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1.1. Introduction 

1.1.1. The origin of kinases 

Kinases are a class of enzymes that belong to the transferase group and are required in order to 

add a phosphate group to selective substrates. Kinases play essential roles to regulate metabolic 

activities in the prokaryotic and eukaryotic cells (Das Evcimen et. al., 2007). Diverse classes of 

kinases originated from different cellular types to fulfil emerging metabolic needs in various cell 

types. Most classes of organisms have several families of kinases for genomic and cellular 

metabolic activities for cell survival from the past 3 billion years approximately (Miller et. al., 

2012). The kinase phosphorylation can be on various types of substrates like histidine, serine, 

tyrosine, threonine in proteins, and different types of phospholipids, carbohydrates and nucleic 

acids. Based upon substrate specificity, the kinases are named respectively and grouped into 

different categories. For example, kinases that phosphorylate serine/threonine residues in proteins 

are called as serine/threonine kinases, kinases that phosphorylate tyrosine in proteins are called as 

tyrosine kinases, and histidine kinases phosphorylate histidine, lipid kinases phosphorylate lipids 

such as phosphatidylinositol and etc (Aehnlich et al., 2021; Graham et al., 2014). The eukaryotic 

organisms need to respond to their external environmental factors with the role of protein kinases 

to help in various cellular coordination mechanisms. These activities are initiated by the cellular 

transduction signaling process through the cells to trigger activation of secondary messengers like 

cyclic adenosine monophosphates. Kinases have evolved in a single cell prokaryotic organisms 

earlier than eukaryotic unicellular and multicellular organisms around 1 billion years ago (Miller 

et al., 2012). Protein tyrosine kinases were identified in genomic analysis of choanoflagellates, 

metazoan species and various other Protista species. Diverse morphological domains and large 

abundance of tyrosine kinases are present in many Animalia also. For example, the Monosiga 

brevicollis species have more than 128 members of tyrosine kinases and the genomic analysis 

studied describes these kinases to have been existed in pre-protistaera species like Opisthokonts. 

The sister groups of metazoans and amoeba such as Ministeriavibrans comprise 103 diverse 

kinases with their genomic data preserved in Filasterea family (Lai, & Safaei, Pelech, 2016). The 

multicellular level communication has evolved after this family in order to increase the size and 

network from metazoans and choanoflagellates subgroups. Approximately 600 million years ago, 

there was a rapid increase in the number of tyrosine kinase functions and therefore the encoded 

genes in multicellular and unicellular species have remarkably increased, new tyrosine kinases 
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have evolved in ecological higher order organisms. Current Animalia cells protein components 

have increased to suit the cellular requirements; three major components in tyrosine kinases are 

required to catalyze the involvement of phosphate groups; the tyrosine kinases to add the 

phosphate group, protein tyrosine phosphatases to remove the phosphate group and 

phosphorylated tyrosine binding domains such as Src homology 2 (SH2) domain.  

1.1.2. Classification of protein kinases 

The superfamily of protein kinases are classified based upon the modification in protein and the 

conformational changes due to substrate molecules binding in a reversible manner or new 

secondary messengers generated.  Therefore, the protein kinases are classified into two types 

(Hunter et. al., 1985). First one is the protein kinases that undergo post-translational modifications 

in cellular signal transduction process due to phosphorylation of substrate molecules with the help 

of ATP as a co-factor. Phosphorylation is a post-translational modification, akin to methylation, 

glycosylation, lipidation, isoprenylation, partial proteolysis (Patterson et. al., 2014).  In the second 

classification, the kinase activity initiated new messenger like protein molecules.  According to 

studies (Patterson et. al., 2014: Glassman et. al., 2022), there are 568 human originated kinases in 

the entire proteome. It accounts for 2% of entire proteome in humans. Protein phosphorylation is 

performed by kinases with the help of ATP co-factor to selective hydroxyl group containing 

residues (serine, threonine and tyrosine) in the target protein. In general, most of the protein kinases 

catalyze phosphorylation of threonine or serine in substrate molecules and small group of kinases 

catalyze phosphorylation on tyrosine.   

1.1.3. The receptor and non-receptor tyrosine kinases  

1.1.3.1. Receptor tyrosine kinase family  

The classification of tyrosine kinases is based upon their location in the cell. They are defined as 

receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (nRTKs). The RTKs interact 

with many other downstream kinases to mediate physiological activities of the cell. Mainly the 

cellular communication is done with RTK signal transduction pathways. In biological systems, 

this process is quite complicated and yet synchronized during cellular signaling process with 

various kinase domains and regulatory proteins coordinating to decide the outcome of the cell in 

fundamental units of life (Glassman et. al., 2022). RTKs are the front line receptors for signal 

transduction processes in the entire protein kinase network. The RTKs are essential single-pass 

membrane spanning proteins in cellular signal transduction pathways (Lemke, 2013). All RTKs 
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share similar protein architecture, the amino terminal glycosylated extracellular region is stabilized 

by disulfide bonds followed by a membrane spanning segment, and an intracellular region that 

comprises a kinase domain (Graham, DeRyckere, Davies, & Earp, 2014).  Many of these RTKs 

are generally activated by receptor-specific ligands, for example, binding of epidermal growth 

factor (EGF) to the extracellular domain of EGF receptor causes receptor dimerization followed 

by kinase activation and autophosphorylation. The kinase domain motions indirectly trigger the 

structure and ligand based intracellular communications in metabolic activities. RTKs initiate the 

cellular communication with the help of surface bound cytokines. These are responsible for 

regulation, differentiation of leukocytes and its memory cells of immunological reactions, RTKs 

are involved in regulating conventional signaling process in cellular genome expression and 

differentiation and proliferation and apoptosis. These events lead to intracellular ligand recognition 

and downstream signaling events (Sasaki et al., 2006; Tsou et al., 2014). Therefore the activation 

of RTKs play a vital role in controlling protein expression, regulation of normal physiological 

events in cell survival, proliferation, growth and death. Abnormal overexpression and mutations 

in RTKs initiate uncharacteristic cascade of signaling pathways which have numerous effects on 

the cellular role of proteins and their activities, such as disruption of normal cellular functions, 

malignancy in cells, and support the development and progression of different human cancers 

(Bosurgi et al., 2013; Rothlin, Carrera-Silva, Bosurgi, & Ghosh, 2015; Chien et al., 2016).  The 

intracellular kinase domain in RTKs is a viable drug target for cancer treatment and several 

inhibitors have been designed and validated as cancer drugs (Huey, Minson, Earp, DeRyckere, & 

Graham, 2016; Kimani et al., 2016; Pinato, Chowdhury, & Stebbing, 2016; Schmitz et al., 2016). 

The upregulated RTKs have vital role in oncogenic signaling process that act as regular cells to 

inhibit the immunological reactions. It is an open challenge to study how RTKs are responsible for 

cancer and therefore to design their inhibitors in order to combat cancer (Davra, Kimani, Calianese, 

& Birge, 2016; Deng, Chen, & Han, 2016).  

One subfamily of RTKs consists of three proteins, Tyro3, Axl and Mer collectively called as 

“TAM RTKs”. TAM RTKs have an extracellular N-terminal region comprising two 

immunoglobulin (Ig)-like domains and two fibronectin type III binding domains, a central single 

trans-membrane spanning helix and an intracellular region comprising the kinase domain (Wang 

et al., 2016). The immune response is triggered by interferon (IFN), interleukins (ILs) during 

inflammation and malfunction of cell metabolic activities. TAMs undergo extensive post-

translational modifications such as glycosylation, phosphorylation and ubiquitination, their 
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molecular weights range from 100 to 140 kDa for Axl and Tyro3, and 165 to 205 kDa for Mer 

RTKs (Zhou et al., 2016). The important extracellular factors such as Growth arresting specific 

protein (Gas-6), Protein S (Pros1) and EGF, activate TAM kinases (Akalu, Rothlin, & Ghosh, 

2016, Patterson et. al., 2014: Glassman et. al., 2022). These ligands bind to the extracellular 

domains of RTKs which leads to their dimerization followed by specific residue 

autophosphorylation in the cytoplasmic polypeptide (Ekyalongo, & Yee, 2017). TAMs play 

crucial roles in a variety of normal biological functions such as spermatogenesis, bone physiology, 

controlling platelet aggregation, endothelial and vascular smooth-muscle homeostasis (Gay, 

Balaji, & Byers, 2017; Vouri, & Hafizi, 2017). TAMs regulate downstream signalling events are 

mediated by JAK, p38, MEK, phospholipase C (PLC) and PI3K that essentially play role in cell 

growth, apoptosis and survival (Graham, DeRyckere, Davies, & Earp, 2014).  It has been proposed 

that TAM kinases are emerging as a class of innate immune checkpoints that participate in key 

steps of anti-tumoral immunity (Akalu, Rothlin, & Ghosh, 2016). The TAM kinases are key 

transferases that exhibit distress transduction signaling process to further activate the T-helper and 

T-killer immune cells through caspase enzyme from apoptosis. These enzymes play an essential 

role in lysozyme activity of different malignant cell lines in our body. TAMs are associated with 

most cancers as overexpression of signaling pathways induced metastatic stage including 

angiogenesis formation to uncontrolled growth of malignant cells in human (Aehnlich et. al., 

2021). TAM RTKs are also reported to play crucial roles in disease conditions such as acute 

myeloid leukemia, breast, colorectal, lung, ovarian cancers and glioblastoma (Rankin, & Giaccia, 

2016; Knubel et al., 2014). Since TAMs are overexpressed in many oncogenic cells, some 

previously reported kinase inhibitors are experimentally validated as TAM RTK inhibitors (Wu et 

al., 2017; Wu et al., 2018). 

The three TAM kinase members share a high degree of sequence and structural homology in their 

kinase domains. Cabozantinib is a small molecule inhibitor that is targeted towards multiple 

kinases such as Axl, c-Met, VEGFR2, RET, KIT and FLT3 (Grüllich, 2014). Cabozantinib was 

approved by U.S. Food and Drug Administration (FDA) for advanced renal cell carcinoma, 

hepatocellular carcinoma and medullary thyroid cancer. In September 2021, FDA has approved 

cabozantinib also for differentiated thyroid cancer that has progressed following prior VEGFR-

targeted therapy. Cabozantinib is reported to bind TAM kinases with high affinity at nanomolar 

concentrations (Gajiwala  et al., 2017, Sultan  et al., 2017, Skora  et al., 2013, Turner  and Blythe, 
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2019, Herum, et al., 2017, Qin  et al., 2019, Lacy  et al., 2018, Pantano et al., 2016, Myers et al., 

2019, Robinson, 2013).  

1.1.3.2. Non-receptor tyrosine kinase family 

The nRTKs are intracellular located cytosolic enzymes. These kinases also catalyze the transfer of 

inorganic phosphate group from biological high energy molecule (ATP) to selective target protein 

tyrosine residues. Intracellular protein-protein interactions activate the nRTKs.  Src kinases are 

one of the members of nRTKs that are well studied. The Src kinases have a very different 

architecture compared to RTKs, but the regulation of these nRTKs have similar roles in cellular 

homeostasis and metabolic processes.  The nRTKs mediate the cytosolic regulation activities such 

morphogenesis, cell motility and cell division. Mutant nRTKs are overexpressed in protein 

signaling processes and their defective functions in many cell types are linked to diseases such as 

metastatic cancers, tumor necrosis. The Src kinase has distinct structural domains, specified as N-

terminal domain, Src homology 3 (SH3), SH2 domains, C-terminal domain and tyrosine kinase 

domain. Each of these domains perform a specific function essential to carryout normal signal 

transduction process.  The Src kinase is involved in various cellular activities without any external 

ligand activation, as it is a cytosolic protein to initiate the cellular functions with the help of 

phosphorylation at specific residues on itself (autophosphorylation) or neighboring (substrate) 

proteins. The N-terminal domain has one or more acylation sites and anchored the entire Src kinase 

protein to the cell membrane. The SH2 domain is a key element to bind the phosphorylated site of 

tyrosine (for tyrosine kinases) or serine/threonine (serine/threonine kinases) residues of the target 

protein. Whereas the SH3 domain binds to proline rich peptide. The selective tyrosine residues are 

phosphorylated on target protein with the help of ATP cofactor and referred to as a “tyrosine kinase 

domain”. 

1.1.4. Mechanistic pathways of tyrosine kinase activation  

Protein kinase activation is based upon the ligand binding and various growth factors induced 

kinase activity. The kinases can exist as active and inactive state forms. The ATP cofactor binds 

to the catalytic domain of RTKs whereas the phosphorylation takes places on hydroxyl group 

residues of target protein.  The catalytic site is defined as the nucleoside ribose sugar triphosphate 

of ATP binding to a cleft between the N-terminal and C-terminal domains connected with a hinge 

residues region (Kornev, A. P., Haste, N. M., Taylor, S. S., and Eyck, L. F. 2006). In a kinase 

domain. specified regions such as the phosphate binding loop; P-loop (Gly rich loop) located in 
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the N-terminal region, the helical region located opposite to P-loop represented as αC-helix region, 

the juxta membrane unfolding and refolding takes place in C-terminal domain in close association 

to DFG motif represented as “activation loop”.  The three residues interactions of selective resides 

from P-loop, αC-helix, DFG motif are key salt bridges to represent kinase active and inactive 

states. The salt bridge existed between (P-loop) Lys562 (amino acid numbering is as per the Axl 

RTK)- Glu585 (αC-helix) represented “active state” of RTKs where the dissociation of these 

interactions is described as “inactive state”. During these RTKs activation process, the P-loop and 

αC-helix outward (inactive) or inward (active) rotation with help activation loop folded into β-

sheet in active state, the activation loop refolded into helical structure exists as inactive state.  This 

can be confirmed with the help four consecutive hydrophobic residues movement from N-terminus 

to C-terminus as called regulatory spine. This can be generated as four non-consecutive residue 

motifs from four kinase domains as P-loop (Lys), αC-helix (Glu), DFG motif (Phe), catalytic loop 

(His).  there are eight non-consecutive residues from N-terminal to C-terminal represented as 

catalytic spine. The catalytic spine is ATP bound region for catalytic activity of tyrosine kinases 

as the two non-contiguous motifs of these spines are connected with catalytic loop and αF-helix 

region in the C-terminal domain of tyrosine kinases (Robinson, 2013; Mohanty et al., 2016; Hu et 

al., 2015). 

The kinase activity of RTK is triggered by its binding to ATP and Mg2+ that results in the transfer 

of γ-phosphate group to tyrosine containing protein target. The ATP binding cleft is located 

between the N- and C-terminal lobes, and at the hinge region connecting the two lobes (Kornev et 

al., 2006). The structurally important regions required for the activity of a protein tyrosine kinase 

include, the P-loop located between β1 and β2 strands, catalytic helix (α-helix) in the N-terminal 

lobe comprising the essential amino acid (Glu585, Axl amino acid numbering) with its side chain 

fluctuating between the active and inactive states of kinase. The distinction between the active and 

inactive states is also based upon the α-helical movement towards or away from the ATP binding 

site. The presence of catalytically important Lys567 (close to P-loop) - Glu585 (α-helix) is an 

essential ionic interaction in the active Axl kinase from the crystal structure in protein data bank 

(PDB). The disordered activation loop (689-724) in the C-terminal lobe has altered conformational 

states that are variable among the kinase structures reported so far. An ionic interaction between 

the side chains of Asp581 (αC-helix) and Lys695 (activation loop) is important in the kinase 

structure and allostery. The synchronous fluctuations in the P-loop, α-helix and activation loop 

leads to spatial alteration in the shape of the enzyme active site pocket and distinct structural 
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features such as the inward/outward rotation of α-helix and expansion of the activation loop. The 

Lys567 - Glu585 salt bridge is the indication for the active state of TAM RTKs. A kinase domain 

has two kinds of active sites; regulatory substrate site and catalytic active site that become available 

during allosteric competitive inhibitor binding pathways in the cellular signal transduction process. 

Structure analyses revealed the presence of two non-contiguous structural motifs, regulatory and 

catalytic spines (Robinson, 2013, Mohanty et al., 2016, Hu et al., 2015) that are required for 

stabilizing the protein in the active state. 

1.2. Severe acute respiratory syndrome coronavirus 2 

The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has caused a global 

pandemic of the coronavirus disease 2019 (COVID-19) during the last 40 months. COVID-19 has 

been the single major cause of death due to any disease within a short span of time. SARS CoV-2 

was first reported in individuals known to have been in contact with wildlife animals at the live 

animal and seafood market in Jianghan District, Wuhan (Zhu et al., 2020).  SARS CoV-2 is similar 

to SARS CoV (2003 to 2005), Middle East respiratory syndrome coronavirus (MERS CoV) (2012 

to 2013) and other human CoVs in the 20th century that has led to epidemics resulting in severe 

respiratory diseases and deaths (Guruprasad, 2021a). These viruses harbour ~ 30K bp single 

stranded positive-sense RNA genome. SARS CoVs enter human cells through fusion of viral and 

host cellular membranes mediated by the interaction between viral spike protein and human 

angiotensin converting enzyme-2 (ACE-2) (Guruprasad, 2020; 2021b; Li et al., 2003; Shang et al., 

2020). The SARS CoV-2 spike protein is a heavily glycosylated homo-trimeric protein with 

~1,273 amino acids and the sequence region (amino acids 333-520) constitutes the receptor-

binding domain (RBD) that interacts with human ACE-2 receptor. The three dimensional 

structures of the spike protein apo and RBD bound forms to human ACE-2 receptor are available 

in the public domain (Wang et al., 2020; Xiao et al., 2021; Xu et al., 2021). Viruses acquire 

mutations over a period of time during host infection giving rise to new sequence variants. RNA 

viruses have much higher mutation rates compared to DNA viruses. The viruses that undergo 

favourable mutations continue to persist in host. Due to mutations, the viruses might gain ability 

to evade detection by specific viral diagnostic tests, or decreased susceptibility to therapeutic 

agents, such as, monoclonal antibodies and small molecule drugs. Some mutations can produce 

viruses with new antigenic determinants and the antigenically altered viruses may be able to cause 

disease in previously resistant or immune hosts or cause vaccine rejection (Fleischmann, 1996). 

The wild-type refers to first reported strain of the human SARS CoV-2 virus isolated from patient 
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in Wuhan, China (NCBI_id: NC_045512) (Wu et al., 2020). With respect to wild-type proteins, 

the mutations and sequence variants are collected through complete genome sequence and 

epidemiological studies of SARS CoV-2 strains across populations from various geographical 

locations and different times. These sequences have been deposited in the NCBI 

(www.ncbi.nlm.nih.gov) and GISAID (https://www.gisaid.org/) databases. Sequence analyses 

have reported deletions, insertions and substitution mutations in all SARS CoV-2 proteins 

including the spike protein (Guruprasad, 2021b; Mohammadi et al., 2021) demonstrating that 

SARS CoV-2 has an innate ability to undergo mutations rapidly. SARS CoV-2 vaccines show 

protective efficacy towards humans by providing neutralizing antibodies which recognize the viral 

spike protein (Kyriakidis et al., 2021). The effects of spike protein mutations in SARS CoV-2 on 

the neutralization of antibodies have been studied (Rees-Spear et al., 2021). Genome sequencing 

and protein sequence analyses have shown the emergence and persistence of some SARS CoV-2 

spike protein mutations in subsequent generations during human infection. One of the early 

identified mutations in spike protein, D614G is associated with lower RT-PCR cycle thresholds 

suggestive of higher viral loads but not with increased disease severity (Korber et al., 2020). The 

D614G mutant spike protein increases SARS CoV-2 infection of multiple human cell types 

compared to the wild-type strain (Daniloski et al., 2021) and efficiency of viral entry with 

enhanced ACE-2 binding affinity (Ozono et al., 2021) by assembling more functional spike protein 

into the virion (Zhang et al., 2020). Epidemiological evidence suggests that the D614G variant has 

increased ability to spread more quickly than viruses without this mutation. Therefore, the D614G 

mutant has become dominant in the SARS CoV-2 spike protein. The Phylogenetic Assignment of 

Named Global Outbreak Lineages (PANGOLIN) software tool (Rambaut et al., 2020) implements 

a dynamic and rational nomenclature of the SARS CoV-2 strains. The PANGO lineages available 

at website (https://www.cov-lineages.org) refers to the cluster of sequences associated with distinct 

geographical locations with evidence of onward spread and captures the emerging trends of 

mutations from genomic epidemiological surveillance and outbreak investigations. The US 

government SARS CoV-2 Interagency Group (SIG), initially   developed a variant classification 

scheme that defines three classes of SARS CoV-2 variants; variant of interest, variant of concern 

and variant of high consequence. A variant of interest has specific genetic markers associated with 

changes in receptor binding, increased disease severity, reduced efficacy of treatments, reduced 

neutralization by antibodies generated against previous infection or vaccination, potential 
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diagnostic impact, increased proportion of clusters of cases and therefore increased 

transmissibility.  

A variant of concern must display evidence of increased transmissibility, more severe disease with 

evidence of reduced effectiveness of treatments or vaccines, or failure in diagnosis detection, 

treatments, or vaccines leading to increased hospitalizations or deaths. The SARS CoV-2 variants 

are classified into four classes; variant being monitored, variant of interest, variant of concern and 

variant of high consequence. The lineages for variant being monitored and variant of concern along 

with their WHO label and mutations in the spike protein are documented. Currently, there are no 

mutations classified under variant of interest or variant of high consequence. The B.1.1.7 lineage 

first detected in UK during September 2020 was subsequently reported in several countries 

including India. The substitution mutations in the RBD of spike protein in this lineage were; 

E484K, S494P, N501Y. This lineage is attributed to 50% increased transmissibility (Davies et al., 

2021), increased severity based on hospitalizations and fatality rates compared to other variants 

(Horby et al., 2021). The B.1.351 lineage was first identified in South Africa during early October 

2020, Zambia during late December 2020 and subsequently reported in several countries. The 

substitution mutations in the RBD of spike protein in this lineage were; K417N, E484K, N501Y. 

This lineage is also attributed to 50% increased transmissibility  (Patone et al., 2021). The E484K 

mutation may affect neutralization by some polyclonal and monoclonal antibodies (Patone et al., 

2021). The P.1 variant was first reported in Japan in travelers from Brazil, subsequently, Manaus, 

in the Amazon region and also in the United States at the end of January 2021. The P.1 lineage 

mutations in the RBD of spike protein were; K417T, E484K, N501Y. The P.1 variant mutations 

may affect its transmissibility and antigenic profile resulting in its decreased ability to recognize 

antibodies generated through a previous viral natural infection or through vaccination (Harvey et 

al., 2021). The B.1.617.2 lineage contains the mutations; K417N, L452R, T478K in the RBD of 

spike protein. The B.1.427 and B.1.429 variants of SARS CoV-2 were first detected in southern 

California, USA during early 2021 that comprises the L452R mutation associated with the RBD. 

Both variants have 20% increased transmissibility (Deng et al., 2021). The B.1.525 lineage 

comprises the E484K mutation and the B.1.526 lineage comprises mutations; L452R, S477N, 

E484K in the spike protein RBD. The sub-lineages of B.1.617; B.1.617.1 comprises the mutations; 

L452R, E484Q; B.1.617.3 comprises mutations; L452R, E484Q and B.1.672.2 (delta variant 

according to WHO classification) and variant of concern comprises mutations; K417N, L452R, 

T478K. The P.2 lineage first reported in Brazil during October 2020 has four mutations in the 

http://www.cdc.gov/coronavirus/2019ncov/casesupdates/variantsurveillance/-variantinfo.html)%20(Patone
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entire spike protein with the E484K mutation in RBD. The B.1.621 lineage that originated in 

Colombia during January 2021 has the mutations; E484K and N501Y in RBD.  

1.3. Materials and methods 

1.3.1. Protein sequence databases 

BLAST: The Basic Local Alignment Search Tool (BLAST) is a rapid basic nucleotide and protein 

sequence alignment tool from sequence databases by sequence searches to generation of 

phylogenetic tree of various organisms. The DNA and RNA, protein sequence datasets are 

deposited in many online libraries (NCBI, UNIPROT online databases). BLAST is a sequence 

alignment search tool through web resources to connect different species of sequence data in a 

stochastic and robust manner. It searches the different genetic sequences in multiple contexts as 

specific sequence motif and its identification search, RNA and DNA, protein database searches of 

respective gene location and mapping of similar gene sequences (Altschul et al., 1990). This 

algorithm has a large pool of resource to sort the protein sequences of desired results. The sequence 

alignments from BLAST can be a guide to find a homologous protein of known structure that 

could be used as a template for homology modeling. Based upon this sequence alignment, the 

Phyre2 server proposed theoretical protein homology models to compare with actual sequence 

based designed models (Shen, & Sali, 2006; Laskowski et al., 1993). 

1.3.2. Multiple sequence alignment of protein sequences  

Multiple sequence alignment is a series of stacked algorithms resulting in the evolutionary 

hierarchy alignment of genomic sequences in systematic manner from one or more organisms. 

This alignment series describes about the evolutionary events like genetic insertions, mutations, 

deletions and overall rearrangement, that is further modified in younger evolutionary generations. 

These alterations are occurred in DNA, RNA and protein sequences.  The comparative sequence 

analysis can be done with BLAST and online multiple sequence alignment webserver by genetic 

sequence databases only. The multiple sequence alignment is a fundamental technique to align the 

genomic sequences in the modelling methods of interdisciplinary biological sciences referred to 

as Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers, & Higgins, 2018) in 

scientific community.  It is one of the top most cited research papers in fundamental biological 

research field (Chatzou et al., 2016). The multiple sequence alignment is followed by phylogenetic 

tree generations and domain analysis and their reconstruction of selective motif from sequence 

information. Major purpose of multiple sequence alignment is to align the structural genetic 
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sequences into a way such that it will represent evolutionary, structural and functional relationship 

among different organisms. For building a multiple sequence alignment there is a need for scoring 

functions to quantitative merits in a relative manner with respect to sequence relationships. It can 

be estimated by using best scoring model function with respect to sequence data (Madeira et al., 

2022).  

1.3.3. Protein homology modelling and validation  

The hierarchy of protein structural information is defined at four levels; primary, secondary (α-

helical and β-sheet), tertiary and quaternary structures.  The functional aspect of a protein structure 

is represented as three dimensional spatial arrangement of polypeptide chains consisting of main 

chain and side chains (Luthy et al., 1992). The protein structures are solved using X-ray protein 

crystallography, nuclear magnetic resonance (NMR) and cryo-electron microscopy in three 

dimensional form as stored in PDB format in many webservers (RCSB PDB.org) (Berman et al., 

2007). The three dimensional structure of a protein provides useful insights of morphological and 

functional activity at molecular basis of protein conformers. Because in the entire protista, animalia 

and plantae kingdoms 1/3 of whole proteome sequences are related to one of the protein sequences 

of known structure. As there are inherent difficulties in solving the structures of proteins, the 

building of protein three dimensional model structures has gained popularity as it is a reliable 

method. Based upon this criteria, the rate of modelled protein structures by comparative structure 

modelling method is a far higher order than known experimentally determined structures. The 

comparative modelling methods have high accuracy for low resolution X-ray structure, which are 

very hard to render through single X-ray diffraction method. The number of methods to design 

protein models using homology modelling methods are increasing rapidly to evolving change in 

computational biophysics research area. The protein homology modeling technique is 

computationally viable protein structural prediction method to deduce the three dimensional 

protein model as replica of existing template in  tertiary structure  and fill any the missing residues 

in secondary structural or loop regions and from the given protein sequences (Cavasotto & Phatak, 

2009).  It is one of the efficient tools to generate the non-existent and difficult to crystallize proteins 

with the existing laboratory techniques. The biological simulations results have been depending 

upon the maximum quality of three dimensional homology models. The homology modelling is 

key computational technique to enhance the protein ligand and protein-protein, protein-DNA/RNA 

interactions in biological simulations with statistical mechanics (Harding et al., 2002). Homology 

modelling of protein is very crucial in mutations induced in wild type protein sequences and their 
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mutated homology model generation is important for mutation analysis of these models in docking 

and MD simulated systems (Muhammed, Aki-Yalcin., 2019).  The virtual model generation of 

three dimensional protein structures are essential to search for effective inhibitor of particular 

protein active site models in drug discovery process. It would enhance the drug discovery possible 

with practical unknown and inaccessible protein models in experimental process. The protein three 

dimensional structural interactions with inhibitor and substrate molecules can be possible with 

these virtual model generations without physical need of protein samples. There are key steps 

involving to generate the effective comparative modelling of protein from genetic sequences. To 

identify selective homology gene sequence extracted from various genetic sequence libraries 

(NCBI database) with the help of phylogenic genetic sequence order. Based upon the multiple 

sequence alignment of desired template and unknown protein sequence or known target protein 

superpose to identify the % of sequence identity to generate maximum three dimensional protein 

structural model accuracy (Kopp & Schwede, 2004). The model building and loop refinement, 

side chain rotamers modeling is done with model build python script from Modeller (Shen, &Sali, 

2016; Yang  et al., 2012) or SWISS-MODEL (Bordoli et al., 2009). The selective lower DOPE 

scores models are further validated with model optimization. The model quality evaluation of 

given protein sequence to generate the replica of structural morphology from template structure.  

The tertiary homology model generation methods include Modeller, I-TASSER, AlphaFoldDB, 

SWISS-MODEL, Molecule operating Environment (MOE), PHYRE2, PRIME webtools to build 

the protein three dimensional models from genetic sequences (Varadi et al., 2022; Waterhouse et 

al., 2018; Kelley et al., 2015). The protein model validation is done by stereochemical model 

validation for allowed residues region with Ramachandran plots and with ERRAT, PROCHECK 

validate three dimensional spatial orientation of homology models (Laskowski et al., 1993; 

Colovos, Yeates., 1993; Ramachandran et al., 1963). 

1.3.4. Protein data bank  

Protein data bank (PDB) is a web-based protein structure database available worldwide from 1999 

onwards. It is a single archive of protein structural database sometimes in complex with various 

biomolecules from structural biologists. It is a web based server (wwPDB) where the archive 

datasets are obtained from structural biologists, biochemists, protein crystallographers who solved 

the protein structures using NMR, cryo-electron microscopy and X-ray crystallography. This was 

organized by four members of institutions as PDB in Europe (PDBe), Biological Magnetic 

Resonance Data Bank (BMRD) and Research Collaboratory for Structural Bioinformatics (RCSB) 
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PDB from USA and PDB bank from Japan (PDBj) (Tong, Ranganathan, 2013). These entities 

collectively maintain the RCSB PDB (https://www.rcsb.org/) web archive of single protein 

database of any missing structural biomolecular data from global scientific community. It is an 

accessible web archive server as free of cost to provide experimental and computed protein 

structural models included from AlphaFold and Model Archive databases (Bittrich et al., 2022). 

From 2020 onwards, there is enormous increase in the deposited crystal and computational protein 

structures into these databases due to COVID19 pandemic. Therefore, the PDB database hierarchy 

has been done in PDB entry of single crystal protein structure, chemical entity of small molecules, 

multiple instances of any individual chemical entity, assembly of all polymorphic chains and other 

non-polymeric chemical entity considered assembly with unique PDB id in RCSB PDB databases 

(Burley et al., 2022). This databank provides high volume of protein sequence and three 

dimensional coordinate system of individual protein structures including cryo-electron microscopy 

structures at ultra-low temperature crystallography with lasers. As on 27th July, 2023, there are 

207,791 experimental structures from the PDB and 1,068,577 computed structures available at 

www.rcsb.org/.  

1.3.4.1. Small molecule databases 

In ligand-based and structure-based drug design methods, the small organic molecules three 

dimensional coordinates are extracted from various small molecule drug databases. The small 

molecule crystal information files (cif) are deposited from large number of scientists including 

multiple domains scientific community groups around the globe. Drug hunter database provides 

(https://drughunter.com/molecules-of-the-month/) all the FDA approved and commercially 

available drugs in market with a monthly update. The national cancer institution is one of the large 

cancer chemotherapeutics database (https://dtp.cancer.gov/databases_tools/). There are many 

small molecule databases generated from a pool of chemical libraries such as CHEMBL32, 

MolProt, PubChem, Zinc, ChemDiv and ChemSpace (Bates et al., 1995; Hollingshead et al., 

2022). These libraries are database repositories of small molecular inhibitors of millions of 

compounds for selective protein active site target.  The pharmacokinetics studies of small 

molecules are done with SwissADME webserver tools. These studies are validated with known 

virtual and experimental adsorption, distribution, metabolism, excretion and toxicology (ADMET) 

(Potts et al., 1992; Daina et al., 2017) results validated with phase II and III clinical trials of small 

molecules for potency towards a specified disease. The pharmacokinetic properties of all screened 

drugs are described with SwissADME, a web based online server tool.  
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1.3.4.2. Pharmacophore generation and virtual screening of chemical libraries  

The computer aided drug discovery has major bottlenecks in the design of suitable drug molecules 

for specific protein active site target with different and viable chemical environment entities with 

unique molecular mass such that they qualify as drug molecules. In this direction, one of the major 

challenges is to select a specific number of small molecular hits to satisfy the conditions of 

approval for drug-like candidates by agencies such as FDA. Therefore, a modern computational 

advancement is by effective retrieval of pharmacophore models based drug-like hit molecular 

query to initiate the hunt for target protein binders towards a disease condition with the help of 

online search databases; Pharmit (Sunseri,  Koes, 2016), iDrug (Chen, & Cheng, Li, 2020), Dock 

Blaster (Irwin et al., 2009) and related methods (Gan et al., 2023; Singh, & Chaput, Villoutreix, 

2021).  The virtual screening can be done based upon morphology of protein active site and the 

chemical environment around the reference small molecular inhibitor (pharmacophores). 

However, the virtual screening of small molecules is very prominent for drug discovery in the 

modern data era due to the availability of advanced algorithms and high performance 

computational facilities around the worlds (Folding@Home, supercomputing facilities availability 

in Switzerland, Germany USA, UK, France, China and Japan) (Maia et al., 2020). The virtual 

screening can be easily done with high throughput screening with a large server of computer cluster 

to decipher the desired small molecular entities which is cost effective and has greater reliability 

in finding appropriate pharmaceutically active relevant hit molecules from large virtual databases. 

Virtual screening is an in silico method for structure based query against protein three dimensional  

structure active site to select desired hit molecules by searching various small molecules data 

libraries. Virtual screening works like a funnel to segregate the small molecules based upon their 

pharmacophore features and molecular mass and should be viable to inhibit cavities in the 

environment of protein binding sites.  This technique has numerous advantages during the drug 

development and optimization to search for bioactive hit molecules. These virtual databases 

comprise molecules with appropriate biological activity to optimize a candidate molecule of 

interest for required protein targets to finally lead to a drug molecule. After selection of optimized 

hit molecules, the pharmacodynamics and toxicological data prediction can be deduced from their 

respective structural and physiological properties (Lill., 2013; Daina,  Michielin,  Zoete. 2017). 

The virtual screening was first developed in 1980 due to the computational advancement and 

abundance of synthetic biochemical active molecules to target many virtual three dimensional 

protein coordinates available in PDB databases (Anderson, 2003).  While the experimental in-vitro 
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screening of active pharmaceutical ingredients (API) is more tedious and highly expensive in terms 

of traditional drug discovery like high throughput screening, the virtual screening is an excellent 

in silico tool to find the most probable and appropriate drug-like entities to bind the selective and 

precise active site regions of particular protein targets. This methodology is cost efficient and 

without wastage of external solvent chemicals and without the requirement of any other dedicated 

instrumentation (Lill, 2013). 

The virtual screening is a systematic computer aided drug discovery tool to design the effective 

small molecule inhibitors based upon pharmacophore features of known drug chemical entities 

and protein active site complementarity with effective non-bonding interactions mediated with the 

surrounded residues. The selection of pharmacophore features is based on the complementarity of 

protein receptor – ligand or inhibitor complex.  ZINCPharmer (Koes, & Camacho, 2012), Pharmit 

(Sunseri & Koes, 2016) are some of the popular pharmacophore generation online webservers. 

The pharmacophore generating methods are used to generate the best pharmacophore for the 

design of hit molecules binding to selective target protein. The best generated pharmacophore is 

used to screen online small molecule databases. The databases available in the Pharmit server are 

used for pharmacophore based virtual screening (Sunseri & Koes, 2016). It screened libraries of 

millions of compounds based upon pharmacophore and molecular shape modalities with advanced 

pre-built structural screening algorithms through the online webserver. The possible features 

available in the Pharmit server are, hydrogen bond donor, hydrogen bond acceptor, hydrophobic 

and ring aromatic. Finally, it provides comprehensive query optimized hit molecules with online 

platform for structure based virtual screening method. The virtual screening is done based upon 

selective protein active site domain and ligand pharmacophore chemical entity surrounded by 

residue environment in protein of interest complexed with known inhibitors. The molecules 

obtained based on lower root mean square deviation (RMSD) and fewer rotatable bonds are often 

selected. An in-house database of the downloaded molecules is prepared after adding hydrogens 

and their structure refinement using structure visualization tools such as Discovery Studio 3.5. The 

identified molecules are passed through the virtual screening protocol using PyRx (Dallakyan et 

al., 2015) by docking the molecules into the binding site of Ligand. The screened-in molecules 

above a certain binding energy are selected for molecular docking studies. 

1.3.5. Computer aided drug design 

The structure based drug design has gained popularity in the last 25 years due to the availability 

of enhanced computational genomic data and proteomic approaches, molecular modeling 
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methodologies to design effective protein active site inhibitors. The structure based inhibitor 

design has many high hierarchical levels to select the protein target and detect the model active 

site for selective inhibitor design. This method is continuous and iterative cyclic process until the 

lead optimized hit molecules entered in phase-I clinical trials often starting from a chemical 

scaffold. The initial phase cycle of structure based drug design has selective gene cloning, protein 

purification and experimental techniques for structure determination using instrumental techniques 

such as X-ray crystallography, nuclear magnetic resonance or cryo-electron microscopy. 

Alternatively, homology modeling of protein structures or structures based on distant relationships 

can be generated. The selective active sites or allosteric sites can be defined from protein 

structures. Here the computational algorithms have a key role to identify most probable binding 

sites to further validate them as selective drug binding sites (Mokaya et al., 2023). Some selective 

molecules to bind the active sites can be designed based on pharmacophore features of substrate 

or inhibitor molecules by employing computational methods.  

The molecular docking is carried out in an iterative manner so that the lead score hit molecules are 

constantly modified for selective drug target bound at receptor active site with highest binding 

affinity.  The top priority selective hit molecules are synthesized or commercially purchased with 

highest purity to validate the receptor-hit molecules using experimental binding assays. Various 

in-vitro, in-vivo and cell toxicology studies are required to validate the biological mimic of hit 

molecules from the biochemical studies. The drug target and lead optimized molecules must have 

good appraisal results for bioavailability and lead molecules affinity towards target protein in 

general should be good.  Then the modified lead molecule moves from micromolar inhibition zone 

to nanomolar inhibition zone during assays in various biological systems. If all the laboratory tests 

are positive, the lead molecules enter into various phases of clinical trials along with pharmacology 

studies. In computational methods, the targeted receptors can mimic the experimental conditions 

with the known selective number of lead hit molecules binding to facilitate the more successful in-

vitro and in-vivo studies by providing biomimicry studies for lead target of receptor-hit molecules 

complexes (Anderson, 2003).  

 



18 
 

1.3.5.1. FDA approved kinase inhibitors and their receptor targets 

(Leone et al., 2023; Lee, & Yeoh, Low, 2023; Roskoski, 2022; Roskoski, 2023; Lui et al., 2022;    

 

 

S.No Target 

kinase  

FDA approved inhibitors (year) 

01 ALK Alectinib (2015), Brigatinib (2017), Crizotinib (2011), Ceritinib (2014) , 

Lorlatinib (2018),    

02 BCR-ABL Asciminib (2021), Bosutinib (2012), Dasatinib (2006), Imatinib (2001), 

Nilotinib (2007), Ponatinib (2012),  

03 BTK Acalabrutinib (2017), Ibrutinib (2013), Zanubrutinib (2019) 

04 CDK4/6 Abemaciclib (2017), Palbociclib (2015),  Ribociclib (2017), Trilaciclib 

(2021),  

05 ErbB2 Neratinib (2017), Tucatinib (2020) 

 EGFR Afatinib (2013),  Brigatinib (2017), 

Dacomitinib (2018),  Erlotinib (2004),  Gefitinib (2003),  Lapatinib 

(2007), Mobocertinib(2021), Neratinib (2017), Olmutinib (2016),  

Osimertinib (2017), Osimertinib (2015) 

06 Flt3 Gilteritinib (2018), Midostaurin (2017),  

07 JAK1/2/3/ 

STAT 

Abrocitinib (2022), Baricitinib (2018), Fedratinib (2019),  Pacritinib 

(2022), Ruxolitinib (2011), Tofacitinib (2012), Upadacitinib (2019),  

08 Kit Ripretinib (2020),  

09 MEK1/2 Binimetinib (2018),  Cobimetinib (2015), Selumetinib (2020),   

Trametinib (2013) 

10 MET  Capmatinib (2020),  

Tepotinib (2021),  

11 mTOR Everolimus (2009), Sirolimus (1999) 

12 PI3K  Copanlisib (2017), Temsirolimus (2007),  

13 ROS1 

(TAM) 

Crizotinib (2011), Entrectinib (2019) 

Cabozantinib (2012),  Erdafitinib (2019) 

14 RAF Dabrafenib (2013), Vemurafenib (2011), Encorafenib (2018) 

15 RET Selpercatinib (2020), Cabozantinib (2012), Pralsetinib (2020), 

Selpercatinib (2020),  

16 ROCK1/2 Netarsudil (2018)  

17 Syk Fostamatinib (2018),  

R406 (Fostamatinib) (2018),  

18 TRK Larotrectinib (2018),  Ibrutinib (2013), Entrectinib (2019), Acalabrutinib 

(2017), Zanubrutinib (2019),Deucravacitinib (2022), Pexidartinib (2019), 

Larotrectinib (2018),  

19 VEGFR2 Sunitinib (2006), Erdafitinib (2019), Axitinib (2012),Cabozantinib 

(2012), Futibatinib (2022), Infigratinib (2021),Lenvatinib (2015), 

Nintedanib (2014), Pazopanib (2009), Pemigatinib (2020),  Regorafenib 

(2012), Sorafenib (2005), Tivozanib (2021), Vandetanib (2011),  
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1.3.6. Molecular docking  

Molecular docking is one of the in silico drug discovery tools to obtain a first crude approximation 

about the ligand orientation into receptor active site or a probable pose of host-guest complex. In 

the case of protein and ligand or inhibitor complex, molecular docking is the key tool to investigate 

the best docked pose of a ligand molecule in the enzyme active site. Molecular docking can be 

performed in multiple ways, one is blind docking and the other is selective active pocket region of 

protein for docking location. If the active pocket of protein is unknown, the blind docking is the 

initial optimization in docking process later it should proceed into selective active site region. It is 

an iterative process and multiple self-consistent procedures would give better docking pose for a 

given protein-ligand complex. The aim of docking procedure, is to search the effective and 

predictive active drug pose to bind the receptor as principal binding space occupied in three 

dimensional protein structure. The docking is an in silico plotting ligand pose optimized for all 

possible three dimensional ligand conformers in possible chemical space of binding location in 

three dimensional protein structure coordinates. Generally, the docking procedure depends mainly 

upon two factors as effective docking orientation in three dimensional space and docking scoring 

functions to achieve maximum success for docking pose for three dimensional small molecules. 

The docking methods are classified based upon the chemical environment around the hit molecules 

and the flexibility of the receptor or protein active site pose in three dimensional structure. The hit 

molecules are quite flexible in docking pose due the higher chance to orient the hit molecule in 

active site of protein and chemically rigid manner to interact with active residues of protein. 

Therefore the flexible docking process is involving both protein and ligand chemical space to build 

non-bonding interactions among them. However, the flexible docking is more computationally 

intensive and efficient in terms of accuracy and probability to find ideal hit molecule’s docking 

poses. In general, the protein is in a rigid manner, the ligand or inhibitor molecules are quite 

flexible and dynamic in active docking pose. Here some of the docking methods follow the above 

procedure to fit the hit molecules in active site of protein such as AutoDock4, CDOCKER, PyRx, 

LibDock and etc (Kramer et al., 1999; Wu, 2003; Morris et al., 2009; Torres & Olson., 2019). But 

GOLD, DOCK, Glide docking procedure predicted the docking pose based upon docking scoring 

function as both receptor and ligand are flexible and complementary to each other (Friesner et al., 

2004; Lang et al., 2009; Verdonk et al., 2003; Zhao & Caflisch, 2013). However, the both ligand 

and protein molecules are rigid positions in ZDock and RDCOK methods (Chen et al., 2003; Li et 

al., 2003). In molecular docking technique, various non-bonding interactions involved between 
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ligand and protein include electrostatic attraction forces, hydrogen bonds, hydrophilic and 

hydrophobic interactions of residues and partial charges on specific functional group from residues 

in vicinity on the tertiary structures. The docking results are compared with initial reference crystal 

PDB structure to consider for reference to obtain good docking poses of ligands.  The sorting of 

docking poses are based upon maximum non-bonding interactions and suitable docking binding 

free energies and best docking scorings for efficient docking site search method. The molecular 

docking can be done in a systematic procedure in AutoDock; i) to view protein and hit molecules 

in three dimensions, rotate and scale in real time. ii) Add all hydrogens or just non-polar hydrogens 

to protein iii) Assign partial atomic charges to the ligand and the macromolecule (Gasteiger or 

Kollman United Atom charges). iv) Merge non-polar hydrogens and their charges with their parent 

carbon atom. v) Set up rotatable bonds in the ligand using a graphical version of AutoDock4 tools 

or any graphical dock viewer. vi) Set up the AutoGrid Parameter File (GPF) using a visual 

representation of the grid box and slider-based widgets. vii) Set up the AutoDock Parameter File 

using AutoDock4 module. viii) Launch AutoGrid and AutoDock with parameter file for 

calculating the grid of the molecular basis and flexible docking calculations done for ligand to 

obtained optimum docking pose in the presence of active site of protein. Ix) Read the results of an 

AutoDock job and graphically display them, while comparing with crystal structure of protein. x) 

View iso-contoured AutoGrid affinity maps and binding free energies (docking scores obtained 

from Glide, GOLD docking method). 

1.3.7. Absorption, distribution, metabolism, excretion and toxicology studies 

The assessment of ADMET properties are required to find the drug-like properties of bioactive 

molecules, potent enough to reach the target site located in various body parts and that the chemical 

entity stays just long enough to perform its biological activities. The ADMET properties are the 

pharmacokinetics properties, effective clinical cell toxicity and clinical interferences caused in 

normal body physiological processes after clinical drug administration in healthy individuals or 

patients.  These are the properties of clinical drug molecules to maintain optimal pharmacophore 

drug like properties while drug action at the desired site in our body. These properties are very 

crucial to understand the experimental in-vivo, in-vitro pharmacological properties with selective 

drug studies. The pharmacokinetic properties of the virtual screened molecules were assessed with 

SwissADME (http://www.swissadme.ch) (Daina, Michielin, &Zoete.,2017) web-based server 

tool. The drug likeness properties are represented in the form of topological polar surface area 

(TPSA), Consensus Log Po/w, LogS (ESOL), LogKp (skin permeation) (cm/s), synthetic 

http://www.swissadme.ch/
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accessibility (Daina, Michielin, &Zoete., 2014,  Ertl, Rohde, & Selzer., 2000,  Potts, & Guy., 

1992). ADMET are the key notable pharmacokinetic properties to qualify the drug like small 

molecules for clinically approved pharmacological properties.  

The Lipinski’s rule of Five (Ro5) were developed in Pfizer by Christopher Lipinski (Lipinski et 

al., 2004) to validate small organic molecules for drug-likeness for oral administration. Most of 

the small molecular inhibitors follows these rules to act as drug like candidates in oral route. In 

general, the Lipinski’s rules suggest the small molecules has molar mass less than 500 g per mol. 

The ligand has maximum five hydrogen bond donors and not more than ten hydrogen bond 

acceptors and the body intake water permeability (partition functions Log P > 5) should be high 

value (Mahgoub, Atatreh, & Ghattas, 2022). 

1.3.8. Molecular dynamics simulations 

The first three dimensional enzyme structure is characterized by X-ray crystallography (Phillips et 

al., 1966.). Further analysis is carried out to emphasize the importance of protein flexible 

conformational changes while binding with ligand or substrate in its active site. However, during 

the early development of computers (Levitt &Lifson, 1969), the first MD simulations was done 

more than 60 years ago. During this timelines, the protein-ligand and genomic sequence analysis 

were very limited due to the lack high speed computational power (McCammon et al., 1977). But, 

in the 21st century of the digital era, the fast forward moving world with high speed computational 

enhancement, these protein-ligand interactions and higher organism genomic/proteomic analysis 

is quite possible. Nevertheless, the fundamental understanding of the protein conformer and its 

dynamics when complexed with suitable drug or hit molecules could be key components in drug 

discovery to further computationally validate in silico drug discovery methodology. In recent 

years, the computational drug discovery received prominence due to theoretical protein structural 

validation and virtual screening of small molecules with the help of cost effective high 

performance computation facility (Shaw et al., 2007; Smith et al., 2002). Therefore the molecular 

mechanics of protein drug complexes with longer range MD simulations is studied to generate 

possible hit molecules validated for a desired protein target. The MD simulations is one of 

computational techniques to effectively simulate the molecular motions from host-guest 

interactions in three dimensional space. It is based upon of numerical solutions of classical 

Newtonian mechanics (Dahiyat & Mayo, 1997; John & Sali, 2003).  The molecular simulations of 

individual atomic velocities, positions, accelerated dihedrals of bonding and non-bonding motion 

equations from protein-ligand molecular systems generated the molecular trajectory data with 
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respect to simulations time. These molecular equations provide the total and potential, kinetic 

energies of bonded atoms and van der Waals energy and Lennard-Jones potentials of non-bonded 

interactions, charged or electrostatic and columbic energies (Childers & Daggett, 2017; Geng et 

al., 2019) are also calculated with the help of numerical solutions in terms of Newtonian mechanics 

(Pace et al., 1996). The digital modern computational facilities have expanded by including high 

performance computing power in the recent times. Therefore, MD simulations got huge popularity 

in drug discovery to integrate with healthcare for looking into the solutions of precise medicine 

validation without intervention of in-vivo drug studies in the initial stages. It can save a lot of time 

and experimental flaws with tedious high throughput in-vitro drug discovery process. MD 

simulations provide the detailed information about apo protein, protein – protein and protein – 

ligand interactions in water sphere of statistical dynamics perspective. Various modules describe 

important molecular information regarding protein-ligand interactions from MD simulations. 

Several MD simulations packages available such as CHARMM (Jo et al., 2008), AMBER (Case 

et al., 2005), LAMMPS (Grindon et al., 2004), NAMD (Nelson et al., 1996), and GROMACS (van 

Gunsteren & Berendsen, 1987), Desmond (Bowers et al., 2006) are available for simulating 

various types of computational simulation problems in different domains of science and 

technology. The force - mass equation in the second Newtonian law is used to calculate the relative 

force constant values on dynamic motions for overall molecular systems studied in MD 

simulations.  

1.3.8.1. Force fields   

Force fields is collection of mathematical expressions from molecular geometry energy 

represented equations of Cartesian coordinates of atoms in a molecular structure.  The molecular 

geometry can be any bio-macromolecule or small organic molecule or any chemical entity 

represented in three dimensional space including higher order material frame work. It describes 

the total energy of the entire molecular system in three dimensional structural space. In general a 

force field is represented into two terms. First term is represented as molecular bonded interactions 

including covalent and electrostatic bond lengths, bond angles and torsional angles. The second 

term is represented as non-bonding molecular interactions including the van der Waals, dipoles, 

induced dipoles, London forces, charge particle attraction forces measured by Lennard-Jones 

potentials, Coulomb’s law mathematical expressions (Dahiyat & Mayo, 1997; John & Sali, 2003). 

This mathematical equation represents the entire force fields bonding and non-boning of any 

molecular system with surrounding molecules.     
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These parameters can be obtained from quantum chemical calculations such as ab-initio and semi-

empirical methods and the experimental parameters such as X-ray diffraction, NMR and Raman 

spectroscopic data etc (Weiner & Kollman, 1981). In a molecular system, the molecular bonds act 

like springs tied together in an atomic system to under giggling, vibrational states occurring during 

molecular oscillations by external force or energy. The force fields are defined as overall 

molecular, electronic, vibrational, rotational, translational energy terms expressed for a broad 

range of macromolecules or small organic molecules represented in three dimensional space. In 

most cases the force fields should be quite simple to analyse the small molecular system. The three 

dimensional  building blocks of these tiny unit cells replicate into true crystal structure or total 

macromolecules approximated classical total energy can be extracted from MD simulations 

trajectory data for biomimicry of real cell based properties with the presence of water solvation 

environments. The classical thermodynamic based parameters are majorly included to represent 

the force fields for any molecular systems from periodic table of elements (Rappe et al., 1992). 

The most popular molecular mechanics force fields from different force field development groups 

are AMBER (Malolepsza et al., 2010), CHARMM (Brooks et al., 2009), GROMOS, OPLS 

(Jorgensen et al., 1996) and COMPASS (Sun et al., 1998). Different versions of force fields are 

employed to achieve higher computational accuracy and efficacy for various macro and small 

molecules [CHARMM19, CHARMM22, CHARMM27, AMBER91, AMBER94, AMBER96, 

AMBER99SB, AMBER14SB, GROMOS96, GROMOS45A3 and GROMOS53A5]. Generally 

these force fields are compatible with both materials and biomolecules to run MD simulations in 

higher order or long range timescales. But some packages are more specific to certain systems; 

AMBER – Carbohydrates, bio-molecules DNA, RNA, Protein, lipid-bilayer; CHARMM and 
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CVFF (Sun et al., 2016; Lin, & MacKerell, 2019) are mostly compatible with different types of 

materials in various crystal systems.   

1.3.8.2. H-atoms addition to apo form with H++ server 

In general, the DNA/RNA have an overall negative formal charge, but the proteins have different 

charges associated with varying isoelectric points on the basis of various amino acid sequences 

(primary structure) that make up to their secondary and tertiary structures. In GROMACS and 

ABMER MD simulations, these small atoms of hydrogen play huge role to predict their overall 

formal charge and major protonation charges varies in certain amino acids like histidine, aspartate, 

tyrosine, lysine, arginine, glutamic acid. These types of amino acids have an extra amine and 

carboxylic group which can be in protonated or deprotonated states in a huge pool of hydrosphere 

in MD simulations (Anandakrishnan, Aguilar, & Onufriev, 2012).  Before submitting for energy 

minimization of molecules and ions addition to neutralize the charge, the protein conformer should 

be in a correctly protonated (similar to physiological conditions) state. The proton equilibration is 

done with a suitable hydrogen addition webserver. The prediction of such protonation pKa 

equilibrium constants of macromolecules can be calculated with the help of atomic resolution of 

PDB database servers. This can be done with respect to continuum electrostatic models and 

Lennard-Jones potentials of specific water model force fields.  In GROMACS, this can be done 

with acpype script force field validation and ligand validated with AMBER99SB force fields. The 

pKa equilibrium constants can be calculated for suitable pH environment with the help of H++ 

server (http://newbiophysics.cs.vt.edu/H++/). This is a key step to build respective calculated pKa 

dissociation constants for macromolecules (Madeira et al., 2022). In H++ server, these pKa values 

are quickly estimated to biophysical properties of protein or DNA isoelectric points of respective 

titration curves at desired pH scales. The required protons are added to protein at suitable sites of 

various titratable amino acid side chains in PQR format (PDB + Charges + radii). In addition, these 

pH titration curves and protonation microstates of macromolecules, the topology and molecular 

model supported AMBER inputs are also generated to create final input PDB for tLeap solvated 

MD simulated model topology (.prmtop) and input (.inpcrd) files. If the macromolecules are not 

rendered enough to satisfy the AMBER molecular model package atomic type criteria, the input 

parameters cannot be generated or while verifying the prmtop files with “cpptraj” and “Parmed” 

charge validation ended up with error messages. If the MD simulations proceeds with these errors 

in charged AMBER input parameters, the MD simulations is likely crash at equilibrium and 

production run phase. Therefore these electrostatic interactions play a key role in ligand binding 

http://newbiophysics.cs.vt.edu/H++/
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to key active site and catalytic and regulatory active site, protein and specified group transfer/ 

binding to particular regions in macromolecules. These properties of macromolecules vary based 

upon their specified amino acid side chains protonation states of respective titratable groups, pH 

and ionic strength of surrounding macromolecules simulated with water sphere.  

1.3.8.3 Protein preparation for GROMACS and AMBER MD simulation 

Based upon protein-ligand or inhibitor docking scoring functions and docking binding energies 

and post-docking prediction analysis, the crude approximate ligand/inhibitor three dimensional 

coordinates are considered to design initial parameters of inputs for MD simulations. But the 

protein input parameters are not considered like ligand because the protein has different types of 

residues/groups and their isoelectric point values are assigned with H++server (Madeira et al., 

2022) and are considered in a pH dependent solvation with periodic boundary limits. The MD 

simulations of particular protein-ligand system specified with periodic boundary condition as 

simulation box size is assigned as 8-10 Å. The topology and protein-ligand itp files assigned are 

system readable with assigned force fields (AMBERff99/14SB) (Hornak et al., 2006) including 

particular solvation force fields (TIP3P) (Meagher et al., 2003, Mark and Nilsson, 2001).  The 

AMBERff99SB force fields are assigned to ligand with the help of ACPYPE script (Sousa da 

Silva, & Vranken, 2012) in GROMACS simulations. But in the case of AMBER18 simulations 

package the atomic charge and positions, angles, torsions are assigned by Antechamber algorithms 

by employing am1bcc method in AMBER Tools. The entire charge of MD simulations system is 

neutralized by the addition of Na+ and Cl- ions with appropriate charges to the simulation box. In 

the entire molecular system, the total salt concentration is assigned to be 100 mM. The energy 

minimization of entire simulated system is carried out for 20,000 steps before entering into 

temperature and pressure dependent equilibrium of MD system. All positions are restrained at 

constant temperature (298 oK), pressure (1 atm), achieved with 8 ns MD simulation time before 

submiting for required production MD run time in AMBER. 

1.3.8.4. Minimization and NPT, NVT, Production runs of longer range MD 

Energy minimization is a vital step in MD simulations. Because the entire molecular system has 

various sketched chemical structures, parameters which are not well optimized due to improper 

bond and dihedral strains are disordered and in random manner. This perturbs the entire system 

and molecular potential values during MD simulations. As the random molecular system can be 

aligned chemical motifs stretching and bending, torsional potential energy terms attain the nearest 
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local minima in minimization step. Therefore, it is a key step to be achieved for local minima to 

enter next step in equilibration of MD simulations. However, this is not the overall stable total 

energy of the molecular system as the several algorithms are available to achieve the global minima 

to attain stability of the system.  It is the closest approximate stable minima of molecular structures 

of entire system with respect to the degrees of freedom. 

1.3.9. Basic trajectory data analysis 

The post MD simulations analysis can be done using a vast number of module tools some which 

are inbuilt packages and others are independent of python and C++ based trajectory data analysis. 

Some of the known python based modules used to investigate basic and advanced MD trajectory 

data are MDTraj, cpptraj, Pytraj, MDAnalysis toolkit, g_rms and g_rmsf etc. cpptraj,  g_rms and 

g_rmsf commands based upon GROMACS and AMBER inbuilt trajectory data analysis tool to 

extract the RMSD and root mean square fluctuation (RMSF) values from MD simulations data. 

The cpptraj has a larger application and it can read AMBER, GROMACS, NAMD trajectory file 

formats. The MDTraj and Pytraj, MDAnalysis toolkit requires a python based graphic library to 

read the AMBER MD data file formats. Pytraj is a key Python based module useful in 

dimensionality reduction and extrapolated principal component analysis (PCA) datasets into 

scatter plots (Hornak et al., 2006). 

1.3.9.1. MDTraj and cpptraj, pytraj analysis 

MD simulations is a key computational tool for simulations of large biomacromolecules at longer 

MD simulations timescales. In trajectory analysis, the large data needs special python based 

module to enhance the advanced trajectory analysis. The Markov state model (MSM)design is a 

recurrent neural network method needed for higher MD simulations data to monitor the kinetic 

transition states during micro to millisecond timescales. MDTraj python module provides wide 

range of MD trajectory data readable space and minimal error in the RMSF and RMSD 

calculations. However the large number of MD trajectory datasets readable module is essential to 

design advanced trajectory MD packages with the help of python and C++ programming languages 

(PyEMMA, Prody). MDTraj is a python based scientific data analysis tool to read large number 

of trajectory data units including smooth process with wider scientific python environments. It is 

a bridge between the theoretical molecular simulations data with limit analysed tools to higher 

order data sets collection to corporate statistical big data analytics including different data 

visualization machine learning models. It can enhance the shared GPU computation to validate the 

deep machine learning models with high performance computing cluster to generate a large 
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dataset. Therefore, the large datasets analysis provides acceleration to understand the biomolecular 

system and enhance scientific insights in biological process in detail from microsecond bio 

simulations data. 

1.3.9.2. RMSD 

It is a relative average positional distance deviation of Cα atoms in a protein secondary and tertiary 

structures while comparing the initial and final backbone movement in MD simulations of 

structures or comparing an apo protein and protein-ligand complexes. It is a regular parameter 

measured for protein backbone deviation by superposing atomic coordinates of protein structures 

from references.   

n
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1 δ
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δi is the average distance between two successive Cα atoms atomic coordinates from superposing 

‘n’ pairs of equivalent initial and final protein structures from a given MD trajectory data.   

The major flaw in RMSD data analysis is the amplitudes of errors occurring in pairs of identical 

superposed structures. The lower square distance error deviation is considered as the structural 

stability in given period of MD timescales. These values range between 2-4 Å of protein in the 

presence of solvent environment (Kufareva &Avagyan, 2012). 

1.3.9.3. RMSF 

It is the overall average deviation of protein backbone consisting of amino acid side chains with 

respect to initial MD structure residue positions.  

 RMSF = 2

i iX - X

 

iX is the position coordinates of initial protein residues.  

iX
is the average positional ensemble coordinates from given trajectory of protein conformers. 

RMSF is calculated as the average protein conformational change through the MD simulations and 

it can identify which region of a protein undergoes conformational deformations in a given average 

ensemble structures. RMSF is a key parameter to identify the various residues movement in given 

protein conformers from simulated data sets (Sharma et al., 2021).  
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1.3.9.4. Binding free energy estimations 

Free energy is the nature of energy associated with reaction where the direction of any reaction 

proceeds that tends to attain equilibrium is thermodynamically favourable.  Most of 

macromolecules like RNA, DNA and proteins undergo conformational changes during their 

physiological processes. However, the microlevel macromolecular coformational changes 

occurred in the presence of  small chemical molecules (ATP, GTP, FAD, NADPH) to drive the 

biochemcial pathways ensure the cell survival, cell homeostasis, and such processes are associated 

with free energy changes. Therefore, free energy is an important factor in most of the biochemcial 

reactions to provide the necessary energy to thrive normal physiological process. In general, most 

of the biophysical reactions are reversible which tend to reverse to initial states to perform the 

biocyclic process. There are numerous methods to estimate  the binding free energies for 

biomacromolecules. In virtual screenig of hit molecules from small molecular databases, to 

identify the suitable inhibitors according the protein cavity and scoring functions. These scoring 

and docking binding energies are calculated as the summation of total atomic and molecular 

bonding and non-bonding interactions of atomic free energy terms from large macromolecules. 

Therefore, total free enegy is essential to predict the small molecular validation to provide stable 

protein-ligand complex that leads to the design of viable drug candidates in the near future. In 

computational drug discovery, small molecular inhibitors are discovered with the help of hit 

molecular scoring functions (Parenti, and Rastelli., 2012). They are represented in terms of  

molecular energy surface interactions with protein or DNA cavity energy surface to bind to the 

active site in oreder to arrest the macromolecualr activity in biological process. The binding free 

energy can be calculated with continuum solvent simulations for protein and ligand complex 

designated at periodic boundary conditions (Kollman et al., 2000). The molecular mechanics 

Poisson Boltzmann or Generalised Born and Surface Area (MM-PB/GBSA) is a widely used 

method to estimate the reliable free energy path from state A to state B in a given MD simulations 

(Hou et al., 2011; Srinivasan et al., 1998). It is quite efficient to recognize the molecular paths in 

host-guest interactions and protein-ligand interactions, protein-protein molecular interactions.  

However, the quantum chemical method is a more accurate computational method for small 

molecular structure optimization and simulations in detail (Wang et al., 2017). But most of the 

biolgoical processes are too complicated and involve thousands of atoms. Therefore the classical 

simulations are widely used to study conformational dynamics in given explicit solvent models 

and the molecuar free energy is also calculated with implicit continuum solvent models. 
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Thermodynamic integration and free energy perturbation methods are also explicitly used to 

estimate overall free energy with umbrella sampling approach before implementing MM-PBSA 

method (Zwanzig et al., 1954 & 1955; Wang et al., 2017). MM-PBSA approach is robust and 

reliable to find desirable free energy states in protein-ligand interactions. But it is computationally 

too expensive in terms of multiple trajectory approach with multiple protein-ligand systems (Wang 

et al., 2017; Wright et al., 2014; Sitkoff et al., 1994; Gilson, &Honig, 1988).  

 

 

 

 

 

 

 

 

 

The above equation represented the MM-GBSA calculated energy terms given from state A to 

state B. The overall Gibbs free energies differentiate between the selective protein-ligand systems 

in given states. It has free energy difference among solvated complexes and combined free energy 

terms of protein and ligands. Thet MM-PBSA approach has overall solvation energy including the 

polar non-bonding and dispersion forces interactions added with entropy of protein-ligand 

complex (Homeyer, & Gohlke, 2012; Wright et al., 2014). MM-PBSA is quite different from MM-

GBSA due to the entropy terms calculated including the normal mode analysis (NMA) of overall 

conformers from MD trajectories in the absence of solvent models. MM-PBSA.py is a python 

based macromolecule end state free energy estimation approach in the AMBER18 module for 

molecular simulations and Monte Carlo simulations. Various implicit solvent models estimate the 

free energy terms for protein-ligand complexes for long range MD simulations (Bennett, 1976; 

Miller et al., 2012). In Poisson-Boltzmann approach, the vibrational frequencies are calculated to 

estimate the ensemble based overall entropy of system.  
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1.3.9.5. Solvent interaction energies  

The free energy calculated as the summation of van der Waals and coulombic energies included 

with reaction fields of cavity effect in solvation free energy. The following equation describes the 

important energy terms to calculate the interaction energy between host-guest interactions in the 

absence of solvation energy of molecular system.  The solvent interaction energies (SIE) calculated 

the binding free energy between protein - protein and protein-ligand/inhibitor complexes of MD 

simulations trajectory data. The interactions considered are similar to MM-PBSA in free energy 

calculations (Cui et al., 2008). But here the entropy and normal mode energies are not included 

rather some energy parameters are considered to validate the protein-ligand interactions.  
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This method is quite efficient for protein-protein interactions in both homo dimeric and hetero 

dimeric solvation free energy of wild type comparative analysis with mutated forms. It calculates 

the binding affinities similar first order MM-PB/GBSA energy principle but the molecular 

potentials used are molecular mechanics AMBER force fields continuum solvation models to 

estimate the binding affinities between protein-protein non-bonding interactions in dimers. 

However, the SIE is derived entity of MM-PB/GBSA to estimate end point state of the protein-

ligand binding energies (Lill, & Thompson, 2011). SIE is mostly depending upon AMBER force 

field molecular mechanics calculated trajectory data. In this method the number of MD trajectory 

snapshots used to calculate molecular mechanics average energies sum over to estimate the final 

binding affinities of protein ligand or protein – protein binding mode (Collins, & Ho, 2019). The 

SIE method datasets are well matched with most of experimental datasets as well correlated with 
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other theoretical methods. Therefore, Sie-traj is one of the robust methods to investigate the 

protein-protein and protein-inhibitor interactions with implicit solvent models.   

1.3.10. Python library based advanced trajectory data analysis 

1.3.10.1. Prody analysis 

Prody is a python based quantitative predictive featured module of structural biomolecules of post 

MD simulations data.  It has combination of different protein quantitative prediction python 

modules such as principal component square fluctuations, mechanical stiffness, anisotropic 

network models (ANMs), Gaussian network models (GNMs) and etc (Bakan, Meireles, &Bahar, 

2011). The ProDy is a graphical interactive session and a friendly tutorial webserver to predict 

quantitative measure of protein dynamic motions which can be comparative analysis with 

experimental results.  ProDy is a combination of various other numerous python libraries such as 

NumPy, SciPy and matplotlib, Scikit-learn which are utilized for deep machine learning models 

to emphasize dynamic motions from protein –ligand complexes of MD simulations trajectory data.  

The square fluctuations of individual principal component of anisotropic protein reformative 

constraints are observed while different types of ligands or substrates were bound at protein active 

sites. It is one of the machine learning modules to investigate the mechanical deformation induced 

in proteins by various inhibitors or small molecules that interact with the receptor active sites. It 

has a combination of different protein sequence trajectory analysis as homologous sequences of 

wild and mutant forms of various genera of different phylogenic organisms.  The cross correlation 

plots can be generated among different types of results and comparative theoretical and 

experimental results of genetic sequence and protein superposition analysis can be done to cross 

correlate these results in terms of independent PCA.  ProDy is run on the MD trajectory datasets 

of Cα atoms, any specific protein domain undergoing refolding and unfolding state datasets which 

can be efficiently predicted with ProDy python modules. The ANMs can be observed with the help 

of PCA (Meireles, Gur, Bakan, & Bahar, 2011) and mechanical stiffness from protein-ligand 

complexes from long range MD simulations timescales.  The protein domain motions can be 

observed and graphical representations can be visualized with porcupine plots extrapolated into 

two dimensional graphical map. These porcupine plots are generated with the help of uniaxial 

strength force constants on protein macromolecules binding with various ligands or substrate 

molecules (Bakan et al., 2014). 
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1.3.10.2. Principal component analysis  

The PCA is a statistical technique to extract the dominant pattern of various structurally distributed 

representations from unsupervised datasets. The motive behind the higher order multidimensional 

complex data representation in lower dimension is to investigate the special features with accuracy 

of individual principal components (PCs) to reduced space in anisotropic changes of system. In 

computational structural biology, the biomimicry of complex biological systems from real cellular 

model is carried out with the help of statistical and quantum mechanics ensembles. These 

simulations provide enormous datasets to conceal the overall information of molecular systems. 

This might be best correlated data information obtained from PCA to interpret the molecular 

motions of protein – ligand and protein-protein key interactions from MD trajectory analysis 

(Eyal& Bahar, 2008). It is applicable to standard reduction of various number of dimensions to 

exploitable data in two dimensional scatter data plots. Where the dimensionality reduction is a 

useful tool to monitor the highly dynamic protein motions in a decomposable manner into tiny 

spatial changes occurring as PCs of respective large datasets. Therefore, higher dimensional 

datasets are further reduced into a small portions of protein dynamic states to interpret as structural 

changes in a systematic manner with the help of PCA technique. These small portions of PCA 

modes reveal the protein dynamic states information at transition state level from hidden kinetic 

dynamic states from long range timescales.  The MD trajectory Cartesian coordinates of protein 

ensemble data is evaluated into covariance matrix construction with the help of respective 

eigenvalues deciphered form secular equations. The complete set of orthogonal datasets solved 

from covariance decomposition eigenvectors show the modes as individual constraint motions of 

protein anisotropic deformed changes. This can be extracted as the diagonalized of covariance 

matrix into orthogonal datasets as the secular equations are further validated with respective 

eigenvalues and eigenvectors to represent the best PCA of individual systems (Yang, Eyal, Bahar, 

& Kitao, 2009). These datasets are further extrapolated into scatter plots as independent component 

analysis of respective protein conformations. These square matrix forms of PCA represented with 

respect to time are called as independent component analysis of specified protein unfolding and 

refolding events in larger MD timescales.  

1.3.10.3. PyEMMA analysis 

PyEMMA is an open-source python-based package to construct the high dimensional efficient 

kinetic state models for long range MD simulations (Scherer et al., 2015). It is reliable to read all 

the currently available MD simulations formats to enhance the model input selections of design 
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and investigate model features and validation of stationary states, the dimensionality reduction 

algorithms such as PCA and time lagged independent component analysis (TICA) (Perez-

Hernandez et al., 2013), clustering of MSM estimation and validation with keras algorithms (k-

means) (Li, Dong, 2016). The MSM builder is employed to design MSM state model estimation 

and featurisation, validation done with probable statistical state analogy to further validate the 

hidden state markov kinetic state model systems to study metastable dynamic state systems. This 

method provides the pool of statistical validated model systems with Bayesian error calculations 

for Markov state estimation. It offers various trajectory analysed modules such that the end user 

can be efficient about molecular trajectory data analysis including molecular observable 

computations of interest. It can load the large datasets of MD simulation trajectories (up to 100 – 

500 GB MD data for 2 nodes (each node 40 processors)) depending upon RAM (500 GB) 

availability of computing node cluster. The numerous plotting functions are embedded with 

machine leaning model to generate high quality images with the help of Scikit-learn, Pandas, 

Matplotlib, NumPy, SciPy modules included in PyEMMA (Pedregosa et al., 2011). 

1.3.10.4. MSM builder 

The MSM builder is a python based package to build the statistical models for long range higher 

order timescale MD simulations trajectory data. It has larger applications that include time series 

based biological process and continuous monitoring of the metabolic intermediate in experimental 

and theoretical predictions to understand the process with respective higher dimensional 

simulation timescales. To design quasi-dynamic transition states in the complex biological 

processes, MSM builder (Harrigan et al., 2017) technique can observe the metastable states in most 

of the biological process is in milli and microsecond time intervals from high order laser and 

protein NMR spectroscopy. Therefore, the higher order datasets are built from long range 

biological MD simulations data of protein folding and refolding occurring during the events of 

enzyme activation and deactivation process and vice-versa. The MSM builder reads the datasets 

as one or multiple stochastic MD trajectory Cα data as atomic positions, distances, angles, torsional 

and improper torsions angles. It provides a sustainable, reliable and powerful tool to use from 

scikit-learn API python based results including the high graphical images and dynamic state 

ensemble PDB datasets from higher dimensions reduction to visualize as scatter plots with 

machine learning models of existing transition states in a protein-ligand biological simulations. In 

the current digital age era, tens and thousands GB raw data is generated after MD simulations 

where these data is analysed by basic trajectory data analytics, the rest of the data is unused. 
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Therefore, the protein internal dynamics can be extracted with the help of advanced trajectory data 

analytics such as MSM dynamic state model estimation and dimensionality reductions (PCA, 

TICA) and further molecular features are enhanced with Perron clustering (PCCA+) validation 

and transition state path theory (Prinz  et al., 2011; Vanden-Eijnden, 2010; Metzner, Schutte & 

Vanden-Eijnden, 2009). Based upon raw MD trajectory data, the kinetic states designed with the 

help of dimensionality reduction and random forest, keras iterative mean estimation (k-means) 

algorithms are used to further build the estimated transition state probabilities to show the further 

hidden Markov state models associated with microstates. This could facilitate overall quantitative 

transition probabilities and kinetic populations rates which are relevant to biological phenomenon 

of macrodynamic states (Shaw et al., 2010; Perez & Granger, 2007; Pedregosa et al., 2011, Noe & 

Clementi, 2015). 

1.3.10.5. Markov state models  

The MSMs are a statistical random probability models analysed for dynamic systems. In the long 

range MD simulations, the trajectory data consists of highly dynamical nature of protein 

conformational states involved in protein refolding, unfolding and specified loop dynamics. The 

traditional trajectory analysis cannot identify these high dynamical conformers. The MSMs can be 

designed by employing MSM builder and then it can be estimated and validated with Bayesian 

error estimation in order to maximize the random probable stationary states. Further, these MSMs 

are iterated with model featurisation done to extract pseudo free energies for specified state of 

protein model (Husic, Pande, 2018). The hidden conformations of protein kinetic states are 

described as these states to validate with five state model system based upon transition path theory. 

The neural network model system is used to further express hidden states among kinetic metastable 

states. These hidden states are essential for protein dynamical states involved in protein allostery, 

internal structural changes and protein-ligand interactions. This is included in specified allosteric 

changes in catalytic and regulatory domain in kinase dynamic state distribution among kinetic 

transitions (Li, Dong, 2016). 

1.3.11. Data visualization modules 

1.3.11.1. Graphical and plotting modules 

The molecular graphics of the three dimensional structures of proteins, protein-ligand and protein-

protein interactions were generated with Chimera, Discovery Studio modules (Yang et al., 2012). 

These modules have also been integrated with other drug discovery modules like virtual screening 
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of libraries and structural homology Modeller, residue interaction networks (RIN) (Piovesan, 

Minervini, &Tosatto, 2016), protein sequence homology search module BLAST and multiple 

sequence alignment fit tools and open source MD simulations visualization software for trajectory 

analysis using visual molecular dynamics (VMD) and normal mode visualizer are also added as 

integral part of the graphical modules for data visualization. The protein conformational states are 

sketched with the help of many graphic modules employing specified applications and python-

based advanced graphical libraries, such as Scientific python, Biopython, numpy, TensorFlow, 

Scikit-Learn, Pandas, Keras-means, Random-forest (Harris et al., 2020; McKinney et al., 2010; 

Pedregosa et al., 2011; Virtanen et al., 2020; Perez, & Granger, 2007; Cock et al., 2009; Reback 

et al., 2020; Likas, & Vlassis, Verbeek, 2003). For these analysis high order GPU based graphical 

drivers are required to concise the unsupervised data into vectorized high order graphical library 

datasets in two dimensional and three dimensional plotting space.   

The modern digital technology has much sophisticated methods to generate high resolution data 

plots with the help of matplotlib and Scikit-learn, interactive python libraries with advanced 

python machine learning modules.  The big data points can be processed and train the models with 

the help of deep learning python modules and the data extrapolation can be done with inbuilt 

plotting python libraries such as logistic regression, Naïve Bayes, posterior probability and prior 

probability models, unsupervised data model learning, clustering the grouping of data points to 

minimize the error, data classification with k-means; hierarchical, mean shift, density based 

clustering of big data. 

1.3.11.2. Reduction of dimensionality with neural networks 

All machine learning models have been classified into two categories. The supervised and 

unsupervised data can be analysed and plotted with advanced machine learning python libraries. 

Data can be interpreted with supervised data analysis with excel and many other plotting methods. 

This can be done with advanced python source libraries like numpy, Scikit-learn, Pandas data 

frame. The supervised machine learning models are further divided into regression and 

classification. The regression models consists of dependent and independent model variables that 

are further classified in linear regression, decision trees, random forests (ensemble learning 

methods), neural networks (Hinton, & Salakhutdinov, 2006) (Andrychowicz et al., 2016). 
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1.3.11.3. The MD traj Cα data into dimensionality reduction 

The higher dimensionality data can be converted into lower dimensional features without changing 

high data features to train the multi-layer neural networks. This can be done with gradient descent 

method by ultra-fine tuning of the data weights which are further deduced into low dimensional 

centric layer to rebuild high dimensional data vectors described as “antiencoder”. The 

dimensionality reduction is further categorized into feature elimination and feature extraction. In 

general, the common method used in simple analysis is PCA. This analysis has overall variance of 

finding the data points paths along with coordinates which it followed. Therefore the random data 

points which reduced dimensional data to decrease discrepancy to further reconstruct to back 

propagate error iteration in encoder network models which is recovered data from decoder called 

“decoder”. As the data complexity increased, the multi-layer network complex is difficult to be 

optimized further, if the data points has non-linear encoders and applied gradient methods.  The 

MSM estimation and validation was done with reversible estimation equilibrium transition 

probabilities with discrete clustering occurring in the random states of protein conformers (Wu, 

Mardt, Pasquali, & Noe, 2018). The discrete kinetic state models are validated with keras 

algorithms to further analyse the hidden Markov kinetic models. The implied relaxation timescales 

are estimated to validate the HMM in order to ensure that kinetic transition probabilities among 

the microstates during longer range MD simulations. Therefore, the implied timescale analyses 

and hidden kinetic states indicated that the kinetic transition state distribution occurred in long 

range MD simulations timescales to reveal the cell physiological transformation possible with 

specified conformational changes in proteins. 
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Enhanced metastable state models of TAM kinase binding to 

cabozantinib explains the dynamic nature of receptor tyrosine 

kinases 
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Abstract   

The RTKs are essential proteins responsible for regulation of cell signaling. The atomistic 

details and mechanism of functional regulation is required to understand their normal 

physiological processes and when overexpressed in disease conditions. TAM RTKs are 

inhibited by cabozantinib at nanomolar concentrations. The docking of cabozantinib, a 

nanomolar affinity inhibitor in the active state conformations of TAM kinases revealed the best 

binding pose and the complex formation mediated through non-bonding interactions involving 

the hinge region residues.  The alterations in the conformations and the regions of flexibility in 

apo and complexed TAM kinases as a course of time are studied for 250 ns using molecular 

dynamics (MD) simulations. The stabilized trajectories in all molecular systems were analysed 

using post-MD analyses to reveal the dynamic and active metastable states. The encrypted 

protein domain motions were analysed using various post-trajectory analysis tools like ProDy 

and MDTraj. The large scale motions in the cabozantinib bound Tyro3 and Mer is indicated by 

large eigenvalues. Square fluctuation plots based on principal component analyses revealed 

more populated microstates and lower displacements in Axl revealing its structural stability. 

Mechanical stiffness plots revealed that similar regions in apo and cabozantinib bound Axl 

fluctuated during MD simulations whereas different regions in Tyro3 and Mer kinases, 

indicative of the differences in the conformational stabilities of proteins. The RIN plots 

revealed the important salt bridges that lead to constrained or limited domain motions in the 

TAM kinases.   
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2.1. Introduction  

RTKs are essential trans-membrane components in cellular signal transduction pathways 

(Lemke, 2013). One subfamily of RTKs consists of three proteins, Tyro3, Axl and Mer 

collectively called as “TAM RTKs”. The extracellular factors such as Gas-6, Pros1 and EGF, 

activate TAM kinases (Akalu, Rothlin, & Ghosh, 2016). TAMs play crucial roles in a variety 

of normal biological functions such as spermatogenesis, bone physiology, controlling platelet  

aggregation, endothelial and vascular smooth-muscle homeostasis (Gay, Balaji, & Byers, 2017; 

Vouri, & Hafizi, 2017). TAM RTKs are also reported to play crucial roles in disease conditions 

such as acute myeloid leukemia, breast, colorectal, lung, ovarian cancers and glioblastoma 

(Rankin, & Giaccia, 2016; Knubel et al., 2014). The three dimensional (3D) high resolution 

crystal structures of TAM kinases have been reported with PDB_ids; Tyro3 (3QUP), Axl 

(5U6B) and Mer (5TC0, 5U6C, 2P0C, 5TD2). With the exception of 5U6B_B and D chains 

(Gajiwala et al., 2017), all TAM kinase structures solved to date are in the inactive 

conformation. The active state conformations of Mer and Tyro3 and the conformational 

alterations in the ensemble of active states in TAM kinases is not revealed. In this work, the 

active state forms of TAM kinases from crystal structure and homology models were analysed. 

Binding of high affinity inhibitor, cabozantinib has been studied using molecular docking and 

MD simulations. Further, the MD trajectory files were analysed in detail with MDTraj, 

MDAnalysis and ProDy Python libraries to study the dynamic microstate analysis and extended 

the model building with MSM (Sultan, Kiss, & Pande, 2018). This work reveals the ensemble 

conformational microstates of active TAM kinases from MD simulations studies.   

2.2. Materials and methods  

2.2.1. TAM kinase structures and Homology modeling 

The multiple sequence alignment of the kinase domains in TAM RTKs was constructed using 

Clustal Omega online server (Sievers et al., 2011). The active state conformation of Axl (PDB 

ID: 5U6B_B chain) was considered and the three missing residues in the activation loop were 

built using "Model/Refine Loops" in "Structure Editing" tool in UCSF Chimera 1.11 (Yang et 

al., 2012). The active state model structures of Tyro3 and Mer were constructed based on the 

template structure of 5U6B_B chain. Homology modeling was carried out using MODELLER 

9.21 method implemented using Python script (Šali, & Blundell, 1993; Webb, & Sali, 2014). 

The quality of Mer and Tyro3 model structures was validated using structure validation servers 

such as PROCHECK (Ramachandran, Ramakrishnan, & Sasisekharan, 1963; Ramachandran, 

& Venkatachalam, 1968; Laskowski, Macarthur, Moss, & Thornton, 1993), Verify_3D 

(Bowie, Luthy, & Eisenberg, 1991) and ERRAT (Colovos, & Yeates, 1993).  
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2.2.2. Molecular docking 

The coordinates of cabozantinib were deduced from the Ephrin type-A receptor 2 RTK-

foretinib complex (PDB_ID: 5IA4) (Heinzlmeir et al., 2016).  AutoDock4 (Morris et al., 2009), 

a molecular docking tool was used to dock cabozantinib into the ATP binding site of TAM 

kinases. AutoDock is an open source software to study the protein-ligand conformations, best 

suited to predict the ligand conformations in the binding site environment of a protein. It is a 

grid-based docking technique developed upon Lamarckian genetic algorithm to generate global 

poses of small molecules. The empirical free energy force field that includes hydrogen bond 

direction term with explicit polar hydrogens and contribution from electrostatic interactions is 

used to quantify the binding free energies of the docking poses. In 5U6B, the ATP binding site 

is occupied by the co-crystallized small molecule, a macrocyclic inhibitor. The grid parameters 

are fixed at this binding site that includes hinge region for docking of cabozantinib (box 

parameters: X: 50, Y: 36, Z: 40), spacing (0.408 Å); center of grid (X, Y, Z) was defined as 

(29.097, 3.263, 52.193).  The conformation with best binding energy and maximum docking 

poses was considered as the best binding conformation and was proceeded to further MD 

simulations.   

2.2.3. Molecular dynamic simulations  

The MD simulations of apo-TAM kinases and when bound to cabozantinib were studied using 

GROMACS 5.1.4 version (Van Der Spoel, 2005) for 250 ns.  The MD simulations force field 

parameters for proteins were derived by using AMBERff99SB (Hornak et al., 2006). The 

cabozantinib force fields were generated in Antechamber using AM1-BCC method in 

ACPYPE script (Sousa da Silva, & Vranken, 2012). All molecular systems were placed in a 

3D cubic box and were solvated using SPC waters as single point charge (Mark, & Nilsson, 

2001).  In order to neutralize the systems, eight Na+ ions were added throughout MD 

simulations. Energy minimization was carried out by using steepest descent method for 50,000 

steps to overcome short range bad contacts (Fletcher, & Powell, 1963). Further, these molecular 

systems were proceeded for equilibration and production phases. In the equilibration phase, 

position restrained simulations were performed for 1 ns at 300 K under NVT (constant number 

of particles, volume and temperature) called the "canonical ensemble" at constant temperature. 

Subsequently, in the next equilibration phase, the pressure of the system was stabilized at 1.41 

bar under NPT ensemble (constant number of particles, pressure and temperature) called the 

"isothermal-isobaric" ensemble (Hess, Kutzner, van der Spoel, & Lindahl, 2008). In the 

production phase, the final MD simulations were carried out for 250 ns at 298 K temperature 

and 1 bar pressure, using a time step 0.002 ps.  The V-rescale thermostat couple was used to 
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monitor the temperature and Parrinello-Rahman method was utilized to maintain pressure 

(Bussi, Donadio, & Parrinello, 2007).  Particle Mesh Ewald method was used to maintain long 

range electrostatic interactions with real space cut-off of 10 Å and it has an order of 4 (Darden, 

York, & Pedersen, 1993). The relative tolerance cut-off range energies were 10-6 among short, 

medium and long-range interactions. Short range interactions were calculated including 

neighbor list of 10 Å to update after every 10 steps. The van der Waals forces were estimated 

using Lennard-Jones potentials and real space electrostatic interactions was truncated at 9 Å 

(Verlet, 1963).  Linear Constraint Solver (LINCS) algorithm was utilized for scaling hydrogen 

bonding constraints (Hess, Bekker, Berendsen, & Fraaije, 1997). After MD simulations, the 

snapshots of average structure were extracted from GROMACS trajectory file (.trr) and were 

visualized using VMD, a molecular visualization program. The conformational analysis of 

TAM kinase – cabozantinib complexes were analyzed using g_rms and g_rmsf commands for 

RMSD and RMSF plots, respectively. The average structures were obtained from the 250 ns 

of MD simulations data. The convergence of MD production run was explained in terms of 

potential energy and RMSD plots of the molecular systems. Dynamics of the apo and protein-

inhibitor complex structures was taken from 500 snapshots of 250 ns MD simulations data. 

2.2.4. Post-MD data analysis   

Trajectory data points were derived from .trr files or .xtc files of the 250 ns MD simulations 

run using GROMACS 5.1.4. MDTraj is a software package that allows users to manipulate 

MD trajectories from a variety of file formats to simplify the analysis of MD data and connects 

the datasets with the software in Python (McGibbon et al., 2015). The protein structural 

dynamics are characterized from domain motions and structural features could be discretized 

using various python programming libraries. The data sets derived from trajectory analysis are 

used for understanding the key conformational states in TAM kinases. The domain motions in 

protein can be monitored with the help of PCA (Meireles, Gur, Bakan, & Bahar, 2011).  These 

can be achieved with the application of programming interface using Python based “ProDy” 

(Bakan, Meireles, & Bahar, 2011).  Python applications are a combination of various plugins 

like SciPy, NumPy and Matplotlib which help to plot data of derived covariance and 

eigenvalue, eigenvectors. The datasets are plotted as principal components of structural 

domains of protein in terms of calculated covariance matrices of small constraints for principal 

modes in various parts of the protein such as α-helix, β-sheet and loop variations. The small 

constraint anisotropic motions are observed due to variations in principal protein conformations 

in MD simulations studies. The individual constraints of modes show normal mode analysis 

(NMA) in graphical interfaces such as anisotropic normal modes (ANM) (Bakan et al., 2014). 
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ANM can be derived as individual modes which include diagonalized Hessian matrix, 

scrutinizing eigenvectors and calculated subspace overlap of constraint motions in protein. The 

mechanical stiffness measures the mechanical resistance to external force that is applied at 

specific pairs of residues on the 3D structure or a complete map of the mechanical resistance 

in response to all possible pulling directions. The ANM of the simulated structure is used as an 

input to generate a complete 2D map of mechanical stiffness/strength as a function of residue 

indices. The effective stiffness or force constant for each residue averaged over all pairs of 

residues formed is plotted as 1D profile. The mechanical stiffness is an indirect method to 

examine the uniaxial strength in protein-inhibitor complexes. In the long-range MD 

simulations, the protein undergoes partial folding and unfolding in the absence/presence of 

inhibitors. The protein unfolding pathway proceeds via the uniaxial forces applied along 

anisotropic directions which make specified mechanical or elastic modes in protein-drug 

complex. These are numerical insights to predict the mechanical resistance of protein models 

in a specified residue range under the influence of inhibitors fitted into the protein active site 

(Eyal, & Bahar, 2008; Chen, Wang, & Zhu, 2016). The active state distribution and structure 

featurization, clusterization, TICA and MSMs are extracted and discretized using pyEEMA 

2.5.5 python package (Lane, Bowman, Beauchamp, Voelz, & Pande, 2011; Scherer et al., 2015; 

Li, & Dong, 2016; Husic, & Pande, 2018). These MSMs are kinetics models and measure the 

metastable forms which are related to molecular kinetics. This kinetic model estimation is done 

with selective input features of simulation dynamics using a dimensionality reduction 

algorithm, tICA. Specified kinetic model sketches have been done by using clustering methods 

such as k-means and further derivatized into MSM models.   

Principal components in variable domain motions of proteins can be visualized and 

extrapolated as porcupine plots of individual protein dynamic motions.  The elucidation of 3D 

array of non-bonding interactions and different types of bonding contacts among amino acids 

in protein structure is vital to define its function. The RIN analyzer plays a vital role to describe 

and visualize these interactions. The RING 2.0 web server gives these preferable interaction 

networks among main chain atoms in a protein structure (Piovesan, Minervini, & Tosatto, 

2016). The 3D structure of a protein can be visualized in a 2D plot by mimicking of high 

dimensionality and virtualizing of plot similar to 3D. These plots are generated using 

"Cytoscape" as interface connected with chimera through “structureViz” (Morris, Huang, 

Babbitt, & Ferrin, 2007).  RIN network parameters can be customized with RIN analyser app 

wizard, amino acids are represented as “Nodes’ and interactions as “Edges” in Java application-

based interface Cytoscape (Doncheva, Klein, Domingues, & Albrecht, 2011).   
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2.3. Results and Discussion 

2.3.1. Sequence analysis 

Tyro3, Axl and Mer are homologous RTKs. The multiple sequence alignment of the kinase 

domains in the TAM kinases is shown in Figure 2.1A. These proteins share high structural 

conservation in the kinase domain with greater than 62% sequence identity. The TAM kinase 

crystal structures available in PDB are in the inactive state Mer (5TC0, 5U6C, 2P0C, 5TD2) 

and Tyro3 (3QUP), with the exception of Axl. The crystal structure of Axl kinase domain 

(5U6B) is in two distinct conformations; subunits A and C are in the inactive state, while 

subunits B and D are in the active state (Gajiwala et al., 2017). The active state structure of 

only Axl kinase among TAMs is available; we initially added the missing residues (705, 706 

and 707) in the activation loop of Axl_B chain and used this as a template for constructing the 

homology model structures of Mer and Tyro3. Among the five distinct models of Mer and 

Tyro3, the model structures with lowest DOPE scores were selected (Shen, & Sali, 2006).  The 

statistical parameters for the model validation are shown in Table 2.1. These parameters 

indicated that the constructed models of Tyro3 and Mer are suitable for further studies. The 

structures of TAM kinases in their active state superposed well as shown in Figure 2.1B.  

Phosphorylation and dephosphorylation of the kinase domain allows the conformational switch 

from active to inactive forms and vice-versa (Levinson et al., 2006).  From the available crystal 

structures and analyses of c-Src and Abl (Meng, & Roux, 2014), the essential structural 

differences between the active and inactive states of a kinase are reported. The main structural 

differences are the altered conformations of αC-helix in the N-terminal domain, orientation of 

the DFG motif and opening of the activation loop. The activation loop in the kinase domain 

plays a major role in autophosphorylation and ATP binding.  In the active state, activation loop 

is phosphorylated, opened up with an outward extended orientation. A catalytically important 

conserved DFG motif at the base of the activation loop has Asp side chain pointing inwards 

into the active site. Inward movement of the αC-helix, with the side chain of conserved Glu 

pointing inwards and the conserved Lys on the β3-strand in the N terminal domain make ionic 

interactions within the active state. Distinct conformations for the inactive states of kinases are 

similarly revealed, with closed conformation of the activation loop, outward movement of the 

Glu side chain from αC-helix and Asp side chain from DFG motif (Shukla, Meng, Roux, & 

Pande, 2014). In the Axl kinase crystal structure, the proposed autophosphorylation sites 

(Tyr698, 702 and 703) in the activation loop are not phosphorylated in spite of the structure 

being in the active state conformation. In the Axl kinase active state conformation (5U6B_B), 

E585 (αC-helix), D690 (DFG motif) and K567 (β3-strand) are pointing inwards and make ionic 
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interactions Figure 2.1C. These interactions provide a good validation for the active state 

conformation in the kinase structures. In the inactive conformation (5U6B_A), these residues 

move away and the side chains of E585 and D690 flip and orient away from the active site 

(Figure 2.1C). We have investigated the alteration or retention of these interactions with help 

of atomistic MD simulations studies in TAM kinases.  

2.3.2. Molecular docking of cabozantinib 

The primary protein-ligand complex formation can be approximated with molecular docking 

studies which would find probable cabozantinib binding in the active state of TAM kinases. In 

the molecular docking studies carried out using AutoDock4, the docking pose of inhibitor in 

the protein active site is in a horizontal manner and is located in the ATP binding site as shown 

in Figure 2.1D.  The binding energies of the best docked pose are shown in Table 2.1. The 

binding site is fully engaged with inhibitor, where the activation loop has extended interactions 

with the active state of TAM kinase. As shown in Figure 2.1D, the binding of cabozantinib to 

TAM kinases can be divided into three chemical regions. The primary part of the inhibitor, (6, 

7 dimethoxy quinoline) containing nitrogen interacts with hinge region main chain of Phe622 

and Met623 residues (Axl), (Mer: Phe666 and Met667) and (Tyro3: Phe607 and Met608). The 

other end of the inhibitor consists of an amide linked p-fluoro phenyl that is π stacked with 

Phe691 (Mer: Phe735 and Tyro3: Phe676) aromatic ring which is a part of DFG motif, and the 

amide carbonyl linkage with cyclopropyl ring interacts with Asp690 which is also a part of 

DFG motif (Mer: Asp734 and Tyro3: Asp675).  The amide linked fluoro phenyl ring is 

immersed into a deep cavity which is in the neighborhood of αC-helix in TAM kinases. A 

three-residue junction networked via non-bonding interactions from Lys567 (β3-strand), 

Glu585 (αC-helix) and Asp690 (A- loop) (Axl numbering) is in the inhibitor binding site and 

the inhibitor gains access through these residues in all TAM kinases 
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Figure 2.1A) Sequence comparison of Tyro3, Mer, Axl RTKs. 
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Figure 2.1B Figure 2.1C 

Figure 2.1B) Structure superposition of kinase domain in TAM RTKs.  Green – Tyro3 

model; Red – Mer model; Blue –Axl 5U6B; Missing residues added in Axl are shown in 

Black color. 

Figure 2.1C) Active (5U6B_B, magenta) – Inactive (5U6B_A, violet) state 

conformations in the Axl crystal structure. The three residue interaction network between 

the side chains of Lys567-E585 and K567-D690 are indicated. 

Figure 2.1D) Structural comparison of docked cabozantinib in Tyro3 receptor kinase. 

Tyro3 (White); Cabozantinib (elemental color);  i)  6,7 dimethoxy  quinoline ; ii) 

cyclopropyl  stacked amide carbonyl;  iii) fluoro phenyl ring. 
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2.3.3. MD simulations of apo and TAM kinase - cabozantinib complexes 

Six molecular systems; Tyro3, Axl and Mer kinases; apo and complexed with cabozantinib 

were studied by MD simulations using GROMACS 5.1.4 for 250 ns. All MD simulations 

converged well as indicated by stable potential energies that are shown in Table 2.1. The 

RMSDs of apo and TAM-cabozantinib complexes are compared in the given stable proteins 

relative to the average distance in the protein backbone. It is one way of measuring the change 

in average Cα distance which influences certain parts of the protein structure. The overall 

RMSD of all molecular systems are stable as shown in Figure 2.2 (A, B, C) these plots indicated 

that all the molecular systems have converged after 10 ns of MD simulations. In the apo Axl 

(Figure 2.2A) and when bound to cabozantinib, the RMSD of the Cα atoms is relatively lower 

which is indicative of the greater stability in their structures. On the contrary, apo Mer is more 

stable than inhibitor bound form. Both apo and inhibitor bound Tyro3 display higher RMSDs 

in comparison to other molecular systems. This implies that there are more possible metastable 

Figure 2.2) RMSD plots of apo and Cabozantinib bound TAM RTKs from 250 ns MD 

simulations.  (A) Apo proteins. (B) Complexed protein (C) Cabozantinib. 
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active states existing in the case of Mer and Tyro3 kinases compared to Axl. Therefore, the 

RMSD of both Mer and Tyro3 kinases are slightly higher in a fortuitous manner to expect their 

dynamic nature from MD simulations data. This could be a key aspect from protein dynamics 

that plays a vital role in the drug design of TAM kinases in the identification of allosteric sites 

for new inhibitor design. When TAM kinases are bound to cabozantinib, they have specific 

states, which are catalytically active, providing insights for atomistic pinning of TAM kinase 

activity.   

 

 

Table 2.1: TAM kinase models, cabozantinib docking and MD simulations validation 

 

 

 

 

S.No   Mer-Model Tyro3-Model         Axl 
(5U6B_B) 

1. Protein model  validation 
Model  

   

 DOPE Score (Modeller) 35206.7775 34680.4453 - 

 ERRAT 
(Overall quality factor) 

       78.24 % 76.84 %            - 

        Verify_3D  
(avg 3D-1D score >= 0.2) 

80 % aa 
pass 

80 % aa 
pass 

- 

 ProSA(Z-Score) -8.44 -7.79 - 

        PROCHECK 
Ramachandran plot 
                             most 

favoured 
 
                      additional 
allowed 

 
                     generously 
allowed 

 
 

    92.7 %  

 
6.2 %   

 
         1.2%  

 

 
 

91.5%   

 
  7.3 %   

 
 1.2%  

 

 
 
 

 
          - 

     

2. Docking  binding  energy 
(ADT) in k.cal/mol 

          -8.93            -7.15 -7.06 

     

3. Potential Energy of 250ns MD 
simulated system (k.cal/mol) 

   

  Apo protein  - 4.256 * 103 - 4.851 * 103 - 4.737 * 103 

 Cabozantinib complex  - 4.219 * 103 - 4.853 * 103 - 4.457 * 103 
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Table 2.2) The three residues interactions in TAM kinase bound cabozantinib for 250 ns MD 

simulations data. 

 

The MD simulations explain the dynamics and alterations in the conformations of TAM kinases 

at different time scales of apo and inhibitor bound forms as a course of simulations time. During 

MD simulations, it is interesting to see the appearance of new non-bonding interactions tightly 

binding the ligand in the protein cavity.  The trajectory analysis of 250 ns of MD simulated 

data was analyzed for scrutinizing the non-bonding interactions among the specified active 

states of the protein structures. The regions from the N-terminal domain (β3-strand, αC-helix) 

and activation loop are involved in strong interactions in all the active structural conformers of 

TAM kinases. In the complexed TAM kinases, these distances have moved slightly away, 

however, the side chains of the amino acids are pointing inwards. To understand this in detail, 

the distances between the atoms involved in forming the three residue interactions in TAM 

kinases were measured and are shown in Figure 2.3 (A, B). These distance plots indicate the 

retention or loss of hydrogen bonds in the core of kinase domains. The plots of distances 

between the two electronegative atoms participating in the hydrogen bonds were quantified by 

plotting pie diagrams as shown in Figure 2.4 (A, B, C). In the apo Axl MD simulations, Lys567 

Nε and Glu585 Oδ, retained the hydrogen bonding distance between 2.5 to 3.4 Å upto 92% 

times during the 250 ns MD simulations. Similarly, in the cabozantinib bound form, the 

distance between these atoms is retained upto 90.4% times. The distance between Lys567 Nε 

and Asp690 Oγ is also retained upto 34.9% in the apo Axl and 30.6% in the cabozantinib bound 

Axl.   

 

 

 

 TAM with Inhibitor form 

3 Residue number 50ns  Å 250 ns  Å 

Axl   K-567-E-585-D-690 Met-623 (Hinge) 

Asp-690 ; Phe-691 (DFG) 

No H bond 

Mer K-612-E-630- D-734 No H bond Met-667 (Hinge) 

Tyro3 K-552-E-570- D-675 Met-608 (Hinge) 

Glu-570 (αC-Helix) 
Phe-676 ; Gly-677 (DFG) 

Met-608 (Hinge) 

Lys-552 (P-Loop) 
Asp-675  (DFG) 
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Figure 2.3 (A, B) Average distance between the side chains of Lys-Glu and Lys-Asp in the 

250 ns MD simulations in TAM RTKs. 

 

 

 

 

Figure 2.4A) Distance between side chains of Lys - Glu; Lys – Asp pairs in apo and Axl-

cabozantinib RTK from 250 ns MD simulations. 

Figure 2.4B) Distance between side chains of Lys - Glu; Lys – Asp pairs in apo and Mer-

cabozantinib RTK from 250 ns MD simulations.   
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Figure 2.4C) Distance between side chains of Lys - Glu; Lys – Asp pairs in apo and Tyro3-

cabozantinib RTK from 250 ns MD simulations.  

 

In the case of apo Mer kinase, the hydrogen bonding distances between Lys612 Nε and Glu630 

Oδ is retained upto 92.5% times, whereas, in the cabozantinib bound form this distance is 

retained only in 5.2% and the distance drastically increased upto 10.5 Å. The Lys612 Nε and 

Asp734 Oγ distance in the apo Mer kinase is also moderately retained upto 36.8% and in the 

cabozantinib bound Mer, this interaction is completely lost and the distance increased upto 10.4 

Å during the 250 ns MD simulations.  In the case of apo Tyro3, the hydrogen bonding distance 

between Lys552 Nε and Glu570 Oδ is retained only upto 4.5% and became almost insignificant 

(0.4%) in the cabozantinib bound Tyro3. In both apo and cabozantinib bound Tyro3, the 

Lys552 Nε and Asp675 Oγ distance was retained upto 14.1% and 12.4% times, respectively. 

The pie diagrams of these hydrogen bonding distances indicated that the three residues 

interactions are retained in the apo Axl and Mer, and cabozantinib bound Axl, indicating that 

the active site core of the protein is retained only in these molecular systems. The expansion of 

the active site core of the other three molecular systems (apo Tyro3 and cabozantinib bound 

Mer and Tyro3) is indicated by the loss of hydrogen bonding interactions. 

From the RMSF plots, shown in Figure 2.5, we see that similar regions in all the molecular 

systems of TAM kinases fluctuate during MD simulations. In the case of apo TAM kinases the 

extent of fluctuations is almost similar whereas in the cabozantinib bound forms the extent of 
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fluctuations varies in specific regions. For instance the regions; a β-turn in the N-terminal 

domain) and end of first α-helix in the C-terminal domain have least fluctuations in Axl 

complex, indicating that cabozantinib binding to Axl stabilizes this region. Similarly the 

activation loop has relatively higher fluctuations in cabozantinib bound complexes compared 

to the apo form. These differences in the RMSF plots indicate the extent of conformational 

flexibility in TAM kinases and their structural plasticity. The differences observed in the RMSF 

plots can be explained by analysing the trajectory files of MD simulations. The MD simulations 

data clearly reveals that there are minute changes occurring at specific regions with reference 

to longer MD time scales. The changes in the protein conformational features with respect to 

simulation time scales can be explained from the analyses of the MD trajectory files. 

 

                                                                                                                                                                                         

 

Figure 2.5) RMSF plots of TAM RTKs from 250 ns MD simulations. (A) Cabozantinib 

complexes (B) Apo proteins.  In this figure, for the sake of convenience all TAM kinases are 

numbered from number one (1) onwards.  88-93 (β-turn in the N-Terminal domain); 117-122 

(First α-helix in the C-terminal domain); 179-192 (activation loop). 

         

In the case of cabozantinib bound to TAM kinases at different time scales of MD simulations, 

the orientation of both Mer and Tyro3 change due to movements in αC-helix and activation 

loop deformations.   Whereas the Axl MD simulations data indicated only minor changes or 

little movement in αC-helix in the apo and the cabozantinib bound forms. The distances for the 

non-bonding interactions among (Axl: K567, E585 and D690) is given in Figure 2.4. In Mer 

and Tyro3 these interactions are quite weak due to the elongation of the corresponding 
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distances resulting from the αC-helix and activation loop dynamics. These dynamic states are 

closely associated with each other and can change specified non-bonding residue interactions. 

The αC-helix of apo Mer kinase is similar to the apo Axl, however the cabozantinib bound Mer 

αC-helix moved away with local unwinding of helicity. Both apo and cabozantinib bound 

Tyro3 display changes in the αC-helix and movement away from the core of the protein. Also 

this figure indicates that the interactions between the N-terminal Lys and activation loop Asp 

(DFG motif) is retained only 1/3rd times in Axl and are significantly lost during the MD 

simulations of Mer and Tyro3.  It is the major diversity in the αC-helix and activation loop 

conformations that causes generation of more metastable state populations in Mer and Tyro3. 

These states can be explained with advanced trajectory data analysis by Python programming 

libraries. The population analysis of these conformations is further explained with post-MD 

data analysis from longer timescales MD simulations trajectories.      

2.3.4. Post-MD Analysis 

The MD simulated TAM-cabozantinib systems generated large datasets which are difficult to 

be inspected using pure visualization software for structural alterations and protein domain 

motions.  Preliminary post-MD data analysis was carried out on the large trajectories derived 

from TAM kinase 250 ns MD simulations data using “ProDy” Python libraries to ensure 

kinetically active states are investigated with the aid of PCA.  PCA is a powerful multivariate 

statistical technique to decipher the conformational changes in a protein as a function of time, 

this was therefore used to study the MD simulations trajectories of TAM kinases. PCA is 

applied to systematically reduce the number of dimensions needed to describe the protein 

dynamics through a decomposition process that filters the observed motions from largest to 

smallest spatial scales. The presence of large-scale motions makes it difficult to reveal the 

small-scale motions in proteins since the large-scale motions have relatively greater amplitude 

in atomic displacements. Therefore, only a small number of PCA modes with large amplitudes 

that reveal the structural dynamics of biological relevance are considered.   A covariance matrix 

is constructed from the Cartesian coordinates of the trajectory files and an eigenvalue 

decomposition of the covariance matrix leads to a complete set of orthogonal collective modes 

(eigenvectors), each with a corresponding eigenvalue that characterizes a portion of the motion. 

The eigenvalues were obtained by the diagonalization of the covariance matrix of the Cα 

atomic fluctuations and depicted in Figure 2.6, with decreasing order versus the corresponding 

eigenvector indices. The square matrices are converted into secular equations to generate 

eigenvalues and corresponding eigenvectors. The corresponding eigenvectors are the best 

principal components associated with eigenvalues (Yang, Eyal, Bahar, & Kitao, 2009).  The 
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first few eigenvalues corresponding to concerted motions quickly decrease in amplitude to 

reach a number of constrained and more localized fluctuations. As shown in the Figure 2.6, the 

eigenvalues of apo Axl and when bound to cabozantinib are low and almost similar. While the 

Tyro3 and Mer bound to cabozantinib have higher eigenvalues compared to apo Tyro3 and 

Mer. This suggests that the nature of motions in all the six molecular systems is quite different, 

however the extents of dissimilarities are lower in apo and cabozantinib bound Axl. Larger 

eigenvalues typically indicate large scale motions spatially, implying that the conformational 

alterations in the cabozantinib bound Tyro3 and Mer are greater during the course of MD 

simulations. The trajectory data sets are converted into a covariance matrix to generate 10 

principal components as shown in figures 2.7 (A,B,C). This figure shows square displacements 

of TAM kinases complexed with cabozantinib, these square displacements are key components 

to study the conformational changes in the active states of various TAM RTK family members. 

Axl has lower displacements compared to Mer and Tyro3 kinase when bound with 

cabozantinib. This indicated that Axl has greater structural stability than the other two members 

of subfamily.  Analysing MD simulations trajectory data as vibrational modes of protein 

domain fluctuations gives superposition of normal modes. These normal modes can be 

generated from conformational fluctuations of harmonic oscillations such that all data points 

are represented as vectors and then converted into diagonalized matrix with respect to second 

order derivative of Hessian matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6) The first 50 premium Eigenvectors covariance matrix shown as cumulative sum of TAM 

kinase fluctuations.   
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The constrained motions in all simulations of protein-ligand complexes (Bakan, & Bahar, 

2009). The overlap plots of ANM Vs PCA gives pre-validation of active states and populated 

states of kinase domain at 1 and 50 ns time scale. This is a glimpse of further data analysis with 

ANM of key unique motions captured for Hessian matricised vector data to predict the active 

model of TAM kinase in the presence of inhibitor. As shown in Figures 2.8(A, B, C), Axl 

converged plot has more faint blue blocks than Tyro3, But Mer plot has more deep blue blocks 

which indicated lesser convergence between normal Vs. PCA modes in Mer kinase. The 

overlaps of ANM Vs PCA are key pictorial representation of stable active states existing in 

Axl compared to Mer and Tyro3 kinases. The best converged ten eigenvectors systems could 

be captured with the help of correlated modes between principal components versus anisotropic 

normal modes (ANM) of trajectories extracted from MD  extrapolated in 2D coordinate system 

as ANM Vs. PCA generated correlated 2D plots for TAM-cabozantinib complexes before (1 

ns) and after (50 ns) MD simulations time frames.  “MDAnalysis” Python libraries are an 

Figure 2.7) Principal component analysis of TAM kinase – cabozantinib complexes from 
250 ns MD   simulations.  In this figure, for the sake of convenience all TAM kinases are 
numbered from one onwards. 



56 

 

object-oriented tool for the components in a molecular system. In a protein kinase, the vibrant 

domain motion analysis can be performed to retrieve specified loop dynamic constraints that 

are crucial to explain the protein structural dynamics for “activation loop” and “αC-helix”, in 

apo and cabozantinib bound TAM kinase domains. The Figures 2.10 and 2.11(A, B, C, D, E, 

F) clearly indicated variations in the activation loop and αC-helical dynamics in all molecular 

systems. The activation loop and αC-helix Cα RMSD was extracted from 250 ns MD trajectory 

data of TAM kinases. The Axl activation loop showed greater stability or fewer conformational 

changes when bound to cabozantinib, compared to the apo Axl and the dynamics of the αC-

helix is also greater in the apo form compared to the cabozantinib bound Axl. Similarly, apo 

Tyro3 has more activation loop and αC-helical dynamics compared to the cabozantinib bound 

form. In the apo and inhibitor bound forms of Mer RTK, activation loop has higher dynamic 

states indicating higher flexibility of this loop, also the αC-helix is stable when bound to 

inhibitor compared to the apo form. In the apo Mer kinase domain, the activation loop RMSD 

is highly populated and does not attain a stable conformation. In other words, the apo TAM 

kinases display greater activation loop dynamics compared to the inhibitor bound forms. 

Among the inhibitor bound states, the order of stability is Axl>Tyro3>Mer. From these plots, 

it is observed that in the inhibitor bound form, the TAM kinases show some periodic constraints 

during MD simulations that could be important for their function.  

The overlap populations among the receptor-based TAM kinases can be projected to compare 

the initial and final average structures of proteins while interacting with ligands. The PCA 

correlated with the overlap plot of ANM shown in Figure 2.8 indicated that the overall 

populations of Axl are more than Tyro3 and Mer. However, Tyro3 has populations more than 

in Mer as indicated by 0.1 range cutoff, and the Axl has more populations over marginal cutoff 

(0.15) next to Tyro3. This is a prime indication of higher intra-residue interactions in 50 ns 

structures for both Axl and Tyro3 than compared to Mer-inhibitor complex. Therefore, in Axl, 

the number of microstate populations are more, whereas least in Mer indicating the more 

dynamical nature of Mer kinase domain. To further probe internal dynamics and 

conformational diversity in TAM kinases, general cross-correlation analysis was carried out. 

A complete map of the mechanical resistance in response to all possible pulling directions and 

the mean value of effective spring constant with secondary structure of TAM kinase domains 

is shown in the Figures 2.9 (A-F) and 50 ns MD trajectory data for TAM Kinases. ANM overlap 

modes of active micros state populations before 1 ns and 50 ns MD trajectory data for TAM 

kinase fluctuations (Cutoff range 0.1).                                                                                
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The correlated extents of protein motion are different in all molecular systems. Certain regions 

in the protein show strong correlated motion while other regions display low correlated motion. 

Apo and cabozantinib bound Axl kinase display similar regions and extent of cross 

correlations. In comparison, the apo Mer displays lower correlated motion compared to the 

inhibitor bound form. The apo and inhibitor bound Tyro3 exhibit different extents of cross 

correlations in different regions of the proteins. The correlated plots also explain the 

distortedness and stiffness of protein in the presence of inhibitor bound in the active site of 

TAM RTKs. These plots have cross correlation of Cα residues in the proteins from same 

subfamily which describes the structural deformations of protein in the absence and presence 

of high affinity inhibitor in the active site. In comparison, the Axl kinase has more mechanical 

stiffness indicating its structural rigidity among them.   

Figure 2.8 (A, B, C) Cross correlation (faint Blue blocks) between ANM Vs PCA before 1 ns.  
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Figure 2. 9 (A, B, C, D, E, F) The complete mechanical stiffness 2D plot of TAM kinases 

(blue mechanically strong regions, red - mechanically weak regions). Color bar indicates 

effective force constants. The mean value of effective spring constant and the protein secondary 

structure is shown as 1D profile. 

 

 

Figure 2.10) MDTraj Analysis of Cα RMSD of activation loop dynamics in TAM RTK’s 

cabozantinib and apo models at 250 ns. In Figure: Active Loop dynamics of 2.10A) Axl-

inhibitor;   2.10B) Axl-apo.  In Figure: Active Loop dynamics of 2.10C) Mer-inhibitor; 2.10D) 

Mer-apo. In Figure: Active Loop dynamics of 2.10E) Tyro3-inhibitor; 2.10F) Tyro3-apo   
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Figure 2.11) MDTraj Analysis of Cα RMSD of αC-helix dynamics in TAM RTK’s – 

Cabozantinib and apo models at 250 ns.  

In Figure: αC-helix dynamics of 2.11a) Axl-inhibitor;     2.11b) Axl-apo 

In Figure: αC-helix dynamics of 2.11c) Mer-inhibitor;    2.11d) Mer-apo 

In Figure: αC-helix dynamics of 2.11e) Tyro3-inhibitor; 2.11f) Tyro3-apo 
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The αC-helix of Mer receptor kinase bound to cabozantinib has higher Cα RMSD compared to 

Axl and Tyro3. The Mer activation loop dynamics shows the possible existence of metastable 

active forms among the TAM RTKs. The MSM prediction is studied with Python coding and 

specialized scientific Bio-python, interactive python environment in the Linux platform. The 

MSM building carries out featurisation, clustering, projection and estimation that was done 

with pyEMMA 2.5.5 Python package. Measurement of the time dependent Cα distance 

variations in the TAM kinases is a strategy for Markov model interpretation. The 250 ns MD 

simulations trajectory data is utilized for Markov’s model building and is shown in Figure 2.12 

(A, B, C, D, E, F). 

  

Figure 2.12) MSM models and tICA analysis of Cα RMSD TAM RTK’s – cabozantinib 

complexes from 250 ns.  
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Figure 2.13 A, B, C)  MDTraj analysis of RMSF contour plot TAM RTK’s – Cabozantinib - 

forms 250 ns, (all Y axis units Å).  

Figure 2.13 D, E, F):  MDTraj analysis of RMSF contour plot TAM RTK’s – apo- forms 

from 250 ns. 
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The MSM building and populated active states are shown to vary in Axl (specified populated), 

Mer (discrete populated) and Tyro3 has intermediate populated states. MSM model prediction 

is in specified time intervals (lag time = 35 out of 64) of 1 ns data set of state-space 

discretization. The populated models can be deducted with dimensionality reduction from 879 

into 7 by using tICA which can be projected in the form of a kinetic map as indicated in the 

Figure 2.12.  The independent components vs time interval (1 ns) from the recorded trajectory 

after every 0.5 ns frame up to 250 ns of MD simulations data are shown in this plot. In Mer-

cabozantinib bound complex, periodic constraints of Cα distance indicates that it should 

Figure 2.14A) Axl-cabozantinib-RIN plot. It has intra chain interaction   (Asp-581 – Arg-707). 

Figure 2.14B) Mer-cabozantinib-RIN plot. It has lack of intra chain interaction (Glu-626 – Arg-748). 

Figure 2.14C) Tyro3-cabozantinib RIN plot. It has intra chain interaction (Glu-566 – Arg-680). 
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comprise more metastable Markov’s model populations among them. The RMSF contour plots 

(Figure 2.13) were sketched with help of scikit-learn Python libraries. Mer RMSF contour plot 

displayed some key radiant contours of specified states visualized in cabozantinib bound Mer 

kinase. In Axl and Tyro3- cabozantinib bound forms, the active states are well mixed up. 

However, in the apo form, the active states are more mixed up and even indistinguishable in 

apo Mer contour, whereas the apo Axl and Tyro3 have discretized specific contours. In 

addition, the RMSF contours of apo TAM kinases have high oriented specific residue Cα 

motions observed but the cabozantinib bound receptor kinase displays low RMSF of specified 

residue motions given the residue index on X-axis. The inhibitor bound Mer has well 

distinguished contour state plot.  Based on the above observations, Mer appears to be a special 

class of kinase due to the existence of more active metastable states compared to Tyro3 and 

Axl. The large domain motions occurring in Mer are due to the loss of intra-chain hydrogen 

bond between Glu626 – Arg748 during the course of MD simulations (Figures 2.14b). In the 

case of Axl, this interaction is present farther away from the active site in Axl-inhibitor binding 

region, therefore this could tightly hold N-terminal domain in diagonal manner (mediated via 

main chain-side chain non-bonding interactions) in Axl-cabozantinib complex. Tyro3 has this 

corresponding intra-chain interaction very close to the active site of the protein, therefore it 

does not restrict full domain motion when compared to Axl– cabozantinib complex. These non-

bonding interactions between residues in the N- and C-terminal domains play a significant role 

in the constrained motions of TAM kinases in the presence of suitable ligand environment 

(cabozantinib). Intra-chain interactions could be key factors responsible for constrained 

motions in protein, but protein-ligand complex formation is ultimately an indirect way to orient 

these intra-chain non-bonded contacts by virtue of protein dynamics and internal motion. The 

RIN plots showed key interactions among TAM kinase-cabozantinib complexes to 

satisfactorily explain that dynamic motion in proteins. It is crucial to explain variable domain 

motion constraints occurring due to the hyper sensitivity of non-bonded interactions among 

various residues within the protein domains. The intra-chain interactions present in Axl 

(Asp581 – Arg707) (Figure 2.14A) and Tyro3 (Glu566 – Arg680) (Figure 2.14C) have 

dominant role in constrained motions of protein-inhibitor complexes which confirms the 

changes in structural features of protein. The domain motion frames are captured through Cα 

atomic NMA using VMD software that showed vibrionic motions between inter-domains in 

selective protein motifs.  It was observed that the Axl normal modes oscillated as stretching 

mode, whereas, Tyro3 vibrated in intermediate rocking mode as compared with Mer that has 

super rocking modes (Figure 2.15 A, B, C). This is an essential observation of domain motions 
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in the subfamily of kinases in the presence of binding inhibitors essentially due to specific non-

bonding interactions among various residue motifs and therefore the variations in the structural 

plasticity of TAM RTKs.  

 

 

 

 

 

 

 

Figure 2.15A) Porcupine plot Axl-cabozantinib-250ns (ANM modes). 

            2.15B) Porcupine plot Mer-cabozantinib-250ns (ANM modes).  

            2.15C) Porcupine plot Tyro3-cabozantinib-250ns (ANM modes). 

 

2.4. Conclusions 

Tyro3, Axl and Mer are TAM RTKs that belong to the family of integral membrane proteins 

and share high sequence similarities. TAM kinases are key receptors for discovery of effective 

and specific cancer drugs that bind to either active or allosteric sites using methods in structure 

based drug design. Comparison of the crystal and models of the active states in TAM kinases 

revealed their high structural similarities. Cabozantinib, a nanomolar affinity TAM kinase 

inhibitor binds to the ATP binding pocket of the enzymes and is stabilized by several non-

bonding interactions. The structural stabilities of apo and cabozantinib bound TAM kinases 

were studied using 250 ns MD simulations , the RMSD plots revealed the stability of the 

molecular systems and the RMSF plots indicated the fluctuations in the N-terminal domain 

motifs and the activation loop. An in-depth study of TAM kinase MD trajectory analyses 

revealed that the non-bonding interactions mediated via three residue contact involving the β3 

strand, αC-helix and DFG motif decide the retention or expansion of the active core of the 

kinases. Further, the ionic interactions between oppositely charged residues on αC-helix 

(acidic) and the activation loop (basic) is responsible for major domain motions in TAM 

kinases. The fluctuations in the αC-helix and activation loop regions lead to the presence of 

diverse conformations in Mer and Tyro3. Among the TAM kinases, the binding stability of 

Tyro3 with inhibitor is intermediate between Axl and Mer. This work revealed the active 

metastable states in TAM kinases and the molecular mechanism of function regulation. This 

classical MD simulations study on apo and TAM kinases-cabozantinib complexes gives 
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description of the non-bonding interactions at specified sites in the protein active cavity. These 

atomistic simulations and analyses revealed the existence active microstates in TAM kinases 

and further strengthen the overwhelming literature on the dynamic states in kinase family 

proteins.  
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 Chapter -3 

Dynamic conformational states of apo, ATP and cabozantinib bound TAM 

kinases to differentiate active-inactive kinetic models  
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Abstract  

The dynamically active and inactive conformations of kinases play a crucial role in the activation of 

intracellular downstream signaling pathways. The all-atom MD simulations at microsecond (µs) 

timescale and longer provide robust insights into the structural details of conformational alterations in 

kinases that contribute to their cellular metabolic activities and signaling pathways. TAM RTKs are 

overexpressed in several types of human cancers. Cabozantinib, a small molecule inhibitor constrains the 

activity of TAM kinases at nanomolar concentrations. The apo, complexes of ATP (active state) and 

cabozantinib (active and inactive states) with TAM RTKs were studied by one µs MD simulations 

followed by trajectory analyses. The dynamic mechanistic pathways intrinsic to the kinase activity and 

protein conformational landscape in the cabozantinib bound TAM kinases are revealed due to the 

alterations in the P-loop, αC-helix and activation loop that result in breaking the regulatory and catalytic 

spines, while the active states of ATP bound TAM kinases are retained. The co-existence of dynamical 

states when bound to cabozantinib was observed and the long-lived kinetic transition states of distinct 

active and inactive structural models were deciphered from MD simulations trajectories that have not 

been revealed so far. 
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3.1. Introduction  

The RTKs are single-pass membrane spanning proteins, recognised by specific extracellular ligands to 

cause receptor dimerization followed by kinase activation and intracellular autophosphorylat ion 

(Endicott et al., 2012). TAM RTKs are overexpressed in acute myeloid leukaemia, breast, colorectal, 

lung, ovarian cancers and glioblastoma. These three TAM kinase members share a high degree of 

sequence and structural homology in their kinase domains. Cabozantinib was approved by FDA for 

advanced renal cell carcinoma, hepatocellular carcinoma and medullary thyroid cancer and also 

differentiated thyroid cancer that has progressed following prior VEGFR-targeted therapy. Cabozantinib 

is reported to bind TAM kinases with high affinity at nanomolar concentrations (Gajiwala  et al., 2017, 

Sultan  et al., 2017, Skora  et al., 2013, Turner  and Blythe, 2019, Herum, et al., 2017, Qin  et al., 2019, 

Lacy  et al., 2018, Pantano et al., 2016, Myers et al., 2019, Robinson, 2013). The distinction between the 

active and inactive states in a kinase is based upon the αC-helical movement towards or away from the 

ATP binding site. The presence of catalytically important Lys567 (close to P-loop) - Glu585 (αC-helix) 

is an essential ionic interaction in the active Axl kinase from the crystal structure in PDB. The disordered 

activation loop (689-724) in the C-terminal lobe has altered conformational states that are variable among 

the kinase structures reported so far. An ionic interaction between the side chains of Asp581 (αC-helix) 

and Lys695 (activation loop) is important in the kinase structure and allostery. The synchronous 

fluctuations in the P-loop, αC-helix and activation loop leads to spatial alteration in the shape of the 

enzyme active site pocket and distinct structural features such as the inward/outward rotation of αC-helix 

and expansion of the activation loop. The Lys567 - Glu585 salt bridge is the indication for the active 

state of TAM RTKs. A kinase domain has two kinds of active sites; regulatory substrate site and catalytic 

active site that become available during allosteric competitive inhibitor binding pathways in the cellular 

signal transduction process. Structure analyses revealed the presence of two non-contiguous structural 

motifs termed regulatory and catalytic spines (Robinson, 2013, Mohanty et al., 2016, Hu et al., 2015) 

that are required for stabilizing the protein in the active state. Since the Axl kinase domain is crystallized 

in both active and inactive forms, classical long range MD simulations were performed on the active and 

inactive states of TAM kinases to obtain key insights into the spatial dynamics and to understand the 

cellular mechanistic pathways of inhibitor, cabozantinib binding to kinases that will prevent internal 

signaling by up-regulation or overexpression of kinases. In this chapter, the highly unstable 

conformational transition states including regulatory and catalytic spines in the kinase domains are 

reported by studying the apo, ATP and cabozantinib bound TAM RTKs each for 1 µs MD simulations 

using AMBER 18.14 suite of programs.    
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3.2. Materials and methods 

3.2.1. Structures of apo, active and inactive TAM RTK kinase domains 

The three-dimensional crystal structures of Axl (PDB id: 5U6B) (Gajiwala et al., 2017) A and B chains 

exist as inactive and active states, respectively. The missing residues in the activation loop were built 

using "Model/Refine Loops" in "Structure Editing" tool in UCSF Chimera 1.12. (Yang et al., 2012) The 

active and inactive homology model structures of Mer and Tyro3 were built based on the crystal 

structures of 5U6B, B and A chains, respectively, using MODELLER (Sali and Blundell 1993, Webb, 

and Sali, 2014) as described previously. 

3.2.2. Molecular docking of ATP and cabozantinib  

The inhibitor cabozantinib was docked into the ATP binding pocket of the active and inactive conformers 

of TAM kinases and ATP was docked into the ATP binding pocket of the active state of TAM kinases 

using AutoDock (Morris et al., 2009). The docking pose with lowest binding energy and maximum 

docking poses was utilized for further MD simulations to decipher the molecular basis for interactions 

between protein and ligand.  

3.2.3. Molecular dynamic simulations 

All MD simulations were achieved using AMBER (Gotz, et al., 2012) version 18.14 for the apo, ATP 

bound active, and cabozantinib bound active and inactive states of TAM kinases. The best docking pose 

of each complex was utilized as input for MD simulations. The force fields for the entire systems were 

generated with Antechamber using am1bcc method (Wang et al., 2006, Colovos and Yeates, 1993). All 

input parameter files for MD simulations were generated after adding hydrogen atoms in tLEaP module 

in AMBER tools (Anandakrishnan, Aguilar and Onufriev., 2012,  Lindorff-Larsen  et al., 2010). Sodium 

and chloride ions were added to the systems to neutralize the charge, each molecular system was solvated 

within a 10 Å size box. The final ionic concentration for the systems was set to 100 mM. The 

Amberff99sb-idln force field was used for entire model system with TIP3P water model for AMBER 

molecular parameters (Meagher et al., 2003, Mark and Nilsson, 2001). All MD simulations were run at 

300 K temperature and 1 atm pressure with Monte Carlo barostat (Salomon-Ferrer et al., 2013). Energy 

minimization was carried out by using steepest descent method for 40,000 cycles to overcome short range 

null contacts among the molecular system in solvent (Darden et al., 1993). Long range electrostatic 

interactions were considered with Particle Mesh Ewald algorithm (Jorgensen et al., 1983) with cut-off 

range 9 Å and order 4. All model systems were equilibrated for 5 ns before the production run, and the 

coordinates in the production run were saved after every 5 ps (Salomon-Ferrer et al., 2013, McGibbon et 

al., 2015). The MD simulations of each molecular system was carried out for 1 µs, accounting for a total 

of 12 µs simulations time.    
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3.2.4. Data analysis 

The MD trajectory data analysis was carried out using cpptraj and pytraj in Amber tools 18 (Hornak et 

al., 2006). The average structures after MD simulations, RMSD, RMSF and PCA were derived from the 

trajectory analysis. For the sake of data space minimization during post MD analysis, the Markov state 

model (MSM) analysis was carried out on 40K frames out of 200K frames and the PCA was carried out 

on the data from 1K frames generated from each molecular system. To build the MSM, datasets of close 

accessible kinetic metastable states associated with protein conformational ensemble obtained from large 

scale simulations are required. These states can be defined in pyEMMA Python library (Scherer et al., 

2015). To generate the MSMs 40K conformations were sampled. All twelve MD simulations datasets 

were transformed in terms of protein Cα backbone dihedrals, Cα backbone atomic positions and distances 

from their trajectories.  All MD simulations trajectories were analysed for 1000 ns (200K frame data) by 

sampling the MSM predictions (Harrigan et al., 2017). This identified kinetically metastable transitions 

among cluster k-means lag time (250 degrees of freedom) of protein conformations (Perez-Hernandez et 

al., 2013). The extrapolation of the real time data into pictorial and graphic vectorized data points was 

achieved with matplotlib and numpy data frames into 2D plotting space. The state distributions of kinetic 

metastable data points were featurized and cluster analysis was applied using TICA (Perez and Granger, 

2007, Pedregosa et al., 2011, Noe and Clementi, 2015).  

 

3.3. Results and discussion 

The amino acid sequence alignment of Tyro3, Axl and Mer kinases shown as the final modeled (after 

MD simulations) structures of the active and inactive kinases display significant conformational 

alterations in the P-loop, αC-helix and activation loop as shown in the Table 3.1A. The three-dimensional 

structures of active and inactive forms of Axl kinase domain were taken from the crystal structure (5U6B) 

(Gajiwala et al., 2017) B and A chains, respectively. The homology models of active and inactive forms 

of Mer and Tyro3 kinase domains were constructed and validated. The models of TAM kinase domains 

constructed were compared with model structures generated using Phyre2 (Kelley et al., 2015) and 

AlphaFold (Varadi et al., 2021) by structure superposition. the structures superpose with low RMSD.  

From the docking of cabozantinib into TAM kinases, it was observed that it binds to the ATP binding 

pocket mediated via several non-bonding interactions. The hinge region residues Phe622, Met623 (Axl 

kinase domain) interact with dimethoxy quinoline ring nitrogen of cabozantinib. The para- fluoro phenyl 

interacts with Phe691 aromatic ring (DFG motif in Axl) and Asp690 forms hydrogen bond with amide 

nitrogen located between the cyclopropyl and phenyl rings of the inhibitor. The cofactor ATP binds the 

active site of TAM kinases, intermolecular hydrogen bonding interactions are observed with Pro621 

(hinge region) and Asp627 (hinge region), Asn677 (catalytic loop region) in the Axl kinase domain. The 
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structures of apo, active TAM kinases complexed with ATP, active and inactive TAM kinases complexed 

with cabozantinib were subjected to 1 µs MD simulations each, using AMBER18. Throughout MD 

simulations all molecular system appeared to be stable as observed from temperature vs time and total 

energy vs time plots  

3.3.1. Active – inactive kinetic state models of TAM RTKs 

From the long range MD simulations of TAM RTKs the kinetic state models are defined according to the 

internal structural dynamical features such as P-loop (544–549 amino acid residues), αC-helix (576 –

591) and activation loop (689–724) from the trajectories of the MD simulations data. The active/inactive 

conformers of TAM kinases are clearly distinguished. In the active state, the side chain of Glu585 on αC-

helix is rotated inwards towards the substrate binding site to make salt bridge interaction with Lys567 in 

the case of ATP bound Axl RTKs. The side chain of Asp690 from the DFG motif also projects towards 

the active site. The outward orientation of Glu585 side chain away from the substrate to dissociate the 

ionic interaction with Lys567 (P-loop), and rotation of Asp690 side chain inwards into kinase active site 

is indicative of an inactive state of kinase (Gajiwala et al., 2017). In the inactive state, the αC-helix 

undergoes outward rotation, followed by the activation loop inward folding to minimize the drug binding 

active site that can be seen from Figure 3.1A. These are the key structural features implicated in the 

regulation of protein kinase activity and influence the effective binding of inhibitors. The binding of 

cabozantinib influenced various states of active/inactive models in Tyro3, Axl and Mer kinase domains.  

The active kinetic models are indicated by the ionic interaction between Lys567 and Glu585, inward 

rotation and activation loop extended to further maximize inhibitor binding site. In the ATP bound active 

TAM kinase structures, this ionic interaction is retained throughout the MD simulations (Figure 3.1B) 

indicating that ATP bound TAM kinases retain the active state.  The catalytic spine and regulatory spine 

dictate the positions of ATP and substrate in the kinase domain. These spines play a key role in the 

catalysis of kinases while binding with ATP. The locations of regulatory spine and catalytic spine on the 

structures of TAM kinases based on the structures of C-Src (Robinson, 2013). The regulatory spine 

consists of four non-consecutive hydrophobic amino acid residues aligned vertically from N-terminal 

lobe towards the C-terminal lobe through the activation loop (Kim et al., 2017). These hydrophobic 

residues in Axl kinase domain are Leu600 (β4-strand); Met589 (αC-helix); Phe691 (DFG motif); His670 

(catalytic loop) and an additional residue Asp731 from the C-terminal lobe (Figure 3.2 A, B, C). The 

catalytic spine consists of eight non-consecutive hydrophobic amino acid residues aligned vertically from 

N-terminal lobe towards the C-terminal lobe through the hinge region. These hydrophobic residues in 

Axl kinase are, Val550 (β2-strand), Ala565 (β3-strand), Phe622, Leu628 (hinge region), Met679, Leu680 

(catalytic loop), Met739, Ile742 (αF-helix from C-terminal lobe). 
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Figure 3.1A) The active and inactive states of cabozantinib bound Axl kinase domain after 1 µs MD 
simulations. Axl (grey); cabozantinib (elemental color). Lys567 - P-loop with Glu585 - αC-helix. 

Figure 3.1B) The active states of ATP bound Axl kinase domain. Axl-active (grey); ATP (elemental 
color). Lys567- P-loop - Glu585- αC-helix. 
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Figure 3.2) Regulatory spine analysis of cabozantinib bound active and inactive TAM kinase domains, 
apo and ATP bound active TAM RTKs at 1 μs MD simulations. 3.2A) Tyro3; 3.2B) Axl; 3.2C) Mer 
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Figure 3.3) RMSD plots of apo, ATP bound TAM RTKs and cabozantinib bound active and inactive TAM 
RTKs from 1 μs MD simulations. (3A) Tyro3, Axl, Mer Cα atoms in the kinase domain (3B) Activation 
loop (3C) Regulatory spine (3D) Catalytic spine (3E) P-loop (3F) αC-helix 

3E 

3F 
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The RMSD plots are shown in Figure 3.3 A, B, C, D, E, F. The RMSD plots of protein Cα atoms (Figure 

3.3A), indicate that the structures converged at about 100 ns of MD simulations and the RMSD values 

lie within a narrow range from 2-4.5 Å. The ATP bound TAM kinase domains have lowest RMSD among 

all the systems studied. The TAM active state kinases form stable complexes when bound to 

cabozantinib. The apo Tyro3 and Axl have higher RMSD values among all systems studied. The RMSD 

analysis of specified regions in kinases are the key components to describe the distribution among 

inactive and active states. The regulatory spine of Tyro3 and Axl have well differentiated active states 

based on the lower RMSD (~ 2.8 Å) while the Mer active state has higher RMSD (~ 4.5 Å). All the 

inactive states of TAM kinases have an RMSD of 4 Å in the regulatory spine. The catalytic spine RMSD 

is higher in the case of apo Axl kinase but the ATP bound Mer and Tyro3 have lower catalytic spine 

RMSD (~2.8 Å). The RMSD of N-terminal P-loop are nearly similar in all the molecular systems studied. 

The RMSD of αC-helix region is distinguished among all TAM kinases studied and lie within a range of 

1.5-3.0 Å. The active and apo states of Tyro3, the inactive and apo states of Axl, and the apo Mer kinases 

have higher and nearly similar RMSD values of the αC-helix among all the kinase states. The RMSD is 

lowest in the inactive Tyro3, Axl active, active and inactive Mer complexes. The RMSD of the activation 

loop is quite opposite to the αC-helix region. The active state Tyro3, active and apo states of Axl, and 

apo state of Mer kinase have lower and nearly similar RMSD values among all the systems. The 

activation loop in the apo and inactive Tyro3, inactive Axl, active and inactive Mer has highly dynamical 

conformation as can be seen from the higher RMSD values. Among all the systems studied, the inactive 

Axl activation loop is highly variable. The RMSD of regulatory and catalytic spines in the ATP 

complexes of TAM kinases is lower than 3 Å. The P-loop and αC-helix have lower RMSD (1.5 Å) and 

the RMSD of the activation loop is in between 1.5-3 Å. The cofactor ATP stabilizes TAM kinases with 

the adenine group coordinated at the hinge region of the kinase domain. The results from the RMSD are 

in correspondence with the RMSF plots (Figure 3.4 A, B, C).  It can be seen that the hinge region is most 

stable in the Mer kinase domain when complexed with cabozantinib. From the analyses of the RMSD 

and RMSF plots, it is observed that TAM kinase domains have unique hidden dynamic states that can be 

distinguished from further analyses of MD trajectories.   
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3.3.2. TAM kinase-cofactor complex activation pathway 

The kinetic states appear due to the stereo-spatial arrangement of certain residues in specific α-helices, 

β-sheets and loop regions in the kinase domain. These kinetic states provide key insights into the 

activation of protein kinases in the presence of ATP and inhibitor bound to the active site. The apo, ATP 

bound and active/inactive Axl-cabozantinib molecular systems consist of well-defined kinetic state 

models during the MD simulations. The precise representation of the local spatial pattern in the active 

and inactive states of a kinase domain can be accessed via the regulatory spine and catalytic spine. The 

regulatory spine controls substrate molecule in the active site (αC-helix and activation loop). The catalytic 

spine regulates catalysis by allowing the ATP binding site at hinge region. The inactive kinase state 

should be converted into active state with the help of substrate binding at activation loop through the 

influence of regulatory spine hydrophobic residues which connect the dynamical movement of catalytic 

loop in αF-helix. The coordination between regulatory spine and catalytic spine evolve a dynamical 

conformation for the transfer of γ-phosphate from ATP to the substrate protein (Myers et al., 2019, 

Robinson, 2013, Kornev, 2006, Mohanty et al., 2016, Kim et al., 2017). The regulatory spine is 

continuous and linear in the case of normal metabolic kinase activity. The hydrophobic surface in the 

regulatory spine is vertically aligned (Leu-Met-Phe-His) in the apo form of all TAM kinases as can be 

Figure 3.4) RMSF plots of TAM kinase domain from 1 μs MD simulations. Kinase domains are numbered 
as per their primary structure. Axl indexing 539-553 (β1-β3 turn in the N-terminal domain-P-loop); 579-
591 (αC-helix in the C-terminal domain); 689-724 (activation loop). 4A) Tyro3; 4B) Axl; 4C) Mer.           

4C 
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seen from the Figures (3.2 A, B, C). In the Axl active state, the regulatory spine is broken in the case of 

inhibitor bound form due to the expansion of activation loop that results in the extended space between 

αC-helix- Met589 and DFG motif -Phe691 at ATP binding site. The inactive Axl bound to cabozantinib 

has an intact regulatory spine due to the expansion of space between αC-helix Met589 and β4-strand 

Leu600 as a result of the outward rotation of αC-helix. The regulatory spine is retained in a similar way 

in the cabozantinib bound Tyro3 kinase domain in the active and inactive states. In the case of the 

cabozantinib bound active state Mer RTK, the regulatory spine fragmentation occurs between the P-loop, 

αC-helix and activation loop, whereas in the cabozantinib bound inactive Mer, the regulatory spine is 

retained. In the active site in Axl and Mer kinases, inhibitor occupies the shallow depth in between the 

αC-helix – activation loop, resulting in the broken regulatory spine. In the case of inactive states, the 

inhibitor binds at the hinge region of TAM kinases and therefore retaining the regulatory spine. 

In the kinase active state, the regulatory spine is broken in Axl and Mer RTKs, whereas the catalytic 

spine is retained in the active state of Axl and Mer RTKs with no breakage in the hinge region. The 

regulatory and catalytic spines are coordinated in such a way that if the regulatory spine is broken, the 

catalytic spine is retained and vice-versa. The active Axl and Mer RTKs have broken regulatory spine 

but the catalytic spine is intact, but in the rest of the molecular systems the regulatory spine is intact and 

the catalytic spine is broken. It is like a lever pulling mechanism in the presence of higher concentration 

of inhibitor bound at regulatory site of kinase. The spine coordinated mechanism is important to ensure 

that the kinase is regulated from inactive state to active state mode in the presence of higher 

concentrations of substrate or high concentration of ATP in the cytosolic region. Therefore, the 

cabozantinib binding in the active state kinase influences at specified locations of the regulatory spine 

residues rather than catalytic spine.  This can lead the catalytic spine to initiate catalytic activity towards 

passive mechanism to alert the body immune system with the help of chemokines. Whereas, in the 

inactive kinase state, the inhibitor binding to the regulatory active site or hinge region, regulatory spine 

activates either the dynamical movement of catalytic loop or catalytic spine to initiate the catalysis 

process with help of cofactor ATP. As a consequence, both the spines are well coordinated in the case of 

inhibitor bound to both active and inactive states to trigger apoptosis in malignant cells.   

3.3.3. Confirmation of the existence of active states in ATP and active/inactive states in 

cabozantinib bound TAM kinases  

A kinase domain can switch from active to inactive states and vice-versa due to either inhibitor binding, 

or influence of the regulatory spine and catalytic spine during MD simulations at longer timescales. 

Noticeable changes were observed in the spatial conformational states with inhibitor binding at the active 

site of the TAM RTKs. However, the specified regions of spatial orientations are not directly observable  

from the conventional RMSD plots. The inhibitor bound Axl kinase activation takes place in the transition 
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from active to inactive kinetic models. Therefore, these states coexist with broken regulatory spine in the 

active and inactive metastable states at the specified timescales of MD simulations. In addition, the 

RMSD of Axl differentiates due to the coexistence of active-inactive states throughout 1 µs timescales 

(Figure 3.3A). The RMSD of specific loops in Axl is observed at higher square fluctuations occurring at 

the loop connecting β4-β5 strands (Glu609-Pro614), αC-helix and activation loop. It is evident from the 

RMSF plots that cabozantinib drug binding influences the inactive state of Axl and Mer kinases more 

than their active states (Figure 3.4). When cabozantinib binds the kinetically metastable states of TAM 

RTKs, it arrests the mechanism of kinase activity by inhibiting the up-regulation of its enzymatic activity. 

Regulatory spine is broken in inhibitor bound active state of Axl and Mer but it is intact in apo and 

cofactor (ATP) bound kinases. The active kinetic states of TAM kinase bound ATP at hinge regions 

shows Lys-Glu salt bridge distance retained within 4.0 Å range throughout 1 µs MD simulations. This 

indicates that the ATP bound active TAM kinases retain their active state throughout the MD simulations. 

While only the cabozantinib bound active state of Axl has the salt bridge distance between P-loop and 

αC-helix, the Mer and Tyro3 kinases have longer distances (>7.5 Å) due to the core expansion of 

activation loop region. In the case of inactive states of Axl, Mer and Tyro3 kinases these distances 

drastically increase beyond 12.5 Å. This signifies that the Axl and Mer RTK kinetic models have well 

distinguished proportions of active and inactive states, while Tyro3 has similar ratios of active and 

inactive intermediate states (average 12.5 Å salt bridge distance between (P-loop) Lys and Glu (αC-helix) 

in Tyro3 active and inactive). The salt bridge distance between αC-helix Asp/Glu and Lys in activation 

loop of ATP bound states in Axl and Mer (< 5.0 Å) and Tyro3 (>5.0 Å) indicates highly dynamical 

structure than among all active and inactive states. These salt bridge distance analyses clearly 

differentiate cofactor (ATP) and inhibitor (cabozantinib) bound kinase domains at active site and 

active/inactive states, respectively (Figure 3.5 A, B, C, D). The inhibitor bound active/inactive kinase 

states are highly dynamical in nature than cofactor bound kinase states, therefore the inhibitor bound 

kinases might trigger apoptotic signaling pathways leading to inhibition.  Based upon individual RMSD 

plots of the regulatory spine and activation loop (Figure 3.3B, 3.3C), it can be seen that cabozantinib 

binding influences the activation loop and hydrophobic spine in individual kinetic states. A specific 

spatial conformational variation in RTKs occurs only in the activation loop and regulatory spine.  The 

active and inactive forms of apo and active ATP bound conformers of TAM kinases appeared to have 

intact regulatory spine. This could lead to the normal signal transduction process while the regular ligands 

[GAS-6 and Pros1] bind to the extracellular regions of TAM RTKs.  
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Figure 3.5) Distance plots between side chains of Lys P-loop - Asp αC-helix pairs in apo, ATP and TAM-
cabozantinib bound active and inactive kinase domain from 1 μs   MD simulations. Axl (K567 – E585); 
Tyro3 (K552 – E570); Mer (K612 – E630);  

 (A) ATP bound; (B) Active inhibitor bound; (C) Inactive inhibitor bound; (D) Apo state 

5C 

5D 
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The analysis of salt bridge distance between the activation loop and αC-helix reveals the hidden 

conformers among the apo, ATP and inhibitor bound TAM kinases. The salt bridge interaction in the apo 

kinase is retained within a reasonable distance between the αC-helix and activation loop residues Asp581- 

Lys695 (3.99 Å, Axl) or Glu626- Lys739 (3.86 Å, Mer) or Glu566-Arg680 (3.44 Å, Tyro3). The salt 

bridge distance between Asp/Glu (αC-helix) - Lys/Arg (activation loop) in cabozantinib bound active 

states increases in Axl and Mer RTKs due to the expanded core in the inhibitor binding site in RTKs 

(Tyro3-3.16 Å; Axl-13.92 Å; Mer-10.28 Å), but in the inactive states of TAM RTKs salt bridge distance 

between αC-helix and activation loop is lower for Axl RTK (Tyro3-6.82 Å; Axl-2.83 Å; Mer-8.83 Å). 

These salt bridge distances provide support to the stationary state distribution in apo TAM RTKs. These 

salt bridge distances in the ATP bound TAM kinases is observed to be greater than 5 Å (Tyro3-7 Å; Axl-

10.0 Å; Mer-12.0 Å).  

 The salt bridge is retained in the apo form, active states of Tyro3 and inactive states of Axl. The salt 

bridge distance analysis provides a clear evidence that the kinases coexist in active and inactive state 

models while binding with inhibitor at the active site. The large distance across the regulatory site of 

kinase active states occurred due to a β-sheet formation in the activation loop and inward rotation of αC-

helix. This causes the extended nature of regulatory active site between αC-helix and activation loop. 

The inactive state models have αC-helix outward rotation and activation loop undergoes shift to helical 

structure to minimize the active space across αC-helix and C-lobe in the RTKs.  These results provide 

further support to regulatory spine analysis. But most of the active states in Axl and Mer forms have 

broken regulatory spine between αC-helix and activation loop therefore the distance between these 

domains is extended and the salt bridge interaction is disturbed due to the increased distances between 

Asp/Glu (αC-helix) - Lys (activation loop). In the inactive state of TAM RTKs, the regulatory spine is 

reinstated due to the bound inhibitor at the hinge region of kinase and expansion of space between P-loop 

and αC-helix.  In overview, in the cabozantinib bound TAM kinases, the salt bridge distance is higher in 

active states than inactive states, as the distance of salt bridges Asp/Glu (αC-helix) - Lys/Arg (activation 

loop) in the active states are above 10 Å, the inactive states have below 10 Å.  

 

3.3.4. Post-MD data analysis of TAM RTK kinase domain 

The preliminary MD simulations data acquired from AMBER trajectories were analyzed to ensure that 

kinetically active and inactive states were investigated with the help of PCA.  PCA analysis was carried 

out on 1K conformer samples of trajectories out of 40K for clear visualization of data points from kinetic 

transition states in the active to inactive kinases. The histogram showed that the random distribution of 

kinase state trajectories data was extrapolated as training and test sets of individual components validated 
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with shuffle-split cross-validation in PCA plot. All apo and inhibitor bound forms of TAM RTKs have 

random distribution of states that are very unique in nature from the respective scatter plots of kinase 

trajectory analysis. This is a preliminary analysis to propose the hidden dynamic states existing in longer 

timescale MD simulations and trajectory data of kinases.  

The metastable kinetic models were built based upon advanced trajectory data analysis using python 

based scripts. All TAM trajectories data was sampled into vectorized and clustering was done using 

Keras-state algorithm for MSM model generation (Prinz  et al., 2011, Schwantes and Pande, 2013, 

Harrigan et al., 2017).  The MSM data of TAM kinases was bootstrapped from 1 µs of trajectory data to 

generate HMMs to reveal the unfolding and refolding of the activation loop from active state to inactive 

states. The metastable trajectories are well converged as shown by VAMP score. Discrete clustering of 

protein backbone state distribution featurisation was performed to show distinct kinetic stable states in 

all TAM kinases. All HMM states are key intermediate conformers to describe the kinase inhibit ory 

activity when bound to cabozantinib. As per the analysis of metastable kinetic state forms, higher 

numbers of active state models are present in Axl and Mer than the number of kinetic transitions states 

of inactive forms. However, the Tyro3 has approximately similar numbers of kinetic state models in their 

respective active and inactive states which are included in state distribution plots. The MFPT error bars 

were validated with Bayesian HMM model validation with lag time of 50 states. From these analyses it 

is inferred that Tyro3 RTK kinase domain states have combined and coexisted metastable state transitions 

among the active and inactive forms rather than the dominance of either the active or inactive kinetic 

states as observed in Mer and Axl RTKs. Therefore, the Tyro3 has more intermediate states than Axl and 

Mer.  The MFPT values of Tyro3 indicate that activation and deactivation occur in equal ratio below 100 

ns; whereas the Axl and Mer have different activation timescales (after 200 ns) and their deactivation 

takes place around 100 ns timescales; The influence of these major changes in the kinase domain is due 

to the conversion of active to inactive states through kinetic transition metastable equilibrium states. 

In the inhibitor bound form of TAM kinases, greater state distribution models coexist in the active forms 

than in the inactive forms. The drug bound to kinase active state influences the kinetic signaling pathways 

more rather than the inactive state (Roskoski, 2015, Taylor and Kornev, 2011, Sultan et al., 2018, Shukla 

et al., 2014). Therefore, the active state kinase bound to inhibitor is more susceptible to arrest the 

dysregulated kinase activity (shown by the broken regulatory spine) in all kinetic HMM states. These 

observations provide key insights to describe that the kinase activity can be arrested through active state 

models of inhibitor bound RTK, where regulatory spine breaks in between activation loop and αC-helix 

in the active states (Robinson, 2013, Parsons and Parsons, 2004, Bowman and Pande, 2010). The 

hydrophobic surface regulatory spine is retained in the apo form of all the three TAM kinases. The 

regulatory spine is retained in the cabozantinib bound Tyro3 RTK in the active and inactive states, due 
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to the increased distance between P-loop and αC-helix. This retaining of regulatory spine in Tyro3 RTKs 

indirectly influences the number of active and inactive state distribution in equal proportions. In the 

inactive Axl and Mer RTKs, intact regulatory spine is observed due to increase in the distance between 

the P-loop and αC-helix, whereas in the active Axl and Mer RTKs, regulatory spine fragmentation occurs 

between αC-helix and activation loop, due to the lower distance between P-loop and αC-helix. These 

observations are shown in Figures 3.2 (A - C). The discrete clustering of MSM estimation and validation 

was done with reversible estimation equilibrium transition probabilities.  The discrete kinetic state models 

were further validated by analysis of hidden markov kinetic models. The implied relaxation timescales 

are extracted to validate the HMM in order to ensure the conditional transition probabilities among 250 

microstates. Therefore the implied timescale analyses indicated that the kinetic state distribution occurred 

within time intervals of a few nanoseconds range among 1 µs MD simulations timescale.  

The Mer active states have longer MD kinetic relaxation timescales among the active MSM kinetic forms 

of TAM RTKs. The inactive Axl kinetic state models have higher relaxation timescales within short 

range of time intervals.  The critical observation from all TAM apo and inhibitor bound active and 

inactive kinetic states implied from timescale plots, with 4.5 ns timescale separation as the average 

implied relaxation timescale among all. The Tyro3 apo has more relaxation time intervals than the rest 

of kinase systems. The kinetic relaxation time intervals revealed that the inhibitor bound TAM RTKs 

showed kinetic metastable state transitions due to various periodic time laps even though all TAM RTKs 

are bound with same inhibitor (cabozantinib).  

The MSMs of the members from same class of protein kinase complexes (TAM kinases bound to 

cabozantinib) is expressed as different relaxation timescale intervals obtained from the MD simulations. 

The free energy and stationary state distribution of apo Axl is higher than Tyro3 and Mer. From the Table 

3.1, it is inferred that there are unique kinetic Markov state models existing among them. These are 

classified as “kinetic non-equilibrium transition state models” (Tyro3 apo, Mer active, Axl inactive). This 

is further discussed in kinetic transition analysis. The lowest free energy and equal stationary distribution 

exist in stable kinetic model states of TAM kinases (Axl-active, Mer-inactive). The kinetic transition 

states between Axl active and Mer inactive has higher free energy and approximately equal stationary 

distribution values (Tyro3 active/inactive) and are classified as “kinetic equilibrium transition state 

models”. As per the state distribution difference between active-inactive states of Axl inactive HMM has 

half (1/2) of the stationary distribution of Axl active (more active state distribution). The inactive Mer 

has ¾ of the state distribution of active Mer RTK. The Tyro3 has equal contribution in active and inactive 

stationary distributions among kinetic HMM states. The surface free energy of Axl has same energy 

values in the active and inactive states (~ 4.0 kcal/kT per 5 states-Axl) but Tyro3 and Mer have 0.5 kcal 

and 1.2 kcal, respectively per five MSM states energy difference between the active and inactive hidden 
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Markov states.  Each hidden MSM state contains five metastable kinetic conformers from sampling of 

40K conformers to study the MSM validation.   

 

 

 

 

 

Kinetic 

metastable 

states 

Kinases types Axl Mer Tyro3 

 STATES π G/kT 

(kcal per 

HMM 

state) 

π G/kT 

(kcal per 

HMM 

state) 

π G/kT 

(kcal per 

HMM 

state) 

  

 

Active 

 

 

1 

2 

3 

4 

5 

0.080859 

0.000000 

0.328240 

0.206730 

0.384171 

2.515052 

inf 

1.114010 

1.576340 

0.956668 

0.072653 

0.095574 

0.271887 

0.286168 

0.273718 

2.622066 

2.347855 

1.302367 

1.251176 

1.295657 

0.000000 

0.210675 

0.094495 

0.343637 

0.351193 

inf 

1.557439 

2.359208 

1.068168 

1.046420 

Transition 

states 

   S4-S5  S2-S4  S4-S5 

  STATES π G/kT π G/kT π G/kT 

  

 

Inactive 

1 

2 

3 

4 

5 

0.128210 

0.262320 

0.138915 

0.171230 

0.299324 

2.054082 

1.338189 

1.973891 

1.764746 

1.206230 

0.032751 

0.037707 

0.260523 

0.151968 

0.517051 

3.418814 

3.277907 

1.345064 

1.884087 

0.659614 

0.030226 

0.058256 

0.132997 

0.255189 

0.523331 

3.499054 

2.842902 

2.017429 

1.365750 

0.647540 

Transition 

states 

   S2-S5  S4-S5  S4-S5 

  STATES π G/kT π G/kT π G/kT 

  

 

Apo 

1 

2 

3 

4 

5 

0.008222 

0.052043 

0.080056 

0.165858 

0.693821 

4.800930 

2.955685 

2.525032 

1.796625 

0.365541 

0.081258 

0.239732 

0.131020 

0.228406 

0.319583 

2.510125 

1.428232 

2.032406 

1.476629 

1.140738 

0.078556 

0.083054 

0.139106 

0.293660 

0.405625 

2.543949 

2.488261 

1.972522 

1.225334 

0.902326 

Transition 

states 

   S4-S5  S4-S5  S3-S5 

Table 3.1) Tyro3, Axl and Mer kinetic transition states analysis with specified free energy of nine 
HMM states. Red color indicates metastable kinetic equilibrium transitions states.  
Blue color indicates metastable kinetic non-equilibrium transitions states  
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3.3.5. Kinetic transition state analysis 

The estimated five state kinetic metastable models were designed based upon active space distribution of 

HMMs in TAM RTK kinase domains. All the five metastable state transitions occurred based upon 

kinetic transition energy (Weinan and Eijnden, 2010, Salvalaglio et al., 2014, Metzner et al., 2009) 

(Table-3.1). The apo Axl has higher transition energy (4.8 kcal), inactive Mer (3.4 kcal) and inactive 

Tyro3 (3.5 kcal). Out of the nine kinetic states, six kinetic transition states are represented as metastable 

kinetic equilibrium transition states as these kinetic transitions occurred in S4-S5 states. The metastable 

kinetic non-equilibrium transitions exist in various types of kinetic metastable states (Tyro3 apo – S3-S5; 

Mer-active- S2-S5; Axl inactive- S2-S4) from the nine metastable transition states (Figure 3.6 A, B, C). 

All non-equilibrium kinetic transitions occur with a very low transition energy (2-2.6 kcal). These hidden 

states are classified based upon kinetic transition energy and state transitions. All the metastable kinetic 

equilibrium transitions occurred with a high energy (2.3-4.8 kcal). As per the individual TAM RTK, the 

Axl apo kinase has higher kinetic transition energy among all TAM RTKs in the apo and inhibitor bound 

active and inactive forms. The next higher kinetic transition energy exists for Mer and Tyro3 inactive 

forms. It is evident that all inhibitor bound RTKs exhibit different kinetic metastable states in the 

overexpressed RTKs during the protein function. According to approximate difference in transition 

probability of active to inactive metastable kinetic states in Tyro3, Axl, and Mer RTKs, for Tyro3, 1st 

MSM state has higher transition probability difference (50 %), for Axl and Mer RTKs, 2nd MSM states 

have higher transition probability difference. The transition of kinase active state to inactive state can be 

explained based upon kinetic metastable states of these specified MSM conformer analysis (Husic and 

Pande 2018).  From the Figure 3.7, it can be seen that the stationary state distributions in Axl active are 

doubled when compared to Tyro3 active, and Mer inactive states has only 4/3 proportion. Therefore, Axl 

active RTK has more active stationary states. The relative transition state probability is explained on the 

basis of salient feature analysis in hidden Markov kinetic states. These could be key intermediate 

structures among subfamily of TAM RTK kinase domains. However, these protein kinases driven from 

active to inactive states expressed significant structural changes upon binding with inhibitor. The active 

state of Axl kinase consists of activation loop that transits from β-sheet to α-helical structure in the 

inactive state (Figure 3.7A and B). Mer RTK shows high structural changes in the activation loop which 

converts from loop (active) to helical (inactive) in their respective state transitions (2-2 transition 

probability), while Tyro3 does not have any significant change in the MSM kinetic states (Figure 3.8A 

and 3.8B).     
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  Figure 3.6) Kinetic metastable five states estimation and kinetic metastable transition          
state analysis of metastable kinetic non-equilibrium transitions states Tyro3 apo and 
cabozantinib bound Mer-active and Axl-inactive states of  RTK from 1 μs MD 
simulations. 
(3.6A) Stationary states and reweighed free surface energy of non-equilibrium 

transitions states 
(3.6B) MSM five states estimation and kinetic transition states; 
(3.6C) Specific states distance between side chains of Asp/Glu-αC-helix – 
Lys/Arg-activation loop pairs in Tyro3 apo and cabozantinib bound 
Mer-active and Axl-inactive;   (I) Tyro3 apo; (II) Mer active; (III) Axl inactive. 

Figure 3.7A) Schematic view of three kinetic equilibrium metastable states among 

HMM states involved in allosteric activation and deactivation from active to inactive 
states in RTKs.   
                    (I) active state; (II & III) transition like states; (IV) inactive state  

7A 

α- helix 
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3.3.6. Mechanistic strategy of TAM RTKs activation when complexed with cabozantinib 

The dynamical movement of the regulatory and catalytic spine residues are a result of the coordinated 

alterations in the kinase structural domain during the cellular signal transduction process. The selective 

kinase inhibitor (cabozantinib) arrests the activity of these overexpressed kinase domains via the dynamic 

movement of both these spines and distancing the space between αC-helix and activation loop.   This can 

be supported from the results of distance plots shown in the active states of Tyro3, Axl and Mer that have 

undergone large expansion of protein core between αC-helix- activation loop in regulatory active site. 

Therefore, the kinase activation is carried out by the active state modes. The five metastable states from 

Chapman-Kolmogorov test described transition probability from 40K frames of dynamic kinetic 

metastable states for each of the protein complex trajectories, was obtained from AMBER MD data with 

95% confidence level. Combining all these transitions probabilities with transition states and assigning 

five sampled metastable states could provide good insights and predict long lived transition states in the 

MD simulations trajectories with Perron-cluster cluster analysis (PCCA++) clustering algorithm (Scherer 

et al., 2015, Schwantes and Pande, 2013, Harrigan et al., 2017, Perez-Hernandez et al., 2013).  The RTKs 

are involved in signal transduction process in which dysregulated kinase is inhibited such that the cells 

initiate programmed cell death with the help other proteases belonging to the caspase enzyme (Kim, et 

al., 2017).  The regulated and dysregulated kinases can be distinguished with help of regulatory spine 

(Leu-600 {β4-sheet P-loop}; Met-589 {αC-helix}; Phe-691 {DFG- activation loop}; His-670 {catalytic 

loop}) closed and open conformers of apo, ATP and inhibitor bound TAM RTKs, respectively, due to 

significant conformational changes. A regulated kinase has closed and continuous regulatory spine in 

both active apo and ATP bound form in RTKs. The hydrophobic surface is in a closed manner and 

continuous in apo and ATP bound form of active Tyro3, Axl and Mer RTKs. This space has expanded 

in the case of active states of normal physiological kinase mechanism. This is achieved based upon 

activation loop refolded into β-sheet and π-stacking with β-sheet structure of the catalytic loop in active 

state model (observed in Axl). But inhibitor bound dysregulated kinase experiences large conformational 

deformations in their regular structures due to the influence in certain parts of RTKs with overwhelmed 

hidden dynamic states to trigger kinase domain equilibration between active and inactive states. Indeed, 

the drug (cabozantinib) bound at RTKs active site, triggers the activation loop folding into either β-sheet 

(Axl active-state) or αC-helix (Mer inactive-state) (Figure 3.7A). These kinetic metastable states have 

transition from active to inactive states through intermediate structure (transition-state) and vice-versa 

(Weinan and Vanden-Eijnden, 2010, Metzner et al., 2009, Noe and Clementi, 2015). The dynamic states 

would proceed through mechanistic pathways to initiate signaling process as expanding or compressing 
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of the activation loop, outward/inward rotation of αC-helix and extended movements in the P-loop. It can 

be seen that the active site cavity is enhanced in the presence of inhibitor bound active state that has 

broken regulatory spine obtained by moving apart the Glu residue on αC-helix and Phe residue in DFG 

motif associated with the activation loop.  The uncertainty of migrated residues could be withheld in a 

particular state of kinase domain vertically from N-lobe towards C-lobe. The regulatory spine is broken 

in the active state only in situ with all four residues moving away from the broken hydrophobic surface 

between αC-helix bound Met-589 and DFG motif bound Phe-691 due to the extend space of activation 

loop and inward rotation of αC-helix. Inactive state model kinase consists β4-strand bound Leu-600 and 

αC-helix bound Met-589 in situ regulatory spine intact in a continuous manner due to the outward rotation 

of αC-helix and the activation loop has recoiled into αC-helix where DFG motif and αC-helix moves 

away from the P-loop of β-sheet (Figure 3.7B).   
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Figure 3.7B) Three kinetic equilibrium transition states have catalytic and regulatory spine 
mechanism while bound to cabozantinib in different states of TAM RTK   kinase domain from 
1 μs MD simulations.                 
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Figure 3.8) The selective kinetic equilibrium transition state models among nine hidden 
Markov state models of TAM RTKs.  
(3.8A) Stationary distribution and free energy surface analysis of three kinetic         
equilibrium transition state models. (i) Axl-active; (ii) Tyro3-active; (iii) Mer-inactive. 
(3.8B) Kinetic metastable five states estimation and Kinetic metastable transition state     

analysis three kinetic equilibrium transition state pairs. [All kinetic TS:  S4-S5]. 

8B 
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From the PCA, it is revealed that all TAM kinase domains have random distribution of states. The 

analysis of metastable kinetic states revealed higher numbers of active state models in Axl and Mer kinase 

domain than the number of kinetic transition states of inactive forms, however Tyro3 kinase domain has 

similar numbers of coexisted metastable state transitions among the active and inactive forms. The MSMs 

(Husic and Pande, 2018) of the TAM kinases is expressed as different relaxation timescale intervals. The 

Tyro3 apo, Axl inactive and Mer active have higher relaxation timescales. The Tyro3 has equal 

contribution in active and inactive stationary distributions among kinetic HMM states. The five state 

kinetic metastable models were designed on the basis of active space distribution of HMMs of TAM 

RTKs. The apo Axl, inactive Mer and inactive Tyro3 have higher transition energies.   These kinetic 

states are further validated with five MSM systems to emphasize the hidden markov dynamic state 

analysis. Among the nine kinetic metastable states, three HMM states are classified as “non-equilibr ium 

kinetic transition states” (Figure 3.6) (Tyro3-apo S3-S5, Axl-inactive S2-S5 and Mer-active S2-S4) due to 

different kinetic transitions occurring among them (Table-3.1). The rest of the six HMM states undergo 

S4-S5 kinetic transitions among five state model system mentioned as “equilibrium kinetic transition 

states” (Figure 3.8). The activation loop undergoes β-sheet formation in the case of active Axl and αC-

helix formation in the case Mer inactive state during S4-S5 kinetic transitions. In the case of Tyro3 active 

and inactive states, the activation loop remains in a random loop conformation. The TAM receptor 

tyrosine kinase bound with ATP as active state mode to facilitate phosphorylation of substrate (tyrosine 

amino acid). But the inhibitor (cabozantinib) bound to TAM RTKs active and inactive mode states. This 

result describes that the effective inhibitor bound the active receptor tyrosine kinase to arrest the substrate 

bound state of kinase domain to effectively block overexpressed TAM RTK’s. The inactive state kinase 

bound inhibitor could arrest the change of protein conformations in signal transduction process to initiate 

the effective apoptotic signals to nullify the any malignant protein bound inhibitor state by immune cells. 

Therefore, the kinase bound specific states are very crucial to understand the RTKs involved in various 

types of cancers. In summary, salient changes in the spatial conformational states due to inhibitor binding 

to the active site during MD simulations in various regions of Tyro3, Axl and Mer kinases were observed. 

From these research findings, the kinetic active and inactive state mechanisms could explain how 

cabozantinib arrests the overexpressed TAM RTKs in malignant cells, a key step to inhibit the kinase 

signaling pathway in cellular signaling process. 
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3.4. Conclusions  

From one µs MD simulations each of apo, ATP, cabozantinib bound active and inactive TAM kinases, 

metastable active and inactive conformational states are revealed. The αC-helix region is highly 

distinguished and its conformational flexibility is complementary to the activation loop. The dynamical 

movement of the overall regulatory and catalytic spines consisting hydrophobic residues coordinated in 

kinase internal domain initiate cellular signal transduction process. The regulatory spine is intact and 

vertically aligned in ATP bound TAM kinases that continue to remain in the active conformation. 

However, it is broken in cabozantinib bound active and inactive TAM kinases due to the expansion of 

protein core arising from fluctuations in P-loop, αC-helix and activation loop. The selective TAM kinase 

inhibitor (cabozantinib) arrests the overexpression of kinase domains via blockage of dynamical 

movement of both these spines by undergoing a fragmentation of hydrophobic surface at binding site 

between αC-helix and activation loop (shown in Figure 3.2). The RTKs bind inhibitor in two different 

conformations, as active and inactive states, (K567 P-loop-αC-helix E-584 inward/outward rotations in 

the case of Axl). The kinase activation is in the active state mode, as the distance plots show the active 

states of Tyro3, Axl and Mer have large core expansion between αC-helix- activation loop in regulatory 

active site (Figure 3.5). The cabozantinib binding stabilised the hidden Markov state structures of active 

and inactive Axl, whereas the hidden Markov state conformations from the three Mer structures are 

closely associated with each other. From PCA, it is revealed that all TAM RTK kinase domains have 

random distribution of states. The analysis of metastable kinetic state forms revealed higher numbers of 

active state models in Axl and Mer RTKs than the number of kinetic transition states of inactive forms, 

however Tyro3 RTK has similar numbers of coexisted metastable state transitions among the active and 

inactive forms. The MSMs of the TAM kinases is expressed as different relaxation timescale intervals. 

Three HMM states are classified as non-equilibrium kinetic transition states (Tyro3-apo S3-S5, Axl-

inactive S2-S5 and Mer-active S2-S4) due to different kinetic transitions among the nine kinetic metastable 

states (Table-3.1). In the presence of inhibitor, kinase domain proceeds as inactive state to block 

transduction of cellular mechanistic signal pathways in cancer therapy. The one µs MD simulations each 

of apo, ATP and cabozantinib inhibitor bound active and inactive TAM kinases describes the abnormal 

activation and overexpression of RTKs resulting in several forms of cancers and inhibition. 
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Chapter - 4 

In silico design, modelling and molecular mechanisms of Axl receptor 

tyrosine kinase inhibitors  
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Abstract 

The RTKs are class of cell surface plasma membrane bound protein kinases. Kinase domain regulates 

multicellular communications among many immunological and regular cellular metabolic activities.  

However, some of the malignant cells have upregulated and overexpressed RTKs which are responsible 

for angiogenesis in many metastatic cancers. Axl RTK is one member of the RTK group and it is present 

in most of the eukaryotic cells. All metastatic cancer cells have overexpressed Axl tyrosine kinase to 

trigger uncontrolled growth and angiogenesis in the malignant cells. The upregulated kinases can be 

inhibited in its active and inactive states in the presence of small organic molecule inhibitors. Kinase 

inhibitors have been discovered to arrest the signal transduction pathways in the malignant cells as a 

therapy and cure for cancer. In this chapter, small molecule databases were screened using the 

pharmacophore features of macrocyclic inhibitor (7YS) taken as reference from the crystal structure of 

Axl kinase domain. Pharmacophore based virtual screening of small molecule libraries (CHEMBL32, 

ChemDiv, Chemspace, Mcule, MolProt, PubChem and Zinc), followed by molecular docking, MD 

simulations and trajectory analysis using PCA was studied. The molecular basis for the binding of 

macrocyclic inhibitor and seven screened hit molecules bound at Axl kinase domain in two different 

modes at catalytic and regulatory sites was analysed. The specific selective inhibition of the Axl RTK by 

small molecules inhibitors will be the future direction study.  
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4.1. Introduction 

TAM RTKs are activated by Gas-6, Pros1 and EGF extracellular factors. It has been proposed that TAM 

kinases are emerging as a class of innate immune checkpoints that participate in key steps of anti-tumoral 

immunity (Akalu, Rothlin, & Ghosh, 2017). TAM RTKs are also reported to play crucial roles in disease 

conditions such as acute myeloid leukaemia, breast, colorectal, lung, ovarian cancers and glioblastoma 

(Rankin, & Giaccia, 2016; Knubel et al., 2014). Since TAMs are overexpressed in many oncogenic cells, 

some previously reported kinase inhibitors are experimentally validated as TAM RTK inhibitors (Wu et 

al., 2017; Wu et al., 2018). AXL RTK is proposed as a promising drug target for anti-cancer therapy 

(Zhu, Wei, & Wei, 2019). Despite the huge potential of TAM kinases as drug targets, fewer attempts 

have been made towards the design specific inhibitors to these proteins. Inhibitors validated on other 

kinases have been tested for their activity on Axl kinase. For example, cabozantinib, a c-MET and 

vascular EGFR kinase inhibitor was also shown to inhibit Axl kinase with 7 nM inhibition (Tridente et 

al., 2017). Cabozantinib has been approved by FDA for differentiated thyroid cancer in September 2021. 

“BMS-777607”, also a MET inhibitor was shown to be more active on Axl kinase (Dai, Bae, Pampo, & 

Siemann., 2012). Studies on some Axl specific inhibitors such as SGI-7079, TP-0903, BGB324, DP3975 

and NA80xl are in progress. From ligand-based pharmacophore screening and MD simulations studies 

Axl kinase domain inhibitors are reported (Nagamalla et al., 2022). Considering the importance of Axl 

kinase as an anti-cancer drug target, computational methods have been employed to design its inhibitors 

using pharmacophore-based virtual screening of large chemical libraries and molecular docking. Some 

of these molecules are confirmed as probable hit molecules using MD simulations and post-MD data 

analyses.  

4.2. Materials and methods 

Protein structure and binding site: 

The 3D protein structure of Axl kinase domain binding with a macrocyclic inhibitor at the hinge region, 

present in inactive state (PDB ID: 5U6B) A chain) was considered for the computational studies.  The 

missing residues were constructed as discussed in chapter 2. 

4.2.1. Pharmacophore featured virtual screening of chemical libraries against Axl kinase domain 

Based on macrocyclic inhibitor (7YS) binding position to the Axl kinase domain, “Pharmit” 

(http://pharmit.csb.pitt.edu) (Sunseri et al., 2016), a pharmacophore generating online webserver was 

used to generate the best pharmacophore for the design of hit molecules binding to Axl kinase domain. 

The possible features available in the Pharmit server are hydrogen bond donor, hydrogen bond acceptor, 

hydrophobic and ring aromatic. The selection of pharmacophore features was based on the 

complementarity of Axl kinase – 7YS complex.  The databases available in the Pharmit server were used 

for pharmacophore based virtual screening. It screened libraries of millions of compounds based upon 

http://pharmit.csb.pitt.edu/
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best pharmacophore and molecular shape modalities with advanced pre-built structural screening 

algorithms through the online webserver. Finally, it provides comprehensive query optimized hit 

molecules with online platform for structure based virtual screening method. The molecules obtained 

based on lower RMSD and fewer rotatable bonds were selected. An in-house database of the downloaded 

molecules was prepared after adding hydrogens and their structure refinement using Discovery Studio 

3.5. The identified molecules were passed through the virtual screening protocol using PyRx (Dallakyan 

et al., 2015) by docking the molecules into the binding site of 7YS in 5U6B A chain. The screened-in 

molecules above a certain binding energy were selected for molecular docking studies. 

4.2.2. Molecular docking of macromolecule (7YS) and screened-in molecules  

The screened-in hit molecules were docked into the macrocyclic inhibitor and ATP binding pocket of the 

inactive state of Axl RTK using AutoDock tools (Morris et al., 2009).  The macrocyclic inhibitor was 

initially docked to validate the docking methodology. A grid box was set up within 5 Å space around 

inhibitor binding that encompasses active site residues of Axl kinase and 50 docking poses were selected 

for each docked molecule. A grid box with the dimensions of X: 50.960, Y: 55.553, Z: 45.935, with a 

grid spacing of 0.508 Å was used. The docked pose of molecules with best fitting and better binding 

energy were selected for 250 ns MD simulations to confirm the binding pose in the kinase active site and 

to decipher the molecular basis for interactions with Axl kinase domain. 

4.2.3. ADME data analysis of seven hit molecules 

The pharmacokinetic properties like, absorption, distribution, metabolism and excretion (ADME)  of the 

hit molecules were assessed with SwissADME (Daina, Michielin, & Zoete., 2017) web-based server tool 

(http://www.swissadme.ch). The drug-likeness properties are represented in the form of TPSA, consensus 

Log Po/w, LogS (ESOL), LogKp (skin permeation) (cm/s), synthetic accessibility were also calculated 

(Daina, Michielin, & Zoete., 2014,  Ertl, Rohde, & Selzer., 2000,  Potts, & Guy., 1992).  

4.2.4. Molecular dynamics simulations 

All MD simulations were achieved using AMBER (Gotz, et al., 2012) version 18.14 for the seven 

screened hit molecules and macrocyclic inhibitor bound to Axl kinase domain. The best docking pose of 

each complex was utilized as input for MD simulations. The force fields for the entire systems were 

generated with Antechamber using am1bcc method (Wang et al., 2006, Colovos and Yeates, 1993). The 

input parameter files for MD simulations were generated after adding hydrogen atoms in tLEaP module 

in AMBER tools (Anandakrishnan, Aguilar and Onufriev., 2012,  Lindorff-Larsen  et al., 2010). Sodium 

and chloride ions were added to the systems to neutralize the charge, each molecular system was solvated 

within an 8 Å size cubic box. The final ionic concentration for the systems was set to 100 mM. The 

Amberff99sb-ILDN force field was used for entire model system with TIP3P water model for AMBER 

molecular parameters (Meagher et al., 2003, Mark and Nilsson, 2001), temperature was set to 300 K and 

1 atm pressure with Monte Carlo barostat (Salomon-Ferrer et al., 2013). Energy minimization was carried 

http://www.swissadme.ch/
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out by using steepest descent method for 40,000 cycles to overcome short range null contacts among the 

molecular system in solvent (Darden et al., 1993). Long range electrostatic interactions were considered 

with Particle Mesh Ewald algorithm (Jorgensen et al., 1983) with cut-off range 9 Å and order 4. All model 

systems were equilibrated for 7 ns before the production run, and the coordinates in the production run 

were saved after every 10 ps (Salomon-Ferrer et al., 2013, McGibbon et al., 2015). The MD simulations 

of each molecular system was carried out for 250 ns. Axl kinase in complex with ATP was also studied 

for comparison.  

4.2.5. MD simulations data analysis 

The AMBER MD trajectory data analysis was carried out using cpptraj with Amber tools 18 (Hornak et 

al., 2006). The average structures after MD simulations, RMSD, RMSF and specific regions were 

analysed with parmed and cpptraj module in AMBER18 tools. MM-GBSA and MM-PBSA calculations 

were carried out on 2.5k conformers from 25k frames of 250 ns MD simulations data in AMBER 

MMPBSA.py module.  It is an efficient and user accessible end-state free energy calculating algorithm 

which are inbuilt in AMBER18 tools.  The end-state implicit solvent model free energy calculations are 

divided to include Generalized-Born (GB) and Poisson-Boltzmann (PB). The free energy calculations 

were done with single trajectory protocol by considering 2.5k frames from MD simulations of the bound 

and unbound states between receptor and ligand complexes (Miller et al, 2012 and Wang et al, 2017).  

4.2.6. Principal component analysis  

PCA is an efficient multivariate statistical technique to extract the conformational changes in a protein 

with respect to time. This method reduces the number of dimensions in a systematic manner therefore, 

motions from largest to smallest spatial scales can be observed. The large scale motions mask the small 

scale motions due to their greater atomic displacements. However, the structural dynamics of biological 

relevance are calculated as PCA modes for a small number of motions with large amplitudes.   A 

covariance matrix is constructed from the Cartesian coordinates of the trajectory conformations where 

the eigenvalue decomposition of the covariance matrix leads to a complete set of orthogonal collective 

modes (eigenvectors). Therefore, each eigenvalue contributes to a small portion of the motion. These 

eigenvalues were obtained by the diagonalization of the covariance matrix to the Cα atomic fluctuations 

and it follows the decreasing order of the corresponding eigenvector indices. The square matrices were 

diagonalized into secular equations to generate eigenvalues and corresponding eigenvectors. These 

eigenvectors are the best principal components associated with the respective eigenvalues (Yang, Eyal, 

Bahar, & Kitao, 2009).  

4.3. Results and discussions 

In the crystal structure of Axl kinase (5U6B), Asp585 side chain is pointing inwards and makes ionic 

interaction with Lys567 in the B chain, that is indicative of a kinase in an active state. Whereas, the 
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Asp585 side chain is pointing outwards and therefore does not make ionic interactions with Lys567 in 

the A chain that is indicative of an inactive state. In both the chains, Phe691 aromatic side chain is facing 

inwards into the hydrophobic cavity formed by the side chains of amino acids Met589, Phe592, Met598, 

Phe668, Leu663, Val597 and Val688. The crystal structure of Axl kinase in the inactive state (5U6B, A 

chain) was selected for computational studies. The macrocyclic inhibitor, 7YS makes hydrogen bonds 

with the protein. The main chain NH of Met623 forms hydrogen bond with the pyrazine nitrogen, the 

Asp627 NH and the side chain carboxylate group form hydrogen bond with the terminal OH group of 

7YS. Pro621 acts as a hydrogen bond acceptor with primary amine on the pyrazine.  The regulatory spine 

consisting of four non-consecutive hydrophobic amino acid residues; Leu600 (β4-strand); Met589 (α-

helix); Phe691 (DFG motif); His670 (catalytic loop) and an additional residue Asp731 from the C-

terminal lobe align vertically from N - terminus to the C –terminus. 

4.3.1. Pharmacophore model generation for virtual screening  

Based on the binding of macrocyclic inhibitor- 7YS, the best pharmacophore was generated. Hydrogen 

bond donor, hydrogen bond acceptor and aromatic features were selected as pharmacophore features. The 

four hydrogen bonds and three aromatic rings on pyrazine, phenyl and pyrazole were considered as 

pharmacophore features on 7YS. These features truly represent the biological features required for the 

complementarity between the Axl kinase and potential inhibitors. Among the molecules obtained from 

pharmacophore-based screening of databases, the molecules that display lower than 0.7 Å RMSD and 

fewer than 6 rotatable bonds were selected. The virtual screening of CHEMBL32 small molecule database 

identified (2,186,411 molecules having 28,970,382 conformations identified hits 75 hits), ChemDiv 

(1,456,120; 21,462,597 and 9 hits), Chemspace (50,181,678; 250, 205, 463 and 3 hits), Mcule (45, 257, 

086; 223,460,579 and 15 hits), MolProt (4,843,718; 67,033, 884 and 27 hits), PubChem (103,302,052; 

499,442,812 and 1,199 hits) and Zinc (13,127,550; 122,276,899 and 65 hits). The selected molecules 

were proceeded for virtual screening using PyRx, that identified 30 molecules with a score ≤ -7.5 kcal/mol 

to bind the active site of Axl kinase.  

4.3.2. Molecular docking of screened molecules 

The 30 hit molecules selected from virtual screening were docked into the macrocyclic inhibitor binding 

site using AutoDock tools. The molecules having binding energy with ≤ -6.5 kcal/mol and that make 

hydrogen bonds with active site of the receptor were selected for further MD simulations. The AutoDock 

grid parameters, docking binding energies and molecular weights of hit molecules along with 7YS are 

provided in Table 4.1.  Based on molecular docking, it is observed that the hit molecules bound in a 

related manner to 7YS, so that Axl RTK can be inhibited with these hit molecules that possess similar 

pharmacophore features from chemical and steric insights. From the overall docking studies, the pose 

with highest docking scores of seven hit molecules in complex with Axl kinase domain were selected.  
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Table 4.1) Docking parameters of seven screened hit molecules with reference 7YS macrocyclic 

inhibitor. 

4.3.3. ADME data analysis and docking data correlations 

The synthetic accessibility of all hit molecules range from 3.3 to 5.8, this is indicative of the ease of their 

synthesis with current synthetic methods. The TPSA represents the ability of the molecules to cross the 

biological barrier for tissue absorption and their brain access in our body and most hit molecules are 

within the reasonable range. Lipophilicity is the parameter to assess the partition of the molecules between 

n-octanol and water [Po/w].  This value ranges between 0.5 - 1.9 indicative of their effective partitioning. 

LogS indicates the water solubility of probable ligands, the seven hit molecules are comparable with 

reference molecule (7YS) (-3.62). It indicates the ease of handling drug formulation in 

pharmacodynamics of drugs in clinical trials. The Log Kp value indicates the linear regression of 

molecular size and lipophilicity. The lower skin permeant of molecule has more of negative value of Log 

Kp. The Log Kp values above -7.0 indicate that the molecules are less permeable through the skin. Based 

upon ADME data, the drug likeness for screened hit molecules can be considered. These are the key 

parameters to be studied for development for selective hit molecules for their physiochemical properties 

to be approved as oral drug candidates.  These parameters are provided in Table 4.2. 

 

  

Axl kinase-

ligand 

complex 

Docking 

Axl-

inhibitor 

mean 

binding 

energy in 

kcal/mol 

 

 

Docking Grid 

parameters 

(x, y, z) 

 

Molecular 

weight 

(g/mole) 

01 Hit-1 -8.01 (54.876, 57.627, 56.255) 415.53 

02 Hit-2 -7.65 (54.876, 65.126, 54.550) 438.33 

03 Hit-3 -6.64 (54.876, 61.837, 52.935) 440.44 

04 Hit-6 -7.40 (54.910, 61.830, 57.477) 411.84 

05 Hit-4 -6.80 (52.960, 60.553, 52.935) 369.48 

06 Hit-5 -8.29 (54.883, 60.915, 55.551) 412.51 

07 Hit-7 -6.96 (54.883, 61.514, 56.388) 396.44 

08 7YS active 

/inactive state 
-7.15 (50.960, 55.553, 45.935) 

460.89 

09 7YS inactive 

active state 
-6.75 (50.960, 55.553, 45.935) 

460.89 
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Table 4.2) The ADME properties of the hit and reference (7YS) molecules   

Standard values for reference TPSA= 0 to 140 Å.2, Log Po/w= −4.0 to 5.6, Log Kp= −6.1 to −0.19 cm/s, 

Synthetic accessibility scale= 1 to 10. LogS, solubility of molecules in aqueous medium; 0 to −2 are 

soluble, those in the range of −2 to −4 are slightly soluble and insoluble if less than −4. 

 

 

 

 

 

 

 

 

 

 

 

S. 

No 

Axl kinase-

ligand 

complex 

 

TPSA (Å2) 

 

Consensus Log Po/w 

 

LogS (ESOL) 

Log Kp (skin 

permeation) 

(cm/s) 

Synthetic 

accessibility 

01       7YS 119.39 1.92 -3.62 -8.37 5.05 

02 Hit-1 83.66 1.62 -3.21 -7.59 5.77 

03 Hit-2 89.96 1.45 -4.10 -7.06 3.48 

04 Hit-3 84.86 1.80 -3.53 -7.56 4.02 

05 Hit-6 144.03 1.27 -2.67 -8.72 3.32 

06 Hit-4 95.92 0.57 -2.01 -8.33 3.94 

07 Hit-5 122.77 1.59 -3.47 -7.57 4.09 

08 Hit-7 99.69 0.96 -2.70 -8.00 4.52 

Figure 4.1A) RMSD plots of Axl RTKs (protein and activation loop) complexed with seven hit 

molecules in active and inactive states from 250 ns MD simulations.   
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4.3.4. Molecular dynamics simulations 

The 250 ns MD simulations were carried out using AMBER on inactive Axl kinase complex with 

macrocyclic inhibitor, 7YS and the screened-in hit molecules. This would reveal how the macrocyclic 

inhibitor and hit molecules differentiate between the active and inactive states and the various 

conformational states in between, in order to influence the structural features of various regions in its 3D 

structure. This can be revealed by RMSD, RMSF and regulatory spine analysis. The hit molecules bind 

the Axl kinase in a stable manner throughout the simulations. The intermolecular hydrogen bonding 

indicate the stable complex formation. An inhibitor can bind the kinase domain at the catalytic site, where 

the ATP molecule also binds involving the hinge region and is called as “catalytic site of substrate”. The 

regular phosphorylation takes place on hydroxyl side chain of tyrosine present in the target protein by 

RTK, and referred to as “regulatory site for target substrate”. Based upon this, the inhibitors bound to 

kinase domain are site specific while inhibiting the kinase structural conformational changes occurring 

during effective cancer therapy. Therefore, the screened hit molecules induced structural deformations in 

kinase domain based upon their site selective inhibition in Axl kinase domain. Based on the MD 

simulations trajectories it is observed that the seven hit molecules can be classified into two binding 

modes; four screened molecules (hit 1, 2, 3 and 6) bind at regulatory site region near the junction of P-

loop, αC-helix and activation loop; and three hit molecules bind the hinge region (hit 4, 5 and 7) of Axl 

kinase domain. The complexes with hit 1, 2, 3 and 6 have lower RMSD when the initial and average 

structures are superposed as shown in Figure 4.1. In the complexes, 4, 5 and 7 the RMSD is higher and 

the αC-helix has moved considerably compared to the initial structures and largely it has been observed 

that the N-terminal β-sheet domain has deviated. The macrocyclic inhibitor bound Axl kinase is hinge 

region bound, but has a low αC-helix deviation compared to the initial structure. It can be seen from the 

RMSD plots that the Cα atom fluctuations are relatively lower in the regulatory region bound hit 

molecules rather than hinge region bound hit molecules with the exception of the hit 3 (4.5 Å). The higher 

RMSD in the Axl - hit 3 complex is due to the kinase domain that entirely exists in the inactive state. In 

the 250 ns MD simulations trajectory showing 12.3 Å distance between K567-E585 is shown in the Figure 

4.2A. The Axl bound hit 5 continues to exist as inactive conformer during 250 ns MD simulations, 

however the hit 4 and hit 7 complexes are stabilized in the active state as can be seen from the MD 

simulations. The salt bridge (K567-E585) distance between P-loop and αC-helix regions are below 3.0 - 

4.5 Å for active states (hit 4- active, hit 7- active), and  hit 5-inactive salt bridge distance varies between 

3.0 -17.5 Å (Figure 4.2B). The hit 4 complexed Axl kinase has higher RMSD in the activation loop 

compared to the other hit molecules. The Axl kinase bound to 7YS has a larger activation loop dynamics 

(Figure 4.1).  On the whole, the Axl- bound hit-3 (inactive state, regulatory site) and hit-7 (active state, 

hinge region) display higher RMSD values among all the hit molecules. Surprisingly, the RMSF plots of 
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all seven hit molecules superpose well due to similar influence of all side chains in Axl kinase domains 

irrespective of the site selective inhibitions as shown in Figure 4.3.  The regulatory site binding hit 

molecules are located near to the DFG motif and activation loop region thus disrupting the regulatory 

spine between Met589 (αC-helix) - Phe691 (DFG) motif activation loop region, leading to changes in the 

overall kinase domain structure. The broken regulatory spine can be seen from the Figure 4.4A.  

4.3.4.1. Axl bound ATP and the inactive/active Axl kinases complexed with 7YS 

The ATP cofactor binds to Axl kinase domain catalytic region that connects between kinase N-terminal 

and C-terminal domain with hinge loop region. ATP bound at Axl catalytic domain only influences the 

hinge region residues and there is no involvement of regulatory spine containing residues from P-loop, 

αC-helix, activation loop (DFG motif) and catalytic loop (C-terminal domain). Therefore, the regulatory 

spine is retained in ATP bound Axl kinase domain. However, 7YS (macrocyclic inhibitor) bound active 

and inactive states of Axl kinase domain also influence the hinge region. This has also resulted in retained 

regulatory spine in 7YS bound to both states of Axl kinase. The stereo spatial orientation of amino acids 

that form these regulatory spines are altered due to the conformational changes in the Axl kinase when 

complexed with the four screened small molecules (hit 1, hit 2, hit 3, hit 6). The regulatory spine is 

retained for the Axl bound to hit 4, hit 5 and hit 7. The key components leading to the regulatory spine 

breakage where the inhibitors are specified to bind at regulatory site region were examined.  The 

regulatory spine breakage mechanism is influenced by the specific homo and heterocyclic functional 

groups binding at the junction of P-loop, αC-helix and activation loop. The regulatory site binding 

inhibitors influence the Axl kinase domain regions at regulatory spine and P-loop, αC-helix and not the 

activation loop. This could reveal that the inhibitor binding site at specific spatial orientation of kinase 

plays a key role in signal transduction during kinase inhibition.  The regulatory spine analysis measures 

the protein – ligand binding mechanisms. The binding free energies ascribe the efficacy of kinase-

inhibitor integration to classify ligands as the kinase binding inhibitors.  Specified cyclic groups from 

various screened hits small molecules are major components of regulatory spine dissociation in kinase 

domains. Hit 1 (adamantanyl), hit 2 (p-chlorophenyl), hit 3 (1,4 dioxane), hit 6 (5-chloro indole) are key 

functional groups attached to screened-in hits bound at the narrow end, away from hinge region in kinase 

domains. The hinge region kinase blockers are caused mainly by small molecular size to effectively fit 

into hinge region of the catalytic site. Five membered heterocyclic imidazole (hit 4) and saturated bicyclic 

pyrrole groups (hit 5, 7) mostly bound at hinge region site of Axl kinase domain (Figure 4.5) 
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Figure 4.1B) RMSD plots of Axl RTKs (α-helix and P loop) complexed with seven molecules in active and 

inactive states from 250 ns MD simulations.   

Figure 4.2A)  (P-loop) Lys567 – Glu585 (αC-helix) salt bridge distance Axl kinase regulatory 

site bound hit 1, 2, 6 molecules bound active and hit 3 inactive states from 250 ns MD 

simulations.   
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2B 

Figure 4.2B)  (P-loop) Lys567 – Glu585 (αC-helix) salt bridge distance Axl kinase hinge 

region site bound ATP, 7YS, hit 4, 7 molecules bound active and 7YS, hit 5 inactive states 

from 250 ns MD simulations.   

Figure 4.3) RMSF plots of Axl RTKs complexed with seven hit molecules bound active and 

inactive states from 250 ns MD simulations.   For the sake of convenience all Axl kinases are 

numbered from 521 onwards.  533-565 (β turn in the N-Terminal domain); 568-598 (first α-Helix 

in the C-Terminal domain); 690-724 (activation loop);  
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4A) Axl kinase regulatory site region inhibitors  

4B) Axl kinase hinge region binding site inhibitors 

Figure 4.4A) Regulatory spine breakage takes place in regulatory site bound hit 1,2,3,6 molecules.  

Figure 4.4B) Regulatory spine is retained in the hinge region bound site ATP, 7YS, hit 4, 5, 7 

molecules from 250 ns MD simulations.   
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4.3.5. Binding free energy calculations 

4.3.5.1. MM-GBSA (Binding affinity energy) 

The data points derived from 2,500 conformations from 25k frames of trajectories with interval of 100 ps 

from 250 ns MD simulations data were used to calculate the binding free energies between the receptor 

(kinase domain) and ligand (hit molecules and 7YS) in the presence of solvent, that are shown in Table 

4.3. The regulatory site kinase inhibitors binding affinity can be explained based upon binding energies 

in entire the MD simulations trajectories.  The ATP bound kinase active state has higher binding free 

energy (-51.02 kcal/mol) due to its catalytic site binding and involved in the transfer of γ – phosphate 

group to substrate molecules in kinases enzymatic action.   

 

 

Table 4.3) MMPB/GBSA free energy data analysis for seven screened hit molecules with references 

(7YS, ATP)  

 

 

 

 

 

 

Free Energy Calculation of Differences (Complex – {Receptor – Ligand}) 

S.No Protein-Inhibitor 

complex 

GB Energy   

(kcal/mole) 

Std. Err. 

of Mean 

PB Energy  

(kcal/mole) 

Std. Err. of 

Mean 

R – spine 

status 

 R-site region bound Gibbs free  E  Binding  E   

03 Axl -active    Hit-1 -42.9137 1.0784 -8.8192 0.4919 Broken 

04 Axl -active   Hit-2 -29.8852 1.9735 -3.9289 0.4559 Broken 

05 Axl-Inactive Hit-3 -42.2415 2.4616 -14.5832 0.9805 Broken 

06 Axl -active    Hit-6 -35.8968 0.3405 -11.7482 1.6533 Broken 

 Hinge region bound      

07 Axl-active     Hit-4 -38.5077 0.1154 -10.2352 1.6673 Retained 

08 Axl-Inactive Hit-5 -46.8368 0.1598 -10.7742 1.6998 Retained 

09 Axl-active    Hit-7 -32.5000 0.2113 -6.4635 1.6563 Retained 

10 Axl - active -ATP -51.0202 0.1737 -14.3864 1.6290 Retained 

11 Axl –Macro –inactive -37.0225 0.2116 -9.5484 1.6295 Retained 

12 Axl – Macro –active -38.6647 0.1697 -9.4953 1.6191 Retained 
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5B) Axl kinase hinge region binding site 

inhibitors

5A) Axl kinase regulatory site region bind inhibitors  

Figure 4.5A) Regulatory site bound hit 1, 2, 6 (active), hit 3 (inactive) molecules with 

reference of ATP.  4.5B) Hinge region bound site ATP, 7YS, hit 4, 7 (active), hit 5 (inactive) 

molecules from 250 ns MD simulations.   
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The hinge region Axl kinase hit molecules bound active state conformer with lower binding free energies; 

-38.5 kcal/mole (hit 4) and -32.5 kcal/mole (hit 7) and a higher binding free energy for inactive state -

46.83 kcal/mole (hit 5). The regulatory site Axl kinase hit molecules bound inactive state conformer has 

lower binding free energies; -42.24 kcal/mole (hit 3) and a nearly equal binding free energy for active 

state -42.91 kcal/mole (hit 1), -29.88 kcal/mole (hit 2) and -35.89 kcal/mol (hit 6). The binding free 

energies for the active Axl kinase (-38.66 kcal/mol) and inactive Axl kinase (-37.02 kcal/mol) when 

complexed with macrocyclic inhibitor (7YS). The kinase inhibitor binding affinity can be explained with 

energy values due to the overall binding energies influenced by energy terms calculated for protein-ligand 

in the presence of solvent waters.  The ATP cofactor binding to kinase domain has highest binding energy 

among all kinase inhibitors and hinge region bound kinase domain inhibitors have closest binding energy 

correlated to ATP cofactor binding analogy. This can be further discussed with overall Gibbs free energies 

among kinase screened-in hit molecules.  

4.3.5.2. MM-PBSA (Binding Gibbs free energy)  

The overall Gibbs free energies differentiate between the selective site inhibitors of kinase domain states. 

MM-PBSA is quite different from MM-GBSA due to the entropy energy terms calculated including the 

NMA of overall conformers from MD trajectories in the absence of solvent.   Therefore, these energy 

values are lower than MM-GBSA. The regulatory site bound hit molecules have energy values varying 

from -8.8 kcal/mole (hit 1), -3.92 kcal/mol, (hit 2), -11.74 kcal/mole (hit 6), kcal/mole in the active state 

and in the case of hit 3 (-14.58 kcal/mol) that existed as inactive state and has the highest overall Gibbs 

free energies. This value is comparable with the ATP bound active state mode (-14.38 kcal/mol). The 

active and inactive Axl kinase domain bound to 7YS with similar binding affinities; -9.5 kcal/mol. The 

Gibbs free energies are in correspondence with the molecular docking parameters given in Table 4.3. In 

a macroscopic pictorial view, the overall Gibbs free energy changes are mostly accumulated into inactive 

states of kinases bound ligands as represented in Table 4.3. The Axl-hit-3 (-14.58 kcal/mole), Hit-5 (-

10.77 kcal/mole), Axl- macrocyclic inhibitor (7YS) (-9.5 kcal/mole). The hit molecules bound to kinase 

inactive state are comparable with Axl-ATP. It is clearly evident that where kinase bound ATP complex 

is retained in active state mode of Axl kinase conformation with high affinity and binding free energy is 

similar to inactive states of inhibitors bound Axl kinase domain. This could be revealed as Gibbs free 

energetics that showed a correlation between cofactor and hit molecules bound Axl kinase states.  These 

hidden states can be explained with PCA analyses of all the complexes in detail. 
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3.4.6. Principal component analysis  

The MD simulations trajectories of the Axl kinase – hit molecule and 7YS complexes were analysed with 

PCA analysis.  The regulatory site kinase bound hit molecules have large clusters of kinase inactive 

(green) and active (red) conformers represented in the scatter plots (Figure 4.6) and it overlapped states 

on each other. But the hinge region bound hit molecules are divided into two different groups of clusters 

represented as conformational movement towards hinge region site of Axl kinase (Axl- 7YS complex). 

The clustering of kinase states overlap with each other in regulatory bound inhibitors from their initial 

states. But the hit 4, hit 5 and hit 7 molecules are more prone to dissipate as clusters through the PCA 

space and are represented as mixed kinase state system in given unsupervised 2.5k conformers derived 

from 250 ns MD simulations data. These plots provide key evidence that inhibitor bound kinase domain 

coexisted with active and inactive states in the MD simulations timescales. The pharmacophore functional 

features of virtual screened hit molecules can arrest upregulated Axl kinase activity in cancerous cells. 

Based upon ADME data all the proposed pharmacophore-based screened hit molecules are qualify the 

pharmacodynamics and cell toxicity level in normal physiological process. The proposed hit molecules 

are synthetically viable and possess drug likeness for Axl kinase domain inhibition. Based upon docking 

and MD simulations data, the seven hit molecules bind to kinase active site to trigger the specific domain 

dynamics in Axl kinase. The upregulated Axl kinase can be arrested to influence specific regions such as 

activation loop, regulatory spine, α-helix, coordinated with the binding of hit molecules. The 

overexpressed Axl kinase domain is an effective target for cancer therapy that can be inhibited by the hit 

molecules in a site selective manner. The Lys567 – Glu585 residue salt bridge distance analysis identify 

the active and inactive states in Axl kinase domain during the 250ns MD simulations while bound to 

reference and hit molecules. The regulatory spine is broken as the hit molecules moved towards the 

shallow depths of kinase activation loop and αC-helix regions (regulatory site bound region). While the 

regulatory spine is retained for hit molecules that bind the catalytic site (hinge region). 
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6A 

Figure 4.6A) Principal component analysis of Axl kinase regulatory site bound inhibitors 

Figure 4.6B) Principal component analysis of Axl kinase hinge region bound inhibitors  

6B 
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4.3.7. Overall mechanism of kinase inhibition with screened small molecules 

The Axl kinase domain structure is influenced by screened hit molecules and differentiated based upon 

their site selective affinity towards binding sites. The regulatory binding site (P-loop – αC helix - 

activation loop) is bound by specific Axl kinase inhibitors (hit 1, hit 2, hit 3, hit 6), while hit - 3 is 

converted into complete inactive state mode with broken regulatory spine. All regulatory site inhibitors 

coexist between the active – inactive states based on the distance between Lys567 – Glu585 that varies 

from 3.0 – 10.5 Å (hit 1, 2, 6 distance plots). The inactive states have high binding free energies among 

all active states (Table-4.3). The hinge region binding inhibitors bind similar to 7YS macrocyclic inhibitor 

in the 5U6B crystal structure. These hit molecules do not influence regulatory spine hydrophobic residues 

including 7YS. The distance plots describe the 7YS inhibitor influencing the active state of Axl kinase 

with ionic bond distance between Lys567 – Glu585 residues (4.5 Å) compare to inactive state (17.5 Å). 

In a similar manner, the hit 4, hit 7 existed as active states. However, hit 5 has sinusoid pattern in the 

ionic bond distance between Lys567 – Glu585 residues (ranging from 4.5 to 18 Å). These insights of Axl 

kinase domain is influenced by binding to different hit molecules in the presence water solvation system. 

The MM-GBSA and MM-PBSA data also support two different kinase inhibiting sites with seven 

screened hit molecules. This work provides a glimpse based on computational studies of Axl kinase 

domain inhibition by hit molecules designed from pharmacophore virtual screening using 7YS kinase 

inhibitor.   

4.3.8. Non-bonding interactions of Axl RTKs with hinge region and regulatory site bound hit 

molecules  

The amino acid residues that are in the vicinity of hit molecules in Axl RTK active site were examined. 

The interactions with corresponding hit molecules at active site differentiate with hinge region and 

regulatory site bound Axl kinase domain. The regulatory site bound hit molecules (hit 1, hit 2, hit 3 and 

hit 6) have interactions with Met589, Asp690, Phe691, Met679 residues. The hinge region bound hit 

molecules (Hit 4, hit 5 and Hit 7) interact with Met623, Gly626, Asp627 and Met679. The molecules hit 

1, 2 and 6 hit molecules (active state) have no interaction with the hinge region residue Met623 of Axl 

kinase domain. But the inactive state hit 3 has interaction also with Met623. Similarly, the hit 5 interacts 

with the Lys567, Phe592, Met623, Asp690, Phe691, Gly692 and Ser694 in the Axl kinase domain. The 

uniqueness of hit molecules 3 and 5 is also observed from the hydrogen bond analysis.  The inactive state 

of hit 3 and 5 have interacts with Met623 and Asp690 residues specifically despite their binding to 

regulatory or hinge region sites, respectively. These hydrogen bond analysis describe site specific 

inhibitor molecules to Axl kinase active site.   
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4.4. Conclusions 

Protein kinases have diverse binding pockets based upon co-factor and substrate binding and allosteric 

binding. The pharmacophore features of macrocyclic inhibitor, 7YS taken as reference for virtual 

screening of chemical libraries, molecular docking and molecular dynamics simulations identified 

molecules that bind to regulatory and hinge region sites. The scaffolds with bicyclic and heterocyclic 

groups have made contribution to two different binding site regions in Axl kinase inactive state. The 

molecules hit 4, 5 and 7 bind at kinase hinge region which facilitate hydrogen bonding with the hinge 

region residues Met623, Gly626, Asp627 and Met679. The molecules hit 1, 2, 3 and 6 selectively bind to 

the kinase regulatory region and make hydrogen bonds with Met589, Met598, Asp690 and Met679 where 

as inactive state of hit 3 and hit 5 bind with Met623, Met679 and Asp690 in a concise manner. These hit 

molecules moved across from hinge region to regulatory region of shallow depth space between αC-helix 

and activation loop. But the hinge region bound kinase hit molecules have moved from kinase activation 

loop towards the hinge region where this space would be occupied by ATP co-factor in active state of 

Axl kinase. The hinge and regulatory bound Axl kinase active and inactive states are differentiated with  

regulatory spine mechanism. The (P-loop) Lys567-Glu585 (αC- helix) salt bridge distance analysis is 

akey to identify active and inactive states of Axl kinase. PCA describes the hidden states of Axl kinases 

with seven hit molecule and 7YS complexes. The systematic comparative analysis of hit molecules to 

mimic the arrest of overexpressed Axl kinases activity in various structural environments is studied 

computationally.  
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Chapter -5 

Mutations in the receptor-binding domain of human SARS CoV-2 

spike protein increases its affinity to bind human ACE-2 receptor 
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Abstract 

The severe acute respiratory syndrome virus-2 (SARS CoV-2) infection is a disease causative 

agent of severe respiratory problems in humans and animals and it has resulted in the current 

global pandemic. The binding of SARS CoV-2 spike protein receptor-binding domain (RBD) 

to the human angiotensin converting enzyme-2 (ACE-2) receptor causes the host infection. The 

spike protein has undergone several mutations with reference to the initial strain isolated during 

December 2019 from Wuhan, China. A number of these mutant strains have been reported as 

variants of concern and as variants being monitored. Some of these mutants are known to be 

responsible for increased transmissibility of the virus. Here, the crystal structure of the RBD in 

complex with ACE-2 available in the public domain was used and analysed the 500 ns MD 

simulations of wild-type and mutants; G339D, S371L, S373P, S375F, K417N, N440K, G446S, 

S477N, T478K, E484A, Q493A, Q493R, G496S, Q498R, N501Y, Y505H.  The ionic, 

hydrophobic and hydrogen bond interactions, residue flexibility, binding energies and 

structural variations are characterized. The MD simulations provide clues to the molecular 

mechanisms of ACE-2 receptor binding in wild-type and mutant complexes. The mutant spike 

protein RBD was associated with greater binding affinity with ACE-2 receptor. 
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5.1. Introduction 

The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has caused a global 

pandemic of the coronavirus disease 2019 (COVID-19) during the last 40 months. COVID-19 

has been the single major cause of death due to any disease within a short span of time. SARS 

CoV-2 was first reported in individuals known to have been in contact with wildlife animals at 

the live animal and seafood market in Jianghan District, Wuhan (Zhu et al., 2020).  SARS CoV-

2 is similar to SARS CoV (2003 to 2005), Middle East respiratory syndrome coronavirus 

(MERS CoV) (2012 to 2013) and other human CoVs in the 20th century that has led to 

epidemics resulting in severe respiratory diseases and deaths (Guruprasad, 2021a). These 

viruses harbour ~ 30K bp single stranded positive-sense RNA genome. SARS CoVs enter 

human cells through fusion of viral and host cellular membranes mediated by the interaction 

between viral spike protein and human angiotensin converting enzyme-2 (ACE-2) 

(Guruprasad, 2020; 2021b; Li et al., 2003; Shang et al., 2020). The SARS CoV-2 spike protein 

is a heavily glycosylated homo-trimeric protein with ~1,273 amino acids and the sequence 

region (amino acids 333-520) constitutes the receptor-binding domain (RBD) that interacts 

with human ACE-2 receptor. The three-dimensional structures of the spike protein apo and 

RBD bound forms to human ACE-2 receptor are available in the public domain (Wang et al., 

2020; Xiao et al., 2021; Xu et al., 2021). Viruses acquire mutations over a period of time during 

host infection giving rise to new sequence variants. The mutations corresponding to the entire 

spike protein across the different lineages are shown in Table 5.1. The three-dimensional 

crystal structure of the spike protein RBD (residues 333-520) complexed with human ACE-2 

is available in the PDB (Lan et al., 2020; Wang et al., 2020). The structure comprises a five-

stranded antiparallel β-sheet. According to the PDBSum (Laskowski et al., 2018), the amino 

acids region 440 - 506 (67 amino acids) located between β4 and β5 strands folds into an 

extended loop that comprises short stretches of two α-helices (439-442 and 502-505) and anti-

parallel β-sheets formed by two β-strands pairs (451-455 with 492-495) and (472-474 with 

488-490). The secondary structural elements are connected by loops between 443-448, 476-

488, 497-503. The binding between virus and host cell receptor are mediated via non-bonding 

interactions through RBMs in the RBD extended loop and the virus binding motifs (VBMs) on 

the ACE-2 receptor shown in Figure 5.1A. The substitution mutations in RBD were shown to 

increase the transmissibility of COVID-19 and decreased protection from vaccines (Bian et al., 

2021; Chen et al., 2020; Gomez et al., 2021; Harvey et al., 2021; Noh et al., 2021; Zhou et al., 

2021). This prompted analysis of the mutations and SIE estimations corresponding to variants  
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of concern and variants being monitored using MD simulations of the spike protein RBD 

domain and human ACE-2 receptor complex. These studies on host-virus protein-protein 

interactions at the atomic level suggest molecular mechanisms of their binding. Using 

molecular docking and MD simulations it has been shown that mutations in the SARS CoV-2 

spike protein RBD are responsible for strong ACE-2 binding and poor anti-SARS CoV-2 

monoclonal antibodies cross-neutralization (Shah et al., 2020). The alanine scanning 

mutagenesis and computational binding affinity studies of certain residues in SARS CoV-2 

RBD complex with human ACE-2 showed that the mutations in conserved receptor binding 

motif (RBM) affects the structural-dynamics of the complex.  The charge distribution disturbs 

the inter-molecular non-bonded contacts thereby perturbing the strength of binding to host cell 

ACE-2 receptor (Dehury et al., 2021). A pictorial representation of the non-bonding 

interactions between the human spike protein RBD and human ACE-2 described above are 

given in Table 5.2 are shown in Figure 5.2E. 

The E484Q, L452R and double mutant E484Q and L452R were studied using MD simulations 

(Antony & Vijayan., 2021). The triple mutant variants; K417N�E484K�N501Y and K417T�

E484K�N501Y studied using molecular docking and MD simulations attributed the increased 

binding of spike protein RBD to ACE-2 mainly due to the electrostaticcontribution (Khan et 

Figure 5.1A) Amino acid residues in 4.5 Å vicinity between human SARS CoV-2 spike protein 
RBD (blue) and human ACE-2 receptor (magenta). The hydrogen bonding interactions involved 
residues; Ala475-Ser19, Asn487-Gln24, Thr500-Tyr41, Lys417-Asp30, Tyr449-Asp38, Tyr449-
Gln42, Asn487-Tyr83, Gln498-Gln42, Asn501-Tyr41, Gly502-Lys353 
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al., 2021). Single amino acid point mutations in spike protein RBD and C-terminus were 

studied using MD simulations (Ahamad, Kanipakam, & Gupta., 2020) 
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The substitution mutations in RBD were shown to increase the transmissibility of COVID-19 

and decreased protection from vaccines ( Harvey et al., 2021; Gomez, Perdiguero, & Esteban., 

2021; Noh, Jeong, & Shin., 2021; Zhou et al., 2021; Bian et al., 2021; Chen et al., 2020). The 

mutations analysed with SIE (or the binding free energy) corresponding to variants of concern 

and variants being monitored using MD simulations of the spike protein RBD domain and 

human ACE-2 receptor complex. These studies on host-virus protein-protein interactions at the 

atomic level suggest molecular mechanisms of their binding. 

5.2. Methods 

5.2.1. Generation of mutants in human SARS CoV-2 spike protein RBD 

The crystal structure of the human SARS CoV-2 spike protein RBD with human ACE-2 

receptor complex (PDB_id: 6LZG) was used to generate single amino acid substitution 

mutations; K417N, N440K N501Y, L452R, T478K, E484K, S494P, K417A, Q498A, T500I 

using Discovery Studio 3.5.  

  Figure 5.1B) Amino acid residues involved in hydrophobic interactions between human SARS CoV-2  
  Spike protein RBD (blue) and human ACE-2 receptor (magenta)  
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5.2.2. Molecular dynamics simulations 

The MD simulations of the wild-type and mutant RBD - ACE2 receptor heterodimer complexes 

were carried out using AMBER (ver.18.14) (Gotz et al., 2012; Salomon-Ferrer et al., 2013). 

The GAFF2 force fields charges and Amberff14sb protein atomic positions of all the systems 

were generated with Antechamber using am1bcc method (Lindorff-Larsen et al., 2010). All 

input parameter files for MD simulations were generated for the heterodimer by adding 

hydrogen atoms with H++ server (Anandakrishnan et al., 2012; Gordon et al., 2005). Sodium 

ions were added to the system in order to neutralize excessive charge generated by solvating 

the complex in a 10 Å cubic box. The final ionic concentration of the systems was set to 100 

mM. The Amberff14sb-idln force fields was used with TIP3P water model (Jorgensen et al., 

1983;  Mark & Nilsson, 2001). The topology input.crd parameter files were generated with 

tLEaP module using the Amber suite (Hornak et al., 2006). The MD simulations were run at 

300 K temperature and 1 atmospheric pressure.  A 2 fs time step was considered for friction 

coefficient of 1/ps of Langevin integrator. Energy minimization was carried out using steepest 

descent method for 40,000 cycles in order to overcome short range null contacts in the system. 

The long-range electrostatic interactions were handled using the particle-mesh Ewald (PME) 

method with a 9 Å real-space cut-off and with PME order 4. The systems were double 

minimized under NPT ensemble at interval of 5 frames to maintain pressure of 1 atmosphere 

with Monte Carlo barostat. The minimization was carried out under NVT ensemble at interval 

of 5 frames, in order to maintain volume and temperature at 300 K using Monte Carlo 

thermostat (Darden et al., 1993; Wang et al., 2006).  The systems were equilibrated for 7 ns 

before production run. The frames from production runs were saved every 10 ps.  All molecular 

systems were executed for 250 ns MD simulations using AMBER. 

5.2.3. Post MD data analysis 

The MD simulations trajectory data analysis was carried out using cpptraj and pytraj in Amber 

tools. The average structures, RMSD and RMSF for all systems were derived from .trr analysis. 

The cpptraj h-bond sub-level trajectory analysis provides the average hydrogen bonding 

distance between human ACE-2 (chain-A) and spike protein RBD (chain-B).  The SIE is an 

indirect method to calculate the binding free energies between protein-protein or protein-ligand 

complexes simulated with explicit solvent models. To understand the protein-protein affinities 

between wild-type and mutant proteins, the SIE-traj analysis (Naïm et al., 2007) was performed 

between ACE-2 receptor and RBD that provide insights into dynamical state of the non-

bonding interactions. The entire 25,000 frames generated from 250 ns MD simulations was 

taken into consideration to calculate the SIE (Cui et al., 2008; Sulea & Purisima, 2012). The 
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SIEs and non-bonded interaction energies were computed for the wild-type and mutant dimeric 

RBD – ACE-2 complexes. 

5.3. Results and Discussions  

5.3.1. Molecular dynamics simulations 

The MD simulations showed enhanced binding of human SARS CoV-2 spike protein RBD to 

human ACE-2 receptor, suggesting the possible role of mutations in leading the virus to 

become variants of concern or variants being monitored. The structural superposition of initial 

and final MD simulation structures showed relative displacement of B-chain (RBD) compared 

to A-chain (ACE-2), except for the protein with E484K mutation as shown in Figure 5.2A. The 

RMSD plots for representative structures shown in Figure 5.2B and for all the structures 

demonstrated that the structures stabilized within 25 ns of MD simulations. The RMSF plots 

for all structures shown in Figure 5.2C indicated regions of fluctuations in spike protein RBD 

and human ACE-2 complex. The region of high flexibility was observed between amino acid 

positions 475-487 that corresponds to RBM in the RBD of all complexes, except the protein 

with the S494P mutation that was observed to be relatively stable. Fluctuations were also 

observed in certain loop regions of human ACE-2 located away from RBD. The T478K and 

N501Y mutant proteins have largest fluctuations indicative of the dynamical structures. Some 

structures have fluctuations in loop regions corresponding to amino acid positions; 357-371, 

382-388 and 423-430. The observations of large structural fluctuations in certain mutant 

proteins are explained later using cluster analyses from 250 ns AMBER MD simulations 

trajectories, shown in Table 5.2. The K417 residue is mutated to N417 in B.1.351 lineage 

variant of concern. This mutation is reported to contribute to loss of serum antibody 

neutralization (Collier et al., 2021). The K417 residue is located on α3-helix between β3 and 

β4 strands and is close to the insertion loop in RBD. The side chain Nζ-atom of K417 makes 

ionic interactions with side chain atom of Asp30 located on α1-helix in human ACE-2. The 

Lys417-Asp30 side chain ionic interaction observed in the wild-type and all the other mutants 

is lost owing to the K417N mutation. The N501Y mutation associated with lineages; 

B.1.1.7, B.1.351, P.1 binds human ACE-2 receptor with increased binding affinity (Luan et al., 

2021). The N501 is located in loop connecting the α-helix preceding β5-strand and its side 

chain amide nitrogen makes intermolecular hydrogen bonding interactions with side chain OH 

atom of Tyr41 in ACE-2.  
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Figure 5.2A) Superposition of the initial structure (blue) with average MD simulations 
structure (Shown in different colours for the different mutations) in wild-type and 
mutant human SARS CoV-2 spike protein RBD – human ACE-2 receptor complexes. 
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Figure 5.2B) The RMSD plots for wild-type and representative mutant human SARS CoV-2 spike      
Protein RBD chain-B (ChB) in complex with human ACE-2 receptor chain-A (ChA) for 250 ns MD 
simulations (A-P Hetero dimer) 
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Figure 5.2C) The RMSF plots for wild-type and mutant SARS CoV-2 spike protein RBD (ChB)  
in complex with human ACE-2 receptor chain-A (ChA) for 250 ns MD simulations  



131 
 

5.3.2. Ionic, hydrophobic, hydrogen bond interactions in wild-type and mutant complexes 

Several intermolecular interactions were observed to be mediated between the SARS CoV-2 

spike protein RBD and human ACE-2 receptor in the wild-type and mutant protein complexes 

during the 250 ns MD simulations.  Accordingly, these were classified as the hydrogen bond  

interactions, ionic interactions and the hydrophobic interactions. The SARS CoV-2 spike 

protein three-dimensional structure of the UK variant (B.1.1.7) in complex with ACE-2 

heterodimeric domain showed π-π interaction between Tyr501 mutant and Tyr41 in ACE-2 

that enhances the binding of spike protein to the receptor and abolishes binding of a potent 

neutralizing antibody (Yang et al., 2021). We observed that the N501Y mutant leads to 

hydrophobic interactions in mutant complex involving Tyr501-Tyr41 (Tyr41 is indicated in 

Figure 5.1B) at the protein-protein interface, in addition to the Phe486-Met82 hydrophobic 

interaction. The L452 is associated with RBM’s anti-parallel β-sheet and is exposed to solvent 

and is not directly involved in interaction with ACE-2 (Luan et al., 2021). The mutation; L452R 

is observed in the lineages; B.1.427 and B.1.429. The T478 is associated with a loop in RBM. 

The hydrophobic cluster formed by Phe486 in RBD and its interactions with residues; Leu79, 

Met82, Tyr83 in ACE-2 is observed in the complexes with the mutants; T478K, E484K, 

N440K. The E484 is within a loop in RBM and does not interact with human ACE-2 in wild-

type structure. The E484K mutant results in loss of serum antibody neutralization. Similar to 

E484, the S494 residue is also exposed to the solvent and is not involved in interactions with 

ACE-2.  The S494 residue is associated with an antiparallel β-sheet in RBM. The L452 and 

S494 are located on the individual strands of antiparallel β-sheet and the N440 is located on a 

helical turn at the end of β4-strand distant from the ACE-2 binding site.  

In summary, Phe486 and Tyr489 in the human SARS CoV-2 spike protein were observed to 

be involved in hydrophobic interactions with residues; Ile21, Phe28, Tyr41, Leu79, Met82 and 

Tyr83 present on helices (H1, H2) of human ACE-2 as shown in Figure 5.1B. A list of the more 

common intermolecular hydrogen bond interactions for the wild-type and mutant SARS CoV-

2 spike protein RBD – ACE-2 complex is provided in Table 5.1. The predominant hydrogen 

bond interactions were observed between; Asn487-Tyr83, Asn487-Gln24, Gln498-Gln24, 

Gln498-Gln42, Gln498-Tyr41, Gln498-Lys353, Gly496-Lys353, Gln493-Lys31, Ala475-

Ser19 and Ala475-Gln24. The interactions involving the same amino acid residue with 

different partner residues in the complex during the MD simulations, suggests the promiscuous 

nature of hydrogen bonds in the complex of human SARS CoV-2 spike protein RBD and 

human ACE-2 receptor reflecting the structural plasticity associated with the RBM. Several 

hydrogen bonds, hydrophobic and ionic interactions mediate the intermolecular interactions 
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between the SARS CoV-2 spike protein RBD and human ACE-2 in wild-type and mutant 

proteins. Further, despite the mutations observed, the spike protein RBD is capable of 

interacting with the ACE-2 receptor leading to the host infection. Computational studies using 

MD simulations revealed additional π-π and π-cation interactions in the RBD–ACE-2 

complexes (Tian et al., 2021). We observed that the N501Y mutant leads to hydrophobic 

interactions in the mutant complex involving Tyr501-Tyr41 (Tyr41 is indicated in Figure 5.1B) 

at the protein-protein interface, in addition to the Phe486-Met82 hydrophobic interaction. The 

L452 is associated with RBM’s anti-parallel β - sheet, it is exposed to solvent and is not directly 

involved in interaction with ACE-2. The Leu452 together with Phe490 and Leu492 forms a 

hydrophobic surface on RBD. The E484Q, L452R and double mutant E484Q and L452R were 

studied using MD simulations (Antony & Vijayan, 2021). It was observed that Arg452 interacts 

more with neighboring residues Ser349, Tyr351, Phe490, Leu492 and Ser494 when compared 

to the wild-type and propose that the increased intra-molecular interactions could lead to the 

increased stability of the SARS CoV-2 spike protein. The mutation; L452R is observed in 

lineages; B.1.427 and B.1.429. The T478 is associated with a loop in RBM. The hydrophobic 

cluster formed by Phe486 in RBD and its interactions with residues; Leu79, Met82, Tyr83 in 

ACE-2 is observed in the complexes with the mutants; T478K, E484K, N440K. The E484 is 

within a loop in RBM and does not interact with human ACE-2 in wild-type structure. The 

E484K mutant results in the loss of serum antibody neutralization (Chen et al., 2021). Wang et 

al., 2021 have shown that the E484K mutation resulted in more favorable electrostatic 

interactions and significantly improved binding affinity with ACE-2. Further, the E484K 

mutation is shown to cause conformational rearrangements of the loop region containing the 

mutant residue that leads to a tighter binding with ACE-2 and formation of some new hydrogen 

bonds (Wang et al., 2021). Similar to E484, the S494 residue is also exposed to the solvent and 

is not involved in interactions with ACE-2. The S494 residue is associated with an antiparallel 

β-sheet in RBM. The L452 and S494 are located on the individual strands of antiparallel β-

sheet and the N440 is located on a helical turn at the end of β4-strand distant from the ACE-2 

binding site.  Two single amino acid substitution mutations (E484K, N501Y) and a triple 

mutant (K417N + E484K + N501Y) in the RBD domain in complex with human ACE-2 was 

studied using protein-protein docking and MD simulations (Istifli et al., 2021). The South 

African (K417N-E484K-N501Y) and Brazilian (K417T-E484K-N501Y) triple mutants have 

been shown to be lethal due to the inter-protein contacts specifically mediated via the 

electrostatic interactions from the results of molecular docking and MD simulations studies 

(Istifli et al., 2021; Khan et al., 2021). Single amino acid point mutations in the RBD and C-
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terminus of spike protein were studied using MD simulations (Ahamad et al., 2022;; Istifli et 

al., 2021). These authors have shown that mutation brings about higher fluctuations mainly in 

the spike protein RBD region around 400-544 and heptad repeat 1 around 930-940 (Ahamad 

et al., 2022).  Mutations in the SARS CoV-2 spike protein RBD are responsible for strong 

ACE-2 binding and poor anti-SARS CoV-2 monoclonal antibodies cross-neutralization (Shah 

et al., 2020). The alanine scanning mutagenesis and computational binding affinity studies of 

certain residues in SARS CoV-2 RBD complex with human ACE-2 showed that the mutations 

in conserved receptor binding motif (RBM) affects the structural dynamics of the complex. 

The charge distribution disturbs the inter-molecular non-bonded contacts thereby perturbing 

the strength of binding to host cell ACE-2 receptor (Dehury et al., 2021). A pictorial 

representation of the non-bonding interactions between the human spike protein RBD and 

human ACE-2 described above and in Table 5.2 are shown in Figure 5.1A.  In summary, 

Phe486 and Tyr489 in the human SARS CoV-2 spike protein were observed to be involved in 

hydrophobic interactions with residues; Ile21, Phe28, Tyr41, Leu79, Met82 and Tyr83 present 

on helices (H1, H2) of human ACE-2 as shown in Figure 5.1B. A list of the more common 

inter-molecular hydrogen bonding interactions for the wild-type and mutant SARS CoV-2 

spike protein RBD – ACE-2 complex is provided in Table 5.1. The predominant hydrogen 

bonding interactions were observed between; Asn487-Tyr83, Asn487-Gln24, Gln498-Gln24, 

Gln498-Gln42, Gln498-Tyr41, Gln498-Lys353, Gly496-Lys353, Gln493-Lys31, Ala475-

Ser19 and Ala475-Gln24. The interactions involving the same amino acid residue with 

different partner residues in the complex during the MD simulations, suggests the promiscuous 

nature of hydrogen bonds in the complex of human SARS CoV-2 spike protein RBD and 

human ACE-2 receptor reflecting the structural plasticity associated with the RBM. Several 

hydrogen bonds, hydrophobic and ionic interactions mediate the intermolecular interactions 

between the SARS CoV-2 spike protein RBD and human ACE-2 in wild-type and mutant 

complexes. Further, despite the mutations observed, the spike protein RBD is capable of 

interacting with the ACE-2 receptor leading to the host infection. Each of the single amino acid 

substitution mutations independently have significant effect on the nature of interactions with 

human ACE-2. It has already been reported that single and double mutants in the RBD do not 

disrupt the interactions with ACE-2, but reduce the binding free energies because of the 

multiple interactions in the inter-molecular interactions and the extended molecular surface 

(Taka et al., 2021). 
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5.3.3. Cluster analysis 

The flexible partners stabilizing the intermolecular interactions between the heterodimeric 

complexes were further analyzed using cluster analyses shown in Figure 5.2D. The population 

of clusters and their standard deviations is provided in the Table 5.2.  This table indicates 6 

clusters with greater than 0.05 fraction (1,250 populations in a given cluster out of the 25,000 

frames) in wild-type protein, whereas, the clusters associated with the different mutations were; 

K417N (8 clusters), T478K (8), S494P (10), N440K (10), L452R (9), N501Y (7), E484K (9). 

The members of each cluster comprise structurally similar conformations. The presence of only 

6 clusters in the wild-type protein with a higher population of frames suggests the structural 

stability of wild-type complex, which contrasts with the relatively higher dynamics observed 

for the mutant proteins associated with larger number of clusters.  

5.3.4. Solvated interaction energies 

To quantify the strength of intermolecular interactions the binding free energies of the 

heterodimers were analyzed. The SIE binding free energy calculations were carried out on the 

AMBER MD simulation trajectories shown in Table 5.3.  Among all complexes studied, low 

SIE values were observed for S494P (-31.24 kcal/mol), T478K (-29.67 kcal/mol), K417N (-

29.59 kcal/mol), L452R mutant (-27.94 kcal/mol), N440K (-20.18 kcal/mol), E484K (-19.15 

kcal/mol) and N501Y (-18.98 kcal/mol) compared to the binding free energy for the wild-type 

heterodimeric complex (Zhang et al., 2021) that was -13.75 kcal/mol. It was observed that all 

mutations in the spike protein RBD were associated with lower binding free energies compared 

to the wild-type proteins indicating better binding efficiency to human ACE-2.  All mutations 

attributed as variants of concern or variants being monitored in RBD are known to increase 

transmissibility. These mutations cause greater infectivity to the host and may be under positive 

selection pressure.  However, for some mutations, such as, K417A, Q498A, T500I in spike 

protein RBD previously reported (Guruprasad, 2021b), relatively higher binding free energies 

compared to the wild-type hetero-dimeric complex were observed (Table 5.3). These mutant 

proteins with implied reduced binding affinity to human ACE-2 may therefore not be 

significant mutations.  The SIE binding free energy (ΔG) and its components; van der Waals 

interaction energy (vdW); Coulomb interaction energy (Coul); Reaction Field (RF); Constant 

(Const). Thereby, mutations resulting in greater infectivity to host seem to have been selected 

in the evolution of human SARS CoV-2 spike protein. Such mutations have therefore become 

prominent and have resulted as variants of concern or variants being monitored. 
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Figure 5.2D) Cluster analyses for wild-type and mutant SARS CoV-2 spike protein RBD         
                      and Human ACE-2 receptor for 250 ns MD simulations data. 
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Lineage Variants 
being monitored 

WHO label Mutations relative to reference protein in human 
SARS CoV-2 spike protein RBD 

B.1.1.7  Alpha 69del, 70del, 144del, E484K, S494P, N501Y, 
A570D, D614G, P681H, T716I, S982A, D1118H, 
K1191N 

B.1.351 
 

Beta D80A, D215G, 241del, 242del, 243del, K417N, 
E484K, N501Y, D614G, A701V 

P.1 Gamma L18F, T20N, P26S, D138Y, R190S, K417T, E484K, 
N501Y, D614G, H655Y, T1027I 

B.1.427 
B.1.429 

Epsilon L452R, D614G 
S13I, W152C, L452R, D614G 

B.1.525 Eta A67V, 69del, 70del, 144del, E484K, D614G, 
Q677H, F888L 

B.1.526 Iota L5F, D80G, T95I, 144del, F157S, D253G, L452R, 
S477N, E484K, D614G, A701V, T859N, D950H, 
Q957R 

B.1.617.1 
 

Kappa T95I, G142D, E154K, L452R, E484Q, D614G, 
P681R, Q1071H 

B.1.617.3 Not 
applicable 

L452R, E484Q, D614G, P681R 
 

P.2/P.1.1.28.2 Zeta E484K, D614G, T859I, Y1176F 
B.1.621 Mu R346K, E484K, N501Y, D614G, P681H 
Variant of 
concern    
B.1.617.2  Delta T19R, V70F, T95I, G142D, 156-157del, R158G, 

A222V, W258L, K417N, L452R, T478K, D614G, 
P681R, D950N 

B.1.1.529 Omicron A67V, Δ69-70, T95I, G142D, Δ143-145, Δ211, 
L212I, ins214EPE, G339D, S371L, S373P, S375F, 
K417N, N440K, G446S, S477N, T478K, E484A, 
Q493R, G496S, Q498R, N501Y, Y505H, T547K, 
D614G, H655Y, N679K, P681H, N764K, D796Y, 
N856K, Q954H, N969K, L981F 

Table 5.1) The deletions and substitution mutations in human SARS CoV-2 spike protein according 

to the different lineages.  

Figure 5.2E) Representation of non-bonding interactions between the human ACE-2 and spike protein RBD 
in the initial, wild-type and mutant complexes after 250 ns MD simulations.  (initial structure PDB id: 6LZG, 
chains-A and B), B- wild-type, C- K417N, D-K417T, E-N440K, F-L452R, G-T478K, H-E484K, I-S494P, 
J-N501Y; 
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Protein Non-bonding interactions; residues involved in RBD-ACE-2 
 

Wild-
type 

Hydrogen bonds: Asn487-Gln24, Gln493-Lys31, Gln493-Glu35, Tyr449-Asp38, 
Gln498-Gln42, Thr500-Tyr41, Asn487-Tyr83, Asn501-Lys353, Gly496-Lys353, 
Gln498-Lys353, Asn501-Lys353, Gly502-Lys353.  
Ionic bond: Lys417-Asp30. 
Hydrophobic: Tyr489-Phe28,  Tyr489-Leu79,  Tyr489-Tyr83. 

K417N Hydrogen bonds: Asn487-Gln24, Gln493-Lys31, Gln493-His34, Gln493-Glu35, 
Tyr505-Glu37, Asn501-Tyr41, Thr500-Tyr41, Gln498-Gln42, Asn487-Tyr83, 
Tyr495-Lys353, Gly496-Lys353, Gly502-Lys353, Thr500-Asp355.  
Hydrophobic: Tyr489-Phe28, Phe486-Met82 and Phe486-Tyr83. 

N501Y Hydrogen bonds: Ala475-Ser19, Asn487-Gln24, Gln493-Lys31, Gln493-His34, 
Gln493-Glu35, Tyr505-Glu37, Tyr449-Asp38, Thr500-Tyr41, Asn487-Tyr83, 
Gly502- Lys353, Tyr505-Arg393. 
Ionic: Lys417-Asp30. 
Hydrophobic: Tyr501-Tyr41, Phe486-Met82. 

L452R Hydrogen bonds: Ala475-Ser19, Tyr489-Gln24, Tyr453-His34, Lys417-His34, 
Gln493-Glu35, Tyr505-Glu37, Tyr449-Asp38, Thr500-Tyr41, Gln498-Gln42, 
Asn487-Tyr83, Tyr489-Tyr83, Gly496-Lys353, Gln498-Lys353, Gly502-Lys353.  
Ionic: Lys417-Asp30, Lys458-Glu23, Glu484-Lys31. 
Hydrophobic: Phe486-Ile21, Phe486-Tyr83, Tyr489-Phe28. 

T478K Hydrogen bonds: Gln493-Lys31, Gln493-Glu35, Tyr505-Glu37, Tyr449-Asp38, 
Asn487-Tyr83, Tyr495-Lys353, Gly496-Lys353, Asn501-Lys353, Thr500-Asp355, 
Gly502-Lys353. 
Ionic: Lys417-Asp30.  
Hydrophobic: Phe486-Leu79, Phe486-Met82, Phe486-Tyr83. 

E484K Hydrogen bonds: Ala475-Gln24, Thr478-Gln24, Gln493-Glu35, Tyr505-Glu37, 
Tyr449-Asp38, Asn487-Tyr83, Gln498-Lys353, Asn501-Lys353, Gly502-Lys353, 
Thr500-Asp355.  
Ionic: Lys417-Asp30.  
Hydrophobic: Phe486-Leu79, Phe486-Met82, Phe486-Tyr83. 

S494P Hydrogen bonds: Ser477-Thr20, Ser477-Gln24, Gln493-Lys31, Gln493-Glu35, 
Tyr505-Glu37, Gln498-Asp38, Thr500-Tyr41, Asn487-Tyr83, Gln498-Lys353, 
Gln498-Lys353, Gly502-Lys353, Thr500-Asp355, Thr500-Arg357, Tyr505-Arg393.  
Ionic: Lys417-Asp30.  
Hydrophobic: Phe486-Met82, Phe486-Tyr83. 

N440K Hydrogen bonds: Asn487-Gln24, Tyr489-Gln24, Ala475-Thr27, Gln493-Lys31, 
Gln493-Glu35, Gln498-Asp38, Thr500-Tyr41, Asn487-Tyr83, Gly496-Lys353, 
Gln498-Lys353, Gly502-Lys353, Thr500-Asp355, Tyr505-Ala386, Tyr505-Arg393.   
Ionic: Lys417-Asp30.  
Hydrophobic: Phe486-Leu79, Phe486-Met82, Phe486-Tyr83. 

Table 5.2) The non-bonding intermolecular interactions between human SARS CoV-2 spike 
        protein RBD and human ACE-2 complex. 
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5.4. Conclusions  

The MD simulation studies of the human SARS CoV-2 spike protein RBD and ACE-2 receptor 

complex for wild-type and mutants; K417N, N440K, N501Y, L452R, T478K, E484K, S494P 

reveal the molecular interactions underlying their binding affinities. The promiscuous nature 

of the non-bonding interactions is facilitated by the structural plasticity of the RBD that is 

accompanied by large conformational changes during the MD simulations. The mutant proteins 

are characterized by larger number of clusters indicating greater conformational variability 

between the proteins in different clusters. This suggests that the mutant proteins undergo 

relatively greater conformational changes compared to the wild-type proteins. The SIE 

analyses of human SARS CoV-2 spike protein RBD and ACE-2 complex suggests the basis 

for positive selection of mutants that have led to more infectious variants resulting in rapid 

spread of the COVID-19 disease.    

S.
No 

Mutation vdW 
(kcal/ 
mol) 

Std 
Err 

Coul 
kcal/ 
mol) 

Std 
Err 

RF 
kcal/ 
mol) 

Std 
Err 

Cavity 
kcal/ 
mol) 

Std 
Err 

Const ΔG 
kcal/
mol) 

Std 
Err 

1 Wild Type -92.19 0.15 -321.87 0.41 327.05 0.38 -16.67 0.02 -2.89 -13.75 0.02 
2 K417N -95.94 0.12 -177.17 0.23 34.54 0.28 -16.33 0.02 -2.89 -29.59 0.02 
3 N440K +48.36 0.84 -281.75 0.29 233.27 0.27 -17.17 0.02 -2.89 -20.18 0.81 
4 L452R +71.35 1.77 -420.37 0.51 341.95 0.40 -17.63 0.02 -2.89 -27.94 1.68 
5 T478K -83.46 0.12 -308.00 0.31 150.45 0.32 -14.65 0.02 -2.89 -29.67 0.03 
6 E484K -87.37 0.12 -439.40 0.35 387.00 0.34 -15.49 0.02 -2.89 -19.15 0.02 
7 S494P -94.05 0.12 -296.72 0.24 136.60 0.32 -16.50 0.01 -2.89 -31.24 0.03 
8 N501Y -84.69 0.02 -343.51 0.03 289.05 0.55 -14.49 0.04 -2.89 -18.98 0.06 
9 K417T -90.00 0.12 -204.21 0.24 179.70 0.23 -16.17 0.01 -2.89 -16.58 0.02 

Table 5.3) Solvent interaction energies (SIE) in kcal/mol calculated from sietraj for the 250 ns 
       MD simulations trajectories for wild-type and mutant human SARS CoV-2 spike 
       protein RBD –  ACE-2 complexes.  
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Abstract
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Tyro3, Axl and Mer are members of TAM RTKs and are overexpressed in several cancer
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nanomolar concentrations. The atomistic details of structure and mechanism of functional

regulation is required to understand their normal physiological process and when bound to

an inhibitor. The docking of cabozantinib into the active state conformations of TAM kinases

(crystal structure and computational models) revealed the best binding pose and the

complex formation that is mediated through non-bonding interactions involving the hinge

region residues. The alterations in the conformations and the regions of flexibility in apo and

complexed TAM kinases as a course of time are studied using 250 ns molecular dynamics

(MD) simulations. The post-MD trajectory analysis using Python libraries like ProDy, MDTraj
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Abstract

The dynamically active and inactive conformations of kinases play a crucial role in the

activation of intracellular downstream signaling pathways. The all-atom molecular dynamics

(MD) simulations at microsecond (µs) timescale and longer provide robust insights into the

structural details of conformational alterations in kinases that contribute to their cellular

metabolic activities and signaling pathways. Tyro3, Axl and Mer (TAM) receptor tyrosine

kinases (RTKs) are overexpressed in several types of human cancers. Cabozantinib, a small

molecule inhibitor constrains the activity of TAM kinases at nanomolar concentrations. The

apo, complexes of ATP (active state) and cabozantinib (active and inactive states) with TAM

RTKs were studied by 1 µs MD simulations followed by trajectory analyses. The dynamic

mechanistic pathways intrinsic to the kinase activity and protein conformational landscape in

the cabozantinib bound TAM kinases are revealed due to the alterations in the P-loop, α-helix
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Abstract

The severe acute respiratory syndrome virus-2 (SARS CoV-2) infection has resulted in the

current global pandemic. The binding of SARS CoV-2 spike protein receptor-binding domain

(RBD) to the human angiotensin converting enzyme-2 (ACE-2) receptor causes the host

infection. The spike protein has undergone several mutations with reference to the initial

strain isolated during December 2019 from Wuhan, China. A number of these mutant strains

have been reported as variants of concern and as variants being monitored. Some of these

mutants are known to be responsible for increased transmissibility of the virus. The reason

for the increased transmissibility caused by the point mutations can be understood by

studying the structural implications and inter-molecular interactions in the binding of viral

spike protein RBD and human ACE-2. Here, we use the crystal structure of the RBD in

complex with ACE-2 available in the public domain and analyse the 250 ns molecular
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Abstract

Drug discovery using traditional methods is expensive on resources. Advances in algorithms for computational methods toward solving problems in

chemical biology and affordable computational costs have made a rapid revolution in the last three decades resulting in the discovery of novel drugs

for targeted therapy using rationale approaches. Structure-based drug design (SBDD) is a popular methodology employed when the structure of the

target receptor is known. For a chemical molecule to receive United States Food and Drug Administration (FDA) approval to be marketed as a safe

drug, it should have desired biological effects, pass all the clinical trials for its assessment of efficacy and safety, and the chemistry should be novel

enough to be patentable. SBDD methods initially design hit molecules that are based on receptor-ligand complementarity. Improvisation of the hit to

lead molecules is a cyclical process that comprises the computational design of chemical molecules, synthetic chemistry, experimental validation, and

further modifications till an optimized drug candidate that shows the therapeutic effect is discovered.

Keywords

Structure-based drug design; Protein structure; Binding site identification; Virtual screening; Molecular docking; Fragment-based drug design; De

novo drug design; Covalent inhibitors; Multiparameter optimization
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