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Chapter 1
Introduction

Exact solutions of partial differential equations have been pivotal in advancing our
understanding of the qualitative features of diverse natural phenomena and processes
across several scientific disciplines. Notably, the solutions of nonlinear differential equa-
tions offer clear illustrations of the intricate mechanisms underlying complex effects,
such as spatial localization of transfer processes, the multiplicity or absence of sta-
tionary states, the existence of blow-up solutions, and the possible non-smoothness
of the unknowns. Even exact solutions of differential equations remain invaluable as
test problems that facilitate the assessment of accuracy and the applicability range of

various numerical and approximate analytical methods.

The general theory of quasilinear partial differential equations emerged a century
ago in the context of mathematical physics. To understand more about quasilinear par-
tial differential equations, in particular nonlinear hyperbolic partial differential equa-
tions, the fundamental problem is to study the Riemann problem, which is basically
an initial value problem with constant initial data with a discontinuity at a point.
Riemann [1] first posed the Riemann problem and solved it in his seminal work on
the mathematical theory of shock waves in 1860 for isentropic gas dynamic equations.
Riemann’s solution is described by elementary waves, i.e., shock waves and rarefaction
waves. In the 1940s, Courant and Friedrichs [3] added a new type of elementary wave,
characteristic shock waves/contact discontinuities, while studying adiabatic flow. The
theory of small solutions to the Riemann problem for strictly hyperbolic systems was
established in the seminal work of Lax [4] in 1957. Since then, great progress has been
achieved in understanding Riemann’s problem for one-dimensional gas dynamic equa-
tions, and research interest in the Riemann problem lasted for more than a century.
The Riemann problem for gas dynamic equations governing a one-dimensional flow of
van der Waals gases was studied by Ambika and Radha [9] and by Hattori [73]. Elemen-
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tary waves, whose interactions are determined by perturbed Riemann problems, also
reflect the asymptotic behavior of general solutions. Moreover, the Riemann problem
and its elementary wave interactions for an isentropic system in magnetogasdynamics
and shallow water equations were discussed by Raja Sekhar and Sharma [74-76] in the
presence of magnetic field, which make both the shock and the rarefaction stronger as
compared to the situation in the absence of a magnetic field. Chun Shen [77] proved
that the limiting solutions of the Riemann problem for isentropic magnetogasdynamic
equations converge to the corresponding solution of the transport equation in the ab-
sence of both pressure and magnetic field. Mathematicians and physicists continue to
have a great interest for the generalized Riemann problem which is basically an initial

value problem with non-constant initial data with a discontinuity at a ponit.

It is well known that a large number of physical processes are modeled by systems
of quasilinear partial differential equations, but no general methods are available for
solving such systems with arbitrary initial or/and boundary conditions [5,6,15-20]. In
this thesis, we account for the mathematical theory to generalized Riemann problem
using the theory of compatibility, which is followed by the basic definition of differen-
tial constraints, as explained by Yanenko [30]. In this direction, in 1988, LeFloch and
Raviart [56] considered the generalized Riemann problem for nonlinear hyperbolic sys-
tems of conservation laws and found the entropy solution in the form of an asymptotic
expansion in time to get an explicit method for the construction of the asymptotic
expansion, which is explained further through an application to gas dynamic equations
by Bourgeade et al. [57]. Using these approximate solutions Ben-Artzi, M. [11] solved
the generalized Riemann problem for reactive flows and further, Ben-Artzi, M. and Li,

J. [12] derived more precise numerical schemes.

Over the years (see [8]- [29]), a variety of mathematical methods, for example, sim-
ilarity transformation methods, perturbation methods, etc., leading to the derivation
of approximate solutions to quasilinear hyperbolic systems have been proposed. The
approach based on the use of differential constraints, proposed by Janenko [30] (see
also [31,32]), has been of considerable interest in recent years (see [33] - [45]). The
differential constraints equations play an important role in selecting classes of solutions
of the system under interest. Olver and Rosenau [21,22], Meleshko [26], Kaptsov [27],
Levi and Winternitz [28] show that almost all known reduction methods such as par-
tial invariance, separation of variables etc., could be summarized into a most general
framework of differential constraints. This general formulation requires that the system

under investigation must be appended by additional differential constraints, subject to



compatibility conditions. In 1994, Olver [23] accounted for the relationship between
the higher-order direct method of Galaktionov and the method of differential con-
straints. A new algebraic structure and special classes of determining equations and
higher-order differential constraints were introduced by Kaptsov [24]. Within such a
theoretical framework, a reduction procedure for the generalized simple wave solution
to the generalized Riemann problem with applications to nonlinear transmission lines,
constant Astigmatism equation, traffic flow model, ET6 model and ideal chromatog-
raphy were explored by Curré et al. [39,41,54,55,59,60]. Furthermore, the method
of differential constraints is also used to determine the exact solution of quasilinear
systems depending on various applications like p-systems with relaxation conditions
(Currd, and Manganaro [62]), for Chaplygin gas model (Kumar and Radha [61]), for
non-homogeneous shallow water equations (Sueet et al. [65]) and for the homogeneous
p-system (Manganaro et al. [66]). Recently Meleskho et al. [67] discussed the general-
ized simple wave solution for magnetic fluid using the differential constraints method
and also applied it to systems of equations written in Riemann invariants [68]. More-
over, Chaiyasena et al. [69] discussed generalized Riemann waves and their adjoinment

through a shock wave.

Recently, Shen and Sun [78] showed that when the pressure tends to zero for isen-
tropic gas dynamic equations, the solution for the Riemann problem, which is composed
of two shock waves, tends to a delta shock solution. Whereas the limiting solution for
the Riemann problem constituted by two rarefaction waves converges to a solution
made up of two contact discontinuities along with the vacuum state encompassed by
them when the adiabatic exponent tends to one. Also, they noticed an interesting phe-
nomenon that the internal states in two rarefaction wave fans are transformed gradu-
ally into the corresponding vacuum states under this limiting circumstance, which is
distinguished from the previously established result that a whole rarefaction wave is
concentrated into only one contact discontinuity. Moreover, Guo et al. [79] discussed
the limiting behavior of the solution to the Riemann problem to the generalized Chap-
lygin gas equations with a Coulomb-like friction term along with the formation of a
delta shock wave. Also, discussed the formation of delta shock waves and the vacuum

states as the pressure vanishes.

In recent decades, researchers have shown a growing interest in exploring the
interactions of elementary waves in hyperbolic systems of partial differential equa-
tions [9,80-82,84,86,87], owing to their extensive practical applications such as stabil-
ity of the Riemann solution with respect to small perturbations of the Riemann initial
data [83,88].



4 CHAPTER 1. INTRODUCTION

Luo, T. and Yang, T. [89] discussed the interaction of elementary waves for com-
pressible Euler equations with frictional damping. Raja Sekhar and Sharma, [90],
delved into the existence of a vacuum state and briefly discussed wave interactions
within the realm of isentropic magnetogasdynamics. Liu and Sun [86] carried out an
in-depth analysis of elementary wave interactions in ideal magnetogasdynamics using

the characteristic analysis methodology.

Based on the present literature review, we were motivated to investigate the gen-
eralized Riemann problem. Consequently, an algorithm was developed to determine a
class of non-trivial solutions for a given quasilinear hyperbolic system using differential
constraints through which the Riemann problem with non-constant initial data is fully

characterized with shock waves/characteristic shocks and/or rarefaction waves.

In the subsequent chapters of this thesis, we explore the generalized Riemann prob-
lem for a certain class of physical phenomenon modeled by a system of quasilinear hy-
perbolic partial differential equations and discuss the interaction of elementary waves

of the double Riemann problem.

e The second chapter is connected with the Riemann problem for non-constant

initial data for rate-type materials, which is described by the following equations

Ou_ 90 (1Y _,
ot oxr\v)

v N u 1
R - = — v
ot Ox ’
where u is the Lagrangian velocity of a particle and 1/v with v # 0, denotes the

stress in the material that is undergoing loading/unloading processes.

In this chapter, a class of solutions to the partial differential equations describ-
ing rate-type material are determined. Further, a family of generalized Riemann
problems for the system under consideration are solved completely, and the so-
lutions are characterized through shocks and/or rarefaction waves, the results of

which are summarized as follows:

The solution to the generalized Riemann problem for this system subject to the



initial data

(x +up,v), if x<O0,
($+UR7UR)7 if 33207

(u(x> 0)7 v(x, O)) = {

consists of

1. a 1-shock wave if and only if one of the following conditions hold:
VR — UL,
\/ULVR

(b.) up —ug + log (v—R) < 0, when vp < v, and ur, > ug.
L

(c.) vg <wvp and uy < ug.

(a.) up —ugr+ < 0, when vg > v and uy, < ug.

2. a 2-shock wave if and only if one of the following conditions hold:
(a.) up —ugr — log (U—R> < 0, when vg > v and uz, > ug.
VL
URr — VL

A/ULUR

(c.) vg > vp and uy < ug.

(b.) up —ug — < 0, when vg < v and uz, < ug.

3. a l-rarefaction wave if and only if one of the following conditions hold:
VR — Vg,
\/VLUR

(b.) uyp —ug + log (U—R) > 0, when vp < vp and ur, > ug.
(%

(c.) vg > vr and ug > ug.

(a.) up —ugr + > 0, when v > vy, and ur, < ug.

4. a 2-rarefaction wave if and only if one of the following conditions hold:

v
(a.) up —ugr — log (—R) > 0, when vg > v and uz, > ug.
vL

VR — UL

\/VLUR

(c.) vg <wvr and ug > up.

(b) Uy —URr —

> 0, when vg < vy, and uy, < ug.

e The third chapter deals with the generalized Riemann problem for the Chaplygin
gas equations given by

Pt + (pu)x =0,
(pu); + (pu® +p), = 0,
together with the equation of state given by p as a function of p alone such that

P (p) > 0, where p and u are, respectively, the density and velocity of the gas.
This system with the equation of state
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describes the dark matter and dark energy in the unified form through an exotic
background fluid proposed in [47-50] as a mathematical approximation to calcu-
late the lifting force on a wing of an airplane in aerodynamics. Also, it was a
prototype of the unified model [51,52] where dark energy and dark matter were
depicted by a single fluid, and Chaplygin cosmology provides an interesting pos-
sibility to account for current observations about the expansion of the universe.
It was also predicted by them that the cosmological constant would increase (or

that it was less in the past), and this could, in principle, be observed.

Further, the solution to the generalized Riemann problem for the Chaplygin gas

equations is characterized subject to the initial data

(pr(2), ve(2)), 220,

(o(,0), (,0)) =
’ (@) u@)), <0,

by one 1- or/and 2- Characteristic shock(s). Here p;, v, p, and v, are arbitrary

functions of x such that

vj(z) — %pm) = Copi(2),
) — Dy x) = x
(@) = @) = Cupela)

where, a = +1, = +1 and Cy, ' are arbitrary constants.

% Let the solution to the Riemann problem of these equations subject to the
given initial data be connected through only a 1-Characteristic shock. Then

1 1
v, — — = vg — — along with one of the following possibilities:

PL PR
1. a=1, g =1, and Cy, C are arbitrary constants.

2. a=1,=—1,C; =0 and Cj is an arbitrary constant.
3. a=—1,8=1,Cy=0 and (] is an arbitrary constant.
4. o = -1, = —1, C; = Cy and C) is an arbitrary constant.

% Let the solution of the Riemann problem of these equations subject to the

given initial data be connected through only a 2-Characteristic shock. Then



1
v, + — = vr + — along with one of the following cases:
PL PR
1. a=1,p8=1,C; =Cy and () is an arbitrary constant.
2. a=1,8=—1,Cy=0 and C] is an arbitrary constant.
3. a=—1,8=1,C; =0 and Cj is an arbitrary constant.
4. a = —1, f = —1, and Cy, C] are arbitrary constants.

¢ Let the solution of the Riemann problem of these equations subject to the
given initial data be connected through both 1- and 2- Characteristic shocks.
Then one of the following occurs:

a=1, =—1and Cy, C are arbitrary constants.

a=1,=1,C; =0and Cj is an arbitrary constant.

a=-—1,8=-1, Cy =0 and (] is an arbitrary constant.

Ll

a=—1, =1 and Cy = Cy where () is an arbitrary constant.

e The fourth chapter deals with the generalized Riemann problem for the system

of conservation laws describing gas dynamic equations given by

pr+ (pu)x =0,
(pu): + (pu® +p)o = pf,

where p, u, and p denote the density, the velocity, and the pressure of gases,

respectively, and the equation of state is given by

p(p) =Cp?, C = constant.

After determining the compatibility conditions using differential constraints equa-
tions and the governing system, different cases are considered, and solutions are
obtained for the Cauchy problem. In fact, solutions for the generalized Riemann
problem by generalized rarefaction waves and/or shock waves are obtained. For
v > —1, we completely characterize the Riemann problem for constant initial
data. Also, for v = 1, we completely characterize the Riemann problem for non-
constant initial data and the main results are stated as follows for the initial data

given by

(p(x,0), u(z,0))

(pr,ur), if x <0,
(pR7uR)a if X 2 07
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where pr, pr, ur and ug are constants.

% Let up > ug. If pp > pgr (respectively; pr < pgr), then a 1-shock wave
(respectively, a 2-shock wave) is a solution to the Riemann problem for this

system subject to the given initial conditions if and only if

(ur —ur) > |pr —PR|\/
PR PLpR

Let up, < ug. If pr, > pr (respectively; pr, < pgr), then a l-rarefaction wave

7
L X4

(respectively, a 2-rarefaction wave) is a solution to the Riemann problem for

this system subject to the given initial conditions if and only if

(ur, —ugr) < |pL — pR|
PL - PR pL/OR

% Let uy, > ug. If p, > pgr (respectively; p;, < pgr), then a l-shock wave
(respectively, a 2-shock wave) is a solution to the Riemann problem for this

system subject to the given initial conditions if and only if

E
pL’ — PR

(up —ug) > —

v—1

2¢/C

~y—1 =1
% Let — 1 (pL2 —i—pR ) < (up —ugr) < 0. If pp > pr (respectively;
/y_

pr < pr), then a l-rarefaction wave (respectively, a 2-rarefaction wave) is a

<,

solution to the Riemann problem for this system subject to the given initial

conditions if and only if

y=1
— PR

(up, —up) < ————

e In Chapter 5, the interaction of elementary waves of the double Riemann problem
for the system considered in Chapter 2 is investigated subject to the perturbed

initial data with two discontinuities as follows

(x +ug,vy), if z<0,
(u(z,0),v(x,0)) =< (z+up,vn), if 0<ax <,

(x +ugr,vg), if zo<u,



where ur, ugr, uy, up, vy, and vy are given constants but arbitrary.

The solution to the double Riemann problem is ultimately given through only
a 1-shock wave and only a 2-rarefaction wave, when u; < wuy < ugr and the

constants vy, vy, and vy satisfy the following conditions:

Vp — Vg VR — Upm U — VR
< + + > 0, when vg < vy < vr.

V(vrva) v/ (vron)  /(vRvL)

Similarly, the solution to the double Riemann problem is ultimately given through

a 1-shock wave and a 2-shock wave when u;, < uj; < up and when the constants

v, vy and vg satisfy the following conditions:

VUV, — Umpm VR — Unp VUV, — UR Vv — Vg, Uym — UR

\/(ULUM) i \/(URUM) - \/(URUL) - \/(ULUM) \/(URUM),

when vgp < vy, v < V.

D

Similarly, the solution to the double Riemann problem is ultimately given through
a l-rarefaction wave and a 2-shock wave when u; < uj; < ug, and the constants

v, vy and vg satisfy the following conditions:
VU, — Upm Uyv — UR VR — Uy,

vV (vLvar) " v (UarvR) i (vorvr)

Today, the generalized Riemann problem remains an active area of research, with

0.
o

> 0, when v, < vy < Vg.

researchers continuing to explore new ways to generalize classical Riemann solutions.
Moreover, for the development of more accurate and efficient numerical methods for
solving a quasi-linear hyperbolic system of partial differential equations, it is essen-
tial to study the generalized Riemann problem. As we know, quasi-linear hyperbolic
systems come into the picture when we try to formulate mathematically natural phe-

nomena such as aerospace engineering, climate modeling, and computational finance.

Overall, the generalized Riemann problem is a fascinating and important problem
in the field of quasi-linear hyperbolic partial differential equations, with many practical
applications and theoretical challenges. As computational power and numerical meth-
ods continue to advance, the generalized Riemann problem will play an increasingly

important role in the study of complex systems in physics, engineering, and beyond.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Riemann problem for rate-type
materials with nonconstant initial

conditions

2.1 Introduction

It is well known that a large number of physical processes are modeled by systems of
quasilinear partial differential equations, but no general methods are available for solv-
ing such systems with arbitrary initial or/and boundary conditions ( [5-7]). A variety of
mathematical methods for finding exact solutions to such systems have been proposed
over the years (see [8]- [29]). The approach based on the use of differential constraints,
proposed by Janenko [30] (see also [31] - [32]), has been of considerable interest in
recent years (see [33] - [45]). Based on Lie symmetry analysis, an approximate rar-
efaction wave-type solution to the Riemann problem with non-classical discontinuous
initial data for a system of balance laws describing rate-type materials was presented
in [29]; here, the initial data for the variable u are discontinuous whereas the initial
data for the variable v are constants. A class of solutions to the partial differential
equations, describing rate-type material, was obtained in [29] to solve a generalized
Riemann problem through a rarefaction wave. In this chapter, an attempt is made
to solve a family of generalized Riemann problems for the system under consideration
and to completely characterize solutions that connect the initial data to regions either

through shocks or rarefaction waves.

11
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2.2 Compatibility conditions for Differential Invari-

ants

In this section, compatibility conditions for differential invariants are derived so that the
given system of partial differential equations are solved along a family of characteristic

curves. For this, we consider the following hyperbolic system

8?}]‘ 8Uk

o Tk, =bi Bk=12--.mn, (2.2.1)

where the matrices (a;;) and (b;) may be functions of z, ¢, and the unknowns vy, vs,
.-+, v,. Let A be the real eigenvalues of (ajx) and R the corresponding eigenvectors;
here and through out this section, summation from 1 to n over a repeated subscript is

automatic unless stated otherwise. The system (2.2.1) can be written as

ov; SOV i
L+ Ama_xa +q” =0, (2.2.2)
where
) _ (g — A5 )P0 2.2.3
q; (ayk kJ) o 55 (2.2.3)

with 0x; = 0 for k # j and dy; = 1 for k = j.If q"¥ can be determined as functions of ,
t and vy, vg, - - -, v, such that the system (2.2.3) is consistent, then the system (2.2.2)

can be solved along the characteristic family d—a; =\,

Since the matrix (ajk — )\(i)5kj) is of rank n — 1, the system (2.2.3) is said to be
consistent if the corresponding augmented matrix is also of rank n — 1. Thus, if the

v
system (2.2.3) is consistent then the derivatives —- can be expressed in the form

ox

ov i ava i
o = RS+ Q) (2.2.4)

for some a € {1,2,--- ,n} with RY =1, where Rl(f) is the kth component of eigenvector

R, v, is the ath component of v, and Q) satisfy

QY =0 and ¢ = (az — A6,,) QY — ;. (225)
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g (0v; :
The equations (2.2.1) and (2.2.3) are said to be compatible if pp 8—2; , obtained by
T
o (0v; ) )
differentiating the equation (2.2.1) with respect to z, and T _8U , obtained by differ-
z
0 [ Ov; 0 [ Ov;
tiating th tion (2.2.4) with t tot, 1 L) == .
entiating the equation ( ) with respect to ¢, are equal, i.e., ( 5 ) 5 (ax ),

which leads to the conditions for determining Q¥; these conditions are known as com-

patibility conditions.

In view of (2.2.4), equation(2.2.1) can be written as

ov; i 0va i
—L +ay, (R,i) o+ Q,ﬁ)) —b;. (2.2.6)

Thus, equation (2.2.2) can be solved along a family of characteristics, which in turn
gives a class of solutions to the equation (2.2.1). In order to achieve this objective, we

differentiate (2.2.6) with respect to z to obtain

0%v; | Oaje (L0 | i)\ ( pi) OV
020t o, (Rf%J“ f)( +Qk)

8 o Oa; NN
+aRY anQ + aj’“( ) Za +Qk>
ORY Ove
gk ox 855
ORY Ova | ava
gk < vy 8:15 811@ ) o QZ )
c%j 8()] ava (%)
= — 4+ — ) 2.2.
Ox * vy, <Rk Ox +Qk ) (22.7)

Here and throughout this section, a and ¢ are fixed and these indices are not to

be summed. Similarly, differentiating the equation (2.2.4) with respect to ¢ and then
2

07V, . . . .
substituting % from (2.2.7) for j = «, we obtain the following system on using

Oxot
(2.2.6):
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2,  ORY OR! Q! 4 <
0%v; _ J ava+( J ava+ QJ (bk_akfRél)%_a’ngZ))

OxOt ot Ox ov, Ox oy, ox
Q“ @) 0ba )0 (L6 OVa | G)
+— Bt + R; B + R; 8 (R B + Q) )

i 5’aa a'l}a i a'Ua
~RY aw’“ ( ; +Qf ) (R( + QY )

()
B (1) Ok % 50 aRk OV, 8@
R 5 (R o +Qk> B, “‘“’“( or 0r | o

(@) ()
_ p) (9Rk c%a an (%)
i aak< Ovy Ox + O, Qe

32va
kg2

~RVaq Ry (2.2.8)

Equations (2.2.7) and (2.2.8) imply that

aoz ~i82a o (2 aa 2
70 4 0% 02 +5J<,>(L) _o (2.2.9)

where

i 0Q}" 0y 0QY . ob,
Tj() = ( j><bk_akéQé)>+ 2 4—+R —Qk)

(%k (‘% 6
z 8alakj aaak 7 8@ )
) Qg )Qk ] ) Qk ( )aak —8;
i ('3@ da i da i 8@
_Rg') k Q€ JkQZ)Qk Jka)+ aji ak
0Q iy 9b; b
+ajk v, @ or  Oug @
7Y = aRY —auRVRY,
(i) .)(9 <aij,(:)) , 0 (aakR](;)> ORW
50 = g AT g go e
J ¢ 8’0@ J c%g ¢ 8Uk ’
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ORY RV

S = — t 3, o (bk — apQY ) — a;g areRy + R gsz“
R %a_;; (ROQ0 + Q" RY) ~ B 3gak RY — R4, 355)
_Rg'i)aak (aRk Q'+ a(%(f) Réi)> + agék RY + aj 855)
+%af’“ (BOQY + QP RY) + aj <8R’(j QY + 6’% R )

i

for j = 1ton foreachi € {1,2,--- ,n}. It may be noticed that aakR,(:) = AORY = \®
and aij,(f) = /\(i)Rgi), which lead to TJ@ = 0 and 5’](’) = 0. Thus, the system (2.2.9)

becomes

i) 8va

0 4 g a _
Ty + 87—+ =0, (2.2.10)

where j = 1 to n for each i € {1,2,--- ,n}. Observe that T\ =0 and S = 0. In the
following section, we use this methodology to a system of conservation laws describing

rate-type materials.

2.3 Solutions to the Cauchy problem

We consider the following system of balance laws describing rate-type materials ( [30]-
[32])

ou 0 1
ov  Ou
E + % =1- v, (2.3.2)

where u is the Lagrangian velocity and 1/v with v # 0 denotes the stress in the mate-

rial that is undergoing loading/unloading processes.

The eigenvalues AV, i = 1,2 represent the characteristic speeds of the system (2.3.1)
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and the corresponding right eigenvectors R®, are given by

As the system (2.3.1) is strictly hyperbolic and genuinely nonlinear (since R®-VA® #£ 0

for i = 1,2) for any smooth initial data:

u(z,0) = ug(x), v(z,0)=1vy(x), (2.3.3)

there exits a unique solution of the Cauchy problem (2.3.1), (2.3.3) involving either a
rarefaction wave or a shock wave depending on whether A®) is monotonically increasing

or decreasing as (u,v) vary along an integral curve of the vector field R®.

ou 10
In view of (2.2.4), we have Fr Ql 8U and so, equations (2.3.1) can be written
x v
as
du le) dv (1)
du _ W, 2.3.4
dt vt V@ (2.3.4)
o 0 (1) 0 . (1) - . . .
where — = — 4+ A" —; and @3’ is a function of z, ¢, v and v, which is to be
x
determined from the equation (2.2.10), i.e
g, (2.3.5)
1 1 ax )

here T ) and S are given by

(1) (1) (1)
Tl(l) _ 1 <3Q1 —I—Uan 4 Q(1) 8Q1 1o (1 oy an) 0Q; ) ,

v\ Or ot ov
s L[ gm_ 362(1) Q(l)
! v2 ! ou v |
0 10
Similarly, when au_ Qf + ——U, equations (2.3.1) can be written as
ox v Ox
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du 52) dv (2)
B e T 2.3.6
_ 0 (2) 0 2) . . N .
where i §+)\ 92 and ()7 is a function of z, ¢, v and v, which is to be determined
x

from the equation (2.2.10), i.e.,

0
T + 5P = 0; (2.3.7)

here T 1(2) and S?) are given by

v oz ot ou ov
(2) (2)
QY _, 09 ) |

1[0 (2) o (2) o (2) o (2)
T1(2):——< Q1 . Q4 Lo Q1 —v(l—v—Q@) Q4 ,

1
(2 _ (2)

ou v

It may be noticed that (2.3.5) and (2.3.7) admit the cases Tl(i) = 0 and SY) = 0 for
1 = 1,2. For the case ¢ = 1, the equation Sfl) = 0 implies that

QY =1+ e"2p(a,t,€), (2.3.8)

where £ = u +logv and ¢ is an arbitrary function of z, ¢ and £. In view of (2.3.8), the

equation Tl(l) = 0 implies that

__—u/22:
ot o¢ e =0,

Jdp 0o 1 o= Jdp 0o 1
2

which leads to ¢ = 0, i.e., le) = 1. Similarly, with the assumption that T1(2) = S£2) =0,

we have Qf) = 1. Thus, on solving (2.3.4) and (2.3.6), equations (2.3.1) admit the

following solutions, which recovers the solution obtained in [45] that follows a different

line of approach:
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() = up(€) + 0 (et — 1) | (2.3.9)

Here, £(x,t) denotes the unique point on the x-axis, which lies on the characteristic
through (z,t) and is given by (2.3.9)3. For § = F1, the above equations (2.3.9) give two
solutions of the system (2.3.1) and (2.3.3), one for each characteristic family; indeed,

the above solutions are characterized by the differential constraints:

dug(z) 6 dug
L " awdth (2.3.10)

Observe that, for a given x and ¢, the equations (2.3.9); and (2.3.9); admit unique
values for v and u provided there exists a unique £ satisfying (2.3.9)3; in other words,
the existence of a unique solution is guaranteed for every x in (—oo, 00) and for every
t > 0 provided that

et -1 dUO
5 ((vo(f))2) &L (2.3.11)

2.4 Shocks and rarefaction waves

There are two distinct families of discontinuous solutions of (2.3.1), (2.3.3), referred
to as 1-shocks (or back shocks) and 2-shocks (or front shocks). Similarly, there are
two families of continuous solutions of (2.3.1), (2.3.3), referred to as rarefaction waves

corresponding to either characteristic family AV or A,

Let x = X (t) be a curve representing a discontinuity across which the flow variables u

and v are discontinuous and let ¢ = o be the speed of propagation of the disconti-

nuity. Then R-H conditions for the system (2.3.1) are
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where uy(t) = lim  w(z,t), u.(t) = lim w(z,t),v(t) = lm ov(z,t), andv.(t) =

=X (t)~ =X ()T z—X(t)~
lim o(z,t). Equations (2.4.1) imply that
z—X(t)*
1
o=t——7 75, w=u+o (vg — v,) . (2.4.2)
(v,ve)

If the admitted discontinuity x = S;(t) is a consequence of the intersection of charac-

teristics belonging to the family d—f = ——, satisfying
v

1 1
——>0>——, (2.4.3)
Uy Uy

then the discontinuity x = S1(t) is called a 1-shock or a back shock; the inequality
(2.4.3) shows that ¢ < 0 and therefore, for a 1-shock, we have

(2.4.4)
with ve(t) > v,(t) and ue(t) < u,(t).

Similarly, if the admitted discontinuity @ = S5(t) is a consequence of the intersection

d 1
of characteristics belonging to the family d—f = —, satisfying
v

—>0>—, (2.4.5)
Vy Uy

then the discontinuity z = Ss(t) is called a 2-shock or a front shock satisfying o > 0
with

(2.4.6)
with vy < v, and uy, < u,.

We now turn to the rarefaction wave solutions of (2.3.1), (2.3.3) which are con-
tinuous solutions corresponding to the eigen modes AV and \?, referred to as 1-

rarefaction wave and 2-rarefaction waves, respectively. Let uy = lim wug(x), v, =
z—0~
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lim vo(z), wr = lim wy(z), vg = lim wvo(x) such that the initial step function is
z—0— z—0t z—0t

expansive with vy, < vg. Let x = Ry(t) and x = Ry(t) be the curves that pass through
(0,0) such that R;(t) < Ry(t) for all t > 0 with R;(t) and Rs(t) satisfying

dr, -1
dt — v(Ry(t),t)’
R (2.4.7)
dt — v(Ry(t),t)
1—e¢ 1—e
In view of (2.3.9), equations (2.4.7) lead to R;(t) = (1-e ), Ro(t) = (1—e ) Since,
v

v, < vg, we have v(R;(t),t) < v(Rz(t),t); a continuously varying solution in the region
Ry(t) < & < Ry(t), which is continuous across the curves x = R;(t) and x = Rs(t),
referred to as 1-rarefaction wave, can be obtained from (2.3.9) as follows. Since all the
values of u (respectively, v) between uy and ug (respectively, vy, and vg) are taken on

characteristics in a fan through origin, where £ = 0, the solution in the fan, bounded

1—e 1—e
by the characteristics © = Ry (t) = (1=¢) and x = Ry(t) = (1=¢) is given by
vr, UR
v(x,t) =ze”", if  Ri(t) <z < Rot),
t—1
u(z,t) =¢— (e . ) , it Ri(t) <z < Ro(t), (2.4.8)

where R;(t) < x < Ra(t), vp < z < vg, and uy, < { < ug. Here, the characteristics are

emanating from the origin and given by
dx 1 e — —
— = —— = —— whose speeds are varying from — to —. Differentiating the
dt v z vy, UR

equations (2.4.8) with respect to x and ¢ and substituting in (2.3.1) we get

ot ot —1 0,
¢ 1

The system (2.4.9), subject to the condition ( = uy, when x = R, (t), yields the unique

solution given by ( = uy, + log i

t>. Thus, the solution for 1-rarefaction wave is
—e

given by
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vo(§)e™, if r < Ry(t),
v(z,t) = (e x_ 1) . if Ry(t) < < Ra(t), (2.4.10)
L vg(é)e_t, if xr Z R2<t>,
( el —1 ,
uo(€) — (Uo(f > , if x < Ry(t),
u(z,t) = ug + log fijl’et +ax, if Ri(t) <z < Ry(t), (2.4.11)
uo(€) — (%) L @ Ry(t),

with ug = ur + log (Z—L), Ry(t) = , Ro(t) = —¢) and v(Ry(t),t) <
v(Ro(t),1).

Similarly, let © = R3(t) and x = Ry4(t) be the curves that pass through (0,0) such
that R3(t) < R4(t) for all ¢ > 0 then

dR; 1

dt — v(Rs(t),t)’

iR, . (2.4.12)
dt — v(Ry(t),t)’

which implies that v(Rs(t),t) > v(R4(t),t) since vy, > vg and R3(t) < Ry(t) for all
t > 0. A continuously varying solution in the region R3(t) < x < Ry4(t), which is
continuous across the curves @ = R3(t) and x = Ry(t), referred to as a 2-rarefaction

wave, can be obtained in a similar manner, and is given by
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(

vg(é)e:tt, if x < Rs(t),
v(z,t) = (1 _xe ) ,if Ry(t) < x < Ry(t), (2.4.13)
vo(§)e™t, if x > Ry(t),

[ o)+ (et _ 1) . if oz < Ry(),

vo(§)
u(z,t) =< ug — log lxi}it +ax, if R3(t) <z < Ry(t), (2.4.14)
(€) + (et_l) if > Ry(t)
u — i T
\ 0 Uo(f) ’ - 1y )
B et —1 dug 1 dv,
x_§+(vo(§)>7 %_1+Uod9€
t—1 t—1
with u, = up — log (Z—R) Ry(t) = (ev ) Rt) = (ev and v(Rs(t),t) >
L L R

v(R4(t),1).

The above results can be summarized as:

e Across a 1-shock wave, we have v,(t) > v, (t) and uy(t) < u,(t), where (ug(t), ve(t))
and (u,(t),v,(t)) are the limiting values of (u,v) as the discontinuity z = S;(¢)

is approached from left and right, respectively.

e Across a 2-shock wave, we have v,(t) < v,(t) and uy(t) < u,(t), where (ug(t), ve(t))
and (u,(t),v,(t)) are the limiting values of (u,v) as the discontinuity = = Sy(t)
is approached from left and right, respectively.

e Across a l-rarefaction wave, we have v,(t) < v.(t) and we(t) > wu,(t), where
ve(t) = v(R1(t), 1), we(t) = u(Ry(t),t), v.(t) = v(Ra(t),t) and u,(t) = u(Rs(t),t).

e Across a 2-rarefaction wave, we have vy(t) > wv,.(t) and ue(t) > wu,(t), where
ve(t) = v(R3(t), 1), ue(t)) = u(Rs(t), t), v.(t) = v(R4(t), t) and u,(t) = u(Ry(t),1).

Based on solutions (2.4.10), (2.4.11), (2.4.13) and (2.4.14), we solve a Riemann

problem with non-constant and smooth initial data, in the next section.
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2.5 Riemann problem with non-constant initial state

Consider the initial profile

(x +ug,vy), if =<0,
u(x,0),v(x,0)) = (up(z),vo()) = 2.5.1
(u(z,0), 0(2,0)) = (uo(e), o(a) { D SRR LR
where ur, ug, vy, and vg are constants.
If 1-wave is a shock wave then
it < St
ooty = 4 e eSS, (2.5.2)
ve”t, if x> Si(t),
if < Si(t
w(w )y = 4 o AL s S0, (2.5.3)
a4z, if x> S5(1t),
ds t 1—¢
where — = —e—~, which yields on integration that S,(t) = ( e~) . In view of
dt Vo) (vL0)
(2.4.4)9 we have 4 = up, — Q, 0 <wvp and u > ug.
Vv (vrv)
Similarly, if 2-wave is a shock wave then
oA x> Sy(t
v(z,t) = ljRe ’ 1 v 2 55(0), (2.5.4)
ve ™t if x < Sa(t),
if x> Sy(t
w( ) = 4 Ur T A= 50, (2.5.5)
u+x, if x < Sy(t),
ds. t F—1
where 22 = —° which yields on integration that Ss(t) = (e ) . In view of

dt A/ (’UR'IA} ’ UR/{]

(2.4.6)2 we have 4 = ug + L

R .1 « -
with 0 < vg and u > ug.

~

VRV

If 1-wave is a rarefaction wave then
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vre if r < Ry(t),
v(z,t) = (e_;_ 1) AP Ri(f) < @ < Ralt), (2.5.6)
\ ve !, if x> Ro(t),
( up + x, if r < Ry(t),
u(z,t) = ¢ up +log (lxi)LeJ +x, if Ri(t) <x < Ry(t), (2.5.7)
\ i+, if x> Re(t),

v (1 —e")

_ (1—¢e") N
where @ = ur, + log <7>, Ry(t) = , Ro(t) = and ¥ > vy,

VL, (%

Similarly, if 2-wave is a rarefaction wave then

ve !, if xr < Rs(t),
1— —t
vz, t) = ( xe ) L if Ry(t) <z < Ra(t), (2.5.8)
—t .
( i+ z, if x < Rs(t),
u(z,t) = ¢ ugr —log (etxiRl) +a, if Rs(t) <x < Ry(t), (2.5.9)
| ur+1,, if x> Ry(t),
-1 -1
where 4 = ugr — log (UAR), R3(t) = (e - ), Ry(t) = (e ) and 0 > vg. Here, ¥ and
0 0 UR

¥ are arbitrary constants.

Let A and C' be the quantities defined by
A=wup —ugr, C=log(vg/vr). (2.5.10)
Then, to continue our development, it is useful to state the following Lemmas:

Lemma 2.5.1. Let A and C be defined as in (2.5.10). If the solution to the Riemann
problem for the system (2.5.1), with initial conditions (2.5.1), consists of 1-shock wave
and 2-shock wave then A+ 2sinh(|C|/2) < 0 and A < 0.

Proof. Given that 1-wave is a shock wave, z = S1(t), implies that @ > uy and v < vy;

similarly, if 2-wave is a shock wave, z = Sy(t), then 4 < ug and © < vg. In the region,
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S1(t) < & < Sy(t) the solution given in the equations (2.5.2) and (2.5.3), through 1-
shock, and the solutions (2.5.4) and (2.5.5), through 2-shock, should coincide; that is

0 =10=z(say), u =1, i.e., A=up —up <0 and f1(z) =0 where

Z — Uy Z — UR
(ULZ)(1/2) N (URZ)(l/Q)’

fi(z) =up —ugr —

for 0 < z < min {vy,vgr}. Observe that liII(l) fi(z) = oo and
Z—

%__ z+uv,  zZHuR <0
dz 2z+/(vpz)  224/(vRrz) ’

implying thereby that f; is decreasing.

e Let vy < wg,ie., C >0. Since 0 < z < min {vy,vg}, ie.,0 <z <wvg, fi =0 has

a solution if fi(vy) < 0, where

vy — v .
fi(vr) :uL—uR—W = A+ 2sinh(C/2). (2.5.11)
RUL
e Similarly, let vg < vg, i.e., C' < 0 then f; = 0 has a solution if fi(vg) < 0, where
UR — UL .
fl(UR) = U, —UR — ———— 7757 :A—QSIHh(C/Q) (2512)

(URUL)(l/Q)

Thus, in view of (2.5.11) and (2.5.12), if A < 0 then the solution exists for fi(z) =0
only when A + 2sinh(|C|/2) < 0.

This situation is depicted in Figure 2.1. Further, when vg = vy, ie., C = 0, it

UR—UL)2 UR — uy,

follows from fi(z) = 0 that z = v, (\/< 1

the result obtained in [29] for v, = vg = vy, ur = U, ur, = uy and z = vy,. O

+1-

> which recovers

Lemma 2.5.2. Let A and C be defined as in (2.5.10). If the solution to the Riemann
problem for the system (2.5.1), with initial conditions (2.5.1), consists of 1-shock wave

and 2-rarefaction wave, then either of the following inequalities holds

(i.) A <0, C <0 and A—2sinh(C/2) > 0.
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(ii.) A>0,C <0 and A+ C <0.

Proof. Let 1-wave be a shock wave and 2-wave be a rarefaction wave. This implies
that @ > ug, © < vy and © > vg. In view of (2.5.2), (2.5.3), (2.5.8) and (2.5.9), it
follows that the solutions given by (2.5.2)-(2.5.3) and (2.5.8)-(2.5.9) should coincide in
the region S)(t) < < Rs(t); this means that o = v = z(say), i.e., vg < z < vy, and
fa(2) = 0 where

Z — vy VR
fQ(Z) = Uy, —UR — Tz) +10g (;) s

for vg < z < wy. Observe from the equation

dfg . zZ + vy, 1

dz  22\/(vpz) 2

Y

that fy is decreasing. Since, vg < vy, i.e., C' < 0, the equation f; = 0 has a solution

only when fy(vg) > 0 and fo(vr) <0, i.e.,

fa(vr) < 0= uy —ug + log (Z—R) <0, (2.5.13)
L
VR — U,

fo(vr) > 0= up —up — > 0. (2.5.14)

(vLur)

Since vy < vr, and if uy, > up then (2.5.14) always holds. Thus, a solution for fy(2) =0
over [vg, vy is possible if (2.5.13) holds, i.e.,

A—l—C:uL—uR—l—log(v—R) < 0.

(%
Hence, A >0, C <0and A+ C <0.
Further, since vg < vg, and if u;, < ug then the equation (2.5.13) always holds.

Thus, the number of solutions for fo(z) = 0 over [vg,vy] is possible only if (2.5.14)
holds, i.e.,

IRTUL 4 9sin(C)2) > 0.

Uy, —Ur — —(ULUR)
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Hence, A < 0, C' < 0 and A — 2sinh(C/2) > 0. This situation is depicted in Figure
2.2. O]

Lemma 2.5.3. Let A and C be defined as in (2.5.10). If the solution to the Riemann
problem for the system (2.53.1), with initial conditions (2.5.1), consists of 1-rarefaction

wave and 2-shock wave then either of the following inequalities holds
(i.) A< 0, C >0 and A+ 2sinh(C/2) > 0.
(i.) A>0,C>0and A—C <0.

Proof. Given that 1-wave is a rarefaction wave implies that © > vy ; similarly if the 2-
wave is a shock wave then @ < ug and v < vg. In view of the equations (2.5.4)-(2.5.7),
the solutions given by the equations (2.5.4)-(2.5.5) and (2.5.6)-(2.5.7) should coincide
in the region Ry(t) < x < Sy(t), i.e., 0 = 0 = z(say), & = @, i.e., v, < vg, C' < 0 and
f3(2) = 0 where

(%

f3(2) = up —ug + log (?> _ "R

(vr2)

Y

for v;, < z < vg. Observe from the above equation that

dfg Z+ VR 1

dz  22/(vgz) =

implying thereby that f3 is decreasing. Since C' < 0, the equation f3 = 0 has a solution
only when f3(vy) > 0 and f3(vg) <0, i.e.,

U — VR

fs(vr) > 0= up —up — >0, (2.5.15)
(vrvR)
fs(vr) < 0= up —ug + log <U—L> <0, (2.5.16)
UR

If up, > ug and vy, < vg then A > 0, C' < 0 and the equation (2.5.15) is always true.
Thus, the solution for f3(z) = 0 over [vg,vg] exits only when the equation (2.5.16) is

true, i.e.,

ur, — ug + log (Z—L) =A-C<0. (2.5.17)
R
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Thus, A >0,C >0and A—C < 0.

Further, if v < vg and uy, < ug then C' < 0, A > 0 and the equation (2.5.16) is
always true. Thus, the solution for f3(z) = 0 over [vy, vg| exits only when the equation
(2.5.15) is true, i.e.,

VL — UR

T e

implying thereby that A < 0, C' > 0 and A 4 2sinh(C/2) > 0.
This situation is depicted in Figure 2.3. [

= A+ 2sinh(C/2) > 0, (2.5.18)

Lemma 2.5.4. Let A and C be defined as in (2.5.10). If the solution to the Riemann
problem for the system (2.5.1), with initial conditions (2.5.1), consists of 1-rarefaction
wave and 2-rarefaction wave then A >0 and A — |C| > 0.

Proof. Let 1-wave and 2-wave be both rarefaction waves. In view of (2.5.6)-(2.5.9),
the solutions given in the equations (2.5.6)-(2.5.7) and (2.5.8)-(2.5.9) should coincide
in the region, Ry(t) < x < R3(t), i.e., v = 0 = z(say) and f4(z) = 0 where

fa(2) = up —ug + log (%) + log <U?R) ,

with max{vy,vg} < 2z < co. Observe from the above equation that

dfy 2
dz 2’
showing thereby fy is decreasing. Observe that lim f;(z) = —c0.
Z— 0

If vy, < wg, C' >0, then f; = 0 has a solution provided fy(vg) > 0, i.e.,

ur, — ug + log (z—L) =A-C>0. (2.5.19)
R

Since C' > 0 and A — C > 0 we have A > 0.
Similarly, if vg < vy, then f; = 0 has a solution if fy(vz) > 0, i.e.,

ur, — ug + log (Z—R) =A+C>0. (2.5.20)
L



2.5. RIEMANN PROBLEM WITH NON-CONSTANT INITIAL STATE 29

Since C < 0and A+ C > 0 we have A > 0.

Also observe that when vy, > vg (respectively, vg > vy) and ug > uy, then equation
(2.5.19) (respectively, equation (2.5.20)) does not hold. This situation is depicted in
Figure 2.4.

Further, when vg = vy, i.e., C = 0 from the equation f4(z) = 0 yields z = vpe 2

which on replacing vy, = vg = vg, ugr = u,, ur, = uy and z = V,,, recovers the result in
the equation (37) of Ref. [29] . O

Lemma 2.5.5. Let A and C be defined as in (2.5.10). If the solution to the Rie-
mann problem for the system (2.3.1), with initial conditions (2.5.1), consists of only
1-rarefaction wave (respectively, 2-rarefaction wave) then A >0, C >0 and A—C =0
(respectively, A >0, C <0 and A+C =0).

Proof. Let the solution be given through 1-wave as a rarefaction wave only, then in

view of (2.5.6) — (2.5.7), we have © > vy, 0 = vg and & = ug, i.e., uy +log )~ UR,
UR

which implies that A — C' = 0. Similarly, when solution is given through 2-rarefaction

wave, it can be easily shown that A 4+ C = 0. m

Lemma 2.5.6. Let A and C be defined as in (2.5.10). If the solution to the Rie-
mann problem for the system (2.53.1), with initial conditions (2.5.1), consists of only
1-shock wave (respectively, 2-shock wave) then A <0, C'< 0 and A — 2sinh(C/2) =0
(respectively, A < 0, C' >0 and A+ 2sinh(C/2) =0).

Proof. Let solution be given through 1-wave as a shock wave only, then in view of
VR — Uy,

A/UVL VR

implies A — 2sinh(C'/2) = 0. Similarly, when solution is given through 2-wave as a
shock wave, it can be proved that A — C' = 0. O

(2.5.2) — (2.5.3), we have v < vp, = vg and U = ug, i.e., up — = up which

We next give the following two theorems, which in fact, complete our discussion re-
lating to the complete characterization of the solution of the Riemann problem under

consideration.

Theorem 2.5.1. Let A and C be defined as in (2.5.10). Consider the solution to
the Riemann problem for the system (2.3.1), with initial conditions (2.5.1). Then 1-

rarefaction wave (respectively, 1-shock wave) is a solution to the Riemann problem if
and only if A+ max(2sinh(C/2),C) > 0 (respectively, A+ max(2sinh(C/2),C) < 0).

Proof. Observe that if C' > 0 (respectively; C' < 0) then min(C,2sinh(C/2)) = C
(respectively; min(C, 2sinh(C/2)) = 2sinh(C/2)).
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Let the 1-wave be a rarefaction wave. Then, from Lemmas 2.5.3, 2.5.4 and 2.5.5, we

have
1. A<0,C >0, A+ 2sinh(C/2) > 0 = A+ max(C,2sinh(C/2)) > 0.
2.A>0,C<0,A+C >0= A+ max(C,2sinh(C/2)) > 0.
3. A>0,C>0= A+ C >0and A+ 2sinh(C/2) > 0.

Thus, if the 1-wave is a rarefaction wave then A + max(C,2sinh(C/2)) > 0.

Let the 1-wave be a shock wave then from Lemmas 2.5.1, 2.5.2 and 2.5.6 we have
1. A<0,C >0, A+2sinh(C/2) <0 = A+ max(C,2sinh(C/2)) < 0.
2.A>0,C<0,A+C < 0= A+ max(C,2sinh(C/2)) < 0.
3. A<0,C<0=A+C <0and A+ max(C,2sinh(C/2)) < 0.
Thus, if the 1-wave is a shock wave then A + max(C,2sinh(C/2)) < 0.
To prove the converse, let A + max(2sinh(C/2),C) > 0, then we have one of the
following possibilities
e A>0,C>0.
e A>0,C<0,A+C>0.
e A<0,C >0, A+ 2sinh(C/2) > 0,
which lead us to conclude that the 1-wave cannot be a shock wave as the above in-
equalities are contradicting the consequences of lemmas 2.5.1, 2.5.2 and 2.5.6 . Hence,
the 1-wave is a rarefaction wave.
Now, let A 4+ max(2sinh(C/2),C) < 0, then we have one of the following possibilities
e A<0,C<O.
e A>0,C<0,A+C<0.

e A<0,C >0, A+ 2sinh(C/2) <0,

which imply that the 1-wave is not a rarefaction wave as the above inequalities are
contradicting the consequences of lemmas 2.5.3, 2.5.4 and 2.5.5. Hence, the 1-wave is

a shock wave. O
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Theorem 2.5.2. Let A and C be defined as in (2.5.10). Consider the solution to
the Riemann problem for the system (2.3.1), with initial conditions (2.5.1). Then, 2-

rarefaction wave (respectively, 2-shock wave) is a solution to the Riemann problem if

and only if A — min(2sinh(C/2),C) > 0 (respectively, A — min(2sinh(C/2),C) < 0).
Proof. Observe that if C' > 0 (respectively; C' < 0) then min(C,2sinh(C/2)) = C
(respectively; min(C, 2sinh(C'/2)) = 2sinh(C/2)).

Let 2-wave be a rarefaction wave then from Lemmas 2.5.2, 2.5.4 and 2.5.5 we have

1. A>0,C<0=A—-C>0and A—2sinh(C/2) > 0.
2.A>0,C>0,A—-C>0= A—min(C,2sinh(C/2)) > 0.
3. A<0,C <0, A—2sinh(C/2) > 0= A — min(C,2sinh(C/2)) > 0.

Thus, if 2-wave is a rarefaction wave then A — min(C,2sinh(C/2)) > 0. However, if

the 2-wave is a shock wave then from Lemmas 2.5.1, 2.5.3 and 2.5.6 we have

1. A<0,C>0= A—C < 0and A—2sinh(C/2) < 0.
2.A>0,C>0,A—-C < 0= A—min(C,2sinh(C/2) < 0.
3. A<0,C <0, A—2sinh(C/2) < 0= A —min(C,2sinh(C/2)) < 0.

Thus, if 2-wave is a shock wave then A — min(C,2sinh(C/2) < 0.

To prove the converse, let A — min(2sinh(C/2),C) > 0, then we have one of the

following possibilities
e A>0,C<0.
e A>0,C>0,A-C>0.

e A<0,C <0, A—2sinh(C/2) > 0.

Assume that 2-wave is a shock wave, then the above inequalities are contradicting
the consequences of lemmas 2.5.1, 2.5.3 and 2.5.6. Hence, the 2-wave is a rarefaction

wave.

Now, let A 4+ max(2sinh(C/2),C) < 0; then we have one of the following possibilities

e A<0,C >0.
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e A>0,C<0,A-C<0.

e A<0,C <0, A—2sinh(C/2) < 0.

Assume that 2-wave is a rarefaction wave, then the above possibilities are contra-

dicting lemmas 2.5.2, 2.5.4 and 2.5.5. Hence, the 2-wave is a shock wave. O
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r —

r —

Figure 2.1: S; and Sy are, respectively, the back-shock and the front shock; regions
r < Si(t), Si(t) < x < Sa(t), and x > Sy(t) are depicted as I, II and III respectively.
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r —
I 1 |
T R, R, R, R,
-~
v
r —

Figure 2.2: Region behind the back-shock S is depicted as I; region S1(t) < x < Rs3(t)
between S; and the trail characteristic R3 of the front rarefaction wave III is depicted
as II; region x > R4(t) ahead of the front rarefaction is depicted as IV.
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t—

xr —
I
S, R, R
IV
xr —

35

Figure 2.3: The region < R;(t) is depicted as I; back rarefaction region R;(t) < x <
Ry(t) is depicted as II; the region Ra(t) < x < Sy(t) is depicted as III and the region

x > S9(t) is depicted as IV.
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xr —
[ Il
T R, R, S,
-~
\%
xr —

Figure 2.4: The region z < Ry (t) is depicted as I; IT is the back rarefaction wave region;
region Ry(t) < x < Rs(t) between front and back rarefaction is depicted as III; IV is
the front rarefaction wave region and region = > Ry(t) is depicted as V.



Chapter 3

Riemann problem for the
Chaplygin gas equations for several

classes of non-constant initial data

3.1 Introduction

In this chapter we considered a Chaplygin gas model

pe+ (pv)e =0, (3.1.1)
(p0)e + (pv* + p)o = 0, (3.1.2)

subject to the equation of state given by

p(p) = —p~ ", (3.1.3)

where p and v are the density and velocity of the gas respectively. The model given
by the equations (3.1.1), (3.1.2) describes the dark matter and dark energy in the uni-
fied form through an exotic background fluid proposed in [47-50] as a mathematical
approximation to calculate the lifting force on a wing of an airplane in aerodynamics.
Also it was a prototype of the unified model [51,52] where dark energy and dark mat-
ter were depicted by a single fluid and Chaplygin cosmology provides an interesting
possibility to account for current observations about the expansion of the universe. It
was also predicted by them that the cosmological constant will increase (or that it was
less in the past) and this could in principle be observed. In 1996, Hsiaoa nd Serre [63],

proved the global existence to the solutions for the system of compressible adiabatic

37
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flow through porous media.

The differential constraint method is based upon appending a set of partial differ-
ential equations to a governing system of equations, first proposed by Janenko [30] to
the gas dynamics model. The differential constraint equations play an important role
to select classes of solutions of the system under interest. Within such a theoretical
framework, recently, reduction procedures have been developed for studying soliton-like
interaction for homogeneous and nonhomogeneous hyperbolic 2 x 2 systems [40, 41],
for solving Riemann problems and generalized Riemann problems [39], for determining
exact solution for the constant Astigmatism equation [55] and for a model of interest

in chromatography [54].

3.2 Differential Constraint Method

In this section, to outline the method of differential constraints as demonstrated by
Currd, Fusco and Manganaro [39], consider a system of non-homogeneous quasilinear

partial differential equations as

U, + A(2,t,U)U, = B(x,t,U), (3.2.1)

where x and ¢ are the space and the time coordinates, respectively; U € RY denotes
column vector of the dependent field variables, A(z,t,U) is N x N coefficient matrix
and B(z, t, U) is the column vector related to the source terms. Hereafter, any subscript
denotes the partial derivative with respect to the indicated variable. The system (3.2.1)
is assumed to be strictly hyperbolic, i.e., the coefficient matrix A(x,t, U) has real

distinct eigenvalues. Without loss of generality we assume that

, . 1, ifi=j,
1. 4V = J (3.2.2)

0, ifi#j,
where 1 and d® represents the left and the right eigenvectors of the coefficient matrix
A(z,t,U) corresponding to an eigenvalue A respectively. For strictly hyperbolic

system (3.2.1), consider a set of first order differential constraints [8] as

19U U, =Q9(z,t,U), i=1,2,..,N—1, (3.2.3)

where Q¥ (z, ¢, U) are arbitrary functions to be determined subject to the compatibility
conditions given in [39] and [30]. Owing to (3.2.3), we have
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U, =Y QVdY +ed™), (3.2.4)

through which the equations (3.2.1) reduce to form

=B - ) _ QUANAY — AMa™), (3.2.5)

For consistency of (3.2.4) and (3.2.5) to hold Ve, we obtain

N-1
Qgi) + )\(i)Q;(zi) +vQW (B _ Z QY (/\(j) _ /\(i)) d(i))

N—1N-1
+ QWY — AE)10vdDg®
j=1 k=1
N-1
+3 QW <1<’f> (Vd<k>B - VBd““)) + Q“)w(i)d(’f)) —0,  (3.2.6)
k=1

(A — \®) g d““+Zq (A® = A¥) 1) (Vd(md(N)_Vd(N)d(k))
+1 (vd™B - VBd<N>> +QUVADAM =g, (3.2.7)

where i = 1,...., (N — 1) and V = 9/9U.

Using the differential constraint equations (3.2.3) and compatibility condition (3.2.6),
(3.2.7), the equation (3.2.1) reduce to the form

N-1
U+ AM0, =B+ QUAM - A)d®, (3.2.8)

i=1
By determining Q¥ satisfying the equations (3.2.6), (3.2.7), the equations (3.2.8) can

x
be integrated along the characteristics curves given by i AN with the given initial
data.

3.3 Cauchy Problem

In this section, the system of conservation laws describing Chaplygin gas model is

considered, given by the equations (3.1.1), (3.1.2), in the matrix form
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U:H, A(z,t,U) = i I B(g;,t,U):m.

v v
3
p

The eigenvalues of the matrix A are given by

1 1
A=v—— and pu=v+-—, (3.3.1)
p p

the corresponding left eigenvectors and right eigenvectors are as follows

W | L=l qwo [ Lop (3.3.2)
20" 2 |’ 20" 2]
p p
dV =1 -1 |, d®W=1|1 (3.3.3)
p p

The authors have made an attempt to derive a nontrivial solution to the system of

equations (3.1.1), (3.1.2) subject to the initial conditions

p(z,0) = po(x), wv(z,0)=1vy(x), (3.3.4)

using the differential constraint

PUL — Pz _ q(z,t, p,v), (3.3.5)
p

where ¢ satisfies the following compatibility conditions derived (3.2.6) and (3.2.7)

¢+ Mg + 2VAAW =0, (3.3.6)
(A — 0)Vgd™ + gVAd® + g(\ — )1V <Vd(”d(“) - Vd(“)dm) —0(3.3.7)

Using the above analysis, Gupta et al. [46] derived the same equation as (3.3.6) which
is numbered as equation (7) in their paper. However, instead of the equation (3.3.7),
they had erroneously derived an equation numbered (8) in their paper which is the
same as (3.3.7) but with the last term missing. Consequently, the equations (14) - (20)

given in Gupta et al. [46] are in error, and hence, the solution to the Riemann problem



3.3. CAUCHY PROBLEM 41

is not correct and does not satisfy the basic equations (3.1.1), (3.1.2).

In view of (3.3.1)-(3.3.3), the compatibility conditions (3.3.6), (3.3.7) reduce to

qt + )\QQU = 07
P*q, + ¢ = 2pq,

which have a solution of the form

q = cop?, (3.3.8)

where ¢ is an arbitrary constant. Thus, in view of the equations (3.3.5) and (3.3.8),

the equations (3.1.1) and (3.1.2) can be written as

pe + ppe +q =0,
v+ vy — qp~ 2 =0,

which can be solved subject to the initial conditions (3.3.4), as

po(§)

plz,t) = 1T clpo@) (3.3.9)
v(z,t) = vo(§) — cot, (3.3.10)
r=£&+ (Uo(§) + p%(f)) t — cot®. (3.3.11)

Here, £(x,t) denotes the point on z-axis that lies on the characteristic given by (3.3.11)
1

passing through (z,t) with a speed of (U + —), subject to the condition
P

/ Loy .
vp(€) — mﬂo(f) = copo(§); (3.3.12)

where ‘77 denotes derivative with respect to &.

The equations (3.3.9) and (3.3.10) admit unique values for p and v for a given x
and t provided there exists a unique ¢ satisfying (3.3.11); i.e., the existence of a unique

solution is guaranteed for every x in (—oo, c0) and for every ¢ > 0 provided that



42 CHAPTER 3. CHAPLYGIN GAS EQUATIONS

1+ (vg(g) — Zggg) t #0. (3.3.13)

Similarly, using the differential constraint

Pz PUz
szr 2

q<x7 t? p? U)?

and adopting the aforementioned procedure, we obtain a solution

_ po(C)
plx,t) = TF cotpolQ)] (3.3.14)
v(x,t) = vo(C) + cot, (3.3.15)
1 2
r=(+ (vo(g) — PO—(C)) t 4+ cot”. (3.3.16)

Here, ((z,t) denotes the point on z-axis that lies on the characteristic given by

1
(3.3.16) passing through (x,t) with a speed of (v — —), subject to the differential
P

constraint

£o(¢) = copo(€), (3.3.17)

where ‘77 denotes derivative with respect to (.

The equations (3.3.14) and (3.3.15) admit unique values for p and v for a given x
and ¢ provided there exists a unique ( satisfying (3.3.16); i.e., the existence of a unique

solution is guaranteed for every x in (—oo, 00) and for every ¢ > 0 provided that

: 19)
1+ (vo(()erg(C))t;éo. (3.3.18)

Thus, the two solutions given in (3.3.9)-(3.3.13) and (3.3.14)-(3.3.18) of the equations
(3.1.1), (3.1.2) subject to the initial conditions (3.3.4) are summarized as follows:
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po(§)
p(x,t) - 1 +Cotp0(§>’
v(z,t) = vo(§) + deot,

0 2
T = 5 + <U0(£) + p0—<‘§>> t+ (SCOt s (3319)
o

vo(§) — mﬂé(@ = copo(§),

and § = £1.

3.4 Characteristic Shocks

Let x = X(t) be a curve, with speed — = o, across which the flow variables are
discontinuous then the R-H conditions [2] for the equations (3.1.1), (3.1.2)

7 (0(0) — (1) = (" (O (1) — o (O (1) (3.41)
() — pm (D (1) = N — () (- () —
o (0 (0 = (00 0) = (570 (70) = ) (7 (0) - s s ),
(3.4.2)
where
pr(t) = Jm o t), pm(t) = lm p(,1),
vh(t) = m—}i)?l(tﬁL vz, t), v (t) = x_}an&)i v(x,t).
Solving the equations (3.4.1) and (3.4.2) we have o = v (t)+ o _ v_(t)%—L i.e
h o pr(t) po()

the speed of the discontinuity is equal to the speed of one of the characteristics given by

dx dx
i Aor i 1 which is a consequence of the result that the eigenvalues A and p are

linearly-degenerate (because VA-d®) = 0 and Vu-d® = 0). Thus, the curve r = X (t)
1 1

with the speed vt (t) — —— (: v (t) — ——

O rm T o

shock across which the variables p and v are discontinuous and v—— is continuous. Sim-
p

> is referred to as a 1- Characteristic
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ilarly, the curve x = X (¢) with the speed v*(¢) +

1 1
=v (t) + —) is referred
o pt(t) ( p=(1),
to as a 2- Characteristic shock across which the variables p and v are discontinuous

1. :
and v + — is continuous.
p

3.5 Riemann Problem for Non-Constant Initial Data

In this section, we consider the Riemann problem with non-constant initial discontin-

uous data:

(p(z,0),v(x,0)) = - (3.5.1)

where p;, vy, p. and v, are arbitrary functions of x such that

vi(x) - %mm = Copi(2),
B
@) = s e) = Cupilo).

Here, a = +1, f = £+1 and Cy, ('} are arbitrary constants. Let

pr = lim p(2), pr = lim p,(z),
z—0~ z—0t

= 1 = i . ,

ve= g on= lig ee)

where (pr,vr) # (PR, VR)-

Theorem 3.5.1. Let solution to the Riemann problem of the equations (3.1.1), (3.1.2)

subject to (3.5.1) be connected through only I1-Characteristic shock then vy, — — =
PL

1
vg — — along with one of the following possibilities
PR
1. a=1, =1, and Cy, Cy are arbitrary constants.
2. a=1, f=—-1, Cy =0 and Cy 1s an arbitrary constant.

3. a=—-1,68=1, Cy=0 and Cy is an arbitrary constant.

4. a=—1, f=—-1,Cy =Cy and Cy is an arbitrary constant.
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Proof. Given that the solution to the Riemann problem of the equations (3.1.1), (3.1.2)
subject to (3.5.1) be connected through only 1- Characteristic shock we have the x =

dX
X (t), such that d_tl = v — — across which the flow variables v and p are discontinuous
LY . . .
and however, | v — — | is continuous, i.e.,
p
dX,

. 1 . 1
—— = lim <v - —) = lim (v — —) : (3.5.2)
dt T X (8)~ p z—X1 () P

In view of (3.3.19) when 6 = « and ¢y = Cp, the solution of the Riemann problem in

the region = < X(t) is given by

pz,t) = %, (3.5.3)
v(z,t) = (&) + alCot, (3.5.4)
r=£&+ <vl(§) + plé)) t + aCyt?.

In the region x > X;(¢), in view of (3.3.19) when § = 8 and ¢y = C}, the solution is
given by

plz,t) = %, (3.5.5)
v(z,t) = v.(n) + BCit, (3.5.6)

_ p 2

Since, n = &€ = 0 as * — X;(¢), in view of (3.5.3)-(3.5.4) and (3.5.5)-(3.5.6), the

equation (3.5.2) reduces to

() ()
— = vy —— |+ (a—1)Cot = v — — | + _1Ct>
= (=) +a= Gt = (v ) + (5= 16

which leads to upon integration

X (t) = 1 t 1C’t2— 1 t 10t2
1()—<UL—p—L> +(a—1) 0§—<UR—p—R> +(B-1) 15

and holds for all values of ¢ provided



46 CHAPTER 3. CHAPLYGIN GAS EQUATIONS

1 1
Vp —— =VRp— —,
PL PR
(a—1)Co= (8 —1)C. (3.5.7)

Thus, the equation (3.5.7) holds true for the following cases

1. a=1, g =1, and Cy, C; are arbitrary constants.
2. a=1,8=-1,Cy =0 and Cj is an arbitrary constant.
3. a=—1,8=1,Cy=0 and (] is an arbitrary constant.

4. a=—1, = -1, C; = Cy and (Y is an arbitrary constant.

Hence the proof. This is depicted in the Figure-3.1. O]

Theorem 3.5.2. Let solution of the Riemann problem of the equations (3.1.1), (3.1.2)

subject to (3.5.1) be connected through only 2-Characteristic shock then vy + — =
PL

vR + PLR along with one of the following cases
1. a=1, =1, Cy =Cy and Cy is an arbitrary constant.
2. a=1, =-1, Cy=0 and Cy is an arbitrary constant.
3. a=—1,6=1, C; =0 and Cy s an arbitrary constant.

4. a=—1, B =—1, and Cy, C; are arbitrary constants.

Proof. Given that the solution to the Riemann problem of the equations (3.1.1), (3.1.2)
subject to (3.5.1) be connected through only 2- Characteristic shock we have the the

dX
curve x = X5(t), such that d_752 = v + — across which the flow variables v and p are
: : Ly . . .
discontinuous and however, (v + —) is continuous, i.e.,
p
dX 1 1
—2 - lim (v + —> = lim (v + —) . (3.5.8)
dt T Xo(t)~ p z—Xa () * p

In view of (3.3.19) when 0 = « and ¢y = Cy, the solution of the Riemann problem in

the region = < Xs(t) is
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pu(§)
o, t) = — RS, 3.5.9
p(z. 1) 14+ Cop(§)t ( )
v(x,t) = v(€) + alCot, (3.5.10)
a
=&+ (0§ + ——= | t +aCyt?,
: < HE) Pl(§)) ’
In the region z > Xs(t), In view of (3.3.19) when 6 = 5 and ¢y = C} the solution is
given by
pr(1)
)=\ 3.5.11
pla,t) 1+ Cip,(n)t (351
v(x,t) = v.(n) + BCLL, (3.5.12)

Since, n = £ = 0 as  — Xs(t), in view of (3.5.3)-(3.5.4) and (3.5.5)-(3.5.6), the

equation (3.5.8) reduces to

dX 1 1
—2 _ <vL + —) + (a+1)Cyt = (vR + —) + (B +1)Cht,
dt PL PR

which leads upon integration
t2

1 t2 1
Xo(t) = (vL + —) t+ (a+1)Co— = (vR + —) t+ (B+1)C—,
PL 2 PR 2

and holds for all values of ¢ provided

1
v+ — =Vr+ —,
PL PR
(a+1)Co = (B+1)Ch. (3.5.13)

Thus, the equation (3.5.13) holds true for the following cases

1. a=1,8=1, C; =Cyand Cj is an arbitrary constant.
2. a=1,6=—1,Cy=0 and (] is an arbitrary constant.

3. a=—-1,8=1,Cy =0 and Cj is an arbitrary constant.
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4. a = —1, 8= —1, and Cy, C] are arbitrary constants.

Hence the proof. This is depicted in the Figure-3.2.
O

Theorem 3.5.3. Let solution of the Riemann problem of the equations (3.1.1), (3.1.2)
subject to (3.5.1) be connected through both 1- and 2- Characteristic shocks then one

of the following occurs
1. a=1, =—1 and Cy, Cy are arbitrary constants.
2. a=1,p3=1,Cy =0 and Cy is an arbitrary constant.
3. a=—-1,8=—1, Cy=0 and C; is an arbitrary constant.
4. a=—=1, =1 and Cy = Cy where Cy is an arbitrary constant.

Proof. Given that the solution to the Riemann problem of the equations (3.1.1), (3.1.2)
subject to (3.5.1) be connected through 1- and 2- Characteristic shocks, we have the

dX 1
the curve x = X (t) (respectively; = X5(t)), such that d_tl = v — — (respectively;
P
dX 1
d_t2 = v + —) across which the flow variables v and p are discontinuous and however,
1 _ 1Y\, . . .
(v — —) (respectively; <v + —>) is continuous, i.e.,
p p
dX 1 1
—L— Jm (v-—=)= lim (v—=]), (3.5.14)
dt z—X1(t)~ P =X (1) F P
dX. 1 1
22— lim (v+=-)= lim (v+-). (3.5.15)
dt T—Xa(t)~ p =X ()T P

In view of (3.3.19) when 6 = a and ¢g = Y, the solution of the Riemann problem

in the region x < X;(t) is given by

pi(§)

plx,t) = 1T Cop (@)t (3.5.16)
v(z,t) = (&) + aCot, (3.5.17)
v=E+ (v,(g) + %) t 4+ aCyt?. (3.5.18)

In the region z > X, (t), in view of (3.3.19) when 6 = 8 and ¢y = C}, the solution

is given by
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AV
plx,t) = 5 Copn ()t (3.5.19)
v(x,t) = v.(n) + BCLL, (3.5.20)
r=n-+ (vr(n) + %) t+ BOLt2. (3.5.21)

Since, ¢ = 0asz — X;(t) and n =0 as * — X(t), in view of (3.5.16)-(3.5.17) and
(3.5.19)-(3.5.20), the equations (3.5.14) and (3.5.15) reduces to

dX, 1 1
—— = lim v——]= vy —— )+ (a—1)Ct,
dt rHXﬂt)( p) ( ’ pL) ( )Go

dX 1 1
2= lim (v—l——) = <UR+—> + (B + 1)Cht,
P PR

dt z—Xo ()

which leads to

Xl(t) = (UL - p%) t+ (a - 1)0052, (3522)
Xo(t) = (vR + piR) t+(B+ 1)01; (3.5.23)

To solve the Riemann problem completely, let the solution be of the form in the
region X (t) < x < Xs(t),

K
)= ——+ .5.24
p(z,1) e (3.5.24)
KQ.T+K4
) = /———+ 0.2

which satisfy the equations (3.1.1) and (3.1.2) where K, Ky, K3 and K, are arbi-

trary constants. In order to connect the solution to the Riemann problem, it is required

1 1

that (v - —> is continuous at z = X;(t) and (v + —) is continuous at = X, (t) for
P P

all time ¢.

. 1 ) 1
lim (’U — —) lim (v - —> : (3.5.26)
a— X1 (1)~ p =X (t)* p

1 1
lim (v + —) lim (v + —) : (3.5.27)
z—Xo (1)~ P z—Xo(t)* P
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Thus, in view of (3.5.16)-(3.5.18), (3.5.19)-(3.5.21) and (3.5.24)-(3.5.25), we have

Ko Xo(t) + Ky | Kot + Ky

1 1+ Coprt
lim <v— —) =g + aCyt — M,
z—X1(t)~ P PL
lim . 1 Ko X (t) + Ky B Kot + K5
z—X1(t)* P N K2t+K3 K ’
1+ Cipgt
lim (v—l——) :vR—f—BClt—l—M,
x—Xa(t)~ P PR

Kot + K3 K,

(3.5.28)
(3.5.29)
(3.5.30)

(3.5.31)

and hence, in view of the equations (3.5.28)-(3.5.31), the equations (3.5.26)-(3.5.27),

reduce to

Coprt Kot + K3)?
(vL+aCOt— i OpL>(K2t+K3)_K4—( ot + Ks)
PL Ky
LK L PN
2 (% oL o 02 )
1+ Cippt Kot + K3)?
(UR + BCt + LoR ) (Kot + K3) = Ky + M
PR Ky
1 t?
+K; ((UR + —) t+ (B + 1)01—> ;
PR 2
which holds for all values of time when
1 (K3)?
v, — — | Kg = K4 — ,
( L L) 3 4 7,
2K K. 1
(UL——> K2+(OdCQ—Co)K3:— 203 KQ <UL——)
oL Ky PL
K2 E . (]_ — OZ)C() . 0,
K 2
1 K3)?
(UR+—) K3:K4+M;
PR K
1 2K K. 1
(UR—F—)KQ—F(ﬁCl—f—Cl)Kg: 2 3+K2<UR+—),
PR Ky PR
KQ (ﬂ—i—l)C’l
Kol|l—=—-————|=0.
? (K1 2 0

Thus, after solving the equations (3.5.32), we have the following solutions:
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1. a =1, § = —1and Cy, C are arbitrary constants then p = p and v = v.
2. a=1,6=1,C;, =0 and Cj is an arbitrary constant then p = p and v = 2.

3. a=—1,8=—1, Cy =0 and (] is an arbitrary constant then p = p and v = 7.

4. aa = —1, =1 and C; = C where (j is an arbitrary constant then p = #
pCot + 1
and v = M, where
pCot + 1
1 1 { 1 1 }
—=5yVR+ — —vL+—,
p 2 PR PL
.1 1 1
V=—<QUp+—+v,—— /.
2 PR PL

Hence the proof. This is depicted in the Figure-3.3.

Hence, the solution to the Riemann problem to the equations (3.1.1), (3.1.2) subject
to (3.5.1) be connected through only 1- Characteristic shock (respectively; only 2-
Characteristic shock) if and only if v, — — = vg— — (respectively; v, +— = vg+—),
otherwise, and be connected through 1—Land 2- Cﬁaraeteristic shocks WLhen a = jle,
B=+1,Cy=0C, =0. =

3.6 Conclusions

The solution to the generalized Riemann problem to the governing equations of the
Chaplygin model is characterized by one 1- or/and 2- Characteristic shock(s) after
determining the exact solution for a hyperbolic system of first-order PDEs describing
a Chaplygin gas using the “Differential constraint method” for several class of initial

conditions.
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Figure 3.1: X is the 1-Characteristic shock; regions = < X;(t) and = > X;(t) are
depicted as I, II.

Figure 3.2: X, is the 2-Characteristic shock; regions z < Xy(t) and = > Xy(t) are
depicted as I, II.
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Figure 3.3: X; and X, are, respectively, the 1-Characteristic shock and the 2-
Characteristic shock; regions © < X;(t), Xi(t) < x < Xs(t), and = > Xs(t) are

depicted as I, IT and III respectively.
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Chapter 4

Riemann problems for Generalized

gas dynamic equations

4.1 Introduction

It is well known that solving the Riemann problem plays a prominent role in quasilinear
hyperbolic systems [2,3,6,70-72] of balance laws. Moreover, finding an exact solution
to a generalized Riemann problem is always more difficult. LeFloch and Raviart [506]
obtained an approximate solution to the generalized Riemann problem in the form
of an asymptotic expansion, which is explained further through an application to gas
dynamics equations by Bourgeade et al. [57]. Although no general method is available
for solving the Riemann problem with arbitrary initial data, the reduction method to
determine the exact solutions of nonlinear partial differential equations [8] - [30] plays
an important role by appending differential constraints to the governing systems of

field equations under interest.

The differential constraints method, based upon appending a set of partial differ-
ential equations to a governing system of equations, was proposed by Janenko [30]
and was applied to the gas dynamics model [33] - [32]. Within such a theoretical
framework, a reduction procedure for the generalized Riemann problem was applied in
different models, which can be seen in [39] - [59], and classes of exact solutions were

parametrized in terms of arbitrary functions and were determined for ET6 model [60].

Among others, Radha et al., [61] used the differential constraints method to com-
pletely characterize the Riemann problem for non-constant initial data for rate-type
materials. Furthermore, the method of differential constraints was also used to de-

termine the exact solution of quasilinear systems depending on various applications

25
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like p-systems with relaxation conditions (Curré, and Manganaro [62]), for Chaply-
gin gas model (Kumar and Radha [64]), for non-homogeneous shallow water equations
(Sueet et al. [65]) and for the homogeneous p-system (Manganaro et al. [66]). Recently
Meleskho et al. [67] discussed the generalized simple wave solution for a magnetic fluid
using the differential constraint method and also applied it to systems of equations
written in Riemann invariants [68]. Moreover, Chaiyasena et al. [69] discussed the

generalized Riemann waves and their adjoinment through a shock wave.

The present paper deals with solving generalized Riemann problems for the system
under investigation and completely characterizes the solution that connects the initial

data to regions via shocks and/or rarefaction waves.

4.2 Generalized gas dynamic equations

The Euler equations modeling compressible gases in a conservative form are given as

pt + (pu)x =0,

(4.2.1)
(pu)t + (pu2 +p)x = pf(ua Ps T, t),

together with the equation of state given by p as a function of p alone such that
P (p) > 0, where p and u are, respectively, the density and velocity of the gas. The
system (4.2.1) with the equation of state

p(p) =Cp", Cy >0, (4.2.2)

represents the generalized Chaplygin gases when —1 < v < 0 (see, [70], [71]), the

isothermal gas when v = 1 (see, [72]) and the isentropic gases when v > 1.

The equations (4.2.1) can be re-written in a matrix form as
U, + A(U)U, = B(z,t,U), (4.2.3)

where

] el
u P(p) u

Bt U) = [f(u pox t )] |

The eigenvalues of the coefficient matrix A (U) are,

AV =u—clp), AP =u+clp), (4.24)
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where ¢(p) = +/p'(p) and the corresponding right eigenvectors are

1 1
RO= | _ap) | RO = clp)

o p
Thus, we have
1
2pc(p)

1 /! /
= () (pp"(p) +20),

where the symbol V indicates the gradient operator with respect to (p,u) and thus,

AV SN - SO

(pp"(p) + 2,
4.2.5
vi® . R® ( )

the system (4.2.1) is strictly hyperbolic and genuinely nonlinear in the sense of Lax [4]
for all p(p) except when p = a + ¢y where ¢, and ¢ are two arbitrary constants.
p
d
The Riemann invariant W1 (respectively; W(?)) along the characteristic field d—:: =

d
AW (respectively; d—f = \?) determined from VIW® . R® = 0 (respectively; VIW® .
R® =0) as

_ VO

=, WP =u p
(v—=1)

W =+ ( (4.2.6)

4.3 Generalized Riemann invariants

In this section, generalized Riemann invariants compatibility conditions to the given
system of partial differential equations are derived. For this, we consider a differential

constraint in a more general form as

WO = QW0 (z,t, WV, W®@) =12, (4.3.1)

where W and W denotes the Riemann invariants and Q@ is to be determined.

Using this we can rewrite the hyperbolic system of partial differential differential

equations in terms of generalized Riemann invariants as

W AW O, WY = fw®, we)

@ (4.3.2)
W+ u(w, W(2))Wg§2) — g(W(l), W(Z))

To determine Q) we find the compatibility conditions for the system (4.3.2) and the
differential constraints (4.3.1).



58 CHAPTER 4. GENERALIZED GAS DYNAMIC EQUATIONS

For this first we differentiating equation (4.3.1) with respect to x and ¢, we get

Wi = + QU W + QW W, (4.3.3)
Wagolc) = Qi’) + Q(VQQ)WQE” + Q;/)@) W,§2)- (4.3.4)

On differentiating equation (4.3.2) with respect to = and ¢, we get

Wy + <)‘W<1>W:£1) + )‘W@)W;Q)) W+ MWD = froW® + fraWP,  (4.3.5)

Wéf) + <,Uw(1)W£1) + 'UW@)W;?)) Wél) + ,LLngi) = gWu)ngl) + gw@ Wg). (4.3.6)

Compatibility conditions are

_ i (@) _
w — Y
(A= 1) Qe + Ay Q" + fiye =0

) | | ) Z, . (4.3.7)
QF +2QY + Ay Q) + QY fF+ QY0 g — fwn QP = 0.

On solving (4.3.7), we determine @, which enables us to solve the system under

consideration along with a family of characteristic curves.

This methodology is used in the following section to a system of conservation laws

describing generalized gas dynamics with source/sink.

4.4 Cauchy problem

Consider a Cauchy problem with the following initial data corresponding to the system

(4.2.1)

p(x,0) = po(x), u(x,0)=wuy(z). (4.4.1)

To solve the above Cauchy problem, we use the differential constraints method as

discussed in the previous section, for which we let

= VPO o s, (4.4.2)
P

where the compatibility conditions for () are obtained from (2.2.9) as
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p p'(p)  2p

Qi+ (u =0V (0) Qo+ (f = 9QVI () Qu—pQQy = F.Q + @ = fo = 0.
(4.4.3)

25:/7(0) {Q,,+ AU <p”(p) 1 ) Q} C 5—,/].4[)(,0) fu N

Equations (4.4.3) has a solution of the form when Q; =0, @, =0, f; =0 and f, =0,

Q = ko + cop, (4.4.4)
f=kou—0(ko+ cop)\/P'(p) +c1. (4.4.5)

Here, ko, ¢y and c¢; are arbitrary constants. Using (4.4.2), (4.4.4) and (4.4.5), the
system (4.2.1) reduces to

e+ (u + 5\/29’(,0)) pe + p(ko + cop) =0,
up + (u + 5\/p’(p)> Uy = kou + ¢y,

(4.4.6)

d
and can be integrated along the characteristic curves d—f =u+d,/P'(p) subject to the
initial data (4.4.1).
Thus, we have
p(.??,t) = F1(£7t>7
¢ (ekot — 1) (4.4.7)

u(z,t) = ug(&)e™ +

along the characteristics

(&) efot

r=£E+ . (efot — 1) + = ( . —t) +/0t5mds, (4.4.8)

where F} is given as
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kopo(€)

1) = G com©) e = coml®)

A few nontrivial solutions to the system (4.2.1) are determined in the closed form when

p(p) = Cp?, for v € (—o0, 00) such that Cy > 0.
4.4.1 Case-1

Let ¢ = 0. Then, the solution to the system (4.2.1) with the initial data (4.4.1) is
determined from (4.4.7), (4.4.8) as

pla,t) = po(€)e ™",
kot 1) (4.4.9)

along the characteristics

(uO(ﬁ) N Cl) (ot 1)_c1t 25\/07 (po(€))" 7Y (e_w - 1) , (4.4.10)

k‘o k_g k_O_ kO(,y_ 1)

subject to the condition

ducgl):](cx) _5 /_C’ypo(if)wdpdo—? T k. (4.4.11)

4.4.2 Case-2

Let kp = 0. Then, the solution to the system (4.2.1) with the initial data (4.4.1) is
determined from (4.4.7), (4.4.8) by taking the limit ko — 0 as

_ po(§)
pot) = 17 copo(§)t’ (4.4.12)
u(z,t) = uo(§) + et

along the characteristics
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ort? 25W [0+ eopp©)E2 1), (4.4.13)

subject to the condition

dug(x (=3 dpo(T
C(;g(c ) =0/ Crypo(x) 2 p;i ) =+ copo- (4.4.14)

4.4.3 Case-3

Similarly, when ¢y = ko = 0, the solution to the system (4.2.1) with the initial data
(4.4.1) is of the form

(4.4.15)
u(x,t) = up(§) + it
along the characteristics
7= t?
v =&+ (u0(©) +0v/Crpo(€) T ) t+ =, (4.4.16)
subject to the condition
x) 63 dpo(z)
= 0v/Cypo(z) 2 ppa (4.4.17)
4.5 Shock waves
Let x = X(t) be a curve, with the speed — = o, across which p and u are discontin-

uous. Then using R-H conditions for the equations (4.2.1) we have

o (pr(t) = pe(t)) = (pr()ur(t) — pe(thue(t))

o (pr(t)ur(t) = pe(t)ue(t)) = (pr(1) (ur(1))” — pat) (ue(t))?) + (p (0 (1)) —p(pz((t))% |
4.5.1

where p,.(t) and u,(t) (respectively; pe(t) and uy(t)) are right hand side (respectively;
left hand side) limits of p(x,t) and u(x,t) as @ — X(t). The equations (4.5.1) can

solved for o and u,(t) as
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9

. 0 (0 () — 0 (o) o0
”‘g@iJ (00 (6) — pal0)) el

(4.5.2)

— pe(t)) pr(t)pe(t)

The curve z = Si(t) is said to be a 1-shock curve along which the flow variables

)
%@=w®im@—mm¢fgw” p (p(1)))

evaluated in the left and right states must satisfy Lax conditions

ur(t) = VP (pr(1) <o <ue(t) — VP (pe(t)), (4.5.3)

e, o0 —u(t) < —+/P(pe(t)) <0 due to which we have

_ (P (pr(t)) = p(pe(t))) pr(t)
O'—Ug(t)—\/ ( ; s

pr(t) = pe(t)) pe(t) (45.4)
N (0 (p:(0) — (pe®)
i) =t “”>pm”¢<@—mmmmm@'
Further, in view of the equations (4.5.4), the Lax conditions (4.5.3) imply that
pe(O)V/ P (pe(t)) < pr(t) v/ P (pr (1)), (4.5.5)

+1 a+1

i oty
However, when p = Cp” equation (4.5.5) reduces to p,®> < pr.*> which implies that
pe < pr when v > —1 and p;, > p, when v < —1. In view of (4.5.4), it implies that
ur(t) < ue(t) when v > —1 and u,(t) > ue(t) when v < —1.

Similarly, the curve x = Sy(t) is said to be a 2-shock curve along which the flow

variables evaluated in the left and right states must satisfy Lax conditions

ur(t) + /P (pr(1) < o <uet) + /P (pe(t)). (4.5.6)

Rewriting the equations (4.5.2) as

. (p (pr(t)) = p (pe(t))) pe(t)
°T T(t)i\/ (pr(t) = pe(t)) pr(t)

W@ZW@$Q—M@)¢@WQ) P (pu(t) pult)

(4.5.7)

pe(t) (or(t) = pe(t)) pr(t)
From (4.5.6), 0 — u,(t) > /P (p-(t)) > 0, we have
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(4.5.8)
ity (1 @Y @ pe(1) = p(pelt) pelt))
)= w0 - (1 m@)¢ (0r8) = D) prlt)
and
o O peD) > pr O/ (pr D). (159)

y+1 y+1

However when p = Cp? equation (4.5.9) reduces to p,> > pr?> which implies that
pe > pr when 7 > —1 and p; < p, when v < —1. As a consequence, we have from the
equation (4.5.8),, that u,(t) < ue(t) when v > —1 and wu,(t) > ue(t) when v < —1.

The summary of the above results is given in the following table.

T—shock | 7 € (—1,00) [u(®) < w) ] pel) < pr(8)
7 € (=00, —1) | u,(t) > uglt) | pult) > pr(t)
2 —shock | 7 € (—1,09) | (D) < () | pelt) > p (1)
v E (_007 _1) ur(t) > Ug(t) Pg(t) < pr(t)

Table 4.1: Shock waves

4.6 Rarefaction waves

In this section, when p = Cp” and Cy > 0, we derive continuous solutions in the
rarefaction wave regions of the system (4.2.1) corresponding to each eigen mode A
and \?. Let x = R;(t) and z = Ry(t) be the curves that pass through (0,0) such that
Ry (t) < Ry(t) for all t > 0 with Ry(t) and Rs(t) satisfying

dR =
d_tl =u(Ri(t),t) — /Cv(p(Ri(1),1) 7 ,
a y (4.6.1)
d_; = u(Ra(t),t) — /Cv (p(Ro(t), 1) 2,
d d
ie, % < ™% for ¢ > 0. The region Ry(t) < o < Ro(t) is referred to as 1- rarefaction

region in which p(z,t) and wu(z,t) are continuous and differentiable and however, the

derivatives of p(z,t) and wu(z,t) are discontinuous across the curves x = R;(t) and
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Similarly, suppose there exist two curves x = R3(t) and x = Ry(t) both passing
through (0,0) such that R3(t) < Ry(t) for all ¢ > 0 satisfying

T = w(Ry(0),1) + VT (0 (Ry(0), 1))
i . (4.6.2)

S = (R0, + VO (o (Ra(t), )T

dRs dR
d_t3 < d_t4 for t > 0. Then the region R3(t) < x < Ry(t) is referred to as 2- rar-

efaction region in which p(z,t) and u(x,t) are continuous and differentiable. However,

i.e,

the derivatives of p(x,t) and u(x,t) are discontinuous across the curves © = R3(t) and

In view of (4.2.6) and (4.4.2), the Riemann invariant W) (respectively; W) sat-

1) (2)
oW = (@ (respectively; ow

isfies = () in the 1- rarefaction region (respectively;

2-rarefaction region). Further, we have

(e ;r ) L ((7 -1) ELW\;%— we) ) o (4.6.3)

Thus, in view of (4.4.4), (4.4.5), and (4.6.3), the system (4.2.1) can be written in terms

of Riemann invariants W and W® as

dW W k(3 — k 1 — (WO —w@)\ !
Vc[l/t - 0(34 Dy 4 0(74+ )W(2)—co Cy (W ) ( ) e,

(4.6.4)
@) 1 _ —1) (WO —w@)\ !
W _ k) ) WG e e ((7 ) ( N

2
i

dt 4 4

d
along the characteristics d—f =AM and = = \®),

dt

The solution in the 1-rarefaction region (respectively; 2-rarefaction region) can be

obtained by solving the equations (4.6.4) for W) and W along the characteristic

dx x
curves —- = A (respectively; i A?) subject to the conditions W) = a; and
W® = q, at t = 0 where ay and ay are arbitrary constants.



4.6. RAREFACTION WAVES 65

4.6.1 Case-1

Let ¢y = 0. Then, the differential constraint equation (4.4.2) for the initial data (4.4.1)
reduces to (4.4.11) such that (pp,ur) # (pr,ur) where (pr,up) = $li}()i(po(x),uo(x))
and (pgr, ug) = xgrél+(po(x), uo(x)). The 1-rarefaction region (respectively; 2-rarefaction
region) is bounded by R;i(t) < z < Rs(t) (respectively; R3(t) < x < Ry(t)) where
r = Ry(t) and © = Ry(t) (respectively; x = Rs3(t) and x = R4(t)) are solutions of
the equations (4.6.1) (respectively; (4.6.2)) subject to (p,u) = (pr,ur) and (p,u) =
(pr,ug) at t = 0 respectively. Here,

ur, C1 kot it 2 C"}/ (v—1) _ kg(y=1)t
P = (1 8) (o) - B 2V o (),
ko kg ko ' ko(y —1)
UR C1 kot cit 2\/0’)/ (y—1) _ kg(y=1)t
Ry(t)=| —+— ot 1) — == 1
2(1) (ko_Fkg)(e ) P o ARG (e ’ )’
ur €1 kot Clt 2 (v—1) _ko(y—=1)t
R;(t) = —+ = ot _ 1) — = — C 1
3( ) (kO + /{Z[2)> (e ) kO k0(7 _ 1) 'Y(pL) <e 2 ) )
O N T A< U 2 (1) -Gz
Ry(t) </{;0 + k:%) (e ) T —koﬁ y Cv (pr) (e 3 > )

(4.6.5)

In the 1- rarefaction region (respectively; 2-rarefaction region), let (p,u) = (R,n) at

d
t = 0 along the characteristic curves —f =D (respectively; & _ )\(2)), and thus we

dt
2\/0 = 2\/0 y—
have a; =1 + FR o and ap =1 — ;R ol

—_— fy_

Thus, when ¢y = 0, the equations (4.6.4) are integrated to get

W(l) (Q?,t) _ nekot + Q—MR’VTfle(lf;)kot n ﬁ(ekot _ 1)7

L Ko (4.6.6)
WO (4. 4) = pekot — 2/Cy -1 (=vkgt ﬂ(ekot _1)
’ -1 ko

d
In view of equations (4.6.3) and (4.6.6), the characteristics satisfying d—i = A\ in

1-rarefaction region are given by

(4.6.7)

o (77 Cl) (e — 1) — at N 2y/CyROD (e_ k-1t 1) .

— 4+ = _—
k’o ]{38 ]{'0 ko(’}/ — 1)
(1)

ox

Since = @ holds in the l-rarefaction region, in view of equations (4.6.3) and
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QVCWRLI
—1

(4.6.6), at t = 0, we have u = 1, p = R and W) = 5 + > along the
Y

x
characteristic curve i AV In particular, along the left most (respectively; right
most) characteristic curve of the 1-rarefaction region, n = uy and R = py, (respectively;

n=ur and R = pg) and hence we have

20/C7 11 20/T7 N
7]+7_;/R2_UL+7_17<IOL)2 —uR+7_17(pR)2 . (4.6.8)

x
Similarly, the characteristics satisfying - A2 in 2-rarefaction region are given

A/ (v—1) 1)
x:(%+%)(ekot_1)_%§_ﬂ<e_w_1>7 (4.6.9)

ko(y — 1)
2
and since o @ holds in the 2-rarefaction region we have,
x
2\/ C ~y—1 2\/ C y—1 2\/ C y—1
-V =ur — v (pr) * =ugr— VT (Pr) (4.6.10)
v—1 v—1 1
Thus, the solution with a 1-rarefaction wave can be written as
“hot -z < Ry(t) and z > Ry(t
Re kot Ri(t) <z < Ry(t),
ug(€)ekot + a(err-1) x < Ry(t) and x > Ra(t)
’LL(ZL', t) = c1 (ekotkf:l) ’ ’ (4612)
nekot 4 — Ri(t) <z < Ry(t),
where, for a given x and ¢, £ is to be determined from equation (4.4.10), when § = —1,
dR dR
and 7 is to be determined from (4.6.7) and (4.6.8). Since, d_tl < d_tz for t > 0, in

particular at t = 0 we have

ug, —\/Cyp) " < up —\/Cypl ',

which in turn, in view of (4.6.8), can be written as
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Hence, in view of (4.6.8) and (4.6.13) , for a 1- rarefaction wave, we have pr < pr,

ur > ur, when v > —1, and pr > pr, ug < up when v < —1.

Similarly, the solution with a 2-rarefaction wave can be written as

—kot < R3(t) and z > Ry(t
o) po(g)it ;@ < Ry(t) and x> Ra(t), (4.6.14)
Re~Fot, Ry(t) < @ < Ru(t),
kot 4 (€ 1) Ry(t) and = > Ry(t
= { OIS and a2 )
nek0t+1T7 R3(t> SJJS R4(t>a

where for a given z and ¢, £ and 7 is to be determined from the equations (4.4.10)
when 0 = 1, and (4.6.9) subject to the relation between R and 7 given by the equation
dR; dRy

(4.6.10). Since, - < a for t > 0. In particular when ¢t = 0 we have

up +\/Cypl ' <ur+1/Cyo}

which in turn, in view of (4.6.10), can be written as

Hence, in view of (4.6.10) and (4.6.16), for a 2- rarefaction wave, we have pr > pr,

ur < ur, when v > —1 and pgr < pr, ug > ur when v < —1.

4.6.2 Case-2

Let ko = 0. Then, the differential constraint equation (4.4.2) for the initial data (4.4.1)
reduces to (4.4.14) such that (pr,ur) # (pr,ur) where (pr,ur) = lim (po(z), uo(7))

i
. xLO
= lim (po(7), uo()).

z—0t

and (pg, ug)

Following a similar procedure used in Case-1 of the current section, the solution
with a l-rarefaction wave obtained from (4.4.12) for the governing system (4.2.1) along
with (4.4.1), given by
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@ Ry(t) and = > Ry(t),

plz,t) = 1+C};P0(§)t’
Tam: ) <2 < Ro(t), (46.17)
up(§) +art, x < Ry(t) and o > Ry(t),

u(z,t) =
n—+ Clt, Rl(t) <z < Rz(t),

where

Cypy
Ri(t) = upt + c11?/2 — {1+ coprt)® 2 —1},  (4.6.18)
co(3 =)
Cypy
RQ(t) = URt + Clt2/2 - f {(1 + COpRt)(S_W)/Q - 1} y (4619)
co(3 =)
—(y—1) (-1 ) 52D
R=¢—"—+2(n— 2 4.6.20
{2 w7 (4.6.20)
2/ C (=1 (=1
s T 0 4.6.21
Urp = ur 1) <PR PL >7 (4.6.21)

such that pr < pr, ug > ur, when v > —1 and pr > pr, ugp < ur, when v < —1.
Further, for a given = and ¢, the values of ¢ and n are to be determined from the

implicit equations

uo(E)t + c1t? /2 — 2 Vs(épi(?;_g {(1+ copo(&)t)* 2 — 1}, (4.6.22)
Cy(R)™

gy (R 1)

r = nt+cot?/2 -

Similarly, the solution with a 2-rarefaction wave is written as

po(§)
o) = Teopc@r T < R3(t) and x > Ry(t),

T, Ra(t) <o < Ru(t) (4.6.23)
(2.1 uop(§) + ert, x < R3(t) and x > Ry(t),
u(z,t) =
n+ at, R3(t) <z < Ry(t),

where
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{W_ 0=y )+p1:21)}(7 ’

2/ Cry
2./C ( (w 1) (w21))
up =Up+ ——< | P —p ;
: (v=D\'* g
9 /szfz (4.6.24)
Ry(t) = upt +et?/24+ Y+——" {1 H)B=M/2 _1
3(t) =upt+ at*/2 + 03 =7) {( + coprt) }7
24/Cypl°
Ry(t) = upt + e1t2/2 + 2 {(1 + coppt)® /% 1},
co(3 =)

such that pr > pr, ug > uy when v > —1 and pgr < pr, ug < uyp when v < —1.
Further, for a given z and t, the values of ¢ and 7 are to be determined from the

implicit equations

r = ug(Ot+ cert?/2 + 2 Cfg) j(i);_g {(1+ copo(E))E2 1} (4.6.25)
Cy (R
0(3 —

4.6.3 Case-3

Let p(p) = Cp?, for v € (—o0,00) and Cy > 0. Also, let ¢ = kg = 0. Then, the
differential constraint equation (4.4.2) for the initial data (4.4.1) reduces to (4.4.17)
such that (pp,ur) # (pr,ur) where (pp,ur) = hm L (po(w),uo(x)) and (pr,ur) =

lim (po (@), uo(x)).

Following a similar procedure used in Case-1 of the current section, the solution
with a l-rarefaction wave is obtained, from the solution (4.4.15) for the governing

system (4.2.1) along with (4.4.1), given by

) po(§), w < Ry(t) and x > Ry(1),
plx,t) = { R Ru(t) < x < Ra(t), (4.6.27)
w(a 1) = { up(&) + ert, x < Ry(t) and = > Ry(t), (4.6.28)
n+ et Ri(t) < < Ry(t),

where
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(y=1) cit2
Ri(t) = (uL —/Cypp? > t+ 17
(r=1) cit2
Rz(t) = (UR— C’}/pRQ )t‘i‘lT,
1 4.6.29
R (v—=1) I ( )
—{_2\/0—7(77_UL)+PL } s
UR = UL, — 2V ( o7 >_P;j1))
(v=p\""

such that pr < pr, urp > up when v > —1 and pgr > pr, ugp < up when v < —1.
Further, for a given x and ¢, the values of ¢ and n are to be determined from the

implicit equations

T=¢+ <Uo(f) - Jo_m o) e+ % (4.6.30)
( ) Cl; (4.6.31)

Similarly, the solution with a 2-rarefaction wave is obtained as

) po(§), w < Rs(t) and x > Ry(t),
plx,t) = { R Ru(t) < x < Ra(t), (4.6.32)
w(a ) = { up(&) + c1t, = < Ro(t) and = > Ry(t), (4.6.33)
n + Clt, Rg(t) S T S R4(t)7

where

{(7_ )(n— R)+pz(;2l)}T,

2/C
24/ =1 =1
uL:uR+(7_1>(pL2 _pR2 )7

(4.6.34)

(v=1) cyt?
R3(t) = (ur +/Cvyp. > t+7=
(CES)) cit2
R4 :(UR—I—\/ pR )t—f-lT

such that pr > pr, ur < up when v > —1 and pgp < pr, ugp > up when v < —1.
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Further, for a given x and ¢, the values of ¢ and n are to be determined from the

implicit equations

1 2
r=£+ (Uo(f) +/Crpol(€) )> t+ % (4.6.35)
v = (77 + \/C_fyR“El)) t+ # (4.6.36)

The inequalities obtained for rarefaction wave regions are given in the following table.

1 — rarefaction waves | v € (=1,00) | ur > ur | pr < pr
Y E (—OO, —1) Ur < Ur, | PR > PL
2 — rarefaction waves | vy € (—=1,00) | ug >urg | pr > pr
Y E (—OO, —1) ur < ur | pPr < PL

Table 4.2: Rarefaction waves

4.7 Riemann problem

Consider the initial profile

if 0
st g
(PR; UR> ) if o 2 Oa

(p(x,O),u(x,O)) = (po(:v),uo(x)) B { (pL’UL)’

where pr, pr, ur, and ug are constants.
In this section, we construct the solution for the Riemann problem to the system
of equations (4.2.1) when f = ¢; subject to the initial data (4.7.1) consisting of shock

and/or rarefaction waves.

For this, if 1-wave is a shock wave, in view of the equations (4.4.15) we have

P, if z> Sl(t>,
{ uy, + Clt, if =z S Sl(t),

plx,t) = { pr, 1w < 5i(0), (4.7.2)

5 _ (4.7.3)
u+ct, if x> 8(t),

where x = S;(t) is the 1-shock curve determined from the equation (4.5.4),, given as
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Since, uy(t) = up, + c1t, pe(t) = pr, ur(t) = u + 1t and p,(t) = p. In view of (4.5.4)y
C(p" — p1)

and Table-1, we have @ = ur, — (p — pr.) T %
P — PL)PPL

, pr < p and ug > u.

Similarly, if 2-wave is a shock wave, in view of the equations (4.4.15), we have

if x> 9t
ooy = § P L2 S0, (17.4)
p, if x < Sy(t),
i >
u( ) = up +at, if x> Sy(t), (475)
U+ cqt, if =< Sg(t),

where x = Sy(t) is the 2-shock curve determined from the equation (4.5.8),, given as

Clpr —P")p cit?
So(t) = [ up + - t+ )
() ( " (Pr — P)PR 2

Clpp — ")

In view of (4.5.8)y and Table-1, we have & = ug — (pr — p) ( Son
PR — P)PRP

with,

p > pr and U > ug.

If 1-wave is a rarefaction wave, in view of (4.6.27), (4.6.28) and Table-2, we have

( pr, if T < Rl(t),
o) =4 R i Ri(t) <o < Ralt), (4.7.6)
L D if xr > RQ(t),

(up +at, if x < Ry(t),
u(@,t) =< ntat, if Ri(t) <z < Ry), (4.7.7)
[ a+at, if x> Ry(t),

where u;, <7 < u and
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-1 o t?
T = (n—\/CvR 2 )t—i——,

2
R={—(7_1>(n—uL)+pw 1)}21,

24/C
t?
Ri(t) = |up —/C pL )t—i—l—
ct2
RQ :(UR_\/ PR ) —

Similarly, if 2-wave is a rarefaction wave, in view of (4.6.32), (4.6.33) and Table-2,

we have

(5, if r < Rs(t),

pat) = R Ry(t) <u < Rult), (47.8)
\ PR, if T > R4(t),
( u+ cit, if T < Rg(t),
U(l’, t) = < n + Clta if R3(t) S x S R4(t)7 (479)
ugp + cit, if x> Ry(t),

where % < 1 < ug and

(=1 cth
= A
( ’ ) L
2
(fy — 1) (y=1) ) -1
R= —ug) +p,° ,
{ 2m (7] UL) PL
12
R = <UL -+ \/ pL ) t+ 017
(r=1) t2
R4 Z(UR+\/ pR )t‘i‘%

We let 7 belong to (—1, 00) such that Cy > 0 for the following Lemmas 1 to 6 and
Theorems 1 to 4.

Lemma 4.7.1. Let the solution to the Riemann problem for the system (4.2.1) subject
to the initial conditions 4.7.1 be given as a 1-shock wave and a 2-shock wave. Then the

constants pr, pr, ur, and ug satisfy the following inequalities



74 CHAPTER 4. GENERALIZED GAS DYNAMIC EQUATIONS

Uy, — UR > |pL—pR| \/ (4710)
(pr — PR PLPR

Proof. If 1-wave is a shock wave, x = Si(t), implies that p; < p and @ < uy. Similarly,
if 2-wave is a shock wave, x = Sy(t), then p > pg and @ > wug. In the region,
S1(t) < & < Sy(t) the solution given in the equations (4.7.2) and (4.7.3), through 1-
shock, and the solution (4.7.4) and (4.7.5), through 2-shock, should coincide, that is,
p=p==z(say), u=1u,ie., uy, > ug and fi(z) =0 where

C (27— py) Clpr—2")
z)=up — (2 — —"—u z—
fl( ) L ( pL) (Z_pL>Z,0L R ( pR) (pR_Z)pRZ
with max{pr, pr} < z < co. Observe that lim fi(z) = —oo and
Z—00
ah _ _C (72”(2 —pu) Fpe(E = py) | E(E = pr) Fpr(ET - /J?z)) <0
dz 23\ /Cor(z7 = p1)(z — pr) VCOpr(2Y — pr)(z — pr)

which implies that f; is a decreasing function in z.

In order to have a unique solution for fi(z) = 0 in [py, 00) (respectively; in [pg, 00))

when pr, > pg (respectively; when pgr > pr), it is required that f;(py) > 0 (respectively;
filpr) > 0), ie

ur —ug — |pL — pr |\/ > 0. (4.7.11)
(pr — pr) PLPR

Hence the proof. This is depicted in Figure-4.1. O

Lemma 4.7.2. Let the solution to the Riemann problem consist of a 1-shock wave
and a 2-rarefaction wave for the system (4.2.1) subject to the initial conditions (4.7.1).

Then pr, pr, ur and ug satisfy the inequalities pp < pr and
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Clo) — o7 _
up —upg < \/ (or = p1) (P pL), when ur > ug, (4.7.12)
PLPR
2+/C a1 ot
Uz, — U > ——Y (p;f - pzz ) , when urp < ug. (4.7.13)
"}/ J—

Proof. 1f the 1-wave is a shock wave and the 2-wave is a rarefaction wave, it implies
that p, < p, 4 < uy and p < pg, @ < ug. In view of (4.7.2), (4.7.3), (4.7.8) and (4.7.9),
it follows that the solutions given by (4.7.2)-(4.7.3) and (4.7.8)-(4.7.9) should coincide
in the region S;(t) < < Rs3(t). This means that p = p = z(say), i.e., pr < z < pr
and f(z) = 0 where

=ur — (2 — M—u 2\/0_7 WT_I—Z’YTA
fo(z) = ur — (2 — pr) (z — p1) 2p1 R+<7_1) (pR >’

for p;, < z < pr. Observe from the above equation that

2l _ Y 57 _3
dfs CL 127z —pr) + (" —p1) | Ny
dz 222\ /Cpr(27 — pp)(z — pr)

implying that f, is decreasing. Since, py < pgr, the equation f3(z) = 0 has a solution
only when f5(pr) > 0 and fo(pr) < 0, i.e.,

fg(pL) >0=ur, —ug+ m (pR — Py, ) > 0, (4714)
v Y _
fQ(pR) < 0= ur —ur— \/C<pR pL)(pR pL) < 0. (4715)
PLPR

Since pr, < pg, and if uy > ug ,the condition (4.7.14) always holds. Thus the solution
for fo(z) = 0 over [pr, pr| is possible if (4.7.15) holds, i.e.,

Ol — oY _
%_m<¢(% pL)\Pr — pr)
PLPR

Similarly, if u;, < ug then the condition (4.7.15) always holds. Thus the solution for
fa(z) = 0 over [pL, pg] is possible only if (4.7.14) holds, i.e.,
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L _ WOy ( 1 f>
Uy, — UR — |\ P —pP .
((y=1)) \"F -
Hence the proof. This information is depicted in Figure-4.2. O

Lemma 4.7.3. Let the solution to the Riemann problem consist of a 1-rarefaction
wave and a 2-shock wave for the system (4.2.1) subject to the initial conditions (4.7.1).

Then pr, pr, ur, and ug satisfy the inequalities p;, > pr and

2./C =1 =1
Uy, — UR > ( 17) <pR2 —p.° ) , when up < ug, (4.7.16)
"y —
Clo) — o7 -
up —ug < \/ (Pr = pL)(pr 'OL), when up > ug. (4.7.17)
PRPL

Proof. Suppose that the 1-wave is a rarefaction wave. It implies that p < pp, u > ur.
Similarly, let the 2-wave be a shock wave. Then p > pr and @ > ugr. In view of
the equations (4.7.4) - (4.7.7), the solutions given by the equations (4.7.4)-(4.7.5) and
(4.7.6)-(4.7.7) should coincide in the region Rs(t) < z < Ss(t), i.e., p = p = z (say),

u =1, i.e., pr<z<pr, and f3(z) =0 where

oy O a2y [ CloR— )
Jale) =~ (7—1)< i) o (pr —2) 2’

for pp < z < pr. Observe from the above equation that

-3 7 — T — p)
dfs _ o C’3 v (2 — pr) + ,ZR(Z Pr) <0,
dz 222 \ /Cpr(z" — p})(z — pr)

implying thereby that f3 is decreasing. The equation f3(z) = 0 has a solution only
when f3(pr) > 0 and f3(pr) <0, i.e.,

Yo _
fg(pL) <0=ur, —ugr — \/C(pR pL)(pR pL) < 0, (4718)
PRPL
2./C =1 =1
fs(pr) > 0= uyp —up — = 17) <pR2 —p.? ) > 0, (4.7.19)
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If u;, < ug then the condition (4.7.18) is always true. Thus, the solution for f3(z) =0

over [pg, pr] exits only when the condition (4.7.19) is true, i.e.,

2O (7 =) >0

o= — (4.7.20)

Uy, —URp —

Further, when u; > wug, the condition (4.7.19) is always true. Thus, the solution for

f3(2) = 0 over [pg, pr] exits only when the condition (4.7.18) is true, i.e.,

Clp) — o) _
ug — up — \/ (or = pp)ler=re) (4.7.21)
PRPL
Hence the proof. This is depicted in Figure-4.3. O]

Lemma 4.7.4. Let the solution to the Riemann problem consist of a 1-rarefaction wave
and a 2-rarefaction wave for the system (4.2.1) subject to the initial conditions (4.7.1).

Then pr, pr, ur, and ug satisfy the inequalities uyp < ur and

2/
(v-1)

71
PRt 4+ p;? ><’LLL—UR<—‘ —p (4.7‘22
<R L (7_1) L )

Proof. Suppose that the 1-wave is a rarefaction wave. It implies that p < pp, 4 > up.
Similarly, let the 2-wave be a rarefaction wave. Then p < pr and @ < ug. In view of
the equations (4.7.4)-(4.7.7), the solutions given by the equations (4.7.4)-(4.7.5) and
(4.7.6)-(4.7.7) should coincide in the region Ry(t) < x < R3(t), i.e., p = p = z (say),

urp, <u=1u<ugand fi(z) =0 where

2\/Cv< e %)
2272 ,

f4(2)=UL—UR—(,Y_1) — P — PR

for 0 < z < min {pg, pr}. Observe from the above equation that

df4:—2\/ 22 < 0,

implying thereby that f; is decreasing. The equation f4(z) = 0 has a solution only
when f4(0) > 0 and f4(pr) < 0 (respectively; fi(pr) < 0) when p < pr (respectively;
pPr < pL), 1.e., pr, pr, ur and ug should satisfy
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2,/Cr 11
up — uR + (p S ) ) 0, (4.7.23
CENACEN )
and
2V/Cy [ 1
Uy — uRr + ﬁ (pR2 —pr° ) <0, when pp < pg, (4.7.24)
24/C' =1 =1
up — UuR + (= 17) (pﬁ — PR ) <0, when pr<pr. (4.7.25)
Hence the proof. This is depicted in Figure-4.4. O

Lemma 4.7.5. Let the solution to the Riemann problem consist of only a 1-rarefaction

wave (respectively; a 2- rarefaction wave) for the system (4.2.1) subject to the initial

VCy
(v—=1)

pr’

conditions (4.7.1) then pr, > pgr (respectively; pr, < pr) and up—ur = — — PR

Proof. Suppose that the solution is given through a 1-rarefaction wave only Then in

~—1
view of (4.7.6)-(4.7.7), we have p < pr, p = prand 4 = ug, i.e., up— ?‘/T) (pR — pzz > =

UR-

Similarly, when the solution is given only through a 2-rarefaction wave, in view of
=1

(4.7.8) and (4.7.9), it can be easily shown that py < pg and uy + ?‘ﬁ) (pR —p° ) =

ugr. Hence the proof. O

Lemma 4.7.6. Let the solution to the Riemann problem consist of only a 1-shock wave

(respectively, a 2-shock wave) for the system (4.2.1) subject to the initial conditions

(pR PL)

(4.7.1) then py < pr (respectively; pr, > pr) and up —ugp = |pr — p1| Grprlpror”

Proof. Suppose that the solution is given only through a 1- shock wave. Then in view of
(pr—p1)(PR—PL)

(4.7.2) and (4.7.3), we have py, < p, p = pg and 4 = ug, i.e., uy,— P

= UR.
Similarly, when the solution is given through a 2-wave as a shock wave, in view
of (4.7.4) and (4.7.5), it can be proved that uj + {en—pr)ler=pr) _ - Hence the

PLPR
proof. ]

The following four theorems give the complete characterization of the solution of

the Riemann problem under consideration.

Theorem 4.7.1. Let up, > ug. If pp > pr (respectively; pr < pr), then a 1-

shock wave (respectively, a 2-shock wave) is a solution to the Riemann problem for

~y—1 ~y—1
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the system (4.2.1) subject to the initial conditions (4.7.1) if and only if (ur, — ugr) >

(pL pR)

oL = Pl (pL—PR)PLPR

Theorem 4.7.2. Let up, < ug. If pp > pr (respectively; pr, < pr) then a 1-rarefaction
wave (respectively, a 2-rarefaction wave) is a solution to the Riemann problem for
the system (4.2.1) subject to the initial conditions (4.7.1) if and only if (ur, — ur) <

(/’L PR)

oL = Pl (pL—PR)PLPR

Theorem 4.7.3. Let ur, > ug. If pp > pr (respectively; pr < pgr), then a 1-
shock wave (respectively, a 2-shock wave) is a solution to the Riemann problem for
the System (4.2.1) subject to the initial conditions (4.7.1) if and only if (uy, —ugr) >

l ~y—1
2

’Y_

Theorem 4.7.4. Let —QF (pLQ + pR ) (ur, —ugr) < 0. If pr, > pr (respectively;
pr < pr), then a 1- mrefactzon wave (respectively, a 2-rarefaction wave) is a solution

to the Riemann problem for the system (4.2.1) subject to the initial conditions (4.7.1)

I
if and only if (up —ug) < — ﬁ P> — PR’

4.8 Riemann problem with non-constant initial data

In this section, we construct the solution for the Riemann problem to the system of

equations (4.2.1) when f = kou and p(p) = Cp subject to the initial profile

(p(x,0), u(x, 0)) = (po(x), uo(x)) = (48.1)

(pr, kox +ur), if x <0,
(pr, kox + ug), if = >0,

where pr, pr, ur and ug are constants, consisting of shock and/or rarefaction waves.

Then, the solution is given in the following form.

Let the 1-wave be a shock wave. Then

“Rtif 2 < S(¢

pLe y 1 T > )

plz,t) = { S i (4.8.2)
pe~mt it x> Si(t),

(4.8.3)

)
)
() :{ up + ko, if x<S(t),
’ u+ kox, if x> S5i(t),
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Cp\ (et —1
h = —\/— :
where S (t) (uL pL> ( e >

(ﬁ—PL)\/E

(pLp)

In view of (4.5.4)y we have & = uy — , pr < pand up > .

Similarly, if the 2-wave is a shock wave, then

Rt if x> Sy(t
ooty = 4 PRE AL x = 55(0), (4.8.4)
pe kot if @ < Sy(t),
k if x> 95(t
w(w ) = 4 R T RoT I @2 5a(0), (4.8.5)
U+ kox, if x < Sy(t),
o) ()
where Sy(t) = | u+ 4/ —
2{f) ( PR ko
(P — pr) S .
In view of (4.5.8) we have & = ug + = with, p > pg and @ > up.
V PRP
If the 1-wave is a rarefaction wave, then
( pre ot if r < Ry(t),
1 xkqg
plet) =4 o R s (Vo)) e ) <0<y, (480
\ pe kot if x> Ry(t),
ur, + ko, if r < Ry(t),
u(a,t) = (gﬁg‘;ﬁ‘f + \/6) L if Ri(t) < < Ru(t), (4.8.7)
U+ kox, if xr > Rg(t),

wiores = =Dl (), 10 = (1= v0) (5523, ) = (-0) (52

and py, > p.
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Similarly, if the 2-wave is a rarefaction wave, then

[ peFkot, if r < Rs(t),

plx,t) = pRe<]”“OH\/lé(ekgcokto_l‘@“R))7 if Ry(t) <z < Ralt), (4.8.8)
| pre !, if x> Ry(t),
(i + Koz, if z < Rs(t),

u(e,t) = (882 —VC), i Ry(t) <o < Ralt), (4.8.9)
| ur + ko, if x> Ry(t),

sy i (). 10 - (14.0) (42,140 = o+ ) (£52)

and p < pr. Here, u and 4 are arbitrary constants.

Using a similar analysis as done in Section 4.7, we state the following theorems.

Theorem 4.8.1. Let up > ug. If pr > pr (respectively; pr, < pr) then a 1-shock wave
(respectively, a 2-shock wave) is a solution to the Riemann problem for the system
(4.2.1) with f = kou and p(p) = Cp subject to the initial conditions (4.8.1) if and only

if (ur, —ur) = |pr = prl /) 550

Theorem 4.8.2. Let ug, > ug. If pp, > pr (respectively; pr, < pr) then a 1-rarefaction
wave (respectively, a 2-rarefaction wave) is a solution to the Riemann problem for the
system (4.2.1) with f = kou and p(p) = Cp subject to the initial conditions (4.8.1) if

and only if (ur, —ur) < |pr — prl pLCpR'

Theorem 4.8.3. Let up, < ug. If pp > pr (respectively; pp < pr) then a 1-shock wave
(respectively, a 2-shock wave) is a solution to the Riemann problem for the system
(4.2.1) with f = kou and p(p) = Cp subject to the initial conditions (4.8.1) if and only
if (up, —ug) > —\/a‘log (’;—f)’

Theorem 4.8.4. If py > pgr (respectively; pr, < pr) then a 1-rarefaction wave (re-
spectively, a 2-rarefaction wave) is a solution to the Riemann problem for the system
(4.2.1) with f = kou and p(p) = Cp subject to the initial conditions (4.8.1) if and only
if (up —ug) < —\/E‘log (f)—f) )
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Tr —

Figure 4.1: 57 and S, are, respectively, the back-shock and the front shock; regions
x < S1(t), S1(t) <z < Sa(t), and x > Sy(t) are depicted as I, IT and III respectively.

X —
I |
T s, R, R,
+
\Y
T —

Figure 4.2: Region behind the back-shock S; is depicted as I; region S (t) < x < Rs(t)
between S; and the trail characteristic R3 of the front rarefaction wave III is depicted
as II; region x > R4(t) ahead of the front rarefaction is depicted as IV.
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t—
by

Tr —

Figure 4.3: The region x < R;(t) is depicted as I; back rarefaction region R;(t) < x <
Ry(t) is depicted as II; the region Ry(t) < x < Sy(t) is depicted as III and the region
x > So(t) is depicted as IV.

T —
I i
T R, R, R, R,
+
\%
T —

Figure 4.4: The region < Ry (t) is depicted as I; IT is the back rarefaction wave region;
region Ry(t) < x < Rs(t) between front and back rarefaction is depicted as III; IV is
the front rarefaction wave region and region x > Ry(t) is depicted as V.
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Chapter 5

Wave interactions of a double
Riemann problem for rate-type
material with non-constant initial
data

5.1 Introduction

In the recent decade, researchers have shown a growing interest in exploring the
interactions of elementary waves in hyperbolic systems of partial differential equa-
tions [2,5,6,8,9, 15,91-94], owing to their extensive practical applications such as

stability of Riemann solution with respect to small perturbations in the initial data.

However, to discuss interactions with the perturbed Riemann problem for non-
constant data, first it is required to understand completely the Riemann problem for
the system under consideration. Over the years, numerous mathematical techniques
have been proposed to obtain the exact solutions to these systems, as documented in
various references from [40,61,85]. In recent years, the approach based on differential
constraints, as introduced by Janenko in [30], [31] and [32]), has garnered significant
interest. Further, the contributions towards the development of this approach may be
found in [40,41,43].

Finding out an exact solution to a generalized Riemann problem is a difficult task.
However, LeFloch and Raviart [56] obtained an approximate solution to the general-
ized Riemann problem in the form of an asymptotic expansion, which was employed

for gas dynamics equations given in [57].

85
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Interactions of elementary waves for perturbed Riemann problem was discussed by
many researchers. In particular, the interaction problem for p-system which represents
isentropic gas dynamic in Lagrangian co-ordinate, was discussed by Smoller [2]. Luo
and Yang [89] discussed the interactions of elementary waves for compressible Euler
equations with frictional damping. Raja Sekhar and Sharma [90] delved into the ex-
istence of a vacuum state and briefly discussed wave interactions within the realm of
isentropic magnetogasdynamics and the wave interactions were explained by them in
shallow water waves in [76]. Liu and Sun [86] carried out an in-depth analysis of ele-
mentary wave interactions for the Aw-Rascle model with generalized Chaplygin gas. Ji
and Shen [88] constructed the global solution to the perturbed Riemann problem and
discussed the interactions of elementary waves, and gave the phenomena of coalesce
for shock waves of the same family. Moreover, Wei and Sun [81] completely discussed
about the Riemann problem and interaction for a class of strictly hyperbolic systems

of conservation laws.

The aforementioned works motivated us to investigate the conditions under which
the Riemann solution given by shock waves interacts, and also to discuss the structure
of the solution, which is ultimately characterized through elementary waves for the

system under consideration.

In this chapter, the shock wave interactions of the double Riemann problem are
considered. The results derived in Chapter 2 to solve the Riemann problem for non-
constant data for rate-type material enable us to discuss the wave interactions arising

due to two discontinuities in the initial data.

5.2 Solutions to the Cauchy problem

We consider the balance laws describing rate-type materials ( [30] - [32]) as follows

ou 0 (1 B
'5‘%(0—Q
ov ﬁu_
o o

(5.2.1)

1—w,

where u is the Lagrangian velocity and 1/v with v # 0 denotes the stress in the mate-

rial that is undergoing loading/unloading processes.
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The eigenvalues A(¥, i = 1,2 representing the characteristic speeds of the system

(5.2.1) are given by

-1 -1
RO—| " |.R®=|" |
1 1

Further, both the eigenvalues are real and distinct, the system (5.2.1) is strictly
hyperbolic and genuinely nonlinear (since R® - VA®) =£ 0 for i = 1,2).

In Chapter-2, [61], the system was considered with smooth initial data
u(z,0) = ug(x), v(x,0)=vy(x), (5.2.2)

and the solution of the Cauchy problem (5.2.1), (5.2.2) was obtained using the differ-

ential constraints method as follows

v(z,t) = vo(E)e™,

u(x,t) = up(&) + 6 (e;o(_g)l) :

el —1
I_£+6<UO(§)>’ 0==+1.

Here, £(z,t)is determined for a given x and ¢ from the equation (2.3.9)3, and

dug(z) 6 dvg
iy bt (5.2.3)

Observe that for a given z and ¢, the equations (2.3.9); and (2.3.9) admit unique
values for v and u provided there exists a unique £ satisfying (2.3.9)3; in other words,
the existence of a unique solution is guaranteed for every x in (—oo0, c0) and for every
t > 0 provided that

et —1 Y\ dug
0 ((vo(f))z> d_f +1+#0. (5.2.4)

Further, in Chapter-2, [61], the solution of the generalized Riemann problem of the
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system (5.2.1) subject to the initial conditions

(r+up,vp), if =<0,

9.2.5
(1‘+UR,UR), if $ZO, ( )

(u(,0), v(x,0)) = (o), vo()) = {

is provided with shock and/or rarefaction waves, the results of which can be summarized

as follows.

Theorem 5.2.1. The solution to the generalized Riemann problem for the system
(5.2.1) subject to the initial data (5.2.5) consists of

e a 1-shock wave if and only if one of the following conditions hold:

VR — UL

A/UL, VR

(b.) ur, — ur + log (U—R) < 0, when vp < vy, and ur, > ug.
vL

(a.) up, —ug + < 0, when vg > vy, and u;, < ug.
(c.) vg <wvp and up < ug.
e a 2-shock wave if and only if one of the following conditions hold:
(%9

(a.) up, —ug — log (U—R) < 0, when vg > v and ur > ug.

VR — Uy,
(b.) up, —ur — < 0, when vp < v and ur < ug.
VL UR

(c.) vg > vy and ur, < ug.

e a I-rarefaction wave if and only if one of the following conditions hold

VR — VL

A/ ULUR

(b.) ur, — ur + log (U—R) > 0, when vp < vp and ur > ug.
vL

(a.) up, —up + > 0, when vg > vy, and ur, < ug.
(c.) vg > vy and ug > ug.

e a 2-rarefaction wave if and only if one of the following conditions hold:

v
(a.) up, —ur — log (—R) > 0, when vg > vy, and uy, > ug.
VL

VR — UL,
(b.) up, —ugr — > 0, when vg < vy and up, < ug.

\/UVLUR

(c.) vg <wvp and u > ug.
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5.3 Elementary waves interactions

In this section, an attempt is made to discuss and study the interaction of shock waves
for the system (5.2.1), which may arise due to two jump discontinuities in the initial
data, one at x = 0 and the second one at * = xy > 0, named as a double Riemann

problem and is given as follows

(r+up,vp), if =<0,
(u(x,0),v(x,0)) = (uo(x),v0(x)) = § (& +up,vn), if 0<z<zg,(5.3.1)

(x +ug,vg), if zo<uz,

where uy, ug, uy, uy, vy, and vg are given constants but arbitrary. As discussed in
Chapter 1, the solution of the system due to the discontinuity in the initial data at z = 0
is given through either a 1-shock curve, z = Si(t), or a l-rarefaction region, R (t) <
x < Ry(t), or a 2-shock curve, x = Sy(t) or a 2-rarefaction region, Rs(t) < x < Ry(t).
Similarly, due to the discontinuity in the initial data at * = zy the solution is given
through either a 1-shock curve, z = S;(t), or a 1-rarefaction region, R;(t) < z < Ry(t),
or a 2-shock curve, = S5(t), or a 2-rarefaction region, R3(t) < z < R4(t). Due to
the presence of two discontinuities in the initial data, the shock/rarefaction curves of
different families of characteristics emanate from x = 0 and x = xg, and hence there
exists a T' > 0 such that interaction of shock curves and/or rarefaction region may take

place for ¢ > T', which is discussed in the following subsections.

5.3.1 Interaction of a 1-shock wave (z = S|(t)) with a 1-shock
wave (z = S;(t))

Due to the discontinuity at x = 0 in the initial data, when

up =y + —A L (5.3.2)
(vrvm)

with vy, < vy and uy; > up, the solution is given through only a 1-shock wave as

o(,t) = { ve”, i o < Si(0), (5.3.3)

(5.3.4)
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(1—¢"

V(vLoar)

Similarly, due to the discontinuity in the initial data at z = xy, when

where = S, () is the shock location with Sy (t) =

VR — UM

: 5.3.5
oo (5:3.5)

UR = UM —

with vg < vy and ugr > wuyy, the solution is given through only a 1- shock wave as

“toif < Syt
oty =4 e o r<50), (5.3.6)
vge™t, if x> Si(t),
if x<S(t
w(w ) = 4 et E 1w s S0, (5.3.7)
ugp +x, if x> S5(t),

(1—¢)

where x = S, (t) is the shock location with S (t) = zo + .
(vrUM)

Thus, in view of the equations (5.3.2) and (5.3.5), the solution of the double Riemann

problem is obtained through only 1-shock waves at x = 0 and at x = xy when

Uy — Vg, VR — Upm
Vp < Uy <Vp, Up <uy <Ugr, UL —UR— — = 0. (538)

V(o) y/(vaor)

Since vg < vy, the shock curve, x = Sl(t), overtakes the shock curve, z = S;(t), in a

finite time, t = t; > 0, where t; is given as

h = log (1 | ToV/URULUM ) , (5.3.9)
A/UVL — A/UR

which implies that the solution of the double Riemann problem given in equations

(5.3.3) - (5.3.7) is valid for ¢ < t;. The solution, due to the interaction of a 1-shock

wave emanated at x = 0 with a 1-shock wave emanated at x = zq, for ¢t > t;, can be

obtained by solving the Riemann problem with the following initial data

_tl .f <
<u<x,t1>,v<x,t1>>:{(‘”“L""Le ), i w <o, (5.3.10)

(x +ugp,vge™), if x>z,
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1—eht 1—eht
where z; = g =20+ g.
(ULUM) (URUM)

Since, vg < vy, and uy, < ug, using Theorem 5.2.1, the possible forms for the solution

to the Riemann problem subject to the initial data (5.3.10) are

[. given through a 1-shock wave, z = S;(¢), and a 2-shock wave, x = S3(t), ema-

nating at the point (z,t) = (z1,t1).

I1. given through a 1-shock wave, x = S;(t), and a 2-rarefaction wave in the region,
R3(t) < o < Ry(t), emanating at the point (z,t) = (x1,t1).

III. given through only a 1-shock wave, © = S;(t), emanating at the point (x,t) =
(l’l, tl)
5.3.1.1 Case-I

Since, vg < vy and uyr, < ug, using Theorem 5.2.1, if the solution to the Riemann
problem subject to the initial data (5.3.10) is given through a 1-shock wave, z = S;(t)

and a 2-shock wave, x = Sy(t) only emanating at the point (z,t) = (z1,t1), then

Ur — VR

A/UVLUR

and the solution for ¢ > ¢; is given as follows

<0, (5.3.11)

up, — Uug +

((wpe™t, if  x < Si(t),
U(.T, t) = zle*t, if Sl(t) <z < Sg(t), (5312)
vge™t if @ > Sy(t),

ur, + ., if < S5(t),
21 —ve h i
u(r,t) =4 up— —F————=+ux, if Si(t) <x<S(t), (5.3.13)
(vpe™tz)
| ur + 7, if x> 55(t),
(e — <)
where the 1-shock curve x = S;(t) is given by S)(t) = ———= + 21 and the 2-shock
Vv (vpz1)
o (ef —e't) . .
curve © = So(t) is given by Sy(t) = ﬁ + x1. Here, z = z; is the solution to the
VR<1
equation
z—ovpe vpe it — 2
ur, — Up — — =0, z€ (vg,vr). (5.3.14)

\/(vLe*tl z) \/(zvRe*tl)



92 CHAPTER 5. WAVE INTERACTIONS

Thus, the necessary and sufficient condition for the solution to the double Riemann
problem is ultimately given through a 1-shock wave and only a 2-shock wave is obtained,
in view of (5.3.8) and (5.3.11), in the form of an inequality satisfied by the constants

vr, vy and vR as

fi(ve, va, vg) <0,

when vg < vy < vp, up < upy < ug, and

Vrp — VR Upm — UR Up —Um

A/UVLUVR \/UMUR \/’ULUM ’

fi(vr, vm,vR) = (5.3.15)

5.3.1.2 Case-I1

Similarly, since vg < vz, and uy, < ug, using Theorem 5.2.1, it can be concluded that
the solution to the Riemann problem subject to the initial data (5.3.10) is given through
a 1-shock wave, z = Si(t), and a 2-rarefaction wave in the region, Rs(t) < z < Ry(t),

emanating from the point (z,t) = (x1,t;) only if

VU, — VR

- >0 5.3.16
TR s (33.10)
and the solution for ¢t > t; is given as follows
(vpe™, if < S(t),
de_t, if Sl(t) <z < Rg(t),
v(x,t) = < 1 — elti=d) 5.3.17
(1) (e—) ,if Ry(t) <z < Ralt), (5.3.17)
r — T
[ vge™, if x> Ry(t),
(up +z, if o< 5(t),
_ —t1
up - 4, it Si(t) << Ry(t),
u(z,t) = (vpe=ti20) (5.3.18)
Z 7)ok £ Rt R
up — log (@ o) +x, i 3(t) < & < Ry(t),
ug + x, if x> Ry(t),
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t1 At
where the 1-shock curve x = Si(t) is given by Si(t) = ¢ + 27 and the 2-

V (vp22)

t_ At
=) + x1 and Ry(t) =

rarefaction region, R3(t) < x < Rt), where Rs(t) =
22

(e =)

UR

+ 21 which is shown in Figure 5.1. Here z = 2z, is the solution to the equation

z —vreh —t

up, — Ugr — ———— + log UR®
(vpetz)

) =0, z¢€ (vg,vp). (5.3.19)

Further, the necessary and sufficient condition for the solution to the double Riemann
problem ultimately given through a 1-shock wave and a 2-rarefaction wave, in view of
(5.3.8) and (5.3.16), is in the form of an inequality satisfied by the constants vy, vy,

and vg as

fi(v, va,vg) >0

when vg < vy < wvp, up < upy < ug and fi(vp, var, vg) is defined as in (5.3.15).

5.3.1.3 Case-III

Similarly, since vg < vy, and uy, < ug, using Theorem 5.2.1, it can be concluded that
the solution to the Riemann problem subject to the initial data (5.3.10) is given through

only a 1-shock wave, x = S;(t), emanating from the point (x,t) = (21, ;) only if

Vr, — UR
_ =0 5.3.20
ur, — UuRr + Norr ; ( )
and the solution for ¢ > ¢, is given as follows
it < Syt
ooty = ¢ eSS, (5.3.21)
vre™t, if x> Si(1),

it <S5
u@w—{ufm“l v < 5i0), (5.3.22)

(
ugp+x, if x> 5(t),

(e —¢')

\Y% (vLvR)

Further, the necessary and sufficient condition for the solution to the double Riemann

where the 1-shock curve z = S1(t) is given by S;(t) = + 2.

problem ultimately given through only a 1-shock wave is obtained, in view of (5.3.8)
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and (5.3.20), is in the form of an equality satisfied by the constants vy, vy, and vg as

fi(vr,var,vgr) = 0,
when vg < vy < vp, up < up < ug, and fi(vp, vy, vR) is defined as in (5.3.15)

Lemma 5.3.1. Consider the function fi(vp,var,vr) defined as in (5.3.15). Then fi

1S a positive function when vy < vy < vp.

Proof. Observe that lim f; =0 and

VR—VUM

0fi _ (ve = Vorom) (Vi — vou)

= <0,

a’UR 2UR\/URULUM

since vg < vy < wvr. This inequality implies that f; is monotonically decreasing as

vg increases to vy, and since the function fi(vp, vy, va) = 0, it follows that f; is a

positive function when vy < vy < vy. O

Thus, in view of Lemma 5.3.1, the solution due to the interaction of a 1-shock wave,
x = Sy(t), originated from (x,t) = (0,0) and a l-shock wave, z = S (t), originated
from (z,t) = (x0,0), is given through only 1-shock and 2-rarefaction waves as given
in Case-II of Section 5.3.1, for which the solution is given by equations (5.3.17) and
(5.3.18) and is depicted in Figure 5.1.

5.3.2 Interaction of a 2-shock wave (z = Sy(t)) with a 1-shock
wave (z = S;(t))

Due to the discontinuity at = 0 in the initial data, when

(vrom)

with vy, < vy and up < uys, the solution is given through a 2-shock wave only as

ooty = e i w2 Sa(t), (5.3.24)
’ ve ™t if x < Sy(t), o

(5.3.25)

(2. 1) uy + oz, if x> So(t),
u(z,t) = -
up +x, if x < Sy(t),
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(' —1)

(vrvm)
Similarly, due to the discontinuity in the initial data at © = x(, when

where = Sy(t) is the location of the 2-shock wave with Sy(t) =

Up — UR

v (vrva)

with vy, > v and uy; < ug, the solution is given through only a 1-shock wave as

uR = uy + (5.3.26)

it x < Si(¢
o(w ) = 4 M€ 1w s Si(D), (5.3.27)
vpe™t, if x> Si(t),
if @ <S(t
u(z,t) = tar + 1 r= ?1( ) (5.3.28)
ur+x, if x> S5(t),

(1-e)
V(wroar)
Thus, in view of the equations (5.3.23) and (5.3.26), the solution of the double Riemann

problem is obtained through only a 2-shock wave originating at * = 0 and through

where z = S (t) is the location of the 1-shock with S (t) = xq +

only a 1-shock wave originated at © = xg when vg < vy, v < v, ur < up < ug and

Vp —Upm VR — Um

Uy, —UR — — =0. (5329)
V (ULUM) vV (URUM)
, S, _ dS .
It is easy to observe that the shock speed o > o Hence, the 2-shock wave interacts

with the 1-shock wave in a finite time, t = t, > 0, where t5 is given as

ta = tog (14 L), (5330
\/UR + /UL,

which implies that the solution of the double Riemann problem given in equations

(5.3.24)- (5.3.28) is valid for ¢ < t5. The solution after the interaction, i.e. t > tq, can

be obtained by solving the Riemann problem with the following initial data

(x+up,vpe™), if x <

(U(l‘,tg),v(:ﬁ,tg)) = { (5331)

(x +ug,vge™2), if x> x,

t2 1 1 —ef
where x4 = u =20+ Q.
(ULUM) (URUM)
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Since, u;, < upg using Theorem 5.2.1, the possible forms for the solution to the

Riemann problem subject to the initial data (5.3.10) are

I. given through a 1-shock wave, x = Si(t), and a 2-shock wave, x = Sy(t), ema-

nating at the point (x,t) = (z2,t2).

II. given through a 1-shock wave, z = Si(t), and a 2-rarefaction wave in the region,
R3(t) < o < R4(t), emanating at the point (z,t) = (x9,t2) for vy > vpg.

III. given through a l-rarefaction wave in the region, R;(t) < z < Ry(t), and a

2-shock wave, x = Ss(t), emanating at the point (z,t) = (x9,t3) for vy, < vg.

IV. given through only a 1-shock wave, x = Si(t), emanating at the point (x,t) =
(%2, tg)

V. given through only a 2-shock wave, x = Sy(t), emanating at the point (z,t) =
(1]2, tg)

5.3.2.1 Case-I

After the interaction of the waves z = Sy(t) and z = S (t), since uy, < ug hold, using
Theorem-5.2.1, it can be concluded that the solution to the Riemann problem subject
to the initial data (5.3.31) is given through a 1-shock wave, x = Si(t), and a 2-shock

wave, © = Sy(t), emanating from the point (z,t) = (z9,t2), if

lvr, — vg| -

A/UVLUVR

and the solution after the interaction, i.e., t > to, is given as

Uy, — UR + O, ur < UR, (5332)

((wpet, if oz < Si(1),
v(z,t) =< ze”t, if  S; <a < Syt), (5.3.33)
vpe™t, if x> Sy(t),

ur, + , if o< 5(t),
23 — vpe 2 ,
u(z,t) = up — ———+ux, if Si(t) <z <S(t), (5.3.34)
(vpet2z3)
| ur + 7, if x> Sy(t),

where x = S)(t) is the location of the 1-shock wave with Si(t) =
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(e — )
VVRZ3

from (z,t2) as shown in Figure 5.2. Here z = z3 is the solution to the equation

x = Sy(t) is the location the 2-shock wave with Sy (t) = + 25, both emanating

— —t2 —t2 _
U, — U — e~ VRS S 0, =z € (min{vg,vr}, max{vg,vg}). (5.3.35)
(vpet2z) (vge™t2z2)

Further, the necessary and sufficient condition for the double Riemann problem is
ultimately given through only a 1-shock and a 2-shock, in view of (5.3.29) and (5.3.26),

is in the form of an inequality satisfied by the constants vy, vy, and vg as

fo(vp,var,vg) < 0, when vy, > vg,

fs(vr, var,vg) < 0, when vy < vpg,

when vgp < vy, v < v, up < upy < ug, and

UL—UR_’UM—’UL_UM—UR (5336)

VULUR VUMUL VURUM
Vp — VL Uy — UL Uy —UR
f3 Vr,Upn,UVR) = — — . 5.3.37
(o2, v, vR) VULUR VUMUL VRUM ( )

fQ(UL7 Upnr, /UR) =

Lemma 5.3.2. If fo(vr,var, vr) and f3(vp,var, vg) are defined as in equation (5.3.36)
and in the equation (5.3.37) then fo is a negative function when vp < vy < vy, and f3

s a negative function when vy < vgp < V.

Proof. Observe that

6vR QUR\/UR’UL’UM

due to the condition vg < vy < vy,. This implies that f, is monotonically increasing

0f: _ (Vom = Vo) (Vorow —ve) _

as vg increases to vy, and since the function fo(vp, vy, vr) = 0, we have f5 is a negative
function when vg < v, < vyy.
Similarly, when v, < vg < vy, we have

df3 _ UrtUL VR + Unp

8’UR N QUR\/URUL QURMURUM

This implies that f3 is monotonically increasing as vy increases to vy, and since the

> 0.
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function f3(vp,var,var) = 0, we have f3 to be a negative function when v, < vgp <

UM - O

Thus, in view of Lemma 5.3.2, the solution due to the interaction of a 2-shock wave,
x = Sy(t) originated from (x,t) = (0,0) and a 1-shock wave, 2 = S (t) originated from
(x,t) = (20, 0), is given through only 1-shock wave and a 2-shock wave as given in the
equations (5.3.33) and (5.3.34) which is depicted in the Figure 5.2.

5.3.2.2 Case-1I1

Similarly, since uy, < ug, using Theorem-5.2.1, it can be concluded that the solution
to the Riemann problem subject to the initial data (5.3.31) is given through a 1-shock
wave, © = S;(t), and a 2-rarefaction wave in the region, R3(t) < x < R4(t), emanating

from the point (z,t) = (22, t2) only if

VUV, — UR

\/VLUR

and the solution for ¢t > ¢, is given by

Uy, — UR + >0, and vy, >vgr, ur<ug, (5338)

[ vpe™, if < S(t),
zqet if  Si(t) <z < Rs(t),
v(x,t) = 1 — elt2—1) 5.3.39
(@.0) (e—) ,if Ry(t) <@ < Ralt), (5.3.39)
r — To
[ vge™, if x> Ry(t),
(uL—i—x, if o< 5(t),
_ —t2
up - —— 1, if  Si(t) <z < Rs(t),
u(w,t) = (”L(ex 2233))@ (5.3.40)
— T2)UR :
ugr — log (W) +x, if Rg(t) <x < R4<t),
| ur + 7, if o> Ry(t),
- (e —e')
where the 1-shock curve x = Si(t) is given by Si(t) = —— + x2 and the 2-
Vv (vLz4)
. L (ef —e'2)
rarefaction region is given by Rs(t) < x < Ry(t) where R3(t) = ——= + x5 and
Z4
(e! —e'2) . . .
R4(t) = ————= + x9. Here z = 2, is the solution to the equation
UR
2 —uvpe 2 vpe 2
ur, — up — ———— + log =0, z€ (vg,vr). (5.3.41)
(vpe~t2z) z
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Further, the necessary and sufficient condition for the solution to the double Riemann
problem, ultimately given through only 1-shock and 2-rarefaction waves, is obtained,
in view of (5.3.29) and (5.3.38), is in the form of inequalities satisfied by the constants

vr, vy and vg as

fo(vp,var,vg) >0, and v > vg

when vg < vy, v < Upr, up < upy < ug, and fo(vr, var, vR) IS exactly the same as
defined in the equation (5.3.36).

Thus, in view of Lemma 5.3.2, the solution due to interaction of a 2-shock wave,
x = S,(t) originated from (z,t) = (0,0) and a 1-shock wave, = = S, (t) originated from

(x,t) = (20,0), cannot be given through a 1-shock wave and a 2-rarefaction wave.

5.3.2.3 Case- III

Similarly, since u; < ug, using Theorem 5.2.1, it can be concluded that the solution to
the Riemann problem subject to the initial data (5.3.31) is given through a 1-rarefaction
wave in the region, R(t) < z < Ry(t), and a 2-shock wave, z = Sy(t), both emanating
from the point (x,t) = (2, t2) only if

VR — UL

ur —ugr + >0 and vp < wpg, (5.3.42)
VL, UR
and the solution for ¢ > t, is given by
[ vpe™, if = < Ry(t),
St R
e i 1) <x< t
v(z,t) = ( T — Iy ) ! f) <@ 2(1) (5.3.43)
z5e_t, if Rg(t) <z < Sg(t),
[ vge™, if x> 55(t),
(up +z, if o< Ry(t),
_ —t2
uL—%—kx, if Ri(t) <z < Ro(t),
u(z,t) = (vpe=t225) (5.3.44)
Cog (EEIURY L Ry < < So(t)
ur — log (et — et2) z, 1 o\l) = T 2{t),
ug + w, if x> 955(t),
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(¢ — )

where the 1-rarefaction region is given by, R;(t) < x < Ra(t), with Ry (t) = +
25
(e! —e'2) o
zo and Ry(t) = ———= + x9, and the 2-shock curve x = Sy(t) is given by Sy(t) =
v
et o etQ R
. H = 25 is th lution to th ti
Ty + NG ere z = z5 is the solution to the equation
—to _ —t2
ur, — ug + log <vLe ) S - 0, zé€ (vg,vgR). (5.3.45)
Z (vre™t22)

Further, the necessary and sufficient condition for the solution to the double Riemann
problem is ultimately given through only a 1-rarefaction wave and a 2-shock wave, in
view of (5.3.29) and (5.3.42), is in the form of an inequality satisfied by the constants

vr, vy and vy as follows

fs(vr,vp,vg) >0 and  vp < v,

when vg < vy, v < vy and up < upy < ug, and f3(vp, vy, vg) is exactly the same as
in the equation (5.3.37).

Thus, in view of Lemma 5.3.2, the solution due to the interaction of a 2-shock wave,
x = S,(t) originated from (x,t) = (0,0) and a 1-shock wave, 2 = S (¢) originated from

(x,t) = (x0,0), cannot be given through a 1-rarefaction wave and a 2-shock wave.

5.3.2.4 Case-IV

Similarly, since vg < vy, and uy; < ug, using Theorem 5.2.1, it can be concluded that
the solution to the Riemann problem subject to the initial data (5.3.10) is given through

only a 1-shock wave, x = S;(t), emanating from the point (x,t) = (22, t3) only if

UL — VR

e 0, (5.3.46)

up, — ug +

and the solution for ¢t > ¢, is given as

-t if < Sq(t
oty =4 ¢ T= 1®), (5.3.47)
vpe™t, if x> Si(t),
if < Sq(t
w(w,ty = 4 e AL eSS0, (5.3.48)
ug +z, if x> Si(t),
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t1 At
where the 1-shock curve z = S;(¢) is given by Si(t) = (Cillly) + 4.

(vLvr)
Further, the necessary and sufficient condition for the solution to the double Riemann
problem is ultimately given through only a 1-shock wave, in view of (5.3.29) and

(5.3.46), in the form of equality satisfied by the constants vy, vy and vg as

f2(UL7UM7UR> == O?

when vg < vpr, v < Vpr, up < upy < ug, and fo(vp, var, vg) is defined as in (5.3.36).

Thus, in view of Lemma 5.3.2, the solution due to interaction of a 2-shock wave,
x = Sy(t) originated from (z,t) = (0,0) and a 1-shock wave, = = S;(t) originated from

(x,t) = (20,0), cannot be given through only a 1-shock wave.

5.3.2.5 Case-V

Similarly, since vy, < vg and uy, < ug, using Theorem 5.2.1 it can be concluded that the
solution to the Riemann problem subject to the initial data (5.3.60) is given through

only a 2-shock curve, x = Sy(t), emanating from the point (z,t) = (29, t2) only if

UR — UL
_ =0 5.3.49
TR e (53.49)
and the solution for ¢ > t, is given as
“tif < Sy(t),
T B (5.3.50)
vre™t if x> SH(t),

if < So(t
u(z,t) = { wte, w550 (5.3.51)

(
up+x, if x> S5(t)

)
)
(e — )

AY4 (UL"UR

Thus, the necessary and sufficient condition for the solution to the double Riemann

where the 2-shock curve = Sy(t) is given by Ss(t) = + xo.

problem is ultimately given through only a 2-shock wave, in view of (5.3.29) and

(5.3.49), is in the form of equality satisfied by the constants vy, vy, and vg as
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f3(vr, var, vg) =0,

whenvg < vy, v < v, g < upy < ug, and f3(vp, va, vg) is defined as in (5.3.37).

Thus, in view of Lemma 5.3.2, the solution due to the interaction of a 2-shock wave,
x = S,(t) originated from (z,t) = (0,0) and a 1-shock wave, = = Sy (t) originated from

(x,t) = (20,0), cannot be given through only a 2-shock wave.

5.3.3 Interaction of a 2-shock wave (z = S5(t)) with a 2-shock
wave (z = Sy(t))

Due to the discontinuity at x = 0 for ¢t = 0 in the initial data, when

v — v
(vrvar)
with v, < vy and up < wuyy, the solution is given through only a 2-shock wave as

follows

o 1) = vpe™t, if z < Sy(t), (5.3.53)
’ vpe™, if x> Sy(t), o

w(a,t) = { ute, i o< SQEt)’ (5.3.54)

uy +x, if x> 9, t)

where 2 = S,(t) is the location of the 2-shock wave emanated from (z,t) = (0,0), with

Sy(t) = (1)

(vLvn) '

Similarly, due to the discontinuity at x = xo for t = 0 in the initial data, when

up = uyy + M (5.3.55)
(vmUR)

with vy, < vy and ug > wuyy, the solution is given through only a 2-shock wave as

follows
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(5.3.56)
u(z,t) = { . - : E (5.3.57)

where x = Sy(t) is the location of the 2-shock wave originated at (z,t) = (g, 0) with
S (e —1)

SQ (t) =Ty + —F—.

(vrvAr)

Thus, in view of the equations (5.3.52) and (5.3.55), the solution of the double Riemann

problem is obtained through only a 2-shock wave originating at (x,¢) = (0,0) and at
(x,t) = (x,0) when

Vv — U, VR — Unp
v, < vy < VR, ur <uy <Ur, U — UR+ + =0. (5358)

\/(ULUM) \/("UM"UR)

As vy, < vg the shock curve & = S,(t) overtakes the shock curve z = S,(t) in a finite

time t = t3 > 0, where t3 is given as

t; = log (1 + —wo\/W) | (5.3.59)
NN

which implies that the solution of the double Riemann problem given in equations

(5.3.53) - (5.3.56) is valid for ¢ < 3 till the interaction takes place. The solution after

the interaction, i.e. ¢ > t3, can be obtained by solving the Riemann problem with the

following initial data

(x+up,vpe™), if x < xs,

(u(z, t3),v(2, t3)) = { (5.3.60)

(x +ug,vge™), if x> a3,
(e —1)

where 23 = )
(vrvar)

Since, v, < vg and uy, < ug using the Theorem 5.2.1, the possible forms for the

solution to the Riemann problem subject to the initial data (5.3.10) are

I. given through a 1-shock wave, z = S;(¢), and a 2-shock wave, x = S5(t), ema-

nating at the point (x,t) = (z3,t3).
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II. given through a l-rarefaction wave in the region, R;(t) < z < Ry(t), and a
2-shock wave, x = Ss(t), emanating at the point (z,t) = (x3,t3).

III. given through only a 2-shock wave, © = Sy(t), emanating at the point (z,t) =
(ill'g, tg)

5.3.3.1 Case-I

Since, vy, < vg and up < ug, using Theorem 5.2.1, it can be concluded that the
solution to the Riemann problem subject to the initial data (5.3.60) is given through
a 1-shock curve, x = S;(t) and a 2-shock curve, z = Sy(t) emanating from the point

(:U,t) = (‘T37t3) OIlly if

Urp — UL

A/VLUR

and the solution for ¢ > t3 is given as follows

u, — ug + <0, (5.3.61)

((wpet, if @< Si(t),
'U("E,t) = zﬁe_t, if Sl<t> <z < Sg(t), (5362)
vpe™t, i x> Sy(t),

ur, + z, it <S(t),
26 —vpe .
u(a,t) =4 ur— —F——=+u, if Si(t) <z < %), (5.3.63)
(vpetszg)
| ur + 7, if x> 5(t),

t3 _ At
(e <) + x3, and the 2-shock

vV (vL26)

+ x3. Here z = zg is the solution to the

where the 1-shock curve, x = Si(t), is given by S;(t) =
(e =€)

curve, z = Sy(t), is given by Sy(t) = ( )
VR%6

equation

_ —t3 —t3 __
0 L URE T F ), € (up,um). (5.3.64)

T e ome w2)

Thus, the necessary and sufficient condition for the solution to the double Riemann

problem is ultimately given through only a 1-shock wave and a 2-shock wave, in view
of (5.3.58) and (5.3.61), is in the form of an inequality satisfied by the constants vy, vy,

and vy as follows
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fa(v, v, vR) <0,

when vg < vy < vp, up < upy < ug, and

v, — U Vv — U Vp — U
filvp, o vp) = —— 4 MR L R E (5.3.65)

V (vLvn) \/(UMUR) \/(URUL)

5.3.3.2 Case-11

Similarly, since v, < vr and ur < ug, using Theorem 5.2.1, it can be concluded
that the solution to the Riemann problem subject to the initial data (5.3.60) is given
through a l-rarefaction wave in the region R;(t) < x < Ry(t) for t > t3 and a 2-shock

wave, £ = Sp(t) emanating from the point (z,t) = (x3,t3) only if

Ur — VUL

\/ULUVR

and the solution for ¢ > t3 is given as follows

urp — up + > 0, (5.3.66)

(vet, it < Ry(t),
z7e_t, if Ry (t) <z < R2<t)7
v(z,t) = (ts=t) _ 1 5.3.67
(z,1) (e _) , if Ro(t) <z < Sy(t), ( )
T — T3
[ vge ™, if x> Sy(t),
(up, + if = < Ri(t),
_ —t3
up — —— it Ri(t) <z < Ry(t),
u(z,t) = 4 <“L(ex ") o (5.3.68)
up — log ((et——Ztg)R> +x, if Ro(t) <z < Sy(t),
| ur + 7, if x> S(t),
(etg _ et
where the l-rarefaction region, Ry(t) < x < Ra(t), with Ry(t) = ——= + x5 and
VL
t3 _ At t _ ats
Ry(t) = u—i—xg, and the 2-shock curve, x = Sy(t), is given by Sy (t) = u—i—
27 (vpz7)

x3 which is shown in Figure 5.3. Here z = z; is the solution to the equation
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t3

—t3 . _
up, — ug + log vLe - 0, z¢€ (vL,vR). (5.3.69)
z (vre™t3z)

Thus, the necessary and sufficient condition for the solution to the double Riemann
problem is ultimately given through only 1-rarefaction wave and 2-shock wave, in view
of (5.3.58) and (5.3.66), is in the form of an inequality satisfied by the constants vy, vy,

and vy as follows

fa(vr, vam, vg) >0,

when vy, < vy < g, up < upr < ug, and fy(vp, vy, vR) is defined as in (5.3.65).

5.3.3.3 Case-III

Similarly, since v;, < v and uy < ug, using Theorem 5.2.1 it can be concluded that the
solution to the Riemann problem subject to the initial data (5.3.60) is given through

only a 2-shock curve, x = Sy(t) emanating from the point (z,t) = (x3,t3), only if

VR — UL

LRt e = 0, (5.3.70)

and the solution for ¢ > t3 is given as follows

t

- if < Sy(t
o(a,ty =4 T 2(1), (5.3.71)
vre™t, if x> Sy(t),

if <
u(z,t) = { u otz iz 5() (5.3.72)

(
ugp +x, if x> Sy(t)

)
Y
(e — )

\/(ULUR

Thus, the necessary and sufficient condition for the solution to the double Riemann

where the 2-shock curve, z = 95(t), is given by Sy(t) = + x3.

problem is ultimately given through only a 2-shock wave, in view of (5.3.58) and

(5.3.70), is in the form an equality satisfied by the constants v, vy and vg as follows

fa(vr, va, vg) =0,
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when vy < vy < Vg, up < upr < ug, and fy(vr, var, vg) is defined as in (5.3.65).

Lemma 5.3.3. Consider the function fy(vr,vn,vr) defined as in (5.3.15). Then f4

is a positive function when vy < vy < UR.

Proof. Observe that lim f; =0 and

VR—VUM

Ofs _ (v = v/orom) (Vour = Vo)

= > 0,

aUR QURVURULUM

since vg < vy < vp. This implies that f; is monotonically increasing as vi increases to

vy and since the function fy(vp,var, va) = 0, it follows that fy is a positive function

when vy < vy < vg. O

Thus, in view of Lemma 5.3.3, the solution due to the interaction of a 2-shock wave,
x = Sy(t) originated from (z,t) = (0,0) and a 2-shock wave, 2 = S(t), originated from
(z,t) = (0,0), is given through a 1-rarefaction wave and a 2-shock wave as given in
Case-II of Section 5.3.3, for which the solution is given in the equations (5.3.67) and
(5.3.68) and is depicted in Figure 5.3.

5.4 Conclusions

A double generalized Riemann problem is considered with two discontinuities in the ini-
tial data at x = 0 and z = x, for which the solution is given through two shocks either
in 1-shock waves or 2-shock waves from the points (z,t) = (0,0) and (z,t) = (z0,0).
As the two shocks propagate into the medium at different speeds, the possibilities of
overtaking these shocks are analysed. Further, owing to the interaction of shock waves,
whenever possible, it is discussed about the behavior of the solution after the inter-
action of the two shocks, whether 1-shock/1-rarefaction wave or 2-shock/2-rarefaction

waves are present in the solution.

The solution to the double Riemann problem is ultimately given through only a
1-shock wave and only a 2-rarefaction wave, when uy, < uy; < ugr and the constants

v, vy and vy satisfy the following conditions:

Vv — Vg, i VR — Upm Vr, — UR
[
\/ (vrvar) \/ (vRVM) (vrvL)

Similarly, the solution to the double Riemann problem is ultimately given through

> 0, when vg < vy < vp.

a 1-shock wave and a 2-shock wave when u; < uj; < ur and when the constants vy,

vy and vg satisfy the following conditions:
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VL, — Um VR — Upm V1, — VR Uyv — UL Une — UR

NV o I cmrm B s B crmesys IO/ s &

when vy < vy, v < V.

Similarly, the solution to the double Riemann problem is ultimately given through
a 1-rarefaction wave and a 2-shock wave when uy, < uy; < ug, and the constants vy, vy,

and vg satisfy the following conditions:

UL — Upm Up — UR VR — UL

’ v (vron) " V (arvR) - (v/vrvL)

> 0, when v;, < vy < vg.
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Figure 5.1: Before interaction, i.e., for 0 < ¢t < t1, subject to the initial condition
(5.3.1), the solutions in the region I, x < Si(t), in the region II, S;(t) < z < Sy (t)
and in the region III, 2 > S;(t), are given in the equations (5.3.3) - (5.3.7) . After the
interaction, ¢ > t;, subject to the initial condition (5.3.10), the solution in the region
IV, z < Si(t), in the region V, S;(t) <z < Rs(t), in the region VI, Rs(t) < x < Ry(t)
and in the region VII, x > Ry(t), are given in equations (5.3.17) and (5.3.18).
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(0,0) (X4,0)
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Figure 5.2: Before interaction, i.e., for 0 < ¢t < t5, subject to the initial condition
(5.3.1), the solutions in the region I, z < Sy(t), in the region II, Sy(t) < z < S;(t) and
in the region III, x > S(t), are given by the equations (5.3.24)- (5.3.28). After the
interaction, ¢ > to, subject to the initial condition (5.3.31), the solution in the region
IV, x < Si(t), in the region V, S;(t) < x < Sy(t) and in the region VI, Sy(t) < z are
given in equations (5.3.33) and (5.3.34).
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r —

Figure 5.3: Before interaction, i.e., for 0 < t < t3, subject to initial condition (5.3.1),
the solutions in the region I, & < S(t), in the region II, Sy(t) < & < S,(t) and in the
region I11, x > S, (t), are give by the equations (5.3.53)- (5.3.57). After the interaction,
t > t3, subject to the initial condition (5.3.60), the solution in the region IV, < Ry (t),
in the region V, R;(t) < o < Ry(t), in the region VI, Ry(t) < x < Sy(t) and in the
region VII, & > Sy(t), are given in equations (5.3.67) and (5.3.68).
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Chapter 6
Summary

The Riemann problem with non-constant initial data and the interaction of shock
waves to several strictly hyperbolic systems is discussed using the differential con-

straints method, describing several physical phenomena in the thesis.

In Chapter 2, solutions to the Riemann problem with non-constant initial data for
the rate-type material were determined by introducing differential constraints. Also,
the elementary waves associated with the genuinely nonlinear characteristic fields were
presented in explicit forms. The complete characterization of Riemann solutions of the

rate-type model was presented in the form of Lemmas.

In Chapter 3, a first-order hyperbolic system of partial differential equations that
represents the Chaplygin gas model was investigated. The method of differential con-
straints was employed to provide a characterization of the solutions for this particular
model. Within the framework of this approach, the compatibility conditions between
the differential constraints and the governing model were derived. Further, the solution
to the Riemann problem for the governing model was obtained, which is characterized
by characteristic shocks with initial data satisfying the differential constraints an en-

able to determine the exact solution for the generalized Riemann problem.

In Chapter 4, the solution structure of the generalized Riemann problem for gener-
alized gas dynamic equations was focused, particularly when it involves non-constant
initial data. It was observed that the solutions to the generalized Riemann problem can
be effectively determined by the introduction of differential constraints. Additionally,
explicit representations of the elementary waves associated with genuinely nonlinear
characteristic fields were provided. The rarefaction solution was determined with the

help of generalized Riemann invariants. The comprehensive description of Riemann so-

113
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lutions for the generalized gas dynamic equations was presented in the form of Lemmas.

In Chapter 5, the interaction of the double generalized Riemann problem for rate-
type material was examined. Essentially, explicit solutions were provided before and
after the interaction of shock waves in different cases. Moreover, the conditions were
derived that guide in determining the structure of the new Riemann solution after the

interaction.

Overall, the generalized Riemann problem extends the principles of the classic Rie-
mann problem to handle more complex and realistic scenarios, making it a crucial
tool in numerical simulations and modeling of hyperbolic systems in various scientific

domains.
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