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Abstract

The Internet of Things (IoT) has undergone significant growth,
impacting various sectors. However, the diversity inherent in the IoT
presents formidable challenges in the processing of IoT data. Tradi-
tional cloud-centric IoT data processing faces issues of latency, band-
width consumption, and privacy concerns. Edge Computing aims to
address these challenges by focusing on localized data processing, but
cannot handle complex tasks due to resource constraints. Fog com-
puting can alleviate this problem by adopting distributed processing
of tasks using cluster resources.

The adoptability of existing distributed machine learning frame-
works in fog cluster environment has limitations due to their resource
intensive nature. Federated learning (FL) emerges as a viable solution
for resource-constrained edge devices, enabling the training of machine
learning models without centralizing data sets. This research is dedi-
cated to harnessing the potential of Fog Computing-Based Federated
Learning (FL) to mitigate these challenges.

This Ph.D. thesis endeavors to devise a communication-efficient
algorithm for processing heterogeneous streaming IoT data through
FL in fog-centric IoT applications. The research strives to bridge gaps
in existing solutions by distributing IoT streaming data among clus-
ter nodes to achieve load balancing and optimize resource utilization.
A novel capability-aware federated average (CAFedAvg) algorithm is
proposed, that addresses the limitations of the state-of-the-art feder-
ated average algorithm by taking into account the capabilities of the
devices participating in the federated learning process.

In summary, this thesis contributes to fog computing framework
tailored for processing heterogeneous IoT streaming data. It empha-
sizes load distribution and device capability awareness in FL-based
model training. These advancements effectively address challenges re-
lated to data heterogeneity and resource utilization within fog-centric
IoT environments.

vi
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Chapter 1

Introduction

The Internet of Things (IoT) is a network of interconnected devices equipped
with sensors and technology to collect and share data on the Internet [1]. Its
goal is to enable devices to communicate and collaborate seamlessly, improving
automation, efficiency, and decision making in various domains such as smart
homes, healthcare, industries and transportation [2]. The inherent heterogeneity
of the IoT landscape, characterized by a diverse range of sensor types, commu-
nication protocols, and data formats, presents unprecedented opportunities and
formidable challenges [3][4]. The effective handling and utilization of these di-
verse sensor data streams is essential to obtain valuable insights and actionable
intelligence from IoT applications.

Traditionally, cloud-centric approaches have been the backbone of data pro-
cessing in IoT environments [5]. Processing IoT data with Cloud Computing
results in slow response times, increased network bandwidth usage, and poten-
tial privacy concerns due to data being sent to external servers [6]. Moreover,
Cloud Computing might not work well for real-time applications with strict tim-
ing needs. These problems highlight the need to find better ways to handle and
unlock the full potential of IoT data. Edge Computing and Fog Computing have
emerged as alternative paradigms to address these limitations [7].

Edge computing involves processing data at or near the data source, which
is often the edge of the network [6][8]. Unlike conventional Cloud Computing,
where data is transmitted to centralized servers for analysis, Edge Computing
emphasizes localized processing on the IoT device itself or nearby gateway devices.
This approach offers several advantages, including reduced latency, minimized
data transmission needs, and improved responsiveness [9]. By processing data
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Figure 1.1: Edge Computing vs. Fog Computing

closer to where it is generated, Edge Computing is particularly well-suited for
time-sensitive applications, such as industrial automation, autonomous vehicles,
and real-time monitoring systems. Moreover, Edge Computing contributes to
data privacy by keeping sensitive information localized and reducing the need for
data to traverse the network [10].

Fog Computing takes this concept a step further by extending the processing
capabilities to intermediate nodes in the network, such as routers and gateways
[11], as shown in Fig. 1.1. This approach strikes a balance between Edge Comput-
ing’s focus on immediate processing and traditional Cloud Computing’s ability
to handle more complex tasks. Fog Computing can handle more intricate data
analysis while still offering reduced latency compared to centralized cloud process-
ing [12]. Fog Computing finds applications in scenarios where intermediate-level
processing is necessary, such as Smart Cities, Environmental Monitoring Net-
works, and Healthcare Systems. These distinctions differentiate between Edge
Computing and Fog Computing [13], although these terms are sometimes used
interchangeably in certain contexts.

The resource constraints of edge devices for processing IoT data can be miti-
gated by adopting distributed computing techniques within the edge cluster [14].
Distributed computing involves dividing complex tasks into smaller subtasks and
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Figure 1.2: Model training using Federated Learning

distributing them across multiple devices within the cluster for simultaneous pro-
cessing [15]. It optimizes the utilization of available resources within the edge
cluster, enhancing the overall processing capability. However, the application of
existing Distributed Machine Learning (DML) frameworks for IoT data process-
ing has revealed limitations [16][17]. Many conventional frameworks are resource
intensive and require considerable memory and computational power, which may
not be readily available on resource-constrained IoT devices [18]. This emphasizes
the need for solutions that can be easily integrated into the IoT system.

Federated learning (FL), a form of Distributed Computing, emerges as a
promising solution in this context [19][20]. The federated learning is a decentral-
ized learning concept capable of training a global machine learning (ML) model
at the fog computing gateway without centralizing data sets, as illustrated in
Figure 1.2 [21]. Instead of sending raw data to a central server, the model’s
weights are exchanged among devices, thereby circumventing the need for cen-
tralized data storage and processing. This not only addresses privacy concerns
associated with transmitting sensitive data, but also leverages the inherent dis-
tribution of resources in the IoT environment. Federated learning thus aligns
seamlessly with the principles of Edge and Fog Computing, offering a decentral-
ized approach that optimally utilizes available resources and ensures real-time
insights from IoT-generated data.

3



1.1 Challenges in Federated Learning for Processing IoT Streaming
Data

1.1 Challenges in Federated Learning for Pro-
cessing IoT Streaming Data

Processing IoT streaming data through Federated learning presents various chal-
lenges that need to be addressed [22][23]:

• Heterogeneity of Data: IoT devices generate diverse data types and
formats. Federated learning must handle this variability and develop models
that can learn effectively and generalize across different data sources.

• Communication Efficiency: Transmitting model updates between de-
vices and a central server can consume significant bandwidth. In a stream-
ing context, where data arrive in real-time, maintaining communication
efficiency becomes even more critical to avoid delays and network conges-
tion.

• Dynamic Data Distribution: IoT data streams can vary in volume,
velocity, and distribution. Federated learning must adapt to these changes
and ensure that the models remain accurate despite the dynamic nature of
the data distribution.

• Resource Constraints: Many IoT devices have limited computational
power and memory. Federated learning must account for these constraints
and develop techniques that enable efficient model training and updates on
resource-constrained devices.

• Scalability: Federated Learning needs to scale as the number of IoT de-
vices increases. As the network grows, the management of communication,
synchronization, and aggregation becomes more complex.

1.2 Objectives
The state of the art Federated Average (FedAvg) algorithm [24][25] has challenges
with respect to processing heterogeneous data in the IoT environment. To address
this, there is a need to develop an efficient communication technique to process
streaming data that can adapt to varying environments. To achieve this, we have
formulated the following research objectives:

4



1.3 Thesis Organization

• Study existing DML frameworks such as Apache SparkML and experiment
data processing in Fog-centric IoT Applications.

• Distribute data and computations to nodes and maintain shared parameters
globally. Investigate the use of Fog Computing as a means of reducing
communication costs in a federated computing environment.

• Process heterogeneous streaming data using novel communication-efficient
algorithms in the FL environment that utilize client-side computation while
minimizing the number of communication rounds required for convergence.

• Evaluate the performance of the proposed communication-efficient algo-
rithms and computing techniques in terms of accuracy, speed, and scal-
ability.

The focus of this research work is on ’Processing heterogeneous streaming
data using Federated Learning in fog-centric IoT Applications’. The experimen-
tation and validation done to meet the above objectives is done for a Smart-Home
environment but can be deployable in applications Healthcare and Banking envi-
ronments.

1.3 Thesis Organization
The organization of rest of the chapters in the thesis is as follows:

Chapter 2 provides a comprehensive review of the literature concerning the
research focus, covering the IoT ecosystem, distributed machine learning, and
federated learning for IoT data processing. It also presents the motivation behind
our research and outlines the contributions.

Chapter 3 presents our research work related to fog computing-based smart
home assistive living framework. Additionally, it delves into the study of dis-
tributed data processing in a fog environment and explores the adoptability of
existing distributed machine learning frameworks in the IoT context.

Chapter 4 presents our research work on a federated learning framework based
on fog computing to process heterogeneous sensor data on resource constraint
computing devices. Experimental results related to FL based model training
using heterogeneous IoT data are compared with the centralized model training.

5



1.3 Thesis Organization

Chapter 5 presents the research work related to load balance-aware federated
learning to handle heterogeneous IoT streaming data in a fog computing-enabled
smart home setting.

Chapter 6 presents the Capability-Aware Federated Averaging (CAFedAvg)
algorithm that considers the capabilities of the clients participating in the fed-
erated learning process. Furthermore, Mobile-aware Neural Architecture Search
(NAS) is explored for building machine learning models suitable for edge com-
puting devices.

Chapter 7 presents the analysis of federated learning with distributed IoT
data for the computation and storage of model parameters using the algorithms
proposed in the fog computing framework.

Chapter 8 concludes the research work and suggests directions for future re-
search.

In summary, this thesis aims to develop a comprehensive framework for het-
erogeneous sensor data streaming and efficient model training using federated
learning in fog-centric IoT applications.
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Chapter 2

Literature Review

This chapter provides a comprehensive literature review, covering the IoT ecosys-
tem, the processing of IoT data using distributed machine learning, and federated
learning. The review identifies the gaps in the existing literature for processing
heterogeneous streaming data in IoT environments. Subsequently, the research
contributions addressing these gaps are discussed.

2.1 Key Terms and Definitions
The definitions of the Cloud Computing, Fog Computing and Edge Computing
are presented in this section, and the details about these concepts are elaborated
further in subsequent sections.

• Cloud Computing: The National Institute of Standards and Technology
(abbreviated NIST) provides a comprehensive definition of cloud comput-
ing [26], While it has not published specific definitions for fog and edge
computing. They are often considered extensions of cloud computing.
NIST characterizes cloud computing as ”a framework that facilitates
widespread, user-friendly, and immediate network access to a collectively
configurable set of computing assets (including networks, servers, storage,
applications, and services) that can be swiftly allocated and relinquished with
minimal administrative involvement or service provider engagement.”

• Fog Computing: The OpenFog Consortium published the OpenFog Ref-
erence Architecture that provides a comprehensive definition and framework
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for fog computing [27]. It defines fog computing as ”a system-level architec-
tural approach that disperses computing, storage, control, and networking
functionalities closer to end-users along a continuum stretching from the
cloud to IoT devices”.

• Edge Computing: Edge computing positions applications, data, and pro-
cessing at the logical peripheries of a network, rather than consolidating
them centrally [27]. This approach, which places data and data-intensive
applications at the edge, reduces the amount of data that needs to be trans-
ferred.

2.2 IoT Ecosystem
The Internet of Things ecosystem has experienced significant growth in recent
years, revolutionizing various domains, including the smart home environment
[1]. A key characteristic of IoT is the diverse nature of data generated by inter-
connected devices and sensors [3].

2.2.1 IoT Data Characteristics
In the IoT environment, data exhibit several characteristics, as illustrated in
Figure 2.1 that pose challenges for seamless integration, processing, and analysis.

• Heterogeneous Data Types: In a smart home environment, data is col-
lected from various sensors, such as temperature sensors, motion sensors, gas
sensors, sound sensors, and cameras. Each sensor captures different types
of data: numerical (ambient parameters), audio (voice commands), image
(photos of objects), and video (surveillance). Handling such diverse data
types in a smart home environment requires data preprocessing, transfor-
mation, and integration techniques to ensure seamless communication and
meaningful insights across the different devices [4]. Integrating and fusing
these diverse data types can be challenging due to variations in data qual-
ity, sampling rates, and measurement units. For example, temperature data
may be measured in Celsius or Fahrenheit, while images and videos may
have varying resolutions and formats.
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Figure 2.1: Fog Computing based Smart-Home Environment Architecture

• Different Data Formats: The data generated by various sensors in an
IoT environment can vary in format due to differences in data transmission
methods or communication protocols [4]. Different transmission methods
utilize different physical media or technologies for data transfer. Exam-
ples of transmission methods include wired connections such as Ethernet
cables, fiber optic cables, and serial connections, as well as wireless tech-
nologies such as Wi-Fi and Bluetooth. Communication protocols define
the structure of data packets, error handling mechanisms, and the sequence
of actions during data transmission. Communication protocols commonly
used include Message Queuing Telemetry Transport (MQTT), Constrained
Application Protocol (CoAP), Hypertext Transfer Protocol/Secure Hyper-
text Transfer Protocol (HTTP/HTTPS), Advanced Message Queuing Pro-
tocol (AMQP), Long Range Wide Area Network (LoRaWAN), and Zigbee,
among others.

• Variable Sampling Rates: Each sensor has its own sampling rate, which
determines how frequently it collects and updates its readings [28]. The
temperature sensor updates its data every 30 seconds, whereas the motion
sensor’s data updates are event-driven, meaning it only reports data when
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motion is detected. The light sensor updates its data every 1 minute, and
the humidity sensor updates its data every 15 seconds.
As a result, the data collected by these sensors is not synchronized, and
the rate at which new data is available from each sensor varies significantly.
This can create challenges when analyzing and integrating sensor data to
make informed decisions or trigger actions in the smart home environment.
To address this issue, data processing techniques such as interpolation or
data alignment may be used to normalize sensor readings, enabling syn-
chronization of data points and creating a unified time series dataset. This
allows for more effective data fusion and analysis.

• Different Measurement Units: Different manufacturers may manufac-
ture devices that produce data in different formats [28]. For example, a tem-
perature sensor from manufacturer ’A’ may produce temperature readings
in degrees Celsius, while that of manufacturer ’B’ may produce tempera-
ture readings in Fahrenheit. Harmonizing data with different measurement
units requires conversion techniques to ensure a consistent and meaningful
representation of the data.

• Heterogeneous Devices: Various devices interconnected within the IoT
ecosystem have different functionalities, processing power, communication
protocols, and data handling capabilities [29]. These differences arise due to
varying hardware specifications, software configurations, and intended use
cases for each device. By leveraging the diverse capabilities of these devices,
IoT applications can offer enhanced functionality, improved efficiency, and
intelligent decision-making in various domains.

• Communication Overhead: In a smart home IoT ecosystem, numerous
devices continuously exchange data, leading to communication overhead
[29]. The constant data flow may result in network congestion and in-
creased energy consumption. Managing communication overhead requires
efficient communication protocols and mechanisms for data transmission
and aggregation.

• Data Distribution Imbalance: Data distribution imbalance refers to the
uneven distribution of data across the network of interconnected devices and
sensors [30]. Some IoT devices may generate a significantly higher volume of
data compared to others, leading to an imbalance in the data distribution.
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Several factors contribute to the imbalance in data distribution in the IoT
ecosystem. These include varying device capabilities, diverse sensor types,
different data collection frequencies, and varying user behavior. For exam-
ple, a high-resolution security camera may generate more data compared to
a simple temperature sensor. Unbalanced data distribution can have impli-
cations for data processing and analytics. Devices generating large amounts
of data may overload the network and central processing systems, leading
to communication bottlenecks and increased latency. As a result, real-time
data processing and analysis can be compromised. The imbalance in data
distribution poses a challenge for machine learning algorithms used for pre-
dictive analytics and anomaly detection. Uneven data distribution can lead
to biased training of machine learning models, affecting their accuracy and
reliability.

• Computational Complexity: The computational complexity of IoT data
processing refers to the level of computational resources and time required
to process and analyze the huge amount of data generated by interconnected
IoT devices [31]. The complexity arises due to the sheer volume, variety,
and velocity of the data generated in real time. Processing data at a mas-
sive scale requires advanced computing techniques and scalable algorithms,
necessitating the use of high-performance computing resources.

2.2.2 IoT Data Processing
Efficient IoT data processing paves the way for extracting valuable insights and
actionable intelligence [5][32].

2.2.2.1 Cloud Computing for IoT Data Processing

Traditionally, Cloud Computing solutions have been widely adopted for IoT data
processing. Cloud computing provides scalable and cost-effective solutions to
process large amounts of IoT data [33] [34]. IoT devices send their data to the
Cloud, where it is stored, processed, and analyzed using various cloud-based ser-
vices. Cloud computing offers substantial computing power and storage capacity,
making it ideal for handling large datasets and complex machine learning algo-
rithms. However, cloud computing faces challenges in managing real-time data
processing due to potential delays caused by data transmission to remote servers
and back.

11



2.2 IoT Ecosystem

2.2.2.2 Fog Computing: An Alternative Approach to IoT Data Pro-
cessing

Fog computing is a distributed computing approach that moves computation,
storage, and intelligence closer to the network’s periphery, thereby reducing the
necessity for data to travel to the cloud. This extension of cloud capabilities to the
network edge allows for real-time data processing and mitigates communication
overhead, as detailed in [35]. By deploying computing resources closer to IoT
devices, fog computing addresses the latency and bandwidth challenges faced by
cloud computing in handling real-time data. Fog nodes, acting as intermediaries
between the cloud and edge devices, provide computational support for edge
devices and facilitate efficient data processing and analysis.

2.2.2.3 Edge Computing vs. Fog Computing

While edge computing and fog computing are often used interchangeably, they
are distinct concepts. Edge computing focuses on processing data locally on edge
devices, closer to the data source, to achieve lower latency and reduce reliance
on cloud servers. Fog computing, on the other hand, introduces an intermediate
layer of fog nodes between edge devices and the cloud [9][13]. Fog nodes act as
distributed mini data centers that offer more processing and storage capabilities
than edge devices but are still closer to the data source compared to the cloud.
Fog computing provides a balance between edge computing’s local processing
and cloud computing’s vast resources, making it well-suited for real-time and
low-latency IoT data processing.

IoT data processing using cloud computing and machine learning has been
widely adopted for its scalability and computational power. However, the limita-
tions of cloud computing in handling real-time data have driven the emergence of
fog computing. Fog computing brings computational resources closer to IoT de-
vices, reducing communication overhead and enabling real-time data processing.
Fog computing offers a promising alternative to cloud-centric IoT data processing,
catering to the growing demand for low-latency and responsive IoT applications.
Table 2.1 compares the features of cloud, fog, and edge computing scenarios.

12



2.3 Distributed Machine Learning for IoT Data Processing

Table 2.1: Features Comparison - Cloud vs. Fog vs. Edge Computing

Cloud Fog Edge
Processing Capability High Limited Low

Memory High Limited Low
Latency High Low Lowest

Scalability High Scalable within Network Low
Distance Far from edge Close to the edge At the edge

Interoperability High Medium Low

2.3 Distributed Machine Learning for IoT Data
Processing

The act of distributing machine learning applications across multiple nodes is
called Distributed Machine Learning (DML). Distributed machine learning lever-
ages the power of multiple computing nodes or devices to collaboratively process
and analyze data, enabling efficient and scalable data processing for IoT applica-
tions [15]. Although fog computing already offers improved processing capabil-
ities by bringing computation closer to IoT devices, there is an opportunity to
further improve the performance of the IoT system through effective utilization of
cluster resources. Leveraging the computational power of a cluster environment
can lead to significant improvements in the execution of IoT tasks, optimizing
data processing, and enabling more complex analytics. By efficiently distributing
and balancing workloads across the cluster, the IoT system can achieve higher
throughput, reduced latency, and enhanced scalability, thus unlocking the full
potential of fog-centric IoT applications.

2.3.1 Features of Distributed Machine Learning
Here are some key aspects of the role of distributed machine learning in processing
IoT data:

• Scalability: Distributed machine learning allows IoT data processing to
scale easily with the increasing number of connected devices and data
sources. As the IoT ecosystem grows, traditional centralized approaches
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may become overwhelmed by the sheer volume of data, leading to pro-
cessing bottlenecks. Distributed machine learning techniques distribute the
computational load across multiple nodes, ensuring efficient processing even
with large amounts of data.

• Real-Time Responsiveness: Many IoT applications require real-time or
near-real-time data processing to enable timely decision-making and re-
sponse. Distributed machine learning can perform data processing in par-
allel across distributed nodes, reducing latency and improving the respon-
siveness of IoT applications.

• Privacy: In many IoT scenarios, data privacy and security are paramount
concerns. Centralized data processing may involve transmitting sensitive
data to a remote server, raising potential privacy risks. Distributed ma-
chine learning allows data to be processed locally at the edge or fog nodes,
reducing the need for data transmission and improving data privacy.

• Edge and Fog Computing Integration: Distributed machine learning seam-
lessly integrates with edge and fog computing paradigms in the IoT ecosys-
tem. Edge devices can perform local data processing using distributed ma-
chine learning models, reducing the need for constant data transmission to
the cloud or central servers. This integration optimizes data processing and
minimizes communication overhead.

• Fault tolerance: In large-scale IoT deployments, failure of individual nodes
or devices is inevitable. Distributed machine learning offers fault tolerance
by distributing tasks across multiple nodes. If a node fails, processing can
continue on other nodes, ensuring the overall stability and reliability of the
system.

• Resource efficiency: Distributed machine learning optimizes resource uti-
lization by distributing computational tasks among available nodes. This
approach reduces the overall computational burden and efficiently utilizes
computing resources, especially in resource-constrained IoT environments.

By leveraging collaborative model training, reduced communication overhead,
and integration with edge and fog computing, distributed machine learning em-
powers resource-constrained devices to process and analyze data locally, preserv-
ing privacy, conserving energy, and supporting real-time data processing in the
dynamic and interconnected world of the Internet of Things.
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Figure 2.2: Distributed Machine Learning Approaches

2.3.2 Model Parallelism vs. Data Parallelism
Model parallelism and data parallelism are two different approaches used in dis-
tributed machine learning to train large models on multiple devices or nodes, as
illustrated in Figure 2.2 [36]. They have distinct characteristics and are suitable
for different scenarios.

Model Parallelism: In model parallelism, a large neural network model is
partitioned into multiple segments, and each segment is assigned to different de-
vices or nodes for training. Each device handles a specific part of the model, and
during training, they communicate the intermediate results to synchronize the
overall model updates. This approach is typically used when a single device does
not have enough memory to store the entire model.
Advantages of Model Parallelism:

• Suitable for training large models that do not fit in the memory of a single
device.

• Enables scaling up the model size by utilizing multiple devices efficiently.

• Allows flexibility in choosing devices with different computational capabil-
ities for specific model segments.

Disadvantages of Model Parallelism:

• Requires frequent communication between devices, leading to increased
communication overhead.
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• Can be more challenging to implement and manage compared to data par-
allelism.

Data Parallelism: In data parallelism, the entire model is replicated on
multiple devices, and each device is assigned a different subset of the training
data. The devices independently compute gradients based on their assigned data
and then communicate these gradients to update the model parameters. This
approach is suitable when the model can fit in the memory of each device and
the computational workload per device is manageable.

Advantages of Data Parallelism:

• Efficiently utilizes multiple devices to process different parts of the data
simultaneously.

• Offers better scalability when dealing with large datasets.

• Generally simpler to implement and manage compared to model parallelism.

Disadvantages of Data Parallelism:

• May not be suitable for models that are too large to fit into the memory of
a single device.

• Synchronization of model updates can become a bottleneck, especially when
communication bandwidth is limited.

In summary, model parallelism and data parallelism are both important tech-
niques in distributed machine learning, each with its strengths and limitations.
The choice between these approaches depends on factors such as model size, data
size, available computational resources, and communication capabilities of the
devices involved. Some distributed machine learning frameworks, like Tensor-
Flow, offer the flexibility to use a combination of both model parallelism and
data parallelism to achieve the best performance for specific scenarios.

2.3.3 Parameter Averaging
Parameter averaging is conceptually the simplest approach to data parallelism
[37] (illustrated in Figure 2.3. With parameter averaging, training proceeds as
follows:
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Figure 2.3: Basic Operation of Data Parallel SGD

1. Initialize the model parameters randomly based on the model configuration.

2. Share the current parameters with each worker.

3. Each worker processes a portion of the data for training.

4. Update the global parameters by averaging the parameters from all workers.

5. If there is more data to process, return to Step 2.

In distributed machine learning, there are two main paradigms for updating
model parameters across multiple devices or nodes during the training process:
Synchronous update and Asynchronous update [18]. These paradigms are varia-
tions of stochastic gradient descent (SGD) that are used to optimize the model
parameters.

2.3.3.1 Synchronous Update (Synchronous Stochastic Gradient De-
scent)

In synchronous update, all devices or nodes wait for each other to complete
their local gradient computations before synchronizing and updating the model
parameters simultaneously [38]. During each training iteration, all devices
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compute gradients using their local data, and then exchange these gradients with
each other before applying the updates. This means that all devices are in sync
with each other during the training process.

Advantages of Synchronous Update:
Better consistency: Since all devices update the model parameters simultane-
ously, they remain consistent with each other.
Convergence guarantees: Synchronous update ensures that the model converges
to a similar solution across all devices.
Disadvantages of Synchronous Update:
Increased communication overhead: All devices need to communicate at each
iteration, leading to higher communication costs and potential delays.
Straggler effect: The training process can be slowed down if one or more devices
take longer to complete their computations.

2.3.3.2 Asynchronous Update (Asynchronous Stochastic Gradient
Descent)

In asynchronous update, devices update the model parameters independently and
at their own pace without waiting for other devices [38]. Each device computes
gradients using its local data and directly updates the model parameters without
synchronizing with other devices. This approach allows for more flexibility and
does not require strict coordination among devices.
Advantages of Asynchronous Update:
Reduced communication overhead: Devices can update parameters indepen-
dently, leading to lower communication costs and potential speed-ups.
Better utilization of resources: Devices are not idle waiting for others to finish
their computations, leading to better resource utilization.
Disadvantages of Asynchronous Update:
Inconsistent Model States: Since devices update parameters independently, they
may diverge from each other, leading to inconsistency in the model across de-
vices.
Convergence challenges: Asynchronous updates can introduce noise and make
it harder to achieve convergence, especially when the learning rate is not well-
tuned.
The choice between synchronous and asynchronous update depends on various
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factors, including the communication infrastructure, the scale of the distributed
system, and the specific machine learning model being used. Asynchronous up-
dates are often preferred when communication is a bottleneck and devices have
varying computation speeds. However, synchronous updates are used more fre-
quently when consistency and convergence guarantees are critical and communica-
tion overhead is manageable. Some hybrid approaches that combine the benefits
of both paradigms also exist to strike a balance between communication efficiency
and model convergence.

2.3.4 Existing Distributed Machine Learning Frameworks
This section reviews the features of various existing distributed machine learning
frameworks.

2.3.4.1 Apache Spark

Spark is an open-source platform that defines a set of general-purpose APIs for
Big Data processing. The key feature of Spark is its resilient distributed data
sets (RDDs) [39], which can be represented by the nodes in a data processing
graph. The edges represent the corresponding transformations that the RDDs
will undergo. In spirit, the RDD-based programming model is quite similar to
Hadoop Map-Reduce, and supports functional-style manipulations on RDDs via
’transformations’, ’actions’. The difference between Spark and Hadoop lies in that
Spark can cache the intermediate computation results in memory rather than
dumping all results to the disk, which involves much slower disk I/O [40]. Since
Spark can also dump the result to the disk, it is strictly a superset of Hadoop
Map-Reduce, leading to much faster speed, especially after the first iteration.
Spark is based on the data parallelism paradigm [41] with the following features:

• Low latency because of in-memory computation

• Speed: Fast for large scale data processing

• Polyglot: We can write applications in Java, Scala, Python, and R

Spark has two machine learning libraries—Spark MLlib and Spark ML—with
very different APIs but similar algorithms [42]. These machine learning libraries
inherit many of the performance considerations of the RDD and Dataset APIs
they are based on, but also have their own considerations. MLlib is the first of
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the two libraries and is entering a maintenance/bug-fix-only mode. Spark ML is
the newer, scikit-learn inspired, machine learning library and is where new active
development is taking place.

SparkML aims to provide a uniform set of high-level APIs that help users cre-
ate and tune practical machine learning pipelines. Spark ML standardizes APIs
for machine learning algorithms to make it easier to combine multiple algorithms
into a single pipeline, or workflow.

• Distributed Computing:Apache SparkML is built on Apache Spark, a dis-
tributed computing framework. It allows parallel processing of data across
multiple nodes, making it highly scalable and efficient for big data process-
ing.

• MLlib Library: SparkML provides MLlib, a library with various machine
learning algorithms for classification, regression, clustering, and collabora-
tive filtering, among others.

• Ease of Use: SparkML offers a user-friendly API in Scala, Java, Python, and
R, making it accessible to a wide range of developers and data scientists.

• Integration with the Spark Ecosystem: SparkML seamlessly integrates with
other Spark components, such as Spark SQL and Spark Streaming, enabling
end-to-end data processing and analytics.

• In-memory Processing: Apache SparkML leverages in-memory computing,
which enhances performance by reducing data movement between disk and
memory.

2.3.4.2 Microsoft’s DMTK and CNTK

DMTK (Distributed Machine Learning Toolkit) is a platform designed for dis-
tributed machine learning [43]. In recent years, practices have demonstrated
the trend that more training data and larger models tend to generate better ac-
curacies in various applications. However, it remains a challenge for common
machine learning researchers and practitioners to learn big models from the huge
amount of data, because the task usually requires a large number of computation
resources. To tackle this challenge, Microsoft has released DMTK, which con-
tains both algorithmic and system innovations. These innovations make big data
machine learning tasks highly scalable, efficient, and flexible. The algorithms
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released in DMTK are mostly non-deep learning algorithms. For state-of-the-art
deep learning tools, Microsoft has released CNTK (Cognitive Toolkit), which pro-
vides asynchronous parallel training functionalities [44]. CNTK describes neural
networks as a series of computational steps through a directed graph. It allows
the user to easily realize and combine popular model types such as feedforward
deep neural networks (DNNs), convolutional neural networks (CNNs), and re-
current neural networks (RNNs/LSTMs). CNTK implements stochastic gradient
descent (SGD, error backpropagation) learning with automatic differentiation and
parallelization across multiple GPUs and servers.

2.3.4.3 Distributed TensorFlow

Distributed TensorFlow is an extension of the TensorFlow machine learning
framework that enables the training and inference of machine learning models
on multiple devices or across multiple machines [45]. It uses distributed comput-
ing techniques to accelerate the training process and efficiently handle large-scale
datasets [46]. Some key features of distributed tensorflow are:

• Distributed Training: One of the primary features of Distributed Tensor-
Flow is the ability to distribute the training process across multiple devices
or machines. This is achieved through data parallelism or model parallelism,
allowing the model to be trained on different subsets of data or different
parts of the model to be trained on separate devices simultaneously. Param-
eter Servers: In a distributed setting, parameter servers are used to store
and manage the model’s parameters. These servers act as a centralized
storage system for the model variables and are accessed by worker nodes
responsible for the actual training.

• Asynchronous Updates: Distributed TensorFlow supports asynchronous
training, where different worker nodes can update the model’s parameters
independently and asynchronously. This can lead to faster training as the
model can continue training while waiting for updates from other nodes.

• Synchronization: To ensure that the model parameters remain consis-
tent during training, Distributed TensorFlow provides mechanisms for syn-
chronization between the parameter servers and the worker nodes. This
synchronization ensures that the model’s parameters are updated properly
across all nodes.
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• TensorFlow’s Estimator API: TensorFlow provides an Estimator API
that simplifies the process of building distributed models. The Estimator
API abstracts away much of the complexity of distributed training, making
it easier for developers to scale their models to multiple devices or machines.

• Horovod Integration: TensorFlow supports integration with Horovod, an
open source distributed deep learning training framework. Horovod simpli-
fies distributed TensorFlow training and allows seamless scaling of models
to multiple GPUs and machines.

• Fault Tolerance: Distributed TensorFlow incorporates fault tolerance
mechanisms to handle failures in the distributed system. It can recover
from failures and continue training without losing progress.

• TensorBoard for Visualization: TensorBoard, TensorFlow’s visualiza-
tion toolkit, can be used to monitor the training progress of distributed
models. It helps visualize performance metrics, network architectures, and
other essential aspects of the training process.

Distributed TensorFlow is particularly useful for large-scale machine learning
tasks that require significant computational resources, such as training deep neu-
ral networks on massive datasets. By leveraging the capabilities of distributed
computing, it enables faster and more efficient training, ultimately leading to
more powerful and accurate machine learning models.

2.3.4.4 Comparison of existing DML frameworks

The feature-wise comparison of Apache Spark MLlib, Microsoft DMTK, and dis-
tributed TensorFlow machine learning frameworks is given in Table 2.2. Each
framework has its merits and demerits, and the choice of DML framework de-
pends on the specific use case, data scale, and the type of machine learning or
deep learning tasks we intend to tackle. Additionally, factors such as community
support, documentation, and ease of use also influence the choice of a particular
DML framework.

2.4 Federated Learning for IoT Data Processing
The Federated Learning (FL) computing approach is a distributed learning
paradigm that can train a global ML model at the fog computing gateway for
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Table 2.2: Comparison of Existing DML Frameworks
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many connected edge devices without centralizing the data sets [19] [21]. FL can
improve the accuracy of the model in the context when a user does not have
sufficient or related data. Moreover, FL is an apt solution in certain situations
where data processing at the central server is undesirable due to privacy issues.

The design issues involved in federated learning based model training are given
below [47]:

1. Handling of Non-Uniform Data: Federated learning faces challenges when
clients generate non-uniform data due to varying data distributions across
devices. To address this, techniques like weighted averaging can be em-
ployed during model aggregation to give more importance to clients with
larger datasets or more representative data. Additionally, personalized fed-
erated learning approaches can adapt the model for individual clients to
accommodate their specific data distributions.

2. Ensuring Convergence in Non-IID Data Scenario: In scenarios where clients
have nonindependent and nonidentically distributed (Non-IID) data, con-
vergence of the federated model can be challenging. Advanced optimization
techniques, like federated averaging with momentum, can be used to han-
dle the asynchrony in updates and promote convergence even in Non-IID
settings.

3. Energy Efficiency: Energy-efficient federated learning is crucial for resource-
constrained devices. Clients can form clusters to collectively train an ag-
gregated model using their local data and then disseminate it to the central
server. This hierarchical approach reduces energy consumption by limiting
communication overhead while ensuring model accuracy.

4. Dealing with Drop-Out Clients: Federated learning may face issues when
clients drop out during model training. To mitigate this, redundancy can be
introduced by increasing the number of participating clients or implement-
ing fault-tolerant mechanisms. Additionally, client re-joining strategies and
model compression techniques can help maintain convergence speed and
model accuracy.

5. Dealing with Mobility of Clients: In dynamic environments, clients can join
or leave the federated learning process. Adaptive algorithms and dynamic
client selection can handle client mobility. Furthermore, considering both
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client mobility and their available bandwidth is essential to ensure efficient
and effective communication during training.

6. Incentive Mechanisms for Client Participation: To encourage the transpar-
ent participation of clients, an incentive mechanism is required. Clients can
be rewarded for their contributions to model training or for sharing their
data for the federated learning process. Implementing privacy-preserving
techniques can also build trust among clients and promote their willingness
to participate in federated learning.

2.5 Distributed Machine Learning vs. Feder-
ated Learning

Federated Learning and Distributed Machine Learning are both approaches to
train machine learning models across multiple devices or nodes, but they have
some key similarities and differences:
Similarities:

1. Decentralized Training: Both Federated Learning and Distributed Machine
Learning involve training machine learning models in a decentralized man-
ner. Data is kept localized on individual devices or nodes, and model up-
dates are computed and aggregated across multiple devices.

2. Scalability: Both approaches aim to address the scalability challenges of
traditional centralized training. By distributing the computation across
multiple devices, they can handle large datasets and complex models more
efficiently.

3. Privacy Preservation: Both Federated Learning and Distributed Machine
Learning are designed to preserve data privacy. Rather than transmitting
raw data to a central server, the exchange involves model updates or gradi-
ents, preserving the privacy of sensitive data on the devices.

4. Communication Efficiency: Both approaches focus on reducing communica-
tion overhead by exchanging only model updates or gradients, rather than
transmitting the entire dataset, which can be resource intensive.
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Differences:

1. Data Distribution: The primary difference between Federated Learning and
Distributed Machine Learning lies in how data is distributed. In Federated
Learning, data is distributed across multiple devices or clients, often with
different data distributions. In contrast, Distributed Machine Learning typ-
ically assumes a homogeneous distribution of data across the nodes.

2. Aggregation Mechanism: In Federated Learning, model updates from mul-
tiple devices are typically aggregated using methods like federated averag-
ing or secure aggregation to form a global model. In Distributed Machine
Learning, model updates from different nodes are combined using tradi-
tional distributed optimization techniques.

3. Heterogeneity: Federated learning is designed to handle heterogeneity in
terms of data distribution, device capabilities, and network conditions. It
can accommodate devices with varying computational resources and data
characteristics. Distributed Machine Learning often assumes homogeneous
computing resources and data distribution across nodes.

Use Cases: While both approaches can be applied to various domains, Fed-
erated learning is often used in scenarios where data is distributed among many
user devices or edge nodes, such as mobile devices, IoT devices and edge servers.
Distributed Machine Learning is commonly employed in distributed computing
environments with a focus on parallelization and scaling across a cluster or data
center.

In summary, Federated Learning and Distributed Machine Learning are simi-
lar in their decentralized and privacy-preserving nature but differ in the handling
of data distribution, the aggregation mechanism, and the ability to accommodate
heterogeneity. The choice between these approaches depends on the specific use
case and the nature of the distributed data and computing environment.

2.6 Motivation
The rapid proliferation of Internet of Things (IoT) devices has led to an explosion
of sensor-generated data, which has enormous potential for valuable insights and
real-time decision-making. Traditional approaches for processing IoT data often
involve centralized Cloud Computing, which may not be suitable for real-time
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applications and can result in high communication overhead. Fog Computing,
as an extension of Cloud Computing, has emerged as a promising paradigm to
address these challenges by bringing computing closer to the edge devices.

However, existing work for processing IoT data in the fog-centric environment
has not adequately addressed the heterogeneity aspect of data and devices. IoT
data streams can vary significantly in terms of formats, sampling rates, measure-
ment units, and data types, which presents a challenge for effective data fusion
and analysis. Moreover, the IoT devices themselves come with diverse compu-
tational capabilities, ranging from resource-constrained devices to more powerful
edge servers.

The primary problem identified in this research is the lack of comprehensive
solutions that consider the heterogeneity of streaming IoT data and the diverse
computing capabilities in fog-centric IoT applications. Existing work often over-
looks the need for efficient data distribution and resource utilization in the fog
cluster. This leads to suboptimal execution of machine learning tasks, hindering
the potential of Federated Learning in IoT applications.

To address this problem, this research work aims to design and implement a
novel approach that leverages Federated Learning techniques to process hetero-
geneous sensor data in a fog-centric IoT environment. By aggregating computing
resources in the fog cluster, the proposed solution aims to achieve effective re-
source utilization and data distribution among nodes.

2.7 Research Contributions
This thesis contributes mainly to the design of “fog-based Federated Learning
framework that processes heterogeneous streaming sensor data” in a Smart-Home
environment.

• Contribution 1: Fog computing framework that assists the residents of a
smart home environment by processing IoT data locally without sending it
to the cloud.

• Contribution 2: Federated learning based system to distribute load among
nodes in the fog cluster while processing streaming IoT data and maintain-
ing shared parameters globally.
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• Contribution 3: A novel capability-aware federated average algorithm
that takes into account the heterogeneity of devices during FL-based model
training. .

The part of literature review presented in this chapter is published in our
following research publications:

• S. R. Rudraraju, N. K. Suryadevara and A. Negi, Face Recognition in
the Fog Cluster Computing, Proceedings of International Conference on
Signal Processing, Information, Communication & Systems (SPICSCON),
Dhaka, Bangladesh, November 28-30, 2019, IEEE, Pages: 45-48, 2019, doi:
10.1109/SPICSCON48833.2019.9065100. Indexed in: Scopus. Status: Ac-
cepted and Published
URL: https://ieeexplore.ieee.org/abstract/document/9065100

• S. R. Sahith, S. R. Rudraraju, A. Negi and N. K. Suryadevara, Mesh
WSN Data Aggregation and Face Identification in Fog Comput-
ing Framework, Proceedings of 13th International Conference on Sens-
ing Technology, ICST 2019, Sydney, Australia, December 2-4, 2019, IEEE,
Pages: 1-6, 2019, doi: 10.1109/ICST46873.2019.9047708. Indexed in:
DBLP, Scopus. Status: Accepted and Published
URL: https://ieeexplore.ieee.org/abstract/document/9047708

2.8 Summary
In this chapter, a thorough literature review was conducted on the IoT ecosys-
tem, data processing with distributed machine learning, and federated learning.
It highlighted the challenges in processing heterogeneous streaming data in the
IoT environment and identified the gaps in existing research work. The contri-
butions of this study aim to optimize resource utilization to effectively process
heterogeneous streaming data in the IoT environment.
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Chapter 3

Distributed Machine Learning for
IoT Data Processing

In this chapter, research works based on the fog computing framework aimed at
supporting smart-home residents are presented. Additionally, the implementation
aspects related to distributed storage and processing of datasets within the fog
environment are examined. To conclude the chapter, we present insights derived
from the experiments conducted in this research work.

3.1 A Smart-Home Assisted Living Framework
This section presents research works on fog-enabled smart home environments
that help residents and enhance their living experience.

3.1.1 Audio and Lighting Stimulation based System to As-
sist Dementia People

This work introduces an assistive living framework aimed to support elderly indi-
viduals suffering from dementia. The approach uses a novel fog computing based
recognition model that assists elderly people within a smart home environment to
quickly recall and identify familiar visitors and household items. When a known
visitor arrives the house, relevant audio and lighting stimuli associated with the
visitor are given using smart speakers and hue lights. This leverages the principles
of music and light therapy to trigger associative recall for the dementia people to
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recognize the visitors quickly. Similarly, tailored auditory and lighting cues are
employed to assist individuals in accurately recognizing domestic objects. The
visitor is recognized using the Local Binary Point Histogram (LBPH) Classifier
model [48] from OpenCV [49]. The system recognizes 85% of known visitors, and
realizes the benefits of music and lighting therapy for everyday living.

3.1.1.1 Basic Concepts

Dementia is a persistent condition characterized by a gradual decline in cognitive
functions, primarily affecting the elderly population. It has already impacted
an estimated 50 million individuals globally and is projected to affect around 152
million people by the year 2050, as indicated in a study by [50]. One of the promi-
nent symptoms of dementia is the loss of memory related to object placement,
recent events, and even the recognition of individuals. In dementia care centers,
sensory stimulation has gained recognition as a therapeutic approach, encompass-
ing the activation of various senses such as sight, smell, hearing, touch, and taste
as mentioned in [51]. Different forms of sensory stimulation offer unique advan-
tages, with music and light therapy emerging as particularly effective methods,
as discussed below.

Studies indicate that colors have a notable impact on memory, acting as a po-
tent information channel for the human cognitive system and augmenting memory
function [52][53]. Audio stimulation also proves to be effective in improving mood,
relaxation, and cognition [54]. Music, in particular, aids people with dementia
in recalling their past experiences and mitigating feelings of anxiety and tension.
The combined impact of music and light therapy helps people with dementia to
recognize their surroundings more effectively and maintain their sense of identity.

The evolution of Internet of Things (IoT) technology has transformed the
design of smart homes, making it a prominent research area. Smart home en-
vironments tailored for healthcare play a vital role in assisting older or disabled
individuals to live independently. Modeling a smart home involves three core
tasks: sensing, reasoning, and acting, as detailed in [55]. The sheer volume of
data and the computational capabilities of devices situated between the cloud and
data sources have given rise to the concept of fog computing. Unlike traditional
cloud-centric approaches, fog computing involves distributing a portion of the
computation closer to the data source. This paradigm offers several advantages,
including faster response times, enhanced data security and privacy, and reduced
bandwidth consumption, as highlighted in [6] and [11].
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This work introduces a framework for an audio and lighting stimulation pro-
gram tailored to the elderly within a smart home environment, employing the
fog computing model. The model is trained to recognize familiar individuals
and the classification process is conducted by fog devices. This approach yields
quicker response times compared to conducting the training and classification in
the cloud. When the model detects and classifies any person or object from the
trained dataset, it activates audio and lighting stimulation. This, in turn, stimu-
lates the associative recall mechanism, assisting the elderly in better identifying
the person or object.

3.1.1.2 System Description

Figure 2.1 illustrates the general structure of our smart home environment based
on fog computing. In the lower tier of this architecture, the sensor node gath-
ers data from various sensors, conducts some initial processing, and establishes
communication with other nodes in the network. Normally, all these sensor nodes
establish communication with a gateway device, which has greater processing and
storage capabilities in comparison to the sensor nodes.

The selection of communication protocols, such as Zigbee, Wi-Fi, Z-Wave, and
others, is contingent on the particular gateway device and sensor nodes chosen
according to the application’s demands. The edge gateway accumulates data from
diverse sensor nodes, which is subsequently refined by fog devices to align with
the precise application requirements.

• OpenCV and Fog Node: Open Source Computer Vision (OpenCV) Li-
brary is a free library equipped with a range of built-in functions for im-
plementing computer vision and machine learning algorithms [49]. These
algorithms find applications in tasks like object identification and face de-
tection, among others. In our setup, we employ the OpenCV Haar Cascade
Classifier to identify facial features within images, while the LBPH algo-
rithm is utilized for the visitor classification machine learning model. This
model is trained on the fog node. The fog node then regulates the suitable
audio-visual cues to aid residents with dementia in promptly recognizing
visitors.

• Audio-Lighting Stimuli and Sensing Units: In the smart home envi-
ronment, two distinct types of sensing units, also referred to as sensor nodes,
are employed to efficiently manage data. Sensor unit type #1 is used to find
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movement at the entrance of the house and capture visitor picture through
the camera sensor. This image is then transmitted to the fog node for visitor
identification. Sensor unit type #2 is associated with specific house-hold
objects to determine the resident’s interaction with them, enabling the pro-
vision of suitable audio and lighting cues. Furthermore, this unit can also
identify the resident’s location, indicating the room they are in, and relay
this information to the fog node when a visitor arrives. This ensures that
the relevant audio and lighting cues for the visitor are exclusively activated
in that specific room.

• Hue Lights and openHAB: The open Home Automation Bus (open-
HAB) serves as a home automation platform with the capability to interface
with a diverse array of devices and systems [56]. openHAB establishes elec-
tronic communication with devices within the smart home ecosystem and
executes actions as per user-defined configurations. Within our smart home
setup, openHAB wirelessly governs various parameters of hue lights, includ-
ing color, brightness, and saturation. Figure 3.1 illustrates the functioning
of the system implemented through our proposed framework.

3.1.1.3 Implementation Details

Experimental Setup: The implementation employed Raspberry Pi computing
devices along with a diverse set of sensors and actuators, including PIR Sensors
[57], RPi Camera [58], Philips Hue Lights [59], and Smart Speakers. Figure 3.2(a)
illustrates the arrangement of various sensor nodes, fog devices, and the gateway
in our experimental setup. In this configuration, two Raspberry Pi units were
designated for the roles of the fog node and the gateway. The sensor nodes use
Wi-Fi for communication among them.

The initial step involves training the visitor classification machine learning
model using OpenCV on fog device, which utilizes a set of images featuring fa-
miliar individuals. Sensor unit type#1 is responsible for linking the RPi camera
sensor with the PIR motion sensor through the RPi module. Positioned near the
house’s entrance, as depicted in Figure 3.2(a), sensor unit type#1 detects any
motion using the PIR sensor, subsequently activating the camera sensor. Cap-
tured images are stored within the local database of sensor unit type#1. The
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Figure 3.1: Basic Operation of the Proposed Stimulation System
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Figure 3.2: (a)Placement of Different Devices and Sensor Nodes (1: Sensor Unit
Type#1, 2: Sensor Unit Type#2, 3: Gateway, 4: Fog Device) (b) RPi Connecting
Camera and PIR Sensors, One Hue Light used in the Smart Home

fog node, equipped with its local database, retrieves these images for classifica-
tion through database synchronization. For visitor classification, we utilized the
LBPH classifier model from OpenCV.

The fog node is designed to activate the relevant audio and lighting cues within
the room where the dementia person is located when a visitor arrives. As depicted
in Figure 3.2(a), we have deployed three units of sensor type #2, each comprising
a hue light, a speaker for playing music, and a PIR sensor, strategically positioned
in the kitchen, bedroom, and living room. A PIR sensor is linked to a specific
domestic object in each of these rooms (e.g., the sofa set in the living room, the
bed in the bedroom, and the oven in the kitchen).

This PIR sensor serves a dual purpose: firstly, it detects the resident’s prox-
imity to the associated object, and secondly, it identifies the resident’s location
(the room) when a visitor arrives. Through the gateway device, the fog node then
activates the relevant audio and lighting stimuli on the speaker and hue light lo-
cated in the respective room whenever a visitor arrives. Figure 3.2(b) shows the
sensing node at the entrance and one of the Philips hue lights used in our smart
home setup.

3.1.1.4 Experimental Results

The visitor classification model, trained with 200 images of five known individuals,
achieves an 85% accuracy rate in just 48 seconds. When any of these five people
visits, the model identifies them based on training data. For demonstration, we
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Figure 3.3: Visitor identification by fog node

Figure 3.4: Portion of PhilipsHueLight table which stores hue light stimuli infor-
mation

connected a display device to the fog node, showing the visitor’s photo and label
(as shown in Figure 3.3).

The implemented system was used continuously for a month, collecting sensor
data, audio and lighting cue information, and storing in the database to verify
the system functionality. Figure 3.4 shows a snapshot of the database table,
that stores the hue light values. Table 3.1 displays the results of the classifier
algorithm for one specific day. Out of the five individuals trained, the classifier
correctly identified four, based on camera images captured by sensing unit type
#1. However, it made an incorrect classification, mistaking person 1 for person
4 at the timestamp 2018-12-03 19:15:32.

Table 3.2 depicts the audio and lighting cues provided to sensing unit type#2
when the system identifies visitors and detects the resident’s proximity to specific
domestic objects. The system correctly administered audio and lighting stimula-
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Table 3.1: Visitor classification based on images taken by sensing unit type#1

tion for four individuals (2, 3, 4, 5). However, due to a wrong classification by the
fog node, it failed to provide the correct stimulation for person 1, inadvertently
triggering stimulation meant for person 4 when person 1 visited.

Additionally, during person 3’s second visit, though accurately recognized
by the fog gateway, the PIR motion sensors incorrectly identified the resident’s
location as the living room. Consequently, audio and lighting stimuli intended
for person 3 was mistakenly delivered in the living room instead of bedroom.
Nevertheless, the system effectively triggered audio and lighting stimuli for the
sofa set, and bed when the dementia patient approached these objects.

Figure 3.5 displays an example of the configuration panel within openHAB,
offering insights into various elements within our experimental arrangement. We
can observe the changes in lighting stimuli for different visitors and objects in
Figure 3.6. These outcomes affirm the proper functioning of the communication
system among various components and demonstrate the utility of the proposed
system in delivering appropriate audio and lighting stimulation based on the
context.

In summary, fog computing expands on the principles of cloud computing,
shifting data processing closer to the network edge. This makes it particularly
well-suited for IoT applications that demand rapid response times. This research
work (outlined in Section 3.1.1) introduced a fog computing framework for an
audio and lighting stimulation program tailored to the dementia people in a smart
home setting. The visitor classification model, trained and deployed on fog node,
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Table 3.2: Audio and lighting stimuli for different visitors and objects

(C: Color, S: Saturation, B: Brightness)

Figure 3.5: openHAB configuration panel instance
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Figure 3.6: Visual stimuli given to dementia person for person 4, person 5, and
for sofa set

classifies the visitors and enables triggering of appropriate stimuli to assist the
dementia person.

3.1.2 Vistor Identification using Eigenfaces in Fog Com-
puting

The research work on audio and lighting stimulated-based systems to assist de-
mentia people, using Eigenfaces for visitor identification [60], is presented in this
section. This work is similar to the research work presented in Section 3.1.1 in
terms of providing audio and lighting stimulation, but differs in the way visitor
classification is done.

3.1.2.1 Eigenfaces method for face recognition

Eigenfaces method is based on principal component analysis (PCA) [61]. An
objective of PCA is to replace correlated vectors of large dimensions with uncor-
related vectors of smaller dimensions. Eigenfaces method consists of extracting
the characteristic features of the face and representing it as a linear combination
of eigenfaces obtained from the feature extraction process.

Let there be N face images in the training set and let the dimension of each
image be m×n×3 (the third dimension is for RGB channels).

• Convert each image in the training set into vector of length (m × n × 3)
elements i.e. (m × n × 3) × 1 dimension. A training set of (m × n × 3) × N

dimensions is created.

38



3.1 A Smart-Home Assisted Living Framework

• Find the mean vector ((m × n × 3) × 1 dimension) of all training image
vectors and subtract it from all training image vectors. Let the matrix
be A (whose dimension is (m × n × 3) × N). The covariance matrix C is
obtained by multiplying A and its transpose.

• Perform PCA to obtain principal components of the dataset calculated from
the eigen vectors of the covariance matrix. Eigenfaces are obtained by
reshaping these eigen vectors into images of dimension m×n×3.

• The images in the training set are projected into eigenface space to
represent the image in smaller subspace. The weight vector Wi for the
image i in the training set (representation of image in smaller subspace) is
obtained from k number of eigen vectors as follows (equation 3.1:

Wi = [Wi1,Wi2, ...,Wik] (3.1)

Where,
Wij = ((image vector i)-(mean vector)).(eigen vector j), for j = 1 . . .k

3.1.2.2 Basic Operation of the Proposed System

Initially, during the enrollment, principal component analysis is performed on the
training images of various persons to obtain eigen vectors. The weight vectors
for training images can be obtained using these eigen vectors. These weight
vectors are used by the fog node for classification of visitor face image. The basic
operation of the proposed system is shown in Figure 3.7. The camera module,
attached to the edge sensor node at the entrance of the house, captures the visitor
image whenever any motion is detected. The frontal face haar cascade classifier
is used to detect the face portion of the captured visitor image [62][63]. Eigen
vectors are used to calculate the weight vector for the image of the face portion
extracted from the visitor. The edge node sends this weight vector to the fog
node for classifying the visitor.

The fog node classifies the visitor by calculating the distance between the
visitor’s face image weight vector and training images weight vectors. The visitor
is classified as the person whose training image weight vector gives the least
distance with the visitor image weight vector, and this difference is less than
some threshold value (θ). If this lowest difference is greater than θ, then the
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visitor is classified as an unknown person. There is no standard formula for
setting this threshold value. One approach is to find the minimum distance of
each image with all images in the training set and store that minimum distance
in a vector V [64]. Then, threshold can be set using the following formula (given
in equation 3.2):

Threshold(θ) = 0.8∗max(V ) (3.2)

3.1.2.3 Implementation Details

The deployment of various sensor nodes in our experimental setup is shown in
Figure 3.2(a). The sensor node at the entrance of the house comprises of raspberry
pi integrated with pi camera and passive infrared (PIR) motion sensor. The
arrival of the visitor is identified by detecting motion using PIR motion sensor,
and photograph of the visitor is captured using pi camera. The facial portion of
the visitor is extracted from the captured visitor image using frontal face haar
cascade classifier. The weight vector for the visitor face image is computed on
edge gateway node, as explained in Section 3.1.2.1. This weight vector is sent to
the fog gateway node, which is a raspberry pi unit in our experiment, for visitor
classification. The dotted line in the Figure 3.7 indicates the separation between
edge node and fog node processing. The sensor nodes (labeled 2 in Figure 3.2
(a)) placed in the kitchen, living room, and bedroom are integrated with the
PIR sensor, and each room consisted of Philips hue light and a smart speaker to
trigger audio and lighting stimulation.

We considered 200 training facial images of 5 different people (40 images for
each person with different lighting conditions and facial expressions). Figure
3.8(a) shows a sample set of face images for five different people from the training
set. Figure 3.8 (b) shows a sample set of five facial images of a single person
with different facial expressions. We have considered 100x100 color images in our
training set.

Experimental Results: Each image in the training set is converted into a
vector of length of 30,000 elements (that is, 100x100x3). In our experimentation,
a training set of 30000x200 dimensions is created. Figure 3.9 shows a vector
representation of five test images from the training set of 200 images. Here, each
row represents one image (vector with 30000 elements). The program represents
the pixel values in the range [0-1] by diving the original value by 255. The five
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Figure 3.7: Flowchart indicating the basic operation of the proposed system
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Figure 3.8: (a) Sample set of face images for five different persons (b) Sample set
of face images of a single person with different facial expressions

rows indicate the image vectors for five test images. PCACompute() function in
OpenCV is used to obtain the mean vector and eigen vectors from the training
data set, and each of these vectors would have 30000 elements. We have chosen
generation of 8 eigen vectors in our experimentation. The mean or average face is
obtained from the mean vector by transforming it back into a 100x100x3 image.
Similarly, the eigen faces can be obtained from eigen vectors by reshaping them
into 100x100x3 images. The average face obtained from the test image data set
is shown in Figure 3.10(a). The weight vectors are generated by the program, as
explained in Section 3.1.2.1. for all the face images in the training set. Figure
3.11 shows the weight vectors generated for five sample images in the training
set. The training of the eigenfaces-based face recognition model took 56 seconds
of time, producing 82% accuracy.

Figure 3.10(b) shows the image captured by the edge node, when one of the
five visitors arrives home. The edge node extracts the facial portion using the
Haar cascade classifier, as shown in Figure 3.10(c). The weight vector (W) for
the visitor face image is computed on the edge node using the eigen faces and
average face of training images and sent to the fog node for classification. The
Euclidean distance between W and each of the weight vectors for the training
images (shown in Figure 3.8(a)) is given in Figure 3.12(b). The distance between
the weight vector of the visitor face image (W) and the weight vector of the test
image 3 is the least among all test images, and hence the system classifies the
visitor as Person 3 and gives the audio and lighting stimulation corresponding to
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Figure 3.9: Vector representation of five test images

Figure 3.10: (a) Average face (b) Test image for classification (c) Detection of
face in the test image

Person 3.
In summary, this research work presented an Eigenfaces-based visitor identifi-

cation system to assist the dementia person in a smart-home environment. LBPH
method for face recognition is relatively less computationally intensive when com-
pared to the eigenfaces method and yields better performance. LBPH algorithm
is robust to lighting conditions and expressions, compared to Eigenfaces, and is
suitable for real-world scenarios with simple computation.

Figure 3.11: Weight Vectors
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Figure 3.12: (a) Weight vector (W) for the visitor face image (b) Euclidean
distance between W and each of the weight vectors for training images

3.1.3 Face Mask Detection at the Fog Computing Gate-
way

This work proposes a fog computing-based face mask detection system to control
the entry of a person into a facility. The proposed system uses fog nodes to pro-
cess the video streams captured at various entrances into a facility. Haar-cascade
classifiers are used to detect face portions in the video frames. Each fog node
deploys two MobileNet models, where the first model deals with the dichotomy
between mask and no-mask case. The second model deals with the dichotomy
between proper mask wear and improper mask wear and is applied only if the
first model detects mask in the facial image. This two-level classification allows
people to enter a facility, only if they wear the mask properly. The proposed
system offers performance benefits, such as improved response time and band-
width consumption, as the processing of video stream is done locally at each fog
gateway without relying on the Internet.

3.1.3.1 System Description

The proposed system employs an RPi fog node integrated with the Raspberry Pi
camera and relay sensor at each entrance where entry control is required. The fog
nodes are connected to the same Wi-Fi network. The basic architecture of the
proposed system is shown in Figure 3.13. The frames in the video stream captured
by Pi Camera are processed by the fog node. Whenever any face(s) is detected in
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Figure 3.13: The basic architecture of the proposed system

the frame, the face mask detection model tries to identify whether the person(s)
is wearing the mask or not. The RPi module sends a control signal to the relay to
open the door, if the person wears the mask properly. The decision to open the
door or not is taken completely on the fog node, and the event information can
be sent to the Cloud optionally for further storage and processing. The proposed
system uses the frontal face haar cascade classifier from OpenCV to detect faces
in video frames. MobileNetV2 model is used in our experiment using Keras API,
as it is a lightweight convolutional NN that reduces the inference cost on mobile
and embedded devices [65].

3.1.3.2 Basic Operation of the Proposed System

The proposed system employs two MobileNetV2 models to classify whether a
person is wearing the mask properly or not. The first model is a binary classifier
that is trained using two classes of images – mask and no mask. The mask class
contains facial images of people wearing a mask (including proper and improper
mask wear). The second model is a binary classifier that is trained using images
of proper mask wear and improper mask wear images. The mask is said to
be properly put on if the nostrils and mouth are covered. If a nostril or mouth is
detected even when the person wears a mask, the instance is classified as improper
mask wear, and entry should be restricted. In our experimental setup, these two
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Figure 3.14: The basic operation of the proposed system

models are trained on a single RPi fog node and deployed in all fog gateways for
inference purposes. The rationale behind choosing two binary classifiers instead
of a single three-class classifier is to improve classification accuracy, especially
between proper and improper mask wear classes. The choice provides a trade-off
between classification accuracy and throughput.
Each fog node processes the video frames captured by Pi Camera and uses Frontal
Face Haar Cascade classifier to detect the faces in those frames. When one or
more faces are detected in a frame, level one binary classifier (mask vs. no mask)
is applied on each face region of interest (ROI) in the video frame. If the person
wears the mask, then level two classifier (proper vs. improper mask wear) is
applied to identify whether the person is wearing the mask properly or not. This
two-level classification restricts the entry of people with improper mask wear into
the facility. The basic operation of the proposed system is shown in Figure 3.14.

3.1.3.3 Implementation Details

The system provides a proof-of-concept for face mask detection using fog comput-
ing gateway. The processing of the video frames is done at the source of the video
capture. In reality, the frames in the video stream could be sent and processed
using the resources in the fog gateway.

• Face Mask Detection Model Training:
Datasets used for Model Training: As discussed in Section 3.1.3.1,
the proposed system uses two binary classifiers based on the MobileNetV2
model. Classifier-1 (model-1) is trained using dataset-1 with a total of 770
facial images divided into two classes: with mask and without mask. The
with mask class included images of faces with and without proper face
mask wear. Classifier-2 is built using dataset-2 with a total of 500 facial
images divided into two classes: proper mask wear and improper mask
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wear. The average size of training images is around 5KB (image dimensions
250x160 with 96 dpi). Figure 3.15 and Figure 3.16 show a sample set of
facial images from dataset-1 and dataset-2 respectively. Although there
are few face mask datasets available online [66], we have prepared our own
dataset as existing face mask datasets lack images for improper mask wear
class.
Training the mask detection models: The various steps followed to
train mask classification models are given below:
Step 1. Load images from the data set using the load img() function from
the Keras API. The loaded images are resized to a 224x224 format.
Step 2. The loaded images are normalized using the preprocess input()
function. The data (facial image) and label lists are updated with images
in the dataset.
Step 3. Convert the data and labels to numpy arrays. One-hot encoding
is performed on the labels to represent them as binary vectors.
Step 4. The data set is partitioned into training (80%) and testing (20%)
sets using train test split() function.
Step 5. Instantiate MobileNetV2 model trained with ImageNet dataset.
Load the model that does not include the classification layers at the top.
Transfer learning is used in our experimental setup to transfer knowledge
from the ImageNet dataset domain to our facial dataset domain [67].
Step 6. The weights of all the layers in the convolutional base are frozen
to prevent updates during training. We added the classifier to this base
model and trained the top-level classifier.
Step 7. The model is compiled using the Adam optimizer and the binary
cross-entropy loss function.
Step 8. The model is trained and serialized to disk for use during the
inference process.

• Classification of Facial Images:
RPi 4 device integrated with Pi Camera is used as a fog node at each en-
trance to capture the video stream. The Pi Camera has 5MP resolution and
can record 1080p videos at 30 frames per second. The face mask detection
models trained in the previous step are loaded into each fog node for infer-
ence. The following are the various steps performed during the inference
process on each video frame:
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Figure 3.15: Sample set of fa-
cial images used for Model-1 train-
ing (a) With mask (b) Without the
mask

Figure 3.16: Sample set of fa-
cial images used for Model-2 train-
ing (a) With proper mask wear (b)
Without proper mask wear

Step 1. Identification of face ROI in the frame using the OpenCV frontal
face haar cascade classifier.
Step 2. If more than one face is detected in the frame, for each face do the
following:

– Resize the face image to 224x224 RGB image.
– Convert the image to a numpy array and preprocess it.
– Predict the output class (mask vs. no mask) of the image using the

MobileNetV2 model-1 loaded on the node.
– If the prediction class on the image is a mask, then model-2 is used for

further classification.
– If the prediction class in model-2 is ’proper mask wear’, then the fog

node controls the relay to open the door. Otherwise, the entry is
restricted.

Figure 3.17 shows the screenshots of the outcome of the face mask detection
model for the proper and improper mask wear cases.

3.1.3.4 Results and Discussion

The face mask detection models (model-1 and model-2) are trained using different
learning rates (LR) 0.001 and 0.0001 with two different numbers of epochs 10
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Figure 3.17: Face mask detection model prediction when (a) the person wears
the mask properly (b) the person wears the mask improperly

and 20. The model-1 and model-2 training tasks have taken 34 and 20 minutes,
respectively (with LR = 0.001 and #Epochs = 20) on RPi 4. The face detection
and inference tasks for the given video frame have taken 0.3 seconds and 3.4
seconds, respectively, on average. Table 3.3 and Table 3.4 present the accuracy
and loss values during the training and validation phases of model-1 and model-2,
respectively (with LR = 0.001 and #Epochs = 20).

From the results in Table 3.3 and Table 3.4, we can observe that training,
validation accuracy and loss values are improving during the models’ training.
After a few epochs (epoch #15 for model-1 training and epoch #10 for model-2
training approximately), we get fluctuations in the accuracy and loss values. The
variations in the accuracy and loss values are due to model overfitting with more
number of epochs. Overfitting of the model could occur with the selection of
small data sets to train the model. As the RPi device is resource-constrained, we
have chosen small datasets of facial images for model training. One solution to
address this problem is early stopping using a callback mechanism.

While training model-1 on the Raspberry Pi node using dataset with 770 im-
ages, a warning message is received with respect to the allocation of memory
exceeding 10% of the system memory. If we want to train the model with a
large dataset to avoid model overfitting, we can train it on a high-end machine
and deploy the model on the fog node for inference. Alternatively, we can dis-
tribute the model training to several nodes in the fog cluster. Figure 3.18 presents
performance metrics related to model-1 and model-2 training.
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Table 3.3: Accuracy and Loss Values during Model-1 Training

Epoch Train Loss Train Acc Val Loss Val Acc
1 0.64 0.69 0.49 0.71
2 0.39 0.82 0.39 0.82
3 0.36 0.88 0.48 0.74
4 0.35 0.88 0.47 0.74
5 0.32 0.89 0.45 0.75
6 0.24 0.9 0.47 0.74
7 0.22 0.91 0.46 0.78
8 0.21 0.92 0.44 0.79
9 0.21 0.91 0.43 0.79

10 0.19 0.93 0.44 0.78
11 0.19 0.92 0.41 0.8
12 0.18 0.93 0.34 0.82
13 0.17 0.94 0.4 0.78
14 0.17 0.93 0.35 0.83
15 0.17 0.94 0.42 0.81
16 0.18 0.93 0.47 0.77
17 0.17 0.93 0.56 0.75
18 0.16 0.94 0.57 0.74
19 0.17 0.93 0.54 0.76
20 0.16 0.94 0.55 0.75

Figure 3.18: Performance metrics related to Model-1 and Model-2 training
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Table 3.4: Accuracy and Loss Values during Model-2 Training

Epoch Train Loss Train Acc Val Loss Val Acc
1 0.71 0.66 0.44 0.77
2 0.5 0.72 0.34 0.79
3 0.42 0.79 0.32 0.8
4 0.39 0.8 0.28 0.85
5 0.35 0.88 0.29 0.84
6 0.32 0.89 0.29 0.9
7 0.22 0.91 0.27 0.88
8 0.22 0.9 0.26 0.9
9 0.2 0.92 0.24 0.91

10 0.29 0.85 0.25 0.9
11 0.28 0.89 0.28 0.88
12 0.25 0.9 0.29 0.88
13 0.24 0.92 0.3 0.85
14 0.25 0.9 0.32 0.84
15 0.22 0.92 0.35 0.82
16 0.21 0.92 0.38 0.78
17 0.22 0.93 0.39 0.76
18 0.21 0.91 0.38 0.77
19 0.19 0.92 0.37 0.8
20 0.19 0.92 0.38 0.78
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In summary, the research work in this Section 3.1.3 presented a proof-of-
concept fog computing-based face mask detection system for automatic entry
and access control into a facility. The fog gateway processes the video stream
captured at the entrance to recognize whether a person is wearing a mask or not.
Two MobileNet models are deployed in each fog node located at each entrance to
the facility. The first model deals with the dichotomy between mask and no mask
case. The fog node uses the second model to detect whether the person wears
the mask properly or not, in case the first model detects the person wearing the
mask. The proposed system allows entry into the facility, only if the person wears
the mask properly. The results of the classification are encouraging with a model
accuracy value around 90%.

As the processing of video stream is done locally at each fog node, the proposed
system offers performance benefits such as improved response time and bandwidth
consumption. The proposed system could be integrated with Cloud, optionally,
for further storage and processing of video stream. In the future, the system
could be extended to distribute model training among several fog nodes in the
network.

3.1.4 Face Recognition in the Fog Cluster Computing
This work proposed a cluster computing-based facial recognition system in a
fog computing environment under the Internet of Things theme. The proposed
system uses Haar Cascades to detect faces in a test image and uses the Local
Binary Pattern Histogram algorithm to recognize them in parallel by making
use of the computing power of several Raspberry Pi nodes in the cluster. The
cluster uses Simple Linux Utility for Resource Management scheduler to schedule
various jobs among the nodes and the Message Passing Interface to facilitate
communication among various processes running in the cluster. The system uses
the aggregated computation of the cluster. The facial recognition tasks were
executed in parallel to obtain better performance in terms of execution time.
The proposed system can be extended to detect and recognize multiple objects
in an image, which has several benefits in other applications.

3.1.4.1 System Description

The proposed system contains a cluster of four Raspberry Pi nodes that are
connected to the same Wi-Fi network, as shown in Figure 3.19. Out of four nodes,
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Figure 3.19: Experimental setup of Raspberry Pi cluster

one node acts as a master node and the other three nodes act as worker/compute
nodes. Various software used in the system design are listed below:

• Simple Linux Utility for Resource Management (SLURM) sched-
uler: SLURM is a free and open-source cluster management and job
scheduling system for Linux clusters [68]. SLURM performs various func-
tions like allocating access to resources to users, provides a framework for
monitoring the work, and arbitrates contention for resources by the pend-
ing jobs. The proposed system uses the SLURM scheduler to manage the
jobs in the cluster. It runs as a daemon process on the master node that
executes the parallel job on the set of nodes in the cluster.

• OpenMPI: Message Passing Interface (MPI) facilitates communication
among various processes running in the cluster [69]. Several MPI APIs
like OpenMPI, MPICH, Intel MPI etc. are available in market. OpenMPI,
MPICH, are freely available, and Intel MPI comes with a license. The
proposed system uses OpenMPI functions MPI Send() and MPI Recv() for
communication among processes.

• OpenCV: The proposed system uses the frontal face haar cascade classifier
and LBPH algorithm (from the OpenCV library) to detect and recognize
faces in the captured image.

Basic Operation of the Proposed System: Initially the face recognition
model is trained using training data of multiple facial images of several persons.
This trained model is used by the nodes in the cluster to classify the person.
When a test image that contains multiple human faces is given to the master
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node for classification, the node detects the coordinates of the faces and sends
these coordinates to different nodes in the cluster for parallel classification. Each
worker node, upon receiving the facial coordinates, classifies that face in the test
image using the pre-trained model shared with all the nodes in the cluster. In this
way, the performance of the multifacial classification task can be improved using
the computing power of several nodes in the cluster compared to the classification
using a single node.

Algorithm 3.1 Multi Facial Classification Serial(testImage)
Result: Class Labels
Load the LBPH Classifier model
Find the facial coordinates in the test image using Haar Classifier
for each face in the list of faces do

Pass the face coordinates to the Classifier model
Display the label

end for

Algorithm 3.1 and Algorithm 3.2 shows the high-level logic of the multi-facial
classification task using serial and parallel versions. In Algorithm 3.2, when ‘n’
number of processes are spawned, the rank of those processes will be 0,1,. . . ,(n-1).
These processes will be scheduled at different nodes in the cluster by the SLURM
scheduler.

3.1.4.2 Implementation Details

Setting up the Raspberry Pi Cluster:
Raspberry Pi cluster is set up with four nodes (Raspberry Pi 3 B+ model) in our
experimentation [70][71]. The nodes in the cluster are given hostnames (node1,
node2, node3, and node4) by editing the information in the /etc/hosts file, as
SLURM scheduler uses these names. A shared folder is created on the master
node by using Network File System (NFS) and mounted onto the worker nodes,
as the nodes in the cluster need access to the same files. SLURM controller
packages are installed on the master node and the controlled information is
edited in the slurm.conf file to add the worker/compute nodes to the cluster.
The compute nodes in the cluster are configured by installing the SLURM client.
OpenMPI is installed on the nodes in the cluster to facilitate communication
among various processes running on them. The Python package mpi4py is
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Algorithm 3.2 Multi Facial Classification Parallel(testImage)
Result: Class Labels
Load the LBPH Classifier model
Find the rank of the process
if myRank = 0 then

Find the facial coordinates in the test image using Haar Classifier
i = 1
for each face in the list of faces do

data = coordinates of the face
MPI Send(data, node=i)
i = i+1

end for
else

MPI Recv(data, node=0)
Classify the face using classifier model
Display the label

end if

installed to interface with OpenMPI in Python.

Training the Face Recognition model:
As discussed in Section 3.1.4.1, LBPH algorithm is used by the master node to
train the face recognition model using the images of ten different persons (class
labels [0-9]). Each class contains around fifty images of one person. The training
method takes the list of extracted face portions (in gray scale) of training images
and their corresponding label, and returns the trained model in the YAML file
format. This model is saved by the master node in the shared folder, so that all
worker nodes can access it for subsequent classification of test images. Figure
3.20(a) shows a sample set of face images for five different persons from the
training set of 10 different persons. The class labels for these images are [0-4],
respectively. Figure 3.20 (b) shows a sample set of five face images of a single
person with different facial expressions.
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Figure 3.20: (a) Sample set of face images for five different persons (b) Sample
set of face images of a single person with different facial expressions

Figure 3.21: Test image of two different persons with class label two and one

3.1.4.3 Results and Discussion

As discussed in Section 3.1.4.2, the face recognition model is trained using 485
images of 10 different persons. The average size of training images is around 5KB
(image dimensions 250x160 with 96 dpi). The training process has taken around
150 seconds to build the model. After the model is built, it is used by all nodes
in the cluster for facial classification.

The developed system is tested by giving multi-facial images as input. The
proposed system performs better when compared to classifying the same multi-
facial image using serial execution. Figure 3.21 shows one of the input test images
given to the system (persons with class labels two and one). The output screen-
shots of the classification program using serial version (Algorithm 3.1) and parallel
version (Algorithm 3.2 using MPI) are shown in Figure 3.22 and Figure 3.23 re-
spectively. As can be seen in Figure 3.22 and Figure 3.23, the serial version of
the classification program (on a single node) to classify the test image with two
persons has taken 13 seconds and the parallel version (the proposed system using
MPI on the cluster of four nodes) to classify the same has taken 9 seconds. The
proposed system can gain performance benefits compared to the serial version
when the test image contains more faces for classification.

The processing times of several tasks like training, face detection are shown
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Figure 3.22: Output screenshot of serial version of classification program

Figure 3.23: Output screenshot of parallel version of classification program

in Table 3.5. The face recognition model training process with 485 images took
144 seconds with a Raspberry Pi. The time taken for face detection is around 6
seconds. The variation in the processing time of face detection is not high with
different number of faces in the test image. The time taken for the classification
of various test images is shown in Table 3.6. Algorithm 3.2 gains performance
benefits compared to Algorithm 3.1, when the test image contains multiple faces.
For the test image with only one face, Algorithm 3.2 may not perform well com-
pared to Algorithm 3.1, due to involvement of MPI message exchanges between
processes with ranks 0 and 1.

Table 3.5: Processing Times of Training and Face Detection Tasks

Task #images Processing time (in Seconds)
Training 485 144

Face detection 1 6
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Table 3.6: Performance Comparison of Algorithms - Serial and Parallel Version

Test image with
number of faces

Time taken for execution (in seconds)
Algorithm (Serial Version) Algorithm (Parallel Version)

1 8 9
2 13 9
3 16 10

3.2 Distributed Data Processing using Cluster
Management

This section presents research work related to the distributed storage and process-
ing of data sets in the fog computing cluster environment. The fog environmental
setup consists of resource-constrained devices with minimal computational and
storage capabilities. A fog computing framework augmented with cluster man-
agement can take the limitations of resource-constrained devices for effective big
data processing. The implementation details of the fog computing framework us-
ing Apache Spark for Big Data applications in a resource-constrained environment
are given. The results related to big data processing, modeling, and prediction
in a resource-constraint fog computing framework are presented by considering
the evaluation of case studies using the e-Commerce customer dataset and Bank
loan credit risk datasets. Two case studies portraying how the proposed thought
works are described for big data applications using a fog cluster.

3.2.1 Distributed Data Processing
Figure 3.24 depicts the taxonomy of distributed data processing considered in
this subsection. Cluster computing supports parallel processing of a large task
by making use of several computational nodes in the cluster [72] [73]. Utility
computing provides computing resources to the customer based on demand and
uses the pay-per-use billing method [74]. Peer-to-Peer (P2P) network consists of
nodes where the communication and data sharing is carried on directly between
nodes, rather than being arbitrated by an intermediary node. Each node in the
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Figure 3.24: Taxonomy of Distributed Data Processing

Peer-to-Peer network acts as both a client and a server. The computing power
of the P2P network helps solve complex problems that require powerful comput-
ers using commodity hardware [75]. P2P computing uses a distributed applica-
tion architecture that divides the workload among peers in the network. Several
distributed computing frameworks such as Apache Hadoop, Apache Spark, Mi-
crosoft’s DMTK, and CNTK are available for processing Big Data. The research
work in this section 3.2 aims at:

• Proposing fog cluster environment that has distributed storage and pro-
cessing capabilities of IoT data using commodity hardware nodes in the
cluster.

• Augmenting fog computing with cluster management to address the effective
big data processing on resource-constrained devices.

3.2.2 System Description
The proposed system contains a cluster of three Raspberry Pi fog nodes that are
connected using a router, as shown in Figure 3.25. Out of these three nodes, one
node acts as the master node and the other two nodes act as workers. Apache
Hadoop is installed on all nodes in the cluster. Hadoop is composed of the Hadoop
Distributed File System (HDFS) that handles data scalability and redundancy
across nodes [76] and Hadoop YARN [77], a framework for job scheduling that
executes data processing tasks on all nodes. Spark has been installed on top of the
Hadoop Yarn cluster for scheduling the spark jobs submitted to the cluster. The
generic architecture of the proposed system is shown in Figure 3.26. At the lower
level of the hierarchy, IoT devices generate large amounts of data. Traditionally
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Figure 3.25: Experimental Setup
of Fog Cluster with One Master
Node and Two Worker Nodes

Figure 3.26: Generic Architec-
ture of Proposed System

Big Data Analytics is performed in the Cloud, which has few disadvantages such
as more bandwidth consumption, delayed response, and data security concerns.
Fog Computing helps in addressing the problems related to Cloud Big Data Pro-
cessing. As the resource capabilities (processing, memory, etc.) of fog nodes
are limited in nature, our research work proposed a Fog Cluster architecture for
processing Big Data in IoT setup. In the proposed architecture, the gateway
devices aggregate data from several IoT devices and send them to the fog cluster
for processing. These data could be processed using the distributed processing
and storage capabilities of the nodes in the fog cluster. The cluster manager
distributes the load among several nodes in the cluster for effective resource uti-
lization and better response times. The summary information from the fog cluster
could optionally be sent to the cloud for further storage and analysis. The dis-
tributed storage and processing capabilities of fog cluster lend themselves well
to handle voluminous data generated in the IoT environment and offer various
benefits such as improved response time, scalability, and data security.

3.2.3 Implementation Details

3.2.3.1 Using Resource Constraint Device (Raspberry Pi)

Initially, the Raspberry Pi cluster is setup with three nodes (Raspberry Pi 4B
with 4GB RAM) in our experimentation [70][71]. The nodes in the cluster are
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given hostnames (node1, node2, and node3) by editing the information in the
/etc/hosts file. This facilitates communication among nodes by using names.
As the nodes use Secure Shell (SSH) connection with key-pair authentication to
connect with other nodes, each node generates keys (private key, public key) and
the public keys of all nodes are shared among the nodes. Care should be taken
about the suitable Java version for the successful installation of Spark in the
cluster. Hadoop binaries (version 3.2.0) are downloaded from the Hadoop project
page [78] and environment variables such as PATH and HADOOP HOME are set
properly in all nodes in the cluster.

The configuration files core-site.xml, hdfs-site.xml, mapred-site.xml
and yarn-site.xml are edited appropriately to properly configure the
Hadoop Distributed File System (HDFS) [79]. The values set for impor-
tant Hadoop configuration parameters are given in Table 3.7. The pa-
rameter dfs.replication specifies the replication factor of the data stored
in HDFS. The remaining rows in Table 3.7 specify memory allocation
(in MB) for YARN containers, mapper tasks, and reducer tasks. The
yarn.app.mapreduce.am.resource.mb parameter specifies memory allocation
to the map-reduce application manager. The mapreduce.reduce.memory.mb
specifies the memory limits for the map and reduce processes, respectively.
The resource manager allocates memory to containers in increments of the pa-
rameter value yarn.scheduler.minimum-allocation-mb and will not exceed
yarn.scheduler.maximum-allocation-mb parameter value.

In our experimental setup, node1 is the master node (runs the daemons HDFS
NameNode and YARN ResourceManager) and node2, node3 are the worker
nodes (runs the daemons HDFS DataNode and YARN NodeManager). After
the Hadoop cluster is established successfully, Spark has been installed on top
of Hadoop. Spark binaries are downloaded to the master node from the Apache
Spark download page [80] and the value of the SPARK HOME environment vari-
able is set properly. Spark driver program declares transformations and actions
on RDD and these requests are submitted to the master. The worker nodes exe-
cute these tasks (called executors). The information about these Spark memory
settings is specified (in MB) in the spark-defaults.conf file. The parameter
spark.executor.cores specifies the number of cores used by the driver program.
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Table 3.7: Hadoop Configuration Parameters

Configuration File Parameter Name Value
hdfs-site.xml dfs.replication 2*
mapred-site.xml yarn.app.mapreduce.am.resource.mb 1024 MB
mapred-site.xml mapreduce.map.memory.mb 512 MB
mapred-site.xml mapreduce.reduce.memory.mb 512 MB
yarn-site.xml yarn.nodemanager.resource.memory-mb 3072 MB
yarn-site.xml yarn.scheduler.maximum-allocation-mb 3072 MB
yarn-site.xml yarn.scheduler.minimum-allocation-mb 256 MB
*2 indicates the replication factor. By default, the HDFS replication factor is 3,
but in the experimentation the factor was set to 2, because there is one master
node and two worker nodes

Table 3.8: SPARK Configuration Parameters

Parameter Name Value
spark.driver.memory 1024 MB
spark.yarn.am.memory 1024 MB
spark.executor.memory 1024 MB
spark.executor.cores 2*
*2 indicates the number of concurrent
tasks an executor can run
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Figure 3.27: Storage of datasets in HDFS with a replication factor of 2

Table 3.8 gives information about the parameter values specified in our experi-
mental setup (with 4GB RAM at each node).
The master node maintains knowledge about the distributed file system and
schedules resource allocation. It hosts two daemons:

• The NameNode manages the distributed file system and knows where stored
data blocks inside the cluster are.

• The ResourceManager manages the YARN jobs and takes care of scheduling
and running processes on the worker nodes.

Worker nodes store the data and provide processing power to run the jobs, and
will host two daemons:

• The DataNode manages the physical data stored on the node.

• The NodeManager manages the execution of tasks on the node.

3.2.3.2 SPARK Fog Cluster Evaluation

The functionality of the Spark fog cluster has been tested by running linear re-
gression and logistic regression machine learning algorithms using the API from
spark.ml library. Scala programming language is used to develop applications.
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eCommerce customer dataset [81] and the bank loan credit risk dataset from the
UCI machine learning repository [82] are used. Figure 3.27 shows the storage of
data set files in HDFS with a replication factor of 2.

eCommerce customer dataset contains 8 attributes (such as Avg. Session
Length, Time on App, Time on Website, Length of Membership, Yearly Amount
Spent) with 500 instances. Linear Regression algorithm is used on this dataset to
predict the value of Yearly amount spent attribute (dependent variable). Bank
loan credit risk dataset contains 24 attributes (such as limit balance, bill amount,
payment amount) with 30,000 instances. Here, logistic regression is used for the
binary classification task to determine whether payment will be done for next
month or not (dependent variable – default payment next month).
Various steps followed to build the linear regression model in the data set of
eCommerce customers in the group established in Section 3.2.2 are given below:

• Construct data frame by reading the eCommerce customer data set (.csv
file downloaded from kaggle.com [81]).

• Add feature vector as a column to the data frame using VectorAssembler
that allows the machine learning algorithm to use the features.

• Add label column to the data frame with the values of Yearly Amount Spent
column.

• Dataset is split into training (80%) and test (20%) datasets by using ran-
domSplit() function.

• Create an object on the LinearRegression( ) class and train the model using
function fit( ) on the training data set.

• Run the model on a test data set to get the predictions. The trained model
is also used to predict a new set of data.

Various steps followed to build a logistic regression classifier on bank loan credit
risk data set on the cluster established in Section 3.2.2 are given below:

• Construct data frame by reading the bank loan credit risk data set [82].

• Add feature vector as a column to the data frame using VectorAssembler,
that allows the machine learning algorithm to use the features.

• Add label column to the data frame with the values of Creditability column.
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Table 3.9: Performance Metric Values for Linear Regression Model

Metric Name Value
Root mean square error 9.9232567
Mean square error 98.4710252
R-squared 0.9843155
*2 indicates the number of concurrent
tasks an executor can run

• Dataset is split into training (70%) and test (30%) datasets by using ran-
domSplit() function with a seed value of 5043.

• Create an object on LogisticRegression() class by setting the max iteration
value to 100 and train the model using the fit() function on the training
data set.

• Run the model on test data set to get the predictions. The prediction data
frame is constructed using the transform() function on the logistic regression
model.

• An object on BinaryClassificationEvaluator() class is created using the met-
ric areaUnderROC to obtain the accuracy of the logistic regression model.

3.2.4 Results and Discussion
The proposed system makes use of the distributed storage and processing capa-
bilities of Spark cluster to execute machine learning algorithms on large datasets
in the resource-constrained environment augmented with cluster management.
The performance metrics such as root mean square error, mean square error, and
R-squared for the linear regression model on the e-Commerce customer data set
are given in Table 3.9.

The prediction results of the model on a new set of data (given in Table 3.10)
are shown in Figure 3.28. In this result, the first column of the table is the
actual value of the dependent variable (yearly amount spent), the second column
(features) is the feature vector prepared with the independent variable values. The
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Table 3.10: New data items used for testing linear regression model on Ecommerce
customer dataset

Figure 3.28: Prediction result of the model given by the master node for a new
set of data (given in Table 3.10)

prediction model uses this feature vector. The last column (prediction) indicates
the prediction made by the model.

The execution of spark application on Ecommerce customer dataset created
three containers in the cluster (two on node2 and one on node3), shown in Figure
3.29. The fog computing cluster can handle processing large datasets efficiently
because of performing operations on RDDs using executors on several worker
nodes in the cluster.
Figure 3.30 shows information on the execution of tasks by the Executors in
the fog cluster environment. An instance of the creation of Executors to do

Figure 3.29: Containers created as part of the execution of spark application on
Ecommerce customer dataset
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Figure 3.30: Execution of various tasks by Executors in the fog cluster environ-
ment

Figure 3.31: Executors information for a particular job execution in the cluster

the job submitted to the cluster is shown in Figure 3.31. As fog devices are
typically resource-constrained, the configuration of parameters related to memory
and CPU is very important for successfully establishing the cluster and making
use of resources in the cluster for big data processing tasks. The classification
accuracy of the binary classifier on the credit risk dataset is 82% using the metric
area under the ROC curve (AUC) (given in Table 3.11).

Table 3.11: Performance metric values for Logistic Regression model

Metric Name Value
Accuracy 0.8204
Area under ROC Curve (AUC) 0.6332
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3.3 Experimental Findings
In smart-home environment, a diverse range of heterogeneous data is generated,
with varying rates of data generation. While fog computing has shown promising
advantages in terms of improved response time and privacy, the limitations of
individual fog nodes become apparent when resource-intensive applications are
run. This was apparent during training of the face mask detection model (model-1
training presented in Section 3.1.3.3). During this model training with 770 images
in the dataset, the warning message “allocation of memory exceeding 10%
of system memory” is received, due to resource limitations. We can deal with
this situation by either using high-end machines or using the cluster resources for
model training.

Distributed processing of IoT data, using cluster resources in the fog environ-
ment, provides a viable solution to process complex tasks. Existing distributed
machine learning frameworks are not ideal choices for running machine learning
applications in fog cluster environments due to their resource-intensive nature.
Moreover, these frameworks cannot deal with heterogeneity of IoT data. This
was evident from the experimentation carried out to set up Spark Cluster (out-
lined in Section 3.2.3) using resource constraint devices. The Spark Cluster could
not be setup successfully due to memory limitations when RPi 3B + (with 1GB
RAM) units are used.

In order to address these challenges, our research focused on exploring suitable
frameworks that can run efficiently on diverse resource-constrained devices while
effectively handling the heterogeneity of data. The concept of federated learning
emerges as a promising solution to effectively tackle these issues. The subsequent
chapters of this thesis center around the application of federated learning for
processing IoT data.

The research work presented in this chapter is published in our following
research publications:

• S. R. Rudraraju, N. K. Suryadevara and A. Negi, Face Mask Detection
at the Fog Computing Gateway, Proceedings of 15th Conference on
Computer Science and Information Systems (FedCSIS), Sofia, Bulgaria,
2020, IEEE, Pages: 521-524, 2020, doi: 10.15439/2020F143. Indexed in:
DBLP, Scopus. Status: Accepted and Published
URL: https://ieeexplore.ieee.org/abstract/document/9222988
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• N. K. Suryadevara, A. Negi and S. R. Rudraraju A Smart Home As-
sistive Living Framework Using Fog Computing for Audio and
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3.4 Summary

3.4 Summary
In this chapter, we presented our research work aimed at supporting residents
of a fog-enabled smart home environment. We introduced an audio and lighting
stimulation-based system tailored to help people with dementia recognize visitors
using LBPH and Eigenfaces methods. Furthermore, a two-level face mask de-
tection system is discussed at the fog computing gateway and a face recognition
system that utilizes a fog cluster is discussed. We also explored the adoptability
of existing DML frameworks for processing IoT data by setting up Apache Spark
in the fog cluster. To conclude the chapter, we collected and analyzed observa-
tions from the experiments carried out during this research that are significant
for conducting research work in subsequent chapters.
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Chapter 4

Federated Learning for
Processing Heterogeneous Sensor
Data in IoT Environment

This chapter presents the research work related to processing heterogeneous sensor
data using federated learning in fog-enabled smart home environment,

4.1 Introduction
Data collected from diverse sensor types, such as temperature, humidity, motion,
vision, and pressure sensors, constitute heterogeneous sensor data. In this re-
search, we employ a distributed approach to fuse data from vision sensors, digital
ambient sensors, and passive infrared sensors. Processing of these data is done
through federated learning on Raspberry Pi edge nodes. The system trains ma-
chine learning models on these edge nodes using federated learning, eliminating
the need to transmit data to a centralized server. Instead, results from training on
multiple edge nodes are aggregated at a central node to produce a final machine
learning model. Each edge node deploys the aggregated model for subject recog-
nition in the smart home environment, triggering alerts upon detecting unknown
subjects. Additionally, linear regression models for temperature prediction and
logistic regression models for humidity prediction, using ambient parameters, are
trained in a federated manner on the same edge nodes. The Flower federated
learning framework [83] is employed for model training. This system is well-
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Figure 4.1: The basic architecture of the proposed system

suited for environments with limited communication bandwidth or data privacy
concerns.

4.2 System Description
The basic architecture of the proposed system is illustrated in Figure 4.1. The fed-
erated learning application is architected with the help of a fog node that acts as
a server. The edge nodes encompass vision sensor (RPi camera), passive infrared
(PIR) sensor, and digital humidity and temperature (DHT) sensor. Typically,
the edge nodes are strategically deployed at different locations in a Smart Home
or Smart Building, with a single fog node serving as the aggregator/server. The
network consists of nodes with varying specifications, including the RPi camera
for image data, the PIR sensor for digital data, and the DHT sensor for con-
verted analog-to-digital values. Collectively, they facilitate the transmission of
sensed information to a sink node responsible for data collection and aggregation,
constituting a wireless heterogeneous sensor network.

The system deploys heterogeneous sensors distributed across different rooms
within a smart home, each connected to a Raspberry Pi (RPi) edge node. When
the Passive Infrared (PIR) sensor detects movement in a room, it triggers the RPi
camera to capture photos. These edge nodes gather and store ambient parameters

72



4.2 System Description

(temperature and humidity) and images of individuals locally. This collected data
serves as input for model training using federated learning, utilizing both the edge
nodes and the fog node. The proposed system trains three ML models: facial
recognition model training on face images, temperature and humidity prediction
models training on ambient parameters in a federated fashion. One of the edge
nodes also serves the purpose of testing the system, in addition to collecting sensor
data and model training. The steps involved in training the facial recognition
model are detailed in Algorithm 4.1.

Each round of federated learning comprises 3 steps: (i) receiving the aggre-
gated weights from the server by each edge client, (ii) local model training by
each client using the aggregated weights and the respective local dataset, and
(iii) sharing the local updated weights from each client to the server for aggregat-
ing the weights. Initially, the server program is started, specifying the number of
FL rounds and awaiting client connections to participate in the FL process. At
the beginning of each round, the server node samples the corresponding clients
C = {c1, c2, . . . , cn}. The dataset (d1,d2, . . . ,dn) comprises heterogeneous sensor
data distributed across the ’n’ edge clients, featuring unbalanced items. Each
client ci updates the model parameters (mp) using the local dataset di. The
training dataset consists of input and expected output (labelled data items).

The client program initially constructs various layers in the CNN model. In
the IoT environment, data pre-processing plays a crucial role, as not all nodes
get sufficient data sets to train effective models, which can lead to overfitting.
To address this, data augmentation techniques, such as image rotation, resizing,
shearing, and normalization, are applied to the local dataset (di) prior to its
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utilization in model training. Within each round, model training occurs with the
local dataset divided into batches of size ’B’ for a specified number of epochs. The
nodel training uses a learning rate denoted as η, a loss function represented by le(),
and global aggregated weights (mp) received from the server. In our experimental
setup, we used a default learning rate of η = 0.001, and the categorical cross-
entropy loss function during the face recognition model training. The aggregated
loss, measured locally in the edge client, is defined by Equation 4.1, in which le()
corresponds to the local loss in the respective edge client, and the accuracy of the
local model training falls within the range 0 ≤ acc ≤ 1.

L(n) = 1
| dn |

∑
eϵdk

le(mp) (4.1)

Every edge client (n) updates the model parameters (mp) as given by equation
4.2 where, r = 1,2,3, . . . , rounds.

mp(r) = mp(r)−η ∗L(n)(mp(r,batch)) (4.2)

After each round, the client program shares the updated weights back with the
server, which performs weighted average using the FedAvg algorithm, and sends
back the global model weights to each client. Alongside the training of the face
recognition model, each node trains a linear regression model for temperature
prediction and logistic regression model for humidity prediction using ambient
parameters in a federated manner (similarly to the way discussed in Algorithm
4.1). The various steps in training the ambient parameter prediction model are
outlined in Algorithms 4.2 and 4.3. The temperature and humidity prediction
models training differs from the face recognition model training in terms of the
machine learning model used and the dataset used for the training purposes. The
model accuracy and loss values are calculated using the metrics R2 score and
mean squared error (MSE), respectively. The general formulas for calculating R2

Score and MSE are provided in Equations 4.3 and 4.4 respectively.

R2 = 1−
∑(yi − ŷi)2∑(yi − ȳi)2 (4.3)

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (4.4)

The R2 score is derived by comparing the total sum of squares of residuals gener-
ated by the regression model against the total sum of squares of errors computed

74



4.2 System Description

75



4.3 Implementation Details

Figure 4.2: Experimental setup of the proposed system

from the average model, followed by subtracting this value from 1. MSE evalu-
ates the average of the squared differences between observed and predicted values.
The trained ML models are used at each edge node for inference of subject iden-
tification, temperature prediction, and humidity prediction.

4.3 Implementation Details
The experimental configuration of the proposed system is depicted in Figure 4.2.
The system provides a proof of concept for processing heterogeneous sensor data
on resource constrained fog devices using federated learning. The implementation
comprises 5 Raspberry Pi (RPi) devices, each equipped with 4GB RAM and a
32GB SD Card, featuring a mix of RPi3 and RPi4 models with 32-bit and 64-bit
processor architectures. Among these five units, 4 units of RPis are deployed
each in one room. These are used as client/worker nodes (edge nodes), and the
fifth unit is used as the aggregator/server node (fog node) for federated learning.
Each edge node is equipped with an RPi camera, a DHT sensor, and a PIR sensor
for data collection within the application. The RPis establish communication
through Wi-Fi to facilitate network connectivity.

The experimental setup employs the Flower framework [83], which is ML
framework agnostic, to implement federated learning. Communication between
clients and the server during model training is facilitated through the gRPC
mechanism [84]. Tensorflow-2.12.0 is used for face recognition model training
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[85][86][87], and Scikit-learn-1.2.2 [88] is used for temperature and humidity pre-
diction models training.

4.3.1 Face Recognition Model Training using Vision Sen-
sor

The Face Recognition Convolutional Neural Network (CNN) architecture is com-
posed of an input layer, four hidden layers for convolution, four hidden layers for
max pooling, one flattening layer, one hidden Artificial Neural Network (ANN)
layer, and one output layer [89]. With 31 classes of images in the dataset, the
output layer is equipped with 31 neurons. To prevent overfitting and enhance
the model’s generalization ability, early stopping is incorporated during training.
This mechanism terminates the training process if the model’s performance on the
validation set stagnates or deteriorates. Validation loss is monitored, and early
stopping is triggered if no improvement is observed for five consecutive epochs
within a specific round. The CNN is trained on a face recognition dataset [90]
comprising 31 distinct classes, encompassing a total of 2562 unique facial images,
each with a resolution of 160x160 pixels. The dataset is divided into four equal
partitions class-wise, with one partition allocated per client, facilitating federated
machine learning. In reality, the model training uses photos of subjects captured
in each room through the vision sensor (RPi Camera), eliminating the need for
manual intervention.

4.3.2 Temperature, Humidity Prediction Models Training
using Ambient Sensors

Linear and logistic regression models for maximum temperature prediction and
humidity prediction are developed with the Scikit-learn package [88]. These mod-
els are trained in a federated fashion using locally collected datasets from ambient
sensors on each client. Performance evaluation uses a Kaggle dataset [91], which
is divided into four equal segments, with each segment assigned to one client for
training purposes. The construction of these models uses attributes such as tem-
perature, humidity, precipitation, pressure, wind speed, and cloud cover. Data
preprocessing and model training are carried out using Pandas and Scikit-learn
packages. Model performance is evaluated using training and validation accuracy
values.
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4.4 Results and Discussion
Experiments are carried out by varying hyperparameter values such as the num-
ber of rounds (#rounds) and the epochs per round (#epochs), to assess the
performance of the proposed system.

4.4.1 Performance Analysis of Face Recognition Model
Training

The accuracy and loss metrics for the training of the face recognition model
(with # rounds = 1, # epochs = 10) conducted in a federated manner without
any data pre-processing or normalization are depicted in Figure 4.3. The lines
in the graph represent the performance of different clients participating in the
federated learning process. The training accuracy values show improvement from
0.05 (at the end of epoch#1) to 0.96 (at the end of epoch#10), measured on a
scale of [0-1]. The validation accuracy values for face recognition model training
vary across different clients from epoch#1 to epoch#10. This variability can be
attributed to potential overfitting due to the relatively small size of the dataset.
Similarly, the training loss values for all clients fall within the range of 400 to 600
at the start of model training (end of epoch#1), and then reduced to a smaller
range of 1 to 3 by the end of epoch#2, gradually reducing further in subsequent
epochs.

The training and validation accuracy values of face recognition model training
in a federated manner, without any data preprocessing or normalization using 3
rounds, with 10 epochs per round, are illustrated in Figure 4.4. At the end of each
round, the server collects local model weights from each client, aggregates them,
and then distributes the values of global model parameters to all clients. This
ensures that each client has a global view of the model weights. The accuracy
of the model is improved through multiple rounds of training, with the data
being fed into the training algorithm. The first column in Figure 4.4 shows
the model training accuracy values for each client during the three rounds. In
particular, we observe an improvement in the initial values of model training
accuracy (at epoch#1) from round-1 to round-3, as clients receive updated global
model weights from the server at the end of each round. The output screenshot
of the sample execution of FL based face recognition model training is shown in
Figure 4.5.
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Figure 4.3: Face recognition model training - accuracy, loss values: Feder-
ated learning with no data preprocessing and no normalization (#rounds=1,
#epochs=10).
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Figure 4.4: Face recognition model training - accuracy, loss values: Feder-
ated learning with no data preprocessing and no normalization (#rounds=3,
#epochs=10)
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Figure 4.5: Output screenshot of face recognition model training using FL in
edge/fog environment

Figure 4.6: (a) Temperature prediction model accuracy values (b) Humidity pre-
diction model accuracy values
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Figure 4.7: (a) Plot showing the correlation between min temperature and max-
imum temperature (b) Plot showing the density of maximum temperature values

4.4.2 Performance Analysis of Temperature Prediction,
Humidity Prediction Models Training

The performance analysis of the linear regression model for maximum tempera-
ture prediction, and the logistic regression model for humidity prediction are given
in Figure 4.6. The experimentation is done in three scenarios: (i) FL using one
round (ii) FL using 10 rounds, and (iii) centralized training. In the FL setup, the
model performance is improved considerably with the number of rounds. There
is not much difference in model performance between FL with 10 rounds and
centralized model training. Visualization of the ambiance parameter values is
also done using matplotlib package [92], in addition to the model training. A
visualization of some values of the ambient parameters is presented in Figure 4.7.

The accuracy of the FL based models improves with more number of rounds,
as the clients see model weights obtained from training local datasets from other
clients involved in the FL process. Furthermore, proper data augmentation and
normalization techniques are very important to improve the accuracy of the FL
model, as not all clients produce the same amount of data. The impact of the
number of rounds and normalization techniques on model training performance
is further analyzed in Chapter 7.

The research work presented in this chapter is published in our following
research publication:

S. R. Rudraraju, N. K. Suryadevara and A. Negi, ”Heterogeneous Sensor Data
Acquisition and Federated Learning for Resource Constrained IoT Devices—A
Validation,” in IEEE Sensors Journal, vol. 23, no. 15, pp. 17602-17610, 1 Aug.1,
2023, doi: 10.1109/JSEN.2023.3287580. Indexed in: Scopus, Web of Science
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(SCIE).
URL: https://ieeexplore.ieee.org/abstract/document/10161724

4.5 Summary
In this chapter, a FL framework based on fog computing is presented to process
heterogeneous sensor data using resource constraint devices. This work presents
the complete cycle of federated learning on Raspberry Pi devices (including edge
clients and server) using heterogeneous sensor data. The data gathered from vari-
ous sensors, such as vision sensor and ambient sensors, is used to train various ML
models in a federated fashion. Convolutional Neural Network (CNN) is trained
using facial images collected at each edge node using federated learning. The
ambient data collected in the smart home environment is used to train linear re-
gression and logistic regression models for maximum temperature prediction and
humidity prediction, respectively. Experiments are conducted in a real-time IoT
environment, to evaluate the performance of the federated learning-based model
training with that of centralized training on resource constraint devices. The ex-
perimental results demonstrate that deep learning-based model training can be
done on resource constrained devices using federated learning. The performance
of models trained using federated learning is closer to that of models trained using
centralized training with proper data preprocessing and normalization techniques.
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Chapter 5

Load Balancing for Processing
Streaming Data

This chapter presents the research work related to load balance-aware federated
learning for handling heterogeneous IoT streaming data in a fog-enabled smart
home environment.

5.1 Introduction
The advent of the Internet of Things (IoT) has contributed to a significant surge
in the generation of heterogeneous streaming data. Integration and analysis of
these data can be challenging, as IoT environments employ diverse sensors that
generate data with different formats, sampling rates, and other characteristics.
To work with these heterogeneous sensor data, it is often necessary to develop
methods to normalize the data, extract relevant features, and fuse the data [93].
These methods can help transform sensor data into a uniform format that can be
easily analyzed.

The primary focus of this research work is to implement load balance-aware
federated learning to handle heterogeneous IoT streaming data in a smart home
environment enabled by fog computing. A novel approach is proposed to inte-
grate and process vision sensors and digital ambient sensors streaming data from
heterogeneous edge nodes based on the load metric is proposed. The system uses
the load metric of the edge nodes in the cluster, governed by the fog server, to
distribute the streaming IoT data load among several edge nodes. The load met-
ric of each node is calculated based on its memory and processor utilization and
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is shared with all edge nodes on the client to prepare their local datasets. The
proposed approach ensures efficient resource allocation and load balancing in the
edge cluster environment.

5.1.1 Contribution
This research work presents a practical implementation of load balance-aware FL
to process heterogeneous streaming data in IoT sensor network:

• An efficient load balancing scheme to distribute the heterogeneous streaming
data evenly across the resource-constrained edge nodes in the cluster based
on the resource utilization.

• Layered architecture to process the heterogeneous sensor data using the
Flower FL framework in the resource-constrained edge/fog cluster environ-
ment.

5.2 System Description
The underlying structure of the proposed system is depicted in Figure 5.1. The
fog node acts as a server to architect the FL application, while each node is
integrated with the vision sensor (RPi camera [58]/ IMX219-77 Camera [94]),
a Passive Infrared (PIR) Sensor [57], and a Digital Humidity and Temperature
(DHT) sensor [95]. In the Smart Home/Smart Building context, edge nodes are
typically distributed across various locations, with one fog node functioning as
the central gateway. The PIR sensor activates the vision sensor to capture video
when there is motion in any room. The edge nodes gather and reposit ambient
parameters data and video data, which will serve as input for FL based model
training with edge nodes acting as clients and fog node as the server.

5.2.1 Heterogeneous Streaming Data Collection
The cluster environment comprises ‘n’ edge nodes/clients, each of which is
equipped with a vision sensor, a PIR sensor, and a DHT sensor. The PIR sensor
triggers video data streaming in a particular room, while the data from the DHT
sensor is collected once every minute. Apache Kafka software [96][97] is installed
on each node in the cluster for stream processing. Each client node in the cluster
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Figure 5.1: Underlying Structure of the Proposed System
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creates a Kafka topic for every type of sensor data, such as video data or ambi-
ent parameters. These topics are divided into n partitions, each partition being
assigned to a specific client node in the cluster. This guarantees that there is a
dedicated partition for each node in the cluster, allowing each node to process
the incoming data independently and without any conflicts.

The resource monitoring module in the fog server provides the load balanc-
ing module with resource utilization statistics, including processor utilization,
memory usage, disk usage, and bandwidth usage, as well as the processor char-
acteristics of the client machines. The load balancing agent then shares this
information with the load balancing agents on each client node, which deter-
mines which node should process the incoming streaming data. The client node
producer process writes the input stream into the corresponding client node’s par-
tition. This method ensures that the data load is distributed uniformly among
the various edge nodes in the cluster when streaming data is generated.

The consumer process on each client node reads the streaming data corre-
sponding to its partition from each node in the cluster in a circular fashion and
prepares the local dataset for the application of FL. The high-level operations
performed by the producer and consumer processes in each client node ‘k’ is pre-
sented in Algorithm 5.1. The producer process in each client ‘k’ gets the load
metric values of several clients in the cluster, and selects the client ‘i’ with least
load metric value. The streaming data received from the client ‘k’ is then written
into the topic partition ‘i’ of the source machine ‘k’ i.e. Tki. Similarly, the con-
sumer process in each client ‘k’ polls the data from each client ‘i’ in the cluster
from its corresponding topic partition ‘k’ i.e. Tik.
Various layers in the software stack of the proposed system are given in Table 5.2.
Raspbian OS (Debian GNU/Linux 11 (bullseye)) and JetPack OS (which is based
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Figure 5.2: Various layers in the architecture of the proposed system

on Ubuntu Linux) are installed on RPi devices and Jetson Nano kit, respectively.
JetPack includes the required drivers and software libraries to support NVIDIA’s
GPU (Graphics Processing Unit) for AI and machine learning tasks.

Apache Kafka is used as a message broker in the data ingestion layer to handle
large volumes of incoming streaming data from various sensors. It can buffer
and store the incoming data for a short time until it is ready to be processed by
downstream systems. The device management layer provides resource monitoring
and load balancing services in the cluster. The stream processing layer in each
node helps to process the data from the respective partition of Kafka topic from
several clients while preparing the local dataset for applying federated machine
learning. The Flower framework is used in the federated learning layer to provide
fed aggregated service and local model training service on fog server and edge
clients, respectively.

5.2.2 Processing the Video Streaming Data
The process of preparing a local dataset for federated learning from video stream-
ing data involves several key steps, as illustrated in Figure 5.3. In each node ’k’,
the consumer process reads video frames from partition ’k’ of the ’VIDEODATA’
topic across all nodes in the cluster. Subsequently, it performs face detection on
each frame, identifying the coordinates of any detected faces. To classify the per-
son in the frame, the consumer process utilizes a local face recognition model. If
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face coordinates are found, the corresponding facial image is stored locally within
the appropriate class of the dataset, which is intended for federated learning. In
the event that the classification accuracy falls below 90%, the consumer process
prompts the user to label the face. If the facial label corresponds to any pre-
existing class in the local dataset, the image is added in that particular class.
However, if the label belongs to a new class, the consumer process creates a new
class within the dataset and includes the image in it.

5.2.3 Federated Machine Learning Model Training
The proposed system employs federated learning approach to train three machine
learning models. First, the facial recognition model is trained on facial images.
Furthermore, temperature and humidity prediction models are trained on ambi-
ent parameters. Within the system, one of the edge nodes serves the purpose
of testing the developed system, as well as collecting sensor data and training
models. The various steps in facial recognition model training are outlined in
Algorithm 4.1, while Algorithm 4.2 and Algorithm 4.3 facilitate the federated
training of maximum temperature and humidity prediction models (as discussed
in Chapter 4).

5.3 Implementation Details
The setup used for the experimentation of the proposed system is shown in Figure
5.4. It serves as a proof-of-concept for utilizing federated learning on resource-
constrained edge/fog nodes for processing the heterogeneous sensor data. The
implementation used a mix of heterogeneous devices, including three Raspberry
Pi (RPi) units comprising both RPi3 and RPi4 models (32-bit/64-bit processor
architectures with 4GB RAM and 32GB SD Card each), along with one Jetson
Nano 4GB model (Jetson Nano Developer Kit). Each room is equipped with a
RPi/Jetson Nano device, which functions as client or worker nodes (referred to
as edge nodes), while the third RPi unit serves as the server node (acting as the
fog node) responsible for coordinating FL tasks. Additionally, each edge node
is equipped with a camera (RPi Camera/ IMX219-77 Camera), PIR and DHT
Sensors for collecting the data in the application. Wi-Fi connectivity is utilized
to establish communication among devices within the network.

89



5.3 Implementation Details

Figure 5.3: Consumer process at node-k for preparation of dataset using video
data

90



5.3 Implementation Details

Figure 5.4: Experimental setup of the proposed system

Apache Kafka-2.12 and ZooKeeper-3.4.14 [98], a combination for streaming
data collection, is used in our experiment. Kafka efficiently handles high-volume
data ingestion and distribution, while ZooKeeper provides a distributed coordi-
nation service. The Flower framework is used to implement federated learning
in our experimentation, as it is not dependent on any ML framework. The face
recognition model training is performed using the Tensorflow-2.12.0 ML package,
while the Scikit-learn-1.2.2 package is used for training maximum temperature
and humidity prediction models.

5.3.1 Heterogeneous Streaming Data Collection
The server’s resource monitoring module uses the paramiko Python module [99]
to establish SSH connections with various clients in the cluster. These connections
are established to retrieve statistics on processor and main memory utilization.
Subsequently, the load balancing module in the server calculates the load metric
of each client using the resource utilization statistics and shares the information
with all the clients in the cluster, by writing into ’loadmetric’ kafka topic in the
server. The load balancer module in each client reads this information to obtain
the load metric value of all clients in the cluster.

5.3.1.1 Video Streaming Data Collection

Video streaming data is captured for one minute duration when there is a trigger
by the PIR sensor in any particular room. OpenCV module is used to capture
the video stream and extract the frames from the streaming video. The load
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balancing act is done by the kafka producer process, by writing these frames (at
the source node) in the kafka ’VIDEODATA’ topic partition that corresponds to
the node with the lowest load metric value. The consumer process in the client
machine ’k’ reads the frames from partition k of the topic ’VIDEODATA’ from
all the client nodes as shown in Figure 5.3, and prepares the local facial image
dataset for applying federated learning.

5.3.1.2 Ambient Parameters Data Collection

The humidity and temperature values in each room are sampled at every one
minute from the DHT sensor attached to each client machine, and written (at
the source) to the ’ambientparameters’ kafka topic’s partition that corresponds
to the node with the least load metric value. Similar to the video streaming
data collection, the consumer process in client machine ‘k’ reads the ambient
parameters data from partition-k of the ’ambientparameters’ topic from all the
client nodes and prepares the local dataset for federated learning.

5.3.2 Face Recognition Model Training
The initial training of the federated face recognition model begins by construct-
ing a convolutional neural network (CNN) using a face recognition dataset [90].
This dataset consists of 2562 facial images with a resolution of 160 × 160 pixels,
categorized into 31 different classes. To facilitate federated machine learning, the
data set is distributed evenly among the three clients manually. The CNN archi-
tecture used in the construction of face recognition model is detailed in Section
4.3.1. The output layer consists of 31 neurons that correspond to the 31 classes
present in the initial dataset. To avoid overfitting and improve generalization,
early stopping is used during model training. This technique involves monitoring
the validation loss and stopping training if the loss fails to improve consecutively
for five epochs within a specific round.

When real-time video data is streamed, the number of classes in the local
dataset may change when a new subject’s facial image is detected on a client
machine. To accommodate these dataset changes, the output layer in the CNN
is adjusted, and the neural network is trained by loading the pre-trained model
obtained from the previous iteration in the federated learning process. This allows
the model to adapt and incorporate the new class information while leveraging
the knowledge learned from previous iterations. Consider a scenario to better
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understand the model’s adoptability when an image from a new class is received.
Assume that a person’s photo (from a new class not part of the existing dataset)
is captured in one of the rooms in the smart home. This would create new class
in the dataset, and further update the global model weights in the subsequent
training process. As the other clients also see this updated weights, reflecting the
new class, the new person could be recognized in other rooms as well, with proper
training in subsequent rounds using images from this new class.

5.3.3 Models Training for the Prediction of Ambient Pa-
rameters

The ambient sensor data is utilized to train linear regression model and logis-
tic regression model to predict maximum temperature and maximum humidity,
respectively (as explained in Section 4.3.2). The models are trained using local
datasets collected from each client in a federated fashion. The performance of the
developed ML models is evaluated using the Kaggle dataset [91]. This dataset is
divided into three equal-size groups, with each group loaded into a different client
for training the models. The attributes such as temperature, humidity, pressure,
precipitation, cloud cover, and wind speed are utilized in the construction of ma-
chine learning models to predict maximum temperature and maximum humidity.
For preprocessing the data and training the models, the Pandas and Scikit-learn
packages are employed.

5.4 Results and Discussion
To evaluate the efficiency of load balancing in distributing the streaming data
among the 3 edge nodes, the load metric of each node in the cluster is measured.
The load metric of node ‘i’ is defined as the weighted sum of its CPU utilization
percentage and RAM utilization percentage divided by 100, with equal weights
given to each criteria, as given in equation 5.1:

load metric(i) = (0.5∗CPU Util Perc(i)+0.5∗Mem Util Perc(i))/100 (5.1)

During the experimentation, a video stream of one-minute duration is continu-
ously processed, whenever an event is triggered by PIR Sensor. Each frame of
the video stream is written into the appropriate partition of the Kafka topic in
the source. The load metric is calculated for each node while the load balancing
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Table 5.1: Load metric value of various nodes in the cluster

module is enabled. The average load across all the nodes is calculated, and the
load deviation is analyzed by calculating the standard deviation of the load met-
ric across all nodes in various scenarios:
Scenario 1: The video streaming data is generated in only one node, leaving
the remaining two nodes without generation of video streaming data, with all
the three nodes running local federated machine learning models, program that
collects ambient parameters every one minute.
Scenario 2: The video streaming data is generated by two nodes, leaving one
node without generation of video streaming data, with all the three nodes running
local federated machine learning models, program that collects ambient parame-
ters every one minute.
Scenario 3: The video streaming data is generated by all the three nodes, with
all the three nodes running local federated machine learning models, program
that collects ambient parameters every minute.

The results of Table 5.1 demonstrate the effectiveness of the load balancing
module in distributing the data stream among the edge nodes, ensuring an even
distribution of the workload, preventing any single node from being overwhelmed.
With load balancing enabled, the standard deviation of load metric values of
several nodes is less compared to load balancing disabled, indicating a relatively
balanced distribution of the streaming data among the nodes. In scenario 3,
the standard deviation values are same with and without using the data load
distribution, since all nodes are receiving the streaming data, which does not
initiate the streaming data distribution between the nodes in the cluster.

In a realistic IoT environment, the generation of event trigger-based video
streaming data is nonuniform across several nodes, and there by the resource uti-
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lization of various nodes is nonuniform. When a node is continuously operating at
its maximum capacity for an extended period, it consumes more energy and gen-
erates more heat. This can result in increased power consumption and potentially
cause thermal issues, leading to performance degradation or even hardware fail-
ures. Even distribution of streaming data among various nodes in the cluster can
have a positive impact on energy consumption by preventing any single node from
being completely drained. The resource-constrained edge devices would benefit
from the developed system while processing the streaming data.

5.5 Summary
In this chapter, load balance-aware federated learning was introduced to han-
dle heterogeneous IoT streaming data in a fog-enabled smart home environment.
The research work introduced an innovative approach for collecting and process-
ing data from vision and digital ambient sensors across a range of edge nodes,
guided by a load metric. This load metric, derived from memory and processor
utilization, plays a pivotal role in distributing the IoT data load across multiple
edge nodes. The system ensures efficient resource allocation and load balancing
within the edge cluster environment, effectively preventing overload or underload
scenarios on specific nodes. This, in turn, has implications on the energy uti-
lization of IoT devices. Empirical results demonstrate 0.10 enhancement in the
standard deviation of load metric values (on a sclae of 0-1) across nodes when load
balancing is applied. The system is ideally suited for managing IoT streaming
data in resource-constrained settings.
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Chapter 6

Capability-aware Federated
Average Algorithm for Processing
IoT Data

This chapter presents the research work related to Capability-aware Federated
Learning that considers the capabilities of the clients involved during model train-
ing.

6.1 Introduction
The federated learning model training discussed in Chapter 4 utilized the default
federated averaging algorithm on the server to aggregate parameters received from
participating clients. This algorithm calculates a weighted average of parameters
based on the number of examples used during model training locally by each
client. However, the default federated averaging algorithm does not account for
the heterogeneous capabilities of the clients during the aggregation process. The
assignment of greater weights to devices with higher capabilities during the ag-
gregation process enables more adaptive parameter aggregation. To address this
limitation, we proposed a novel Capability-Aware Federated Averaging (CAFe-
dAvg) algorithm.

Furthermore, mobile-aware Neural Architecture Search (NAS) [100][101]is ex-
plored to build machine learning models suitable for edge computing devices.
The goal of mobile-aware NAS is to create efficient and lightweight models that
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can run effectively on mobile and IoT devices at the network edge. This work
tries to leverage neural architecture search techniques, which automatically dis-
cover model architectures that strike a balance between accuracy and resource
efficiency, making them well-suited for edge computing applications.

6.2 System Description
The underlying structure of the proposed system is similar to the structure pre-
sented in Section 5.2 (depicted in Figure 5.1). The fog node acts as a server that
aggregates the local model weights received from each client in the FL applica-
tion. Each node is integrated with a vision sensor, a PIR sensor, and a DHT
sensor. The PIR sensor activates the vision sensor to capture video when there
is motion in any room. The edge nodes gather and reposit ambient parameters
data and video data, which will serve as input for FL based model training with
edge nodes acting as clients and fog node as the server.

The basic idea of the CAFedAvg algorithm is presented in Algorithm 6.1. The
updates to the default FedAvg algorithm to obtain the CAFedAvg algorithm are
indicated using comment lines in the Algorithm 6.1. The algorithm takes the
parameters server round, results, failures, and client properties as input, and pro-
duces output parameters parameters aggregated, and metrics aggregated. It begins
by calculating the total RAM and CPU cores available across all clients. This cal-
culation is performed by iterating through the input parameter client properties
(a dictionary of client properties).

For each client, the algorithm calculates the capability score based on the
relative share of RAM and CPU cores that the client contributes to the total pool.
This score represents the client’s contribution to the federated learning process.
The score is computed as a weighted average of RAM and CPU core contributions.
The algorithm considers the capability score of each client during the parameter
aggregation process. If custom metrics are provided (fit metrics aggregation fn is
not empty), the algorithm also considers client capabilities during the aggregation
of these metrics.

In the CAFedAvg algorithm, devices with higher capabilities or resources are
assigned higher weights or more significant roles during the aggregation process.
Additionally, we take into account the number of examples used by each client
during the parameter aggregation process. This means that devices with higher
capabilities not only contribute more to the aggregation based on their resources,
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but also consider local dataset size. Consequently, their model updates exert a
stronger influence on the final aggregated model compared to devices with lower
capabilities. By incorporating this capability-aware approach, the CAFedAvg
algorithm enables more adaptive parameter aggregation, improving the overall
performance and effectiveness of federated learning.

6.3 Implementation Details

6.3.1 CAFedAvg Algorithm
The experimental setup used for the experimentation consisted of heterogeneous
computing devices and sensor units. The same experimental setup, which is
presented in Section 5.3 (depicted in FIgure 5.4), is utilized for the capability-
aware FL based model training. The CAFedAvg algorithm (Algorithm 6.1) is
implemented by extending the Server Aggregator class in the Flower framework.
Each client participating in the model training shares its capability information
(number of processor cores and RAM size) with the server. This information,
in addition to the number of samples used by each client for it’s local model
training, is used by the server/aggregator to adjust the weight values for the
weighted average of the parameter aggregation.

6.3.2 Mobile-aware Neural Architecture Search for Face
Recognition

Given the computational limitations, the neural architecture search algorithm
(NAS) is developed to create a lightweight model specifically for face recognition.
It optimizes hyper-parameters and adjusts the search space to align with the
computational capabilities of edge devices [100]. The Python autokeras-1.0.20
module [102] is used in the NAS design, with a maximum of 10 trials conducted.
To enhance model building, a Bayesian tuner is employed as an optimization
function.

The algorithm performs a neural architecture search with the objective of
finding an improved model using validation accuracy as the guiding metric. The
batch size is set to 16, in view of resource limitations, and the model is trained
for 10 epochs. To prevent overfitting and optimize training, early stopping is im-
plemented with a patience value of 5. This means that if there is no improvement
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Figure 6.1: FL based facial recognition ML model training and validation accu-
racy using default FedAvg algorithm (#rounds=10, #epochs=10)

Figure 6.2: FL based facial recognition ML model training and validation accu-
racy using CAFedAvg algorithm (#rounds=10, #epochs=10)
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Figure 6.3: Facial recognition ML model training and validation accuracy us-
ing default FedAvg algorithm, CAFedAvg algorithm and Centralized training
(#rounds=10, #epochs=10)

in validation accuracy for five consecutive epochs, the current machine learning
model training is halted. To leverage the multicore capabilities of the devices, the
Python multiprocessing module is utilized during neural architecture search, pro-
vided that such capabilities are available. This allows for more efficient utilization
of resources and expedite search processes.

6.4 Results and Discussion

6.4.1 Performance Analysis of Model Training using
CAFedAvg Algorithm

The performance of the ML models developed is evaluated by comparing three
scenarios: utilizing the default federated average algorithm, employing the
capability-aware federated average algorithm and running model training central-
ized setup. Experimentation is carried out by changing hyperparameter values in
each scenario. The performance of the FL algorithms, including the default fed-
erated average algorithm and the capability-aware federated average algorithm, is
compared with model training in a centralized fashion. For centralized ML model
training, Intel Core i5-7500 CPU (3.40GHz clock speed with quad-core processor
and 8GB RAM) is used.
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Figure 6.4: (a) Facial recognition ML model training – training accuracy vs.
validation accuracy (b) Facial recognition model training time in various scenarios

The Jetson Nano node demonstrates better model training and validation ac-
curacy compared to the Raspberry Pi nodes, utilizing both the default federated
average and the proposed capability-aware federated average algorithm (as de-
picted in Figure 6.1 and Figure 6.2). The proposed capability-aware federated
average algorithm improves the accuracy of the facial recognition model in multi-
ple rounds. For the facial recognition model, the overall training accuracy values
achieved using the default federated learning algorithm, CAFedAvg algorithm,
and Centralized algorithm are 0.94, 0.96, and 0.99, respectively. Similarly, the
validation accuracy values for these algorithms are 0.65, 0.67, and 0.68, respec-
tively.

Comparatively, the accuracy values of the Centralized model training are sig-
nificantly higher than those achieved through the federated learning approach (as
illustrated in Figure 6.3) in the initial round, primarily due to training the model
on the entire dataset. However, the accuracy values of the FL-based model train-
ing (using both the default federated average and CAFedAvg algorithms) gradu-
ally improve with each round and approach the accuracy values of the centralized
approach by the end of the tenth round. In Figure 6.4(a), the combined training
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Figure 6.5: Facial recognition model training using CAFedAvg based FL approach
– Output screenshot

accuracies, validation accuracies of multiple face recognition ML model training
experiments are presented for both federated, centralized scenarios.

These experiments emphasize the significance of preprocessing the data while
training the model, particularly in the context of the IoT environment, where
not every client can provide substantial amount of data for training. Effective
data processing and normalization techniques play a vital role in enhancing the
accuracy of the model. Figure 6.4(b) shows the facial recognition model training
time in different scenarios, incorporating early stopping with patience parameter
set to 5 epochs. The screenshot depicting the output from trial run of FL based
facial recognition model training using CAFedAvg algorithm is given in Figure
6.5.

The accuracy values of the maximum temperature and humidity prediction
model training are presented in Figure 6.6. The training is carried out in the
following scenarios using 10 rounds: (i) FL with default FedAvg algorithm (ii) FL
with CAFedAvg algorithm (iii) Centralized model training.
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Figure 6.6: (a) Accuracy values of Temperature prediction ML model training
(b) Accuracy values of Humidity prediction ML model training.

Figure 6.7: Output screenshot depicting the construction of the facial recognition
model using NAS.
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6.4.2 Analysis of Mobile-aware NAS Model Training
The construction of a lightweight model for face recognition using NAS is carried
out through experimentation on edge devices. The experimentation consisted
of 10 trials, considering different model architectures. Out of these trials, the
best training accuracy value achieved is 0.24, and the process took a total of
25 minutes. To further enhance the model’s accuracy, additional trials could
be performed through NAS experimentation. As the edge devices are resource
constrained, the experimentation could not be conducted with more number of
trials due to memory limitations. Figure 6.7 presents a screenshot of the output
depicting the construction of the facial recognition model using NAS.

6.5 Summary
This chapter presented a novel Capability-aware federated averaging algorithm
the considers the capabilities of the client devices participating in the federated
learning process. The performance of the proposed algorithm is compared with
that of the default federated averaging algorithm. Federated learning is employed
to train the ML models from the data collected by each edge client using the
CAFedAvg algorithm and default FedAvg algorithm. The results of model training
in federated learning setting and centralized setting are presented. Also, the
experimental findings related to mobile-aware NAS model training on edge devices
is presented.
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Chapter 7

Analysis of Federated Learning
with Distributed IoT Data for
Model Parameter Computation
and Storage

This chapter presents the analysis of federated learning for the computation and
storage of model parameters. The performance of the proposed communication-
efficient algorithms and computing techniques is evaluated in terms of accuracy,
speed, and scalability.

7.1 Performance Analysis of Federated Learn-
ing for ML Model Training

7.1.1 Face Recognition Model Training
Data preprocessing and normalization techniques play a vital role during model
training in IoT environment, as mentioned in Chapter 4. In the IoT environment,
not all devices generated the same amount of data, hence model updates from
certain clients may not be as informative as the updates from other clients, leading
to inefficiencies in FL process. Data augmentation and normalization techniques
help to address this challenge to certain extent. Figure 7.1 depicts the federated
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Training

Figure 7.1: FL vs. Centralized model training accuracy

Figure 7.2: Face recognition model training – training accuracy vs. validation
accuracy

and centralized model training accuracy values for 10 rounds and 10 epochs in
each round (with data pre-processing and normalization).

For centralized execution of the model training on a machine with Intel(R)
Core(TM) i5-7500 CPU @ 3.40GHz four-core processor (with Intel HD 630 inte-
grated GPU) having 8GB RAM), there is considerable improvement in the model
accuracy values for each round in the case of FL, whereas there is no considerable
improvement in further rounds in the case of centralized training, as the model is
already trained using the whole set of images in the dataset by the end of round-1.
Figure 7.2 presents the overall training and validation accuracies of several exper-
iments of face recognition model training in federated and centralized setups for
different hyper parameter values. The experiments highlight the fact that data
preprocessing and normalization are very important during model training in the
IoT environment.
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Training

Figure 7.3: Time taken for face recognition model training in various scenarios

Proper data processing and normalization techniques help improve model ac-
curacy. The training and validation accuracy values of the FL face recognition
model (with data preprocessing and normalization) with 10 rounds, and 10 epochs
in each round are 0.999 and 0.65 respectively. These values are closer to the cen-
tralized training values of 0.999 and 0.68 respectively. The federated, centralized
model training (without early stopping) has taken 269 minutes and 125 minutes
respectively (#rounds=10, #epochs=10) for the dataset size of 2562 images. The
time taken for face recognition model training in various scenarios is given in Fig-
ure 7.3.

With early stopping, the FL model training (#rounds=10, #epochs=10) has
taken 231 minutes, which is a significant improvement in training time, for the
same training and validation accuracy values. During the FL experimentation
with 10 rounds, the early stopping of model training occurred in edge client
2 and edge client 3 in round 7. The face recognition model is tested on edge
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Training

Table 7.1: Data Transfer between Clients and the Server

node 4 (Test node) using out-of-domain face images (heterogeneous facial images
in different context which are not part of the dataset), and obtained a testing
accuracy value of 64%.

The layer-wise number of parameters in the constructed face recognition model
is shown in Figure 7.4. There are a total of 3,445,599 parameters in the CNN
constructed for face recognition. Keras uses 32-bit floating-point precision for
weights (4 bytes) by default. Therefore, each exchange of parameters between
the client and server requires data transmission of 3,445,599 x 4 = 13,782,396
bytes (i.e. 13.14 MB), excluding the control data. The amount of data transfer
for parameter exchange in face recognition model training per round (excluding
control data) is presented in Table 7.1. Federated learning coupled with early
stopping saves the parameters exchange between the clients and server, thereby
reducing the communication overhead. In our experimentation, early stopping
occurred in Client 2 and Client 4 in round 7, thereby avoiding the parameter
exchange (of size 13.14 MB in both ways) for those clients for 3 rounds.

Analysis of network-related parameters such as bandwidth consumption, pack-
ets per second (PPS), and packet loss during federated learning is done using the
Netdata tool [103], which is shown in Figure 7.5 for the server involved in fed-
erated learning. As is evident, the bandwidth consumption and packet transfer
are more at the end of each round due to the exchange of model weights between
clients and server.

7.1.2 Temperature Prediction, Humidity Prediction
Models Training

The sizes of the temperature prediction model and humidity prediction model
are 462 bytes, 474 bytes respectively, which are very small compared to the deep
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Figure 7.4: Layer-wise parameters in the face recognition CNN
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Training

Figure 7.5: Analysis of network-related parameters during model training
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7.2 Scalability Analysis of Load Balance-Aware Federated Learning
Algorithm

learning-based face recognition model. These require very fewer amounts of data
transfer between clients and the server for parameter exchange at the end of each
round. The temperature prediction model training has taken 400 milliseconds and
1800 milliseconds in FL with one round and 10 rounds, respectively. The humidity
prediction model training has taken 500 milliseconds and 2200 milliseconds in FL
with one round and 10 rounds, respectively.

7.2 Scalability Analysis of Load Balance-Aware
Federated Learning Algorithm

Evenly distributing the streaming data among various nodes in the cluster can
have a positive impact on energy consumption by preventing any single node
from being completely drained. The resource-constrained edge devices would
benefit from the developed system while processing the streaming data. The
maximum number of clients that can participate in our proposed load balance-
aware federated learning process is limited by the available resources in each
client. The upper bound for number of nodes in the Cluster (to take part in the
FL process) is given by Equation 7.1:

max nodes = min{min{⌊ di

k × s
⌋},min{⌊ mi

k × b
⌋},⌊4000

k
⌋} where 1 ≤ i ≤ n (7.1)

Here,
Number of nodes in the cluster = Number of partitions per topic in each node =
n

Number of topics in each node = k

Segment size per partition (in bytes) = s (default – 1GB)
Buffer size per partition (in bytes) = b (default – 32 MB)
Disk size (in bytes) for node (i) = di

Memory size (in byes) for node (i) = mi

In our proposed load balance-aware FL algorithm, we dedicate one partition per
topic, for all clients in the cluster at each client machine. The expression ⌊ di

k×s⌋
gives the number of partitions that can be allocated per topic in client node (i)
without exceeding its disk space. Similarly, the expression ⌊ mi

k×b⌋ gives the number
of partitions that can be allocated per topic in client node (i) without exceeding
its memory space. The maximum number of partitions supported by the Kafka
broker is 4000. As the number of clients is equal to the number of partitions per
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Figure 7.6: Global model parameter values stored in GCP Bucket

topic in the proposed algorithm, the upper bound for the maximum number of
clients that can take part in the FL process can be obtained using the equation
7.1.

7.3 Analysis of Model Parameter Storage in the
Cloud

Google Cloud Platform (GCP) [104] is used to store the obtained global ML model
parameter values at the end of each round. This is useful as these parameters
might be necessary for integrating analogous applications operating in diverse
locations. The convolutional neural network (CNN) designed for facial recognition
comprises a total of 3,445,599 parameters distributed over 31 classes of facial
images. By default, Keras employs 32-bit floating-point precision for weights
(4 bytes). Consequently, every parameter exchange between the client and the
server requires a data transfer of 3,445,599 x 4 = 13,782,396 bytes (equivalent to
13.14 MB), excluding control data. As clients contribute these parameters, the
server aggregates them, resulting in global model parameters of size 13.14 MB.
These parameter values are stored in the form of a binary file and then uploaded
to a cloud bucket for further reference (shown in Figure 7.6). The process of
transferring the global model parameters from the FL server (fog node) to the
Cloud takes an average duration of 3.5 seconds.
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Transferring the dataset of 2562 facial images to the cloud for model training
would consume approximately 187.5 MB of bandwidth, in addition to the pri-
vacy issues. Transferring just the model parameters would consume 13.14 MB
of bandwidth. The impact on bandwidth consumption is significant when trans-
ferring images, which is approximately 14 times larger compared to transferring
only the model parameters. This difference in bandwidth consumption highlights
one of the advantages of federated learning: By transmitting model parameters
instead of raw data, we can significantly reduce the amount of data that needs to
be transferred over the network. This is especially important when dealing with
resource-constrained devices, limited network bandwidth, or privacy concerns, as
it minimizes the data sent over the network while still enabling model updates
and improvements.

The research work presented in this chapter is published in our following
research publication:

S. R. Rudraraju, N. K. Suryadevara and A. Negi, ”Heterogeneous Sensor Data
Acquisition and Federated Learning for Resource Constrained IoT Devices—A
Validation,” in IEEE Sensors Journal, vol. 23, no. 15, pp. 17602-17610, 1 Aug.1,
2023, doi: 10.1109/JSEN.2023.3287580. Indexed in: Scopus, Web of Science
(SCIE).
URL: https://ieeexplore.ieee.org/abstract/document/10161724

7.4 Summary
This chapter presented the analysis of federated learning for the computation and
storage of model parameters. The performance metrics, accuracy and training
time, related to face recognition model training and ambient parameter models
training are presented. Empirical results demonstrate that the accuracy values of
the FL based model training are close to the centralized training value with proper
preprocessing and normalization techniques. Federated learning facilitates deep
learning-based model training without centralizing datasets, hence it is ideal for
IoT applications with decentralized datasets without compromising the privacy.
Furthermore, the results suggest that the amount of data exchange between the
clients and server is reduced substantially, as they don’t exchange the raw data
between them. Furthermore, this chapter provided the scalability analysis of the
proposed load balance-aware federated learning mechanism in the fog computing
framework.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion
In this research, we have developed a fog computing-based federated learning
framework to process heterogeneous streaming data in IoT environment. Our
research experimentation and validation are focused towards deploying fog based
federated computing environment for a smart home environment, but can be
deployable in: Ambient assisted living environment, Healthcare and Banking en-
vironments.

Firstly, we have designed and implemented fog computing frameworks tailored
to enhance the quality of life for smart home residents. These frameworks facili-
tate efficient data processing and analysis within the fog environment, leading to
reduced latency and improved responsiveness. Additionally, we have introduced a
novel framework for big data processing in fog clusters utilizing Apache Spark, a
distributed data processing technology. This paves the way for more streamlined
data processing within fog clusters, a crucial component of fog computing.

Moreover, we have contributed to the field of federated learning by developing
a robust framework for processing heterogeneous streaming data in fog-centric IoT
applications. Our framework not only addresses data heterogeneity challenges,
but also incorporates a system for distributing streaming data load efficiently
among the cluster nodes. This development ensures that resource-constrained
IoT devices can participate effectively in the federated learning process.

Furthermore, we have introduced a novel capability-aware fed average algo-
rithm for processing heterogeneous streaming data. The proposed algorithm has
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been implemented and validated using heterogeneous devices within the IoT en-
vironment. It addresses challenges related to the impact of device heterogeneity
on model training performance.

8.2 Directions for Future Research
Our research has laid a strong foundation for further exploration and development
in the field of fog computing and federated learning. The following directions offer
promising avenues for future research:

1. Parameter Aggregation Methods for Diverse Neural Architectures: As the
use of diverse neural architecture search-based models becomes more preva-
lent in the IoT context, developing efficient parameter aggregation methods
for these models is essential. Future research can focus on devising in-
novative techniques that allow for seamless integration of various neural
architectures in Federated Learning settings.

2. Enhanced Security and Privacy Protocols: Security and privacy concerns
are paramount in IoT and Federated Learning environments. Future re-
search should explore advanced encryption and privacy-preserving tech-
niques to protect sensitive IoT data during the federated learning process.

3. Applying the proposed algorithms in fog computing-based federated learn-
ing from the smart home context to other case studies, thereby broadening
their scope and applicability.

In conclusion, our research has contributed to the development of federated
learning framework that effectively processes heterogeneous IoT streaming data in
fog environment. The identified future research directions promise to further en-
hance the efficiency, scalability, and applicability of these technologies, ultimately
leading to more advanced and practical solutions in the IoT landscape.
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