 

PVC 
Commercial DFA No 99 

17 [88] & 2011 
PP, PE, PC, PVC, POM, PA, and 

PMMA 
NA ANN No ~ 100 

*NA: Not available, kNN: k-nearest neighbors, PCA: principal component analysis, PLS: partial least-square, 

PLS-DA: partial least-square discriminant analysis, SVM: support vector machine, NCA: nearest component 

analysis, SIMCA: soft independent modeling of class analogy, PU: polyurethane, PVC: polyvinylchloride, POM: 

polyvinylchloride, PA: polyamide, PE: polyethylene, PS: polystyrene, PU: polyurethane, PTFE: 

polytetrafluoroethylene, PMMA: polymethylmethacrylate, HIP: high impact polystyrene, POE: polyoxyethylene, 

PBT: polybutylene terephthalate, SOM: self-organizing maps, DFA: discriminant function analysis, ICA: 

independent component analysis, RBFNN: residual basis function neural networks, PPCP: polypropylene 

copolymer, MD: Mahalanobis distance. 

Table 1 reveals that most research studies achieve outstanding identification and classification 

accuracy, exceeding 90% and even approaching 100%. However, the majority of these 

research studies lack practical relevance in real-world circumstances. A closer look at table 1 

reveals that most research relies on neatly structured samples, often consisting of commercial 

or standard materials purchased directly from manufacturers or industrial suppliers. In contrast, 

real-time applications demand the classification of post-consumer/used plastics. Only a handful 

of research endeavours have delved into the classification of post-consumer/used plastics 

[8,30,38,93,95]. Along with these, in almost all research, the training set and testing set data 

came from the same sample, making the classification meaningless for practical application. In 

an attempt to address this challenge, X. Peng et al. employed distinct sets of samples for 

testing; however, they also faced limitations by using standard samples and achieved a 
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maximum average accuracy of only 73.34% [91]. Furthermore, it is worth noting that their 

study focused on four specific types of plastics: ABS (acrylonitrile butadiene styrene), PA 

(polyamide), PMMA (polymethyl methacrylate), and PVC (polyvinyl chloride). Notably, 

these plastics, particularly ABS, PA, and PMMA, do not account for much plastic waste 

compared to commonly used plastics such as PET, HDPE, LDPE, PS etc. [99]. 

Analogous to the investigations carried out in explosive detection, ANN was utilized, 

incorporating various feature selection and extraction methods. Their performances were 

compared in accuracy, testing time, data size, and model size to find the most effective 

strategy. The study explores two separate approaches for classifying post-consumer plastics. 

Firstly, nine different post-consumer plastics were collected from a local recycling unit, and 

both training and testing were performed on the same sample. Secondly, 30 post-consumer 

plastics representing six commonly used types (HDPE, LDPE, PP, PET, PS, and PVC) and 

five samples from each category were collected from garbage. Testing was performed on 

unknown plastic, mimicking real-world scenarios for identifying unfamiliar post-consumer 

plastics.  

5.4.1.  Post-consumer plastics from the recycling unit (Testing on 

same sample) 

The experiment was called for nine post-consumer plastics, namely, Acrylonitrile butadiene 

styrene (ABS), Poly(methyl methacrylate), also called ACRYLIC, High-density polyethylene 

(HDPE), Low-density polyethylene (LDPE), NYLON, Polycarbonate (PC), Polyethylene 

terephthalate (PET), Polypropylene (PP) and SIHET. One sample from each category has 

been considered in this study. The details of the samples are provided in table 5.7. All the 

samples were collected from a local recycling unit. Each sample was first cleaned with water, 

followed by methanol in order to remove the contaminations from the surface. Two hundred 

spectra from each sample (a total of 1800 spectra) were acquired with 500 ms integration time. 

The normalized LIBS spectra of plastics acquired in the range of 200 – 750 nm are depicted in 

figure 5.14. All the emission spectral lines were identified with the aid of NIST atomic 

database. Prominent emission lines from C, H, and N were detected within the acquired 

spectral range. Additionally, strong emission lines of Na were commonly observed in many 

plastics, potentially indicating contamination since post-consumer plastics were utilized in the 

study. Low-intense emission lines of some elements like Ca and Mg were also noticed, which 

were added as traces during the manufacturing process to increase the hardness and lower the 
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production cost. Also, the molecular structure of CN – violet and C2 – swan bands were 

observed. 

Table 5.7. Details of the nine different post-consumer plastic samples. 

S. No. Scientific Name Chemical formula Recycling No. (#) 

1 Acrylonitrile butadiene styrene (ABS) (C15H17N)n 7 

2 
Poly(methyl methacrylate), also called 

ACRYLIC 
(C5O2H8)n 7 

3 High-density polyethylene (HDPE) (C2H4)n 2 

4 Low-density polyethylene (LDPE) (C2H4)n 4 

5 NYLON - 7 

6 Polycarbonate (PC) (C16H14O3) 7 

7 Polyethylene terephthalate (PET) (C10H8O4)n 1 

8 Polypropylene (PP) (C3H6)n 5 

9 SIHET - 7 

 

Figure 5.14. LIBS spectra of plastics acquired in the range of 200 – 750 nm. 
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From figure 5.14, it has been observed that all the plastic spectra look similar due to similar 

chemical composition. However, since the elemental compositions of C, H and N are 

different in different plastics, the intensities corresponding to these species differ from one 

another. Moreover, the intensities of impurities and contaminated species also differ from one 

another. 

5.4.1.1.  ANN with total data 

The ANN analysis was performed over 100 iterations, and for each iteration, the total data 

(1800 spectra) was divided randomly into 70 + 15 + 15 % for training, validation and testing, 

respectively. The target data comprises class labels of nine different plastics. The overall 

classification accuracies of each sample obtained from the ANN analysis for the test data are 

presented in the form of a confusion matrix in table 5.8. More than 90% of classification 

accuracy was observed in the case of all the plastics and most of them are ~97%, with an 

average prediction rate of 96.43%. The average training and testing times taken for the ANN 

operation are 4436 and 8.44 ms, respectively.  

Table 5.8. ANN results for classification of nine different post-consumer plastics. 

 
Predicted Class 

ABS ACRYLIC HDPE LDPE NYLON PC PET PP SIHET 

A
ct

u
al

 C
la

ss
 

ABS 97 1.15 0.63 0.64 0.1 0 0 0.47 0.01 

ACRYLIC 3 96.99 0 0 0 0 0 0.01 0 

HDPE 0.12 0.23 96.99 0.44 0.17 0.2 0.17 0.82 0.85 

LDPE 0.03 0.1 0.5 92 3.32 1.06 0.1 1.34 1.54 

NYLON 0 0 0.12 1.31 97 0 0.4 0.69 0.49 

PC 0 0 0 0 0 100 0 0 0 

PET 0 0 0 0 0 0 99.86 0 0.14 

PP 2.83 1.35 2.14 1.81 1.29 0 0 90 0.6 

SIHET 0 0 0.71 0.48 0.09 0 0.72 0 98 

5.4.1.2.  ANN with feature selection 

5.4.1.2.1.  Manual feature selection 

The same manual feature selection was employed, as discussed in section 5.3.2.2. The ANN 

analyses were performed in the same manner as in the case of total data. The data was split 

into 70% training, 15% validation and 15% testing sets. The results obtained from ANN 

analyses are summarized in table 5.9. The high average accuracy obtained is for the peak area 

and CHN peak area. The accuracy corresponding to peak heights is poor compared to the 
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other two. This might be attributed to the limited number of features utilized in training the 

model, potentially resulting in the underfitting of the ANN model. Comparing the training 

and testing time, the peak heights as input has lower training and testing time than others due 

to a smaller dataset, and the peak area as input shows higher training and testing time than the 

other two. 

Table 5.9. Results obtained from ANN for classification of nine post-consumer plastics with manual 

feature selection. 

Sl. No. Plastic 
Accuracy (%) 

Peak area CHN peak area Peak height 

1 ABS 98 94.98 82.94 

2 ACRYLIC 98.01 99.79 89 

3 HDPE 95.95 87.29 87.98 

4 LDPE 89.97 86.96 73.61 

5 NYLON 93.98 84.86 81.9 

6 PC 98.57 95.8 91.01 

7 PET 99.73 98.45 93.34 

8 PP 93 95.8 80.05 

9 SIHET 88 90.98 75.17 

Average 95.02 92.77 83.89 

Testing time (ms) 4.64 4.4 3.12 

Fraction of total data (%) 59 17 3 

5.4.1.2.2. Random Forest (RF) feature selection 

Here, the analyses were performed by selecting only important features based on the variable 

importance (VI). A total of three sets of features were considered based on various VI 

threshold values. The analyses were performed on three sets of data with features greater than 

VI values of 0.001, 0.002 and 0.003. The three sets of features obtained from three VI 

thresholds are graphically presented in figure 5.15. The figure shows that with the VI 

threshold of 0.001, the features include almost all the peak areas with some noise. As the VI 

threshold gradually increased, only C, H, N, Ca, and Na peaks were observed as important 

features. The results of ANN analyses obtained by considering three different features are 

presented in table 5.10. 
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Figure 5.15. Variable importance (VI) estimated by RF model for LIBS data of nine different post-

consumer plastics. 

Table 5.10. Results obtained from ANN for classification of nine post-consumer plastics with RF 

feature selection. 

Sl. No. Plastic 
Correct classification rate (%) 

VI> 0.001 VI> 0.002 VI >0.003 

1 ABS 95.97 91.00 85.00 

2 ACRYLIC 99.98 92.05 97.96 

3 HDPE 93.97 88.98 89.94 

4 LDPE 92.00 83.93 77.95 

5 NYLON 91.90 78.00 88.97 

6 PC 98.03 96.02 93.00 

7 PET 99.80 97.84 99.75 

8 PP 93.00 87.00 82.00 

9 SIHET 93.98 91.00 76.95 

Average 95.40 89.53 87.95 

Testing time (ms) 3.71 3.51 3.32 

Fraction of total data (%) 18.51 8.54 4.05 

The training and testing time is higher in the case of VI > 0.001 as the fraction of total data is 

high. Here, the time taken for RF analysis was added to the training time, representing overall 

time required to train the ANN model, including preprocessing. Also, the highest classification 

was observed in this case as compared to the other two cases. This is because the VI > 0.001 

covers all important features, including almost all peak areas. A similar observation was also 
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observed in the case of manual feature selection, where the classification rate was highest in 

the case of all peak areas as input. The testing times are similar to the training time for all three 

cases where VI > 0.003 represents the fastest prediction. 

5.4.1.3. ANN with feature extraction 

5.4.1.3.1.  Principal Component Analysis (PCA) 

Here PCA was employed for the total data comprised of 1800 spectra. Figure 5.16 and 5.17 

represent the score plot and variance plot, respectively. From figure 5.16, it can be noticed 

that the different types of plastics make separate clusters with minimal overlap among them. 

Among all, ABS and ACRYLIC make compact and separate clusters with no overlap with 

others, whereas there are some overlaps between other types of plastics. The score plot 

represents that they can be classified based on the scores rather than the original data. Figure 

5.17 shows the variance explained by the first ten PCs. Here the first three PCs explain 78.05, 

12.86 and 3.6 % of the total variance, respectively and the first ten collectively explain 99.5 % 

of the total variance. Since the PCs explain the variances in the original data, based on the 

variances, the scores can be used as extracted features. In other words, the scores are nothing 

but the extracted features from the original data and the most important features are the scores 

corresponding to initial PCs. 

 

Figure 5.16. 3D score plot of first three PCs for nine post-consumer plastics. 
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Figure 5.17. Variance plot of first ten PCs for nine post-consumer plastics. 

The ANN analyses were employed on the scores obtained from PCA analysis in a similar 

manner as in case of explosive detection. At first, ANN was employed by considering only the 

scores corresponding to the first PC as input data; then, collectively, the first 10, 20, 30, 40, 

50, 60, 70, 80, 90 and 100 scores were used as input to ANN. The average prediction rate of 

plastics obtained considering different sets of scores is shown in a bar chart in figure 5.18. The 

figure shows that the accuracy of the prediction increases with increasing the number of scores 

as input to the ANN but up to a certain value. After 30 scores, the increase in the number of 

scores doesn’t affect the accuracy significantly. 

 

Figure 5.18. Classification accuracy of nine post-consumer plastics by considering different scores as 

input to ANN. 
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5.4.1.3.2. Linear Discriminant Analysis (LDA) 

In this section, LDA was employed on the LIBS spectra corresponding to nine different post-

consumer plastics categories. Figure 5.19 represents the 2D plot of the first two LDs, which 

show a clear separation between different classes of plastics. Moreover, the minimal variance 

between the interclass spectra was also observed. 

 

Figure 5.19. 2D LDA plot of first two LDs for nine post-consumer plastics. 

 

Figure 5.20. Classification accuracy of nine post-consumer plastics by considering different LDs as 

input to ANN. 

After LDA, ANN analyses were employed on the first LD, first two LDs and so on, up to the 

first eight LDs. The average classification accuracies obtained from ANN analyses were shown 
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to the first LD is minimal, whereas, for all other cumulative LDs, it is almost similar. 

However, for all the cases, the accuracy in the prediction of plastics is around 80 %. This is 

again due to the underfitting of the ANN model since fewer data variables are considered for 

training.  

5.4.1.4. Discussion 

In this study, ANN analyses were performed on LIBS data of nine post-consumer plastics with 

various feature selection and feature extraction methods. The classification accuracies obtained 

from all the approaches are summarized in figure 5.21. 

From the figure, it can be noticed that the total data as input to the ANN shows maximum 

accuracy. In the case of feature selection techniques, peak heights, RF with VI > 0.002 and VI 

> 0.003 show comparatively lower classification accuracies than peak areas, CHN peak areas 

and RF with VI > 0.001 as input to the ANN model which represent more than 90% 

classification rate closer to the total data as input. The lowest classification rate is observed in 

the case of peak heights as input which could be due to the underfitting of the ANN model. 

Similar observations were also observed in the case of PCA and LDA feature extraction. The 

score corresponding to the first PC shows a poor prediction rate and scores corresponding to 

PCs up to 20 PCs represent prediction accuracies lower than 90%, possibly due to the 

underfitting of the ANN model. Moreover, as compared to PCA, LDA as input to ANN 

shows poor classification rates similar to the case of explosive detection (figure 5.12). 

 

Figure 5.21. Classification accuracies obtained from various feature selection and feature extraction 

methods. Here MF represents manual feature selection. 
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In a real-time application, classification accuracy plays a crucial role in plastic sorting. The 

accuracy in sorting has to be as maximum as possible in order to maintain the quality of the 

recycled plastics and reduce the production cost. Moreover, mixing different kinds of plastics 

undergoes unwanted chemical reactions which release toxic substances very harmful to the 

environment and ecosystem. In this study, full spectra as an input to ANN yields maximum 

accuracy and is the best choice if only accuracy is considered. 

Along with accuracy, computational time also plays a very important role in plastic sorting. In 

a real-time scenario, tons of plastic waste have to be sorted for recycling. In industrial sorting 

units, the use of a conveyor belt is a very efficient way of transporting plastics towards 

classifying instruments. Furthermore, the computational time of the instrument should be 

compatible with the speed of the conveyor belt. Also, the faster the speed of the conveyor 

belt, the faster the sorting process. In such a layout, even milliseconds difference in the 

computational time can make greater differences on a large scale. The average training and 

testing times for one iteration correspond to various feature selection and extraction 

approaches are described in table 5.11. Among the training and testing time, training time is 

really not important as the model has to be trained prior to the testing and on the testing site 

only the speed of the testing matters. In table 5.11, the testing times that correspond to feature 

selection techniques (manual and RF feature selection) are the times taken by ANN only. 

Whereas, in the case of feature extraction approaches (PCA and LDA), the testing time are the 

sum of transforming time taken for transforming the spectrum to PC and LD spaces added to 

the time taken by ANN, respectively. The time taken by the manual and RF feature selection 

is not considered here because the preprocessing by feature selection will be performed during 

the training process and the same wavelength ranges of spectra can be remembered, and the 

same fraction can be extracted without requiring any additional time every time. During the 

comparison of testing times, only those approaches that represent more than 90 % of 

classification accuracies are considered. Comparing all the testing times (with accuracy > 90%), 

the features corresponding to RF VI > 0.001 reflect faster prediction with accuracy close to 

the total spectra.  

Apart from accuracy and computational time, the size of the training model and input data are 

important parameters for discussion. The sizes of input data considered to train the ANN 

model and the size of the ANN model are also described in table 5.11. In this case, a total of 

1800 spectra were considered; therefore, the input data size ranges from hundreds to a few 

thousand KB for different subsets. But, in practical use, the input data to the model will be a 

single spectrum which is typically 70 – 80 KB in size. The size of the trained ANN model 
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ranges between 16 – 25158 KB. The combined data and classification model requires less than 

26 MB of storage. Since no big data is being analyzed during the testing process and the 

overall storage requirement is very low, there is no need for any computer or workstation. 

This can be replaced with compact and low-cost microcontrollers capable of performing ANN 

operations like Arduino[100], Raspberry Pi[101], etc. This will fascilate the development of a 

handy, robust, low-cost LIBS setup for identifying post-consumer plastics. 

Table 5.11. Comparison of various feature selection and extraction approaches for classification of nine 

post-consumer plastics. 

 Classification 

accuracy (%) 

Testing 

time (ms) 

Input data 

size (MB) 

Training model 

size (KB) 

Classification index 

(% ms-1 MB-1) 

Full spectra 96.43 8.44 28.71 25.16 0.45 

MF 

Peak area 95.02 4.64 10.86 7.91 2.59 

CHN peak area 92.77 4.4 6.41 5.35 3.94 

Peak heights 83.89 3.12 0.41 0.34 78.62 

RF 

VI > 0.001 95.4 3.71 5.46 4.62 5.57 

VI > 0.002 89.53 3.51 2.53 2.18 11.68 

VI > 0.003 87.95 3.32 1.99 1.02 26.1 

PCA 

1 PC 49.28 3.69 0.87 0.02 834.69 

10 PCs 64.44 3.88 1.02 0.14 116.96 

20 PCs 87.53 3.9 1.19 0.28 79.03 

30 PCs 91.21 3.95 1.36 0.42 54.59 

40 PCs 92.76 3.86 1.53 0.57 42.46 

50 PCs 90.75 4.36 1.70 0.7 29.73 

60 PCs 92.9 4.5 1.88 0.84 24.55 

70 PCs 95.43 4.76 2.05 0.99 20.17 

80 PCs 93.57 5.83 2.22 1.12 14.3 

90 PCs 94.13 5.4 2.39 1.26 13.8 

100 PCs 96.31 5.71 2.56 1.4 12.02 

LDA 

1 LD 63.21 3.7 0.07 0.02 899.15 

2 LDs 76 3.79 0.1 0.03 607.66 

3 LDs 76.22 3.75 0.12 0.05 432.45 

4 LDs 78.44 4.03 0.14 0.06 319.08 

5 LDs 75 4.53 0.17 0.08 220.75 

6 LDs 81.11 4.44 0.19 0.09 202.98 

7 LDs 81.33 4.63 0.22 0.1 168.9 

8 LDs 77.68 4.51 0.25 0.12 145.97 

*The blue colour indicates the approaches with classification accuracies greater than 90%. 

In order to find the best approach among all feature selection and extraction approaches, an 

index called classification index is defined that simultaneously considers the accuracy, testing 
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time, and ANN model size and provides the best analysis protocol. The classification index is 

defined as, 

(%)

( ) ( )

Accuracy
Classification index

Testing time ms Model size MB
=


   (1) 

The limit of the classification index ranges from 0 to ∞, i.e., when accuracy is 0%, or the 

model consumes infinite time or size then the index value is zero.And when the model 

doesn’t consume any time or storage space for prediction, then the classification index is 

infinite. The classification index estimated for all the approaches is listed in table 5.11. Table 

shows that in terms of classification index, LDA feature extraction with 1 LDs followed by 

ANN gives the best overall result; however, the accuracy is poor, i.e., 63.21%. Considering 

better accuracy, i.e., at least more than 90%, the best analysis protocol can be PCA with 30 

PCs as input to the ANN model. 

5.4.2.  Locally collected post-consumer plastics (Testing on 

unknown sample) 

The last section, excellent accuracy in identifying each plastic category has been achieved with 

optimized computational time and resource usage. However, in the study only one sample 

from each category was considered and both training and testing were poerfomed on the same 

sample. This approach is irrelevant in terms of real-time application as numerous samples from 

each category will be encountered in recycling unit and the testing samples will be completely 

unknown to the training model. Therefore, to mimic the real-time application scenario, in 

this section, multiple samples were collected from each category and the testing was performed 

on the unknown samples which has not been seen by the model earlier. 

Post-consumer plastics from six commonly used categories, namely, HDPE, LDPE, PP, PET, 

PS and PVC were collected for the experiment. Details of these types of plastics can be found 

in table 5.12. From each group/category, five different samples used in our day-to-day life 

were collected and identified based on their recycling number. These samples were first 

cleaned with water and then methanol to remove surface contaminants. The photograph of 30 

plastic samples (6 groups × 5 samples) is depicted in figure 5.22. 200 spectra from each sample 

(a total of 6000 spectra) were acquired with 500 ms integration time. 

The normalized averaged LIBS spectra of six kinds of plastics acquired in the range of 200 – 

750 nm are depicted in figure 5.23. Similar emission lines are observed as earlier, i.e., 

prominent C, H, N, and Na atomic lines were observed along low intense emission lines of 

Ca, Mg, Ti, and molecular emissions of CN – violet and C2 – swan bands. 
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Table 5.12. Details of the six categories of post-consumer plastics. 

S. 

No. 
Name Chemical structure 

Chemical 

formula 

Recycle 

No. (#) 

1 

2 

High-density polyethylene (HDPE) 

Low-density polyethylene (LDPE) 
 

(C2H4)n 
2 

4 

3 Polypropylene (PP) 

 

(C3H6)n 5 

4 Polyethylene terephthalate (PET) 

 

(C10H8O4)n 1 

5 Polystyrene (PS) 

 

(C8H8)n 6 

6 Polyvinyl Chloride (PVC) 

 

(C2H3Cl)n 3 

 

 

Figure 5.22. Photograph of 30 post-consumer plastics used for the study. 
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Figure 5.23. LIBS spectra of plastics acquired in the 200 – 750 nm range. Each spectrum was averaged 

over 1000 spectra (5 samples × 200 spectra). The shaded bands  respresent the standard deviation of 

200 measurements. 

5.4.2.1.  ANN with total data 

The ANN model has been developed to mimic the real-time application scenario where the 

sample subjected to the test is never a part of the training. Notably, one sample (out of 30) was 

reserved as an ‘unknown,’ while the neural network was trained using the remaining 29 

samples. Out of the 6000 spectra obtained from the 30 samples, 200 spectra corresponding to 

one sample were designated for testing. The remaining 5800 spectra were randomly split into 

80% for training and 20% for validation data. This process was repeated iteratively 30 times. 

The schematic of the training–testing architecture is described in figure 5.24. 

For each iteration, the number of neurons in the input layer equals the number of features in 

the data, while the number of neurons in the output layer matches the number of classes. The 

number of hidden layers is optimized by using grid search cross-validation (GridSearchCV) 

along with the number of epochs by minimizing the loss function (categorical cross entropy) 

of the validation data [102]. The overall classification accuracies of each sample obtained from 

the ANN analysis for the test data are presented in the form of a confusion matrix in table 

5.12. 
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Figure 5.24. Schematic of the training–testing architecture of the data. 

Table 5.13 shows that in the case of PS and PVC, the classification accuracy is maximum and 

the classification rate of PET is high. However, HDPE, LDPE and PP are misclassified largely 

among themselves. This discrepancy can be attributed to their similar chemical structures and 

spectral signatures (discussed in table 5.7 and figure 5.23). 

The current ANN algorithm is not able to differentiate between HDPE, LDPE and PP along 

with other plastics. To resolve this, HDPE, LDPE and PP are grouped as single class HLP. 

The dataset containing HLP, PET, PS and PVC is named ‘global dataset’. The ANN analyses 

were performed on global dataset and when a spectrum is identified as HLP, it undergoes 

another ANN model, which is trained with only HDPE, LDPE and PP (3 groups) named as 

‘local dataset’. The initial dataset consisting of six groups is referred to as the ‘original dataset.’ 

Table 5.13. Confusion matrix representing the classification accuracy (%) of 30 post–consumer plastics 

obtained from ANN analysis. 

 
Predicted Class 

HDPE LDPE PP PET PS PVC 

A
ct

u
al

 C
la

ss
 

HDPE 19.5 0.3 75 4.4 0.8 0 

LDPE 9.6 57.5 32.4 0 0 0.5 

PP 64.3 0.2 35.4 0 0.1 0 

PET 0 0 5.5 94.5 0 0 

PS 0 0 0 0 100 0 

PVC 0.1 0 0 0 0 99.9 

Again, the ANN analyses were performed on global and local dataset. The same training, 

validation and testing architecture was employed as before. The confusion matrices obtained 

from ANN analyses for two different approaches are discussed in table 5.14. By considering 
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HDPE, LDPE, and PP as a group, the overall accuracy of global dataset increases significantly 

and becomes close to 100% (see table 5.14a). Compared to table 5.13, the classification 

accuracy of PET increases significantly and accuracy of PVC becomes maximum and HLP also 

give excellent prediction rate. However, for local dataset, the classification approach doesn’t 

work, representing failure of ANN model in distinguishing between LIBS spectra of HDPE, 

LDPE and PP (see table 5.14b). The testing time of each plastic spectrum for global dataset is 

137 ms and for the local dataset it is 133 ms. The size of the ANN model is ~1560 KB for 

both cases. 

Table 5.14. Confusion matrix representing the classification accuracy (%) of (a) global dataset and (b) 

local dataset obtained from ANN analysis. 

(a) 
Predicted class  

(b) 
Predicted class 

HLP PET PS PVC  HDPE LDPE PP 

A
ct

u
al

 c
la

ss
 HLP 99.37 0.57 0.07 0  

A
ct

u
al

 c
la

ss
 

HDPE 21.4 10 68.6 

PET 0.3 99.7 0 0  LDPE 36.9 35.7 27.4 

PS 0 0 100 0  PP 56.3 7.3 36.4 

PVC 0 0 0 100       

5.4.2.2. ANN with feature selection 

5.4.2.2.1. Manual feature selection 

In this case, the same manual feature selection was employed as discussed before (section 

5.3.2.2 and 5.4.1.2). The ANN analyses were performed on three datasets (i.e., original 

dataset, global dataset and local dataset) in the same manner as in the case of the full spectrum. 

It has been observed that excellent classification accuracy obtained for all three manual feature 

selection approaches corresponds to the global dataset, as discussed in table 5.15. However, 

poor classification accuracies are obtained in the case of the original and local dataset, resulting 

in the failure of ANN to classify between HDPE, LDPE and PP. Also, a significant increase in 

PET, PS and PVC accuracy was observed in the global dataset for all three feature selection 

approaches compared to the original dataset. Additionally, there is no discernible change 

observed in testing time when employing reduced input data. There are several factors because 

of which the overall testing time doesn’t reduce significantly, even using a smaller test dataset. 

Further elaboration on this topic can be found in the discussion section. 
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Table 5.15. The ANN results for manual feature selection correspond to (a) original, (b) global and (c) 

local dataset. 

(a) Classification accuracy (%)  
(b) 

Classification accuracy (%)  
(c) 

Classification accuracy (%) 

A B C  A B C  A B C 

HDPE 2.8 0 3.7  HLP 98.5 97.3 95.6  HDPE 2.2 0.2 15.4 

LDPE 34.5 26.4 35.9  PET 100 93.9 100  LDPE 33.5 27.4 43.9 

PP 40.9 34 29.4  PS 100 100 99.8  PP 32.1 30.9 32.6 

PET 96.1 85.6 98.5  PVC 100 97.9 98.5  D 22.6 19.5 30.6 

PS 99.8 100 98.7  D 99.6 97.3 98.5  E 128 126 128 

PVC 96.2 85.5 78.8  E 126 140 125  F 59 17 3 

D 61.7 55.2 57.5  F 59 17 3      

E 130 127 125  *A: Peak area, B: CHN peak area, C: Peak height, D: Average, E: Testing 
time (ms), F: Fraction of total data (%) 

F 59 17 3  

5.4.2.2.2. Random Forest (RF) feature selection 

Here, the analyses were performed by selecting only important features based on VI threshold 

as inputs to ANN for the three datasets. A total of four sets of features were considered based 

on various VI threshold values. The analyses were performed on four sets of data with features 

greater than VI values of 0.001, 0.002, 0.003 and 0.004 for each dataset. The four sets of 

features obtained from three VI thresholds for original, local and global dataset are graphically 

presented in figure 5.25, 5.26 and 5.27, respectively.  

 

Figure 5.25. Variable importance (VI) estimated by RF model for original dataset. 
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Figure 5.26. Variable importance (VI) estimated by RF model for global dataset. 

 

Figure 5.27. Variable importance (VI) estimated by RF model for local dataset. 

The figures show that with increasing VI threshold, the number of important features 

decreasing gradually. In figures 5.25 and 5.26, with VI threshold of 0.001, the features include 

almost all the peak areas with some noise. With increasing VI threshold, only C, H, N, Ca, 

and Na peaks were noticed as important features. The results of ANN analyses obtained by 

considering four different sets of features are presented in table 5.16. 
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Table 5.16. The ANN results for RF feature selection correspond to (a) original, (b) global and (c) 

local dataset. 

(a) 

CA  

(b) 

CA  

(c) 

CA 

V1 V2 V3 V4  V1 V2 V3 V4  V1 V2 V3 V4 

HDPE 5.2 4.6 3.8 6.4  HLP 98.1 93.3 95.2 96.8  HDPE 2.7 12 4.4 6.1 

LDPE 34.8 33.1 51.2 67.8  PET 98.8 92.6 99.7 100  LDPE 36.4 30.2 35.8 42 

PP 40.9 40.4 34.9 44.6  PS 99.9 99.9 99.7 99.7  PP 34.4 32.2 30.9 18.5 

PET 95.3 99.3 99.2 99.9  PVC 99.9 99.3 98.2 97.3  D 24.5 24.8 23.7 22.2 

PS 99.9 99.7 99.9 99.7  D 99.2 96.3 98.2 98.4  E 125 123 128 126 

PVC 93.7 89.3 92.6 79.9  E 128 124 125 124  F 14 7 2.7 1.5 

D 61.6 61.1 63.6 66.4  F 13 7 4 2.5       

E 124 123 122 123  
*CA: Classification accuracy (%), V1: VI>0.001, V2: VI>0.002, V3: VI>0.003, V4: 

VI>0.005, D: Average, E: Testing time (ms), F: Fraction of total data (%) F 13 5 2.25 1.37  

No significant change was observed in testing time by considering the RF feature selection 

approach. However, there is a significant reduction in the data size. Also, like manual feature 

selection and full spectrum as input, there is no improvement in classification accuracy for 

original and local datasets. However, the classification accuracy of global dataset is excellent in 

case of all four feature selection approaches, i.e., close to 100%. The highest classification was 

observed for VI > 0.001. 

5.4.2.3. ANN with feature extraction 

5.4.2.3.1. Principal Component Analysis (PCA) 

Here, PCA was employed on the training dataset, and the resulting transformed data were 

used to train and validate the ANN model. Before testing, the testing data underwent the 

same PCA transformation using the parameters obtained during the transformation of the 

training dataset. The score plots in figure 5.28 represent the distribution of the first two and 

first three PCs for original datasets during one iteration. The same graphs for global and local 

datasets are depicted in figures 5.29 and 5.30, respectively. 

From figure 5.29, it can be noticed that PS makes a compact cluster as compared to other 

types of plastics. On the other hand, PET makes two clusters, i.e., one corresponding to a 

single sample and the other encompassing four other samples. In the case of HLP and PVC, 

multiple clusters were observed. Also, some overlaps were noticed between all four categories 

of plastics. Furthermore, when test data, such as spectra corresponding to PVC 5, are 

transformed using the same PCA parameters as the training data, they align with the trained 
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PVC data. Similarly, the test data align with its kind in the original and local dataset (figures 

5.28 & 5.30) with overlap between different kinds and no obvious clusters can be observed. 

 

Figure 5.28. (a) 2D and (3D) score plot of initial PCs for original dataset. 

 

Figure 5.29. (a) 2D and (3D) score plot of initial PCs for global dataset. 

 

Figure 5.30. (a) 2D and (3D) score plot of initial PCs for local dataset. 
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The ANN analyses were employed on the scores obtained from PCA analysis following the 

similar architecture as before. At first, ANN was employed by considering only the scores 

corresponding to the first PC as input data; then, collectively, the first 2, 4, 6, 8, 10, 20, 40, 

60, 80 and 100 scores were used as input to ANN. The classification accuracy obtained by 

considering different sets of scores for all three datasets is shown in a bar chart in figure 5.31. 

From the figure, it can be noticed that for the global dataset, the prediction accuracy increases 

with increasing the number of scores as input to the ANN. After six scores, the accuracy 

becomes more than 90% and with further increasing in the number of scores, the accuracy 

remains similar, i.e., more than 90% and close to 100%. Moreover, after implementing PCA 

feature extraction, the ANN failed to classify between HDPE, LDPE, and PP in the original 

and local datasets. 

 

Figure 5.31. Classification of post-consumer plastics by considering different scores as input to ANN. 

5.4.2.3.2. Linear Discriminant Analysis (LDA) 

In this case, LDA was employed similarly to PCA, i.e., it was implemented on the training 

data and the testing data was transformed with the same transformation parameters for each 

iteration. Figure 5.32 represents the 2D and 3D plots of the LDs corresponding to the original 

dataset; the plots corresponding to global and local datasets are shown in figures 5.33 & 5.34, 

respectively. 

In the original dataset, partial overlap between LDPE, HDPE, and PP and between PET and 

PS was observed in the 2D plot (figure 5.32). However, the test data makes a good cluster 

with its kind with minimal variance. Figure 5.33 shows excellent separation between different 
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classes of plastics with minimal variance between the interclass spectra. Also, the test data 

makes cluster with the same type with minimal variation, representing the possibility of good 

classification after LDA feature extraction. Similarly, a very good separation and minimal 

variance between LDPE, HDPE and PP is observed in the local dataset (figure 5.34). Also, the 

test dataset makes cluster around its actual training type but has a larger spread than the global 

dataset. Despite the similarities observed between HDPE, LDPE and PP in former analyses, 

LDA can separate them for global and local datasets. 

 

Figure 5.32. (a) 2D and (b) 3D plot of initial LDs correspond to original dataset. 

 

Figure 5.33. (a) 2D and (b) 3D plot of initial LDs correspond to global dataset. 

 

Figure 5.34. 2D plot of first two LDs correspond to local dataset. 
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After LDA, ANN analyses were employed on the first LD, first two LDs and so on up to the 

maximum number of LDs. The average classification accuracies obtained from ANN analyses 

were shown in figure 5.35. From the figure, it can be noticed that for the global dataset, the 

classification accuracy corresponding to the first LD and first two cumulative LDs are 

comparatively low, i.e., less than 90%, which could be due to the underfitting of the ANN 

model as number of data points for training is very small. However, the input of three 

cumulative LDs result in very good classification accuracy close to 100%. Furthermore, for the 

local dataset, the accuracy in classification remains as poor as in the earlier cases. Also, in the 

original dataset, the accuracy is poor due to the misclassification between HDPE, LDPE, and 

PP. 

 

Figure 5.35. Classification of post-consumer plastics by considering different LDs as input to ANN. 

5.4.2.4.  Discussion 

Identification of unknown post-consumer plastics is demonstrated. For the experiment, 30 

post-consumer plastics from widely used six categories i.e. five from each were collected and 

subjected to LIBS experiment. ANN analyses were performed to differentiate six groups of 

plastics. The ANN model has been developed to mimic the real-time application scenario 

where the sample subjected to the test is never a part of the training. Notably, one sample out 

of 30 was reserved as an ‘unknown,’ while the neural network was trained using the 

remaining 29 samples. This process was repeated iteratively 30 times to each sample. At first, 

ANN analysis was performed on the total data considering six groups. However, the ANN 

model fails to differentiate between HDPE, LDPE and PP due to their high similarity in 

chemical structure and spectral signature. To resolve this, HDPE, LDPE and PP were grouped 
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as single class HLP and the dataset containing HLP, PET, PS and PVC is called ‘global dataset’ 

where the original dataset containing six groups was remained as ‘original dataset’. The ANN 

analyses were performed on global dataset and when a spectrum is identified as HLP, it 

undergoes another ANN model, which is trained with only HDPE, LDPE and PP (local 

dataset). This methodology is repeated for all above-discussed feature selection and feature 

extraction approaches. After all the analyses, it is concluded that the prediction accuracy for 

the global dataset is high for most of the feature selection and feature extraction approaches. 

However, not even a single feature selection or extraction approach could classify correctly 

between HDPE, LDPE, and PP for the original and local datasets. This section discussed the 

results obtained from the global dataset while delving into the potential for real-time 

implementation of this technique and exploring future prospects. 

 

Figure 5.36. Overall averaged classification accuracies obtained from various feature selection and 

feature extraction methods. Here MF represents manual feature selection. The black square, red circle 

and blue triangle represent the result corresponding to original, global and local dataset, respectively. 

The averaged classification accuracies obtained from all the feature selection and extraction 

approaches for the global dataset are summarized in figure 5.36. From the figure, it can be 

noticed that the full spectra as input result in excellent accuracy (99.77%). In the case of all the 

feature selection approaches (manual and RF) more than 96% classification accuracy has been 

achieved. In the case of PCA feature extraction, results corresponding to initial PCs are poor, 

possibly due to the underfitting of the ANN model due to smaller datasets. However, for PCs 

with more than six as input, the classification accuracy becomes more than 90%, and the 

maximum accuracy (99.97%) is obtained for 60 PCs as input to the ANN model among all the 
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feature selection and extraction approaches. Similarly, in the LDA feature extraction approach, 

the initial two LDs result in lower accuracy (< 90%) likewise initial PCs. Moreover, compared 

to PCA, LDA as input to ANN shows poor classification rate. In terms of accuracy, PCA 

followed by 60 PCs as an input to ANN yields maximum accuracy and is the best choice for 

global dataset. 

Table 5.17. Comparison of various feature selection and extraction approaches for classification of post-

consumer plastics for global dataset. 

 
Classification 

accuracy (%) 

Testing 

time (ms) 

Input data 

size (MB) 

ANN model 

size (MB) 
Classification index 

Full spectra 99.77 137 143 1.56 0.47 

MF 

Peak area 99.62 126 84 1.37 0.58 

CHN peak 

area 
97.27 140 25 0.29 2.40 

Peak heights 98.48 125 4 0.07 10.65 

RF 

VI > 0.001 99.17 129 19 0.23 3.41 

VI > 0.002 96.28 125 10 0.13 6.04 

VI > 0.003 98.21 125 6 0.09 9.13 

VI > 0.004 98.44 124 4 0.06 12.41 

PCA 

1 PC 30.49 130 143 0.03 9.00 

2 PCs 48.28 131 143 0.03 13.66 

4 PCs 81.29 127 143 0.03 22.00 

6 PCs 96.82 130 143 0.03 22.58 

8 PCs 98.81 134 143 0.04 20.41 

10 PCs 99.9 132 143 0.04 19.92 

20 PCs 99.86 129 143 0.05 16.86 

40 PCs 99.94 129 143 0.06 14.03 

60 PCs 99.97 147 143 0.08 9.05 

80 PCs 99.93 128 143 0.09 8.59 

100 PCs 99.92 131 143 0.11 7.24 

LDA 

1 LD 73.64 130 143 0.02 23.55 

2 LDs 81.66 129 143 0.03 24.27 

3 LDs 98.13 150 143 0.03 23.31 

*The blue colour indicates the approaches with classification accuracies greater than 90%. 

The testing time, input data size, ANN model size and classification index for all the feature 

selection and extraction approaches are discussed in table 5.17. In terms of testing time, RF 

with VI threshold 0.004 reflect the fastest prediction with an accuracy of 98.44%. However, 

no significant difference is observed in the testing time of all the approaches even though data 

size is reduced, as several factors contribute to the overall testing time apart from the size of 
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the input data. For example, in the present work, the ANN algorithm undergoes 

GridSearchCV to optimize hyperparameters such as number of neurons and epochs, which 

vary each time while training the model with a new dataset. The variations in optimized 

hyperparameters for different models can influence the testing time differently. Additionally, 

since each ANN model utilizes many steps, it might take a significant amount of time, 

irrespective of the input data size. Furthermore, ANN algorithm has some inherent overhead, 

including model initialization, loading weights, model compilation, making predictions, etc., 

which consume approximately the same time for each analysis. Moreover, the hardware 

limitations and underutilization of the computational device's multiple-core parallelism can 

overshadow the reduced time due to a smaller dataset. Therefore, when considering these 

factors collectively, the significant impact on the overall testing time is low.  

Table 5.17 shows that in terms of classification index, LDA feature extraction with 2 LDs 

followed by ANN gives the best overall result; however, the accuracy is below 90%, i.e., 

81.66%. This approach can be useful in some specific applications where the instrument needs 

to be cost effective and fast and more than 80% accuracy is acceptable. However, considering 

better accuracy, i.e., at least more than 90%, the best analysis protocol will be LDA with 3 

LDs. 

5.5. Summary 

This chapter demonstrates the efficacy of employing a fusion of LIBS data and machine 

learning algorithms for the swift and precise identification of explosives and different types of 

post-consumer plastics. The study utilized a psLIBS setup incorporating a low-cost, compact 

CCD spectrometer. Material classification was executed using ANN and diverse feature 

selection and extraction methodologies. The results obtained from these diverse approaches 

were thoroughly compared, encompassing accuracy, computational time, and resource 

utilization measures. This comprehensive analysis provides insights into the optimal method 

for accurate material identification while considering efficiency and resource allocation. 

For explosive detection, two steps were considered. Initially, each sample underwent scrutiny 

to ascertain its classification as either explosive or non-explosive. Subsequently, samples 

identified as explosive underwent a secondary classification process to determine their specific 

type. Among various feature selection approaches, ANN combined with LDA feature 

extraction achieved a flawless 100% accuracy for classifying between explosive and non-

explosive. In the case of classification within explosives, maximum accuracy (99.8%) was 

obtained for full spectrum and manual feature selection with peak area. However, both the 
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training and testing were performed on the LIBS spectra obtained from the same samples. In 

real-world scenarios, the model encounters unknown samples that hasn't been seen by the 

trained model during the training process. Given the limited quantity of explosive samples 

available, the training and testing were conducted using the same set of samples. Multiple 

spectra were recorded and then randomly divided for training, validation and testing purposes. 

This study can further be extended by considering a large set of samples. 

Further, to explore the effect of testing on a new sample, the study was extended to a large 

number of plastic samples. For the identification of post-consumer plastics, two sets of samples 

were considered. Firstly, nine different post-consumer plastics were collected from a local 

recycling unit, and both training and testing were performed on the same sample. Secondly, 

30 post-consumer plastics representing six commonly used types (HDPE, LDPE, PP, PET, 

PS, and PVC), five samples from each category were collected from garbage and testing was 

performed on unknown plastic, mimicking real-world scenarios for identifying unfamiliar 

post-consumer plastics. In the first case, PCA with 30 PCs as input to the ANN model 

represents the best classification in terms of accuracy, computational time and storage 

requirement. However, in the subsequent case (30 plastics), ANN fails to classify between 

HDPE, LDPE and PP even using various feature selection and extraction approaches due to 

their high degree of similarity in chemical and spectral signature. Therefore, by considering 

these three plastics as a single group, results show classification with a high degree of 

confidence with many feature selection and extraction approaches. In particular, LDA feature 

extraction with 3 LDs as input to the ANN was found to have the best results in terms of 

accuracy, computation time, and storage. 

By comparing two approaches considered for discrimination of plastics, better results obtained 

in the prior case where the training and testing were performed on the same sample. 

However, this approach is meaningless in terms of real-time application as the testing samples 

will be completely unknown to the training model. Therefore, the second approach represents 

the real-time application scenario, but it fails to distinguish between three categories of plastics 

out of six. Therefore, in real-time scenario, this technique can be used to differentiate between 

HLP, PET, PS, and PVC. The classification between HDPE, LDPE and PP can performed by 

using the conventional technique for the time being. This will reduce the workforce 

requirement by half as three plastic categories out of six can be sorted efficiently. 

Further, to improve the classification accuracy between HDPE, LDPE and PP, these studies 

might be extended by employing other powerful machine learning classifiers like 
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convolutional neural network (CNN), extreme gradient boosting (XGBoost), etc. Also, more 

statistical approaches can be implemented for feature selection or feature extraction like 

genetic algorithm (GA), successive projection algorithm (SPA) and stepwise formulation(SW), 

analysis of variance (ANOVA), etc. in order to further increase the prediction accuracy and 

lower the testing time. The ANN performances in terms of computation time can be explored 

with low-cost microcontrollers like Arduino, Raspberry Pi, etc. 
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Machine learning in Raman 
spectroscopy for quantification of 

explosive mixtures 

Detection of explosives and their residues in real time is of paramount 

importance to homeland security and military. In real-time applications, the 

suspected materials may contain several chemical compounds making the 

detection even more challenging. This chapter demonstrates a compact 

portable Raman spectroscopic tool for quantitative detection of constituent 

explosives in a binary mixture using machine learning. For the experiment, two 

samples (1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and ammonium nitrate 

(AN)) were considered and mixed at different weight percentages. Various 

regression models such as linear regression, partial least square regression 

(PLSR), support vector regression (SVR), decision tree regression (DTR) and 

random forest regression (RFR) were employed to quantify the amount of 

RDX and AN. The Raman spectra were analyzed with and without 

background correction. Further, various feature/variable selection strategies 

were explored to find out the best analysis protocol. The analyses show that the 

background correction of the spectra does not improve the accuracy 

significantly. Among various feature selection techniques in conjunction with 

various regression models, RDX peaks as input for the RFR model yield the 

best result in terms of accuracy. However, after considering multiple factors 

such as slope, intercept, and testing time, it was observed that the DTR model 

using only peak areas with background correction is the most optimal strategy. 

The results demonstrate that Raman spectroscopy combined with machine 

learning can be used as a reliable, compact, and fast tool for the real-time 

investigation of explosive mixtures. 
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 Chapter 6 

6.1 Introduction 

In the last few decades, the threat to homeland security around the world urged the need for 

an automated portable device for the rapid detection of explosives and high energy materials 

(HEMs) in the real field. Especially in public places like airports, railway stations, metro 

stations, shopping malls, worship places, etc., an advanced explosive detection device based on 

modern analytical techniques is essential for detecting HEMs, particularly explosive mixtures, 

with high confidence. 

Several spectroscopic techniques have been developed for the detection of explosives, 

including laser induced breakdown spectroscopy[1], Raman spectroscopy[2], laser induced 

fluorescence[3], terahertz spectroscopy[4], mid-infrared laser spectroscopy[5], etc. Raman 

spectroscopy is a powerful molecular spectroscopic technique renowned for its ability to 

interrogate and identify the vibrational states of the molecules. It is one of the most popular 

analytical technique widely used for the identification of HEMs. In this method, a 

monochromatic light is focused onto a sample and analyses the scattered light to reveal 

molecular vibrations unique to different chemical bonds and structures. By detecting the 

energy shifts in the scattered light, Raman spectroscopy serves as an invaluable analytical tool 

for molecular fingerprinting and monitoring changes in molecular bond structure within a 

wide range of materials, including solids, liquids, and gases. Raman spectroscopy has various 

advantages over other analytical techniques, including low-cost experimental setup[6], 

compact and portable instrument[7], capable of molecular detection without requiring any 

sample preparation, standoff detection capability with the use of pulsed laser[2,8], etc. Raman 

spectroscopy is widely used in various research areas such as environmental monitoring[9], 

quality control of food items[10], explosive detection[11,12], etc. 

Several researchers across the globe use Raman spectroscopy as a potential tool for the 

detection of explosives and hazardous materials. For example, D. Diaz and D. W. Hahn 

reported the detection of AN commonly used for the manufacture of improvised explosive 

devices (IEDs) in various mixtures, such as AN-soil and AN-water mixtures[13]. K. K. Gulati 

et al. have used a standoff Raman configuration using a pulsed laser to detect p-nitro benzoic 

acid (PNBA) and AN deposited on various background surfaces[2]. Using time-gated Raman 

spectroscopy, the same group also studied PNBA mixed with different materials like sand and 

soil. C. Byram et al. demonstrated instant detection of various explosives using surface-

enhanced Raman spectroscopy (SERS), using gold nanoparticles and nanostructures as SERS 

platforms[14]. M. Gaft and L. Nagli have also demonstrated standoff detection of various 
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explosives using Raman spectroscopy[8]. Several other works have also been devoted to 

literature for bulk and trace detection of explosives using Raman spectroscopy[15–19]. 

However, most of the research has been performed for bulk and trace detection of explosives. 

A few studies were focused on the bulk detection of explosives mixed with other 

materials[13]. 

This chapter explores quantitative detection of RDX mixed with AN at different weight 

percentages. The choice of RDX and AN mixtures has specific significance in real-time as its 

mixtures are not only used as military and commercial explosives but also for IEDs[20–23]. 

More importantly, AN is popularly used as fertilizers for farming and is easily accessible; in 

such cases, identification and quantification of explosives like RDX become crucial if mixed 

with AN. Here, a low-cost, compact, and portable Raman spectroscopic setup is used to 

detect explosive mixtures. For the experiment, RDX and AN were mixed at different 

concentrations. Subsequently, several regression techniques were employed on the Raman 

spectra to investigate the weight percentage of each sample. In addition, various manual 

feature selection approaches were examined to determine the most effective analysis protocol. 

6.2 Materials and Methods 

Two explosives, viz., RDX and AN, and their mixtures were considered for the present 

experiment. Figure 6.1 illustrates the molecular structures of RDX and AN. A total of six 

samples were prepared, consisting of two pure samples and four mixtures of RDX and AN at 

varying weight percentage ratios. Table 6.1 contains comprehensive information about the 

composition of the mixed samples. 

 

Figure 6.1. Molecular structure of RDX and AN. 

For each sample, the proportion of RDX and AN (Table 1) were first mixed and then ground 

with mortar and pestle for 15 mins to make each mixture homogeneous. After that, circular 

pellets of diameter 10 mm were prepared for each sample by applying 2 tons of hydraulic 

pressure for 5 mins. The pellets were prepared to give each sample a flat, uniform surface. 
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Table 6.1. Details of the mixture samples mixed at different concentrations. 

Sample 
No. 

RDX  AN 

Quantity (mg) Concentration (wt %)  Quantity (mg) Concentration (wt %) 

1 200 100  0 0 

2 160 80  40 20 

3 120 60  80 40 

4 80 40  120 60 

5 40 20  160 80 

6 0 0  200 100 

The schematic diagram of the experimental setup is shown in figure 2.7 of chapter 2. In detail, 

a compact portable diode-pumped continuous-wave (CW) laser (M/s, OceanOptics – 

I0785MM0350MS) emitting monochromatic light at 785 nm and delivering a maximum 

power of ~350 mW was used. The laser light was focused onto the sample surface using a 

Raman probe (M/s, (OceanOptics – RIP-RPB-785-FC-SMA) of a working distance of 7.5 

mm and spectral range of 300 – 3900 cm-1. The same probe collected the Raman scattering 

and delivered them to a Czerny-Turner CCD spectrometer (M/s, Ocean Optics – QEPro) 

with a detection range of 300 – 3000 cm-1 and optical resolution of 11 cm-1. Under this 

experimental setting, 50 Raman spectra were acquired from each sample (total: 6 × 50 = 300 

spectra). All the spectra were recorded with an integration time of 10 seconds. 

6.3 Spectral Interpretation 

The Raman spectra of RDX mixed with AN at different ratios are depicted in figure 6.2. 

Figure 6.3 shows the typical background correction. All the spectra were normalized w.r.t. to 

the total area, i.e., each intensity value divided by the total area of the spectrum. All the 

vibrational signatures of RDX and AN were identified and assigned based on earlier 

reports[13,24]. The Raman shift at 856 cm-1 is attributed to the C – N – C stretching 

vibrations of RDX, and the band at 894 cm-1 is due to the CH2 bending. Other strong bands 

were also observed in RDX, i.e., the band at 1223 cm-1 was noticed due to the stretching of 

N – C – N, and the bands at 1281 and 1315 cm-1 were observed due to the stretching of the 

N – NO2 band. An intensity band is also observed in RDX at 1352 cm-1 which is due to the 

axial stretching of N – NO2. Similarly, some Raman modes were also observed in the AN. 

For instance, the AN mode associated with the NO3
− ion in-plane deformation was observed 

at 723 cm-1. Similarly, the AN mode associated with the NO3
− ion symmetric stretching is 



 

145 

 Machine learning in Raman spectroscopy for quantification of explosive mixtures 

located at 1050 cm-1. These are the Raman modes observed in the present work; however, 

these have been reported at slightly different locations in the literature, which may be due to 

the different optical resolutions of different spectrometers used[13,24]. 

 

Figure 6.2. Normalized Raman spectra of RDX and AN mixtures mixed at different wt% (a) before 

and (b) after background correction. 

 

Figure 6.3. RDX spectrum with background (left) and after background removal (right). 

From figure 6.2, it can be observed that with increasing the concentration of RDX, the 

intensities of Raman peaks corresponding to RDX increase gradually and vice-versa. Similarly, 

with increasing AN concentration, the Raman intensities of AN bands increases and vice-
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versa. Apart from that, it also has been observed that the background of the whole spectrum 

increases with increasing RDX concentration and decreasing AN concentration. 

Except for pure RDX and AN, all four mixtures’ spectra look similar as they represent the 

vibrational signatures of both; therefore, it is not possible to quantify the amount of RDX 

and/ or AN in the mixtures from the spectral observations alone. However, the intensities of 

each peak differ from sample to sample, which is proportional to the concentrations of that 

element in the sample; hence, quantitative analysis is necessary to detect the amount of RDX 

and AN proportion present in each mixture sample. 

6.4 Quantitative Analysis 

The quantitative analysis of Raman spectroscopy is divided into uni- (and bi-variate) and 

multivariate analysis. Uni- or bi-variate analysis considers intensity at one or two 

wavenumbers as variables/features from the Raman spectrum to extract the quantitative 

information. Conversely, multivariate analysis employs intensities at many wavenumbers as 

variables. The advantages of univariate analysis are that it is less time-consuming and more 

straightforward calculation. However, multivariate analysis has its own advantages as it 

considers multiple features corresponding to the analytes of interest rather than one/two 

intensity values. In this context, to quantify the explosive mixtures, various machine learning 

algorithms such as linear regression (univariate and multivariate), partial least square regression 

(PLSR), support vector regression (SVR), decision tree regression (DTR) and random forest 

regression (RFR) were employed. Further, regression analyses were also performed using 

various manual feature selection approaches. 

6.4.1  Linear Regression Analysis 

The univariate analysis using linear regression is called simple linear regression (SLR) and the 

multivariate analysis is called multiple linear regression (MLR). 

SLR estimates the relationship between a single explanatory variable (X) and dependent 

variable (Y) and constructs a regression line/model. Then the regression line is used to predict 

the value of Y for an unknown X. In SLR, the relationship between the explanatory variable 

and dependent variable is represented by the following equation[25]: 

     0Y X e = + +
    (6.1) 
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Where 0 and 1 are the intercept and slope of the regression line, respectively, and e is the 

error term. 

MLR is used to predict the dependent variable (Yi) values for a given N number of 

explanatory variables (X1, X2, X3, …, XN). In MLR, the relationship between the explanatory 

variable and dependent variable is represented by the following equation[25]: 

0 1 1 2 2 3 3 ...i i i i N NiY X X X X e    = + + + + + +
   (6.2) 

Where 0 is the constant term and 1, 2, 3, …, N are the coefficients of N explanatory 

variables, respectively. Here, the intensities at different wavenumbers are the variables. 

Hence, MLR is an extension of the SLR, which considers multiple explanatory 

variables/features simultaneously to construct the regression model, and SLR is a special case 

of MLR, where N = 1. 

 

Figure 6.4. SLR prediction of RDX concentrations in RDX and AN mixtures using (a) RDX Raman 

peak height at 894 cm-1 and (b) AN Raman peak height at 1050 cm-1. (i) represents the SLR 

prediction by considering the spectra without background correction and (ii) represents the results 

from background corrected spectra. 

The univariate quantitative analysis using SLR was performed separately on the two most 

intense Raman peaks, i.e., 894 and 1050 cm-1 correspond to RDX and AN, respectively. SLR 

is used in both cases because the number of features is one. For each analysis, a total of 300 

spectra were considered. The data was first split randomly into 80% for training and 20% for 
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testing. The training data is used to train/construct the SLR model and the testing data is used 

to predict the concentrations of RDX mixed with AN. A total of 100 iterations were 

performed for the training, followed by testing. The algorithm for the complete analysis was 

designed and programmed in Python. Figure 6.4 represents the prediction of RDX 

concentrations in the mixtures from the SLR of RDX peak height and AN peak height, 

respectively. The red dashed line in each graph represents the reference line representing the 

actual concentrations of RDX and the solid blue line represents the regression line of 

concentration prediction. 

From figure 6.4, it can be observed that the SLR doesn’t yield a good result for both raw 

spectra and background corrected spectra. It estimates a slope of 0.777 and 0.758 for the 

regression lines constructed using raw and background corrected RDX Raman peak height, 

respectively. In the case of AN Raman peak height as input to the SLR model, the results are 

worse for both raw and background corrected spectra. Therefore, SLR model fails to predict 

the concentrations of RDX and/ or AN in their mixtures. 

Further, MLR was employed on the Raman spectra of all the mixture. At first, the MLR 

analysis was performed by considering the full spectra as input, and further four manual feature 

selection approaches were employed, which provide four different sub-spectra to the input of 

the MLR algorithm. The details of the Raman shift ranges and the number of features 

associated with various approaches are represented in table 6.2. 

Table 6.2. Various feature selection approaches considered for regression analysis. 

Sl. 

No. 

Feature selected 

spectrum 

Features 

included 
Range of Raman shift (cm-1) 

Number of 

features 

Fraction of total 

data (%) 

1 S1 Full Spectrum 300 - 3000 1044 100 

2 S2 Peak range 703 - 1369 219 21 

3 S3 Only peaks 
703 - 746, 830 - 932, 1028 - 

1080, 1199 - 1369 
125 12 

4 S4 RDX peaks 830 - 932, 1199 - 1369 93 9 

5 S5 AN peaks 703 - 746,1028 - 1080 32 3 

In this case, the sub-spectra were selected manually based on the Raman peak region. S1 

represents the full spectrum. The sub-spectra S2 represents the range of the spectra where 

Raman peaks are present, sub-spectra S3 represents only those areas where the peaks are 

present, sub-spectra S4 and sub-spectra S5 represent the spectral area where only RDX and 

AN peaks are present respectively. Figure 6.5 visualizes the feature-selected areas of one of the 
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mixture spectra. From figure 6.5, it can be observed that various manual feature selection 

approaches involve different numbers of features. The number of features associated with each 

feature selection approach is represented in table 6.2. From table 6.2, it can be noticed that in 

comparison to the full Raman spectrum, all four feature-selected sub-spectra contain a much 

smaller number of features. 

Finally, MLR analyses were employed on S1 – S5 under similar conditions as SLR. Like the 

univariate analysis, the total data were randomly split into 80% training, and 20% testing data, 

and 100 iterations were performed for training and testing. The regression lines obtained from 

all MLR analyses are represented in figure 6.6. Figure 6.6 shows that the MLR analyses 

yielded a very good result compared to the SLR analyses with R – square and slope of ~1 for 

both raw and background corrected spectra. However, the nature of the regression lines is 

similar in all cases and there is not much difference between the raw and background 

corrected spectra. 

 

Figure 6.5. Raman spectrum (S1) and various feature selected sub-spectra (S2 – S5) of RDX and AN 

mixture. 
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Figure 6.6. MLR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2, 

(c) S3, (d) S4, and (e) S5 as input. (i) represents the MLR prediction by considering the spectra 

without background correction and (ii) represents the results from background corrected spectra. 
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6.4.2 Partial Least Square Regression (PLSR) Analysis 

 

Figure 6.7. PLSR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2, 

(c) S3, (d) S4, and (e) S5 as input. (i) represents the PLSR prediction by considering the spectra 

without background correction and (ii) represents the results from background corrected spectra. 
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PLSR is a powerful machine learning approach that combines regression analysis with 

dimensionality reduction. PLSR was created as a flexible approach for dealing with 

complicated datasets, and it is especially beneficial when dealing with high-dimensional, 

multicollinear, or noisy data. Unlike traditional regression methods that focus solely on finding 

relationships between predictors and a response variable, PLSR simultaneously considers both 

predictor and response variables, effectively extracting and highlighting patterns in the data. 

This method is widely employed in conjunction with Raman spectroscopy for various 

applications[26–29]. 

PLSR was employed on full spectra and various feature selected sub-spectra (see table 6.2), 

mirroring the methodology applied in MLR. The examinations were conducted on Raman 

spectra, both with and without background correction.  

Figure 6.7 visualizes the regression lines obtained by employing various feature selection 

approaches for Raman spectra, considering the presence or absence of background correction 

in the analysis. From the figure, it can be noticed that the performance in predicting the RDX 

concentration is significantly inferior as compared to MLR. In contrast to the results obtained 

using MLR, the reference lines had significantly lower R-square and slope values a little far 

from zero, indicating poor results. Furthermore, there are cases where the predicted values 

differ significantly from the actual values, for example, in Fig. 6.6 (a – i), where the actual 

concentration is at 40 wt%. 

6.4.3  Support Vector Regression (SVR) Analysis 

SVR is a popular machine learning method for regression analysis that excels at handling both 

linear and non-linear data. SVR is a modification of the support vector machine (SVM) 

algorithm. Instead of trying to minimize errors like traditional regression algorithms, SVR 

focuses on fitting a defined margin of tolerance around the predicted values within a 

predetermined threshold of deviation or error. The core principle of SVR involves mapping 

the input data to higher dimensional space in order to find the optimal hyperplane that fits 

well for the data points. This method enables the model to effectively handle outliers and 

complex variable interactions by allowing for adjustments within a specific range known as the 

epsilon tube or margin of tolerance. This strategy facilitates the management of fluctuations or 

deviations, allowing the model to capture intricate relationships between variables more 

accurately and effectively identify outliers.  
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Figure 6.8. SVR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2, (c) 

S3, (d) S4, and (e) S5 as input. (i) represents the PLSR prediction by considering the spectra without 

background correction and (ii) represents the results from background corrected spectra. 
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In SVR, the main idea is to maximize the margin between the epsilon tube and the actual data 

points by finding the hyperplane. This ensures a balance between the complexity of the model 

and its generalizability. Through the utilization of kernel functions, SVR is able to deal 

effectively with variable relationships that are not linear. This is achieved by implicitly 

projecting the input data into a higher-dimensional space while constructing a linear model. 

SVR is used in various applications of Raman spectroscopy[30–32]. 

In this context, SVR was employed on full spectra and various feature selected sub-spectra of 

mixtures in a similar manner as MLR and PLSR i.e., on both raw and background corrected 

spectra. The results obtained from full spectra and various feature-selected sub-spectra as input 

to the SVR model are described in figure 6.8. 

The figure indicates a significant discrepancy between the results and the ones obtained using 

MLR and PLSR. Specifically, the slope of the regression lines is below 0.8, where the ideal 

value should be 1. Not only that, but the R-squared values are also lower in comparison to 

MLR and PLSR. Additionally, there are many cases where the predicted values significantly 

differ from the anticipated values, highlighting significant inconsistency in the model’s 

prediction. 

6.4.4  Decision Tree Regression (DTR) Analysis 

DTR is one of the most effective and user-friendly machine learning methods for predictive 

modeling and analysis. The working principle involves iteratively constructing a tree-like 

structure by partitioning the feature space into smaller sections or nodes, guided by the input 

feature values. Each internal node denotes a decision point based on features, while each leaf 

node is associated with a predicted value. The building process of the tree involves binary 

splitting at each node that divides the data by minimizing the variance of the target variable. 

This process is repeated until a stopping criterion/threshold is not satisfied. The stopping point 

is achieving a maximum tree depth where the reduction in variance saturates. The 

interpretability of decision tree regression is a major advantage since it helps to visualize and 

comprehend the decision-making procedure. In addition to being resilient to outliers, decision 

trees can process both numerical and categorical data. 
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Figure 6.9. DTR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2, 

(c) S3, (d) S4, and (e) S5 as input. (i) represents the PLSR prediction by considering the spectra 

without background correction and (ii) represents the results from background corrected spectra. 
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On the other hand, decision trees can easily suffer overfitting when they grow too large and 

start to capture the noise data. Pruning, reducing tree depth, or employing ensemble 

approaches such as Gradient Boosting or Random Forests can improve the model’s 

performance and reduce the likelihood of overfitting. 

DTR is useful in many scientific fields where it is necessary to identify and evaluate 

interactions between variables in order to do predictive modeling and analysis. Several 

researches were devoted in literature to process Raman spectroscopic data using DTR for 

various applications[33,34]. 

Like previous regression methods, DTR was employed for the quantitative investigation of 

explosive mixtures here. The regression model was applied to the raw and background 

corrected spectra, as well as to various feature subsets. Figure 6.9 illustrates the results obtained 

by DTR under varying input data. 

The figure illustrates the impressive accuracy of the predictions obtained from DTR analyses 

for different sets of input data. There is a high degree of agreement between the actual and 

predicted values since the slope and R-squared values are almost 1 for each case. In 

comparison to previous regression analyses, the standard deviation (error) in calculating each 

concentration is significantly smaller, signifying heightening precision in the predictions. 

6.4.5 Random Forest Regression (RFR) Analysis 

RFR has become an important ensemble learning method in predictive modeling and analysis 

because of its adaptability and resilience when faced with complicated datasets. For regression 

problems, it works by building numerous decision trees and combining their predictions for 

more stable and reliable outcomes. Random forest comprises ensembles of decision trees, each 

trained on a section of the dataset and employing a random selection of features. Unlike a 

single decision tree, the ensemble method aggregates predictions from all the trees, which 

helps reduce the risk of overfitting and improves generalization. 

During the training process, the original dataset selects random samples with replacement 

(bootstrap samples) and constructs each tree individually. Also, a random subset of features is 

taken into account for splitting at each node of the tree, which adds diversity and 

randomization to the different trees. By averaging the predictions produced by all the trees in 

the forest, RFR determines the final outcome.  
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Figure 6.10. RFR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2, 

(c) S3, (d) S4, and (e) S5 as input. (i) represents the PLSR prediction by considering the spectra 

without background correction and (ii) represents the results from background corrected spectra. 
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In particular, this aggregation approach produces more robust and accurate results when 

working with high-dimensional or noisy data or with variables that exhibit non-linear 

correlations. One of the major advantages of RFR is successful handling of big datasets with 

several features while minimizing overfitting. In addition, it provides insights into the 

significance of features, which helps to determine which variables are most important for 

making predictions. Therefore, random forest is also used as a potential method for feature 

selection. RFR has numerous applications in diverse areas of research. It is also widely used in 

conjunction with Raman spectroscopy for various quantitative applications[35–38]. 

The results obtained from the RFR analyses for different sets of input data are described in 

figure 6.10. Similar to DTR, RFR stands out for its outstanding performance. In this case, the 

slopes and R-squared values are close to one, suggesting a strong correlation between the 

actual and predicted values. Furthermore, since the predictive error at individual 

concentrations is significantly less, the model’s predictions are accurate and precise. 

The results obtained by each regression method are compared in the next section, which also 

evaluates their performance in terms of accuracy and computational time. 

6.5 Discussion 

Raman spectroscopy has been used for the quantitative detection of explosives within 

mixtures. Samples with varied concentrations were prepared for this study by mixing RDX 

and AN at various weight percentages. The experiment was conducted using a portable, small, 

and low-cost Raman spectroscopic setup that allowed for the recording of multiple spectra for 

each sample. Various machine learning regression techniques were utilized to evaluate the 

concentration of RDX in the mixtures. These techniques include linear regression, PLSR, 

SVR, DTR, and RFR. The analyses were performed on both spectra with or without 

background correction. In addition, the study explored different feature selection methods that 

strive to maximize accuracy while minimizing the computing time for faster and more robust 

prediction. The former section meticulously presented the results obtained from different 

methodologies employed. This subsequent section is dedicated to a thorough dissection and 

comparison of all parameters, endeavoring to discern the most proficient approach. 

In order to evaluate the effectiveness and precision of a regression model, the parameters of 

the regression line (slope and intercept) showing actual vs projected concentrations in 

regression analysis are crucial. A steeper slope indicates a stronger correlation between the 

predictor and response variables, while a flatter slope indicates no change in the anticipated 
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values relative to the actual values. Minimal projected response without the predictor is shown 

by an intercept near zero. These parameters are essential for evaluating and improving the 

regression model, as they show how well the model predicts concentrations and how strongly 

they are related. Figure 6.11 represents the value of the slope and intercept obtained from all 

regression approaches. The Y-scale of the figure represent the distance of resulted slope of the 

regression line from the expected slope (slope of 1). Within the figure, the marker size 

represents the absolute value of the intercept—where larger markers denote more deviated 

intercept from zero, and smaller markers correspond to the intercepts close to zero. By 

comparing the regression lines corresponding to all the models with varying input data, it has 

been observed that the utilization of only peaks (S3) as input for the DTR model with 

background correction resulted in a remarkable slope of 0.999 and intercept of 0.007. This 

particular regression line stands out as the most optimal in terms of slope and intercept. 

Moreover, upon close observation of the figure, it becomes evident that, except PLSR and 

SVR, other methodologies demonstrate significantly better results in terms of both slope and 

intercept. 

 

Figure 6.11. Comparison of slope and intercept obtained from regression analyses. S represents spectra 

without background correction and BCS represents background corrected spectra. The size of the 

markers are scaled to the absolute value of intercept (abs(intercept)), i.e., the smallest marker represents 

the intercept closer to 0. 

Apart from regression line parameters, root mean square error (RMSE) is important in 

regression analysis, offering multifaceted insights into model performance and practical 

applicability. RMSE serves as a fundamental measure of the average magnitude of differences 

between actual and predicted values. RMSE can be defined as, 
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where N is the total number of observations. 

A lower RMSE indicates higher accuracy, meaning the model’s predictions closely match the 

actual data points. This demonstrates improved precision and superior performance. 

Additionally, computational efficiency becomes crucial in practical situations when quick 

decision-making or instant predictions are required. The importance of training time is very 

low compared to testing time, as models can be pre-trained before deployment, guaranteeing 

their preparedness for real-time testing situations. Therefore, the crucial factor is the 

effectiveness of the testing duration, which directly influences the model’s practical usefulness 

in real-time decision-making or live prediction settings. 

 

Figure 6.12. Comparison of testing time and RMSE obtained from regression analyses. S represents 

spectra without background correction and BCS represents background corrected spectra. The size of 

the markers is scaled to the RMSE value, i.e., the smaller markers represent low RMSE. 

Figure 6.12 depicts the duration of testing acquired from all regression methods for a single 

iteration. The sizes of the markers in the figure correlate to the RMSE of the predictions. 

Smaller markers represent lower RMSE values, while larger markers represent higher RMSE 

values. Remarkably, testing times remain low, consistently staying below 35 ms. When 

comparing the different models, all models except for RFR show similar time consumption, 

taking up to 15 ms. Among all the methods examined, employing AN peaks (S5) with 

background correction markedly decreases the computational time needed for the DTR 
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model. Notably, this approach requires only 0.5 ms, making it the fastest among all the 

examined approaches. PLSR and SVR have relatively greater levels of RMSE, indicating a 

lower prediction accuracy. However, all methods exhibit similar RMSE values, with the 

lowest value obtained by RFR when using only RDX peaks (S4) without background 

correction as input. The comprehensive examination in Figure 6.12 offers a sophisticated 

comprehension of testing durations and predictive precision across different regression models. 

This analysis gives useful insights for selecting and optimizing models to predict RDX 

concentration. 

After carefully analyzing the parameters such as slope, intercept, RMSE and testing time for all 

the models in combination with diverse input data, it is clear that finding a single model or 

combination that consistently predicts all parameters accurately is challenging. The intricacy of 

selecting the best model for all characteristics presents difficulties in defining the superior 

analysis protocol. In order to simplify and make this process of making decisions more 

efficient, a comprehensive indicator known as the “regression index” is proposed. The index 

combines all pertinent parameters, resulting in a numerical number that acts as a definitive 

criterion for choosing the most efficient analysis protocol. The regression index can be defined 

as, 

1
Regression Index = 

|1- Slope| × | Intercept | × RMSE × Testing time (ms) 
 (6.4) 

 

Figure 6.13. Regression indices obtained from all the analyses. S represents spectra without background 

correction and BCS represents background corrected spectra. 

A higher regression index indicates superior performance across multiple metrics, including 

slope, intercept, RMSE, and testing time. Figure 6.13 displays the regression index achieved 
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for all approaches. The figure shows that using S3 of the background-corrected spectra as 

input to the DTR model produces the best results from all aspect. 

In the present study, only RDX, AN, and their mixtures were considered for the Raman 

experiment, followed by regression analysis. However, in a real-life scenario, only a mixture 

sample will be available, and the matrix elements will be unknown. The sample can be a 

mixture of two, three, or many materials, including some explosives and some non-explosives. 

In such cases, the detection becomes more challenging as the first step is determining how 

many materials are mixed and what they are. The materials present in the mixture can be 

identified based on the peaks from the Raman spectra of mixtures. However, some materials 

can have a high similarity in the Raman spectra due to some common vibrational signatures. 

In such cases, other statistical and analytical techniques, like correlation, ordinary least squares, 

etc., may be used for the identification of matrix elements in a mixture. 

6.6 Summary 

This chapter presents a robust framework for the accurate detection of explosives in mixtures 

by using a portable Raman spectroscopic setup combined with machine learning techniques. 

In order to carry out the experiment, pure RDX and AN and their mixtures with different 

weight ratios were considered. Using a cost-effective portable Raman spectroscopic setup, 

spectra were recorded and analyzed by using both univariate and multivariate regression 

techniques. 

For the univariate analysis, SLR was employed on both raw and background-corrected 

spectra. The input for the SLR model was the peak height of the prominent Raman peaks of 

RDX and AN. Nevertheless, SLR demonstrated unsatisfactory predictive outcomes. 

Afterward, different multivariate regression models such as MLR, PLSR, SVR, DTR, and 

RFR were deployed. At first, the inputs consisted of entire spectra, both with and without 

background correction were considered and significantly higher predictive accuracy obtained 

in comparison to univariate techniques. 

To improve the analysis efficiency with retaining higher accuracy, various manual feature 

selection approaches were considered for the multivariate approaches. Nevertheless, no 

noticeable accuracy improvement was observed after feature selection. Furthermore, the 

application of background correction did not have a substantial effect on the accuracy of 

prediction. Of all the methods examined, using simply the RDX peaks (S4) as input for the 

RFR model resulted in the highest level of accuracy. However, after evaluating multiple 



 

163 

 Machine learning in Raman spectroscopy for quantification of explosive mixtures 

factors such as slope, intercept, and testing time. it was observed that the DTR model using S3 

with background correction is the most effective strategy. 

To summarize, this chapter demonstrates the efficacy of a portable Raman spectroscopic 

device for accurate identification and quantification of explosives in mixtures. This technology 

has significant potential for use in homeland security and military applications. 
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Conclusion and Future Scope 

This chapter presents the summary of the inferences derived from the research 

carried out in the thesis, while also delineating the future exploration of the 

work. The initial work focuses on developing a new method for elemental 

analysis using LIBS and understanding the dependence of plasma parameters on 

the material hardness. Furthermore, the investigation expands into the domain 

of machine learning combined with LIBS for the identification/classification of 

explosives and post-consumer plastics, with the objective of implementing 

them in real-time scenarios. Finally, the chapter presents a way of quantitatively 

detecting explosive mixtures by combining Raman spectroscopy with machine 

learning techniques. This novel methodology offers improved accuracy and 

effectiveness in identifying compositions, hence enhancing capabilities in 

homeland security and the military. The chapter covers a range of 

investigations, providing valuable insights into the current state of study. It also 

paves the way for future improvements and explorations in the integration of 

spectroscopic analysis and machine learning. The research aims to expand the 

limits of knowledge and practical applications in several domains, such as 

materials science and national security, by strategically combining scientific 

investigation and technology advancement. 
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 Chapter 7 

7.1 Conclusion 

The thesis focuses on the fundamental studies of LIBS towards development of Simplified 

LIBS-based Intensity-ratio approach for Concentration Estimation (SLICE) and harnessing 

machine learning for the classification of materials such as explosives and post-consumer 

plastics. It also discusses the dependence of various plasma parameters on the hardness of 

materials. Moreover, it delves into the applications of machine learning in Raman 

spectroscopy, aiming for the quantitative detection of explosives in mixtures. The following 

are the major conclusion of the thesis work. 

1. In Chapter 3, a new method based on LIBS was proposed for elemental analysis, namely 

the SLICE. For the experiment, two Cu-based alloy samples, one binary and one ternary, 

were considered. A detailed study of thermodynamic equilibrium was provided, along 

with the calculation of plasma parameters and plasma decay parameters (PDPs). The 

temporal dynamics of LIP were thoroughly investigated by modeling the temporal decay 

of plasma temperature and intensity ratio, providing valuable insights into plasma 

behavior. The elemental analysis was performed using SLICE, CF-LIBS and EDS. The 

elemental concentrations estimated by SLICE showed remarkable consistency with those 

obtained using CF-LIBS and EDS. Furthermore, the chapter briefly explored the 

advantages and limitations of the SLICE technique in comparison with CF-LIBS. The 

SLICE has remarkable advantages over CF-LIBS as it can offset the major bottlenecks for 

elemental analysis using LIBS. [A part this published in Applied Spectroscopy,2022 [1]]. 

2. Chapter 4 explores the significance of material hardness, providing a profound 

understanding of diverse industrial applications. Material hardness is an essential 

characteristic that determines how resistant a material is to deformation, indentation, and 

penetration. It is critical for building components and structures that are trustworthy. The 

chapter provides a thorough examination emphasizing the growing need for non-invasive 

techniques than the conventional approaches, particularly in difficult conditions. LIBS has 

been used to understand the dependence of various plasma parameters on material 

hardness. The experiment involves five iron-based alloy samples with same elemental 

composition and different hardness. The study investigates the correlation of plasma 

parameters, plasma decay parameters, and surface morphology in relation to changes in 

material hardness. The results demonstrate a constant linear relationship between the 

hardness of the material and the temperature of the plasma, the density of electrons, and 

the initial temperature of the plasma. In addition, the analysis reveals a linear decrease in 
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the radiative decay constant as the hardness increases. The chapter concludes by analyzing 

the correlation between crater diameter and material hardness, finding a consistent 

reduction in crater size as material hardness increases. This study improves the 

comprehension of the complex interactions between laser-induced plasma properties and 

material hardness. 

3. Chapter 5 explores the integration of LIBS with machine learning techniques for effective 

detection of explosives and classification of post-consumer plastics. It describes the 

utilization of a picosecond LIBS (psLIBS) system, equipped with a low-cost CCD 

spectrometer, for real-time applications. The study employs a systematic approach to 

combine ANN with various feature selection and extraction approaches. This integration 

aims to enhance accuracy, decrease computational time, and optimize resource allocation.  

The initial sections of this chapter involve the detection of explosives, where five 

explosive and twelve non-explosive samples were considered. In this case, two approaches 

were considered. Initially, each sample underwent scrutiny to ascertain its classification as 

either explosive or non-explosive. Subsequently, samples identified as explosive 

underwent a secondary classification process to determine their specific type. Among 

various feature selection approaches, ANN combined with LDA feature extraction 

achieved a flawless 100% accuracy for classifying between explosive and non-explosive. In 

the case of classification within explosives, maximum accuracy (99.8%) was obtained for 

full spectrum and manual feature selection with peak area. 

For the identification of post-consumer plastics, two sets of samples were considered. 

Firstly, nine different post-consumer plastics were collected from a local recycling unit, 

and both training and testing was performed on the same sample. PCA with 30 PCs as 

input to the ANN model represents the best classification in terms of accuracy, 

computational time and storage requirement. Nevertheless, this technique is not suitable 

for real-time application since in real-time scenario samples that are unknown to the 

trained model will be encountered. To address this, another study was performed on a set 

of 30 post-consumer plastics representing six commonly used types (HDPE, LDPE, PP, 

PET, PS, and PVC). Five samples from each category were collected from garbage and 

testing was performed on unknown plastic, mimicking real-world scenarios for identifying 

unfamiliar post-consumer plastics. 29 samples out of 30 are utilized for training and 

validation purposes, while the 30th sample, which is unfamiliar to the network, is 

employed for testing. Here, ANN fails to classify between HDPE, LDPE, and PP, even 

using various feature selection and extraction approaches due to their high degree of 
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similarity in chemical and spectral signatures. Therefore, by considering these three 

plastics as a single group, results show classification with a high degree of confidence with 

many feature selection and extraction approaches. In particular, LDA feature extraction 

with 3 LDs as input to the ANN was found to have the best results in terms of accuracy, 

computation time, and storage.  

By comparing two approaches considered for discrimination of plastics, better results 

obtained in the former case where the training and testing were performed on the same 

sample. However, this approach is meaningless in terms of real-time application as the 

testing samples will be completely unknown to the training model. Therefore, the second 

approach represents the real-time application scenario, but it fails to distinguish between 

three categories of plastics out of six. Therefore, in real-time scenario, this technique can 

be used to differentiate between HLP (HDPE, LDPE & PP), PET, PS, and PVC. The 

classification between HDPE, LDPE and PP can performed by using the conventional 

technique for the time being. This will reduce the workforce requirement by half as three 

plastic categories out of six can be sorted efficiently. 

4. Chapter 6 demonstrates a compact portable Raman spectroscopic tool for quantitative 

detection of constituent explosives in a binary mixture using machine learning. For the 

experiment, two samples (1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and ammonium 

nitrate (AN)) were considered and mixed at different weight percentages. Various 

regression models such as linear regression, partial least square regression (PLSR), support 

vector regression (SVR), decision tree regression (DTR) and random forest regression 

(RFR) were employed to quantify the amount of RDX and AN. The Raman spectra 

were analyzed with and without background correction. Further, various feature/variable 

selection strategies were explored to find out the best analysis protocol. The analyses show 

that the background correction of the spectra does not improve the accuracy significantly. 

Among various feature selection techniques in conjunction with various regression 

models, RDX peaks as input for the RFR model yield the best result in terms of 

accuracy. However, after considering multiple factors such as slope, intercept, and testing 

time, it was observed that the DTR model using only peak areas with background 

correction is the most optimal strategy. The results demonstrate that Raman spectroscopy 

combined with machine learning can be used as a reliable, compact, and fast tool for the 

real-time investigation of explosive mixtures. [A part this published in Journal of 

Optics,2023 [2]] 
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7.2 Future Scope 

1. The thesis presents SLICE, a novel approach for elemental analysis, with a particular focus 

on its pilot study and experimental verification using alloy samples with bulk elemental 

composition. The current study is an initial investigation that emphasizes the ability of the 

technique to be applied to a wide range of materials with different matrix elements and 

compositions, including trace elements. This suggests that the method has promise for 

broader use. The thesis promotes additional exploration of the capabilities of SLICE, 

highlighting the importance of thorough comprehension and validation to fully unleash its 

potential in elemental analysis. 

Further the SLICE is based on the radiative relaxation mechanism of the laser induced 

plasma where the collisional decay is considered negligible. However, at the initial stage 

of the plasma relaxation, the plasma will show radiative decay only as the shockwave 

protects the plasma from the interaction of environmental atoms with the plasma 

emissions. But with time, the shockwave becomes weak gradually due to expansion 

which allows the outside atoms to interact with the atoms/ions of the plasma resulting in 

collisional decay. Thus, considering the temporal range where the contribution of 

collisional decay is negligible, the elemental analysis can be performed with better 

accuracy and precision; hence, optimization of the temporal window is important. Also, 

optimization of other parameters like ambient gas and pressure are important as they affect 

the broadening of spectral lines and plasma relaxation [3,4]. Therefore, future work can be 

devoted to optimize different parameters like the temporal window for data acquisition, 

ambient gas, and pressure, etc. 

2. Comprehending the relationship between plasma parameters and material hardness is a 

significant area of focus in LIBS research. This is particularly important due to the 

increasing need for non-invasive and remote methods of testing hardness, especially in 

demanding settings like space shuttles, TOKAMAKs, nuclear power plant vessels, etc. [5]. 

This thesis investigates the correlation between plasma parameters, plasma decay features, 

and surface morphology in relation to changes in material hardness. Although the initial 

findings show promise, discrepancies noted by other researchers necessitate further 

investigation. To get more understanding, expanding the study to encompass a larger and 

more diverse sample set, encompassing a wider range of hardness values, could yield more 

profound insights into this correlation. In addition, expanding the range of materials used 

beyond alloys could provide a more thorough comprehension of the phenomena, thereby 

enhancing the practicality and resilience of hardness testing procedures based on LIBS. 
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3. In the domain of explosive detection using LIBS, the combination of machine learning, 

feature selection, and extraction has shown remarkable accuracy. However, the current 

limitation of this study is its inability to be applied in real-time situations. This analysis was 

performed on a restricted collection of explosive samples, with both training and testing 

performed on the same sample due to constraints in sample availability. In order to 

improve practicality, future research efforts could encompass a wider variety of both 

explosive and non-explosive samples, extending analysis to unknown samples to mimic 

real-time scenarios effectively. Furthermore, enhancing the efficiency of the equipment 

configuration shows potential for practical implementation in the field, with possible 

approaches including reducing size and lowering expenses. Contemporary, small-sized, 

and economical lasers that are easily accessible at present offer practical choices. 

Additionally, incorporating data collection and processing into microcontrollers such as 

Arduino or Raspberry Pi could simplify operations and reduces size and cost, making it 

easier to deploy and use in real-life scenarios. 

4. A significant problem that persists is enhancing the ability to identify different types of 

plastics is classifying between HDPE, LDPE, and PP, using LIBS, especially when dealing 

with unknown samples. In order to improve the accuracy of classification, future research 

can incorporate advanced machine learning classifiers such as convolutional neural 

networks (CNN) and extreme gradient boosting (XGBoost). Additionally, additional 

statistical methods like genetic algorithms (GA), successive projection algorithms (SPA), 

stepwise formulations (SW), analysis of variance (ANOVA), etc. can be utilized for feature 

selection and feature extraction. Furthermore, the investigation of data fusion approaches 

through the integration of LIBS with complementary technologies such as Raman 

spectroscopy has the potential to provide improved plastic sorting capabilities. 

Investigations should encompass a wider variety of samples, such as e-waste, in order to 

fully explore its potential for reuse. Additionally, it is important to consider the effects of 

additives on the accuracy and measurement of categorization in industrial applications. It 

is essential to consider practical factors, such as the implementation of laser beam cleaning 

shots to eliminate dust and debris for immediate measurements, as well as the optimization 

of sample transportation using a conveyor belt model, in order to conduct real-time 

investigations effectively. In addition, utilizing microcontrollers such as Arduino and 

Raspberry Pi for the purpose of recording, analyzing, and making decisions based on data 
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can make the system cost-efficient and small in size, thereby making it more suitable for 

real-time applications. 

5. Finally, for quantitative detection of explosives, mixture samples of RDX and AN were 

considered followed by regression analyses. However, in a real-life scenario, only a 

mixture sample will be available, and the matrix elements will be unknown. The sample 

can be a mixture of two, three, or many materials, including some explosives and some 

non-explosives. In such cases, the detection becomes more challenging as the first step is 

determining how many materials are mixed and what they are. The materials present in 

the mixture can be identified based on the peaks from the Raman spectra of mixtures. 

However, some materials can have a high similarity in the Raman spectra due to some 

common vibrational signatures. In such cases, other statistical and analytical techniques, 

like correlation, ordinary least squares, etc., may be used for the identification of matrix 

elements in a mixture. Moreover, extending the same study to incorporate LIBS presents 

a promising avenue, given its rapidity, robust signal acquisition capabilities, minimal or 

negligible sample preparation requirements, and ability to conduct standoff measurements. 

LIBS emerges as a potential tool for such investigations, offering unique advantages that 

align well with the demands of the research objectives. 
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