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1.1 Cancer:

Cancer is a comprehensive term encompassing a range of diseases characterized by abnormal
cell growth and proliferation, resulting in the disregard of normal mechanisms governing cell
division and differentiation (Hejmadi M. 2019). Unlike healthy cells, which respond to
regulatory signals that control their functions and fate, cancer cells acquire autonomy from
these signals, evading processes of cell death and senescence. Cancer can arise in any tissue or
organ of the body and can invade adjacent structures, leading to local damage and
inflammation. Moreover, cancer cells can detach from the primary tumor and disseminate to
distant sites through the blood and lymphatic vessels, forming secondary tumors (metastases)
that compromise the functions of vital organs and systems. The ability to spread and colonize

different parts of the body is a major factor that renders cancer a life-threatening condition.

One of the hallmarks of cancer is the loss of cellular differentiation, the process by which
normal cells acquire specialized functions and structures according to their tissue type.
Differentiated cells perform specific roles that are essential for maintaining homeostasis and
adapting to environmental stimuli. For instance, muscle cells enable various types of
movements, such as skeletal muscle contraction, cardiac muscle pumping, and smooth muscle
peristalsis. Another example is alveolar epithelial cells, which facilitate gas exchange between
the air and blood in the lungs. However, cancer cells originating from these tissues lose their
functional abilities and become more immature and unspecialized. This allows them to evade
the normal regulatory mechanisms that control cell growth and division. As a result, cancer
cells proliferate uncontrollably and invade other tissues, disrupting their normal functions and

causing disease.

1.2 Types of cancers:

The classification of cancer types depends on the origin and differentiation of malignant cells.
Some of the major categories of cancer are carcinoma, which originates from epithelial cells
that line the skin, organs, and glands; lymphoma, which arises from lymphocytes, a type of
white blood cell that is part of the immune system; leukemia, that affects the blood-forming

cells in the bone marrow; brain and spinal cord tumors, which develop from the cells of the
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central nervous system; and sarcoma, which is derived from connective tissue, such as bone,
cartilage, muscle, and fat.

Carcinoma is the most prevalent type of cancer in humans, affecting organs such as the lungs,
breast, prostate, colon, rectum, and pancreas. Carcinoma cells can either spread to other parts
of the body (metastasis) or remain within the original site (in situ). They can be classified into
three types based on the degree of invasion: carcinoma in situ, invasive, and metastatic.
Carcinoma in situ is a stage of cancer in which abnormal cells are confined to their origin and
do not invade other tissues. Invasive carcinoma is a stage in which abnormal cells break through
tissue boundaries and invade adjacent tissues. Metastatic carcinoma is a stage in which
abnormal cells spread from the primary site to distant tissues/organs through the bloodstream
or the lymphatic system.

Depending on their source and location, epithelial cells can develop into various carcinomas.
Some examples are basal cell, squamous cell, renal cell, ductal carcinoma in situ (DCIS), and
invasive ductal carcinoma (IDC). These cancers affect different epithelial tissues in the skin,
organs, and glands. Adenocarcinoma originates from glandular cells that produce mucus or
other substances. It can affect many organs, such as the esophagus, lungs, breast, pancreas,

prostate, colon and rectum. Adenocarcinoma can grow locally or spread to distant sites.

1.3 Cervical cancer:

Cervical cancer (CC) is a prevalent malignancy that affects women globally. According to the
age-adjusted rates from 2015 to 2019, the annual incidence and mortality of CC were 7.8 and
2.2 per 100,000 women, respectively. In 2020, an estimated 604,127 women were diagnosed
with CC worldwide. India has a high burden of CC, with approximately 1,23,907 new cases
and 77,348 deaths annually. However, these numbers may have been underestimated because
of underdiagnosis and underreporting. The age-adjusted incidence rate of CC in India is 18 per
100,000 women, with a cumulative risk of 2.01 percent (Sung et al., 2021).

Moreover, CC is responsible for 17% of all cancer-related mortalities among Indian women
aged 30-69 years. Cervical cancer prevalence rates declined by more than half between the
mid-1970s and the mid-2000s after the enhanced screening programs, which can detect cervical

changes before they become cancerous. In general, incidence rates were stable between 2009
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and 2018. Despite the decline in mortality and incidence over the last three decades, CC

remains a significant public health challenge in India.

The most important etiological factor for CC is persistent infection with high-risk human
papillomavirus (HPV) types, which are responsible for more than 90% of CC cases worldwide.
However, HPV infection alone is not sufficient to induce malignant transformation and
progression of CC. The interplay of various genetic and epigenetic alterations in both the
coding and non-coding regions of the genome influences the development and outcome of CC.
Patients with cervical cancer often have poor prognosis due to tumor metastasis and recurrence.
Current treatments, such as surgical resection and chemotherapy, are ineffective. Despite
advances in understanding the molecular mechanisms of CC, they have not been translated into
clinical practice. Thus, it is essential to elucidate the molecular mechanisms involved in CC
development and to devise novel therapeutic strategies. One of the molecular mechanisms that

has attracted attention is the regulatory role of non-coding RNAs (ncRNAs) in cancer.

1.4 Non-coding RNAs

Non-coding RNAs (ncRNAs) do not encode proteins but play essential roles in regulating
various biological processes (Li et al., 2021; Huang et al., 2021 & Fu et al., 2014). Advances
in next-generation sequencing (NGS) have enabled researchers to explore the complex
transcriptional landscape of tissues and uncover ncRNAs' involvement in carcinogenesis and
cancer progression. Cancer affects the expression of both coding and non-coding RNAs in the
human genome, which accounts for 2% and 98% of the genome, respectively (Du & Che 2017;
Derrien et al., 2012 & Mattick & Rinn 2015). These expression changes influence cellular
functions that are regulated by various factors, such as epigenetic regulators, transcription
factors, translation factors, and non-coding RNAs (Lee & Young, 2013). Non-coding RNAs
such as miRNAs, IncRNAs, small non-coding RNAs, and pseudogenes are essential for
regulating gene expression and modulating various cellular processes during development and
disease. MicroRNAs (miRNAs) are a well-studied type of ncRNA that have potential
applications as biomarkers in cancer (Rasool et al., 2016; Lin & He, 2017). On the other hand,
IncRNAs are a relatively novel and distinct class of molecules that have important functions in

cancer (Huarte, M. 2015).
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LncRNAs can originate from various genomic locations and interact with other genes in
different ways. Some IncRNAs are transcribed from enhancers, promoters, or introns of
protein-coding genes. In contrast, others are antisense to protein-coding genes and can overlap
with them to varying degrees (divergent, terminal, or nested). Additionally, some IncRNAs are
derived from pseudogenes or contain one or more hairpins (small RNAs) within their
transcripts (Kung et al., 2013). In both the nucleus and the cytosol, IncRNAs have various roles
in regulating gene expression. In the nucleus, they modulate epigenetic modifications,
transcriptional regulation, splicing events, enhancer activity, protein scaffolding, and
chromosomal interactions (Sun et al., 2018; Batista & Chang, 2013). In the cytosol, they affect
mRNA stability and translation efficiency (Rashid et al., 2016). Furthermore, IncRNAs can act
as miRNA sponges or competing endogenous RNAs (Kallen et al., 2013; Yan et al., 2015; Ma
et al., 2014). Moreover, some IncRNAs can be translated into small peptides (Bazzini et al.,

2014).

Unlike protein-coding gene transcripts, which have a high degree of sequence conservation and
expression across species, IncRNAs are characterized by low sequence conservation and
expression levels. This reflects their diverse and context-specific roles in regulating various
biological processes (Derrien et al., 2012). Moreover, IncRNAs exhibit strong tissue specificity
and influence the transcriptional level alteration of chromatin biology and gene regulation.
Although many IncRNAs have been discovered, only a few have been fully characterized.
Contrary to the earlier assumption that IncRNAs are non-functional byproducts of transcription
due to their low expression, evidence from the past five decades reveals that they play vital
functions in regulation of cellular processes including carcinogenesis and metabolism (Ohno
1972). Previous research has indicated that the development and progression of malignant
tumors are influenced by long non-coding RNAs (IncRNAs). In cervical cancer, numerous
IncRNAs are involved in diagnosing and suppressing metastasis through their expression
levels. These IncRNAs have altered levels of expression in relation to the diagnosis and
prognosis of treatment response. They can act as either oncogenes or tumor suppressors,
making them significant players in cancer studies (Aalijahan & Ghorbian, 2019; Sun et al.,

2013).
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MicroRNAs (miRNAs) is about 19 to 25 nucleotides long and mostly located in the cytoplasm.
They controls gene expression by binding to specific sequences in the 3’ untranslated region
(UTR) of mRNA. miRNAs can have both oncogenic and tumor suppressor functions and have
been shown to play a crucial role in the initiation and progression of cervical cancer, as well as
its metastasis (Wang & Chen 2019). LncRNAs and miRNAs can interact to form complexes,
with IncRNAs primarily located in the nucleus and miRNAs in the cytoplasm. These
interactions are essential for modulating the expression of oncogenes and tumor suppressors,
influencing cancer initiation and progression. LncRNAs and miRNAs regulate gene expression
by binding to mRNA. They have a reciprocal relationship, as they share common mRNA
targets and their cross-regulation affects gene expression and metastasis. LncRNAs can act as
ceRNAs, sequestering miRNAs and preventing them from degrading mRNAs, thereby
enhancing translation (positive regulation). In contrast, miRNAs can bind to mRNAs and
induce their decay, inhibiting translation (negative regulation) (Berti et al., 2021; Kung et al.,
2013).

Our study focused on coding and non-coding RNAs, especially IncRNAs. We integrated the
transcription profiles of these two types of RNAs from cervical cancer patient's data to

understand their regulatory mechanisms.

1.5 Gene prioritization

Many studies have aimed to identify the genes and pathways responsible for cancer
phenotypes. Gene prioritization is a technique that sorts genes based on their relevance and
importance for a specific disease or phenotype. It helps to select a subset of genes from an
extensive list of candidates that are most probably involved in the disease mechanism and that
require further experimental validation. There are various techniques for gene prioritization,
such as text mining, machine learning, network-based methods, and hybrid methods
(Tranchevent et al., 2011; Kaushal et al., 2020; Azadifar and Ahmadi, 2022). These methods
use different types of data and strategies to rank the candidate genes, such as functional
similarity of sequences, protein-protein interaction networks, mutational profiles, gene

ontology, disease ontology, human phenotype ontology, etc.
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Based on the text-mining methods and data sources, the publicly available tools for gene
prioritization or identification can be grouped into different categories. Some methods, such as
POCUS, PROSPECTR, Gentrepid and PhenoPred, rely on structured data without text mining
to prioritize genes. Other methods use text mining to extract relevant information from the
literature or databases. These methods can be further classified into four categories: keyword
searches, vector space models, ontology structures, and statistical text mining. Keyword search
methods like GeneSeeker, Prioritizer, CANDID, PGMapper, GeneProspector, and MaxLink
use simple queries to identify genes related to a phenotype or disease. Vector space model
methods, such as G2D, SNPs3D, MimMiner, Endeavour, CAESAR, ToppGene, CIPHER,
GeneDistiller, PRINCE, PolySearch, GeneWanderer and GPsy, represent genes and
phenotypes as vectors in a multidimensional space and compute their similarity or distance.
Ontology structure methods, such as Tiffin et al., SUSPECTS and MedSim, use the hierarchical
structure of ontologies such as Gene Ontology or Human Phenotype Ontology to measure the
semantic similarity between genes and phenotypes. Statistical text mining methods, such as
GRAIL, Genie and MetaRanker, depends on advanced techniques such as machine learning,
natural language processing or network analysis to identify associations between genes and

phenotypes from large-scale text corpora (Luo et al., 2014).

The functional similarity approach leverages the existing knowledge of known cancer genes to
discover new genes that have similar sequences or functions. Several methods have been
developed to compare protein sequences and to infer their functional similarities. Sequence
similarity analysis can be categorized into two types: alignment-free and alignment-based
methods. Alignment-free methods compare and analyze DNA or protein sequences without
relying on conventional sequence alignment methods. They have several benefits, such as
computational efficiency, scalability, and independence from prior knowledge of sequence
similarities or homologies. They can also detect homologous regions, functional motifs, and
phylogenetic relationships among sequences. Some of the extensively used alignment-free
sequence analysis methods are as follows:

k-mer frequency analysis: This technique counts the frequency of all possible k-mers
(substrings of length k) in a sequence. The resulting k-mer frequency vectors can then be used

to measure the similarity and diversity of sequences.
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Composition-based methods use statistical analysis to examine the distribution of specific
nucleotides or amino acids within a sequence. They can reveal the compositional features and

evolutionary patterns of sequences.

1.6 Biological networks

Graphs or networks are mathematical representations of real-life systems, where the nodes and
vertices represent entities and the edges represent the relationships among them. Edges can be
either 'directed' or 'undirected,” depending on whether they have a direction. Web networks,
scientific collaboration networks, social networks, football game networks, and biomolecular
interaction networks are some of the network types that have attracted a lot of research interest.
For instance, a scientific collaboration network consists of authors as nodes, and edges that
represent co-authorship of a research article between two nodes. In biology, various types of
networks involve interactions between different biomolecules, such as protein-protein
interaction networks, metabolic networks, gene regulatory networks, signaling networks, etc.
Many genes and their regulators interact with each other in a gene regulatory network. A
metabolic network has metabolites as nodes and biochemical reactions as edges that transform
them. Signaling networks consist of molecules that are linked if they share the same signaling
pathway. These networks have several intrinsic properties and applications in solving

biological problems.

Network approaches have been used to investigate prognostic value of genes based on their
system-level properties in different types of cancer. Protein-protein interaction (PPI) networks
capture the interrelated nature of biological processes (Milenkovic et al., 2010). PPI networks
can help identify prognostic genes and drug targets in cancer and reveal novel cancer gene
mechanisms (Amala & Emerson, 2019; Li et al., 2017). These genes tend to form modules
within gene co-expression networks rather than being hub genes. This pattern is specific to
each cancer type; however, some modules are conserved across various cancers (Yang et al.,
2014). IncRNAs are key regulators of gene regulation in cancer and exhibit a consistent pattern
of regulation across different cancer types (Saleembhasha & Mishra 2019). These IncRNAs
often correlate with key driver mutations, suggesting their potential roles in cancer progression

(Ashouri et al., 2016). They play critical roles in oncogenesis, tumor metastasis, and tumor
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suppression (Nie et al., 2012). IncRNAs affect gene expression by interacting with different

molecular processes such as transcriptional, post-transcriptional, epigenetic and translational

regulation (Sun et al., 2017).

1.7 Network structural topological properties

Various metrics, i.e., centrality measures, are used to define a node's importance based on its

topological importance in a network. Some of the frequently used centrality measures are

degree, betweenness and closeness. The figure below illustrates a graph G = (V, E), where V

is the all vertices and E is the edges that connect them.

A) B)

° @ Node
Edge
o © :

—_—

Degree

Betweenness

oc0Q0O

Closeness

Figure 1: Network/graph with nodes and edges. A) Graph G=(V, E), V has nodes A-G and E has edges between

nodes. B) The node color, size, and node border thickness denote the nodes' degree, closeness and betweenness,

respectively.

Degree Centrality

A node in a network has a degree as one of its basic attributes, which indicates how many

connections the node shares with other nodes in the network. The degree centrality Cd (v) of

vertex v in graph G = (V, E) can be written as
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deg(v)
(N -1)

Ca(w) =
Where N is the number of vertices in G and deg(v) is the number of edges incident to v. In
network analysis, a node with more connections with other nodes is called a “hub.” The number
of connections that enter a node is called its “in-degree” and the number of connections that

leave a node is called its “out-degree.”

All real-world networks exhibit the 80/20 principle, which states that 80% of the results are
due to 20% of the effort. In biology, this principle states that a few proteins (20%) perform
most of the cell's functions (80%) and regulate most of the cellular processes. It is often applied
to identify key nodes, such as hubs and bottlenecks, in biological networks (PPIN & Regulatory

networks).

Betweenness Centrality

Betweenness centrality is a metric that shows how important a node is in a network. It counts
how many shortest paths between other nodes include that node. A high betweenness centrality
means the node connects different parts of the network and affects the information flow.

The betweenness centrality of a node v is given by the expression:

0
Cb ('U) — z {st}(v)

{s zv £t} Ofst}

Where gy is the total number of shortest paths from node s to node t and o (v) is the number
of those paths that pass through v. A node that has the most shortest paths going through it is

known as a “bottleneck” node.

Closeness Centrality

Closeness centrality measures how central a node is in a network. It is calculated as inverse of
the total distance from that node to every other node. The closeness centrality increases as the
node gets closer to all other nodes in the graph. It can be used to analyze the node’s efficiency,

accessibility, or influence in a network.
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The Closeness centrality of a node v can be represented as

1
Average distance from a node to all other nodes

Ce (v) =

Clustering Coefficient

A clustering coefficient quantifies how well the neighbors of a node tend to form clusters or
groups. It is two types: global and local. The global clustering coefficient calculates the ratio
of closed triplets (three nodes that are all connected) to the overall number of triplets in the
network. The local clustering coefficient calculates the fraction of possible connections among
the neighbors of a node that are actually present. Both coefficients range from 0 to 1, where 0
means no clustering and 1 means perfect clustering.

It is computed by dividing the number of actual links among the neighbors by the number of
potential links that could exist between them. The formula for the clustering coefficient of a

node 1 is:

2L;

G = = D

Where L; is the number of links between the neighbors of node i and k; is the degree of node i

(the number of neighbors it has).

Average degree

The network's average degree is the sum of all node degrees divided by the node count. It can

be calculated as

1
< Cd > = decd(v)

Where N represents the overall number of nodes and Cy (v) represents the node degree v in the

network.

Average clustering coefficient
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A network's average clustering coefficient is the average value of the clustering coefficients

for each node in the network and indicates the network the modularity. It is given as

1
< Ci > = Nzici(v)

Where, N represents the overall number of nodes and C; (v) represents the clustering coefficient

of the node v in the network.

Average path length
The average path length is computed by finding the shortest distance between every pair of

nodes and then taking the mean of those distances.

O(st}(v)
apl = E e
p {x #v =t} N-1

Where N is the overall number of nodes in the network, o is the total number of shortest

It is denoted as

paths from node s to node t and o (v) is the number of those paths that pass through v.

Degree distribution

The degree distribution of a network is the fraction of nodes that have a certain degree 'k',
which is the number of connections or edges that a node has (Barabasi & Oltvai 2004). The
degree distribution reveals the structure and properties of a network, such as its robustness,
resilience, and efficiency.

The degree distribution of all real-world networks obeys a power law, meaning that most nodes
have a low degree, but there are some nodes with very high degree, called hubs. These hubs
are important for the connectivity and robustness of the network, as they link many other nodes

together. A power law degree distribution can be written as:

P(k)~ Ck~®

Where C is a normalization constant that ensures that the sum of P(k) over all possible values

of k is equal to 1.
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1.8 Datasets

In this work, multiple datasets were analyzed to prioritize and identify candidate genes
associated with cervical cancer. One of the datasets was TCGA-CESC (The Cancer Genome
Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma), which contains
gene expression quantification data of 303 cervical cancer patients as well as 3 adjacent normal
tissues. Another dataset, GTEx (Genotype-Tissue Expression), contains gene expression
counts from 19 normal cervical tissues (Ectodermal & Endodermal) from healthy donors.
GTEx dataset was used to compare the gene expression patterns of normal and cancerous
samples and to identify differentially expressed genes. Additionally, I used NCG6.0 (Network
of Cancer Genes), which contains both cancer driver and candidate cancer genes, and CCDB
(Cervical Cancer Gene Database), which has cervical cancer genes identified and predicted

with experimental and computational techniques.

1.9 Objectives of the present study
Based on the background and available literature, we aimed to prioritize and identify the key
molecular players involved in the tumour progression of cervical squamous cell carcinoma.

The specific objectives of our study were as follows.

Objective 1: To prioritize candidate genes through the Moment of inertia tensor

Objective 2: To integrate chaos game representation and MF-X-DFA to prioritize candidate
genes

Objective 3: To identify key genes and pathways through protein-protein interaction networks
Objective 4: To identify regulatory elements related to cervical cancer progression

through integrative networks
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Prioritization of candidate genes using the
moment of inertia tensor




2.1 Introduction

Candidate gene prioritization involves ranking genes by their relevance to the biological
processes of interest and select the most promising ones for further analysis. With
breakthroughs in molecular procedures, sequencing technologies, bioinformatics tools and
algorithms, understanding the underlying molecular pathways has improved significantly. This
has resulted in the identification of numerous cancer genes and ncRNAs. These molecular
entities involved in various cellular processes and pathways (Qin et al., 2019; Burk et al., 2017,

Wei et al., 2020; Yang et al., 2021; Yuan et al., 2020 & Hindumathi et al., 2014).

Several methods were used to prioritize candidate genes, including ENDEAVOUR, G2D,
SUSPECTS, GFSST, and POCUS (Adie et al., 2006; Turner et al., 2021; Perez-Iratxeta et al.,
2005; Zhang et al., 2006 & Aerts et al., 2006). As different methods give a set of genes as
candidates and validation of these genes becomes extremely costly, resources can’t be devoted
to this vast number of candidate genes (Zhang et al., 2020). Unfortunately, the accumulated
data on candidate genes for cancer is becoming redundant, as there are a minimal number of
bioinformatics tools available for prioritizing the candidate genes for cancers, especially
cervical cancer. Therefore, it is imperative to employ a bioinformatic method to prune and

prioritize genes for further evaluation.

Various methods have been developed to analyze the sequence similarity between protein
sequences to understand the functional similarity of the proteins (Randic et al., 2006; Bai &
Wang, 2006; Randic et al., 2008; Li et al., 2008; Wen et al., 2009; Li et al., 2009; Liao et al., 2010;
Ghosh & Nandy 2011; He et al., 2012 & Tyanova et al., 2018). However, compared to alignment-
based methods, alignment-free methods offer more advantages in terms of computational
efficiency and accuracy (Zielezinski et al., 2017). Recently, Piotr Waz and Bielinska-Waz
developed a technique using the concept of moment of inertia tensor for similarity analysis of
DNA sequences (Waz and Bielinska-Waz 2013). Later, Hou et al. introduced a method that
applies the same idea of tensor to measure the sequence similarity between proteins (Hou et al.,
2016). The moment of the inertia tensor describes how an object’s mass is distributed relative
to all three of its rotational axes. It is an alignment-free method that is fast, efficient, and reliable

for comparing sequence similarities.
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In this study, we focused on prioritizing candidate cancer genes through sequence similarity
analysis between known cervical cancer genes (KCCs) and candidate cervical cancer genes
(CCCs) using the concept of the moment of inertia tensor. We further analyzed the GO terms
for the prioritized CCCs to highlight their possible roles and provide information on the

available drug entries.
2.2 Materials and Methods

2.2.1 Data Collection and pre-processing

The list of genes that cause or are involved in cancer were collected from the Network of
Cancer Genes (NCG6.0) database, a manually curated repository on systems-level properties
of cancer. The gene list consists of 711 known cancer genes and 1661 candidate cancer genes,
based on the approach they were identified in various cancer studies (Repana et al., 2019). In
addition, we collected gene list datasets related to Cervical Cancer progression from the
cervical cancer gene database (CCDB) (Agarwal et al., 2011). It is a manually curated catalog
consisting of 537 genes involved in different stages of cervical carcinogenesis. By mapping the
list of cervical cancer genes obtained from CCDB with the list of cancer genes present in
NCG6.0, 128 genes were identified as common from both databases. Among these 128 genes,
76 were identified as known cancer genes and 52 as candidate cancer genes. Furthermore,
these 128 genes were investigated for their association with cervical cancer in DisGeNET (a
database of gene-disease associations) and 82 genes were found to have experimentally
validated evidence associated with cervical cancer (Pifiero et al., 2019). Therefore, 82 genes are
considered as known cervical cancer (KCC) genes and the remaining 46 as candidate cervical

cancer (CCC) genes.

We retrieved the protein sequences of 128 cervical cancer genes from the UniProt database
using the biomaRt library in R. Furthermore, we curated the sequences using the BioStrings
library on the R platform to their canonical sequences in the FASTA format (Durinck et al.,

2009 & Pages et al., 2017).

2.2.2 Construction of protein sequences as a 3D model:

Naturally occurring proteins are composed of a polymer chain of amino acids. Twenty standard

amino acids determine protein functions. Recently, Hou et al. visualized protein sequences as
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a 3D model using a graphical representation approach (Hou et al., 2016). Their approach used
the physicochemical attributes of amino acids, such as hydrophobicity and molecular mass as

descriptors. This concept is used in the present study.

Based on their hydrophobicity, the amino acids were split into two groups: hydrophobic amino
acids HY=[A, C,F, L L, M, P, V, W, Y] and hydrophilic amino acids HP = [D, E, G, H, K, N,
Q, R, S, T]. Each group was further divided into two groups based on their strengths: strong
hydrophilic amino acids SP = [D, K, N, R, S]; weak hydrophilic amino acids WP = [E, G, H,
Q, T]; strong hydrophobic amino acids SH = [F, I, L, W, Y]; and weak hydrophobic amino
acids = [A, C, M, P, V]. A circle of unit radius was divided into four quadrants, with amino
acids distributed along the circumference. The first two quadrants contain hydrophobic amino
acids, while the other two quadrants contain hydrophilic amino acids. The sequence of amino
acids in each quadrant was based on the alphabetical order of their abbreviated names. Each
amino acid was given a coordinate represented as x; = cos (2mi/20), yi = sin(2ni/20), where 1 =
1, 2 ... 20. The relative residue weight of the respective amino acids was attributed to the z-
axis coordinate. The heavier amino acids are given +1, and smaller amino acids are given -1

for z-coordinates, as in Table 1.

Table 1: List of amino acids with residue weights and X, Y, and Z-axis coordinates.

Amino acid Symbol | Residue wt. X Y Z
Quadrant 1 Alanine A 71.8 0.9511 0.3090 -1
Weak Hydrophobic Cysteine C 103.14 0.8090 | 0.5878 -1
Methionine M 131.19 0.5878 | 0.8090 1
Proline P 97.12 0.3090 | 0.9511 -1
Valine \Y% 99.13 0.0000 | 1.0000 | -1
Quadrant 2 Phenylalanine F 147.17 -0.3090 | 0.9511 1
Strong Hydrophobic Isoleucine I 113.16 -0.5878 | 0.8090 -1
Leucine L 113.16 -0.8090 | 0.5878 1
Tryptophan w 186.21 -0.9511 | 0.3090 1
Tyrosine Y 163.18 -1.0000 | 0.0000 1
Quadrant 3 Aspartic acid D 115.09 -0.9511 |-0.3090 | 1
Strong Lysine K 128.17 -0.8090 |-0.5878 | 1
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Hydrophilic Asparagine N 114.1 -0.5878 | -0.8090 | -1
Arginine R 156.19 -0.3090 |-0.9511 | 1
Serine S 87.08 0.0000 | -1.0000 | -1
Quadrant 4 Glutamic acid E 129.12 0.3090 | -0.9511 1
Weak Glycine G 57.05 0.5878 | -0.8090 | -1
Hydrophilic Histidine H 137.14 0.8090 |-0.5878 | 1
Glutamine Q 128.13 0.9511 |-0.3090 | 1
Threonine T 101.11 1.0000 | 0.0000 | -1

Using the coordinates of each amino acid, a 3D model for all the genes (both KCC and CCC
genes) was created by applying the moment of inertia tensor concept considering the mass

m=1. The amino acids represent 3-D Cartesian coordinates, and the center of mass of the

Ximixi _ Ximyyi

rm; ’ Hy xm;

_ ximizi

Cartesian coordinate system is defined as px = o
L

, 1z

Where x;, yi, and z; are the m; coordinates. The tensor of moments of inertia is represented as a

matrix.

Ixx —Ixy —Ixz

=Ilyx Ilyy —lyz
—Izx —lzy Izz

I =

The elements of the matrix are
= Zim () + (@))ily = Zimi ()" + (&) i 1o = Zemi ()" +
¥):
Ly = Lyx = Zimy X[y}
Iy, = Iy = Xim; v 7
Ly = I = Zamu ¥ 2

Where x;',y!", z!' denote the coordinates of m; of a Cartesian coordinate system. The centre of

the mass was considered to be the origin. The Eigenvalues of the matrix I are calculated, which
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are labeled as A;, A,, 15. To define a protein sequence, a vector is given as #®) = 1,,1,, 15 and
the similarity is obtained by the Euclidean distance D between the two protein sequences (P!,
P?). It is represented as D(PP?) = ||¥P! — UP?||,. This indicates that the distance and

similarity are inversely proportional.
2.3 Results

2.3.1 Categorization of cervical cancer genes

All KCC and CCC genes were grouped based on the experimental observation viz.
upregulated/overexpressed, downregulated, post-translational modifications (methylation,
mutation, amplification, and polymorphism), and unclassified as reported in the CCDB. Of the
82 KCC genes, 20 were upregulated, 11 were downregulated, 17 were post-translationally
modified, and 9 were unclassified. However, some genes fall into multiple categories.
Similarly, of the 46 CCC genes, 21 were upregulated, 9 were downregulated, 5 were post-
translationally modified, and 9 were unclassified. This categorization is represented by the

Venn diagrams in Figure 1.

Downvegulation Post translational modification Downregulation Post translational modification

" / 17 9 5 |

Upregulation / Unclassified Upregulation Unclassified

|
|

Figure 1: Classification of the proteins based on the experimental observation in known

cervical cancer (KCC) genes group and candidate cervical cancer (CCC) genes
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2.3.2 Tensor analysis on KCC and CCC proteins

We analyzed the similarity between KCC and CCC proteins using the tensor for the moment
of inertia. The largest eigenvalue of the moment of inertia matrix for each protein sequence
was considered to calculate the Euclidean distance between any two protein sequences. The

resulting distance matrix ranged from 6.133934 to 9834.095, from which we constructed a

.
dendrogram (Figure 2).
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Figure 2: Dendrogram of known and candidate genes belong to cervical cancers
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The maximum distance (least similarity) between HUWE1 and S100A7 was observed. Using
the distance matrix, we prioritized CCC proteins that showed 1% or less distance (99%
similarity or more) from KCC proteins with respect to the maximum distant (least similar)
proteins. All CCC proteins except ASXL1, C3, CNOTI1, COL1A1, DDIT3, DLC1, FLNA,
HUWEI1, MYH9, PDGFRA, and VWF showed 99% similarity with one or more KCC proteins

with respect to the maximum distance (least similar) proteins.

Furthermore, we considered proteins that showed similarity to more KCC proteins. In this
study, we selected proteins that showed at least seven or more associations with KCC proteins
(Table 2).

Table 2: Prioritized candidate genes for cervical cancer

S.No. | Gene name | Disease Drugs Number of proteins
with high similarity
1 NRAS Colorectal cancer; Mutant ras 14 (CD28, CD83,
Head and neck cancer; | vaccine CDKNI1A, CDKNIB,
CDKN2A, HMGBI,
HRAS, IGF2, KRAS,

MGMT, RRAS,
SOCS1, TNF, VHL)
2 GRB2 Acute myeloid BP-100-1-01 13 (BCL2, CD28,
leukaemia; CD83, CDKNI1B,
Hematologic tumour; HMGBI1, HRAS,

IGF2, KRAS, MGMT,
RRAS, SOCSI1, TNF,

VHL)
3 BRAF Melanoma; Solid Dabrafenib 7 (CTNNBI1, EZH2,
tumour/cancer HSP90AAL,
MLHI1,STAT3, TFRC,
TLR1)
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CCND2

Not Available

Not Available

7 (CCND1, CDKG6,
CTSS, FGF2, IL1A,
MYODI, SIX1)

CCNE1

Retinoblastoma;

PD-0183812

8 (E2F3, KRTI3,
MYC, NDRG1, PTEN,
SKP2, STK11, TP53)

Alzheimer disease;
Acute myeloid

leukaemia;

Tamibarotene

11 (AKTI, E2F3, FUS,
KRT13, MDM2,
MMP13, MYC, PTKG,
SKP2, SMAD2,
STK11)

RUNX1

Not Available

Not Available

9 (E2F3, KRTI3,
MYC, PTEN, PTKG6,
SKP2, SMAD2,
STK11, TP53)

PAIPI

Not Available

Not Available

8 (ATK 1, E2F3, FUS,
MDM2, MMP13,
PTK6, SMAD2,
TGFBR1)

KRT15

Not Available

Not Available

9 (E2F3, KRT13,
MMP13, MYC, PTEN,
PTK6, SKP2, SMAD2,
STK11)

10

WT1

Acute myeloid
leukaemia; Myeloid

leukaemia;

WT1-targeted
autologous
dendritic cell

vaccine

9 (E2F3, KRT13,
MMP13, MYC, PTEN,
PTK6, SKP2, SMAD2,
STK11)

11

MYCN

Not Available

Not Available

10 (AKTI, E2F3, FUS,
KRT13, MDM2,
MMP13, MYC, PTKS,
SMAD2, STK11)
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12 APOL2 Not Available Not Available 8 (CCND1, CDKS6,
CTSS, DEK, FANCEF,
FOXL2, MYODI,
SFRP4,)

13 HSPBS8 Not Available Not Available 14 (BCL2, , CD83,
CDKNI1A, CDKNIB,
HMGBI1, HRAS,
IGF2, KRAS, MGMT,
RRAS, SOCSI1, TNF,
VHL)

14 SLC7A60S | Not Available Not Available 7 (CCND1, CDKG6,
CTSS, FGF2, IL1A,
MYODI, SIX1)

2.3. 3 Functional enrichment of prioritized proteins

To target a protein, it is imperative to understand its biological processes, molecular functions,
and cellular pathways. Functional enrichment analysis was performed using the clusterProfiler
R package (Yu et al., 2012) for the KCC proteins and prioritized proteins separately to gain
insight into the similarity in their functional niche. Statistical significance was set at p < 0.05,
to enrich the gene ontology terms, such as biological processes, molecular functions, and

KEGG pathways.

Biological processes: All KCC proteins showed significance in cell cycles, either positively or
negatively regulating several cell types, including epithelial cells, muscle cells, leukocytes, and
lymphocytes. However, in CCC proteins, with the p-value adjusted to less than 0.05, only
RARA and RUNX1 showed significant biological processes. They both are associated with the

regulation of granulocyte differentiation.

Molecular functions: All the KCC proteins showed significant association with molecular
functions. The top five molecular functions were phosphatase binding (12), protein

phosphatase binding (10), transmembrane receptor protein kinase activity (8), protein tyrosine
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kinase activity (9), and protein kinase regulator activity (10). Among the prioritized proteins,
9 showed a significant association with molecular functions. The top five functions included
cyclin-dependent protein serine/threonine kinase regulator activity (2), scaffold protein binding
(2), translation regulator activity, nucleic acid binding (2), translation regulator activity (2),
and insulin receptor substrate binding (1). In addition, the prioritized proteins also have
molecular functions, such as protein kinase regulator activity (2), protein kinase B binding (1),
neurotrophin receptor binding (1), kinase regulator activity (2), translation activator activity
(1), C2H2 zinc finger domain binding (1), translation repressor activity, mRNA regulatory
element binding (1), and high-density lipoprotein particle binding (1).

KEGG pathway analysis: With the KEGG analysis, we found that the KCC proteins are mostly
involved in various types of cancers. Apart from cancer, some of the KCC proteins are involved
in infectious diseases like Human papillomavirus infection (20), Human cytomegalovirus
infection (17), Hepatitis B (15), Hepatitis C (14), Epstein-Barr virus infection (15), Kaposi
sarcoma-associated herpesvirus infection (14), Measles (12), malaria (6), Salmonella infection
(11), Tuberculosis (9), Toxoplasmosis (7), Chagas disease (6), Leishmaniasis (5), Human
immunodeficiency virus infection (8), and Coronavirus disease — Covid-19 (6). Among the
prioritized proteins, the top five pathways included acute myeloid leukemia (5), chronic
myeloid leukemia (4), transcriptional misregulation in cancer (5), prostate cancer (4), and the
FoxO signaling pathway (4). In addition, they are involved in various cancers, including gastric
cancer (4), endometrial cancer (3), renal cell carcinoma (3), non-small cell lung cancer (3),
viral carcinogenesis (4), glioma (3), colorectal cancer (3), breast cancer (3), thyroid cancer (2),
hepatocellular carcinoma (3), bladder cancer (2), and melanoma (2). Several proteins are also
involved in EGFR tyrosine kinase inhibitor resistance (3), ErbB signaling pathway (3),
endocrine resistance (3), neurotrophin signaling pathway (3), PI3K-Akt signaling pathway (4),
mTOR signaling pathway (3), chemokine signaling pathway (3), p53 signaling pathway (2), B
cell receptor signaling pathway (2), MAPK signaling pathway (3), choline metabolism in
cancer (2), cell cycle (2), JAK-STAT signaling pathway (2), and Phospholipase D signaling

pathway (2), all of which are involved in cancer development and progression.
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2.4 Discussion

Cervical cancer was diagnosed in 5,70,000 women worldwide in 2018, of which 3,11,000
women lost their lives from the disease (Ferlay et al., 2018). Cervical cancer caused by HPV
infection usually resolves without symptoms. However, persistent infection can cause cervical
cancer, which is lethal in women. Several studies have highlighted the roles of several cervical
cancer-causing genes. The genes that are involved in cervical cancer progression are deposited

in the DisGeNET database.

The moment of inertia tensor analyzes the sequence similarity as an alignment-free method.
Hou et al. (2016) showed the efficiency of this method, where the sequence similarity analysis
among the 12 baculoviruses resulted in a similar phylogenetic tree compared to the clustal X-
based sequence similarity analysis. Interestingly, in our work, the tensor analysis showed the
highest similarity among the KCC proteins that belong to the same family of proteins, such as
KRT13 — E2F3; KRAS — HRAS; RRAS — CD28; CD83 - SOCS1; TGFA - CDKN2A; TNF -
BCL2. Similarly, we found a high similarity between CCC and KCC proteins that belong to
the same family, such as NRAS — HRAS; KRT15 — KRT13; and NRAS — KRAS. This
highlights the precision of tensor analysis in analyzing similarities between protein sequences.
However, our analysis observed a limitation: this method cannot differentiate any two protein
sequences with the same length and amino acid composition but varying in arrangement.

However, proteins with similar amino acid compositions are rarely present.

In our study, CCC proteins that are most similar to KCC proteins were prioritized and evaluated
further. The final prioritized proteins in correspondence to the GO terms lists NRAS, GRB2,
BRAF, CCND2, CCNEI, RUNXI1, RARA, KRT15, WT1, MYCN, APOL2, HSPBS, PAIPI,
SLC7A60S.

NRAS belongs to the RAS family, which includes HRAS and KRAS proteins. These proteins
are primarily involved in signal transduction. The role of NRAS has been well-established in
colorectal cancer, head and neck cancer, acute myeloid leukemia, chronic myeloid leukemia,
and melanoma (Wang et al., 2020; Khanna et al., 2015 & Cicenas et al., 2017). Growth factor
receptor-bound protein 2 (GRB2) is also involved in signal transduction. It is known to involve

prostate cancer, gastric cancer, ovarian cancer, renal cancer, etc. (Ijaz et al., 2017; Qiao et al.,
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2020; Ye et al., 2018 & Huang et al., 2018). From the functional enrichment analysis, we found
that GRB?2 is involved in insulin receptor substrate binding and neurotrophin receptor binding
molecular functions. However, for both NRAS and GRB2, there is no significant hit in
biological processes. BRAF, a proto-oncogene, is also known as serine/threonine-protein
kinase B-Raf. It is involved in cell signaling for cell growth. Several cancers, such as prostate,
leukemia, gastric and renal, etc., are well evidenced by the involvement of BRAF (Xue et al.,
2018; Steinwald et al., 2020; Vendramini et al., 2019 & Yang et al., 2018). As for molecular
functions in GO terms, BRAF has a scaffold protein binding function. CCND2 belongs to the
cyclin family of proteins, which are involved in the cell cycle. It is known to be involved in
colorectal cancer, ovarian cancer, prostate cancer, etc. (Park et al., 2019; Hua et al., 2019 &
Zhu et al., 2014). According to the KEGG pathway analysis, CCND?2 is involved in the FoxO
signaling pathway, Prolactin signaling pathway, Human papillomavirus infection, PI3K-Akt
signaling pathway, cellular senescence, Human T-cell leukemia virus 1 infection, p53 signaling
pathway, JAK-STAT signaling pathway. CCND2 molecular functions include cyclin-
dependent protein serine/threonine kinase regulator activity and protein kinase regulator
activity. CCNEI] is also a cyclin family protein. It is involved in prostate cancer, gastric cancer,
etc. Juetal., 2019 & Ooi et al., 2017). Similar to CCND1, CCNEI performs cyclin-dependent
protein serine/threonine kinase regulator activity and protein kinase regulator activity. RUNX1
is otherwise called as acute myeloid leukemia 1 protein (AML1). RUNXI is associated with
leukemia and solid tumor growth on the lung, breast, intestine, and skin (Otalora-Otalora et al.,
2019). It is involved in the biological process of regulation of granulocyte differentiation.
RARA is a nuclear receptor known as NR1B1 (nuclear receptor subfamily 1, group B, member
1). The involvement of RUNXI1 in leukemia is well-established (De Braekeleer et al., 2014). It

is involved in Th17 cell differentiation and also in the regulation of granulocyte differentiation.

Polyadenylate-binding protein-interacting protein 1 (PAIP1) is involved in translation
regulator/activator activity and nucleic acid binding functions. It is associated with breast
cancer and cervical cancer (Piao et al., 2018 & Li et al., 2019). KRT15 is a type I cytokeratin
involved in the estrogen signaling pathway and performs scaffold protein binding activity. The
overexpression of KRT15 is associated with colorectal cancer (Rao et al., 2020). WT1 is a
transcription factor with a proline / glutamine-rich DNA-binding domain at the N-terminus and

four zinc-finger motifs at the C-terminus. WT1 is inactivated in nephroblastoma and has been
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associated with breast cancer (Zhang et al., 2020 & Artibani et al., 2017). MYCN belongs to
the MYC family of transcription factors. It is associated with several cancers, such as acute
myeloid leukemia, medulloblastoma, and neuroblastoma (Rickman et al., 2018). APOL2
belongs to the apolipoprotein L gene family, which are lipid-binding proteins. It is known to
be a biomarker in bladder cancer (Ren et al., 2019). HSPBS is a heat shock protein, and its role
in various cancers is well-studied (Shen et al., 2018 & Crosbie et al., 2013). As all the prioritized
proteins are well established in several cancers, these proteins can be studied further for their
potential role in cervical cancer and progression. As most of the proteins have drugs available,

it would be easier to further explore their efficacy in cervical cancer.

2.5 Conclusion

In this study, the moment of inertia tensor concept was applied to study the sequence similarity
between the KCC and CCC proteins and prioritized the potential candidates from the CCC
genes list that may play a vital role in cervical cancer progression. With maximum hits in
KEGG pathway analysis, the top 5 proteins are NRAS, GRB2, BRAF, CCND2, and CCNEI.
As there are drugs available for most of the prioritized proteins, it reduces the efforts in
designing the drugs and therapeutic regimes. We found this approach relatively fast and
efficient in calculating the similarity between protein sequences. Our work sheds light on the
importance of the moment of inertia tensor in prioritizing genes based on sequence similarity.

This approach may find applications in sequence similarity analysis in other complex systems.
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Chapter 3 —
Prioritization of candidate genes using chaos
game and fractal-based time series approach




3.1. Introduction

Cancer research has increased significantly, but it requires careful analysis to identify suitable
markers for diagnosis and treatment. There has been a huge surge of studies on cervical cancer
that need to be carefully analyzed for the identification of a suitable marker for diagnostic and
therapeutic strategies. The field of bioinformatics has undergone significant progress in recent
years. Several studies focused on identifying the candidate genes in cervical cancer using
bioinformatics tools. However, we cannot continue to test the efficacy of all the candidate
genes in the progression of cancer as it is financially burdening and cumbersome. Therefore,

we need to prioritize the candidate genes to test their efficacy.

The ontology-based approach, computation-based approach, and integrated identification
approach are generally utilized for candidate gene identification. The biological function of the
gene is the basis for gene ontology-based methods. Machine learning, Hidden Markov analysis,
data mining analysis, cluster analysis, and KNN classification algorithm are some of the
computational methods regularly used to identify candidate genes. Integrative approaches
utilize experimental and theoretical data from different sources, such as protein-protein
interactions and pathway analysis (Zhu & Zhao 2007). The integration-based methods are
generally based on sequence similarity, protein-protein interactions and gene ontology, etc. For
example, SUSPECTS, PROSPECTR, and Endeavour prioritize genes by sequence similarity
and their function. Sequence similarity holds the key to identify the candidate genes as the
sequence of the gene determines the protein sequence, in turn, its function. Owing to the
importance of sequence similarity in identifying the candidate genes, in this study, we
prioritized candidate genes of cervical cancer using the sequence similarity based on the
integrated approach of Chaos theory (CGR) and 2D multi-fractal detrended cross-correlation
(2D-MF-X-DFA) and gene ontology.

Chaos Game Representation, an iterating mapping technique, was introduced by Jeffrey
(Jeffrey 1990) to represent the genomic sequence in a 2-dimensional image. Several approaches
were introduced to visualize the DNA sequences in a graphical way. CGR works on the
principle to map a one-dimension sequence to two dimensions or higher space. Jeffrey used a
square with four vertices being Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). The
algorithm works by drawing a point (P1) at half the distance from the first nucleotide of the
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given DNA sequence. Now, considering P1 as the new beginning point, another point (P2) will
be drawn at the half distance from the second nucleotide and this process keeps repeating till

the end of the sequence. It is noted that DNA sequences show fractal arrangement.

On the other hand, the random numbers did not show any fractal arrangement. Since then, CGR
has been favored for alignment-free comparisons of DNA sequences, protein sequences, and
phylogeny (Lochel & Heider (2021). In the present study, we represented the image in a square
matrix of length L with vertices A(0,0), G(1,1), C(0,1) and T(1,0). The image is represented as
dots and spaces, where the dot indicates the position of the nucleotide and the space indicates
the absence of the nucleotide. Several ways are present to represent the image, i.e., by changing
the order of the vertices. The image also changes with the selected order of vertices. The
graphical representations of the genomic sequences have been providing novel insights in
deciphering the complexity of genomic sequences as proven in previous studies that include
understanding the genome sequences, DNA sequences, RNA sequences, protein sequences,
protein-protein interactions, and protein sequence evolution (Tanchotsrinon et al., 2015; Wu et
al., 2010; Zhou 2011; Chou 2010; Yu et al., 2004; Deschavanne et al., 1999; Xiao et al., 2010;
Dutta & Das 1992 and Lu et al., 2011).

Multifractal nature is seen in nature and also in several social and financial fluctuations
(Mandelbrot 1983). Many approaches and techniques were developed to understand the
correlation behavior and multifractal nature. Some of the methods are wavelet transform
module maxima (WTMM), multifractal detrended fluctuation and discrete wavelet-based
fluctuation analysis, etc. (Arneodo et al., 1988; Kantelhardt et al., 2002; Manimaran et al., 2005
and Sahoo et al., 2020). Later, to capture the power-law cross-correlations among two non-
stationary datasets with multifractal features, MF-X-DFA was proposed as a method to
quantify the multifractal properties of such cross-correlations (Podobnik et al., 2008; Zhou,
2008; Podobnik et al., 2009 and Jiang et al., 2011). The potential of this method has been seen
in various events like finance, multifractal random walks (MRWs), climatic changes, seismic
events, agricultural future markets, stock market fluctuations, electricity and carbon markets (

Pal & Manimaran 2019; Rafique et al., 2022).

In our earlier studies, the coding and non-coding DNA sequences (Pal et al., 2015) and genome

sequences (Pal et al., 2016) were analyzed using the integrated approach of CGR and
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multifractal detrended analysis. Recently, the mitochondrial genome sequences were also
analyzed (Thummadi et al., 2021). In this study, candidate genes of cervical cancer were
prioritized using the integrative analysis of CGR and two-dimensional multifractal cross-

correlation.
3.2. Materials and Methods

3.2.1 Data collection and pre-processing

The Network of Cancer Genes (NCG6.0) database (Repana et al., 2018) was used to obtain 711
known and 1661 candidate cancer genes. 537 genes involved in cervical cancer were obtained
from the Cervical Cancer Gene Database (CCDB) (Agarwal et al., 2011). A comparison
showed that 128 genes from CCDB are common with the NCG6.0 gene list. These 128 genes
were then analyzed for gene-disease association in DisGeNET (Pifiero et al., 2020). It was
found that 82 genes out of these 128 genes have experimental validation. Therefore, the
experimentally validated 82 genes were considered as known cervical cancer (KCC) genes and
the experimentally unvalidated 46 genes as cervical cancer candidate (CCC) genes. The
biomaRt R library was used to retrieve gene sequences for the 128 genes from the Ensembl

database (Durinck et al., 2009).
3.2.2 Chaos game representation of cervical cancer gene sequences

The fractality of gene sequences was analyzed using chaos game representation (Jeffrey. 1990).
The methodology for using the CGR algorithm has been given in detail elsewhere (Jiang et al.,
2011; Rafique et al., 2022 and Pal et al., 2015). In brief, the nucleotides A(0,0), G(1,1), C(0,1)
and T(1,0) are taken as the vertices of a unit square with length — L. Positions of nucleotides

were calculated using the iterative mapping function as given below:

Pi=0.5 (Pi.1 + Vip) (D

Qi=0.5 (Qi1 + Wig) 2
Where Pi and Q; are the i nucleotide co-ordinates computed from half of the previous
nucleotide position. The first nucleotide Pi.; and Qi1 positions are given from the centre of the
unit square (0.5, 0.5). Vi, and Wjq denote the vertex coordinates. With the iteration of these

steps, we have calculated the coordinates for all the nucleotides from all gene sequences and
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developed a CGR image. For further analysis, the data matrix was obtained by converting these

images to frequency CGR (fCGR).
3.2.3 Two-Dimensional MF-X-DFA technique

The two-dimensional MF-X-DFA method was applied to the fCGR matrix to examine the
cross-correlation patterns and multi-fractal properties of gene sequence matrices. The
advantage of this integrative approach is that it can accommodate unequal gene lengths for
cross-correlation. The 2D MF-X-DFA approach was introduced by W. X. Zhou (Zhou 2008)

and the detailed procedure is as follows:

Step 1: Consider any pair of equal-sized two-dimensional data matrices of images i(p,q) and

i(p,q), where p=1,2, .. .,aand g=1,2, .. .,b.

Step 2: The data was split into a5 x bs non-overlapping square fragments of equal size. For
instance, s x s, with a;=a/s and by=b/s. Each data fragment is represented by ix, or jx.such that
ix2(p,q) = i(hxtp , htq) and jxAp,q)=j(hstp , h+ q) for q<p, g<s, where hyx =(x—1)s and
h,=(z—1)s.

Step 3: ix, or jx. is defined as follows:

1, q) = X0 21 X oy bz (tr, t2) and L ,(p, @) = X7 _; X7 1), ,(t1, t2) here q<p, I<s.

Step 4: Any set of two fragment’s detrended covariance is calculated as:

N N

Foa®) =50 3 1@ @) = L0 ) [0 0~ 1,0, 0)] )
1

p=1q=
Here, I, and J, , represent the polynomial approximations of Iy, and Ix. respectively. The

polynomial function was chosen as the least complex plane 5/(}9, q) = mp + nq + r, which is

used in our analysis.

Step 5: The detrended covariance was used to calculate the qth order fluctuation function

Fij(n,s) as shown in step 4 with a square and the mean of all the segments,
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In accordance with L Hospital’s rule for n=0, the fluctuation function is defined as

as b
1
Fy(n,s) = exp| 50D D InlFea(®)] | (5)
x=1z=1

Here, "n" is referred to as an order of the moment and can have any real value.

Step 6: We repeated method steps 2 through 5 using various scale values 's' for varied
estimations of 'n'. With the fluctuation function investigation, we obtained power-law scaling
behavior.
Fij(n,s)~s"™(6)

If the calculated scaling examples hjj(n) values do not show a dependence on q esteems, they
are of a monofractal nature. If hjj(n) values show dependency on n esteems, then it represents
a multifractal nature. However, if i=j, then 2D MF-X-DFA is same as 2D-MFDFA. For the
positive ‘n’ values, hjj(n) indicates large fluctuations, while the negative ‘n’ values represent
small fluctuations.

The strength of the multifractal behavior of cross-correlated image data was analyzed by

evaluating the fj(a) spectrum. Fjj(a) values were obtained from Legendre transform t(n) as:
Fij(o) = naj — Tij(n) (7

Here tjj(n) = nhjj(n) — Dr.

In the present study, we applied the Dr value as 2. The a;j values were obtained from o
=dtij(n)/dn. The width of the fjj(a) range determines the strength of multifractal behavior.
Strong multifractal behavior is indicated by a broader range, while a narrow range indicates

weak multifractal behavior.

3.2.4 Functional enrichment and survival analysis
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The functional enrichment analysis was performed on candidate genes to get to know about
their associated GO terms and KEGG pathways using the clusterProfiler R package (Yu et al.,
2012). Also, the candidate genes prognosis was studied via survival analysis using the KM
plotter online tool (Lanczky and GyOrffy 2021). Survival analysis results show the effect of

gene expression pattern levels on patient survival.
3.3 Results and Discussion

Pre-processed nucleotide sequences of known and candidate cervical cancer genes were used
to generate the frequency of CGR matrices [Figure 1]. The frequency CGR matrices for each
gene were extracted after applying CGR on all the genes. Each CGR image is divided into 2%+
2% grids, and ‘k” is known to be the length of the DNA segment in the sequence. The CGR
analysis was performed by taking k as 6, 7, 8, 9, and 10. The results are consistent across
different k values and do not show any significant variation, i.e., 6,7,8,9, and with a grid size

of 64 x 64.

Figure 1: CGR images of ERBB4 (left panel) and BRAF (Right panel)

The fractal behavior and potential candidate genes for cervical cancer were characterized and
predicted by proceeding with the k = 6 frequency CGR matrix. It should be noted that the CGR
method could generate frequency CGR matrices of equal size even though two sequences are

of different lengths.
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Further, the 2D MF-X-DFA method was used to characterize multifractal behavior and cross-
correlation among the sequences. The cross-correlation was measured among KCC-KCC,
KCC-CCC and CCC-CCC sequences. Multifractal nature with varied strength was shown by
all the genes [Figure 2]. A scale range (Pal and Manimaran 2019) and also the ¢” order
moments from -10 to +10 value with a step size of 0.2 were used for this study. The results
show that the strength of multifractality varies among the sequences depending on the g values.
The singularity spectrum's width reflects the multifractality's intensity: a wider spectrum
implies a more multifractal behavior, while a narrower spectrum implies a less multifractal
behavior [Figure 3]. Additionally, a cluster analysis was performed to find the class affiliation
among the cervical cancer genes (known and candidate). These clusters were visualized as

circular dendrogram [Figure 4].

2 T T T T T T T T T T T
— ERBB4- BRAF
—O&— ERBB4 - CDH2
"I —%— ERBB4 - EPBAIL3 | _
ERBB4 - OSMR
—+H— ERBB4 - RUNX1
—Q— ERBB4 - STK31
16 F -
T
<4t -
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1t ]
| 1 1 1 1 | 1 1 1 1 1

Figure 2: Representative multifractal behaviour of Known cervical cancer gene-ERBB4 and Candidate
cervical cancer genes-BRAF, CDH2, EPB4IL3, OSMR, RUNXI1, STK31. The values of the h(q)
exponents vary according to the choice of g.

Chapter 3: Prioritization of candidate genes using chaos game and fractal-based time series approach

w
(O}




15

fla)

0.5

— ERBB4 - BRAF
—O— ERBB4 - CDH2
—%— ERBB4 - EPB4IL3
ERBB4 - OSMR
—+H— ERBB4 - RUNX1
—<— ERBB4 - STK31

Figure 3: The singularity spectrum f(a) of candidate cervical cancer genes-BRAF, CDH2, EPB4IL3,
OSMR, RUNXI1, and STK31 in comparison to known cancer gene- ERBB4 showing the strength of the

multifractal nature.
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Figure 4: Dendrogram of known and candidate genes belong to cervical cancers

An advantage of alignment-free methods is that a data matrix of the same size can be obtained
even when the sequences have different lengths. A total of 16 genes that may be associated
with the development of cervical cancer [Table 1] were selected by applying CGR and the 2D
MF-X-DFA approaches. A high number of correlations with known cervical cancer genes were

found for these candidate genes. The 16 candidate genes are DSG1, ECT2, TMPRSS11D,
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STK31, CDH2, PAIP1, BRAF, CDHI11, HUWEI, NRAS, DLCI, NTN4, EPB41L3, OSMR,

KIT, RUNXI.
Table 1 : Prioritized candidate genes for cervical cancer
S. | Gene Disease Drugs No. of | Genes showing similarity
N Genes
0.
1 | DSGI Not available | Not 25 APC, CD28, CDK6, CDKN2A,
available CTNNBI, DEK, ERBB4, ESR1, E2H2,
FGF2, IL1A, ITGA4, ITGAV, KRAS,
MET, MMP13, PGR, PTEN, SFRP4,
SKP2, SMAD2, SMAD4, TGFBRI,
TLR2, TLR4
2 | ECT2 Not available | Not 25 APC, CD28, CDK6, CDKN2A,
available CTNNBI, DEK, ERBB4, ESR1, E2H2,
FGF2, IL1A, ITGA4, ITGAV, KRAS,
MET, MMP13, PGR, PTEN, SFRP4,
SKP2, SMAD2, SMAD4, TGFBRI,
TLR2, TLR4
3 | TMPRSS1 | Not available | CHEMBL2 | 24 APC, CD28, CDK6, CDKN2A,
1D 086421 CTNNBI, DEK, ERBB4, ESR1, FGF2,
(Inhibitor IL1A, ITGA4, ITGAV, KRAS, MET,
1[Colombo MMP13, PGR, PTEN, SFRP4, SKP2,
etal., SMAD2, SMAD4, TGFBRI1, TLR2,
2012]) TLR4
4 | STK3l1 Not available | Not 21 APC, CD28, CDK6, CTNNBI1, DEK,
available ERBB4, ESR1, FGF2, IL1A, ITGA4,
ITGAV, KRAS, MET, MMP13, PGR,
PTEN, SMAD2, SMAD4, TGFBRI,
TLR2, TLR4
5 | CDH2 Solid Exherin 19 CD28, CDK6, CTNNBI1, DEK,
tumour/cancer ERBB4, FGF2, IL1A, ITGA4, ITGAV,
KRAS, MET, MMP13, PGR, PTEN,
SMAD2, SMAD4, TGFBRI1, TR2,
TLR4
6 | PAIP1 Not available | Not 18 CD28, CDK6, CTNNBI, DEK,
available ERBB4, FGF2, ITGA4, ITGAYV,
KRAS, MET, MMP13, PGR, PTEN,
SMAD2, SMAD4, TGFBRI1, TLR2,
TLR4
7 | BRAF Melanoma,; Dabrafenib | 13 CD28, CDK6, ERBB4, FGF2, ITGA4,
solid tumor/ ITGAV, KRAS, MMP13, PGR, PTEN,
cancer SMAD?2, TGFBR1, TLR4
8 | CDH11 Rheumatoid RG6125 6 ERBB4, ITGA4, ITGAV, MMPI13,
arthritis PTEN, TLR4
9 | HUWEI1 Not available | Not 6 ERBB4, ITGA4, ITGAV, MMPI13,
available PTEN, TLR4
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10 | NRAS Colorectal Mutantras | 6 ERBB4, ITGA4, ITGAV, MMP13,
cancer; head vaccine PTEN, TLR4
and neck
cancer
11 | DLC1 Not available | Not 5 ITGA4, ITGAV, MMP13, PTEN,
available TLR4
12 | NTN4 Not available | Not 5 ERBB4,ITGA4,ITGAV, PTEN, TLR4
available
13 | EPB41L3 Not available | Not 4 ERBB4, ITGA4, ITGAV, TLR4
available
14 | OSMR Not available | Not 4 ERBB4, ITGA4, PTEN, TLR4
available
15 | KIT Tenosynovial | Ripretinib | 3 ERBB4, ITGA4, PTEN
giant cell
tumour,
Metastatic
colorectal
cancer
16 | RUNXI1 Not available 1 ERBB4

DSG1 (Desmoglein 1) is a cadherin-like transmembrane glycoprotein that is the main
component of the desmosome along with armadillo proteins and plakin proteins. Reduction of
desmosomal component results in tumor development. Its downregulation is associated with
various types of cancers, including those affecting the head and neck, the colon, the skin, the
esophagus, the lung, the cervix, and the stomach (Liu et al., 2021). ECT2 (Epithelial Cell
Transforming 2) is a guanine nucleotide exchange factor (GEF), which has an essential role in
activating Rho family GTPases, thus regulating various cellular processes like cytokinesis, cell
division, etc. ECT2 dysregulation is associated with various types of cancer, including those
affecting the breast, the lung, and the stomach (Miki et al., 1993 and Chen et al., 2020).
TMPRSS11D (Transmembrane Serine Protease 11D) is also denoted as human airway trypsin-
like protease (HAT) and is associated with the family of type II transmembrane serine proteases
(TTSP). It involves in the proteolytic activation of influenza A, influenza B, and SARS-CoV.
Its role is well-established in squamous cell carcinogenesis (Cao et al., 2017). STK31
(Serine/Threonine Kinase 31) is a member of the Serine/Threonine Kinases family. Recent
studies reported STK31 as a novel cancer/testis antigen (CTA), CTAs are tumor antigens, ideal
targets for cancer immunotherapy (Yokoe et al., 2008). Its role is associated with colorectal

and gastric cancers. It is involved in regulating cell cycle progression (Kuo et al., 2014).
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CDH2 (Cadherin 2), also referred to as N-cadherin, is the essential factor in the transition of
tumors to malignant. It may function as a potential therapeutic target for different cancers
(Warde, 2011 and Guvakova et al., 2020). CDH11 (Cadherin 11) is a tumor suppressor gene
associated with various tumors. It modulates the activity of AKT/Rho A and Wnt/B-catenin
pathways (Li et al., 2012). CDH2 and CDHI11 belong to the cadherin family of cell-cell
adhesion molecules involved in critical biological processes interacting with each other. They
are well known for regulating various characteristics of cell behavior such as differentiation,
proliferation, cell polarity, self-renewal, apoptosis, and embryonic stem cell differentiation,
and maintenance of tissue integrity (Chen et al., 2021). PAIP1 (Poly(A) Binding Protein
Interacting Protein 1) is associated with functions such as translation regulator/activator
activity and nucleic acid-binding. It is associated with breast cancer and cervical cancer (Piao
et al., 2018 and Li et al., 2019). BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase) is
involved in cell signaling and it is well established in multiple cancers, such as leukemia,
prostate, renal and gastric and so forth,. (Xue et al., 2018; Steinwald et al., 2020; Vendramini
et al., 2019 and Yang et al., 2018). HUWE], also known as E3 ubiquitin ligase, plays a vital
role in ubiquitination and proteolysis of target genes. The ubiquitin system dysregulation often
lead to pathogenesis, including development of tumors (Kao et al., 2018). NRAS (NRAS Proto-
Oncogene, GTPase) is part of the RAS GTPase family comprising HRAS and KRAS. They
play an important role in signal transduction pathways. NRAS is well-studied in multiple
cancers such as head and neck, acute and chronic myeloid leukemia, colorectal, melanoma, etc.

(Wang et al., 2020; Khanna et al., 2015 and Cicenas et al., 2017).

DLCI1 (Deleted in Liver Cancer 1) is a Rho GTPase Activating Protein, that acts as a tumor
suppressor gene in multiple cancers including lung, prostate, breast and colorectal cancers
(Sanchez-Solana et al., 2021). Netrin 4 (NTN4) is part of the neurite guidance factors family
associated with neurite growth promotion and elongation. It is a prognostic factor in breast
cancer progression (Yi et al., 2022 and Hao et al., 2020). EPB41L3 (Erythrocyte Membrane
Protein Band 4.1 Like 3) is a tumor suppressor gene involves in the modulation of the activity
of protein arginine N-methyltransferases. It is also, associated with cytoskeleton organization.
It is established as a biomarker for meningioma (Zeng et al., 2018). OSMR (Oncostatin M
Receptor) is associated with the IL-6 cytokine family and acts as the master regulator in the

crosstalk between immune and nonimmune cells. It is a key factor for tumor progression in
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breast and ovarian cancers (Araujo et al., 2022). KIT (proto-oncogene c-KIT) is a receptor
tyrosine kinase, involved in the activation of MAPK, JAK/STAT and PI3K pathways. It plays
a critical role in melanogenesis, gametogenesis, and hematopoiesis (Ke et al., 2016). RUNX1
also known as acute myeloid leukemia 1 protein (AML1). It is involved in leukemia and solid
tumor growth in the lung, skin, breast, and intestine (Otalora-Otélora et al., 2019). It plays an
essential role in Th17 cell differentiation and regulating granulocyte differentiation. It is well-

established in leukemia (De Braekeleer et al., 2014).

Gene ontology and KEGG pathway investigation revealed that the genes under study were
related to several biological processes (BP) involving cell-cell junctions, cell shape, and
actomyosin structures. Moreover, the genes were involved in various signaling pathways and
cancer types, such as Rapl, ErbB, MAPK, PI3K-Akt, mTOR, acute and chronic myeloid
leukemia, breast, thyroid, bladder, and gastric cancer. Further, we performed survival analysis
on candidate genes using a KM plotter to predict the prognosis in cervical cancer patients. The
KM survival curve is widely used statistically to estimate the time to death-events. KM survival
curve results were analyzed based on hazard ratio and log-rank p values to filter statistically
significant genes that are poorly prognosed in cervical cancer patients. It is found that a total
of six genes CDH2, PAIP1, BRAF, EPB41L3, OSMR and RUNX1 have poor prognostic power
in patients [Figure: 5].

The candidate cervical cancer genes from our results were prioritize based on sequence
similarity with established genes. This provides an advantage to experimental researchers in
designing and developing new drugs and antibodies against multiple target molecules as a
comprehensive approach. Moreover, alignment-free methods have an edge over alignment-
based methods for sequence similarity. However, our goal is limited to prioritizing candidate
cancer genes based on sequence similarity. Furthermore, this approach may find applications
in predicting new cancer genes, differentiating driver and non-driver cancer genes, clustering

and classification problems, etc.
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Figure 5: List of genes having poor prognosis in cervical cancer patients as per survival analysis

3.4. Conclusion

The current study focuses on the characterization of multifractal behavior and cross-correlation
analysis to prioritize the potential candidate genes involved in cervical cancer by 2D MF-X-
DFA in combination with chaos game representation. The study mainly focuses on the
frequency CGR matrix generation for each protein sequence and analyzing fractal and cross-
correlation behavior. This study prioritizes a total of six genes CDH2, PAIP1, BRAF,
EPB41L3, OSMR and RUNXI1, which show poor prognostic performance in cervical cancer
patients. Further experimental analysis is needed to evaluate the efficacy of the prioritized

genes.
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4.1. Introduction

Women worldwide suffer high morbidity and mortality rates because of cervical cancer (CC),
which holds fourth rank among different types of cancers (Bray et al., 2018 & Sung et al.,
2021). It is divided into two subtypes, i.e., squamous cell carcinoma (80%-90%) and
adenocarcinoma (10%-20%). India contributes at least one-fourth of the disease burden
globally (Reichheld et al., 2020). Human papillomavirus (HPV) is the primary risk factor for
CC. However, weak immune system, smoking, birth control pills, and multiple sexual partners
also play an imminent role as risk factors (Cohen et al., 2019). It is evident that tumor
progression involves various genetic and epigenetic events along with risk factors. Hence, it is
important to elucidate the molecular mechanisms involved in tumor progression to understand
the disease better. Currently, available treatment options are surgery, radiotherapy, and
chemotherapies that don’t give protection against the disease, as 75% of CC patients develop
further progression or recurrent/recurrence of tumors. Every treatment strategy depends solely
on the tumor heterogeneity of the patient (Cook et al., 2011). Understanding the gene
expression pattern among the patients is essential to predict diagnostic and prognostic gene
signatures that could be used to diminish the outcome of the disease in combination with

protein-protein association networks (Oany et al., 2021).

The high-throughput gene expression profiling methods are widely used in cancer genomic
studies to understand the molecular classification of the disease, patient stratification,
prognosis, and new drug targets (Kulasingam & Diamandis, 2008; Nannini et al., 2009; Bustin
& Dorudi, 2004 & Liang et al., 2016). Gene expression profiling methods are known to reveal
the differential expression of the genes and their respective dysregulated pathways responsible
for the disease progression. Integrating biological knowledge with protein-protein interaction
(PPI) networks provides blueprints to understand the complex structural organization of

disease-related networks (Chen et al., 2019).

The structural organization of the PPI network consists of nodes and edges representing
proteins and their interactions, respectively (Rual et al., 2005). Topological structural analysis
of the PPI network reveals the biological significance of each protein in the network (Raman,
2010 & Stelzl et al., 2005). Hence, it is essential to identify crucial proteins responsible for

maintaining the global structural stability of the PPI network. Hubs and bottlenecks are
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extensively studied in network analysis to understand their importance in the network. Hubs
are proteins with a large degree, and bottlenecks are proteins with high betweenness centrality,
known to be central molecules in the PPI network (Barabasi et al., 2011; Yu et al., 2007 &
Ghasemi et al., 2014). This study assessed hubs and bottleneck properties that might help
underpin the molecular mechanisms underlying carcinogenesis and develop better intervention
strategies. Along with topological centrality calculations, relative vulnerability analysis of a
network aims to identify critical proteins that can affect the overall structural stability of the
network (Podder et al., 2018).

Our present study combines differential expression analysis, protein-protein interaction
network analysis with functional enrichment, and survival analysis to identify the potential

key molecular players involved in cervical cancer progression.

4.2. MATERIALS and METHODS

4.2.1 Retrieval and pre-processing of datasets

Cervical cancer gene expression profiles were searched with the keywords "cervical cancer"
and "microarray" at the Gene Expression Omnibus, a genomic data repository of the National
Center for Biotechnology Information (NCBI, GEO). The inclusion criteria for selecting the
datasets were that the study should be focused on cervical cancer as the main subject from the
organism Homo sapiens. The main aim of the study was to filter the protein-coding genes
(mRNA) that were significantly differentially expressed in tumor tissues with respect to the
normal tissues. Our query resulted in the identification of 576 studies, and out of these, studies
that didn’t satisfy inclusion criteria were excluded (Supplementary Figure 1). Five datasets
eligible to be considered for the analysis were obtained (Zhai et al., 2007; Den Boon et al.,
2015; Scotto et al., 2008; Wong et al., 2003 & Travasso et al., 2008), but two datasets were
excluded due to a technical issue while mapping probe IDs to gene symbols. Finally, three
potential datasets were selected for further analysis. The selected datasets considered in this

study are summarized in Table 1.
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Supplementary Figure 1: PRISMA flow chart of the microarray meta-analysis for the

Records identified from GEO
database search (n = 576)

!

Records screened
(n = 576)

Records considered for eligibility
(n =24)

Records excluded on the basis of
methylation profiles, non-coding
RNA profiles, HPV subtypes,
genome variation binding array
and high throughput genome
sequencing (n = 552)
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Records assessed for eligibility
(n=3)

Records excluded on the basis of
studies with cancer cell lines and
drug treatments, without normal
control and cancer sample (n =

19)

Studies included in quantitative
synthesis (meta-analysis)
(n=3)

selection of cervical cancer datasets.

Records excluded due to
technical issue while mapping
probe IDs to respective gene
symbols/UniProt IDs (n = 2)

Chapter 4: Analysis of protein-protein interaction networks in cancer

N
(o)}




Table 1: The details of the microarray datasets from the NCBI GEO database

S.No | Dataset Accession | Platform Sample size
No.

I. Human pre-invasive and | GSE7803 | GPL96 [HG- | 10 normal and 28
invasive cervical squamous Ul33A] cancer samples
cell carcinomas and normal
cervical epithelia (Zhai et
al., 2007)

2. Gene expression analysis | GSE63514 | GPL570 [HG- | 24 normal and 28
of cervical cancer U133 Plus 2] cancer samples. It
progression (Den Boon et also contained 14
al., 2015) CIN1, 22 CIN2 &

40 CINS3 lesions

3. Identification of gene | GSE9750 | GPL96[HG- 24 normal and 33
expression  profiles in U133A] cancer specimens.
cervical cancer (Scotto et It also contained
al., 2008) samples of 9 cell

lines

Our study mainly focuses on screening differentially expressed genes (DEGs) between tumor
and adjacent normal samples, and the expression profiles from cell line studies were excluded.
Collected datasets were processed using affy (Gautier et al., 2004) and limma (Ritchie et al.,
2015) libraries of the Bioconductor package in the R platform. Microarray datasets are
preprocessed as follows: the probe sets in the dataset were normalized through the RMA
(Robust Multi-array Average) function of the affy package to obtain expression values. The
probe sets with expression values were annotated to respective official Gene Symbols.
Replicated entries of a gene were removed to reduce the noise, and missing gene expression
values across rows and columns were imputed. The processed unique gene expression matrix

with its gene symbols was used for the subsequent analysis.
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4.2.2 Differential expression analysis

Differential gene expression analysis was carried out on the processed dataset through Linear
Models for Microarray Analysis (LIMMA). Genes differentially expressed in cancer samples
with respect to normal samples from each dataset were identified using the /imma package of
R (Ritchie et al., 2015). Statistically significant differentially expressed genes (DEG) were
filtered based on the criteria of a log fold change > 2 and adjusted P-value < 0.01. The
distribution of DEGs in each dataset was visualized through volcano plots. The same procedure
is followed for all the datasets except annotation, as different platforms generated them.
Furthermore, batch effects in datasets were corrected by computing effect sizes with random-

effects models from the metafor R package (Viechtbauer 2010).
4.2.3 Construction of protein-protein interaction network

Identified DEGs were investigated for their interactions through the protein-protein interaction
(PPI) network. The PPI network was constructed by retrieving all the available interactions of
human from various databases such as APID, DIP, HitPredict, PIP, 12D, BioGrid, MINT,
STRING, and IntAct (Alonso-Lépez et al., 2019, 2016; Xenarios et al., 2000; Patil et al., 2011;
McDowall et al., 2009; Kotlyar et al., 2016; Oughtred et al., 2021; Licata et al., 2012;
Szklarczyk et al., 2021 & Kerrien et al., 2012). Proteins participating in PPIs were mapped to
official gene symbols first, then all the interactions were merged. Finally, only those
interactions in which both the interacting proteins are part of identified DEGs were extracted.
To get the final simplified network, self-loops and duplicate edges were removed from the
primary network. The PPI network construction and analysis were carried out using the igraph

R package (Csardi & Nepusz et al., 2006) to find the essential proteins in the network.
4.2.3.1 PPI network topology analysis

Topological centrality analysis was performed on the disease-related protein-protein
interaction network to identify the critical nodes in the network based on hubs and bottleneck
properties. As per the degree centrality, each protein in the network was assigned a degree
value, then a cutoff was calculated based on the 80-20 rule (Newman 2005). All the proteins

above the cutoff were considered hubs. Betweenness centrality measures the number of shortest
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paths passing through a particular node. Hence, nodes with the highest betweenness control the
network's information flow, representing the network's critical points. These nodes were
referred to as the "bottlenecks" of the network. The cutoff was calculated by the same 80-20

rule, and all the proteins having betweenness above the cutoff were considered bottlenecks.
4.2.3.2 PPI network vulnerability analysis

Network vulnerability analysis was performed to identify the most vulnerable proteins as
therapeutic targets for cervical cancer. The overall structural stability of the PPI network of
cervical cancer was assessed by deleting proteins randomly from the core network and
analyzing three topological parameters: Clustering coefficient or transitivity, Average path
length (APL), and heterogeneity after each node removal (Podder et al., 2018). The average
path length is a measure of the network’s overall connectivity. The APL in a network is
obtained by calculating the mean of the shortest paths between all pairs of nodes (both ways
for directed graphs). The clustering coefficient measures the probability that the adjacent nodes
of a particular node are connected. It is also referred to as transitivity. Network heterogeneity

is defined as a network with heterogeneously distributed nodes with a higher number of

. . . . var (k)
connections, i.e., hubs, as well as a low number of connections. Heterogeneity = ’m,

where k& = node degree of the network.

The analysis was carried out by removing one node (protein) from the network and calculating
each parameter for the rest of the network. The simulated networks number for each property
should be exactly equal to the number of nodes (proteins). Average path length, clustering
coefficient, and heterogeneity were estimated in the presence and absence of each protein to
assess the influence on the overall network. With this analysis, we can figure out the most
valuable proteins that are critical for maintaining the structural stability of the network. The
most important ones will be the outliers in the graphs generated for the parameters. The outliers
indicate that removing that particular protein affects the whole network. Hence, it is crucial
and can be considered a drug target by analyzing and integrating the outcome of the

vulnerability and hub-bottleneck analyses.

4.2.4 Functional enrichment analysis
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The combined list of proteins obtained by vulnerability and topology analysis of disease-related
networks are assessed for their associated role in various processes and pathways. Gene
Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for
the respective proteins were assessed through the clusterProfiler R package (Yu et al., 2012).
GO is mainly used in functionally annotating genes based on GO terms: Biological process
(BP), Molecular function (MF), and Cellular component (CC). KEGG, a pathway database,
allows us to explore the associated pathways for the given set of proteins.

4.2.5 Validation of gene expression at the protein level

Immunohistochemistry data available at Human Protein Atlas (HPA), a human proteome map
(Uhlén et al., 2015), is accessed to validate the key gene's protein expression patterns based on

the staining intensity levels in both normal cervix tissue and cervical cancer tissues.

4.2.6 Survival analysis

To further characterize the candidate genes, survival analysis was performed through the
Kaplan-Meier survival curve and log-rank test through the Kaplan-Meier plotter online tool
(Lanczky & Gyorffy 2021). Overall survival (OS) of patients depends on the time between the
surgery date and death or the last follow-up date. The GEO datasets don't have information
related to clinical profiles. The clinical data was accessed from the TCGA-CESC project on
cervical cancer to investigate the prognostic performance of the candidate genes in patients and

p-values <0.05 are considered statistically significant prognostic factors for cervical cancer.

4.3 Results

4.3.1 Identification of differentially expressed genes between different tissue

samples

In the present study, differential expression analysis identified 544 unique genes as
differentially expressed between cancer and normal tissue samples from three datasets
(GSE7803, GSE63514 and GSE9750). Out of 544 differentially expressed genes, 248 were
upregulated and 296 were downregulated. The datasets GSE527 and GSE4482 were not

considered for further studies due to a technical issue while mapping probe IDs to respective
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gene symbols/UniProt IDs. The detailed distribution of DEGs in each dataset is given in Table

2 and represented as volcano plots (Figure 1).

Table 2: No. of DEGs present in each dataset through differential expression analysis

GEO No. of genes | No. of | Upregulated Downregulated
accession after DEGs genes genes
processing

GSE7803 12403 79 21 58
GSE63514 12403 412 211 201
GSE9750 12403 265 61 204

A B

C ’ fold change ’ log; fold change

log; fold change

Figure 1: Number of DEGs in each dataset. (A) GSE7803, (B) GSE63514, (C) GSE9750. Green dots
are downregulated genes and Red dots are upregulated genes. Cutoff: logFC=2 & pval=0.01.
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4.3.2 Essential proteins in the dysregulated network of cervical cancer were

identified through network analysis

After merging all the protein-protein interactions from different PPI databases, there were
14,30,022 interactions among 51,209 proteins. After removing redundancy, we got 8,52,432
interactions among 51,209 proteins. Then, only those interactions in which both the proteins
were part of the DEGs list were extracted. Thus, the number of DEGs interactions were 4,942
with 498 proteins. The network was visualized using Cytoscape (Shannon et al., 2003) for

further analysis (Table 3) (Figure 2).

Table 3: Network analysis summary

Properties of Networks No.
Number of nodes 498
Number of edges 4942
Avg. number of neighbors 20.114
Network diameter 8
Network radius 5
Characteristic path length 3.160
Clustering coefficient 0.378
Network density 0.041
Network heterogeneity 1.216
Network centralization 0.176
Connected components 4
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Figure 2: Protein-protein interaction network of DEGs representing 4942 interactions and

498 nodes/proteins.

All proteins with a degree value of > 63.62 were considered hubs following the 80-20 rule. It
resulted in 55 proteins as hubs. Further, all proteins with a betweenness value > 0.02509 were
considered bottlenecks using the same 80-20 rule, resulting in 14 bottlenecks. Seven proteins

were found to have properties of both hub and bottleneck (Table 4) (Figure 3).

Chapter 4: Analysis of protein-protein interaction networks in cancer

(9}
w




Table 4: List of key proteins resulted from network analysis

Hub proteins

MCM2, CDK1, TOP2A, KIF11, CCNB1, MKI67, CDC6, MCMS5,
CHEKI1, MCM10, NDC80, TTK, BUBIB, CDC45, MCM6,
EXOI1, FN1, CXCLS8, RFC4, MCM3, KNTCI1, TRIP13, ASPM,
MELK, FANCI, RADS5IAPI1, KIF2C, DTL, OIPS5, SMC2,
CENPE, KIF23, NCAPH, DLGAPS5, CDCAS, KIF15, WDHDI,
KIF20A, KIF4A, CEP55, NUSAP1, PRCI1, RADS4L, GINS2,
POLE2, CDKN3, HMMR, FOXM1, MMP9, PRIMI1, SPAGS,
HELLS, NCAPG2, EZH2, and FBXO5

Bottleneck proteins

TRIM16, FN1, MCM2, CXCL8, MMP9, MKI67, CCNDI,
TRIP13, FOS, ISG15, VCAM1, MCMS5, IGF1, AGR2

Common Hub and

Bottleneck proteins

MCM2, MKI67, MCMS5, FN1, CXCLS8, TRIP13 and MMP9

List of Vulnerable

proteins

MCM2, MKI67, KIF11, CCNB1, CDC6, TTK, CDC45, BUBIB

Potential key genes

MCMS, FN1, TRIP13, KIF11, TTK, CDC45, and BUB1B

Hubs . Bottlenecks
48 7

Figure 3: Venn diagram illustrating the number of common hubs and bottlenecks
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4.3.2.1 Network vulnerability analysis identifies critical proteins with the

property of altering the structural stability of the network

Network vulnerability analysis was performed to assess the three topological properties such
as APL, transitivity, and heterogeneity, which were calculated for the simulated network after
deleting one node at once using a scatter plot, and outliers were identified to pinpoint the

important proteins as potential drug targets for cervical cancer (Table 5) (Figure 4).

Table 5: Network vulnerability analysis

Gene name | Average path Gene name | Transitivity | Gene name | Heterogeneity
length

MCM2 3.197112 CDC45 0.658095124 | MCM2 5.379136753
FNI 3.188606 TTK 0.658436214 | CDK1 5.388003605
CXCLS 3.185894 EXOl 0.658443901 | TRIP13 5.388986277
MKI67 3.17975 KIF20A 0.658578871 | TOP2A 5.391699113
MMP9 3.177497 KIF23 0.658595808 | CCNB1 5.393047379
ISG15 3.176812 ASPM 0.65875306 | CDC6 5.395715251
AGR2 3.174701 DTL 0.658784218 | CHEK1 5.396180819
IGF1 3.174358 CDCAS8 0.658894051 | KIF11 5.396506068
FOS 3.173623 BUBIB 0.65894888 | MCM10 5.397525741
CCND1 3.17349 KIF15 0.658949144 | MCM6 5.397692815
KIF11 3.170953 MELK 0.658972469 | MKI67 5.39817741
EZH2 3.1696 RADS1API | 0.659088476 | TTK 5.398372616
MCMS5 3.168432 CDC6 0.659095901 | CDC45 5.398784435
VCAM1 3.168157 KIF4A 0.65921154 | BUBI1B 5.399276182
NDCS80 3.168006 CCNBI 0.659270179 | RFC4 5.400048301
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Figure 4: Topological vulnerability assessment of cervical cancer network
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Outliers are the most critical proteins of the network, which can initiate disease progression by
changing the stability of the PPI network. Common outliers were identified from the three
graphs, then common outliers from any two graphs taken at a time. The list of vulnerable
proteins was found to be MCM2, MK167, KIF11, CCNB1, CDC6, TTK, CDC45, and BUB1B.
The list of the common hub and bottleneck proteins are found to be MCM2, MKI67, MCMS5,
FN1, CXCLS, TRIP13, and MMP9. Both vulnerable and common hub and bottleneck proteins
were considered to prioritize potential candidates for the disease. Further, The reports of their
involvement in cervical carcinogenesis were further validated by us in the Gene Cards database
under MalaCards (Rappaport et al., 2017). It was found that MCMS5, FN1, TRIP13, KIF11,
TTK, CDC45, and BUB1B were not reported for their involvement in the disease, and the rest

were reported for their involvement in cervical cancer.

TRIP13 -

MCMS -

Hub name

FN1-

CDC45~

BUB1B -

Degree

Figure 5: Candidate genes with their corresponding degree centrality values.
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Further analysis was proceeded with these seven proteins as novel drug targets. Their
corresponding degree centrality was represented as a bar plot (Figure 5). The key gene PPI

network was visualized using Cytoscape (Figure 6).

Figure 6: PPI network of key genes with two clusters.
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The key genes identified from the microarray data analysis were verified with NGS data of
cervical squamous cell carcinoma available at the TCGA data portal. Key genes identified in

the study followed the same patterns of gene expression in NGS data also visualized as box

plots (Supplementary Figure 2).
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Supplementary Figure 2: NGS data analysis: Relative expression profiles of key genes between tumor
vs normal tissues of CC patients visualized as box plots (red colour = tumor & black colour = normal

samples). It represents that their expression follows the same pattern in both microarray and NGS data.

4.3.3 Essential candidate genes were associated with cell-cycle-related GO

terms and KEGG pathways

Gene ontology and KEGG pathway enrichment analysis of the seven key genes were
investigated using the clusterProfiler R package. The proteins were mostly present in

biological processes related to cell proliferation, cell division, cell cycle checkpoint, and
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mitotic nuclear division. Also, the proteins were mainly involved in the cell cycle related
KEGG pathways (Figure 7). p-value <0.05 were considered as statistically significant GO
terms, and KEGG pathways and p-values were adjusted by Benjamini—the Hochberg method.
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Figure 7: Gene Ontology (GO) analysis of prioritized potential candidate genes (pvalue<0.05)

In cancer

ion networks

in-protein interact

Chapter 4: Analysis of prote

o))
o




4.3.4 Validation of protein expression levels of key candidate genes via

immunohistochemical data

The protein expression levels of the candidate proteins were also verified using the
immunohistochemistry mapping data in both normal and cancer tissues via the HPA database.
The proteins MCMS5, FN1 and KIF11 were highly detected with strong intensity levels in
cervical cancer tissues. In normal cervix tissues, MCMS5 has shown medium expression in
squamous epithelial cells and was not detected in glandular cells. FN1 is not detected in normal
tissue. KIF11 has high expression in glandular cells and medium expression in squamous
epithelial cells (Supplementary Figure 3a). Likewise, CDC45, TRIP13, and TTK proteins have
medium expression levels with moderate intensity in cancer tissues. CDC45 and TRIP13 were
not detected in glandular cells and had low expression in squamous epithelial cells of normal
cervix tissue. TTK has low expression in both glandular and squamous epithelial cells
(Supplementary Figure 3b). The BUB1B protein expression data was unavailable in the HPA
database for both normal cervix and tumor tissues. From these results, it can be observed that
higher protein expression patterns were significantly related to the prognosis of cervical cancer

patients and can be explored as potential candidate molecules for the patient’s survival.

4.3.5 Prognostic performance of the candidate genes shows that their

expression negatively correlated with overall survival

Kaplan—Meier survival curve and log-rank test assessed the candidate genes prognostic
significance in cervical cancer patients. Cervical cancer data available at TCGA contains 304
patient samples with clinical information. The cancer patient’s samples were grouped into high
and low groups on the basis of median expression values. Overall survival of patients depends
on the expression levels of the respective prognostic candidate genes.

It was observed that candidate gene expression levels were negatively correlated with overall
survival with a statistical significance of p-vlaue< 0.05. Higher expression of the FN1 gene and
lower expression of the MCMS5, KIF11, and CDC45 genes have poor prognosis in CC patients
(Figure 8).
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Figure 8: Prognostic significance of candidate genes in cervical cancer patients. Kaplan-Meier plot

representing overall survival analysis of survival difference between high and low-risk cervical cancer

patients from the TCGA datasets. The X-axis represents overall survival time in months and the y-axis

represents the probability of survival. Pvalues<0.05 were considered statistically significant prognostic

factors for cervical cancer.

4.4Discussion

Cancer is a heterogeneous and genetic disease involving a series of alterations in the genetic

makeup, causing malignant transformation in disease progression (Yu & Henneberg 2018).
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The present study focuses on cervical squamous cell carcinoma, a subtype of cervical cancer,
which holds the fourth rank with other cancers among women all over the world. To understand
the genetic changes occurring during the progression of cervical carcinoma and to identify
novel drug targets, we used available bioinformatics methods and in-house code to extract
meaningful information from the microarray gene expression profiles and disease-related

protein-protein interaction network.

Our findings related to the candidate genes involved in cervical squamous cell carcinoma
progression allow experimental researchers to investigate their role as a critical gene in the
targeted therapy. Various studies reported extensive utilization of complex network properties
to understand the role of key molecules in multiple diseases. Analysis of complex network
parameters in the biological networks were found to have the edge over other available methods
for identifying candidate genes. An integrative study was performed to propose key molecules
using differential expression, protein-protein interaction network, and functional enrichment

analysis.

In the present study, differential expression analysis was performed on NCBI GEO datasets
(GSE7803, GSE63514, and GSE9750) of cervical cancer to identify significantly expressed
genes in the tumor samples with their matched normal samples. Statistical filtering identifies a
total of 544 genes as differentially expressed genes (DEG). Among 544 genes, 248 were found
to be upregulated, and 296 were downregulated genes. Further, protein-protein interactions
(PPI) of significantly differentially expressed genes were extracted by mapping DEGs on the
reconstructed human protein-protein interaction network. We performed network analysis and
calculated complex network parameters using in-house code to filter the most valuable proteins

in the PPI network that can be used as a biomarker for the disease.

The key gene PPI network consists of 174 nodes and 558 edges with two clusters that represent
molecular complexes in the PPI network. FN1 protein with 79 nodes and 78 edges forms one
cluster and the rest six proteins (MCMS5, TRIP13, KIF11, TTK, CDC45 and BUB1B) form
another cluster with 119 nodes and 481 edges in the network. These two clusters were densely
connected in their respective networks with each other by interacting with other proteins which
are part of both the clusters, such as MCM6, MKI67, KIF2C, ANXA1, RBL1, RFC4, BAG2,
MCM3, MCM2, CDKN2A, CDK1, TOP2A, MCM2, KRT19, VCAM1, CCND1, NUP155 and
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KRT2. This set of proteins acts as linkers between the two key protein clusters to maintain
structural integrity in the protein-protein interaction network related to cervical squamous cell
carcinoma. KEGG pathway analysis reports for these proteins were associated with cell cycle,
DNA replication, cellular senescence, viral carcinogenesis, platinum drug resistance and the
pS3 signaling pathway. Also, highly enriched in the gene ontology terms of biological
processes such as the G1/S transition of the mitotic cell cycle, DNA replication, DNA
conformational change, DNA duplex unwinding, regulation of myeloid cell apoptotic process,

etc.

MCMS5 (Minichromosome Maintenance Complex Component 5) is part of the MCM family
and plays a vital role in the initiation of DNA replication. MCMS5 is associated with several
cancers, such as breast cancer (Eissa et al., 2015), ovarian cancer (Levidou et al., 2012), oral
squamous cell carcinoma (Yu et al., 2014), etc.; also, few studies highlighted it’s role in
cervical cancer tumor progression (Qing et al., 2017 & Li et al., 2018). FN1 (Fibronectin 1), a
glycoprotein belonging to the FN family, plays various cellular activities such as cell migration,
cell adhesion, and cytoskeletal organization in multiple diseases (Pankov & Yamada 2002;
Mao et al., 2005 & Gao et al., 2016). In various tumors, such as osteosarcoma, nasopharyngeal
carcinoma, esophageal cancer, and ovarian cancer, FN1 is a critical tumor-related gene (Jiang
et al., 2017; Song M et al., 2017; Song G et al., 2017 & Lou et al., 2013). TRIP13 (Thyroid
Hormone Receptor Interactor 13) is associated with the AAA (ATPase family associated with
various cellular activities) protein superfamily and plays crucial roles in regulating various
cellular processes such as chromosome synapsis, DNA break repair and recombination, and
checkpoint signaling (Miniowitz-Shemtov et al., 2015 & Vader 2015). TRIP13 is one of the
critical genes, acting as a tumor susceptibility locus, related to Chromosome instability (CIN)
in human tumors and is associated with poor survival in various tumors (Zhou et al., 2013;

Wang et al., 2014; Yost et al., 2017; Carter et al., 2006 & Lu et al., 2019).

KIFI1 (Kinesin Family Member 11) is a motor protein essential for spindle dynamics,
including centromere separation, chromosome positioning, and bipolar spindle establishment
during mitosis (Rapley et al., 2008 & Ferenz et al., 2010). Previous reports suggest that KIF11
is associated with lung cancer, glioblastoma, malignant mesothelioma, and gastric cancer

(Schneider et al., 2017; Venere et al., 2015; Kato et al., 2016; Imai et al., 2016 & Daigo et al.,
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2018). TTK (Threonine and Tyrosine Kinase), also known as human monopolar spindle 1
(HMPST1), a mitotic protein kinase, plays a crucial role in regulating cell division via mitotic
checkpoints and chromosome attachment. Overexpression of TTK affects chromosomal
instability, further resulting in tumor progression (Benzi et al., 2020; Silva et al., 2018 & Lim
et al., 2017). It is associated with various cancers, such as breast cancer, glioblastoma, thyroid
cancer, and is a potential candidate for gastric cancer (Huang et al., 2020 & Kaistha et al.,
2014). CDC45 (Cell Division Cycle 45) belongs to the multiprotein complex along with
Cdc6/Cdc18 and DNA polymerase, which are crucial for the initiation of eukaryotic DNA
replication (Masai et al., 2005). Earlier research found that CDC45 is an antigen that promotes
cell growth and is linked to the development of cancerous tumors (Pollok et al., 2007 & He et
al., 2021).

Furthermore, it is involved in cervical cancer prognosis, which indicates the reliability of our
findings (Qiu et al., 2020). BUB1B (BUB1 Mitotic Checkpoint Serine/Threonine Kinase B) is
associated with the spindle assembly checkpoint family member of proteins. BUBIB is
associated with various biological processes, including chromosome segregation,
differentiation of post-mitotic neurons, DNA repair, and ciliogenesis. Previous reports
indicated that this protein has a crucial role in tumor progression and prognosis in multiple
cancers (Sekino et al., 2021). In addition to the findings from the study, all the potential
prognostic candidate genes can be subjected to experimental studies to understand their role in

the progression of cervical carcinoma.

4.5 Conclusion

To summarize, systems biology methods were applied to microarray data of cervical cancer
and key genes that are involved in the progression and survival of the disease were identified.
These genes are MCMS5, FNI1, TRIP13, KIF11, TTK, CDC45, and BUBI1B. They are
associated with cell cycle regulation, extracellular matrix remodeling, and chromosome
segregation. These genes have prognostic significance for cervical cancer patients, as they can
predict the outcome and response to treatment. These genes could be potential targets for
developing new treatments for the disease, as they can modulate the biological processes that

are altered in cervical cancer cells.
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Chapter 5 —
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5.1 Introduction

Interactome networks are graphs of the physical interactions among cellular components, such
as proteins, DNA, RNA, metabolites, and drugs. These interactions are measured using several
techniques and aggregated into a single network that demonstrates the dynamics and
complexity of the biological system. Interactome networks facilitate our understanding of the
execution, regulation, and coordination of biological functions by many molecular entities, as
well as the ways in which genetic or environmental changes impact these processes (Vidal et

al., 2011 & Zanzoni et al., 2009).

Interactome data can be of different types, including protein-protein and protein-DNA
interactions, metabolic reactions, and signaling pathways. Interactome networks have some
common patterns and principles, such as scale-free distribution, small-world phenomenon,
network motifs, and network evolution. Interactome networks can be used to study disease
phenotypes, such as disease modules, disease genes, disease pathways, network-based
stratification, network perturbations, and network-based drug discovery (Caldera 2017 &

Yeger-Lotem 2015).

Understanding the gene expression pattern among the patients is essential to predict diagnostic
and prognostic gene signatures that can be used to diminish the outcome of the disease in
combination with interactome networks (Oany AR et al., 2021). However, interactions between
coding and non-coding RNAs affected by microRNAs are also a part of the intricate process
of gene regulation, including transcription and post-transcriptional processes. These
interactions form protein-protein interaction and gene regulatory networks that affect various
cellular processes and influence cancer development and response to therapy. Gene regulatory
networks influence development of cancer by changing the oncogenes and tumor suppressors
expression, promoting or inhibiting cell proliferation, survival, differentiation, and migration,

and modulating the tumor microenvironment and immune response.

A novel integrative networks approach was employed to construct a cancer-specific gene
regulatory network and to identify unique genes and sub-networks that are enriched or depleted
in certain network motifs and hub proteins. These genes may have therapeutic potential for

cancer treatment, but their interactions with tumor cells and stromal cells need to be better
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understood. In interaction networks, centrality metrics are widely used to find the most
influential nodes. Different centrality measures quantify various aspects of node importance,
such as degree, closeness, betweenness, and eigenvector centrality. Hubs and bottlenecks are
key nodes in interaction networks. Hubs have a high degree centrality, while bottlenecks have
high betweenness centrality. They influence cellular processes and pathologies such as
oncogenesis, diabetes mellitus, and neurodegeneration (Barabasi and Oltvai, 2004). For
example, hubs modulate gene transcription, signal transduction, and metabolic flux, and their
alterations can induce aberrant cell proliferation, survival, and differentiation. Bottlenecks
facilitate information transfer between network modules or communities, and their perturbation
can compromise cellular coordination and regulation (Jeong et al., 2001). Therefore,
identifying and targeting hubs and bottlenecks can provide novel insights and strategies for

disease diagnosis, prognosis, and therapy.

Next-generation sequencing (NGS) technology has revolutionized our understanding of the
human genome, revealing its remarkable complexity and diversity. Among the various types
of RNA molecules that are transcribed from the genome, ncRNAs constitute a huge and
functionally heterogenous group. ncRNAs include miRNAs and IncRNAs, which are 98% of
the total RNA in the cell and play crucial roles in various biological processes (Baltimore, D.
2001). ncRNAs regulate genes and are important for cancer research as biomarkers and targets.
One of the ways that IncRNAs can be used as biomarkers is by measuring their expression
levels in different tissues or biological fluids, such as blood, urine, or saliva. For instance,
IncRNA HOTAIR is upregulated in multiple cancers and can be detected in plasma samples of
cancer patients (Hajjari, M., & Salavaty, A. 2015). Another way that IncRNAs can be used as
biomarkers is by analyzing their interactions with other molecules, such as miRNAs, mRNA,
or DNA. For instance, IncRNA MALATI can bind to miR-200 family members and modulate
their activity in breast cancer (Jo, Hyein et al., 2022). Circular RNAs (circRNAs), long ncRNAs
(IncRNAs) and pseudo-genes (‘Y-genes) can regulate messenger RNAs (mRNAs) in different
ways. Some of them form RNA-RNA and IncRNA-RNA complexes that affect transcription

in the nucleus, while others increase mRNA stability in the cytoplasm.

Moreover, the competing endogenous RNA (ceRNA) mechanism involves both coding and

non-coding RNAs that interact with microRNAs (miRNAs) (Saleembhasha & Mishra 2019;
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Ala 2020). The ceRNA hypothesis states that ncRNAs that contain miRNA response elements
(MREs), such as IncRNAs, circular RNAs (cirRNAs), and some pseudogenes, can act as
ceRNAs to sequester miRNAs and modulate their target mRNAs (Salmena L et al., 2011). By
competing for a limited pool of miRNAs, IncRNAs can influence gene expression at the post-
transcriptional level. miRNAs bind to the 3'-UTRs of target mRNAs and regulate gene
expression by causing mRNA degradation or translational repression. These were implicated
in multiple stages of cancer development and progression, such as cell proliferation, invasion,
apoptosis, metastasis, and angiogenesis (Bartel 2004). Numerous studies have supported this
hypothesis and demonstrated that IncRNAs, mRNAs, and other RNAs can act as natural

miRNA sponges and influence the expression of multiple target genes (Chen, W et al., 2019).

This study aimed to understand the complex regulatory interactions among protein-coding and
non-coding entities in cervical cancer by constructing gene expression-based cancer-specific
regulatory networks and protein-protein interaction networks. The topological studies

identified key molecules and pathways associated with the disease's progression.

Materials and Methods

5.1.1 Differential expression analysis

Differential expression analysis on the gene expression dataset of cervical squamous cell
carcinoma was performed to filter differentially expressed genes (DEmRNAs),
miRNAs(DEmiRNAs) and IncRNAs (DEIncRNAs). The gene expression dataset of cervical
squamous cell carcinoma was dowloaded from The Cancer Genome Atlas (TCGA-CESC).
This dataset contains 304 tumor samples and 3 normal samples. Additionally, 19 samples of
normal cervical gene expression data were retrieved from the Genotype-Tissue Expression
(GTEx) data portal. Duplicate or irrelevant data from the dataset was removed during pre-
processing of the dataset. Differential expression analysis was done using the DESeq2 R
package (Love et al., 2014). Significantly differentially expressed mRNAs were screened after
removing genes with low read counts among cervical tumor and normal tissue samples.

Further, the above process was performed to filter DEmiRNAs as well as DEIncRNAs.
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5.1.2 Gene co-expression network construction and Identification of co-expressed

modules

Significantly differentially expressed genes (DE-mRNA) were used to construct a weighted
gene co-expression network using the WGCNA R package to find genes with strong
correlations across the samples (Langfelder & Horvath, 2008). Quality control was performed
on the expression data and outlier samples were removed before proceeding to the detection of
modules. Later, a scale-free adjacency matrix that only retained strong correlations, ignoring
weak ones, was obtained by considering a soft threshold power of 6. The adjacency matrix was
transformed into a topological overlap matrix (TOM). Co-expressed gene modules were
detected by applying hierarchical clustering and dynamic tree cut using the dissimilarity of
module eigengenes (1-TOM) as a distance measure. The minimum module size was set to 30
and modules with similar expression profiles were merged using a threshold of 0.25 through

hierarchical clustering of module eigengenes.
5.1.3 Protein-protein interaction network analysis

To reconstruct the PPI network, all the available interactions of human from various databases
such as APID, DIP, HitPredict, PIP, i2D, BioGrid, MINT, STRING, and IntAct were retrieved.
The proteins involved in PPIs were mapped to official gene symbols first, then the interactions
were merged. Next, only the interactions where both the interacting proteins were part of
identified DEGs were extracted. Self-loops and duplicate edges were removed from the

primary network to get the final simplified network.

PPI network of both dysregulated genes and significantly correlated co-expressed module with
clinical feature HPV status were extracted from the reconstructed human PPI network. To
identify critical genes in the dysregulated PPI networks, i.e., core PPI network and module-
specific PPI network, network topological structure analysis was performed. Based on the
network's degree and betweenness centrality properties, the most important genes that

influence its structure and function were selected.

Additionally, the topological features of the core PPIN and co-expressed module-related PPIN
were evaluated using Pearson correlation. Further, to identify highly influential genes in the

network, the 80/20 rule or Pareto principle was employed. The pareto principle states that the
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top 20% of the average value is responsible for 80% of the population's actions. The PPI
network construction and analysis were carried out using the igraph R package and visualized

with Cytoscape (Shannon et al., 2003).
5.1.4 Module — clinical feature associations

A correlation analysis was conducted to determine the relationship between the co-expressed
modules and the clinical characteristics of cervical cancer (CC) patients, using various clinical
features as traits. The clinical features included HPV status, age at diagnosis, clinical stage,
race, neoplasm histologic grade, menopause status, pathology T/N/M stages and
lymphovascular involvement. A stringent filter was applied to select the modules with a high
correlation and a low p-value with the clinical features. The biological significance of these

modules was further investigated.

5.1.5 Integrative regulatory network construction and analysis

5.1.5.1 IncRNA-mRNA interaction prediction and regulatory network analysis

The regulatory roles of the differentially expressed IncRNAs in CESC patients were
investigated by performing IncRNA—target prediction using the LncTarD database (Zhao et al.,
2023). This database contains 8,360 experimentally validated IncRNA—target interactions

across 419 disease subtypes and their clinical implications.

The predicted interactions were filtered to retain only those involving both differentially
expressed elements (IncRNAs and mRNAs) in CESC patients. A CESC-specific dysregulated
IncRNA-mRNA co-expression network was constructed on the basis of these interactions and
its topological properties were analyzed using the igraph R package. The degree centrality and
betweenness centrality of each node, which are measures of how connected and influential a
node is in the network, were calculated to find the critical molecular players in the network.
The nodes with the highest values of these metrics were selected as the key molecular players

in the network. The network with key molecular players was also visualized using Cytoscape.

The potential binding sites of the significantly differentially expressed mRNAs and IncRNAs
were predicted using the human IncRNA-mRNA interaction database (http://rtools.cbre.jp/cgi-
bin/RNARNA/index.pl) (Terai et al., 2016). SUMENERGY plots were generated using R.
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5.1.5.2 IncRNA-miRNA-mRNA ceRNA network construction and analysis

The function of IncRNA as ceRNA in gene regulation was elucidated by performing target
prediction for the differentially expressed molecular entities. The IncRNA-miRNA interaction
pairs were obtained from the miRcode database, which contains interactions that are
experimentally validated and computationally predicted (Jeggari et al., 2012). The
differentially expressed miRNAs (DEmiRNAs) target genes were predicted by integrating the
interaction data from three miRNA target databases: miRDB, miRTarBase, and TargetScan
(Chen & Wang 2020; Huang et al., 2021; McGeary et al., 2019 & Agarwal V et al., 2015).
Furthermore, the hub mRNAs were obtained from the PPIN of the module-specific genes. The
CC-specific dysregulated IncRNA-miRNA-mRNA network was constructed using these
interaction partners. The significant molecular entities in the ceRNA network were identified

by performing network analysis using the igraph R package and visualized with Cytoscape.
5.1.6 Functional enrichment analysis

Key genes and IncRNAs identified from regulatory networks were assessed for their functions
through gene ontology terms and KEGG pathways. The clusterProfiler R package was used to
conduct functional enrichment analysis. A p-value of 0.05 was the basis for filtering significant

GO terms and KEGG pathways (Wu et al., 2021).

5.2 Results

5.2.1 Differentially expressed protein-coding genes and non-coding RNAs (miRNA &
IncRNA)

The differential expression analysis on the expression profiles of protein-coding genes
(mRNA) and non-coding RNA (miRNA & IncRNA) in cervical cancer tumor samples and
normal samples was performed using the processed gene expression dataset. Significantly
differentially expressed (DE) genes were identified using criteria of absolute log2 fold change
> 2 and adjusted p-value < 0.01. 3661 differentially expressed mRNAs (DEmRNAs) in tumor
samples were identified, including 1801 upregulated and 1860 downregulated. Similarly, 851
differentially expressed IncRNAs (DEIncRNAs) were found, comprising 542 upregulated and
309 downregulated. In addition, 172 differentially expressed miRNAs (DEmiRNAs) were
detected, consisting of 103 upregulated and 69 downregulated [Figure 1].
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Figure 1: Differential expression analysis: Number of genes identified as differentially expressed

among protein-coding genes and non-coding entities.
5.2.2 Identification of co-expressed modules from gene co-expression network

Weighted gene co-expression network analysis (WGCNA) was used to build a network of
genes based on their pairwise correlations in order to elucidate the co-expression patterns
among the genes from the differential mRNA expression data. The scale-free topology criterion
was satisfied by a soft threshold power of 6, and 25 gene modules with distinct co-expression
profiles were obtained [Figure 2]. A unique colour was assigned to each module, and the grey
module stored genes that did not have co-expression patterns. Modules with similar expression
patterns were merged by performing dynamic tree-cut analysis. Eigengene adjacency heatmap
was generated by taking all the pairwise correlations among the modules [Figure 3]. The

number of genes in each module was shown in barplot [Figure 4].
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5.2.3 Protein-protein interaction network analysis

Cervical cancer progression-related PPI network consists of 2487 nodes and 11574
interactions, that is extracted from the core human PPI network consisting of 51209 nodes with
8,52,432 edges [Figure 5a]. Network topological structural analysis of the PPI network results
in the identification of 151 proteins as hubs and 131 as bottlenecks. It was observed that 92
proteins possessed both hub and bottleneck properties [Figure 5b]. Hubs and bottlenecks are
important in protein-protein interaction networks because they are the proteins that have the
most interactions with other proteins. Hubs are proteins that have many interactions with other
proteins, while bottlenecks are proteins that connect different parts of the network together. In

diseases, these hubs and bottlenecks can be targeted to help treat the disease.

For the module-specific PPI network, we found three significant modules: turquoise (884 nodes
and 2312 edges), blue (138 nodes and 128 edges), and brown (44 nodes and 70 edges). These

modules may represent distinct biological processes or pathways related to the DEmRNAs.
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5.2.3.1 Topological structural properties of the PPI network

To identify/assess the proteins that influence overall network structural stability, topological
structural properties such as degree, betweenness and clustering coefficient centralities were
calculated. The PPI network's degree distribution is scale-free and follows the power law. It
indicates that higher connections are held by a small number of nodes in the network and less
connections are held by a higher number of nodes. These essential genes are functionally
significant in multiple pathways and contribute to the network's resilience against external
perturbations. Degree vs degree distribution, degree vs betweenness and degree vs clustering
coefficient properties were compared to understand the biological network behavior. We
observed that dysregulated network follows properties of biological networks, degree vs
degree distribution follows power-law in nature, and degree vs betweenness are positively
correlated, indicating that high degree nodes and nodes with high betweenness are critical for
information flow in network and degree vs clustering coefficient are negatively correlated that
shows that a higher clustering coefficient values may indicate the presence of functional

modules or pathways [Figure 6;7].

Further, the cervical cancer gene database (CCDB) was used to investigate genes with
experimental validation and not well documented for the disease progression. Out of 92 genes
that were both hubs and bottlenecks, having higher connections with other genes and
controlling information flow between the genes, 24 genes were well-established with the
disease progression, and no reports were found for the remaining 68 genes. These genes were
enriched in significant gene ontology terms of biological processes (1048 terms) and significant

KEGG pathway terms (78 terms).
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5.2.4 Highly correlated co-expressed modules from Module — clinical feature
associations

Module-clinical feature relationships analysis identified modules that observed a significant
correlation with HPV status: turquoise (r=-0.34, p=1e-09), yellow (r=-0.18, p=0.002), brown
(r=-0.18, p=0.002), blue (r=-0.15, p=0.007), lightcyan (r=-0.16, p=0.004), pink (r=-0.16,
p=0.004), and lightyellow (r=-0.13, p=0.02) [Figure 8]. These modules may contain
differentially expressed mRNAs that play critical roles in regulating cervical cancer
tumorigenesis. GO terms and pathways were assessed for each module to elucidate their

biological functions and pathways.
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Figure 8: Module-trait associations
5.2.5 Integrative regulatory network analysis

Gene regulatory networks of direct/indirect and sponging mechanisms were analyzed to

understand the transcriptional and post-transcriptional gene regulation in the disease state. In

the below sections, the direct/indirect regulation of the IncRNA-mRNA co-expression network

is explained in detail, along with a discussion on the ceRNA network of IncRNA-miRNA-
mRNA via the miRNA-mediated sponging mechanism.

5.2.5.1 Integrative IncRNA-miRNA-mRNA ceRNA network analysis
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The competing endogenous RNA (ceRNA) regulatory network is composed of 98 nodes and
101 edges, involving 29 IncRNAs, 3 miRNAs and 66 mRNAs. The network consists of three
subnetworks, in which each miRNA plays a central role by interacting with both IncRNAs and
mRNAs. The subnetworks are interconnected by 5 IncRNAs (KCNQ1OT1, DLEU1, SNHG14,
LINCO0111 and TMEM72-AS1) and one mRNA (FSCN1), which act as bridges for

information transfer [Figure 9].
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Figure 9: IncRNA-miRNA-mRNA ceRNA network of dysregulated coding and non-coding entities
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To determine the key hubs that have critical functions in the network, various centrality
measures were computed and found that IncRNAs KCNQIOT1, SNHG14 and DLEUI1
regulate several coding genes associated with different biological processes through miRNAs.
The sponging mechanism refers to the process by which IncRNAs bind to miRNAs and prevent
them from targeting mRNAs, thus modulating gene expression. In addition, DEmiRNAs hsa-
miR-107, hsa-miR-184 and hsa-miR-429 play crucial roles in three subnetworks as central

node.

5.2.5.2 Integrative IncRNA-mRNA regulatory network analysis

The IncRNA-mRNA regulatory network has 152 nodes and 206 regulatory interactions.
Among the nodes, there are 50 IncRNAs and 102 mRNAs. The networks are directed, meaning
that information flows from one node to another. The essential genes and IncRNAs, based on
the number of connections they have were found by using degree centrality. Indegree is the
incoming connections of a node, and outdegree is outgoing connections of a node. The genes
with high indegree and outdegree are important for the network stability and function. These
genes are EZH2, CDH1, BCL2, MMP9, ZEB1, MMP2 and VIM. They are targeted by many
IncRNAs and are involved in key pathways. We also found the IncRNAs with high outdegree,
which are MALAT1, CDKN2B-AS1, MEG3, HOTTIP, CYTOR, FEZF1-AS1 and FENDRR.
Some of these IncRNAs (MALAT1, CDKN2B-AS1) have been linked to cervical cancer, while
others have not been reported with the hub genes [Figure 10]. Interactions were further
explored using the IncRNA-mRNA interaction database, revealing potential interaction site

and binding energy values [Figure 11].
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Figure 11: IncRNA-mRNA interaction and their binding sites: The binding energies of the
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binding energy implying stronger association and more favorable or stable interaction. A)MALATI
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5.2.6 Functional enrichment analysis

GO term and KEGG pathway analyses revealed that these genes participate in various
biological processes such as regulating the G2/M phase transition of the cell cycle, positively

regulating cell cycle processes, regulating nuclear division, cell cycle checkpoint, and mitotic
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nuclear division. Moreover, several KEGG pathways related to these genes were also
identified, such as cell cycle, Ras signaling pathway, viral carcinogenesis, proteoglycans in
cancer, cellular senescence, glioma and prostate cancer [Figure 12]. These findings suggested
that the key genes might play critical roles in the cell cycle regulation and the development of
various cancers. Therefore, these genes might serve as potential biomarkers or therapeutic

targets for cancer diagnosis and treatment.
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Figure 12: Gene Ontology terms and KEGG pathway analysis

5.3 Discussion

Cervical cancer is a common and deadly gynecological malignancy that affects women
worldwide. One of the emerging mechanisms that regulates cervical cancer progression is the
involvement of ncRNAs, such as miRNAs, IncRNAs, and circRNAs. These ncRNAs can
modulate various cellular processes such as apoptosis, cell cycle, angiogenesis, invasion, and
metastasis, either directly or indirectly. In this study, a network-based approach was applied to
explore the key regulatory interactions and genes that influence tumor initiation and
progression. Genes were grouped into modules by WGCNA method on the basis of their
expression patterns and correlation with clinical traits. 6 co-expressed modules that were highly
expressed and related to clinical traits were found. The turquoise module had the high number

of genes. The PPI network analysis confirmed that the networks followed the scale-free
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property of biological networks. Hubs and bottlenecks were also identified from the PPI

networks and the target-gene interaction network.

The regulatory network analysis based on centrality measures revealed several genes as hubs,
which also had regulatory interactions with ncRNAs, namely miRNA and IncRNA. Among
these, some key mRNAs were EZH2, CDH1, BCL2, MMP9, ZEB1, MMP2, and VIM. These
mRNAs are associated with various biological processes such as apoptosis, cell proliferation,
invasion, and metastasis. Some important IncRNAs were MALATI1, CDKN2B-AS1, MEG3,
HOTTIP, CYTOR, FEZF1-AS1, and FENDRR. These IncRNAs act as regulators of gene
expression by modulating the chromatin structure, transcriptional machinery, or post-
transcriptional events. Further, we identified three miRNAs, hsa-miR-107, hsa-miR-184 and
hsa-miR-429, that are involved in the regulation of key mRNA and IncRNA molecules. These
were the main components of the IncRNA-mRNA interaction network and IncRNA-miRNA-
mRNA ceRNA regulatory network, which could provide better understanding of the molecular

mechanisms of cervical cancer development and progression.

EZH2, a histone methyltransferase, has a vital role in tumor progression by promoting cell
survival, proliferation, and invasion (Gan et al., 2018). It is upregulated in various cancer types,
making it a potential target for anticancer therapy (Shen et al., 2013). CDHI1, a tumor
suppressor gene, is frequently hypermethylated in multiple cancers such as breast (Huang et
al., 2015), head and neck (Shen et al., 2016), and esophageal (Ling et al., 2011). BCL-2 is
implicated in the progression of various cancers, including prostate, breast, and chronic
lymphocytic leukemia (Adams and Cory, 2018). Its overexpression in cancer cells inhibits
apoptosis, promoting their survival and growth (Radha and Raghavan 2017). MMP2 and
MMPY, belongs to the matrix metalloproteinase (MMP) family, has a key role in cancer
progression, particularly in angiogenesis, tumor growth, and metastasis (Klein et al., 2004). In
colorectal cancer, MMP2 and MMP?9 are involved in epithelial-to-mesenchymal transition and
immune response, suggesting their potential as biomarkers (Buttacavoli et al., 2021). ZEB1 is
a key regulator of epithelial-to-mesenchymal transition (EMT), which is a process that
contributes to cancer progression and metastasis (Caramel et al., 2018). ZEB1 influences the
expression of genes related to EMT, stem cell properties, immune escape, and epigenetic

modifications. ZEBI1 also contributes to the silencing of E-cadherin, a tumor suppressor gene,
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through its interaction with chromatin-modifying enzymes (Zhang et al., 2019). Vimentin, an
intermediate filament protein, plays a crucial role in tumor progression, particularly in tumor
growth promotion, invasion, and metastasis (Satelli and Li 2011). This is further supported by
the finding that vimentin is overexpressed in various cancers, including colorectal cancer,
where it induces tumor growth and metastasis via epithelial-to-mesenchymal transition (EMT)

(Strouhalova et al., 2018)

MALATI1 is a IncRNA associated with various malignancies (Hao et al., 2023). It is
upregulated in lung, breast and colorectal cancers. It promotes cancer cell proliferation,
migration and invasion. It is related to the poor prognosis and promotes cancer cell migration
and metastasis by inducing epithelial-mesenchymal transition (EMT) in lung cancer (Shen et
al., 2015). It has been implicated in breast cancer and has been the subject of diagnostic and
prognostic studies (Jiang et al., 2020). It is closely related to the cell proliferation,
tumorigenicity, and metastasis in colorectal cancer (CRC). It targets various signaling
pathways and microRNAs, playing a pivotal role in CRC pathogenesis (Xu et al., 2022). It has
been shown to impact the differentiation of effector and memory CD8+ T cell subsets by
mediating epigenetic repression of memory-associated genes in terminal effector cells (Kanbar
et al., 2022). MALAT]I has been found to modulate Smadl, contributing to colorectal cancer
progression by regulating autophagy (Zhou et al., 2021). CDKN2B-AS1 was found to be
associated with atherosclerosis, diabetes, and alzheimer's disease. It has been found to be

downregulated in glioma and implicated in the disease's progression (Bi et al., 2018).

MEG3 has been found to be downregulated in hepatocellular carcinoma, glioma, and ovarian
cancer and acts as a tumor suppressor by inhibiting cancer cell proliferation and inducing
apoptosis (Xu et al., 2022). HOTTIP is upregulated in colorectal, pancreatic and ovarian
cancers and promotes cancer cell proliferation, migration, and invasion (Liu et al., 2020).
CYTOR has been found to be upregulated in breast, lung and colorectal cancers and promotes
cancer cell proliferation and migration (Tian et al., 2021). FEZF1-AS1 has been associated
with glioma, breast cancer, and colorectal cancers and promotes cell proliferation and
migration (Zhou et al., 2019). FENDRR is associated with lung, colorectal, and ovarian
cancers. It has been shown to act as a tumor suppressor by inhibiting cell proliferation and

inducing apoptosis (Zheng et al., 2021; Jiang et al., 2020).
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miR-107 acts as an oncogene, promoting the growth and metastasis of gastric cancer by
downregulating FAT4 and activating the PI3K/AKT signaling pathway. On the other hand, It
can also act as a tumor suppressor, inhibiting the proliferation and invasion of prostate cancer
by targeting CDC42 and suppressing the Rho GTPase signaling pathway (Chen et al., 2021,
Fan et al., 2020). miR-184 has been reported by several studies that it acts as a tumor suppressor
in various types of cancer, such as nasopharyngeal carcinoma, colorectal cancer, and lung
adenocarcinoma, by targeting oncogenic factors or signaling pathways involved in
tumorigenesis (Wu et al., 2017; Rao et al., 2022). miR-429 plays a crucial role in maintaining
epithelial phenotype and preventing epithelial-mesenchymal transition (EMT), facilitating
tumor invasion and metastasis. It is reported to act as a tumor suppressor or an oncogene in
various cancers, including endometrial, gastric, ovarian and colorectal cancers (Leet et al.,
2023). Some important genes/IncRNAs might not be detected due to constraints such as the p-
value threshold applied and the proposed hypotheses here need further verification by

experimental methods to better understand their role in tumor progression.

5.4 Conclusion

This work explores an integrative network approach to understand the regulatory interactions
between ncRNAs and mRNAs in cervical cancer progression. After analyzing their interaction
patterns, multiple key genes and ncRNAs (miRNA & IncRNA) were identified as master
regulators that may play crucial roles in the gene regulation network of this disease and may
offer novel drug targets for therapeutic intervention. The key IncRNAs also have potential as
prognostic markers of cancer outcomes and as predictive and diagnostic tools for cancer

detection.
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High-throughput sequence technologies have revolutionized the discovery of cancer-driver
genes. Unlike the traditional method of characterizing individual genes, which was slow and
laborious, these technologies can examine many genes simultaneously and reveal novel ones
involved in cancer progression. These technologies provide a comprehensive and rapid insight

into the complex biological process in cancer cells.

Most cancer-driver gene prediction or identification focuses on protein-coding genes, which
make up 2% of the human genome. However, recent studies reveal that genetic alterations also
affect non-coding regions comprising 98% of the genome. These findings suggest that non-
coding RNAs, along with protein-coding genes, can influence tumor development and
progression. Yet, only a few ncRNAs, especially IncRNAs, have been identified and
characterized in multiple cancers. These can regulate gene expression at multiple levels,

epigenetic modifications, signaling and metabolic pathways.

This study aimed to prioritize potential candidate genes and identify IncRNA as a master gene
regulator for cervical squamous cell carcinoma. To achieve this, composition-based and k-mer
frequency-based alignment-free sequence analyses were conducted to propose candidate genes
for cervical cancer. Additionally, a comprehensive analysis of differentially expressed genes
and ncRNAs and their interactions were analyzed using network analysis to understand the
molecular mechanisms at the systems level. The interactions between these genes and non-
coding RNAs were explored through co-expression and protein-protein interaction analysis,
and target-gene interaction network analysis was employed to elucidate the regulatory

mechanisms and pathways involved.

Our first two objectives deal with the prioritization of candidate genes associated with cervical
cancer by studying the sequence profile of gene and protein sequences. Alignment-free
methods employed to analyze sequence similarity between the cancer driver genes and
candidate cancer genes. The first objective deals with the analysis of sequence similarity among
both sets of protein sequences based on the amino acid composition, i.e., physicochemical
properties of amino acids. 14 potential candidate genes with high similarity scores with cancer
driver genes were identified that might be considered for further experimental validation. Gene
ontology analysis revealed their significance in cell cycles and regulation of granulocyte

differentiation, either positively regulating or negatively in several cell types that include
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epithelial cells, muscle cells, leukocytes, and lymphocytes. KEGG pathway analysis reveals
these genes involved acute myeloid leukemia, chronic myeloid leukemia, transcriptional

misregulation in cancer, prostate cancer, and FoxO signaling pathway.

The second objective deals with fractal analysis of the cancer driver genes and candidate cancer
genes to prioritize potential candidates for cervical cancer based on their correlation. It results
in the identification of 16 prioritized genes that have a high correlation with known cancer
genes. It was also observed that both approaches prioritized four genes. These prioritized genes
were associated with transcriptional misregulation in cancer, PI3K-Akt signaling pathway,

ErbB signaling pathway and cell cycle-related GO terms.

Our study's third and fourth objectives aimed to construct and analyze gene expression-based
interaction networks to elucidate the key molecular players, including protein-coding and non-
coding elements, associated with the progression of cervical cancer. To achieve the third
objective, we analyzed three gene expression datasets of cervical cancer to reconstruct and
analyze the protein-protein interaction network of the differentially expressed genes. Network
centrality measures, such as hub-bottleneck and relative vulnerability analyses, were applied
to identify these key genes. These genes are MCMS5, FN1, TRIP13, KIF11, TTK, CDC45, and
BUBI1B. We further validated the functional relevance of these genes by investigating their
association with important biological processes and pathways. Moreover, these genes
expression at both mRNA and protein levels were confirmed using immunohistochemistry
data. Higher expression levels of these proteins were observed to be significantly associated
with poor prognosis of cervical cancer patients. These proteins could serve as candidate

biomarkers for survival prediction.

The fourth objective aimed to elucidate how ncRNAs, especially long ncRNAs (IncRNAs),
modulate gene expression in various biological processes. To achieve this, gene co-expression
networks and ncRNA-gene interaction networks were constructed. The centrality analysis was
performed to identify the key nodes and edges that influence the network topology and
functionality. Several IncRNAs with high outdegree centrality, such as MALAT1, CDKN2B-
AS1, MEG3, HOTTIP, CYTOR, FEZF1-AS1 and FENDRR, were identified, indicating that
multiple target genes were regulated by them through diverse mechanisms. Conversely, it was

found that some genes, such as EZH2, CDH1, BCL2, MMP9, ZEB1, MMP2 and VIM, had
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high in-degree centrality, implying that they were involved in critical cellular processes and
were regulated by numerous IncRNAs. Furthermore, the binding sites and energy of the
IncRNA-mRNA interactions were analyzed and it was observed that most of the IncRNAs
interacted with the 3’ untranslated region (3’UTR) of their target genes with low binding

energy, suggesting a post-transcriptional mechanism of regulation.

This study provides a detailed understanding of candidate gene prioritization and key molecular
players identification by exploring differential gene expression patterns and centrality-based
network analysis that, in turn, leads to IncRNA-mediated regulation in cancer. The study

augments the comprehension of IncRNA's role in cancer etiology and proliferation.
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Appendix




LNCRDBCC: A Manually Curated Database of IncRNA related to Cervical
Cancer

Long non-coding RNAs (IncRNAs) are molecules that can alter cancer development and
progression. Several databases have aimed to collate and arrange the experimental data
supporting IncRNA-cancer relationships. For example, Lnc2Cancer is a manually curated
database that was first created by Ning in 2015 (Ning et al., 2016) and updated by Gao in 2018
(Gao et al., 2018). It contains comprehensive information on how IncRNAs regulate cancer
through different mechanisms. Another database, CRIncRNA, was developed by Wang and
focuses on the functional roles of cancer-related IncRNAs (Wang et al., 2018). It also provides
information on the clinical and molecular characteristics of these IncRNAs.

Furthermore, LncRNADisease gives information about IncRNA-disease associations, along
with the addition of transcriptional regulatory relationships and a confidence score for each
association (Bao et al., 2018). These databases are useful tools for researchers and clinicians to
understand and explore the roles of IncRNAs in cancer. However, none of them focus
specifically on IncRNAs related to cervical cancer, which is a significant gap in the current
knowledge base.

To address this, LNCRDBCC, a manually curated database of IncRNAs related to cervical
cancer, was developed to provide information on differentially expressed IncRNAs in cervical
cancer. It is implemented using MySQL and aims to support researchers who study cervical
cancer and its relation to IncRNAs. Unlike other databases that cover a broader range of
IncRNAs, LNCRDBCC focuses exclusively on IncRNAs associated with cervical cancer. This
makes it more specific and relevant for cervical cancer research. LNCRDBCC can be accessed

at http://sls.uohyd.ac.in/new/Incrdbcc/index2.html.

MATERIALS AND METHODS
Data Acquisition:

The transcription profiles of IncRNA from the TCGA-CESC and GTEXx projects were used to
identify differentially expressed IncRNAs. A total of 731 IncRNAs showed differential
expression between the tumor and normal samples. Apart from this, the PubMed database was
searched for all literature published until 30" August 2023 to identify IncRNAs related to

cervical cancer using the entrez_search function of the rentrez R package.
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In order to retrieve the information, keywords used were: "long non-coding RNA", "IncRNA",
"long non-coding", "cervical", "cervix", "HPV", and "human papillomavirus". Entrez search
results with 524 hits reporting IncRNAs associated with cervical cancer development,

progression, diagnosis, or treatment (Figure 1).
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Figure 1: Number of research articles on IncRNA and cervical cancer

Several bioinformatics techniques, including survival, co-expression analysis, and functional
enrichment, were used to further enhance our understanding of the biology behind differentially

expressed IncRNAs.

DATABASE(LNCRDBCC) CONSTRUCTION:

The web graphical user interface (GUI) and the relational database, LNCRDBCC, were
developed on the XAMPP platform (version 7.4.13). MySQL was used as the relational
database management system (RDBMS). The front end was developed using HTML
(Hypertext Markup Language), JavaScript (JS) and CSS (Cascading Style Sheets). PHP
(Hypertext Preprocessor) scripting language enabled interaction between the back end and

front end for query processing.
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All the general information about IncRNAs was obtained from the HGNC (HUGO GENE
NOMENCLATURE COMMITTEE) database (https://www.genenames.org/). The IncRNA
sequences were downloaded from the Ensembl database (http://asia.ensembl.org/index.html).
The Gene cards database (https://www.genecards.org/) was used to check whether the
IncRNAs were associated with cervical cancer or other types of cancer. All the information

was stored and managed using MySql data tables.

RESULTS

DATABASE FEATURES:

LNCRDBCC is a public database of long non-coding RNAs (IncRNAs) that have been
manually curated. LNCRDBCC allows users to explore the regulatory functions of IncRNAs
in cervical cancer development and progression. Currently, LNCRDBCC contains 731 entries

of IncRNAs associated with cervical cancer.

LNCRDBCC

Database of INcRNA related to Cervical Cancer

Welcome to LNCRDBCC

LNCRDBCC is a manually curated public database for long non-coding RNA
(IncRNA). LNCRDCC can serve as a valuable resource to investigate the regulatory
role of IncRNAs in Cervical Cancer progression.

Currently, LNCRDBCC comprises of 731 significantly
manually curated IncRNA data. Search for your
InNcRNAs of interest !

Figure 2: Home page of LNCRDBCC

The LNCRDBCC database contains IncRNAs that are involved in cervical cancer. Users can
access the database through three main modules: the search module, the network module, and
the download module. The search module allows users to query the database by various criteria,
such as IncRNA name, gene symbol, or chromosomal location. The network module lets users

visualize and analyze the interactions between IncRNAs and other molecules, such as proteins,
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microRNAs, or DNA methylation sites. The download module allows users to download the

entire database or a subset of it for offline analysis.

# Home
General Search

. LNCRDBCC
Advanced Search

~ ) - Cancer
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L. Submit Complete Network

W About

& Downloads

L\
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a valuable resource to investigate the
Help Cancer progression.

Currently, LNCRDBCC comprises of 731 significantly
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Figure 3: Snapshot of LNCRDBCC modules

SEARCH FUNCTIONALITY
The search module allows users to query the database by various criteria, either by 1) General
search or 2) Advanced search
In “General search” users can search for IncRNA of interest in two alternative ways:

1) By IncRNA HGNC ‘GENE symbol’ or

2) By the sequence of IncRNA

An Easier way to search!

Enter IncRNA
(or)

Search using sequence...

Figure 4: General Search module
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The 'Advanced Search' interface allows users to apply filters that combine 'Expression Patterns'
and 'Source' options for more specific queries. For instance, users can select 'Upregulated' and

'Literature' to find IncRNAs that have increased expression and are mentioned in the literature.

Advance Search With Filters v
LncRNA
Pattern ALL

Source Literature

Pattern
ALL Source l Literature ‘

Lt Literature

Downregulated

Submit

Figure 5: Snapshot of Advanced Search

SEARCH RESULTS
The search functionality provides a summary of the IncRNA of interest, such as WT1-AS,

which is a hub IncRNA. The summary contains general information from the HGNC database,
such as gene symbol, Entrez ID, Ensembl ID, Vega ID, RefSeq accession, Lncipedia ID, locus
type and Chromosome location. It also shows the expression pattern from DEG analysis, the
co-expression status from WGCNA analysis, and the source and related cancers from the

Genecards database. The figure below illustrates the summary page for WT1-AS.
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Showing results for IncRNA "WT1-AS":

A)

Summary:

Incrna_id

WT1-AS

WT1
antisense
RNA

entrez_id h

51352 HGNC:18135

locus_type

RNA, long
non-coding

c_id Ensembl_id Vega_ ID refseq_accession Incipedia_ID

n

Co-expression Network Analysis Module-I

ENSG00000183242 OTTHUMG00000039557 NR_023920 WT1-AS

Expression_Patterns ol et inked to
= expression WT1-AS
Gastric Cancer,
TCGA; Pancreatic Cancer,
Literature Leukemia, Acute
Myeloid, Wilms Tumor

Downregulated

A2M-AS1, ACTA2-AS1, ADAMTS19-AS1, ADAMTS9-AS1, ADAMTS9-AS2, AIRN, AKT3-IT1, ARAP1-AS2, ARHGEF7-AS2, ARHGEF7-1T1, ASIC4-AS1, BEAN1-AS1, CACNA1G-AS1, CADM3-AS1, CARMN, CCND2-AS1, CD81-AS1,
CELF2-AS1, CEROX1, CLMAT3, CLRN1-AS1, CNTFR-AS1, CNTN4-AS1, CNTN4-AS2, COL18A1-AS1, COL25A1-DT, COL4A2-AS1, COL5A1-AS1, CPEB1-AS1, CRMA, CT66, CYP1B1-AS1, DAAM2-AS1, DHCR24-DT, DIO30S,
DIRC3-AS1, DNM3O0S, DOCK4-AS1, DPP9-AS1, EDRF1-AS1, EMX20S, EOLA1-DT, EVX1-AS, FAM138B, FAM218A, FAM66C, FENDRR, FGF10-AS1, FGF13-AS1, FIGNL2-DT, FRMDé6-AS2, FTX, GATA6-AS1, GDNF-AS1, GRID1-
AS1, GRK5-1T1, H2AZ1-DT, HAND2-AS1, HEXD-IT1, HID1-AS1, HOTTIP, IDI2-AS1, IGF2-AS, IGFBP7-AS1, ITPR1-DT, JAZF1-AS1, JPX, KANSL1L-AS1, KCNIP1-OT1, KCNIP4-IT1, KCNQ10T1, KLF3-AS1, KLHL30-AS1, LAMA4-
AS1, LDLRAD4-AS1, LETR1, LINC-PINT, LINC00028, LINC0O0092, LINC00222, LINC00266-1, LINCO0304, LINC00334, LINC00484, LINC00511, LINC00565, LINC00595, LINC00598, LINC00629, LINC0O0632, LINC00661,

LINC00670, LINC00702,
LINC01198, LINC01228,
LINC01567, LINC01592,
LINC01985, LINC01987,
LINC02288, LINC02310,

LINC00844, LINC00856,
LINC01233, LINC01237,
LINC01620, LINC01624,
LINC02078, LINC02094,
LINC02349, LINC02370,

LINC00891, LINC00906, LINC00924,
LINC01238, LINC01276, LINC01354,
LINC01638, LINC01656, LINC01700,
LINC02106, LINC02145, LINC02147,
LINC02371, LINC02469, LINC02507,

LINC00926, LINC00989, LINC00994, LINCO1016, LINC01081, LINC01085, LINC01140, LINC01149, LINC01163, LINC01165,
LINC01358, LINC01359, LINC01366, LINC01391, LINCO1412, LINC01422, LINCO1474, LINC01529, LINC01532, LINCO1565,
LINC01772, LINC01782, LINC01797, LINC01799, LINC01856, LINC01858, LINC01916, LINC01933, LINC01936, LINC01960,
LINC02148, LINC02157, LINC02175, LINC02185, LINC02197, LINC02202, LINC02246, LINC02268, LINC02284, LINC02287,
LINC02519, LINC02587, LINC02599, LINC02600, LINC02618, LINC02664, LINC02692, LINC02728, LINC02731, LINC02754,

LINC02757, LINC02794, LINC02805, LINC02817, LINC02829, LINC02847, LINC02848, LINC02913, LINGO1-AS1, LNC-LBCS, LRRK2-DT, LYPLAL1-AS1, MACC1-AS1, MAGI2-AS3, MALAT1, MAPT-AS1, MBNL1-AS1, MEF2C-
AS1, MEG3, MEG8, MEGY, MIMT1, MIR100HG, MIR133A1HG, MIR202HG, MIR34AHG, MIR497HG, MIRS03HG, MIR99AHG, MKX-AS1, MORF4L2-AS1, MPRIP-AS1, MRGPRF-AS1, MROCKI, MYLK-AS2, N4BP2L2-1T2, NAGPA-
AS1, NAMA, NCAM1-AS1, NGF-AS1, NPTN-IT1, NR2F2-AS1, NTRK3-AS1, PACERR, PBX1-AS1, PCBP3-AS1, PCOLCE-AS1, PEF1-AS1, PGM5P3-AS1, PGM5P4-AS1, PHEX-AS1, PLCE1-AS1, PLCG1-AS1, PPFIA2-AS1, PPM1K-DT,
PPP1R14B-AS1, PRDM16-DT, PRICKLE2-AS3, PSMDé-AS1, PTPRD-AS1, PWAR1, PWARS, RAB6C-AS1, RAMP2-AS1, RBAKDN, RERG-IT1, RMDN2-AS1, RMST, SACS-AS1, SFTPD-AS1, SGO1-AS1, SH3BP5-AS1, SLC6A1-AS1,
SLIT2-IT1, SMAD9-IT1, SNHG14, SOCS2-AS1, SPACA6-AS1, SPART-AS1, SPINT1-AS1, SSBP3-AS1, STARD13-IT1, STK32A-AS1, TBX2-AS1, TEX26-AS1, TEX41, TGFB3-AS1, TMEM72-AS1, TNFRSF10A-AS1, TPM1-AS, TRHDE-
AS1, TSPEAR-AS1, TSPEAR-AS2, UST-AS1, WT1-AS, ZIM2-AS1, ZNF582-DT, ZNF687-AS1, ZNF790-AS1, ZSWIM8-AS1

miRNA targets identified for IncRNA "WT1-AS" are:

TARGETS

cd, mir-4262, mir-135ab, mir-135a-5p, mir-223, mir-23abc, mir-23b-3p, mir-375, mir-133abc, mir-141, mir-200a, mir-155,

mir-200bc, mir-429, mir-548a, mir-216b, mir-216b-5p, mir-24, mir-24ab, mir-24-3p, mir-25, mir-32, mir-92abc, mir-363, mir-363-3p,
mir-367, mir-31, mir-139-5p, mir-145, mir-17, mir-17-5p, mir-20ab, mir-20b-5p, mir-93, mir-106ab, mir-427, mir-518a-3p, mir-519d,

mir-182, let-7, mir-98, mir-4458, mir-45

mir-383

, mir-18ab, mir-4735-3p, mir-199ab-5p, mir , mir-30abcdef, mir-30abe-5p, mir-384-5p,

Figure 6: Snapshots of results page showing A)Summary B) miRNA targets for IncRNA of interest
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SURVIVAL PLOT

A)
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LncRNA-Target NETWORK

B)

RNA SEQUENCE

)

Figure 7: Screenshots of results page showing A) Survival plot B) IncRNA- Target miRNA
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mir98
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mir-155 mir-100ab
mir-141

mir-25 ir-4458
mirga  Mir182

Sequence

>WT1-AS
AGGGGCCGGCGGCGCGGGGAAGAGGAGGAGCCAGGAGGCTCGGCCGCTCCATTCACTCAG
CAGCCCAAGCCCGGCCAGGCAGCGCGCGCTGCTCCTTGGGGGCGCCCTCGCAGCTGGGGT
GAGGGCGGGTCCGAGGGAGCGTCCCTCTCGGAGACACCCTCCTCTTCAACCCAACACGCG
CTCTCAGCTGGCCGGTGTGGCACAACCCTCCCCCCACCTCCCCTTCTTGGCCTTCGCCAG
TGTGGGAGCCTCGTCTCACTGGAGAGTCCGTTCAGGTAAGCAGTGAGTCCGGGCAGGGTC
GAATGCGGTGGGAGTAGAGATGGGGTTGTTAATCTAAAAGAGTGGTTTGGAGGGAGGGGC
AGGTAGGCTCCAAGAGGGCGGGAACTTCAGGAAAGCGCAGAAAGAACTCAGTCAAGCTTC
AAAGAAGCGTATACCCTTGCTTTGCACCCTTGAGTCTGGCTCTTGCTTCTAGAACTGTCG
GGTAGGGGAGTGGCCATGATCTTGGGGTCACTGGGGAAAGAGGTGGCCCTTTGTGGGTTC
CAGAGGTCGGGACTGAAAGCGAACGTCCCTCAGTTGGGTGGCCGGGAGTTGCACCAGTTA
TAAGCCGGGCGTATTTCGATCGGCTAGTAGTTGTTTACTTGGTGAGGTTTGCGCCAGGCG

network C) FASTA Sequence

: LNCRDBCC
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The IncRNA targets found in the analysis are also displayed on the results page (Figure 6B).
Additionally, it displays a graphical representation of the interactions between IncRNA and
miRNA, generated with the Cytoscape platform (Figure 7B). A Kaplan-Meier survival plot and
the associated p-value for every IncRNA are also included on the results page (Figure 7A). The
FASTA sequence of the relevant IncRNA is included in the RNA sequence section (Figure
70).

DOWNLOADS MODULE
Through the downloads module, users can obtain comprehensive data from LNCRDBCC. Files
in CSV format with general data, expected targets, IncRNA sequences, and network analysis

properties tables are available for download.

LNCRDBCC

Database of IncRNA related to Cervical Cancer

Downloads

File Download Link
General information and predicted targets of LncRNA & Download

LncRNA Sequences & Download

Network Analysis & Download

Figure 8: Snapshot of Downloads page

NETWORK ANALYSIS MODULE

LNCRDBCC includes two categories for the Network Analysis module: 'Complete network'
and 'Hub network'. The 'Complete network' category displays an interactive network of 108
IncRNAs and their target miRNAs. The summary statistics and the network properties (such
as Closeness Centrality, Degree, Eccentricity, Betweenness Centrality, Topological Coefficient
and Average Shortest PathLength) are shown in Figure 9. In the 'hub network' section, we

developed an interactive network visualization of the three novel hub IncRNAs and their target
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miRNAs. We also added a table that lists the novel IncRNAs, the number of targets (miRNA)
for each IncRNA, and the functions of the miRNA targets.
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Network Analysis

‘". 183,

“imie’

187 MR4ITh.. Sar N s is a network of LncRNA-miRNA
interactions that CoSE js for layout and

Cytoscape.js for its alisation

Summary Statistics

Number of nodes
Number of edges 3152
Avg. number of neighbors 201041
Network diameter 7
Network radius Characteristic 4
path length 2469
Clustering Coefficient 0.000
Ne! rk de Y 0.065
rk heterogeneity 1.045
ork centralization 0.490

Connected components 1

Layout used: CoSE
Visualisation by Cytoscape.js

NETWORK ANALYSIS
B)

name ClosenessCentrality Degree Eccen ity BetweennessCentrality TopologicalCoeffi AverageShortestPathLength
SNHG14. 0.63803681 172 4 0.136679956 0.144518272 1567307692
KCNQ10T1 0.615384615 164 4 0.119638598 0.14880394 1625

MEG3 0.564195298 142 4 0.096310409 0.157459319 1772435897
MALAT1 0.500802568 113 4 0.047892109 0.170422407 1996794872
ADAMTS9-

a2 0.474885845 97 4 0.038865478 0.159256873 2105769231
MIAT 0.477794793 93 4 0.037185599 0.171199663 2092948718
MAGI2-AS3 0.459499264 88 4 0.031348676 0.159090909 2.176282051
SOX2-0T 0.455474453 85 4 0.031613866 0.156946183 2195512821
GRMS5-AS1 0451519537 82 4 0.034662351 0.158017644 221474359
HOTTIP 0.451519537 82 4 0.025842521 0.184613389 221474359

Figure 9: Snapshot of ‘Complete Network™ module A) IncRNA-target interactive network and

B) Properties of IncRNA hubs

: LNCRDBCC
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The About module consists of two sections: Contacts and Help. The Contacts page provides
the contact details of the database administrators who can assist the users with any queries or
issues. The Help page guides the users on how to navigate and use the database effectively.

The Submit module allows the users to contribute information related to IncRNAs by filling

out a form. The submitted data will be reviewed and added to the database after verification.

@  Ifyouwould like to contribute data of long non-coding RNAs to the database, please use the form below

Submit data

Send Message

Figure 10: Snapshot of Submit Page

Conclusion

In order to investigate the regulatory function of long noncoding RNAs (IncRNAs) in cervical
cancer, a network of differentially expressed IncRNAs and their target microRNAs was
constructed. Nineteen hub IncRNAs involved in network regulation were identified, and it was
also observed that some of these had also been described in other types of cancer. Three of the
hub IncRNAs, however, were novel and had not been associated to any other cancers.

LNCRDBCC, a web-based database of human IncRNA data related to cervical cancer is
developed to organize and present the data obtained from various bioinformatic analyses, such
as DEG analysis, functional enrichment, coexpression analysis, survival analysis, and network
analysis. The current version of LNCRDBCC contains 731 manually curated IncRNA entries.
LNCRDBCC is an open resource that allows users to query and analyze the regulatory role of
IncRNAs in cervical cancer, which may facilitate IncRNA research and the development of

IncRNA-targeted therapeutics.
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1 | INTRODUCTION

Women worldwide suffer high morbidity and mortality rate because
of cervical cancer (CC) which holds fourth rank among different types

of cancers.*? It is divided into two subtypes, that is, squamous cell

| Ayushi Dwivedi® |
Vaibhav Vindal?

Abhishek Das! |

Abstract

Cervical cancer is the primary cause of mortality among women in developing coun-
tries. Preventing cervical cancer is partially possible through early vaccination against
the human papillomavirus, the most common cause of the disease. Nevertheless, it is
imperative to understand the genetics of the disease progression to develop new
therapeutic strategies. The present study aims to identify potential genes and associ-
ated pathways associated with cervical squamous cell carcinoma progression. We
used an integrative approach by combining differential expression analysis, network
biology, and functional enrichment analysis with survival analysis. In the present
study, differential expression analysis of the microarray-based gene expression pro-
files of cervical cancer resulted in identifying a total of 544 significantly differentially
expressed genes (DEGs). Further, centrality and network vulnerability analysis of the
protein-protein interaction network (PPIN) and not well documented in cervical can-
cer, resulted in seven proteins (FN1, MCM5, TRIP13, KIF11, TTK, CDC45, and
BUB1B), in which four proteins were vulnerable. These genes are mostly enriched in
biological processes of cell division, mitotic nuclear division, cell cycle checkpoint,
and cell proliferation in gene ontology analysis. The KEGG pathway enrichment anal-
ysis of the proteins lists them as mainly associated with the cell cycle. In the survival
analysis, it was found that the genes MCM5, FN1, KIF11, and CDC45 were statisti-
cally significant prognostic factors for cervical cancer. The outcome of the current
study identifies and explores the key role of the candidate genes involved in the pro-

gression of cervical cancer.

KEYWORDS

cervical cancer, differentially expressed genes, gene ontology, network vulnerability analysis,
protein-protein interactions

carcinoma (80%-90%) and adenocarcinoma (10%-20%). India contrib-
utes at least one-fourth of the disease burden globally.®> Human papil-
lomavirus (HPV) is the primary risk factor for CC. However, weak
immune system, smoking, birth control pills, multiple sexual partners,
also play an imminent role as risk factors.* It is evident that tumor

Proteins. 2023;1-15.
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1 | INTRODUCTION

Mallikarjuna T.2 | Vaibhav Vindal®> | Manimaran P.3

Abstract

It is well known that cervical cancer poses the fourth most malignancy threat to
women worldwide among all cancer types. There is a tremendous improvement in
realizing the underlying molecular associations in cervical cancer. Several studies
reported pieces of evidence for the involvement of various genes in the disease pro-
gression. However, with the ever-evolving bioinformatics tools, there has been an
upsurge in predicting numerous genes responsible for cervical cancer progression
and making it highly complex to target the genes for further evaluation. In this article,
we prioritized the candidate genes based on the sequence similarity analysis with
known cancer genes. For this purpose, we used the concept of the moment of inertia
tensor, which reveals the similarities between the protein sequences more efficiently.
Tensor for moment of inertia explores the similarity of the protein sequences based
on the physicochemical properties of amino acids. From our analysis, we obtained
14 candidate cervical cancer genes, which are highly similar to known cervical cancer
genes. Further, we analyzed the GO terms and prioritized these genes based on the
number of hits with biological process, molecular functions, and their involvement in
KEGG pathways. We also discussed the evidence-based involvement of the priori-

tized genes in other cancers and listed the available drugs for those genes.

KEYWORDS
candidate genes, cervical cancer, dendrogram, gene ontology, tensor analysis

other tissues of the body, causing death. Among all cancers, cervi-

cal cancer is the fourth most malignancy threat for women world-

With the drastic changes in the day-to-day lifestyle, the survival of
humans is being hindered by the peril of noncommunicable dis-
eases. Among these diseases, cancer might hold the first place to
cause most deaths worldwide. Despite the clinical advancements
in cancer therapy, the mortality rate is still growing, and the reason
for this imbalance rises from several facts like genetic variations
among the individuals, mutational rate, substantial increase in the
aged population, socio-economic variations, and so forth.2 Cancer
is a collective term for several related diseases. There are more
than 100 varieties of cancers. The name of the cancer is termed
based on the type of tissue or the cell of origin of cancer. Basically,

in all cancers, the cells begin to divide uncontrollably and invade

wide. human papillomavirus (HPV) is the leading cause of most
cervical cancer cases. There are several other risk factors like inter-
course at an early age, multiple sexual partners, immunosuppres-
sion, and smoking.® Several vaccine programs have been shown
beneficial in curbing malignancy.* Nevertheless, it is imperative to
study the molecular mechanisms involved in cervical cancer. With
advancements in molecular techniques, systems biology, bioinfor-
matics, next-generation sequencing, microarray, and so forth,
there has been a substantial improvement in understanding the
underlying molecular mechanisms. High-throughput molecular
techniques in synergy with computational analysis helped identify

numerous cervical cancer genes, miRNAs, circRNAs, and IncRNAs.

Proteins. 2022;90:363-371.

wileyonlinelibrary.com/journal/prot

© 2021 Wiley Periodicals LLC. | 363


https://orcid.org/0000-0003-0717-7573
mailto:manimaran@uohyd.ac.in
http://wileyonlinelibrary.com/journal/prot
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fprot.26226&domain=pdf&date_stamp=2021-09-16

glerC GA @ \“j ™ Prashanti Cancer Care Mission @ ‘Q@

1ISER PUNE Reaching out with excellence PERSISTENT

- .~ Affordable " "
e | IndlaAlllan
U] 1 Pogshovig 5 ( RESEARCH Tl Sopms iy ce
. M‘ UK LAWNTY  Government of India
A research challengs from India and the UK P——

1st TCGA CONFERENCE AND WORKSHOP IN INDIA

Multi-Omics Studies in Cancer
Learnings from The Cancer Genome Atlas (TCGA)

Certificate

This certificate is awarded to_Mallikarjuna Thippanaa for
participating in the Poster Presentation at the “TCGA Conference” held at IISER, Pune, India
on 21— 22 September, 2019

& (it gl nand b

JEAN C ZENKLUSEN DR C B KOPPIKER L S SHASHIDHARA DR ANAND DESHPANDE
Director, TCGA, NCI, NIH Medical Director, Professor, IISER, Pune Chairman and Managing Director,

Prashanti Cancer Care Mission Persistent Systems




NetSci2020 &

INSTITUTION OF EMINENCE

National Workshop on Network Science
13-15 March, 2020
School of Physics, University of Hyderabad

e s "
This is to certify that }MM\“K“()UV\“’ ........................

has delivered an invited talk/presented work/participated
in the NetSci2020.

n/ﬁ;ﬁ.m’ Dr. Aﬁuﬁ

(Convener) (Cunvener)

* 1>
¥ £ W



£ N
s ?*i‘:ai/j‘é}\ \‘}/ . \.\J’
il V4 P =)
‘A -~
i o g
L W g
s ()')‘ < pes INSTITUTION OF EMINENCE
University of Hyderabad o - 4 v e, A T

Proteomics Society, India (PSl) National Needs, Global Standard s

Virtual Conference on Proteomics in Agriculture and

Healthcare
School of Life Sciences, University of Hyderabad

Certificate of Merit

This is to certify that Mr. Thippana Mallikarjuna S/o T Thirupaiah from

University of Hyderabad, Hyderabad has participated in oral presentation in the
conference held during March 13-14, 2021.

A K
Prof. MV Jagannadham Prof. S Rajagopal Prof. S Dayananda

Convener Organising Secretary Dean, School of Life Sciences



2 InCoB 2021

Kunming - China

CERTIFICATE OF PARTICIPATION

This certificate is proudly presented to:

For your participation in Poster Presentation during 20th International Conference on Bioinformatics (InCoB 2021)

(November 6 — 8, 2021)

)
A’(AL - # 5 Dl Yoo

Assoc. Prof. Dr. Mohammad Asif Khan Prof. Dr. Yun Zheng

President, APBioNet InCoB2021 Conference Chairman

Fostering the Growth of Bioinformatics in the Asia-Pacific




Certificate of Participation & Presentation

ISCBS

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

December 17,2022

Mallikarjuna Thippana

S-67, Computational Functional Genomics Laboratory,
Dept. of Biotechnology and Bioinformatics,

School of Life Sciences,

University of Hyderabad,

Hyderabad - 500046,

India

Subject: CERTIFICATION OF PARTICIPATION AND PRESENTATION

On behalf of the Organizing Committee for Asian Student Council Symposium 2022 held Virtually, thank
you for your participation and presentation of "Exploring HPV sample-specific prognostic players
associated with cervical cancer "

This letter certifies that Mallikarjuna Thippana was a participant at Asian Student Council Symposium 2022
and presented the above research.

Asian Student Council Symposium 2022, the 1st such conference, was hosted by the International Society
for Computational Biology (ISCB) December 10 - 11, 2022.

Please visit https://www.ascs2022.iscbsc.org/ for additional conference information.

Yours sincerely,

" [Dane € Kantr

Diane E. Kovats, CAE, CMP, DES

Chief Executive Officer

International Society for Computational Biology (ISCB)
e: dkovats@iscb.org

www.iscb.org



https://www.ascs2022.iscbsc.org/
mailto:dkovats@iscb.org
https://www.iscb.org

Certificate of Participation & Presentation

r

3 P ) AL
S TN TSSO s S
K SR NN
. e e

e S

7
3

. GIW XXX

: RS 0 N R -_'"'-"‘ 12-14'begémber2022
ISCB'ASIaV ¢4 . Tainan, Taiwan

Dear Mallikarjuna Thippana,
University of Hyderabad, Telangana, IndiaDear

Subject: CERTIFICATION OF PARTICIPATION AND PRESENTATION

On behalf of the Conference Chairs for GIW XXXI/ISCB-Asia V conference held on site, thank you for
your participation and presentation of "Ascertainment of non-coding genes as key molecular players in
cervical squamous cell carcinoma through the systems biology approach "

This letter certifies that Mallikarjuna Thippana was a participant at GIW XXXI/ISCB-Asia V conference
and presented the above research.

GIW XXXI/ISCB-Asia V conference, the 31st such conference, was hosted by National Cheng Kung
University December 12 - 14, 2022.

Please visit https://www.iscb.org/giw-iscb-asia2022 for additional conference information.

Sincerely,

Ny

Conference Chairs
Jung-Hsien Chiang, National Cheng Kung University, Taiwan
Paul Horton, National Cheng Kung University, Taiwan

2022giw(@gmail.com


https://www.ascs2022.iscbsc.org/
mailto:dkovats@iscb.org
https://www.iscb.org

ISCB?
Z Certificate of Participation & Presentation

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

July 27,2023

Mallikarjuna Thippana

PhD Candidate

Computational and Functional Genomics laboratory
Dept. of Biotechnology and Bioinformatics

School of Life Sciences

University of Hyderabad

Hyderabad - 500046

India

Subject: CERTIFICATION OF PARTICIPATION AND PRESENTATION

On behalf of the Organizing Committee for Intelligent Systems for Molecular Biology/European Conference
on Computational Biology (ISMB/ECCB) 2023 held in Lyon, France, thank you for your participation and
presentation of "Identification and characterization of key long non-coding RNAs involved in cervical cancer
progression using systems biology approach "

This letter certifies that Mallikarjuna Thippana was a participant at Intelligent Systems for Molecular
Biology/European Conference on Computational Biology (ISMB/ECCB) 2023 and presented the above
research.

Intelligent Systems for Molecular Biology/European Conference on Computational Biology (ISMB/ECCB)
2023, the 31th annual conference, was hosted by the International Society for Computational Biology (ISCB)
July 23 - 27,2023. The ISMB conference has grown to become the world's largest
bioinformatics/computational biology conference.

Please visit https://www.iscb.org/ismbeccb2023 for additional conference information.

Yours sincerely,

T ame € Kantt

Diane E. Kovats, CAE, CMP, DES

Chief Executive Officer

International Society for Computational Biology (ISCB)
e: dkovats@iscb.org



https://www.iscb.org/ismbeccb2023
mailto:dkovats@iscb.org

"Integrative studies to explore
key molecular players involved
in cervical squamous cell
carcinoma "

by Mallikarjuna Thippana
Librarian

Indira Gandhi Memorial Liby4ry

UNIVERSITY OF HYDERABAD
Central University R.0Q.’
HYDERABAD-500 046,

Submission date: 31-Jan-2024 02:32PM (UTC+0530)
Submission ID: 2282793271

File name: Thesis_Mallikarjun.pdf (12.77M)

Word count: 23408

Character count: 130269



"Integrative studies to explore key molecular players
involved in cervical squamous cell carcinoma ™

ORIGINALITY REPORT

306, 7w« 366 4o

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Mallikarjuna Thippana, Ayushi Dwivedi, 1 70/
Abhishek Das, Manimaran Palanisamy, ’
Vaibhav Vindal. "Identification of key
molecular players and associated pathways in
cervical squamous cell carcinoma progression
through network analysis", Proteins:

Structure, Function, and Bioinformatics, 2023

Publication

N. B. Thummadi, T. Mallikarjuna, V. Vindal, P. 1 1 0%
Manimaran. "Prioritizing the candidate genes
related to cervical cancer using the moment
of inertia tensor", Proteins: Structure,
Function, and Bioinformatics, 2021

Publication

Submitted to University of Hyderabad, 2
%
Hyderabad

Student Paper

Neelesh Babu Thummadi, Mallikarjuna T., 2cy
Vaibhav Vindal, Manimaran P.. "Prioritizing ’
the candidate genes related to cervical cancer



using the moment of inertia tensor", Proteins:
Structure, Function, and Bioinformatics, 2021

Publication

N.B. Thummadi, S. Charutha, Mayukha Pal, P. <1 o
Manimaran. "Multifractal and cross- ’
correlation analysis on mitochondrial genome
sequences using chaos game representation”,
Mitochondrion, 2021

Publication

unsworks.unsw.edu.au

ﬂ Internet Source <1 %
Submitted to 9561

Student Paper <1 %

Mayukha Pal, B. Satish, K. Srinivas, P. <1
. %
Madhusudana Rao, P. Manimaran.
"Multifractal detrended cross-correlation
analysis of coding and non-coding DNA
sequences through chaos-game
representation”, Physica A: Statistical
Mechanics and its Applications, 2015

Publication

www.frontiersin.or
n Internet Source g <1 %
www.ncbi.nlm.nih.gov <1
Internet Source %
Genetic Polymorphism and cancer <1 o

susceptibility"”, Springer Science and Business



Media LLC, 2021

Publication

—_
N

Submitted to University College London
Student Paper

<1%

—_
w

Lin Liu, Zipeng Yu, Yang Xu, Cheng Guo et al.
"Function identification of MdTIR1 in apple
root growth benefited from the predicted
MdPPI network", Journal of Integrative Plant

Biology, 2020

Publication

<1%

Zhu-Hong You. "A semi-supervised learning

approach to predict synthetic genetic
interactions by combining functional and
topological properties of functional gene
network", BMC Bioinformatics, 2010

Publication

<1%

—_
()

docplayer.net

Internet Source

<1%

N
o)

"Abstracts", Journal of Investigative
Dermatology, 03/2008

Publication

<1%

—_
~N

Advances in Experimental Medicine and
Biology, 2014.

Publication

<1%

N
(00]

Submitted to City University

Student Paper

<1%

res.mdpi.com



Internet Source

<1 %
www.science.gov
Internet Source g <1 %
www.thno.or
Internet Source g <1 %
Lijun Bai, Qing Chen, Leiyu Jiang, Yuanxiu Lin, <1 y
Yuntian Ye, Peng Liu, Xiaorong Wang, Haoru ’
Tang. "Comparative transcriptome analysis
uncovers the regulatory functions of long
noncoding RNAs in fruit development and
color changes of Fragaria pentaphylla”,
Horticulture Research, 2019
Publication
Sara E. Lipshutz, Clara R. Howell, Aaron M. <1
. . %
Buechlein, Douglas B. Rusch, Kimberly A.
Rosvall, Elizabeth P. Derryberry. "How thermal
challenges change gene reqgulation in the
songbird brain and gonad: implications for
sexual selection in our changing world",
Molecular Ecology, 2022
Publication
Shrestha Reshies, Min-Min Yu. "Expressions of <1 o

Long Non-Coding RNAs in Carcinogenesis of
Cervix: A Review", Open Journal of Obstetrics
and Gynecology, 2018

Publication




Zhicheng Yan, Junyan Shi, Shuzhi Yuan, <1 o
Dongying xu, Shufang Zheng, Lipu Gao, Caie ’
Wu, Jinhua Zuo, Qing Wang. "Whole-

transcriptome RNA sequencing highlights the
molecular mechanisms associated with the
maintenance of postharvest quality in

broccoli by red LED irradiation", Postharvest

Biology and Technology, 2022

Publication

E
(0))

www.medrxiv.org <1 o
0

Internet Source

N
~N

Submitted to Birla Institute of Technology and <1
%

Science Pilani
Student Paper

B
(0]

Submitted to October University for Modern <1 o
Sciences and Arts (MSA) °

Student Paper

3
O

Pal, Mayukha, V. Satya Kiran, P. Madhusudana
Rao, and P. Manimaran. "Multifractal
detrended cross-correlation analysis of
genome sequences using chaos-game
representation”, Physica A Statistical
Mechanics and its Applications, 2016.

Publication

<1%

30

S Yilmaz. "Gene-Disease Relationship <1
Di . %
iscovery based on Model-driven Data



Integration and Database View Definition",
Bioinformatics, 11/27/2008

Publication

addi.ehu.es
Internet Source <1 %
issx.confex.com
Internet Source <1 %
WWWw.aristeosegura.com.mx
Internet Source g <1 %
www.researchgate.net
Internet Source g <1 %
Sut.)mltt.ed to Jawaharlal Nehru Technological <1 o
University
Student Paper
core.ac.uk
Internet Source <1 %
Kai Liu, Shaoxi Chen, Ruoyi Lu. "Identification <1 o
of important genes related to ferroptosis and ’
hypoxia in acute myocardial infarction based
on WGCNA", Bioengineered, 2021
Publication
Kim, Hee, Dae Lee, Ga Yim, Eun Nam, <1 %

Sunghoon Kim, Sang Kim, and Young Kim.
"Long non-coding RNA HOTAIR is associated
with human cervical cancer progression",
International Journal of Oncology, 2014.

Publication



Matthew J. Kesic, Megan Meyer, Rebecca <1 o
Bauer, Ilona Jaspers. "Exposure to Ozone ’
Modulates Human Airway
Protease/Antiprotease Balance Contributing
to Increased Influenza A Infection", PLoS

ONE, 2012
Publication
Submitted to Grand Canyon Universit
Student Paper y y <1 %

Yeqging Mao, Chao Wen, Zitong Yang. <1 0%
"Construction of a Co-Expression Network for
INcCRNAs and mRNAs Related to Urothelial
Carcinoma of the Bladder Progression",
Frontiers in Oncology, 2022

Publication

export.arxiv.org 1
Internet Source < %
gmro.gmul.ac.uk 1
Internet Source < %
www.biorxiv.org 1
Internet Source < %
Exclude quotes On Exclude matches <14 words

Exclude bibliography On



university of Hyderabad R
£,
(A central University established in 1874 by Act of Parliament) \t‘é N/
(P.0.) Central University, Gachibowli N, &
Hyderabad-500046 ... S

PLAGIARISM FREE CERTIFICATE

This is to certify that the thesis entitled “Integrative studies to explore key molecular players
involved in cervical squamous cell carcinoma” submitted by Mr. Thippana Mallikarjuna
bearing Reg No: 18LTPHO02, in partial fulfillment of the requirements for the award of Doctor
of Philosophy in the Department of Biotechnology and Bioinformatics, School of Life
Sciences. is free from Plagiarism and has not been submitted previously in part or in full to this

or any other University or Institution for the award of any degree or diploma.

The similarity index of this thesis as checked by the library of the University of Hyderabad is
36%. Out of this 30% similarity has been found to be identified from the candidate’s own

publication(s) which forms the major part of the thesis. The details of the student’s publication

are as follows:
Published in the following publications: List out the Publications here.....

1. Thippana, M, Dwivedi, A, Das, A, Palanisamy. M, Vindal, V. Identification of key
molecular players and associated pathways in cervical squamous cell carcinoma
progression  through  network analysis. Proteins.  2023;  91(8): 1173-1187.

doi:10.1002/prot.26502

2. Thummadi NB, Thippana M, Vindal V, P. M. Prioritizing the candidate genes related
to cervical cancer using the moment of inertia tensor. Proteins. 2021:1-9.

doi:10.1002/prot.26226.
About 6% similarity was identified from the external sources in the present thesis which is
according to the prescribed regulations of the university. All the publications related to the

thesis have been appended at the end of the thesis. Hence the present thesis is considered to be

plagiarism-free.

\J%W /“'J
Dr. Vaibhav Vindal Prot P. m\ﬁ/«/

[Superyjso [Corsypdndnimiaran
BFA?SAIBTAA/ Y'NDAL i Professor
D Associate Professor | of Physics
ept. OfsBlolechnology & Bioinformatics Uni%g:‘s()i? of Hvéefaba .
chool of Life Sciences Hyderabad- 00 046 (TS) India

University of H
J yderabad
Gachibowli, Hyderabad-500 046,

.



