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ABSTRACT

This thesis is structured into four chapters, each focusing on a distinct aspect of
the research. The opening chapter provides an introduction to the primary themes
of the thesis. Chapter two delves into the Selberg—Delange method and presents
an asymptotic formula for an arithmetic function over short intervals, utilizing the
Hooley—Huxley contour. In the third chapter, our exploration centers on the Godement—
Jacquet L-function, where we establish an upper bound for the mean square of the
logarithmic derivative of this function. Finally, in the fourth chapter, we investigate
the Rankin—Selberg L-function associated with the Godement—Jacquet L-function.
We provide an asymptotic formula for the k-th Riesz mean of the coefficients of this
Rankin—Selberg L-function, subsequently leading to an asymptotic formula for the

partial sum of these coefficients.
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SYNOPSIS

This thesis comprises four chapters. The gist of the thesis is presented in the following

sections.

0.1 Selberg—Delange method

A fundamental problem in analytic number theory is to study the behaviour of the
sum > u(n). It is well known that a bound of the kind

n<zx

Z,u(n) < 22t for every € >0

n<x

is equivalent to the unproven Riemann hypothesis.
More generally, given an arithmetical function f(n), studying the behaviour of the
sum Y f(n) is a classical problem. Perron’s formula [42] is a powerful tool when one

n<x

has a thorough understanding of the analytic properties of

i f(n)

ns ’
n=1

particularly its growth conditions and the nature of its singularities. However, when

dealing with L-functions exhibiting unknown singularities and featuring a natural

product representation, a more specialized approach is required.



In this context, we draw upon the insights of Selberg [55] and Delange [10, 11]. Their
pioneering work provides a framework that enables us to study the sums in question
with exceptional detail, even when facing challenging singularities of the associated
L-function.

Towards this direction, in the second chapter, we consider P type Dirichlet series

defined as:

Definition 0.1.1. Let k > 0,w € C,a > 0,0 > 0,A > 0,B > 0,M > 0 be some

constants. A Dirichlet series F(s) defined as

F(s)=) flnyn™"

is said to be of type P(k,w,a, 0, A, B, M) if the following conditions are satisfied:

1. for any € > 0, we have
|f(n)] <en (n>1);
2. we have
Sl < @-1"  (0>1);
n=1

3. the Dirichlet series

G55k, w) 2= F(s)¢(s)"C(2s)"

is analytically continued to a holomorphic function in (some open set containing)

R(s) > % and, in this region G(s; k,w) satisfies the bound
max{6(1—c),0} A .
|Q(3;/€,w)| §M(]TH—1) <log (|T|—|—1)) (s =0 +ir)

uniformly for 0 < k < B and |w| < B.
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We prove the following result over short intervals.

Theorem 0.1.1. Let k >0, we C, a>0,6>0, A>0, B>0, M >0 be some

constants. Let n; > 0 be such that

1

. m(l-o) 1 <og< —
[Clo+it)] < (|t +2) log (1t} +2)  for 2= g (i 2)

Suppose that
=Y fl)n”
n=1

is a Dirichlet series of type P(k,w,,d, A, B, M). Then for any ¢ > 0 and sufficiently

large © > xo(€, Kk, A), we have:

S fn) = yllogay {3 250 L6 (R, y))

z<n<z+y =0

uniformly for

x>y >t N >0 0<k<B, |w <B,

where

N(K,w) == —gl(/{’ w)

I'(k—1)
N+1 N+1 N+1
y Z l’)\l 1 I‘Q w <a1N+ 1) +M G1N+ 1 _‘_ei 2101golgozz
(log x)! xl/2 log
for some constants ai,as > 0 and
50+55e+7 . 12
IR if k< 2=
meK+d—1411e
MmkK+d+e if K> 5771

This improves Theorem 1.1 of [9]. (See also [53].) It is easy to check in either case

xiil



(whether xk < % or K > %) that

5k + 156 + 21
Ok ) < BT 100+ 21
(5:0) < 5 155 1 36

of [9] for m; = % Thus the above theorem is an improvement over the short interval

length.

L follows from Hardy’s estimate

=3
'g(;ﬂ-t)

In fact, one may even take the best—known value 7; < % from the work of Bourgain in

< (|t +2)% log (It +2)

4], giving

<t

IR
‘C (5 + Zt>

If one assumes the zero density hypothesis for ((s), then we have

N(o,T) < T*'=)(log T)".

Thus the above theorem holds with

1+6+11e . 2
2+0+¢€ if &< n

me+d—14+11e . 2
nRote if K>

Xiv



0.2 Godement—Jacquet L-function

The L-function attached to a Maass form for SL(n,Z) (n > 2) is called the Godement—
Jacquet L-function. The analysis of the characteristics and properties of the Godement-
Jacquet L-function plays a crucial role in unraveling the intricacies of the generalized
Ramanujan conjecture and the broader Langlands program.

In the third chapter, we study the mean square of the logarithmic derivative of the

Godement—Jacquet L-function. In particular, we show the following two theorems.
Theorem 0.2.1. Ramanujan’s weak conjecture implies Rudnick—Sarnak conjecture.

Theorem 0.2.2. Assume n > 5 be any arbitrary but fixed integer. Let € be any small
positive constant and T > Ty where Ty is sufficiently large. Assume the Rudnick—

Sarnak conjecture and Riemann hypothesis for Ly(s). Then the estimate:

/2T
T

holds for % + e <09 <1— € withn being some constant satisfying 0 < n < %

L/
L (0q 4 it)

dt <jnen T(logT)>"
Ly

Since Rudnick—Sarnak conjecture is true for 2 < n < 4, the above theorem holds just

with the assumption of Riemann hypothesis for L f(s) whenever 2 < n < 4.

It is not difficult to see from our arguments that only assuming Riemann Hypothesis for

L¢(s), the above theorem can be upheld for any oy satisfying 1 — n21+1 +e<op<1l—c¢€

by using the bound 6, = 1 — n21+1 of Luo, Rudnick and Sarnak [36, 37].

It is also not difficult to see from our arguments that the generalized Ramanujan

conjecture and the Riemann hypothesis for L;(s) together imply the bound

XV
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Ly

2TL
J,

Lf (O'() + Zt)

dt <<f’n>5 T

to hold for any o\ satisfying % +e<op<1-—ce
Though we expect the bound stated in the above equation to hold unconditionally for

0p in the said range, this seems to be very hard to establish.

0.3 Rankin—Selberg L-function

In the fourth chapter, we give k-th Riesz mean for the coefficients of the Rankin—Selberg
L-function related to the Godement—Jacquet L-function.

We write

b
Liyg(s) = Z (m) for R(s) > 1.
We prove the following result.

Theorem 0.3.1. Let n > 3 be an arbitrary but fized integer. For k > ki(n) = [%} +1,

we have
b(m) m\" Cx
> h (“E) R

Here C' is an effective constant depending only on f.

As a consequence of the above result along with a power-lowering trick for the Riesz
mean, we get an asymptotic relation for the partial sum of the coefficients of the

Rankin—Selberg L-function.

Theorem 0.3.2. For sufficiently large x, we have

> blm) = s+ 0, (75

m<x

XVl



where k1 = ki(n) = [%} + 1
The best conditional bound that we obtain from our method is

Z b(m) = Cx + O(x1+),

m<x
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NOTATIONS

We use the following standard conventions and notations.

aQ 2 N Z

€,€1,M
aor C

T, T

T, Ty

s = o+ 1T or

s=o0 +1t

Set of natural numbers

Set of integers

Set of real numbers

Set of complex numbers

n-dimensional complex vector space
Greatest integer less than or equal to x
Prime number

Arbitrary small positive constants
with or without suffixes denote positive constants
Sufficiently large real number
Sufficiently large real number

Complex number

Real part of the complex number s
Imaginary part of the complex number s
Cardinality of set A

Number of divisors of n

Number of representations of n as a product of k factors

xx1il



SL(n,7Z)
GL(n,R)

= k,(%k), denotes the binomial coefficient
(due to Vinogradov) means that there exists a constant C' > 0 such
that | f(2)| < Cg(z) for all values of z under consideration

(due to Bachmann) means f(z) < g(2)

The number of zeros 5 + iy of the Riemann zeta function such that
B>00<y<T

Hankel contour

Generalized upper half plane

Group of n X n matrices with integer entries and determinant one
Group of n x n invertible matrices of real numbers

Orthogonal group of GL(n,R)

Center of GL(n,R)

Lie Algebra of GL(n,R)

Center of universal enveloping algebra of gl(n, R)

Group of n X n upper triangular matrices with 1s on the diagonal

and an integer entry above the diagonal

XX1V



CHAPTER

ONE

CONTEXT AND OVERVIEW

1.1 Selberg—Delange method

Let

F(s) = i %
n=1

Studying the analytic properties of Dirichlet series F(s) helps us understand the
average behaviour of an arithmetic function f(n).
When F(s) is a meromorphic function, the summatory function ) f(n) can be
obtained by application of the Perron’s formula [42]. A limitation of ;’Ezron’s formula
is when F(s) has singularities which are not poles. Selberg—Delange method (indepen-
dently developed by Selberg [55] and Delange [10, 11]) deals with such Dirichlet series
where the nature of singularity is unknown. Another advantage of Selberg—Delange

method is that there is consistency in the asymptotic behaviour of two Dirichlet series

whose ratio is a sufficiently regular analytic function.

A useful reference for this theory is Chapter I1.5 of Tenenbaum’s book [56] from which

we will use the following fundamental results.



Definition 1.1.1. Generalized binomial coefficient

For w € C,v € N, the generalized binomial coefficient is defined by

For[¢| <1, z € C,
“(z4+v-—1
1-¢)7*= Y.
-9 =% (717
v=0
When z is a negative integer, this formula reduces to the classical binomial formula.

For R(s) > 1, we have
oy =JJa-v)
=11 (1+Z1 (Z+Z_1>p‘”s> :

where the infinite product is absolutely convergent.
Thus, ((s)? is representable in the half-plane R(s) > 1 as the Dirichlet series of a

multiplicative function d,(n), defined by

This definition generalizes that of the function dy(n) corresponding to the case when

z = k is a positive integer.

In order to study Dirichlet series that are close to a complex power of the Riemann

zeta function, we need to study Hankel’s formula.

Definition 1.1.2. Hankel Contour
Given a positive number r, we designate by Hankel contour $ the path formed from the

circle|s| = r excluding the point s = —r, together with the half-line (—oo, —r] traced

2



out twice, with respective arqguments +m and —m.

We prove Hankel’s formula next.

Theorem 1.1.1. [56] Let $ be a Hankel contour. For any complex number z, we have

Proof. The integral is absolutely and uniformly convergent for each z. It thus defines
an entire function of z. By the residue theorem, this function is independent of r,
since the only singularity of the integrand is at the point s = 0. When R(z) < 1, the
integral round the circular part |s| = r of the Hankel contour tends to zero with r.

The integral along the doubled half-line tends to

1 [ I sinmz [
— (emz_e ’LTFZ)O_ ze do = o ze do
2mi J, ™ Jo
sinmz
= NG
T

1

L(z)

This proves the result when R(z) < 1. By analytic continuation, the result follows for

all z. O

Corollary 1.1.1. [56] For each X > 1, let $(X) denote the part of the Hankel contour



situated in the half-plane o > —X. Then we have uniformly for z € C,

1 1 _x
— s e’ds = ——+0 (47|Z‘I’ 14z 67> )
271'2 H(X) F(Z) ( | |)

+i

Proof. For s = 0e™™, 0 > 1, we have

|s77e| < (e"o)le7.

Thus

1 1 >
— [ s7%e°ds — —/ s 7efds < e / d?le=do
27T7/ ) 27'["& f)(X) X

o0
_X —o
Se’r‘zl 2/ e do.
0

Since 2e™ < 47, the change of variable o = 2t gives the desired result.

1.2 Godement—Jacquet L-function

The Godement—Jacquet L-function is also commonly referred to as the standard
L-function. Godement and Jacquet [13] constructed this L-function and showed that
it has an analytic continuation to a meromorphic function that satisfies a functional
equation. Their method is a generalization from GL(1) of the method of Tate’s thesis
[6].

According to Langlands’ conjectures [34], the most general type of L-function is the
one associated with an automorphic representation of GL(n) over a number field.
These L-functions are hypothesized to be expressible as products of the “standard”
L-functions linked to cuspidal automorphic representations of GL(n) over the rational

numbers. These particular L-functions are considered fundamental and are referred



to as (principal) primitive L-functions of degree n. Consequently, the behaviour
and properties of L-functions for GL(n) are pivotal in understanding the generalized
Ramanujan conjecture and the larger Langlands program.

For n = 1, these L-functions correspond to the Riemann zeta function and Dirichlet
L-functions associated with primitive Dirichlet characters. When n = 2, the analytical
characteristics and functional equations of such L-functions were explored by Hecke
and Maass, and for n > 3, this line of investigation was extended by Godement and
Jacquet [13].

For an adelic treatment of higher degree L-functions, one can see the self-contained
books by Godlfeld and Hundley [15, 16]. Cogdell’s lecture notes [8] also give a nice
survey for these L-functions.

We will now recollect some basic terminology from [14] that is required to deal with

the Godement—Jacquet L-function in Chapter 3.

Definition 1.2.1. Generalized upper half-plane H"
Let n > 2. The generalized upper half-plane H™ associated to GL(n,R) is defined to

be the set of all n x n matrices of the form z = x -y where

1 219 mp3 -+ Ty, Y1y2 - Yn—1
L xa3 -+ oy Y1Y2 -+ Yn—2
xTr = Yy = >
1 xnfl,n hn
1 1

withz;; ER for1 <i<j<mnandy, >0 forl1 <i<n-—1.

Let GL(n,R) denote the multiplicative group of all n x n matrices with coefficients in



R and non-zero determinant. The orthogonal group O(n,R) is defined as

O(H,R) :{QE GL(H,R) | g'gT:I}

where [ is the identity matrix on GL(n,R). The center of GL(n,R) is written as

Definition 1.2.2. Iwasawa Decomposition
The fact that every matriz in GL(n,R) can be written as an upper triangular matriz
times an orthogonal matriz is called the Twasawa decomposition [22].

Fizn > 2. Then we have the Iwasawa decomposition

GL(n,R) =H"-O(n,R) - Z,,

i.e., every g € GL(n,R) may be expressed in the form

g==z-k-d,

where z € H" is uniquely determined, k € O(n,R), and d € Z,,. Further, k and d are

also uniquely determined up to multiplication by +1 where I is the identity matriz on
GL(n,R).

For everyn =1,2,3,..., we have Z, = R*. Thus, we have the isomorphism

H" = GL(n,R)/(O(n,R) - R¥)



Definition 1.2.3. Left invariant measure on the coset space GL(n,R)/(O(n,R)-
R*)

The left invariant GL(n,R)-measure d*z on H"™ can be given explicitly by the formula

d'z=dx d*y
where
n—1
d*l’ = H dl‘i’j, d*y = H yk_k(n_k)_ldyk.
1<i<j<n k=1
Forn =2, with
Yy T
z = ,
0 1
we have
dxd
d*z = ny.
Y

Forn =3, with
Y1Y2 T12Y1 T13
=1 0 Y1 T23 |
0 0 1
we have

dy,dys

(y1y2)3'

d*z = d$172d$1’3d$273

Definition 1.2.4. Siegel set



Let a,b > 0 be fized. A Siegel set Zmb C H™ 1s the set of all

1 @9 213 -+ T1y YiY2 * Yn—1
1 T3 - Ton Y1Yz " Yn—2
1 Tn—1n U
1 1

with|xi,j‘§bf0r1§z'<j§nandyi>af0r1§z'§n—1.

Let v = (vy,v9,...,v,1) € C"7L. Let D" be the center of the universal enveloping

algebra of gl(n,R) where gl(n,R) is the Lie algebra of GL(n,R). The function
n—1n-—1
bl SV
Jo(2) = [T ITw""

i=1 j=1

with
ij ifi+j<n,
(n—i)n—j) Hit+j>n,

is an eigenfunction of every D € ©". We write
DJ,(z) = Ap - Jy(2) for every D € D".
The function Ap (viewed as a function of D) is a character of ®" because it satisfies
ADy-Dy = Apy - Ap, ¥V Dy, Dy € D"

It is sometimes called the Harish—Chandra character.



For n > 2, a Maass form is defined as a smooth complex valued cuspidal function on

which is invariant under the discrete group SL(n,Z). It is also an eigenfunction of
every invariant differential operator in ™.

A cuspidal function (or cuspform) is a function whose Fourier expansion has no
constant term. This is equivalent to the condition that the function has exponential
decay at every cusp. The precise definitions of Maass forms and Godement—Jacquet

L-function are given in Chapter 3.

Definition 1.2.5. Character
Fizn > 2. Let U,(R) denote the group of upper triangular matrices with 1s on the
diagonal and real entries above the diagonal. Fiz ¢ : U,(R) — C* to be a character

of U,(R) which, by definition, satisfies the identity

U(u-v) =P(u)p(v) Vu,ve UnR).

Definition 1.2.6. Whittaker function
Let n > 2. An SL(n,Z)-Whittaker function of type v = (vy,va,...,v,_1) € C*71,
associated to a character i of U,(R), is a smooth function W : H" — C which satisfies

the following conditions:
1. W(uz) = Y(u)W(z) VuelU,(R),zeH",
2. DW(z) =ApW(z) ¥YVDeD" zeH",

3. f ‘W(z)|2d*z < 0.

Z@;
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Definition 1.2.7. Jacquet’s Whittaker function

Forn>2, fixm= (my,...,mu_1) €Z" Y, v=(v1,...,0,_1) € C", and let

1 ULQ ul’g ce ul,n
1 Ug3 ... U2 n
u = € U,(R)
1 Un—1,n
1
Denote w1 = tup—14,U2 = Up—25-1,-..,Up—1 = U2 Define ¢, to be the character of

Un(R) defined by

() 1= )

(All characters of U,(R) are of this form.)
For ze€ H™ and m; #0 (1 <i <n—1), define

Wiz v, ) = / Jo(wy, - u - 2)p(u) d*(u)

Un(R)

to be Jacquet’s Whittaker function. Here,

(_1)[%]
1
w,, = € SL(n,Z) and
1
/Un(R) - - 1SE§”
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1.3 Rankin—Selberg Method

The Rankin—Selberg method was independently developed by Rankin [47, 48] and
Selberg [54]. Rankin has remarked that the general idea came from his advisor and
mentor, Ingham.

They found out the meromorphic continuation and functional equation of the convolu-

tion L-function associated to automorphic forms on GL(2) i.e.,

Lpegls) = C(29) 3 40,

They showed that the convolution L-function can be constructed explicitly by taking
an inner product of f -7 with an Eisenstein series. This remarkable development
has proven to be of exceptional importance and has generated numerous unforeseen
consequences.

Jacquet [23] obtained a broader interpretation of the original Rankin—Selberg convo-
lution within the context of adeles and automorphic representations. Jacquet and
Shalika [25] further generalized the theory.

The Rankin—Selberg convolution for the case GL(n) x GL(n') (1 < n < n’) necessitates
anovel approach. The special case GL(1)x GL(n') is essentially the Godement—Jacquet
L-function. Godement and Jacquet [13] first obtained the holomorphic continuation
and functional equation for the Godement—Jacquet L-function. Jacquet, Piatetskii-
Shapiro and Shalika [24] further extended the theory for the case of automorphic
representations.

The Rankin—Selberg convolution stands as one of the most pivotal constructions within
the realm of L-function theory, and it has naturally led to countless generalizations.
A comprehensive survey paper by Bump [5] provides an expansive overview of this

entire subject, offering valuable insights and perspectives.
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Rankin-Selberg method has found numerous applications. The classic application of
the Rankin—Selberg method is to obtain strong bounds for the Fourier coefficients of
automorphic forms and eigenvalues of a Maass form. Deligne [12] employed this method
as the initial step in settling the Ramanujan conjecture for holomorphic modular forms.
However, the conjecture remains open for Maass forms. For Maass forms, the bound
established by Luo, Rudnick, and Sarnak [36, 37] for the generalized Ramanujan and
Selberg conjectures remains as the best-known bound to date. The Rankin—Selberg
method played a pivotal role in achieving this result. Another application of the
Rankin-Selberg method is the proof for the strong multiplicity one theorem by Jacquet
and Shalika [25].

Rankin and Selberg established that

Z)\f(n) = Cf$ + Of(ZE%)

n<x

Here, f is a holomorphic Hecke cusp form or Hecke-Maass cusp form for SL(2,7Z).
After almost 80 years, the exponent in the error term was slightly improved by B.
Huang in [18] to 2 — 0 for any § < 1/560 = 0.001785.... In recent preprints, S. Pal
[41] proved that § < 6/1085 = 0.005529. .. is admissible and B. Huang [19] improved
it further to any 6 < 3/305 = 0.009836. . ..

In this direction, we study the asymptotic behaviour of the k-th Riesz mean for
the coefficients of the Rankin—Selberg L-function related to the Godement—Jacquet
L-function in the fourth chapter. As a result of this relation, we also obtain a relation

for the summatory function of the coefficients of the Rankin—Selberg L-function.
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CHAPTER

TWO

THE SELBERG-DELANGE METHOD AND MEAN VALUE

OF ARITHMETIC FUNCTIONS OVER SHORT INTERVALS

2.1 Introduction

A classical problem in analytic number theory is to study the behaviour of the sum
> p(n). It is well known that a bound of the kind

n<x

Z,u(n) < zite for every € >0

n<x

is equivalent to the unproven Riemann hypothesis.
More generally, given an arithmetical function f(n), studying the behaviour of the sum
>~ f(n) is a classical problem. If one knows the analytic properties of the L—function

n<x

attached to f(n), namely

; fﬁ:)

(particularly certain growth conditions) and if one knows the nature of the singularity

(particularly having only real poles), then Perron’s formula [42] is an appropriate tool



to obtain the asymptotic nature of the required sum with a possible good error term.
However, if the L—function has some singularities whose nature is unknown and has
some natural product representation, then Selberg [55] and later Delange [10, 11]

developed a method that enables us to study the sum in question in detail.

Throughout the chapter, the constants a with suffixes are positive constants that
need not be the same at each occurrence. €, n are small positive constants and x is

sufficiently large.

In this chapter, we consider P type Dirichlet series defined as:

Definition 2.1.1. Let k > 0,w € C,a > 0,0 > 0,A > 0,B > 0,M > 0 be some

constants. A Dirichlet series F(s) defined as

F(s)=) [l
n=1
is said to be of type P(k,w,a, 0, A, B, M) if the following conditions are satisfied:
1. for any € > 0, we have

[f(n)] <en® (n>1);

2. we have

M fm)n < (e=1)""  (0>1);

3. the Dirichlet series

G55, w) 1= F(s)¢(s) "¢ (2s)"

is analytically continued to a holomorphic function in (some open set containing)

14



R(s) > % and, in this region G(s; k,w) satisfies the bound
max{d(1—0),0} A .
|Q(s;li,w)| < M(|7’|+1) (log (|7’|—|—1)> (s =0 +1ir)

uniformly for 0 < k < B and |w| < B.

From [56, Theorem I1.5.1], the function

Z(s;2)={(s ~ (=)} (€0

is holomorphic in the disc |s — 1| < 1, and admits the Taylor series expansion

mm:z@ﬂww,

where the 7;(2)'s are entire functions of z and satisfy: for all B > 0 and € > 0, the

estimate

5(2)

C<n b (1200 < B).

Under our hypothesis, the function G(s; k, w)((2s) ™" Z(s; ) is holomorphic in the disc
|s — 1| < 3 and

‘g(s; K, w)C(28) 7 Z(s; /43)‘ <LapoeM

forls —1| <1 —¢ 0<r < Band|uw| <B.

Theorem 2.1.1. [30] Let K >0, w e C, >0, >0, A>0, B>0, M >0 be

some constants. Let n, > 0 be such that

1

. n(1—o) 1 - -
it < (1 +2)" g (1 +2)  for J o<1 b

15



Suppose that

is a Dirichlet series of type P(k,w,,d, A, B, M). Then for any ¢ > 0 and sufficiently

large © > x(€, Kk, A), we have:

r<n<lz+y =0

uniformly for

x>y >t N >0 0<k<B, |w <B,

where
gi(k, w)
A =
Z(H7w> F(K/—l)’
_y Nizl EIGRD) LN+ DA L (N o 1 e U2 Toges
(log z)! xl/2 log x
for some constants a1,as > 0 and
56+55e+7 . 12
IR if k< ==
mrt+o—1+lle 12
MmK+d+e fr>

Remark 2.1.1. This improves Theorem 1.1 of [9]. (See also [53].) It is easy to check

in either case (whether k < 51—2 or K> ¢ ) that

5k 4+ 150 + 21

00r.0) < 5 155 136

of [9] for m, = % Thus the above theorem is an improvement over the short inter-

val length. The implied O—constant depends on various parameters like A, B, €, 0, 7 etc.
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Remark 2.1.2. n; = % follows from Hardy’s estimate

()

In fact, one may even take the best-known value 7; < % from the work of Bourgain in

< (1t +2)* log (jt] +2)

[4], giving

<t

\g(gﬂt)

Remark 2.1.3. If one assumes the zero density hypothesis for ((s), then we have
N(o,T) < T**=)(log T)".

Thus the above theorem holds with

1+6+11€ . 2

2+0+€ if & < mn’
0(k,0) =

mr+o—1+11e . 2

nRTote if kK> o

2.2 Construction of the Hooley—Huxley

contour of integration

To construct the required Hooley—Huxley contour for our situation, we follow certain
descriptions from H. Maier and A. Sankaranarayanan in [38].

Let C* be a generic absolute constant in the following, which need not be the same at

17



each occurrence.

Definition 2.2.1. A zero p = [ + iy (with 8> %) of {(s) is said to be good if

B<1-— m and p is said to be exceptional otherwise.

Let T'> Ty and o > x¢ (Ty and xq are sufficiently large). Let G and £ denote the set
of all good and exceptional zeros of ((s) respectively with |y| < T. We denote by |G|

and |€| to mean the cardinality of the sets G and & respectively.

Let « be any fixed constant satisfying % +n < a < 1-—n with  being any arbitrarily
small fixed positive constant. Since the contour will be symmetric with respect to the
real axis, it suffices to describe it in the upper half-plane. We assume that |£| = 0.
Hence, ((s) # 0 in the region {a >1— m, U<t< 2U} where C** is a

suitable absolute positive constant and we construct the contour accordingly.

Let T = 2. We choose ¢ with % < ¢ < 1 such that Hy = cloglogT = 2F with
a positive integer L. For | > L, write U = UY = 2!, We define the contour for
U<t<2U. Let H=H(UY) = ¢loglog(U") and choose ¢ satisfying 1 < ¢ <1

such that % is a positive integer.

We split the interval [U, 2U] into % disjoint abutting small intervals I; = I j(»l) of equal

length 2H for 1 < j < % Let I; = [U; — H, U; + H] and let

B]:SUP{B’pzﬂ—FZ’}/, C(p):0> ﬁzaa VG[U]_2H7 UJ+2H]}

and
C*
loglog 2(U + 12)

B; =B+

18



We also define (with Hf = Hy + 2(log Hp)?)

Bo=sup{B|p=pF+iy, ((p) =0, B>a, ve0,2H]}

and
C*

By = o+ loglog2H,’

If there is no zero of ((s) in the rectangle {0 >a, Uy —2H <t <U; + ZH}, then we

define 7 = . A similar notion applies to f; too.

Then the contour C consists of

1. Vertical pieces (V;):

1B +i(U; — H+€), B; +i(U;+ H—¢)] if B <min (8, B5)

35 +i(Us = H =), ] +i(Us + H )] i f > max (51, 5]1.)

[B:+i(U; — H —¢), B +i(U;+ H—¢)] if B, < B < By

18] +iU; = H+ ), 8 +iU;+ H+ ] i By < B} < By

and

165, 65 + i(Ho —€)] if 37 > f

166, B +i(Ho+€)] if B7 < /5

Vo =

2. Horizontal pieces (h;):

(a) If 87 < min (8, 8;,,), then

hj(top) = [B; +i(U; + H —¢), B +i(U; + H —¢)] and

J

hj(bottom) = [B} +i(U; — H +¢€), B;_ +i(U; — H + ¢)]

19



(b) If 87 > max (B;_y, 87), then

hj(top) = [Bj,, +i(U; + H +¢€), B; +i(U; + H +¢)] and

hj(bottom) =[5}, +i(U; — H —€), 5 +i(U; — H — €)]
(c) If 87 < Bj < B4, then

hy(top) = 5 +i(U; + H — ), B,y +i(U; + H —c)]

; and

hj(bOttOIIl) = [5‘;‘71 + Z(U] — H — 6), BJ* + ’L(Uj — H — E)]
(d) 1f 87y, < B < Bi_y, then

hj(top) = [B7,, +i(U; + H +¢), B; +i(U; + H +¢)] and

hj(bottom) = [B5 +i(U; — H +¢€), B;_ +i(U; — H +¢)]

and similar horizontal pieces hg; that link the top (respectively the bottom)

vertical pieces of the ranges

U= < <2ut-1 (respectively) Ub <t <200,

The vertical piece V; and the horizontal piece hy pertain to the interval [23, H)| where

H) = Hy + 2(log Hy)?>. We also observe that the vertical piece V* for the interval

[0,23] can be taken to be o = % + n for any small positive constant 7. Therefore, the

contour C can be pictorially seen in Figure 2.1 and

C=Tul,ul,uTrfurk

20



Hy
I

23
r /\

0 L5+ \JH@ 1+ 2
Iy

Figure 2.1: Contour C
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2.3 Proof of Theorem 2.1.1

2.3.1 Treatment of the sum ) f(n)
r<n<zx+y

Since F(s) is a Dirichlet series of the type P(k,w,«,d, A, B, M), we apply Corollary
I1.2.2.1 of [56] with the choice of parameters o, = 1, B(n) = n‘,a = o, 0 = 0 to obtain

1 b+iT

Z fn)=-— f(S)—(ery;_xsdstO(x;g)

2w ),
r<n<lz+y b—iT

where b = 1+%,100§T§xsnehthat ((c+iT)#0for 0 <o < 1.
Now we replace the path of integration [b — T, b+ ¢T| by the contour C in described

above. (See Figure 2.1.)

K. Ramachandra and A. Sankaranarayanan (see Theorems 1 and 2 of [46]) investigated
certain upper bound estimates “locally” for the function [log F(s)| (where F(s) is
any Dirichlet series satisfying certain general conditions) under the assumption that
F(s) # 0 in the rectangle {o > $+n, T— H <t < T+ H} of t-width 2H. Here the
parameter H can be chosen as small as H = clogloglogT'. We record here a special

case of the general theorem as:

Lemma 2.3.1. Let 3 < o* < 1—1, H = agloglogT and suppose that ((s) # 0 in

{o>a*, T—H<t<T+H}. Then fora* <o <1-— T—%§t§T+%,

a4
loglog T’
we have

|10g C(o+ zt)} < aslog T (loglog T)™*

where as, ay and as are certain positive constants.
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Therefore by this lemma, for |¢t| (> Hy), we have

(o +it)| < U*

logz’

for o +it € V; and o + it € h;. The horizontal slab with |¢| € [L H():| is treated as

follows. We redefine

1 1
£ 2 it |t € | ——, 27 .
5= +n lr\e[logx, }

We remark here that by computational results, we know that all the non-trivial zeros
of ((s), for instance up to height 2'° lie on the line R(s) = 1. (See [40], [43].)
For the portion || € [2°, Hyl, we first observe that the region

O*

10> 0 > -
{ 202 fot loglog Hy '

2 < SHa}

is free from zeros of ((s). Therefore, applying the Borel-Carathéodory theorem, we
get (for 1020250—{—@),

|log ¢(o +it)| < (log Hy)'~* < (logloglog T')'~* < H.

So this estimate holds when 5 + it € V with t € [2°, Hy] and T > Ty where Ty is

sufficiently large.

The portion |¢| € [0,2°] is dealt as follows. We observe that the region

{1020>5, |t <27}
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is zero—free for ((s). This follows from the computational results. Thus,
¢(s)| < loglog(U +2) < U*

1
for {JZB§,| 1|>— |t|<27}.

For|s — 1| < &,

‘ ’<<|s—1|

Thus, we need to estimate

L e e o (2

X
_IO+[1+IQ+[R+[R+O< T ) (say)

> f) =

r<n<z+y

2.3.2 Evaluation of I

Let 0 < ag < 75 be any small constant. Since G(s; k,w)((2s)™Z(s; k) is holomorphic

and O(M) in the disc |s — 1| < ag, the Cauchy’s formula implies that
gk, w) < Mag™ (1>0,0<k<B,|w <B)
where g;(k,w) is defined by

G(s;k,w)((25)" " Z(s; K) Zgl (k,w)(s — 1)

24



with

Z(s;K) = ((s — 1){(5))'€,

st = 3 (5) G o

j Osl=i

Hence for any integer N > 0 and |s — 1| < <8,

G(s; k,w)C(28) " Z(sik) = Y gi(k,w)(s — 1)' + O (M (Is —~ 1|> ) |

Q
=0 6

We have,

F(s) = G(s; r,w)C(25)7C(s)",

= G(s;R,w)C(28) " Z (s, 1) (s = 1) 7"

Thus,

Iy = L/}“(S)st

2mi s
N
1 S __ S
=5 gl w) — /(S _ 1)l—nwds
pr 21t Jr S
+0 (Mch /(s - 1)N+17'€—(x i yz i ds)
r

= Z gk, w)M(z,y) + O (MGG_NEN(% ?J)) (say).
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Evaluation of M;(z,y)

Observe that

S

Using Corollary 11.5.2.1 of [56], we can write

oy 1 l—k,,s—1
M(z,y) = Py F(s—l) u' T ds | du

vty 1 (asl + 1)
— 1 k—1—1 7 d
JARCE r(a—l)”( " ) ‘

where we have used

ATID (15 — 1) <p (arl +1)) (120, 0<x<B).

a7 and the implied constant may depend at most on B. Now for 0 < x < B,

O<u<y<uza,

log(z + u) = log x + log <1 + E)
x

=logz + O (E)
x

Therefore,

(log(z + u))”fl*l — (logz)* "' 4+ O ((l + 1)u(i)g :1:)“—2—l>
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and

T4y Y k—1—1
/ (logu)*du = / (log(z +u)) du
v 0

= y(logz)" '+ 0 <(l + 1)(log )™+ /y u du)

T

T

s o (L)}

Also,
z+y 1 k—1—1 l 1 l o1
(arl + 1)l/ %du < w (log(22))" 'y
x u2 T2
l+1 l 1 k—1—1
<, (ol + 1) logzy =ty
T2
Thus, we get

M) = yllog )" { wm * On () + O (_Wx 2 ) }

for i >0,0< k< B.

Estimation of Ey(x,y)

Ex(o.y) = /<S _ 1)N+1KW(15
r
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We observe that

T+ s _ S Tty T4y
( y) ‘ — / us—l du S / ua—l du
S x X
_w|TY (@) —af
o, o
U—lyo.
< < 27y
Therefore, for r = -——,
ogx

_ 1
log x

Bu(eg) < [T — )Ny do

1
5+n

+

T A 14+re® 14ret? A
/ (TGZQ)N—H_H (z+ y)l T v re?i do
rev

—Tr

1

1— 1
i e N+l—k _(1—o)losx
<<W[ {(1—U)loggj} e~ (1=0)logz g

+/ |r|N+1_'€x’"C°S€yr do

log @

Yy 2 N+1—k _—u du N+2—k
< (log x)N“—”/ " c log x o
Yy Yy
— T (1 +|N — _—
< (log z)N+2-+ ( +| KD + (log x)N+2—+

(CL?N + 1)N+1

< y(logz)*! (log )71

uniformly for x >y > 2, N > 0 and 0 < k < B where a; > 0 and the implied

constant depends only on B. Inserting all these estimates, we get
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where

Ly Z VN (ky w) (a7N—|—1)N+1 oy (ENA N
(log z)! T log x '

=

(This constant a7 is denoted as a; in the statement of the theorem.)

2.3.3 Treatment of I; and IlR

Note that

so that

A
G(s;k,w)| < M (7] + 1)max{6(1_a)’0} (log (I7] + 1)) (s =0 +ir),

<M (7] + 1)g <10g (I7] + 1)>A

1
‘g (§+n+z’7;n,w)
< M.2% (log 294

< M.2%44if || < 28

In o > 0, {(s) admits an analytic continuation as a single-valued function having its
only singularity at s = 1, which is a simple pole and one has the representation (in

o>0):
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Thus,

<20

‘C <%+77+i7')

for |7| <23, n > 0 be any small positive constant. For x > 0,

‘C <%+77+@'T)H

< 26%

For w € C,
1C(1 420+ 2im) ] <[¢(1 + 20+ 2im) | ™ < (¢(1 4+ )™

where |7| < 23 and ag is an effective constant.

Hence,

S M28§4A261£ (C(]- + 77))@8|w|

(3o
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and

1
Il +|1 < o
2m

23 1 . 1 .
1 +ntir +n+er
/ f(—+?7+z'7) [z 1) o idr
_93 2 3 +n+ar

1 ag|w| 2 13%4_17_13/
< — M2%449%% (¢(1 4 n))™® / 7 dr
- 27 (C( 77)) _23|%+n+i7‘

85 f Aeybr ag|w| 2ty
< M2 (C(1+) " T
2

y
<Lapon M——
x2="

uniformly for 0 < k < B, |w| < B.

2.3.4 Estimation of the integral I,

e L[ gty

= — ds
27t Jr, S

Recall that

F(s) == G(s; m,w)((s)7¢(25) "

infg,%+n:a§a§1—bﬁﬁf0rte[[ﬁ 2U] and 0 < &, |w| < B. Also,
(z+y) —a°

<z ly,

G(s;k,w)| < M (7] + 1)max{6(1_0)’0} (log (|| + 1))A where s = o + iT,

¢(2s)7| < 1.

For & <|r| <2U, we have

‘C(ﬁj +i7)‘ < loglog U
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when [} is near to the left of the line o =1 and
log U
[¢(8; +im)| < emormstew

when [} is away from the line o =1 and closer to the line o = % from its right.
The width of Vj is < H, R(V}) = 85, U; —2H < 3(V;) < U; +2H, H < azloglogU
and

Fls) < MU (log(U + 1)) ¢ metost

The contribution of the vertical path V; to I is

| (V)] =

RS /V FlolEry =,

21 S

< MU°FD (log(U + 1))A €% ToxtosT iy H

g 1_6; aok log U A
<< My ? e 9 loglog U (log(U + 1)) H

v\
log U
A <_> "t (log U) !
xr

1-82
5 J
a1o loloﬁ)UU z
<K My e"'9Toglog .
T
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Using Hy < U and Hy < logT, we get

1 S _ .8
‘]2 Vo‘ = /]:(S)Mds
Vo

omi S

< MH* %) (log(Hy + 1)) e metost 1% 1y H,
1-8;
Ul og
< My <—> PP Togtog T (log(U + 1))A Hy
T
1-8;
U og
< My (—) £ Togtos T (log U)*(log T)
T

1-85
é
« My(logT)e it <Z> |

T

Thus,

*

1-8
‘[ | <L a.Bne My(logT)e @10 o5 Tog T @ for j=0,1,2,.. ﬂ—i—l
2 »T15€ T )y Sy 2H

Let f* = max{3;, ;1 }. Then in h;(top), a <o < g™ and|7| = U; + H — e < 2U.

The contribution of the horizontal path h; to I is

(x+y)* —a°
I( = —
| 2 | 27rz/h Fls) 5 °
/8** .
< [ MU (log(U + 1))* ¢ meter 2oy do

A

<<My ( ) 1R TogTog T (log(U—l— )) do

5**
e [ ()
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Thus,

‘]2(}%‘)} <A,Bne My e“l%gilg]rf/

67

ook l-0o
(e d for j =0,1,2 U—i—l
- o rj=0,1, Y, .

Analogous estimate also applies for the horizontal pieces hq ;.

Let o be any fixed constant satisfying % +n < a < 1-—n with  being any arbitrarily
small fixed positive constant. Assume that |£| = 0. We choose a partition of the

interval o, 1] namely
a=ap<a < - <o <=1 with a; — a1 <e.

The number of j-values for which 3} € [a;_1, o] is bounded by N(ay_1,2U). Therefore,
on the dyadic t—width U <t < 2U, the vertical bits and the horizontal bits contribute

to the integral I, a quantity which is

‘0(1—2)‘ < Z {|[2(V})‘ +‘[2(hj)}}

J

log U * U§ 17ﬁ; 6** U6 e
<La,Bne My(log T)e oeiosT Z <?> i /a <?> v

J

log U 1_00 Ud e
<La,Bye My(log T')e " oeiosT / — dN*(a,2U)

«

where N*(0,U) = Z* 1. Note that we have presumed here that z > T°. We also
o<B;,
|’Yj|§U

observe that our choice of x made later agrees with this presumption.
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Thus,

U<5

X

1—o0 (176 1o 19
+/ — log [ — || N*(0,2U) do
N x x

1—-a
<L A.Bmes My(log T)e“lolola(‘)igff —) N(a,20)

1—00 U5 1—0
+logT/ — N(o,2U) do

X

1—0
|C(I2)| < 4,8, My(log T)eaw“)?lg"gl] < ) N*(o,2U)

Here, 0¢g = 0¢(T) := log?ﬁ. According to our assumption |E| = 0, i.e., for 0 > 1 — oy,

((s) # 0. Therefore, N*(¢,2U) < N(o,2U). From [20], it is known that
N(o,T) < T3 (1-0) (log T)*

for % <o <1and T > 2. Hence,

l—«
5
¢(Iy) < My(log T)e" “Tstor (U_> U (log T)"
x
1—0o
1—09 U(S
+ logT/ (—) Usi-o) (log T)* do
o x
l—«
0 Ul
<< My(log T)ealo lolgigU (_) U%(l—a) (].Og T)44
x

1—og U5+% I=o
+ (log T)46/ do
o x
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12
Uts o

2

—0
Note that as a function of o, ( ) is monotonic in [, 1 — 22| and hence it

attains maximum at its extremities. Therefore,

o sz l—a sz 0]
¢(Is) < My(log T)e™ meosm <U 5) (logT)46+<U 5) (log T)*

X 5+Q 11—« 5_’_2 o0
< My e‘“oﬁ(logT)47 (U ’ ) + (U i )

and

log T T5+6+% o T(S-&-e-i—% 70
L < Z c(ly) € My e''ioglosT . + .

U=2t,

log T
log 2 zlzL

since Hy < U < T'. For the sake of convenience, we have multiplied the first term in
the curly bracket by 70~ and the second term by T°.

A similar estimate holds for I, of course on the assumption that |£| = 0.

2.3.5 Case |€] > 1

One observes that the number of exceptional zeros is

IE] == N(1 —00,T)
< T%’O(log )"

C*logT

<< ¢ loglogT

<T*
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for T' > Tqy (T sufficiently large).

Recall that
F(s) = G(s;k,w)C(s)"¢(25)7",

1 C*

— =a<o<l———— <7
2+77 “=7= loglogU_ﬁj’e’

max{8(1—c),0} A .
G(s;k,w) < M (7] +1) (log(]7'| +1)> where s = 0 + i1 and

{C(s)}'i < (|7'| + 1)"1'{(1_0) log (|7’| + 1) with n; < %

The contribution of the vertical path Vj. pertaining to an exceptional zero ;. is

(V)| < MUPO=P5e) (log(U + 1)) * 2%ty HUM =P log(U + 1)

A+1

< MUms+)A=5;,) (log(U + 1)) yHaxlie !

< MUmAHIA=5i) (log(U + 1))AJr2 yaiiet,

Similarly,

[Ba(Va)| < MHG" 5 (10g T) A2y

Therefore,

|IQ (Vie) } < MUms+1=55.) (log T)A+2yx6a*\e_1

for j =0,1,2,..., 52 + 1.
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Similarly, the horizontal path h;. contributes to I,

*

B .
a(hio)| < My [ U log T2 do

«

ﬁ*
< My/ U(anrJ)(lfU)(lOgT)AJerafl do

WlthOéSO'SﬁJ andl lglogUSﬁ;,e'

Thus in the case of exceptional set £ being non—empty, we obtain as before

Um Kk+0

X

1 U”]l’i'f'd 1—0o
+ (logT)/ " N (0,2U) do

11—«
U771f€+5+e Uum K+0+e€
< My(log )"+ (—) + (—)

T i

l—«
ce(I2) < My(log T)"**? ( ) N (o, 2U)

where N} (o,U) := > 1. Thus, Ni(o,U) < |€] < U°. Note that we have made
o<p¥

j,e’

<U

|’Yj e
the presumption here that x > T°*"* We can observe that our choice of x made

later agrees with this presumption.

Therefore,

-«
Tmn+5+e Tnm+6+e
I < Z (1) < My(log T)**t* <—> + <—)

x x
U=2.,

log T
Togz 2121

A similar estimate also holds for I5%.
We observe that

N*(0,2U) = Ng(0,2U) + Ng(o,20).
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Thus we get in any case whether |E] =0 or || > 1,

. sretiz 1T e iz ) 70
I < My "t witot (T > +<T 5)

T T

l—«
T7715+5+€ Tmlﬁ_(H_E
+ My(log T)* (—) + (—)

xz T

A similar estimate holds for I£. Thus,

log T T‘H‘E"‘% “
L+ 17+ I+ 1 <a By M;Ln—FMy 1 Toglog T < .
2

T R+S+e e To+etr 2\ 7 Thto+e
] + SN [e——
x x x

2.3.6 Casel: If K < 51—2
m

11—«
o T(;-‘,—E—‘,—E
]1+11R—|-12+[§<<M y_ +Myealllolgl% < 5

1
x2~"

<T5+e+152 ) 70 <T5+e+152 )
+ +
T T
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We choose T such that TT<T% ~ 21710 5o that

L+ IR+ L+ I < M- ~+ My 12 Tostons {x—l‘k(l““) + 100 a:‘“k}
r2
log =

< My e ™) 5500w

for sufficiently large x > xy(e, k, A).

From the error term in the Perron’s formula,

1+¢€ 1 _ 1-10e
xT <o CTERE 0t

_1-10e
130 > 7 6+6+%
5 — 50e

9>1—- —
- 50 + be + 12
6>55+556+7

50+ be+12°

2.3.7 Case 2: If Kk > %

log T T k+0+e
Il—|—]fz+[2+IQR<<M EJ”—FMyeanW <—>
xr2 x

Tm K+d+¢€ o0 Tm K+0+¢€
| —] +|—
T T
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We choose T such that Tmrtot+e ~ 110 g4 that

log x
LA I+ I+ If < M 4 My otz (g5 4 gm0 4 gm10c)
r2
log =

<< My 6_a15(6) loglog @

for sufficiently large x > xy(e, k, A).

From the error term in the Perron’s formula,

1+¢ 1—10e
x <<:E1+E_mn+5+e<<x6+€

T
1—-10¢

xe >> x - 771H+6+6

02771/414-(5—1%—116.
mK+0+¢€

This completes the proof of Theorem 2.1.1.

2.4 Consequences of Halasz—Turan theo-

reim

Theorem 2.4.1. [17] Assume the Lindeldf hypothesis for ((s) in the form

1
‘C (5 + Zt)

for all sufficiently small positive numbers ny. Then the inequality

<tB  for t>t

3 1
N (Z + 27722,7’) < T3
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holds for T > t.

For a more general theorem along the same flavour, see Theorem 1.3 and Theorem 1.4
of [51].

Therefore, if one assumes Lindel6f hypothesis in the form given in the above theorem,

1
then by taking a = % + 275 in the earlier arguments, we find that

Il + IF + I2 + [21% <<A,B,5,T) Mxly—a
TR Ry e BRI+
+ My (log T)A+1O - s + T

1
Since for o > % + 275, under Lindelof hypothesis,

3 1
N(o,T) < N (z . 2n5,T)

< T%"

3n9(1—0)
(1-0)

3n9(1—0)

< T a-8%,

Here,

*

6* = maxﬁ% + 2 1
i 7 2(logT)s(loglog T)s

*

c
2(log T)3 (loglog T')

<1-—

follows from Korobov—Vinogradov’s zero-free region for {(s). (See [33], [58].)
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From convexity principle for % <o <1, we find that

((o+it) < 2 4 (logt)z'™

< 12509 (log t)

by choosing z = 27

Now we choose

>k

c
2(log T3 (loglog T')3 (

T2 = 1-p%)

so that n? < e for large T and

L+Tt+ L+ IR« M—Y
Ii_27722
1—a
T2H6+6+3E T2I{€+6+3E
+ My (log T)**1° (T) + (—
T

By choosing T2%+9+3¢ ~, 21710¢ we observe that

L+IF+ L+ IR« M . Y 4 My (log z)A*10 {x*“k“*“) + m*lof} .
xa 2

N o=

Hence under the assumption of Lindelof hypothesis, the above theorem holds with

0 — 1+ 2ke+ 13¢
J+2ke+ 3¢

0(k,0) =

One observes that % < % when 1 < < 2 and 5% < 1 for any positive 6. One needs

to assume that 6 > 1 so that the numerator is positive.
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1
Applying the above contour with o = % + 2n3 (assuming Lindel6f hypothesis in the

stated form), we obtain

L< Y

log T
log 2 ZlZL

T2n2n+5 @
< My (log T)**3 <—> N*(a, T)

2n2m+6
+ (log T) N*(0,T) do
T217 K40 T2n K+90
< My (log T)A*10T3n2 ( - ) + ( i )

< My T3n2+€ < T2772 K+0 ) ( T2r]2 K40

Here N**(o,T) has its relevant meaning with the current context of a.

Choose 17y = € and T such that T275r+0 = z1-20¢ Thep,

12 < My T4€{$_206(1_a) + x—QOE}

< My x4€{x—56+406% +ZL‘_2OE}-
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Hence, we can also take

1 — 20¢

9(/{,5) :1—m
23K+ 0 — 14 20e

B 23Kk + 90
B 22k + 5 — 1 + 20¢
- 2€2Kk + 0 )

Again of course, one needs to assume that § > 1. We observe that the earlier

unconditional estimate for 0(k, ) (relevant when k < %) is 5%‘1—72 + €; which may be

compared with the Lindel6f hypothesis conditional estimate 5%51 + €5. Clearly,

50 + 7 >(5—1
50 + 12 )

for any 6 > 0. (However, our relevance here is § > 1.)
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CHAPTER

THREE

GODEMENT-JACQUET L-FUNCTION

3.1 Introduction

Definition 3.1.1. Maass form
Let n > 2, and let v = (vy,v2,...,v,_1) € C" 1. A Maass form [14] for SL(n,Z) of

type v is a smooth function f € L*(SL(n,Z)\H™) which satisfies
1. f(yz) = f(2), for ally € SL(n,Z),z € H",
2. Df(z) = Apf(z), for all D € ©" where D" is the center of the universal

enveloping algebra of gl(n,R) and gl(n,R) is the Lie algebra of GL(n,R),

3. S f(uz) du =0,
(SL(n,Z)NU)\U
for all upper triangular groups U of the form

( )

47



with vy + 19 + -+ 4+ 1, = n. Here, I, denotes the r x r identity matriz, and

denotes arbitrary real entries.

A Hecke-Maass form is a Maass form which is an eigenvector for the Hecke operators
algebra.
Let f(z) be a Hecke-Maass form of type v = (v1,vs,...,v,_1) € C*! for SL(n,Z).

Then it has the Fourier expansion

oo oo

A(my,...,Mp_1
=Y oy oy A

n—1 Hnod)
YEUn—1(Z)\SL(n—1,Z) mi=1  mn_2=1mpn_17#0 Hj=1|mj‘ ’

ol
xW; | M- 2,0,%) 4 mao1 |,
1 maei ]
where
mq...My_9 -|mn_1|
M = mimso )
my
1
A(ml,...,mn_l)EC, A(l,,l)zl,
1 Un—1
1 U9 *
. . 2mi(ur 4 up—2+eun—
1/}1’“.’176 . . —e i (uq 2+e€ 1)7
1 Ui
1
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U,—1(Z) denotes the group of (n — 1) x (n — 1) upper triangular matrices with 1s on
the diagonal and an integer entry above the diagonal and W is the Jacquet Whittaker

function.

Definition 3.1.2. Dual Maass form

If f(2) is a Maass form of type (vi,...,v,_1) € C"L, then

f(z) = flw- ()" w),

is a Maass form of type (v,_1,...,v1) for SL(n,Z) called the dual Maass form. If
A(my,...,mpu_1) is the (my, ..., my,_1)—Fourier coefficient of f, then A(my_1,...,my)

is the corresponding Fourier coefficient of f.

We note that the Fourier coefficients A(my, ..., m,_1) satisfy the multiplicative rela-
tions
Almimy,....mup_ml )= A(m,...,m,_1)- A(mi,...,m) ),

if
/ /
(mi...mp_1,my.omy,_q) =1,
miCn, MaCy Mp—-1Cp—2

Alm, 1, DA, ... ma_t) = 3 A( : ., nmite2 )

n C1 Ca Cn—1

[T ¢g=m

=1

cilmy,eglmg,....cp_1lmy_q
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and

Definition 3.1.3. Godement—Jacquet L-function
The Godement-Jacquet L-function Ls(s) [26] attached to f is defined for R(s) > 1 by

A -
Lf(S) _ Z <m’?17;3 71) _ HH(l _ Oép,ip_s)_l,
m=1 p i=1

where {a,;}, 1 <1i <n are the complex roots of the monic polynomial

7j—1 terms

n—1
. N .
X" (=1YAQ,.. Lp .., DX" 4+ (-1)" € C[X], and
j=1

—
A(l,...,Lp1,...,1) = Z Qpiy - - Qpii s for 1<j<n-—1.

1<y <<ij<n

L(s) satisfies the functional equation:

where f is the Dual Maass form.

In the case of Godement—Jacquet L-function, Yujiao Jiang and Guangshi Lii [26]

have studied cancellation on the exponential sum > u(m)A(m, 1)e* ™ related to
m<N
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SL(3,7Z) where 0 € R .

Throughout the chapter, we assume that f is self dual i.e., f: f.

€, €1 and n always denote any small positive constants.

If N¢(T') denotes the number of zeros of Ly(s) in the rectangle mentioned below, then
from the functional equation and the argument principle of complex function theory

we have,

N¢(T) ~ c(n)T'logT,

where ¢(n) is a non zero constant depending only on the degree n of L(s).

—14+2%T 24 2T

—1+4+4T 24T

(i) The generalized Ramanujan conjecture:

It asserts that

where d,,(m) is the number of representations of m as the product of n natural numbers.

The current best estimates are due to Kim and Sarnak [31] for 2 < n < 4 and Luo,
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Rudnick and Sarnak [36, 37] for n > 5

7

{A(m)| < mpsid(m),

|A(m, 1)| < miids(m),
|A(m, 1,1)| < m#=dy(m),

|A(m,1,...,1)| < m%_n%ﬂdn(m).

We note that the generalized Ramanujan conjecture is equivalent to
‘am‘zl V primes p and i =1,2,...,n.

Other estimates are equivalent to

‘ap,l-| < p¥ V primes p and i = 1,2,...,n where

7 5 9 1 1
Oy == — 03 == — 0y = — 0, == — >5
2T T T > =Y

(ii) Ramanujan’s generalized weak conjecture:
We formulate this conjecture as:
For n > 2, the inequality

€1

1_
|ap,i‘ S p4

holds for some small €; > 0, for every prime p and for i = 1,2,... n. Of course, this

weak conjecture holds good for n = 2. For n > 3, this conjecture is still open.
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Taking the logarithmic derivative of L¢(s), we have

L > m = A(m)ag(m
_L_;(S) :ZA];,ES):ZA( 2nsf( )

for any integer r > 1.

In particular,

ag(p) = Zam =A(p,1,...,1).
i=1

(iii) Rudnick—Sarnak conjecture:

For any fixed integer r > 2,

slas@)l Goep?

T
> p

We know that this conjecture is true for n < 4. (See [32, 49].)

(iv) Riemann hypothesis for L;(s):
It asserts that L(s) # 0 in R(s) > 1.

This chapter aims to establish:

Theorem 3.1.1. [27] Ramanujan’s weak conjecture implies Rudnick—Sarnak conjec-

ture.
Remark 3.1.1. Theorem 3.1.1 is indicated in [32].
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Theorem 3.1.2. [27] Assume n > 5 be any arbitrary but fized integer. Let € be
any small positive constant and T > Ty where Ty is sufficiently large. Assume the

Rudnick-Sarnak conjecture and Riemann hypothesis for L¢(s). Then the estimate:

/QT
T

holds for % + e <09 <1— € withn being some constant satisfying 0 < n < %

L/
L (0q 4 it)

dt <jpnen T(log T)z’7
Ly

Remark 3.1.2. Since Rudnick—Sarnak conjecture is true for 2 < n < 4, Theorem 3.1.2

holds just with the assumption of Riemann hypothesis for L(s) whenever 2 < n < 4.

Remark 3.1.3. It is not difficult to see from our arguments that only assuming

Riemann Hypothesis for L¢(s), Theorem 3.1.2 can be upheld for any o satisfying

1— n+ﬂ + € < 09 <1 — € by using the bound 6, = % - n21+1 of Luo, Rudnick and
Sarnak.
It is also not difficult to see from our arguments that the generalized Ramanujan

conjecture and the Riemann hypothesis for L;(s) together imply the bound

/2T
T

to hold for any o satisfying % +e<o0p<1-—c¢

Ly

Lf (00 + it)

dt Lfne T (31)

Though we expect the bound stated in Equation 3.1 to hold unconditionally for o( in

the said range, this seems to be very hard to establish.
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3.2 Some Lemmas

Lemma 3.2.1. If f(s) is regular and

L,(S)_ZL <<b%

s—p 1

in |s— so| < (3 —b)r1, where p runs over all zeros of f(s) such that|p — so| < 2.

Proof. See Lemma « in Section 3.9 of [57] or see [45].

]

Lemma 3.2.2. Let N;(T) denote the number of zeros of L¢(s) in the region 0 < o <1,
0<t<T. Then,
Ni(T+1) = Ni(T) <, logT.

Proof. Let n(ry) denote the number of zeros of L¢(s) in the circle with centre 2 4 7'

and radius ;. By Jensen’s theorem,

3 1 21
0 T1 2 0

From the functional equation, we observe that

df —log|Ls(2+T)] .

L (2 T+ 361'9)

!Lf(s)‘ < th for —1 <o <5 where A is some fixed positive constant,
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and hence we have,

Note that

Thus we have,

Therefore,

/3 n(ry)
/03 n(;l)

log|Ly (24T +3¢")| < Alog T.
1_ &p’l _}ap’1/|

p2+it - pQ

1

p2

>1- 72

1
—1- .

p2

dri < AlogT + A < logT,

3 3
d
dry > / ”(7"1)dr1 > n(V5) > en
NGEA! v5 T1
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Hence,

Ni(T+1) = N{(T) < logT.

Lemma 3.2.3. Let a,,(m=1,2,...,N) be any set of complex numbers. Then

2

oT| N N
/ Z amm ™| dt = Z\am|2 (T +O(m)) .
T m=1 m=1

Lemma 3.2.4. Let b,, be any set of complex numbers such that Y m (|bm|)2 is

convergent. Then

2T | 2 o
/ > bum ™ dt =" |b|* (T + O(m)) .
T m=1 m=1

Proof. See [39] or [44] for Montgomery and Vaughan theorem.
[

Hereafter, Y > 10 is an arbitrary parameter depending on T which will be chosen
suitably later. Also, oq satisfies the inequality %+ € < 09 < 1—¢€ for any small positive

constant €.

Lemma 3.2.5. For % +e <09 <1—¢€, we have

Z m|Af(m)‘26_27m

m20’0

< 1
m>%(logY)2
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Proof. We have,

2m 2

Z m‘Af(m)fe_Y Z m‘Af(m)‘ze_%%

2 < 2
m=90 m=70
m>%(logY)2 m>%(logY)2
2 _m
Ag(m)|["e™¥
2 ‘ f
<Y Z ml+200 )
m>%(logY)2
Since ¥ > %(log Y)? for m > %(log Y)?, we have e¥ > YB for any large positive
constant B. Therefore,
A 2 _2m 9 A 2
3 mlAsm)[e” ¥ v T [As(m)[*
m20’0 YB m1+20'0
m>%(logY)2 m>%(logY)2
< 1.

]

Lemma 3.2.6. Assuming Rudnick-Sarnak conjecture and taking Y sufficiently large,

we have

Z }Af(—m)‘e_% < (logY)?2.

mQUO
m< ¥ (logY)?

Proof. Note that

A s (log p)?as(p)|* (log p)2as ()|’
Y T s X LMD IED D e

m<¥ (log )2 p<¥ (log )2 =2 p
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and

‘af ‘—Zam: (p, ,...,1)‘.

We have,

so o)

m<Y
_ ngu Cm

ul

I+1
1 u

From Remark 12.1.8 of [14], we have

L /IY(—Z)—Z’”S“ .

Z |A(m1>m27"'7mn71)’2 <<fY

m?ilm; 2 Mg 1<Y

Therefore,

Z‘A(m,l,...,l)ﬁﬁ Z |A(m1,m2,...,

m<Y m?f—lmg 2 <Y

Taking | = 20¢ and ¢, = ‘A(m, 1,..., 1)|2,
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By Rudnick—Sarnak conjecture and the bound }ap,i| < pP with 6, =

> (1ogp)13f(p”) k

r>2 p

converges (as in proof of Theorem 3.1.1) and in particular,

ik 2
2 T
Z Z (log p) ‘?f(p )| <1
r=2 D p
Therefore, ,
Z | 25::2‘ < (logY)%.

Lemma 3.2.7. Assume Rudnick-Sarnak conjecture. Then we have,

[Ap(m)[’

m20'0 -1

eV < Y(logY)*

2.

m< ¥ (logY)?

where Y s sufficiently large.
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Proof. We have,

Ap(m)]” o Af(m)|’
Z m20'071 e v S Z m?ao m
m< % (log Y)? m< % (log )2
Az (m)|*

m20'0

<Y(logY)” >

m<% (logY)?

< Y(logY)*

by using Lemma 3.2.6.

Lemma 3.2.8. For sufficiently large Y, we have

A S
Z }—Tr{fﬁz(‘) 6_27 < e 1.

m>%(logY)2

Proof. It m = plipl .. .p;’“, then

Uk

Jag(m)] =[as@h) . asw})

116n, 156
<npi™"...np;"
< nkFmon

where k = w(m) < oam

< and m is sufficiently large.
loglogm

We have,

4logm
< n loglogm

n2w(m)

4logn
— mloglogm

Lpe M
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and hence,

| 2

> Me‘%’": 3 Me—%ﬂ

m1+20'0 ml+20’0
m>%(log Y)2 m>%(log Y)?2
(IOg m)2n2w(m)m29n
< 2 =
m +200

m> % (logY)2
On

ermZ
<<n’6 Z m1+20'0

m>%(log Y)?2

1
Sne D T

m>%(log Y)? m

e 1.

Lemma 3.2.9. For sufficiently large Y, we get

A .
Z MCETWZO)‘&_QY«L

m> % (logY)2

Proof. From Lemma 3.2.5,

2 2
Z |—Afr§::0)‘ 6_27m < Z m—Af(m)| 6_27m < 1.
m>%(logY)2 m>%(10gY)2
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3.3 Proof of Theorem 3.1.1

Assuming |04p7i’ < p¥ with 6, < % — €1, we need to prove that for every integer n > 5

and for every integer r > 2,

It is enough to show that

i S (1ogp)22|?ff(p’")\ -

r=2 p

Using

n
ph) = Za;i and ’ozpvi‘ < pfn
i=1

we get,

r=2 p r=2 p
_ ZZ logp 2 2 210
r=2 p
< 1 00 2’!‘(%76 )
n Z 0gp) ; =
= 1
=n Z(logp Z:pgﬁm
B (1+461)
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This proves Theorem 3.1.1.

3.4 Proof of Theorem 3.1.2

/

. . . L .
First, we wish to approximate L—;(s) uniformly for % < o9 <o <o <1 when

T <t <2T. We assume throughout below the Riemann hypothesis for L¢(s).

From the work of Godement—Jacquet [13], it is known that the function L¢(s) is of

finite order in any bounded vertical strip. Hence, we can very well assume that
Li(s) < T4 = eAlosT

for —1 <o <2, T<t<2T and A some fixed positive constant.

Taking sqg = 2 + it with ¢t € R, we have

n ] —1
Ly2+it) =[] (1 - poﬁ;) .

Observe that
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because 0,, < % for n > 2.

Therefore,

which is a constant depending only on n. Therefore, Lf(2+1it) #0 V t € R.

Hence from Lemma 3.2.1, with r = 12, so = 2 +4T", f(s) = Ly(s), M = AlogT, we

obtain

= % rlp +O(log T).

|s—s0|<6

For |s — so| < 3 and so in particular for —1 < o < 2,t = T, replacing T by t in the

particular case, we obtain

Any term occurring in = ) :1/) but not in ) ﬁ is bounded and the number of
|t—|<1 |s—s0|<6
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such terms does not exceed
Ni(t+6) — Ni(t —6) < logt,

where N7 (t) is the number of zeros of Lf(s) in the region 0 <o <land0<t<T.

Thus, we get

Assume%<0<1andT§t§2T,then

Af(m) _ 1 2+i L/f
E - L I Y¥duw.
e e o f(S + w) (w) w

=<3

Note also that from the above reasoning

L _ 1
—(s) < logt on any line o # —.
L 2
Also,
L log t
L_;(S) < #g—ﬂ) + logt uniformly for — 1 <o < 2.

From Lemma 3.2.2, we observe that each interval (j, j 4+ 1) contains values of ¢ whose

distance from the ordinate of any zero exceeds 10%3‘7 there is a ¢; in any such interval

for which
/

L—f(s)<<(logt)2 where —1 <o <2andt=t,.
!
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Applying Cauchy’s residue theorem to the rectangle, we get

i—U‘i"itj

2 +it;

/2+zt /v0'+zt
27m 24it;

7 (S) + Y T(p-

—t;<y<t;

ffo'fitj -
*—U-‘y-lt] %

s)YP s,

2 — it

L w
I, L (s 4+ w)T(w)Y ™ dw

In the sum appearing on the right-hand side above, zeros p are counted with its

multiplicity if there are any multiple zeros. The integrals along the horizontal lines

tend to zero as j — oo since the gamma function decays exponentially and Y is going

to be at most a power of T only, so that

i Af<m)67$ L
ms 271

m=1

1 .
1 7—0—1—100 l/
f(s—l—w)F( )

—0—100

Ly
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p
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Note that I'(w) < e~" so that the integral on R(w) = 1 — o is

< / e~ Nog(|t 4 v| + 2)Yi_adv

2t
< / e~ og(10[t] +2)Y 1 7dv + (/ / ) ~Al og (v + 10)Y 7dv
0

<Y logT+Y 1™

<YilogT.

Note that for % <ogg<oc<o <1,
IT(p—s)| < Aye~A2h =t

uniformly for ¢ in the said range. Therefore,

Z|r —s) <Alze Aalr= fl—Alz > el

m=1m—1<y<m

The number of terms in the inner sum is
< log([t| +m) < log |t| + log(m + 1)
and hence

Z|F(p —-5)| < Z e~ 42 (log |t| + log(m + 1)) < log T,

P m=1
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ZF(,O —9)Yr ¥l <« Y2 logT.

p

Thus for % <09 <o<o0; <1, we have

Thusfor%—i—egaog1—eandT§t§2T,Weobtain

L , = Ap(m)e v
L—;(Uo—FZt) < f??lUT
m=1
Thus,
il TS At
/T L—f(ao-i-lt) dt<<f/T ZW
m=1

We note that

2
A -m
oy MweE|

moo —+it

io: Ap(m)e¥

m0'0+’it

m=1

69
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mg%(log Y)?2 m>%(log Y)?2

1 2
+ <Y§“’° log T) .

Ap(m)e™v

mo’o+it

2
dt + Y1727 T(log T).

2



and hence

2T
/,

L/
Loy +it)

e [ x Mmel T g Admed
Ly f

T meo +it Mmoo —+it
m< % (logY)2

m> % (logY)?2

+ Y20 (log T)?.

By Montgomery—Vaughan theorem (Lemmas 3.2.3 and 3.2.4) and Lemma 3.2.5, we
get

2TL
/

, 2
-f
Ly

(oo +it)| dt < Z M (T + O(m))

200
m
m< ¥ (logY)?

+ Z ’Af(m” 67Tm (T+O(m)) +Y1—200T(10gT)2

2 _2m 2 _2m
< T Z ‘Af(m)| e N Z m‘Af(m)‘ e

m20’0 m20'0
m<¥ (log ¥)? m<¥ (log V)2
[Ag(m)]"e ¥ [Ar(m)[e
+ T Z m?ao + Z m m200
m>%(log Y)? m>%(log Y)2

+ Y1720 (log T')?.

By Lemmas 3.2.6, 3.2.7, 3.2.8 and 3.2.9, we obtain

2
2T | 1/
/ &<1+e+it>

dt e T(logY)? +Y(logY)* + Y72 (log T)>.
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/

We choose Y = exp{(log T)"} with any 7 satisfying 0 < n < % so that we obtain
L (59 +it)

ZTL
J

dt <fpen T(logT).
Ly

This proves Theorem 3.1.2.
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CHAPTER

FOUR

RANKIN-SELBERG L-FUNCTION RELATED TO THE

GODEMENT-JACQUET L-FUNCTION

4.1 Introduction

Definition 4.1.1. [14] Forn > 2, let f,g be two Maass forms for SL(n,Z) of type

vy, v, € C"1) respectively, with Fourier expansions:

oo [e.e]

Almaq, ..., Mp—1
f(z) = Z T Z Z ( j(n—j))

n—1 =
YEUp-1(Z)\SL(n—1,Z) m1=1 Mn—2=1mp_17#0 Hj:1|mj‘ ?

~
x W; (M( )Z,Uf,@bl ..... 17%1),
1 Mp—1
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o(2) = Yooy y B

YEUn—1(Z)\SL(n—1,Z) m1=1 Mn—2=1mp_17#0 |m]‘

8
xW; | M- 2, Vg, Yy 1, Mn=1

Let s € C. Then the Rankin-Selberg L-function, denoted as Lgy,(s), is defined by

.. B _
fog ns Z Z mla >mn 711)2 (mb , My, 1)7

i my )

mi1=1 Mp—1=1 1

which converges absolutely provided R(s) is sufficiently large.

In the special case g = f, we have

2

[es) [eS)

L >y A )

f><f 7’LS n m )s
mi=1 Mp_1= 1 oo Hlin—1

for R(s) > 1

Let E,(z) denote the minimal parabolic Eisenstein series. The L-function associated

to E, (see [14, Equation (10.8.5)]) is computed as

a
m
(0.9} o o
—S
LEv(z):E - E E mey -« Cp_1) Jyo1
Cn—
c1=1 cpn—1=1m=1 7;11

From [14, Theorem 10.8.6], there exist functions A; : C"~* — C satisfying i (\;(v)) = 0
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if R(v;) = £(i = 1,...,n — 1) such that the L-function associated to E, is just a
product of shifted Riemann zeta functions of the form

Le,(2) =[] ¢ (s = M) .

=1

We write

Liy(s) = Z bf::) for R(s) > 1.

Also, s = 0 4 it and t is sufficiently large.

In [28], we proved the following two theorems. Theorem 4.1.1 is an unconditional

result while Theorem 4.1.2 is a conditional result.

Theorem 4.1.1. [28] Let n > 3 be an arbitrary but fized integer. For k > ko(n) =

2
1
% +n, we have

b(m m\ " Cx
S (1-F) = g oalon)

m<x

Here C' is an effective constant depending only on f.

Hypothesis 4.1.1. (Coefficient Growth Hypothesis)

For every ¢ > 0,

where m = m} 'm5 ™% .. m,_,.

Remark 4.1.1. In some sense, this is slightly weaker than the generalized Ramanujan

5



conjecture namely,

|Oép,i| = 1,

for every prime p and ¢t = 1,2,...,n.

Hypothesis 4.1.2. (Lindelof Hypothesis for Ly ¢(s))

For every ¢ > 0 and for every o > %, the inequality
Ly s(o+it) < (Jt] +10)°

holds for sufficiently large ¢.

Theorem 4.1.2. [28] Assume Hypotheses 4.1.1 and 4.1.2. Let n > 3 be any arbitrary

but fixed integer, then the asymptotic formula

b(m) m\" Cz 1.,
2 (k—' (1 B E) = oo T O™

m<x

holds for every positive integer k > 1.

The aim of this chapter is twofold. First, we want to improve the range of k in
Theorem 4.1.1 with a better error term. Then, by a reduction argument, we will
obtain an unconditional result, namely an asymptotic formula for the sum > b(m).

m<zx

Thus, we prove:

Theorem 4.1.3. [29] Let n > 3 be an arbitrary but fized integer. For k > ki(n) =

["72} + 1, we have




Here C' is an effective constant depending only on f.

Theorem 4.1.4. [29] For sufficiently large x, we have

> blm) = s+ 0 (75

where ky = ki(n) = [%} + 1.

Remark 4.1.2. When proving Theorem 4.1.2 in [28], we assumed hypotheses 4.1.1
and 4.1.2. From Lemma 4.3.1, we can see that Hypothesis 4.1.1 is redundant. Just

with the assumption of Hypothesis 4.1.2 for k£ = 1, we have

X

3 b(m) (1 . T) - % +O(x2).

m<x
Using Lemma 4.3.5, we observe that conditionally we get
> " b(m) = Cz + O(x1™).
m<x

Though the error term obtained in Theorem 4.1.4 is weaker than what is expected, it

is an unconditional result.

Remark 4.1.3. We note that the reduction process in Lemma 4.3.5 originated in [21]
due to Ingham. This idea has been successfully exploited under various circumstances

by several researchers. For instance, see [1, 2, 3].

Remark 4.1.4. Although the error term derived in Theorem 4.1.4 may not match

the level of precision found in the results of H. Lao [35], it’s important to note that

7



our approach to addressing this problem differs significantly in the sense that we could
get as a byproduct an unconditional asymptotic formula using a reduction argument

from the k-th Riesz mean.

Throughout the chapter, we assume that f is a self-dual Hecke-Maass form for SL(n,Z)

and € is any small positive constant.

4.2 Preliminaries

In this section, we present some necessary properties of the Rankin—Selberg L-function

which are used later.

4.2.1 FEuler Product

Fix n > 2. Let f, g be two Maass forms for SL(n,Z) with Euler products

Lf(s)ZZM HH —apip) 7Y,

m=1 p =1

n

Z B( m,l,...,l) :HH(l —5p7¢p_s)_1,

m= p =1

[y

then Ly (s) will have an Euler product of the form:

Lyxg(s) H H H — il p ")

p 1=17j5=1
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4.2.2 Functional Equation

For n > 2, let f, g be two Maass forms of types vy, v, for SL(n,Z) whose associated

L-functions Ly, L, satisfy the functional equations:

= f(l _8)7
Ag(s) _ HTr—s-M (vg)F (S — ); (Ug)) Lg(s)
:Ag(]_ _8>a

where f,§ are the Dual Maass forms.

Then the Rankin-Selberg L-function Ly ,(s) has a meromorphic continuation to all
s € C with at most a simple pole at s = 1 with residue proportional to (f, g), the

Petersson inner product of f with g. Lj.,(s) satisfies the functional equation:

—stAipHNa) s — N\(vg) — Aj(v
Af><g HHT(- 2 I ( f2 J g) fog(s)

=1 j=1

= Afxg(l — S).

From Equation (10.8.5) and Remark 10.8.7 of [14], the powers of 7 take the much

simpler form:

n —s+X;(v) —ns - s+ (wp)+A; (vg) —n?s
| | T 2 =TT 2 , | | | |’]T 2 =TT 2 .
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Hence, we get

n n

Afxg =T ZSHHP<S— ;—)\]<Ug)> fog(s)

=1 5=1

= Af><§<1 — 8).

We take g = f and f to be a self-dual Maass form of type v so that

Afo 71-72 s HHF (S— /\ (U>> fof(s)

=1

= Apxp(1 =),

4.2.3 Bound for the conversion factor

Let f be a self-dual Hecke-Maass form. Then we have the functional equation

Apsp(s) = Apxy(1 = s).

If we write Lyyr(s) = Xrxs($)Lyxr(1 — ), then the conversion factor x s« r(s) can be

written as
s LT (1—s—AL<;>—AJ<v>)
. i=1j=1
Xrxf(s) = — oo ,
fl 11 (=)
i=1j=1
n2 " - 1—s—X(v)—=\;
— sy exp logT" ( i év) J(U>>
i=1 j=1
n n . )\Z -
X exp Z logI’ <8 (U; J(U)>
i=1 j=1



From [21], we know that the following asymptotic formula for the Gamma function,

1 1 1
logl'(z + ) = (z+a—§) logz—z+§log27r—|—0(—>

E

holds uniformly in any fixed angle ‘arg(z)‘ <7 — ¢ < m and any bounded range of «
as|z| = 0.

Evaluating appropriately, we get

o T <1 — s )\,-;v) - Aj(v)> _ (—5 - Ai(g) - Aj(v)> log (—75)

+§+%10g27r+0 <|5i|) ,
o T (s — Ai(v) — Mv)) _ <s —1- /\iév) - )\J(v)) g <_>
1

Thus,
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Therefore,

Xrxf(S)

and hence,

ol <|(5) " (5)

—n’c  n’-n
<[s|7= |s| 2

<[t Go).

This bound is true in any fixed vertical strip a < o < b and sufficiently large ¢.

Hereafter, throughout the chapter, we assume n > 3.

4.3 Some Lemmas

Lemma 4.3.1. For R(s) > 1+¢€, Ly s(s) is absolutely convergent.

Proof. The Rankin-Selberg L-function Ly (s) has a meromorphic continuation to

all s € C with a simple pole at s = 1. It is easy to see that

> |A m ,m )|2
Lyes(s) = C(ns Z Z 1,-- n—1 :
mi=1 Mp—1= 1 -mn—l)

implies that the coefficients b(m) are non-negative. Landau’s lemma [7, Page 115]

asserts that a Dirichlet series with non-negative coefficients must be absolutely con-
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vergent up to its first pole. Hence, Ly ¢(s) is absolutely convergent in the half-plane

R(s) >1+e.

Lemma 4.3.2. For sufficiently large t, we have

n? e—o
Lyws(s) < (|t +10) 74

uniformly for —e < o < 1+e.

Proof. We prove along the same lines as in [50, Lemma 3.5]. From Lemma 4.3.1, we
have

|Lpcs(14e+it)| <1,

and by the functional equation

|Lf><f(_E + Zt)| = |Xf><f(—€ + it)Lfo(l + € — Zt)}

< (It + 10)" 7).

Now we apply the maximum modulus principle to the function
F(w) = fof(w)e(w’s)QXw’S

in the rectangle
so that

|Lpxs(s)| < Vi+ Vo + Hy + Ho.

Here Vi, V5 are the contributions from the vertical lines and H;, Hs are the contribu-

tions from the horizontal lines.
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—e+i (t+ (logt)?) 1+e+i(t+ (logt)?)

Va : Vi

—e—i—i(t— (logt)z) 1 +€+z’(t— (logt)Z)

H,
Let w=wu+iv and s = o +it. As

exp{(w — 5)°} = exp{(u— o) — (v~ 1)* + 2i(u— o) (v — 1)}
exp{(w — )} = exp{(u—0)? — (v — 1)}

< exp{—(log?)’},
we see that exp{(w — s)?} decays exponentially for large ¢ on horizontal lines. Thus,

Hi<1l H<1, V; « Xitee

Vy < ([t +10)" () x e

Therefore,

|Lpss(s)] < X177 4 ([t] + 10)”2(%+€) X0 .

We choose X such that

X1 o (1t + 10)" G x-eo

n2

e, X ~ (Jt|+10) %
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so that

n2 .
|Lys(s)| < (|t +10) 7

This completes the proof of this lemma.

O
Lemma 4.3.3. For 0 < R(s) <1+ ¢, we have uniformly
n? .
Lyvp(s) < (Jt|+10) 2.
Proof. Follows from Lemma 4.3.2.
O

Lemma 4.3.4. Let ¢ and y be any positive real numbers and T is sufficiently large.

Then we have,

k e
—— y L EOs) o) ez
- s =
omi J,_; Y1), (st k
m r s(s ) (s ) O(’]"Lk) N<y<1
Proof. See [52, Lemma 3.2].
[
Remark 4.3.1. Let
1 x
B(z) = —/ A(t) dt
T J1

If we know the asymptotic formula for A(z), we can find the asymptotic relation for
B(zx). But the converse is not true. However, if A(x) is monotonic, then using the

asymptotic formula for B(x), we can deduce the asymptotic relation for A(z).
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Lemma 4.3.5. Let A(x) be a monotonically increasing function such that

B(z) = i xA(t) dt
If B(x):cx—i-O(Efx)),
then A(x) =2cx + O ( ;(x)) .
Proof. Since
B(z) = é / " A() dt,

we have

z+d
(x+0)B(x +0) —zB(z) = / A(t) dt > A(x)d

where 6 = o(z) is chosen later. Thus

Alz) < <1+§) (CCHCMO (ﬁ?@)) _§<Cx+0 <E?x>>>

E(z) )

2 2 2
:C$+05+O(L)+ﬂ+cx+0< r >_2+

5 v
—20I‘+C +O m .

The parameter ¢ is chosen such that

dE(x) <9
ie.,
f—
E(x)
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Thus, we get

Alx cx < )
(x) <2 +< E(x))

Also,
©B(x) — (z — §)Blz — 6) = / A(t) dt < A(2)3

9 (405 + (5 (o-0+0(s)

We choose § so that

ie.,

Thus, we get

4.4 Proof of Theorem 4.1.3

Let y=2% >1and ¢ =1+ € in Lemma 4.3.4 so that

xZ
m
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1 k 1 1+eiT z)*8 4k plte
S — () ds+0 | -~ .
k! x)  2mi lpeir S(s+1)...(s+k) Thmlite

Hence
k 1tetiT z)\$
3 b(ﬂ‘%) (1 B @) s b(m) / () i
= k! x — 210 Jipeir S(s+1)...(s+k)
4k$1+6 b(m)
+ O Tk: m1+€

m<x
_ L 1+e+iT fof(s)xs ds N O 4k.T1+6 ‘
2710 Jiyeir S(s+1)...(s+k) Tk

Summation and integral can be interchanged because of absolute convergence. Now

we move the line of integration to R(s) = 0.

oI 1+ e+T

—iT 14+¢e—1T

By Cauchy’s residue theorem,

1 /1+e+zT / / /1+e T
27‘” 14+e—iT 1+e+iT T

Lyyy(s)a®
s(s+1)...(s+k)
— lim (8—1)Lf><f(8)(£8

s~>1$($+1)...(8+k>

Lyxys(s)z®
s(s+1)...(s+k)

ds

= Resg—1

where C' = linr{(s — 1)Ly s(s), depends on f.
5—
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Hence,

| [lteHT Lixs(s)a?
270 Jipeir S(s+1)...(s+ k)

B C«x + 1 /1+6+iT+/iT+/—iT
C(k+ 1) 2mi | Jip —iT JigeiT

ds

Lyys(s)z®

Srl).. s R

Horizontal line contributions are in absolute value:

L /1+e+iT fof<s)xs
T s(s+1)...(s+k)

271
1 /1+6 fof(a + Z'T)anriT d
- o2
2mi Jo  (0+iT)(o+iT+1)...(c +iT + k)

iy /1+6|fof(a—|—iT)|x"
=2 J, Tk+1

ds

do

2
< T7_k_1+61‘1+6.

The left vertical line contribution is:

1 /iT Lpxg(s)® 1/ Lpxg(s)®
<o, s(

i ) s ).. s+ k) 2mi st1)...(s+k)

-+ L fof(s)xs ds.
2mi Jwdist. s(s+1)... (s + k)
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We note that

1 / fof(s)xs d
e S
2mi Juisto. (s +1)... (s + k)

1 / Lyxs(it)z" .
— — - idt
210 Jyy<yy (@t)(it + 1) ... (it + k)

1 t§*1+6

< dt
21 Jy<e,  F!
<, 1
and
1 / Lyxs(s)z y
— 5
2mi Jrwo<isr, s(s+1)... (s + k)
1 / Ly (it)a" .
~ 15 nYE , idt
2m to<|t|<T (Zt) (lt + 1) - (Zt + k‘)
2
1 tLJre
= o et
27 Jyo<pp<r T
< T ke
Hence,
1 Lyg(s)at Cx

2
ds = ——— T”ffkflﬂ 1+e
37 e oA DR Gr O

+ O(T§*k+€) + 0,(1).
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This implies that

k!

x k+1)

m<x

+O(T ™ 21) + 0,(1).

First we choose T = 1”5—0 so that

T (k+1)!

Thus for k > ky(n) = [%2} + 1, we finally arrive at

b(m) m\" Cx
<k:—! (1 - Z) = e T O

m<x

which holds good for all integers k > ky(n).

4.5 Proof of Theorem 4.1.4

From Theorem 4.1.3 with k£ = k; we have,

b(m) m\™ Cx
2 T (1_3) R

m<x
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> b(m) (1 - @) IR C S O(T2 et 1 O(Ts 74)

S (1= ) = S 0T 4 0T 1 0 4 0,1),



Note that

S -) 20 (-8)

<z m<z

1 b(m) m\ "

“r 2 (1—;) (& —m)

j k1—1 x

! 3 bm) (. m dt

x ky! x m
m<x

1 [* b(m) m\"

= - — 1 - — dt.
AT ()

Using Lemma 4.3.5 with E(z) = 10z, we can find the (k; — 1)-th Riesz mean. In

particular, we get

8
ol
SN—

b(m) m\ " 20w -
2l (17) ERCES

m<x 1

Once again using Lemma 4.3.5, we get

8

b(m) m\ "2 22Cx 1
_ 1—— = — 22 .
SAT(-E) mmrm o

m<x

Repeatedly using the result in Lemma 4.3.5 k; times, we get

b(m) 2MCr 1-4-
2 T :(k:1+1)!+0”(x ).

m<x

This proves the theorem.
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CONCLUDING REMARKS

We presented three primary outcomes in this thesis.

In Chapter 2, we improved an earlier result of Z. Cui and J. Wu [9] and gave an
asymptotic formula for the mean value of arithmetic functions over shorter intervals.
This improvement is achieved by utilizing the Hooley—Huxley contour as the contour

of integration.

In Chapter 3, we formulated Ramanujan’s weak conjecture and showed that it implies
the Rudnick—Sarnak conjecture. We also studied the mean square of the logarithmic
derivative of the Godement—Jacquet L-function on the line oy with % +e<oyp<1l—e
Under the assumption of Rudnick—Sarnak conjecture and Riemann hypothesis for
Godement—Jacquet L-function, we gave T (log T)*" as the upper bound for this mean
square where 7 is some constant such that 0 < 7 < % It’s worth noting that the

anticipated upper bound for this mean square is 7T'.

In Chapter 4, we studied the k-th Riesz mean for the coefficients of the Rankin—Selberg
convolution of f with itself. We mention a binary improvement of our earlier results.
One is the improvement in the range of k for which the asymptotic formula holds.

Another improvement is in the error term. As a by-product, we obtained an asymptotic
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formula for the partial sum of coefficients of this Rankin-Selberg L-function. The
conditional error term that we obtain for this partial sum is :L’%“, although the best

error that is expected here is zate,
The findings that are presented in this thesis not only contribute to the current body

of knowledge but also pave the way for future investigations in these intriguing areas

of study.
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