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Synopsis

The thesis entitled “(3+2) Cycloaddition Reactions of Carbohydrate-Derived

Donor-Acceptor Cyclopropanes” is divided into three chapters.

Chapter 1

An Introduction to the Carbohydrate-Derived Donor-Acceptor Cyclopropanes and

its Incorporation into (3+2) Cycloaddition reaction

Donor-acceptor cyclopropanes (DACs) are exclusive class of strained molecules that have been
used as 3-carbon building block in various organic transformations. The 1,3-dipolar cycloaddition
reaction is an important route to construct various hetero and carbocyclic scaffolds in regio-,
stereo-selective manner. DACs are one among the synthons that undergo formal (3+2)

cycloaddition very efficiently (Figure 1).

Synergistic =~ __.eeemmettmeeal 8- Ot
N X=Y D A
A = DN A - -
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Cycloaddition

Figure 1: Effect of donor and acceptor substituents on the cyclopropane reactivity.

Cyclopropanated sugar substrates undergo various types of reactions and often utilized to
construct diverse molecular scaffolds in a stereo-chemically pure form. Cyclopropanated
carbohydrates are very important synthetic precursors in stereoselective total synthesis of
natural products. Along with the endocyclic oxygen, when an electron withdrawing group is

incorporated on the vicinal carbon, the sugar skeleton is susceptible to undergo unique bond



cleavages which is favorable for (3+2) cycloaddition reaction.

This chapter covers the types of unsaturated sugar derivatives required for the synthesis of
various carbohydrate-derived DACs. Further, this chapter also describes the previous reports
where carbohydrate-derived DACs are incorporated in formal (3+2) cycloaddition reaction. In this

context, the important 1,2-dipolar synthons are also highlighted.

Overall, importance of carbohydrate-derived DACs in constructing multicyclic framework is

explained and motivation to further develop biologically important skeletons is expressed.

Chapter 2: Part A

A Ring Expansion Stereoselective Cycloaddition of Carbohydrate Derived Donor-Acceptor

Cyclopropanes: Synthesis of Bridged Oxepenone-Indole Hybrids

Donor—acceptor cyclopropanes having a donor and an acceptor group on the vicinal carbon
atoms of the cyclopropane, exhibits a synergistic effect. It forms a reactive 1,3-zwitter ion
intermediate which is an excellent substrate for various (3+n) cycloaddition reactions. Till date,
3-ox0-1,2-cyclopropanated sugar derivates were used as glycosyl donors for ring expansion
reactions. For the first time, this work exploits the inherent nature of 3-oxo-1,2-cyclopropanated
sugar to form a 1,3-dipolar synthon. This chapter mainly describes the dearomative (3+2)
cycloaddition of indole and 3-oxo-1,2-cyclopropanated sugar derivatives. A unique molecular
scaffold, bridged oxepanone-indole, is formed as the cycloadduct. The methodology witnesses
the alpha-selective cycloaddition reaction which forms four new stereogenic centers in a single
transformation forming the chiral cycloadducts. The concept of molecular hybridization was
effectively incorporated to construct interesting molecular hybrids which may contribute to the

bioactivity.

Glucose-derived 3-oxo-1,2-cyclopropanated sugar 1 and 1H-indole were used as model
substrates. At -10 °C in 1,2-dichloroethane (1,2-DCE) solvent, TMSOTf as Lewis acid was used to

activate the DAC. The dipolar substrates efficiently reacted to form the cycloadduct 2 in 70% yield



(Scheme 1). A high stereoselectivity was observed where only a-anomers were formed during

the reaction.

o
Bno/\;g> . ©j\> TMSOTf (0.5 eq), 4AMS  Bno

(N N

BnO H -10°C, 1,2-DCE BnO™

o] 20 min o

Scheme 1: (3+2) Cycloaddition reaction between model substrates DAC1 and 1H-Indole.

The developed methodology was successfully applied to a few indole substrates with variable
substitution on the benzene ring as well as N-methyl indole. However, C2, C3 methylated indole

substrates provided 3 as diastereomeric mixture of cycloadducts (exo & endo) with retention of

a-stereochemistry (Scheme 2).

o R®
BnO . ©f\g’R2 TMSOTf, 4A MS
BnO™ N -10°C, 1,2-DCE gpd
o} BnO W
1 exo-3

Scheme 2: (3+2) Cycloaddition of C2, C3 alkylated indole substrates.

Furthermore, we extended this work by employing different DACs from various sugar substrates

and sugar analogues. The results were well in accordance with the model substrates.

Chapter 2: Part B

Post-synthetic Transformation: En Route to the Synthesis of A,B,E Tricyclic Core

of Calyciphylline B-Type Alkaloids

Post synthetic transformations have become a necessary practice in the synthetic organic
chemistry. The pre-existing molecules with specialized functional groups placed appropriately
are exploited to construct a new molecular skeleton with biological or pharmacological

significance different from the parent molecule.

Xi



aza-Michael
p-elimination addition

Inversion

Scheme 3: Transformation of (3+2) cycloadducts via the intramolecular aza-Michael addition reaction.

In this context, through a one-pot pB-elimination, inversion of configuration, and an
intramolecular aza-Michael addition reaction, the (3+2) cycloadducts of previous chapter, with
suitably positioned R-ketoethers were used to synthesize analogues of A,B,E tricyclic core of
calyciphylline B-type alkaloids with a bowl-shaped architecture. The chapter mainly describes the
base mediated R-elimination of the suitable cycloadducts followed by an aza-Michael addition
reaction with indole nitrogen led to the functionalized fused tetracyclic scaffolds in a single
concerted step. This transformation witnessed the formation of a highly strained molecule and
the beauty of the basket-shaped molecular construction, a skeleton analogous to naturally

occurring alkaloid calyciphylline B (Scheme 3).

Chapter 3: Part A

(3+2) Cycloaddition Reaction of Spirocyclopropane Carboxylated Sugars and

Nitriles: Synthesis of Highly Functionalized Pyrrole Derivatives

Heterocyclic molecules have always been a part of many natural and unnatural scaffolds with
biological as well as pharmacological relevance. The synthesis of important heterocyclic skeletons
in an effective way is of great interest and pyrrole derivatives is one such emerging class of

molecular framework. Polyhydroxy alkyl substituted pyrrole derivatives are present in well-
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known pharmaceuticals like —atorvastatin, isamoltane, aloracetam etc. The importance of these
class of organic molecules motivated us to perform an application-oriented synthesis which is

described in this chapter 2 that is further divided into three parts.

2DCE MeOOC BnO
+ CHsCN  + TMSOTf — = o [\ OH
-30°C,8h H3;C N ?
H  0OBn
5
TMSOTf
|
. -
9 ' C=CEN +
© -, TMSO, Twsg| 3/, s
MeO © Activation (O CH CN W/)
| 5, MeO T
B0 BnO" BnO
OBn
1 o8Bn IN- -TMSOTf \
HaQ L H3C, Aromatization H3C\C:N o)
(6] / NH OBn Tautomerisation 0 i IN} OBn SV
Z OH §
MeO : OH MeO 4 MeO H grg ‘ogn
OBn H OBn
5 IN-II

Scheme 4: (3+2) Cycloaddition reaction of spirocyclopropane carboxylated sugar 4 and acetonitrile.

Like 1,2-cyclopropanated sugar derivatives, spirocyclopropane carboxylated sugars are also
unique class of donor-acceptor cyclopropanes which are used as a powerful tool in synthetic
organic chemistry. The part A of this chapter mainly describes a unique (3+2) cycloaddition
reaction between spirocyclopropane carboxylated sugars and various alkyl/aryl nitriles to
efficiently construct 2,3,5-substituted pyrrole derivatives. TMSOTf- mediated activation of model
substrate 4 formed a 1,3-dipolar intermediate IN-l and this underwent (3+2) cycloaddition
reaction with acetonitrile to form a five-membered cyclic intermediate IN-Il. Further,
aromatization and tautomerization of this intermediate provided the 2,3,5-substituted pyrrole

derivative 5 as the cycloadduct (Scheme 4).

The developed methodology was successfully applied to a several nitrile substrates which include
alkyl, aryl, and substituted aryl nitriles. The established procedure was amenable to most of these
substrates and products were formed in good to excellent yield. Further, we extended this

protocol by employing a different DAC derived from D-glucal and subjected it for (3+2)
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cycloaddition reactions with various substituted aryl nitriles. The results were well in accordance

with the model substrates.

Chapter 3: Part B

Post-synthetic Transformation (Part 1): En Route to the Synthesis of

Tetrahydroindolizines Based Scaffolds

Azabicyclic ring skeleton is the core unit of several secondary metabolites and bioactive
compounds. Among them, several molecules are modified to form glycomimetics and exhibit the
inhibitory activity on the glycosidase enzyme. Notably, the Tetrahydroindolizines (THIs) core is
widely present in several bioactive natural products. Hence, synthesis of these core skeleton is

much required area of research.

With this motivation, in this present chapter, we have attempted the synthesis of
tetrahydroindolizines based scaffolds as a post synthetic application from the pyrrole
cycloadducts obtained in the previous work. In this regard, the substituted pyrrole derivative 5
was subjected to Mitsunobu reaction condition using PhsP and DIAD to obtain the fused bicyclic

THI derivative 6 (Scheme 5).

TMSOTf  MeOOC MeOOC,
0) CHACN BnO DIAD, PhsP 7\
MeOOC e, I\ OH > H,C OBn
. N
Bno™ 1,2-DCE H3C™ SN Z Toluene, rt, 3 h
OBn -30°C H  OBn OBn
4 8h 5 6

Scheme 5: Synthesis of THI derivative 6 from cycloadduct 5.

The reaction was performed on all the cycloadducts derived from spirocyclopropane
carboxylated sugar substrate 4. The fused bicyclic THI derivatives were obtained in excellent

yield. The results were consistent with the model substrate.

XV



However, a small anomaly was observed in the case of cycloadducts obtained from mono-benzyl
spirocyclopropane carboxylated sugar substrate unlike substrate 4. The details are further

explained in this chapter.

Chapter 3: Part C

Post-synthetic Transformation (Part 2): En Route to the Synthesis of C-pyrrolyl

Furanoside Derivatives

C-Glycosides have been employed as building blocks in the synthesis of several natural products
and physiologically active compounds. They also could inhibit carbohydrate-interacting enzymes
and one such example is the nucleoside inhibitors. Furanose sugar and nitrogenous base
modifications are the preliminary chemical transformation made to produce these nucleoside
inhibitors. In this regard, we report the synthesis of C-pyrrolyl furanoside derivatives through

Lewis acid catalyzed intramolecular cyclization of the pyrrole cycloadducts obtained in previous

work (part A).
TMSOTf
e0OC 0 CHieN  MeOOC BnO
€ P ]\ OH
Bno" 1,2-DCE HyC™ Y
OBn -30°C H OBn
8h
4 5
BF;OEt, | DCM
(0.3 Eq) 0°C, 5 min
MeOOC BnO MeOOC BnO
DR
H3C N tn H3C N
H o) H o)
7a 7b

Scheme 6: Synthesis of C-pyrrolyl furanoside derivative.

As a part of post-synthetic transformation, highly functionalized pyrrole derivative 5 obtained
from spirocyclopropane carboxylated sugar substrate 4 is treated with catalytic amount of

BF3'OEt; in dichloromethane solvent at 0 °C. Within 5 minutes, 1:1 diastereomeric mixture (7a &

XV



7b) were formed (Scheme 6). The reaction was performed on all the cycloadducts derived from
spirocyclopropane carboxylated sugar substrate 4. The C-pyrrolyl furanoside derivatives were
obtained in excellent yield with approximately 1:1 diastereomeric ratio. The results were

consistent with the model substrate.
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An Introduction to the Carbohydrate-Derived Donor-Acceptor Cyclopropanes...  Chapter 1

Chapter 1

An Introduction to the Carbohydrate-Derived Donor-Acceptor
Cyclopropanes and its Incorporation into (3+2) Cycloaddition reaction

Abstract:

Carbohydrate-derived donor-acceptor cyclopropanes (DACs) acts as a unique
chiral synthon. LiRe glycals, the new age chemistry is exhibiting these chiral
DACs as the unique “transformation tool.” As they undergo various type of
reactions such as ring opening, ring expansion, ring contraction, annulations,
and cycloaddition etc., these are one of the potential targets for the synthesis of
biologically important frameworks. Especially, the (3+2) cycloaddition reactions
using carbohydrate-derived DACs has opened the doors for the construction of

significant multi-cyclic frameworR in a regiospecific and stereoselective manner.



An Introduction to the Carbohydrate-Derived Donor-Acceptor Cyclopropanes...  Chapter 1

1.1 Introduction to donor-acceptor cyclopropanes

Cyclopropane is a unique compound that exhibit features of both saturated and

unsaturated hydrocarbons depending on the reaction partner(s) and circumstances used.
One reason for the fascination for cyclopropane and its derivatives in organic synthesis is
because many naturally occurring products and physiologically active substances have a
three-carbon ring.! Also, the small size of the ring causes significant ring strain in the
structure. Cyclopropanes, being members of the cycloalkane family, are known to engage in
a wide range of reactions. The high strain energy of the three-membered ring allows it to
participate in a variety of reactions. The discharge of this energy serves as a driving force for
the ring to open. However, it is difficult to polarize the C-C bonds of cyclopropane and many
of its derivatives by itself. As a result, the molecule requires reorganisation in terms of both

electron distribution and geometry for elevated reactivity.

The usual strategy for activating cyclopropanes is the insertion of substituents that enhance
a desirable action. One such example is the incorporation of donor or acceptor or both the

groups on the cyclopropane (Scheme 1).2

E® : A
ISEAN ) P o AL E) /A<
D DTN : D A D A
) : !
B Nu 9 : F) D A
VAL e ) I
A : D A
E D— 20N LA
C)  b_ (A} Less reactive 3+ 8- ¢ DA
I H
K : IN-1 p A
D = Electron-donating group (NR;, OR, SR, Aryl, vinyl etc)
A = Electron-accepting group (COR, CHO, NO,, COOR etc)

Scheme 1: Types of donor and acceptor cyclopropanes and its reactivity.

The electron donating group stabilises the positive charge in the intermediate and allows the

electrophilic ring opening by polarising the endocyclic C-C bonds (Scheme 1, A). The most

2
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common electron-donating groups include heteroatom-based donor like RaN-, RO-, RS- and
aromatic, heteroaromatic, and alkenyl groups. These can stabilize the positive charge
effectively. In contrast, the electron accepting groups, polarises the C-C bonds in the other
direction, facilitating ring opening with nucleophiles (Scheme 1, B). Alkoxycarbonyl,
carbonyl, nitrile, sulfonyl, and nitro groups are the frequently used electron-withdrawing
functional groups, which stabilise the emerging negative charge. Next, when both donor and
acceptor groups are present, the scenario becomes completely different with respect to the
reactivity based on their relative attachment. When donor and acceptor groups have a
geminal attachment (i.e., located on the same carbon atom of the ring), the electronic effect
is nullified. Hence, the reactivity is drastically reduced (Scheme 1, C). Conversely, when
donor and acceptor groups are located at the vicinal carbon atoms, like 1, their combined
effects cause significant polarisation of the C-C bond. They form a useful three carbon 1,3-
zwitterion intermediate IN-1. As a result, these cyclopropanes react efficiently with both
nucleophiles and electrophiles (Scheme 1, D). To emphasise their exceptional reactivity, it
was termed as donor-acceptor (D-A) cyclopropanes by Reissig.® Apart from these,
attachment of double electron donating and withdrawing groups is also reported which

contributes to the diverse chemistry (Scheme 1, E-G).

------
e S

. 1
R2 G/ "~B _______ A. - D R2
F‘ ‘E\
X X A
CHol(zn) + R
A A N 212(Zn) ,\rz
R’ R
R,
A A

R'"=HorD:R2=H orA; X = Hal, SOLAr

Scheme 2: General synthetic protocol for the synthesis of DACs.
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Till date there is a huge library of donor-acceptor cyclopropanes (DACs) that are synthesized
via a few general methods (Scheme 2).# Catalytic cyclopropanation of alkenes with diazo
compounds via a metal-carbenoid formation is one of the most extensively used and
accessible ways for the synthesis of DACs (Scheme 2; A, B, C). Another approach is the Corey-
Chaykovsky reaction which has the most utility for the synthesis of DAC (Scheme 2, D). The
sulfoxide ylides is used as the active reagent in this reaction. Apart from this, phosphorous
ylides can also be used for the cyclopropanation reaction (Scheme 2; H). Next important
protocol includes the use of organozinc reagents like Simmons-Smith reaction (Scheme 2; E).
Another common method is the cycloalkylation of compounds with an activated methylene
group (Scheme 2; F, G). The use of melanoates as the methylene source and addition over

the haloalkenes or alkyl dihalides with suitable bases affords the appropriate cyclopropane.

In recent years, extensive studies have been done on these donor-acceptor cyclopropanes
(DACs). The 1,3-zwitter ion intermediate IN-1 is well exploited and this distinct three carbon
ring is evolving as convenient three carbon building block for constructing various acyclic,
alicyclic and heterocyclic molecules via numerous types of reactions such as cycloaddition
and annulation reactions, ring-opening and ring expansions reactions, and rearrangement

reactions etc (Scheme 3).2

Ring expansion Synergistic Nucleophilic addition
A PAS, D\l/\/A
. T e
D

N AT

Electrophilic addition

Rearrangement ~  _L.---mmmeeeeel
D S DeNLA ~‘: . D\®/\|/A
] P o E
IN-1
/ \ &S
DA 5— oF |Ar/
X=Y
DA E\;QB/\’A
Isomerization X\Y [3+n]-Annulation
DM
A

Cycloaddition

Scheme 3: Type of reactions involving DACs.
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This chapter of the thesis focuses on the synthesis and diversity of carbohydrate-derived
donor-acceptor cyclopropanes. Moreover, we give a short discussion on reactions

involving carbohydrate-derived DACs especially in the (3+2) cycloaddition reaction.

1.2 Introduction to carbohydrates

Carbohydrates are optically active polyhydroxy aldehydes or ketones present in the form of
pyranose or furanose cyclic system. They are omnipresent and components of many
important natural products. Because of their potential biological and pharmacological utility,
synthetic carbohydrate chemistry has recently shifted its focus to oligo- and polysaccharide
synthesis and carbohydrate hybrids via conceptual alterations.> Carbohydrate derivatives as
the chiral synthons has attained significant importance in the synthetic carbohydrate
chemistry. Carbohydrate-derived donor-acceptor cyclopropanes which are in-turn derived

from glycals, both are an efficient synthetic tool for the construction of various frameworks.

1.3 Glycals

Glycals are the unsaturated sugar derivative and structurally these are cyclic enol ethers.®
Depending on the monosaccharide used, it can attain a pyranose form or furanose form.
Based on the position of the double bond, the glycals are classified into endo and exo-glycals
(Scheme 4). According to the stability, the pyranose glycals having endo-cyclic double bonds
are more stable than exo-cyclic double bond whereas it is contrasting in case of furanose
glycals. Several methods for the synthesis of both exo- and endo glycals are reported in the

literature.®

o)

- 0 -° o
Pgo_KJ Pgo-_J) Pgo_\f Pgo—(\f

Scheme 4: Classification of glycals.
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From past several decades, the glycals are widely recognised as one of the best precursors in
synthetic sugar chemistry. The crucial components of glycals like the endo cyclic oxygen, the
double bond and embedded chirality allows it to act as an efficient transformation tool.
Some of the reactions such as epoxidation,” halogenation,® glycosylation,® dihydroxylation,

addition, cyclopropanation,® etc can be performed using glycals.

Among these, the study of cyclopropanated glycals has gained more attention. Incorporating
a three-membered ring into the glycal skeleton produces strained and reactive enantiopure
building blocks for the synthesis of a wide range of structurally varied compounds and
natural products. Further advancement in the synthetic chemistry has achieved the
construction of carbohydrate-derived donor-acceptor cyclopropanes. Hence, glycals are the

immediate precursors for the synthesis of cyclopropanated sugars.

1.4 Carbohydrate-derived donor-acceptor cyclopropanes

As discussed above, the exo- and endo-glycals are efficiently incorporated as the olefin
source in the cyclopropanation reaction. Further transformation of the cyclopropanated
sugar derivatives into a carbohydrate-derived donor-acceptor cyclopropane derivatives is
also explored by several groups. However, there are reports for synthesis of few
carbohydrate-derived DACs which follows the protocol without involving cyclopropanation
reaction. Till date, there is a small library of these derivatives whose skeleton is represented
in the scheme 5. It can be noticed that the endocyclic oxygen inherently acts as the electron

donating group and further the electron withdrawing group can be modified according to

o
o
PQO{)A\COOR PgO—(_?«
COOR

requirement.
o
o]
PgO—( {

pgoT\J>_4 PgO—
PgO_\A‘fo PgO \IO><L pgo_\Ic><L
! COOR COOR

Type | Type Il

Lﬁ“j@

Scheme 5: Carbohydrate-derived donor-acceptor cyclopropane library.
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Below are some of the reported synthetic routes for the synthesis of carbohydrate-derived

DACs.

1.4.1 Using Simmon-Smidth cyclopropanation

Simmon-Smith reaction was first incorporated on sugar substrates by Nagarajan and co-
workers in 1995. In their report, 3,4,6-tri-O-benzyl-D-glucal 2 was treated with CHz12/Zn/CuCl
in presence of acetyl chloride to obtain the cyclopropane derivative 3 in 89% vyield as a single
diastereomer (Scheme 6).1! The organozinc reagent plays an important role for deciding the

stereochemical outcome.

CH2|2, CuCl

O
BnO © | CH,COCI B“O/\Q
|\ W
BnO" Ether, 90 min BnO
OBn 89% OBn
2 3

Scheme 6: Simmons-Smith cyclopropanation of tri-O-benzyl D-glucal.

The previous version of reaction was modified by Hoberg and co-worker where diethyl zinc
was used instead zinc-copper couple.'? By adopting this improved approach, a wide range of
protected glycals have been cyclopropanated with good selectivity and yields. The
significance of this reaction is that it gives only syn-diastereomer, in which the cyclopropane
ring is syn to the stereochemistry of C-3 position. For example, tri-O-benzyl-D-glucal 2 in
ether when treated with diiodomethane and diethyl zinc at 0 °C, provided the syn-

cyclopropanated product 3 in 92% vyield (Scheme 7).

O 0]
Bno/\gj Et,Zn, CHyl, BnO/\Q
(N > W
BnO Ether, 0 °C BnO

OBn 5h, 92% OBn

2 3

Scheme 7: Synthesis of cyclopropanes using the Furukawa’s method.
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This protocol was successfully adopted by our group, for the synthesis of carbohydrate-
derived donor-acceptor cyclopropane.'* The concept involved the incorporation of an
electron-withdrawing property at the C-3 position of 1,2-cyclopropanated sugar derivatives
to facilitate the access of cyclic donor-acceptor cyclopropanes. In this regard, by using
[hydroxy(tosyloxy)iodo]benzene (HTIB, also known as Koser's reagent), 3,4,6-tri-O-benzyl-D-
glucal 2 was oxidised in acetonitrile to generate the sugar-derived enone 4 in a reasonable
yield. Further, a single diastereomer, 5, was obtained via Luche reduction. Under Simmons-
Smith reaction conditions, hydroxyl-directed cyclopropanation of 5 using CHzl> and Et2Zn
generated the allose derived 1,2-cyclopropane 6, which upon Swern oxidation provided the

1,2-cyclopropa-3-pyranone 7 in excellent yield (Scheme 8).13

OBn PhIOH(OTs) OBn NaBHy, OBn
4 AMS CeCl3.7H,0
BnO O BnO O — > Bno °
BnO—~=> CH,CN, 0°C tort, = MeOH, -78 °C, =
75 min, 49% 0 1h, 90 % HO
2 4 5
CH2|2, Et22n

Et,0,0°C,5h| 90%

OBn OBn
(COCI),, DMSO
Bno/% BnO o)
Et;N, CH,Cl,,
o -78°C, 1 h. HO
7 99% 6

Scheme 8: Synthesis of D-glucose-derived 1,2-cyclopropanated donor.

1.4.2 Using Diazo-based Cyclopropanation

Transition-metal catalysed cyclopropanation using diazo compounds has been widely
employed for stereoselective cyclopropanation of sugars. These cyclopropanated sugars
have an ester functionality in the cyclopropane ring. In this construction, the endocyclic
oxygen acts as the donor group and ester acts as the acceptor group. As a result, the
carbohydrate-derived DACs is obtained and the type depends on the glycal used.
3,4,6-tri-O-acetyl-D-glucal was the first carbohydrate substrate to be cyclopropanated to give
the sugar cyclopropane carboxylate, and this reaction was initially described in 1981.14

Following that, Fraser-Reid et al, cyclopropanated the glycals using copper powder and ethyl

8
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diazoacetate (EDA).Y® The D-glucose-derived 6-1,2-cyclopropanecarboxylate 9 was obtained
in 92% yield as a single by gradually adding EDA in cyclohexane to the combination of

3,4,6-tri-O-tert-butyldimethylsilyl-D-glucal 8 and copper powder in cyclohexane (Scheme 9).

o} 0
TBSO | Cu(0), EDA TBSO _\COOEt
. _— K
TBSO' Cyclohexane, TBSO'
OTBS  Reflux, 12 h OTBS
8 92% 9

Scheme 9: Copper-mediated diazo-based cyclopropanation of glycal.

In contrast, Hoberg and coworker, used dirhodium tetraacetate in place of Cu(0) for the
cyclopropanation using ethyl diazoacetate (EDA) to obtain trans-cyclopropanated glycal
derivatives.’® Using this synthetic procedure, variety of carbohydrate derived a-1,2-
cyclopropanecarboxylated sugars were synthesized with excellent yield and stereoselectivity.
This protocol is tolerable for variable protected glycals. The formation of a-selective
products is explained based on the steric factors governed by C-3 position substituent. An
example of this is depicted in scheme 10 where the 3,4,6-tri-O-benzyl-D-glucal 2 is

transformed to a-1,2-cyclopropane carboxylate derivative 10 using EDA and Rhy(OAc)a.

O o)
BnO | R0(OA), EDA  BnO 1 #COOE
W
BnO" CH,Cly, tt, 1 h. BnO"

OBn 59% OBn
2 10

Scheme 10: Ethyl diazoacetate-mediated cyclopropanation using catalytic Rh2(OACc)a.

In a similar way, the exo-glycals can also be used for the cyclopropanation reaction using
diazo-based reagent to provide a spiro-cylopropanated sugar derivatives. For the first time,
Andrea Vasella and co-worker in 2003, reported the synthesis of spiro-cylopropanated
sugar derivatives from exo-glycal 11 using Cu powder under reflux conditions in toluene. The

reaction provided a mixture of diastereomers (12a-b) with 93-98% vyield (Scheme 11).
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However, use of Rhy(OAc)s catalyst did not provide satisfactory yields. Further development
of this reaction was successfully applied on different sugars and worked well even with

variable protecting groups.

0] EDA,
BnO Cu powder
BnO OBn Toluene
OBn (98%, 3:1:3:2)
11

Scheme 11: Synthesis of glucose derived spiro-cyclopropanated sugar using exo-glycal

sugar substrate.

In another work, Pagenkopf group reported a unique cyclopropane carboxylate sugar
derivative using diazo sugar substrate, EDA and copper reagent via a intramolecular
cyclopropanation.'® Treating glycal 13 with a solution of glyoxylic acid chloride (p-
toluenesulfonyl)hydrazone in CH.Cl, and EtsN provided the corresponding glycal diazo
acetates 14 in excellent yield. The obtained glycal diazo acetates were transformed to 8-1,2-
cyclopropanecarboxylated sugar derivatives 16 under the catalysis of bis(N-tert-

butylsalicylaldiminato)copper(ll) [Cu(TBS):2] (15) with 85% yield (Scheme 12).

E:(QNJBU
\
O,
o__(‘:l‘J/\D
N
15 gy’ =

o. () ptoISO,NHNCHCOCI, TBSO ° o
TBSO | Me,NPh o | 5mol% of15  TBSO
n - 5 .
BnO' CH,Cly, 0 °C, 15 min O _CHN, toluene, BnO"
OH (il) Et;N i reflux, 14 h o o
13 89% 14 © 86% 16

Scheme 12: Synthesis of cyclic cyclopropanated sugar derivative 16.
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Our group also synthesized a unique and highly strained bicyclic spiro-cyclopropane
carboxylated sugars which added into the library of carbohydrate-derived DACs.'® Our
synthesis started with peracetylated D-xylose 17 which was allylated to give the C-glycoside
18 in 80% yield. Base-mediated deacetylation followed by benzylation gave the
perbenzylated product 19 in 85% yield. lodine promoted cyclization of 19 resulted in the
formation of bicyclic product 20 in 96% yield. DBU mediated dehydrohalogenation offered
the exo-olefin 21 in 88% yield. Further, cyclopropanation of this vinyl ether 21 using methyl
diazoacetate and rhodium acetate afforded the fused bicyclic spiro-cyclopropane
carboxylated sugar 22 in 55% vyield (Scheme 13). The synthetic method was tolerated by

other pyranose and furanose sugar derivatives as well.

O.OAc AIlyITMS, 0 Z 0 =
Q TMSOTF E‘JN 1. K,CO3, MeOH E‘J/\/
R . — > - " > “ N
AcO’ ‘OAc acN,0°c A ‘OAc 2.NaH, BnBr, TBAI  BNO' ‘OBn

OAc OAc DMF, 0 °Ctort OBn
17 18
l,, DCM
COOMe MDA, o DBU, Toluene 0200 o rt
ha(OAC)4 Reflux
Bno™ Bno" Y 0 BnO™
OBn OBn

21

Scheme 13: Synthesis of fused bicyclic spiro-cyclopropane carboxylated sugar.

1.4.3 Miscellaneous protocol

Shao et al. in the year 2003, reported the base—-mediated intramolecular Sn2 reaction of
2'-oxoalkyl-2-O-Ts-a-C-mannopyranoside 23 to obtain 1,2-cyclopropaneacetylated sugar
derivative. D-Glucose-derived 1,2-cyclopropaneacetylate 24 was prepared by treating the 2'-

ketone C-mannoside 23 with potassium carbonate in methanol over 81% yield (Scheme

14).20
Bno— 18 K,CO3, MeOH, BnO o
BnO -Q rt, 16h. BnO
BnO T BnO
0 81%
23 24 0

Scheme 14: Base-mediated intramolecular cyclopropanation.
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The chemistry of donor-acceptor cyclopropanes has shown numerous advances in the
recent few decades, especially regarding their use in the synthesis of intriguing molecular
structures. The intrinsic chirality of donor-acceptor cyclopropanated carbohydrates is
thought to be even more fascinating since it can be transferred to the products with a high
degree of stereocontrol. Further, application of the methodologies developed using sugar-
derived DA cyclopropanes in construction of novel library of molecules and in the total

synthesis of complex bioactive natural products remains open area of research.

Certainly, the carbohydrate-derived donor-acceptor cyclopropanes have been acting as one
of the versatile synthons. Our group for more than a decade has pioneered in exhibiting
various types of reaction that can possibly happen with some of the carbohydrate-derived
DACs mentioned in scheme 5 such as ring opening, ring expansion, ring contraction
reactions etc. 2! Apart from these, we were interested to unveil the interesting features
played by carbohydrate-derived DACs in formal (3+2) cycloaddition reactions. In this regard,
we did a brief study about the previous reports on the applications of carbohydrate-derived
DAC in formal (3+2) cycloaddition. Further, part of this chapter explains the role played by

the carbohydrate-derived DAC in formal (3+2) cycloaddition reactions.

1.5 Synthetic applications of carbohydrate-derived donor-acceptor cyclopropane in formal
(3+2) cycloaddition reaction
Donor-acceptor cyclopropanes have been successfully introduced as a 1,3-dipolar species

which is consider as synthetic equivalent of diene in the cycloaddition reaction.

Synergistic ~_.e-mmtTTemeea 5— O+
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Cycloaddition

Figure 1: (3+2) cycloaddition of DACs.

The electronic effect of DAC 1 and synergistic effect of IN-1 plays an important role in the

(3+2) cycloaddition reaction (Figure 1). Moreover, under treatment with Lewis acid, donor-
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acceptor cyclopropanes can produce of diverse carbocycles and heterocycles. Also, the
reacting dienophile or the 1,2-dipolar partner also plays an important role in molecular
design outcome. The carbohydrate-derived DAC provides a mould for the synthesis of chiral
cycloadducts via (3+2) cycloaddition. In an effort to extend the versatility of carbohydrate-
derived DAC various groups have worked on the stereoselective (3+2) cycloaddition
reactions with arrays of 1,2-dipolar synthons. Following are the reports in the literature till
date.

In the year 2003, Pagenkopf and co-workers,?? found that TMSOTf activation of glycal-
derived cyclopropane 25 efficienty formed a dipolar species which in-turn reacted with
benzonitrile present in the reaction medium to give the imine cycloadduct 26a under the
optimised reaction condition in 81% yield (Scheme 15). With this initial success, they further
utilised a wide variety of nitriles and found that both aliphatic and a,-unsaturated nitriles

participated equally well in the cycloaddition reaction.

PhCN (5 mol),
o (0) TMSOTf (1.0 mol)
|
tBUZSi\O\\‘ CH2C|2, rt
o 81%
(6)
25

Scheme 15: Nitrile cycloaddition to sugar derived DAC.

The discovery of the nitrile cycloaddition with a unique sugar-derived template 25, allowed
them to further widen the sugar substrate scope. In their next study, a peculiar type of
substrate 27 was taken as the model skeleton. In contrast to the preceding study, the pyrrole
derivative was formed as a cycloadduct 28 by the removal of the alkoxy group and

tautomerization (Scheme 16).23

3
RO H R-C=N
—_— RO
CO.Et TMSOTf
Ry €02 CO,Et CO,Et
27

Scheme 16: Pyrrole synthesis via (3+2) cycloaddition of DAC and nitrile.
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O <N
o
Q RCN B s(!) R
BupSin ———————— PG
0 O TMSOTF (1.0 mmol)
o solvent, rt o)
25 26b-f
Entry | Nitrile Solvent | Cycloadduct Yield®
1 MeCN MeCN 26b, R = CH3 81%
2 PrCN CH,Cl, 26¢, R =Pr 95%
3 '‘BUCN CH,Cl, 26d, R ="'Bu 79%
4b Ar~Xx -CN | MeNO; | 26e, R=CHCHAr,X=H 60%
5P Ar~Xx-CN | MeNO; | 26f, R =CHCHAr, X = OMe 75%
3jsolated yield; PNitrile = X N
X]@/X\Z/H’ OMe
Table 1: Nitrle addition to cyclopropane 25.
Entry Substrate Nitrile Pyrrole Yield
O. H M
(I) "'/‘ OH \ / ©
1 Bu,Si_, “Neo. et MeCN 87%
z 3 CO,Et
OBn Bu,Si—0  ©OBn
H
BnO 0 ", H OH N _Me
2 R “‘(<CO Et MeCN \ 77%
BnO* z CO,Et
OBn BnO ¢ 2
BnO  OBn
H
AcO 0 ", H OH N_Me
3 Ao e MeCN \ ! 58%
AcO 2 CO,Et
OAc A0 ¢ 2
AcO OAc
o N
0 ‘BUCN oH [ y—r R='BusT%
42 TES N PhCN Ph; 85%
(o) . 930
0 ArCN ’Bugéi—oc 00 Ar, 93%

aAcid workup (1 M HCI). PArCN = p-MeOCgH,CN.

Table 2: Nitrile Cycloadditions with carbohydrate-derived DACs.
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The highlight of their work was on the results from cycloaddition reactions with glycal-
derived 1,2-cyclopropane carboxylate and acetonitrile to form the highly functionalized
pyrrole derivative with intact sugar fragment. These reactions showed that a range of
protecting groups like di-tert-butylsilylenes (table 2, entries 1 & 4), benzyl ethers (table 2,
entries 2) and acetates (table 2, entry 3) were compatible with the pyrrole synthesis.
Alongside, the model DAC substrate 25 from previous work was also subjected to TMSOTf

mediated (3+2) cycloaddition reaction with various nitriles (Table 2; entry 4).

H R
TMSOTf
o T\\ N\ (1.0 mmol)
COEt + P _—
N -18 °C,
o1 H

H MeNO,

Entry Substrate Indole Cycloadduct Yield

88% (1:1)

90%; (1:1)

74%

58%; 1.3:1

70%; 1.4:1

2%

Table 3: Scope of cycloaddition of indoles with DA Cyclopropanes.
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Unlike in the previous report, the acid work-up after the reaction provided ring opened and
aromatized substituted pyrrole as the cycloadduct. Hence, even in this case they were
successful in synthesizing the substituted pyrrole derivative with sugar fragment intact. This

work sets a great illustration for the precise construction of pyrroles of increased complexity.

Pagenkopf and coworkers, however, further explored the opportunities of 1,2-dipolar
synthons apart from nitriles. Expanding their research on DAC and its (3+2) cycloaddition
reaction, in the year 2007, reported the dearomative addition of indoles on the 2-
alkoxycyclopropanoate esters for the efficient construction of fused tricyclic ring skeleton.?
Although, they did not directly involve a sugar derived DAC, they used a DACs derived from
dihydropyran (29) and dihydrofuran (30), as it structurally resembles the core skeleton of
carbohydrate-derived 1,2-cyclopropane carboxylate. The table 3 is the evaluated results of
the cycloaddition reaction with respected to DAC 29 and 30 and indoles with variable
substitutions for the effective construction of tricyclic scaffolds. The products were

characterized by NMR and X-ray studies.

Further reports by Huawu Shao group, showed the elegant application of 1,2-cyclopropyl
ketones derived from sugars in (3+2) cycloaddition reaction. The meticulous construction of
the fused tetrahydropyrans and furans ring skeleton was eased by their methodology. The
first report in 2013, showed the InCl3 catalysed (3+2) cycloaddition reaction of 1,2-
cyclopropanated sugars with aldehydes in a highly diastereoselective manner for the
construction of bis-THFs and furo-pyran fused architectures. The model substrate 24 in
toluene solvent and in the presence of 20 mol% of InClz, efficiently underwent cycloaddition
reaction with benzaldehyde to give multisubstituted perhydrofuro-[2,3-b]pyran 31 in 86%
yield with 18:1 diastereomeric ratio (Scheme 17, a). The reaction was screened for generality
by incorporating various aryl, substituted aryl, and alkyl aldehydes as 1,2-dipolar substrates
in the synthesis. The formation of 1,3-zwitter ion was highlighted as the key intermediate in
the proposed mechanism. After the successful entries of the multi-substituted fused furo-
pyran ring systems, the methodology was focused for the construction of bis-THFs. In this
regard, the furanosyl 1,2-cyclopropanated ketone 32 was subjected to (3+2) cycloaddition

reaction under standard conditions with benzaldehydes to obtain the cycloadduct bis-THF 33
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as the product. The results were as expected based on the proposed mechanism. Further
the methodology was expanded by carrying out the cycloaddition reactions with various

aryl, substituted aryl and alkyl aldehydes.

B 0 InCl; BnO 0 0)
nQ 0 . O (20moi%) R
ip} { W
n R" H 04°C n o
BnO Toluene BnO
n=1,2
o
B .
n B0 I PhCHO Bno/\Q @
Bno™ -
OBn 86%, dr=18:1 BnO ﬁ
24
BnO  0—0
LS}J( PhCHO ﬂl
63% o)
dr >20:1 BnO
33

Scheme 17: InCl; catalyzed (3+2) cycloaddition reaction between 1,2-Cyclopropanated

sugars and aldehydes.

Further efforts by Shao and co-workers showcased the stereospecific (3+2) cycloaddition of
glycal-derived 1,2-cyclopropanes (34 and 32) and ketones under the lewis acid conditions.2®
SnCls catalysed cycloaddition reaction offered multisubstituted bis-THFs and furo-pyran
fused systems a quaternary carbon containing chiral centre in good to excellent yield. The
methodology witnessed a high stereoselectivity and compatibility with wide range of
functional groups in the formal (3+2) cycloaddition of cyclopropanes and ketones. Initial
studies were performed with cyclopropanated sugar 34 and acetophenone as model
substrates in presence of 20 mol% SnCls in CH,Cl; at 0-4 °C. In these circumstances, the
cycloadduct 35 was obtained as a single diastereomer, in 80% yield (Scheme 18, a).
Subsequently, scope of the methodology was evaluated for different aryl and alkyl ketones.
The opportunity of the (3+2) cycloaddition of cyclopropanated sugar and ketones was

further extended to furanosyl 1,2-cyclopropanated sugar 32. Multi-substituted bis-THF
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derivative 36 was obtained in 87% yield as a single diastereomer, when sugar 32 and
acetophenone was treated under standard reaction condition. Consistent with the previous
results, the sugar substrate 32 reacted very well different ketones and all the reactions

offered a single diastereomer as the only cycloadduct.

Snc|4 BnO O 0, Rz

20 mol%) ‘s
)J\ o n R1
R, 0-4 °C 0

DCM BnO
n=1,2
O o]
BnO " H3 BnO .‘\O
A) N "
BnO 80% "
OBn
34
BnQ o) O
B)
BnO
32

36

Scheme 18: (3+2) cycloaddition of glycal-derived 1,2-cyclopropyl ketone and ketones.

1.6 Research Motivation

Following a thorough investigation, we were very interested in the utilisation of
carbohydrate-derived donor-acceptor cyclopropanes in the (3+2) cycloaddition reaction to
build significant skeletons with potential biological or therapeutic uses as well as for the
synthesis of natural products. During our study we learnt that, two DAC skeleton 37 and 38

were still unused and unexplored in specific for (3+2) cycloaddition reaction (Figure 2).

O o
(nj> MeOOC

@)

spiro-cyclopropane

3-oxo0-1,2-cyclopropane carboxylate

Figure 2: Structural skeleton of our model substrates of our study.
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As our group had consistently been exploring the chemistry involving these carbohydrate-

derived DAC skeleton, we were further motivated to take it forward and study its behaviour

under cycloaddition reaction condition. Also, we were curious to build some important

biological frameworks using this opportunity and contribute to the developments in

synthetic carbohydrate chemistry area.
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Chapter2 - Part A

A Ring Expansion Stereoselective Cycloaddition of Carbohydrate Derived

Donor-Acceptor Cyclopropanes: Synthesis of Bridged Oxepenone-Indole Hybrids

Mild reaction conditions Broad substrate scope
‘ Excellent yield Easily accessible precursors
17 %

R _O
4 new stereogenic
(P centers
R' I = 'w@ \ 3 .‘ R R3
(0] 7\ ) LTSS

v Chiral DAC synthons v" Molecular Hybrid constructi
v Stereoselective (3+2) cycloaddition v Bridged oxepanone-Indole scaffolds

3 xepanon 1 R4
R (o] RZ R
Rz_m‘__R" Bridged multicyclic scaffold
S
N
s

Abstract:

An efficient method for the construction of sugar-derived chiral oxepanone—indole
molecular hybrids is investigated. The reaction condition is optimized by monitoring
the progress at various temperatures, with various solvents, and with different
Lewis acid catalysts. Under optimized conditions, high stereoselectivity and
efficiency are achieved in most of the formed cycloadducts. The accessibility of the
strateqy is evaluated by utilizing an array of carbohydrate-derived donor—acceptor
cyclopropanes and variably substituted indole substrates. Additionally, quick access
to the bridged indole—oxepanone framework is described by utilizing a
diastereoselective (3+2) cycloaddition of aryl-substituted donor—acceptor

cyclopropanes incorporated in a pyran ring.
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2.1.1 Introduction

Oxepane, an important class of heterocycles, is a seven-membered cyclic ether, which is found as
the core skeleton in various bio-active natural products. Interestingly, the oxepanone frame-work
occurs in numerous marine natural products such as the sipholenol A scaffold, dahabinine A,
raspacionin B, etc. (Figure 1A).1 Moreover, these cyclic ethers display multipurpose and promising
pharmacological properties like anti-bacterial, anticancer, and antifungal activities.! Additionally,
oxepane forms the structural backbone of the biologically active target molecule, septanose

III

sugar. Septanoses are homologues of pyranoses and are used as a “non-natural” surrogate in
many biochemical investigations.? This has prompted a number of scientists to develop processes
for the synthesis of the glycoconjugates containing oxepane and septanose sugar backbone.3The
carbohydrate biomolecules play an inevitable role in all living systems. Carbohydrate-derived drug

design is an emerging area of research in the field of medicine and therapeutics.?

(A) Representative Examples of Natural Products Containing Oxepanone skeleton

HO *

Sipholenol A scaffold Dahabinone A

Figure 1. Representative examples of natural products accomplishing oxepanone and indole-

fused polycyclic scaffolds.
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The modern approach to fusing the active pharmacophores and biopotential carbohydrate
scaffolds has created a new research direction for the construction of molecular hybrids.> The
druggable properties of the carbohydrate mimics have been enhanced by employing the
molecular hybridization(MH) strategy. Carbohydrate-derived donor-acceptor cyclopropanes
(DACs) make up one such class of compounds that are being explored to exploit the potential to
construct several biologically important carbohydrate mimics.® In recent research, DACs have
become extremely valuable, highly strained, 1,3-dipolar synthon and as three-atom building
blocks in synthetic organic chemistry.” Through a variety of (3+n) annulation and (3+n)
cycloaddition, DACs are effectively employed to construct regio-and stereoselectively fused and
bridged ring systems.” A member of the important pool of 1,2-dipolar synthons is indole, which
efficiently undergoes the formal (3+2) cycloaddition reaction with the DAC.®2 Famous for its
immortal role as an active pharmacophore, indole is used for the synthesis of indolines and
indole-fused polycyclic scaffolds present in a variety of naturally occurring compounds such as
vindolinine, dasyrachine, borreverine, tabersonine, etc. (Figure 1B), and pharmaceutically

relevant molecules.?

(A) Representative oxepane-indole Molecular Hybrids - - ....ccccceeeeeececacccccaans

Me

Oxepanone  Indole

S X
HO_.—N
H 2 o
R (o) R3 .
=\ _R
=< {
R \%
N N COzMe
2
o) R ' N
R
OMe
Dichotine R = Me (Angustilodine)

R = H (Alstilobanine E)
+(B) ThisS WOFrK === === === n e e e e e eeceeeeeeccaeeeans .

R3
RGO N TMSOTF, 4A MS
+ R4S A\ R2 B
R.;g‘;b (INg’ 10 °C, 1,2-DCE
o}

\

R'I

.................................................................................

Figure 2. Outlook of present methodology.
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Our research group has developed various methodologies using a carbohydrate-derived DAC for
the synthesis of several potential carbohydrate frameworks and biomimetics.1® Adding to this
account, our group reported the ring opening of carbohydrate-derived DACs for the synthesis of
various carbohydrate-based oxepane scaffolds.!! To date, only one natural product, dichotine,?
possessing an oxpanone-fused indole scaffold has been reported in the literature, while oxepane-
fused indole is a characteristic frame work embedded in several natural products like
angustalodine,!® alstilobanine E,}* etc. (Figure2A). Considering our prior achievements in
developing innovative methodologies using carbohydrate-derived DACs,%! we envisioned that
(3+2) cycloaddition reactions of 3-oxo-1,2-cyclopropanated sugar derivatives with indoles would
lead to new carbohydrate-based molecular hybrids with probable biological and pharmacological
applications. To the best of our knowledge, there are no reports of cycloaddition reactions of 3-
oxo-1,2-cycloproponated sugars. In this view, we thought that 3-oxo-1,2-cycloproponated sugars
would serve as extraordinary assets in formal (3+2) cycloaddition. Herein, we report the first (3+2)
cycloaddition of a 3-oxo-1,2-cycloproponated sugar and indole under Lewis acid conditions
(Figure2B). This methodology is the first example to offer a bridged oxepanone-indole hybrid, an

elegant amalgamate of carbohydrate and indole, with high regio- and stereospecificity.

2.1.2 Results and discussion

At the onset of our approach, we chose carbohydrate-derived DAC 1'* and 1H-indole as our model
substrates. Initially, DAC 1 (1.0 equiv) and 1H-indole (2.0 equiv) were treated with TMSOTf (1.0
equiv) at-78°C in dichloromethane as a solvent. We predictable a ring expansion followed by

dearomative (3+2) cycloaddition.

o
BnO/\;‘} TMSOTf (leq)  BnO
W —_— "
BnO I + | DCM, -78 °C, BnO"

u>IT
w
=)
w O
=}
C,
o, O
\__~

O )
BnO
H >5h 0
1 2a BnO A
o
Expected Observed

Scheme 1. Initial attempt for (3+2) cycloaddition reaction between model substrates DAC 1
and 1H-indole.
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However, we observed a dimerized product A which formed via a self-condensation reaction of
sugar substrate 1 through a ring expansion mechanism (Scheme1). This indicates the reluctance
of indole to participate in the reaction at lower temperatures while DAC 1 is reacting as expected

under Lewis acid conditions. This encouraged us to conduct the optimization studies (Tablel) to

determine if indole participates in the reaction at higher temperature.

Entry Solvent Temperature | Time | LewisAcid | Yield % of
(Equiv.) 2a
1 DCM -78 °C >5h TMSOTf Nil
(1.0)
2 DCM -40 °C 2h TMSOTf Nil
(1.0)
3 DCM -20 °C 1h TMSOTf trace?
(1.0)
4 DCM -10 °C 30 min TMSOTf 10%°
(1.0)
5 DCM 0°C&tt 20 min TMSOTf | decomposed
(1.0)
6 CH3NO; -20 °C 1lh TMSOTf 30%
(1.0)
7 CH3NO; -10 °C 30 min TMSOTf 50%"
(1.0)
8 CH3NO; rt 10 min TMSOTf | decomposed
(1.0)
9 1,2-DCE -30 °C 30 min TMSOTf 30%
(1.0)
10 1,2-DCE -20 °C 30 min TMSOTf 50%°
(1.0)
11 1,2-DCE -10 °C 20 min TMSOTf 65%°
(1.0)
12 1,2-DCE -10 °C 20 min Sc(0Tf); 10%°
(1.0)
13 1,2-DCE -10 °C 20 min Cu(OTH), 15%°
(1.0)
14 1,2-DCE -10 °C 20 min Yb(OTf)s trace?
(1.0)
15 1,2-DCE -10 °C 20 min Bf3.OEt; 40%
(1.0)
16 1,2-DCE -10 °C 20 min TMSOTf 70%®
+4A MS (0.5)
2HRMS analysis. Plsolated yield.

Table 1. Optimization details of cycloaddition of DAC 1 and 1H-indole.
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While the cycloaddition product was not observed at —-40°C, to our delight, a trace amount of
product formation was observed when the reaction was carried out at —20°C with 1 equiv of
TMSOT( for 3 h, as observed in the HRMS analysis. A prolonged reaction time did not improve
product formation. However, when the reaction was conducted at -10°C in dichloromethane, the
desired cycloadduct 2a was isolated in 10% yield and the major product isolated was identified
as an indole-dimerized product. In addition, reaction at 0 and 25°C resulted in the complete
decomposition of DAC 1. Encouraged by the results at-10°C, we performed further optimization
as highlighted in Table 1. A brief solvent screen at-10°C indicated that 1,2-dichloroethane is a
suitable solvent as it provided the desired cycloadduct in 65% yield. Further running the reaction
in the presence of 4 A molecular sieves by using 0.5 equiv of TMSOTf resulted in a slightly better
yield of cycloadduct 2a (70%). With the fruitful result in hand, we further explored the role of
Lewis acids. However, different Lewis acids such as Sc(OTf)3, Cu(OTf)2, Yb(OTf)3, and BF3-OEt; at
-10°C in 1,2-dichloroethane as a solvent resulted in inferior results. Ultimately, the reliable
reaction condition was found to be DAC 1 and 1H-indole (1:2 molar ratio) stirred in 1,2-
dichloroethane as a solvent and in the presence of 0.5 equiv of TMSOTfat-10°C, which provided

cycloadduct 2a in 70% vyield (Tablel, entry 16).

Screening and Scope of 1,2 and 1,3-Dipolar Partners.

With the optimized conditions in hand, we proceeded to test the generality of our methodology.
Several indoles with different substitution patterns, such as electron-withdrawing (-CN and-NO,),
electron-donating (-OMe and -Br), and alkylated (3-methyl, 2,3-dimethyl, and N-methyl)
functional groups (Tables 2 and 3) were screened. It is worth noting that substituents on the
phenyl ring of indole, either -OMe or -Br, did not affect the expected results and anticipated
cycloadducts 2b and 2c were obtained in 88% and 65% yields, respectively. In a similar way, highly
electron withdrawing groups like -CN and -NO; substituents were also found to be tolerable and
gave the cycloadducts 2d (85%) and 2e (80%) in good yields. In addition, while all of the indoles
with substituents on the phenyl ring of the indole participated equally well in the reaction, the

substitution on the pyrrole part also resulted in the cycloadducts in good yields despite steric
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hindrance. DAC 1 successfully reacted with 3-methyl indole to give the cycloadducts instead of

the alkylated products®d (Table3).

/R
NN TMSOTf, 4A MS
_—
Z N -10°C, 1,2-DCE
R! BnO

BnO
O 2a-e, 2n
A Y
) \
/N
/""
/SN

(AN

CCDC 2178378

2a, 70%

OMe

2c, 65% 2d, 85%

Table 2. Screening of functionalized indoles.

Interestingly, the indoles with alkyl-substituted functionalities over the pyrrole ring at positions
C2 and C3 provided two diastereomers, and the products were identified as the exo and endo
isomers on the basis of the structural arrangements. First, when 3-methyl-1H-indole and DAC 1
were subjected to cycloaddition under the optimized reaction conditions at -10 °C using 1,2-
dichloroethane as a solvent and 0.5 equiv of TMSOTf, diastereomeric cycloadducts exo-2f (60%)

and endo-2f (31%) were obtained in 91% overall yield. The reaction was also found to be efficient
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in providing the desired products exo-2g (58%) and endo-2g (35%) with an overall yield of 93%,
when 2,3-dimethyl-1H-indole and DAC 1 were subjected to TMSOTf-catalyzed (3+2)cycloaddition.
Lastly, the N-methyl indole participated equally well in the cycloaddition reaction and provided

cycloadduct 2h in 72% yield as a single diastereomer.

R3

N

H

BnO O~ CH3

endo-2f, 31%

* with 2,3-Dimethyl Indole ---------ccccccccccccccccccccccccccccccccccc.

Table 3. (3+2) cycloaddition of C2, C3 alkylated indole substrates.
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N RO TMSOTY, 4A MS
R4_| \ R2 +
LA\ R -10 °C, 1,2-DCE
R1

H3C,,, O

<
BnO

4c, 93%

R = CN, 6b, 60%
6a, 90% R = NO,, 6¢c, 88% 6d, 72%

8d, 92%

Table 4. Screening of various carbohydrate derived DACs
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Then, we focused to extend the scope of the methodology further. We chose stereochemically
diverse DACs and few selected indole substrates for (3+2) cycloaddition under optimized reaction
conditions (Table 4). When L-rhamnose-derived DAC 3! was subjected to (3+2) cycloaddition
reaction with 1H-indole, cycloadduct 4a was obtained in 75% vyield. In addition, DAC 3 reacted
with a range of indole (5-bromo,5-nitro,5-cyano,3-methyl, and N-methyl) substrates, which
resulted in the exclusive formation of exo-cycloadducts (4b-f, respectively) in excellent yields. We
further extended the investigation by choosing D-galactose-derived DAC 5,1 which again resulted
in the exclusive formation of exo-cycloadducts 6a-d in excellent yields. When D-glucose-derived
4-deoxy sugar DAC 7> was subjected to (3+2) cycloaddition reaction with selected indole
substrates (5-bromo, 5-cyano, and N-methyl), exo-cycloadducts (8a, 8b, and 8d, respectively)
were formed as single diastereomers. It is worth noting that the presence of the a-methylene
group in DAC 7 did not hamper the formation of the cycloadducts. However, the reaction of DAC7
and 3-methyl-1H-indole provided diastereomeric cycloadducts exo-8c (55%) and endo-8c (39%)
in an overall yield of 94%. Following the success with the previous carbohydrate-derived DACs,
we further chose aryl-substituted pyranoses possessing donor-acceptor cyclopropane
functionalities. Hence, phenyl- and p-methoxy phenyl-substituted pyran-derived DAC 9¢ and DAC
11, respectively, in racemic form were synthesized by the (4+2) cycloaddition of Danishefsky’s
diene and the corresponding aldehyde. As expected, DAC 9 and DAC 11 underwent (3+2)
cycloaddition reaction efficiently with a number of substituted indole substrates. The electronic
effects of indoles containing bromo substituents (5-bromoand 6-bromo) over the phenyl ring did
not affect the cycloaddition, and in all cases, we observed that exo-cycloadducts (10a, 10b, 123,
and 12b) formed in good to excellent yields (79-92%) (Table5). As previously observed, the 2- and
3-alkyl-substituted indoles provided the diastereomeric exo- and endo-cycloadducts 10c and 10d
and 12c in excellent yields, establishing the generality of the methodology. Finally, the N-methyl

indole also reacted efficiently to give cycloadduct 10e as a single diastereomer in 85% vyield.
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TMSOTf 4A MS
\;‘;D -10 °C, 1,2-DCE Ar

9& 11 0103-126

N\
R2 R

4-Deoxy sugar DAC analogues ..........c.cccccecccccccocccccccccscccccccssscanssscans

10a, 90% 10b, 92% 10e, 85% CCDC 2178372

Me Me
. O
= Ph NH
H
(0]
CCDC2178377 endo-10c, 32%
Me
O
NH
Me
(0]
ex0-10d, 55% CCDC 2178380 endo-10d, 41%

Ar = 4-OMe-CgH,

Table 5. 4-Deoxy sugar analogues cycloadducts.

Possible Mechanism.
We propose the following possible mechanism for the stereoselective formation of (3+2)

cycloadducts. We expected that TMSOTf activates the 3-oxo functionality on the DAC that induces
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the cleavage of the C1-C2 bond, leading to the formation of oxocarbeniumenolate intermediate

(IN-A), which acts as a 1,3-dipolar species or the 1,3-zwitterion (Figure3).

(&D
O -
R_
R—( TMSOTf ( R\,/O+ OTf
—_— —_— N
b =
o | TMSO
DAC CF3S03Si(CH3z)s IN-A
R -
R - 2 oTf TMSOTf
A= -
\—05, 9T, |1mso k' .

H IN-B

Figure 3. A Possible mechanism for the formation of cycloadducts.

Additionally, the preferential attack of the nucleophile along an axial trajectory toward this
intermediate would provide the a-selective cycloadduct as the only product (IN-B). However, in
the case of 2- or 3-substituted indoles, possible steric hindrance between the substituents on
indole and the axial hydrogen on C6 of oxocarbeniumenolate restricts the formation of the exo-
adduct and hence a substantial amount of the endo-product was observed. The structural
arrangement of all of the formed cycloadducts (2a-h, 4a-f, 6a-d, 8a-d, 10a-e, and 12a-c) was
confirmed by 'H and 3C NMR analysis. Among them, a few (3+2) cycloadducts were studied in
detail using two-dimensional (2D) NMR techniques. Through a thorough NMR correlation studies,
the exo- and endo-products were also distinguished (Figure4). As shown in Figure 4, in exo-2f, a
strong NOE was observed between the 3-CHs of the indole system and the 7’-H of the oxepanone
ring. On the contrary, in the case of endo-2f correlation was observed between the 3-CHs of the
indole and one of the bridged methylene CH groups, which indicates the s-syn arrangement of
the methylene bridge and the methyl group. Encouragingly, we obtained the crystal structures of
2b, 2d, 4b, exo0-10c, exo-10d, 10e, and endo-12c, which further authenticated the structural

assignment of the (3+2) cyclo-addition products.
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Figure 4. Correlation studies: Observed NOE in exo- and endo-cycloadducts.

2.1.3 Conclusion

In conclusion, an efficient and general method was developed for the construction of bridged
oxepanone-indole molecular hybrids. The methodology utilizes the stereo electronic effects of
endocyclic oxygen atom to afford the diastereomerically pure cycloadducts despite four
stereocenters being formed in the (3+2) cycloaddition reaction. The generality and scope of the
reaction were evaluated by applying the methodology to a number of monosaccharide-derived
3-ox0-1,2-cyclopropane derivatives (chiral) as well as simple aryl-substituted DACs (racemic). The
reactivities of various indole substrates possessing electron-releasing and -withdrawing
functional groups and N-alkyl indoles have been investigated. Thus, this methodology sets an
example for the product’s unique molecular construction, diastereoselectivity, metal-free

synthesis, and wide substrate scope with possible biological activity.
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En route to the synthesis of A,B,E tricyclic core of calyciphylline B-Type

alkaloids
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g H

(3+2) cycloadducts
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Abstract:

\

Fused tricyclic scaffolds

J

An appropriately constructed tricyclic skeleton containing the common A,B,E rings

present in calyciphylline B-type alkaloids was synthesized. In this regard, an

efficient post synthetic transformation was performed on the bridged oxepanone-

indole cycloadducts. The key features of the transformation is one-pot f-elimination,

inversion of configuration, and an intramolecular aza-Michael addition reaction.

The transformation is carried out via a three step one pot reaction which exploits the

distinctive properties of the oxepanone ring of cycloadducts.
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2.2.1 Introduction

Daphniphyllum alkaloids are a unique class of polycyclic natural products, exhibiting potent
biological activities such as anticancer, antiviral, anti-HIV, antioxidant etc.! Among the 320 known
Daphniphyllum alkaloids, calyciphylline B-type compounds belong to a small subclass, featuring a
unique hexacyclic framework (ring A-F) encompassing 8-9 stereogenic centres (Calyciphylline B,
Deoxycalyciphylline B etc.) (Figure 1). The central core of calyciphylline B-type alkaloids include a
fused tricyclic skeleton (rings A,B,E) with nitrogen atom centrally located to form a convex shaped
structure. Often this type of architechtures is synthesized via RCM, metal-catalyzed annulation
coupling reactions, intramolecular cyclization, multi-step total synthesis, etc., which are complex

and challenging synthetic routes.?

General structure of
Calyciphylline B-Type alkaloids

Figure 1. Calyciphylline B-Type alkaloids

With the successful synthesis of bridged bicyclic cycloadducts, we hypothesized that the (3+2)
cycloadducts with suitably positioned R-ketoethers, would be susceptible to B-elimination, on
deprotonation with base. These R-eliminated products would then potentially undergo an aza-
Michael addition reaction with indole nitrogen leading to the functionalized fused tetracyclic

scaffolds in a single concerted step. This transformation would witness the formation of a highly
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strained molecule and the beauty of the basket-shaped molecular construction, a skeleton

analogous to naturally occurring alkaloid calyciphylline B. (Figure 2).

HO

p-elimination

aza-Michael
addition

= Inversion
— Ar \ \ -
A
(0]

o)

Figure 2. A Possible mechanism for the intramolecular aza-Michael addition reaction

2.2.2 Results and discussion

10a, 90%

10b, 92%

Ar = 4-0Me-C5H4

......................................................

12a, 79%

8a, 86%

8d, 92% exo-8c, 55%

Table 1. (3+2) cycloadducts employed in post synthetic transformation
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Gratifyingly, when a methanolic solution of cyclo-adduct 10a was treated with K,COs, RB-
elimination followed by aza-Michael addition resulted in the formation of functionalized fused

tretracyclic system 13 in 98% vyield (Table 2).

With the successful formation of rearranged product 13, we subjected some of the cycloadducts
(8a-8d, 10b-10e, and 12a-c; Table 1) having active methylene groups to B-elimination followed by
aza-Michael reaction. The cycloadducts 10b and exo-10c successfully underwent the [-
elimination followed intramolecular aza-Michael addition to give fused tetracyclic system 15 and
16 in 95% and 99% vyield, respectively. However, it is interesting to note that compound 8a-8d did
not undergo the above rearrangement reaction, indicates the importance of an aryl group at C7
postion of the oxepanone ring which may assist the facile B elimination reaction. Subjecting
cycloadduct exo-10d to the rearrangement reaction condition resulted in an intractable reaction
mixture. However, cycloadduct 10e formed ring-opened a,8-unsaturated ketone product 20 and
was isolated in 97% vyield. Hence, the formation of compound 20 confirmed that the reaction
underwent via 8 elimination followed by aza-Michael addition. Further cycloadducts 12a-c
successfully underwent the rearrangement reaction resulting in the tetracyclic scaffolds (17-19)
in excellent yields. The products obtained through the rearrangement of cycloadducts are the
A,B,E tricyclic analogues of calyciphylline B-type alkaloids establishing a potential route for the

synthesis of the same.
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Ac,0, Pyridine
_—
rt, 24 h

CCDC 2178373

Table 2. Transformation of (3+2)-cycloadducts

To establish the relative configuration of the rearranged analogues, 1D and 2D NMR (COSY,
NOESY) data of compound 13 was studied in detail. There were characteristic changes in the
chemical shift values in 3C NMR of 13 when compared to 10a. Acetylation of compound 13 to
form 14 guaranteed the presence of alcohol functionality as we could see an ester chemical shift
value (170.23 ppm) and not an amide chemical shift value in the 3C NMR. Known stereocenters
of the bridged oxepanone-indole cycloadducts and NOESY experiments of the bowl-shaped
product 13 guided us to assign the exact stereochemistry of the aza-Michael addition product.

For example, in compound 13 there was a strong NOE between the two methylene groups that
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are close enough to show NOE (Figure 7). Similarly, for the B-elimination product 20, one of the
methylene proton showed NOE with a-hydrogen of a,B-unsaturated system, as well as the N-CHs
had shown NOE with the B-hydrogen of a,B-unsaturated system. This implies the inversion of the
configuration at the a-sp> carbon centre to the carbonyl group (Figure 7). Finally, the single-crystal
X-ray diffraction studies of compound 14, un-equivocally established the product structure and
stereochemistry. Thus, our methodology through its single key concerted step allowed the
construction of tricyclic core of calyciphylline B-type from the bridged bicyclic oxepenone
scaffolds. We strongly believe that this methodology would pave a general way for the synthesis

of a variety of calyciphylline alkaloids.

Figure 7. Representation of observed NOE in compounds 13 and 20.

2.2.3 Conclusion

In conclusion, an efficient post synthetic transformation was performed on the cycloadducts The
bridged oxepane-indole scaffolds are further converted to a variety of calyciphylline B-type
alkaloid analogues of A,B, E ring framework. Thus, this methodology sets an example for the
product’s unique molecular construction, diastereoselectivity, metal-free synthesis and wide

substrate scope.
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Experimental Details

Chapter 2 - Part A: A Ring Expansion—Stereoselective Cycloaddition of Carbohydrate-Derived

Donor—Acceptor Cyclopropanes: Synthesis of Bridged Oxepanone-Indole Hybrids.

Synthesis of DAC 11
(15,3S,6R)-3-(4-methoxyphenyl)-2-oxabicyclo[4.1.0]heptan-5-one (DAC 11):

MeO NaBH,, MeO
(o) CeCI3.7H20 (o)
MeOH, 0 °C,
30 mi
o) min OH
S1 S2
EtQZn, CH2|2,
Et,0,0°C,5h
MeO MeO
9] (COCl),, DMSO o
DCM, -78 °C,
Et3N
S OH

1" S,

(25,4S5)-2-(4-methoxyphenyl)-3,4-dihydro-2H-pyran-4-ol (S2): To a solution of enone S1'7 (2 g,
9.8 mmol) and CeCls5.7H,0 (5.4 g, 14.7 mmol) in MeOH (30 mL) at -78°C was added NaBH4 (557.6
mg, 14.7 mmol) in 5 portions. The solution was stirred for 1 h at -78 °C, then quenched with
saturated NH4Cl. The reaction mixture was extracted twice with ethyl acetate (100 mL x 2) and
combined organic layers were washed with water (50 mL), brine (50 mL) and dried (Na;SOa). The
solution was concentrated under vacuum and the crude residue was purified by silica-gel column
chromatography with ethyl acetate/hexane to provide Compound S2 (1.96 g, 9.48 mmol) as a
yellow solid. Yield: 98%; Rs: 0.4 (30% EtOAc/hexane); IR (neat): 3342, 3065, 2954, 2916, 2836,
1640 cm™.
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1H-NMR (500 MHz, CDCl3): & = 7.61-7.64 (m, 2H), 7.22-7.25 (m, 2H), 6.83 (dd, 1H, J = 1.0 Hz, 6.5
Hz), 5.27 (dd, 1H, J = 2.0 Hz, J = 12.0 Hz), 5.18 (dt, 1H, J = 2.0 Hz, 6.0 Hz), 4.93 (bs, 1H), 4.14 (d,
3H), 2.66-2.71 (m, 1H), 2.32-2.37 (m, 1H), 1.85 (bs, 1H).

13C{*H}-NMR (125 MHz, CDCl3): § 159.45, 145.5, 132.4,127.4,114.0, 105.7, 76.5, 63.6, 55.3, 39.8.
HRMS (ESI-TOF) m/z: calcd for C12H1403Na [M+Na]*: 229.0841, found: 229.0839.

(15,35,5S,6S5)-3-(4-methoxyphenyl)-2-oxabicyclo[4.1.0]heptan-5-ol (S3): To a solution of S2 (1.8
g, 8.7 mmol) in ether (30 mL) at 0°C was added 1 M Et,Zn in hexane (26.1 mL, 26.1 mmol) and
CHal; (2.08 mL 26.1 mmol). The reaction mixture was stirred for 5 hours at same temperature,
then quenched with saturated NH4Cl solution (150 mL) and extracted with ether (100 mL x 2).
The organic layers were washed with water (100 mL) and dried over anhydrous Na;SOas. The
organic layer was concentrated in vacuo and purified by silica gel column chromatography to
obtain cyclopropane S3 (1.86 g, 8.4 mmol) as a colourless oil. Yield: 97%; Rs: 0.4 (40%
EtOAc/hexane); IR (neat): 3372, 3081, 3003, 2926, 2836 cm™™.

14-NMR (500 MHz, CDCl3): & = 7.21-7.24 (m, 2H), 6.86-6.86 (m, 2H), 4.54-4.59 (m, 1H), 4.30 (d,
1H, J=11.5 Hz), 3.88-3.91 (m, 1H), 3.80 (s, 3H), 2.05 (dd, 1H, J = 7.0 Hz, J = 23.5 Hz), 1.69-1.75 (m,
1H), 1.42-1.47 (m, 2H), 0.83-0.87 (m, 1H), 0.76-0.80 (m, 1H).

13¢{*H}-NMR (125 MHz, CDCl3): § 159.2, 133.5, 127.3, 113.8, 76.6, 65.6, 55.4, 54.8, 39.2, 17.9,
10.4.

HRMS (ESI-TOF) m/z: calcd for C13H1603 [M+Na]*: 243.0997, found: 243.0994.

(15,3S,6R)-3-(4-methoxyphenyl)-2-oxabicyclo[4.1.0]heptan-5-one (11): To a solution of (COCI);
(1.04 mL, 12.1 mmol) in CH2Cl> (25 mL) at -78°C was added DMSO (1.4 mL, 20.2 mmol) dropwise.
After 10 min, cyclopropropyl alcohol $3 (1.8 g, 8.1 mmol) in CH,Cl, (30 mL) was added dropwise
to the above mixture at same temperature for a period of 15 min. After stirring for 30 min at -78
°C, EtsN (4.0 mL, 40.5 mmol) was added and allowed to warm to room temperature. The reaction
mixture was diluted with CH,Cl, (100 mL), washed with water (70 mL x 2), brine (70 mL) and dried

over anhydrous Na;SOs. The organic layer was concentrated in vacuo and purified by silica gel

44



column chromatography to obtain compound 11 (1.69 g, 7.7 mmol) as a yellow solid. Yield: 95%;
Rf: 0.6 (40% EtOAc/hexane); IR (neat): 3018, 2960, 2836, 2359, 2198, 1692cm™.

1H-NMR (500 MHz, CDCl3): 6 = 7.22-7.25 (m, 2H), 6.87-6.90 (m, 2H), 4.88 (dd, 1H, /= 2.0 Hz, J =
11.5 Hz), 4.22-4.25 (m, 1H), 3.80 (s, 3H), 2.55 (dd, 1H, J = 11.5 Hz, J = 16.0 Hz), 2.45 (dt, 1H, J= 1.5
Hz, J =16.0 Hz), 1.82-1.87 (m, 1H), 1.42 (td, 1H, /= 3.5 Hz, J = 6.5 Hz), 1.35-1.39 (m, 1H).
13¢{*H}-NMR (125 MHz, CDCl3): § 205.4, 159.6, 131.7, 127.2, 114.0, 80.3, 57.5, 55.3, 47.1, 24.4,
19.6.

HRMS (ESI-TOF) m/z: calcd for C13H1403 [M+H]*: 219.1021, found: 219.1025.

General procedure A for Lewis acid catalysed (3+2) cycloaddition:

To a solution of keto-cyclopropane (1 mmol) and respective indole (2 mmol) in 1,2-DCE (8 mL)
was added 4 A molecular sieves (50 mg) and stirred for 30 minutes at room temperature under
argon atmosphere. The reaction mixture was then cooled to -10 °C to which TMSOTf (0.5 Eq) was
added dropwise. The reaction was monitored by TLC until the completion. The reaction mixture
was quenched by adding saturated solution of NaHCO3; and extracted with DCM, dried with
Na>SOs and concentrated in vacuo. The crude product was purified using silica gel column

chromatography to obtain the desired product.

Compound Characterization:

RS
4
BnO © R QA TMSOTYf, 4A MS
R2
BnO™ + N
o} R’

1,2-DCE,-10 'C

1 2a-h
B O,N
N
H N N N
. CH3 CH,4
N
N N N N
H H H CHs




(15,3R,4R,6R,6aR,11bS)-4-(benzyloxy)-3-((benzyloxy)methyl)-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-blindol-5(1H)-one (2a):

Compound 2a was synthesised from keto-cyclopropane 1 (200 mg,

B0 0.59 mmol) and 1H-indole (138.50 mg, 1.18 mmol) by following
n

BnO"' : general procedure A. Yield: 188 mg, 70%; Rs: 0.5 (40%

EtOAc/hexane); Red oil.

IR (neat): 3455, 3025, 2968, 2944, 1732 cm™,

1H-NMR (500 MHz, CDCls): & = 7.23-7.30 (m, 11H), 7.01 (t, 1H, J = 7.5 Hz), 6.67 (td, 1H, J = 1.0 Hz,
7.5 Hz), 6.47 (d, 1H, J = 8.0 Hz), 5.01 (dd, 1H, J = 5.0 Hz, 6.0 Hz), 4.73-4.77 (m, 2H), 4.40 (d, 1H, J
=11.0 Hz), 4.38 (d, 1H, J = 9.5 Hz), 4.23-4.34 (m, 3H), 4.01 (dd, 1H, J = 6.5 Hz, 12.0 Hz), 3.45-3.49
(m, 2H), 3.27-3.32 (m, 2H), 2.42 (d, 1H, J = 14.5 Hz), 1.97-2.02 (m, 1H).

13C{'H}-NMR (125 MHz, CDCls): & = 209.6, 151.7, 138.4, 137.6, 128.6, 128.4, 128.3, 128.1, 127.7,
127.5,127.3, 125.9, 124.5, 118.7, 109.3, 83.9, 80.1, 73.9, 73.0, 72.3, 70.8, 66.4, 54.2, 52.5, 37.1

ppm.
HRMS (ESI-TOF) m/z: calcd for C29H30NO4 [M+H]*: 456.2175, found: 456.2175.

(15,3R,4R,6R,6aR,11bS)-4-(benzyloxy)-3-((benzyloxy)methyl)-10-bromo-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (2b):

Compound 2b was synthesised from keto-cyclopropane 1 (200 mg,

0.59 mmol) and 5-bromo-1H-indole (231.32 mg, 1.18 mmol) by
BnO

8RO following general procedure A. Yield: 276.79 mg, 88%, Rs: 0.6 (30%

EtOAc/hexane); white solid; m.p. 116-118 °C.

Crystallization: Compound 2b (100 mg) was dissolved in 10 ml 10%
EtOAc/hexane. The solution was slightly warmed to 50 °C in an open container, allowed to cool
to room temperature and kept without disturbing for slow evaporation of solvent. Crystals were
found to be accumulating slowing. After complete evaporation of solvents, crystals were filtered,
washed with hexane and dried.

IR (neat): 3454, 3015, 2968, 2947, 1738, 1660 cm™.
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1H-NMR (500 MHz, CDCl3): & = 7.26-7.33 (m, 10H), 7.21 (s, 1H), 7.09 (dd, 1H, J = 2.0 Hz, 8.5 Hz),
6.37 (d, 1H, J= 8.0 Hz), 4.76 (d, 1H, J = 11.0 Hz), 4.68 (d, 1H, J = 4.5 Hz), 4.60 (d, 1H, J = 12.0 Hz),
4.56 (d, 1H, J = 12.0 Hz), 4.52 (d, 1H, J = 8.5 Hz), 4.39 (d, 1H, J = 5.0 Hz), 4.37 (d, 1H, J = 3.0 Hz),
4.12 (bs, 1H), 3.87 (d, 1H, J = 8.5 Hz), 3.79 (dd, 1H, J = 5.0 Hz, 10.5 Hz), 3.75 (dd, 1H, J = 2.0 Hz,
10.0 Hz), 3.70-3.73 (m, 1H), 2.91 (d, 1H, J = 7.0 Hz), 2.28 (d, 1H, J = 14.5 Hz), 1.90-1.96 (m, 1H).
13C{H}-NMR (125 MHz, CDCl3): 6 = 209.6, 149.5, 138.0, 137.3, 131.0, 129.8, 128.4, 128.4, 128.1,
127.9, 127.8, 127.7, 109.8, 109.6, 85.9, 83.9, 73.9, 73.8, 73.8, 70.6, 68.6, 59.9, 52.1, 32.8 ppm.
HRMS (ESI-TOF) m/z: calcd for C29H29BrNO4 [M+H]*: 534.1280, found: 534.1282.

(15,3R,4R,6R,6aR,11bS)-4-(benzyloxy)-3-((benzyloxy)methyl)-10-methoxy-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (2c):

ovel Compound 2¢ was synthesised from keto-cyclopropane 1 (200 mg,

B0 0.59 mmol) and 5-methoxy-1H-indole (173.66 mg, 1.18 mmol) by
n

BnO" : following general procedure A. Yield: 187.23 mg, 65%, Rs: 0.4 (50%

EtOAc/hexane); red oil.

IR (neat): 3455, 3003, 2968, 2945, 2134, 1738 cm'™.

1H-NMR (500 MHz, CDCls): & = 7.15-7.20 (m, 10H), 6.75 (d, 1H, J = 2.0 Hz), 6.51 (dd, 1H, J = 2.0
Hz, 8.5 Hz), 6.33 (d, 1H, J = 8.5 Hz), 4.90 (dd, 1H, J = 5.0 Hz, 6.0 Hz), 4.67 (d, 1H, J = 10.5 Hz), 4.65
(dd, 1H, J = 9.0 Hz, 11.5 Hz), 4.31 (d, 1H, J = 10.5 Hz), 4.27 (d, 1H, J = 9.0 Hz), 4.24 (d, 1H, J = 12.5
Hz), 4.16 (d, 1H, J = 12.0 Hz), 3.90 (dd, 1H, J = 6.5 Hz, 12.0 Hz) 3.59 (s, 3H), 3.43-3.46 (m, 1H), 3.40
(dd, 1H, J = 4.5 Hz, 10.5 Hz), 3.24 (dd, 1H, J = 2.0 Hz, 10.5 Hz), 3.19 (dd, 1H, J = 7.5 Hz, 9.0 Hz),
2.33(d, 1H, J = 15.0 Hz), 1.87-1.92 (m, 1H).

13C{IH}-NMR (125 MHz, CDCls): 6 = 209.6, 153.4, 145.7, 138.4, ,137.7, 128.3, 128.1, 128.1, 127.7,
127.5,127.3,126.1, 114.1, 112.1, 110.2, 83.9, 80.0, 73.9, 73.0, 72.3, 70.9, 67.0, 55.9, 54.1, 53.0,
37.2.

HRMS (ESI-TOF) m/z: calcd for CsoH32NOs [M+H]*: 486.2280, found: 486.2279.

(15,3R,4R,6R,6aR,11bS)-4-(benzyloxy)-3-((benzyloxy)methyl)-5-oxo-1,3,4,5,6,6a,7,11b-

octahydro-1,6-methanooxocino[4,3-blindole-10-carbonitrile (2d):
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Compound 2d was synthesised from keto-cyclopropane 1 (200 mg,
B0 0.59 mmol) and 1H-indole-5-carbonitrile (167.74 mg, 1.18 mmol) by
n

BnO" : following general procedure A. Yield: 240.82 mg, 85%, R+: 0.4 (30%

EtOAc/hexane); white solid, m.p. 154-156 °C.

Crystallization: Compound 2d (100 mg) was dissolved in 10 ml 10%
EtOAc/Toluene. The solution was slightly heated to 70 °C in an open container, allowed to cool to
room temperature and kept without disturbing for slow evaporation of solvent. Crystals were
found to be accumulating slowing. After complete evaporation of solvents, crystals were filtered,
washed with hexane and dried.IR (neat): 3353, 3013, 2968, 2945, 2209, 1738, 1609 cm™.
1H-NMR (500 MHz, CDCl3): 6 = 7.28-7.33 (m, 12H), 6.44 (d, 1H, J = 8.0 Hz), 4.75 (d, 1H, J=10.5
Hz), 4.67 (d, 1H, J=4.5 Hz), 4.55-4.61 (m, 4H), 4.40 (d, 1H, J = 5.5 Hz), 4.38 (d, 1H, J=7.5 Hz), 3.86
(d, 1H,/=8.5Hz), 3.79 (dd, 1H, J = 4.5 Hz, 10.0 Hz), 3.75 (dd, 1H, /= 2.0 Hz, J = 10.0 Hz), 3.70-3.73
(m, 1H), 2.91 (d, 1H,J=7.0 Hz), 2.34 (d, 1H, J = 15.0 Hz), 1.86-1.91 (m, 1H).

13C{*H}-NMR (125 MHz, CDCl3): 6 = 209.2, 153.7, 137.9, 137.2, 134.0, 128.6, 128.4, 128.4, 128.1,
128.0, 127.9, 127.8, 127.7, 120.2, 107.2, 99.9, 85.7, 83.7, 74.2, 73.8, 73.8, 70.4, 68.4, 59.2, 51.3,
32.6.

HRMS (ESI-TOF) m/z: calcd for C3oH29N204 [M+H]*: 481.2127, found: 481.2160.

(15,3R,4R,6R,6aR,11bS)-4-(benzyloxy)-3-((benzyloxy)methyl)-10-nitro-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (2e):

Compound 2e was synthesised from keto-cyclopropane 1 (200 mg,

BO 0.59 mmol) and 5-nitro-1H-indole (191.33 mg, 1.18 mmol) by

BnO" : following general procedure A. Yield: 236.09 mg, 80%, Rs: 0.4 (30%

EtOAc/hexane); yellow solid, m.p. 157-159 °C.

IR (neat): 3341, 3014, 2968, 2943, 2132, 1738, 1609 cm..

1H-NMR (400 MHz, CDCls): 6 = 7.98 (s, 1H), 7.96 (d, 1H, J = 2.0 Hz), 7.28-7.33 (m, 10H), 6.36 (d,
1H, J = 7.6 Hz), 5.07 (bs, 1H), 4.75 (d, 1H, J = 8.4 Hz), 4.71 (d, 1H, J = 3.6 Hz), 4.64 (d, 1H, J = 6.8
Hz), 4.60 (d, 1H, J = 9.6 Hz), 4.57 (d, 1H, J =9.6 Hz), 4.42 (d, 1H, J = 6.8 Hz), 4.40 (d, 1H, J = 8.8 Hz),
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3.87 (d, 1H, J = 6.8 Hz), 3.72-3.82 (m, 3H), 2.93 (d, 1H, J = 5.6 Hz), 2.37 (d, 1H, J = 12.0 Hz), 1.86-
1.91 (m, 1H).

13C{1H}-NMR (125 MHz, CDCl3): § = 209.1, 155.8, 139.0, 137.8, 137.1, 128.4, 128.1, 128.0, 127.8,
127.7,127.5, 126.9, 121.6, 105.5, 85.5, 83.7, 74.3, 73.8, 73.7, 70.4, 68.9, 58.8, 51.1, 32.5.

HRMS (ESI-TOF) m/z: calcd for Ca9H29N206 [M+H]*: 501.2026, found: 501.2026.

Compound exo-2f and endo-2f was synthesized from keto-cyclopropane 1 (200 mg, 0.59 mmol)
and 3-methyl-1H-indole (154.78 mg, 1.18 mmol) by following general procedure A. Overall Yield:
251.92 mg, 91%.
(15,3R,4R,6R,11bS)-4-(benzyloxy)-3-((benzyloxy)methyl)-11b-methyl-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (exo-2f):

Yield: 166.10 mg, 60%, Rs: 0.6 (30% EtOAc/hexane); red oil.
IR (neat): 3381, 3025, 2968, 1738, 1604 cm™.
1H-NMR (500 MHz, CDCl3): § = 7.28-7.34 (m, 10H), 7.01 (td, 1H, J =

1.0 Hz, 7.5 Hz), 6.95 (dd, 1H, J = 1.0 Hz, 7.5 Hz), 6.69 (td, 1H, J = 1.0

exo-2f

Hz, 7.5 Hz), 6.54 (d, 1H, J = 8.0 Hz), 4.76 (d, 1H, J = 11.5 Hz), 4.59 (s,
2H), 4.50-4.52 (m, 2H), 4.34 (d, 1H, J = 11.0 Hz), 4.05-4.08 (m, 1H), 4.03 (bs, 1H), 3.82 (dd, 1H, J =
5.5 Hz, 10.5 Hz), 3.78 (dd, 1H, J = 3.0 Hz, 10.5 Hz), 2.70 (d, 1H, J = 7.0 Hz), 2.37 (d, 1H, J = 15.0 Hz),
1.85-1.90 (m, 1H), 1.40 (s, 3H).

13C{'H}-NMR (125 MHz, CDCls): & = 209.4, 149.4, 137.9, 137.4, 134.3, 128.4, 128.3, 128.1, 128.1,
127.9, 127.7, 127.6, 123.0, 118.5, 108.4, 84.6, 82.4, 76.2, 73.6, 73.3, 73.2, 70.3, 60.6, 58.8, 32.9,
21.1.

HRMS (ESI-TOF) m/z: calcd for CsoH32NO4 [M+H]*: 470.2331, found: 470.2331.

(1S,3R,4R,6R,6aR,11bR)-4-(benzyloxy)-3-((benzyloxy)methyl)-11b-methyl-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (endo-2f):
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Yield: 85.81 mg, 31%, R¢: 0.3 (30% EtOAc/hexane); red oil.
IR (neat): 3377, 3029, 2932, 2864, 2358, 1707cm™.
1H-NMR (500 MHz, CDCl3): & = 7.20-7.27 (m, 10H), 7.15 (dd, 1H, J =

1.0 Hz, J = 7.5 Hz), 6.99 (td, 1H, J = 1.0 Hz, J = 7.5 Hz), 6.66 (td, 1H, J

= 0.5 Hz, J = 7.0 Hz), 6.46 (d, 1H, J = 8.0 Hz), 4.68 (d, 1H, J = 11.0 Hz),
4.61(d, 1H, J = 5.0 Hz), 4.34-4.38 (m, 3H), 4.24-4.29 (m, 2H), 4.11 (d, 1H, J = 9.0 Hz), 3.43 (dd, 1H,
J=4.0Hz, J=10.5 Hz), 3.26 (t, 1H, J = 8.0 Hz), 3.22 (dd, 1H, J = 2.0 Hz, J = 10.5 Hz), 3.09-3.12 (m,
1H), 2.36 (d, 1H, J = 15.0 Hz), 2.16-2.22 (m, 1H), 1.40 (s, 3H).

13C{*H}-NMR (125 MHz, CDCls): & = 209.7, 150.4, 138.4, 137.6, 129.5, 128.4, 128.3, 128.1, 128.1,
127.7,127.5,127.3, 124.8, 118.6, 109.3, 86.6, 83.5, 73.8, 73.7, 73.2, 72.4, 70.8, 57.8, 55.0, 34.6,
30.0.

HRMS (ESI-TOF) m/z: calcd for CsoH32NO4 [M+H]*: 470.2331, found: 470.2330.

Compound exo-2g and endo-2g was synthesized from keto-cyclopropane 1 (200 mg, 0.59 mmol)
and 2,3-dimethyl-1H-indole (171.33 mg, 1.18 mmol) by following general procedure A. Overall
Yield: 265.15 mg, 93%.
(15,3R,4R,6R,6aS,11bS)-4-(benzyloxy)-3-((benzyloxy)methyl)-6a,11b-dimethyl-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (exo-2g):

Yield: 165.36 mg, 58%, Rs: 0.7 (30% EtOAc/hexane); red oil.
BnO IR (neat): 3380, 3368, 3025, 2968, 1738, 1604 cm™.

BnO" N 1H-NMR (500 MHz, CDCl3): & = 7.28-7.33 (m, 10H), 6.99 (td, 1H, J =

exo-2g 1.0 Hz, 9.0 Hz), 6.95 (d, 1H, J = 7.5 Hz), 6.66 (td, 1H, J=1.0 Hz, 7.5

Hz), 6.44 (d, 1H, J = 8.0 Hz), 4.79 (d, 1H, J = 11.0 Hz), 4.57 (s, 1H),
4.45 (d, 1H, J = 3.5 Hz), 4.43 (d, 1H, J = 8.5 Hz), 4.34 (d, 1H, J = 11.5 Hz), 4.02-4.06 (m, 1H), 3.89
(bs, 1H), 3.74-3.80 (m, 2H), 2.83 (d, 1H, J = 6.5 Hz), 2.35 (d, 1H, J = 12.0 Hz), 2.26 (d, 1H, J = 14.5
Hz), 1.94-1.99 (m, 1H), 1.36 (s, 3H), 1.35 (s, 3H).

13C{H}-NMR (125 MHz, CDCls): & = 208.3, 148.4, 138.0, 137.5, 134.8, 128.4, 128.3, 128.2, 128.1,
127.9, 127.7, 127.6, 123.6, 118.2, 107.5, 87.0, 82.8, 75.8, 74.6, 73.6 (2), 70.6, 64.0, 60.1, 31.4,
21.5,18.4.
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HRMS (ESI-TOF) m/z: calcd for C31H3aNO4 [M+H]*: 484.2488, found: 484.2487.

(15,3R,4R,6R,6aR,11bR)-4-(benzyloxy)-3-((benzyloxy)methyl)-6a,11b-dimethyl-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (endo-2g):

Yield: 99.70 mg, 35%, R¢: 0.5 (30% EtOAc/hexane); red oil.
HsC

B0 IR (neat): 3350, 3029, 2935, 2865, 2359, 1705 cmL.

BnO""
3 HC

endo-2g 1H), 7.01 (td, 1H, J = 1.0 Hz, J = 7.5 Hz), 6.69 (td, 1H, J = 1.0 Hz, J =

1H-NMR (500 MHz, CDCls): & = 7.21-7.29 (m, 10H), 7.14-7.15 (m,

I’Z

7.5Hz),6.44 (d, 1H,J=7.5Hz),4.73 (d, 1H, J=11.0 Hz), 4.61 (d, 1H,
J = 4.5 Hz), 4.35-4.40 (m, 3H), 4.26 (d, 1H, J = 12.0 Hz), 4.07 (s, 1H), 3.47 (dd, 1H, J = 4.0 Hz, J =
10.5 Hz), 3.38-3.41 (m, 1H), 3.26 (dd, 1H, J = 2.0 Hz, J = 10.0 Hz), 2.97 (d, 1H, J = 7.5 Hz), 2.32 (d,
1H, J = 15.0 Hz), 2.22-2.27 (m, 1H), 1.40 (s, 3H), 1.37 (s, 3H).

13C{*H}-NMR (100 MHz, CDCls): 6 = 209.2, 148.9, 138.4, 137.7, 129.8, 128.4, 128.2, 128.1, 127.7,
127.5,127.3, 125.0, 118.4, 108.8, 89.0, 83.2, 77.2, 76.3, 73.8, 73.0, 72.3, 71.0, 62.6, 59.9, 33.5,
27.3, 24.0.

HRMS (ESI-TOF) m/z: calcd for C31H3aNO4 [M+H]*: 484.2488, found: 484.2485.

(15,3R,4R,6R,6aR,11bS)-4-(benzyloxy)-3-((benzyloxy)methyl)-7-methyl-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (2h):

Compound 2h was synthesised from keto-cyclopropane 1 (200 mg,
0.59 mmol) and 1-methyl-1H-indole (171.33 mg, 1.18 mmol) by
following general procedure A. Yield: 199.32 mg, 72%, Rs: 0.5 (20%

EtOAc/hexane); red oil.

IR (neat): 3014, 2968, 2944, 2143,1738 cm™™.
1H-NMR (500 MHz, CDCls): & = 7.27-7.35 (m, 10H), 7.10 (d, 1H, J = 7.0 Hz), 7.07 (t, 1H, J = 8.0 Hz),
6.61 (t, 1H, J = 7.5 Hz), 6.30 (d, 1H, J = 8.0 Hz), 4.76 (d, 1H, J = 10.5 Hz), 4.73 (d, 1H, J = 4.5 Hz),
4.61 (d, 1H, J = 12.0 Hz), 4.58 (d, 1H, J = 12.0 Hz), 4.42 (d, 1H, J = 7.5 Hz), 4.40 (d, 1H, J = 9.0 Hz),
4.13 (d, 1H, J = 9.0 Hz), 3.85 (d, 1H, J = 11.5 Hz), 3.82 (dd, 1H, J = 4.0 Hz, 10.0 Hz), 3.78 (d, 1H, J =
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2.0 Hz), 3.72-3.76 (m, 1H), 3.02 (d, 1H, J = 7.0 Hz), 2.87 (s, 3H), 2.27 (d, 1H, J = 15.0 Hz), 1.86-1.91
(m, 1H).

13C{1H}-NMR (125 MHz, CDCl3): = 210.0, 151.6, 138.0, 137.4, 128.5, 128.4, 128.3, 128.2, 127.9,
127.8,127.8,127.6,124.5, 117.1, 105.3, 86.3, 84.1, 76.2, 73.8, 73.8, 73.5, 70.6, 55.8, 50.5, 33.1,
32.9

HRMS (ESI-TOF) m/z: calcd for C3oH32NO4 [M+H]*: 470.2331, found: 470.2332.

", _O RS TMSOTHf,
‘ :,( R4 4A MS
w A\ 2 y
BnO *+ R 1,2-DCE, -10'C
3 N
R1
3
CHs
Br O,N NC
N N N N N N
H H CH,

(1R,35,4S,6S,6aS,11bR)-4-(benzyloxy)-3-methyl-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-blindol-5(1H)-one (4a):

Compound 4a was synthesised from keto-cyclopropane 3 (100 mg,
0.43 mmol) and 1H-indole (100.87 mg, 0.86 mmol) by following
general procedure A. Yield: 112.60 mg, 75%, Rs: 0.4 (40%

EtOAc/hexane), colourless oil.

IR (neat):3380, 2967, 2924, 2850, 2142, 1709 cm*.

1H-NMR (500 MHz, CDCls): & = 7.26-7.31 (m, 5H), 7.16 (d, 1H, J = 7.0 Hz), 7.00 (dd, 1H, J = 7.5 Hz,
8.0 Hz), 6.68 (td, 1H, J = 1.0 Hz, J = 7.5 Hz), 6.45 (d, 1H, J = 8.0 Hz), 4.84 (t, 1H, J = 5.5 Hz), 4.79 (d,
1H, J = 11.5 Hz), 4.70 (dd, 1H, J = 9.0 Hz, 12.0 Hz), 4.35 (d, 1H, J = 11.5 Hz), 4.21 (bs, 1H), 4.00 (d,
1H, J = 9.0 Hz), 3.97 (dd, 1H, J = 6.5 Hz, J = 11.5 Hz), 3.34-3.40 (m, 1H), 3.25 (dd, 1H, J = 7.5 Hz, 8.5
Hz), 2.1 (d, 1H, J = 14.5 Hz), 1.91-1.97 (m, 1H), 0.91 (d, 3H, J = 6.5 Hz).

13C{IH}-NMR (100 MHz, CDCls): & = 209.5, 151.7, 137.5, 128.3, 128.2, 127.8, 125.6, 124.4, 118.5,
109.3, 86.5, 79.9, 73.4, 69.9, 66.3, 54.1, 52.5, 37.2, 29.7, 19.2.
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HRMS (ESI-TOF) m/z: calcd for C2H24NO3 [M+H]*: 350.1756, found: 350.1751.

(1R,35,45,6S5,6aS,11bR)-4-(benzyloxy)-10-bromo-3-methyl-3,4,6,6a,7,11b-hexahydro-1,6-
methanooxocino[4,3-blindol-5(1H)-one (4b):

Compound 4b was synthesised from keto-cyclopropane 3 (100 mg,
0.43 mmol) and 5-bromo-1H-indole (168.59 mg, 0.86 mmol) by
following general procedure A. Yield: 165.27 mg, 90%, Rs: 0.4 (20%
EtOAc/hexane), white solid, m.p. 176-178 °C.

Crystallization: Compound 4b (100 mg) was dissolved in 10 ml 10%
EtOAc/hexane. The solution was slightly warmed to 50 °C in an open container, allowed to cool
to room temperature and kept without disturbing for slow evaporation of solvent. Crystals were
found to be accumulating slowing. After complete evaporation of solvents, crystals were filtered,
washed with hexane and dried.

IR (neat): 3375, 2928, 1708, 1602 cm™.

1H-NMR (500 MHz, CDCl3): & = 7.30-7.37 (m, 5H), 7.21 (s, 1H), 7.09 (dd, 1H, J = 1.5 Hz, J = 8.5 Hz),
6.37 (d, 1H, J = 8.5 Hz), 4.82 (d, 1H, J = 11.5 Hz), 4.58 (d, 1H, J = 4.5 Hz), 4.53 (d, 1H, J = 8.5 Hz),
4.37 (d, 1H, J = 11.5 Hz), 4.12 (bs, 1H), 4.06 (d, 1H, J = 8.5 Hz), 3.88 (d, 1H, J = 8.5 Hz), 3.68-3.74
(m, 1H), 2.91 (d, 1H, J = 7.0 Hz), 2.19 (d, 1H, J = 14.5 Hz), 1.91-1.95 (m, 1H), 1.36 (d, 3H, J=6.5
Hz).

13¢{*H}-NMR (125 MHz, CDCl3): 6 = 209.6, 149.5, 137.4, 131.0, 130.1, 128.4, 128.2, 128.0, 127.8,
109.8, 109.6, 86.9, 85.7, 73.5, 71.0, 68.9, 59.8, 52.2, 32.9, 19.4.

HRMS (ESI-TOF) m/z: calcd for C22H23BrNO3 [M+H]*: 428.0861, found: 428.0858.

Gram scale synthesis of compound 4b: The keto-cyclopropane 3 (1.0 g, 4.3 mmol) and 5-bromo-
1H-indole (1.6 g, 8.6 mmol) was dissolved in 1,2-DCE (25 mL). To this solution, 4 A molecular
sieves (200 mg) was added and stirred for 30 minutes at room temperature under argon
atmosphere. The reaction mixture was then cooled to -10 °C to which TMSOTf (0.5 Eq) was added
dropwise. The reaction was monitored by TLC until the completion. The reaction mixture was
guenched by adding saturated solution of NaHCO3 (30 mL) and extracted with DCM (2 X 50 mL),

dried with Na;SO4 and concentrated in vacuo. The crude product was purified using silica gel
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column chromatography to obtain the desired product 4b (1.5 g, 3.57 mmol) as a white solid.

Yield: 83%; R¢: 0.4 (20% EtOAc/hexane).

(1R,35,4S,6S,6aS,11bR)-4-(benzyloxy)-3-methyl-10-nitro-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-blindol-5(1H)-one (4c):

Compound 4c was synthesised from keto-cyclopropane 3 (100 mg,
0.43 mmol) and 5-nitro-1H-indole (139.44 mg, 0.86 mmol) by
following general procedure A. Yield: 157.62 mg, 93%, Rs: 0.5 (30%

EtOAc/hexane), yellow oil.

IR (neat): 3455, 3014, 2969, 1738 cm™.

1H-NMR (500 MHz, CDCls): & = 8.01 (s, 1H), 7.99 (d, 1H, J = 2.5 Hz), 7.29-7.36 (m, 5H), 6.40 (d, 1H,
J=8.0 Hz), 4.87 (bs, 1H), 4.81 (d, 1H, J = 11.0 Hz), 4.66 (d, 1H, J = 8.5 Hz), 4.63 (d, 1H, J = 4.5 Hz),
4.38 (d, 1H, J = 11.5 Hz), 4.10 (d, 1H, J = 8.5 Hz), 3.91 (d, 1H, J = 8.5 Hz), 3.70-3.75 (m, 1H), 2.93
(d, 1H, J = 7.0 Hz), 2.27 (d, 1H, J = 15.0 Hz), 1.87-1.93 (m, 1H), 1.39 (d, 3H, J = 6.0 Hz).
13C{'H}-NMR (125 MHz, CDCls): & = 208.9, 155.6, 139.4, 137.2, 128.5, 128.2, 128.1, 127.8, 126.9,
121.6, 105.6, 86.9, 85.4, 73.6, 71.5, 69.2, 59.0, 51.3, 32.7, 19.3.

HRMS (ESI-TOF) m/z: calcd for Ca2H23N20s [M+H]*: 395.1607, found: 395.1606.

(1R,35,4S5,6S,6aS,11bR)-4-(benzyloxy)-3-methyl-5-oxo-1,3,4,5,6,6a,7,11b-octahydro-1,6-

methanooxocino[4,3-blindole-10-carbonitrile (4d):

Compound 4d was synthesised from keto-cyclopropane 3 (100 mg,
0.43 mmol) and 1H-indole-5-carbonitrile (122.25 mg, 0.86 mmol) by
following general procedure A. Yield: 139.97 mg, 87%, Rs: 0.5 (40%

EtOAc/hexane); pale yellow solid, m.p. 156-158 °C.

IR (neat): 3453, 2968, 2923, 2852, 2212, 1738 cm™L.

1H-NMR (500 MHz, CDCls): & = 7.28-7.36 (m, 7H), 6.44 (d, 1H, J = 8.0 Hz), 4.81 (d, 1H, J = 11.5 Hz).,
4.64 (bs, 1H), 4.57-4.60 (m, 2H), 4.37 (d, 1H, J = 11.5 Hz), 4.08 (d, 1H, J = 8.5 Hz), 3.87 (d, 1H, J =
8.5 Hz), 3.69 — 3.74 (m, 1H), 2.92 (d, 1H, J = 7.0 Hz), 2.24 (d, 1H, J = 15.0 Hz), 1.86-1.91 (m, 1H),
1.38 (d, 3H, J = 6.5 Hz).
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13C{H}-NMR (100 MHz, CDCl3): 6 = 209.2, 153.7, 134.0, 128.5, 128.5, 128.1, 128.0, 120.2, 107.2,
99.9, 86.8, 85.6, 73.5, 71.2, 68.6, 59.2, 51.4, 32.8, 29.6, 19.3, 14.1.

HRMS (ESI-TOF) m/z: calcd for Ca3H23N203 [M+H]*: 375.1709, found: 375.1710.
(1R,35,4S5,6S,6aR,11bR)-4-(benzyloxy)-3,11b-dimethyl-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-blindol-5(1H)-one (4e):

Compound 4e was synthesised from keto-cyclopropane 3 (100 mg,
0.43 mmol) and 3-methyl-1H-indole (112.80 mg, 0.86 mmol) by
following general procedure A. Yield: 124.93 mg, 80%, Rs: 0.5 (20%

EtOAc/hexane); white gel.

IR (neat): 3378, 2925, 2910, 2143, 1712, 1605 cm™.

1H-NMR (500 MHz, CDCls): 6 = 7.30-7.38 (m, 5H), 7.01 (td, 1H, J= 1.0 Hz, J = 7.5 Hz), 6.95 (d, 1H,
J=7.0Hz), 6.68 (td, 1H, J = 1.0 Hz, 7.5 Hz), 6.54 (d, 1H,J=7.5Hz), 4.81 (d, 1H, J = 11.5 Hz), 4.40
(d, 1H, J = 3.0 Hz), 4.34 (d, 1H, J = 11.5 Hz), 4.23 (d, 1H, J = 7.5 Hz), 3.99-4.05 (m, 2H), 3.80 (bs,
1H), 2.69 (d, 1H, J = 7.0 Hz), 2.23 (d, 1H, J = 14.5 Hz), 1.86-1.91 (m, 1H), 1.43 (d, 3H, J = 7.0 Hz),
1.37 (s, 3H).

13C{*H}-NMR (125 MHz, CDCls): 6 = 209.2, 149.4, 137.5, 134.3, 128.4, 128.2, 128.1, 127.9, 122.9,
118.6, 108.5, 86.1, 83.9, 73.4 (2), 73.1, 60.7, 58.8, 33.1, 21.0, 18.8.

HRMS (ESI-TOF) m/z: calcd for C23H26NO3 [M+H]*: 364.1909, found: 364.1913.

(1R,35,4S,6S5,6aS,11bR)-4-(benzyloxy)-3,7-dimethyl-3,4,6,6a,7,11b-hexahydro-1,6-
methanooxocino[4,3-blindol-5(1H)-one (4f):

Compound 4f was synthesised from keto-cyclopropane 3 (100 mg,

0.43 mmol) and 1-methyl-1H-indole (112.80 mg, 0.86 mmol) by

following general procedure A. Yield: 148.35 mg, 95%, Rs: 0.7 (20%

Ho .
u CHs EtOAc/hexane), colourless oil.

IR (neat): 2930, 2872, 2363, 1708, 1604 cm™.

1H-NMR (500 MHz, CDCl3): & = 7.29-7.38 (m, 5H), 7.09 (d, 1H, J = 7.0 Hz), 7.07 (t, 1H, J = 7.5 Hz),
6.61 (t, 1H, J = 7.5 Hz), 6.31 (d, 1H, J = 7.5 Hz), 4.83 (d, 1H, J = 11.5 Hz), 4.61 (d, 1H, J = 4.5 Hz),
4.39 (d, 1H, J = 11.0 Hz), 4.13 (d, 1H, J = 8.5 Hz), 4.10 (d, 1H, J = 8.5 Hz), 3.85 (d, 1H, J = 9.0 Hz),
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3.71-3.76 (m, 1H), 3.01 (d, 1H, J = 7.0 Hz), 2.88 (s, 3H), 2.18 (d, 1H, J = 15.0 Hz), 1.84-1.90 (m, 1H),
1.38 (d, 3H, J = 6.5 Hz).

13C{1H}-NMR (125 MHz, CDCl3): 6 = 209.8, 151.7, 137.4, 128.5 (2), 128.4, 128.2, 127.9, 124.4,
117.0, 105.3, 87.1, 86.2, 76.3, 73.5, 70.7, 55.8, 50.7, 33.2, 32.9, 19.5.

HRMS (ESI-TOF) m/z: calcd for C23H26NO3 [M+H]*: 364.1908, found: 364.1913.

TMSOTH,
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H H
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(1R,3R,4S,6S,6aS,11bR)-4-(benzyloxy)-3-((benzyloxy)methyl)-10-bromo-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-blindol-5(1H)-one (6a):

Compound 6a was synthesised from keto-cyclopropane 5 (100 mg,

0.29 mmol) and 5-bromo-1H-indole (173.92 mg, 0.88 mmol) by
BnO
. following general procedure A. Yield: 139.14 mg, 90%, R+: 0.5 (20%

EtOAc/hexane); yellow gel.

IR (neat): 3378, 3026, 2922, 2862, 2360, 1696 cm™™.

1H-NMR (500 MHz, CDCl3): § = 7.26-7.33 (m, 8H), 7.20-7.22 (m, 3H), 7.09 (dd, 1H, J = 1.5 Hz, 8.5
Hz), 6.37 (d, 1H, J = 8.5 Hz), 4.65-4.67 (m, 2H), 4.47 (d, 1H, J = 8.5 Hz), 4.40 (d, 1H, J = 12.0 Hz),
4.37 (d, 1H, J = 12.0 Hz), 4.28 (d, 1H, J = 11.5 Hz), 4.05 (bs, 1H), 3.98 (d, 1H, J = 8.5 Hz), 3.82 (s,
1H), 3.65 (dd, 1H, J = 5.0 Hz, 7.5 Hz), 3.53 (dd, 1H, J = 5.0 Hz, 9.0 Hz), 3.47 (dd, 1H, J=8.0 Hz, J =
9.0 Hz), 2.89 (d, 1H, J = 14.5 Hz), 2.85 (d, 1H, /= 7.0 Hz), 1.76-1.81 (m, 1H).

13C{*H}-NMR (100 MHz, CDCls): 6 = 208.9, 149.3, 137.7, 136.7, 131.0, 130.3, 128.8, 128.4, 128.4,
128.2,127.9,127.8, 127.8, 109.9, 109.6, 87.3, 83.5, 73.4,72.8, 70.4, 69.4, 69.0, 62.1, 51.8, 31.4.
HRMS (ESI-TOF) m/z: calcd for Ca9H29BrNO4 [M+H]*: 534.1280, found: 534.1280.
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(1R,3R,4S5,65,6aS,11bR)-4-(benzyloxy)-3-((benzyloxy)methyl)-5-oxo-1,3,4,5,6,6a,7,11b-

octahydro-1,6-methanooxocino[4,3-b]indole-10-carbonitrile (6b):

Compound 6b was synthesised from keto-cyclopropane 5 (100 mg,

B0 0.29 mmol) and 1H-indole-5-carbonitrile (125.10 mg, 0.88 mmol) by
n

BnO : following general procedure A. Yield: 83.55 mg, 60%, Rs: 0.4 (20%

EtOAc/hexane); colourless gel.

IR (neat): 3357, 3025, 2988, 2922, 2862, 2210, 1696, 1609 cm..
1H-NMR (500 MHz, CDCls): & = 7.28-7.39 (m, 5H), 4.94-4.96 (m, 0.5H), 4.79-4.81 (m, 0.5H), 4.67-
4.69 (m, 1.5H), 4.55 (d, 0.5H, J = 12.0 Hz), 3.95-3.98 (m, 1H), 3.52-3.55 (m, 1.5H), 3.27-3.29 (m,
0.5H), 2.05-2.08 (m, 0.5H), 1.95-2.00 (m, 0.5H), 1.60-1.81 (m, 2H), 1.49-1.55 (m, 1H);
13C{'H}-NMR (125 MHz, CDCls): & = 208.4, 153.4, 137.6, 136.6, 133.9, 128.8, 128.5, 128.4, 128.4,
128.3,127.9, 127.8, 120.2, 107.2, 100.0, 87. 3, 83.4, 73.4, 72.8, 70.5, 69.2, 68.9, 61.5, 51.0, 31.3.
HRMS (ESI-TOF) m/z: calcd for CsoH29N204 [M+H]*: 481.2127, found: 481.2126.

(1R,3R,4S5,6S5,6aS,11bR)-4-(benzyloxy)-3-((benzyloxy)methyl)-10-nitro-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (6c):

Compound 6¢ was synthesised from keto-cyclopropane 1 (100 mg,

B0 0.29 mMol) and 5-nitro-1H-indole (142.69 mg, 0.88 mMol) by

BnO : following general procedure A. Yield: 127.64, 88%, Rs: 0.6 (30%

EtOAc/hexane); yellow oil.

IR (neat): 3356, 3031, 2921, 2865, 1699, 1609 cm™.

1H-NMR (500 MHz, CDCls): & = 8.02 (bs, 1H), 8.00 (dd, 1H, J = 2.0 Hz, 8.5 Hz), 7.28-7.34 (m, 8H),
7.20-7.22 (m, 2H), 6.41 (d, 1H, J = 8.5 Hz), 4.78 (bs, 1H), 4.70 (d, 1H, J = 4.5 Hz), 4.66 (d, 1H, J =
12.0 Hz), 4.60 (d, 1H, J = 8.5 Hz), 4.41 (d, 1H, J = 11.5 Hz), 4.38 (d, 1H, J = 11.5 Hz), 4.29 (d, 1H, J =
11.5 Hz), 4.01 (d, 1H, J = 8.5 Hz), 3.85 (d, 1H, J = 1.0 Hz), 3.64 (dd, 1H, J = 5.0 Hz, 8.0 Hz), 3.55 (dd,
1H, J = 4.5 Hz, 9.0 Hz), 3.48 (dd, 1H, J = 7.5 Hz, 9.0 Hz), 2.97 (d, 1H, J = 14.5 Hz), 2.87 (d, 1H, J =
7.0 Hz), 1.73-1.78 (m, 1H).

13C{!H}-NMR (100 MHz, CDCls): 6 = 208.2, 155.3, 139.4, 137.6, 136.5, 128.8, 128.4, 128.3, 128.1,
127.9,127.6, 126.8, 121.6, 105.6, 87.2, 83.3, 73.4, 72.8, 70.5, 69.5, 69.2, 61.2, 50.7, 31.3.
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HRMS (ESI-TOF) m/z: calcd for Ca9H29N206 [M+H]*: 501.2026, found: 501.2026.

(1R,3R,4S5,65,6aS,11bR)-4-(benzyloxy)-3-((benzyloxy)methyl)-7-methyl-3,4,6,6a,7,11b-
hexahydro-1,6-methanooxocino[4,3-b]indol-5(1H)-one (6d):

Compound 6d was synthesised from keto-cyclopropane 1 (100 mg,

BnO
BnO

0.29 mmol) and 1-methyl-1H-indole (115.42 mg, 0.88 mmol) by
following general procedure A. Yield: 97.98 mg, 72%, Rs: 0.7 (20%

EtOAc/hexane); colourless oil.

IR (neat): 3028, 2917, 2866, 2360, 2320, 1695 cm™™.
1H-NMR (500 MHz, CDCls): 6 = 7.28-7.34 (m, 8H), 7.22-7.23 (m, 2H), 7.11 (d, 1H, J = 7.5 Hz), 7.07
(t, 1H,J = 7.5 Hz), 6.61 (t, 1H, J = 7.5 Hz), 6.30 (d, 1H, J = 8.0 Hz), 4.69 (d, 1H, J = 4.5 Hz), 4.67 (d,
1H, J = 12. 0 Hz), 4.42 (d, 1H, J = 12.0 Hz), 4.40 (d, 1H, J = 12.0 Hz), 4.31 (d, 1H, J = 11.5 Hz), 4.10
(d, 1H, J = 8.5 Hz), 3.97 (d, 1H, J = 9.0 Hz), 3.86 (d, 1H, J = 1.0 Hz), 3.71 (dd, 1H, J = 5.0 Hz, 8.0 Hz),
3.56 (dd, 1H, J = 5.0 Hz, 9.0 Hz), 3.50 (dd, 1H, J = 8.0 Hz, J = 9.0 Hz), 2.97 (d, 1H, J = 7.0 Hz), 2.92
(d, 1H, J = 14.5 Hz), 2.85 (s, 3H), 1.70-1.75 (m, 1H).
13C{*H}-NMR (100 MHz, CDCls): & = 209.3, 151.5, 137.7, 136.7, 128.7, 128.4, 128.4, 128.2, 128.1,
127.8,127.8, 124.5, 117.0, 105. 3, 87.5, 83.8, 77.3, 76.5, 73.4, 72.7, 70.2, 69.4, 57.8, 50.3, 32.8,
31.5.
HRMS (ESI-TOF) m/z: calcd for CsoH32NO4 [M+H]*: 470.2331, found: 470.2333.
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(1S,3S,6R,6aR,11bS)-3-((benzyloxy)methyl)-10-bromo-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-blindol-5(1H)-one (8a):

Compound 8a was synthesised from keto-cyclopropane 7 (100 mg,

0.43 mmol) and 5-bromo-1H-indole (168.91 mg, 0.86 mmol) by
BnO

following general procedure A. Yield: 157.93, 86%, Rs: 0.4 (20%

EtOAc/hexane), yellow oil.

8a

IR (neat): 3360, 3029, 2922, 2861, 1696 cm™.

1H-NMR (500 MHz, CDCl3): & = 7.28-7.37 (m, 5H), 7.23-7.34 (m, 1H), 7.10 (dd, 1H, J = 0.5 Hz, 2.0
Hz), 6.38 (d, 1H, J = 8.5 Hz), 4.73 (d, 1H, J = 5.0 Hz), 4.60 (d, 1H, J = 12.5 Hz), 4.54 (d, 1H, J = 12.0
Hz), 4.51 (d, 1H, J = 9.5 Hz), 4.05 (bs, 1H), 3.99 (d, 1H, J = 8.5 Hz), 3.78-3.82 (m, 1H), 3.52 (dd, 1H,
J=5.0Hz,J=9.5Hz), 3.44 (dd, 1H, J = 5.0, J = 10 Hz), 2.86-2.93 (m, 2H), 2.54, (d, 1H, J = 16.0),
2.25(d, 1H, J = 14.5 Hz), 1.92-1.97 (m, 1H).

13C{*H}-NMR (125 MHz, CDCls): 6 = 211.5,149.2, 137.7,131.0, 130.1, 128.5, 127.9, 127.8, 127.7,
109.8, 109.6, 87.1, 73.6, 73.2, 69.0, 68.3, 63.3, 52.5, 48.7, 34.1.

HRMS (ESI-TOF) m/z: calcd for C22H23BrNO3 [M+H]*: 428.0861, found: 428.0862.

(15,3S5,6R,6aR,11bS)-3-((benzyloxy)methyl)-5-oxo-1,3,4,5,6,6a,7,11b-octahydro-1,6-

methanooxocino[4,3-blindole-10-carbonitrile (8b):

Compound 8b was synthesised from keto-cyclopropane 7 (100 mg,

0.43 mmol) and 1H-indole-5-carbonitrile (122.28 mg, 0.86 mmol) by
BnO

following general procedure A. Yield: 128.71 mg, 80%, Rs: 0.5 (40%

EtOAc/hexane), colourless oil.

IR (neat): 3357, 3015, 2923, 2862, 2359, 2211, 1698 cm..
1H-NMR (500 MHz, CDCl3): & = 7.28-7.37 (m, 7H), 6.45 (d, 1H, J = 8.0 Hz), 4.72 (d, 1H, J = 5.0 Hz),
4.54-4.61 (m, 4H), 3.99 (d, 1H, J = 8.5 Hz), 3.76-3.80 (m, 1H), 3.54 (dd, 1H, J = 5.0 Hz, J = 9.5 Hz),
3.44 (dd, 1H, J = 5.0 Hz, J = 9.5 Hz), 2.87-2.94 (m, 2H), 2.56 (d, 1H, J = 15.5 Hz), 2.30 (d, 1H, J =
15.0 Hz), 1.88-1.94 (m, 1H).
13C{IH}-NMR (125 MHz, CDCls): 6 = 211.0, 153.4, 137.7, 134.0, 128.5, 128.5, 128.2, 127.9, 127.8,
120.2, 107.2, 100.0, 87.1, 73.7, 73.2, 69.1, 68.2, 62.7, 51.7, 48.7, 34.0.
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HRMS (ESI-TOF) m/z: calcd for Ca3H23N203 [M+H]*: 375.1709, found: 375.1714.

Compound exo-8c and endo-8c was synthesised from keto-cyclopropane 7 (100 mg, 0.43 mmol)
and 3-methyl-1H-indole (112.80 mg, 0.86 mmol) by following general procedure A. Overall Yield:
146.79 mg, 94%.
(15,3S5,6R,6aS,11bS)-11b-methyl-3-phenyl-3,4,6,6a,7,11b-hexahydro-1,6-methanooxocino[4,3-
blindol-5(1H)-one (exo-8c):

Yield: 85.88 mg, 55%, Rs: 0.6 (30% EtOAc/hexane), yellow oil.

BnO IR (neat): 3361, 3040, 2964, 2927, 2862, 1698 cm™.

1H-NMR (500 MHz, CDCls): & = 7.28-7.37 (m, 5H), 7.02 (td, 1H, J= 1.0

Hz, J=7.5Hz), 6.98 (d 1H, J = 7.5 Hz), 6.71 (td, 1H, J= 0.5 Hz, J = 7.5

Hz), 6.58 (d, 1H, J = 7.5 Hz), 4.65 (d, 1H, J = 7.5 Hz), 4.56-4.62 (m, 2H),
4.02-4.07 (m, 1H), 3.97 (bs, 1H), 3.55 (dd, 1H, J = 5.5 Hz, J = 10.0 Hz), 3.45-3.48 (m, 1H), 2.96 (dd,
1H,J=11.0Hz, J = 16.0 Hz), 2.75 (d, 1H, J = 8.0 Hz), 2.50 (d, 1H, J = 16.0 Hz), 2.50 (d, 1H, /= 16.0
Hz), 2.19 (d, 1H, J = 15.0 Hz), 1.90-1.96 (m, 1H), 1.46 (s, 3H).

13C{*H}-NMR (125 MHz, CDCls): 6 =211.4,148.2, 137.8,134.9, 128.4,128.2, 127.8,127.7, 122.7,
119.0, 108.8, 87.2, 73.6, 73.4, 73.4, 69.1, 64.8, 58.6, 47.0, 35.8, 20.4.

HRMS (ESI-TOF) m/z: calcd for C23H26NO3 [M+H]*: 364.1913, found: 364.1910

(1S,3S,6R,6aR,11bR)-3-((benzyloxy)methyl)-11b-methyl-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-blindol-5(1H)-one (endo-8c):

Yield: 72.39 mg, 41%, R¢: 0.3 (30% EtOAc/hexane), yellow gel.
0 CHg -1
BnO IR (neat): 3373, 3030, 2954, 2863, 1695 cm™.
N 1H-NMR (500 MHz, CDCls): § = 7.21-7.31 (m, 3H), 7.19 (dd, 1H, J= 0.5
O H
ondo.8e Hz, J = 7.5 Hz), 7.14-7.16 (m, 2H), 7.05 (td, 1H, J = 1.0 Hz, J = 7.5 Hz),

6.73 (td, 1H, J= 1.0 Hz, J = 7.5 Hz), 6.51 (d, 1H, J = 8.0 Hz), 4.59 (d, 1H,
J=5.0 Hz), 4.17-4.25 (m, 3H), 4.08 (d, 1H, J = 12.0 Hz), 3.43-3.42 (m, 1H), 3.24 (t, 1H, J = 8.0 Hz),
3.01-3.07 (m, 2H), 2.90 (dd, 1H, J = 11.0 Hz, J = 15.5 Hz), 2.39 (d, 1H, J = 15.0 Hz), 2.19-224 (m,
2H), 1.41 (s, 3H).
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13C{*H}-NMR (125 MHz, CDCl3): 6 = 212.6, 150.7, 138.1, 130.2, 128.4, 128.2, 127.4, 127.4, 125.0,
118.9, 109.1, 87.4,73.9,73.1,72.3,67.3,58.4,57.9, 48.5, 35.8, 30.4.
HRMS (ESI-TOF) m/z: calcd for C3H26NO3 [M+H]*: 364.1913, found: 364.1942

(15,3S,6R,6aR,11bS)-3-((benzyloxy)methyl)-7-methyl-3,4,6,6a,7,11b-hexahydro-1,6-
methanooxocino[4,3-b]indol-5(1H)-one (8d):

Compound 8d was synthesised from keto-cyclopropane 7 (100 mg,

0.43 mmol) and 1-methyl-1H-indole (112.08 mg, 0.86 mmol) by

BnO
" following general procedure A. Yield: 143.66 mg, 92%, R¢: 0.6 (20%

EtOAc/hexane), yellow oil.

IR (neat): 3030, 2932, 2862, 2798, 1697, 1603 cm™.

1H-NMR (500 MHz, CDCl3): & = 7.28-7.32 (m, 5H), 7.11 (d, 1H, J = 7.5 Hz), 7.07 (t, 1H, J = 7.5 Hz),
6.61 (td, 1H, J= 0.5 Hz, J = 7.5 Hz), 6.30 (d, 1H, J = 7.5 Hz), 4.76 (d, 1H, J = 5.0 Hz), 4.61 (d, 1H, J =
12.0 Hz), 4.56 (d, 1H, J = 12.0 Hz), 4.16 (d, 1H, J = 8.5 Hz), 3.98 (d, 1H, J = 8.5 Hz), 3.81-3.85 (m,
1H), 3.54 (dd, 1H, J = 5.0 Hz, J = 10.0 Hz), 3.45 (dd, 1H, J = 4.5 Hz, J = 9.5 Hz), 2.92-2.98 (m, 2H),
2.85 (s, 3H), 2.54 (d, 1H, 15.5 Hz), 2.26 (d, 1H, 14.5 Hz), 1.85-1.90 (m, 1H).

13C{'H}-NMR (100 MHz, CDCls): & = 212.0, 151.3, 137.7, 128.4, 128.0, 127.8, 124.4, 116.9, 105.2,
87.4,75.7,73.5,73.3, 68.9, 58.6, 51.1, 49.0, 34.2, 32.6.

HRMS (ESI-TOF) m/z: calcd for CasH2sNO3 [M+H]*: 364.1913, found: 364.1914.
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(15,3S5,6R,6aR,11bS)-10-bromo-3-phenyl-3,4,6,6a,7,11b-hexahydro-1,6-methanooxocino[4,3-
blindol-5(1H)-one (10a):

Compound 10a was synthesised from keto-cyclopropane 9 (100
mg, 0.53 mmol) and 5-bromo-1H-indole (208.46 mg, 1.06 mmol)
by following general procedure A. Yield: 182.71 mg, 90%, Rs: 0.4
(20% EtOAc/hexane), yellow oil.

IR (neat): 3365, 3029, 2940, 2128, 1696 cm™.

1H-NMR (500 MHz, CDCls): & = 7.29-7.39 (m, 5H), 7.21 (bs, 1H), 7.11 (dd, 1H, J = 2.0 Hz, 8.0 Hz),
6.41 (d, 1H, J = 8.5 Hz), 4.84 (d, 1H, J = 5.5 Hz), 4.68-4.72 (m, 2H), 4.15 (d, 1H, J = 8.5 Hz), 4.12 (bs,
1H), 3.22 (dd, 1H, J = 10.5 Hz, 15.5 Hz), 2.95 (d, 1H, J = 7.0 Hz), 2.63 (d, 1H, J = 15.5 Hz), 2.39 (d,
1H, J = 14.5 Hz), 2.02-2.07 (m, 1H).

13C{H}-NMR (125 MHz, CDCls): & = 211.3, 149.2, 141.7, 131.1, 130.2, 128.7, 128.1, 127.7, 125.8,
109.9, 109.6, 87.4, 72.3, 68.6, 63.1, 54.2, 52.5, 34.1.

HRMS (ESI-TOF) m/z: calcd for CaoH19BrNO; [M+H]*: 384.0599, found: 384.0598.

(15,3S5,6R,6aR,11bS)-9-bromo-3-phenyl-3,4,6,6a,7,11b-hexahydro-1,6-methanooxocino[4,3-
blindol-5(1H)-one (10b):

Compound 10b was synthesised from keto-cyclopropane 9 (100
mg, 0.53 mmol) and 6-bromo-1H-indole (208.46 mg, 1.06 mmol)
by following general procedure A. Yield: 186.76 mg, 92%, Rs: 0.6
(20% EtOAc/hexane), yellow solid.

IR (neat): 3390, 3028, 2925, 1695 cm™.

1H-NMR (500 MHz, CDCls): 6 = 7.29-7.39 (m, 5H) 6.95(dd, 1H, J = 1.0 Hz, J = 8.0 Hz) 6.79 (dd, 1H,
J=1.5Hz,J=7.5Hz),6.66 (d, 1H, J = 2.0 Hz), 4.82 (d, 1H, J = 5.0 Hz), 4.69-4.72 (m, 2H), 4.19 (s,
1H), 4.11 (d, 1H, J = 8.5 Hz), 3.23 (dd, 1H, J = 10.5 Hz, J = 15.0 Hz), 2.95 (d, 1H, J = 7.0 Hz), 2.63 (d,
1H, J = 16.0 Hz), 2.39 (d, 1H, J = 15.0 Hz), 2.02-2.07 (m, 1H).

13C{*H}-NMR (100 MHz, CDCl5): 6 = 211.3,151.5, 141.7, 128.8, 128.1, 126.9, 125.9, 125.8, 122.0,
121.3,111.2,87.4,72.3, 68.6, 63.0, 54.1, 52.0, 34.1.

HRMS (ESI-TOF) m/z: calcd for C20H19BrNO; [M+H]*: 384.0599, found: 384.0591.
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Compound exo-10c and endo-10c was synthesised from keto-cyclopropane 9 (100 mg, 0.53
mmol) and 3-methyl-1H-indole (139.04 mg, 1.06 mmol) by following general procedure A. Overall
Yield: 169.51 mg, 96%.
(15,3S5,6R,6aS,11bS)-11b-methyl-3-phenyl-3,4,6,6a,7,11b-hexahydro-1,6-methanooxocino[4,3-
blindol-5(1H)-one (exo-10c):

Yield: 96.41 mg, 57%, Rs: 0.6 (30% EtOAc/hexane), yellow solid.
Crystallization: Compound exo-10c (80 mg) was dissolved in 5 ml 10%

EtOAc/hexane. The solution was slightly warmed to 50 °C in an open

container, allowed to cool to room temperature and kept without

exo-10c

disturbing for slow evaporation of solvent. Crystals were found to be
accumulating slowing. After complete evaporation of solvents, crystals were filtered, washed with
hexane and dried.

IR (neat): 3369, 2935, 2929, 2360, 1696 cm™.

1H-NMR (500 MHz, CDCls): 6 = 7.30-7.39 (m, 5H), 7.04 (td, 1H, J = 1.5 Hz, 7.5 Hz), 6.98 (d, 1H, J =
7.5 Hz), 6.72 (td, 1H, J = 1.5 Hz, 7.5 Hz), 6.60 (d, 1H, J = 7.5 Hz), 4.93 (d, 1H, J = 11.0 Hz), 4.76 (d,
1H, J = 4.5 Hz), 4.15 (bm, 2H), 3.32 (dd, 1H, J=11.0 Hz, 16.0 Hz), 2.84 (d, 1H, J = 7.5 Hz), 2.59 (d,
1H, J=16.0 Hz), 2.33 (d, 1H, J = 14.5 Hz), 1.99-2.05 (m, 1H), 1.53 (s, 3H).

13C{'H}-NMR (125 MHz, CDCl3): 6 =211.2, 148.4,142.0, 134.9, 128.8, 128.2, 128.1, 125.8, 122.7,
119.0, 108.8, 87.6, 73.7,72.4, 64.7, 58.6, 52.0, 35.7, 20.7.

HRMS (ESI-TOF) m/z: calcd for C21H22NO; [M+H]*: 320.1651, found: 320.1655.

(15,3S5,6R,6aR,11bR)-11b-methyl-3-phenyl-3,4,6,6a,7,11b-hexahydro-1,6-methanooxocino[4,3-
blindol-5(1H)-one (endo-10c):

Yield: 60.81 mg, 32%, R¢: 0.6 (30% EtOAc/hexane), yellow oil.
IR (neat): 3377, 3030, 2957, 2359, 1694 cm™.
1H-NMR (500 MHz, CDCls): & = 7.15-7.20 (m, 5H), 6.79 (td, 1H, J = 1.0

Hz, J = 7.5 Hz), 6.74-6.76 (m, 2H), 6.62 (d, 1H, J = 8.0 Hz), 4.65 (d, 1H,

J=5.0Hz), 4.36 (bs, 1H), 4.24 (d, 1H, J = 9.0 Hz), 4.20 (d, 1H, J = 11.5
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Hz), 3.31-3.34 (m, 1H), 3.27 (dd, 1H, J = 11.5 Hz, J = 15.0 Hz), 2.52 (d, 1H, J = 14.5 Hz), 2.33-2.37
(m, 1H), 2.26-2.31 (m, 1H), 1.45 (s, 3H).

13C{*H}-NMR (100 MHz, CDCls): 6 = 212.1, 150.8, 141.7, 130.3, 128.5, 128.4, 127.8, 126.2, 125.1,
118.9,109.2, 87.8, 73.9, 71.3, 58.3, 58.0, 52.2, 35.8, 30.3.

HRMS (ESI-TOF) m/z: calcd for C21H22NO2 [M+H]*: 320.1651, found: 320.1652.

Compound exo-10d and endo-10d was synthesised from keto-cyclopropane 9 (100 mg, 0.53
mmol) and 2,3-dimethyl-1H-indole (153.79 mg, 1.06 mmol) by following general procedure A.
Overall Yield: 169.51 mg, 96%.
(15,3S,6R,6aS,11bS)-6a,11b-dimethyl-3-phenyl-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-blindol-5(1H)-one (exo-10d):

Yield: 97.11 mg, 55%, Rs: 0.5 (20% EtOAc/hexane), yellow solid.
Crystallization: Compound exo-10d (80 mg) was dissolved in 5 ml

10% EtOAc/hexane. The solution was slightly warmed to 50 °C in an

open container, allowed to cool to room temperature and kept

exo-10d

without disturbing for slow evaporation of solvent. Crystals were
found to be accumulating slowing. After complete evaporation of solvents, crystals were filtered,
washed with hexane and dried.

IR (neat): 3386, 2983, 2943, 1691 cm.

'H-NMR (500 MHz, CDCl3): & = 7.29-7.38 (m, 5H), 7.00 (td, 1H, J= 1.0 Hz, J = 7.5 Hz), 6.96 (dd, 1H,
J=0.5Hz,J=7.5Hz),6.67 (td, 1H, J = 1.0 Hz, J = 7.5 Hz), 6.46 (d, 1H, J = 8.0 Hz), 5.01 (d, 1H, J =
11.0 Hz), 4.66 (d, 1H, J = 4.5 Hz), 3.96 (bs, 1H), 3.31 (dd, 1H, J = 11.5 Hz, J = 16 Hz), 2.99 (d, 1H, J
=7.5Hz),2.59 (d, 1H, J = 16.0 Hz), 2.32 (d, 1H, J = 15.0 Hz) 2.07-2.12 (m, 1H), 1.52 (s, 3H), 1.50 (s,
3H).

13¢{*H}-NMR (125 MHz, CDCl3): 6 = 210.5, 147.9, 142.1, 135.6, 128.8, 128.6, 128.2, 128.1, 125.8,
123.7,118.4,107.3, 89.8, 74.5, 73.0, 68.5, 60.3, 52.4, 33.3, 21.6, 18.6.

HRMS (ESI-TOF) m/z: calcd for C2H24NO2 [M+H]*: 334.1807, found: 334.1804.
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(15,3S,6R,6aR,11bR)-6a,11b-dimethyl-3-phenyl-3,4,6,6a,7,11b-hexahydro-1,6-
methanooxocino[4,3-blindol-5(1H)-one (endo-10d):

Yield: 72.39 mg, 41%, Rs: 0.3 (20% EtOAc/hexane), yellow oil.

O ’ O IR (neat): 3361, 2959, 2359, 1692 cm'L.
N 1H-NMR (500 MHz, CDCls): 6 = 7.14-7.18 (m, 5H), 6.78 (td, 1H, J= 0.5
3H

endo 10d Hz, J = 7.5 Hz), 6.74-6.76 (m, 2H), 6.58 (d, 1H, J = 7.5 Hz), 4.64 (d, 1H,

J=5.0 Hz), 4.40 (d, 1H, J = 11.5 Hz), 4.10 (bs, 1H), 3.22 (d, 1H, J= 11.5
Hz, J = 11.5 Hz), 3.00 (dd, 1H, J = 7.0 Hz), 2.44 (d, 1H, J = 15.0 Hz), 2.37 (d, 1H, J = 15.5 Hz), 2.26-
2.31 (m, 1H), 1.43 (s, 3H), 1.40 (s, 3H).

13C{H}-NMR (125 MHz, CDCls): & = 211.3, 149.3, 142.0, 130.4, 128.6, 128.4, 127.7, 126.2, 125.4,
118.8,108.8, 90.3, 76.5, 71.2, 65.9, 60.3, 52.0, 34.6, 27.3, 24.4.

HRMS (ESI-TOF) m/z: calcd for Ca;H2aNO, [M+H]*: 334.1807, found: 334.1806.

(1R,3S,6S,6aS,11bR)-7-methyl-3-phenyl-3,4,6,6a,7,11b-hexahydro-1,6-methanooxocino[4,3-
blindol-5(1H)-one (10e):

Compound 10e was synthesised from keto-cyclopropane 9 (100 mg,
0.53 mmol) and 1-methyl-1H-indole (139.04 mg, 1.06 mmol) by
following general procedure A. Yield: 143.77 mg, 85%, Rs: 0.5 (10%

EtOAc/hexane), yellow solid.

Crystallization: Compound 10e (100 mg) was dissolved in 10 ml 2%
EtOAc/hexane. The solution was slightly warmed to 50 °C in an open container, allowed to cool
to room temperature and kept without disturbing for slow evaporation of solvent. Crystals were
found to be accumulating slowing. After complete evaporation of solvents, crystals were filtered,
washed with hexane and dried.

IR (neat): 3050, 2936, 2881, 2359, 1692 cm™.

'H-NMR (500 MHz, CDCl3): 6 = 7.29-7.38 (m, 5H), 7.07-7.11 (m, 2H), 6.62 (td, 1H, J = 1.0 Hz, 7.5
Hz), 6.33 (d, 1H, J = 7.5 Hz), 4.86 (d, 1H, J = 5.0 Hz), 4.73 (d, 1H, J = 11.0 Hz), 4.31 (d, 1H, J = 8.5
Hz), 4.13 (d, 1H, J = 8.5 Hz), 3.26 (dd, 1H, J=11.0 Hz, 15.5 Hz), 3.06 (d, 1H, J = 7.0 Hz), 2.90 (s, 3H),
2.63 (d, 1H, J = 15.5 Hz), 2.41 (d, 1H, J = 14.5 Hz), 1.96-2.01 (m, 1H).
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13C{*H}-NMR (100 MHz, CDCl5): 6 =211.6, 151.4, 141.9, 128.7, 128.5, 128.1, 128.0, 125.8, 124.5,
117.1,105.3, 87.6, 76.0, 72.3, 58.6, 54.4, 51.0, 34.2, 32.8.
HRMS (ESI-TOF) m/z: calcd for C21H22NO2 [M+H]*: 320.1651, found: 320.1651.

MeO MeO.
R3
o . TMSOTY,
R QA 4A MS
RZ — »
RS N 1,2-DCE, -10 °C
o * R’

(15,3S5,6R,6aR,11bS)-10-bromo-3-(4-methoxyphenyl)-3,4,6,6a,7,11b-hexahydro-1,6-
methanooxocino[4,3-blindol-5(1H)-one (12a):

Compound 12a was synthesised from keto-cyclopropane 11 (100
mg, 0.45 mmol) and 5-bromo-1H-indole (179.79 mg, 0.91 mmol)
by following general procedure A. Yield: 149.45 mg, 79%, Rs: 0.4
(30% EtOAc/hexane), white powder.

IR (neat): 3398, 2958, 2837, 2360, 1695 cm™.

1H-NMR (500 MHz, CDCls): & = 7.26-7.28 (m, 2H), 7.21-7.22 (m, 1H), 7.11 (dd, 1H, J = 1.0 Hz, J =
2.0 Hz), 6.88-6.91 (m, 2H), 6.41 (d, 1H, J = 8.0 Hz), 4.82 (d, 1H, J = 5.0 Hz), 4.65-4.69 (m, 2H) 4.09-
4.15 (m, 2H), 3.80 (s, 3H), 3.23 (dd, 1H, J = 11.0 Hz, J = 16.0 Hz), 2.95 (d, 1H, J = 7.0 Hz), 2.61 (d,
1H, J = 15.5 Hz), 2.38 (d, 1H, J = 14.5 Hz), 2.00-2.06 (m, 1H).

13C{H}-NMR (125 MHz, CDCls): 6 = 211.4, 159.4, 149.2, 134.0, 131.1, 130.2, 127.7, 127.0, 114.1,
109.9, 109.6, 87.3, 71.9, 68.6, 63.1, 55.3, 54.1, 52.5, 34.1.

HRMS (ESI-TOF) m/z: calcd for Ca1H21BrNOs [M+H]*: 414.0705, found: 414.0705.

(15,3S5,6R,6aR,11bS)-9-bromo-3-(4-methoxyphenyl)-3,4,6,6a,7,11b-hexahydro-1,6-
methanooxocino[4,3-blindol-5(1H)-one (12b):
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Compound 12b was synthesised from keto-cyclopropane 11
(100 mg, 0.45 mmol) and 6-bromo-1H-indole (179.79 mg, 0.91
mmol) by following general procedure A. Yield: 148.70 mg,
80%, Rs: 0.6 (30% EtOAc/hexane), white powder.

IR (neat): 3399, 2960, 2934, 2835, 1694 cm™™.

1H-NMR (500 MHz, CDCl3): & = 7.26-7.28 (m, 2H), 6.95 (d, 1H, J = 8.0 Hz), 6.88-6.90 (m, 2H), 6.78
(dd, 1H, J = 1.5 Hz, J = 7.5 Hz), 6.65 (d, 1H, J = 1.5 Hz), 4.79 (d, 1H, J = 5.0 Hz), 4.65-4.69 (m, 2H),
4.18 (s, 1H), 4.09 (d, 1H, J = 9.0 Hz), 3.80 (s, 3H), 3.23 (dd, 1H, J = 11.0 Hz, J = 15.5 Hz), 2.94 (d,
1H,J=7.0Hz), 2.60 (d, 1H, J = 15.5 Hz), 2.38 (d, 1H, J = 14.5 Hz), 2.00-2.06 (m, 1H).

13C{*H}-NMR (100 MHz, CDCls): 6 = 211.4, 159.3, 151.5, 134.0, 127.0, 126.9, 125.9, 122.0, 121.3,
114.1,111.2, 87.3, 71.9, 68.6, 63.0, 55.3, 54.1, 52.0, 34.1.

HRMS (ESI-TOF) m/z: calcd for C21H21BrNOs3 [M+H]*: 414.0705, found: 414.0702.

Compound exo-12c and endo-12c was synthesised from keto-cyclopropane 11 (100 mg, 0.45
mmol) and 3-methyl-1H-indole (119.36 mg, 0.91 mmol) by following general procedure A. Overall
Yield: 148.71 mg, 93%.
(15,3S5,6R,6aS,11bS)-3-(4-methoxyphenyl)-11b-methyl-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-blindol-5(1H)-one (exo-12c):

MeO Yield: 92.74 mg, 58%, R¢: 0.6 (40% EtOAc/hexane), white powder.
e

IR (neat): 3373, 3040, 2931, 2833, 2359, 1695 cm™.
'H-NMR (500 MHz, CDCls): & = 7.29-7.32 (m, 2H), 7.04 (td, 1H, J =

1.5 Hz, J = 7.5 Hz), 6.98 (dd, 1H, J = 7.5 Hz), 6.89-6.92 (m, 2H), 6.72

(td, 1H, J = 1.0 Hz, J = 7.5 Hz), 6.60 (d, 1H, J = 8.0 Hz), 4.88 (d, 1H, J
=11.0 Hz), 4.73 (d, 1H, J = 4.5 Hz), 4.14 (s, 2H), 3.81 (s, 3H), 3.32 (dd, 1H, J = 11.0 Hz, J = 16.0 Hz),
2.83 (d, 1H, J = 8.0 Hz), 2.58 (d, 1H, J = 15.5 Hz), 2.32 (d, 1H, J = 15.0 Hz), 1.99-2.03 (m, 1H), 1.53
(s, 3H).

13C{*H}-NMR (125 MHz, CDCls): 6 = 211.3, 159.4, 148.4, 134.9, 134.3, 128.2, 127.0, 122.7, 119.0,
114.1, 108.8, 87.5, 73.7, 71.9, 64.7, 58.6, 55.3, 51.9, 35.6, 20.7.

HRMS (ESI-TOF) m/z: calcd for C2H24NO3 [M+H]*: 350.1756, found: 350.1759.
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(15,3S5,6R,6aR,11bR)-3-(4-methoxyphenyl)-11b-methyl-3,4,6,6a,7,11b-hexahydro-1,6-

methanooxocino[4,3-b]indol-5(1H)-one (endo-12c):

Yield: 55.90 mg, 35%, R¢: 0.4 (30% EtOAc/hexane), brown solid.
Crystallization: Compound endo-12c (50 mg) was dissolved in 5 ml

10% EtOAc/hexane. The solution was slightly warmed to 50 °C in

an open container, allowed to cool to room temperature and kept

endo-12c

without disturbing for slow evaporation of solvent. Crystals were

found to be accumulating slowing. After complete evaporation of solvents, crystals were filtered,
washed with hexane and dried.

IR (neat): 3377, 3049, 2955, 2067, 1695 cm™.

1H-NMR (500 MHz, CDCls): 6 = 7.18 (dd, 1H, /= 0.5 Hz, J= 7.5 Hz), 7.15 (td, 1H, J= 1.5 Hz, /= 8.0
Hz), 6.79 (td, 1H, J = 1.0 Hz, J = 7.5 Hz), 6.69-6.71 (m, 2H), 6.63-6.65 (m, 2H), 6.60 (d, 1H, J = 7.5
Hz), 4.61 (d, 1H, J = 5.0 Hz), 4.31 (bs, 1H), 4.23 (d, 1H, J = 9.5 Hz), 4.13 (d, 1H, J = 11.5 Hz), 3.72 (s,
3H), 3.31 (t, 1H, J = 8.0 Hz), 3.26 (dd, 1H, J = 11.5 Hz, J = 15.5 Hz), 2.50 (d, 1H, J = 15.0 Hz), 2.31-
2.51 (m, 1H), 2.24-2.29 (m, 1H), 1.43 (s, 3H).

13C{*H}-NMR (125 MHz, CDCls): 6 = 212.3, 159.1, 150.8, 134.2, 130.4, 128.5, 127.5, 125.2, 118.9,
113.8,109.2, 87.8, 73.9, 70.8, 58.4, 58.0, 55.2, 52.2, 35.8, 30.3.

HRMS (ESI-TOF) m/z: calcd for C2;H24NO3 [M+H]*: 350.1756, found: 350.1746.

Single Crystal X-ray data
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Crystal data and structure refinement for 2d: CCDC: 2178374

BnO
BnO""

. Q‘
Figure $3: ORTEP representation of compound /% 2d.

The ellipsoid contour % probability levels in the caption for the image of 2d was 50%.
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Table 1 Crystal data and structure refinement for PRS17.

Identification code
Empirical formula
Formula weight
Temperature/K

Crystal system

Space group
a/A

b/A

c/A
a/°

B/

v/°
Volume/A3
VA
Peaicg/cm?
u/mm*
F(000)

Crystal size/mm?3

Radiation

PRS17
C30H28N204
480.54

297(2)
monoclinic

P2,

10.1136(4)
8.4706(3)
14.8635(6)

90

98.341(4)

90

1259.86(8)

2

1.267

0.084

508.0
0.2x0.15x0.1
Mo Ka (A =0.71073)

20 range for data collection/° 4.07 to 50.046

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2

Final R indexes [I>=20 (I)]

Final R indexes [all data]

-12<h<12,-10<k<8,-17<1<17
9720

3653 [Rint = 0.0680, Rsigma = 0.0812]
3653/1/325

0.957

R1=0.0560, wR2 =0.1199
R1=0.0893, wR2 =0.1435

Largest diff. peak/hole / e A 0.18/-0.18
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Crystal data and structure refinement for 2b: CCDC: 2178378

BnO
BnO""

Figure S4: ORTEP representation of compound 2b.

The ellipsoid contour % probability levels in the caption for the image of 2b was 50%.
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Table 2 Crystal data and structure refinement for PRS23.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A
o/°

B/

v/°

Volume/A3

VA

Peaicg/cm®
u/mm*

F(000)

Crystal size/mm?3
Radiation

PRS23
Ca9H28BrNO4
534.43
298.0(9)
monoclinic

P2,

9.9708(7)
8.7860(5)
14.8105(12)

90

101.265(6)

90

1272.45(16)

2

1.395

1.650

552.0
0.2x0.15x0.1
Mo Ka (A = 0.71073)

20 range for data collection/° 4.166 to 50.05

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [I>=20 (I)]

Final R indexes [all data]

Largest diff. peak/hole / e A3

Flack parameter

-11<h<11,-10<k<10,-17<1<16

11923

4294 [Rint = 0.1708, Rsigma = 0.1542]

4294/1/292

0.927

R1=0.0838, wR, =0.1848
R1=0.1670, wR, =0.2434
0.62/-0.82

-0.019(12)
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Crystal data and structure refinement for 4b: CCDC: 2178376

Figure S5: ORTEP representation of compound 4b.

The ellipsoid contour % probability levels in the caption for the image of 4b was 50%.
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Table 3 Crystal data and structure refinement for PRS19.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A
o/°

B/

v/°

Volume/A3

VA

Peaicg/cm?
w/mm?

F(000)

Crystal size/mm?3
Radiation

PRS19
C22H22BrNO;
428.31

298(5)
monoclinic

P2,

10.6317(8)
6.1462(4)
14.7221(13)

90

91.228(7)

90

961.79(13)

2

1.479

2.159

440.0
0.2x0.15x0.1
Mo Ka (A =0.71073)

20 range for data collection/° 4.678 to 50.05

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2

Final R indexes [I>=20 (I)]

Final R indexes [all data]

-12<h<12,-7<k<7,-17<1<17

9629

3100 [Rint = 0.2214, Rsigma = 0.1731]

3100/1/239

1.064

R1=0.0959, wR>=0.2133
R1=0.1792, wR, =0.2707

Largest diff. peak/hole / e A 0.38/-0.67

74



Crystal data and structure refinement for exo-10c CCDC: 2178377

exo-10c

Figure S6: ORTEP representation of compound exo-10c.
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The ellipsoid contour % probability levels in the caption for the image of exo-10c was 50%.

75



Table 4 Crystal data and structure refinement for PRS21A.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

o/°

B/

v/°

Volume/A3

YA

Peaicg/cm?
H/mm

F(000)

Crystal size/mm3
Radiation

PRS21A
C21H21N02
319.39

293(2)
monoclinic
P21/n
13.2190(13)
7.2388(5)
17.8617(17)

90

97.632(9)

90

1694.0(3)

4

1.252

0.080

680.0
0.2x0.15x0.1
MoKa (A = 0.71073)

20 range for data collection/°4.106 to 54.324

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [I>=20 (I)]

Final R indexes [all data]

-16<h<16,-9<k<8,-22<1<22

20210

3586 [Rint = 0.1355, Rsigma = 0.1243]

3586/0/218

0.961

R1=0.0691, wR; =0.1444
R1=0.1795, wR, =0.1900

Largest diff. peak/hole / e A 0.18/-0.21
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Crystal data and structure refinement for exo-10d: CCDC: 2178380

exo-10d

Figure S7: ORTEP representation of compound exo-10d.
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The ellipsoid contour % probability levels in the caption for the image of exo-10d was 50%.
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Table 5 Crystal data and structure refinement for prs25.

Identification code prs25

Empirical formula C2H23NO;
Formula weight 33341
Temperature/K 297.3(3)

Crystal system monoclinic
Space group P2:/n

a/A 6.6818(2)

b/A 8.9385(3)

c/A 29.8319(8)

o/° 90

B/° 92.498(3)

v/° 90

Volume/A3 1780.03(9)

VA 4

Pcalcg/cm? 1.244

pu/mm? 0.079

F(000) 712.0

Crystal size/mm? 0.2x0.15x0.1
Radiation MoKa (A =0.71073)
20 range for data collection/° 4.758 to 50.048
Index ranges -7<h<7,-10<k<9,-35<1<35
Reflections collected 15057

Independent reflections 3135 [Rint = 0.0373, Rsigma = 0.0333]
Data/restraints/parameters 3135/0/228

Goodness-of-fit on F? 1.090

Final R indexes [I>=20 (I)] R1=0.0463, wR;=0.1216

Final R indexes [all data] R:=0.0621, wR, =0.1302

Largest diff. peak/hole / e A 0.29/-0.31
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Crystal data and structure refinement for 10e: CCDC: 2178372

Figure S8: Figure S9: ORTEP representation of compound 10e.

The ellipsoid contour % probability levels in the caption for the image of 10e was 50%.
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Table 6 Crystal data and structure refinement for PRS009_0m_a.

Identification code PRS009 _0Om_a
Empirical formula C21H21NO;
Formula weight 319.39
Temperature/K 100.0

Crystal system monoclinic
Space group P2i/c

a/A 9.0756(9)

b/A 15.5049(16)
c/A 11.4337(11)
o/° 90

B/° 94.894(4)

v/° 90

Volume/A3 1603.0(3)

A 4

Pealcg/cm® 1.323

w/mm 0.085

F(000) 680.0

Crystal size/mm3 0.2x0.15x0.1
Radiation MoKa (A =0.71073)
20 range for data collection/° 4.436 to 50.052
Index ranges -10sh<10,-18<k<18,-13<1<13
Reflections collected 40159

Independent reflections 2837 [Rint = 0.1681, Rsigma = 0.1043]
Data/restraints/parameters 2837/0/218

Goodness-of-fit on F? 1.063

Final R indexes [I>=20 (I)] R1=0.0559, wR; =0.1439

Final R indexes [all data] R1=0.0803, wR; =0.1551

Largest diff. peak/hole / e A 0.17/-0.20
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Crystal data and structure refinement for endo-12c: CCDC: 2178385

12¢ (Endo)

Figure S9: ORTEP representation of compound endo-12c.

The ellipsoid contour % probability levels in the caption for the image of endo-12¢ was 50%.
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Table 7 Crystal data and structure refinement for PRS34.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A
o/°

B/

v/°

Volume/A3

VA

Peaicg/cm?
w/mm?

F(000)

Crystal size/mm?3
Radiation

PRS34
C22H23NO3
349.433
298.4(2)
monoclinic
P2./c
15.8805(17)
9.3053(8)
12.5679(12)
90
105.167(10)
90

1792.5(3)

4

1.295

0.086

744.5
0.6x0.4x0.2
Mo Ka (A =0.71073)

20 range for data collection/°5.12 to 53.98

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2

Final R indexes [I>=20 (I)]

Final R indexes [all data]

-19<h<20,-11<k<11,-15<1<15

20521

3754 [Rint = 0.5022, Rsigma = 0.3022]

3754/0/237

1.081

R1=0.1963, wR> =0.4376
R1=0.3863, wR;> =0.5547

Largest diff. peak/hole / e A 1.14/-0.96
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Chapter 2 - Part B: Post-synthetic transformation: en route to the synthesis of A,B,E tricyclic

core of calyciphylline B-Type alkaloids.

General Procedure B:

To a solution of (3+2) cycloadduct (1 Eq) in dry MeOH was added K,COs (2 Eq) at room
temperature and stirred for 24 hours. After complete conversion of starting material, the reaction
mixture was concentrated in vaco and the crude product was purified using silica gel column

chromatography to obtain the desired product.

(1R,2aS$,5S,10bS)-9-bromo-1-hydroxy-5-phenyl-2,2a,2a1,4,5,10b
hexahydrobenzo[b]cyclopenta[hi]indolizin-3(1H)-one (13):

Compound 13 was synthesized from (3+2) cycloadduct 8a (60 mg, 0.15
mmol) by following general procedure B. Yield: 58.8 mg, 98%, Rs: 0.5
(40% EtOAc/hexane), yellow Qil.

IR (neat): 3365, 2925, 2360, 2243, 1704 cm™.

’,
Y,
@

1H-NMR (500 MHz, CDCls): & = 7.28-7.39 (m, 5H), 7.17-7.19 (m, 1H),

7.08 (ddd, 1H, J= 0.5 Hz, J = 2.0 Hz, J = 8.5 Hz), 6.10 (d, 1H, J = 8.5 Hz), 4.93 (dd, 1H, J = 6.5 Hz, J =
8.0 Hz), 4.85 (dd, 1H, J = 5.5 Hz, J = 8.0 Hz), 4.38 (d, 1H, J = 3.5 Hz), 3.88 (d, 1H, J = 8.5 Hz), 3.21-
3.26 (m, 1H), 2.98 (dd, 1H J = 8.0 Hz, J = 14.0 Hz), 2.38 (dd, 1H, J = 6.0 Hz, J = 14.5 Hz), 2.08-2.12
(m, 1H), 1.69 (td, 2H, J = 3.5 Hz, J = 13.0 Hz).

13C-NMR (100 MHz, CDCls): & = 210.2, 149.7, 140.6, 131.2, 130.5, 129.0, 127.8, 127.6, 126.0,
108.8, 106.8, 79.6, 65.3, 57.2, 56.2, 53.0, 44.7, 36.3.

HRMS (ESI-TOF) m/z: calcd for CaoH19BrNO; [M+H]*: 384.0599, found: 384.0599.

(1R,2a$,5S,10bS)-9-bromo-3-oxo-5-phenyl-1,2,2a,2a1,3,4,5,10b-

octahydrobenzo[b]cyclopenta[hi]indolizin-1-yl acetate (14):
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Compound 14 was synthesized by dissolving compound 13 (50 mg,
0.15 mmol) in 1ml pyridine, adding Ac,0 (3 Eq) dropwise at 0 C and
continued stirring for 8 hours at room temperature. After completion

of reaction, pyridine was removed under reduced pressure and the

crude was purified by silica gel column chromatography using ethyl
acetate and hexane as mobile phase. Yield: 63.05 mg, 95%, Rs: 0.5 (40% EtOAc/hexane), yellow
solid.

IR (neat): 3365, 2925, 2360, 2243, 1704 cm™.

1H-NMR (500 MHz, CDCls): 6 = 7.28-7.38 (m, 5H), 7.11 (ddd, 1H, J = 0.5 Hz, J = 2.0 Hz, J = 8.5 Hz),
6.12 (d, 1H, J = 8.5 Hz), 5.16 (d, 1H, J = 4.0 Hz), 4.86-4.92 (m, 2H), 3.92 (d, 1H, J = 8.5 Hz), 3.09-
3.15 (m, 1H), 2.98 (dd, 1H, J = 8.0 Hz, J = 14.5 Hz), 2.85 (dd, 1H, 6.0 Hz, J = 14.5 Hz), 1.09 (m, 1H),
2.06 (s, 3H), 1.77 (td, 2H, J = 4.0 Hz, J = 14.0 Hz).

13C-NMR (125 MHz, CDCls): 6 = 209.2, 170.2, 149.5, 140.3, 131.5, 129.7, 129.1, 128.1, 127.8,
126.1,109.2, 106.8, 81.7, 65.1, 56.9, 53.9, 53.4, 44.3, 33.3, 21.2.

HRMS (ESI-TOF) m/z: calcd for C22H21BrNO3 [M+H]*: 426.0705, found: 426.0702.

(1R,2aS$,5S,10bS)-8-bromo-1-hydroxy-5-phenyl-2,2a,2a1,4,5,10b-
hexahydrobenzo[b]cyclopenta[hi]indolizin-3(1H)-one (15):

Compound 15 was synthesized from (3+2) cycloadduct 10b (50 mg,
0.13 mmol) by following general procedure B. Yield: 47.5 mg, 95%, Rs:
0.5 (40% EtOAc/hexane), yellow oil.

IR (neat): 3403, 2920, 2851, 1706 cm™.

'H-NMR (500 MHz, CDCl3): 6 = 7.30-7.40 (m, 5H), 6.93 (dd, 1H, J = 1.0

Hz, J = 8.0 Hz), 6.74 (dd, 1H, J = 2.0 Hz, J = 8.0 Hz), 6.36 (d, 1H, J = 1.5 Hz), 4.87-4.92 (m, 2H), 4.36
(d, 1H, J = 3.0 Hz), 3.83 (d, 1H, J = 8.0 Hz), 3.20-3.25 (m, 1H), 2.98 (dd, 1H, J = 8.0 Hz, J = 14.5 Hz),
2.85 (dd, 1H, J = 6 Hz, J= 14.5 Hz), 2.09 (dd, 1H, J=7.0 Hz, J = 13.5 Hz), 1.70 (td, 2H, J=3.5Hz, J =
13.0 Hz).

13C-NMR (125 MHz, CDCl3): 6 = 210.0, 152.0, 140.3, 129.1, 127.8, 127.4, 126.1, 125.7, 122.5,
120.3, 108.6, 79.7, 65.5, 56.9, 56.0, 53.0, 44.4, 36.3.
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HRMS (ESI-TOF) m/z: calcd for C20H19BrNO; [M+H]*: 384.0599, found: 384.0592.

(1R,2aS$,5S,10bS)-1-hydroxy-10b-methyl-5-phenyl-2,2a,2a1,4,5,10b-

hexahydrobenzo[b]cyclopenta[hi]indolizin-3(1H)-one (16):

e,
Y,
@

Compound 16 was synthesized from (3+2) cycloadduct 10c (50 mg, 0.15
mmol) by following general procedure B. Yield: 49.5 mg, 99%, Rs: 0.5
(40% EtOAc/hexane), yellow oil.

IR (neat): 3444, 3028, 2924, 1702 cm?,

1H-NMR (500 MHz, CDCls): & = 7.35-7.40 (m, 4H), 7.28-7.31 (m, 1H),

7.05 (td, 1H,/=1.5Hz, J=8.0 Hz), 7.01 (d, 1H, J=7.5 Hz), 6.68 (td, 1H, /= 1.0 Hz, = 7.5 Hz), 6.36

(d,1H,J=8.0 Hz),5.02 (t, 1H, J = 6.5 Hz), 4.24 (d, 1H, J = 7.0 Hz), 4.21 (d, 1H, J = 3.0 Hz), 3.14-3.19

(m, 1H), 2.96 (dd, 1H, J = 7.0 Hz, J = 14.5 Hz), 2.87 (dd, 1H, J = 6.0 Hz, J = 14.0 Hz), 2.01-2.05 (m,

1H), 1.71 (td, 2H, J = 3.5 Hz, J = 13.0 Hz), 1.49 (s, 3H).

3C-NMR (125 MHz, CDCl3): 6 =210.8, 150.3, 140.8,134.9, 128.9, 128.5, 127.6, 126.3,123.1, 118.0,

105.8, 80.3, 71.9, 58.7, 58.0, 52.8, 43.4, 37.2, 20.9

HRMS (ESI-TOF) m/z: [M+H]*: calcd for C21H22NO; 320.1651, found: 320.1649.

(1R,2aS$,5S5,10bS)-9-bromo-1-hydroxy-5-(4-methoxyphenyl)-2,2a,2a1,4,5,10b-

hexahydrobenzo[b]cyclopenta[hilindolizin-3(1H)-one (17):

Br

H* 17

: OMe

Compound 17 was synthesized from (3+2) cycloadduct 12a (30 mg,
0.072 mmol) by following general procedure B. Yield: 29.4 mg, 98%,
Re: 0.4 (30% EtOAc/hexane), yellow Oil.

IR (neat): 3397, 2960, 2924, 2852, 1703 cm™™.

1H-NMR (500 MHz, CDCls): & = 7.26-7.28 (m, 2H), 7.17 (bs, 1H), 7.10

(dd, 1H, J = 1.5 Hz, J = 8.5 Hz), 6.88-6.90 (m, 2H), 6.14 (d, 1H, J = 8.5 Hz), 4.83-4.88 (m, 2H), 4.80

(d, 1H, J = 3.5 Hz), 3.86 (d, 1H, J = 8.5 Hz), 3.80 (s, 3H), 3.17-3.23 (m, 1H), 2.95 (dd, 1H J = 7.5 Hz,

J=14.5 Hz), 2.80 (dd, 1H, J = 6.0 Hz, J = 14.5 Hz), 2.08 (dd, 1H, J = 7.0 Hz, J = 13.5 Hz), 1.68 (td,

2H, J = 3.5 Hz, J = 13.0 Hz).
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13C-NMR (125 MHz, CDCls3): 6 = 210.1, 159.2, 149.8, 132.4, 131.2, 130.6, 127.7, 127.3, 114.4,
108.7, 106.9, 79.7, 65.2, 56.6, 56.2, 55.3, 52.8, 44.4, 36.5.
HRMS (ESI-TOF) m/z: calcd for C21H21BrNOs3 [M+H]*: 414.0705, found: 414.0684.

(1R,2aS,5S5,10bS)-8-bromo-1-hydroxy-5-(4-methoxyphenyl)-2,2a,2a1,4,5,10b-
hexahydrobenzo[b]cyclopenta[hilindolizin-3(1H)-one (18):

Compound 18 was synthesized from (3+2) cycloadduct 12b (30 mg,
0.072 mmol) by following general procedure B. Yield: 29.1 mg, 97%,
Re: 0.4 (30% EtOAc/hexane), yellow gel.

IR (neat): 3397, 2966, 2924, 2835, 1702 cm™.

1H-NMR (500 MHz, CDCls): & = 7.26-7.28 (m, 2H), 6.89-6.93 (m, 3H),

6.74 (dd, 1H, J = 1.5 Hz, J = 7.5 Hz), 6.40 (d, 1H, J = 1.5 Hz), 4.83-4.89 (m, 2H), 4.30 (d, 1H, J = 3.0
Hz), 3.81-3.82 (m, 4H), 3.17-3.22 (m, 1H), 2.96 (dd, 1H, J = 7.0 Hz, J = 14.0 Hz), 2.82 (dd, 1H, J =
6.0 Hz, J = 14.5 Hz), 2.74 (s, 1H), 2.05-2.09 (m, 1H), 1.68 (td, 1H, J = 3.5 Hz, J = 13.5 Hz).

13C-NMR (125 MHz, CDCls): & = 210.1, 159.2, 152.1, 132.1, 127.5, 127.4, 125.7, 122.5, 120.2,
114.4,108.6, 79.7, 65.3, 56.3, 55.9, 55.3, 52.9, 44.2, 36.4.

HRMS (ESI-TOF) m/z: calcd for Ca1H21BrNO3s [M+H]*: 414.0705, found: 414.0698.

(1R,2aS$,5S,10bS)-1-hydroxy-5-(4-methoxyphenyl)-10b-methyl-2,2a,2a1,4,5,10b-
hexahydrobenzo[b]cyclopenta[hi]indolizin-3(1H)-one (19):

Compound 19 was synthesized from (3+2) cycloadduct 12c (50 mg,
0.14 mmol) by following general procedure B. Yield: 48.5 mg, 97%, Rs:
0.4 (30% EtOAc/hexane), yellow Oil.

IR (neat): 3438, 2963, 2922, 2857, 1699 cm™.

1H-NMR (500 MHz, CDCl3): & = 7.29-7.32 (m, 2H), 7.06 (td, 1H, J = 1.0

Hz, J = 7.5 Hz), 7.00 (dd, 1H, J = 0.5 Hz, J = 7.0 Hz), 6.88-6.91 (m, 2H), 6.68 (td, 1H, 1.0 Hz, J = 7.5
Hz), 6.39 (d, 1H, J = 7.5 Hz), 5.01 (t, 1H, J = 6.0 Hz), 8.40 (d, 1H, J = 3.5 Hz), 4.16 (d, 1H, J = 7.0 Hz),
3.80 (s, 3H), 3.10-3.15 (m, 1H), 2.94 (dd, 1H, J = 6.0 Hz, J = 14.0 Hz), 2.84 (dd, 1H, J = 5.5 Hz, J =
14.5 Hz), 2.01 (dd, 1H, J = 7.5 Hz, J = 13.5 Hz), 1.70 (td, 2H, J = 3.5 Hz, J = 13.0Hz), 1.47 (s, 3H).
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13C-NMR (125 MHz, CDCls): 6 = 210.9, 158.9, 150.3, 135.1, 132.5, 128.5, 127.6, 123.1, 118.0,
114.2,105.9, 80.4, 71.8, 58.6, 56.3, 55.3, 52.6, 43.0, 37.4, 20.8.
HRMS (ESI-TOF) m/z: calcd for C2H24NO3 [M+H]*: 350.1756, found: 350.1759.

(E)-1-((1S,3R,3aR,8bS)-1-hydroxy-4-methyl-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indol-3-yl)-3-
phenylprop-2-en-1-one (20):

Compound 20 was synthesized from (3+2) cycloadduct 10e (50 mg, 0.15
mmol) by following general procedure B. Yield: 38.8 mg, 97%, Rs: 0.5
(40% EtOAc/hexane), yellow oil.

IR (neat): 3398, 3052, 2926, 1680, 1603 cm™.

1H-NMR (500 MHz, CDCls): & = 7.75 (d, 1H, J = 16.0 Hz), 7.60-7.61 (m,
2H), 7.43-7.45 (m, 3H), 7.16 (d, 1H, J = 70 Hz), 7.09 (t, 1H, J = 7.5 Hz), 6.93 (d, 1H, J = 16.0 Hz),
6.66 (td, 1H, J = 1.0 Hz, J = 7.5 Hz), 6.38 (d, 1H, J = 8.0 Hz), 4.30-4.33 (m, 2H), 4.13 (d, 1H, J = 9.0
Hz), 3.85 (d, 1H, J= 9.0 Hz), 3.57-3.59 (m, 1H), 2.88 (s, 3H), 2.11-2.17 (m, 1H), 2.06-2.09 (m, 1H).
13C-NMR (125 MHz, CDCls): & = 203.8, 151.3, 145.1, 134.1, 131.1, 129.4, 129.1, 128.6, 128.2,
124.5,124.4,117.6, 106.1, 80.7, 74.6, 57.7, 55.1, 36.8, 33.8.

HRMS (ESI-TOF) m/z: [M+H]*: calcd for C21H22NO; 320.1651, found: 320.1653.
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Single crystal data:

Crystal data and structure refinement for 14: CCDC: 2178373

Figure S10: ORTEP representation of compound 14.

The ellipsoid contour % probability levels in the caption for the image of 14 was 50%.
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Table 1 Crystal data and structure refinement for PRS15_0m_a.

Identification code PRS15 Om_a
Empirical formula C22H20BrNO3
Formula weight 426.30
Temperature/K 300.0

Crystal system triclinic

Space group P-1

a/A 9.5761(12)

b/A 10.4768(12)
c/A 11.0552(13)
a/° 87.039(5)

B/ 67.724(4)

v/° 69.434(4)
Volume/A3 956.7(2)

VA 2

[-')calcg/Crn3 1.480

pw/mm-t 2.171

F(000) 436.0

Crystal size/mm?3 0.2x0.15x0.1
Radiation MoKa (A = 0.71073)
20 range for data collection/° 4 to 50.042
Index ranges -11<h<11,-12<k<12,-13<1<13
Reflections collected 21477

Independent reflections 3393 [Rint = 0.0579, Rsigma = 0.0324]
Data/restraints/parameters 3393/0/245

Goodness-of-fit on F? 1.093

Final R indexes [I>=20 (I)] R1=0.0525, wR;, = 0.1358

Final R indexes [all data] R1=0.0623, wR, = 0.1428

Largest diff. peak/hole / e A 0.96/-0.79
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Compound Characterization: H, 3C, DEPT 135 NMR data

Chapter 2 - Part A: A Ring Expansion—Stereoselective Cycloaddition of Carbohydrate-Derived
Donor—Acceptor Cyclopropanes: Synthesis of Bridged Oxepanone—Indole Hybrids.

Chapter 2 - Part B: Post-synthetic transformation: en route to the synthesis of A,B,E tricyclic
core of calyciphylline B-Type alkaloids.
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Chapter 3 - Part A

(3+2) Cycloaddition Reaction of Spiro-cyclopropane Carboxylated Sugars

and Nitriles: Synthesis of Highly Functionalized Pyrrole Derivatives

I f ~
MeOOC
+ RCN RN\
H
(3+2) Cycloaddition Reaction Highly funciignglized
\. y L pyrrole derivaties
Abstract:

A carbohydrate-derived spiro-cyclopropane carboxylates efficiently undergoes a
Lewis acid mediated [3 + 2] dipolar cycloaddition with nitriles. A chiral, highly
functionalized, 2,3,5-trisubstituted pyrrole derivative is formed as the cycloadduct
with sugar fragment intact as a polyhydroxy alkyl chain. Various alRyl and aryl
nitriles have been employed to show the generality. A multiple cascade bond making
and breaking happens including cycloaddition, dehydration, aromatization and
tautomerization occurs to afford pyrrole derivatives in good to excellent overall yield.
Further, post-synthetic transformations have been done on the cycloadducts to build

potential molecular scaffolds to show the application of the developed methodology.
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3.1.1 Introduction

Emerging as a class of heterocycles, pyrroles are frequently seen in pharmaceuticals, natural
products, and biologically active scaffolds.! They perform diverse functions as pharmacophore

and they are featured in various commercial drugs like Fluvastatin, Atorvasatin, Aloracetam and

Q -
HO, o
5 R
o “IOH
HO

"OH

SN AN ot
" o™ @ \©\F

Isamoltane Aloracetam Fluvastatin Atorvasatin
(anxiolytic effect) (Alzheimer's diseases)

Isamoltane etc. (Figure 1).2

Figure 1: Pyrrole containing bioactive molecules with pharmacological relevance.

There are several classic synthetic methods for the construction of these five membered
heterocyclic ring systems namely, Hantzsch reaction and the Paal-Knorr synthesis.? In addition,
there are several approaches recently reported for the construction of multifunctionalized or the
multi-substituted pyrroles. However, construction of polysustituted chiral pyrrole derivatives with
varied therapeutic and biological applications has grabbed tremendous attention from past few
years. And the very means of their synthesis is via carbohydrates due to their plentiful sources,
low cost, amiable reaction conditions and varied chirality. Our survey through the literature gave
insights regarding the significant use of both protected and unprotected sugars for the
construction of multi-substituted pyrrole derivatives.*

Our group has been working on the carbohydrate-derived donor acceptor cyclopropanes (DACs)
and demonstrated fascinating chemistry.®> A brief study on the past reports showed us that
carbohydrate-derived DACs are flourishing chiral synthons which are incorporated in synthesis of
pyrrole and its derivatives with the sugar fragment being intact in the product contributing to the

chirality.
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Pagenkopf and coworker in 2003,% reported cycloaddition reactions with glycal-derived 1,2-
cyclopropane carboxylate and nitrile to form the highly functionalized pyrrole derivative with
intact sugar fragment (Scheme 1, A; Chapter 1, table 2). The representative example is depicted
in scheme 1 where glucose-derived 1,2-cyclopropane carboxylate 10 and acetonitrile undergoes
a TMSOTf mediated (3+2) cycloaddition to give 2-methyl pyrrole derivative 11 in 77% yield. The

methodology accomplished various sugar derivatives and nitrile substrates.

H
OH N Me
BnO N, H W()S(E)J)f \W/
’, .
K
Aot “<002Et # CHCN ————= gnd CO,Et
OB -40 °C BnO OBn
10” 77% 1
BnO . NH2
B o . InBrs (0.1 Eq) BnO
W
BnO CH,Cly, reflux /\)\
0 80% BnO” =
12 OH
13
0
o NH, Q
BnO 5 Zn(OTf), (0.2 E
c «)J\ N n(OTM (0-2Ea) oBn
BnO™ CHyClp, 40°C  BnOT\{ //
OBn HO
14 BnO 15

Scheme 1: Previous work for synthesis of substituted pyrroles using carbohydrate-derived

DACs.

Recently, Zhang et al., reported? a protocol for the synthesis of a 2-polyhydroxyalkyl pyrrole 13 by
using 3-oxo-1,2-cyclopropanated sugar 12 and primary amines in the presence of indium
bromide. (Scheme 1, B). The reaction proceeded through a sequence of steps involving ring
expansion, intramolecular nucleophilic attack, ring cleavage and dehydration to give the
substituted pyrrole derivative. The scope of the methodology was showcased by incorporating
various 3-oxo-1,2-cyclopropanated sugars and primary amines to synthesize different N-
substituted 2-alkylated pyrroles.

Very recently, Huawu Shao et al. reported® a Zn(OTf), mediated 3-polyhydroxyalkyl pyrrole 15

synthesis from sugar-derived 1,2-cyclopropanated ketone 14 and primary amines (Scheme 1, C).

247



(3+2) Cycloaddition Reaction of Spiro-cyclopropane Carboxylated..... Chapter 3 — Part A

The methodology was amenable to various sugar cyclopropanes and alkyl and aryl amines. This

allowed to access various N-substituted 3-polyhydroxyalkylated pyrrole derivatives.

3.1.2 Results and Discussion

Envisaging a similar chemistry, we intended to explore pyrrole synthesis via a Lewis acid mediated
(3+2) cycloaddition of a unique carbohydrate-derived DAC substrate and nitriles. Herein we report
the (3+2) cycloaddition reaction of spiro-cyclopropane carboxylated sugars and nitriles for the

efficient synthesis of Highly Functionalized Pyrrole Derivatives (Scheme 2).

MeOOC o MeOOC,
+ RCN Lewis acid [\ OH
RN

Solvent H

Highly functionalized
pyrrole derivaties

Scheme 2: Our work

Our investigation began with the model substrate 1° and acetonitrile. At -78 °C, the reactats in
DCM as the solvent was treated with 0.5 equivalent of TMSOTf. Prolong continuation of stirring
at this temperature did not form any expected product. Even when the temperature was raised
to -60 °C and 2 equivalents of nitrile substrate was used, unfortunately there was no product
formation. However, when the reaction temperature further raised to -40 °C and 3 equivalents of
acetonitrile was used, a new spot was identified along with unreacted starting material in the
reaction medium, during the TLC analysis. This was isolated and characterized, after which it was
found that the required cycloadduct product 2a was formed in 30% yield. Further, the solvent was
replaced with 1,2-dichloroethane and the temperature was still raised to -30 °C, with treatment
of 0.5 equivalent of TMSOTY{, the reaction afforded the required cycloadduct 2a in 60% yield.
Ultimately, at -30 °C temperature, 3 equivalents of nitrile substrate in 1,2-dichloroethane solvent,
reacted with cyclopropane substrate 1 in the presence of equimolar ratio of TMSOT{, provided

the 2,3,5-substituted pyrrole derivative 2a in 90% isolated yield.
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MeOOC (0) MeOOC B0
1,2-DCE
- + CH3CN  + TMSOTf @ ——— ——  » ]\ OH
BnO -30°C, 8h HyC N Y
OBn H  ©OBn
1 2a, 90%

Scheme 3: (3+2) cycloaddition of DAC 1 and acetonitrile.

With this optimized condition in hand, scope of nitrile substrates was investigated. Firstly, when
alkyl nitriles like butyronitrile and isobutyronitrile were employed for the (3+2) cycloaddition
reaction with spiro-cyclopropane carboxylated sugar 1, the pyrrole cycloadducts 2b and 2c were

formed in 81% and 83% vyield respectively.

MeOOC (o) MeOOC BnO
. + RCN  +  TMSOTf 1,2DCE I\)\)\/\OH
BnO" R
B

-30°C, 8h N e
OBn H OBn
1 2b-k
MeOOGC BnO MeOOC BnO
]\ OH OH ]\ OH
N B N B
H OBn H OBn
2b, 81% 2d, 88%
MeOOC BnO MeOOC BnO MeOOC BnO
AR\ OH ]\ OH ]\ OH
N B N B N B
H  OBn MeO H  0OBn MeO H  0OBn
OMe OMe
2e, 86% 2f, 76% 29, 85%
( )
MeOOC,
BnO MeOOC BnO
[\ OH 7\ OH
H z N H
Br OBn F,C H OBn
2i 2k
L Unsuccessful attempts )

Scheme 4: (3+2) cycloaddition reactions of spiro-cyclopropane carboxylate 1 and various

nitriles.
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Further we screened for aryl nitriles. In this regard, when benzonitrile was reacted with
cyclopropane 1, we obtained the cycloadduct 2d in 88% vyield. In a similar way, when phenyl
acetonitrile was used, there was no product formation possibly due to lack of appropriate charge
formation on the nitrile substrate. We took forward the screening procedure by incorporating the
substituted aryl nitriles. Initially, with a mild electron donating group substituent like 5-bromo
benzonitrile was subjected to (3+2) cycloaddition reaction with cyclopropane 1. Regrettably,
there was no formation of the cycloadducts. A quick shift to stronger electron donating
substitutions over the benzene ring, gave a fruitful result very smoothly. When ortho-methoxy
benzonitrile and para-methoxy benzonitrile was employed in the (3+2) cycloaddition reaction
with cyclopropane 1 under standard reaction condition, the cycloadducts 2e and 2f were
efficiently formed in 86% and 76% yield respectively. Similarly, when cyclopropane 1 and 2,4-
dimethoxy benzonitrile was subjected to TMSOTf mediated (3+2) cycloaddition reaction, the
2,3,5-substitute pyrrole derivative 2g was obtained in 85% yield. However, it was found that
electron withdrawing substituent like trifluoromethyl group on the benzene ring was unsuitable

for the reaction and did not provide desired cycloadduct.

MeOOC,

MeOOC O 1,2-DCE
\AEJ * RCN +  TMSOTf —— > o /\ OH
W -30°C,8h N :
BnO H OBn
3 4a-f
MeOOC MeOOC,
R N T N 2
H  OBn H o OBn
Not Observed
4a; R=CHj 4d; Traces
’ Spiro-lactone
4b; R= propyl
4c; R= isopropyl
MeOOC MeOOC, MeOOC
7\ OH ]\ OH /AR\ OH
NT 2 H z H H
H c OBn MeO OBn
MeO OBn OMe OMe
4e; 62% 4f; 70% 49; 80%

Scheme 5: (3+2) cycloaddition reactions of spiro-cyclopropane carboxylate 3 and various

nitriles.
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Next, the generality was further explored with respect to spiro-cyclopropane carboxylated sugar.
In this regard, glucose-derived cyclopropane 3° was subjected to (3+2) cycloaddition reaction
with various alkyl nitriles (Scheme 5). We anticipated to obtain the alkyl substituted pyrrole
cycloadducts (4a-4c). But it failed to provide any cycloadduct products, instead, it provided a
spiro-lactone as the only product. When benzonitrile was used as the reacting 1,2-dipolar
synthon, the reaction with cyclopropane 3, offered the cycloadduct 4d only in trace amounts. To
our delight, when electron rich nitriles such as 2-methoxy, 4-methoxy and 2,4-dimethoxy
benzonitrile incorporated in (3+2) cycloaddition with spiro-cyclopropane carboxylated sugar 3,

provided the polysubstituted pyrrole derivatives (4e-4g) as the cycloadducts in excellent yield.

Based on the type of cycloadducts that formed during the reaction, a possible reaction
mechanism is proposed. TMSOTf mediated activation of spiro-cyclopropane carboxylated sugar
forms the ring opened oxocarbenium ion intermediate IN-l. This is attacked by the nitrile
functionality and forms a five membered intermediate that rapidly undergoes tautomerization

followed by aromatization to give the 2,3,5-trisubstituted pyrrole cycloadduct.

TMSOTf
]
! “OTf -
i + -C= oTf
i o Q A TSR 7 Ron  TMSOY F;'C_NWE’
MeO Activation 0) — / >=‘—\/<D
s MeO \Z —> MeO >~ MeO
IN-1

-TMSOTf ‘

R

R Taut isati R N Aromatization ‘C’N g
automerisation (o) ~
—
MeO OH meo I OH MeO H

Scheme 5: Plausible mechanism for the formation of tri-substituted pyrrole.

3.1.3 Conclusion

In conclusion, a highly functionalized pyrrole derivatives have been constructed efficiently by
(3+2) cycloaddition of nitriles and spiro-cyclopropane carboxylated sugars. This powerful strategy

is amenable to various nitriles and spiro-cyclopropanes. This foresees a great application as it can
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be utilized for diverse post-synthetic transformations to construct unique scaffolds. The synthetic

modifications have been carried out and described in the upcoming parts of this chapter.
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Abstract:

Heterocyclic compounds such as indolizidines and tetrahydroindolizines (THIs) have
played a crucial role as glycomimetic which has glycosidase inhibitory effect. The
synthetic utility of the (3+2) cycloadducts, i.e., 2,3,5-trisubstituted pyrroles, is
effectively showcased. Mitsunobu reaction mediated deoxygenation-cyclization
between the terminal alcohol and secondary amine of the pyrrole derivative offered

the fused aza-bicyclic ring derivatives which has THI core structure. A library of

variable substituted THT derivatives are synthesized.

254



En route to the synthesis of tetrahydroindolizines based scaffolds.... Chapter 3 — Part B

3.2.1 Introduction

Glycosidase inhibitors have played a promising role in drug-development.! These perform diverse
biological activities and have many types of beneficial effects.? Several classes of secondary
metabolites contribute to the inhibitory activity and azabicyclic ring skeleton is present as the
core in them. Polyhydroxy alkaloids with azabicyclic ring core are emerging as a potent inhibitor
of glycosidases.3 Among them, indolizidines and tetrahydro indolizines (Figure 1) are considered

as the analogs of the aromatic indolizine or as azabicyclo[4.3.0]nonanes.

.
.
.
/
Y
— \’ \ '
' ' '
[ [
1 W |'
' ] '
i " i
. n "
' '
/

Indollzme N Indolizidines ,'
SN ,

Figure 1: Aza-bicyclic ring frameworks present in alkaloids.

The natural and non-natural polyhydroxy indolizidines like castanospermine, 6-epi-
castanospermine, swainsonine, lentiginosine etc., have attracted considerable attention as they
structurally mimic bioactive carbohydrates and are recognized as potential antimicrobial,

antitumor antidiabetic, and anti-inflammatory agents (Figure 2, A).%

wmQOH wmQOH
HoO™

(-)Lentiginosine

-IIO
'"I
'"O

Castanospermine Swainsonine

Curvulamine

Figure 2: Examples of polyhydroxy indolizidines and tetrahydro indolizines.
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In a similar way, tetrahydroindolizines (THIs) present as a core skeleton in several bioactive natural
products, also exhibit potent inhibitory activities against harmful microbes. For example,
curvulamine (Figure 2, B), obtained from Curvularia sp. IFB-Z10, exhibit excellent antimicrobial
activity.®> Polyhydroxy alkaloids and THIs, like many other families of natural compounds, have
served as structural models for a significant number of synthetic counterparts. Even though they
are present in many living organisms, the compounds are obtained in a very small amount which

is insufficient to meet the needs of the scientific community.

In this regard, several synthetic routes are developed majorly based on very efficient precursors

like carbohydrates and proline derivatives (Figure 3).°

OR
OR

SN OR

VA AN
OR OR

OR
N ACT OR
\ ACT

OR
Pyrrole/pyrrolidine approach Piperidine approach
Proline based Carbohydrate based
Carbohydrate based Non-carbohydrate based

Non-carbohydrate based

Figure 3: Methods to construct indolizine and THI skeletons.

Very recently, Zhang and coworkers, reported the ring-opening followed by ring closing arylation
of chiral pyrrolylcyclopropanols 16 substrates in the presence of Fe(NOs); to synthesize novel THI
derivative (Scheme 1).7 Further, reduction of the pyrrole moiety of few of the THI derivatives
provided the indolizine alkaloids namely indolizidine 209D, indolizidine 167B, and monomorine

(Scheme 1).
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OH OH R1 R1
RW 1) Fe(NO4)3.9H,0 R! MsCl Pd/C, H,
2. N 2. N
r2__N 2) NaBH, RN DIBAL-H R ¥ R
§\ /7 \ /

2 3 4 5
R'="Propyl; R?=H; (R)-16a (R,R)-17a (R)-18a (R)-19a
R'="Hexyl; R?=H; (S)-16b (S,5)-17b (S)-18b (S)-19b
R1=nBUty|; R2=Me; (S)-16c (S,S)-17C (S)-18C (S)-190

H3C\/II,' H3C

N
H H4C
(-)}-Indolizidine 1678 (+)-indolizidine 209D (+)-monomorine |

Scheme 1: Synthesis of indolizine natural products from pyrrolylcyclopropanols.

3.2.2 Results and Discussion:

Post-synthetic transformations and applications has always benefited for the synthetic organic
chemistry fraternity. Knowing the importance of polyhydroxy alkaloids like indolizines and
tetrahydroindolizines, we envisaged a unique post-synthetic transformation of pyrrole
cycloadducts obtained in the part A to construct the THI core skeleton. Our work presented in
this chapter, is the new protocol to access novel chiral tetrahydroindolizines (THIs) from the 2,3,5-
trisubstituted pyrrole derivatives. Our investigation began with the methyl substituted pyrrole
cycloadduct 2a. Mitsunobu reaction condition was employed where the alcohol functionality was
activated and cyclized while undergoing deoxygenation. Cycloadduct 2a in the presence of
diisopropylazadicarboxylate (DIAD) and triphenylphosphine (PhsP) in toluene solvent at room

temperature offered the THI derivative 5a in 90% yield within 3 hours (Scheme 2).

MeOOC, BNO MeOOC,
Toluene
[\ OH + DIAD + PPh; —_— /\ OBn
HaC NN Y rt, 3 h HsC Ny
N Ben (1.2 eq) (1.2 eq)
2a OBn

5a
Scheme 2: Synthesis of methyl substituted THI derivative from cycloadduct via Mitsunobu

reaction condition.
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MeOOC, MeOOC,
BnQ DIAD, PPh
I\)\)\/\OH : 3’ R /\ OBn
R N < Toluene N
H OBn t, 3 h OBn
2b-g 5b-g
Entry Cycloadduct THI derivatives Yield
MeOOC
MeOOC BnO
! /N OH { N _oBn 5b; 92%
N 2 N
H OBn
2b OBn
MeOOC
MeOOC BnO
2 [\ OH / W __osn 5¢; 90%
N = N
H OBn 0Bn
2c
MeOOC
MeOOC, BnO
3 / \ OH / \ OBn 5d: 95%
N s N
b z
OBn oBn
2d
MeOOC, BnO MeOOC
OH
4 4 !\ OBn 5e; 85%
N 2 N
H  0OBn
OMe OMe OBn
2e
MeOOC
5 MeOOC BnO
/ \ OH /A \ OBn 5f: 87%
N = MeO N
H z
Meo OBn OBn
2f
MeOOC, BnO MeOOC
6 H
/N\ < © /N\ OBn 5g; 83%
MeO H  OBn MeO
OMe OMe OBn
2g

Table 1: Synthesis of THI derivatives from cycloadducts.

258



En route to the synthesis of tetrahydroindolizines based scaffolds.... Chapter 3 — Part B

After the initial success, we subjected the 2-alkyl substituted pyrrole derivatives 2b and 2c for the
cyclization. We obtained the THI derivative 5b and 5¢ in 92% and 90% vyield respectively. Further,
the phenyl substituted pyrrole derivative 2d gave the THI derivative 5d in 95% yield when treated
with DIAD and PhsP in toluene solvent. Similarly, aryl substituted pyrrole cycloadducts 2e-g

offered the THI derivatives in excellent yields.

Further we subjected the cycloadducts 4e-g derived from cyclopropane 3 for the Mitsunobu
cyclization (Table 2). We observed an anomality in the results. The cycloadduct 4e when treated
with DIAD and PhsP, probably after formation of product 6e, underwent elimination rapidly to
give compound 7e in 90% yield. The benzyl functionality was knocked off by lone pair
delocalization to form conjugated double bond system 7e which is more favored. Further,
cycloadduct 4g also provided the eliminated product 7g in 93% yield. However, we observed that

cycloadduct 4f under Mitsunobu reaction condition gave the THI derivative 6f in 70% yield.

MeOOC, MeOOC, MeOOC
DIAD, PPh Rapid conversion
r\)\/\/\OH —3> R /\ OBN --ccmmmmmeeeee > r / \
R N < Toluene, N N \
H  ©OBn rt, 3h
de-g 6e-g 7e, 79
MeOOC MeOOC, MeOOC
/\ OBn / \ OBn i/ \ OBn
N N
MeO N MeO
OMe OMe
6e 6f; 70% 6g
¥ \
MeOOC MeOOC
/ \ /R
N
N \ MeO \
OMe OMe
79, 93%
7e, 90%

Table 2: Synthesis of fused aza-bicycles and THI derivative from pyrrole derivatives.
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3.2.3 Conclusion

In conclusion, we have performed an efficient post-synthetic transformation using Mitsunobu
reaction conditions. The tetrahydroindolizine (THI) derivatives were obtained by 2,3,5-substitued
pyrrole derivative in good to excellent yield. Further scope and transformation of the formed THI
derivatives to construct indolizine derivatives and other potential bioactive molecule is in

progress.
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En route to the synthesis of C-pyrrolyl furanoside derivatives
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Abstract:

C-furanosides have been employed as building blocks in the synthesis of several
naturally occurring compounds and molecules with biological activity. Their
importance has found place as nucleoside inhibitors. Various C-pyrrolyl furanosides
were synthesized by transforming the (3+2) cycloadducts i.e., 2,3,5-substituted
pyrroles. The suitably positioned benzyl group on the polyhydroxy alkyl chain of
pyrrole derivative is efficiently subjected for post-synthetic transformation. In the
presence of catalytic amount of Lewis acid, a carbocation mediated Sy1 substitution

reaction occurs to offer various pyrrole attached furanoside derivatives.
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3.3.1 Introduction

C-glycosides from natural as well as non-natural origin, plays a significant role in therapeutics.!
Following a brief survey, we found that molecular hybridization technique has found a strong base
in scientific community in drug development technology.? In this view, the synthesis of
glycoconjugates or glyco-hybrids which contains carbohydrates as biopotential scaffold and
heterocyclic molecules as pharmacophores has attained an immense interest among the scientific
community.

Heterocyclic molecules are unique class of organic molecules that contain a hetero atom in the
cyclic ring. They are present in the core structures of major classes of natural products.? Pyrrole
is one among them which is known for being a biologically potent scaffold with a wide range of
functions. Pyrrole along with combination of other heterocycles form various pharmacophore
and are often incorporated in the drugs such as antibiotics, atrorvastatin, anti-inflammants,
antitumor agents and immunosuppressants etc.*

Owing to the significance of variety of pyrrole and other heterocyclic scaffolds in therapeutics,
several studies have been attempted to construct glycoconjugates. The furanosyl glyco-
conjugates containing nitrogen heterocycles form important class of nucleoside inhibitors which

displays various biological activities (Figure 1).

0) H-N
CONH2 2
HN CONH
N | NH /§( 2 HN <N
HO 2 HO N\ S Ne | )
o OH o 0 HO ~=N HO 2 7
N
(@) O
HO OH
HO OH HO OH HO OH
Pirazomycin Showdomycin Thiazofurin Formycin
(antiviral) (antibacterial, antitumor)

Figure 1: Examples of biologically active C-nucleosides.

In this view we found that pyrrole substituted sugars especially the C-pyrrolyl glycosides can be a

promising library of molecules with potential biological applications. A very few approaches have
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been reported for the synthesis of C-pyrrolyl glycosides.® Contributing to this, we report the
synthesis of C-pyrrolyl- furanoside derivatives. This work has been carried out as a part of post-

synthetic modifications of the cycloadducts introduced in part A of chapter 3.

3.3.2 Results and discussion

We envisioned that the pyrrole cycloadducts obtained in part A of this chapter, with suitably
positioned alcohol and the benzyl functionality will undergo cyclization via a Sn1 type of
substitution reaction. To begin with, we chose methyl substituted pyrrole cycloadduct 2a
obtained from spirocyclopropane 1 as our substrate. Compound 2a was treated with catalytic
amount of Lewis acid BFsOEt; in dichloromethane solvent at 0 °C. The reaction offered the
furanoside product 8aB:8aa as a mixture of anomers (1:0.6) in 95% yield. The ratios of the formed
anomers were found out by the proton NMR and the coupling constant. To see the stereochemical
control and anomeric selectivity, we decreased the reaction temperature to -78 °C. However,
there was no improvement in the anomeric selectivity. When BF3-OEt; was replaced with TMSOTH,
the yield was decreased with retention in anomeric selectivity. Hence, reaction was standardized

to catalytic BF3-OEt; as Lewis acid and 0 °C as the reaction temperature.

MeOOC, BnO MeOOC MeOOC 8O
< / \ OH + BF,;OEt, b
N 3, (0.3 mmol) Towcsmn
2a-g
MeOOC, BnO MeOOC, B0 MeOOC, MeOOC,
[ \ I/ \
HaC™ N N
H O H o}
8af: 8aa; 1:0.6 8bp: 8ba; 1:0.8 8cB: 8ca; 1:0.8 8dp: 8da; 1:0.7
95% 92% 96% 95%
MeOOC, BnO MeOOC MeOOC
I\
N
H 0 MeO
OMe OMe
8ep: 8ea; 1:0.9 8fp: 8fa; 1:0.6 8gp: 8ga; 1:0.6
94% 94% 93%

Table 1: Synthesis of C-pyrrolyl furanoside derivatives.
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Further, the 2-alkyl substituted pyrrole cycloadducts 2b and 2c¢ was subjected to Lewis acid
mediated cyclization. The C-pyrrolyl furanoside 8bp:8ba and 8cB:8ca was formed in the ratio of
1:0.8 anomeric mixtures. At this stage, we were able to separate a portion of the major isomer
8bp and we thoroughly characterized the compound via NMR and HRMS studies. In the similar
way, the aryl substituted pyrrole cycloadducts 2d-2g was subjected to Lewis acid mediated
substitution-cyclization reaction to obtain the C-pyrrolyl furanoside derivatives as the anomeric
mixtures (Table 1). The phenyl substituted pyrrole cycloadduct provided the furanoside derivative
8dB:8da in 1:0.7 ratio of anomers in 95% yield. However, ortho methoxy-aryl substituted pyrrole
cycloadduct offered the cyclized furanoside product 8ef:8ea in 1:0.9 ratio of anomers. To our
delight, we were able to separate the minor isomer 8ea which was characterized by NMR studies.
Further we found the results of the cycloadducts 2f and 2g. In the first case, we obtained the C-
pyrrolyl furanoside derivative 8fB-8fa in 1:0.6 anomeric ratio and 94% overall yield. Ultimately,
when 2,4-dimethoxy-aryl substituted pyrrole cycloadduct was subjected to Lewis acid mediated
substitution reaction, we obtained the furanoside derivative 8gB-8ga as a mixture of 1:0.6 ratio
of anomers in 93% vyield. Furthermore, the cycloadducts obtained from spiro-cyclopropane 3
were also subjected to substitution reaction. The aryl substituted pyrrole cycloadducts 4e-g were
treated with BF3OEt, at 0 °C and we obtained the 5-tetrahydrofuryl substituted pyrrole

derivatives (9e-9g) as an enantiomeric mixture in excellent yield (Table 2).

MeOOC - o
Rl/_\>\/\/\ OH + BF,OEt, — " 5 B
” %)Bn (0.3 mmol) 0°C, 5 min R ” g
4e-g s
MeOOC MeOOC, MeOOC
/ \ R —
N N )
oo MeO H © e N
OMe -
e o 95% 9g; 93%

Table 2: Synthesis of THF-substituted pyrrole derivatives.
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Possible mechanism
We propose a possible mechanism for the formation of C-pyrrolyl furanosides. The Lewis acid
catalyst coordinates with the benzyl group present on the vinylic position of the pyrrole ring. As

a result of electron delocalization, the benzyl group easily eliminates leaving a stable carbocation.

MeOOC,
MeOOC,
Lewis acid (LA) 7\ OH
/ \ OH » R (NA %
RTSNT X ' 0Bn
H  OBn !
LA
l -OBn
MeOOC MeOOC
Sy _ ,/_\
. / \ ~— A OH
N +N
H © oS

Scheme 2: Possible mechanism for C-pyrrolyl furanoside formation.

This electrophilic center is attacked by the terminal alcohol from both faces via a Sny1 type of
reaction giving rise to both cis- and trans-glycosides in variable ratios. Since there are no bulky

groups present in the vicinity, carbocation mediated substitution occurs to give rise to anomeric

mixture.

3.3.3 Conclusion

In conclusion, we efficiently performed a post-synthetic transformation to synthesize pyrrolyl-C-

glycosides from pyrrole cycloadducts. We have opened a new platform for designing potential

nucleoside inhibitors.
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Experimental Details

Chapter 3 — Part A: (3+2) Cycloaddition Reaction of Spiro-cyclopropane
Carboxylated Sugars and Nitriles: Synthesis of Highly Functionalized Pyrrole
Derivatives

General procedure A for Lewis acid catalyzed (3+2) cycloaddition

To a solution of spiro-cyclopropane carboxylated sugar derivative (1 mmol) and respective nitrile
(3 mmol) in 1,2-DCE (8 mL) was added TMSOTf (1.0 Eq) at -30 °C under argon atmosphere. The
reaction was stirred at ambient temperature for 8 hours and monitored by TLC until the
completion. The reaction mixture was quenched by adding saturated solution of NaHCO3 and
extracted with DCM, dried with Na;SO4 and concentrated in vaco. The crude product was purified

using silica gel column chromatography to obtain the desired product.

Compound characterization

methyl 5-((1R,25)-1,2-bis(benzyloxy)-4-hydroxybutyl)-2-methyl-1H-pyrrole-3-carboxylate (2a):

Compound 2a was synthesized from spiro-cyclopropane

MeOOC, BnO
R OH carboxylated sugar 1 (200 mg, 0.52 mmol) and acetonitrile
HsC H S (64.0 mg, 1.56 mmol) by following general procedure A. Yield:
OBn
2a 203.2 mg (0.46 mmol), 90%; Rf: 0.5 (30% EtOAc/hexane);

colorless oil.
IR (neat): 3318, 3065, 3028, 2946, 1675 cm™.
1H-NMR (500 MHz, CDCls): & = 8.77 (s, 1H), 7.23-7.32 (m, 10H), 6.45 (d, 1H, J = 2.5 Hz), 4.56 (d,
1H, J=11.5 Hz), 4.49 (dd, 2H, J=5.5 Hz, 12.0 Hz), 4.36 (d, 1H, /= 4.5 Hz), 4.27 (d, 1H, /= 12.0 Hz),
3.76-3.79 (m, 4H), 3.59-3.62 (m, 2H), 2.40 (s, 3H), 1.84 (s, 1H), 1.73 (dd, 2H, J = 6.0 Hz, 11.5 Hz).
13¢{*H} NMR (125 MHz, CDCl3): § = 166.0, 138.0, 137.6, 136.0, 128.5, 128.4, 128.2, 128.1, 127.9,
127.8,126.9,111.0, 110.3, 80.1, 76.1, 73.5, 70.6, 59.5, 50.7, 33.6, 13.2  ppm.
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HRMS (ESI-TOF) m/z: calcd for CasH3oNOs [M+H]*: 424.2124, found: 424.2125.

methyl 5-((1R,2S5)-1,2-bis(benzyloxy)-4-hydroxybutyl)-2-propyl-1H-pyrrole-3-carboxylate (2b):

Compound 2b was synthesized from spiro-cyclopropane
MeOOC, BnO
7\ OH carboxylated sugar 1 (200 mg, 0.52 mmol) and butyronitrile
ﬁ EOBn (107.8 mg, 1.56 mmol) by following general procedure A.
2b Yield: 190.0 mg (0.42 mmol), 81%; Rf: 0.4 (30%

EtOAc/hexane); colorless oil.
IR (neat): 3320, 3035, 2946, 2863, 1680 cm™.
1H-NMR (500 MHz, CDCls): & = 8.72 (s, 1H), 7.26-7.35 (m, 10H), 6.49 (d, 1H, J = 3.0 Hz), 4.58 (d,
1H, J = 11.5 hz), 4.52 (dd, 2H, J = 3.0 Hz, 11.5 Hz), 4.41 (d, 1H, J = 4.5 Hz), 4.31 (d, 1H, 11.5 Hz),
3.78-3.81 (m, 4H), 3.64 (t, 2H, /= 6.0 Hz), 2.85-2.91 (m, 1H), 2.75-2.81 (m, 1H), 1.76-1.81 (m, 2H),
1.65 (s,1H), 1.51 (m, 2H), 0.90 (t, 3H, J = 7.5 Hz).
13¢{’H} NMR (125 MHz, CDCls): & 165.8, 140.6, 138.0, 137.6, 128.5, 128.5, 128.2, 128.1, 127.9,
127.9, 126.8, 110.6, 110.4, 80.1, 76.0, 73.3, 70.7, 59.6, 50.7, 33.6, 29.2, 22.4, 13.8 ppm.

HRMS (ESI-TOF) m/z: calcd for Co7H3aNOs [M+H]*: 452.2437, found: 452.2430.

methyl 5-((1R,25)-1,2-bis(benzyloxy)-4-hydroxybutyl)-2-isopropyl-1H-pyrrole-3-carboxylate
(2c):

Compound 2c¢ was synthesized from spiro-cyclopropane

MeOOC
e R BnO carboxylated sugar 1 (200 mg, 0.52 mmol) and isobutyronitrile
OH
N 7 (107.8 mg, 1.56 mmol) by following general procedure A. Yield:
H 0B
" 2 194.7 mg (0.43 mmol), 83%; Rf: 0.4 (30% EtOAc/hexane);

colorless oil.

IR (neat): 3318, 3065, 2968, 2946, 1675 cm™™.
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1H-NMR (500 MHz, CDCls): & = 8.85 (bs, 1H), 7.26-7.35 (m, 10H), 6.49 (d, 1H, J = 2.5 Hz), 4.51-4.56
(m, 3H), 4.43 (d, 1H, J = 4.5 Hz), 4.32 (d, 1H, J = 12.0 Hz), 3.77-3.81 (m, 4H), 3.72-3.76 (m, 1H),
3.61-3.65 (m, 2H), 1.77-1.82 (m, 2H), 1.67 (s, 1H), 1.16 (d, 3H J = 7.0 Hz), 1.14 (d, 3H).

13C{*H} NMR (100 MHz, CDCls): 6 = 165.7, 146.0, 138.0, 137.6, 128.5, 128.5, 128.2, 127.9, 126.7,
110.4, 109.5, 80.1, 76.0, 73.0, 70.9, 59.5, 50.7, 33.5, 26.0, 21.9, 21.7.

HRMS (ESI-TOF) m/z: calcd for C27H33NOsNa [M+Na] : 474.2256, found: 474.2260.

methyl 5-((1R,25)-1,2-bis(benzyloxy)-4-hydroxybutyl)-2-phenyl-1H-pyrrole-3-carboxylate (2d):

Compound 2d was synthesized from spiro-cyclopropane
MeOOC BnO
) OH carboxylated sugar 1 (200 mg, 0.52 mmol) and benzonitrile
N %)B (160.8 mg, 1.56 mmol) by following general procedure A.
N 2d
Yield: 222.0 mg (0.46 mmol), 88%; Rf: 0.5 (30%

EtOAc/hexane); yellow oil.
IR (neat): 3439, 3065, 3036, 2945, 2883, 1690 cm™.
1H-NMR (500 MHz, CDCls): & = 9.06 (bs, 1H), 7.47-7.50 (m, 2H), 7.28-7.38 (m, 8H), 7.20-7.25 (m,
5H), 6.67 (d, 1H, J = 3.0 Hz), 4.60 (d, 1H, J = 4.0 Hz), 4.58 (d, 1H, J = 3.0 Hz), 4.49 (d, 1H, J = 3.5 Hz),
4.48 (d, 1H, J = 3.5 Hz), 4.37 (d, 1H, J = 12.0 Hz), 3.82-3.85 (m, 1H), 3.76 (s, 3H), 3.65 (t, 2H, J= 5.0
Hz), 1.78-1.86 (m, 2H), 1.72 (bs, 1H).
13C{*H} NMR (125 MHz, CDCl5): 6 = 165.4, 137.7,137.5,137.4,131.7, 129.0, 128.7, 128.5, 128.5,
128.2,128.1,128.1,127.9,127.9,111.9,111.2,75.7,73.3, 71.0, 59.4, 51.0, 33.4 ppm.
HRMS (ESI-TOF) m/z: calcd for C3oH32NOs [M+H]*: 486.2280, found: 486.2282.

methyl 5-((1R,25)-1,2-bis(benzyloxy)-4-hydroxybutyl)-2-(2-methoxyphenyl)-1H-pyrrole-3-

carboxylate (2e):

Compound 2e was synthesized from spiro-cyclopropane

MeOOC, BnO
R OH carboxylated sugar 1 (200 mg, 0.52 mmol) and 2-
” E methoxybenzonitrile (207.7 mg, 1.56 mmol) by following
OBn 2e
OMe general procedure A. Yield: 230.3 mg (0.44 mmol), 86%; Rf:

0.3 (30% EtOAc/hexane); yellow oil.
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IR (neat): 3345, 3026, 2946, 1701 cm™.

1H-NMR (500 MHz, CDCl3): & = 9.38 (s, 1H), 7.65 (dd, 1H, J = 2.0 Hz, J = 8.0 Hz), 7.30-7.36 (m, 6H
),7.25 (d, 5H, J = 7.5 Hz), 7.02 (td, 1H, J = 1.0 Hz, 8.0 Hz, 15.5 Hz), 6.93 (d, 1H, J = 8.0 Hz), 6.67 (d,
1H, J = 3.0Hz), 4.62 (dd, 2H, J = 9.0 Hz, 11.5), 4.53-4.56 (m, 2H), 4.40 (d, 1H, J = 12.0 Hz), 3.82-3.85
(m, 1H), 3.74 (s, 3H), 3.68 (s, 3H), 3.65 (t, 2H, J = 5.5 Hz), 1.75-1.83 (m, 2H), 1.61 (s, 1H).

13C{*H} NMR (125 MHz, CDCl3): 6 =165.4, 156.4, 137.8, 132.8, 132.2, 130.3, 129.6, 128.5, 128.4,
127.8,127.7,127.5,120.4, 120.2, 113.0, 111.0, 107.3, 84.0, 79.4, 71.6, 67.4, 55.7, 50.9, 32.3.
HRMS (ESI-TOF) m/z: calcd for C31H3aNOg [M+H]*: 516.2386, found: 516.2385.

methyl 5-((1R,25)-1,2-bis(benzyloxy)-4-hydroxybutyl)-2-(4-methoxyphenyl)-1H-pyrrole-3-
carboxylate (2f):

Compound 2f was synthesized from spiro-cyclopropane

MeOOC BnO carboxylated sugar 1 (200 mg, 0.52 mmol) and 4-
OH
/N\ y methoxybenzonitrile (207.7 mg, 1.56 mmol) by
] E
MeO OBn  2f following general procedure A. Yield: 203.6 mg (0.39

mmol), 76%; Rf: 0.3 (30% EtOAc/hexane); yellow oil.

IR (neat): 3301, 2946, 1700 cm™.

1H-NMR (500 MHz, CDCls): & = 8.92 (s, 1H), 7.41-7.44 (m, 2H), 7.29-7.36 (m, 5H), 7.22-7.26 (m,
5H), 6.88-6.91 (m, 2H), 6.64 (d, 1H, J = 2.5 Hz), 4.59-4.61 (m, 2H), 4.48-4.51 (m, 2H), 4.37 (d, 1H J
=12.0 Hz), 3.82-3.85 (m, 4H), 3.76 (s, 3H), 3.67 (t, 2H, J = 5.5 Hz), 1.99 (s, 1H), 1.79-1.88 (m, 2H).
13C{*H} NMR (125 MHz, CDCls): 6 165.4, 159.6, 137.8, 137.7, 137.5, 130.0, 128.5, 128.5, 128.2,
128.1,127.9, 124.3, 113.6, 111.8, 110.7, 80.0, 75.8, 73.3, 71.0, 59.5, 55.3, 50.9, 33.5.

HRMS (ESI-TOF) m/z: calcd for C31H3aNOg [M+H]*: 516.2386, found: 516.2389.

methyl 5-((1R,25)-1,2-bis(benzyloxy)-4-hydroxybutyl)-2-(2,4-dimethoxyphenyl)-1H-pyrrole-3-

carboxylate (2g):
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Compound 2g was synthesized from spiro-cyclopropane
MeOOC BnO
R OH carboxylated sugar 1 (200 mg, 0.52 mmol) and 2,4-
N : dimethoxybenzonitrile (247.85 mg, 1.56mmol) by
MeO H OBn 2g
OMe following general procedure A. Yield: 240.9 mg (0.44

mmol), 85%; Rf: 0.3 (40% EtOAc/hexane); yellow oil.
IR (neat): 3389, 3004, 2947, 2358, 1730 cm™.
1H-NMR (500 MHz, CDCls): & = 9.31 (s, 1H), 7.62 (d, 1H, J = 8.5 Hz), 7.29-7.35 (m, 5H), 7.25-7.27
(m, 5H), 6.64 (d, 1H, J = 3.0 Hz), 6.56 (dd, 1H, J = 2.5 Hz, 8.5 Hz), 6.48 (d, 1H, J = 2.0 Hz), 4.62 (d,
2H, J=11.5 Hz), 4.54 (d, 1H, J = 11.5 Hz), 4.52 (d, 1H, J = 4.5 Hz), 4.39 (d, 1H, J = 11.5 Hz), 3.81-
3.85 (m, 4H), 3.75 (s, 3H), 3.64-3.65 (m, 5H), 1.99 (s, 1H), 1.76-1.8 (m, 2H).
13¢{*H} NMR (125 MHz, CDCl3): 6§ = 165.5, 161.0, 157.5, 138.0, 137.7, 134.0, 133.2, 128.4, 128.2,
128.1,127.9,127.8,112.8,111.6,111.1, 104.3, 98.7, 80.0, 76.4, 73.4, 70.9, 59.8, 55.5, 55.4, 50.9,
33.6 ppm.
HRMS (ESI-TOF) m/z: calcd for C3;H3sNO7 [M+H]*: 546.2492, found: 546.2490.

methyl  (S)-5-(1-(benzyloxy)-4-hydroxybutyl)-2-(2-methoxyphenyl)-1H-pyrrole-3-carboxylate

(4e):
MeOOC Compound 4e was synthesized from spiro-cyclopropane
7\ OH carboxylated sugar 3 (200 mg, 0.72 mmol) and 2-
” %)Bn methoxybenzonitrile (289.3 mg, 2.17 mmol) by following
OMe 4e

general procedure A. Yield: 206.2 mg (0.50 mmol), 70%; Rf:

0.4 (40% EtOAc/hexane); yellow oil.
IR (neat): 3301, 2946, 2938, 1689 cm™™.
1H-NMR (500 MHz, CDCls): & = 9.30 (s, 1H), 7.67 (dd, 1H, J = 1.5 Hz, J = 7.5 Hz), 7.27-7.35 (m, 6H),
7.01-7.04 (m, 1H), 6.96 (d, 1H, J = 8.0 Hz), 6.61 (d, 1H, J = 3.0 Hz), 4.51 (d, 1H, J = 11.5 Hz), 4.48
(dd, 1H, J = 6.0 Hz, J = 7.0 Hz), 4.37 (d, 1H, J = 12.0 Hz), 3.78 (s, 3H), 3.73 (s, 3H), 3.62 (t, 2H, J =
6.5 Hz), 1.94-2.01 (m, 1H), 1.84-1.91 (m, 1H), 1.64-1.72 (m, 3H).
13C{*H} NMR (100 MHz, CDCls): 6 = 165.5, 156.3, 137.8, 133.5, 132.4, 130.6, 129.6, 128.4, 127.9,
127.8,120.4, 120.0, 112.2, 111.0, 110.4, 74.4, 70.3, 62.6, 55.6, 50.9, 33.0, 28.7 ppm.
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methyl  (S)-5-(1-(benzyloxy)-4-hydroxybutyl)-2-(4-methoxyphenyl)-1H-pyrrole-3-carboxylate
(4f):

Compound 4f was synthesized from spiro-cyclopropane

MeOOC,
[\ OH

carboxylated sugar 3 (200 mg, 0.72 mmol) and 4-
methoxybenzonitrile (289.3 mg, 2.17 mmol) by

Iz
ow
o
5

MeO 4f following general procedure A. Yield: 182.6 mg (0.44

mmol), 62%; Rf: 0.4 (40% EtOAc/hexane); yellow oil.

IR (neat): 3281, 2941, 2938, 1673 cm'L.

1H-NMR (500 MHz, CDCl3): & = 8.91 (s, 1H), 7.51-7.53 (m, 2H), 7.26-7.35 (m, 5H), 6.92-6.95 (m,
2H), 6.58 (d, 1H, J= 2.5 Hz), 4.49 (d, 1H, J=11.5 Hz), 4.43 (dd, 1H, J=5.5 Hz, J = 7.0 Hz), 4.37 (d,
1H, J = 11.5 Hz), 3.83 (s, 3H), 3.75 (s, 3H), 3.62 (t, 2H, J = 6.0 Hz), 1.94-2.01 (m, 1H), 1.82-1.89 (m,
1H), 1.74 (bs, 1H), 1.60-1.71 (m, 2H).

13C{*H} NMR (125 MHz, CDCl3): 6 = 165.4, 159.6, 137.8, 137.6, 130.9, 130.1, 128.5, 128.0, 127.9,
124.4,113.6, 110.9, 110.8, 74.4,70.4, 62.5, 55.3, 50.9, 32.8, 28.8 ppm.

HRMS (ESI-TOF) m/z: calcd for C24H2sNOs [M+H]*: 410.1967, found: 410.1964.

methyl (S)-5-(1-(benzyloxy)-4-hydroxybutyl)-2-(2,4-dimethoxyphenyl)-1H-pyrrole-3-
carboxylate (4g):

Compound 4g was synthesized from spiro-cyclopropane
MeOOC,
I\ OH carboxylated sugar 3 (200 mg, 0.72 mmol) and 2,4-
N z i itri . 2.1
Ve N 2Bn 4 dimethoxybenzonitrile (353.8 mg, 7 mmol) by
OMe following general procedure A. Yield: 252.9 mg (0.57

mmol), 80%; Rf: 0.3 (40% EtOAc/hexane); yellow oil.
IR (neat): 3301, 2946, 2944, 1689 cm™.
1H-NMR (500 MHz, CDCls): & = 9.20 (s, 1H), 7.63 (d, 1H, J = 8.5 Hz), 7.26-7.35 (m, 5H), 6.59 (d, 1H,
J=3.0 Hz), 6.58 (dd, 1H, J = 2.0 Hz, J = 8.5 Hz), 6.51 (d, 1H, J = 2.0 Hz), 4.50 (d, 1H, J = 11.5 Hz),
4.46 (dd, 1H, J=5.5Hz, J = 7.0 Hz), 4.36 (d, 1H, J = 11.5 Hz), 3.84 (s, 3H), 3.75-3.74 (m, 6H), 3.62
(t, 2H, J = 6.5 Hz), 1.94-2.01 (m, 1H), 1.84-1.91 (m, 1H), 1.64-1.72 (m, 3H).
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13C{*H} NMR (125 MHz, CDCl3): 6 = 165.5, 161.0, 157.5, 137.9, 133.9, 133.2, 130.2, 128.4, 127.9,
127.8,112.8,111.5, 110.3, 104.4, 98.7, 74.5, 70.3, 62.6, 55.6, 55.4, 50.8, 33.0, 28.8 ppm.
HRMS (ESI-TOF) m/z: calcd for C2sH30NOg [M+H]*: 440.2073, found 44.2068.

Chapter 3 — Part B: En Route to the Synthesis of Tetrahydroindolizines Based
Scaffolds

General procedure B for Mitsunobu reaction

A solution of substituted pyrrole cycloadduct (1 mmol) in toluene (15 mL) was degassed for 15
min. To this solution, diisopropyl azadicarboxylate (DIAD) and triphenylphosphine (PhsP) was
added at room temperature. The reaction was monitored by TLC until completion after which the
solvent was evaporated under vaco to obtain the crude. Further the crude was purified by silica-

gel column chromatography and characterized.

Compound characterization

methyl (75,8R)-7,8-bis(benzyloxy)-3-methyl-5,6,7,8-tetrahydroindolizine-2-carboxylate (5a):

Compound 5a was synthesized from cycloadduct 2a (50 mg, 0.12
mmol) by following general procedure B. Yield: 43.0 mg (0.11

HsC /N\ OBn mmol), 90%; Rf: 0.5 (10% EtOAc/hexane); yellow oil.

5a oBn | IR (neat): 3030, 2873, 2873, 1691 cm..

MeOOC

1H-NMR (500 MHz, CDCls): & = 7.25-7.35 (m, 10 H), 6.59 (s, 1H),
4.64 (d, 1H, J=12.0 Hz), 4.58 (d, 1H, J = 12.0 Hz), 4.55 (d, 1H, J = 12.0 Hz), 4.49-4.54 (m, 2H), 3.97-
3.99 (m, 1H), 3.81-3.87 (m, 2H), 3.80 (s, 3H), 2.49 (s, 3H), 2.40-2.46 (m, 1H), 2.09-2.14 (m, 1H).

13¢{'H} NMR (125 MHz, CDCl3): § = 166.0, 138.3, 138.0, 135.8, 128.4, 128.4, 127.7, 127.7, 127.6,
127.5,125.3,111.3,110.8, 72.8, 71.0, 69.9, 69.9, 50.7, 38.7, 23.2, 10.8.

HRMS (ESI-TOF) m/z: calcd for CasH2sNO4 [M+H]*: 406.2018, found: 406.3533.

methyl (7S,8R)-7,8-bis(benzyloxy)-3-propyl-5,6,7,8-tetrahydroindolizine-2-carboxylate (5b):
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Compound 5b was synthesized from cycloadduct 2b (50 mg, 0.11

MeOOC,
mmol) by following general procedure B. Yield: 44.1 mg (0.1 mmol),
/N\ OBn 92%; Rf: 0.5 (10% EtOAc/hexane); yellow oil.
5p oBn | IR (neat): 3033, 2928, 2869, 1695 cm™™.

1H-NMR (500 MHz, CDCls): & = 7.24-7.34 (m, 10H), 6.58 (s, 1H), 4.64
(d, 1H,J = 12.0 Hz), 4.58 (d, 1H, J = 12.0 Hz), 4.55 (d, 1H, J = 12.5 Hz), 4.50-4.52 (m, 2H), 3.96-3.99
(m, 1H), 388-3.90 (m, 2H), 3.79 (s, 3H), 2.85 (m, 2H), 2.38-2.45 (m, 1H), 2.06-2.11 (m, 1H), 1.55-
1.60 (m, 2H), 0.98 (t, 3H, J = 7.5 Hz).

13C{*H} NMR (125 MHz, CDCl3): 6 = 165.8, 140.4, 138.3, 138.1, 128.4, 128.4, 127.7, 127.7, 127.5,
125.4,111.1, 110.9, 73.1, 71.0, 70.3, 70.1, 50.6, 38.6, 26.9, 23.6, 22.5, 14.1.

HRMS (ESI-TOF) m/z: calcd for C27H32NO4 [M+H]*: 434.2334, found: 434.2331.

methyl (75,8R)-7,8-bis(benzyloxy)-3-isopropyl-5,6,7,8-tetrahydroindolizine-2-carboxylate (5c):

Compound 5c¢ was synthesized from cycloadduct 2¢ (50 mg, 0.11

MeOOC, mmol) by following general procedure B. Yield: 43.2 mg (0.09 mmol),
]\ oBn | 95%; Rf: 0.5 (10% EtOAc/hexane); colorless oil.
N
IR (neat): 2959,2927, 2876, 1694 cm™™.
5¢ OBn

1H-NMR (500 MHz, CDCls): & = 7.25-7.35 (m, 10H), 6.58 (s, 1H), 4.64
(d, 1H,J = 12.0 Hz), 4.58 (d, 1H, J = 12.5 Hz), 4.55 (d, 1H, J = 12.5 Hz), 4.50-4.53 (m, 2H), 3.94-3.99
(m, 3H), 3.78-3.84 (m, 4H), 2.38-2.45 (m, 1H), 2.04-2.09 (m, 1H), 1.34-1.37 (m, 6H).

13¢{*H} NMR (125 MHz, CDCl3): 6 = 165.7, 144.6, 138.3, 138.1, 128.4, 128.4, 127.7, 127.7, 127.6,
125.4,111.9, 110.5, 73.0, 70.9, 70.8, 70.2, 50.7, 40.1, 25.1, 24.1, 20.2, 20.1.

HRMS (ESI-TOF) m/z: calcd for C27H32NO4 [M+H]*: 434.2331, found: 434.2323.

methyl (75,8R)-7,8-bis(benzyloxy)-3-phenyl-5,6,7,8-tetrahydroindolizine-2-carboxylate (5d):

Compound 5d was synthesized from cycloadduct 2d (50 mg, 0.10

MeOOC, mmol) by following general procedure B. Yield: 44.3 mg (0.09 mmol),
]\ OBn 95%; Rf: 0.5 (10% EtOAc/hexane); yellow oil.
N
IR (neat): 3030, 2945, 2860, 1698 cm™?,
5d OBn
1H-NMR (500 MHz, CDCl3): 6 = 7.26-7.44 (m, 15H), 6.74 (s, 1H), 4.71

(d, 1H, J = 11.5 Hz), 4.58-4.60 (m, 4H), 3.98-4.01 (m, 1H), 3.74-3.80
(m, 1H), 3.66-3.70 (m, 1H), 3.65 (s, 3H), 2.31-2.38 (m, 1H), 1.97-2.02 (m, 1H).
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13¢{'H} NMR (125 MHz, CDCl3): 6 = 165.2, 138.2, 138.1, 138.0, 131.6, 130.5, 128.4, 128.3, 127.9,
127.8,127.7,127.6, 127.6, 126.9, 112.8, 111.4, 73.3, 71.0, 70.8, 70.4, 50.7, 40.0, 24.0.

HRMS (ESI-TOF) m/z: calcd for C3oH30NO4 [M+H]*: 468.2175, found: 468.2176.

methyl (75,8R)-7,8-bis(benzyloxy)-3-(2-methoxyphenyl)-5,6,7,8-tetrahydroindolizine-2-
carboxylate (5e):

Compound 5e was synthesized from cycloadduct 2e (50 mg, 0.09
mmol) by following general procedure B. Yield: 41.0 mg, 85%; Rf:

/\ OBn 0.5 (10% EtOAc/hexane); colorless oil.
N

MeOOC

OMe OBn IR (neat): 3062, 3033, 2944, 1693 cm™.

5e

1H-NMR (500 MHz, CDCls): & = 7.28-7.43 (m, 12H), 7.04 (td, 1H, J =
6.0 Hz, J = 10.0 Hz), 6.99 (t, 1H, J = 8.0 Hz) 6.77 (d, 1H, J = 5.0 Hz) 4.77 (d, 1H, J = 11.5 Hz), 4.60-
4.66 (m, 4H), 4.01-4.04 (m, 1H), 3.86-3.92 (m, 1/2H), 3.75-3.79 (m, 3H), 3.68-3.71 (m, 1H), 3.66-
3.68 (m, 3H), 3.55-3.60 (m, 1/2H), 2.31-2.41 (m, 1H), 1.96-2.07 (m, 1H).

13¢{*H} NMR (125 MHz, CDCl3): &= 165.2, 159.5, 138.2, 138.0, 131.7, 128.4, 127.8, 127.7, 127.6,
127.6,126.7,123.6,113.4, 112.7, 111.3, 73.4, 71.0, 70.9, 70.4, 55.2, 50.7, 39.9, 24.0.

HRMS (ESI-TOF) m/z: calcd for C31H32NOs [M+H]*: 498.2280, found: 498.2283.

methyl (75,8R)-7,8-bis(benzyloxy)-3-(4-methoxyphenyl)-5,6,7,8-tetrahydroindolizine-2-
carboxylate (5f):

Compound 5f was synthesized from cycloadduct 2f (50 mg,
MeOOC 0.09 mmol) by following general procedure B. Yield: 47.9 mg,
i/ \ OBn 87%; Rf: 0.5 (10% EtOAc/hexane); colorless oil.
N
MeO IR (neat): 3033, 2943, 2853, 1698 cm™™.
5f OBn

1H-NMR (500 MHz, CDCls): & = 7.27-7.38 (m, 12H), 6.95-6..98
(m, 2H), 6.73 (s, 1H), 4.71 (d, 1H, J = 12.0 Hz), 4.58-4.60 (m, 4H) 3.98-4.01 (m, 1H), 3.85 (s, 3H),
3.75-3.80 (m, 1H), 3.68-3.72 (m, 1H), 3.67 (s, 3H), 32.32-2.38 (m, 1H), 1.97-2.03 (m, 1H).

13C{*H} NMR (100 MHz, CDCl3): 6§ = 165.2, 159.5, 138.2, 138.0, 131.7, 128.4, 127.8, 127.7, 127.6,
127.6,126.7, 123.6, 113.4, 112.7, 111.3, 73.4, 71.0, 70.9, 70.4, 55.2, 50.7, 39.9, 24.0.

HRMS (ESI-TOF) m/z: calcd for C31H32NOs [M+H]*: 498.2280, found: 498.2285.
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methyl (75,8R)-7,8-bis(benzyloxy)-3-(2,4-dimethoxyphenyl)-5,6,7,8-tetrahydroindolizine-2-

carboxylate (5g):

MeOOC

MeO

59

/ \
N

OMe

OBn

OBn

Compound 5g was synthesized from cycloadduct 2g (50 mg,
0.09 mmol) following general procedure B. Yield: 40.1 mg
(0.07 mmol), 83%; Rf: 0.4 (10% EtOAc/hexane); yellow oil.

IR (neat): 3455, 3025, 2968, 2944, 1732 cm™™.

1H-NMR (500 MHz, CDCls): & = 7.26-7.35 (m, 10H), 7.18 (dd,
1H, J = 6.0 Hz, J = 8.5 Hz), 6.72 (d, 1H, J = 5.0 Hz), 6.55 (dt, J =

2.5 Hz, J = 5.5 Hz), 6.52 (dd, 1H, J = 2.0 Hz, J = 7.0 Hz), 4.73 (d, 1H, J = 12.0 Hz), 4.59-4.62 (m, 4H),
3.98-4.01 (m, 1H), 3.84 (s, 3H), 3.70-3.74 (m, 3H), 3.53-3.68 (m, 5H), 2.29-2.36 (m, 1H), 1.93-2.02

(m, 1H).

HRMS (ESI-TOF) m/z: calcd for C3;H3aNOs [M+H]*: 528.2386, found: 528.2382.

methyl 3-(2-methoxyphenyl)-5,6-dihydroindolizine-2-carboxylate (7e):

MeOOC

/ \
N

OMe
Te

\

Compound 6a was synthesized from cycloadduct 4a (50 mg, 0.12 mmol)
by following general procedure B. Yield: 31.0 mg (0.10 mmol), 90%; Rf:
0.6 (10% EtOAc/hexane); colorless oil.

IR (neat): 2921, 2850, 1701 cm™.

1H-NMR (500 MHz, CDCls): & = 7.40 (t, 1H, J = 0.5 Hz), 7.30 (d, 1H, J = 6.5
Hz), 7.03 (t, 1H, J = 7.5 Hz), 6.97 (d, 1H, J = 8.0 Hz), 6.52 (s, 1H), 6.44 (d,
1H, J = 10 Hz), 5.78-5.82 (m, 1H), 3.71-3.77 (m, 4H), 3.59-3.63 (m, 4H), 2.38-2.41 (m, 2H).

13¢{'H} NMR (125 MHz, CDCls): 5= 3C{*H} NMR (125 MHz, CDCls): 6= 165.1, 157.6, 135.1, 132.9,
130.2, 128.9, 120.7, 120.2, 120.1, 120.0, 113.0, 110.9, 107.3, 55.5, 50.7, 41.4, 23.9.

HRMS (ESI-TOF) m/z: calcd for C17H1sNO3 [M+H]*: 284.1287, found: 284.1283.

methyl (S)-8-(benzyloxy)-3-(4-methoxyphenyl)-5,6,7,8-tetrahydroindolizine-2-carboxylate (6f):

MeOOC

MeO

6f

/ \
N

OBn

Compound 6a was synthesized from cycloadduct 4b (50 mg,
0.12 mmol) by following general procedure B. Yield: 33.4 mg,
70%; Rf: 0.6 (10% EtOAc/hexane); yellow oil.

IR (neat): 2948, 2920, 1699 cm.
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1H-NMR (500 MHz, CDCls): & = 7.26-7.39 (m, 7H), 6.95-6.96 (m, 2H), 6.67 (s, 1H), 4.67 (d, 1H, J =
12 Hz), 4.56-4.59 (m, 2H), 3.84 (s, 3H), 3.77-3.81 (m, 1H), 3.66 (s, 3H), 3.49-3.55 (m, 1H), 2.23-2.2
(m, 1H), 2.16-2.21 (m, 1H), 1.84-1.91 (m, 1H), 1.77-1.81 (m, 1H).

13¢{*H} NMR (100 MHz, CDCl3): & = 165.4, 159.5, 138.6, 137.9, 131.7, 128.4, 128.4, 127.7, 127.5,
123.7,113.5,112.4, 109.9, 69.8, 68.7, 55.3, 50.8, 44.3, 27.4, 18.8.

HRMS (ESI-TOF) m/z: calcd for C2aH26NO4 [M+H]*: 392.1864, found: 392.1862.

methyl 3-(2,4-dimethoxyphenyl)-5,6-dihydroindolizine-2-carboxylate (7g):

Compound 6¢ was synthesized from cycloadduct 4c (50 mg, 0.59

MeOOC mmol) by following general procedure B. Yield: 33.1 mg (0.10
]\ mmol), 93%; Rf: 0.5 (10% EtOAc/hexane); Colorless oil.
N
MeO \ IR (neat): 2923, 2864, 1700 cm™.
79 OMe

1H-NMR (500 MHz, CDCl3): & = 7.22 (d, 1H, J = 8.8 Hz), 6.57 (dd, 1H,
J=2.0Hz, 8.5Hz), 6.53 (d, 1H, J = 2.0 Hz), 6.50 (s, 1H), 6.43 (d, 1H, J = 10.0 Hz), 5.77-5.81 (m, 1H),
3.85 (s, 3H), 3.75 (s, 3H), 3.70-3.73 (m, 1H), 3.59-3.66 (m, 4H), 3.37-2.41 (m, 2H).

13¢{*H} NMR (100 MHz, CDCl3): 6 = 165.2, 161.5, 158.7, 135.2, 133.5, 128.7, 120.6, 120.2, 112.9,
112.5,107.2,104.3, 98.6, 55.5, 55.4, 50.6, 41.3, 24.0 ppm.

HRMS (ESI-TOF) m/z: calcd for C1gH20NO4 [M+H]*: 314.1392, found: 313.1392.

Chapter 3 — Part C: En route to the synthesis of C-pyrrolyl furanoside derivatives

General procedure C

The cycloadducts (1 mmol) was dissolved in 10 ml of dry dichloromethane and cooled to 0 °C. To
this solution, BF3.0OEt, (0.3 mmol) was added dropwise. Further progress in the reaction was
monitored by TLC and after completion, reaction was quenched with saturated bicarbonate
solution. The compound was extracted using dichloromethane, it was dried over sodium
sulphate, concentrate in vaco to obtain the crude. The crude is purified over silica gel
chromatography to get the product.

Compound characterization

methyl (S)-5-(3-(benzyloxy)tetrahydrofuran-2-yl)-2-methyl-1H-pyrrole-3-carboxylate
(8aB:8aa):

277



MeOOC Compound 8aB:8aa was synthezised from cycloadduct 2a (50 mg,
BnQ 0.12 mmol) by following general procedure C. Combined vyield of
o /N\ anomers: 35.92 mg (0.11 mmol), 95%; Rf: 0.6 (30% EtOAc/hexane);
H o} yellow oil.
8ap:8aa IR (neat): 3290, 2968, 2879, 1676 cm™.

1H-NMR (500 MHz, CDCl3): & = 8.84 (s, 0.6H), 8.44 (s, 1H), 7.26-7.37 (m, 7H), 7.1-7.17 (m, 1H),
6.52 (d, 1/2H, J = 1.0 Hz, 3.0 Hz), 6.32 (dd, 2H, J = 0.5 Hz, 2.5 Hz), 4.93 (d, 1H, J = 2.5 Hz), 4.68 (d,
0.6H, J = 3.5 Hz), 4.57 (s, 2H), 4.45 (d, 1/2H, J = 11.5 Hz), 4.21-4.23 (m, 1H), 4.17- (d, 0.6H, J = 11.0
Hz), 4.10-4.15 (m, 1H), 4.01-4.06 (m, 1H), 3.96-34.00 (m, 1H), 3.87-3.91 (m, 0.6H), 3.78-3.79 (m,
5H), 2.47 (s, 3H), 2.40 (m, 1.78H), 2.21-2.26 (m, 1H), 2.07-2.12 (m, 2H).

13C{'H} NMR (125 MHz, CDCls): 6 = 166.1, 165.9, 137.8, 137.7, 136.2, 135.2, 128.8, 128.5, 127.9,
127.8, 127.7, 127.6, 125.3, 111.7, 110.8, 110.4, 106.4, 83.7, 81.1, 79.4, 77.6, 71.8, 71.6, 67.3,
66.0, 50.7, 50.7, 32.8, 32.4, 13.1(2) ppm.

HRMS (ESI-TOF) m/z: calcd for C1gH22NO4 [M+H]*: 316.1549, found: 316.1555.

methyl (S)-5-(3-(benzyloxy)tetrahydrofuran-2-yl)-2-propyl-1H-pyrrole-3-carboxylate (8bf:8ba):

MeOOC Compound 8bB:8ba was synthesized from cycloadduct 2a (50 mg,
© BnO 0.11 mmol) by following general procedure C. Combined vyield of
/ \ anomers: 34.98 mg (0.10 mmol), 92%; Rf: 0.6 (30% EtOAc/hexane);
” o) yellow oil.
8bp:8ba IR (neat): 3297, 2955, 2870, 1677 cm™.

NMR data for major isomer: *H-NMR (500 MHz, CDCls): § = 8.43 (bs, 1H), 7.28-7.37 (m, 5H), 6.32
(dd, 1H, J = 1.0 Hz, J = 3.0 Hz), 4.93 (d, 1H, J = 2.5 Hz), 4.57 (s, 2 H), 4.22-4.24 (m, 1H), 4.02-4.07
(m, 1H), 3.95-3.99 (m, 1H), 3.78 (s, 3H), 2.81-2.92 (m, 2H), 2.07-2.12 (m, 2H), 1.59-1.66 (m, 2H),
0.94 (t, 3H, J = 7.0 Hz).

13C{*H} NMR (125 MHz, CDCl3): 6 = 165.7, 139.8, 137.8, 128.7, 128.5, 127.8, 127.7, 111.3, 106.4,
83.6,79.4,71.6,67.2,50.7,32.4, 29.1, 22.6, 13.9 ppm.

HRMS (ESI-TOF) m/z: calcd for CooH26NO4 [M+H]*: 344.1862, found: 344.1865.

methyl (S)-5-(3-(benzyloxy)tetrahydrofuran-2-yl)-2-isopropyl-1H-pyrrole-3-carboxylate
(8cB:8ca):
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Compound 8cB:8ca was synthesized from cycloadduct 2c (50 mg,
MeOOC BnO 0.11 mmol) by following general procedure C. Combined vyield of
/ \ anomer: 36.49 mg (0.10 mmol), 96%; Rf: 0.6 (30% EtOAc/hexane);
H o) yellow oil.
8cp:8ea IR (neat): 3307, 3011, 2959, 1678 cm™.

1H-NMR (500 MHz, CDCls): & = 8.92 (s, 0.8H), 8.41 (s, 1H), 7.26-7.37 (m, 9H), 7.20-7.21 (m, 1.8H),
6.52 (d, 0.8H, J = 2.5 Hz), 6.32 (dd, 1H, J = 0.5 Hz, 2.5 Hz), 4.93 (d, 1H, J = 2.0 Hz), 4.66-4.70 (m,
1H), 4.50 (s, 2H), 4.48 (d, 0.8H, J = 11.5 Hz), 4.22-4.25 (m, 2H), 4.14-4.25 (m, 2H), 4.05 (dd, 1H, J
= 8.5 Hz, 15.5 Hz), 3.95-4.00 (m, 1H), 3.88-3.92 (m, 0.9H), 3.736-3.78 (m, 6.9H), 3.65-3.71 (m,
0.9H), 2.28-2.33 (m, 0.9H), 2.18-2.25 (m, 1H), 2.0-2.1 (m, 2.5H), 1.22-1.25 (m, 8.8H), 1.11 (d, 2.9H,
J=7.0Hz), 1.01 (d, 2.9H, J = 7.0 Hz).

13¢{*H} NMR (125 MHz, CDCl3): § = 165.8, 165.6, 137.8, 137.7, 128.5, 128.5, 127.9, 127.8, 127.7,
127.6, 110.9, 110.1, 109.1, 106.5, 83.5, 81.0, 79.4, 77.6, 71.6, 71.4, 67.3, 65.9, 50.7, 50.6, 32.5,
32.4, 26.0, 26.0, 22.0, 21.8, 21.7, 21.5 ppm.

HRMS (ESI-TOF) m/z: calcd for Co0H26NO4 [M+H]*: 344.1862, found: 344.1868

methyl (S)-5-(3-(benzyloxy)tetrahydrofuran-2-yl)-2-phenyl-1H-pyrrole-3-carboxylate
(8dp:8day):
MeOOC Compound 8dp:8da was synthesized from cycloadduct 2d (50 mg,
BnO 0.10 mmol) by following general procedure C. Combined yield of
/[ \ anomers: 35.83 mg (0.095 mmol), 95%; Rf: 0.6 (30% EtOAc/hexane);
” o) yellow oil.
8dp:8da IR (neat): 3271, 3027, 2946, 1700cm™.

1H-NMR (500 MHz, CDCls): & = 9.02 (s, 1H), 8.60 (s, 1H), 7.14-7.58 (m, 21H), 6.71 (d, 1H, J = 3.0
Hz), 6.54-6.51 (m, 1H), 5.00 (d, 1H, J = 2.0 Hz), 4.76 (d, 1H, J = 3.5 Hz), 4.61 (s, 2H), 4.32 (m, 1H),
4.25-4.28 (m, 2H), 4.18-4.23 (m, 1H), 4.13-4.18 (m, 1H), 3.99-3.40 (m, 2H), 3.91-3.95 (m, 1H), 3.74
(d, 6H, J = 2.5 Hz), 2.20-2.33 (m, 2H), 2.09-2.13 (m, 2H).

13¢{*H} NMR (100 MHz, CDCl3): § = 165.4, 165.2, 137.8, 137.8, 137.5, 136.7, 132.0, 131.9, 130.9,
128.8, 128.7, 128.5, 128.3, 128.1, 128.0, 127.9, 127.7, 127.7, 112.2, 112.1, 110.9, 108.0, 83.9,
81.1,79.4,77.5,71.8,71.6, 67.5, 66.1, 50.9, 50.9, 32.5, 32.4 ppm.

HRMS (ESI-TOF) m/z: calcd for C3H24NO4 [M+H]*: 378.1705, found: 378.1726.

methyl (S)-5-(3-(benzyloxy)tetrahydrofuran-2-yl)-2-(2-methoxyphenyl)-1H-pyrrole-3-
carboxylate (8eB:8ea):
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Compound 8ef:8ea was synthesized from cycloadduct 2e (50 mg,

MeOOC,
BnQ 0.091 mmol) by following general procedure C. Combined yield of
/N\ anomers: 37.12 mg (0.091 mmol), 94%; Rf: 0.4 (30% EtOAc/hexane);
H o) yellow oil.
OMe )
8ep:8ea | |R (neat): 3288, 2924, 2914, 1693 cmL.

NMR data for minor isomer: *H-NMR (500 MHz, CDCls): 6 = 9.45 (bs, 1H), 7.54 (dd, 1H, J = 2.0 Hz,
J=7.5Hz), 7.30-7.34 (m, 1H), 7.21-7.24 (m, 3H), 7.16-7.17 (m, 2H), 6.99 (td, 1H, J= 1.0 Hz, J= 7.5
Hz), 6.91-6.93 (m, 1H), 6.72 (d, 1H, J = 2.5 Hz), 4.79 (d, 1H, J = 3.5 Hz), 4.45 (d, 1H, J = 12.0 Hz),
4.34 (d, 1H, J=12.0 Hz), 4.15-4.19 (m, 2H), 391-3.96 (m, 1H), 3.74 (s, 3H), 3.64 (s, 3H), 2.23-2.27
(m, 2H).

13¢{*H} NMR (125 MHz, CDCl3): § = 165.6, 156.6, 137.9, 132.1, 129.5, 128.4, 127.6, 127.5, 120.2,
111.3,110.8, 80.7, 77.7, 71.6, 66.1, 55.4, 50.8, 32.8 ppm.

HRMS (ESI-TOF) m/z: calcd for C2sH26NOs [M+H]*: 408.1811, found: 408.1815.

methyl (S)-5-(3-(benzyloxy)tetrahydrofuran-2-yl)-2-(4-methoxyphenyl)-1H-pyrrole-3-
carboxylate (8fp:8fa)

MeOOC Compound 8fp:8fa was synthesized from cycloadduct 2f (50
7 BnQ mg, 0.097 mmol) by following general procedure C. Combined
N\ yield of anomers: 37.12 mg (0.091 mmol), 94%; Rf: 0.4 (30%
MeO H o} EtOAc/hexane); yellow oil.
8fp:8fo IR (neat): 3290, 3005, 2946, 1699 cm-.,

1H-NMR (500 MHz, CDCl3): & = 9.07 (bs, 0.6H), 8.72 (bs, 1H), 7.76-7.78 (m, 0.6H), 7.51-7.52 (m,
2H), 7.32-7.38 (m, 8.6H), 7.17-7.19 (m, 1.5H), 6.92-6.96 (m, 2.36H) 6.83-6.86 (m, 1.5H), 6.71 (d,
0.6H, J = 3.0 Hz), 6.51 (dd, 1H, J = 0.5 Hz, J = 2.5 Hz), 5.01 (d, 1H, J = 2.0 Hz), 4.77 (d, 0.6H, J = 3.5
Hz), 4.46 (d, 0.6H, J = 5.5 Hz), 4.62 (s, 2H), 4.52 (d, 0.7H, J = 11.0 Hz), 4.29-4.31 (m, 1H), 4.26 (m,
0.7H), 4.15-4.18 (m, 1H), 4.04-4.09 (m, 1H), 3.99-4.03 (m, 1H), 3.92-3.96 (m, 0.7), 3.84-3.85 (m,
5.8H), 3.76-3.77 (m, 4.9H), 2.22-2.34 (m, 1.6H), 2.09-2.19 (m, 2.5H).

13¢{*H} NMR (100 MHz, CDCl3): 6 = 165.5, 165.3, 159.6, 159.4, 137.9, 137.7, 137.5, 137.0, 130.3,
130.1, 130.0, 128.7, 128.5, 127.9, 127.8, 127.7, 127.7, 127.5, 126.9, 124.5, 124.3, 113.7, 113.5,
113.4,112.0, 111.3, 110.2, 107.8, 83.7, 81.1, 79.3, 77.5, 71.7, 71.6, 67.3, 66.1, 55.3, 50.9, 50.8,
32.5,32.3 ppm.

HRMS (ESI-TOF) m/z: calcd for C2aH26NOs [M+H]*: 408.1811, found: 408.1813.
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methyl (S)-5-(3-(benzyloxy)tetrahydrofuran-2-yl)-2-(2,4-dimethoxyphenyl)-1H-pyrrole-3-
carboxylate (8gB:8gay):

MeOOC Compound 8gB:8ga was synthesized from cycloadduct 2g (50
BnQ mg, 0.091 mmol) by following general procedure C. Combined
/N\ yield of anomers: 36.99 mg (0.084 mmol), 93%; Rf: 0.5 (40%
MeO H o) EtOAc/hexane); yellow oil.
OMe 89gpB:8ga B
IR (neat): 3317, 3010, 2945, 1737 cm™.

1H-NMR (500 MHz, CDCls): 6 = 9.41 (s, 1/2H), 8.98 (s, 1H), 7.55 (d, 1H, J = 8.5 Hz), 7.49 (d, 0.67H,
J=8.5Hz),7.26-7.36 (m, 5H), 7.21-7.22 (m, 2H), 7.15-7.15 (m, 1H), 6.68 (d, 1/2H, J = 3.0Hz ), 6.45-
6.56 (m, 4H), 5.02 (d, 1H, J = 1.0 Hz), 4.74 (d, 1/2H, J = 3.5 Hz), 4.62 (d, 1H, J = 12.0 Hz), 4.59 (d,
1H, J = 12.0 Hz), 4.42 (d, 1/2H, J = 12.0 Hz), 4.30 (d, 1/2H, J = 12.0 Hz), 4.28-4.31 (m, 1H), 4.11-
4.17 (m, 1.6H), 4.04-4.09 (m, 1H), 3.97-4.01 (m, 1H), 3.88-3.92 (m, 1H), 3.88 (d, 5H, J = 2.0 Hz),
3.78 (s, 3H), 3.72 (d, 5H, J = 2.0 Hz),

13¢{*H} NMR (125 MHz, CDCl3): § = 165.6, 165.4, 161.0, 160.8, 157.8, 157.6, 137.9, 137.8, 134.3,
133.2, 133.0, 132.9, 129.8, 128.5, 128.3, 127.8, 127.7, 127.6, 127.4, 126.4, 113.4, 112.9, 112.3,
111.5, 111.2, 107.1, 104.3, 104.1, 98.7, 98.5, 83.9, 80.7, 79.4, 77.7, 71.6, 71.6, 67.3, 66.1, 55.6,
55.4,55.4,55.3,50.8,50.7,32.8,32.4 ppm.

HRMS (ESI-TOF) m/z: calcd for C2sH2sNOg [M+H]*: 438.1917, found: 438.1915.

methyl 2-(2-methoxyphenyl)-5-(tetrahydrofuran-2-yl)-1H-pyrrole-3-carboxylate (9e):

MeOOC Compound 9e was synthesized from cycloadduct 4e (50 mg, 0.12
) mmol) by following general procedure C. Yield of enantiomeric
N mixture: 34.53 mg (0.11 mmol) 94%; Rf: 0.5 (30% EtOAc/hexane);
H 0 yellow oil.
OMe 9%e
IR (neat): 3263, 2947, 2944, 1691 cm™.

1H-NMR (500 MHz, CDCl3): & = 9.13 (s, 1H), 7.58 (dd, 1H, J = 1.5Hz, 7.5 Hz), 7.29-7.33 (m, 1H),
6.99 (td, 1H, J= 1.0 Hz, 7.5 Hz), 6.95 (d, 1H, J = 8.0 Hz), 6.51 (dd, 1H, J = 0.5 Hz. 3.0 Hz), 4.99 (t, 1H,
J=6.5), 3.88-3.91 (m, 1H), 3.82-3.87 (m, 1H), 3.80 (s, 3H), 3.70 (s, 3H), 2.22-2.29 (m, 1H), 2.02-
2.09 (m, 1H), 1.96-2.03 (m, 2H).

13C{*H} NMR (125 MHz, CDCl3): 6§ = 165.5, 156.5, 132.9, 132.3, 132.2, 129.5, 120.4, 120.3, 112.6,
111.0, 107.4, 74.2, 68.0, 55.6, 50.8, 31.6, 25.7 ppm.

HRMS (ESI-TOF) m/z: calcd for C17H20NO4 [M+H]*: 302.1392, found: 302.1396.
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methyl 2-(4-methoxyphenyl)-5-(tetrahydrofuran-2-yl)-1H-pyrrole-3-carboxylate (9f):

MeOOC

MeO

/ \

N
H

of

(0]

Compound 9f was synthesized from cycloadduct 4f (50 mg,
0.12 mmol) by following general procedure C. Yield of
enantiomeric mixture: 34.89 mg (0.11 mmol), 95%; Rf: 0.5
(30% EtOAc/hexane); yellow oil.

IR (neat): 3273, 2948, 2944, 1690 cm™.

1H-NMR (500 MHz, CDCls): & = 8.60 (s, 1H), 7.51-7.53(m, 2H), 6.92-6.94 (m, 2H), 6.50 (dd, 1H, J=
1.0 Hz, 3.0 Hz), 4.95 (t, 1H, J = 6.0 Hz), 3.89-3.93 (m, 1H), 3.85-3.88 (m, 1H), 3.83 (s, 3H), 3.73 (s,
3H), 2.24-2.30 (m, 1H), 2.04-2.08 (m, 1H), 1.97-2.03 (m, 2H).

13C{*H} NMR (125 MHz, CDCl3): 6 = 209.6, 151.7, 138.4, 137.6, 128.6, 128.4, 128.3, 128.1, 127.7,
127.5,127.3, 125.9, 124.5, 118.7, 109.3, 83.9, 80.1, 73.9, 73.0, 72.3, 70.8, 66.4, 54.2, 52.5, 37.1

ppm.

HRMS (ESI-TOF) m/z: calcd for C17H20NO4 [M+H]*: 302.1392, found: 302.1396.

methyl 2-(2,4-dimethoxyphenyl)-5-(tetrahydrofuran-2-yl)-1H-pyrrole-3-carboxylate (9g):

MeOOC,

MeO

/ \

Iz

OMe

9g

o

Compound 9g was synthesized from cycloadduct 4g (50 mg,
0.11 mmol) by following general procedure A. Yield of
enantiomeric mixture: 34.79 mg (0.10 mmol), 93%; Rf: 0.4
(30% EtOAc/hexane); yellow oil.

IR (neat): 3271, 2947, 2944, 1698 cm™™.

1H-NMR (500 MHz, CDCl3): & = 9.00 (bs, 1H), 7.55 (d, 1H, J =

8.5 Hz), 6.54 (dd, 1H, J = 2.5 Hz, J = 8.5 Hz), 6.51 (d, 1H, J = 2.0 Hz), 6.49 (dd, 1H, J = 1.0 Hz, J = 3.0
Hz), 4.96 (t, 1H, J = 6.0 Hz), 3.84-3.92 (m, 2H), 3.83 (s, 3H), 3.79 (m, 3H), 3.71 (m, 3H), 2.23-2.28
(m, 1H), 2.03-2.09 (m, 1H), 1.94-2.02 (m, 2H).

13¢{*H} NMR (125 MHz, CDCl3): § = 165.5, 160.9, 157.7, 133.2, 133.0, 131.9, 113.1, 112.0, 107.3,
104.3,98.7, 74.2, 68.0, 55.6, 55.4, 50.8, 31.5, 25.7 ppm.

HRMS (ESI-TOF) m/z: calcd for C1gH22NOs [M+H]*: 332.1498, found: 332.1498.
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Compound Characterization: H, 3C, DEPT 135 NMR data

Chapter 3 — Part A: (3+2) Cycloaddition Reaction of Spirocyclopropane carboxylated sugars
and nitriles: Synthesis of Highly Functionalized Pyrrole Derivatives.

Chapter 3 — Part B: Post-synthetic transformations: En route to the synthesis of indolizidines
based scaffolds.

Chapter 3 — Part C: Post-synthetic transformations: En route to the synthesis of C-pyrrolyl
furanoside derivatives.
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