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Introduction and Outline of Thesis

This chapter provides an itroduction to spectroscopy, with a specific emphasis
on two major techniques: Laser Induced Breakdown Spectroscopy (LIBS) and
Raman Spectroscopy. The chapter aims to examine in detail these approaches,
1n order to uncover the underlying principles, technological breakthroughs, and
many applications that define each spectroscopic methodology. This chapter
concludes with an overview of the entire thesis and a summary of each

individual chapter.
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Spectroscopy is a scientific discipline that specifically investigates the interaction between
electromagnetic radiation and matter. It involves the dispersion of light into its constituent
colours and the measurement of absorbed or emitted radiation at specific wavelengths. The
fundamental foundation of spectroscopy is the observation of light after the interaction with
matter, i.e., when light encounters matter, it undergoes modifications of properties such as
wavelength, intensity, or polarization. These modifications are due to the interaction of the
molecules, atoms, electrons, or ions present in the material. The changes in the properties of
light provide crucial insights into the material’s chemical composition, molecular structures
and various other physical properties. Therefore, spectroscopy is a very useful tool for the
characterization of various materials and is widely used in many disciplines of science,
including physics, chemistry, astronomy, biology, etc. Several spectroscopic techniques exhibit
significant variations in their methodologies depending on the specific properties of interest of
the material and the type of light source used. Some of the important spectroscopic techniques
are Raman spectroscopy, fluorescence spectroscopy, atomic absorption spectroscopy (AAS),
mass spectroscopy, infrared (IR) spectroscopy, laser induced breakdown spectroscopy (LIBS),

etc.

1.1 Laser Induced Breakdown Spectroscopy (LIBS)

LIBS is an advanced analytical technique that ofters real-time detection of elemental species. It
is more convenient and versatile than other conventional methods because of its ability to
identify and analyze various materials in any form with no or minimal sample preparation, and
it 1s ideal for on-site analysis. LIBS is an atomic emission spectroscopy (AES) technique that
employs a high-energy pulsed laser to generate laser-induced plasma (LIP). Due to its
utilization of high-energy optical radiation for producing LIP, this method has several
advantages compared to other conventional AES techniques that rely on adjacent physical
devices (such as electrodes, coils, etc.) to generate vaporization/excitation sources like flames,

arcs, sparks, etc.

The origins of LIBS can be traced back to the 1960s, just after the discovery of the laser, when
researchers began studying LIP[1]. However, in the 1980s, LIBS began to get significant
attention and development. In the early years, LIBS was focused on basic spectroscopic
measurements and basic understanding of plasma formation dynamics. After that, LIBS was
only used for the investigation of solid samples. Later, developments in laser, detectors, and

spectroscopic instruments drove the advancement of LIBS towards a wide range of fields
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beyond traditional material analysis, including environmental monitoring[2], forensic
science[3], geological exploration[4], space exploration[5], waste management[6], biomedical
research([7], food chemistry[8], homeland security[9], industrial and nuclear applications, etc.
The traditional LIBS used only nanosecond (ns) lasers and with time, short pulse lasers like
picosecond (ps) and femtosecond (fs) lasers were incorporated into LIBS to achieve enhanced
spatial resolution with low energy damage threshold. Over time, LIBS analysis has become
more sensitive, more resolved, and more accurate because of developments in advanced
spectrometers. These days, the LIBS system is often incorporated with sophisticated
spectrometers like echelle spectrometers or time-of-flight spectrometers, along with sensitive
low-cost detectors like charged coupled devices (CCDs) or photomultiplier tubes (PMTs).
Other significant developments have also been made, such as double pulse LIBS, standoft
LIBS, microwave LIBS, etc. There are also numerous significant developments from an
analytical perspective. Several researches have been carried out to understand the fundamental
aspects of LIBS and enhance the limit of detection (LOD) to enable trace elemental analysis.
Furthermore, the development of LIBS combined with machine learning (ML) opened up
new possibilities for data analysis and interpretation, boosting the capabilities and efficacy of
LIBS methods. Researchers also combine LIBS with various other analytical techniques like
Raman spectroscopy, infrared (IR) spectroscopy, laser induced fluorescence (LIF), laser
ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), etc., to acquire
complementary information about the sample with improvised sensitivity, LOD, and other

analytical capabilities.

1.1.1 Process Involved in LIBS

The interaction between a high-energy pulsed laser beam and matter is an intricate and not
completely understood phenomenon that continues to be extensively researched. When the
laser pulse is focused on the surface of any material with irradiance over the breakdown
threshold (often on the order of GW/cm?), it leads to the removal of some materials from the
surface of the material and the creation of shockwave. This process encompasses a diverse
range of phenomena, including as rapid localised heating, liquefaction, and intense
vaporisation. The vaporized materials then expand as a plume over the surface of the sample,
where it encounters extremely high temperatures and laser induced plasma (LIP) is formed.
Figure 1.1 provides a schematic of several mechanisms that contribute to the creation of the

LIP.
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Schematic of the laser-induced breakdown process.

Figure 1.1. Various processes involved in the formation of LIP. (Figure adopted from Steven Rehse et

al.[10])

LIP is a localized collection of free electrons, ions, atoms and molecules where the charged
species often act collectively, yet the system as a whole is electrically neutral. LIP can be
characterized by various parameters like degree of ionization, plasma electron temperature,
plasma electron density, etc. Typically, LIP is a weakly ionized plasma, i.e., the ratio of
electrons and other species is less than 10%[11]. A schematic explaining the formation and

temporal evolution of LIP initiated by a single laser pulse is described in figure 1.2.

1.1.1.1 Ablation and Ionization

The ionization of species is primarily governed by two mechanisms, i.e., by multiphoton

ionization (MPI) and inverse Bremsstrahlung (IB) absorption process[12—14].

MPI is required to achieve direct ionization of species with ionization energy far greater than
the photons typically employed in the laser pulse[15]. The multiphoton ionisation (MPI) of
electrons can take place when a significant number of photons are absorbed simultaneously by
atoms or molecules (or when electrons are ejected from the valence to conduction band in the

case of metals), which can be given by,
M-+m(hv) >M" +e” (1.1)

where m is the photon population and M refers to the atom or molecule. MPI i1s significant at
high laser irradiance (greater than10' W/cm® for gases) and at shorter wavelengths (less than
~1 wm). The probability of an atom or molecule absorbing a sufficient number of photons
with a wavelength much greater than ~1 pm to increase the energy of the neutrals beyond

their ionization potential is statistically improbable. However, this procedure becomes
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particularly significant at low pressure, when the low particle density of the medium results in

low collision frequencies between species.

In the IB process, the photon is absorbed by one or more electrons (known as seed electrons)
that are initially located within the focal volume at the begining of the laser pulse. The seed
electrons can be produced by cosmic rays or by the interaction of the initial laser pulses with
dust, oxygen, or organic vapors[11]. It can also originate from the atoms or molecules in the

environment through MPIL.

In the IB process, electrons acquire energy from photons in collision with ions, atoms or
molecules. When the energy of the electron is greater than the ionization potential of neutral
species, it can ionize atoms or molecules (M) through collision and produces two lower
energy electrons which again acquire more energy and cause more ionization of other neutrals

and two more electrons as

e+M 52 +M” (1.2)

With an increase in the number of electrons and ions, there is a corresponding rise in the
collisions between electrons, photons, and ions. This leads to a greater probability of electron
multiplication and, consequently, cascade ionization. During the IB process, all elemental
species of the sample can be ionized to create plasma and the laser pulse energy can be coupled
into the plasma which combinedly increases the plasma density to a point where it becomes
optically thin. When the density of the plasma is more than the critical density (where plasma
frequency becomes equal to laser frequency), the laser cannot enter inside the plasma; this is

called plasma shielding.

An accurate description of the breakdown threshold of LIP is very difficult as it depends on
many parameters, including laser parameters (wavelength, irradiance, pulse duration), nature of
the medium (density, ionization threshold)[11]. The dominance of IB absorption mechanism
occures at high pressures when the influence of collision is significant and wavelength is longer
than 1 pm. In case of low-density molecules or at shorter wavelength (< 1 pm), the possibility
of electrons colliding with neutral species collision is minimal. In these cases, the MPI process
dominates, i.e., in general, MPI will predominate if the breakdown threshold is independent
of pressure. Ultimately, cascade ionization continues over the entire duration of the laser pulse

until plasma shielding takes place.
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1.1.1.2 Plasma Expansion

After the termination of the laser pulse, the luminous plasma expands outwards in all directions
from the point of laser interaction. The expansion of the plasma depends on several factors,
including the amount of mass ablated, energy transferred to the mass, laser spot size, nature of
the environment (solid, liquid, or gas), and pressure. The laser energy can be transmitted,
dispersed, or absorbed depending on the irradiance at the focus point. So, in that direction,
photon absorption is asymmetric and the plasma expands more towards the laser pulse,

resulting in the plasma’s shape being slightly oval[11].

At the early time of plasma formation, the level of ionization in the LIP is extremely high, and
there 1s a huge continuous background that decays rapidly over time, even quicker than the
spectral lines. Continuum emission is generated by the transitions between free state and

stationary state E; of the atom whose frequencies are[15],
1 .2
hv:g‘—Ej+§mv (1.3)

where ¥ mv” and § are the kinetic energy of the free electron and ionization of the atom,

respectively.

The plasma continuum is mainly caused by radiative recombination (free-bound) and
Bremsstrahlung (free—free) processes. Recombination is the process in which a free electron is
absorbed into an atomic or ionic energy state, E;, by releasing its extra kinetic energy as
radiation. Bremsstrahlung process refers to free—free emission transition which occurs when an
electron is accelerated or decelerated in collision with other charged particles due to the loss of

kinetic energy.

It is difficult to distinguish between emissions caused by radiative recombination and those
caused by the Bremsstrahlung process. Besides, the former exhibits greater prominence at

higher frequencies, whereas the latter is more pronounced at lower frequencies[15].

In vacuum, the LIP follows adiabatic expansion. The speed of the expansion can be expressed

by[15,16]

4y+10 E
_ = 1.4
b Y (1.4)

\'

where v,, v, E and M, are the specific heat ratio, plum energy and total vaporized sample mass,

respectively.
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When the laser ablation occurs, the surrounding media is compressed by the ablated mass and
shockwave is produced. The plasma is the mixture of atoms and ions of both sample and
surrounding media. The rate of plasma expansion decreases once it interacts with the
surrounding media. The expansion distance of the shockwave can be described by Sedov’s

theory. The time-dependent expansion distance H(t) in air can be expressed as[15,17]

T

H(t)=ﬂo(—°j £/ (1.5)
ye,

where A, represents a constant without units. E, represents the energy per area for one-

dimensional expansion, energy per length for two-dimensional expansion, and energy for

three-dimensional expansion. p is the density of air and d the symbol d represents the

dimensionality of the propagation. For spherical propagation, d=3, for cylindrical propagation,

d=2, and for planar propagation, d=1.

Once the pressure of the plasma plume equals the pressure of the surrounding media, the
expansion of the shockwave ceases, and the ultimate distance determines the volume of the

plasma plume. The duration and size of the vapour plume can be represented as[15,18]

tszg{E] L (1.6)
p) ¢

g

E 13
% =q () 0
p

where & and ( are constants, p is the pressure and ¢, is the sound velocity of the gas.

1.1.1.3 Plasma Emission

Emission of intense electromagnetic radiation occurs in the UV-VIS-NIR regions with
generation of sound and shockwave as the plasma evolves. The ns laser generates a continuum
that emerges during the laser pulse, which typically has a duration of several hundred
nanoseconds. In the ns range, ionic emissions are most prominent, while atomic and molecular
emissions are seen in the microsecond range (typically after 1 ps). Later the presence of
molecular line emission observed resulting from the recombination of species within the
plasma. In organic samples like explosives, plastics, drugs, etc., the CN violet and C, swan
bands are often observed on the microsecond time scale. The formation of these molecules in

LIP is complex to understand; however, extensive studies have reported that the molecular
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formation of CN band could be due to the recombination of C and N atoms[19,20]. The C2
bond was observed due to the C = C linkage of the analyte[19,20].

1.1.2 Difference between short (ns) and Ultra-short (ps and fs)

pulse LIBS

The difterence between the ablation mechanism of short (ns) and ultra-short (ps and fs) pulses
are different because of large variations in peak power and pulse duration. The formation of
LIP involves ablation, atomization, and excitation. In short pulses (ns), the absorption process
is initiated at the fs time scale by the seed electron in the focal region of the laser pulse,
tollowed by the IB process[21]. And in the case of the short pulse, ionization, sample heating,
and vaporization all occur during the formation of plasma and the matter undergoes a transient
change in thermodynamic regime from solid to plasma state through liquid state[22]. In this
case, the poor coupling of laser to material requires higher pulse energies, which forms scars

on the material surface due to melting.

Nanosecond laser ablation Femtoosecond laser ablation
0
Y p—p: Surface absorption —> Inverse Bremsstrahlung
Laser——3 Ml Material excitation Laser——3 M Multiphoton absorption
— Temperature rise 100fs W —_
Thermal vaporization Coulomb explosion
Nonthermal ablation Energy transfer (electrons to ions)
Plasma formation 1ps A 4 Electron-lattice heating
Plasma reflection/absorption
Self-regulating regime Thermal Vaporization
20ns'Y ins Y
Plasma-ambient inte(acﬁon Plasma-ambient interaction
Shockwave propagation Shockwave propagation
s Y Plasma confinement 100ns § Plasma confinement
LIBS regime LIBS regime
Jps y lns ¥
. . |l Particle ejection _ + - . M Particle ejection
W eaten Plume condensation WO~ Plume condensation
~ ms v oot ~ms v QIR

Figure 1.2. Time scale of various processes involved in ns and fs LIP during and after the laser — matter

interaction. (Figure adopted from Harilal et al.[23])
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In the case of ultra-short pulses (ps and fs), the ablation mechanism is driven by various
mechanisms depending on the availability of free electrons i.e., multiphoton absorption,
impact ionization, avalanche ionization, and coulomb expansion. Ultrafast pulses rapidly form
a hot plasma without a liquid phase with a low ablation threshold and less damage threshold
on the sample. Moreover, ultrafast interactions have exciting features as the plasma shielding
effect is absent, leading to improvement in sensitivity compared to short pulse. Short pulses
result in high temperature and dominance of ionic and atomic emissions at the initial time,
whereas ultrashort pulses form plasma with low temperature and favor molecular
emissions[19]. The time scale of short and ultra-short energy absorption, laser ablation, and
other related processes that occur during or after the interaction of laser with matter exhibits
significant variation. The approximate time scale of ns and fs plasma processes are depicted in

figure 1.2, adopted from the work of Harilal et al.[23].

1.2 Raman Spectroscopy

Raman spectroscopy is a molecular spectroscopic technique that involves studying the
vibrational (phonon) states of molecules by observing the inelastic scattering of light. This
technique provides exceptional insights into molecular vibrations. This approach provides a
powerful tool for molecular fingerprinting and monitoring changes in molecular bond
structures. Raman spectroscopy offers unique advantages compared to other vibrational
spectroscopy techniques like Fourier Transform Infrared (FTIR) and Near-infrared (NIR)
spectroscopy. This is because Raman spectroscopy involves analyzing the light scattered oft a
material rather than the light absorbed by it. Consequently, Raman spectroscopy necessitates
minimal sample preparation and is not affected by absorption bands in aqueous environments.
This allows for direct measurement of solids, liquids, and gases, even when they are contained
in transparent materials such as plastic, transparent crystals, glasses, etc. The great selectivity of
this approach, similar to FTIR, enables the identification and discrimination of molecules and
chemical species that have similar structures. Additionally, it allows for the exact assessment of

small changes in materials.

Raman spectroscopy is an indispensable analytical technique used to identify and monitor
changes in molecular bond structure across various materials, such as solids, liquids, and gases.
[ts non-destructive nature, minimal sample preparation requirements, and ability to identify
substances make Raman spectroscopy indispensable in diverse scientific fields such as

chemistry, materials science, pharmaceuticals, forensics, and biomedical research.
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1.2.1 Theory of Raman Scattering

When studying Raman scattering, two viewpoints arise: classical wave and quantum particle
interpretation. Each perspective provides a distinct and valuable understanding of the
fundamental physics involved. Light is considered as electromagnetic radiation in the classical
wave model, distinguished by a fluctuating electric field that interacts with molecules via their
polarizability. The polarizability is dictated by the electron cloud’s capacity to engage with an
electric field. Softer molecules, such as benzene, exhibit pronounced Raman scattering,

whereas harder molecules like water tend to display lesser scattering tendencies.

In contrast, the quantum particle perspective defines light as photons engaging in interactions
with molecules, leading to inelastic scattering. In this scenario, the quantity of scattered
photons is directly correlated with the size of the bonds. Consequently, molecules possessing a
significant quantity of Pi bonds, such as benzene, exhibit a pronounced scattering of photons,

whereas molecules with modest single bonds, such as water, display a feeble Raman scatterer.

1.2.1.1 Classical Theory of Raman Scattering

When a molecule is subjected to an electric field, it experiences polarization as the negatively
charged electron cloud is drawn towards the positive pole, while the positively charged nuclei
are drawn towards the negative pole. The induced polarization, denoted as P, has a direct
proportionality to the amount of the applied electric field., E [24]. The expression can be

given by,
P=cE (1.8)
where the proportionality constant, o represents the polarizability.

When electromagnetic radiation having frequency of v, interacts with molecules, each

molecule experiences a varying electric field,
E = E, cos 27u,t (1.9)

To simplify, let us consider the vibrational motion of the molecule. Let Q be the normal
coordinate associated with a specific mode of vibration of frequency v,. In the harmonic

approximation, QQ can be expressed as:
Q=Q, cos2rv,t (1.10)

Expanding a using Taylor expansion in the normal coordinate Q,

10
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a=ao+(2—ng+... (1.11)

Substituting equations 1.9, 1.10 & 1.11 in equation 1.8 and neglecting higher-order terms,
oa
P=|a,+| — | Q,c0s2ru,t |E, cos2zv,t
aQ J,
oa
= a,E, cos2zu,t + % Q,E, cos2rv,tcos2zv, t
0
Using the trigonometric relation 2C€0S & C0S ¢ = C0S(8 + ¢) + cos(6 — @) ,

P= o, E, cos2zu,t + %[2—8} Q.E, [c0s 27 (1, + v, )t + €0 27 (v, — v, )t] (1.12)
0

Therefore, the induced polarization comprises three distinct frequency comoponents.

(1) V=V, Rayleigh line
(11) V=Vy— V, Raman Stokes line
(11) V=v,+t Vv, Raman anti-Stokes line

1.2.1.2 Quantum Theory of Raman Scattering

In the quantum realm, electromagnetic radiations exhibit both wave and particle nature. In
discussing Raman scattering, incident radiation with frequency v, is considered as a
continuous flow of particles (photons) that collide with molecules. In the case of a perfectly
elastic collision, there is no exchange of energy between the photons and the molecule, called
Rayleigh scattering. In an inelastic collision, energy is exchanged between the two entities.
The molecule can undergo energy transfer by either gaining or losing an amount of energy
equivalent to the disparity between its final and initial states. When the molecule absorbs
energy, the frequency of the scattered photons becomes v, — v,,, known as the Stokes line.
Conversely, when the molecule experiences a decrease in energy, the frequency of the
scattered photon changes to v, + v,,, which is known as the anti-Stokes line. Figure 1.3
illustrates the difterent mechanisms responsible for the generation of Rayleigh, Stokes, and

anti-Stokes lines.

When a system interacts with radiation of frequency v, it has the potential to undergo a
transition to a virtual state within the system. A virtual state, discrete from the stationary states
of the molecule, represents a combined state of both the molecule and radiation. During

Raman scattering, most molecules return to their initial state from the virtual state, leading to
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the occurrence of Rayleigh scattering. Nevertheless, a small portion undergoes a change to
states with greater and lesser levels of energy, resulting in the emergence of Stokes and anti-
Stokes lines, respectively. When the virtual state coincides with the real state of the system, it
leads to resonance Raman effect. It is worth mentioning that the annihilation of the incident

photon and the formation of the scattered photon happen simultaneously.

Virtual State
5, hv, hv,+ hv,,
&
E hv, hv, hv, hv,—hv
E,+hv,
A EO
Rayleigh Stokes anti-Stokes
Scattering Scattering Scattering
(elastic) | Y J
Raman Scattering
(inelastic)

Figure 1.3. Energy level diagram of Rayleigh and Raman scattering.

The spectral line intensity depends on various parameters, with the primary factor being the

initial population of the state from which the transition begins. The Stokes line, originating

from v = 0, and the anti-Stokes line, originating from v = 1 exhibit same Raman shift v,,.

1.3 Outline of the Thesis

The thesis focuses on the fundamental studies of LIBS towards development of Simplified
LIBS-based Intensity-ratio approach for Concentration Estimation (SLICE) and harnessing
machine learning for the classification of materials such as explosives and post-consumer
plastics. It also discusses the dependence of various plasma parameters on the hardness of
materials. Moreover, it delves into the applications of machine learning in Raman

spectroscopy, aiming for the quantitative detection of explosives in mixtures.

Chapter 2 provides a comprehensive overview of the different instruments (lasers,

spectrometers, etc.) and experimental configurations used for the thesis work.
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Chapter 3 presents fundamental studies of LIBS towards temporal modeling of LIP for
elemental analysis. Elemental analysis of materials is pivotal across diverse scientific domains
and industries, serving several critical purposes. It plays a crucial role in identifying elemental
composition and ensuring stringent product quality control across industries, including
pharmaceuticals and food production. It is also used widely for characterizing materials in
fields like materials science and nanotechnology while finding diverse applications in
archaeology, environmental monitoring, pharmaceuticals, and more sectors. In essence,
elemental analysis is indispensable for understanding the composition, properties, and
behaviors of the materials, influencing a wide array of scientific studies, industrial processes,

and practical applications.

Elemental analysis using LIBS is one of the most demanding disciplines due to its robust
experimental setup since late 1980s[25-27]. Several LIBS techniques have been developed for
the elemental analysis of various materials in difterent forms (solids, liquids, and gases). The
first method proposed uses a calibration curve approach to estimate the concentration of each
element present in a sample. This method, however, is constrained by the requirement of
calibration curves for each matrix element, which can only be used for samples with the same
matrix and must be reconstructed for samples with different matrices. Therefore, in real-life
applications, while calibration LIBS excels in detecting species concentrations within a well-
defined matrix, it is not suitable for complex situations like multi-elemental analysis of
unknown materials. To overcome these limitations, A. Ciucci et al. introduced a new method
called calibration-free LIBS (CF-LIBS), where the matrix-matched standard samples are not
required for concentration estimation[28]. However, in CF-LIBS, the self-absorption (SA)
effect is a major disruption of emission intensities at respective wavelengths. The SA of a
certain emission line occurs when the emitted radiation of that atom is absorbed by another
atom, resulting in a decrease in emission peak intensity. For CE-LIBS, it is essential to estimate
plasma temperature using the Boltzmann/ Saha-Boltzmann plot method[28-30]. In principle,
these methods require at least two SA free emission lines with a well-separated upper energy
level for each constituent element in the sample. However, in the practical scenario,
researchers always consider several emission lines from each element to retain accurate
temperature values[29,31]. The availability of such quantities of SA free lines is difficult to
observe for many elements (e.g., C, H, N, O, Na, B, etc.) in the UV — VIS — NIR range of
LIBS spectrum. Also, the observable emission lines are scarce in the case of trace elements.
Therefore, SA correction becomes essential for the universal adoption of CF-LIBS for

elemental analysis. The involvement of the SA correction procedure makes the CF-LIBS
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more complex and time-consuming. In specific scenarios where SA correction is not

necessary, CF-LIBS may be quick and easy to use in practice.

To overcome these limitations, a new, robust, more straightforward method for fast
quantitative elemental analysis was proposed which has several notable advantages. This
method relies on the temporal modeling of intensity ratio using radiative relaxation
mechanism of plasma[32,33]. Since the method relies on intensity ratios to determine
concentrations, it is named Simplified LIBS-based Intensity-ratio approach for Concentration
Estimation (SLICE). The major advantage of this technique is that it doesn’t involve
Boltzmann/Saha-Boltzmann plot in the calculation. The requirement of a few emission lines
makes this method more robust and straightforward. To be precise, it demands only two
emission lines from any one of the elements and a single line from all other elements. For
example, a sample of n elements requires only n+1 emission intensity lines, giving an
advantage for choosing emission lines conveniently. Since only one emission line is needed
from every element except any element in the sample, now there is a great flexibility of
choosing emission lines unaftected by SA. Also, SLICE reduces the complexity of the

calculation as fewer steps are involved.

The LIBS experiment was performed on two Cu based alloys (binary and ternary). The
kinetic LIBS spectra were recorded and the temporal behavior of emission intensity, plasma
temperature and electron number density were studied. The radiative relaxation mechanism
was used to model the temporal behavior of intensity ratio and plasma temperature in order to
determine the plasma decay parameters (PDPs): the initial plasma temperature and the
radiation decay constant. These estimated PDPs were used to estimate the concentration of
each species in both samples using SLICE. Also, the results were cross-validated using CF-
LIBS and electron dispersive X-ray Spectroscopy (EDS). The results obtained from SLICE
show good agreement with CF-LIBS and EDS. At last, the advantages and limitations of

SLICE were discussed.

Chapter 4 explores the dependence of plasma parameters on the hardness of the materials.
Estimating the hardness of alloys stands as a critical endeavor across industries and scientific
realms owing to its multifaceted significance. Beyond assessing durability and reliability,
hardness testing guides material selection, aids in design precision and ensures quality control.
The correlation between hardness and various mechanical properties empowers engineers to
predict material behavior, wear resistance, and overall performance in diverse applications,

from heavy machinery to critical aerospace components. Moreover, hardness estimation fosters
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innovation in material development, enabling researchers to tailor alloys for specific
requirements and enhance their mechanical characteristics. In essence, the assessment of alloy
hardness serves as a linchpin in guaranteeing material integrity, safety, and reliability,
fundamentally influencing product performance and longevity. Traditional methods for
hardness estimation encompass several established techniques like the Vickers hardness test,
Rockwell hardness test, Brinell hardness test, etc. Most of these techniques involve creating an
indentation on the material surface and require specific sample preparations, such as smooth
and flat surfaces, which might be challenging or impractical for certain materials or irregularly
shaped samples. Additionally, the sample size or shape limitations can restrict the applicability
of these methods. Moreover, these processes are time-consuming. Due to the rapid detection
capability and requirement of no or minimal sample preparation, LIBS can provide insights
into the relationship between various plasma parameters and material hardness, offering a non-

invasive means to estimate hardness characteristics across different materials.

Several researchers tried to correlate the plasma parameters such as plasma temperature,
electron number density, and intensity ratios (atomic to ionic), etc., with the hardness of
materials[34-36]. Despite these efforts, a consistent relationship between plasma parameters

and hardness 1s difficult to describe.

This chapter explores the dependence of plasma parameters with material hardness. For the
experiment, five different iron-based alloys with same elemental compositions and varying
hardness were considered. The hardness of each sample was initially determined by using
Vicker’s hardness tester. Then temporal LIBS spectra for each sample were recorded and
subsequently, various parameters like plasma temperature, electron density, radiation decay
constant, crater dimension, etc., were estimated for all five alloys. When the change in plasma
parameters was compared against the change in hardness, a linear (both increasing and
decreasing) trend of all the parameters were observed w.r.t. the change in hardness. The results
serve to underline the capability of LIBS for rapid estimation of material hardness without or

with minimal sample preparation.

Chapter 5 delves into the application of machine learning in conjunction with LIBS for the

identification/classification of explosives and post-consumer plastics.

In the last few decades, the threat to homeland security around the world, as well as in India,
urged the need for an automated portable device for the rapid detection of high energy
materials (HEMs), including explosives, improvised explosive devices (IEDs), etc. Especially in

crowded places like airports, railway stations, metro stations, shopping malls, worship places,
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etc., an advanced explosive detection device based on modern analytical techniques is essential
for detecting HEMs with high confidence. LIBS is a potential tool for the on-site detection of
explosives with numerous advantages over other techniques. These advantages include robust
signal acquisition, standoft detection, trace level identification, rapid prediction when
combined with machine learning, etc., which can make LIBS an indispensable tool in

explosive detection.

With increasing population and modernization, the widespread adaptation of plastics in our
day-to-day lives has experienced a substantial surge. Human society heavily relies on plastics as
it 1s widely used in packaging, food safety, domestic equipment, industry, transport,
electronics, etc. Its demand and use are continuously increasing because of its notable
advantages such as cost-eftectiveness, durability, low weight, flexibility in shape, etc. [37]. On
the contrary, due to its high durability and low-degrading nature, it generates large amount of
waste every year[38]. Thus, the management of plastic waste has now become essential.
Traditional plastic waste management techniques like incineration and landfills are
inconvenient as they cause colossal resource waste and adverse effects on the environment and
ecosystem. Also, the toxic substances released in these processes severely pollute the soil,
water, and air. Therefore, recycling is the most viable way to reduce final waste output.
Classification/sorting post-consumer plastics is the most critical step in recycling. The sorting
process is essential to retain the quality and properties of recycled plastics [39]. The prevalent
method for sorting plastics involves manual visual inspection, where identification relies on
recognizing the recycling number assigned to each plastic type. However, this is labor-
intensive, more time-consuming, and error-prone. Also, hazardous contamination is harmful
to workers. Other classification techniques based on the physical properties are also developed,
like the floating technique [40], an electrostatic technique [41], differential scanning
calorimetric (DSC) [42], etc. These conventional methods greatly depend on the physical state
of the sample and are more time-consuming and prone to errors. Besides these technologies,
LIBS combined with machine learning can provide a promising solution for sorting plastic

waste efficiently and accurately.

In the context of in situ application, an ideal classifying instrument should be cost-eftective,
compact, reliable, and capable of providing a fast identification rate with higher accuracy. This
chapter explores the potential of handheld picosecond (ps) LIBS setup for discrimination of
explosives and post-consumer plastics using artificial neural network (ANN), a robust machine

learning classifier. Further, from a spectral perspective, it is noteworthy that in LIBS spectra,
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most of the wavelength regions (more than 80%) contain only noise, especially in organic
samples. All the wavelengths/ variables/ features representing noise are statistically
insignificant. Therefore, it might be advantageous to confine the analysis to the chosen features
of significance. There are two approaches to reducing the dimension of the input data, i.e., 1)
teature selection, where unwanted features are removed from the dataset manually or by using
statistical/machine learning models, and 2) feature extraction, where machine learning
algorithms are used to transform the original data into a new smaller dataset. Feature selection/
extraction is crucial in real-time applications as it reduces the dimensionality of the data,
improves model performance, mitigates overfitting, and expedites computational processes.
Additionally, they enhance data interpretability and visualization, and address multicollinearity,
thus enabling more effective decision-making and insights. Therefore, in this chapter, various
teature selection and feature extraction approaches were explored in conjunction with ANN
to determine the most effective classification strategy in terms of accuracy, computational time,

and storage requirement.

Five explosive and 12 non-explosive samples with similar chemical composition were
considered for detection. Multiple spectra (200 for each sample) were recorded for all the
samples. The total spectra were divided randomly for training (70%), validation (15%), and
testing (15%). Initially, every spectrum within both the train and validation datasets is
categorized into their respective groups, either explosive or non-explosive. The test phase
involves utilizing test data to predict whether a given spectrum corresponds to an explosive or
non-explosive category. Following this, a separate training model is constructed specifically
focusing on the explosive samples, which are labeled to explosive sample names. Once a
spectrum is identified as explosive, it proceeds to a secondary model designed to determine the
specific type of explosive it belongs. The same training, validation and testing architecture is
used for all the feature selection and feature extraction approaches. The results were compared
from full spectra and various feature selection and feature extraction approaches as input to the
ANN model. And it has been observed that ANN combined with linear discriminant analysis
(LDA) feature extraction achieved a flawless 100% accuracy in distinguishing between
explosive and non-explosive. In classification within explosives, maximum accuracy (99.8%)
was obtained for full spectrum and manual feature selection with peak area. Moreover, in this
study, both the training and testing were performed on the LIBS spectra obtained from the
same samples. However, in real-world scenarios, the model encounters unknown samples that
haven’t been seen by the model during the training process. Given the limited types of

explosive samples available, the training and testing were conducted using the same set of
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samples. Multiple spectra were recorded and then randomly divided for training, validation
and testing purposes. However, it would be interesting to extend this considering a large set of

samples and performing testing on unknown samples not seen by the trained network earlier.

Within the framework of plastic sorting, two distinct approaches were employed: firstly, nine
different post-consumer plastics were collected from a local recycling unit, and both training
and testing were performed on the same sample. Secondly, 30 post-consumer plastics
representing six commonly used types (HDPE, LDPE, PP, PET, PS, and PVC), and five
samples from each category were collected from garbage. Testing was performed on unknown
plastic, mimicking real-world scenarios for identifying unfamiliar post-consumer plastics.
ANN models were utilized, incorporating various feature selection and extraction methods.
Their performances were compared in accuracy, testing time, data size, and model size to find
the most effective strategy. The results demonstrate that in the first case (training testing on the
same sample), nearly all feature selection and extraction methods achieved outstanding
classification accuracy in distinguishing nine distinct plastics. However, when confronted with
the second case involving testing on unfamiliar samples, the ANN model encountered
difficulty in distinguishing between HDPE, LDPE, and PP. Remarkably, it eftectively
differentiated between PET, PS, and PVC.

In discussing the real-time implementation of LIBS combined with machine learning for
sorting post-consumer plastics, it becomes evident that employing the same sample for training
and testing purposes renders the former scenario ineffective when encountering unknown
samples. Conversely, testing on unknown samples in real-time applications proves more
relevant and practical. Despite this, it’s important to note that this approach efficiently
identifies three out of six types of plastics. As such, it currently stands as a viable solution for
real-time identification of PET, PS, and PVC, which could significantly reduce the manual

sorting workforce by half.

Chapter 6 discusses the development of a low-cost, compact, and portable Raman
spectroscopic setup for detecting explosive mixtures. Initially, the Raman experiment was
performed on the mixture of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and ammonium
nitrate (AN) mixed at different concentrations. Various machine learning regression analyses,
such as linear regression, partial least square regression (PLSR), support vector regression
(SVR), decision tree regression (DTR) and random forest regression (RFR) were employed
on the Raman spectra of mixtures to quantify the amount of each sample present in the

mixture. The Raman spectra were analyzed with and without background correction. Also,
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various feature/variable selection strategies were explored to find out the best analysis
protocol. Finally, results obtained from all the regression models in conjunction with various
feature selection approaches with or without background correction were compared in terms
of accuracy, computational time and limit of detection. The results demonstrate that Raman
technique combined with machine learning can work as an efficient tool for rapid detection of
explosive mixtures. Overall, a portable Raman spectroscopic tool is demonstrated for the
quantitative detection of explosive mixtures with a high accuracy rate, which can have great

importance in homeland security and the military.

Chapter 7 of this thesis presents the culmination of the research findings and outlines the

future prospects based on this research work.
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Experimental Details

This chapter delves into the examination of laser systems, spectrometers, LIBS
experimental setups, Raman spectroscopy settings, and LabVIEW program
creation for spectrum measurements. The chapter thoroughly analyses the
specifications and operational principles of nanosecond (ns) and picosecond (ps)
laser systems, explaining in detail their components and functions. Moreover, it
explores the technological attributes of Mechelle ICCD and Czerny-Turner
CCD spectrometers, which are crucial for spectroscopic studies. The
experimental configurations for both gated and non-gated LIBS detections are
comprehensively explained, coupled with a meticulous description of the
Raman experimental arrangement. One noteworthy aspect of the chapter is the
creation of a LabVIEW program that aims to optimize spectrum measurements,

improving productivity and reducing experimental inaccuracies.
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2.1 Details of Lasers

In the present thesis work, two high energy lasers were used for the LIBS experiments. The

specifications of the two laser systems are presented in table 2.1.

Table 2.1. Specifications of nanosecond (ns) and picosecond (ps) laser systems.

I\Sllc; Parameters Nanosecond laser Picosecond laser
Laser model SpitLight 1200 (M/s Innolas) PL 2250 (M/s Ekspla)
2 Wavelength (nm) 1064 / 532 / 355 / 266 1064 / 532 / 355
Pulse duration ~ 7 ns ~ 30 ps
Maximum output energy at N N
4 1064 nm (m]) 1200 100
5 Repetition rate (Hz) 1-10 10
6 Beam diameter (mm) ~ 6.5 ~12

2.1.1 Nanosecond Laser

A Nd:YAG solid state laser (SpitLight 1200, M/s Innolas) was used for nsLIBS experiments in
this thesis[1]. The laser system comprises of three main parts i.e., oscillator, pre-amplifier and

amplifier. The schematic of the optical layout of the laser is depicted in figure 2.1.

SHG
= :-0 _\\ ( ~

Figure 2.1. Schematic of optical layout of the nanosecond laser system. 1, 2 & 3 represent the beam
path through oscillator, pre-amplifier and main amplifier respectively. F, SHG, and THG represent the

Faraday isolator, second and third harmonic crystals, respectively.

The laser oscillator consists of a rear mirror of high reflectivity and a variable reflectivity
output coupler (high reflectivity in the center, low reflectivity around the outside). This
combination ensures well collimated monochromatic oscillator output which allows only
TEM,, mode resulting a very smooth Gaussian beam profile. The gain medium of the cavity

uses a Nd: YAG rod which is optically pumped by a single xenon-filled flashlamp driven by a
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high stability power supply. Q-switching is achieved by a Pockels cell and a polarizer. The
drive circuit is designed to produce one or two Q-switched pulses per flashlamp pulse and the
pulse separation is adjustable between 1 — 10 Hz. In between the laser rod and output coupler,
there is a mechanical shutter which is actuated by a rotary solenoid used to block or pass the
oscillator output. The output of the oscillator passes through a pre-amplifier to further
enhance the power. The pre-amplified rod is mounted in the same pumping chamber as the
oscillator in a double elliptical cavity and share the same flashlamp. The output beam of the
pre-amplifier is again directed to the amplifier chamber which consists of an amplifier rod
pumped by two flashlamps in a double elliptical cavity. The laser works at fundamental
wavelength 1064 nm and can achieve a maximum output power of 1200 mJ. However, it can
be operated at first (532 nm), second (355 nm) or third (266 nm) harmonics with the help of

harmonic generation assembly (HGA).

2.1.2 Picosecond Laser

A picosecond (ps) laser system (PL 2250, M/s Ekspla) was also used along with the ns laser[2].
The laser system is comprised of four functional parts, i.e. 1) master oscillator, 2) regenerative
amplifier, 3) power amplifier, and 4) harmonic generators. The schematic of the optical layout

of the ps laser system is depicted in figure 2.2.
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Figure 2.2: Schematic of optical layout of picosecond laser system.
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The master oscillator uses Nd: YV O, laser material as the gain medium which is pumped by a
temperature controlled 2.5 W laser diode. The mode-locking is achieved by means of a
saturable absorber. The master oscillator generates two output beams, with one beam serving
as a seed for the regenerative amplifier and the other beam used to signal a photo-detector to
ensure synchronization with the Pockels cell. The seed pulse passes through a sequence of
optical elements: polarizers P1 & P2, half~wave plate HWP2, and Faraday rotator FR 1, before
being guided into a regenerative amplifier through polarizers P3 & P4. Within the
regenerative amplifier system, a laser diode functions as the pump for the Nd: YAG rod R2.
The configuration has two mirrors, M8 and M9, which serve as cavity mirrors, while M10-
M12 act as a retroreflector pair to enhance stability. The utilization of polarizer P4 and Pockels
cell PC1 enables the injection and extraction of pulses into and out of the regenerative
amplifier cavity. To prevent the occurrence of free-running mode while allowing pulse
injection, a quarter-wave plate QWP1 is utilized. The procedure entails injecting an oscillator
pulse from a series of pulses, rapidly increasing the voltage on PC1 to confine the beam within
the cavity. The highest level of amplification usually happens after 25-28 cycles, at which
point the PC1 voltage is turned off, allowing the fully amplified pulse to be released. In order
to avoid the amplified pulse from returning to the master oscillator, Faraday rotator FR1, half-
wave plate HWP2, and polarizer P1 were used. These components also help to guide the
amplified pulse towards the power amplifier. The regenerative amplifier emits picosecond
pulses which are then guided towards the three-pass amplification stage using mirrors M3 -
Mb6. In this stage, a flash lamp 1s used to pump a Nd: YAG rod R3, which has dimensions of
012 X 85 mm. The Pockels cell PC2 and polarizer P6 work together as a pulse picker. When
a high voltage 1s provided to PC2, it rotates the vertical polarization to horizontal. This
rotation enables the amplified pulse from the regenerative amplifier to pass through polarizer
P6. The pulse can then undergo additional amplification in the power amplifier. Afterward,
the amplified pulse with vertical polarization is reflected by polarizer P5 and mirror M17

towards the harmonic generation stage.

The laser emits with fundamental wavelength of 1064 nm and has vertical polarization. The
use of nonlinear crystals enables the creation of the second (532 nm) and third (355 nm)
harmonics. The mirrors M18-M20 are deliberately placed to separate the harmonics from the
primary radiation. The output pulses of the fundamental, second, and third harmonics are
directed via three openings on the laser frame. The second harmonic is characterized by a

horizontal polarization, while the third harmonic has a vertical polarization.
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2.2 Details of Spectrometers

The LIBS studies performed in this thesis utilize a Mechelle spectrometer coupled with an
intensified charge-coupled device (ICCD) detector and a Czerny-Turner (CT) spectrometers
coupled with charge-coupled device (CCD) detector. All spectrometers are constructed to be
durable and do not have any moving components in their optical elements, which ensures
strong performance during experiments. Table 2.2 contains detailed technical characteristics

for all the spectrometers.

Table 2.2. Various parameters of the Mechelle ICCD spectrometer and Czerny-turner (CT) CCD

spectrometer.
S. No. Parameter ICCD System CCD System
ME-5000 (M/s Andor) istar, DH334T-  AvaSpec ULS2048L-
! Spectrograph model 18U-E3, & DH734-18U-03 USB2 (M/s Avantes)
2 Resolution @ 500 nm 0.1 0.29
3 Spectral range (nm) 220-850 200-750
4 Weight (Kg) ~15 ~1
5 Size (10° cm™) ~9.1 ~1
6 Minimum integration 2 ns 9 ps

time

2.2.1 Mechelle Spectrometer

The Mechelle spectrometer (ME-5000, M/S Andor) connected to ICCD has become a
crucial instrument in gated LIBS investigations, providing exceptional durability and a wide
range of spectral options for various applications. The iStar ICCD (DH334T-18U-E3, M/S
Andor) 1s utilized for ps LIBS, while the iStar ICCD (DH734-18U-03, M/S Andor) is used
for ns LIBS experiments. This system offers an impressive minimum time resolution of 2
nanoseconds, allowing for accurate study of elemental emissions across time. The spectrometer
utilizes an Echelle grating and prism structure to disperse light in a two-dimensional space,
which is eftectively caught by the ICCD. The spectrometer has 0.1 nm optical resolution at
500 nm wavelength. The device is capable of capturing a broad spectrum of wavelengths,
spanning from ultraviolet (220 nm) to near-infrared (850 nm), in a single measurement. The
process of calibration involves the use of a standard lamp containing Hg-Ar to assure accurate
measurement of wavelengths. Additionally, a Deutertum-Halogen lamp is used for calibration
of the intensity. The calibration operations are performed at a constant temperature of 25
degrees Celsius. As a result, the system runs within a restricted temperature range of 25 * 3

degrees Celsius, which guarantees optimal performance.
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2.2.2 Czerny-turner (CT) Spectrometer

A Czerny-Turner CCD spectrometers, namely AvaSpec ULS2048L-USB2 (M/s Avantes),
was used for non-gated detection systems in the LIBS experiments. These spectrometer ofters
promising advantages that make them suitable for real-time use in various applications. Their
high cost-effectiveness makes them very appealing for real-time use, while their small size and
lightweight design enhance portability, making them perfect for miniaturized LIBS
applications. The spectrometer has the capability to measure wavelengths ranging from 200 to
750 nm. It has a remarkable resolution of 0.29 nm at 500 nm and requires a minimum
integration time of 9 microseconds to capture spectra. Another benefit of this spectrometer is
its capacity to function without a cooling system for the CCD, which improves its practicality

and usability in difterent experimental environments.

2.3 LIBS Experimental Setup

This thesis involved conducting LIBS experiments using both ns and ps lasers. The spectra
were obtained using both gated and non-gated detectors. Figure 2.3 depicts the temporal
processes that take place in LIBS over time in relation to the laser pulse, but the time scale

shown 1s not to scale.

Gate opening Gate closing

/ \

Gate width

Gate delay

Laser

Time (Not to scale)

Figure 2.3: Timing diagram for data acquisition using gated LIBS setup.

Gating functionality proves crucial as it effectively mitigates the overwhelming continuum
emissions from the plasma during earlier time intervals, preventing detector saturation and

damage. In this thesis, delay periods ranging from around 0.2 to 0.5 ps were employed for the
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experiments. The implementation of the gated detection system enables the capture of spectra
at different delay periods, which is essential for accurately characterizing the temporal behavior
of plasma parameters such as plasma temperature, intensity ratio, etc. Comprehending the

temporal changes in plasma characteristics is especially relevant in elemental analysis.

2.3.1 Gated LIBS Setup

The typical diagram of the gated LIBS experimental setup, shown in Figure 2.4, demonstrates
the primary components used in the experimental setup. The experimental setup for the ns
and ps setups is largely similar, with the exception of the laser wavelength and the ICCD
camera used. Essentially, the laser beam (ns/ps) is guided by a sequence of mirrors originating
from the laser head, and a Plano-convex lens focuses it onto the surface of the sample. The
sample, placed on an X-Y translational stage, is controlled by a motion controller (ESP-300
M/s Newport), which is interfaced by a self-developed LabView program in order to provide
a fresh spot for every laser shot. This prevents the creation of deep craters on the surface of the

sample and improves the consistency of acquiring LIBS spectra, shot by shot.

7 y
Delay —2 |
Generator

C
Photodiode
Collection \

optics Turning mirror

< B Focusing lens

Plasma
// Sample

Motion Controller

Computer

Figure 2.4: Schematic of gated LIBS experimental setup.

The speed of movement of the stage varies in accordance with the experimental settings. The
emissions were accumulated by a collection optics assembly (ME-OPT-007, M/s Andor) and
transmitted to spectrometers via an optical fibre with a core diameter of 600 pum. The

collecting system was oriented at a 45° angle in accordance with the incident laser beam.

The spectra were recorded using a Mechelle spectrograph that was configured with ICCD

detectors. The 'i-Star DH334T-18U-E3' detector was used for ps measurements, while the 'i-
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Star DH734-18U-03' detector was used for ns measurements. The laser pulse was
synchronized to the ICCD using a delay generator (DG-645, M/S Stanford Research
Systems). Initially, the delay generator was triggered by by a photodiode or the Pockels cell
signal of the laser. Then, it produced a TTL pulse (0-5 V, rise time approximately 2 ns) which
turther triggers the ICCD. The temporal events were seen and recorded using an oscilloscope
(TDS-2024B by M/S Tektronix). A visual representation of the different temporal events of

data acquisition can observed from the oscilloscope as displayed in figure 2.5.

Tek ik ® Stop M Pos: 20,80ns SAVE/REC |Tek S * ® Stop M Pos: 480.0ns SAVE/REC
-

Action Action
@)

_ (b)
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\ About

pt _,,,J—H__.‘,J TR p— Y o '
L '*#‘—*-‘*’-f-"*"kb—?‘ = """’ﬂv : Saving Gate width

To Files

Photo diode TTL pulse J

response from DGISDG \ a5 fermmmmmmrrrmems E*W~“M Select
Select Folder
Falder

i Gate delay About
Save Save All
el Gate width TEKOD0O.JPG H2 1 4 M 250ns
CH2 2.00Y M 10.0ns CH2 . 352mVY 10-Mar-23 16:53

Figure 2.5: Oscilloscope screenshots for monitoring the gate delay and gate width for (a) ns and (b) ps

LIBS data acquisition [figure (a) adopted from Ph.D. thesis of Dr. Rajendhar Junjuri].

2.3.2 Non-gated LIBS Setup

Figure 2.6 illustrates the optical configuration of the non-gated LIBS experimental setup. It
comprises a ps laser delivering energy of 10 mJ per pulse at 10 Hz repetition rate. The laser
operated at its fundamental wavelength of 1064 nm with a pulse duration of ~30 ps. The laser
pulse was focused on the sample surface through a plano-convex lens (focal length of 15 c¢m)
to produce the plasma. An XY -translation stage controlled by a motion controller (Newport,
ESP 300) was used to move the sample to avoid deep crater formation at the same spot. The
emissions from the plasma were collected by a collection optics assembly (Andor, ME OPT
007) and sent through an optical fiber of core diameter 600 pm to a non-gated Czerny Turner
CCD spectrometer (Avantes, AvaSpec — ULS2048L — USB2) of optical resolution of ~0.29

nm. The spectrometer produces the LIBS spectra in the 200 — 750 nm wavelength range.
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o Turning mirror

(1064 nm, ~ 30 ps)

Collection
optics

Optical Fiber )
Focusing lens

Computer lMotion Controller '

Figure 2.6: Schematic of non-gated LIBS experimental setup.
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2.4 Raman Experimental Setup

The schematic diagram of the Raman experimental setup is pictured in figure 2.7. In detail, a
compact portable diode-pumped continuous-wave (CW) laser (M/s, OceanOptics —
[0785MMO0350MS) emitting monochromatic light at 785 nm and delivering a maximum
power of ~350 mW was used[3]. The laser light was focused onto the sample surface using a
Raman probe (M/s, (OceanOptics — RIP-RPB-785-FC-SMA) of a working distance of 7.5
mm and spectral range of 300 — 3900 cm™. The same probe collects the Raman scattering and

delivers them to a Czerny-Turner CCD spectrometer (M/s, Ocean Optics — QEPro) which

has a detection range of 300 — 3000 cm™ and optical resolution of 11 cm™.

Diode-pumped CW &
Laser (785 nm)

f

Raman Probe

Spectrometer "

Sample

Figure 2.7: Schematic of Raman experimental setup.

The manufacturer provided software for capturing spectra, which was synchronized with the

PC using a USB link. Nevertheless, the act of conserving is both time-consuming and tedious.
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In order to optimize this task, a LabVIEW program was specifically designed for spectrum
measurements. This customized software not only speeds up the process of obtaining Raman
spectra but also decreases the probability of experimental errors occurring during the
acquisition process. Figures 2.8 and 2.9 depict the LabVIEW graphical user interface (GUI)

and block diagram, respectively.
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Figure 2.8: LabView GUI for recording Raman spectra.
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Figure 2.9: LabView block diagram for recording Raman spectra.
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2.5 Summary

This chapter explores the complex aspects of laser systems used, with a specific emphasis on
nanosecond (ns) and picosecond (ps) laser configurations. Table 2.1 presents a comprehensive
comparison of their specifications, encompassing the laser model, pulse duration, wavelength,
repetition rate and maximum output energy,. The nanosecond laser system, SpitLight 1200
manufactured by Innolas, and the picosecond laser system, PL 2250 manufactured by Ekspla,
are thoroughly explained, providing detailed information about their structures and
operational principles. The chapter delves more into the spectrometers used in the
experiments, specifically focusing on the Mechelle ICCD spectrometer and the Czerny-
Turner CCD spectrometer. It discusses their technical features and many applications. In
addition, this text provides detailed explanations of the experimental setups for both gated and
non-gated detections in LIBS, including information about their temporal processes and
instrumental configurations. The Raman experimental setup includes a diode-pumped
continuous-wave laser and a Czerny-Turner CCD spectrometer, which are described in
detail. The chapter focuses on the creation and operation of a LabVIEW program designed
specifically for spectrum measurements, with the goal of improving efficiency and reducing

experimental mistakes.
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Simplified LIBS-based Intensity-
ratio approach for Concentration
Estimation

This chapter presents the application of plasma diagnostics and elemental
analysis in the examination of two distinct alloy samples, one binary and one
ternary. A brief summary of the experimental methods and the spectral
Interpretation of plasma is provided in the initial sections. The basics of
thermodynamic equilibrium, as well as the determination of plasma parameters
and plasma decay parameters (PDPs), are covered in depth. The temporal
behavior of LIP is characterized by modeling the decay of plasma temperature
and intensity ratio. The last section focuses on the elemental analysis using
calibration-free LIBS (CF-LIBS), Electron Dispersive X-ray Spectroscopy
(EDS), and a newly proposed

method, Simplified LIBS-based Elemental
Intensity-ratio approach for Analysis
Concentration Estimation (SLICE). °
The elemental concentrations estimated o ¢ ) ¢ o

o

by SLICE for both binary and ternary
alloys are in good agreement
with CF-LIBS and EDS. Additionally,

the chapter briefly discusses the benefits Estimation of PDPs

and drawbacks of these analytical

techniques, providing insightful
information on how they might

be used for elemental

analysis.
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3.1 Introduction

Elemental analysis using LIBS is one of the most demanding disciplines due to its robust
experimental setup. Several LIBS techniques have been developed for elemental analysis of
various materials in different forms (solids, liquids, and gases). Quantitative elemental analysis
was first introduced in LIBS in the late 1980s and early 1990s[1-3]. The first method uses
calibration curve to estimate the concentration of each element in a sample. This method,
however, is constrained by the need for calibration curves for each matrix element, which can
only be used for samples with the same matrix and must be reconstructed for samples with
different matrices. Therefore, in real-life applications, while calibration LIBS excels in
detecting species concentrations within a well-defined matrix, it is not suitable for complex

situations like multi-elemental analysis of unknown materials.

To overcome these problems, A. Ciucci et al. introduced a new method called calibration-free
LIBS (CF-LIBS), where the need for a calibration curve or matrix-matched standard was
eliminated in the concentration estimation[4]. Since then, this technique has been extensively
used to analyze alloys[5], meteorites[6], soils[7], rocks[8], minerals[9], organic materials[10],
etc. This technique has been evolving as a powerful multi-elemental analysis tool enabling
quantitative analysis of various materials in laboratory setups. However, in CE-LIBS, the self-
absorption (SA) effect is a major disruption of emission intensities at respective wavelengths.
The SA of a certain emission line occurs when the emitted radiation of that atom is absorbed
by another atom, resulting in a decrease in emission peak intensity. For CF-LIBS, it is essential
to estimate plasma temperature using the Boltzmann/ Saha-Boltzmann plot method[4,11,12].
In principle, these methods require at least two SA free emission lines with a well-separated
upper energy level for each constituent element in the sample. Still, in the practical scenario,
researchers always consider several emission lines from each element to retain accurate
temperature values[11,13]. The availability of such quantities of SA free lines is difficult to
observe for many elements (e.g., C, H, N, O, Na, B, etc.) in the UV — VIS — NIR range of
LIBS spectrum. Also, the observable emission lines are scarce in the case of trace elements.
Therefore, SA correction becomes essential for the universal adoption of CF-LIBS for

elemental analysis.

Several approaches and techniques have been devoted to literature for correcting the self-
absorbed lines in the spectra of LIP. Initially, D. Bulajic et al. developed the curve of growth

(COG) technique[14], which estimates the SA coefficient by an iterative simulation. The SA
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coefficient was also determined by calculating the ratio of the observed emission intensity to
the theroretical intensity in the absence of the SA effect[15]. Later, L. Sun et al.[16]
introduced a technique less complicated than the COG technique, namely the internal
reference for SA correction (IRSAC). This technique chooses an internal reference line from
each species and based on its intensity, corrects all other SA lines through a regressive
algorithm. F. Rezaei et al.[17] used artificial neural network and J. Dong et al.[18] used
genetic algorithm to correct the self-absorbed lines. Apart from these, I. Karnadi et al.[19]
proposed a technique to suppress the SA effect by making some modifications to the
experimental setup, i.e., they used a double pulse LIBS setup to create a vacuum-like
condition in the air for recording the spectra. Y. Zhang et al.[20] developed SA correction
method using plasma images and employed it in underwater LIBS. Numerous other methods
or approaches were devoted to literature concerning SA correction[21-23]. However, these
techniques are more time-consuming and increase the complexity of the analysis. Certain
individuals meet challenges in practical use, such as the IRSAC approach, which experiences
issues when emission lines of various elements are affected by SA difterently, resulting in
inconsistent plasma temperatures. The genetic algorithm method is also not optimum as it
requires a standard sample. Moreover, most of these studies require different theoretical
parameters which may not be available for the emission lines of interest limiting the SA
correction. More importantly, the involvement of the SA correction procedure makes the
CF-LIBS more complex and time-consuming. In specific scenarios where SA correction is not
necessary, CF-LIBS may be quick and easy to use in practice. Likewise, CF-LIBS several other
calibration-free approaches have been developed like columnar density CF-LIBS, one line
CE-LIBS (OLCEF-LIBS), inverse CF-LIBS etc. However, the above-mentioned techniques
also follow Boltzmann or Saha-Boltzmann plot method for estimation of plasma temperature

in its procedure likewise CF-LIBS and also share its limitations.

To overcome these limitations, a new, robust, more straightforward method for fast
quantitative elemental analysis is proposed in this chapter. The major advantage of this
technique i1s that it doesn't involve Boltzmann/Saha-Boltzmann plot in the calculation. The
requirement of a few numbers of emission lines makes it a more robust and straightforward
technique. It demands only two emission lines from any one of the elements and a single line
from all other elements. For example, a sample of n elements requires only n+1 emission
intensity lines. Since only one emission line is needed from every element except any one
element in the sample, now there is a great flexibility of choosing emission lines that are not

affected by SA. Also, this approach significantly reduces the complexity of the calculation as
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fewer steps are involved. Since the method relies on intensity ratios to determine
concentrations, it is named as SLICE (Simplified LIBS-based Intensity-ratio approach for

Concentration Estimation).

In this chapter, the plasma diagnostics and temporal characterization of plasma parameters are
discussed briefly. The estimation of plasma temperature and plasma decay parameters (PDPs)
of LIP using intensity ratio and radiative relaxation mechanism is discussed, followed by
elemental analysis of two copper-based alloys using the CF-LIBS and SLICE techniques. The

theory, working procedure, advantages and limitations of these methods were elaborated.
3.2 Experimental Details

The schematic of the experimental setup is shown in chapter 2 (figure 2.4). In brief, it
comprises a Q-switched Nd:YAG laser (Spitlight 1200, M/s Innolas,) that produces ~7 ns laser
pulses of energy ~50 mJ/pulse at a wavelength of 532 nm with a repetition rate of 1 Hz. The
laser pulse was guided by a mirror and focused onto the sample surface using a plano-convex
lens (focal length: 10 c¢m) in ambient atmosphere. The sample was mounted on an XY
translation stage, controlled by a motion controller (Newport, ESP-300) to ensure a fresh
surface spot for each laser pulse. A collection optics assembly (Andor, ME-OPT-0007) was
aligned at approximately 45 degrees to the incident laser beam to collect the LIP emission
light. Further, the light was directed towards an echelle spectrograph (Andor, Mechelle ME-
5000) through an optical fiber of 600 um core diameter and 2 m length. The spectrograph has
been equipped with an ICCD (Intensified charge-coupled device) camera as a detector
(Andor, iISTAR DH734). A delay generator (SRS-DG-645) was used to electronically trigger
the ICCD with respect to the Pockels cell of the laser in order to avoid electronic interference

and jitters. The spectrograph covers the spectral range of 220-850 nm.

LIBS experiment was conducted on two Cu alloys (binary and ternary). The binary alloy
consists Cu and Zn, whereas the ternary alloy contains Cu, Zn and Ni as elemental
composition. Temporal kinetic series spectra of the alloys were recorded in ambient air at
atmospheric pressure. Each spectrum was collected after an initial delay of 0.5 ps to avoid the
high intensity of continuum radiation at the initial period of plasma formation. The ICCD
gain was set to 100 to obtain a strong signal. Time evolution spectra were collected in the 0.5

— 5 ps temporal window with a constant step and gate width of 0.5 ps. Each spectrum was
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averaged over 10 spectra to increase the signal-to-noise ratio. Likewise, 10 sets of time

evolution spectral data were recorded for each alloy.

3.3 Spectral interpretation

The emission spectra of LIP have been recorded in the temporal window of plasma relaxation
(0.5 = 5 ps). The spectra corresponding to both the alloys recorded at 1 ps delay with 0.5 ps
gate width is graphically presented in figure 3.1. Originally, the spectrum was recorded in the
wavelength range of 220 — 850 nm, where those wavelength ranges having intensity emission
lines of interest (i.e., 230 — 570 nm) are depicted. All the spectral emission lines in the
spectrum were identified with the help of the NIST atomic database[24]. After identifying all
the lines, it has been observed that binary alloy contains Cu and Zn, whereas ternary alloy
contains Cu, Zn, and Ni as expected. Some of the prominent emission lines were marked in
the spectra. Very less intense emission signatures of N and O were also observed due to the
contribution of atmospheric air. It is obvious from Fig. 3.2 that Cu- 324.80, 327.27, 393.39,
427.58, 465.18, 510.55, 515.29, and 521.86 and Zn- 328.25, 330.27, 334.51, 472.30, and
481.13 emission lines emit intense radiation. The energy level diagram of some prominent

transitions is presented in figure 3.2.
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Figure 3.1. Emission spectra of binary and ternary alloy recorded at 1 ps delay.

Investigating the time dependence of LIP emission intensity is crucial because, after plasma
formation (termination of laser pulse), it expands, resulting in plasma cooling due to thermal
energy loss. As a result, the plasma temperature and hence the emission intensities gradually

decrease over time. The time-dependent spectra of both alloys are depicted in figure 3.3 and
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3.4. From the figures, it can also be noticed that there is a background in the spectra of both
the alloys at the early stage, i.e., up to 1 ps which is completely absent in the later stage. This
could be due to the dominance of the plasma continuum at the early stage of plasma
relaxation. Also, a high signal-to-noise ratio is observed at the early time which decreases

gradually with the decrease in emission intensities.
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Figure 3.3. Time-dependent spectra of (a) binary and (b) ternary alloy.
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Figure 3.4. Expanded view of the time-dependent spectra of (a) binary and (b) ternary alloy in the
range of 464 — 525 nm.

3.4 Plasma diagnostic studies

3.41 Thermodynamic equilibrium (TE) and local thermodynamic
equilibrium (LTE) in LIP
LIP refers to a localised assembly of atoms, ions, electrons, and radiations. In a condition of
thermodynamic equilibrium (TE), the distribution of energy among the many states of the
particle assembly can be characterised by a single temperature. It is possible when the
‘principle of detailed balance’ holds, i.e., the rate of forward and reverse processes at a given
energy level is equal. Also, the plasma should be optically thick in order to achieve radiative
equilibrium. In practice, this situation is rarely complete, so physicists have adopted some
approximations to to characterize the condition of the plasma, known as local thermodynamic
equilibrium(LTE)[25,26]. According to LTE approximation, the plasma is in thermal

equilibrium in a small region of the LIP.

Under LTE, the velocity distribution of particles follows classical Maxwellian distribution as,

3
m 2 —mv?
f(v)dv = ex 4zvidv 3.1
V) [ZﬂkBTj p(szT] d G-1)

where kg 1s the Boltzmann constant, T is the temperature, v and m are the speed and mass of

the particle, respectively.

The relative population of the plasma species (electrons and ions) in the excitation state is

given by the Boltzmann distribution,
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where N, Ny, g, Z(T), E; are the population of i" level, population of the total species,

statistical weight of the i" level, partition function, energy of the i" level respectively.

The LTE plasma exhibits a single temperature that accounts for the arrangement of species
across energy levels, the kinetic energy of electrons or ions, and the population of ionization
states. Hence, the excitation temperature, which regulates the population of atomic energy
levels, must be equivalent to the ionization temperature, which dictates the distribution of

atoms across various ionization states.

The elemental species are populated in ionization states according to by Saha — Eggert

equation which can be expressed as,

) 3 .
N”l:(Z”kaTJZ 221(T) p[ B+ Bja- Zj (3.3)

N h? z! keT
(T) :
where N’ and N'*! are the number density of i and (j+1)" ionization state respectively. n,, h
and y are the electron number density, Planck’s constant and first ionization energy of an

isolated system.

3.4.2 Estimation of plasma temperature (Boltzmann plot)

Plasma temperature is a characteristic parameter of LIP that influence the spectral emissions of
the plasma. Under LTE approximation, the population of a neutral ionic species at a particular
temperature follows Boltzmann distribution as mentioned in equation 3.2. The spectral line
intensity of the emitted radiation is given by the following expression,

_hvAN,

1= (3.4)

where [ represents the intensity of emission due transition of species from i" to j" energy
level, v is the frequency of the emission and Aj is the transition probability of the emission

line. Substituting equation 3.2 in equation 3.4,

= hcN Augu Xp{__Eij (3.5)
47, (T) kT

where ¢ and A are the speed of light and wavelength of emission, respectively.
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Simplifying equation 3.5,

In ik |- +In[ FC j (3.6)
AGi ) kT Z(T)

where F and C are the experimental factor and elemental concentration of the species,

respectively.

In equation 3.6, Ay, g and E; are the spectroscopic parameters that are available in NIST
atomic database, I and A; are experimental parameters that are observed in the spectra and kg
is the constant. A plot of the LHS of equation 3.6 vs E; has a slope of -1/kBT; therefore,

plasma temperature T can be inferred by straight line fit.

In the current experimental picture, for the estimation of plasma temperature using the
Boltzmann plot method (equation 3.6), four neutral emission lines of copper at 465.18,
510.55, 515.29 and 521.86 nm were considered. These lines were assumed to be self-
absorption free emission lines based on earlier reports[13,27]. The energy level diagram of

these lines are depicted in figure 3.3 and the spectrometric parameters are listed in table 3.1.

Table 3.1. Spectroscopic parameters of copper emission lines.

SI. No. A (nm) Ei(eV) E; (eV) A (10% s i gj
1 465.18 7.737 5.072 0.38 8 10
2 510.55 3.816 1.388 0.02 4 6
3 515.29 6.192 3.785 0.60 4 2
4 521.86 6.192 3.816 0.75 6 4
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Figure 3.5. Boltzmann plot of Cu emission lines for (a) binary and (b) ternary alloy.

The Boltzmann plot of Cu emission lines for both the alloy sample at each delay is depicted in

figure 3.5. From the figure, it can be noticed that the straight line fitted well w.r.t. the
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experimental data at every delay for both the samples and have high R square value close to
one. The temporal variation of plasma temperature of LIP of both the samples are represented
in figure 3.6. It is observed that the plasma temperature decreases gradually with time. The
temperature and intercept obtained from the Boltzmann plot also serve as essential parameters
for elemental analysis when employing CF-LIBS, a topic that will be further elaborated upon

in the upcoming sections.
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Figure 3.6. Temporal evolution of plasma temperature of LIP of (a) binary and (b) ternary alloy.

3.4.3 Estimation of electron number density

Electron number density is another characteristic parameter of LIP that can be determined
from the width of the spectral line. The primary factor responsible for the broadening of the
emission lines is the combined effect of natural, Doppler, and Stark broadening. The spectral
transition’s minimum linewidth is determined by its inherent natural linewidth, which is
caused by the finite lifetime of species (atoms/ions) in their excited states. The natural
broadening of the linewidth is very samll can be ignored. Doppler broadening occurs due to
the Doppler effect caused by the varying velocities of atoms, ions, or molecules. The emitted
radiation 1s dependent on the spectral line’s frequency (or wavelength), plasma temperature,

and the mass of the emitting particles. The expression for Doppler broadening (AAp) is given

by,

Ay =7.16x 4; x107 /% (3.7)

where T and M are the plasma temperature and atomic mass of the species, respectively. The

value of ALAp, is found to be in the order of few picometers which is much less compared to
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the resolution of spectrometers used for LIBS experiments (For example, Andor Mechelle
5000 spectrometer has resolution of 100 pm at 500 nm), thus, the contribution of Doppler
broadening can also be neglected. Therefore, only Stark broadening is responsible for the

broadening of LIBS emission lines.

The interaction between charged particles within the plasma and the electric field induces
perturbations in the energy levels of the particles, resulting in the broadening of spectral lines,

commonly referred to as Stark broadening. This broadening is directly proportional to the
electron density. The full width at half maximum (FWHM), AL,,, of the Stark broadened line

is given by the following expression,

1
n, n, ) = n,
My, =2w| 25 |+35A| oz | 112G | o (3.7)

where w; n.,, A and Np are the electron impact width parameter, electron density, ion

broadening parameter and number of particles in Debye sphere, respectively. w and A can be
obtained from literature and Ny, can be calculated using the following expression|28],
T3/2

12
ne

N, =1.72x10° (3.8)

The first term on the right-hand side of equation 3.7 pertains to electron broadening, while
the second term corresponds to ion broadening. Given that the impact of ion broadening is

minimal, equation 3.7 simplifies to,

Ady, = 2w(lg§6j (3.9)
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Figure 3.7. Temporal evolution of electron density (a) binary and (b) ternary alloy.
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Therefore, the electron density n, can be calculated using equation 3.9 where AL, is the
FWHM of the observed emission line. The electron density values at each temporal delay for
both the alloy samples were estimated using the Cu emission lines at 515.29 nm. The temporal
variation of electron density of both the samples are represented in figure 3.7. The electron
density exhibits a rapid decay during the initial phase of plasma expansion (within the first 2
ps), followed by a gradual reduction. Following the creation of plasma, the electrons inside the
plasma undergo recombination with the ions as the plasma expands, resulting in a reduction in

plasma temperature.

3.4.4 Theoretical model for temporal evolution of plasma

temperature and estimation of PDPs

As the LIP expands in ambient gas, it cools down by emitting electromagnetic radiation and
generating shockwave[29-31]. The temporal relaxation of LIP depends on various factors,
including nature of the material, experimental parameters (e.g., laser energy, focusing distance,
etc.), ambient environment, etc. Temporal dynamics is a complex and not yet completely
understood phenomenon. At the initial stages of relaxation, the plasma becomes opaque or
optically thick, leading to the emission of a plasma continuum. Subsequently, it becomes semi-
opaque/ semi-transparent and at the later time, it becomes transparent or optically thin[32—
34]. Nonetheless, for elemental analysis (CE-LIBS), LIP is always assumed as optically thin for
duration spanning several microseconds. But, the relation between CF-LIBS and optically thin
approximation is not understood properly. In spite of this, CE-LIBS remains a very successful
analytical method for precise determination of concentrations and is widely accepted.
However, according to the recent report by the same group who originally developed the
CE-LIBS, the optically thin approximation may not be a necessary condition for elemental

analysis [35].

Owing to the intricate nature of comprehending the temporal dynamics of plasma, the
temporal decay of plasma temperature was always approximated to exponential decay which
lacking proper theoretical foundation[36—41]. However, Rajendhar et al. made a significant
breakthrough by introducing a theory based on radiative cooling of the plasma[42]. This
approach is based on the optically thick approximation of the LIP which describes the
relaxation using a one-third power-law expression that incorporates two plasma decay

parameters (PDPs), namely the initial temperature 7, and radiation decay constant 7. This
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theoretical model offers a thorough depiction of the kinetic evolution of LIP, taking into

account the radiative relaxation mechanism.
In the context of the present experiment, the duration of the laser pulse (At;) is ~7 ns which is
the characteristic time for the formation of LIP whereas the duration of the plasma relaxation

. . . . A . .
(Atr) is more than 5 ps; which implies, % > 1. That means the time taken for formation of
R

LIP 1s much smaller compared to the plasma relaxation time and hence, the time at which the
laser pulse is terminated and plasma is formed can be considered as time, t=0 and the

temperature at that time can be assumed to be the initial temperature (T,,) of the LIP.

The heat flux density due to thermal conductivity can be estimated by the following

expression[27],

Q ~— (3.10)
z

where k is the coefficient of thermal conductivity of the medium; T is the plasma temperature;
z 1s the characteristic distance at which the temperature drops from T to the ambient

temperature T(<< T.

The energy flux density due to thermal radiation can be represented by the expression,
Q ~oT* (3.11)
where 0 is the Stefan-Boltzmann constant.

The ratio between heat flux density due to thermal conductivity and energy flux density due
to thermal radiation can be rewritten as the following expression,

Q _ Kk
Q zoT°

(3.12)

Considering k = 0.5 Wm™'K™" (which for air corresponds to a temperature of > 3000 K) and T

= 10,000 K we obtain the estimation %~0.01, which shows that in the process under

r

consideration, the thermal conductivity can be neglected in comparison with thermal
radiation. Hence, by only accounting for the radiative mechanism governing the plasma

temperature decay, the energy conservation law for the plasma can be expressed as[42],

mc OI—Tz—SaT4 (3.13)
dt

v
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where m, c,, T, t, S and 6 are the mass of the plasma, specific heat of the plasma cloud, plasma
temperature, time, surface area of the plasma plume and Stefan-Boltzmann constant,
respectively. Assuming m, c¢,, and S constant, the solution to the equation 3.13 can be

obtained as follow,

dT So

—=——|dt 3.14
T*  mc, .19
-3

~ T .c__S9, (3.15)
3 mc,

where C is the integration constant. By applying boundary condition to equation 3.15, i.e., at

time t=0, T=T,,
T73
C=— 3.16
3 (3.16)

By substituting equation 3.16 in equation 3.15,

T -3 T -3
I T _So, (3.17)
3 3 mc,
T® T3 3SoT?
= —= 1+ (3.18)
3 3 mc,
-3 -3
= T—:TL(ZIAL) (3.19)
3 3 T
where 7= 35 Cl’l_3 is the radiation decay constant of the plasma or the characteristic time of
o

m

the radiation cooling.

Simplifying equation 3.19,

TM)=T, (1+3]_3 3.20)
T

The value of PDPs (T,, and 1) can be estimated by comparing the theoretical dependence
(equation 3.20) with temperature derived from experimental data using the Boltzmann plot
(section 3.4.2). During data processing, T,, and T can be considered as the fitting parameters

and followed by fitting of experimental data as shown in figure 3.8.
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From figure 3.8, it can be observed that the theoretical dependence fitted well with that of the
experimental data. In case of binary alloy, the R square of the fitting line is 0.99 and the value
of T,, and T were estimated to be 13900 + 200 K and 1.96 £ 0.23 ps respectively. Similarly,
for ternary alloy the value of R square, T,, and t are 0.95, 13300 £ 200 and 4.07 * 0.34 ps
respectively. Once PDPs were estimated, the plasma temperature can be calculated at any

temporal delay using equation 3.20 irrespective of the experiment.
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Figure 3.8. Dependence of plasma temperature on time for (a) binary and (b) ternary alloy.

3.4.5 Theoretical model for temporal evolution of intensity ratio

and estimation of PDPs

Using equation 3.20 in equation 3.5, the temporal dependence of intensity ratio can be given

by,

1
hcN, A g, —E. 3
N0, 5 (1+£j3 (3.21)

Iij (t)= exp
AGZ(T() | kT, U 7
Considering the ratio of emission lines correspond the same species, it is possible to cancel out

the common parameters from equation 3.21. The temporal dependence of intensity ratio can

be written as,

M) _ AnAG | (B —Em)[“l)s (3.22)

Imn (t) - 21] Aﬂngm kBTm T

Now equation 3.22 is completely free from the temperature term. The nature of the intensity
ratio will depend on the emission line chosen, i.e., the intensity ratio will decay with time if

E> E, and increase with time if E;< E,,.
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Hence, equation 3.22 allows determining PDPs without estimating the plasma temperature
using the Boltzmann/ Saha-Boltzmann plot method. Now, comparing the theoretical
dependence (equation 3.22) with the experimental data on the intensity ratio, we can estimate
PDPs as fitting parameters. If the upper energy level of the two emission lines are same i.e. E;

= E,, then the equation 3.22 turns out to be

Iij (t) _ ﬂ’mnpﬁj gi
Imn (t) ﬂ’|j Anngm

= Constant (3.23)

Under the special case (equation 3.23), the intensity ratio becomes a constant which is
independent of time and also it doesn’t contain PDPs. Therefore, in order to estimate PDPs
accurately, the choice of emission lines is crucial. The emission lines should satisty the

following two conditions:
1. The emission lines should be free from self-absorption.
ii.  The upper energy level of the two emission lines should be well separated.

In this context, four emission lines of Cu (465.18, 510.55, 515.29, and 521.86) correspond to
binary and ternary alloy were considered for estimation of PDPs using intensity ratio fit

(equation 3.22). The spectroscopic parameters of the emission lines are given in table 3.1.

From table 3.1, it can be seen that upper-level energy Cu-515.38 and Cu 521.86 are same.
Therefore, except this combination of Cu lines, PDPs were estimated using all other five
possible intensity ratio combinations for both the samples. The theoretical equation of
intensity ratio (equation 3.22) is fitted with the experimental data for each combination of

emission lines as shown in figure 3.9.

The theoretical dependence of the intensity ratio with time is represented by the solid black
line in figure 3.9 while the markers indicate the experimental values. The error bars represent
the standard deviation of 10 measurements. It is evident from figure 3.9 that the proposed
theoretical model fitted well with the experimental data for different combinations of emission
lines with R square close to one. The estimated values of PDPs obtained using the intensity

ratio fit of various combinations of emission lines is represented in figure 3.10.

From figure 3.10, it can be observed that PDPs estimated using the intensity ratio model show
good agreement with that of the plasma temperature model. It is expected that the error in the

estimated values to be smaller compared to the temperature model; however, only few cases
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resulted in a comparable error. This could be due to the eftect of experimental parameters and

optimization of these parameters

1.4

may reduce the error.
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Figure 3.10. Comparison of PDPs obtained using temperature model vs intensity ratio model for (a)

binary and (b) ternary alloy.
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Moreover, the intensity ratio method has an edge over the temperature method as it
determines the parameters directly from the intensities of the emission lines. This model
reduces the complexity in the estimation of temperature by avoiding the intermediate
calculations and can reduce the errors that inevitably arise at each step of the iteration. Apart
from the various advantages over the existing plasma temperature estimation techniques, the
proposed model only has one limitation, i.e., it requires the acquisition of temporal evolution
of LIP spectra which will consume some extra time for the experiment compared to the
conventional method. However, considering the fact that any calibration-free elemental
analysis study using LIBS compulsorily uses a gated spectrometer and performs preliminary
studies to find the best temporal window, this drawback is only artificial. More importantly, as
will be discussed in the future sections, this analysis can significantly simply the process of

estimation of concentration.

3.5 Elemental analysis

Elemental analyses were performed on two alloy samples (binary and ternary) using electron
dispersive X-ray spectroscopy (EDS), CE-LIBS, and the newly proposed SLICE technique.
Subsequently, the results obtained from the SLICE were compared with those from EDS and
CF-LIBS.

3.5.1 Elemental analysis wusing electron dispersive X-ray

spectroscopy (EDS)

EDS stands as a firmly established analytical method employed for determining the elemental
composition of a given sample. It is a non-destructive technique that offers important insights
into the micro- and nanoscale chemical composition of materials. EDS complements
techniques like scanning electron microscopy (SEM) by allowing precise identification and

quantification of the elements present within a sample.

The basic principle of EDS involves the interaction between high-energy electrons and a
sample. When a focused electron beam strikes the sample, it generates characteristic X-rays by
exciting inner-shell electrons of the atoms within the material. These emitted X-rays are
unique to each element and contain the elemental information. Through the collection and
analysis of these X-rays, EDS provides a complete elemental profile of the sample enabling to

study the distribution of elements, detect trace elements, etc.
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Figure 3.12. EDS spectra showing the elemental composition of (a) binary and (b) ternary alloy.

Table 3.2. Elemental concentrations obtained from EDS analysis.

Concentration (wt%) Binary alloy Ternary alloy
Cu 62.78 £ 0.72 76.67 £ 0.20
Zn 37.22£0.72 17.73 £ 0.21
Ni 5.60 £ 0.18

EDS analysis was performed on five different regions of each sample. Figure 3.11 shows SEM
images of one of the regions of each sample where EDS measurements were performed.
Figure 3.12 represents the EDS spectrum of both the samples. From the spectra, it can clearly
observe that in case of binary alloy only Cu and Zn are present whereas in case of ternary alloy
Cu, Zn and Ni are present. The elemental concentrations of both the samples obtained using
EDS are represented in table 3.2. Here the error factor represents the standard deviations of

five measurements for each sample.

Advantages and Limitations of EDS

EDS has several advantages including capable of elemental analysis of a wide range of

elements, offers excellent spatial resolution in micro- and nanoscale, highly sensitive in nature,
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fast and non-destructive, etc. However, it has some limitations in which include necessity of

sample preparation, imitated to surface investigation only, expensive instrumental setup, etc.

3.5.2 Calibration-free laser induced breakdown spectroscopy (CF-
LIBS)

According to CF-LIBS, the concentration of each elemental species can be estimated from the
intercept of the Boltzmann plot (see equation 3.6 and figure 3.6). The intercept of the

Boltzmann plot can be represented as,

q=In (ZF—(CFJ (3.24)

Simplifying,

C= éz (T)exp(q) (3.25)

In this equation, Z(T) and q can be obtained from NIST atomic database and Boltzmann plot
respectively. Therefore, F is the only parameter that needs to be estimated in order to calculate

the elemental concentration of individual species.

According to closure condition, the sum of concentrations of all elements detected in a sample

1s 100% or 1 (in fraction). Therefore,
1
Y C= EZZ(T)exp(q) =1 (3.26)

= F=) Z(T)exp(q) (3.27)

Hence, after calculation of F, the elemental concentration of each element in the sample can

be estimated using equation 3.25.

The concentration of all the species were calculated at each time delay for both binary and
ternary alloy. However, it is necessary to quantify the overall accuracy of this technique for
which actual value of the elemental composition should be known. The overall accuracies

have been quantified by distance measure[43] —

N
Distance = Y abs(M; -C,) (3.28)

i=1
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where N, M and C are the number of elements in the sample, measured and standard/certified
concentrations, respectively. The distance of few units is considered a reasonably good result,
whereas the distance of the order of tens is a poor result[43]. In this case, the concentrations
obtained from EDS are considered as actual/reference concentration since EDS is a well-
established technique for the elemental analysis. The elemental concentrations obtained from
CE-LIBS at each delay are tabulated in table 3.3. From the table, it can be observed that for
binary alloy, the Cu concentration ranges from 60.83 to 67.90 whereas the actual (EDS
concentration) value is 62.78. However, considering the standard deviation of both the
techniques, CF-LIBS results agree well with that of EDS within the error range. Similar
observations were also noticed in case of Zn and all the elements in ternary alloy. Therefore, it
can be concluded that the CF-LIBS provides accurate estimation of elemental concentrations

of the alloys.

Table 3.3. Elemental concentrations of binary and ternary alloy estimated from CF-LIBS.

Time Binary alloy Ternary alloy
(pss) Cu (wt%) Zn (wt%) Cu (wt%) Zn (wt%) Ni (wt%)
0.5 67.9 +3.73 32.1 +3.73 75.84 +209 19.76 £ 236 4.4+ 174
1 63.49 + 1.9 36.51 +1.9 7543+ 145 20411196 416+ 1.04
15 61.6 +2.28 38.4 +2.28 76.63+0.8 1923 +098 414+ 1.19
2 63.14 + 1.94 36.86 + 1.94 77.04+124 1815+ 042 481 +1.07
25 60.95 * 3.45 39.05 + 3.45 77521094  18.07 £0.74  4.41 £ 057
3 60.83 + 2.25 39.17 +2.25 77.07 +126 1855+ 1.05 438+ 0.85
35 62.34 + 3.81 37.66 + 3.81 78.19+0.95 1791091  3.9+0.72
4 62.02 *+ 3.89 37.98 + 3.89 77.69 12 1736 £1.07 495+ 1.65
45 62.35 *+ 4.06 37.65 + 4.06 7835+ 0.94 17.63+0.84  4.01 +0.81
5 61.35 + 5.32 38.65 + 5.32 77.68+1.67 1756+ 1.4 477 +£0.95
15 Distance 10] (a) 13 Disiance 10 (b)
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Figure 3.13. CF-LIBS distance at each temporal delay for (a) binary and (b) ternary alloy.
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Moreover, figure 3.13 represents the CF-LIBS distance w.r.t. EDS explaining the overall
accuracies of CF-LIBS. In the figure, the red dashed line represents the distance value of 10,
below which the results can be considered as good. From figure 3.13a, it can be noticed that
in case of binary alloy, the accuracy is poor at 1 ps delay which could be due to the effect of
the plasma continuum at the early stage of plasma relaxation, as observed in figure 3.3 and 3.4.
However, except this time window, the results are good for all other temporal regions.

Furthermore, in case of ternary alloy, the results are good in all the cases as seen in figure

3.13b.

Advantages and Limitations of CF-LIBS

The advantage of CF-LIBS is that it circumvents the requirement of matrix matched standards
and reference samples, which is a significant challenge in calibration-based LIBS. However, a
notable limitation of this method is the necessity to identify few spectral lines of every element
within the plasma with established atomic data and those line shouldn’t be affected by self-

absorption.

3.5.3 Simplified LIBS-based Intensity-ratio approach for

Concentration Estimation (SLICE)

SLICE is significantly easier and straightforward method for elemental analysis using LIBS
since it requires fewer emission lines. At first, two emission lines from any one of the
elemental species are needed in order to estimate PDPs using temporal modeling of intensity
ratio (section 3.4.5). Once the PDPs have been estimated, a single line from each element is all
that is needed to calculate their concentration. Since a small number of emission lines are

required, there is a great flexibility in picking lines that are not affected by the self-absorption.

After the deduction of PDPs, the only difficulty in estimating elemental concentration using
equation 3.20 is the estimation of experimental factor F. The experimental factor F has been
taken into account to balance the disruption caused by the optical deficiency of the collection
system along with plasma density and volume. As a result, this factor affects the entire plasma
and is unrelated to the emitting species. So, F can be easily ruled out by looking at the
intensity ratio of two spectral lines that correspond to two different species. In simplified form,

the intensity ratio of two spectral lines corresponding to difterent species can be written as,
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Here the subscripts x and y represent the emissions from x™ to y™ energy level and the
superscripts P and Q represent two species in the sample. All other parameters have the same
meaning as before. Now, all the values corresponding to the parameters in the R.H.S. are
known, so the ratio of elemental concentration between two different species in the same
sample becomes a constant, i.e.,
p
% =a (3.31)

where a is a constant. Again, for binary alloys, the closure condition implies[43],
C” +C°=100% (3.32)

Finally, by solving equation 3.31 & 3.32, we can obtain the individual elemental

concentration.

Similarly, for ternary alloy,

CP

F:al, (333)

CP

F=C¥2, (334)
and C°+C?+CF =100% (3.35)

where the superscript R corresponds to the third species. Again, by solving equation 3.33 to
3.35, the elemental concentration of each species can be determined. The flow chart of the

working procedure of the proposed SLICE technique is summarized in figure 3.14.

In this context, the PDPs estimated using Cu 465.18 and Cu 510.55 lines (section 3.4.5) were
selected for the estimation concentration estimation. For binary sample, the value of PDPs
were estimated to be 14,183 = 277 K and 2.37 * 0.46 ps, respectively, whereas, for ternary
sample, it was estimated to be 12,853 + 300 K and 5.06 + 1.57 ps, respectively.
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Figure 3.14. Flow chart of the working procedure of SLICE.

After the estimation of PDPs, the intensity ratio of Cu 465.18 / Zn 328.25 was considered to
estimate the concentration of Cu and Zn in the binary alloy sample (using equation 3.30 to
3.32). Similarly, for ternary alloy, ratios of Cu 465.18 / Zn 328.25 and Cu 465.18 / Ni349.29
were used. The concentrations were obtained at 2 ps delay for both samples. The SLICE
results are compared to that of CF-LIBS and EDS in table 3.4. Table 3.4 shows that, within
the margin of error, the quantitative results from SLICE show excellent agreement with the
other two techniques, one based on LIBS and another a standard technique. Considering the
EDS result as a standard, the SLICE distance (equation 3.28) for binary alloy was evaluated to
be 2.5 and for ternary alloy, it is 2.4. Similarly, for CF-LIBS, the distance is 3.2 and 2.5,
respectively. A small distance of a few units for both binary and ternary samples explain the
potential of SLICE for quantitative elemental analysis, likewise CF-LIBS. It is worth
emphasizing that SLICE requires time evolution LIBS signal for estimating PDPs. However,
in the next step, a spectrum from any one-time window is sufficient, provided the LIBS
assumptions are valid in that time window. Also, multiple emission lines satisty the self-
absorption criterion of which Cu 465.18 / Zn 328.25 at 2 ps were considered for estimation
of concentration. However, it is worth exploring this technique when difterent combinations
of emission lines are used to estimate PDPs and then different lines for each species are used at
different time windows of collection. The next section presents the results considering these

parameters.
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Table 3.4. Comparison of SLICE results with CF-LIBS and EDS. Here the results correspond to

SLICE and CF-LIBS is the mean = standard deviation of 10 measurements, and EDS is the mean *

standard deviation of 5 measurements.

Binary alloy Ternary alloy
Element
SLICE CF-LIBS EDS SLICE CF-LIBS EDS
Cu 63.08 = 1.74 63.14 = 1.94 62.78 £ 0.72 77211121 77.04 £ 1.24 76.67 £ 0.20
Zn 36.92+ 1.74 36.86 = 1.94 37.221+0.72 17.90 £ 0.49 18.15 + 0.42 17.73 £ 0.21
Ni - - - 489 £1.14 4.81 £1.07 5.6 £0.18

Robustness of SLICE

In order to investigate the potential of this technique for different emission lines at different
delays, the PDPs estimated for all different possible combinations of intensity ratios were
considered. For each pair of PDPs, the elemental analyses have been performed for eight
combinations of emission lines (as mentioned in table 3.5) at ten different delays for each
sample. And at each delay, ten spectra were recorded. This implies that in total 4000
concentrations have been estimated (5 PDPs X 8 combinations of emission lines X 10 delays X

10 spectra).

Table 3.5. Various combinations of intensity ratios considered for SLICE analysis.

SL. Binary alloy Ternary alloy

No. Ratios Label Combinations of ratios Label
1 Cu 465.18 / Zn 328.25 R1 Cu 465.18 / Zn 328.25 & Cu 465.18 / Ni 349.29 C1
2 Cu 465.18 / Zn 330.27 R2 Cu 465.18 / Zn 330.27 & Cu 465.18 / Ni 349.29 C2
3 Cu 510.55 / Zn 328.25 R3 Cu 510.55 / Zn 328.25 & Cu 510.55 / Ni 349.29 C3
4 Cu 510.55 / Zn 330.27 R4 Cu 510.55 / Zn 330.27 & Cu 510.55 / Ni 349.29 C4
5 Cu 515.29 / Zn 328.25 R5 Cu 515.29 / Zn 328.25 & Cu 515.29 / Ni 349.29 C5
6 Cu 515.29 / Zn 330.27 R6 Cu 515.29 / Zn 330.27 & Cu 515.29 / Ni 349.29 C6
7 Cu 521.86 / Zn 328.25 R7 Cu 521.86 / Zn 328.25 & Cu 521.86 / Ni 349.29 C7
8 Cu 521.86 / Zn 330.27 RS Cu 521.86 / Zn 330.27 & Cu 521.86 / Ni 349.29 C8

The elemental analyses were performed for both the samples for every combination of PDPs
and intensity ratios at each temporal delay. The distances were estimated for each combination
by considering EDS as standard/reference. The mean distance estimated using various
combinations of PDPs and intensity ratios at each delay is depicted in figure 3.15 and 3.16 for
binary and ternary alloys, respectively. The distance value of 10 is shown by the dashed lines
in each graph. Distances of fewer than ten units can be regarded as good results, while
distances of 10 or more are considered poor results[43]. As can be seen from figure 3.15 and

3.16, a very large number of values fall below the line, which is 3026 (75.65 %) and 3789
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(94.72 %) of the estimated concentrations out of a total possible 4000 for binary and ternary
alloy respectively. This implies that any combination of the emission lines and delay can be

chosen for the estimation of concentration.
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Also, it is evident that the SLICE distance in the temporal window of 1.5 — 4 ps, the distance
value is minimum for almost all combinations for both the samples. To be specific, out of
2400 possible measurements, 1955 (81.46 %) and 2371 (98.79%) of the estimated
concentrations fall below the threshold distance for binary and ternary alloy, respectively. The
larger distance at the initial time (0.5 — 1 ps) could be due to the effect of the plasma

continuum at the early stage of plasma relaxation, as observed in figure 3.3 and 3.4. And after
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4 us, the signal-to-noise ratios of emission intensities are low, which may be the reason for

larger distance at later time. CF-LIBS also showed such behavior in the initial time window.
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The results of this section have two important implications. Firstly, for any combination of
parameters, this technique gives an accurate estimation. Secondly, given data of one temporal
scan, it is possible to repeat the process of estimation, thereby increasing the precision. In the
case of binary alloy, there are five different combinations (m) for estimation of PDPs and ten
different time windows (n), and eight combinations for considering ratios (p). Hence, a total
of mXnXp estimations (400 in the present case) can be performed. Additionally, if one chooses
to repeat the data N times (10 times in this case), then a total of NXmXnXp estimations (here

4000) can be performed. This is crucial as the precision or standard deviation of the mean is

proportional to 1/\N.
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Figure 3.17 shows the distribution of Cu and Zn concentrations estimated for binary with
only one time-evolution data and ten recordings. In all the cases, the distribution shows strong
bell-shaped curve. In a typical concentration estimation experiment, one can perform any one
of these estimations which is very fast and simple. In such a scenario, the error in the
estimation of the concentration would be the standard deviation obtained from figure 3.17.
However, if one is interested in finding the concentration with higher precision, one can
perform either mXnXp estimations or NXmXnXp estimations. The estimated concentration in
such a scenario can be expected to be very close to the actual value. Similar results were also

obtained in case of ternary alloy as shown in figure 3.18.
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Figure 3.17. Histogram of (i) Cu and (ii) Zn concentrations correspond to binary alloy estimated using
(a) single time evolution data (400 values) and (b) 10 sets of time evolution data (4000 values). SD

represents standard deviation.

SLICE provides the flexibility of multiple measurements for elemental concentration which
results in better precision. Also, this technique has several other notable advantages, as
discussed in table 3.6 The accuracy and precision of this technique can further be improvised
by optimizing different factors that play significant roles in the evolution of laser produced
plasma. An extensive exploration for the future prospects for enhancing the accuracy and

precision of SLICE is elaborated in Chapter 7.
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Figure 3.18. Histogram of (i) Cu, (i) Zn and (iif) Ni concentrations correspond to ternary alloy
estimated using (a) single time evolution data (400 values) and (b) 10 sets of time evolution data (4000

values). SD represents standard deviation.

Advantages and limitations of SLICE

SLICE has several notable advantages over other LIBS-based technique for elemental analysis.
SLICE retains all the benefits of CF-LIBS and offsets some of its limitations. First of all, SLICE
doesn’t require Boltzmann/Saha-Boltzmann plot methods for the determination of
concentration. Secondly, it requires fewer spectral lines to perform comprehensive elemental
analysis; specifically, only n+1 emission lines are sufficient for a sample containing n elemental
species. This offers a great flexibility in the choice of emission lines which do not sufter from
self-absorption. Moreover, it is an intensity-ratio based approach and allows estimation of
concentrations directly from the intensity-ratio of emission lines making it robust,

straightforward and less time-consuming technique.

This technique only has one limitation so far i.e., it requires multiple time-dependent spectra
in order to estimate the PDPs which is the first step in this approach. Nevertheless, the CF-
LIBS approach necessitates the acquisition of temporal window measurements of the
spectrum, utilizing an ICCD, which can also record time-dependent data for SLICE.

Considering the rapid pace of LIBS experiments, the additional time required for recording
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multiple spectra is relatively minimal. The advantages and disadvantages of SLICE compared

to CF-LIBS are briefly discussed in table 3.6.

Table 3.6. Comparison of the advantages and disadvantages of SLICE with CF-LIBS technique.

SL. No. Properties SLICE CF-LIBS|35,43]
Time-dependent Single spectrum is
1 Spectral data acquisition
spectra required sufficient

Temperature estimation through _ '
2 Not required Essential
Boltzmann/ Saha-Boltzmann Plot

Can self-absorbed emission lines be

3 Yes No (In many cases)
avoided?

4 Number of spectral lines involved Few Many

5 Number of steps involved Comparably less More

6 Time requires for quantitative analysis Very Less More

7 Complexity in analysis Very Less More

8 No. of possible measurements Numerous Limited

9 Accuracy/Precision High/High High/ -

* The green colored text represents the advantages of one technique over other whereas the red

colored text represents the disadvantages of the technique.

3.6 Summary

In this chapter, plasma diagnostics and elemental analysis are applied to two alloy samples, one
binary and one ternary. The initial sections provide a concise overview of the experimental
procedures and spectral interpretation of Laser-Induced Plasma (LIP) for both the samples.
Subsequently, this chapter provides an overview of thermodynamic equilibrium and
estimation of plasma parameters and plasma decay parameters (PDPs). The temporal behavior
of LIP is characterized through the modeling of plasma temperature and intensity ratio decay.
The concluding section of the chapter focuses on elemental analysis, employing EDS, CF-
LIBS, and SLICE techniques. The elemental concentrations estimated using the proposed
SLICE method for both binary and ternary alloys demonstrate excellent agreement with those
obtained using CF-LIBS and EDS. Additionally, the chapter briefly discusses the advantages

and limitations associated with these analytical techniques.
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Dependence of Plasma Parameters
on Material Hardness

This chapter explores the significance of material hardness in LIBS, providing a
profound understanding of diverse industrial applications. Material hardness is
an essential characteristic that determines how resistant a material 1Is to
deformation, indentation, and penetration. It is critical for building components
and structures that are trustworthy. The chapter provides a thorough
examination emphasizing the growing need for non-invasive techniques than
the conventional approaches, particularly in difficult conditions. LIBS has been
used to understand the dependence of various plasma parameters on material
hardness. The experiment involves five iron-based alloy samples with same
elemental composition and different hardness. The study explores the
correlation of plasma parameters, plasma decay parameters, and surface
morphology in relation to changes in material hardness. The results reveal a
consistent linear correlation between the material’s hardness and the plasma
temperature, electron density, and initial plasma temperature. In addition, the
analysis reveals a linear decrease in the radiative decay constant as the hardness
increases. The chapter concludes by analyzing the correlation between crater
diameter and material hardness, finding a consistent reduction in crater size as
material hardness increases. This study improves the comprehension of the
complex interactions between laser-induced plasma properties and material

hardness.
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4.1 Introduction

The mechanical characteristics of materials significantly influence their applicability across
diverse sectors[1]. Within this context, hardness emerges as a pivotal parameter of great
relevance. Hardness, as a fundamental property of materials, provides insights into a material’s
ability to resist deformation, indentation, or penetration [2,3]. Understanding and
characterization of material hardness stand as an essential endeavour in industry, scientific
research, and engineering. Particularly, this is very important for the design and construction
of robust, dependable components, devices, and structures.

Various techniques are available for measuring material hardness, including well-established
techniques like Rockwell, Brinell, Knoop, and Vickers hardness tests, etc.[4]. Significantly,
these methods mostly consist of mechanical techniques that need direct physical contact with
the substance being analyzed. The demand for non-intrusive, remote techniques of hardness
testing is increasing as materials are being used in more difficult situations such as space
shuttles, TOKAMAKS, nuclear power plant vessels, etc.[5]. This requirement is particularly
emphasized to minimize physical contact with materials, as ion irradiation, as evidenced by
numerous studies, can cause significant damage to metals, hence affecting their hardness[6,7].
In recent years, LIBS has emerged as a new technique for evaluating material hardness[8—12].
It establishes a correlation between the variations in various parameters of laser-induced plasma
(LIP) and the gradual enhancement in material hardness, providing a potential approach for
estimating hardness.

Several researchers have investigated the application of LIBS to correlate the spectroscopic
parameters of LIP with the hardness of various materials[8—11,13]. Abdel-Salam et al.[9]
investigated the hardness of different calcified tissues. They discovered a direct correlation
between the ionic to atomic emission intensities of calcium (Ca) and magnesium (Mg) and the
hardness of the samples. Cowpe et al.[10] discovered a direct relationship between excitation
temperature (Te) and sample hardness, highlighting the better consistency of LIBS compared
to the traditional Vickers method in evaluating the surface hardness of apatite-based bio-
ceramics. In 2014, Khalil et al.[11] discovered a direct correlation between the ionic to atomic
emission intensity and sample density, which is inversely related to surface hardness.
Nevertheless, this occurrence was ascribed to the distinctive characteristics of the zeolite
samples. Yahiaoui et al.[12] made a significant contribution to the area by establishing a
relationship between the surface hardness of a-alumina ceramics and several plasma parameters

utilizing the LIBS diagnostic approach. The researchers confirmed the linear progression of the
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ratio between the intensity of ionic and atomic lines, as well as the electronic temperature, in
relation to the hardness of the sample’s surface. In addition, they established a correlation
between the electron density and vibrational temperature of AlO radicals. This correlation
offers an approach to estimate the hardness of unknown o-alumina by utilizing these
characteristics. Huang et al. [14] further developed this research by introducing an innovative
calibration model for measuring hardness using LIBS. Their methodology consisted of
establishing a correlation between the intensity of emission lines and the hardness of steel
samples through the utilization of canonical correlation analysis and principal component
analysis (PCA). The study determined that the combination of LIBS data with chemometrics
presents a potent tool for examining the mechanical properties of steel samples, yielding a
thorough comprehension of material hardness. Momcilovic et al. [15] conducted a study on
cast iron samples to analyze the relationship between hardness and the atomic-to-ionic ratios
of Mg lines. Furthermore, they investigated the correlation between plasma temperature and
hardness. Also, they used calibration curve to estimate the hardness. Sattar et al. [16]
investigated W-Ni-Fe alloy and reported that emission intensity doesn’t depend linearly on
hardness; however, it increases with increasing hardness up to a certain level. In addition,
WII/WI intensity ratio and plasma temperature increases linearly with increasing hardness
electron density decreases linearly with increasing hardness. Apart from these studies, some
contradicting results were also observed in relation to the plasma parameters and material
hardness. For example, Galmed et al. [5] conducted a study by considering both nanosecond
(ns) and femtosecond (fs) lasers. They noticed an exponential pattern: as the hardness
increased, the plasma temperature in nsLIBS increased exponentially, but in fsLIBS, it
decreased exponentially. Similarly, the electron density decreases exponentially with increasing
hardness in case of nsLIBS, but in fsLIBS, it increases exponentially. Yongqi et al. [13]
observed decrease in plasma temperature with increasing hardness.

So far, no clear and definite pattern has been established regarding the changes in plasma
parameters (e.g., plasma temperature) with changes in material hardness. The correlation
between plasma properties and material hardness is still not fully understood and lacks
complete clarity. To get a clear understanding, this chapter explores the relationship between
plasma parameters, plasma decay parameters, and surface morphology in relation to variations
in hardness. This study used five standard iron-based alloys that have the same chemical

compositions but different material hardness.
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4.2 Materials and Methods

For the experiment, a set of five iron-based alloy samples with same elemental composition
and varying hardness levels were used. The hardness of each sample was estimated using the
Vickers hardness test, and the corresponding results are displayed in table 4.1. The hardness
values are determined by calculating the average of five measurements obtained from various
locations on the sample. The reproducibility of the measurements was assessed by estimating
the standard deviation.

Table 4.1. List of samples used in the present study, along with their respective hardness values

determined through the Vickers hardness test.

Sample Name Vickers Hardness (HV) Standard Deviation
Al 270 7
A2 332 8
A3 631 7
A4 637 6
A5 649 4

The schematic of the LIBS experimental setup is shown in chapter 2 (figure 2.4). In brief, it
comprises a picosecond laser (Ekspla, PL-2250 series) delivering energy of 20 mJ per pulse at
10 Hz repetition rate. The laser operated at its fundamental wavelength of 1064 nm with a
pulse duration of ~30 ps. The laser pulse was focused on the sample surface through a plano-
convex lens (focal length of 15 cm) to produce the plasma. An XY -translation stage controlled
by a motion controller (Newport, ESP 300) was used to hold the sample to avoid deep crater
formation at the same spot. The emissions from the plasma were collected by a collection
optics assembly (Andor, ME OPT 007) and sent through an optical fiber of core diameter 600
pm to an echelle spectrograph (Andor, Mechelle ME-5000). The spectrograph has been
equipped with an ICCD (Intensified charge-coupled device) camera as a detector (Andor,
1ISTAR DH334T-18U-E3). A delay generator (SRS-DG-645) was used to electronically
trigger the ICCD with respect to photodiode to avoid electronic interference and jitters. The
spectrograph covers the spectral range of 220-850 nm. Temporal kinetic series spectra of the
alloys were recorded in ambient air at atmospheric pressure. Each spectrum was collected after
an initial delay of 0.2 ps to avoid the high intensity of continuum radiation at the initial period
of plasma formation. The ICCD gain was set to 3000 to obtain a strong signal. Time

evolution spectra were collected in the 0.2 — 2 ps temporal window with a constant step and
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gate width of 0.5 ps. Each spectrum was averaged over 10 spectra to increase the signal-to-

noise ratio. Likewise, 7 sets of time evolution spectral data were recorded for each alloy.

4.3 Results and Discussion

The time-dependent LIBS spectra corresponding to sample Al is graphically presented in
figure 4.1. Originally, the spectrum was recorded in the wavelength range of 220 — 850 nm,
where those wavelength ranges having intensity emission lines of interest (i.e., 220 — 600 nm)
are depicted. All the spectral emission lines in the spectrum were identified with the help of
the NIST atomic database[17]. Prominent emission lines of Fe at wavelengths at 278.82,

322.81, 344.11, 349.04, 357.01, 358.15, 361.88, 379.52, 380.67, 384.11, 385.00, and 386.01

nm were observed.
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Figure 4.1. Time-dependent LIBS spectra corresponding to sample Al.

4.3.1 Dependence of Plasma Temperature and Electron Density

on Hardness

In the domain of laser-induced plasma, the complex relationship between plasma temperature
and material hardness emerges as a critical field of study, providing important insights into the
underlying dynamics of laser-material interactions[15]. This scientific investigation explores
the intricate relationship between the characteristics of materials and the subsequent thermal

response that occurs during the formation of LIP.
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The plasma temperatures for five alloy samples were calculated using the Boltzmann plot

method. According to this method, the plasma temperature can be estimated from the slope of

the In(IA/Ag) vs E, plot of the Boltzmann distribution which can be represented by [18,19],

In[ﬁjz &, +In( Fe j (4.1)
Ag KgT Z(T)

where I, A, A, E,, ks, T, F, C and Z(T) represent the intensity of emission, wavelength of the

emission, transition probability, upper energy level, Boltzmann constant, plasma temperature,
experimental factor, elemental concentration of the species and partition function,

respectively.

By plotting the RHS of equation 4.1 vs E,, the plasma temperature can be estimated form the
slope (1/ksT). Detailed explanation regarding the estimation of plasma temperature can be
found in section 3.4.2 of Chapter 3. For the estimation of plasma temperature five neutral
emission lines of iron were considered based on literature[20]. The spectroscopic parameters of

these emission lines are tabulated in table 4.2.

Table 4.2. Spectroscopic parameters of Fe emission lines considered for Boltzmann plot.

SI. No. A (nm) Ex (eV) A (107 s g
1 346.59 3.686 1.19 3
2 361.88 4.415 7.72 7
3 425.08 4.473 1.02 7
4 426.05 5.308 3.99 11
5 432.58 4.473 5.16 7

The Boltzmann plot of Fe emission lines for all the alloy samples at 1.2 ps delay is depicted in
figure 4.2. From the figure, it can be noticed that the straight line fitted well w.r.t. the
experimental data and have high R square more than 0.7 for all the alloys. Figure 4.3 depicts a
graphic representation of the relation between the hardness of a material and the temperature
of plasma. Upon observation, it becomes evident that the plasma temperature shows a
consistent increase as the material hardness values increase, following a linear pattern. The
linear fit precisely matches the experimental data, demonstrating a high level of accuracy, as
indicated by an R-squared value of 0.99. The strong alignment between the fitted line and
experimental observations highlights the dependability and uniformity of the established

correlation between material hardness and plasma temperature.
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Figure 4.2. Boltzmann plot using Fe emission lines.
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Figure 4.3. Dependence of plasma temperature on material hardness.

Electron number density is another characteristic parameter of LIP that need to be examined
w.r.t. increasing hardness. The electron density can be determined from the full-width at half
maximum (FWHM) of the spectral line. The main contribution in the broadening of the
emission lines is due to Stark broadening. More details regarding the broadening of emission
lines of LIP can be found in section 3.4.3 of Chapter 3. The FWHM of an emission line due

to Stark broadening can be given by the equation [21,22],

AL, = 2w(1236) (4.2)

where n. andw are the electron impact width parameter and electron density respectively.

The electron density values at a 1.2 ps for all alloy samples were measured by using the

emission lines of Fe at a wavelength of 538.33 nm. Figure 4.4 visually illustrates the
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correlation between material hardness and electron number density. Upon careful
examination, it becomes evident that electron density consistently increases as material
hardness values increase, similar to plasma temperature. The linear fit precisely follows the
experimental dataset, achieving a high level of accuracy shown by an R-squared value of 0.98.
The strong agreement observed between the fitted line and experimental results highlights the
dependability and uniformity of the established relationship between material hardness and

electron number density.
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Figure 4.4. Dependence of electron density on material hardness.

As the hardness of a material increases, there is linear increase in the plasma temperature and
electron density. This could be because of the reason that when harder materials are exposed
to laser irradiation, they tend to undergo more ionization and excitation due to their higher
densities. This phenomenon, known as electron excitation, enhances the efficiency of
converting laser energy into thermal energy by facilitating the easy release and elevation of
electrons to higher energy levels. In addition, the collisional processes occurring within the
denser plasma produced by harder materials result in more vigorous interactions, hence
promoting the thermalization of the plasma. As a result, the complex electrical and structural
characteristics of harder materials contribute to an increased plasma temperature and electron

density.
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4.3.2 Dependence of Plasma Decay Parameters (PDPs) on
Hardness

The expression for the temporal dependence of plasma temperature can be given by [18,23],

T =T (1+£j_3 (4.3)

where T is the plasma temperature, T, is the initial temperature of plasma, T is the radiation

decay constant and t is the time.

%10* x10° . x10*

13 13 1.4 ‘ ( ) ‘
~ ~ ~ C
\%1 9 (a) ——Theoretical Fit 5 1ok (b) —Theoretical Fit ] é 1.3 _ThCOTFIiCﬂl Fit
L ® Experimental Data | @ ® Experimental Data | 2 ® Experimental Data
§ 1.1 = g2
= & £
5] L L 1.1
£ £ E
] LP) o |
= 0.9 = 09+ =
E ’ E ’ g 0.9
Z08 208 @
= = Sos
(=] =3 =N
0.7 . 0.7 - 0.7
0 0.4 08 1.2 1.6 2.0 0 0.4 0.8 1.2 1.6 2.0 0 04 0.8 1.2 1.6 2.0
Time (us) Time (us) Time (ps)
4 4
13 =107 ) i . . 13 x10 .
~ ~
‘%1,2 (e) ~—Theoretical Fit \%172 (d) ——Theoretical Fit
™ ori . o . 4 .
g Experimental Data | © ® [Experimental Data Flgure 4.5, Dependence Of
AR % 11
S p :
g 3 plasma temperature on time for
1
g £
3] 3]
s I (@) A1, (b) A2, (c) A3, (d) A4,
g £
Zo8 Z08 and (e) A5 alloy.
[ [
0.7 0.7
0 0.4 08 12 1.6 2.0 0 04 08 1.2 1.6 2.0
Time (us) Time (ps)

The value of PDPs (T,, and T) can be estimated by comparing the theoretical dependence
(equation 4.3) with temperature derived from experimental data using the Boltzmann plot
(section 4.3.1). During data processing, T,, and T can be considered as the fitting parameters
and followed by fitting of experimental data as shown in figure 4.5. The detailed theory
regarding the temporal dependence of plasma temperature can be found in section 3.4.4 of
Chapter 3. From figure 4.5, it can be observed that the theoretical dependence fitted well with
the experimental data. The value of PDPs estimated from the fitting is plotted against hardness
as shown 1in figure 4.6.

From figure 4.6, it can be noticed that with increasing material hardness, the initial
temperature of the plasma increases linearly. The linear fit precisely aligns with the
experimental data, demonstrating a high level of accuracy, as indicated by an R-squared value

of 0.90. Like the plasma temperature and electron density, strong correlation between material
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hardness and the initial temperature of the plasma provides valuable parameter for predicting
material hardness. However, from figure 4.6, it can also be observed that with increasing
material hardness the radiative decay constant decreases linearly with R-square of 0.97. This is
because with increasing hardness, the value of plasma temperature and initial plasma
temperature increases. The enhanced thermal energy and excitation processes that occur at
higher temperatures result in a faster radiative decay. Therefore, increasing hardness, the

plasma relaxes faster which result in decrease in relaxation time or decay constant.
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Figure 4.6. Dependence of PDPs on material hardness.

4.3.3 Dependence of Crater Diameter on Hardness

The dimensions of the crater formed in LIP are highly significant in relation to the properties
of the material. The complexities of crater shape provide useful insights about the material’s
reaction to intense laser irradiation. Crater diameter and depth are parameters that directly
indicate the efficacy of material ablation, providing insight into its vulnerability to laser-
induced processes. In addition to its importance in characterizing fundamental properties of
material, the dimensions of the crater generated during laser interactions are also important for
understanding the hardness of the material. The shape of the crater serves as an indicator of a
material’s ability to withstand laser ablation. More durable materials frequently display unique
crater profiles, which indicate their capacity to endure the high levels of heat and mechanical
pressures caused by laser irradiation. An analysis of crater diameters in connection to material
hardness offers a method to evaluate and distinguish materials based on their resilience and

reaction to the processes of plasma formation and relaxation.

The diameter of craters formed by laser ablation on all alloy samples was measured by utilizing

a surface profilometer (M/s. Ambios Technology, XP-200) equipped with a stylus tip
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featuring a radius of 2 um. Each ablation involved focusing of five laser pulses at a single spot.
Likewise, five ablations were created for each sample at five separate places. The size of each
crater was measured using the profilometer. Figure 4.7 visually depicts the crater profile
acquired from a representative measurement, providing a detailed understanding of the laser-

induced craters on the alloy samples.
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Figure 4.7. Profilometer measurement of crater. Zero on y-scale represents the sample surface. Here d

represents the diameter of the crater.
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Figure 4.8. Dependence of crater diameter on material hardness.

The dependence of the crater diameter on the hardness of the material is discussed in figure
4.8. From the figure, it can be noticed that with increasing hardness, the diameter of the crater
decreases linearly. The decrease in the size of craters as the hardness of the material increases in
LIP interactions is a subtle process influenced by an intricate combination of thermal and

mechanical factors. Materials with higher hardness likely results in more efficient energy
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absorption, reduced lateral plasma expansion, and controlled material removal. The localized
and precise nature of the ablation process on harder materials highlights the influence of their

inherent features.

4.4 Summary

This chapter explores the crucial importance of material hardness, highlighting its significance
across many industries. Hardness, as a fundamental characteristic, provides vital information
about a material’s ability to resist deformation, indentation, or penetration. This information is
essential for building strong components, devices, and structures. The chapter provides an
overview of well-established approaches for measuring hardness, with a particular emphasis on
the increasing need for non-invasive procedures under difficult conditions. LIBS studies have
shown that changes in the characteristics of LIP are closely related to variations in hardness.
The experiment investigates the complex correlation between plasma parameters, plasma
decay parameters, and surface morphology in connection to hardness variations. It involves
testing five iron-based alloy samples with different levels of hardness. The findings demonstrate
a direct relationship between the hardness of the material and the plasma temperature, electron
density, and initial plasma temperature. Furthermore, the study reveals a correlation between
increasing hardness and a decrease in the radiative decay constant. The chapter concludes by
analyzing the correlation between crater diameter and material hardness, illustrating a

consistent reduction in crater size as hardness increases.
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Machine learning based
classification using LIBS: Effect of
feature selection and extraction

This chapter explores the integration of LIBS with machine learning techniques
for effective detection of explosives and classification of post-consumer plastics.
It describes the utilization of a picosecond LIBS (psLIBS) system, equipped
with a low-cost CCD spectrometer, for real-time applications. The study
employs a systematic approach to combine Artificial Neural Network (ANN)
with various feature selection and extraction approaches. This integration aims
to enhance accuracy, decrease computational time, and optimise resource
allocation. The initial sections of this chapter involves detection of explosives
where five explosive and twelve non-explosive samples were considered. For
plastic classificaiton, two distinct approaches were explored. At first, a total of
nine plastics were obtained from a local recycling unit and both training and
testing were performed on the same samples. Nevertheless, this technique is not
suitable for real-time application since in real-time scenario samples that are
unknown to the trained model will be encountered. To address this, another
study was performed on a set of 30 samples from six commonly used groups. 29
samples out of 30 are utilized for training and validation purposes, while the
30th sample, which is unfamiliar to the network, 1s employed for testing. The
study thoroughly compares outcomes across several approaches, evaluating their
accuracy, processing speed, and resource utilization to identify the most
efficient approach for real-time identification of materials. This comprehensive
analysis
provides insights
mto the optimal
method for accurate
material identification
Detector
while considering
efficiency and

resource allocation.

LIBS spectrum ML model
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5.1. Introduction

The fusion of LIBS data with advanced computational techniques has far-reaching
implications, extending its impact to diverse sectors, including metallurgy[1,2], geology[3—5],
environmental science[6—8], defence applications[9-11], forensic investigations[12,13],
archaeological survey[14—16], agriculture[17—-19], medical diagnostics[20,21], art and cultural
heritage[22,23], pharmaceuticals[24,25], manufacturing|[26,27], etc. LIBS combined with
machine learning have shown promising results in identification and classification of materials
across various sectors. In metallurgy, LIBS has been extensively used to distinguish and
categorize different metals and alloys[28], while in geology, it aids in the classification of rocks
and minerals, thereby contributing significantly to mineral exploration and resource
assessment[29]. Environmental monitoring benefits from its capability in several ways, from
detecting pollutants and contaminants in soil and water samples to identifying/sorting various
wastes produced from our day-to-day life[30,31]. It also serves as a potential tool for defence
applications for the rapid detection of various explosives and high-energy materials (HEMs) in
bulk and trace amounts[10,32]. Further, it is helpful in archaeological and forensic applications
for investigating human body remains, material identification, etc.[33,34]. It also has various
applications in medical diagnostics like classifying tissue samples and detecting
abnormalities[20,35]. LIBS can also be applied in pharmaceutical and chemical analysis to
identify and classify compounds, including impurities in drug formulations[24]. Last, but not
the least, LIBS can be used efficiently in manufacturing and welding for quality control of
materials, detecting defects, etc.[26,27].

This chapter explores the potential of LIBS in identifying and categorizing explosives and
post-consumer plastics, utilizing machine learning techniques. Identifying and classifying
explosives and post-consumer plastics are important in defense applications and waste
management, respectively. The forthcoming sections will briefly elaborate on the importance
of addressing the aforementioned samples of intrest. However, in the context of in situ
application, an ideal classifying instrument should be cost-effective, compact, and reliable,
capable of providing a fast identification rate with higher accuracy. The instrumentation of
LIBS comprises two major components, i.e., the laser source and the detector. Most LIBS
research dedicated to identifying explosives and post-consumer plastics utilizes nanosecond (ns)

lasers as the excitation source. Femtosecond (fs) laser is used in very few studies[36].

The difference between ns, picosecond (ps), and fs laser ablation mechanisms are different due

to a large variation in their pulse duration[36]. Ultrafast pulses (ps and fs) rapidly form a hot
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plasma without a liquid phase and less damage threshold on the sample. In the case of the long
pulse (ns pulse), ionization, sample heating, and vaporization occur during plasma formation.
The matter undergoes a transient change in thermodynamic regime from solid to plasma state
through liquid state[36]. Moreover, in the case of ns pulse, the material requires higher pulse
energies, which forms scars on the material surface due to melting. Ultrafast interactions have
exciting features including the absence of plasma shielding effect and negligible heat transfer
form the laser interaction zone to the surrounding lattice, leading to improved sensitivity
compared to long pulse[37]. Long pulses result in high temperature and dominance of atomic
emissions at the initial time of the plasma formation, whereas ultrashort pulses form plasma
with low temperature and favour molecular emissions [38]. In the case of ns lasers, emissions
from organic samples like explosives, plastics, pharmaceuticals, biological specimens, etc., are
confined to the atomic lines of C, H, N, and O, limiting the number of features in the LIBS
spectra[39]. Ultrafast lasers yield more pronounced molecular emissions than ns lasers,
potentially increasing the significant features in the spectra of organic samples, making them
well-suited for the analysis. However, considering the real-time use, fs lasers pose challenges
due to their substantial cost and larger physical dimensions than ps lasers. Therefore, the ps
laser can be a better choice for this application as it provides more significant molecular
emission compared to the ns laser. This chapter explores psLIBS for the identification and
classification of explosives and post-consumer plastics. In terms of the detector, both ICCD
and CCD based spectrometers have been used by researchers for classification studies of similar
samples. Some comparative studies have been reported on spectrometers, focusing on their
efticacy and robustness in classifying materials. For example, Rajendhar et al. demonstrated
using a CCD spectrometer above ICCD for accurate discrimination of plastics, which also
reduces the cost and time of analysis by many folds[8]. Also, the accuracy and testing time
comparison between the single-shot ICCD, multi-shot ICCD, and single-shot CCD data
acquisition were discussed. Therefore, in this study, the selection of CCD over ICCD was
based on cost-effectiveness and compact size.

In LIBS, not all data points within the spectra possess high significance[8,40]. Focusing the
study on the most significant features is beneficial, as it efficiently decreases the complexity of
the data analysis. This strategy not only enhances the computational efficiency but also
optimizes the resource usage. There are two approaches to reduce the dimension of the input
data, i.e., 1) feature selection, where unwanted features are removed from the dataset manually
or by using statistical/machine learning models, and 2) feature extraction, where machine

learning algorithms are used to transform the original data into a new dataset. The purpose of
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this transformation is to present the data in a concise manner, capturing the essential patterns
or characteristics while reducing the dimension of the dataset. Feature selection/extraction is
crucial in real-time application as it reduces the dimensionality of the data, improve model
performance, mitigate overfitting, and expedite computational processes. Additionality, they
enhance data interpretability, visualization and address multicollinearity, thus enabling more
effective decision-making and insights. Various feature selection and feature extraction
approaches have been explored in LIBS for the discrimination of materials. For example, in
the worldwide contest held during the EMLIBS2019 conference for the classification of soils,
several groups participated, explored the advantages of feature selection and feature extraction,
and demonstrated various approaches to obtain higher classification rates[40]. A. K. Myakalwar
et al. presented judicious feature selection by genetic algorithm approach for explosive
detection[41]. R. Junjuri et al. have reported using random forest (RF) algorithm along with
ANN to significantly decrease the analysis time with a minimal decrease in the classification
accuracy of plastics[8]. F. Ruan et al. also used RF algorithm and hybrid filter/rapper method
to classify archaeological samples[16]. C. Huffman et al considered a statistical feature
selection approach for classification problems in biological applications[42]. 7. Vance et al.
used PCA as a feature extraction tool for classifying different proteins[43]. These
aforementioned studies stipulate that feature selection and feature extraction are useful in the
case of 1n situ applications as higher accuracy can be achieved with minimal time.

This chapter explores the potential of a compact psLIBS setup for discrimination of explosives
and post-consumer plastics using ANN coupled with various feature selection and feature
extraction techniques. Among feature selection approaches, three manual feature selections
(selection of sub-spectra) were considered, such as 1) wavelength ranges covering peak
regions, 2) C, H, and N (CHN) peak regions, and 3) peak heights as input to ANN. Also, the
RF algorithm was used to select the wavelength values with high feature importance. Apart
from that, feature extraction techniques like principal component analysis (PCA) and linear
discriminant analysis (LDA) were implemented on the original data with the aim of
maximizing accuracy. The accuracy and analysis time obtained from various feature selection
and extraction processes were compared with that of the original data. The flow chart of

algorithm architecture is depicted in figure 5.1.
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Figure 5.1. Flow chart of analysis protocol.

5.2. Experimental Details

The schematic of the experimental setup is shown in chapter 2 (figure 2.6). In brief, it
comprises a picosecond laser (Ekspla, PL-2250 series) delivering energy of 10 mJ per pulse at
10 Hz repetition rate. The laser operated at its fundamental wavelength of 1064 nm with a
pulse duration of ~30 ps. The laser pulse was focused on the sample surface through a plano-
convex lens (focal length of 15 cm) to produce the plasma. An XY -translation stage controlled
by a motion controller (Newport, ESP 300) was used to move the sample to avoid deep crater
formation at the same spot. The emissions from the plasma were collected by a collection
optics assembly (Andor, ME OPT 007) and sent through an optical fiber of core diameter 600
pm to a non-gated Czerny Turner CCD spectrometer (Avantes, AvaSpec — ULS2048L —
USB2) of optical resolution of ~0.29 nm. The spectrometer produces the LIBS spectra in the
200 — 750 nm wavelength range. 200 spectra for each sample were acquired with an

integration time of 500 ms.

5.3. Detection of explosives

In the last few decades, the threat to homeland security around the world, as well as in India,
urged the need for an automated portable device for the rapid detection of high energy
materials (HEMs), including explosives, improvised explosive devices (IEDs), etc. Especially in
public places like airports, railway stations, metro stations, shopping malls, worship places, etc.,
an advanced explosive detection device based on modern analytical techniques is essential for

detecting HEMs with high confidence. LIBS is a potential tool for the on-site detection of
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explosives with numerous advantages over other techniques. These advantages include robust

signal acquisition, standoft detection, trace level identification, rapid prediction, etc.

Since the first realization of LIBS application for detecting explosives and propellants in

2003[44], extensive researches have been carried out in this area. Over time, as LIBS advances

to explore plasma evolution studies[45—47], molecular dynamics[48], etc., with growing

development in data analysis by integrating machine learning, it has emerged as a potential

fingerprint technique for rapid identification of explosives in real-time. Several research studies

were devoted to literature for detecting explosives using LIBS combined with several

analytical, statistical, and machine learning algorithms. The summary of the application of

LIBS combined with various analytical methods for explosive detection is presented in table

5.1.
Table 5.1. Summary of LIBS studies devoted to literature for explosive detection.
S. Reference
No. | & Year Sample(s) Method(s) Results
H,BTE, CL20, TNT, k-means cluster analysis and o
U | #91&2023 | ) g pnaN SVM combined with PCA | Aecuracy = 90%
2 [10] & 2020 gl,\rlg’ TNT, RDX, 2D scatter plot, PCA, ANN | Accuracy = 94.2%
3 [50] & 2019 HMX, CL20, RDX, seml—-superwsed learning TP = 99. 8%, TN = 99. 9%
TNT algorithm
CL20, HMX, NTO, . . .
4 [51] & 2017 RDX, TNT Ratiometric, PCA Good separation observed
HMX, NTO, TNT, Accuracy = kKNN-PCA:
> [52] & 2017 RDX, PETN KNN-PCA, PLS-DA 91.26%, PLS-DA: 90%
6 [53] & 2017 | TNT, RDX, Propellant PCA-ANN Accuracy = 100%
7 | [54] & 2016 | PETN, UN, RDX, AN | Feature line recognition Trace detected on various
substrates
8 55] & 2015 HMX, NTO, PETN, PLS_tDAlcon'ltbhme?1 V‘élth A = 94.29
[55] RDX, TNT genetic algorithm feature ccuracy 2%
selection
Residues detected on various
9 [56] & 2015 | DNT, RDX SUSPECT methodology
surfaces
. . Good discrimination
10 [57] & 2014 | AP, BPN, AN Ratiometric
obsedrved
DNT, TNT, RDX, =920
11 [58] & 2014 PETN SVM Accuracy =92%
Neural network classifier _ 0qo .
12 [59] & 2013 DNT, TNT, RDX, trained by the Levenberg- f_\ccuracy = 88%, Precision
PETN =67%
Marquardt rule
TNT, RDX, HMX, Accuracy = LDA: 85.9%,
13 [60] & 2012 PETN., AN LDA, SVM SVM: 96%
PLS-DA shows good
separation. PCA differentiates
14 [61] & 2012 | TNT PLS-DA, PCA TNT from organic and non-
organic materials but fails to
differentiate from plastic.
15 | [62] & 2012 | INT. RDXanda PLS-DA TP = 99.5%, FP = 1.9%
mixture of both
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DNT, TNT, RDX, Rpnt = 0.623, Ryt =

16 [63] & 2011 Correlation coefficient 0.498, Rrpx = 0.436, Rpetn
PETN =
= 0.465
Ropnt = 0604, Ront =
17 [64] & 2011 DNT, TNT, RDX, Correlation coefficient 0.420, Rrpx = 0.466, Rpetn
PETN
= 0.460
18 [65] & 2009 | RDX PLS-DA TP =97.1%
DNT, TNT, C4 Decision-making based on

19 [66] & 2009 Sensitivity to 8 shot =100%

explosive, H15 explosive | logical conjunction

20 [67] & 2007 | RDX, TNT PCA TP = 96%, FP = 0%

TNT, RDX, PETN, C4, Excellent prediction rate

21 [68] & 2006 Comp B obtained

Decision making strategy

* HL,BTE: Diazomethane, CL20: Hexanitrohexaazaisowurtzitane, TINT: Trinitrotoluene, TATB:
Triaminotrinitrobenzene, DNAN: 2,4-Dinitroanisole, DNT: 2,4-Dinitrotoluene, RDX: 1,3,5-
Trinitro-1,3,5-triazinane, NTO: Nitrotriazolone, ANN: Artificial neural network, HMX: 1,3,5,7-
Tetranitro-1,3,5,7-tetrazocane, TP: True positive, TN: True negative, PETN: Pentaerythritol
tetranitrate, KNN: k-nearest neighbours, PLS-DA: Partial least square discriminant analysis, UN: Urea
nitrate, AN: ammonium nitrate, AP: Ammonium Perchlorate, BPN: Boron Potassium Nitrate, MNT:
Mononitrotoluene, FP: False positive

As discussed in the introduction, feature selection and feature extraction can play crucial role
in the identification/classification of materials using LIBS and machine learning. This aspect
possess the potential to significantly improve the accuracy. However, very few research studies
were devoted to literature for the identification of explosives by implementing feature
selection or feature extraction approaches with machine learning to the LIBS data, as
evidenced by the observation in table 5.1. The studies employing feature selection or
extraction approaches tend to utilize only one or two methodologies. This chapter explores
several feature selection and extraction approaches with ANN to determine the best analysis

protocol for identifying explosives in terms of accuracy.

5.3.1. Sample Details

Five explosive and 12 non-explosive samples with similar atomic constituents were considered
for this study. The details of the samples are presented in table 5.2. Before the LIBS
experiment, the solid samples were first cleaned with water and then methanol to remove
surface contaminants in case of plastics. The powder samples were first ground with mortar
and pestle for 15 min. After that, circular pellets with a diameter of 10 mm were prepared for
each sample by applying 2 tons of hydraulic pressure for 5 minutes. The pellets were prepared
to give each sample a flat, uniform surface. In total, 3400 (17 X 200) spectra were recorded,

1.e., 200 spectra for each sample.
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Table 5.2. Details of the explosive and non-explosive sample used for the study.

T | o |
1 Acrylonitrile butadiene styrene (ABS) (CisH17N), Solid NE
5 Poly(methyl r;agl}i;rﬁrllzée), also called (C:O:Hy), Solid NE
3 DL_Alanine C;H/NO, Powder NE
4 DL_Histidine CHN;O, | Powder | NE
5 High-density polyethylene (HDPE) (CoH), Solid NE
6 Low-density polyethylene (LDPE) (C2Huy)n Solid NE
7 L_Leucine CsH1;:NO, Powder NE
8 NYLON - Solid NE
9 Polycarbonate (PC) (Ci6H1403) Solid NE
10 Polyethylene terephthalate (PET) (C1oHsO4)n Solid NE
1 Polypropylene (PP) (CsHe)n Solid NE
12 SIHET - Solid NE
13 Ammonium nitrate (AN) NH4NOs Powder E
14 Hexanitrohexaazaisowurtzitane (CL20) CeN12HsO12 Powder E
15 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX) C,HsNsOg Powder E
16 Nitrotriazolone (NTO) C,H:N,O3 Powder E
17 1,3,5-Trinitro-1,3,5-triazinane (RDX) C3HN:Og Powder E

*E: Explosive, NE: Non-explosive

5.3.2. Results

The normalized averaged LIBS spectra of all explosives and non-explosives acquired in the

range of 200 — 750 nm are depicted in figure 5.2. All the emission spectral lines were

identified with the aid of NIST atomic database. Prominent C, H, and N emission lines were

observed in the spectral range of acquisition. Strong emission lines of Na are also observed in

some samples due to the contamination. Also, the molecular structure of CN — violet and C, —

swan bands were observed. The formation of molecules in LIP is complex to understand;

however, extensive studies have reported that the molecular formation of CN band could be

due to the recombination of C and N atoms [38,69]. The C, bond was observed due to the C
= C linkage of the analyte [38,69].
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Figure 5.2. LIBS spectra of explosives and non-explosives.

From figure 5.2, it can be observed that all the spectra look similar due to their similar

chemical composition. However, since the elemental compositions of C, H and N are
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different in different plastics, the intensities corresponding to these species differ. Moreover,

the intensities of impurities and contaminated species also differ.

5.3.2.1. ANN with full spectrum as input

ANN is a robust machine learning tool widely used for the classification of various materials,
including explosives[10], plastics[8], metals[70], etc. The architecture and working procedure
of ANN have been inspired by the nervous system of the human brain. The main components
of ANN are the input layer, hidden layer, and output layer. The spectral data of plastics were
fed to the input layer of the network. The scaled conjugate backpropagation algorithm was
used to train the model. The number of neurons in the input layer is equal to the number of
variables and in output layer is equal to the number of classes. The number of neurons in the
hidden layer was optimized to 30 for a higher classification rate. The analysis was performed
over 100 iterations and for each iteration, the total data (3400 spectra) was divided randomly
for training (70%), validation (15%) and testing (15%). Initially, every spectrum within both
the train and validation datasets 1s categorized into their respective groups, either explosive or
non-explosive (refer to table 5.2). The test phase involves utilizing test data to predict whether
a given spectrum corresponds to an explosive or non-explosive category. Following this, a
separate training model is constructed specifically focusing on the explosive samples, which are
labeled to explosive sample names. Once a spectrum is identified as explosive, it proceeds to a
secondary model designed to determine the specific type of explosive it belongs. The overall
classification accuracies for both the models obtained from the ANN analyses are presented in

a confusion matrix in table 5.3.

Table 5.3. Results obtained from ANN for (a) explosives and non-explosives (b) within explosives.

Predicted class

(b)

Predicted class AN CL20 HMX NTO RDX
(2)
Non g losive AN 100 0 0 0 0
explosive
= . Nop 99.98 0.02 = CL20 0 99.98 0 0 0.02
5 8| explosive ©
(SRS <
< 7| Explosive 4 96 Z | HMX | 0 0 100 0 0
< NTO 1 0 0 99 0
RDX | 0.005 0.03  0.015 0 99.95

Table 5.3a shows that explosives are identified accurately at a rate of 96%, with 4% false alarm

rate. Additionally, non-explosives are almost perfectly classified, close to 100% accuracy.
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Moreover, table 5.3b reveals that the classification accuracy within explosives surpasses 99%
for all six kinds of explosives.

In real-time applications, the testing time is also important in terms of speed and operational
efficiency. The ANN demonstrates an average testing time of 150 ms when classifying
explosive and non-explosive items. Conversely, the average testing time and ANN model size
reduced significantly to 60 ms for predicting explosive type. Ensuring maximum accuracy
(100%) and zero false alarms is imperative in the realm of explosive detection. The reliability
of accurate explosive detection systems is pivotal in upholding public trust in security measures
and the deployed systems safeguarding communities. Maintaining this accuracy reinforces
confidence in the efficacy of security protocols and safety measures. In this scenario, each
spectrum comprises 2048 features/variables/wavelength values. However, all the features (data
points) are not significant since most represent noise. Therefore, it is beneficial to restrict the
analyses to the selected features of interest by eliminating irrelevant and unwanted features.
This will help in many ways, such as overfitting reduction, reducing dimension, improving
generalization, enhancing model performance, etc. There are many ways of selecting relevant

features by using feature selection and feature extraction approaches.

In this context, various feature selection and extraction approaches were explored with the

aim of maximizing the accuracy further.

5.3.2.2. ANN with feature selection

Feature selection is a process that involves the recognition of important features in the original
data. This can be achieved through manual selection of spectral regions based on the emission
of elemental compositions or by employing multivariate statistical or machine learning
techniques which offer insights into the significance of each variable. In this context, different
approaches selecting diftferent areas of the original spectra were used under manual feature
selection. Additionally, random forest (RF) feature selection was leveraged with different

spectra regions, selected based on different threshold values of feature importance.

5.3.2.2.1. Manual feature selection

In this section, ANN analyses were performed on some variables of interest that were selected
manually. Three approaches for manual feature selection were considered. The first approach
includes the spectral region of all the peaks observed in the spectra, which comprise 59% of
the total data. Second, those areas where only C, H, and N-based peaks are present and these

represent 17% of the total data, and lastly, only peak heights, i.e., one data point (maxima) for
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each peak were considered, which comprises 3% of the total data. The three manual feature
selection approaches adopted here are graphically presented in figure 5.3. Here, the full

spectrum (black colored) is a reference spectrum depicted only for graphical demonstration.

= Full spectrum
—— Peak area
CHN peak area
e Peak heights

Intensity

200 ' 300 ' 400 ' 500 ' 600 ' 700
Wavelength (nm)

Figure 5.3. Graphical representation of features/variables considered under manual feature selection.

Table 5.4. Results obtained from ANN for (a) explosives and non-explosives (b) within explosives

with manual feature selection approaches.

Prediction rate (%) Prediction rate (%)
(&) Peak CHN Peak (b) Peak CHN Peak
area  peak area  height area  peak area  height
Non-
99.98 99.82 99.99 AN 100 97.8 92.68
explosive
Explosive 99 99.99 95 CL20 100 99.99 93.01
HMX 99 98.74 89
NTO 100 99.99 92
RDX 99.99 99.24 85.96

The ANN analyses were performed in the same manner as in the case of the full spectrum.
The ANN analyses have been performed on two datasets (i.e., explosive and non-explosive,
within explosive). The ANN results obtained are discussed in table 5.4. From table 5.4a, it is
evident that ANN shows excellent results in predicting explosives and non-explosives by
leveraging peak area and CHN peak area as input to the ANN model. Nevertheless, a slightly
lower prediction rate is observed when considering peak height as an input for the ANN
model than the other two manual feature selection approaches. This disparity might be

attributed because of the utilization of a very small dataset (only 3% of the total data) to train
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the model, resulting in an underfitting scenario. Similar observations can be noticed in the case

of classification within explosives (see table 5.4b).

5.3.2.2.2. Random Forest (RF) feature selection

RF is a sophisticated statistical algorithm comprised of tree-type classifiers. Each tree-type

classifier within the RF employs a distinct training set generated through the bootstrap

resampling method[71]. This algorithm has been popularly used as a classification technique.

However, this is also often used as a feature selection tool by estimating the variable

importance (VI) of each feature[8,40]. The VI value of each variable is obtained by calculating

out-of-bag (OOB) error[71].
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Figure 5.4. Variable importance (VI) estimated by RF model for explosive and non-explosive data. For

visual purpose, each spectrum showcased in this figure represents the average of all spectra.

Here, the analyses were performed by considering only important features selected from VI as

inputs to ANN for two datasets. Four sets of features were considered based on various VI
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threshold values. The analyses were performed with features greater than VI values of 0.001,
0.002, 0.003 and 0.004 for each dataset. The four sets of features obtained from different VI
thresholds are graphically presented in figure 5.4 and 5.5. The figures show that with the VI
threshold of 0.001, the features include almost all the peak areas with some noise. As the VI
threshold gradually increased, only C, H, N, Ca, and Na peaks were observed as important
features. The results of ANN analyses obtained are presented in table 5.5. The table shows that

in both cases, RF with VI > 0.002 exhibits the highest prediction rate, which is close to

100%.
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Figure 5.5. Variable importance (VI) estimated by RF model for explosive data. For visual purpose,

each spectrum showecased in this figure represents the average of all spectra.
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Table 5.5. Results obtained from ANN for (a) explosives and non-explosives (b) within explosives

with RF feature selection.

Prediction rate (%) Prediction rate (%)
(a) VI > (b) VI >
0.001 0.002 0.003 0.004 0.001 0.002 0.003 0.004
Non.— 99.99 99.98 99.99 99.77 AN 98.55 100 98 99
explosive
Explosive 92 99  95.11 96.98 CL20 100 99 100 98
HMX 98.57 100 98 96
NTO 98 99 99 100

RDX 99.27 100 97  94.99

5.3.2.3. ANN with feature extraction

Feature extraction algorithms transform the original data into a new and smaller dataset based
on the properties of data like variance. It provides a meaningful representation of the original
data by highlighting the most important features and removing noisy and redundant
information. In this context, two feature extraction approaches, PCA and LDA, are used to

transform the original data for the input to the ANN algorithm.

5.3.2.3.1. Principal Component Analysis (PCA)

PCA is an unsupervised machine learning algorithm that transforms complex data in lower
dimensions through dimensionality reduction. It transforms the original data into a new set of
coordinates that are orthogonal to each other called principal components (PCs). The
transformed data in the PC space is called scores. The PCs explain the variance in the original
data in a gradient manner 1.e., the first PC explains highest variance, followed by the second,
third, and so on.

Figures 5.6 and 5.7 represent 3D score and variance plot, respectively. Figure 5.6 shows that
the explosives make compact and separate clusters with no overlap with the non-explosives,
indicating that they can be classified based on the scores rather than the original data. Also,
there are multiple overlapping clusters within non-explosives. Figure 5.7 shows that the first
three PCs explain 80, 8 and 7 % of the total variance, respectively, and the first ten collectively

explain 99.5 % of the total variance.
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Figure 5.6. 3D score plot of first three PCs for explosive and non-explosive data.
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Figure 5.7. Variance plot of first ten PCs for explosive and non-explosive data.

Further, PCA was performed on the spectra corresponding to five explosives separately.
Figures 5.8 and 5.9 represent 3D score and variance plot, respectively. From figure 5.8, it can
be observed that NTO makes compact and separate clusters with no overlap with others. AN
and CL20 also make separate clusters with minimal overlap and some spread, whereas a partial
overlap between HMX and RDX is observed. The score plot also indicates the possibility of
classification between them using the scores. Figure 5.9 shows that the first three PCs explain
76, 16 and 5 % of the total variance, respectively and the first ten PCs collectively explain

98.97 % of the total variance.
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Figure 5.8. 3D score plot of first three PCs for explosive data.
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Figure 5.9. Variance plot of first ten PCs for explosive data.

Further, the ANN analyses were employed on the scores obtained from PCA analysis in a
similar manner as before. ANN was employed by considering only the scores corresponding to
the first PC as input data; then, collectively, the first 2, 4, 8, 10, 20, 40, 60, 80 and 100 scores
were used as input to ANN. The average prediction rate of plastics obtained considering
different sets of scores is shown in a bar chart in figure 5.10. From the figure, it can be noticed
that the accuracy of the prediction increases with increasing the number of scores as input to
the ANN but up to a certain value. After 8 scores, the increase in the number of scores

doesn’t significantly aftect the classification accuracy between explosive and non-explosive.

99



I Chaprer 5

Similarly, the accuracy becomes almost consistent for classification within explosive after 40

scores as input to the ANN model.
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Figure 5.10. Prediction using different scores as input to ANN.

5.3.2.3.2. Linear Discriminant Analysis (LDA)

LDA is a supervised machine learning algorithm that effectively projects high-dimensional data
into a lower-dimensional space by optimizing the separation of classes, thus efficiently
extracting classification information while reducing the feature dimensionality [72]. The
projection principle is set to ensure the minimum variance between interclass samples and the
maximum variance between intraclass samples, i.e., LDA tries to project the sample onto a
straight line. Unlike PCA, which maintains the information as much as possible, LDA makes
the data points more distinguishable after dimension reduction. LDA is a good feature
extraction technique that leads to a good separation in the feature space. The newly
transformed coordinates are called linear discriminants (LDs), and the number of LDs depend
on the number of classes, i.e., for n number of classes, the number of LDs are n-1. In a binary
classification scenario distinguishing between explosive and non-explosive, only one LD is
involved. However, when classifying within the explosives, the maximum number of LDs is
four.

Figure 5.11 represents the 2D and 3D plots of the initial LDs classifying within explosives. A
clear separation between different explosives with minimal variance between the interclass

spectra was observed. After LDA, ANN analysis was employed on the only LD for predicting
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explosive and non-explosive. For prediction within explosive, the ANN analyses were
employed on the first LD, first two LDs, and so on up to the four LDs.

For explosive and non-explosive prediction, 100% accuracy was achieved. In case of within
explosive prediction, the accuracy obtained from ANN analyses was shown in the bar chart in
figure 5.12. From the figure, it can be noticed that the classification accuracy corresponding to
the first LD is minimal and with increasing number of cumulative LDs, the accuracy increases

and is maximum for all 4 LDs. However, for all the cases, the accuracy is below 90%.
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Figure 5.11. (a) 2D and (b) 3D plot of initial LDs classifying within explosives.
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Figure 5.12. Prediction using different LDs as input to ANN.

5.3.3. Discussion

In this study, ANN analyses coupled with various feature selection and feature extraction
methods were performed for the purpose of explosive detection. At first, ANN analyses were
performed to classify explosives and non-explosive. Further, ANN analyses were performed
only on explosives data to identify particular explosive types. The classification accuracies

obtained from all the approaches are summarized in figure 5.13.
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Figure 5.13. Classification accuracies obtained from various feature selection and feature extraction

methods. Here MF represents manual feature selection.

The classification accuracy for distinguishing between explosive and non-explosive showcased
remarkable performance across various feature extraction and selection methods. ANN
combined with LDA feature extraction achieved a flawless 100% accuracy. Meanwhile, feature
selection via manual and RF methods consistently achieved more than 96% accuracy. In the
case of PCA feature extraction, results corresponding to initial PCs are poor, possibly due to
the underfitting of the ANN model due to smaller datasets. However, the classification
accuracy becomes more than 94% for PCs with more than four as input. The maximum
accuracy (97.5%) is obtained for 60 PCs and more as input to the ANN model.

In classification within explosives, maximum accuracy (99.8%) was obtained for full spectrum
and manual feature selection with peak area. Feature selection via manual RF methods
consistently achieved more than 90% accuracy. Similar to the earlier case, poor results were
observed when employing PCA feature extraction with fewer PCs as input for the model.
However, for PCs with more than 20 as input, the classification accuracy becomes more than
91% and the maximum accuracy (96.8%) is obtained for 40 PCs as input to the ANN model.
LDA demonstrates poor performance, consistently falling below 90%. However, a clear
separation between different classes of explosives has been observed in the case of LDA (figure
5.11) as compared to PCA (figure 5.8). This is because PCA tries to preserve the feature
information as much as possible in the new space, where LDA makes the data more
distinguishable after dimensionality reduction [72]. Moreover, the number of LDs obtained

from LDA is limited to the number of classes, and the dataset is too small compared to PCA to
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train the ANN model, which might lead to the underfitting of the model. Therefore, the
accuracies are low in the case of LDA compared to PCA. Furthermore, the testing time
consistently remains between 20 — 150 ms across all methodologies. This swift testing time
significantly expedites the process of real-time detection.

In this study, both the training and testing were performed on the LIBS spectra obtained from
the same samples. However, in real-world scenarios, the model encounters unknown samples
that haven't been seen by the trained model during the training process. Given the limited
quantity of explosive samples available, the training and testing were conducted using the same
set of samples. The next section explores the effect of testing on a new sample by considering

a large set of plastic samples.

5.4. Identification of post-consumer plastics

With increasing population and modernization, the widespread adaptation of plastics in our
day-to-day lives has experienced a substantial surge. Human society heavily relies on plastics as
it is widely used in packaging, food safety, domestic equipment, industry, transport,
electronics, etc. Its demand and use are continuously increasing because of its notable
advantages such as cost-eftectiveness, durability, low weight, flexibility in shape, etc. [73]. On
the contrary, due to its high durability and low-degrading nature, it generates millions of tons
of waste every year [74]. Thus, the management of plastic waste has now become essential.
Traditional plastic waste management techniques like incineration and landfills are
inconvenient as they cause colossal resource waste and adverse effects on the environment and
human beings. Also, the toxic substances released in these processes severely harm soil, water,
and air. Therefore, recycling is the most viable way to reduce final waste output.
Classification/sorting of post-consumer plastics is the most critical step in the recycling
process. The sorting process is essential to retain the quality and properties of recycled plastics
[75]. For easy and convenient sorting, the Society for Plastic Industries (now called the Plastics
Industry Association) instituted a labeling system that encodes difterent plastics [76]. Based on
the labeling, manual sorting by visual inspection is the most common process, which is labor-
intensive, more time-consuming, and error-prone. Also, it is harmful to the workers in case of
hazardous contamination. Other classification techniques based on the physical properties are
also developed, like the floating technique [77], an electrostatic technique [78], differential
scanning calorimetric (DSC) [79], etc. These conventional methods greatly depend on the

physical state of the sample and are more time-consuming and prone to errors. Most of these
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techniques are confined to limited types of plastics. Thus, there is a need for an automated

process that can increase the recycling rate without involving a large workforce.

Over the past few vyears, laser-induced breakdown spectroscopy (LIBS) combined with
machine learning has shown increasing interest in the rapid identification of plastics regardless
of the size, shape, and color of the material [8,38,73]. Several analytical approaches have been
reported for the classification of plastics using LIBS signals. R. Junjuri et al. have investigated
post-consumer plastics by exploiting atomic and molecular intensity ratios [38]. J. Anzano et
al. [80-83] and V. K. Unnikrishnan et al. [84] have explored various statistical approaches like
Euclidean distance, Receiver Operating Characteristic (ROC) analysis, Pearson's correlation
coefficient, etc. Also, different machine learning algorithms have been widely used for the
identification of plastics with higher accuracy. Some recent studies reported the classification
of plastics using principal component analysis (PCA), partial least square discriminant analysis
(PLS-DA), artificial neural network (ANN), etc. [8,30,38,84—88]. Table 5.6 provides a
comprehensive summary of LIBS studies conducted in the past years, focusing on the
identification of plastics.
Table 5.6. Summary of LIBS studies devoted to literature for identification/sorting of plastics. A: Sl.

No., B: Reference & Year, C: Samples used, D: Sample collection source, E: Methods used for Identification/

Classification, F: Is testing performed on unknown sample?, G: Average accuracy (%).

A B C D E F G
1 [89] & 2022 PET, HDPE, LDPE, PP NA kNN and SVM | No | ~ 100
NCA, PCA
2 [90] & 2022 POM, PVC, PA,ABS, PP, and PE Industry No > 91
and SVM

ABS, PA, PC, PMMA, POM,

3 [7] & 2021 PTFE, PU, PP, PS, Manufacturer | PCA and kNN | No | 99.6
and PVC
Residual
4 [91] & 2021 ABS, PA, PMMA, and PVC Manufacturer Yes | 73.34
network

HIP, SIHET, PC, PP, PS, HDPE,
5 [8] & 2020 Recycling unit | RFand ANN | No | >99
PET, LDPE, ABS, and PPCP

Ratiometric,
HIP, LDPE, ABS, PP, PS, HDPE,
6 [30] & 2019 Recycling unit | correlation, and | No | > 93
SIHET, PC, PET, and PPCP

PLS-DA

HDPE, LDPE, PP, PVC, PS, ABS,
7 [86] & 2019 Industry PLS-DA No | 99.55
PTFE, PC, PMMA, PU, and POM
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8 [38] & 2019 PET, HDPE, LDPE, PP, and PS Recycling unit ANN No | ~100
ABS, PA, PMMA, PVC, PC, PE, SOM, K -
9 [92] & 2018 Industry No | 99.2
POM, PP, PS, PTFE, and PU means
Recycling
10 [93] & 2018 PP, PS, and ABS PCAand ICA | No | >95
centre
PE, PP, PVC, PS, ABS, PTEE, PA, K-means
11 | [94] & 2018 Industry No | 99.6
PC, PMMA, PU, and POM clustering
E-waste
kNN and
12 | [95] & 2017 ABS, PS, PE, PC, PP PA recycling No | >90
SIMCA
company

PP, PE, PS, PVC, PU, PTFE, ABS,

13 | [96] & 2014 POM NA SVM No | ~100
and PMMA
14 | [97] & 2013 ABS, PP and HIP Commercial Ratiometric No | NA
15 | [84] & 2013 PET, HDPE, PP, and PS NA PCAand MD | No | >91
HDPE, LPDE, PP, PET, PS, and
16 [98] & 2012 Commercial DFA No 99
pvC
PP, PE, PC, PVC, POM, PA, and
17 | [88] & 2011 NA ANN No | ~100
PMMA

*NA: Not available, kNN: k-nearest neighbors, PCA: principal component analysis, PLS: partial least-square,
PLS-DA: partial least-square discriminant analysis, SVM: support vector machine, NCA: nearest component
analysis, SIMCA: soft independent modeling of class analogy, PU: polyurethane, PVC: polyvinylchloride, POM:
polyvinylchloride, PA: polyamide, PE: polyethylene, PS: polystyrene, PU: polyurethane, PTFE:
polytetrafluoroethylene, PMMA: polymethylmethacrylate, HIP: high impact polystyrene, POE: polyoxyethylene,
PBT: polybutylene terephthalate, SOM: self-organizing maps, DFA: discriminant function analysis, ICA:
independent component analysis, RBFNN: residual basis function neural networks, PPCP: polypropylene
copolymer, MD: Mahalanobis distance.

Table 1 reveals that most research studies achieve outstanding identification and classification
accuracy, exceeding 90% and even approaching 100%. However, the majority of these
research studies lack practical relevance in real-world circumstances. A closer look at table 1
reveals that most research relies on neatly structured samples, often consisting of commercial
or standard materials purchased directly from manufacturers or industrial suppliers. In contrast,
real-time applications demand the classification of post-consumer/used plastics. Only a handful
of research endeavours have delved into the classification of post-consumer/used plastics
[8,30,38,93,95]. Along with these, in almost all research, the training set and testing set data
came from the same sample, making the classification meaningless for practical application. In
an attempt to address this challenge, X. Peng et al. employed distinct sets of samples for

testing; however, they also faced limitations by using standard samples and achieved a
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maximum average accuracy of only 73.34% [91]. Furthermore, it is worth noting that their
study focused on four specific types of plastics: ABS (acrylonitrile butadiene styrene), PA
(polyamide), PMMA (polymethyl methacrylate), and PVC (polyvinyl chloride). Notably,
these plastics, particularly ABS, PA, and PMMA, do not account for much plastic waste
compared to commonly used plastics such as PET, HDPE, LDPE, PS etc. [99].

Analogous to the investigations carried out in explosive detection, ANN was utilized,
incorporating various feature selection and extraction methods. Their performances were
compared in accuracy, testing time, data size, and model size to find the most effective
strategy. The study explores two separate approaches for classifying post-consumer plastics.
Firstly, nine different post-consumer plastics were collected from a local recycling unit, and
both training and testing were performed on the same sample. Secondly, 30 post-consumer
plastics representing six commonly used types (HDPE, LDPE, PP, PET, PS, and PVC) and
five samples from each category were collected from garbage. Testing was performed on
unknown plastic, mimicking real-world scenarios for identifying unfamiliar post-consumer

plastics.
5.4.1. Post-consumer plastics from the recycling unit (Testing on

same sample)

The experiment was called for nine post-consumer plastics, namely, Acrylonitrile butadiene
styrene (ABS), Poly(methyl methacrylate), also called ACRYLIC, High-density polyethylene
(HDPE), Low-density polyethylene (LDPE), NYLON, Polycarbonate (PC), Polyethylene
terephthalate (PET), Polypropylene (PP) and SIHET. One sample from each category has
been considered in this study. The details of the samples are provided in table 5.7. All the
samples were collected from a local recycling unit. Each sample was first cleaned with water,
followed by methanol in order to remove the contaminations from the surface. Two hundred
spectra from each sample (a total of 1800 spectra) were acquired with 500 ms integration time.
The normalized LIBS spectra of plastics acquired in the range of 200 — 750 nm are depicted in
figure 5.14. All the emission spectral lines were identified with the aid of NIST atomic
database. Prominent emission lines from C, H, and N were detected within the acquired
spectral range. Additionally, strong emission lines of Na were commonly observed in many
plastics, potentially indicating contamination since post-consumer plastics were utilized in the
study. Low-intense emission lines of some elements like Ca and Mg were also noticed, which

were added as traces during the manufacturing process to increase the hardness and lower the
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production cost. Also, the molecular structure of CN — violet and C, — swan bands were

observed.
Table 5.7. Details of the nine different post-consumer plastic samples.
S. No. Scientific Name Chemical formula Recycling No. (#)
1 Acrylonitrile butadiene styrene (ABS) (CisHi7N), 7
Poly(methyl methacrylate), also called
2 v ’ ryle) (CsO:Hs)n 7
ACRYLIC
3 High-density polyethylene (HDPE) (CoHy) 2
4 Low-density polyethylene (LDPE) (CoH4)n 4
5 NYLON - 7
6 Polycarbonate (PC) (CisH1403) 7
7 Polyethylene terephthalate (PET) (C10HsO4)n 1
8 Polypropylene (PP) (CsHg)a 5
9 SIHET - 7
1.0 +——SIHET
0'5 ) JMM
0.0 ——*
1.0 +—rppP
0;5 1 M%
0.0+
1.0+——PET
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Figure 5.14. LIBS spectra of plastics acquired in the range of 200 — 750 nm.
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From figure 5.14, it has been observed that all the plastic spectra look similar due to similar
chemical composition. However, since the elemental compositions of C, H and N are
different in different plastics, the intensities corresponding to these species difter from one
another. Moreover, the intensities of impurities and contaminated species also differ from one

another.
5.4.1.1. ANN with total data

The ANN analysis was performed over 100 iterations, and for each iteration, the total data
(1800 spectra) was divided randomly into 70 + 15 + 15 % for training, validation and testing,
respectively. The target data comprises class labels of nine different plastics. The overall
classification accuracies of each sample obtained from the ANN analysis for the test data are
presented in the form of a confusion matrix in table 5.8. More than 90% of classification
accuracy was observed in the case of all the plastics and most of them are ~97%, with an
average prediction rate of 96.43%. The average training and testing times taken for the ANN

operation are 4436 and 8.44 ms, respectively.

Table 5.8. ANN results for classification of nine different post-consumer plastics.

Predicted Class

ABS ACRYLIC HDPE LDPE NYLON pPC PET PP SIHET

ABS 97 1.15 0.63 0.64 0.1 0 0 0.47 0.01
ACRYLIC 3 96.99 0 0 0 0 0 0.01 0

HDPE 0.12 0.23 96.99 0.44 0.17 0.2 0.17  0.82 0.85

g LDPE 0.03 0.1 0.5 92 3.32 1.06 0.1 1.34 1.54

% NYLON 0 0 0.12 1.31 97 0 0.4 0.69 0.49
§ PC 0 0 0 0 0 100 0 0 0

PET 0 0 0 0 0 0 99.86 0 0.14

PP 2.83 1.35 2.14 1.81 1.29 0 0 90 0.6

SIHET 0 0 0.71 0.48 0.09 0 0.72 0 98

5.4.1.2. ANN with feature selection
5.4.1.2.1. Manual feature selection

The same manual feature selection was employed, as discussed in section 5.3.2.2. The ANN
analyses were performed in the same manner as in the case of total data. The data was split
into 70% training, 15% wvalidation and 15% testing sets. The results obtained from ANN
analyses are summarized in table 5.9. The high average accuracy obtained is for the peak area

and CHN peak area. The accuracy corresponding to peak heights is poor compared to the
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other two. This might be attributed to the limited number of features utilized in training the
model, potentially resulting in the underfitting of the ANN model. Comparing the training
and testing time, the peak heights as input has lower training and testing time than others due
to a smaller dataset, and the peak area as input shows higher training and testing time than the
other two.

Table 5.9. Results obtained from ANN for classification of nine post-consumer plastics with manual

feature selection.

Accuracy (%)

SI. No. Plastic
Peak area CHN peak area Peak height

1 ABS 98 94.98 82.94

2 ACRYLIC 98.01 99.79 89
3 HDPE 95.95 87.29 87.98
4 LDPE 89.97 86.96 73.61
5 NYLON 93.98 84.86 81.9
6 PC 98.57 95.8 91.01
7 PET 99.73 98.45 93.34
8 pP 93 95.8 80.05
9 SIHET 88 90.98 75.17
Average 95.02 92.77 83.89
Testing time (ms) 4.64 4.4 3.12

Fraction of total data (%) 59 17 3

5.4.1.2.2. Random Forest (RF) feature selection

Here, the analyses were performed by selecting only important features based on the variable
importance (VI). A total of three sets of features were considered based on various VI
threshold values. The analyses were performed on three sets of data with features greater than
VI values of 0.001, 0.002 and 0.003. The three sets of features obtained from three VI
thresholds are graphically presented in figure 5.15. The figure shows that with the VI
threshold of 0.001, the features include almost all the peak areas with some noise. As the VI
threshold gradually increased, only C, H, N, Ca, and Na peaks were observed as important
teatures. The results of ANN analyses obtained by considering three different features are

presented in table 5.10.
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Figure 5.15. Variable importance (VI) estimated by RF model for LIBS data of nine diftferent post-

consumer plastics.

Table 5.10. Results obtained from ANN for classification of nine post-consumer plastics with RF

feature selection.

Correct classification rate (%)

SI. No. Plastic
VI> 0.001 VI> 0.002 VI >0.003

1 ABS 95.97 91.00 85.00
2 ACRYLIC 99.98 92.05 97.96
3 HDPE 93.97 88.98 89.94
4 LDPE 92.00 83.93 77.95
5 NYLON 91.90 78.00 88.97
6 PC 98.03 96.02 93.00
7 PET 99.80 97.84 99.75
8 PP 93.00 87.00 82.00
9 SIHET 93.98 91.00 76.95
Average 95.40 89.53 87.95
Testing time (ms) 3.71 3.51 3.32
Fraction of total data (%) 18.51 8.54 4.05

The training and testing time is higher in the case of VI > 0.001 as the fraction of total data is
high. Here, the time taken for RF analysis was added to the training time, representing overall
time required to train the ANN model, including preprocessing. Also, the highest classification
was observed in this case as compared to the other two cases. This is because the VI > 0.001

covers all important features, including almost all peak areas. A similar observation was also
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observed in the case of manual feature selection, where the classification rate was highest in
the case of all peak areas as input. The testing times are similar to the training time for all three

cases where VI > 0.003 represents the fastest prediction.

5.4.1.3. ANN with feature extraction
5.4.1.3.1. Principal Component Analysis (PCA)

Here PCA was employed for the total data comprised of 1800 spectra. Figure 5.16 and 5.17
represent the score plot and variance plot, respectively. From figure 5.16, it can be noticed
that the different types of plastics make separate clusters with minimal overlap among them.
Among all, ABS and ACRYLIC make compact and separate clusters with no overlap with
others, whereas there are some overlaps between other types of plastics. The score plot
represents that they can be classified based on the scores rather than the original data. Figure
5.17 shows the variance explained by the first ten PCs. Here the first three PCs explain 78.05,
12.86 and 3.6 % of the total variance, respectively and the first ten collectively explain 99.5 %
of the total variance. Since the PCs explain the variances in the original data, based on the
variances, the scores can be used as extracted features. In other words, the scores are nothing
but the extracted features from the original data and the most important features are the scores

corresponding to initial PCs.
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Figure 5.16. 3D score plot of first three PCs for nine post-consumer plastics.
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Figure 5.17. Variance plot of first ten PCs for nine post-consumer plastics.

The ANN analyses were employed on the scores obtained from PCA analysis in a similar
manner as in case of explosive detection. At first, ANN was employed by considering only the
scores corresponding to the first PC as input data; then, collectively, the first 10, 20, 30, 40,
50, 60, 70, 80, 90 and 100 scores were used as input to ANN. The average prediction rate of
plastics obtained considering different sets of scores is shown in a bar chart in figure 5.18. The
figure shows that the accuracy of the prediction increases with increasing the number of scores
as input to the ANN but up to a certain value. After 30 scores, the increase in the number of

scores doesn’t affect the accuracy significantly.
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Figure 5.18. Classification accuracy of nine post-consumer plastics by considering different scores as

input to ANN.
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5.4.1.3.2. Linear Discriminant Analysis (LDA)

In this section, LDA was employed on the LIBS spectra corresponding to nine different post-
consumer plastics categories. Figure 5.19 represents the 2D plot of the first two LDs, which

show a clear separation between different classes of plastics. Moreover, the minimal variance

between the interclass spectra was also observed.
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Figure 5.19. 2D LDA plot of first two LDs for nine post-consumer plastics.
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Figure 5.20. Classification accuracy of nine post-consumer plastics by considering different LDs as

input to ANN.

After LDA, ANN analyses were employed on the first LD, first two LDs and so on, up to the
first eight LDs. The average classification accuracies obtained from ANN analyses were shown

in the bar chart in figure 5.20. The figure shows that the classification accuracy corresponding
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to the first LD is minimal, whereas, for all other cumulative LDs, it is almost similar.
However, for all the cases, the accuracy in the prediction of plastics is around 80 %. This is
again due to the underfitting of the ANN model since fewer data variables are considered for

training.

5.4.1.4. Discussion

In this study, ANN analyses were performed on LIBS data of nine post-consumer plastics with
various feature selection and feature extraction methods. The classification accuracies obtained
from all the approaches are summarized in figure 5.21.

From the figure, it can be noticed that the total data as input to the ANN shows maximum
accuracy. In the case of feature selection techniques, peak heights, RF with VI > 0.002 and VI
> 0.003 show comparatively lower classification accuracies than peak areas, CHN peak areas
and RF with VI > 0.001 as input to the ANN model which represent more than 90%
classification rate closer to the total data as input. The lowest classification rate is observed in
the case of peak heights as input which could be due to the underfitting of the ANN model.
Similar observations were also observed in the case of PCA and LDA feature extraction. The
score corresponding to the first PC shows a poor prediction rate and scores corresponding to
PCs up to 20 PCs represent prediction accuracies lower than 90%, possibly due to the
underfitting of the ANN model. Moreover, as compared to PCA, LDA as input to ANN

shows poor classification rates similar to the case of explosive detection (figure 5.12).
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Figure 5.21. Classification accuracies obtained from various feature selection and feature extraction

methods. Here MF represents manual feature selection.
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In a real-time application, classification accuracy plays a crucial role in plastic sorting. The
accuracy in sorting has to be as maximum as possible in order to maintain the quality of the
recycled plastics and reduce the production cost. Moreover, mixing difterent kinds of plastics
undergoes unwanted chemical reactions which release toxic substances very harmful to the
environment and ecosystem. In this study, full spectra as an input to ANN yields maximum
accuracy and is the best choice if only accuracy is considered.

Along with accuracy, computational time also plays a very important role in plastic sorting. In
a real-time scenario, tons of plastic waste have to be sorted for recycling. In industrial sorting
units, the use of a conveyor belt is a very efficient way of transporting plastics towards
classifying instruments. Furthermore, the computational time of the instrument should be
compatible with the speed of the conveyor belt. Also, the faster the speed of the conveyor
belt, the faster the sorting process. In such a layout, even milliseconds difference in the
computational time can make greater difterences on a large scale. The average training and
testing times for one iteration correspond to various feature selection and extraction
approaches are described in table 5.11. Among the training and testing time, training time is
really not important as the model has to be trained prior to the testing and on the testing site
only the speed of the testing matters. In table 5.11, the testing times that correspond to feature
selection techniques (manual and RF feature selection) are the times taken by ANN only.
Whereas, in the case of feature extraction approaches (PCA and LDA), the testing time are the
sum of transforming time taken for transforming the spectrum to PC and LD spaces added to
the time taken by ANN, respectively. The time taken by the manual and RF feature selection
1s not considered here because the preprocessing by feature selection will be performed during
the training process and the same wavelength ranges of spectra can be remembered, and the
same fraction can be extracted without requiring any additional time every time. During the
comparison of testing times, only those approaches that represent more than 90 % of
classification accuracies are considered. Comparing all the testing times (with accuracy > 90%),
the features corresponding to RF VI > 0.001 reflect faster prediction with accuracy close to
the total spectra.

Apart from accuracy and computational time, the size of the training model and input data are
important parameters for discussion. The sizes of input data considered to train the ANN
model and the size of the ANN model are also described in table 5.11. In this case, a total of
1800 spectra were considered; therefore, the input data size ranges from hundreds to a few
thousand KB for different subsets. But, in practical use, the input data to the model will be a

single spectrum which is typically 70 — 80 KB in size. The size of the trained ANN model
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ranges between 16 — 25158 KB. The combined data and classification model requires less than
26 MB of storage. Since no big data is being analyzed during the testing process and the
overall storage requirement is very low, there is no need for any computer or workstation.
This can be replaced with compact and low-cost microcontrollers capable of performing ANN
operations like Arduino[100], Raspberry Pi[101], etc. This will fascilate the development of a

handy, robust, low-cost LIBS setup for identifying post-consumer plastics.

Table 5.11. Comparison of various feature selection and extraction approaches for classification of nine

post-consumer plastics.

Classification ~ Testing Input data ~ Training model  Classification index
accuracy (%) time (ms)  size (MB) size (KB) (% ms™' MB™)
Full spectra 96.43 8.44 28.71 25.16 0.45
Peak area 95.02 4.64 10.86 7.91 2.59
MF CHN peak area 92.77 4.4 6.41 5.35 3.94
Peak heights 83.89 3.12 0.41 0.34 78.62
VI > 0.001 95.4 3.71 5.46 4.62 5.57
RF VI > 0.002 89.53 3.51 2.53 2.18 11.68
VI > 0.003 87.95 3.32 1.99 1.02 26.1
1PC 49.28 3.69 0.87 0.02 834.69
10 PCs 64.44 3.88 1.02 0.14 116.96
20 PCs 87.53 3.9 1.19 0.28 79.03
30 PCs 91.21 3.95 1.36 0.42 54.59
40 PCs 92.76 3.86 1.53 0.57 42.46
PCA 50 PCs 90.75 4.36 1.70 0.7 29.73
60 PCs 92.9 4.5 1.88 0.84 24.55
70 PCs 95.43 4.76 2.05 0.99 20.17
80 PCs 93.57 5.83 2.22 1.12 14.3
90 PCs 94.13 5.4 2.39 1.26 13.8
100 PCs 96.31 5.71 2.56 1.4 12.02
11D 63.21 3.7 0.07 0.02 899.15
2 LDs 76 3.79 0.1 0.03 607.66
3 LDs 76.22 3.75 0.12 0.05 432.45
DA 4 LDs 78.44 4.03 0.14 0.06 319.08
5 LDs 75 4.53 0.17 0.08 220.75
6 LDs 81.11 4.44 0.19 0.09 202.98
7 LDs 81.33 4.63 0.22 0.1 168.9
8 LDs 77.68 4.51 0.25 0.12 145.97

*The blue colour indicates the approaches with classification accuracies greater than 90%.

In order to find the best approach among all feature selection and extraction approaches, an

index called classification index is defined that simultaneously considers the accuracy, testing
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time, and ANN model size and provides the best analysis protocol. The classification index is

defined as,

Accuracy (%)
Testing time (ms) x Model size (MB)

Classification index =

(1)
The limit of the classification index ranges from 0 to oo, i.e., when accuracy is 0%, or the
model consumes infinite time or size then the index value is zero.And when the model
doesn’t consume any time or storage space for prediction, then the classification index is
infinite. The classification index estimated for all the approaches is listed in table 5.11. Table
shows that in terms of classification index, LDA feature extraction with 1 LDs followed by
ANN gives the best overall result; however, the accuracy is poor, i.e., 63.21%. Considering

better accuracy, i.e., at least more than 90%, the best analysis protocol can be PCA with 30

PCs as input to the ANN model.
5.4.2. Locally collected post-consumer plastics (Testing on

unknown sample)

The last section, excellent accuracy in identifying each plastic category has been achieved with
optimized computational time and resource usage. However, in the study only one sample
from each category was considered and both training and testing were poerfomed on the same
sample. This approach is irrelevant in terms of real-time application as numerous samples from
each category will be encountered in recycling unit and the testing samples will be completely
unknown to the training model. Therefore, to mimic the real-time application scenario, in
this section, multiple samples were collected from each category and the testing was performed
on the unknown samples which has not been seen by the model earlier.

Post-consumer plastics from six commonly used categories, namely, HDPE, LDPE, PP, PET,
PS and PVC were collected for the experiment. Details of these types of plastics can be found
in table 5.12. From each group/category, five different samples used in our day-to-day life
were collected and identified based on their recycling number. These samples were first
cleaned with water and then methanol to remove surface contaminants. The photograph of 30
plastic samples (6 groups X 5 samples) 1s depicted in figure 5.22. 200 spectra from each sample
(a total of 6000 spectra) were acquired with 500 ms integration time.

The normalized averaged LIBS spectra of six kinds of plastics acquired in the range of 200 —
750 nm are depicted in figure 5.23. Similar emission lines are observed as earlier, i.e.,
prominent C, H, N, and Na atomic lines were observed along low intense emission lines of

Ca, Mg, Ti, and molecular emissions of CN — violet and C, — swan bands.
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Table 5.12. Details of the six categories of post-consumer plastics.

S. Chemical  Recycle
Name Chemical structure
No. formula No. (#)
1 High-density polyethylene (HDPE) III III 2
igh-density polyethylene
g polyethy ! .
2 Low-density polyethylene (LDPE) Ill IlI N 4
o
3 Pol 1 PP CsHe)a 5
olypropylene ( ) CH—CH2 - ( 3 6)

6]
Polyethylene terephthalate (PET) O@T (C1oHsO4),
(6]
0 n

4 1

5 Polystyrene (PS) [ }II ] (CsHs)a 6
H H |
o

6 Polyvinyl Chloride (PVC) __(I:_(I:__ (C:HsC), 3
H H In

Figure 5.22. Photograph of 30 post-consumer plastics used for the study.
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Figure 5.23. LIBS spectra of plastics acquired in the 200 — 750 nm range. Each spectrum was averaged
over 1000 spectra (5 samples X 200 spectra). The shaded bands respresent the standard deviation of

200 measurements.

5.4.2.1. ANN with total data

The ANN model has been developed to mimic the real-time application scenario where the
sample subjected to the test is never a part of the training. Notably, one sample (out of 30) was
reserved as an ‘unknown,” while the neural network was trained using the remaining 29
samples. Out of the 6000 spectra obtained from the 30 samples, 200 spectra corresponding to
one sample were designated for testing. The remaining 5800 spectra were randomly split into
80% for training and 20% for validation data. This process was repeated iteratively 30 times.

The schematic of the training—testing architecture is described in figure 5.24.

For each iteration, the number of neurons in the input layer equals the number of features in
the data, while the number of neurons in the output layer matches the number of classes. The
number of hidden layers is optimized by using grid search cross-validation (GridSearchCV)
along with the number of epochs by minimizing the loss function (categorical cross entropy)
of the validation data [102]. The overall classification accuracies of each sample obtained from
the ANN analysis for the test data are presented in the form of a confusion matrix in table

5.12.
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Figure 5.24. Schematic of the training—testing architecture of the data.

Table 5.13 shows that in the case of PS and PVC, the classification accuracy is maximum and
the classification rate of PET is high. However, HDPE, LDPE and PP are misclassified largely
among themselves. This discrepancy can be attributed to their similar chemical structures and

spectral signatures (discussed in table 5.7 and figure 5.23).

The current ANN algorithm is not able to differentiate between HDPE, LDPE and PP along
with other plastics. To resolve this, HDPE, LDPE and PP are grouped as single class HLP.
The dataset containing HLP, PET, PS and PVC is named ‘global dataset’. The ANN analyses
were performed on global dataset and when a spectrum is identified as HLP, it undergoes
another ANN model, which is trained with only HDPE, LDPE and PP (3 groups) named as

‘local dataset’. The initial dataset consisting of six groups is referred to as the ‘original dataset.’

Table 5.13. Confusion matrix representing the classification accuracy (%) of 30 post—consumer plastics

obtained from ANN analysis.

Predicted Class

HDPE LDPE PP PET

a~
wn

pvC

HDPE | 195 03 75 44 08 0
| IDPE | 96 575 324 0 0 05
Sl e | 643 02 354 0 01 0
T | pET | o0 0 55 945 0 0
< | ps 0 0 0 0 100 0
PVC | 01 0 0 0 0 999

Again, the ANN analyses were performed on global and local dataset. The same training,
validation and testing architecture was employed as before. The confusion matrices obtained

from ANN analyses for two different approaches are discussed in table 5.14. By considering
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HDPE, LDPE, and PP as a group, the overall accuracy of global dataset increases significantly
and becomes close to 100% (see table 5.14a). Compared to table 5.13, the classification
accuracy of PET increases significantly and accuracy of PVC becomes maximum and HLP also
give excellent prediction rate. However, for local dataset, the classification approach doesn’t
work, representing failure of ANN model in distinguishing between LIBS spectra of HDPE,
LDPE and PP (see table 5.14b). The testing time of each plastic spectrum for global dataset is
137 ms and for the local dataset it is 133 ms. The size of the ANN model is ~1560 KB for

both cases.

Table 5.14. Confusion matrix representing the classification accuracy (%) of (a) global dataset and (b)

local dataset obtained from ANN analysis.

Predicted class b Predicted class
(a> HLP PET PS PVC < ) HDPE LDPE PP
3 HLP | 99.37 057 0.07 0 2 HDPE 21.4 10 68.6
% PET 0.3 99.7 0 0 :: LDPE 36.9 357 274
—Cé PS 0 0 100 0 § PP 56.3 7.3 36.4
< |pvc | o0 0 0 100

5.4.2.2. ANN with feature selection
5.4.2.2.1. Manual feature selection

In this case, the same manual feature selection was employed as discussed before (section
5.3.2.2 and 5.4.1.2). The ANN analyses were performed on three datasets (i.e., original
dataset, global dataset and local dataset) in the same manner as in the case of the full spectrum.
It has been observed that excellent classification accuracy obtained for all three manual feature
selection approaches corresponds to the global dataset, as discussed in table 5.15. However,
poor classification accuracies are obtained in the case of the original and local dataset, resulting
in the failure of ANN to classify between HDPE, LDPE and PP. Also, a significant increase in
PET, PS and PVC accuracy was observed in the global dataset for all three feature selection
approaches compared to the original dataset. Additionally, there is no discernible change
observed in testing time when employing reduced input data. There are several factors because
of which the overall testing time doesn’t reduce significantly, even using a smaller test dataset.

Further elaboration on this topic can be found in the discussion section.
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Table 5.15. The ANN results for manual feature selection correspond to (a) original, (b) global and (c)

local dataset.

Classification accuracy (%) Classification accuracy (%) Classification accuracy (%)
(@) A B C (b) A B C (c) A B C
HDPE 2.8 0 3.7 HLP 985 97.3 95.6 HDPE 2.2 0.2 15.4
LDPE 34.5 26.4 35.9 PET 100 93.9 100 LDPE 33.5 27.4 43.9
PP 40.9 34 29.4 PS 100 100 99.8 PP 32.1 30.9 32.6
PET 96.1 85.6 98.5 PVC 100 97.9 98.5 D 22.6 19.5 30.6
PS 99.8 100 98.7 D 99.6 97.3 98.5 E 128 126 128
PVC 96.2 85.5 78.8 E 126 140 125 F 59 17 3
D 61.7 55.2 57.5 F 59 17 3
E 130 127 125 *A: Peak area, B: CHN peak area, C: Peak height, D: Average, E: Testing
59 17 3 time (ms), F: Fraction of total data (%)
5.4.2.2.2. Random Forest (RF) feature selection

Here, the analyses were performed by selecting only important features based on VI threshold
as inputs to ANN for the three datasets. A total of four sets of features were considered based
on various VI threshold values. The analyses were performed on four sets of data with features
greater than VI values of 0.001, 0.002, 0.003 and 0.004 for each dataset. The four sets of
teatures obtained from three VI thresholds for original, local and global dataset are graphically

presented in figure 5.25, 5.26 and 5.27, respectively.
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Figure 5.25. Variable importance (VI) estimated by RF model for original dataset.
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Figure 5.26. Variable importance (VI) estimated by RF model for global dataset.
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Figure 5.27. Variable importance (VI) estimated by RF model for local dataset.
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The figures show that with increasing VI threshold, the number of important features
decreasing gradually. In figures 5.25 and 5.26, with VI threshold of 0.001, the features include
almost all the peak areas with some noise. With increasing VI threshold, only C, H, N, Ca,
and Na peaks were noticed as important features. The results of ANN analyses obtained by

considering four different sets of features are presented in table 5.16.
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Table 5.16. The ANN results for RF feature selection correspond to (a) original, (b) global and (c)

local dataset.

CA CA CA
(2) (b) (©)
Vi V2 V3 V4 Vi V2 V3 V4 Vi V2 V3 V4
HDPE 52 46 38 64 HLP 981 933 952 968 HDPE 27 12 44 6.1
LDPE 348 331 512 6738 PET 988 926 99.7 100 LDPE 364 302 358 42
PP 409 404 349 446 PS 999 999 997  99.7 PP 344 322 309 185
PET 953 993 992 99.9 PVC 999 993 982 973 D 245 248 237 222
PS 999 997 999 997 D 992 963 982 984 E 125 123 128 126
PVC 937 893 926 799 E 128 124 125 124 F 4 7 27 15
D 616 611 636 664 F 13 7 4 25
E 124 12 122 123 *CA: Classification accuracy (%), V1: VI>0.001, V2: VI>0.002, V3: VI>0.003, V4:
F 13 5 205 1.37 VI>0.005, D: Average, E: Testing time (ms), F: Fraction of total data (%)

No significant change was observed in testing time by considering the RF feature selection
approach. However, there is a significant reduction in the data size. Also, like manual feature
selection and full spectrum as input, there is no improvement in classification accuracy for
original and local datasets. However, the classification accuracy of global dataset is excellent in
case of all four feature selection approaches, i.e., close to 100%. The highest classification was

observed for VI > 0.001.

5.4.2.3. ANN with feature extraction
5.4.2.3.1. Principal Component Analysis (PCA)

Here, PCA was employed on the training dataset, and the resulting transformed data were
used to train and validate the ANN model. Before testing, the testing data underwent the
same PCA transformation using the parameters obtained during the transformation of the
training dataset. The score plots in figure 5.28 represent the distribution of the first two and
first three PCs for original datasets during one iteration. The same graphs for global and local
datasets are depicted in figures 5.29 and 5.30, respectively.

From figure 5.29, it can be noticed that PS makes a compact cluster as compared to other
types of plastics. On the other hand, PET makes two clusters, i.e., one corresponding to a
single sample and the other encompassing four other samples. In the case of HLP and PVC,
multiple clusters were observed. Also, some overlaps were noticed between all four categories
of plastics. Furthermore, when test data, such as spectra corresponding to PVC 5, are

transformed using the same PCA parameters as the training data, they align with the trained
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PVC data. Similarly, the test data align with its kind in the original and local dataset (figures

5.28 & 5.30) with overlap between difterent kinds and no obvious clusters can be observed.
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Figure 5.30. (a) 2D and (3D) score plot of initial PCs for local dataset.

125



I Chaprer 5

The ANN analyses were employed on the scores obtained from PCA analysis following the
similar architecture as before. At first, ANN was employed by considering only the scores
corresponding to the first PC as input data; then, collectively, the first 2, 4, 6, 8, 10, 20, 40,
60, 80 and 100 scores were used as input to ANN. The classification accuracy obtained by
considering different sets of scores for all three datasets is shown in a bar chart in figure 5.31.
From the figure, it can be noticed that for the global dataset, the prediction accuracy increases
with increasing the number of scores as input to the ANN. After six scores, the accuracy
becomes more than 90% and with further increasing in the number of scores, the accuracy
remains similar, i.e., more than 90% and close to 100%. Moreover, after implementing PCA
feature extraction, the ANN failed to classify between HDPE, LDPE, and PP in the original

and local datasets.

I Original dataset
100 I Global datast
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Figure 5.31. Classification of post-consumer plastics by considering different scores as input to ANN.

5.4.2.3.2. Linear Discriminant Analysis (LDA)

In this case, LDA was employed similarly to PCA, i.e., it was implemented on the training
data and the testing data was transformed with the same transformation parameters for each
iteration. Figure 5.32 represents the 2D and 3D plots of the LDs corresponding to the original
dataset; the plots corresponding to global and local datasets are shown in figures 5.33 & 5.34,
respectively.

In the original dataset, partial overlap between LDPE, HDPE, and PP and between PET and
PS was observed in the 2D plot (figure 5.32). However, the test data makes a good cluster

with its kind with minimal variance. Figure 5.33 shows excellent separation between different

126



Machine learning based classification using LIBS: Effect of feature selection and extraction _

classes of plastics with minimal variance between the interclass spectra. Also, the test data
makes cluster with the same type with minimal variation, representing the possibility of good
classification after LDA feature extraction. Similarly, a very good separation and minimal
variance between LDPE, HDPE and PP is observed in the local dataset (figure 5.34). Also, the
test dataset makes cluster around its actual training type but has a larger spread than the global
dataset. Despite the similarities observed between HDPE, LDPE and PP in former analyses,

LDA can separate them for global and local datasets.
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Figure 5.32. (a) 2D and (b) 3D plot of initial LDs correspond to original dataset.
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Figure 5.33. (a) 2D and (b) 3D plot of initial LDs correspond to global dataset.
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Figure 5.34. 2D plot of first two LDs correspond to local dataset.
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After LDA, ANN analyses were employed on the first LD, first two LDs and so on up to the
maximum number of LDs. The average classification accuracies obtained from ANN analyses
were shown in figure 5.35. From the figure, it can be noticed that for the global dataset, the
classification accuracy corresponding to the first LD and first two cumulative LDs are
comparatively low, i.e., less than 90%, which could be due to the underfitting of the ANN
model as number of data points for training is very small. However, the input of three
cumulative LDs result in very good classification accuracy close to 100%. Furthermore, for the
local dataset, the accuracy in classification remains as poor as in the earlier cases. Also, in the
original dataset, the accuracy is poor due to the misclassification between HDPE, LDPE, and

PP.

100 4 Orlglnal dataset
Il Global datast
Local dataset
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No. of LDs

Accuracy (%)
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Figure 5.35. Classification of post-consumer plastics by considering different LDs as input to ANN.

5.4.2.4. Discussion

Identification of unknown post-consumer plastics is demonstrated. For the experiment, 30
post-consumer plastics from widely used six categories i.e. five from each were collected and
subjected to LIBS experiment. ANN analyses were performed to differentiate six groups of
plastics. The ANN model has been developed to mimic the real-time application scenario
where the sample subjected to the test is never a part of the training. Notably, one sample out
of 30 was reserved as an ‘unknown,” while the neural network was trained using the
remaining 29 samples. This process was repeated iteratively 30 times to each sample. At first,
ANN analysis was performed on the total data considering six groups. However, the ANN
model fails to difterentiate between HDPE, LDPE and PP due to their high similarity in

chemical structure and spectral signature. To resolve this, HDPE, LDPE and PP were grouped
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as single class HLP and the dataset containing HLP, PET, PS and PVC is called ‘global dataset’
where the original dataset containing six groups was remained as ‘original dataset’. The ANN
analyses were performed on global dataset and when a spectrum is identified as HLP, it
undergoes another ANN model, which is trained with only HDPE, LDPE and PP (local
dataset). This methodology is repeated for all above-discussed feature selection and feature
extraction approaches. After all the analyses, it is concluded that the prediction accuracy for
the global dataset is high for most of the feature selection and feature extraction approaches.
However, not even a single feature selection or extraction approach could classify correctly
between HDPE, LDPE, and PP for the original and local datasets. This section discussed the

results obtained from the global dataset while delving into the potential for real-time

implementation of this technique and exploring future prospects.
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Figure 5.36. Overall averaged classification accuracies obtained from various feature selection and
feature extraction methods. Here MF represents manual feature selection. The black square, red circle

and blue triangle represent the result corresponding to original, global and local dataset, respectively.

The averaged classification accuracies obtained from all the feature selection and extraction
approaches for the global dataset are summarized in figure 5.36. From the figure, it can be
noticed that the full spectra as input result in excellent accuracy (99.77%). In the case of all the
feature selection approaches (manual and RF) more than 96% classification accuracy has been
achieved. In the case of PCA feature extraction, results corresponding to initial PCs are poor,
possibly due to the underfitting of the ANN model due to smaller datasets. However, for PCs
with more than six as input, the classification accuracy becomes more than 90%, and the

maximum accuracy (99.97%) is obtained for 60 PCs as input to the ANN model among all the
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teature selection and extraction approaches. Similarly, in the LDA feature extraction approach,
the initial two LDs result in lower accuracy (< 90%) likewise initial PCs. Moreover, compared
to PCA, LDA as input to ANN shows poor classification rate. In terms of accuracy, PCA
tollowed by 60 PCs as an input to ANN yields maximum accuracy and is the best choice for
global dataset.

Table 5.17. Comparison of various feature selection and extraction approaches for classification of post-

consumer plastics for global dataset.

Classification Testing  Input data ~ ANN model

accuracy (%)  time (ms)  size (MB) size (MB) Classification index

Full spectra 99.77 137 143 1.56 0.47

Peak area 99.62 126 84 1.37 0.58

mp  CHN peak 97.27 140 25 0.29 2.40
area

Peak heights 98.48 125 4 0.07 10.65

VI > 0.001 99.17 129 19 0.23 3.41

VI > 0.002 96.28 125 10 0.13 6.04

B s 0003 98.21 125 6 0.09 9.13

VI > 0.004 98.44 124 4 0.06 12.41

1PC 30.49 130 143 0.03 9.00

2 PCs 48.28 131 143 0.03 13.66

4 PCs 81.29 127 143 0.03 22.00

6 PCs 96.82 130 143 0.03 22.58

8 PCs 98.81 134 143 0.04 20.41

PCA 10 PCs 99.9 132 143 0.04 19.92

20 PCs 99.86 129 143 0.05 16.86

40 PCs 99.94 129 143 0.06 14.03

60 PCs 99.97 147 143 0.08 9.05

80 PCs 99.93 128 143 0.09 8.59

100 PCs 99.92 131 143 0.11 7.24

1LD 73.64 130 143 0.02 23.55

LDA 2 LDs 81.66 129 143 0.03 24.27

3 LDs 98.13 150 143 0.03 23.31

*The blue colour indicates the approaches with classification accuracies greater than 90%.

The testing time, input data size, ANN model size and classification index for all the feature
selection and extraction approaches are discussed in table 5.17. In terms of testing time, RF
with VI threshold 0.004 reflect the fastest prediction with an accuracy of 98.44%. However,
no significant diftference is observed in the testing time of all the approaches even though data

size 1s reduced, as several factors contribute to the overall testing time apart from the size of

130



Machine learning based classification using LIBS: Effect of feature selection and extraction _

the input data. For example, in the present work, the ANN algorithm undergoes
GridSearchCV to optimize hyperparameters such as number of neurons and epochs, which
vary each time while training the model with a new dataset. The variations in optimized
hyperparameters for different models can influence the testing time differently. Additionally,
since each ANN model utilizes many steps, it might take a significant amount of time,
irrespective of the input data size. Furthermore, ANN algorithm has some inherent overhead,
including model initialization, loading weights, model compilation, making predictions, etc.,
which consume approximately the same time for each analysis. Moreover, the hardware
limitations and underutilization of the computational device's multiple-core parallelism can
overshadow the reduced time due to a smaller dataset. Therefore, when considering these
factors collectively, the significant impact on the overall testing time is low.

Table 5.17 shows that in terms of classification index, LDA feature extraction with 2 LDs
followed by ANN gives the best overall result; however, the accuracy is below 90%, i.e.,
81.66%. This approach can be useful in some specific applications where the instrument needs
to be cost effective and fast and more than 80% accuracy is acceptable. However, considering
better accuracy, i.e., at least more than 90%, the best analysis protocol will be LDA with 3

LDs.

5.5. Summary

This chapter demonstrates the efficacy of employing a fusion of LIBS data and machine
learning algorithms for the swift and precise identification of explosives and difterent types of
post-consumer plastics. The study utilized a psLIBS setup incorporating a low-cost, compact
CCD spectrometer. Material classification was executed using ANN and diverse feature
selection and extraction methodologies. The results obtained from these diverse approaches
were thoroughly compared, encompassing accuracy, computational time, and resource
utilization measures. This comprehensive analysis provides insights into the optimal method
for accurate material identification while considering efficiency and resource allocation.

For explosive detection, two steps were considered. Initially, each sample underwent scrutiny
to ascertain its classification as either explosive or non-explosive. Subsequently, samples
identified as explosive underwent a secondary classification process to determine their specific
type. Among various feature selection approaches, ANN combined with LDA feature
extraction achieved a flawless 100% accuracy for classifying between explosive and non-
explosive. In the case of classification within explosives, maximum accuracy (99.8%) was

obtained for full spectrum and manual feature selection with peak area. However, both the
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training and testing were performed on the LIBS spectra obtained from the same samples. In
real-world scenarios, the model encounters unknown samples that hasn't been seen by the
trained model during the training process. Given the limited quantity of explosive samples
available, the training and testing were conducted using the same set of samples. Multiple
spectra were recorded and then randomly divided for training, validation and testing purposes.
This study can further be extended by considering a large set of samples.

Further, to explore the effect of testing on a new sample, the study was extended to a large
number of plastic samples. For the identification of post-consumer plastics, two sets of samples
were considered. Firstly, nine different post-consumer plastics were collected from a local
recycling unit, and both training and testing were performed on the same sample. Secondly,
30 post-consumer plastics representing six commonly used types (HDPE, LDPE, PP, PET,
PS, and PVC), five samples from each category were collected from garbage and testing was
performed on unknown plastic, mimicking real-world scenarios for identifying unfamiliar
post-consumer plastics. In the first case, PCA with 30 PCs as input to the ANN model
represents the best classification in terms of accuracy, computational time and storage
requirement. However, in the subsequent case (30 plastics), ANN fails to classify between
HDPE, LDPE and PP even using various feature selection and extraction approaches due to
their high degree of similarity in chemical and spectral signature. Therefore, by considering
these three plastics as a single group, results show classification with a high degree of
confidence with many feature selection and extraction approaches. In particular, LDA feature
extraction with 3 LDs as input to the ANN was found to have the best results in terms of
accuracy, computation time, and storage.

By comparing two approaches considered for discrimination of plastics, better results obtained
in the prior case where the training and testing were performed on the same sample.
However, this approach is meaningless in terms of real-time application as the testing samples
will be completely unknown to the training model. Therefore, the second approach represents
the real-time application scenario, but it fails to distinguish between three categories of plastics
out of six. Therefore, in real-time scenario, this technique can be used to differentiate between
HLP, PET, PS, and PVC. The classification between HDPE, LDPE and PP can performed by
using the conventional technique for the time being. This will reduce the workforce
requirement by half as three plastic categories out of six can be sorted efficiently.

Further, to improve the classification accuracy between HDPE, LDPE and PP, these studies

might be extended by employing other powerful machine learning classifiers like
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convolutional neural network (CNN), extreme gradient boosting (XGBoost), etc. Also, more
statistical approaches can be implemented for feature selection or feature extraction like
genetic algorithm (GA), successive projection algorithm (SPA) and stepwise formulation(SW),
analysis of variance (ANOVA), etc. in order to further increase the prediction accuracy and
lower the testing time. The ANN performances in terms of computation time can be explored

with low-cost microcontrollers like Arduino, Raspberry Pi, etc.
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Machine learning in Raman
spectroscopy for quantification of
explosive mixtures

Detection of explosives and their residues in real time is of paramount
importance to homeland security and military. In real-time applications, the
suspected materials may contain several chemical compounds making the
detection even more challenging. This chapter demonstrates a compact
portable Raman spectroscopic tool for quantitative detection of constituent
explosives in a binary mixture using machine learning. For the experiment, two
samples (1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and ammonium nitrate
(AN)) were considered and mixed at different weight percentages. Various
regression models such as Ilinear regression, partial least square regression
(PLSR), support vector regression (SVR), decision tree regression (DTR) and
random forest regression (RFR) were employed to quantify the amount of
RDX and AN. The Raman spectra were analyzed with and without
background correction. Further, various feature/variable selection strategies
were explored to find out the best analysis protocol. The analyses show that the
background correction of the spectra does not improve the accuracy
significantly. Among various feature selection techniques in conjunction with
various regression models, RDX peaks as iput for the RFR model yield the
best result in terms of accuracy. However, after considering multiple factors
such as slope, intercept, and testing time, it was observed that the DTR model
using only peak areas with background correction is the most optimal strategy.
The results demonstrate that Raman spectroscopy combined with machine
learning can be used as a reliable, compact, and fast tool for the real-time

nvestigation of explosive mixtures.
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6.1 Introduction

In the last few decades, the threat to homeland security around the world urged the need for
an automated portable device for the rapid detection of explosives and high energy materials
(HEMs) in the real field. Especially in public places like airports, railway stations, metro
stations, shopping malls, worship places, etc., an advanced explosive detection device based on
modern analytical techniques is essential for detecting HEMs, particularly explosive mixtures,
with high confidence.

Several spectroscopic techniques have been developed for the detection of explosives,
including laser induced breakdown spectroscopy[1], Raman spectroscopy[2], laser induced
fluorescence[3], terahertz spectroscopy[4], mid-infrared laser spectroscopy[5], etc. Raman
spectroscopy 1s a powerful molecular spectroscopic technique renowned for its ability to
interrogate and identify the vibrational states of the molecules. It is one of the most popular
analytical technique widely used for the identification of HEMs. In this method, a
monochromatic light is focused onto a sample and analyses the scattered light to reveal
molecular vibrations unique to different chemical bonds and structures. By detecting the
energy shifts in the scattered light, Raman spectroscopy serves as an invaluable analytical tool
for molecular fingerprinting and monitoring changes in molecular bond structure within a
wide range of materials, including solids, liquids, and gases. Raman spectroscopy has various
advantages over other analytical techniques, including low-cost experimental setup[6],
compact and portable instrument([7], capable of molecular detection without requiring any
sample preparation, standoff detection capability with the use of pulsed laser[2,8], etc. Raman
spectroscopy is widely used in various research areas such as environmental monitoring[9],
quality control of food items[10], explosive detection[11,12], etc.

Several researchers across the globe use Raman spectroscopy as a potential tool for the
detection of explosives and hazardous materials. For example, D. Diaz and D. W. Hahn
reported the detection of AN commonly used for the manufacture of improvised explosive
devices (IEDs) in various mixtures, such as AN-soil and AN-water mixtures[13]. K. K. Gulati
et al. have used a standoff Raman configuration using a pulsed laser to detect p-nitro benzoic
acid (PNBA) and AN deposited on various background surfaces|2]. Using time-gated Raman
spectroscopy, the same group also studied PNBA mixed with different materials like sand and
soil. C. Byram et al. demonstrated instant detection of various explosives using surface-
enhanced Raman spectroscopy (SERS), using gold nanoparticles and nanostructures as SERS

platforms[14]. M. Gaft and L. Nagli have also demonstrated standoff detection of various
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explosives using Raman spectroscopy[8]. Several other works have also been devoted to
literature for bulk and trace detection of explosives using Raman spectroscopy[15—19].
However, most of the research has been performed for bulk and trace detection of explosives.
A few studies were focused on the bulk detection of explosives mixed with other
materials[13].

This chapter explores quantitative detection of RDX mixed with AN at different weight
percentages. The choice of RDX and AN mixtures has specific significance in real-time as its
mixtures are not only used as military and commercial explosives but also for IEDs[20-23].
More importantly, AN is popularly used as fertilizers for farming and is easily accessible; in
such cases, identification and quantification of explosives like RDX become crucial if mixed
with AN. Here, a low-cost, compact, and portable Raman spectroscopic setup is used to
detect explosive mixtures. For the experiment, RDX and AN were mixed at different
concentrations. Subsequently, several regression techniques were employed on the Raman
spectra to investigate the weight percentage of each sample. In addition, various manual

teature selection approaches were examined to determine the most eftective analysis protocol.

6.2 Materials and Methods

Two explosives, viz., RDX and AN, and their mixtures were considered for the present
experiment. Figure 6.1 illustrates the molecular structures of RDX and AN. A total of six
samples were prepared, consisting of two pure samples and four mixtures of RDX and AN at
varying weight percentage ratios. Table 6.1 contains comprehensive information about the

composition of the mixed samples.

D D
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Nt NH,
ITI+ _0 / \O-
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o O
1,3,5-Trinitroperhydro-1,3,5-  Ammonium nitrate (AN)
triazine (RDX)

Figure 6.1. Molecular structure of RDX and AN.
For each sample, the proportion of RDX and AN (Table 1) were first mixed and then ground
with mortar and pestle for 15 mins to make each mixture homogeneous. After that, circular
pellets of diameter 10 mm were prepared for each sample by applying 2 tons of hydraulic

pressure for 5 mins. The pellets were prepared to give each sample a flat, uniform surface.
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Table 6.1. Details of the mixture samples mixed at different concentrations.

Sample RDX AN
No. Quantity (mg)  Concentration (wt %) Quantity (mg)  Concentration (wt %)

1 200 100 0 0

2 160 80 40 20
3 120 60 80 40
4 80 40 120 60
5 40 20 160 80
6 0 0 200 100

The schematic diagram of the experimental setup is shown in figure 2.7 of chapter 2. In detail,
a compact portable diode-pumped continuous-wave (CW) laser (M/s, OceanOptics —
[10785MMO350MS) emitting monochromatic light at 785 nm and delivering a maximum
power of ~350 mW was used. The laser light was focused onto the sample surface using a
Raman probe (M/s, (OceanOptics — RIP-RPB-785-FC-SMA) of a working distance of 7.5
mm and spectral range of 300 — 3900 cm™. The same probe collected the Raman scattering
and delivered them to a Czerny-Turner CCD spectrometer (M/s, Ocean Optics — QEPro)
with a detection range of 300 — 3000 cm™ and optical resolution of 11 cm™. Under this
experimental setting, 50 Raman spectra were acquired from each sample (total: 6 X 50 = 300

spectra). All the spectra were recorded with an integration time of 10 seconds.

6.3 Spectral Interpretation

The Raman spectra of RDX mixed with AN at different ratios are depicted in figure 6.2.
Figure 6.3 shows the typical background correction. All the spectra were normalized w.r.t. to
the total area, i.e., each intensity value divided by the total area of the spectrum. All the
vibrational signatures of RDX and AN were identified and assigned based on earlier
reports[13,24]. The Raman shift at 856 cm™ is attributed to the C — N — C stretching
vibrations of RDX, and the band at 894 cm™ is due to the CH, bending. Other strong bands
were also observed in RDX, i.e., the band at 1223 cm™ was noticed due to the stretching of
N — C — N, and the bands at 1281 and 1315 cm™ were observed due to the stretching of the
N — NO, band. An intensity band is also observed in RDX at 1352 cm™ which is due to the
axial stretching of N — NO,. Similarly, some Raman modes were also observed in the AN.

For instance, the AN mode associated with the NO;™ ion in-plane deformation was observed

at 723 cm™'. Similarly, the AN mode associated with the NO;~ ion symmetric stretching is
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located at 1050 cm™. These are the Raman modes observed in the present work; however,
these have been reported at slightly different locations in the literature, which may be due to

the difterent optical resolutions of different spectrometers used[13,24].
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Figure 6.2. Normalized Raman spectra of RDX and AN mixtures mixed at different wt% (a) before

and (b) after background correction.
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Figure 6.3. RDX spectrum with background (left) and after background removal (right).

From figure 6.2, it can be observed that with increasing the concentration of RDX, the
intensities of Raman peaks corresponding to RDX increase gradually and vice-versa. Similarly,

with increasing AN concentration, the Raman intensities of AN bands increases and vice-
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versa. Apart from that, it also has been observed that the background of the whole spectrum
increases with increasing RDX concentration and decreasing AN concentration.

Except for pure RDX and AN, all four mixtures’ spectra look similar as they represent the
vibrational signatures of both; therefore, it is not possible to quantify the amount of RDX
and/ or AN in the mixtures from the spectral observations alone. However, the intensities of
each peak differ from sample to sample, which is proportional to the concentrations of that
element in the sample; hence, quantitative analysis is necessary to detect the amount of RDX

and AN proportion present in each mixture sample.

6.4 Quantitative Analysis

The quantitative analysis of Raman spectroscopy is divided into uni- (and bi-variate) and
multivariate analysis. Uni- or bi-variate analysis considers intensity at one or two
wavenumbers as variables/features from the Raman spectrum to extract the quantitative
information. Conversely, multivariate analysis employs intensities at many wavenumbers as
variables. The advantages of univariate analysis are that it is less time-consuming and more
straightforward calculation. However, multivariate analysis has its own advantages as it
considers multiple features corresponding to the analytes of interest rather than one/two
intensity values. In this context, to quantify the explosive mixtures, various machine learning
algorithms such as linear regression (univariate and multivariate), partial least square regression
(PLSR), support vector regression (SVR), decision tree regression (DTR) and random forest
regression (RFR) were employed. Further, regression analyses were also performed using

various manual feature selection approaches.

6.4.1 Linear Regression Analysis

The univariate analysis using linear regression is called simple linear regression (SLR) and the

multivariate analysis is called multiple linear regression (MLR).

SLR  estimates the relationship between a single explanatory variable (X) and dependent
variable (Y) and constructs a regression line/model. Then the regression line is used to predict
the value of Y for an unknown X. In SLR, the relationship between the explanatory variable

and dependent variable is represented by the following equation|[25]:

Y =4+pX+e
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Where B, and B, are the intercept and slope of the regression line, respectively, and e is the

error term.

MLR is used to predict the dependent variable (Y;) values for a given N number of
explanatory variables (X;, X,, X, ..., Xy). In MLR, the relationship between the explanatory

variable and dependent variable is represented by the following equation[25]:

Yo = fo+ BiXy + By Ko + By Xy +ot fy Xy +€ (6.2)

Where B, is the constant term and By, Bs, B3, ..., Pn are the coefficients of N explanatory

variables, respectively. Here, the intensities at different wavenumbers are the variables.

Hence, MLR 1is an extension of the SLR, which considers multiple explanatory
variables/features simultaneously to construct the regression model, and SLR 1is a special case

of MLR,, where N = 1.
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Figure 6.4. SLR prediction of RDX concentrations in RDX and AN mixtures using (a) RDX Raman
peak height at 894 cm™ and (b) AN Raman peak height at 1050 cm™. (i) represents the SLR
prediction by considering the spectra without background correction and (ii) represents the results

from background corrected spectra.

The univariate quantitative analysis using SLR was performed separately on the two most
intense Raman peaks, i.e., 894 and 1050 cm™ correspond to RDX and AN, respectively. SLR
is used in both cases because the number of features is one. For each analysis, a total of 300

spectra were considered. The data was first split randomly into 80% for training and 20% for
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testing. The training data is used to train/construct the SLR model and the testing data is used
to predict the concentrations of RDX mixed with AN. A total of 100 iterations were
performed for the training, followed by testing. The algorithm for the complete analysis was
designed and programmed in Python. Figure 6.4 represents the prediction of RDX
concentrations in the mixtures from the SLR of RDX peak height and AN peak height,
respectively. The red dashed line in each graph represents the reference line representing the
actual concentrations of RDX and the solid blue line represents the regression line of

concentration prediction.

From figure 6.4, it can be observed that the SLR doesn’t yield a good result for both raw
spectra and background corrected spectra. It estimates a slope of 0.777 and 0.758 for the
regression lines constructed using raw and background corrected RDX Raman peak height,
respectively. In the case of AN Raman peak height as input to the SLR model, the results are
worse for both raw and background corrected spectra. Therefore, SLR model fails to predict

the concentrations of RDX and/ or AN in their mixtures.

Further, MLR was employed on the Raman spectra of all the mixture. At first, the MLR
analysis was performed by considering the full spectra as input, and further four manual feature
selection approaches were employed, which provide four difterent sub-spectra to the input of
the MLR algorithm. The details of the Raman shift ranges and the number of features

associated with various approaches are represented in table 6.2.

Table 6.2. Various feature selection approaches considered for regression analysis.

SI.  Feature selected Features Number of  Fraction of total
Range of Raman shift (cm™)
No. spectrum included features data (%)
1 S1 Full Spectrum 300 - 3000 1044 100
2 S2 Peak range 703 - 1369 219 21
703 - 746, 830 - 932, 1028 -
3 S3 Only peaks 125 12
1080, 1199 - 1369
4 S4 RDX peaks 830 - 932, 1199 - 1369 93 9
5 S5 AN peaks 703 - 746,1028 - 1080 32 3

In this case, the sub-spectra were selected manually based on the Raman peak region. S1
represents the full spectrum. The sub-spectra S2 represents the range of the spectra where
Raman peaks are present, sub-spectra S3 represents only those areas where the peaks are
present, sub-spectra S4 and sub-spectra S5 represent the spectral area where only RDX and

AN peaks are present respectively. Figure 6.5 visualizes the feature-selected areas of one of the
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mixture spectra. From figure 6.5, it can be observed that various manual feature selection
approaches involve different numbers of features. The number of features associated with each
feature selection approach is represented in table 6.2. From table 6.2, it can be noticed that in
comparison to the full Raman spectrum, all four feature-selected sub-spectra contain a much

smaller number of features.

Finally, MLR analyses were employed on S1 — S5 under similar conditions as SLR. Like the
univariate analysis, the total data were randomly split into 80% training, and 20% testing data,
and 100 iterations were performed for training and testing. The regression lines obtained from
all MLR analyses are represented in figure 6.6. Figure 6.6 shows that the MLR analyses
yielded a very good result compared to the SLR analyses with R — square and slope of ~1 for
both raw and background corrected spectra. However, the nature of the regression lines is
similar in all cases and there is not much difference between the raw and background

corrected spectra.

Intensity (not to scale)
"

300 600 900 1200 1500 1800 2100 2400 2700 3000
Raman Shift (cm™)

Figure 6.5. Raman spectrum (S1) and various feature selected sub-spectra (S2 — S5) of RDX and AN

mixture.
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Figure 6.6. MLR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2,
(c) S3, (d) S4, and (e) S5 as input. (i) represents the MLR prediction by considering the spectra

without background correction and (ii) represents the results from background corrected spectra.
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6.4.2 Partial Least Square Regression (PLSR) Analysis
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Figure 6.7. PLSR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2,
(c) S3, (d) S4, and (e) S5 as input. (i) represents the PLSR prediction by considering the spectra

without background correction and (ii) represents the results from background corrected spectra.

151



I Chaprer

PLSR is a powerful machine learning approach that combines regression analysis with
dimensionality reduction. PLSR  was created as a flexible approach for dealing with
complicated datasets, and it is especially beneficial when dealing with high-dimensional,
multicollinear, or noisy data. Unlike traditional regression methods that focus solely on finding
relationships between predictors and a response variable, PLSR simultaneously considers both
predictor and response variables, effectively extracting and highlighting patterns in the data.
This method is widely employed in conjunction with Raman spectroscopy for various

applications[26—29].

PLSR was employed on full spectra and various feature selected sub-spectra (see table 6.2),
mirroring the methodology applied in MLR. The examinations were conducted on Raman

spectra, both with and without background correction.

Figure 6.7 visualizes the regression lines obtained by employing various feature selection
approaches for Raman spectra, considering the presence or absence of background correction
in the analysis. From the figure, it can be noticed that the performance in predicting the RDX
concentration is significantly inferior as compared to MLR. In contrast to the results obtained
using MLR,, the reference lines had significantly lower R-square and slope values a little far
from zero, indicating poor results. Furthermore, there are cases where the predicted values
differ significantly from the actual values, for example, in Fig. 6.6 (a — 1), where the actual

concentration is at 40 wt%.

6.4.3 Support Vector Regression (SVR) Analysis

SVR is a popular machine learning method for regression analysis that excels at handling both
linear and non-linear data. SVR is a modification of the support vector machine (SVM)
algorithm. Instead of trying to minimize errors like traditional regression algorithms, SVR
focuses on fitting a defined margin of tolerance around the predicted values within a
predetermined threshold of deviation or error. The core principle of SVR involves mapping
the input data to higher dimensional space in order to find the optimal hyperplane that fits
well for the data points. This method enables the model to effectively handle outliers and
complex variable interactions by allowing for adjustments within a specific range known as the
epsilon tube or margin of tolerance. This strategy facilitates the management of fluctuations or
deviations, allowing the model to capture intricate relationships between variables more

accurately and effectively identify outliers.

152



Machine learning in Raman spectroscopy for quantification of explosive mixtures _

- -
2 2 : i
S 1001 —— Regression line s ] 100 —— Regression line el
1_ ) . ” z I X s -
:’ Reference line a-1 - : Reference line a-1ii P
=] 4 = i
£ 80 . £ 80
] b=l
E E
2 604 o 60
- -~
= £
S <
S 40+ v/ 404
= =]
& N _ = . — 0
= 204 R Square= 0.907 = R Square=0.941
E Slope=0.747 g Slope= 0.755
= - =
2 01 * 4
& T T T T T T a T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Actual RDX Concentration (wt%) Actual RDX Concentration (wt%)
I I
=~ b T
c; 100+ Regression line - 3; 1001 — Regression line
z do . . - A .
g Reference line b =1 ” E Reference line
£™ = 2
e =
= s
o 604 73
~ ~
£ £
S <
w 107 »
= =
; 20 R Square= 0.944 ; R Square=0.948
B P Slope= 0,743 3 Slope= 0,743
3 o] £
k= b=
o T T T T T T -9 T T T T
0 20 40 60 80 100 ] 20 40 60 80 100
Actual RDX Concentration (wt%) Actual RDX Concentration (wt%)
& I
= = -
e*; 100 1 Regression line Pt ?: 1001 — Regression line
= —— Ref li i - = —— Ref li
5 elerence line c - l ” g elerence line
£ ™ = 2
B b=l
E =
S 60 g
9 =3
c =]
S S
w 107 »
= a
= _ = _
2 204 R Square= 0.947 = R Square=0.952
5 Slope=0.768 5 Slope= 0.77
A T T T T T T a T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Actual RDX Concentration (wt%) Actual RDX Concentration (wt%)
g 9
?; 100 1 Regression line PRl °_= 1004 — Regression line PR
= == Reference i -i 4 = — = Refe li - i s
g " eference line d ] -~ : i eterence line d ll ”
g ] <
£ | E E
= <
S 601 £ 60
3 =
= =
S S
e 407 s 40
= =]
= - = .
E 204 R Square=0.944 - 20 R Square=0.934
= Slope=0.748 1 Slope=0.755
P =
& T T T T T T [ T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Actual RDX Concentration (wt%) Actual RDX Concentration (wt%)
& &
= =
?; 1004 —— Regression line PR a; 1001 Regression line 7
R - Reft i i - Zz —— Ref i _ir N
g eference line e l ,’ g elerence line e ll P
£ 801 = | £ 3 -
= @
- -
E =
S 60 S o0
o ~
£ £
S :
40 o 40
(=} =
x . _ x _
= 20 R Square=0.923 = 204 R Square=0.927
o
k= Slope=0.736 ] P Slope= 0.762
L e T %
. T T T T T T [-» T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Actual RDX Concentration (wt%o) Actual RDX Concentration (wt%)

Figure 6.8. SVR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2, (c)
S3, (d) S4, and (e) S5 as input. (i) represents the PLSR prediction by considering the spectra without

background correction and (ii) represents the results from background corrected spectra.
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In SVR, the main idea is to maximize the margin between the epsilon tube and the actual data
points by finding the hyperplane. This ensures a balance between the complexity of the model
and its generalizability. Through the utilization of kernel functions, SVR is able to deal
effectively with variable relationships that are not linear. This is achieved by implicitly
projecting the input data into a higher-dimensional space while constructing a linear model.

SVR is used in various applications of Raman spectroscopy[30-32].

In this context, SVR was employed on full spectra and various feature selected sub-spectra of
mixtures in a similar manner as MLR and PLSR i.e., on both raw and background corrected
spectra. The results obtained from full spectra and various feature-selected sub-spectra as input

to the SVR model are described in figure 6.8.

The figure indicates a significant discrepancy between the results and the ones obtained using
MLR and PLSR. Specifically, the slope of the regression lines is below 0.8, where the ideal
value should be 1. Not only that, but the R-squared values are also lower in comparison to
MLR and PLSR. Additionally, there are many cases where the predicted values significantly
differ from the anticipated values, highlighting significant inconsistency in the model’s

prediction.

6.4.4 Decision Tree Regression (DTR) Analysis

DTR is one of the most effective and user-friendly machine learning methods for predictive
modeling and analysis. The working principle involves iteratively constructing a tree-like
structure by partitioning the feature space into smaller sections or nodes, guided by the input
feature values. Each internal node denotes a decision point based on features, while each leaf
node is associated with a predicted value. The building process of the tree involves binary
splitting at each node that divides the data by minimizing the variance of the target variable.
This process 1s repeated until a stopping criterion/threshold is not satistied. The stopping point
is achieving a maximum tree depth where the reduction in variance saturates. The
interpretability of decision tree regression is a major advantage since it helps to visualize and
comprehend the decision-making procedure. In addition to being resilient to outliers, decision

trees can process both numerical and categorical data.
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Figure 6.9. DTR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2,
(c) S3, (d) S4, and (e) S5 as input. (i) represents the PLSR prediction by considering the spectra

without background correction and (ii) represents the results from background corrected spectra.
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On the other hand, decision trees can easily suffer overfitting when they grow too large and
start to capture the noise data. Pruning, reducing tree depth, or employing ensemble
approaches such as Gradient Boosting or Random Forests can improve the model’s

performance and reduce the likelihood of overfitting.

DTR is useful in many scientific fields where it is necessary to identify and evaluate
interactions between variables in order to do predictive modeling and analysis. Several
researches were devoted in literature to process Raman spectroscopic data using DTR for

various applications[33,34].

Like previous regression methods, DTR was employed for the quantitative investigation of
explosive mixtures here. The regression model was applied to the raw and background
corrected spectra, as well as to various feature subsets. Figure 6.9 illustrates the results obtained

by DTR under varying input data.

The figure illustrates the impressive accuracy of the predictions obtained from DTR analyses
for different sets of input data. There is a high degree of agreement between the actual and
predicted values since the slope and R-squared values are almost 1 for each case. In
comparison to previous regression analyses, the standard deviation (error) in calculating each

concentration is significantly smaller, signifying heightening precision in the predictions.

6.4.5 Random Forest Regression (RFR) Analysis

RFR has become an important ensemble learning method in predictive modeling and analysis
because of its adaptability and resilience when faced with complicated datasets. For regression
problems, it works by building numerous decision trees and combining their predictions for
more stable and reliable outcomes. Random forest comprises ensembles of decision trees, each
trained on a section of the dataset and employing a random selection of features. Unlike a
single decision tree, the ensemble method aggregates predictions from all the trees, which

helps reduce the risk of overfitting and improves generalization.

During the training process, the original dataset selects random samples with replacement
(bootstrap samples) and constructs each tree individually. Also, a random subset of features is
taken into account for splitting at each node of the tree, which adds diversity and
randomization to the difterent trees. By averaging the predictions produced by all the trees in

the forest, RFR determines the final outcome.
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Figure 6.10. RFR prediction of RDX concentrations in RDX and AN mixtures using (a) S1, (b) S2,
(c) S3, (d) S4, and (e) S5 as input. (i) represents the PLSR prediction by considering the spectra

without background correction and (ii) represents the results from background corrected spectra.
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In particular, this aggregation approach produces more robust and accurate results when
working with high-dimensional or noisy data or with variables that exhibit non-linear
correlations. One of the major advantages of RFR is successful handling of big datasets with
several features while minimizing overfitting. In addition, it provides insights into the
significance of features, which helps to determine which variables are most important for
making predictions. Therefore, random forest is also used as a potential method for feature
selection. RFR has numerous applications in diverse areas of research. It is also widely used in

conjunction with Raman spectroscopy for various quantitative applications[35-38].

The results obtained from the RFR analyses for difterent sets of input data are described in
figure 6.10. Similar to DTR, RFR stands out for its outstanding performance. In this case, the
slopes and R-squared values are close to one, suggesting a strong correlation between the
actual and predicted values. Furthermore, since the predictive error at individual

concentrations is significantly less, the model’s predictions are accurate and precise.

The results obtained by each regression method are compared in the next section, which also

evaluates their performance in terms of accuracy and computational time.

6.5 Discussion

Raman spectroscopy has been used for the quantitative detection of explosives within
mixtures. Samples with varied concentrations were prepared for this study by mixing RDX
and AN at various weight percentages. The experiment was conducted using a portable, small,
and low-cost Raman spectroscopic setup that allowed for the recording of multiple spectra for
each sample. Various machine learning regression techniques were utilized to evaluate the
concentration of RDX in the mixtures. These techniques include linear regression, PLSR,
SVR, DTR, and RFR. The analyses were performed on both spectra with or without
background correction. In addition, the study explored different feature selection methods that
strive to maximize accuracy while minimizing the computing time for faster and more robust
prediction. The former section meticulously presented the results obtained from difterent
methodologies employed. This subsequent section is dedicated to a thorough dissection and

comparison of all parameters, endeavoring to discern the most proficient approach.

In order to evaluate the effectiveness and precision of a regression model, the parameters of
the regression line (slope and intercept) showing actual vs projected concentrations in
regression analysis are crucial. A steeper slope indicates a stronger correlation between the

predictor and response variables, while a flatter slope indicates no change in the anticipated
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values relative to the actual values. Minimal projected response without the predictor is shown
by an intercept near zero. These parameters are essential for evaluating and improving the
regression model, as they show how well the model predicts concentrations and how strongly
they are related. Figure 6.11 represents the value of the slope and intercept obtained from all
regression approaches. The Y-scale of the figure represent the distance of resulted slope of the
regression line from the expected slope (slope of 1). Within the figure, the marker size
represents the absolute value of the intercept—where larger markers denote more deviated
intercept from zero, and smaller markers correspond to the intercepts close to zero. By
comparing the regression lines corresponding to all the models with varying input data, it has
been observed that the utilization of only peaks (S3) as input for the DTR model with
background correction resulted in a remarkable slope of 0.999 and intercept of 0.007. This
particular regression line stands out as the most optimal in terms of slope and intercept.
Moreover, upon close observation of the figure, it becomes evident that, except PLSR and

SVR, other methodologies demonstrate significantly better results in terms of both slope and

intercept.
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Figure 6.11. Comparison of slope and intercept obtained from regression analyses. S represents spectra
without background correction and BCS represents background corrected spectra. The size of the
markers are scaled to the absolute value of intercept (abs(intercept)), i.e., the smallest marker represents
the intercept closer to 0.

Apart from regression line parameters, root mean square error (RMSE) is important in
regression analysis, offering multifaceted insights into model performance and practical
applicability. RMSE serves as a fundamental measure of the average magnitude of differences

between actual and predicted values. RMSE can be defined as,
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where N is the total number of observations.

A lower RMSE indicates higher accuracy, meaning the model’s predictions closely match the

actual data points. This demonstrates improved precision and superior performance.

Additionally, computational efficiency becomes crucial in practical situations when quick
decision-making or instant predictions are required. The importance of training time is very
low compared to testing time, as models can be pre-trained before deployment, guaranteeing
their preparedness for real-time testing situations. Therefore, the crucial factor is the
eftectiveness of the testing duration, which directly influences the model’s practical usefulness

in real-time decision-making or live prediction settings.
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Figure 6.12. Comparison of testing time and RMSE obtained from regression analyses. S represents
spectra without background correction and BCS represents background corrected spectra. The size of
the markers is scaled to the RMSE value, i.e., the smaller markers represent low RMSE.

Figure 6.12 depicts the duration of testing acquired from all regression methods for a single
iteration. The sizes of the markers in the figure correlate to the RMSE of the predictions.
Smaller markers represent lower RMSE values, while larger markers represent higher RMSE
values. Remarkably, testing times remain low, consistently staying below 35 ms. When
comparing the different models, all models except for RFR show similar time consumption,
taking up to 15 ms. Among all the methods examined, employing AN peaks (S5) with

background correction markedly decreases the computational time needed for the DTR
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model. Notably, this approach requires only 0.5 ms, making it the fastest among all the
examined approaches. PLSR and SVR have relatively greater levels of RMSE, indicating a
lower prediction accuracy. However, all methods exhibit similar RMSE values, with the
lowest value obtained by RFR when using only RDX peaks (S4) without background
correction as input. The comprehensive examination in Figure 6.12 offers a sophisticated
comprehension of testing durations and predictive precision across different regression models.
This analysis gives useful insights for selecting and optimizing models to predict RDX

concentration.

After carefully analyzing the parameters such as slope, intercept, RMSE and testing time for all
the models in combination with diverse input data, it is clear that finding a single model or
combination that consistently predicts all parameters accurately is challenging. The intricacy of
selecting the best model for all characteristics presents difficulties in defining the superior
analysis protocol. In order to simplify and make this process of making decisions more
efficient, a comprehensive indicator known as the “regression index” is proposed. The index
combines all pertinent parameters, resulting in a numerical number that acts as a definitive
criterion for choosing the most efficient analysis protocol. The regression index can be defined

as,

Regression Index= L (6.4)

| 1- Slope |x| Intercept |x RMSE % Testing time (ms)
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Figure 6.13. Regression indices obtained from all the analyses. S represents spectra without background

correction and BCS represents background corrected spectra.

A higher regression index indicates superior performance across multiple metrics, including

slope, intercept, RMSE, and testing time. Figure 6.13 displays the regression index achieved
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for all approaches. The figure shows that using S3 of the background-corrected spectra as

input to the DTR model produces the best results from all aspect.

In the present study, only RDX, AN, and their mixtures were considered for the Raman
experiment, followed by regression analysis. However, in a real-life scenario, only a mixture
sample will be available, and the matrix elements will be unknown. The sample can be a
mixture of two, three, or many materials, including some explosives and some non-explosives.
In such cases, the detection becomes more challenging as the first step is determining how
many materials are mixed and what they are. The materials present in the mixture can be
identified based on the peaks from the Raman spectra of mixtures. However, some materials
can have a high similarity in the Raman spectra due to some common vibrational signatures.
In such cases, other statistical and analytical techniques, like correlation, ordinary least squares,

etc., may be used for the identification of matrix elements in a mixture.

6.6 Summary

This chapter presents a robust framework for the accurate detection of explosives in mixtures
by using a portable Raman spectroscopic setup combined with machine learning techniques.
In order to carry out the experiment, pure RDX and AN and their mixtures with different
weight ratios were considered. Using a cost-effective portable Raman spectroscopic setup,
spectra were recorded and analyzed by using both univariate and multivariate regression

techniques.

For the univariate analysis, SLR was employed on both raw and background-corrected
spectra. The input for the SLR model was the peak height of the prominent Raman peaks of
RDX and AN. Nevertheless, SLR demonstrated unsatisfactory predictive outcomes.
Afterward, different multivariate regression models such as MLR, PLSR, SVR, DTR, and
RFR were deployed. At first, the inputs consisted of entire spectra, both with and without
background correction were considered and significantly higher predictive accuracy obtained

in comparison to univariate techniques.

To improve the analysis efficiency with retaining higher accuracy, various manual feature
selection approaches were considered for the multivariate approaches. Nevertheless, no
noticeable accuracy improvement was observed after feature selection. Furthermore, the
application of background correction did not have a substantial effect on the accuracy of
prediction. Of all the methods examined, using simply the RDX peaks (S4) as input for the

RFR model resulted in the highest level of accuracy. However, after evaluating multiple
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factors such as slope, intercept, and testing time. it was observed that the DTR model using S3

with background correction is the most effective strategy.

To summarize, this chapter demonstrates the efficacy of a portable Raman spectroscopic
device for accurate identification and quantification of explosives in mixtures. This technology

has significant potential for use in homeland security and military applications.
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Conclusion and Future Scope

This chapter presents the summary of the inferences derived from the research
carried out in the thesis, while also delineating the future exploration of the
work. The initial work focuses on developing a new method for elemental
analysis using LIBS and understanding the dependence of plasma parameters on
the material hardness. Furthermore, the investigation expands into the domain
of machine learning combined with LIBS for the identification/classification of
explosives and post-consumer plastics, with the objective of implementing
them 1n real-time scenarios. Finally, the chapter presents a way of quantitatively
detecting explosive mixtures by combining Raman spectroscopy with machine
learning techniques. This novel methodology offers improved accuracy and
effectiveness 1n identitying compositions, hence enhancing capabilities in
homeland security and the military. The chapter covers a range of
mvestigations, providing valuable insights into the current state of study. It also
paves the way for future improvements and explorations in the integration of
spectroscopic analysis and machine learning. The research aims to expand the
limits of knowledge and practical applications in several domains, such as
materials science and national security, by strategically combining scientific

nvestigation and technology advancement.
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7.1 Conclusion

The thesis focuses on the fundamental studies of LIBS towards development of Simplified

LIBS-based Intensity-ratio approach for Concentration Estimation (SLICE) and harnessing

machine learning for the classification of materials such as explosives and post-consumer

plastics. It also discusses the dependence of various plasma parameters on the hardness of

materials. Moreover, it delves into the applications of machine learning in Raman

spectroscopy, aiming for the quantitative detection of explosives in mixtures. The following

are the major conclusion of the thesis work.

1.

In Chapter 3, a new method based on LIBS was proposed for elemental analysis, namely
the SLICE. For the experiment, two Cu-based alloy samples, one binary and one ternary,
were considered. A detailed study of thermodynamic equilibrium was provided, along
with the calculation of plasma parameters and plasma decay parameters (PDPs). The
temporal dynamics of LIP were thoroughly investigated by modeling the temporal decay
of plasma temperature and intensity ratio, providing valuable insights into plasma
behavior. The elemental analysis was performed using SLICE, CF-LIBS and EDS. The
elemental concentrations estimated by SLICE showed remarkable consistency with those
obtained using CF-LIBS and EDS. Furthermore, the chapter briefly explored the
advantages and limitations of the SLICE technique in comparison with CF-LIBS. The
SLICE has remarkable advantages over CF-LIBS as it can offset the major bottlenecks for
elemental analysis using LIBS. [A part this published in Applied Spectroscopy,2022 [1]].

Chapter 4 explores the significance of material hardness, providing a profound
understanding of diverse industrial applications. Material hardness is an essential
characteristic that determines how resistant a material is to deformation, indentation, and
penetration. It is critical for building components and structures that are trustworthy. The
chapter provides a thorough examination emphasizing the growing need for non-invasive
techniques than the conventional approaches, particularly in difficult conditions. LIBS has
been used to understand the dependence of various plasma parameters on material
hardness. The experiment involves five iron-based alloy samples with same elemental
composition and different hardness. The study investigates the correlation of plasma
parameters, plasma decay parameters, and surface morphology in relation to changes in
material hardness. The results demonstrate a constant linear relationship between the
hardness of the material and the temperature of the plasma, the density of electrons, and

the initial temperature of the plasma. In addition, the analysis reveals a linear decrease in
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the radiative decay constant as the hardness increases. The chapter concludes by analyzing
the correlation between crater diameter and material hardness, finding a consistent
reduction in crater size as material hardness increases. This study improves the
comprehension of the complex interactions between laser-induced plasma properties and
material hardness.

Chapter 5 explores the integration of LIBS with machine learning techniques for effective
detection of explosives and classification of post-consumer plastics. It describes the
utilization of a picosecond LIBS (psLIBS) system, equipped with a low-cost CCD
spectrometer, for real-time applications. The study employs a systematic approach to
combine ANN with various feature selection and extraction approaches. This integration
aims to enhance accuracy, decrease computational time, and optimize resource allocation.
The initial sections of this chapter involve the detection of explosives, where five
explosive and twelve non-explosive samples were considered. In this case, two approaches
were considered. Initially, each sample underwent scrutiny to ascertain its classification as
either explosive or non-explosive. Subsequently, samples identified as explosive
underwent a secondary classification process to determine their specific type. Among
various feature selection approaches, ANN combined with LDA feature extraction
achieved a flawless 100% accuracy for classifying between explosive and non-explosive. In
the case of classification within explosives, maximum accuracy (99.8%) was obtained for
full spectrum and manual feature selection with peak area.

For the identification of post-consumer plastics, two sets of samples were considered.
Firstly, nine different post-consumer plastics were collected from a local recycling unit,
and both training and testing was performed on the same sample. PCA with 30 PCs as
input to the ANN model represents the best classification in terms of accuracy,
computational time and storage requirement. Nevertheless, this technique is not suitable
for real-time application since in real-time scenario samples that are unknown to the
trained model will be encountered. To address this, another study was performed on a set
of 30 post-consumer plastics representing six commonly used types (HDPE, LDPE, PP,
PET, PS, and PVC). Five samples from each category were collected from garbage and
testing was performed on unknown plastic, mimicking real-world scenarios for identifying
unfamiliar post-consumer plastics. 29 samples out of 30 are utilized for training and
validation purposes, while the 30th sample, which is unfamiliar to the network, is
employed for testing. Here, ANN fails to classify between HDPE, LDPE, and PP, even

using various feature selection and extraction approaches due to their high degree of

169



N Chaprer 7

similarity in chemical and spectral signatures. Therefore, by considering these three
plastics as a single group, results show classification with a high degree of confidence with
many feature selection and extraction approaches. In particular, LDA feature extraction
with 3 LDs as input to the ANN was found to have the best results in terms of accuracy,
computation time, and storage.

By comparing two approaches considered for discrimination of plastics, better results
obtained in the former case where the training and testing were performed on the same
sample. However, this approach is meaningless in terms of real-time application as the
testing samples will be completely unknown to the training model. Therefore, the second
approach represents the real-time application scenario, but it fails to distinguish between
three categories of plastics out of six. Therefore, in real-time scenario, this technique can
be used to difterentiate between HLP (HDPE, LDPE & PP), PET, PS, and PVC. The
classification between HDPE, LDPE and PP can performed by using the conventional
technique for the time being. This will reduce the workforce requirement by half as three
plastic categories out of six can be sorted efficiently.

4. Chapter 6 demonstrates a compact portable Raman spectroscopic tool for quantitative
detection of constituent explosives in a binary mixture using machine learning. For the
experiment, two samples (1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and ammonium
nitrate (AN)) were considered and mixed at different weight percentages. Various
regression models such as linear regression, partial least square regression (PLSR), support
vector regression (SVR), decision tree regression (DTR) and random forest regression
(RFR) were employed to quantify the amount of RDX and AN. The Raman spectra
were analyzed with and without background correction. Further, various feature/variable
selection strategies were explored to find out the best analysis protocol. The analyses show
that the background correction of the spectra does not improve the accuracy significantly.
Among various feature selection techniques in conjunction with various regression
models, RDX peaks as input for the RFR model yield the best result in terms of
accuracy. However, after considering multiple factors such as slope, intercept, and testing
time, it was observed that the DTR model using only peak areas with background
correction is the most optimal strategy. The results demonstrate that Raman spectroscopy
combined with machine learning can be used as a reliable, compact, and fast tool for the
real-time investigation of explosive mixtures. [A part this published in Journal of

Optics, 2023 [2]]
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7.2 Future Scope

1. The thesis presents SLICE, a novel approach for elemental analysis, with a particular focus

on its pilot study and experimental verification using alloy samples with bulk elemental
composition. The current study is an initial investigation that emphasizes the ability of the
technique to be applied to a wide range of materials with different matrix elements and
compositions, including trace elements. This suggests that the method has promise for
broader use. The thesis promotes additional exploration of the capabilities of SLICE,
highlighting the importance of thorough comprehension and validation to fully unleash its
potential in elemental analysis.
Further the SLICE is based on the radiative relaxation mechanism of the laser induced
plasma where the collisional decay is considered negligible. However, at the initial stage
of the plasma relaxation, the plasma will show radiative decay only as the shockwave
protects the plasma from the interaction of environmental atoms with the plasma
emissions. But with time, the shockwave becomes weak gradually due to expansion
which allows the outside atoms to interact with the atoms/ions of the plasma resulting in
collisional decay. Thus, considering the temporal range where the contribution of
collisional decay is negligible, the elemental analysis can be performed with better
accuracy and precision; hence, optimization of the temporal window is important. Also,
optimization of other parameters like ambient gas and pressure are important as they affect
the broadening of spectral lines and plasma relaxation [3,4]. Therefore, future work can be
devoted to optimize different parameters like the temporal window for data acquisition,
ambient gas, and pressure, etc.

2. Comprehending the relationship between plasma parameters and material hardness is a
significant area of focus in LIBS research. This is particularly important due to the
increasing need for non-invasive and remote methods of testing hardness, especially in
demanding settings like space shuttles, TOKAMAKS, nuclear power plant vessels, etc. [5].
This thesis investigates the correlation between plasma parameters, plasma decay features,
and surface morphology in relation to changes in material hardness. Although the initial
findings show promise, discrepancies noted by other researchers necessitate further
investigation. To get more understanding, expanding the study to encompass a larger and
more diverse sample set, encompassing a wider range of hardness values, could yield more
profound insights into this correlation. In addition, expanding the range of materials used
beyond alloys could provide a more thorough comprehension of the phenomena, thereby

enhancing the practicality and resilience of hardness testing procedures based on LIBS.
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3.

In the domain of explosive detection using LIBS, the combination of machine learning,
feature selection, and extraction has shown remarkable accuracy. However, the current
limitation of this study is its inability to be applied in real-time situations. This analysis was
performed on a restricted collection of explosive samples, with both training and testing
performed on the same sample due to constraints in sample availability. In order to
improve practicality, future research efforts could encompass a wider variety of both
explosive and non-explosive samples, extending analysis to unknown samples to mimic
real-time scenarios eftectively. Furthermore, enhancing the efficiency of the equipment
configuration shows potential for practical implementation in the field, with possible
approaches including reducing size and lowering expenses. Contemporary, small-sized,
and economical lasers that are easily accessible at present offer practical choices.
Additionally, incorporating data collection and processing into microcontrollers such as
Arduino or Raspberry Pi could simplify operations and reduces size and cost, making it
easier to deploy and use in real-life scenarios.

A significant problem that persists is enhancing the ability to identify difterent types of
plastics is classifying between HDPE, LDPE, and PP, using LIBS, especially when dealing
with unknown samples. In order to improve the accuracy of classification, future research
can incorporate advanced machine learning classifiers such as convolutional neural
networks (CNN) and extreme gradient boosting (XGBoost). Additionally, additional
statistical methods like genetic algorithms (GA), successive projection algorithms (SPA),
stepwise formulations (SW), analysis of variance (ANOVA), etc. can be utilized for feature
selection and feature extraction. Furthermore, the investigation of data fusion approaches
through the integration of LIBS with complementary technologies such as Raman
spectroscopy has the potential to provide improved plastic sorting capabilities.
Investigations should encompass a wider variety of samples, such as e-waste, in order to
fully explore its potential for reuse. Additionally, it is important to consider the eftects of
additives on the accuracy and measurement of categorization in industrial applications. It
is essential to consider practical factors, such as the implementation of laser beam cleaning
shots to eliminate dust and debris for immediate measurements, as well as the optimization
of sample transportation using a conveyor belt model, in order to conduct real-time
investigations eftectively. In addition, utilizing microcontrollers such as Arduino and

Raspberry Pi for the purpose of recording, analyzing, and making decisions based on data
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can make the system cost-efficient and small in size, thereby making it more suitable for
real-time applications.

5. Finally, for quantitative detection of explosives, mixture samples of RDX and AN were
considered followed by regression analyses. However, in a real-life scenario, only a
mixture sample will be available, and the matrix elements will be unknown. The sample
can be a mixture of two, three, or many materials, including some explosives and some
non-explosives. In such cases, the detection becomes more challenging as the first step is
determining how many materials are mixed and what they are. The materials present in
the mixture can be identified based on the peaks from the Raman spectra of mixtures.
However, some materials can have a high similarity in the Raman spectra due to some
common vibrational signatures. In such cases, other statistical and analytical techniques,
like correlation, ordinary least squares, etc., may be used for the identification of matrix
elements in a mixture. Moreover, extending the same study to incorporate LIBS presents
a promising avenue, given its rapidity, robust signal acquisition capabilities, minimal or
negligible sample preparation requirements, and ability to conduct standoft measurements.
LIBS emerges as a potential tool for such investigations, offering unique advantages that

align well with the demands of the research objectives.
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Awards/Achievements

1.

Science and Engineering Research Board — International Travel Scheme (SERB - ITS)

sanctioned to attend “12th Euro-Mediterranean Symposium on Laser-induced Breakdown
Spectroscopy (EMS LIBS 2023)” held at Porto, Portugal during 4 — 7t Sep 2023.

Institute of Eminence — University of Hyderabad — International Travel Grant (IoE — UoH -
ITG) received to attend “XII Laser Induced Breakdown Spectroscopy (LIBS 2022)”” held at Bari, Italy
during 5 — 9t Sep 2022.

Best Poster Award received for presenting work entitled “Laser induced breakdown spectroscopy
combined with machine learning: An efficient tool for plastic waste sorting”, at Frontiers in Physics
(FIP 2023), organized by University of Hyderabad, Hyderabad, India during 3 — 4t Mar 2023.

Workshops/Schools selected

1.

“Machine learning workshop 2022” organized by University of Hyderabad, India during 26 — 28% Oct
2022.

“National Workshop on Explosive Detection (NWED 2020)” organized by High Energy Materials
Research Laboratory (HEMRL), Pune, India during 1 — 22d Mar 2020.

“Workshop on advances in optics and photonics 2019” organized by University of Hyderabad, India
during 18 — 23 Mar 2019.

“Workshop on photonics for detonics 2019” organized by Terminal Ballistics Research Laboratory
(TBRL), Chandigarh, India during 1 — 2ad Mar 2019.

Conference presentations (National and International)

1.

Poster presentation entitled “Laser induced breakdown spectroscopy combined with machine
learning: An efficient tool for plastic waste sorting” at “Frontiers in Physics (FIP 2023)” organized by
University of Hyderabad, Hyderabad, India during 3 — 4th Mar 2023.

Poster presentation entitled “Effect of feature selection and extraction in identification of post-
consumer plastics using picosecond laser induced breakdown spectroscopy” at “XII Laser Induced
Breakdown Spectroscopy (LIBS 2022)” held at Bari, Italy during 5 — 9 Sep 2022.

Poster presentation entitled “Quantitative estimation of ammonium nitrate in mixtures using
portable Raman spectroscopy” at “13% International High Energy Materials Conference & Exhibits
(HEMCE 2022)” organized by Terminal Ballistics Research Laboratory (TBRL), Chandigarh, India
during 26 — 28" May 2022.

Poster presentation entitled “Possibility of Plastic Discrimination using Picosecond Laser Induced
Breakdown Spectroscopy” at “5% IEEE Workshop on Recent Advances in Photonics (WRAP 2022)”
held at Mumbai, India (Virtual) during 4 — 6t Mar 2022.

Contributed Oral Presentation entitled “Estimation of radiation decay constant of laser produced
brass plasma from its emission intensities” at 47 IEEE International Conference on Plasma Science
(ICOPS 2020) held at Singapore (Virtual) during 6 — 10® Dec 2020.

Poster presentation entitled “Standoff detection of explosives using laser induced breakdown
spectroscopy” at “12™ International High Energy Materials Conference & Exhibits (HEMCE 2019)”
organized by Indian Institute of Technology Madras (II'T — Madras), Chennai, India during 16 — 18%
Dec 2019.
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