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Chapter 1

Introduction

Exact solutions of partial differential equations have been pivotal in advancing our

understanding of the qualitative features of diverse natural phenomena and processes

across several scientific disciplines. Notably, the solutions of nonlinear differential equa-

tions offer clear illustrations of the intricate mechanisms underlying complex effects,

such as spatial localization of transfer processes, the multiplicity or absence of sta-

tionary states, the existence of blow-up solutions, and the possible non-smoothness

of the unknowns. Even exact solutions of differential equations remain invaluable as

test problems that facilitate the assessment of accuracy and the applicability range of

various numerical and approximate analytical methods.

The general theory of quasilinear partial differential equations emerged a century

ago in the context of mathematical physics. To understand more about quasilinear par-

tial differential equations, in particular nonlinear hyperbolic partial differential equa-

tions, the fundamental problem is to study the Riemann problem, which is basically

an initial value problem with constant initial data with a discontinuity at a point.

Riemann [1] first posed the Riemann problem and solved it in his seminal work on

the mathematical theory of shock waves in 1860 for isentropic gas dynamic equations.

Riemann’s solution is described by elementary waves, i.e., shock waves and rarefaction

waves. In the 1940s, Courant and Friedrichs [3] added a new type of elementary wave,

characteristic shock waves/contact discontinuities, while studying adiabatic flow. The

theory of small solutions to the Riemann problem for strictly hyperbolic systems was

established in the seminal work of Lax [4] in 1957. Since then, great progress has been

achieved in understanding Riemann’s problem for one-dimensional gas dynamic equa-

tions, and research interest in the Riemann problem lasted for more than a century.

The Riemann problem for gas dynamic equations governing a one-dimensional flow of

van der Waals gases was studied by Ambika and Radha [9] and by Hattori [73]. Elemen-
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2 CHAPTER 1. INTRODUCTION

tary waves, whose interactions are determined by perturbed Riemann problems, also

reflect the asymptotic behavior of general solutions. Moreover, the Riemann problem

and its elementary wave interactions for an isentropic system in magnetogasdynamics

and shallow water equations were discussed by Raja Sekhar and Sharma [74–76] in the

presence of magnetic field, which make both the shock and the rarefaction stronger as

compared to the situation in the absence of a magnetic field. Chun Shen [77] proved

that the limiting solutions of the Riemann problem for isentropic magnetogasdynamic

equations converge to the corresponding solution of the transport equation in the ab-

sence of both pressure and magnetic field. Mathematicians and physicists continue to

have a great interest for the generalized Riemann problem which is basically an initial

value problem with non-constant initial data with a discontinuity at a ponit.

It is well known that a large number of physical processes are modeled by systems

of quasilinear partial differential equations, but no general methods are available for

solving such systems with arbitrary initial or/and boundary conditions [5,6,15–20]. In

this thesis, we account for the mathematical theory to generalized Riemann problem

using the theory of compatibility, which is followed by the basic definition of differen-

tial constraints, as explained by Yanenko [30]. In this direction, in 1988, LeFloch and

Raviart [56] considered the generalized Riemann problem for nonlinear hyperbolic sys-

tems of conservation laws and found the entropy solution in the form of an asymptotic

expansion in time to get an explicit method for the construction of the asymptotic

expansion, which is explained further through an application to gas dynamic equations

by Bourgeade et al. [57]. Using these approximate solutions Ben-Artzi, M. [11] solved

the generalized Riemann problem for reactive flows and further, Ben-Artzi, M. and Li,

J. [12] derived more precise numerical schemes.

Over the years (see [8]- [29]), a variety of mathematical methods, for example, sim-

ilarity transformation methods, perturbation methods, etc., leading to the derivation

of approximate solutions to quasilinear hyperbolic systems have been proposed. The

approach based on the use of differential constraints, proposed by Janenko [30] (see

also [31, 32]), has been of considerable interest in recent years (see [33] - [45]). The

differential constraints equations play an important role in selecting classes of solutions

of the system under interest. Olver and Rosenau [21,22], Meleshko [26], Kaptsov [27],

Levi and Winternitz [28] show that almost all known reduction methods such as par-

tial invariance, separation of variables etc., could be summarized into a most general

framework of differential constraints. This general formulation requires that the system

under investigation must be appended by additional differential constraints, subject to
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compatibility conditions. In 1994, Olver [23] accounted for the relationship between

the higher-order direct method of Galaktionov and the method of differential con-

straints. A new algebraic structure and special classes of determining equations and

higher-order differential constraints were introduced by Kaptsov [24]. Within such a

theoretical framework, a reduction procedure for the generalized simple wave solution

to the generalized Riemann problem with applications to nonlinear transmission lines,

constant Astigmatism equation, traffic flow model, ET6 model and ideal chromatog-

raphy were explored by Curró et al. [39, 41, 54, 55, 59, 60]. Furthermore, the method

of differential constraints is also used to determine the exact solution of quasilinear

systems depending on various applications like p-systems with relaxation conditions

(Curró, and Manganaro [62]), for Chaplygin gas model (Kumar and Radha [61]), for

non-homogeneous shallow water equations (Sueet et al. [65]) and for the homogeneous

p-system (Manganaro et al. [66]). Recently Meleskho et al. [67] discussed the general-

ized simple wave solution for magnetic fluid using the differential constraints method

and also applied it to systems of equations written in Riemann invariants [68]. More-

over, Chaiyasena et al. [69] discussed generalized Riemann waves and their adjoinment

through a shock wave.

Recently, Shen and Sun [78] showed that when the pressure tends to zero for isen-

tropic gas dynamic equations, the solution for the Riemann problem, which is composed

of two shock waves, tends to a delta shock solution. Whereas the limiting solution for

the Riemann problem constituted by two rarefaction waves converges to a solution

made up of two contact discontinuities along with the vacuum state encompassed by

them when the adiabatic exponent tends to one. Also, they noticed an interesting phe-

nomenon that the internal states in two rarefaction wave fans are transformed gradu-

ally into the corresponding vacuum states under this limiting circumstance, which is

distinguished from the previously established result that a whole rarefaction wave is

concentrated into only one contact discontinuity. Moreover, Guo et al. [79] discussed

the limiting behavior of the solution to the Riemann problem to the generalized Chap-

lygin gas equations with a Coulomb-like friction term along with the formation of a

delta shock wave. Also, discussed the formation of delta shock waves and the vacuum

states as the pressure vanishes.

In recent decades, researchers have shown a growing interest in exploring the

interactions of elementary waves in hyperbolic systems of partial differential equa-

tions [9,80–82,84,86,87], owing to their extensive practical applications such as stabil-

ity of the Riemann solution with respect to small perturbations of the Riemann initial

data [83,88].
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Luo, T. and Yang, T. [89] discussed the interaction of elementary waves for com-

pressible Euler equations with frictional damping. Raja Sekhar and Sharma, [90],

delved into the existence of a vacuum state and briefly discussed wave interactions

within the realm of isentropic magnetogasdynamics. Liu and Sun [86] carried out an

in-depth analysis of elementary wave interactions in ideal magnetogasdynamics using

the characteristic analysis methodology.

Based on the present literature review, we were motivated to investigate the gen-

eralized Riemann problem. Consequently, an algorithm was developed to determine a

class of non-trivial solutions for a given quasilinear hyperbolic system using differential

constraints through which the Riemann problem with non-constant initial data is fully

characterized with shock waves/characteristic shocks and/or rarefaction waves.

In the subsequent chapters of this thesis, we explore the generalized Riemann prob-

lem for a certain class of physical phenomenon modeled by a system of quasilinear hy-

perbolic partial differential equations and discuss the interaction of elementary waves

of the double Riemann problem.

• The second chapter is connected with the Riemann problem for non-constant

initial data for rate-type materials, which is described by the following equations

∂u

∂t
− ∂

∂x

(
1

v

)
= 0,

∂v

∂t
+

∂u

∂x
= 1− v,

where u is the Lagrangian velocity of a particle and 1/v with v ̸= 0, denotes the

stress in the material that is undergoing loading/unloading processes.

In this chapter, a class of solutions to the partial differential equations describ-

ing rate-type material are determined. Further, a family of generalized Riemann

problems for the system under consideration are solved completely, and the so-

lutions are characterized through shocks and/or rarefaction waves, the results of

which are summarized as follows:

The solution to the generalized Riemann problem for this system subject to the
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initial data

(u(x, 0), v(x, 0)) =

{
(x+ uL, vL) , if x < 0,

(x+ uR, vR) , if x ≥ 0,

consists of

1. a 1-shock wave if and only if one of the following conditions hold:

(a.) uL − uR +
vR − vL√

vLvR
< 0, when vR > vL and uL < uR.

(b.) uL − uR + log

(
vR
vL

)
< 0, when vR < vL and uL > uR.

(c.) vR < vL and uL < uR.

2. a 2-shock wave if and only if one of the following conditions hold:

(a.) uL − uR − log

(
vR
vL

)
< 0, when vR > vL and uL > uR.

(b.) uL − uR − vR − vL√
vLvR

< 0, when vR < vL and uL < uR.

(c.) vR > vL and uL < uR.

3. a 1-rarefaction wave if and only if one of the following conditions hold:

(a.) uL − uR +
vR − vL√

vLvR
> 0, when vR > vL and uL < uR.

(b.) uL − uR + log

(
vR
vL

)
> 0, when vR < vL and uL > uR.

(c.) vR > vL and uL > uR.

4. a 2-rarefaction wave if and only if one of the following conditions hold:

(a.) uL − uR − log

(
vR
vL

)
> 0, when vR > vL and uL > uR.

(b.) uL − uR − vR − vL√
vLvR

> 0, when vR < vL and uL < uR.

(c.) vR < vL and uL > uR.

• The third chapter deals with the generalized Riemann problem for the Chaplygin

gas equations given by

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

together with the equation of state given by p as a function of ρ alone such that

p′(ρ) > 0, where ρ and u are, respectively, the density and velocity of the gas.

This system with the equation of state
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p(ρ) = −1

ρ
.

describes the dark matter and dark energy in the unified form through an exotic

background fluid proposed in [47–50] as a mathematical approximation to calcu-

late the lifting force on a wing of an airplane in aerodynamics. Also, it was a

prototype of the unified model [51, 52] where dark energy and dark matter were

depicted by a single fluid, and Chaplygin cosmology provides an interesting pos-

sibility to account for current observations about the expansion of the universe.

It was also predicted by them that the cosmological constant would increase (or

that it was less in the past), and this could, in principle, be observed.

Further, the solution to the generalized Riemann problem for the Chaplygin gas

equations is characterized subject to the initial data

(ρ(x, 0), v(x, 0)) =

(ρr(x), vr(x)) , x ≥ 0,

(ρl(x), vl(x)) , x ≤ 0,

by one 1- or/and 2- Characteristic shock(s). Here ρl, vl, ρr and vr are arbitrary

functions of x such that

v′l(x)−
α

ρ2l (x)
ρ′l(x) = C0ρl(x),

v′r(x)−
β

ρ2r(x)
ρ′r(x) = C1ρr(x)

where, α = ±1, β = ±1 and C0, C1 are arbitrary constants.

❖ Let the solution to the Riemann problem of these equations subject to the

given initial data be connected through only a 1-Characteristic shock. Then

vL − 1

ρL
= vR − 1

ρR
along with one of the following possibilities:

1. α = 1, β = 1, and C0, C1 are arbitrary constants.

2. α = 1, β = −1, C1 = 0 and C0 is an arbitrary constant.

3. α = −1, β = 1, C0 = 0 and C1 is an arbitrary constant.

4. α = −1, β = −1, C1 = C0 and C0 is an arbitrary constant.

❖ Let the solution of the Riemann problem of these equations subject to the

given initial data be connected through only a 2-Characteristic shock. Then
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vL +
1

ρL
= vR +

1

ρR
along with one of the following cases:

1. α = 1, β = 1, C1 = C0 and C0 is an arbitrary constant.

2. α = 1, β = −1, C0 = 0 and C1 is an arbitrary constant.

3. α = −1, β = 1, C1 = 0 and C0 is an arbitrary constant.

4. α = −1, β = −1, and C0, C1 are arbitrary constants.

❖ Let the solution of the Riemann problem of these equations subject to the

given initial data be connected through both 1- and 2- Characteristic shocks.

Then one of the following occurs:

1. α = 1, β = −1 and C0, C1 are arbitrary constants.

2. α = 1, β = 1, C1 = 0 and C0 is an arbitrary constant.

3. α = −1, β = −1, C0 = 0 and C1 is an arbitrary constant.

4. α = −1, β = 1 and C1 = C0 where C0 is an arbitrary constant.

• The fourth chapter deals with the generalized Riemann problem for the system

of conservation laws describing gas dynamic equations given by

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = ρf,

where ρ, u, and p denote the density, the velocity, and the pressure of gases,

respectively, and the equation of state is given by

p(ρ) = Cργ, C = constant.

After determining the compatibility conditions using differential constraints equa-

tions and the governing system, different cases are considered, and solutions are

obtained for the Cauchy problem. In fact, solutions for the generalized Riemann

problem by generalized rarefaction waves and/or shock waves are obtained. For

γ > −1, we completely characterize the Riemann problem for constant initial

data. Also, for γ = 1, we completely characterize the Riemann problem for non-

constant initial data and the main results are stated as follows for the initial data

given by

(ρ(x, 0), u(x, 0)) =

{
(ρL, uL) , if x < 0,

(ρR, uR) , if x ≥ 0,
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where ρL, ρR, uL and uR are constants.

❖ Let uL > uR. If ρL > ρR (respectively; ρL < ρR), then a 1-shock wave

(respectively, a 2-shock wave) is a solution to the Riemann problem for this

system subject to the given initial conditions if and only if

(uL − uR) ≥ |ρL − ρR|

√
C (ργL − ργR)

(ρL − ρR) ρLρR
.

❖ Let uL < uR. If ρL > ρR (respectively; ρL < ρR), then a 1-rarefaction wave

(respectively, a 2-rarefaction wave) is a solution to the Riemann problem for

this system subject to the given initial conditions if and only if

(uL − uR) ≤ |ρL − ρR|

√
C (ργL − ργR)

(ρL − ρR) ρLρR
.

❖ Let uL > uR. If ρL > ρR (respectively; ρL < ρR), then a 1-shock wave

(respectively, a 2-shock wave) is a solution to the Riemann problem for this

system subject to the given initial conditions if and only if

(uL − uR) ≥ −2
√
Cγ

γ − 1

∣∣∣ρ γ−1
2

L − ρ
γ−1
2

R

∣∣∣ .
❖ Let −2

√
Cγ

γ − 1

(
ρ

γ−1
2

L + ρ
γ−1
2

R

)
< (uL − uR) < 0. If ρL > ρR (respectively;

ρL < ρR), then a 1-rarefaction wave (respectively, a 2-rarefaction wave) is a

solution to the Riemann problem for this system subject to the given initial

conditions if and only if

(uL − uR) ≤ −2
√
Cγ

γ − 1

∣∣∣ρ γ−1
2

L − ρ
γ−1
2

R

∣∣∣ .
• In Chapter 5, the interaction of elementary waves of the double Riemann problem

for the system considered in Chapter 2 is investigated subject to the perturbed

initial data with two discontinuities as follows

(u(x, 0), v(x, 0)) =


(x+ uL, vL) , if x ≤ 0,

(x+ uM , vM) , if 0 < x ≤ x0,

(x+ uR, vR) , if x0 < x,
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where uL, uR, uM , uM , vL and vR are given constants but arbitrary.

The solution to the double Riemann problem is ultimately given through only

a 1-shock wave and only a 2-rarefaction wave, when uL < uM < uR and the

constants vL, vM and vR satisfy the following conditions:

❖
vM − vL√
(vLvM)

+
vR − vM√
(vRvM)

+
vL − vR√
(vRvL)

> 0, when vR < vM < vL.

Similarly, the solution to the double Riemann problem is ultimately given through

a 1-shock wave and a 2-shock wave when uL < uM < uR and when the constants

vL, vM and vR satisfy the following conditions:

❖
vL − vM√
(vLvM)

+
vR − vM√
(vRvM)

<
vL − vR√
(vRvL)

<
vM − vL√
(vLvM)

+
vM − vR√
(vRvM)

,

when vR < vM , vL < vM .

Similarly, the solution to the double Riemann problem is ultimately given through

a 1-rarefaction wave and a 2-shock wave when uL < uM < uR, and the constants

vL, vM and vR satisfy the following conditions:

❖
vL − vM√
(vLvM)

+
vM − vR√
(vMvR)

+
vR − vL(√

vRvL
) > 0, when vL < vM < vR.

Today, the generalized Riemann problem remains an active area of research, with

researchers continuing to explore new ways to generalize classical Riemann solutions.

Moreover, for the development of more accurate and efficient numerical methods for

solving a quasi-linear hyperbolic system of partial differential equations, it is essen-

tial to study the generalized Riemann problem. As we know, quasi-linear hyperbolic

systems come into the picture when we try to formulate mathematically natural phe-

nomena such as aerospace engineering, climate modeling, and computational finance.

Overall, the generalized Riemann problem is a fascinating and important problem

in the field of quasi-linear hyperbolic partial differential equations, with many practical

applications and theoretical challenges. As computational power and numerical meth-

ods continue to advance, the generalized Riemann problem will play an increasingly

important role in the study of complex systems in physics, engineering, and beyond.
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Chapter 2

Riemann problem for rate-type

materials with nonconstant initial

conditions

2.1 Introduction

It is well known that a large number of physical processes are modeled by systems of

quasilinear partial differential equations, but no general methods are available for solv-

ing such systems with arbitrary initial or/and boundary conditions ( [5–7]). A variety of

mathematical methods for finding exact solutions to such systems have been proposed

over the years (see [8]- [29]). The approach based on the use of differential constraints,

proposed by Janenko [30] (see also [31] - [32]), has been of considerable interest in

recent years (see [33] - [45]). Based on Lie symmetry analysis, an approximate rar-

efaction wave-type solution to the Riemann problem with non-classical discontinuous

initial data for a system of balance laws describing rate-type materials was presented

in [29]; here, the initial data for the variable u are discontinuous whereas the initial

data for the variable v are constants. A class of solutions to the partial differential

equations, describing rate-type material, was obtained in [29] to solve a generalized

Riemann problem through a rarefaction wave. In this chapter, an attempt is made

to solve a family of generalized Riemann problems for the system under consideration

and to completely characterize solutions that connect the initial data to regions either

through shocks or rarefaction waves.

11
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2.2 Compatibility conditions for Differential Invari-

ants

In this section, compatibility conditions for differential invariants are derived so that the

given system of partial differential equations are solved along a family of characteristic

curves. For this, we consider the following hyperbolic system

∂vj
∂t

+ ajk
∂vk
∂x

= bj; j, k = 1, 2, · · · , n, (2.2.1)

where the matrices (ajk) and (bj) may be functions of x, t, and the unknowns v1, v2,

· · · , vn. Let λ(i) be the real eigenvalues of (ajk) andR(i) the corresponding eigenvectors;

here and through out this section, summation from 1 to n over a repeated subscript is

automatic unless stated otherwise. The system (2.2.1) can be written as

∂vj
∂t

+ λ(i)∂vj
∂x

+ q
(i)
j = 0, (2.2.2)

where

q
(i)
j =

(
ajk − λ(i)δkj

) ∂vk
∂x

− bj, (2.2.3)

with δkj = 0 for k ̸= j and δkj = 1 for k = j.If q(i) can be determined as functions of x,

t and v1, v2, · · · , vn such that the system (2.2.3) is consistent, then the system (2.2.2)

can be solved along the characteristic family
dx

dt
= λ(i).

Since the matrix
(
ajk − λ(i)δkj

)
is of rank n − 1, the system (2.2.3) is said to be

consistent if the corresponding augmented matrix is also of rank n − 1. Thus, if the

system (2.2.3) is consistent then the derivatives
∂vk
∂x

can be expressed in the form

∂vk
∂x

= R
(i)
k

∂vα
∂x

+Q
(i)
k , (2.2.4)

for some α ∈ {1, 2, · · · , n} with R
(i)
α = 1, where R

(i)
k is the kth component of eigenvector

R(i), vα is the αth component of v, and Q(i) satisfy

Q(i)
α = 0 and q

(i)
j =

(
ajk − λ(i)δkj

)
Q

(i)
k − bj. (2.2.5)
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The equations (2.2.1) and (2.2.3) are said to be compatible if
∂

∂x

(
∂vi
∂t

)
, obtained by

differentiating the equation (2.2.1) with respect to x, and
∂

∂t

(
∂vi
∂x

)
, obtained by differ-

entiating the equation (2.2.4) with respect to t, are equal, i.e.,
∂

∂x

(
∂vi
∂t

)
=

∂

∂t

(
∂vi
∂x

)
,

which leads to the conditions for determining Q(i); these conditions are known as com-

patibility conditions.

In view of (2.2.4), equation(2.2.1) can be written as

∂vj
∂t

+ ajk

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
= bj. (2.2.6)

Thus, equation (2.2.2) can be solved along a family of characteristics, which in turn

gives a class of solutions to the equation (2.2.1). In order to achieve this objective, we

differentiate (2.2.6) with respect to x to obtain

∂2vj
∂x∂t

+
∂ajk
∂vℓ

(
R

(i)
ℓ

∂vα
∂x

+Q
(i)
ℓ

)(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
+ajkR

(i)
k

∂2vα
∂x2

+
∂ajk
∂x

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
+ajk

(
∂R

(i)
k

∂x

∂vα
∂x

+
∂Q

(i)
k

∂x

)

+ajk

(
∂R

(i)
k

∂vℓ

∂vα
∂x

+
∂Q

(i)
k

∂vℓ

)(
R

(i)
ℓ

∂vα
∂x

+Q
(i)
ℓ

)
=

∂bj
∂x

+
∂bj
∂vk

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
. (2.2.7)

Here and throughout this section, α and i are fixed and these indices are not to

be summed. Similarly, differentiating the equation (2.2.4) with respect to t and then

substituting
∂2vα
∂x∂t

from (2.2.7) for j = α, we obtain the following system on using

(2.2.6):
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∂2vj
∂x∂t

=
∂R

(i)
j

∂t

∂vα
∂x

+

(
∂R

(i)
j

∂vk

∂vα
∂x

+
∂Q

(i)
j

∂vk

)(
bk − akℓR

(i)
ℓ

∂vα
∂x

− akℓQ
(i)
ℓ

)

+
∂Q

(i)
j

∂t
+R

(i)
j

∂bα
∂x

+R
(i)
j

∂bα
∂vk

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
−R

(i)
j

∂aαk
∂vℓ

(
R

(i)
ℓ

∂vα
∂x

+Q
(i)
ℓ

)(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
−R

(i)
j

∂aαk
∂x

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
−R

(i)
j aαk

(
∂R

(i)
k

∂x

∂vα
∂x

+
∂Q

(i)
k

∂x

)

−R
(i)
j aαk

(
∂R

(i)
k

∂vℓ

∂vα
∂x

+
∂Q

(i)
k

∂vℓ

)(
R

(i)
ℓ

∂vα
∂x

+Q
(i)
ℓ

)
−R

(i)
j aαkR

(i)
k

∂2vα
∂x2

. (2.2.8)

Equations (2.2.7) and (2.2.8) imply that

T
(i)
j + S

(i)
j

∂vα
∂x

+ T̃
(i)
j

∂2vα
∂x2

+ S̃
(i)
j

(
∂vα
∂x

)2

= 0, (2.2.9)

where

T
(i)
j =

(
∂Q

(i)
j

∂vk

)(
bk − akℓQ

(i)
ℓ

)
+

∂Q
(i)
j

∂t
+R

(i)
j

∂bα
∂x

+R
(i)
j

∂bα
∂vk

Q
(i)
k

−R
(i)
j

∂aαk
∂vℓ

Q
(i)
ℓ Q

(i)
k −R

(i)
j

∂aαk
∂x

Q
(i)
k −R

(i)
j aαk

∂Q
(i)
k

∂x

−R
(i)
j aαk

∂Q
(i)
k

∂vℓ
Q

(i)
ℓ +

∂ajk
∂vℓ

Q
(i)
ℓ Q

(i)
k +

∂ajk
∂x

Q
(i)
k + ajk

∂Q
(i)
k

∂x

+ajk
∂Q

(i)
k

∂vℓ
Q

(i)
ℓ − ∂bj

∂x
− ∂bj

∂vk
Q

(i)
k ,

T̃
(i)
j = ajkR

(i)
k − aαkR

(i)
k R

(i)
j ,

S̃
(i)
j = R

(i)
ℓ

∂
(
ajkR

(i)
k

)
∂vℓ

−R
(i)
j R

(i)
ℓ

∂
(
aαkR

(i)
k

)
∂vℓ

− akℓR
(i)
ℓ

∂R
(i)
j

∂vk
,
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S
(i)
j =

∂R
(i)
j

∂t
+

∂R
(i)
j

∂vk

(
bk − akℓQ

(i)
ℓ

)
−

∂Q
(i)
j

∂vk
akℓR

(i)
ℓ +R

(i)
j

∂bα
∂vk

R
(i)
k

−R
(i)
j

∂aαk
∂vℓ

(
R

(i)
ℓ Q

(i)
k +Q

(i)
ℓ R

(i)
k

)
−R

(i)
j

∂aαk
∂x

R
(i)
k −R

(i)
j aαk

∂R
(i)
k

∂x

−R
(i)
j aαk

(
∂R

(i)
k

∂vℓ
Q

(i)
ℓ +

∂Q
(i)
k

∂vℓ
R

(i)
ℓ

)
+

∂ajk
∂x

R
(i)
k + ajk

∂R
(i)
k

∂x

+
∂ajk
∂vℓ

(
R

(i)
ℓ Q

(i)
k +Q

(i)
ℓ R

(i)
k

)
+ ajk

(
∂R

(i)
k

∂vℓ
Q

(i)
ℓ +

∂Q
(i)
k

∂vℓ
R

(i)
ℓ

)
− ∂bj
∂vk

R
(i)
k ,

for j = 1 to n for each i ∈ {1, 2, · · · , n}. It may be noticed that aαkR
(i)
k = λ(i)R

(i)
α = λ(i)

and ajkR
(i)
k = λ(i)R

(i)
j , which lead to T̃

(i)
j = 0 and S̃

(i)
j = 0. Thus, the system (2.2.9)

becomes

T
(i)
j + S

(i)
j

∂vα
∂x

= 0, (2.2.10)

where j = 1 to n for each i ∈ {1, 2, · · · , n}. Observe that T
(i)
α ≡ 0 and S

(i)
α ≡ 0. In the

following section, we use this methodology to a system of conservation laws describing

rate-type materials.

2.3 Solutions to the Cauchy problem

We consider the following system of balance laws describing rate-type materials ( [30]-

[32])

∂u

∂t
− ∂

∂x

(
1

v

)
= 0, (2.3.1)

∂v

∂t
+

∂u

∂x
= 1− v, (2.3.2)

where u is the Lagrangian velocity and 1/v with v ̸= 0 denotes the stress in the mate-

rial that is undergoing loading/unloading processes.

The eigenvalues λ(i), i = 1, 2 represent the characteristic speeds of the system (2.3.1)
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and the corresponding right eigenvectors R(i), are given by

λ(1) = −1

v
, λ(2) =

1

v
,

R(1) =

[
−v−1

1

]
, R(2) =

[
v−1

1

]
.

As the system (2.3.1) is strictly hyperbolic and genuinely nonlinear (sinceR(i)·∇λ(i) ̸= 0

for i = 1, 2) for any smooth initial data:

u(x, 0) = u0(x), v(x, 0) = v0(x), (2.3.3)

there exits a unique solution of the Cauchy problem (2.3.1), (2.3.3) involving either a

rarefaction wave or a shock wave depending on whether λ(i) is monotonically increasing

or decreasing as (u, v) vary along an integral curve of the vector field R(i).

In view of (2.2.4), we have
∂u

∂x
= Q

(1)
1 − 1

v

∂v

∂x
, and so, equations (2.3.1) can be written

as

du

dt
= −Q

(1)
1

v
,

dv

dt
= 1− v −Q

(1)
1 , (2.3.4)

where
d

dt
=

∂

∂t
+ λ(1) ∂

∂x
; and Q

(1)
1 is a function of x, t, u and v, which is to be

determined from the equation (2.2.10), i.e.,

T
(1)
1 + S

(1)
1

∂v

∂x
= 0; (2.3.5)

here T
(1)
1 and S

(1)
1 are given by

T
(1)
1 =

1

v

(
∂Q

(1)
1

∂x
+ v

∂Q
(1)
1

∂t
+Q

(1)
1

∂Q
(1)
1

∂u
+ v

(
1− v −Q

(1)
1

) ∂Q
(1)
1

∂v

)
,

S
(1)
1 =

1

v2

(
1−Q

(1)
1 − 2

∂Q
(1)
1

∂u
+ 2v

∂Q
(1)
1

∂v

)
.

Similarly, when
∂u

∂x
= Q

(2)
1 +

1

v

∂v

∂x
, equations (2.3.1) can be written as
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du

dt
=

Q
(2)
1

v
,

dv

dt
= 1− v −Q

(2)
1 , (2.3.6)

where
d

dt
=

∂

∂t
+λ(2) ∂

∂x
and Q

(2)
1 is a function of x, t, u and v, which is to be determined

from the equation (2.2.10), i.e.,

T
(2)
1 + S

(2)
1

∂v

∂x
= 0; (2.3.7)

here T
(2)
1 and S

(2)
1 are given by

T
(2)
1 = −1

v

(
∂Q

(2)
1

∂x
− v

∂Q
(2)
1

∂t
+Q

(2)
1

∂Q
(2)
1

∂u
− v

(
1− v −Q

(2)
1

) ∂Q
(2)
1

∂v

)
,

S
(2)
1 =

1

v2

(
−1 +Q

(2)
1 − 2

∂Q
(2)
1

∂u
− 2v

∂Q
(2)
1

∂v

)
.

It may be noticed that (2.3.5) and (2.3.7) admit the cases T
(i)
1 = 0 and S

(i)
1 = 0 for

i = 1, 2. For the case i = 1, the equation S
(1)
1 = 0 implies that

Q
(1)
1 = 1 + e−u/2ϕ(x, t, ξ), (2.3.8)

where ξ = u+ log v and ϕ is an arbitrary function of x, t and ξ. In view of (2.3.8), the

equation T
(1)
1 = 0 implies that

∂ϕ

∂x
+

∂ϕ

∂ξ
− 1

2
ϕ+ e(ξ−u)

(
∂ϕ

∂t
− ∂ϕ

∂ξ

)
− 1

2
e−u/2ϕ2 = 0,

which leads to ϕ ≡ 0, i.e., Q
(1)
1 ≡ 1. Similarly, with the assumption that T

(2)
1 = S

(2)
1 = 0,

we have Q
(2)
1 ≡ 1. Thus, on solving (2.3.4) and (2.3.6), equations (2.3.1) admit the

following solutions, which recovers the solution obtained in [45] that follows a different

line of approach:
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v(x, t) = v0(ξ)e
−t,

u(x, t) = u0(ξ) + δ

(
et − 1

v0(ξ)

)
, (2.3.9)

x = ξ + δ

(
et − 1

v0(ξ)

)
, δ = ±1.

Here, ξ(x, t) denotes the unique point on the x-axis, which lies on the characteristic

through (x, t) and is given by (2.3.9)3. For δ = ∓1, the above equations (2.3.9) give two

solutions of the system (2.3.1) and (2.3.3), one for each characteristic family; indeed,

the above solutions are characterized by the differential constraints:

du0(x)

dx
=

δ

v0(x)

dv0
dx

+ 1. (2.3.10)

Observe that, for a given x and t, the equations (2.3.9)1 and (2.3.9)2 admit unique

values for v and u provided there exists a unique ξ satisfying (2.3.9)3; in other words,

the existence of a unique solution is guaranteed for every x in (−∞,∞) and for every

t > 0 provided that

δ

(
et − 1

(v0(ξ))
2

)
dv0
dξ

̸= 1. (2.3.11)

2.4 Shocks and rarefaction waves

There are two distinct families of discontinuous solutions of (2.3.1), (2.3.3), referred

to as 1-shocks (or back shocks) and 2-shocks (or front shocks). Similarly, there are

two families of continuous solutions of (2.3.1), (2.3.3), referred to as rarefaction waves

corresponding to either characteristic family λ(1) or λ(2).

Let x = X(t) be a curve representing a discontinuity across which the flow variables u

and v are discontinuous and let σ =
dX

dt
be the speed of propagation of the disconti-

nuity. Then R-H conditions for the system (2.3.1) are

σ(uℓ(t)− ur(t)) =
1

vr(t)
− 1

vℓ(t)
, σ(vℓ(t)− vr(t)) = (uℓ(t)− ur(t)), (2.4.1)
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where uℓ(t) = lim
x→X(t)−

u(x, t), ur(t) = lim
x→X(t)+

u(x, t), vℓ(t) = lim
x→X(t)−

v(x, t), and vr(t) =

lim
x→X(t)+

v(x, t). Equations (2.4.1) imply that

σ = ± 1

(vrvℓ)
1/2

, uℓ = ur + σ (vℓ − vr) . (2.4.2)

If the admitted discontinuity x = S1(t) is a consequence of the intersection of charac-

teristics belonging to the family
dx

dt
= −1

v
, satisfying

− 1

vℓ
> σ > − 1

vr
, (2.4.3)

then the discontinuity x = S1(t) is called a 1-shock or a back shock; the inequality

(2.4.3) shows that σ < 0 and therefore, for a 1-shock, we have

σ =
dS1

dt
= − 1

(vrvℓ)
1/2

, uℓ = ur −
(vℓ − vr)

(vrvℓ)
1/2

, (2.4.4)

with vℓ(t) > vr(t) and uℓ(t) < ur(t).

Similarly, if the admitted discontinuity x = S2(t) is a consequence of the intersection

of characteristics belonging to the family
dx

dt
=

1

v
, satisfying

1

vℓ
> σ >

1

vr
, (2.4.5)

then the discontinuity x = S2(t) is called a 2-shock or a front shock satisfying σ > 0

with

σ =
dS2

dt
=

1

(vrvℓ)
1/2

, uℓ = ur +
(vℓ − vr)

(vrvℓ)
1/2

. (2.4.6)

with vℓ < vr and uℓ < ur.

We now turn to the rarefaction wave solutions of (2.3.1), (2.3.3) which are con-

tinuous solutions corresponding to the eigen modes λ(1) and λ(2), referred to as 1-

rarefaction wave and 2-rarefaction waves, respectively. Let uL = lim
x→0−

u0(x), vL =
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lim
x→0−

v0(x), uR = lim
x→0+

u0(x), vR = lim
x→0+

v0(x) such that the initial step function is

expansive with vL < vR. Let x = R1(t) and x = R2(t) be the curves that pass through

(0, 0) such that R1(t) < R2(t) for all t > 0 with R1(t) and R2(t) satisfying

dR1

dt
=

−1

v(R1(t), t)
,

dR2

dt
=

−1

v(R2(t), t)
.

(2.4.7)

In view of (2.3.9), equations (2.4.7) lead to R1(t) =
(1− et)

vL
, R2(t) =

(1− et)

vR
. Since,

vL < vR, we have v(R1(t), t) < v(R2(t), t); a continuously varying solution in the region

R1(t) < x < R2(t), which is continuous across the curves x = R1(t) and x = R2(t),

referred to as 1-rarefaction wave, can be obtained from (2.3.9) as follows. Since all the

values of u (respectively, v) between uL and uR (respectively, vL and vR) are taken on

characteristics in a fan through origin, where ξ = 0, the solution in the fan, bounded

by the characteristics x = R1(t) =
(1− et)

vL
and x = R2(t) =

(1− et)

vR
is given by

v(x, t) = ze−t, if R1(t) < x < R2(t),

u(x, t) = ζ −
(
et − 1

z

)
, if R1(t) < x < R2(t), (2.4.8)

x = −
(
et − 1

z

)
,

where R1(t) < x < R2(t), vL < z < vR, and uL < ζ < uR. Here, the characteristics are

emanating from the origin and given by
dx

dt
= −1

v
= −et

z
whose speeds are varying from

−1

vL
to

−1

vR
. Differentiating the

equations (2.4.8) with respect to x and t and substituting in (2.3.1) we get

∂ζ

∂t
+

et

et − 1
= 0,

∂ζ

∂x
− 1

x
= 0. (2.4.9)

The system (2.4.9), subject to the condition ζ = uL when x = R1(t), yields the unique

solution given by ζ = uL + log

(
xvL
1− et

)
. Thus, the solution for 1-rarefaction wave is

given by
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v(x, t) =


v0(ξ)e

−t, if x ≤ R1(t),(
e−t − 1

x

)
, if R1(t) < x < R2(t),

v0(ξ)e
−t, if x ≥ R2(t),

(2.4.10)

u(x, t) =



u0(ξ)−
(
et − 1

v0(ξ)

)
, if x ≤ R1(t),

uL + log

(
xvL
1− et

)
+ x, if R1(t) < x < R2(t),

u0(ξ)−
(
et − 1

v0(ξ)

)
, if x ≥ R2(t),

(2.4.11)

x = ξ −
(
et − 1

v0(ξ)

)
,

du0

dx
= 1− 1

v0

dv0
dx

,

with uR = uL + log

(
vL
vR

)
, R1(t) =

(1− et)

vL
, R2(t) =

(1− et)

vR
and v(R1(t), t) <

v(R2(t), t).

Similarly, let x = R3(t) and x = R4(t) be the curves that pass through (0, 0) such

that R3(t) < R4(t) for all t > 0 then

dR3

dt
=

1

v(R3(t), t)
,

dR4

dt
=

1

v(R4(t), t)
,

(2.4.12)

which implies that v(R3(t), t) > v(R4(t), t) since vL > vR and R3(t) < R4(t) for all

t > 0. A continuously varying solution in the region R3(t) < x < R4(t), which is

continuous across the curves x = R3(t) and x = R4(t), referred to as a 2-rarefaction

wave, can be obtained in a similar manner, and is given by
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v(x, t) =


v0(ξ)e

−t, if x ≤ R3(t),(
1− e−t

x

)
, if R3(t) < x < R4(t),

v0(ξ)e
−t, if x ≥ R4(t),

(2.4.13)

u(x, t) =



u0(ξ) +

(
et − 1

v0(ξ)

)
, if x ≤ R3(t),

uR − log

(
xvR
1− et

)
+ x, if R3(t) < x < R4(t),

u0(ξ) +

(
et − 1

v0(ξ)

)
, if x ≥ R4(t),

(2.4.14)

x = ξ +

(
et − 1

v0(ξ)

)
,

du0

dx
= 1 +

1

v0

dv0
dx

with uL = uR − log

(
vR
vL

)
, R3(t) =

(et − 1)

vL
, R4(t) =

(et − 1)

vR
and v(R3(t), t) >

v(R4(t), t).

The above results can be summarized as:

• Across a 1-shock wave, we have vℓ(t) > vr(t) and uℓ(t) < ur(t), where (uℓ(t), vℓ(t))

and (ur(t), vr(t)) are the limiting values of (u, v) as the discontinuity x = S1(t)

is approached from left and right, respectively.

• Across a 2-shock wave, we have vℓ(t) < vr(t) and uℓ(t) < ur(t), where (uℓ(t), vℓ(t))

and (ur(t), vr(t)) are the limiting values of (u, v) as the discontinuity x = S2(t)

is approached from left and right, respectively.

• Across a 1-rarefaction wave, we have vℓ(t) < vr(t) and uℓ(t) > ur(t), where

vℓ(t) = v(R1(t), t), uℓ(t) = u(R1(t), t), vr(t) = v(R2(t), t) and ur(t) = u(R2(t), t).

• Across a 2-rarefaction wave, we have vℓ(t) > vr(t) and uℓ(t) > ur(t), where

vℓ(t) = v(R3(t), t), uℓ(t)) = u(R3(t), t), vr(t) = v(R4(t), t) and ur(t) = u(R4(t), t).

Based on solutions (2.4.10), (2.4.11), (2.4.13) and (2.4.14), we solve a Riemann

problem with non-constant and smooth initial data, in the next section.
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2.5 Riemann problem with non-constant initial state

Consider the initial profile

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) =

{
(x+ uL, vL) , if x < 0,

(x+ uR, vR) , if x ≥ 0,
(2.5.1)

where uL, uR, vL and vR are constants.

If 1-wave is a shock wave then

v(x, t) =

{
vLe

−t, if x ≤ S1(t),

ṽe−t, if x > S1(t),
(2.5.2)

u(x, t) =

{
uL + x, if x ≤ S1(t),

ũ+ x, if x > S1(t),
(2.5.3)

where
dS1

dt
= − et√

(vLṽ)
, which yields on integration that S1(t) =

(1− et)√
(vLṽ)

. In view of

(2.4.4)2 we have ũ = uL − ṽ − vL√
(vLṽ)

, ṽ < vL and ũ > uL.

Similarly, if 2-wave is a shock wave then

v(x, t) =

{
vRe

−t, if x ≥ S2(t),

v̂e−t, if x < S2(t),
(2.5.4)

u(x, t) =

{
uR + x, if x ≥ S2(t),

û+ x, if x < S2(t),
(2.5.5)

where
dS2

dt
=

et√
(vRv̂)

, which yields on integration that S2(t) =
(et − 1)√

vRv̂
. In view of

(2.4.6)2 we have û = uR +
v̂ − vR√

vRv̂
with v̂ < vR and ũ > uR.

If 1-wave is a rarefaction wave then
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v(x, t) =


vLe

−t, if x ≤ R1(t),(
e−t − 1

x

)
, if R1(t) < x < R2(t),

ṽe−t, if x ≥ R2(t),

(2.5.6)

u(x, t) =


uL + x, if x ≤ R1(t),

uL + log

(
xvL
1− et

)
+ x, if R1(t) < x < R2(t),

ũ+ x, if x ≥ R2(t),

(2.5.7)

where ũ = uL + log
(vL
ṽ

)
, R1(t) =

(1− et)

vL
, R2(t) =

(1− et)

ṽ
and ṽ > vL.

Similarly, if 2-wave is a rarefaction wave then

v(x, t) =


v̂e−t, if x ≤ R3(t),(
1− e−t

x

)
, if R3(t) < x ≤ R4(t),

vRe
−t, if x ≥ R4(t),

(2.5.8)

u(x, t) =


û+ x, if x ≤ R3(t),

uR − log

(
xvR
et − 1

)
+ x, if R3(t) < x < R4(t),

uR + x, , if x ≥ R4(t),

(2.5.9)

where û = uR − log
(vR
v̂

)
, R3(t) =

(et − 1)

v̂
, R4(t) =

(et − 1)

vR
and v̂ > vR. Here, ṽ and

v̂ are arbitrary constants.

Let A and C be the quantities defined by

A = uL − uR, C = log(vR/vL). (2.5.10)

Then, to continue our development, it is useful to state the following Lemmas:

Lemma 2.5.1. Let A and C be defined as in (2.5.10). If the solution to the Riemann

problem for the system (2.3.1), with initial conditions (2.5.1), consists of 1-shock wave

and 2-shock wave then A+ 2 sinh(|C|/2) < 0 and A < 0.

Proof. Given that 1-wave is a shock wave, x = S1(t), implies that ũ > uL and ṽ < vL;

similarly, if 2-wave is a shock wave, x = S2(t), then û < uR and v̂ < vR. In the region,
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S1(t) < x < S2(t) the solution given in the equations (2.5.2) and (2.5.3), through 1-

shock, and the solutions (2.5.4) and (2.5.5), through 2-shock, should coincide; that is

ṽ = v̂ = z(say), ũ = û, i.e., A = uL − uR < 0 and f1(z) = 0 where

f1(z) = uL − uR − z − vL

(vLz)
(1/2)

− z − vR

(vRz)
(1/2)

,

for 0 < z < min {vL, vR}. Observe that lim
z→0

f1(z) = ∞ and

df1
dz

= − z + vL

2z
√
(vLz)

− z + vR

2z
√
(vRz)

< 0,

implying thereby that f1 is decreasing.

• Let vL < vR, i.e., C > 0. Since 0 < z < min {vL, vR}, i.e., 0 < z < vL, f1 = 0 has

a solution if f1(vL) < 0, where

f1(vL) = uL − uR − vL − vR

(vRvL)
(1/2)

= A+ 2 sinh(C/2). (2.5.11)

• Similarly, let vR < vL, i.e., C < 0 then f1 = 0 has a solution if f1(vR) < 0, where

f1(vR) = uL − uR − vR − vL

(vRvL)
(1/2)

= A− 2 sinh(C/2). (2.5.12)

Thus, in view of (2.5.11) and (2.5.12), if A < 0 then the solution exists for f1(z) = 0

only when A+ 2 sinh(|C|/2) < 0.

This situation is depicted in Figure 2.1. Further, when vR = vL, i.e., C = 0, it

follows from f1(z) = 0 that z = vL

(√
(uR − uL)2

4
+ 1− uR − uL

4

)2

which recovers

the result obtained in [29] for vL = vR = v0, uR = ur, uL = uℓ and z = vm.

Lemma 2.5.2. Let A and C be defined as in (2.5.10). If the solution to the Riemann

problem for the system (2.3.1), with initial conditions (2.5.1), consists of 1-shock wave

and 2-rarefaction wave, then either of the following inequalities holds

(i.) A < 0, C < 0 and A− 2 sinh(C/2) > 0.
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(ii.) A > 0, C < 0 and A+ C < 0.

Proof. Let 1-wave be a shock wave and 2-wave be a rarefaction wave. This implies

that ũ > uL, ṽ < vL and v̂ > vR. In view of (2.5.2), (2.5.3), (2.5.8) and (2.5.9), it

follows that the solutions given by (2.5.2)-(2.5.3) and (2.5.8)-(2.5.9) should coincide in

the region S1(t) < x < R3(t); this means that ṽ = v̂ = z(say), i.e., vR < z < vL and

f2(z) = 0 where

f2(z) = uL − uR − z − vL√
(vLz)

+ log
(vR
z

)
,

for vR < z < vL. Observe from the equation

df2
dz

= − z + vL

2z
√

(vLz)
− 1

z
,

that f2 is decreasing. Since, vR < vL, i.e., C < 0, the equation f2 = 0 has a solution

only when f2(vR) > 0 and f2(vL) < 0, i.e.,

f2(vL) < 0 ⇒ uL − uR + log

(
vR
vL

)
< 0, (2.5.13)

f2(vR) > 0 ⇒ uL − uR − vR − vL√
(vLvR)

> 0. (2.5.14)

Since vR < vL, and if uL > uR then (2.5.14) always holds. Thus, a solution for f2(z) = 0

over [vR, vL] is possible if (2.5.13) holds, i.e.,

A+ C = uL − uR + log

(
vR
vL

)
< 0.

Hence, A > 0, C < 0 and A+ C < 0.

Further, since vR < vL, and if uL < uR then the equation (2.5.13) always holds.

Thus, the number of solutions for f2(z) = 0 over [vR, vL] is possible only if (2.5.14)

holds, i.e.,

uL − uR − vR − vL√
(vLvR)

= A− 2 sin(C/2) > 0.
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Hence, A < 0, C < 0 and A − 2 sinh(C/2) > 0. This situation is depicted in Figure

2.2.

Lemma 2.5.3. Let A and C be defined as in (2.5.10). If the solution to the Riemann

problem for the system (2.3.1), with initial conditions (2.5.1), consists of 1-rarefaction

wave and 2-shock wave then either of the following inequalities holds

(i.) A < 0, C > 0 and A+ 2 sinh(C/2) > 0.

(ii.) A > 0, C > 0 and A− C < 0.

Proof. Given that 1-wave is a rarefaction wave implies that ṽ > vL; similarly if the 2-

wave is a shock wave then û < uR and v̂ < vR. In view of the equations (2.5.4)-(2.5.7),

the solutions given by the equations (2.5.4)-(2.5.5) and (2.5.6)-(2.5.7) should coincide

in the region R2(t) < x < S2(t), i.e., ṽ = v̂ = z(say), û = ũ, i.e., vL < vR, C < 0 and

f3(z) = 0 where

f3(z) = uL − uR + log
(vL
z

)
− z − vR√

(vRz)
,

for vL < z < vR. Observe from the above equation that

df3
dz

= − z + vR

2z
√

(vRz)
− 1

z
,

implying thereby that f3 is decreasing. Since C < 0, the equation f3 = 0 has a solution

only when f3(vL) > 0 and f3(vR) < 0, i.e.,

f3(vL) > 0 ⇒ uL − uR − vL − vR√
(vLvR)

> 0, (2.5.15)

f3(vR) < 0 ⇒ uL − uR + log

(
vL
vR

)
< 0, (2.5.16)

If uL > uR and vL < vR then A > 0, C < 0 and the equation (2.5.15) is always true.

Thus, the solution for f3(z) = 0 over [vL, vR] exits only when the equation (2.5.16) is

true, i.e.,

uL − uR + log

(
vL
vR

)
= A− C < 0. (2.5.17)
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Thus, A > 0, C > 0 and A− C < 0.

Further, if vL < vR and uL < uR then C < 0, A > 0 and the equation (2.5.16) is

always true. Thus, the solution for f3(z) = 0 over [vL, vR] exits only when the equation

(2.5.15) is true, i.e.,

uL − uR − vL − vR√
(vLvR)

= A+ 2 sinh(C/2) > 0, (2.5.18)

implying thereby that A < 0, C > 0 and A+ 2 sinh(C/2) > 0.

This situation is depicted in Figure 2.3.

Lemma 2.5.4. Let A and C be defined as in (2.5.10). If the solution to the Riemann

problem for the system (2.3.1), with initial conditions (2.5.1), consists of 1-rarefaction

wave and 2-rarefaction wave then A > 0 and A− |C| > 0.

Proof. Let 1-wave and 2-wave be both rarefaction waves. In view of (2.5.6)-(2.5.9),

the solutions given in the equations (2.5.6)-(2.5.7) and (2.5.8)-(2.5.9) should coincide

in the region, R2(t) < x < R3(t), i.e., ṽ = v̂ = z(say) and f4(z) = 0 where

f4(z) = uL − uR + log
(vL
z

)
+ log

(vR
z

)
,

with max{vL, vR} < z < ∞. Observe from the above equation that

df4
dz

= −2

z
,

showing thereby f4 is decreasing. Observe that lim
z→∞

f4(z) = −∞.

If vL < vR, C > 0, then f4 = 0 has a solution provided f4(vR) > 0, i.e.,

uL − uR + log

(
vL
vR

)
= A− C > 0. (2.5.19)

Since C > 0 and A− C > 0 we have A > 0.

Similarly, if vR < vL then f4 = 0 has a solution if f4(vL) > 0, i.e.,

uL − uR + log

(
vR
vL

)
= A+ C > 0. (2.5.20)
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Since C < 0 and A+ C > 0 we have A > 0.

Also observe that when vL > vR (respectively, vR > vL) and uR > uL then equation

(2.5.19) (respectively, equation (2.5.20)) does not hold. This situation is depicted in

Figure 2.4.

Further, when vR = vL, i.e., C = 0 from the equation f4(z) = 0 yields z = vLe
uL−uR

2

which on replacing vL = vR = v0, uR = ur, uL = uℓ and z = Vm recovers the result in

the equation (37) of Ref. [29] .

Lemma 2.5.5. Let A and C be defined as in (2.5.10). If the solution to the Rie-

mann problem for the system (2.3.1), with initial conditions (2.5.1), consists of only

1-rarefaction wave (respectively, 2-rarefaction wave) then A > 0, C > 0 and A−C = 0

(respectively, A > 0, C < 0 and A+ C = 0).

Proof. Let the solution be given through 1-wave as a rarefaction wave only, then in

view of (2.5.6)− (2.5.7), we have ṽ > vL, ṽ = vR and ũ = uR, i.e., uL+log

(
vL
vR

)
= uR,

which implies that A− C = 0. Similarly, when solution is given through 2-rarefaction

wave, it can be easily shown that A+ C = 0.

Lemma 2.5.6. Let A and C be defined as in (2.5.10). If the solution to the Rie-

mann problem for the system (2.3.1), with initial conditions (2.5.1), consists of only

1-shock wave (respectively, 2-shock wave) then A < 0, C < 0 and A− 2 sinh(C/2) = 0

(respectively, A < 0, C > 0 and A+ 2 sinh(C/2) = 0).

Proof. Let solution be given through 1-wave as a shock wave only, then in view of

(2.5.2) − (2.5.3), we have ṽ < vL, ṽ = vR and ũ = uR, i.e., uL − vR − vL√
vLvR

= uR which

implies A − 2 sinh(C/2) = 0. Similarly, when solution is given through 2-wave as a

shock wave, it can be proved that A− C = 0.

We next give the following two theorems, which in fact, complete our discussion re-

lating to the complete characterization of the solution of the Riemann problem under

consideration.

Theorem 2.5.1. Let A and C be defined as in (2.5.10). Consider the solution to

the Riemann problem for the system (2.3.1), with initial conditions (2.5.1). Then 1-

rarefaction wave (respectively, 1-shock wave) is a solution to the Riemann problem if

and only if A+max(2 sinh(C/2), C) > 0 (respectively, A+max(2 sinh(C/2), C) < 0).

Proof. Observe that if C > 0 (respectively; C < 0) then min(C, 2 sinh(C/2)) = C

(respectively; min(C, 2 sinh(C/2)) = 2 sinh(C/2)).
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Let the 1-wave be a rarefaction wave. Then, from Lemmas 2.5.3, 2.5.4 and 2.5.5, we

have

1. A < 0, C > 0, A+ 2 sinh(C/2) > 0 ⇒ A+max(C, 2 sinh(C/2)) > 0.

2. A > 0, C < 0, A+ C > 0 ⇒ A+max(C, 2 sinh(C/2)) > 0.

3. A > 0, C > 0 ⇒ A+ C > 0 and A+ 2 sinh(C/2) > 0.

Thus, if the 1-wave is a rarefaction wave then A+max(C, 2 sinh(C/2)) > 0.

Let the 1-wave be a shock wave then from Lemmas 2.5.1, 2.5.2 and 2.5.6 we have

1. A < 0, C > 0, A+ 2 sinh(C/2) < 0 ⇒ A+max(C, 2 sinh(C/2)) < 0.

2. A > 0, C < 0, A+ C < 0 ⇒ A+max(C, 2 sinh(C/2)) < 0.

3. A < 0, C < 0 ⇒ A+ C < 0 and A+max(C, 2 sinh(C/2)) < 0.

Thus, if the 1-wave is a shock wave then A+max(C, 2 sinh(C/2)) < 0.

To prove the converse, let A + max(2 sinh(C/2), C) > 0, then we have one of the

following possibilities

• A > 0, C > 0.

• A > 0, C < 0, A+ C > 0.

• A < 0, C > 0, A+ 2 sinh(C/2) > 0,

which lead us to conclude that the 1-wave cannot be a shock wave as the above in-

equalities are contradicting the consequences of lemmas 2.5.1, 2.5.2 and 2.5.6 . Hence,

the 1-wave is a rarefaction wave.

Now, let A+max(2 sinh(C/2), C) < 0, then we have one of the following possibilities

• A < 0, C < 0.

• A > 0, C < 0, A+ C < 0.

• A < 0, C > 0, A+ 2 sinh(C/2) < 0,

which imply that the 1-wave is not a rarefaction wave as the above inequalities are

contradicting the consequences of lemmas 2.5.3, 2.5.4 and 2.5.5. Hence, the 1-wave is

a shock wave.
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Theorem 2.5.2. Let A and C be defined as in (2.5.10). Consider the solution to

the Riemann problem for the system (2.3.1), with initial conditions (2.5.1). Then, 2-

rarefaction wave (respectively, 2-shock wave) is a solution to the Riemann problem if

and only if A−min(2 sinh(C/2), C) > 0 (respectively, A−min(2 sinh(C/2), C) < 0).

Proof. Observe that if C > 0 (respectively; C < 0) then min(C, 2 sinh(C/2)) = C

(respectively; min(C, 2 sinh(C/2)) = 2 sinh(C/2)).

Let 2-wave be a rarefaction wave then from Lemmas 2.5.2, 2.5.4 and 2.5.5 we have

1. A > 0, C < 0 ⇒ A− C > 0 and A− 2 sinh(C/2) > 0.

2. A > 0, C > 0, A− C > 0 ⇒ A−min(C, 2 sinh(C/2)) > 0.

3. A < 0, C < 0, A− 2 sinh(C/2) > 0 ⇒ A−min(C, 2 sinh(C/2)) > 0.

Thus, if 2-wave is a rarefaction wave then A − min(C, 2 sinh(C/2)) > 0. However, if

the 2-wave is a shock wave then from Lemmas 2.5.1, 2.5.3 and 2.5.6 we have

1. A < 0, C > 0 ⇒ A− C < 0 and A− 2 sinh(C/2) < 0.

2. A > 0, C > 0, A− C < 0 ⇒ A−min(C, 2 sinh(C/2) < 0.

3. A < 0, C < 0, A− 2 sinh(C/2) < 0 ⇒ A−min(C, 2 sinh(C/2)) < 0.

Thus, if 2-wave is a shock wave then A−min(C, 2 sinh(C/2) < 0.

To prove the converse, let A − min(2 sinh(C/2), C) > 0, then we have one of the

following possibilities

• A > 0, C < 0.

• A > 0, C > 0, A− C > 0.

• A < 0, C < 0, A− 2 sinh(C/2) > 0.

Assume that 2-wave is a shock wave, then the above inequalities are contradicting

the consequences of lemmas 2.5.1, 2.5.3 and 2.5.6. Hence, the 2-wave is a rarefaction

wave.

Now, let A+max(2 sinh(C/2), C) < 0; then we have one of the following possibilities

• A < 0, C > 0.
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• A > 0, C < 0, A− C < 0.

• A < 0, C < 0, A− 2 sinh(C/2) < 0.

Assume that 2-wave is a rarefaction wave, then the above possibilities are contra-

dicting lemmas 2.5.2, 2.5.4 and 2.5.5. Hence, the 2-wave is a shock wave.
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Figure 2.1: S1 and S2 are, respectively, the back-shock and the front shock; regions
x < S1(t), S1(t) < x < S2(t), and x > S2(t) are depicted as I, II and III respectively.
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Figure 2.2: Region behind the back-shock S1 is depicted as I; region S1(t) < x < R3(t)
between S1 and the trail characteristic R3 of the front rarefaction wave III is depicted
as II; region x > R4(t) ahead of the front rarefaction is depicted as IV.
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Figure 2.3: The region x < R1(t) is depicted as I; back rarefaction region R1(t) < x <
R2(t) is depicted as II; the region R2(t) ≤ x ≤ S2(t) is depicted as III and the region
x > S2(t) is depicted as IV.
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Figure 2.4: The region x < R1(t) is depicted as I; II is the back rarefaction wave region;
region R2(t) ≤ x ≤ R3(t) between front and back rarefaction is depicted as III; IV is
the front rarefaction wave region and region x > R4(t) is depicted as V.



Chapter 3

Riemann problem for the

Chaplygin gas equations for several

classes of non-constant initial data

3.1 Introduction

In this chapter we considered a Chaplygin gas model

ρt + (ρv)x = 0, (3.1.1)

(ρv)t + (ρv2 + p)x = 0, (3.1.2)

subject to the equation of state given by

p(ρ) = −ρ−1, (3.1.3)

where ρ and v are the density and velocity of the gas respectively. The model given

by the equations (3.1.1), (3.1.2) describes the dark matter and dark energy in the uni-

fied form through an exotic background fluid proposed in [47–50] as a mathematical

approximation to calculate the lifting force on a wing of an airplane in aerodynamics.

Also it was a prototype of the unified model [51,52] where dark energy and dark mat-

ter were depicted by a single fluid and Chaplygin cosmology provides an interesting

possibility to account for current observations about the expansion of the universe. It

was also predicted by them that the cosmological constant will increase (or that it was

less in the past) and this could in principle be observed. In 1996, Hsiaoa nd Serre [63],

proved the global existence to the solutions for the system of compressible adiabatic

37
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flow through porous media.

The differential constraint method is based upon appending a set of partial differ-

ential equations to a governing system of equations, first proposed by Janenko [30] to

the gas dynamics model. The differential constraint equations play an important role

to select classes of solutions of the system under interest. Within such a theoretical

framework, recently, reduction procedures have been developed for studying soliton-like

interaction for homogeneous and nonhomogeneous hyperbolic 2 × 2 systems [40, 41],

for solving Riemann problems and generalized Riemann problems [39], for determining

exact solution for the constant Astigmatism equation [55] and for a model of interest

in chromatography [54].

3.2 Differential Constraint Method

In this section, to outline the method of differential constraints as demonstrated by

Curró, Fusco and Manganaro [39], consider a system of non-homogeneous quasilinear

partial differential equations as

Ut +A(x, t,U)Ux = B(x, t,U), (3.2.1)

where x and t are the space and the time coordinates, respectively; U ∈ RN denotes

column vector of the dependent field variables, A(x, t,U) is N ×N coefficient matrix

andB(x, t,U) is the column vector related to the source terms. Hereafter, any subscript

denotes the partial derivative with respect to the indicated variable. The system (3.2.1)

is assumed to be strictly hyperbolic, i.e., the coefficient matrix A(x, t,U) has real

distinct eigenvalues. Without loss of generality we assume that

l(i) · d(j) =

1, if i = j,

0, if i ̸= j,
(3.2.2)

where l(i) and d(i) represents the left and the right eigenvectors of the coefficient matrix

A(x, t,U) corresponding to an eigenvalue λ(i), respectively. For strictly hyperbolic

system (3.2.1), consider a set of first order differential constraints [8] as

l(i)(U) ·Ux = Q(i)(x, t,U), i = 1, 2, ..., N − 1, (3.2.3)

whereQ(i)(x, t,U) are arbitrary functions to be determined subject to the compatibility

conditions given in [39] and [30]. Owing to (3.2.3), we have
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Ux =
∑
i=1

Q(i)d(i) + ϵd(N), (3.2.4)

through which the equations (3.2.1) reduce to form

Ut = B−
∑
i=1

Q(i)λ(i)d(i) − ϵλ(N)d(N). (3.2.5)

For consistency of (3.2.4) and (3.2.5) to hold ∀ϵ, we obtain

Q
(i)
t + λ(i)Q(i)

x +∇Q(i)

(
B−

N−1∑
j=1

Q(j)
(
λ(j) − λ(i)

)
d(j)

)

+
N−1∑
j=1

N−1∑
k=1

Q(j)Q(k)
(
λ(j) − λ(k)

)
l(i)∇d(j)d(k)

+
N−1∑
k=1

Q(k)
(
l(k)
(
∇d(k)B−∇Bd(k)

)
+Q(i)∇λ(i)d(k)

)
= 0, (3.2.6)

(
λ(i) − λ(N)

)
∇Q(i)d(N) +

N−1∑
k=1

q(k)
(
λ(k) − λ(N)

)
l(i)
(
∇d(k)d(N) −∇d(N)d(k)

)
+l(i)

(
∇d(N)B−∇Bd(N)

)
+Q(i)∇λ(i)d(N) = 0, (3.2.7)

where i = 1, ..., (N − 1) and ∇ = ∂/∂U.

Using the differential constraint equations (3.2.3) and compatibility condition (3.2.6),

(3.2.7), the equation (3.2.1) reduce to the form

Ut + λ(N)Ux = B+
N−1∑
i=1

Q(i)(λ(N) − λ(i))d(i). (3.2.8)

By determining Q(i) satisfying the equations (3.2.6), (3.2.7), the equations (3.2.8) can

be integrated along the characteristics curves given by
dx

dt
= λ(N) with the given initial

data.

3.3 Cauchy Problem

In this section, the system of conservation laws describing Chaplygin gas model is

considered, given by the equations (3.1.1), (3.1.2), in the matrix form
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U =

[
ρ

v

]
, A(x, t,U) =

 v ρ
1

ρ3
v

 , B(x, t,U) =

[
0

0

]
.

The eigenvalues of the matrix A are given by

λ = v − 1

ρ
and µ = v +

1

ρ
, (3.3.1)

the corresponding left eigenvectors and right eigenvectors are as follows

l(λ) =

[
1

2ρ
,
−ρ

2

]
, l(µ) =

[
1

2ρ
,
ρ

2

]
, (3.3.2)

d(λ) =

 ρ
−1

ρ

 , d(µ) =

 ρ
1

ρ

 . (3.3.3)

The authors have made an attempt to derive a nontrivial solution to the system of

equations (3.1.1), (3.1.2) subject to the initial conditions

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), (3.3.4)

using the differential constraint

ρvx −
ρx
ρ

= q(x, t, ρ, v), (3.3.5)

where q satisfies the following compatibility conditions derived (3.2.6) and (3.2.7)

qt + λqx + q2∇λd(λ) = 0, (3.3.6)

(λ− µ)∇qd(µ) + q∇λd(µ) + q(λ− µ)l(λ)
(
∇d(λ)d(µ) −∇d(µ)d(λ)

)
= 0.(3.3.7)

Using the above analysis, Gupta et al. [46] derived the same equation as (3.3.6) which

is numbered as equation (7) in their paper. However, instead of the equation (3.3.7),

they had erroneously derived an equation numbered (8) in their paper which is the

same as (3.3.7) but with the last term missing. Consequently, the equations (14) - (20)

given in Gupta et al. [46] are in error, and hence, the solution to the Riemann problem
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is not correct and does not satisfy the basic equations (3.1.1), (3.1.2).

In view of (3.3.1)-(3.3.3), the compatibility conditions (3.3.6), (3.3.7) reduce to

qt + λqx = 0,

ρ2qρ + qv = 2ρq,

which have a solution of the form

q = c0ρ
2, (3.3.8)

where c0 is an arbitrary constant. Thus, in view of the equations (3.3.5) and (3.3.8),

the equations (3.1.1) and (3.1.2) can be written as

ρt + µρx + q = 0,

vt + µvx − qρ−2 = 0,

which can be solved subject to the initial conditions (3.3.4), as

ρ(x, t) =
ρ0(ξ)

1 + c0tρ0(ξ)
, (3.3.9)

v(x, t) = v0(ξ)− c0t, (3.3.10)

x = ξ +

(
v0(ξ) +

1

ρ0(ξ)

)
t− c0t

2. (3.3.11)

Here, ξ(x, t) denotes the point on x-axis that lies on the characteristic given by (3.3.11)

passing through (x, t) with a speed of

(
v +

1

ρ

)
, subject to the condition

v′0(ξ)−
1

ρ20(ξ)
ρ′0(ξ) = c0ρ0(ξ), (3.3.12)

where ‘ ′ ’ denotes derivative with respect to ξ.

The equations (3.3.9) and (3.3.10) admit unique values for ρ and v for a given x

and t provided there exists a unique ξ satisfying (3.3.11); i.e., the existence of a unique

solution is guaranteed for every x in (−∞,∞) and for every t > 0 provided that
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1 +

(
v′0(ξ)−

ρ′0(ξ)

ρ20(ξ)

)
t ̸= 0. (3.3.13)

Similarly, using the differential constraint

ρx
2ρ

+
ρvx
2

= q(x, t, ρ, v),

and adopting the aforementioned procedure, we obtain a solution

ρ(x, t) =
ρ0(ζ)

1 + c0tρ0(ζ)
, (3.3.14)

v(x, t) = v0(ζ) + c0t, (3.3.15)

x = ζ +

(
v0(ζ)−

1

ρ0(ζ)

)
t+ c0t

2. (3.3.16)

Here, ζ(x, t) denotes the point on x-axis that lies on the characteristic given by

(3.3.16) passing through (x, t) with a speed of

(
v − 1

ρ

)
, subject to the differential

constraint

v′0(ζ) +
1

ρ20(ζ)
ρ′0(ζ) = c0ρ0(ζ), (3.3.17)

where ‘ ′ ’ denotes derivative with respect to ζ.

The equations (3.3.14) and (3.3.15) admit unique values for ρ and v for a given x

and t provided there exists a unique ζ satisfying (3.3.16); i.e., the existence of a unique

solution is guaranteed for every x in (−∞,∞) and for every t > 0 provided that

1 +

(
v′0(ζ) +

ρ′0(ζ)

ρ20(ζ)

)
t ̸= 0. (3.3.18)

Thus, the two solutions given in (3.3.9)-(3.3.13) and (3.3.14)-(3.3.18) of the equations

(3.1.1), (3.1.2) subject to the initial conditions (3.3.4) are summarized as follows:
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ρ(x, t) =
ρ0(ξ)

1 + c0tρ0(ξ)
,

v(x, t) = v0(ξ) + δc0t,

x = ξ +

(
v0(ξ) +

δ

ρ0(ξ)

)
t+ δc0t

2, (3.3.19)

v′0(ξ)−
δ

ρ20(ξ)
ρ′0(ξ) = c0ρ0(ξ),

1 +

(
v′0(ξ)−

δρ′0(ξ)

ρ20(ξ)

)
t ̸= 0,

and δ = ±1.

3.4 Characteristic Shocks

Let x = X(t) be a curve, with speed
dX

dt
= σ, across which the flow variables are

discontinuous then the R-H conditions [2] for the equations (3.1.1), (3.1.2)

σ
(
ρ+(t)− ρ−(t)

)
=
(
ρ+(t)v+(t)− ρ−(t)v−(t)

)
, (3.4.1)

σ
(
ρ+(t)v+(t)− ρ−(t)v−(t)

)
=

(
ρ+(t)

(
v+(t)

)2 − ρ−(t)
(
v−(t)

)2 − 1

ρ+(t)
+

1

ρ−(t)

)
,

(3.4.2)

where

ρ+(t) = lim
x→X(t)+

ρ(x, t), ρ−(t) = lim
x→X(t)−

ρ(x, t),

v+(t) = lim
x→X(t)+

v(x, t), v−(t) = lim
x→X(t)−

v(x, t).

Solving the equations (3.4.1) and (3.4.2) we have σ = v+(t)+
δ

ρ+(t)
= v−(t)+

δ

ρ−(t)
, i.e.,

the speed of the discontinuity is equal to the speed of one of the characteristics given by
dx

dt
= λ or

dx

dt
= µ which is a consequence of the result that the eigenvalues λ and µ are

linearly-degenerate (because ∇λ·d(λ) = 0 and ∇µ·d(µ) = 0). Thus, the curve x = X(t)

with the speed v+(t) − 1

ρ+(t)

(
= v−(t)− 1

ρ−(t)

)
is referred to as a 1- Characteristic

shock across which the variables ρ and v are discontinuous and v−1

ρ
is continuous. Sim-
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ilarly, the curve x = X(t) with the speed v+(t) +
1

ρ+(t)

(
= v−(t) +

1

ρ−(t)

)
is referred

to as a 2- Characteristic shock across which the variables ρ and v are discontinuous

and v +
1

ρ
is continuous.

3.5 Riemann Problem for Non-Constant Initial Data

In this section, we consider the Riemann problem with non-constant initial discontin-

uous data:

(ρ(x, 0), v(x, 0)) =

(ρr(x), vr(x)) , x ≥ 0,

(ρl(x), vl(x)) , x ≤ 0,
(3.5.1)

where ρl, vl, ρr and vr are arbitrary functions of x such that

v′l(x)−
α

ρ2l (x)
ρ′l(x) = C0ρl(x),

v′r(x)−
β

ρ2r(x)
ρ′r(x) = C1ρr(x).

Here, α = ±1, β = ±1 and C0, C1 are arbitrary constants. Let

ρL = lim
x→0−

ρl(x), ρR = lim
x→0+

ρr(x),

vL = lim
x→0−

vl(x), vR = lim
x→0+

vr(x),

where (ρL, vL) ̸= (ρR, vR).

Theorem 3.5.1. Let solution to the Riemann problem of the equations (3.1.1), (3.1.2)

subject to (3.5.1) be connected through only 1-Characteristic shock then vL − 1

ρL
=

vR − 1

ρR
along with one of the following possibilities

1. α = 1, β = 1, and C0, C1 are arbitrary constants.

2. α = 1, β = −1, C1 = 0 and C0 is an arbitrary constant.

3. α = −1, β = 1, C0 = 0 and C1 is an arbitrary constant.

4. α = −1, β = −1, C1 = C0 and C0 is an arbitrary constant.
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Proof. Given that the solution to the Riemann problem of the equations (3.1.1), (3.1.2)

subject to (3.5.1) be connected through only 1- Characteristic shock we have the x =

X1(t), such that
dX1

dt
= v− 1

ρ
across which the flow variables v and ρ are discontinuous

and however,

(
v − 1

ρ

)
is continuous, i.e.,

dX1

dt
= lim

x→X1(t)−

(
v − 1

ρ

)
= lim

x→X1(t)+

(
v − 1

ρ

)
. (3.5.2)

In view of (3.3.19) when δ = α and c0 = C0, the solution of the Riemann problem in

the region x < X1(t) is given by

ρ(x, t) =
ρl(ξ)

1 + C0ρl(ξ)t
, (3.5.3)

v(x, t) = vl(ξ) + αC0t, (3.5.4)

x = ξ +

(
vl(ξ) +

α

ρl(ξ)

)
t+ αC0t

2.

In the region x ≥ X1(t), in view of (3.3.19) when δ = β and c0 = C1, the solution is

given by

ρ(x, t) =
ρr(η)

1 + C1ρr(η)t
, (3.5.5)

v(x, t) = vr(η) + βC1t, (3.5.6)

x = η +

(
vr(η) +

β

ρr(η)

)
t+ βC1t

2,

Since, η = ξ = 0 as x → X1(t), in view of (3.5.3)-(3.5.4) and (3.5.5)-(3.5.6), the

equation (3.5.2) reduces to

dX1

dt
=

(
vL − 1

ρL

)
+ (α− 1)C0t =

(
vR − 1

ρR

)
+ (β − 1)C1t,

which leads to upon integration

X1(t) =

(
vL − 1

ρL

)
t+ (α− 1)C0

t2

2
=

(
vR − 1

ρR

)
t+ (β − 1)C1

t2

2
,

and holds for all values of t provided
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vL − 1

ρL
= vR − 1

ρR
,

(α− 1)C0 = (β − 1)C1. (3.5.7)

Thus, the equation (3.5.7) holds true for the following cases

1. α = 1, β = 1, and C0, C1 are arbitrary constants.

2. α = 1, β = −1, C1 = 0 and C0 is an arbitrary constant.

3. α = −1, β = 1, C0 = 0 and C1 is an arbitrary constant.

4. α = −1, β = −1, C1 = C0 and C0 is an arbitrary constant.

Hence the proof. This is depicted in the Figure-3.1.

Theorem 3.5.2. Let solution of the Riemann problem of the equations (3.1.1), (3.1.2)

subject to (3.5.1) be connected through only 2-Characteristic shock then vL +
1

ρL
=

vR +
1

ρR
along with one of the following cases

1. α = 1, β = 1, C1 = C0 and C0 is an arbitrary constant.

2. α = 1, β = −1, C0 = 0 and C1 is an arbitrary constant.

3. α = −1, β = 1, C1 = 0 and C0 is an arbitrary constant.

4. α = −1, β = −1, and C0, C1 are arbitrary constants.

Proof. Given that the solution to the Riemann problem of the equations (3.1.1), (3.1.2)

subject to (3.5.1) be connected through only 2- Characteristic shock we have the the

curve x = X2(t), such that
dX2

dt
= v +

1

ρ
across which the flow variables v and ρ are

discontinuous and however,

(
v +

1

ρ

)
is continuous, i.e.,

dX2

dt
= lim

x→X2(t)−

(
v +

1

ρ

)
= lim

x→X2(t)+

(
v +

1

ρ

)
. (3.5.8)

In view of (3.3.19) when δ = α and c0 = C0, the solution of the Riemann problem in

the region x < X2(t) is
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ρ(x, t) =
ρl(ξ)

1 + C0ρl(ξ)t
, (3.5.9)

v(x, t) = vl(ξ) + αC0t, (3.5.10)

x = ξ +

(
vl(ξ) +

α

ρl(ξ)

)
t+ αC0t

2,

In the region x ≥ X2(t), In view of (3.3.19) when δ = β and c0 = C1 the solution is

given by

ρ(x, t) =
ρr(η)

1 + C1ρr(η)t
, (3.5.11)

v(x, t) = vr(η) + βC1t, (3.5.12)

x = η +

(
vr(η) +

β

ρr(η)

)
t+ βC1t

2,

Since, η = ξ = 0 as x → X2(t), in view of (3.5.3)-(3.5.4) and (3.5.5)-(3.5.6), the

equation (3.5.8) reduces to

dX2

dt
=

(
vL +

1

ρL

)
+ (α + 1)C0t =

(
vR +

1

ρR

)
+ (β + 1)C1t,

which leads upon integration

X2(t) =

(
vL +

1

ρL

)
t+ (α + 1)C0

t2

2
=

(
vR +

1

ρR

)
t+ (β + 1)C1

t2

2
,

and holds for all values of t provided

vL +
1

ρL
= vR +

1

ρR
,

(α + 1)C0 = (β + 1)C1. (3.5.13)

Thus, the equation (3.5.13) holds true for the following cases

1. α = 1, β = 1, C1 = C0 and C0 is an arbitrary constant.

2. α = 1, β = −1, C0 = 0 and C1 is an arbitrary constant.

3. α = −1, β = 1, C1 = 0 and C0 is an arbitrary constant.
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4. α = −1, β = −1, and C0, C1 are arbitrary constants.

Hence the proof. This is depicted in the Figure-3.2.

Theorem 3.5.3. Let solution of the Riemann problem of the equations (3.1.1), (3.1.2)

subject to (3.5.1) be connected through both 1- and 2- Characteristic shocks then one

of the following occurs

1. α = 1, β = −1 and C0, C1 are arbitrary constants.

2. α = 1, β = 1, C1 = 0 and C0 is an arbitrary constant.

3. α = −1, β = −1, C0 = 0 and C1 is an arbitrary constant.

4. α = −1, β = 1 and C1 = C0 where C0 is an arbitrary constant.

Proof. Given that the solution to the Riemann problem of the equations (3.1.1), (3.1.2)

subject to (3.5.1) be connected through 1- and 2- Characteristic shocks, we have the

the curve x = X1(t) (respectively; x = X2(t)), such that
dX1

dt
= v − 1

ρ
(respectively;

dX2

dt
= v +

1

ρ
) across which the flow variables v and ρ are discontinuous and however,(

v − 1

ρ

)
(respectively;

(
v +

1

ρ

)
) is continuous, i.e.,

dX1

dt
= lim

x→X1(t)−

(
v − 1

ρ

)
= lim

x→X1(t)+

(
v − 1

ρ

)
, (3.5.14)

dX2

dt
= lim

x→X2(t)−

(
v +

1

ρ

)
= lim

x→X2(t)+

(
v +

1

ρ

)
. (3.5.15)

In view of (3.3.19) when δ = α and c0 = C0, the solution of the Riemann problem

in the region x < X1(t) is given by

ρ(x, t) =
ρl(ξ)

1 + C0ρl(ξ)t
, (3.5.16)

v(x, t) = vl(ξ) + αC0t, (3.5.17)

x = ξ +

(
vl(ξ) +

α

ρl(ξ)

)
t+ αC0t

2. (3.5.18)

In the region x ≥ X2(t), in view of (3.3.19) when δ = β and c0 = C1, the solution

is given by
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ρ(x, t) =
ρr(η)

1 + C1ρr(η)t
, (3.5.19)

v(x, t) = vr(η) + βC1t, (3.5.20)

x = η +

(
vr(η) +

β

ρr(η)

)
t+ βC1t

2. (3.5.21)

Since, ξ = 0 as x → X1(t) and η = 0 as x → X2(t), in view of (3.5.16)-(3.5.17) and

(3.5.19)-(3.5.20), the equations (3.5.14) and (3.5.15) reduces to

dX1

dt
= lim

x→X1(t)−

(
v − 1

ρ

)
=

(
vL − 1

ρL

)
+ (α− 1)C0t,

dX2

dt
= lim

x→X2(t)+

(
v +

1

ρ

)
=

(
vR +

1

ρR

)
+ (β + 1)C1t,

which leads to

X1(t) =

(
vL − 1

ρL

)
t+ (α− 1)C0

t2

2
, (3.5.22)

X2(t) =

(
vR +

1

ρR

)
t+ (β + 1)C1

t2

2
. (3.5.23)

To solve the Riemann problem completely, let the solution be of the form in the

region X1(t) < x < X2(t),

ρ(x, t) =
K1

K2t+K3

, (3.5.24)

v(x, t) =
K2x+K4

K2t+K3

, (3.5.25)

which satisfy the equations (3.1.1) and (3.1.2) where K1, K2, K3 and K4 are arbi-

trary constants. In order to connect the solution to the Riemann problem, it is required

that

(
v − 1

ρ

)
is continuous at x = X1(t) and

(
v +

1

ρ

)
is continuous at x = X2(t) for

all time t.

lim
x→X1(t)−

(
v − 1

ρ

)
= lim

x→X1(t)+

(
v − 1

ρ

)
, (3.5.26)

lim
x→X2(t)−

(
v +

1

ρ

)
= lim

x→X2(t)+

(
v +

1

ρ

)
. (3.5.27)
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Thus, in view of (3.5.16)-(3.5.18), (3.5.19)-(3.5.21) and (3.5.24)-(3.5.25), we have

lim
x→X1(t)−

(
v − 1

ρ

)
= vL + αC0t−

1 + C0ρLt

ρL
, (3.5.28)

lim
x→X1(t)+

(
v − 1

ρ

)
=

K2X1(t) +K4

K2t+K3

− K2t+K3

K1

, (3.5.29)

lim
x→X2(t)−

(
v +

1

ρ

)
= vR + βC1t+

1 + C1ρRt

ρR
, (3.5.30)

lim
x→X2(t)+

(
v +

1

ρ

)
=

K2X2(t) +K4

K2t+K3

+
K2t+K3

K1

, (3.5.31)

and hence, in view of the equations (3.5.28)-(3.5.31), the equations (3.5.26)-(3.5.27),

reduce to

(
vL + αC0t−

1 + C0ρLt

ρL

)
(K2t+K3) = K4 −

(K2t+K3)
2

K1

+K2

((
vL − 1

ρL

)
t+ (α− 1)C0

t2

2

)
,(

vR + βC1t+
1 + C1ρRt

ρR

)
(K2t+K3) = K4 +

(K2t+K3)
2

K1

+K2

((
vR +

1

ρR

)
t+ (β + 1)C1

t2

2

)
,

which holds for all values of time when

(
vL − 1

ρL

)
K3 = K4 −

(K3)
2

K1

,(
vL − 1

ρL

)
K2 + (αC0 − C0)K3 = −2K2K3

K1

+K2

(
vL − 1

ρL

)
,

K2

(
K2

K1

− (1− α)C0

2

)
= 0, (3.5.32)(

vR +
1

ρR

)
K3 = K4 +

(K3)
2

K1

,(
vR +

1

ρR

)
K2 + (βC1 + C1)K3 =

2K2K3

K1

+K2

(
vR +

1

ρR

)
,

K2

(
K2

K1

− (β + 1)C1

2

)
= 0.

Thus, after solving the equations (3.5.32), we have the following solutions:
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1. α = 1, β = −1 and C0, C1 are arbitrary constants then ρ = ρ̃ and v = ṽ.

2. α = 1, β = 1, C1 = 0 and C0 is an arbitrary constant then ρ = ρ̃ and v = ṽ.

3. α = −1, β = −1, C0 = 0 and C1 is an arbitrary constant then ρ = ρ̃ and v = ṽ.

4. α = −1, β = 1 and C1 = C0 where C0 is an arbitrary constant then ρ =
ρ̃

ρ̃C0t+ 1

and v =
ρ̃(C0x+ ṽ)

ρ̃C0t+ 1
, where

1

ρ̃
=

1

2

{
vR +

1

ρR
− vL +

1

ρL

}
,

ṽ =
1

2

{
vR +

1

ρR
+ vL − 1

ρL

}
.

Hence the proof. This is depicted in the Figure-3.3.

Hence, the solution to the Riemann problem to the equations (3.1.1), (3.1.2) subject

to (3.5.1) be connected through only 1- Characteristic shock (respectively; only 2-

Characteristic shock) if and only if vL−
1

ρL
= vR−

1

ρR
(respectively; vL+

1

ρL
= vR+

1

ρR
),

otherwise, and be connected through 1- and 2- Characteristic shocks when α = ±1,

β = ±1, C0 = C1 = 0.

3.6 Conclusions

The solution to the generalized Riemann problem to the governing equations of the

Chaplygin model is characterized by one 1- or/and 2- Characteristic shock(s) after

determining the exact solution for a hyperbolic system of first-order PDEs describing

a Chaplygin gas using the “Differential constraint method” for several class of initial

conditions.
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x →

t
→

I II

X
1

Figure 3.1: X1 is the 1-Characteristic shock; regions x < X1(t) and x > X1(t) are
depicted as I, II.

x →

t
→

I II

X
2

Figure 3.2: X2 is the 2-Characteristic shock; regions x < X2(t) and x > X2(t) are
depicted as I, II.
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x →

t
→

I

II

III

X
1

X
2

Figure 3.3: X1 and X2 are, respectively, the 1-Characteristic shock and the 2-
Characteristic shock; regions x < X1(t), X1(t) < x < X2(t), and x > X2(t) are
depicted as I, II and III respectively.
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Chapter 4

Riemann problems for Generalized

gas dynamic equations

4.1 Introduction

It is well known that solving the Riemann problem plays a prominent role in quasilinear

hyperbolic systems [2, 3, 6, 70–72] of balance laws. Moreover, finding an exact solution

to a generalized Riemann problem is always more difficult. LeFloch and Raviart [56]

obtained an approximate solution to the generalized Riemann problem in the form

of an asymptotic expansion, which is explained further through an application to gas

dynamics equations by Bourgeade et al. [57]. Although no general method is available

for solving the Riemann problem with arbitrary initial data, the reduction method to

determine the exact solutions of nonlinear partial differential equations [8] - [30] plays

an important role by appending differential constraints to the governing systems of

field equations under interest.

The differential constraints method, based upon appending a set of partial differ-

ential equations to a governing system of equations, was proposed by Janenko [30]

and was applied to the gas dynamics model [33] - [32]. Within such a theoretical

framework, a reduction procedure for the generalized Riemann problem was applied in

different models, which can be seen in [39] - [59], and classes of exact solutions were

parametrized in terms of arbitrary functions and were determined for ET6 model [60].

Among others, Radha et al., [61] used the differential constraints method to com-

pletely characterize the Riemann problem for non-constant initial data for rate-type

materials. Furthermore, the method of differential constraints was also used to de-

termine the exact solution of quasilinear systems depending on various applications

55
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like p-systems with relaxation conditions (Curró, and Manganaro [62]), for Chaply-

gin gas model (Kumar and Radha [64]), for non-homogeneous shallow water equations

(Sueet et al. [65]) and for the homogeneous p-system (Manganaro et al. [66]). Recently

Meleskho et al. [67] discussed the generalized simple wave solution for a magnetic fluid

using the differential constraint method and also applied it to systems of equations

written in Riemann invariants [68]. Moreover, Chaiyasena et al. [69] discussed the

generalized Riemann waves and their adjoinment through a shock wave.

The present paper deals with solving generalized Riemann problems for the system

under investigation and completely characterizes the solution that connects the initial

data to regions via shocks and/or rarefaction waves.

4.2 Generalized gas dynamic equations

The Euler equations modeling compressible gases in a conservative form are given as

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = ρf(u, ρ, x, t),
(4.2.1)

together with the equation of state given by p as a function of ρ alone such that

p′(ρ) > 0, where ρ and u are, respectively, the density and velocity of the gas. The

system (4.2.1) with the equation of state

p(ρ) = Cργ, Cγ > 0, (4.2.2)

represents the generalized Chaplygin gases when −1 ≤ γ < 0 (see, [70], [71]), the

isothermal gas when γ = 1 (see, [72]) and the isentropic gases when γ > 1.

The equations (4.2.1) can be re-written in a matrix form as

Ut +A(U)Ux = B(x, t,U), (4.2.3)

where

U =

[
ρ

u

]
, A(U) =

[
u ρ

ρ−1p′(ρ) u

]
, B(x, t,U) =

[
0

f(u, ρ, x, t, )

]
.

The eigenvalues of the coefficient matrix A(U) are,

λ(1) = u− c(ρ), λ(2) = u+ c(ρ), (4.2.4)
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where c(ρ) =
√

p′(ρ) and the corresponding right eigenvectors are

R(1) =

 1

−c(ρ)

ρ

 , R(2) =

 1
c(ρ)

ρ

 .

Thus, we have

∇λ(1) ·R(1) = − 1

2ρc(ρ)
(ρp′′(ρ) + 2p′) ,

∇λ(2) ·R(2) =
1

2ρc(ρ)
(ρp′′(ρ) + 2p′) ,

(4.2.5)

where the symbol ∇ indicates the gradient operator with respect to (ρ, u) and thus,

the system (4.2.1) is strictly hyperbolic and genuinely nonlinear in the sense of Lax [4]

for all p(ρ) except when p =
ĉ1
ρ
+ ĉ2 where ĉ1 and ĉ2 are two arbitrary constants.

The Riemann invariantW (1) (respectively; W (2)) along the characteristic field
dx

dt
=

λ(1) (respectively;
dx

dt
= λ(2)) determined from ∇W (1) ·R(1) = 0 (respectively; ∇W (2) ·

R(2) = 0) as

W (1) = u+
2
√
Cγ

(γ − 1)
ρ

γ−1
2 , W (2) = u− 2

√
Cγ

(γ − 1)
ρ

γ−1
2 . (4.2.6)

4.3 Generalized Riemann invariants

In this section, generalized Riemann invariants compatibility conditions to the given

system of partial differential equations are derived. For this, we consider a differential

constraint in a more general form as

W (i)
x = Q(i)(x, t,W (1),W (2)) i = 1, 2, (4.3.1)

where W (1) and W (2) denotes the Riemann invariants and Q(i) is to be determined.

Using this we can rewrite the hyperbolic system of partial differential differential

equations in terms of generalized Riemann invariants as

W
(1)
t + λ(W (1),W (2))W (1)

x = f(W (1),W (2))

W
(2)
t + µ(W (1),W (2))W (2)

x = g(W (1),W (2))
(4.3.2)

To determine Q(i) we find the compatibility conditions for the system (4.3.2) and the

differential constraints (4.3.1).



58 CHAPTER 4. GENERALIZED GAS DYNAMIC EQUATIONS

For this first we differentiating equation (4.3.1) with respect to x and t, we get

W
(1)
xt = Q

(i)
t +Q

(i)

W (1)W
(1)
t +Q

(i)

W (2)W
(2)
t , (4.3.3)

W (1)
xx = Q(i)

x +Q
(i)

W (1)W
(1)
x +Q

(i)

W (2)W
(2)
x . (4.3.4)

On differentiating equation (4.3.2) with respect to x and t, we get

W
(1)
xt +

(
λW (1)W (1)

x + λ
W (2)W

(2)
x

)
W (1)

x + λW (1)
xx = fW (1)W (1)

x + fW (2)W (2)
x , (4.3.5)

W
(2)
xt +

(
µW (1)W (1)

x + µ
W (2)W

(2)
x

)
W (1)

x + µW (1)
xx = gW (1)W (1)

x + gW (2)W (2)
x . (4.3.6)

Compatibility conditions are

(λ− µ)Qi
W (2) + λW (2)Q(i) + fW (2) = 0,

Q
(i)
t + λQ(i)

x + λW (1)(Q(i))2 +Q
(i)

W (1)f +Q
(i)

W (2)g − fW (1)Q(i) = 0.
(4.3.7)

On solving (4.3.7), we determine Qi, which enables us to solve the system under

consideration along with a family of characteristic curves.

This methodology is used in the following section to a system of conservation laws

describing generalized gas dynamics with source/sink.

4.4 Cauchy problem

Consider a Cauchy problem with the following initial data corresponding to the system

(4.2.1)

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x). (4.4.1)

To solve the above Cauchy problem, we use the differential constraints method as

discussed in the previous section, for which we let

ux =
δ
√

p′(ρ)

ρ
ρx +Q, δ = ±1, (4.4.2)

where the compatibility conditions for Q are obtained from (2.2.9) as
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2δ
√

p′(ρ)

{
Qρ +

δ
√

p′(ρ)

ρ
Qu +

(
p′′(ρ)

4p′(ρ)
− 1

2ρ

)
Q

}
+ fρ +

δ
√

p′(ρ)fu
ρ

= 0,

Qt +
(
u− δ

√
p′(ρ)

)
Qx +

(
f − δQ

√
p′(ρ)

)
Qu − ρQQρ − fuQ+Q2 − fx = 0.

(4.4.3)

Equations (4.4.3) has a solution of the form when Qt = 0, Qx = 0, ft = 0 and fx = 0,

Q = k0 + c0ρ, (4.4.4)

f = k0u− δ(k0 + c0ρ)
√

p′(ρ) + c1. (4.4.5)

Here, k0, c0 and c1 are arbitrary constants. Using (4.4.2), (4.4.4) and (4.4.5), the

system (4.2.1) reduces to

ρt +
(
u+ δ

√
p′(ρ)

)
ρx + ρ(k0 + c0ρ) = 0,

ut +
(
u+ δ

√
p′(ρ)

)
ux = k0u+ c1,

(4.4.6)

and can be integrated along the characteristic curves
dx

dt
= u+ δ

√
p′(ρ) subject to the

initial data (4.4.1).

Thus, we have

ρ(x, t) = F1(ξ, t),

u(x, t) = u0(ξ)e
k0t +

c1
(
ek0t − 1

)
k0

,
(4.4.7)

along the characteristics

x = ξ +
u0(ξ)

k0

(
ek0t − 1

)
+

c1
k0

(
ek0t

k0
− t

)
+

∫ t

0

δ
√

p′(F1(ξ, s))ds, (4.4.8)

where F1 is given as
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F1(ξ, t) =
k0ρ0(ξ)

(k0 + c0ρ0(ξ)) ek0t − c0ρ0(ξ)
.

A few nontrivial solutions to the system (4.2.1) are determined in the closed form when

p(ρ) = Cργ, for γ ∈ (−∞,∞) such that Cγ > 0.

4.4.1 Case-1

Let c0 = 0. Then, the solution to the system (4.2.1) with the initial data (4.4.1) is

determined from (4.4.7), (4.4.8) as

ρ(x, t) = ρ0(ξ)e
−k0t,

u(x, t) = u0(ξ)e
k0t +

c1
(
ek0t − 1

)
k0

,
(4.4.9)

along the characteristics

x = ξ+

(
u0(ξ)

k0
+

c1
k2
0

)(
ek0t − 1

)
− c1t

k0
−
2δ

√
Cγ (ρ0(ξ))

(γ−1)

k0(γ − 1)

(
e−

k0(γ−1)t
2 − 1

)
, (4.4.10)

subject to the condition

du0(x)

dx
= δ
√

Cγρ0(x)
(γ−3)

2
dρ0(x)

dx
+ k0. (4.4.11)

4.4.2 Case-2

Let k0 = 0. Then, the solution to the system (4.2.1) with the initial data (4.4.1) is

determined from (4.4.7), (4.4.8) by taking the limit k0 → 0 as

ρ(x, t) =
ρ0(ξ)

1 + c0ρ0(ξ)t
,

u(x, t) = u0(ξ) + c1t,

(4.4.12)

along the characteristics
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x = ξ + u0(ξ)t+
c1t

2

2
+

2δ
√

Cγρ0(ξ)γ−3

c0(3− γ)

{
(1 + c0ρ0(ξ)t)

(3−γ)/2 − 1
}
, (4.4.13)

subject to the condition

du0(x)

dx
= δ
√

Cγρ0(x)
(γ−3)

2
dρ0(x)

dx
+ c0ρ0. (4.4.14)

4.4.3 Case-3

Similarly, when c0 = k0 = 0, the solution to the system (4.2.1) with the initial data

(4.4.1) is of the form

ρ(x, t) = ρ0(ξ),

u(x, t) = u0(ξ) + c1t,
(4.4.15)

along the characteristics

x = ξ +
(
u0(ξ) + δ

√
Cγρ0(ξ)

γ−1
2

)
t+

c1t
2

t
, (4.4.16)

subject to the condition

du0(x)

dx
= δ
√

Cγρ0(x)
(γ−3)

2
dρ0(x)

dx
. (4.4.17)

4.5 Shock waves

Let x = X(t) be a curve, with the speed
dX

dt
= σ, across which ρ and u are discontin-

uous. Then using R-H conditions for the equations (4.2.1) we have

σ (ρr(t)− ρℓ(t)) = (ρr(t)ur(t)− ρℓ(t)uℓ(t)) ,

σ (ρr(t)ur(t)− ρℓ(t)uℓ(t)) =
(
ρr(t) (ur(t))

2 − ρℓ(t) (uℓ(t))
2)+ (p (ρr(t))− p (ρℓ(t))) ,

(4.5.1)

where ρr(t) and ur(t) (respectively; ρℓ(t) and uℓ(t)) are right hand side (respectively;

left hand side) limits of ρ(x, t) and u(x, t) as x → X(t). The equations (4.5.1) can

solved for σ and ur(t) as
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σ = uℓ(t)±

√
(p (ρr(t))− p (ρℓ(t))) ρr(t)

(ρr(t)− ρℓ(t)) ρℓ(t)
,

ur(t) = uℓ(t)± (ρr(t)− ρℓ(t))

√
(p (ρr(t))− p (ρℓ(t)))

(ρr(t)− ρℓ(t)) ρr(t)ρℓ(t)
.

(4.5.2)

The curve x = S1(t) is said to be a 1-shock curve along which the flow variables

evaluated in the left and right states must satisfy Lax conditions

ur(t)−
√

p′(ρr(t)) < σ < uℓ(t)−
√

p′(ρℓ(t)), (4.5.3)

i.e., σ − uℓ(t) < −
√
p′(ρℓ(t)) < 0 due to which we have

σ = uℓ(t)−

√
(p (ρr(t))− p (ρℓ(t))) ρr(t)

(ρr(t)− ρℓ(t)) ρℓ(t)
,

ur(t) = uℓ(t)− (ρr(t)− ρℓ(t))

√
(p (ρr(t))− p (ρℓ(t)))

(ρr(t)− ρℓ(t)) ρr(t)ρℓ(t)
.

(4.5.4)

Further, in view of the equations (4.5.4), the Lax conditions (4.5.3) imply that

ρℓ(t)
√

p′(ρℓ(t)) < ρr(t)
√

p′(ρr(t)), (4.5.5)

However, when p = Cργ equation (4.5.5) reduces to ρ
γ+1
2

ℓ < ρ
γ+1
2

r which implies that

ρℓ < ρr when γ > −1 and ρℓ > ρr when γ < −1. In view of (4.5.4), it implies that

ur(t) < uℓ(t) when γ > −1 and ur(t) > uℓ(t) when γ < −1.

Similarly, the curve x = S2(t) is said to be a 2-shock curve along which the flow

variables evaluated in the left and right states must satisfy Lax conditions

ur(t) +
√
p′(ρr(t)) < σ < uℓ(t) +

√
p′(ρℓ(t)). (4.5.6)

Rewriting the equations (4.5.2) as

σ = ur(t)±

√
(p (ρr(t))− p (ρℓ(t))) ρℓ(t)

(ρr(t)− ρℓ(t)) ρr(t)
,

ur(t) = uℓ(t)∓
(
1− ρr(t)

ρℓ(t)

)√
(p (ρr(t))− p (ρℓ(t)) ρℓ(t))

(ρr(t)− ρℓ(t)) ρr(t)
.

(4.5.7)

From (4.5.6), σ − ur(t) >
√

p′(ρr(t)) > 0, we have
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σ = ur(t) +

√
(p (ρr(t))− p (ρℓ(t))) ρℓ(t)

(ρr(t)− ρℓ(t)) ρr(t)
,

ur(t) = uℓ(t)−
(
1− ρr(t)

ρℓ(t)

)√
(p (ρr(t))− p (ρℓ(t)) ρℓ(t))

(ρr(t)− ρℓ(t)) ρr(t)
,

(4.5.8)

and

ρℓ(t)
√

p′(ρℓ(t)) > ρr(t)
√

p′(ρr(t)). (4.5.9)

However when p = Cργ equation (4.5.9) reduces to ρ
γ+1
2

ℓ > ρ
γ+1
2

r which implies that

ρℓ > ρr when γ > −1 and ρℓ < ρr when γ < −1. As a consequence, we have from the

equation (4.5.8)2, that ur(t) < uℓ(t) when γ > −1 and ur(t) > uℓ(t) when γ < −1.

The summary of the above results is given in the following table.

1− shock γ ∈ (−1,∞) ur(t) < uℓ(t) ρℓ(t) < ρr(t)
γ ∈ (−∞,−1) ur(t) > uℓ(t) ρℓ(t) > ρr(t)

2− shock γ ∈ (−1,∞) ur(t) < uℓ(t) ρℓ(t) > ρr(t)
γ ∈ (−∞,−1) ur(t) > uℓ(t) ρℓ(t) < ρr(t)

Table 4.1: Shock waves

4.6 Rarefaction waves

In this section, when p = Cργ and Cγ > 0, we derive continuous solutions in the

rarefaction wave regions of the system (4.2.1) corresponding to each eigen mode λ(1)

and λ(2). Let x = R1(t) and x = R2(t) be the curves that pass through (0,0) such that

R1(t) ≤ R2(t) for all t ≥ 0 with R1(t) and R2(t) satisfying

dR1

dt
= u (R1(t), t)−

√
Cγ (ρ (R1(t), t))

γ−1
2 ,

dR2

dt
= u (R2(t), t)−

√
Cγ (ρ (R2(t), t))

γ−1
2 ,

(4.6.1)

i.e,
dR1

dt
<

dR2

dt
for t ≥ 0. The region R1(t) ≤ x ≤ R2(t) is referred to as 1- rarefaction

region in which ρ(x, t) and u(x, t) are continuous and differentiable and however, the

derivatives of ρ(x, t) and u(x, t) are discontinuous across the curves x = R1(t) and
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x = R2(t).

Similarly, suppose there exist two curves x = R3(t) and x = R4(t) both passing

through (0, 0) such that R3(t) ≤ R4(t) for all t ≥ 0 satisfying

dR3

dt
= u (R3(t), t) +

√
Cγ (ρ (R3(t), t))

γ−1
2 ,

dR4

dt
= u (R4(t), t) +

√
Cγ (ρ (R4(t), t))

γ−1
2 ,

(4.6.2)

i.e,
dR3

dt
<

dR4

dt
for t ≥ 0. Then the region R3(t) ≤ x ≤ R4(t) is referred to as 2- rar-

efaction region in which ρ(x, t) and u(x, t) are continuous and differentiable. However,

the derivatives of ρ(x, t) and u(x, t) are discontinuous across the curves x = R3(t) and

x = R4(t).

In view of (4.2.6) and (4.4.2), the Riemann invariant W (1) (respectively; W (2)) sat-

isfies
∂W (1)

∂x
= Q (respectively;

∂W (2)

∂x
= Q) in the 1- rarefaction region (respectively;

2-rarefaction region). Further, we have

u =

(
W (1) +W (2)

)
2

, ρ =

(
(γ − 1)

(
W (1) −W (2)

)
4
√
Cγ

) 2
γ−1

. (4.6.3)

Thus, in view of (4.4.4), (4.4.5), and (4.6.3), the system (4.2.1) can be written in terms

of Riemann invariants W (1) and W (2) as

dW (1)

dt
=

k0(3− γ)

4
W (1) +

k0(γ + 1)

4
W (2) − c0

√
Cγ

(
(γ − 1)

(
W (1) −W (2)

)
4
√
Cγ

) γ+1
γ−1

+ c1,

dW (2)

dt
=

k0(γ + 1)

4
W (1) +

k0(3− γ)

4
W (2) + c0

√
Cγ

(
(γ − 1)

(
W (1) −W (2)

)
4
√
Cγ

) γ+1
γ−1

+ c1,

(4.6.4)

along the characteristics
dx

dt
= λ(1) and

dx

dt
= λ(2).

The solution in the 1-rarefaction region (respectively; 2-rarefaction region) can be

obtained by solving the equations (4.6.4) for W (1) and W (2) along the characteristic

curves
dx

dt
= λ(1) (respectively;

dx

dt
= λ(2)) subject to the conditions W (1) = α1 and

W (2) = α2 at t = 0 where α1 and α2 are arbitrary constants.
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4.6.1 Case-1

Let c0 = 0. Then, the differential constraint equation (4.4.2) for the initial data (4.4.1)

reduces to (4.4.11) such that (ρL, uL) ̸= (ρR, uR) where (ρL, uL) = lim
x→0−

(ρ0(x), u0(x))

and (ρR, uR) = lim
x→0+

(ρ0(x), u0(x)). The 1-rarefaction region (respectively; 2-rarefaction

region) is bounded by R1(t) ≤ x ≤ R2(t) (respectively; R3(t) ≤ x ≤ R4(t)) where

x = R1(t) and x = R2(t) (respectively; x = R3(t) and x = R4(t)) are solutions of

the equations (4.6.1) (respectively; (4.6.2)) subject to (ρ, u) = (ρL, uL) and (ρ, u) =

(ρR, uR) at t = 0 respectively. Here,

R1(t) =

(
uL

k0
+

c1
k2
0

)(
ek0t − 1

)
− c1t

k0
+

2
√
Cγ

k0(γ − 1)

√
(ρL)

(γ−1)
(
e−

k0(γ−1)t
2 − 1

)
,

R2(t) =

(
uR

k0
+

c1
k2
0

)(
ek0t − 1

)
− c1t

k0
+

2
√
Cγ

k0(γ − 1)

√
(ρR)

(γ−1)
(
e−

k0(γ−1)t
2 − 1

)
,

R3(t) =

(
uL

k0
+

c1
k2
0

)(
ek0t − 1

)
− c1t

k0
− 2

k0(γ − 1)

√
Cγ (ρL)

(γ−1)
(
e−

k0(γ−1)t
2 − 1

)
,

R4(t) =

(
uR

k0
+

c1
k2
0

)(
ek0t − 1

)
− c1t

k0
− 2

k0(γ − 1)

√
Cγ (ρR)

(γ−1)
(
e−

k0(γ−1)t
2 − 1

)
.

(4.6.5)

In the 1- rarefaction region (respectively; 2-rarefaction region), let (ρ, u) = (R, η) at

t = 0 along the characteristic curves
dx

dt
= λ(1) (respectively;

dx

dt
= λ(2)), and thus we

have α1 = η +
2
√
Cγ

γ − 1
R

γ−1
2 and α2 = η − 2

√
Cγ

γ − 1
R

γ−1
2 .

Thus, when c0 = 0, the equations (4.6.4) are integrated to get

W (1)(x, t) = ηek0t +
2
√
Cγ

γ − 1
R

γ−1
2 e

(1−γ)k0t
2 +

c1
k0

(ek0t − 1),

W (2)(x, t) = ηek0t − 2
√
Cγ

γ − 1
R

γ−1
2 e

(1−γ)k0t
2 +

c1
k0

(ek0t − 1).

(4.6.6)

In view of equations (4.6.3) and (4.6.6), the characteristics satisfying
dx

dt
= λ(1) in

1-rarefaction region are given by

x =

(
η

k0
+

c1
k2
0

)(
ek0t − 1

)
− c1t

k0
+

2
√
CγR(γ−1)

k0(γ − 1)

(
e−

k0(γ−1)t
2 − 1

)
. (4.6.7)

Since
∂W (1)

∂x
= Q holds in the 1-rarefaction region, in view of equations (4.6.3) and
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(4.6.6), at t = 0, we have u = η, ρ = R and W (1) = η +
2
√
Cγ

γ − 1
R

γ−1
2 along the

characteristic curve
dx

dt
= λ(1). In particular, along the left most (respectively; right

most) characteristic curve of the 1-rarefaction region, η = uL and R = ρL (respectively;

η = uR and R = ρR) and hence we have

η +
2
√
Cγ

γ − 1
R

γ−1
2 = uL +

2
√
Cγ

γ − 1
(ρL)

γ−1
2 = uR +

2
√
Cγ

γ − 1
(ρR)

γ−1
2 . (4.6.8)

Similarly, the characteristics satisfying
dx

dt
= λ(2) in 2-rarefaction region are given

by

x =

(
η

k0
+

c1
k2
0

)(
ek0t − 1

)
− c1t

k0
− 2

√
CγR(γ−1)

k0(γ − 1)

(
e−

k0(γ−1)t
2 − 1

)
, (4.6.9)

and since
∂W (2)

∂x
= Q holds in the 2-rarefaction region we have,

η − 2
√
Cγ

γ − 1
R

γ−1
2 = uL − 2

√
Cγ

γ − 1
(ρL)

γ−1
2 = uR − 2

√
Cγ

γ − 1
(ρR)

γ−1
2 . (4.6.10)

Thus, the solution with a 1-rarefaction wave can be written as

ρ(x, t) =

{
ρ0(ξ)e

−k0t, x < R1(t) and x > R2(t),

Re−k0t, R1(t) ≤ x ≤ R2(t),
(4.6.11)

u(x, t) =

 u0(ξ)e
k0t +

c1(ek0t−1)
k0

, x < R1(t) and x > R2(t),

ηek0t +
c1(ek0t−1)

k0
, R1(t) ≤ x ≤ R2(t),

(4.6.12)

where, for a given x and t, ξ is to be determined from equation (4.4.10), when δ = −1,

and η is to be determined from (4.6.7) and (4.6.8). Since,
dR1

dt
<

dR2

dt
for t ≥ 0, in

particular at t = 0 we have

uL −
√
Cγργ−1

L < uR −
√

Cγργ−1
R ,

which in turn, in view of (4.6.8), can be written as

√
Cγ(γ + 1)

(γ − 1)

(√
ργ−1
L −

√
ργ−1
R

)
> 0. (4.6.13)
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Hence, in view of (4.6.8) and (4.6.13) , for a 1- rarefaction wave, we have ρR < ρL,

uR > uL, when γ > −1, and ρR > ρL, uR < uL when γ < −1.

Similarly, the solution with a 2-rarefaction wave can be written as

ρ(x, t) =

{
ρ0(ξ)e

−k0t, x < R3(t) and x > R4(t),

Re−k0t, R3(t) ≤ x ≤ R4(t),
(4.6.14)

u(x, t) =

 u0(ξ)e
k0t +

c1(ek0t−1)
k0

, x < R3(t) and x > R4(t),

ηek0t +
c1(ek0t−1)

k0
, R3(t) ≤ x ≤ R4(t),

(4.6.15)

where for a given x and t, ξ and η is to be determined from the equations (4.4.10)

when δ = 1, and (4.6.9) subject to the relation between R and η given by the equation

(4.6.10). Since,
dR3

dt
<

dR4

dt
for t ≥ 0. In particular when t = 0 we have

uL +

√
Cγργ−1

L < uR +

√
Cγργ−1

R ,

which in turn, in view of (4.6.10), can be written as

√
Cγ(γ + 1)

(γ − 1)

(√
ργ−1
L −

√
ργ−1
R

)
< 0. (4.6.16)

Hence, in view of (4.6.10) and (4.6.16), for a 2- rarefaction wave, we have ρR > ρL,

uR < uL when γ > −1 and ρR < ρL, uR > uL when γ < −1.

4.6.2 Case-2

Let k0 = 0. Then, the differential constraint equation (4.4.2) for the initial data (4.4.1)

reduces to (4.4.14) such that (ρL, uL) ̸= (ρR, uR) where (ρL, uL) = lim
x→0−

(ρ0(x), u0(x))

and (ρR, uR) = lim
x→0+

(ρ0(x), u0(x)).

Following a similar procedure used in Case-1 of the current section, the solution

with a 1-rarefaction wave obtained from (4.4.12) for the governing system (4.2.1) along

with (4.4.1), given by
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ρ(x, t) =


ρ0(ξ)

1+c0ρ0(ξ)t
, x < R1(t) and x > R2(t),

R
1+c0Rt

, R1(t) ≤ x ≤ R2(t),

u(x, t) =

u0(ξ) + c1t, x < R1(t) and x > R2(t),

η + c1t, R1(t) ≤ x ≤ R2(t),

(4.6.17)

where

R1(t) = uLt+ c1t
2/2−

2
√

Cγργ−3
L

c0(3− γ)

{
(1 + c0ρLt)

(3−γ)/2 − 1
}
, (4.6.18)

R2(t) = uRt+ c1t
2/2−

2
√

Cγργ−3
R

c0(3− γ)

{
(1 + c0ρRt)

(3−γ)/2 − 1
}
, (4.6.19)

R =

{
−(γ − 1)

2
√
Cγ

(η − uL) + ρ
(γ−1)

2
L

} 2
(γ−1)

, (4.6.20)

uR = uL − 2
√
Cγ

(γ − 1)

(
ρ

(γ−1)
2

R − ρ
(γ−1)

2
L

)
, (4.6.21)

such that ρR < ρL, uR > uL when γ > −1 and ρR > ρL, uR < uL when γ < −1.

Further, for a given x and t, the values of ξ and η are to be determined from the

implicit equations

x = u0(ξ)t+ c1t
2/2−

2
√

Cγρ0(ξ)γ−3

c0(3− γ)

{
(1 + c0ρ0(ξ)t)

(3−γ)/2 − 1
}
, (4.6.22)

x = ηt+ c1t
2/2−

2
√

Cγ (R)γ−3

c0(3− γ)

{
(1 + c0Rt)(3−γ)/2 − 1

}
.

Similarly, the solution with a 2-rarefaction wave is written as

ρ(x, t) =


ρ0(ξ)

1+c0ρ0(ξ)t
, x < R3(t) and x > R4(t),

R
1+c0Rt

, R3(t) ≤ x ≤ R4(t)

u(x, t) =

u0(ξ) + c1t, x < R3(t) and x > R4(t),

η + c1t, R3(t) ≤ x ≤ R4(t),

(4.6.23)

where
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R =

{
(γ − 1)

2
√
Cγ

(η − uR) + ρ
(γ−1)

2
R

} 2
(γ−1)

,

uL = uR +
2
√
Cγ

(γ − 1)

(
ρ

(γ−1)
2

L − ρ
(γ−1)

2
R

)
,

R3(t) = uLt+ c1t
2/2 +

2
√

Cγργ−3
L

c0(3− γ)

{
(1 + c0ρLt)

(3−γ)/2 − 1
}
,

R4(t) = uRt+ c1t
2/2 +

2
√

Cγργ−3
R

c0(3− γ)

{
(1 + c0ρRt)

(3−γ)/2 − 1
}
,

(4.6.24)

such that ρR > ρL, uR > uL when γ > −1 and ρR < ρL, uR < uL when γ < −1.

Further, for a given x and t, the values of ξ and η are to be determined from the

implicit equations

x = u0(ξ)t+ c1t
2/2 +

2
√

Cγρ0(ξ)γ−3

c0(3− γ)

{
(1 + c0ρ0(ξ)t)

(3−γ)/2 − 1
}
, (4.6.25)

x = ηt+ c1t
2/2 +

2
√

Cγ (R)γ−3

c0(3− γ)

{
(1 + c0Rt)(3−γ)/2 − 1

}
. (4.6.26)

4.6.3 Case-3

Let p(ρ) = Cργ, for γ ∈ (−∞,∞) and Cγ > 0. Also, let c0 = k0 = 0. Then, the

differential constraint equation (4.4.2) for the initial data (4.4.1) reduces to (4.4.17)

such that (ρL, uL) ̸= (ρR, uR) where (ρL, uL) = lim
x→0−

(ρ0(x), u0(x)) and (ρR, uR) =

lim
x→0+

(ρ0(x), u0(x)).

Following a similar procedure used in Case-1 of the current section, the solution

with a 1-rarefaction wave is obtained, from the solution (4.4.15) for the governing

system (4.2.1) along with (4.4.1), given by

ρ(x, t) =

{
ρ0(ξ), x < R1(t) and x > R2(t),

R, R1(t) ≤ x ≤ R2(t),
(4.6.27)

u(x, t) =

{
u0(ξ) + c1t, x < R1(t) and x > R2(t),

η + c1t R1(t) ≤ x ≤ R2(t),
(4.6.28)

where
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R1(t) =

(
uL −

√
Cγρ

(γ−1)
2

L

)
t+

c1t
2

2
,

R2(t) =

(
uR −

√
Cγρ

(γ−1)
2

R

)
t+

c1t
2

2
,

R =

{
−(γ − 1)

2
√
Cγ

(η − uL) + ρ
(γ−1)

2
L

} γ−1
2

,

uR = uL − 2
√
Cγ

(γ − 1)

(
ρ

(γ−1)
2

R − ρ
(γ−1)

2
L

)
.

(4.6.29)

such that ρR < ρL, uR > uL when γ > −1 and ρR > ρL, uR < uL when γ < −1.

Further, for a given x and t, the values of ξ and η are to be determined from the

implicit equations

x = ξ +
(
u0(ξ)−

√
Cγρ0(ξ)

(γ−1)
2

)
t+

c1t
2

2
, (4.6.30)

x =
(
η −

√
CγR

(γ−1)
2

)
t+

c1t
2

2
. (4.6.31)

Similarly, the solution with a 2-rarefaction wave is obtained as

ρ(x, t) =

{
ρ0(ξ), x < R3(t) and x > R4(t),

R, R3(t) ≤ x ≤ R4(t),
(4.6.32)

u(x, t) =

{
u0(ξ) + c1t, x < R2(t) and x > R4(t),

η + c1t, R3(t) ≤ x ≤ R4(t),
(4.6.33)

where

R =

{
(γ − 1)

2
√
Cγ

(η − uR) + ρ
(γ−1)

2
R

} γ−1
2

,

uL = uR +
2
√
Cγ

(γ − 1)

(
ρ

(γ−1)
2

L − ρ
(γ−1)

2
R

)
,

R3(t) =

(
uL +

√
Cγρ

(γ−1)
2

L

)
t+

c1t
2

2
,

R4(t) =

(
uR +

√
Cγρ

(γ−1)
2

R

)
t+

c1t
2

2
,

(4.6.34)

such that ρR > ρL, uR < uL when γ > −1 and ρR < ρL, uR > uL when γ < −1.
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Further, for a given x and t, the values of ξ and η are to be determined from the

implicit equations

x = ξ +
(
u0(ξ) +

√
Cγρ0(ξ)

(γ−1)
2

)
t+

c1t
2

2
, (4.6.35)

x =
(
η +

√
CγR

(γ−1)
2

)
t+

c1t
2

2
. (4.6.36)

The inequalities obtained for rarefaction wave regions are given in the following table.

1− rarefaction waves γ ∈ (−1,∞) uR > uL ρR < ρL
γ ∈ (−∞,−1) uR < uL ρR > ρL

2− rarefaction waves γ ∈ (−1,∞) uR > uL ρR > ρL
γ ∈ (−∞,−1) uR < uL ρR < ρL

Table 4.2: Rarefaction waves

4.7 Riemann problem

Consider the initial profile

(ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)) =

{
(ρL, uL) , if x < 0,

(ρR, uR) , if x ≥ 0,
(4.7.1)

where ρL, ρR, uL and uR are constants.

In this section, we construct the solution for the Riemann problem to the system

of equations (4.2.1) when f ≡ c1 subject to the initial data (4.7.1) consisting of shock

and/or rarefaction waves.

For this, if 1-wave is a shock wave, in view of the equations (4.4.15) we have

ρ(x, t) =

{
ρL, if x ≤ S1(t),

ρ̄, if x > S1(t),
(4.7.2)

u(x, t) =

{
uL + c1t, if x ≤ S1(t),

ū+ c1t, if x > S1(t),
(4.7.3)

where x = S1(t) is the 1-shock curve determined from the equation (4.5.4)1, given as
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S1(t) =

(
uL −

√
C(ρ̄γ − ργL)ρ̄

(ρ̄− ρL)ρL

)
t+

c1t
2

2
.

Since, uℓ(t) = uL + c1t, ρℓ(t) = ρL, ur(t) = ū + c1t and ρr(t) = ρ̄. In view of (4.5.4)2

and Table-1, we have ū = uL − (ρ̄− ρL)

√
C(ρ̄γ − ργL)

(ρ̄− ρL)ρ̄ρL
, ρL < ρ̄ and uL > ū.

Similarly, if 2-wave is a shock wave, in view of the equations (4.4.15), we have

ρ(x, t) =

{
ρR, if x ≥ S2(t),

ρ̆, if x < S2(t),
(4.7.4)

u(x, t) =

{
uR + c1t, if x ≥ S2(t),

ŭ+ c1t, if x < S2(t),
(4.7.5)

where x = S2(t) is the 2-shock curve determined from the equation (4.5.8)1, given as

S2(t) =

(
uR +

√
C(ργR − ρ̆γ)ρ̆

(ρR − ρ̆)ρR

)
t+

c1t
2

2
.

In view of (4.5.8)2 and Table-1, we have ŭ = uR − (ρR − ρ̆)

√
C(ργR − ρ̆γ)

(ρR − ρ̆)ρRρ̆
with,

ρ̆ > ρR and ŭ > uR.

If 1-wave is a rarefaction wave, in view of (4.6.27), (4.6.28) and Table-2, we have

ρ(x, t) =


ρL, if x < R1(t),

R, if R1(t) ≤ x ≤ R2(t),

ρ̄, if x > R2(t),

(4.7.6)

u(x, t) =


uL + c1t, if x < R1(t),

η + c1t, if R1(t) ≤ x ≤ R2(t),

ū+ c1t, if x > R2(t),

(4.7.7)

where uL < η < ū and
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x =
(
η −

√
CγR

(γ−1)
2

)
t+

c1t
2

2
,

R =

{
−(γ − 1)

2
√
Cγ

(η − uL) + ρ
(γ−1)

2
L

} 2
γ−1

,

R1(t) =

(
uL −

√
Cγρ

(γ−1)
2

L

)
t+

c1t
2

2
,

R2(t) =

(
uR −

√
Cγρ

(γ−1)
2

R

)
t+

c1t
2

2
.

Similarly, if 2-wave is a rarefaction wave, in view of (4.6.32), (4.6.33) and Table-2,

we have

ρ(x, t) =


ρ̆, if x < R3(t),

R, if R3(t) ≤ x ≤ R4(t),

ρR, if x > R4(t),

(4.7.8)

u(x, t) =


ŭ+ c1t, if x < R3(t),

η + c1t, if R3(t) ≤ x ≤ R4(t),

uR + c1t, if x > R4(t),

(4.7.9)

where ŭ < η < uR and

x =
(
η +

√
CγR

(γ−1)
2

)
t+

c1t
2

2
,

R =

{
(γ − 1)

2
√
Cγ

(η − uL) + ρ
(γ−1)

2
L

} 2
γ−1

,

R3(t) =

(
uL +

√
Cγρ

(γ−1)
2

L

)
t+

c1t
2

2
,

R4(t) =

(
uR +

√
Cγρ

(γ−1)
2

R

)
t+

c1t
2

2
.

We let γ belong to (−1,∞) such that Cγ > 0 for the following Lemmas 1 to 6 and

Theorems 1 to 4.

Lemma 4.7.1. Let the solution to the Riemann problem for the system (4.2.1) subject

to the initial conditions 4.7.1 be given as a 1-shock wave and a 2-shock wave. Then the

constants ρL, ρR, uL and uR satisfy the following inequalities
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uL − uR > |ρL − ρR|

√
C (ργL − ργR)

(ρL − ρR) ρLρR
. (4.7.10)

Proof. If 1-wave is a shock wave, x = S1(t), implies that ρL < ρ̄ and ū < uL. Similarly,

if 2-wave is a shock wave, x = S2(t), then ρ̆ > ρR and ŭ > uR. In the region,

S1(t) < x < S2(t) the solution given in the equations (4.7.2) and (4.7.3), through 1-

shock, and the solution (4.7.4) and (4.7.5), through 2-shock, should coincide, that is,

ρ̄ = ρ̆ = z (say), ū = ŭ, i.e., uL > uR and f1(z) = 0 where

f1(z) = uL − (z − ρL)

√
C (zγ − ργL)

(z − ρL) zρL
− uR − (z − ρR)

√
C (ργR − zγ)

(ρR − z) ρRz
,

with max{ρL, ρR} < z < ∞. Observe that lim
z→∞

f1(z) = −∞ and

df1
dz

= − C

2z
3
2

(
γzγ(z − ρL) + ρL(z

γ − ργL)√
CρL(zγ − ργL)(z − ρL)

+
γzγ(z − ρR) + ρR(z

γ − ργR)√
CρR(zγ − ργR)(z − ρR)

)
< 0,

which implies that f1 is a decreasing function in z.

In order to have a unique solution for f1(z) = 0 in [ρL,∞) (respectively; in [ρR,∞))

when ρL > ρR (respectively; when ρR > ρL), it is required that f1(ρL) > 0 (respectively;

f1(ρR) > 0), i.e.,

uL − uR − |ρL − ρR|

√
C (ργL − ργR)

(ρL − ρR) ρLρR
> 0. (4.7.11)

Hence the proof. This is depicted in Figure-4.1.

Lemma 4.7.2. Let the solution to the Riemann problem consist of a 1-shock wave

and a 2-rarefaction wave for the system (4.2.1) subject to the initial conditions (4.7.1).

Then ρL, ρR, uL and uR satisfy the inequalities ρL < ρR and
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uL − uR <

√
C(ργR − ργL)(ρR − ρL)

ρLρR
, when uL > uR, (4.7.12)

uL − uR > −2
√
Cγ

γ − 1

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
, when uL < uR. (4.7.13)

Proof. If the 1-wave is a shock wave and the 2-wave is a rarefaction wave, it implies

that ρL < ρ̄, ū < uL and ρ̆ < ρR, ŭ < uR. In view of (4.7.2), (4.7.3), (4.7.8) and (4.7.9),

it follows that the solutions given by (4.7.2)-(4.7.3) and (4.7.8)-(4.7.9) should coincide

in the region S1(t) < x < R3(t). This means that ρ̄ = ρ̆ = z(say), i.e., ρL < z < ρR

and f2(z) = 0 where

f2(z) = uL − (z − ρL)

√
(C (zγ − ργL))

(z − ρL) zρL
− uR +

2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

R − z
γ−1
2

)
,

for ρL < z < ρR. Observe from the above equation that

df2
dz

= − C

2z
3
2

(
γzγ(z − ρL) + ρL(z

γ − ργL)√
CρL(zγ − ργL)(z − ρL)

)
−
√

Cγz
γ−3
2 < 0,

implying that f2 is decreasing. Since, ρL < ρR, the equation f2(z) = 0 has a solution

only when f2(ρL) > 0 and f2(ρR) < 0, i.e.,

f2(ρL) > 0 ⇒ uL − uR +
2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
> 0, (4.7.14)

f2(ρR) < 0 ⇒ uL − uR −

√
C(ργR − ργL)(ρR − ρL)

ρLρR
< 0. (4.7.15)

Since ρL < ρR, and if uL > uR ,the condition (4.7.14) always holds. Thus the solution

for f2(z) = 0 over [ρL, ρR] is possible if (4.7.15) holds, i.e.,

uL − uR <

√
C(ργR − ργL)(ρR − ρL)

ρLρR
.

Similarly, if uL < uR then the condition (4.7.15) always holds. Thus the solution for

f2(z) = 0 over [ρL, ρR] is possible only if (4.7.14) holds, i.e.,
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uL − uR > − 2
√
Cγ

((γ − 1))

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
.

Hence the proof. This information is depicted in Figure-4.2.

Lemma 4.7.3. Let the solution to the Riemann problem consist of a 1-rarefaction

wave and a 2-shock wave for the system (4.2.1) subject to the initial conditions (4.7.1).

Then ρL, ρR, uL and uR satisfy the inequalities ρL > ρR and

uL − uR >
2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
, when uL < uR, (4.7.16)

uL − uR <

√
C(ργR − ργL)(ρR − ρL)

ρRρL
, when uL > uR. (4.7.17)

Proof. Suppose that the 1-wave is a rarefaction wave. It implies that ρ̄ < ρL, ū > uL.

Similarly, let the 2-wave be a shock wave. Then ρ̆ > ρR and ŭ > uR. In view of

the equations (4.7.4) - (4.7.7), the solutions given by the equations (4.7.4)-(4.7.5) and

(4.7.6)-(4.7.7) should coincide in the region R2(t) < x < S2(t), i.e., ρ̄ = ρ̆ = z (say),

ū = ŭ, i.e., ρR < z < ρL, and f3(z) = 0 where

f3(z) = uL − uR − 2
√
Cγ

(γ − 1)

(
z

γ−1
2 − ρ

γ−1
2

L

)
− (z − ρR)

√
C (ργR − zγ)

(ρR − z) ρRz
,

for ρR < z < ρL. Observe from the above equation that

df3
dz

= −
√

Cγz
γ−3
2 − C

2z
3
2

(
γzγ(z − ρR) + ρR(z

γ − ργR)√
CρR(zγ − ργR)(z − ρR)

)
< 0,

implying thereby that f3 is decreasing. The equation f3(z) = 0 has a solution only

when f3(ρR) > 0 and f3(ρL) < 0, i.e.,

f3(ρL) < 0 ⇒ uL − uR −

√
C(ργR − ργL)(ρR − ρL)

ρRρL
< 0, (4.7.18)

f3(ρR) > 0 ⇒ uL − uR − 2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
> 0, (4.7.19)
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If uL < uR then the condition (4.7.18) is always true. Thus, the solution for f3(z) = 0

over [ρR, ρL] exits only when the condition (4.7.19) is true, i.e.,

uL − uR − 2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
> 0. (4.7.20)

Further, when uL > uR, the condition (4.7.19) is always true. Thus, the solution for

f3(z) = 0 over [ρR, ρL] exits only when the condition (4.7.18) is true, i.e.,

uL − uR −

√
C(ργR − ργL)(ρR − ρL)

ρRρL
< 0. (4.7.21)

Hence the proof. This is depicted in Figure-4.3.

Lemma 4.7.4. Let the solution to the Riemann problem consist of a 1-rarefaction wave

and a 2-rarefaction wave for the system (4.2.1) subject to the initial conditions (4.7.1).

Then ρL, ρR, uL and uR satisfy the inequalities uL < uR and

− 2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

R + ρ
γ−1
2

L

)
< uL − uR < −

∣∣∣∣ 2√Cγ

(γ − 1)

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)∣∣∣∣ . (4.7.22)

Proof. Suppose that the 1-wave is a rarefaction wave. It implies that ρ̄ < ρL, ū > uL.

Similarly, let the 2-wave be a rarefaction wave. Then ρ̆ < ρR and ŭ < uR. In view of

the equations (4.7.4)-(4.7.7), the solutions given by the equations (4.7.4)-(4.7.5) and

(4.7.6)-(4.7.7) should coincide in the region R2(t) < x < R3(t), i.e., ρ̄ = ρ̆ = z (say),

uL < ū = ŭ < uR and f4(z) = 0 where

f4(z) = uL − uR − 2
√
Cγ

(γ − 1)

(
2z

γ−1
2 − ρ

γ−1
2

L − ρ
γ−1
2

R

)
,

for 0 < z < min {ρR, ρL}. Observe from the above equation that

df4
dz

= −2
√
Cγz

γ−3
2 < 0,

implying thereby that f4 is decreasing. The equation f4(z) = 0 has a solution only

when f4(0) > 0 and f4(ρL) < 0 (respectively; f4(ρR) < 0) when ρL < ρR (respectively;

ρR < ρL), i.e., ρL, ρR, uL and uR should satisfy
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uL − uR +
2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

R + ρ
γ−1
2

L

)
> 0, (4.7.23)

and

uL − uR +
2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
< 0, when ρL < ρR, (4.7.24)

uL − uR +
2
√
Cγ

(γ − 1)

(
ρ

γ−1
2

L − ρ
γ−1
2

R

)
< 0, when ρR < ρL. (4.7.25)

Hence the proof. This is depicted in Figure-4.4.

Lemma 4.7.5. Let the solution to the Riemann problem consist of only a 1-rarefaction

wave (respectively; a 2- rarefaction wave) for the system (4.2.1) subject to the initial

conditions (4.7.1) then ρL > ρR (respectively; ρL < ρR) and uL−uR = −
√
Cγ

(γ−1)

∣∣∣ρ γ−1
2

L − ρ
γ−1
2

R

∣∣∣.
Proof. Suppose that the solution is given through a 1-rarefaction wave only. Then in

view of (4.7.6)-(4.7.7), we have ρ̄ < ρL, ρ̆ = ρR and ŭ = uR, i.e., uL−2
√
Cγ

(γ−1)

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
=

uR.

Similarly, when the solution is given only through a 2-rarefaction wave, in view of

(4.7.8) and (4.7.9), it can be easily shown that ρL < ρR and uL+
2
√
Cγ

(γ−1)

(
ρ

γ−1
2

R − ρ
γ−1
2

L

)
=

uR. Hence the proof.

Lemma 4.7.6. Let the solution to the Riemann problem consist of only a 1-shock wave

(respectively, a 2-shock wave) for the system (4.2.1) subject to the initial conditions

(4.7.1) then ρL < ρR (respectively; ρL > ρR) and uL − uR = |ρR − ρL|
√

C(ργR−ργL)
(ρR−ρL)ρRρL

.

Proof. Suppose that the solution is given only through a 1- shock wave. Then in view of

(4.7.2) and (4.7.3), we have ρL < ρ̄, ρ̆ = ρR and ū = uR, i.e., uL−
√

(ργR−ργL)(ρR−ρL)

ρLρR
= uR.

Similarly, when the solution is given through a 2-wave as a shock wave, in view

of (4.7.4) and (4.7.5), it can be proved that uL +
√

(ργR−ργL)(ρR−ρL)

ρLρR
= uR. Hence the

proof.

The following four theorems give the complete characterization of the solution of

the Riemann problem under consideration.

Theorem 4.7.1. Let uL > uR. If ρL > ρR (respectively; ρL < ρR), then a 1-

shock wave (respectively, a 2-shock wave) is a solution to the Riemann problem for
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the system (4.2.1) subject to the initial conditions (4.7.1) if and only if (uL − uR) ≥

|ρL − ρR|
√

C(ργL−ργR)
(ρL−ρR)ρLρR

.

Theorem 4.7.2. Let uL < uR. If ρL > ρR (respectively; ρL < ρR) then a 1-rarefaction

wave (respectively, a 2-rarefaction wave) is a solution to the Riemann problem for

the system (4.2.1) subject to the initial conditions (4.7.1) if and only if (uL − uR) ≤

|ρL − ρR|
√

C(ργL−ργR)
(ρL−ρR)ρLρR

.

Theorem 4.7.3. Let uL > uR. If ρL > ρR (respectively; ρL < ρR), then a 1-

shock wave (respectively, a 2-shock wave) is a solution to the Riemann problem for

the system (4.2.1) subject to the initial conditions (4.7.1) if and only if (uL − uR) ≥
−2

√
Cγ

γ−1

∣∣∣ρ γ−1
2

L − ρ
γ−1
2

R

∣∣∣.
Theorem 4.7.4. Let −2

√
Cγ

γ−1

(
ρ

γ−1
2

L + ρ
γ−1
2

R

)
< (uL − uR) < 0. If ρL > ρR (respectively;

ρL < ρR), then a 1-rarefaction wave (respectively, a 2-rarefaction wave) is a solution

to the Riemann problem for the system (4.2.1) subject to the initial conditions (4.7.1)

if and only if (uL − uR) ≤ −2
√
Cγ

γ−1

∣∣∣ρ γ−1
2

L − ρ
γ−1
2

R

∣∣∣.
4.8 Riemann problem with non-constant initial data

In this section, we construct the solution for the Riemann problem to the system of

equations (4.2.1) when f = k0u and p(ρ) = Cρ subject to the initial profile

(ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)) =

{
(ρL, k0x+ uL) , if x < 0,

(ρR, k0x+ uR) , if x ≥ 0,
(4.8.1)

where ρL, ρR, uL and uR are constants, consisting of shock and/or rarefaction waves.

Then, the solution is given in the following form.

Let the 1-wave be a shock wave. Then

ρ(x, t) =

{
ρLe

−k0t, if x ≤ S1(t),

ρ̃e−k0t, if x > S1(t),
(4.8.2)

u(x, t) =

{
uL + k0x, if x ≤ S1(t),

ũ+ k0x, if x > S1(t),
(4.8.3)
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where S1(t) =

(
uL −

√
Cρ̃

ρL

)(
ek0t − 1

k0

)
.

In view of (4.5.4)2 we have ũ = uL − (ρ̃− ρL)
√
C√

(ρLρ̃)
, ρL < ρ̃ and uL > ũ.

Similarly, if the 2-wave is a shock wave, then

ρ(x, t) =

{
ρRe

−k0t, if x ≥ S2(t),

ρ̂e−k0t, if x < S2(t),
(4.8.4)

u(x, t) =

{
uR + k0x, if x ≥ S2(t),

û+ k0x, if x < S2(t),
(4.8.5)

where S2(t) =

(
û+

√
Cρ̂

ρR

)(
ek0t − 1

k0

)
.

In view of (4.5.8)2 we have û = uR +
(ρ̂− ρR)

√
C√

ρRρ̂
with, ρ̂ > ρR and û > uR.

If the 1-wave is a rarefaction wave, then

ρ(x, t) =


ρLe

−k0t, if x < R1(t),

ρLe

(
−k0t− 1√

C

(
xk0

ek0t−1
+
√
C−uL

))
, if R1(t) ≤ x ≤ R2(t),

ρ̃e−k0t, if x > R2(t),

(4.8.6)

u(x, t) =


uL + k0x, if x < R1(t),(

xk0ek0t
ek0t−1

+
√
C
)
, if R1(t) ≤ x ≤ R2(t),

ũ+ k0x, if x > R2(t),

(4.8.7)

where ũ = uL−
√
C log

(
ρ̃
ρL

)
, R1(t) =

(
uL −

√
C
)(

ek0t−1
k0

)
, R2(t) =

(
ũ−

√
C
)(

ek0t−1
k0

)
and ρL > ρ̃.
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Similarly, if the 2-wave is a rarefaction wave, then

ρ(x, t) =


ρ̂e−k0t, if x < R3(t),

ρRe

(
−k0t+

1√
C

(
xk0

ek0t−1
−
√
C−uR

))
, if R3(t) ≤ x ≤ R4(t),

ρRe
−k0t, if x > R4(t),

(4.8.8)

u(x, t) =


û+ k0x, if x < R3(t),(

xk0ek0t
ek0t−1

−
√
C
)
, if R3(t) ≤ x ≤ R4(t),

uR + k0x, if x > R4(t),

(4.8.9)

where û = uR−
√
C log

(
ρR
ρ̂

)
, R3(t) =

(
û+

√
C
)(

ek0t−1
k0

)
, R4(t) =

(
uR +

√
C
)(

ek0t−1
k0

)
and ρ̂ < ρR. Here, ũ and û are arbitrary constants.

Using a similar analysis as done in Section 4.7, we state the following theorems.

Theorem 4.8.1. Let uL > uR. If ρL > ρR (respectively; ρL < ρR) then a 1-shock wave

(respectively, a 2-shock wave) is a solution to the Riemann problem for the system

(4.2.1) with f = k0u and p(ρ) = Cρ subject to the initial conditions (4.8.1) if and only

if (uL − uR) ≥ |ρL − ρR|
√

C
ρLρR

.

Theorem 4.8.2. Let uL > uR. If ρL > ρR (respectively; ρL < ρR) then a 1-rarefaction

wave (respectively, a 2-rarefaction wave) is a solution to the Riemann problem for the

system (4.2.1) with f = k0u and p(ρ) = Cρ subject to the initial conditions (4.8.1) if

and only if (uL − uR) ≤ |ρL − ρR|
√

C
ρLρR

.

Theorem 4.8.3. Let uL < uR. If ρL > ρR (respectively; ρL < ρR) then a 1-shock wave

(respectively, a 2-shock wave) is a solution to the Riemann problem for the system

(4.2.1) with f = k0u and p(ρ) = Cρ subject to the initial conditions (4.8.1) if and only

if (uL − uR) ≥ −
√
C
∣∣∣log (ρR

ρL

)∣∣∣.
Theorem 4.8.4. If ρL > ρR (respectively; ρL < ρR) then a 1-rarefaction wave (re-

spectively, a 2-rarefaction wave) is a solution to the Riemann problem for the system

(4.2.1) with f = k0u and p(ρ) = Cρ subject to the initial conditions (4.8.1) if and only

if (uL − uR) ≤ −
√
C
∣∣∣log (ρR

ρL

)∣∣∣.
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Figure 4.1: S1 and S2 are, respectively, the back-shock and the front shock; regions
x ≤ S1(t), S1(t) < x < S2(t), and x ≥ S2(t) are depicted as I, II and III respectively.
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Figure 4.2: Region behind the back-shock S1 is depicted as I; region S1(t) < x < R3(t)
between S1 and the trail characteristic R3 of the front rarefaction wave III is depicted
as II; region x > R4(t) ahead of the front rarefaction is depicted as IV.
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Figure 4.3: The region x < R1(t) is depicted as I; back rarefaction region R1(t) ≤ x ≤
R2(t) is depicted as II; the region R2(t) < x < S2(t) is depicted as III and the region
x ≥ S2(t) is depicted as IV.
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Figure 4.4: The region x < R1(t) is depicted as I; II is the back rarefaction wave region;
region R2(t) ≤ x ≤ R3(t) between front and back rarefaction is depicted as III; IV is
the front rarefaction wave region and region x > R4(t) is depicted as V.
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Chapter 5

Wave interactions of a double

Riemann problem for rate-type

material with non-constant initial

data

5.1 Introduction

In the recent decade, researchers have shown a growing interest in exploring the

interactions of elementary waves in hyperbolic systems of partial differential equa-

tions [2, 5, 6, 8, 9, 15, 91–94], owing to their extensive practical applications such as

stability of Riemann solution with respect to small perturbations in the initial data.

However, to discuss interactions with the perturbed Riemann problem for non-

constant data, first it is required to understand completely the Riemann problem for

the system under consideration. Over the years, numerous mathematical techniques

have been proposed to obtain the exact solutions to these systems, as documented in

various references from [40, 61, 85]. In recent years, the approach based on differential

constraints, as introduced by Janenko in [30], [31] and [32]), has garnered significant

interest. Further, the contributions towards the development of this approach may be

found in [40,41,43].

Finding out an exact solution to a generalized Riemann problem is a difficult task.

However, LeFloch and Raviart [56] obtained an approximate solution to the general-

ized Riemann problem in the form of an asymptotic expansion, which was employed

for gas dynamics equations given in [57].

85
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Interactions of elementary waves for perturbed Riemann problem was discussed by

many researchers. In particular, the interaction problem for p-system which represents

isentropic gas dynamic in Lagrangian co-ordinate, was discussed by Smoller [2]. Luo

and Yang [89] discussed the interactions of elementary waves for compressible Euler

equations with frictional damping. Raja Sekhar and Sharma [90] delved into the ex-

istence of a vacuum state and briefly discussed wave interactions within the realm of

isentropic magnetogasdynamics and the wave interactions were explained by them in

shallow water waves in [76]. Liu and Sun [86] carried out an in-depth analysis of ele-

mentary wave interactions for the Aw-Rascle model with generalized Chaplygin gas. Ji

and Shen [88] constructed the global solution to the perturbed Riemann problem and

discussed the interactions of elementary waves, and gave the phenomena of coalesce

for shock waves of the same family. Moreover, Wei and Sun [81] completely discussed

about the Riemann problem and interaction for a class of strictly hyperbolic systems

of conservation laws.

The aforementioned works motivated us to investigate the conditions under which

the Riemann solution given by shock waves interacts, and also to discuss the structure

of the solution, which is ultimately characterized through elementary waves for the

system under consideration.

In this chapter, the shock wave interactions of the double Riemann problem are

considered. The results derived in Chapter 2 to solve the Riemann problem for non-

constant data for rate-type material enable us to discuss the wave interactions arising

due to two discontinuities in the initial data.

5.2 Solutions to the Cauchy problem

We consider the balance laws describing rate-type materials ( [30] - [32]) as follows

∂u

∂t
− ∂

∂x

(
1

v

)
= 0,

∂v

∂t
+

∂u

∂x
= 1− v,

(5.2.1)

where u is the Lagrangian velocity and 1/v with v ̸= 0 denotes the stress in the mate-

rial that is undergoing loading/unloading processes.



5.2. SOLUTIONS TO THE CAUCHY PROBLEM 87

The eigenvalues λ(i), i = 1, 2 representing the characteristic speeds of the system

(5.2.1) are given by

λ(1) = −1

v
, λ(2) =

1

v
,

and the corresponding right eigenvectors R(i)

R(1) =

[
−v−1

1

]
, R(2) =

[
v−1

1

]
.

Further, both the eigenvalues are real and distinct, the system (5.2.1) is strictly

hyperbolic and genuinely nonlinear (since R(i) · ∇λ(i) ̸= 0 for i = 1, 2).

In Chapter-2, [61], the system was considered with smooth initial data

u(x, 0) = u0(x), v(x, 0) = v0(x), (5.2.2)

and the solution of the Cauchy problem (5.2.1), (5.2.2) was obtained using the differ-

ential constraints method as follows

v(x, t) = v0(ξ)e
−t,

u(x, t) = u0(ξ) + δ

(
et − 1

v0(ξ)

)
,

x = ξ + δ

(
et − 1

v0(ξ)

)
, δ = ±1.

Here, ξ(x, t)is determined for a given x and t from the equation (2.3.9)3, and

du0(x)

dx
=

δ

v0(x)

dv0
dx

+ 1. (5.2.3)

Observe that for a given x and t, the equations (2.3.9)1 and (2.3.9)2 admit unique

values for v and u provided there exists a unique ξ satisfying (2.3.9)3; in other words,

the existence of a unique solution is guaranteed for every x in (−∞,∞) and for every

t > 0 provided that

δ

(
et − 1

(v0(ξ))
2

)
dv0
dξ

+ 1 ̸= 0. (5.2.4)

Further, in Chapter-2, [61], the solution of the generalized Riemann problem of the
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system (5.2.1) subject to the initial conditions

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) =

{
(x+ uL, vL) , if x < 0,

(x+ uR, vR) , if x ≥ 0,
(5.2.5)

is provided with shock and/or rarefaction waves, the results of which can be summarized

as follows.

Theorem 5.2.1. The solution to the generalized Riemann problem for the system

(5.2.1) subject to the initial data (5.2.5) consists of

• a 1-shock wave if and only if one of the following conditions hold:

(a.) uL − uR +
vR − vL√

vLvR
< 0, when vR > vL and uL < uR.

(b.) uL − uR + log

(
vR
vL

)
< 0, when vR < vL and uL > uR.

(c.) vR < vL and uL < uR.

• a 2-shock wave if and only if one of the following conditions hold:

(a.) uL − uR − log

(
vR
vL

)
< 0, when vR > vL and uL > uR.

(b.) uL − uR − vR − vL√
vLvR

< 0, when vR < vL and uL < uR.

(c.) vR > vL and uL < uR.

• a 1-rarefaction wave if and only if one of the following conditions hold

(a.) uL − uR +
vR − vL√

vLvR
> 0, when vR > vL and uL < uR.

(b.) uL − uR + log

(
vR
vL

)
> 0, when vR < vL and uL > uR.

(c.) vR > vL and uL > uR.

• a 2-rarefaction wave if and only if one of the following conditions hold:

(a.) uL − uR − log

(
vR
vL

)
> 0, when vR > vL and uL > uR.

(b.) uL − uR − vR − vL√
vLvR

> 0, when vR < vL and uL < uR.

(c.) vR < vL and uL > uR.
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5.3 Elementary waves interactions

In this section, an attempt is made to discuss and study the interaction of shock waves

for the system (5.2.1), which may arise due to two jump discontinuities in the initial

data, one at x = 0 and the second one at x = x0 > 0, named as a double Riemann

problem and is given as follows

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) =


(x+ uL, vL) , if x ≤ 0,

(x+ uM , vM) , if 0 < x ≤ x0,

(x+ uR, vR) , if x0 < x,

(5.3.1)

where uL, uR, uM , uM , vL and vR are given constants but arbitrary. As discussed in

Chapter 1, the solution of the system due to the discontinuity in the initial data at x = 0

is given through either a 1-shock curve, x = S̃1(t), or a 1-rarefaction region, R̃1(t) <

x < R̃2(t), or a 2-shock curve, x = S̃2(t) or a 2-rarefaction region, R̃3(t) < x < R̃4(t).

Similarly, due to the discontinuity in the initial data at x = x0 the solution is given

through either a 1-shock curve, x = S̄1(t), or a 1-rarefaction region, R̄1(t) < x < R̄2(t),

or a 2-shock curve, x = S̄2(t), or a 2-rarefaction region, R̄3(t) < x < R̄4(t). Due to

the presence of two discontinuities in the initial data, the shock/rarefaction curves of

different families of characteristics emanate from x = 0 and x = x0, and hence there

exists a T > 0 such that interaction of shock curves and/or rarefaction region may take

place for t ≥ T , which is discussed in the following subsections.

5.3.1 Interaction of a 1-shock wave (x = S̃1(t)) with a 1-shock

wave (x = S̄1(t))

Due to the discontinuity at x = 0 in the initial data, when

uL = uM +
vM − vL√
(vLvM)

, (5.3.2)

with vM < vL and uM > uL, the solution is given through only a 1-shock wave as

v(x, t) =

{
vLe

−t, if x ≤ S̃1(t),

vMe−t, if x > S̃1(t),
(5.3.3)

u(x, t) =

{
uL + x, if x ≤ S̃1(t),

uM + x, if x > S̃1(t),
(5.3.4)
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where x = S̃1(t) is the shock location with S̃1(t) =
(1− et)√
(vLvM)

.

Similarly, due to the discontinuity in the initial data at x = x0, when

uR = uM − vR − vM√
(vMvR)

, (5.3.5)

with vR < vM and uR > uM , the solution is given through only a 1- shock wave as

v(x, t) =

{
vMe−t, if x ≤ S̄1(t),

vRe
−t, if x > S̄1(t),

(5.3.6)

u(x, t) =

{
uM + x, if x ≤ S̄1(t),

uR + x, if x > S̄1(t),
(5.3.7)

where x = S1(t) is the shock location with S̄1(t) = x0 +
(1− et)√
(vRvM)

.

Thus, in view of the equations (5.3.2) and (5.3.5), the solution of the double Riemann

problem is obtained through only 1-shock waves at x = 0 and at x = x0 when

vR < vM < vL, uL < uM < uR, uL − uR − vM − vL√
(vLvM)

− vR − vM√
(vMvR)

= 0. (5.3.8)

Since vR < vL the shock curve, x = S̃1(t), overtakes the shock curve, x = S̄1(t), in a

finite time, t = t1 > 0, where t1 is given as

t1 = log

(
1 +

x0
√
vRvLvM√

vL −√
vR

)
, (5.3.9)

which implies that the solution of the double Riemann problem given in equations

(5.3.3) - (5.3.7) is valid for t ≤ t1. The solution, due to the interaction of a 1-shock

wave emanated at x = 0 with a 1-shock wave emanated at x = x0, for t > t1, can be

obtained by solving the Riemann problem with the following initial data

(u(x, t1), v(x, t1)) =

{
(x+ uL, vLe

−t1) , if x < x1,

(x+ uR, vRe
−t1) , if x ≥ x1,

(5.3.10)
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where x1 =
(1− et1)√
(vLvM)

= x0 +
(1− et1)√
(vRvM)

.

Since, vR < vL and uL < uR, using Theorem 5.2.1, the possible forms for the solution

to the Riemann problem subject to the initial data (5.3.10) are

I. given through a 1-shock wave, x = S1(t), and a 2-shock wave, x = S2(t), ema-

nating at the point (x, t) = (x1, t1).

II. given through a 1-shock wave, x = S1(t), and a 2-rarefaction wave in the region,

R3(t) ≤ x ≤ R4(t), emanating at the point (x, t) = (x1, t1).

III. given through only a 1-shock wave, x = S1(t), emanating at the point (x, t) =

(x1, t1).

5.3.1.1 Case-I

Since, vR < vL and uL < uR, using Theorem 5.2.1, if the solution to the Riemann

problem subject to the initial data (5.3.10) is given through a 1-shock wave, x = S1(t)

and a 2-shock wave, x = S2(t) only emanating at the point (x, t) = (x1, t1), then

uL − uR +
vL − vR√

vLvR
< 0, (5.3.11)

and the solution for t > t1 is given as follows

v(x, t) =


vLe

−t, if x ≤ S1(t),

z1e
−t, if S1(t) < x < S2(t),

vRe
−t, if x ≥ S2(t),

(5.3.12)

u(x, t) =


uL + x, if x ≤ S1(t),

uL − z1 − vLe
−t1√

(vLe−t1z1)
+ x, if S1(t) < x < S2(t),

uR + x, if x > S2(t),

(5.3.13)

where the 1-shock curve x = S1(t) is given by S1(t) =
(et1 − et)√

(vLz1)
+ x1 and the 2-shock

curve x = S2(t) is given by S2(t) =
(et − et1)√

(vRz1)
+ x1. Here, z = z1 is the solution to the

equation

uL − uR − z − vLe
−t1√

(vLe−t1z)
− vRe

−t1 − z√
(zvRe−t1)

= 0, z ∈ (vR, vL). (5.3.14)
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Thus, the necessary and sufficient condition for the solution to the double Riemann

problem is ultimately given through a 1-shock wave and only a 2-shock wave is obtained,

in view of (5.3.8) and (5.3.11), in the form of an inequality satisfied by the constants

vL, vM and vR as

f1(vL, vM , vR) < 0,

when vR < vM < vL, uL < uM < uR, and

f1(vL, vM , vR) =
vL − vR√

vLvR
− vM − vR√

vMvR
− vL − vM√

vLvM
. (5.3.15)

.

5.3.1.2 Case-II

Similarly, since vR < vL and uL < uR, using Theorem 5.2.1, it can be concluded that

the solution to the Riemann problem subject to the initial data (5.3.10) is given through

a 1-shock wave, x = S1(t), and a 2-rarefaction wave in the region, R3(t) < x < R4(t),

emanating from the point (x, t) = (x1, t1) only if

uL − uR +
vL − vR√

vLvR
> 0, (5.3.16)

and the solution for t > t1 is given as follows

v(x, t) =



vLe
−t, if x ≤ S1(t),

z2e
−t, if S1(t) < x ≤ R3(t),(
1− e(t1−t)

x− x1

)
, if R3(t) < x < R4(t),

vRe
−t, if x ≥ R4(t),

(5.3.17)

u(x, t) =



uL + x, if x ≤ S1(t),

uL − z2 − vLe
−t1√

(vLe−t1z2)
+ x, if S1(t) < x ≤ R3(t),

uR − log

(
(x− x1)vR
(et − et1)

)
+ x, if R3(t) < x < R4(t),

uR + x, if x ≥ R4(t),

(5.3.18)
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where the 1-shock curve x = S1(t) is given by S1(t) =
(et1 − et)√

(vLz2)
+ x1 and the 2-

rarefaction region, R3(t) < x < R(t), where R3(t) =
(et − et1)

z2
+ x1 and R4(t) =

(et − et1)

vR
+x1 which is shown in Figure 5.1. Here z = z2 is the solution to the equation

uL − uR − z − vLe
−t1√

(vLe−t1z)
+ log

(
vRe

−t1

z

)
= 0, z ∈ (vR, vL). (5.3.19)

Further, the necessary and sufficient condition for the solution to the double Riemann

problem ultimately given through a 1-shock wave and a 2-rarefaction wave, in view of

(5.3.8) and (5.3.16), is in the form of an inequality satisfied by the constants vL, vM

and vR as

f1(vL, vM , vR) > 0

when vR < vM < vL, uL < uM < uR and f1(vL, vM , vR) is defined as in (5.3.15).

5.3.1.3 Case-III

Similarly, since vR < vL and uL < uR, using Theorem 5.2.1, it can be concluded that

the solution to the Riemann problem subject to the initial data (5.3.10) is given through

only a 1-shock wave, x = S1(t), emanating from the point (x, t) = (x1, t1) only if

uL − uR +
vL − vR√

vLvR
= 0, (5.3.20)

and the solution for t > t1 is given as follows

v(x, t) =

{
vLe

−t, if x ≤ S1(t),

vRe
−t, if x > S1(t),

(5.3.21)

u(x, t) =

{
uL + x, if x ≤ S1(t),

uR + x, if x > S1(t),
(5.3.22)

where the 1-shock curve x = S1(t) is given by S1(t) =
(et1 − et)√
(vLvR)

+ x1.

Further, the necessary and sufficient condition for the solution to the double Riemann

problem ultimately given through only a 1-shock wave is obtained, in view of (5.3.8)
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and (5.3.20), is in the form of an equality satisfied by the constants vL, vM and vR as

f1(vL, vM , vR) = 0,

when vR < vM < vL, uL < uM < uR, and f1(vL, vM , vR) is defined as in (5.3.15)

Lemma 5.3.1. Consider the function f1(vL, vM , vR) defined as in (5.3.15). Then f1

is a positive function when vR < vM < vL.

Proof. Observe that lim
vR→vM

f1 = 0 and

∂f1
∂vR

=

(
vR −√

vLvM
) (√

vL −√
vM
)

2vR
√
vRvLvM

< 0,

since vR < vM < vL. This inequality implies that f1 is monotonically decreasing as

vR increases to vM , and since the function f1(vL, vM , vM) = 0, it follows that f1 is a

positive function when vR < vM < vL.

Thus, in view of Lemma 5.3.1, the solution due to the interaction of a 1-shock wave,

x = S̃1(t), originated from (x, t) = (0, 0) and a 1-shock wave, x = S1(t), originated

from (x, t) = (x0, 0), is given through only 1-shock and 2-rarefaction waves as given

in Case-II of Section 5.3.1, for which the solution is given by equations (5.3.17) and

(5.3.18) and is depicted in Figure 5.1.

5.3.2 Interaction of a 2-shock wave (x = S̃2(t)) with a 1-shock

wave (x = S̄1(t))

Due to the discontinuity at x = 0 in the initial data, when

uL = uM +
vL − vM√
(vLvM)

, (5.3.23)

with vL < vM and uL < uM , the solution is given through a 2-shock wave only as

v(x, t) =

{
vMe−t, if x ≥ S̃2(t),

vLe
−t, if x < S̃2(t),

(5.3.24)

u(x, t) =

{
uM + x, if x ≥ S̃2(t),

uL + x, if x < S̃2(t),
(5.3.25)
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where x = S̃2(t) is the location of the 2-shock wave with S̃2(t) =
(et − 1)√
(vLvM)

.

Similarly, due to the discontinuity in the initial data at x = x0, when

uR = uM +
vM − vR√
(vRvM)

, (5.3.26)

with vM > vR and uM < uR, the solution is given through only a 1-shock wave as

v(x, t) =

{
vMe−t, if x ≤ S̄1(t),

vRe
−t, if x > S̄1(t),

(5.3.27)

u(x, t) =

{
uM + x, if x ≤ S̄1(t),

uR + x, if x > S̄1(t),
(5.3.28)

where x = S̄1(t) is the location of the 1-shock with S̄1(t) = x0 +
(1− et)√
(vRvM)

.

Thus, in view of the equations (5.3.23) and (5.3.26), the solution of the double Riemann

problem is obtained through only a 2-shock wave originating at x = 0 and through

only a 1-shock wave originated at x = x0 when vR < vM , vL < vM , uL < uM < uR and

uL − uR − vL − vM√
(vLvM)

− vR − vM√
(vRvM)

= 0. (5.3.29)

It is easy to observe that the shock speed
dS̃2

dt
>

dS̄1

dt
. Hence, the 2-shock wave interacts

with the 1-shock wave in a finite time, t = t2 > 0, where t2 is given as

t2 = log

(
1 +

x0
√
vRvLvM√

vR +
√
vL

)
, (5.3.30)

which implies that the solution of the double Riemann problem given in equations

(5.3.24)- (5.3.28) is valid for t ≤ t2. The solution after the interaction, i.e. t > t2, can

be obtained by solving the Riemann problem with the following initial data

(u(x, t2), v(x, t2)) =

{
(x+ uL, vLe

−t2) , if x < x2,

(x+ uR, vRe
−t2) , if x ≥ x2,

(5.3.31)

where x2 =
(et2 − 1)√
(vLvM)

= x0 +
(1− et2)√
(vRvM)

.
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Since, uL < uR using Theorem 5.2.1, the possible forms for the solution to the

Riemann problem subject to the initial data (5.3.10) are

I. given through a 1-shock wave, x = S1(t), and a 2-shock wave, x = S2(t), ema-

nating at the point (x, t) = (x2, t2).

II. given through a 1-shock wave, x = S1(t), and a 2-rarefaction wave in the region,

R3(t) ≤ x ≤ R4(t), emanating at the point (x, t) = (x2, t2) for vL > vR.

III. given through a 1-rarefaction wave in the region, R1(t) ≤ x ≤ R2(t), and a

2-shock wave, x = S2(t), emanating at the point (x, t) = (x2, t2) for vL < vR.

IV. given through only a 1-shock wave, x = S1(t), emanating at the point (x, t) =

(x2, t2).

V. given through only a 2-shock wave, x = S2(t), emanating at the point (x, t) =

(x2, t2).

5.3.2.1 Case-I

After the interaction of the waves x = S̃2(t) and x = S1(t), since uL < uR hold, using

Theorem-5.2.1, it can be concluded that the solution to the Riemann problem subject

to the initial data (5.3.31) is given through a 1-shock wave, x = S1(t), and a 2-shock

wave, x = S2(t), emanating from the point (x, t) = (x2, t2), if

uL − uR +
|vL − vR|√

vLvR
< 0, uL < uR, (5.3.32)

and the solution after the interaction, i.e., t > t2, is given as

v(x, t) =


vLe

−t, if x ≤ S1(t),

z3e
−t, if S1 < x < S2(t),

vRe
−t, if x ≥ S2(t),

(5.3.33)

u(x, t) =


uL + x, if x ≤ S1(t),

uL − z3 − vLe
−t2√

(vLe−t2z3)
+ x, if S1(t) < x < S2(t),

uR + x, if x ≥ S2(t),

(5.3.34)

where x = S1(t) is the location of the 1-shock wave with S1(t) =
(et2 − et)√

(vLz3)
+ x2 and
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x = S2(t) is the location the 2-shock wave with S2(t) =
(et − et2)
√
vRz3

+x2, both emanating

from (x2, t2) as shown in Figure 5.2. Here z = z3 is the solution to the equation

uL −uR − z − vLe
−t2√

(vLe−t2z)
− vRe

−t2 − z√
(vRe−t2z)

= 0, z ∈ (min{vL, vR},max{vL, vR}). (5.3.35)

Further, the necessary and sufficient condition for the double Riemann problem is

ultimately given through only a 1-shock and a 2-shock, in view of (5.3.29) and (5.3.26),

is in the form of an inequality satisfied by the constants vL, vM and vR as

f2(vL, vM , vR) < 0, when vL > vR,

f3(vL, vM , vR) < 0, when vL < vR,

when vR < vM , vL < vM , uL < uM < uR, and

f2(vL, vM , vR) =
vL − vR√

vLvR
− vM − vL√

vMvL
− vM − vR√

vRvM
, (5.3.36)

f3(vL, vM , vR) =
vR − vL√

vLvR
− vM − vL√

vMvL
− vM − vR√

vRvM
. (5.3.37)

Lemma 5.3.2. If f2(vL, vM , vR) and f3(vL, vM , vR) are defined as in equation (5.3.36)

and in the equation (5.3.37) then f2 is a negative function when vR < vL < vM , and f3

is a negative function when vL < vR < vM .

Proof. Observe that

∂f2
∂vR

=

(√
vM −√

vL
) (√

vLvM − vR
)

2vR
√
vRvLvM

> 0

due to the condition vR < vL < vM . This implies that f2 is monotonically increasing

as vR increases to vL and since the function f2(vL, vM , vL) = 0, we have f2 is a negative

function when vR < vL < vM .

Similarly, when vL < vR < vM , we have

∂f3
∂vR

=
vR + vL

2vR
√
vRvL

+
vR + vM

2vR
√
vRvM

> 0.

This implies that f3 is monotonically increasing as vR increases to vM and since the
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function f3(vL, vM , vM) = 0, we have f3 to be a negative function when vL < vR <

vM .

Thus, in view of Lemma 5.3.2, the solution due to the interaction of a 2-shock wave,

x = S̃2(t) originated from (x, t) = (0, 0) and a 1-shock wave, x = S1(t) originated from

(x, t) = (x0, 0), is given through only 1-shock wave and a 2-shock wave as given in the

equations (5.3.33) and (5.3.34) which is depicted in the Figure 5.2.

5.3.2.2 Case-II

Similarly, since uL < uR, using Theorem-5.2.1, it can be concluded that the solution

to the Riemann problem subject to the initial data (5.3.31) is given through a 1-shock

wave, x = S1(t), and a 2-rarefaction wave in the region, R3(t) < x < R4(t), emanating

from the point (x, t) = (x2, t2) only if

uL − uR +
vL − vR√

vLvR
> 0, and vL > vR, uL < uR, (5.3.38)

and the solution for t > t2 is given by

v(x, t) =



vLe
−t, if x ≤ S1(t),

z4e
−t, if S1(t) < x ≤ R3(t),(
1− e(t2−t)

x− x2

)
, if R3(t) < x < R4(t),

vRe
−t, if x ≥ R4(t),

(5.3.39)

u(x, t) =



uL + x, if x ≤ S1(t),

uL − z4 − vLe
−t2√

(vLe−t2z4)
+ x, if S1(t) < x ≤ R3(t),

uR − log

(
(x− x2)vR
(et − et2)

)
+ x, if R3(t) < x < R4(t),

uR + x, if x ≥ R4(t),

(5.3.40)

where the 1-shock curve x = S1(t) is given by S1(t) =
(et2 − et)√

(vLz4)
+ x2 and the 2-

rarefaction region is given by R3(t) < x < R4(t) where R3(t) =
(et − et2)

z4
+ x2 and

R4(t) =
(et − et2)

vR
+ x2. Here z = z4 is the solution to the equation

uL − uR − z − vLe
−t2√

(vLe−t2z)
+ log

(
vRe

−t2

z

)
= 0, z ∈ (vR, vL). (5.3.41)
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Further, the necessary and sufficient condition for the solution to the double Riemann

problem, ultimately given through only 1-shock and 2-rarefaction waves, is obtained,

in view of (5.3.29) and (5.3.38), is in the form of inequalities satisfied by the constants

vL, vM and vR as

f2(vL, vM , vR) > 0, and vL > vR

when vR < vM , vL < vM , uL < uM < uR, and f2(vL, vM , vR) is exactly the same as

defined in the equation (5.3.36).

Thus, in view of Lemma 5.3.2, the solution due to interaction of a 2-shock wave,

x = S̃2(t) originated from (x, t) = (0, 0) and a 1-shock wave, x = S1(t) originated from

(x, t) = (x0, 0), cannot be given through a 1-shock wave and a 2-rarefaction wave.

5.3.2.3 Case- III

Similarly, since uL < uR, using Theorem 5.2.1, it can be concluded that the solution to

the Riemann problem subject to the initial data (5.3.31) is given through a 1-rarefaction

wave in the region, R1(t) < x < R2(t), and a 2-shock wave, x = S2(t), both emanating

from the point (x, t) = (x2, t2) only if

uL − uR +
vR − vL√

vLvR
> 0 and vL < vR, (5.3.42)

and the solution for t > t2 is given by

v(x, t) =



vLe
−t, if x ≤ R1(t),(

e(t2−t) − 1

x− x2

)
, if R1(t) < x < R2(t),

z5e
−t, if R2(t) ≤ x < S2(t),

vRe
−t, if x ≥ S2(t),

(5.3.43)

u(x, t) =



uL + x, if x ≤ R1(t),

uL − z5 − vLe
−t2√

(vLe−t2z5)
+ x, if R1(t) < x < R2(t),

uR − log

(
(x− x2)vR
(et − et2)

)
+ x, if R2(t) ≤ x < S2(t),

uR + x, if x ≥ S2(t),

(5.3.44)
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where the 1-rarefaction region is given by, R1(t) < x < R2(t), with R1(t) =
(et − et2)

z5
+

x2 and R2(t) =
(et − et2)

vR
+ x2, and the 2-shock curve x = S2(t) is given by S2(t) =

x2 +
et − et2
√
vRz5

. Here z = z5 is the solution to the equation

uL − uR + log

(
vLe

−t2

z

)
− z − vRe

−t2√
(vRe−t2z)

= 0, z ∈ (vL, vR). (5.3.45)

Further, the necessary and sufficient condition for the solution to the double Riemann

problem is ultimately given through only a 1-rarefaction wave and a 2-shock wave, in

view of (5.3.29) and (5.3.42), is in the form of an inequality satisfied by the constants

vL, vM and vR as follows

f3(vL, vM , vR) > 0 and vL < vR,

when vR < vM , vL < vM and uL < uM < uR, and f3(vL, vM , vR) is exactly the same as

in the equation (5.3.37).

Thus, in view of Lemma 5.3.2, the solution due to the interaction of a 2-shock wave,

x = S̃2(t) originated from (x, t) = (0, 0) and a 1-shock wave, x = S1(t) originated from

(x, t) = (x0, 0), cannot be given through a 1-rarefaction wave and a 2-shock wave.

5.3.2.4 Case-IV

Similarly, since vR < vL and uL < uR, using Theorem 5.2.1, it can be concluded that

the solution to the Riemann problem subject to the initial data (5.3.10) is given through

only a 1-shock wave, x = S1(t), emanating from the point (x, t) = (x2, t2) only if

uL − uR +
vL − vR√

vLvR
= 0, (5.3.46)

and the solution for t > t2 is given as

v(x, t) =

{
vLe

−t, if x ≤ S1(t),

vRe
−t, if x > S1(t),

(5.3.47)

u(x, t) =

{
uL + x, if x ≤ S1(t),

uR + x, if x > S1(t),
(5.3.48)
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where the 1-shock curve x = S1(t) is given by S1(t) =
(et1 − et)√
(vLvR)

+ x1.

Further, the necessary and sufficient condition for the solution to the double Riemann

problem is ultimately given through only a 1-shock wave, in view of (5.3.29) and

(5.3.46), in the form of equality satisfied by the constants vL, vM and vR as

f2(vL, vM , vR) = 0,

when vR < vM , vL < vM , uL < uM < uR, and f2(vL, vM , vR) is defined as in (5.3.36).

Thus, in view of Lemma 5.3.2, the solution due to interaction of a 2-shock wave,

x = S̃2(t) originated from (x, t) = (0, 0) and a 1-shock wave, x = S1(t) originated from

(x, t) = (x0, 0), cannot be given through only a 1-shock wave.

5.3.2.5 Case-V

Similarly, since vL < vR and uL < uR, using Theorem 5.2.1 it can be concluded that the

solution to the Riemann problem subject to the initial data (5.3.60) is given through

only a 2-shock curve, x = S2(t), emanating from the point (x, t) = (x2, t2) only if

uL − uR +
vR − vL√

vLvR
= 0, (5.3.49)

and the solution for t > t2 is given as

v(x, t) =

{
vLe

−t, if x ≤ S2(t),

vRe
−t, if x > S2(t),

(5.3.50)

u(x, t) =

{
uL + x, if x ≤ S2(t),

uR + x, if x > S2(t),
(5.3.51)

where the 2-shock curve x = S2(t) is given by S2(t) =
(et − et3)√

(vLvR
+ x2.

Thus, the necessary and sufficient condition for the solution to the double Riemann

problem is ultimately given through only a 2-shock wave, in view of (5.3.29) and

(5.3.49), is in the form of equality satisfied by the constants vL, vM and vR as
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f3(vL, vM , vR) = 0,

whenvR < vM , vL < vM , uL < uM < uR, and f3(vL, vM , vR) is defined as in (5.3.37).

Thus, in view of Lemma 5.3.2, the solution due to the interaction of a 2-shock wave,

x = S̃2(t) originated from (x, t) = (0, 0) and a 1-shock wave, x = S1(t) originated from

(x, t) = (x0, 0), cannot be given through only a 2-shock wave.

5.3.3 Interaction of a 2-shock wave (x = S̃2(t)) with a 2-shock

wave (x = S̄2(t))

Due to the discontinuity at x = 0 for t = 0 in the initial data, when

uL = uM +
vL − vM√
(vLvM)

, (5.3.52)

with vL < vM and uL < uM , the solution is given through only a 2-shock wave as

follows

v(x, t) =

{
vLe

−t, if x ≤ S̃2(t),

vMe−t, if x > S̃2(t),
(5.3.53)

u(x, t) =

{
uL + x, if x ≤ S̃2(t),

uM + x, if x > S̃2(t),
(5.3.54)

where x = S̃2(t) is the location of the 2-shock wave emanated from (x, t) = (0, 0), with

S̃2(t) =
(et − 1)√
(vLvM)

.

Similarly, due to the discontinuity at x = x0 for t = 0 in the initial data, when

uR = uM +
vR − vM√
(vMvR)

, (5.3.55)

with vM < vR and uR > uM , the solution is given through only a 2-shock wave as

follows
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v(x, t) =

{
vMe−t, if x ≤ S̄2(t),

vRe
−t, if x > S̄2(t),

(5.3.56)

u(x, t) =

{
uM + x, if x ≤ S̄2(t),

uR + x, if x > S̄2(t),
(5.3.57)

where x = S̄2(t) is the location of the 2-shock wave originated at (x, t) = (x0, 0) with

S̄2(t) = x0 +
(et − 1)√
(vRvM)

.

Thus, in view of the equations (5.3.52) and (5.3.55), the solution of the double Riemann

problem is obtained through only a 2-shock wave originating at (x, t) = (0, 0) and at

(x, t) = (x0, 0) when

vL < vM < vR, uL < uM < uR, uL − uR +
vM − vL√
(vLvM)

+
vR − vM√
(vMvR)

= 0. (5.3.58)

As vL < vR the shock curve x = S̃2(t) overtakes the shock curve x = S̄2(t) in a finite

time t = t3 > 0, where t3 is given as

t3 = log

(
1 +

x0
√
vRvLvM√

vR −√
vL

)
. (5.3.59)

which implies that the solution of the double Riemann problem given in equations

(5.3.53) - (5.3.56) is valid for t < t3 till the interaction takes place. The solution after

the interaction, i.e. t > t3, can be obtained by solving the Riemann problem with the

following initial data

(u(x, t3), v(x, t3)) =

{
(x+ uL, vLe

−t3) , if x < x3,

(x+ uR, vRe
−t3) , if x ≥ x3,

(5.3.60)

where x3 =
(et3 − 1)√
(vLvM)

.

Since, vL < vR and uL < uR using the Theorem 5.2.1, the possible forms for the

solution to the Riemann problem subject to the initial data (5.3.10) are

I. given through a 1-shock wave, x = S1(t), and a 2-shock wave, x = S2(t), ema-

nating at the point (x, t) = (x3, t3).
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II. given through a 1-rarefaction wave in the region, R1(t) ≤ x ≤ R2(t), and a

2-shock wave, x = S2(t), emanating at the point (x, t) = (x3, t3).

III. given through only a 2-shock wave, x = S2(t), emanating at the point (x, t) =

(x3, t3).

5.3.3.1 Case-I

Since, vL < vR and uL < uR, using Theorem 5.2.1, it can be concluded that the

solution to the Riemann problem subject to the initial data (5.3.60) is given through

a 1-shock curve, x = S1(t) and a 2-shock curve, x = S2(t) emanating from the point

(x, t) = (x3, t3) only if

uL − uR +
vR − vL√

vLvR
< 0, (5.3.61)

and the solution for t > t3 is given as follows

v(x, t) =


vLe

−t, if x ≤ S1(t),

z6e
−t, if S1(t) < x < S2(t),

vRe
−t, if x ≥ S2(t),

(5.3.62)

u(x, t) =


uL + x, if x ≤ S1(t),

uL − z6 − vLe
−t3√

(vLe−t3z6)
+ x, if S1(t) < x < S2(t),

uR + x, if x ≥ S2(t),

(5.3.63)

where the 1-shock curve, x = S1(t), is given by S1(t) =
(et3 − et)√

(vLz6)
+x3, and the 2-shock

curve, x = S2(t), is given by S2(t) =
(et − et3)√

(vRz6)
+ x3. Here z = z6 is the solution to the

equation

uL − uR − z − vLe
−t3√

(vLe−t3z)
− vRe

−t3 − z√
(vRe−t3z)

= 0, z ∈ (vL, vR). (5.3.64)

Thus, the necessary and sufficient condition for the solution to the double Riemann

problem is ultimately given through only a 1-shock wave and a 2-shock wave, in view

of (5.3.58) and (5.3.61), is in the form of an inequality satisfied by the constants vL, vM

and vR as follows
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f4(vL, vM , vR) < 0,

when vR < vM < vL, uL < uM < uR, and

f4(vL, vM , vR) =
vL − vM√
(vLvM)

+
vM − vR√
(vMvR)

+
vR − vL√
(vRvL)

. (5.3.65)

.

5.3.3.2 Case-II

Similarly, since vL < vR and uL < uR, using Theorem 5.2.1, it can be concluded

that the solution to the Riemann problem subject to the initial data (5.3.60) is given

through a 1-rarefaction wave in the region R1(t) < x < R2(t) for t > t3 and a 2-shock

wave, x = S2(t) emanating from the point (x, t) = (x3, t3) only if

uL − uR +
vR − vL√

vLvR
> 0, (5.3.66)

and the solution for t > t3 is given as follows

v(x, t) =



vLe
−t, if x ≤ R1(t),

z7e
−t, if R1(t) < x < R2(t),(
e(t3−t) − 1

x− x3

)
, if R2(t) ≤ x < S2(t),

vRe
−t, if x ≥ S2(t),

(5.3.67)

u(x, t) =



uL + x, if x ≤ R1(t),

uL − z7 − vLe
−t3√

(vLe−t3z7)
+ x, if R1(t) < x < R2(t),

uR − log

(
(x− x3)vR
(et − et3)

)
+ x, if R2(t) ≤ x < S2(t),

uR + x, if x ≥ S2(t),

(5.3.68)

where the 1-rarefaction region, R1(t) < x < R2(t), with R1(t) =
(et3 − et)

vL
+ x3 and

R2(t) =
(et3 − et)

z7
+x3, and the 2-shock curve, x = S2(t), is given by S2(t) =

(et − et3)√
(vLz7)

+

x3 which is shown in Figure 5.3. Here z = z7 is the solution to the equation
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uL − uR + log

(
vLe

−t3

z

)
− z − vRe

−t3√
(vRe−t3z)

= 0, z ∈ (vL, vR). (5.3.69)

Thus, the necessary and sufficient condition for the solution to the double Riemann

problem is ultimately given through only 1-rarefaction wave and 2-shock wave, in view

of (5.3.58) and (5.3.66), is in the form of an inequality satisfied by the constants vL, vM

and vR as follows

f4(vL, vM , vR) > 0,

when vL < vM < vR, uL < uM < uR, and f4(vL, vM , vR) is defined as in (5.3.65).

5.3.3.3 Case-III

Similarly, since vL < vR and uL < uR, using Theorem 5.2.1 it can be concluded that the

solution to the Riemann problem subject to the initial data (5.3.60) is given through

only a 2-shock curve, x = S2(t) emanating from the point (x, t) = (x3, t3), only if

uL − uR +
vR − vL√

vLvR
= 0, (5.3.70)

and the solution for t > t3 is given as follows

v(x, t) =

{
vLe

−t, if x ≤ S2(t),

vRe
−t, if x > S2(t),

(5.3.71)

u(x, t) =

{
uL + x, if x ≤ S2(t),

uR + x, if x > S2(t),
(5.3.72)

where the 2-shock curve, x = S2(t), is given by S2(t) =
(et − et3)√

(vLvR
+ x3.

Thus, the necessary and sufficient condition for the solution to the double Riemann

problem is ultimately given through only a 2-shock wave, in view of (5.3.58) and

(5.3.70), is in the form an equality satisfied by the constants vL, vM and vR as follows

f4(vL, vM , vR) = 0,
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when vL < vM < vR, uL < uM < uR, and f4(vL, vM , vR) is defined as in (5.3.65).

Lemma 5.3.3. Consider the function f4(vL, vM , vR) defined as in (5.3.15). Then f4

is a positive function when vL < vM < vR.

Proof. Observe that lim
vR→vM

f4 = 0 and

∂f4
∂vR

=

(
vR −√

vLvM
) (√

vM −√
vL
)

2vR
√
vRvLvM

> 0,

since vR < vM < vL. This implies that f4 is monotonically increasing as vR increases to

vM and since the function f4(vL, vM , vM) = 0, it follows that f4 is a positive function

when vL < vM < vR.

Thus, in view of Lemma 5.3.3, the solution due to the interaction of a 2-shock wave,

x = S̃2(t) originated from (x, t) = (0, 0) and a 2-shock wave, x = S2(t), originated from

(x, t) = (x0, 0), is given through a 1-rarefaction wave and a 2-shock wave as given in

Case-II of Section 5.3.3, for which the solution is given in the equations (5.3.67) and

(5.3.68) and is depicted in Figure 5.3.

5.4 Conclusions

A double generalized Riemann problem is considered with two discontinuities in the ini-

tial data at x = 0 and x = x0, for which the solution is given through two shocks either

in 1-shock waves or 2-shock waves from the points (x, t) = (0, 0) and (x, t) = (x0, 0).

As the two shocks propagate into the medium at different speeds, the possibilities of

overtaking these shocks are analysed. Further, owing to the interaction of shock waves,

whenever possible, it is discussed about the behavior of the solution after the inter-

action of the two shocks, whether 1-shock/1-rarefaction wave or 2-shock/2-rarefaction

waves are present in the solution.

The solution to the double Riemann problem is ultimately given through only a

1-shock wave and only a 2-rarefaction wave, when uL < uM < uR and the constants

vL, vM and vR satisfy the following conditions:

•
vM − vL√
(vLvM)

+
vR − vM√
(vRvM)

+
vL − vR√
(vRvL)

> 0, when vR < vM < vL.

Similarly, the solution to the double Riemann problem is ultimately given through

a 1-shock wave and a 2-shock wave when uL < uM < uR and when the constants vL,

vM and vR satisfy the following conditions:
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•
vL − vM√
(vLvM)

+
vR − vM√
(vRvM)

<
vL − vR√
(vRvL)

<
vM − vL√
(vLvM)

+
vM − vR√
(vRvM)

,

when vR < vM , vL < vM .

Similarly, the solution to the double Riemann problem is ultimately given through

a 1-rarefaction wave and a 2-shock wave when uL < uM < uR, and the constants vL, vM

and vR satisfy the following conditions:

•
vL − vM√
(vLvM)

+
vM − vR√
(vMvR)

+
vR − vL(√

vRvL
) > 0, when vL < vM < vR.
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Figure 5.1: Before interaction, i.e., for 0 < t < t1, subject to the initial condition
(5.3.1), the solutions in the region I, x < S̃1(t), in the region II, S̃1(t) ≤ x ≤ S̄1(t)
and in the region III, x > S̄1(t), are given in the equations (5.3.3) - (5.3.7) . After the
interaction, t > t1, subject to the initial condition (5.3.10), the solution in the region
IV, x < S1(t), in the region V, S1(t) ≤ x ≤ R3(t), in the region VI, R3(t) < x < R4(t)
and in the region VII, x ≥ R4(t), are given in equations (5.3.17) and (5.3.18).
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Figure 5.2: Before interaction, i.e., for 0 < t < t2, subject to the initial condition
(5.3.1), the solutions in the region I, x < S̃2(t), in the region II, S̃2(t) ≤ x ≤ S̄1(t) and
in the region III, x > S̄1(t), are given by the equations (5.3.24)- (5.3.28). After the
interaction, t > t2, subject to the initial condition (5.3.31), the solution in the region
IV, x < S1(t), in the region V, S1(t) ≤ x ≤ S2(t) and in the region VI, S2(t) < x are
given in equations (5.3.33) and (5.3.34).
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Figure 5.3: Before interaction, i.e., for 0 < t < t3, subject to initial condition (5.3.1),
the solutions in the region I, x < S̃2(t), in the region II, S̃2(t) ≤ x ≤ S̄2(t) and in the
region III, x > S̄1(t), are give by the equations (5.3.53)- (5.3.57). After the interaction,
t > t3, subject to the initial condition (5.3.60), the solution in the region IV, x < R1(t),
in the region V, R1(t) ≤ x ≤ R2(t), in the region VI, R2(t) < x < S2(t) and in the
region VII, x ≥ S2(t), are given in equations (5.3.67) and (5.3.68).
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Chapter 6

Summary

The Riemann problem with non-constant initial data and the interaction of shock

waves to several strictly hyperbolic systems is discussed using the differential con-

straints method, describing several physical phenomena in the thesis.

In Chapter 2, solutions to the Riemann problem with non-constant initial data for

the rate-type material were determined by introducing differential constraints. Also,

the elementary waves associated with the genuinely nonlinear characteristic fields were

presented in explicit forms. The complete characterization of Riemann solutions of the

rate-type model was presented in the form of Lemmas.

In Chapter 3, a first-order hyperbolic system of partial differential equations that

represents the Chaplygin gas model was investigated. The method of differential con-

straints was employed to provide a characterization of the solutions for this particular

model. Within the framework of this approach, the compatibility conditions between

the differential constraints and the governing model were derived. Further, the solution

to the Riemann problem for the governing model was obtained, which is characterized

by characteristic shocks with initial data satisfying the differential constraints an en-

able to determine the exact solution for the generalized Riemann problem.

In Chapter 4, the solution structure of the generalized Riemann problem for gener-

alized gas dynamic equations was focused, particularly when it involves non-constant

initial data. It was observed that the solutions to the generalized Riemann problem can

be effectively determined by the introduction of differential constraints. Additionally,

explicit representations of the elementary waves associated with genuinely nonlinear

characteristic fields were provided. The rarefaction solution was determined with the

help of generalized Riemann invariants. The comprehensive description of Riemann so-

113
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lutions for the generalized gas dynamic equations was presented in the form of Lemmas.

In Chapter 5, the interaction of the double generalized Riemann problem for rate-

type material was examined. Essentially, explicit solutions were provided before and

after the interaction of shock waves in different cases. Moreover, the conditions were

derived that guide in determining the structure of the new Riemann solution after the

interaction.

Overall, the generalized Riemann problem extends the principles of the classic Rie-

mann problem to handle more complex and realistic scenarios, making it a crucial

tool in numerical simulations and modeling of hyperbolic systems in various scientific

domains.
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