Control of chemical dynamics of polyatomic
molecules by IR and UV laser pulses

A Thesis
submitted for the degree of

Doctor of Philosophy

by

Nitai Giri
Reg. No. 17CHPHO04

giri.nitai@gmail.com

Natio

School of Chemistry
University of Hyderabad
Hyderabad - 500 046, INDIA
August 2023







Dedicated
to

my family



i



Declaration of Authorship

I hereby declare that the matter embodied in the thesis entitled “Control
of chemical dynamics of polyatomic molecules by IR and UV laser
pulses” is the result of investigations carried out by me in the School of
Chemistry, University of Hyderabad, India under the supervision of Prof. Susanta
Mahapatra.

In keeping with the general practice of reporting scientific investigations,
acknowledgements have been made wherever the work described is based on the

finding of other investigators.

(b[08[23 _ Nibi &

Date Signature of the candidate



v



Certificate

School of Chemistry
University of Hyderabad
Hyderabad-500 046
India

This is to certify that the work contained in this thesis, titled “Control
of chemical dynamics in polyatomic molecules by IR and UV laser
pulses” by Nitai Giri (Reg. No. 17TCHPHO04), has been carried out under
my supervision and is not submitted elsewhere for a degree.

This thesis is free from plagiarism and has not been submitted previously
in part or in full to this or any other University or Institution for award of any
degree or diploma.

Parts of this thesis have been published in the following publications:

1. N. Giri and S. Mahapatra®, J. Chem. Phys. 156, 094305 (2022),
Chap. 5.

and presented in following conferences :

1. 18" Annual In-House Symposium (CHEMFEST 2020) (poster presentation)
2. 20" Annual In-House Symposium (CHEMFEST 2022) (oral presentation)
3. 20" Annual In-House Symposium (CHEMFEST 2022) (poster presentation)

Further, the student has passed the following courses towards fulfilment of

coursework requirement for Ph.D.



Course code
1. CY801
2. CY805
3. CY354

4. CY577

Na,me
Research Proposal
Instrumental Methods-A
Computer Programming
and Numerical Methods

Computational Chemistry

7

Dean

School of Chemistry
University of Hyderabad

Dean

SCHOOL OF CHEMISTRY
University of Hyderabad
Hyderabad-500 046.

Credits Pass/Fail

3 Pass
4 Pass
3 Pass
2 Pass

pahab ale

Supervisor: Prof. Susanta Mahapatra

Susanta Mahapatra
Professor
i School of Chemistry
niversity of Hyde,
Hyderabad-500 )(;46'.'12:?8



Acknowledgements

I would like to express my sincere gratitude to my PhD supervisor Prof. Susanta
Mahapatra for his constant guidance and encouragement throughout my research
work. I am very much thankful to him for the valuable discussions, especially in
the group meetings.

I would like to thank Prof. Zhengang Lan, Qingdao Institute of Bioenergy
and Bioprocess Technology for the discussions related to the photodissociation
involving coupled electronic states. 1 thank Prof. Harjinder Singh, IIIT
Hyderabad for the fruitful discussion.

I would like to thank the present and former Deans, School of Chemistry,
UoH for their support and help during my research work. I thank to my DC
members Dr. Debashis Barik and Dr. K. V. Jovan Jose for their support and
help.

I express heartful thanks to my labmates Alamgir, Ajay Rawat, Yarram
Ajay, Daradi, Mamilwar Rani, Jhansi Rani, Dr. Arun, Dr. Jayakrushna, Dr.
Sugata, Dr. Arpita, Dr. Rudra, Dr. Karunamoy, Dr. Satyadendra Gupta, Dr.
B. Manjusha and Dr. Mohammed Shavez for a friendly environment and many
fruitful discussions.

I would like thank the University Grant Commission (UGC), New Delhi,
India for the financial support.

I would like to thank my friends, Sumanta, Suman, Shubham, Anupam and
Nilanjan for their support and friendship.

Finally and most importantly, I would like to thank to my family Moumita,
my little one (Srihith), my parent and my elder brother for their love, care and
endless support in all times of my life.

Nitai Giri

vil



viii



List of Abbreviations

BS
BO
CDA
CI

CG
DFT
DVR
FC
FFT
FGH
GA
GP
HT
IVR
KE
OCT
PES
PE
RHS
SO
STIRAP
TDM
TDSE
TISE
TDWP
TMF
TRK
VC
WP

Brumer-Shapiro

Born-Oppenheimer

Constant Dipole Approximation

Conical Intersection

Conjugate Gradient

Discrete Fourier Transform

Discrete Variable Representation
Franck-Condon

Fast Fourier Transform

Fourier Grid Hamiltonian

Genetic Algorithm

Geometric Phase

Hydrogen Transfer

Intramolecular Vibrational Redistribution/Relaxation
Kinetic Energy

Optimal Control Theory

Potential Energy Surface

Potential Energy

Right Hand Side

Split Operator

Stimulated Raman Adiabatic Passage
Transition Dipole Moment
Time-Dependent Schrodinger Equation
Time-Independent Schrodinger Equation
Time-Dependent Wavepacket Propagation
Transition Moment Function

Tannor, Rice and Kosloff

Vibronic Coupling

Wave packet

1X






Contents

Certificate v
Acknowledgements vii
Abbreviations ix

1 Introduction 1
1.1 Laser light as a controlling reagent . . . . . ... ... ... ... 2
1.2 Theoretical methods . . . . . .. .. ... ... 3
1.3 Single-parameter control strategies . . . . . ... ... ... ... 5)

1.3.1  Pump-dump control . . . . . ... .. ... ... ... 5)
1.3.2 Phasecontrol . . . . . ... ... 6
1.3.3 STRIP control . . . ... .. ... ... ... ... ... 6
1.4 Multiple laser parameters control: optimal control theory (OCT)
and its experimental realization . . . . . . . ... ... .. 7
1.4.1  Optimal control theory . . . . . . . ... ... ... . ... 7
1.4.2  Experimental implementations . . . . . . . ... ... ... 8
1.4.3 Importance of theoretical design of laser pulses. . . . . . . 10
1.5 Outline of the thesis . . . . . . . .. ... ... ... ... .... 11

2 Theory 15
2.1 Light-matter interaction . . . . . . .. .. ... ... ... 15
2.2 Theory of the nuclear motion in an electronic surface(s) . . . . . . 21

X1



2.3

2.4

2.5

2.2.1  Born-Oppenheimer approximation . . . . . . . . . ... .. 21

2.2.2 Adiabatic electronic representation . . . . . ... ... .. 23
2.2.3 Adiabatic to diabatic transformation . . . . .. ... ... 24
2.2.4  Conical intersection and geometric phase . . . . . . .. .. 25
2.2.5  Symmetry sectionrule . . . .. ... 27
Optimal control theory . . . . . . . .. .. .. ... ... ... 28
2.3.1 Formulation . . . . .. ... ... L 29

2.3.1.1 Conjugate gradient method . . . ... ... ... 33

2.3.1.2  Genetic algorithm . . . .. ... ... ... ... 35
Time propagation . . . . . . . . . ... L Lo 36

2.4.1 Coordinate and momentum space and the role of the

Fourier transformation method . . . . . ... .. ... .. 38
2.4.2 Split-operator method . . . . .. ... ... .. ... ... 41
Physical observables . . . . ... ... ... . L. 42
2.5.1 Fluxoperator . . . .. ... . ... ... ... ... 42
2.5.2  Probability density . . . . . ... oo 44
2.5.3  Electronic population probability . . . . . ... ... ... 44
2.5.4 Spectral intensity . . . . .. ..o 45

Control of vibrational transitions in 4(3H)-pyrimidinone/4-

hydroxypyrimidine system 47
3.1 Imtroduction . . . . . . . ... 47
3.2 Theoretical framework . . . . . .. ... ... 50
3.2.1  Abinitio calculations . . . . .. ..o 50
3.2.2 Nuclear dynamics . . . . . . . . ... ... L. 52
3.2.3 Optimal control theory . . . . . . .. ... ... ... ... 54
3.3 Conjugate gradient method . . . . . ... ... ... ... ..., 95
3.4 Results and discussion . . . .. ... .00 56
3.5 opmd (v=0)—opmd (v=1) transition . . . . ... ... ... ... 56

xil



3.6 opmd (v=0)—opmd (v=2) transition . . . . ... ... ... ... 59

3.7 opmd (v=3)—opmd (v=4) transition . . . . ... ... ... ... 61
3.8 Effect of penalty factor (ag) . . . . . . . . .. 66
3.9 opmd (v=0)—hpmd (v=0) transition . . . . ... ... ... ... 66
3.10 Conclusions . . . . . ... . o 69

Optimal control of excited electronic state mediated

tautomerization of 4(3H)-pyrimidinone 73
4.1 Introduction . . . . . . . .. 73
4.2 Theory . . . . . . e 1)
4.2.1  Ab initio calculations of the model system . . . . . . . .. 75
4.2.2 Nuclear dynamics in external field . . . . . . . .. .. ... 7
4.2.3 Cost functional . . . . ... ..o 79
4.2.4  Laser pulse parameterization in the genetic algorithm . . . 80
4.3 Results and discussion . . . . . .. ..o 81
4.3.1 Optimal control using the ab initio calculated TDM . . . . 81

4.3.2 Optimal control using the constant TDM (Condon
approximation) . . . . . . ... 84

4.4 Summary ... 84

Optimal control of photodissociation of phenol using genetic

algorithm 89
5.1 INTRODUCTION . . . . . ... . . . 89
5.2 THEORY AND METHODOLOGY . ... ... ... ... .... 92
5.2.1 Nuclear dynamics in the external laser field . . .. . . .. 92
5.2.2  Cost functional and genetic algorithm . . . . . . . . .. .. 96
5.3 RESULTS AND DISCUSSION . . . .. ... ... ... ..... 98

5.3.1 Photodissociation of the |0,0) and |0,1) vibrational levels of

the ground electronic state . . . . . . . .. ..o 100

xiii



5.3.2  Photodissociation of the |1,0) and |1,1) vibrational levels of

the ground electronic state . . . . . . . .. ... 104
5.3.3  Effect of penalty factor (o) on the dissociation . . . . .. 107
5.4 SUMMARIZING REMARKS . . ... ... ... ... ...... 111

6 Design of IR laser pulse for photodissociation of phenol using

genetic algorithm 113
6.1 Introduction . . . . . . . ... 113
6.2 Theory and methodology . . . . . . .. ... ... ... .. ... 116
6.2.1 Quantum dynamics with an electric field . . . . . . . ... 116
6.2.2 Cost functional . . . . . .. ..o 120

6.2.3 Laser pulse parameterization employing the genetic algorithm120

6.3 Results and discussion . . . . . .. ... oL 124
6.3.1 Photodissociation of the |0,0) vibrational level . . . . . .. 124

6.3.2 Photodissociation of the |0,1) vibrational level . . . . . .. 127

6.3.3 Photodissociation of the |0,2) vibrational level . . . . . .. 130

6.4 Summarizing remarks . . . . .. ..o 134

7 Summary and outlook 137
Appendix 144
A Derivation of pulse design equations 145

B Derivation of the leading error term in the split-operator method 149

Bibliography 151

X1v



List of Figures

1.1

1.2

1.3

2.1

3.1

3.2

The above figure represents the construction of a coherent
vibrational WP of an excited electronic state with an ultrashort
laser pulse for a diatomic molecule [K. Ohmori, Ann. Rev. Phys.

Chem. 60, 487 (2009)]. . . . . . . . . ... ...

The above figure represents: (a) BS phase control scheme, (b) TRK
pump-dump scheme, (¢) STRIP control scheme by Bergmann et
el.. These are the single-parameter quantum control schemes [T.

Brixner and G. Gerber, Chem. Phys. Chem. 4, 418 (2003)].

The above figure represents the adaptive feedback control (AFC)
technique [G. Gerber et al., Phys. Chem. Chem. Phys., 9, 2470
(2007)]. « o v

The above figure represents the genetic algorithm: Individuals
of a generation are subjected to estimate a fitness function that
determines the degree of fitness of an individual. The optimization
proceeds iteratively through various operations e.g., selection,

recombination, mutation, etc. . . . . . ... ... ...

The above plot represents the one dimensional potential energy

function of the ground electronic state along the OH bond distance. 51

The above plot represents the one dimensional DM along the OH

bond distance. . . . . . . ..

XV



3.3

3.4

3.5

3.6

Above plots represent eigenstates of the ground electronic state

calculated by the pseudo-spectral method. . . . . . . ... .. ..

Optimal laser pulses in the time domain (al, bl and c1), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational
states (a3, b3 and c3) are depicted above. Plots (a4, b4 and c4)
present probability densities of ¥(7") and the target vibrational
state. Plots (a5, b5 and ¢5) show variations of J and P with
iteration steps. These results are obtained for the v=0—v=1
transition for the timescales of 30000, 60000 and 90000 a.u. with

ag value 0.01. . . . . . . L

Optimal laser pulses in the time domain (al, bl and c1), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational
states (a3, b3 and c3) are depicted above. Plots (a4, b4 and c4)
present probability densities of 1(7") and the target vibrational
state. Plots (a5, b5 and ¢5) show variations of J and P with
iteration steps. These results are obtained for the v=0—v=1
transition for the timescales of 30000, 60000 and 90000 a.u. with

agvalue 0.1, . . . . . .o

Optimal laser pulses in the time domain (al, bl and c1), frequency
spectra (a2, b2 and c2) and populations of various vibrational
states (a3, b3 and c3) are depicted above. Plots (a4, b4 and c4)
present probability densities of 1(7") and the target vibrational
state. Plots (a5, b5 and ¢5) show variations of J and P with
iteration steps. These results are obtained for the v=0—v=2
transition for the timescales of 30000, 60000 and 90000 a.u. with

ag value 0.01. . . . . . .

XVl

60



3.7

3.8

3.9

3.10

Optimal laser pulses in the time domain (al, bl and c1), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational
states (a3, b3 and c3) are depicted above. Plots (a4, b4 and c4)
present probability densities of ¥(7T") and the target vibrational
state. Plots (ab, b5 and ¢5) show variations of J and P with
iteration steps. These results are obtained for the v=0—v=2
transition for the timescales of 30000, 60000 and 90000 a.u. with

agvalue 0.1. . . . . . . L

Optimal laser pulses in the time domain (al, bl and cl), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational
states (a3, b3 and c3) are depicted above. Plots (a4, b4 and c4)
present probability densities of ¥(7T") and the target vibrational
state. Plots (ab, b5 and ¢5) show variations of J and P with
iteration steps. These results are obtained for the v=3—v=4
transition for the timescales of 30000, 60000 and 90000 a.u. with

ag value 0.01. . . . . . ..

Optimal laser pulses in the time domain (al, bl and cl1), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational
states (a3, b3 and c3) are depicted above. Plots (a4, b4 and c4)
present probability densities of ¥(7T") and the target vibrational
state. Plots (ah, b5 and ¢5) show variations of J and P with
iteration steps. These results are obtained for the v=3—v=4
transition for the timescales of 30000, 60000 and 90000 a.u. with

agvalue 0.1, . . . . . .

The Temporal profile (al) and frequency spectrum of the optimal
laser pulse for the opmd (v=0) to hpmd (v=0) transition. . . . . .

X Vil

63

65



3.11

3.12

3.13

3.14
3.15

4.1

4.2

4.3

4.4

Localized state populations in the optimal condition. These
vibrational states (except the initial and target states) act as
intermediate states. . . . .. ... oo
Time-dependent populations of various delocalized vibrational
states, 4(3H)-pyridinone (v=0) vibrational state and 4
hydroxypyrimidine (v=0) vibrational state in the optimal
condition. These delocalized vibrational states act as intermediate
states. . . ...
Plots (al, a2, a3 and ad) represent the probability density of
target state (red) and snapshots of the probability densities of the
field-driven time-evolved wave function (blue) at 0 fs, 750 fs, 938
fsand 2000 fs. . . . ..o
Cost functional (J) at various iterative steps. . . . . . . .. .. ..

Transition probability (P) at various iterative steps. . . . . . . ..

Above plots represent PE profiles of the ground electronic state (black)
and w7* state (blue) of the model system. . . . . . . . ... ... ..
The above plot represents one dimensional TDM along the OH bond
distance. . . . . . . Lo
(al) Temporal structure of the optimal laser pulse; (a2) frequency
spectrum of it; (a3) population probabilities of the ground electronic
state (black) and 77* state (green); (a4) population probabilities of
the reactant (black) and product (green). These plots result from the
optimal calculations using the ab initio calculated TDM. . . . . . . .
(al) Temporal structure of the optimal laser pulse; (a2) frequency
spectrum of it; (a3) population probabilities of the ground state (black)
and 77" state (green); (a4) population probabilities of the reactant
(black) and product (green). These plots result from the optimal

calculations using the constant TDM (Condon approximation). . . . .

xXviil

83



4.5

4.6

4.7

5.1

0.2

5.3

Shapshots of WP probability densities on the n7* state [at 233 a.u.
(al), 620 a.u. (a2) and 750 a.u. (a3)] and on the ground electronic
state [at 0 a.u. (bl), 26 a.u. (b2) and 801 a.u. (b3)]. These WP
probability densities are obtained from the optimal calculations using

the ab initio calculated dipole. . . . . . . . . . .. .. ...

The above plots represent snapshots of WP probability densities on the
nr* state [at 233 a.u. (al), 620 a.u. (a2) and 750 a.u. (a3)] and on
the ground electronic state [at 0 a.u. (bl), 26 a.u. (b2) and 801 a.u.
(b3)]. These WP probability densities are obtained from the optimal

calculations using the constant dipole (Condon approximation). . . . .

The optimization of the cost functional and the objective using the
ab initio calculated TDM (al) and the optimal calculations using the

constant TDM (Condon approximation) (a2). . . . . . . . . .. ...

One dimensional cuts of the diabatic electronic ground state and
the excited n7* and mwo* states of phenol along the OH stretching

coordinate, r and for the coupling coordinate, 6 =0. . . . . . . . . ..

(a) Three-dimensional perspective plots of (a) adiabatic potential
energy surfaces, (b) diabatic potential energy surfaces, (c) interstate
coupling potentials and (d) transition dipole moment as a function of

the reaction coordinate, r and the coupling coordinate, 6. . . . . . . .

Eigenstates of the ground electronic state of phenol calculated using the
pseudospectral method. The states are designated as |n,,ng), where n,

and ny represent the number of nodes along r and 6 respectively.

Xix

86

94



5.4 Figures (al)-(ab) and (b1)-(b5) are obtained with the |0,0) and |0,1)

5.5

5.6

initial state, respectively. The temporal profile of the optimal laser
field (panels al and bl), the frequency spectrum of the optimal pulse
(panels a2 and b2), the time integrated dissociative flux at the adiabatic
asymptote (panels a3 and b3), the electronic population probability
(panels a4 and b4) and the cost functional as well as the total
dissociative flux calculated at each generation in the genetic algorithm

(panels a5 and bb) are shown (see the text for details). . . . . . . ..

Figures (al)-(ab) and (b1)-(b5) are obtained with the [1,0) and |1,1)
initial state, respectively. The temporal profile of the optimal laser
field (panels al and bl), the frequency spectrum of the optimal pulse
(panels a2 and b2), the time integrated dissociative flux at the adiabatic
asymptote (panels a3 and b3), the electronic population probability
(panels a4 and b4) and the cost functional as well as the total
dissociative flux calculated at each generation in the genetic algorithm

(panels ab and bb) are shown (see the text for details). . . . . . . ..

Snapshots of the wave packet probability density as a function of the
OH stretching coordinate (r) and the coupling coordinate (6): (al)
probability density on the ground state at 153 fs, (a2) probability
density on the mo™ state at 153 fs and (a3) probability density on the
mr* state at 153 fs for the |0,0) initial state. (bl) probability density
on the ground state at 153 fs, (b2) probability density on the mo* state
at 153 fs and (b3) probability density on the m7* state at 153 fs for the

|0,1) initial state. . . . . . . . ...

XX



2.7

6.1

6.2

6.3

Snapshots of the wave packet probability density as a function of the
OH stretching coordinate (r) and the coupling coordinate (#): (al)
probability density on the ground state at 153 fs, (a2) probability
density on the mo™* state at 131 fs and (a3) probability density on the
mr* state at 153 fs for the |1,0) initial state. (bl) probability density
on the ground state at 153 fs, (b2) probability density on the mo* state
at 142 fs and (b3) probability density on the w7* state at 142 fs for the

|1,1) initial state. . . . . . . . ...

Diabatic ground electronic (77) state (red), mo™ state (green) and 77*

state (blue) of planar phenol molecule. . . . . . . . . . ... ... ..

(al) Adiabatic representation: the ground electronic (Sp) state (red),
S state (green) and Ss state (blue). (a2) Diabatic representation: the
ground electronic (77) state (red), mo* state (green) and wm* state
(blue). (a3) Diabatic interstate coupling surfaces: Via (blue), (Va3)
(green), Vi3 (red). (ad) Diabatic TDM (red). . . . . . . .. ... ..

Vibrational wave functions of the ground electronic state of phenol as a
function of the reaction coordinate, r and coupling coordinate, . These
wave functions are defined as |n,,ng) where n, and ng are the nodal
lines along r and 6, respectively. (al) |0,0) eigenfunction, (a2) |0,1)

eigenfunction and (a3) |0,2) eigenfunction. . . . . . . .. .. ... ..

poel



6.4

6.5

6.6

6.7

(al) Time-dependent diabatic electronic population probabilities of the
ground (7m) state (black), mo* state (red) and 77* state (green); (a2)
Time-dependent adiabatic electronic population of the Sy (blue), S;
(violet) and Sy state (brown); (a3) Time-accumulated dissociative flux
at the Sy (red), Sy (black) and Sy (green) adiabatic channels; (a4)
Frequency spectrum (blue) and (a5) temporal structure (red) of the
optimal laser pulse; (a6) Variation of the total dissociative flux (black)
and the cost functional (red) in the genetic algorithm. These results

are obtained with the |0,0) initial state. . . . . . . .. ... ... ..

Snapshots of the WP probability density as a function of the OH
stretching coordinate (r) and coupling coordinate (6): (al) probability
density on the diabatic ground electronic state at 453 fs, (a2) probability
density on the diabatic mo™ state at 453 fs and (a3) probability density

on the diabatic 77* state at 453 fs of the |0,0) initial state. . . . . . .

(al) Time-dependent diabatic electronic population probabilities of the
ground (7m) state (black), mo™* state (red) and 7w7* state (green); (a2)
Time-dependent adiabatic electronic population of the Sy (blue), Sy
(violet) and Sy state (brown); (a3) Time-accumulated dissociative flux
at the Sy (red), S1 (black) and Sy (green) adiabatic channels; (a4)
Frequency spectrum (blue) and (ab) temporal structure (red) of the
optimal laser pulse; (a6) Variation of the total dissociative flux (black)
and the cost functional (red) in the genetic algorithm. These results

are obtained with the |0,1) initial state. . . . . . . .. ... ... ..

Snapshots of the WP probability density as a function of the OH
stretching coordinate (r) and coupling coordinate (6): (al) probability
density on the diabatic ground electronic state at 531 fs, (a2) probability
density on the diabatic mo™ state at 531 fs and (a3) probability density

on the diabatic 77* state at 531 fs of the |0,1) initial state. . . . . . .

Xxil



6.8

6.9

(al) Time-dependent diabatic electronic population probabilities of the
ground (7m) state (black), mo* state (red) and 77* state (green); (a2)
Time-dependent adiabatic electronic population of the Sy (blue), Sy
(violet) and Sy state (brown); (a3) Time-accumulated dissociative flux
at the Sy (red), Sy (black) and Sy (green) adiabatic channels; (a4)
Frequency spectrum (blue) and (a5) temporal structure (red) of the
optimal laser pulse; (a6) Variation of the total dissociative flux (black)
and the cost functional (red) in the genetic algorithm. These results
are obtained with the |0,2) initial state. . . . . . . . .. ... ...
Snapshots of the WP probability density as a function of the OH
stretching coordinate (r) and coupling coordinate (0): (al) probability
density on the diabatic ground electronic state at 531 fs, (a2) probability
density on the diabatic mo* state at 563 fs and (a3) probability density

on the diabatic 77* state at 531 fs of the |0,2) initial state. . . . . . .

xx1il



XXiv



List of Tables

3.1

3.2

3.3

3.4

4.1

4.2

Ab initio PES data in eV are fitted against the reaction coordinate,
r in A using Eq. (3.1). Numerical values of parameters of the

ground electronic potential are tabulated below. . . . . . . .. ..

Ab initio dipole moment data in a.u. are fitted using Eq. (3.2)
where the reaction coordinate, r is considered in A. Numerical
values of parameters of dipole data are tabulated below. . . . ..
Vibrational eigenvalues of the ground electronic state are tabulated
below. . . . . .
Results are shown below in the table calculated for opmd
(v=0)—opmd (v=1), opmd (v=0)—opmd (v=2) and opmd
(v=3)—opmd (v=4) transitions for the timescales of 30000, 60000
and 90000 a.u. with various values of the penalty factor, a i.e.,
0.01 and 0.1. J and P denote the cost functional and transition
probability, respectively. €pcq; refers to the amplitude (max).

These parameters are presented ina.u.. . . . ... . ... ... ..

Ab initio PE data in eV are fitted using Eq. (4.1) where the
reaction coordinate, r is in a.u.. Numerical values of parameters of

Vy are tabulated below. . . . . ... ... 0000000000

Ab initio PE data in eV are fitted using Eq. (4.1) where the
reaction coordinate, r is in a.u.. Numerical values of parameters of

V. are tabulated below . . . . . . ... ... oL

XXV

51

67



4.3

5.1

5.2

6.1

Ab initio calculated TDM data in a.u. are fitted using Eq. (4.2)
where the reaction coordinate, r is in A. Numerical values of

parameters of p., are tabulated below. . . . ... ... ... ...

Results of the photodissociation in the presence of the optimal UV laser
pulse of a time duration of 700 fs with different vibrational states (|0,0),
|0,1), [1,0) and |1,1)) as the initial states. Optimal control calculations
have been performed for ag = 0.001. €4, refers to the maximum
amplitude value of the optimized laser pulse and J is the value of the
cost functional. All parameters are ina.u.. . . . . . . . . . .. .. ..
Results of the photodissociation in the presence of the optimal UV laser
pulse of time duration 700 fs with different vibrational levels (|0,0), |0,1),
|1,0) and |1,1)) as the initial states. Optimal control calculations have
been performed at different values of g (0.1, 0.01 and 0.001). The
quantity €,,q, refers to the maximum amplitude value of the optimized

laser pulse and J is the value of the cost functional. All parameters are

The photodissociation in the presence of the optimal IR laser pulse of
time duration 2000 fs with different vibrational levels (i.e., |0,0), |0,1)
and |0,2)) as an initial state has been performed for ap = 0.0001. In
the table, the dissociation denotes the flux, €,,,, refers to maximum
amplitude of the optimized laser pulse, and J is the value of the cost

functional. All parameters are ina.u.. . . . . . . .. .. ... ....
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Chapter 1

Introduction

Chemical reactions at the atomic level involve in the rupture and construction
of bonds between specific atoms of a molecule. This rupture and construction
of bonds take place in the femtosecond (107'° sec) timescale. Chemical
reactions often result multiple products. In such situations, controlling a specific
product over another is a long-held scientific dream. In traditional control
schemes, experimental chemists vary the macroscopic parameters e.g., pressure,
temperature, concentration of reactants, pH, or lowering a reaction barrier by
using a catalyst. These types of schemes refer to the macroscopic control.
Intermolecular collisional behaviour is modified in those methodologies. When
one gives excess energy to a chemical reaction, generally, the energy is not
localized in a specific bond rather it is distributed statistically over various degrees
of freedom. Therefore, a chemical reaction results both unwanted products
and the desired products. However, neither of the traditional methods offers a
satisfying solution to a chemical reaction. Therefore, one seeks for novel strategies
to perform selective, clean and energy-efficient chemistry. In this context, laser
light with optimal control theory is considered to be an efficient tool to control a

specific product of a chemical reaction.
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1.1 Laser light as a controlling reagent

The laser light was invented in 1960. Chemists have dreamed to take
advantage of the special properties of the laser light e.g., enormous intensity,
monochromaticity, phase coherence, etc., to carry out clean, energetically
efficient and selective photochemistry [1,2]. The laser light is viewed as
an ideal chemical reagent in that all of its parameters can be actively and
completely controlled. The laser radiation deposits energy on the molecule in a
non-statistical fashion. In the early days, various approaches had been developed
based on the properties like high monochromaticity and tunability of narrowly
structured lasers to perform the bond selective chemistry [3-7]. In general, the
laser field-induced bond selective chemistry is not feasible because of the rapid
intramolecular vibrational redistribution (IVR) [8-13] excluding a few studies
[14-17] where the deposited energy flows along a specific bond by avoiding the
IVR in the molecules. At a high level of excitation, the energy is redistributed
among the strongly coupled vibrational modes. The molecular phenomena, IVR
takes place in a short timescale among various coupled degrees of freedom of
isolated and excited molecules. In these experiments, the laser pulses were tuned
according to the characteristic of a specific bond without accounting for the

complex dynamical behaviour of the rest of the systems.

In the context of controlling an outcome of laser-induced chemical reactions,
an alternative idea is developed based on the quantum interference of various
reaction paths on potential energy surfaces (PESs) connecting a reactant
to a product. The laser field interacts with a system and prepares various
intermediate states for different reaction paths. The frequency profile of a laser
pulse is imprinted with the energy associated with these intermediate states.
This can be understood in the representation [see Fig. (1.1)] of the coherent

wave packet (WP). A diatomic molecule is excited with the help of an ultrashort
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laser pulse to an excited electronic state. If the time duration of a laser pulse is
briefer than the vibrational period (typically femtosecond to picosecond) then
the bandwidth of the pulse incorporates multiple vibrational eigenfunctions.
Those eigenfunctions are superposed coherently by altering amplitudes and
phases to generate a localized WP. The laser pulse prepared localized WPs
or the intermediate states are connected to the reactant and product through
multiple pathways. These states (or dynamical paths associated with them)
interfere constructively or destructively to enhance or suppress the desired
product amplitude. In this way, one can control the outcome of a reaction by
manipulating reaction pathways. The manipulation of the quantum interference
between multiple pathways is performed actively by varying parameters of a
laser pulse. Therefore, properties of PESs and their eigenstates are employed in

this approach.

Advances in the laser technology [18-24] as well as various developments
and improvements in spectroscopic techniques [25-28] helped us to get valuable
information about electronic, vibrational and rotational motions [29-34] in
many molecules, ranging from simple diatomic molecules to polyatomic complex
molecules. In the recent past, theoretical concepts of controlling quantum
dynamics using shaped laser pulses have been experimentally implemented with

encouraging results [35-40].

1.2 Theoretical methods

Quantum control methods have been developed to control an outcome of
a chemical reaction differ from the traditional macroscopic control methods
discussed in the previous section. In the former methods, the WP evolution
of a molecule is controlled in a laser light-induced process. The central idea of

these methodologies is based on the quantum interference in laser light-induced
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Figure 1.1: The above figure represents the construction of a coherent vibrational
WP of an excited electronic state with an ultrashort laser pulse for a diatomic
molecule [K. Ohmori, Ann. Rev. Phys. Chem. 60, 487 (2009)].
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events. In those quantum control methods, the coherence property of laser is
exploited to manipulate the molecular dynamics. The goal is to generate a specific
product efficiently while reducing unwanted side products. The idea of controlling
an outcome of quantum mechanical systems towards a specific direction by the
application of a suitable laser field is in general referred to as “coherent control”
or “quantum control”. Various theoretical schemes are developed over the years

in the context of quantum control.

1.3 Single-parameter control strategies
1.3.1 Pump-dump control

In the 1980s, the pump-dump control strategy was developed [41, 42] by Tannor,
Rice and Kosloff to control the chemical reactivity using the coherent properties
of the laser light. This approach is based on the time gap between pump and
dump laser pulses of femtosecond timescale. It is referred to as the TRK model.
The pump pulse excites the WP from the ground electronic state to an excited
state where the WP evolves freely and finally, the WP is de-excited by the
dump pulse [see Fig. (1.2)]. The coherent properties of the laser pulses are
exploited in the proposed methodology. The excitation and evolution processes
are treated separately. The WP moves various product regions on the PES.
Different time delays between these pulses result different time durations of the
WP evolution on the excited state leading to different products. The selectivity
of reaction products is controlled by varying the “time delay (AT)” between
the pump and dump pulses. A large fraction of the product population can
be accomplished in a reaction where the WP on the excited state evolves in a
localized (coherent) fashion and greatly it is dumped back to a product channel.
Here, the excited state helps to control the chemistry on the ground electronic
state. The pump-dump control scheme is demonstrated successfully to control

photofragmentation reactions in small molecules [43-48]. This scheme is used
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as a spectroscopic tool in various studies [49-53] to guide real-time dynamics.
However, the TRK scheme has a limitation because of the consideration of the

transform-limited laser pulses having frequency-independent phases.

1.3.2 Phase control

Another novel scheme was suggested by Brumer and Shapiro (BS) [54-57] based
on the quantum interference of two independent laser pulse-driven excitations
connecting to the same initial and final states [58-60]. The initial state absorbs
n photons of the first colour of frequency, w, and m photons of the second colour
of frequency, w,, such that nw, = muw,, [see Fig. (1.2)]. The coherent laser
pulses interact with the initial state and create a superposition of eigenstates
connecting to different reaction products. The resultant product probability is
optimized by varying the “relative phase (A®)” between two coherent radiations.
The BS control scheme has been applied experimentally in various scenarios, for
example, the selective population transfer in small molecules, atoms [61-64], and
photochemical reactions [65-68]. However, the BS method is limited practically as
the difficulties that arise from the simultaneous excitations for both the reaction
paths with the locking of phases and amplitudes of the laser radiation in optically
dense media [69].

1.3.3 STRIP control

Besides these two novel approaches, there is another approach proposed by
Bergmann and co-workers, known as the stimulated Raman adiabatic passage
(STRIP) control [70-73]. In this scheme, two laser pulses couple with three
states rather than one couple with two quantum states. Two pulses are used in
a counter-intuitive way to transfer the population to a target state. The pump
pulse connects an initial state with an intermediate state [see Fig. (1.2)]. On the

other hand, the stokes pulse links the intermediate state with the desired target
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state. By tuning the time delay between these pulses, the intermediate state
population is kept at zero to avoid radiative decay. This strategy exploits the
properties of the quantum interference between two transitions induced by the
pulses. In general, the pump pulse overlaps partially with the Stokes pulse in a
complete population transfer process. The STRIP control has been successfully
demonstrated for small molecular systems [73-75]. For large polyatomic systems,
the STRIP control is quite difficult to achieve as these systems have a high
density of states [73, 76].

The discussed control strategies are based on the idea of controlling a single
laser pulse parameter and they can be successful for small molecular systems.
Nevertheless, for polyatomic molecules because of the complex nature of PESs,
these schemes may not be efficient. Therefore, it is an apparent need for a laser
pulse general shaping scheme that is robust and flexible and that can result
precisely tailored laser fields to manipulate the nuclear dynamics. Here, we discuss

one such approach, namely optimal control theory.

1.4 Multiple laser parameters control: optimal
control theory (OCT) and its experimental
realization

1.4.1 Optimal control theory

In the subject of the coherent control of a reaction product using a laser
pulse, Tannor and Rice suggested a variational approach in which the optimum
waveform of laser pulses (shaped) is obtained using calculus of variation [77].
This variational approach is further extended by Rabitz et al. [78-81] and others
[82,83] to design an optimally shaped laser pulse in the mathematical framework
of optimal control theory. They proposed that it would be possible to guide a

quantum mechanical system toward a specific objective by tailoring a laser pulse.
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Figure 1.2: The above figure represents: (a) BS phase control scheme, (b) TRK
pump-dump scheme, (c¢) STRIP control scheme by Bergmann et el.. These are
the single-parameter quantum control schemes [T. Brixner and G. Gerber, Chemn.
Phys. Chem. 4, 418 (2003)].

This approach includes multiple laser pulse parameters to control over dynamics
of a molecular system. In this approach, a cost functional is constructed by
considering a control problem. An optimally shaped laser pulse is designed by
maximizing the cost functional. The shaped laser pulse maximizes the formation
of a desired product. This control scheme is applied to steer the outcome
of various molecular processes e.g., state selective population transfer [84-90],
molecular orientation [91, 92], isomerization reactions [93-97], electron current in
aromatic rings [98, 99|, separation of isotopes [100], design of quantum logic gates

[101-106], etc.

1.4.2 Experimental implementations

Optimal laser pulses constructed theoretically by OCT are faced a number of
difficulties while testing in a laboratory. A major problem arises because of the
use of an approximate Hamiltonian for a polyatomic system in OCT calculations.

Polyatomic systems have the complicated nature of molecular Hamiltonians in
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Figure 1.3: The above figure represents the adaptive feedback control (AFC)
technique [G. Gerber et al., Phys. Chem. Chem. Phys., 9, 2470 (2007)].

which many degrees of freedom are tightly coupled. Therefore, the approximate
Hamiltonian could not lead to the best optimal laser pulse for the experimental
implementation. Another type of problem can arise from laboratory uncertainties
due to optical laser pulse generation errors (uncertainties in phase and amplitude,
and a certain amount of noise). The theoretically calculated laser field using
an approximate molecular Hamiltonian may not be robust enough to tolerate
errors from the real Hamiltonian for the system as well as from the laboratory
uncertainties. To circumvent these difficulties, Rabitz and co-workers [107] have
proposed a closed-loop learning technique using the adaptive feedback control
strategy. The experimental setup consists of a laser light source, a measurement
device and an analog computer that solves the Schrodinger equation in real-time
and a sample of molecules of interest [see Fig. (1.3)]. The computer runs a
genetic algorithm as a learning algorithm to direct the production of a laser pulse

sequence based on "fitness” information received by the laboratory measurement
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device. The measurement device is coupled to a learning algorithm (e.g., genetic
algorithm) which is capable of recognizing patterns for a laser pulse sequence for
a new experiment in the input-output mechanism. Over several generations, the
algorithm learns an optimal laser pulse sequence. Overall this scheme is referred

to as the adaptive feedback control (AFC).

Such procedures are much needed in the context of designing optimal laser
pulses, especially for polyatomic molecules. Significant advancements in the
subject of quantum control by designing optimal laser pulses are achieved by
introducing adaptive feedback control methods in the laboratory. The advantage
of AFC methods for designing an optimal pulse is that it does not need any prior
knowledge about PESs, molecular Hamiltonian and reaction mechanisms. The
AFC method was first demonstrated experimentally by Bardeen et al. [108] by
controlling the fluorescence of a large organic dye in the solution. Gerber et al.
[109] studied photodissociation reactions of CpFe(CO),Cl by using this method.
Various groups demonstrated the AFC technique as an efficient experimental

method to control various physical, chemical and biological processes [110-127].

1.4.3 Importance of theoretical design of laser pulses

Laser pulses are designed theoretically employing optimal control theory have an
important role in the experimental realization of the manipulation of quantum
dynamics. These theoretical studies help us to understand the molecular
dynamics as well as to realize the control mechanism. On the other hand, for the
experimental implementation of the quantum control, one needs an expensive
experimental setup including a computer-controlled laser pulse shaper and a
device for the measurement of an outcome of a given system. Therefore, before
performing the control experiment in a laboratory, theoretical control simulations

can be performed to check the feasibility of the quantum control. Theoretically,
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designed laser pulses can be used as an excellent initial guess for experiments.

1.5 Outline of the thesis

Optimal laser pulses are theoretically designed for various vibrational transitions,
tautomerization and photodissociation in the polyatomic systems. The optimal
laser pulses are tailored in the mathematical framework of optimal control theory.
The nuclear dynamics of these processes are studied within the adiabatic and
diabatic representations. The interaction between the laser light with a system
is considered within the semiclassical dipole approximation. The nuclear motion
of these systems follows the time-dependent Schrodinger equation (TDSE). The
split-operator (SO) and fast Fourier transformation (FFT) methods are employed
to solve the nuclear dynamics of the laser field-driven molecular processes. The

theoretical methods are discussed in Chap. 2.

Various vibrational transitions of the ground electronic state of the
4(3H)-pyrimidinone/4-hydroxypyrimidine system are controlled in the presence
of optimal laser pulses. The PES for the ground electronic state along the OH
bond distance has been calculated employing the Coupled Cluster Singles and
Doubles (CCSD) method using an aug-cc-pVDZ basis set and the dipole moment
is calculated from the complete-active-space self-consistent-field (CASSCF)
method employing the Molpro package. The ground electronic state has a
potential barrier of 180 kJ/mol and the latter separates the tautomers. The
optimal laser pulses are designed employing the conjugate gradient method. The
initial state population is transferred efficiently to the target vibrational state
in the presence of the optimal pulse. These optimal pulses are constructed in
different time durations i.e., 30000, 60000 and 90000 a.u. for different values of
penalty factor, ag i.e., 0.1 and 0.01. It is observed that the field amplitudes of

the optimal laser pulses decrease with higher time durations with the agreement
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of the pulse area theorem [128,129]. In frequency spectra, besides the sharp
peak which is responsible for the considered transition, there are secondary
peaks that appear because of the involvement of intermediate vibrational states.
At the end of the time durations, almost 100% population reaches the target

vibrational state. This work is included in Chap. 3.

The excited state-mediated tautomerization is controlled through the
pump-dump mechanism [41,42] of the tautomerization of 4(3H)-pyrimidinone.
The intramolecular hydrogen transfer reaction occurs in the tautomerization.
The model composes two electronic states i.e., the ground electronic state and
m* state. The PESs for the ground electronic state and m7* state are calculated
using the equation-of-motion coupled cluster singles and doubles (EOM-CCSD)
method using an aug-cc-pVDZ basis set employing the Molpro package. The
optimal calculations are performed considering the ab initio calculated transition
dipole moment (TDM) and constant TDM (Condon approximation) conditions.
A pair of ultrashort laser pulses are designed using the genetic algorithm. The
pump laser pulse excites the initial state to the w7n* state from the ground
electronic state. The excited WP freely evolves on the m7* state. When the
WP reaches the product region on the w7* state, at that time the dump pulse
is activated. The dump pulse de-excites the WP back to the ground electronic
state. This work is presented in detail in Chap. 4.

The photodissociation of the OH bond of phenol is controlled in the
presence of the UV laser pulse. The optimal laser pulse is designed in optimal
control theory employing the genetic algorithm. The photodissociation dynamics
is performed on the three lowest electronic states i.e., the ground electronic
state, the 77" state and the wo™ state including two nuclear degrees of freedom

i.e., the OH stretching coordinate and CCOH dihedral angle. Vibrational wave
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functions (defined by, |n,,ng), where n, and ny denote the number of nodes along
the reaction coordinate and coupling coordinate, respectively) of the ground
electronic state are determined using the pseudo-spectral method. An initial
state is prepared from a vibrational wave function (mentioned earlier) on the
ground electronic state. The total outgoing dissociative flux is maximized in the
optimization process, calculated in the Sy and S adiabatic asymptotic channels.
The photodissociation process occurs through different mechanisms for different
initial states. The optimal UV pulse excites the system predominantly to the
mo* state over the m7* state for the |0,0) and |0,1) initial states. On the other
hand, for the |1,0) and |1,1) initial states, the system is excited to both the 7r*
and mo* states. The diabatic coupling element between the n7* and wo* states
play an important role to determine the symmetry of the wave function on the
wo* state. However, In the presence of the optimal UV laser pulse, the WP does
not get sufficient energy to reach the Sy asymptote and the dissociation entirely
(~100%) takes place in Sy and S; asymptotic channels. This study is discussed
in detail in Chap. 5.

The photodissociation of the OH bond of phenol (discussed in Chap. 5) has
been extended with the optimal IR laser pulse. The vibrational eigenfunctions
viz., |0,0), |0,1) and |0,2) are considered initial states for the optimal calculations.
These eigenfunctions have lower energy as compared to the potential barrier
present along the OH stretching coordinate on the m7* state. These vibrational
eigenfunctions hardly dissociate in the field-free condition [130] because of the
potential barrier. The optimal laser pulse for the photodissociation is designed
in the genetic algorithm. The multiphoton pump-dump events are repeatedly
operational in the field-induced condition. Consequently, the WP population
becomes vibrationally hot on the ground electronic state as well as on the 77*

state. As the WP becomes vibrationally excited it crosses the potential barrier



Chapter 1 14

and the mo* mediated photodissociation is observed. This work is included in

Chap. 6.

Finally, a summary of this thesis and its future direction is presented in

Chap. 7.



Chapter 2

Theory

In this thesis, IR or UV laser pulses are constructed to manipulate the quantum
dynamics of molecules. These laser pulses are tailored in the mathematical
framework of optimal control theory. Two optimization methods viz., the
conjugate gradient method and genetic algorithm are employed to optimize
a desired outcome. The laser-molecule interaction is considered within the
semiclassical dipole approximation and systems follow the time-dependent
Schrodinger equation (TDSE). The quantum dynamical equation of motion
is solved numerically using the split-operator method (SO) and fast Fourier
transformation (FFT) method. The derivation of the working equations,

optimization schemes and numerical methods are discussed in this chapter.

2.1 Light-matter interaction

We consider a system of classical charged particles interacting with the

electromagnetic radiation of laser light. The dynamics of the E(r,t) and B(r,t) of

15
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the electromagnetic field are described by Maxwell’s equations [131],

V. Bt — %an, (2.1)
V.Br,f) = 0, (2.2)
V x E(r, 1) :-%%B@w, (2.3)
Vmeﬂ::%%E@ﬂ+£?mﬂ, (2.4)

where ¢ is the speed of light and ¢, denotes the permittivity of vacuum. The
motion of the charged particles in the electromagnetic field is determined by the

Lorentz’s equation,

d i 7
i = Fri,t) = g Bl ) + - x Bri, )] (25)
&

where r;, m;, v; and ¢; are the position, the mass, the velocity and the charge
of the i*" particle. p(r,t) and J(r,t) denote the charged-particle density and the

current of the charged particles, respectively. These are defined as
o 1) = 3 sl —ri(0)] (26)
i) = > qvidlr —ri(t). (2.7)

It is important to re-express the fields using the vector potential, A(r,t) and

scalar potential, ¢(r,t) by the succeeding equations,

B = VxA, (2.8)
10A
E = —o Vo (2.9)

It can be noted that various forms of the vector and scalar potentials can be
defined and they are so-called gauges that result the same electromagnetic fields.
Other potentials, ¢'(r,t) and A’(r,t) can be constructed (from Eqgs. (2.8) and
(2.9)) using ¢(r,t) and A(r,t),

A = A+Vy, (2.10)

;o 10x
P = @ o (2.11)
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where x is an arbitrary scalar field that is often chosen to be the so-called Coulomb
gauge. Therefore, the chosen field satisfies the equation, V?y = —V - A. Hence
Eq. (2.10) reduced to the following equation,

V-A'=0. (2.12)

Note that the different choices of Y’ satisfy the relation, V?y' = 0 and also
satisfy Eq. (2.12). This flexibility is used in this section later.

The classical Hamiltonian of the particles plus the electromagnetic fields,

H is expressed as

1 81
mo= Y % Zqz ) /[Ez(rz, £) + B (xs, 1)]2dr,(2.13)
1o
= ;ym(@t )+ Vo + Hp, (2.14)
where
By(r) = — y b (2.15)
4re P Ir — /]

and Vo and Hp are the electrostatic potential energy (PE) of the particles and
the total energy of the electromagnetic field, respectively. In the above equation,
the first term on the right hand side is the sum of the kinetic energy of the

particles.

Here, we are going to quantize the dynamics of the particles. Basically, it
is the conversion from the classical mechanics of the particles to the quantum
mechanics. First, we express the canonical momentum [132] (incorporating the
Lorentz’s velocity-dependent forces) of the ith particle in the electromagnetic

fields,

i | G (1), (2.16)

= 1 —
pZ Zdt c
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Including the above equation, the Hamiltonian of the particles plus the fields is

re-expressed as

1 i
H= Z p; — %A(riu t)]* + Vo + Hp. (2.17)

Qmi

We can replace the canonical momentum with the quantum mechanical

momentum operator that is given as
p; = —ihV;. (2.18)

The Hamiltonian re-defined using the above equation in the coordinate

representation as follows

1 i
H o= 35 l(=ifV) = CA@ O + Vo + Ha, (2.19)
= Hy + Hiu(t) + Hg, (2.20)

where the material Hamiltonian, Hj; and the interaction Hamiltonian, H;,(t)

have the form,

—h2V?
Hy = Z o L+ Vg, (2.21)
and
iq;:h %2
Him(t) = Z Vi A(r;,t) + ST A’(r;,t), (2.22)

respectively. The dynamics of the particles in the electromagnetic fields are

described by the TDSE,

ma\l};’t) = { Z 2717% [(—ihV;) — %A(ri,t)P n VC}\IJ(r,t). (2.23)

The wavelength of visible light appears in the range of 4000-7000 A whereas the
displacement of the particles in a molecule varies from 1-10 A. Therefore, all the
displacements (r;) in A are replaced with the position of the center-of-mass of

the molecule. For a plane wave, A(r,t) is re-defined considering the z projection
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of the location of the center of molecular mass. Therefore, A(r,t) is approximated
as

A(r;,t) =~ A(z;,t). (2.24)

This is called dipole approrimation.

With this approximation, we choose y as
X=-> 1;-A(z1). (2.25)
Because of the dipole approximation, there is no r dependency of A(zt). It

results VZy = 0.

The TDSE of the particles can be expressed using the definition of V. [Eq.
(2.15)] and x [Eq. (2.25)] (noting that Vy = —A) as

LAU(r,t) —n?_, ¢ 0A(z,1)
th T Z [2_sz + ¢;®i(r;) + P A v U(r, ). (2.26)

)

In the above equation, the last term of the square bracket is converted to

—qiri - E(z,t) [cf., 2.9] and we get the TDSE of the particles as

2

L OU(r,t) 5

at Vf + qzq)z(rz) — q;r; - E(Z, t)

U(r, 1). (2.27)

Qmi
i

In the above equation, the last term is the matter-radiation interaction
Hamiltonian, H,,;z and the first two terms denote the material Hamiltonian in

the field-free condition, Hy,g. Therefore, the TDSE of the particles reads as

ma‘g—P — [Ha + Hyr(t)]0(2). (2.28)
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The matter-radiation interaction term of Eq. (2.27) i.e., Hyg is rewritten as
HMR = —[,L'E(Z,t). (229)

In the above equation, p is the dipole moment and it is given as
o= Z qr;. (2.30)

It is relevant to go beyond the dipole approximation when the electric field as
a function of r; can not be avoided [133]. In such situations, one can consider
the interactions between the higher multipoles with the field. However, here, the
dipole approximation appears to be sufficient and the interaction is treated with

Eqgs. (2.28) and (2.29).
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2.2 Theory of the nuclear motion in an
electronic surface(s)

In this thesis, we present the nuclear motion in a single electronic state as well as
in multiple coupled electronic states. Here, we start the discussion with a central
and basic concept i.e., the Born-Oppenheimer approximation [134].

2.2.1 Born-Oppenheimer approximation

The total molecular Hamiltonian is expressed as

. hzvgﬂ- e? Nz Z:7;e*
H:Z_ 2m +;]re7i—r67]~|+; Z|R — Ryl Z|'r’e,J—RN

(2

Jl
(2.31)

T, +Vo+Tn+Vy + Ve, (2.32)

where Ry and r denote nuclear and electronic coordinates, respectively. Similarly,
Vy and V. refer to nuclear and electronic momenta, respectively. Z; represents
the nuclear charge on the i** nucleus. m and M; are the mass of an electron
and the " nucleus, respectively. Equation (2.31) is expressed in the shorthand
notation for the five terms in Eq. (2.32) and these terms are electron KE,
electron-electron PE, nuclear KE, nuclear-nuclear PE and electron-nuclear PE.

The time-independent Schrédinger equation (TISE) of a molecule is given as
HU(r,R) = EV(r,R), (2.33)

where ¥(r, R) is the eigenfunction of the total molecular Hamiltonian, H. Nuclei
move slowly as compared to electrons because they are about a thousand times
heavier than electrons. Therefore, it is reasonable to treat electronic and nuclear
motion separately. Therefore, the total electronic-nuclear adiabatic wave function

can be expressed as

V(r, R) = (r; R)p(R), (2.34)
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where ¢(r; R) and ¢(R) are the electronic wave function and nuclear wave
function, respectively. The TISE for electrons at a fixed nuclear structure, R
is given as

He(r; R) = E.(R)y(r; R), (2.35)

where H, = T. + V. + V.y and E.(R) is the eigenvalue of the electronic

Hamiltonian, H,. Substituting the electronic-nuclear wave function [Eq. (2.34)]

into Eq. (2.33), we obtain

N ﬁ2

H{p(r; R)$(R)} = {E(R) + Vi Hu(r RWR)}*;‘M
+ 2VY(r; R) - VO(R) + V2 (r; R)¢(R)}

— (i R)6(R). (2.36)

{¥(r; R)V*6(R)

In the above equation, V refers V and henceforth we will follow this notation.
The first-order differentiation of the electronic wave function with respect to
nuclear coordinates [Eq. (2.36)] is referred to as the first-order derivative coupling
and it is a vector quantity. This coupling term contributes significantly to the
nonadiabatic correction. The second-order derivative coupling term in Eq. (2.36)
is a scalar quantity. These two derivative coupling terms are proportional to the
ratio of the mass of electrons to the mass of nuclei to a power of (1/4) [134].
Therefore, these terms are smaller as compared to other terms in Eq. (2.36).
Hence, these coupling terms can be avoided and it results the approximate TISE
for the nuclei,

H)(R) = {Ty + Ec(R) + Vx} = E(R). (2.37)

The above equation is called as the BO approximation. In the above equation,
E.(R) + Vy is the effective potential (in which Vy is a constant at a fixed
nuclear geometry) for the nuclei. The above equation indicates that the TISE
for the electrons should be solved for different values of R to construct the
effective potential. The nuclei move under these effective potentials which are

known as adiabatic potentials. In the region of a conical intersection, Vi (r; R)
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term becomes large. The derivative coupling terms diverge (can be ascertained
through the Hellmann-Feynman theorem) at the degenerate point of adiabatic
potentials. In this situation, the BO approximation fails and solving nuclear
dynamics becomes cumbersome. In order to overcome such difficulties, the
diabatic electronic basis is very much useful as the derivative coupling terms
become as small as possible in the diabatic representation. Therefore, diabatic
electronic basis functions are the convenient choice for coupled electronic states.
Before discussing the diabatic representation, it is important to introduce the

adiabatic electronic representation.

2.2.2 Adiabatic electronic representation

In the adiabatic representation, the total molecular wave function reads,
U(r,R) =Y tn(r; R)gu(R). (2.38)
n=0

The electronic wave functions satisfy the conditions of normalization and

orthogonalization and these conditions are given as

(Ym|Un) = - (2.39)

Substituting Eq. (2.38) into Eq. (2.33) and taking projection with ¢,,(r; R) from

the left results the following equations,

S i (R0u(R) = 35|+ EL(R) + V(R

n

+2T$2<R>-V+T$z<m]¢n<m — Eou(R) (2.40)
where,

TI(R) = (Um| Vi), (2.41)

T?Sfr)L(R) = <wm‘v2|wn>> (2'42>

Huyn(R) = (Wl H(r, R)ibn). (2.43)
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It is noted that T is a vector whereas 7.2 is a scalar quantity. The matrix )

[Eq. (2.41)] is an anti-hermitian, i.e.,
TW(R) = —7(V*(R). (2.44)
The diagonal elements vanish for the real-valued electronic wave function,

(V(R) = 0. (2.45)

nn

We get the adiabatic TISE for the nuclei by retaining the diagonal terms of Eq.
(2.40),
{Tn + Ee(R) + Vi (B) + 700 (R)} 6 (R) = Eu(R). (2.46)

The derivative coupling terms are discussed above in Egs. (2.36), (2.46) and
(2.40) can be quite large around a conical intersection (CI). In such situations, it
is convenient to use the diabatic basis to solve the nuclear dynamics. We discuss

briefly the adiabatic-to-diabatic transformation below.

2.2.3 Adiabatic to diabatic transformation

To avoid the singularity of the matrix, 7, one needs to perform the
adiabatic-to-diabatic transformation where the adiabatic wave functions, ¢*(r; R)
are replaced by the diabatic wave functions, 1%(r; R) which are smooth and
slowly varying functions [135] of nuclear coordinates and correspond to the
potential energy surfaces (PESs) that may cross at the Cls of the adiabatic PESs.
These smooth and slowly varying wave functions are referred to as the diabatic
basis [135-139]. The diabatic Hamiltonian (H?) obtained by a suitable unitary

transformation of the adiabatic Hamiltonian (H") is given as
H?!=SH"S' = T,,1 + U, (2.47)

where U is the diabatic PE matrix and a and d denote adiabatic and diabatic,

respectively. The elements of the diabatic PE matrix, U are smooth functions of
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nuclear coordinates. The diagonal elements represent PESs of electronic states
in the diabatic representation. The off-diagonal elements describe the coupling

between different states.

The S matrix is a unitary matrix, denoted the diabatic-to-adiabatic

transformation matrix. For 2x2 Hamiltonian, it is given as

S — ( cosa SZ?’LO[) ’ (248)

—Sina  cosw

where « is the adiabatic-to-diabatic transformation (ADT) angle. The adiabatic
nuclear basis can be transformed to the diabatic nuclear basis using the S(R)

matrix,
¢"(R) = S(R)¢"(R). (2.49)
The adiabatic PE matrix, V is calculated by diagonalizing the diabatic PE matrix

as follows

V = SUS". (2.50)

Dipole moments (DMs) and transition dipole moments (TDMs) are important
for the dynamics of systems interacting with laser light. The diabatic DMs and

TDMs are calculated using the equation as follows
pu® = Splst. (2.51)
In this work, the diabatic dipole moments are used in the control calculations.

2.2.4 Conical intersection and geometric phase

The PE matrix for a diatomic molecule, U in the diabatic representation is given

U Ur
U= 2.52
(Um U22) ’ ( )

where U;; and Usyy are the diabatic potential curves along the internuclear

as

distance, R and U;, and Uy are the interstate diabatic coupling elements.
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Diagonalization of the diabatic PE matrix results the adiabatic potentials, Vi

as follows

_ U11;U22 4

The energy difference between the adiabatic potential curves is given as

1
Vi 5\/(U11 — U22)2 + 4|U12|2. (2,53)

AV =V, —V_ = /(Uy — U)? + 4|U|2. (2.54)

The conditions given below give rise to the degeneracy of the adiabatic potentials
given in Eq. (2.53)
U = Uy, (2.55)

and

It is unlikely that the above two conditions are fulfilled for two electronic states
of the same symmetry for one degree of freedom i.e., the internuclear distance,
R of the diatomic molecule. Therefore, for a diatomic molecule, the PE curves
corresponding to the same symmetry electronic states do not cross resulting the
avoided crossing [140]. This phenomenon is referred to as the non-crossing rule.
As there are more than one degrees of freedom for polyatomic molecules, PESs

can intersect and exhibit conical intersections (Cls) [141].

For polyatomic molecules, ClIs are degenerate points (or hyperlines) of
adiabatic PE surfaces in the multidimensional nuclear coordinates. Electronic
wave functions associated with these PE surfaces degenerate at a CI [141-145].
CI forms a double cone in the region around the degeneracy of PESs. In
the region of a CI point, there are two distinguished nuclear coordinates, x;
and xo and movement along these coordinates lifts the degeneracy [143]. The
derivative coupling elements (discussed above) are large near, and singular at
a CI. ClIs results two important processes, i.e., the nonadiabatic transition and

geometric phase effect [146,147]. The nonadiabatic transition occurs from an
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upper state to a lower state as well as from a lower state to an upper state.
Ultrafast photochemical reactions (e.g., photodissociation) take place because of
the nonadiabatic transition. Also CIs result the geometric phase effect. When
two parts of a nuclear wave function evolve around a CI in a clockwise and an
anti-clockwise fashion, they interfere destructively. As a result nodal patterns
are introduced in the nuclear wave function. [148]. We discussed the geometric

phase effect in Chap. 5 and Chap. 6.

2.2.5 Symmetry section rule

The selection of the coupling mode and the tuning mode is very important for
the characterization of the conical intersection. The irreducible representation of
the electronic Hamiltonian is always totally symmetric. The intrastate coupling

constant is given as

a[:[el
0 5190} as (257)
In the above equation, %gil is the gradient of the electronic Hamiltonian and it

is totally symmetric. Therefore, it is clear that the totally symmetric vibrational
mode results to a nonvanishing intrastate coupling constant. The interstate
coupling between two electronic states can be described by the symmetry
properties of the coupling mode and electronic states. The interstate coupling

element is given as

0 N
Amn = TQC<¢m|Hel’¢n>|Qo- (2'58>

The direct product of the irreducible representation of the coupling mode and

the electronic states is given as
I'y x FQc xIT'9D Al = FQC =TI xI'. (259)

Therefore, non-totally symmetric modes result non-zero interstate coupling

constants.  When two states of the same symmetry intersect, they result



Chapter 2 28

“accidental CIs”. In that scenario, both the coupling and tuning modes are

totally symmetric [135].

2.3 Optimal control theory

Optimal control theory (OCT) is a broad subject that provides a mathematical
framework to manipulate behavior of a dynamical system in the presence of
an external control. Optimal control theory [149] finds the best solution to
various control problems subject to practical constraints. For a control problem,
a particular objective is achieved through the judgment of a performance index
functional which depends upon the state of the system and control variables.
Optimal control theory (OCT) is a branch of mathematical optimization with
several applications of a wide range of fields, e.g., science, engineering, etc.

150, 151].

A quantum mechanical formalism for designing an optical laser field to
control the chemical reactivity is developed based on optimal control theory. A
cost functional is constructed by incorporating an objective and constraints. The
designed optimal field, which successfully drives systems to a desired molecular
state [152,153]. In the present work, optimal laser pulses are designed to
manipulate quantum dynamics of molecular systems. Those control problems
are studied in the mathematical framework of OCT. The dynamics of a quantum
mechanical system is described by the TDSE. The TDSE within the semiclassical
dipole approximation [87,154] reads as,

(1) = [y — el (D) (2.60)

In the above equation, Hy is the field-free Hamiltonian and —[1.€(t) is the

laser-molecule interaction term.
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As discussed above, an optimal laser pulse is constructed in the
mathematical framework of OCT in combination with the TDSE to control the
dynamical behavior of a quantum mechanical system. Laser pulse parameters are
varied in the optimization process to optimize a specific outcome of a molecular
process. In the optimization process, varying temporal and spectral profile
connects an initial state to a product state through various pathways. For an
optimal solution of the laser pulse, the constructive interference among possible
pathways optimizes the product yield. The mathematical formulation of OCT is

discussed below.

2.3.1 Formulation

In the mathematical framework of OCT, a cost functional is constructed using an
objective function, the laser field energy and the TDSE as a dynamical constraint.
The objective of a quantum mechanical system is constructed in terms of the
expectation value of a certain physical observable, O, at a desired target state,
Y(T') or at the product channel of a chemical reaction. In the presence of a
suitable laser pulse, the objective function is maximized to steer a system to the
target state [81,155-158]. An optimal laser pulse for a laser field-induced process
is designed by optimizing the field-dependent cost functional. As discussed earlier,

the cost functional mainly has three terms and it is expressed as
Jet)] = Jo+ Jp + Je. (2.61)

In the above equation, the first term, Jy is the physical objective that measures
the extent of the achievement of a desired target state. The 2nd term, J, is a
constraint term that includes the penalty on the control field to keep away from
any undesirable processes. Finally, the third term is a dynamical constraint such

that the system must follow the TDSE.
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The objective term can be expressed in a time-independent or in a
time-dependent formalism depending on the desired goal of a problem. The
time-independent objective is determined in problems where a laser pulse drives
the initial state, ©¥(0) = ¢; into the desired target state, )(7') at the end of
the time duration. Typically, the time-independent objective is relevant in the
control scenario of a state-selective population transfer process. In these cases,
the expectation value of the target operator consisting of the desired final state,
Y (T) is maximized in the optimization procedure (discussed below). For the
time-dependent objective [159], the expectation value of the target operator is
maximized. In the photodissociation control, the target operator i.e., the flux
operator calculates outgoing flux through a dividing surface at each point of time
(discussed below). As discussed earlier, the time-independent objective can be

expressed as
Jo = ((1)|O[(T)). (2.62)
For the state selective population transfer, the projection operator, O can be

defined as O = |¢;)(¢;], where O = |¢;) is the predefined target state. Hence,

the time-independent objective can be re-expressed as

Jo = (WD) o) (s 1(T)) = (W (T) o). (2.63)

The above equation indicates that the overlap of the field-driven initial state
with the target state determines the objective. Similarly, the objective for the

time-dependent control targets has the form,

Jo = (WOIOR(). (2.64)

In the case of photodissociation problems, the dissociative flux is determined by
calculating the expectation value of the flux operator. Hence, the objective of a

photodissociation problem is rewritten as

Jo = / (W(0) | Frlib () dt, (2.65)
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where F, is the flux operator (discussed in detail later). The flux operator reads

as
5 1) pr PR
Fr=-{—0(R— Ry) +0(R— Rs)— ¢, 2.66
" 2{ PRG(R — Roc) + 6(7 — o) 2 } (2.66)
where pp = 0(32 (using atomic units) and m is the reduced mass of the molecule.

The quantity R is a chosen coordinate at a large distance. The second term, .J,,
is a fluence (penalty) that represents a constraint on the control field for achieving
a desired outcome in a field-driven process. The mathematical form of this term,

introduced by Rabitz and co-workers is given as

T
J, = —aq / le(t)2dt, (2.67)
0

where qy is a constant penalty factor and it specifies a constraint on the total laser
field fluence, fo |e(t)|?dt. Tt adjusts the contribution of the laser field intensity
to the cost functional. Therefore, overall, the penalty term avoids undesirable
processes by limiting the laser field intensity. The third term, J. is a dynamical
constraint to the cost functional. In this mathematical framework, the dynamical
constraint is the TDSE that systems must follow.

Rabitz and co-workers [156,157] formulated the cost functional expression for a
quantum control problem in a more general way and is given by (using atomic
units),

I1et)] = Jim (GIOWD) —a [ (et —2re [ [ a0 |5+ it a9

T—oo

In the above equation, v(t) is the time-evolved wave function in the presence of
the time-dependent laser field, €(t) and ¢ (T") is the wave function at time t=T.
The quantity, «p is a penalty factor (discussed earlier) to limit the contribution
of the laser field intensity to the cost functional. The Lagrange multiplier, y(¢)
ensures the dynamics of a system to follow the TDSE and provides feedback to

optimization algorithms.
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The Hamiltonian for two electronic states within the semiclassical dipole

approximation is expressed as

=L i) .

where 1 is the transition dipole moment. I:Ig and H, are Hamiltonians of
the ground electronic state and the excited state, respectively in the field-free

condition. In this model system, the Lagrange multiplier and the wave function

- () - (2)

Here, we consider the variation of the cost functional, J with respect to the Y,

are given as

1 and € using the calculus of variation. At the optimal condition, the first-order
variation is zero and it results into non-linear coupled differential equations
(See Appendix for the derivation). These equations are called the pulse design

equations and given as

%(]t) - 0;”'6?—?) = Hy(t),4(t = 0) = 1(0), (2.71)
s = 0= 1280 — (o). x(1) = Ou(), 2.12)

der (1) = 0=¢€(t) = £[<Xe(t)|ﬂ|1/zg(t)> — (he(D)] g (1)) (2.73)

The optimal solution of a laser pulse can be achieved by solving these coupled
differential equations. Equation (2.71) implies that the wave function ¢ (t) must
follow the TDSE with the initial condition, (0) = ¢;. Equation (2.72) states that
the Lagrange multiplier, x(¢), must obey the TDSE with the boundary condition,
X(T) = Oy(T). As this boundary condition is defined at the end of the pulse, one
needs to integrate the TDSE backward in time to obtain x(¢). Equation (2.73)
determines the optimal laser pulse, €(t) using the time-dependent wave function,
¥ (t) and the Lagrange multiplier, x(¢). These coupled differential equations can

be solved iteratively. Various numerical methods [81, 158] have been developed to
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solve these equations. However, These methods are found to be inefficient. There
are two efficient alternatives to these iterative methods, namely the conjugate
gradient method and the genetic algorithm. The conjugate gradient method is
a gradient-based algorithm, whereas the genetic algorithm is based on principles
of genetics. In the conjugate gradient algorithm [79, 89, 160, 161], the derivative
of the cost functional with respect to the electric field is treated as the central
object. On the other hand, the cost functional is directly optimized in the genetic

algorithm. Both these algorithms are discussed in detail below.

2.3.1.1 Conjugate gradient method

The laser pulse, €(t) in the conjugate gradient method [89,90,162,163] has the
form [89]

e(t) = eo(t).s(t), (2.74)

where €(t) is a sinusoidal electric field. In the above equation, s(t) is an envelope
function that ensures a smooth switch on/off of the time-dependent electric field.
s(t) is often assumed as a Gaussian function [162],

—(t—T/2)

s(t) = expw. (2.75)

In the above equation, T is the total timescale. The gradient of the cost functional
with reference to the initial laser pulse, €(t) after k'™ number of iterations is

expressed as

k
g"t) = 82(’%](25)’ (2.76)
= =25() e (t) = I{x(0) s () |- 2.77)

Y(t) and x(t) follow the TDSE and are solved using the SO method. The
time evolution is carried out in discrete time steps (¢;). In the conjugate

gradient algorithm, the parameter space of laser fields, €(¢;) is searched along
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the Polak—Ribiere—Polyak search direction [164] to maximize the cost functional.

The search direction, d after k** number of iterations is expressed as
d*(t;) = g"(t;) + NE.d" (L), (2.78)

In the above equation, A is the conjugate gradient parameter, given by

L) () — 6 (0)
A S O < Y (2.79)

where, k=2.3,..., and T denotes the transpose. To restrict the algorithm from

sampling €(¢;) values outside of a predefined amplitude range [€,in, €maz| during
the line search, the direction is projected [165] appropriately.

During the optimization process, the frequency spectrum of a laser pulse is
restricted within a predefined range [166] as to get a simple profile of it. The
frequency function is filtered with a 20?"-order Butterworth band pass filter [167].

The filter is given as

O (e[

The frequency spectrum of the projected search direction is calculated from the

=

Fourier transformation method and it is multiplied with h(w), and then transform

into the time domain with the expression given below,

& orlt) = [ PO (2581)

In the above equation, F,[df(t)] is the Fourier component of the line search
direction. In the optimization process, the updated electric field, ¢*T1(¢;) is

expressed as,
(L) = €5 (t:) + As(t)d) siger (1), (2.82)

where \ is the conjugate gradient parameter and d* b fitter(t) is the line search

direction.
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2.3.1.2 Genetic algorithm

The laser pulse in the genetic algorithm [168-170] reads
€ga(t) = €osin(wt) - s(t). (2.83)

where w is the carrier frequency of the laser radiation and ¢y is the amplitude
of the laser field. s(t) is an envelope function that modulates the laser field
and ensures that the field goes to zero smoothly at the initial and final time.
Generally, it is defined by four positive time parameters, tg, t1, to and t3 where

to < t; <ty < t3 and is given as

sin? | Z <M> for to <t <ty
s(t) = 1 Cofor b <t<t, (2.84)
sin?| T <M> for to<t<ty3=T.

2\ tz—t2

Normally, ¢y is defined as 0 and t3 as T'. The time duration ¢y to ¢; is the rise time
and t, to t3 is the switch-off period of the pulse. The duration ¢; to 5 is a plateau
region where the envelope function reaches the maximum value, 1. The amplitude
(€0), frequency (w) and two time parameters ¢; and ¢, are varied to maximize the
cost functional (J[e(t)]). The genetic algorithm is a global search optimization
tool consisting of principles of genetics viz., survival of the fittest, selection,
reproduction through crossover combined with mutation or randomization, etc.
[see Fig. (2.1)]. Each parameter value is stored in a binary number containing ten
bits (0 or 1). The chromosome consists of four parameters string containing a total
of 40 bits with different combinations of these parameters. The genetic algorithm
finds the optimal solution from the said possibilities. The calculation starts
with an initial guess population (population or total number of individuals in a
generation, N=10). The individuals (chromosome, a set of parameters, define an
electric field) in this population are randomly selected from the parameter space.

Using a set of parameters i.e., chromosome, we evaluated the cost functional
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Figure 2.1: The above figure represents the genetic algorithm: Individuals of a
generation are subjected to estimate a fitness function that determines the degree
of fitness of an individual. The optimization proceeds iteratively through various
operations e.g., selection, recombination, mutation, etc. .

expression, which measures its fitness. In the present study, the cost functional
value near 1.0 makes the chromosome fitter for survival. The population evolves
through various genetic operations like tournament selection, elitism, mutation
and crossover as suggested in Ref. [169]. These operations are performed in every
generation until the convergence of the cost functional is achieved. In the present
work, the genetic algorithm has been found to work well to reach the convergence

criteria of cost functional.

2.4 Time propagation

The time evolution of a quantum mechanical system is described by the TDSE,
L0 ~
i W (1)) = HIW(z,1), (2.85)

where W(z,t) is the wave function and H is the Hamiltonian operator of the

system. The solution of the above equation provides dynamical properties of the
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system. For an explicitly time-independent Hamiltonian, H, the solution of the

above equation is given as

_iHt

"W (z,0), (2.86)

U(z,t)=¢

where U(z,0) is the wave function at time, ¢ = 0. It is clear from the above
equation that the Hamiltonian operator, H operates on the initial wave function,
U(z,0) to get the solution. For an explicitly time-dependent Hamiltonian,
the solution is approximated by assuming the Hamiltonian as a constant for

a small-time interval, dt reads,

U(,t 4 dt) ~ e 5 (a, 1), (2.87)
where dt is the width of the time increment and it determines the accuracy of the
solution. Therefore, a more accurate solution is obtained from the smaller time
increment. The total time, T is divided into N steps with the time increment, dt,
where T'= Ndt. The wave function at the final time, T i.e., ¥(z,T) is expressed

as the product of the time propagators follows as
(2, T) = O(Ndt)O((N — 1)dt)...- - O(dt)¥(z,0), (2.88)

where O(dt) is a short-time propagator,

TV
— Tt

Odt) = e Hdt = ¢ (2.89)

The Hamiltonian operator, H contains the kinetic energy operator, T and the
PE operator, 1% (shown in the above equation). The PE operator is best treated
in coordinate representation as it is local in the coordinate space (i.e., can be
diagonalized). Therefore, the operation of the PE operator on ¥ is calculated
by simple multiplication in the coordinate representation. On the contrary, the
kinetic energy operator is best treated in the momentum representation as it is
local in the momentum space ( i.e., can be diagonalized). Therefore, one needs to

move back and forth between these two representations. Fourier transformation
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method do this task naturally. In the grid representation, Fourier transformation

provides a reliable and robust method called the Fourier-grid method [171,172].

2.4.1 Coordinate and momentum space and the role of
the Fourier transformation method

The Fourier-grid method is used to transform from the coordinate representation
to the momentum representation and vice versa on a grid of evenly spaced
points. The transformation between these two representations is performed using
the Fourier transformation method. Actions of the kinetic energy operator and
PE operator on the wave function are performed in their local representations.
The PE matrix is diagonalized in the coordinate representation and operates on
the wave function. The formulation of the one dimensional Fourier grid method

[173] is discussed below.

The Hamiltonian, H for a particle of mass m moving in one dimension under
the influence of a potential, V() is reads as

0

A N N p .

H=T+V=—4+YV 2.90
2m (x), ( )

where p is the momentum operator given as

p= —z’ha%. (2.91)

The basic vectors or ket’s (Dirac notation) of the coordinate representation, |x)

are the eigenfunctions of the position operator, z, given as
Tlx) = x|z), (2.92)

where z is the eigenvalue of it. The basic vectors, |z) satisfy the orthogonality

and completeness relationships as follows

(2|z) = 0(z" — z), (2.93)
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and

i = / " o)l da. (2.94)

—00

The PE is diagonal in the coordinate representation as follows,
(2 |V (2)|x) = V(z)d(z' — x). (2.95)

The basic vectors or ket’s (Dirac notation) of the momentum representation, |k)

are the eigenfunctions of the momentum operator, p,
Bl = KAIE), (2.96)

where kh is the eigenvalue of it. The basic vectors, |k) satisfy the orthogonality

and completeness relationships as follows
(K'\k) = 6(K — k), (2.97)

and

Iy = / N k) (k| dk. (2.98)

[e.9]

The kinetic energy is diagonal in the momentum representation as follows,

(K'|T|k) = Tpd(K' — k),
h2k?
= —0(K — k). 2.99
o — k) (299)
Back-and-forth transformation between the mentioned representations is required
to perform operations of the potential and kinetic energy operator on the
wave function. This transformation between the coordinate and momentum

representations is carried out using the Fourier transforms,

(klx) = exp(—ikx), (2.100)

1
(271.)1/2
and

(x|k)y = exp(ikzx). (2.101)

1
(27T)1 /2
The multidimensional Fourier grid method is developed by Dutta and others [174].
In this work, we have implemented one dimensional as well as two-dimensional

Fourier methods to study the nuclear dynamics.
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Discretization and grid

For any numerical calculation, we need to replace the continuous variable, x with

the grid values. We have discretized into N numbers of evenly spaced grids, {z;},
v, =ilAx  i=1,2--- N, (2.102)

where the length of the grid is given as L = NAxz. The grids of the coordinate
space, {z;} satisfy the orthogonality condition,

as well as the completeness property,
N
I, = Z |z;) (x| Az (2.104)
i=1

The length of the grid of the coordinate space (L) defines the longest wavelength
(Amaz) or the smallest frequency. The grid spacing in the reciprocal momentum

space defined using the longest wavelength is expressed as

2 2 2
Ak = Mae L NAz

(2.105)

The grid points in the momentum space are distributed on both sides around

zero. The grid in the momentum space, k; is given as

kl = kmin + ZAka

B N7r+127r
L L’

T 21
= —— ) 2.1
Ax+ZNA:1: (2.106)

The implementation of the FFT algorithm [172,175,176] increases a significant
amount of computational efficiency. The FFT algorithm appears to be an
O(NInN) process to calculate the discrete Fourier transform that has O(N?)

operations. Also, the FFT algorithm does not create and store matrices rather
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it rearranges the elements of the vector representing the wave function. Thus,
the FFT algorithm saves computational cost significantly for large input vectors.
In the next section, we discuss the SO method with the FFT algorithm for the

estimation of the operation of the short-time propagator on the wave function.

2.4.2 Split-operator method

The split-operator (SO) method [171,175,176] is used for the numerical

implementation of the time propagator, e‘%. In this method, the exponent

form of the propagator is retained and it directly operates on the wave function.

The PE and kinetic energy operator do not commute i.e., [V,T | # 0. Hence,

we can not express the short-time propagator as e~ e~ . The short-time

propagator approximated by the symmetrical splitting with reference to the PE
operator,

__iHdt iTdt _ iVdt _ iTdt

e h me e hoe 2+ O(dt?), (2.107)

or with reference to the kinetic energy operator,

_ iHdt _iVdt _ iTdt  iVdt
R

~e moe hoe o 4+ O(d?), (2.108)

e
where O(dt?), an error function is proportional to the commutator, [‘7, T] The

time evolution of the wave function is given as

_iTdt _ ivdt _ iTdt

U(r,t+dt)~e 2ne n e 2o U(x,t). (2.109)

The wave function, ¥(x,t) is propagated in the following way:

1. In the first step, the wave function in the coordinate representation (x)

is transformed to the momentum representation (k) using the FFT. The
2,2

transformed wave function i.e., W(k,t) is multiplied by e~ T o (K.E part

h2K2 dt

of SO) i.e., e zm 2n U(k,t) where,

U(k,t) = FFT{V(z,t)} = (27r—1)1/2 /_OO U(x,t)e *dy. (2.110)

o0
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2. At this step, the wave function in the momentum representation is
transformed back to the coordinate representation using the reverse FFT.

The resultant wave function in the coordinate representation is then

i (P.E part of SO) i.e., e U(k,t) where,

multiplied by e~

U(x,t) = FFT HU(k,t)} = (273)1/2 /_Oo U (k,t)e™dk. (2.111)

3. The wave function thus obtained is again transformed to the momentum
h2 k2

representation and multiplied by e T ot (other half of K.E part of SO) as

discussed in step 1.

In the present work, we have considered a two-dimensional model system for
the control problem where R and Q) are the tuning mode and coupling mode,
respectively. In the two-dimensional model, the short-time propagator is given

as (kinetic energy referenced)

N ivdt iTth _iTpdt iTQ dt g
U(dt)=e 2n e 20 e h e 2n e 2h, (2.112)
iTgdt

where the SO component e~ 2n associated with coupling mode (Q) follows the

same steps as discussed earlier.

2.5 Physical observables

2.5.1 Flux operator

The flux operator, F estimates the probability of the current density through a
dividing surface. The dividing surface is situated at R = Ry and it separates

between the reactant and product. The quantum flux operator reads as
F =i[H, 6], (2.113)
where H is a Hamiltonian and © is the Heaviside step function, h,

© = h(R — Ry), (2.114)
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I (2.115)
1, R>Rf.

From the above equation, it is clear that the 0 is a function of coordinate and it

commutes to the PE operator. The flux operator [177] can be re-expressed as

= [T, 6], (2.116)
i o 0 0 0
= — " H(R—Ry)— H[R — Ry)~—— 2.11
2m{8R R (F = Rec) (R ROO)@R 8R}’ (2.117)
i 0 0
= ——1 — — 2.11
2m{6R5<R Ry)+d6(R—R )GR} (2.118)
where
. 1 02
T=—gom (2.119)
0
aRH(R—Rf) =0(R — Ry), (2.120)
and  H(R-— Rf)i = —0(R — Ry). (2.121)
OR
@ is an anti-hermitian operator i.e., %T = —%. The reaction probability on

the i electronic state for the reaction coordinate, R; through a dividing surface

at Ry = Ry is given as

dt, (2.122)
Ri=R;

FP(1) = / (6i(Ry. Ry, . 0)| E[s(R1, Ry . 1)

dt.  (2.123)
Ri1=Ry

1 (R, Ry, .. 1)
_ ;/Im |:<¢i(R1>R2""t)| OR, >}

In the above equation, the integration is carried out over other coordinates for
Ry = R;. For a photodissociation control problem, the dissociation probability

in a given channel is measured at Ry = R4 by the quantum flux.
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2.5.2 Probability density

The probability density is estimated from the absolute square of the nuclear wave

packet (WP) on an electronic state reads
PD¥(Ry, Ry, ..,t) = [{*(Ry, Ry, .., 1)|?, (2.124)
PD(Ry, Ry, .., t) = [i(Ry, Ry, .., t)[% (2.125)
The probability density on the ¢th diabatic and adiabatic state along a particular

nuclear degree of freedom, say R; determined by estimating the integration of

the square of the nuclear WP for other nuclear degrees of freedom is given as
PD{*(Ry,1) = / dRy / ARy [0 (Ry, Ry, .., )%, (2.126)

PD(Ry 1) / dR; / dRs. |2 (Ry, Ry, .., t)|%. (2.127)

2.5.3 Electronic population probability

Mechanisms of the field-driven nuclear dynamics discussed in this thesis are
understood from the time-dependent electronic population probability. The
time-dependent diabatic and adiabatic electronic populations are estimated by

calculating the expectation values of the associated projection operators, [1¢) (14|

and |¢f) (7] as

P(t) = (W (t)|wf) (w9 (1)), (2.128)
PE(t) = (U(6)[y) (0] [ (1)) (2.129)
The above equations are re-expressed as
Pie(t) / dR, / dRy..[7(Ry, Ry, .., 1)|?, (2.130)
Pedia(y) /de/ng Jps¥a( Ry, Ry, .., t)]2 (2.131)

For the laser field-induced dissociation works (discussed in Chap. 5 and

Chap. 6), the time-dependent diabatic and adiabatic electronic populations
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are determined using the following equations,

P (t) :/de/dRQ..|w§“a(R1,R2,--,t)\2+ED(t), (2.132)
Pe(t) = / di, / dRy..|07" (R1, Ry, ., )] + FP(t), (2:133)

where FP(t) is the time accumulated dissociation probability (discussed earlier)

for a particular channel.

2.5.4 Spectral intensity

Vibrational eigenfunctions of the ground electronic state are estimated using the
spectral method [178,179]. A suitable chosen Gaussian function as an initial state
is propagated on the ground electronic state. The autocorrelation function, C'(t)

is calculated from the time evolved-wave function and is given by

C(t) = (U(to) | (1))- (2.134)

The pseudo-spectral intensity is estimated using the autocorrelation function

given above as

I(E) = /0 N C(t)e'tth g, (2.135)

Eigenvalues are calculated from peak maxima of the frequency spectrum. The
eigenfunctions are determined by filtering the time-evolved wave function as

follows
Y = / Y(t)e Pt (2.136)
0

The energy resolution can be improved (by a factor of 2) using the relation,

C(2t) = ((t)"(1)). (2.137)






Chapter 3

Control of vibrational transitions
in 4(3H)-pyrimidinone/4-
hydroxypyrimidine system

3.1 Introduction

4(3H)-pyrimidinone is a parent molecule of various important pyrimidine
nucleobases (uracil, thymine and cytosine) those are essential building blocks
of genetic materials. Therefore, experimental and theoretical investigations

[180, 181] of the molecule are important to understand its chemistry.

The prototropic tautomerism is an important phenomenon in biological
systems, especially in the structure of nucleic acids. 4(3H)-pyrimidinone is
a good model compound for the study of the prototropic tautomerism of
various heterocyclic compounds. In the tautomeric equilibrium [182,183],
4(3H)-pyrimidinone (oxo tautomer) is converted to 4-hydroxypyrimidine
(hydroxy tautomer) through the intramolecular hydrogen transfer reaction.
The molecule co-exists in the (~1:1) tautomeric equilibrium [182-186] with the
hydroxy tautomer in the gas phase and inert gas (Ar and Ne) matrices. The
tautomeric equilibrium of 4(3H)-pyrimidinone has been studied experimentally

in IR spectroscopy [182,183], X-ray photoemission spectroscopy [186], free jet

47
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millimeter wave spectroscopy [185], NMR spectroscopy [184], etc. IR spectra of
4(3H)-pyrimidinone and 4-hydroxypyrimidine have been studied theoretically
using various ab initio methods [187]. Les et al. [188] explained theoretically the
temperature-dependent population of tautomeric forms in the gas phase as well
as the environmental effect on the tautomeric equilibrium. Galvao et al. [189]
investigated theoretically (with the help of Ab initio calculations) the stability

of 4(3H)-pyrimidinone in the tautomeric equilibrium.

Upon exposure to the UV light (< 310 nm), 4(3H)-pyrimidinone tautomer
is converted to 4-hydroxypyrimidine tautomeric form [190-194]. In this reaction,
the intramolecular hydrogen transfer reaction occurs between the tautomers.
In general, the excited state proton transfer (ESPT) reaction occurs through
an intermolecular or intramolecular hydrogen bond. In this tautomerization,
the intramolecular hydrogen transfer reaction takes place without having an
intramolecular or intermolecular hydrogen bond. The photo-induced tautomeric
conversion of 4(3H)-pyrimidinone was theoretically [191,193,195,196] studied
using various methods of quantum chemistry. Ab initio studies combined with
IR spectroscopy to separate the tautomeric forms based on the phototautomeric
effect. Theoretical studies were reported to explain the mechanism of the
reaction as well as the stability of the isomers. Nowak et al. [196] reported that
various electronic states (the ground, n7*, nm* and wo™ states) are associated
with the photo-induced oxo-hydroxy tautomerization. These electronic states

are nonadiabatically coupled in the photo-induced tautomerization reaction.

Controlling an outcome of a quantum mechanical system by a laser field has
been developed within the mathematical framework of optimal control theory
(OCT) [81,155-157,197,198]. A cost functional is constructed mathematically

with the terms namely an objective term, the fluence term related to the
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field intensity and time-dependent Schrodinger equation (TDSE). Various
optimization methods e.g., gradient-based algorithms and the genetic algorithm
are used to optimize a specific product of a reaction by constructing a suitable
laser pulse. An optimal laser pulse is designed in the process of the maximization
of the cost functional and minimization of the field intensity. The optimal laser

pulse steers a system to follow a specific path that optimizes a desired outcome.

In this chapter, the controlled preparation of vibrational eigenstates is
performed in OCT in combination with the TDSE. The model system consists
of the ground electronic state along the OH stretching coordinate. The obtained
potential function is an asymmetric double well. Vibrational eigenstates localized
in geometries of 4(3H)-pyrimidinone and 4-hydroxypyrimidine are abbreviated
to as opmd (v=n) and hpmd (v=n), respectively, where n is the number of
nodes [see Fig. (3.3)]. Optimal laser pulses are designed for various vibrational
transitions employing the conjugate gradient method. The optimal IR laser

pulse for a particular vibrational excitation is obtained from the optimization.

In the present study, various vibrational transitions are considered and are

given by

opmd (v=0)— hpmd (v=0)
These selective vibrational excitations are controlled for the timescales of 30000,

60000 and 90000 a.u. with two penalty factor values i.e., 0.01 and 0.1.
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3.2 Theoretical framework
3.2.1 Ab wnitio calculations

Here, the tautomerization of (3H)-pyrimidinone to 4-hydroxypyrimidine, is
studied in the presence of the optimal laser pulses. The model system considered
here consists of the ground electronic state along the OH bond distance of
the 4(3H)-pyrimidinone/4-hydroxypyrimidine system. The OH bond distance is
treated as the reaction coordinate. Equilibrium geometries of both the tautomers
are optimized in the second-order Mgpller—Plesset perturbation (MP2) method
with an aug-cc-pVDZ basis set using the Gaussian package. The ground electronic
state potential function is calculated using optimized geometries at various
OH bond distances. These optimized geometries are obtained from the MP2
method employing the Gaussian package. Single point energies corresponding to
these optimized geometries are calculated using the Coupled-Cluster Singles and
Doubles (CCSD) method. The dipole moment (DM) is calculated employing the
complete-active-space self-consistent-field (CASSCF) method (14 electrons in 11
orbitals) using the Molpro package [199]. The ab initio calculated data of the
potential energy surface (PES) and DM are fitted with polynomial functions,

6

V(r) =Y anr" +bi(1 = exp(=bo(r — 19)))°, (3.1)
w(r) =agp + Z anr"exp(—b,r?), (3.2)

using the regression method [see Figs. (3.1) and (3.2), and Tables (3.1) and (3.2)].

The potential profile is an asymmetric double well in nature. There
is a potential barrier of 180 kJ/mol for the conversion of oxo tautomer to
hydroxy tautomer. Therefore, the vibrational excitations are important for the

tautomerization in the ground electronic state.
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Figure 3.1: The above plot represents the one dimensional potential energy
function of the ground electronic state along the OH bond distance.

Table 3.1: Ab initio PES data in eV are fitted against the reaction coordinate,
rin A using Eq. (3.1). Numerical values of parameters of the ground electronic
potential are tabulated below.

ap=-201.8 a3=322.8 ag=-0.7072

a,=588 a,=-87.76 b1 =48.06

a,=-632.8 a5=12.34 by=1.501

Table 3.2: Ab initio dipole moment data in a.u. are fitted using Eq. (3.2) where

the reaction coordinate, r is considered in A. Numerical values of parameters of
dipole data are tabulated below.

ap=-4.189 a,4=-0.5932 03=0.1139
a=11.12 a5=1.932  b4=0.1547
a3=0.1296  b;=1.455  05=0.9677
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Dipole moment(a.u.)

03 | 1

0 L L L L
4 3 2 1 0

OH bond distance(A)

Figure 3.2: The above plot represents the one dimensional DM along the OH
bond distance.

3.2.2 Nuclear dynamics

The Hamiltonian of the model system in the field-free condition, Hy reads as

- - L7 +V(r) (3.3)
0T 202 i '
where 1 = % in which the My and Mo denote the masses of Hydrogen

and Oxygen, respectively and V(r) is the PES. The vibrational eigenstates and
eigenvalues of the ground electronic state are estimated using the pseudo-spectral
method [178,179].  The autocorrelation function is determined using the
time-evolved wave function. The eigenvalues [see Table (3.3)] of the ground
electronic state are obtained from the frequency spectrum. The vibrational
eigenstates are estimated by evaluating the projection of the time-evolved wave
function onto the associated eigenvalue [see Fig. (3.3)]. The eigenstates are

localized as well as delocalized in nature [see Fig. (3.3)].

A laser field interacts with the molecule and results the modification of
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hpmd (v=1)

Vibratinal levels

hpmd (v=0)

opmd m
opmd (v—())/\
| | | |

7 5.8 4.6 34 22
r(au.)

Figure 3.3: Above plots represent eigenstates of the ground electronic state
calculated by the pseudo-spectral method.

the molecular Hamiltonian. The Hamiltonian of the model system |, H in the

semiclassical dipole approximation [87,154] is given by,
]:I = -HO + ]:Iinty (34)

where ﬁo is the Hamiltonian in the absence of an external field and ]:Imt is the

laser-molecule interaction Hamiltonian reads
Hipy = —f1- €(t), (3.5)

where €(t) is the field and j is the DM.

The nuclear wave function, |¥(¢)) follows the TDSE,
L0 .
zh§|\11(t)> = H|V(1)). (3.6)

The above equation is solved numerically by employing the split-operator method

(SO) [171,200] and fast Fourier transformation (FFT) [172] methods. The one
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dimensional grid along the OH bond distance contains 512 grid points ranging

from 1.0 ag¢ to 6.8 ay.

3.2.3 Optimal control theory

The cost functional is constructed in the theoretical framework of OCT [81, 156,
157]. The cost functional, J[e(t)] reads as

9

I = (Do P=ao [ tFat-2re [t [ o5

(3.7)
In the above equation, the first term on the right hand side is the transition
probability (P) that measures the overlap between the initial state at t=T and
target state. This term is considered as the objective. The second term is the
fluence term as a constraint and it is associated with the laser field. «g is the
penalty factor that limits the laser pulse intensity. The last term corresponds
to the dynamics of the system which follows the TDSE. x(¢) is the Lagrange
multiplier. The variation of the cost functional with respect to €(t), ¥ (t) and x(¢)

leads the pulse design equations,

aJ a(t)

o = 0= iy = Hy(t),4(0) = ¢, (3.8)
g_i = 0= 20 iy, () = ov) (3.9)
oJ

1
5 = 0=eb)= —a—ofm(W(T)lebf(T))<X(t)|u|¢(t)>)- (3.10)
Equation (3.8) determines the time-dependent initial state, ¥ (t). Similarly, Eq.
(3.9) estimates the time-dependent Lagrange multiplier, x(¢). The optimal laser
pulse is determined by using ¢ (t) and x(¢) [Eq. (3.10)]. The above differential
equations are coupled to each other. Therefore, they should be solved iteratively.

Here, these equations are solved by using the conjugate gradient method.

+ 'LH‘ w(t)>dt} .
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3.3 Conjugate gradient method
In the conjugate gradient method [89, 90, 162], the laser pulse, €(t) reads as
€(t) = Eopsin(winitt)-s(t), (3.11)

where Ey and w;,; are the amplitude and frequency, respectively. The pulse is
composed of a sinusoidal electric field with an envelope function. The envelope
function, s(t) guarantees a steady power on/off of the field and it is a Gaussian

function [162],
—(t—T/2)
t) = _ 3.12
S( ) exp (T/4>2 Y ( )
where T is the total time duration. The gradient of the cost functional with
respect to the initial laser pulse, €y(t) after k" number of iterations is expressed

as

oJ*
k
) = —/——

= —2s(t)[aoe" (t) + Im{x(0)[(0)) (U(T)|64(T))]. (3.13)

In the conjugate gradient algorithm, the parameter space for the laser pulse is
searched using the Polak—Ribiere-Polyak search direction [164] to maximize the
cost functional. The search direction, d after £ number of iterations is expressed

as

In the above equation, A is the conjugate gradient parameter and given by

k29 () (g () — gF (1)
A = ZZ gk’l(ti)Tgk’l(ti) , (3.15)

where, k=2,3,..., and T denotes the transpose. In the line search process, the

search direction is projected [165] to prevent the large value of the €(¢;) from the
predefined range.

A laser pulse of a simple frequency profile (within the specified range of frequency)
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Table 3.3: Vibrational eigenvalues of the ground electronic state are tabulated
below.

Vibrational states | E (cm™!)
1 opmd (n=0) 1109
2 opmd (n=1) 2280
3 hpmd (n=0) 2581
4 opmd (n=2) 3430
5 opmd (n=3) 4560
6 opmd (n=4) 5664

[166], is obtained by filtering the frequency function with a 20*"-order Butterworth
band pass filter [167]. The filter is given as

) @) e

The frequency function of the projected search direction is calculated from the

=

h(w) =

Fourier transformation with the expression given below,
) = [ B Pl d (3.17
In the optimization process, the updated electric field, e**1(¢;) reads as,

Lt = () + Ns(ty)dE e, (1) (3.18)

p, filter

3.4 Results and discussion
3.5 opmd (v=0)—opmd (v=1) transition

It can be seen from Figs. (3.4) and (3.5) that the optimal laser pulses transfer
the population from the initial state i.e., the opmd (v=0) vibrational state to the
target state i.e., the opmd (v=1) vibrational state for the timescales of 30000,

60000 and 90000 a.u.. These optimal calculations are carried out for different
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Figure 3.4: Optimal laser pulses in the time domain (al, bl and cl), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational states (a3, b3 and
c3) are depicted above. Plots (a4, b4 and c4) present probability densities of ¢(T')
and the target vibrational state. Plots (a5, b5 and ¢5) show variations of J and
P with iteration steps. These results are obtained for the v=0—v=1 transition
for the timescales of 30000, 60000 and 90000 a.u. with aq value 0.01.
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values of o i.e., 0.01 and 0.1. It can be seen from Figs. 3.4(al), 3.4(b1), 3.4(cl),
3.5(al), 3.5(b1) and 3.5(cl) that the optimal laser pulses have smooth temporal
profiles. Amplitudes of the obtained laser fields for this transition decrease
for increasing the time duration. This phenomena agrees with the pulse-area
theorem [128,129] . Apart from the carrier frequency peak, several secondary
frequency peaks appear in the frequency spectra. The population of the initial
state (opmd (n=0)) is transferred almost completely to the target state (opmd
(v=1)) in the presence of the optimal laser pulses [see Figs. 3.4(a3), 3.4(b3),
3.4(c3), 3.5(a3), 3.5(b3) and 3.5(c3)]. Besides the opmd (v=0) and opmd (v=1)
states, various intermediate states e.g., opmd (v=2), opmd (v=3), opmd (v=4)
and opmd (v=>5) participate in the population transfer process. It can be seen
from Figs. 3.4(a3), 3.4(b3), 3.4(c3), 3.5(a3), 3.5(b3) and 3.5(c3)] that the opmd
(v=2) vibrational state is engaged dominantly in the transition as compared to
other intermediate states. The population of the opmd (v=0) vibrational state
is excited to the opmd (v=1) state and intermediate states rapidly for the three
mentioned time durations. Populations of the intermediate states (especially
opmd (v=2)) is transferred to the opmd (v=1) vibrational state. The populations
of the intermediate states reach the maxima [see Figs. 3.4(a3), 3.4(b3), 3.4(c3),
3.5(a3), 3.5(b3) and 3.5(c3)] in the population transfer process. The opmd (v=2)
and opmd (v=3) vibrational states are involved in the transition for the pulse
duration of 30000 a.u.. On the other hand, the opmd (v=2) state participates
for the time durations of 60000 and 90000 a.u.. The opmd (v=2) gets a higher
population for the pulse of time duration 30000 a.u. as compared to 60000 and
90000 a.u.. With increasing the pulse duration, the population transfer happens
more efficiently because of the participation of a lower number of intermediate
states. However, for all conditions, almost 100% population of the initial state
is transferred to the target state at the end of pulse durations. It is clear from

Figs. 3.4(a4), 3.4(b4), 3.4(c4), 3.5(ad), 3.5(b4) and 3.5(c4) that the probability



Chapter 3 59

density of ¥ (T) overlaps perfectly with the probability density of the target state.
The cost functional increases rapidly towards the convergence value within a few
initial iterations. Finally, it is converged within 5000 iterations. The conjugate

gradient method works well to optimize the laser pulse for the transition.

3.6 opmd (v=0)—opmd (v=2) transition

Here, the opmd (v=0) and opmd (v=2) vibrational states are considered as the
initial and target states, respectively. The optimal laser pulses are designed for
the timescales of 30000, 60000 and 90000 a.u. with «q values of 0.01 and 0.1.
It is clear from Figs. (3.6) and (3.7) that the population of the initial state
(opmd (v=0)) is excited to the target state (opmd (v=2)) as well as intermediate
states i.e., opmd (v=1), opmd (v=3), opmd (v=4) and opmd (v=5) states in
the presence of the optimal laser pulse. The population of the initial state is
depleted rapidly during the early period of time durations. The intermediate
states gain the population from the initial state and the population of them is
shifted to the target state. Hence, the intermediate states reach the maxima. The
intermediate vibrational states i.e., opmd (v=1), opmd (v=3) and opmd (v=4)
states involve for the time duration of 30000 a.u. whereas opmd (v=1) and opmd
(v=2) states take part in the transition for timescales of 60000 and 90000 a.u..
For time durations of 60000 and 90000 a.u., the opmd (v=1) state gets a higher
population as compared to the time duration of 30000 a.u. for both values of
aq i.e., 0.01 and 0.1. Because of the involvement of the intermediate vibrational
states, frequency spectra show more than one peak. It is clear from Figs. 3.6(a4),
3.6(b4), 3.6(c4), 3.7(ad), 3.7(b4) and 3.7(c4) that probability densities of ¥ (T)
have good agreement with the probability density of the target state. Therefore,
almost 100% population of the initial vibrational state is excited to the target
vibrational state. The cost functional shows good convergence behaviour for the

vibrational transition in the conjugate gradient optimization method. In this
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Figure 3.5: Optimal laser pulses in the time domain (al, bl and cl), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational states (a3, b3 and
c3) are depicted above. Plots (a4, b4 and c¢4) present probability densities of ¢(T')
and the target vibrational state. Plots (a5, b5 and ¢5) show variations of J and
P with iteration steps. These results are obtained for the v=0—v=1 transition
for the timescales of 30000, 60000 and 90000 a.u. with «q value 0.1.
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case, the cost functional is converged within 3000 iterations [see Figs. 3.6(a5),

3.6(b5), 3.6(ch), 3.7(a5), 3.7(b5) and 3.7(c5)].

3.7 opmd (v=3)—opmd (v=4) transition

For this transition, the opmd (v=3) and opmd (v=4) vibrational states are
considered as the initial and target states, respectively. It is clear from Figs.
(3.8) and (3.9) that the optimal laser pulses for the timescales of 30000, 60000
and 90000 a.u. are designed for the transition. The optimizations are carried out
for two different values of aq i.e., 0.01 and 0.1. Intermediate vibrational states
i.e., opmd (v=0), opmd (v=1), opmd (v=2), opmd (v=>5), opmd (v=6) and opmd
(v=T7) states take part in the field-driven transition for the time duration of 30000
a.u.. On the other hand, opmd (v=2) and opmd (v=1) states are involved for
time durations of 60000 and 90000 a.u.. The initial state is excited to the target
and intermediate states. The target vibrational state gets its population from
the initial vibrational state as well as from intermediate states. It is clear from
Figs. 3.8(a3), 3.8(b3), 3.8(c3), 3.9(a3), 3.9(b3) and 3.9(c3) that populations of
intermediate states show maxima as their populations increase at initial pulse
durations and after that, these populations are transferred to the target state.
There are several peaks appear in the frequency spectra of these pulses because
of multiple transitions. It is clear from Figs. 3.8(a3), 3.8(b3), 3.8(c3), 3.9(a3),
3.9(b3) and 3.9(c3) that the population of the initial state is transferred efficiently
to the target state for timescales of 60000 and 90000 a.u. as compared to 30000
a.u.. The probability density of ¢(T") overlaps with the probability density of the
target state [see Figs. 3.8(ad), 3.8(b4), 3.8(c4), 3.9(a4), 3.9(b4) and 3.9(c4)]. It
can be seen from Figs. 3.8(a3), 3.8(b3), 3.8(c3), 3.9(a3), 3.9(b3) and 3.9(c3) that
at t=T almost 100% population is excited to the target vibrational state. The
cost functional reaches to the convergence limit within 2000 iterations [see Figs.

3.8(a5), 3.8(b5), 3.8(c5), 3.9(a5), 3.9(b5) and 3.9(c5)].
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Figure 3.6: Optimal laser pulses in the time domain (al, bl and cl), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational states (a3, b3 and
c3) are depicted above. Plots (a4, b4 and c¢4) present probability densities of ¢(T')
and the target vibrational state. Plots (a5, b5 and ¢5) show variations of J and
P with iteration steps. These results are obtained for the v=0—v=2 transition
for the timescales of 30000, 60000 and 90000 a.u. with aq value 0.01.
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Figure 3.7: Optimal laser pulses in the time domain (al, bl and cl), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational states (a3, b3 and
c3) are depicted above. Plots (a4, b4 and c¢4) present probability densities of ¢(T)
and the target vibrational state. Plots (a5, b5 and ¢5) show variations of J and
P with iteration steps. These results are obtained for the v=0—v=2 transition
for the timescales of 30000, 60000 and 90000 a.u. with «q value 0.1.
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Figure 3.8: Optimal laser pulses in the time domain (al, bl and cl), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational states (a3, b3 and
c3) are depicted above. Plots (a4, b4 and c¢4) present probability densities of ¢(T')
and the target vibrational state. Plots (a5, b5 and ¢5) show variations of J and
P with iteration steps. These results are obtained for the v=3—v=4 transition
for the timescales of 30000, 60000 and 90000 a.u. with aq value 0.01.
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Figure 3.9: Optimal laser pulses in the time domain (al, bl and cl), frequency
spectra (a2, b2 and ¢2) and populations of various vibrational states (a3, b3 and
c3) are depicted above. Plots (a4, b4 and c4) present probability densities of ¢(T')
and the target vibrational state. Plots (a5, b5 and ¢5) show variations of J and
P with iteration steps. These results are obtained for the v=3—v=4 transition
for the timescales of 30000, 60000 and 90000 a.u. with «q value 0.1.
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Figure 3.10: The Temporal profile (al) and frequency spectrum of the optimal
laser pulse for the opmd (v=0) to hpmd (v=0) transition.

3.8 Effect of penalty factor («)

We performed the optimal calculations with different values of ag i.e., 0.01 and
0.1. The calculations for different ayy values are carried out for three different time
domains of 30000, 60000 and 90000 a.u.. Other conditions in these optimization
processes are kept fixed for a particular transition in a specific time duration.
It is clearly seen from Eq. (3.7) that the penalty factor, ag controls the laser
pulse energy to optimize the objective. It is clear from Table (3.4) that laser
field amplitude decreases with the rise of oy from 0.01 to 0.1. Similarly, the
cost functional and transition probability decrease with an increment of «q for a
specific time domain of a particular transition. Hence, the penalty factor, ag has

a crucial effect on the laser field-induced transition.

3.9 opmd (v=0)—hpmd (v=0) transition

In this case, the opmd (v=0) and hpmd (v=0) vibrational states are the initial
and target states, respectively. The considered vibrational transition results the
laser field-induced tautomerization. The frequency of the initial pulse is guessed
by considering one of a delocalized vibrational state as an intermediate state

for the transition. = The optimal laser pulse has a complex temporal profile
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Table 3.4: Results are shown below in the table calculated for opmd (v=0)—opmd
(v=1), opmd (v=0)—opmd (v=2) and opmd (v=3)—opmd (v=4) transitions for
the timescales of 30000, 60000 and 90000 a.u. with various values of the penalty
factor, aq i.e., 0.01 and 0.1. J and P denote the cost functional and transition
probability, respectively. €. refers to the amplitude (max). These parameters

are presented in a.u..

Transition

&%)

T

P

J

€peak

v=0—v=1

0.01

0.1

30000
60000
90000
30000
60000
90000

0.999859
0.999993
0.999995
0.991604
0.999662
0.999872

0.990677
0.997234
0.998251
0.916241
0.973698
0.983131

1.4817x10~2
4.1743x1073
2.7296x1073
1.3599% 102
3.5858x107?
2.3955x10~?

v=0—v=2

0.01

0.1

30000
60000
90000
30000
60000
90000

0.999806
0.999974
0.999993
0.986256
0.997816
0.999540

0.983936
0.992038
0.995359
0.853485
0.924510
0.957303

1.8754x 1072
9.2717x1073
5.5540%x 1073
1.6404x102
8.6830x 1073
5.0095x 1073

v=3—v=4

0.01

0.1

30000
60000
90000
30000
60000
90000

0.999564
0.999970
0.999976
0.985897
0.999507
0.999839

0.922876
0.996849
0.998074
0.786432
0.971387
0.982534

4.1834x 1072
4.6880x1073
3.1322x1073
2.5583x 1072
4.2228 %1073
2.8602x 1073
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act as intermediate states.
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with multiple peaks in the frequency spectrum [see Fig. (3.10)]. It is clear
from Fig. 3.10(al) that the temporal profile of the control pulse clearly has
pumping and dumping components. The pumping field components excite the
initial state to various intermediate states and the dumping components de-excite
their populations to the target state. It can be seen from Figs. 3.10(a2),
(3.11) and (3.12) that multiple intermediate states including localized vibrational
states as well as delocalized states are involved in the transition. Among these
intermediate states, a delocalized state corresponds to the frequency 12459 cm ™!
(carrier frequency) participates predominantly in the transition. The control
pulse excites rapidly the initial state population to various intermediate states.
After 850 fs (approximately), the target vibrational state gets the population
very rapidly from the intermediates. Finally, at the end of the time period, t=T
about 95% population is excited to the target state. It can be seen in Figs.
(3.14) and (3.15) that the cost functional is maximized as well as the objective

i.e., the transition probability is optimized in the optimization process. The cost

functional is converged efficiently within 950 iterations.

3.10 Conclusions

In the present study, various vibrational transitions are controlled with the
optimal laser pulses. These optimal laser pulses are constructed in OCT using the
conjugate gradient method. The model system consists of the one dimensional
ground electronic state of the 4(3H)-pyrimidinone/4-hydroxypyrimidine system.
The potential energy profile for the ground electronic state is calculated from the
CCSD method using an aug-cc-pVDZ basis set and the DM is calculated from the
CASSCF method employing the Molpro package. The ground electronic state
has a potential barrier of 180 kJ/mol and the barrier separates the tautomers.
The optimal pulses are constructed in different time durations of 30000, 60000

and 90000 a.u. with various values of the penalty factor, aq i.e., 0.1 and 0.01. In
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the presence of the optimal laser pulse, the initial state population is transferred
efficiently to the target state. We observed that field amplitudes of the optimal
laser pulses decrease with higher time durations with the agreement of the pulse
area theorem [128,129]. Besides the sharp peak which is responsible for the
considered transition, there are secondary peaks appear in frequency spectra
because of the involvement of intermediate vibrational states. A lower number
of secondary peaks in frequency spectra appear for a higher time duration. For
higher time durations, a lower number of intermediate states are involved and the
population transfer becomes more efficient for a particular transition . However,
at the end of the time period, t=T almost 100% population is excited to the
target vibrational state. Increasing the penalty factor results a reduction in the
amplitude of the optimal laser field. In a similar way, the transition probability
and cost functional decrease with a higher value of the penalty factor. Also,
the vibrational excitation is controlled from the opmd (v=0) state to the hpmd
(v=0) state. A strong field laser pulse is obtained from the conjugate gradient

optimization. In this case, the optimal laser pulse excites the initial vibrational
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state to many intermediate states and also de-excites to various intermediate
states. The frequency spectrum of the control pulse indicates that a delocalized

state participates predominantly in this transition.

In the present study, the conjugate gradient method is found to be effective
to maximize the cost functional of a transition. The cost functional reaches
near the convergence limit within a few iterations. The conjugate gradient
method works well to design the optimal laser pulses for the various vibrational

transitions.
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Optimal control of excited
electronic state mediated
tautomerization of
4(3H)-pyrimidinone

4.1 Introduction

4(3H)-pyrimidinone is a photo-physically active molecule and it is a simpler
molecule than pyrimidine nucleobases (cytosine, thymine and uracil). It is
important to understand its chemical properties from various experimental and

theoretical studies [180, 181].

The tautomerization reaction involving proton transfer is an important
phenomenon in biological systems especially in the structure of nucleic
acids.  4(3H)-pyrimidinone is a good model compound for the prototropic
tautomerism of heterocyclic compounds. In the tautomeric equilibrium [182, 183],
4(3H)-pyrimidinone (oxo tautomer) is converted to 4-hydroxypyrimidine
(hydroxy tautomer) through the intramolecular hydrogen transfer reaction.
The molecule co-exist in the tautomeric (~1:1) equilibrium [182-186] with the

hydroxy tautomer in the gas phase and inert gas (Ar and Ne) matrices. The

73
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tautomeric equilibrium of 4(3H)-pyrimidinone has been studied experimentally
in IR spectroscopy [182,183], NMR spectroscopy [184], X-ray photoemission
spectroscopy [186], free jet millimeter wave spectroscopy [185], etc. IR spectra
of 4(3H)-pyrimidinone and 4-hydroxypyrimidine have been determined using
various ab initio calculations [187]. Galvao et al. [189] investigated theoretically
(using Ab initio calculations) the stability of 4(3H)-pyrimidinone in the
equilibrium as compared to 2-pyridinone. Le$ et al. [188] explained theoretically
the temperature-dependent population of the tautomers in the gas phase. Upon
exposure to the UV light (< 310 nm), 4(3H)-pyrimidinone is converted to
4-hydroxypyrimidine [190-194]. In this condition, the intramolecular hydrogen
transfer reaction occurs between the tautomers. In general, the excited
state proton transfer (ESPT) reaction occurs through an intermolecular or
intramolecular hydrogen bond. In this molecular process, the intramolecular
hydrogen transfer reaction takes place without having an intramolecular or
intermolecular hydrogen bond. The photo-induced tautomeric conversion of
4(3H)-pyrimidinone was theoretically [191,193,195,196] studied using various
methods of quantum chemistry. Ab initio studies combined with IR spectroscopy
to separate tautomeric forms based on the phototautomeric effect. Theoretical
studies were reported to explain the mechanism of the reaction as well as stability
of the tautomers. Nowak et al. [196] reported that various electronic states
(the ground, n7*, nm* and wo™ states) are associated with the photo-induced
oxo-hydroxy tautomerization. These states are nonadiabatically coupled in the

photo-induced tautomerization reaction.

Control of an outcome of a quantum mechanical system by a laser field
has been developed within the mathematical framework of optimal control
theory (OCT) [81,155-157,197,198]. Gradient-based algorithms and the genetic

algorithm are used to optimize a desired outcome of a reaction by constructing a
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suitable laser pulse. The optimally designed laser pulse drives a system to follow
a specific path that optimizes a desired outcome. The genetic algorithm [107] has
been extensively used in different scenarios of control problems, such as control of
laser-driven photodissociation of pyrrole and phenol molecules [201-203], optimal
control of laser-induced isomerization of malonaldehyde [204], optimal control of
laser-induced molecular orientation, control of vibrational-rotational excitations
[169] and molecular quantum gate operations [205, 206].

In this work, the model system consists of the ground state and w7* state.
The oxo and hydroxy tautomers are represented as the reactant and product,
respectively. The product population i.e., the hydroxy tautomer population is
controlled in the presence of optimal laser pulses. The pump and dump ultrashort
UV laser pulses are obtained employing the genetic algorithm. The product
population is maximized by controlling the wave packet (WP) propagation. The
tautomerization takes place through the pump-dump mechanism [41,42] via the
" state. Transition events (excitation and de-excitation) are treated separately
from the propagation of the WP on the n7* state. The time separation between
these two pulses is suitably chosen from the field-free WP evolution. The WP
evolves freely on the excited state. The excitation and de-excitation processes are
controlled using the UV laser pulses. Therefore, laser pulse properties e.g., phase,
frequency and amplitude play an important role in those transitions. These laser

pulse parameters are optimized using the genetic algorithm.

4.2 Theory

4.2.1 Ab initio calculations of the model system

The one dimensional model system is constructed to study the laser light-induced
tautomerization using the pump-dump mechanism. The intramolecular hydrogen
transfer reaction occurs in the tautomerization. The model system composes

the two electronic states i.e., the ground electronic state and nn* state with
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Figure 4.1: Above plots represent PE profiles of the ground electronic state (black)
and 77* state (blue) of the model system.

varying the OH bond distance. The OH bond distance is treated as the reaction
coordinate, r. The conversion of 4(3H)-pyrimidinone to 4-hydroxypyrimidine
is studied in this model. Equilibrium geometries of both the tautomers are
obtained with the second order M@ller-Plesset perturbation (MP2) method using
an aug-cc-pVDZ basis set employing the Gaussian package. Various molecular
structures for calculations of single point energies are constructed by varying
the OH distance using the optimized oxo tautomer as a reference geometry.
The single point potential energies and transition dipole moment (TDM) values
corresponding to these structures are calculated in the equation-of-motion coupled
cluster singles and doubles (EOM-CCSD) method employing the Molpro package
[199]. The x component of the TDM for the transition between these states is
considered in optimal calculations. The calculated potential energies and TDM
values are fitted with polynomial analytical functions,

7
Vyse(r) = ao + Y anr” (4.1)
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Figure 4.2: The above plot represents one dimensional TDM along the OH bond
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and

9
Peg(T) = ao + Z anr". (4.2)
n=1

The fitted adiabatic potentials and TDM are depicted in Figs. (4.1) and (4.2).
Both the adiabatic potentials are asymmetrical double wells. There are potential
barriers of 2.8 and 7.8 eV (with reference to the energy of 4(3H)-pyrimidinone at
the optimized geometry) of the ground electronic state and w7* state, respectively.
Therefore, the potential barriers separate the tautomers on both the electronic
states. Both the wells on potential energy (PE) functions represent the tautomers.
Potential regions, i.e., 2.8 < r < 6.8 a.u. and 1.0 < r < 2.8 a.u. are defined as

the oxo tautomer (reactant) and the hydroxy tautomer (product), respectively.

4.2.2 Nuclear dynamics in external field

The electric field of a laser field interacts with the molecule and modifies the

molecular Hamiltonian. Within the semiclassical dipole approximation [87,154],
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Table 4.1: Ab initio PE data in eV are fitted using Eq. (4.1) where the reaction
coordinate, 1 is in a.u.. Numerical values of parameters of V,; are tabulated below.

ap=246.338 a3=-170.184 a6=0.424585
a1=-495.515 a4=41.0493 a;=-0.0131989
a;=401.797  a5=-5.69567

~

the laser field-induced molecular Hamiltonian of the model system (H) reads
H=Hy+ F[mt, (4.3)
where ﬁo is the molecular Hamiltonian under the field-free condition and

. . (10 V. 0
HozTN(O 1)+(09 V)’ (4.4)

where \A/g and V, are the PE functions. Ty is the kinetic energy operator reads as

expressed as

. 1 02
Ty = — = 45
N 2p0m Or? (4:5)
where poyg = 77:20;77’1}11.1 in which mop and mpy denote the masses of O and H,

A~

respectively. In Eq. (4.3), H;y; is the laser-molecule interaction Hamiltonian,

Hyp = — ( 0 ﬂgﬁ) (b, (4.6)

ﬂeg
where €(t) is the electric field and fi., is the TDM.

The wave function of the model system, |¥(t)) follows the time-dependent
Schrodinger equation (TDSE),

0 .
i (1) = HIW(1). (4.7)

The TDSE is solved numerically by employing the split-operator (SO) method
[171,200]. The fast Fourier transformation (FFT) algorithm [172] is used to
solve the kinetic energy operation. The reaction coordinate, r ranges from 6.8

to 1.0 ap and consists of 1024 grid points. The total time duration for the
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Table 4.2: Ab initio PE data in eV are fitted using Eq. (4.1) where the reaction
coordinate, r is in a.u.. Numerical values of parameters of V, are tabulated below
ap=253.074  a3=-173.081 ag=0.437294
a1=-499.792  a,=41.939  a;=-0.0136391

a;=406.792  a5=-5.84396

WP evolution is 20 fs. The initial state is prepared by placing a Gaussian
function in the reactant (oxo tautomer) region in the ground electronic state.
The time-dependent electronic populations are determined by evaluating the

expectation values of the projection operators, [i;) (1], as

Pi(t) = (W) [a) (el O (),  i=1,2. (4.8)
The time-dependent population probabilities of the oxo tautomer (Yeqei(t)) and

hydroxy tautomer (Y,0q4:(t)) on both the electronic states are defined as

6.8
Yieacti(t) = I (r; ) i(r;t).dr, i=1,2, (4.9)
2.8
and
2.8
Yoroai(t) = VI(r;t)i(r;t).dr, i=1,2, (4.10)
1.0

respectively, where the lower and upper limits of the integrals are in atomic units.

4.2.3 Cost functional

The cost functional is constructed in the mathematical framework of OCT [81,
156, 157] to optimize a desired objective function. The cost functional is optimized
in various problems using the genetic algorithm. In this study, the cost functional
(J[e(t)]) reads

Jle(®)] = Jo — ap / U P (4.11)
where o is the penalty factor and it restrictsothe laser pulse energy. In this study,

ap sets to 0.001. Jy is the objective function and it is expressed as

e e
JO = Y:Drod,l(T) + _/ Yprod,2(t)dt + = / Y;’eact,Q(t)dta (412)
T 0 T 0
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Table 4.3: Ab initio calculated TDM data in a.u. are fitted using Eq. (4.2)
where the reaction coordinate, r is in A. Numerical values of parameters of Leg
are tabulated below.

ap=1.18594  a3=-11.6813 a=-0.726548 ay=0.00380641

a1=-5.74404  a,=5.3992 a7=0.327425

a;=11.9786  a5=-0.39058 ag=-0.0578271

where Y),04.1(7) is the population of the hydroxy tautomer on the ground state
at t=T. The second and third entities on the right hand side (RHS) of Eq.
(4.12) are time-averaged population probabilities of the hydroxy tautomer and
oxo tautomer on the n7* state, respectively. The population probabilities i.e.,
Yoroa1(T), Yored2(t) and Ve 2(t) are calculated using Eqs. (4.9) and (4.10). The
objective (Jy) and the laser pulse parameters are optimized to get a maximum

value of the cost functional in the genetic algorithm.

4.2.4 Laser pulse parameterization in the genetic
algorithm

A pair of ultrashort laser pulses are optimized in the genetic algorithm. Each
pulse consists of the Gaussian envelope function and a sinusoidal field. The laser

field is expressed as,

e(t) = Arexp|—(t — t1)?/207].sin(wit + a1) + Asexp[—(t — t5)?/203].sin(wat + a),

(4.13)
where A, A, are the amplitudes; wq, wy are the frequencies, and «y, ay are the
phase of the laser pulses. o; and o, are the width parameters of the Gaussian
envelope functions. The pump and dump laser pulses are positioned at t; and
to, respectively. The parameters of the laser pulses i.e., A;, As, w1, wo, a7 and
ap are optimized in the genetic algorithm. A set of these parameters define
a laser field. A;, Ay vary from 0 to 0.5 a.u.; wy, we vary from 0 to 0.5 a.u.,
and a1, as vary from 0 to 0.5 a.u.. The genetic algorithm is a global search

optimization technique based on the principles of genetics e.g., survival of the
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fittest, selection, crossover, reproduction, mutation or randomization, etc. The
specified parameters are involved in the optimization procedure. Every parameter
value is stored in a binary number consisting of ten bits (0 or 1). A combination of
these (six parameters of the sequence of the laser pulses) defines a chromosome.
Therefore, a chromosome consisting of sixty bits determines a trial laser field.
An initial population (set of chromosomes) is randomly selected from the defined
parameter space. The cost functional expression is evaluated using the initial
parameters. The cost functional value determines its fitness. In this work, the
cost functional value closer to 2.0 is considered as the fittest for survival. The
population undergoes various operations (e.g., selection, crossover, elitism, etc.
as discussed in ref. [169,201]) and creates a new generation. The cost functional
is calculated for each chromosome of the new generation. These operations are
repeated until the convergence of the cost functional. In this study, the cost
functional shows good convergence behaviour [see Fig. (4.7)] to optimize the laser

field parameters and it fulfils the convergence criteria within 30-50 generations.

4.3 Results and discussion

The laser field-induced tautomerization has been controlled in the two electronic
states. The laser pulses convert the oxo tautomer to the hydroxy tautomer via the
n* state. The parameters of the laser pulses are optimized in optimal control
theory using the genetic algorithm. The excited state-mediated conversion is
performed using the ab initio calculated TDM and constant TDM (Condon

approximation).

4.3.1 Optimal control using the ab initio calculated TDM

Here, the optimal calculations are performed employing the ab initio calculated
TDM. It is clear from Fig. (4.3) that the n7* state-mediated tautomerization

takes place in the presence of the optimal laser pulses. The optimal laser pulses
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Figure 4.3: (al) Temporal structure of the optimal laser pulse; (a2) frequency spectrum
of it; (a3) population probabilities of the ground electronic state (black) and w7* state
(green); (a4) population probabilities of the reactant (black) and product (green).
These plots result from the optimal calculations using the ab initio calculated TDM.

i.e., the pump and dump pulses are designed using the genetic algorithm. The
temporal structure of the optimal field appears as a smooth function. The
frequency spectrum corresponding to the optimal field is broad and it has a
carrier frequency of 48389 cm™' [see Figs. 4.3(al) and 4.3(a2)]. The optimal
pump pulse is activated at 41 a.u. of time and it excites the initial state to the
m* state. It is noted from Fig. 4.3(a3) that about 94% of the WP population
of the initial state is excited to the w7* state. The WP is propagated freely on
the m7* state until the dump pulse is initiated. The WP has higher energy than
the barrier on the mn* state. Hence, the WP of the n7* state crosses over the
barrier. At the time when the WP arrives at the product configuration on the
n* state, the dump pulse is activated at 756 a.u. of time and it de-excites the
WP to the ground electronic state. About 81% of the WP population reaches

the product configuration via the w7* state. Therefore, the pump-dump events
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Figure 4.4: (al) Temporal structure of the optimal laser pulse; (a2) frequency spectrum
of it; (a3) population probabilities of the ground state (black) and 77* state (green);
(ad) population probabilities of the reactant (black) and product (green). These plots
result from the optimal calculations using the constant TDM (Condon approximation).

between the two electronic states result the intramolecular hydrogen transfer

reaction, in other words, the phototautomerization of 4(3H)-pyrimidinone.

The shape of the time-evolved WP is interpreted from snapshots of the WP
at various times. It is noted from Fig. (4.5) that the localized shape of the initial
WP is not changed in the excitation process. A few nodes of the probability
density of WP of the m7* state appear because of the steeper potential nature in
the hydroxy tautomer region. The WP population in the product configuration
in the m7* state is dumped to the ground electronic state. Therefore, a similar
nodal pattern of the WP appears in the product region of the ground state. The
objective is optimized and the cost functional is maximized using the genetic
algorithm. It can be seen from Fig. 4.7(al) that the cost functional reaches the

convergence limit within 49 generations.
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4.3.2 Optimal control using the constant TDM (Condon
approximation)

Here, we have employed the TDM as a constant i.e., p,=0.7 a.u. (Condon
approximation) in the optimal calculations. It can be seen from Fig. 4.4(al)
that the temporal profile of the optimal laser field appears to be smooth. The

lis extracted from the frequency spectrum of the

carrier frequency of 38378 cm™
optimal laser pulses. The pump pulse is initiated at 36 a.u. of time and it excites
the initial state vertically to the n7* state. The pump pulse induces a transition
of 96% of the WP population. The WP is propagated freely on the nn* state
and it crosses over the potential barrier. The WP arrives at the product region
at 752 a.u. of time when the dump pulse is activated. Effectively, about 90% of

the initial state population is transferred to the product configuration (hydroxy

tautomer) via the 77* state.

It can be noted from Fig. 4.6(b1l) that the structure of the initial WP is
maintained in the excitation. The excited WP evolves on the n7* state in a
localized fashion. The potential barrier and the steeper potential nature in the
product configuration result a few nodes in the WP on the 7n7* state. As the shape
of the WP is not varied in the de-excitation process, a few nodes appear in the
WP at the product region [see Fig. (4.6)]. The objective for the tautomerization
is optimized and laser pulse intensity is minimized in the optimization process.
The cost functional shows good convergence behaviour and it is converged within

30 generations using the genetic algorithm [see Fig. (4.7)].

4.4 Summary

The 77* state-mediated tautomerization is controlled in the model system that
composes the two electronic states i.e., the ground electronic state and 77 state.

The optimal calculations are performed considering the ab initio calculated
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Figure 4.5: Shapshots of WP probability densities on the 77* state [at 233 a.u. (al),
620 a.u. (a2) and 750 a.u. (a3)] and on the ground electronic state [at 0 a.u. (bl), 26
a.u. (b2) and 801 a.u. (b3)]. These WP probability densities are obtained from the
optimal calculations using the ab initio calculated dipole.
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Figure 4.6: The above plots represent snapshots of WP probability densities on the
7w state [at 233 a.u. (al), 620 a.u. (a2) and 750 a.u. (a3)] and on the ground
electronic state [at 0 a.u. (bl), 26 a.u. (b2) and 801 a.u. (b3)]. These WP probability
densities are obtained from the optimal calculations using the constant dipole (Condon
approximation).
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Figure 4.7: The optimization of the cost functional and the objective using the ab initio
calculated TDM (al) and the optimal calculations using the constant TDM (Condon
approximation) (a2).
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TDM and constant TDM (Condon approximation). A pair of ultrashort laser
pulses are designed using the genetic algorithm. The tautomerization takes place
through the pump-dump mechanism [41,42] via the 77* state. The initial WP
is excited by the optimal pump pulse to the nw7* state. The excited WP freely
moves and crosses over the barrier on the w7n* state. When the WP reaches the
product region on the m7* state, at that time the dump pulse is activated and it
de-excites the WP back to the ground electronic state. Therefore, the optimal
laser pulses transfer the reactant population to the product configuration in the
ground state. The potential barrier and the topography of the product region
introduce a few nodes in the WP. The constant dipole moment condition makes
slightly better population transfer than the ab initio calculated TDM condition.

The cost functional is maximized in the genetic algorithm.

Like the genetic algorithm, gradient-based algorithms (e.g., conjugate
gradient method) can optimize laser pulse parameters to get a desired outcome
of a reaction. Gradient-based algorithms solve coupled differential equations
which are derived in optimal control theory whereas the genetic algorithm
directly optimizes a cost functional. However, in the present study, the genetic
algorithm works well to optimize the laser pulse parameters to perform the 7r*

state-mediated tautomerization.






Chapter 5

Optimal control of
photodissociation of phenol using
genetic algorithm

5.1 INTRODUCTION

Phenol is one of the important molecules relevant to many chemical reactions
in the biological environment. For example, it is a chromophore of aromatic
amino acid tyrosine. Therefore, a study of the photochemistry of phenol is
of great interest from the experimental and theoretical point of view [207].
Electronic spectroscopy, vibrational spectroscopy, binding energy and structure
have been extensively studied in phenol-water and phenol-ammonia clusters
both experimentally and theoretically [208-217]. The excited state dynamics
including the excited state proton transfer reaction has been studied in
pump-probe experiments and with the aid of ab initio calculations [218-222] in
phenol-water and phenol-ammonia clusters. Phenol-ammonia molecular clusters
have long been considered an interesting prototype system for the excited state
proton transfer reaction. Ground state proton transfer has been reported in a
mid-IR spectroscopy study of the phenol-ammonia cluster [223]. Experimentally,
the photodissociation of the OH bond of the phenol molecule from two excited

singlet states was reported in an aqueous medium [224,225]. Photo-induced

89
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hydrogen atom elimination from the mo* excited state of the phenol molecule

was observed in a molecular beam experiment [226].

Ab initio electronic structure calculations were carried out to study
the proton and electron transfer through the excited wo* state of phenol
[130,227-229]. It appears from experimental as well as theoretical studies that
three lowest electronic states viz., the ground electronic state, m7* state and
mo* state are essential for a study of the UV photochemistry of phenol [see Fig.
(5.1)]. At the equilibrium geometry of the ground electronic state, the 7™ is
the first excited state that results from an excitation from the highest occupied
molecular orbital (HOMO) (7 character) to the lowest unoccupied molecular
orbital (LUMO) (7* character). The mo™ state is the second excited state and
corresponds to an excitation to the 3s orbital of Rydberg type [227,228]. The
vertical excitation energies of the lowest m7* state and the lowest mo* state was
reported [227] at 4.46 and 5.77 eV, respectively. Extensive ab initio complete
active space self-consistent field (CASSCF) calculations were performed to
construct the multi-sheeted electronic potential energy surfaces (PESs) along
three dissociative modes viz., OH stretching, CCOH torsional and COH bending
angles to study the photo-induced hydrogen atom elimination of phenol [229].

Time-dependent wave packet dynamics was studied under a field free
condition in a reduced dimensional model considering the three electronic states
mentioned above and two modes (OH stretching coordinate and CCOH dihedral
angle) [130]. Conical intersections (CIs) of the m7* and mo* states at ~1.16 A
and the mo* and ground electronic states at 1.96 A along the OH stretching
coordinate were reported [130,229]. Predissociation of the 77* state by the
low lying repulsive mo* state leads to a concerted OH bond dissociation. The

initial state was prepared by launching different vibrational eigenstates of the
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ground electronic state in the Frank-Condon region (FC) of the mn* state (6
excitation) in the absence of external field. The energetic minimum of the
nr*-wo* Cls is higher in energy than the |0,0) and |0,1) initial states. Therefore,
the latter vibrational eigenstates could not reach the S, and S; adiabatic
asymptotic channels. Addition of one or more quantum of energy along the OH
stretching coordinate could lead to the dissociation of |1,0), |1,1) and further
high energy initial states at the Sy and S; adiabatic asymptotes [130]. In
addition to these observations a few interesting findings were reported in the
literature [130] viz., the nonadiabatic dynamics at conical intersections (second
CI controls the photodissociation in a specific channel) and the symmetry
property considering the nodal structure of the time evolved wave packet. These
observations motivated us to investigate how an optimal laser field couples with
the considered states and modify the nonadiabatic dynamics and to see the
outcome of the laser control from the ground electronic state instead of the

upper excited state.

Control of the outcome of a quantum mechanical system by an external
laser field has been extensively investigated within the mathematical framework of
optimal control theory (OCT) [81,155-157,197,198]. The geometric phase effect
plays an important role in the branching ratio of controlled photodissociation
[230] products of phenol studied with the optimal control theory framework.
The genetic algorithm has been widely used in optimal control problems [107,
231,232] such as optimal control of laser-induced molecular orientation [233],
control of vibrational-rotational excitations [169,234], molecular quantum gate
operations [205, 206], control of laser-driven photodissociation of pyrrole [202, 203]
and optimal control of laser-induced isomerization of malonaldehyde [204]. In the
presence of an optimal laser pulse a system follows a specific path that maximizes

the product yield. In this study, we have designed an optimal UV laser pulse that
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Figure 5.1: One dimensional cuts of the diabatic electronic ground state and the
excited 7™ and wo™* states of phenol along the OH stretching coordinate, r and for the
coupling coordinate, § = 0.

maximizes the excited state mediated photodissociation in the lower two adiabatic
asymptotic channels. An optimal laser pulse is designed in the optimal control

theory framework using the genetic algorithm.

5.2 THEORY AND METHODOLOGY

5.2.1 Nuclear dynamics in the external laser field

Control of photodissociation of the OH bond of phenol is carried out with
the three state and two mode model developed in the previous work [130]. In
this reduced dimensional model, the OH stretching coordinate is the reaction
coordinate, r and the CCOH dihedral angle, 6 (rad) is the coupling coordinate.
One dimensional cuts of the diabatic PESs for § = 0 are shown in Fig. (5.1).
The equilibrium OH bond distance for the ground electronic state and the
7m* diabatic electronic state occurs at 0.96 A. Two dimensional diabatic and
adiabatic PESs and diabatic interstate coupling elements as a function of the
reaction coordinate and the coupling coordinate are shown in panels (a-c) of

Fig. (5.2). There are two Cls marked with circles that occur between the Sy
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Figure 5.3: Eigenstates of the ground electronic state of phenol calculated using the
pseudospectral method. The states are designated as |n,,ng), where n, and ng represent
the number of nodes along r and 6 respectively.

and S; adiabatic PESs at 1.96 A and between the S; and S, adiabatic PESs at
1.16 A [see Fig. (5.2)]. Vibrational eigenfunctions of the ground electronic state
and their eigenvalues are determined using the pseudospectral method [178,179].
The theoretically calculated frequency values of the OH stretching and coupling

coordinates are 3911 and 266 c¢cm™*

, respectively. The experimental values for
these frequencies are 3656 and 309 cm™!, respectively [235,236]. Therefore,
the estimated fundamental frequency of both the modes compares well with
their experimental value. The eigenfunctions are labeled |n,,ng), where n, and
ng are the number of nodes along the reaction coordinate, r and the coupling

coordinate, 0, respectively [see Fig. (5.3)].
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The electric field of the laser pulse interacts with the molecule. Within the
semi-classical dipole approximation [87,154], the molecular Hamiltonian of the

three coupled diabatic electronic states can be written as,

H = Hy+ Hip. (5.1)
where . . N
) (100 Vii Via Vig
Ho=Tn [0 1 O+ | Vay Voo Vaz |, (5.2)
001 Va1 Vi Vg
and .
) 0 0 jfus
Hpp=—1 0 0 0 [|e(t). (5.3)
ftiz 0 0

In the above equation H, is the Hamiltonian in the absence of the field and
Ty is the nuclear kinetic energy operator. In the quasi diabatic representation
the nuclear kinetic energy operator is diagonal and the interstate coupling is
described by the potential energy operator. The diabatic electronic potential
matrix elements are given by ‘A/U In this matrix the diagonal entries describe
the diabatic electronic states and the off diagonal ones are the diabatic coupling
with the neighboring states. The laser-molecule interaction Hamiltonian, I:Imt is
given by [Eq. (5.3)]. In the latter fi;3 represents the transition dipole moment
(TDM) operator for the n7* < 7 transition and €(¢) is the time-dependent
electric field of the laser pulse. The TDM in the diabatic representation is
nonzero [130]. The quantity fi13 represents the x component of the TDM [see
Fig. 5.2(d)]. The kinetic energy operator (), diabatic electronic states (Viy,
Vo and 17:),3), diabatic coupling elements (Vm, Va3 and ‘713) and TDM (ji13) used

in the calculations are taken from the previous work [130].

The time evolution of the wave function, |¥(¢)) is described by the

time-dependent Schrodinger equation

L0 .
ihs W ()) = H¥ (). (5.4)
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The above equation is solved numerically in the diabatic electronic representation
using the second-order split operator [171,200] and the fast Fourier
transformation (FFT) [172] methods. The wave packet is propagated on the
coupled [179, 237] PESs for 700 fs with a time step of At = 0.02 fs. The coordinate
grid for the calculations consists of 512 points along the reaction coordinate, r
ranging from 1.0 a¢ to 30.0 ay and 128 points along the coupling coordinate 6
ranging from -7 to +m. A sine-damping function [237]

f(’f’) — sin Ermask + Armask -
‘ 2 Armask ’

T 2 Tmask- (55)

is employed to absorb the wave function components at the grid boundary to avoid
reflection or wrap around. The damping function is activated at ry,,.=26.0 ag and
it smoothly decays from 1.0 to 0.0 in the interval of Arpask(=Tmax-Tmask). The
time-dependent diabatic and adiabatic electronic populations are estimated by
calculating the expectation values of the associated projection operators, [1)%)(1?|

and [¢") (¢ [238] as
PI(t) = (R@)lf) (e [¥ (),  i=1,2,3 (5.6)

PEt) = (P W1 e (),  i=1,23 (5.7)
The dissociation probability is determined by calculating the time-integrated flux

through a dividing surface located at, r = 7., at the asymptotic reaction

channels as follows

hof! oV (r,0,t)
PPt :—/ Im[\lfr,ﬁ,t — 7 dt. 5.8
()ut:o (W(r,0,1)] aT>_ (5.8)
T=T flux
where y = % in which my and mgo represent the masses of H and O,
respectively.

5.2.2 Cost functional and genetic algorithm

The cost functional is formulated in the mathematical framework of optimal

control theory [81,156,157] with a target to optimize a desired objective with
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optimal values of laser field parameters. Maximization of the cost functional
is performed under different scenarios with the aid of the genetic algorithm
(107,120, 125] to optimize laser field parameters and to get the desired outcome
of the system. In this study, the functional form of the cost functional J[e(?)]

used in the genetic algorithm is given by

Je(®)] = Jo — a0 / (1) P, (5.9)

In the above equation « is a penalty factor to the field intensity and J, is the
objective function and it is defined as a sum of the time accumulated flux on the
So and S7 asymptotic channels. The time integrated outgoing flux is calculated

at time, t = T where T is the total duration of the wave packet propagation [Eq.

(5.8)).

The initial guess field for the laser pulse in the genetic algorithm reads

€(t) = epsin(wt) - s(t), (5.10)

where w is the carrier frequency which is varied from 38,627 cm™! to 49,600
cm™! (in the range of 10,974 cm™') and ¢, is the amplitude of the field which is
varied from 0 to 0.03 a.u.. The envelope function, s(¢) modulates the laser field
and ensures that the field goes to zero smoothly at the initial and final time.
Generally, it is defined by four positive time parameters, tq, t1, to and t3 where

to <ty <ty <tz and is given as

for toététl,

for ) <t <ty, (5.11)

i

tz3—t
t3—to

)

for to <t<t3=T.

Normally, ¢, is defined as 0 and t3 as 1. The time duration %y to t; is the

rise time and 5 to t3 is the switch off period of the pulse.

The duration
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t; to ty is a plateau region where the envelope function reaches its maximum
value, 1. The amplitude (€y), frequency (w) and two time parameters ¢; and
ty are varied to maximize the cost functional (J[e(¢)]). The genetic algorithm
is a global search optimization tool consisting of principles of genetics viz.,
survival of the fittest, selection and reproduction through crossover combined
with mutation or randomization. Each parameter value is stored in a binary
number containing ten bits (0 or 1). The chromosome consists of four parameter
strings containing total 40 bits with different combinations of these parameters.
The genetic algorithm finds the optimal solution from the said possibilities. The
calculation starts with an initial guess population (population or total number
of individuals in a generation, N=10). The individuals (chromosome, a set of
parameters, define an electric field) in this population are randomly selected
from parameter space that is defined earlier. Using a set of parameters i.e.,
chromosome, we evaluated the cost functional value that measures its fitness. In
this study, the cost functional value near to 1.0 makes the chromosome more fit
for survival. The population evolves through various genetic operations such as
tournament selection, elitism, mutation and crossover as suggested in Ref. [169].
These operations are performed in every generation until the convergence of the
cost functional is achieved. The cost functional is converged with the optimal
laser parameter set within 25-80 generations as shown in Figs. 5.4(a5), 5.4(b5),
5.5(c5) and 5.5(d5). It can be seen that the cost functional increases with the

number of generation until it reaches the convergence.

5.3 RESULTS AND DISCUSSION

The initial states prepared from different vibrational levels of the electronic
ground state of phenol are optimally excited in order to assess their impact on
the photodissociation dynamics. The optimal solution for the laser parameters is

obtained using the genetic algorithm in an effort to optimize the total dissociative
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and (bl)-(b5) are obtained with the |0,0) and |0,1)

initial state, respectively. The temporal profile of the optimal laser field (panels al
and bl), the frequency spectrum of the optimal pulse (panels a2 and b2), the time
integrated dissociative flux at the adiabatic asymptote (panels a3 and b3), the electronic
population probability (panels a4 and b4) and the cost functional as well as the total
dissociative flux calculated at each generation in the genetic algorithm (panels a5 and

b5) are shown (see the text for details).
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flux. Fig. (5.4) and Fig. (5.5) show that the optimal laser pulses that optically
excite the system and lead to the OH bond dissociation (~100%) of phenol at

both Sy and S; asymptotes.

5.3.1 Photodissociation of the |0,0) and |0,1) vibrational
levels of the ground electronic state

The initial wave function of the |0,0) and |0,1) vibrational eigenstates of the
ground state are subjected to a Frank-Condon transition to the excited state
with the aid of the optimal laser pulse. For the |0,0) and |0,1) initial conditions,
central frequencies of 43,621 cm™! (229 nm) and 44,193 cm™! (226 nm) of the
optimal laser pulse, respectively, are extracted from the frequency spectrum (cf.,
Figs. 5.4(a2) and 5.4(b2)). When these eigenstates are subjected to a vertical
transition to the m7* state in the absence of a laser pulse hardly any dissociation
(less than 5%) occurs at both Sy and S; asymptotes [130]. These wave functions
have energy less than 50% of the potential barrier present on the 77* state along

the reaction coordinate.

The laser field parameters are optimized using the genetic algorithm in
order to maximize the cost functional [Eq. (5.9)] constructed in the framework
of optimal control theory. An optimal field driven mechanism is understood with
the help of the variation in population probability and the total dissociative flux
in time as shown in Figs. 5.4(a3), 5.4(a4), 5.4(b3) and 5.4(b4), respectively.
The laser field pumps a small portion of the wave packet at each time step from
the ground state to the excited state in the Franck-Condon region under the
resonance condition. The excited wave packet predominantly populates the mwo*
state and a very small portion of the high energy component (less than 8%)
moves to the 77* state for the |0,0) and |0,1) initial conditions. The wo* state
is populated in time through the intensity borrowing effect discussed elsewhere

[230]. Due to the non-vanishing diabatic coupling in the Frank-Condon region,
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a small portion of the wave packet on the m7* state moves to the wo* state and
also comes back in time to the n7* state leading to interference as shown in
Figs. 5.6(a3) and 5.6(b3). The population probability on the n7* state slowly
rises in time and reaches a maximum approximately at 251 fs (about 7% of
the population) and 179 fs (about 4% of the population) for the |0,0) and |0,1)
initial state, respectively. The wave packet populations in the Frank-Condon
region of the mo* state and the w7* state reach the (S;-S2) Cls and then move
to the mo* state away from the Frank-Condon region because of the repulsive
nature of the latter state. It can be seen from Figs. 5.4(a4) and 5.4(b4) that the
wave packet population on the ground electronic state monotonically decreases
whereas, it increases on the mo* state in time. The wave packet population
reaches the (Sp-57) Cls within ~15 fs and dissociates through both the channels.
The wave packet reaches the Sy and S adiabatic asymptotes in ~15 fs. The high
energy component of the wave packet reaches the S; asymptote. The population
probability in both the channels converges in 700 fs. For the |0,0) initial
condition the S; asymptotic channel gets (~51%) slightly more dissociative flux
as compared to the Sy asymptotic channel (~49%). On the other hand, the S,
asymptotic channel gets (~55%) more dissociative flux than the Sy asymptotic
channel (~44%) for the |0,1) initial condition as shown in Figs. 5.4(a3) and
5.4(b3). The initial wave function prepared with the |0,0) vibrational eigenstate
bifurcates and spreads along the coupling coordinate, # on the wo* state. The
wings of the wave packet follow the adiabatic path leading to the dissociation
on the S7 asymptotic channel. On the other hand, the wave packet localized
on the reaction coordinate (r) prefers to follow the diabatic path and leads to
a dissociation on the Sy asymptotic channel. In contrary, when one quantum
of energy is added along the coupling coordinate i.e., for the |0,1) initial state
the S; adiabatic channel gets comparatively higher flux about 11% than the
So channel as shown in Figs. 5.4(a3) and 5.4(b3). For the |0,1) initial state
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the wave packet on the mo* state spreads along the coupling coordinate 6, (cf.,
Fig. 5.6(b2)). Hence the wave packet on the mo* state prefers to follow the
adiabatic path for the dissociation. Therefore, under the optimal condition the
photo-induced dissociation preferentially occurs at the S; asymptotic channel

for the |0,1) initial condition.

Some interesting symmetry properties of the wave packet follow from Fig.
(5.6). The diabatic interstate coupling between the 77* and mo* states determines
the symmetry property of the wave packet. This coupling element is an odd
function of the coupling coordinate, 6. For the |0,0) and |0,1) initial conditions,
the snapshots of the wave packet probability density at a given time evolving on
the diabatic ground state, mo* state and n7* state are shown in Fig. (5.6). For
the |0,0) initial wave function, the ground state wave packet is symmetric [see Fig.
5.6(al)] along the coupling coordinate. It can be seen from the contour of Fig.
5.6(a2) that the wave packet on the mo* state develops a nodal line at § = 0 for
the |0,0) initial state. This nodal line results from the geometric phase effect of
the nuclear wave function. The components of the time evolved wave packet move
with the opposite phase around S;-S5 Cls and interfere destructively at 6 = 0.
For the |0,1) initial wave function, the ground state wave packet is an odd function
of the coupling coordinate 6 and a nodal line develops at 8 = 0 [see Fig. 5.6(b1)].
The wave packet on the mo™* state is symmetric with respect to the coupling
coordinate because of the diabatic coupling. In the field induced excitation, it
can be seen from Figs. 5.6(a3) and 5.6(b3) that the wave packet on the 77* state
restores its initial shape as the m7* state has a potential well analogous to the
ground state. The distortion of the shape of the wave packet occurs on the 77*

state because of the interference with the wave packet component of the mo* state

[see Figs. 5.6(a3) and 5.6(b3)]
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and (bl)-(b5) are obtained with the [1,0) and |1,1)

initial state, respectively. The temporal profile of the optimal laser field (panels al
and bl), the frequency spectrum of the optimal pulse (panels a2 and b2), the time
integrated dissociative flux at the adiabatic asymptote (panels a3 and b3), the electronic
population probability (panels a4 and b4) and the cost functional as well as the total
dissociative flux calculated at each generation in the genetic algorithm (panels a5 and

b5) are shown (see the text for details).
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Initial state J Dissociation Emax

|0,0) 0.992616 0.996373 2.4457 x 102
|0,1) 0.991823 0.996025 2.2757 x 1072
11,0) 0.997652 0.997736 3.3724 x 1073
11,1) 0.997397  0.997626 4.6628 x 1073

Table 5.1: Results of the photodissociation in the presence of the optimal UV laser
pulse of a time duration of 700 fs with different vibrational states (|0,0), |0,1), |1,0)
and |1,1)) as the initial states. Optimal control calculations have been performed for
ag = 0.001. €4, refers to the maximum amplitude value of the optimized laser pulse
and J is the value of the cost functional. All parameters are in a.u..

5.3.2 Photodissociation of the |1,0) and |1,1) vibrational
levels of the ground electronic state

It is shown in Fig. (5.5) that the initial wave function prepared from the |1,0) and
|1,1) vibrational levels of the ground electronic state leads to photodissociation
with the optimized UV laser pulse. The central frequencies of the optimal UV
pulses are 38,663 cm™! (259 nm) and 38,616 cm ™' (259 nm) obtained from the
frequency spectra [see Figs. 5.5(a2) and 5.5(b2)] with the |1,0) and |1,1) initial
conditions, respectively. When one quantum of energy is added to the OH
stretching coordinate viz., the |1,0) and |1,1) states they overcome the energy

barrier through the barrier crossing mechanism under the field free condition

[130).

The optimal UV laser pulse excites the system from the ground state to
the excited state in the Frank-Condon region. It is observed that the optimal
field excites a small portion of the wave function in time to both the 7n7* and
mo* states. It can be seen from Figs. 5.5(a4) and 5.5(b4) that the wave packet
population on the 77* state raises to a maximum at 178 fs (about 26% of the
population) and 143 fs (about 16% of the population) for the |1,0) and [1,1)
initial conditions, respectively. The mo* state population increases in time via

the intensity borrowing effect as discussed earlier. The wave packet population
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on the wo* state reaches the S-S5 CI and rapidly moves to the repulsive region
of the mo™* state. A small portion of the wave packet population of the wo* state
transfers to the attractive well region of the 7w7* state due to the non-vanishing
diabatic coupling element. This wave packet population interferes with the
wave packet population of the 77* state [see Figs. 5.7(a3) and 5.7(b3)]. The
wave packet components on the m7* state overcome the energy barrier through
So-S51 CI and populates the wo* state. The wave packet population reaches the
So and S adiabatic asymptotes in about 15 fs. The population probability
convergences in 700 fs for both the |1,0) and |1,1) initial conditions. For the
|1,0) and |1,1) initial states the time evolved wave packet has sufficient energy to
reach the S; adiabatic asymptote. Therefore, the photodissociation takes place
predominantly in the adiabatic asymptote of S; over that of the Sy state. The
S; adiabatic channel gets (~73%) more dissociative flux than the Sy adiabatic
channel (~27%) for the |1,0) initial state. Similarly, for the |1,1) initial state
the S; adiabatic channel gets (~70%) more dissociative flux as compared to
the Sy adiabatic channel (~29%). The |1,1) initial state wave function has a
nodal line along the coupling coordinate as well as along the reaction coordinate
[see Fig. 5.7(al)] whereas, only one nodal line along the reaction coordinate
appears for the |1,0) initial state. Addition of one quantum of energy along the
coupling coordinate i.e., for the |1,1) initial state, the lower adiabatic channel
(Sp channel) gets about 2% more dissociation as compared to the |1,0) initial
condition [see Figs. 5.5(a3) and 5.5(b3)]. We observed the “odd-even” effect for
the |1,1) initial condition in the presence of the optimal laser field. A similar
effect was reported under the field free condition in the previous article [130].
A similar effect was also reported by Baer et al. in a state-to-state scattering

study within a quasi-Jahn-Teller model [239].

The snapshots of the wave packet probability density shown in Fig. (5.7)
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reveal the symmetry properties of the wave packet on different electronic states.
For the |1,0) initial state condition, it is seen that the wave packet on the ground
state is an even function of the coupling coordinate, 6. The probability density
on the mo* state has a nodal line along the coupling coordinate for the |1,0)
initial condition. This asymmetric nature of the wave packet arises because
of the diabatic coupling between the n7* and mo* states. For the |1,1) initial
condition, it can be seen from Fig. 5.7(b1) that the wave packet on the ground
state is an odd function of the coupling coordinate 6. This initial state has a
nodal line along the coupling coordinate at § = 0. The wave packet on the
mo* state is symmetric with respect to the coupling coordinate shown in Fig.
5.7(b2). The wave packet maintains its original shape on the 77* state for both
the initial conditions as shown in Figs. 5.7(a3) and 5.7(b3). Additional nodes in
the wave packet appear on the m7* state because of the interference due to the

interstate (mm*-wo*) diabatic coupling.

It is shown in Figs. 5.4(a2), 5.4(b2), 5.5(a2) and 5.5(b2) that the optimal
frequency spectrum of the |0,0) and |1,0) initial states overlap with the frequency
spectrum of the |0,1) and |1,1) initial states, respectively. The carrier frequencies
of the optimal pulses of the |1,0) and |1,1) initial conditions (38,663 and 38,616
cm™! respectively) are lower by about ~5267 cm™! than for the |0,0) and ]0,1)
initial conditions (43,621 and 44,193 cm™!, respectively). This can be explained
from the vibrational levels of the ground state and the excitation mechanism that
follows under the optimal condtions. The |1,0) and |1,1) vibrational eigenstates

! respectively, which is higher (by ~3,900

have energies 6113 and 6354 cm™
cm™!) than the [0,0) (2202 cm™!) and ]0,1) (2468 cm™!) vibrational levels. For
the 0,0) and |0,1) initial states the wave function is excited almost entirely to
the mo* state which is the higher energy electronic state as compared to the 7w7*

state in the Frank-Condon region. However, the optical excitation of the |1,0)
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and |1,1) initial states occurs to both the m7* and mo* states. Therefore, the
|0,0) and |0,1) initial states required higher frequency pulse to maximize the total
dissociative flux under the resonance condition than the |1,0) and |1,1) states.
The optimal pulse for the |1,0) initial condition has a higher carrier frequency
than for the |1,1) initial condition. This is because of the lower energy of the
|1,0) eigenstate as compared to the |1,1) eigenstate. In contrast to the above the
optimal pulse for the |0,0) initial condition has a lower carrier frequency than
for the |0,1) condition. This can be explained from the excitation mechanism. It
can be seen from Figs. 5.4(a4) and 5.4(b4) that the slightly large fraction (about
3%) of the wave function for the |0,0) initial condition is excited to the w7* state
than the |0,1) initial condition. Although it is a less favored excitation under the
optimal condition, a smaller fraction of the ground state wave packet follows less
energetic excitation path for the |0,0) initial state. Therefore, the optimal pulse

for the |0,0) initial state has a lower frequency than the |0,1) initial state.

The dissociation probability nearly reaches a maximum (~100%) for these
initial states for oy = 0.001 [cf., Table (5.1)]. In all cases the optimal pulse
has a simple structure with the intensity of 0.1-25 TW /cm?
5.4(al), 5.4(bl), 5.5(al) and 5.5(b1). These smooth structured UV pulses are

experimentally feasible. Figures 5.4(a5), 5.4(b5), 5.5(ab) and 5.5(b5) show the

as shown in Figs.

convergence behavior of the cost functional in the genetic algorithm. The cost
functional value increases in every generation and converges to a constant value
in 30-80 generations. Therefore, convergence of the cost functional in the genetic

algorithm is found to be excellent.

5.3.3 Effect of penalty factor (ay) on the dissociation

In order to explore the effect of o, optimal simulations are performed for different

values of ag. The penalty factor, ap in Eq. (5.9) limits laser field energy to
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Figure 5.6: Snapshots of the wave packet probability density as a function of the OH
stretching coordinate (r) and the coupling coordinate (#): (al) probability density on
the ground state at 153 fs, (a2) probability density on the wo™ state at 153 fs and (a3)
probability density on the 77* state at 153 fs for the |0,0) initial state. (b1) probability
density on the ground state at 153 fs, (b2) probability density on the wo* state at 153

fs and (b3) probability density on the w7* state at 153 fs for the |0,1) initial state.
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fs and (b3) probability density on the w7* state at 142 fs for the |1,1) initial state.
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Initial state «p J Dissociation [

|0,0) 0.001 0.992616  0.996373  2.4457 x 102
0.01  0.973432 0993514  1.5630 x 10~
0.1 0.801899  0.935423 1.5484 x 1072
|0,1) 0.001 0.991823  0.996025  2.2757 x 1072
0.01 0.964716  0.992228 1.8094 x 1072
0.1 0.835364  0.958104 1.3138 x 1072
|1,0) 0.001 0.997652  0.997736  3.3724 x 1073
0.01  0.994738  0.997826  7.5072 x 1073
0.1 0.942949  0.994334  8.1525 x 1073
|1,1) 0.001 0.997397  0.997626  4.6628 x 1073
0.01  0.987711 0.997593 1.1760 x 102
0.1 0.986148  0.996798  4.3402 x 1073

Table 5.2: Results of the photodissociation in the presence of the optimal UV laser
pulse of time duration 700 fs with different vibrational levels (]0,0), |0,1), |1,0) and |1,1))
as the initial states. Optimal control calculations have been performed at different
values of o (0.1, 0.01 and 0.001). The quantity €,,q, refers to the maximum amplitude
value of the optimized laser pulse and J is the value of the cost functional. All
parameters are in a.u..

maximize the cost functional value. In general, variation of the aq value results
different field amplitudes of the laser pulse under the optimal condition. We have
considered higher values of ag 7.e., 0.01 and 0.1. The laser pulse time duration
is set to 700 fs in these optimal calculations. All the initial parameters for the
genetic algorithm are kept same for different o values. The results obtained from
these calculations are tabulated in Table (5.2). It can be clearly seen that the cost
functional values (J) under the optimal condition decreases for the lower value
of ap. In addition, the dissociation yield reduces in a similar way except for the
|1,0) initial condition for cy=0.01. In the latter condition a small increase in the
dissociation yield results from higher value of €,,,, under the optimal condition.
Considering dissociation yields and cost functional values optimization processes
are found to be good for a very small value of ag i.e., 0.001. €,,,, values under
the optimal condition are in the range of 0.003-0.025 a.u. for different values of

Q.
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5.4 SUMMARIZING REMARKS

Photodissociation dynamics of the OH bond of phenol is examined in this article
with the optimal UV laser pulse under the resonance condition. The laser pulse
parameters are optimized with the aid of the genetic algorithm in an effort
to maximize the cost functional. The cost functional is maximized in order
to optimize the total dissociative flux and to minimize the laser pulse energy.
Optimal control simulation is performed with three coupled electronic states and
two nuclear degrees of freedom consisting of the OH stretching coordinate and
the CCOH dihedral angle. The total outgoing dissociative flux is maximized in
the optimization process and calculated in the Sy and S; adiabatic asymptotic
channels. The photodissociation process occurs through different mechanisms
for different initial states. Under the optimal condition, the wave packet does
not get sufficient energy to reach the Sy asymptote and the dissociation entirely

(~100%) takes place in the Sy and S; asymptotic channels.

The optimal UV pulse excites the system predominantly to the mo* state
over the m7* state for the |0,0) and |0,1) initial states. Although excitation to
the wo* state is prefered for these initial states, it is not 100%. Although less
favored some excitations occur to the 77* state. On the other hand, for the |1,0)
and |1,1) initial states, the system is excited to both the 77* and wo™ states.
The wo* state gets the excited wave packet population in time through the
intensity borrowing effect. The time accumulated flux in these channels (Sy and
S1) varies for different initial state conditions. For the |0,0) initial state the S;
adiabatic asymptotic channel gets slightly (~2%) more dissociative flux than the
Sp channel. Addition of one quantum of energy along the coupling coordinate
in the initial state diffuses the time evolved wave function along the coupling
coordinate on the wo* state. Hence, the wave function preferentially follows

the adiabatic path and leads to an increase in the dissociative flux in the S
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channel. Therefore, the S; channel gets more flux (about 11%) as compared to
the Sy channel for the |0,1) initial condition. For the |1,0) and |1,1) initial states,
the dissociation occurs in the S; channel preferentially over the S; channel
as the high energy component of the wave packet dissociates through the S
channel. The diabatic coupling element between the 77* and wo* states plays an
important role to determine the symmetry of the wave function on the wo* state.
This coupling element is an odd function of the coupling coordinate, . Because
of this coupling element, the nodal structure in the wave function develops on
the mo™ state. In the presence of the optimal UV laser field the barrierless (via
the mo* state) photodissociation process is observed for the |0,0) and |0,1) initial
states. On the other hand, both the barrierless and barrier-crossing (via the w7*
state) mechanisms operate in the photodissociation of the |1,0) and |1,1) initial
states. The photodissociation process (mechanism) in the optimal laser field is

sensitive to the initial condition.

To this end, we note that in this study we have used the genetic algorithm
as an optimization tool where the cost functional is treated as a fitness function.
Various techniques such as gradient-based algorithms can be used to obtain an
optimal laser pulse in the optimal control theory framework. In this theoretical
scenario the first derivative of the cost functional with respect to different
variables leads to coupled differential equations and gradient-based algorithms
are used to solve these equations to generate an optimal electric field. On the
other hand the genetic algorithm maximizes the cost functional and minimizes
the laser intensity directly. In this study the genetic algorithm works well to

converge the cost functional and the results appear to be experimentally feasible.
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Design of IR laser pulse for
photodissociation of phenol using
genetic algorithm

6.1 Introduction

Phenol is an important chromophore in many biological environments.
Exploration of the photochemistry of phenol is important from an experimental
as well as a theoretical point of view [207,228]. Studies on the phenol-water
and phenol-ammonia clusters are important to understand solvent chemistry
and molecular biology.  Electronic spectroscopy, vibrational spectroscopy,
acid-base chemistry, binding energy and structure of the phenol-ammonia and
phenol-water clusters have been studied theoretically as well as experimentally
[208-217, 240, 241]. The ground state proton transfer reaction in the
phenol-ammonia cluster studied with mid-IR spectroscopy [223] as well as
with single-photon ionization spectroscopy [242]. The proton transfer reaction
via excited states in the phenol-water and phenol-ammonia cluster has been
observed both experimentally and theoretically [218,221,222,227,243-248].
The proton transfer reaction in the ground state [223,242] and excited states
[246-248] of phenol-ammonia cluster depends on the cluster size. The OH

bond dissociation of phenol studied from the S; and S states in an aqueous
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medium [224,225]. The photodissociation of the OH bond occurs at 248 nm
in a molecular beam experiment [226] and the hydrogen atom was eliminated
from the wo* state. Ab initio calculations [130, 227,229,235 have been carried
out extensively to study the hydrogen atom elimination from the wo* state. In
those studies, it is concluded that the mo* state crosses the mn* state as well
as the ground state [see Fig. (6.1)]. The m7n* is the first excited state which
results from an excitation from the highest occupied molecular orbital (HOMO)
(7 character) to the lowest unoccupied molecular orbital (LUMO) (7* character)

The mo* state corresponds to excitation to the 3s orbital which is of Rydberg type.

Ab initio calculations viz., the complete active space self-consistent field
(CASSCF) calculations have been carried out to construct the two-dimensional
model which has three states and two nuclear degrees of freedom, and the
time-dependent wave packet propagation was studied in absence of an electric
field [130]. In the latter work, the initial state was prepared from different
vibrational eigenfunctions of the ground electronic state. Those eigenstates are
placed in the Frank-Condon (FC) region of the 77" state in the absence of an
electric field (0 excitation). The conical intersections (Cls) among the S; and Sy
states give rise to a potential barrier of 0.6 eV. Because of the energetic reason
the 0,0), |0,1) and |0,2) initial states do not cross over the barrier in the field-free
condition. On the other hand, addition of a quantum of energy with reference
to the OH stretching coordinate (equivalent to an IR excitation) results |1,0),
|1,1) and |1,2) eigenfunctions which can cross over the potential barrier and
dissociate. The wave packet (WP) shows some interesting symmetry properties
and the CIs between the Sj-S; state drives the flux in a specific channel for
the dissociation. These observations motivated us to perform the present laser
induced-control study. In the previous investigation [201] the photodissociation

is studied with UV laser pulses. Here, we investigate the photodissociation of
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phenol with |0,0), |0,1) and |0,2) initial conditions employing IR laser pulses.
Frequencies of laser pulses are considered in the IR region because of the
energetic reason as one quantum energy with reference to the OH stretching
coordinate makes the dissociation possible in field-free condition. Also, we are
motivated to examine how an IR laser pulse modifies the nonadiabatic dynamics
in the coupled potential energy surfaces (PESs) and drives dissociative flux along

a particular channel.

Control of the dynamical behaviour of a quantum mechanical system by
external laser light has been formulated within the mathematical framework of
optimal control theory (OCT) [81,155-157,197,198]. Control of the branching
ratio of the photodissociated products of phenol was studied in the optimal
control theory framework [230]. In this study, because of the Cls in the
coupled states, the geometric phase gives rise an interesting effect on the
nonadiabatic dynamics. The genetic algorithm together with optimal control
theory [107] has been used to solve many control problems e.g., optimal control
of photodissociation of phenol in presence of the UV laser pulse [201], control
of photodissociation of pyrrole [202,203], control of laser-driven isomerization
of malonaldehyde [204], control of multiphoton dissociation [168,170], control
of laser-induced vibrational-rotational excitation [169] and control of molecular
gate operations [205,206]. In the present work, the optimal control of the
photodissociation is studied with the model [130], involving three states and two
nuclear degrees of freedom. An IR laser pulse is constructed with the aid of
genetic algorithm in the optimal control theory framework. Total dissociative

flux in the Sy and S; channels is optimized in the optimization process.
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Figure 6.1: Diabatic ground electronic (7m) state (red), mo™ state (green) and mm*
state (blue) of planar phenol molecule.

6.2 Theory and methodology
6.2.1 Quantum dynamics with an electric field

The multiphoton dissociation of the OH bond of phenol is studied in the lowest
three electronic states i.e., the ground electronic state, 77* state and wo* state
including two nuclear degrees of freedom i.e., the OH stretching coordinate, r
and CCOH dihedral angle, §. The model Hamiltonian was developed [130] to
study the photodissociation dynamics. The OH stretching mode is treated as
the reaction coordinate and CCOH dihedral angle is defined as the coupling
coordinate. The diabatic potential energy functions for the planar phenol
molecule (#=0) are presented in Fig. (6.1). The optimized equilibrium geometry
of the phenol molecule of the ground electronic state occurs at r=0.96 A. The
ground electronic state and 7w7* state have analogous topography in the FC
region. The CIs between the mo* state and the m7* state and between the mo*

state and ground electronic state occur at 1.16 A and 1.96 A, respectively [see
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Figs. (6.1) and (6.2)]. Two dimensional diabatic, adiabatic PESs and diabatic
interstate coupling elements as a function of the reaction coordinate and the
coupling coordinate are shown in Fig. (6.2). The eigenfunctions and eigenvalues
of the ground electronic state are determined employing the pseudo-spectral
method [178,179,249,250]. The eigenfunctions are defined as |n,,ngy) [see Fig.
(6.3)] where n,. and ny are number of nodal lines along r and 6, respectively. The
fundamental frequencies of the OH stretching coordinate and CCOH torsional

coordinate obtained from the theoretical calculations are 3911 and 266 cm ™!,

respectively. Experimental values of those frequencies are 3656 and 269 cm™1,
respectively [235,236]. The theoretical frequencies are therefore in good accord
with the experimental values. Note that the theoretical frequencies are harmonic

whereas, the experimental ones are fundamental.

The electric field of a laser pulse interacts with the molecule and
consequently, it modifies the molecular Hamiltonian. Within the semiclassical
dipole approximation [87,154], the molecular Hamiltonian of three states in a

diabatic electronic basis reads

H= ﬁo + ﬁ'mtv (6.1)
where . . .
) (100 Vii. Via Vi
Hy=Tn {0 1 O] +|Var Voo Vaz|, (6.2)
001 Vi Vo Vg
and
) 0 0 fus
Hpy=—1 0 0 0 [|e(t). (6.3)
fus 00

In the above equation, H is the molecular Hamiltonian in the presence of a
laser field. I:IO is the molecular Hamiltonian in the field-free condition and f[mt
is the laser-molecule interaction Hamiltonian. In the above equation, Ty is the

nuclear kinetic energy operator. Vi; where i=1,2 and 3 are the diabatic PESs.
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Figure 6.2: (al) Adiabatic representation: the ground electronic (Sp) state (red), Si
state (green) and Sy state (blue). (a2) Diabatic representation: the ground electronic
(rm) state (red), mo* state (green) and mw7* state (blue). (a3) Diabatic interstate
coupling surfaces: Via (blue), (Va3) (green), Vis (red). (a4) Diabatic TDM (red).
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The off-diagonal elements are the interstate coupling elements i.e., Vis (coupling
between the ground electronic (77) state and mo* state), Vi3 (coupling between
the mo* state and the 7™ state) and Vas (coupling between the ground electronic
(rm) state and w7* state). €(t) is the time-dependent electric field of the laser
pulse. In Eq. (6.3), fi13 is the x component of the transition dipole moment
(TDM) between the ground electronic state and w7* state. The kinetic energy
operator (TN), PESs (VZZ, i=1,2 and 3), the interstate coupling element, (‘712, Vis
and Vas) and TDM (fiy3) used in the present study are taken from Ref. [130].

The nuclear motion of the model system with a laser pulse is described by

the time-dependent Schrodinger equation (TDSE)
L0 -
zhahll(t» = H|¥(t)). (6.4)

The TDSE is solved numerically with the molecular Hamiltonian (discussed
above) using the split-operator method (SO) [171,200]. The fast Fourier
transformation (FFT) method [172] is employed to calculate the operation of
the kinetic energy. The WP is evolved [179,237] on three-coupled PESs for a
time duration of 2000 fs considering a time increment of 0.02 fs. The reaction
coordinate (1.0 ay < r < 30.0 ag) and the coupling coordinate (—7 < 6 < +)
consists of 512 and 128 grid points, respectively. To avoid the reflection or
wrap-around of the wave function at the grid edge, a sine-damping function [237]

is employed along the reaction coordinate, r,

| + Ar -y
f(rz) — sin 5 mask 1 mask 7 ’ r; > Timask (65)
mask

that is activated at r,,,5+=26.0 a¢ and it decays smoothly from 1.0 to 0.0 over
the interval Arpesk="maz-Tmask Where rmq. is the maximum value of r. The

dissociation probability is estimated by evaluating the time-integrated flux on a
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dividing surface located at r = ry,, and it reads
h ov(r, 0.t
Mﬁ dt. (6.6)

PP(t) = = t Im [{(U(r,0,t)]
u/t:o { or

T=Tflux

where p is the reduced mass of H and O. The time-dependent diabatic and
adiabatic electronic populations [135] are calculated from the expectation values

of the corresponding projection operators. These are defined as
Pi(t) = (W) (Wf10(1),  i=1,2,3, (6.7)

BEt) = (WO (i),  i=1,2,3. (6.8)

6.2.2 Cost functional

The cost functional is constructed in the mathematical framework of the optimal
control theory [81,156,157] with an aim to optimize an objective function with
optimal values of laser field parameters. In the present study, the mathematical

expression of the cost functional used in the genetic algorithm reads

Jle(®)] = J, — ap /0 e(t)[2dt. (6.9)

In the above equation, Jy is the objective function for the dissociation and it
is calculated as a sum of the time-integrated outgoing flux on the Sy, and S
adiabatic channels. The time-integrated outgoing flux is calculated using Eq.
(6.6) at time t=T where T is the total time duration for the nuclear dynamics.
In the above equation, «q is the penalty factor that limits the laser field intensity.

In the present study, aq is set to 0.0001.

6.2.3 Laser pulse parameterization employing the genetic
algorithm

The initial guess laser field in the genetic algorithm is given by,

€(t) = epsin(wt) - s(t), (6.10)
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Figure 6.3: Vibrational wave functions of the ground electronic state of phenol as a
function of the reaction coordinate, r and coupling coordinate, §. These wave functions
are defined as |n,,ny) where n, and ny are the nodal lines along r and 6, respectively.
(al) ]0,0) eigenfunction, (a2) |0,1) eigenfunction and (a3) |0,2) eigenfunction.
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where, w=wp + Wrange and the quantity wy depends on the initial state and wyqnge
varies from 0 to 1097 em™'. wy for the 0,0), |0,1) and |0,2) initial conditions
are 3911 cm ™! (w)?719 energy difference between the |0,0) and |1,0) levels), 3886

em ™! (w7 energy difference between the |0,1) and |1,1) levels) and 3877 cm™!

(w§?™12, energy difference between the |0,2) and |1,2) levels), respectively. In the
above equation, € is the amplitude that varies from 0 to 0.60 a.u., and s(¢) is an
envelope function that regulates the shape of the field. Here, s(t) is given as
sin? %(ﬁ) for to <t <ty

s(t) = 1 for  t; <t <ty (6.11)

2\ tz—t2

sin? E<M> for to <t<ty=T,

where tg, t1, ts and t3 are time parameters. Here, ¢, is considered as 0 and 3 as
T (total time). ¢y to t; is the rising period and t to t3 is the turn-off period.
The envelope function reaches a maximum value, i.e., 1 within the time duration

between t; to ts.

In the present study, amplitude (), frequency (w) and two time parameters
(t; and t5) are optimized employing the genetic algorithm. The genetic algorithm
is a global search optimization tool uses the idea of the principles of genetics
like reproduction, selection, crossover, mutation, etc. In the algorithm, each
parameter of the laser pulse is stored in a binary number carrying ten bits (0 or
1). A chromosome defines a laser pulse in the algorithm, and it is composed of
four parameters i.e., a total of 40 bits. The parameter values are varied within
the range defined earlier. A population considered in the genetic algorithm
corresponds to 10 individuals. The individuals are the candidate solutions for
the laser pulse. The algorithm starts the calculation with an initial guess
population. The individuals in this population are selected randomly from the
parameter space. The cost functional value is calculated with the help of the

initial population. The resulting cost functional value determines the fitness of
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Figure 6.4: (al) Time-dependent diabatic electronic population probabilities of the
ground (77) state (black), mo* state (red) and 77* state (green); (a2) Time-dependent
adiabatic electronic population of the Sy (blue), S; (violet) and Sy state (brown);
(a3) Time-accumulated dissociative flux at the Sy (red), S; (black) and S (green)
adiabatic channels; (a4) Frequency spectrum (blue) and (ab) temporal structure (red)
of the optimal laser pulse; (a6) Variation of the total dissociative flux (black) and the
cost functional (red) in the genetic algorithm. These results are obtained with the |0,0)
initial state.

an individual (a set of parameters). For the dissociation, the cost functional value
closer to 1.0 corresponds to the individual (a chromosome i.e., a set of parameters)
to be fit for survival. The population goes through different genetic operations
like selection, elitism, crossover, etc. as suggested in Refs. [169,201]. These
events generate a new population repeatedly until the cost functional fulfils the
convergence criteria. In this study, the cost functional shows good convergence
behaviour, and it is optimized within 20-50 generations [see Figs. 6.4(a6), 6.6(a6)
and 6.8(a6)]
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6.3 Results and discussion

Optimal calculations are performed with different initial states which are prepared
from the vibrational levels (|0,0), |0,1) and |0,2)). The initial state is excited in
the multiphoton excitation fashion to the 77* state in the presence of the optimal

IR laser pulse.

6.3.1 Photodissociation of the |0,0) vibrational level

The initial state wave function is prepared from the |0,0) vibrational level of
the ground electronic state. The optimal IR laser pulse is constructed with the
genetic algorithm. The optimal IR laser pulse excites the initial state (i.e., |0,0))
to the mm* state. The excited WP of the m7n* state has adequate energy to
overcome the potential barrier and dissociates predominantly on the S, adiabatic
channel as can be seen from Fig. (6.4). The central frequency of the optimal
IR laser pulse, 4,222 cm™! [see Fig. 6.5(a4)] is calculated using the frequency
spectrum. Because of the S-S5 CI, there is a potential barrier as high as 0.6 eV
(with reference to the minimum of the 77* state) along the reaction coordinate.
In field-free condition, the initial states are prepared in the FC region of the m7*
state (& excitation) [130]. As the |0,0) initial state has 2,202 cm~! energy which
is lower than the potential barrier, hardly any dissociation takes place in the

field-free condition.

The optimal IR laser pulse excites the system from the ground electronic
state to the w7* state, and the system dissociates in the lower two channels
[see Fig. (6.4)]. The photodissociation mechanism is understood with the help
of time-dependent electronic population probabilities, the time-accumulated
fluxes and the snapshots of the probability densities of the WP. A series of
events take place in the field-driven photodissociation dynamics. The optimal

IR laser pulse interacts with the initial state and a little fraction of the latter
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is excited to the wn* state in the multiphoton fashion. The dump component
of the pulse de-excites the WP population (a small portion) of the w7* state
onto vibrationally excited levels of the ground electronic state. The laser field
induces the pump-dump events which continue till 600 fs (approximately).
Because of these events, the WP becomes vibrationally hot with reference to the
reaction coordinate both on the ground state and n7* state [see Fig. (6.5)]. The
vibrationally hot WPs develop nodal lines along the OH stretching coordinate.
The dumped WP interferes with the WP population on the ground state.
Similarly, the pumped WP interferes with the WP population on the 77* state.
The WP population on the n7* state reaches a maximum at 372 fs. A small
portion of the WP population of the n7* state goes to the wo* state in the FC
region because of the non-vanishing interstate diabatic coupling element. This
small population moves on with time to both the attractive well of the 77* state
and the repulsive region of the mo* state. The earlier part of the WP population

interferes with the WP population on the w7* state.

The vibrationally hot WP on the nn* state has higher energy than the
barrier and easily crosses over the potential barrier and moves rapidly on the
repulsive region of the mo* state. The WP dissociates at the Sy and S} channels
in 480 fs. Mostly, the WP population on the wo* state evolves in a localized way
(around the 6=0) and prefers to follow the diabatic path. A small portion of
the WP population becomes diffused along the coupling coordinate and prefers
the adiabatic path. Therefore, the WP population of the mo* state correlates
to the Sy adiabatic channel (about 84% of the population) predominantly
over S; channel (about 16% of the population). Hence, the laser field-induced
dissociation preferentially takes place in the Sy adiabatic channel for the |0,0)
initial state. It is noted from Table (6.1) that more than 99% dissociation takes

place through the Sy and S7 channels. With this initial state, the cost functional



Chapter 6 126

453 fs (al)

0 (rad)
-
©
5

45315 (a2)

0 (rad)
-

r(au)

453 fs (3)

@o

6 (rad)
-

Figure 6.5: Snapshots of the WP probability density as a function of the OH stretching
coordinate (r) and coupling coordinate (6): (al) probability density on the diabatic
ground electronic state at 453 fs, (a2) probability density on the diabatic wo™ state at
453 fs and (a3) probability density on the diabatic 77 state at 453 fs of the |0,0) initial
state.
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acquires the convergence at 47 generations in the genetic algorithm [see Fig.

6.4(a6)].

The FC zone, Cls are located in the § = 0 region (planar geometry of
the phenol molecule) of the PESs. The WP shows a few interesting symmetry
properties. The WP of the ground electronic state is symmetric with respect
to the coupling coordinate at time, t=0 [see Fig. (6.5)]. The nn* state gets
population from the initial state via the pump-dump mechanism. Therefore,
the WP of this state shows the symmetry property like the ground electronic
state. As the time progress multiple nodal lines appear along the reaction
coordinate in the WP probability density both on the ground electronic state
and 7w7* state. The WP of the ground state and n7* state are even functions
with reference to the coupling coordinate [see Figs. 6.5(al) and 6.5(a3)]. The
diabatic interstate coupling element between the wo*-77* is an odd function of
the coupling coordinate, 6 [130]. The WP of the mo* state has a nodal line along
0 = 0 i.e., anti-symmetric with respect to the coupling coordinate because of the
diabatic coupling. This nodal line results from the geometric phase effect. In
the adiabatic representation, the WP components move with an opposite phase
around the S;-S; CI and interfere destructively leading to a nodal line at 6 = 0

[see Fig. 6.5(a2)].

6.3.2 Photodissociation of the |0,1) vibrational level

In this section, we discuss the laser pulse-induced photodissociation of the |0,1)
vibrational level. The central frequency, i.e., 4422 cm™! is determined from
the frequency spectrum [see Fig. 6.6(ad)]. In the field-free condition, the
photodissociation hardly (less than 5%) takes place because the |0,1) vibrational
level has lower energy as compared to the height of the potential barrier [130].
It can be seen from Fig. (6.6) that the optimal IR laser pulse excites the initial
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Figure 6.6: (al) Time-dependent diabatic electronic population probabilities of the
ground (77) state (black), mo™* state (red) and 77* state (green); (a2) Time-dependent
adiabatic electronic population of the Sy (blue), S; (violet) and Sy state (brown);
(a3) Time-accumulated dissociative flux at the Sy (red), S; (black) and S (green)
adiabatic channels; (a4) Frequency spectrum (blue) and (ab) temporal structure (red)
of the optimal laser pulse; (a6) Variation of the total dissociative flux (black) and the
cost functional (red) in the genetic algorithm. These results are obtained with the |0,1)
initial state.
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Figure 6.7: Snapshots of the WP probability density as a function of the OH stretching
coordinate (r) and coupling coordinate (f): (al) probability density on the diabatic
ground electronic state at 531 fs, (a2) probability density on the diabatic wo* state at
531 fs and (a3) probability density on the diabatic 77 state at 531 fs of the |0,1) initial
state.

state, and the dissociation takes place in the Sy and S; adiabatic channels. The
multiphoton excitation of the initial state happens to the w7* state in the presence
of the optimal IR laser pulse. The excited population on the 7w7* state is dumped
back to the upper vibrational levels of the ground electronic state. Because of the
pump-dump events, the WP becomes vibrationally excited both on the ground
electronic state and 7wn* state. The excitation process takes place through the
pump-dump events in a similar way as for the |0,0) initial state. The pump-dump
events continue till 800 fs (approximately). The excited WP population on the
m* state increases with time and reaches a maximum at 446 fs. The WP on

the mr* state is vibrationally excited with respect to the OH stretching mode.
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Initial state J Dissociation Emax

10,0) 0.929145 0.994570 0.178299
|0,1) 0.886508 0.982989 0.241054
10,2) 0.850502 0.979883 0.278592

Table 6.1: The photodissociation in the presence of the optimal IR laser pulse of time
duration 2000 fs with different vibrational levels (i.e., |0,0), |0,1) and |0,2)) as an initial
state has been performed for cg = 0.0001. In the table, the dissociation denotes the
flux, €4y refers to maximum amplitude of the optimized laser pulse, and J is the value
of the cost functional. All parameters are in a.u..

Because of the energetic reason, it crosses over the barrier. The WP moves
rapidly on the mo* state. The WP starts dissociating through both the Sy and
S1 channels approximately at 550 fs. The WP follows a localized motion and
prefers the diabatic path for the dissociation. It can be seen from Figs. 6.6(al),
6.6(a2) and 6.6(a3) that the Sy and S; adiabatic channels get about 85% and
15% of population probabilities, respectively. In this case the cost functional

convergences at 20 generations in the genetic algorithm [see Fig. 6.6(a6)].

As the ground state and w7* state are connected in the pump-dump events,
both the WPs show similar symmetry properties. The WPs of the ground
electronic state and n7* state are odd functions with reference to the coupling
mode. The WP of the mo* state is an even function with respect to the coupling
coordinate because of the diabatic coupling element between the m7* state and

mo* state.

6.3.3 Photodissociation of the |0,2) vibrational level

Here, we discuss the photodissociation of the |0,2) initial state [see Fig. (6.8)].

Lis extracted from the frequency profile of the

The central frequency, 4355 cm™
optimal laser pulse. It is observed that the |0,2) vibrational level could not
dissociate because of the energy barrier in the field-free condition [130]. The

multiphoton excitation of the initial state is taken place to the m7* state. The
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Figure 6.8: (al) Time-dependent diabatic electronic population probabilities of the
ground (77) state (black), mo* state (red) and 7m7* state (green); (a2) Time-dependent
adiabatic electronic population of the Sy (blue), S; (violet) and Sy state (brown);
(a3) Time-accumulated dissociative flux at the Sy (red), S; (black) and S (green)
adiabatic channels; (a4) Frequency spectrum (blue) and (a5) temporal structure (red)
of the optimal laser pulse; (a6) Variation of the total dissociative flux (black) and the

cost functional (red) in the genetic algorithm. These results are obtained with the |0,2)
initial state.
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|0,2) initial state undergoes dissociation through the mechanism discussed earlier
for the 0,0) and |0,1) initial states. The pump component of the optimal IR
laser pulse excites the initial state to the wn* state. The WP population of
the m7* state is de-excited to the ground electronic state in subsequent times
because of the dumping component of the control pulse. These pump-dump
events repeat till 1000 fs (approximately). The WP on the ground electronic
state as well as on the m7* state becomes vibrationally hot along the reaction
coordinate. The 7m7* state gets the WP population through the excitation
process and reaches a maximum at 489 fs. The WP on the n7* state crosses the
barrier and it is propagated rapidly on the mo* state. It is clear from Fig. 6.8(a3)
that the dissociation on both the channels begins approximately at 600 fs. The
WP preferentially follows the diabatic path because of its localized motion and
dissociates dominantly in the Sy channel. The dissociation of 68% and 31%
of the WP population takes place at the Sy and S; channels, respectively [see
Fig. 6.8(a3)]. For the |0,2) initial condition, the cost functional converges at 21

generations in the genetic algorithm [see Fig. 6.8(a6)].

Similar to the |0,0) and |0,1), the |0,2) initial state condition also shows
different symmetry properties of the WPs of different states. The multiphoton
pump-dump events create a vibrationally hot WP both on the ground electronic
state and 77* state. Therefore, the WPs of these states are symmetric with
reference to the coupling coordinate [see Figs. 6.9(al) and 6.9(a3)]. The diabatic
coupling element determines the symmetry property of the WP of the mo*
state. The WP of the mo* state is an odd function with respect to the coupling
coordinate. A nodal line [see Fig. 6.9(a2)] appears in the WP probability density

(along 6=0) because of the geometric phase effect.

The optimal IR laser pulses for all the initial conditions discussed above



Chapter 6 133

531 fs @l

Q@
0)q0

1 25 4 55
r(au)

563 fs (2)

o
075
0 - 0T
6 °
075 @o — @

1 25 4 55 7
r(au)

531fs (a3)

Figure 6.9: Snapshots of the WP probability density as a function of the OH stretching
coordinate (r) and coupling coordinate (f): (al) probability density on the diabatic
ground electronic state at 531 fs, (a2) probability density on the diabatic wo* state at
563 fs and (a3) probability density on the diabatic 77 state at 531 fs of the |0,2) initial
state.
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have a smooth temporal profile. Maximum amplitudes (€,,.) of these strong
optimal pulses range between 0.17-0.28 a.u. [see Table (6.1)]. The dissociation
in a particular channel e.g., Sp and S; depends on the initial state. The
time-accumulated fluxes calculated at the adiabatic asymptotic channels are
varied for different initial states. Addition of a quantum of energy along the
coupling mode to the initial state diffuses the WP with reference to the coupling
coordinate. The diffused components of the WP follow the adiabatic path and
dissociate in the S; adiabatic channel. On the other hand, the WP components
move in a localized fashion around the =0 line and dissociate favourably in the Sy
adiabatic channel. Considering the |0,0), |0,1) and |0,2) initial state it can be seen
from Figs. 6.4(al), 6.4(a2) and 6.4(a3), 6.6(al), 6.6(a2), 6.6(a3), 6.8(al), 6.8(a2)
and 6.8(a3) that the S; channel gets a lower dissociation probability for the |0,1)
initial state than the |0,0) and |0,2) initial states. Therefore, the “odd-even” effect
is observed for the dissociation of these initial states. This effect was reported in
the field-free condition [130] and in the presence of the optimal UV laser pulse
[201]. A similar effect was reported by Baer et al. in the quasi-Jahn-Teller system
[239].

6.4 Summarizing remarks

The multiphoton photodissociation of the OH bond of phenol has been performed
employing the optimally designed strong IR laser pulses. The vibrational
eigenfunctions of the ground electronic state viz., [0,0), [0,1) and |0,2) are
considered as initial states for the optimal calculations. These eigenfunctions
have lower energy as compared to the potential barrier present on the 7w7* state.
These vibrational eigenfunctions hardly dissociate in the field free condition
[130] because of the potential barrier. The multiphoton pump-dump events are
repeatedly operational in the field-induced condition. Consequently, the WP

population becomes vibrationally hot both on the ground electronic state and
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n* state. Hence, the WP crosses the potential barrier, and the mo* state
mediated photodissociation is observed. The dissociation of the WP takes place
almost entirely (more than 99%) on the lower two adiabatic channels. In all
three conditions, the WP evolves in a localized fashion around 6=0 line and
dissociates preferentially to the Sy channel. Hence, the Sy channel gets higher
time-accumulated flux as compared to the S; channel. Addition of a quantum
energy of the coupling mode to the initial state makes the time-evolved WP diffuse
along the coupling coordinate. The diffused WP population follows the adiabatic
path and enhances the dissociation probability at the S; adiabatic asymptotic
channel. The S; adiabatic channel gets slightly lower dissociative flux for the |0,1)
initial state than the |0,0) and |0,2) initial states. Therefore, the “odd-even” effect
[130,201,239] is observed in this multiphoton photodissociation. Overall, the
dissociation in a particular channel is sensitive to an initial state. The WPs show
some interesting symmetry properties. The symmetry of the WPs of the ground
electronic state and w7* state are the same as they involved in the pump-dump
events. The symmetry of the WP of the wo* state is decided by the diabatic
mr*-mo* coupling element. The genetic algorithm converges the cost functional
within 25-60 generations, and the latter shows good optimization behaviour for
the multiphoton dissociation. This control work is useful for the photodissociation

reaction which has a potential barrier in the excited state.






Chapter 7

Summary and outlook

In this thesis, IR and UV optimal laser pulses are constructed theoretically
for various molecular processes viz., selective vibrational population transfer,
tautomerization and photodissociation. These molecular processes are studied
in the polyatomic systems. The optimal laser pulses are constructed in optimal
control theory. The cost functional is set up to optimize an objective of a
molecular process via manipulation of the nuclear dynamics. The cost functional
is composed of an objective (a desired outcome), the fluence term related to the
laser pulse intensity and the time-dependent Schrodinger equation (TDSE) as
a dynamical constraint (as these systems follow the TDSE). The objective is
optimized and the penalty term (laser field intensity) is minimized in the process
of optimization to maximize the cost functional. Finally, the cost functional
is converged and the optimal laser pulse is obtained for a molecular process.
The quantum dynamics of these processes is studied within the adiabatic and
diabatic (nonadiabatic dynamics of coupled electronic states) representations.
The laser-molecular interaction is treated within the semiclassical dipole
approximation. The split operator method combined with the fast Fourier
transformation (FFT) algorithm is used to carry out the time evolution of the

laser field-driven molecular processes.
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Selective preparations of various vibrational states of the ground electronic
state of the 4(3H)-pyrimidinone/4-hydroxypyrimidine system are performed with
optimal laser pulses. The ground electronic state along the OH bond distance
is calculated using the Coulpled Cluster Singles and Doubles (CCSD) method
with an aug-cc-pVDZ basis set and the dipole moment is calculated from the
complete-active-space self-consistent-field (CASSCF) method using the Molpro
package. The ground electronic state has a potential barrier as high as 180
kJ/mol between two tautomers. Optimal laser pulses are designed employing the
conjugate gradient method. These optimal pulses are constructed in different
timescales of 30000, 60000 and 90000 a.u. with the penalty factor (ag) values
of 0.1 and 0.01. The effect of variation of the pulse duration as well as the
penalty factor on the population probability and structure of the laser pulse

(both temporal and frequency) are examined.

We observed that field amplitudes of the optimal laser pulses decrease with
a higher time duration with an agreement of the pulse area theorem. In frequency
spectra, besides the sharp peak which is responsible for the considered transition,
there are secondary peaks appear because of the involvement of intermediate
vibrational states. Lower numbers of intermediate states are involved for an
increased time duration. As a result, a small number of secondary peaks appear
in frequency spectra. We observed that the population transfer becomes more
efficient for a transition for higher time durations. Nevertheless, at the final
time, almost 100% population reaches the target vibrational state. A higher
penalty factor results a reduction in the amplitude of the optimal laser pulse for
a particular vibrational excitation. Similarly, the transition probability and cost
functional are lowered with a rise of the penalty factor. A strong field laser pulse
is obtained for the vibrational transition from 4(3H)-pyrimidinone (opmd) v=0

to 4-hydroxypyrimidine (hpmd) v=0. We observed that various intermediate
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vibrational states are involved in the optimal condition. A delocalized state
participates dominantly in the population transfer process as compared to
other intermediate states. In the optimization process, the cost functional
reaches near the convergence limit within a few iterations. In the present work,
the conjugate gradient method works well to design laser pulses for various

vibrational transitions.

The nn* state-mediated tautomerization is controlled through the
pump-dump mechanism in the 4(3H)-pyrimidinone/4-hydroxypyrimidine
system. The intramolecular hydrogen transfer reaction takes place in the
photo-induced tautomerization. Various parameters of laser pulses are optimized
using the genetic algorithm. The model system contains two electronic states
i.e., the ground electronic state and n7* state. The potential energy functions
of these states along the OH stretching coordinate are calculated using the
equation-of-motion coupled cluster singles and doubles (EOM-CCSD) method
with an aug-cc-pVDZ basis set using the Molpro package. Potential barriers are
present between the tautomers in both potential energy surfaces. An initial wave
packet (WP) is prepared by placing a Gaussian WP in the reactant region. The
optimal calculations are carried out with the ab initio calculated and constant

transition dipole moments.

The results of this study show that a pair of UV laser pulses perform the
mr* state-mediated tautomerization. The optimal UV laser pulses (pump and
dump) are designed in the genetic algorithm. The pump laser pulse excites the
initial WP to the n7* state. The excited WP freely evolves and crosses over the
barrier on the w7* state. When the WP reaches the product configuration on the
7 state, the dump pulse is activated and it dumps the WP back to the ground

electronic state. In this study, the genetic algorithm works well to optimize
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laser pulse parameters to induce the n7* state-mediated tautomerization. The
constant dipole moment condition shows slightly better population transfer as

compared to the ab initio calculated transition dipole moment condition.

The photodissociation of the OH bond of phenol is optimally controlled
in the presence of the UV laser pulse. In this study, the laser pulse parameters
are optimized using the genetic algorithm in an effort to maximize the cost
functional. The photodissociation dynamics is carried out on the three lowest
electronic states i.e., the ground electronic state, mn* state and wo* state
including two nuclear degrees of freedom i.e., the OH stretching coordinate
and CCOH dihedral angle. These electronic states are coupled through conical
intersections. Vibrational wave functions (defined by, |n,,ng), where n, and
ng denote the number of nodes along the reaction coordinate and coupling
coordinate, respectively) of the ground electronic state are calculated using the
spectral quantization method. An initial state is prepared from vibrational
wave functions (]0,0), |0,1), |1,0) and |1,1)) on the ground electronic state. The
nonadiabatic nuclear dynamics on the coupled electronic states is performed in
the diabatic representation. The total outgoing dissociative flux is maximized
in the optimization process, calculated in the Sy and S; adiabatic asymptotic

channels.

The result shows that the photodissociation process takes place through
different mechanisms for different initial states. The optimal UV pulse excites
the initial state population predominantly to the wo™* state over the 7wn* state for
the |0,0) and |0,1) initial conditions. The excitation to the mo* state is favoured
for these initial states though it is not 100%. In these conditions, a small WP
population of the initial state is excited to the m7* state. On contrary, the system

is excited to both the n7* and mo* states for the |1,0) and |1,1) initial states.
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In both excitations, the wo* state gets the excited WP population through the
intensity borrowing effect. The time accumulated flux in Sy and S; channels
varies for different initial states. For the |0,0) initial state S; adiabatic asymptotic
channel gets slightly (~2%) more dissociative flux than the Sy channel. The
addition of one quantum of energy along the coupling coordinate in the initial
state i.e., [0,1) diffuses the time-evolved wave function along the coupling
coordinate on the mo* state. Hence, the WP population preferentially follows the
adiabatic path and leads to an increase of the dissociative flux in the S; channel.
Therefore, the S; channel gets more outgoing flux (about 11%) as compared to
the Sy channel for the |0,1) initial state. For the |1,0) and |1,1) initial states, the
dissociation occurs in the S; channel preferentially over the Sy channel as high
energy components of the WP dissociate through the S; channel. In this study,
the diabatic coupling element between the n7* and mo* states determines the
symmetry of the wave function on the mo* state. The nodal line in the wave
function appears on the mo* state as the coupling element is an odd function of
the coupling coordinate, #. However, in the presence of the optimal UV laser
pulse, the WP does not get sufficient energy to reach the S, asymptote and the
dissociation entirely (~100%) takes place in the Sy and S; asymptotic channels.
It is observed that the |0,0) and |0,1) initial states dissociate via the mo* state
through the barrierless mechanism. On the other hand, both the barrierless
and barrier-crossing mechanisms via the 77* state take place for the |1,0) and
|1,1) initial states. In this study, the result shows that the photodissociation

mechanism in the presence of the optimal laser field is sensitive to an initial state.

The photodissociation of the OH bond of phenol has been further extended
in the presence of the optimal IR laser pulse. The vibrational eigen functions
viz., |0,0), |0,1) and |0,2) are considered initial states for the optimal calculations.

These eigenfunctions have lower energy as compared to the potential barrier
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present along the OH stretching coordinate on the wn* state. These vibrational
eigenfunctions hardly dissociate in the field-free condition because of the potential
barrier. Optimal laser pulses for the photodissociation of these eigenfunctions

are designed using the genetic algorithm.

Our result shows that an alternative photodissociation mechanism is
observed in the presence of the optimal IR laser pulse. The optimal laser pulse
excites a small portion of the WP population of the initial state to the w7* state.
The excited WP population is dumped back onto vibrationally excited levels of
the ground electronic state. The excitation (pump) and de-excitation (dump)
are the multiphoton processes. The multiphoton pump-dump events are taken
place repeatedly in the field-induced condition. Consequently, the WP population
becomes vibrationally hot on the ground electronic state as well as on the w7*
state. As the WP becomes vibrationally hot it crosses the potential barrier and
mo* mediated photodissociation is observed. The laser field-induced dissociation
takes place almost entirely (more than 99%) on the lower two adiabatic channels.
In all three conditions, the WP moves in a localized fashion around the =0 line
and dissociates favourably to the Sy channel. Therefore, the Sy channel gets
higher time-accumulated outgoing flux as compared to the S; channel. The
time-evolved WP is diffused along the coupling coordinate while adding one
quantum of energy of the coupling mode to the initial state. The diffused WP
population prefers the adiabatic path on the PESs and increases the dissociation
probability at the S; adiabatic asymptotic channel. The S; adiabatic channel
gets slightly lower dissociative flux for the |0,1) initial state than the |0,0) and
|0,2) initial states. Therefore, in this study, the “odd-even” effect is observed.
Overall, the dissociation in a particular channel depends on an initial state. The
symmetry of the WP of the ground electronic state and n7* state are the same

as these states are involved in the pump-dump events. The symmetry of the
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WP of the mo* state is determined by the diabatic m7*-wo* coupling element.
The genetic algorithm shows good optimization behaviour for the convergence of
the cost functional. This control work is useful for the excited state-mediated

hydrogen transfer reaction which has a potential barrier in the excited state.

Future directions

e In the 4(3H)-pyrimidinone/4-hydroxypyrimidine system, one can extend
further the control work by including several excited states e.g., the w7*,
mo* and nm* states with the ground electronic state along one or more
coupling modes. For this, first one need to find suitable coupling modes and

then one can calculate potential energy surfaces along these coordinates.

e The control work of the photodissociation of phenol can be further extended
by adding one or two coupling modes to the model system. First, one needs
to select these additional modes and perform ab initio calculations to get

potential energy surfaces.

e To perform control work in a more realistic way, one needs to construct
model systems by including multi-states and multi-modes. In those cases,
first one needs to calculate potential energy surfaces along multiple modes.
The control work can be performed with the OCT-MCTDH package that

can handle a multi-states and multi-modes problems.






Appendix A

Derivation of pulse design
equations

Rabitz and co-workers developed the cost functional is given as (here we drop the
bold form notation (vector aspects) of the electric field, e and the dipole moment,

p for simplicity),

Jle(t)] = <¢(T)|O|¢(T)>—Oéo/0 [e())dt — 2Re [/0 {(x(t) %H’fl 1/J(t)>dt§A.1)

This equation can be simplified as

= WDOW(T) —a, / ()2t — / 0|2 i

The cost functional explicitly depends on v (t), €(t) and x(¢). Therefore,

the variation of the cost functional is given as,

oJ oJ oJ

de(t) (A.3)
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At an optimal condition, i.e., §J = 0 therfore we have the following equations,

8.J

—(,w(t)éw(t) = 0, (A4)
0.J

poX® = 0 (A.5)
a.J

8e(t)5€(t> = 0. (A.6)

The variation of the cost functional with respect to the wave function, v (t) is

given as,
0J « A
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- [ '— 50(#) (t)‘ﬁ‘w(m*} dt (A7)
5 XOIBH(0) = (X0 o 500} + (e x(I60(e)
= ()55 10010 = 5 (OIFV) — G @lsv) (A

From equation (A.7) and (A.8), we get
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d1(0) = 0 as ¥(0) is an initial wave function.

0J A >
m&p(t) = (D)0 (T)) + ((T)]0]69(T))

— T + / dt<%x<t>ww<t>>
— / dE (D150 () — (X(D)(T))*

T

" / dt<%x(¢)!5w(t)>*+ / dt(x (1) [FT10:(1))*
= GHD)OWT)) — (D) — [((T)]O — ((T)5H(T))
v [l i@l + [+ i)

(A.9)
From equations (A.4) and (A.9) we get,
z’ai;it) = Hx(t) (A.10)

with a boundary condition, |x(T")) = O|(T))

The variation of the cost functional with respect to the lagrange multiplier, x (%),

o) = - [ ool

8X<t) a +1H

- [ ) 6x(0 |5 i

From equation (A.5) and (A.11) we get,

w(e)] ar

W))*} dt. (A.11)

i = Hy(t), (A.12)

with a initial boundary condition, ¥(t = 0) = ¢;.
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The variation of the cost functional with respect to the electric field, €(t),

0.J r T OH
Sertelt) = 2, /0 e(t)ée(jﬁ)dt—z /O (D) o S0,
+ i [ @bl gl
’ . OH OH .
= /O dt[—2aq¢(t) —1<X(t)|a€—(t)|¢(t)>+<X(t)|a€—(t)!¢(t)> Joe(?).
At an optimal condition,
0.7
86—@)56(t) = 0.
Therefore,
= =2a0elt) = (Ol 52 AOIID) + (Ol 1) =0
= —2a0clt) = 2m{x(0)l 5 V() =0
= elt) = o Imtx(0) e V) (A13)
The total Hamiltonian of a system, H is given as,
H = Hy—pet),
_ ;E_Z) . (A.14)

where Hy is the field-free Hamiltonian of the molecule and 1 is the dipole moment

function. From equation (A.13) and (A.14) we get,

((t) =~ IO (). (A.15)

Therefore, the pulse design equations can be summarized as,
280y, w(0) = 6. (A.16)
P i) vir) = 0w, (A17)

((t) = —aiofmu(t)mw(t». (A18)
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Derivation of the leading error
term in the split-operator
method

Expanding the time propagator we get the expression reads as (for simplicity we

drop the overhead hat symbol on operators),

—iH g —i(T;L—V)dt

dt
en = e zl—z'(T—l—V)%

(—)2(T + V)2dt*  (—i)*(T + V)>dt?
o2 * 31
dt  (T*+V2+TV +VT)dt?
= 1—4T -
(T +V) - 57
N Z,(T3 +TVT + TV +TV?2+VT?* + V*T + VTV + V3)dt3

3!h3

(B.1)
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Now expanding the right hand side of the above equation we get the following

expression,
W i i o dt  (—iVdt)? dt (—iTdt)?
iVdt/2h —iTdt/h,—iVdt/2h  _ |1 _ 72 o _pat o
e e e [ Zv2h+—8h2 + ] [1 zTh +—2h2 +
dt  (—iVdt)?
X {1 - Zvﬁ —‘l_ W —|'_ A '}
. dt  (T*+ V24TV +VT)dt?
= 1—4(T - —
(T +V) W 572

w V3+T3+VTV+V2T+VT2+T2V+TV2 dt?
i =+ — -
6 6 4 8 4 4 8 h3

(B.2)

Comparing the exact expression, Eq. (B.1), with the approximation, Eq. (B.2)

the leading error term is given as,

At (TV,T] [T,VIT [TV]V V[V, ]
Error = 2?( 15 + 75 + o1 + 51 ) (B.3)
A ([T, V.1 [V,[V,T]
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