Metal-free Decarboxylative Method for the Synthesis of Indole Alkaloids and Synthesis of Canthinones via Knoevenagel Condensation

A Thesis Submitted for the degree of Doctor of Philosophy

By

V. Dinesh

Reg. No. 17CHPH36

School of Chemistry University of Hyderabad Hyderabad - 500 046 India

July 2023

DEDICATED

TO

My Family & Friends

DECLARATION

I hereby declare that the matter embodied in the thesis entitled "Metal-free Decarboxylative Method for the Synthesis of Indole Alkaloids and Synthesis of Canthinones via Knoevenagel Condensation" is the result of investigation carried out by me in the School of Chemistry, University of Hyderabad, Hyderabad, India, under the supervision of Prof. R. Nagarajan.

In keeping with the general practice of reporting scientific observations, due acknowledgements have been made on the basis of the findings of other investigators. Any omission, which might have occurred by oversight or error, is regretted. This research work is free from Plagiarism. I hereby agree that my thesis can be deposited in shodganga/INFLIBNET. A report on plagiarism statistics from the University Librarian is enclosed.

Prof. R. Nagarajan

(Supervisor)

School of Chemistry

University of Hyderabad

Hyderabad

July, 2023

V. Dinesh

(Reg. No.17CHPH36)

CERTIFICATE

This is to certify that the thesis entitled "Metal-free Decarboxylative Method for the Synthesis of Indole Alkaloids and Synthesis of Canthinones via Knoevenagel Condensation" submitted by V. Dinesh bearing registration number 17CHPH36 in partial fulfillment of the requirements for award of Doctor of Philosophy in the School of Chemistry is a bonafide work carried out by him under my supervision and guidance. This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for award of any degree or diploma.

Part of this thesis has been:

A. Published in the following publication

- 1). Dinesh, V.; Nagarajan, R. J. Org. Chem., 2022, 87, 10359-10365. (Chapter-I (A))
- 2). Dinesh, V.; Nagarajan, R. Synlett, 2023, 34, 855-857. (Chapter-I (B))

B. Presented in the following conferences

- 1). ChemFest-2023 In House Symposium held at School of Chemistry, University of Hyderabad, Hyderabad, Telangana, India.
- 2). ChemFest-2020 In House Symposium held at School of Chemistry, University of Hyderabad, Hyderabad, Telangana, India.
- 3). MMT-2023 International conference on Molecules and Materials Technology held at NIT Kurukshetra, Kurukshetra, Haryana, India.

Further the student has passed the following courses towards fulfilment of course work requirement for Ph. D.

S. No.	Course No.	Title of the course	No. of Credits	Grade
1.	CY-801	Research Proposal	4	В
2.	CY-805	Instrumental Methods-A	4	B+
3.	CY-806	Instrumental Methods-B	4	В

Prof. R. Nagarajan

Thesis Supervisor

Doon

School of Chemistry

Dean SCHOOL OF CHEMISTRY University of Hyderabad Code abad-500 046,

List of Publications

- Dinesh, V.; Nagarajan, R. (NH₄)₂S₂O₈-Mediated Metal-Free Decarboxylative Formylation/Acylation of α-Oxo/Ketoacids and its Application to the Synthesis of Indole Alkaloids J. Org. Chem., 2022, 87, 10359-10365
- Dinesh, V.; Nagarajan, R. Photochemical Decarboxylative Formylation of Indoles with Aqueous Glyoxylic acid *Synlett*, **2023**, *34*, 855-857

Conference presentations

- Presented an Oral and Poster presentation on "A Metal free decarboxylative formylation of indoles and acylation of β -carbolines" in **ChemFest-2023** In House Symposium held at University of Hyderabad, Hyderabad, Telangana, India.
- Presented an Poster presentation on "Total synthesis of bio-active natural products:
 Canthinone and New canthinone alkaloid" in ChemFest-2020 In House Symposium
 held at University of Hyderabad, Hyderabad, Telangana, India.
- Presented an Poster presentation on "A Metal free decarboxylative formylation of indoles and acylation of β-carbolines" International conference on Molecules and Materials Technology (MMT-2023) held at NIT Kurukshetra, Kurukshetra, Haryana, India.

Acknowledgements

First and foremost, I want to thank my parents for this wonderful life gifted for me. Upon I thanks to God for blessings, and giving strength, good health.

I would like to express my gratitude to **Prof. R. Nagarajan** for his guidance throughout the Ph.D period. I take this opportunity to thank **Prof. Ashwini Nangia**, Dean, School of Chemistry, and former Dean and all faculty members for their cooperation on various aspects. I sincerely thank to my doctoral committee members **Prof. R. Balamurugan** and **Prof. Akhila Kumar Sahoo** for their constant encouragement, discussions, and support during my research period. I also thank to **Prof. T. P. Radhakrishnan** and **Prof. M. J. Swamy** for his excellent teaching in my course work. I express my special thanks to **Prof. K. C. Kumara Swamy**, **Prof. Lalitha Guruprasad** and **Prof. D. B. Ramachary** and **Dr. Y. Srinivasarao** for their valuable suggestions and motivation.

I sincerely thank all the non-teaching staff in school of chemistry for their help. I special thanks to Mr. Abraham, Mr. Gupta, Mr. Durgesh, Mr. Mahinder, Mr. Vijay Baskar, Ms. Rani, Ms. Asia Pervaz, Ms. Manswi, and Mr. Kishan.

I extended my sincere thanks to **Dr. Alagesan Balasubramani**, **Dr. Bilal Ahmed** for them support, encouragement and motivation. Also, I thank to **Dr. Anwita Mudiraj** for her motivation and inspiration words.

I express my sincere gratitude to **Prof. Y. Jayaprakash Rao**, **Dr. Nagaraj**, **Dr. G. Balakrishnan**, **Dr. P. Srinivas**, **Dr. B. Sailu** for their excellent teaching and motivation, also i extended my gratitude to **Dr. P. Hari Prasad** for his wonderful teaching and guidance for me to build up my career.

I am very much thanking to all my labmates, seniors and juniors for their support and all my batch mates for their help in every situation they supported me lot, I feel very happy with them journey.

CONTENTS

List of Abbreviations used	i-iii	
Synopsis	iv-xiv	
INTRODUCTION	Page No.	
General background	1	
• Heterocycles	1	
Natural products	2	
 Indole alkaloids 	3	
Marine indole alkaloids	4-8	
 Synthesis of indole containing alkaloids 	9-12	
Carboline alkaloids	13-14	
 Synthesis of carboline containing alkaloids 	15-16	
 C-C bond forming coupling reactions 	17-18	
 Decarboxylative cross-coupling 	18-20	
 Decarboxylative cross-coupling reactions 	21-28	
• References	29-34	
CHAPTER- I (A)		
Metal-free decarboxylative formylation of indoles and acylation of	β -carbolines:	
Application to the synthesis of indole alkaloids		
Introduction	35-43	
Results and Discussion		
Conclusion		
Experimental Section		

CHAPTER- I (B)

CHAITER-I(D)						
Photochemical decarboxylative formylation of indoles with aq. glyoxylic acid						
Introduction	97-99					
Results and Discussion	99-101					
Conclusion	101					
Experimental Section	101-117					
References	118-121					
CHAPTER- II						
Total synthesis of Canthinone and its analogues through Knoevenagel condensation						
	_					
Introduction	122-124					
Results and Discussion	125-135					
Conclusion	135					
Experimental Section	136-145					
References	146					
CHAPTER- III						
Synthesis of isomeric Calothrixin B (7 <i>H</i> -Indolo[2,3- <i>j</i>] phenanthridine-7,13(8 <i>H</i>)-dione) and <i>N</i> -Pyrimidyl Ellipticine quinone						
Introduction	147-153					
Results and Discussion	154-155					
Conclusion	156					
Experimental Section	156-163					
References	164					

List of Abbreviations Used

Acetyl Ac Aqueous aq. Aryl Ar Benzyl Bn br Broad (spectral) Bu **Butyl** t-Bu *tert*-Butyl **BOC** tert-Butyloxycarbonyl °C Degree Celsius Calcd Calculated Concd Concentrated C-C Carbo-Carbon C-X Carbon-Heteroatom **CDC** Cross Dehydrogenative coupling m-CPBA meta-Chloroperbenzoic acid δ Chemical shift in parts per million **DBU** 1,8-Diazabicyclo[5.4.0]undec-7-ene d Doublet (spectral) **DCE** 1,2-Dichloroethane **DCM** Dichloromethane dd Doublet of doublets (spectral) DDQ 2,3-Dichloro-5,6-dicyano-1,4benzoquinone **DMAP** 4-Dimethylaminopyridine **DMF** *N*, *N'*-Dimethylformamide **DMSO** Dimethyl sulfoxide

Dess-Martin periodinane

Equation

DMP

Eq.

equiv Equivalent(s)

EtOAc Ethyl acetate

EtOH Ethanol

EDG Electron donating group

EWG Electron withdrawing group

ESI Electronspray ionization

g Gram(s)

h Hour(s)

Hz Hertz

HRMS High Resolution Mass Spectrometry

HMTA Hexamethylenetetramine

IBX 2-Iodoxybenzoic acid

i-Pr Isopropyl

J Coupling constant

m multiplet

Molar (solution concentration)

Me Methyl

MeCN Acetonitrile

MeOH Methanol

mg Milligram(s)

MHz Megahertz

min Minute(s)

mL Millilitre(s)

mmol Millimole(s)

MOM Methoxymethyl

MS Molecular sieves

m.p Melting point

MW Microwave

NBS N-Bromosuccinimide

NCS N-Chlorosuccinimide

NMR Nuclear Magnetic Resonance

Normal (solution concentration)

Ph Phenyl

PG Protecting group

ppm Parts per million

py Pyridine/pyridyl

PEG Polyethylene glycol

p-TSA para-Toluenesulfonic acid

PIDA (Diacetoxy)iodobenzene

q Quartet (spectral)

 R_f Retention factor

rt Room temperature

SET Single electron transfer

Sec secondary

s Singlet (spectral)

t Triplet (spectral)

TMEDA Tetramethylethylenediamine

TFA Trifluoroacetic acid

tert tertiary

TMS Trimethylsilyl

TBAB Tetra-n-butylammonium bromide

TBHP *tert*-Butyl hydroperoxide

TLC Thin layer chromatography

Ts Tosyl

UV Ultraviolet

SYNOPSIS

This thesis entitled as "Metal-free decarboxylative method for the synthesis of indole alkaloids and synthesis of canthinones via Knoevenagel condensation" consists of three chapters.

Introduction:

Indole alkaloids: Indole is a well-known privileged *N*-heterocyclic organic compound, it was a bicyclic aromatic compound contains benzene ring fused with pyrrole. Naturally available violet-blue dye named as indigo, which leads to the synthesis of indole in 1866 Adolf von Baeyer were first isolated, accomplished by zinc distillation with oxindole. Marine indole alkaloids which was produced from marine sources having much attention from both natural product chemists, and pharmacologists due to its abundance biological activities. These alkaloids shown anti-cancer, anti-microbial, anti-malarial, anti-fungal, anti-inflammatory, anti-plasmodial, anti-virus and anti-cholinesterase activities. Marine indole alkaloids (**Figure 1**) have several advantages due to its complex structures, important scaffold's these are tremendous potential leads to the drug discovery.

Figure 1. Representative examples of indole-based alkaloids

 β -Carboline alkaloids: Carbolines are most attractive and important heterocyclic natural products, with great structural diversity and promising biological activities. They are tricyclic, pyridine fused indole alkaloids. Based on the position of N-atom in pyridine ring classified as α -, β -, γ - and δ -carbolines. Among them β -carboline alkaloids (**Figure 1**) are existing natural

occurrences over the large numbers including various plants, marine creatures, insects, mammals, human tissues, foodstuffs, and body fluids. The core unit of β -carboline scaffolds having in several natural products as well as pharmaceutical agents. These alkaloids exhibit various biological activities such as antitumor, antiviral, anxiolytic, hypnotic, anticonvulsant, antiparasitic, and antimicrobial, activities.

Carbon-Carbon bond forming coupling reactions: The developments for the formation of carbon-carbon bonds have long attracted attention to chemists. These Carbon-Carbon bond forming reactions are the key steps in organic synthesis towards design the carbon frame work in various organic molecules, especially in total synthesis C-C bond forming reactions are the crucial role to obtain the corresponding coupled product. Based on the coupling partners involved, cross-coupling reactions further classified as traditional cross-coupling, C-H activation, cross dehydrogenative coupling and decarboxylative cross-coupling.

Decarboxylative cross-coupling: Carboxylic acids are the versatile reactants for synthetic approach since they are readily available, non-toxic, affordable, easy to handle and typically stable at room temperature, air, and moisture. Furthermore, many of carboxylic acids may be produced entirely from natural sources, avoiding the need to use fossil fuels like oil or gas to prepare the compounds. Carboxylic acids generated from biomass exhibit a wide range of structural diversity such as amino acids, fatty acids, and sugars. Decarboxylative coupling reactions of carboxylic acids have drawn a lot of interest from chemists in recent years, and have emerged, attractive as one of the most effective methods for forming carbon-carbon (C-C) and carbon-heteroatom and (C-X; X = N, P, S) bond extrusion of CO_2 .

There are numerous decarboxylative coupling reactions available up to date, and the number of reactions is growing rapidly. In the modern organic synthesis decarboxylative oxidative cross-coupling have an important role, this approach is more cost-effective and environmentally favourable than other traditional ways. In this field different types of carboxylic acids involves, such as aromatic, aliphatic, unsaturated, and *oxo*carboxylic acids, can be decarboxylated to produce the corresponding alkylation, arylation, alkynylation, olefination, acylation, homocoupling, and cyclization products by reacting with different reactive partners. This thesis mainly focuses on the decarboxylative method with various reactive starting precursors.

CHAPTER-I (A)

Metal-free decarboxylative formylation of indoles and acylation of β -carbolines: Application to the synthesis of indole alkaloids

Introduction: Formylation and acylation of *N*-heterocycles are important method for the preparation of fine chemicals and biologically important alkaloids. The conventional methods for the preparation of aromatic/hetero aromatic aldehydes were Vilsmeier-Haack, Reimer-Tiemann, Rieche, Duff and Friedel-Crafts reaction for acylation. Many of these methods suffers from several disadvantages such as corrosive, moisture sensitive, harsh reaction conditions, poor selectivity, waste bi-products and less functional group tolerance. However, several new approaches are found in the past years for the synthesis of indole-3-carbaldehde. A mild and general, operationally simple methods of 3-formylindoles are still of interest.

Scheme 1.1: Formylation of indoles with (NH₄)₂S₂O₈ ^a

^a Reaction conditions: Indole and its substituents **1a-k**, pyrrole **1m** (0.85 mmol, 1.0 equiv), 50% aqueous glyoxylic acid solution **2** (1.70 mmol, 2 equiv), (NH₄)₂S₂O₈ (1.70 mmol, 2 equiv), DMSO (1.0 mL) at room temperature. Isolated yields after chromatography.

We have synthesized a metal-free decarboxylative formylation of indole and its substituents with α -oxo/keto acid 50% aqueous glyoxylic acid solution as a formyl equivalent using ammonium persulphate (NH₄)₂S₂O₈/DMSO an oxidant with good yields (**Scheme 1.1**).

 β -Carboline alkaloids are part of indole containing alkaloids it exhibits various biological activities and find more importance in medicinal chemistry. Though formylation of β -carboline leads to inseparable mixtures, acylation of β -carboline with pyruvic acid and phenyl glyoxylic acids under (NH₄)₂S₂O₈ mediated by employing decarboxylative acylation methodology to afforded 1-acyl- β -carbolines in moderate yields (**Scheme 1.2**). The conventional method of acylation of β -carboline involves a multistep sequence using protecting groups.

Scheme 1.2: Acylation of β-carbolines with (NH₄)₂S₂O₈ ^a

^a Reaction conditions: β -carbolines **4a-b** (0.30 mmol, 1.0 equiv), α -ketoacids **5a-d** (1.5 equiv), (NH₄)₂S₂O₈ (0.59 mmol, 2 equiv), DMSO (1.5 mL), 40 °C, 4 h. Isolated yields after chromatography.

The same methodology was implemented for acylation of β -carboline and its substituents we afforded 1-acetyl β -carboline compounds **6a-e**, which are readily available for the synthesis of biologically active β -carboline alkaloids eudistomins Y_1 , Y_3 and marinacarbolines A-D (**Figure 1.1**).

Figure 1.1 Possible alkaloids from 6b, 6d & 6e

The marine β -carboline alkaloid pityriacitrin **8a** (1*H*-Indol-3-yl-9*H*-pyrido[3,4-*b*]indol-1-yl)methanone) was first isolated from marine bacterium of the genus *Paracoccus sp.*, from the human pathogenic yeast *Malassezia furfur* in 1999 and recently from the marine fungus *Dichotomomyces cejpii*.

We have extended our methodology for the total synthesis of pityriacitrin and its substituents. We accomplished a metal free decarboxylative cross coupling of β -carboline with indole-3-glyoxylicacid in 74% yield in single step without employing any protection deprotection strategy (Scheme 1.3).

Scheme 1.3: Synthesis of β-carboline alkaloid Pityriacitrin with (NH₄)₂S₂O₈ ^a

$$R^{1} + R^{2} \longrightarrow 0$$

$$R^{1} + R^{2} \longrightarrow 0$$

$$R^{1} + R^{2} \longrightarrow 0$$

$$R^{1} = H \text{ (4a)}$$

$$= COOMe \text{ (4b)}$$

$$R^{2} = H \text{ (7a)}$$

$$= OMe \text{ (7b)}$$

$$= CI \text{ (7c)}$$

$$8a-d$$

^a Reaction conditions: β-carbolines **4a-b** (0.30 mmol, 1.0 equiv), indole-3-glyoxylic acid **7a-c** (1.5 equiv), (NH₄)₂S₂O₈ (0.59 mmol, 2 equiv), DMSO (1.5 mL), 40 °C, 4 h, Isolated yields after chromatography.

In summary, we developed a metal-free decarboxylative formylation of indoles and acylation of β -carbolines with (NH₄)₂S₂O₈/DMSO. The reactions were carried out from room temperature to 40 °C and does not require any special reaction conditions, and the products were obtained in good to moderate yields. This methodology was applied to the synthesis of biologically active natural product pityriacitrin with 74% yield in a single step and formal synthesis of eudistomins Y₁&Y₃, marinacarbolines A-D.

CHAPTER-I (B)

Photochemical decarboxylative formylation of indoles with aq. glyoxylic acid

Introduction: Aldehydes are ubiquitous organic functional group, and versatile intermediates, widely used in medicines, pesticides, chemical raw materials, and functional group interconversions. Indole-3-carboxaldehyde and its derivatives are the key structures for the preparation of biologically active molecules, and are important generic materials. Indole-3-carboxaldehyde usually synthesized by conventional methods having lack of drawbacks using non-ecofriendly reagents and harsh reaction conditions. Recently, metal-catalyzed, or photo-mediated decarboxylative coupling reactions have emerged and attracted field. Herein, we synthesized a transition-metal-free and oxidant-free photochemical decarboxylative formylation of indoles (Scheme 1.4) with aqueous glyoxylic acid as a formyl synthon.

Scheme 1.4. Light mediated synthesis of indole-3-carboxaldehyde

Reaction conditions: **1a-i, 1l-n** (1.0 equiv), 50% aqueous glyoxylic acid solution **2** (2 equiv), Acetonitrile (6.0 mL) using eight 8W 254 nm UV-lamps, room temperature, air.; ^b Isolated yields after chromatography.

In conclusion, we have developed a photochemical decarboxylative formylation of indoles and its substituents, pyrrole with aqueous glyoxylic acid as a formyl source. Advantages of this method include its commercially available inexpensive starting materials; no transition metals, additives, or oxidants; the ease of handling of the reagents; and good to moderate yields of the products.

CHAPTER-II

Synthesis of isomeric Calothrixin B 7*H*-Indolo[2,3-*j*] phenanthridine-7,13(8*H*)-dione and *N*-Pyrimidyl Ellipticine quinone

Introduction: Calothrixin A and B are indolo[3,2-*j*]phenanthridine alkaloids, originally isolated from *Calothrix* cyanobacteria by Rickards *et al.* in 1999. These pentacyclic quinone based alkaloids exhibits human DNA topoisomerase I poisoning activity, and antiproliferative characteristics against many cancer cell lines are both displayed by chloroquinone-resistant variant of the malaria parasite Plasmodium falciparum.

Owing to their biological properties and fascinating structural features we targeted to achieve the synthesis of calothrixins with novel methodology, although several reports available, during the synthesis of calothrixins we have identified an unprecedented indolo[2,3-j]phenanthridine frame work isomeric form of calothrioxin.

Scheme 2.1: Synthesis of starting precursor 2-(1*H*-indol-2-yl)-2-oxoacetic acid (11):

We have synthesized the starting precursor 2-(1H-indol-2-yl)-2-oxoacetic acid (11) from N-Pyrimidyl indole 9 treated with oxalyl chloride inducing the reflux with toluene solvent

at 100 °C in 24 h to obtain the compound 2-oxo-2-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl) acetic acid (**10**) further deprotection with NaOMe in Dry. DMSO at 110 °C to afford the compound indole-2-ketoacid (**11**) with good yields (**Scheme 2.1**).

Scheme 2.2: Synthesis of isomeric Calothrixin B

We attempted the reaction for the synthesis of calothrixin B from the prepared starting material 2-(1*H*-indol-2-yl)-2-oxoacetic acid (11) treated with commercially available quinoline-3-carbaldehyde (12) involving decarboxylative cross-coupling method in the presence of acid catalyzed, sodium persulfate as an oxidant with DMSO solvent at 70 °C in 36 hours, and exclusively observed the decarboxylative cross-coupled product, isomeric calothrixin B (14) in 18% and along with isomeric decarboxylated coupling products 13, 15, 56%, 4% yields respectively (Scheme 2.2).

Scheme 2.3: Synthesis of isomeric Calothrixin B

Although we alter the starting material 2-(1*H*-indol-3-yl)-2-oxoacetic acid (7a) reacts with quinoline-3-carbaldehyde (12) involving decarboxylative cross-coupling strategy in the presence of acid catalyzed, sodium persulfate as an oxidant with DMSO solvent at 110 °C in 8

h reaction period we found that, exclusive product isomeric calothrixin B (14) with 42% yield (Scheme 2.3).

Scheme 2.4: Synthesis of N-Pyrimidyl Ellipticine quinone (17) alkaloid

We have also synthesized *N*-pyrimidyl ellipticine quinone alkaloid from the prepared compound **10** with commercially available starting material pyridine-3-carboxaldehyde (**16**) in the presence of acid-mediated sodium persulfate an oxidant with DMSO at 80 °C in 24 h undergoes metal free decarboxylative cross-coupling to afforded compound **17** with 12% yield (**Scheme 2.4**).

In summary, we have developed an efficient method for the constructing indolo[2,3-j] phenanthridine frame work involving transition metal-free decarboxylative cross-coupling methodology in a single step. We aimed to synthesize calothrixin B, unfortunately, we found that isomeric calothrixin B (14) in moderate yield. In addition, we have also synthesized *N*-Pyrimidyl ellipticine quinone (17) by using decarboxylative cross-coupling strategy with low yield.

CHAPTER-III

Synthesis of bio-active natural product Canthinone and its analogues

Introduction: Canthin-6-one (6*H*-indolo[3,2,1-de][1,5]naphthyridin-6-one) was first isolated in 1952 by Haynes $et\ al$. from the Australian tree $Pentaceras\ australis$, also found from the various plants families those are Rutaceae, Simaroubaceae, Malvaceae, Amaranthaceae, Caryophyllaceae and Zygophyllaceae and recently from fungi (Boletus curtisii Berk), marine organisms. It is a sub class of β -carboline alkaloid with an additional D-ring. Canthinone and its analogues shows various biological activities such as antitumor, antiviral, antibacterial, antifungal, antiproliferative, anti-inflammatory, aphrodisiae, and antiparasitic agents, also uses in DNA screening, cancer chemoprevention, and so on.

The starting precursors β -carboline-1-carboxaldehydes (18a-b) are prepared as per the literature procedure. The reaction of β -carboline-1-carboxaldehyde (18a) and malonic acid (19a) with DMAP under refluxing with toluene undergoes condensation followed by cyclization to canthi-6-one 20a with 72% yield in single step. This methodology was applied with the commercially available starting materials 19a-c and afforded the the products (20a-e) with moderate yields (Scheme 3.1).

Scheme 3.1: Synthesis of Canthin-6-one and its analogues

^a Reaction conditions: β -carbolines-1-carboxaldehydes **18a-b** (0.30 mmol, 1.0 equiv), **19a-c** (1.2 equiv), DMAP (0.764 mmol, 1.5 equiv), toluene, reflux, 3-8 h, Isolated yields after chromatography.

In conclusion, we have synthesized biologically active β -carboline alkaloid canthinone and its derivatives starting from kumujian C **18a-b** treatment with commercially available starting precursors **19a-c** under the base mediated involving condensation followed by cyclization to afforded in a single step with good to moderate yields.

INTRODUCTION

General background

The science of organic chemistry having a broad and diversity, in the past many scientists or investigators from different countries making the discoveries and developments that combined over the 200 years led to the field organic chemistry. Organic compounds were isolated from nature with the pure form in 16th century. Scientists are believed that organic compounds were obtained from natural resources with the special "vital force" theory; said that impossible to prepare the organic materials from laboratory. Fortunately, in 1828 a German chemist Friedrich Wöhler were discovered urea, and invalidate the vital force theorem by synthesized from ammonium cyanate heating in the laboratory. His discovery proven that, organic compounds can be synthesize from laboratory, with this achievement the pathway for many scientists to synthesize the various organic compounds.²

In general, organic compounds was classified as acyclic/open chain and cyclic compounds based on structure and its properties. Both the cyclic and acyclic compounds further subdivided in each two categories. A class of cyclic compounds with heteroatom is called heterocyclic compounds.

Heterocycles

Heterocycles are classified under cyclic containing organic compounds which contains minimal single hetero atom present in entire cyclic system. In general, the heterocycle contains non-metallic elements like oxygen, nitrogen, and sulfur, etc. Heterocyclic compounds generally classified as alicyclic (saturated) and aromatic (unsaturated) systems based on their electronic structures. Heterocycles available in various ring sizes from three membered to nine membered.³

The alicyclic heterocyclic compounds contain at least one heteroatom with cyclic saturated compounds such as tetrahydrofuran, piperidine, dioxane, etc. Furthermore, unsaturated heterocyclic compounds include pyridine, pyrrole, furan, thiophene and benzo fused heterocycles such as indole, quinoline, isoquinoline and benzothiophene, etc. Many of the heterocycles have broad range of applications in various fields: pharmaceuticals, agro, food, dye chemistry, polymer, material, and medicinal chemistry.^{3c}

Natural products

Natural products are a chemical substance produced by living organism exist in nature. It contains high structural diversity, complex chemical structures and outstanding biological or pharmaceutical properties.⁴ Natural products are any organic materials was synthesized by living organisms induces primary and secondary metabolites. Primary metabolites have intrinsic functions, absolutely required for surviving these are generally produced from the essential organic molecules includes the building blocks amino acids, carbohydrates, proteins, vitamins, nucleic acids, lactic acid etc., on the other hand secondary metabolites have extrinsic functions, not essential for survival theses are belongs **alkaloids**, flavonoids, terpenoids, steroids, essential oils, etc. To fulfil the human being medicinal requirements, synthesizing natural products in the laboratory using semi synthesis or total synthesis were playing a crucial role in the field of synthetic organic chemistry. Furthermore, natural products on its efficient bioactive compounds from natural resources are highly inspired much attention for the developments of drug discovery in pharmaceutical industries (Figure 1).⁵

Figure 1. Few of milestone natural products

Alkaloids

The chemistry of alkaloids is one of the most important topic in organic and bioorganic field. The term "alkaloid" was first introduced in 1819 by Friedrich W. Meissner and naturally occurring organic compound it contains at least one nitrogen atom. Alkaloids are the best example of secondary metabolites, it produced by variety of organisms such as higher plants, fungi, bacteria, algae, plants and animals and other living organisms. Alkaloids are basic in nature, bitter in taste and it shows various biological activities. Based on biochemical precursors (tyrosine, tryptophan, lysine, etc.) or carbon skeleton of the molecule (indole, quinoline, isoquinoline, etc.) alkaloids are classified⁶ as,

- 1). True alkaloids: It contains *N*-heterocycles, originally from amino acids. Ex: morphine, atropine, and nicotine
- 2). Pseudo alkaloids: These alkaloids are not coming from the amino acids, but likely to the alkaloids. Ex: steroid-like, terpene-like, and purine-like alkaloids
- 3). Proto alkaloids: It possess the nitrogen atom, which is not involving in heterocyclic system and originated from amino acids. Ex: adrenaline, mescaline, and ephedrine's.
- 4). Polyamines: Ex: spermidine, putrescine, and spermines
- 5). Cyclopeptide and Peptide alkaloids

Indole Alkaloids

Indole (6) is a well-known privileged *N*-heterocyclic organic compound and having widespread biological activities. It was a bicyclic aromatic compound, contain benzene ring fused with pyrrole. The extensive research growing on the mid of 19th century due to naturally available violet-blue dye named as indigo, which leads to the synthesis of indole in 1866 Adolf von Baeyer were first isolated, accomplished by zinc distillation with oxindole.⁷

$$\begin{array}{c|c}
 & O & H \\
 & N & \\
 & M & \\
 & Indigo dye (5) & Indole (6)
\end{array}$$

Indole nucleus is planar molecule it consists 10π electrons around the nucleus, it is aromatic compound obeys Huckel [4n+2] rule. The indole C-3 position having highest electron density and more reactive towards electrophilic substitution reactions.

Figure 2. Examples of natural indole alkaloids

The indole scaffolds are pharmacologically active naturally existing alkaloids such as L-Tryptophan 7 is an essential amino acid, Serotonin 9 is a monoamine neurotransmitter and Gramine 10 acts as the agonist of the adiponectin receptor 1, Psilocin 11 acts as 5-HT_{1A} and 5-HT_{2A} and 5-HT_{2C} agonist receptors and Melatonin 12 as the important role in regulation of sleep-wake up process (Figure 2).

Indole and its derivatives having tremendous applications in various fields, there are several named reactions associated with the synthesis of indole alkaloids.⁹

Marine Indole Alkaloids

Marine indole alkaloids have shown much attention from both natural product chemists, and pharmacologists due to its abundance biological activities. Marine indole alkaloids have several advantages due to its complex structures, important scaffold's these are beneficial for the drug discovery, usually it possesses higher molecular weight and large number of carbons with heteroatoms. Isolated from marine environment under the high pressure, lower the temperature with various marine micro and macro-organisms includes bacteria, fungi, sponges, algae, bryozoans, and mangrove plants, etc.

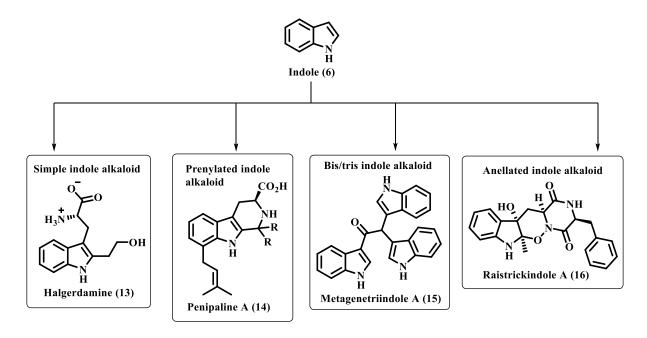


Figure 3. Classifications of indole alkaloids

These alkaloids show anti-malarial, anti-microbial, anti-fungal, anti-inflammatory, anti-plasmodial, anti-virus, anti-cholinesterase, and anti-cancer activities. ^{10a} Generally marine indole alkaloids can be classified in to four groups, those are simple, prenylated, anellated and bis/tris indole alkaloids (Figure 3). ^{10b}

Simple indole alkaloids

Tryptophan or its precursors are the primary source of the simple indole alkaloids. In 2003 Kim and co-workers were isolated N_b -acetyl tryptamine (17) from alga *Gracilaria* verrucosa's surface. Kondracki et al. was extracted indole alkaloids including 5-hydroxy indole-3-carboxaldehyde (18), methyl-5-hydroxy-indole-3-carboxylate (19), 3-formylindole (20), and 5-deoxyhyrtiosine A (21) from marine sponge *Hyrtios erectus* in 2006 (Figure 4).

Figure 4. Examples of simple marine indole alkaloids

Bacillamide A (22) obtained^{13a} by Murakami *et al.* in marine bacterium *Bacillus sp.* in 2003, it shows the algicidal activity. Simultaneously in the year of 2007 Rowley and coworkers^{13b} found Bacillamide A-C (22-24) in *Bacillus endophyticus Species* (Figure 5).

Figure 5. Examples of simple marine indole alkaloids

In 2007 Palermo *et al.* were extracted¹⁴ Meridianins F-G (**25-26**) from tunicate *Aplidiummeridianum*. Ethyl-2-(6-bromo-5-hydroxy-1*H*-indol-3-yl)-2-oxoacetate (**27**) isolated^{15a} by Santalova *et al.* from the sea squirts *Syncarpa Oviformis* in 2008. Ethyl-2-(5-hydroxy-1*H*-indol-3-yl)-2-oxoacetate (**28**) isolated by Yamazaki and co-workers^{15b} from marine sponge *Ircinia* species in 2015 (Figure **5**).

Figure 6. Representative simple marine indole alkaloids

Laatsch and co-workers¹⁶ isolated mansouramycin D (**29**) from marine *streotomyces sp.* in 2009, it is a cytotoxic alkaloid contains indole and isoquinoline rings. Breitfussin A-B (**30-31**) isolated¹⁷ from hydrozoan *Thuiria breitfussi* by Marcel Jaspars in 2012. Indole containing alkaloid Aqabamycin G (**32**) was extracted¹⁸ of *Sinularia polydactyla* by W. A. Zereini *et al.* and Yao *et al.* in the year of 2010. Wang *et al.* were obtained¹⁹ cytotoxic alkaloid Shewanelline C (**33**) from *Shewanella piezotolerans* in 2014 (Figure **6**).

Prenylated indole alkaloids

Figure 7. Examples of prenylated marine indole alkaloids

Prenylated indole alkaloids have large number of subgroups, it shows numerous biological activities. Shornephine A (34) was extracted²⁰ from marine derived *Aspergillus* sp. Carneamide A-B (35-36) are diketopiperazine alkaloids produced²¹ from the marine fungus *Aspergillus carneus* (*Figure 7*).

Bis-and Tris-indole alkaloids

These alkaloids are derived from biosynthetic pathway that contains two or more indole fragments and it exhibits wide range of biological properties. Lee *et.al* was isolated²² Scalaridine A (37) from sponge *Scalarispongia sp.* in 2013. In the year 2007 Kobayashi and co-workers²³ isolated bis-indole marine alkaloid Hyrtinadine A (38) from *Hyrtios species*. Gu *et al.*²⁴ was derived Arsindoline A (39) from marine bacterium *Aeromonas sp.* Deoxytopsentin (40) and Metagenetriindole (15) are cytotoxic bis- and tris-indole alkaloids obtained from Escherichia coli fermentation process by Qui and co-workers²⁵ in 2014. Pseudellone C (41) was isolated²⁶ by Lan and co-workers from *Pseudallescheria ellipsoidea* fungus in the year 2015. Liu *et al.* was isolated²⁷ Racemosin B (42) from *Caulerpa racemosa* in the year 2013 (Figure 8).

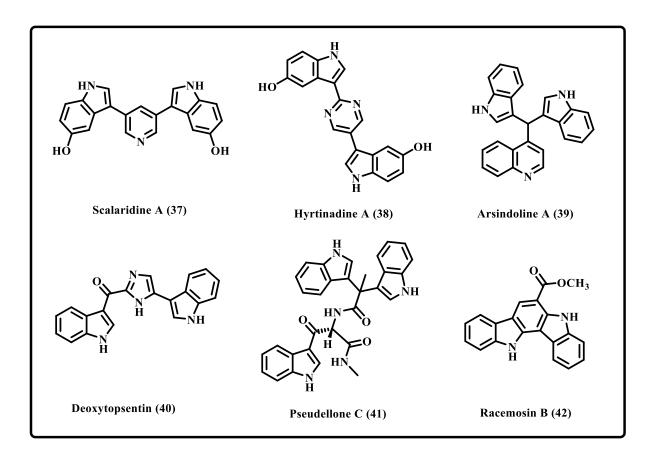


Figure 8. Examples of Bis and tris indole alkaloids

Anellated indole alkaloids

These types of alkaloids having atleast one indole ring annulated with other rings. Steglich and co-workers²⁸ isolated Pityriazole (43) marine indole alkaloid from yeast Malassezia furfur in the year 2005. In 2012 Br-related alkaloids 44 and 45 were isolated²⁹ by Stonick *et al.* from the sea sponge *Penares sp.* It shows moderate cytotoxic activities (Figure 9).

Figure 9. Examples of Anellated indole alkaloids

Selective synthesis of indole containing alkaloid

Eq. 1: Synthesis of Mansouramycin D

In 2013 Prakash *et al.* were described³⁰ first total synthesis Mansouramycin D (**29**). It is an cytotoxic alkaloid, which is involving Sonogashira coupling subsequently iminoannulation, oxidation then aminomethylation with the overall 54.5-60.9 % yield (**Eq. 1**).

Eq. 2: Synthesis of Pityriazole

Forke *et al.* was synthesized³¹ first total synthesis of Pityriazole (43) via Pd-catalyzed construction of carbazole frame work involving Buchwald-Hartwig amination, subsequently Pd-catalyzed C-H activation to obtained Clausine L (55) compound further undergoes demethylation and halogenation to gave compound 57. Then, compound 57 undergoes Suzuki-Miyaura coupling with compound 58 to afforded *N*-sulfonyl indol-3-yl carbazole skeleton 59, further deprotection to provide the targeted compound Pityriazole (43) with overall 35% yield in 6-steps in 2008 (Eq. 2).

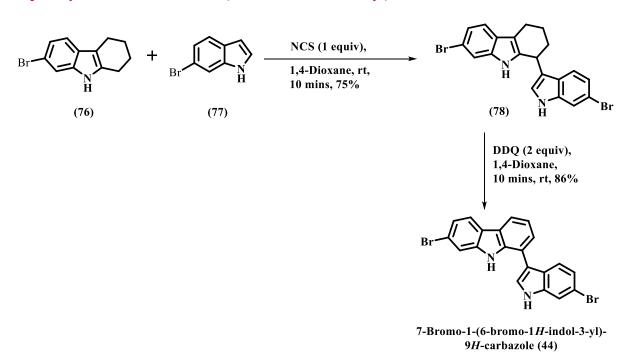
Eq. 3: Synthesis of Scalaridine A

Ranjani *et al.* was synthesized bis-indole alkaloid Scalaridine A (37) from CuCl₂ in-situ generated nano-Cu₂O without using external ligands involving Suzuki-Miyaura coupling product and demethylation to obtained with 60% overall yield in the year 2017 (Eq. 3).³²

Eq. 4: Synthesis of Fascaplysins

R¹= Br, R²= H 3-Bromofascaplysin (65) R¹= H, R²= Br 10-Bromofascaplysin (66) R¹= Br, R²= Br 3,10-Dibromofascaplysin (67)

Radchenco *et al.* were described³³ first total synthesis of indole containing alkaloids substituted fascaplysins (**65-67**) from commercially available starting precursors with the overall 40-43% yield in the year 1997 (**Eq. 4**).


Eq. 5: Synthesis of (±)-Oxoaplysinopsin B

Nagarajan and co-workers first reported³⁴ total synthesis (\pm)-Oxoaplysinopsin B (71) in 2021. It is an indole alkaloid synthesized from commercially available starting precursors using deep eutectic solvents with an overall 48% yield (Eq. 5).

Eq. 6: Synthesis of Calothrixin B

In 2014 Ramkumar *et al.* were synthesized³⁵ indole fused alkaloid Calothrixin B (**75**), involving Friedel-Crafts hydroxy alkylation subsequently oxidation and direct ortho lithiated cyclization within 3-steps obtain the desired product overall 38% yield (**Eq. 6**).

Eq. 7: Synthesis of 7-Bromo-1-(6-bromo-1*H*-indol-3-yl)-9*H*-carbazole

7-Bromo-1-(6-bromo-1*H*-indol-3-yl)-9*H*-carbazole (**44**) is a marine cytotoxic indole alkaloid. Nagarajan and co-workers³⁶ first reported total synthesis was developed an methodology operationally simple, and meta-free oxidative cross coupling of tetrahydro carbazole and its substituents with commercially available starting materials indole and its substituents to obtain the corresponding 1-indolyl tetrahydro carbazole (**78**) frame work followed by aromatization to gave the desired product **44** in two steps with an overall 64% yield in 2019 (**Eq. 7**).

Carbolines

Carbolines are most attractive and important heterocyclic natural products, significant structural features, and promising biological properties. They are tricyclic, pyridine fused indole alkaloids. According to the degree of saturation carbolines are classified as saturated (tetrahydrocarbolines), partially saturated (dihydrocarbolines) and unsaturated (fully aromatized) carboline alkaloids. Based on the location of *N*-heteroatom in pyridine ring classified as α -, β -, γ - and δ - carbolines (Figure 10). Among them β -carbolines alkaloids are existing natural occurrences over the large numbers which includes many different plants, marine creatures, foodstuffs, insects, mammals, human tissues, and also body fluids. And this family of alkaloids exhibits numerous biological activities such as antitumor, antiviral, anxiolytic, hypnotic, anticonvulsant, antiparasitic, and antimicrobial activities.³⁷

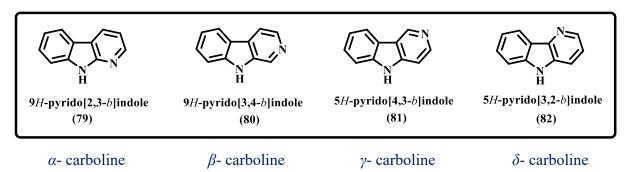


Figure 10. Classification of carbolines

The basic skeleton of β -carboline alkaloids found in various matrices, including marine organisms, insects, food products, plant extracts, and biological fluids and tissues. The core unit of β -carboline scaffolds are having in several natural products as well as pharmaceutical agents (Figure 11).³⁸

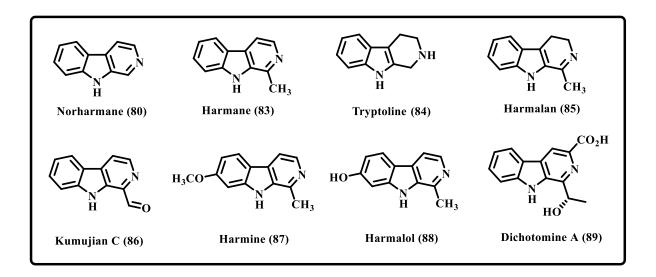
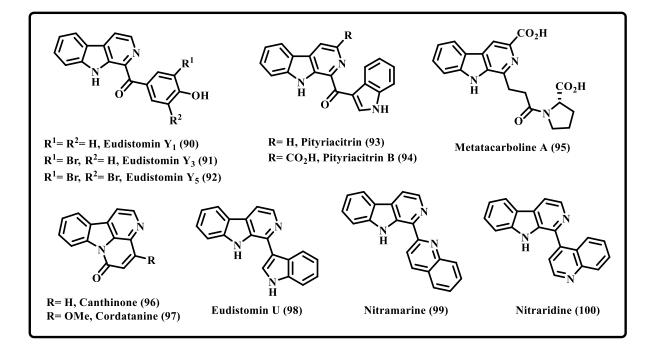



Figure 11. Examples of simple β -carboline alkaloids

In addition, other β -carboline containing alkaloids³⁷ Eudistomins Y₁₋₃ (**90-92**) isolated from genus *Eudistoma*, Pityriacitrins (**93-94**) isolated from marine bacterium of genus *Paracoccus sp.*, Metatacarboline A (**95**) occurred from *Mycena metata*, and Canthinone (**96**), Cordatanine (**97**) was isolated from the family of *Caryophyllaceae*, moreover Eudistomin U (**98**) were isolated from marine ascidian *Lissoclinum fragile*, and Nitramarine (**99**), Nitraridine (**100**) found from *Nitraria Komarovii* plant. Those are mentioned few of β -carboline containing alkaloids exhibits variety of biological activities (Figure **12**).

Figure 12. Examples of β -carboline containing alkaloids

Selective synthesis of β -carboline containing alkaloids

Eq. 8: Synthesis of Eudistomin U

In 2021 Nagarajan and co-workers³⁹ synthesized Eudistomin U (98), tetrahydro β -carboline (101) treated with indole (6) in the presence of trityl salt through metal-free cross dehydrogenative coupling to afford 1-indolyl tetrahydro β -carboline compound (102) followed by deprotection and aromatization to accomplished the compound 98 with the overall 3-steps in 58% yield (Eq. 8).

Eq. 9: Synthesis of Marinacarbolines (A-D)

Tagawa *et al.* was described⁴⁰ first total synthesis of β -carboline alkaloid Marinacarbolines (A-D) (107-110) involving Stille cross coupling subsequently functional group modifications in the year 2013 (Eq. 9).

R = 4-methoxyphenyl (Marinacarboline A) (107), 98%

- = 4-hydroxyphenyl (Marinacarboline B) (108), 97%
- = phenyl (Marinacarboline C) (109), 99%
- = indol-3-yl (Marinacarboline D) (110), 97%
- = COOMe (Dichotomide I) (111)

Eq. 10: Synthesis of Cordatanine

Argade and co-workers⁴¹ were accomplished β -carboline alkaloid Cordatanine (97) starting from tryptamine (8) and methoxy maleic anhydride (112) by regioselective reduction and subsequently acid catalyzed intramolecular cyclization to furnished compound 115 followed by methanolysis of lactum ring or cleavage of lactum ring then cyclization to afforded the compound 97 with overall 58% yield in the year 2017 (Eq. 10).

Eq. 11: Synthesis of Nitramarine

In 2013 Ramesh *et al.* were reported⁴² the three-components (**120-122**) synthesis of Nitramarine (**99**) through Povarov approach subsequently saponification, and decarboxylation with overall 49% yield (**Eq. 11**).

C-C bond forming coupling reactions

The developments for the formation of carbon-carbon bonds⁴³ have long attracted attention to chemists. C-C bond reactions are one of the most important processes in organic synthesis towards design the carbon frame works in various organic molecules, especially in total synthesis C-C bond forming reactions are the crucial role to obtain the corresponding coupled product. There are two types of coupling reactions: homocoupling and cross-coupling based on the coupling patterners involved in the reaction. Cross-coupling reactions are often categorised as seen in Figure 13.

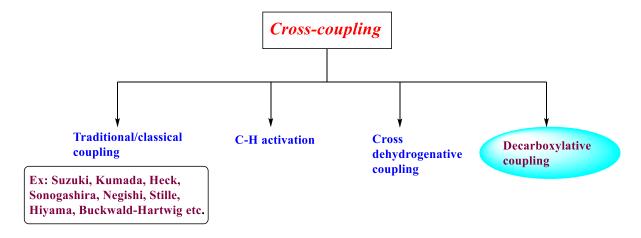


Figure 13. Classifications of cross-coupling reactions

Cross-coupling processes, which allow for the selective coupling of C-C bonds, have proven to be very helpful tools for organometallic as well as synthetic organic chemists. Cross-coupling reactions, discovered about 50 years ago, are now utilised extensively in industries and academics and many synthetic technologies. C-C bond-producing reactions are among the most difficult challenges in synthetic organic chemists. One of the greatest discoveries of the last century was transition metal-catalyzed cross-coupling. He has been shown to be a strong tool for the formation of numerous chemical linkages. The recognised and well-known classical cross-coupling reactions include Suzuki, Heck, Negishi, Stille reactions, also Hiyama, Buchwald-Hartwig reaction, etc. In general, these type of coupling reactions are involving transition metal catalysts, typically modelled with an electrophile and a nucleophilic partner. On the other hand, C-H activation is a type of organic reaction, the process of cleavage C-H bond involving transition metal to generate the respective organometallic species to form C-C bond. The waste production will be high in conventional coupling reactions because of the halides and leaving groups, and additives.

When the two distinct nucleophiles are combined directly without any prefunctionalization to produce a cross-coupled product, in such reactions are called as cross dehydrogenative coupling reactions⁴⁶ and only H₂ will be the by-product, with this approach the waste materials can be reduced and coupling can be more ecologically friendly approach. Generally, in this type of reactions they used oxidants like, peroxides, persulfates, O₂, benzoquinones, and hypervalent iodine compounds, etc. Although, oxidative coupling reactions are difficult due to likelihood of homocoupling, overoxidation, selectivity problems, and the direct reactivity of oxidants with nucleophiles. Decarboxylative oxidative cross-coupling⁴⁷ was a convenient and alternative method to generate the C-C/C-X bonds with the only CO₂ is sole by-product. The main topic of this thesis has decarboxylative cross-coupling with different reactive starting precursors.

Decarboxylative cross-coupling

Carboxylic acids are the versatile reactants for synthetic approach since they are readily available, nontoxic, affordable, easy to handle and typically stable at room temperature, air, and moisture. Furthermore, many of carboxylic acids may be produced entirely from natural sources, avoiding the need to use fossil fuels like oil or gas to prepare the compounds. Carboxylic acids generated from biomass exhibit a wide range of structural diversity such as amino acids, fatty acids, and sugars. Decarboxylative cross-coupling methods serve as

economical and eco-friendly alternatives for instance, they have used in conventional cross-coupling processes, which involves costly organic halides, boronic acids, air and moisture sensitive organometallic reagents. Decarboxylative reactions of carboxylic acids drawn a lot of interest from synthetic chemists in recent years, and have emerged, attractive as one of the most effective methods for forming C-C and C-X (X = N, P, S) bond extrusion of CO₂. In this field various types of carboxylic acids involve like, aliphatic, aromatic, and unsaturated and α -oxo/keto carboxylic acids.⁴⁸

There are numerous decarboxylative coupling reactions available up to date,⁴⁹ and the number of reactions is growing rapidly. The classical oldest decarboxylative reaction is the Kolbe electrolysis^{50a} (Figure 14 (A)). Here radicals are electrochemically produced from carboxylic acids and dimerize both the radicals to form C-C bond in 1848. As a results cross-coupling products were obtained from electrolysis is quite difficult. Another classical method, Hunsdiecker demonstrated^{50b-c} silver catalyzed oxidative decarboxylation to generate the respective alkyl radicals trapping by halides to give alkyl halides in 1861 (Figure 14 (B)). Barton decarboxylation method^{50d} (Figure 14 (D)) undergoes decarboxylation in the presence of radical initiators to form the corresponding alkanes. Nilsson *et al.* were described the first decarboxylative reaction, known as the Ullman reaction^{50e} in 1966, which contained two aromatic compounds (Figure 14 (C)).

(A)
$$CO_{2}H \xrightarrow{Pt-anode} \xrightarrow{MeOH} \xrightarrow{Dimerization}$$

$$R_{alkyl} = COOH \xrightarrow{Ag(Phen)_{2}OTf(cat.), \atop t-BuOCl, ACN, rt} R-Cl$$
(C)
$$OH \xrightarrow{NO_{2}} OH \xrightarrow{OMe} \xrightarrow{0.8 \text{ equiv } Cu_{2}O} OH \xrightarrow{NO_{2}} OH$$
(D)
$$R-COOH \xrightarrow{DCC, DMAP} OH \xrightarrow{NO_{2}} OH \xrightarrow{AIBN} R-H$$

Figure 14. Classical decarboxylative coupling reactions

The above mentioned classical decarboxylative coupling reactions depicted in Figure 14. (A) Kolbe electrolysis (B) Hunsdiecker reaction (C) Ullmann cross-coupling reaction and (D) Barton reaction

In the modern organic synthesis decarboxylative oxidative cross-coupling have an important role, this approach is more cost-effective and environmentally favourable than other traditional ways. Different types of carboxylic acids, such as aromatic, aliphatic, unsaturated, and oxocarboxylic acids, can be decarboxylated to produce the corresponding alkylation, arylation, alkynylation, olefination, acylation, homocoupling, and cyclization products by reacting with different reactive partners.⁵¹

Radical additions to aromatic/heteroaromatic systems have a long history in organic field that goes back to the early days. For instance, Gomberg-Bachmann reaction wellresearched biphenyl synthesis from the early 1920s,^{52a} involves aryl radical addition to the aromatic system (benzene). However, scientists had been looking into other analogue pyridine. When aryl radicals are added to heteroaromatic systems, pyridine reactions take place as early as the 1890s. 52b-c There were other sources of phenyl radical discovered in the early 1960s, however the pyridine reaction's efficiency remained poor and the addition process created several regioisomers. However, significant progress was achieved, including regioisomeric ratio which undergoes radical addition throughout the 1960s period. Later, in 1961, demonstrated that pyridine-N-oxide reacting with phenyl radical to produced reactions with acceptable yields and improved regioselectivity. 52d In 1964 Lynch et al. 53a-b comparing the rate of phenyl radical addition to pyridinium and imidazolium ions to that of the neutral heteroaromatic base, suggested that in these heteroaromatic systems, ionic species might be dominant in the direction of radical substitution and depends on delocalization energies which was strongly favoured high reactivity towards 2nd position of pyridine. Furthermore, in 1965 Dou et al. discovered^{53c-e} that protonation accelerated reaction times and improved positional selectivity for the addition of phenyl radicals to several heteroaromatic bases, including quinoline, isoquinoline, quinoxaline, pyrimidine, pyrazine, benzothiazole, and Nmethylbenzimidazole. These results prompted to draw the conclusion that, addition of radicals to the heteroaromatic compounds would be synthetically feasible modifications under acidic conditions.

Later, in 1971 Minisci also demonstrated^{54a} that, addition of radicals to the heteroaromatic compounds are enhances positional selectivity and rate of reaction under the acidic conditions. Minisci and other synthetic chemists are developed and improved these reactions to the point of view, where they now comprise a powerful collection of unique transformations. This is the reason why "Minisci reactions" are occasionally used to describe radical additions to heteroaromatic bases. This reaction was an effective method for C-H functionalisation of heteroaromatic bases. This reaction most likely followed the Freidel-Crafts procedure, although the reactivity and selectivity were substantially different.^{54b-d}

Selected example of decarboxylative alkylation

Eq. 12

Minisci et al. were reported^{54a} Ag-catalyzed decarboxylative alkylation of N-heteroarenes with simple carboxylic acids **126** by using ammonium persulfate as an oxidant to afford the cross-coupled product in the year 1971. This protocol was convenient and effective method for alkylation or arylation of electron deficient species (Eq. 12).

Selected examples of decarboxylative arylation

Eq. 13

In 2016 Maiti and co-workers^{55a} reported Cu-catalyzed decarboxylative arylation of variety of five-membered heteroarenes **128-129** with one or two heteroatoms can easily couple together with benzoic acids and its substituents **130** using oxygen as the oxidant with good to moderate yields (**Eq. 13**).

Eq. 14

$$R^{1} \stackrel{\stackrel{\longleftarrow}{U}_{X}}{} + R^{2} \stackrel{\stackrel{\longleftarrow}{U}}{} \stackrel{\stackrel{\longleftarrow}{U}_{X}}{} \stackrel{\stackrel{\longleftarrow}{}} \qquad \frac{Ag (I) \text{ salt}}{K_{2}S_{2}O_{8} (3 \text{ equiv})} \qquad R^{1} \stackrel{\stackrel{\longleftarrow}{U}_{X}}{} \stackrel{\stackrel{\longleftarrow}{}} \qquad R^{2} \stackrel{\stackrel{\longleftarrow}{U}_{X}}{} \stackrel{\stackrel{\longleftarrow}{}} \qquad R^{2} \stackrel{\stackrel{\longleftarrow}{U}_{X}}{} \stackrel{\stackrel{\longleftarrow}{}} \qquad R^{2} \stackrel{\stackrel{\longleftarrow}{}$$

Ag(I) catalyzed decarboxylative arylation of aromatic and heteroaromatic systems with benzoic acids and its substituents **130** by using potassium persulfate as oxidant to obtained the cross-coupled products with good to moderate yields by Su and co-workers in the year 2015 (**Eq. 14**).^{55b}

Selected examples of decarboxylative olefination

Eq. 15

Mao *et al.* were described^{56a} a Cu-catalyzed decarboxylative cross-coupling method by the reaction between cinnamic acids **135** and benzylic substrates **136** with DTBP as oxidant to afforded the corresponding olefination products **137** in the year 2012. Later, the same group reported benzylic olefination products in the presence of Fe-catalyzed^{56b} to obtain good yields (**Eq. 15**).

Ar COOH +
$$R^{1}$$
 R^{1} R^{1} R^{2} R^{3} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{5} $R^$

Eq. 16

In 2014 Zhang *et al.* were developed^{56c} Mn-catalyzed decarboxylative method by the reaction between unsaturated carboxylic acids **135** and cyclic ethers like 1, 4-dioxane or

tetrahydrofuran 138 with TBHP as an oxidant to obtain the corresponding alkenylation product 139, in the presence of Ni-catalyst with the same oxidant afforded the oxyalkylation product 140 (Eq. 16).

Selected example of decarboxylative alkynylation

Eq. 17

Jia *et al.* were described⁵⁷ an decarboxylative oxidative amidation **143** of alkynyl carboxylic acid **141** in the presence of Cu-mediated cross-coupled by using air as an oxidant in the year 2010 (**Eq. 17**).

Selected examples of decarboxylative acylation

Transition metal catalyzed acylation reactions

Eq. 18

$$\begin{array}{c} AgNO_{3}(10 \text{ mol}\%) \\ (NH_{4})_{2}S_{2}O_{8} \\ (144) \end{array} \begin{array}{c} AgNO_{3}(10 \text{ mol}\%) \\ (NH_{4})_{2}S_{2}O_{8} \\ H_{2}O \text{ or } H_{2}O/CH_{2}Cl_{2} \\ H_{2}SO_{4} \text{ or } CF_{3}COOH \\ 40 \, ^{\circ}C, \, 2 \, h \end{array} \begin{array}{c} R^{1} \\ (146a-b) \\ (150) \\ (147) \\ R^{1} = COMe, \, CN \end{array} \begin{array}{c} R^{1} \\ (150) \\ (152) \\ (152) \\ (153) \\ (1$$

In 1991, Fontana *et al.* were first reported^{58a} α -keto acids as the acylating agents for selected *N*-heteroarenes. Ag-catalyzed decarboxylative oxidative cross-coupling of *N*-

heteroarenes quinoline 145, quinoxaline 146a, pyrazine 146b, pyridines 147 with α -keto acids 144 by using ammonium persulfate as an oxidant to afforded the corresponding mono or diacylated products. The generated acyl radicals from α -keto acids 144 are highly reactive towards N-heteroarenes. Decarboxylative coupling reactions of α -oxo/keto acids 144 have been popular in recent years for direct acylation method (Eq. 18).

Eq. 19

In 2015 Lang and co-workers^{58b} developed Pd and Ag-catalyzed decarboxylative C3-acylation of 2-pyridyl benzofuran **154** and 2-pyridyl benzothiophene **155** with α -keto acids **144** by using potassium persulfate as oxidant, combination of solvents 1,4-dioxane:AcOH:DMF (7.5:1.5:1.0) at 120 °C in 21 h time period obtained the corresponding C3-acylated products with good to moderate yields (**Eq. 19**).

$$\begin{array}{c} Pd(PPh_{3})_{4} \ (10 \ mol \ \%) \\ Ag_{2}CO_{3} \ (2 \ equiv) \\ K_{2}S_{2}O_{8} \ (2 \ equiv) \\ \hline \\ 1,4-dioxane/AcOH/DMF \\ (7.5/1.5/1.0) \\ 120 \ ^{\circ}C, \ 21 \ h, \ X = O \\ \hline \\ Pd(PPh_{3})_{4} \ (10 \ mol \ \%) \\ Ag_{2}O \ (2 \ equiv) \\ \hline \\ K_{2}S_{2}O_{8} \ (2 \ equiv) \\ \hline \\ K_{2}S_{2}O_{8} \ (2 \ equiv) \\ \hline \\ TBAB \ (1 \ equiv) \\ 1,4-dioxane/AcOH/DMF \\ (7.5/1.5/1.0) \\ 120 \ ^{\circ}C, \ 21 \ h, \ X = S \\ \hline \\ 64-95\% \\ (157) \\ \hline \end{array}$$

Eq. 20

Two groups are studies that combination of metals used in 2015 Lu, *et al.* Co(II)-catalyzed,^{58c} in 2014 Ge and co-workers Ni(II)-catalyzed^{58d} C-2 acylation of compound **158** thiazoles and compound **159** oxazoles involving decarboxylative method in the presence of Ag₂CO₃ oxidant at 170 °C in 24-36 h obtained the corresponding C2-acylated products with good to moderate yields (**Eq. 20**).

Ni(ClO₄)₂.6H₂O
(7.5 mol%)

Ag₂CO₃ (3 equiv)

benzene, 170 °C, 24 h

$$X = S (158)$$

$$X = S (158)$$

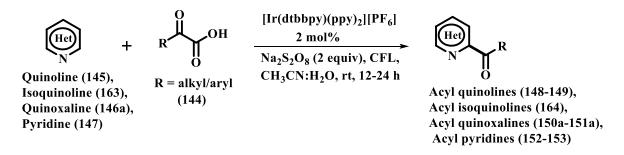
$$X = O (159)$$

$$X = S (159)$$

$$X = S (158)$$

$$X = O (159)$$

$$X = S (158)$$


$$X = S (160)$$

Eq. 21

In 2013 Wang group developed^{58e} C3-acetylation of substituted indoles **6** with aryl glyoxylic acid and its substituents **144** undergoes decarboxylative method utilizing Cu(OAc)₂.H₂O acts as catalyst as well as oxidant at 110 °C temperature in 10 h to afforded C3-acylated indoles **162** with good yields (**Eq. 21**).

Visible-light mediated acylation reactions

Eq. 22

Prabhu *et al.* were developed^{59a} Ir-photocatalyzed visible-light mediated direct decarboxylative acylation of N-heteroarenes with α -keto acids **144** by using sodium persulfate

as an oxidant at room temperature to obtain the acylated products with decent yields in the year 2019 (Eq. 22).

Eq. 23

$$[Ir^{III}] (3 \text{ mol\%})$$

$$[Ni^{II}] (10 \text{ mol\%})$$

$$R^{1} = (10 \text{ mol\%})$$

$$R^{2} = (144)$$

$$R^{1} = (10 \text{ mol\%})$$

$$R^{2} = (144)$$

$$R^{3} = (144)$$

$$R^{1} = (10 \text{ mol\%})$$

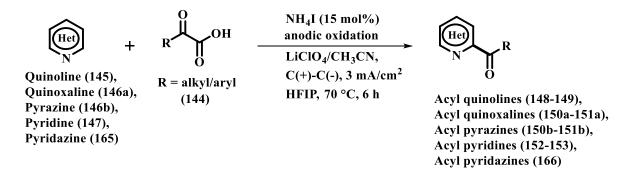
$$R^{2} = (144)$$

$$R^{1} = (10 \text{ mol\%})$$

$$R^{1} = (144)$$

$$R^{2} = (144)$$

$$R^{2} = (144)$$


$$R^{3} = (144)$$

$$R^{4} =$$

Gu and co-workers^{59b} reported combined catalysts Ir(III) and Ni(II) under visible-light mediated direct decarboxylative acylation of indoles using Cs₂CO₃, I₂ and LiF in DMF at room temperature to obtain decarboxylative cross-coupled product **162** in good to moderate yields (**Eq. 23**). Simultaneously Wang *et al.*^{59c} were reported visible-light promoted direct decarboxylative acylation of indoles utilizing rose bengal as photo catalyst at room temperature under air to afford C3-acylated products **162** with decent yields in the year of 2016 (**Eq. 23**).

Electrochemical mediated acylation reaction

Eq. 24

In 2017 Zeng and co-workers⁶⁰ reported electrochemical mediated decarboxylative acylation of electron-deficient *N*-heteroarenes like quinoline **145**, quinoxaline **146a**, pyrazine **146b**, pyridazine **147**, and pyridine **147** with α -oxo/keto acids **144** using catalytic amount of NH₄I as redox catalyst at 70 °C in 6 h to afforded decarboxylative acylated products with decent yields (**Eq. 24**).

Hypervalent iodine (III) with photo mediated acylation reactions

Eq. 25

In 2016 Wang and co-workers^{61a} developed hypervalent iodine reagent with visible light mediated direct decarboxylative acetylation of acrylamide compound **167** with acylating agent **144** under irradiation with blue LED at room temperature to obtain the acetylated oxindole product **168** in good yields. It was another method to that of Ag(I)/persulfate condition to generate the decarboxylative acyl radical from α -keto acids **144** (Eq. 25).

Eq. 26

In 2017 Wang *et al.* was reported^{61b} visible light promoted, hypervalent iodine mediated decarboxylative acylation of phenyl propiolate compound **169** with α -keto/oxo carboxylic acids **144** at room temperature to obtain direct C3-acylation of coumarins **170** in good to moderate yields (**Eq. 26**).

Metal-free acylation reactions

Eq. 27

Recently, Lee and his group^{62a} were first developed direct decarboxylative acylation under metal-, light-, electrocatalyst-, and light-free synthesis in the presence of ammonium persulfate as sole oxidant at milder conditions to obtain the corresponding acylation product with good to moderate yields (Eq. 27).

Eq. 28

$$R^{2} \xrightarrow{\stackrel{\bullet}{U}_{N}} + R \xrightarrow{O}_{O} OH \xrightarrow{K_{2}S_{2}O_{8} (2 \text{ equiv})} R^{2} \xrightarrow{\stackrel{\bullet}{U}_{N}} O$$

$$R = \text{alkyl/aryl}$$

$$(175) \qquad (144) \qquad (176)$$

Laha *et al.* developed^{62b} a transition metal-free direct decarboxylative acylation of electron rich arene pyrroles in the presence of potassium persulfate as an oxidant with acetonitrile at 80 °C in 6 h to afford the corresponding acylated product with good yields in the year 2020 (**Eq. 28**).

Selected example of decarboxylative cyclization

Eq. 29

$$R^{1} \stackrel{\text{11}}{\text{U}} R^{2} + R \stackrel{\text{O}}{\text{OH}} \frac{\text{Ag}_{2}\text{CO}_{3} (10 \text{ mol}\%)}{\text{Na}_{2}\text{S}_{2}\text{O}_{8} (2 \text{ equiv})} + R^{1} \stackrel{\text{II}}{\text{U}} R^{2}$$

$$R = \text{alkyl/aryl}$$
(177) (144) (178)

In 2014 Lei *et al.* were reported⁶³ Ag-catalyzed decarboxylative cyclization of α -keto/oxo carboxylic acid **144** with substituted isonitriles **177** using sodium persulfate an oxidant and DMSO solvent at 100 °C in 6 h afforded decarboxylation followed by cyclized product 6-acyl phenanthridines **178** with good to moderate yields (**Eq. 29**).

References:

- (a) Clayden, J.; Greeves, N.; Warren, S. Organic chemistry, 2012, Oxford University Press. ISBN 0-19-927029-5. (b) Shriner, R. L.; Herman, C. K. F.; Morrill, T. C.; Curtin, D. Y.; Fuson, R. C. The Systematic Identification of Organic compounds, 1997, John Wiley & Sons, ISBN 0-471-59748-1.
- 2) Morrison, R. T.; Boyd, R. K. Organic Chemistry, 1992, 6th ed. (d)
- 3) (a) John A. Joule, J. A.; Mills, K. Heterocyclic Chemistry, Fifth Edition, 2010, John Wiley & Sons, ISBN Paper: 978-1-405-13300-5. (b) Alvárez-Builla, J.; Barluenga, J. Heterocyclic compounds: An Introduction, 2011, John Willey & Sons, ISBN 9783527332014. (c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem., 2014, 57, 10257-10274.
- 4) Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Nat. Rev. Drug Discov., 2021, 20, 200-216. (b) Nicolaou, K. C.; Synder, S. A. Classics in Total Synthesis II: More Targets, Strategies, Methods, New York: John Wiley & Sons, 2003, ISBN 978-3-527-30684-8.
- 5) (a) Hanson, J. R. *Natural products: The Secondary Metabolite*. Cambridge: Royal Society of Chemistry. 2003, ISBN: 0-85404-490-6. (b) Cutler, S.; Cutler, H. G. *Biologically Active Natural products: Pharmaceuticals* CRC Press. 2000, ISBN 978-0-8493-1887-0. (c) Newman, D. J.; Cragg, G. M. *J. Nat. Prod.*, 2020, 83, 770-803.
- (a) Luch, A. Molecular, Clinical, and environmental toxicology. Springer. 2009, 20, ISBN 978-3-7643-8335-0. (b) Manske, R. H. F. The Alkaloids. Chemistry and Physiology. Vol. VIII.-New York: Academic Press, 1965, 673. (c) Kittakoop, P.; Mahidol, C.; Ruchirawat, S. "Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation." Curr Top Med Chem., 2014, 14, 239-252. (d) Cushnie, T. P.; Cushnie, B.; Lamb, A. J. "Alkaloids: An overview of the antibacterial, antibiotic-enhancing and antivirulence activities". Int. J. Antimicrob. Agents., 2014, 44, 377-386. (e) Dewick, P. M. Medicinal natural products. A biosynthetic approach. 3rd ed. The Atrium, United Kingdom: John Wiley & Sons Ltd: 2009, 311-481.
- 7) (a) Van Order, R. B.; Lindwall, H. G. Chem. Rev., 1942, 30, 69-96.
- 8) (a) Chandha, N.; Silakari, O. Eur. J. Med. Chem., 2017, 134, 159-184. (b) Paul, M. D. Essentials of Organic Chemistry: For Students of Pharmacy, Medicinal Chemistry and Biological Chemistry. 2013. John Wiley & Sons, ISBN 9781118681961 (c) Singh, T. P.;

- Singh, O. M. Mini. Rev. Med. Chem., 2018, 18, 9-25. (d) Gul, W.; Hamann, M. T. Life Sci., 2005, 78, 442-453.
- (a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev., 2006, 106, 2875-2911.(b) Inman, M.; Moody, C. J.; Chem. Sci., 2013, 4, 29. (c) Sundberg, R. J.; Indoles. Academic Press Ltd. San Diego: 1996. (d) Taber, D. F.; Tirunahari, P. K. Tetrahedron, 2011, 67, 7195-7210. (e) Buchwald S. L. J. Am. Chem. Soc., 1998, 120, 6621-6622. (f) Hegedus, L. S.; J. Am. Chem. Soc., 1976, 98, 2674-2676. (g) Bartoli, G. Tetrahedron Lett., 1989, 30, 2129-2132. (h) Mori, M.; Ban, Y. Tetrahedron Lett., 1976, 17, 1803-1806. (i) Ziarani, G. M.; Moradi, R.; Ahmadi, T.; Lashgari, N. RSC Adv., 2018, 8, 12069-12103. (j) Japp, F. R.; Maitland, W. J. J. Am. Chem. Soc., 1903, 83, 269-273.
- 10) (a) Karamyan, A. J. K-.; Hamann, M. T. *Chem. Rev.*, **2010**, *110*, 4489-4497. (b) Netz, N.; Opatz, T. *Mar. Drugs*, **2015**, *13*, 4814-4914.
- 11) Li, Y.; Li, X.; Kim, D.; Choi, H.; Son, B. Arch. Pharmacal Res., 2003, 26, 21–23.
- 12) (a) Sauleau, P.; Martin, M. -T.; Dau, M. -E. T. H.; Youssef, D. T. A.; Bourguet-Kondracki, M.-L. J. Nat. Prod., 2006, 69, 1676–1679. (b) Ashour, M. A.; Elkhayat, E. S.; Ebel, R.; Edrada, R.; Proksch, P. Arkivoc, 2007, 15, 225–231.
- 13) (a) Jeong, S.-Y.; Ishida, K.; Ito, Y.; Okada, S.; Murakami, M. *Tetrahedron Lett.*, **2003**, *44*, 8005–8007. (b) Socha, A. M.; Long, R. A.; Rowley, D. C. *J. Nat. Prod.*, **2007**, *70*, 1793–1795.
- 14) Seldes, A. M.; Rodriguez Brasco, M. F.; Hernandez Franco, L.; Palermo, J. A. *Nat. Prod. Res.*, **2007**, *21*, 555–563.
- (a) Santalova, E. A.; Denisenko, V. A.; Berdyshev, D. V.; Aminin, D. L.; Sanamyan, K. E. *Nat. Prod. Commun.*, 2008, 3, 1617–1620. (b) Abdjul, D.; Yamazaki, H.; Ukai, K.; Namikoshi, M. *J. Nat. Med.*, 2015, 69, 416–420.
- 16) Hawas, U. W.; Shaaban, M.; Shaaban, K. A.; Speitling, M.; Maier, A.; Kelter, G.; Fiebig, H. H.; Meiners, M.; Helmke, E.; Laatsch, H. *J. Nat. Prod.*, **2009**, *72*, 2120–2124.
- 17) Hanssen, K. Ø.; Schuler, B.; Williams, A. J.; Demissie, T. B.; Hansen, E.; Andersen, J. H.; Svenson, J.; Blinov, K.; Repisky, M.; Mohn, F.; *Angew. Chem. Int. Ed. Engl.*, **2012**, *51*, 12238–12241.
- 18) (a) Al-Zereini, W.; Fotso Fondja Yao, C. B.; Laatsch, H.; Anke, H. *J. Antibiot.*, **2010**, *63*, 297–301. (b) Fotso Fondja Yao, C. B.; Zereini, W. A.; Fotso, S.; Anke, H.; Laatsch, H. *J. Antibiot.*, **2010**, *63*, 303–308.
- 19) Wang, Y.; Tang, X.; Shao, Z.; Ren, J.; Liu, D.; Proksch, P.; Lin, W. J. Antibiot., **2014**, *67*, 395–399.

- 20) Khalil, Z. G.; Huang, X.-C.; Raju, R.; Piggott, A. M.; Capon, R. J. J. Org. Chem., **2014**, 79, 8700–8705.
- 21) Zhuravleva, O. I.; Afiyatullov, S. S.; Denisenko, V. A.; Ermakova, S. P.; Slinkina, N. N.; Dmitrenok, P. S.; Kim, N. Y. *Phytochemistry*, **2012**, *80*, 123–131.
- 22) Lee, Y.-J.; Lee, D.-G.; Rho, H. S.; Krasokhin, V. B.; Shin, H. J.; Lee, J. S.; Lee, H.-S. *J. Heterocycl. Chem.*, **2013**, *50*, 1400–1404.
- 23) Endo, T.; Tsuda, M.; Fromont, J.; Kobayashi, J. I. J. Nat. Prod., 2007, 70, 423–424.
- 24) Cai, S. -X.; Li, D. -H.; Zhu, T. -J.; Wang, F. -P.; Xiao, X.; Gu, Q. -Q. *Helvetica Chimica Acta*, **2010**, *93*, 791–795.
- 25) Yan, X.; Tang, X. -X.; Chen, L.; Yi, Z. -W.; Fang, M. -J.; Wu, Z.; Qiu, Y. -K. *Mar. Drugs*, **2014**, *12*, 2156-2163.
- 26) Liu, W.; Li, H. -J.; Xu, M. -Y.; Ju, Y. -C.; Wang, L. -Y.; Xu, J.; Yang, D. -P.; Lan, W. -J. Org. Lett., 2015, 17, 5156-5159.
- 27) Liu, D.-Q.; Mao, S.-C.; Zhang, H.-Y.; Yu, X.-Q.; Feng, M.-T.; Wang, B.; Feng, L.-H.; Guo, Y.-W. *Fitoterapia*, **2013**, *91*, 15–20.
- 28) Irlinger, B.; Bartsch, A.; Krämer, H. -J.; Mayser, P.; Steglich, W.; *Helv. Chim. Acta*, **2005**, 88, 1472-1485.
- 29) Lyakhova, E. G.; Kolesnikova, S. A.; Kalinovsky, A. I.; Afiyatullov, S. S.; Dyshlovoy, S. A.; Krasokhin, V. B.; Minh, C. V.; Stonik, V. A. *Tetrahedron Lett.*, **2012**, *53*, 6119–6122.
- 30) Prakash, K. S.; Nagarajan, R. Org. Lett., 2014, 16, 244-246.
- 31) Forke, R.; Jäger, A.; Knölker, H.-J. Org. Biomol. Chem., **2008**, 6, 2481-2483.
- 32) Ranjani, G.; Nagarajan, R. Org. Lett., 2017, 19, 3974-3977.
- 33) Radchenko, O. S.; Novikov, V. L.; Elyakov, G. B. Tetrahedron Lett., 1997, 38, 5339-5342.
- 34) Sathishkumar, P. P.; Saibabu, M. D. A.; Nagarajan, R. J. Org. Chem., 2021, 86, 3730-3740.
- 35) Ramkumar, N.; Nagarajan, R. J. Org. Chem., 2014, 79, 736-741.
- 36) Ranjani, G.; Nagarajan, R. Org. Lett., 2019, 21, 675-678.
- 37) (a) Szabó, T.; Volk, B.; Milen, M. *Molecules*, **2021**, *26*, 663-716. (b) Luo, B.; Song, X. *Eur. J. Med. Chem.*, **2021**, *224*, 113688-113729.
- 38) (a) Cao, R.; Peng, W.; Wang, Z.; Xu, A. *Curr. Med. Chem.*, **2007**, *14*, 479–500. (b) Dai, J.; Dan, W.; Schneider, U.; Wang, J. *Eur. J. Med. Chem.*, **2018**, *157*, 622–656.
- 39) Ranjani, G.; Nagarajan, R. Chem. Commun., 2021, 57, 757-760.
- 40) Tagawa, S.; Choshi, T.; Okamoto, A.; Nishiyama, T.; Watanabe, S.; Hatae, N.; Hibinoa, S. *Heterocycles*, **2013**, *87*, 965-966.

- 41) Shelar, S. V.; Argade, N. P. ACS Omega, 2017, 2, 3945-3950.
- 42) Ramesh, S.; Nagarajan, R. J. Org. Chem., 2013, 78, 545.
- 43) (a) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev.,
 2017, 117, 9016-9085. (b) Wang, C. -S.; Dixneuf, P. H.; Soulé, J. -F. Chem. Rev., 2018,
 118, 7532-7585. (c) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev., 2016, 116, 9850-9913.
- 44) (a) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. *Chem. Rev.*, **2015**, 115, 12138-12204. (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. *Angew. Chem. Int. Ed.*, **2012**, 51, 8960-9009.
- 45) (a) Crabtree, R. H.; Lei, A. Chem. Rev., 2017, 117, 8481-8482. (b) Yang, Y.; Lan, J.; You,
 J. Chem. Rev., 2017, 117, 8787-8863. (c) Bergman, R. G. C-H Activation. Nature, 2007, 446, 391-393.
- 46) (a) Li, C. -J. Acc. Chem. Res., 2009, 42, 335-344. (b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev., 2011, 111, 1780-1824. (c) Girard, S. A.; Knauber, T.; Li, C. -J. Angew. Chem. Int. Ed., 2014, 53, 74-100. (d) Peng, K.; Dong, Z. -B Adv. Synth. Catal., 2021, 363, 1185-1201.
- 47) (a) Wei, Y.; Hu, P.; Zhang, M.; Su, W. *Chem. Rev.*, **2017**, 117, 8864-8907. (b) Rodríguez, N.; Goossen, L. J. *Chem. Soc. Rev.*, **2011**, *40*, 5030-5048.
- 48) (a) König, B.; Schwarz, J.; *Green Chem.*, **2018**, *20*, 323-361. (b) Patra, T.; Maiti, D. *Chem. Eur. J.*, **2017**, *23*, 7382-7401.
- 49) (a) Penteado, F.; Lopes, E. F.; Alves, D.; Perin, G.; Jacob, R. G.; Lenardão, E. J. Chem. Rev., 2019, 119, 7113-7278. (b) Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Biomol. Chem., 2016, 14, 7380-7391.
- 50) (a) Kolbe, H. *Liebigs Ann. Chem.*, 1848, 64, 339-341. (b) Hunsdiecker. H.; Hunsdiecker. C. *Chem. Ber.*, 1942, 75, 291-297. (c) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. *J. Am. Chem. Soc.*, 2012, 134, 4258-4263. (d) Barton, D. H. R.; Crich, D.; Motherwell, W. B. *J. Chem. Soc.*, *Chem. Commun.*, 1983, 939-941. (e) Nilsson. M. *Acta Chem. Scand.*, 1966, 22, 423-426.
- 51) (a) Zhang, T.; Wang, N. -X.; Xing, Y. *J. Org. Chem.*, **2018**, 83, 7559-7565. (b) Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. *ACS Catal.*, **2017**, 7, 4057-4061.
- 52) (a) Gomberg, M.; Bachmann, W. E. J. Am. Chem. Soc., 1924, 42, 2239-2243. (b) Möhlau,
 R.; Berger, R. Ber. Dtsch. Chem. Ges., 1893, 26, 1994. (c) Harrowven, D. C.; Sutton, B.
 J. Prog. Heterocycl. Chem., 2004, 16, 27-53. (d) Dyall, L. K.; Pausacker, K. H. J. Chem.
 Soc., 1961, 18-23.

- 53) (a) Lynch, B. M.; Chang, H. S. Tetrahedron Lett., 1964, 5, 617-620. (b) Lynch, B. M.; Chang, H. S. Tetrahedron Lett., 1964, 5, 2965-2968. (c) Dou, H. J. M.; Lynch, B. M. Tetrahedron Lett., 1965, 6, 897-901. (d) Dou, H. J. M.; Lynch, B. M. Bull. Soc. Chim. Fr., 1966, 3815-3820. (e) Dou, H. J. M.; Lynch, B. M. Bull. Soc. Chim. Fr., 1966, 3820-3823.
- 54) (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. *Tetrahedron*, 1971,
 27, 3575-3579. (b) Duncton, M. A. J. *Med. Chem. Commun.*, 2011, 2, 1135-1161. (c)
 Proctor, R. S. J.; Phipps, R. J. *Angew. Chem. Int. Ed.*, 2019, 58, 13666-13699. (d) Mandal,
 S.; Bera, T.; Dubey, G.; Saha, J.; Laha, J. K. *ACS Catal.*, 2018, 8, 5085-5144.
- (a) Patra, T.; Nandi, S.; Sahoo, S. K.; Maiti, D. Chem. Commun., 2016, 52, 1432-1435.(b) Kan, J.; Huang, S.; Lin, J.; Zhang, M.; Su, W. Angew. Chem., 2015, 127, 2227-2231.
- 56) (a) Yang, H.; Sun, P.; Zhu, Y.; Yan, H.; Lu, L.; Qu, X.; Li, T.; Mao, J. *Chem. Commun.*, 2012, 48, 7847-7849. (b) Yang, H.; Yan, H.; Sun, P.; Zhu, Y.; Lu, L.; Liu, D.; Rong, G.; Mao, J. *Green Chem.*, 2013, 15, 976-981. (c) Zhang, J. -X.; Wang, Y. -J.; Zhang, W.; Wang, N. -X.; Bai, C. -B.; Xing, Y. -L.; Li, Y. -H.; Wen, J. -L. *Sci. Rep.*, 2015, 4, 7446-7450.
- 57) Jia, W.; Jiao, N. Org. Lett., 2010, 12, 2000-2003.
- 58) (a) Fontana, F.; Minisci, F.; Barbosa, M. C. N.; Vismara, E. J. Org. Chem., 1991, 56, 2866-2869. (b) Gong, W.-J.; Liu, D.-X.; Li, F.-L.; Gao, J.; Li, H.-X.; Lang, J.-P. Tetrahedron, 2015, 71, 1269-1275. (c) Yang, K.; Chen, X.; Wang, Y.; Li, W.; Kadi, A. A.; Fun, H. -K.; Sun, H.; Zhang, Y.; Li, G.; Lu, H. J. Org. Chem., 2015, 80, 11065-11072. (d) Yang, K.; Zhang, C.; Wang, P.; Zhang, Y.; Ge, H. *J.*, **2014**, *20*, 7241-7244. (e) Chem. Eur. Yu, L.; Li, P.; Wang, L. Chem. Commun., 2013, 49, 2368-2370.
- 59) (a) Manna, S.; Prabhu, K. R. J. Org. Chem., 2019, 84, 5067-5077. (b) Gu, L.; Jin, C.; Liu, J.; Zhang, H.; Yuan, M.; Li, G. Green Chem., 2016, 18, 1201-1205.
 (c) Shi, Q.; Li, P.; Zhu, X.; Wang, L. Green Chem., 2016, 18, 4916-4923.
- 60) Wang, Q. -Q.; Xu, K.; Jiang, Y. -Y.; Liu, Y. -G.; Sun, B. -G.; Zeng, C. -C. Org. Lett., 2017, 19, 5517-5520.
- 61) (a) Ji, W.; Tan, H.; Wang, M.; Li, P.; Wang, L. Chem. Commun., **2016**, *52*, 1462-1465. (b) Yang, S.; Tan, H.; Ji, W.; Zhang, X.; Li, P.; Wang, L. Adv. Synth. Catal., **2017**, *359*, 443-453.
- 62) (a) Westwood, M. T.; Lamb, C. J. C.; Sutherland, D. R.; Lee, A. -L. Org. Lett., 2019, 21, 7119-7123. (b) Laha, J. K.; Kaur Hunjan, M.; Hegde, S.; Gupta, A. Org. Lett., 2020, 22, 1442-1447.

63) Liu, J.; Fan, C.; Yin, H.; Qin, C.; Zhang, G.; Zhang, X.; Yi, H.; Lei, A. Chem. Commun., 2014, 50, 2145-2147.

CHAPTER- I (A)

Metal-free decarboxylative formylation of indoles and acylation of β -carbolines: Application to the synthesis of indole alkaloids

Abstract:

We have developed transition metal free direct decarboxylative cross coupling of α -oxo/ketoacids for formylation of indoles and acylation of β -carbolines with (NH₄)₂S₂O₈/DMSO. This reaction proceeds smoothly between ambient temperature and 40 °C under mild reaction conditions with commercially accessible starting precursors. This methodology was applied to the synthesis of biologically active natural product pityriacitrins and formal synthesis of eudistomins Y₁&Y₃, marinacarbolines A-D.

1.1. Introduction:

The development of an efficient method for C-C bond formation is essential in organic chemistry as well as in medicinal chemistry. 3c,44b In this context, Minisci reaction 54 played a crucial role in the past several years to construct C-C bond via direct C-H functionalization via radical pathway. $^{43a, 46c, 47, 54b}$ Over the past few decades decarboxylative coupling reactions $^{48a, 51a}$ are emerged, attractive and alternative approach for the C-C bond formation. In this field various type of carboxylic acids will involves like aromatic, aliphatic, unsaturated carboxylic acids and α -oxo/keto carboxylic acids have been proven and investigated; 51b among these, α -keto carboxylic acids and its acetals played an essential role in the direct formyl/acylation in the synthetic chemistry, 49 which are readily available, inexpensive, stable, and non-toxic. Moreover, α -keto carboxylic acids are attractive due to high reactivity. A decarboxylative coupling strategy is convenient, more environmentally friendly, and step-economic compared with other traditional methods. 64

Formylation and acylation^{62a} of *N*-heterocycles^{65,66} are important method for the preparation of fine chemicals and biologically important alkaloids (**Figure 1.1**).

Figure 1.1 Examples of biologically important indole alkaloids

The conventional methods for the preparation of aromatic/hetero aromatic aldehydes (shown in **Table 1.1**) were Vilsmeier-Haack^{67a}, Reimer-Tiemann^{67b}, Rieche^{67c}, Duff^{67d} and Friedel-Crafts reaction^{67e} for acylation. Many of these methods suffers from several disadvantages such as corrosive, moisture sensitive, harsh reaction conditions, poor selectivity, waste bi-products and less functional group tolerance. However, several new approaches for formylation and acylation of indoles have been found in the past years, and general and operationally simple methods of 3-formylindoles are still of interest.

Table 1.1 Previous reports for the synthesis of indole-3-carboxaldehyde (20)

$$\begin{array}{c|c}
\hline
\begin{array}{c}
\hline
\\
N\\
H
\end{array}
\end{array}$$
Conditions
$$\begin{array}{c}
C\\
N\\
H
\end{array}$$
(20)

Formyl Source	Classical methods	Metal mediated	Light mediated	Electrochemical
DMF/POCl ₃	Vilsmeier-Haack			
CHCl ₃ /NaOH	Reimer-Tieman			
PhNH(CH ₃)		RuCl ₃ /TBHP, PivOH, NMA		
TMEDA		CuCl ₂ /O ₂ , K ₂ CO ₃ , CH ₃ CN	1).Rose bengal, KI, O ₂ , visible-light, MeCN-H ₂ O, 60 °C 2).Eosin-Y, KI, air, Blue LED, MeCN-H ₂ O, rt	
НМТА	Duff reaction	Ce(NH ₄) ₂ (NO ₃) ₆ -SiO ₂ , CH ₃ CN		
HCHO/NH ₃		FeCl ₃ , DMF, 130 °C, air		
Glyoxylic acid		Cu(OAc) ₂ ,Ag ₂ CO ₃ , Ni(OAc) ₂ .4H ₂ O,FeCl ₃ , NaOAc, DMSO,130 °C, 15 h	NaOAc, Purple LED, MeCN, rt, air, 24 h	(CH ₃) ₂ NH/PhNH ₂ , NaClO ₄ , Pt-Pt foils

Recently, Minisci type formylation of *N*-heteroarenes was reported with trioxane and glyoxylic acid/acetal using as formyl radical synthons.⁶⁸

Synthesis of indole-3-carboxaldehyde with glyoxylic acid

(A) Transition metal catalyzed reaction

Eq. 30. Wu et al. (2018)^{69a}

In 2018 Wu and co-workers^{69a} was reported a selective Ni-catalyzed decarboxylative cross coupling of indoles (6) with glyoxylic acid monohydrate 68 to obtain 3-formylindole 20 (Eq. 30).

(B) Electrochemical method

$$(6) \qquad \begin{array}{c} O \\ H \\ H \\ Glyoxylicacid. \\ monohydrate (68) \end{array} \qquad \begin{array}{c} (CH_3)_2NH/PhNH_2, \\ NaClO_4, Pt-Pt foils \\ \hline 73\% \\ \end{array}$$

Eq. 31. Huang et al. (2019)^{69b}

In 2019 Huang's group also reported^{69b} 3-formylindoles **20** from amine catalyzed electrochemical decarboxylation method using glyoxylic acid monohydrate **68** as formyl synthon (**Eq. 31**).

(C) Photochemical method

Eq. 32. Wang et al. (2022)^{69c}

Recently, in 2022 Wang and co-workers^{69c} reported photoredox catalyzed decarboxylative cross coupling of indoles (6) with glyoxylic acid monohydrate 68 to obtain indole-3-carboxaldehyde 20 (Eq. 32).

Synthesis of indole-3-carboxaldehyde with N-methylaniline

(A) Transition metal catalyzed reaction

Eq. 33. Su et al. (2011)

In 2011 Su *et al.* was synthesized indole-3-carboxaldehyde **20** from Ru-catalyzed^{70a} oxidative coupling of indole **6** with *N*-methylaniline **179** as the formyl equivalent (**Eq. 33**).

(B) Hypervalent Iodine catalyzed reaction

Eq. 34. Wang et al. (2012)

Wang and co-workers developed^{70b} tetrabutylammonium iodide (TBAI) catalyzed C-3 formylation of indoles with the help of *N*-methylaniline **179** as formyl source in 2012 (**Eq. 34**).

Synthesis of indole-3-carboxaldehyde with TMEDA

(A) Transition metal catalyzed reactions

Eq. 35. Zhang et al. (2012)

In 2012 Cheng and co-workers^{71a} and Zhang *et al.* were reported^{71b} Cu-catalyzed formylation of indoles using tetramethyl ethylenediamine **180** (TMEDA) as formyl synthetic equivalent by employing oxygen as the clean oxidant (**Eq. 35, 36**).

Eq. 36. Cheng et al. (2012)

(B) Hypervalent Iodine catalyzed reaction

Liu and co-workers were synthesized^{71c} molecular I₂-promoted C3-formylation of indoles with tetramethyl ethylenediamine **180** (TMEDA) as the carbonyl source, molecular oxygen as oxidant in 2014 (**Eq. 37**).

Eq. 37. Liu and co-workers (2014)

(C) Photochemical method

Li and co-workers^{71d} demonstrated a metal-free visible-light mediated aerobic indole-3-carboxaldehyde reaction catalyzed by Rose Bengal, employs molecular oxygen as sole oxidant and tetramethyl ethylenediamine **180** (TMEDA) acts as formyl source used in 2014 (**Eq. 38**). Recently, Zhao *et al.* developed^{71e} Eosin-Y catalyzed C3-formylation of indoles by using the same tetramethyl ethylenediamine **180** (TMEDA) as carbon source in 2022 (**Eq. 39**).

Eq. 38. Li and co-workers (2014)

Rose bengal, KI, O₂

$$\frac{1}{\text{Visible-light, MeCN-H}_{2}O}, \quad \text{Wisible-light, MeCN-H}_{2}O, \quad \text{$$

Eq. 39. Zhao et al. (2022)

Synthesis of indole-3-carboxaldehyde with HMTA

(A) Transition metal catalyzed reaction

In 2014, Sakee *et al.* were reported^{72a} Ce-catalyzed silica supported C3-formylation of indoles achieved by using formyl synthon obtained from hexamethylenetetramine **181** (HMTA) (**Eq. 40**).

Eq. 40. Sakee et al. (2014)

(B) Hypervalent Iodine catalyzed reaction

Zeng and co-workers developed^{72b} iodine catalyzed formylation of indoles was synthesized, in this reaction hexamethylenetetramine **181** (HMTA) as source of formyl equivalent, and using activated carbon under the atmospheric oxygen in 2017 (**Eq. 41**).

Eq. 41. Zeng and co-workers (2017)

Miscellaneous reactions

In 2017 Wang *et al.* reported^{73a} Fe-catalyzed chemo selective C3-formylation of indoles by employing aq. formaldehyde **182** and aqueous ammonia **183** under the atmospheric air as an oxidant (**Eq. 42**).

Eq. 42. Wang et al. (2017)

In the year 2018, Kuhakarn and co-workers were reported^{73b} Bi-catalyzed formylation of indoles utilizing difluoro(phenylsulfanyl)methane **184** as formyl equivalent in hexafluoro isopropanol (HFIP) as suitable solvent system (**Eq. 43**).

Eq. 43. Kuhakarn and co-workers (2018)

Iranpoor *et al.* was synthesized^{73c} indole-3-carboxaldehyde **20** in the presence of W-catalyzed an efficient metal halide (WCl₆) with DMF **185** as new reagent system the source of formyl group introduced in 2014 (**Eq. 44**).

Eq. 44. Iranpoor et al. (2014)

In 2013 Cheng and co-workers developed^{73d} DMSO **186** serves the carbon source for the formation of indole-3-carboxaldehyde **20**, by using suitable combination DMSO **186** with H₂O in the presence of NH₄OAc (**Eq. 45**).

Eq. 45. Cheng and co-workers (2013)

Ling *et al.* was reported^{73e} an electrochemical method for synthesis of 3-formyl indoles utilizing trimethylamine **187** (NMe₃) as the formylating agent under the recyclable and reusable aqueous biphasic system n-Bu₄NBF₄/PEG-400/H₂O in 2021 (**Eq. 46**).

Eq. 46. Ling et al. (2021)

In 2021 Liang *et al.* were developed^{73f} Photo-Demand synthesis of vilsmeier reagent, obtained from CHCl₃ (**188**) + DMF (**185**) solution on photo-irradiation under O_2 bubbling readily available for synthesis of indole-3-carboxaldehyde (Eq. 47).

Eq. 47. Liang et al. (2021)

Recently, in 2023 Lei *et al.* were developed^{73g} a synthesis of 3-formyl indoles by using methanol **189** serves as the novel formylating reagent in the presence of recyclable photocatalyst 30% g-C₃N₄/rGO/BiVO₄ (**Eq. 48**).

Eq. 48. Lei et al. (2023)

Many of the formylation methods is proceeded entirely with requiring expensive transition metals⁷⁴ like Ir, Ag and Pd⁷⁵, photocatalyst⁷⁶, electrocatalyst⁷⁷, light irradiation and expensive ligands, special equipment setup or difficult to handling some harmful reagents. Consideringly, to overcome these limitations and to address this problem we reported this protocol.

1.2. Results and discussion:

Herein, we report a direct C-H formylation/acylation of α -ketoacids (144) with indoles 6 or β -carboline 80 in a single step through metal-free decarboxylative cross-coupling mediated by ammonium persulfate (APS) [(NH₄)₂S₂O₈] in DMSO *via* in situ generated respective radical formyl/acyl synthon in good to moderate yields. This methodology was extended to synthesis of some indole alkaloids.

Table 2.1 Optimization of the reaction conditions (20) ^a

$$(6) \qquad (190) \qquad conditions$$

$$(20)$$

Entry	(NH ₄) ₂ S ₂ O ₈ (equiv)	aq. Glyoxylic acid (equiv)	Solvent	20 (%) b
1	1	2	CH ₃ CN	21
2	2	2	CH ₃ CN/H ₂ O (1:1)	42
3	2	2	Toluene	0
4	2	2	Acetone	0
5	2	2	DMSO	72
6	2.5	2.5	DMSO	72
7	0	2	DMSO	0
8	2	2	DMSO/H ₂ O (1:1)	56
9	2	2	H ₂ O	45

^a Reaction conditions: Indole (6) (0.85 mmol, 1.0 equiv), 50% aqueous glyoxylic acid solution **190** (1.70 mmol, 2 equiv), Oxidant (NH₄)₂S₂O₈ (APS) (1.70 mmol, 2 equiv), DMSO (1 mL), RT, 3h. ^b Isolated yields after chromatography.

The optimizations of reaction conditions with different solvents and different equivalents of APS were carried out (**Table 2.1**). From this, we identified 2 equiv. of APS and 2 equiv. of glyoxylic acid **190** was found to be better reaction condition (**entry 5**) based on isolated yields. Both (NH₄)₂S₂O₈ and DMSO are inexpensive, easily removed by washing with water, and all starting materials are commercially available. This direct methodology of

formylation/acylation of indoles (6) and β -carbolines (80) is convenient, cost-effective and has several other advantages compared with traditional methods and other metal-catalyzed decarboxylative acylation: (i) proceeds smoothly under aqueous medium, (ii) commercially available, inexpensive, non-flammable, (iii) easy to handle reagents, (iv) formylations at room temperature, and (v) without an inert atmosphere and the products were obtained in good to moderate yields.

Scheme 2.1 Formylation of indoles with (NH₄)₂S₂O₈ ^a

After optimization of the reaction conditions, we carried out the reaction of substituted 3-formylindoles using 50% aqueous glyoxylic acid **190** with APS using optimized conditions and the products **20**, **191**, **20a-j** were obtained in 40-82 % yields (**Scheme 2.1**).

^a Reaction conditions: Indole **6**, indole substituents **6a-j**, Pyrrole **175** (0.85 mmol, 1.0 equiv), 50% aqueous glyoxylic acid solution **190** (1.70 mmol, 2 equiv), (NH₄)₂S₂O₈ (1.70 mmol, 2 equiv), DMSO (1.0 mL) at room temperature. Isolated yields after chromatography.

This formylation methodology was extended to pyrrole 175 and obtained pyrrole-2-carboxaldehyde 191 in 43 % yield. Quinolones 145 (quinoline, 2- and 4-methyl, 2-ethylester), isoquinoline 163, pyridines 147 (pyridine, 2-hydroxy, 2,6-dibromo), pyrazine 146b, β -carboline 80 imidazole, and 1,4-dimethoxybenzene, anisole and hydroquinone led to an inseparable mixture of products as well as decomposition products.

Previous reports on acylation of β -Carbolines:

Eq. 49: Yang et al. (2006)

In 2006 Yang *et al.* were synthesized^{78a} in single-step conversion of 1-substituted β -carbolines. *L*-tryptophan 7 treated with 1,2-dicarbonyl compounds **192** by using Pictet-Spengler methodology to afforded acylation of β -Carbolines with low yields (**Eq. 49**).

Eq. 50: Kumar and co-workers (2018)

Tryptamine **8** reacts with pyruvaldehyde **192a** in the presence of trifluoroaceticacid catalyzed Pictet-Spengler cyclization, subsequently Pd/C mediated aromatisation to obtain the corresponding 1-acyl β -Carboline **196** with overall 30% yield by Kumar and co-workers^{78b} in 2018 (**Eq. 50**).

Recently Balogh and co-workers reported^{78c} 1-acetyl β -Carboline **196** starting from Kumujian C **86** treated with Grignard reagents transformed to 1-(ethyl-1-ol)- β -carbolines **197**

followed by oxidation of alcohol **197** further transformed to corresponding ketones **193** in the presence of dess-martin periodinane (DMP) or activated manganese dioxide (MnO₂) with the overall good to moderate yields in the year 2021 (Eq. 51).

Eq. 51: Balogh and co-workers (2021)

Eq. 52. Matcha et al. (2013)

In 2013 Matcha *et al.* was developed^{78d} a cross-dehydrogenative coupling of β -carboline **86** with acetaldehyde **198** by using hypervalent iodine reagent [bis(trifluoro acetoxy)iodo]benzene PhI(OCOCF₃)₂ oxidant and sodium azide NaN₃ additive at room temperature to obtain the 1-acyl β -carboline **196** with 57% yield (**Eq. 52**).

Eq. 53. Lin et al. (2011)

Lin et al. were reported^{78e} Fe-catalyzed 1-substituted β -carboline involving minisci reaction from commercially available starting materials β -carboline 80 treated with acetaldehyde 198 by using H₂O₂ as oxidant maintain the temperature at 10-15 °C in 1 h to afforded the compound 196 with 45% yield (Eq. 53).

In 1995 Bracher *et al.* were reported^{78f} acetylation of β -carbolines by using both acetaldehyde **198** and pyruvic acid **199** as the acetyl synthetic equivalents. In the case of acetaldehyde was an acetyl radical precursor with the combination of FeSO₄/TBHP redox

system gave the 1-acetyl β -carboline **196** in 48% yield, if the amount of FeSO₄/TBHP redox system becomes twice, reaction time observed the yield enhances to 79%. Alternatively, they preferred another acetyl radical precursor pyruvic acid **199** in the presence of TFA mediated AgNO₃-catalyzed decarboxylative coupling with β -carboline **80** using sodium persulfate as an oxidant in two-phase system to obtain 1-acetyl β -carboline **196** in 33% yield, performing the same reaction with the combination AgNO₃/Na₂S₂O₈ with H₂SO₄ in homogeneous solution gave the compound 1-acetyl β -carboline **196** in trace amount (**Eq. 54**).

Eq. 54. Bracher et al. (1995)

Eq. 55. Omar and co-workers (1997)

Omar and co-workers^{79a} synthesized 1-acetyl β -carboline **196** by 1-cyano β -carboline **200** treated with Grignard reagent methyl magnesium bromide addition followed by hydrolysis to obtain the compound **196** with 73% yield (**Eq. 55**).

Eq. 56. Batra and co-workers (2017)

In 2017 Batra and co-workers reported^{79b} 1-aroyl β -carbolines **193** by using terminal alkynes **201** as the precursor of 2-oxoaldehydes treated with tryptamine **8** and its substituents in the presence of iodine mediated oxidative Pictet-Spengler cyclization and followed by aromatisation to obtain the compound 1-substituted β -carbolines **193** with better yields (**Eq. 56**).

Eq. 57. Kulkarni *et al.* (2009)

Kulkarni *et al.* were synthesized^{79c} microwave-assisted 1-substituted (aroyl) β -carbolines **193** from tryptamine **8** and its substituents treated with arylglyoxals **192b** in the presence of bifunctional catalyst Pd/C/K-10 in three step domino reaction involving Pictet-Spengler cyclization subsequently aromatisation to afford the corresponding 1-substituted (aroyl) β -carbolines **193** in shorter reaction time with good to excellent yields (**Eq. 57**).

Eq. 58. Manda et al. (2016)

Manda *et al.* were reported^{79d} 1-substituted β -carbolines **193** from tryptamine **8** reacts with arylglyoxals **192b-c** involving Pictet-Spengler cyclization the presence of glacial AcOH with Pd/C reflux in 3 h to obtain the cyclization and aromatized compound **193** with good to moderate yields (**Eq. 58**).

Eq. 59. Chalotra et al. (2018)

Chalotra *et al.* developed^{79e} a Ru-photo redox catalyzed 1-substituted β -carbolines **193** by using alkynes **201** as the surrogates of 2-oxoaldehydes/1,2-diones. In the presence of visible light mediated aerobic oxidative conversion of alkyne to insitu generated 2-oxoaldehydes reacts with active nucleophile tryptamine **8** and its substituents to afforded 1-acetyl β -carbolines **193** with good to moderate yields in the year 2018 (**Eq. 59**).

Eq. 60. Jenkins and co-workers (2006)

In 2006 Jenkins and co-workers^{80a-b} described 1-aroyl β -carbolines **193** by tryptamine **8** treated with phenyl acetyl chloride **202** to gave the acetamide compound **203**, the acetamide derivative further undergoes Bischler-Napieralski reaction with POCl₃ in refluxing toluene to obtain the cyclized compound **204**, subsequently oxidized by MnO₂ in DCM refluxing method or another approach irradiation with 500 watts halogen lamp inducing reflux with toluene to produces the benzylic oxidation and fully aromatisation to form 1-aroyl β -carbolines **193** with good to moderate yields (**Eq. 60**).

Recently, in 2022 Samanta *et al.* reported^{80c} one-pot tandem protocol for the synthesis of 1-aroyl β -carbolines **193** in in the presence of molecular iodine catalyzed, TFA mediated tryptophan (7)/tryptamine (8) with amino acid **205** in this process involves consecutive decarboxylation and oxidation followed by cyclization to afford the 1-substituted β -carbolines **193** with good yields (**Eq. 61**).

Eq. 61. Samanta et al. (2022)

Eq. 62. Mondal et al. (2021)

In 2021 Mondal *et al.* were synthesized^{80d} Pd-catalyzed 1-vinyltetrahydro β -carbolines **208** through cyclo condensation between *N*-allenyltryptamine **206** and aryl iodides **207** followed by DDQ-oxidation to obtain the corresponding β -carboline framework compound **209** and which are easily converted in to 1-aroyl β -carbolines **193** with moderate yields in pharmacological interesting biologically active β -carboline alkaloids (**Eq. 62**).

Trieu *et al.* were described^{80e} for the synthesis of eudistomins Y₁-Y₇ by tryptamine 8 and its substituents reacts with substituted phenyl acetic acid **210** to gave the acetamide derivative **203** further involves Bischler-Napieralski reaction with POCl₃ in refluxing condition to obtain the cyclized compound **204**, subsequently tandem benzylic oxidation and

aromatisation with DBU in DMSO under an atmospheric oxygen at room temperature to form benzylic oxidized product 211 and rapidly aromatisation to convert 1-aroyl β -carbolines 193 which was the precursor of β -carboline alkaloids eudistomin Y₁, Y₃, and Y₅. Upon the compound 193 treated with NBS in AcOH/CH₃CN preferably mono bromination at C-6 position occurred these brominated compounds are the precursors of β -carboline alkaloids eudistomin Y₂, Y₄, and Y₆. Further demethylation with aqueous HBr in AcOH to gave the desired products eudistomin Y₁-Y₇ (212) in the year 2013 (Eq. 63).

Eq. 63. Trieu et al. (2013)

 β -Carboline **80** alkaloids are some indole **6** alkaloids that exhibits various biological activities and find more importance in medicinal chemistry. Though formylation of β -carboline **80** leads to inseparable mixtures, acylation of β -carboline **80** with pyruvic acid **199** and phenyl glyoxylic acids **213** under APS-mediated methodology afforded 1-acyl- β -

carbolines 193 in moderate yields. The conventional method of acylation of β -carboline 80 involves a multistep sequence using protecting groups.^{78c} β -Carboline 80 on reaction with pyruvic acid 199 and phenyl glyoxylic acid 213 by employing decarboxylative acylation were produced in 52-65 % yields (Scheme 2.2).

Scheme 2.2. Acylation of β-carbolines with (NH₄)₂S₂O₈ ^a

^a Reaction conditions: β -carbolines **80**, **80a**¹ (0.30 mmol, 1.0 equiv), α -ketoacids **199**, **213**, **213a-b** (1.5 equiv), APS (0.59 mmol, 2 equiv), DMSO (1.5 mL), 40 °C, 4 h. Isolated yields after chromatography.

The starting materials 105, 214a-b will be readily used for the synthesis of biologically active β -carboline alkaloids marinacarbolines (A-D) and eudistomins Y_1 and Y_3 as reported in the literature⁸² (Figure. 1.2).

The marine β -carboline alkaloid pityriacitrin (1*H*-Indol-3-yl-9*H*-pyrido[3,4-*b*] indol-1-yl) methanone **93**) was first isolated from marine bacterium of the genus *Paracoccus sp.*, ^{83a} from the human pathogenic yeast *Malassezia furfur*^{83b} in 1999 and recently from the marine fungus *Dichotomomyces cejpii*. ^{83c} Although only a few of reports are available, many of them involve multi-step sequence under harsh reaction conditions.

Figure 1.2 Possible alkaloids from 105 and 214a-b

Previous reports on synthesis of β -carboline alkaloid Pityriacitrin:

R²

$$\begin{array}{c}
\text{i) (COCl)}_{2}, \text{ Et}_{2}O \\
\text{i) Bu}_{3}\text{SnH, EtOAc}
\end{array}$$

$$\begin{array}{c}
\text{R}^{2} \\
\text{N} \\
\text{H}
\end{array}$$

$$\begin{array}{c}
\text{NH}_{2} \\
\text{COOH}
\end{array}$$

$$\begin{array}{c}
\text{P-TSA (1 equiv)} \\
\text{MeOH, 50 °C, 2 h}
\end{array}$$

$$\begin{array}{c}
\text{R}^{1} \\
\text{N} \\
\text{H}
\end{array}$$

$$\begin{array}{c}
\text{CO}_{2}H \\
\text{N} \\
\text{H}
\end{array}$$

$$\begin{array}{c}
\text{R}^{1} \\
\text{N} \\
\text{N} \\
\text{H}
\end{array}$$

$$\begin{array}{c}
\text{R}^{1} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{N}
\end{array}$$

$$\begin{array}{c}
\text{R}^{1} \\
\text{R}^{2} \\
\text{N} \\$$

Eq. 64. Zhang et al. (2011)

Zhang *et al.* were reported^{84a} acid-catalyzed Pictet-Spengler reaction by L-Tryptophan 7 and its substituents reacts with indole-3-glyoxal **192c** and its substituents in the presence of p-toluenesulfonicacid mediated Pictet-Spengler cyclization and aromatisation to obtain in single step β -carboline alkaloids pityriacitrin with 27% yield, and also synthesized pityriacitrin B with 23% yields and its derivatives with low yields in the year 2011 (**Eq. 64**).

$$\begin{array}{c} \text{SeO}_2 \\ \text{NH}_2 \\ \text{Dioxane/H}_2\text{O} \end{array} \begin{array}{c} \text{NH}_2 \\ \text{H} \end{array} \begin{array}{c} \text{CO}_2\text{H} \\ \text{NH}_2 \\ \text{MeOH, 60 °C} \end{array} \begin{array}{c} \text{OH} \\ \text{NH} \\ \text{H} \end{array} \begin{array}{c} \text{OH} \\ \text{NH} \\ \text{NH} \end{array} \begin{array}{c} \text{OH} \\ \text{NH} \end{array} \begin{array}{c} \text{OH} \\ \text{NH} \end{array} \begin{array}{c} \text{OH} \\ \text{NH} \\ \text{NH} \end{array} \begin{array}{c$$

Eq. 65. Xu et al. (2019)

In 2019 Xu *et al.* synthesized^{84b} β -carboline alkaloids by using Pictet-Spengler method with indole-3-glyoxal **192c** which was prepared from 3-acetyl indole **215** treated with tryptophan **7** in the presence of p-TSA mediated observed the mixture of compounds tetrahydro β -carboline **216** in 48%, pityriacitrin **93** in 12% and compound **94** pityriacitrin B with 15% yields (**Eq. 65**).

Eq. 66. Liew et al. (2014)

In 2014 Liew *et al.* were synthesized^{84c} a series of 1-substituted β -carboline alkaloids from substituted indole-acetaldehydes **217** treated with substituted tryptamines **8** in the presence of 10% AcOH/H₂O under refluxing to gave the Pictet-Spengler cyclized compound

R¹=R²=H, Pityriacitrin 15% (93)

1-substituted tetrahydro β -carboline **218** followed by DDQ-mediated oxidation to afford the β -carboline alkaloid pityriacitrin with 15% yield (**Eq. 66**).

$$\begin{array}{c}
O \\
NH_{2} \\
N$$

Eq. 67. Zhu et al. (2013)

Zhu *et al.* were developed^{84d} cascade coupling protocol for the synthesis of β -carboline containing alkaloids pityriacitrin **93** and eudistomin Y₁-Y₆. Tryptamine **8** reacts with indole-3-glyoxal **192c** which is insitu generated from 3-acetyl indole **215** with the combination of I₂/DMSO (Kornblum oxidation) mediated, involving Pictet-Spengler condensation, and followed by aromatisation to obtain the β -carboline alkaloid pityriacitrin **93** with 86% yield (**Eq. 67**).

Eq. 68. Battini et al. (2014)

Battini *et al.* were developed^{84e} iodine-mediated β -carboline containing alkaloids pityriacitrin **93** and pityriacitrin B **94**, marinacarbolines (A&B) **107-110**, eudistomin Y₁ **90** and fascaplysins. Tryptamine **8** treated with 3-acetyl indole **215** involving Pictet-Spengler methodology by using iodine/DMSO-mediated at 90 °C for 3 h to afford the desired product pityriacitrin **93** in a single-step with 42% yield (**Eq. 68**).

Milen and his group described^{84f} for the synthesis of β -carboline based alkaloids pityriacitrin **93**, trigonostemines A-B, and hyrtiosulawesine. β -carboline-1-carboxaldehyde **86** and its substituents reacts with indole **6** and its substituents in the presence of aq. NaOH basic condition to obtain with the indole coupled product secondary alcoholic compound **219**, further this alcoholic compound **219** treated with activated MnO₂ inducing reflux condition to afford the β -carboline alkaloid pityriacitrin **93** with overall 50% yield (**Eq. 69**).

Eq. 69. Milen and group (2019)

$$\begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{4} \\ R^{2} \\ R^{4} \\ R^{4} \\ R^{2} \\ R^{4} \\ R^{4} \\ R^{4} \\ R^{4} \\ R^{4} \\ R^{5} \\ R^{4} \\ R^{4} \\ R^{5} \\ R^{4} \\ R^{5} \\ R^{4} \\ R^{5} \\ R^{5} \\ R^{4} \\ R^{5} \\$$

Therefore, we have developed a methodology and extended for the total synthesis of pityriacitrin 93 by the reaction of β -carbolines 80 with indole-3-glyoxylic acid 220 in 74% yield in a single step without using any protecting groups (Scheme 2.3).

Scheme 2.3. Reaction of β-carbolines with indole-3-glyoxylic acids using (NH₄)₂S₂O₈ ^a

^a Reaction conditions: β -carbolines **80, 80a**¹ (0.30 mmol, 1.0 equiv), indole-3-glyoxylic acid **220, 220a-b** (1.5 equiv), (NH₄)₂S₂O₈ (0.59 mmol, 2 equiv), DMSO (1.5 mL), 40 °C, 4 h, Isolated yields after chromatography.

The methodology was extended with substituted pityriacitrins 93, 93a-b, 93a¹ in 65-74 % yields. Indole did not undergo acetylation or aroylation under our reaction conditions.

We postulated a mechanism based on the previous literature reports^{62a} that of α -oxo/ketoacids with *N*-heterocycles. The sulfate radical anion formed from APS can readily abstracts hydrogen radical from available α -ketoacids to form the formyl or acyl radical with extrusion of CO₂. This generated radical species adds to *N*-heterocycles and subsequent, hydrogen radical abstraction by a sulfate radical anion or by a mechanism of single-electron transfer (SET) to the corresponding carbonyl products (Scheme **2.4**).

Scheme 2.4. Plausible mechanism

1.3. Conclusion:

We have developed a direct metal-free decarboxylative method for the formylation of indoles and acylation of β -carbolines using α -oxo/ketoacids 144 and (NH₄)₂S₂O₈ as oxidant. The reactions were carried out from room temperature to 40 °C and does not require any special reaction conditions, and the products were obtained in good to moderate yields. This methodology was extended to acylation of β -carbolines, and an alkaloid, pityriacitrin 93, was prepared in 74% yield in a single step.

1.4. Experimental section:

Melting points: The melting point of the products was recorded on a super fit (India) capillary melting point apparatus and is uncorrected.

NMR spectra: DMSO- d_6 and CDCl₃ are used as the NMR solvents to record ¹H and ¹³C NMR spectra were recorded at BRUKER-ADVANCE NMR analyser at 400 and 100 MHz or at 500 and 125 MHz respectively. Chemical shifts values were assigned with respect to TMS ($\delta = 0$) for ¹H NMR, and relative to NMR solvent residual peaks in CDCl₃ resonance ($\delta = 77.12$) and DMSO- d_6 ($\delta = 39.52$) for ¹³C NMR. Data are presented as follows: chemical shifts, multiplicity (br s = broad singlet, s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet), coupling constant in Hertz (Hz) and integration.

Mass spectral analysis: Shimadzu LCMS 2010A mass spectrometer was used. In all the cases EtOAc or DCM or MeOH were used to dissolve the compounds. HRMS were obtained from TOF and quadrupole mass analyzer types.

General procedure for formylation:

Indole 6 (0.853 mmol, 1 equiv) was dissolved in DMSO (1 mL) in an RB flask closed with aguard tube, and then a 50% aqueous glyoxylic acid solution 190 (1.70 mmol, 2 equiv) was added followed by (NH₄)₂S₂O₈ (1.70 mmol, 2 equiv). The resulting solution was stirred at room temperature for 0.25–48 h. After the reaction had reached completion as determined by using TLC, the reaction was quenched with water (10 mL), the mixture was extracted with ethyl acetate (3 × 10 mL), and the combined organic layers were washed with water, dried over anhydrous Na₂SO₄, and concentrated using a rotary evaporator. The crude product was further purified by column chromatography on silica gel with an ethyl acetate/hexane solvent mixture.

General procedure for acylation:

 β -Carboline 80 (0.30 mmol, 1 equiv) was dissolved in DMSO (1.5 mL) in an RB flask closed with aguard tube, and then pyruvic acid 199, phenyl glyoxylic acid 213, or indole-3-glyoxylic acid 220 (0.445 mmol, 1.5 equiv) was added followed by (NH₄)₂S₂O₈ (0.59 mmol, 2 equiv). The resulting solution was stirred in a preheated oil bath at 40 °C for 4 h. After the reaction had reached completion as determined by using TLC, the reaction was quenched with water (10 mL), the mixture was extracted with ethyl acetate (3 × 10 mL), and the combined organic layers were washed with water, dried over anhydrous Na₂SO₄, and concentrated using a rotary evaporator. The crude product was further purified by column chromatography on silica gel with an ethyl acetate/hexane solvent mixture.

1H-Indole-3-carboxaldehyde (20)

 \mathbf{R}_f : 0.5 EtOAc/hexane (1:1)

Physical state: yellow solid

Yield: 89 mg (72 %)

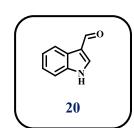
M. P: 189-191 °C (Lit.^{73a} 190-192 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.15 (1H, br s), 9.95 (1H, s), 8.28 (1H, s), 8.13 (1H, d, J = 7.4 Hz), 7.53 (1H, d, 7.85 Hz), 7.28-7.21 (2H, m).

¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 185.4, 138.8, 137.5, 124.6, 123.9, 122.6, 121.3, 118.6, 112.8.

2-Methyl-1*H*-indole-3-carboxaldehyde (20a)

 \mathbf{R}_f : 0.42 EtOAc/hexane (1:1)


Physical state: orange solid

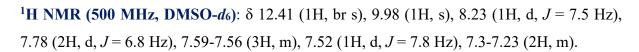
Yield: 96 mg (79 %)

M.P: 191-194 °C (Lit.^{73h} 195-200 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 11.97 (1H, br s), 10.05 (1H, s), 8.06-8.04 (1H, m), 7.40-7.38 (1H, m), 7.19-7.13 (2H, m), 2.67 (3H, s).

¹³C{¹**H**} NMR (100 MHz, DMSO-*d*₆): δ 184.6, 149.0, 135.8, 126.0, 123.0, 122.3, 120.4, 114.1, 111.8, 11.9.

20a


2-Phenyl-1*H*-indole-3-carboxaldehyde (20b)

 \mathbf{R}_f : 0.57 EtOAc/hexane (4:6)

Physical state: yellow solid

Yield: 94 mg (82 %)

M.P: 248-251 °C (Lit.^{73a} 250-252 °C)

¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 185.9, 149.5, 136.4, 130.3, 130.2, 129.4, 126.2, 124.1, 122.9, 121.5, 113.9, 112.4.

5-Methoxy-1*H*-indole-3-carboxaldehyde (20c)

 \mathbf{R}_f : 0.33 EtOAc/hexane (1:1)

Physical state: orange solid

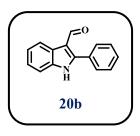
Yield: 95 mg (80 %)

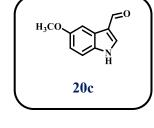
M.P: 175-178 °C (Lit.^{73a} 180-181 °C)

¹H NMR (500 MHz, DMSO- d_6): δ 12.01 (1H, br s), 9.90 (1H, s), 8.21 (1H, d, J = 3.2 Hz), 7.60 (1H, d, J = 2.5 Hz), 7.41 (1H, dd, J = 8.7, 0.2 Hz), 6.90 (1H, dd, J = 8.8, 2.5 Hz), 3.79 (3H, s).

¹³C{¹**H**} **NMR (125 MHz, DMSO-***d*₆): δ 185.3, 156.1, 138.8, 132.2, 125.3, 118.5, 113.7, 113.6, 103.0, 55.7.

5-Methyl-1*H*-indole-3-carboxaldehyde (20d)


 \mathbf{R}_f : 0.42 EtOAc/hexane (1:1)


Physical state: orange solid

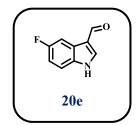
Yield: 90 mg (74 %)

M.P: 148-151 °C (Lit. ^{73a} 149-150 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.02 (1H, br s), 9.90 (1H, s), 8.21 (1H, d, J = 3.1 Hz), 7.91 (1H, d, J = 0.7 Hz), 7.40 (1H, d, J = 8.2 Hz), 7.08 (1H, dd, J = 8.3, 1.5 Hz), 2.40 (3H, s).

20d

¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 185.3, 138.8, 135.8, 131.5, 125.3, 124.8, 121.0, 118.3, 112.4, 21.6.


5-Fluoro-1*H*-indole-3-carboxaldehyde (20e)

 \mathbf{R}_{f} : 0.3 EtOAc/hexane (1:1)

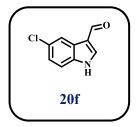
Physical state: yellow solid

Yield: 75 mg (63 %)

M.P: 142-145 °C (Lit.^{73a} 144-146 °C)

¹H NMR (500 MHz, DMSO- d_6): δ 12.23 (1H, br s), 9.92 (1H, s), 8.35 (1H, d, J = 2.8 Hz), 7.77 (1H, dd, J = 9.5, 2.6 Hz), 7.53 (1H, dd, J = 8.8, 4.5 Hz), 7.13-7.09 (1H, m).

¹³C{¹H} NMR (125 MHz, DMSO-*d*₆): δ 185.4, 160.1, 139.9, 134.0, 125.2, 118.6, 114.2, 112.1, 106.2.


5-Chloro-1*H*-indole-3-carboxaldehyde (20f)

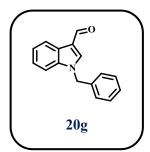
 \mathbf{R}_f : 0.3 EtOAc/hexane (1:1)

Physical state: yellow solid

Yield: 85 mg (72 %)

M.P: 210-213 °C (Lit.^{73a} 214-216 °C)

¹H NMR (500 MHz, DMSO- d_6): δ 12.29 (1H, br s), 9.93 (1H, s), 8.36 (1H, d, J = 3.1 Hz), 8.07 (1H, d, J = 2.0 Hz), 7.54 (1H, d, J = 8.6 Hz), 7.28 (1H, dd, J = 8.6, 2.1 Hz).


¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 185.5, 139.8, 135.9, 127.2, 125.7, 123.9, 120.3, 118.0, 114.5.

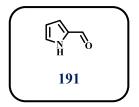
1-Benzyl-1*H*-indole-3-carboxaldehyde (20g)

 \mathbf{R}_{f} : 0.66 EtOAc/hexane (1:1)

Physical state: yellow oil

Yield: 85 mg (75 %)

¹H NMR (500 MHz, CDCl₃): δ 9.97 (1H, s), 8.33-8.31 (1H, m), 7.68 (1H, s), 7.34-7.28 (6H, m), 7.17-7.15 (2H, m), 5.33 (2H, s).


¹³C{¹H} NMR (125 MHz, CDCl₃): δ 184.6, 138.5, 137.4, 135.3, 129.1, 128.4, 127.2, 125.5, 124.1, 123.0, 122.1, 118.5, 110.4, 50.9.

1H-Pyrrole-2-carboxaldehyde (191)

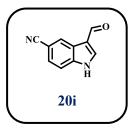
 \mathbf{R}_{f} : 0.44 EtOAc/hexane (2:8)

Physical state: viscous oil

Yield: 61 mg (43 %)

¹H NMR (500 MHz, CDCl₃): δ 10.41 (1H, br s), 9.52 (1H, br s), 7.196-7.195 (1H, m), 7.03-7.02 (1H, m), 6.38-6.36 (1H, m).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 179.5, 132.8, 127.1, 122.0, 111.3.


3-Formyl-1*H*-indole-5-carbonitrile (20i)

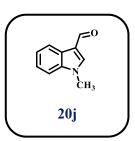
R_f: 0.38 EtOAc/hexane (7:3)

Physical state: yellow solid

Yield: 47 mg (40 %)

M.P: 242-245 °C (Lit.⁷³ⁱ 241-243 °C)

¹H NMR (500 MHz, DMSO- d_6): δ 12.57 (1H, br s), 9.99 (1H, s), 8.49 (1H, s), 8.45 (1H, d, J = 0.9 Hz), 7.70 (1H, dd, J = 8.4, 0.6 Hz), 7.63 (1H, dd, J = 8.4, 1.6 Hz).


¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 185.8, 140.6, 139.2, 126.8, 126.1, 124.4, 120.3, 118.4, 114.4, 104.8.

1-Methyl-1*H*-indole-3-carboxaldehyde (20j)

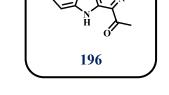
 \mathbf{R}_f : 0.38 EtOAc/hexane (1:1)

Physical state: yellow oil

Yield: 92 mg (76 %)

¹H NMR (500 MHz, CDCl₃): δ 9.95 (1H, s), 8.30-8.28 (1H, m), 7.63 (1H, s), 7.35-7.29 (3H, m), 3.83 (3H, s).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 184.4, 139.2, 137.8, 125.2, 124.0, 122.9, 122.0, 118.0, 109.8, 33.6.


1-(9*H*-pyrido[3,4-*b*]indol-1-yl)ethan-1-one (196)

 \mathbf{R}_f : 0.71 EtOAc/hexane (1:9)

Physical state: yellow solid

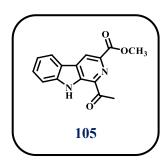
Yield: 32 mg (52 %)

M.P: 205-208 °C (Lit.^{78a} 207-209 °C)

¹H NMR (500 MHz, CDCl₃): δ 10.31 (1H, br s), 8.53 (1H, d, J = 4.9 Hz), 8.14-8.13 (2H, m), 7.61-7.56 (2H, m), 7.34-7.31 (1H, m), 2.89 (3H, s).

¹³C{¹**H**} NMR (125 MHz, CDCl₃): δ 203.3, 141.1, 138.1, 136.0, 135.4, 131.5, 129.2, 121.8, 120.7, 120.5, 119.0, 111.9, 25.9.

HRMS (ESI-TOF) Calcd for $C_{13}H_{10}N_2O [M+H]^+ 211.0866$, found: 211.0866.


Methyl-1-acetyl-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (105)

 \mathbf{R}_{f} : 0.69 EtOAc/hexane (1:9)

Physical state: yellow solid

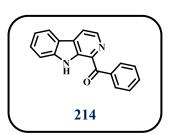
Yield: 35 mg (59 %)

M.P: 221-224 °C (Lit. 84e 222-224 °C)

¹H NMR (500 MHz, CDCl₃): δ 10.43 (1H, br s), 8.92 (1H, d, J = 0.4 Hz), 8.10 (1H, dd, J = 7.9, 0.6 Hz), 7.57-7.52 (2H, m), 7.32-7.29 (1H, m), 4.00 (3H, s), 2.88 (3H, s).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 203.2, 166.0, 141.4, 136.8, 136.4, 135.2, 131.8, 129.7, 122.0, 121.6, 121.2, 120.9, 112.3, 52.7, 25.6.

HRMS (ESI-TOF) Calcd for $C_{15}H_{12}N_2O_3$ [M+H]⁺ 269.0921, found: 269.0925.


Phenyl-(9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (214)

 \mathbf{R}_f : 0.79 EtOAc/hexane (3:7)

Physical state: yellow solid

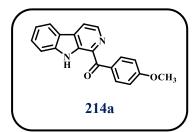
Yield: 45 mg (56 %)

M.P: 137-140 °C (Lit. 80e 139-139.5 °C)

¹H NMR (500 MHz, CDCl₃): δ 10.49 (1H, br s), 8.63 (1H, d, J = 4.9 Hz), 8.36-8.34 (2H, m), 8.20-8.17 (2H, m), 7.65-7.60 (3H, m), 7.58-7.55 (2H, m), 7.38-7.35 (1H, m).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 195.5, 141.0, 138.0, 137.5, 137.3, 136.3, 132.3, 131.6, 131.2, 129.2, 128.0, 121.8, 120.8, 120.7, 118.5, 112.0.

HRMS (**ESI-TOF**) Calcd for $C_{18}H_{12}N_2O$ [M+H]⁺ 273.1022, found: 273.1024.


(4-Methoxyphenyl) (9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (214a)

 \mathbf{R}_f : 0.67 EtOAc/hexane (3:7)

Physical state: yellow solid

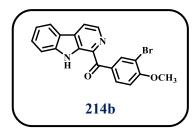
Yield: 58 mg (65 %)

M.P: 181-184 °C (Lit. 80e 184-185 °C)

¹H NMR (500 MHz, CDCl₃): δ 10.49 (1H, br s), 8.62 (1H, d, J = 4.9 Hz), 8.49-8.46 (2H, m), 8.18 (1H, d, J = 7.8 Hz), 8.16 (1H, d, J = 4.9 Hz), 7.63-7.58 (2H, m), 7.36-7.33 (1H, m), 7.06-7.04 (2H, m), 3.92 (3H, s).

¹³C{¹**H**} NMR (125 MHz, CDCl₃): δ 193.4, 163.2, 141.0, 137.8, 137.2, 136.9, 133.8, 131.5, 130.2, 129.1, 121.7, 120.9, 120.6, 118.1, 113.4, 111.9, 55.4.

HRMS (**ESI-TOF**) Calcd for C₁₉H₁₄N₂O₂ [M+H]⁺ 303.1128, Found: 303.1127.


$(3-Bromo-4-methoxyphenyl) \ (9H-pyrido[3,4-b]indol-1-yl) methanone \ (214b)$

R_f: 0.64 EtOAc/hexane (3:7)

Physical state: yellow solid

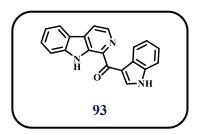
Yield: 69 mg (61 %)

M.P: 196-199 °C (Lit. 80e 196-196.5 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.01 (1H, br s), 8.56 (1H, d, J = 1.7 Hz), 8.53 (1H, d, J = 4.8 Hz), 8.42 (1H, d, J = 4.8 Hz), 8.36 (1H, dd, J = 8.6, 1.6 Hz), 8.30 (1H, d, J = 7.8 Hz), 7.81 (1H, d, J = 8.2 Hz), 7.60 (1H, t, J = 7.6 Hz), 7.31-7.26 (2H, m), 3.96 (3H, s).

¹³C{¹H} NMR (125 MHz, DMSO-*d*₆): δ 190.7, 159.1, 142.1, 137.5, 136.8, 136.3, 136.1, 133.3, 131.5, 131.3, 129.4, 122.2, 120.6, 120.5, 119.2, 113.4, 112.3, 110.5, 57.1.

HRMS (**ESI-TOF**) Calcd for C₁₉H₁₃BrN₂O₂ [M+H]⁺ 381.0233, found: 381.0236.


(1*H*-Indol-3-yl) (9*H*-pyrido[3,4-*b*]indol-1-yl)methanone or Pityriacitrin (93)

 \mathbf{R}_f : 0.46 EtOAc/hexane (3:7)

Physical state: yellow solid

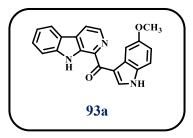
Yield: 68 mg (74 %)

M.P: 236-239 °C (Lit.^{84d} 237-239 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.13 (1H, br s), 12.01 (1H, br s), 9.27 (1H, d, J = 3.1 Hz), 8.59-8.56 (2H, m), 8.39 (1H, d, J = 4.9 Hz), 8.30 (1H, d, J = 7.8 Hz), 7.85 (1H, d, J = 8.1 Hz), 7.60-7.57 (2H, m), 7.30-7.27 (3H, m).

¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 187.8, 142.0, 138.9, 138.3, 137.4, 136.4, 135.5, 131.2, 129.1, 127.6, 123.3, 122.5, 122.13, 122.12, 120.5, 120.3, 118.3, 114.7, 113.4, 112.7.

HRMS (ESI-TOF) Calcd for $C_{20}H_{13}N_3O$ [M+H]⁺ 312.1131, found: 312.1135.


(5-Methoxy-1*H*-indol-3-yl) (9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (93a)

 \mathbf{R}_f : 0.38 EtOAc/hexane (3:7)

Physical state: yellow solid

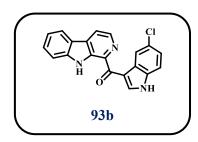
Yield: 69 mg (68 %)

M.P: 240-243 °C (Lit.^{84a} 214-216 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.02 (2H, br s), 9.24 (1H, d, J = 3.0 Hz), 8.56 (1H, d, J = 4.8 Hz), 8.39 (1H, d, J = 4.8 Hz), 8.30 (1H, d, J = 7.8 Hz), 8.12 (1H, d, J = 2.1 Hz), 7.86 (1H, d, J = 8.2 Hz), 7.58 (1H, t, J = 7.6 Hz), 7.47 (1H, d, J = 8.7 Hz), 7.28 (1H, t, J = 7.4 Hz), 6.91 (1H, dd, J = 8.7, 2.3 Hz), 3.86 (3H, s).

¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 187.7, 156.1, 142.0, 138.9, 138.4, 137.3, 135.5, 131.22, 131.20, 129.1, 128.5, 122.1, 120.5, 120.2, 118.3, 114.6, 113.5, 113.4, 113.2, 103.9, 55.7.

HRMS (ESI-TOF) Calcd for $C_{21}H_{15}N_3O_2$ [M+H]⁺ 342.1237, found: 342.1242.


(5-Chloro-1*H*-indol-3-yl) (9*H*-pyrido[3,4-*b*]indol-1-yl)methanone (93b)

 $\mathbf{R}_{\mathbf{f}}$: 0.38 EtOAc/hexane (3:7)

Physical state: yellow solid

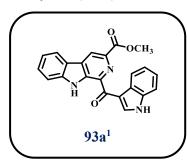
Yield: 67 mg (65 %)

M.P: 279-282 °C

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.29 (1H, br s), 12.02 (1H, br s), 9.35 (1H, d, J = 3.1 Hz), 8.60 (1H, d, J = 2.1 Hz), 8.57 (1H, d, J = 4.9 Hz), 8.39 (1H, d, J = 4.9 Hz), 8.29 (1H, d, J = 7.8 Hz), 7.85 (1H, d, J = 8.2 Hz), 7.61-7.57 (2H, m), 7.31-7.26 (2H, m).

¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 187.7, 142.1, 139.4, 138.5, 137.5, 135.6, 134.9, 131.3, 129.2, 128.9, 127.2, 123.3, 122.2, 121.4, 120.5, 120.4, 118.6, 114.4, 114.3, 113.5.

HRMS (**ESI-TOF**) Calcd for C₂₀H₁₂ClN₃O [M+H]⁺ 346.0742, found: 346.0742.

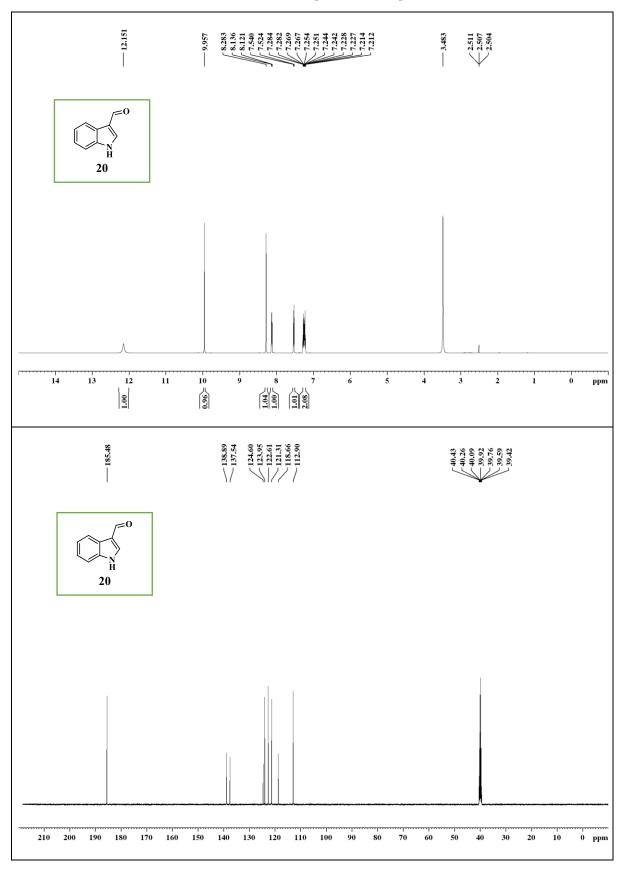

Methyl 1-(1*H*-indole-3-carbonyl)-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (93a¹)

 \mathbf{R}_f : 0.41 EtOAc/hexane (3:7)

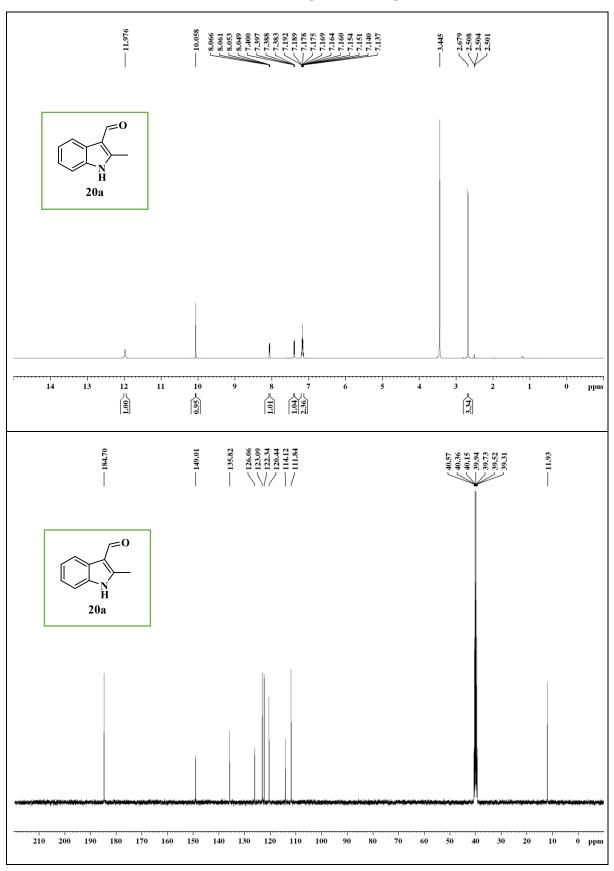
Physical state: yellow solid

Yield: 59 mg (73 %)

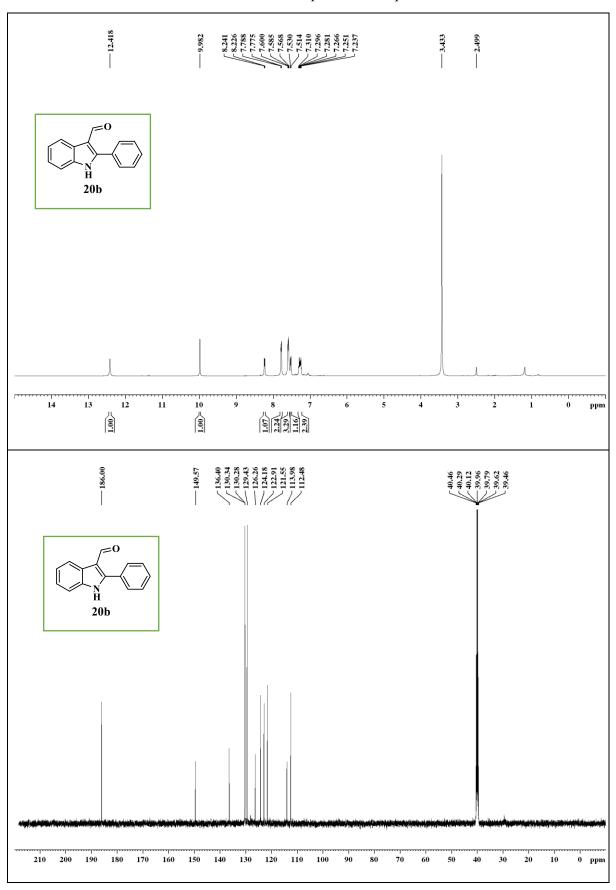
M.P: 258-261 °C (Lit.^{84e} 254-256 °C)

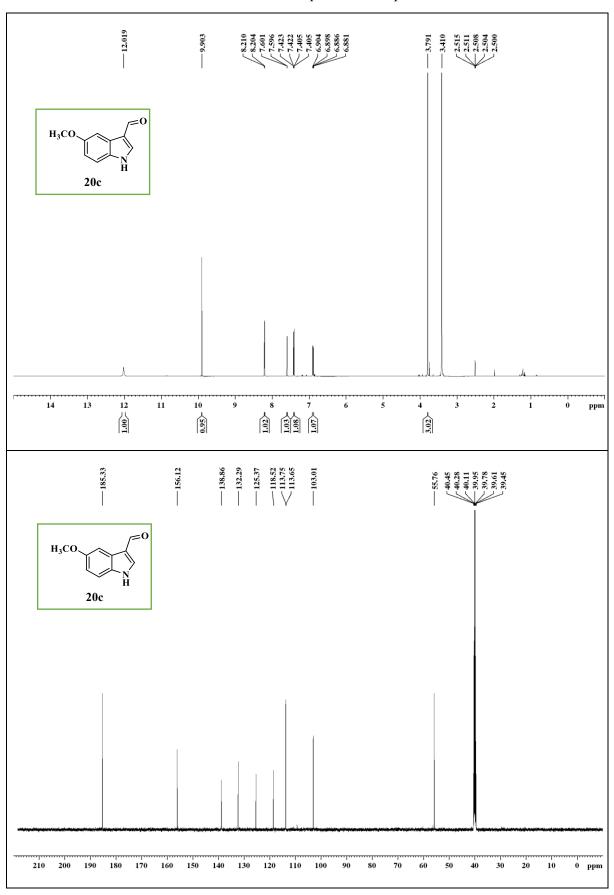


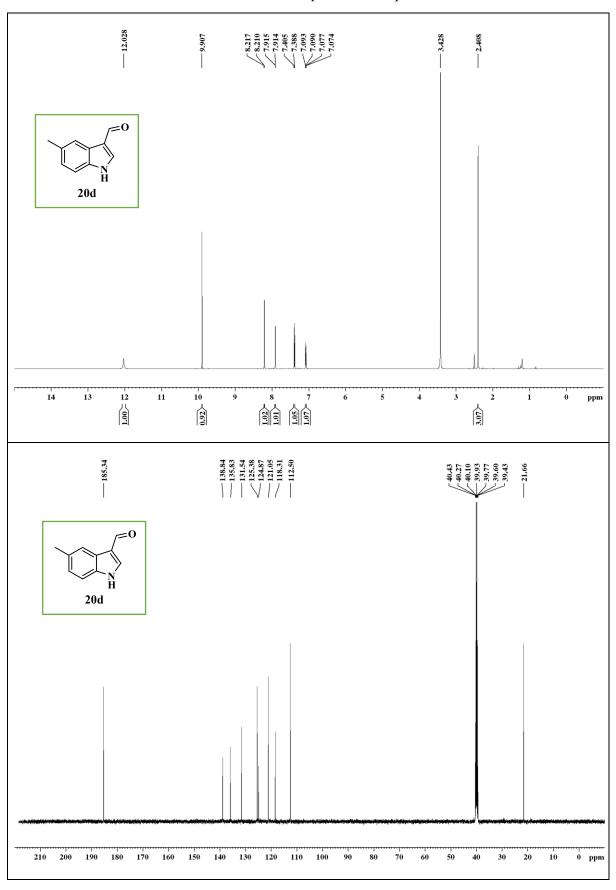
¹H NMR (500 MHz, DMSO-*d*₆): δ 12.42 (1H, br s), 12.26 (1H, br s), 9.67 (1H, d, J = 3.1 Hz), 9.11 (1H, s), 8.61-8.60 (1H, m), 8.44 (1H, d, J = 8.0 Hz), 7.90 (1H, d, J = 8.2 Hz), 7.64-7.61 (1H, m), 7.59-7.57 (1H, m), 7.35-7.28 (3H, m), 4.02 (3H, s).

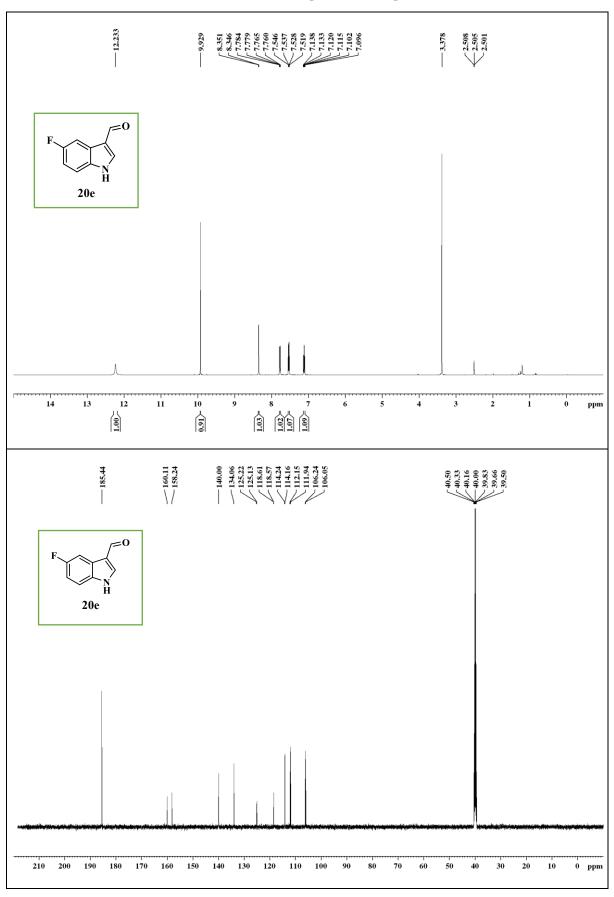

¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 186.7, 166.0, 142.5, 138.8, 137.7, 136.4, 136.3, 135.2, 131.7, 129.6, 127.7, 123.4, 122.6, 122.5, 122.1, 121.2, 120.9, 120.2, 114.6, 113.9, 112.7, 52.8.

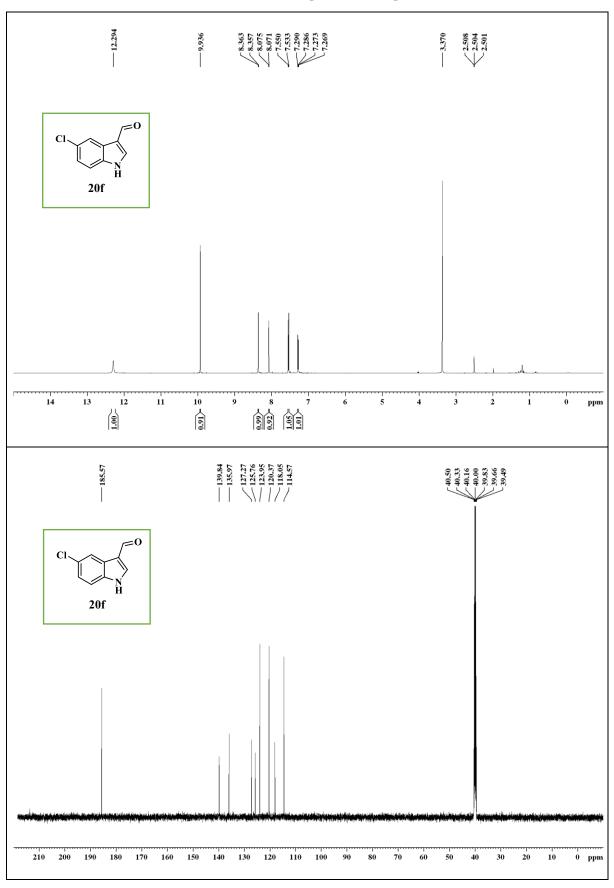
HRMS (ESI-TOF) Calcd for $C_{22}H_{15}N_3O_3$ [M+H]⁺ 370.1186, found: 370.1185.

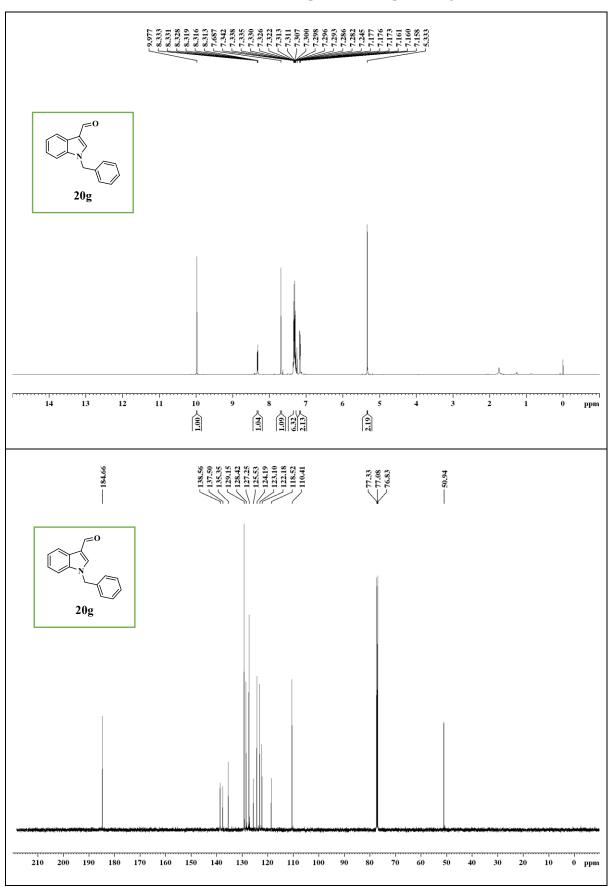

¹H and ¹³C NMR Spectra of Compound **20**

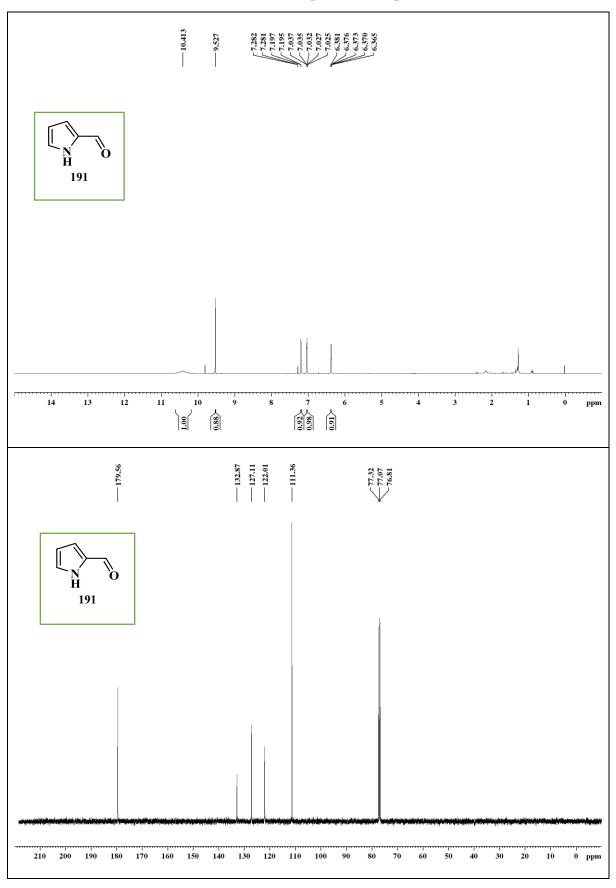

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20a}$

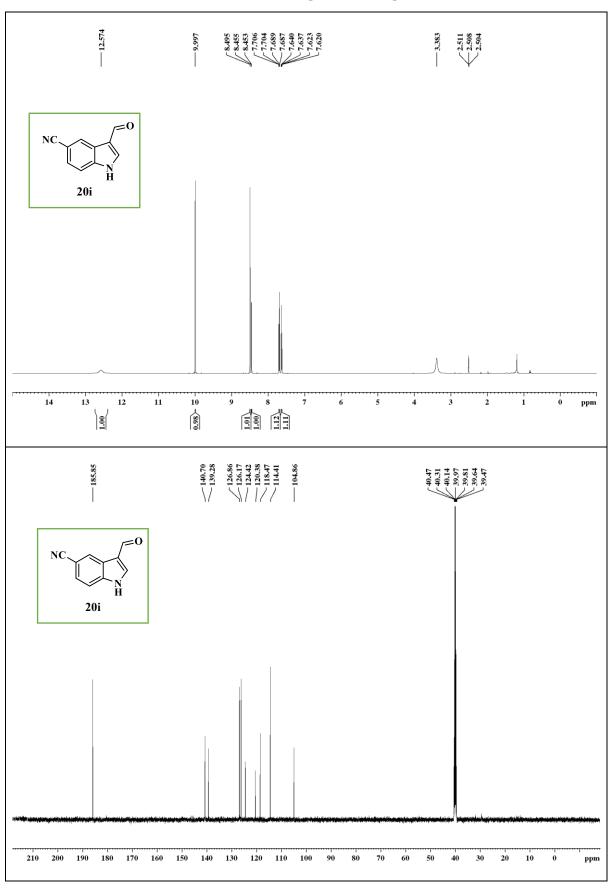

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20b}$

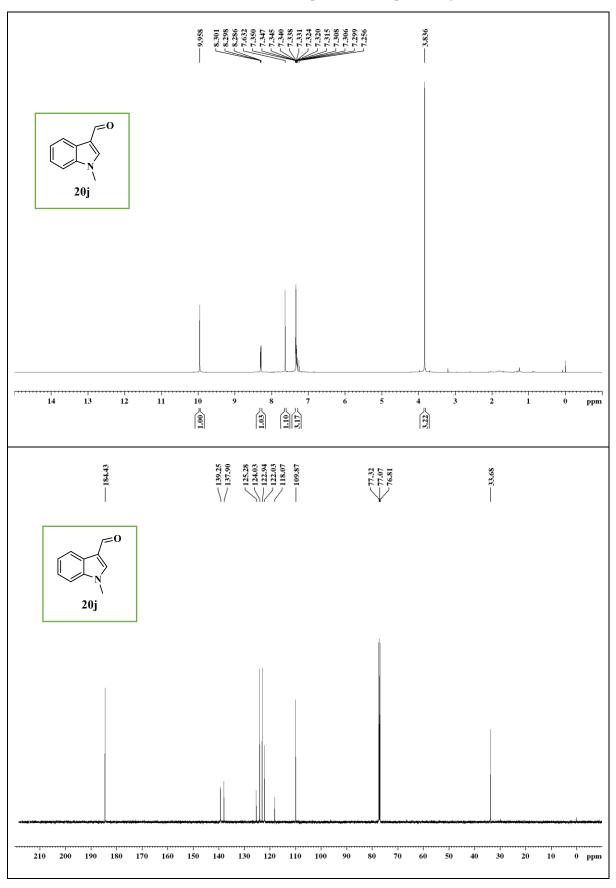

 $^{1}\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound $\bf 20c$

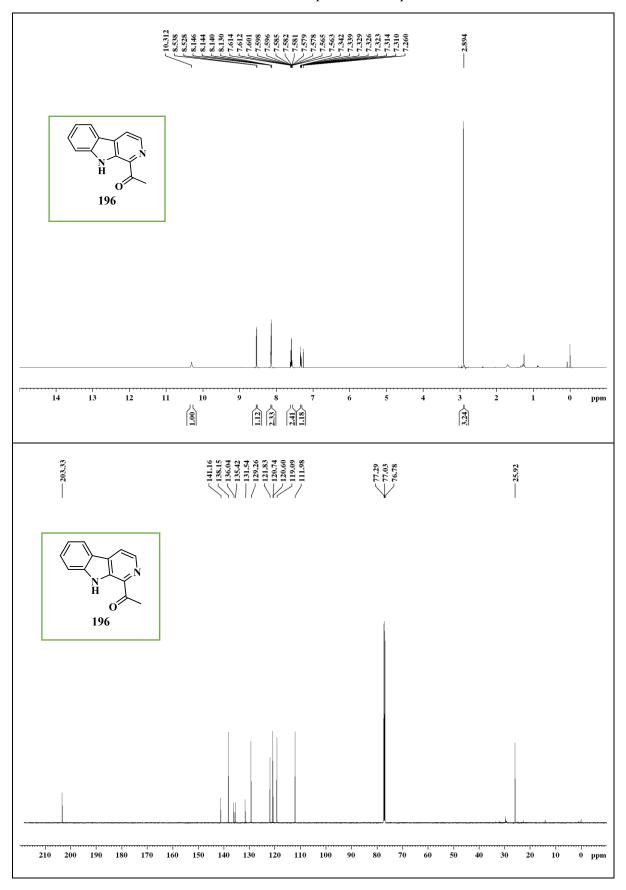

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20d}$

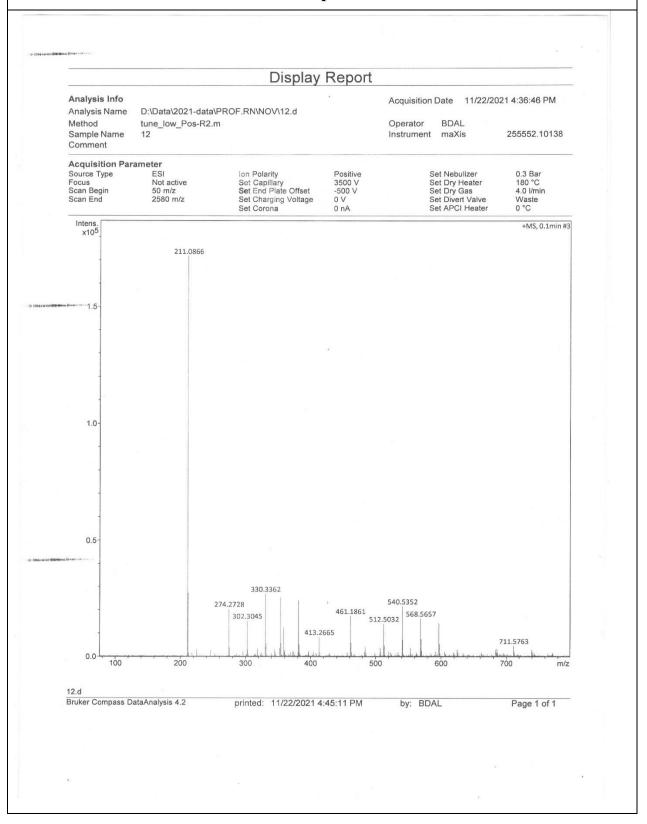

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20e}$

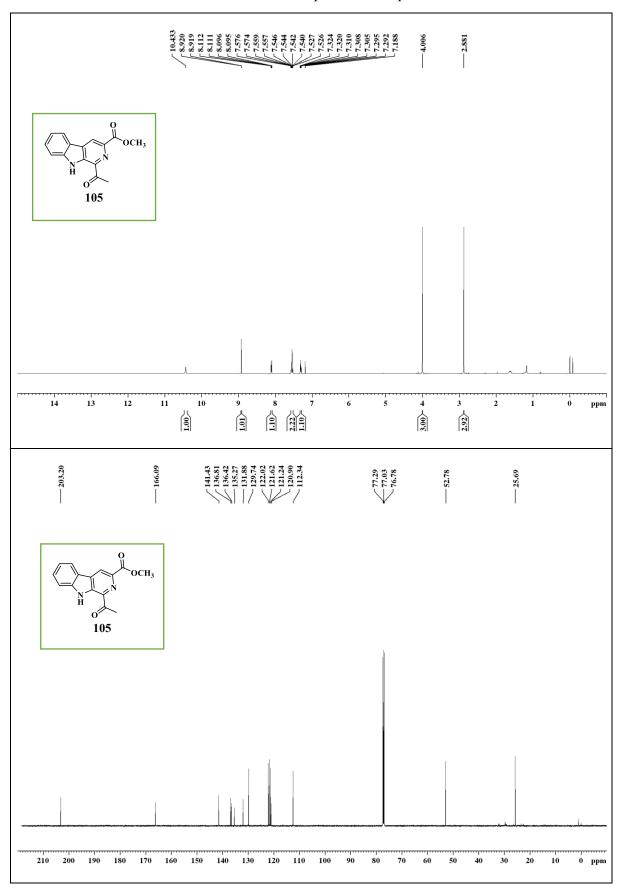

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20f}$

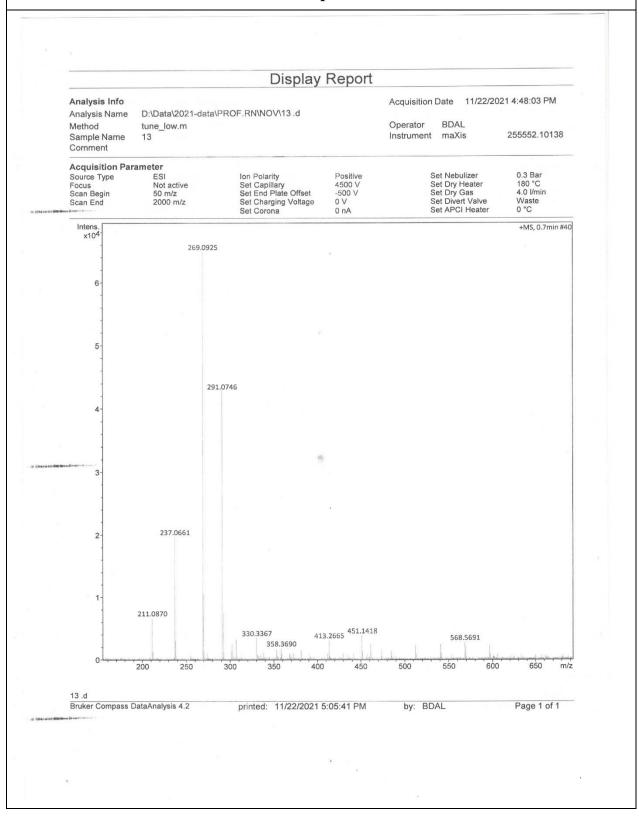

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20g}$

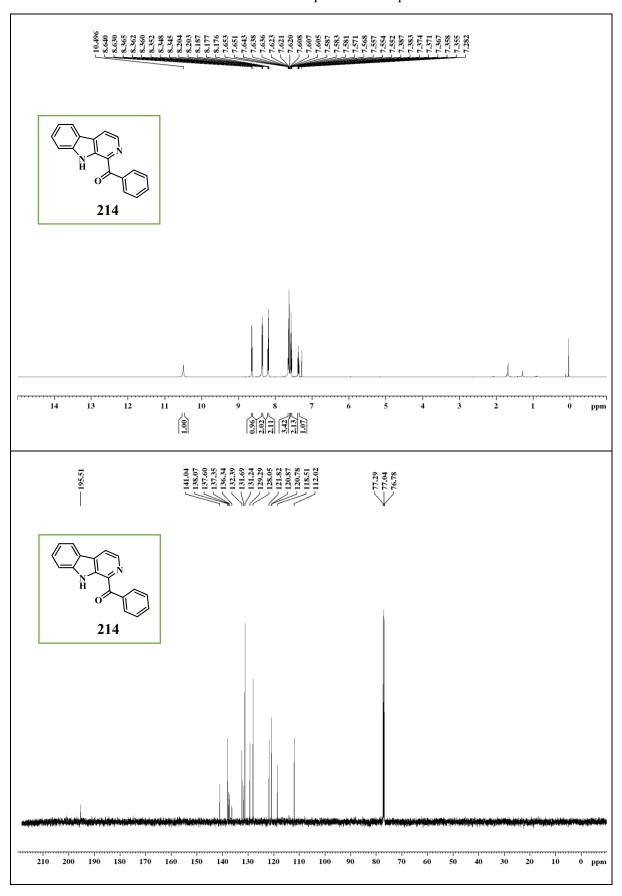

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 191

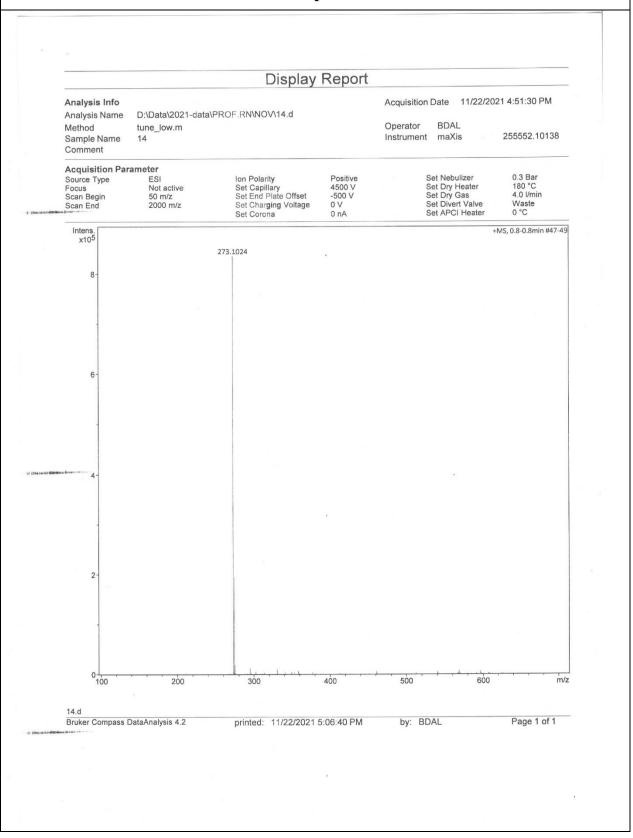

¹H and ¹³C NMR Spectra of Compound **20i**

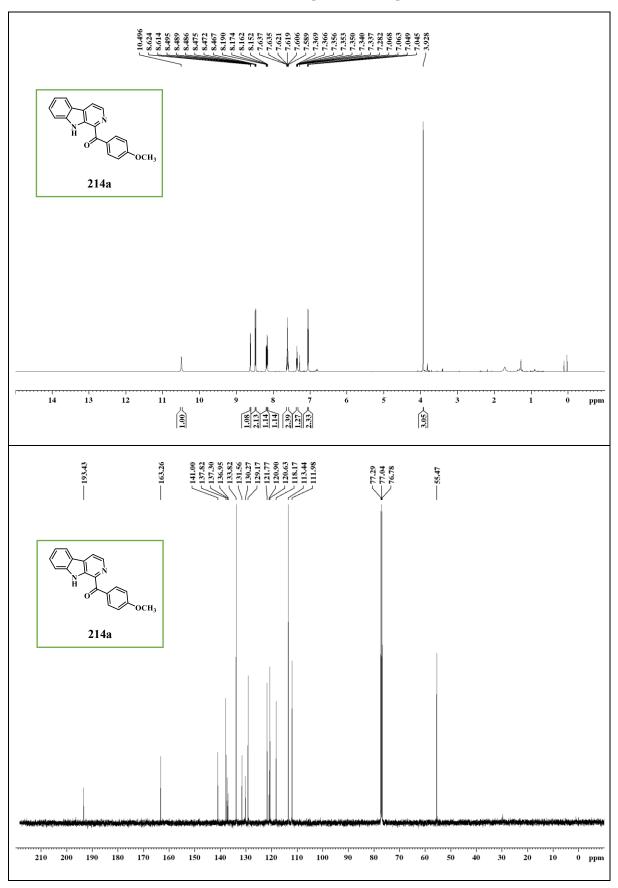

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20j}$

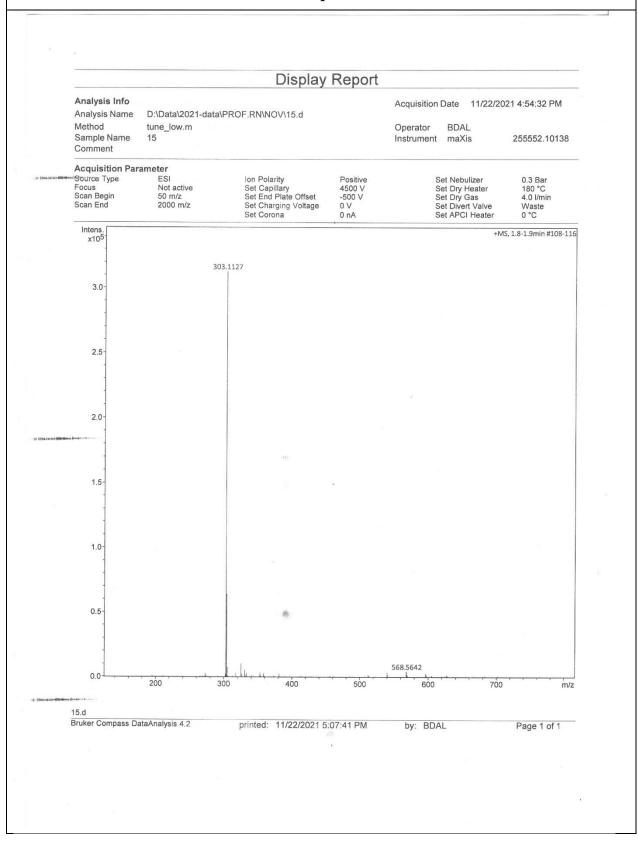

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 196

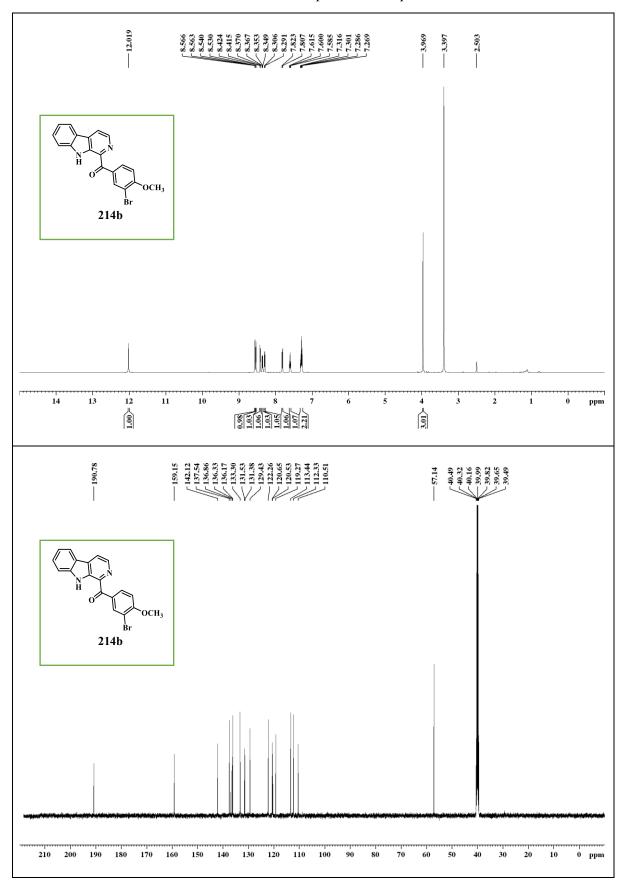

HRMS of Compound 196

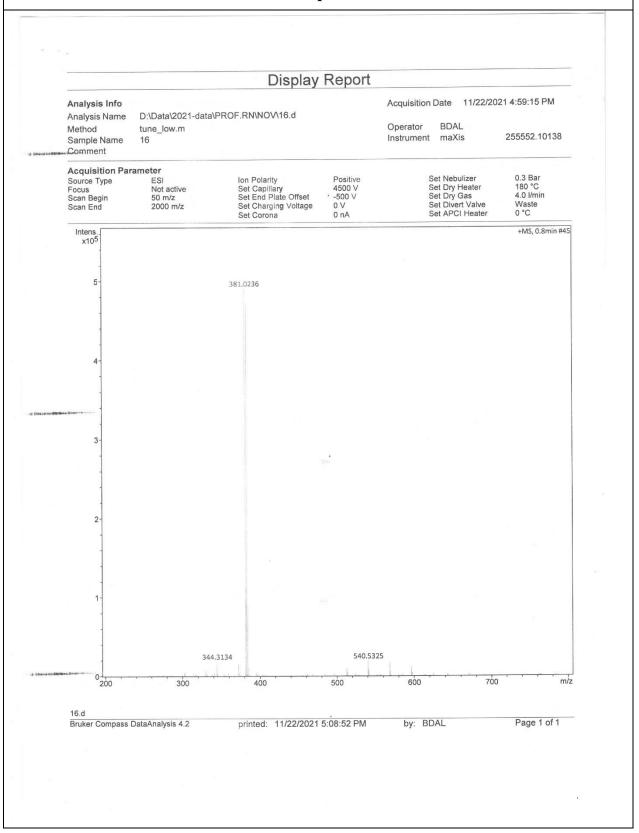

 $^1\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound 105

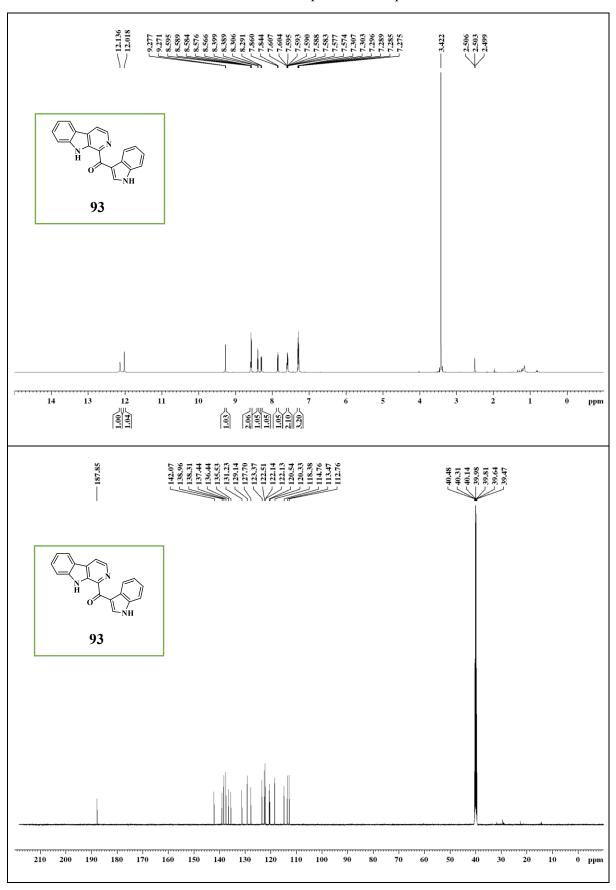

HRMS of Compound 105

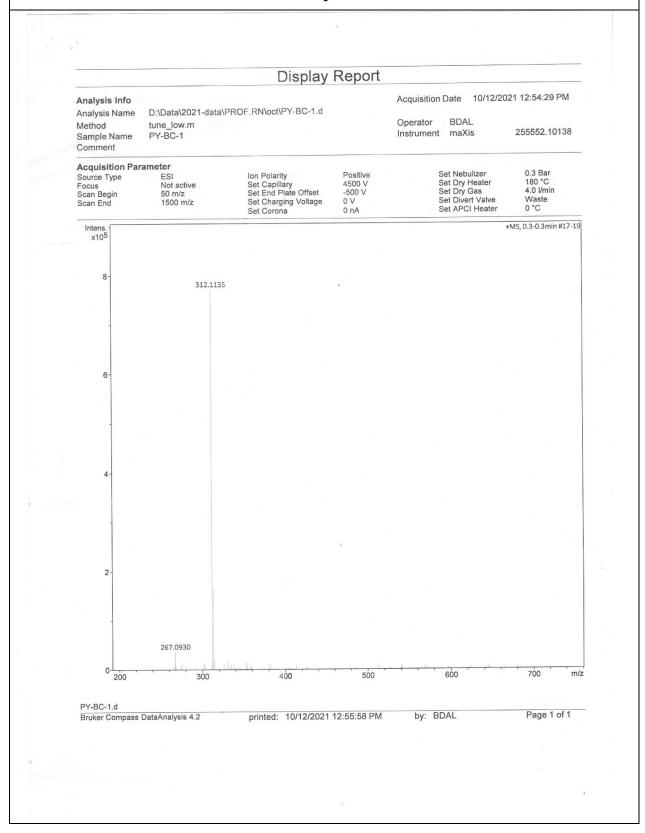

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 214

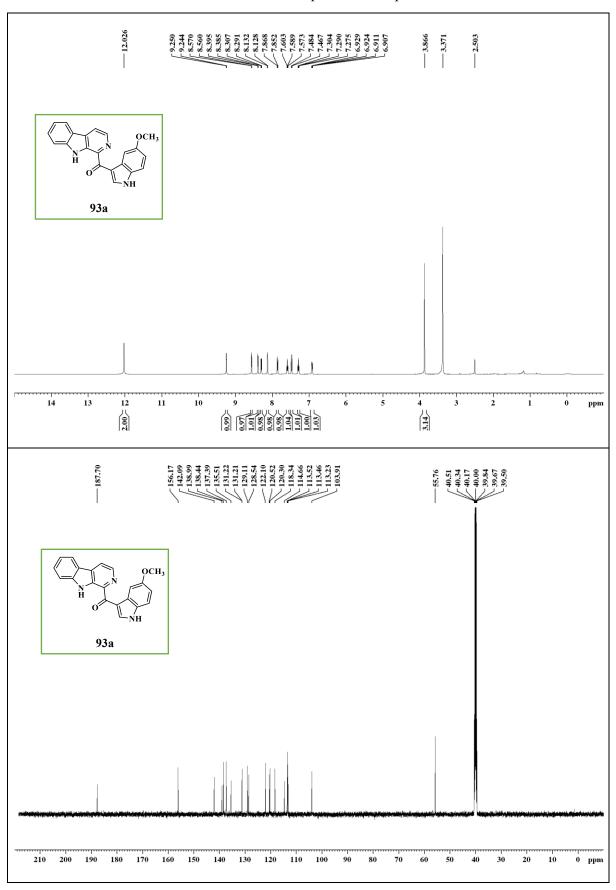

HRMS of Compound 214

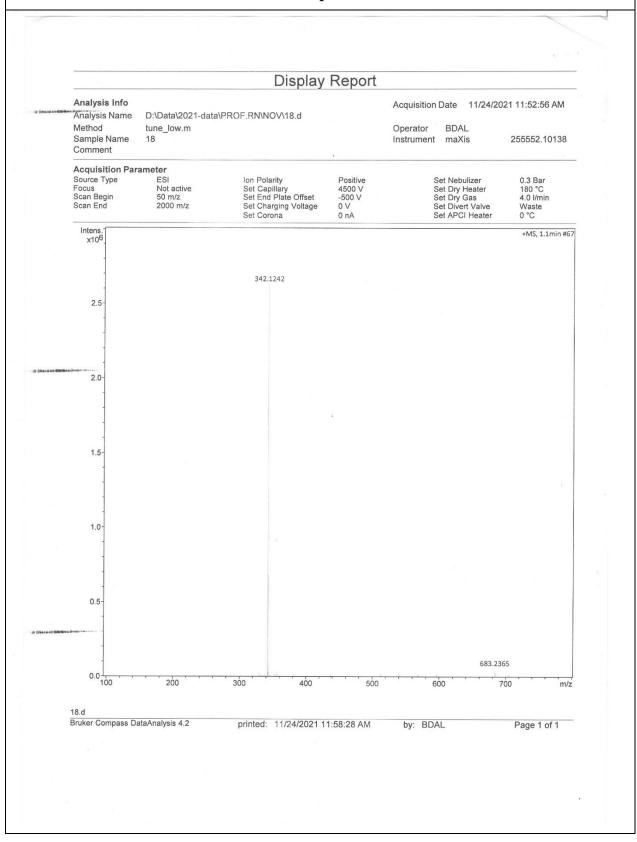

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound **214a**

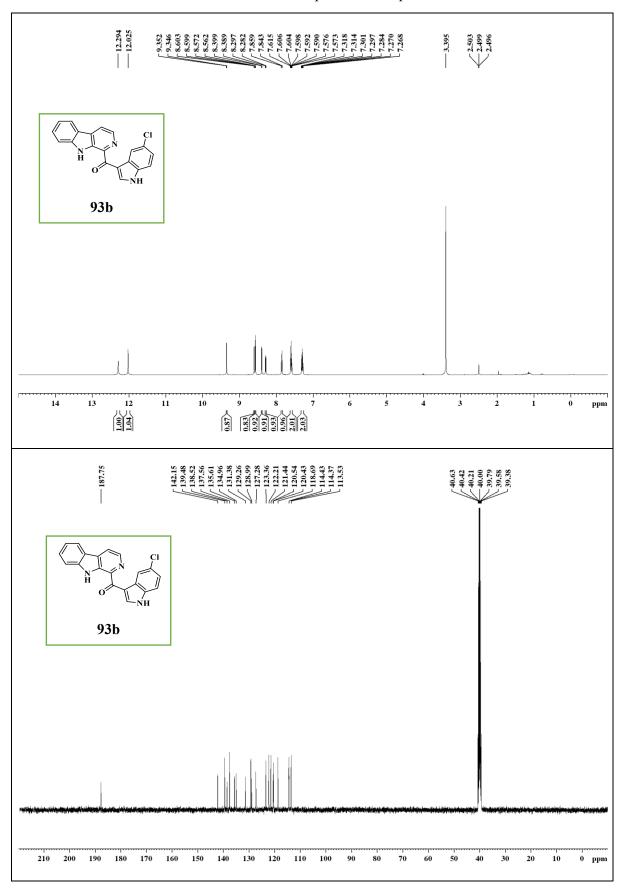

HRMS of Compound 214a

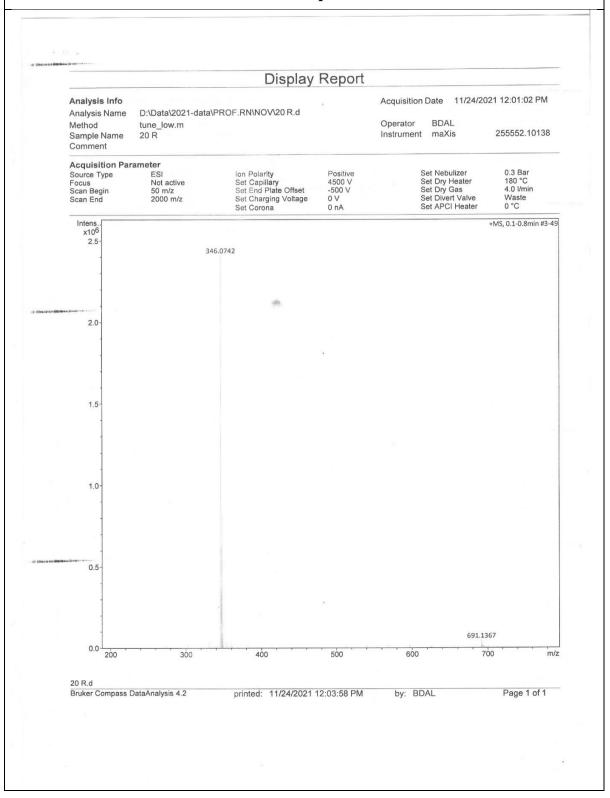

 $^1\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound $\bf 214b$

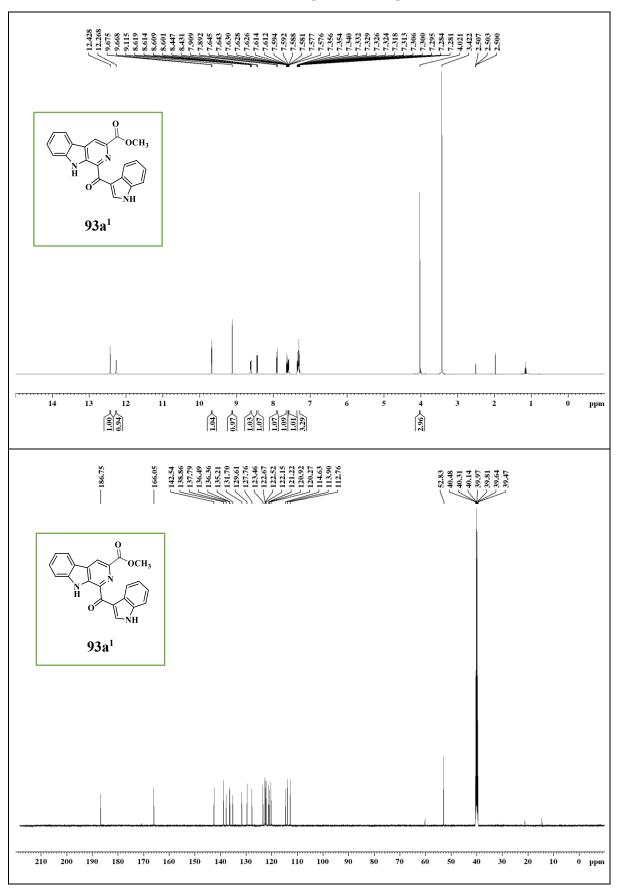

HRMS of Compound 214b

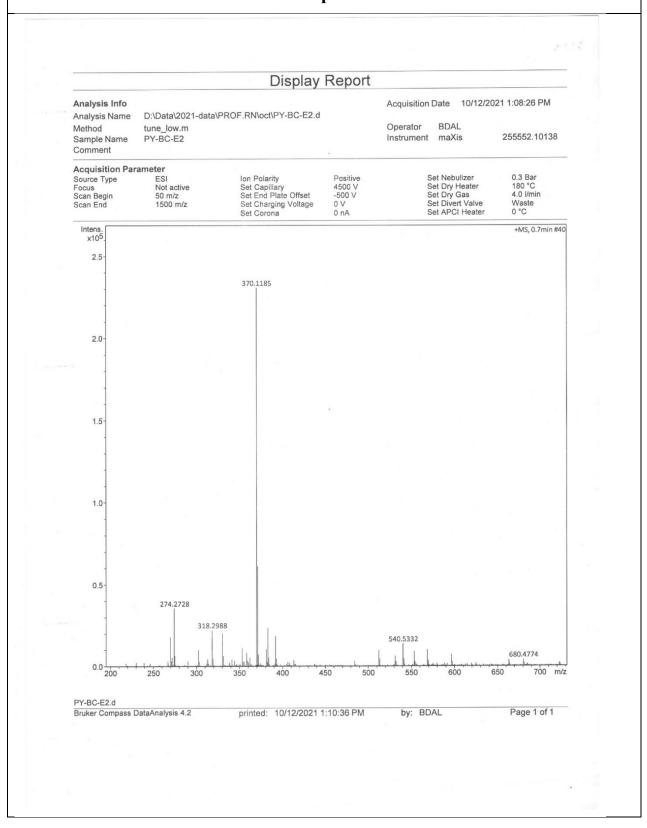

 $^1\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound ${\bf 93}$


HRMS of Compound 93


 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{93a}$


HRMS of Compound 93a


 $^{1}\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound $\bf 93b$


HRMS of Compound 93b

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $93a^1$

HRMS of Compound 93a¹

CHAPTER- I (B)

Photochemical Decarboxylative Formylation of Indoles with aq. Glyoxylic acid

Abstract:

We reported a transition metal- and oxidant-free photochemical decarboxylative formylation of indoles was developed. This protocol enabled the direct C-H functionalization of indoles with 50% aq. glyoxylic acid solution as a formyl synthon under environmentally favourable conditions with good to moderate yields. This method would be attractive and alternative method to access biologically important molecules.

1.1.1 Introduction:

The aldehyde group is a ubiquitous functional group, and aldehydes are versatile intermediates, widely used in medicines, pesticides, chemical raw materials, and functional group interconversions; moreover, they are frequently used in syntheses of natural products and in drug discovery. Several formylation reactions for aromatic or heteroaromatic compounds have been reported in recent decades. Indole-3-carboxaldehyde (20) and its derivatives are key structures for the preparation of biologically active molecules, and are important generic materials that are usually synthesized by conventional methods such as the Vilsmeier–Haack, Riemer–Tiemann, Rieche, Rieche, Duff, or other methods. However, these procedures suffer from one or more drawbacks, such as the use of non-ecofriendly reagents, the need for harsh reaction conditions (high temp, excess of strong bases and strong acids usage), or low selectivity.

Figure 1.1. Differences between previous reports and present approach for the synthesis of indole 3-carboxaldehyde:

Recently, metal-catalyzed⁷⁴⁻⁷⁵ or photo-mediated decarboxylative coupling reactions⁷⁶ have emerged and have attracted much attention due to their use of inexpensive carboxylic acids as starting materials. The use of carboxylic acids provides greater structural diversity and ease of handling, and the reactions proceed under neutral conditions with CO₂ as a byproduct.

Decarboxylative formylations of indoles have been reported with glyoxylic acid mono hydrate **68** as formyl equivalent that proceed under Ni -catalyzed^{69a} (combinations of several metals with Ni were used) or electrochemical conditions.^{69b} In another report, TMEDA **180** was used as a carbon source in the presence of photoredox catalysts to give moderate yields of the required products.^{69c} These three methods involve the use of expensive metal catalysts,⁷³ electrochemistry, or metal-based photocatalysts^{73f-g} (Figure **1.1**).

1.1.2 Results and discussion:

Here, we report a transition-metal-free and oxidant-free photochemical decarboxylative formylation of indoles with 50% aqueous glyoxylic acid **190** as a formyl synthon, which proceeds in good to moderate yields.

Table 2.1 Optimization of the reaction conditions (20) ^a

Entry	Base	Solvent	Time(h)	Yield (%)
1.	K ₂ CO ₃	CH ₃ CN	24	26
2.	NaOH	CH ₃ CN	24	21
3.	-	EtOH	24	Trace
4.	-	DMSO	12	18
5.	-	CH ₃ CN	6	65
6.	-	Acetone	12	25

^a Reaction conditions: indole (**20**, 0.25 mmol), 50% aq. glyoxylic acid (**190**, 0.51 mmol), solvent (6.0 mL), irradiation by eight 8 W 254 nm UV lamps, rt. Isolated yields after chromatography.

Initially, we attempted a formylation of indole with 50% aq. glyoxylic acid **190** under UV irradiation ($\lambda = 254$ nm) with K₂CO₃ as a base and acetonitrile as a solvent, affording 1*H*-indole-3-carboxaldehyde (**20**) in 26% yield (Table **2.1** in entry 1). The use of NaOH as a base decreased the yield to 21% (entry 2). We then examined various solvents (EtOH, DMSO, CH₃CN, and acetone) and we found that CH₃CN was the best solvent and that no base was required (entries 3–6).

Scheme 2.1. Substrate scope for the synthesis of indole-3-carboxaldehyde (20):

Reaction conditions: **6, 6a-h, 6k, 175, 175a** (1.0 equiv), 50% aqueous glyoxylic acid solution **190** (2 equiv), Acetonitrile (6.0 mL) using eight 8W 254 nm UV-lamps, room temperature.; Isolated yields after chromatography.

With the optimized reaction condition in hand, we carried out reactions of various substituted indoles **6a-h**, **6k** with aq. glyoxylic acid **190** to afford the corresponding indole-3-carboxaldehydes **20a-h**, **20k** in good to moderate yields of 53–78% (Scheme **2.1**), whereas the *N*-BOC-protected indole **6h** failed to give the corresponding product. With the same method, pyrrole (**175**) and *N*-benzylpyrrole (**175a**) were formylated to give **191** and **191a** in yields of 32 and 38%, respectively.

On the basis of reports available in the literature, ^{6e,7c,10c,11} we postulated the possible decarboxylative formylation mechanism shown in Scheme **2.2**

Scheme 2.2. Proposed mechanism:

H
O
H
$$hv$$
 $-H$
 Ov
 H
 $-CO_2$
 HO_2
 HO_2
 $Radical$
 $Addition$
 R^2
 H
 Ov
 H
 Gov
 G

1.1.3 Conclusion:

In conclusion, we have developed a photochemical decarboxylative formylation of indoles with aqueous glyoxylic acid as a formyl source.¹³ Advantages of this method include its commercially available inexpensive starting materials; no transition metals, additives, or oxidants; the ease of handling of the reagents; and good to moderate yields of the products.

1.1.4 Experimental section:

All the reactions were observed and monitored by using precoated thin layer chromatography with ethyl acetate/hexane as solvent system. TLC plates either visualized under UV-light and/or iodine chamber or stained by dipping in 2,4-nitrophenylhydrazine TLC stain. Commercially available reagents were used in the reaction without any further

purification. All compounds were characterized by analysis through TLC, melting point (if solid), 1 H NMR, 13 C NMR. The crude compounds were purified by column chromatography with silica gel (100–200 mesh) and eluted with ethyl acetate/hexane mixture to obtain pure products. 1 H and 13 C NMR spectra were recorded at Bruker 400 and 100 MHz, respectively, or at 500 MHz and 125 MHz, respectively. Chemical shifts are calculated in ppm units and the coupling constants (J) in Hz units. CDCl₃ and DMSO- d_6 were used as the NMR solvents and signal positions were measured, correlate to the signal for CDCl₃ (δ 7.28 ppm at 1 H NMR and δ 77.06 ppm at 13 C NMR) and DMSO- d_6 (δ 2.50 ppm at 1 H NMR and δ 39.92 ppm at 13 C NMR). NMR Data describes as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, dd = doublet of doublet, m = multiplet). Melting points were determined by using a capillary melting point apparatus.

General procedure for formylation of indole:

A 10 mL quartz tube was charged with indole 6 (0.25 mmol, 1 equiv), 50% aq. glyoxylic acid 190 (0.51 mmol, 2 equiv), and CH₃CN (6.0 mL), and the solution was irradiated with eight 8 W 254 nm UV lamps in a photochemical reactor at rt for 6 h until the reaction was complete (TLC). The reaction was then quenched with H_2O (5 mL) and the mixture was extracted with EtOAc (3 × 5 mL). The extracts were dried (Na₂SO₄) and concentrated in a rotary evaporator, and the crude product was purified by column chromatography on silica gel with an ethyl acetate/hexane solvent mixture.

1*H*-Indole-3-carboxaldehyde (20)

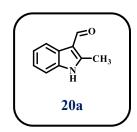
Physical state: yellow solid

Yield: 24 mg (65 %)

M.P: 189-191 °C (Lit.^{73a} 190-192 °C)

20

¹H NMR (500 MHz, DMSO- d_6): δ 12.14 (br s, 1H), 9.95 (s, 1H), 8.28 (d, J = 3.1 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.28-7.21 (m, 2H).


¹³C{¹H} NMR (125 MHz, DMSO-*d*₆): δ 185.4, 138.9, 137.5, 124.5, 123.9, 122.5, 121.3, 118.6, 112.8.

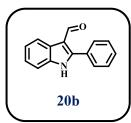
2-Methyl-1*H*-indole-3-carboxaldehyde (20a)

Physical state: yellow solid

Yield: 27 mg (75 %)

M.P: 191-194 °C (Lit.^{73h} 195-200 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.00 (br s, 1H), 10.09 (s, 1H), 8.09-8.07 (m, 1H), 7.42-7.41 (m, 1H), 7.22-7.16 (m, 2H), 2.71 (s, 3H).


¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 184.7, 149.0, 135.8, 126.0, 123.0, 122.3, 120.4, 114.1, 111.8, 11.9.

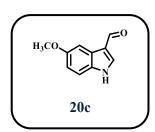
2-Phenyl-1*H*-indole-3-carboxaldehyde (20b)

Physical state: yellow solid

Yield: 26 mg (78 %)

M.P: 248-251 °C (Lit.^{73a} 250-252 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.43 (br s, 1H), 9.98 (s, 1H), 8.23 (d, J = 7.6 Hz, 1H), 7.80-7.78 (m, 2H), 7.62-7.58 (m, 3H), 7.52 (d, J = 7.9 Hz, 1H), 7.32-7.28 (m, 1H), 7.27-7.24 (m, 1H).


¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 185.9, 149.5, 136.4, 130.3, 130.2, 130.2, 129.4, 126.2, 124.1, 122.9, 121.5, 113.9, 112.4.

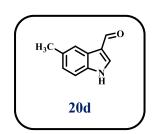
5-Methoxy-1*H*-indole-3-carboxaldehyde (20c)

Physical state: yellow solid

Yield: 24 mg (70 %)

M.P: 175-178 °C (Lit. ^{73a} 180-181 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.01 (br s, 1H), 9.89 (s, 1H), 8.20 (d, J = 3.1 Hz, 1H), 7.58 (d, J = 2.4 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 6.88 (dd, J = 8.8, 2.5 Hz, 1H), 3.78 (s, 3H).


¹³C{¹**H**} NMR (125 MHz, DMSO-*d*₆): δ 185.2, 156.1, 138.8, 132.2, 125.3, 118.5, 113.7, 113.6, 103.0, 55.7.

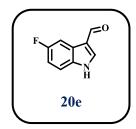
5-Methyl-1*H*-indole-3-carboxaldehyde (20d)

Physical state: yellow solid

Yield: 24 mg (66 %)

M.P: 148-151 °C (Lit.^{73a} 149-150 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.04 (br s, 1H), 9.90 (s, 1H), 8.22 (d, J = 3.1 Hz, 1H), 7.91 (d, J = 0.5 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.08 (dd, J = 8.3, 1.4 Hz, 1H), 2.40 (s, 3H).


¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 185.3, 138.9, 135.8, 131.5, 125.3, 124.8, 121.0, 118.3, 112.5, 21.6.

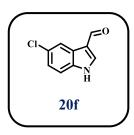
5-Fluoro-1*H*-indole-3-carboxaldehyde (20e)

Physical state: yellow solid

Yield: 22 mg (61 %)

M.P: 142-145 °C (Lit.^{73a} 144-146 °C)

¹H NMR (500 MHz, DMSO- d_6): δ 12.23 (br s, 1H), 9.92 (s, 1H), 8.35 (s, 1H), 7.76 (dd, J = 9.5, 2.6 Hz, 1H), 7.53 (dd, J = 8.8, 4.5 Hz, 1H), 7.14-7.10 (m, 1H).

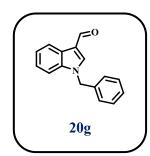

¹³C{¹H} NMR (125 MHz, DMSO- d_6): δ 185.4, 159.1 (d, J = 233.8 Hz), 140.0, 134.0, 125.1 (d, J = 10.9 Hz), 118.5 (d, J = 4.4 Hz), 114.2 (d, J = 9.8 Hz), 112.0 (d, J = 25.7 Hz), 106.1 (d, J = 24.1 Hz).

5-Chloro-1*H*-indole-3-carboxaldehyde (20f)

Physical state: yellow solid

Yield: 22 mg (63 %)

M.P: 210-213 °C (Lit.^{73a} 214-216 °C)


¹H NMR (500 MHz, DMSO- d_6): δ 12.29 (br s, 1H), 9.93 (s, 1H), 8.35 (d, J = 3.0 Hz, 1H), 8.07 (d, J = 2.0 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.27 (dd, J = 8.6, 2.1 Hz, 1H).

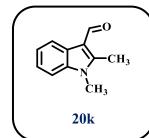
¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 185.6, 139.9, 135.9, 127.2, 125.7, 123.9, 120.3, 118.0, 114.6.

1-Benzyl-1*H*-indole-3-carboxaldehyde (20g)

Physical state: yellow oil

Yield: 18 mg (53 %)

¹H NMR (500 MHz, CDCl₃): δ 10.00 (s, 1H), 8.38-8.36 (m, 1H), 7.70 (s, 1H), 7.37-7.36 (m, 3H), 7.34-7.31 (m, 3H), 7.20-7.19 (m, 2H), 5.34 (s, 2H).

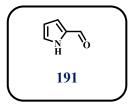

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 184.6, 138.6, 137.5, 135.3, 129.1, 128.4, 127.2, 125.5, 124.1, 123.0, 122.1, 118.5, 110.4, 50.9.

1,2-Dimethyl-1*H*-indole-3-carboxaldehyde (20k)

Physical state: yellow solid

Yield: 26 mg (76 %)

M.P: 124-126 °C (Lit.^{71e} 123.4-125.8°C)

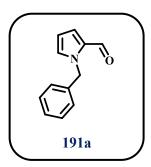

¹H NMR (500 MHz, CDCl₃): δ 10.11 (s, 1H), 8.25-8.24 (m, 1H), 7.27-7.25 (m, 3H), 3.64 (s, 3H), 2.62 (s, 3H).

¹³C{¹**H**} NMR (125 MHz, CDCl₃): δ 184.0, 147.7, 136.9, 125.6, 123.0, 122.7, 120.8, 114.1, 109.1, 29.6, 10.5.

1*H*-Pyrrole-2-carboxaldehyde (191)

Physical state: viscous oil

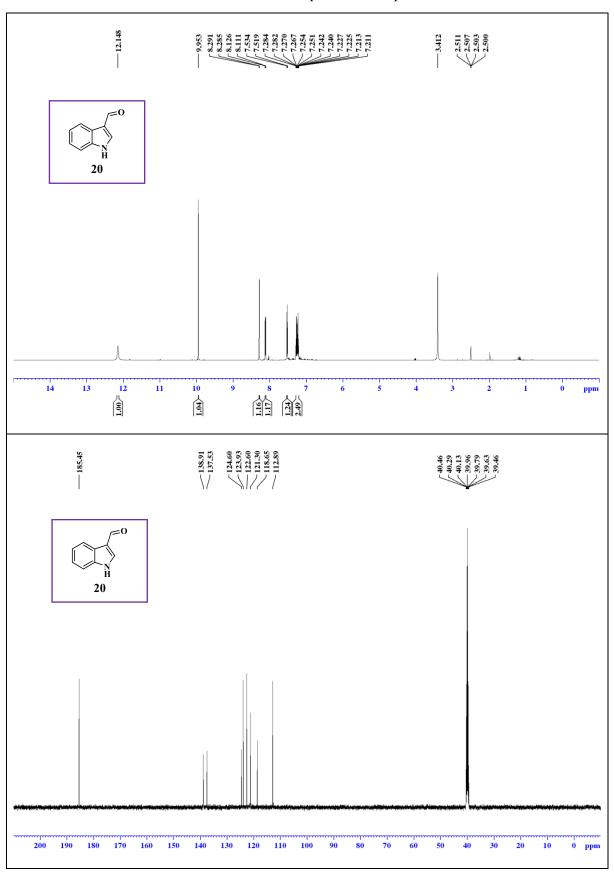
Yield: 15 mg (32 %)

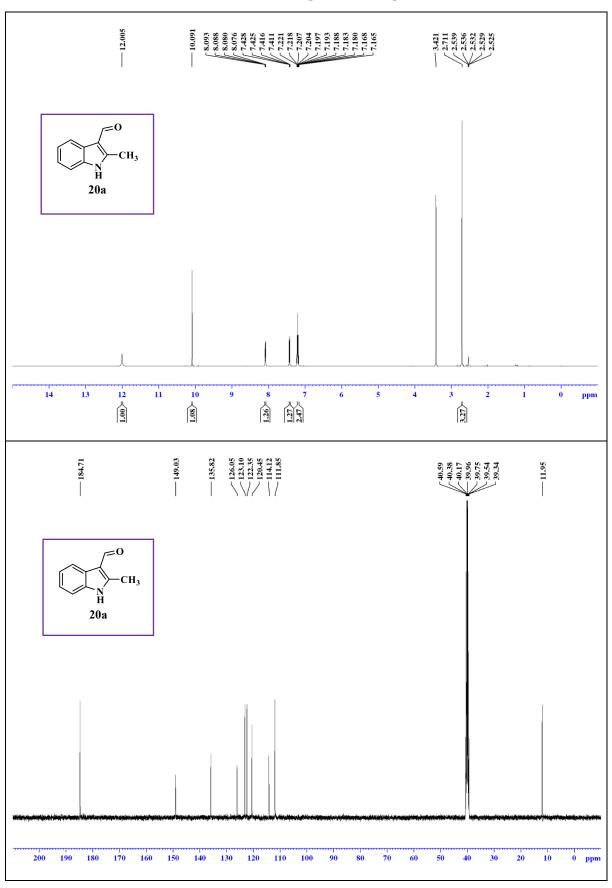

¹H NMR (500 MHz, CDCl₃): δ 10.74 (br s, 1H), 9.50 (s, 1H), 7.18 (s, 1H), 7.01 (s, 1H), 6.35-6.33 (m, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 179.5, 132.8, 127.2, 122.1, 111.3.

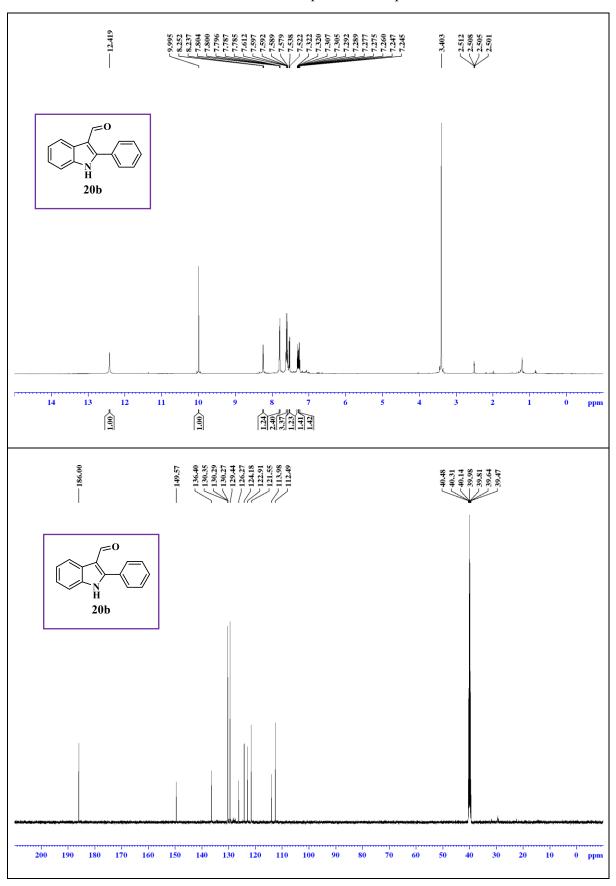
1-Benzyl-1*H*-pyrrole-2-carboxaldehyde (191a)

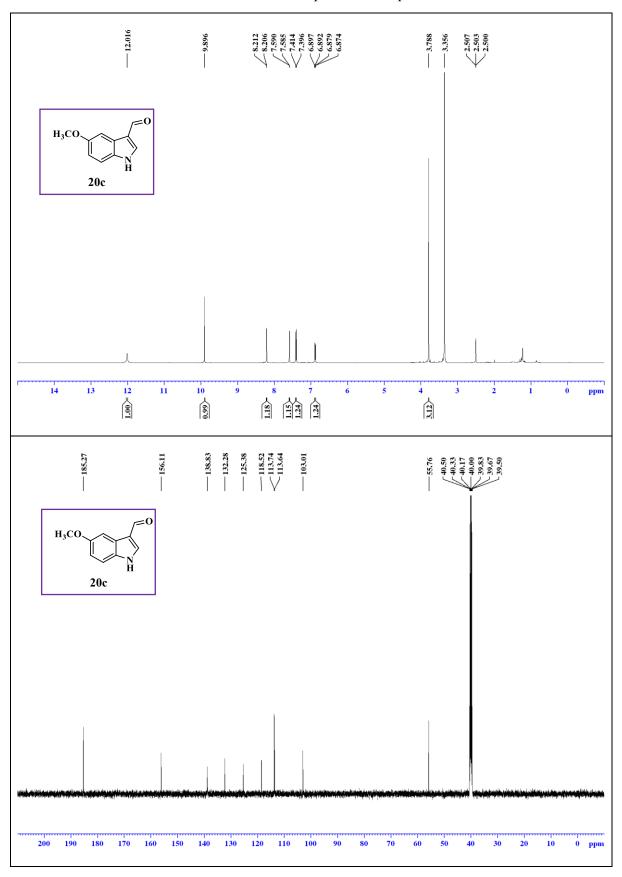
Physical state: viscous oil

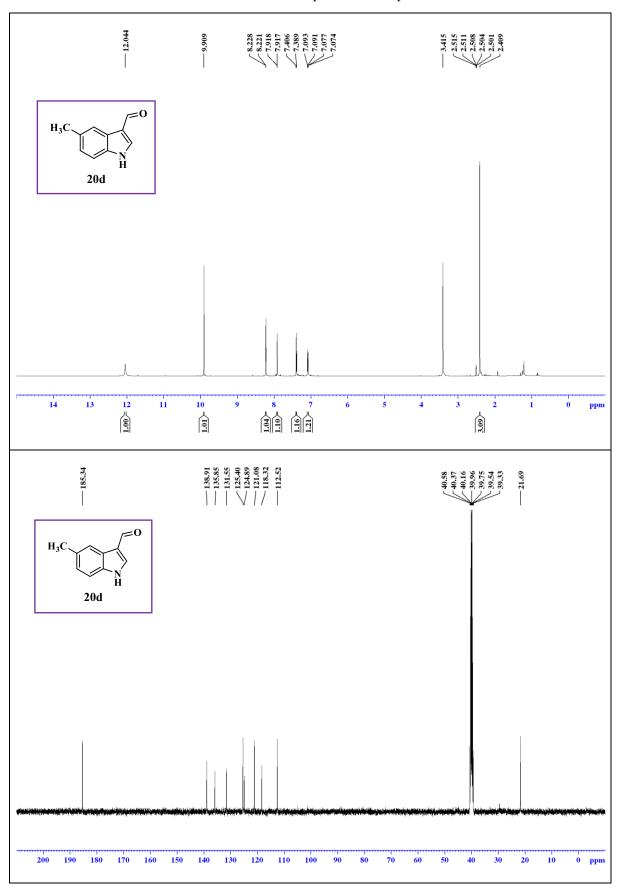

Yield: 13 mg (38 %)

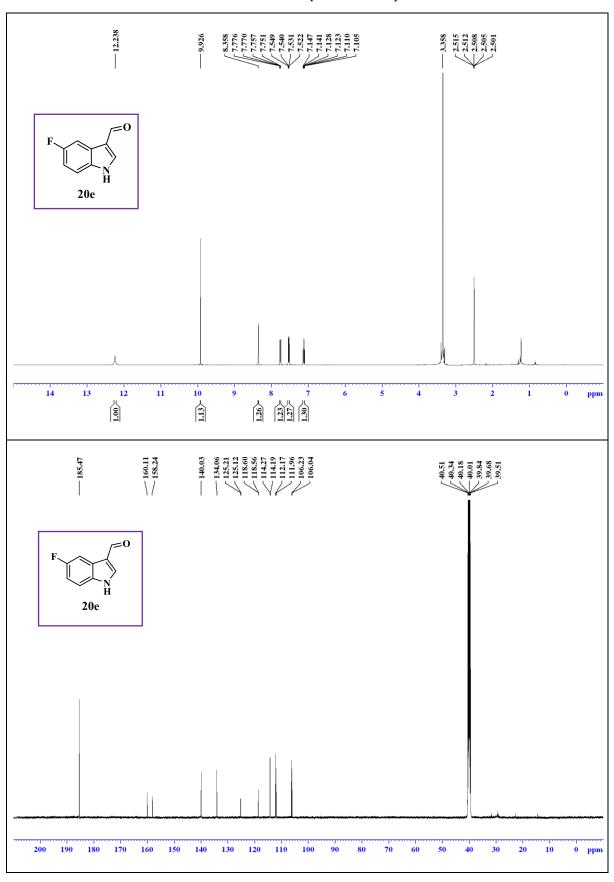

¹H NMR (500 MHz, CDCl₃): δ 9.59 (s, 1H), 7.35-7.32 (m, 2H). 7.30-7.29 (m, 1H), 7.19-7.17 (m, 2H), 7.00 (d, J = 3.5 Hz, 2H), 6.30 (t, J = 6.5, 3.2 Hz, 1H), 5.59 (s, 2H).

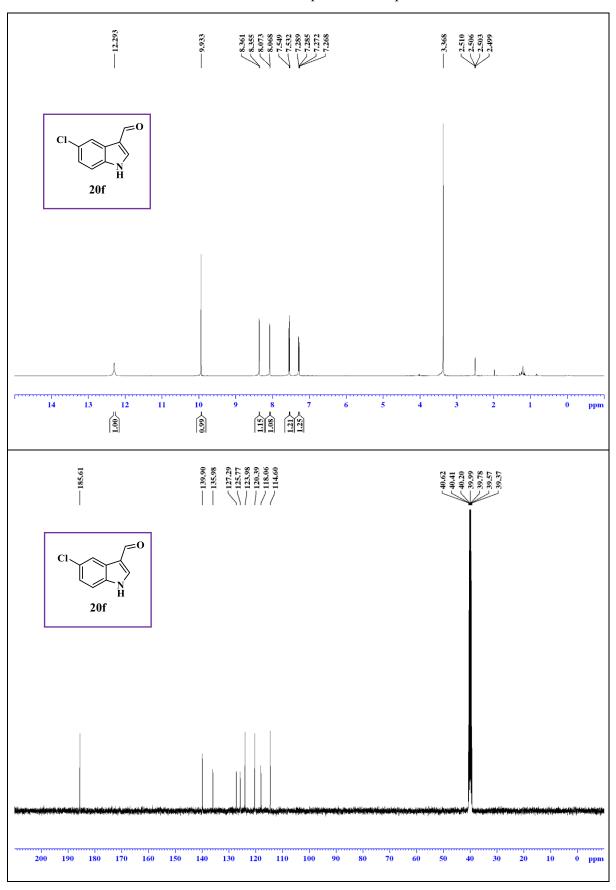
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 179.5, 137.5, 131.5, 131.4, 128.7, 127.7, 127.3, 124.8, 110.1, 51.9.

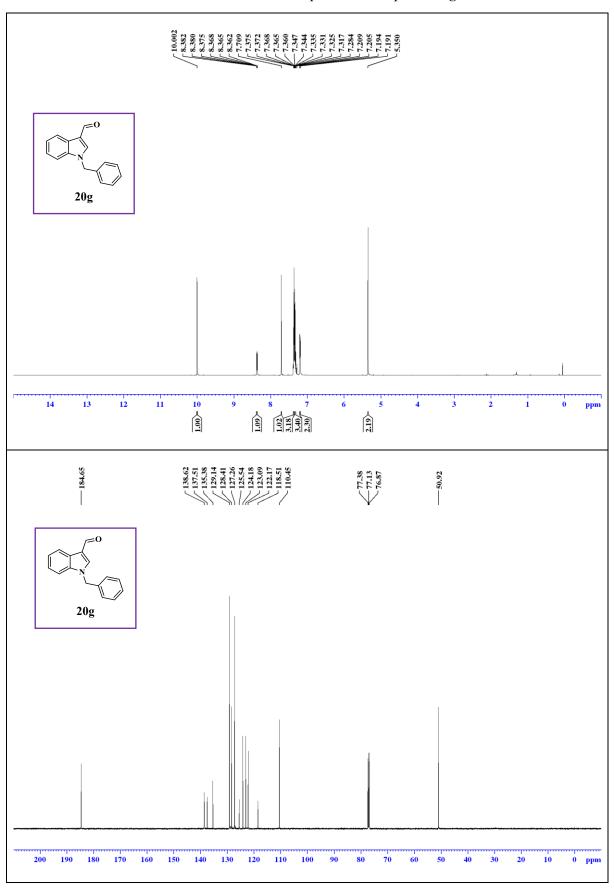

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20}$

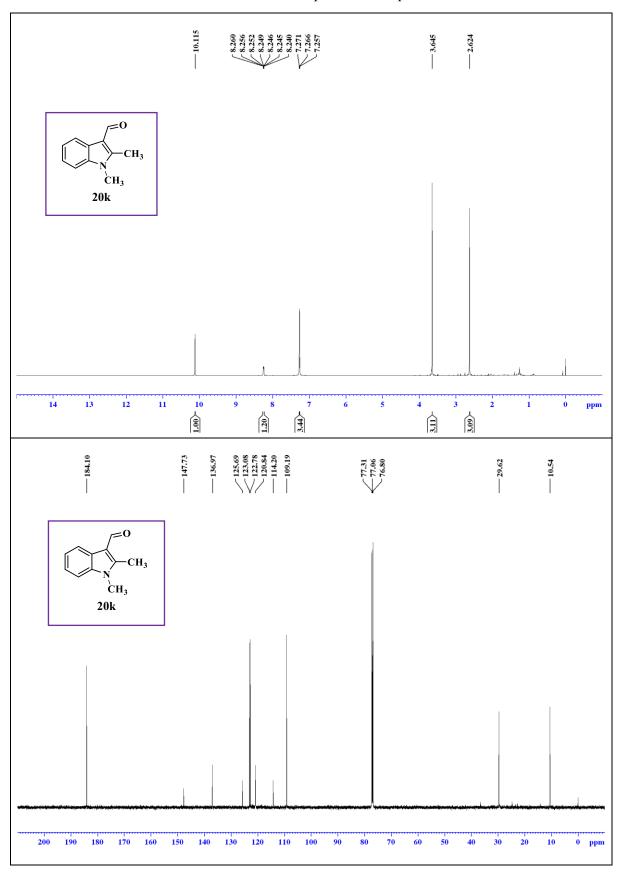

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20a}$

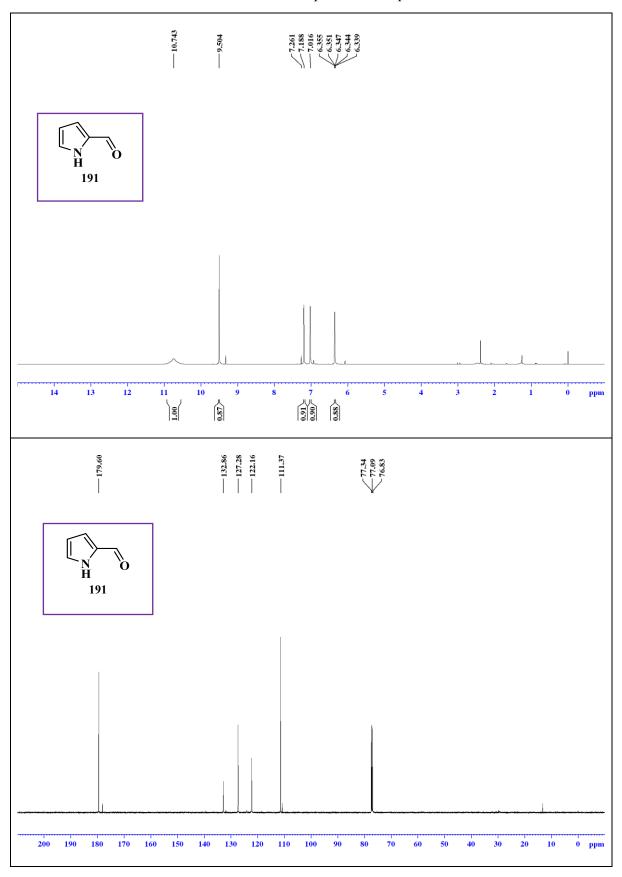

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20b}$

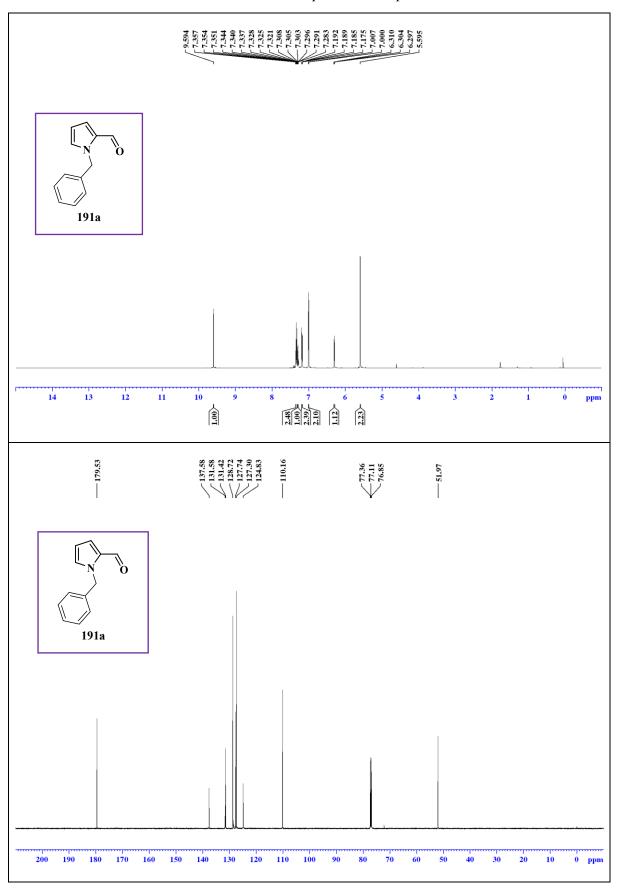

 $^{1}\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound $\bf 20c$


 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20d}$


¹H and ¹³C NMR Spectra of Compound **20e**


¹H and ¹³C NMR Spectra of Compound **20f**


 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound $\mathbf{20g}$


 $^{1}\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound $\bf 20k$

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 191

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 191a

1.1.5 References:

- 64) (a) Seiple, I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.; Baran, P. S. *J. Am. Chem. Soc.*, **2010**, *132*, 13194-13196. (b) Kittikool, T.; Thupyai, A.; Phomphrai, K.; Yotphan, S. *Adv. Synth. Catal.*, **2018**, *360*, 3345-3355.
- 65) (a) Sutherland, D. R.; Veguillas, M.; Oates, C. L.; Lee, A.-L. *Org. Lett.*, **2018**, *20*, 6863-6867. (b) Westwood, M. T.; Lamb, C. J. C.; Sutherland, D. R.; Lee, A.-L. *Org. Lett.*, **2019**, *21*, 7119-7123. (c) Mooney, D. T.; Donkin, B. D. T.; Demirel, N.; Moore, P. R.; Lee, A.-L. *J. Org. Chem.*, **2021**, *86*, 17282-17293. (d) Laha, J. K.; Patel, K. V.; Dubey, G.; Jethava, K. P. *Org. Biomol. Chem.*, **2017**, *15*, 2199-2210. (e) Dong, J.; Liu, J.; Song, H.; Liu, Y.; Wang, Q. *Org. Lett.*, **2021**, *23*, 4374-4378.
- 66) (a) Siddaraju, Y.; Lamani, M.; Prabhu, K. R. J. Org. Chem., 2014, 79, 3856-3865. (b) Wang, Q.-Q.; Xu, K.; Jiang, Y.-Y.; Liu, Y.-G.; Sun, B.-G.; Zeng, C.-C. Org. Lett., 2017, 19, 5517-5520. (c) Manna, S.; Prabhu, K. R. J. Org. Chem., 2019, 84, 5067-5077. (d) Ali, W.; Behera, A.; Guin, S.; Patel, B. K. J. Org. Chem., 2015, 80, 5625-5632. (e) Laha, J. K.; Hunjan, M. K.; Hegde, S.; Gupta, A. Org. Lett., 2020, 22, 1442-1447. (f) Jaspal, S.; Shinde, V. N.; Meena, M.; Nipate, D. S.; Rangan, K.; Kumar, A. Org. Biomol. Chem., 2020, 18, 9072-9080. (g) Kudale, V. S.; Wang, J.- J. Green Chem., 2020, 22, 3506-3511.
- 67) (a) Jones, G.; Stanforth, S. P. *Org. React.*, **2000**, *56*, 355–686. (b) Wynberg, H. *Chem. Rev.*, **1960**, *60*, 169–184. (c) Rieche, A.; Gross, H.; Höft, E. *Org. Synth.*, **1967**, *47*, 1–3. (d) Ferguson, L. N. *Chem. Rev.*, **1946**, *38*, 227–254. (e) Calloway, N. O. *Chem. Rev.*, **1935**, *17*, 327-392. (f) Okauchi, T.; Itonaga, M.; Minami, T.; Owa, T.; Kitoh, K.; Yoshino, H. A *Org. Lett.*, **2000**, *2*, 1485-1487. (g) Tongkhan, S.; Radchatawedchakoon, W.; Kruanetr, S.; Sakee, U. *Tetrahedron Lett.*, **2014**, *55*, 3909-3912.
- 68) (a) Ganley, J. M.; Christensen, M.; Lam, Y.-H.; Peng, Z.; Angeles, A. R.; Yeung, C. S. *Org. Lett.*, **2018**, *20*, 5752-5756. (b) Xiang, Y.; Zeng, G.; Sang, X.; Li, X.; Ding, Q.; Peng, Y. *Tetrahedron*, **2021**, *91*, 132193. (c) Giordano, C.; Minisci, F.; Vismara, E.; Levi, S. *J. Org. Chem.*, **1986**, *51*, 536-537.
- 69) (a) Yin, Z.; Wang, Z.; Wu, X.-F. *Org. Biomol. Chem.*, **2018**, *16*, 3707-3710. (b) Lin, D.-Z.; Huang, J.-M. *Org. Lett.*, **2019**, *21*, 5862-5866. (c) Dong, Y.; Li, X.; Ji, P.; Gao, F.; Meng, X.; Wang, W. *Org. Lett.*, **2022**, *24*, 5034-5039.
- 70) (a) Wu, W.; Su, W. J. Am. Chem. Soc., **2011**, 133, 11924-11927. (b) Li, L.-T.; Huang, J.; Li, H.-Y.; Wen, L.-J.; Wang, P.; Wang, B. Chem. Commun., **2012**, 48, 5187-5189.

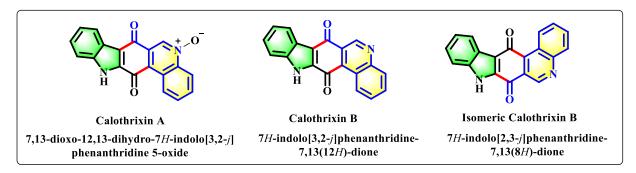
- 71) (a) Chen, J.; Liu, B.; Liu, D.; Liu, S.; Cheng, J. Adv. Synth. Catal., **2012**, 354, 2438-2442. (b) Zhang, L.; Peng, C.; Zhao, D.; Wang, Y.; Fu, H.-J.; Shen, Q.; Li, J.-X. Chem. Commun., **2012**, 48, 5928-5930. (c) Zhang, B.; Liu, B.; Chen, J.; Wang, J.; Liu, M. Tetrahedron Lett., **2014**, 55, 5618-5621. (d) Li, X.; Gu, X.; Li, Y.; Li, P. ACS Catal., **2014**, 4, 1897-1900. (e) Zhao, Y.; Li, H.; Yin, S.; Wu, Y.; Ni, G. Synlett, **2022**, 54, 659-663.
- 72) (a) Tongkhan, S.; Radchatawedchakoon, W.; Kruanetr, S.; Sakee, U. *Tetrahedron Lett.*, **2014**, *55*, 3909-3912. (b) Wang, Q. -D.; Yang, J. -M.; Fang, D.; Ren, J.; Zeng, B. -B. *Tetrahedron Lett.*, **2017**, *58*, 2877-2880.
- 73) (a) Wang, Q.-D.; Zhou, B.; Yang, J.-M.; Fang, D.; Ren, J.; Zeng, B.-B. *Synlett*, **2017**, *28*, 2670-2674. (b) Betterley, N. M.; Kerdphon, S.; Chaturonrutsamee, S.; Kongsriprapan, S.; Surawatanawong, P.; Soorukram, D.; Pohmakotr, M.; Andersson, P. G.; Reutrakul, V.; Kuhakarn, C. *Asian J. Org. Chem.*, **2018**, *7*, 1642-1647. (c) Iranpoor, N.; Firouzabadi, H.; Rizi, Z. T.; Erfan, S. *RSC Adv.*, **2014**, *4*, 43178-43182. (d) Fei, H.; Yu, J.; Jiang, Y.; Guo, H.; Cheng, J. *Org. Biomol. Chem.*, **2013**, *11*, 7092-7095. (e) Ling, F.; Cheng, D.; Liu, T.; Liu, L.; Li, Y.; Li, J.; Zhong, W. *Green Chem.*, **2021**, *23*, 4107-4113. (f) Liang, F.; Eda, K.; Okazoe, T.; Wada, A.; Mori, N.; Konishi, K.; Tsuda, A. *J. Org. Chem.*, **2021**, *86*, 6504-6517. (g) Lei, Z.; Xue, F.; Wang, B.; Wang, S.; Zhang, Y.; Xia, Y.; Jin, W.; Liu, C. *Green Chem.*, **2023**, *25*, 348-356. (h) Robinson, M. W.; Overmeyer, J. H.; Young, A. M.; Erhardt, P. W.; Maltese, W. A. *J. Med. Chem.*, **2012**, *55*, 1940. (i) Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang, R. *J. Agric. Food Chem.*, **2013**, *61*, 5696-5705.
- 74) (a) Wu, Y.; Guo, P.; Chen, L.; Duan, W.; Yang, Z.; Wang, T.; Chen, T.; Xiong, F. *Chem. Commun.*, **2021**, *57*, 3271-3274. (b) Zhang, S.; Tan, Z.; Zhang, H.; Liu, J.; Xu, W.; Xu, K. *Chem. Commun.*, **2017**, *53*, 11642-11645. (d) Ding, H.; Xu, K.; Zeng, C.-C. *Journal of Catalysis*, **2020**, *381*, 38-43. (e) Patra, T.; Nandi, S.; Sahoo, S. K.; Maiti, D. *Chem. Commun.*, **2016**, *52*, 1432-1435. (f) Srinivasulu, A.; Shantharjun, B.; Vani, D.; Ashalu, K. C.; Mohd, A.; Delord, J. W.-; Colobert, F.; Reddy, K. R. *Eur. J. Org. Chem.*, **2019**, *2019*, 1815-1819.
- 75) (a) Liu, Y.; Cai, L.; Xu, S.; Pu, W.; Tao, X. Chem. Commun., **2018**, *54*, 2166-2168. (b) Zhao, B.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Chem. Front., **2018**, *5*, 1782-1786.
- 76) (a) Dong, J.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Adv. Synth. Catal., **2020**, 362, 2155-2159. (b) Huang, H.; Li, X.; Yu, C.; Zhang, Y.; Mariano, P. S.; Wang, W. Angew. Chem. Int. Ed., **2017**, 129, 1522-1527. (c) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun., **2019**, 55, 5408-5419. (d) Lyu, X.-L.; Huang, S.-S.; Song, H.-J.; Liu, Y.-X.;

- Wang, Q.-M. *RSC Adv.*, **2019**, *9*, 36213-36216. (e) Huang, H.; Yu, C.; Zhang, Y.; Zhang, Y.; Mariano, P. S.; Wang, W. *J. Am. Chem. Soc.*, **2017**, *139*, 9799-9802. (f) Jia, W.; Jian, Y.; Huang, B.; Yang, C.; Xia, W. *Synlett*, **2018**, *29*, 1881-1886.
- 77) (a) Lin, D.-Z.; Huang, J.-M. *Org. Lett.*, **2018**, *20*, 2112-2115. (b) Huang, H.; Yu, C.; Li, X.; Zhang, Y.; Zhang, Y.; Chen, X.; Mariano, P. S.; Xie, H.; Wang, W. *Angew. Chem. Int. Ed.*, **2017**, *56*, 8201-8205. (c) Wang, H.-B.; Huang, J.-M. *Adv. Synth. Catal.*, **2016**, *358*, 1975-1981. (e) Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. *Angew. Chem. Int. Ed.*, **2020**, *132*, 10713-10719.
- 78) (a) Yang, M.-L.; Kuo, P.-C.; Damu, A. G.; Chang, R.-J.; Chiou, W.-F.; Wu, T.-S. *Tetrahedron*, **2006**, *62*, 10900-10906. (b) Reddy, P. O. V.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P. N.; Shah, K.; Kumar, D. *Bioorg. Med. Chem. Lett.*, **2018**, *28*, 1278-1282. (c) Kovács, D. S.; Hajdu, I.; Mészáros, G.; Wittner, L.; Meszéna, D.; Tóth, E. Z.; Hegedűs, Z.; Ranđelović, I.; Tóvári, J.; Szabó, T.; Szilágyi, B.; Milen, M.; Keserű, G. M.; Balogh, P. A-. *RSC Adv.*, **2021**, *11*, 12802-12807. (d) Matcha, K.; Antonchick, A. P. *Angew. Chem. Int. Ed.*, **2013**, *52*, 2082-2086. (e) Lin, G.; Wang, Y.; Zhou, Q.; Tang, W.; Wang, J.; Lu, T. *Synth. Commun.*, **2011**, *41*, 3541-3550. (f) Bracher, F.; Daab, J. *Synth. Commun.*, **1995**, *25*, 1557-1562.
- 79) (a) Moty, S. G. A-.; Sakai, S.; Aimi, N.; Takayama, H.; Kitajima, M.; Shorbagi, A. E-.; Ahmed, A. N.; Omar, N. M. *Eur. J. Med. Chem.*, **1997**, *32*, 1009-1017. (b) Dighe, S. U.; Samanta, S. K.; Kolle, S.; Batra, S. *Tetrahedron*, **2017**, *73*, 2455-2467. (c) Kulkarni, A.; Abid, M.; Török, B.; Huang, X. *Tetrahedron Lett.*, **2009**, *50*, 1791-1794. (d) Manda, S.; Sharma, S.; Wani, A.; Joshi, P.; Kumar, V.; Guru, S. K.; Bharate, S. S.; Bhushan, S.; Vishwakarma, R. A.; Kumar, A.; Bharate, S. B. *Eur. J. Med. Chem.*, **2016**, *107*, 1-11. (e) Chalotra, N.; Ahmed, A.; Rizvi, M. A.; Hussain, Z.; Ahmed, Q. N.; Shah, B. A. *J. Org. Chem.*, **2018**, *83*, 14443-14456.
- 80) (a) García, M. D.; Wilson, A. J.; Emmerson, D. P. G.; Jenkins, P. R. *Chem. Commun.*, **2006**, 2586-2588. (b) García, M. D.; Wilson, A. J.; Emmerson, D. P. G.; Jenkins, P. R.; Mahale, S.; Chaudhuri, B. *Org. Biomol. Chem.*, **2006**, *4*, 4478-4484. (c) Samanta, S. K.; Sarkar, R.; Sengupta, U.; Das, S.; Ganguly, D.; Hasija, A.; Chopra, D.; Bera, M. K. *Org. Biomol. Chem.*, **2022**, *20*, 4650-4658. (d) Mondal, A.; Chowdhury, C. *J. Org. Chem.*, **2021**, *86*, 3810-3825. (e) Trieu, T. H.; Dong, J.; Zhang, Q.; Zheng, B.; Meng, T.-Z.; Lu, X.; Shi, X.-X. *Eur. J. Org. Chem.*, **2013**, *2013*, 3271-3277.
- 81) (a) Szabó, T.; Volk, B.; Milen, M. *Molecules*, **2021**, *26*, 663-716; b) Luo, B.; Song, X. *Eur. J. Med. Chem.*, **2021**, *224*, 113688-113729.

- 82) (a) Huang, H.; Yao, Y.; He, Z.; Yang, T.; Ma, J.; Tian, X.; Li, Y.; Huang, C.; Chen, X.; Li, W.; Zhang, S.; Zhang, C.; Ju, J. *J. Nat. Prod.*, **2011**, *74*, 2122-2127. (b) Wang, W.; Nam, S.-J.; Lee, B.-C.; Kang, H. *J. Nat. Prod.*, **2008**, *71*, 163-166.
- 83) (a) Nagao, T.; Adachi, K.; Nishida, F.; Nishishima, M.; Mochida, K. JP Patent, 11, 269, 175, **1999**. (b) Mayser, P.; Schäfer, U.; Krämer, H.-J.; Irlinger, B.; Steglich, W. *Arch. Dermatol. Res.*, **2002**, *294*, 131-134. (c) Chen, Y.-X.; Xu, M.-Y.; Li, H.-J.; Zeng, K.-J.; Ma, W.-Z.; Tian, G.-B.; Xu, J.; Yang, D.-P.; Lan, W.-J. *Mar. Drugs.*, **2017**, *15*, 339.
- 84) (a) Zhang, P.; Sun, X.; Xu, B.; Bijian, K.; Wan, S.; Li, G.; Jamali, M. A.; Jiang, T. Eur. J. Med. Chem., 2011, 46, 6089-6097. (b) Xu, T.; Shi, L.; Zhang, Y.; Wang, K.; Yang, Z.; Ke, S. Eur. J. Med. Chem., 2019, 168, 293-300. (c) Liew, L. P. P.; Fleming, J. M.; Longeon, A.; Mouray, E.; Florent, I.; Kondracki, M.-L. B.; Copp, B. R. Tetrahedron, 2014, 70, 4910-4920. (d) Zhu, Y.-P.; Liu, M.-C.; Cai, Q.; Jia, F.-C.; Wu, A.-X. Chem. Eur. J., 2013, 19, 10132-10137. (e) Battini, N.; Padala, A. K.; Mupparapu, N.; Vishwakarma, R. A.; Ahmed, Q. N. RSC Adv., 2014, 4, 26258-26263. (f) Szabó, T.; Hazai, V.; Volk, B.; Simig, G.; Milen, M. Tetrahedron Lett., 2019, 60, 1471-1475.
- 85) (a) Olah, G. A.; Ohannesian, L.; Arvanaghi, M. *Chem. Rev.*, **1987**, *87*, 671. (b) Kantlehner, W. *Eur. J. Org. Chem.*, **2003**, *2003*, 2530. (c) Cao, H.; Pu, W.; Zhang, J.; Yan, P.; Zhang, J.; Xu, S. *Synlett*, **2020**, *31*, 1287.

CHAPTER- II

Synthesis of isomeric Calothrixin B (7*H*-indolo[2,3-*j*] phenanthridine-7,13(8*H*)-dione) and *N*-Pyrimidyl Ellipticine quinone


Abstract:

An efficient metal-free synthesis of isomeric calothrixin B and *N*-pyrimidyl ellipticine quinone involving decarboxylative cross-coupling method is reported. This methodology can able to construct carbazolequinone frame work in a single step with moderate to low yields.

2.1 Introduction:

Calothrixins are indolo[3,2-j]phenanthridine alkaloids. In 1999 Rickards and coworkers originally extracted⁸⁶ from *Calothrix* cyanobacteria. These pentacyclic quinone based alkaloids exhibits antiproliferative characteristics against many cancer cell lines and human DNA topoisomerase I poisoning activity are both displayed by chloroquinone-resistant variant of the malaria parasite Plasmodium falciparum. Calothrixin A and B (Figure 1.1) are appealing targets for the total synthesis due to their unique structural characteristics and important biological activities.⁸⁷

Figure 1.1 Structures of calothrixin A, B and isomeric calothrixin B

Owing to their biological properties and fascinating structural features we targeted to achieve the synthesis of calothrixins with novel methodology, although several reports available, ⁸⁸ during the synthesis of calothrixins we have identified an unprecedented indolo[2,3-*j*]phenanthridine frame work isomeric form of calothrioxin.

Previous reports on synthesis of isomeric calothrixin B

Eq. 70. Mal et al. (2014)

In 2014 Mal *et al.* were reported⁸⁹ calothrixin B **75** and isomeric calothrixin B **225** involving addition, annulation, and subsequent elimination process by the reaction of *N*-MOM protected compound **221** with 3-bromoquinoline **222** in the presence of LDA at -78 °C in room temperature to obtain the mixture of compounds **223** (major) and **224** (minor) which are further deprotection to afford isomeric calothrixin **225** and calothrixin **75** (**Eq. 70**).

Eq. 71. Maingot et al. (2008)

Maingot *et al.* were developed⁹⁰ synthesis of isomeric calothrixin B **225** involving hetero Diels-Alder reaction to construct five-rings frame work by using new synthetic

precursor 2-bromo-1H-carbazole-1,4(9H)-dione acts as dienophile with multistep sequence to obtain the corresponding indolo[2,3-j]phenanthridine alkaloid overall yield 5.5% in the year of 2008 (Eq. 71).

2.2 Results and discussion:

Metal-free decarboxylative cross-coupling reactions are emerged and important tool for the creation of C-C/C-X bond construction in various organic synthesis includes several naturally occurring alkaloids.

Figure 2.1 Retrosynthetic analysis

We outlined the retro synthesis of calothrixin B **75** in which the formation of quinone ring would be construct the disconnection between quinoline C-4 to indol-2-carbonyl to form indole-2-yl-quinoline skeleton by involving decarboxylative cross-coupling method then, indole C-3 with quinoline-3-carbonyl intramolecular cross-coupling to develop the indolo[3,2-*j*]phenanthridine core. During the progress of reaction, we found that indolo[2,3-*j*]phenanthridine system shown in Figure **2.1**

Table 2.1: Optimisation and synthesis of starting precursor 2-(1*H*-indol-2-yl)-2-oxoacetic acid (236)

Entry	Solvent	Temp (°C)	Time (h)	Yield 239 (%)
1.	Et ₂ O	rt	72	26
2.	-	70	24	31
3.	Dioxane	90	24	57
4.	Toluene	100	24	88

Reaction conditions: 238 (1 equiv), (COCl)₂ (15 equiv), Dry solvent

We have synthesized a staring material 2-(1*H*-indol-2-yl)-2-oxoacetic acid **236** (or) indole-2-ketoacid with modern route starting from *N*-pyrimidyl indole **238** reacts with oxalyl chloride. Previously in 2014 Mori *et al.*⁹¹ were synthesized the same starting material by LDA mediated starting from indole with dimethyl oxalate.

We carried the reaction initially with ether solvent at room temperature 72 h observed indole-*N*-pyrimidyl-2-ketoacid (or) 2-oxo-2-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl) acetic acid **239** with 26% yield mentioned **table 2.1** in entry **1**. Upon we tried the same reaction for yield improvement with neat condition and other solvents like dioxane and toluene at the mentioned reflux temperature and time in table **2.1** entrys **2-4** we found that, entry **4** mentioned with toluene solvent at 100 °C in 24 h to obtain the compound indole-*N*-pyrimidyl-2-ketoacid **239** with 88% yield, further deprotection with NaOMe in Dry. DMSO at 110 °C in 12 h time period to afford the compound indole-2-ketoacid **236** with good yields.

Table 2.2: Optimisation of the reaction condition

E4	Oxidant (equiv)	Additive (equiv)	Solvent	T (°C)	Time (h)	Yield (%) b		
Entry						240	241	225
1	$(NH_4)_2S_2O_8(3)$	<i>p</i> -TSA (2)	CH ₃ CN	80	24	14	ND	ND
2	$(NH_4)_2S_2O_8(3)$	<i>p</i> -TSA (2)	DCE	80	48	21	ND	5
3	$(NH_4)_2S_2O_8(5)$	TFA (3)	DMSO	70	36	49	Trace	14
4	$K_2S_2O_8(5)$	TFA (3)	DCE	80	48	23	ND	6
5	$K_2S_2O_8(5)$	TFA (3)	DMSO	70	36	52	Trace	15
6	$Na_2S_2O_8(5)$	<i>p</i> -TSA (2)	DMSO	70	36	55	3	15
7	$Na_2S_2O_8(5)$	TFA (3)	DMSO	70	36	56	4	18
8	$Na_2S_2O_8(5)$	TFA (3)	DMSO	110	12	41	6	38

^a Reaction conditions: Quinoline-3-carboxaldehyde (73) (0.636 mmol, 1 equiv), Indole-2-ketoacid (236) (1.27 mmol, 2 equiv), Oxidant (3.18 mmol, 5 equiv), DMSO (2-3 mL), Temp (°C), Time (h). ^b Isolated yields after chromatography.

The optimisation of reaction condition we carried out with different oxidants (M₂S₂O₈; M= NH₄, Na or K) additives with various solvents (**Table 2.2**). From this we identified 5 equivalents of Na₂S₂O₈ Oxidant with 3 equivalents of additive TFA and DMSO was suitable solvent (**entry 7**), also we observed that if temperature enhances up to 110 °C with the same optimised condition entry **7** the compound isomeric calothrixin B **225** was increases (**entry 8**).

Scheme 2.1: Synthetic approach of isomeric calothrixin B {7*H*-Indolo[2,3-*j*] phenanthridine-7,13(8*H*)-dione} (225)

We attempted the reaction for synthesis of calothrixin B from the prepared starting material 2-(1*H*-indol-2-yl)-2-oxoacetic acid (236) treated with commercially available quinoline-3-carboxaldehyde (73) employing metal free decarboxylative coupling method in the presence of acid catalyzed, by using sodium persulfate as an oxidant with DMSO solvent at 70 °C in 36 h exclusively we observed in single step decarboxylative cross coupled product isomeric calothrixin B (225) in 18% along with compounds 240, 241 with 56%, 4% yields respectively (Scheme 2.1).

Reaction 2.1 Synthesis of isomeric calothrixin B

However, we aimed to synthesize the calothrixin B 75 from the retro synthetic route accordingly prepared starting materials exclusively we observed Isomeric calothrixin 225 employing decarboxylative cross-coupling method. Although we alter the starting material 2-(1*H*-indol-3-yl)-2-oxoacetic acid (220) reacts with quinoline-3-carboxaldehyde (73) involving decarboxylative cross-coupling strategy in the presence of acid catalyzed, using sodium persulfate as an oxidant with DMSO solvent at 110 °C in 8 h reaction period we found that, exclusive product isomeric calothrixin B (225) with 42% yield (Reaction 2.1).

Reaction 2.2 Synthesis of compound 242

Reaction 2.3 Synthesis of compound 244

We are also attempted with other alternative approaches for calothrixin B shown in reaction 2.2 and 2.3 for the synthesis of calothrixin B 75 alkaloid. The compound 239 reacts with quinoline-3-carboxaldehyde 73 with the optimised reaction condition at 24 h involving decarboxylative cross-coupling method to obtain the corresponding cross-coupled product 242 with 58% yield (Reaction 2.2). In the case of skatole-2-ketoacid 243 treated with quinoline 145 in the presence of optimised reaction condition at 24 h employing decarboxylative strategy to afford the compound 244 with 18% yield (Reaction 2.3).

Previous reports on synthesis of ellipticine quinone alkaloid

$$R = H, MOM, Me, Bn$$
(245)
$$R = H (246)$$

Eq. 72. Joule and co-workers (1979)

In 1979 Joule and co-workers⁹² were first reported ellipticine quinone **246** and determined an important precursor in the synthesis of ellipticine alkaloids. By treating the compound pyrido-oxepino-indolone **245** with 3 M aq. NaOH in methanol presence of atmospheric air with refluxing condition to afford ellipticine quinone **246** includes other 3-isomeric form of ellipticine quinones (**Eq. 72**).

In 1985 Gribble *et al.* were synthesized⁹³ ellipticine quinone **246**, which was access to the synthesis of ellipticines. Pyridine-3,4-dicarboxylic anhydride **247** was transformed to monomethyl ester **248**, further this compound was converted to acid chloride **249** subsequently Friedel-Crafts acylation of *N*-sulfonyl indole **6** to give the compound **250** followed by Comin's methodology to afford the cyclized compound ellipticine quinone **246** (**Eq. 73**).

Eq. 73. Gribble et al. (1985)

Eq. 74. Bennasar et al. (2005)

Bennesar *et al.* were described⁹⁴ radical cascade strategy for the synthesis of ellipticine quinones by the reaction of *N*-benzyl 2,3-disubstituted indole **251** reacts with 3-pyridylmagnesium bromide **252** to form alcoholic compound **253**, which was further converted to compound **254** by using triethyl silane subsequently hydrolysis of methyl ester then, treatment with phenyl selenium chloride to gave acyl selenide compound **255**. Further this compound **255** was transformed to cyclization as key step by irradiating in the presence of hexabutylditin to obtain the cyclized compound *N*-benzyl ellipticine quinone **246** in the year 2005. (**Eq. 74**).

Eq. 75. Mal et al. (2007)

In 2007 Mal *et al.* were reported⁹⁵ an inseparable mixture of compounds ellipticine **246** and isoellipticine quinones **258** from *N*-Ethoxycarbonylindolofuranone **256** was treated with compound 3,4-pyridyne **257** which was in situ generated from 3-bromopyridine in the presence of LDA mediated involving [4+2] cyclo addition to obtain the mixture of compounds **246** and **258** (Eq. 75).

Eq. 76. Dethe and co-workers (2014)

In 2014 Dethe and co-workers⁹⁶ reported *N*-benzyl ellipticine quinone by the reaction of *N*-protected indole-2-ethyl ester **72** with hydrazine mono hydrate to form *N*-protected indolyl-hydrazide **259** further this compound **259** reacts with compound **260** to generate the respective hydrazone compound **261**, subsequently LTA-mediated oxidative rearrangement to obtain the compound ketoaldehyde **262** and cyclization using BF₃.OEt₂ to furnish the compound **246** (Eq. 76).

Eq. 77a. Ramkumar et al. (2014)

Ramkumar *et al.* were synthesized³⁵ ellipticine quinone **246** alkaloid from indole-2-ethyl ester treated with pyridine-3-carboxaldehyde **263** involving Friedel-Crafts hydroxy alkylation subsequently oxidation to gave the compound **265** and direct lithiation of this compound to obtain the cyclized compound ellipticine quinone **246** in 3-steps with overall 67.6% yield in the year 2014 (**Eq. 77a**).

Eq. 77b. Nagarajan and co-workers (2014)

In 2014 Nagarajan and co-workers⁹⁷ the same group were reported ellipticine quinone **246** from isatin reacts with compound **268** or **269** to form *N*-alkylation compound **270** under treatment with aq. NaOH inducing reflux condition involving indoledione-indole

rearrangement to gave the mixture of compounds 273 (major) and compound 272 (minor) subsequently direct ortho-lithiation of compound 273 to obtain the cyclic compound ellipticine quinone 246 (Eq. 77b).

Eq. 78. Nishiyama et al. (2017)

Nishiyama *et al.* was developed⁹⁸ for synthesis of compound **246** from 3-iodo indole-2-carboxaldehyde treated with compound **275** in the presence of Pd-mediated cross-coupling to form compound **276** and further treatment with vinylmagnesium bromide to gave corresponding alcohol compound **277** subsequently treated with grubbs catalyst involving ring closing metathesis followed by dehydrogenation with atmospheric oxygen to construct carbazole-1,4-quinone framework **278**. Furthermore, cyclization of compound **278** treat with 6M HCl in 1,4-dioxane presence of microwave irradiation at 100 °C to afford ellipticine quinone **246** in the year 2017 (**Eq. 78**).

Eq. 79. Miranda and co-workers (2022)

Recently, Miranda and co-workers⁹⁹ are developed for the synthesis of compound **246** from commercially available 2,5-dimethoxy isoquinoline **279** to convert isoquinoline-5,8-dione *N*-oxide **280**. They are first demonstrated nucleophilic attack on compound **280** regioselectivity C-6 position to gave the compound **281** subsequently intramolecular double C-H cross-coupling to afforded the compound ellipticine quinone **246** (**Eq. 79**).

Scheme 2.2: Synthetic approach of N-Pyrimidyl ellipticine quinone

N-Pyrimidyl Ellipticine quinone (283)

We have also synthesized *N*-pyrimidyl ellipticine quinone **283** alkaloid from the prepared compound **239** with commercially available starting material pyridine-3-carboxaldehyde **263** in the presence of acid-mediated sodium persulfate as an oxidant with DMSO solvent at 80 °C in 24 h undergoes metal free decarboxylative cross coupling to afforded the compound **283** with 12% yield. Further this compound can be easily deprotect the pyrimidyl group using NaOMe/NaOEt in DMSO to afford the ellipticine quinone (Scheme **2.2**)

Scheme 2.3: Plausible mechanism

We depicted mechanism initially oxidant dissociate to sulfate anion radical, readily abstract to the indole-2-keto attached acid hydrogen 236 undergoes decarboxylation to generate the respective indole-2-acyl radical (A) added to another reactive partner protonated quinoline-3-carboxaldehyde (B) to form indole-2-carbonyl-quinoline moiety (indole C2-quinoline C4 connection) (C) and further transformed to spiro cyclic compound (D) subsequently attains the aromaticity compound (E). Furthermore, compound E involves cyclization through quinoline-C3-acyl radical addition to indole-C3 position, and subsequent hydrogen radical abstraction by a sulfate radical anion or by a mechanism of single-electron transfer (SET) to obtain the corresponding carbazole quinone frame work (Scheme 2.3).

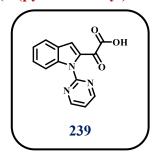
$$M_2S_2O_8$$
 $M = NH_4/K/Na$
 $S_2O_8^{2-}$
 SO_4
 $M = NH_4/K/Na$
 M_1
 M_2
 M_2
 M_2
 M_3
 M_4
 M_4

Isomeric calothrixin B (225)

2.3 Conclusion:

We developed an enormous method for constructing indolo[2,3-j] phenanthridine frame work involving transition metal-free decarboxylative cross coupling methodology in single step. We aimed to synthesize calothrixin B 73, unfortunately, we found that isomeric calothrixin B 225, in addition we have also synthesized *N*-Pyrimidyl ellipticine quinone 283 by using decarboxylative cross-coupling strategy with 12% yield.

2.4 Experimental section:


NMR spectra: DMSO- d_6 and CDCl₃ are used as the NMR solvents to record ¹H and ¹³C NMR spectra were recorded at BRUKER-ADVANCE NMR analyser at 400 and 100 MHz or at 500 and 125 MHz respectively. Chemical shifts values were assigned with respect to TMS ($\delta = 0$) for ¹H NMR, and relative to NMR solvent residual peaks in CDCl₃ resonance ($\delta = 77.12$) and DMSO- d_6 ($\delta = 39.52$) for ¹³C NMR. Data are presented as follows: chemical shifts, multiplicity (br s = broad singlet, s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet), coupling constant in Hertz (Hz) and integration. Melting points were determined by using a capillary melting point apparatus.

Mass spectral analysis: Shimadzu LCMS 2010A mass spectrometer was used. In all the cases EtOAc or DCM or MeOH were used to dissolve the compounds. HRMS were obtained from TOF and quadrupole mass analyzer types.

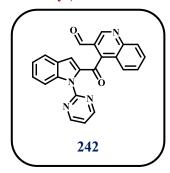
General procedure:

Quinoline-3-carboxaldehyde **73** (0.636 mmol. 1 equiv) was dissolved in DMSO (1 mL) in an Screw cap vial, and then slowly addition of TFA (1.90 mmol. 3 equiv) at 0 °C after 5 minutes added indole-2-ketoacid **236** (1.27 mmol. 2 equiv) in DMSO (1-2 mL) followed by Oxidant (3.18 mmol. 5 equiv). The resulting solution was stirred at temperature 70-110 °C for 12-36 h. After reaction was complete (TLC), the reaction was quenched with water (10 mL), the mixture was extracted with ethyl acetate (3 × 10 mL), and the combined organic layers were washed with water, dried over anhydrous Na₂SO₄, and concentrated using a rotary evaporator. The crude product was further purified by column chromatography on silica gel with an ethyl acetate/hexane solvent mixture.

2-Oxo-2-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)acetic acid (239)

Physical state: Pale yellow solid

Yield: 120 mg (88 %)


M.P: $>250 \, ^{\circ}$ C

¹H NMR (500 MHz, DMSO-*d*₆): δ 9.24 (s, 1H), 8.92 (d, J = 4.8 Hz, 2H), 8.73 (d, J = 8.2 Hz, 1H), 8.29 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 4.8 Hz, 1H), 7.42-7.38 (m, 1H), 7.36-7.33 (m, 1H).

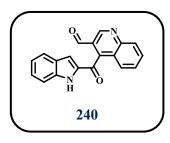
¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 188.3, 167.2, 159.5, 156.6, 136.4, 135.5, 128.2, 125.3, 124.3, 122.0, 119.2, 116.6, 116.0.

HRMS (ESI-TOF) Calcd for $C_{14}H_9N_3O_3$ [M+H]⁺ 268.0717, found: 268.0715.

4-(1-(pyrimidin-2-yl)-1*H*-indole-2-carbonyl)quinoline-3-carboxaldehyde (242)

Physical state: brown solid

Yield: 139 mg (58 %)


M.P: 243-245 °C

¹H NMR (500 MHz, CDCl₃): δ 10.30 (br s, 1H), 9.50 (s, 1H), 8.86-8.82 (m, 1H), 8.67 (d, J = 4.8 Hz, 2H), 8.28-8.24 (m, 3H), 7.96-7.94 (m, 1H), 7.90-7.87 (m, 1H), 7.60-7.57 (m, 1H), 7.53-7.51 (m, 2H), 7.17 (t, J = 4.8 Hz, 1H).

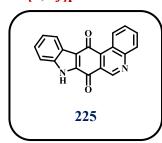
¹³C{¹H} NMR (100 MHz, CDCl₃): δ 189.3, 189.2, 158.4, 156.6, 150.4, 150.0, 148.7, 136.2, 136.0, 132.9, 129.9, 128.5, 127.2, 127.0, 125.9, 124.9, 124.4, 124.3, 122.4, 121.2, 118.3, 116.6.

HRMS (ESI-TOF) Calcd for $C_{23}H_{14}N_4O_2$ [M+H]⁺ 379.1190, found: 379.1190.

4-(1*H*-indole-2-carbonyl)quinoline-3-carboxaldehyde (240)

Physical state: brown solid

Yield: 107 mg (56 %)


M.P: 248-250 °C

¹H NMR (500 MHz, DMSO-d6): δ 12.25 (br s, 1H), 10.20 (br s, 1H), 9.42 (s, 1H), 8.23-8.20 (m, 1H), 7.99-7.95 (m, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.70-7.59 (m, 2H), 7.54-7.52 (m, 1H), 7.40-7.33 (m, 3H).

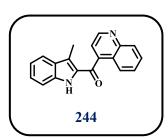
¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 190.9, 187.8, 150.2, 150.0, 149.8, 137.5, 133.2, 133.2, 129.9, 129.0, 128.9, 127.3, 125.3, 124.5, 124.2, 123.2, 118.3, 113.1, 111.6.

HRMS (ESI-TOF) Calcd for $C_{19}H_{12}N_2O_2$ [M+H]⁺ 301.0972, found: 301.0970.

7*H*-Indolo[2,3-*j*]phenanthridine-7,13(8*H*)-dione (225)

Physical state: Red solid

Yield: 35 mg (18 %)


M.P: >250 °C (Lit.⁸⁹ >300 °C)

¹H NMR (500 MHz, DMSO-*d*₆): δ 13.15 (br s, 1H), 9.68 (d, J = 8.6 Hz, 1H), 9.53 (s, 1H), 8.23 (d, J = 7.9 Hz, 1H), 8.13 (d, J = 8.3 Hz, 1H), 7.94 (t, J = 7.4 Hz, 1H), 7.84 (t, J = 7.7 Hz, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H).

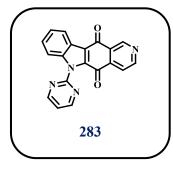
¹³C{¹H} NMR (125 MHz, DMSO-d₆): δ 184.4, 178.1, 152.2, 147.3, 138.8, 135.9, 134.6, 132.3, 130.4, 130.2, 128.3, 127.6, 124.7, 124.5, 124.5, 123.5, 122.8, 119.0, 114.4.

HRMS (ESI-TOF) Calcd for $C_{19}H_{10}N_2O_2$ [M+H]⁺ 299.0815, found: 299.0810.

(3-Methyl-1*H*-indol-2-yl)(quinolin-4-yl)methanone (244)

Physical state: yellow solid

Yield: 41 mg (18 %)


M.P: 136-138 °C

¹H NMR (400 MHz, CDCl₃): δ 12.31 (br s, 1H), 8.46-8.40 (m, 2H), 8.34 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91-7.87 (m, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.75-7.71 (m, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.44-7.40 (m, 1H), 7.21-7.17 (m, 1H).

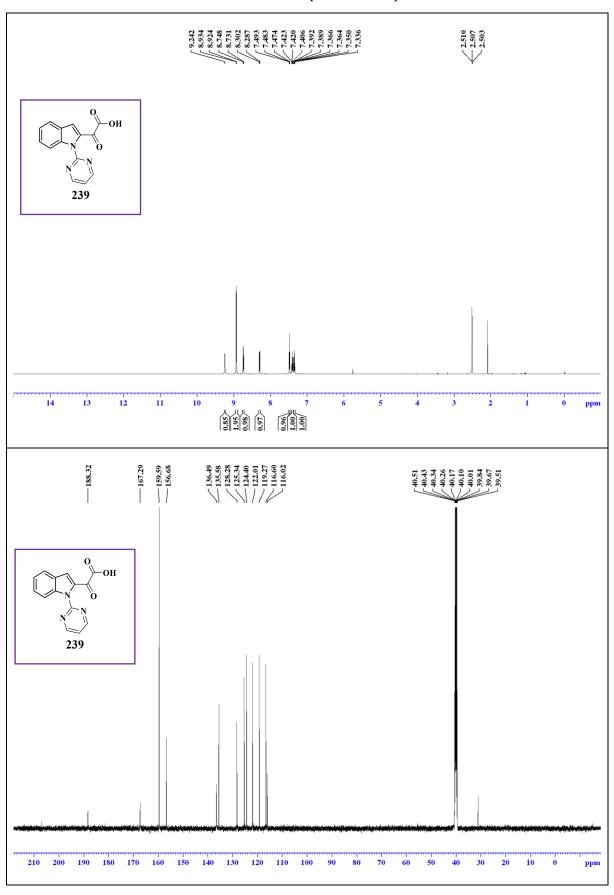
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 180.8, 156.0, 146.1, 137.6, 136.7, 131.5, 130.4, 129.9, 129.1, 128.7, 127.8, 127.8, 126.6, 125.4, 121.2, 120.4, 119.9, 112.4, 11.4.

HRMS (ESI-TOF) Calcd for $C_{19}H_{14}N_2O [M+H]^+ 287.1179$, found: 287.1176.

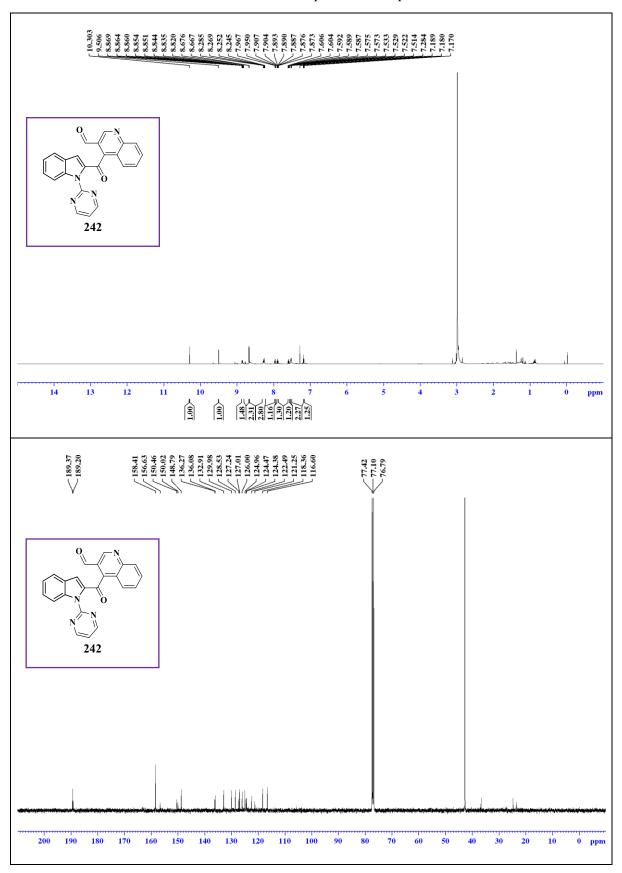
6-(Pyrimidin-2-yl)-5*H*-pyrido[4,3-*b*]carbazole-5,11(6*H*)-dione (283)

Physical state: Red solid

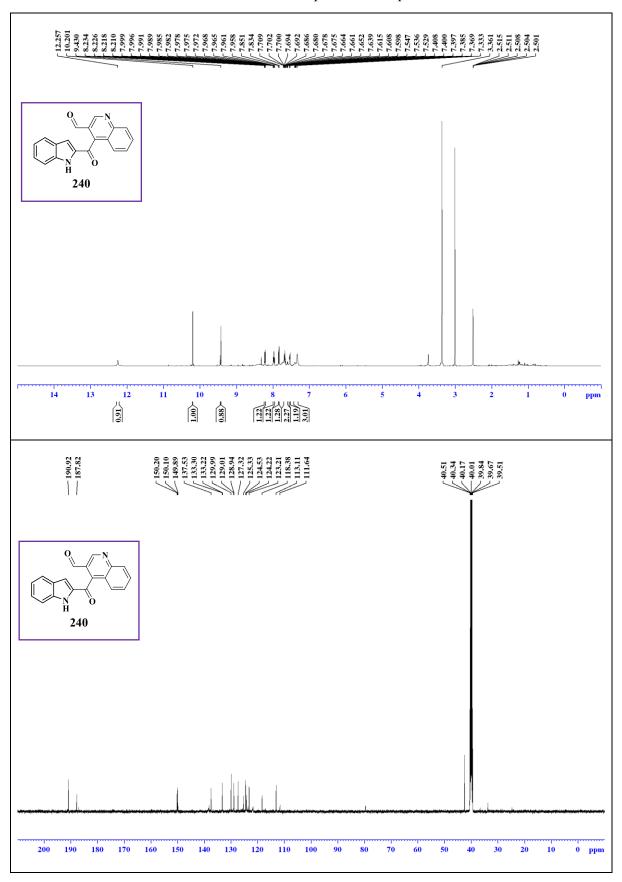
Yield: 41 mg (18 %)

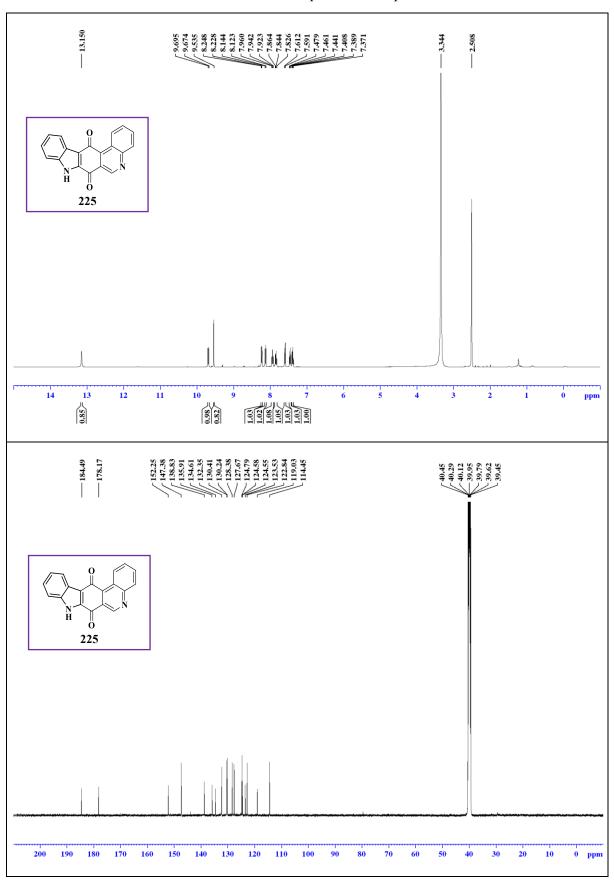

M.P: >250 °C

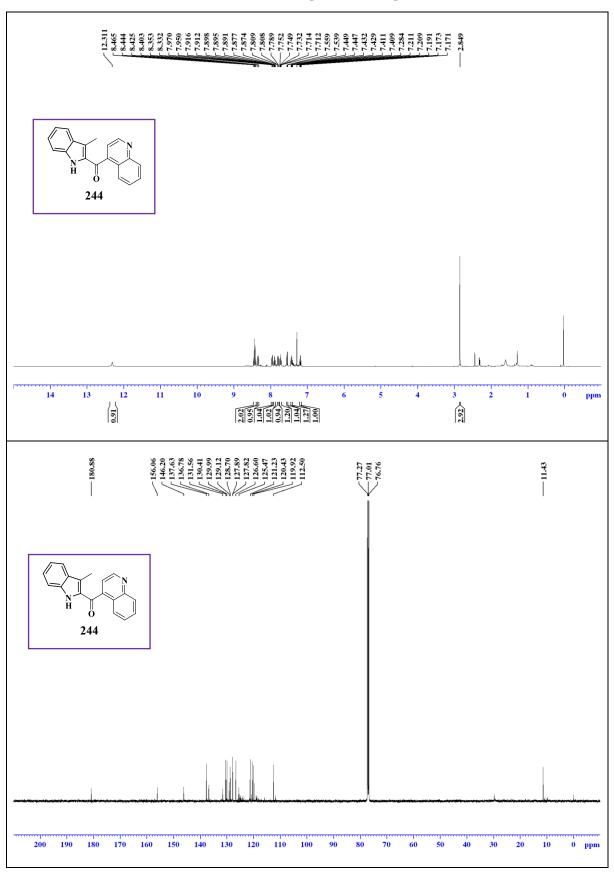
¹H NMR (500 MHz, CDCl₃): δ 9.32 (s, 1H), 8.97 (d, J = 4.9 Hz, 1H), 8.89 (d, J = 4.8 Hz, 2H), 8.43-8.41 (m, 1H), 7.97 (d, J = 4.9 Hz, 1H), 7.62-7.61 (m, 1H), 7.46-7.44 (m, 2H), 7.43 (t, J = 1.6 Hz, 1H).


¹³C{¹H} NMR (125 MHz, CDCl₃): δ 180.3, 176.1, 159.0, 156.4, 155.3, 148.2, 139.7, 139.3, 135.9, 128.9, 126.7, 125.6, 123.8, 123.8, 121.6, 120.7, 118.8, 112.8.

HRMS (ESI-TOF) Calcd for $C_{19}H_{10}N_4O_2$ [M+H]⁺ 327.0877, found: 327.0877.


 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 239


 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 242


 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 240


 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 225

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 244

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 283

2.5 References:

- 86) Rickards, R. W.; Rothschild, J. M.; Willis, A. C.; de Chazal, N. M.; Kirk, J.; Kirk, K.; Saliba, K. J.; Smith, G. D. *Tetrahedron*, **1999**, *55*, 13513.
- 87) Doan, N. T.; Rickards, R. W.; Rothschild, J. M.; Smith, G. D. *J. Appl. Phycol.*, **2000**, *12*, 409. (b) Doan, N. T.; Stewart, P. R.; Smith, G. D. *Microbiol. Lett.*, **2001**, *196*, 135. (c) Chen, X.; Smith, G. D.; Waring, P. *J. Appl. Phycol.*, **2003**, *15*, 269.
- 88) (a) Mohanakrishnan, A. K.; Srinivasan, P. C. *J. Org. Chem.*, **1995**, *60*, 1939. (b) Choshi, T.; Hibino, S. *Heterocycles*, **2009**, 77, 85. (c) Liu, Y.; Xu, M.; Xie, K.; Liu, S. *Adv. Synth. Catal.*, **2021**, *363*, 737-741.
- 89) Mal, D.; Roy, J.; Biradha, K. Org. Biomol. Chem., 2014, 12, 8196.
- 90) Maingot, L.; Thuaud, F.; Sissouma, D.; Collet, S.; Guingant, A.; Evain, M. *Synlett*, **2008**, 2, 263-267.
- 91) Mori, R.; Kato, A.; Komenoi, K.; Kurasaki, H.; Iijima, T.; Kawagoshi, M.; Kiran, Y. B.; Takeda, S; Sakai, N.; Konakahara, T. *Eur. J. Med. Chem.*, **2014**, 82, 16-35.
- 92) (a) Taylor, D. A.; Baradarani, M. M.; Martinez, S. J.; Joule, J. A. J. Chem. Res., 1979, 387.
- (b) Ashcroft, W. R.; Beal, M. G. Joule, J. A. J. Chem. Soc., Chem. Commun., 1981, 994.
- 93) (a) Gribble, G. W.; Saulnier, M. G.; Sibi, M. P.; Obaza-Nutaitis, J. A. J. Org. Chem., **1984**, 49, 4518. (b) Kecha, D. M.; Gribble, G. W. J. Org. Chem., **1985**, 50, 5451.
- 94) Bennasar, M.-L.; Roca, T.; Ferrando, F. J. Org. Chem., 2005, 70, 9077.
- 95) (a) Mal, D.; Senapati, B. K.; Pahari, P. *Tetrahedron*, **2007**, *63*, 3768. (b) Mal, D.; Senapati, B. K.; Pahari, P. *Synlett*, **2005**, 994.
- 96) Dethe, D. H.; Murhade, G. M. Eur. J. Org. Chem., 2014, 2014, 6953-6962.
- 97) Ramkumar, N.; Nagarajan, R. Tetrahedron Lett., 2014, 55, 1104-1106.
- 98) Nishiyama, T.; Hatae, N.; Mizutani, M.; Yoshimura, T.; Kitamura, T.; Miyano, M.; Fujii, M.; Satsuki, N.; Ishikura, M.; Hibino, S.; Choshi, T. Eur. J. Med. Chem., 2017, 136, 1-13.
- 99) Castro, J. A. M.; Serikava, B. K.; Maior, C. R. S.; Naciuk, F. F.; Rocco, S. A.; Ligièro, C. B. P.; Morgon, N. H.; Miranda, P. C. M. L. *J. Org. Chem.*, **2022**, *87*, 7610-7617.

CHAPTER- III

Synthesis of Canthinone and its analogues through Knoevenagel condensation

$$R^{1} = H (86)$$

$$= COOMe (298)$$

$$R^{2} = OH, R^{3} = OH (305a)$$

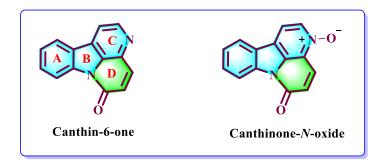
$$R^{2} = OMe, R^{3} = OMe (305b)$$

$$R^{2} = OEt, R^{3} = Me (305c)$$

$$R^{3} = OHe (305c)$$

$$R^{2} = OEt, R^{3} = Me (305c)$$

$$R^{3} = OHe (305c)$$


Abstract:

We have synthesized biologically active β -carboline alkaloid canthin-6-one and its analogues starting from β -carboline-1-carboxaldehyde treatment with commercially available starting precursors under the DMAP mediated condensation followed by cyclization in a single step with good to moderate yields.

3.1 Introduction:

Haynes *et al.* was first isolated¹⁰⁰ Canthin-6-one **284** from the Australian tree *Pentaceras australis* in the year 1952. Also found from the various plants families those are *Rutaceae*, *Malvaceae*, *Amaranthaceae*, *Simaroubaceae*, *Caryophyllaceae* and *Zygophyllaceae* marine organisms and recently isolated from fungi (Boletus curtisii *Berk*).¹⁰¹ According to the literature search canthin-6-one **284** core was incorporated as inside the framework of more than 150 compounds, including pentacyclic analogues; since this type of alkaloids greater than sixty members are found from naturally occurring sources. It is a sub class of β -carboline contain alkaloid includes additional D-ring. It exhibits numerous potential therapeutic applications of canthine-6-one and its derivatives, such as antitumor, antiviral, antibacterial, antifungal, antiproliferative, anti-inflammatory, aphrodisiac, and antiparasitic agents, also uses in DNA screening, cancer chemoprevention, and so on.¹⁰¹

Figure 1.1 Structures of Canthin-6-one and Canthinone-N-oxide

Previous reports on synthesis of canthin-6-one alkaloids

Canthinone alkaloids was synthesized with classical and non-classical methods have been reported by various groups from different starting precursors, are summarized below:

Classical routes:

(A). Bischler-Napieralski method

Canthinone alkaloids were first reported^{102a} in 1966 by Schmidt *et al.* involving Bischler-Napieralski reaction starting from tryptophan with succinic anhydride to afforded poor yield. In 2005 Soriano-Agaton *et al.* were reported^{102b} canthinone and its analogues by the reaction of tryptamine 8 reacts with succinic anhydride to gave amide compound 285 subsequently esterification results compound 286 further involving Bischler-Napieralski cyclization followed by aromatization to afforded compound 284 within three to four steps overall 60% yield (Eq. 80) Erwan-Poupan and co-workers^{102c} also synthesized canthinone in

solution phase nanoparticle biosynthetically involving with the same Bischler-Napieralski cyclization method by the reaction with tryptamine 8 treated with succinic anhydride an overall 57% yield in the year 2013 (Eq. 80).

Eq. 80. Schmid et al. (1966), Soriano-Agaton et al. (2005) and Erwan Poupon and coworkers (2013)

(B). Pictet-Spengler method

Eq. 81. Mitscher et al. (1975), Czerwinski et al. (2003)

In 1975 Mitscher *et al.* were synthesized^{103a} canthin-6-one **284** alkaloids for the first time using the Pictet-Spengler method. Czerwinski *et al.* were reported^{103b} an improved synthesis compound **284** starting from tryptamine **8** transformed to *N*-benzyl tryptamine **289**

through the compound **288** undergoes reduction using LiAlH₄. Further compound **289** treated with 2-ketoglutaric acid undergoes Pictet-Spengler methodology gave cyclized compound **290** subsequently debenzylation by using catalytic transfer hydrogenation technique to afford the compound **291** followed by treatment with freshly prepared active MnO₂ for aromatization to obtain the corresponding β -carboline alkaloid canthin-6-one **284** with an overall 46.74% yield in the year 2003 (Eq. 81).

In 1983 Cook and co-workers^{103c} reported canthin-6-one and its substituents from tryptamine and its substituents reacts with benzaldehyde and subsequent NaBH₄ reduction to form *N*-benzyl tryptamine **289** Further this compound **289** treated with 2-ketoglutaric acid involving Pictet-Spengler cyclization followed by aromatization and debenzylation to afford compound **284** with overall 26% yield (Eq. 82). Dai *et al.* synthesized^{103d} canthin-6-one **284** starting from tryptamine **8** reacts with benzaldehyde and reduction with NaBH₄ to gave *N*-benzyl tryptamine **289** undergoes Pictet-Spengler methodology with 2-ketoglutaric acid to form compound **290**. The treatment of compound **290** with catalytic transfer hydrogenation and aromatization using Pd/C inducing reflux with xylene solvent to afford canthinone **284** an overall 42% yield in the year 2016 (Eq. 82).

Eq. 82. Cook and co-workers (1983), Dai et al. (2016)

(C). Diels-Alder method

Snyder and his group described^{104a-b} for synthesis of canthin-6-one **284** and its skeletons utilizing indole skeleton acts as dienophile character involving intramolecular inverse electron demand Diels-Alder reaction. Another group Lindsley *et al.* were also reported^{104c} under the

microwave-mediated involving the same Diels-Alder method for synthesis of canthin-6-one **284** and its analogues with an overall 48% yield in the year 2003 (**Eq. 83**).

Eq. 83. Snyder and co-workers (1994 & 1992), Lindsley et al. (2003)

(D). Aldol method

In 2005 Suzuki *et al.* were developed 105a for synthesis of canthion-6-one **284** from β -carboline-1-carboxaldehyde **86** direct treatment with Li-enolate (ketene acetal) **295** in the presence of LHMDS mediated aldol condensation method to afforded compound **284** with 83% yield (**Eq. 84**).

Eq. 84. Suzuki *et al.* (2005)

Takasu *et al.* were reported^{105b} canthinone starting from β -carboline-1-carboxaldehyde **86** treated with acetyl chloride **296** under the base sodium hydride with refluxing the reaction mixture to obtain the corresponding aldol condensation followed by cyclization compound canthin-6-one **284** in single step with 31% yield in the year 2005 (**Eq. 85**).

Eq. 85. Takasu et al. (2005)

(E). Perkin reaction

Eq. 86. Giudice et al. (1990), Brahmbhatt et al. (2010)

Canthinone alkaloids was synthesized in 1990 by Giudice^{106a} *et al.* and Brahmbhatt^{106b} *et al.* in 2010 starting from 1-methyl β -carboline-3-methylester **297** treated with SeO₂ oxidation to forms aldehyde compound **298** further treatment with acetic anhydride involving Perkin reaction in the presence of pyridine inducing reflux to obtain the corresponding cyclized compound canthinone **284** with the overall yields 50% and 40% respectively (**Eq. 86**).

$$(CF_{3}SO_{2})_{2}O \longrightarrow NR \longrightarrow SET [4+2] \longrightarrow NR$$

$$(85) \qquad (299) \qquad (300) \qquad (300) \qquad (CO_{2}Me)$$

$$Na/C_{10}H_{8} \longrightarrow 60\%$$

$$(1) HCI \longrightarrow NB/C_{10}H_{8} \longrightarrow (284)$$

$$(284) \longrightarrow NR$$

$$MnO_{2} \longrightarrow NH$$

$$CO_{2}Me \longrightarrow (284)$$

$$(301)$$

Eq. 87. Steckhan and co-workers (1999)

Steckhan and co-workers¹⁰⁷ developed for synthesis of canthin-6-one **284** by the reaction harmalan **85** single electron transfer (SET) induced radical cationic hetero [4+2] cycloaddition to forms compound **300** subsequently deprotection and aromatization with active MnO₂ followed by esterification and Cu-mediated decarboxylation to obtain in six-steps with overall 18% yield in the year 1999 (**Eq. 87**).

Modern methods:

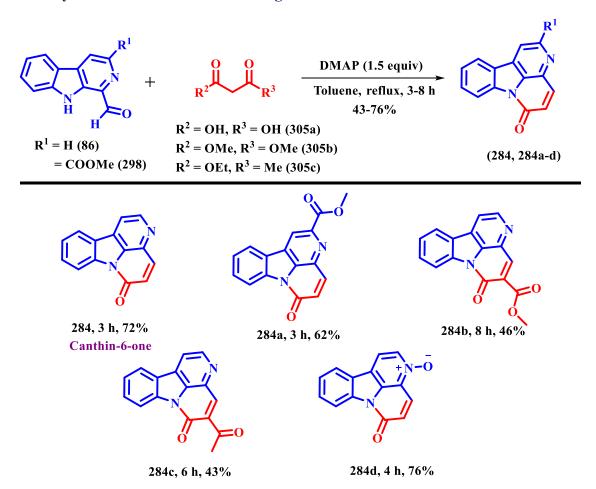
In 2010 Gollner *et al.* were synthesized^{108a} canthin-6-one and its analogues under the modern method to construct central pyrrole ring-B. This method undergoes Pd-catalyzed Suzuki-Miyaura C-C coupling subsequently Cu-catalyzed C-N coupling, which can be accomplished either sequentially or using a one-pot technique beginning with 8-bromo-1,5-naphthyridine **302** with excellent yields (**Eq. 88**).

Eq. 88. Gollner et al. (2010)

Ioannidou *et al.* was reported^{108b} canthin-6-one-1-ethylester within 3-step modern reaction that mainly focuses on formation of pyrrole ring-B through Pd-catalyzed Suzuki-Miyaura C-C coupling subsequently demethylation and Cu-catalyzed Buchwald C-N coupling which can be easily synthesized from 1,5-naphthyridine compound in the year 2011 (**Eq. 89**).

Eq. 89. Ioannidou et al. (2011)

3.2 Results and discussion:


Table 2.1: Optimisation for the synthesis of canthin-6-one alkaloid

Entry	Base (1.5 equiv)	Solvent	Time (h)	Yield 284 (%)
1.	NEt ₃	EtOH	12	26
2.	Piperidine	EtOH	12	32
3.	Pyridine	EtOH	12	41
4.	DMAP	EtOH	12	45
5.	DMAP	Toluene	3	72
6.	DBU	Toluene	6	64

Reaction conditions: β -carboline-1-carboxaldehyde **86** (0.25 mmol, 1.0 equiv), malonic acid **305a** (0.30 mmol, 1.2 equiv), Base, Solvent, reflux; ^b Isolated yields after chromatography.

The optimisation of the reaction condition for synthesis of canthin-6-one **284** alkaloid is shown in **Table 2.1** We carried out the reaction with different bases and the suitable solvents, initially we tried the reaction β -carboline-1-carbaoxldehyde **86** which was synthesized from the reported methods treated with malonic acid **305a** under the base triethylamine in EtOH at 12 h inducing reflux condition we observed condensation followed by cyclization product **284** in single step with 26% yield (**Table 2.1** in Entry **1**). Further we tried the reaction with other bases like piperidine, pyridine and dimethyl aminopyridine in EtOH solvent at 12 h under reflux condition (Entry's **2-4**) we observed that, the product was increases gradually with 32%, 41% and 45% yields respectively. Furthermore, we tried the reaction with DMAP as base in toluene solvent with the suitable reflux temperature in 3 h we obtained the condensation followed by cyclization product **284** with 72% yield (Entry **5**), with the same toluene solvent in the presence of DBU base we observed 64% yield (Entry **6**). With the optimisation study, we found entry **5** was the better optimised condition for the synthesis of canthi-6-one **284** alkaloid.

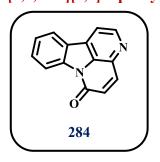
Scheme 2.1. Synthesis of canthin-6-one analogues

^a Reaction conditions: β -carbolines-1-carboxaldehyde **86** or **298** (0.25 mmol, 1.0 equiv), **305a-c** (1.2 equiv), DMAP (0.38 mmol, 1.5 equiv), Toluene, reflux, 3-8 h, Isolated yields after chromatography.

The starting precursors β -carboline-1-carboxaldehydes (86, 298) are prepared as per the literature procedure. We have synthesized canthin-6-one and its derivatives, by the reaction of β -carboline-1-carboxaldehyde (86) treated with malonic acid (305a) in the presence of base mediated inducing reflux with toluene solvent undergoes condensation followed by cyclization to afforded canthi-6-one with 72% yield in single step. Upon this methodology was applied with the commercially available starting materials 305a-c to afforded the condensation followed cyclized products (284, 284a-d) with moderate yields (Scheme 2.1).

3.3 Conclusion:

In conclusion, we have synthesized biologically active β -carboline alkaloid canthinone and its derivatives starting from kumujian C **86**, **298** treatments with commercially available starting precursors **305a-c** under the base mediated involving condensation followed by cyclization to afforded in a single step with good to moderate yields.


3.4 Experimental section:

NMR spectra: DMSO- d_6 and CDCl₃ are used as the NMR solvents to record ¹H and ¹³C NMR spectra were recorded at BRUKER-ADVANCE NMR analyser at 400 and 100 MHz or at 500 and 125 MHz respectively. Chemical shifts values were assigned with respect to TMS ($\delta = 0$) for ¹H NMR, and relative to NMR solvent residual peaks in CDCl₃ resonance ($\delta = 77.12$) and DMSO- d_6 ($\delta = 39.52$) for ¹³C NMR. Data are presented as follows: chemical shifts, multiplicity (br s = broad singlet, s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet), coupling constant in Hertz (Hz) and integration. Melting points were determined by using a capillary melting point apparatus.

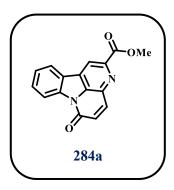
Mass spectral analysis: Shimadzu LCMS 2010A mass spectrometer was used. In all the cases EtOAc or DCM or MeOH were used to dissolve the compounds. HRMS were obtained from TOF and quadrupole mass analyzer types.

General procedure: β -Carboline-1-carboxaldehyde **86** (0.25 mmol, 1 equiv) and with compound **305a-c** (1.2 equiv) was dissolved in Toluene (2 mL) solvent in a screw cap vial, and then added DMAP (4-dimethyl aminopyridine) (0.38 mmol, 1.5 equiv). The resulting solution was stirred under reflux for 3-8 h. After reaction was complete (TLC monitor), the reaction was quenched with water (10 mL), and the mixture was extracted with ethyl acetate (3 × 10 mL), and the combined organic layers dried over anhydrous Na₂SO₄, and concentrated using a rotary evaporator. The crude product was further purified by column chromatography on silica gel using ethyl acetate/hexane.

6H-Indolo[3,2,1-de][1,5]naphthyridine-6-one (or) Canthin-6-one (284)

Physical state: Pale yellow solid

Yield: 0.040 g (72% Yield)


M.P: 161-163 °C (Lit. 103b 161.2-162.9 °C)

¹H NMR (400 MHz, CDCl₃): δ 8.78 (d, J = 5.0 Hz, 1H), 8.60 (d, J = 8.2 Hz, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.98 (d, J = 9.8 Hz, 1H), 7.89 (d, J = 5.0 Hz, 1H), 7.68-7.64 (m, 1H), 7.48 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 9.7 Hz, 1H).

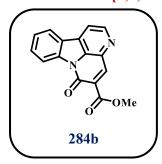
¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3, 145.7, 139.5, 136.3, 132.1, 130.6, 130.1, 128.8, 125.4, 124.4, 122.4, 117.2, 116.0.

HRMS (ESI-TOF) Calcd for $C_{14}H_8N_2O$ [M+H]⁺ 221.0710, found: 221.0687.

Methyl-6-oxo-6*H*-indolo[3,2,1-*de*][1,5]naphthyridine-2-carboxylate (284a)

Physical state: Pale yellow solid

Yield: 0.043 g (62% Yield)


M.P: 248-250 °C (Lit. 103c 249-250 °C)

¹H NMR (500 MHz, CDCl₃): δ 8.88 (s, 1H), 8.68 (d, J = 8.2 Hz, 1H), 8.19-8.16 (m, 2H), 7.78-7.75 (m, 1H), 7.60-7.57 (m, 2H), 7.05 (d, J = 9.8 Hz, 1H), 4.14 (s, 3H).

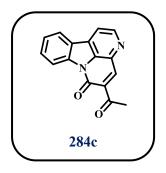
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 165.6, 159.3, 144.2, 139.8, 139.6, 135.7, 133.4, 131.4, 130.9, 129.9, 126.0, 124.1, 122.9, 118.5, 117.3, 53.3.

HRMS (ESI-TOF) Calcd for $C_{16}H_{10}N_2O_3$ [M+H]⁺ 279.0764, found: 279.0767.

Methyl-6-oxo-6*H*-indolo[3,2,1-*de*][1,5]naphthyridine-5-carboxylate (284b)

Physical state: Pale yellow solid

Yield: 0.032 g (46% Yield)


M.P: 186-188 °C (Lit. 107 184 °C)

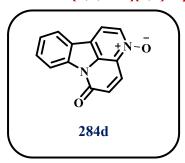
¹H NMR (500 MHz, CDCl₃): δ 8.87 (d, J = 4.9 Hz, 1H), 8.66 (s, 1H), 8.63 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 7.7 Hz, 1H), 7.98 (d, J = 4.9 Hz, 1H), 7.70-7.66 (m, 1H), 7.52-7.49 (m, 1H), 4.04 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.5, 156.2, 146.8, 143.9, 139.4, 134.1, 133.2, 131.3, 130.3, 129.6, 126.0, 124.1, 122.8, 117.9, 117.5, 53.0.

HRMS (ESI-TOF) Calcd for $C_{16}H_{10}N_2O_3$ [M+H]⁺ 279.0764, found: 279.0783.

5-Acetyl-6*H*-indolo[3,2,1-*de*][1,5]naphthyridine-6-one (284c)

Physical state: Pale yellow solid


Yield: 0.024 g (43% Yield)

¹H NMR (500 MHz, CDCl₃): δ 8.93 (d, J = 4.8 Hz, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.68 (s, 1H), 8.15 (d, J = 7.7 Hz, 1H), 8.05 (d, J = 4.8 Hz, 1H), 7.78-7.75 (m, 1H), 7.58 (t, J = 7.5 Hz, 1H), 2.86 (s, 3H).

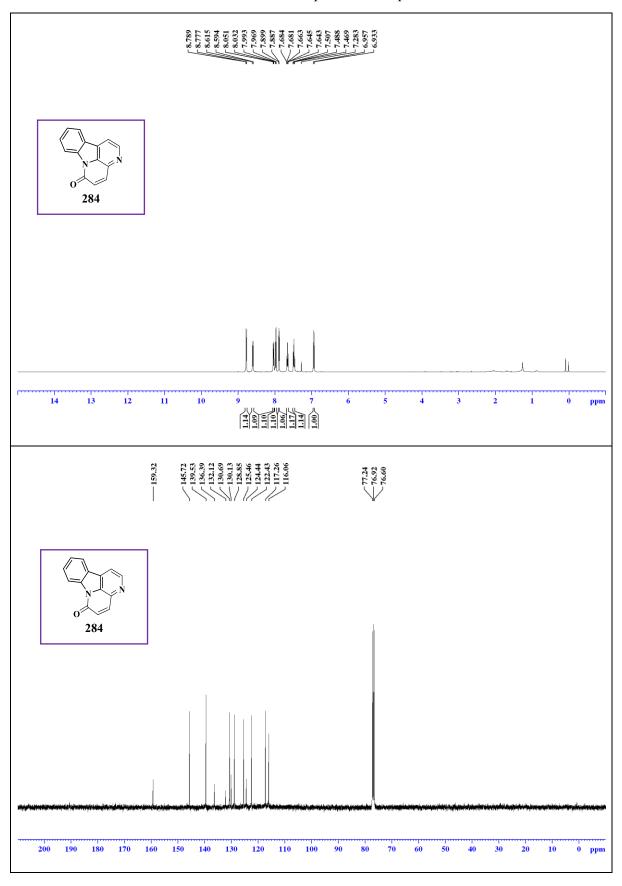
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 197.1, 158.2, 147.0, 142.7, 139.6, 136.8, 134.6, 133.6, 131.3, 130.4, 126.1, 124.5, 122.9, 117.8, 117.5, 30.8.

HRMS (ESI-TOF) Calcd for $C_{16}H_{10}N_2O_2$ [M+H]⁺ 263.0815, found: 263.0802.

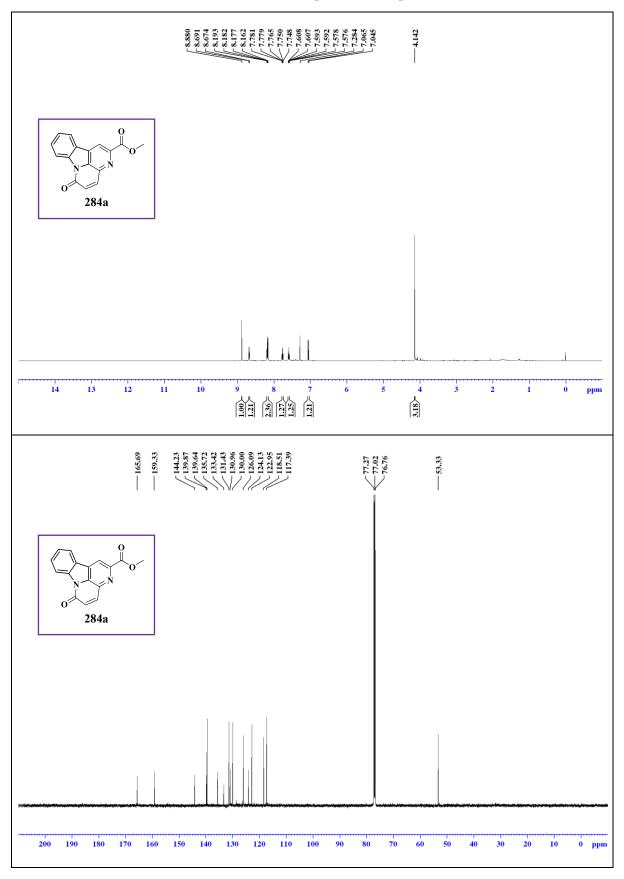
6-Oxo-6*H*-indolo[3,2,1-*de*][1,5]naphthyridine-3-oxide (or) Canthinone *N*-oxide (284d)

Physical state: Pale yellow solid

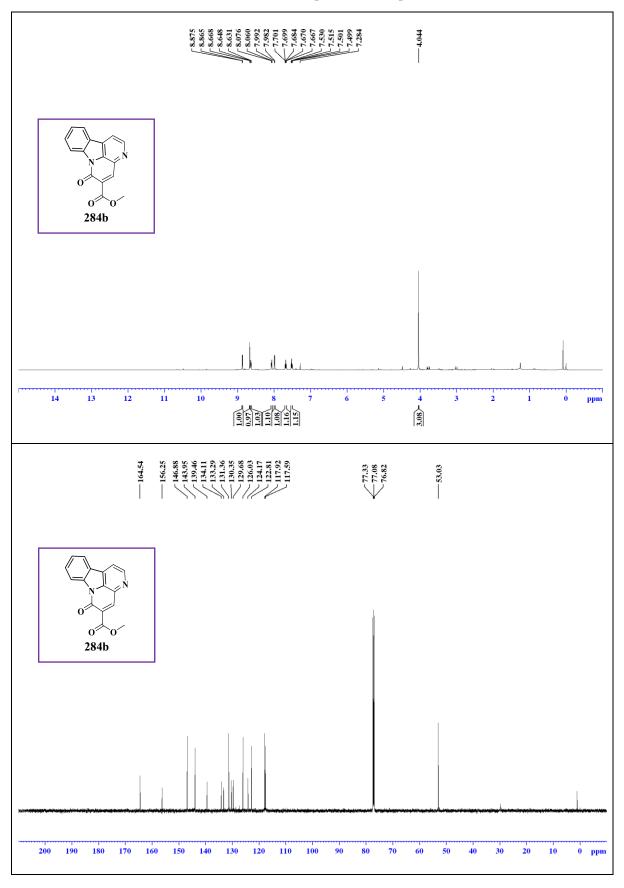
Yield: 0.040 g (76% Yield)

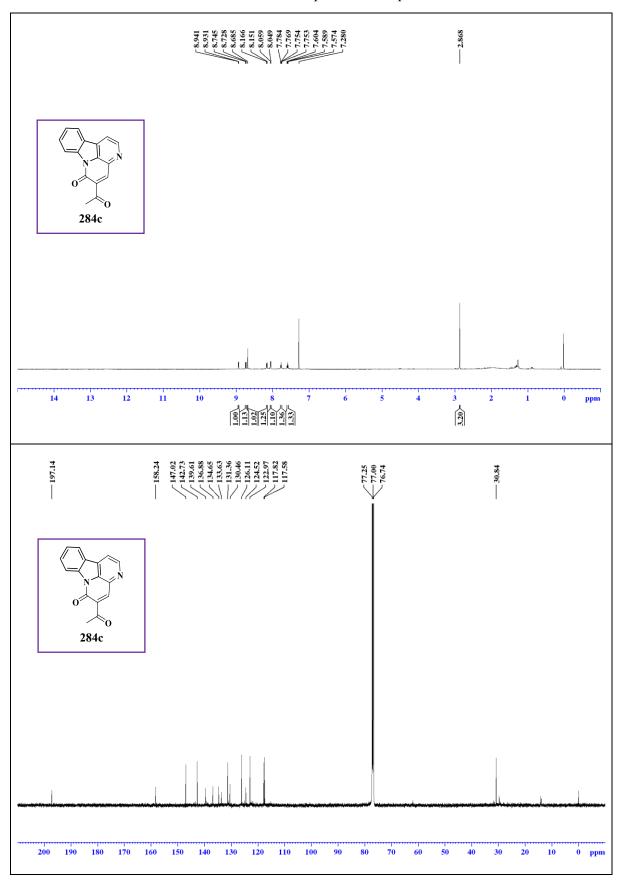

M.P: 243-245 °C (Lit. 103d 243-245 °C)

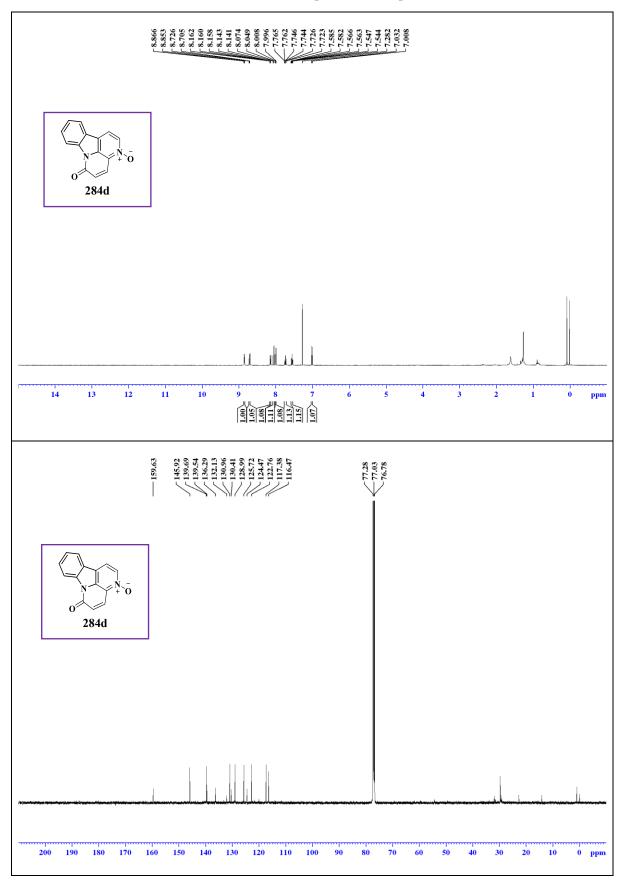
¹H NMR (400 MHz, CDCl₃): δ 8.85 (d, J = 5.0 Hz, 1H), 8.71 (d, J = 8.2 Hz, 1H), 8.16-8.14 (m, 1H), 8.06 (d, J = 9.8 Hz, 1H), 8.00 (d, J = 5.0 Hz, 1H), 7.76-7.72 (m, 1H), 7.58-7.54 (m, 1H), 7.02 (d, J = 9.8 Hz, 1H).


¹³C{¹**H**} NMR (125 MHz, CDCl₃): δ 159.6, 145.9, 139.6, 139.5, 136.2, 132.1, 130.9, 130.4, 128.9, 125.7, 124.4, 122.7, 117.3, 116.4.

HRMS (**ESI-TOF**) Calcd for $C_{14}H_8N_2O_2$ [M+H]⁺ 237.0659, found: 237.0659.


 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound 284


 $^1\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound 284a


¹H and ¹³C NMR Spectra of Compound **284b**

 $^{1}\mbox{H}$ and $^{13}\mbox{C}$ NMR Spectra of Compound 284c

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Compound **284d**

3.5 References:

- 100) Haynes, H. F.; Nelson, E. R.; Price, J. R. Aust. J. Sci. Res. Ser. A, 1952, 5, 387-400.
- 101) (a) Dai, J.; Li, N.; Wang, J.; Schneider, U, *Molecules*, **2016**, *21*, 493. (b) Showalter, H. D. H. *J. Nat. Prod.*, **2013**, *76*, 455-467.
- 102) (a) Rosenkranz, H. J.; Botyos, G.; Schmid, H. *Justus Liebigs Ann. Chem.*, **1966**, *691*, 159-164. (b) Soriano-Agatón, F.; Lagoutte, D.; Poupon, E.; Roblot, F.; Fournet, A.; Gantier, J.C.; Hocquemiller, R. *J. Nat. Prod.*, **2005**, *68*, 1581-1587. (c) Torrejón, G. C-.; Mackiewicz, N.; Manrique, R. P. V-.; Fournet, A.; Figadère, B.; Nicolas, J.; Poupon, E. *Eur. J. Org. Chem.*, **2013**, *2013*, 5821-5828.
- 103) (a) Mitscher, L.; Shipchandler, M.; Showaleter, H.; Bathala, M. *Heterocycles*, **1975**, *3*, 7-14. (b) Czerwinski, K. M.; Zificsak, C. A.; Stevens, J.; Oberbeck, M.; Randlett, C.; King, M.; Mennen, S. *Synth. Commun.*, **2003**, *33*, 1225-1231. (c) Cain, M.; Campos, O.; Guzman, F.; Cook, J. M. *J. Am. Chem. Soc.*, **1983**, *105*, 913-918. (d) Dai, J. -K.; Dan, W. -J.; Li, N.; Du, H. -T.; Zhang, J. -W.; Wang, J. -R. *Bioorg. Med. Chem. Lett.*, **2016**, *26*, 580-583.
- 104) (a) Benson, S. C.; Li, J. H.; Snyder, J. K. J. Org. Chem., 1992, 57, 5285-5287. (b) Li, J. H.; Snyder, J. K. Tetrahedron Lett., 1994, 35, 1485-1488. (c) Lindsley, C. W.; Wisnoski, D. D.; Wang, Y.; Leister, W. H.; Zhao, Z. A. Tetrahedron Lett., 2003, 44, 4495-4498.
- 105) (a) Suzuki, H.; Adachi, M.; Ebihara, Y.; Gyoutoku, H.; Furuya, H.; Murakami, Y.; Okuno, H. *Synthesis*, **2005**, *1*, 28-32. (b) Takasu, K.; Shimogama, T.; Saiin, C.; Kim, H. -S.; Wataya, Y.; Brun, R.; Ihara, M. *Chem. Pharm. Bull.*, **2005**, *53*, 653-661.
- 106) (a) Giudice, M. R. D.; Gatta, F.; Settimj, G. *J. Heterocycl. Chem.*, **1990**, *27*, 967-973. (b) Brahmbhatt, K. G.; Ahmed, N.; Sabde, S.; Mitra, D.; Singh, I. P.; Bhutani, K. K. *Bioorg. Med. Chem. Lett.*, **2010**, *20*, 4416-4419.
- 107) Röbler, U.; Blechert, S.; Steckhan, E. *Tetrahedron Lett.*, **1999**, 40, 7075-7078.
- 108) (a) Gollner, A.; Koutentis, P. A. *Org. Lett.*, **2010**, *12*, 1352-1355. (b) Ioannidou, H. A.; Martin, A.; Gollner, A.; Koutentis, P. A. *J. Org. Chem.*, **2011**, *76*, 5113-5122.

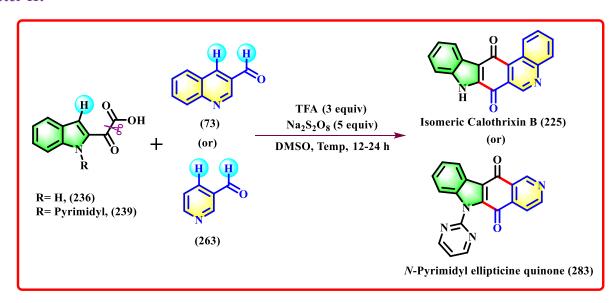
CONCLUDING REMARKS

In this thesis we have developed transition metal-free decarboxylative formylation/acylation of indole-based alkaloids. We have successfully accomplished **Pityriacitrin**, **Isomeric calothrixin B**, *N*-**Pyrimidyl ellipticine quinone** and **Canthin-6-one** alkaloids.

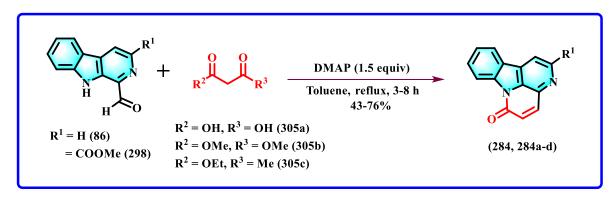
Chapter-I (A): We have developed transition metal free direct decarboxylative cross coupling of α -oxo/ketoacids for formylation of indoles and acylation of β -carbolines with $(NH_4)_2S_2O_8/DMSO$. This reaction proceeds smoothly between ambient temperature and 40 °C under mild reaction conditions with commercially accessible starting precursors. This methodology was applied to the synthesis of biologically active natural product pityriacitrins and formal synthesis of eudistomins $Y_1\&Y_3$, marinacarbolines A-D.

Chapter-I (B): We reported a transition metal- and oxidant-free Photochemical decarboxylative formylation of indoles was developed. This protocol enabled the direct C-H functionalization of indoles with 50% aq. Glyoxylic acid solution as a formyl synthon under environmentally favourable conditions with good to moderate yields. This method would be attractive and alternative method to access biologically important molecules.

Chapter-II: An efficient metal-free synthesis of isomeric calothrixin B and *N*-pyrimidyl ellipticine quinone involving decarboxylative cross-coupling method is reported. This methodology can able to construct carbazolequinone frame work in a single step with moderate to low yields.


Chapter-III: We have synthesized biologically active β -carboline alkaloid canthin-6-one and its analogues starting from β -carboline-1-carboxaldehyde treatment with commercially available starting precursors under the DMAP mediated condensation followed by cyclization in a single step with good to moderate yields.

GRAPHICAL ABSTRACTS


Chapter I (A):

Chapter I (B):

Chapter II:

Chapter III:

Metal-free Decarboxylative Method for the Synthesis of Indole Alkaloids and Synthesis of Canthinones via Knoevenagel Condensation

by Votarikari Dinesh

UNIVERSITY OF HYDERABAD
Central University P.O.
HYDERABAD-500 046.

Librarian

Submission date: 17-Jul-2023 04:50PM (UTC+0530)

Submission ID: 2132523944

File name: VOTARIKARI_DINESH.pdf (740.7K)

Word count: 9907 Character count: 61507 Metal-free Decarboxylative Method for the Synthesis of Indole Alkaloids and Synthesis of Canthinones via Knoevenagel Condensation

ORIGINALITY REPORT STUDENT PAPERS PUBLICATIONS SIMILARITY INDEX INTERNET SOURCES PRIMARY SOURCES Votarikari Dinesh, Rajagopal Nagarajan. " (NH) S O -Mediated Metal-Free Decarboxylative Formylation/Acylation of α-Oxo/Ketoacids and Its Application to the Synthesis of Indole Alkaloids ", The Journal of Organic Chemistry, School of Chemistry University of Hyderabad 2022 Hyderabad - 500 046-Publication Votarikari Dinesh, Rajagopal Nagarajan. "Photochemical Decarboxylative Formylation of Indoles with Aqueous Glyoxylic Acid", Own P DR. 5 Synlett, 2022 Publication School of Chemistry Filipe Penteado, Eric F. Lopes, Diego Alves, 3 Gelson Perin, Raquel G. Jacob, Eder J. Lenardão. "α-Keto Acids: Acylating Agents in Organic Synthesis", Chemical Reviews, 2019 Publication H. D. Hollis Showalter. "Progress in the <1% Synthesis of Canthine Alkaloids and Ring-

Truncated Congeners", Journal of Natural Products, 2013

5	pubs.rsc.org Internet Source	<1%
6	Arndt W. Schmidt, Kethiri R. Reddy, Hans- Joachim Knölker. "Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids", Chemical Reviews, 2012	<1%
7	www.thieme-connect.de Internet Source	<1%
8	www.pherobase.com Internet Source	<1%
9	Majid M. Heravi, Neda Abedian - Dehaghani, Vahideh Zadsirjan, Yalda Rangraz. "Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids", ChemistrySelect, 2021	<1%
10	www.karger.com Internet Source	<1%
11	wap.guidechem.com Internet Source	<1%
12	Ganapathy Ranjani, Rajagopal Nagarajan. " Metal-Free C–H Functionalization and Aromatization Sequence for the Synthesis of	<1%

1-(Indol-3-yl)carbazoles and Total Synthesis of 7-Bromo-1-(6-bromo-1 -indol-3-yl)-9 -carbazole ", Organic Letters, 2019

- Hans-Joachim Knölker, Kethiri R. Reddy.
 "Isolation and Synthesis of Biologically Active
 Carbazole Alkaloids", Chemical Reviews, 2002
- <1%

<1%

Joaquim A. M. Castro, Bruno K. Serikava,
Christian R. S. Maior, Fabrício F. Naciuk et al.
"Regioselection Switch in Nucleophilic
Addition to Isoquinolinequinones: Mechanism
and Origin of the Regioselectivity in the Total
Synthesis of Ellipticine", The Journal of
Organic Chemistry, 2022
Publication

Exclude quotes

On

Exclude matches

< 14 words

Exclude bibliography On

Professor School of Chemistry University of Hyderabad Hyderabad - 500 046.

171