
SELBERG–DELANGE METHOD,

GODEMENT–JACQUET L-FUNCTION

A thesis submitted during 2024 to the

University of Hyderabad

In partial fulfillment of the award of a

Ph.D. degree in Mathematics

by

AMRINDER KAUR

School of Mathematics and Statistics

University of Hyderabad

(P.O.) Central University, Gachibowli

Hyderabad - 500046, India

February, 2024





CERTIFICATE

This is to certify that the thesis entitled “Selberg–Delange method, Godement–

Jacquet L-function” submitted byAmrinder Kaur bearingReg. No. 19MMPP03

in partial fulfillment of the requirements for award of Doctor of Philosophy in

Mathematics is a bonafide work carried out by her under my supervision and

guidance.

This thesis is free from plagiarism and has not been submitted previously in part or

in full to this or any other university or institution for the award of any degree or

diploma.

The student has the following publications before submission of the thesis for adjudi-

cation and has produced evidence for the same.

1. Amrinder Kaur and Ayyadurai Sankaranarayanan, Godement–Jacquet L-function,

some conjectures and some consequences, Hardy–Ramanujan Journal, 45 (2023),

42–56. https://doi.org/10.46298/hrj.2023.10747

2. Amrinder Kaur and Ayyadurai Sankaranarayanan, On the Rankin–Selberg L-

function related to the Godement–Jacquet L-function, Acta Mathematica Hungar-

ica, 169(1) (2023), 88–107. https://doi.org/10.1007/s10474-023-01296-9

3. Amrinder Kaur and Ayyadurai Sankaranarayanan, The Selberg–Delange method

https://doi.org/10.46298/hrj.2023.10747
https://doi.org/10.1007/s10474-023-01296-9


and mean value of arithmetic functions over short intervals, Journal of Number

Theory, 255 (2024), 37–61. https://doi.org/10.1016/j.jnt.2023.08.006

4. Amrinder Kaur and Ayyadurai Sankaranarayanan, An analogue of Mertens

function for Rankin–Selberg L-function Lf×f(s), Essays in Analytic Number

Theory (in honour of Prof. Helmut Maier’s 70th birthday), edited jointly by

Michael Th. Rassias, J. Friedlander and C. Pomerance, Springer (accepted on

24 September 2023).

5. Amrinder Kaur and Ayyadurai Sankaranarayanan, On certain GL(6) form and

its Rankin–Selberg convolution, Czechoslovak Mathematical Journal, (accepted

on 9 December 2023).

The student has presented parts of this thesis in the following conferences.

1. Gave an online presentation entitled “Godement-Jacquet L-function, some

conjectures and some consequences” on 18 November 2022 at the International

Conference on Evolution in Pure and Applied Mathematics (ICEPAM-2022),

organized by Akal University, Punjab.

2. Gave a presentation entitled “On the Rankin–Selberg L-function related to

the Godement–Jacquet L-function” on 27 November 2022 at the International

Conference on Special Functions and Applications (ICSFA-2022), organized by

the University of Mysore, Mysore.

3. Gave a presentation entitled “On the Rankin–Selberg L-function related to the

Godement–Jacquet L-function” on 5 February 2023 in Algebra and Number

Theory Symposium (ANT-Hyd-2023) organized by University of Hyderabad,

Hyderabad.

https://doi.org/10.1016/j.jnt.2023.08.006








ii



ACKNOWLEDGMENTS

First and foremost, I am profoundly grateful to God for granting me strength, wisdom,

and resilience throughout this journey. I am thankful for the blessings and opportunities

bestowed upon me, and I humbly attribute this achievement to His grace.

I wish to extend my heartfelt gratitude to several individuals who have played pivotal

roles in my Ph.D. journey:

I owe immeasurable gratitude to my parents, Tarlochan Singh and Amarjeet Kaur,

for their persistent support and the boundless freedom they granted me to pursue my

chosen career. Their presence has been a constant source of strength. Their sacrifices

and belief in my abilities have been a source of inspiration.

I am deeply appreciative of Prof. A. Sankaranarayanan, my esteemed supervisor,

without whom this thesis would not have come to fruition. His unwavering support has

been a cornerstone of my academic pursuit. His approachable and friendly demeanor

made it easy for me to seek guidance and resolve any confusion I encountered. Countless

discussions with him have enriched my knowledge, and his emphasis on punctuality

has left a lasting impression. I am truly fortunate to have had such a dedicated and

inspiring supervisor, and I am grateful for all the opportunities for growth and learning

that he has provided.

I would also like to express my gratitude to my former supervisor, Dr. Biswajyoti

Saha, for his invaluable guidance and mentorship during the first year of my Ph.D.

iii



His diligence and commitment to his work have been a constant reminder to keep

working hard.

I extend my sincere appreciation to the School of Mathematics and Statistics at the

University of Hyderabad for providing a stimulating and supportive environment for

academic growth. My gratitude also goes to Prof. Saroj Panigrahi, the Dean of the

School of Mathematics and Statistics, for his leadership and commitment to fostering

a culture of excellence. The resources, opportunities, and encouragement provided

by the school and the dean have been instrumental in the completion of this work.

I am thankful for their continued dedication to nurturing scholarly endeavours and

promoting a conducive learning environment.

I would also like to thank my DRC members, Dr. Archana S. Morye and Dr. M.S.

Datt, for their constant encouragement, which has been a source of motivation.

This heartfelt acknowledgment is a tribute to the friends with whom I have shared

the highs and lows, making this journey not only academically fulfilling but also

profoundly memorable.

My friend Rajender has been a steadfast pillar of support throughout this journey,

and I can’t thank him enough. I’m also grateful to Anubhav, whose presence added a

fun dimension to this path. I hold fond memories of my times together with them. I

will surely miss the times spent with my fellow research scholars of the school with

whom I have spent most of my days in the lab.

Chatter over tea and long walks with Monalisha were a relief on a tiring day. She has

taught me the invaluable lesson of consistency. Vandana’s encouragement and shared

dreams of a brighter future have been very inspiring. The times spent with them

will always remain a cherished memory. Sampurna, with her warm and approachable

nature, has been a reliable presence, always available to lend a listening ear or

assistance, day or night.

I am grateful for the constant encouragement from my friends Parneet and Navjot

iv



despite the distance that separated us.

I sincerely thank all of these individuals for their significant contributions to my Ph.D.

journey.

I extend my sincere appreciation to the University Grants Commission (UGC) for

their generous support throughout the duration of my research. I am truly thankful

for the opportunities and resources provided by UGC that have enriched my academic

journey.

v



vi



Dedicated to my parents

Mr. Tarlochan Singh and Mrs. Amarjeet Kaur

vii



viii



ABSTRACT

This thesis is structured into four chapters, each focusing on a distinct aspect of

the research. The opening chapter provides an introduction to the primary themes

of the thesis. Chapter two delves into the Selberg–Delange method and presents

an asymptotic formula for an arithmetic function over short intervals, utilizing the

Hooley–Huxley contour. In the third chapter, our exploration centers on the Godement–

Jacquet L-function, where we establish an upper bound for the mean square of the

logarithmic derivative of this function. Finally, in the fourth chapter, we investigate

the Rankin–Selberg L-function associated with the Godement–Jacquet L-function.

We provide an asymptotic formula for the k-th Riesz mean of the coefficients of this

Rankin–Selberg L-function, subsequently leading to an asymptotic formula for the

partial sum of these coefficients.
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SYNOPSIS

This thesis comprises four chapters. The gist of the thesis is presented in the following

sections.

0.1 Selberg–Delange method

A fundamental problem in analytic number theory is to study the behaviour of the

sum
∑
n≤x

µ(n). It is well known that a bound of the kind

∑
n≤x

µ(n) ≪ x
1
2
+ϵ for every ϵ > 0

is equivalent to the unproven Riemann hypothesis.

More generally, given an arithmetical function f(n), studying the behaviour of the

sum
∑
n≤x

f(n) is a classical problem. Perron’s formula [42] is a powerful tool when one

has a thorough understanding of the analytic properties of

∞∑
n=1

f(n)

ns
,

particularly its growth conditions and the nature of its singularities. However, when

dealing with L-functions exhibiting unknown singularities and featuring a natural

product representation, a more specialized approach is required.
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In this context, we draw upon the insights of Selberg [55] and Delange [10, 11]. Their

pioneering work provides a framework that enables us to study the sums in question

with exceptional detail, even when facing challenging singularities of the associated

L-function.

Towards this direction, in the second chapter, we consider P type Dirichlet series

defined as:

Definition 0.1.1. Let κ > 0, w ∈ C, α > 0, δ ≥ 0, A ≥ 0, B > 0,M > 0 be some

constants. A Dirichlet series F(s) defined as

F(s) :=
∞∑
n=1

f(n)n−s

is said to be of type P(κ,w, α, δ, A,B,M) if the following conditions are satisfied:

1. for any ϵ > 0, we have

∣∣f(n)∣∣≪ϵ n
ϵ (n ≥ 1);

2. we have
∞∑
n=1

∣∣f(n)∣∣n−σ ≪ (σ − 1)−α (σ > 1);

3. the Dirichlet series

G(s;κ,w) := F(s)ζ(s)−κζ(2s)w

is analytically continued to a holomorphic function in (some open set containing)

ℜ(s) ≥ 1
2
and, in this region G(s;κ,w) satisfies the bound

∣∣G(s;κ,w)∣∣ ≤M
(
|τ |+ 1

)max{δ(1−σ),0}
(
log
(
|τ |+ 1

))A
(s = σ + iτ)

uniformly for 0 < κ ≤ B and |w| ≤ B.
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We prove the following result over short intervals.

Theorem 0.1.1. Let κ > 0, w ∈ C, α > 0, δ ≥ 0, A ≥ 0, B > 0, M > 0 be some

constants. Let η1 > 0 be such that

∣∣ζ(σ + it)
∣∣≪ (

|t|+ 2
)η1(1−σ)

log
(
|t|+ 2

)
for

1

2
≤ σ ≤ 1 +

1

log
(
|t|+ 2

) .
Suppose that

F(s) :=
∞∑
n=1

f(n)n−s

is a Dirichlet series of type P(κ,w, α, δ, A,B,M). Then for any ϵ > 0 and sufficiently

large x ≥ x0(ϵ, κ, A), we have:

∑
x<n≤x+y

f(n) = y(log x)κ−1


N∑
l=0

λl(κ,w)

(log x)l
+O

(
RN(x, y)

)
uniformly for

x ≥ y ≥ xθ(κ,δ)+ϵ, N ≥ 0, 0 < κ ≤ B, |w| ≤ B,

where

λl(κ,w) :=
gl(κ,w)

Γ(κ− l)
,

RN(x, y) :=
y

x

N+1∑
l=1

l
∣∣λl−1(κ,w)

∣∣
(log x)l

+
(a1N + 1)N+1

x1/2
+M

{(
a1N + 1

log x

)N+1

+ e−a2
log x

log log x

}
for some constants a1, a2 > 0 and

θ(κ, δ) :=


5δ+55ϵ+7
5δ+5ϵ+12 if κ ≤ 12

5η1
,

η1κ+δ−1+11ϵ
η1κ+δ+ϵ if κ > 12

5η1
.

This improves Theorem 1.1 of [9]. (See also [53].) It is easy to check in either case
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(whether κ ≤ 12
5η1

or κ > 12
5η1

) that

θ(κ, δ) <
5κ+ 15δ + 21

5κ+ 15δ + 36

of [9] for η1 =
1
3
. Thus the above theorem is an improvement over the short interval

length.

η1 =
1
3
follows from Hardy’s estimate

∣∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣∣≪ (
|t|+ 2

) 1
6 log

(
|t|+ 2

)
.

In fact, one may even take the best–known value η1 <
1
3
from the work of Bourgain in

[4], giving

∣∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣∣≪|t|
13
84

+ϵ .

If one assumes the zero density hypothesis for ζ(s), then we have

N(σ, T ) ≪ T 2(1−σ)(log T )A.

Thus the above theorem holds with

θ(κ, δ) :=


1+δ+11ϵ
2+δ+ϵ if κ ≤ 2

η1
,

η1κ+δ−1+11ϵ
η1κ+δ+ϵ if κ > 2

η1
.
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0.2 Godement–Jacquet L-function

The L-function attached to a Maass form for SL(n,Z) (n ≥ 2) is called the Godement–

Jacquet L-function. The analysis of the characteristics and properties of the Godement-

Jacquet L-function plays a crucial role in unraveling the intricacies of the generalized

Ramanujan conjecture and the broader Langlands program.

In the third chapter, we study the mean square of the logarithmic derivative of the

Godement–Jacquet L-function. In particular, we show the following two theorems.

Theorem 0.2.1. Ramanujan’s weak conjecture implies Rudnick–Sarnak conjecture.

Theorem 0.2.2. Assume n ≥ 5 be any arbitrary but fixed integer. Let ϵ be any small

positive constant and T ≥ T0 where T0 is sufficiently large. Assume the Rudnick–

Sarnak conjecture and Riemann hypothesis for Lf (s). Then the estimate:

∫ 2T

T

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

dt≪f,n,ϵ,η T (log T )
2η

holds for 1
2
+ ϵ ≤ σ0 ≤ 1− ϵ with η being some constant satisfying 0 < η < 1

2
.

Since Rudnick–Sarnak conjecture is true for 2 ≤ n ≤ 4, the above theorem holds just

with the assumption of Riemann hypothesis for Lf (s) whenever 2 ≤ n ≤ 4.

It is not difficult to see from our arguments that only assuming Riemann Hypothesis for

Lf (s), the above theorem can be upheld for any σ0 satisfying 1− 1
n2+1

+ ϵ ≤ σ0 ≤ 1− ϵ

by using the bound θn = 1
2
− 1

n2+1
of Luo, Rudnick and Sarnak [36, 37].

It is also not difficult to see from our arguments that the generalized Ramanujan

conjecture and the Riemann hypothesis for Lf (s) together imply the bound
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∫ 2T

T

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

dt≪f,n,ϵ T

to hold for any σ0 satisfying 1
2
+ ϵ ≤ σ0 ≤ 1− ϵ.

Though we expect the bound stated in the above equation to hold unconditionally for

σ0 in the said range, this seems to be very hard to establish.

0.3 Rankin–Selberg L-function

In the fourth chapter, we give k-th Riesz mean for the coefficients of the Rankin–Selberg

L-function related to the Godement–Jacquet L-function.

We write

Lf×f (s) :=
∞∑

m=1

b(m)

ms
for ℜ(s) > 1.

We prove the following result.

Theorem 0.3.1. Let n ≥ 3 be an arbitrary but fixed integer. For k ≥ k1(n) =
[
n2

2

]
+1,

we have ∑
m≤x

b(m)

k!

(
1− m

x

)k

=
Cx

(k + 1)!
+On(1).

Here C is an effective constant depending only on f .

As a consequence of the above result along with a power-lowering trick for the Riesz

mean, we get an asymptotic relation for the partial sum of the coefficients of the

Rankin–Selberg L-function.

Theorem 0.3.2. For sufficiently large x, we have

∑
m≤x

b(m) =
2k1C

(k1 + 1)
x+On

(
x
1− 1

2k1

)
xvi



where k1 = k1(n) =
[
n2

2

]
+ 1.

The best conditional bound that we obtain from our method is

∑
m≤x

b(m) = Cx+O(x
3
4
+ϵ).

xvii



xviii



TABLE OF CONTENTS

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Chapter 1: Context and Overview . . . . . . . . . . . . . . . . . . . . . 1

1.1 Selberg–Delange method . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Godement–Jacquet L-function . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Rankin–Selberg Method . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2: The Selberg–Delange method and mean value of arith-
metic functions over short intervals . . . . . . . . . . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Construction of the Hooley–Huxley contour of integration . . . . . . . 17

2.3 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xix



2.3.1 Treatment of the sum
∑

x<n≤x+y

f(n) . . . . . . . . . . . . . . . 22

2.3.2 Evaluation of I0 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Treatment of I1 and IR1 . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Estimation of the integral I2 . . . . . . . . . . . . . . . . . . . 31

2.3.5 Case |E| ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.6 Case 1: If κ ≤ 12
5η1

. . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.7 Case 2: If κ > 12
5η1

. . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Consequences of Halász–Turán theorem . . . . . . . . . . . . . . . . . 41

Chapter 3: Godement–Jacquet L-function . . . . . . . . . . . . . . . . 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Some Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 4: Rankin–Selberg L-function related to the Godement–Jacquet
L-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Euler Product . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Functional Equation . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Bound for the conversion factor . . . . . . . . . . . . . . . . . 80

4.3 Some Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Proof of Theorem 4.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xx



4.5 Proof of Theorem 4.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xxi



xxii



NOTATIONS

We use the following standard conventions and notations.

N Set of natural numbers

Z Set of integers

R Set of real numbers

C Set of complex numbers

Cn n-dimensional complex vector space

[x] Greatest integer less than or equal to x

p Prime number

ϵ, ϵ1, η Arbitrary small positive constants

a or C with or without suffixes denote positive constants

x, x0 Sufficiently large real number

T, T0 Sufficiently large real number

s = σ + iτ or

s = σ + it

Complex number

ℜ(s) Real part of the complex number s

ℑ(s) Imaginary part of the complex number s

|A| Cardinality of set A

d(n) Number of divisors of n

dk(n) Number of representations of n as a product of k factors
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(
n
k

)
= n!

k!(n−k)!
denotes the binomial coefficient

f(z) ≪ g(z) (due to Vinogradov) means that there exists a constant C > 0 such

that
∣∣f(z)∣∣ ≤ Cg(z) for all values of z under consideration

f(z) = O(g(z)) (due to Bachmann) means f(z) ≪ g(z)

N(σ, T ) The number of zeros β + iγ of the Riemann zeta function such that

β > σ, 0 < γ ≤ T

H Hankel contour

Hn Generalized upper half plane

SL(n,Z) Group of n× n matrices with integer entries and determinant one

GL(n,R) Group of n× n invertible matrices of real numbers

O(n,R) Orthogonal group of GL(n,R)

Zn Center of GL(n,R)

gl(n,R) Lie Algebra of GL(n,R)

Dn Center of universal enveloping algebra of gl(n,R)

Un(Z) Group of n× n upper triangular matrices with 1s on the diagonal

and an integer entry above the diagonal
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CHAPTER

ONE

CONTEXT AND OVERVIEW

1.1 Selberg–Delange method

Let

F(s) =
∞∑
n=1

f(n)

ns
.

Studying the analytic properties of Dirichlet series F(s) helps us understand the

average behaviour of an arithmetic function f(n).

When F(s) is a meromorphic function, the summatory function
∑
n≤x

f(n) can be

obtained by application of the Perron’s formula [42]. A limitation of Perron’s formula

is when F(s) has singularities which are not poles. Selberg–Delange method (indepen-

dently developed by Selberg [55] and Delange [10, 11]) deals with such Dirichlet series

where the nature of singularity is unknown. Another advantage of Selberg–Delange

method is that there is consistency in the asymptotic behaviour of two Dirichlet series

whose ratio is a sufficiently regular analytic function.

A useful reference for this theory is Chapter II.5 of Tenenbaum’s book [56] from which

we will use the following fundamental results.

1



Definition 1.1.1. Generalized binomial coefficient

For w ∈ C, v ∈ N, the generalized binomial coefficient is defined by

(
w

v

)
:=

1

v!

v−1∏
j=0

(w − j).

For |ξ| < 1, z ∈ C,

(1− ξ)−z =
∞∑
v=0

(
z + v − 1

v

)
ξv.

When z is a negative integer, this formula reduces to the classical binomial formula.

For ℜ(s) > 1, we have

ζ(s)z =
∏
p

(1− p−s)−z

=
∏
p

(
1 +

∞∑
v=1

(
z + v − 1

v

)
p−vs

)
,

where the infinite product is absolutely convergent.

Thus, ζ(s)z is representable in the half-plane ℜ(s) > 1 as the Dirichlet series of a

multiplicative function dz(n), defined by

dz(p
v) :=

(
z + v − 1

v

)
.

This definition generalizes that of the function dk(n) corresponding to the case when

z = k is a positive integer.

In order to study Dirichlet series that are close to a complex power of the Riemann

zeta function, we need to study Hankel’s formula.

Definition 1.1.2. Hankel Contour

Given a positive number r, we designate by Hankel contour H the path formed from the

circle |s| = r excluding the point s = −r, together with the half-line (−∞,−r] traced

2



out twice, with respective arguments +π and −π.

σ

τ

0 r−r
·

We prove Hankel’s formula next.

Theorem 1.1.1. [56] Let H be a Hankel contour. For any complex number z, we have

1

Γ(z)
=

1

2πi

∫
H

s−zesds.

Proof. The integral is absolutely and uniformly convergent for each z. It thus defines

an entire function of z. By the residue theorem, this function is independent of r,

since the only singularity of the integrand is at the point s = 0. When ℜ(z) < 1, the

integral round the circular part |s| = r of the Hankel contour tends to zero with r.

The integral along the doubled half-line tends to

1

2πi

∫ ∞

0

(eiπz − e−iπz)σ−ze−σdσ =
sinπz

π

∫ ∞

0

σ−ze−σdσ

=
sinπz

π
Γ(1− z)

=
1

Γ(z)
.

This proves the result when ℜ(z) < 1. By analytic continuation, the result follows for

all z.

Corollary 1.1.1. [56] For each X > 1, let H(X) denote the part of the Hankel contour

3



situated in the half-plane σ > −X. Then we have uniformly for z ∈ C,

1

2πi

∫
H(X)

s−zesds =
1

Γ(z)
+O

(
47|z|Γ(1 +|z|)e

−X
2

)
.

Proof. For s = σe±iπ, σ > 1, we have

∣∣s−zes
∣∣ ≤ (eπσ)|z|e−σ.

Thus

1

2πi

∫
H

s−zesds− 1

2πi

∫
H(X)

s−zesds≪ eπ|z|
∫ ∞

X

σ|z|e−σdσ

≤ eπ|z|−
X
2

∫ ∞

0

σ|z|e
−σ
2 dσ.

Since 2eπ < 47, the change of variable σ = 2t gives the desired result.

1.2 Godement–Jacquet L-function

The Godement–Jacquet L-function is also commonly referred to as the standard

L-function. Godement and Jacquet [13] constructed this L-function and showed that

it has an analytic continuation to a meromorphic function that satisfies a functional

equation. Their method is a generalization from GL(1) of the method of Tate’s thesis

[6].

According to Langlands’ conjectures [34], the most general type of L-function is the

one associated with an automorphic representation of GL(n) over a number field.

These L-functions are hypothesized to be expressible as products of the “standard”

L-functions linked to cuspidal automorphic representations of GL(n) over the rational

numbers. These particular L-functions are considered fundamental and are referred
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to as (principal) primitive L-functions of degree n. Consequently, the behaviour

and properties of L-functions for GL(n) are pivotal in understanding the generalized

Ramanujan conjecture and the larger Langlands program.

For n = 1, these L-functions correspond to the Riemann zeta function and Dirichlet

L-functions associated with primitive Dirichlet characters. When n = 2, the analytical

characteristics and functional equations of such L-functions were explored by Hecke

and Maass, and for n > 3, this line of investigation was extended by Godement and

Jacquet [13].

For an adelic treatment of higher degree L-functions, one can see the self-contained

books by Godlfeld and Hundley [15, 16]. Cogdell’s lecture notes [8] also give a nice

survey for these L-functions.

We will now recollect some basic terminology from [14] that is required to deal with

the Godement–Jacquet L-function in Chapter 3.

Definition 1.2.1. Generalized upper half-plane Hn

Let n ≥ 2. The generalized upper half-plane Hn associated to GL(n,R) is defined to

be the set of all n× n matrices of the form z = x · y where

x =



1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1


, y =



y1y2 · · · yn−1

y1y2 · · · yn−2

. . .

y1

1


,

with xi,j ∈ R for 1 ≤ i < j ≤ n and yi > 0 for 1 ≤ i ≤ n− 1.

Let GL(n,R) denote the multiplicative group of all n× n matrices with coefficients in
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R and non-zero determinant. The orthogonal group O(n,R) is defined as

O(n,R) = {g ∈ GL(n,R) | g · gT = I}

where I is the identity matrix on GL(n,R). The center of GL(n,R) is written as

Zn =




d 0

. . .

0 d


∣∣∣∣d ∈ R, d ̸= 0

 .

Definition 1.2.2. Iwasawa Decomposition

The fact that every matrix in GL(n,R) can be written as an upper triangular matrix

times an orthogonal matrix is called the Iwasawa decomposition [22].

Fix n ≥ 2. Then we have the Iwasawa decomposition

GL(n,R) = Hn ·O(n,R) · Zn,

i.e., every g ∈ GL(n,R) may be expressed in the form

g = z · k · d,

where z ∈ Hn is uniquely determined, k ∈ O(n,R), and d ∈ Zn. Further, k and d are

also uniquely determined up to multiplication by ±I where I is the identity matrix on

GL(n,R).

For every n = 1, 2, 3, . . . , we have Zn
∼= R×. Thus, we have the isomorphism

Hn ∼= GL(n,R)/(O(n,R) · R×)
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Definition 1.2.3. Left invariant measure on the coset space GL(n,R)/(O(n,R)·

R×)

The left invariant GL(n,R)-measure d∗z on Hn can be given explicitly by the formula

d∗z = d∗x d∗y

where

d∗x =
∏

1≤i<j≤n

dxi,j, d∗y =
n−1∏
k=1

y
−k(n−k)−1
k dyk.

For n = 2, with

z =

y x

0 1

 ,

we have

d∗z =
dxdy

y2
.

For n = 3, with

z =


y1y2 x1,2y1 x1,3

0 y1 x2,3

0 0 1

 ,

we have

d∗z = dx1,2dx1,3dx2,3
dy1dy2
(y1y2)3

.

Definition 1.2.4. Siegel set
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Let a, b ≥ 0 be fixed. A Siegel set
∑

a,b ⊂ Hn is the set of all



1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1


·



y1y2 · · · yn−1

y1y2 · · · yn−2

. . .

y1

1


with

∣∣xi,j∣∣ ≤ b for 1 ≤ i < j ≤ n and yi > a for 1 ≤ i ≤ n− 1.

Let v = (v1, v2, . . . , vn−1) ∈ Cn−1. Let Dn be the center of the universal enveloping

algebra of gl(n,R) where gl(n,R) is the Lie algebra of GL(n,R). The function

Jv(z) =
n−1∏
i=1

n−1∏
j=1

y
bi,jvj
i

with

bi,j =


ij if i+ j ≤ n,

(n− i)(n− j) if i+ j ≥ n,

is an eigenfunction of every D ∈ Dn. We write

DJv(z) = λD · Jv(z) for every D ∈ Dn.

The function λD (viewed as a function of D) is a character of Dn because it satisfies

λD1·D2 = λD1 · λD2 ∀ D1, D2 ∈ Dn.

It is sometimes called the Harish–Chandra character.
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For n ≥ 2, a Maass form is defined as a smooth complex valued cuspidal function on

Hn = GL(n,R)/(O(n,R) · R×)

which is invariant under the discrete group SL(n,Z). It is also an eigenfunction of

every invariant differential operator in Dn.

A cuspidal function (or cuspform) is a function whose Fourier expansion has no

constant term. This is equivalent to the condition that the function has exponential

decay at every cusp. The precise definitions of Maass forms and Godement–Jacquet

L-function are given in Chapter 3.

Definition 1.2.5. Character

Fix n ≥ 2. Let Un(R) denote the group of upper triangular matrices with 1s on the

diagonal and real entries above the diagonal. Fix ψ : Un(R) → C× to be a character

of Un(R) which, by definition, satisfies the identity

ψ(u · v) = ψ(u)ψ(v) ∀ u, v ∈ Un(R).

Definition 1.2.6. Whittaker function

Let n ≥ 2. An SL(n,Z)–Whittaker function of type v = (v1, v2, . . . , vn−1) ∈ Cn−1,

associated to a character ψ of Un(R), is a smooth function W : Hn → C which satisfies

the following conditions:

1. W (uz) = ψ(u)W (z) ∀ u ∈ Un(R), z ∈ Hn,

2. DW (z) = λDW (z) ∀ D ∈ Dn, z ∈ Hn,

3.
∫

∑√
3

2 , 12

∣∣W (z)
∣∣2 d∗z <∞.
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Definition 1.2.7. Jacquet’s Whittaker function

For n ≥ 2, fix m = (m1, . . . ,mn−1) ∈ Zn−1, v = (v1, . . . , vn−1) ∈ Cn−1, and let

u =



1 u1,2 u1,3 . . . u1,n

1 u2,3 . . . u2,n

. . .
...

1 un−1,n

1


∈ Un(R).

Denote u1 = un−1,n, u2 = un−2,n−1, . . . , un−1 = u1,2 Define ψm to be the character of

Un(R) defined by

ψm(u) := e2πi(m1u1+m2u2+···+mn−1un−1).

(All characters of Un(R) are of this form.)

For z ∈ Hn and mi ̸= 0 (1 ≤ i ≤ n− 1), define

WJ(z; v, ψm) :=

∫
Un(R)

Jv(wn · u · z)ψm(u) d
∗(u)

to be Jacquet’s Whittaker function. Here,

wn =



(−1)[
n
2 ]

1

...

1


∈ SL(n,Z) and

∫
Un(R)

d∗(u) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1≤i<j≤n

dui,j.
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1.3 Rankin–Selberg Method

The Rankin–Selberg method was independently developed by Rankin [47, 48] and

Selberg [54]. Rankin has remarked that the general idea came from his advisor and

mentor, Ingham.

They found out the meromorphic continuation and functional equation of the convolu-

tion L-function associated to automorphic forms on GL(2) i.e.,

Lf×g(s) = ζ(2s)
∞∑
n=1

a(n)b(n)

ns
.

They showed that the convolution L-function can be constructed explicitly by taking

an inner product of f · g with an Eisenstein series. This remarkable development

has proven to be of exceptional importance and has generated numerous unforeseen

consequences.

Jacquet [23] obtained a broader interpretation of the original Rankin–Selberg convo-

lution within the context of adeles and automorphic representations. Jacquet and

Shalika [25] further generalized the theory.

The Rankin–Selberg convolution for the case GL(n)×GL(n′) (1 ≤ n < n′) necessitates

a novel approach. The special caseGL(1)×GL(n′) is essentially the Godement–Jacquet

L-function. Godement and Jacquet [13] first obtained the holomorphic continuation

and functional equation for the Godement–Jacquet L-function. Jacquet, Piatetskii-

Shapiro and Shalika [24] further extended the theory for the case of automorphic

representations.

The Rankin–Selberg convolution stands as one of the most pivotal constructions within

the realm of L-function theory, and it has naturally led to countless generalizations.

A comprehensive survey paper by Bump [5] provides an expansive overview of this

entire subject, offering valuable insights and perspectives.
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Rankin–Selberg method has found numerous applications. The classic application of

the Rankin–Selberg method is to obtain strong bounds for the Fourier coefficients of

automorphic forms and eigenvalues of a Maass form. Deligne [12] employed this method

as the initial step in settling the Ramanujan conjecture for holomorphic modular forms.

However, the conjecture remains open for Maass forms. For Maass forms, the bound

established by Luo, Rudnick, and Sarnak [36, 37] for the generalized Ramanujan and

Selberg conjectures remains as the best-known bound to date. The Rankin–Selberg

method played a pivotal role in achieving this result. Another application of the

Rankin–Selberg method is the proof for the strong multiplicity one theorem by Jacquet

and Shalika [25].

Rankin and Selberg established that

∑
n≤x

λf (n) = Cfx+Of (x
3
5 ).

Here, f is a holomorphic Hecke cusp form or Hecke–Maass cusp form for SL(2,Z).

After almost 80 years, the exponent in the error term was slightly improved by B.

Huang in [18] to 3
5
− δ for any δ < 1/560 = 0.001785 . . . . In recent preprints, S. Pal

[41] proved that δ < 6/1085 = 0.005529 . . . is admissible and B. Huang [19] improved

it further to any δ < 3/305 = 0.009836 . . . .

In this direction, we study the asymptotic behaviour of the k-th Riesz mean for

the coefficients of the Rankin–Selberg L-function related to the Godement–Jacquet

L-function in the fourth chapter. As a result of this relation, we also obtain a relation

for the summatory function of the coefficients of the Rankin–Selberg L-function.
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CHAPTER

TWO

THE SELBERG–DELANGE METHOD AND MEAN VALUE

OF ARITHMETIC FUNCTIONS OVER SHORT INTERVALS

2.1 Introduction

A classical problem in analytic number theory is to study the behaviour of the sum∑
n≤x

µ(n). It is well known that a bound of the kind

∑
n≤x

µ(n) ≪ x
1
2
+ϵ for every ϵ > 0

is equivalent to the unproven Riemann hypothesis.

More generally, given an arithmetical function f(n), studying the behaviour of the sum∑
n≤x

f(n) is a classical problem. If one knows the analytic properties of the L–function

attached to f(n), namely
∞∑
n=1

f(n)

ns

(particularly certain growth conditions) and if one knows the nature of the singularity

(particularly having only real poles), then Perron’s formula [42] is an appropriate tool
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to obtain the asymptotic nature of the required sum with a possible good error term.

However, if the L–function has some singularities whose nature is unknown and has

some natural product representation, then Selberg [55] and later Delange [10, 11]

developed a method that enables us to study the sum in question in detail.

Throughout the chapter, the constants a with suffixes are positive constants that

need not be the same at each occurrence. ϵ, η are small positive constants and x is

sufficiently large.

In this chapter, we consider P type Dirichlet series defined as:

Definition 2.1.1. Let κ > 0, w ∈ C, α > 0, δ ≥ 0, A ≥ 0, B > 0,M > 0 be some

constants. A Dirichlet series F(s) defined as

F(s) :=
∞∑
n=1

f(n)n−s

is said to be of type P(κ,w, α, δ, A,B,M) if the following conditions are satisfied:

1. for any ϵ > 0, we have

∣∣f(n)∣∣≪ϵ n
ϵ (n ≥ 1);

2. we have
∞∑
n=1

∣∣f(n)∣∣n−σ ≪ (σ − 1)−α (σ > 1);

3. the Dirichlet series

G(s;κ,w) := F(s)ζ(s)−κζ(2s)w

is analytically continued to a holomorphic function in (some open set containing)

14



ℜ(s) ≥ 1
2
and, in this region G(s;κ,w) satisfies the bound

∣∣G(s;κ,w)∣∣ ≤M
(
|τ |+ 1

)max{δ(1−σ),0}
(
log
(
|τ |+ 1

))A
(s = σ + iτ)

uniformly for 0 < κ ≤ B and |w| ≤ B.

From [56, Theorem II.5.1], the function

Z(s; z) :=
{
(s− 1)ζ(s)

}z
(z ∈ C)

is holomorphic in the disc |s− 1| < 1, and admits the Taylor series expansion

Z(s; z) =
∞∑
j=0

γj(z)

j!
(s− 1)j,

where the γj(z)
′s are entire functions of z and satisfy: for all B > 0 and ϵ > 0, the

estimate

γj(z)

j!
≪B,ϵ (1 + ϵ)j (j ≥ 0, |z| ≤ B).

Under our hypothesis, the function G(s;κ,w)ζ(2s)−wZ(s;κ) is holomorphic in the disc

|s− 1| < 1
2
and ∣∣G(s;κ,w)ζ(2s)−wZ(s;κ)

∣∣≪A,B,δ,ϵ M

for |s− 1| ≤ 1
2
− ϵ, 0 < κ ≤ B and |w| ≤ B.

Theorem 2.1.1. [30] Let κ > 0, w ∈ C, α > 0, δ ≥ 0, A ≥ 0, B > 0, M > 0 be

some constants. Let η1 > 0 be such that

∣∣ζ(σ + it)
∣∣≪ (

|t|+ 2
)η1(1−σ)

log
(
|t|+ 2

)
for

1

2
≤ σ ≤ 1 +

1

log
(
|t|+ 2

) .
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Suppose that

F(s) :=
∞∑
n=1

f(n)n−s

is a Dirichlet series of type P(κ,w, α, δ, A,B,M). Then for any ϵ > 0 and sufficiently

large x ≥ x0(ϵ, κ, A), we have:

∑
x<n≤x+y

f(n) = y(log x)κ−1


N∑
l=0

λl(κ,w)

(log x)l
+O

(
RN(x, y)

)
uniformly for

x ≥ y ≥ xθ(κ,δ)+ϵ, N ≥ 0, 0 < κ ≤ B, |w| ≤ B,

where

λl(κ,w) :=
gl(κ,w)

Γ(κ− l)
,

RN(x, y) :=
y

x

N+1∑
l=1

l
∣∣λl−1(κ,w)

∣∣
(log x)l

+
(a1N + 1)N+1

x1/2
+M

{(
a1N + 1

log x

)N+1

+ e−a2
log x

log log x

}
for some constants a1, a2 > 0 and

θ(κ, δ) :=


5δ+55ϵ+7
5δ+5ϵ+12 if κ ≤ 12

5η1
,

η1κ+δ−1+11ϵ
η1κ+δ+ϵ if κ > 12

5η1
.

Remark 2.1.1. This improves Theorem 1.1 of [9]. (See also [53].) It is easy to check

in either case (whether κ ≤ 12
5η1

or κ > 12
5η1

) that

θ(κ, δ) <
5κ+ 15δ + 21

5κ+ 15δ + 36

of [9] for η1 = 1
3
. Thus the above theorem is an improvement over the short inter-

val length. The implied O–constant depends on various parameters like A,B, ϵ, δ, η etc.

16



Remark 2.1.2. η1 =
1
3
follows from Hardy’s estimate

∣∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣∣≪ (
|t|+ 2

) 1
6 log

(
|t|+ 2

)
.

In fact, one may even take the best–known value η1 <
1
3
from the work of Bourgain in

[4], giving

∣∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣∣≪|t|
13
84

+ϵ .

Remark 2.1.3. If one assumes the zero density hypothesis for ζ(s), then we have

N(σ, T ) ≪ T 2(1−σ)(log T )A.

Thus the above theorem holds with

θ(κ, δ) :=


1+δ+11ϵ
2+δ+ϵ if κ ≤ 2

η1
,

η1κ+δ−1+11ϵ
η1κ+δ+ϵ if κ > 2

η1
.

2.2 Construction of the Hooley–Huxley

contour of integration

To construct the required Hooley–Huxley contour for our situation, we follow certain

descriptions from H. Maier and A. Sankaranarayanan in [38].

Let C∗ be a generic absolute constant in the following, which need not be the same at
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each occurrence.

Definition 2.2.1. A zero ρ = β + iγ
(
with β ≥ 1

2

)
of ζ(s) is said to be good if

β < 1− C∗

log log(|γ|+2)
and ρ is said to be exceptional otherwise.

Let T ≥ T0 and x ≥ x0 (T0 and x0 are sufficiently large). Let G and E denote the set

of all good and exceptional zeros of ζ(s) respectively with |γ| ≤ T . We denote by |G|

and |E| to mean the cardinality of the sets G and E respectively.

Let α be any fixed constant satisfying 1
2
+ η ≤ α ≤ 1− η with η being any arbitrarily

small fixed positive constant. Since the contour will be symmetric with respect to the

real axis, it suffices to describe it in the upper half–plane. We assume that |E| = 0.

Hence, ζ(s) ̸= 0 in the region
{
σ > 1− C∗∗

log log(U+12)
, U ≤ t ≤ 2U

}
where C∗∗ is a

suitable absolute positive constant and we construct the contour accordingly.

Let T = 2l0 . We choose c with 1
2
≤ c ≤ 1 such that H0 = c log log T = 2L with

a positive integer L. For l ≥ L, write U = U (l) = 2l. We define the contour for

U ≤ t ≤ 2U . Let H = H(U (l)) = cl log log(U
(l)) and choose cl satisfying

1
2
≤ cl ≤ 1

such that U
2H

is a positive integer.

We split the interval [U, 2U ] into U
2H

disjoint abutting small intervals Ij = I
(l)
j of equal

length 2H for 1 ≤ j ≤ U
2H

. Let Ij = [Uj −H, Uj +H] and let

βj = sup
{
β | ρ = β + iγ, ζ(ρ) = 0, β ≥ α, γ ∈ [Uj − 2H, Uj + 2H]

}
and

β∗
j = βj +

C∗

log log 2(U + 12)
.
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We also define
(
with H ′

0 = H0 + 2(logH0)
2
)

β0 = sup
{
β | ρ = β + iγ, ζ(ρ) = 0, β ≥ α, γ ∈ [0, 2H ′

0]
}

and

β∗
0 = β0 +

C∗

log log 2H0

.

If there is no zero of ζ(s) in the rectangle
{
σ ≥ α, Uj − 2H ≤ t ≤ Uj + 2H

}
, then we

define β∗
j = α. A similar notion applies to β∗

0 too.

Then the contour C consists of

1. Vertical pieces (Vj):

Vj =



[β∗
j + i(Uj −H + ϵ), β∗

j + i(Uj +H − ϵ)] if β∗
j < min (β∗

j−1, β
∗
j+1)

[β∗
j + i(Uj −H − ϵ), β∗

j + i(Uj +H + ϵ)] if β∗
j > max (β∗

j−1, β
∗
j+1)

[β∗
j + i(Uj −H − ϵ), β∗

j + i(Uj +H − ϵ)] if β∗
j−1 < β∗

j < β∗
j+1

[β∗
j + i(Uj −H + ϵ), β∗

j + i(Uj +H + ϵ)] if β∗
j+1 < β∗

j < β∗
j−1

and

V0 =


[β∗

0 , β
∗
0 + i(H0 − ϵ)] if β∗

1 > β∗
0

[β∗
0 , β

∗
0 + i(H0 + ϵ)] if β∗

1 < β∗
0

2. Horizontal pieces (hj):

(a) If β∗
j < min (β∗

j−1, β
∗
j+1), then

hj(top) = [β∗
j + i(Uj +H − ϵ), β∗

j+1 + i(Uj +H − ϵ)] and

hj(bottom) = [β∗
j + i(Uj −H + ϵ), β∗

j−1 + i(Uj −H + ϵ)]
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(b) If β∗
j > max (β∗

j−1, β
∗
j+1), then

hj(top) = [β∗
j+1 + i(Uj +H + ϵ), β∗

j + i(Uj +H + ϵ)] and

hj(bottom) = [β∗
j−1 + i(Uj −H − ϵ), β∗

j + i(Uj −H − ϵ)]

(c) If β∗
j−1 < β∗

j < β∗
j+1, then

hj(top) = [β∗
j + i(Uj +H − ϵ), β∗

j+1 + i(Uj +H − ϵ)] and

hj(bottom) = [β∗
j−1 + i(Uj −H − ϵ), β∗

j + i(Uj −H − ϵ)]

(d) If β∗
j+1 < β∗

j < β∗
j−1, then

hj(top) = [β∗
j+1 + i(Uj +H + ϵ), β∗

j + i(Uj +H + ϵ)] and

hj(bottom) = [β∗
j + i(Uj −H + ϵ), β∗

j−1 + i(Uj −H + ϵ)]

and similar horizontal pieces h0,l that link the top (respectively the bottom)

vertical pieces of the ranges

U (l−1) ≤ t ≤ 2U (l−1) (respectively) U (l) ≤ t ≤ 2U (l).

The vertical piece V0 and the horizontal piece h0 pertain to the interval [23, H ′
0] where

H ′
0 = H0 + 2(logH0)

2. We also observe that the vertical piece V ∗ for the interval

[0, 23] can be taken to be α = 1
2
+ η for any small positive constant η. Therefore, the

contour C can be pictorially seen in Figure 2.1 and

C = Γ ∪ Γ1 ∪ Γ2 ∪ ΓR
1 ∪ ΓR

2 .
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σ

τ

T ·

O
·

1
2

·
1 + 20

log x

·1
2
+ η
·

1
·

1 + 1
log x

·

Γ
Γ1

23 ·

Γ2

H ′
0 ·

ΓR
1

ΓR
2

Figure 2.1: Contour C
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2.3 Proof of Theorem 2.1.1

2.3.1 Treatment of the sum
∑

x<n≤x+y

f(n)

Since F(s) is a Dirichlet series of the type P(κ,w, α, δ, A,B,M), we apply Corollary

II.2.2.1 of [56] with the choice of parameters σa = 1, B(n) = nϵ, α = α, σ = 0 to obtain

∑
x<n≤x+y

f(n) =
1

2πi

∫ b+iT

b−iT

F(s)
(x+ y)s − xs

s
ds+O

(
x1+ϵ

T

)

where b = 1 + 20
log x

, 100 ≤ T ≤ x such that ζ(σ + iT ) ̸= 0 for 0 < σ < 1.

Now we replace the path of integration [b− iT, b+ iT ] by the contour C in described

above. (See Figure 2.1.)

K. Ramachandra and A. Sankaranarayanan (see Theorems 1 and 2 of [46]) investigated

certain upper bound estimates “locally” for the function
∣∣logF(s)

∣∣ (where F(s) is

any Dirichlet series satisfying certain general conditions) under the assumption that

F(s) ̸= 0 in the rectangle {σ ≥ 1
2
+ η , T −H ≤ t ≤ T +H} of t–width 2H. Here the

parameter H can be chosen as small as H = c log log log T . We record here a special

case of the general theorem as:

Lemma 2.3.1. Let 1
2
≤ α∗ ≤ 1 − η, H = a3 log log T and suppose that ζ(s) ̸= 0 in

{σ > α∗ , T −H ≤ t ≤ T +H}. Then for α∗ < σ ≤ 1− a4
log log T

, T − H
2
≤ t ≤ T + H

2
,

we have ∣∣log ζ(σ + it)
∣∣ ≤ a5 log T (log log T )

−1

where a3, a4 and a5 are certain positive constants.
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Therefore by this lemma, for |t| (≥ H0), we have

∣∣ζ(σ + it)
∣∣≪ U ϵ

for σ + it ∈ Vj and σ + it ∈ hj . The horizontal slab with |t| ∈
[

1
log x

, H0

]
is treated as

follows. We redefine

β∗
0 =

1

2
+ η if |t| ∈

[
1

log x
, 27
]
.

We remark here that by computational results, we know that all the non-trivial zeros

of ζ(s), for instance up to height 210 lie on the line ℜ(s) = 1
2
. (See [40], [43].)

For the portion |t| ∈ [25, H0], we first observe that the region

{
10 ≥ σ ≥ β0 +

C∗

log logH0

, 23 ≤|t| ≤ H ′
0

}

is free from zeros of ζ(s). Therefore, applying the Borel–Carathéodory theorem, we

get
(
for 10 ≥ σ ≥ β0 +

C∗

log logH0

)
,

∣∣log ζ(σ + it)
∣∣≪ (logH0)

1−ϵ ≪ (log log log T )1−ϵ ≪ Hϵ
0.

So this estimate holds when β∗
0 + it ∈ V0 with t ∈ [25, H0] and T ≥ T0 where T0 is

sufficiently large.

The portion |t| ∈ [0, 25] is dealt as follows. We observe that the region

{
10 ≥ σ ≥ β∗

0 , |t| ≤ 27
}
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is zero–free for ζ(s). This follows from the computational results. Thus,

∣∣ζ(s)∣∣≪ log log(U + 2) ≪ U ϵ

for

{
σ ≥ β∗

0 , |s− 1| ≥ 1

10
, |t| ≤ 27

}
.

For |s− 1| ≤ 1
10
, ∣∣ζ(s)∣∣≪ 1

|s− 1|
.

Thus, we need to estimate

∑
x<n≤x+y

f(n) =
1

2πi

[∫
Γ

+

∫
Γ1

+

∫
Γ2

+

∫
ΓR
1

+

∫
ΓR
2

]
F(s)

(x+ y)s − xs

s
ds+O

(
x1+ϵ

T

)

= I0 + I1 + I2 + IR1 + IR2 +O

(
x1+ϵ

T

)
(say).

2.3.2 Evaluation of I0

Let 0 < a6 <
1
10

be any small constant. Since G(s;κ,w)ζ(2s)−wZ(s;κ) is holomorphic

and O(M) in the disc |s− 1| ≤ a6, the Cauchy’s formula implies that

gl(κ,w) ≪Ma6
−l (l ≥ 0, 0 < κ ≤ B, |w| ≤ B)

where gl(κ,w) is defined by

G(s;κ,w)ζ(2s)−wZ(s;κ) =
∞∑
l=0

gl(κ,w)(s− 1)l

24



with

Z(s;κ) :=
(
(s− 1)ζ(s)

)κ
,

gl(κ,w) :=
1

l!

l∑
j=0

(
l

j

)
∂l−j

{
G(s;κ,w)ζ(2s)−w

}
∂sl−j

∣∣∣∣
s=1

γj(κ).

Hence for any integer N ≥ 0 and |s− 1| ≤ a6
2
,

G(s;κ,w)ζ(2s)−wZ(s;κ) =
N∑
l=0

gl(κ,w)(s− 1)l +O

(
M

(
|s− 1|
a6

)N+1
)
.

We have,

F(s) = G(s;κ,w)ζ(2s)−wζ(s)κ,

= G(s;κ,w)ζ(2s)−wZ(s;κ)(s− 1)−κ.

Thus,

I0 :=
1

2πi

∫
Γ

F(s)
(x+ y)s − xs

s
ds

=
N∑
l=0

gl(κ,w)
1

2πi

∫
Γ

(s− 1)l−κ (x+ y)s − xs

s
ds

+O

(
Ma6

−N

∫
Γ

(s− 1)N+1−κ (x+ y)s − xs

s
ds

)
=

N∑
l=0

gl(κ,w)Ml(x, y) +O
(
Ma6

−NEN(x, y)
)

(say).
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Evaluation of Ml(x, y)

Ml(x, y) :=
1

2πi

∫
Γ

(s− 1)l−κ (x+ y)s − xs

s
ds

Observe that

(x+ y)s − xs

s
=

∫ x+y

x

us−1 du.

Using Corollary II.5.2.1 of [56], we can write

Ml(x, y) =

∫ x+y

x

(
1

2πi

∫
Γ

(s− 1)l−κus−1 ds

)
du

=

∫ x+y

x

(log u)κ−1−l

 1

Γ(κ− l)
+O

(
(a7l + 1)l

u
1
2

) du

where we have used

47|κ−l|Γ
(
1 +|κ− l|

)
≪B (a7l + 1)l (l ≥ 0, 0 < κ ≤ B).

a7 and the implied constant may depend at most on B. Now for 0 < κ ≤ B,

0 < u < y ≤ x,

log(x+ u) = log x+ log

(
1 +

u

x

)
= log x+O

(
u

x

)
.

Therefore,

(
log(x+ u)

)κ−1−l
= (log x)κ−1−l +O

(
(l + 1)u(log x)κ−2−l

x

)

26



and

∫ x+y

x

(log u)κ−1−ldu =

∫ y

0

(
log(x+ u)

)κ−1−l
du

= y(log x)κ−1−l +O

(
(l + 1)(log x)κ−2−l

x

∫ y

0

u du

)

= y(log x)κ−1−l +O

(
(l + 1)(log x)κ−2−l

x
y2

)

= y(log x)κ−1−l

{
1 +OB

(
(l + 1)y

x log x

)}
.

Also,

(a7l + 1)l
∫ x+y

x

(log u)κ−1−l

u
1
2

du≪ (a7l + 1)l

x
1
2

(
log(2x)

)κ−1−l
y

≪B
(a7l + 1)l(log x)κ−1−ly

x
1
2

.

Thus, we get

Ml(x, y) = y(log x)κ−1−l

 1

Γ(κ− l)
+OB

(
(l + 1)y

Γ(κ− l)x log x

)
+OB

(
(a7l + 1)l

x
1
2

)
for l ≥ 0, 0 < κ ≤ B.

Estimation of EN(x, y)

EN(x, y) :=

∫
Γ

(s− 1)N+1−κ (x+ y)s − xs

s
ds
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We observe that

∣∣∣∣(x+ y)s − xs

s

∣∣∣∣ =
∣∣∣∣∣
∫ x+y

x

us−1 du

∣∣∣∣∣ ≤
∫ x+y

x

uσ−1 du

=
uσ

σ

∣∣∣∣x+y

x

=
(x+ y)σ − xσ

σ

≪ xσ−1yσ

σ
≪ xσ−1y.

Therefore, for r = 1
log x

,

EN(x, y) ≪
∫ 1− 1

log x

1
2
+η

(1− σ)N+1−κxσ−1y dσ

+

∣∣∣∣∣
∫ π

−π

(reiθ)N+1−κ (x+ y)1+reiθ − x1+reiθ

1 + reiθ
reiθi dθ

∣∣∣∣∣
≪ y

(log x)N+1−κ

∫ 1− 1
log x

1
2

{
(1− σ) log x

}N+1−κ
e−(1−σ) log x dσ

+

∫ π

−π

|r|N+1−κ xr cos θyr dθ

≪ y

(log x)N+1−κ

∫ log x
2

1

uN+1−κe−u du

log x
+ yrN+2−κ

≪ y

(log x)N+2−κ
Γ
(
1 +|N − κ|

)
+

y

(log x)N+2−κ

≪ y(log x)κ−1 (a7N + 1)N+1

(log x)N+1

uniformly for x ≥ y ≥ 2 , N ≥ 0 and 0 < κ ≤ B where a7 > 0 and the implied

constant depends only on B. Inserting all these estimates, we get

I0 = y(log x)κ−1


N∑
l=0

λl(κ,w)

(log x)l
+OB

(
E∗

N(x, y)
)
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where

E∗
N(x, y) :=

y

x

N+1∑
l=1

l
∣∣λl−1(κ,w)

∣∣
(log x)l

+
(a7N + 1)N+1

x
1
2

+M

(
a7N + 1

log x

)N+1

.

(This constant a7 is denoted as a1 in the statement of the theorem.)

2.3.3 Treatment of I1 and IR
1

I1 :=
1

2πi

∫
Γ1

F(s)
(x+ y)s − xs

s
ds

Note that

F(s) := G(s;κ,w)ζ(s)κζ(2s)−w

so that

∣∣G(s;κ,w)∣∣ ≤M
(
|τ |+ 1

)max{δ(1−σ),0}
(
log
(
|τ |+ 1

))A
(s = σ + iτ),

∣∣∣∣∣G
(
1

2
+ η + iτ ;κ,w

)∣∣∣∣∣ ≤M
(
|τ |+ 1

) δ
2

(
log
(
|τ |+ 1

))A
≤M.2δ2

3

(log 24)A

≤M.28δ4A if |τ | ≤ 23.

In σ > 0, ζ(s) admits an analytic continuation as a single–valued function having its

only singularity at s = 1, which is a simple pole and one has the representation (in

σ > 0):
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ζ(s) =
s

s− 1
− s

∫ ∞

1

(x)

xs+1
dx , (x) is the fractional part of x

∣∣ζ(σ + iτ)
∣∣ ≤ σ +|τ |√

(1− σ)2 + τ 2
+
(
σ +|τ |

) ∫ ∞

1

dx

xσ+1

≤ σ +|τ |√
(1− σ)2 + τ 2

+
σ +|τ |
σ

for σ ≥ η > 0.

Thus, ∣∣∣∣∣ζ
(
1

2
+ η + iτ

)∣∣∣∣∣ ≤ 26

for |τ | ≤ 23, η > 0 be any small positive constant. For κ > 0,

∣∣∣∣∣ζ
(
1

2
+ η + iτ

)κ
∣∣∣∣∣ ≤ 26κ.

For w ∈ C,

∣∣ζ(1 + 2η + 2iτ)−w
∣∣ ≤ ∣∣ζ(1 + 2η + 2iτ)

∣∣a8|w| ≤
(
ζ(1 + η)

)a8|w|

where |τ | ≤ 23 and a8 is an effective constant.

Hence, ∣∣∣∣∣F
(
1

2
+ η + iτ

)∣∣∣∣∣ ≤M28δ4A26κ
(
ζ(1 + η)

)a8|w|
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and

|I1|+
∣∣∣IR1 ∣∣∣ ≤ 1

2π

∣∣∣∣∣
∫ 23

−23
F
(
1

2
+ η + iτ

)
(x+ y)

1
2
+η+iτ − x

1
2
+η+iτ

1
2
+ η + iτ

i dτ

∣∣∣∣∣
≤ 1

2π
M28δ4A26κ

(
ζ(1 + η)

)a8|w|
∫ 23

−23

x
1
2
+η−1y∣∣1

2
+ η + iτ

∣∣dτ
≤M28δ4A26κ

(
ζ(1 + η)

)a8|w| 24

1
2

y

x
1
2
−η

≪A,B,δ,η M
y

x
1
2
−η

uniformly for 0 < κ ≤ B, |w| ≤ B.

2.3.4 Estimation of the integral I2

I2 :=
1

2πi

∫
Γ2

F(s)
(x+ y)s − xs

s
ds

Recall that

F(s) := G(s;κ,w)ζ(s)κζ(2s)−w

in Γ2,
1
2
+ η = α ≤ σ ≤ 1− C∗

log logU
for t ∈ [U, 2U ] and 0 < κ, |w| ≤ B. Also,

∣∣∣∣(x+ y)s − xs

s

∣∣∣∣≪ xσ−1y,

∣∣G(s;κ,w)∣∣≪M
(
|τ |+ 1

)max{δ(1−σ),0} (
log(|τ |+ 1)

)A
where s = σ + iτ,

∣∣ζ(2s)−w
∣∣≪ 1.

For U
2
≤|τ | ≤ 2U , we have

∣∣∣ζ(β∗
j + iτ)

∣∣∣≪ log logU
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when β∗
j is near to the left of the line σ = 1 and

∣∣∣ζ(β∗
j + iτ)

∣∣∣≪ ea9
logU

log logU

when β∗
j is away from the line σ = 1 and closer to the line σ = 1

2
from its right.

The width of Vj is ≪ H, ℜ(Vj) = β∗
j , Uj − 2H ≤ ℑ(Vj) ≤ Uj + 2H, H ≪ a3 log logU

and

F(s) ≪MU δ(1−β∗
j )
(
log(U + 1)

)A
ea9κ

logU
log logU .

The contribution of the vertical path Vj to I2 is

∣∣I2(Vj)∣∣ :=
∣∣∣∣∣ 1

2πi

∫
Vj

F(s)
(x+ y)s − xs

s
ds

∣∣∣∣∣
≪MU δ(1−β∗

j )
(
log(U + 1)

)A
ea9κ

logU
log logU xβ

∗
j−1yH

≪My

(
U δ

x

)1−β∗
j

ea9κ
logU

log logU
(
log(U + 1)

)A
H

≪My

(
U δ

x

)1−β∗
j

ea9κ
logU

log logU (logU)A+1

≪My ea10
logU

log logU

(
U δ

x

)1−β∗
j

.
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Using H0 ≪ U and H0 ≪ log T , we get

∣∣I2(V0)∣∣ :=
∣∣∣∣∣ 1

2πi

∫
V0

F(s)
(x+ y)s − xs

s
ds

∣∣∣∣∣
≪MH0

δ(1−β∗
0 )
(
log(H0 + 1)

)A
ea9κ

logU
log logU xβ

∗
0−1yH0

≪My

(
U δ

x

)1−β∗
0

ea9κ
logU

log logU
(
log(U + 1)

)A
H0

≪My

(
U δ

x

)1−β∗
0

ea9κ
logU

log logU (logU)A(log T )

≪My(log T )ea10
logU

log logU

(
U δ

x

)1−β∗
0

.

Thus,

∣∣I2(Vj)∣∣≪A,B,η,ϵ My(log T )ea10
logU

log logU

(
U δ

x

)1−β∗
j

for j = 0, 1, 2, . . . ,
U

2H
+ 1.

Let β∗∗ = max{β∗
j , β

∗
j+1}. Then in hj(top), α ≤ σ ≤ β∗∗ and |τ | = Uj +H − ϵ ≤ 2U .

The contribution of the horizontal path hj to I2 is

∣∣I2(hj)∣∣ :=
∣∣∣∣∣ 1

2πi

∫
hj

F(s)
(x+ y)s − xs

s
ds

∣∣∣∣∣
≪
∫ β∗∗

α

MU δ(1−σ)
(
log(U + 1)

)A
ea9κ

logU
log logU xσ−1y dσ

≪My

∫ β∗∗

α

(
U δ

x

)1−σ

ea9κ
logU

log logU
(
log(U + 1)

)A
dσ

≪My ea10
logU

log logU

∫ β∗∗

α

(
U δ

x

)1−σ

dσ.
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Thus,

∣∣I2(hj)∣∣≪A,B,η,ϵ My ea10
logU

log logU

∫ β∗∗

α

(
U δ

x

)1−σ

dσ for j = 0, 1, 2, . . . ,
U

2H
+ 1.

Analogous estimate also applies for the horizontal pieces h0,l.

Let α be any fixed constant satisfying 1
2
+ η ≤ α ≤ 1− η with η being any arbitrarily

small fixed positive constant. Assume that |E| = 0. We choose a partition of the

interval [α, 1] namely

α = α0 < α1 < · · · < αj−1 < αj = 1 with αj − αj−1 < ϵ.

The number of j–values for which β∗
j ∈ [αl−1, αl] is bounded byN(αl−1, 2U). Therefore,

on the dyadic t–width U ≤ t ≤ 2U , the vertical bits and the horizontal bits contribute

to the integral I2, a quantity which is

∣∣c(I2)∣∣ ≤∑
j

{∣∣I2(Vj)∣∣+∣∣I2(hj)∣∣}

≪A,B,η,ϵ My(log T )ea10
logU

log logU

∑∗

j


(
U δ

x

)1−β∗
j

+

∫ β∗∗

α

(
U δ

x

)1−σ

dσ




≪A,B,η,ϵ My(log T )ea10
logU

log logU

∫ 1−σ0

α

(
U δ

x

)1−σ

dN∗(σ, 2U)

where N∗(σ, U) :=
∑∗

σ≤β∗
j ,

|γj|≤U

1. Note that we have presumed here that x ≥ T δ. We also

observe that our choice of x made later agrees with this presumption.
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Thus,

∣∣c(I2)∣∣≪A,B,η,ϵ My(log T )ea10
logU

log logU


(
U δ

x

)1−σ

N∗(σ, 2U)

∣∣∣∣1−σ0

α

+

∫ 1−σ0

α

(
U δ

x

)1−σ
∣∣∣∣∣∣log

(
U δ

x

)∣∣∣∣∣∣N∗(σ, 2U) dσ


≪A,B,η,ϵ,δ My(log T )ea10

logU
log logU


(
U δ

x

)1−α

N(α, 2U)

+ log T

∫ 1−σ0

α

(
U δ

x

)1−σ

N(σ, 2U) dσ

 .

Here, σ0 = σ0(T ) :=
C∗

log log T
. According to our assumption |E| = 0, i.e., for σ ≥ 1− σ0,

ζ(s) ̸= 0. Therefore, N∗(σ, 2U) ≤ N(σ, 2U). From [20], it is known that

N(σ, T ) ≪ T
12
5
(1−σ)(log T )44

for 1
2
≤ σ ≤ 1 and T ≥ 2. Hence,

c(I2) ≪My(log T )ea10
logU

log logU


(
U δ

x

)1−α

U
12
5
(1−α)(log T )44

+ log T

∫ 1−σ0

α

(
U δ

x

)1−σ

U
12
5
(1−σ)(log T )44 dσ


≪My(log T )ea10

logU
log logU


(
U δ

x

)1−α

U
12
5
(1−α)(log T )44

+ (log T )46
∫ 1−σ0

α

(
U δ+ 12

5

x

)1−σ

dσ

 .
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Note that as a function of σ,

(
Uδ+12

5

x

)1−σ

is monotonic in [α, 1 − σ0

2
] and hence it

attains maximum at its extremities. Therefore,

c(I2) ≪My(log T )ea10
logU

log logU


(
U δ+ 12

5

x

)1−α

(log T )46 +

(
U δ+ 12

5

x

)σ0

(log T )46


≪My ea10

logU
log logU (log T )47


(
U δ+ 12

5

x

)1−α

+

(
U δ+ 12

5

x

)σ0


and

I2 ≪
∑
U=2l,

log T
log 2

≥l≥L

c(I2) ≪My ea11
log T

log log T


(
T δ+ϵ+ 12

5

x

)1−α

+

(
T δ+ϵ+ 12

5

x

)σ0


since H0 ≪ U ≪ T . For the sake of convenience, we have multiplied the first term in

the curly bracket by T ϵ(1−α) and the second term by T ϵσ0 .

A similar estimate holds for IR2 , of course on the assumption that |E| = 0.

2.3.5 Case |E| ≥ 1

One observes that the number of exceptional zeros is

|E| := N(1− σ0, T )

≪ T
12
5
σ0(log T )44

≪ e
C∗ log T
log log T

≪ T ϵ
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for T ≥ T0 (T0 sufficiently large).

Recall that

F(s) := G(s;κ,w)ζ(s)κζ(2s)−w,

1

2
+ η = α ≤ σ ≤ 1− C∗

log logU
≤ β∗

j,e,

G(s;κ,w) ≪M
(
|τ |+ 1

)max{δ(1−σ),0}
(
log
(
|τ |+ 1

))A
where s = σ + iτ and

∣∣ζ(s)∣∣κ ≪
(
|τ |+ 1

)η1κ(1−σ)
log
(
|τ |+ 1

)
with η1 <

1

3
.

The contribution of the vertical path Vj,e pertaining to an exceptional zero βj,e is

∣∣I2(Vj,e)∣∣≪MU δ(1−β∗
j,e)
(
log(U + 1)

)A
xβ

∗
j,e−1yHUη1κ(1−β∗

j,e) log(U + 1)

≪MU (η1κ+δ)(1−β∗
j,e)
(
log(U + 1)

)A+1
yHxβ

∗
j,e−1

≪MU (η1κ+δ)(1−β∗
j,e)
(
log(U + 1)

)A+2
yxβ

∗
j,e−1.

Similarly, ∣∣I2(V0,e)∣∣≪MH
(η1κ+δ)(1−β∗

0,e)

0 (log T )A+2xβ
∗
0,e−1y.

Therefore, ∣∣I2(Vj,e)∣∣≪MU (η1κ+δ)(1−β∗
j,e)(log T )A+2yxβ

∗
j,e−1

for j = 0, 1, 2, . . . , U
2H

+ 1.
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Similarly, the horizontal path hj,e contributes to I2,

∣∣I2(hj,e)∣∣≪My

∫ β∗
j,e

α

U (η1κ+δ)(1−σ)(log T )A+2xσ−1 dσ

≪My

∫ β∗
j,e

α

U (η1κ+δ)(1−σ)(log T )A+2xσ−1 dσ

with α ≤ σ ≤ β∗
j,e and 1− C∗

log logU
≤ β∗

j,e.

Thus in the case of exceptional set E being non–empty, we obtain as before

ce(I2) ≪My(log T )A+2


(
Uη1κ+δ

x

)1−α

N∗
e (α, 2U)

+ (log T )

∫ 1

α

(
Uη1κ+δ

x

)1−σ

N∗
e (σ, 2U) dσ


≪My(log T )A+3


(
Uη1κ+δ+ϵ

x

)1−α

+

(
Uη1κ+δ+ϵ

x

)
where N∗

e (σ, U) :=
∑

σ≤β∗
j,e,

|γj,e|≤U

1. Thus, N∗
e (σ, U) ≤ |E| ≪ U ϵ. Note that we have made

the presumption here that x ≥ T δ+η1κ. We can observe that our choice of x made

later agrees with this presumption.

Therefore,

I2,e ≪
∑
U=2l,

log T
log 2

≥l≥L

ce(I2) ≪My(log T )A+4


(
T η1κ+δ+ϵ

x

)1−α

+

(
T η1κ+δ+ϵ

x

) .

A similar estimate also holds for IR2,e.

We observe that

N∗(σ, 2U) = N∗
G(σ, 2U) +N∗

E (σ, 2U).
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Thus we get in any case whether |E| = 0 or |E| ≥ 1,

I2 ≪My ea11
log T

log log T


(
T δ+ϵ+ 12

5

x

)1−α

+

(
T δ+ϵ+ 12

5

x

)σ0


+My(log T )A+4


(
T η1κ+δ+ϵ

x

)1−α

+

(
T η1κ+δ+ϵ

x

) .

A similar estimate holds for IR2 . Thus,

I1 + IR1 + I2 + IR2 ≪A,B,δ,η M
y

x
1
2
−η

+My ea11
log T

log log T


(
T δ+ϵ+ 12

5

x

)1−α

+

(
T η1κ+δ+ϵ

x

)1−α

+

(
T δ+ϵ+ 12

5

x

)σ0

+

(
T η1κ+δ+ϵ

x

) .

2.3.6 Case 1: If κ ≤ 12
5η1

I1 + IR1 + I2 + IR2 ≪M
y

x
1
2
−η

+My ea11
log T

log log T


(
T δ+ϵ+ 12

5

x

)1−α

+

(
T δ+ϵ+ 12

5

x

)σ0

+

(
T δ+ϵ+ 12

5

x

)
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We choose T such that T δ+ϵ+ 12
5 ∼ x1−10ϵ so that

I1 + IR1 + I2 + IR2 ≪M
y

x
1
2
−η

+My ea12
log x

log log x

{
x−10ϵ(1−α) + x−10ϵσ0 + x−10ϵ

}
≪My e−a13(α,ϵ)

log x
log log x

for sufficiently large x ≥ x0(ϵ, κ, A).

From the error term in the Perron’s formula,

x1 + ϵ

T
≪ x

1 + ϵ− 1−10ϵ
δ+ϵ+ 12

5 ≪ xθ + ϵ

xθ ≫ x
1− 1−10ϵ

δ+ϵ+ 12
5

θ ≥ 1− 5− 50ϵ

5δ + 5ϵ+ 12

θ ≥ 5δ + 55ϵ+ 7

5δ + 5ϵ+ 12
.

2.3.7 Case 2: If κ > 12
5η1

I1 + IR1 + I2 + IR2 ≪M
y

x
1
2
−η

+My ea11
log T

log log T


(
T η1κ+δ+ϵ

x

)1−α

+

(
T η1κ+δ+ϵ

x

)σ0

+

(
T η1κ+δ+ϵ

x

)
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We choose T such that T η1κ+δ+ϵ ∼ x1−10ϵ so that

I1 + IR1 + I2 + IR2 ≪M
y

x
1
2
−η

+My ea14
log x

log log x
{
x−5ϵ + x−10ϵσ0 + x−10ϵ

}
≪My e−a15(ϵ)

log x
log log x

for sufficiently large x ≥ x0(ϵ, κ, A).

From the error term in the Perron’s formula,

x1 + ϵ

T
≪ x

1 + ϵ− 1−10ϵ
η1κ+δ+ϵ ≪ xθ + ϵ

xθ ≫ x
1− 1−10ϵ

η1κ+δ+ϵ

θ ≥ η1κ+ δ − 1 + 11ϵ

η1κ+ δ + ϵ
.

This completes the proof of Theorem 2.1.1.

2.4 Consequences of Halász–Turán theo-

rem

Theorem 2.4.1. [17] Assume the Lindelöf hypothesis for ζ(s) in the form

∣∣∣∣∣ζ
(
1

2
+ it

)∣∣∣∣∣ ≤ tη
2
2 for t > t0

for all sufficiently small positive numbers η2. Then the inequality

N

(
3

4
+ 2η

1
2
2 , T

)
< T 3η2
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holds for T > t0.

For a more general theorem along the same flavour, see Theorem 1.3 and Theorem 1.4

of [51].

Therefore, if one assumes Lindelöf hypothesis in the form given in the above theorem,

then by taking α = 3
4
+ 2η

1
2
2 in the earlier arguments, we find that

I1 + IR1 + I2 + IR2 ≪A,B,δ,η M
y

x1−α

+My (log T )A+10


T 2η22κ+δ+

3η2
(1−β∗)

x

1−α

+

T 2η22κ+δ+
3η2

(1−β∗)

x


 .

Since for σ ≥ 3
4
+ 2η

1
2
2 , under Lindelöf hypothesis,

N(σ, T ) ≤ N

(
3

4
+ 2η

1
2
2 , T

)
< T 3η2

= T
3η2(1−σ)
(1−σ)

< T
3η2(1−σ)
(1−β∗) .

Here,

β∗ = max
j
β∗
j +

c∗

2(log T )
2
3 (log log T )

1
3

< 1− c∗

2(log T )
2
3 (log log T )

1
3

follows from Korobov–Vinogradov’s zero-free region for ζ(s). (See [33], [58].)
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From convexity principle for 1
2
≤ σ ≤ 1, we find that

ζ(σ + it) ≪ tη
2
2x

1
2
−σ + (log t)x1−σ

≪ t2η
2
2(1−σ)(log t)

by choosing x = t2η
2
2 .

Now we choose

η2 =
c∗

2(log T )
2
3 (log log T )

1
3

(1− β∗)

so that η22 < ϵ for large T and

I1 + IR1 + I2 + IR2 ≪M
y

x
1
4
−2η

1
2
2

+My (log T )A+10


(
T 2κϵ+δ+3ϵ

x

)1−α

+

(
T 2κϵ+δ+3ϵ

x

) .

By choosing T 2κϵ+δ+3ϵ ∼ x1−10ϵ, we observe that

I1 + IR1 + I2 + IR2 ≪M
y

x
1
4
−2η

1
2
2

+My (log x)A+10
{
x−10ϵ(1−α) + x−10ϵ

}
.

Hence under the assumption of Lindelöf hypothesis, the above theorem holds with

θ(κ, δ) :=
δ − 1 + 2κϵ+ 13ϵ

δ + 2κϵ+ 3ϵ
.

One observes that δ−1
δ
< 1

2
when 1 < δ < 2 and δ−1

δ
< 1 for any positive δ. One needs

to assume that δ > 1 so that the numerator is positive.
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Applying the above contour with α = 3
4
+ 2η

1
2
2 (assuming Lindelöf hypothesis in the

stated form), we obtain

I2 ≪
∑

log T
log 2

≥l≥L

c(I2)

≪My (log T )A+3


(
T 2η22κ+δ

x

)1−α

N∗∗(α, T )

+ (log T )

∫ 1

α

(
T 2η22κ+δ

x

)1−σ

N∗∗(σ, T ) dσ


≪My (log T )A+10T 3η2


(
T 2η22κ+δ

x

)1−α

+

(
T 2η22κ+δ

x

)
≪My T 3η2+ϵ


(
T 2η22κ+δ

x

)1−α

+

(
T 2η22κ+δ

x

) .

Here N∗∗(σ, T ) has its relevant meaning with the current context of α.

Choose η2 = ϵ and T such that T 2η22κ+δ = x1−20ϵ. Then,

I2 ≪My T 4ϵ{x−20ϵ(1−α) + x−20ϵ}

≪My x4ϵ{x−5ϵ+40ϵ
3
2 + x−20ϵ}.
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Hence, we can also take

θ(κ, δ) := 1− 1− 20ϵ

2η22κ+ δ

=
2η22κ+ δ − 1 + 20ϵ

2η22κ+ δ

=
2ϵ2κ+ δ − 1 + 20ϵ

2ϵ2κ+ δ
.

Again of course, one needs to assume that δ > 1. We observe that the earlier

unconditional estimate for θ(κ, δ)
(
relevant when κ < 12

5η1

)
is 5δ+7

5δ+12
+ ϵ1 which may be

compared with the Lindelöf hypothesis conditional estimate δ−1
δ

+ ϵ2. Clearly,

5δ + 7

5δ + 12
>
δ − 1

δ

for any δ > 0. (However, our relevance here is δ > 1.)
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CHAPTER

THREE

GODEMENT–JACQUET L-FUNCTION

3.1 Introduction

Definition 3.1.1. Maass form

Let n ≥ 2, and let v = (v1, v2, . . . , vn−1) ∈ Cn−1. A Maass form [14] for SL(n,Z) of

type v is a smooth function f ∈ L2(SL(n,Z)\Hn) which satisfies

1. f(γz) = f(z), for all γ ∈ SL(n,Z), z ∈ Hn,

2. Df(z) = λDf(z), for all D ∈ Dn where Dn is the center of the universal

enveloping algebra of gl(n,R) and gl(n,R) is the Lie algebra of GL(n,R),

3.
∫

(SL(n,Z)∩U)\U
f(uz) du = 0,

for all upper triangular groups U of the form

U =





Ir1

Ir2 ∗
. . .

Irb




,
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with r1 + r2 + · · · + rb = n. Here, Ir denotes the r × r identity matrix, and ∗

denotes arbitrary real entries.

A Hecke–Maass form is a Maass form which is an eigenvector for the Hecke operators

algebra.

Let f(z) be a Hecke–Maass form of type v = (v1, v2, . . . , vn−1) ∈ Cn−1 for SL(n,Z).

Then it has the Fourier expansion

f(z) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 ̸=0

A(m1, . . . ,mn−1)∏n−1
j=1

∣∣mj

∣∣ j(n−j)
2

×WJ

M ·

γ
1

 z, v, ψ1,...,1,
mn−1

|mn−1|

 ,

where

M =



m1 . . .mn−2 ·|mn−1|
. . .

m1m2

m1

1


,

A(m1, . . . ,mn−1) ∈ C, A(1, . . . , 1) = 1,

ψ1,...,1,ϵ





1 un−1

1 un−2 ∗
. . . . . .

1 u1

1




= e2πi(u1+···+un−2+ϵun−1),
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Un−1(Z) denotes the group of (n− 1)× (n− 1) upper triangular matrices with 1s on

the diagonal and an integer entry above the diagonal and WJ is the Jacquet Whittaker

function.

Definition 3.1.2. Dual Maass form

If f(z) is a Maass form of type (v1, . . . , vn−1) ∈ Cn−1, then

f̃(z) := f(w · (z−1)T · w),

w =



(−1)[
n
2 ]

1

...

1


is a Maass form of type (vn−1, . . . , v1) for SL(n,Z) called the dual Maass form. If

A(m1, . . . ,mn−1) is the (m1, . . . ,mn−1)–Fourier coefficient of f , then A(mn−1, . . . ,m1)

is the corresponding Fourier coefficient of f̃ .

We note that the Fourier coefficients A(m1, . . . ,mn−1) satisfy the multiplicative rela-

tions

A(m1m
′
1, . . . ,mn−1m

′
n−1) = A(m1, . . . ,mn−1) · A(m′

1, . . . ,m
′
n−1),

if

(m1 . . .mn−1,m
′
1 . . .m

′
n−1) = 1,

A(m, 1, . . . , 1)A(m1, . . . ,mn−1) =
∑

n∏
l=1

cl=m

c1|m1,c2|m2,...,cn−1|mn−1

A

(
m1cn
c1

,
m2c1
c2

, . . . ,
mn−1cn−2

cn−1

)
,
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and

A(mn−1, . . . ,m1) = A(m1, . . . ,mn−1).

Definition 3.1.3. Godement–Jacquet L-function

The Godement–Jacquet L-function Lf (s) [26] attached to f is defined for ℜ(s) > 1 by

Lf (s) =
∞∑

m=1

A(m, 1, . . . , 1)

ms
=
∏
p

n∏
i=1

(1− αp,ip
−s)−1,

where {αp,i}, 1 ≤ i ≤ n are the complex roots of the monic polynomial

Xn +
n−1∑
j=1

(−1)jA(

j−1 terms︷ ︸︸ ︷
1, . . . , 1, p, 1, . . . , 1)Xn−j + (−1)n ∈ C[X], and

A(

j−1︷ ︸︸ ︷
1, . . . , 1, p, 1, . . . , 1) =

∑
1≤i1<···<ij≤n

αp,i1 . . . αp,ij , for 1 ≤ j ≤ n− 1.

Lf (s) satisfies the functional equation:

Λf (s) :=
n∏

i=1

π
−s+λi(vf )

2 Γ

(
s− λi(vf )

2

)
Lf (s)

= Λf̃ (1− s),

where f̃ is the Dual Maass form.

In the case of Godement–Jacquet L-function, Yujiao Jiang and Guangshi Lü [26]

have studied cancellation on the exponential sum
∑

m≤N

µ(m)A(m, 1)e2πimθ related to
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SL(3,Z) where θ ∈ R .

Throughout the chapter, we assume that f is self dual i.e., f̃ = f .

ϵ, ϵ1 and η always denote any small positive constants.

If Nf (T ) denotes the number of zeros of Lf (s) in the rectangle mentioned below, then

from the functional equation and the argument principle of complex function theory

we have,

Nf (T ) ∼ c(n)T log T,

where c(n) is a non zero constant depending only on the degree n of Lf (s).

·

·

·

·

−1 + iT

−1 + 2iT

2 + iT

2 + 2iT

(i) The generalized Ramanujan conjecture:

It asserts that ∣∣A(m, 1, . . . , 1)∣∣ ≤ dn(m)

where dn(m) is the number of representations ofm as the product of n natural numbers.

The current best estimates are due to Kim and Sarnak [31] for 2 ≤ n ≤ 4 and Luo,
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Rudnick and Sarnak [36, 37] for n ≥ 5

∣∣A(m)
∣∣ ≤ m

7
64d(m),∣∣A(m, 1)∣∣ ≤ m
5
14d3(m),∣∣A(m, 1, 1)∣∣ ≤ m
9
22d4(m),∣∣A(m, 1, . . . , 1)∣∣ ≤ m

1
2
− 1

n2+1dn(m).

We note that the generalized Ramanujan conjecture is equivalent to

∣∣αp,i

∣∣ = 1 ∀ primes p and i = 1, 2, . . . , n.

Other estimates are equivalent to

∣∣αp,i

∣∣ ≤ pθn ∀ primes p and i = 1, 2, . . . , n where

θ2 :=
7

64
, θ3 :=

5

14
, θ4 :=

9

22
, θn :=

1

2
− 1

n2 + 1
(n ≥ 5).

(ii) Ramanujan’s generalized weak conjecture:

We formulate this conjecture as:

For n ≥ 2, the inequality ∣∣αp,i

∣∣ ≤ p
1
4
−ϵ1

holds for some small ϵ1 > 0, for every prime p and for i = 1, 2, . . . , n. Of course, this

weak conjecture holds good for n = 2. For n ≥ 3, this conjecture is still open.
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Taking the logarithmic derivative of Lf (s), we have

−
L′
f

Lf

(s) :=
∞∑

m=1

Λf (m)

ms
=

∞∑
m=1

Λ(m)af (m)

ms

where af (m) is multiplicative and

af (p
r) =

n∑
i=1

αr
p,i

for any integer r ≥ 1.

In particular,

af (p) =
n∑

i=1

αp,i = A(p, 1, . . . , 1).

(iii) Rudnick–Sarnak conjecture:

For any fixed integer r ≥ 2,

∑
p

∣∣af (pr)∣∣2 (log p)2
pr

<∞.

We know that this conjecture is true for n ≤ 4. (See [32, 49].)

(iv) Riemann hypothesis for Lf (s):

It asserts that Lf (s) ̸= 0 in ℜ(s) > 1
2
.

This chapter aims to establish:

Theorem 3.1.1. [27] Ramanujan’s weak conjecture implies Rudnick–Sarnak conjec-

ture.

Remark 3.1.1. Theorem 3.1.1 is indicated in [32].
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Theorem 3.1.2. [27] Assume n ≥ 5 be any arbitrary but fixed integer. Let ϵ be

any small positive constant and T ≥ T0 where T0 is sufficiently large. Assume the

Rudnick–Sarnak conjecture and Riemann hypothesis for Lf (s). Then the estimate:

∫ 2T

T

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

dt≪f,n,ϵ,η T (log T )
2η

holds for 1
2
+ ϵ ≤ σ0 ≤ 1− ϵ with η being some constant satisfying 0 < η < 1

2
.

Remark 3.1.2. Since Rudnick–Sarnak conjecture is true for 2 ≤ n ≤ 4, Theorem 3.1.2

holds just with the assumption of Riemann hypothesis for Lf (s) whenever 2 ≤ n ≤ 4.

Remark 3.1.3. It is not difficult to see from our arguments that only assuming

Riemann Hypothesis for Lf(s), Theorem 3.1.2 can be upheld for any σ0 satisfying

1 − 1
n2+1

+ ϵ ≤ σ0 ≤ 1 − ϵ by using the bound θn = 1
2
− 1

n2+1
of Luo, Rudnick and

Sarnak.

It is also not difficult to see from our arguments that the generalized Ramanujan

conjecture and the Riemann hypothesis for Lf (s) together imply the bound

∫ 2T

T

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

dt≪f,n,ϵ T (3.1)

to hold for any σ0 satisfying 1
2
+ ϵ ≤ σ0 ≤ 1− ϵ.

Though we expect the bound stated in Equation 3.1 to hold unconditionally for σ0 in

the said range, this seems to be very hard to establish.
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3.2 Some Lemmas

Lemma 3.2.1. If f(s) is regular and

∣∣∣∣ f(s)f(s0)

∣∣∣∣ < eM (M > 1)

in |s− s0| ≤ r1, then for any constant b with 0 < b < 1
2
,

∣∣∣∣∣∣f
′

f
(s)−

∑
ρ

1

s− ρ

∣∣∣∣∣∣≪b
M

r1

in |s− s0| ≤
(
1
2
− b
)
r1, where ρ runs over all zeros of f(s) such that |ρ− s0| ≤ r1

2
.

Proof. See Lemma α in Section 3.9 of [57] or see [45].

Lemma 3.2.2. Let N∗
f (T ) denote the number of zeros of Lf (s) in the region 0 ≤ σ ≤ 1,

0 ≤ t ≤ T . Then,

N∗
f (T + 1)−N∗

f (T ) ≪n log T.

Proof. Let n(r1) denote the number of zeros of Lf (s) in the circle with centre 2 + iT

and radius r1. By Jensen’s theorem,

∫ 3

0

n(r1)

r1
dr1 =

1

2π

∫ 2π

0

log

∣∣∣∣Lf

(
2 + iT + 3eiθ

)∣∣∣∣ dθ − log
∣∣Lf (2 + iT )

∣∣ .
From the functional equation, we observe that

∣∣Lf (s)
∣∣≪f t

A for − 1 ≤ σ ≤ 5 where A is some fixed positive constant,
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and hence we have,

log

∣∣∣∣Lf

(
2 + iT + 3eiθ

)∣∣∣∣≪ A log T.

Note that

∣∣∣∣1− αp,i

p2+it

∣∣∣∣ ≥ 1−
∣∣αp,i

∣∣
p2

≥ 1− p
1
2

p2

= 1− 1

p
3
2

.

Thus we have,

∣∣Lf (2 + it)
∣∣ =∏

p

n∏
i=1

∣∣∣∣∣
(
1− αp,i

p2+it

)∣∣∣∣∣
−1

≤
∏
p

n∏
i=1

(
1− 1

p
3
2

)−1

≤

(
ζ

(
3

2

))n

≪n 1.

Therefore,

∫ 3

0

n(r1)

r1
dr1 ≪ A log T + A≪ log T,∫ 3

0

n(r1)

r1
dr1 ≥

∫ 3

√
5

n(r1)

r1
dr1 ≥ n(

√
5)

∫ 3

√
5

dr1
r1

≥ c.n(
√
5).
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Hence,

N∗
f (T + 1)−N∗

f (T ) ≪n log T.

Lemma 3.2.3. Let am(m=1,2,. . . ,N) be any set of complex numbers. Then

∫ 2T

T

∣∣∣∣∣∣
N∑

m=1

amm
−it

∣∣∣∣∣∣
2

dt =
N∑

m=1

|am|2
(
T +O(m)

)
.

Lemma 3.2.4. Let bm be any set of complex numbers such that
∑
m
(
|bm|

)2
is

convergent. Then

∫ 2T

T

∣∣∣∣∣
∞∑

m=1

bmm
−it

∣∣∣∣∣
2

dt =
∞∑

m=1

|bm|2
(
T +O(m)

)
.

Proof. See [39] or [44] for Montgomery and Vaughan theorem.

Hereafter, Y ≥ 10 is an arbitrary parameter depending on T which will be chosen

suitably later. Also, σ0 satisfies the inequality 1
2
+ ϵ ≤ σ0 ≤ 1− ϵ for any small positive

constant ϵ.

Lemma 3.2.5. For 1
2
+ ϵ ≤ σ0 ≤ 1− ϵ, we have

∑
m>Y

2
(log Y )2

m
∣∣Λf (m)

∣∣2 e− 2m
Y

m2σ0
≪ 1.
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Proof. We have,

∑
m>Y

2
(log Y )2

m
∣∣Λf (m)

∣∣2 e− 2m
Y

m2σ0
≪

∑
m>Y

2
(log Y )2

m
∣∣Λf (m)

∣∣2 e−m
Y

Y 2

m2

m2σ0

≪ Y 2
∑

m>Y
2
(log Y )2

∣∣Λf (m)
∣∣2 e−m

Y

m1+2σ0
.

Since m
Y

≥ 1
2
(log Y )2 for m ≥ Y

2
(log Y )2, we have e

m
Y ≫ Y B for any large positive

constant B. Therefore,

∑
m>Y

2
(log Y )2

m
∣∣Λf (m)

∣∣2 e− 2m
Y

m2σ0
≪ Y 2

Y B

∑
m>Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m1+2σ0

≪ 1.

Lemma 3.2.6. Assuming Rudnick–Sarnak conjecture and taking Y sufficiently large,

we have ∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
e−

2m
Y ≪ (log Y )2.

Proof. Note that

∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
e−

2m
Y ≤

∑
p≤Y

2
(log Y )2

(log p)2
∣∣af (p)∣∣2

p2σ0
+

[
log Y

2
log 2

]
+1∑

r=2

∑
p

(log p)2
∣∣af (pr)∣∣2

(pr)2σ0
,
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and ∣∣af (p)∣∣ =
∣∣∣∣∣∣

n∑
i=1

αp,i

∣∣∣∣∣∣ = ∣∣A(p, 1, . . . , 1)∣∣ .

We have,

∑
m≤Y

cm
ml

=

∫ Y

1

d
(∑

m≤u cm

)
ul

=

∑
m≤u cm

ul

∣∣∣∣Y
1

−
∫ Y

1

(−l)
∑

m≤u cm

ul+1
du.

From Remark 12.1.8 of [14], we have

∑
mn−1

1 mn−2
2 ...mn−1≤Y

∣∣A(m1,m2, . . . ,mn−1)
∣∣2 ≪f Y.

Therefore,

∑
m≤Y

∣∣A(m, 1, . . . , 1)∣∣2 ≤ ∑
mn−1

1 mn−2
2 ...mn−1≤Y

∣∣A(m1,m2, . . . ,mn−1)
∣∣2 ≪f Y.

Taking l = 2σ0 and cm =
∣∣A(m, 1, . . . , 1)∣∣2,

∑
m≤Y

2
(log Y )2

∣∣A(m, 1, . . . , 1)∣∣2
m2σ0

≪ 1.
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Hence,

∑
p≤Y

2
(log Y )2

(log p)2
∣∣af (p)∣∣2

p2σ0
≪ (log Y )2

∑
m≤Y

2
(log Y )2

∣∣A(m, 1, . . . , 1)∣∣2
m2σ0

≪ (log Y )2.

By Rudnick–Sarnak conjecture and the bound
∣∣αp,i

∣∣ ≤ pθn with θn = 1
2
− 1

n2+1
,

∑
r≥2

∑
p

(log p)2
∣∣af (pr)∣∣2
pr

converges (as in proof of Theorem 3.1.1) and in particular,

[
log Y

2
log 2

]
+1∑

r=2

∑
p

(log p)2
∣∣af (pr)∣∣2
pr

≪ 1.

Therefore, ∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
≪ (log Y )2.

Lemma 3.2.7. Assume Rudnick–Sarnak conjecture. Then we have,

∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0−1
e−

2m
Y ≪ Y (log Y )4

where Y is sufficiently large.
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Proof. We have,

∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0−1
e−

2m
Y ≤

∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
m

≪ Y (log Y )2
∑

m≤Y
2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0

≪ Y (log Y )4

by using Lemma 3.2.6.

Lemma 3.2.8. For sufficiently large Y , we have

∑
m>Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m1+2σ0
e−

2m
Y ≪n,ϵ 1.

Proof. If m = pl11 p
l2
2 . . . p

lk
k , then

∣∣af (m)
∣∣ = ∣∣∣af (pl11 ) . . . af (plkk )∣∣∣
≤ npl1θn1 . . . nplkθnk

≤ nkmθn

where k = ω(m) ≤ 2 logm
log logm

and m is sufficiently large.

We have,

n2ω(m) ≤ n
4 logm
log logm

= m
4 logn

log logm

≪n,ϵ m
ϵ
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and hence,

∑
m>Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m1+2σ0
e−

2m
Y =

∑
m>Y

2
(log Y )2

∣∣Λ(m)af (m)
∣∣2

m1+2σ0
e−

2m
Y

≪
∑

m>Y
2
(log Y )2

(logm)2n2ω(m)m2θn

m1+2σ0

≪n,ϵ

∑
m>Y

2
(log Y )2

m2ϵm2θn

m1+2σ0

≪n,ϵ

∑
m>Y

2
(log Y )2

1

m
1+ 2

n2+1

≪n,ϵ 1.

Lemma 3.2.9. For sufficiently large Y , we get

∑
m>Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
e−

2m
Y ≪ 1.

Proof. From Lemma 3.2.5,

∑
m>Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
e−

2m
Y ≤

∑
m>Y

2
(log Y )2

m

∣∣Λf (m)
∣∣2

m2σ0
e−

2m
Y ≪ 1.
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3.3 Proof of Theorem 3.1.1

Assuming
∣∣αp,i

∣∣ ≤ pθn with θn ≤ 1
4
− ϵ1, we need to prove that for every integer n ≥ 5

and for every integer r ≥ 2,

∑
p

(log p)2
∣∣af (pr)∣∣2
pr

<∞.

It is enough to show that

∞∑
r=2

∑
p

(log p)2
∣∣af (pr)∣∣2
pr

<∞.

Using

af (p
r) :=

n∑
i=1

αr
p,i and

∣∣αp,i

∣∣ ≤ pθn

we get,

∞∑
r=2

∑
p

(log p)2
∣∣af (pr)∣∣2
pr

≤
∞∑
r=2

∑
p

(log p)2

(
n∑

i=1

prθn

)2

pr

=
∞∑
r=2

∑
p

(log p)2n2p2rθn

pr

≤ n2
∑
p

(log p)2
∞∑
r=2

p2r(
1
4
−ϵ1)

pr

= n2
∑
p

(log p)2
∞∑
r=2

1

p
r
2
+2rϵ1

= n2
∑
p

(log p)2
p−(1+4ϵ1)

1− p−( 1
2
+2ϵ1)

= n2
∑
p

(log p)2
1

p
1
2
+2ϵ1

(
p

1
2
+2ϵ1 − 1

)
≪n,ϵ1 1.
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This proves Theorem 3.1.1.

3.4 Proof of Theorem 3.1.2

First, we wish to approximate
L′
f

Lf
(s) uniformly for 1

2
< σ0 ≤ σ ≤ σ1 < 1 when

T ≤ t ≤ 2T . We assume throughout below the Riemann hypothesis for Lf (s).

From the work of Godement–Jacquet [13], it is known that the function Lf(s) is of

finite order in any bounded vertical strip. Hence, we can very well assume that

Lf (s) ≪ TA = eA log T

for −1 ≤ σ ≤ 2, T ≤ t ≤ 2T and A some fixed positive constant.

Taking s0 = 2 + it with t ∈ R, we have

Lf (2 + it) =
∏
p

n∏
i=1

(
1− αp,i

p2+it

)−1

.

Observe that

∣∣∣∣1− αp,i

p2+it

∣∣∣∣ ≤ 1 +

∣∣αp,i

∣∣
p2

≤ 1 +
pθn

p2

= 1 +
1

p2−θn

≤ 1 +
1

p
3
2
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because θn ≤ 1
2
for n ≥ 2.

Therefore,

∣∣Lf (2 + it)
∣∣ ≥∏

p

n∏
i=1

(
1 +

1

p
3
2

)−1

=
∏
p

(
1 +

1

p
3
2

)−n

=
∏
p

1− 1

p
3
2

1− 1
p3

n

=

(
ζ(3)

ζ
(
3
2

))n

which is a constant depending only on n. Therefore, Lf (2 + it) ̸= 0 ∀ t ∈ R.

Hence from Lemma 3.2.1, with r = 12, s0 = 2 + iT , f(s) = Lf(s), M = A log T , we

obtain

−
L′
f

Lf

(s) =
∑

|s−s0|≤6

1

s− ρ
+O(log T ).

For |s− s0| ≤ 3 and so in particular for −1 ≤ σ ≤ 2, t = T , replacing T by t in the

particular case, we obtain

−
L′
f

Lf

(s) =
∑

|ρ−s0|≤6

1

s− ρ
+O(log t).

Any term occurring in
∑

|t−γ|≤1

1
s−ρ

but not in
∑

|s−s0|≤6

1
s−ρ

is bounded and the number of

65



such terms does not exceed

N∗
f (t+ 6)−N∗

f (t− 6) ≪ log t,

where N∗
f (t) is the number of zeros of Lf(s) in the region 0 ≤ σ ≤ 1 and 0 ≤ t ≤ T .

Thus, we get

−
L′
f

Lf

(s) =
∑

|t−γ|≤1

1

s− ρ
+O(log t).

Assume 1
2
< σ < 1 and T ≤ t ≤ 2T , then

∞∑
m=1

Λf (m)

ms
e−

m
Y = − 1

2πi

∫ 2+i∞

2−i∞

L′
f

Lf

(s+ w)Γ(w)Y wdw.

Note also that from the above reasoning

L′
f

Lf

(s) ≪ log t on any line σ ̸= 1

2
.

Also,
L′
f

Lf

(s) ≪ log t

min(|t− γ|)
+ log t uniformly for − 1 ≤ σ ≤ 2.

From Lemma 3.2.2, we observe that each interval (j, j + 1) contains values of t whose

distance from the ordinate of any zero exceeds A
log j

, there is a tj in any such interval

for which
L′
f

Lf

(s) ≪ (log t)2 where − 1 ≤ σ ≤ 2 and t = tj.
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Applying Cauchy’s residue theorem to the rectangle, we get

·

·

·

·

1
4
− σ − itj

1
4
− σ + itj

2− itj

2 + itj

1

2πi

(∫ 2+itj

2−itj

+

∫ 1
4
−σ+itj

2+itj

+

∫ 1
4
−σ−itj

1
4
−σ+itj

+

∫ 2−itj

1
4
−σ−itj

)
L′
f

Lf

(s+ w)Γ(w)Y wdw

=
L′
f

Lf

(s) +
∑

−tj<γ<tj

Γ(ρ− s)Y ρ−s.

In the sum appearing on the right-hand side above, zeros ρ are counted with its

multiplicity if there are any multiple zeros. The integrals along the horizontal lines

tend to zero as j → ∞ since the gamma function decays exponentially and Y is going

to be at most a power of T only, so that

∞∑
m=1

Λf (m)

ms
e−

m
Y =

1

2πi

∫ 1
4
−σ+i∞

1
4
−σ−i∞

L′
f

Lf

(s+ w)Γ(w)Y wdw −
L′
f

Lf

(s)−
∑
ρ

Γ(ρ− s)Y ρ−s.
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Note that Γ(w) ≪ e−A|v| so that the integral on ℜ(w) = 1
4
− σ is

≪
∫ ∞

−∞
e−A|v| log(|t+ v|+ 2)Y

1
4
−σdv

≪
∫ 2t

0

e−A|v| log(10|t|+ 2)Y
1
4
−σdv +

(∫ 0

−∞
+

∫ ∞

2t

)
e−A|v| log(|v|+ 10)Y

1
4
−σdv

≪ Y
1
4
−σ log T + Y

1
4
−σ

≪ Y
1
4
−σ log T.

Note that for 1
2
< σ0 ≤ σ ≤ σ1 < 1,

∣∣Γ(ρ− s)
∣∣ < A1e

−A2|γ−t|

uniformly for σ in the said range. Therefore,

∑
ρ

∣∣Γ(ρ− s)
∣∣ < A1

∑
ρ

e−A2|γ−t| = A1

∞∑
m=1

∑
m−1≤γ≤m

e−A2|t−γ|.

The number of terms in the inner sum is

≪ log(|t|+m) ≪ log |t|+ log(m+ 1)

and hence

∑
ρ

∣∣Γ(ρ− s)
∣∣≪ ∞∑

m=1

e−A2m(log |t|+ log(m+ 1)) ≪ log T,
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∣∣∣∣∣∣
∑
ρ

Γ(ρ− s)Y ρ−s

∣∣∣∣∣∣≪ Y
1
2
−σ log T.

Thus for 1
2
< σ0 ≤ σ ≤ σ1 < 1, we have

−
L′
f

Lf

(s) =
∞∑

m=1

Λf (m)

ms
e−

m
Y +Of (Y

1
2
−σ log T ).

Thus for 1
2
+ ϵ ≤ σ0 ≤ 1− ϵ and T ≤ t ≤ 2T , we obtain

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

≪

∣∣∣∣∣
∞∑

m=1

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣
2

+
(
Y

1
2
−σ0 log T

)2
.

Thus,

∫ 2T

T

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

dt≪f

∫ 2T

T

∣∣∣∣∣
∞∑

m=1

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣
2

dt+ Y 1−2σ0T (log T )2.

We note that

∣∣∣∣∣
∞∑

m=1

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣
2

≪

∣∣∣∣∣∣∣
∑

m≤Y
2
(log Y )2

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∑

m>Y
2
(log Y )2

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣∣
2

,
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and hence

∫ 2T

T

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

dt≪f

∫ 2T

T

∣∣∣∣∣∣∣
∑

m≤Y
2
(log Y )2

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣∣
2

+

∫ 2T

T

∣∣∣∣∣∣∣
∑

m>Y
2
(log Y )2

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣∣
2

+ Y 1−2σ0T (log T )2.

By Montgomery–Vaughan theorem (Lemmas 3.2.3 and 3.2.4) and Lemma 3.2.5, we

get

∫ 2T

T

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

dt≪f

∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0

(
T +O(m)

)
+

∑
m>Y

2
(log Y )2

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0

(
T +O(m)

)
+ Y 1−2σ0T (log T )2

≪f T
∑

m≤Y
2
(log Y )2

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0
+

∑
m≤Y

2
(log Y )2

m

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0

+ T
∑

m>Y
2
(log Y )2

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0
+

∑
m>Y

2
(log Y )2

m

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0

+ Y 1−2σ0T (log T )2.

By Lemmas 3.2.6, 3.2.7, 3.2.8 and 3.2.9, we obtain

∫ 2T

T

∣∣∣∣∣L′
f

Lf

(
1

2
+ ϵ+ it

)∣∣∣∣∣
2

dt≪f,n,ϵ T (log Y )2 + Y (log Y )4 + Y 1−2σ0T (log T )2.
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We choose Y = exp{(log T )η} with any η satisfying 0 < η < 1
2
so that we obtain

∫ 2T

T

∣∣∣∣∣L′
f

Lf

(σ0 + it)

∣∣∣∣∣
2

dt≪f,n,ϵ,η T (log T )
2η.

This proves Theorem 3.1.2.
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CHAPTER

FOUR

RANKIN–SELBERG L-FUNCTION RELATED TO THE

GODEMENT–JACQUET L-FUNCTION

4.1 Introduction

Definition 4.1.1. [14] For n ≥ 2, let f, g be two Maass forms for SL(n,Z) of type

vf , vg ∈ Cn−1, respectively, with Fourier expansions:

f(z) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 ̸=0

A(m1, . . . ,mn−1)∏n−1
j=1

∣∣mj

∣∣ j(n−j)
2

×WJ

M ·

γ
1

 z, vf , ψ1,...,1,
mn−1

|mn−1|

 ,
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g(z) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 ̸=0

B(m1, . . . ,mn−1)∏n−1
j=1

∣∣mj

∣∣ j(n−j)
2

×WJ

M ·

γ
1

 z, vg, ψ1,...,1,
mn−1

|mn−1|

 .

Let s ∈ C. Then the Rankin–Selberg L-function, denoted as Lf×g(s), is defined by

Lf×g(s) = ζ(ns)
∞∑

m1=1

· · ·
∞∑

mn−1=1

A(m1, . . . ,mn−1) ·B(m1, . . . ,mn−1)

(mn−1
1 mn−2

2 . . .mn−1)s
,

which converges absolutely provided ℜ(s) is sufficiently large.

In the special case g = f , we have

Lf×f (s) = ζ(ns)
∞∑

m1=1

· · ·
∞∑

mn−1=1

∣∣A(m1, . . . ,mn−1)
∣∣2

(mn−1
1 mn−2

2 . . .mn−1)s

for ℜ(s) > 1.

Let Ev(z) denote the minimal parabolic Eisenstein series. The L-function associated

to Ev (see [14, Equation (10.8.5)]) is computed as

LEv(z) =
∞∑

c1=1

· · ·
∞∑

cn−1=1

∞∑
m=1

(mc1 · · · cn−1)
−sJv− 1

n





c1
m

. . .

cn−1

m

1




.

From [14, Theorem 10.8.6], there exist functions λi : Cn−1 → C satisfying ℜ
(
λi(v)

)
= 0
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if ℜ(vi) = 1
n
(i = 1, . . . , n − 1) such that the L-function associated to Ev is just a

product of shifted Riemann zeta functions of the form

LEv(z) =
n∏

i=1

ζ
(
s− λi(v)

)
.

We write

Lf×f (s) :=
∞∑

m=1

b(m)

ms
for ℜ(s) > 1.

Also, s = σ + it and t is sufficiently large.

In [28], we proved the following two theorems. Theorem 4.1.1 is an unconditional

result while Theorem 4.1.2 is a conditional result.

Theorem 4.1.1. [28] Let n ≥ 3 be an arbitrary but fixed integer. For k ≥ k0(n) =

n2(n+1)
2

+ n, we have

∑
m≤x

b(m)

k!

(
1− m

x

)k

=
Cx

(k + 1)!
+On(log x).

Here C is an effective constant depending only on f .

Hypothesis 4.1.1. (Coefficient Growth Hypothesis)

For every ϵ > 0,

A(m1, . . . ,mn−1) ≪ϵ m
ϵ

where m = mn−1
1 mn−2

2 . . .mn−1.

Remark 4.1.1. In some sense, this is slightly weaker than the generalized Ramanujan
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conjecture namely, ∣∣αp,i

∣∣ = 1,

for every prime p and i = 1, 2, . . . , n.

Hypothesis 4.1.2. (Lindelöf Hypothesis for Lf×f (s))

For every ϵ > 0 and for every σ ≥ 1
2
, the inequality

Lf×f (σ + it) ≪ϵ

(
|t|+ 10

)ϵ
holds for sufficiently large t.

Theorem 4.1.2. [28] Assume Hypotheses 4.1.1 and 4.1.2. Let n ≥ 3 be any arbitrary

but fixed integer, then the asymptotic formula

∑
m≤x

b(m)

k!

(
1− m

x

)k

=
Cx

(k + 1)!
+On,ϵ(x

1
2
+ϵ)

holds for every positive integer k ≥ 1.

The aim of this chapter is twofold. First, we want to improve the range of k in

Theorem 4.1.1 with a better error term. Then, by a reduction argument, we will

obtain an unconditional result, namely an asymptotic formula for the sum
∑
m≤x

b(m).

Thus, we prove:

Theorem 4.1.3. [29] Let n ≥ 3 be an arbitrary but fixed integer. For k ≥ k1(n) =[
n2

2

]
+ 1, we have

∑
m≤x

b(m)

k!

(
1− m

x

)k

=
Cx

(k + 1)!
+On(1).
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Here C is an effective constant depending only on f .

Theorem 4.1.4. [29] For sufficiently large x, we have

∑
m≤x

b(m) =
2k1C

(k1 + 1)
x+On

(
x
1− 1

2k1

)

where k1 = k1(n) =
[
n2

2

]
+ 1.

Remark 4.1.2. When proving Theorem 4.1.2 in [28], we assumed hypotheses 4.1.1

and 4.1.2. From Lemma 4.3.1, we can see that Hypothesis 4.1.1 is redundant. Just

with the assumption of Hypothesis 4.1.2 for k = 1, we have

∑
m≤x

b(m)

(
1− m

x

)
=
Cx

2
+O(x

1
2
+ϵ).

Using Lemma 4.3.5, we observe that conditionally we get

∑
m≤x

b(m) = Cx+O(x
3
4
+ϵ).

Though the error term obtained in Theorem 4.1.4 is weaker than what is expected, it

is an unconditional result.

Remark 4.1.3. We note that the reduction process in Lemma 4.3.5 originated in [21]

due to Ingham. This idea has been successfully exploited under various circumstances

by several researchers. For instance, see [1, 2, 3].

Remark 4.1.4. Although the error term derived in Theorem 4.1.4 may not match

the level of precision found in the results of H. Lao [35], it’s important to note that
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our approach to addressing this problem differs significantly in the sense that we could

get as a byproduct an unconditional asymptotic formula using a reduction argument

from the k-th Riesz mean.

Throughout the chapter, we assume that f is a self-dual Hecke–Maass form for SL(n,Z)

and ϵ is any small positive constant.

4.2 Preliminaries

In this section, we present some necessary properties of the Rankin–Selberg L-function

which are used later.

4.2.1 Euler Product

Fix n ≥ 2. Let f, g be two Maass forms for SL(n,Z) with Euler products

Lf (s) =
∞∑

m=1

A(m, 1, . . . , 1)

ms
=
∏
p

n∏
i=1

(1− αp,ip
−s)−1,

Lg(s) =
∞∑

m=1

B(m, 1, . . . , 1)

ms
=
∏
p

n∏
i=1

(1− βp,ip
−s)−1,

then Lf×g(s) will have an Euler product of the form:

Lf×g(s) =
∏
p

n∏
i=1

n∏
j=1

(1− αp,iβp,jp
−s)−1.
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4.2.2 Functional Equation

For n ≥ 2, let f, g be two Maass forms of types vf , vg for SL(n,Z) whose associated

L-functions Lf , Lg satisfy the functional equations:

Λf (s) :=
n∏

i=1

π
−s+λi(vf )

2 Γ

(
s− λi(vf )

2

)
Lf (s)

= Λf̃ (1− s),

Λg(s) :=
n∏

j=1

π
−s+λj(vg)

2 Γ

(
s− λj(vg)

2

)
Lg(s)

= Λg̃(1− s),

where f̃ , g̃ are the Dual Maass forms.

Then the Rankin–Selberg L-function Lf×g(s) has a meromorphic continuation to all

s ∈ C with at most a simple pole at s = 1 with residue proportional to ⟨f, g⟩, the

Petersson inner product of f with g. Lf×g(s) satisfies the functional equation:

Λf×g(s) :=
n∏

i=1

n∏
j=1

π
−s+λi(vf )+λj(vg)

2 Γ

(
s− λi(vf )− λj(vg)

2

)
Lf×g(s)

= Λf̃×g̃(1− s).

From Equation (10.8.5) and Remark 10.8.7 of [14], the powers of π take the much

simpler form:

n∏
i=1

π
−s+λi(v)

2 = π
−ns
2 ,

n∏
i=1

n∏
j=1

π
−s+λi(vf )+λj(vg)

2 = π
−n2s

2 .
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Hence, we get

Λf×g(s) := π
−n2s

2

n∏
i=1

n∏
j=1

Γ

(
s− λi(vf )− λj(vg)

2

)
Lf×g(s)

= Λf̃×g̃(1− s).

We take g = f and f to be a self-dual Maass form of type v so that

Λf×f (s) := π
−n2s

2

n∏
i=1

n∏
j=1

Γ

(
s− λi(v)− λj(v)

2

)
Lf×f (s)

= Λf×f (1− s).

4.2.3 Bound for the conversion factor

Let f be a self-dual Hecke–Maass form. Then we have the functional equation

Λf×f (s) = Λf×f (1− s).

If we write Lf×f (s) = χf×f (s)Lf×f (1− s), then the conversion factor χf×f (s) can be

written as

χf×f (s) :=

πn2s−n2

2

n∏
i=1

n∏
j=1

Γ

(
1−s−λi(v)−λj(v)

2

)
n∏

i=1

n∏
j=1

Γ

(
s−λi(v)−λj(v)

2

) ,

= πn2s−n2

2 exp

 n∑
i=1

n∑
j=1

log Γ

(
1− s− λi(v)− λj(v)

2

)
× exp

− n∑
i=1

n∑
j=1

log Γ

(
s− λi(v)− λj(v)

2

) .
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From [21], we know that the following asymptotic formula for the Gamma function,

log Γ(z + α) =

(
z + α− 1

2

)
log z − z +

1

2
log 2π +O

(
1

|z|

)

holds uniformly in any fixed angle
∣∣arg(z)∣∣ ≤ π − δ < π and any bounded range of α

as |z| → ∞.

Evaluating appropriately, we get

log Γ

(
1− s− λi(v)− λj(v)

2

)
=

(
−s− λi(v)− λj(v)

2

)
log

(
−s
2

)
+
s

2
+

1

2
log 2π +O

(
1

|s|

)
,

log Γ

(
s− λi(v)− λj(v)

2

)
=

(
s− 1− λi(v)− λj(v)

2

)
log

(
s

2

)
− s

2
+

1

2
log 2π +O

(
1

|s|

)
.

Thus,

n∑
i=1

n∑
j=1

log Γ

(
1− s− λi(v)− λj(v)

2

)

= n2

{(
−s
2

)
log

(
−s
2

)
+
s

2
+

1

2
log 2π +O

(
1

|s|

)}
,

n∑
i=1

n∑
j=1

log Γ

(
s− λi(v)− λj(v)

2

)

= n2

{(
s− 1

2

)
log

(
s

2

)
− s

2
+

1

2
log 2π +O

(
1

|s|

)}
.
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Therefore,

χf×f (s)

= πn2s−n2

2 exp

n2

{(
−s
2

)
log

(
−s
2

)
+

(
1− s

2

)
log

(
s

2

)
+ s+O

(
1

|s|

)}

and hence,

∣∣χf×f (s)
∣∣≪

∣∣∣∣∣∣∣
(
−s
2

)−n2s
2
(
s

2

)n2(1−s)
2

∣∣∣∣∣∣∣
≪|s|

−n2σ
2 |s|

n2−n2σ
2

≪|t|n
2( 1

2
−σ) .

This bound is true in any fixed vertical strip a ≤ σ ≤ b and sufficiently large t.

Hereafter, throughout the chapter, we assume n ≥ 3.

4.3 Some Lemmas

Lemma 4.3.1. For ℜ(s) ≥ 1 + ϵ, Lf×f (s) is absolutely convergent.

Proof. The Rankin–Selberg L-function Lf×f(s) has a meromorphic continuation to

all s ∈ C with a simple pole at s = 1. It is easy to see that

Lf×f (s) = ζ(ns)
∞∑

m1=1

· · ·
∞∑

mn−1=1

∣∣A(m1, . . . ,mn−1)
∣∣2

(mn−1
1 mn−2

2 . . .mn−1)s

implies that the coefficients b(m) are non-negative. Landau’s lemma [7, Page 115]

asserts that a Dirichlet series with non-negative coefficients must be absolutely con-
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vergent up to its first pole. Hence, Lf×f (s) is absolutely convergent in the half-plane

ℜ(s) ≥ 1 + ϵ.

Lemma 4.3.2. For sufficiently large t, we have

Lf×f (s) ≪
(
|t|+ 10

)n2

2
(1+ϵ−σ)

uniformly for −ϵ ≤ σ ≤ 1 + ϵ.

Proof. We prove along the same lines as in [50, Lemma 3.5]. From Lemma 4.3.1, we

have ∣∣Lf×f (1 + ϵ+ it)
∣∣≪ 1,

and by the functional equation

∣∣Lf×f (−ϵ+ it)
∣∣ = ∣∣χf×f (−ϵ+ it)Lf×f (1 + ϵ− it)

∣∣
≪
(
|t|+ 10

)n2( 1
2
+ϵ)

.

Now we apply the maximum modulus principle to the function

F (w) = Lf×f (w)e
(w−s)2Xw−s

in the rectangle

so that ∣∣Lf×f (s)
∣∣≪ V1 + V2 +H1 +H2.

Here V1, V2 are the contributions from the vertical lines and H1, H2 are the contribu-

tions from the horizontal lines.
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H1

V2

H2

V1

·

·

·

·

·

−ϵ+ i
(
t− (log t)2

)

−ϵ+ i
(
t+ (log t)2

)

1 + ϵ+ i
(
t− (log t)2

)

1 + ϵ+ i
(
t+ (log t)2

)

s

Let w = u+ iv and s = σ + it. As

exp{(w − s)2} = exp{(u− σ)2 − (v − t)2 + 2i(u− σ)(v − t)}∣∣exp{(w − s)2}
∣∣ = exp{(u− σ)2 − (v − t)2}

≪ exp{−(log t)2},

we see that exp{(w − s)2} decays exponentially for large t on horizontal lines. Thus,

H1 ≪ 1, H2 ≪ 1, V1 ≪ X1+ϵ−σ

V2 ≪
(
|t|+ 10

)n2( 1
2
+ϵ)

X−ϵ−σ.

Therefore, ∣∣Lf×f (s)
∣∣≪ X1+ϵ−σ +

(
|t|+ 10

)n2( 1
2
+ϵ)

X−ϵ−σ + 1.

We choose X such that

X1+ϵ−σ ∼
(
|t|+ 10

)n2( 1
2
+ϵ)

X−ϵ−σ

i.e., X ∼
(
|t|+ 10

)n2

2
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so that

∣∣Lf×f (s)
∣∣≪ (

|t|+ 10
)n2

2
(1+ϵ−σ)

.

This completes the proof of this lemma.

Lemma 4.3.3. For 0 ≤ ℜ(s) ≤ 1 + ϵ, we have uniformly

Lf×f (s) ≪
(
|t|+ 10

)n2

2
+ϵ
.

Proof. Follows from Lemma 4.3.2.

Lemma 4.3.4. Let c and y be any positive real numbers and T is sufficiently large.

Then we have,

1

2πi

∫ c+iT

c−iT

ys

s(s+ 1) . . . (s+ k)
ds =


1
k!

(
1− 1

y

)k
+O

(
4kyc

Tk

)
, y ≥ 1

O
(

1
Tk

)
, 0 < y ≤ 1.

Proof. See [52, Lemma 3.2].

Remark 4.3.1. Let

B(x) =
1

x

∫ x

1

A(t) dt.

If we know the asymptotic formula for A(x), we can find the asymptotic relation for

B(x). But the converse is not true. However, if A(x) is monotonic, then using the

asymptotic formula for B(x), we can deduce the asymptotic relation for A(x).
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Lemma 4.3.5. Let A(x) be a monotonically increasing function such that

B(x) =
1

x

∫ x

1

A(t) dt.

If B(x) = cx+O

(
x

E(x)

)
,

then A(x) = 2cx+O

(
x√
E(x)

)
.

Proof. Since

B(x) =
1

x

∫ x

1

A(t) dt,

we have

(x+ δ)B(x+ δ)− xB(x) =

∫ x+δ

x

A(t) dt > A(x)δ

where δ = o(x) is chosen later. Thus

A(x) <

(
1 +

x

δ

)(
cx+ cδ +O

(
x

E(x)

))
− x

δ

(
cx+O

(
x

E(x)

))

= cx+ cδ +O

(
x

E(x)

)
+
cx2

δ
+ cx+O

(
x2

δE(x)

)
− cx2

δ
+O

(
x2

δE(x)

)

= 2cx+ cδ +O

(
x2

δE(x)

)
.

The parameter δ is chosen such that

x2

δE(x)
< δ

i.e.,

δ >
x√
E(x)

.
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Thus, we get

A(x) < 2cx+

(
x√
E(x)

)
.

Also,

xB(x)− (x− δ)B(x− δ) =

∫ x

x−δ

A(t) dt < A(x)δ

gives

A(x) >
x

δ

(
cx+O

(
x

E(x)

))
+

(
1− x

δ

)(
cx− cδ +O

(
x

E(x)

))

=
cx2

δ
+O

(
x2

δE(x)

)
+ cx− cδ +O

(
x

E(x)

)
− cx2

δ
+ cx+O

(
x2

δE(x)

)

We choose δ so that

x2

δE(x)
< δ

i.e.,

δ >
x√
E(x)

.

Thus, we get

A(x) = 2cx+

(
x√
E(x)

)
.

4.4 Proof of Theorem 4.1.3

Let y = x
m

≥ 1 and c = 1 + ϵ in Lemma 4.3.4 so that
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1

k!

(
1− m

x

)k

=
1

2πi

∫ 1+ϵ+iT

1+ϵ−iT

(
x
m

)s
s(s+ 1) . . . (s+ k)

ds+O

(
4kx1+ϵ

T km1+ϵ

)
.

Hence,

∑
m≤x

b(m)

k!

(
1− m

x

)k

=
∑
m≤x

b(m)

2πi

∫ 1+ϵ+iT

1+ϵ−iT

(
x
m

)s
s(s+ 1) . . . (s+ k)

ds

+O

4kx1+ϵ

T k

∑
m≤x

b(m)

m1+ϵ


=

1

2πi

∫ 1+ϵ+iT

1+ϵ−iT

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds+O

(
4kx1+ϵ

T k

)
.

Summation and integral can be interchanged because of absolute convergence. Now

we move the line of integration to ℜ(s) = 0.

·

·

·

·

−iT

iT

1 + ϵ− iT

1 + ϵ+ iT

By Cauchy’s residue theorem,

1

2πi

[∫ 1+ϵ+iT

1+ϵ−iT

+

∫ iT

1+ϵ+iT

+

∫ −iT

iT

+

∫ 1+ϵ−iT

−iT

]
Lf×f (s)x

s

s(s+ 1) . . . (s+ k)
ds

= Ress=1
Lf×f (s)x

s

s(s+ 1) . . . (s+ k)

= lim
s→1

(s− 1)Lf×f (s)x
s

s(s+ 1) . . . (s+ k)

=
Cx

(k + 1)!

where C = lim
s→1

(s− 1)Lf×f (s), depends on f .
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Hence,

1

2πi

∫ 1+ϵ+iT

1+ϵ−iT

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds

=
Cx

(k + 1)!
+

1

2πi

[∫ 1+ϵ+iT

iT

+

∫ iT

−iT

+

∫ −iT

1+ϵ−iT

]
Lf×f (s)x

s

s(s+ 1) . . . (s+ k)
ds.

Horizontal line contributions are in absolute value:

∣∣∣∣∣ 1

2πi

∫ 1+ϵ+iT

iT

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds

∣∣∣∣∣
=

∣∣∣∣∣ 1

2πi

∫ 1+ϵ

0

Lf×f (σ + iT )xσ+iT

(σ + iT )(σ + iT + 1) . . . (σ + iT + k)
dσ

∣∣∣∣∣
≤ 1

2π

∫ 1+ϵ

0

∣∣Lf×f (σ + iT )
∣∣xσ

T k+1
dσ

≪ T
n2

2
−k−1+ϵx1+ϵ.

The left vertical line contribution is:

1

2πi

∫ iT

−iT

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds =

1

2πi

∫
|t|≤t0,
σ=0

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds

+
1

2πi

∫
t0≤|t|≤T,

σ=0

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds.
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We note that

∣∣∣∣∣ 1

2πi

∫
|t|≤t0,
σ=0

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds

∣∣∣∣∣
=

∣∣∣∣∣ 1

2πi

∫
|t|≤t0

Lf×f (it)x
it

(it)(it+ 1) . . . (it+ k)
idt

∣∣∣∣∣
≤ 1

2π

∫
|t|≤t0

t
n2

2
−1+ϵ

k!
dt

≪n 1

and

∣∣∣∣∣ 1

2πi

∫
t0≤|t|≤T,

σ=0

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds

∣∣∣∣∣
=

∣∣∣∣∣ 1

2πi

∫
t0≤|t|≤T

Lf×f (it)x
it

(it)(it+ 1) . . . (it+ k)
idt

∣∣∣∣∣
≤ 1

2π

∫
t0≤|t|≤T

t
n2

2
+ϵ

tk+1
dt

≪ T
n2

2
−k+ϵ.

Hence,

1

2πi

∫ 1+ϵ+iT

1+ϵ−iT

Lf×f (s)x
s

s(s+ 1) . . . (s+ k)
ds =

Cx

(k + 1)!
+O(T

n2

2
−k−1+ϵx1+ϵ)

+O(T
n2

2
−k+ϵ) +On(1).
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This implies that

∑
m≤x

b(m)

k!

(
1− m

x

)k

=
Cx

(k + 1)!
+O(T

n2

2
−k−1+ϵx1+ϵ) +O(T

n2

2
−k+ϵ)

+O(T−kx1+ϵ) +On(1).

First we choose T = x
10

so that

∑
m≤x

b(m)

k!

(
1− m

x

)k

=
Cx

(k + 1)!
+O(x

n2

2
−k+ϵ) +O(x

n2

2
−k+ϵ) +O(x1−k+ϵ) +On(1).

Thus for k ≥ k1(n) =
[
n2

2

]
+ 1, we finally arrive at

∑
m≤x

b(m)

k!

(
1− m

x

)k

=
Cx

(k + 1)!
+On(1)

which holds good for all integers k ≥ k1(n).

4.5 Proof of Theorem 4.1.4

From Theorem 4.1.3 with k = k1 we have,

∑
m≤x

b(m)

k1!

(
1− m

x

)k1

=
Cx

(k1 + 1)!
+On(1).
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Note that

∑
m≤x

b(m)

k1!

(
1− m

x

)k1

=
∑
m≤x

b(m)

k1!

(
1− m

x

)k1−1(
1− m

x

)

=
1

x

∑
m≤x

b(m)

k1!

(
1− m

x

)k1−1

(x−m)

=
1

x

∑
m≤x

b(m)

k1!

(
1− m

x

)k1−1 ∫ x

m

dt

=
1

x

∫ x

1

∑
m≤t

b(m)

k1!

(
1− m

t

)k1−1
 dt.

Using Lemma 4.3.5 with E(x) = 10x, we can find the (k1 − 1)-th Riesz mean. In

particular, we get

∑
m≤x

b(m)

k1!

(
1− m

x

)k1−1

=
2Cx

(k1 + 1)!
+On(x

1− 1
2 ).

Once again using Lemma 4.3.5, we get

∑
m≤x

b(m)

k1!

(
1− m

x

)k1−2

=
22Cx

(k1 + 1)!
+On(x

1− 1
22 ).

Repeatedly using the result in Lemma 4.3.5 k1 times, we get

∑
m≤x

b(m)

k1!
=

2k1Cx

(k1 + 1)!
+On

(
x
1− 1

2k1

)
.

This proves the theorem.
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CONCLUDING REMARKS

We presented three primary outcomes in this thesis.

In Chapter 2, we improved an earlier result of Z. Cui and J. Wu [9] and gave an

asymptotic formula for the mean value of arithmetic functions over shorter intervals.

This improvement is achieved by utilizing the Hooley–Huxley contour as the contour

of integration.

In Chapter 3, we formulated Ramanujan’s weak conjecture and showed that it implies

the Rudnick–Sarnak conjecture. We also studied the mean square of the logarithmic

derivative of the Godement–Jacquet L-function on the line σ0 with 1
2
+ ϵ ≤ σ0 ≤ 1− ϵ.

Under the assumption of Rudnick–Sarnak conjecture and Riemann hypothesis for

Godement–Jacquet L-function, we gave T (log T )2η as the upper bound for this mean

square where η is some constant such that 0 < η < 1
2
. It’s worth noting that the

anticipated upper bound for this mean square is T .

In Chapter 4, we studied the k-th Riesz mean for the coefficients of the Rankin–Selberg

convolution of f with itself. We mention a binary improvement of our earlier results.

One is the improvement in the range of k for which the asymptotic formula holds.

Another improvement is in the error term. As a by-product, we obtained an asymptotic
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formula for the partial sum of coefficients of this Rankin–Selberg L-function. The

conditional error term that we obtain for this partial sum is x
3
4
+ϵ, although the best

error that is expected here is x
1
2
+ϵ.

The findings that are presented in this thesis not only contribute to the current body

of knowledge but also pave the way for future investigations in these intriguing areas

of study.
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des Hautes Études Scientifiques, 43 (1974), pp. 273–307, https://doi.org/10.
1007/BF02684373. (Page 12)

[13] R. Godement and H. Jacquet, Zeta functions of simple algebras, vol. 260,
Springer-Verlag, Berlin, 1972, https://doi.org/10.1007/BFb0070263. (Page 4,
5, 11, 64)

[14] D. Goldfeld, Automorphic forms and L-functions for the group GL(n,R),
vol. 99, Cambridge University Press, 2006, https://doi.org/10.1017/

CBO9780511542923. (Page 5, 47, 59, 73, 74, 79)

[15] D. Goldfeld and J. Hundley, Automorphic Representations and L-Functions
for the General Linear Group, vol. 1 of Cambridge Studies in Advanced
Mathematics, Cambridge University Press, 2011, https://doi.org/10.1017/
CBO9780511973628. (Page 5)

[16] D. Goldfeld and J. Hundley, Automorphic Representations and L-Functions
for the General Linear Group: Volume 2, vol. 2 of Cambridge Studies in Advanced
Mathematics, Cambridge University Press, 2011, https://doi.org/10.1017/
CBO9780511910531. (Page 5)

[17] G. Halász and P. Turán, On the distribution of roots of Riemann zeta and
allied functions, I, Journal of Number Theory, 1 (1969), pp. 121–137, https:
//doi.org/10.1016/0022-314X(69)90031-6. (Page 41)

[18] B. Huang, On the Rankin–Selberg problem, Mathematische Annalen, 381 (2021),
pp. 1217–1251, https://doi.org/10.1007/s00208-021-02186-7. (Page 12)

[19] B. Huang, On the Rankin–Selberg problem, II, arXiv preprint arXiv:2307.11479,
(2023), https://doi.org/10.48550/arXiv.2307.11479. (Page 12)

[20] M. Huxley, On the Difference between Consecutive Primes, Inventiones math-
ematicae, 15 (1971), pp. 164–170, https://doi.org/10.1007/BF01418933.
(Page 35)

[21] A. E. Ingham, The distribution of prime numbers, no. 30, Cambridge University
Press, 1990. (Page 77, 81)

[22] K. Iwasawa, On Some Types of Topological Groups, Annals of Mathematics, 50
(1949), pp. 507–558, https://doi.org/10.2307/1969548. (Page 6)

96

https://doi.org/10.4064/aa-19-2-105-146
https://doi.org/10.1007/BF02684373
https://doi.org/10.1007/BF02684373
https://doi.org/10.1007/BFb0070263
https://doi.org/10.1017/CBO9780511542923
https://doi.org/10.1017/CBO9780511542923
https://doi.org/10.1017/CBO9780511973628
https://doi.org/10.1017/CBO9780511973628
https://doi.org/10.1017/CBO9780511910531
https://doi.org/10.1017/CBO9780511910531
https://doi.org/10.1016/0022-314X(69)90031-6
https://doi.org/10.1016/0022-314X(69)90031-6
https://doi.org/10.1007/s00208-021-02186-7
https://doi.org/10.48550/arXiv.2307.11479
https://doi.org/10.1007/BF01418933
https://doi.org/10.2307/1969548


[23] H. Jacquet, Automorphic Forms on GL(2), Part 2, vol. 278, Springer-Verlag,
Berlin, 1972, https://doi.org/10.1007/BFb0058503. (Page 11)

[24] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg
Convolutions, American Journal of Mathematics, 105 (1983), pp. 367–464, https:
//doi.org/10.2307/2374264. (Page 11)

[25] H. Jacquet and J. A. Shalika, On Euler Products and the Classification of
Automorphic Representations I, American Journal of Mathematics, 103 (1981),
pp. 499–558, https://doi.org/10.2307/2374103. (Page 11, 12)

[26] Y. Jiang and G. Lü, Exponential sums formed with the von Man-
goldt function and Fourier coefficients of GL(m) automorphic forms, Monat-
shefte für Mathematik, 184 (2017), pp. 539–561, https://doi.org/10.1007/
s00605-017-1068-4. (Page 50)

[27] A. Kaur and A. Sankaranarayanan, Godement–Jacquet L-function, some
conjectures and some consequences, Hardy–Ramanujan Journal, 45 (2023), pp. 42–
56, https://doi.org/10.46298/hrj.2023.10747. (Page 53, 54)

[28] A. Kaur and A. Sankaranarayanan, On the Rankin–Selberg L-function
related to the Godement–Jacquet L-function, Acta Mathematica Hungarica, 169
(2023), pp. 88–107, https://doi.org/10.1007/s10474-023-01296-9. (Page 75,
76, 77)

[29] A. Kaur and A. Sankaranarayanan, On the Rankin–Selberg L-function
related to the Godement–Jacquet L-function II, arXiv preprint arXiv:2309.00243,
(2023), https://doi.org/10.48550/arXiv.2309.00243. (Page 76, 77)

[30] A. Kaur and A. Sankaranarayanan, The Selberg–Delange method and mean
value of arithmetic functions over short intervals, Journal of Number Theory, 255
(2024), pp. 37–61, https://doi.org/10.1016/j.jnt.2023.08.006. (Page 15)

[31] H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric
fourth of GL2, with appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim
and Peter Sarnak, Journal of the American Mathematical Society, 16 (2003),
pp. 139–183, https://doi.org/10.1090/S0894-0347-02-00410-1. (Page 51)

[32] H. H. Kim, A note on Fourier coefficients of cusp forms on GLn, Forum Mathe-
maticum, 18 (2006), pp. 115–119, https://doi.org/10.1515/FORUM.2006.007.
(Page 53)

[33] N. M. Korobov, Estimates of trigonometric sums and their applications, Us-
pekhi Matematicheskikh Nauk, 13 (1958), pp. 185–192, https://www.mathnet.
ru/eng/rm7458. (Page 42)

[34] R. P. Langlands, Problems in the theory of automorphic forms to Salomon
Bochner in gratitude, in Lectures in Modern Analysis and Applications III, C. T.

97

https://doi.org/10.1007/BFb0058503
https://doi.org/10.2307/2374264
https://doi.org/10.2307/2374264
https://doi.org/10.2307/2374103
https://doi.org/10.1007/s00605-017-1068-4
https://doi.org/10.1007/s00605-017-1068-4
https://doi.org/10.46298/hrj.2023.10747
https://doi.org/10.1007/s10474-023-01296-9
https://doi.org/10.48550/arXiv.2309.00243
https://doi.org/10.1016/j.jnt.2023.08.006
https://doi.org/10.1090/S0894-0347-02-00410-1
https://doi.org/10.1515/FORUM.2006.007
https://www.mathnet.ru/eng/rm7458
https://www.mathnet.ru/eng/rm7458


Taam, ed., Berlin, Heidelberg, 1970, Springer Berlin Heidelberg, pp. 18–61,
www.doi.org/10.1007/BFb0079065. (Page 4)

[35] H. Lao, Mean value of Dirichlet series coefficients of Rankin–Selberg L-functions,
Lithuanian Mathematical Journal, 57 (2017), pp. 351–358, https://doi.org/
10.1007/s10986-017-9365-0. (Page 77)

[36] W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture,
Geometric and Functional Analysis GAFA, 5 (1995), pp. 387–401, https://doi.
org/10.1007/BF01895672. (Page xv, 12, 52)

[37] W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan
conjecture for GL(n), in Automorphic forms, automorphic representations, and
arithmetic (Fort Worth, TX, 1996), vol. 66, Part 2 of Proc. Sympos. Pure Math.,
Amer. Math. Soc., Providence, RI, 1999, pp. 301–310, https://doi.org/10.
1090/pspum/066.2/1703764. (Page xv, 12, 52)

[38] H. Maier and A. Sankaranarayanan, On an exponential sum involving
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