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1.1 Cancer:  
Cancer is a comprehensive term encompassing a range of diseases characterized by abnormal 

cell growth and proliferation, resulting in the disregard of normal mechanisms governing cell 

division and differentiation (Hejmadi M. 2019). Unlike healthy cells, which respond to 

regulatory signals that control their functions and fate, cancer cells acquire autonomy from 

these signals, evading processes of cell death and senescence. Cancer can arise in any tissue or 

organ of the body and can invade adjacent structures, leading to local damage and 

inflammation. Moreover, cancer cells can detach from the primary tumor and disseminate to 

distant sites through the blood and lymphatic vessels, forming secondary tumors (metastases) 

that compromise the functions of vital organs and systems. The ability to spread and colonize 

different parts of the body is a major factor that renders cancer a life-threatening condition. 

One of the hallmarks of cancer is the loss of cellular differentiation, the process by which 

normal cells acquire specialized functions and structures according to their tissue type. 

Differentiated cells perform specific roles that are essential for maintaining homeostasis and 

adapting to environmental stimuli. For instance, muscle cells enable various types of 

movements, such as skeletal muscle contraction, cardiac muscle pumping, and smooth muscle 

peristalsis. Another example is alveolar epithelial cells, which facilitate gas exchange between 

the air and blood in the lungs. However, cancer cells originating from these tissues lose their 

functional abilities and become more immature and unspecialized. This allows them to evade 

the normal regulatory mechanisms that control cell growth and division. As a result, cancer 

cells proliferate uncontrollably and invade other tissues, disrupting their normal functions and 

causing disease. 

1.2 Types of cancers: 
The classification of cancer types depends on the origin and differentiation of malignant cells. 

Some of the major categories of cancer are carcinoma, which originates from epithelial cells 

that line the skin, organs, and glands; lymphoma, which arises from lymphocytes, a type of 

white blood cell that is part of the immune system; leukemia, that affects the blood-forming 

cells in the bone marrow; brain and spinal cord tumors, which develop from the cells of the 
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central nervous system; and sarcoma, which is derived from connective tissue, such as bone, 

cartilage, muscle, and fat. 

Carcinoma is the most prevalent type of cancer in humans, affecting organs such as the lungs, 

breast, prostate, colon, rectum, and pancreas. Carcinoma cells can either spread to other parts 

of the body (metastasis) or remain within the original site (in situ). They can be classified into 

three types based on the degree of invasion: carcinoma in situ, invasive, and metastatic. 

Carcinoma in situ is a stage of cancer in which abnormal cells are confined to their origin and 

do not invade other tissues. Invasive carcinoma is a stage in which abnormal cells break through 

tissue boundaries and invade adjacent tissues. Metastatic carcinoma is a stage in which 

abnormal cells spread from the primary site to distant tissues/organs through the bloodstream 

or the lymphatic system. 

Depending on their source and location, epithelial cells can develop into various carcinomas. 

Some examples are basal cell, squamous cell, renal cell, ductal carcinoma in situ (DCIS), and 

invasive ductal carcinoma (IDC). These cancers affect different epithelial tissues in the skin, 

organs, and glands. Adenocarcinoma originates from glandular cells that produce mucus or 

other substances. It can affect many organs, such as the esophagus, lungs, breast, pancreas, 

prostate, colon and rectum. Adenocarcinoma can grow locally or spread to distant sites. 

1.3 Cervical cancer: 
Cervical cancer (CC) is a prevalent malignancy that affects women globally. According to the 

age-adjusted rates from 2015 to 2019, the annual incidence and mortality of CC were 7.8 and 

2.2 per 100,000 women, respectively. In 2020, an estimated 604,127 women were diagnosed 

with CC worldwide. India has a high burden of CC, with approximately 1,23,907 new cases 

and 77,348 deaths annually. However, these numbers may have been underestimated because 

of underdiagnosis and underreporting. The age-adjusted incidence rate of CC in India is 18 per 

100,000 women, with a cumulative risk of 2.01 percent (Sung et al., 2021). 

Moreover, CC is responsible for 17% of all cancer-related mortalities among Indian women 

aged 30-69 years. Cervical cancer prevalence rates declined by more than half between the 

mid-1970s and the mid-2000s after the enhanced screening programs, which can detect cervical 

changes before they become cancerous. In general, incidence rates were stable between 2009 
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and 2018. Despite the decline in mortality and incidence over the last three decades, CC 

remains a significant public health challenge in India. 

The most important etiological factor for CC is persistent infection with high-risk human 

papillomavirus (HPV) types, which are responsible for more than 90% of CC cases worldwide. 

However, HPV infection alone is not sufficient to induce malignant transformation and 

progression of CC. The interplay of various genetic and epigenetic alterations in both the 

coding and non-coding regions of the genome influences the development and outcome of CC. 

Patients with cervical cancer often have poor prognosis due to tumor metastasis and recurrence. 

Current treatments, such as surgical resection and chemotherapy, are ineffective. Despite 

advances in understanding the molecular mechanisms of CC, they have not been translated into 

clinical practice. Thus, it is essential to elucidate the molecular mechanisms involved in CC 

development and to devise novel therapeutic strategies. One of the molecular mechanisms that 

has attracted attention is the regulatory role of non-coding RNAs (ncRNAs) in cancer. 

1.4 Non-coding RNAs 
Non-coding RNAs (ncRNAs) do not encode proteins but play essential roles in regulating 

various biological processes (Li et al., 2021; Huang et al., 2021 & Fu et al., 2014). Advances 

in next-generation sequencing (NGS) have enabled researchers to explore the complex 

transcriptional landscape of tissues and uncover ncRNAs' involvement in carcinogenesis and 

cancer progression. Cancer affects the expression of both coding and non-coding RNAs in the 

human genome, which accounts for 2% and 98% of the genome, respectively (Du & Che 2017; 

Derrien et al., 2012 & Mattick & Rinn 2015). These expression changes influence cellular 

functions that are regulated by various factors, such as epigenetic regulators, transcription 

factors, translation factors, and non-coding RNAs (Lee & Young, 2013). Non-coding RNAs 

such as miRNAs, lncRNAs, small non-coding RNAs, and pseudogenes are essential for 

regulating gene expression and modulating various cellular processes during development and 

disease. MicroRNAs (miRNAs) are a well-studied type of ncRNA that have potential 

applications as biomarkers in cancer (Rasool et al., 2016; Lin & He, 2017). On the other hand, 

lncRNAs are a relatively novel and distinct class of molecules that have important functions in 

cancer (Huarte, M. 2015). 
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LncRNAs can originate from various genomic locations and interact with other genes in 

different ways. Some lncRNAs are transcribed from enhancers, promoters, or introns of 

protein-coding genes. In contrast, others are antisense to protein-coding genes and can overlap 

with them to varying degrees (divergent, terminal, or nested). Additionally, some lncRNAs are 

derived from pseudogenes or contain one or more hairpins (small RNAs) within their 

transcripts (Kung et al., 2013). In both the nucleus and the cytosol, lncRNAs have various roles 

in regulating gene expression. In the nucleus, they modulate epigenetic modifications, 

transcriptional regulation, splicing events, enhancer activity, protein scaffolding, and 

chromosomal interactions (Sun et al., 2018; Batista & Chang, 2013). In the cytosol, they affect 

mRNA stability and translation efficiency (Rashid et al., 2016). Furthermore, lncRNAs can act 

as miRNA sponges or competing endogenous RNAs (Kallen et al., 2013; Yan et al., 2015; Ma 

et al., 2014). Moreover, some lncRNAs can be translated into small peptides (Bazzini et al., 

2014). 

Unlike protein-coding gene transcripts, which have a high degree of sequence conservation and 

expression across species, lncRNAs are characterized by low sequence conservation and 

expression levels. This reflects their diverse and context-specific roles in regulating various 

biological processes (Derrien et al., 2012). Moreover, lncRNAs exhibit strong tissue specificity 

and influence the transcriptional level alteration of chromatin biology and gene regulation. 

Although many lncRNAs have been discovered, only a few have been fully characterized. 

Contrary to the earlier assumption that lncRNAs are non-functional byproducts of transcription 

due to their low expression, evidence from the past five decades reveals that they play vital 

functions in regulation of cellular processes including carcinogenesis and metabolism (Ohno 

1972). Previous research has indicated that the development and progression of malignant 

tumors are influenced by long non-coding RNAs (lncRNAs). In cervical cancer, numerous 

lncRNAs are involved in diagnosing and suppressing metastasis through their expression 

levels. These lncRNAs have altered levels of expression in relation to the diagnosis and 

prognosis of treatment response. They can act as either oncogenes or tumor suppressors, 

making them significant players in cancer studies (Aalijahan & Ghorbian, 2019; Sun et al., 

2013). 
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MicroRNAs (miRNAs) is about 19 to 25 nucleotides long and mostly located in the cytoplasm. 

They controls gene expression by binding to specific sequences in the 3′ untranslated region 

(UTR) of mRNA. miRNAs can have both oncogenic and tumor suppressor functions and have 

been shown to play a crucial role in the initiation and progression of cervical cancer, as well as 

its metastasis (Wang & Chen 2019). LncRNAs and miRNAs can interact to form complexes, 

with lncRNAs primarily located in the nucleus and miRNAs in the cytoplasm. These 

interactions are essential for modulating the expression of oncogenes and tumor suppressors, 

influencing cancer initiation and progression. LncRNAs and miRNAs regulate gene expression 

by binding to mRNA. They have a reciprocal relationship, as they share common mRNA 

targets and their cross-regulation affects gene expression and metastasis. LncRNAs can act as 

ceRNAs, sequestering miRNAs and preventing them from degrading mRNAs, thereby 

enhancing translation (positive regulation). In contrast, miRNAs can bind to mRNAs and 

induce their decay, inhibiting translation (negative regulation) (Berti et al., 2021; Kung et al., 

2013). 

Our study focused on coding and non-coding RNAs, especially lncRNAs. We integrated the 

transcription profiles of these two types of RNAs from cervical cancer patient's data to 

understand their regulatory mechanisms. 

1.5 Gene prioritization 
Many studies have aimed to identify the genes and pathways responsible for cancer 

phenotypes. Gene prioritization is a technique that sorts genes based on their relevance and 

importance for a specific disease or phenotype. It helps to select a subset of genes from an 

extensive list of candidates that are most probably involved in the disease mechanism and that 

require further experimental validation. There are various techniques for gene prioritization, 

such as text mining, machine learning, network-based methods, and hybrid methods 

(Tranchevent et al., 2011; Kaushal et al., 2020; Azadifar and Ahmadi, 2022). These methods 

use different types of data and strategies to rank the candidate genes, such as functional 

similarity of sequences, protein-protein interaction networks, mutational profiles, gene 

ontology, disease ontology, human phenotype ontology, etc. 
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Based on the text-mining methods and data sources, the publicly available tools for gene 

prioritization or identification can be grouped into different categories. Some methods, such as 

POCUS, PROSPECTR, Gentrepid and PhenoPred, rely on structured data without text mining 

to prioritize genes. Other methods use text mining to extract relevant information from the 

literature or databases. These methods can be further classified into four categories: keyword 

searches, vector space models, ontology structures, and statistical text mining. Keyword search 

methods like GeneSeeker, Prioritizer, CANDID, PGMapper, GeneProspector, and MaxLink 

use simple queries to identify genes related to a phenotype or disease. Vector space model 

methods, such as G2D, SNPs3D, MimMiner, Endeavour, CAESAR, ToppGene, CIPHER, 

GeneDistiller, PRINCE, PolySearch, GeneWanderer and GPsy, represent genes and 

phenotypes as vectors in a multidimensional space and compute their similarity or distance. 

Ontology structure methods, such as Tiffin et al., SUSPECTS and MedSim, use the hierarchical 

structure of ontologies such as Gene Ontology or Human Phenotype Ontology to measure the 

semantic similarity between genes and phenotypes. Statistical text mining methods, such as 

GRAIL, Genie and MetaRanker, depends on advanced techniques such as machine learning, 

natural language processing or network analysis to identify associations between genes and 

phenotypes from large-scale text corpora (Luo et al., 2014). 

The functional similarity approach leverages the existing knowledge of known cancer genes to 

discover new genes that have similar sequences or functions. Several methods have been 

developed to compare protein sequences and to infer their functional similarities. Sequence 

similarity analysis can be categorized into two types: alignment-free and alignment-based 

methods. Alignment-free methods compare and analyze DNA or protein sequences without 

relying on conventional sequence alignment methods. They have several benefits, such as 

computational efficiency, scalability, and independence from prior knowledge of sequence 

similarities or homologies. They can also detect homologous regions, functional motifs, and 

phylogenetic relationships among sequences. Some of the extensively used alignment-free 

sequence analysis methods are as follows: 

k-mer frequency analysis: This technique counts the frequency of all possible k-mers 

(substrings of length k) in a sequence. The resulting k-mer frequency vectors can then be used 

to measure the similarity and diversity of sequences. 
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Composition-based methods use statistical analysis to examine the distribution of specific 

nucleotides or amino acids within a sequence. They can reveal the compositional features and 

evolutionary patterns of sequences.  

1.6 Biological networks  
Graphs or networks are mathematical representations of real-life systems, where the nodes and 

vertices represent entities and the edges represent the relationships among them. Edges can be 

either 'directed' or 'undirected,’ depending on whether they have a direction. Web networks, 

scientific collaboration networks, social networks, football game networks, and biomolecular 

interaction networks are some of the network types that have attracted a lot of research interest. 

For instance, a scientific collaboration network consists of authors as nodes, and edges that 

represent co-authorship of a research article between two nodes. In biology, various types of 

networks involve interactions between different biomolecules, such as protein-protein 

interaction networks, metabolic networks, gene regulatory networks, signaling networks, etc. 

Many genes and their regulators interact with each other in a gene regulatory network. A 

metabolic network has metabolites as nodes and biochemical reactions as edges that transform 

them. Signaling networks consist of molecules that are linked if they share the same signaling 

pathway. These networks have several intrinsic properties and applications in solving 

biological problems. 

Network approaches have been used to investigate prognostic value of genes based on their 

system-level properties in different types of cancer. Protein-protein interaction (PPI) networks 

capture the interrelated nature of biological processes (Milenkovic et al., 2010). PPI networks 

can help identify prognostic genes and drug targets in cancer and reveal novel cancer gene 

mechanisms (Amala & Emerson, 2019; Li et al., 2017). These genes tend to form modules 

within gene co-expression networks rather than being hub genes. This pattern is specific to 

each cancer type; however, some modules are conserved across various cancers (Yang et al., 

2014). lncRNAs are key regulators of gene regulation in cancer and exhibit a consistent pattern 

of regulation across different cancer types (Saleembhasha & Mishra 2019). These lncRNAs 

often correlate with key driver mutations, suggesting their potential roles in cancer progression 

(Ashouri et al., 2016). They play critical roles in oncogenesis, tumor metastasis, and tumor 
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suppression (Nie et al., 2012). lncRNAs affect gene expression by interacting with different 

molecular processes such as transcriptional, post-transcriptional, epigenetic and translational 

regulation (Sun et al., 2017). 

1.7 Network structural topological properties 
Various metrics, i.e., centrality measures, are used to define a node's importance based on its 

topological importance in a network. Some of the frequently used centrality measures are 

degree, betweenness and closeness. The figure below illustrates a graph G = (V, E), where V 

is the all vertices and E is the edges that connect them.  

  

 
Figure 1: Network/graph with nodes and edges. A) Graph G=(V, E), V has nodes A-G and E has edges between 

nodes. B) The node color, size, and node border thickness denote the nodes' degree, closeness and betweenness, 

respectively. 

 
Degree Centrality 
A node in a network has a degree as one of its basic attributes, which indicates how many 

connections the node shares with other nodes in the network. The degree centrality Cd (v) of 

vertex v in graph G = (V, E) can be written as 
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!!(#) =
deg(#)
() − 1) 

 

Where N is the number of vertices in G and deg(v) is the number of edges incident to v. In 

network analysis, a node with more connections with other nodes is called a “hub.” The number 

of connections that enter a node is called its “in-degree” and the number of connections that 

leave a node is called its “out-degree.” 

All real-world networks exhibit the 80/20 principle, which states that 80% of the results are 

due to 20% of the effort. In biology, this principle states that a few proteins (20%) perform 

most of the cell's functions (80%) and regulate most of the cellular processes. It is often applied 

to identify key nodes, such as hubs and bottlenecks, in biological networks (PPIN & Regulatory 

networks). 

Betweenness Centrality 
Betweenness centrality is a metric that shows how important a node is in a network. It counts 

how many shortest paths between other nodes include that node. A high betweenness centrality 

means the node connects different parts of the network and affects the information flow. 

The betweenness centrality of a node v is given by the expression: 

 

!"(#) =, -{$%}(()
-{$%}{$	+(	+%}

 

 

Where -st is the total number of shortest paths from node s to node t and -st (v) is the number 

of those paths that pass through v. A node that has the most shortest paths going through it is 

known as a “bottleneck” node. 

Closeness Centrality 
Closeness centrality measures how central a node is in a network. It is calculated as inverse of 

the total distance from that node to every other node. The closeness centrality increases as the 

node gets closer to all other nodes in the graph. It can be used to analyze the node’s efficiency, 

accessibility, or influence in a network.  
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The Closeness centrality of a node v can be represented as  

!,(#) =
1

Average distance from: node to all other =>?@A 

 
Clustering Coefficient 

A clustering coefficient quantifies how well the neighbors of a node tend to form clusters or 

groups. It is two types: global and local. The global clustering coefficient calculates the ratio 

of closed triplets (three nodes that are all connected) to the overall number of triplets in the 

network. The local clustering coefficient calculates the fraction of possible connections among 

the neighbors of a node that are actually present. Both coefficients range from 0 to 1, where 0 

means no clustering and 1 means perfect clustering. 

It is computed by dividing the number of actual links among the neighbors by the number of 

potential links that could exist between them. The formula for the clustering coefficient of a 

node i is: 

 

!-(#) = 	
2D-

E- ∗ 	(E- − 	1)
 

 

Where D- is the number of links between the neighbors of node i and E- is the degree of node i 

(the number of neighbors it has). 

Average degree 
The network's average degree is the sum of all node degrees divided by the node count. It can 

be calculated as 

< !! >	=
1
), !!(()

!
 

 

Where N represents the overall number of nodes and Cd (v) represents the node degree v in the 

network.  

Average clustering coefficient 
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A network's average clustering coefficient is the average value of the clustering coefficients 

for each node in the network and indicates the network the modularity. It is given as  

 

< !- >	=
1
), !-(()

-
 

 

Where, N represents the overall number of nodes and Ci (v) represents the clustering coefficient 

of the node v  in the network. 

Average path length 
The average path length is computed by finding the shortest distance between every pair of 

nodes and then taking the mean of those distances. 

It is denoted as  

:IJ =, -{$%}(()
) − 1{.	+(	+%}

 

Where N is the overall number of nodes in the network, -st is the total number of shortest 

paths from node s to node t and -st (v) is the number of those paths that pass through v. 

Degree distribution 
The degree distribution of a network is the fraction of nodes that have a certain degree 'k', 

which is the number of connections or edges that a node has (Barabási & Oltvai 2004). The 

degree distribution reveals the structure and properties of a network, such as its robustness, 

resilience, and efficiency. 

The degree distribution of all real-world networks obeys a power law, meaning that most nodes 

have a low degree, but there are some nodes with very high degree, called hubs. These hubs 

are important for the connectivity and robustness of the network, as they link many other nodes 

together. A power law degree distribution can be written as: 

 

K(E)~	!E/0 

 

Where C is a normalization constant that ensures that the sum of P(k) over all possible values 

of k is equal to 1. 
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1.8 Datasets  
In this work, multiple datasets were analyzed to prioritize and identify candidate genes 

associated with cervical cancer. One of the datasets was TCGA-CESC (The Cancer Genome 

Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma), which contains 

gene expression quantification data of 303 cervical cancer patients as well as 3 adjacent normal 

tissues. Another dataset, GTEx (Genotype-Tissue Expression), contains gene expression 

counts from 19 normal cervical tissues (Ectodermal & Endodermal) from healthy donors. 

GTEx dataset was used to compare the gene expression patterns of normal and cancerous 

samples and to identify differentially expressed genes. Additionally, I used NCG6.0 (Network 

of Cancer Genes), which contains both cancer driver and candidate cancer genes, and CCDB 

(Cervical Cancer Gene Database), which has cervical cancer genes identified and predicted 

with experimental and computational techniques. 

 

1.9 Objectives of the present study 
Based on the background and available literature, we aimed to prioritize and identify the key 

molecular players involved in the tumour progression of cervical squamous cell carcinoma. 

The specific objectives of our study were as follows. 

Objective 1: To prioritize candidate genes through the Moment of inertia tensor 

Objective 2: To integrate chaos game representation and MF-X-DFA to prioritize candidate 

genes 

Objective 3: To identify key genes and pathways through protein-protein interaction networks 

Objective 4: To identify regulatory elements related to cervical cancer progression 

through integrative networks 



 
 
 
 
 
 
 
 
 
 
 
 

    Chapter 2 

Prioritization of candidate genes using the 
moment of inertia tensor 
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2.1 Introduction  

Candidate gene prioritization involves ranking genes by their relevance to the biological 

processes of interest and select the most promising ones for further analysis. With 

breakthroughs in molecular procedures, sequencing technologies, bioinformatics tools and 

algorithms, understanding the underlying molecular pathways has improved significantly. This 

has resulted in the identification of numerous cancer genes and ncRNAs. These molecular 

entities involved in various cellular processes and pathways (Qin et al., 2019; Burk et al., 2017; 

Wei et al., 2020; Yang et al., 2021; Yuan et al., 2020 & Hindumathi et al., 2014). 

Several methods were used to prioritize candidate genes, including ENDEAVOUR, G2D, 

SUSPECTS, GFSST, and POCUS (Adie et al., 2006; Turner et al., 2021; Perez-Iratxeta et al., 

2005; Zhang et al., 2006 & Aerts et al., 2006). As different methods give a set of genes as 

candidates and validation of these genes becomes extremely costly, resources can’t be devoted 

to this vast number of candidate genes (Zhang et al., 2020). Unfortunately, the accumulated 

data on candidate genes for cancer is becoming redundant, as there are a minimal number of 

bioinformatics tools available for prioritizing the candidate genes for cancers, especially 

cervical cancer. Therefore, it is imperative to employ a bioinformatic method to prune and 

prioritize genes for further evaluation. 

Various methods have been developed to analyze the sequence similarity between protein 

sequences to understand the functional similarity of the proteins (Randic et al., 2006; Bai & 

Wang, 2006; Randic et al., 2008; Li et al., 2008; Wen et al., 2009; Li et al., 2009; Liao et al., 2010; 

Ghosh & Nandy 2011; He et al., 2012 & Tyanova et al., 2018). However, compared to alignment-

based methods, alignment-free methods offer more advantages in terms of computational 

efficiency and accuracy (Zielezinski et al., 2017). Recently, Piotr Wąż and Bielińska-Wąż 

developed a technique using the concept of moment of inertia tensor for similarity analysis of 

DNA sequences (Wąż and Bielińska-Wąż 2013). Later, Hou et al. introduced a method that 

applies the same idea of tensor to measure the sequence similarity between proteins (Hou et al., 

2016). The moment of the inertia tensor describes how an object’s mass is distributed relative 

to all three of its rotational axes. It is an alignment-free method that is fast, efficient, and reliable 

for comparing sequence similarities.  
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In this study, we focused on prioritizing candidate cancer genes through sequence similarity 

analysis between known cervical cancer genes (KCCs) and candidate cervical cancer genes 

(CCCs) using the concept of the moment of inertia tensor. We further analyzed the GO terms 

for the prioritized CCCs to highlight their possible roles and provide information on the 

available drug entries. 

2.2 Materials and Methods 

2.2.1 Data Collection and pre-processing  
The list of genes that cause or are involved in cancer were collected from the Network of 

Cancer Genes (NCG6.0) database, a manually curated repository on systems-level properties 

of cancer. The gene list consists of 711 known cancer genes and 1661 candidate cancer genes, 

based on the approach they were identified in various cancer studies (Repana et al., 2019). In 

addition, we collected gene list datasets related to Cervical Cancer progression from the 

cervical cancer gene database (CCDB) (Agarwal et al., 2011). It is a manually curated catalog 

consisting of 537 genes involved in different stages of cervical carcinogenesis. By mapping the 

list of cervical cancer genes obtained from CCDB with the list of cancer genes present in 

NCG6.0, 128 genes were identified as common from both databases. Among these 128 genes, 

76 were identified as known cancer genes and 52 as candidate cancer genes.  Furthermore, 

these 128 genes were investigated for their association with cervical cancer in DisGeNET (a 

database of gene-disease associations) and 82 genes were found to have experimentally 

validated evidence associated with cervical cancer (Piñero et al., 2019). Therefore, 82 genes are 

considered as known cervical cancer (KCC) genes and the remaining 46 as candidate cervical 

cancer (CCC) genes.  

We retrieved the protein sequences of 128 cervical cancer genes from the UniProt database 

using the biomaRt library in R. Furthermore, we curated the sequences using the BioStrings 

library on the R platform to their canonical sequences in the FASTA format (Durinck et al., 

2009 & Pagès et al., 2017).  

2.2.2 Construction of protein sequences as a 3D model:  
Naturally occurring proteins are composed of a polymer chain of amino acids. Twenty standard 

amino acids determine protein functions. Recently, Hou et al. visualized protein sequences as 
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a 3D model using a graphical representation approach (Hou et al., 2016). Their approach used 

the physicochemical attributes of amino acids, such as hydrophobicity and molecular mass as 

descriptors. This concept is used in the present study. 

Based on their hydrophobicity, the amino acids were split into two groups: hydrophobic amino 

acids HY= [A, C, F, I, L, M, P, V, W, Y] and hydrophilic amino acids HP = [D, E, G, H, K, N, 

Q, R, S, T]. Each group was further divided into two groups based on their strengths: strong 

hydrophilic amino acids SP = [D, K, N, R, S]; weak hydrophilic amino acids WP = [E, G, H, 

Q, T]; strong hydrophobic amino acids SH = [F, I, L, W, Y]; and weak hydrophobic amino 

acids = [A, C, M, P, V]. A circle of unit radius was divided into four quadrants, with amino 

acids distributed along the circumference. The first two quadrants contain hydrophobic amino 

acids, while the other two quadrants contain hydrophilic amino acids. The sequence of amino 

acids in each quadrant was based on the alphabetical order of their abbreviated names. Each 

amino acid was given a coordinate represented as xi = cos (2πi/20), yi = sin(2πi/20), where i = 

1, 2 . . . 20. The relative residue weight of the respective amino acids was attributed to the z-

axis coordinate. The heavier amino acids are given +1, and smaller amino acids are given -1 

for z-coordinates, as in Table 1.  

Table 1: List of amino acids with residue weights and X, Y, and Z-axis coordinates.  

 Amino acid Symbol Residue wt. X Y Z 

Quadrant 1 

Weak Hydrophobic 

Alanine  A 71.8 0.9511 0.3090 -1 

Cysteine C 103.14 0.8090 0.5878 -1 

Methionine M 131.19 0.5878 0.8090 1 

Proline P 97.12 0.3090 0.9511 -1 

Valine  V 99.13 0.0000 1.0000 -1 

Quadrant 2 
Strong Hydrophobic  

Phenylalanine  F 147.17 -0.3090 0.9511 1 

Isoleucine  I 113.16 -0.5878 0.8090 -1 

Leucine  L 113.16 -0.8090 0.5878 1 

Tryptophan  W 186.21 -0.9511 0.3090 1 

Tyrosine  Y 163.18 -1.0000 0.0000 1 

Quadrant 3 

Strong  

Aspartic acid D 115.09 -0.9511 -0.3090 1 

Lysine  K 128.17 -0.8090 -0.5878 1 



C
ha

pt
er
	2
:	P

ri
or
it
iz
at
io
n	
of
	c
an

di
da

te
	g
en

es
	u
si
ng

	th
e	
m
om

en
t	o

f	i
ne

rt
ia
	te

ns
or

 

 
 

18 

Hydrophilic 

 

Asparagine N 114.1 -0.5878 -0.8090 -1 

Arginine  R 156.19 -0.3090 -0.9511 1 

Serine  S 87.08 0.0000 -1.0000 -1 

Quadrant 4 

Weak  

Hydrophilic 

Glutamic acid E 129.12 0.3090 -0.9511 1 

Glycine  G 57.05 0.5878 -0.8090 -1 

Histidine  H 137.14 0.8090 -0.5878 1 

Glutamine  Q 128.13 0.9511 -0.3090 1 

Threonine  T 101.11 1.0000 0.0000 -1 

Using the coordinates of each amino acid, a 3D model for all the genes (both KCC and CCC 

genes) was created by applying the moment of inertia tensor concept considering the mass 

m=1. The amino acids represent 3-D Cartesian coordinates, and the center of mass of the 

Cartesian coordinate system is defined as µ" = ∑!"!#!
∑"!

, µ% = ∑!"!$!
∑"!

, µ& = ∑!"!%!
∑"!

 

Where xi, yi, and zi are the mi coordinates. The tensor of moments of inertia is represented as a 

matrix. 

' = (
'"" −'"% −'"&
−'%" '%% −'%&
−'&" −'&% '&&

* 

The elements of the matrix are 

 '## = ∑ ,&& -.%&'/
( + .&&'/

(1 ; '$$ = ∑ ,&& -."&'/
( + .&&'/

(1 ; '%% = ∑ ,&& -."&'/
( +

.%&'/
(1; 

'#$ = '$# = ∑ ,&& "&'%&'; 

'$% = '%$ = ∑ ,&& %&'&&'; 

'#% = '%# = ∑ ,&& %&'&&'. 

Where "&', %&', &&' denote the coordinates of mi of a Cartesian coordinate system. The centre of 

the mass was considered to be the origin. The Eigenvalues of the matrix I are calculated, which 
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are labeled as 3), 3(, 3*. To define a protein sequence, a vector is given as 4⃗(,) = 3), 3(, 3* and 

the similarity is obtained by the Euclidean distance D between the two protein sequences (P1, 

P2). It is represented as 6(8)8() = ‖4⃗8) − 4⃗8(‖2. This indicates that the distance and 

similarity are inversely proportional. 

2.3 Results 

2.3.1 Categorization of cervical cancer genes  

All KCC and CCC genes were grouped based on the experimental observation viz. 

upregulated/overexpressed, downregulated, post-translational modifications (methylation, 

mutation, amplification, and polymorphism), and unclassified as reported in the CCDB. Of the 

82 KCC genes, 20 were upregulated, 11 were downregulated, 17 were post-translationally 

modified, and 9 were unclassified. However, some genes fall into multiple categories. 

Similarly, of the 46 CCC genes, 21 were upregulated, 9 were downregulated, 5 were post-

translationally modified, and 9 were unclassified. This categorization is represented by the 

Venn diagrams in Figure 1. 

 

Figure 1: Classification of the proteins based on the experimental observation in known 

cervical cancer (KCC) genes group and candidate cervical cancer (CCC) genes 
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2.3.2 Tensor analysis on KCC and CCC proteins 
We analyzed the similarity between KCC and CCC proteins using the tensor for the moment 

of inertia. The largest eigenvalue of the moment of inertia matrix for each protein sequence 

was considered to calculate the Euclidean distance between any two protein sequences. The 

resulting distance matrix ranged from 6.133934 to 9834.095, from which we constructed a 

dendrogram (Figure 2).  

 
Figure 2: Dendrogram of known and candidate genes belong to cervical cancers 
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The maximum distance (least similarity) between HUWE1 and S100A7 was observed. Using 

the distance matrix, we prioritized CCC proteins that showed 1% or less distance (99% 

similarity or more) from KCC proteins with respect to the maximum distant (least similar) 

proteins. All CCC proteins except ASXL1, C3, CNOT1, COL1A1, DDIT3, DLC1, FLNA, 

HUWE1, MYH9, PDGFRA, and VWF showed 99% similarity with one or more KCC proteins 

with respect to the maximum distance (least similar) proteins. 

Furthermore, we considered proteins that showed similarity to more KCC proteins. In this 

study, we selected proteins that showed at least seven or more associations with KCC proteins 

(Table 2). 

Table 2: Prioritized candidate genes for cervical cancer 

S.No. Gene name Disease Drugs  Number of proteins 
with high similarity 

1 NRAS Colorectal cancer; 

Head and neck cancer; 

Mutant ras 

vaccine 

14 (CD28, CD83, 

CDKN1A, CDKN1B, 

CDKN2A, HMGB1, 

HRAS, IGF2, KRAS, 

MGMT, RRAS, 

SOCS1, TNF, VHL) 

2 GRB2 Acute myeloid 

leukaemia; 

Hematologic tumour; 

BP-100-1-01 13 (BCL2, CD28, 

CD83, CDKN1B, 

HMGB1, HRAS, 

IGF2, KRAS, MGMT, 

RRAS, SOCS1, TNF, 

VHL) 

3 BRAF Melanoma; Solid 

tumour/cancer 

Dabrafenib 7 (CTNNB1, EZH2, 

HSP90AA1, 

MLH1,STAT3, TFRC, 

TLR1) 
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4 CCND2 Not Available Not Available 7 (CCND1, CDK6, 

CTSS, FGF2, IL1A, 

MYOD1, SIX1) 

5 CCNE1 Retinoblastoma; PD-0183812 8 (E2F3, KRT13, 

MYC, NDRG1, PTEN, 

SKP2, STK11, TP53) 

6 RARA Alzheimer disease; 

Acute myeloid 

leukaemia; 

Tamibarotene 11 (AKT1, E2F3, FUS, 

KRT13, MDM2, 

MMP13, MYC, PTK6, 

SKP2, SMAD2, 

STK11) 

7 RUNX1 Not Available Not Available 9 (E2F3, KRT13, 

MYC, PTEN, PTK6, 

SKP2, SMAD2, 

STK11, TP53) 

8 PAIP1 Not Available Not Available 8 (ATK1, E2F3, FUS, 

MDM2, MMP13, 

PTK6, SMAD2, 

TGFBR1) 

9 KRT15 Not Available Not Available 9 (E2F3, KRT13, 

MMP13, MYC, PTEN, 

PTK6, SKP2, SMAD2, 

STK11) 

10 WT1 Acute myeloid 

leukaemia; Myeloid 

leukaemia; 

WT1-targeted 

autologous 

dendritic cell 

vaccine 

9 (E2F3, KRT13, 

MMP13, MYC, PTEN, 

PTK6, SKP2, SMAD2, 

STK11) 

11 MYCN Not Available Not Available 10 (AKT1, E2F3, FUS, 

KRT13, MDM2, 

MMP13, MYC, PTK6, 

SMAD2, STK11) 
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12 APOL2 Not Available Not Available 8 (CCND1, CDK6, 

CTSS, DEK, FANCF, 

FOXL2, MYOD1, 

SFRP4,) 

13 HSPB8 Not Available Not Available 14 (BCL2,   , CD83, 

CDKN1A, CDKN1B, 

HMGB1, HRAS, 

IGF2, KRAS, MGMT, 

RRAS, SOCS1, TNF, 

VHL) 

14 SLC7A6OS Not Available Not Available 7 (CCND1, CDK6, 

CTSS, FGF2, IL1A, 

MYOD1, SIX1) 

 

2.3. 3 Functional enrichment of prioritized proteins 
To target a protein, it is imperative to understand its biological processes, molecular functions, 

and cellular pathways. Functional enrichment analysis was performed using the clusterProfiler 

R package (Yu et al., 2012) for the KCC proteins and prioritized proteins separately to gain 

insight into the similarity in their functional niche. Statistical significance was set at p < 0.05, 

to enrich the gene ontology terms, such as biological processes, molecular functions, and 

KEGG pathways.  

Biological processes: All KCC proteins showed significance in cell cycles, either positively or 

negatively regulating several cell types, including epithelial cells, muscle cells, leukocytes, and 

lymphocytes. However, in CCC proteins, with the p-value adjusted to less than 0.05, only 

RARA and RUNX1 showed significant biological processes. They both are associated with the 

regulation of granulocyte differentiation. 

Molecular functions: All the KCC proteins showed significant association with molecular 

functions. The top five molecular functions were phosphatase binding (12), protein 

phosphatase binding (10), transmembrane receptor protein kinase activity (8), protein tyrosine 
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kinase activity (9), and protein kinase regulator activity (10). Among the prioritized proteins, 

9 showed a significant association with molecular functions. The top five functions included 

cyclin-dependent protein serine/threonine kinase regulator activity (2), scaffold protein binding 

(2), translation regulator activity, nucleic acid binding (2), translation regulator activity (2), 

and insulin receptor substrate binding (1). In addition, the prioritized proteins also have 

molecular functions, such as protein kinase regulator activity (2), protein kinase B binding (1), 

neurotrophin receptor binding (1), kinase regulator activity (2), translation activator activity 

(1), C2H2 zinc finger domain binding (1), translation repressor activity, mRNA regulatory 

element binding (1), and high-density lipoprotein particle binding (1). 

KEGG pathway analysis: With the KEGG analysis, we found that the KCC proteins are mostly 

involved in various types of cancers. Apart from cancer, some of the KCC proteins are involved 

in infectious diseases like Human papillomavirus infection (20), Human cytomegalovirus 

infection (17), Hepatitis B (15), Hepatitis C (14), Epstein-Barr virus infection (15), Kaposi 

sarcoma-associated herpesvirus infection (14), Measles (12), malaria (6), Salmonella infection 

(11), Tuberculosis (9), Toxoplasmosis (7), Chagas disease (6), Leishmaniasis (5), Human 

immunodeficiency virus infection (8), and Coronavirus disease – Covid-19 (6). Among the 

prioritized proteins, the top five pathways included acute myeloid leukemia (5), chronic 

myeloid leukemia (4), transcriptional misregulation in cancer (5), prostate cancer (4), and the 

FoxO signaling pathway (4). In addition, they are involved in various cancers, including gastric 

cancer (4), endometrial cancer (3), renal cell carcinoma (3), non-small cell lung cancer (3), 

viral carcinogenesis (4), glioma (3), colorectal cancer (3), breast cancer (3), thyroid cancer (2), 

hepatocellular carcinoma (3), bladder cancer (2), and melanoma (2). Several proteins are also 

involved in EGFR tyrosine kinase inhibitor resistance (3), ErbB signaling pathway (3), 

endocrine resistance (3), neurotrophin signaling pathway (3), PI3K-Akt signaling pathway (4), 

mTOR signaling pathway (3), chemokine signaling pathway (3), p53 signaling pathway (2), B 

cell receptor signaling pathway (2), MAPK signaling pathway (3), choline metabolism in 

cancer (2), cell cycle (2), JAK-STAT signaling pathway (2), and Phospholipase D signaling 

pathway (2), all of which are involved in cancer development and progression. 
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2.4 Discussion 

Cervical cancer was diagnosed in 5,70,000 women worldwide in 2018, of which 3,11,000 

women lost their lives from the disease (Ferlay et al., 2018). Cervical cancer caused by HPV 

infection usually resolves without symptoms. However, persistent infection can cause cervical 

cancer, which is lethal in women. Several studies have highlighted the roles of several cervical 

cancer-causing genes. The genes that are involved in cervical cancer progression are deposited 

in the DisGeNET database. 

The moment of inertia tensor analyzes the sequence similarity as an alignment-free method. 

Hou et al. (2016) showed the efficiency of this method, where the sequence similarity analysis 

among the 12 baculoviruses resulted in a similar phylogenetic tree compared to the clustal X-

based sequence similarity analysis. Interestingly, in our work, the tensor analysis showed the 

highest similarity among the KCC proteins that belong to the same family of proteins, such as 

KRT13 – E2F3; KRAS – HRAS; RRAS – CD28; CD83 - SOCS1; TGFA - CDKN2A; TNF - 

BCL2. Similarly, we found a high similarity between CCC and KCC proteins that belong to 

the same family, such as NRAS – HRAS; KRT15 – KRT13; and NRAS – KRAS. This 

highlights the precision of tensor analysis in analyzing similarities between protein sequences. 

However, our analysis observed a limitation: this method cannot differentiate any two protein 

sequences with the same length and amino acid composition but varying in arrangement. 

However, proteins with similar amino acid compositions are rarely present. 

In our study, CCC proteins that are most similar to KCC proteins were prioritized and evaluated 

further. The final prioritized proteins in correspondence to the GO terms lists NRAS, GRB2, 

BRAF, CCND2, CCNE1, RUNX1, RARA, KRT15, WT1, MYCN, APOL2, HSPB8, PAIP1, 

SLC7A6OS. 

NRAS belongs to the RAS family, which includes HRAS and KRAS proteins. These proteins 

are primarily involved in signal transduction. The role of NRAS has been well-established in 

colorectal cancer, head and neck cancer, acute myeloid leukemia, chronic myeloid leukemia, 

and melanoma (Wang et al., 2020; Khanna et al., 2015 & Cicenas et al., 2017). Growth factor 

receptor-bound protein 2 (GRB2) is also involved in signal transduction. It is known to involve 

prostate cancer, gastric cancer, ovarian cancer, renal cancer, etc. (Ijaz et al., 2017; Qiao et al., 
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2020; Ye et al., 2018 & Huang et al., 2018). From the functional enrichment analysis, we found 

that GRB2 is involved in insulin receptor substrate binding and neurotrophin receptor binding 

molecular functions. However, for both NRAS and GRB2, there is no significant hit in 

biological processes. BRAF, a proto-oncogene, is also known as serine/threonine-protein 

kinase B-Raf. It is involved in cell signaling for cell growth. Several cancers, such as prostate, 

leukemia, gastric and renal, etc., are well evidenced by the involvement of BRAF (Xue et al., 

2018; Steinwald et al., 2020; Vendramini et al., 2019 & Yang et al., 2018). As for molecular 

functions in GO terms, BRAF has a scaffold protein binding function. CCND2 belongs to the 

cyclin family of proteins, which are involved in the cell cycle. It is known to be involved in 

colorectal cancer, ovarian cancer, prostate cancer, etc. (Park et al., 2019; Hua et al., 2019 & 

Zhu et al., 2014). According to the KEGG pathway analysis, CCND2 is involved in the FoxO 

signaling pathway, Prolactin signaling pathway, Human papillomavirus infection, PI3K-Akt 

signaling pathway, cellular senescence, Human T-cell leukemia virus 1 infection, p53 signaling 

pathway, JAK-STAT signaling pathway. CCND2 molecular functions include cyclin-

dependent protein serine/threonine kinase regulator activity and protein kinase regulator 

activity. CCNE1 is also a cyclin family protein. It is involved in prostate cancer, gastric cancer, 

etc. (Ju et al., 2019 & Ooi et al., 2017). Similar to CCND1, CCNE1 performs cyclin-dependent 

protein serine/threonine kinase regulator activity and protein kinase regulator activity. RUNX1 

is otherwise called as acute myeloid leukemia 1 protein (AML1). RUNX1 is associated with 

leukemia and solid tumor growth on the lung, breast, intestine, and skin (Otálora-Otálora et al., 

2019). It is involved in the biological process of regulation of granulocyte differentiation. 

RARA is a nuclear receptor known as NR1B1 (nuclear receptor subfamily 1, group B, member 

1). The involvement of RUNX1 in leukemia is well-established (De Braekeleer et al., 2014). It 

is involved in Th17 cell differentiation and also in the regulation of granulocyte differentiation.  

Polyadenylate-binding protein-interacting protein 1 (PAIP1) is involved in translation 

regulator/activator activity and nucleic acid binding functions. It is associated with breast 

cancer and cervical cancer (Piao et al., 2018 & Li et al., 2019). KRT15 is a type I cytokeratin 

involved in the estrogen signaling pathway and performs scaffold protein binding activity. The 

overexpression of KRT15 is associated with colorectal cancer (Rao et al., 2020). WT1 is a 

transcription factor with a proline / glutamine-rich DNA-binding domain at the N-terminus and 

four zinc-finger motifs at the C-terminus. WT1 is inactivated in nephroblastoma and has been 
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associated with breast cancer (Zhang et al., 2020 & Artibani et al., 2017). MYCN belongs to 

the MYC family of transcription factors. It is associated with several cancers, such as acute 

myeloid leukemia, medulloblastoma, and neuroblastoma (Rickman et al., 2018). APOL2 

belongs to the apolipoprotein L gene family, which are lipid-binding proteins. It is known to 

be a biomarker in bladder cancer (Ren et al., 2019). HSPB8 is a heat shock protein, and its role 

in various cancers is well-studied (Shen et al., 2018 & Crosbie et al., 2013). As all the prioritized 

proteins are well established in several cancers, these proteins can be studied further for their 

potential role in cervical cancer and progression. As most of the proteins have drugs available, 

it would be easier to further explore their efficacy in cervical cancer. 

2.5 Conclusion 
In this study, the moment of inertia tensor concept was applied to study the sequence similarity 

between the KCC and CCC proteins and prioritized the potential candidates from the CCC 

genes list that may play a vital role in cervical cancer progression. With maximum hits in 

KEGG pathway analysis, the top 5 proteins are NRAS, GRB2, BRAF, CCND2, and CCNE1. 

As there are drugs available for most of the prioritized proteins, it reduces the efforts in 

designing the drugs and therapeutic regimes. We found this approach relatively fast and 

efficient in calculating the similarity between protein sequences. Our work sheds light on the 

importance of the moment of inertia tensor in prioritizing genes based on sequence similarity. 

This approach may find applications in sequence similarity analysis in other complex systems. 



 
 
 
 
 
 
 
 
 
 
 

    Chapter 3 

Prioritization of candidate genes using chaos 
game and fractal-based time series approach 
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3.1. Introduction 

Cancer research has increased significantly, but it requires careful analysis to identify suitable 

markers for diagnosis and treatment. There has been a huge surge of studies on cervical cancer 

that need to be carefully analyzed for the identification of a suitable marker for diagnostic and 

therapeutic strategies. The field of bioinformatics has undergone significant progress in recent 

years. Several studies focused on identifying the candidate genes in cervical cancer using 

bioinformatics tools. However, we cannot continue to test the efficacy of all the candidate 

genes in the progression of cancer as it is financially burdening and cumbersome. Therefore, 

we need to prioritize the candidate genes to test their efficacy.  

The ontology-based approach, computation-based approach, and integrated identification 

approach are generally utilized for candidate gene identification. The biological function of the 

gene is the basis for gene ontology-based methods. Machine learning, Hidden Markov analysis, 

data mining analysis, cluster analysis, and KNN classification algorithm are some of the 

computational methods regularly used to identify candidate genes. Integrative approaches 

utilize experimental and theoretical data from different sources, such as protein-protein 

interactions and pathway analysis (Zhu & Zhao 2007). The integration-based methods are 

generally based on sequence similarity, protein-protein interactions and gene ontology, etc. For 

example, SUSPECTS, PROSPECTR, and Endeavour prioritize genes by sequence similarity 

and their function. Sequence similarity holds the key to identify the candidate genes as the 

sequence of the gene determines the protein sequence, in turn, its function. Owing to the 

importance of sequence similarity in identifying the candidate genes, in this study, we 

prioritized candidate genes of cervical cancer using the sequence similarity based on the 

integrated approach of Chaos theory (CGR) and 2D multi-fractal detrended cross-correlation 

(2D-MF-X-DFA) and gene ontology.  

Chaos Game Representation, an iterating mapping technique, was introduced by Jeffrey 

(Jeffrey 1990) to represent the genomic sequence in a 2-dimensional image. Several approaches 

were introduced to visualize the DNA sequences in a graphical way. CGR works on the 

principle to map a one-dimension sequence to two dimensions or higher space. Jeffrey used a 

square with four vertices being Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). The 

algorithm works by drawing a point (P1) at half the distance from the first nucleotide of the 
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given DNA sequence. Now, considering P1 as the new beginning point, another point (P2) will 

be drawn at the half distance from the second nucleotide and this process keeps repeating till 

the end of the sequence. It is noted that DNA sequences show fractal arrangement. 

On the other hand, the random numbers did not show any fractal arrangement. Since then, CGR 

has been favored for alignment-free comparisons of DNA sequences, protein sequences, and 

phylogeny (Löchel & Heider (2021). In the present study, we represented the image in a square 

matrix of length L with vertices A(0,0), G(1,1), C(0,1) and T(1,0). The image is represented as 

dots and spaces, where the dot indicates the position of the nucleotide and the space indicates 

the absence of the nucleotide. Several ways are present to represent the image, i.e., by changing 

the order of the vertices. The image also changes with the selected order of vertices. The 

graphical representations of the genomic sequences have been providing novel insights in 

deciphering the complexity of genomic sequences as proven in previous studies that include 

understanding the genome sequences, DNA sequences, RNA sequences, protein sequences, 

protein-protein interactions, and protein sequence evolution (Tanchotsrinon et al., 2015; Wu et 

al., 2010; Zhou 2011; Chou 2010; Yu et al., 2004; Deschavanne et al., 1999; Xiao et al., 2010; 

Dutta & Das 1992 and Lu et al., 2011). 

Multifractal nature is seen in nature and also in several social and financial fluctuations 

(Mandelbrot 1983). Many approaches and techniques were developed to understand the 

correlation behavior and multifractal nature. Some of the methods are wavelet transform 

module maxima (WTMM), multifractal detrended fluctuation and discrete wavelet-based 

fluctuation analysis, etc. (Arneodo et al., 1988; Kantelhardt et al., 2002; Manimaran et al., 2005 

and Sahoo et al., 2020). Later, to capture the power-law cross-correlations among two non-

stationary datasets with multifractal features, MF-X-DFA was proposed as a method to 

quantify the multifractal properties of such cross-correlations (Podobnik et al., 2008; Zhou, 

2008; Podobnik et al., 2009 and Jiang et al., 2011). The potential of this method has been seen 

in various events like finance, multifractal random walks (MRWs), climatic changes, seismic 

events, agricultural future markets, stock market fluctuations, electricity and carbon markets ( 

Pal & Manimaran 2019; Rafique et al., 2022). 

In our earlier studies, the coding and non-coding DNA sequences (Pal et al., 2015) and genome 

sequences (Pal et al., 2016) were analyzed using the integrated approach of CGR and 
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multifractal detrended analysis. Recently, the mitochondrial genome sequences were also 

analyzed (Thummadi et al., 2021). In this study, candidate genes of cervical cancer were 

prioritized using the integrative analysis of CGR and two-dimensional multifractal cross-

correlation.  

3.2. Materials and Methods 

3.2.1 Data collection and pre-processing 

The Network of Cancer Genes (NCG6.0) database (Repana et al., 2018) was used to obtain 711 

known and 1661 candidate cancer genes. 537 genes involved in cervical cancer were obtained 

from the Cervical Cancer Gene Database (CCDB) (Agarwal et al., 2011). A comparison 

showed that 128 genes from CCDB are common with the NCG6.0 gene list. These 128 genes 

were then analyzed for gene-disease association in DisGeNET (Piñero et al., 2020). It was 

found that 82 genes out of these 128 genes have experimental validation. Therefore, the 

experimentally validated 82 genes were considered as known cervical cancer (KCC) genes and 

the experimentally unvalidated 46 genes as cervical cancer candidate (CCC) genes. The 

biomaRt R library was used to retrieve gene sequences for the 128 genes from the Ensembl 

database (Durinck et al., 2009). 

3.2.2 Chaos game representation of cervical cancer gene sequences 

The fractality of gene sequences was analyzed using chaos game representation (Jeffrey. 1990). 

The methodology for using the CGR algorithm has been given in detail elsewhere (Jiang et al., 

2011; Rafique et al., 2022 and Pal et al., 2015). In brief, the nucleotides A(0,0), G(1,1), C(0,1) 

and T(1,0) are taken as the vertices of a unit square with length – L. Positions of nucleotides 

were calculated using the iterative mapping function as given below: 

 Pi = 0.5 (Pi-1 + Vip)       (1) 

Qi = 0.5 (Qi-1 + Wiq)       (2) 

Where Pi and Qi are the ith nucleotide co-ordinates computed from half of the previous 

nucleotide position. The first nucleotide Pi-1 and Qi-1 positions are given from the centre of the 

unit square (0.5, 0.5). Vip and Wiq denote the vertex coordinates. With the iteration of these 

steps, we have calculated the coordinates for all the nucleotides from all gene sequences and 
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developed a CGR image. For further analysis, the data matrix was obtained by converting these 

images to frequency CGR (fCGR). 

3.2.3 Two-Dimensional MF-X-DFA technique 

The two-dimensional MF-X-DFA method was applied to the fCGR matrix to examine the 

cross-correlation patterns and multi-fractal properties of gene sequence matrices. The 

advantage of this integrative approach is that it can accommodate unequal gene lengths for 

cross-correlation. The 2D MF-X-DFA approach was introduced by W. X. Zhou (Zhou 2008) 

and the detailed procedure is as follows: 

Step 1: Consider any pair of equal-sized two-dimensional data matrices of images i(p,q) and 

j(p,q), where p=1,2, . . ., a and q=1,2, . . . ,b. 

Step 2: The data was split into as x bs non-overlapping square fragments of equal size. For 

instance, s x s, with as=a/s and bs=b/s. Each data fragment is represented by ix,z or  jx,z such that 

ix,z(p,q) = i(hx+p , hz+q) and  jx,z(p,q)=j(hx+p , hz+ q) for q≤p, q≤s, where hx =(x−1)s and 

hz=(z−1)s.  

 

Step 3: ix,z  or jx,z  is defined as follows: 

!(!, #) = ∑ ∑ %!,#(&1, &2)&
'2=1

)
'1=1  and '!,#(!, #) = ∑ ∑ (!,#(&1, &2)

&
'2=1

)
'1=1  here q≤p, l≤s.  

 

Step 4: Any set of two fragment’s detrended covariance is calculated as: 

)!,#(*) =
1
*2%%&'!,#(!, #)− '

~
!,#(!, #)' &-!,#(!, #)− -

~
!,#(!, #)' (3)

+

&=1

+

)=1
 

Here, '
~
!,# and -

~
!,#  represent the polynomial approximations of Ix,z and Ix,z respectively. The 

polynomial function was chosen as the least complex plane 1~(!, #) = 2! + 4# + 5, which is 

used in our analysis. 

 

Step 5: The detrended covariance was used to calculate the qth order fluctuation function 

),-(4, *)	 as shown in step 4 with a square and the mean of all the segments, 
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),-(4, *) = ( 1
7+8+

%%))!,#(*)*. 2⁄
/#

#=1

0#

!=1
+
1 .⁄

(4) 

 

In accordance with L’Hospital’s rule for n=0, the fluctuation function is defined as  

),-(4, *) = :;!( 1
27+8+

%% =4))!,#(*)*
/#

#=1

0#

!=1
+ (5) 

Here, "n" is referred to as an order of the moment and can have any real value. 

 

Step 6: We repeated method steps 2 through 5 using various scale values 's' for varied 

estimations of 'n'. With the fluctuation function investigation, we obtained power-law scaling 

behavior. 

!!"(", $)~$ℎ!"(%)(6) 
If the calculated scaling examples hij(n) values do not show a dependence on q esteems, they 

are of a monofractal nature. If hij(n) values show dependency on n esteems, then it represents 

a multifractal nature. However, if i=j, then 2D MF-X-DFA is same as 2D-MFDFA. For the 

positive ‘n’ values, hij(n) indicates large fluctuations, while the negative ‘n’ values represent 

small fluctuations. 

The strength of the multifractal behavior of cross-correlated image data was analyzed by 

evaluating the fij(α) spectrum. Fij(α) values were obtained from Legendre transform τij(n) as:  

 

Fij(α) ≡ nαij – τij(n)        (7) 

 

Here τij(n) = nhij(n) – Df. 

In the present study, we applied the Df value as 2. The αij values were obtained from αij 

=dτij(n)/dn. The width of the fij(α) range determines the strength of multifractal behavior. 

Strong multifractal behavior is indicated by a broader range, while a narrow range indicates 

weak multifractal behavior. 

3.2.4 Functional enrichment and survival analysis 
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The functional enrichment analysis was performed on candidate genes to get to know about 

their associated GO terms and KEGG pathways using the clusterProfiler R package (Yu et al., 

2012). Also, the candidate genes prognosis was studied via survival analysis using the KM 

plotter online tool (Lánczky and Győrffy 2021). Survival analysis results show the effect of 

gene expression pattern levels on patient survival. 

3.3 Results and Discussion 

Pre-processed nucleotide sequences of known and candidate cervical cancer genes were used 

to generate the frequency of CGR matrices [Figure 1]. The frequency CGR matrices for each 

gene were extracted after applying CGR on all the genes. Each CGR image is divided into 2k* 

2k grids, and ‘k’ is known to be the length of the DNA segment in the sequence. The CGR 

analysis was performed by taking k as 6, 7, 8, 9, and 10. The results are consistent across 

different k values and do not show any significant variation, i.e., 6,7,8,9, and with a grid size 

of 64 x 64.  

 
Figure 1: CGR images of ERBB4 (left panel) and BRAF (Right panel) 

The fractal behavior and potential candidate genes for cervical cancer were characterized and 

predicted by proceeding with the k = 6 frequency CGR matrix.  It should be noted that the CGR 

method could generate frequency CGR matrices of equal size even though two sequences are 

of different lengths.  
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Further, the 2D MF-X-DFA method was used to characterize multifractal behavior and cross-

correlation among the sequences. The cross-correlation was measured among KCC-KCC, 

KCC-CCC and CCC-CCC sequences. Multifractal nature with varied strength was shown by 

all the genes [Figure 2]. A scale range (Pal and Manimaran 2019) and also the qth order 

moments from -10 to +10 value with a step size of 0.2 were used for this study. The results 

show that the strength of multifractality varies among the sequences depending on the q values. 

The singularity spectrum's width reflects the multifractality's intensity: a wider spectrum 

implies a more multifractal behavior, while a narrower spectrum implies a less multifractal 

behavior [Figure 3]. Additionally, a cluster analysis was performed to find the class affiliation 

among the cervical cancer genes (known and candidate). These clusters were visualized as 

circular dendrogram [Figure 4]. 

 
 

Figure 2: Representative multifractal behaviour of Known cervical cancer gene-ERBB4 and Candidate 
cervical cancer genes-BRAF, CDH2, EPB4IL3, OSMR, RUNX1, STK31. The values of the h(q) 
exponents vary according to the choice of q.  
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Figure 3: The singularity spectrum f(α) of candidate cervical cancer genes-BRAF, CDH2, EPB4IL3, 
OSMR, RUNX1, and STK31 in comparison to known cancer gene- ERBB4 showing the strength of the 
multifractal nature. 
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Figure 4: Dendrogram of known and candidate genes belong to cervical cancers 

 
An advantage of alignment-free methods is that a data matrix of the same size can be obtained 

even when the sequences have different lengths. A total of 16 genes that may be associated 

with the development of cervical cancer [Table 1] were selected by applying CGR and the 2D 

MF-X-DFA approaches. A high number of correlations with known cervical cancer genes were 

found for these candidate genes. The 16 candidate genes are DSG1, ECT2, TMPRSS11D, 
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STK31, CDH2, PAIP1, BRAF, CDH11, HUWE1, NRAS, DLC1, NTN4, EPB41L3, OSMR, 

KIT, RUNX1. 

 

Table 1 : Prioritized candidate genes for cervical cancer 

S. 
N
o. 

Gene Disease Drugs No. of 
Genes 

Genes showing similarity  

1 DSG1 Not available Not 
available 

25 APC, CD28, CDK6, CDKN2A, 
CTNNB1, DEK, ERBB4, ESR1, E2H2,  
FGF2, IL1A, ITGA4, ITGAV, KRAS, 
MET, MMP13, PGR, PTEN, SFRP4, 
SKP2, SMAD2, SMAD4, TGFBR1, 
TLR2, TLR4 

2 ECT2 Not available Not 
available 

25 APC, CD28, CDK6, CDKN2A, 
CTNNB1, DEK, ERBB4, ESR1, E2H2, 
FGF2, IL1A, ITGA4, ITGAV, KRAS, 
MET, MMP13, PGR, PTEN, SFRP4, 
SKP2, SMAD2, SMAD4, TGFBR1, 
TLR2, TLR4 

3 TMPRSS1
1D 

Not available CHEMBL2
086421 
(Inhibitor 
1[Colombo 
et al., 
2012]) 

24 APC, CD28, CDK6, CDKN2A, 
CTNNB1, DEK, ERBB4, ESR1, FGF2, 
IL1A, ITGA4, ITGAV, KRAS, MET, 
MMP13, PGR, PTEN, SFRP4, SKP2, 
SMAD2, SMAD4, TGFBR1, TLR2, 
TLR4 

4 STK31 Not available Not 
available 

21 APC, CD28, CDK6, CTNNB1, DEK, 
ERBB4, ESR1, FGF2, IL1A, ITGA4, 
ITGAV, KRAS, MET, MMP13, PGR, 
PTEN, SMAD2, SMAD4, TGFBR1, 
TLR2, TLR4 

5 CDH2 Solid 
tumour/cancer 

Exherin 19 CD28, CDK6, CTNNB1, DEK, 
ERBB4, FGF2, IL1A, ITGA4, ITGAV, 
KRAS, MET, MMP13, PGR, PTEN, 
SMAD2, SMAD4, TGFBR1, TR2, 
TLR4 

6 PAIP1 Not available Not 
available 

18 CD28, CDK6, CTNNB1, DEK, 
ERBB4, FGF2, ITGA4, ITGAV, 
KRAS, MET, MMP13, PGR, PTEN, 
SMAD2, SMAD4, TGFBR1, TLR2, 
TLR4 

7 BRAF Melanoma; 
solid tumor/ 
cancer 

Dabrafenib 13 CD28, CDK6, ERBB4, FGF2, ITGA4, 
ITGAV, KRAS, MMP13, PGR, PTEN, 
SMAD2, TGFBR1, TLR4 

8 CDH11 Rheumatoid 
arthritis 

RG6125 6 ERBB4, ITGA4, ITGAV, MMP13, 
PTEN, TLR4 

9 HUWE1 Not available Not 
available 

6 ERBB4, ITGA4, ITGAV, MMP13, 
PTEN, TLR4 
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10 NRAS Colorectal 
cancer; head 
and neck 
cancer 

Mutant ras 
vaccine 

6 ERBB4, ITGA4, ITGAV, MMP13, 
PTEN, TLR4 

11 DLC1 Not available Not 
available  

5 ITGA4, ITGAV, MMP13, PTEN, 
TLR4 

12 NTN4 Not available Not 
available 

5 ERBB4, ITGA4, ITGAV, PTEN, TLR4 

13 EPB41L3 Not available Not 
available 

4 ERBB4, ITGA4, ITGAV, TLR4 

14 OSMR Not available Not 
available 

4 ERBB4, ITGA4, PTEN, TLR4 

15 KIT Tenosynovial 
giant cell 
tumour,  
Metastatic 
colorectal 
cancer 

Ripretinib 3 ERBB4, ITGA4, PTEN 

16 RUNX1 Not available   1 ERBB4 

DSG1 (Desmoglein 1) is a cadherin-like transmembrane glycoprotein that is the main 

component of the desmosome along with armadillo proteins and plakin proteins. Reduction of 

desmosomal component results in tumor development. Its downregulation is associated with 

various types of cancers, including those affecting the head and neck, the colon, the skin, the 

esophagus, the lung, the cervix, and the stomach (Liu et al., 2021). ECT2 (Epithelial Cell 

Transforming 2) is a guanine nucleotide exchange factor (GEF), which has an essential role in 

activating Rho family GTPases, thus regulating various cellular processes like cytokinesis, cell 

division, etc. ECT2 dysregulation is associated with various types of cancer, including those 

affecting the breast, the lung, and the stomach (Miki et al., 1993 and Chen et al., 2020). 

TMPRSS11D (Transmembrane Serine Protease 11D) is also denoted as human airway trypsin-

like protease (HAT) and is associated with the family of type II transmembrane serine proteases 

(TTSP). It involves in the proteolytic activation of influenza A, influenza B, and SARS-CoV. 

Its role is well-established in squamous cell carcinogenesis (Cao et al., 2017). STK31 

(Serine/Threonine Kinase 31) is a member of the Serine/Threonine Kinases family. Recent 

studies reported STK31 as a novel cancer/testis antigen (CTA), CTAs are tumor antigens, ideal 

targets for cancer immunotherapy (Yokoe et al., 2008). Its role is associated with colorectal 

and gastric cancers. It is involved in regulating cell cycle progression (Kuo et al., 2014).   
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CDH2 (Cadherin 2), also referred to as N-cadherin, is the essential factor in the transition of 

tumors to malignant. It may function as a potential therapeutic target for different cancers 

(Warde, 2011 and Guvakova et al., 2020). CDH11 (Cadherin 11) is a tumor suppressor gene 

associated with various tumors. It modulates the activity of AKT/Rho A and Wnt/β-catenin 

pathways (Li et al., 2012). CDH2 and CDH11 belong to the cadherin family of cell-cell 

adhesion molecules involved in critical biological processes interacting with each other. They 

are well known for regulating various characteristics of cell behavior such as differentiation, 

proliferation, cell polarity, self-renewal, apoptosis, and embryonic stem cell differentiation, 

and maintenance of tissue integrity (Chen et al., 2021). PAIP1 (Poly(A) Binding Protein 

Interacting Protein 1) is associated with functions such as translation regulator/activator 

activity and nucleic acid-binding. It is associated with breast cancer and cervical cancer (Piao 

et al., 2018 and Li et al., 2019). BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase) is 

involved in cell signaling and it is well established in multiple cancers, such as leukemia, 

prostate, renal and gastric and so forth,. (Xue et al., 2018; Steinwald et al., 2020; Vendramini 

et al., 2019 and Yang et al., 2018). HUWE1, also known as E3 ubiquitin ligase, plays a vital 

role in ubiquitination and proteolysis of target genes. The ubiquitin system dysregulation often 

lead to pathogenesis, including development of tumors (Kao et al., 2018). NRAS (NRAS Proto-

Oncogene, GTPase) is part of the RAS GTPase family comprising HRAS and KRAS. They 

play an important role in signal transduction pathways. NRAS is well-studied in multiple 

cancers such as head and neck, acute and chronic myeloid leukemia, colorectal, melanoma, etc. 

(Wang et al., 2020; Khanna et al., 2015 and Cicenas et al., 2017).  

DLC1 (Deleted in Liver Cancer 1) is a Rho GTPase Activating Protein, that acts as a tumor 

suppressor gene in multiple cancers including lung, prostate, breast and colorectal cancers 

(Sanchez-Solana et al., 2021). Netrin 4 (NTN4) is part of the neurite guidance factors family 

associated with neurite growth promotion and elongation. It is a prognostic factor in breast 

cancer progression (Yi et al., 2022 and Hao et al., 2020). EPB41L3 (Erythrocyte Membrane 

Protein Band 4.1 Like 3) is a tumor suppressor gene involves in the modulation of the activity 

of protein arginine N-methyltransferases. It is also, associated with cytoskeleton organization. 

It is established as a biomarker for meningioma (Zeng et al., 2018). OSMR (Oncostatin M 

Receptor) is associated with the IL-6 cytokine family and acts as the master regulator in the 

crosstalk between immune and nonimmune cells. It is a key factor for tumor progression in 
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breast and ovarian cancers (Araujo et al., 2022). KIT (proto-oncogene c-KIT) is a receptor 

tyrosine kinase, involved in the activation of MAPK, JAK/STAT and PI3K pathways. It plays 

a critical role in melanogenesis, gametogenesis, and hematopoiesis (Ke et al., 2016). RUNX1 

also known as acute myeloid leukemia 1 protein (AML1). It is involved in leukemia and solid 

tumor growth in the lung, skin, breast, and intestine (Otálora-Otálora et al., 2019). It plays an 

essential role in Th17 cell differentiation and regulating granulocyte differentiation. It is well-

established in leukemia (De Braekeleer et al., 2014).  

Gene ontology and KEGG pathway investigation revealed that the genes under study were 

related to several biological processes (BP) involving cell-cell junctions, cell shape, and 

actomyosin structures. Moreover, the genes were involved in various signaling pathways and 

cancer types, such as Rap1, ErbB, MAPK, PI3K-Akt, mTOR, acute and chronic myeloid 

leukemia, breast, thyroid, bladder, and gastric cancer. Further, we performed survival analysis 

on candidate genes using a KM plotter to predict the prognosis in cervical cancer patients. The 

KM survival curve is widely used statistically to estimate the time to death-events. KM survival 

curve results were analyzed based on hazard ratio and log-rank p values to filter statistically 

significant genes that are poorly prognosed in cervical cancer patients. It is found that a total 

of six genes CDH2, PAIP1, BRAF, EPB41L3, OSMR and RUNX1 have poor prognostic power 

in patients [Figure: 5]. 

The candidate cervical cancer genes from our results were prioritize based on sequence 

similarity with established genes. This provides an advantage to experimental researchers in 

designing and developing new drugs and antibodies against multiple target molecules as a 

comprehensive approach. Moreover, alignment-free methods have an edge over alignment-

based methods for sequence similarity. However, our goal is limited to prioritizing candidate 

cancer genes based on sequence similarity. Furthermore, this approach may find applications 

in predicting new cancer genes, differentiating driver and non-driver cancer genes, clustering 

and classification problems, etc. 
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Figure 5: List of genes having poor prognosis in cervical cancer patients as per survival analysis 

 

3.4. Conclusion 

The current study focuses on the characterization of multifractal behavior and cross-correlation 

analysis to prioritize the potential candidate genes involved in cervical cancer by 2D MF-X- 

DFA in combination with chaos game representation. The study mainly focuses on the 

frequency CGR matrix generation for each protein sequence and analyzing fractal and cross-

correlation behavior. This study prioritizes a total of six genes CDH2, PAIP1, BRAF, 

EPB41L3, OSMR and RUNX1, which show poor prognostic performance in cervical cancer 

patients. Further experimental analysis is needed to evaluate the efficacy of the prioritized 

genes. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 

    Chapter 4 

Analysis of protein-protein interaction 
networks in cervical cancer 
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4.1. Introduction 

Women worldwide suffer high morbidity and mortality rates because of cervical cancer (CC), 

which holds fourth rank among different types of cancers (Bray et al., 2018 & Sung et al., 

2021). It is divided into two subtypes, i.e., squamous cell carcinoma (80%-90%) and 

adenocarcinoma (10%-20%). India contributes at least one-fourth of the disease burden 

globally (Reichheld et al., 2020). Human papillomavirus (HPV) is the primary risk factor for 

CC. However, weak immune system, smoking, birth control pills, and multiple sexual partners 

also play an imminent role as risk factors (Cohen et al., 2019). It is evident that tumor 

progression involves various genetic and epigenetic events along with risk factors. Hence, it is 

important to elucidate the molecular mechanisms involved in tumor progression to understand 

the disease better. Currently, available treatment options are surgery, radiotherapy, and 

chemotherapies that don’t give protection against the disease, as 75% of CC patients develop 

further progression or recurrent/recurrence of tumors. Every treatment strategy depends solely 

on the tumor heterogeneity of the patient (Cook et al., 2011). Understanding the gene 

expression pattern among the patients is essential to predict diagnostic and prognostic gene 

signatures that could be used to diminish the outcome of the disease in combination with 

protein-protein association networks (Oany et al., 2021). 

The high-throughput gene expression profiling methods are widely used in cancer genomic 

studies to understand the molecular classification of the disease, patient stratification, 

prognosis, and new drug targets (Kulasingam & Diamandis, 2008; Nannini et al., 2009; Bustin 

& Dorudi, 2004 & Liang et al., 2016). Gene expression profiling methods are known to reveal 

the differential expression of the genes and their respective dysregulated pathways responsible 

for the disease progression. Integrating biological knowledge with protein-protein interaction 

(PPI) networks provides blueprints to understand the complex structural organization of 

disease-related networks (Chen et al., 2019). 

The structural organization of the PPI network consists of nodes and edges representing 

proteins and their interactions, respectively (Rual et al., 2005). Topological structural analysis 

of the PPI network reveals the biological significance of each protein in the network (Raman, 

2010 & Stelzl et al., 2005). Hence, it is essential to identify crucial proteins responsible for 

maintaining the global structural stability of the PPI network. Hubs and bottlenecks are 
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extensively studied in network analysis to understand their importance in the network. Hubs 

are proteins with a large degree, and bottlenecks are proteins with high betweenness centrality, 

known to be central molecules in the PPI network (Barabási et al., 2011; Yu et al., 2007 & 

Ghasemi et al., 2014). This study assessed hubs and bottleneck properties that might help 

underpin the molecular mechanisms underlying carcinogenesis and develop better intervention 

strategies. Along with topological centrality calculations, relative vulnerability analysis of a 

network aims to identify critical proteins that can affect the overall structural stability of the 

network (Podder et al., 2018). 

Our present study combines differential expression analysis, protein-protein interaction 

network analysis with functional enrichment, and survival analysis to identify the potential 

key molecular players involved in cervical cancer progression.  

 

4.2. MATERIALS and METHODS 

4.2.1 Retrieval and pre-processing of datasets 

Cervical cancer gene expression profiles were searched with the keywords "cervical cancer" 

and "microarray" at the Gene Expression Omnibus, a genomic data repository of the National 

Center for Biotechnology Information (NCBI, GEO). The inclusion criteria for selecting the 

datasets were that the study should be focused on cervical cancer as the main subject from the 

organism Homo sapiens. The main aim of the study was to filter the protein-coding genes 

(mRNA) that were significantly differentially expressed in tumor tissues with respect to the 

normal tissues. Our query resulted in the identification of 576 studies, and out of these, studies 

that didn’t satisfy inclusion criteria were excluded (Supplementary Figure 1). Five datasets 

eligible to be considered for the analysis were obtained (Zhai et al., 2007; Den Boon et al., 

2015; Scotto et al., 2008; Wong et al., 2003 & Travasso et al., 2008), but two datasets were 

excluded due to a technical issue while mapping probe IDs to gene symbols. Finally, three 

potential datasets were selected for further analysis. The selected datasets considered in this 

study are summarized in Table 1. 
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Supplementary Figure 1:  PRISMA flow chart of the microarray meta-analysis for the 
selection of cervical cancer datasets. 
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Table 1: The details of the microarray datasets from the NCBI GEO database 

S.No Dataset Accession 

No. 

Platform  Sample size 

1. Human pre-invasive and 

invasive cervical squamous 

cell carcinomas and normal 

cervical epithelia (Zhai et 

al., 2007) 

GSE7803 GPL96 [HG-

U133A] 

10 normal and 28 

cancer samples 

2. Gene expression analysis 

of cervical cancer 

progression (Den Boon et 

al., 2015) 

GSE63514 GPL570 [HG-

U133_Plus_2] 

24 normal and 28 

cancer samples. It 

also contained 14 

CIN1, 22 CIN2 & 

40 CIN3 lesions 

3. Identification of gene 

expression profiles in 

cervical cancer (Scotto et 

al., 2008) 

GSE9750 GPL96 [HG-

U133A] 

24 normal and 33 

cancer specimens. 

It also contained 

samples of 9 cell 

lines 

Our study mainly focuses on screening differentially expressed genes (DEGs) between tumor 

and adjacent normal samples, and the expression profiles from cell line studies were excluded. 

Collected datasets were processed using affy (Gautier et al., 2004) and limma (Ritchie et al., 

2015) libraries of the Bioconductor package in the R platform. Microarray datasets are 

preprocessed as follows: the probe sets in the dataset were normalized through the RMA 

(Robust Multi-array Average) function of the affy package to obtain expression values. The 

probe sets with expression values were annotated to respective official Gene Symbols. 

Replicated entries of a gene were removed to reduce the noise, and missing gene expression 

values across rows and columns were imputed. The processed unique gene expression matrix 

with its gene symbols was used for the subsequent analysis. 
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4.2.2 Differential expression analysis 

Differential gene expression analysis was carried out on the processed dataset through Linear 

Models for Microarray Analysis (LIMMA). Genes differentially expressed in cancer samples 

with respect to normal samples from each dataset were identified using the limma package of 

R (Ritchie et al., 2015). Statistically significant differentially expressed genes (DEG) were 

filtered based on the criteria of a log fold change > 2 and adjusted P‑value < 0.01. The 

distribution of DEGs in each dataset was visualized through volcano plots. The same procedure 

is followed for all the datasets except annotation, as different platforms generated them. 

Furthermore, batch effects in datasets were corrected by computing effect sizes with random-

effects models from the metafor R package (Viechtbauer 2010).  

4.2.3 Construction of protein-protein interaction network 

Identified DEGs were investigated for their interactions through the protein-protein interaction 

(PPI) network. The PPI network was constructed by retrieving all the available interactions of 

human from various databases such as APID, DIP, HitPredict, PIP, i2D, BioGrid, MINT, 

STRING, and IntAct (Alonso-López et al., 2019, 2016; Xenarios et al., 2000; Patil et al., 2011; 

McDowall et al., 2009; Kotlyar et al., 2016; Oughtred et al., 2021; Licata et al., 2012; 

Szklarczyk et al., 2021 & Kerrien et al., 2012). Proteins participating in PPIs were mapped to 

official gene symbols first, then all the interactions were merged. Finally, only those 

interactions in which both the interacting proteins are part of identified DEGs were extracted. 

To get the final simplified network, self-loops and duplicate edges were removed from the 

primary network. The PPI network construction and analysis were carried out using the igraph 

R package (Csardi & Nepusz et al., 2006) to find the essential proteins in the network. 

4.2.3.1 PPI network topology analysis 

Topological centrality analysis was performed on the disease-related protein-protein 

interaction network to identify the critical nodes in the network based on hubs and bottleneck 

properties. As per the degree centrality, each protein in the network was assigned a degree 

value, then a cutoff was calculated based on the 80-20 rule (Newman 2005). All the proteins 

above the cutoff were considered hubs. Betweenness centrality measures the number of shortest 
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paths passing through a particular node. Hence, nodes with the highest betweenness control the 

network's information flow, representing the network's critical points. These nodes were 

referred to as the "bottlenecks" of the network. The cutoff was calculated by the same 80-20 

rule, and all the proteins having betweenness above the cutoff were considered bottlenecks. 

4.2.3.2 PPI network vulnerability analysis 

Network vulnerability analysis was performed to identify the most vulnerable proteins as 

therapeutic targets for cervical cancer. The overall structural stability of the PPI network of 

cervical cancer was assessed by deleting proteins randomly from the core network and 

analyzing three topological parameters: Clustering coefficient or transitivity, Average path 

length (APL), and heterogeneity after each node removal (Podder et al., 2018). The average 

path length is a measure of the network’s overall connectivity. The APL in a network is 

obtained by calculating the mean of the shortest paths between all pairs of nodes (both ways 

for directed graphs). The clustering coefficient measures the probability that the adjacent nodes 

of a particular node are connected. It is also referred to as transitivity. Network heterogeneity 

is defined as a network with heterogeneously distributed nodes with a higher number of 

connections, i.e., hubs, as well as a low number of connections.	"#$#%&'#(#)$*	 = 	, !"#(%)
'(")(%)	, 

where k = node degree of the network. 

The analysis was carried out by removing one node (protein) from the network and calculating 

each parameter for the rest of the network. The simulated networks number for each property 

should be exactly equal to the number of nodes (proteins). Average path length, clustering 

coefficient, and heterogeneity were estimated in the presence and absence of each protein to 

assess the influence on the overall network. With this analysis, we can figure out the most 

valuable proteins that are critical for maintaining the structural stability of the network. The 

most important ones will be the outliers in the graphs generated for the parameters. The outliers 

indicate that removing that particular protein affects the whole network. Hence, it is crucial 

and can be considered a drug target by analyzing and integrating the outcome of the 

vulnerability and hub-bottleneck analyses.  

4.2.4 Functional enrichment analysis 
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The combined list of proteins obtained by vulnerability and topology analysis of disease-related 

networks are assessed for their associated role in various processes and pathways. Gene 

Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for 

the respective proteins were assessed through the clusterProfiler R package (Yu et al., 2012). 

GO is mainly used in functionally annotating genes based on GO terms: Biological process 

(BP), Molecular function (MF), and Cellular component (CC). KEGG, a pathway database, 

allows us to explore the associated pathways for the given set of proteins. 

4.2.5 Validation of gene expression at the protein level  
Immunohistochemistry data available at Human Protein Atlas (HPA), a human proteome map 

(Uhlén et al., 2015), is accessed to validate the key gene's protein expression patterns based on 

the staining intensity levels in both normal cervix tissue and cervical cancer tissues.  

4.2.6 Survival analysis 
To further characterize the candidate genes, survival analysis was performed through the 

Kaplan-Meier survival curve and log-rank test through the Kaplan-Meier plotter online tool 

(Lánczky & Győrffy 2021). Overall survival (OS) of patients depends on the time between the 

surgery date and death or the last follow-up date. The GEO datasets don't have information 

related to clinical profiles. The clinical data was accessed from the TCGA-CESC project on 

cervical cancer to investigate the prognostic performance of the candidate genes in patients and 

p-values <0.05 are considered statistically significant prognostic factors for cervical cancer. 

 

4.3  Results 

4.3.1 Identification of differentially expressed genes between different tissue 
samples 

In the present study, differential expression analysis identified 544 unique genes as 

differentially expressed between cancer and normal tissue samples from three datasets 

(GSE7803, GSE63514 and GSE9750). Out of 544 differentially expressed genes, 248 were 

upregulated and 296 were downregulated. The datasets GSE527 and GSE4482 were not 

considered for further studies due to a technical issue while mapping probe IDs to respective 
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gene symbols/UniProt IDs. The detailed distribution of DEGs in each dataset is given in Table 

2 and represented as volcano plots (Figure 1). 

Table 2: No. of DEGs present in each dataset through differential expression analysis 

GEO 

accession 

No. of genes 

after 
processing 

No. of 

DEGs 

Upregulated 

genes 

Downregulated 

genes 

GSE7803 

GSE63514 

GSE9750 

12403 

12403 

12403 

79 

412 

265 

21 

211 

61 

58 

201 

204 

Figure 1: Number of DEGs in each dataset. (A) GSE7803, (B) GSE63514, (C) GSE9750. Green dots 

are downregulated genes and Red dots are upregulated genes. Cutoff: logFC= 2 & pval= 0.01. 

C 

A B 
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4.3.2 Essential proteins in the dysregulated network of cervical cancer were 

identified through network analysis 

After merging all the protein-protein interactions from different PPI databases, there were 

14,30,022 interactions among 51,209 proteins. After removing redundancy, we got 8,52,432 

interactions among 51,209 proteins. Then, only those interactions in which both the proteins 

were part of the DEGs list were extracted. Thus, the number of DEGs interactions were 4,942 

with 498 proteins. The network was visualized using Cytoscape (Shannon et al., 2003) for 

further analysis (Table 3) (Figure 2).  

 

Table 3: Network analysis summary 

Properties of Networks No. 

Number of nodes 

Number of edges 

Avg. number of neighbors 

Network diameter 

Network radius 

Characteristic path length 

Clustering coefficient 

Network density 

Network heterogeneity 

Network centralization 

Connected components 

498 

4942 

20.114 

8 

5 

3.160 

0.378 

0.041 

1.216 

0.176 

4 
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Figure 2: Protein-protein interaction network of DEGs representing 4942 interactions and 

498 nodes/proteins. 

All proteins with a degree value of > 63.62 were considered hubs following the 80-20 rule. It 

resulted in 55 proteins as hubs. Further, all proteins with a betweenness value > 0.02509 were 

considered bottlenecks using the same 80-20 rule, resulting in 14 bottlenecks. Seven proteins 

were found to have properties of both hub and bottleneck (Table 4) (Figure 3).  
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Table 4: List of key proteins resulted from network analysis   

Hub proteins MCM2, CDK1, TOP2A, KIF11, CCNB1, MKI67, CDC6, MCM5, 

CHEK1, MCM10, NDC80, TTK, BUB1B, CDC45, MCM6, 

EXO1, FN1, CXCL8, RFC4, MCM3, KNTC1, TRIP13, ASPM, 

MELK, FANCI, RAD51AP1, KIF2C, DTL, OIP5, SMC2, 

CENPE, KIF23, NCAPH, DLGAP5, CDCA8, KIF15, WDHD1, 

KIF20A, KIF4A, CEP55, NUSAP1, PRC1, RAD54L, GINS2, 

POLE2, CDKN3, HMMR, FOXM1, MMP9, PRIM1, SPAG5, 

HELLS, NCAPG2, EZH2, and FBXO5 

Bottleneck proteins TRIM16, FN1, MCM2, CXCL8, MMP9, MKI67, CCND1, 

TRIP13, FOS, ISG15, VCAM1, MCM5, IGF1, AGR2 

Common Hub and 
Bottleneck proteins  

MCM2, MKI67, MCM5, FN1, CXCL8, TRIP13 and MMP9 

List of Vulnerable 
proteins 

MCM2, MKI67, KIF11, CCNB1, CDC6, TTK, CDC45, BUB1B 

Potential key genes  MCM5, FN1, TRIP13, KIF11, TTK, CDC45, and BUB1B  

 

 
Figure 3: Venn diagram illustrating the number of common hubs and bottlenecks 
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4.3.2.1 Network vulnerability analysis identifies critical proteins with the 

property of altering the structural stability of the network 

Network vulnerability analysis was performed to assess the three topological properties such 

as APL, transitivity, and heterogeneity, which were calculated for the simulated network after 

deleting one node at once using a scatter plot, and outliers were identified to pinpoint the 

important proteins as potential drug targets for cervical cancer (Table 5) (Figure 4).  

Table 5: Network vulnerability analysis 

Gene name Average path 

length 

Gene name Transitivity Gene name Heterogeneity 

MCM2 3.197112 CDC45 0.658095124 MCM2 5.379136753 

FN1 3.188606 TTK 0.658436214 CDK1 5.388003605 

CXCL8 3.185894 EXO1 0.658443901 TRIP13 5.388986277 

MKI67 3.17975 KIF20A 0.658578871 TOP2A 5.391699113 

MMP9 3.177497 KIF23 0.658595808 CCNB1 5.393047379 

ISG15 3.176812 ASPM 0.65875306 CDC6 5.395715251 

AGR2 3.174701 DTL 0.658784218 CHEK1 5.396180819 

IGF1 3.174358 CDCA8 0.658894051 KIF11 5.396506068 

FOS 3.173623 BUB1B 0.65894888 MCM10 5.397525741 

CCND1 3.17349 KIF15 0.658949144 MCM6 5.397692815 

KIF11 3.170953 MELK 0.658972469 MKI67 5.39817741 

EZH2 3.1696 RAD51AP1 0.659088476 TTK 5.398372616 

MCM5 3.168432 CDC6 0.659095901 CDC45 5.398784435 

VCAM1 3.168157 KIF4A 0.65921154 BUB1B 5.399276182 

NDC80 3.168006 CCNB1 0.659270179 RFC4 5.400048301 
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Figure 4: Topological vulnerability assessment of cervical cancer network 
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Outliers are the most critical proteins of the network, which can initiate disease progression by 

changing the stability of the PPI network. Common outliers were identified from the three 

graphs, then common outliers from any two graphs taken at a time. The list of vulnerable 

proteins was found to be MCM2, MKI67, KIF11, CCNB1, CDC6, TTK, CDC45, and BUB1B. 

The list of the common hub and bottleneck proteins are found to be MCM2, MKI67, MCM5, 

FN1, CXCL8, TRIP13, and MMP9. Both vulnerable and common hub and bottleneck proteins 

were considered to prioritize potential candidates for the disease. Further, The reports of their 

involvement in cervical carcinogenesis were further validated by us in the Gene Cards database 

under MalaCards (Rappaport et al., 2017). It was found that MCM5, FN1, TRIP13, KIF11, 

TTK, CDC45, and BUB1B were not reported for their involvement in the disease, and the rest 

were reported for their involvement in cervical cancer.  

 
Figure 5: Candidate genes with their corresponding degree centrality values. 
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Further analysis was proceeded with these seven proteins as novel drug targets. Their 

corresponding degree centrality was represented as a bar plot (Figure 5). The key gene PPI 

network was visualized using Cytoscape (Figure 6). 

 
Figure 6: PPI network of key genes with two clusters. 
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The key genes identified from the microarray data analysis were verified with NGS data of 

cervical squamous cell carcinoma available at the TCGA data portal. Key genes identified in 

the study followed the same patterns of gene expression in NGS data also visualized as box 

plots (Supplementary Figure 2). 

 
Supplementary Figure 2: NGS data analysis: Relative expression profiles of key genes between tumor 

vs normal tissues of CC patients visualized as box plots (red colour = tumor & black colour = normal 

samples). It represents that their expression follows the same pattern in both microarray and NGS data. 

4.3.3 Essential candidate genes were associated with cell-cycle-related GO 

terms and KEGG pathways 

Gene ontology and KEGG pathway enrichment analysis of the seven key genes were 

investigated using the clusterProfiler R package. The proteins were mostly present in 

biological processes related to cell proliferation, cell division, cell cycle checkpoint, and 
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mitotic nuclear division. Also, the proteins were mainly involved in the cell cycle related 

KEGG pathways (Figure 7). p-value <0.05 were considered as statistically significant GO 

terms, and KEGG pathways and p-values were adjusted by Benjamini–the Hochberg method. 

 
Figure 7: Gene Ontology (GO) analysis of prioritized potential candidate genes (pvalue<0.05) 
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4.3.4 Validation of protein expression levels of key candidate genes via 

immunohistochemical data 
The protein expression levels of the candidate proteins were also verified using the 

immunohistochemistry mapping data in both normal and cancer tissues via the HPA database. 

The proteins MCM5, FN1 and KIF11 were highly detected with strong intensity levels in 

cervical cancer tissues. In normal cervix tissues, MCM5 has shown medium expression in 

squamous epithelial cells and was not detected in glandular cells. FN1 is not detected in normal 

tissue. KIF11 has high expression in glandular cells and medium expression in squamous 

epithelial cells (Supplementary Figure 3a). Likewise, CDC45, TRIP13, and TTK proteins have 

medium expression levels with moderate intensity in cancer tissues. CDC45 and TRIP13 were 

not detected in glandular cells and had low expression in squamous epithelial cells of normal 

cervix tissue. TTK has low expression in both glandular and squamous epithelial cells 

(Supplementary Figure 3b). The BUB1B protein expression data was unavailable in the HPA 

database for both normal cervix and tumor tissues. From these results, it can be observed that 

higher protein expression patterns were significantly related to the prognosis of cervical cancer 

patients and can be explored as potential candidate molecules for the patient’s survival. 

 4.3.5 Prognostic performance of the candidate genes shows that their 
expression negatively correlated with overall survival  
Kaplan–Meier survival curve and log-rank test assessed the candidate genes prognostic 

significance in cervical cancer patients. Cervical cancer data available at TCGA contains 304 

patient samples with clinical information. The cancer patient’s samples were grouped into high 

and low groups on the basis of median expression values. Overall survival of patients depends 

on the expression levels of the respective prognostic candidate genes.  

It was observed that candidate gene expression levels were negatively correlated with overall 

survival with a statistical significance of p-vlaue< 0.05. Higher expression of the FN1 gene and 

lower expression of the MCM5, KIF11, and CDC45 genes have poor prognosis in CC patients 

(Figure 8).  
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Figure 8: Prognostic significance of candidate genes in cervical cancer patients. Kaplan-Meier plot 

representing overall survival analysis of survival difference between high and low-risk cervical cancer 

patients from the TCGA datasets. The X-axis represents overall survival time in months and the y-axis 

represents the probability of survival. Pvalues<0.05 were considered statistically significant prognostic 

factors for cervical cancer. 

4.4 Discussion 
Cancer is a heterogeneous and genetic disease involving a series of alterations in the genetic 

makeup, causing malignant transformation in disease progression (Yu & Henneberg 2018). 
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The present study focuses on cervical squamous cell carcinoma, a subtype of cervical cancer, 

which holds the fourth rank with other cancers among women all over the world. To understand 

the genetic changes occurring during the progression of cervical carcinoma and to identify 

novel drug targets, we used available bioinformatics methods and in-house code to extract 

meaningful information from the microarray gene expression profiles and disease-related 

protein-protein interaction network.  

Our findings related to the candidate genes involved in cervical squamous cell carcinoma 
progression allow experimental researchers to investigate their role as a critical gene in the 

targeted therapy. Various studies reported extensive utilization of complex network properties 

to understand the role of key molecules in multiple diseases. Analysis of complex network 

parameters in the biological networks were found to have the edge over other available methods 

for identifying candidate genes. An integrative study was performed to propose key molecules 

using differential expression, protein-protein interaction network, and functional enrichment 

analysis.  

In the present study, differential expression analysis was performed on NCBI GEO datasets 

(GSE7803, GSE63514, and GSE9750) of cervical cancer to identify significantly expressed 

genes in the tumor samples with their matched normal samples. Statistical filtering identifies a 

total of 544 genes as differentially expressed genes (DEG). Among 544 genes, 248 were found 

to be upregulated, and 296 were downregulated genes. Further, protein-protein interactions 

(PPI) of significantly differentially expressed genes were extracted by mapping DEGs on the 

reconstructed human protein-protein interaction network. We performed network analysis and 

calculated complex network parameters using in-house code to filter the most valuable proteins 

in the PPI network that can be used as a biomarker for the disease.  

The key gene PPI network consists of 174 nodes and 558 edges with two clusters that represent 

molecular complexes in the PPI network. FN1 protein with 79 nodes and 78 edges forms one 

cluster and the rest six proteins (MCM5, TRIP13, KIF11, TTK, CDC45 and BUB1B) form 

another cluster with 119 nodes and 481 edges in the network. These two clusters were densely 

connected in their respective networks with each other by interacting with other proteins which 

are part of both the clusters, such as MCM6, MKI67, KIF2C, ANXA1, RBL1, RFC4, BAG2, 

MCM3, MCM2, CDKN2A, CDK1, TOP2A, MCM2, KRT19, VCAM1, CCND1, NUP155 and 
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KRT2. This set of proteins acts as linkers between the two key protein clusters to maintain 

structural integrity in the protein-protein interaction network related to cervical squamous cell 

carcinoma. KEGG pathway analysis reports for these proteins were associated with cell cycle, 

DNA replication, cellular senescence, viral carcinogenesis, platinum drug resistance and the 

p53 signaling pathway. Also, highly enriched in the gene ontology terms of biological 

processes such as the G1/S transition of the mitotic cell cycle, DNA replication, DNA 

conformational change, DNA duplex unwinding, regulation of myeloid cell apoptotic process, 

etc.  

MCM5 (Minichromosome Maintenance Complex Component 5) is part of the MCM family 

and plays a vital role in the initiation of DNA replication. MCM5 is associated with several 

cancers, such as breast cancer (Eissa et al., 2015), ovarian cancer (Levidou et al., 2012), oral 

squamous cell carcinoma (Yu et al., 2014), etc.; also, few studies highlighted it’s role in 

cervical cancer tumor progression (Qing et al., 2017 & Li et al., 2018). FN1 (Fibronectin 1), a 

glycoprotein belonging to the FN family, plays various cellular activities such as cell migration, 

cell adhesion, and cytoskeletal organization in multiple diseases (Pankov & Yamada 2002; 

Mao et al., 2005 & Gao et al., 2016). In various tumors, such as osteosarcoma, nasopharyngeal 

carcinoma, esophageal cancer, and ovarian cancer, FN1 is a critical tumor-related gene (Jiang 

et al., 2017; Song M et al., 2017; Song G et al., 2017 & Lou et al., 2013). TRIP13 (Thyroid 

Hormone Receptor Interactor 13) is associated with the AAA (ATPase family associated with 

various cellular activities) protein superfamily and plays crucial roles in regulating various 

cellular processes such as chromosome synapsis, DNA break repair and recombination, and 

checkpoint signaling (Miniowitz-Shemtov et al., 2015 & Vader 2015). TRIP13 is one of the 

critical genes, acting as a tumor susceptibility locus, related to Chromosome instability (CIN) 

in human tumors and is associated with poor survival in various tumors (Zhou et al., 2013; 

Wang et al., 2014; Yost et al., 2017; Carter et al., 2006 & Lu et al., 2019).  

KIF11 (Kinesin Family Member 11) is a motor protein essential for spindle dynamics, 

including centromere separation, chromosome positioning, and bipolar spindle establishment 

during mitosis (Rapley et al., 2008 & Ferenz et al., 2010). Previous reports suggest that KIF11 

is associated with lung cancer, glioblastoma, malignant mesothelioma, and gastric cancer 

(Schneider et al., 2017; Venere et al., 2015; Kato et al., 2016; Imai et al., 2016 & Daigo et al., 
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2018). TTK (Threonine and Tyrosine Kinase), also known as human monopolar spindle 1 

(HMPS1), a mitotic protein kinase, plays a crucial role in regulating cell division via mitotic 

checkpoints and chromosome attachment. Overexpression of TTK affects chromosomal 

instability, further resulting in tumor progression (Benzi et al., 2020; Silva et al., 2018 & Lim 

et al., 2017). It is associated with various cancers, such as breast cancer, glioblastoma, thyroid 

cancer, and is a potential candidate for gastric cancer (Huang et al., 2020 & Kaistha et al., 

2014). CDC45 (Cell Division Cycle 45) belongs to the multiprotein complex along with 

Cdc6/Cdc18 and DNA polymerase, which are crucial for the initiation of eukaryotic DNA 

replication (Masai et al., 2005). Earlier research found that CDC45 is an antigen that promotes 

cell growth and is linked to the development of cancerous tumors (Pollok et al., 2007 & He et 

al., 2021). 

Furthermore, it is involved in cervical cancer prognosis, which indicates the reliability of our 

findings (Qiu et al., 2020). BUB1B (BUB1 Mitotic Checkpoint Serine/Threonine Kinase B) is 

associated with the spindle assembly checkpoint family member of proteins. BUB1B is 

associated with various biological processes, including chromosome segregation, 

differentiation of post-mitotic neurons, DNA repair, and ciliogenesis. Previous reports 

indicated that this protein has a crucial role in tumor progression and prognosis in multiple 

cancers (Sekino et al., 2021). In addition to the findings from the study, all the potential 

prognostic candidate genes can be subjected to experimental studies to understand their role in 

the progression of cervical carcinoma. 

4.5  Conclusion 

To summarize, systems biology methods were applied to microarray data of cervical cancer 

and key genes that are involved in the progression and survival of the disease were identified. 

These genes are MCM5, FN1, TRIP13, KIF11, TTK, CDC45, and BUB1B. They are 

associated with cell cycle regulation, extracellular matrix remodeling, and chromosome 

segregation. These genes have prognostic significance for cervical cancer patients, as they can 

predict the outcome and response to treatment. These genes could be potential targets for 

developing new treatments for the disease, as they can modulate the biological processes that 

are altered in cervical cancer cells. 

 



 
 
 
 
 
 
 
 
 
 

    Chapter 5 

Analysis of integrative networks to uncover 
regulatory elements associated with cervical 

cancer progression 
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5.1  Introduction 

Interactome networks are graphs of the physical interactions among cellular components, such 

as proteins, DNA, RNA, metabolites, and drugs. These interactions are measured using several 

techniques and aggregated into a single network that demonstrates the dynamics and 

complexity of the biological system. Interactome networks facilitate our understanding of the 

execution, regulation, and coordination of biological functions by many molecular entities, as 

well as the ways in which genetic or environmental changes impact these processes (Vidal et 

al., 2011 & Zanzoni et al., 2009). 

Interactome data can be of different types, including protein-protein and protein-DNA 

interactions, metabolic reactions, and signaling pathways. Interactome networks have some 

common patterns and principles, such as scale-free distribution, small-world phenomenon, 

network motifs, and network evolution. Interactome networks can be used to study disease 

phenotypes, such as disease modules, disease genes, disease pathways, network-based 

stratification, network perturbations, and network-based drug discovery (Caldera 2017 & 

Yeger-Lotem 2015). 

Understanding the gene expression pattern among the patients is essential to predict diagnostic 

and prognostic gene signatures that can be used to diminish the outcome of the disease in 

combination with interactome networks (Oany AR et al., 2021). However, interactions between 

coding and non-coding RNAs affected by microRNAs are also a part of the intricate process 

of gene regulation, including transcription and post-transcriptional processes. These 

interactions form protein-protein interaction and gene regulatory networks that affect various 

cellular processes and influence cancer development and response to therapy. Gene regulatory 

networks influence development of cancer by changing the oncogenes and tumor suppressors 

expression, promoting or inhibiting cell proliferation, survival, differentiation, and migration, 

and modulating the tumor microenvironment and immune response.  

A novel integrative networks approach was employed to construct a cancer-specific gene 

regulatory network and to identify unique genes and sub-networks that are enriched or depleted 

in certain network motifs and hub proteins. These genes may have therapeutic potential for 

cancer treatment, but their interactions with tumor cells and stromal cells need to be better 
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understood. In interaction networks, centrality metrics are widely used to find the most 

influential nodes. Different centrality measures quantify various aspects of node importance, 

such as degree, closeness, betweenness, and eigenvector centrality. Hubs and bottlenecks are 

key nodes in interaction networks. Hubs have a high degree centrality, while bottlenecks have 

high betweenness centrality. They influence cellular processes and pathologies such as 

oncogenesis, diabetes mellitus, and neurodegeneration (Barabási and Oltvai, 2004). For 

example, hubs modulate gene transcription, signal transduction, and metabolic flux, and their 

alterations can induce aberrant cell proliferation, survival, and differentiation. Bottlenecks 

facilitate information transfer between network modules or communities, and their perturbation 

can compromise cellular coordination and regulation (Jeong et al., 2001). Therefore, 

identifying and targeting hubs and bottlenecks can provide novel insights and strategies for 

disease diagnosis, prognosis, and therapy. 

Next-generation sequencing (NGS) technology has revolutionized our understanding of the 

human genome, revealing its remarkable complexity and diversity. Among the various types 

of RNA molecules that are transcribed from the genome, ncRNAs constitute a huge and 

functionally heterogenous group. ncRNAs include miRNAs and lncRNAs, which are 98% of 

the total RNA in the cell and play crucial roles in various biological processes (Baltimore, D. 

2001). ncRNAs regulate genes and are important for cancer research as biomarkers and targets. 

One of the ways that lncRNAs can be used as biomarkers is by measuring their expression 

levels in different tissues or biological fluids, such as blood, urine, or saliva. For instance, 

lncRNA HOTAIR is upregulated in multiple cancers and can be detected in plasma samples of 

cancer patients (Hajjari, M., & Salavaty, A. 2015). Another way that lncRNAs can be used as 

biomarkers is by analyzing their interactions with other molecules, such as miRNAs, mRNA, 

or DNA. For instance, lncRNA MALAT1 can bind to miR-200 family members and modulate 

their activity in breast cancer (Jo, Hyein et al., 2022). Circular RNAs (circRNAs), long ncRNAs 

(lncRNAs) and pseudo-genes (Ψ-genes) can regulate messenger RNAs (mRNAs) in different 

ways. Some of them form RNA–RNA and lncRNA-RNA complexes that affect transcription 

in the nucleus, while others increase mRNA stability in the cytoplasm.  

Moreover, the competing endogenous RNA (ceRNA) mechanism involves both coding and 

non-coding RNAs that interact with microRNAs (miRNAs) (Saleembhasha & Mishra 2019; 
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Ala 2020). The ceRNA hypothesis states that ncRNAs that contain miRNA response elements 

(MREs), such as lncRNAs, circular RNAs (cirRNAs), and some pseudogenes, can act as 

ceRNAs to sequester miRNAs and modulate their target mRNAs (Salmena L et al., 2011). By 

competing for a limited pool of miRNAs, lncRNAs can influence gene expression at the post-

transcriptional level. miRNAs bind to the 3'-UTRs of target mRNAs and regulate gene 

expression by causing mRNA degradation or translational repression. These were implicated 

in multiple stages of cancer development and progression, such as cell proliferation, invasion, 

apoptosis, metastasis, and angiogenesis (Bartel 2004). Numerous studies have supported this 

hypothesis and demonstrated that lncRNAs, mRNAs, and other RNAs can act as natural 

miRNA sponges and influence the expression of multiple target genes (Chen, W et al., 2019). 

This study aimed to understand the complex regulatory interactions among protein-coding and 

non-coding entities in cervical cancer by constructing gene expression-based cancer-specific 

regulatory networks and protein-protein interaction networks. The topological studies 

identified key molecules and pathways associated with the disease's progression.  

Materials and Methods 

5.1.1 Differential expression analysis 

Differential expression analysis on the gene expression dataset of cervical squamous cell 

carcinoma was performed to filter differentially expressed genes (DEmRNAs), 

miRNAs(DEmiRNAs) and lncRNAs (DElncRNAs). The gene expression dataset of cervical 

squamous cell carcinoma was dowloaded from The Cancer Genome Atlas (TCGA-CESC). 

This dataset contains 304 tumor samples and 3 normal samples. Additionally, 19 samples of 

normal cervical gene expression data were retrieved from the Genotype-Tissue Expression 

(GTEx) data portal. Duplicate or irrelevant data from the dataset was removed during pre-

processing of the dataset. Differential expression analysis was done using the DESeq2 R 

package (Love et al., 2014). Significantly differentially expressed mRNAs were screened after 

removing genes with low read counts among cervical tumor and normal tissue samples. 

Further, the above process was performed to filter DEmiRNAs as well as DElncRNAs. 
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5.1.2 Gene co-expression network construction and Identification of co-expressed 
modules 

Significantly differentially expressed genes (DE-mRNA) were used to construct a weighted 

gene co-expression network using the WGCNA R package to find genes with strong 

correlations across the samples (Langfelder & Horvath, 2008). Quality control was performed 

on the expression data and outlier samples were removed before proceeding to the detection of 

modules. Later, a scale-free adjacency matrix that only retained strong correlations, ignoring 

weak ones, was obtained by considering a soft threshold power of 6. The adjacency matrix was 

transformed into a topological overlap matrix (TOM). Co-expressed gene modules were 

detected by applying hierarchical clustering and dynamic tree cut using the dissimilarity of 

module eigengenes (1-TOM) as a distance measure. The minimum module size was set to 30 

and modules with similar expression profiles were merged using a threshold of 0.25 through 

hierarchical clustering of module eigengenes. 

5.1.3 Protein-protein interaction network analysis 

To reconstruct the PPI network, all the available interactions of human from various databases 

such as APID, DIP, HitPredict, PIP, i2D, BioGrid, MINT, STRING, and IntAct were retrieved. 

The proteins involved in PPIs were mapped to official gene symbols first, then the interactions 

were merged. Next, only the interactions where both the interacting proteins were part of 

identified DEGs were extracted. Self-loops and duplicate edges were removed from the 

primary network to get the final simplified network.  

PPI network of both dysregulated genes and significantly correlated co-expressed module with 

clinical feature HPV status were extracted from the reconstructed human PPI network. To 

identify critical genes in the dysregulated PPI networks, i.e., core PPI network and module-

specific PPI network, network topological structure analysis was performed. Based on the 

network's degree and betweenness centrality properties, the most important genes that 

influence its structure and function were selected. 

Additionally, the topological features of the core PPIN and co-expressed module-related PPIN 

were evaluated using Pearson correlation. Further, to identify highly influential genes in the 

network, the 80/20 rule or Pareto principle was employed. The pareto principle states that the 
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top 20% of the average value is responsible for 80% of the population's actions. The PPI 

network construction and analysis were carried out using the igraph R package and visualized 

with Cytoscape (Shannon et al., 2003).   

5.1.4 Module – clinical feature associations 

A correlation analysis was conducted to determine the relationship between the co-expressed 

modules and the clinical characteristics of cervical cancer (CC) patients, using various clinical 

features as traits. The clinical features included HPV status, age at diagnosis, clinical stage, 

race, neoplasm histologic grade, menopause status, pathology T/N/M stages and 

lymphovascular involvement. A stringent filter was applied to select the modules with a high 

correlation and a low p-value with the clinical features. The biological significance of these 

modules was further investigated. 

5.1.5 Integrative regulatory network construction and analysis 
5.1.5.1 lncRNA-mRNA interaction prediction and regulatory network analysis 

The regulatory roles of the differentially expressed lncRNAs in CESC patients were 

investigated by performing lncRNA–target prediction using the LncTarD database (Zhao et al., 

2023). This database contains 8,360 experimentally validated lncRNA–target interactions 

across 419 disease subtypes and their clinical implications. 

The predicted interactions were filtered to retain only those involving both differentially 

expressed elements (lncRNAs and mRNAs) in CESC patients. A CESC-specific dysregulated 

lncRNA-mRNA co-expression network was constructed on the basis of these interactions and 

its topological properties were analyzed using the igraph R package. The degree centrality and 

betweenness centrality of each node, which are measures of how connected and influential a 

node is in the network, were calculated to find the critical molecular players in the network. 

The nodes with the highest values of these metrics were selected as the key molecular players 

in the network. The network with key molecular players was also visualized using Cytoscape. 

The potential binding sites of the significantly differentially expressed mRNAs and lncRNAs 

were predicted using the human lncRNA-mRNA interaction database (http://rtools.cbrc.jp/cgi-

bin/RNARNA/index.pl) (Terai et al., 2016). SUMENERGY plots were generated using R. 
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5.1.5.2 lncRNA-miRNA-mRNA ceRNA network construction and analysis 

The function of lncRNA as ceRNA in gene regulation was elucidated by performing target 

prediction for the differentially expressed molecular entities. The lncRNA-miRNA interaction 

pairs were obtained from the miRcode database, which contains interactions that are 

experimentally validated and computationally predicted (Jeggari et al., 2012). The 

differentially expressed miRNAs (DEmiRNAs) target genes were predicted by integrating the 

interaction data from three miRNA target databases: miRDB, miRTarBase, and TargetScan 

(Chen & Wang 2020; Huang et al., 2021; McGeary et al., 2019 & Agarwal V et al., 2015). 

Furthermore, the hub mRNAs were obtained from the PPIN of the module-specific genes. The 

CC-specific dysregulated lncRNA-miRNA-mRNA network was constructed using these 

interaction partners. The significant molecular entities in the ceRNA network were identified 

by performing network analysis using the igraph R package and visualized with Cytoscape. 

5.1.6 Functional enrichment analysis 

Key genes and lncRNAs identified from regulatory networks were assessed for their functions 

through gene ontology terms and KEGG pathways. The clusterProfiler R package was used to 

conduct functional enrichment analysis. A p-value of 0.05 was the basis for filtering significant 

GO terms and KEGG pathways (Wu et al., 2021).   

5.2  Results 
5.2.1 Differentially expressed protein-coding genes and non-coding RNAs (miRNA & 

lncRNA) 

The differential expression analysis on the expression profiles of protein-coding genes 

(mRNA) and non-coding RNA (miRNA & lncRNA) in cervical cancer tumor samples and 

normal samples was performed using the processed gene expression dataset. Significantly 

differentially expressed (DE) genes were identified using criteria of absolute log2 fold change 

> 2 and adjusted p-value < 0.01. 3661 differentially expressed mRNAs (DEmRNAs) in tumor 

samples were identified, including 1801 upregulated and 1860 downregulated. Similarly, 851 

differentially expressed lncRNAs (DElncRNAs) were found, comprising 542 upregulated and 

309 downregulated. In addition, 172 differentially expressed miRNAs (DEmiRNAs) were 

detected, consisting of 103 upregulated and 69 downregulated [Figure 1]. 
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Figure 1: Differential expression analysis: Number of genes identified as differentially expressed 

among protein-coding genes and non-coding entities.  

5.2.2 Identification of co-expressed modules from gene co-expression network 

Weighted gene co-expression network analysis (WGCNA) was used to build a network of 

genes based on their pairwise correlations in order to elucidate the co-expression patterns 

among the genes from the differential mRNA expression data. The scale-free topology criterion 

was satisfied by a soft threshold power of 6, and 25 gene modules with distinct co-expression 

profiles were obtained [Figure 2]. A unique colour was assigned to each module, and the grey 

module stored genes that did not have co-expression patterns. Modules with similar expression 

patterns were merged by performing dynamic tree-cut analysis. Eigengene adjacency heatmap 

was generated by taking all the pairwise correlations among the modules [Figure 3]. The 

number of genes in each module was shown in barplot [Figure 4]. 
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Figure 2: Weighted gene co-expression network construction: A) Scale-free topology plot for all the 

pairwise correlations B) Hierarchical clustering of co-expressed modules  
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Figure 3: A) Cluster dendrogram with module colours     B) Eigengene adjacency heatmap of all the 
pairwise correlations among the modules 
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Figure 4: detected modules based on dynamic tree cut algorithm with no.of genes with co-expression 

patterns 

 

5.2.3 Protein-protein interaction network analysis 

Cervical cancer progression-related PPI network consists of 2487 nodes and 11574 

interactions, that is extracted from the core human PPI network consisting of 51209 nodes with 

8,52,432 edges [Figure 5a]. Network topological structural analysis of the PPI network results 

in the identification of 151 proteins as hubs and 131 as bottlenecks. It was observed that 92 

proteins possessed both hub and bottleneck properties [Figure 5b]. Hubs and bottlenecks are 

important in protein-protein interaction networks because they are the proteins that have the 

most interactions with other proteins. Hubs are proteins that have many interactions with other 

proteins, while bottlenecks are proteins that connect different parts of the network together. In 

diseases, these hubs and bottlenecks can be targeted to help treat the disease.  

For the module-specific PPI network, we found three significant modules: turquoise (884 nodes 

and 2312 edges), blue (138 nodes and 128 edges), and brown (44 nodes and 70 edges). These 

modules may represent distinct biological processes or pathways related to the DEmRNAs. 
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Figure 5a: Dysregulated PPI network with hubs and bottlenecks represented with varying node size 

 

 
Figure 5b: Venn diagram illustrating the no. of hubs and bottlenecks. 
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5.2.3.1 Topological structural properties of the PPI network 

To identify/assess the proteins that influence overall network structural stability, topological 

structural properties such as degree, betweenness and clustering coefficient centralities were 

calculated. The PPI network's degree distribution is scale-free and follows the power law. It 

indicates that higher connections are held by a small number of nodes in the network and less 

connections are held by a higher number of nodes. These essential genes are functionally 

significant in multiple pathways and contribute to the network's resilience against external 

perturbations. Degree vs degree distribution, degree vs betweenness and degree vs clustering 

coefficient properties were compared to understand the biological network behavior. We 

observed that dysregulated network follows properties of biological networks,  degree vs 

degree distribution follows power-law in nature, and degree vs betweenness are positively 

correlated, indicating that high degree nodes and nodes with high betweenness are critical for 

information flow in network and degree vs clustering coefficient are negatively correlated that 

shows that a higher clustering coefficient values may indicate the presence of functional 

modules or pathways [Figure 6;7]. 

Further, the cervical cancer gene database (CCDB) was used to investigate genes with 

experimental validation and not well documented for the disease progression. Out of 92 genes 

that were both hubs and bottlenecks, having higher connections with other genes and 

controlling information flow between the genes, 24 genes were well-established with the 

disease progression, and no reports were found for the remaining 68 genes. These genes were 

enriched in significant gene ontology terms of biological processes (1048 terms) and significant 

KEGG pathway terms (78 terms). 



C
ha

pt
er
	5
:	A

na
ly
si
s	
of
	in

te
gr
at
iv
e	
ne

tw
or
ks
	to

	u
nc

ov
er
	re

gu
la
to
ry
	e
le
m
en

ts
	a
ss
oc

ia
te
d	
w
it
h	
ce
rv
ic
al
	c
an

ce
r	p

ro
gr
es
si
on

	 

 
 

79 

 
Figure 6: Topological properties of core PPI network: The X-axis indicates degree and the Y-axis indicates 

relative frequency for the left panel; clustering coefficient in the middle panel; betweenness in the right panel 

 
Figure 7: Topological properties of Turquoise module network: The X-axis indicates degree and the Y-axis 

indicates relative frequency for the left panel; clustering coefficient in the middle panel; betweenness in the 

right panel 

5.2.4 Highly correlated co-expressed modules from Module – clinical feature 

associations 

Module-clinical feature relationships analysis identified modules that observed a significant 

correlation with HPV status: turquoise (r=-0.34, p=1e-09), yellow (r=-0.18, p=0.002), brown 

(r=-0.18, p=0.002), blue (r=-0.15, p=0.007), lightcyan (r=-0.16, p=0.004), pink (r=-0.16, 

p=0.004), and lightyellow (r=-0.13, p=0.02) [Figure 8]. These modules may contain 

differentially expressed mRNAs that play critical roles in regulating cervical cancer 

tumorigenesis. GO terms and pathways were assessed for each module to elucidate their 

biological functions and pathways. 
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Figure 8: Module-trait associations 

5.2.5 Integrative regulatory network analysis 

Gene regulatory networks of direct/indirect and sponging mechanisms were analyzed to 

understand the transcriptional and post-transcriptional gene regulation in the disease state. In 

the below sections, the direct/indirect regulation of the lncRNA-mRNA co-expression network 

is explained in detail, along with a discussion on the ceRNA network of lncRNA-miRNA-

mRNA via the miRNA-mediated sponging mechanism. 

5.2.5.1 Integrative lncRNA-miRNA-mRNA ceRNA network analysis 
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The competing endogenous RNA (ceRNA) regulatory network is composed of 98 nodes and 

101 edges, involving 29 lncRNAs, 3 miRNAs and 66 mRNAs. The network consists of three 

subnetworks, in which each miRNA plays a central role by interacting with both lncRNAs and 

mRNAs. The subnetworks are interconnected by 5 lncRNAs (KCNQ1OT1, DLEU1, SNHG14, 

LINC00111 and TMEM72-AS1) and one mRNA (FSCN1), which act as bridges for 

information transfer [Figure 9].  

 
Figure 9: lncRNA-miRNA-mRNA ceRNA network of dysregulated coding and non-coding entities 
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To determine the key hubs that have critical functions in the network, various centrality 

measures were computed and found that lncRNAs KCNQ1OT1, SNHG14 and DLEU1 

regulate several coding genes associated with different biological processes through miRNAs. 

The sponging mechanism refers to the process by which lncRNAs bind to miRNAs and prevent 

them from targeting mRNAs, thus modulating gene expression. In addition, DEmiRNAs hsa-

miR-107, hsa-miR-184 and hsa-miR-429 play crucial roles in three subnetworks as central 

node. 

 

5.2.5.2 Integrative lncRNA-mRNA regulatory network analysis 

The lncRNA-mRNA regulatory network has 152 nodes and 206 regulatory interactions. 

Among the nodes, there are 50 lncRNAs and 102 mRNAs. The networks are directed, meaning 

that information flows from one node to another. The essential genes and lncRNAs, based on 

the number of connections they have were found by using degree centrality. Indegree is the 

incoming connections of a node, and outdegree is outgoing connections of a node. The genes 

with high indegree and outdegree are important for the network stability and function. These 

genes are EZH2, CDH1, BCL2, MMP9, ZEB1, MMP2 and VIM. They are targeted by many 

lncRNAs and are involved in key pathways. We also found the lncRNAs with high outdegree, 

which are MALAT1, CDKN2B-AS1, MEG3, HOTTIP, CYTOR, FEZF1-AS1 and FENDRR. 

Some of these lncRNAs (MALAT1, CDKN2B-AS1) have been linked to cervical cancer, while 

others have not been reported with the hub genes [Figure 10]. Interactions were further 

explored using the lncRNA-mRNA interaction database, revealing potential interaction site 

and binding energy values [Figure 11]. 
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Figure 10: lncRNA-mRNA regulatory network: the top panel shows inward interaction towards 

protein-coding genes; the bottom panel shows outward interaction going from lncRNAs 
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Figure 11: lncRNA-mRNA interaction and their binding sites: The binding energies of the 

corresponding complexes (sumenergy) indicate the strength of the interactions, with more negative 

binding energy implying stronger association and more favorable or stable interaction. A)MALAT1 

B)CDKN2B-AS1 C)MEG3 D)HOTTIP E)CYTOR/LINC00152 F)FEZF1-AS1 G)FENDRR 

 

5.2.6 Functional enrichment analysis 

GO term and KEGG pathway analyses revealed that these genes participate in various 

biological processes such as regulating the G2/M phase transition of the cell cycle, positively 

regulating cell cycle processes, regulating nuclear division, cell cycle checkpoint, and mitotic 
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nuclear division. Moreover, several KEGG pathways related to these genes were also 

identified, such as cell cycle, Ras signaling pathway, viral carcinogenesis, proteoglycans in 

cancer, cellular senescence, glioma and prostate cancer [Figure 12]. These findings suggested 

that the key genes might play critical roles in the cell cycle regulation and the development of 

various cancers. Therefore, these genes might serve as potential biomarkers or therapeutic 

targets for cancer diagnosis and treatment. 

 
Figure 12: Gene Ontology terms and KEGG pathway analysis 

5.3  Discussion 
Cervical cancer is a common and deadly gynecological malignancy that affects women 

worldwide. One of the emerging mechanisms that regulates cervical cancer progression is the 

involvement of ncRNAs, such as miRNAs, lncRNAs, and circRNAs. These ncRNAs can 

modulate various cellular processes such as apoptosis, cell cycle, angiogenesis, invasion, and 

metastasis, either directly or indirectly. In this study, a network-based approach was applied to 

explore the key regulatory interactions and genes that influence tumor initiation and 

progression. Genes were grouped into modules by WGCNA method on the basis of their 

expression patterns and correlation with clinical traits. 6 co-expressed modules that were highly 

expressed and related to clinical traits were found. The turquoise module had the high number 

of genes. The PPI network analysis confirmed that the networks followed the scale-free 
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property of biological networks. Hubs and bottlenecks were also identified from the PPI 

networks and the target-gene interaction network. 

The regulatory network analysis based on centrality measures revealed several genes as hubs, 

which also had regulatory interactions with ncRNAs, namely miRNA and lncRNA. Among 

these, some key mRNAs were EZH2, CDH1, BCL2, MMP9, ZEB1, MMP2, and VIM. These 

mRNAs are associated with various biological processes such as apoptosis, cell proliferation, 

invasion, and metastasis. Some important lncRNAs were MALAT1, CDKN2B-AS1, MEG3, 

HOTTIP, CYTOR, FEZF1-AS1, and FENDRR. These lncRNAs act as regulators of gene 

expression by modulating the chromatin structure, transcriptional machinery, or post-

transcriptional events. Further, we identified three miRNAs, hsa-miR-107, hsa-miR-184 and 

hsa-miR-429, that are involved in the regulation of key mRNA and lncRNA molecules. These 

were the main components of the lncRNA-mRNA interaction network and lncRNA-miRNA-

mRNA ceRNA regulatory network, which could provide better understanding of the molecular 

mechanisms of cervical cancer development and progression. 

EZH2, a histone methyltransferase, has a vital role in tumor progression by promoting cell 

survival, proliferation, and invasion (Gan et al., 2018). It is upregulated in various cancer types, 

making it a potential target for anticancer therapy (Shen et al., 2013). CDH1, a tumor 

suppressor gene, is frequently hypermethylated in multiple cancers such as breast (Huang et 

al., 2015), head and neck (Shen et al., 2016), and esophageal (Ling et al., 2011). BCL-2 is 

implicated in the progression of various cancers, including prostate, breast, and chronic 

lymphocytic leukemia (Adams and Cory, 2018). Its overexpression in cancer cells inhibits 

apoptosis, promoting their survival and growth (Radha and Raghavan 2017). MMP2 and 

MMP9, belongs to the matrix metalloproteinase (MMP) family, has a key role in cancer 

progression, particularly in angiogenesis, tumor growth, and metastasis (Klein et al., 2004). In 

colorectal cancer, MMP2 and MMP9 are involved in epithelial-to-mesenchymal transition and 

immune response, suggesting their potential as biomarkers (Buttacavoli et al., 2021). ZEB1 is 

a key regulator of epithelial-to-mesenchymal transition (EMT), which is a process that 

contributes to cancer progression and metastasis (Caramel et al., 2018). ZEB1 influences the 

expression of genes related to EMT, stem cell properties, immune escape, and epigenetic 

modifications. ZEB1 also contributes to the silencing of E-cadherin, a tumor suppressor gene, 
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through its interaction with chromatin-modifying enzymes (Zhang et al., 2019). Vimentin, an 

intermediate filament protein, plays a crucial role in tumor progression, particularly in tumor 

growth promotion, invasion, and metastasis (Satelli and Li 2011). This is further supported by 

the finding that vimentin is overexpressed in various cancers, including colorectal cancer, 

where it induces tumor growth and metastasis via epithelial-to-mesenchymal transition (EMT) 

(Strouhalova et al., 2018) 

MALAT1 is a lncRNA associated with various malignancies (Hao et al., 2023). It is 

upregulated in lung, breast and colorectal cancers. It promotes cancer cell proliferation, 

migration and invasion. It is related to the poor prognosis and promotes cancer cell migration 

and metastasis by inducing epithelial-mesenchymal transition (EMT) in lung cancer (Shen et 

al., 2015). It has been implicated in breast cancer and has been the subject of diagnostic and 

prognostic studies (Jiang et al., 2020). It is closely related to the cell proliferation, 

tumorigenicity, and metastasis in colorectal cancer (CRC). It targets various signaling 

pathways and microRNAs, playing a pivotal role in CRC pathogenesis (Xu et al., 2022). It has 

been shown to impact the differentiation of effector and memory CD8+ T cell subsets by 

mediating epigenetic repression of memory-associated genes in terminal effector cells (Kanbar 

et al., 2022). MALAT1 has been found to modulate Smad1, contributing to colorectal cancer 

progression by regulating autophagy (Zhou et al., 2021). CDKN2B-AS1 was found to be 

associated with atherosclerosis, diabetes, and alzheimer's disease. It has been found to be 

downregulated in glioma and implicated in the disease's progression (Bi et al., 2018).  

MEG3 has been found to be downregulated in hepatocellular carcinoma, glioma, and ovarian 

cancer and acts as a tumor suppressor by inhibiting cancer cell proliferation and inducing 

apoptosis (Xu et al., 2022). HOTTIP is upregulated in colorectal, pancreatic and ovarian 

cancers and promotes cancer cell proliferation, migration, and invasion (Liu et al., 2020). 

CYTOR has been found to be upregulated in breast, lung and colorectal cancers and promotes 

cancer cell proliferation and migration (Tian et al., 2021). FEZF1-AS1 has been associated 

with glioma, breast cancer, and colorectal cancers and promotes cell proliferation and 

migration (Zhou et al., 2019). FENDRR is associated with lung, colorectal, and ovarian 

cancers. It has been shown to act as a tumor suppressor by inhibiting cell proliferation and 

inducing apoptosis (Zheng et al., 2021; Jiang et al., 2020). 
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miR-107 acts as an oncogene, promoting the growth and metastasis of gastric cancer by 

downregulating FAT4 and activating the PI3K/AKT signaling pathway. On the other hand, It 

can also act as a tumor suppressor, inhibiting the proliferation and invasion of prostate cancer 

by targeting CDC42 and suppressing the Rho GTPase signaling pathway (Chen et al., 2021; 

Fan et al., 2020). miR-184 has been reported by several studies that it acts as a tumor suppressor 

in various types of cancer, such as nasopharyngeal carcinoma, colorectal cancer, and lung 

adenocarcinoma, by targeting oncogenic factors or signaling pathways involved in 

tumorigenesis (Wu et al., 2017; Rao et al., 2022). miR-429 plays a crucial role in maintaining 

epithelial phenotype and preventing epithelial-mesenchymal transition (EMT), facilitating 

tumor invasion and metastasis. It is reported to act as a tumor suppressor or an oncogene in 

various cancers, including endometrial, gastric, ovarian and colorectal cancers (Leet et al., 

2023). Some important genes/lncRNAs might not be detected due to constraints such as the p-

value threshold applied and the proposed hypotheses here need further verification by 

experimental methods to better understand their role in tumor progression. 

5.4  Conclusion  

This work explores an integrative network approach to understand the regulatory interactions 

between ncRNAs and mRNAs in cervical cancer progression. After analyzing their interaction 

patterns, multiple key genes and ncRNAs (miRNA & lncRNA) were identified as master 

regulators that may play crucial roles in the gene regulation network of this disease and may 

offer novel drug targets for therapeutic intervention. The key lncRNAs also have potential as 

prognostic markers of cancer outcomes and as predictive and diagnostic tools for cancer 

detection. 



 
 
 
 
 
 
 
 
 
 
 
 

    Chapter 6 

Summary and Conclusion 
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High-throughput sequence technologies have revolutionized the discovery of cancer-driver 

genes. Unlike the traditional method of characterizing individual genes, which was slow and 

laborious, these technologies can examine many genes simultaneously and reveal novel ones 

involved in cancer progression. These technologies provide a comprehensive and rapid insight 

into the complex biological process in cancer cells. 

Most cancer-driver gene prediction or identification focuses on protein-coding genes, which 

make up 2% of the human genome. However, recent studies reveal that genetic alterations also 

affect non-coding regions comprising 98% of the genome. These findings suggest that non-

coding RNAs, along with protein-coding genes, can influence tumor development and 

progression. Yet, only a few ncRNAs, especially lncRNAs, have been identified and 

characterized in multiple cancers. These can regulate gene expression at multiple levels, 

epigenetic modifications, signaling and metabolic pathways. 

This study aimed to prioritize potential candidate genes and identify lncRNA as a master gene 

regulator for cervical squamous cell carcinoma. To achieve this, composition-based and k-mer 

frequency-based alignment-free sequence analyses were conducted to propose candidate genes 

for cervical cancer. Additionally, a comprehensive analysis of differentially expressed genes 

and ncRNAs and their interactions were analyzed using network analysis to understand the 

molecular mechanisms at the systems level. The interactions between these genes and non-

coding RNAs were explored through co-expression and protein-protein interaction analysis, 

and target-gene interaction network analysis was employed to elucidate the regulatory 

mechanisms and pathways involved.  

Our first two objectives deal with the prioritization of candidate genes associated with cervical 

cancer by studying the sequence profile of gene and protein sequences. Alignment-free 

methods employed to analyze sequence similarity between the cancer driver genes and 

candidate cancer genes. The first objective deals with the analysis of sequence similarity among 

both sets of protein sequences based on the amino acid composition, i.e., physicochemical 

properties of amino acids. 14 potential candidate genes with high similarity scores with cancer 

driver genes were identified that might be considered for further experimental validation. Gene 

ontology analysis revealed their significance in cell cycles and regulation of granulocyte 

differentiation, either positively regulating or negatively in several cell types that include 
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epithelial cells, muscle cells, leukocytes, and lymphocytes. KEGG pathway analysis reveals 

these genes involved acute myeloid leukemia, chronic myeloid leukemia, transcriptional 

misregulation in cancer, prostate cancer, and FoxO signaling pathway.  

The second objective deals with fractal analysis of the cancer driver genes and candidate cancer 

genes to prioritize potential candidates for cervical cancer based on their correlation. It results 

in the identification of 16 prioritized genes that have a high correlation with known cancer 

genes. It was also observed that both approaches prioritized four genes. These prioritized genes 

were associated with transcriptional misregulation in cancer, PI3K-Akt signaling pathway, 

ErbB signaling pathway and cell cycle-related GO terms. 

Our study's third and fourth objectives aimed to construct and analyze gene expression-based 

interaction networks to elucidate the key molecular players, including protein-coding and non-

coding elements, associated with the progression of cervical cancer. To achieve the third 

objective, we analyzed three gene expression datasets of cervical cancer to reconstruct and 

analyze the protein-protein interaction network of the differentially expressed genes. Network 

centrality measures, such as hub-bottleneck and relative vulnerability analyses, were applied 

to identify these key genes. These genes are MCM5, FN1, TRIP13, KIF11, TTK, CDC45, and 

BUB1B. We further validated the functional relevance of these genes by investigating their 

association with important biological processes and pathways. Moreover, these genes 

expression at both mRNA and protein levels were confirmed using immunohistochemistry 

data. Higher expression levels of these proteins were observed to be significantly associated 

with poor prognosis of cervical cancer patients. These proteins could serve as candidate 

biomarkers for survival prediction. 

The fourth objective aimed to elucidate how ncRNAs, especially long ncRNAs (lncRNAs), 

modulate gene expression in various biological processes. To achieve this, gene co-expression 

networks and ncRNA-gene interaction networks were constructed. The centrality analysis was 

performed to identify the key nodes and edges that influence the network topology and 

functionality. Several lncRNAs with high outdegree centrality, such as MALAT1, CDKN2B-

AS1, MEG3, HOTTIP, CYTOR, FEZF1-AS1 and FENDRR, were identified, indicating that 

multiple target genes were regulated by them through diverse mechanisms. Conversely, it was 

found that some genes, such as EZH2, CDH1, BCL2, MMP9, ZEB1, MMP2 and VIM, had 
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high in-degree centrality, implying that they were involved in critical cellular processes and 

were regulated by numerous lncRNAs. Furthermore, the binding sites and energy of the 

lncRNA-mRNA interactions were analyzed and it was observed that most of the lncRNAs 

interacted with the 3’ untranslated region (3’UTR) of their target genes with low binding 

energy, suggesting a post-transcriptional mechanism of regulation. 

This study provides a detailed understanding of candidate gene prioritization and key molecular 

players identification by exploring differential gene expression patterns and centrality-based 

network analysis that, in turn, leads to lncRNA-mediated regulation in cancer. The study 

augments the comprehension of lncRNA's role in cancer etiology and proliferation. 
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LNCRDBCC: A Manually Curated Database of lncRNA related to Cervical 
Cancer 
 

Long non-coding RNAs (lncRNAs) are molecules that can alter cancer development and 

progression. Several databases have aimed to collate and arrange the experimental data 

supporting lncRNA-cancer relationships. For example, Lnc2Cancer is a manually curated 

database that was first created by Ning in 2015 (Ning et al., 2016) and updated by Gao in 2018 

(Gao et al., 2018). It contains comprehensive information on how lncRNAs regulate cancer 

through different mechanisms. Another database, CRlncRNA, was developed by Wang and 

focuses on the functional roles of cancer-related lncRNAs (Wang et al., 2018). It also provides 

information on the clinical and molecular characteristics of these lncRNAs. 

Furthermore, LncRNADisease gives information about lncRNA-disease associations, along 

with the addition of transcriptional regulatory relationships and a confidence score for each 

association (Bao et al., 2018). These databases are useful tools for researchers and clinicians to 

understand and explore the roles of lncRNAs in cancer. However, none of them focus 

specifically on lncRNAs related to cervical cancer, which is a significant gap in the current 

knowledge base. 

To address this, LNCRDBCC, a manually curated database of lncRNAs related to cervical 

cancer, was developed to provide information on differentially expressed lncRNAs in cervical 

cancer. It is implemented using MySQL and aims to support researchers who study cervical 

cancer and its relation to lncRNAs. Unlike other databases that cover a broader range of 

lncRNAs, LNCRDBCC focuses exclusively on lncRNAs associated with cervical cancer. This 

makes it more specific and relevant for cervical cancer research. LNCRDBCC can be accessed 

at http://sls.uohyd.ac.in/new/lncrdbcc/index2.html. 

 

MATERIALS AND METHODS 
Data Acquisition: 
The transcription profiles of lncRNA from the TCGA-CESC and GTEx projects were used to 

identify differentially expressed lncRNAs. A total of 731 lncRNAs showed differential 

expression between the tumor and normal samples. Apart from this, the PubMed database was 

searched for all literature published until 30th August 2023 to identify lncRNAs related to 

cervical cancer using the entrez_search function of the rentrez R package.  
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In order to retrieve the information, keywords used were: "long non-coding RNA", "lncRNA", 

"long non-coding", "cervical", "cervix", "HPV", and "human papillomavirus". Entrez search 

results with 524 hits reporting lncRNAs associated with cervical cancer development, 

progression, diagnosis, or treatment (Figure 1). 

 
Figure 1: Number of research articles on lncRNA and cervical cancer 

 

Several bioinformatics techniques, including survival, co-expression analysis, and functional 

enrichment, were used to further enhance our understanding of the biology behind differentially 

expressed lncRNAs.   

DATABASE(LNCRDBCC) CONSTRUCTION: 
The web graphical user interface (GUI) and the relational database, LNCRDBCC, were 

developed on the XAMPP platform (version 7.4.13). MySQL was used as the relational 

database management system (RDBMS). The front end was developed using HTML 

(Hypertext Markup Language), JavaScript (JS) and CSS (Cascading Style Sheets). PHP 

(Hypertext Preprocessor) scripting language enabled interaction between the back end and 

front end for query processing. 
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All the general information about lncRNAs was obtained from the HGNC (HUGO GENE 

NOMENCLATURE COMMITTEE) database (https://www.genenames.org/). The lncRNA 

sequences were downloaded from the Ensembl database (http://asia.ensembl.org/index.html). 

The Gene cards database (https://www.genecards.org/) was used to check whether the 

lncRNAs were associated with cervical cancer or other types of cancer. All the information 

was stored and managed using MySql data tables. 

 

RESULTS  
DATABASE FEATURES: 
LNCRDBCC is a public database of long non-coding RNAs (lncRNAs) that have been 

manually curated. LNCRDBCC allows users to explore the regulatory functions of lncRNAs 

in cervical cancer development and progression. Currently, LNCRDBCC contains 731 entries 

of lncRNAs associated with cervical cancer. 

 
Figure 2: Home page of LNCRDBCC 

The LNCRDBCC database contains lncRNAs that are involved in cervical cancer. Users can 

access the database through three main modules: the search module, the network module, and 

the download module. The search module allows users to query the database by various criteria, 

such as lncRNA name, gene symbol, or chromosomal location. The network module lets users 

visualize and analyze the interactions between lncRNAs and other molecules, such as proteins, 
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microRNAs, or DNA methylation sites. The download module allows users to download the 

entire database or a subset of it for offline analysis. 

 

 
Figure 3: Snapshot of LNCRDBCC modules  

 

SEARCH FUNCTIONALITY 
The search module allows users to query the database by various criteria, either by 1) General 

search or 2) Advanced search   

In “General search” users can search for lncRNA of interest in two alternative ways: 

 1) By lncRNA HGNC ‘GENE symbol’  or 

 2) By the sequence of  lncRNA  

 
Figure 4: General Search module 
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The 'Advanced Search' interface allows users to apply filters that combine 'Expression Patterns' 

and 'Source' options for more specific queries. For instance, users can select 'Upregulated' and 

'Literature' to find lncRNAs that have increased expression and are mentioned in the literature.  

 

 
Figure 5: Snapshot of Advanced Search 

 

SEARCH RESULTS 
The search functionality provides a summary of the lncRNA of interest, such as WT1-AS, 

which is a hub lncRNA. The summary contains general information from the HGNC database, 

such as gene symbol, Entrez ID, Ensembl ID, Vega ID, RefSeq accession, Lncipedia ID, locus 

type and Chromosome location. It also shows the expression pattern from DEG analysis, the 

co-expression status from WGCNA analysis, and the source and related cancers from the 

Genecards database. The figure below illustrates the summary page for WT1-AS.  
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Figure 6: Snapshots of results page showing A)Summary B) miRNA targets for lncRNA of interest 

 

A) 

B) 
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Figure 7: Screenshots of results page showing A) Survival plot B) lncRNA- Target miRNA 

network C) FASTA Sequence 

A) 

B) 

C) 
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The lncRNA targets found in the analysis are also displayed on the results page (Figure 6B). 

Additionally, it displays a graphical representation of the interactions between lncRNA and 

miRNA, generated with the Cytoscape platform (Figure 7B). A Kaplan-Meier survival plot and 

the associated p-value for every lncRNA are also included on the results page (Figure 7A). The 

FASTA sequence of the relevant lncRNA is included in the RNA sequence section (Figure 

7C).  

 

DOWNLOADS MODULE 
Through the downloads module, users can obtain comprehensive data from LNCRDBCC. Files 

in CSV format with general data, expected targets, lncRNA sequences, and network analysis 

properties tables are available for download.  

 
Figure 8: Snapshot of Downloads page 

NETWORK ANALYSIS MODULE 

LNCRDBCC includes two categories for the Network Analysis module: 'Complete network' 

and 'Hub network'. The 'Complete network' category displays an interactive network of 108 

lncRNAs and their target miRNAs. The summary statistics and the network properties (such 

as Closeness Centrality, Degree, Eccentricity, Betweenness Centrality, Topological Coefficient 

and Average Shortest PathLength) are shown in Figure 9. In the 'hub network' section, we 

developed an interactive network visualization of the three novel hub lncRNAs and their target 
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miRNAs. We also added a table that lists the novel lncRNAs, the number of targets (miRNA) 

for each lncRNA, and the functions of the miRNA targets. 

 

 
Figure 9: Snapshot of ‘Complete Network’ module A) lncRNA-target interactive network and 

B) Properties of lncRNA hubs 

A) 

B) 
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The About module consists of two sections: Contacts and Help. The Contacts page provides 

the contact details of the database administrators who can assist the users with any queries or 

issues. The Help page guides the users on how to navigate and use the database effectively.  

The Submit module allows the users to contribute information related to lncRNAs by filling 

out a form. The submitted data will be reviewed and added to the database after verification. 

 

 
Figure 10: Snapshot of Submit Page 

 

Conclusion 
 

In order to investigate the regulatory function of long noncoding RNAs (lncRNAs) in cervical 

cancer, a network of differentially expressed lncRNAs and their target microRNAs was 

constructed. Nineteen hub lncRNAs involved in network regulation were identified, and it was 

also observed that some of these had also been described in other types of cancer. Three of the 

hub lncRNAs, however, were novel and had not been associated to any other cancers. 

LNCRDBCC, a web-based database of human lncRNA data related to cervical cancer is 

developed to organize and present the data obtained from various bioinformatic analyses, such 

as DEG analysis, functional enrichment, coexpression analysis, survival analysis, and network 

analysis. The current version of LNCRDBCC contains 731 manually curated lncRNA entries. 

LNCRDBCC is an open resource that allows users to query and analyze the regulatory role of 

lncRNAs in cervical cancer, which may facilitate lncRNA research and the development of 

lncRNA-targeted therapeutics. 
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Abstract

Cervical cancer is the primary cause of mortality among women in developing coun-

tries. Preventing cervical cancer is partially possible through early vaccination against

the human papillomavirus, the most common cause of the disease. Nevertheless, it is

imperative to understand the genetics of the disease progression to develop new

therapeutic strategies. The present study aims to identify potential genes and associ-

ated pathways associated with cervical squamous cell carcinoma progression. We

used an integrative approach by combining differential expression analysis, network

biology, and functional enrichment analysis with survival analysis. In the present

study, differential expression analysis of the microarray-based gene expression pro-

files of cervical cancer resulted in identifying a total of 544 significantly differentially

expressed genes (DEGs). Further, centrality and network vulnerability analysis of the

protein–protein interaction network (PPIN) and not well documented in cervical can-

cer, resulted in seven proteins (FN1, MCM5, TRIP13, KIF11, TTK, CDC45, and

BUB1B), in which four proteins were vulnerable. These genes are mostly enriched in

biological processes of cell division, mitotic nuclear division, cell cycle checkpoint,

and cell proliferation in gene ontology analysis. The KEGG pathway enrichment anal-

ysis of the proteins lists them as mainly associated with the cell cycle. In the survival

analysis, it was found that the genes MCM5, FN1, KIF11, and CDC45 were statisti-

cally significant prognostic factors for cervical cancer. The outcome of the current

study identifies and explores the key role of the candidate genes involved in the pro-

gression of cervical cancer.

K E YWORD S

cervical cancer, differentially expressed genes, gene ontology, network vulnerability analysis,
protein–protein interactions

1 | INTRODUCTION

Women worldwide suffer high morbidity and mortality rate because

of cervical cancer (CC) which holds fourth rank among different types

of cancers.1,2 It is divided into two subtypes, that is, squamous cell

carcinoma (80%–90%) and adenocarcinoma (10%–20%). India contrib-

utes at least one-fourth of the disease burden globally.3 Human papil-

lomavirus (HPV) is the primary risk factor for CC. However, weak

immune system, smoking, birth control pills, multiple sexual partners,

also play an imminent role as risk factors.4 It is evident that tumor
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Abstract

It is well known that cervical cancer poses the fourth most malignancy threat to

women worldwide among all cancer types. There is a tremendous improvement in

realizing the underlying molecular associations in cervical cancer. Several studies

reported pieces of evidence for the involvement of various genes in the disease pro-

gression. However, with the ever-evolving bioinformatics tools, there has been an

upsurge in predicting numerous genes responsible for cervical cancer progression

and making it highly complex to target the genes for further evaluation. In this article,

we prioritized the candidate genes based on the sequence similarity analysis with

known cancer genes. For this purpose, we used the concept of the moment of inertia

tensor, which reveals the similarities between the protein sequences more efficiently.

Tensor for moment of inertia explores the similarity of the protein sequences based

on the physicochemical properties of amino acids. From our analysis, we obtained

14 candidate cervical cancer genes, which are highly similar to known cervical cancer

genes. Further, we analyzed the GO terms and prioritized these genes based on the

number of hits with biological process, molecular functions, and their involvement in

KEGG pathways. We also discussed the evidence-based involvement of the priori-

tized genes in other cancers and listed the available drugs for those genes.

K E YWORD S

candidate genes, cervical cancer, dendrogram, gene ontology, tensor analysis

1 | INTRODUCTION

With the drastic changes in the day-to-day lifestyle, the survival of

humans is being hindered by the peril of noncommunicable dis-

eases. Among these diseases, cancer might hold the first place to

cause most deaths worldwide.1 Despite the clinical advancements

in cancer therapy, the mortality rate is still growing, and the reason

for this imbalance rises from several facts like genetic variations

among the individuals, mutational rate, substantial increase in the

aged population, socio-economic variations, and so forth.2 Cancer

is a collective term for several related diseases. There are more

than 100 varieties of cancers. The name of the cancer is termed

based on the type of tissue or the cell of origin of cancer. Basically,

in all cancers, the cells begin to divide uncontrollably and invade

other tissues of the body, causing death. Among all cancers, cervi-

cal cancer is the fourth most malignancy threat for women world-

wide. human papillomavirus (HPV) is the leading cause of most

cervical cancer cases. There are several other risk factors like inter-

course at an early age, multiple sexual partners, immunosuppres-

sion, and smoking.3 Several vaccine programs have been shown

beneficial in curbing malignancy.4 Nevertheless, it is imperative to

study the molecular mechanisms involved in cervical cancer. With

advancements in molecular techniques, systems biology, bioinfor-

matics, next-generation sequencing, microarray, and so forth,

there has been a substantial improvement in understanding the

underlying molecular mechanisms. High-throughput molecular

techniques in synergy with computational analysis helped identify

numerous cervical cancer genes, miRNAs, circRNAs, and lncRNAs.
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