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Chapter -1

Introduction and Methods



1.1. Introduction
1.1.1. The origin of kinases

Kinases are a class of enzymes that belong to the transferase group and are required in order to
add a phosphate group to selective substrates. Kinases play essential roles to regulate metabolic
activities in the prokaryotic and eukaryotic cells (Das Evcimen et. al., 2007). Diverse classes of
kinases originated from different cellular types to fulfil emerging metabolic needs in various cell
types. Most classes of organisms have several families of kinases for genomic and cellular
metabolic activities for cell survival from the past 3 billion years approximately (Miller et. al.,
2012). The kinase phosphorylation can be on various types of substrates like histidine, serine,
tyrosine, threonine in proteins, and different types of phospholipids, carbohydrates and nucleic
acids. Based upon substrate specificity, the kinases are named respectively and grouped into
different categories. For example, kinases that phosphorylate serine/threonine residues in proteins
are called as serine/threonine kinases, kinases that phosphorylate tyrosine in proteins are called as
tyrosine kinases, and histidine kinases phosphorylate histidine, lipid kinases phosphorylate lipids
such as phosphatidylinositol and etc (Aehnlich et al., 2021; Graham et al., 2014). The eukaryotic
organisms need to respond to their external environmental factors with the role of protein kinases
to help in various cellular coordination mechanisms. These activities are initiated by the cellular
transduction signaling process through the cells to trigger activation of secondary messengers like
cyclic adenosine monophosphates. Kinases have evolved in a single cell prokaryotic organisms
earlier than eukaryotic unicellular and multicellular organisms around 1 billion years ago (Miller
et al., 2012). Protein tyrosine kinases were identified in genomic analysis of choanoflagellates,
metazoan species and various other Protista species. Diverse morphological domains and large
abundance of tyrosine kinases are present in many Animalia also. For example, the Monosiga
brevicollis species have more than 128 members of tyrosine kinases and the genomic analysis
studied describes these kinases to have been existed in pre-protistaera species like Opisthokonts.
The sister groups of metazoans and amoeba such as Ministeriavibrans comprise 103 diverse
kinases with their genomic data preserved in Filasterea family (Lai, & Safaei, Pelech, 2016). The
multicellular level communication has evolved after this family in order to increase the size and
network from metazoans and choanoflagellates subgroups. Approximately 600 million years ago,
there was a rapid increase in the number of tyrosine kinase functions and therefore the encoded

genes in multicellular and unicellular species have remarkably increased, new tyrosine kinases



have evolved in ecological higher order organisms. Current Animalia cells protein components
have increased to suit the cellular requirements; three major components in tyrosine kinases are
required to catalyze the involvement of phosphate groups; the tyrosine kinases to add the
phosphate group, protein tyrosine phosphatases to remove the phosphate group and

phosphorylated tyrosine binding domains such as Src homology 2 (SH2) domain.

1.1.2. Classification of protein kinases

The superfamily of protein kinases are classified based upon the modification in protein and the
conformational changes due to substrate molecules binding in a reversible manner or new
secondary messengers generated. Therefore, the protein kinases are classified into two types
(Hunter et. al., 1985). First one is the protein kinases that undergo post-translational modifications
in cellular signal transduction process due to phosphorylation of substrate molecules with the help
of ATP as a co-factor. Phosphorylation is a post-translational modification, akin to methylation,
glycosylation, lipidation, isoprenylation, partial proteolysis (Patterson et. al., 2014). In the second
classification, the kinase activity initiated new messenger like protein molecules. According to
studies (Patterson et. al., 2014: Glassman et. al., 2022), there are 568 human originated kinases in
the entire proteome. It accounts for 2% of entire proteome in humans. Protein phosphorylation is
performed by kinases with the help of ATP co-factor to selective hydroxyl group containing
residues (serine, threonine and tyrosine) in the target protein. In general, most of the protein kinases
catalyze phosphorylation of threonine or serine in substrate molecules and small group of kinases

catalyze phosphorylation on tyrosine.

1.1.3. The receptor and non-receptor tyrosine kinases
1.1.3.1. Receptor tyrosine kinase family

The classification of tyrosine kinases is based upon their location in the cell. They are defined as
receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (nRTKs). The RTKSs interact
with many other downstream kinases to mediate physiological activities of the cell. Mainly the
cellular communication is done with RTK signal transduction pathways. In biological systems,
this process is quite complicated and yet synchronized during cellular signaling process with
various kinase domains and regulatory proteins coordinating to decide the outcome of the cell in
fundamental units of life (Glassman et. al., 2022). RTKs are the front line receptors for signal
transduction processes in the entire protein kinase network. The RTKs are essential single-pass

membrane spanning proteins in cellular signal transduction pathways (Lemke, 2013). All RTKs



share similar protein architecture, the amino terminal glycosylated extracellular region is stabilized
by disulfide bonds followed by a membrane spanning segment, and an intracellular region that
comprises a kinase domain (Graham, DeRyckere, Davies, & Earp, 2014). Many of these RTKs
are generally activated by receptor-specific ligands, for example, binding of epidermal growth
factor (EGF) to the extracellular domain of EGF receptor causes receptor dimerization followed
by kinase activation and autophosphorylation. The kinase domain motions indirectly trigger the
structure and ligand based intracellular communications in metabolic activities. RTKSs initiate the
cellular communication with the help of surface bound cytokines. These are responsible for
regulation, differentiation of leukocytes and its memory cells of immunological reactions, RTKs
are involved in regulating conventional signaling process in cellular genome expression and
differentiation and proliferation and apoptosis. These events lead to intracellular ligand recognition
and downstream signaling events (Sasaki et al., 2006; Tsou et al., 2014). Therefore the activation
of RTKs play a vital role in controlling protein expression, regulation of normal physiological
events in cell survival, proliferation, growth and death. Abnormal overexpression and mutations
in RTKs initiate uncharacteristic cascade of signaling pathways which have numerous effects on
the cellular role of proteins and their activities, such as disruption of normal cellular functions,
malignancy in cells, and support the development and progression of different human cancers
(Bosurgi et al., 2013; Rothlin, Carrera-Silva, Bosurgi, & Ghosh, 2015; Chien et al., 2016). The
intracellular kinase domain in RTKSs is a viable drug target for cancer treatment and several
inhibitors have been designed and validated as cancer drugs (Huey, Minson, Earp, DeRyckere, &
Graham, 2016; Kimani et al., 2016; Pinato, Chowdhury, & Stebbing, 2016; Schmitz et al., 2016).
The upregulated RTKSs have vital role in oncogenic signaling process that act as regular cells to
inhibit the immunological reactions. It is an open challenge to study how RTKSs are responsible for
cancer and therefore to design their inhibitors in order to combat cancer (Davra, Kimani, Calianese,
& Birge, 2016; Deng, Chen, & Han, 2016).

One subfamily of RTKs consists of three proteins, Tyro3, Axl and Mer collectively called as
“TAM RTKs”. TAM RTKs have an extracellular N-terminal region comprising two
immunoglobulin (1g)-like domains and two fibronectin type 111 binding domains, a central single
trans-membrane spanning helix and an intracellular region comprising the kinase domain (Wang
et al., 2016). The immune response is triggered by interferon (IFN), interleukins (ILs) during
inflammation and malfunction of cell metabolic activities. TAMs undergo extensive post-

translational modifications such as glycosylation, phosphorylation and ubiquitination, their



molecular weights range from 100 to 140 kDa for Axl and Tyro3, and 165 to 205 kDa for Mer
RTKs (Zhou et al., 2016). The important extracellular factors such as Growth arresting specific
protein (Gas-6), Protein S (Prosl) and EGF, activate TAM kinases (Akalu, Rothlin, & Ghosh,
2016, Patterson et. al., 2014: Glassman et. al., 2022). These ligands bind to the extracellular
domains of RTKs which leads to their dimerization followed by specific residue
autophosphorylation in the cytoplasmic polypeptide (Ekyalongo, & Yee, 2017). TAMs play
crucial roles in a variety of normal biological functions such as spermatogenesis, bone physiology,
controlling platelet aggregation, endothelial and vascular smooth-muscle homeostasis (Gay,
Balaji, & Byers, 2017; Vouri, & Hafizi, 2017). TAMs regulate downstream signalling events are
mediated by JAK, p38, MEK, phospholipase C (PLC) and PI3K that essentially play role in cell
growth, apoptosis and survival (Graham, DeRyckere, Davies, & Earp, 2014). It has been proposed
that TAM Kinases are emerging as a class of innate immune checkpoints that participate in key
steps of anti-tumoral immunity (Akalu, Rothlin, & Ghosh, 2016). The TAM Kkinases are key
transferases that exhibit distress transduction signaling process to further activate the T-helper and
T-killer immune cells through caspase enzyme from apoptosis. These enzymes play an essential
role in lysozyme activity of different malignant cell lines in our body. TAMs are associated with
most cancers as overexpression of signaling pathways induced metastatic stage including
angiogenesis formation to uncontrolled growth of malignant cells in human (Aehnlich et. al.,
2021). TAM RTKSs are also reported to play crucial roles in disease conditions such as acute
myeloid leukemia, breast, colorectal, lung, ovarian cancers and glioblastoma (Rankin, & Giaccia,
2016; Knubel et al., 2014). Since TAMs are overexpressed in many oncogenic cells, some
previously reported kinase inhibitors are experimentally validated as TAM RTK inhibitors (Wu et
al., 2017; Wu et al., 2018).

The three TAM kinase members share a high degree of sequence and structural homology in their
kinase domains. Cabozantinib is a small molecule inhibitor that is targeted towards multiple
kinases such as Axl, c-Met, VEGFR2, RET, KIT and FLT3 (Grillich, 2014). Cabozantinib was
approved by U.S. Food and Drug Administration (FDA) for advanced renal cell carcinoma,
hepatocellular carcinoma and medullary thyroid cancer. In September 2021, FDA has approved
cabozantinib also for differentiated thyroid cancer that has progressed following prior VEGFR-
targeted therapy. Cabozantinib is reported to bind TAM kinases with high affinity at nanomolar
concentrations (Gajiwala et al., 2017, Sultan et al., 2017, Skora et al., 2013, Turner and Blythe,



2019, Herum, et al., 2017, Qin et al., 2019, Lacy et al., 2018, Pantano et al., 2016, Myers et al.,
2019, Robinson, 2013).

1.1.3.2. Non-receptor tyrosine kinase family

The nRTKs are intracellular located cytosolic enzymes. These kinases also catalyze the transfer of
inorganic phosphate group from biological high energy molecule (ATP) to selective target protein
tyrosine residues. Intracellular protein-protein interactions activate the nRTKs. Src kinases are
one of the members of nRTKSs that are well studied. The Src kinases have a very different
architecture compared to RTKSs, but the regulation of these nRTKSs have similar roles in cellular
homeostasis and metabolic processes. The nRTKs mediate the cytosolic regulation activities such
morphogenesis, cell motility and cell division. Mutant nRTKs are overexpressed in protein
signaling processes and their defective functions in many cell types are linked to diseases such as
metastatic cancers, tumor necrosis. The Src kinase has distinct structural domains, specified as N-
terminal domain, Src homology 3 (SH3), SH2 domains, C-terminal domain and tyrosine kinase
domain. Each of these domains perform a specific function essential to carryout normal signal
transduction process. The Src kinase is involved in various cellular activities without any external
ligand activation, as it is a cytosolic protein to initiate the cellular functions with the help of
phosphorylation at specific residues on itself (autophosphorylation) or neighboring (substrate)
proteins. The N-terminal domain has one or more acylation sites and anchored the entire Src kinase
protein to the cell membrane. The SH2 domain is a key element to bind the phosphorylated site of
tyrosine (for tyrosine kinases) or serine/threonine (serine/threonine kinases) residues of the target
protein. Whereas the SH3 domain binds to proline rich peptide. The selective tyrosine residues are
phosphorylated on target protein with the help of ATP cofactor and referred to as a “tyrosine kinase

domain”.
1.1.4. Mechanistic pathways of tyrosine kinase activation

Protein kinase activation is based upon the ligand binding and various growth factors induced
kinase activity. The kinases can exist as active and inactive state forms. The ATP cofactor binds
to the catalytic domain of RTKs whereas the phosphorylation takes places on hydroxyl group
residues of target protein. The catalytic site is defined as the nucleoside ribose sugar triphosphate
of ATP binding to a cleft between the N-terminal and C-terminal domains connected with a hinge
residues region (Kornev, A. P., Haste, N. M., Taylor, S. S., and Eyck, L. F. 2006). In a kinase

domain. specified regions such as the phosphate binding loop; P-loop (Gly rich loop) located in



the N-terminal region, the helical region located opposite to P-loop represented as aC-helix region,
the juxta membrane unfolding and refolding takes place in C-terminal domain in close association
to DFG motif represented as “activation loop”. The three residues interactions of selective resides
from P-loop, aC-helix, DFG motif are key salt bridges to represent kinase active and inactive
states. The salt bridge existed between (P-loop) Lys562 (amino acid numbering is as per the AxI
RTK)- Glu585 (aC-helix) represented “active state” of RTKs where the dissociation of these
interactions is described as “inactive state”. During these RTKS activation process, the P-loop and
aC-helix outward (inactive) or inward (active) rotation with help activation loop folded into j-
sheet in active state, the activation loop refolded into helical structure exists as inactive state. This
can be confirmed with the help four consecutive hydrophobic residues movement from N-terminus
to C-terminus as called regulatory spine. This can be generated as four non-consecutive residue
motifs from four kinase domains as P-loop (Lys), aC-helix (Glu), DFG motif (Phe), catalytic loop
(His). there are eight non-consecutive residues from N-terminal to C-terminal represented as
catalytic spine. The catalytic spine is ATP bound region for catalytic activity of tyrosine kinases
as the two non-contiguous motifs of these spines are connected with catalytic loop and aF-helix
region in the C-terminal domain of tyrosine kinases (Robinson, 2013; Mohanty et al., 2016; Hu et
al., 2015).

The kinase activity of RTK is triggered by its binding to ATP and Mg?* that results in the transfer
of y-phosphate group to tyrosine containing protein target. The ATP binding cleft is located
between the N- and C-terminal lobes, and at the hinge region connecting the two lobes (Kornev et
al., 2006). The structurally important regions required for the activity of a protein tyrosine kinase
include, the P-loop located between B1 and 2 strands, catalytic helix (a-helix) in the N-terminal
lobe comprising the essential amino acid (Glu585, Axl amino acid numbering) with its side chain
fluctuating between the active and inactive states of kinase. The distinction between the active and
inactive states is also based upon the a-helical movement towards or away from the ATP binding
site. The presence of catalytically important Lys567 (close to P-loop) - Glu585 (a-helix) is an
essential ionic interaction in the active Axl kinase from the crystal structure in protein data bank
(PDB). The disordered activation loop (689-724) in the C-terminal lobe has altered conformational
states that are variable among the kinase structures reported so far. An ionic interaction between
the side chains of Asp581 (aC-helix) and Lys695 (activation loop) is important in the kinase
structure and allostery. The synchronous fluctuations in the P-loop, a-helix and activation loop

leads to spatial alteration in the shape of the enzyme active site pocket and distinct structural



features such as the inward/outward rotation of a-helix and expansion of the activation loop. The
Lys567 - Glu585 salt bridge is the indication for the active state of TAM RTKSs. A kinase domain
has two kinds of active sites; regulatory substrate site and catalytic active site that become available
during allosteric competitive inhibitor binding pathways in the cellular signal transduction process.
Structure analyses revealed the presence of two non-contiguous structural motifs, regulatory and
catalytic spines (Robinson, 2013, Mohanty et al., 2016, Hu et al., 2015) that are required for

stabilizing the protein in the active state.

1.2. Severe acute respiratory syndrome coronavirus 2

The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has caused a global
pandemic of the coronavirus disease 2019 (COVID-19) during the last 40 months. COVID-19 has
been the single major cause of death due to any disease within a short span of time. SARS CoV-2
was first reported in individuals known to have been in contact with wildlife animals at the live
animal and seafood market in Jianghan District, Wuhan (Zhu et al., 2020). SARS CoV-2 is similar
to SARS CoV (2003 to 2005), Middle East respiratory syndrome coronavirus (MERS CoV) (2012
to 2013) and other human CoVs in the 20™ century that has led to epidemics resulting in severe
respiratory diseases and deaths (Guruprasad, 2021a). These viruses harbour ~ 30K bp single
stranded positive-sense RNA genome. SARS CoVs enter human cells through fusion of viral and
host cellular membranes mediated by the interaction between viral spike protein and human
angiotensin converting enzyme-2 (ACE-2) (Guruprasad, 2020; 2021b; Li et al., 2003; Shang et al.,
2020). The SARS CoV-2 spike protein is a heavily glycosylated homo-trimeric protein with
~1,273 amino acids and the sequence region (amino acids 333-520) constitutes the receptor-
binding domain (RBD) that interacts with human ACE-2 receptor. The three dimensional
structures of the spike protein apo and RBD bound forms to human ACE-2 receptor are available
in the public domain (Wang et al., 2020; Xiao et al., 2021; Xu et al., 2021). Viruses acquire
mutations over a period of time during host infection giving rise to new sequence variants. RNA
viruses have much higher mutation rates compared to DNA viruses. The viruses that undergo
favourable mutations continue to persist in host. Due to mutations, the viruses might gain ability
to evade detection by specific viral diagnostic tests, or decreased susceptibility to therapeutic
agents, such as, monoclonal antibodies and small molecule drugs. Some mutations can produce
viruses with new antigenic determinants and the antigenically altered viruses may be able to cause
disease in previously resistant or immune hosts or cause vaccine rejection (Fleischmann, 1996).

The wild-type refers to first reported strain of the human SARS CoV-2 virus isolated from patient



in Wuhan, China (NCBI_id: NC_045512) (Wu et al., 2020). With respect to wild-type proteins,
the mutations and sequence variants are collected through complete genome sequence and
epidemiological studies of SARS CoV-2 strains across populations from various geographical
locations and different times. These sequences have been deposited in the NCBI

(www.ncbi.nlm.nih.gov) and GISAID (https://www.qgisaid.org/) databases. Sequence analyses

have reported deletions, insertions and substitution mutations in all SARS CoV-2 proteins
including the spike protein (Guruprasad, 2021b; Mohammadi et al., 2021) demonstrating that
SARS CoV-2 has an innate ability to undergo mutations rapidly. SARS CoV-2 vaccines show
protective efficacy towards humans by providing neutralizing antibodies which recognize the viral
spike protein (Kyriakidis et al., 2021). The effects of spike protein mutations in SARS CoV-2 on
the neutralization of antibodies have been studied (Rees-Spear et al., 2021). Genome sequencing
and protein sequence analyses have shown the emergence and persistence of some SARS CoV-2
spike protein mutations in subsequent generations during human infection. One of the early
identified mutations in spike protein, D614G is associated with lower RT-PCR cycle thresholds
suggestive of higher viral loads but not with increased disease severity (Korber et al., 2020). The
D614G mutant spike protein increases SARS CoV-2 infection of multiple human cell types
compared to the wild-type strain (Daniloski et al., 2021) and efficiency of viral entry with
enhanced ACE-2 binding affinity (Ozono et al., 2021) by assembling more functional spike protein
into the virion (Zhang et al., 2020). Epidemiological evidence suggests that the D614G variant has
increased ability to spread more quickly than viruses without this mutation. Therefore, the D614G
mutant has become dominant in the SARS CoV-2 spike protein. The Phylogenetic Assignment of
Named Global Outbreak Lineages (PANGOLIN) software tool (Rambaut et al., 2020) implements
a dynamic and rational nomenclature of the SARS CoV-2 strains. The PANGO lineages available

at website (https://www.cov-lineages.org) refers to the cluster of sequences associated with distinct

geographical locations with evidence of onward spread and captures the emerging trends of
mutations from genomic epidemiological surveillance and outbreak investigations. The US
government SARS CoV-2 Interagency Group (SIG), initially developed a variant classification
scheme that defines three classes of SARS CoV-2 variants; variant of interest, variant of concern
and variant of high consequence. A variant of interest has specific genetic markers associated with
changes in receptor binding, increased disease severity, reduced efficacy of treatments, reduced

neutralization by antibodies generated against previous infection or vaccination, potential



diagnostic impact, increased proportion of clusters of cases and therefore increased
transmissibility.

A variant of concern must display evidence of increased transmissibility, more severe disease with
evidence of reduced effectiveness of treatments or vaccines, or failure in diagnosis detection,
treatments, or vaccines leading to increased hospitalizations or deaths. The SARS CoV-2 variants
are classified into four classes; variant being monitored, variant of interest, variant of concern and
variant of high consequence. The lineages for variant being monitored and variant of concern along
with their WHO label and mutations in the spike protein are documented. Currently, there are no
mutations classified under variant of interest or variant of high consequence. The B.1.1.7 lineage
first detected in UK during September 2020 was subsequently reported in several countries
including India. The substitution mutations in the RBD of spike protein in this lineage were;
E484K, S494P, N501Y. This lineage is attributed to 50% increased transmissibility (Davies et al.,
2021), increased severity based on hospitalizations and fatality rates compared to other variants
(Horby et al., 2021). The B.1.351 lineage was first identified in South Africa during early October
2020, Zambia during late December 2020 and subsequently reported in several countries. The
substitution mutations in the RBD of spike protein in this lineage were; K417N, E484K, N501Y.
This lineage is also attributed to 50% increased transmissibility (Patone et al., 2021). The E484K
mutation may affect neutralization by some polyclonal and monoclonal antibodies (Patone et al.,
2021). The P.1 variant was first reported in Japan in travelers from Brazil, subsequently, Manaus,
in the Amazon region and also in the United States at the end of January 2021. The P.1 lineage
mutations in the RBD of spike protein were; K417T, E484K, N501Y. The P.1 variant mutations
may affect its transmissibility and antigenic profile resulting in its decreased ability to recognize
antibodies generated through a previous viral natural infection or through vaccination (Harvey et
al., 2021). The B.1.617.2 lineage contains the mutations; K417N, L452R, T478K in the RBD of
spike protein. The B.1.427 and B.1.429 variants of SARS CoV-2 were first detected in southern
California, USA during early 2021 that comprises the L452R mutation associated with the RBD.
Both variants have 20% increased transmissibility (Deng et al., 2021). The B.1.525 lineage
comprises the E484K mutation and the B.1.526 lineage comprises mutations; L452R, S477N,
E484K in the spike protein RBD. The sub-lineages of B.1.617; B.1.617.1 comprises the mutations;
L452R, E484Q; B.1.617.3 comprises mutations; L452R, E484Q and B.1.672.2 (delta variant
according to WHO classification) and variant of concern comprises mutations; K417N, L452R,

T478K. The P.2 lineage first reported in Brazil during October 2020 has four mutations in the
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entire spike protein with the E484K mutation in RBD. The B.1.621 lineage that originated in
Colombia during January 2021 has the mutations; E484K and N501Y in RBD.

1.3. Materials and methods
1.3.1. Protein sequence databases

BLAST: The Basic Local Alignment Search Tool (BLAST) is a rapid basic nucleotide and protein
sequence alignment tool from sequence databases by sequence searches to generation of
phylogenetic tree of various organisms. The DNA and RNA, protein sequence datasets are
deposited in many online libraries (NCBI, UNIPROT online databases). BLAST is a sequence
alignment search tool through web resources to connect different species of sequence data in a
stochastic and robust manner. It searches the different genetic sequences in multiple contexts as
specific sequence motif and its identification search, RNA and DNA, protein database searches of
respective gene location and mapping of similar gene sequences (Altschul et al., 1990). This
algorithm has a large pool of resource to sort the protein sequences of desired results. The sequence
alignments from BLAST can be a guide to find a homologous protein of known structure that
could be used as a template for homology modeling. Based upon this sequence alignment, the
Phyre2 server proposed theoretical protein homology models to compare with actual sequence
based designed models (Shen, & Sali, 2006; Laskowski et al., 1993).

1.3.2. Multiple sequence alignment of protein sequences

Multiple sequence alignment is a series of stacked algorithms resulting in the evolutionary
hierarchy alignment of genomic sequences in systematic manner from one or more organisms.
This alignment series describes about the evolutionary events like genetic insertions, mutations,
deletions and overall rearrangement, that is further modified in younger evolutionary generations.
These alterations are occurred in DNA, RNA and protein sequences. The comparative sequence
analysis can be done with BLAST and online multiple sequence alignment webserver by genetic
sequence databases only. The multiple sequence alignment is a fundamental technique to align the
genomic sequences in the modelling methods of interdisciplinary biological sciences referred to
as Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers, & Higgins, 2018) in
scientific community. It is one of the top most cited research papers in fundamental biological
research field (Chatzou et al., 2016). The multiple sequence alignment is followed by phylogenetic
tree generations and domain analysis and their reconstruction of selective motif from sequence

information. Major purpose of multiple sequence alignment is to align the structural genetic
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sequences into a way such that it will represent evolutionary, structural and functional relationship
among different organisms. For building a multiple sequence alignment there is a need for scoring
functions to quantitative merits in a relative manner with respect to sequence relationships. It can
be estimated by using best scoring model function with respect to sequence data (Madeira et al.,
2022).

1.3.3. Protein homology modelling and validation

The hierarchy of protein structural information is defined at four levels; primary, secondary (o-
helical and B-sheet), tertiary and quaternary structures. The functional aspect of a protein structure
is represented as three dimensional spatial arrangement of polypeptide chains consisting of main
chain and side chains (Luthy et al., 1992). The protein structures are solved using X-ray protein
crystallography, nuclear magnetic resonance (NMR) and cryo-electron microscopy in three
dimensional form as stored in PDB format in many webservers (RCSB PDB.org) (Berman et al.,
2007). The three dimensional structure of a protein provides useful insights of morphological and
functional activity at molecular basis of protein conformers. Because in the entire protista, animalia
and plantae kingdoms 1/3 of whole proteome sequences are related to one of the protein sequences
of known structure. As there are inherent difficulties in solving the structures of proteins, the
building of protein three dimensional model structures has gained popularity as it is a reliable
method. Based upon this criteria, the rate of modelled protein structures by comparative structure
modelling method is a far higher order than known experimentally determined structures. The
comparative modelling methods have high accuracy for low resolution X-ray structure, which are
very hard to render through single X-ray diffraction method. The number of methods to design
protein models using homology modelling methods are increasing rapidly to evolving change in
computational biophysics research area. The protein homology modeling technique is
computationally viable protein structural prediction method to deduce the three dimensional
protein model as replica of existing template in tertiary structure and fill any the missing residues
in secondary structural or loop regions and from the given protein sequences (Cavasotto & Phatak,
2009). Itis one of the efficient tools to generate the non-existent and difficult to crystallize proteins
with the existing laboratory techniques. The biological simulations results have been depending
upon the maximum quality of three dimensional homology models. The homology modelling is
key computational technique to enhance the protein ligand and protein-protein, protein-DNA/RNA
interactions in biological simulations with statistical mechanics (Harding et al., 2002). Homology

modelling of protein is very crucial in mutations induced in wild type protein sequences and their
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mutated homology model generation is important for mutation analysis of these models in docking
and MD simulated systems (Muhammed, Aki-Yalcin., 2019). The virtual model generation of
three dimensional protein structures are essential to search for effective inhibitor of particular
protein active site models in drug discovery process. It would enhance the drug discovery possible
with practical unknown and inaccessible protein models in experimental process. The protein three
dimensional structural interactions with inhibitor and substrate molecules can be possible with
these virtual model generations without physical need of protein samples. There are key steps
involving to generate the effective comparative modelling of protein from genetic sequences. To
identify selective homology gene sequence extracted from various genetic sequence libraries
(NCBI database) with the help of phylogenic genetic sequence order. Based upon the multiple
sequence alignment of desired template and unknown protein sequence or known target protein
superpose to identify the % of sequence identity to generate maximum three dimensional protein
structural model accuracy (Kopp & Schwede, 2004). The model building and loop refinement,
side chain rotamers modeling is done with model build python script from Modeller (Shen, &Sali,
2016; Yang et al., 2012) or SWISS-MODEL (Bordoli et al., 2009). The selective lower DOPE
scores models are further validated with model optimization. The model quality evaluation of
given protein sequence to generate the replica of structural morphology from template structure.
The tertiary homology model generation methods include Modeller, I-TASSER, AlphaFoldDB,
SWISS-MODEL, Molecule operating Environment (MOE), PHYREZ2, PRIME webtools to build
the protein three dimensional models from genetic sequences (Varadi et al., 2022; Waterhouse et
al., 2018; Kelley et al., 2015). The protein model validation is done by stereochemical model
validation for allowed residues region with Ramachandran plots and with ERRAT, PROCHECK
validate three dimensional spatial orientation of homology models (Laskowski et al., 1993;
Colovos, Yeates., 1993; Ramachandran et al., 1963).

1.3.4. Protein data bank

Protein data bank (PDB) is a web-based protein structure database available worldwide from 1999
onwards. It is a single archive of protein structural database sometimes in complex with various
biomolecules from structural biologists. It is a web based server (wwPDB) where the archive
datasets are obtained from structural biologists, biochemists, protein crystallographers who solved
the protein structures using NMR, cryo-electron microscopy and X-ray crystallography. This was
organized by four members of institutions as PDB in Europe (PDBe), Biological Magnetic
Resonance Data Bank (BMRD) and Research Collaboratory for Structural Bioinformatics (RCSB)
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PDB from USA and PDB bank from Japan (PDBj) (Tong, Ranganathan, 2013). These entities
collectively maintain the RCSB PDB (https://www.rcsb.org/) web archive of single protein
database of any missing structural biomolecular data from global scientific community. It is an
accessible web archive server as free of cost to provide experimental and computed protein
structural models included from AlphaFold and Model Archive databases (Bittrich et al., 2022).
From 2020 onwards, there is enormous increase in the deposited crystal and computational protein
structures into these databases due to COVID19 pandemic. Therefore, the PDB database hierarchy
has been done in PDB entry of single crystal protein structure, chemical entity of small molecules,
multiple instances of any individual chemical entity, assembly of all polymorphic chains and other
non-polymeric chemical entity considered assembly with unique PDB id in RCSB PDB databases
(Burley et al., 2022). This databank provides high volume of protein sequence and three
dimensional coordinate system of individual protein structures including cryo-electron microscopy
structures at ultra-low temperature crystallography with lasers. As on 27" July, 2023, there are
207,791 experimental structures from the PDB and 1,068,577 computed structures available at

www.rcsh.org/.
1.3.4.1. Small molecule databases

In ligand-based and structure-based drug design methods, the small organic molecules three
dimensional coordinates are extracted from various small molecule drug databases. The small
molecule crystal information files (cif) are deposited from large number of scientists including
multiple domains scientific community groups around the globe. Drug hunter database provides
(https://drughunter.com/molecules-of-the-month/) all the FDA approved and commercially
available drugs in market with a monthly update. The national cancer institution is one of the large
cancer chemotherapeutics database (https://dtp.cancer.gov/databases_tools/). There are many
small molecule databases generated from a pool of chemical libraries such as CHEMBL32,
MolProt, PubChem, Zinc, ChemDiv and ChemSpace (Bates et al., 1995; Hollingshead et al.,
2022). These libraries are database repositories of small molecular inhibitors of millions of
compounds for selective protein active site target. The pharmacokinetics studies of small
molecules are done with SwisSADME webserver tools. These studies are validated with known
virtual and experimental adsorption, distribution, metabolism, excretion and toxicology (ADMET)
(Potts et al., 1992; Daina et al., 2017) results validated with phase Il and 111 clinical trials of small
molecules for potency towards a specified disease. The pharmacokinetic properties of all screened
drugs are described with SwissADME, a web based online server tool.
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1.3.4.2. Pharmacophore generation and virtual screening of chemical libraries

The computer aided drug discovery has major bottlenecks in the design of suitable drug molecules
for specific protein active site target with different and viable chemical environment entities with
unique molecular mass such that they qualify as drug molecules. In this direction, one of the major
challenges is to select a specific number of small molecular hits to satisfy the conditions of
approval for drug-like candidates by agencies such as FDA. Therefore, a modern computational
advancement is by effective retrieval of pharmacophore models based drug-like hit molecular
query to initiate the hunt for target protein binders towards a disease condition with the help of
online search databases; Pharmit (Sunseri, Koes, 2016), iDrug (Chen, & Cheng, Li, 2020), Dock
Blaster (Irwin et al., 2009) and related methods (Gan et al., 2023; Singh, & Chaput, Villoutreix,
2021). The virtual screening can be done based upon morphology of protein active site and the
chemical environment around the reference small molecular inhibitor (pharmacophores).
However, the virtual screening of small molecules is very prominent for drug discovery in the
modern data era due to the availability of advanced algorithms and high performance
computational facilities around the worlds (Folding@Home, supercomputing facilities availability
in Switzerland, Germany USA, UK, France, China and Japan) (Maia et al., 2020). The virtual
screening can be easily done with high throughput screening with a large server of computer cluster
to decipher the desired small molecular entities which is cost effective and has greater reliability
in finding appropriate pharmaceutically active relevant hit molecules from large virtual databases.
Virtual screening is an in silico method for structure based query against protein three dimensional
structure active site to select desired hit molecules by searching various small molecules data
libraries. Virtual screening works like a funnel to segregate the small molecules based upon their
pharmacophore features and molecular mass and should be viable to inhibit cavities in the
environment of protein binding sites. This technique has numerous advantages during the drug
development and optimization to search for bioactive hit molecules. These virtual databases
comprise molecules with appropriate biological activity to optimize a candidate molecule of
interest for required protein targets to finally lead to a drug molecule. After selection of optimized
hit molecules, the pharmacodynamics and toxicological data prediction can be deduced from their
respective structural and physiological properties (Lill., 2013; Daina, Michielin, Zoete. 2017).

The virtual screening was first developed in 1980 due to the computational advancement and
abundance of synthetic biochemical active molecules to target many virtual three dimensional

protein coordinates available in PDB databases (Anderson, 2003). While the experimental in-vitro
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screening of active pharmaceutical ingredients (API) is more tedious and highly expensive in terms
of traditional drug discovery like high throughput screening, the virtual screening is an excellent
in silico tool to find the most probable and appropriate drug-like entities to bind the selective and
precise active site regions of particular protein targets. This methodology is cost efficient and
without wastage of external solvent chemicals and without the requirement of any other dedicated
instrumentation (Lill, 2013).

The virtual screening is a systematic computer aided drug discovery tool to design the effective
small molecule inhibitors based upon pharmacophore features of known drug chemical entities
and protein active site complementarity with effective non-bonding interactions mediated with the
surrounded residues. The selection of pharmacophore features is based on the complementarity of
protein receptor — ligand or inhibitor complex. ZINCPharmer (Koes, & Camacho, 2012), Pharmit
(Sunseri & Koes, 2016) are some of the popular pharmacophore generation online webservers.
The pharmacophore generating methods are used to generate the best pharmacophore for the
design of hit molecules binding to selective target protein. The best generated pharmacophore is
used to screen online small molecule databases. The databases available in the Pharmit server are
used for pharmacophore based virtual screening (Sunseri & Koes, 2016). It screened libraries of
millions of compounds based upon pharmacophore and molecular shape modalities with advanced
pre-built structural screening algorithms through the online webserver. The possible features
available in the Pharmit server are, hydrogen bond donor, hydrogen bond acceptor, hydrophobic
and ring aromatic. Finally, it provides comprehensive query optimized hit molecules with online
platform for structure based virtual screening method. The virtual screening is done based upon
selective protein active site domain and ligand pharmacophore chemical entity surrounded by
residue environment in protein of interest complexed with known inhibitors. The molecules
obtained based on lower root mean square deviation (RMSD) and fewer rotatable bonds are often
selected. An in-house database of the downloaded molecules is prepared after adding hydrogens
and their structure refinement using structure visualization tools such as Discovery Studio 3.5. The
identified molecules are passed through the virtual screening protocol using PyRx (Dallakyan et
al., 2015) by docking the molecules into the binding site of Ligand. The screened-in molecules
above a certain binding energy are selected for molecular docking studies.

1.3.5. Computer aided drug design

The structure based drug design has gained popularity in the last 25 years due to the availability

of enhanced computational genomic data and proteomic approaches, molecular modeling
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methodologies to design effective protein active site inhibitors. The structure based inhibitor
design has many high hierarchical levels to select the protein target and detect the model active
site for selective inhibitor design. This method is continuous and iterative cyclic process until the
lead optimized hit molecules entered in phase-I clinical trials often starting from a chemical
scaffold. The initial phase cycle of structure based drug design has selective gene cloning, protein
purification and experimental techniques for structure determination using instrumental techniques
such as X-ray crystallography, nuclear magnetic resonance or cryo-electron microscopy.
Alternatively, homology modeling of protein structures or structures based on distant relationships
can be generated. The selective active sites or allosteric sites can be defined from protein
structures. Here the computational algorithms have a key role to identify most probable binding
sites to further validate them as selective drug binding sites (Mokaya et al., 2023). Some selective
molecules to bind the active sites can be designed based on pharmacophore features of substrate

or inhibitor molecules by employing computational methods.

The molecular docking is carried out in an iterative manner so that the lead score hit molecules are
constantly modified for selective drug target bound at receptor active site with highest binding
affinity. The top priority selective hit molecules are synthesized or commercially purchased with
highest purity to validate the receptor-hit molecules using experimental binding assays. Various
in-vitro, in-vivo and cell toxicology studies are required to validate the biological mimic of hit
molecules from the biochemical studies. The drug target and lead optimized molecules must have
good appraisal results for bioavailability and lead molecules affinity towards target protein in
general should be good. Then the modified lead molecule moves from micromolar inhibition zone
to nanomolar inhibition zone during assays in various biological systems. If all the laboratory tests
are positive, the lead molecules enter into various phases of clinical trials along with pharmacology
studies. In computational methods, the targeted receptors can mimic the experimental conditions
with the known selective number of lead hit molecules binding to facilitate the more successful in-
vitro and in-vivo studies by providing biomimicry studies for lead target of receptor-hit molecules

complexes (Anderson, 2003).
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1.3.5.1. FDA approved kinase inhibitors and their receptor targets
(Leone et al., 2023; Lee, & Yeoh, Low, 2023; Roskoski, 2022; Roskoski, 2023; Lui et al., 2022;

S.No | Target FDA approved inhibitors (year)
kinase
01 ALK Alectinib (2015), Brigatinib (2017), Crizotinib (2011), Ceritinib (2014) ,
Lorlatinib (2018),
02 BCR-ABL | Asciminib (2021), Bosutinib (2012), Dasatinib (2006), Imatinib (2001),
Nilotinib (2007), Ponatinib (2012),
03 BTK Acalabrutinib (2017), Ibrutinib (2013), Zanubrutinib (2019)
04 CDK4/6 | Abemaciclib (2017), Palbociclib (2015), Ribociclib (2017), Trilaciclib
(2021),
05 ErbB2 Neratinib (2017), Tucatinib (2020)
EGFR Afatinib (2013), Brigatinib (2017),
Dacomitinib (2018), Erlotinib (2004), Gefitinib (2003), Lapatinib
(2007), Mobocertinib(2021), Neratinib (2017), Olmutinib (2016),
Osimertinib (2017), Osimertinib (2015)
06 FIt3 Gilteritinib (2018), Midostaurin (2017),
07 JAK1/2/3/ | Abrocitinib (2022), Baricitinib (2018), Fedratinib (2019), Pacritinib
STAT (2022), Ruxolitinib (2011), Tofacitinib (2012), Upadacitinib (2019),
08 Kit Ripretinib (2020),
09 MEKZ1/2 | Binimetinib (2018), Cobimetinib (2015), Selumetinib (2020),
Trametinib (2013)
10 MET Capmatinib (2020),
Tepotinib (2021),
11 mTOR | Everolimus (2009), Sirolimus (1999)
12 PI3K Copanlisib (2017), Temsirolimus (2007),
13 ROS1 Crizotinib (2011), Entrectinib (2019)
(TAM) | Cabozantinib (2012), Erdafitinib (2019)
14 RAF Dabrafenib (2013), Vemurafenib (2011), Encorafenib (2018)
15 RET Selpercatinib (2020), Cabozantinib (2012), Pralsetinib (2020),
Selpercatinib (2020),
16 ROCK1/2 | Netarsudil (2018)
17 Syk Fostamatinib (2018),
R406 (Fostamatinib) (2018),
18 TRK Larotrectinib (2018), Ibrutinib (2013), Entrectinib (2019), Acalabrutinib
(2017), Zanubrutinib (2019),Deucravacitinib (2022), Pexidartinib (2019),
Larotrectinib (2018),
19 VEGFR2 | Sunitinib (2006), Erdafitinib (2019), Axitinib (2012),Cabozantinib

(2012), Futibatinib (2022), Infigratinib (2021),Lenvatinib (2015),
Nintedanib (2014), Pazopanib (2009), Pemigatinib (2020), Regorafenib
(2012), Sorafenib (2005), Tivozanib (2021), Vandetanib (2011),
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1.3.6. Molecular docking

Molecular docking is one of the in silico drug discovery tools to obtain a first crude approximation
about the ligand orientation into receptor active site or a probable pose of host-guest complex. In
the case of protein and ligand or inhibitor complex, molecular docking is the key tool to investigate
the best docked pose of a ligand molecule in the enzyme active site. Molecular docking can be
performed in multiple ways, one is blind docking and the other is selective active pocket region of
protein for docking location. If the active pocket of protein is unknown, the blind docking is the
initial optimization in docking process later it should proceed into selective active site region. It is
an iterative process and multiple self-consistent procedures would give better docking pose for a
given protein-ligand complex. The aim of docking procedure, is to search the effective and
predictive active drug pose to bind the receptor as principal binding space occupied in three
dimensional protein structure. The docking is an in silico plotting ligand pose optimized for all
possible three dimensional ligand conformers in possible chemical space of binding location in
three dimensional protein structure coordinates. Generally, the docking procedure depends mainly
upon two factors as effective docking orientation in three dimensional space and docking scoring
functions to achieve maximum success for docking pose for three dimensional small molecules.
The docking methods are classified based upon the chemical environment around the hit molecules
and the flexibility of the receptor or protein active site pose in three dimensional structure. The hit
molecules are quite flexible in docking pose due the higher chance to orient the hit molecule in
active site of protein and chemically rigid manner to interact with active residues of protein.
Therefore the flexible docking process is involving both protein and ligand chemical space to build
non-bonding interactions among them. However, the flexible docking is more computationally
intensive and efficient in terms of accuracy and probability to find ideal hit molecule’s docking
poses. In general, the protein is in a rigid manner, the ligand or inhibitor molecules are quite
flexible and dynamic in active docking pose. Here some of the docking methods follow the above
procedure to fit the hit molecules in active site of protein such as AutoDock4, CDOCKER, PyRX,
LibDock and etc (Kramer et al., 1999; Wu, 2003; Morris et al., 2009; Torres & Olson., 2019). But
GOLD, DOCK, Glide docking procedure predicted the docking pose based upon docking scoring
function as both receptor and ligand are flexible and complementary to each other (Friesner et al.,
2004; Lang et al., 2009; Verdonk et al., 2003; Zhao & Caflisch, 2013). However, the both ligand
and protein molecules are rigid positions in ZDock and RDCOK methods (Chen et al., 2003; Li et
al., 2003). In molecular docking technique, various non-bonding interactions involved between
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ligand and protein include electrostatic attraction forces, hydrogen bonds, hydrophilic and
hydrophobic interactions of residues and partial charges on specific functional group from residues
in vicinity on the tertiary structures. The docking results are compared with initial reference crystal
PDB structure to consider for reference to obtain good docking poses of ligands. The sorting of
docking poses are based upon maximum non-bonding interactions and suitable docking binding
free energies and best docking scorings for efficient docking site search method. The molecular
docking can be done in a systematic procedure in AutoDock; i) to view protein and hit molecules
in three dimensions, rotate and scale in real time. ii) Add all hydrogens or just non-polar hydrogens
to protein iii) Assign partial atomic charges to the ligand and the macromolecule (Gasteiger or
Kollman United Atom charges). iv) Merge non-polar hydrogens and their charges with their parent
carbon atom. v) Set up rotatable bonds in the ligand using a graphical version of AutoDock4 tools
or any graphical dock viewer. vi) Set up the AutoGrid Parameter File (GPF) using a visual
representation of the grid box and slider-based widgets. vii) Set up the AutoDock Parameter File
using AutoDock4 module. viii) Launch AutoGrid and AutoDock with parameter file for
calculating the grid of the molecular basis and flexible docking calculations done for ligand to
obtained optimum docking pose in the presence of active site of protein. Ix) Read the results of an
AutoDock job and graphically display them, while comparing with crystal structure of protein. x)
View iso-contoured AutoGrid affinity maps and binding free energies (docking scores obtained
from Glide, GOLD docking method).

1.3.7. Absorption, distribution, metabolism, excretion and toxicology studies

The assessment of ADMET properties are required to find the drug-like properties of bioactive
molecules, potent enough to reach the target site located in various body parts and that the chemical
entity stays just long enough to perform its biological activities. The ADMET properties are the
pharmacokinetics properties, effective clinical cell toxicity and clinical interferences caused in
normal body physiological processes after clinical drug administration in healthy individuals or
patients. These are the properties of clinical drug molecules to maintain optimal pharmacophore
drug like properties while drug action at the desired site in our body. These properties are very
crucial to understand the experimental in-vivo, in-vitro pharmacological properties with selective
drug studies. The pharmacokinetic properties of the virtual screened molecules were assessed with
SwissADME (http://www.swissadme.ch) (Daina, Michielin, &Zoete.,2017) web-based server

tool. The drug likeness properties are represented in the form of topological polar surface area
(TPSA), Consensus Log Pow, LogS (ESOL), LogKp (skin permeation) (cm/s), synthetic
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accessibility (Daina, Michielin, &Zoete., 2014, Ertl, Rohde, & Selzer., 2000, Potts, & Guy.,
1992). ADMET are the key notable pharmacokinetic properties to qualify the drug like small
molecules for clinically approved pharmacological properties.

The Lipinski’s rule of Five (Ro5) were developed in Pfizer by Christopher Lipinski (Lipinski et
al., 2004) to validate small organic molecules for drug-likeness for oral administration. Most of
the small molecular inhibitors follows these rules to act as drug like candidates in oral route. In
general, the Lipinski’s rules suggest the small molecules has molar mass less than 500 g per mol.
The ligand has maximum five hydrogen bond donors and not more than ten hydrogen bond
acceptors and the body intake water permeability (partition functions Log P > 5) should be high
value (Mahgoub, Atatreh, & Ghattas, 2022).

1.3.8. Molecular dynamics simulations

The first three dimensional enzyme structure is characterized by X-ray crystallography (Phillips et
al., 1966.). Further analysis is carried out to emphasize the importance of protein flexible
conformational changes while binding with ligand or substrate in its active site. However, during
the early development of computers (Levitt &Lifson, 1969), the first MD simulations was done
more than 60 years ago. During this timelines, the protein-ligand and genomic sequence analysis
were very limited due to the lack high speed computational power (McCammon et al., 1977). But,
in the 21% century of the digital era, the fast forward moving world with high speed computational
enhancement, these protein-ligand interactions and higher organism genomic/proteomic analysis
is quite possible. Nevertheless, the fundamental understanding of the protein conformer and its
dynamics when complexed with suitable drug or hit molecules could be key components in drug
discovery to further computationally validate in silico drug discovery methodology. In recent
years, the computational drug discovery received prominence due to theoretical protein structural
validation and virtual screening of small molecules with the help of cost effective high
performance computation facility (Shaw et al., 2007; Smith et al., 2002). Therefore the molecular
mechanics of protein drug complexes with longer range MD simulations is studied to generate
possible hit molecules validated for a desired protein target. The MD simulations is one of
computational techniques to effectively simulate the molecular motions from host-guest
interactions in three dimensional space. It is based upon of numerical solutions of classical
Newtonian mechanics (Dahiyat & Mayo, 1997; John & Sali, 2003). The molecular simulations of
individual atomic velocities, positions, accelerated dihedrals of bonding and non-bonding motion

equations from protein-ligand molecular systems generated the molecular trajectory data with
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respect to simulations time. These molecular equations provide the total and potential, kinetic
energies of bonded atoms and van der Waals energy and Lennard-Jones potentials of non-bonded
interactions, charged or electrostatic and columbic energies (Childers & Daggett, 2017; Geng et
al., 2019) are also calculated with the help of numerical solutions in terms of Newtonian mechanics
(Pace et al., 1996). The digital modern computational facilities have expanded by including high
performance computing power in the recent times. Therefore, MD simulations got huge popularity
in drug discovery to integrate with healthcare for looking into the solutions of precise medicine
validation without intervention of in-vivo drug studies in the initial stages. It can save a lot of time
and experimental flaws with tedious high throughput in-vitro drug discovery process. MD
simulations provide the detailed information about apo protein, protein — protein and protein —
ligand interactions in water sphere of statistical dynamics perspective. Various modules describe
important molecular information regarding protein-ligand interactions from MD simulations.
Several MD simulations packages available such as CHARMM (Jo et al., 2008), AMBER (Case
etal., 2005), LAMMPS (Grindon et al., 2004), NAMD (Nelson et al., 1996), and GROMACS (van
Gunsteren & Berendsen, 1987), Desmond (Bowers et al., 2006) are available for simulating
various types of computational simulation problems in different domains of science and
technology. The force - mass equation in the second Newtonian law is used to calculate the relative
force constant values on dynamic motions for overall molecular systems studied in MD

simulations.
1.3.8.1. Force fields

Force fields is collection of mathematical expressions from molecular geometry energy
represented equations of Cartesian coordinates of atoms in a molecular structure. The molecular
geometry can be any bio-macromolecule or small organic molecule or any chemical entity
represented in three dimensional space including higher order material frame work. It describes
the total energy of the entire molecular system in three dimensional structural space. In general a
force field is represented into two terms. First term is represented as molecular bonded interactions
including covalent and electrostatic bond lengths, bond angles and torsional angles. The second
term is represented as non-bonding molecular interactions including the van der Waals, dipoles,
induced dipoles, London forces, charge particle attraction forces measured by Lennard-Jones
potentials, Coulomb’s law mathematical expressions (Dahiyat & Mayo, 1997; John & Sali, 2003).
This mathematical equation represents the entire force fields bonding and non-boning of any

molecular system with surrounding molecules.
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These parameters can be obtained from quantum chemical calculations such as ab-initio and semi-
empirical methods and the experimental parameters such as X-ray diffraction, NMR and Raman
spectroscopic data etc (Weiner & Kollman, 1981). In a molecular system, the molecular bonds act
like springs tied together in an atomic system to under giggling, vibrational states occurring during
molecular oscillations by external force or energy. The force fields are defined as overall
molecular, electronic, vibrational, rotational, translational energy terms expressed for a broad
range of macromolecules or small organic molecules represented in three dimensional space. In
most cases the force fields should be quite simple to analyse the small molecular system. The three
dimensional building blocks of these tiny unit cells replicate into true crystal structure or total
macromolecules approximated classical total energy can be extracted from MD simulations
trajectory data for biomimicry of real cell based properties with the presence of water solvation
environments. The classical thermodynamic based parameters are majorly included to represent
the force fields for any molecular systems from periodic table of elements (Rappe et al., 1992).
The most popular molecular mechanics force fields from different force field development groups
are AMBER (Malolepsza et al., 2010), CHARMM (Brooks et al., 2009), GROMOS, OPLS
(Jorgensen et al., 1996) and COMPASS (Sun et al., 1998). Different versions of force fields are
employed to achieve higher computational accuracy and efficacy for various macro and small
molecules [CHARMM19, CHARMMZ22, CHARMMZ27, AMBER91, AMBER94, AMBERUY6,
AMBER99SB, AMBER14SB, GROMO0S96, GROMOS45A3 and GROMOS53A5]. Generally
these force fields are compatible with both materials and biomolecules to run MD simulations in
higher order or long range timescales. But some packages are more specific to certain systems;
AMBER - Carbohydrates, bio-molecules DNA, RNA, Protein, lipid-bilayer; CHARMM and
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CVFF (Sun et al., 2016; Lin, & MacKerell, 2019) are mostly compatible with different types of
materials in various crystal systems.

1.3.8.2. H-atoms addition to apo form with H++ server

In general, the DNA/RNA have an overall negative formal charge, but the proteins have different
charges associated with varying isoelectric points on the basis of various amino acid sequences
(primary structure) that make up to their secondary and tertiary structures. In GROMACS and
ABMER MD simulations, these small atoms of hydrogen play huge role to predict their overall
formal charge and major protonation charges varies in certain amino acids like histidine, aspartate,
tyrosine, lysine, arginine, glutamic acid. These types of amino acids have an extra amine and
carboxylic group which can be in protonated or deprotonated states in a huge pool of hydrosphere
in MD simulations (Anandakrishnan, Aguilar, & Onufriev, 2012). Before submitting for energy
minimization of molecules and ions addition to neutralize the charge, the protein conformer should
be in a correctly protonated (similar to physiological conditions) state. The proton equilibration is
done with a suitable hydrogen addition webserver. The prediction of such protonation pKa
equilibrium constants of macromolecules can be calculated with the help of atomic resolution of
PDB database servers. This can be done with respect to continuum electrostatic models and
Lennard-Jones potentials of specific water model force fields. In GROMACS, this can be done
with acpype script force field validation and ligand validated with AMBER99SB force fields. The
pKa equilibrium constants can be calculated for suitable pH environment with the help of H++
server (http://newbiophysics.cs.vt.edu/H++/). This is a key step to build respective calculated pKa
dissociation constants for macromolecules (Madeira et al., 2022). In H++ server, these pKa values
are quickly estimated to biophysical properties of protein or DNA isoelectric points of respective
titration curves at desired pH scales. The required protons are added to protein at suitable sites of
various titratable amino acid side chains in PQR format (PDB + Charges + radii). In addition, these
pH titration curves and protonation microstates of macromolecules, the topology and molecular
model supported AMBER inputs are also generated to create final input PDB for tLeap solvated
MD simulated model topology (.prmtop) and input (.inpcrd) files. If the macromolecules are not
rendered enough to satisfy the AMBER molecular model package atomic type criteria, the input
parameters cannot be generated or while verifying the prmtop files with “cpptra;” and “Parmed”
charge validation ended up with error messages. If the MD simulations proceeds with these errors
in charged AMBER input parameters, the MD simulations is likely crash at equilibrium and

production run phase. Therefore these electrostatic interactions play a key role in ligand binding
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to key active site and catalytic and regulatory active site, protein and specified group transfer/
binding to particular regions in macromolecules. These properties of macromolecules vary based
upon their specified amino acid side chains protonation states of respective titratable groups, pH

and ionic strength of surrounding macromolecules simulated with water sphere.

1.3.8.3 Protein preparation for GROMACS and AMBER MD simulation

Based upon protein-ligand or inhibitor docking scoring functions and docking binding energies
and post-docking prediction analysis, the crude approximate ligand/inhibitor three dimensional
coordinates are considered to design initial parameters of inputs for MD simulations. But the
protein input parameters are not considered like ligand because the protein has different types of
residues/groups and their isoelectric point values are assigned with H++server (Madeira et al.,
2022) and are considered in a pH dependent solvation with periodic boundary limits. The MD
simulations of particular protein-ligand system specified with periodic boundary condition as
simulation box size is assigned as 8-10 A. The topology and protein-ligand itp files assigned are
system readable with assigned force fields (AMBERTff99/14SB) (Hornak et al., 2006) including
particular solvation force fields (TIP3P) (Meagher et al., 2003, Mark and Nilsson, 2001). The
AMBERTf99SB force fields are assigned to ligand with the help of ACPYPE script (Sousa da
Silva, & Vranken, 2012) in GROMACS simulations. But in the case of AMBER18 simulations
package the atomic charge and positions, angles, torsions are assigned by Antechamber algorithms
by employing amlbcc method in AMBER Tools. The entire charge of MD simulations system is
neutralized by the addition of Na™ and CI” ions with appropriate charges to the simulation box. In
the entire molecular system, the total salt concentration is assigned to be 100 mM. The energy
minimization of entire simulated system is carried out for 20,000 steps before entering into
temperature and pressure dependent equilibrium of MD system. All positions are restrained at
constant temperature (298 °K), pressure (1 atm), achieved with 8 ns MD simulation time before

submiting for required production MD run time in AMBER.

1.3.8.4. Minimization and NPT, NVT, Production runs of longer range MD

Energy minimization is a vital step in MD simulations. Because the entire molecular system has
various sketched chemical structures, parameters which are not well optimized due to improper
bond and dihedral strains are disordered and in random manner. This perturbs the entire system
and molecular potential values during MD simulations. As the random molecular system can be

aligned chemical motifs stretching and bending, torsional potential energy terms attain the nearest

25



local minima in minimization step. Therefore, it is a key step to be achieved for local minima to
enter next step in equilibration of MD simulations. However, this is not the overall stable total
energy of the molecular system as the several algorithms are available to achieve the global minima
to attain stability of the system. It is the closest approximate stable minima of molecular structures
of entire system with respect to the degrees of freedom.

1.3.9. Basic trajectory data analysis

The post MD simulations analysis can be done using a vast number of module tools some which
are inbuilt packages and others are independent of python and C++ based trajectory data analysis.
Some of the known python based modules used to investigate basic and advanced MD trajectory
data are MDTraj, cpptraj, Pytraj, MDAnRalysis toolkit, g_rms and g_rmsf etc. cpptraj, g_rms and
g_rmsf commands based upon GROMACS and AMBER inbuilt trajectory data analysis tool to
extract the RMSD and root mean square fluctuation (RMSF) values from MD simulations data.
The cpptraj has a larger application and it can read AMBER, GROMACS, NAMD trajectory file
formats. The MDTraj and Pytraj, MDAnalysis toolkit requires a python based graphic library to
read the AMBER MD data file formats. Pytraj is a key Python based module useful in
dimensionality reduction and extrapolated principal component analysis (PCA) datasets into
scatter plots (Hornak et al., 2006).

1.3.9.1. MDTraj and cpptraj, pytraj analysis

MD simulations is a key computational tool for simulations of large biomacromolecules at longer
MD simulations timescales. In trajectory analysis, the large data needs special python based
module to enhance the advanced trajectory analysis. The Markov state model (MSM)design is a
recurrent neural network method needed for higher MD simulations data to monitor the Kinetic
transition states during micro to millisecond timescales. MDTraj python module provides wide
range of MD trajectory data readable space and minimal error in the RMSF and RMSD
calculations. However the large number of MD trajectory datasets readable module is essential to
design advanced trajectory MD packages with the help of python and C++ programming languages
(PYEMMA, Prody). MDTraj is a python based scientific data analysis tool to read large number
of trajectory data units including smooth process with wider scientific python environments. It is
a bridge between the theoretical molecular simulations data with limit analysed tools to higher
order data sets collection to corporate statistical big data analytics including different data
visualization machine learning models. It can enhance the shared GPU computation to validate the

deep machine learning models with high performance computing cluster to generate a large
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dataset. Therefore, the large datasets analysis provides acceleration to understand the biomolecular
system and enhance scientific insights in biological process in detail from microsecond bio

simulations data.
1.3.9.2. RMSD

It is a relative average positional distance deviation of Ca atoms in a protein secondary and tertiary
structures while comparing the initial and final backbone movement in MD simulations of
structures or comparing an apo protein and protein-ligand complexes. It is a regular parameter
measured for protein backbone deviation by superposing atomic coordinates of protein structures

from references.
RMSD = |1ys2
20

di is the average distance between two successive Ca atoms atomic coordinates from superposing

‘n’ pairs of equivalent initial and final protein structures from a given MD trajectory data.

The major flaw in RMSD data analysis is the amplitudes of errors occurring in pairs of identical
superposed structures. The lower square distance error deviation is considered as the structural
stability in given period of MD timescales. These values range between 2-4 A of protein in the

presence of solvent environment (Kufareva &Avagyan, 2012).
1.3.9.3. RMSF

It is the overall average deviation of protein backbone consisting of amino acid side chains with
respect to initial MD structure residue positions.

RMSF = «K¢Kﬁ>

Xijs the position coordinates of initial protein residues.

<Xi> is the average positional ensemble coordinates from given trajectory of protein conformers.

RMSF is calculated as the average protein conformational change through the MD simulations and
it can identify which region of a protein undergoes conformational deformations in a given average
ensemble structures. RMSF is a key parameter to identify the various residues movement in given

protein conformers from simulated data sets (Sharma et al., 2021).
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1.3.9.4. Binding free energy estimations

Free energy is the nature of energy associated with reaction where the direction of any reaction
proceeds that tends to attain equilibrium is thermodynamically favourable.  Most of
macromolecules like RNA, DNA and proteins undergo conformational changes during their
physiological processes. However, the microlevel macromolecular coformational changes
occurred in the presence of small chemical molecules (ATP, GTP, FAD, NADPH) to drive the
biochemcial pathways ensure the cell survival, cell homeostasis, and such processes are associated
with free energy changes. Therefore, free energy is an important factor in most of the biochemcial
reactions to provide the necessary energy to thrive normal physiological process. In general, most
of the biophysical reactions are reversible which tend to reverse to initial states to perform the
biocyclic process. There are numerous methods to estimate the binding free energies for
biomacromolecules. In virtual screenig of hit molecules from small molecular databases, to
identify the suitable inhibitors according the protein cavity and scoring functions. These scoring
and docking binding energies are calculated as the summation of total atomic and molecular
bonding and non-bonding interactions of atomic free energy terms from large macromolecules.
Therefore, total free enegy is essential to predict the small molecular validation to provide stable
protein-ligand complex that leads to the design of viable drug candidates in the near future. In
computational drug discovery, small molecular inhibitors are discovered with the help of hit
molecular scoring functions (Parenti, and Rastelli.,, 2012). They are represented in terms of
molecular energy surface interactions with protein or DNA cavity energy surface to bind to the
active site in oreder to arrest the macromolecualr activity in biological process. The binding free
energy can be calculated with continuum solvent simulations for protein and ligand complex
designated at periodic boundary conditions (Kollman et al., 2000). The molecular mechanics
Poisson Boltzmann or Generalised Born and Surface Area (MM-PB/GBSA) is a widely used
method to estimate the reliable free energy path from state A to state B in a given MD simulations
(Hou et al., 2011; Srinivasan et al., 1998). It is quite efficient to recognize the molecular paths in
host-guest interactions and protein-ligand interactions, protein-protein molecular interactions.
However, the quantum chemical method is a more accurate computational method for small
molecular structure optimization and simulations in detail (Wang et al., 2017). But most of the
biolgoical processes are too complicated and involve thousands of atoms. Therefore the classical
simulations are widely used to study conformational dynamics in given explicit solvent models

and the molecuar free energy is also calculated with implicit continuum solvent models.
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Thermodynamic integration and free energy perturbation methods are also explicitly used to
estimate overall free energy with umbrella sampling approach before implementing MM-PBSA
method (Zwanzig et al., 1954 & 1955; Wang et al., 2017). MM-PBSA approach is robust and
reliable to find desirable free energy states in protein-ligand interactions. But it is computationally
too expensive in terms of multiple trajectory approach with multiple protein-ligand systems (Wang
etal., 2017; Wright et al., 2014; Sitkoff et al., 1994; Gilson, &Honig, 1988).
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The above equation represented the MM-GBSA calculated energy terms given from state A to
state B. The overall Gibbs free energies differentiate between the selective protein-ligand systems
in given states. It has free energy difference among solvated complexes and combined free energy
terms of protein and ligands. Thet MM-PBSA approach has overall solvation energy including the
polar non-bonding and dispersion forces interactions added with entropy of protein-ligand
complex (Homeyer, & Gohlke, 2012; Wright et al., 2014). MM-PBSA is quite different from MM-
GBSA due to the entropy terms calculated including the normal mode analysis (NMA) of overall
conformers from MD trajectories in the absence of solvent models. MM-PBSA.py is a python
based macromolecule end state free energy estimation approach in the AMBER18 module for
molecular simulations and Monte Carlo simulations. Various implicit solvent models estimate the
free energy terms for protein-ligand complexes for long range MD simulations (Bennett, 1976;
Miller et al., 2012). In Poisson-Boltzmann approach, the vibrational frequencies are calculated to
estimate the ensemble based overall entropy of system.
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1.3.9.5. Solvent interaction energies

The free energy calculated as the summation of van der Waals and coulombic energies included
with reaction fields of cavity effect in solvation free energy. The following equation describes the
important energy terms to calculate the interaction energy between host-guest interactions in the
absence of solvation energy of molecular system. The solvent interaction energies (SIE) calculated
the binding free energy between protein - protein and protein-ligand/inhibitor complexes of MD
simulations trajectory data. The interactions considered are similar to MM-PBSA in free energy
calculations (Cui et al., 2008). But here the entropy and normal mode energies are not included
rather some energy parameters are considered to validate the protein-ligand interactions.

AG =ao* (E E + RF + Cavity ) + Constant

vdw T Coulombic

Cavity = y * A,

a = 0.104758
v = 0.012894
Constant = -2.89

This method is quite efficient for protein-protein interactions in both homo dimeric and hetero
dimeric solvation free energy of wild type comparative analysis with mutated forms. It calculates
the binding affinities similar first order MM-PB/GBSA energy principle but the molecular
potentials used are molecular mechanics AMBER force fields continuum solvation models to
estimate the binding affinities between protein-protein non-bonding interactions in dimers.
However, the SIE is derived entity of MM-PB/GBSA to estimate end point state of the protein-
ligand binding energies (Lill, & Thompson, 2011). SIE is mostly depending upon AMBER force
field molecular mechanics calculated trajectory data. In this method the number of MD trajectory
snapshots used to calculate molecular mechanics average energies sum over to estimate the final
binding affinities of protein ligand or protein — protein binding mode (Collins, & Ho, 2019). The
SIE method datasets are well matched with most of experimental datasets as well correlated with
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other theoretical methods. Therefore, Sie-traj is one of the robust methods to investigate the

protein-protein and protein-inhibitor interactions with implicit solvent models.

1.3.10. Python library based advanced trajectory data analysis
1.3.10.1. Prody analysis

Prody is a python based quantitative predictive featured module of structural biomolecules of post
MD simulations data. It has combination of different protein quantitative prediction python
modules such as principal component square fluctuations, mechanical stiffness, anisotropic
network models (ANMSs), Gaussian network models (GNMs) and etc (Bakan, Meireles, &Bahar,
2011). The ProDy is a graphical interactive session and a friendly tutorial webserver to predict
quantitative measure of protein dynamic motions which can be comparative analysis with
experimental results. ProDy is a combination of various other numerous python libraries such as
NumPy, SciPy and matplotlib, Scikit-learn which are utilized for deep machine learning models
to emphasize dynamic motions from protein —ligand complexes of MD simulations trajectory data.
The square fluctuations of individual principal component of anisotropic protein reformative
constraints are observed while different types of ligands or substrates were bound at protein active
sites. It is one of the machine learning modules to investigate the mechanical deformation induced
in proteins by various inhibitors or small molecules that interact with the receptor active sites. It
has a combination of different protein sequence trajectory analysis as homologous sequences of
wild and mutant forms of various genera of different phylogenic organisms. The cross correlation
plots can be generated among different types of results and comparative theoretical and
experimental results of genetic sequence and protein superposition analysis can be done to cross
correlate these results in terms of independent PCA. ProDy is run on the MD trajectory datasets
of Ca atoms, any specific protein domain undergoing refolding and unfolding state datasets which
can be efficiently predicted with ProDy python modules. The ANMSs can be observed with the help
of PCA (Meireles, Gur, Bakan, & Bahar, 2011) and mechanical stiffness from protein-ligand
complexes from long range MD simulations timescales. The protein domain motions can be
observed and graphical representations can be visualized with porcupine plots extrapolated into
two dimensional graphical map. These porcupine plots are generated with the help of uniaxial
strength force constants on protein macromolecules binding with various ligands or substrate

molecules (Bakan et al., 2014).
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1.3.10.2. Principal component analysis

The PCA is a statistical technigue to extract the dominant pattern of various structurally distributed
representations from unsupervised datasets. The motive behind the higher order multidimensional
complex data representation in lower dimension is to investigate the special features with accuracy
of individual principal components (PCs) to reduced space in anisotropic changes of system. In
computational structural biology, the biomimicry of complex biological systems from real cellular
model is carried out with the help of statistical and quantum mechanics ensembles. These
simulations provide enormous datasets to conceal the overall information of molecular systems.
This might be best correlated data information obtained from PCA to interpret the molecular
motions of protein — ligand and protein-protein key interactions from MD trajectory analysis
(Eyal& Bahar, 2008). It is applicable to standard reduction of various number of dimensions to
exploitable data in two dimensional scatter data plots. Where the dimensionality reduction is a
useful tool to monitor the highly dynamic protein motions in a decomposable manner into tiny
spatial changes occurring as PCs of respective large datasets. Therefore, higher dimensional
datasets are further reduced into a small portions of protein dynamic states to interpret as structural
changes in a systematic manner with the help of PCA technique. These small portions of PCA
modes reveal the protein dynamic states information at transition state level from hidden Kinetic
dynamic states from long range timescales. The MD trajectory Cartesian coordinates of protein
ensemble data is evaluated into covariance matrix construction with the help of respective
eigenvalues deciphered form secular equations. The complete set of orthogonal datasets solved
from covariance decomposition eigenvectors show the modes as individual constraint motions of
protein anisotropic deformed changes. This can be extracted as the diagonalized of covariance
matrix into orthogonal datasets as the secular equations are further validated with respective
eigenvalues and eigenvectors to represent the best PCA of individual systems (Yang, Eyal, Bahar,
& Kitao, 2009). These datasets are further extrapolated into scatter plots as independent component
analysis of respective protein conformations. These square matrix forms of PCA represented with
respect to time are called as independent component analysis of specified protein unfolding and

refolding events in larger MD timescales.

1.3.10.3. PyEMMA analysis

PYEMMA is an open-source python-based package to construct the high dimensional efficient
kinetic state models for long range MD simulations (Scherer et al., 2015). It is reliable to read all

the currently available MD simulations formats to enhance the model input selections of design
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and investigate model features and validation of stationary states, the dimensionality reduction
algorithms such as PCA and time lagged independent component analysis (TICA) (Perez-
Hernandez et al., 2013), clustering of MSM estimation and validation with keras algorithms (k-
means) (Li, Dong, 2016). The MSM builder is employed to design MSM state model estimation
and featurisation, validation done with probable statistical state analogy to further validate the
hidden state markov Kkinetic state model systems to study metastable dynamic state systems. This
method provides the pool of statistical validated model systems with Bayesian error calculations
for Markov state estimation. It offers various trajectory analysed modules such that the end user
can be efficient about molecular trajectory data analysis including molecular observable
computations of interest. It can load the large datasets of MD simulation trajectories (up to 100 —
500 GB MD data for 2 nodes (each node 40 processors)) depending upon RAM (500 GB)
availability of computing node cluster. The numerous plotting functions are embedded with
machine leaning model to generate high quality images with the help of Scikit-learn, Pandas,
Matplotlib, NumPy, SciPy modules included in PyEMMA (Pedregosa et al., 2011).

1.3.10.4. MSM builder
The MSM builder is a python based package to build the statistical models for long range higher

order timescale MD simulations trajectory data. It has larger applications that include time series
based biological process and continuous monitoring of the metabolic intermediate in experimental
and theoretical predictions to understand the process with respective higher dimensional
simulation timescales. To design quasi-dynamic transition states in the complex biological
processes, MSM builder (Harrigan et al., 2017) technique can observe the metastable states in most
of the biological process is in milli and microsecond time intervals from high order laser and
protein NMR spectroscopy. Therefore, the higher order datasets are built from long range
biological MD simulations data of protein folding and refolding occurring during the events of
enzyme activation and deactivation process and vice-versa. The MSM builder reads the datasets
as one or multiple stochastic MD trajectory Ca data as atomic positions, distances, angles, torsional
and improper torsions angles. It provides a sustainable, reliable and powerful tool to use from
scikit-learn API python based results including the high graphical images and dynamic state
ensemble PDB datasets from higher dimensions reduction to visualize as scatter plots with
machine learning models of existing transition states in a protein-ligand biological simulations. In
the current digital age era, tens and thousands GB raw data is generated after MD simulations

where these data is analysed by basic trajectory data analytics, the rest of the data is unused.
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Therefore, the protein internal dynamics can be extracted with the help of advanced trajectory data
analytics such as MSM dynamic state model estimation and dimensionality reductions (PCA,
TICA) and further molecular features are enhanced with Perron clustering (PCCA+) validation
and transition state path theory (Prinz et al., 2011; Vanden-Eijnden, 2010; Metzner, Schutte &
Vanden-Eijnden, 2009). Based upon raw MD trajectory data, the kinetic states designed with the
help of dimensionality reduction and random forest, keras iterative mean estimation (k-means)
algorithms are used to further build the estimated transition state probabilities to show the further
hidden Markov state models associated with microstates. This could facilitate overall quantitative
transition probabilities and kinetic populations rates which are relevant to biological phenomenon
of macrodynamic states (Shaw et al., 2010; Perez & Granger, 2007; Pedregosa et al., 2011, Noe &
Clementi, 2015).

1.3.10.5. Markov state models

The MSMs are a statistical random probability models analysed for dynamic systems. In the long
range MD simulations, the trajectory data consists of highly dynamical nature of protein
conformational states involved in protein refolding, unfolding and specified loop dynamics. The
traditional trajectory analysis cannot identify these high dynamical conformers. The MSMs can be
designed by employing MSM builder and then it can be estimated and validated with Bayesian
error estimation in order to maximize the random probable stationary states. Further, these MSMs
are iterated with model featurisation done to extract pseudo free energies for specified state of
protein model (Husic, Pande, 2018). The hidden conformations of protein kinetic states are
described as these states to validate with five state model system based upon transition path theory.
The neural network model system is used to further express hidden states among kinetic metastable
states. These hidden states are essential for protein dynamical states involved in protein allostery,
internal structural changes and protein-ligand interactions. This is included in specified allosteric
changes in catalytic and regulatory domain in kinase dynamic state distribution among kinetic
transitions (Li, Dong, 2016).

1.3.11. Data visualization modules
1.3.11.1. Graphical and plotting modules

The molecular graphics of the three dimensional structures of proteins, protein-ligand and protein-
protein interactions were generated with Chimera, Discovery Studio modules (Yang et al., 2012).

These modules have also been integrated with other drug discovery modules like virtual screening
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of libraries and structural homology Modeller, residue interaction networks (RIN) (Piovesan,
Minervini, &Tosatto, 2016), protein sequence homology search module BLAST and multiple
sequence alignment fit tools and open source MD simulations visualization software for trajectory
analysis using visual molecular dynamics (VMD) and normal mode visualizer are also added as
integral part of the graphical modules for data visualization. The protein conformational states are
sketched with the help of many graphic modules employing specified applications and python-
based advanced graphical libraries, such as Scientific python, Biopython, numpy, TensorFlow,
Scikit-Learn, Pandas, Keras-means, Random-forest (Harris et al., 2020; McKinney et al., 2010;
Pedregosa et al., 2011; Virtanen et al., 2020; Perez, & Granger, 2007; Cock et al., 2009; Reback
et al., 2020; Likas, & Vlassis, Verbeek, 2003). For these analysis high order GPU based graphical
drivers are required to concise the unsupervised data into vectorized high order graphical library
datasets in two dimensional and three dimensional plotting space.

The modern digital technology has much sophisticated methods to generate high resolution data
plots with the help of matplotlib and Scikit-learn, interactive python libraries with advanced
python machine learning modules. The big data points can be processed and train the models with
the help of deep learning python modules and the data extrapolation can be done with inbuilt
plotting python libraries such as logistic regression, Naive Bayes, posterior probability and prior
probability models, unsupervised data model learning, clustering the grouping of data points to
minimize the error, data classification with k-means; hierarchical, mean shift, density based

clustering of big data.

1.3.11.2. Reduction of dimensionality with neural networks

All machine learning models have been classified into two categories. The supervised and
unsupervised data can be analysed and plotted with advanced machine learning python libraries.
Data can be interpreted with supervised data analysis with excel and many other plotting methods.
This can be done with advanced python source libraries like numpy, Scikit-learn, Pandas data
frame. The supervised machine learning models are further divided into regression and
classification. The regression models consists of dependent and independent model variables that
are further classified in linear regression, decision trees, random forests (ensemble learning
methods), neural networks (Hinton, & Salakhutdinov, 2006) (Andrychowicz et al., 2016).
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1.3.11.3. The MD traj Ca data into dimensionality reduction

The higher dimensionality data can be converted into lower dimensional features without changing
high data features to train the multi-layer neural networks. This can be done with gradient descent
method by ultra-fine tuning of the data weights which are further deduced into low dimensional
centric layer to rebuild high dimensional data vectors described as “antiencoder”. The
dimensionality reduction is further categorized into feature elimination and feature extraction. In
general, the common method used in simple analysis is PCA. This analysis has overall variance of
finding the data points paths along with coordinates which it followed. Therefore the random data
points which reduced dimensional data to decrease discrepancy to further reconstruct to back
propagate error iteration in encoder network models which is recovered data from decoder called
“decoder”. As the data complexity increased, the multi-layer network complex is difficult to be
optimized further, if the data points has non-linear encoders and applied gradient methods. The
MSM estimation and validation was done with reversible estimation equilibrium transition
probabilities with discrete clustering occurring in the random states of protein conformers (Wu,
Mardt, Pasquali, & Noe, 2018). The discrete kinetic state models are validated with keras
algorithms to further analyse the hidden Markov kinetic models. The implied relaxation timescales
are estimated to validate the HMM in order to ensure that kinetic transition probabilities among
the microstates during longer range MD simulations. Therefore, the implied timescale analyses
and hidden kinetic states indicated that the Kkinetic transition state distribution occurred in long
range MD simulations timescales to reveal the cell physiological transformation possible with

specified conformational changes in proteins.
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Chapter -2
Enhanced metastable state models of TAM Kkinase binding to

cabozantinib explains the dynamic nature of receptor tyrosine

Kinases
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Abstract

The RTKs are essential proteins responsible for regulation of cell signaling. The atomistic
details and mechanism of functional regulation is required to understand their normal
physiological processes and when overexpressed in disease conditions. TAM RTKs are
inhibited by cabozantinib at nanomolar concentrations. The docking of cabozantinib, a
nanomolar affinity inhibitor in the active state conformations of TAM kinases revealed the best
binding pose and the complex formation mediated through non-bonding interactions involving
the hinge region residues. The alterations in the conformations and the regions of flexibility in
apo and complexed TAM kinases as a course of time are studied for 250 ns using molecular
dynamics (MD) simulations. The stabilized trajectories in all molecular systems were analysed
using post-MD analyses to reveal the dynamic and active metastable states. The encrypted
protein domain motions were analysed using various post-trajectory analysis tools like ProDy
and MDTraj. The large scale motions in the cabozantinib bound Tyro3 and Mer is indicated by
large eigenvalues. Square fluctuation plots based on principal component analyses revealed
more populated microstates and lower displacements in Axl revealing its structural stability.
Mechanical stiffness plots revealed that similar regions in apo and cabozantinib bound AxI
fluctuated during MD simulations whereas different regions in Tyro3 and Mer kinases,
indicative of the differences in the conformational stabilities of proteins. The RIN plots
revealed the important salt bridges that lead to constrained or limited domain motions in the
TAM Kkinases.
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2.1. Introduction

RTKs are essential trans-membrane components in cellular signal transduction pathways
(Lemke, 2013). One subfamily of RTKs consists of three proteins, Tyro3, Axl and Mer
collectively called as “TAM RTKSs”. The extracellular factors such as Gas-6, Prosl and EGF,
activate TAM kinases (Akalu, Rothlin, & Ghosh, 2016). TAMs play crucial roles in a variety
of normal biological functions such as spermatogenesis, bone physiology, controlling platelet
aggregation, endothelial and vascular smooth-muscle homeostasis (Gay, Balaji, & Byers, 2017,
Vouri, & Hafizi, 2017). TAM RTKs are also reported to play crucial roles in disease conditions
such as acute myeloid leukemia, breast, colorectal, lung, ovarian cancers and glioblastoma
(Rankin, & Giaccia, 2016; Knubel et al., 2014). The three dimensional (3D) high resolution
crystal structures of TAM kinases have been reported with PDB_ids; Tyro3 (3QUP), Axl
(5U6B) and Mer (5TCO, 5U6C, 2P0C, 5TD2). With the exception of 5U6B_B and D chains
(Gajiwala et al., 2017), all TAM kinase structures solved to date are in the inactive
conformation. The active state conformations of Mer and Tyro3 and the conformational
alterations in the ensemble of active states in TAM kinases is not revealed. In this work, the
active state forms of TAM kinases from crystal structure and homology models were analysed.
Binding of high affinity inhibitor, cabozantinib has been studied using molecular docking and
MD simulations. Further, the MD trajectory files were analysed in detail with MDTraj,
MDAnalysis and ProDy Python libraries to study the dynamic microstate analysis and extended
the model building with MSM (Sultan, Kiss, & Pande, 2018). This work reveals the ensemble
conformational microstates of active TAM kinases from MD simulations studies.

2.2. Materials and methods

2.2.1. TAM Kinase structures and Homology modeling

The multiple sequence alignment of the kinase domains in TAM RTKSs was constructed using
Clustal Omega online server (Sievers et al., 2011). The active state conformation of Axl (PDB
ID: 5U6B_B chain) was considered and the three missing residues in the activation loop were
built using "Model/Refine Loops™ in "Structure Editing” tool in UCSF Chimera 1.11 (Yang et
al., 2012). The active state model structures of Tyro3 and Mer were constructed based on the
template structure of 5U6B_B chain. Homology modeling was carried out using MODELLER
9.21 method implemented using Python script (Sali, & Blundell, 1993; Webb, & Sali, 2014).
The quality of Mer and Tyro3 model structures was validated using structure validation servers
such as PROCHECK (Ramachandran, Ramakrishnan, & Sasisekharan, 1963; Ramachandran,
& Venkatachalam, 1968; Laskowski, Macarthur, Moss, & Thornton, 1993), Verify 3D
(Bowie, Luthy, & Eisenberg, 1991) and ERRAT (Colovos, & Yeates, 1993).
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2.2.2. Molecular docking

The coordinates of cabozantinib were deduced from the Ephrin type-A receptor 2 RTK-
foretinib complex (PDB_ID:51A4) (Heinzlmeir etal., 2016). AutoDock4 (Morris etal., 2009),
a molecular docking tool was used to dock cabozantinib into the ATP binding site of TAM
kinases. AutoDock is an open source software to study the protein-ligand conformations, best
suited to predict the ligand conformations in the binding site environment of a protein. Itis a
grid-based docking technique developed upon Lamarckian genetic algorithm to generate global
poses of small molecules. The empirical free energy force field that includes hydrogen bond
direction term with explicit polar hydrogens and contribution from electrostatic interactions is
used to quantify the binding free energies of the docking poses. In 5U6B, the ATP binding site
is occupied by the co-crystallized small molecule, a macrocyclic inhibitor. The grid parameters
are fixed at this binding site that includes hinge region for docking of cabozantinib (box
parameters: X: 50, Y: 36, Z: 40), spacing (0.408 A): center of grid (X, Y, Z) was defined as
(29.097, 3.263, 52.193). The conformation with best binding energy and maximum docking
poses was considered as the best binding conformation and was proceeded to further MD
simulations.

2.2.3. Molecular dynamic simulations

The MD simulations of apo-TAM kinases and when bound to cabozantinib were studied using
GROMACS 5.1.4 version (Van Der Spoel, 2005) for 250 ns. The MD simulations force field
parameters for proteins were derived by using AMBERff99SB (Hornak et al., 2006). The
cabozantinib force fields were generated in Antechamber using AM1-BCC method in
ACPYPE script (Sousa da Silva, & Vranken, 2012). All molecular systems were placed in a
3D cubic box and were solvated using SPC waters as single point charge (Mark, & Nilsson,
2001). In order to neutralize the systems, eight Na* ions were added throughout MD
simulations. Energy minimization was carried out by using steepest descent method for 50,000
steps to overcome short range bad contacts (Fletcher, & Powell, 1963). Further, these molecular
systems were proceeded for equilibration and production phases. In the equilibration phase,
position restrained simulations were performed for 1 ns at 300 K under NVT (constant number
of particles, volume and temperature) called the “canonical ensemble™ at constant temperature.
Subsequently, in the next equilibration phase, the pressure of the system was stabilized at1.41
bar under NPT ensemble (constant number of particles, pressure and temperature) called the
"isothermal-isobaric™ ensemble (Hess, Kutzner, van der Spoel, & Lindahl, 2008). In the
production phase, the final MD simulations were carried out for 250 ns at 298 K temperature

and 1 bar pressure, using a time step 0.002 ps. The V-rescale thermostat couple was used to
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monitor the temperature and Parrinello-Rahman method was utilized to maintain pressure
(Bussi, Donadio, & Parrinello, 2007). Particle Mesh Ewald method was used to maintain long
range electrostatic interactions with real space cut-off of 10 A and it has an order of 4 (Darden,
York, & Pedersen, 1993). The relative tolerance cut-off range energies were 10-6 among short,
medium and long-range interactions. Short range interactions were calculated including
neighbor list of 10 A to update after every 10 steps. The van der Waals forces were estimated
using Lennard-Jones potentials and real space electrostatic interactions was truncated at 9 A
(Verlet, 1963). Linear Constraint Solver (LINCS) algorithm was utilized for scaling hydrogen
bonding constraints (Hess, Bekker, Berendsen, & Fraaije, 1997). After MD simulations, the
snapshots of average structure were extracted from GROMACS trajectory file (.trr) and were
visualized using VMD, a molecular visualization program. The conformational analysis of
TAM kinase — cabozantinib complexes were analyzed using g_rms and g_rmsf commands for
RMSD and RMSF plots, respectively. The average structures were obtained from the 250 ns
of MD simulations data. The convergence of MD production run was explained in terms of
potential energy and RMSD plots of the molecular systems. Dynamics of the apo and protein-
inhibitor complex structures was taken from 500 snapshots of 250 ns MD simulations data.
2.2.4. Post-MD data analysis

Trajectory data points were derived from .trr files or .xtc files of the 250 ns MD simulations
run using GROMACS 5.1.4. MDTraj is a software package that allows users to manipulate
MD trajectories from a variety of file formats to simplify the analysis of MD data and connects
the datasets with the software in Python (McGibbon et al., 2015). The protein structural
dynamics are characterized from domain motions and structural features could be discretized
using various python programming libraries. The data sets derived from trajectory analysis are
used for understanding the key conformational states in TAM kinases. The domain motions in
protein can be monitored with the help of PCA (Meireles, Gur, Bakan, & Bahar, 2011). These
can be achieved with the application of programming mterface using Python based “ProDy”
(Bakan, Meireles, & Bahar, 2011). Python applications are a combination of various plugins
like SciPy, NumPy and Matplotlib which help to plot data of derived covariance and
eigenvalue, eigenvectors. The datasets are plotted as principal components of structural
domains of protein in terms of calculated covariance matrices of small constraints for principal
modes in various parts of the protein such as a-helix, B-sheet and loop variations. The small
constraint anisotropic motions are observed due to variations in principal protein conformations
in MD simulations studies. The individual constraints of modes show normal mode analysis

(NMA) in graphical interfaces such as anisotropic normal modes (ANM) (Bakan etal., 2014).
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ANM can be derived as individual modes which include diagonalized Hessian matrix,
scrutinizing eigenvectors and calculated subspace overlap of constraint motions in protein. The
mechanical stiffness measures the mechanical resistance to external force that is applied at
specific pairs of residues on the 3D structure or a complete map of the mechanical resistance
in response to all possible pulling directions. The ANM of the simulated structure is used as an
input to generate a complete 2D map of mechanical stiffness/strength as a function of residue
indices. The effective stiffness or force constant for each residue averaged over all pairs of
residues formed is plotted as 1D profile. The mechanical stiffness is an indirect method to
examine the uniaxial strength in protein-inhibitor complexes. In the long-range MD
simulations, the protein undergoes partial folding and unfolding in the absence/presence of
inhibitors. The protein unfolding pathway proceeds via the uniaxial forces applied along
anisotropic directions which make specified mechanical or elastic modes in protein-drug
complex. These are numerical insights to predict the mechanical resistance of protein models
in a specified residue range under the influence of inhibitors fitted into the protein active site
(Eyal, & Bahar, 2008; Chen, Wang, & Zhu, 2016). The active state distribution and structure
featurization, clusterization, TICA and MSMs are extracted and discretized using pyEEMA
2.5.5 python package (Lane, Bowman, Beauchamp, Voelz, & Pande, 2011; Scherer et al., 2015;
Li, & Dong, 2016; Husic, & Pande, 2018). These MSMs are kinetics models and measure the
metastable forms which are related to molecular kinetics. This kinetic model estimation is done
with selective input features of simulation dynamics using a dimensionality reduction
algorithm, tICA. Specified kinetic model sketches have been done by using clustering methods
such as k-means and further derivatized into MSM models.

Principal components in variable domain motions of proteins can be visualized and
extrapolated as porcupine plots of individual protein dynamic motions. The elucidation of 3D
array of non-bonding interactions and different types of bonding contacts among amino acids
in protein structure is vital to define its function. The RIN analyzer plays a vital role to describe
and visualize these interactions. The RING 2.0 web server gives these preferable interaction
networks among main chain atoms in a protein structure (Piovesan, Minervini, & Tosatto,
2016). The 3D structure of a protein can be visualized in a 2D plot by mimicking of high
dimensionality and virtualizing of plot similar to 3D. These plots are generated using
"Cytoscape" as interface connected with chimera through “structureViz” (Morris, Huang,
Babbitt, & Ferrin, 2007). RIN network parameters can be customized with RIN analyser app
wizard, amino acids are represented as ‘“Nodes’ and interactions as “Edges” in Java application-

based interface Cytoscape (Doncheva, Klein, Domingues, & Albrecht, 2011).
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2.3. Results and Discussion

2.3.1. Sequence analysis

Tyro3, Axl and Mer are homologous RTKSs. The multiple sequence alignment of the kinase
domains in the TAM kinases is shown in Figure 2.1A. These proteins share high structural
conservation in the kinase domain with greater than 62% sequence identity. The TAM kinase
crystal structures available in PDB are in the inactive state Mer (5TCO, 5U6C, 2P0C, 5TD2)
and Tyro3 (3QUP), with the exception of Axl. The crystal structure of Axl kinase domain
(5U6B) is in two distinct conformations; subunits A and C are in the inactive state, while
subunits B and D are in the active state (Gajiwala et al., 2017). The active state structure of
only Axl kinase among TAMs is available; we initially added the missing residues (705, 706
and 707) in the activation loop of Axl B chain and used this as a template for constructing the
homology model structures of Mer and Tyro3. Among the five distinct models of Mer and
Tyro3, the model structures with lowest DOPE scores were selected (Shen, & Sali, 2006). The
statistical parameters for the model validation are shown in Table 2.1. These parameters
indicated that the constructed models of Tyro3 and Mer are suitable for further studies. The
structures of TAM kinases in their active state superposed well as shown in Figure 2.1B.
Phosphorylation and dephosphorylation of the kinase domain allows the conformational switch
from active to inactive forms and vice-versa (Levinson etal., 2006). From the available crystal
structures and analyses of c-Src and Abl (Meng, & Roux, 2014), the essential structural
differences between the active and inactive states of a kinase are reported. The main structural
differences are the altered conformations of aC-helix in the N-terminal domain, orientation of
the DFG motif and opening of the activation loop. The activation loop in the kinase domain
plays a major role in autophosphorylation and ATP binding. In the active state, activation loop
is phosphorylated, opened up with an outward extended orientation. A catalytically important
conserved DFG motif at the base of the activation loop has Asp side chain pointing inwards
nto the active site. Inward movement of the aC-helix, with the side chain of conserved Glu
pointing inwards and the conserved Lys on the f3-strand in the N terminal domain make ionic
interactions within the active state. Distinct conformations for the inactive states of kinases are
similarly revealed, with closed conformation of the activation loop, outward movement of the
Glu side chain from aC-helix and Asp side chain from DFG motif (Shukla, Meng, Roux, &
Pande, 2014). In the Axl kinase crystal structure, the proposed autophosphorylation sites
(Tyr698, 702 and 703) in the activation loop are not phosphorylated in spite of the structure
being in the active state conformation. In the Axl kinase active state conformation (5U6B_B),
E585 (aC-helix), D690 (DFG motif) and K567 (B3-strand) are pointing inwards and make ionic
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interactions Figure 2.1C. These interactions provide a good validation for the active state
conformation in the kinase structures. In the inactive conformation (5U6B_A), these residues
move away and the side chains of E585 and D690 flip and orient away from the active site
(Figure 2.1C). We have investigated the alteration or retention of these interactions with help
of atomistic MD simulations studies in TAM kinases.

2.3.2. Molecular docking of cabozantinib

The primary protein-ligand complex formation can be approximated with molecular docking
studies which would find probable cabozantinib binding in the active state of TAM kinases. In
the molecular docking studies carried out using AutoDock4, the docking pose of inhibitor in
the protein active site is in a horizontal manner and is located in the ATP binding site as shown
in Figure 2.1D. The binding energies of the best docked pose are shown in Table 2.1. The
binding site is fully engaged with inhibitor, where the activation loop has extended interactions
with the active state of TAM kinase. As shown in Figure 2.1D, the binding of cabozantinib to
TAM kinases can be divided into three chemical regions. The primary part of the inhibitor, (6,
7 dimethoxy quinoline) containing nitrogen interacts with hinge region main chain of Phe622
and Met623 residues (Axl), (Mer: Phe666 and Met667) and (Tyro3: Phe607 and Met608). The
other end of the inhibitor consists of an amide linked p-fluoro phenyl that is 7 stacked with
Phe691 (Mer: Phe735 and Tyro3: Phe676) aromatic ring which is a part of DFG motif, and the
amide carbonyl linkage with cyclopropyl ring interacts with Asp690 which is also a part of
DFG motif (Mer: Asp734 and Tyro3: Asp675). The amide linked fluoro phenyl ring is
immersed into a deep cavity which is in the neighborhood of aC-helix in TAM kinases. A
three-residue junction networked via non-bonding interactions from Lys567 (B3-strand),
Glu585 (aC-helix) and Asp690 (A- loop) (AxI numbering) is in the inhibitor binding site and
the inhibitor gains access through these residues in all TAM kinases
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Figure 2.1A) Sequence comparison of Tyro3, Mer, Axl RTKs.
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(Ploop) Lys — Glu (a-helix) (P loop) Lys — Asp (DFG Motif)

Figure 2.1B Figure 2.1C
Superposition of TAM kinase domain

Axl-Active 5U6B Chain B Axl-Inactive -SU6B Chain A

Figure 2.1B) Structure superposition of kinase domain in TAM RTKs. Green— Tyro3
model; Red — Mer model; Blue —AxI 5U6B; Missing residues added in AxI are shown in

Black color.

Figure 2.1C) Active (5U6B_B, magenta) — Inactive (5SU6B_A, violet) state
conformations in the AxI crystal structure. The three residue interaction network between

the side chains of Lys567-E585 and K567-D690 are indicated.

Figure 2.1D) Structural comparison of docked cabozantinib in Tyro3 receptor kinase.
Tyro3 (White); Cabozantinib (elemental color); 1) 6,7 dimethoxy quinoline ; ii) 46

cyclopropyl stacked amide carbonyl; i) fluoro phenyl ring.
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Figure 2.2) RMSD plots of apo and Cabozantinib bound TAM RTKSs from 250 ns MD
simulations. (A) Apo proteins. (B) Complexed protein (C) Cabozantinib.

2.3.3. MD simulations of apo and TAM Kinase - cabozantinib complexes

Six molecular systems; Tyro3, Axl and Mer kinases; apo and complexed with cabozantinib
were studied by MD simulations using GROMACS 5.1.4 for 250 ns. All MD simulations
converged well as indicated by stable potential energies that are shown in Table 2.1. The
RMSDs of apo and TAM-cabozantinib complexes are compared in the given stable proteins
relative to the average distance in the protein backbone. It is one way of measuring the change
in average Ca distance which influences certain parts of the protein structure. The overall
RMSD of all molecular systems are stable asshown in Figure 2.2 (A, B, C) these plots indicated
that all the molecular systems have converged after 10 ns of MD simulations. In the apo AxI
(Figure 2.2A) and when bound to cabozantinib, the RMSD of the Ca atoms is relatively lower
which is indicative of the greater stability in their structures. On the contrary, apo Mer is more
stable than inhibitor bound form. Both apo and inhibitor bound Tyro3 display higher RMSDs
in comparison to other molecular systems. This implies that there are more possible metastable
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active states existing in the case of Mer and Tyro3 kinases compared to Axl. Therefore, the

RMSD of both Mer and Tyro3 kinases are slightly higher in a fortuitous manner to expect their

dynamic nature from MD simulations data. This could be a key aspect from protein dynamics

that plays a vital role in the drug design of TAM kinases in the identification of allosteric sites

for new inhibitor design. When TAM kinases are bound to cabozantinib, they have specific

states, which are catalytically active, providing insights for atomistic pinning of TAM Kkinase

activity.
S.No Mer-Model Tyro3-Model AxI
(5U6B_B)
1. Protein model validation
Model
DOPE Score (Modeller) 35206.7775 34680.4453 -
ERRAT 78.24 % 76.84 % -
(Overall quality factor)
Verify 3D 80 % aa 80 % aa -
(avg 3D-1D score >= 0.2) pass pass
ProSA(Z-Score) -8.44 -7.79 -
PROCHECK
Ramachandran plot
most 92.7 % 91.5%
favoured
6.2 % 7.3% -
additional
allowed 1.2% 1.2%
generously
allowed
2. Docking binding energy -8.93 -7.15 -7.06
(ADT) in k.cal/mol
3. Potential Energy of 250ns MD
simulated system (k.cal/mol)
Apo protein - 4.256 * 103 - 4.851 * 103 -4.737 * 103
Cabozantinib complex -4.219 * 103 - 4.853 * 103 - 4.457 * 103

Table 2.1: TAM kinase models, cabozantinib docking and MD simulations validation
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TAM with Inhibitor form
3 Residue number 50ns A 250 ns A
Axl K-567-E-585-D-690 Met-623 (Hinge) No H bond
Asp-690 ; Phe-691 (DFG)
Mer K-612-E-630- D-734 No H bond Met-667 (Hinge)
Tyro3 K-552-E-570- D-675 Met-608 (Hinge) Met-608 (Hinge)
Glu-570 (aC-Helix) Lys-552 (P-Loop)
Phe-676 ; Gly-677 (DFG) Asp-675 (DFG)

Table 2.2) The three residues interactions in TAM kinase bound cabozantinib for 250 ns MD

simulations data.

The MD simulations explain the dynamics and alterations in the conformations of TAM kinases
at different time scales of apo and inhibitor bound forms as a course of simulations time. During
MD simulations, it is interesting to see the appearance of new non-bonding interactions tightly
binding the ligand in the protein cavity. The trajectory analysis of 250 ns of MD simulated
data was analyzed for scrutinizing the non-bonding interactions among the specified active
states of the protein structures. The regions from the N-terminal domain (B3-strand, aC-helix)
and activation loop are involved in strong interactions in all the active structural conformers of
TAM Kkinases. In the complexed TAM kinases, these distances have moved slightly away,
however, the side chains of the amino acids are pointing inwards. To understand this in detail,
the distances between the atoms involved in forming the three residue interactions in TAM
kinases were measured and are shown in Figure 2.3 (A, B). These distance plots indicate the
retention or loss of hydrogen bonds in the core of kinase domains. The plots of distances
between the two electronegative atoms participating in the hydrogen bonds were quantified by
plotting pie diagrams as shown in Figure 2.4 (A, B, C). In the apo Axl MD simulations, Lys567
Ne and Glu585 0§, retained the hydrogen bonding distance between 2.5 to 3.4 A upto 92%
times during the 250 ns MD simulations. Similarly, in the cabozantinib bound form, the
distance between these atoms is retained upto 90.4% times. The distance between Lys567 Ne
and Asp690 Oy is also retained upto 34.9% in the apo Axl and 30.6% in the cabozantinib bound
Axl.
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Lys567-Glus85-Axl-apo Lys567-Glu585-Axl-Cabo Lys567-Asp690-Axl-apo

50000 100000

om)

Figure 2.3 (A, B) Average distance between the side chains of Lys-Glu and Lys-Asp in the
250 ns MD simulations in TAM RTKSs.

Mer.Cabo-Lys612-Glu6 30-distances Mer-apo-Lys612-Glu630-distances

Axl-Cabo-Lys567-GluS85-distances

AxI-Cabo-Lys567-Asp690-distances

Figure 2.4A) Distance between side chains of Lys - Glu; Lys — Asp pairs in apo and Axl-
cabozantinib RTK from 250 ns MD simulations.
Figure 2.4B) Distance between side chains of Lys - Glu; Lys — Asp pairs in apo and Mer-
cabozantinib RTK from 250 ns MD simulations.
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Tyro3.Cabo-Lys552-GluS70-distances Tyro3-apo-Lys552-Glu570-distances
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Figure 2.4C) Distance between side chains of Lys - Glu; Lys — Asp pairs in apo and Tyro3-

cabozantinib RTK from 250 ns MD simulations.

In the case of apo Mer kinase, the hydrogen bonding distances between Lys612 Ne and Glu630
04 is retained upto 92.5% times, whereas, in the cabozantinib bound form this distance is
retained only in 5.2% and the distance drastically increased upto 10.5 A. The Lys612 Ne and
Asp734 Oy distance in the apo Mer kinase is also moderately retained upto 36.8% and in the
cabozantinib bound Mer, this interaction is completely lost and the distance increased upto 10.4
A during the 250 ns MD simulations. In the case of apo Tyro3, the hydrogen bonding distance
between Lys552 Ne and Glu570 O4 is retained only upto 4.5% and became almost insignificant
(0.4%) in the cabozantinib bound Tyro3. In both apo and cabozantinib bound Tyro3, the
Lys552 Ne and Asp675 Oy distance was retained upto 14.1% and 12.4% times, respectively.
The pie diagrams of these hydrogen bonding distances indicated that the three residues
interactions are retained in the apo Axl and Mer, and cabozantinib bound AxIl, indicating that
the active site core of the protein is retained only in these molecular systems. The expansion of
the active site core of the other three molecular systems (apo Tyro3 and cabozantinib bound
Mer and Tyro3) is indicated by the loss of hydrogen bonding interactions.

From the RMSF plots, shown in Figure 2.5, we see that similar regions in all the molecular
systems of TAM kinases fluctuate during MD simulations. In the case of apo TAM kinases the

extent of fluctuations is almost similar whereas in the cabozantinib bound forms the extent of
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fluctuations varies in specific regions. For instance the regions; a B-turn in the N-terminal
domain) and end of first a-helix in the C-terminal domain have least fluctuations in AxI
complex, indicating that cabozantinib binding to Axl stabilizes this region. Similarly the
activation loop has relatively higher fluctuations in cabozantinib bound complexes compared
to the apo form. These differences in the RMSF plots indicate the extent of conformational
flexibility in TAM kinases and their structural plasticity. The differences observed in the RMSF
plots can be explained by analysing the trajectory files of MD simulations. The MD simulations
data clearly reveals that there are minute changes occurring at specific regions with reference
to longer MD time scales. The changes in the protein conformational features with respect to

simulation time scales can be explained from the analyses of the MD trajectory files.

RMS fluctuation TAM-Cabozantinib-250ns RMS fluctuation TAM apo -250ns

T i T ! ) ! T T T T T T
[— Mer ‘ s — Mer |
Tyro3 | Tyro3

— “\‘L,.‘ . 0.8~ - Axl |
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Figure 2.5) RMSF plots of TAM RTKSs from 250 ns MD simulations. (A) Cabozantinib
complexes (B) Apo proteins. In this figure, for the sake of convenience all TAM kinases are
numbered from number one (1) onwards. 88-93 (B-turn in the N-Terminal domain); 117-122

(First a-helix in the C-terminal domain); 179-192 (activation loop).

In the case of cabozantinib bound to TAM kinases at different time scales of MD simulations,
the orientation of both Mer and Tyro3 change due to movements in aC-helix and activation
loop deformations. Whereas the Axl MD simulations data indicated only minor changes or
little movement in aC-helix in the apo and the cabozantinib bound forms. The distances for the
non-bonding interactions among (Axl: K567, E585 and D690) is given in Figure 2.4. In Mer

and Tyro3 these interactions are quite weak due to the elongation of the corresponding
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distances resulting from the aC-helix and activation loop dynamics. These dynamic states are
closely associated with each other and can change specified non-bonding residue interactions.
The aC-helix of apo Mer kinase is similar to the apo Axl, however the cabozantinib bound Mer
aC-helix moved away with local unwinding of helicity. Both apo and cabozantinib bound
Tyro3 display changes in the aC-helix and movement away from the core of the protein. Also
this figure indicates that the interactions between the N-terminal Lys and activation loop Asp
(DFG motif) is retained only 1/3d times in Axl and are significantly lost during the MD
simulations of Mer and Tyro3. It is the major diversity in the aC-helix and activation loop
conformations that causes generation of more metastable state populations in Mer and Tyro3.
These states can be explained with advanced trajectory data analysis by Python programming
libraries. The population analysis of these conformations is further explained with post-MD
data analysis from longer timescales MD simulations trajectories.

2.3.4. Post-MD Analysis

The MD simulated TAM-cabozantinib systems generated large datasets which are difficult to
be inspected using pure visualization software for structural alterations and protein domain
motions. Preliminary post-MD data analysis was carried out on the large trajectories derived
from TAM kinase 250 ns MD simulations data using “ProDy” Python libraries to ensure
kinetically active states are investigated with the aid of PCA. PCA is a powerful multivariate
statistical technique to decipher the conformational changes in a protein as a function of time,
this was therefore used to study the MD simulations trajectories of TAM kinases. PCA is
applied to systematically reduce the number of dimensions needed to describe the protein
dynamics through a decomposition process that filters the observed motions from largest to
smallest spatial scales. The presence of large-scale motions makes it difficult to reveal the
small-scale motions in proteins since the large-scale motions have relatively greater amplitude
in atomic displacements. Therefore, only a small number of PCA modes with large amplitudes
that reveal the structural dynamics of biological relevance are considered. A covariance matrix
is constructed from the Cartesian coordinates of the trajectory files and an eigenvalue
decomposition of the covariance matrix leads to a complete set of orthogonal collective modes
(eigenvectors), each with a corresponding eigenvalue that characterizes a portion of the motion.
The eigenvalues were obtained by the diagonalization of the covariance matrix of the Ca
atomic fluctuations and depicted in Figure 2.6, with decreasing order versus the corresponding
eigenvector indices. The square matrices are converted into secular equations to generate
eigenvalues and corresponding eigenvectors. The corresponding eigenvectors are the best

principal components associated with eigenvalues (Yang, Eyal, Bahar, & Kitao, 2009). The
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first few eigenvalues corresponding to concerted motions quickly decrease in amplitude to
reach a number of constrained and more localized fluctuations. As shown in the Figure 2.6, the
eigenvalues of apo Axl and when bound to cabozantinib are low and almost similar. While the
Tyro3 and Mer bound to cabozantinib have higher eigenvalues compared to apo Tyro3 and
Mer. This suggests that the nature of motions in all the six molecular systems is quite different,
however the extents of dissimilarities are lower in apo and cabozantinib bound AxI. Larger
eigenvalues typically indicate large scale motions spatially, implying that the conformational
alterations in the cabozantinib bound Tyro3 and Mer are greater during the course of MD
simulations. The trajectory data sets are converted into a covariance matrix to generate 10
principal components as shown in figures 2.7 (A,B,C). This figure shows square displacements
of TAM kinases complexed with cabozantinib, these square displacements are key components
to study the conformational changes in the active states of various TAM RTK family members.
Axl has lower displacements compared to Mer and Tyro3 kinase when bound with
cabozantinib. This indicated that AxI has greater structural stability than the other two members
of subfamily. Analysing MD simulations trajectory data as vibrational modes of protein
domain fluctuations gives superposition of normal modes. These normal modes can be
generated from conformational fluctuations of harmonic oscillations such that all data points
are represented as vectors and then converted into diagonalized matrix with respect to second

order derivative of Hessian matrix.

Eigenvalues Covariance matrix of TAM Kinases
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Figure 2.7) Principal component analysis of TAM kinase — cabozantinib complexes from
250 ns MD simulations. In this figure, for the sake of convenience all TAM kinases are
numbered from one onwards.

The constrained motions in all simulations of protein-ligand complexes (Bakan, & Bahar,
2009). The overlap plots of ANM Vs PCA gives pre-validation of active states and populated
states of kinase domain at 1 and 50 ns time scale. This is a glimpse of further data analysis with
ANM of key unique motions captured for Hessian matricised vector data to predict the active
model of TAM Kkinase in the presence of inhibitor. As shown in Figures 2.8(A, B, C), Axl
converged plot has more faint blue blocks than Tyro3, But Mer plot has more deep blue blocks
which indicated lesser convergence between normal Vs. PCA modes in Mer kinase. The
overlaps of ANM Vs PCA are key pictorial representation of stable active states existing in
AxI compared to Mer and Tyro3 kinases. The best converged ten eigenvectors systems could
be captured with the help of correlated modes between principal components versus anisotropic
normal modes (ANM) of trajectories extracted from MD extrapolated in 2D coordinate system
as ANM Vs. PCA generated correlated 2D plots for TAM-cabozantinib complexes before (1
ns) and after (50 ns) MD simulations time frames. ‘“MDAnalysis” Python libraries are an
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object-oriented tool for the components in a molecular system. In a protein kinase, the vibrant
domain motion analysis can be performed to retrieve specified loop dynamic constraints that
are crucial to explain the protein structural dynamics for “activation loop” and “aC-helix”, in
apo and cabozantinib bound TAM kinase domains. The Figures 2.10 and 2.11(A, B, C, D, E,
F) clearly indicated variations in the activation loop and aC-helical dynamics in all molecular
systems. The activation loop and aC-helix Co RMSD was extracted from 250 ns MD trajectory
data of TAM kinases. The Axl activation loop showed greater stability or fewer conformational
changes when bound to cabozantinib, compared to the apo Axl and the dynamics of the aC-
helix is also greater in the apo form compared to the cabozantinib bound AxI. Similarly, apo
Tyro3 has more activation loop and aC-helical dynamics compared to the cabozantinib bound
form. In the apo and inhibitor bound forms of Mer RTK, activation loop has higher dynamic
states indicating higher flexibility of this loop, also the aC-helix is stable when bound to
inhibitor compared to the apo form. In the apo Mer kinase domain, the activation loop RMSD
is highly populated and does not attain a stable conformation. In other words, the apo TAM
kinases display greater activation loop dynamics compared to the inhibitor bound forms.
Among the inhibitor bound states, the order of stability is AxI>Tyro3>Mer. From these plots,
it is observed that in the inhibitor bound form, the TAM kinases show some periodic constraints
during MD simulations that could be important for their function.

The overlap populations among the receptor-based TAM kinases can be projected to compare
the initial and final average structures of proteins while interacting with ligands. The PCA
correlated with the overlap plot of ANM shown in Figure 2.8 indicated that the overall
populations of Axl are more than Tyro3 and Mer. However, Tyro3 has populations more than
in Mer as indicated by 0.1 range cutoff, and the Axl has more populations over marginal cutoff
(0.15) next to Tyro3. This is a prime indication of higher intra-residue interactions in 50 ns
structures for both Axl and Tyro3 than compared to Mer-inhibitor complex. Therefore, in Axl,
the number of microstate populations are more, whereas least in Mer indicating the more
dynamical nature of Mer kinase domain. To further probe internal dynamics and
conformational diversity in TAM kinases, general cross-correlation analysis was carried out.
A complete map of the mechanical resistance in response to all possible pulling directions and
the mean value of effective spring constant with secondary structure of TAM kinase domains
is shown in the Figures 2.9 (A-F) and 50 ns MD trajectory data for TAM Kinases. ANM overlap
modes of active micros state populations before 1 ns and 50 ns MD trajectory data for TAM

kinase fluctuations (Cutoff range 0.1).
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Figure 2.8 (A, B, C) Cross correlation (faint Blue blocks) between ANM Vs PCA before 1 ns.

The correlated extents of protein motion are different in all molecular systems. Certain regions
in the protein show strong correlated motion while other regions display low correlated motion.
Apo and cabozantinib bound AxI kinase display similar regions and extent of cross
correlations. In comparison, the apo Mer displays lower correlated motion compared to the
inhibitor bound form. The apo and inhibitor bound Tyro3 exhibit different extents of cross
correlations in different regions of the proteins. The correlated plots also explain the
distortedness and stiffness of protein in the presence of inhibitor bound in the active site of
TAM RTKs. These plots have cross correlation of Ca residues in the proteins from same
subfamily which describes the structural deformations of protein in the absence and presence
of high affinity inhibitor in the active site. In comparison, the Axl kinase has more mechanical

stiffness indicating its structural rigidity among them.
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Figure 2. 9 (A, B, C, D, E, F) The complete mechanical stiffness 2D plot of TAM kinases
(blue mechanically strong regions, red - mechanically weak regions). Color bar indicates
effective force constants. The mean value of effective spring constant and the protein secondary

structure is shown as 1D profile.
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Figure 2.10) MDTraj Analysis of Ca RMSD of activation loop dynamics in TAM RTK’s
cabozantinib and apo models at 250 ns. In Figure: Active Loop dynamics of 2.10A) AxI-
inhibitor;  2.10B) Axl-apo. In Figure: Active Loop dynamics of 2.10C) Mer-inhibitor; 2.10D)
Mer-apo. In Figure: Active Loop dynamics of 2.10E) Tyro3-inhibitor; 2.10F) Tyro3-apo
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Figure 2.11) MDTraj Analysis of Coa RMSD of aC-helix dynamics in TAM RTK’s —
Cabozantinib and apo models at 250 ns.

In Figure: aC-helix dynamics of 2.11a) Axl-inhibitor;  2.11b) Axl-apo

In Figure: aC-helix dynamics of 2.11c) Mer-inhibitor;  2.11d) Mer-apo

In Figure: aC-helix dynamics of 2.11e) Tyro3-inhibitor; 2.11f) Tyro3-apo
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The aC-helix of Mer receptor kinase bound to cabozantinib has higher Ca RMSD compared to
Axl and Tyro3. The Mer activation loop dynamics shows the possible existence of metastable
active forms among the TAM RTKSs. The MSM prediction is studied with Python coding and
specialized scientific Bio-python, interactive python environment in the Linux platform. The
MSM building carries out featurisation, clustering, projection and estimation that was done
with pyEMMA 2.5.5 Python package. Measurement of the time dependent Co distance
variations in the TAM kinases is a strategy for Markov model interpretation. The 250 ns MD
simulations trajectory data is utilized for Markov’s model building and is shown in Figure 2.12
(A,B,C,D, E,F).
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Figure 2.12) MSM models and tICA analysis of Co RMSD TAM RTK’s — cabozantinib

complexes from 250 ns.
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Figure 2.13 A, B, C) MDTraj analysis of RMSF contour plot TAM RTK’s — Cabozantinib -

forms 250 ns, (all Y axis units A).

Figure 2.13 D, E, F): MDTraj analysis of RMSF contour plot TAM RTK’s — apo- forms

from 250 ns.
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Residue Interaction Networks

Figure 2.14A) Axl-cabozantinib-RIN plot. It has intra chain interaction (Asp-581 — Arg-707).
Figure 2.14B) Mer-cabozantinib-RIN plot. It has lack of intra chain interaction (Glu-626 — Arg-748).
Figure 2.14C) Tyro3-cabozantinib RIN plot. It has intra chain interaction (Glu-566 — Arg-680).

The MSM building and populated active states are shown to vary in Axl (specified populated),
Mer (discrete populated) and Tyro3 has intermediate populated states. MSM model prediction
is in specified time intervals (lag time = 35 out of 64) of 1 ns data set of state-space
discretization. The populated models can be deducted with dimensionality reduction from 879
into 7 by using tICA which can be projected in the form of a kinetic map as indicated in the
Figure 2.12. The independent components vs time interval (1 ns) from the recorded trajectory
after every 0.5 ns frame up to 250 ns of MD simulations data are shown in this plot. In Mer-

cabozantinib bound complex, periodic constraints of Ca distance indicates that it should
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comprise more metastable Markov’s model populations among them. The RMSF contour plots
(Figure 2.13) were sketched with help of scikit-learn Python libraries. Mer RMSF contour plot
displayed some key radiant contours of specified states visualized in cabozantinib bound Mer
kinase. In Axl and Tyro3- cabozantinib bound forms, the active states are well mixed up.
However, in the apo form, the active states are more mixed up and even indistinguishable in
apo Mer contour, whereas the apo Axl and Tyro3 have discretized specific contours. In
addition, the RMSF contours of apo TAM kinases have high oriented specific residue Ca
motions observed but the cabozantinib bound receptor kinase displays low RMSF of specified
residue motions given the residue index on X-axis. The inhibitor bound Mer has well
distinguished contour state plot. Based on the above observations, Mer appears to be a special
class of kinase due to the existence of more active metastable states compared to Tyro3 and
Axl. The large domain motions occurring in Mer are due to the loss of intra-chain hydrogen
bond between Glu626 — Arg748 during the course of MD simulations (Figures 2.14b). In the
case of Ax|, this interaction is present farther away from the active site in Axl-inhibitor binding
region, therefore this could tightly hold N-terminal domain in diagonal manner (mediated via
main chain-side chain non-bonding interactions) in Axl-cabozantinib complex. Tyro3 has this
corresponding intra-chain interaction very close to the active site of the protein, therefore it
does not restrict full domain motion when compared to Axl- cabozantinib complex. These non-
bonding interactions between residues in the N- and C-terminal domains play a significant role
in the constrained motions of TAM kinases in the presence of suitable ligand environment
(cabozantinib). Intra-chain interactions could be key factors responsible for constrained
motions in protein, but protein-ligand complex formation is ultimately anindirect way to orient
these intra-chain non-bonded contacts by virtue of protein dynamics and internal motion. The
RIN plots showed key interactions among TAM kinase-cabozantinib complexes to
satisfactorily explain that dynamic motion in proteins. It is crucial to explain variable domain
motion constraints occurring due to the hyper sensitivity of non-bonded interactions among
various residues within the protein domains. The intra-chain interactions present in Axl
(Asp581 — Arg707) (Figure 2.14A) and Tyro3 (Glu566 — Arg680) (Figure 2.14C) have
dominant role in constrained motions of protein-inhibitor complexes which confirms the
changes in structural features of protein. The domain motion frames are captured through Ca
atomic NMA using VMD software that showed vibrionic motions between inter-domains in
selective protein motifs. It was observed that the Axl normal modes oscillated as stretching
mode, whereas, Tyro3 vibrated in intermediate rocking mode as compared with Mer that has

super rocking modes (Figure 2.15 A, B, C). This is an essential observation of domain motions
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in the subfamily of kinases in the presence of binding inhibitors essentially due to specific non-
bonding interactions among various residue motifs and therefore the variations in the structural
plasticity of TAM RTKSs.

Figure 2.15A) Porcupine plot Axl-cabozantinib-250ns (ANM modes).
2.15B) Porcupine plot Mer-cabozantinib-250ns (ANM modes).
2.15C) Porcupine plot Tyro3-cabozantinib-250ns (ANM modes).

2.4. Conclusions

Tyro3, Axl and Mer are TAM RTKs that belong to the family of integral membrane proteins
and share high sequence similarities. TAM kinases are key receptors for discovery of effective
and specific cancer drugs that bind to either active or allosteric sites using methods in structure
based drug design. Comparison of the crystal and models of the active states in TAM kinases
revealed their high structural similarities. Cabozantinib, a nanomolar affinity TAM kinase
inhibitor binds to the ATP binding pocket of the enzymes and is stabilized by several non-
bonding interactions. The structural stabilities of apo and cabozantinib bound TAM kinases
were studied using 250 ns MD simulations, the RMSD plots revealed the stability of the
molecular systems and the RMSF plots indicated the fluctuations in the N-terminal domain
motifs and the activation loop. An in-depth study of TAM kinase MD trajectory analyses
revealed that the non-bonding interactions mediated via three residue contact involving the B3
strand, aC-helix and DFG motif decide the retention or expansion of the active core of the
kinases. Further, the ionic interactions between oppositely charged residues on aC-helix
(acidic) and the activation loop (basic) is responsible for major domain motions in TAM
kinases. The fluctuations in the aC-helix and activation loop regions lead to the presence of
diverse conformations in Mer and Tyro3. Among the TAM kinases, the binding stability of
Tyro3 with inhibitor is intermediate between Axl and Mer. This work revealed the active
metastable states in TAM kinases and the molecular mechanism of function regulation. This

classical MD simulations study on apo and TAM kinases-cabozantinib complexes gives

66



description of the non-bonding interactions at specified sites in the protein active cavity. These
atomistic simulations and analyses revealed the existence active microstates in TAM kinases
and further strengthen the overwhelming literature on the dynamic states in kinase family

proteins.
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Chapter -3

Dynamic conformational statesof apo, ATP and cabozantinib bound TAM

kinases to differentiate active-inactive kinetic models
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Abstract

The dynamically active and inactive conformations of kinases play a crucial role in the activation of
intracellular downstream signaling pathways. The all-atom MD simulations at microsecond (s)
timescale and longer provide robust insights into the structural details of conformational alterations in
kinases that contribute to their cellular metabolic activities and signaling pathways. TAM RTKSs are
overexpressed in several types of human cancers. Cabozantinib, a small molecule inhibitor constrains the
activity of TAM kinases at nanomolar concentrations. The apo, complexes of ATP (active state) and
cabozantinib (active and inactive states) with TAM RTKs were studied by one ps MD simulations
followed by trajectory analyses. The dynamic mechanistic pathways intrinsic to the kinase activity and
protein conformational landscape in the cabozantinib bound TAM kinases are revealed due to the
alterations in the P-loop, aC-helix and activation loop that result in breaking the regulatory and catalytic
spines, while the active states of ATP bound TAM kinases are retained. The co-existence of dynamical
states when bound to cabozantinib was observed and the long-lived kinetic transition states of distinct
active and inactive structural models were deciphered from MD simulations trajectories that have not

been revealed so far.
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3.1. Introduction

The RTKSs are single-pass membrane spanning proteins, recognised by specific extracellular ligands to
cause receptor dimerization followed by kinase activation and intracellular autophosphorylation
(Endicott et al., 2012). TAM RTKSs are overexpressed in acute myeloid leukaemia, breast, colorectal,
lung, ovarian cancers and glioblastoma. These three TAM kinase members share a high degree of
sequence and structural homology in their kinase domains. Cabozantinib was approved by FDA for
advanced renal cell carcinoma, hepatocellular carcinoma and medullary thyroid cancer and also
differentiated thyroid cancer that has progressed following prior VEGFR-targeted therapy. Cabozantinib
is reported to bind TAM kinases with high affinity at nanomolar concentrations (Gajiwala et al., 2017,
Sultan et al., 2017, Skora etal., 2013, Turner and Blythe, 2019, Herum, et al., 2017, Qin etal., 2019,
Lacy etal.,, 2018, Pantano etal., 2016, Myers etal., 2019, Robinson, 2013). The distinction between the
active and inactive states in a kinase is based upon the aC-helical movement towards or away from the
ATP binding site. The presence of catalytically important Lys567 (close to P-loop) - Glu585 (aC-helix)
is an essential ionic interaction in the active Axl kinase from the crystal structure in PDB. The disordered
activation loop (689-724) in the C-terminal lobe has altered conformational statesthat are variable among
the kinase structures reported so far. An ionic interaction between the side chains of Asp581 (aC-helix)
and Lys695 (activation loop) is important in the kinase structure and allostery. The synchronous
fluctuations in the P-loop, aC-helix and activation loop leads to spatial alteration in the shape of the
enzyme active site pocket and distinct structural features such as the inward/outward rotation of aC-helix
and expansion of the activation loop. The Lys567 - Glu585 salt bridge is the indication for the active
state of TAM RTKs. A kinase domain has two kinds of active sites; regulatory substrate site and catalytic
active site that become available during allosteric competitive inhibitor binding pathways in the cellular
signal transduction process. Structure analyses revealed the presence of two non-contiguous structural
motifs termed regulatory and catalytic spines (Robinson, 2013, Mohanty et al., 2016, Hu et al., 2015)
that are required for stabilizing the protein in the active state. Since the Axl kinase domain is crystallized
in both active and inactive forms, classical long range MD simulations were performed on the active and
inactive states of TAM kinases to obtain key insights into the spatial dynamics and to understand the
cellular mechanistic pathways of inhibitor, cabozantinib binding to kinases that will prevent internal
signaling by up-regulation or overexpression of kinases. In this chapter, the highly unstable
conformational transition states including regulatory and catalytic spines in the kinase domains are
reported by studying the apo, ATP and cabozantinib bound TAM RTKSs each for 1 ps MD simulations
using AMBER 18.14 suite of programs.
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3.2. Materials and methods

3.2.1. Structures of apo, active and inactive TAM RTK kinase domains

The three-dimensional crystal structures of Axl (PDB id: 5U6B) (Gajiwala et al., 2017) A and B chains
exist as inactive and active states, respectively. The missing residues in the activation loop were built
using "Model/Refine Loops" in "Structure Editing"” tool in UCSF Chimera 1.12. (Yang etal., 2012) The
active and inactive homology model structures of Mer and Tyro3 were built based on the crystal
structures of 5U6B, B and A chains, respectively, using MODELLER (Sali and Blundell 1993, Webb,
and Sali, 2014) as described previously.

3.2.2. Molecular docking of ATP and cabozantinib

The inhibitor cabozantinib was docked into the ATP binding pocket of the active and inactive conformers
of TAM kinases and ATP was docked into the ATP binding pocket of the active state of TAM kinases
using AutoDock (Morris et al., 2009). The docking pose with lowest binding energy and maximum
docking poses was utilized for further MD simulations to decipher the molecular basis for interactions
between protein and ligand.

3.2.3. Molecular dynamic simulations

All MD simulations were achieved using AMBER (Gotz, et al., 2012) version 18.14 for the apo, ATP
bound active, and cabozantinib bound active and inactive states of TAM kinases. The best docking pose
of each complex was utilized as input for MD simulations. The force fields for the entire systems were
generated with Antechamber using amlbcc method (Wang et al., 2006, Colovos and Yeates, 1993). All
input parameter files for MD simulations were generated after adding hydrogen atoms in tLEaP module
in AMBER tools (Anandakrishnan, Aguilar and Onufriev., 2012, Lindorff-Larsen et al., 2010). Sodium
and chloride ions were added to the systems to neutralize the charge, each molecular system was solvated
within a 10 A size box. The final ionic concentration for the systems was set to 100 mM. The
Amberff99sb-idin force field was used for entire model system with TIP3P water model for AMBER
molecular parameters (Meagher et al., 2003, Mark and Nilsson, 2001). All MD simulations were run at
300 K temperature and 1 atm pressure with Monte Carlo barostat (Salomon-Ferrer et al., 2013). Energy
minimization was carried out by using steepestdescent method for 40,000 cycles to overcome short range
null contacts among the molecular system in solvent (Darden et al., 1993). Long range electrostatic
interactions were considered with Particle Mesh Ewald algorithm (Jorgensen et al., 1983) with cut-off
range 9 A and order 4. All model systems were equilibrated for 5 ns before the production run, and the
coordinates in the production run were saved after every 5 ps (Salomon-Ferrer et al., 2013, McGibbon et
al., 2015). The MD simulations of each molecular system was carried out for 1 ps, accounting for a total

of 12 ps simulations time.
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3.2.4. Data analysis
The MD trajectory data analysis was carried out using cpptraj and pytraj in Amber tools 18 (Hornak et

al., 2006). The average structures after MD simulations, RMSD, RMSF and PCA were derived from the
trajectory analysis. For the sake of data space minimization during post MD analysis, the Markov state
model (MSM) analysis was carried out on 40K frames out of 200K frames and the PCA was carried out
on the data from 1K frames generated from each molecular system. To build the MSM, datasets of close
accessible kinetic metastable states associated with protein conformational ensemble obtained from large
scale simulations are required. These states can be defined in poyEMMA Python library (Scherer et al.,
2015). To generate the MSMs 40K conformations were sampled. All twelve MD simulations datasets
were transformed in terms of protein Ca backbone dihedrals, Cao backbone atomic positions and distances
from their trajectories. All MD simulations trajectories were analysed for 1000 ns (200K frame data) by
sampling the MSM predictions (Harrigan et al., 2017). This identified kinetically metastable transitions
among cluster k-means lag time (250 degrees of freedom) of protein conformations (Perez-Hernandez et
al., 2013). The extrapolation of the real time data into pictorial and graphic vectorized data points was
achieved with matplotlib and numpy data frames into 2D plotting space. The state distributions of kinetic
metastable data points were featurized and cluster analysis was applied using TICA (Perezand Granger,
2007, Pedregosa et al., 2011, Noe and Clementi, 2015).

3.3. Results and discussion

The amino acid sequence alignment of Tyro3, Axl and Mer kinases shown as the final modeled (after
MD simulations) structures of the active and inactive kinases display significant conformational
alterations in the P-loop, aC-helix and activation loop asshown in the Table 3.1A. The three-dimensional
structures of active and inactive forms of Axl kinase domain were taken from the crystal structure (5U6B)
(Gajiwala et al., 2017) B and A chains, respectively. The homology models of active and inactive forms
of Mer and Tyro3 kinase domains were constructed and validated. The models of TAM kinase domains
constructed were compared with model structures generated using Phyre2 (Kelley et al.,, 2015) and
AlphaFold (Varadi et al., 2021) by structure superposition. the structures superpose with low RMSD.
From the docking of cabozantinib into TAM Kkinases, it was observed that it binds to the ATP binding
pocket mediated via several non-bonding interactions. The hinge region residues Phe622, Met623 (Axl
kinase domain) interact with dimethoxy quinoline ring nitrogen of cabozantinib. The para- fluoro phenyl
interacts with Phe691 aromatic ring (DFG motif in Axl) and Asp690 forms hydrogen bond with amide
nitrogen located between the cyclopropyl and phenyl rings of the inhibitor. The cofactor ATP binds the
active site of TAM kinases, intermolecular hydrogen bonding interactions are observed with Pro621
(hinge region) and Asp627 (hinge region), Asn677 (catalytic loop region) in the Axl kinase domain. The
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structures of apo, active TAM kinases complexed with ATP, active and inactive TAM kinases complexed
with cabozantinib were subjected to 1 ps MD simulations each, using AMBER18. Throughout MD
simulations all molecular system appeared to be stable as observed from temperature vs time and total
energy Vs time plots

3.3.1. Active — inactive kinetic state models of TAM RTKSs

From the long range MD simulations of TAM RTKs the kinetic state models are defined according to the
internal structural dynamical features such as P-loop (544-549 amino acid residues), aC-helix (576 —
591) and activation loop (689—-724) from the trajectories of the MD simulations data. The active/inactive
conformers of TAM kinases are clearly distinguished. In the active state, the side chain of Glu585 on aC-
helix is rotated inwards towards the substrate binding site to make salt bridge interaction with Lys567 in
the case of ATP bound Axl RTKs. The side chain of Asp690 from the DFG motif also projects towards
the active site. The outward orientation of Glu585 side chain away from the substrate to dissociate the
ionic interaction with Lys567 (P-loop), and rotation of Asp690 side chain inwards into kinase active site
is indicative of an inactive state of kinase (Gajiwala et al., 2017). In the inactive state, the aC-helix
undergoes outward rotation, followed by the activation loop inward folding to minimize the drug binding
active site that can be seen from Figure 3.1A. These are the key structural features implicated in the
regulation of protein kinase activity and influence the effective binding of inhibitors. The binding of
cabozantinib influenced various states of active/inactive models in Tyro3, Axl and Mer kinase domains.
The active kinetic models are indicated by the ionic interaction between Lys567 and Glus85, inward
rotation and activation loop extended to further maximize inhibitor binding site. Inthe ATP bound active
TAM kinase structures, this ionic interaction is retained throughout the MD simulations (Figure 3.1B)
indicating that ATP bound TAM Kkinases retain the active state. The catalytic spine and regulatory spine
dictate the positions of ATP and substrate in the kinase domain. These spines play a key role in the
catalysis of kinases while binding with ATP. The locations of regulatory spine and catalytic spine on the
structures of TAM kinases based on the structures of C-Src (Robinson, 2013). The regulatory spine
consists of four non-consecutive hydrophobic amino acid residues aligned vertically from N-terminal
lobe towards the C-terminal lobe through the activation loop (Kim et al., 2017). These hydrophobic
residues in Axl kinase domain are Leu600 (34-strand); Met589 (a.C-helix); Phe691 (DFG motif); His670
(catalytic loop) and an additional residue Asp731 from the C-terminal lobe (Figure 3.2 A, B, C). The
catalytic spine consists of eight non-consecutive hydrophobic amino acid residues aligned vertically from
N-terminal lobe towards the C-terminal lobe through the hinge region. These hydrophobic residues in
Axl kinase are, Val550 (B2-strand), Ala565 (B3-strand), Phe622, Leu628 (hinge region), Met679, Leu680
(catalytic loop), Met739, Ile742 (aF-helix from C-terminal lobe).
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Figure 3.1A) The active and inactive states of cabozantinib bound Axl kinase domain after 1 us MD
simulations. AxI (grey); cabozantinib (elemental color). Lys567 - P-loop with GluS85 - aC-helix.
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Figure 3.1B) The active states of ATP bound Axl kinase domain. Axl-active (grey); ATP (elemental
color). Lys567- P-loop - Glu585- aC-helix.
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Figure 3.2) Regulatory spine analysis of cabozantinib bound active and inactive TAM kinase domains,
apo and ATP bound active TAM RTKs at 1 us MD simulations. 3.2A) Tyro3; 3.2B) Axl; 3.2C) Mer
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Figure 3.3) RMSD plots of apo, ATP bound TAM RTKs and cabozantinib bound active and inactive TAM
RTKSs from 1 pus MD simulations. (3A) Tyro3, Axl, Mer Ca atoms in the kinase domain (3B) Activation
loop (3C) Regulatory spine (3D) Catalytic spine (3E) P-loop (3F) aC-helix
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The RMSD plots are shown in Figure 3.3 A, B, C, D, E, F. The RMSD plots of protein Ca atoms (Figure
3.3A), indicate that the structures converged at about 100 ns of MD simulations and the RMSD values
lie within a narrow range from 2-4.5 A. The ATP bound TAM kinase domains have lowest RMSD among
all the systems studied. The TAM active state kinases form stable complexes when bound to
cabozantinib. The apo Tyro3 and Axl have higher RMSD values among all systems studied. The RMSD
analysis of specified regions in kinases are the key components to describe the distribution among
inactive and active states. The regulatory spine of Tyro3 and Axl have well differentiated active states
based on the lower RMSD (~ 2.8 A) while the Mer active state has higher RMSD (~ 4.5 A). All the
inactive states of TAM kinases have an RMSD of 4 A in the regulatory spine. The catalytic spine RMSD
is higher in the case of apo Axl kinase but the ATP bound Mer and Tyro3 have lower catalytic spine
RMSD (~2.8 A). The RMSD of N-terminal P-loop are nearly similar in all the molecular systems studied.
The RMSD of aC-helix region is distinguished among all TAM kinases studied and lie within a range of
1.5-3.0 A. The active and apo states of Tyro3, the inactive and apo states of AxI, and the apo Mer kinases
have higher and nearly similar RMSD values of the aC-helix among all the kinase states. The RMSD is
lowest in the inactive Tyro3, Axl active, active and inactive Mer complexes. The RMSD of the activation
loop is quite opposite to the aC-helix region. The active state Tyro3, active and apo states of Axl, and
apo state of Mer kinase have lower and nearly similar RMSD values among all the systems. The
activation loop in the apo and inactive Tyro3, inactive Axl, active and inactive Mer has highly dynamical
conformation as can be seen from the higher RMSD values. Among all the systems studied, the inactive
AxI activation loop is highly variable. The RMSD of regulatory and catalytic spines in the ATP
complexes of TAM kinases is lower than 3 A. The P-loop and aC-helix have lower RMSD (1.5 A) and
the RMSD of the activation loop is in between 1.5-3 A. The cofactor ATP stabilizes TAM kinases with
the adenine group coordinated at the hinge region of the kinase domain. The results from the RMSD are
in correspondence with the RMSF plots (Figure 3.4 A, B, C). It canbe seenthat the hinge region is most
stable in the Mer kinase domain when complexed with cabozantinib. From the analyses of the RMSD
and RMSF pilots, it is observed that TAM kinase domains have unique hidden dynamic states that can be

distinguished from further analyses of MD trajectories.
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Figure 3.4) RMSF plots of TAM kinase domain from 1 pus MD simulations. Kinase domains are numbered
as per their primary structure. Axl indexing 539-553 (B1-B3 turn in the N-terminal domain-P-loop); 579-
591 (aC-helix in the C-terminal domain); 689-724 (activation loop). 4A) Tyro3; 4B) Axl, 4C) Mer.

3.3.2. TAM kinase-cofactor complex activation pathway
The Kinetic states appear due to the stereo-spatial arrangement of certain residues in specific a-helices,

B-sheets and loop regions in the kinase domain. These kinetic states provide key insights into the
activation of protein kinases in the presence of ATP and inhibitor bound to the active site. The apo, ATP
bound and active/inactive Axl-cabozantinib molecular systems consist of well-defined Kkinetic state
models during the MD simulations. The precise representation of the local spatial pattern in the active
and inactive states of a kinase domain can be accessed via the regulatory spine and catalytic spine. The
regulatory spine controls substrate molecule in the active site (aC-helix and activation loop). The catalytic
spine regulates catalysis by allowing the ATP binding site at hinge region. The inactive kinase state
should be converted into active state with the help of substrate binding at activation loop through the
influence of regulatory spine hydrophobic residues which connect the dynamical movement of catalytic
loop in aF-helix. The coordination between regulatory spine and catalytic spine evolve a dynamical
conformation for the transfer of y-phosphate from ATP to the substrate protein (Myers et al., 2019,
Robinson, 2013, Kornev, 2006, Mohanty et al., 2016, Kim et al., 2017). The regulatory spine is
continuous and linear in the case of normal metabolic kinase activity. The hydrophobic surface in the

regulatory spine is vertically aligned (Leu-Met-Phe-His) in the apo form of all TAM kinases as can be
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seen from the Figures (3.2 A, B, C). In the Axl active state, the regulatory spine is broken in the case of
inhibitor bound form due to the expansion of activation loop that results in the extended space between
aC-helix- Met589 and DFG motif -Phe691 at ATP binding site. The inactive Axl bound to cabozantinib
has an intact regulatory spine due to the expansion of space between aC-helix Met589 and p4-strand
Leu600 as a result of the outward rotation of aC-helix. The regulatory spine is retained in a similar way
in the cabozantinib bound Tyro3 kinase domain in the active and inactive states. In the case of the
cabozantinib bound active state Mer RTK, the regulatory spine fragmentation occurs between the P-loop,
aC-helix and activation loop, whereas in the cabozantinib bound inactive Mer, the regulatory spine is
retained. In the active site in Axl and Mer kinases, inhibitor occupies the shallow depth in between the
aC-helix — activation loop, resulting in the broken regulatory spine. In the case of inactive states, the
inhibitor binds at the hinge region of TAM kinases and therefore retaining the regulatory spine.

In the kinase active state, the regulatory spine is broken in Axl and Mer RTKSs, whereas the catalytic
spine is retained in the active state of Axl and Mer RTKs with no breakage in the hinge region. The
regulatory and catalytic spines are coordinated in such a way that if the regulatory spine is broken, the
catalytic spine is retained and vice-versa. The active Axl and Mer RTKSs have broken regulatory spine
but the catalytic spine is intact, but in the rest of the molecular systems the regulatory spine is intact and
the catalytic spine is broken. Itis like a lever pulling mechanism in the presence of higher concentration
of inhibitor bound at regulatory site of kinase. The spine coordinated mechanism is important to ensure
that the kinase is regulated from inactive state to active state mode in the presence of higher
concentrations of substrate or high concentration of ATP in the cytosolic region. Therefore, the
cabozantinib binding in the active state kinase influences at specified locations of the regulatory spine
residues rather than catalytic spine. This can lead the catalytic spine to initiate catalytic activity towards
passive mechanism to alert the body immune system with the help of chemokines. Whereas, in the
inactive kinase state, the inhibitor binding to the regulatory active site or hinge region, regulatory spine
activates either the dynamical movement of catalytic loop or catalytic spine to initiate the catalysis
process with help of cofactor ATP. As a consequence, both the spines are well coordinated in the case of
inhibitor bound to both active and inactive states to trigger apoptosis in malignant cells.

3.3.3. Confirmation of the existence of active states in ATP and active/inactive states in
cabozantinib bound TAM Kkinases

A kinase domain can switch from active to inactive states and vice-versa due to either inhibitor binding,
or influence of the regulatory spine and catalytic spine during MD simulations at longer timescales.
Noticeable changes were observed in the spatial conformational stateswith inhibitor binding at the active
site of the TAM RTKs. However, the specified regions of spatial orientations are not directly observable
from the conventional RMSD plots. The inhibitor bound AxI kinase activation takes place in the transition
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from active to inactive kinetic models. Therefore, these states coexist with broken regulatory spine in the
active and inactive metastable states at the specified timescales of MD simulations. In addition, the
RMSD of Axl differentiates due to the coexistence of active-inactive states throughout 1 ps timescales
(Figure 3.3A). The RMSD of specific loops in Axl is observed at higher square fluctuations occurring at
the loop connecting f4-B5 strands (Glu609-Pro614), oC-helix and activation loop. It is evident from the
RMSF plots that cabozantinib drug binding influences the inactive state of Axl and Mer kinases more
than their active states (Figure 3.4). When cabozantinib binds the kinetically metastable states of TAM
RTKSs, it arrests the mechanism of kinase activity by inhibiting the up-regulation of its enzymatic activity.
Regulatory spine is broken in inhibitor bound active state of Axl and Mer but it is intact in apo and
cofactor (ATP) bound kinases. The active kinetic states of TAM kinase bound ATP at hinge regions
shows Lys-Glu salt bridge distance retained within 4.0 A range throughout 1 ps MD simulations. This
indicates that the ATP bound active TAM kinases retain their active state throughout the MD simulations.
While only the cabozantinib bound active state of Axl has the salt bridge distance between P-loop and
aC-helix, the Mer and Tyro3 kinases have longer distances (>7.5 A) due to the core expansion of
activation loop region. In the case of inactive states of Axl, Mer and Tyro3 kinases these distances
drastically increase beyond 12.5 A. This signifies that the Axl and Mer RTK kinetic models have well
distinguished proportions of active and inactive states, while Tyro3 has similar ratios of active and
inactive intermediate states (average 12.5 A salt bridge distance between (P-loop) Lys and Glu (aC-helix)
in Tyro3 active and inactive). The salt bridge distance between aC-helix Asp/Glu and Lys in activation
loop of ATP bound states in Axl and Mer (< 5.0 A) and Tyro3 (5.0 A) indicates highly dynamical
structure than among all active and inactive states. These salt bridge distance analyses clearly
differentiate cofactor (ATP) and inhibitor (cabozantinib) bound kinase domains at active site and
active/inactive states, respectively (Figure 3.5 A, B, C, D). The inhibitor bound active/inactive kinase
states are highly dynamical in nature than cofactor bound kinase states, therefore the inhibitor bound
kinases might trigger apoptotic signaling pathways leading to inhibition. Based upon individual RMSD
plots of the regulatory spine and activation loop (Figure 3.3B, 3.3C), it can be seen that cabozantinib
binding influences the activation loop and hydrophobic spine in individual kinetic states. A specific
spatial conformational variation in RTKs occurs only in the activation loop and regulatory spine. The
active and inactive forms of apo and active ATP bound conformers of TAM kinases appeared to have
intact regulatory spine. This could lead to the normal signal transduction process while the regular ligands
[GAS-6 and Prosl] bind to the extracellular regions of TAM RTKSs.
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Figure 3.5) Distance plots between side chains of Lys P-loop - Asp aC-helix pairs in apo, ATP and TAM-
cabozantinib bound active and inactive kinase domain from 1 ps MD simulations. Axl (K567 — E585);
Tyro3 (K552 — E570); Mer (K612 — E630);

(A) ATP bound; (B) Active inhibitor bound; (C) Inactive inhibitor bound; (D) Apo state
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The analysis of salt bridge distance between the activation loop and aC-helix reveals the hidden
conformers among the apo, ATP and inhibitor bound TAM kinases. The salt bridge interaction in the apo
kinase is retained within a reasonable distance between the aC-helix and activation loop residues Asp581-
Lys695 (3.99 A, Axl) or Glu626- Lys739 (3.86 A, Mer) or Glu566-Arg680 (3.44 A, Tyro3). The salt
bridge distance between Asp/Glu (aC-helix) - Lys/Arg (activation loop) in cabozantinib bound active
states increases in Axl and Mer RTKSs due to the expanded core in the inhibitor binding site in RTKSs
(Tyro3-3.16 A; AxI-13.92 A; Mer-10.28 A), but in the inactive states of TAM RTKs salt bridge distance
between aC-helix and activation loop is lower for Axl RTK (Tyro3-6.82 A; AxI-2.83 A; Mer-8.83 A).
These salt bridge distances provide support to the stationary state distribution in apo TAM RTKSs. These
salt bridge distances in the ATP bound TAM kinases is observed to be greater than 5 A (Tyro3-7 A; AxI-
10.0 A; Mer-12.0 A).

The salt bridge is retained in the apo form, active states of Tyro3 and inactive states of Axl. The salt
bridge distance analysis provides a clear evidence that the kinases coexist in active and inactive state
models while binding with inhibitor at the active site. The large distance across the regulatory site of
kinase active states occurred due to a -sheet formation in the activation loop and inward rotation of a.C-
helix. This causes the extended nature of regulatory active site between aC-helix and activation loop.
The inactive state models have aC-helix outward rotation and activation loop undergoes shift to helical
structure to minimize the active space across aC-helix and C-lobe in the RTKs. These results provide
further support to regulatory spine analysis. But most of the active states in Axl and Mer forms have
broken regulatory spine between oC-helix and activation loop therefore the distance between these
domains is extended and the salt bridge interaction is disturbed due to the increased distances between
Asp/Glu (aC-helix) - Lys (activation loop). In the inactive state of TAM RTKs, the regulatory spine is
reinstated due to the bound inhibitor at the hinge region of kinase and expansion of space between P -loop
and aC-helix. In overview, in the cabozantinib bound TAM kinases, the salt bridge distance is higher in
active states than inactive states, as the distance of salt bridges Asp/Glu (aC-helix) - Lys/Arg (activation

loop) in the active states are above 10 A, the inactive states have below 10 A.

3.3.4. Post-MD data analysis of TAM RTK kinase domain

The preliminary MD simulations data acquired from AMBER trajectories were analyzed to ensure that
kinetically active and inactive states were investigated with the help of PCA. PCA analysis was carried
out on 1K conformer samples of trajectories out of 40K for clear visualization of data points from kinetic
transition states in the active to inactive kinases. The histogram showed that the random distribution of
kinase state trajectories data was extrapolated as training and test sets of individual components validated
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with shuffle-split cross-validation in PCA plot. All apo and inhibitor bound forms of TAM RTKSs have
random distribution of states that are very unique in nature from the respective scatter plots of kinase
trajectory analysis. This is a preliminary analysis to propose the hidden dynamic states existing in longer
timescale MD simulations and trajectory data of kinases.

The metastable kinetic models were built based upon advanced trajectory data analysis using python
based scripts. All TAM trajectories data was sampled into vectorized and clustering was done using
Keras-state algorithm for MSM model generation (Prinz et al., 2011, Schwantes and Pande, 2013,
Harrigan et al., 2017). The MSM data of TAM kinases was bootstrapped from 1 ps of trajectory data to
generate HMMs to reveal the unfolding and refolding of the activation loop from active state to inactive
states. The metastable trajectories are well converged as shown by VAMP score. Discrete clustering of
protein backbone state distribution featurisation was performed to show distinct kinetic stable states in
all TAM kinases. All HMM states are key intermediate conformers to describe the kinase inhibitory
activity when bound to cabozantinib. As per the analysis of metastable kinetic state forms, higher
numbers of active state models are present in Axl and Mer than the number of kinetic transitions states
of inactive forms. However, the Tyro3 has approximately similar numbers of kinetic state models in their
respective active and inactive states which are included in state distribution plots. The MFPT error bars
were validated with Bayesian HMM model validation with lag time of 50 states. From these analyses it
is inferred that Tyro3 RTK kinase domain states have combined and coexisted metastable state transitions
among the active and inactive forms rather than the dominance of either the active or inactive kinetic
states as observed in Mer and Axl RTKs. Therefore, the Tyro3 has more intermediate states than AxI and
Mer. The MFPT values of Tyro3 indicate that activation and deactivation occur in equal ratio below 100
ns; whereas the Axl and Mer have different activation timescales (after 200 ns) and their deactivation
takes place around 100 ns timescales; The influence of these major changes in the kinase domain is due
to the conversion of active to inactive states through kinetic transition metastable equilibrium states.

In the inhibitor bound form of TAM kinases, greater state distribution models coexist in the active forms
than in the inactive forms. The drug bound to kinase active state influences the kinetic signaling pathways
more rather than the inactive state (Roskoski, 2015, Taylor and Kornev, 2011, Sultan etal., 2018, Shukla
et al., 2014). Therefore, the active state kinase bound to inhibitor is more susceptible to arrest the
dysregulated kinase activity (shown by the broken regulatory spine) in all kinetic HMM states. These
observations provide key insights to describe that the kinase activity can be arrested through active state
models of inhibitor bound RTK, where regulatory spine breaks in between activation loop and aC-helix
in the active states (Robinson, 2013, Parsons and Parsons, 2004, Bowman and Pande, 2010). The
hydrophobic surface regulatory spine is retained in the apo form of all the three TAM kinases. The
regulatory spine is retained in the cabozantinib bound Tyro3 RTK in the active and inactive states, due
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to the increased distance between P-loop and aC-helix. This retaining of regulatory spine in Tyro3 RTKs
indirectly influences the number of active and inactive state distribution in equal proportions. In the
inactive Axl and Mer RTKSs, intact regulatory spine is observed due to increase in the distance between
the P-loop and aC-helix, whereas in the active Axl and Mer RTKSs, regulatory spine fragmentation occurs
between aC-helix and activation loop, due to the lower distance between P-loop and oC-helix. These
observations are shown in Figures 3.2 (A - C). The discrete clustering of MSM estimation and validation
was done with reversible estimation equilibrium transition probabilities. The discrete kinetic state models
were further validated by analysis of hidden markov kinetic models. The implied relaxation timescales
are extracted to validate the HMM in order to ensure the conditional transition probabilities among 250
microstates. Therefore the implied timescale analyses indicated that the kinetic state distribution occurred
within time intervals of a few nanoseconds range among 1 ps MD simulations timescale.

The Mer active states have longer MD kinetic relaxation timescales among the active MSM kinetic forms
of TAM RTKs. The inactive Axl kinetic state models have higher relaxation timescales within short
range of time intervals. The critical observation from all TAM apo and inhibitor bound active and
inactive kinetic states implied from timescale plots, with 4.5 ns timescale separation as the average
implied relaxation timescale among all. The Tyro3 apo has more relaxation time intervals than the rest
of kinase systems. The kinetic relaxation time intervals revealed that the inhibitor bound TAM RTKs
showed kinetic metastable state transitions due to various periodic time laps even though all TAM RTKSs
are bound with same inhibitor (cabozantinib).

The MSMs of the members from same class of protein kinase complexes (TAM kinases bound to
cabozantinib) is expressed as different relaxation timescale intervals obtained from the MD simulations.
The free energy and stationary state distribution of apo Axl is higher than Tyro3 and Mer. From the Table
3.1, it is inferred that there are unique kinetic Markov state models existing among them. These are
classified as “kinetic non-equilibrium transition state models” (Tyro3 apo, Mer active, Axl inactive). This
is further discussed in kinetic transition analysis. The lowest free energy and equal stationary distribution
exist in stable kinetic model states of TAM kinases (Axl-active, Mer-inactive). The kinetic transition
states between Axl active and Mer inactive has higher free energy and approximately equal stationary
distribution values (Tyro3 active/inactive) and are classified as “kinetic equilibrium transition state
models”. As per the state distribution difference between active-inactive states of Axl inactive HMM has
half (1/2) of the stationary distribution of Axl active (more active state distribution). The inactive Mer
has % of the state distribution of active Mer RTK. The Tyro3 has equal contribution in active and inactive
stationary distributions among kinetic HMM states. The surface free energy of Axl has same energy
values in the active and inactive states (~4.0 kcal/kT per 5 states-Axl) but Tyro3 and Mer have 0.5 kcal
and 1.2 kcal, respectively per five MSM states energy difference between the active and inactive hidden

88



Markov states. Each hidden MSM state contains five metastable kinetic conformers from sampling of

40K conformers to study the MSM validation.

Kinetic
metastable
states

Kinases types

AxI

Mer

Tyro3

STATES

G/KT
(kcal per
HMM
state)

G/KT
(kcal per
HMM
state)

G/KT
(kcal per
HMM
state)

Active

g A~ W N

0.080859
0.000000
0.328240
0.206730
0.384171

2.515052
inf
1.114010
1.576340
0.956668

0.072653
0.095574
0.271887
0.286168
0.273718

2.622066
2.347855
1.302367
1.251176
1.295657

0.000000
0.210675
0.094495
0.343637
0.351193

inf
1.557439
2.359208
1.068168
1.046420

Transition
states

S4-S5

S2-S4

S4-S5

STATES

T

G/KT

T

G/KT

T

G/KT

Inactive

g A~ W N

0.128210
0.262320
0.138915
0.171230
0.299324

2.054082
1.338189
1.973891
1.764746
1.206230

0.032751
0.037707
0.260523
0.151968
0.517051

3.418814
3.277907
1.345064
1.884087
0.659614

0.030226
0.058256
0.132997
0.255189
0.523331

3.499054
2.842902
2.017429
1.365750
0.647540

Transition
states

S2-S5

S4-S5

S4-S5

STATES

T

G/KT

T

G/KT

T

G/IKT

Apo

1

g B~ W N

0.008222
0.052043
0.080056
0.165858
0.693821

4.800930
2.955685
2.525032
1.796625
0.365541

0.081258
0.239732
0.131020
0.228406
0.319583

2.510125
1.428232
2.032406
1.476629
1.140738

0.078556
0.083054
0.139106
0.293660
0.405625

2.543949
2.488261
1.972522
1.225334
0.902326

Transition
states

S4-S5

S4-S5

S3-S5

Table 3.1) Tyro3, Axl and Mer kinetic transition states analysis with specified free energy of nine

HMM states. Red color indicates metastable kinetic equilibrium transitions states.

Blue color indicates metastable kinetic non-equilibrium transitions states
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3.3.5. Kinetic transition state analysis

The estimated five state kinetic metastable models were designed based upon active space distribution of
HMMs in TAM RTK kinase domains. All the five metastable state transitions occurred based upon
kinetic transition energy (Weinan and Eijnden, 2010, Salvalaglio et al., 2014, Metzner et al., 2009)
(Table-3.1). The apo Axl has higher transition energy (4.8 kcal), inactive Mer (3.4 kcal) and inactive
Tyro3 (3.5 kcal). Out of the nine kinetic states, six Kinetic transition states are represented as metastable
kinetic equilibrium transition states as these kinetic transitions occurred in S;-Ss states. The metastable
kinetic non-equilibrium transitions exist in various types of kinetic metastable states (Tyro3 apo — S3-Ss;
Mer-active- S,-Ss; AxI inactive- S,-S4) from the nine metastable transition states (Figure 3.6 A, B, C).
All non-equilibrium Kinetic transitions occur with a very low transition energy (2-2.6 kcal). These hidden
states are classified based upon kinetic transition energy and state transitions. All the metastable kinetic
equilibrium transitions occurred with a high energy (2.3-4.8 kcal). As per the individual TAM RTK, the
AxI apo kinase has higher kinetic transition energy among all TAM RTKs in the apo and inhibitor bound
active and inactive forms. The next higher kinetic transition energy exists for Mer and Tyro3 inactive
forms. It is evident that all inhibitor bound RTKSs exhibit different kinetic metastable states in the
overexpressed RTKs during the protein function. According to approximate difference in transition
probability of active to inactive metastable kinetic states in Tyro3, Axl, and Mer RTKs, for Tyro3, 1st
MSM state has higher transition probability difference (50 %), for Axl and Mer RTKs, 24 MSM states
have higher transition probability difference. The transition of kinase active state to inactive state can be
explained based upon kinetic metastable states of these specified MSM conformer analysis (Husic and
Pande 2018). From the Figure 3.7, it can be seen that the stationary state distributions in Axl active are
doubled when compared to Tyro3 active, and Mer inactive states has only 4/3 proportion. Therefore, Ax|
active RTK has more active stationary states. The relative transition state probability is explained on the
basis of salient feature analysis in hidden Markov kinetic states. These could be key intermediate
structures among subfamily of TAM RTK kinase domains. However, these protein kinases driven from
active to inactive states expressed significant structural changes upon binding with inhibitor. The active
state of AxI kinase consists of activation loop that transits from p-sheet to a-helical structure in the
inactive state (Figure 3.7A and B). Mer RTK shows high structural changes in the activation loop which
converts from loop (active) to helical (inactive) in their respective state transitions (2-2 transition
probability), while Tyro3 does not have any significant change in the MSM kinetic states (Figure 3.8A
and 3.8B).
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Figure 3.6) Kinetic metastable five states estimation and kinetic metastable transition
state analysis of metastable kinetic non-equilibrium transitions states Tyro3 apo and
cabozantinib bound Mer-active and Axl-inactive states of RTK from 1 ps MD
simulations.

(3.6A) Stationary states and reweighed free surface energy of non-equilibrium
transitions states

(3.6B) MSM five states estimation and kinetic transition states;

(3.6C) Specific states distance between side chains of Asp/Glu-aC-helix —
Lys/Arg-activation loop pairs in Tyro3 apo and cabozantinib bound

Mer-active and Axl-inactive; (I) Tyro3 apo; (II) Mer active; (III) AxI inactive.
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Figure 3.7A) Schematic view of three kinetic equilibrium metastable states among

HMM states involved in allosteric activation and deactivation from active to inactive
states in RTKs.
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3.3.6. Mechanistic strategy of TAM RTKSs activation when complexed with cabozantinib

The dynamical movement of the regulatory and catalytic spine residues are a result of the coordinated
alterations in the kinase structural domain during the cellular signal transduction process. The selective
kinase inhibitor (cabozantinib) arreststhe activity of these overexpressed kinase domains via the dynamic
movement of both these spines and distancing the space between aC-helix and activation loop. This can
be supported from the results of distance plots shown in the active states of Tyro3, Axl and Mer that have
undergone large expansion of protein core between aC-helix- activation loop in regulatory active site.
Therefore, the kinase activation is carried out by the active state modes. The five metastable states from
Chapman-Kolmogorov test described transition probability from 40K frames of dynamic kinetic
metastable states for each of the protein complex trajectories, was obtained from AMBER MD data with
95% confidence level. Combining all these transitions probabilities with transition states and assigning
five sampled metastable states could provide good insights and predict long lived transition states in the
MD simulations trajectories with Perron-cluster cluster analysis (PCCA++) clustering algorithm (Scherer
etal., 2015, Schwantes and Pande, 2013, Harrigan etal., 2017, Perez-Hernandez etal., 2013). The RTKs
are involved in signal transduction process in which dysregulated kinase is inhibited such that the cells
initiate programmed cell death with the help other proteases belonging to the caspase enzyme (Kim, et
al., 2017). The regulated and dysregulated kinases can be distinguished with help of regulatory spine
(Leu-600 {B4-sheet P-loop}; Met-589 {aC-helix}; Phe-691 {DFG- activation loop}; His-670 {catalytic
loop}) closed and open conformers of apo, ATP and inhibitor bound TAM RTKSs, respectively, due to
significant conformational changes. A regulated kinase has closed and continuous regulatory spine in
both active apo and ATP bound form in RTKs. The hydrophobic surface is in a closed manner and
continuous in apo and ATP bound form of active Tyro3, Axl and Mer RTKSs. This space has expanded
in the case of active states of normal physiological kinase mechanism. This is achieved based upon
activation loop refolded into B-sheetand n-stacking with B-sheet structure of the catalytic loop in active
state model (observed in Axl). But inhibitor bound dysregulated kinase experiences large conformational
deformations in their regular structures due to the influence in certain parts of RTKs with overwhelmed
hidden dynamic states to trigger kinase domain equilibration between active and inactive states. Indeed,
the drug (cabozantinib) bound at RTKSs active site, triggers the activation loop folding into either B-sheet
(AxI active-state) or aC-helix (Mer inactive-state) (Figure 3.7A). These kinetic metastable states have
transition from active to inactive states through intermediate structure (transition-state) and vice-versa
(Weinan and Vanden-Eijnden, 2010, Metzner etal., 2009, Noe and Clementi, 2015). The dynamic states
would proceed through mechanistic pathways to initiate signaling process as expanding or compressing
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of the activation loop, outward/inward rotation of aC-helix and extended movements in the P-loop. It can
be seen that the active site cavity is enhanced in the presence of inhibitor bound active state that has
broken regulatory spine obtained by moving apart the Glu residue on aC-helix and Phe residue in DFG
motif associated with the activation loop. The uncertainty of migrated residues could be withheld in a
particular state of kinase domain vertically from N-lobe towards C-lobe. The regulatory spine is broken
in the active state only in situ with all four residues moving away from the broken hydrophobic surface
between aC-helix bound Met-589 and DFG motif bound Phe-691 due to the extend space of activation
loop and inward rotation of aC-helix. Inactive state model kinase consists B4-strand bound Leu-600 and
aC-helix bound Met-589 in situ regulatory spine intact in a continuous manner due to the outward rotation
of aC-helix and the activation loop has recoiled into aC-helix where DFG motif and aC-helix moves

away from the P-loop of B-sheet (Figure 3.7B).

S

Tyro3 Active Tyro3 Inactive

Figure 3.7B) Three kinetic equilibrium transition states have catalytic and regulatory spine
mechanism while bound to cabozantinib in different states of TAM RTK kinase domain from
I us MD simulations.
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Figure 3.8) The selective kinetic equilibrium transition state models among nine hidden
Markov state models of TAM RTKs.

(3.8A) Stationary distribution and free energy surface analysis of three kinetic
equilibrium transition state models. (i) Axl-active; (i) Tyro3-active; (iii) Mer-inactive.
(3.8B) Kinetic metastable five states estimation and Kinetic metastable transition state
analysis three kinetic equilibrium transition state pairs. [All kinetic TS: S4-Ss].
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From the PCA, it is revealed that all TAM kinase domains have random distribution of states. The
analysis of metastable kinetic states revealed higher numbers of active state models in Axl and Mer kinase
domain than the number of kinetic transition states of inactive forms, however Tyro3 kinase domain has
similar numbers of coexisted metastable state transitions among the active and inactive forms. The MSMs
(Husic and Pande, 2018) of the TAM kinases is expressed as different relaxation timescale intervals. The
Tyro3 apo, Axl inactive and Mer active have higher relaxation timescales. The Tyro3 has equal
contribution in active and inactive stationary distributions among kinetic HMM states. The five state
kinetic metastable models were designed on the basis of active space distribution of HMMs of TAM
RTKs. The apo Axl, inactive Mer and inactive Tyro3 have higher transition energies. These kinetic
states are further validated with five MSM systems to emphasize the hidden markov dynamic state
analysis. Among the nine kinetic metastable states, three HMM states are classified as “non-equilibrium
kinetic transition states” (Figure 3.6) (Tyro3-apo Ss-Ss, Axl-inactive S,-Ss and Mer-active S,-S,) due to
different kinetic transitions occurring among them (Table-3.1). The rest of the six HMM states undergo
S4-Ss kinetic transitions among five state model system mentioned as “equilibrium kinetic transition
states” (Figure 3.8). The activation loop undergoes B-sheet formation in the case of active Axl and aC-
helix formation in the case Mer inactive state during S,-Ss kinetic transitions. In the case of Tyro3 active
and inactive states, the activation loop remains in a random loop conformation. The TAM receptor
tyrosine kinase bound with ATP as active state mode to facilitate phosphorylation of substrate (tyrosine
amino acid). But the inhibitor (cabozantinib) bound to TAM RTKSs active and inactive mode states. This
result describes that the effective inhibitor bound the active receptor tyrosine kinase to arrest the substrate
bound state of kinase domain to effectively block overexpressed TAM RTK’s. The inactive state kinase
bound inhibitor could arrest the change of protein conformations in signal transduction process to initiate
the effective apoptotic signals to nullify the any malignant protein bound inhibitor state by immune cells.
Therefore, the kinase bound specific states are very crucial to understand the RTKSs involved in various
types of cancers. In summary, salient changes in the spatial conformational statesdue to inhibitor binding
to the active site during MD simulations in various regions of Tyro3, Axland Mer kinases were observed.
From these research findings, the kinetic active and inactive state mechanisms could explain how
cabozantinib arrests the overexpressed TAM RTKs in malignant cells, a key step to inhibit the kinase

signaling pathway in cellular signaling process.

98



3.4. Conclusions

From one ps MD simulations each of apo, ATP, cabozantinib bound active and inactive TAM kinases,
metastable active and inactive conformational states are revealed. The oC-helix region is highly
distinguished and its conformational flexibility is complementary to the activation loop. The dynamical
movement of the overall regulatory and catalytic spines consisting hydrophobic residues coordinated in
kinase internal domain initiate cellular signal transduction process. The regulatory spine is intact and
vertically aligned in ATP bound TAM Kkinases that continue to remain in the active conformation.
However, it is broken in cabozantinib bound active and inactive TAM kinases due to the expansion of
protein core arising from fluctuations in P-loop, aC-helix and activation loop. The selective TAM kinase
inhibitor  (cabozantinib) arrests the overexpression of kinase domains via blockage of dynamical
movement of both these spines by undergoing a fragmentation of hydrophobic surface at binding site
between aC-helix and activation loop (shown in Figure 3.2). The RTKSs bind inhibitor in two different
conformations, as active and inactive states, (K567 P-loop-aC-helix E-584 inward/outward rotations in
the case of Axl). The kinase activation is in the active state mode, as the distance plots show the active
states of Tyro3, Axl and Mer have large core expansion between aC-helix- activation loop in regulatory
active site (Figure 3.5). The cabozantinib binding stabilised the hidden Markov state structures of active
and inactive Axl, whereas the hidden Markov state conformations from the three Mer structures are
closely associated with each other. From PCA, it is revealed that all TAM RTK kinase domains have
random distribution of states. The analysis of metastable kinetic state forms revealed higher numbers of
active state models in Axl and Mer RTKSs than the number of kinetic transition states of inactive forms,
however Tyro3 RTK has similar numbers of coexisted metastable state transitions among the active and
inactive forms. The MSMs of the TAM kinases is expressed as different relaxation timescale intervals.
Three HMM states are classified as non-equilibrium kinetic transition states (Tyro3-apo S3-Ss, AxI-
inactive S,-Ss and Mer-active S;-S,) due to different kinetic transitions among the nine kinetic metastable
states (Table-3.1). In the presence of inhibitor, kinase domain proceeds as inactive state to block
transduction of cellular mechanistic signal pathways in cancer therapy. The one ps MD simulations each
of apo, ATP and cabozantinib inhibitor bound active and inactive TAM kinases describes the abnormal

activation and overexpression of RTKs resulting in several forms of cancers and inhibition.
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Chapter -4

In silico design, modelling and molecular mechanisms of AxI receptor
tyrosine kinase inhibitors
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Abstract

The RTKSs are class of cell surface plasma membrane bound protein kinases. Kinase domain regulates
multicellular communications among many immunological and regular cellular metabolic activities.
However, some of the malignant cells have upregulated and overexpressed RTKs which are responsible
for angiogenesis in many metastatic cancers. Axl RTK is one member of the RTK group and it is present
in most of the eukaryotic cells. All metastatic cancer cells have overexpressed Axl tyrosine kinase to
trigger uncontrolled growth and angiogenesis in the malignant cells. The upregulated kinases can be
inhibited in its active and inactive states in the presence of small organic molecule inhibitors. Kinase
inhibitors have been discovered to arrest the signal transduction pathways in the malignant cells as a
therapy and cure for cancer. In this chapter, small molecule databases were screened using the
pharmacophore features of macrocyclic inhibitor (7'YS) taken as reference from the crystal structure of
AXxI kinase domain. Pharmacophore based virtual screening of small molecule libraries (CHEMBL32,
ChemDiv, Chemspace, Mcule, MolProt, PubChem and Zinc), followed by molecular docking, MD
simulations and trajectory analysis using PCA was studied. The molecular basis for the binding of
macrocyclic inhibitor and seven screened hit molecules bound at Axl kinase domain in two different
modes at catalytic and regulatory sites was analysed. The specific selective inhibition of the Axl RTK by

small molecules inhibitors will be the future direction study.
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4.1. Introduction

TAM RTKSs are activated by Gas-6, Pros1 and EGF extracellular factors. It has been proposed that TAM
kinases are emerging as a class of innate immune checkpoints that participate in key steps of anti-tumoral
immunity (Akalu, Rothlin, & Ghosh, 2017). TAM RTKs are also reported to play crucial roles in disease
conditions such as acute myeloid leukaemia, breast, colorectal, lung, ovarian cancers and glioblastoma
(Rankin, & Giaccia, 2016; Knubel et al., 2014). Since TAMs are overexpressed in many oncogenic cells,
some previously reported kinase inhibitors are experimentally validated as TAM RTK inhibitors (Wu et
al., 2017; Wu et al., 2018). AXL RTK is proposed as a promising drug target for anti-cancer therapy
(Zhu, Wei, & Wei, 2019). Despite the huge potential of TAM kinases as drug targets, fewer attempts
have been made towards the design specific inhibitors to these proteins. Inhibitors validated on other
kinases have been tested for their activity on Axl kinase. For example, cabozantinib, a c-MET and
vascular EGFR kinase inhibitor was also shown to inhibit Axl kinase with 7 nM inhibition (Tridente et
al., 2017). Cabozantinib has been approved by FDA for differentiated thyroid cancer in September 2021.
“BMS-777607”, also a MET inhibitor was shown to be more active on Axl kinase (Dai, Bae, Pampo, &
Siemann., 2012). Studies on some AxI specific inhibitors such as SGI-7079, TP-0903, BGB324, DP3975
and NA8O0xI are in progress. From ligand-based pharmacophore screening and MD simulations studies
AXxI kinase domain inhibitors are reported (Nagamalla et al., 2022). Considering the importance of AxI
kinase as an anti-cancer drug target, computational methods have been employed to design its inhibitors
using pharmacophore-based virtual screening of large chemical libraries and molecular docking. Some
of these molecules are confirmed as probable hit molecules using MD simulations and post-MD data

analyses.

4.2. Materials and methods
Protein structure and binding site:

The 3D protein structure of Axl kinase domain binding with a macrocyclic inhibitor at the hinge region,
present in inactive state (PDB ID: 5U6B) A chain) was considered for the computational studies. The
missing residues were constructed as discussed in chapter 2.

4.2.1. Pharmacophore featured virtual screening of chemical libraries against Axl kinase domain

Based on macrocyclic inhibitor (7YS) binding position to the Axl kinase domain, “Pharmit”
(http://pharmit.csb.pitt.edu) (Sunseri et al., 2016), a pharmacophore generating online webserver was
used to generate the best pharmacophore for the design of hit molecules binding to AxI kinase domain.
The possible features available in the Pharmit server are hydrogen bond donor, hydrogen bond acceptor,
hydrophobic and ring aromatic. The selection of pharmacophore features was based on the
complementarity of Axl kinase — 7YS complex. The databases available in the Pharmit server were used

for pharmacophore based virtual screening. It screened libraries of millions of compounds based upon
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best pharmacophore and molecular shape modalities with advanced pre-built structural screening
algorithms through the online webserver. Finally, it provides comprehensive query optimized hit
molecules with online platform for structure based virtual screening method. The molecules obtained
based on lower RMSD and fewer rotatable bonds were selected. An in-house database of the downloaded
molecules was prepared after adding hydrogens and their structure refinement using Discovery Studio
3.5. The identified molecules were passed through the virtual screening protocol using PyRx (Dallakyan
et al., 2015) by docking the molecules into the binding site of 7YS in 5U6B A chain. The screened-in
molecules above a certain binding energy were selected for molecular docking studies.

4.2.2. Molecular docking of macromolecule (7YS) and screened-in molecules

The screened-in hit molecules were docked into the macrocyclic inhibitor and ATP binding pocket of the
inactive state of Axl RTK using AutoDock tools (Morris et al., 2009). The macrocyclic inhibitor was
initially docked to validate the docking methodology. A grid box was set up within 5 A space around
inhibitor binding that encompasses active site residues of Axl kinase and 50 docking poses were selected
for each docked molecule. A grid box with the dimensions of X: 50.960, Y: 55.553, Z: 45.935, with a
grid spacing of 0.508 A was used. The docked pose of molecules with best fitting and better binding
energy were selected for 250 ns MD simulations to confirm the binding pose in the kinase active site and
to decipher the molecular basis for interactions with Axl kinase domain.

4.2.3. ADME data analysis of seven hit molecules

The pharmacokinetic properties like, absorption, distribution, metabolism and excretion (ADME) of the
hit molecules were assessed with SwissADME (Daina, Michielin, & Zoete., 2017) web-based server tool
(http://www.swissadme.ch). The drug-likeness properties are represented in the form of TPSA, consensus
Log Pow, LogS (ESOL), LogKp (skin permeation) (cm/s), synthetic accessibility were also calculated
(Daina, Michielin, & Zoete., 2014, Ertl, Rohde, & Selzer., 2000, Potts, & Guy., 1992).

4.2.4. Molecular dynamics simulations

All MD simulations were achieved using AMBER (Gotz, et al., 2012) version 18.14 for the seven
screened hit molecules and macrocyclic inhibitor bound to Axl kinase domain. The best docking pose of
each complex was utilized as input for MD simulations. The force fields for the entire systems were
generated with Antechamber using amlbcc method (Wang et al., 2006, Colovos and Yeates, 1993). The
input parameter files for MD simulations were generated after adding hydrogen atoms in tLEaP module
in AMBER tools (Anandakrishnan, Aguilar and Onufriev., 2012, Lindorff-Larsen et al., 2010). Sodium
and chloride ions were added to the systems to neutralize the charge, each molecular system was solvated
within an 8 A size cubic box. The final ionic concentration for the systems was set to 100 mM. The
Amberff99sb-ILDN force field was used for entire model system with TIP3P water model for AMBER
molecular parameters (Meagher et al., 2003, Mark and Nilsson, 2001), temperature was set to 300 K and
1 atm pressure with Monte Carlo barostat (Salomon-Ferrer et al., 2013). Energy minimization was carried
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out by using steepest descent method for 40,000 cycles to overcome short range null contacts among the
molecular system in solvent (Darden et al., 1993). Long range electrostatic interactions were considered
with Particle Mesh Ewald algorithm (Jorgensen et al., 1983) with cut-off range 9 A and order 4. All model
systems were equilibrated for 7 ns before the production run, and the coordinates in the production run
were saved after every 10 ps (Salomon-Ferrer et al., 2013, McGibbon et al., 2015). The MD simulations
of each molecular system was carried out for 250 ns. Axl kinase in complex with ATP was also studied

for comparison.
4.2.5. MD simulations data analysis

The AMBER MD trajectory data analysis was carried out using cpptraj with Amber tools 18 (Hornak et
al., 2006). The average structures after MD simulations, RMSD, RMSF and specific regions were
analysed with parmed and cpptraj module in AMBER18 tools. MM-GBSA and MM-PBSA calculations
were carried out on 2.5k conformers from 25k frames of 250 ns MD simulations data in AMBER
MMPBSA.py module. It is an efficient and user accessible end-state free energy calculating algorithm
which are inbuilt in AMBER18 tools. The end-state implicit solvent model free energy calculations are
divided to include Generalized-Born (GB) and Poisson-Boltzmann (PB). The free energy calculations
were done with single trajectory protocol by considering 2.5k frames from MD simulations of the bound
and unbound states between receptor and ligand complexes (Miller et al, 2012 and Wang et al, 2017).

4.2.6. Principal component analysis

PCA is an efficient multivariate statistical technique to extract the conformational changes in a protein
with respect to time. This method reduces the number of dimensions in a systematic manner therefore,
motions from largest to smallest spatial scales can be observed. The large scale motions mask the small
scale motions due to their greater atomic displacements. However, the structural dynamics of biological
relevance are calculated as PCA modes for a small number of motions with large amplitudes. A
covariance matrix is constructed from the Cartesian coordinates of the trajectory conformations where
the eigenvalue decomposition of the covariance matrix leads to a complete set of orthogonal collective
modes (eigenvectors). Therefore, each eigenvalue contributes to a small portion of the motion. These
eigenvalues were obtained by the diagonalization of the covariance matrix to the Co atomic fluctuations
and it follows the decreasing order of the corresponding eigenvector indices. The square matrices were
diagonalized into secular equations to generate eigenvalues and corresponding eigenvectors. These
eigenvectors are the best principal components associated with the respective eigenvalues (Yang, Eyal,
Bahar, & Kitao, 2009).

4.3. Results and discussions

In the crystal structure of Axl kinase (5U6B), Asp585 side chain is pointing inwards and makes ionic

interaction with Lys567 in the B chain, that is indicative of a kinase in an active state. Whereas, the
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Asp585 side chain is pointing outwards and therefore does not make ionic interactions with Lys567 in
the A chain that is indicative of an inactive state. In both the chains, Phe691 aromatic side chain is facing
inwards into the hydrophobic cavity formed by the side chains of amino acids Met589, Phe592, Met598,
Phe668, Leu663, VVal597 and Val688. The crystal structure of Axl kinase in the inactive state (5U6B, A
chain) was selected for computational studies. The macrocyclic inhibitor, 7YS makes hydrogen bonds
with the protein. The main chain NH of Met623 forms hydrogen bond with the pyrazine nitrogen, the
Asp627 NH and the side chain carboxylate group form hydrogen bond with the terminal OH group of
7YS. Pro621 acts as a hydrogen bond acceptor with primary amine on the pyrazine. The regulatory spine
consisting of four non-consecutive hydrophobic amino acid residues; Leu600 (Bs-strand); Met589 (a-
helix); Phe691 (DFG motif); His670 (catalytic loop) and an additional residue Asp731 from the C-
terminal lobe align vertically from N - terminus to the C —terminus.

4.3.1. Pharmacophore model generation for virtual screening

Based on the binding of macrocyclic inhibitor- 7YS, the best pharmacophore was generated. Hydrogen
bond donor, hydrogen bond acceptor and aromatic features were selected as pharmacophore features. The
four hydrogen bonds and three aromatic rings on pyrazine, phenyl and pyrazole were considered as
pharmacophore features on 7YS. These features truly represent the biological features required for the
complementarity between the Axl kinase and potential inhibitors. Among the molecules obtained from
pharmacophore-based screening of databases, the molecules that display lower than 0.7 A RMSD and
fewer than 6 rotatable bonds were selected. The virtual screening of CHEMBL32 small molecule database
identified (2,186,411 molecules having 28,970,382 conformations identified hits 75 hits), ChemDiv
(1,456,120; 21,462,597 and 9 hits), Chemspace (50,181,678; 250, 205, 463 and 3 hits), Mcule (45, 257,
086; 223,460,579 and 15 hits), MolProt (4,843,718; 67,033, 884 and 27 hits), PubChem (103,302,052;
499,442,812 and 1,199 hits) and Zinc (13,127,550; 122,276,899 and 65 hits). The selected molecules
were proceeded for virtual screening using PyRX, that identified 30 molecules with a score <-7.5 kcal/mol
to bind the active site of Axl kinase.

4.3.2. Molecular docking of screened molecules

The 30 hit molecules selected from virtual screening were docked into the macrocyclic inhibitor binding
site using AutoDock tools. The molecules having binding energy with < -6.5 kcal/mol and that make
hydrogen bonds with active site of the receptor were selected for further MD simulations. The AutoDock
grid parameters, docking binding energies and molecular weights of hit molecules along with 7YS are
provided in Table 4.1. Based on molecular docking, it is observed that the hit molecules bound in a
related manner to 7YS, so that Axl RTK can be inhibited with these hit molecules that possess similar
pharmacophore features from chemical and steric insights. From the overall docking studies, the pose

with highest docking scores of seven hit molecules in complex with Axl kinase domain were selected.
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Docking
Axl-
AxI kinase- inhibitor Docking Grid Molecular
ligand mean parameters weight
complex binding x,¥,2) (g/mole)
energy in
kcal/mol
01 Hit-1 -8.01 (54.876, 57.627, 56.255) 415.53
02 Hit-2 -7.65 (54.876, 65.126, 54.550) 438.33
03 Hit-3 -6.64 (54.876, 61.837, 52.935) 440.44
04 Hit-6 -7.40 (54.910, 61.830, 57.477) 411.84
05 Hit-4 -6.80 (52.960, 60.553, 52.935) 369.48
06 Hit-5 -8.29 (54.883, 60.915, 55.551) 412.51
07 Hit-7 -6.96 (54.883, 61.514, 56.388) 396.44
08 7YS active -7.15 (50.960, 55.553, 45.935) 460.89
/inactive state '
09 | 7YS inactive -6.75 (50.960, 55.553, 45.935) 460.89
active state '

Table 4.1) Docking parameters of seven screened hit molecules with reference 7YS macrocyclic

inhibitor.
4.3.3. ADME data analysis and docking data correlations

The synthetic accessibility of all hit molecules range from 3.3 to 5.8, this is indicative of the ease of their
synthesis with current synthetic methods. The TPSA represents the ability of the molecules to cross the
biological barrier for tissue absorption and their brain access in our body and most hit molecules are
within the reasonable range. Lipophilicity is the parameter to assess the partition of the molecules between
n-octanol and water [Pow]. This value ranges between 0.5 - 1.9 indicative of their effective partitioning.
LogS indicates the water solubility of probable ligands, the seven hit molecules are comparable with
reference molecule (7YS) (-3.62). It indicates the ease of handling drug formulation in
pharmacodynamics of drugs in clinical trials. The Log K, value indicates the linear regression of
molecular size and lipophilicity. The lower skin permeant of molecule has more of negative value of Log
Kp. The Log Kp values above -7.0 indicate that the molecules are less permeable through the skin. Based
upon ADME data, the drug likeness for screened hit molecules can be considered. These are the key
parameters to be studied for development for selective hit molecules for their physiochemical properties

to be approved as oral drug candidates. These parameters are provided in Table 4.2.
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msd-AxkA-oop (A%)
w b W

msd-AxAdoop (A°)
w a «w

S Axl kinase- Log Kp (skin | Synthetic
N-o ligand TPSA (A?) | Consensus Log Pow | LogS (ESOL) | permeation) | accessibility
complex (cmls)

01 7YS 119.39 1.92 -3.62 -8.37 5.05
02 Hit-1 83.66 1.62 -3.21 -7.59 5.77
03 Hit-2 89.96 1.45 -4.10 -7.06 3.48
04 Hit-3 84.86 1.80 -3.53 -7.56 4.02
05 Hit-6 144.03 1.27 -2.67 -8.72 3.32
06 Hit-4 95.92 0.57 -2.01 -8.33 3.94
07 Hit-5 122.77 1.59 -3.47 -1.57 4.09
08 Hit-7 99.69 0.96 -2.70 -8.00 4.52

@ Axl kinase Regulatory site bound
@ Axl kinase Hinge region bound
B Inactive state

Table 4.2) The ADME properties of the hit and reference (7YS) molecules

Standard values for reference TPSA= 0 to 140 A.2, Log Po/w= —4.0 to 5.6, Log Kp=—6.1 to —0.19 cm/s,
Synthetic accessibility scale= 1 to 10. LogsS, solubility of molecules in agueous medium; 0 to —2 are

soluble, those in the range of —2 to —4 are slightly soluble and insoluble if less than —4.

Axl kinase Regulatory site

Axl kinase Hinge region

RMSD A loop

Axl kinase Regulatory site

.........

xxxxx

Figure 4.1A) RMSD plots of Axl RTKs (protein and activation loop) complexed with seven hit

molecules in active and inactive states from 250 ns MD simulations.
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4.3.4. Molecular dynamics simulations

The 250 ns MD simulations were carried out using AMBER on inactive Axl kinase complex with
macrocyclic inhibitor, 7YS and the screened-in hit molecules. This would reveal how the macrocyclic
inhibitor and hit molecules differentiate between the active and inactive states and the various
conformational states in between, in order to influence the structural features of various regions in its 3D
structure. This can be revealed by RMSD, RMSF and regulatory spine analysis. The hit molecules bind
the AxI kinase in a stable manner throughout the simulations. The intermolecular hydrogen bonding
indicate the stable complex formation. An inhibitor can bind the kinase domain at the catalytic site, where
the ATP molecule also binds involving the hinge region and is called as “catalytic site of substrate”. The
regular phosphorylation takes place on hydroxyl side chain of tyrosine present in the target protein by
RTK, and referred to as “regulatory site for target substrate”. Based upon this, the inhibitors bound to
kinase domain are site specific while inhibiting the kinase structural conformational changes occurring
during effective cancer therapy. Therefore, the screened hit molecules induced structural deformations in
kinase domain based upon their site selective inhibition in Axl kinase domain. Based on the MD
simulations trajectories it is observed that the seven hit molecules can be classified into two binding
modes; four screened molecules (hit 1, 2, 3 and 6) bind at regulatory site region near the junction of P-
loop, aC-helix and activation loop; and three hit molecules bind the hinge region (hit 4, 5 and 7) of Axl
kinase domain. The complexes with hit 1, 2, 3 and 6 have lower RMSD when the initial and average
structures are superposed as shown in Figure 4.1. In the complexes, 4, 5 and 7 the RMSD is higher and
the aC-helix has moved considerably compared to the initial structures and largely it has been observed
that the N-terminal B-sheet domain has deviated. The macrocyclic inhibitor bound Axl kinase is hinge
region bound, but has a low aC-helix deviation compared to the initial structure. It can be seen from the
RMSD plots that the Co atom fluctuations are relatively lower in the regulatory region bound hit
molecules rather than hinge region bound hit molecules with the exception of the hit 3 (4.5 A). The higher
RMSD in the AxI - hit 3 complex is due to the kinase domain that entirely exists in the inactive state. In
the 250 ns MD simulations trajectory showing 12.3 A distance between K567-E585 is shown in the Figure
4.2A. The Axl bound hit 5 continues to exist as inactive conformer during 250 ns MD simulations,
however the hit 4 and hit 7 complexes are stabilized in the active state as can be seen from the MD
simulations. The salt bridge (K567-E585) distance between P-loop and aC-helix regions are below 3.0 -
4.5 A for active states (hit 4- active, hit 7- active), and hit 5-inactive salt bridge distance varies between
3.0 -17.5 A (Figure 4.2B). The hit 4 complexed AxI kinase has higher RMSD in the activation loop
compared to the other hit molecules. The AxI kinase bound to 7YS has a larger activation loop dynamics
(Figure 4.1). On the whole, the AxI- bound hit-3 (inactive state, regulatory site) and hit-7 (active state,

hinge region) display higher RMSD values among all the hit molecules. Surprisingly, the RMSF plots of
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all seven hit molecules superpose well due to similar influence of all side chains in AxI kinase domains
irrespective of the site selective inhibitions as shown in Figure 4.3. The regulatory site binding hit
molecules are located near to the DFG motif and activation loop region thus disrupting the regulatory
spine between Met589 (aC-helix) - Phe691 (DFG) motif activation loop region, leading to changes in the
overall kinase domain structure. The broken regulatory spine can be seen from the Figure 4.4A.

4.3.4.1. Axl bound ATP and the inactive/active Axl kinases complexed with 7YS

The ATP cofactor binds to AxI kinase domain catalytic region that connects between kinase N-terminal
and C-terminal domain with hinge loop region. ATP bound at Axl catalytic domain only influences the
hinge region residues and there is no involvement of regulatory spine containing residues from P-loop,
aC-helix, activation loop (DFG motif) and catalytic loop (C-terminal domain). Therefore, the regulatory
spine is retained in ATP bound AxI kinase domain. However, 7YS (macrocyclic inhibitor) bound active
and inactive states of AxI kinase domain also influence the hinge region. This has also resulted in retained
regulatory spine in 7Y'S bound to both states of AxI kinase. The stereo spatial orientation of amino acids
that form these regulatory spines are altered due to the conformational changes in the AxI kinase when
complexed with the four screened small molecules (hit 1, hit 2, hit 3, hit 6). The regulatory spine is
retained for the AxI bound to hit 4, hit 5 and hit 7. The key components leading to the regulatory spine
breakage where the inhibitors are specified to bind at regulatory site region were examined. The
regulatory spine breakage mechanism is influenced by the specific homo and heterocyclic functional
groups binding at the junction of P-loop, aC-helix and activation loop. The regulatory site binding
inhibitors influence the AxI kinase domain regions at regulatory spine and P-loop, aC-helix and not the
activation loop. This could reveal that the inhibitor binding site at specific spatial orientation of kinase
plays a key role in signal transduction during kinase inhibition. The regulatory spine analysis measures
the protein — ligand binding mechanisms. The binding free energies ascribe the efficacy of kinase-
inhibitor integration to classify ligands as the kinase binding inhibitors. Specified cyclic groups from
various screened hits small molecules are major components of regulatory spine dissociation in kinase
domains. Hit 1 (adamantanyl), hit 2 (p-chlorophenyl), hit 3 (1,4 dioxane), hit 6 (5-chloro indole) are key
functional groups attached to screened-in hits bound at the narrow end, away from hinge region in kinase
domains. The hinge region kinase blockers are caused mainly by small molecular size to effectively fit
into hinge region of the catalytic site. Five membered heterocyclic imidazole (hit 4) and saturated bicyclic

pyrrole groups (hit 5, 7) mostly bound at hinge region site of Axl kinase domain (Figure 4.5)
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4.3.5. Binding free energy calculations

4.3.5.1. MM-GBSA (Binding affinity energy)

The data points derived from 2,500 conformations from 25k frames of trajectories with interval of 100 ps

from 250 ns MD simulations data were used to calculate the binding free energies between the receptor

(kinase domain) and ligand (hit molecules and 7YS) in the presence of solvent, that are shown in Table

4.3. The regulatory site kinase inhibitors binding affinity can be explained based upon binding energies

in entire the MD simulations trajectories. The ATP bound kinase active state has higher binding free

energy (-51.02 kcal/mol) due to its catalytic site binding and involved in the transfer of y — phosphate

group to substrate molecules in kinases enzymatic action.

Free Energy Calculation of Differences (Complex — {Receptor — Ligand})
S.No Protein-Inhibitor GB Energy Std. Err. PB Energy | Std. Err. of | R —spine
complex (kcal/mole) of Mean (kcal/mole) Mean status
R-site region bound Gibbs free E Binding E
03 Axl -active Hit-1 -42.9137 1.0784 -8.8192 0.4919 Broken
04 AxI -active Hit-2 -29.8852 1.9735 -3.9289 0.4559 Broken
05 Axl-Inactive Hit-3 -42.2415 2.4616 -14.5832 0.9805 Broken
06 Axl -active Hit-6 -35.8968 0.3405 -11.7482 1.6533 Broken
Hinge region bound
07 Axl-active  Hit-4 -38.5077 0.1154 -10.2352 1.6673 Retained
08 Axl-Inactive Hit-5 -46.8368 0.1598 -10.7742 1.6998 Retained
09 Axl-active Hit-7 -32.5000 0.2113 -6.4635 1.6563 Retained
10 AxI - active -ATP -51.0202 0.1737 -14.3864 1.6290 Retained
11 Axl —Macro —inactive -37.0225 0.2116 -9.5484 1.6295 Retained
12 AxI — Macro —active -38.6647 0.1697 -9.4953 1.6191 Retained

Table 4.3) MMPB/GBSA free energy data analysis for seven screened hit molecules with references
(7YS, ATP)
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The hinge region Axl kinase hit molecules bound active state conformer with lower binding free energies;
-38.5 kcal/mole (hit 4) and -32.5 kcal/mole (hit 7) and a higher binding free energy for inactive state -
46.83 kcal/mole (hit 5). The regulatory site AxI kinase hit molecules bound inactive state conformer has
lower binding free energies; -42.24 kcal/mole (hit 3) and a nearly equal binding free energy for active
state -42.91 kcal/mole (hit 1), -29.88 kcal/mole (hit 2) and -35.89 kcal/mol (hit 6). The binding free
energies for the active Axl kinase (-38.66 kcal/mol) and inactive Axl kinase (-37.02 kcal/mol) when
complexed with macrocyclic inhibitor (7YS). The kinase inhibitor binding affinity can be explained with
energy values due to the overall binding energies influenced by energy terms calculated for protein-ligand
in the presence of solvent waters. The ATP cofactor binding to kinase domain has highest binding energy
among all kinase inhibitors and hinge region bound kinase domain inhibitors have closest binding energy
correlated to ATP cofactor binding analogy. This can be further discussed with overall Gibbs free energies

among kinase screened-in hit molecules.

4.3.5.2. MM-PBSA (Binding Gibbs free energy)

The overall Gibbs free energies differentiate between the selective site inhibitors of kinase domain states.
MM-PBSA is quite different from MM-GBSA due to the entropy energy terms calculated including the
NMA of overall conformers from MD trajectories in the absence of solvent. Therefore, these energy
values are lower than MM-GBSA. The regulatory site bound hit molecules have energy values varying
from -8.8 kcal/mole (hit 1), -3.92 kcal/mol, (hit 2), -11.74 kcal/mole (hit 6), kcal/mole in the active state
and in the case of hit 3 (-14.58 kcal/mol) that existed as inactive state and has the highest overall Gibbs
free energies. This value is comparable with the ATP bound active state mode (-14.38 kcal/mol). The
active and inactive Axl kinase domain bound to 7Y'S with similar binding affinities; -9.5 kcal/mol. The
Gibbs free energies are in correspondence with the molecular docking parameters given in Table 4.3. In
a macroscopic pictorial view, the overall Gibbs free energy changes are mostly accumulated into inactive
states of kinases bound ligands as represented in Table 4.3. The AxI-hit-3 (-14.58 kcal/mole), Hit-5 (-
10.77 kcal/mole), AxI- macrocyclic inhibitor (7YS) (-9.5 kcal/mole). The hit molecules bound to kinase
inactive state are comparable with AxI-ATP. It is clearly evident that where kinase bound ATP complex
is retained in active state mode of AxI kinase conformation with high affinity and binding free energy is
similar to inactive states of inhibitors bound Axl kinase domain. This could be revealed as Gibbs free
energetics that showed a correlation between cofactor and hit molecules bound Axl kinase states. These
hidden states can be explained with PCA analyses of all the complexes in detail.
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3.4.6. Principal component analysis

The MD simulations trajectories of the Ax| kinase — hit molecule and 7YS complexes were analysed with
PCA analysis. The regulatory site kinase bound hit molecules have large clusters of kinase inactive
(green) and active (red) conformers represented in the scatter plots (Figure 4.6) and it overlapped states
on each other. But the hinge region bound hit molecules are divided into two different groups of clusters
represented as conformational movement towards hinge region site of AxI kinase (AxI- 7YS complex).
The clustering of kinase states overlap with each other in regulatory bound inhibitors from their initial
states. But the hit 4, hit 5 and hit 7 molecules are more prone to dissipate as clusters through the PCA
space and are represented as mixed Kinase state system in given unsupervised 2.5k conformers derived
from 250 ns MD simulations data. These plots provide key evidence that inhibitor bound kinase domain
coexisted with active and inactive states in the MD simulations timescales. The pharmacophore functional
features of virtual screened hit molecules can arrest upregulated Axl kinase activity in cancerous cells.
Based upon ADME data all the proposed pharmacophore-based screened hit molecules are qualify the
pharmacodynamics and cell toxicity level in normal physiological process. The proposed hit molecules
are synthetically viable and possess drug likeness for AxI kinase domain inhibition. Based upon docking
and MD simulations data, the seven hit molecules bind to kinase active site to trigger the specific domain
dynamics in AxIl kinase. The upregulated AxI kinase can be arrested to influence specific regions such as
activation loop, regulatory spine, a-helix, coordinated with the binding of hit molecules. The
overexpressed AxI kinase domain is an effective target for cancer therapy that can be inhibited by the hit
molecules in a site selective manner. The Lys567 — Glu585 residue salt bridge distance analysis identify
the active and inactive states in Axl kinase domain during the 250ns MD simulations while bound to
reference and hit molecules. The regulatory spine is broken as the hit molecules moved towards the
shallow depths of kinase activation loop and aC-helix regions (regulatory site bound region). While the
regulatory spine is retained for hit molecules that bind the catalytic site (hinge region).
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4.3.7. Overall mechanism of kinase inhibition with screened small molecules

The AxI kinase domain structure is influenced by screened hit molecules and differentiated based upon
their site selective affinity towards binding sites. The regulatory binding site (P-loop — aC helix -
activation loop) is bound by specific Axl kinase inhibitors (hit 1, hit 2, hit 3, hit 6), while hit - 3 is
converted into complete inactive state mode with broken regulatory spine. All regulatory site inhibitors
coexist between the active — inactive states based on the distance between Lys567 — Glu585 that varies
from 3.0 — 10.5 A (hit 1, 2, 6 distance plots). The inactive states have high binding free energies among
all active states (Table-4.3). The hinge region binding inhibitors bind similar to 7YS macrocyclic inhibitor
in the 5U6B crystal structure. These hit molecules do not influence regulatory spine hydrophobic residues
including 7YS. The distance plots describe the 7Y'S inhibitor influencing the active state of Axl kinase
with ionic bond distance between Lys567 — Glu585 residues (4.5 A) compare to inactive state (17.5 A).
In a similar manner, the hit 4, hit 7 existed as active states. However, hit 5 has sinusoid pattern in the
ionic bond distance between Lys567 — Glu585 residues (ranging from 4.5 to 18 A). These insights of AxI
kinase domain is influenced by binding to different hit molecules in the presence water solvation system.
The MM-GBSA and MM-PBSA data also support two different kinase inhibiting sites with seven
screened hit molecules. This work provides a glimpse based on computational studies of Axl kinase
domain inhibition by hit molecules designed from pharmacophore virtual screening using 7YS kinase
inhibitor.

4.3.8. Non-bonding interactions of Axl RTKs with hinge region and regulatory site bound hit

molecules

The amino acid residues that are in the vicinity of hit molecules in Axl RTK active site were examined.
The interactions with corresponding hit molecules at active site differentiate with hinge region and
regulatory site bound Axl kinase domain. The regulatory site bound hit molecules (hit 1, hit 2, hit 3 and
hit 6) have interactions with Met589, Asp690, Phe691, Met679 residues. The hinge region bound hit
molecules (Hit 4, hit 5 and Hit 7) interact with Met623, Gly626, Asp627 and Met679. The molecules hit
1, 2 and 6 hit molecules (active state) have no interaction with the hinge region residue Met623 of Axl
kinase domain. But the inactive state hit 3 has interaction also with Met623. Similarly, the hit 5 interacts
with the Lys567, Phe592, Met623, Asp690, Phe691, Gly692 and Ser694 in the AxI kinase domain. The
uniqueness of hit molecules 3 and 5 is also observed from the hydrogen bond analysis. The inactive state
of hit 3 and 5 have interacts with Met623 and Asp690 residues specifically despite their binding to
regulatory or hinge region sites, respectively. These hydrogen bond analysis describe site specific

inhibitor molecules to Axl kinase active site.
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4.4. Conclusions

Protein kinases have diverse binding pockets based upon co-factor and substrate binding and allosteric
binding. The pharmacophore features of macrocyclic inhibitor, 7YS taken as reference for virtual
screening of chemical libraries, molecular docking and molecular dynamics simulations identified
molecules that bind to regulatory and hinge region sites. The scaffolds with bicyclic and heterocyclic
groups have made contribution to two different binding site regions in Axl kinase inactive state. The
molecules hit 4, 5 and 7 bind at kinase hinge region which facilitate hydrogen bonding with the hinge
region residues Met623, Gly626, Asp627 and Met679. The molecules hit 1, 2, 3 and 6 selectively bind to
the kinase regulatory region and make hydrogen bonds with Met589, Met598, Asp690 and Met679 where
as inactive state of hit 3 and hit 5 bind with Met623, Met679 and Asp690 in a concise manner. These hit
molecules moved across from hinge region to regulatory region of shallow depth space between aC-helix
and activation loop. But the hinge region bound kinase hit molecules have moved from kinase activation
loop towards the hinge region where this space would be occupied by ATP co-factor in active state of
AXxI kinase. The hinge and regulatory bound AxI kinase active and inactive states are differentiated with
regulatory spine mechanism. The (P-loop) Lys567-Glu585 (aC- helix) salt bridge distance analysis is
akey to identify active and inactive states of Axl kinase. PCA describes the hidden states of Ax| kinases
with seven hit molecule and 7YS complexes. The systematic comparative analysis of hit molecules to
mimic the arrest of overexpressed Axl kinases activity in various structural environments is studied

computationally.
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Chapter -5
Mutations in the receptor-binding domain of human SARS CoV-2

spike protein increases its affinity to bind human ACE-2 receptor
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Abstract

The severe acute respiratory syndrome virus-2 (SARS CoV-2) infection is a disease causative
agent of severe respiratory problems in humans and animals and it has resulted in the current
global pandemic. The binding of SARS CoV-2 spike protein receptor-binding domain (RBD)
to the human angiotensin converting enzyme-2 (ACE-2) receptor causes the host infection. The
spike protein has undergone several mutations with reference to the initial strain isolated during
December 2019 from Wuhan, China. A number of these mutant strains have been reported as
variants of concern and as variants being monitored. Some of these mutants are known to be
responsible for increased transmissibility of the virus. Here, the crystal structure of the RBD in
complex with ACE-2 available in the public domain was used and analysed the 500 ns MD
simulations of wild-type and mutants; G339D, S371L, S373P, S375F, K417N, N440K, G446S,
S477N, T478K, E484A, Q493A, Q493R, G496S, Q498R, N501Y, Y505H. The ionic,
hydrophobic and hydrogen bond interactions, residue flexibility, binding energies and
structural variations are characterized. The MD simulations provide clues to the molecular
mechanisms of ACE-2 receptor binding in wild-type and mutant complexes. The mutant spike

protein RBD was associated with greater binding affinity with ACE-2 receptor.
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5.1. Introduction

The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has caused a global
pandemic of the coronavirus disease 2019 (COVID-19) during the last 40 months. COVID-19
has been the single major cause of death due to any disease within a short span of time. SARS
CoV-2 was first reported in individuals known to have been in contact with wildlife animals at
the live animal and seafood market in Jianghan District, Wuhan (Zhu et al., 2020). SARS CoV-
2 is similar to SARS CoV (2003 to 2005), Middle East respiratory syndrome coronavirus
(MERS CoV) (2012 to 2013) and other human CoVs in the 20" century that has led to
epidemics resulting in severe respiratory diseases and deaths (Guruprasad, 2021a). These
viruses harbour ~ 30K bp single stranded positive-sense RNA genome. SARS CoVs enter
human cells through fusion of viral and host cellular membranes mediated by the interaction
between viral spike protein and human angiotensin converting enzyme-2 (ACE-2)
(Guruprasad, 2020; 2021b; Li et al., 2003; Shang et al., 2020). The SARS CoV-2 spike protein
is a heavily glycosylated homo-trimeric protein with ~1,273 amino acids and the sequence
region (amino acids 333-520) constitutes the receptor-binding domain (RBD) that interacts
with human ACE-2 receptor. The three-dimensional structures of the spike protein apo and
RBD bound forms to human ACE-2 receptor are available in the public domain (Wang et al.,
2020; Xiao et al., 2021; Xu et al., 2021). Viruses acquire mutations over a period of time during
host infection giving rise to new sequence variants. The mutations corresponding to the entire
spike protein across the different lineages are shown in Table 5.1. The three-dimensional
crystal structure of the spike protein RBD (residues 333-520) complexed with human ACE-2
is available in the PDB (Lan et al., 2020; Wang et al., 2020). The structure comprises a five-
stranded antiparallel B-sheet. According to the PDBSum (Laskowski et al., 2018), the amino
acids region 440 - 506 (67 amino acids) located between B4 and B5 strands folds into an
extended loop that comprises short stretches of two a-helices (439-442 and 502-505) and anti-
parallel B-sheets formed by two B-strands pairs (451-455 with 492-495) and (472-474 with
488-490). The secondary structural elements are connected by loops between 443-448, 476-
488, 497-503. The binding between virus and host cell receptor are mediated via non-bonding
interactions through RBMs in the RBD extended loop and the virus binding motifs (VBMs) on
the ACE-2 receptor shown in Figure 5.1A. The substitution mutations in RBD were shown to
increase the transmissibility of COVID-19 and decreased protection from vaccines (Bian et al.,
2021; Chen et al., 2020; Gomez et al., 2021; Harvey et al., 2021; Noh et al., 2021; Zhou et al.,

2021). This prompted analysis of the mutations and SIE estimations corresponding to variants

122



Figure 5.1A) Amino acid residues in 4.5 A vicinity between human SARS CoV-2 spike protein
RBD (blue) and human ACE-2 receptor (magenta). The hydrogen bonding interactions involved
residues; Ala475-Ser19, Asn487-Gln24, Thr500-Tyr41, Lys417-Asp30, Tyr449-Asp38, Tyr449-
GIn42, Asn487-Tyr83, GIn498-GIn42, Asn501-Tyr41, Gly502-Lys353

of concern and variants being monitored using MD simulations of the spike protein RBD
domain and human ACE-2 receptor complex. These studies on host-virus protein-protein
interactions at the atomic level suggest molecular mechanisms of their binding. Using
molecular docking and MD simulations it has been shown that mutations in the SARS CoV-2
spike protein RBD are responsible for strong ACE-2 binding and poor anti-SARS CoV-2
monoclonal antibodies cross-neutralization (Shah et al., 2020). The alanine scanning
mutagenesis and computational binding affinity studies of certain residues in SARS CoV-2
RBD complex with human ACE-2 showed that the mutations in conserved receptor binding
motif (RBM) affects the structural-dynamics of the complex. The charge distribution disturbs
the inter-molecular non-bonded contacts thereby perturbing the strength of binding to host cell
ACE-2 receptor (Dehury et al., 2021). A pictorial representation of the non-bonding
interactions between the human spike protein RBD and human ACE-2 described above are
given in Table 5.2 are shown in Figure 5.2E.

The E484Q, L452R and double mutant E484Q and L452R were studied using MD simulations
(Antony & Vijayan., 2021). The triple mutant variants; K417NTJE484KTIN501Y and K417T[
E484KTIN501Y studied using molecular docking and MD simulations attributed the increased
binding of spike protein RBD to ACE-2 mainly due to the electrostaticcontribution (Khan et
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al., 2021). Single amino acid point mutations in spike protein RBD and C-terminus were

studied using MD simulations (Ahamad, Kanipakam, & Gupta., 2020)

Figure 5.1B) Amino acid residues involved in hydrophobic interactions between human SARS CoV-2
Spike protein RBD (blue) and human ACE-2 receptor (magenta)

The substitution mutations in RBD were shown to increase the transmissibility of COVID-19
and decreased protection from vaccines ( Harvey et al., 2021; Gomez, Perdiguero, & Esteban.,
2021; Noh, Jeong, & Shin., 2021; Zhou et al., 2021; Bian et al., 2021; Chen et al., 2020). The
mutations analysed with SIE (or the binding free energy) corresponding to variants of concern
and variants being monitored using MD simulations of the spike protein RBD domain and
human ACE-2 receptor complex. These studies on host-virus protein-protein interactions at the
atomic level suggest molecular mechanisms of their binding.

5.2. Methods

5.2.1. Generation of mutants in human SARS CoV-2 spike protein RBD

The crystal structure of the human SARS CoV-2 spike protein RBD with human ACE-2
receptor complex (PDB id: 6LZG) was used to generate single amino acid substitution
mutations; K417N, N440K N501Y, L452R, T478K, E484K, S494P, K417A, Q498A, T500I
using Discovery Studio 3.5.
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5.2.2. Molecular dynamics simulations

The MD simulations of the wild-type and mutant RBD - ACE2 receptor heterodimer complexes
were carried out using AMBER (ver.18.14) (Gotz et al., 2012; Salomon-Ferrer et al., 2013).
The GAFF2 force fields charges and Amberff14sb protein atomic positions of all the systems
were generated with Antechamber using amlbcc method (Lindorff-Larsen et al., 2010). All
input parameter files for MD simulations were generated for the heterodimer by adding
hydrogen atoms with H++ server (Anandakrishnan et al., 2012; Gordon et al., 2005). Sodium
ions were added to the system in order to neutralize excessive charge generated by solvating
the complex in a 10 A cubic box. The final ionic concentration of the systems was set to 100
mM. The Amberffl4sb-idin force fields was used with TIP3P water model (Jorgensen et al.,
1983; Mark & Nilsson, 2001). The topology input.crd parameter files were generated with
tLEaP module using the Amber suite (Hornak et al., 2006). The MD simulations were run at
300 K temperature and 1 atmospheric pressure. A 2 fs time step was considered for friction
coefficient of 1/ps of Langevin integrator. Energy minimization was carried out using steepest
descent method for 40,000 cycles in order to overcome short range null contacts in the system.
The long-range electrostatic interactions were handled using the particle-mesh Ewald (PME)
method with a 9 A real-space cut-off and with PME order 4. The systems were double
minimized under NPT ensemble at interval of 5 frames to maintain pressure of 1 atmosphere
with Monte Carlo barostat. The minimization was carried out under NVT ensemble at interval
of 5 frames, in order to maintain volume and temperature at 300 K using Monte Carlo
thermostat (Darden et al., 1993; Wang et al., 2006). The systems were equilibrated for 7 ns
before production run. The frames from production runs were saved every 10 ps. All molecular
systems were executed for 250 ns MD simulations using AMBER.

5.2.3. Post MD data analysis

The MD simulations trajectory data analysis was carried out using cpptraj and pytraj in Amber
tools. The average structures, RMSD and RMSF for all systems were derived from .trr analysis.
The cpptraj h-bond sub-level trajectory analysis provides the average hydrogen bonding
distance between human ACE-2 (chain-A) and spike protein RBD (chain-B). The SIE is an
indirect method to calculate the binding free energies between protein-protein or protein-ligand
complexes simulated with explicit solvent models. To understand the protein-protein affinities
between wild-type and mutant proteins, the SIE-traj analysis (Naim et al., 2007) was performed
between ACE-2 receptor and RBD that provide insights into dynamical state of the non-
bonding interactions. The entire 25,000 frames generated from 250 ns MD simulations was

taken into consideration to calculate the SIE (Cui et al., 2008; Sulea & Purisima, 2012). The
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SIEs and non-bonded interaction energies were computed for the wild-type and mutant dimeric
RBD — ACE-2 complexes.

5.3. Results and Discussions

5.3.1. Molecular dynamics simulations

The MD simulations showed enhanced binding of human SARS CoV-2 spike protein RBD to
human ACE-2 receptor, suggesting the possible role of mutations in leading the virus to
become variants of concern or variants being monitored. The structural superposition of initial
and final MD simulation structures showed relative displacement of B-chain (RBD) compared
to A-chain (ACE-2), except for the protein with E484K mutation as shown in Figure 5.2A. The
RMSD plots for representative structures shown in Figure 5.2B and for all the structures
demonstrated that the structures stabilized within 25 ns of MD simulations. The RMSF plots
for all structures shown in Figure 5.2C indicated regions of fluctuations in spike protein RBD
and human ACE-2 complex. The region of high flexibility was observed between amino acid
positions 475-487 that corresponds to RBM in the RBD of all complexes, except the protein
with the S494P mutation that was observed to be relatively stable. Fluctuations were also
observed in certain loop regions of human ACE-2 located away from RBD. The T478K and
N501Y mutant proteins have largest fluctuations indicative of the dynamical structures. Some
structures have fluctuations in loop regions corresponding to amino acid positions; 357-371,
382-388 and 423-430. The observations of large structural fluctuations in certain mutant
proteins are explained later using cluster analyses from 250 ns AMBER MD simulations
trajectories, shown in Table 5.2. The K417 residue is mutated to N417 in B.1.351 lineage
variant of concern. This mutation is reported to contribute to loss of serum antibody
neutralization (Collier et al., 2021). The K417 residue is located on a3-helix between 33 and
4 strands and is close to the insertion loop in RBD. The side chain N{-atom of K417 makes
ionic interactions with side chain atom of Asp30 located on al-helix in human ACE-2. The
Lys417-Asp30 side chain ionic interaction observed in the wild-type and all the other mutants
is lost owing to the K417N mutation. The N501Y mutation associated with lineages;
B.1.1.7, B.1.351, P.1 binds human ACE-2 receptor with increased binding affinity (Luan et al.,
2021). The N501 is located in loop connecting the a-helix preceding B5-strand and its side
chain amide nitrogen makes intermolecular hydrogen bonding interactions with side chain OH

atom of Tyr41 in ACE-2.
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Figure 5.2A) Superposition of the initial structure (blue) with average MD simulations
structure (Shown in different colours for the different mutations) in wild-type and
mutant human SARS CoV-2 spike protein RBD — human ACE-2 receptor complexes.
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5.3.2. Ionic, hydrophobic, hydrogen bond interactions in wild-type and mutant complexes
Several intermolecular interactions were observed to be mediated between the SARS CoV-2
spike protein RBD and human ACE-2 receptor in the wild-type and mutant protein complexes
during the 250 ns MD simulations. Accordingly, these were classified as the hydrogen bond
interactions, ionic interactions and the hydrophobic interactions. The SARS CoV-2 spike
protein three-dimensional structure of the UK variant (B.1.1.7) in complex with ACE-2
heterodimeric domain showed n-m interaction between Tyr501 mutant and Tyr41 in ACE-2
that enhances the binding of spike protein to the receptor and abolishes binding of a potent
neutralizing antibody (Yang et al., 2021). We observed that the N501Y mutant leads to
hydrophobic interactions in mutant complex involving Tyr501-Tyr41 (Tyr41 is indicated in
Figure 5.1B) at the protein-protein interface, in addition to the Phe486-Met82 hydrophobic
interaction. The 1.452 is associated with RBM’s anti-parallel B-sheet and is exposed to solvent
and is not directly involved in interaction with ACE-2 (Luan et al., 2021). The mutation; L452R
is observed in the lineages; B.1.427 and B.1.429. The T478 is associated with a loop in RBM.
The hydrophobic cluster formed by Phe486 in RBD and its interactions with residues; Leu79,
Met82, Tyr83 in ACE-2 is observed in the complexes with the mutants; T478K, E484K,
N440K. The E484 is within a loop in RBM and does not interact with human ACE-2 in wild-
type structure. The E484K mutant results in loss of serum antibody neutralization. Similar to
E484, the S494 residue is also exposed to the solvent and is not involved in interactions with
ACE-2. The S494 residue is associated with an antiparallel B-sheet in RBM. The L452 and
S494 are located on the individual strands of antiparallel B-sheet and the N440 is located on a
helical turn at the end of f4-strand distant from the ACE-2 binding site.

In summary, Phe486 and Tyr489 in the human SARS CoV-2 spike protein were observed to
be involved in hydrophobic interactions with residues; Ile21, Phe28, Tyr41, Leu79, Met82 and
Tyr83 present on helices (H1, H2) of human ACE-2 as shown in Figure 5.1B. A list of the more
common intermolecular hydrogen bond interactions for the wild-type and mutant SARS CoV-
2 spike protein RBD — ACE-2 complex is provided in Table 5.1. The predominant hydrogen
bond interactions were observed between; Asnd87-Tyr83, Asn487-GIn24, GIn498-Gln24,
GIn498-GIn42, GIn498-Tyr4l, GIn498-Lys353, Gly496-Lys353, GIn493-Lys31, Ala475-
Ser19 and Ala475-GIn24. The interactions involving the same amino acid residue with
different partner residues in the complex during the MD simulations, suggests the promiscuous
nature of hydrogen bonds in the complex of human SARS CoV-2 spike protein RBD and
human ACE-2 receptor reflecting the structural plasticity associated with the RBM. Several

hydrogen bonds, hydrophobic and ionic interactions mediate the intermolecular interactions
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between the SARS CoV-2 spike protein RBD and human ACE-2 in wild-type and mutant
proteins. Further, despite the mutations observed, the spike protein RBD is capable of
interacting with the ACE-2 receptor leading to the host infection. Computational studies using
MD simulations revealed additional n-nm and =m-cation interactions in the RBD-ACE-2
complexes (Tian et al., 2021). We observed that the N501Y mutant leads to hydrophobic
interactions in the mutant complex involving Tyr501-Tyr41 (Tyr41 is indicated in Figure 5.1B)
at the protein-protein interface, in addition to the Phe486-Met82 hydrophobic interaction. The
LA452 is associated with RBM’s anti-parallel B - sheet, it is exposed to solvent and is not directly
involved in interaction with ACE-2. The Leu452 together with Phe490 and Leu492 forms a
hydrophobic surface on RBD. The E484Q, L452R and double mutant E484Q and L452R were
studied using MD simulations (Antony & Vijayan, 2021). It was observed that Arg452 interacts
more with neighboring residues Ser349, Tyr351, Phe490, Leud92 and Ser494 when compared
to the wild-type and propose that the increased intra-molecular interactions could lead to the
increased stability of the SARS CoV-2 spike protein. The mutation; L452R is observed in
lineages; B.1.427 and B.1.429. The T478 is associated with a loop in RBM. The hydrophobic
cluster formed by Phe486 in RBD and its interactions with residues; Leu79, Met82, Tyr83 in
ACE-2 is observed in the complexes with the mutants; T478K, E484K, N440K. The E484 is
within a loop in RBM and does not interact with human ACE-2 in wild-type structure. The
E484K mutant results in the loss of serum antibody neutralization (Chen et al., 2021). Wang et
al., 2021 have shown that the E484K mutation resulted in more favorable electrostatic
interactions and significantly improved binding affinity with ACE-2. Further, the E484K
mutation is shown to cause conformational rearrangements of the loop region containing the
mutant residue that leads to a tighter binding with ACE-2 and formation of some new hydrogen
bonds (Wang et al., 2021). Similar to E484, the S494 residue is also exposed to the solvent and
is not involved in interactions with ACE-2. The S494 residue is associated with an antiparallel
B-sheet in RBM. The L452 and S494 are located on the individual strands of antiparallel B-
sheet and the N440 is located on a helical turn at the end of B4-strand distant from the ACE-2
binding site. Two single amino acid substitution mutations (E484K, N501Y) and a triple
mutant (K417N + E484K + N501Y) in the RBD domain in complex with human ACE-2 was
studied using protein-protein docking and MD simulations (Istifli et al., 2021). The South
African (K417N-E484K-N501Y) and Brazilian (K417T-E484K-N501Y) triple mutants have
been shown to be lethal due to the inter-protein contacts specifically mediated via the
electrostatic interactions from the results of molecular docking and MD simulations studies

(Istifli et al., 2021; Khan et al., 2021). Single amino acid point mutations in the RBD and C-
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terminus of spike protein were studied using MD simulations (Ahamad et al., 2022;; Istifli et
al., 2021). These authors have shown that mutation brings about higher fluctuations mainly in
the spike protein RBD region around 400-544 and heptad repeat 1 around 930-940 (Ahamad
et al., 2022). Mutations in the SARS CoV-2 spike protein RBD are responsible for strong
ACE-2 binding and poor anti-SARS CoV-2 monoclonal antibodies cross-neutralization (Shah
et al., 2020). The alanine scanning mutagenesis and computational binding affinity studies of
certain residues in SARS CoV-2 RBD complex with human ACE-2 showed that the mutations
in conserved receptor binding motif (RBM) affects the structural dynamics of the complex.
The charge distribution disturbs the inter-molecular non-bonded contacts thereby perturbing
the strength of binding to host cell ACE-2 receptor (Dehury et al., 2021). A pictorial
representation of the non-bonding interactions between the human spike protein RBD and
human ACE-2 described above and in Table 5.2 are shown in Figure 5.1A. In summary,
Phe486 and Tyr489 in the human SARS CoV-2 spike protein were observed to be involved in
hydrophobic interactions with residues; Ile21, Phe28, Tyr41, Leu79, Met82 and Tyr83 present
on helices (H1, H2) of human ACE-2 as shown in Figure 5.1B. A list of the more common
inter-molecular hydrogen bonding interactions for the wild-type and mutant SARS CoV-2
spike protein RBD — ACE-2 complex is provided in Table 5.1. The predominant hydrogen
bonding interactions were observed between; Asn487-Tyr83, Asn487-GIn24, GIn498-Gln24,
GIn498-GIn42, GIn498-Tyr4l, GIn498-Lys353, Gly496-Lys353, GIn493-Lys31, Ala475-
Ser19 and Ala475-GIn24. The interactions involving the same amino acid residue with
different partner residues in the complex during the MD simulations, suggests the promiscuous
nature of hydrogen bonds in the complex of human SARS CoV-2 spike protein RBD and
human ACE-2 receptor reflecting the structural plasticity associated with the RBM. Several
hydrogen bonds, hydrophobic and ionic interactions mediate the intermolecular interactions
between the SARS CoV-2 spike protein RBD and human ACE-2 in wild-type and mutant
complexes. Further, despite the mutations observed, the spike protein RBD is capable of
interacting with the ACE-2 receptor leading to the host infection. Each of the single amino acid
substitution mutations independently have significant effect on the nature of interactions with
human ACE-2. It has already been reported that single and double mutants in the RBD do not
disrupt the interactions with ACE-2, but reduce the binding free energies because of the
multiple interactions in the inter-molecular interactions and the extended molecular surface

(Taka et al., 2021).
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5.3.3. Cluster analysis

The flexible partners stabilizing the intermolecular interactions between the heterodimeric
complexes were further analyzed using cluster analyses shown in Figure 5.2D. The population
of clusters and their standard deviations is provided in the Table 5.2. This table indicates 6
clusters with greater than 0.05 fraction (1,250 populations in a given cluster out of the 25,000
frames) in wild-type protein, whereas, the clusters associated with the different mutations were;
K417N (8 clusters), T478K (8), S494P (10), N440K (10), L452R (9), N501Y (7), E484K (9).
The members of each cluster comprise structurally similar conformations. The presence of only
6 clusters in the wild-type protein with a higher population of frames suggests the structural
stability of wild-type complex, which contrasts with the relatively higher dynamics observed
for the mutant proteins associated with larger number of clusters.

5.3.4. Solvated interaction energies

To quantify the strength of intermolecular interactions the binding free energies of the
heterodimers were analyzed. The SIE binding free energy calculations were carried out on the
AMBER MD simulation trajectories shown in Table 5.3. Among all complexes studied, low
SIE values were observed for S494P (-31.24 kcal/mol), T478K (-29.67 kcal/mol), K417N (-
29.59 kcal/mol), L452R mutant (-27.94 kcal/mol), N440K (-20.18 kcal/mol), E484K (-19.15
kcal/mol) and N501Y (-18.98 kcal/mol) compared to the binding free energy for the wild-type
heterodimeric complex (Zhang et al., 2021) that was -13.75 kcal/mol. It was observed that all
mutations in the spike protein RBD were associated with lower binding free energies compared
to the wild-type proteins indicating better binding efficiency to human ACE-2. All mutations
attributed as variants of concern or variants being monitored in RBD are known to increase
transmissibility. These mutations cause greater infectivity to the host and may be under positive
selection pressure. However, for some mutations, such as, K417A, Q498A, T500I in spike
protein RBD previously reported (Guruprasad, 2021b), relatively higher binding free energies
compared to the wild-type hetero-dimeric complex were observed (Table 5.3). These mutant
proteins with implied reduced binding affinity to human ACE-2 may therefore not be
significant mutations. The SIE binding free energy (AG) and its components; van der Waals
interaction energy (vdW); Coulomb interaction energy (Coul); Reaction Field (RF); Constant
(Const). Thereby, mutations resulting in greater infectivity to host seem to have been selected
in the evolution of human SARS CoV-2 spike protein. Such mutations have therefore become

prominent and have resulted as variants of concern or variants being monitored.
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Figure 5.2D) Cluster analyses for wild-type and mutant SARS CoV-2 spike protein RBD

and Human ACE-2 receptor for 250 ns MD simulations data.
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Figure 5.2E) Representation of non-bonding interactions between the human ACE-2 and spike protein RBD
in the initial, wild-type and mutant complexes after 250 ns MD simulations. (initial structure PDB id: 6LZG,
chains-A and B), B- wild-type, C- K417N, D-K417T, E-N440K, F-L452R, G-T478K, H-E484K, I-S494P,
J-N501Y;

Lineage Variants WHO label Mutations relative to reference protein in human

being monitored SARS CoV-2 spike protein RBD

B.1.1.7 Alpha 69del, 70del, 144del, E484K, S494P, N501Y,
A570D, D614G, P681H, T716l, S982A, D1118H,
K1191N

B.1.351 Beta D80A, D215G, 241del, 242del, 243del, K417N,
E484K, N501Y, D614G, A701V

P.1 Gamma L18F, T20N, P26S, D138Y, R190S, K417T, E484K,
N501Y, D614G, H655Y, T10271

B.1.427 Epsilon L452R, D614G

B.1.429 S131, W152C, L452R, D614G

B.1.525 Eta A67V, 69del, 70del, 144del, E484K, D614G,
Q677H, F888L

B.1.526 Iota L5F, D80G, T95I, 144del, F157S, D253G, L452R,
S477N, E484K, D614G, A701V, T859N, D950H,
Q957R

B.1.617.1 Kappa T951, G142D, E154K, L452R, E484Q, D614G,
P681R, Q1071H

B.1.617.3 Not L452R, E484Q, D614G, P681R

applicable

P.2/P.1.1.28.2 Zeta E484K, D614G, T8591, Y1176F

B.1.621 Mu R346K, E484K, N501Y, D614G, P681H

Variant of

concern

B.1.617.2 Delta T19R, V70F, T951, G142D, 156-157del, R158G,
A222V, W258L, K417N, L452R, T478K, D614G,
P681R, D95ON

B.1.1.529 Omicron A67V, A69-70, T9SI, G142D, A143-145, A211,
L212I, ins214EPE, G339D, S371L, S373P, S375F,
K417N_N440K G446S S477N. T47RK . F4R4 A

Table 5.1) The deletions and substitution mutations in human SARS CoV-2 spike protein according

to the different lineages.
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Protein | Non-bonding interactions; residues involved in RBD-ACE-2

Wild- Hydrogen bonds: Asn487-GIn24, GIn493-Lys31, GIn493-Glu35, Tyr449-Asp38,

type GIn498-GIn42, Thr500-Tyr41, Asn487-Tyr83, Asn501-Lys353, Gly496-Lys353,
GIn498-Lys353, Asn501-Lys353, Gly502-Lys353.

Ionic bond: Lys417-Asp30.
Hydrophobic: Tyr489-Phe28, Tyr489-Leu79, Tyr489-Tyr§3.

K417N | Hydrogen bonds: Asn487-GIn24, GIn493-Lys31, GIn493-His34, GIn493-Glu35,
Tyr505-Glu37, Asn501-Tyr41, Thr500-Tyr41, GIn498-GIn42, Asn487-Tyr§3,
Tyr495-Lys353, Gly496-Lys353, Gly502-Lys353, Thr500-Asp355.
Hydrophobic: Tyr489-Phe28, Phe486-Met82 and Phe486-Tyr§3.

N501Y | Hydrogen bonds: Ala475-Ser19, Asn487-GIn24, GIn493-Lys31, GIn493-His34,
GIn493-Glu3s, Tyr505-Glu37, Tyr449-Asp38, Thr500-Tyrd1, Asn487-Tyr83,
Gly502- Lys353, Tyr505-Arg393.

Ionic: Lys417-Asp30.
Hydrophobic: Tyr501-Tyr41, Phe486-Met82.

L452R Hydrogen bonds: Alad75-Ser19, Tyrd89-GIn24, Tyr453-His34, Lys417-His34,
GIn493-Glu3s, Tyr505-Glu37, Tyr449-Asp38, Thr500-Tyrd1, Gln498-GIn42,
Asnd87-Tyr83, Tyrd89-Tyr83, Gly496-Lys353, GInd498-Lys353, Gly502-Lys353.
Ionic: Lys417-Asp30, Lys458-Glu23, Glu484-Lys31.

Hydrophobic: Phe486-1le21, Phe486-Tyr83, Tyr489-Phe28.

T478K | Hydrogen bonds: GIn493-Lys31, GIn493-Glu35, Tyr505-Glu37, Tyr449-Asp38,
Asnd87-Tyr83, Tyrd95-Lys353, Gly496-Lys353, Asn501-Lys353, Thr500-Asp355,
Gly502-Lys353.

Ionic: Lys417-Asp30.
Hydrophobic: Phe486-Leu79, Phe486-Met82, Phe486-Tyr83.

E484K | Hydrogen bonds: Ala475-GIn24, Thr478-GIn24, GIn493-Glu35, Tyr505-Glu37,
Tyrd449-Asp38, Asn487-Tyr83, GIn498-Lys353, Asn501-Lys353, Gly502-Lys353,
Thr500-Asp355.

Ionic: Lys417-Asp30.
Hydrophobic: Phe486-Leu79, Phe486-Met82, Phe486-Tyr83.

S494p Hydrogen bonds: Ser477-Thr20, Ser477-Gln24, GIn493-Lys31, GIn493-Glu35,
Tyr505-Glu37, GIn498-Asp38, Thr500-Tyrd1, Asn487-Tyr83, GIn498-Lys353,
GIn498-Lys353, Gly502-Lys353, Thr500-Asp355, Thr500-Arg357, Tyr505-Arg393.
Ionic: Lys417-Asp30.

Hydrophobic: Phe486-Met82, Phe486-Tyr83.
N440K | Hydrogen bonds: Asn487-Gln24, Tyr489-Gln24, Ala475-Thr27, GIn493-Lys31,

GIn493-Glu3s, GIn498-Asp38, Thr500-Tyrd4l, Asn487-Tyr83, Gly496-Lys353,
GIn498-Lys353, Gly502-Lys353, Thr500-Asp355, Tyr505-Ala386, Tyr505-Arg393.
Ionic: Lys417-Asp30.

Hydrophobic: Phe486-Leu79, Phe486-Met82, Phe486-Tyr§3.

Table 5.2) The non-bonding intermolecular interactions between human SARS CoV-2 spike

protein RBD and human ACE-2 complex.

137




S. | Mutation vdW Std Coul Std RF Std | Cavity Std | Const | AG Std

No (keal/ Err kcal/ Err kcal/ | Err kcal/ Err kcal/ Err
mol) mol) mol) mol) mol)

1 Wild Type | -92.19 | 0.15 | -321.87 | 0.41 | 327.05 | 038 | -16.67 0.02 -2.89 | -13.75 | 0.02
2 K417N -9594 | 0.12 | -177.17 | 023 | 3454 | 0.28 | -16.33 0.02 -2.89 | -29.59 | 0.02
3 N440K +48.36 | 0.84 | -281.75 | 0.29 | 233.27 | 0.27 | -17.17 0.02 -2.89 | -20.18 | 0.81
4 L452R +71.35 | 1.77 | -420.37 | 0.51 | 341.95 | 040 | -17.63 0.02 -2.89 | -27.94 | 1.68
5 T478K -83.46 | 0.12 | -308.00 | 0.31 | 150.45 | 0.32 | -14.65 0.02 -2.89 | -29.67 | 0.03
6 E484K -87.37 | 0.12 | -439.40 | 0.35 | 387.00 | 0.34 | -15.49 0.02 -2.89 | -19.15 | 0.02
7 S494P -94.05 | 0.12 | -296.72 | 0.24 | 136.60 | 0.32 | -16.50 0.01 -2.89 | -31.24 | 0.03
8 N501Y -84.69 | 0.02 | -343.51 | 0.03 | 289.05 | 0.55 | -14.49 0.04 -2.89 | -18.98 | 0.06
9 K417T -90.00 | 0.12 | -204.21 | 0.24 | 179.70 | 0.23 | -16.17 0.01 -2.89 | -16.58 | 0.02

Table 5.3) Solvent interaction energies (SIE) in kcal/mol calculated from sietraj for the 250 ns
MD simulations trajectories for wild-type and mutant human SARS CoV-2 spike

5.4. Conclusions

protein RBD — ACE-2 complexes.

The MD simulation studies of the human SARS CoV-2 spike protein RBD and ACE-2 receptor
complex for wild-type and mutants; K417N, N440K, N501Y, L452R, T478K, E484K, S494P

reveal the molecular interactions underlying their binding affinities. The promiscuous nature

of the non-bonding interactions is facilitated by the structural plasticity of the RBD that is

accompanied by large conformational changes during the MD simulations. The mutant proteins

are characterized by larger number of clusters indicating greater conformational variability

between the proteins in different clusters. This suggests that the mutant proteins undergo

relatively greater conformational changes compared to the wild-type proteins. The SIE

analyses of human SARS CoV-2 spike protein RBD and ACE-2 complex suggests the basis

for positive selection of mutants that have led to more infectious variants resulting in rapid

spread of the COVID-19 disease.
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Abstract

Receptor tyrosine kinases (RTKs) are essential proteins in the regulation of cell signaling.
Tyro3, Axl and Mer are members of TAM RTKs and are overexpressed in several cancer
forms. Kinase inhibitors such as cabozantinib, foretinib are reported to inhibit TAM kinases at
nanomolar concentrations. The atomistic details of structure and mechanism of functional
regulation is required to understand their normal physiological process and when bound to
an inhibitor. The docking of cabozantinib into the active state conformations of TAM kinases
(crystal structure and computational models) revealed the best binding pose and the
complex formation that is mediated through non-bonding interactions involving the hinge

region residues. The alterations in the conformations and the regions of flexibility in apo and

complexed TAM kinases as a course of time are studied using 250 ns molecular dynamics
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Abstract

The dynamically active and inactive conformations of kinases play a crucial role in the
activation of intracellular downstream signaling pathways. The all-atom molecular dynamics
(MD) simulations at microsecond (ps) timescale and longer provide robust insights into the
structural details of conformational alterations in kinases that contribute to their cellular
metabolic activities and signaling pathways. Tyro3, Axl and Mer (TAM) receptor tyrosine
kinases (RTKs) are overexpressed in several types of human cancers. Cabozantinib, a small
molecule inhibitor constrains the activity of TAM kinases at nanomolar concentrations. The
apo, complexes of ATP (active state) and cabozantinib (active and inactive states) with TAM

RTKs were studied by 1 ys MD simulations followed by trajectory analyses. The dynamic

mechanistic pathways intrinsic to the kinase activity and protein conformational landscape in

the cabo7antinib boirind TAM kina<e< are revealed diie to the alteration< in the P-loon a-helix
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Abstract

The severe acute respiratory syndrome virus-2 (SARS CoV-2) infection has resulted in the
current global pandemic. The binding of SARS CoV-2 spike protein receptor-binding domain
(RBD) to the human angiotensin converting enzyme-2 (ACE-2) receptor causes the host
infection. The spike protein has undergone several mutations with reference to the initial
strain isolated during December 2019 from Wuhan, China. A number of these mutant strains
have been reported as variants of concern and as variants being monitored. Some of these
mutants are known to be responsible for increased transmissibility of the virus. The reason
for the increased transmissibility caused by the point mutations can be understood by

studying the structural implications and inter-molecular interactions in the binding of viral

spike protein RBD and human ACE-2. Here, we use the crystal structure of the RBD in

comblex with ACF-2 available in the niiblic domain and analv<e the 250 n< molectilar
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Chapter 8 - Structure-based methods in drug design

Lalitha Guruprasad, Priyanka Andola, Adrija Banerjee, Durgam Laxman, Gatta K.R.S. Naresh
School of Chemistry, University of Hyderabad, Hyderabad, India

Available online 5 June 2023, Version of Record 5 June 2023.

Show less A

:= Outline | g Share ®9 Cite

https://doi.org/10.1016/B978-0-443-18638-7.00003-7 71
Get rights and content 71

Abstract

Drug discovery using traditional methods is expensive on resources. Advances in algorithms for computational methods toward solving problems in
chemical biology and affordable computational costs have made a rapid revolution in the last three decades resulting in the discovery of novel drugs
for targeted therapy using rationale approaches. Structure-based drug design (SBDD) is a popular methodology employed when the structure of the
target receptor is known. For a chemical molecule to receive United States Food and Drug Administration (FDA) approval to be marketed as a safe
drug, it should have desired biological effects, pass all the clinical trials for its assessment of efficacy and safety, and the chemistry should be novel
enough to be patentable. SBDD methods initially design hit molecules that are based on receptor-ligand complementarity. Improvisation of the hit to
lead molecules is a cyclical process that comprises the computational design of chemical molecules, synthetic chemistry, experimental validation, and
further modifications till an optimized drug candidate that shows the therapeutic effect is discovered.
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