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Abstract

Quasigroups of order n can be represented as an n X n matrix in which each
row as well as in each column has a different permutation of elements from a
non-empty set Z,, so that no element appears more than once in any row or
column. Quasigroups are important to cryptography because the number
of quasigroups grows exponentially with its order, and every quasigroup has
a unique inverse quasigroup. So, it makes an important case for the design
of cryptosystems. This thesis mainly proposes three types of new crypto-
primitives based on quasigroups. These are stream ciphers, block ciphers,

and hash functions.

As the first contribution, we have proposed three variants of stream ciphers.
The second stream cipher improves the speed of the first cipher, while the
third stream cipher improves the memory consumption and security of both
the first and second ciphers. The novelty of the proposed stream ciphers is
that once a keystream is generated, it can be reused multiple times because
the proposed ciphers are resistant to the reused key attack. Design of these
ciphers is motivated by the fact that all conventional XOR-based stream

ciphers are vulnerable to reused key attack.

As the second contribution, we have proposed two variants of block ciphers.
The second block cipher is the revised version of the first block cipher that
improves the security of the first block cipher. Both the ciphers are designed
based on multiple quasigroups and use the same set of 16 optimal S-boxes
of 4 x 4-bit in the form of an optimal quasigroup of order 16. Each of these
sixteen S-boxes has the highest algebraic degree and the lowest linearity and
differential characteristics. Therefore, these S-boxes provide great security
against linear and differential attacks. The security and performance of the

proposed ciphers are analyzed by comparing them with some of the existing

iii



quasigroup-based proposals and we found that the proposed ciphers are

more secure and efficient than that of the existing ciphers.

Finally, in the third contribution of this thesis, we have proposed two vari-
ants of hash functions and their corresponding message authentication codes
(HMACs) based on quasigroup. The second hash function/HMAC is the
extended version of the first hash function/HMAC that produces 160 bits
more hash/MAC value. By the way, the first hash function and HMAC
produce 224 bits of hash and MAC values, respectively. Each of these two
hash functions can be seen as an extension of the MD5 since they are de-
signed based on the underlying structure of MD5 along with a quasigroup.
These designs are motivated by the fact that MD5 is vulnerable to a colli-
sion attack. The underlying structure of both the proposed hash function
and HMAC are similar. The only difference between the two is that the
quasigroup used in the hash function is publicly known, while the quasi-
group used in HMAC acts as a secret key, thereby computing both the hash
and MAC values both (hash function and HMAC) take the same amount
of time. The security and the performance of the proposed schemes are
analyzed by comparing them with their counterparts, such as SHA-224,
SHA-384, HMAC-SHA-224, and HMAC-SHA-384. We found that the pro-
posed schemes are more secure and efficient than the corresponding existing

schemes.
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Chapter 1

Introduction

With the increasing need to secure data, new cryptographic algorithms have become in-
creasingly imperative. This is due to the fact that cryptography has become an integral
part of data security today. In other words, as more hackers attempt to break into pri-
vate conversation and communication channels, it has become vital to protect privacy
and limit third-party visibility using various security tools or cryptographic algorithms.
Cryptographic algorithms typically consist of an encryption algorithm, a decryption al-
gorithm, a key generation algorithm, a hash function, a message authentication code
(MAC), etc. These days, two types of encryption/decryption algorithms are commonly
used for achieving message confidentiality: (i) symmetric-key algorithm (which is usu-
ally known as symmetric-key cryptosystem) and (ii) asymmetric-key algorithm (which

is usually known as asymmetric-key or public-key cryptosystem).

1.1 Symmetric key cryptosystem

In the symmetric-key cryptosystem, two trusted parties, say Alice and Bob want to
communicate confidentially on an insecure channel. As part of this agreement, Alice
sends a confidential message to Bob or vice versa. Using a secret key, the original
message (which is also known as plaintext) is transformed into an unintelligible form
(also known as ciphertext); this process is called encryption. On the other hand, Bob
recovers the original message by using the same key that was used by Alice in the en-
cryption; this process is called decryption. Graphical representation of a symmetric-key

cryptosystem is shown in Figure AES, DES, IDEA, RC4, SEAL, and Blowfish are
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: Shared secret key Shared secret key
w Alice between Alice & Bob between Alice & Bob Bk

Plaintext " Ciphertext Ciphertext Plaintext

Encryption Algorithm Decryption Algorithm

Figure 1.1: Workflow of the symmetric key cryptosystem.

some of the examples of symmetric-key cryptosystems. Symmetric-key cryptosystems
are used in various applications such as credit cards, military, electronic commerce,
digital media, encryption of passwords, email, documents, etc. However, the symmet-
ric key cryptosystems have various drawbacks [72], [74]. One of the drawbacks is that
it requires to share the secret key in advance to communicate between Alice and Bob.
That is, one of the challenges is the management of key distribution. One possible

solution for this key distribution is to use an asymmetric-key cryptosystem.

1.2 Asymmetric key cryptosystem

The concept of an asymmetric-key cryptosystem was introduced by Diffie and Hellman
in 1976. In an asymmetric-key cryptosystem, two keys are used, one is called a public
key and another is called a private key. Both public and private keys of the recipient
(or Bob) are used for encryption and decryption, respectively. That is, Alice uses Bob’s
public key for encrypting the plaintext and Bob uses his own private key for decrypting
the ciphertext. The graphical representation of an asymmetric-key cryptosystem is

shown in Figure Note that a public key can be known to “everyone”, whereas a

| £ Bob's Public key Bob's Private key [

Insecure channel

Plaintext Ciphertext Ciphertext Plaintext

Encryption Algorithm Decryption Algorithm

Figure 1.2: Workflow of the asymmetric key cryptosystem.



1.3 Stream cipher and block cipher

private key is only known by the recipient of the encrypted message. So a public-key
cryptosystem would enable anyone to encrypt a message to be transmitted to Bob, and
only Bob could decrypt the message. The RSA cryptosystem is one of the best examples
of a public-key cryptosystem that was introduced by Rivest, Shamir and Adleman in
1977.

The primary strength of asymmetric-key cryptography over symmetric-key cryp-
tography is that it is more secure than symmetric-key cryptography. This is because
private keys never need to be revealed to anyone. But on the other hand, symmetric-
key cryptography is more efficient than asymmetric-key cryptography. This is because
symmetric-key cryptography requires fewer calculations than asymmetric-key cryptog-
raphy. Depending on how the data is encrypted, symmetric-key cryptography or sym-

metric ciphers are of two types: (i) stream ciphers and (ii) block ciphers.

1.3 Stream cipher and block cipher

Stream ciphers encrypt a unit of data using a keystream which is as long as the plaintext
and is generated based on a secret key, where the unit of data can be either a bit or
a nibble or a byte, etc. A5/1, A5/2, RC4, SNOW, Edon80 are some of the examples
of stream ciphers. Stream ciphers are widely used in cellular phones and wireless
communications. For example, the A5/1 is used in GSM telephone communications,
and the RC4 is used in wireless local area networks (WLANSs). One of the security issues
of the stream ciphers that use the XOR, function to mix the plaintext and keystream
is that they are vulnerable to reused key (two-time pad) attack. That is, once a
keystream is generated, it can not be used more than once [72] [74]. These ciphers are
also vulnerable to attacks such as a known-plaintext attack and insertion attack [7].
Also, a stream cipher may be analyzed to determine either the message or the employed
secret key using several attacks such as ciphertext only attack, chosen-plaintext attack,
chosen-ciphertext attack, etc. [67].

Block ciphers, on the other hand, encrypt a fixed amount of data at a time called a
block. The size of the block depends on the encryption algorithm. DES and AES are
examples of block ciphers. The DES was previously used as the standard for encryption.
It was vulnerable to attacks such as brute force attack [I8] because of its small key size

of 56 bits, chosen-plaintext attack [9] and known-plaintext attack [52]. Hence a new
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standard was required and therefore DES was replaced by AES [64]. Typically, stream

ciphers are more efficient than block ciphers because of the following reasons:

e Stream ciphers work on individual bits and do not require buffering for large

blocks.

e Padding a block is not needed in stream ciphers. Also, error propagation is less

likely in stream ciphers.
e Stream ciphers require less sophisticated circuitry.

In addition, the stream ciphers are more appropriate, and in some cases mandatory (for
example, in telecommunication applications) such as when buffering is limited or when
characters must be individually processed as they are received, or when the block size
cannot be determined before transmission. Since stream ciphers have minimal or no
error propagation, they can be beneficial even in situations where transmission faults

are highly probable.

1.4 Cryptographic hash function

A hash function takes an arbitrary length input message and produces a fixed length
hash value, called the message digest or checksum. Generally, the digest value created
by a hash function is known as a modification detection code (MDC). It detects the
integrity of a message which is sent by a sender. A cryptographic hash function H has

the following properties [69].

1. Pre-image resistant:- Given a hash value y, it is computationally infeasible to find

a message x such that H(z) = y.

2. Second pre-image resistant:- Given a message x , it is computationally infeasible

to find a second message zo such that x; # x9 and H(z1) = H(x2).

3. Collision resistance:- It must be computationally infeasible to find two messages

x1 , x9 such that z1 # zo but H(x1) = H(xs).

The MD4, MD5, SHA-256, SHA-384, and SHA-512 are examples of hash functions
given in the literature [33| [72], [74]. The security of these hash functions depends on
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the size of the hash value and the underlying structure of the hash functions. These
hash function are commonly used in message authentication codes [78], pseudo-random
number generators [19], message signing, SSL, time stamping, and in many other cryp-

tographic protocols.

1.5 Hash function with key or HMAC

Message authentication code (MAC) that uses a hash function is called HMAC. It was
introduced by Bellare et al. in 1996 [§]. Later it was generalized and standardized
by FIPS PUB 198-1 [7§]. The output of HMAC is used to simultaneously verify both
the authenticity and the data integrity of a message when two authorized parties com-
municate in an insecure channel. That is, the MAC-value is used to verify a sender’s
identity if two parties, say Alice and Bob are communicating in the presence of ad-
versaries. Bob can use a MAC-value to ensure that the message he gets was truly
transmitted by Alice and that it has not been altered or corrupted in transit. For this,
Alice and Bob need to choose a MAC algorithm and exchange the secret key. Before
transmitting the message, Alice calculates the message’s MAC-value and appends it
to the end. When Bob receives the message, he checks that the appended authentica-
tion tag is indeed the correct MAC-value, ensuring that the message was sent by Alice
(or someone else with access to the secret key) and that it was not altered in transit.
Because of the MAC’s computation resistance property, an adversary will be unable
to substitute his/her message or modify the message if he does not have access to the
secret key. Even if an adversary has seen a certain number of previous messages with
the authentication tags sent from Alice to Bob, he will still be unable to modify the
current message or substitute a new one due to MAC’s computation resistance prop-
erty. The MAC is used in internet security protocols including SSL/TLS, SSH, IPsec.
HMAC uses a hash function H and a secret key k shared between Alice and Bob. A
HMAC, denoted by Hy, has the following properties.

1. Easy to compute:- Given a message m and secret key k, Hj(m) is easy to compute.

2. Compression:- For an arbitrary length message m, Hj(m) produces a fixed length

authentication tag also called the MAC-value of m.
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3. Computation resistance:- Given a fixed number of pairs of messages and their
corresponding authentication tags as (mq,x1), (ma, z2),. .., (my, zp), where z; =
Hy,(m;), and any other message m ¢ {mi,ma...,m,} it is computationally in-

feasible to compute Hy(m) without the knowledge of k.

Note that a MAC-value is easy to compute with the knowledge of the key whereas very
difficult to compute without the knowledge of the key. Because of this, it is possible
that with the knowledge of the key one can find a collision for HMAC (such as in the
case of MD5-based HMAC).

1.6 Motivation and Research goals

Research, invention, and augmentation in cryptography are not only a curiosity but also
a necessity. This is because, for every cryptographic measure, a countermeasure has
been found to make it ineffective. The weaknesses of the cryptosystems can be caused
by social engineering or human error, or they can be discovered through cryptanalysis.

Cryptography is a collection of deterministic algorithms that one uses to protect
information and communications against adversarial behavior. In other words, cryp-
tography is primarily concerned with designing and analyzing protocols that prevent
third parties from gaining access to private communications. A deterministic algorithm
can be used to generate secret keys, create digital signatures, authenticate messages,
verify messages, and protect the privacy of confidential information and communica-
tions such as credit card transactions and email correspondence. History has shown
that cryptographic algorithms are designed based on several areas of mathematics, in-
cluding Number theory, Group theory, Finite field, Linear algebra, Boolean algebra,
and Boolean functions. Each of the approaches to design cryptographic algorithms us-
ing these mathematical areas employs an associative algebraic structure. In this thesis,
we expand the set of approaches to design cryptographic algorithms by including a
non-associative mathematical object called a quasigroup [68, [77]. Quasigroups play an

important role in cryptography because of the following reasons:

e The number of quasigroups grows exponentially with its order, so they make an

important case for the design of crypto-primitives.
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e Quasigroups provide convenient tools for constructing crypto-primitives due to

their closure and inversion properties.
e Due to the lack of associativity, one-way functions are easier to create.

e The crypto-primitives based on a quasigroup have a meager computational cost

since they are table look-up operations.

e Quasigroup-based crypto-primitives are suitable for low resource devices such as
smartphones, sensors, tablets, etc [6]. This is in contrast to the most popular
cryptosystems such as AES, DES, and RSA, which drain the battery of such
devices. With the increase of cloud services, the amount of data being transmitted

and received by these devices is growing at an exponential rate [63].

This thesis focuses on designing new cryptographic algorithms based on quasigroups
that are more friendly with hardware and software implementations. That is, using
the quasigroup, we can improve the security and efficiencies of the conventional and
some of the widely used standard cryptographic algorithms, such as MD5, RC4, etc.
In 1992, Ronald Rivest proposed the MD5 hash function. It is a widely used hash
function. This is because it is one of the hash functions requiring the least number of
computations. Of late, many articles are published showing that the MD5 is not secure
because the length of the hash value is too short. So, it is vulnerable to brute force
birthday attacks [58], and a collision can be found within seconds with a complexity of
around 224 [73]. In another case, RC4 is one of the fastest stream ciphers widely used in
various applications such as Wired Equivalent Privacy (WEP), SSL, Wi-Fi Protected
Access (WPA), etc. RC4 is a byte-oriented cipher that uses the XOR function to
mix the plaintext/ciphertext with keystream. So, the cipher is found to be vulnerable
to reuse-key attack (two-time pad). This is one of the major hurdles in all XOR-
based stream ciphers. Further, linear cryptanalysis has shown weaknesses in the DES
cryptosystem [52]. Hence a new standard was required and therefore DES was replaced
by AES. Both DES and AES are suitable for desktop-based applications [6]. We have
also analyzed some existing quasigroup-based crypto-primitives such as stream ciphers,
hash functions, and block ciphers. We found that some of these crypto-primitives are
not as secure as is required; while some others have enhanced security at the expense

of the efficiency of the crypto-primitives. So, quasigroup-based crypto-primitives that
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are stronger and more efficient would be a good alternative to the existing quasigroup-
based crypto-primitives. This is one of the primary motivations behind devising new

crypto-promotives. So, we have set out the following goals:

1. To devise new stream ciphers based on quasigroups. To this end, we have

designed the following:

1.1. New symmetric key cipher based on a quasigroup and AES-256.

1.2. a novel stream cipher based on a quasigroup of order 256 that uses a pseudo-
random number generator based on a quasigroup of order 256, named as

QG-PRNG. It is more efficient than that of the one mentioned in 1.1

1.3. astream cipher based on multiple quasigroups of order 16 that uses a pseudo-
random number generator based on multiple quasigroups of order 16, named
as MQG-PRNG. It is a revised version of both the algorithms mentioned

above.

2. To devise new block ciphers based on quasigroups. To this end, we have

arrived at the following.

2.1. An efficient block cipher based on multiple optimal quasigroups and {e, d}-

transformation.

2.2. A block cipher based on multiple optimal quasigroups and {nef, nd’ }-transformation.

It is a revised version of the one mentioned in 2.1.

3. To devise new hash functions and HMACs based on quasigroups. To

this end, we have designed the following.

3.1 An extended version of MD5, called here as the modified MD5-224 bits hash
function and the corresponding message authentication code (HMAC) based
on quasigroup.

3.2 An efficient hash function, called here as the modified MD5-384 bits hash

function and the corresponding message authentication code (HMAC) based

on quasigroup. It is a revised version of the one specified in 3.1.
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1.7 Thesis Contributions

Contributions of this thesis are broadly categorized into three parts with respect to
the research goals discussed earlier. The first part discusses three variants of stream
ciphers based on quasigroup; the second part discusses two block ciphers based on
quasigroup, and the third part discusses two variants of hash functions and HMACs

based on quasigroup.

1.7.1 New symmetric key cipher based on a quasigroup and AES-256

In this contribution, we have proposed a new stream cipher for encrypting/decrypting
messages. It masks the weaknesses of the XOR-based stream ciphers and adds extra
security. This is because it uses the quasigroup operation and its inverse instead of
the XOR operation. For generating the keystream, we use AES-256. In fact, any
secure pseudo-random number generator such as CRT-DPR 4 [4] can be employed for
the generation of the keystream. However, we choose to describe the proposed stream
cipher using the AES-256. The security of the proposed stream cipher is analyzed and
the randomness of the obtained ciphertext is tested using the NIST-STS test suite. We
found that the proposed cipher satisfied all the required properties. Previous works [46],
60] that use quasigroups in the design of secure systems are vulnerable to the chosen-
plaintext and chosen-ciphertext attacks [45, [80]. The proposed cipher resists these

attacks.

1.7.2 A novel stream cipher based on a quasigroup and QG-PRNG

It is an extension of the work stated in the previous sub-section In this contri-
bution, we have proposed a novel stream cipher that uses a keystream generated by a
pseudo-random number generator, named QG-PRNG. The QG-PRNG is a quasigroup
based pseudo-random number generator also designed and described in this thesis. Both
the schemes (encryption/decryption and QG-PRNG) use a quasigroup of order 256. It
is more efficient than the previous cipher mentioned in sub-section [I.7.1] This is be-
cause, it uses QG-PRNG in place of AES-256 for generating the keystream, and the QG-
PRNG generates the keystream around 5 times faster than AES-256. Because of this,
the new cipher is faster than the previous one. The cipher is analyzed against various

attacks, including known-plaintext attack, chosen-plaintext attack, chosen-ciphertext
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attack, reused key attack, and statistical attack. We found that the proposed cipher is
resistant to these attacks. The novelty of this stream cipher and the previous version
is that a keystream once generated can be reused multiple times. This is because the
proposed ciphers are resistant to reused key attack as against the XOR-based stream
ciphers. The security of the QG-PRNG is analyzed against the attacks such as exhaus-
tive search attack and quasigroup attack. We found that QG-PRNG is resistant to
these attacks. The randomness of the obtained ciphertext and pseudo-random number
sequence is tested using the NIST-STS test suite. We found that both the ciphertext

and the pseudo-random number sequences are highly random.

1.7.3 MQG-PRNG and non-associative quasigroup based stream ci-
pher

It is a revised version of the works stated in the previous sub-sections & [L72
In this contribution, we have proposed a new stream cipher that uses a keystream
generated by multiple quasigroups based pseudo-random number generator, named
MQG-PRNG. The MQG-PRNG is also designed and described in this thesis. Both the
encryption/decryption and MQG-PRNG algorithms are designed using multiple quasi-
groups of order 16, and they use 16 quasigroups of order 16. These 16 quasigroups
are generated based on an original non-associative quasigroup of order 16. Mathe-
matically, we have shown that the space of a single quasigroup can be leveraged to
accommodate all these 16 quasigroups. This stream cipher is not only as secure as the
previous ciphers stated in sub-sections & but also uses around 99% less
space than the previous ciphers. This cipher is analyzed against various attacks, in-
cluding known-plaintext attack, chosen-plaintext attack, chosen-ciphertext attack, and
Time-memory-data tradeoff (TMDTO) attack. We found that the proposed cipher is
resistant to these attacks. This cipher also overcomes the major hurdle that exists in
the XOR-based stream ciphers against reused key attack. The security of the MQG-
PRNG is analyzed against brute force attacks, and a study on the robustness of the
MQG-PRNG against the slides and related-key attacks is carried out by analyzing the
avalanche effect of the keystream, and we found that the MQG-PRNG satisfied all the
required properties. The randomness of the obtained ciphertext and pseudo-random

number sequence is tested using the NIST-STS test suite. We observed that both
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the obtained ciphertext and the generated pseudo-random number sequence are highly

random.

1.7.4 An efficient block cipher based on multiple optimal quasigroups
and {e, d}-transformation

An efficient block cipher based on multiple quasigroups of order 16 is proposed. It uses
16 optimal S-boxes of 4 x 4 bits as an optimal quasigroup of order 16. It is an iterative
cipher, and its design is based on the Substitution Permutation Network (SPN). It uses
16 optimal quasigroups of order 16 and a 128 bits secret key for encrypting/decrypting
the messages. These 16 optimal quasigroups are constructed dynamically based on
an original optimal quasigroup of order 16. Because of this, our cipher leverages the
space of a single quasigroup and uses multiple quasigroups by generating them from
an original quasigroup. That is, the space required by multiple optimal quasigroups
is reduced to that of a single quasigroup. It performs a total of 16 rounds to encrypt
or decrypt a block of 128 bits. Each round, except the last round of the encryption
system, consists of a sequence of two transformations: (i) substitution and (ii) per-
mutation. The last round only performs a substitution. The substitution layer is a
key-dependent S-box layer and it is carried out using the {e, d}-transformation. The
{e,d}-transformation is also defined in this thesis. It randomly selects an S-box out
of 16, depending on the round sub-key.

We have analyzed the cipher for various attacks, including linear and differential
attacks. We found that the proposed block cipher is resistant to these attacks. Also,
the performance analysis (speed and time complexities) and diffusion power of the
proposed cipher are analyzed by comparing with that of the AES-128 and other existing
quasigroup based block ciphers [56,83]. Due to more computations, the proposed block
cipher is slightly slower than AES-128, while the proposed cipher uses only 50% of the
space of the AES-128. In addition, the proposed block cipher is more efficient than
DES and other existing quasigroup-based block ciphers [0, [0, [83], and gives a better
diffusion power than the existing quasigroup based block ciphers. The randomness of
the obtained ciphertext is tested using the NIST-STS test suite. We observed that the

proposed cipher produces highly random ciphertexts.

11
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1.7.5 A block ciphers based on multiple optimal quasigroups and

{ne’, nd*}-transformation

This work is an extension of the work discussed in the previous sub-section [1.7.4] It
also uses the same 16 optimal S-boxes as an optimal quasigroup of order 16 as used
in the previous block cipher. It uses {neé, nde}—transformation with 128 bits round
key, and performs a total of 17 rounds to encrypt or decrypt a block of 128 bits.
The {ne’,nd’}-transformation is also defined in this thesis. Each round, except the
first and last rounds of the encryption system, consists of three transformations: (i)
substitution, (ii) permutation, and (iii) add-round key. The first round performs only
the add-round key and the last round performs the substitution and add-round key.
The substitution layer (also called a non-linear transformation) is a key-dependent
S-box layer and it is carried out using the {ne’, nd‘}-transformation. That is, the
{ne’,nd"}-transformation randomly selects an S-box out of 16, depending on the
round key. The security and the randomness of this cipher are analyzed as in the case
of the previous cipher mentioned in the previous sub-section [1.7.4] and we concluded

that this cipher is also as secure or more than the previous one.

1.7.6 A QGMD5-224 bits hash function and a QGMAC-224 bits mes-
sage authentication code based on a quasigroup

We proposed two schemes based on a quasigroup: (i) a cryptographic hash function,
named here as QGMD5-224, and (ii) a message authentication code based on QGMD5-
224, named here as QGMAC-224. The proposed schemes can be seen as extensions of
the MD5 and HMAC-MD5. The QGMD5-224 hash function expands the hash size of
the MD5 by converting 128 bits into 224 bits. The QGMAC-224 expands the MD5-
based message authentication code (HMAC-MD5) by converting 128 bits into 224 bits.
Both the expansions are carried out using the quasigroup expansion (QGExp128To0224)
and the quasigroup compression (QGComp224To128) layers. Note that the underlying
structure of both the schemes QGMD5-224 and QGMAC-224 is the same. The only
difference between the two is that the quasigroup used in the QGMD5-224 is publicly
known, while the quasigroup used in the QGMAC-224 acts as a secret key. The security
and efficiency of the proposed schemes (QGMD5-224 and QGMAC-224) are analyzed
by comparing them with their counterparts, such as SHA-224 and HMAC-SHA-224. It

12



1.8 Publications

is observed that the proposed schemes are more secure and efficient than the existing

proposals.

1.7.7 A QGMD5-384 bits hash function and a QGMAC-384 bits mes-
sage authentication code based on a quasigroup

It is an extension of the work previously discussed in the sub-section In this
contribution also we propose two schemes based on a quasigroup: (i) a cryptographic
hash function, named here as QGMD5-384, and (ii) a message authentication code
based on QGMD5-384, named here as QGMAC-384. The primary goal of proposing
these new schemes is to obtain a 160-bit longer hash value and MAC value than the
previous one by spending a little bit of extra time. Because of this, the new schemes are
found to be more secure than the previous ones. Also, the algorithm of QGMD5-384
uses an optimal quasigroup of order 16, while the algorithm of QGMAC-384 uses a
quasigroup of order either 16 or 256. The proposed schemes can be seen as extensions
of the MD5 and HMAC-MD5. The QGMD5-384 expands the hash size of the MD5
by converting 128 bits into 384 bits. The QGMAC-384 expands the HMAC-MD5
by converting 128 bits into 384 bits. Both the expansions are carried out through a
series of QGExp128T384 expansion and QGComp384To128 compression layers. The
QGExp128T0384 expansion layer is implemented using two sub-expansion layers. The
first sub-expansion layer of QGExp128T0384 transforms 128 bits into 224 bits and it is
referred to as QGExp128To224. The second sub-expansion layer of QGExp128To384
transforms 224 bits into 384 bits and it is referred to as QGExp224To0384. And the
QGComp384Tol28 compression layer compresses 384 bits into 128 bits. The security
and efficiency of the proposed schemes (QGMD5-384 and QGMAC-384) are analyzed
by comparing them with their counterparts, such as SHA-384 and HMAC-SHA-384. It
is observed that the proposed schemes are more secure and efficient than the existing

proposals.
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1.9 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2: introduces the required mathematical objects such as quasigroup,
left inverse quasigroup, right inverse quasigroup, optimal quasigroup, quasigroups

as vector-valued Boolean functions, and the generation of quasigroups.

Chapter 3: presents a comprehensive survey of the existing quasigroup-based
cryptographic primitives such as stream ciphers, block ciphers, hash functions,
HMAC:S, etc.

Chapter 4: discusses the proposed three variants of stream ciphers based on
quasigroup, including the basic structure, building elements, and security and

performance analyses.

Chapter 5: discusses the proposed two variants of block ciphers based on mul-
tiple optimal quasigroups, including the basic structure, building elements, and

security and performance analyses.

Chapter 6: describes the proposed two variants of hash functions and HMACs
based on quasigroup, including the basic structure, building elements, and anal-

yses the security and performance of the proposed schemes.

Chapter 7: presents the concluding remarks of the research work done, including

future directions of research.
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Chapter 2

Mathematical Backgrounds

2.1 Latin square
Definition 2.1.1. A Latin square of order n is a n X n matriz in which the entries are

taken from a finite set S and the symbols are arranged in such a way that each symbol

occurs only once in each row and only once in each column.

Example 2.1.2. Table is an example of a Latin square of order 6, where the

elements are from the set S = {a,b,c,d, e, f}.

Table 2.1: Latin square of order 6.

al|lblcldlelf
dle| flal]b]c
cldl|le|flal|b
blcld|e|f]|a
e al|bl|cl|d
flalb|lc|d]e

The concept of Latin square was introduced by the mathematician Leonhard Euler
(1707 — 1783), and used Latin characters as symbols, but any set of symbols can be
used; in the above example, the alphabetic sequence a,b,c,d, e, f can be replaced by

the integer sequence 1,2, 3,4, 5, 6.
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2.1.3 Orthogonal representation of a Latin square

The orthogonal representation of the Latin square is a set of n? triples obtained by
writing each entry of a n x n Latin square as a triple (r,¢,s), where r is the row
number, ¢ is the column number, and s is the symbol. Example [2.1.4] shows a Latin

square and its corresponding orthogonal representation.

Example 2.1.4. Let S = {1,2,3,4} be a set of order 4. A Latin square over S and
its corresponding orthogonal representation are given in Table (a) and in Table
(b), respectively.

Table 2.2: Latin square of order 4 and corresponding orthogonal representation.

112034 (1,1,1) | (1,2,2) | (1,3,3) | (1,4,4)

201143 (21,2 (221 ](23,4) | (2,4,3)

3(4(1]2]3,1,3)3,2,4)1(3,3,1) | (3,4,2)

4031211]4,1,4)|(4,23) | (4,3,2) | (4,4,1)
(a) (b)

Various operations on a Latin square can be performed to form another Latin square,
in which one of the operations can be explained using an orthogonal representation
of the Latin square. That is, by permuting the rows, columns, and symbols of an
orthogonal representation of the Latin square, we can obtain a new Latin square, also
called isotopic to the original Latin square [75]. That is, by permuting (r,¢,s) of a
Latin square, we can form 6 different Latin squares. For example, if we replace each

triple (r, ¢, s) by (¢,r,s), then we get the transpose of the original Latin square.

2.1.5 Number of Latin squares

For any n, Latin squares of order n can be easily constructed, but counting the distinct
Latin squares of a large order n is very challenging. This is because the number of
Latin squares of order n increases greatly as n increases. The number of distinct Latin

squares of order n can be calculated by the following equation [II, [79]
L,=n!x(n-1)!xR, (2.1)

where IL,, denotes the number of distinct Latin squares, R,, denotes the number of

distinct reduced Latin squares, where a reduced Latin square is one in which the first
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row and the first column are in the natural order. An example of a reduced Latin
square of order 4 is given in Table (a). For n < 11, the results of L,, and R,, are
given in Table [14, [61]. The most recent case for n = 11 is determined in [53], and

for n > 12, the problem remains open for a Latin square researcher [14] [61]. Also, the

Table 2.3: The number of Latin squares and reduced Latin squares of order n

n number of Latin squares (L) number of reduced Latin
squares (R;,)

1 1

2 2 1

3 12 1

4 576 4

5 161, 280 56

6 812,851,200 9,408

7 61,479, 419, 904, 000 16, 942, 080

8 108, 776,032,459, 082, 956, 800 535,281,401, 856

9 5,524, 751,496, 156,892,842, 531, | 377,597, 570, 964, 258, 816
225,600

10 9,982, 437, 658,213,039, 871,725, | 7,580, 721,483,160, 132, 811,
064, 756, 920, 320, 000 489,280

11 776,966, 836,171,770,144,107, 5,363,937,773,277,371, 298,
444,346,734, 230, 682, 311,065, 600, | 119,673, 540, 771, 840
000

> 12 ? ?

Equation (2.1)) is not practical for larger n. Therefore the following inequality gives an
estimate of the most accurate upper and lower bounds of the Latin squares of order

n [34)

(n!)Qn n n
< Lol < [Tk, (2.2)
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where |L,| denotes the number of Latin squares of order n. For n = 2k k=4,5,6,7,8,

these numbers are as follows:

0.101 x 10M? < |Lig| < 0.689 x 10138,
0.414 x 1075 < |LL3a| < 0.985 x 107,

(2.3)
(2.4)
0.133 x 10%% < |Lgy| < 0.176 x 10119, (2.5)
0.337 x 1079990 < |Lypg| < 0.164 x 10%'%1, (2.6)

(2.7)

0.304 x 10101724 < |Lys| < 0.753 x 10102895,

2.2  Quasigroup

Definition 2.2.1. Let Z, be the set of non-negative integers less than n. A quasigroup
Q = (Zy,*) defined over the set Zy, with a binary operation * satisfies the following

properties:

(i) For all ty, ty € Zy, t1 * to € Zy, (Closure property).

(i) For each pair (t1,t2) € Zy X Ly, there exists unique pair (ts,ty) € Lp X Ln,
such that t1 xt3 =ty and t4 xt1 = 9.

e Quasigroups also satisfy the following cancellation properties:
(iii) t1 * to = t1 * t3 = to = t3 (Left cancelation).

(iv) tg xt; =tz xt; = to = t3 (Right cancelation).

Note that the binary operation * is also called a quasigroup operation corresponding to
the quasigroup Q. For a quasigroup Q, properties (i) and (ii) must be satisfied. The

following example illustrates an example of a quasigroup of order 5.

Example 2.2.2. Table is an example of a quasigroup Q = (Zs,*) of order 5 over
the set Z5={0,1,2,3,4}. Note that for t; = 2 and to = 4, t3 = 3 and t4 = 1 are the
unique elements of Zs. This is because t1xt3 = 2x3 = 4 = to and ty*t1 = 1%x2 =4 = ts.
This is true for all t1,ty € Zs.

A quasigroup is an algebraic structure resembling a group in the sense that division
is always possible. For any positive integer n there exists a quasigroup @ = (Z,, ) of
order n. Quasigroups differ from groups mainly in that they do not necessarily require

the properties of associativity and commutativity to be satisfied. They also do not
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Table 2.4: Quasigroup of order 5.
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need the existence of identity. That is, every group is a quasigroup but the converse is
not true. Quasigroups of order n are usually represented using an n X n multiplication
table. This multiplication table is formed by the permutations of the elements of the
set Z, = {0,1,2,...,n—1} in such a way that each element occurs exactly once in each
row and exactly once in each column. Such a table is also called a Latin square [16].
Also, the number of quasigroups is the same as that of the Latin squares. Since the
number of Latin squares increases rapidly with its order it follows that the number of
quasigroups increases rapidly with its order. That is, the generation of all the possible
quasigroups of an arbitrary order n (where n > 12) is a hard problem. Properties (i)
and (ii) of the quasigroups enforce the operation table of a quasigroup to be a Latin
square. Therefore, Equation is also an estimate of the number of quasigroups.
Hence, the number of quasigroups of orders 16, 32,64, 128, and 256 also satisfy the

equations and respectively.

2.2.3 Non-associative quasigroup

Definition 2.2.4. A quasigroup Q = (Zy, *) is said to be a non-associative quasigroup

if the following properties are satisfied:

(i) @ must be a quasigroup (see, Deﬁnitianm
(ii) If 3 t1,ta,t3 € Zp, (t1 xt2) xt3 # t1 * (t2 * t3) (Non-associative property).

Like quasigroup generation, the generation of all possible non-associative quasi-
groups of the larger order is also a hard problem. This is because the number of
non-associative quasigroups grows exponentially with its order. For instance, the num-
ber of possible quasigroups, associative quasigroups, and non-associative quasigroups

up to order 6 is shown in Table Note that associative/non-associative quasigroups
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2.2 Quasigroup

are a subset of all possible quasigroups of order n, n > 2. That is, the total number of
all possible quasigroups is equal to the sum of the number of both the associative and

non-associative quasigroups. As a result, given in Table it can be observed that

Table 2.5: Number of associative quasigroups, non-associative quasigroups, and quasi-

groups

Order Associative quasigroups Non-associative quasigroups Quasigroups

2 2 0 2

3 9 12

4 16 560 576

5 30 161,250 161,280

6 480 812,850,720 812,851,200

the number of associative quasigroups of order n (denoted by NAQ(n)) lies between
(n—1)land n!, 2 <n <6,ie (n—1)! < NAQ(n) < n!l. For a large value of n, it is a
longstanding open problem to find a suitable tight bound to approximate the number
of associative quasigroups of order n or to prove that such bounds do not hold. So,
from Equation the approximated number of non-associative quasigroups is bound

above by

n

n
NNAQ(n H (k)% — NAQ(n) ~ [J(*)*, (2.8)
k=1 k=1
where NN AQ(n) denotes the number of non-associative quasigroups of order n. That

is, for n = 16 and using Equation the approximated maximum number of non-

associative quasigroups of order 16 is bonded above by

NNAQ(16) ~ 0.689 x 10'38 ~ 2456, (2.9)

2.2.5 Left inverse, right inverse and n-quasigroup

Definition 2.2.6. Let LIQ = (Zy,\) denotes the left inverse quasigroup of the quasi-
group Q = (Zn,*). Then the LIQ satisfies the following conditions:
(i) LIQ must be a quasigroup.
(ii) ta xt1 =tz & t; = to \ ts, where t1,to,t3 € Zy,.
The binary operation ‘\’ is a left inverse operator (or a left inverse quasigroup

operation) corresponding to the quasigroup LIQ = (Zy,\). The example given below

illustrates the concept of left inverse quasigroup.
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Example 2.2.7. Consider the quasigroup Q =< Zs,* > with Zs = {0,1,2,3,4}, let
its operation table be as in Table[2]} Then, the corresponding left inverse quasigroup
is LIQ =< Zs,\ > whose operation table is given in Table .

Table 2.6: Operation table of LI1Q.

S IS Y
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Definition 2.2.8. Let RIQ = (Zy, /) denotes the right inverse quasigroup of the quasi-
group Q = (Zy,*). Then the RIQ satisfies the following conditions:

(i) RIQ must be a quasigroup.

(ZZ) toxt] =13 & to = t3/t1, where t1,ta,13 € Lo, .

The binary operation ‘/’ is a right inverse operator (or a right inverse quasigroup
operation) corresponding to the quasigroup RIQ = (Z,, /). The example given below

illustrates the concept of right inverse quasigroup.

Example 2.2.9. Consider the quasigroup Q =< Zs,* > with Zs = {0,1,2,3,4}, let
its operation table be as in Table|2.4 Then, the corresponding right inverse quasigroup
is RIQ =< Zs,/ > whose operation table is given in Table .

Table 2.7: Operation table of RIQ.

= W NN R O
O N W RO
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N = O W —= W
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2.2 Quasigroup

Definition 2.2.10. An n-quasigroup is a finite algebra (Zy, f, f1,..., fn) consisting of
the elements of Z,, with n+1 n-ary operations and satisfies the following identities [60]:

f(fi(tta, - o stn) e, oo tn) =t = fi(f(t,ta, .o tn) T, ooy tn)
f(t1, fa(ti te, .o oitn), ..o tn) =ta = fo(te, f(t1,ta, - stn)s oo tn)

f(tl7t27 .. '7fn(t17t27 s 7tn)) =t, = fn(t17t2a s 7f(t17t2a cee atn))

where f, f1, fa,..., fn are n-ary operations (or n-ary quasigroup operations) such that
flti,ta, ..o ty) = ther = fi(ti,to, ... tn), 1 < i < n, i.e. the knowledge of any n
elements of t1,ta, ..., ty,tnyr1 allows an n-ary operation to uniquely determine the re-

maining one element.

This thesis deals with a 2-ary (binary) quasigroup (Z,, f, f1, f2), defined over a
non-empty set Z, together with three 2-ary (binary) operations f, f1, and fo. This is
defined in Lemma [2.2.11} where f, f1, and f2 are denoted by *,\, and /, respectively.

Also, the symbols %, \, and / are called a quasigroup, a left inverse quasigroup, and a

right inverse quasigroup operations, respectively (see definitions[2.2.1] [2.2.6| and [2.2.8)).

So, f(t1,t2) is represented as tg * t1, fi(t1,t2) is represented as to \ t1, and fa(t1,t2) is

represented as to/t;.

Lemma 2.2.11. A quasigroup Q = (Zn,*,\,/) is an algebra with three binary opera-
tions (x,\, /), and satisfies the following identities:
ta\ (taxt1) =t

tox (t2 \ 1) =11

(taxty)/t1 = to

(ta/t1) xt1 = to

Proof. Since LIQ = (Zy, ) is the left inverse quasigroup of the quasigroup @ = (Z,,, *).
Then, from property (ii) of Definition [2.2.6| for each triplet (¢1,t2,t3) € Zy, X Zp X Ly,

we have
toxt1 =13 &t :tQ\tg,

Hence, to \ (ta xt1) =t2 \ t3 = 1.
In property (ii) of Definition if we interchange the variables ¢; and t3, we have

tz*t3:t1<=>t3:t2\t1.
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Hence, tg * (t2 \ t1) = to * t3 = ;.
Using the operation tables Table and Table corresponding to (Zs, *) and (Zs, \),
respectively, we can also prove that both identities and are true, V t1,to €
Zs.

Similarly, using the property of the right inverse quasigroup, defined in Defini-

tion both the identities (2.12)) and (2.13) can also be proved. Also, using the
operation tables Table and Table corresponding to (Zs,*) and (Zs, /), respec-

tively, both the identities (2.12f) and (2.13) can be proved to be true, V t1,t3 € Z5. O

2.2.12 {e, d}-transformation based on quasigroup

Let Z,, = {po,p1,---,Pn—1} be an alphabet, and Q = (Z,, *,\) be the quasigroup dis-
cussed earlier. Let ¢ be a leader (or a seed value) which is used in {e, d}-transformation.
Then, the e-transformation is denoted by a mapping f(, ) : Z} — 7}, where Z de-
notes the set of nonempty strings of the alphabet Z,,, and it is defined as in the following

equation.

fe0(Po, P15+ -+ PR—1) = C05C15 - -+, C1, fOT K > 1, (2.14)
where cg = £ *pg, ¢c1 = Co*P1, --.y Ch1 = Ck—2 * D1
Similarly, the d-transformation is denoted by a mapping fn ¢ @ Z — Z;, where

Z;} denotes the set of nonempty strings of the alphabet Z,, and it is defined by the

following equation.

fooleo ety ek-1) = posp1, - -, Pr—1, for k > 1,
(2.15)

where pg =€\ co, p1 =co\ €15 -+, Ph—1 = Ck—2 \ Ck—1.

So, we can say that the sixtuple (Zn, *,\, £, f(x0), f(\,¢)) is @ quasigroup cipher over the

alphabet Z,, and its correctness is shown by the following lemma.

Lemma 2.2.13. If (Zn,*,\, 4, fx0), fo\0)) 18 a quasigroup cipher over the alphabet

L = {P0; P15 - -, Pn-1}, then fo o)(fx0(p)) = p, where p is the plaintest derived from
the alphabet Z,,.

Proof. Let
fe,0)(Pirs Digs - -+, Dij) = Ciys Cigy - - -, Ciy, for some j > 1, and 0 <i <n — 1.
Also, let

f(\,f) o f(*f)(pilapiza cee 7pij) = f(\,ﬂ)(cipciza .. '7Cij) = Tjyy Ligy .- 7:E’L'j-
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2.2 Quasigroup

So, from Equation , we have
Ciy = L% iy, Ciy = Ciy % Digy -y Ciy = Ciy_y * i
Also, from Equation , we have
Tiy =L\ Ciy, Tiy = Ciy \ Ciyy -+ Tij = Ciy_y \ Cij-
So, by Lemma [2.2.11
ziy =L\ (L piy) = piy,
Tiy = ciy \ (Ciy * Diy) = Diys

ey

zi; = ci; oy \ (Cij_y * piy) = Dij-
Hence, f(\ o) (f(r0)(P)) = p- 0

So, it is quite clear from Lemmal2.2.13that f(, ;) is an encoding function and f(\ 4 is
a decoding function, for encryption and decryption over the alphabet Z,, respectively.

The example given below illustrates the correctness of this lemma.

Example 2.2.14. Consider the quasigroup Q = (Zs,*,\) with Zs = {0,1,2,3,4}. Let
its operation tables be as given in Table and Table [2.6. Let ¢ = 4 and plaintext
P = 2042301431. Then, for encrypting the plaintext P, we have applied the encoding
Junction f 4y and the quasigroup as shown in Table . So, the ciphertext

C = flua)(P) = 2300234434,

For decrypting the ciphertext C, we have used left inverse quasigroup given in Table[2.4

and decoding function fn 4). The recovered plaintext is

P = fu 4(C) = 2042301431

2.2.15 New {e, d}-transformation based on quasigroup

In this thesis, we also use a new {e, d}-transformation for designing the new cryp-
tographic primitives. The use of this transformation is that it allows us to split
the transformation into two parts: (i) {ne!,nd'}-transformation, and (i) {ne",nd"}-
transformation, where ne!-transformation and nd'-transformation are the mutually in-

verse transformations of each other, similarly ne”-transformation and nd"-transformation
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are the mutually inverse transformations of each other. That is, if nel-transformation
(ne"-transformation) is used in the encryption algorithm, then nd'-transformation (nd"-
transformation) is used in the decryption algorithm, and vice versa.

Consider a non-empty alphabet Z,, = {po,p1,...,pn—1} and a quasigroup Q =
(Zn,*,\,/), and let a secret key to be used in the new {e, d}-transformation be K =
{ko,k1,...,kn_1}. Let ne!, nd', ne” and nd” transformations be mappings fO, Ky f(\ss K),
f(x), K), f(/«, K) from Z} to Z;, where Z} denotes the set of non-empty strings over
the alphabet Z,,, and defined as in the following equations:

TLBl . f(*\’K)(pO’plv' <. apT—l) =C0,Cly---,Cp—1,T > 1 (216)
where cg = kg * pg,c1 = k1 *p1y...,C—1 = kr_1 % pr_1
\*7K C0yCly vy Cr— 1):p07p17"')p7"—17r21 (2 17)
where po = ko \ co,p1 = k1 \c1,...,prm1 = ko1 \ 61
f */7 p07p17"'7p7“—1)2007017"'7CT—17T21 (2 18)
where co = po * ko,c1 = p1 *xk1,...,¢r—1 = Dpr_1 ¥ kr_1
/*7K C0,C1y- -5 Cr— 1):p07p17"'7p7’—17’r21 (2 19)
where pg = co/ko,p1 = p1/k1, ..., pr—1 = cro1/kr 1

Note that ne! and nd' transformations use the quasigroup Q = (Z,,*) and its left
inverse quasigroup LIQ = (Zy,)\), respectively. Similarly, ne” and nd" transforma-
tions use the quasigroup @ = (Z, *) and its right inverse quasigroup RIQ = (Z,, /),
respectively.

Also, note that both ne! and ne” transformations use the same quasigroup Q =
(Zy,, %), but for obtaining the value of ¢;, nel-transformation evaluates the expression
k; *p; while ne"-transformation evaluates the expression p; *k;, i > 0. Both of them are
not the same. This is because a quasigroup is a non-commutative algebraic structure.
So both ne! and ne” transformations would produce different results because p; * k; #

ki * Dj.

2.2.16 Optimal quasigroup

Definition 2.2.17. An optimal quasigroup @ = (Zgr,*) is a groupoid which has the

following properties:
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(i) Q must be a quasigroup (see Definition .

(ii) Each row or each column of Q must be an optimal S-box of k X k bits.

As of now, no algorithm has been developed for generating the optimal quasigroups
of order 2¥ k > 4. So, finding an optimal quasigroup of order 2 is still a longstanding
open problem. Note that each row of an optimal quasigroup is an optimal S-box.
That is, an optimal quasigroup of order 2* consists of 2* optimal S-boxes of k x k
bits. A k x k bits S-box is a Boolean map such as S : F5 — F5 where Fy is a
Galois field over {0,1}. In other words, an S-box is a permutation of the elements of
Zor={0,1,2,...,2F —1}. This thesis deals with forming an optimal quasigroup of order
16 and requires 16 optimal S-boxes of 4 x 4 bits. The description of a 4 x 4 bits optimal
S-box is given in definition [2.2.18

Definition 2.2.18. A 4 x 4 bits S-bozx is said to be optimal if the following conditions
are satisfied [14)]:
(i) S is a bijection,
(ii) Lin(S) =8, and
(i1i) Diff(S) = 4,
where Lin(S) and Diff(S) are the linearity and the differential characteristics of an
S-box, and are defined as follows: Let u = (ug,u1,...,ur—1) and v = (v, v1,...,Vk_1)

be two vectors, where both u;,v; € Fo,0 < i < k — 1. The dot product of u and v can

be written as

k—1
u.v = E Ui Vi,
=0

then
Lin(S) = maz{|Wg(u,v)| : u € F§,v € F§ andv # 0} (2.20)
and
Diff(S) = maz{|as (u,v)| : u € F§, v € F& andu # 0}, (2.21)
where

Ws(u,v) — Z (_1)u.x+v.S(x)

xEFS
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and
As (u,v) ={z e F5: S(xdu) ® S(z) = v},

|...| denotes the cardinality of a set, and @& denotes bit-wise XOR (modulo 2) operation.
An S-box’s linearity and differential characteristic measure the resistance against the
linear and differential cryptanalysis attacks, respectively. The smaller the linearity and
the differential characteristic of an S-box, the more secure against these attacks.

Generation of the optimal quasigroups of order 16 is a hard problem since it consists
of a total of 16 optimal S-boxes of 4 x 4 bits. We generated it based on 16 optimal S-
boxes. Various algorithms that generate 4 x4 bits optimal S-boxes exist in the literature
[55, [84]. Note that all such S-boxes are not suitable for forming a quasigroup. This is
because a quasigroup is a mathematical object and has specific properties that must be
satisfied (see Definition . We have chosen 16 S-boxes, namely, Sy, S1,S52,...,515
given in [83]. We verified that each of these 16 S-boxes is a bijection; that is, all the 16
S-boxes satisfy property (i) of Definition For the linearity and the differential
characteristic of Sy, for k = 4, we evaluated the values of Wg,(u,v) and the values
of Ag, (u,v) using the equations Equation and Equation , respectively,
Yu,v € IE‘%. The corresponding results are shown in Table and Table where u
denotes the row number and v denotes the column number. We see that the maximum
values in tables Table and Table are 8 and 4, respectively. So, Lin(Sy) = 8
and the Dif f(Sp) = 4. That is, the Sy S-box also satisfies both properties (ii) and (iii)
of Definition [2.2.18] Hence Sy is an optimal S-box. Similarly, we have also verified the
remaining S-boxes, and we found that all of them satisfy all the required properties of
an optimal S-box. Also, these 16 S-boxes are suitable to form an optimal quasigroup
Q = (Z16,*), shown in Table where * is a quasigroup operation corresponding to
the quasigroup @ of order 16.

2.2.19 Quasigroups as vector valued Boolean functions

Quasigroups are suitable in cryptosystems because of their structure and their large
number. A quasigroup with order 2¥ can be represented as a vector valued Boolean
function f : F%k — IF’Z‘?, where Fy is a Galois field over {0,1}. This representation
can classify a quasigroup as linear or non-linear. A Boolean map f : F%k — IF’Z“ is

represented by k-tuple of polynomials in which each polynomial is a Boolean function
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Table 2.8: Optimal quasigroup of order 16.

* 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0| SH: 8 0O 11 2 9 14 7 6 13 3 15 4 5 10 12 1
115: 11 8§ 0 7 6 9 14 15 4 13 3 12 1 5 10
2 1 S: 2 11 0 8 6 4 9 4 15 3 13 1 12 10 5
3 |S5: 10 5 1 12 3 13 4 15 14 9 6 7 0 8 2 11
4 | S4: 9 14 7 6 8 1 2 5 10 12 1 13 3 15 4
5(1S5: 0 8 2 11 14 9 6 7 3 13 4 15 10 12
6 | S¢: 12 5 10 15 4 13 3 6 14 11

7018: 1 12 10 5 4 15 3 13 7T 14 9 2 11

8 | S: 14 9 6 7 0 2 1 10 5 1 12 3 13 17
9 | So: 7 4 11 2 8§ 0 12 1 10 15 4 13

10 [ Sjp: 3 13 4 15 10 1 12 0 8 11 14 9

11 (Spp: 6 7 14 9 2 11 0 1210 5 4 15 13
12 (S, 5 10 12 1 13 3 15 4 9 14 6 8 11
13(S53: 4 15 3 13 1 12 10 5 2 11 O 8 6 7T 14

14 | Syy: 15 4 13 3 12 1 5 10 11 0 7 14
15| Si5: 13 3 1 4 5 10 12 1 8 O 11 2 9 14 6

fi: F%k — Fy, 1 < i < k. A Boolean function f; : F%k — Fy can be uniquely written in

its Algebraic Normal Form (ANF), as a polynomial in 2k variables as

f(l’l, Ly e ey .%'gk) = Z C[xf, (2.22)
I1C{1,2,...,.2k}

wherez! = H:ci,x¢’ =1, and C; € {0, 1}.
el

The algebraic degree of the Boolean map f is the maximum algebraic degree of its
component functions (fi, fa,..., fr). So,

deg(f) = maz{deg(fi(zx)) : x € F¥ and z # 0, 1 < i < k}. (2.23)

If deg(f) = 1, then f is linear otherwise non-linear.
Let Q@ = (Zgx, *) be a quasigroup of order 2F. Also, let 2,y € Zor, where x =

(z1,72,...,21) € F¥ and y = (Yry1, Ykso, - - -, Yor) € F5. Then, the representation of Q
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Table 2.9: Results of W, (u,v) for the S-box Sp.

u\ v 2 4 |56 |7 10 |11 | 12| 13|14 | 15

0 ojojojojo0|01|O 0] 0| 01O 0
1 8|44 |-4]14]|10)|0]-8 4| -4 -4 4
2 0|4 |-4,4|4,0|8|4|4|0]|8|0]|]O0|-4]| 4
3 0| 8|-8,0|0101|O0 4 | -4 -4|-4]-4|-4]-4
4 00| 8 |4|4|-4|4 81 00 -4 | -4 | -4
5 0|-4|-4,0|0|4|4|-8|0 -4 8| 4 | 4
6 0|44 10|0 4|44 |4]-8]0 41810
7 81 0|0|-4|4|-4|-4|-4|-4|-4|4|0]|] 0| 0]-8
8 4141014108404 |-4|]0|-4|8]|0]-4
9 410|418 |-4]|]0]|-4 4101 4|-8]-4]0]-4
10 |4 (8|40 |-4]8|-4]|-4[0| 4|0 0]-4]0
11 |4 (4]0(4]0]0|-4|-4|0|-8|-4|0/|-4]|-4]| 8
12 |4 (4]0 |8|4|-4|]0]|]0|-4]4]-8]0 4 10
13 | 4 4 1-4|-8,-4|8|0|-4|0]|-4]|-4 410
14 | 4 4 |-4|18,4|0(4/0|4]|]0|-8|-4|0]4
15 | 44701041404 ]-8]{0|-4|4|0]-8)|-4

as vector valued Boolean function is as follows:

rxy = f(x1,29,...,298) = f(fr(x1, 22, .., Tok), fo(1, 22, ..., T2k), -, fr(T1, T2, ..., Top)),

Y&,y € Lok, and f; : F2F 5 Fy, 1< i< k.

Now, a quasigroup @ is said to be linear if deg(f;) < 1, V1 < i < k; otherwise, Q
is said to be a non-linear quasigroup. Note that the number of quasigroups grows
exponentially as the value of k increases [79]. So, it is very difficult to identify all the
linear and non-linear quasigroups of order 2¥. However, it is shown in [21] that for
k = 2, there are 576 quasigroups of order 4, of which 144 are linear quasigroups, and
432 are non-linear quasigroups. The following example illustrates one such non-linear

quasigroup of order 4 with degree 2.

Example 2.2.20. Let Q = (Zy4, %) be a quasigroup of order 4 with mapping fF3 — F3.
The quasigroup @ can be represented as a vector valued Boolean function f(z1,x2,3,24) =
(x1 + x2 + 3, 2123 + Tox3 + 21 + 23 + x4 + 1). So, Q is a non-linear quasigroup with
degree 2, its operation table is given in Table[2.11]
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Table 2.10: Results of Ag, (u,v) for the S-box Sp.

u\v|[0]1]2[3|4|/5(6|7|8|9|10|11 (12|13 |14 |15
1 0(2(0]010j0]0]2|2|2] 0 210 2 2 2
2 0j0(4]210(0]0]2|2|2] 0 2 101]0 210
3 0/(]010|0]2]0]2]0]0(4]| 2 2 2 101] 0] 2
4 0(2(0(212(2]0]0|2|2] 0] 0 210 210
5 0j0y0j0j0{2{4}212(2|0|01|0 2 210
6 0/2(4]0/0(0}2]0|010] 2] 0 210 2 2
7 07/2/0|0]0|4]0]2]0(0| 0 2 210 2 2
8 0010|2422 ]2]0(0| 0 2 21010710
9 0(j0/0|2|0(0}2]0(0(0| 2|4 |0 | 4|02
10 (02202222 |0(0] 0] O 2 10|02
11 ([0({0(2]|2|0]0]|0|0|4]0] 0| O 2 210 4
12 ([0|0|2]|2|2]0]0]2|2(0] 2|00 4010
13 |0]0}2(4(0|2|0]0]|0|2] 4] 0] 0710 210
14 ([0|2|0]02(2]2|]012|0] 4|07 0]0 210
15 (040021010 ]2]0(2] 0 2 2 21010

2.2.21 Quasigroup generation

Generating all possible quasigroups of a given order is a hard problem. This is because
as the order increases, the number of quasigroups grows exponentially [79]. Various
algorithms exist in the literature [42 [64] 62], to generate the quasigroups of arbitrary
order. Given a quasigroup, a new quasigroup can be generated by permuting rows,
columns, and symbols of the given quasigroup. This is referred to as an isotopy or

isotopism [42] [75], see the following definition.

Definition 2.2.22. Let Q1 = (Zn, *1) and Q2 = (Zy, *2) be two quasigroups. An order
triple of bijective mappings o, 8,7 : Zy, — Zy, is called an isotopism from Q1 to Qa, if
Va,y € Zy

a(z 1 y) = B(x) *2(y).

It is noteworthy that an isotopism can allow a quasigroup )2 to be created from

another quasigroup (1. This is illustrated in the following example.
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Table 2.11: Non-linear quasigroup of order 4.

W N = O %
S N W IO
— W N O
W O = NN
N = O W W

Example 2.2.23. Let Q2 = (Z4,%2) be a quasigroup of order 4 over the set Z, =
{0,1,2,3}, whose operation table is shown in Table . Let the bijective mappings
a, B,y : Ly — Zy4 be defined as

012 3 012 3 012 3
a= , B = ; V=
2 10 3 1 2 30 302 1

Then the new quasigroup Q1 = (Z4,*1) is defined by x %1y = a1 (B(z) *2v(y)), which
is isotopism to Qo = (Zy4,*2), shown in Table .

Table 2.12: Quasigroup @ Table 2.13: Quasigroup Q2
*q 0 1 2 3 *9 0 1 2 3
0 0 1 3 2 0 2 1 0 3
1 1 3 2 0 1 1 3 2 0
2 3 2 0 1 2 3 0 1 2
3 2 0 1 3 3 0 2 3 1

Claim 2.2.24. If Q is a quasigroup of order n. Then, a mazimum of n\> quasigroups

can be created by permuting both the rows and columns of Q, where n > 4.

Proof. Let Q = (Zp,*) be a quasigroup over the set Z, = {0,1,...,n — 1}. It can
be represented as an n x n matrix (for example, a 4 order quasigroup is shown in
Table , and consists of n number of rows and n number of columns, where each
row and each column is a permutation of Z, = {0,1,...,n — 1}.

Now, by permuting only rows of quasigroup (), at most n! quasigroups can be
created. Similarly, by permuting only columns of quasigroup @, at most n! quasigroups
can also be created. So, by permuting the rows and the columns of the quasigroup Q,
a total of n!? quasigroups can be created. This is because, for each row permutation of

@, a maximum of n! quasigroups can be formed by permuting the n columns of Q. [
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2.2 Quasigroup

The above claim is helpful in designing new cryptosystems that use multiple quasi-
groups. Also, the new cryptosystems can employ multiple quasigroups by leveraging
the space of a single quasigroup. In other words, for the design of new cryptosystems
based on multiple quasigroups, it is not necessary to store all quasigroups since they
can be generated by permuting rows, columns, or both of an original quasigroup. Next
section gives an algorithm to generate n quasigroups of order n = 2* by permuting the

rows of an original quasigroup Q = (Zgk, ).

2.2.25 Quasigroup generation based on row permutations

Let Q = (Zgr,*) be an original quasigroup of order n = 2* over the set Zo =
{0,1,...,n—1}. Since the quasigroup @ is represented by an n x n matrix, where each
row and each column is a permutation of the elements of Zqyx. Let Sp, S1,...,S5,—1 be

the rows of (), where each S; is a permutation of the elements of Zox,0 <7 < n — 1.
Then, the quasigroup @ can also be represented as Q = (Sp, 51, ..., Sn,—1). For instance,
a quasigroup @ = (So, S1,...,515) of order 16 is shown in Table

By permuting the rows of an order n quasigroup ), n! quasigroups can be cre-
ated. These n! quasigroups are nothing but permutations of Sy, S1,S52,...,and S,,_1
rows. Note that here we have specified only n quasigroups to be generated. In other
words, we have to generate or select any m quasigroups out of the total n! quasi-
groups. Let the generated or selected quasigroups be denoted by Qo = (Zy, *0), Q1 =
(Zny%1)y ooy Q1 = (ZLn, *n—1), where *q, %1, ..., x,_1 are the quasigroup operations cor-
responding to Qo, @1, ..., @n—1, respectively. The selection of quasigroups can be carried
out using an n x 1 multiplexer, where n = 2¥. A multiplexer is a combinational circuit
that has a maximum of 2 input values for k selection lines, and it produces a single
output. An n x 1 multiplexer, along with its truth table, are shown in Figure [2.1
This multiplexer selects a quasigroup based on the current state of the selection lines
S0, 81, - .-,Sk_1, the value of s, is either O or 1, 0 < a < k — 1. Let QGSELECT be a k-bit
value associated with the selection lines sg, s1, ..., and si_1, where sy and sj_7 are
the least significant bit and the most significant bit, respectively. That is, if s, = 0,
V0 <a<k—1, then QGSELECT = 0, and the multiplexer selects a quasigroup (.
Similarly, if QGSELECT = 1, then the multiplexer selects the quasigroup ()1, and so on.

So, based on the original quasigroup @ = (Sp, S1,- - .,Sn—1), the following equation can
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i Truth Table i
E Q : = Selected i
' Q, > k-t =770 °1°0 | quasigroup |
: : Q 0 ---- 00 Q ;
; ' nxl : Q |
. ' ————»| 0 ---- 01 '
! : MUX . : : |
: ' 0<i<n-1 | : |
L Q. —> ol B8 | Bk i
: T ------- T T_where n=2k :
! Sip 51 50 :

Figure 2.1: n x 1 multiplexer and its truth table.

generate a total of n quasigroups

Q= (S((H—QGSELECT) modn» S(l-l—QGSELECT) modny > S(n—l—l—QGSELECT) modn) (224)

where QGSELECT, 0 < QGSELECT < n — 1 is a k-bit value to be given as an in-
put. Note that the result is a quasigroup @ € {Qo,@1,...,Qn—1}. Each of these
{Qo,Q1,-..,Qn_1} quasigroups consists of the same rows Sy, S1,...,S,—1 but in dif-
ferent order (permutation).

Let LIQ = (Zy,\) be a left inverse quasigroup of the quasigroup Q = (Zy, *). Also,
let LIQo, LIQ+,...,LIQ,—1 be the quasigroups generated from the left inverse quasi-
group LIQ using Equation . Then, each LIQ; is also the left inverse quasigroup
of the quasigroup @;, 0 < i <n — 1. The correctness of this assertion follows from the

following theorem.

Theorem 1. Let Q and LIQ be a quasigroup and its left inverse quasigroup, respec-
tively. Let Q;, and LIQ; be the result of applying a permutation P on the rows of @
and LIQ, respectively. Then, LIQ; is the left inverse quasigroup of the quasigroup ;.

Proof. Let Q = (Zy,,*) and LIQ = (Zy,\) be quasigroups of order n, whose operation
tables look like the ones given in Table (a) and Table (b), respectively. Since
LIQ is the left inverse quasigroup of ), we have

lixty = Aty ity < 31 \atl,tQ - btl,tQ

Vi, te € {0,1,...,n—1}.
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2.2 Quasigroup

Now let

s (PO P0) P2) 2@ - Pn-1)
0 1 2 3 n—1

be a permutation applied on the rows of the quasigroups @ and LIQ, and let Q; =
(Zp, %;) and LIQ; = (Zy,\;) denote the resulting quasigroups, where P(5)"* rows of
both the @ and the LIQ becomes the j* rows of both the Q; and the LIQ;, respectively,
0 < 3,P(j) <n—1. That is, the operation tables of @); and LIQ; will be as shown in

Table (a) and Table (b), respectively. Therefore,

t1 ki ta = ap(sy) 0, S 11 \i A(t1), 00 = OP(11) 22
Vit,te € {0,1,...,77,— 1}.

This is true because
by *xtp = Aty by < 31 \atl,tQ = btl,tQ

Vi, te € {0,1,...,n—1}.

Table 2.14: Representation of quasigroups @ and LIQ of order n.

* 0 1 o o n—1 \ 0 1 o.oon—1
0 a070 ao,l e aom,l 0 b070 1)071 e bo’n,1
1 aip ag ... Glp-1 1 b1o bip ... bin-t
2 a2,0 asi ... A2p-1 2 b2 o bo1 ... ban—1
n—1|an10 an-11 - Gn-1n-1|N—1|bp10 bp11 ... bp_1m1
(a) (b)

The application of Theorem [1]is illustrated in Example [2.2.26

Example 2.2.26. Let quasigroup Q = (Zg,*) over Zg = {0,1,2,3,4,5,6,7} is defined
as ty xty = (t1 +t2) mod 8, where t1,to € Zg. Then its operation table is as shown in
Table (a). Also, let LIQ = (Zg,\) be a left inverse quasigroup of the quasigroup
Q, and its operation be as shown in Table[2.16] (b). Now, let

p_ (01234567
\1 0325476

35



2. MATHEMATICAL BACKGROUNDS

Table 2.15: Representation of quasigroups @; and LIQ; of order n.

*; 0 1 . o on—1 \i 0 1 ... n—1

0 | apoy0  ap(0),1 apyn-1 | 0 | bpo)0 bpoy1 -+ bpo)m—1

1 | apyo  apmyr -+ apyn-1 | 1 | bpyo by - bp1)m—1
)1

ap2),0 ape ap)m—-1 | 2 | bpeyo  bp2)1 - bp@)n-1

—_

n—llapmn-1)0 @p(n-1)1 - - Wn-1),n-1|" — Lbpm—_1)0 Op(n-1),1 -+ bp(n—1)n—1

(a) (b)

be a permutation applied on the rows of the quasigroup Q, and let Q; = (Zg, *;) denote
the resulting quasigroup. Then @; is as shown in Table (a), where x; is the quasi-
group operation corresponding to the quasigroup ;. Now, we applied the same rows
permutation P on the left inverse quasigroup LIQ, and let LIQ; = (Zs,\;) denote the
resulting quasigroup. Then LIQ; is as shown in Table (b), where \; is the left
mverse quasigroup operation corresponding to the quasigroup LIQ;. It can be verified

that the quasigroup LIQ; is the left inverse quasigroup of the quasigroup Q;.

Table 2.16: Quasigroups @ and LIQ of order 8.

*x10 1 2 3 4 5 6 7 \ 01 2 3 4 5 6 7
oo 1 2 3 4 5 6 700 1 2 3 4 5 6 7
1/1 2 3 4 5 6 7 0|17 0 1 2 3 4 5 6
2|2 3 4 5 6 7 0 1/12|]6 7 0 1 2 3 4 5
313 4 5 6 7 0 1 2(3|5 6 7 0 1 2 3 4
4|14 5 6 7 0 1 2 3(4/4 5 6 7 0 1 2 3
5/5 6 7 01 2 3 4|5|3 4 5 6 7 0 1 2
6/6 7 0 1 2 3 4 5|62 3 4 5 6 7 0 1
717 0 1 2 3 4 5 6|7|1 2 3 4 5 6 7 0
(a) (b)
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2.2 Quasigroup

Table 2.17: Quasigroups @Q; and LIQ; of order 8.

O - < 0o N MmO o
O © »m F A N I~ O
([ o N m O~ O b~
N H o~ NI~ O 0 O
NN n”n ©O - © b~ < 10
N[ N -~ O 0 © n <
| O — © I~ <t 1o N m
O~ © 10 © »m <F —H N
Slo - Mmoo O I~
MO M AN = < n O 0
O~ © — O » N 0 <H
N[O 10 O~ AN A < ;M
| H - O H O MmN
N[ » © 1w O M~ N
N M N o F o H O
N - <t MmO 0 O b~
OQ|—H © Mm» N o <t I~ ©
O = N » I 0 © b~
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Chapter 3

Literature survey

Various applications of the quasigroup can be found in cryptography, coding theory,
design theory, and other fields. Our research focuses on the use of quasigroups in cryp-
tography. Because of their structure, characteristics, and an exponential number of
quasigroups of its order, quasigroups are ideal for cryptographic applications. The ef-
fects of quasigroups in cryptography are primarily determined by the quasigroup chosen.
So, one of the issues is determining which quasigroup is appropriate for use and what
preconditions the quasigroup must meet. In this chapter, we present a comprehensive
survey of the existing quasigroup based cryptographic algorithms such as stream ciphers,

block ciphers, hash functions, MACs, etc.

3.1 Stream ciphers based on quasigroup

We have studied various quasigroup based stream ciphers present in literature [12], 28|
43,146, 591 [60], 8T]. The quasigroup based stream ciphers allow us to make polyalphabetic
substitution ciphers, and this property has been used in the design of stream ciphers
for more than 400 years. In 1586, Blaise de Vigenere proposed the first polyalphabetic
stream cipher based on the letters of a keyword, now known as the Vigenere cipher. This
cipher uses a Latin square of the same order as his target language (i.e., for the English
language, the order of a Latin square would be 26). This cipher was thought to be
impenetrable until 1863 when it was discovered that the ciphertext showed repetitions

for a sufficiently large plaintext.
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3.1 Stream ciphers based on quasigroup

In 1996, Czeslaw Koscielny showed how a quasigroup can be used in the design of
a stream cipher [4I]. In 1997, Markovski et al. proposed a quasigroup based stream
cipher [46]. This cipher is designed based on {e, d}-transformation and uses a leader
¢ (also called a seed value) along with a quasigroup of an arbitrary order n for en-
crypting/decrypting the plaintext/ciphertext. Note that the leader and the quasigroup
are secrets in this cipher, because of the leader ¢ and {e, d}-transformation the cipher
is found to be vulnerable to chosen-plaintext, chosen-ciphertext, and known-plaintext
attacks [35, 45, [80]. This is because, it creates a relation between the plaintext and the
corresponding ciphertext since it uses the output of each e-transformation as a key (or
keystream) for encrypting the next character of the plaintext. For a known-plaintext
attack, an attacker has the knowledge of the plaintext P = {p1,p2,...,pr} and the
corresponding ciphertext C' = {c1,ca,...,cr}. In this attack, an attacker uses the e-
transformation and retrieves both the leader ¢ and the quasigroup employed. This is

illustrated in the following example.

Example 3.1.1. Let Q=(Z4,%) be a quasigroup over Z4 = {0,1,2,3}. Also, let an
attacker knows a plaintext P = 23012312123000312 and the corresponding ciphertext
C = 13322110030120231. Then, an attacker carries out the operations except the first
one involving the leader using the e-transformation defined in section [2.2.13 of Chap-
ter[3 and reconstructs the quasigroup. 1«3 =3,3%0=3,3x1=2,2%x2=2,2x3 =1,
1¥1=1,1%2=0,0%x1=0,0%x2=3,3x3=0,0«x0=1,1x0=2,2%x0=0,
0x3=2,2%x1=23,3%x2 = 1. Note that the first equation 1 * 3 = 3 is obtained
by looking at the first element of the ciphertext, the second element of the plaintext,
and the second element of the ciphertext. Similarly, the second equation is obtained
by taking the second element of the ciphertext, the third element of the plain text, and
the third element of the ciphertext. In general, the r'* equation is formed from the r**
element of the ciphertext, (r 4+ 1)'" element of the plaintext, and the (r 4+ 1) element
of the ciphertext. The resultant quasigroup is shown in Table[3.1. Once a quasigroup is

reconstructed, the leader £ can be uniquely determined by solving the following equation
{xpp=cy. (3.1)

Since p1 = 2, ¢1 = 1, then the leader ¢ = 3. Hence, the {e,d}-transformation based
stream ciphers that use a single quasigroup are vulnerable to the known-plaintext attack.

Similar argument shows that the system is also vulnerable to the chosen-plaintext (or
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chosen-ciphertext) attack. In this attack, an attacker can choose the plaintext (cipher-
text), gets the corresponding ciphertext (plaintext), and solves for the quasigroup used

and hence the leader of the scheme.

Table 3.1: Quasigroup of order 4

W N = O %
w o N =IO
N W = O
=N O WN
S = W N W

Attack complexity of known-plaintext attack: The complexity of the attack
on a {e,d}-transformation based stream cipher with a single quasigroup of order n
is equivalent to the computational complexity for determining the quasigroup used.
This is evident from Example [3.1.1l The number of equations required to determine
a quasigroup of order n can be seen to be n?. Hence the computational complexity of
determining the quasigroup used and hence that of the attack is O(n?). In general, the
attack complexity for order n quasigroup is equal to 2(n — 1)? [45]. Hence, the existing
cipher can be cryptanalyzed in polynomial time.

In [12, 59, 60], the authors discussed stream ciphers based on the n-quasigroup (also
called n-ary quasigroup operations) of an arbitrary order m. The description of an n-
quasigroup is given in Definition [2:2.10] of Chapter [2] They analyzed their ciphers only
against the exhaustive key search attack and tried to determine the size of the key space
of their proposals. For practical purposes, they considered the values of n and m to be
at least 3 and 256, respectively. So, if n = 3 and m = 256, the size of the key space of
the stream ciphers presented in [59, 60] is found to be around 2% ~ 3.69 x 109, while
that of an improved 3-quasigroup based stream cipher presented in [12] is found to be
around 2'% ~ 5.02 x 10°®. We noted that the value of n directly affects the software
performance of these ciphers. In other words, as the value of n increases, the software
performance decreases. Also, the ciphers need at least 64K bytes of extra space, this
may be a challenge for small computing devices.

In 2008, Gligoroski et al. introduced an Edon-80 stream cipher [28]. It is an XOR-~
based (a binary additive) synchronous stream cipher that was one of the candidates
in the eSTREAM project. The block diagram of Edon-80 is given in Figure The
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Input stream
IV pi or G
Keystream generator | k D
of Edon-80 T (e
K _} 1 1

Figure 3.1: Block diagram of Edon-80.

keystream generator of Edon-80 takes two inputs (i) a secret key K of 80 bits, and (ii)
an initial value IV of 64 bits. And it produces keystream (k1, k2, .. .) of required length.
Then, the keystream is added to the input stream (plaintext/ciphertext) in the encryp-
tion/decryption process. The internal structure of Edon-80 is a pipelined architecture
that consists of 80 stages [2§]. This is carried out using 80 e-transformations based on
4 quasigroups of order 4. The primary strength of the Edon-80 is that it is hardware
friendly as it uses only 4 quasigroups of order 4. In contrast, its software performance
is significantly decreased on modern CPUs. The cipher is analyzed against various at-
tacks, including exhaustive key search attack, related key attack, and guess-and-verify
attack, and found it to be resistant to these attacks. However, it is vulnerable to reused
key and known-plaintext attacks. This is because it uses the XOR function to mix the
plaintext /ciphertext with the keystream. Hell and Johansson have done one of the best
attacks on Edon-80, called key recovery attack [36]. And they managed to recover the

272 operations by analyzing the periods of the keystream sequences of Edon-80.

key in

In 2012, Zhang and Xu proposed a new version of Edon-80 stream cipher based
on an arbitrary period length keystream sequence [8I]. The purpose of proposing
this new version of the Edon-80 was to enhance the security of the Edon-80 against
key recovery attack. The keystream generation algorithm of the new cipher uses 80
e-transformations along with a quasigroup of order 256, and produces keystream of
required length. Also, the cipher uses the quasigroup operation instead of the XOR
function, such as used in Edon-80, to mix the plaintext/ciphertext with the keystream,
making the cipher resistant to a reused key attack. The cipher is also analyzed against
various attacks, including exhaustive key search attack, chosen-plaintext attack, known-
plaintext attack. We noted that cipher is resistant to these attacks, but it is found to
be inefficient, and the cipher needs at least 256 K bytes of extra space.

Lakshmi et al. introduced a synchronous stream cipher based on a quasigroup of

order 256 [43]. The cipher takes a secret key and an initialization vector as its input,
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each of 128 bits in size. The algorithm of keystream generation is iterative and uses
3-quasigroup operations. For each iteration, the algorithm generates 8 bits (one byte)
of the keystream. Then, each byte of the generated keystream is added to one byte of
plaintext/ciphertext in the encryption/decryption process. The security of the cipher
is analyzed only using an algebraic attack. The randomness of the obtained ciphertext
is tested using the NIST-STS test suite and various structural tests and observed that
the ciphertext passes both these tests. Since it is an XOR-based synchronous stream
cipher that uses a quasigroup of order 256 for generating the keystream, it is vulnerable

to known-plaintext and reused-key attacks.

3.2 Block ciphers based on quasigroup

A block cipher based on quasigroups was invented by Gligorovsky and Markovsky [29].
They tried to show the potential of {e, d}-transformation as a new paradigm in cryp-
tography. As in stream ciphers, the design of a new block cipher relies on {e,d}-
transformation. Typically, in a stream cipher, the {e, d}-transformation is applied only
once to the input stream (plaintext/ciphertext) to produce the corresponding output
stream (ciphertext/plaintext). But, in a block cipher, the {e, d}-transformation is ap-
plied more than once times on the input stream to obtain the output stream. Let
P ={p1,p2,...,pn} and C = {c1,ca,...,cp} be the input stream and output stream
blocks of length n, respectively. Also, let L = {¢1,0s,...,{;} be a given password (or a
sequence of leaders) of length k. Based on given quasigroups and their left /right inverse
quasigroups, the encryption and decryption algorithms can be performed, as shown in
Algorithms [1] and [2] respectively. The description of {e, d}-transformation is specified
in section of Chapter

Algorithm 1: Encryption
m ¢ =P
(21 fort=1to k do

(3] if L[i] mod 2 = 0 then

[41 L C = (es-transformation on C with leader ¢ = L[i])
(5] else

(6] t C = (dy-transformation on C with leader ¢ = L[i])
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3.2 Block ciphers based on quasigroup

Algorithm 2: Decryption

n P=C
(21 for i = k down to 1 do

(3] if L[i] mod 2 = 0 then

[4] L P = (ds-transformation on P with leader ¢ = L][i])
(5] else

(6] L P = (es-transformation on P with leader ¢ = L[i])

In 2012 and 2013, Battey and Parakh introduced two block ciphers based on a
quasigroup of order 256 [0, [6]. These ciphers use a sequence of leaders (a seed value)
of 256 bits, and perform a total of 32 rounds to encrypt or decrypt a block of 128 bits,
where for each round, they perform two transformations: (i) {e,d}-transformation,
and (ii) left shift operation. Note that they employed the same encryption/decryption
algorithms in both their proposals, and a randomly chosen quasigroup of order 256. A
primary strength of these ciphers is that they are resistant to quasigroup only attack
(exhaustive quasigroup search attack) due to a large number of quasigroups of its order.
But, a randomly chosen quasigroup may not be optimal from linear and differential
cryptanalysis. Also, it may be a challenge to store it in small computing devices.
These existing block ciphers are only analyzed against the randomness property of the
ciphers using the NIST-STS test suite. Since the NIST-STS test suite only evaluates
the system’s randomness, it does not provide security strength against attacks.

Another {e, d}-transformation based block cipher is introduced by Zhao and Xu in
2017 [83]. It uses an optimal quasigroup of order 16 along with a secret key of 80 or
128 bits, and perform 32 rounds to encrypt or decrypt a block of 64 bits. This cipher
is also analyzed against (i) the randomness property of the cipher using the NIST-STS
test suite and (ii) the algebraic properties of the optimal quasigroup used. It is not
analyzed on the basis of the overall structure of the cipher. Noted that it uses less space
than [5 [6]. We analyzed the software performance of the cipher by varying the inputs,
and we observed that the cipher is slower than those of the existing ciphers [5 [6]. Also,
the cipher does not exhibit good confusion and diffusion effects.

In 2014, Markovski et al. introduced a block cipher based on matrix presentation

of quasigroups, named BCMPQ [50]. The cipher uses 128 quasigroups of order 4 in
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both encryption and decryption. In encryption, the quasigroup operation * of order 4

quasigroup (@, *) is defined as

rxy=m'+ Az’ + By' + CAx' - CBy'

b1 b2

where, A = [an an] and B = {
ba1 b2

are non-singular Boolean matrices and
a1 a2

1 1
C = [1 1] , bothz = (x1,22),y = (y1,y2) € Q, all z1, z2,y1,y2 € {0, 1}, m = [mq, ma]

is a Boolean vector. The operation ’-” denotes the scalar product, and the addition and
multiplication are over the field GF'(2).
In decryption the left inverse quasigroup (Q~1,\) of the quasigroup (Q, *) is used,

which is defined as
z\z=B"'m'+ BTY I+ C)Az' + BY(Cm' - CAz") + B~ 2! + B~ Y (CAz' - C2Y)

where \ denotes the left inverse quasigroup operation corresponding to the left inverse
quasigroup Q~!, and I denotes the identity matrix. The aim of this work is to show
how small quasigroups (quasigroups of order 4) can be used in a block cipher. Also,
this cipher does not require too much space or computational power, so it is suitable
for lightweight cryptographic applications and can be implemented and used for small
devices. The cipher is analyzed against brute-force attacks and it is found to have a

282

complexity of 2°4. Also, the randomness properties of this cipher are analyzed using

the avalanche effect and strict avalanche criterion and examined the input and output
bits of the BCMPQ [20].

3.3 Hash functions based on quasigroup

At first, in 2001 and 2002, Dvorsky et al. introduced how quasigroup can be used to
create a cryptographic hash function [23| 24]. These hash functions do not have actual
implementations. Later, in 2009, they proposed a quasigroup based hash function
presented in [70]. This hash function, namely H, uses an e-transformation (defined in
section of Chapter [2) on the message mq,mao, ..., my to be hashed, such that

my =1V xmy,my = my *ma,...,mjp = mj_, * myg,
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where m/, mb, ..., m) are the results of the e-transformation corresponding to my, ma, . ..

Both (m},m),...,m}) and (m1,ms, ..., my) belong to a chosen quasigroup @, and IV
is an initial (seed) value also belongs to (). Then, the hash function H with IV is
defined as

H]\/(ml,mg,...,mk) = (((IV*ml)*mg)*)*mk

In 2010, Slaminkova et al. analyzed this hash function and found that it is vulnerable
to prefix and suffix attacks [69]. That is, an attacker can find a collision by creating a
false message by adding a prefix or suffix to the original message. This is illustrated

through the following example.

Example 3.3.1. Let M; = 102201 be a message to be hashed with the initial value
IV =3 Also, let the quasigroup Q be one given in Table[3.1 Then, the hash value of

My is calculated as follows:
H3(102201) = (((((3% 1) % 0) x2) x2) x0) * 1 = 3.

Now, an attacker can create a false message Mo by adding a prefix to the original
message My, and it can be written as My = X1 Xo... Xp102201, X; € Q,1 < i < k.
The prefiz is chosen such that (...((IV x X1) * X2)...) * X = IV. For IV =3
and k = 4, one set of values for X1, Xs, X3, X4 is 1,2,0,2. That is, the new message
Mo = 1202102201 will have the same hash value as that of the original message M;.

This is verified as in the following:
H3(1202102201) = (((((((((3* 1) *2) x0) *2) x 1) 0) x 2) x2) x 0) * 1 = 3.

That is, for two different messages My and Mo, Hs(M7) = Hs(Ms). That is a collision
can be found with the help of a prefix attack. Hence, the existing hash function based on
quasigroups is vulnerable to a collision attack. A similar argument can be shown that
the system is also vulnerable to the suffix attack. In this attack, an attacker can create
a false message My by appending a suffix to the original message My and arrives at a

collision.

This hashing technique is very useful for small-size hash values. But for larger hash
values, storing the quasigroup in the existing quasigroup based hash function can be a
challenge. This is because, for n bits hash value, the order of the quasigroup needed

would be 2™ and hence the storage requirement of such a quasigroup is n x 2™ x 2"
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bits. In Example the hash value is of 2 bits and the storage requirements of the
quasigroup (Table used in this example is 2 x 22 x 22 bits or 4 bytes. If the size
of a hash value is 18 bits, then the storage requirements of a corresponding quasigroup
will be more than 1 TB. Note that, the size of the hash being used nowadays is more
than 128 bits. One of the special quasigroups that defined in [24], called the modular
subtraction quasigroup, is used to solve this problem. In this thesis, we also overcome
these shortcomings of the existing quasigroup based hash function by proposing a novel
hash function of 224 ( 384) bits.

In 2006, Gligoroski et al. described a generic hash function based on quasigroup
reverse string transformation [26]. Edon-F is another generic hash function based on
quasigroup, introduced in [49] without implementation. In 2008, Gligoroski et al. in-
troduced the first implementation of the generic hash function named Edon-R(256, 384,
512) [27]. Edon-R is a family of hash functions based on Merkle-Damgard straighten-
ing, and they are the wide-pipe iterative hash functions. In 2008, Edon-R was the first
round fastest candidate of the NIST SHA-3 competition. The compression function of
Edon-R works based on two strings, in which one consists of length 2n and another
of length n, where n is the size of the hash value in w-bit words, and the size of w
varies according to the hash size. In 2009, Khovratovich et al. investigated Edon-R
against various attacks and found that all primary three attacks, such as pre-image,
second pre-image, and collision attacks, can be applied with minimal effort [39]. This
is a free-start attack scheme with minimal changeable initial chaining values. In these
attacks, the asymmetrical diffusion of the chaining values in the compression func-
tion is exploited. A meet-in-the-middle attack on Edon-R to find real pre-images was
launched by partially reversing the compression function and fixing one component of
the chaining value.

In 2008, Markovski and Mileva proposed another family of hash functions based
on quasigroup, named NaSHA-(m, k,r) [47], where m and r are positive integers, de-
noting the length of the message digest and in the form of order 22" quasigroup re-
spectively, and k is a positive even integer that denotes the number of elementary
quasigroup string transformations. It is also the wide-pipe iterative hash function and
uses Merkle-Damgard straightening. For k = 2, r = 6, and m € {224,256, 384,512},
the implementation of NaSHA-(m, k,r) is discussed in literature [47, [48]. Gligoroski
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and Knapskog analyzed NaSHA-(m, k, r) hash family against various attacks, includ-
ing length extension attack, Joux’s multicollision attack [37], 2" collision attack, and
Kelsey and Schneier’s long message 2"¢ preimage attack [40]. The free-start preim-
age attack on NaSHA-m with the complexity of 27/2 and free-start collision attacks on

NaSHA-(m, k, r) with the complexity of 23 are given by Nikolic and Knovratovich [57].
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Chapter 4

Stream Ciphers based on

Quasigroup

Three types of stream ciphers are discussed in this chapter. All these proposed stream
ciphers provide a high level of security. This is because they use a mon-associative
algebraic structure called a quasigroup. Each of these ciphers differs slightly from the
other in terms of time and space complexities. Fach cipher is a symmetric key cipher
and uses the same keystream for encryption/decryption. They use a quasigroup and its
mverse quasigroup in encryption and decryption, respectively. The size of the keystream
is the same as that of the plaintext/ciphertext and it is generated using a secret key.
Both the secret key and the quasigroup are kept secret, so ciphers provide excellent
security. In this chapter, we give a brief overview of the proposed stream ciphers,
define the basic structure and the building elements of the proposed stream ciphers, and

analyze the performance and perform security analyses of the proposed stream ciphers.

One of the goals of the proposed new stream ciphers is to overcome the issue of the
two-time pad in the existing XOR-based stream ciphers. Two-time pad is nothing but a
reused key attack. We know that an XOR-based stream cipher provides perfect security
against a one-time pad. But, the keystream should be as long as the plaintext/ciphertext,

which increases the difficulty of key management and key distribution.
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4.1 Introduction

4.1 Introduction

A stream cipher is a symmetric key cipher that uses the same key for encryption and
decryption. It uses a pseudo-random keystream sequence to generate the ciphertext,
which encrypts individual characters (typically binary digits) of a plaintext one at a
time. A block cipher, on the other hand, encrypts groups of characters of the plaintext
at the same time. Stream ciphers are typically faster and less complex in hardware
than block ciphers. They are also more suitable and, in some cases, mandatory (e.g., in
wireless communications) when block size cannot be determined before transmission.
Because they operate on individual bits, padding of bits is not required, and error
propagation is less likely.

Stream ciphers are of two types: (i) synchronous, and (ii) self-synchronous (or
asynchronous). The only difference is that in the synchronous stream cipher, the
keystream generation is independent of the plaintext and the ciphertext. In contrast,
the keystream generation depends on the fixed number of previous ciphertext digits in
the asynchronous stream cipher. The most common self-synchronizing stream ciphers
are based on block ciphers and currently use 1-bit Cipher Feedback (CFB) mode. Most
of the synchronous stream ciphers proposed in the literature to date are XOR-based
(additive) stream ciphers. The graphical representation of the additive stream cipher

is given in Figure In the figure, both encryption and decryption use the same

R SR P R e i T R R A e

K 3 K

Keystream

' Keystream

generator 1 generator

Pi Cj

:~ (a) Encryption : (b) Decryption

Figure 4.1: Representation of additive cipher.

keystream generation algorithm using the secret key K. In encryption algorithm, each
plaintext digit p; is encrypted with a keystream digit k; and produces a ciphertext digit
¢;. In decryption algorithm, on the other hand, each ciphertext digit ¢; is decrypted
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with the same keystream digit k; as used in encryption and recovers the original plain-

text digit p;. The following is an example of additive stream cipher.
Example 4.1.1. Encryption:

PlainText : = 1001010111001010

KeyStream : = 1010000110101011

CipherText : = 0011010001100001
Decryption:

CipherText : = 0011010001100001

KeyStream : = 1010000110101011

PlainText : = 1001010111001010

where @ denotes a bit-wise addition modulo 2 operation.

4.2 Brief overview of the proposed stream ciphers

This chapter proposes three stream ciphers based on quasigroups. Each cipher is a
synchronous stream cipher that uses a quasigroup operation instead of the XOR oper-
ation of the conventional stream ciphers for encryption/decryption of the message. So,
the new ciphers resolve the major issue of reused key attack that exists in the XOR-
based stream ciphers. Also, the proposed ciphers use a new {e,d}-transformation,
named {ne'/” nd"/"}-transformation instead of {e,d}-transformation of the exist-
ing cipher based on quasigroup [46]. This new transformation allows the proposed
ciphers to be resistant to known-plaintext, chosen-plaintext, and chosen-ciphertext at-
tacks [45, [80]. The details of the new {e, d}-transformation are given in section [2.2.15]
of Chapter

The proposed ciphers use a keystream of size as long as the plaintext/ciphertext, is
generated by a pseudo-random number generator. The ciphers consist of (i) an encryp-

tion algorithm, (ii) a decryption algorithm, and (ii) a keystream generation algorithm.
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For encryption, the ciphers use a quasigroup Q = (Z,*) of order 16 or 256 (i.e.
n = 16 or 256) along with either an ne'-transformation or an ne"-transformation,
depending on the encryption algorithm. And for decryption, the ciphers use either
an nd'-transformation along with a left inverse quasigroup LIQ = (Z,,\) or an
nd"-transformation along with a right inverse quasigroup RIQ = (Zy, /) of order 16
or 256 (i.e. n = 16 or 256), depending on the decryption algorithm. The symbols *, \
and / are the binary operations, here called a quasigroup operation, a left inverse quasi-
group operation, and a right inverse quasigroup operation, respectively. The details of
Q= (Zn,*), LIQ = (Zy,\) and RIQ = (Zy, /) are given in section of Chapter

All the proposed stream ciphers are iterative in nature and can be seen as polyal-
phabetic substitution ciphers since the relationship between the plaintext and the cor-
responding ciphertext is one-to-many. Note that the polyalphabetic substitution cipher
is more secure than the monoalphabetic substitution cipher [56]. This is because, in
the monoalphabetic substitution cipher, each plaintext character is substituted with
the same ciphertext character; while in the polyalphabetic substitution cipher, each
plaintext character is substituted with different ciphertext characters. Each of these
substitution operations is carried out using a substitution table or a quasigroup. The
first stream cipherﬂ and the second stream cipher El use AES-256 and QG-PRNG for
generating their keystreams, respectively. These ciphers can encrypt/decrypt a maxi-
mum of 16 bytes (128 bits) of plaintext/ciphertext in each iteration. The third stream
cipher El uses MQG-PRNG for generating its keystream; and it can encrypt/decrypt
a maximum of 8 bytes (64 bits) of plaintext/ciphertext in each iteration. Note that
QG-PRNG and MQG-PRNG are quasigroup based pseudo-random number generators,
where for generating the pseudo-random sequences, the QG-PRNG uses a quasigroup
of order 256 while MQG-PRNG uses 16 quasigroups of order 16. Each of these stream

ciphers is discussed in the following sections.

'New symmetric key cipher based on a quasigroup and AES-256
2A novel stream cipher based on a quasigroup and QG-PRNG
3MQG-PRNG and non-associative quasigroup based stream cipher
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4.3 New symmetric key cipher based on a quasigroup and
AES-256

This section discusses the structure and the building elements of a stream cipher. It
is a symmetric key cipher and uses a secret key (denoted by K) for generating the
keystream. For encrypting the plaintext, the cipher uses a quasigroup @ of order 256.
In contrast, for decrypting the ciphertext, it uses a right inverse quasigroup RIQ of the
quasigroup @. It keeps both the secret key K and the quasigroup Q/RIQ secret, due
to which the proposed cipher is resistant to various attacks, including known-plaintext,
chosen-plaintext, and chosen-ciphertext attacks. It uses AES-256 for generating the
keystream, denoted by K.

4.3.1 Selection of a quasigroup of order 256

A quasigroup operation that uses 1-byte plaintext characters and 1-byte random keystream
characters to produce 1-byte ciphertext characters at a time is the primary idea of em-
ploying a quasigroup of order 256. In the proposed algorithm, any order quasigroup in
place of quasigroup of order 256 can be employed. Higher-order quasigroups are prefer-
able because the number of quasigroups grows exponentially as the order increases.
Since all ASCII values can be represented in 8 bits, and each character has an integer
value ranging from 0 to 255, we chose a 256-order quasigroup in our proposed algo-
rithm. It can be verified that the number of quasigroups of order 256 is very large (see
section 2.2 of Chapter[2] So, it is practically impossible to guess correctly the employed

quasigroup.

4.3.2 Keystream generation

The encryption/decryption algorithm of the stream cipher uses a keystream K’ with a
length equal to the plaintext/ciphertext. To generate such a long keystream the cipher
uses an AES-256 encryption system. Using a secret key K, an initialization vector I'V,
and a counter 'Counter’, the encryption algorithm of AES-256 generates keystream
K’ of the required length. Also, the AES-256 encryption system assures that the
generated keystream K’ is random. The algorithm of the keystream generation based
on the Cipher Block Chaining (CBC) mode of operation is given in Algorithm In this

algorithm, IV denotes the number of iterations that the keystream generation algorithm
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4.3 New symmetric key cipher based on a quasigroup and AES-256

is to be performed, and the symbol @& denotes an addition modulo 2 operation. The

Algorithm 3: Generation of keystream K’
Input: 1. A Counter with 128 bits random value.

2. An IV with 128 bits initial value.
3. A secret key K of 256 bits.
Output: An 128-bit of keystream K'.
(11 fort=0to N —1do
[2] 1V =1V @ Counter;

81| Kficagivixissa,. ixier1s) —AES-256-ENC(IV, K));
(4] IV = K[/ix16+1,i><16+2,...,i><16+16};

(5] Counter = Counter + 1;

algorithm generates 16 bytes of keystream in each iteration and repeated until the
keystream size is the same as that of the plaintext. The generated keystream can be
represented as

K[/l,l.--,n} =ki,ko, ..., kn

where each k; is a 1-byte (character) value and will be used to encrypt the 1-byte
(character) value of the plaintext. Note that the generated keystream K’ is different
from the secret key K used in AES-256. The keystream generation algorithm can use
either the encryption or decryption algorithm of AES with a secret key of 128/192/256
bits. The proposed stream cipher uses an AES encryption system with a 256-bit secret

key. The block diagram of the keystream generation is given in Figure [4.2

4.3.3 Encryption algorithm

The encryption algorithm uses an ne”-transformation along with a quasigroup @) =
(Zase, *) of order 256 for encrypting the plaintext P = pj pa p3 . .. p,, using the generated
keystream K' = ki koks...kn, and produces the ciphertext C' = ¢;escs. . . ¢, whose
size is equal to the plaintext. The ne"-transformation is defined (see section
of Chapter [2) as

ci = pi* ki

where p;, k;, and ¢; are characters of 1-byte each, 1 < ¢ < n, and '+’ is the quasigroup

operation corresponding the chosen quasigroup @ = (Zasg, *). Note that the encryption
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B Counter + 1

) 4
> —>
v Y
Y
Secret key K Secret key K
— AES-256 E—_ AR

v Y

Kkyko,... k16 ki7.K1g,-kaz

Figure 4.2: Generation of keystream using AES-256.

algorithm works on characters of 1-byte each. It encrypts each plaintext character p;
using a keystream character k; and produces a ciphertext character ¢;. If the keystream
is not precomputed and is generated sequentially, the encryption algorithm can encrypt
16 bytes of plaintext in one iteration. The algorithm can encrypt the entire plaintext
in a single iteration if the keystream is precomputed. Graphical representation of the
encryption algorithm is shown in Figure In this figure, an ne” is nothing but
the ne"-transformation. Example illustrates the functioning of this encryption

algorithm.

Example 4.3.4. Consider the quasigroup Q = (Z¢,*) with Z¢ = {0,1,2,3,4,5}, and
its operation table is given in Table[[.1. Let 16 bytes of plaintext P be

p1, P2, - .., p16 = 4145230103452012,
and 16 bytes of the keystream K’ be
ki,ka, ..., kig = 3410135243235301.

Then applying the foregoing encryption algorithm using the quasigroup @ given in Ta-
ble[4.1], we have 16 bytes of the ciphertext C' as

c1,Co,...,Clg = 2552251225304302.
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16 bytes
P17P18 -- P32

16 bytes

Pn-15Pn-14 - Pn
16 bytes

; 1€ .- C16 €17€18 - €32 Cn-15Cn-14 - Cn

: Note that m is the number of plaintext blocks, where size of each block is 16 bytes.

| R F S SRS S R H '
i ¢ Counter . » Counter+1l | i Counter+m-1 ; :
| \ ) 4 :
: v _>E; »( D g 5
: 128 bits 128 bits &123 bits |
E Secret key A K Y K i
: K —£»  AES-256 —~»  AES-256 e = AES-256 ;
| 256 bits 2 o i
! 16 bytes 16 bytes 16 bytes :
E keystream keystream keystream i
kiks ... k16 ki7k1s ... k32 kn-15Kn-14 - Kp

Figure 4.3: Encryption algorithm.

4.3.5 Decryption algorithm

The decryption algorithm is the reverse of the encryption algorithm. It uses an nd"-transformation
along with the right inverse quasigroup RIQ = (Zas6, /) of the quasigroup @ used in
the encryption algorithm. It recovers the plaintext P = py pa ps3 ... pn from the cipher-
text C = cycocs...cy using the same keystream K = ki koks...k, as used in the

encryption. The nd"-transformation is defined (see section [2.2.15| of Chapter [2)) as
pi =ci/ki

where ’/’ is the right inverse quasigroup operation corresponding to the quasigroup
RIQ), p;, ki, and ¢; are characters of 1-byte each, 1 < ¢ < n. Note that the algorithm
works on characters of 1-byte each, and it decrypts each ciphertext character ¢; using
a keystream character k; and produces a plaintext character p;. If the keystream is not
precomputed and is generated sequentially, the decryption algorithm can decrypt 16
bytes of ciphertext in one iteration. The algorithm can decrypt the entire ciphertext

in a single iteration if the keystream is precomputed. Graphical representation of the

95



4. STREAM CIPHERS BASED ON QUASIGROUP

Table 4.1: Quasigroup of order 6.
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decryption algorithm is shown in Figure In this figure, an nd" is nothing but
the nd"-transformation. Example illustrates the functioning of this decryption

16 bytes
P17P18 - P32

16 bytes

Pn-15Pn-14 - Pn
16 bytes

€1€2 - C16 C17¢18 - €32 Cn-15Cn-14 - Cp

algorithm.

pReasRaRcRE RS P T FIIIIIIIIIIIIYTTTTTTTTITT T T
i ¢ Counter | » Counter+1l | i Counter+m-1 ; .
| y Y E
: v _péé »( D e 5
i 128 bits 128 bits &128 bits |

Secret key ) K Y K i
: K VAN AES-256 —/»  AES-256 R AES-256 ;
| 256 bits = = i
! 16 bytes " 16 bytes 16 bytes :
keystream keystream keystream i
kiky ... k16 ki7k1s ... k32 kp-15Kn-14 - Kp

Note that m is the number of plaintext blocks, where size of each block is 16 bytes.

Figure 4.4: Decryption algorithm.

Example 4.3.6. Consider the quasigroup RIQ = (Z¢, /) with Z¢ = {0,1,2,3,4,5}, and
its operation table is given in Table[{.3 Note that RIQ is the right inverse quasigroup

of the quasigroup @, whose operation table is given in Table (see section of
Chapter@ for more details about quasigroup and its right inverse quasigroup). We
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consider the ciphertext C and the keystream K' form the Ezample[/.3.4. That is,
C =c1,c,...,c16 = 2552251225304302

and
K' =ki,ka, ..., kig = 3410135243235301.

Then by applying the foregoing decryption algorithm using the quasigroup RIQ given
in Table[{.3, we recovered the original plaintext P as

D1,D2,P3, - - -, P16 = 4145230103452012.

Table 4.2: Right inverse quasigroup of order 6.

TU i W N = O
O = Nt W =IO
= O Ot N = W e
N W ks = Ot O
W = O = N W
= Ot W O R N
LN = W O W

4.3.7 Performance analysis

In this section, we analyzed the performance of the proposed stream cipher in terms
of time (speed) and space complexities. Also, its performance is compared with some
existing quasigroup based stream ciphers presented in the literature [12] 28] [43], [59] 60,
811

e Space complexity: The space complexity of the proposed stream cipher is same as
that of the existing XOR-based stream ciphers, except for the space required for
the quasigroup used by the proposed cipher. The new cipher needs one quasigroup
of order 256 along with an S-box of 256 bytes since it employed AES-256 for
generating the keystream; that is, the cipher needs 65792 bytes of extra space
for encryption/decryption. The space required to store S-boxes or quasigroups of
the proposed cipher is also compared with that of the other existing quasigroup

based stream ciphers [12, 28, 43}, (59, [60% [81]. The results of this analysis are shown
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in Table It can be observed that the proposed cipher is as expensive as the

existing quasigroup based stream ciphers, except for Edon-80 introduced in [2§].

Table 4.3: Comparison of space complexity of the proposed cipher with existing ciphers.

. Space in KB
Stream ciphers - -
Encryption | Decryption
Proposal cipher 64.25 64.25
Existing ciphers

Chakrabarti et al. [12] 64 16384
Edon-80 [28] 0.02 0.02
Lakshmi et al. [43] 64 64.007
Petrescu [59] 60] 64 16384
Zhang and Xu [8]] 256 320

o Time complexity: The proposed stream cipher is implemented in C++ language
on a system with the following configuration: Intel(R) Core(TM) i5-2400 CPU
@3.40 GHz processor with 8 GB RAM and 64-bit Linux operating system. The
source code of the proposed cipher is run 1000 times for different inputs and
we calculated the average execution time in seconds. The cipher used the C++
standard <chrono> library to measure the execution time [38]. The performance
of the proposed cipher is compared with those of the existing quasigroup based
stream ciphers presented in literature [12, 28, 43, 59, [60} [8T]. Table shows
the time complexities of different ciphers, which are listed in the first column of
the table. For each of these ciphers, the second, third, and fourth columns of the
table list the execution times in seconds for different inputs. As a result, It can
be observed that the proposed cipher is faster than all the existing quasigroup

based stream ciphers, except for one introduced in [43].

4.3.8 Security analysis

The primary strength of the proposed stream cipher is that it uses AES-256 in Cipher
Block Chaining (CBC) mode encryption for generating the keystream K’. Also, the
key elements for the AES-256 consist of the secret key K, the initialization vector I'V,
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Table 4.4: Comparison of time complexity of the proposed cipher with existing ciphers.

Execution time in seconds
Stream ciphers

1.22 MB | 2.11 MB | 6.01 MB

Proposal cipher 0.21 0.39 1.12
Existing ciphers

Chakrabarti et al. [12] 0.30 0.51 1.32
Edon-80 [28] 3.51 6.89 13.78
Lakshmi et al. [43] 0.04 0.09 0.28
Petrescu [59, 60] 0.23 0.40 1.15
Zhang and Xu [81] 0.62 1.24 3.73

and the Counter. Since the size of secret key K is 256 bits, it is resistant to brute force

2256 possible keys. AES-256 has already been proven to be secure

attack as there are
against variety of attacks, including brute force attack, related-key attack, and linear
and differential attacks. Hence the keystream K’ generation is secure from various
attacks.

Note that the proposed stream cipher keeps both the quasigroup @ and the gen-
erated keystream K’ secret so as to make the cipher resistant to known-plaintext,
chosen-plaintext, and chosen-ciphertext attacks. In known-plaintext attack, the crypt-
analyst knows a plaintext string pi p2 ...p, and the corresponding ciphertext string

c1¢o ...c,. In chosen-plaintext attack, the cryptanalyst chooses a plaintext string

...pn, and obtains the corresponding ciphertext string cj ¢o ...c, by temporar-

p1p2
ily accessing the encryption system. And in chosen-ciphertext attack, the cryptanalyst
chooses a ciphertext string c; co ... ¢, , and obtains the corresponding plaintext string
p1pP2 ...Pn by temporarily accessing the decryption system. For encrypting the plain-
text, if the quasigroup @) used to encrypt is not secret, it is easy for the cryptanalyst
to obtain the keystream K’. So this stream cipher can not resist the known-plaintext,
chosen-plaintext, and chosen-ciphertext attacks. Consequently, we need to keep the

quasigroup @ secret, details are given in the next section.

4.3.8.1 Known plaintext attack

The proposed cipher uses an ne” /nd"-transformation along with a quasigroup Q/RIQ

of order 256 in the encryption/decryption system. Note that the maximum number of
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quasigroups of order 256 is bounded above by
0.753 x 10102805

Now, let us assume that a cryptanalyst knows a plaintext P = p1p2 ...p, and
the corresponding ciphertext C' = ¢j ¢y ...c, . Also, assume that everyone knows the
employed quasigroup ). Then for determining the keystream K’ = kq, ko. ..., k,, which
is a confidential element of the encryption-decryption system, the adversary must solve
the following system of equations corresponding to the ne”-transformation used in
the encryption system:

c1 = p1* k1

Co = P2 * ko

Cn = Pn * Ky,
where ki, ko, ..., k, are unknown.

This system of equations has a unique solution due to the uniqueness property of
the quasigroup (see section of Chapter ). So, the cipher can not resist the known-
plaintext attack. Whereas, if we keep the quasigroup @) secret, then the system of
equations given in Equation has as many solutions as there are the number of
quasigroups of order 256. So, determining the employed quasigroup ) and hence the
keystream k1, ks, . . ., k;, make it practically impossible. Therefore, the proposed stream
cipher is resistant to the known-plaintext attack.

Using a similar argument, it can be shown that the cipher is resistant to the chosen-

ciphertext and chosen-plaintext attacks as well.

4.3.8.2 Statistical test for randomness using NIST-STS test suite

The randomness of the ciphertexts obtained from the proposed stream cipher is tested
using the NIST-ST'S test suite [65]. Each NIST-ST'S test yields a P-value between 0 and
1 (both included) and indicates success or failure. A P-value represents the probability
that a perfect random number generator would produce a less random sequence than the
one being tested[65]. For these tests, we have chosen a threshold value («) to be 0.01,
also called the significance level, and other parameters as shown in Table[£.5] Typically,

the value of « is chosen in the range [0.001,0.01]. For the randomness of a sequence, we

60



4.3 New symmetric key cipher based on a quasigroup and AES-256

compare the P-value of a sequence to a threshold value («). If P-value > «, then the
sequence is considered to be random, otherwise non-random. We have used NIST Spec.
Publ. 800-22 rev. la package that consists of 15 types of statistical tests [65]. Each of
these 15 tests has different input parameters and a different number of P-values [13].
Each P-value corresponds to a single statistical test on a binary sequence. Some of
these tests perform a series of ¢ sub-tests, ¢ € {2,8,18,148}. Following are these 15

tests and some of their sub-tests:

e Frequency Test: It evaluates the frequency of ones and zeros in the entire se-

quence.

e Block Frequency (BF) Test: It evaluates the frequency of ones and zeros in m-bit
blocks.

e Cumulative Sum (CS) Test: It performs two types of cumulative sum tests (or
performs 2 sub-tests). Both evaluate whether the maximal cumulative sum of
partial sequences is outside the range for the expected behavior of a random

sequence.

e Runs Test: This test evaluates the longest sequence of contiguous ones in the
entire sequence and compares the oscillation between ones and zeros to a standard

frequency.

e Longest Run (LR) Test: It compares the longest contiguous run of ones in m-bit

blocks to the expected frequency of the same.

e Rank Test: It evaluates the rank of disjoint sub-matrices within the entire se-

quence.

e Discrete Fourier Transform (DFT) Test: It is implemented as a Fast Fourier

Transform. It detects repeating or periodic features that are near to each other.

e Non-overlapping Template (NOT) Test: The purpose of this test is to detect
generators that produce too many occurrences of a given non-periodic (aperiodic)
pattern. It performs 148 sub-tests and uses an m-bit window to search for a
specific m-bit pattern. If the pattern is not found, the window slides a one-bit
position. If the pattern is found, the window is reset to the bit after the found

pattern, and the search resumes.
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e Overlapping Template (OT) Test: It evaluates the number of occurrences of pre-

specified target strings.

e Universal Statistical (US) Test: It is also called a Maurer’s test. It detects whether
or not the sequence can be significantly compressed without loss of information.

A significantly compressible sequence is considered to be non-random.

e Approximate Entropy (AE) Test: It evaluates the frequency of all possible over-

lapping m-bit patterns across the entire sequence.

e Random Excursion (RE) Test: The purpose of this test is to determine if the the
number of visits to a state within a random walk exceeds what one would expect

for a random sequence. This test performs actually a series of 8 sub-tests.

e Random Excursion Variants (REV) Test: The purpose of this test is to detect
deviations from the expected number of visits to various states in the random

walk. This test performs actually a series of 18 sub-tests.

e Serial Test: It performs two types of serial tests (or performs 2 sub-tests). Both
compare the frequency of all the m-bit overlapping patterns in the full sequence

separately.

e Linear Complexity (LC) Test: It uses linear complexity to test for randomness.

Table 4.5: Parameters for the NIST-STS test.

Tests Block length(m)
Block frequency test 128
Non-overlapping template test 9
Overlapping template test 9
Approximate entropy test 10

Serial test 16
Linear complexity test 500

We run each of these tests for 1000 obtained ciphertext sequences. The size of each
sequence is 10° bits. Tableshows the results of the average P-value of the NIST-STS

test suite. As a result, it can be observed that the P-value of each of these tests crosses
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the significance level (« = 0.01), and conclude that the obtained ciphertext sequences

are random.

Table 4.6: Results of the NIST-STS test.

Si. No. | Tests P-value
1 Frequency 0.507678
2 Block frequency 0.513950
3 Cumulative sum 0.675720
4 Runs 0.542138
5 Longest run 0.552834
6 Rank 0.443481
7 Discrete fourier transform | 0.500707
8 Non-overlapping template | 0.479753
9 Overlapping template 0.491251
10 Universal statistical 0.511753
11 Approximate entropy 0.471052
12 Random excursion 0.501743
13 Random excursion variants | 0.494101
14 Serial 0.553913
15 Linear complexity 0.576939

4.4 A novel stream cipher based on a quasigroup and QG-
PRNG

This section discusses (i) a new cipher algorithm based on a quasigroup of order 256,
and (ii) a pseudo-random number generator based on a quasigroup of order 256, named
QG-PRNG. This stream cipher is an extension of work initially discussed in section [£.3]
It uses QG-PRNG for generating the keystream in place of AES-256 used in the previous
stream cipher. So, the new stream cipher is more efficient than the previous one. It can
be noted that to generate a keystream K’ of 160 K B, AES-256 takes around 27499 pus,
while QG-PRNG takes only 579 ps. Because of this, the overall cipher is faster than
the previous cipher, and it takes around 6367 us to encrypt data of 4M B, while the
previous stream cipher takes around 800301 us. Also, the decryption algorithm of this

stream cipher uses the left inverse quasigroup in place of the right inverse quasigroup
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such as used in the previous cipher. The randomness of the obtained keystream K’
generated by QG-PRNG is analyzed using the NIST-ST'S test suite. It is observed that
the outputs of QG-PRNG are highly random. The structure of the proposed stream

cipher and its building elements are discussed in the subsequent sections.

4.4.1 Keystream generation

The encryption/decryption algorithm uses a keystream K’ of size as long as the plain-
text. To generate such a long keystream K’, we used a pseudo-random number gen-
erator based on a quasigroup of order 256, named QG-PRNG. It uses an initialization
vector (IV'), also called a seed-value of 128 bits (16 bytes), and a quasigroup of order
256. The algorithm of QG-PRNG produces keystream K’ of the required length. Since
the encryption algorithm requires the keystream K’ to be random, QG-PRNG ensures
this. Workflow of the keystream generation is given in Figure

IV :

128 b“SJ; 128 bits 128 bits |

A ) 4 '

(> QGPRNG || s QG-PRNG ----—  QGPRNG | |
1 QG G QG ? '
' 56 7 256 256 !
16 bvtes” 16 bytes !

¥ <8 4 16 bytes :

klkz kls kl?klﬁ P k32 L kn—lSkn—M- ana kl'l :

Figure 4.5: Workflow of keystream generation using QG-PRNG.

Note that the algorithm of QG-PRNG is described as well as implemented using the
Output Feedback (OFB) mode of operation. Each iteration of QG-PRNG generates
128 bits (16 bytes) of keystream K’ and it is repeated until the size of keystream K "is

the same as that of the plaintext. This generates the keystream as
K =kikoks.. kn,

where each k; is a 1-byte character and will be used to encrypt a 1-byte character
of the plaintext. It can also be implemented using other modes of operation such as
Cipher Feedback (CFB) mode, Cipher Block Chaining (CBC), and Counter (CTR)

mode. Each mode of operation has its advantages and disadvantages [67].
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Let IV = (so,s1,...,515) be a seed of 128 bits (16 bytes), where each s; is a byte
value for 0 < ¢ < 15. QG-PRNG employs two levels of e-transformation on IV
successively to arrive at the required keystream. Details of the e-transformation are
given in section of Chapter 2| Each of these two levels of e-transformation is
carried out in the specified range and direction. We use e-left (s; — s;13,¢) transfor-
mation, commonly known as e-transformation that works in the increasing sequence
of bytes (8-bit values) or from the left to right direction; and e-right(sj;3 — s5,¢)
transformation, it works in the reverse direction of e-left(s; — sj43,¢). The descrip-

tion of the e-left(s; — s;43,¢) and e-right (sj13 — s;,¢) are as follows:

sj =L *s;
Sit1 = S5 %S;41
e-left(s; — sjy3,0) : a ITT
Sj+2 = Sj+1 % Sj+2
Sj+3 = Sj+2 % 5543
and
5j+3 = L * 813
. Sj+2 = Sj43 * S542
e-right(sjy3 — 5;,0): a AR
Sj+1 = Sj+2 % Sj+1
8j = Sj+1 % 5;
where * is one of the quasigroup operations corresponding to the selected quasigroup
Q = (Zas6,*) and £ denotes a leader that belongs to Zgss. The successive application

of these two levels of e-transformation is as follows:

e First level of e-transformation:- The first level of e-transformation on the
original IV for the first iteration (or on the intermediate IV for the remaining
iterations) is carried out using the following four successive transformations with
initial leader a € Zgse: (i) e-left(sg — s3,f = a), (ii) e-right(sy — s4,f = s3),
(iii) e-left(ss — s11,¢ = s4), and (iv) e-right(sis — s12,¢ = s11). This is
depicted in Figure

So S1 Sz S3 | Sa S5 Sg Sy Sg Sg S10 | S11 S12 | S13 | S14 | S15

e-left(Sg —» S3,t=a) |e-right(Sy —»S4,0=s3)|e-left(Sg —»S11,¢=s4) [e-right(S15»512,8=511)

Figure 4.6: First level of e-transformation.
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e Second level of e-transformation:- The second level of e-transformation works
in reverse order of the first level of e-transformation, as shown in Figure [4.7
And the e-transformation is applied on the output of the first level of e-~transformation.
The successive expressions governing this transformation are: (i) e-left(sj2 —
s15,¢ = b), (ii) e-right(s11 — ss,¢ = s15), (iii) e-left(sy — s7,¢ = sg), and (iv)

e-right(ss — sg,¢ = s7), where the initial leader b € Zasg.

S12 S13 S14 S15 Sg Sg S10 S11 Sy Sg Sg Sy Sp Sq S S3

e-left(syp = 515, ¢=b) |e-right(s11—»sg, t=s15)| e-left(sy —»s7,E=sg) |e-right(s3 —»sp,I=57)

Figure 4.7: Second level of e-transformation.

These successive transformations ensure that if a single bit of the original seed (IV')
is changed, then each bit of the intermediate IV (or in the corresponding keystream)
would be changed with high probability. The pseudocode of the generation of the
keystream based on the Output Feedback (OFB) mode of operation is given in Algo-
rithm [d] In this algorithm, N denotes the number of iterations that the QG-PRNG is
to be performed, and IV; denotes the I*? iteration initialization vector (or intermediate
IV). For the 0 iteration, IVj is IV itself. In each iteration of QG-PRNG, line num-
bers from 3 to 6 perform the first level of e-transformation on the original IVj (or on
the intermediate IV;, I > 1). This is followed by the second level of e-transformation
specified in the lines from 7 to 10. That is, both the levels of e-transformation update
IV; in each iteration of QG-PRNG, and the results are stored in the same IV;. Also,
the recent I'V7 is fed into the next iteration of QG-PRNG.

4.4.1.1 Statistical test of QG-PRNG using NIST-STS test suite

The randomness of the obtained keystream K’, which is generated by the QG-PRNG,
is tested using the NIST-STS test suite [65]. The NIST-STS test suite consists of
various statistical tests. The details of each of such tests are discussed already in
section [4.3.8.2] We have run each test of the NIST-STS test suite with the significance
level a = 0.01. We ran each test of NIST-STS for 1000 obtained pseudo-random

sequences (keystreams), where the size of each keystream is 10° bits. The obtained
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Algorithm 4: Pseudocode of the QG-PRNG based on OFB mode
Input: 1. Original IV = (s, s1, ..., 515) of 128 bits (16 bytes).
2. A quasigroup @ = (Zas6, *) of order 256.
3. The initial leaders a,b € Zosg
Output: Each iteration produces 16 bytes (128 bits) of keystream.
(11 for /=0t N —1do
[2] IV =1V,

[3] {=a, e-left(sy — s3,4); > 1% level of e-transformation start

[4] { = s3, e-right(s7 — s4,0);

[5] l = sy, e-left(sg — s11,4);

[61 { = s11, e-right(si5 — s12,¥); > 1% level of e-transformation end
[7] ¢ =10, e-left(s12 — s15,¢); > 274 level of e-transformation start
8] { = s15, e-right(s1] — sg,f);

[9] 0= sg, e-left(sy — s7,0);

[10] { = s7, e-right(ss — S0, ¥); > 27? level of e-transformation end.
[11] IV =1V

results of the QG-PRNG are compared with that of the AES-256. Table [1.7] shows the
results of both the QG-PRNG and AES-256. From the results, as shown in Table [4.7]
It can be observed that the randomness of the QG-PRNG is approximately the same
as that of the AES-256.

4.4.2 Encryption algorithm

The encryption algorithm of this cipher is almost the same as that of the encryption
algorithm of the previous cipher, discussed in section The only difference is
that it uses an ne!-transformation instead of ne”-transformation. The description
of nel-transformation is specified in section of Chapter [2 It uses the same
quasigroup as used by the keystream generation algorithm QG-PRNG . For a plaintext
P = pi1paps3...pn and the keystream K = ki koks...ky, it produces the ciphertext

C =cicaes...cp, whose size is equal to the plaintext, as follows:
ci = ki*pi

where p; is a plaintext character, k; is a keystream character, and ¢; is a ciphertext

character; the size of each character is 8 bits (1-byte), 1 < i < n, and '+’ is the
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Table 4.7: For 1000 random sequences, results of the NIST-STS test suite for QG-PRNG
as compared to AES-256.

Tests QG-PRNG AES-256

Number | Number | Proportion | Number | Number | Proportion

of suc- | of fail- | of success | of suc- | of fail- | of success

cess ures out of 1000 | cess ures out of 1000
Frequency| 995 5 0.995 991 9 0.991
BF 990 10 0.990 992 8 0.992
CS 992 8 0.992 991 9 0.991
Runs 990 10 0.990 989 11 0.989
LR 989 11 0.989 990 10 0.990
Rank 994 6 0.994 992 8 0.992
DFT 987 13 0.987 986 14 0.986
NOT 981 19 0.981 980 20 0.980
oT 994 6 0.994 995 5 0.995
US 988 12 0.988 988 12 0.988
AE 991 9 0.991 990 10 0.990
RE 988 12 0.988 985 15 0.985
REV 990 10 0.990 990 10 0.990
Serial 993 7 0.993 994 6 0.994
LC 996 4 0.996 983 17 0.983

quasigroup operation corresponding the chosen quasigroup @ = (Zase, *) of order 256.
The workflow of the encryption algorithm is shown in Figure In this figure, ne!
is nothing but an ne'-transformation. Functionality of this encryption algorithm
is illustrated by Example Compare this with the one given in Example of
section Note that for the same inputs (P, K’, and @), these two examples produce
different results. This is because the quasigroup @ = (Zasg, *) is a non-commutative

algebraic structure, i.e., as p; * k; # k; * p;.

Example 4.4.3. Consider the same quasigroup QG = (Zg, *) with Z¢ = {0,1,2,3,4,5}
used in Example[{.3.4), and its operation table is given in Table[[.1. We also consider
the same plaintext P to be encrypted and the same keystream K' used in Ezample[].5.4)
That is,

P = P1,P2s.-.5P16 = 4145230103452012
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.............................................................................

H v :
5 128 bits& J2gbis [T } 128 bits !
H v \ 4 :
i QG-PRNG | QG-PRNG -ee- - G-PRNG |
1 256 I
' 256 16 bytes 16 bytes 6 bytes :
! keystream keystream keystream '
v kiko .. ki ki7kig ... k3o kn-15Kn-14 - Kn ;
H A4 :
E 16 bytes . l6bytes| ., | ____ 16 bytes :
' ne :
1P1P2 - P16 P17P18 - P32 Pp-15Pn-14 - Pn :
: 16 bytes E
! 16 bytes !
C1Cy .. C16 C17€18 - n-15%n-14 - Cn :

Figure 4.8: Workflow of encryption algorithm.

and

K' =Fki,ko, ..., kig = 3410135243235301.

Then applying the foregoing encryption algorithm using the quasigroup @) given in Ta-
ble[4.1], we have the ciphertext as

C =cy,c,...,c16 = 3551252245021142.

4.4.4 Decryption algorithm

The decryption algorithm is the reverse of the encryption algorithm. It uses two quasi-
groups @ and LIQ of order 256, where @ is used for generating the keystream K’ and
LIQ is used for decryption since both encryption and decryption algorithms use the
same keystream. The decryption algorithm of this cipher is almost the same as that of
the decryption algorithm of the previous cipher, discussed in section The only
difference is that it uses an nd!-transformation instead of nd"-transformation. The
description of nd'-transformation is specified in section of Chapter [2| It uses
the left inverse quasigroup LIQ = (Zase, \) of the quasigroup @ used in the encryp-
tion algorithm. The main principle of the decryption algorithm is that for the given
ciphertext C' = c1cac3. .. ¢, and the same keystream K "= ki1 ko ks ...k, used in the

encryption algorithm, it recovers the original plaintext P = pi p2 p3 ... p, as follows:

pi =ki \ ¢
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where ’\” is the left inverse quasigroup operation corresponding to the quasigroup
LIQ, and all p;, k;, and ¢; are characters of 8 bits (1-byte), 1 < i < n. Workflow
of the decryption algorithm is given in Figure In this figure, nd’ is nothing but
an nd'-transformation. Example illustrates the functioning of this decryption

128 bitsi, J2svits [ } 128 bits
Y h 4

Q_é_) QG-PRNG ﬁ? QG-PRNG @é’ QG-PRNG

256 256
256 16 bytes 16 bytes | 6 bytes
kiky ... kig ki7kig ... ka2 kn-15Kn-14 - Kn

' H
! 1
5 1
1 1
1 L}
i 1
' H
! 1
5 1
1 1
i 1
i 1
; :

1
: keystream keystream keystream !
i L}
Ll 1
' H
! 1
5 1
i 1
1 L}
Ll 1
' H
! 1
5 1
1 1
1 L}
i 1

Figure 4.9: Workflow of decryption algorithm.

algorithm.

Example 4.4.5. Consider the quasigroup LIQ = (Zg,\) with Z¢ = {0,1,2,3,4,5}.
Its operation table is given in Table[].8§ Note that LIQ is the left inverse quasigroup

of the quasigroup @, whose operation table is given in Table (see section
of Chapter@ for more details about quasigroup and its left inverse quasigroup). We

consider the ciphertext C' and the keystream K' from the Example @ That is,
C=ci,c,...,c16 = 3551252245021142

and

K' = ki, ko, ..., kig = 3410135243235301.

Then by applying the foregoing decryption algorithm using the quasigroup LIQ) given
in Table[{.8, we recovered the original plaintext P as

D1 D2:D3s - - s P16 = 4145230103452012.

4.4.6 Performance analysis

The proposed cipher is implemented in C++4, its performance is analyzed in terms of

space and time (speed) complexities by comparing it with the previous cipher discussed
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Table 4.8: Right inverse quasigroup of order 6.

U W N = O—
W Ul = s O DO
N O O W~ O
— NN R O ot W W
B O N Ot W o
LR W N A O,

=R SCRNS: BRSO R NG I

in section [4.3] and some existing quasigroup based stream ciphers presented in the
literature [12}, 28] 43, 59, 60, [81]. To analyze the performance of this cipher, we used the
same procedures as we used to analyze the previous cipher, discussed in section
The cipher ran 1000 times for different inputs and we calculated the average execution
time in seconds. Experimental results for both time and space complexities are given in
Table If we compare this result with the previous results shown in section [4.3.7] it
can be observed that in terms of memory requirement, this cipher is a bit more expensive
than the previous ciphers. But, it is faster than our first cipher discussed in section
including other existing ciphers introduced in literature [12), 28] 43, 59, [60} 81].

Table 4.9: Time and space complexities of the proposed cipher.

. Execution time in seconds Space in KB
Stream cipher - -
1.22 MB | 2.11 MB | 6.01 MB | Encryption | Decryption
Proposed cipher 0.002 0.003 0.007 64 128

4.4.7 Security analysis

For generating the keystream K’, the proposed cipher uses QG-PRNG. The QG-PRNG
is a pseudo-random number generator that uses an initialization value I'V (also called
a seed value) of 128 bits along with a quasigroup @ = (Zgs, *) of order 256. As
discussed in section of Chapter [2, the maximum number of quasigroups of order
256 is bounded above by

0.753 x 10102805,
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So, QG-PRNG can generate a maximum of 0.753 x 1010289 possible keystreams K’ for
each IV. Since, quasigroup @ is one of the core elements of both the schemes (QG-PRNG
and encryption/decryption algorithms), so it is kept secret. If the quasigroup @ used is
not secret, it is easy for the cryptanalyst to crack the cipher against a known-plaintext
attack. This is already illustrated in the previous section|4.3.8.1] Typically, I'V is known
to everyone. However, our observation is that for any cryptographically secure pseudo-
random generator, we need a secret random seed so that the corresponding output
is unpredictable. If we keep IV secret along with the quasigroup @, the keystream
generator (QG-PRNG) can be seen to provide greater security. This is because the
security of the QG-PRNG depends not only on the IV but also on the employed
quasigroup (), which can be changed rapidly. For determining the IV and the employed

quasigroup @, a cryptanalyst can apply the brute force methods as follows:

o Ezhaustive IV search only attack: The QG-PRNG uses an IV of 128 bits. There-
fore, the number of possible IVs is 2128 ~ 3.4 x 1038. Let us assume cryptanalyst
uses a supercomputer and tries 5.37 x 10’7 IV's per second, then the cryptanalyst
needs around 2.01 x 103

these days a supercomputer can execute 5.37 x 1017 FLOPSH [76].

years to determine the employed IV. This is because

o Quasigroups only attack: The QG-PRNG uses only one quasigroup of order 256,
and a maximum number of quasigroup of order 256 is 0.753 x 10102895 Here also,
we employ the same argument as that given in the exhaustive IV search only
attack. That is, if a cryptanalyst tries 5.37 x 10'7 quasigroups per second, then

the attacker needs around 0.044 x 10102781 years to guess the employed quasigroup.

o Attack complexity: The attack complexity of QG-PRNG can be defined in the
following two ways: (i) If we keep the IV public, then the attack complexity
of QG-PRNG against brute-force attack is equivalent to that of the quasigroups
only attack, and (ii) if we keep the I'V secret along with quasigroup @, then
the attack complexity of QG-PRNG against brute-force attack is equal to the
number of computations required by a cryptanalyst to discover both the I'V and
the employed quasigroup. But this is equal to the product of the number of

computations required by the exhaustive IV search only attack and the number

!Floating-point Operations Per Second
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of computations required by the quasigroups only attack. So, the complexity
of brute force attack (or key-space complexity) against QG-PRNG is equal to
2.560 x 10192843 That is, if an attacker performs 5.37 x 10'7 computations per

10102819

second [76], then the cryptanalyst needs around 0.151 x years to crack

the QG-PRNG.

In the case of the encryption of the proposed stream cipher, the same quasigroup
Q@ is used in both the encryption algorithm and the QG-PRNG. The quasigroup Q
used in the QG-PRNG of the decryption is also the same as that of the encryption.
However, in the case of decryption, the quasigroup used is the left inverse of that used
in the encryption. This is because both encryption and decryption algorithms use the
same keystream K’. As discussed above, in the quasigroups attack, it is practically
impossible to determine the employed quasigroups. Hence, the proposed cipher is

resistant to brute-force attacks.

4.4.7.1 Known plaintext attack

Since the encryption/decryption algorithm of this cipher is almost the same as that
of the previous cipher, discussed in section [4.3] The only difference is that it uses
ne! /nd'-transformation instead of ne” /nd"-transformation for encrypting/decrypting
the messages. Therefore, the attack complexity of this cipher against known-plaintext
attack would be the same as that of the previous cipher illustrated in section

The attack can be carried out by solving the following system of equations:

c1 =k xp
c2 = ko * p2
(4.2)
Cn = kn *pn
where ki, ko, ..., k, are unknown. This system of equations has as many solutions as

there are the number of quasigroups of order 256., which is practically infinite, and
hence the cipher is resistant to known-plaintext attack.
Using a similar argument, it can be shown that the cipher is resistant to the chosen-

ciphertext and chosen-plaintext attacks as well.
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4.4.7.2 Reused key attack

Reused key attack is applied on a stream cipher that uses the keystream more than
once for encrypting the messages. If we use the same keystream K’ to encrypt two or
more different messages, an attacker in the XOR-based stream ciphers, can eliminate
the encryption by XORing the two messages; whereas in the proposed cipher such an

elimination is not possible. To see this, consider

ClzK/*Ml
CQIK/*MQ

where C'1 and Cy are the ciphertexts obtained using the proposed stream cipher, and *
is one of the quasigroup operations corresponding to the employed quasigroup of order
256. If we use @ operation instead of *, then the cipher becomes XOR-based stream

cipher and the cryptanalyst in the reused key attack computes
Cr®Cy= (K & M)® (K & M) = M, & M.

where @ is a bit-wise addition modulo 2 operation. See that the obtained byte sequence
does not depend on the keystream K’. In other words, if anyone intercepts two messages
encrypted with the same key, they can recover M7 @ My which is a form of running key
cipher. Even if neither message is known, as long as both the messages are in a natural
language, such a cipher can often be broken because of enough redundancy present in
English and ASCII encoding. So, an attacker can easily recover the original messages
from:

C1 @ Cy =M & My — My, My

But in our case:

Cl*CQZ(K/*Ml)*(K/*MQ)#Ml*MQ

Hence, the proposed stream cipher is resistant to reused-key attack.

4.4.7.3 Statistical attack

The encryption system of the proposed cipher uses a quasigroup @ = (Zgs¢, *) with
Zose = {0,1,...,255}. All possible elements of Zass occurs with equal probability in
the quasigroup Q. Also, the algorithm of keystream generation (QG-PRNG) uses the
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quasigroup @ for generating the keystream K’ = ki, ko, ..., k,, where each k; is a byte
value and belongs to Zasg, 1 < j < n. So, all possible elements of Zosg also occur with
equal probability in the generated keystream sequence ki, ks,...,k,. That is, each
element of Zoss occurs as often as any other in each position of ki, ks,...,k,. Since
the probability P(k;) = ﬁ, 1 < j < n, the distribution of the keystream sequence is
uniform. We cannot say the plaintext pi,po,...,p, is a random sequence. It can be
inferred that the corresponding ciphertext ci, co, ..., ¢, is uniformly distributed. This is
because, the ciphertext obtained using the proposed cipher is shown in the next section
to be random. So, the distribution of the elements in the ciphertext ci,co,...,c, is

also uniform. The resistance of the proposed stream cipher to a statistical attack seems

very good.

4.4.7.4 Statistical test for randomness using NIST-STS test suite

The randomness of the obtained ciphertexts is tested using the NIST-STS test suite [65].
The NIST-STS test suite consists of various statistical tests. The details of each of such
tests are discussed in section [£.3.8:2] We ran each test of the NIST-ST'S test suite using
a significance level o = 0.01 for three inputs (i) input contains all binary 0’s (0X00),
(ii) input contains all binary 1’s (0XFF), and (iii) input contains random values. The
size of each input file is 1048576 bits. We generated 1000 binary sequences (ciphertexts)
for each of these three files using 1000 different keystreams. Now, these 1000 binary
sequences of each file are tested using NIST-STS test suite. The results of each of these
tests are shown in Table [LI0l The first column of the table lists the name of the tests
carried out. The proportion of sequences that passed a statistical test at o = 0.01
significance level for all 0X00, all 0XFF, and random inputs are listed in columns second,
third, and fourth, respectively. According to the experimental results, as shown in
Table It can be observed that on average, 98.99% of sequences pass each of these
tests for the significance level a = 0.01, so, it can be concluded that the proposed cipher

produces highly random binary sequences.
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Table 4.10: NIST-STS test results for the 1000 ciphertexts produced by the new cipher

for variant inputs.

Tests Proportion  of | Proportion  of | Proportion  of
success out of | success out of | success out of
1000 for all 0X00 | 1000 for all OXFF | 1000 for random
input input input
Frequency 0.988 0.996 0.983
Block frequency 0.978 0.994 0.989
Cumulative sum 0.980 0.991 0.991
Runs 0.972 0.993 0.990
Longest run 0.997 0.995 0.995
Rank 0.996 0.989 0.991
Discrete fourier transform 0.992 0.993 0.990
Non-overlapping template 0.979 0.989 0.988
Overlapping template 0.996 0.992 0.991
Universal statistical 0.988 0.988 0.988
Approximate entropy 0.987 0.990 0.992
Random excursion 0.989 0.985 0.987
Random excursion variants 0.992 0.987 0.989
Serial 0.991 0.992 0.991
Linear complexity 0.992 0.987 0.989

4.5 MQG-PRNG and non-associative quasigroup based

stream cipher

This section discusses a modified version of the previous ciphers, discussed in sec-
tions [£.3] & [£:4] The main goal of proposing this cipher is to reduce the space complex-
ities of the previous ciphers. This can be done using a smaller order quasigroup instead
of a larger one. And hence, we carried it out using a quasigroup of order 16 instead of
a quasigroup of order 256 that was used in the previous ciphers. It is a symmetric key
cipher and uses 16 quasigroups of order 16 and their inverse quasigroups in encryption
and decryption algorithms, respectively. These 16 quasigroups are generated during the
encryption/decryption process by permuting the rows of the original non-associative

quasigroup @ = (Zig,*) of order 16, where the size of each quasigroup is 128 bytes.
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That is, the proposed cipher leverages the space of a single quasigroup and uses 16
quasigroups. As a result, the space required by 16 quasigroups (2048 bytes) is reduced
to that of a single quasigroup (128 bytes).

The proposed cipher consists of three parts: (i) a keystream generation algorithm,
(ii) an encryption algorithm, and (iii) a decryption algorithm. The cipher uses a
keystream K’, generated by a keystream generation algorithm (or a pseudo-random
number generator), which is based on multiple (16) quasigroups, named here as MQG-
PRNG. The MQG-PRNG is also described in this section. Both the schemes (MQG-
PRNG and encryption/decryption algorithms) are iterative and use a different set of
16 quasigroups of order 16. Each iteration of both the schemes produces 16 nibbles
(64 bits) of output. That is, for each iteration, MQG-PRNG generates a 16 nibbles
(64 bits) of the keystream, and the cipher encrypts/decrypts a 16 nibbles of plain-
text/ciphertext. The randomness of the pseudo-random number (keystream K') gen-
erated by MQG-PRNG is analyzed using the NIST-STS test suite. We noted that the
obtained keystream K’ is highly random.

4.5.1 Generation of quasigroups

Our proposed schemes use 16 quasigroups of order 16 for both the keystream generation
and the encryption/decryption algorithms. Let Q = (Zj¢, %) be an original quasigroup
of order 16 over set Z1s = {0,1,...,15}. By permuting the rows of the multiplication
(or operation) table of the quasigroup @), we arrive at another quasigroup. So, by per-
muting the rows of the quasigroup @, 16! quasigroups can be created. That is, these 16!
quasigroups are the result of permutations of rows of the original quasigroup ). Note
that both schemes (encryption/decryption and keystream generation algorithms) use
only 16 quasigroups. So, any 16 out of the total 16! quasigroups can be selected. Let the
selected quasigroups be denoted by Qo = (Z1¢,*0), @1 = (Z16,*1), -, Q15 = (Z16, *15),
where xq, %1, ..., %15 are the quasigroup operations corresponding to Qo, @1, ..., @15, re-
spectively. Note that all these 16 quasigroups need not be stored. This is because each
quasigroup consists of the same rows but in a different order (permutation).

The proposed schemes are iterative in nature, and each iteration of the proposed
schemes uses only one quasigroup out of 16 quasigroups. Also, a quasigroup may be
used in more than one iteration. This is decided by a 16 x 1 multiplexer used in each

iteration of the proposed schemes. Multiplexer is a combinational circuit that has a
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maximum of n input values for k selection lines and it produces a single output for each
input, where n = 2¥. This multiplexer can also be used to select a quasigroup of order
n by permuting the rows of an original quasigroup @ = (Z,, *), given in section
of Chapter[2] Here, in this case, k = 4. So, as in the case of Equation [2.24] of Chapter [2]

the following equation can be used to select a total of 16 quasigroups of order 16

Qi = (R(0+Comp) mod 16 R(1+Comp) mod16s - -+ R(15+Comp) mod 16) (4-3)

where Ro, R1,...,Ri5 denote row numbers of the original quasigroup @ = (Zig, *),
Qi € {Qo,Q1,...,Q15}, 0 < Comp,i < 15, and the value of Comp is determined as
follows: Let SD be a seed (or an intermediate seed) of 64 bits (16 nibbles), which is
used to generate a 64-bit of keystream K’ in each iteration of the keystream generation
algorithm, described later in section Let both the seed SD and the keystream K’
of 16 nibbles be organized as a 4 x 4 matrix of s;’s as shown in Figure 0< 5 <15,

Then, the value of Comp is calculated as

50 51 S2 S3
S4 Sg S 57

Sg S9 510 511
512 513 514 515

Figure 4.10: Representation of SD or keystream K’ of length 16 nibbles.

Comp = Temp,, & Temp; & Temp, & Temps,
where,Temp, = so @ 54 @ 53 D 512,
Temp, = s1 @ 55 D s9 D s13, (4.4)
Temp, = 2 @ 86 @ $10 D S14,
Temps = 53 @ 57 D 511 D s15.
The Comp is a compression function, which is used in both the keystream generation

and the encryption/decryption algorithms that compresses a 64-bit value to a 4-bit

value, denoted by xg, x1, x2 and x3. These four bits are being considered as the selection
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lines of the 16 x 1 multiplexer employed in both schemes (encryption/decryption and
keystream generation algorithms), which are updated by the current iteration key of
the keystream K’ in the case of encryption algorithm; whereas it is the current iteration
seed SD (or intermediate SD) in the case of the keystream generation algorithm. The
multiplexer selects or generates a quasigroup based on the current state of selection
lines xg,x1,x2,x3. The value of x, is either 0 or 1, where xzy and x3 are the least
and the most significant bits, 0 < a < 3. If z3 = 0,22 = 0,21 = 0,29 = 0, then the
multiplexer selects or generates a quasigroup Qo. If zg3 = 0,20 = 0,21 = 0,29 = 1,
then the multiplexer selects or generates a quasigroup )1, and so on.

Note that using the same equation (Equation to generate the row’s permuta-
tions on the left inverse quasigroup of the quasigroup used in encryption, the decryption
algorithm that uses this left inverse quasigroup gives the correct result, see Theorem []]
in Chapter [

4.5.2 Generation of keystream

The new stream cipher uses a keystream of size as long as the plaintext/ciphertext. To
generate such a long keystream, we used a pseudo-random number generator based
on multiple quasigroups of order 16, named here as MQG-PRNG. It uses a seed
SD = (IV,Counter) of 64 bits (16 nibbles). The SD is a combination of an initial-
ization value (IV') and a Counter, where each of IV and Counter is 64 bits in size. For
a cryptographically secure pseudo-random generator, we need both IV and Counter
to be random so that the corresponding output is unpredictable. For generating the
keystream, the MQG-PRNG uses 16 quasigroups of order 16. These 16 quasigroups
are generated during the keystream generation based on an original non-associative
quasigroup @ = (Zig,*) of order 16. The algorithm of MQG-PRNG is implemented
using the Cipher Block Chaining (CBC) mode of operation. That is, the output of an
iteration of the MQG-PNRG is fed into the next iteration of MQG-PRNG as inter-
mediate V. Also, the Counter is increased by one. Each iteration of MQG-PRNG
uses either SD or intermediate SD of 64 bits along with a quasigroup Q; = (Zis, *i),
which is randomly selected out of 16 quasigroups, 1 < i < 16. Selection of this quasi-
group is based on a 16 x 1 multiplexer employed in each iteration of the MQG-PRNG.
The workflow of the keystream generation is given in Figure This generates the

keystream K’ = ki koks...k,, where each k; is a nibble value and will be used to
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.........................

1 Counter i Counter+m-1
! 64 bits 64 bits
VIV !\
! 64 bits Comp) .4 bits catits 4bits
i y
. Ly y v .
1 X % X Xoe— Qy X3 X, X Xp «—Q
| MQG-PRNG €0 1':: L;; Xl <—-—: Q MQG-PRNG <1 18x1 1—5 Q :
T Qg L MUX e Qs
yedois b4 bits '
16 nibbles of 16 nibbles of
i keystream K: keystream K:
Kiky ... kg kn-15Kn-14 - kn

Where 0 < i < 15 and m denotes the number of iterations that MQG-PRNG is to be performed.

Figure 4.11: Workflow of keystream generation using MQG-PRNG.

encrypt a nibble value of the plaintext. The keystream generation algorithm can also
be implemented using other modes of operation such as Cipher Feedback (CFB) mode,
Output Feedback (OFB), and Counter (CTR) mode. Each mode of operation has their
advantages and disadvantages [67].

Let SD = (sg,$1,...,515) be a seed of 64 bits (16 nibbles), where each s; is a
nibble value for 0 < ¢ < 15. The algorithm of MQG-PRNG uses two levels of
e-transformation for generating the keystream K’. Note that the algorithm of MQG-
PRNG is almost the same as that of the algorithm of QG-PRNG, discussed in sec-
tion This is because both (MQG-PRNG and QG-PRNG) use two successive
levels of e-transformation on SD/IV (or intermediate SD/IV') to arrive at the re-
quired keystream K’. These two levels of the e-transformation are also described in
section However, some of the differences between QG-PRNG and MQG-PRNG

are as follows:

1. QG-PRNG uses a single quasigroup of order 256, while MQG-PRNG uses 16
quasigroups of order 16, where these 16 quasigroups are generated based on an

original non-associative quasigroup Q.

2. QG-PRNG uses an IV of 128 bits (16 bytes), while MQG-PRNG uses an SD of
64 bits (16 nibbles).

So, based on the algorithm of QG-PRNG, which is given in Algorithm [ of section [£.4.1]
the algorithm of MQG-PRNG is designed and it is given in Algorithm |5} In this al-
gorithm, N denotes the total number of iterations that the MQG-PRNG is to be
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Algorithm 5: Pseudocode of the MQG-PRNG based on CBC mode
Input: 1. Original SD = (sg, 81, - - ., S15) of 64 bits (16 nibbles).
2. A non-associative quasigroup @ = (Zig, *) of order 16.
3. The initial leaders a,b € Z¢
Output: Each iteration produces 16 nibbles (64 bits) of keystream.
(11 for /=0t N —1do
[2] SD; = IV & Counter;

[3] Q; =selection of a quasigroup based on I*" iteration SDy;

[4] Followed by successive two levels of e-transformation specified
in line numbers from [3] to [10] of Algorithm
(5] IV =8Dy;

[6] Counter = Counter+1;

performed, @); denotes a selected quasigroup of order 16 based on current SD;, and
its corresponding quasigroup operation is denoted by *;. SD; denotes the I*" iteration
seed value (or intermediate SD). For the 0™ iteration, SDy is SD itself. In each iteration
of MQG-PRNG, line number [4] performs both levels of e-transformation on the
SDy, which is defined in Algorithm {4} That is, both the levels of e-transformation
update SDy in each iteration of MQG-PRNG and the results are stored in the same
SD;. Also, the recent SDy is fed into the next iteration of MQG-PRNG. Each iteration
of MQG-PRNG generates 64 bits (16 nibbles) of keystream and is repeated until the
size of keystream K’ is the same as that of the plaintext/ciphertext. Since the encryp-
tion/decryption algorithm requires the keystream to be random, MQG-PRNG ensures
this.

4.5.3 Analysis of the MQG-PRNG

The key elements of MQG-PRNG are the initialization vector I'V of 64 bits, Counter of
64 bits, and 16 quasigroups of order 16. These 16 quasigroups are generated based on an
original non-associative quasigroup () that acts as a secret key. It can be seen that the
maximum number of non-associative quasigroups of order 16 is bounded above by 2456
(see Equation of section in Chapter. So, the algorithm of MQG-PRNG can
generate a maximum of 2456 possible keystreams K’ for each seed SD. Since quasigroup

@ functions as the core of the proposed scheme, it is kept secret. If the quasigroup @)
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used is not secret, it is easy for the attacker to crack the proposed scheme against a
chosen-plaintext attack, illustrated later in section 4.5.7.3] In order to determine the

employed quasigroup, an attacker can apply the brute-force methods as follows:

e Quasigroup attack: The MQG-PRNG uses a non-associative quasigroup of order 16,
which acts as a secret key, and a maximum number of non-associative quasigroups of
order 16 is 2456 (see Equation of section in Chapter [2). Assuming an at-
tacker uses a supercomputer and tries 537.21 x 10 ~ 2% quasigroups per second,
then the attacker needs around 237 years to determine the employed quasigroup. Note
that nowadays supercomputers can execute 537.21 PFLOPS = 537.21 x 10" ~ 2%
floating-point operations per second (FLOPS) [76].

4.5.3.1 Avalanche effect of the keystream K’

In this subsection, we looked at how the MQG-PRNG modifies the bits in a pseudo-
random sequence (keystream) when the seed (SD) is modified slightly. Whenever a single
bit of a seed is modified (from 1 to 0 or from 0 to 1), and if a pseudo-random number
generator (PRNG) changes the pseudo-random sequence’s bits with a probability of
approximately 50%, then the PRNG would provide good diffusion power and protection
from some slide and related-key attacks.

We conducted various experiments to evaluate the performance of the MQG-PRNG
against the avalanche effect on the keystream K’. In each experiment, we chose special
cases of the seeds, changed a particular bit in each of the seeds, generated the corre-
sponding keystreams, and we compared them with the original keystream to see how
they differ from each other.

Here, we have given some results from one of the experiments conducted during
this research. The seeds that were used in this experiment are given in Table
Table [£.12] shows the experimental results for the keystreams of sizes 1024 bits and
4096 bits. Table shows the minimum, maximum, and average (mean) change
percentage in each of the generated keystreams whenever a single bit is changed in
the corresponding seed. From the results given in Table we see that change of
one bit in the seed changed more than 49% of the generated keystream bits. This is
quite close to the ideal value of 50%. Also, the amount of dispersion (or variation)

of all possible changes in each of the generated keystream bits is measured using the
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standard deviation, denoted by sd. The results show that the change percentage of each
of the generated keystream bits is not only close to the mean but also the value of sd
is decreasing as the size of the generated keystream increases. Since a low sd indicates
that the values tend to be close to the mean (also called the expected value) of the set,
while a high sd indicates that the values are spread out over a wider range. Hence,
we can conclude that the MQG-PRNG produces good random sequences. That is, it
has a higher diffusion and hence provides protection from some slide and key-related

attacks.

Table 4.11: Seeds used for MQG-PRNG in binary format.

Seeds
seed; | 0000000000000000000000000000000000000000000000000000000000000000
seeds | 1111111111111111111111111111111111111111111111111111111111111111
seeds | 1001011010010110100101101001011010010110100101101001011010010110
seedg | 1111111111111111111111111111111100000000000000000000000000000000
seeds | 00000000000000000000000000000000111111111111111 1111111111111 1111
seedg | 0000000000000000111111111111111100000000000000001111111111111111
seed7 | 0101010101010101010101010101010101010101010101010101010101010101
seedg | 0000000011111111000000001111111100000000111111110000000011111111

4.5.3.2 Statistical test of MQG-PRNG using NIST-STS test suite

We have tested the quality of the obtained pseudo-random sequences using the NIST-
STS test suite. We have used the NIST Spec. Publ. 800-22 rev. la package with
significance level @ = 0.01 that consists of 15 different statistical tests [65]. More
details of the NIST-STS test suite are given in section We ran each test of
NIST-STS for 1000 obtained pseudo-random sequences produced by the MQG-PRNG,
where the size of each sequence is 10° bits. The results of each of these tests are shown
in Table I3l First column of the table lists the name of the tests carried out. The
number of accepted (success) sequences, the number of rejected (failures) sequences,
and the proportion of sequences that passed a statistical test at @ = 0.01 significance
level are listed in columns second, third, and fourth, respectively. According to the

experimental results as shown in Table it can be observed that 98.3% of sequences
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Table 4.12: Avalanche effect of keystream for the different seeds.

Seeds of|Keystream of|Keystream of|Seeds of|Keystream of|Keystream
128 bits [1024 bits 4096 bits 128 bits [1024 bits 4096 bits
seedy |min = 44.73%,|min = 48.05%,| seeds |min = 46.09%,|min = 48.71%,
max = 54.39%,|max = 51.29%, max = 54.00%,|max = 51.66%,
avg = 49.89%,|lavg = 49.77%, avg = 49.96%,|avg = 50.11%,
sd = 1.67 sd =0.73 sd =1.63 sd =0.76
seedy |min = 47.27%,|min = 48.46%,| seedg |min = 46.97%,|min = 47.83%,
max = 52.25%,|max = 51.56%, max = 53.52%,|max = 51.68%,
avg = 49.84%,|avg = 50.03%, avg = 50.25%,|avg = 49.86%,
sd =1.25 sd = 0.69 sd =1.44 sd =0.91
seeds |min = 46.68%,|min = 47.73%,| seedy; |min = 46.48%,|min = 48.58%,
max = 53.32%,|max = 52.37%, max = 53.81%,|max = 53.03%,
avg = 50.21%,|avg = 49.84%, avg = 50.25%,|avg = 50.26%,
sd = 1.45 sd =0.75 sd = 1.57 sd = 0.85
seedy |min = 46.68%,|min = 48.10%,| seeds |min = 46.39%,|min = 47.71%,
max = 54.98%,|max = 51.32%, max = 52.64%,|max = 51.29%,
avg = 50.27%,|avg = 49.91%, avg = 49.75%,|avg = 49.91%,
sd =1.63 sd = 0.77 sd =1.49 sd =0.75

pass each of these tests for the significance level « = 0.01, implying that the pseudo-
random sequences we obtained are random. Also, if we compare the performance of
the MQG-PRNG against NIST-STS test with that of the AES-256, whose results are
given in Table of section [4.4.1.1 we see that the randomness of the outputs of the
MQG-PRNG and AES-256 are comparable to each other.

4.5.4 Encryption Algorithm

The encryption algorithm of this cipher is almost the same as that of the encryption
algorithm of the previous cipher, discussed in section[4.4.2] This is because, it also uses
the ne!-transformation. The only difference is that for the ne'-transformation,
it uses 16 quasigroups Q; = (Zig,*;) of order 16 instead of a single quasigroup @ =
(Zase, *) of order 256. These 16 quasigroups are generated based on an original non-
associative quasigroup @ = (Zig, *) of order 16. The encryption algorithm works on

one nibble (4 bits) of data. It encrypts a plaintext P = Py, = pip2 ...pn with the
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Table 4.13: Results of the NIST-STS test for 1000 sequences generated by MQG-PRNG.

Tests Number | Number of | Proportion of
of success | failures success out of
1000
Frequency 991 9 0.991
Block frequency 983 17 0.983
Cumulative sum 992 8 0.992
Runs 993 7 0.993
Longest run 988 12 0.988
Rank 993 7 0.993
Discrete fourier transform 988 12 0.988
Non-overlapping template 988 12 0.988
Overlapping template 991 9 0.991
Universal statistical 988 12 0.988
Approximate entropy 988 12 0.988
Random excursion 990 10 0.990
Random excursion variants 991 9 0.991
Serial 988 12 0.988
Linear complexity 993 7 0.993

keystream K’ = K[’1 ] = k1ks ...ky, and produces the ciphertext C' = Cy ) =

c1cac3... ¢y as follows:
Cj = k‘j *; pj

where p;,kj, and c¢; are characters of 4 bits (1-nibble), 1 < j < n, and *; is one
the quasigroup operations corresponding to the employed quasigroup @;, 0 < i < 15.
The encryption algorithm encrypts 16 nibbles (64 bits) of plaintext P in one iteration.
This is because the MQG-PRNG generates 16 nibbles (64 bits) of keystream K’ in
one iteration. For each iteration, it uses a quasigroup ); randomly selected out of 16
quasigroups, which is decided by a 16 x 1 multiplexer used, 0 < ¢ < 15. The workflow
of the encryption algorithm is shown in Figure The pseudocode of the encryption
algorithm is given in Algorithm [6] In this algorithm, N denotes the total number of

iterations that the encryption algorithm is to be performed, I denotes the I iteration
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Where 0 <i< 15 and m denotes the number of iterations that encryption algorithm is to be performed.

Figure 4.12: Workflow of the encryption algorithm.

Algorithm 6: Pseudocode of the encryption algorithm
Input: 1. Plaintext P = Py, = p1,D2,.-.,pn of n nibbles to be encrypted.

2. A non-associative quasigroup @ = (Zsg, *) of order 16.
Output: Ciphertext C = C|y,. ;) = c1,¢2,...,¢, of n nibbles.
(11 for I =0 to N-1 do

(2] [,16><I+1,...,16><I+16] = MQG-PRNG(J);
[3] Q; = generation of a quasigroup based on I*" iteration keystream
K/

(16X I+1,...,16xI+16]’

—_ ! . )
[4] C[16><I+1,‘..,16><I+16] = K[16X1+1,‘_,716X[+16] *q P[16><I+1,...,16><I+16]7

out of N, and #; is one of the quasigroup operation corresponding to the employed

quasigroup @Q; of order 16, 0 <4 < 15.

4.5.5 Decryption Algorithm

The decryption algorithm is the reverse process of the encryption algorithm. It recovers
the plaintext P from the ciphertext C. It uses nd'-transformation along with 16 left
inverse quasigroups LIQ; = (Zi¢,\;) of order 16, where \; is one of the left inverse
quasigroup operations corresponding the employed quasigroup LIQ;, 0 < i < 15. Note
that these 16 left inverse quasigroups are the left inverses of the quasigroups that were
used in the encryption algorithm. Also, It uses the 16 quasigroups Q; = (Z1s, *;) as that

used in the encryption algorithm for generating the keystream K’ since both encryption
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and decryption use the same keystream K’, where *; is one of the quasigroup operations
corresponding the employed quasigroup @Q;, 0 < ¢ < 15. The decryption algorithm
also works on one nibble (4 bits) of data. It decrypts a ciphertext C = Cpy ) =

c1coc3...cp using the same keystream K' = K/ = k1 ks ...k, as that used in the

[1,...,n]
encryption algorithm, and recovers the original plaintext P = Py, = p1p2 -..pn as

follows:

pj =kj\ic;

where pj, k;, and ¢; are characters of 4 bits (1-nibble), 1 < j < n, and \; is one of
the left inverse quasigroup operations corresponding to the employed quasigroup LIQ);,

0 < i < 15. The workflow of the decryption algorithm is shown in Figure [{.13] Like

ﬁf 64 bits 64 bits
v
3 4 bits r
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X3 X; X Xole—Qp X3 X3 X%, le—Qp
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Where 0 <i< 15 and m denotes the number of iterations that decryption algorithm is to be performed

Figure 4.13: Workflow of the decryption algorithm.

the encryption algorithm, the decryption algorithm also decrypts 16 nibbles (64 bits)
of ciphertext in one iteration. This is because it also uses the MQG-PRNG algorithm
for generating the keystream K’. The pseudocode of the decryption algorithm is given
in Algorithm [7} In this algorithm, N denotes the total number of iterations that the
decryption algorithm is to be performed, I denotes the I*" iteration out of N, and \; is
one of the left inverse quasigroup operations corresponding to the employed quasigroup

LIQ; of order 16, 0 < i < 15.
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Algorithm 7: Pseudocode of the decryption algorithm

Input: 1. Ciphertext C = CYy ) = c1,¢2,...,¢, of n nibbles to be decrypted.
2. A non-associative quasigroup @ = (Zg, *) of order 16 for
generating the keystream K'.
3. A left inverse quasigroup LIQ = (Zi¢,\) of order 16 for decryption,
where LI() is the left inverse of Q.
Output: Plaintext P = Py, = p1,p2,--.,Pn of n nibbles.
(11 for I =0 to N-1 do
2| Kigurin,. 1611416 = MQG-PRNG(I);
[3] LIQ; = generation of a left inverse quasigroup based on I*" iteration

! .
keystream K[16><I+1,...,16><I+16}’

_ / .
[4] P[16><I+1,...,16><I+16} - K[16><I+1,...,16><I+16} \z C[16><I+1,...,16><I+16]»

4.5.6 Performance analysis

The cipher is implemented in C++, and its performance is analyzed against both the
space and the time (speed) complexities by comparing it with those of the previous
ciphers discussed in sections & and some existing quasigroup based stream
ciphers introduced in literature [12] 28] 43], 59, 60, [8I]. To analyze the performance of
this cipher, we used the same tools and system configurations as we used to analyze the
previous cipher, discussed in section The cipher is run 1000 times for different
inputs and calculated the average execution time in seconds. Experimental results for
both time and space complexities are given in Table If we compare this result
with those of the previous results shown in sections & it can be observed
that in terms of memory requirement, except Edon-80 [28§], this cipher is not only less
expensive than both the previous ciphers discussed in sections & [A4] but also less
expensive than other existing ciphers introduced in literature [12, 43}, 59 [60 [8T]. In
contrast, it is slightly slower than our previous cipher discussed in section [£.4] and an
existing cipher introduced in literature [43], but faster than our first cipher discussed

in section and other existing ciphers introduced in literature [12], 28, [59] [60} 81].
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Table 4.14: Time and space complexities of the proposed cipher.

. Execution time in seconds Space in KB
Stream cipher - -
1.22 MB | 2.11 MB | 6.01 MB | Encryption | Decryption
Proposed cipher 0.07 0.13 0.39 0.13 0.25

4.5.7 Security analysis

The key elements of the proposed cipher are MQG-PRNG and 16 quasigroups of order
16. These 16 quasigroups are generated based on an original non-associative quasi-
group () that acts as a secret key. Note that the maximum number of non-associative
quasigroups of order 16 is bounded above by 24%6 (see Equation of section in

2456 gecret

Chapter. So, the encryption/decryption algorithm can use a maximum of
quasigroups. Since quasigroup ) functions as the core of the proposed cipher, it is kept
as a secret. If the quasigroup @) used is not secret, it is easy for the attacker to crack
the cipher against a chosen-plaintext attack as illustrated later in section [£.5.7.3

The proposed cipher keeps both the non-associative quasigroup () and the keystream
K’ secret. This is because the security of the proposed cipher depends not only on the
keystream K’ but also on the employed quasigroup (Q, which can be changed rapidly.
Due to this, the proposed cipher can be seen as a family of stream ciphers parame-
terized by a quasigroup Q. The proposed cipher uses any 16 quasigroups out of 246,
These 16 quasigroups are generated from the original non-associative quasigroup Q
by a circular shift of rows by a constant amount Comp, see Equation Each it-
eration of the proposed cipher encrypts/decrypts 64 bits of the plaintext/ciphertext
and uses a quasigroup randomly out of these 16 quasigroups, which is decided by a
16 x 1 multiplexer employed. Note that a quasigroup may be used in more than one
iteration. The selection of quasigroup depends on the current iteration 64 bits of the
keystream K’. Let N be the number of iterations that the proposed cipher performs
to encrypt/decrypt a N x 64 bits of the plaintext/ciphertext. So, the number of ways
to use any 16 quasigroups out of 24%% in N iteration is equal to 246 x 16N-1. For
example, if N = 16, then a total of 2456 x 1615 ways possible to use 16 quasigroup in
16 iterations to generate a 1024 bits of plaintext/ciphertext. In order to determine the

employed quasigroups, an attacker can apply the brute-force methods as follows:
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o Quasigroups attack: The proposed cipher uses 16 quasigroups of order 16, and a
maximum number of quasigroups of order 16 is 2455, Assuming the cipher performs
N iterations, the number of possibilities that one needs to search to determine the
quasigroups used in these iterations is 2%°6 x 16V =1, where N > 1. It can be seen that
as N increases, the complexity of this attack increases. For example, if N = 16, the
attack complexity of determining the employed quasigroups that generate 1024 bits of
the plaintext /ciphertext is equal to 2456 x 16!5 = 2516, That is if an attacker uses a
supercomputer and tries 537.21 x 10'% ~ 25 quasigroups per second, then the attacker

2433 years to determine the employed quasigroups. This is because, nowa-

needs around
days supercomputers can execute 537.21 PFLOPS = 537.21 x 10'® ~ 258 floating-point

operations per second (FLOPS) [70]

4.5.7.1 Reused key attack

This cipher is almost the same as that of our previous ciphers, discussed in sections [4.3]
& [£4 The only difference is that it uses 16 quasigroups of order 16 instead of a single
quasigroup of order 256. Therefore, the analysis of this cipher, in the context of the
reused key attack, is the same as that of the previous cipher, discussed in section [£.4.7.2]

From the design of the cipher, we have

Cl :K/*i M1
CQ :K/*Z‘M2

where C7 and Cy are the ciphertexts obtained using the proposed stream ciphers,
and *; is one of the quasigroup operations corresponding to the employed quasigroup
Qi = (Z16,%i), 0 < i < 15. If we use @ operation instead of #;, then the cipher becomes

XOR-based stream cipher and the attacker in the reused key attack computes
Ci1eCs = (K’EBMQEB(K’EBMQ) = M; & M>

where @ is an XOR operation. That is, the obtained byte sequence does not depend on
the keystream K’. In other words, if anyone encrypts two messages with the same key,
they can recover M7 @ My which is a form of running key cipher. Even if neither message

is known, as long as both the messages are in a natural language, such a cipher can
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often be broken because of enough redundancy present in English and ASCII encoding.

And a cryptanalyst easily can recover the original messages from
C1 @ Cy = My ® My — My, M>.
Hence, a cipher that uses the XOR operation for mixing the plaintext with the keystream
would be vulnerable to reused key attack. But in our case:
Cl *; Cg = (K/ *; Ml) x5 (K, *4 MQ) 7& M1 *4 MQ.
This is because *; is one of the quasigroup operations corresponding to the employed
quasigroup @;, 0 < ¢ < 15. Hence, the proposed cipher is resistant to reused key attack.
However, the proposed cipher would be vulnerable to reused key attack if the fol-
lowing properties hold:
(1) t1 \ (tg * t3) = (tl \tg) xt3, V t1,to,t3 € ZLn.
(2) (tl *tg)/tg =11 % (tg/tg), Y t1,to,t3 € Zy,
where Q = (Zy, %), LIQ = (Zy,\) and RIQ = (Z, /) be a quasigroup, its left inverse
quasigroup, and its right inverse quasigroup, respectively. This is because the attacker
can recover useful information from the following equations:
C1\ Co = (K'* M)\ (K" * M)
(K" My) \ (K' % My) = C1\ Co
(K" % M) = (K" % My) % (Cy \ Ca), see Definition [2.2.6] of Chapter [2]
My =K'\ [(K' * My) * (Cy \ C2)], see Definition of Chapter
My = [K"\ (K" My)] * (Cy \ C3), using property (1)
My = My x (C1 \ C2), see identity (2.10]) of Lemma [2.2.11] defined in Chapter

Similarly, using the property (2) and C1/C5, we can also arrive at the following equation:
M, = (C1/Cq) * Ms.

We verified both the above properties (1) and (2) using all possible quasigroups of
order up to 6 (see Table of Chapter [2)) and found that only associative quasigroups
and their left/right inverse quasigroups satisfy these properties. It is a longstanding
open problem to either verify or disprove, for large order quasigroups, that only the
associative quasigroups possess the above-mentioned two properties. Note that the
proposed cipher is designed based on a non-associative quasigroup. So, the proposed

cipher is secure against reused key attack.
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4.5.7.2 Time-Memory-Data Tradeoff attack

Time-memory-data tradeoff (TMDTO) attack is a powerful attack against stream ci-

pher. It reduces the complexity of the brute-force (exhaustive key search) attack. Let

e N denotes the number of the internal states to be covered by the attacker (or the

size of the search space).

P denotes the time complexity of the preprocessing phase (or offline time com-

plexity).

M denotes the space (memory) complexity.

T denotes the time complexity of the real-time phase (or online time complexity).

D denotes the data complexity.

Martinand and Hellman [51] introduced a time-memory tradeoff (TMTO) method for
breaking block ciphers using a tradeoff curve TM? = N2, where N > T > 1. Later,
Babbage and Golic [2, B0] devised different time-memory-data tradeoff method for
breaking stream ciphers with new tradeoff curves TM = N, P=M, D >T > 1. And
we referred to it as the BS attack. Also, Biryukov and Shamir introduced a different
tradeoff curve with better bounds to improve the attack complexity of the TMDTO
against stream ciphers, which is TM?D? = N2, P = %, T > D? > 1 [10]. And we
referred to it as the BS attack.

The time-memory-data tradeoff (TMDTO) attack is an extension of the time-
memory tradeoff (TMTO) attack that aims to achieve better tradeoffs by increasing the
number of data required. It was first successfully applied on A5/1 stream cipher [I1].
Generally, a TMDTO attack is performed in two phases: (i) preprocessing phase (also
called the offline phase) and (ii) the real-time phase (also called the online phase).
In the preprocessing phase, the attacker recomputes several tables with memory com-
plexity M. Each of these tables stores the mapping between different internal states
(secret keys) and the corresponding keystreams with preprocessing time complexity P,
which allows for reducing the online time complexity T. In the real-time phase, the
attacker tries to invert the function mapping of the internal states of a stream cipher to
a segment of the keystream output by intercepting D keystreams and searching them
in the table with time complexity T, expecting to get some matches and recover the

corresponding input (internal state).

92



4.5 MQG-PRNG and non-associative quasigroup based stream cipher

Using TMDTO attacks, an attacker can try to reconstruct the internal state of the
stream cipher to recover the secret key. That is, using the internal state update process,
an attacker could obtain not only subsequently generated keystreams by running the
cipher forward if he or she has reconstructed an internal state at any particular time
but also recover previous states iteratively and further get the underlying secret key by
running the cipher backward. Note that the secret keys are nothing but the quasigroups
of order 16 that the proposed cipher uses in both the keystream generation and the
encryption algorithm (see Figure . Also, each iteration of both the keystream
generation and the encryption algorithm uses a different quasigroup. That is, for each

2456 gtates

of the 2456 possible non-associative quasigroups of order 16, the cipher has
(see Equation of section in Chapter . That is, N = 2456 x 2456 = 2912 (gee
Figure ; which is 2 times the secret key length. So, the attack complexity of the
proposed stream cipher against the BG attack would be T'=D = M = N 3= 2456
which is equivalent to the exhaustive key search attack. Hence, the proposed cipher is
resistant to BG attack.

An attacker can also recover the secret key directly using the pre-computed table
that stores the keystream segments for different (key, seed) pairs [22]. Note that a secret
key is nothing but a non-associative quasigroup used for encryption/decryption, and the
maximum number of non-associative quasigroups of order 16 is 245 (see Equation
of section in Chapter [2)). The attacker can search the table for a collision and
recover some of the secret keys if he or she has some keystream data under different
secret keys corresponding to these seeds. The tradeoff curves remain the same as that
used to recover internal states, but N is modified to represent the size of the collection
of all possible (key, seed) pairs, i.e. N = 2520, This is because, in the proposed

stream cipher, the size of the seed and key spaces are 264 and 2496, respectively. So,
the attack complexity against BS and BG are T = 2°% for D = M = 2'2® and

T=M=D=Nz =220, respectively [25]. But it is still impractical.

4.5.7.3 Chosen plaintext attack

This cipher is analyzed against a chosen-plaintext attack in the same way as the previous

ciphers analyzed against a known-plaintext attack in sections[4.3.8.1]& [4.4.7.1] Suppose

the cryptanalyst chooses the plaintext P = pips ...p,, obtains the ciphertext C' =

c1¢o ...c, corresponding to the chosen-plaintext, and tries to determine the keystream
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K’ employed in the encryption/decryption system. The cryptanalyst, then, for the

keystream K’ used in the stream cipher, must solve the following system of equations:

c1 = k1% p1

co = ko *; po

cn = ky ¥ DPn

where %; is one of the quasigroup operations corresponding to the employed quasigroup
of order 16, 0 < ¢ < 15, and k1, ks,...,k, are unknowns. Let us assume that the
quasigroups @; used are known to everyone. Then, each of these above equations has a
maximum of 16 solutions since the proposed cipher uses a maximum of 16 quasigroups.
In other words, each of these equations has a unique solution for each quasigroup. So,
the cipher can not resist this attack. But the employed quasigroups are kept secret.
So, the above system of equations has as many solutions as there are the number
of quasigroups of order 16. Hence determining the quasigroups makes it practically
impossible. Therefore, the proposed cipher is resistant to chosen-plaintext attack.
Using a similar argument, it can be shown that the cipher is resistant to the chosen-

ciphertext and known-plaintext attacks as well.

4.5.7.4 Statistical test for randomness

The randomness of the obtained ciphertexts is tested using the NIST-STS test suite [65].
The NIST-STS test suite consists of various statistical tests. The details of each of such
tests are discussed in section [£.3.8:2] We ran each test of the NIST-ST'S test suite using
a significance level o = 0.01 for three inputs (i) input contains all binary 0’s (0X00),
(ii) input contains all binary 1’s (0XFF), and (iii) input contains random values. The
size of each input file is 10° bits. We generated 1000 binary sequences (ciphertexts) for
each of these three files using 1000 different keystreams so that each file uses the same
keystream. Now, for 1000 binary sequences of each file, separately, we ran each test of
the NIST-STS 1000 times. The results of each of these tests are shown in Table 415
The first column of the table lists the name of the tests carried out. The proportion
of sequences that passed a statistical test at o = 0.01 significance level for all 0X00, all
OXFF, and random inputs are listed in columns second, third, and fourth, respectively.

According to the experimental results, as shown in Table we note that on average,
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99.04% of sequences pass each of these tests. so, it can be concluded that the proposed

cipher produces highly random ciphertexts.

Table 4.15: NIST-STS test results for the 1000 ciphertexts.

Tests Proportion  of | Proportion  of | Proportion  of
success out of | success out of | success out of
1000 for all 0X00 | 1000 for all OXFF | 1000 for random
input input input
Frequency 0.989 0.993 0.991
Block frequency 0.989 0.997 0.992
Cumulative sum 0.990 0.992 0.994
Runs 0.990 0.990 0.989
Longest run 0.994 0.996 0.987
Rank 0.989 0.990 0.992
Discrete fourier transform 0.993 0.989 0.992
Non-overlapping template 0.990 0.990 0.991
Overlapping template 0.986 0.988 0.992
Universal statistical 0.988 0.989 0.990
Approximate entropy 0.988 0.994 0.990
Random excursion 0.989 0.990 0.991
Random excursion variants 0.989 0.989 0.990
Serial 0.990 0.994 0.989
Linear complexity 0.987 0.986 0.990

4.5.8 Summary

In this chapter, we have proposed three stream ciphers based on quasigroups. The
first cipher discussed in section uses AES-256 for generating the keystream and a
single quasigroup of order 256 for encrypting/decrypting the messages, while the sec-
ond and third ciphers are discussed in sections and respectively. The second
cipher uses QG-PRNG for generating the keystream and a single quasigroup of order
256 for encrypting/decrypting the messages, while the third cipher uses MQG-PRNG
for generating the keystream and 16 quasigroups for encrypting/decrypting the mes-

sages. Use of multiple quasigroups contributes to increased security. This is because a
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different quasigroup is used after a certain amount of plaintext/ciphertext. QG-PRNG
and MQG-PRNG are pseudo-random number generators, which are also described in
this chapter. To generate the keystreams, the QG-PRNG uses a single quasigroup of
order 256, while MQG-PRNG uses 16 quasigroups of order 16. The randomness of the
obtained keystreams produced by the QG-PRNG and MQG-PRNG is analyzed using
the NIST-STS test suite. We noted that the generated keystream sequences are highly
random.

Novelty of these stream ciphers is that they are resistant to the reused key attack as
against the existing XOR-based stream ciphers. Hence a keystream can be reused mul-
tiple times, thereby overcoming the major hurdle that exists in the application of the
XOR-based stream ciphers. Also, the ciphers are analyzed against various attacks, in-
cluding the chosen-ciphertext attack, the chosen-plaintext attack, the known-plaintext
attack, the reused-key attack, the statistical attack, and the time-memory-data tradeoff
(TMDTO) attack. We observed that our ciphers are resistant to these attacks as well.

The performance of the proposed ciphers is analyzed by comparing them to each
other and we found that our third cipher is slightly slower than our second cipher, but
overall third cipher outperforms both the first and second ciphers. This is because the
third cipher uses about 99% less memory (in bytes) than the first and second ciphers.
In addition, if we compare the performance of the proposed ciphers with that of the
existing quasigroup based stream ciphers [12, 28|, [43], (59, 60, [8T]. We observed that in
most cases the proposed ciphers are more efficient than the existing quasigroup based
ciphers [12, 28] 43|, 59, 60, [§1].

The randomness of the obtained ciphertexts produced by the proposed stream ci-
phers is analyzed by the NIST-STS test suite. We found that the obtained ciphertexts
of the proposed ciphers are highly random.
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Chapter 5

Block Ciphers Based on Multiple

Quasigroups

This chapter discusses two schemes of block ciphers based on multiple quasigroups.
They are symmetric key ciphers and use 16 optimal S-bozes in the form of an optimal
quasigroup of order 16. A mazximum of 16! optimal quasigroups can be formed using the
16 S-boxes, these ciphers can be seen as a family of encryption systems parameterized
by an optimal quasigroup. That is, the sender and the receiver agree on a cryptosystem
by first deciding on the quasigroup. This chapter gives a brief overview of the ciphers,
the structure of the ciphers, the details of building elements of the ciphers, and analyzes
the performance and security of the ciphers.

While describing these ciphers, the emphasis is on how the ciphers use Substitu-
tion Permutation Networks (SPN) to achieve confusion and diffusion of bits from the
plaintext to the ciphertext and why they are an excellent alternative to the existing

quasigroup-based block ciphers.

5.1 Introduction

As discussed in the last chapter, a stream cipher encrypts/decrypts one data item
(bit/nibble/byte) of the plaintext/ciphertext at a time. In contrast, a block cipher
encrypts/decrypts a fixed amount of plaintext/ciphertext at a time called a block.
One significant difference between the block ciphers and the stream ciphers is that

block ciphers are stateless, whilst stream ciphers are stateful. That is, a stream cipher
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maintains an internal state to generate the next part of the keystream. A block cipher
is also a symmetric key cipher that uses the same key for encryption and decryption.

Block diagram of a block cipher is shown in Figure 5.1 A cipher takes a fixed-size

Secret key
Encryption/Decryption
. algorithm .
Plaintext Ciphertext
or or
Ciphertext Plaintext

Figure 5.1: Block diagram of the block cipher.

block as input and produces an output block whose size is equal to the size of the input
block. It also uses the same secret key for encrypting and decrypting messages. Block
and key sizes usually depend on the cipher algorithm. For example, block and key sizes
are 64 bits each in DES; whereas 128 bits or more in modern block ciphers.

A block cipher can not only be used as an encryption algorithm but it can also be
used as a versatile building block for implementing a wide range of cryptographic appli-
cations, such as hash functions, message authentication codes, pseudo-random number
generators, etc. Most modern-day block ciphers are designed based on permutation
and substitution networks and are iterative in nature. In an iterated cipher, a round
function and a key schedule must be specified, and a block of plaintext will be encrypted
through N iterations of the same function. The output of the first block may be used
to help encrypt the second block in what is called a mode of operation. For encrypting
the long plaintext, a block cipher can use several modes of operation, such as ECB,
CBC, CFB, etc. Different modes of operation offer different levels of protection against

error propagation caused by transmission errors in the ciphertext [67].

5.2 Brief overview of the proposed block ciphers

This chapter proposes two cipher algorithms for encrypting/decrypting messages. The
ciphers employ optimal quasigroups and their corresponding left inverse quasigroups.
They are block ciphers and each of them uses 16 optimal quasigroups of order 16. Each

of these 16 optimal quasigroups is constructed based on an original quasigroup ) =
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(Z16, *) of order 16. The description of the optimal quasigroup is given in section
of Chapter The proposed ciphers use 16 S-boxes Sy, S1,...515 in the form of an
optimal quasigroup @ = (Zig, *) of order 16, shown in Table of Chapter Note
that the size of each of these 16 S-boxes is 4 x 4 bits.

The first cipher El performs a total of 16 rounds to encrypt and decrypt a mes-
sage of 128 bits. Each of these rounds uses one non-linear transformation (also called
{e,d}-transformation) and one linear transformation. The non-linear transformation
uses 8 bits of the secret key, also called a seed value or a sub-key, for processing a block
of 128 bits of data. The details of the {e, d}-transformation are given in section2.2.15]
of Chapter [2

The second cipher E| performs a total of 17 rounds to encrypt and decrypt a mes-
sage of 128 bits. Each of these rounds uses 128 bits round key along with one non-
linear transformation (also called {ne’ nd‘}-transformation) and two linear trans-
formations. Note that the {ne’, nd‘}-transformation is defined in section of
Chapter

The algorithms of the proposed ciphers are described as well as they are imple-
mented using the Cipher Block Chaining (CBC) mode of operation. Each iteration of
the ciphers encrypts/decrypts 128 bits of plaintext/ciphertext, and the ciphers are iter-
ated until the entire plaintext/ciphertext is encrypted/decrypted. The ciphers can also
be described using other modes of operation, such as Cipher Feedback (CFB) mode,
Output Feedback (OFB), and Counter (CTR) mode. Each mode of operation has its
own advantages and disadvantages [67].

The non-linear transformation is nothing but a key-dependent S-box layer, which
is carried out using the quasigroup operation. In each quasigroup operation, a key-
dependent S-box layer chooses one S-box out of the 16 S-boxes of the quasigroup. The
choice is based on the round key or sub-key. We believe that key-dependent S-box
ciphers are more secure than fixed S-box ciphers. This is because key-dependent S-
boxes do not offer any specific properties to the cryptanalyst. Most key-dependent
S-box ciphers are effectively random. Examples of such ciphers are Blowfish [66] and

SEAL [13)].

! An efficient block cipher based on multiple optimal quasigroups and {e, d}-transformation
2 A block cipher based on multiple optimal quasigroups and {ne’, nd‘}-transformation
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5.2.1 Quasigroup operation for encryption and decryption

A quasigroup operation is nothing but a substitution (S-box) operation. It substitutes
a byte (8-bit) value with another byte (8-bit) value, depending on the round key or
sub-key. Sixteen optimal quasigroups of order 16 are employed in the design of the
proposed block ciphers, where each of these 16 quasigroups contains the same 16 S-
boxes Sp,S1,...515 as an optimal quasigroup of order 16, but in a different order
(permutation), one such quasigroup is shown in Table of Chapter |2l Note that the
size of each of these 16 S-boxes is 4 x 4 bits. So, all operations are performed in the
form of 4-bit (also called nibbles) aggregations. Let each byte of data be divided into
two nibbles. That is, a byte value x is represented as x = x1xg, where x; and xzg are

nibbles. Then, the quasigroup operations for encryption and decryption are defined as

120 *i Y1yo = (@1 % y1)||(zo *i o)

or (5.1)

Sy [ylyO] = S, [3/1] ‘ |Sﬂfo [ZJO]

and
z1zofiy1yo = (1 \i y1)||(zo \i yo)
or (5.2)
oo [v190] = S 111155, [yl
respectively, where (x;, \;) and (%;,4;) are quasigroup operations corresponding to nib-
bles and bytes respectively, 0 < 7,7 < 15, and || is a concatenation operation that
concatenates two 4-bit values into one 8-bit value. Sj[x] denotes the output of jth
S-box, determined by looking up the row number j and the column number = of the
quasigroup Q; similarly Sj_l[:v] denotes the output of 5 inverse S-box, determined by
looking up the row number j and the column number x of the left inverse quasigroup
LIQ of the quasigroup ), where S I ! is inverse of S;. Also, the symbol §; is called the
inverse (or left inverse) quasigroup operation corresponding to the symbol *;. That is,
if a quasigroup @Q; = (Z1, *;) that consists of Sy, S, ..., S5 is used for encryption then
its left inverse quasigroup LIQ; = (Z1¢,4;) that consists of Sfl, S;l, e ,Sf; is used
for decryption.
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{e,d}-transformation

5.3 An efficient block cipher based on multiple optimal

quasigroups and {e, d}-transformation

This section discusses the structure and the building elements of the first block cipher.
The proposed cipher is an iterative cipher, and its design is based on the Substitution
Permutation Network (SPN). It uses 16 optimal quasigroups of order 16 and a 128-bit
secret key for encrypting/decrypting the messages. These 16 optimal quasigroups are
constructed dynamically based on an original (fixed) optimal quasigroup Q = (Zg, *)
of order 16. Because of this, the cipher leverages the space of a single quasigroup
and uses multiple quasigroups by generating them from an original quasigroup. That
is, the space required by multiple optimal quasigroups is reduced to that of a single
quasigroup. It performs a total of 16 rounds to encrypt or decrypt a block of 128 bits.
Each round consists of two transformations (substitution and permutation), except the
last /first round of the encryption/decryption. These transformations are an intermix
of substitutions and permutations. The last/first round of the encryption/decryption
only consists of the substitution.

The algorithm of the new cipher consists of three parts: (1) an algorithm to ran-
domly select (or generate) an optimal quasigroup for each round, (2) an encryption algo-
rithm, and (3) a decryption algorithm. The encryption algorithm consists of two trans-
formations: (i) e-transformation, and (ii) bit permutation. The decryption algorithm
also consists of two corresponding inverse transformations: (i) d-transformation, and
(ii) inverse bit permutation. The e-transformation and the d-transformation are
nothing but key-dependent S-box layers that depend on the sub-key. The workflow
of both the encryption and the decryption algorithms of the proposed block cipher is
shown in Figure In this figure, k;,0 < j < 15, denotes a sub-key value of 8-bit (or an
8-bit of the secret key K'), which is used in each round for (i) selecting a random optimal
quasigroup @; for encryption and a left inverse quasigroup LIQ); for decryption (where
LIQ); is the left inverse of @;), 0 < i < 15, and (ii) e-transformation of the encryp-
tion and d-transformation of the decryption. The algorithm uses a 8bitTo4bitComp
compression function that compresses an 8-bit k; to 4-bit. This 4-bit value is used by
a 16 x 1 multiplexer for generating a random optimal quasigroup. The generation of

the optimal quasigroups is discussed in the next section.
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Figure 5.2: Encryption and decryption algorithms of the block cipher.

5.3.1 Generation of optimal quasigroups

The proposed cipher uses 16 optimal quasigroups of order 16 and performs a total of 16
rounds to encrypt or decrypt the messages. Also, each round of the proposed cipher uses
only one optimal quasigroup out of 16 optimal quasigroups. This optimal quasigroup
is selected randomly with equal probability. Note that an optimal quasigroup may
be used in more than one round. Selection of the optimal quasigroup is carried out
using a 16 x 1 multiplexer used in each round of the cipher, as shown in Figure [5.2
Note that these 16 optimal quasigroups are generated based on an original quasigroup
Q@ = (Zi6,%). By permuting the rows of the original quasigroup @, 16! quasigroups

can be created. The proposed cipher uses only 16 quasigroups of 16! quasigroups. So,
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any 16 out of the total 16! quasigroups can be selected. Let the selected quasigroups
be Qo = (Zis,%0), Q1 = (Zi16,%1),---,Q15 = (Z16,%*15), where *q, %1, ..., %15 are the
quasigroup operations corresponding to Qq, @1, ..., @15, respectively. Note that all these
16 quasigroups need not be stored. This is because each quasigroup consists of the same
rows but in a different order (permutation).

Based on 16 x 1 multiplexer, generation or selection of a total 16 quasigroups is
done using Equation of section of Chapter [4, which is reproduced here in
Equation for easy reference:

Qi = (R(O+constval) mod 16> R(1+constval) mod 16y -« *» R(15+constva1) mod 16) (53)
where Rg, R1,...,Ri5 denote row numbers of the original quasigroup @ = (Zig, ),
0 < constval < 15, Q; € {Qo,Q1,...,Q15}. The value of constval is determined as

h round seed value or

follows: For selecting the r** round quasigroup, we consider rt
sub-key k,,0 < r < 15. This is a byte (8-bit) value of secret key K. So, divide k, into

two 4-bit values (nibbles), that is k, = ky, ky,, where k,, and k,, are nibbles. Then,
constval = 8bitTo4bitComp (k) = k,, @ ky, (5.4)

where @ is a bitwise addition modulo 2 operation. The constval is 4 bits and they are
denoted by sg, s1, s2, and s3, where sy and s3 are the least and the most significant
bits, respectively. These s;, 0 < ¢ < 3, are considered as the selection lines of the
16 x 1 multiplexer. If s3 = 0,89 = 0,87 = 0,89 = 0, then the multiplexer selects or
generates a quasigroup Qqg. If s3 = 0,50 = 0,51 = 0,59 = 1, then the multiplexer
selects or generates a quasigroup )1, and so on. Also, the same permutations of the
rows Ry, R1,..., Ri5 are used in the decryption algorithm, but these permutations are
generated based on the LIQ = (Zg,\), where LIQ is the left inverse quasigroup of
the original optimal quasigroup ). The correctness of this is proven by Theorem [I] in
Chapter

5.3.2 Encryption

Encryption algorithm of the proposed block cipher is carried out in a total of 16 rounds.
Each of these rounds, except the last round, consists of two transformations to encrypt

a 128 bits block of data. The last (15**) round performs only the E-transformation.
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5.3.2.1 FE-transformation

The E-transformation is nothing but e-transformation, defined in section [2.2.12] of
Chapter This constitutes a non-linear layer of the proposed cipher. It uses 16 S-
boxes Sy, S1,...,S15 in the form of an optimal quasigroup @ = (Zig,*) of order 16.
These 16 S-boxes are given in Table 2.8 of Chapter [2} It is a key-dependent S-box layer
that substitutes a byte for a byte. It increases the confusion power of the cipher and
hides the relationship between the ciphertext and the key; thereby making it difficult to
find the key from the ciphertext. Let P={po,p1,...,p15}, kr, and C = {co,c1,...,c15}
denote input to a round, 8-bit seed value (sub-key) for the r** round, and the output
of a round, respectively. Then, the way of using the F-transformation on P with seed

value k, to obtain the corresponding C' is as follows:

co = Ky *; po, }

Cj = Cj—1 % Pj

(5.5)

where pg pj, ¢j and k, are byte values, 1 < j < 15, 0 < r < 15, and «; is one of
the quasigroup operations corresponding to the quasigroup Q; = (Zig,*;), defined in

Equation 5.1}, 0 <14 < 15.

5.3.2.2 Bit permutation

This is a linear transformation used after E-transformation to increase the diffusion
power of the block cipher. It spreads the non-zero bits so as to increase the number
of active S-boxes in the differential and linear trails; thereby getting the maximum
impact of the substitution layer. It has the ability to hide the relationship between the
ciphertext and the plaintext. The permutation of the bits used in the proposed cipher
is given row-wise in Table . It maps bits from bit position x to bit position o(x),
defined by the following equation:

o(z) = (32 <<3 {WJ + (z mod 4)> mod 4) +4 [{%J 1+ (z mod 4)) mod 128,

The following observations can be made by looking at the permutation layer:

(i) The four output bits of a particular round S-box enter into four different S-boxes

of the next round.
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(ii) The four input bits to an S-box of a particular round come from four different

S-boxes of the previous round.

(iii) The y*" output bit of an S-box of a particular round becomes the ((y+41) mod 4)*
input bit of a different S-box of the next round, where 0 < y < 3, 0** and 3" bits

are the least and most significant bits, respectively, of the S-box.

(iv) The y'* input bit to an S-box of a particular round comes from the ((y —

1) mod 4)™" output bit of a different S-box of the previous round.

According to observation (i); the four output bits of an S-box in one round will affect
four S-boxes in the next round, and then 16 S-boxes together in the round after that.
Therefore, it can be demonstrated that this permutation will affect all the 32 S-boxes
in three rounds using similar reasoning for the subsequent rounds. That is, this bit
permutation needs four rounds to achieve the full diffusion, that is, an input bit to
an S-box of a particular round will influence all the 128 bits in four rounds, which is

optimal [3].

Table 5.1: Bit permutation for a 128-bit block.

341671100 97 | 2 |35(68|65] 98 | 3 |36 ]33 |66 | 99
38| 71104101 | 6 [39|72|69|102| 7 |40 | 37|70 | 103
42 | 75| 108 | 105 | 10 | 43 | 76 | 73 | 106 | 11 | 44 | 41 | 74 | 107 | 12
13146 | 79 | 112 | 109 | 14 | 47 | 80 | 77 | 110 | 15 | 48 | 45 | 78 | 111 | 16
17150 | 83 | 116 | 113 | 18 | 51 | 84 | 81 | 114 | 19 | 52 | 49 | 82 | 115 | 20
21 | 54 | 87 | 120 | 117 | 22 | 55 | 88 | 85 | 118 | 23 | 56 | 53 | 86 | 119 | 24
25 |58 |91 | 124 | 121 |26 |59 | 92 | 89 | 122 | 27 | 60 | 57 | 90 | 123 | 28
29162195 0 | 125 30|63 96|93 |126 |31 |64 |61 |94 | 127 | 32

5.3.2.3 Encryption algorithm using CBC mode of operation

The encryption algorithm of the proposed block cipher is implemented using the Cipher
Block Chaining (CBC) mode of operation. The pseudocode of the encryption algorithm
is given in Algorithm 8 In this algorithm, @; denotes a generated optimal quasigroup
based on the k, for the r** round of Pj block, 0 < 4,7 < 15,0 < j < N — 1, where
N is the total number of plaintext blocks to be encrypted. The encryption algorithm

105



5. BLOCK CIPHERS BASED ON MULTIPLE QUASIGROUPS

Algorithm 8: Pseudocode of the encryption algorithm
Input: 1. Plaintext in the form of 128-bit (16 bytes) blocks. Let Py, P, ...,
Pn_1 be N number of blocks to be encrypted.
2. Initial value (IV') of 128 bits (16 bytes).
3. Secret key K of 128 bits in the form of a sequence of 16 bytes such
as K = kg, k1,..., k15, where k, is a 8-bit value for 0 < r < 15.
4. An optimal quasigroup of order 16.

Output: Ciphertext whose size is equal to the size of the plaintext.
(11 for j =0 to N-1 do

[2] P; = XOR(P;,1V);

[3] for r =0 to 14 do

[4] Q); = Generated optimal quasigroup based on k,;
(5] P; = E-transformation(Pj, k., Q;);

(6] P; = Bit-permutation(FP;);

[7] Q; = Generated optimal quasigroup based on kis;
[8] P; = E-transformation(P;, kis, Q;);

[9] 1V = Pj;

updates block P; many times during the encryption process, and the results are stored

in the same block P; ,0 <7 <N —1.

5.3.3 Decryption

The decryption process is the reverse of the encryption process. It recovers the original
plaintext from the ciphertext. It uses the same sequence of the round seed values but
in reverse order. Let K = kg, k1,..., k15 be 16 bytes of seed values, and if k, is used

" round of the

in the 7** round of the encryption algorithm, then k; is used in the
decryption algorithm, where t = 15 — r,0 < r < 15. The decryption algorithm of the
proposed block cipher is not the same as the encryption algorithm. Also, it uses the
left inverses of the quasigroups that were used in the encryption algorithm. It also
performs a total of 16 rounds to decrypt a 128-bit block of data. Each round, except

the initial (0'") round, consists of two transformations. In the initial round, only the

D-transformation takes place.
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5.3.3.1 D-transformation

The D-transformation is nothing but d-transformation, defined in section [2.2.12] of
Chapter It is the inverse of the FE-transformation. It uses the inverse S-boxes
Sal, Sal, ce Sf51 as a left inverse quasigroup LIQ = (Zj¢,\) of the quasigroup Q =
(Z16,*) that was used in the E-transformation, where S;! is the inverse of Sy, 0 <
a < 15. A method to find the left inverse quasigroup LIQ of the quasigroup @ is
given in Chapter Let C = {co,c1,...,c15}, ki, and P={pg, p1,...,p15} denote round
input, 8-bit seed value (sub-key) for the t** round, and the round output, respectively.
Then, the way of using the D-transformation on C' with seed value k; to recover P is

as follows:

po = kiflico, }
(5.6)

pj = ¢j—1licj,
where pg pj, ¢j and k; are byte values for 1 < j < 15, 0 < ¢t < 15, and §; is one
of the left inverse quasigroup operations corresponding to the left inverse quasigroup
LIQ; = (Z16,1:), defined in Equation 0<i<15.

5.3.3.2 Inverse bit permutation

The inverse bit permutation of the decryption algorithm is the reverse of the bit per-

mutation used in the encryption algorithm, shown in Table

Table 5.2: Inverse bit permutation for a 128-bit block.

1151 0 | 5 |10 | 15|16 |21 |26 |31 | 32 | 37 | 42 | 47 | 48 | 53 | 58
63 |64 69|74 |79 (80|8 |90 |95 | 96 | 101 | 106 | 111 | 112 | 117 | 122
127 112 | 1 | 6 |11 |28 |17 |22 |27 | 44 | 33 | 38 | 43 | 60 | 49 | 54
99 |76 |65 | 70| 75|92 |81 |8 |91 | 108 | 97 | 102 | 107 | 124 | 113 | 118
123 | 8 |13 2 | 7 |24 |29|18 23| 40 | 45 | 34 | 39 | 56 | 61 | 50
55 | 72| 77|66 |71 |88 |93 |82 | 87| 104|109 | 98 | 103 | 120 | 125 | 114
119 | 4 | 9 |14 3 |20 25|30 19| 36 | 41 | 46 | 35 | 52 | 57 | 62
51 | 68 | 73 | 78 | 67 | 84 |89 |94 | 83| 100 | 105 | 110 | 99 | 116 | 121 | 126

5.3.3.3 Decryption algorithm based on CBC mode

The decryption algorithm of the proposed block cipher is also implemented using the
Cipher Block Chaining (CBC) mode of operation. Each iteration of the decryption
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algorithm decrypts 128 bits of the ciphertext and is repeated until the entire ciphertext
is decrypted. The pseudocode of the decryption algorithm is given in Algorithm [9}

In this algorithm, LIQ; denotes a generated left inverse quasigroup based on the seed

Algorithm 9: Pseudocode of the decryption algorithm
Input: 1. Ciphertext in the form of 128-bit (16 bytes) blocks. Let Cp, C1, ..
Cn—1 be the N number of blocks to be decrypted.
2. Initial value (IV') of 128 bits (16 bytes).
3. Secret key K of 128 bits in the form of a sequence of 16 bytes such
as K = kg, k1,..., k15, where k; is a 8-bit value for 0 < ¢ < 15.
4. A left inverse quasigroup of order 16, this quasigroup is the left

)

inverse of a quasigroup that was used in the encryption algorithm.
Output: Plaintext whose size is equal to the size of the ciphertext.
(11 for j=0to N —1do
[2] Copy0£fCj= Cj;
[3] LIQ; = Generated left inverse quasigroup based on ko;
[4] Cj = D-transformation (C}, ko, LIQ;);
(5] fort =1 to 15 do

(6] LIQ; = Generated left inverse quasigroup based on k;
(71 C; = Inverse bit permutation (C});
(8] C; = D-transformation (C}, k¢, LIQ;);

[9l Cj = XO0R (Cj,IV);
[10] 1V = Copy0£fC};

value for the t*" round of C; block, 0 <, <15,0<j <N — 1, where N is the total
number of ciphertext blocks to be decrypted. The CopyofC} is a temporary variable
used to store the value of C; before starting the decryption process. The decryption
algorithm updates block C; many times during the decryption process, and the results

are stored in the same block C;, 0 < j < N — 1.

5.4 A block cipher based on multiple optimal quasigroups

and {ne’,nd’}-transformation

The notation employed in this section is given in Table Here, we discuss another
block cipher different from the one discussed in the previous section It is an
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Table 5.3: Some important notations.

Notation Meaning

XOR or 6@ :bitwise addition modulo 2 operation

A% :an initial value of 128 bits

N :a total number of blocks to be encrypted/decrypted
K dinitial (0**) round key or secret key

RK, " round key for encryption, 0 < r < 16

RK; :t*" round key for decryption, where t = 16 — r

RK, : wy :p'" word of the r*" round key for encryption, 0 <7 < 16,0 < p < 67

RK; :w, :pt" word of the " round key for decryption, where t = 16 — r

w :a total of 68 words of the round key

r&t :round number for encryption & decryption respectively, where 0 < r,t < 16

B & C  :block number for encryption & decryption respectively, where 0 < B,C < N — 1

iterative cipher, and its design is also based on the Substitution Permutation Network
(SPN). It also uses a 128 bits secret key and 16 optimal quasigroups of order 16.
These 16 optimal quasigroups are generated based on an original optimal quasigroup
Q = (Zy6,*) of order 16. The description of the optimal quasigroup is specified in
Chapter 2l Note that this cipher uses the same set of 16 S-boxes used by the previous
cipher. These 16 S-boxes Sy, S1, .. ., S15 are given in Table[2.8 of Chapter[2] It performs
a total of 17 rounds to encrypt or decrypt a block of 128 bits. Each round consists of
a sequence of transformations. These transformations are an intermix of substitutions
and permutations. Each round, except the initial/last round of encryption/decryption
of the proposed cipher, uses an optimal quasigroup by randomly picking one out of the
16 optimal quasigroups. This optimal quasigroup is selected based on the previous/next
round key of encryption/decryption. The proposed cipher leverages the space of a single
optimal quasigroup and employs 16 optimal quasigroups by generating them from a
single optimal quasigroup. That is, the space required by 16 optimal quasigroups
is reduced to that of a single optimal quasigroup. The Theorem [I| of Chapter [2] is
useful in proving the correctness of the proposed cipher. The workflow of encryption
and decryption of the proposed block cipher is shown in Figure In the figure,
wp, 0 < p < 67, denotes a 32-bit word of the round key. The word representation of

the round key is described in the next subsection. Every round uses a quasigroup @Q;
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Figure 5.3: Workflow of encryption and decryption of new block cipher.

for encryption and an inverse quasigroup LIQ); for decryption (where LIQ); is the left

inverse of @);), each of which is selected by a 16 x 1 multiplexer.

The algorithm of the proposed cipher consists of four parts: (1) an algorithm to
randomly select an optimal quasigroup for each round of a block, (2) an algorithm to
generate a round key, (3) an encryption algorithm, and (4) a decryption algorithm. The
encryption algorithm employs three different transformations: (i) Encoding function,
(ii) Bit permutation, and (iii) Add round key. Similarly, the decryption algorithm
has three corresponding inverse transformations: (i) Decoding function, (ii) Inverse bit

permutation, and (iii) Add round key.

110



5.4 A block cipher based on multiple optimal quasigroups
and {ne’, nd‘}-transformation

5.4.1 Generation of round key

The proposed block cipher uses a round key generation algorithm to encrypt or decrypt
a data block. It uses a 128-bit round key for each round to encrypt or decrypt a block of
128 bits. These round keys are generated based on the secret key of 128 bits along with
16 optimal quasigroups of order 16. The generation of each round key uses an optimal
quasigroup out of 16 optimal quasigroups, selected by a 16 x 1 multiplexer. Now, the se-
cret key of 128 bits is partitioned into four words, and these, in turn, are arranged as four
columns of a matrix. Let Ko = (k(0,0); k(0,1): K(0,2) K(0,3)> - - - » K(3,0)5 K(3,1): K(3,2): K(3,3))
be a secret key of 128 bits (16 bytes), where each k; ;) is a byte value for 0 <i,j < 3,
which are organized as a 4 x 4 matrix of bytes as shown in Figure (a). In this
matrix, pt* word (column) is denoted by w,, where 0 < p < 3 and size of each w,
is 32 bits. These four words are used to create the initial (0'*) round key, and it is
represented as (Ko : wg, Ko : w1, Ko : wa, Ko : ws) or simply, Ko = (wp, w1, ws, ws).
Our proposed cipher performs a total of 17 rounds for encrypting/decrypting a block of
128 bits, and each round consists of four words as a key. Therefore, a total of 68 words
(W = {RKy : wp, RKy : w1, RKp : wa, RKy : w3, RK; : wy,...,RK15 : wgs, RK16 :
wea, RK16 : wes, RK16 : wee, RK16 : wgr}) are required as shown in Figure These

He J ) e
r RK,: 1 r RK, : aor 0 RK5: X
Koo | Koy | kop | ko L kos | Kos | %o v K(0,64) | kqo,65)| K(0,66) | K(,67)
ko | ke | ko | kog kua | ks | kae | Koo .o k1,64) | Kkq1,65) | K(166) | K,67)
kpo | Kan | ken | Kes kea | Kes | kee | ke co ks | kess)| Kes | e
koo | ke | key | K Koy | ke | koo | Koo 5o kes,69) | K65 | Ka66) | K em)
Wo w1 w2 w3 Wy w5 wg i) . Wea | Wes | Wes | We7
(a) (b)

Figure 5.4: Representation of round keys.

68 words are generated based on K, including four words of the initial (0*") round key
Ky. For 1 <r <16, 4 < p <67, a p" word of the r* round key is generated based on
the previous words p — 4 and p — 3. The generation of the round key algorithm is given

in Algorithm [I0} In this algorithm, @;,0 < i < 15, is a generated quasigroup. And ¥%;
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Algorithm 10: Generation of the round key

Input: 1. A 128-bit secret key in the form of a 4 x 4 matrix of bytes as shown
in Figure [5.4(a).
2. An optimal quasigroup of order 16.
Output: Generates all the 17 rounds key in the form of a 4 x 68 matrix of
bytes as shown in Figure
(11 if r =0 and 0 < p < 3 then
[2] L RKy = Ko;

[31 else

[4] for p =4 to 67 do

(5] if p mod 4 = 0 then

(6] Q; = generated quasigroup based on " round key;

(7] L r=r+1;

(8l if RK(rfl) FWp—3) € W then

[9] L RK, : Wp = RK(rfl) P W(p—4) *; RK(rfl) P W(p—3);
[10] else

[11] L RK, : Wp = RK(T‘—l) : w(p_4)*i RK, : W(p—3);
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is the binary operation (quasigroup operation) of 32-bit words defined as follows: Let
U = (u1,ug,u3,us) and V = (v1,v2,v3,v4) be two words of 32 bits each, where u; and

vj are byte values (1 < j < 4). Then,
Udk;V = Z = (u1 *; v1, U2 *; V2, U3 *; U3, Ug *; Vs),

where x; is one of the quasigroup operations defined in Equation 0 <1 < 15. Note
that a quasigroup operation v; is a look-up table operation. So, here the resultant
value Z is determined by looking up the element having the row number U and the
column number V' in the table representation of the quasigroup @ = (Zgsz, %;).

Note that both the encryption and the generation of the round key algorithms use
the same set of optimal quasigroups. These optimal quasigroups are generated based
on an original optimal quasigroup @ = (Z¢, *). But in decryption, we use a left inverse
quasigroup LIQ = (Zig,\) of the quasigroup . Note that both the encryption and
the decryption algorithms use the same round key. Therefore in decryption, the key
generation algorithm has to perform the quasigroup operations corresponding to the
quasigroup @ = (Zig, *) based on the quasigroup LIQ = (Zss, \). From Deﬁnitionm

of Chapter [2], the relation between these two quasigroup operations is as follows:
to \t3 =t1 & taxt] = tg,V(tl,tQ,tg) S Zm X Zlﬁ X Zlﬁ.

5.4.1.1 Avalanche effect of expanded key

The round key generation (key expansion) algorithm uses a 4-word (where the size of
each word is 4 bytes) secret key and produces a total of 64 words, excluding the secret
key. The round key generation algorithm uses 16 optimal quasigroups of order 16. Out
of these, it uses only one optimal quasigroup for generating a round key. The selection
of an optimal quasigroup for each round depends on the previous round key except for
the initial round. Uniformly using each of these 16 optimal quasigroups eliminates the
possibility of producing the same expanded key for two different secret keys. It also
allows us to obtain high diffusion of the secret key bits during the key expansion. The
current round key is used to generate the next round key. This and the use of optimal
quasigroups cause the key generation algorithm to produce distinct round keys. So, key
bits in every round are unique. Therefore, slide attacks are avoided. We also believe

that the possibility of the existence of weak or related keys is minimal.
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Key expansion and key scheduling algorithms are designed so that the knowledge
of a part of the secret key or round sub-key bits will not allow determining the other
round’s sub-key bits. We analyzed the avalanche effect on the expanded key and com-
pared it with that of the AES-128 key expansion for three cases, namely, (i) all 0’s,
(ii) all 1’s, and (iii) randomly generated secret keys. Results of this analysis are given
in Table These results are obtained by changing each bit of the secret key as the
size of the secret key is 128 bits. Note that more than 47% bits of the expanded key
have been changed in the case of the proposed key expansion algorithm, whereas the
corresponding number in the case of AES-128 is only around 31%. That is, the results
of the proposed cipher are more close to the ideal value than the results of AES-128.
Based on these results, we can conclude that our key expansion algorithm has a higher

diffusion than AES-128 for protection from some slide and key-related attacks.

Table 5.4: Avalanche effect of expanded key, when the secret key is with all zeros, all

ones, and randomly generated.

keys = rand

avg = 47.95%, sd = 2.63
min = 44.38%, max = 50.24%,
avg = 47.87%, sd = 1.01

Secret key Proposed cipher AES-128

of 128 bits

key, =0 min = 42.19%, max = 54.25%, min = 16.09%, max = 46.25%,
avg = 47.73%, sd = 3.21 avg = 32.26%, sd = 7.12

key, = 1 min = 42.43%, max = 53.07%, min = 17.42%, max = 46.09%,

avg = 31.65%, sd = 7.53
min = 16.48%, max = 45.00%,
avg = 31.49%, sd = 7.58

5.4.2 Generation of multiple quasigroups

Both the schemes (round key generation and encryption/decryption algorithms) use 16
optimal quasigroups of order 16. These 16 quasigroups are generated by permuting the
rows of an original quasigroup @ = (Zis, %), example of it is given in Tableof Chap-
ter 2 By permuting the rows of the optimal quasigroup @, 16! optimal quasigroups
can be created. Note that the proposed schemes use only 16 optimal quasigroups. So,
we select any 16 out of the total 16! optimal quasigroups. Let the selected optimal

quasigroups be denoted by Qo = (Z16, *0), @1 = (Z16,*1), ---, Q15 = (Z16, *15), Where
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%0, %1, ..., ¥15 are the quasigroup operations corresponding to Qq, @1, ..., Q15, respec-
tively.

The selection of an optimal quasigroup out of 16 optimal quasigroups depends on
both the round key and an optimal quasigroup of the previous round of the proposed
encryption system, except the 1 round. This is because the 1% round uses the initial
(Oth) round key and an original optimal quasigroup ). Using a 16 x 1 multiplexer, the
generation or selection of a total of 16 quasigroups is discussed earlier in section [5.3.1
So, using this process, the following equation can generate 16 optimal quasigroups

based on an original quasigroup Q.

Qi = (R(O—i-Rconstval) mod 165 R(1+Rcon5tval) mod 167 -+ > R(15+Rconstval) mod 16) (57)

where Ry, Ry, ..., Ri5 denote row numbers of the original quasigroup Q = (Zg, %), 0 <
Rconstval < 15, Q; € {Qo,Q1,...,RQ15}, and the value of Rconstval is determined
as follows: For selecting or generating (r + 1) round optimal quasigroup, we consider
rth (previous) round key shown in Figure This is a 4 x 4 matrix of bytes. Now,
define

Tempy = k(0,4r) D k(1,4r) D k(2,4r) D k(3,4r),

Temp; = K(.4r+1) D K(1,4r+1) D k2,4r+1) D k(3,47 41),
Tempy = K(0,4r+2) D k(1,4r+2) D K2,4r12) © k(3,4r+2);
Temps = k(0,4r+3) D K(1,4r4+3) D k(2,4r+3) © k(3,.4r+3),

XDRofTempj = Temp, ¢ Temp; P Temp, @ Temps.

Each Temp; for 0 < j < 3 and XORofTemp; are byte values. Let XORofTemp; be divided
into two 4-bit values (nibbles), that is XORofTemp; = 120, where zo and z; are nibbles.
Then,

Rconstval = x; *; X, (5.8)

where #; is the quasigroup operation corresponding to the " round’s optimal quasi-
group, 0 < 4,7 < 15. The Rconstval is 4 bits, denoted by s3, s2, s1, and sg, where
sp and sz are the least significant bit and the most significant bit, respectively. These

Sa, 0 < a < 3, are considered as the selection lines of the 16 x 1 multiplexer. If
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s3 = 0,80 = 0,517 = 0,80 = 0, then the multiplexer selects or generates a quasi-
group Qqg. If s3 = 0,89 = 0,51 = 0,89 = 1, then the multiplexer selects or gener-
ates a quasigroup ()1, and so on. Note that all these 16 optimal quasigroups need
not be stored. This is because each optimal quasigroup consists of the same rows
Ry, Ry, ..., Ry5 but in a different order (permutation). Also, the same permutations of
the rows Ry, Ry, ..., R15 are used in the decryption algorithm, but these permutations
are applied on the LIQ = (Zig,\), where LIQ is the left inverse quasigroup of the
original optimal quasigroup @. The correctness is proven in Theorem [I|in Chapter

5.4.3 Encryption

Encryption is carried out in a total of 17 rounds. Each of these rounds, except the
initial and the last rounds, comprises the following three transformations and encrypts
a 128-bit block of data. Initial (0**) round performs only the add round key, and the

last (16%") round performs the encoding function and add round key.

5.4.3.1 Encoding function

The encoding function is nothing but an ne'~transformation, defined in section
of Chapter It is a non-linear transformation of the proposed cipher. It uses 16 S-
boxes Sp, S, ..., 515 as an optimal quasigroup of order 16. These 16 S-boxes are given
in Table 2.8 of Chapter [2} It is a key-dependent S-box layer that substitutes a byte for
a byte. It adds to the confusion property and hides the relationship between the key
and the ciphertext; thereby making it difficult to find the key from the ciphertext. Let
B={po,p1,..-,015}, K={ko,k1,...,k15}, and C = {¢g,c1,...,c15} denote input to a
round, round key, and the output of a round, respectively. Then the way of using the

encoding function on B with round key K to obtain the corresponding C' is as follows:
¢j = kj*ipj

where all p;, ¢; and k; are byte values for 0 < j < 15 and %; is one of the quasigroup

operations, defined in Equation for 0 <4 < 15.
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5.4.3.2 Bit permutation

This is a linear transformation used to increase the diffusion power of the cipher. This
is the second transformation in a round function. This cipher uses the same bit per-
mutation as that of the encryption algorithm of the previous cipher, described in sec-

tion H.3.2.2

5.4.3.3 Add round key

This is also a linear transformation. It is the third and the last transformation in a
round function. This transforms a round input B={pg, p1,...,p15} of 16 bytes to the
corresponding round output C' = {cgp, c1,...,c15} of 16 bytes by XORing the input B
with a round key K={ko, k1,...,ki5} of 16 bytes as follows:

cj = kj D p;
where all p;, ¢; and k; are byte values for 0 < 5 < 15.

5.4.3.4 Encryption algorithm based on CBC mode of operation

The algorithm of the proposed cipher is implemented using the Cipher Block Chaining
(CBC) mode of operation. Each iteration of the proposed cipher encrypts/decrypts
128 bits of plaintext/ciphertext, and it is repeated until the entire plaintext/ciphertext
is encrypted/decrypted. The encryption algorithm of the proposed block cipher is
given in Algorithm In this algorithm, ); denotes a generated quasigroup based
on the (r — 1)th round key for the r** round of Bj block, 0 < i <15, 0 < r < 16,
0 <7 < N —1, where N is the total number of plaintext blocks to be encrypted.
The encryption algorithm updates block B; many times during the encryption, and

the results are stored in the same block B;.

5.4.4 Decryption

The decryption process is the reverse of encryption. It obtains the corresponding plain-
text from the ciphertext. The algorithm of decryption is not the same as encryption.
It uses the same sequence of round keys but in reverse order. Also, it uses the inverses
of the quasigroups that were used in the encryption. It also performs 17 rounds to

decrypt a 128-bit block of data. Each round, except the initial and the last rounds,
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Algorithm 11: Pseudocode of the encryption algorithm

Input: 1. Plaintext in the form of 128-bit (16 bytes) blocks. Let By, By, ...

B(n—-1) be the N number of blocks to be encrypted.

2. Initial value (IV') of 128 bits (16 bytes).

3. Secret key of 128 bits (16 bytes).

4. An optimal quasigroup of order 16.

Output: Ciphertext whose size is equal to the size of the plaintext.

(11 {RK,:0 <r < 16}=Generate all the 17 rounds key;
(21 for j =0t N —1do
[3] B; =XO0R(Bj,IV);
[4] Bj = Add round key(B;, RKy);
(5] for r =1 to 15 do

(6] Q; = Generated quasigroup based on RK,_1;
(71 Bj = Encoding function(B;, RK,, Q;);

(8] Bj = Bit permutation(B;);

[9] Bj = Add round key(Bj, RK,);

[10] Q@; = Generated quasigroup based on RK15;
[11] B; = Encoding function(B;, RKi¢, Q;);

[12] Bj; = Add round key(Bj, RKi¢);

[13] 1V = By;
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consists of the following three transformations. In the initial round, add round key and

decoding function; in the last round, only the add round key takes place.

5.4.4.1 Add round key

The add round key transformation for decryption is the same as that of the encryption

process described in section [5.4.3.3

5.4.4.2 Inverse bit permutation

This cipher uses the same inverse bit permutation as that of the decryption algorithm

of the previous cipher, described in section [5.3.3.2

5.4.4.3 Decoding function

The decoding function is nothing but an nd'~transformation, defined in section
of Chapter 2| It is the inverse of the encoding function. It uses the inverse S-boxes
So_l, So_l, ol 5’1_51 as a left inverse quasigroup LIQ = (Zig, \) of the quasigroup Q =
(Z16,*) that was used in the encoding function, where S; ! is the inverse of S, 0 <
a < 15. Let C = {cp,c1,...,c15}, K={ko,k1,...,k15}, and B={po,p1,...,p15} denote
round input, round key, and the round output, respectively. Then the decoding function

on C' with the round key K to recover B is as follows:
pj = kjfticj

where all p;, ¢; and k; are byte values for 0 < j < 15 and f; is one of the left inverse

quasigroup operations, defined in Equation for 0 <4 < 15.

5.4.4.4 Decryption algorithm based on CBC mode

The decryption algorithm of the proposed cipher is also implemented using the Cipher
Block Chaining (CBC) mode of operation. Each iteration of the decryption algorithm
decrypts 128 bits of the ciphertext and is repeated until the whole ciphertext is de-
crypted. The algorithm of decryption algorithm is given in Algorithm In this
algorithm, LIQ;, 0 < i < 15, is a generated left inverse quasigroup based on the
(t + 1)" (next) round key for the #* round of C; block, 0 < ¢ < 16,0 < j < N — 1,
where N is the total number of ciphertext blocks to be decrypted. The CopyofC} is a

119



5. BLOCK CIPHERS BASED ON MULTIPLE QUASIGROUPS

Algorithm 12: Pseudocode of the decryption algorithm

[1]
[2]
[3]
[4]
[5]
[6]
[71
(el
(o]
[10]

[11]

[12]
[13]

[14]

Input: 1. Ciphertext in the form of 128-bit (16 bytes) blocks. Let Cp, C1, ..
C(n—-1) be the N number of blocks to be decrypted.
2. Initial value (IV') of 128 bits (16 bytes).
3. Secret key of 128 bits (16 bytes).
4. A left inverse quasigroup of order 16, this quasigroup is the left
inverse of a quasigroup that was used in the encryption algorithm.
Output: Plaintext whose size is equal to the size of the ciphertext.
{RK;:0 <t < 16}=Generate all the 17 rounds key;
for j=0to N—1do
Copy0fC= Cj;
LIQ; = Generated quasigroup based on RK7;
C; = Add round key (Cj, RKj);
C; = Decoding function (C}, RKy, L1Q;);
fort =1 to 15 do
LIQ; = Generated quasigroup based on RKy1;
Cj = Add round key (Cj, RK});
C; = Inverse bit permutation (C});
C;j =Decoding function (Cj, RK;, LIQ;);
Cj = Add round key (Cj, RK1s);
C; = XOR (C;, IV);
1V = Copy0£C};

*
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temporary variable used to store the value of C; before starting the decryption process.
The decryption algorithm updates block C; many times during the decryption, and the
results are stored in the same block C;, 0 < j < N — 1.

5.5 Performance analysis

In this section, we analyzed the performance of the proposed block ciphers in terms of
time (speed) and space complexities. Also, their performances are compared with AES-
128, DES, and the existing quasigroup-based block ciphers presented in the literature [5l
0l [83].

The proposed ciphers have been implemented in C++ on a system with the following
configuration: Intel(R) Core(TM) i5-2400 CPU @3.40 GHz processor with 8 GB RAM
and 64-bit Linux operating system. The source code of the proposed ciphers is run 103
times for different samples, and we calculated the average execution time in seconds. We
have used the C++ standard <chrono> library to measure the execution time [38].
Note that the space complexity is determined based on the S-boxes or quasigroups
required for all ciphers. The performance of the proposed cipher is compared with
that of the existing quasigroup-based block ciphers [0l [6 83], DES and AES-128. The
results of this analysis are shown in Table [5.5] According to the results, as shown in
Table it can be observed that the proposed ciphers are faster than the existing
ciphers, except for AES-128. However, the proposed ciphers use only 50% of the space
compared to that of the AES-128.

5.6 Security analysis

The proposed ciphers can be seen as a family of encryption systems parameterized
by an optimal quasigroup of order 16. Since our system can create a maximum of
16! optimal quasigroups of order 16; it follows that there are 0116! ways to select an
optimal quasigroup out of 16! optimal quasigroups. That is, the family consists of
0116! cryptosystems. The sender and the receiver agree on a cryptosystem by first
deciding on an optimal quasigroup. Once a cryptosystem is decided, the set of 16
optimal quasigroups of order 16 it uses is fixed, and each round uses only one of these

16 optimal quasigroups with equal probability, depending on the round key or sub-key
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Table 5.5: Comparison of the time and space complexities.

Time complexity Space complexity

Block ciphers Execution time in seconds Space in bytes
1MB 211 MB 4.21 MB
Proposed block ciphers

1%t cipher discussed in | 0.96 1.93 3.87 128
section@
27d cipher discussed in | 1.23 2.47 4.95 128

section @

Existing block ciphers

Battey et al. [5] 6] 2.51 4.61 10.57 65536
Zhao and Xu [83] 3.32 6.71 13.47 128
DES 10.42 20.79 39.82 180
AES-128 0.67 1.21 2.32 256

value. To access these 16 quasigroups, a cryptanalyst must first determine the secret
key to be used.

e FExhaustive key search attack:- The proposed ciphers use a secret key of 128
bits. Therefore, the number of the possible keys is 212® ~ 3.4 x 10%%. So, the running
time of this attack is T = O(u) = O(2'?®), where u is the size of the key space. Note
that it is exponential in the size of the secret key. Let us assume a cryptanalyst uses
a supercomputer and tries 5.37 x 10'7 keys per second, then the cryptanalyst needs
around 2.01 x 10" years to determine the employed key. This is because these days,
supercomputers can perform 5.37 x 107 FLOPEﬂ [76].

5.6.1 Linear cryptanalysis

Linear cryptanalysis is one of the powerful attacks against block ciphers. This attack
model works based on the known-plaintext attack. It creates linear approximations of
the plaintext bits, ciphertext bits, and sub-keys that hold with a suitably high prob-
ability. Let P, be the probability of a linear approximation, then its probability bias
(denoted by €) can be defined as | P, — % . The higher the magnitude of the probability

bias €, the fewer known plaintexts are required to mount a linear attack. The encryption

'floating point operations per second
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systems of the proposed ciphers are slightly different from each other. This is because,
each round of the first cipher uses only two transformations ((i) E-transformation, and
(ii) bit-permutation); whereas the second cipher uses three transformations ((i) encod-
ing function, (ii) bit permutation, and (iii) add round key ). The E-transformation and
encoding function are key-dependent substitution (S-box) layers that use the round key
value. The first cipher discussed in section [5.3| consists of 16 rounds, and each round
uses a substitution (or an FE-transformation) layer. The second cipher discussed in
section consists of 17 rounds, in which only the 16 rounds (from the 1! round to
the 16" round of the encryption algorithm) use substitution (or encoding functions)
layers. In both ciphers, a substitution layer is nothing but an S-box layer that uses 16
optimal S-boxes as an optimal quasigroup of order 16, where the size of each S-boxes
is 4 x 4 bits.

We investigate the linear probability bias € of » + 1 round cipher by constructing
the linear approximations of r + 1 rounds, » > 0. This is because once a r + 1-round
linear approximation of the r +2 rounds cipher is discovered with a suitably high linear
probability bias €, then it is conceivable to attack the cipher [32]. Let u bits of the
plaintext or input to the 0* round (denoted by Iy), v bits of the output of the 7"

0t" round

round (denoted by O,.), and a total of w bits of the round keys used from the
to the 7" round (denoted by K (0,r))- Then an approximation of r rounds is defined as

follows

w

u v
(@ Igi> o (o7 = @K(xo’jr) (5.9)
i=0 §=0 k=0

where z;, x; and z; denote bit positions, and @ is a bitwise addition modulo 2 oper-
ation. For the first cipher, the right side value of Equation [5.9 would be zero since
it does not consist of an add-round-key transformation. For the second cipher, the
right side value of Equation would be either 0 or 1, depending on the round key
bits involved in the add-round-key transformation. These bits are fixed but unknown
(as they are determined by the key under attack). This kind of linear relation is ob-
tained by concatenating the appropriate linear approximations of S-boxes from round
to round of the cipher. This is because S-boxes are the only non-linear components of
the proposed cipher. These linear approximations hold a relation between the input

and output bits of the S-boxes with a certain probability. The linear approximation of
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the 7 + 1 rounds cipher represents a linear trail (also called a path from the 0" round
up to the 7" round of the encryption system) that consists of active S-boxes. A linear
trail is optimal if it contains a minimum number of active S-boxes.

We used the Linear Approximation Tables (LATSs) of the active S-boxes to form
the linear trails. A LAT shows the probability bias values of all the possible linear
approximations of an S-box. Note that the LATSs of all the 16 S-boxes have the same
magnitude linear probability bias values (| P, — %|) Because of this property, the key-
dependent S-box (non-linear) layer does not need to differentiate among LATSs of all
the 16 S-boxes while arriving at the optimal linear trail. A LAT of one of the S-boxes
is given in Table In this table, o denotes the input mask (row number), and
denotes the output mask (column number) of the linear approximation in hexadecimal.
Dividing each table element by 16 gives the probability bias e for that particular linear
approximation. That is, for all possible input values and hence the output values of
the S-box, a linear approximation is represented as ag - yo D a1 -y1 D as - ys D asz - ys =
bo-2oDb1-21Dba-2oDbs-z3, where “” denotes bitwise AND operation, both a;, b; € {0, 1},
apaiasas is the binary representation of a and bgbib2bs is the binary representation of
B where (ag,bg) and (as,bs) are the least and the most significant bits, respectively.
For example a« = A and 8 = 2, a linear approximation of the S-box with probability
bias 1 is 41 @ y3 = z1. More details about LAT are given in [32].

We investigate the construction of an r + 1-round linear trail by examining non-

0" round to the r** round,

zero input masks corresponding to the S-boxes from the
r > 0. If a particular non-zero input mask («) occurs, then the corresponding output
mask (/) with suitably high probability bias and the least hamming weight is decided
using the LATSs of the S-boxes in each round. As we all know, a linear trail consists of
a sequence of input and output masks between the rounds so that the output masks
from one round correspond to the input masks of the next round. We only consider
the linear approximations of the S-boxes that have non-zero input masks and hence
non-zero output masks to estimate the number of active S-boxes of a linear trail. Since
the size of the input block of the proposed ciphers is 128 bits, it is impossible to find
all of the possible linear trails for 2!?8 inputs. So, we divide 128 bits input block into
4 sub-blocks as P;, P>, P3, and Py, where the size of each sub-block is 32 bits. And
then, we use all the possible non-zero inputs of the first sub-block P, keeping all the

remaining sub-blocks P>, P53, and Py as zero values. This gives rise to a maximum of
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232 linear trails. Similarly, we repeated the same procedure for the sub-blocks P, Ps,
and P;. Note that both ciphers use the same 16 S-boxes and a bit permutation to
achieve the confusion and diffusion properties, respectively. So, the substitution and
permutation layers of both ciphers do not differentiate the number of active S-boxes in
the optimal linear trail. In order to investigate the optimal linear trails corresponding
to both the ciphers discussed in sections and we used a computer-based search
to find an optimal linear trail of the r + l-round cipher (r > 0) by evaluating the
number of active S-boxes at each round of the proposed block ciphers. The number
of active S-boxes in the optimal linear trail of the r + 1-round cipher corresponding
to both ciphers is given in Table (a) and (b). In this table, #r denotes the round
number, and #S-box denotes the minimum number of active S-boxes in the optimal

linear trail of the r 4+ 1-round cipher.

Table 5.6: Minimum number of active S-boxes in the linear trail of the r+ 1-round cipher.

1%t cipher, discussed in section |5.3| || 2"? cipher, discussed in section [5.4
#r | # S-box | #r # S-box #r | # S-box | #r # S-box
0 1 8 45 1 1 9 45

1 2 68 2 2 10 68

2 3 10 89 3 3 11 89

3 5 11 113 4 5 12 113

4 7 12 134 5 7 13 134

5 11 13 159 6 11 14 159

6 17 14 190 7 17 15 190

7 28 15 211 8 28 16 211

(a) (b)

The maximum probability bias of all the 16 S-boxes employed in the proposed block
ciphers is 272. So, using the piling-up lemma, the probability bias (¢) of the r-round

cipher can be determined as follows [52]:

€ — Z#S—boxfl % (MPB)#S—bOX

where MPB denotes the maximum probability bias of the S-boxes used.

The complexity of the r + 1-round cipher against linear attack can be obtained by
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using the following formula [32]:
1
Ny~ —
l 2’

where N; denotes the number of known plaintexts needed to mount the linear attack.

Also, the complexity of the r + 2 rounds cipher against linear cryptanalysis depends
on the linear probability bias value of r + 1 rounds [32], » > 0. According to the results
as shown in Table [5.6] (a)/(b), for #r = 14/15 and #S-box = 190, we have ¢ = 27191,
So, mounting the linear attack of a 16/17-round cipher required 23*2 known plaintexts

(N;). Hence, the proposed ciphers are resistant to linear attacks.

Table 5.7: Linear Approximation Table (LAT)

a\pg |0 2|13/ 4|5|6|7)|8 A|B/ C D|E|F
0 8 0jof0|0]010]O0 0j]0|0]0 010
1 0(-2(2(4]0]2]2]0|-4 2100121210
2 0ojo0o|2-212}2|]014|-2(-2{0]4,0]0/|-2]|2
3 012 (41-2]2]0]2]|0]2 2100 (-2]0]-2
4 0/-2/012]0(2]-4]2]0 0]-2|10|-2|-4]-2
5 0j0(-2(-2]0]0]2]2]|-4 21210 -4]2]-2
6 0]-2] 2 2101022 |-4-4]-2]0]-2 0
7 0 0 202 1-2-2|-2|-2]-2[2]|01]0 -4
8 0]0-2]-2 0 210(0]-2|-2|-4 -2 | -2
9 0-2|0] 2 -2 210 -2 21-4(-2]0|-2
A 00|40 ]-2]-2 2|1-21-2121-2]0(]0(-4|0
B 012 |-2]0 2|1-2|10|-4(-2]01]-2|-2|4
C 012|210 221010212 1]-4]0 0
D 0j4(0]4]0]|-4 4101010 0 0
E 02|01 2]-2 012102 -4 | -2 2
F 010 (-2]2]2 0]12]-2|0 410 |-2]-2

5.6.2 Differential cryptanalysis

Differential cryptanalysis is also one of the powerful attacks against block ciphers. This
attack model works based on the chosen-plaintext attack. It reduces the complexity

of the exhaustive key search attack. Like linear cryptanalysis, here we constructed the
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differential trail of r 4+ 1-round cipher, r > 0. Let P’ and P” be the inputs (plaintexts)
to the system and the corresponding outputs (outputs of the r** round of the proposed
ciphers) be R’ and R”, respectively. The input difference is denoted by AP = P’ & P”,
and the output difference is denoted by AR = R’ & R”, where & is a bit-wise addition
modulo 2 operation. The pair (AP, AR) is referred to as an expected differential trail
(or differential characteristic) of an r + 1-round cipher if a particular output difference
AR occurs given a particular input difference AP with a suitably high probability.
Since the proposed ciphers are of 128 bits, processing all the possible 2'2® differential
trails is practically impossible. This expected differential characteristic can be arrived
at by concatenating the appropriate differential characteristics of the S-boxes from
round to round. This is because S-boxes are the only non-linear components of the
proposed block ciphers, and a differential trail consists of a sequence of input and
output differences between the rounds; it follows that the output difference from one
round corresponds to the input difference of the next round. Before combining the
S-boxes to derive differential trails, we must discuss the influence of the add-round
key layer on the differential trail (or on the S-box differential), which is used in the
second cipher discussed in section Consider the inputs P’ and P”, and let k, be a
round key used with both the inputs P’ and P” in the add-round key layer. Then, the
corresponding outputs would be P’ @k, and P” @ k,, respectively. Now, we have input
difference as (P’ @ k,) ® (P" & k,) = P’ & P”. Hence, the add-round key layer does
not influence the input difference value and can be ignored to evaluate the number of
active S-boxes in the optimal linear trail.

We used the Difference Distribution Table (DDT) of the active S-boxes to find
the differential probabilities of the differential trails. A differential trail is said to be
optimal if it contains a minimum number of active S-boxes. A DDT of the S-box
shows the differential probability for all the possible pairs of the input and output
differences. Note that the DDTs of all the 16 S-boxes of the proposed ciphers have
the same differential probability for all the possible input and output differences pairs.
Because of this property, the key-dependent non-linear (S-box) layer does not need to
differentiate among DDT's of all the 16 S-boxes while arriving at the optimal differential
trail. A DDT of one of the S-boxes is given in Table of Chapter

For both the ciphers discussed in sections and we investigate the construc-

tion of the differential trails by examining non-zero input differences corresponding to
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the S-boxes from the 0% round to the r*"* round, » > 0. If a particular non-zero input
difference occurs, then the corresponding output difference with suitably high proba-
bility and the least hamming weight is decided in each round using the DDTs of the
S-boxes. So, we only consider the S-boxes that have non-zero input differences and
hence non-zero output differences to estimate the number of active S-boxes of a differ-
ential trail. Since the size of the input block of both the proposed cipher is 128 bits, we
divide 128-bit input (input difference) block AP into 4 sub-blocks as AP}, AP, APs,
and APy, where the size of each sub-block is 32 bits. And then, we find all the dif-
ferential trails for all the possible non-zero values for the first sub-block AP;, keeping
the remaining three sub-blocks fixed. This gives rise to a maximum of 232 differential
trails. Similarly, we repeated the same procedure for the sub-blocks AP, APs, and
APy;. Note that both the ciphers use the same 16 S-boxes and a bit permutation to
achieve the confusion and diffusion properties, respectively. Therefore, the substitution
and permutation layers do not differentiate the ciphers while determining the number
of active S-boxes in the optimal differential trail. We used a computer-based search to
find an optimal differential trail of r + 1-round cipher (r > 0) by evaluating the number
of active S-boxes at each round of the proposed ciphers. The minimum number of
active S-boxes in the optimal differential trail of r + 1-round cipher corresponding to
the first and the second ciphers are given in Table (a) and (b), respectively. In
this table, #r denotes the round number, and #S-box denotes the minimum number
of active S-boxes in the optimal differential trail of the r + 1-round cipher.

The maximum differential probability of all the 16 S-boxes employed in the proposed
block ciphers is 272. The attack complexity of the 7 + 1-round cipher against differ-
ential cryptanalysis is approximately the inverse proportion to its largest differential

probability and can be determined using the following formula [32]:

where Ny denotes the number of chosen plaintexts required to mount the differential
cryptanalysis attack, c is a small constant, and P; denotes the differential probability

of r + 1-round cipher, determined as

#S—box

Pd = H j)’ia
=1
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Table 5.8: Minimum number of active S-boxes in the differential trail of the r + 1-round

cipher.

1%t cipher, discussed in section |5.3] || 2"? cipher, discussed in section [5.4
#r | # S-box | #r # S-box #r | # S-box | #r # S-box
0 1 8 23 1 1 9 23

1 2 31 2 2 10 31

2 3 10 43 3 3 11 43

3 4 11 62 4 4 12 62

4 6 12 88 5 6 13 88

5 9 13 115 6 9 14 115

6 13 14 142 7 13 15 142

7 16 15 166 8 16 16 166

(a) (b)

where P; denotes the differential probability of the i*" active S-box in the differential
trail of the r + 1-round cipher, r > 0.

Like linear cryptanalysis, the complexity of the r + 2 rounds cipher against differ-
ential cryptanalysis depends on the differential probability of » + 1 rounds [32], » > 0.
According to the results shown in Table[5.§| (a)/(b), for #r = 14/15 and #S-box = 142,
we have Py = (272)142 = 27284 And if ¢ = 1, then Ny = 2?84, So, mounting the dif-

2284

ferential attack of a 16/17-round cipher required chosen plaintexts. Hence, the

proposed ciphers are resistant to differential attacks.

5.6.3 Avalanche effect

Avalanche effect is one of the desirable properties of the block ciphers, wherein for a
small change in the input (plaintext), there should be a large change in the correspond-
ing output (ciphertext). A good avalanche effect ensures that the diffusion power of a
block cipher is at least 50%. We looked into the avalanche effects of both the proposed
ciphers using the inputs of low and high hamming weights.

Let P be an input block of 128 bits with a low hamming weight that consists of all
binary 0's (0X00). We created 128 inputs P; that differ in 1 bit from the original input
P. That is

P; =P o (1<<y),

129



5. BLOCK CIPHERS BASED ON MULTIPLE QUASIGROUPS

where @ is a bitwise addition modulo 2, << is the left shift operation by j bit positions
and 0 < j < 127.

Now let C be the output of the original input P and C; be the output of the input
P; for 0 < j < 127. We calculated the hamming distances between C' and C; in

percentages as
o hd(C, Cj)
Pi = length(C)

where 0 < j < 127, hd(C,Cj) denotes the hamming distance between C and Cj,

x 100%,

and length(C) denotes the number of binary digits in the output (ciphertext) C'. We
repeated the same process for another 128-bit input (plaintext) with a high hamming
weight that consists of all binary 1’s (0XFF), and we calculated all the corresponding
values of hdp; for 0 < j < 127. For both the inputs, we compared the hdp; values of
the proposed ciphers with those of the existing quasigroup based block ciphers given
in [B 6, 83] and AES-128. The results of this analysis corresponding to different ciphers
are given in Table The table shows the number of times the hamming distances
(hdp;) of the outputs Cy, C1,...,Cia7 from C lie in the specified range. For example,
for the input 0X F'F', 60 time the values of hdp; of AES-128 lie in the range of 35—49.99;
while for the input 0X00, 55 time the values of hdp; of AES-128 lie in the range of
35 — 49.99. The average (mean) hamming distance in percentage and the median
absolute deviation (MAD) are also given in the last two columns of the table. The
MAD tells us how far the hamming distances from the mean are. From these values,
it can be observed that the avalanche effect of the block ciphers is approximately the
same as that of AES-128, and better than those of all the other existing quasigroup
based block ciphers given in [5, [6l 83].

5.6.4 Strict avalanche criterion (SAC)

A strict avalanche criterion measures the impact on each bit of the output (ciphertext)
by changing the input (plaintext) bits. That is, for a slight change in the plaintext, the
impact on each bit of the corresponding output should be uniform. That is, whenever
a single bit of the input is changed (from 1 to 0 or from 0 to 1), each of the output’s
bits changes with a probability of approximately 50% [20]. In order to test whether the
proposed ciphers meet this criterion, we used 128 random secret keys. Using each of

these secret keys, we encrypted 1024 different randomly generated inputs (plaintexts)
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Table 5.9: Number of outputs (ciphertexts) whose hamming distances from the original
output C lie in the specified range.

Range of hamming distance in percentage (hdp;)
< 34.9935 — 49.99 |50 — 64.99| > 65| Mean | MAD
Proposed block ciphers
15t cipher, discussed |0XFF 0 57 71 0
. . 50.07 |3.12
in section 5.3 0X00 | 0 63 65 0
2nd cipher, discussed |0X FF 0 66 62 0
. . 50.10 |3.14
in section [5.4 0X00 | 0 51 7 0
Existing block ciphers
0XFF 0 60 68 0
Battey et al. [5], ] 49.37 13.94
0X00 0 70 58 0
0XFF 32 52 44 0
Zhao and Xu [83] 39.32 [13.75
0X00 23 49 51§ 0
0XFF 0 60 68 0
AES-128 49.95 |3.24
0X00 0 99 73 0

of the same length. Then, we changed a particular bit in each of these 1024 inputs
(the bit with the same sequence number in all inputs). We encrypted all 1024 modified
inputs using each secret key and compared them with the original outputs to see how
they differed. Since the size of each randomly generated input is 128 bits, we repeated
this process 128 times so that every single bit in each of these inputs is changed. The
partial results of this experiment corresponding to the cipher proposed in section [5.3
and the cipher proposed in section [5.4] are shown in Tables and respectively.
Each cell of the table represents the change percentage of the j* bit of the output
(ciphertext) when the " bit of the input (plaintext) is changed, where i is the row
number and j is the column number of the table. For example, in the table, it can
be verified that when the 120" bit of the inputs is changed, then the 32" bit of the
outputs changed in half (50%) of the outputs.

So, from our experimental results, shown in Tables[5.10]and [5.11} it can be observed
that when an arbitrary bit of the inputs is changed, each bit of the outputs is changed
with the probability of approximately 50%. This implies that if a single bit is changed
in all of the 1024 inputs, then each of the output’s bits will change in approximately

half of the outputs. Hence, the proposed ciphers satisfy the strict avalanche criterion
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(SAC).

Table 5.10: Strict avalanche criterion of the proposed cipher, discussed in section

Output (ciphertext) bits
1 2 4 8 16 32 64 128
49.94% 50.08% 49.74% 50.04% 49.97% 49.91% 50.08% 50.02%
50.03% 49.97% 49.89% 50.01% 49.88% 50.01% 50.13% 49.92%
50.00% 49.96% 50.01% 49.82% 49.67% 49.94% 49.97% 50.00%
49.98% 49.95% 49.89% 49.98% 49.93% 49.98% 50.00% 50.00%
50.02% 50.03% 50.07% 49.80% 49.97% 49.76% 50.01% 49.83%
50.00% 50.00% 50.04% 50.01% 50.08% 49.89% 49.93% 50.00%
50.35% 50.02% 50.21% 50.30% 50.01% 49.95% 50.06% 49.93%
50.21% 49.94% 49.99% 50.03% 49.71% 50.26% 50.12% 49.95%
49.93% 50.05% 50.04% 50.00% 50.06% 49.91% 49.86% 49.95%
49.89% 49.80% 50.34% 49.94% 50.14% 49.94% 49.87% 50.01%
50.11% 50.04% 49.90% 50.13% 49.97% 50.00% 50.07% 50.00%
50.24% 50.08% 50.01% 49.94% 49.76% 49.95% 49.78% 49.74%
50.06% 49.89% 49.97% 49.96% 50.07% 50.07% 50.05% 50.06%
50.00% 50.07% 49.99% 50.07% 49.97% 49.93% 50.00% 49.99%
50.09% 50.14% 50.06% 49.99% 50.03% 49.90% 50.01% 49.95%
100|50.05% 50.14% 50.02% 49.90% 50.20% 50.26% 49.82% 49.91%
110|50.11% 49.87% 49.86% 50.01% 50.00% 50.10% 49.98% 49.95%
120 [50.00% 50.00% 50.02% 49.88% 49.94% 50.00% 50.13% 49.92%
127150.02% 49.89% 50.08% 50.06% 50.00% 49.84% 50.13% 49.95%
128149.96% 49.87% 50.00% 50.03% 49.92% 50.00% 50.04% 50.00%

0 N O U R W NN =

Input (plaintext) bits
ok NN =
= O N Ot O O

(@)}
e~

5.6.5 Statistical test for randomness

The ciphertexts created using the proposed ciphers pass various statistical tests of
NIST-STS[[] We evaluated the randomness of the obtained ciphertexts using the NIST-
STS test suite. Each test of the NIST-STS package gives a p-value and Success/Fail
status. The p-value is the probability that a perfect random number generator would
have produced a less random sequence than the one being tested [65]. We have used

NIST Spec. Publ. 800-22 rev. la package with significance level & = 0.01 that consists

!National Institute of Standards and Technology - Statistical Test Suite
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Table 5.11: Strict avalanche criterion of the proposed cipher, discussed in section 5.4

Output (ciphertext) bits
1 2 4 8 16 32 64 128
49.97% 50.07% 50.04% 50.14% 49.87% 49.90% 50.08% 50.04%
49.83% 49.94% 49.87% 50.04% 49.87% 50.03% 50.17% 49.95%
50.09% 49.93% 50.02% 49.82% 49.67% 49.94% 49.97% 49.92%
49.97% 49.94% 49.87% 49.78% 49.94% 49.88% 50.00% 49.76%
50.02% 50.05% 50.07% 49.80% 49.87% 49.76% 50.04% 49.73%
49.65% 50.00% 50.04% 50.01% 50.08% 49.89% 49.93% 50.00%
50.35% 50.02% 50.21% 50.30% 50.00% 49.95% 50.06% 49.93%
50.21% 49.89% 49.99% 50.09% 49.71% 50.26% 50.12% 49.95%
49.83% 50.07% 50.04% 50.30% 50.06% 49.91% 49.86% 49.79%
49.88% 49.80% 50.34% 49.95% 50.14% 49.94% 49.87% 50.00%
50.17% 50.04% 49.90% 50.13% 49.87% 50.00% 50.07% 49.58%
50.24% 50.08% 50.01% 49.94% 49.76% 49.95% 49.78% 49.74%
50.09% 50.17% 49.97% 49.90% 50.07% 50.07% 50.05% 50.10%
50.00% 50.17% 49.89% 50.07% 49.98% 49.91% 50.06% 49.89%
50.11% 50.15% 50.06% 49.99% 50.13% 49.90% 50.01% 49.93%
100|50.05% 50.14% 50.02% 49.90% 50.20% 50.26% 49.82% 49.91%
110150.20% 49.87% 49.86% 50.00% 50.08% 50.10% 49.98% 49.90%
120/50.03% 50.00% 50.02% 49.85% 49.94% 49.96% 50.13% 49.90%
127150.03% 49.79% 50.06% 50.00% 50.08% 49.84% 50.13% 49.89%
128149.87% 49.80% 50.16% 50.08% 49.92% 50.00% 50.04% 50.17%

O 3 O Ut B~ W N =

Input (plaintext) bits
S W NN =
= = O N Ot O O

of 15 types of statistical tests [65]. The details of each of these tests are described in
section [£.3.8.2] of Chapter [4]

Various data types are defined in [13, [7T1]. In which, we have chosen a Cipher
Block Chaining Mode. This is because the proposed ciphers are implemented based
on CBC mode. We randomly chose 128 bits IV, 128 bits secret key K, and 8192
128 bits plaintext blocks for each of these tests. A binary sequence of 1048576 bits is
constructed using the ciphertext obtained in the CBC mode. That is, it is a binary
sequence obtained by concatenating the 8192 ciphertext blocks of 128 bits each. We
generated 1000 such binary sequences for the same plaintext blocks using different

random 128 bits keys. We ran each of these tests on the outputs of both the proposed
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ciphers and AES-128 1000 times and compared the randomness of the proposed ciphers
with that of the AES-128 for each binary sequence of 1048576 bits. The experimental
results of this analysis corresponding to the cipher discussed in sections and the
cipher discussed in section |5.4] are given in Table In this table, column A lists the
names of the tests carried out. The number of accepted binary sequences corresponding
to the first cipher discussed in section [5.3] the second cipher discussed in section
and the AES-128 that passed a statistical test at the @ = 0.01 significance level are
given in columns B, C, and D, respectively. As a result, the randomness of the proposed

ciphers is comparable to that of the AES-128. Hence, from the NIST-STS’s point of

view, both the proposed ciphers are random.

Table 5.12: For 1000 random keys, results of the NIST test for the proposed encryption
systems as compared to the AES-128 encryption system when the same key is used for all

cryptosystems with CBC mode of operation.

A B C D

Tests Proportion of success | Proportion of success | Proportion of suc-
out of 1000 samples | out of 1000 samples | cess out of 1000
for the 1% cipher, dis- | for 2"¢ cipher, dis- | samples for the
cussed in sectiorf5.3] cussed in sectiorf5.4 | AES-128

Frequency 0.993 0.991 0.991

BF 0.983 0.990 0.991

CS 0.994 0.993 0.992

Runs 0.990 0.987 0.989

LR 0.990 0.989 0.992

Rank 0.996 0.985 0.991

DFT 0.982 0.988 0.986

NOT 0.985 0.987 0.980

oT 0.992 0.992 0.994

UsS 0.985 0.991 0.988

AE 0.991 0.988 0.993

RE 0.989 0.990 0.985

REV 0.991 0.993 0.990

Serial 0.993 0.987 0.994

LC 0.995 0.989 0.981
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5.7 Summary

This chapter proposed two block ciphers to encrypt or decrypt data in the form of a
block of 128 bits. The proposed ciphers use 16 optimal S-boxes as an optimal quasigroup
of order 16, where the size of each S-box is 4 x4 bits. The design of the proposed ciphers
is based on the concept of multiple quasigroups. They utilize the functionality of the
16 optimal quasigroups derived from an original optimal quasigroup of order 16. In
other words, they leverage the space of a single quasigroup and use 16 quasigroups by
generating them from an original quasigroup. So, the space required by 16 optimal
quasigroups is reduced to that of a single quasigroup. The second cipher discussed in
section|b.4]is more standard than the first cipher discussed in sectionb.3l This is because
each round of the second cipher uses three transformations (substitution, permutation,
and add round key), while the first cipher uses only two transformations (substitution
and permutation). The proposed ciphers have been analyzed against several attacks,
including linear cryptanalysis and differential cryptanalysis, and found that the ciphers
are resistant to these attacks. Also, we have analyzed the software performance (time
complexity), space complexity, and avalanche effect (diffusion effect) of the proposed
ciphers by comparing them with AES-128 and other existing quasigroup based block
ciphers [5], 6, R3]. We noted that the avalanche effect of our ciphers is almost the same
as that of AES-128 and due to more computations our ciphers are slightly slower than
AES-128, but our cipher uses half the space compared to AES-128. Also, the proposed
block ciphers use the same amount of space as that used by [83] but 512 times lesser
than [0 [6]. We also noted that our ciphers are more efficient than DES. In addition,
our ciphers are more than 2 times faster and give a better avalanche effect than other
existing quasigroup based block ciphers [5] [6l, [83]. Hence, we concluded that our ciphers
appear to be an excellent alternative for the quasigroup based proposals. We have also
analyzed our ciphers against the strict avalanche criterion (SAC). The results showed
that when a random bit of plaintext is changed the proposed ciphers change each bit
of the ciphertext with a probability of approximately 50%. Hence the proposed ciphers
satisfy the SAC.

Remember that our ciphers can be seen as a family of encryption systems parame-
terized by an optimal quasigroup of order 16. So, if required, the security of the ciphers

can be enhanced by keeping the optimal quasigroup secret along with the secret key.

135



5. BLOCK CIPHERS BASED ON MULTIPLE QUASIGROUPS

That is, the security of the proposed ciphers depends not only on the secret key but also
on the optimal quasigroup employed. Note that our ciphers use 16 optimal quasigroups
in all the 16 rounds, and these 16 quasigroups are generated from the initial optimal
quasigroup by circularly shifting the rows. Since an optimal quasigroup is constructed
using the 16 optimal S-boxes, we, therefore, can form a maximum of 16! optimal quasi-
groups by permuting the rows. So, the total key space of our ciphers would then be
0116! x 1616 x 2128 ~ 9236 Therefore, the proposed ciphers can be seen to be more
secure than AES-128 against quantum attack since in quantum computing [31], the
best quantum attack against any symmetric-key cryptosystem is proportional to the
square root of the key space. And, the attack complexity of our cipher against quantum
attack is about 2''®, while in the case of AES-128 is only 264.

The randomness of the obtained ciphertexts produced by the proposed ciphers is
tested using the NIST statistical test suite. We ran our encryption systems for a ran-
dom plaintext of 1048576 bits with 1000 different keys and generated 1000 ciphertexts.
The results of the proposed ciphers are compared with that of AES-128 for the same
plaintext and the same keys. We observed that the randomness of the outputs of our

ciphers and AES-128 are comparable to each other.
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Chapter 6

Hash Functions and HMACs

bsed on quasigroup

This chapter introduces two variants of cryptographic hash functions and their cor-
responding message authentication codes (HMACSs). Both hash functions can be seen
as extensions of the MDS5 hash function. The underlying structure of the new hash
functions is based on MD5 and a quasigroup of order 16 or 256. This chapter gives a
brief overview of the proposed hash functions and HMACs, describes the structure and
building elements of the proposed schemes, and analyzes the performance and security

of the proposed schemes.

6.1 Introduction

As we know, the encryption/decryption method is used to achieve confidential com-
munication. It protects against passive attacks, where the cryptanalyst only observes
messages transmitted between sender and receiver. For active attacks, on the other
hand, the cryptanalyst can also change the content of messages during the transmis-
sion. To mitigate this type of threat, encryption itself is not sufficient. So, we need
another cryptographic tool called a hash function that will enable us to detect when a
modification has occurred. Modern hash functions can be divided into two types: (i) a
hash function without a key and (ii) a hash function with a key, also called HMAC. A
cryptographic hash function (or HMAC) is a one-way compression function that com-

presses a variable-length message to a fixed-length hash value (or MAC value). The
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block diagram of the hash and HMAC algorithms is shown in Figure In this figure,
H denotes the hash function that takes a variable-length message M and produces a
fixed length hash value H(M); the size of H(M) depends on the hash algorithm. The
value of H(M) is used to detect the integrity of the transmitted message M. On the
other hand, Hj, denotes the HMAC that takes two inputs (i) a variable-length mes-
sage M and (ii) a secret key k and produces a fixed length MAC value Hy (M), also
called an authentication tag; the size of Hi(M) depends on the HMAC algorithm. The
value of Hy (M) is used to simultaneously verify the authenticity and the integrity of
the transmitted message M when two authorized parties communicate in an insecure
channel. More details about the cryptographic hash functions and HMACs are given
in Chapter

Hash H(M) = hash value
or >
M HMAC H, (M) = MAC value
Secret key k

Figure 6.1: Hash function and HMAC.

6.2 Overview of the proposed hash functions and HMACs.

This chapter proposes two extended versions of the MD5 and HMAC-MD5 based on
quasigroup. The first hash function and HMAC, named QGMD5-224 and QGMAC-
224, generate a 224-bit hash value and MAC value, respectively. And the second
hash function and HMAC, named QGMD5-384 and QGMAC-384, generate a 384-
bit hash value and MAC value, respectively. All the schemes are designed based on
the quasigroup. Note that the underlying structure of both the hash function and
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message authentication code is similar. The only difference between the two is that the
quasigroup used in the hash function is publicly known, while the quasigroup used in the
message authentication code acts as a secret key. Also, depending on the algorithms,
the proposed schemes use a quasigroup of order 16 or 256. Note that the use of a
quasigroup of order 256 will provide more security than the use of a quasigroup of
order 16. But to store a quasigroup of order 256 more space is required than that of a
quasigroup of order 16, and this may be a challenge for small computing devices. So,
initially, we prefer to use the order 16 quasigroups, and later, we can use order 256 if
needed.

All the proposed schemes are iterative in nature. And for each iteration, they take
a 512-bit input block of the message M, and produce 224 or 384 bits as hash (MAC)
value. Let input message M be divided into ¢ blocks B, Bs, ..., By, where the size
of each block B; is 512 bits, 1 < ¢ < ¢. All proposed schemes are implemented using
the cipher block chaining (CBC) mode of operation. Each scheme processes the input
message M block by block and produces an output of 224 or 384 bits hash (MAC) value
depending on the algorithm used is either QGMD5-224 (QGMAC-224) or QGMD5-384
(QGMAC-384), respectively. Processing of each of these blocks is as follows: Let i > 1
be a fixed integer less than ¢. Each of the proposed schemes takes block B; together
with the initial value I'V;_; as input, performs four rounds, and outputs a 128-bit IV;.
Note that I'Vp is the initial value chosen at the beginning. j**, 1 < j < 4, round of the
algorithms consists of j* round of MD5, followed by the quasigroup based expansion
and compression operations. The processing of the last block B, is exactly the same
as that of the previous blocks By, Bo, ..., By_; except that the last (4*") round of the

algorithms consists of Round 4 of MD5 followed by only the expansion operation.

6.2.1 Brief description of MD5

MD5 is one of the most widely used hash functions in cryptography since it requires
the least number of computations. It is iterative in nature and designed based on
Merkle-Damgard construction. As input, it takes a variable-length message M and
produces an output with a fixed length of 128 bits as the hash value. In order to begin
the process, the entire message M is divided into 512-bit blocks. There is padding
applied if the length of message M is not a multiple of 512 bits, and it is padded by
adding a sufficient number of 0’s after a bit 1 to bring the length of message M to a

139



6. HASH FUNCTIONS AND HMACS BSED ON QUASIGROUP

multiple of 512 bits minus 64 bits. Once the padding has been applied, append 64 bits
representation of the length of the original message M if the original message length
is less than or equal to 254; otherwise, the lower order 64 bits of the representation of
the original message M are used so that the resulting message is an exact multiple of
512 bits as shown in Figure Now each of these 512-bit blocks of a message M is

Original message 1000..0 Length of the original message in 64 bits
representation

¢ Padded unit a multiple of

512 bits minus 64 bits

< Appended message length is exact multiple of 512 bits ————

Figure 6.2: Length of the message after padding

processed by dividing it into sixteen 32-bit words. The algorithm of MD5 has 4 rounds,
each of which has 16 steps, for a total of 64 steps. Each 512 bits block of M passes

through the following 4 round functions:

Rup(X,Y,Z)=(XAY)V (=X AZ), 1<p<16
Raop)(X,Y,Z) = (X AZ)V (Y A=Z), 17<p<32 o)
Risp(X,Y,2) = (X0 @ 2), 33 < p<48
Ruy(X,Y,Z)=Y & (X vV -2), 19<p<64

where, X, Y, Z are 32 bit words and A,V,® and — are AND, OR, XOR, and NOT
operations, respectively. The Ry, denotes the r* round function in the p'* step,
1<r<4,1<p<64. Each step of the MD5 operates on four 32 bits words W, X, Y,

and Z, and performs the operation as follows:

W=2z
X =((WHRyp)(X,Y, Z) +m; + k) <) + X 62)
Y =X
Z=Y

where the operation + denotes the addition modulo 232

, m; denotes a message word of
32 bits, k; denotes a step-specific constant, and << is a specific constant that specifies
a left-circular shift by s-bit position. The graphical representation of one step operation

of MD5 is shown in Figure
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6.3 A QGMD5-224 bits hash function and a QGMAC-224 bits message
authentication code based on a quasigroup

W X Y Z
L
R[‘-Pl| E
1 S
_
m;
R
“«—kj
¥
':'-'-'{s
W X Y z

Figure 6.3: One step operation of MD5 hash function

6.3 A QGMD5-224 bits hash function and a QGMAC-224

bits message authentication code based on a quasi-

group

This section proposes two new schemes based on a quasigroup: (i) a cryptographic hash
function, named here as QGMD5-224, and (ii) a message authentication code based on
QGMD5-224, named here as QGMAC-224. The QGMD5-224 hash function expands
the hash size of the MD5 hash function by converting 128 bits into 224 bits. The
QGMAC-224 expands the MD5 based message authentication code (HMAC-MD5) by
converting 128 bits into 224 bits. Both expansions are carried out using the quasigroup
expansion (QGExpl128To224) and the quasigroup compression (QGComp224To128)
layers. Note that the underlying structure of both the schemes QGMD5-224 and
QGMAC-224 is similar. The only difference between the two is that the quasigroup
used in QGMD5-224 is publicly known, while the quasigroup used in QGMAC-224 acts
as a secret key. The workflow of both the QGMD5-224 and the QGMAC-224 is shown
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in Figure[6.4] In order to start the process of each of these schemes, an arbitrary length

Block-B, Block-B, Block-Byp
| 512 bits | 512 bits | | 512 bits |
4 ¢ 4
| Round-1of MD5 || Round-10fMD5 || .. || Round-10fMD5 |
gl | QGExp128To224 || || QGExp128To224 | [ QGExp128To224 |
bits|
| QGComp224T0128 || |[ QGComp224To128 | [ QGComp224To128 |
4 ¥ J
| Round-4 of MD5 | ‘ Round-4 of MD5 | | Round-4 of MD5 |
[ QGExp128To224 ||| || QGExp128To224 | [ QGExp128To224 |
| QGComp224Tol128 | | QGComp224To128 | ~
Hash-value
" 128 bits ~ 128 bits 224 bits MAC value

Figure 6.4: Workflow of QGMD5-224 and QGMAC-224

message M is first divided into ¢ fixed-size blocks, where the size of each block is 512
bits. If the length of the message M is not a multiple of 512 bits, then the padding
will be required, and it is padded as in the case of the MD5 hash function, such as
discussed earlier in section Observe that each round, except the last round of
the last block of MD5, is followed by a QGExpl128T0224 layer that expands 128 bits
into 224 bits by inserting 96 bits and a QGComp224To128 layer that compresses back
to 128 bits by deleting 96 bits. The last round of the last block of MD5 is followed by
only a QGExp128T0224 layer. Both layers QGExp128T0224 and QGComp224Tol128
are defined using the quasigroup expansion (QGExp) and the quasigroup compression
(QGComp) operations, respectively. These operations are defined by confining to the
rules of the selected quasigroup. Depending on the algorithm, the proposed schemes use
quasigroups of orders 16 or 256. The functioning of QGExp and QGComp operations

with these order quasigroups is explained separately in detail.

6.3.1 Quasigroup expansion (QGExp) operation

The QGExp operation works byte-by-byte, and for each expansion operation, it takes

two bytes of data and produces a sequence of three bytes of data. Let each 8-bit (one
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byte) value be divided into two 4-bit values. That is, a character (one-byte value) p is
represented as p = p1po, where pg and p; are 4-bit values (hexadecimal digits or nibble
values). The proposed schemes use quasigroups of order 16 and 256. Therefore, for the

quasigroup of order 256, it is defined as follows:

P1po ®1 q190 = (P1P0, 190, T170) (6.3)

where r179= p1po *1 q1qo, and x; and ®; denote the quasigroup operation and the
QGExp operation corresponding to order 256, respectively. Note that the resultant
element r17( is determined by looking up the element having the row index of pipg and
the column index of g1qp in the table representation of the quasigroup of order 256.

Now, for the quasigroup of order 16, the QGExp operation is defined as follows:

P1po ®2 q190 = (P10, 9190, 71||r0) (6.4)

where r1=p1 %2 q1, To=po *2 qo, and *9 and ®9 denote the quasigroup operation and the
QGExp operation corresponding to order 16, respectively and || is the concatenation
operation that concatenates two 4-bit value to make one 8-bit value. Note that rg
is determined by looking up the element having the row index of py and the column
index of gg in the table representation of the quasigroup of order 16. Similarly, 71 is
determined by looking up the element having the row index of p; and the column index
of g1 in the table representation of the quasigroup of order 16.

A general application of the QGExp operation for a pair of sequences of elements
can be defined as follows:
Let P = (pipy, pipd, . ... piph) and Q = (qlad, q?ad. ... qlah), where pip} and g¢lq) are
byte values whereas pj, p}, qg, and q{ are nibble (4-bit) values, for 1 <i,j <, then

(P ®1 Q) or (P®2 Q) = ((p1pg> 416> 170)> (D103, 41455 7170)s - - - » (Pi0hs abah. rirh))

where r{rgzp{pé %1 q{ qg, x1 is the quasigroup operation of order 256 with respect to the
QGExp operation ®; or r{ré:(p{ %9 q{)H(p% *9 qg), *9 is the quasigroup operation of
order 16 with respect to the QGExp operation ®2 and || is the concatenation operation.

Similarly if P = ((p%lptl)lijp(lf, .. ,p%kp(l]":)7 (p%lpgl,p%Qp%Q, ... ,p%kpgk), e

(piptt, pi2pk2, ... piEptE)) and Q = (¢iqd, 263, - - -, diqh), where ppy is a byte value,
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péj and pij are nibble (4-bit) values for 1 <i <t, 1 < j <k, ¢'¢} is a byte value, ¢}
and ¢} are nibble (4-bit) values for 1 <1 <, then

(P®1 Q) or (P®2Q) = ((pi'pi", p1*pe% - - -, pi"pe", arad, mird),

21,21 22 22 2k 2k 2 2
(p1 Po »P1 Do 7"'ap1kp0k7Q1QOaT1r0)
11 t1 12, 2 th, th
(PTPo P P> P1 PO 7Q1QO77"17“0))

where rirézpﬁkpf)k *1 ¢iqh, *1 is the quasigroup operation of order 256 with respect to
the QGExp operation ®; or 7”17’0 (p1 *9 ql) [l (p%k*g qé), *9 is the quasigroup operation of

order 16 with respect to the QGExp operation ®s and || is the concatenation operation.

6.3.1.1 QGExpl128To224 layer

The quasigroup expansion layer (QGExp128To224) uses the QGExp operation for ex-
panding the intermediate result of 128 bits into 224 bits by inserting 96 bits. It works

as follows:
Let P = (pip}, ing. pivd, pind), Q = (4 &b G @ 6. a1a}), U = (ujud, viud, udu, uind),

and V = (vivd, viv3, v3vd, vivd), where pipi, ¢igh, uiul, and viv) are 8-bit (byte) val-

ues, whereas po, qO, uo, Uo,pl, ¢¢,ul, and v} are 4-bit (nibble) values, 1 < i < 4. Then

(P® Q) = ((p1po: 419> 7170)> (P13, 4145 T17)-

3 4 4 4 4
pips, diag. rird), (pivg, aldg. rirg))

((P ® Q) ® U) = ((p%p[ﬁ Q1q077a%r(1)7u%u(1)774?708)

(

(D303, dias, rirg, uiud, rérf),
(
(

3 3.3 3.3 7.7
pips, diag, rivg, wiug, rirg),

4 4 4.4 8 8
p1po,Q1CI077“17”07Uluoarlﬂ”o))

(((P ® Q) ® U) ® V) = ((pip()v qlq()?T%r(%:u%u(%?T?Tg’v%vé?T?rg)

2 22 .22 6.6 .22 10,10
(p1po,(J1CI077“17”07U1u077”17"07U1U077"1 o),
3 3.3 .33 7.7 .33 11 11
(p1po,Q1CI07"”17“07U1U077”17"07U1”07"”1 o )
4.4 4 8 8 4.4 12 12
(P1PO>Q1<]07"”17“07U1U077“177“07U1U077"1 7o )
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where the symbol ® would be either ®; or ®5 depending on the order of the quasigroup

employed. r{ré is the resultant or inserted byte based on the quasigroup operation,

1 <j <12. The QGExp128T0224 converts 128 bits (16 bytes) to 224 bits (28 bytes).
Working of this layer is illustrated by the following example.

Example 6.3.2. Consider the quasigroup of order 16 given in Table[2.8 of Chapter[3
And let P = (34, AF, A0,48), Q = (42,2F,72,A8), U = (0B, A3,38,4C), and V =
(30,28, BC, D8) be a sequence of 128 bits (16 bytes) of data in hexadecimal digits to be
converted to 224 bits (28 bytes). Then, the QGExp128To224 layer converts 128 bits to
224 bits as follows:

(P @2 Q) = ((34,42,37), (AF,2F, 46), (A0, 72,CB), (48, A8, CA))
(P®2Q)®2U) = ((34,42,37,0B, A9), (AF,2F, 46, A3,CA),
(A0,72,CB,38,11), (48, A8,CA,4C, DE))
(P®2Q) ® U) ® V) = ((34,42,37,0B, A9, 30, F'7), (AF, 2F, 46, A3, C A, 28, C0),
(A0,72,CB, 38,11, BC,3C), (48, A8, CA,4C,DE, D8, 7B))
where ®3 is the QG Ezp operation of order 16. The inserted bytes are indicated by under-

lining them. After performing the QGEzp128T0224, the resulting sequence of 224 bits
(28 bytes) is 3442370 BA9I30FTAF2F46 A3C A28C0A072C' B3811BC3C48 A8C AACDEDSTB.

6.3.3 Quasigroup compression (QGComp) operation

The QGComp operation is nothing but a quasigroup operation. It takes two bytes of
data as input and produces one byte of data as output. Like the QGExp operation, it
is also defined for both quasigroups of orders 16 and 256 as follows:

Let po,p1,90,q1,70, and 71 be 4-bit (nibble) values. Then, for the quasigroup of order
256. It is defined as

T1T0 = P1P0 *1 4140 (6.5)

where *x; denotes a quasigroup operation of order 256.

And, for a quasigroup of order 16, it is defined as

1 = p1 %2 q1||T0 = Po *2 qo (6.6)

where %9 denotes a quasigroup operation of order 16. and || is the concatenation

operation that concatenates two 4-bit values to make one 8-bit value.
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6.3.3.1 QGComp224To128 layer

The quasigroup compression (QGComp224To128) layer is the inverse of the QGExp128T0224
layer. It takes 224 bits as input and converts them into 128 bits as output. In other
words, QGComp224To128 compresses the partial hash-value (or MAC-value) of 224

bits into 128 bits. This 128-bit output is then fed into the next round of the MD5
algorithm. It works as follows: First, it divides a block of 224 bits (28 bytes) into four
sub-blocks of 56 bits (7 bytes) each. Let P; = (pipp, 1Pg, PPy, P1Pos PG, PIPG, P1PG)

be a sub-block of 7 byte, where p{, and p! are 4-bit values, and p!p} is a byte value,
1<t<7,1<5<4. Then,

QGcomp(P]) = (T%T(l]’ T%T?]’ T‘%T’g, T%Té)

where, for a quasigroup of order 256, rll'ré = pilpf) *1 p?‘ipg_i, *1 is the quasigroup
operation of order 256 for 1 <4 < 3 and r‘fré = p‘llpé.

And, for a quasigroup of order 16, riry = (p’i*?p?_i) I (pf)*gpg_i), *9 18 the quasigroup
operation of order 16 for 1 < i < 3 and r{rg = pipg. This is illustrated by the following

example.

Example 6.3.4. Consider the quasigroup Q of order 16 used in Example[6.3.3, which is
gwen in Table[2.§ of Chapter[d. Also, from Example[6.3.9, we consider the sequence of
224 bits (28 bytes) P = 3442370BA930F7TAF2F46A3C A28C0A072C B3811BC3C48A8C
A4CDEDS8TB, represented in hexadecimal digits, which is to be compressed. These
bytes are divided into four sub-blocks as Py = 3442370BA930F7, P, = AF2F46A3C A28C0,
P3 = A072CB3811BC3C, and Py = 48A8C AACDEDSTB. Now using the quasigroup

of order 16 given in Table of Chapter[3

QGComp224T0128(P) = QGComp(P1)||QGComp(Ps)||QGComp(Ps)||QGComp(Py)

where QGComp(P)) = B262670B, QGComp(P,) = EDO08D9A3, QGComp(Ps) =
F594A738, and QGComp(Py) = 2C9A064C. After performing the QGComp224To128
on P, the resulting sequence of 128 bits (16 bytes) is B262670 BED08DIA3F594A7382C9
A064C.

6.3.5 Algorithm of QGMD5-224 and QGMAC-224

The proposed schemes make use of the QGExp128To0224 and QGComp224To128 layers

along with the round functions of the MD5 hash function to produce a hash value
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of 224 bits or a MAC value of 224 bits. Note that the QGExpl128T0224 and the
QGComp224To128 layers are defined by confining to the rules of the selected quasigroup
of order 256 or 16 depending on the algorithm. Also, note that each of the proposed
schemes processes the input message block by block. So, a message M = By, Bo, ..., By
is divided into, say ¢, message blocks, where the size of each message block B; is 512 bits,
1 <7 < £. The pseudocode of the algorithm of QGMD5-224 and that of the QGMAC-
224 is given in Algorithm In this algorithm, the variables B] and B; are used to
store the output of the round functions of MD5. And the variables OutPutO f Exp
and OutPutO fComp are used to store the output of the layers QG Expl128T 0224 and
QGComp224T 0128, respectively.

6.3.6 Implementation and software performance

The proposed schemes have been implemented in C++ on a system with the follow-
ing configuration: Intel(R) Core(TM) i5-2400 CPU @3.40 GHz processor with 4 GB
RAM and 64 bits Linux operating system. The performance of the proposed schemes
(QGMD5-224 and QGMAC-224) is analyzed by comparing them with the standard
hash functions and message authentication codes, such as MD5, SHA-224, HMAC-
MD5, and SHA-HMAC-224. For this analysis, we ran each of these schemes 1000 times
for a randomly chosen message M=“The brown dog jumps over a lazy cat” and cal-
culated the average execution time in microseconds (us). For measuring the execution
time in microseconds, we used a C++ standard library < chrono > [3§]. The results of
this analysis are presented in Table See that the performance of the QGMD5-224
hash function is compared with that of both MD5 and SHA-224 hash functions, and
the performance of the QGMAC-224 is compared with that of both HMAC-MD5 and
HMAC-SHA-224. Tt can be observed that the proposed hash function QGMD5-224 is
slightly slower than the MD5 but faster than the SHA-224. And the proposed mes-
sage authentication code QGMAC-224 is faster than both the HMAC-MD5 and the
HMAC-SHA-224.

6.3.7 Security analysis

CrackStation and HashCracker tools were used to analyze the proposed QGMD5-224
hash function against the dictionary attack. These tools are basically intended to crack

the hash value of MD4, MD5, etc. They employ massive pre-computed lookup tables to
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Algorithm 13: Algorithm of QGMD5-224 and QGMAC-224

[1]
[2]

[31]
[4]
(5]
[6]
[71

[8]
[9]

[10]
[11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Input: 1. Message M in the form of ¢ blocks B1, Bo, ..., By of 512 bits each.
2. An initial value IV} of 128 bits.
Output: A hash value or MAC-value of 224 bits.
if /=1 then
| GOTO Line No. [14];

else
fori=1tofl—1do
for j =1 to4do
if j =1 then
| B =Round-1 of MD5(B;, IV;_1);

else
L B! =Round-j of MD5(B;, OutPutO fComp);

OutPutO fExp = QGExpl128T0224(B\);
Out PutO fComp = QGComp224T 0128(Out PutO f Exp);
if j =4 then

L IV; = Out PutO f COmp;

for j =1 to 3 do
if j=1 AND £ =1 then
t Bj, =Round-1 of MD5(By, IVp);
else if j =1 AND ¢ > 1 then
L B}, =Round-1 of MD5(By, IV,_1);
else
| B, =Round-j of MD5(By, OutPutO fComp);

OutPutOfExp = QGExpl28T0224(By);
OutPutO fComp = QGComp224T0128(Out PutO f Exp);
Bj, =Round-4 of MD5(By, OutPutO fComp);

OutPutO f Exp = QGExpl128T0224(By;). Output these 224 bits as the final
hash value or MAC-value of the message M;
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Table 6.1: Performance analysis of hash functions and HMACs.

Hash Functions Avg Execution time | Message Authen- Avg Execution time

in microseconds (us) | tication Codes in microseconds (us)

Existing schemes

MD5 7.94 HMAC-MD5 10.13

SHA-224 10.28 HMAC-SHA-224 15.72
Proposed schemes

QGMD5-224 9.85 | QGMAC-224 9.85

crack password hashes. The QGMDb5-224 is also analyzed against various other attacks,
including the brute force attack, and it is found to be resistant to these attacks as well.
A hash value produced by a hash function determines its strength against brute force
attack and the QGMD5-224 produces a 224-bit hash value instead of 128-bit, as in the
case of MD5. Typically, for an n-bit hash value, a brute force attack requires 2" effort
to compute the (i) pre-image and (ii) second pre-image attacks, and to find a collision,
it requires 2"/2 effort. Since the size of the hash value of QGMD5-224 is 224 bits as
against 128 bits of MD5, the QGMD5-224 can be seen to be more secure than the MD5.

6.3.7.1 Collision Resistance

Collision resistance is one of the important properties of a hash function. That is,
a hash function must be collision resistant. This is because the mapping of a hash
function between message space and the set of hash values is many-to-one, meaning
different messages may have the same hash value. For testing the collision resistance
of the proposed QGMDS5-224 hash function, we randomly select pairs of messages M;
and My with hamming distance 1. For each pair of messages M; and Ms, we computed
the corresponding hash values h; and hy and stored them in ASCII format (ASCII
representation is a sequence of bytes in which each byte value lies from 0 to 255). Now,
we perform the following two experiments, which are defined in [82].

In the first experiment, we compare h; and hs as byte sequences, and a number
of bytes that have the same value at the same position, namely the number of hits, is

counted as follows:

1, x=y

0t (6.7)

0= Fld(ay). @), where f(z,y) = {

149



6. HASH FUNCTIONS AND HMACS BSED ON QUASIGROUP

The function d(.) converts the entries to their equivalent decimal values, and s denotes
the number of bytes in a hash value. Smaller v characterizes the stronger hash function
against collision resistance.

Theoretically, for N independent experiments, the following equation specifies the

expected number of times v hits for an s-byte hash value.
Wnx(v) = N x Prob{v} (6.8)

where Prob{v} = ﬁlv)' (flﬁ)v (1- ﬁ)s_v, v=201,2,...,5. If v =0, a collision
will never happen, and if v = s, a collision will happen. Using equation and for
N = 2048, we computed the expected values of Wy (v) for s = 28 byte hash-values.
These results are presented in Table (a). The experimental results of SHA-224
and QGMD5-224 are presented in Table (b). If we compare the experimental
results of SHA-224 and QGMDA5-224 with the corresponding expected results, which

are tabulated in Table[6.2] (a) and (b). It can be observed that the experimental results

Table 6.2: Results of expected and experimental.

Expected results (W (v)) Experimental results
v s =28 SHA-224 QGMD5-224
(s=128) (s=28)
0 1835.42 1828 1841
1 201.54 212 199
2 10.67 8 8
v>3 0 0 0
@) (b)

of the proposed QGMD5-224 not only coincide very well with the theoretical ones but
also it has better collision resistance than that of the SHA-224.
In the second experiment, we calculated the absolute difference (AD) between each

pair of hy and hg as
AD = "Jd(up) — d(uj,)] (6.9)
p=1

where d(up) and d(u;,) are the p'" byte value of the hy and hg, respectively. The larger

value of AD implies a stronger hash function against collision resistance. For each of
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the hash functions SHA-224 and QGMD5-224, the simulation of this experiment is also
run 2048 times and calculated the minimum, maximum, mean, and mean/char of AD.
The results of this experiment are given in Table Note that the ideal value of
mean/char, as defined in [I7], is 85.33. According to the results as shown in Table
it can be observed that the obtained mean/char value of the proposed QGMD5-224
hash function is closer to the ideal value of 85.33 than that of the SHA-224. Hence, the
second experiment also ensures that QGMD5-224 is more secure than the SHA-224.

Table 6.3: Results of the absolute differences.

Hash Functions Minimum Maximum Mean  Mean/Char
SHA-224 707 2417 2308.60 82.45
QGMD5-224 1203 4351 2377.48 84.91

6.3.7.2 Prefix and suffix attacks

A prefix attack is one of the alternative ways to find a collision in the cryptographic hash
function. In this attack, an attacker creates a false message by choosing an arbitrary
message and appends it to the original message so that the false (appended) message
and the original message have the same hash value.

Mathematically, for a given quasigroup @ and an initial value IV, let M = (mq, ma,
...,my) be a message to be hashed, where m; € Q,1 <i < k. Let P = (p1,p2,...,Du)
be a prefix to be appended to M where p; € @,1 < j < u. The attacker can then
create a false message PM = (p1,p2,-..,Pu, M1, M2, ...,m) by adding the prefix P
to the original message M, so that Hyy(PM) = Hry(M). Hpy(P) = IV is the only
condition for this to happen. In other words, this attack can be applied if a hash
function is vulnerable to a pre-image attack. The proposed QGMD5-224 hash function
uses MD5 along with quasigroup-based expansion (QGExp128To224) and compression
(QGComp224T128) layers and MD5 is resistant to this pre-image attack. That is,
the security of the QGMD5-224 is not only dependent on the MD5 but also on the
QGExp128T0224 and QGComp224T128 layers. Hence, the QGMD5-224 is resistant to
prefix attack.

A similar argument can be used to show that the proposed hash function is re-

sistant to the suffix attack as well. For this attack, first, an attacker chooses a suf-
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fix S = (s1,82,...,8), 85 € Q, 1 < j < t, and tries to create a false message
MS = (mi,mq,...,mg, s1,82,...,5) by appending the suffix S to the original message

M, so that Hry(MS) = h = Hyy(M). This can happen only if Hy(S) = h.

6.3.7.3 Avalanche effect

An avalanche effect is one of the desirable properties of a hash function. It means a
hash function should have a good avalanche effect. That is, the output of the hash
function should change significantly for a slight change in input. We have analyzed
the proposed QGMD5-224 hash function against this test by comparing it with those
of the existing MD5 and SHA-224 hash functions. For this test, we randomly chose a
message M=“The brown dog jumps over a lazy cat” of 280 bits, and generated 280
messages M = My, My, ..., My by changing the i** bit (from 0 to 1 or from 1 to 0)
of M, 0 <1i<279.

Let h = H(M) be the hash value of the original message M and h; = H(M;) be the
hash values of the messages M; for 0 < ¢ < 279. Since the hash value size of MD5 is
128 bits, it differs from that of SHA-224 and QGMD5-224. So, the hamming distance
between h; and h is measured in percentage as follows:

D(h, h;)

HDP;, =
NB(h)

x 100% (6.10)

where HDP; denotes the hamming distance between h; and h in percentage for 0 <
i <279, D(h, h;) denotes the hamming distance between h and h; and N B(h) denotes
the total number of binary digits in hash value h. For each of the hash functions MD5,
SHA-224, and QGMDA5-224, the results of this test are shown in Table In this
table, the first column shows the range of hamming distances (HDP;) in the specified
range separately; the second, third, and fourth columns of the table show the number
of times the hamming distances (HDZP;) of the hash values hg, h1, ..., harg from h lie
in the specified range given in the first column of the table corresponding to MDD5,
SHA-224, and QGMD5-224, respectively. Also given in the last row of the table is the
average (mean) hamming distance in percentage. From these values, it can be observed

that the avalanche effect of QGMD5-224 is better than that of both MD5 and SHA-224.
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Table 6.4: Hamming distances for MD5, SHA-224 and QGMD5-224.

Range of | Number of hash | Number of hash | Number of hash
HDP,; pairs of MD5 pairs of SHA-224 | pairs of QGMD5-224
35 - 44.99 41 19 16
45 - 54.99 206 238 246
55 - 64.99 33 23 18

Avarage hamming distance
Mean: 49.76 49.97 50.02

6.3.7.4 Bit variance test

Bit variance test is one of the statistical tests to measure the impact on each bit of
hash value by changing the bits of the input message. If there is a slight change in the
input message, then the impact of this change on each bit of the corresponding hash
value should be uniform. The proposed QGMD5-224 hash function takes a variable
length input message and produces a fixed-length 224 bits hash value. For each bit
of the hash value, we calculate the probability of this bit being 1. Let P;(0) be the
probability that the " bit of a hash value is 0. Similarly, let P;(1) be the probability
that the " bit of a hash value is 1. If P;(0) = P;(1) = 1 for all bits of the hash value
(ie. @ = 1,2,...,224), then the QGMD5-224 passes the bit variance test. Since it
is computationally difficult to consider all the possible input message bit changes, we
evaluated the results for the same messages My, M1, ..., Ma7g, which were earlier used

in the avalanche effect test, and found the following:

Number of hash values = 281
Mean frequency of 1s (expected) = 140.5

Mean frequency of 1s (calculated) = 140.4

According to these results, it can be observed that the average probability of 1s ~ 50%.
Hence, QGMDS5-224 passes the bit variance test.

6.3.7.5 Analysis of QGMAC-224

The proposed message authentication code QGMAC-224 is designed based on the hash
function QGMD5-224 and uses a quasigroup of order 16 or 256 depending on the
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algorithm. This quasigroup acts as a secret key. Therefore, the security of the QGMAC-
224 depends on the hash function QGMDb5-224 as well as on the quasigroup of order
256 or 16 that is used. Since the number of quasigroups of orders 16 and 256 is
upper bounded by 0.689 x 1038 and 0.753 x 10192805 respectively, the use of order 256
quasigroups will provide more security than the quasigroups of order 16. But to store a
quasigroup of order 256, 65280 bytes extra space is required than that of a quasigroup
of order 16.

As of today, a cryptosystem with keyspace 2128

is considered to be a secure cryp-
tosystem. So, the use of order 16 quasigroups also provides good security in QGMAC-
224. This is because the number of quasigroups of order 16 is 0.689 x 1038 ~ 2456,
That is, the use of order 256 quasigroups can be an alternative option. Because of
the large number of quasigroups of either order, it follows that the probability of
identifying the employed quasigroup is close to zero. Hence, QGMAC-224 is resis-
tant to brute force attack. Also, QGMAC-224 is analyzed against forgery attack and
found to be resistant. In this attack, an attacker chooses a fixed n number of different

messages (M, My, ..., M,) and their corresponding MAC values (authentication tags)

(h1,ha,...,hy) and tries to solve the following equations for the secret key k :

where, H is the QGMD5-224 hash function and k is the quasigroup employed. If the
attacker has knowledge of the secret key k, then the attacker can forge an authentication
tag for any chosen message. But the above system of equations has as many solutions
as there are quasigroups of order 16 or 256. Hence determining the quasigroup makes it

practically impossible. Therefore, the QGMAC-224 is also resistant to forgery attack.

6.4 A QGMD5-384 bits hash function and a QGMAC-384
bits message authentication code based on a quasi-
group

This section proposes an extension of the work previously described in section In

this section, we also discuss two new schemes based on a quasigroup: (i) a cryptographic

hash function, named here as QGMD5-384, and (ii) a message authentication code
based on QGMD5-384, named here as QGMAC-384. The primary goal of proposing
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these new schemes is to obtain a 160-bit longer hash value and MAC value than the
previous one by spending a little bit extra time. By which the new schemes are found
to be more secure than the previous ones. Also, the algorithm of QGMD5-384 uses an
optimal quasigroup of order 16, while the algorithm of QGMAC-384 uses a quasigroup
of order 16 or 256, depending on the algorithm. Note that the underlying structure
of both the schemes QGMD5-384 and QGMAC-384 is similar. The only difference
between the two is that the quasigroup used in QGMD5-384 is publicly known, while
the quasigroup used in QGMAC-384 acts as a secret key. The description of an optimal
quasigroup of order 16 is given in section of Chapter In future, a 16 order
optimal quasigroup can be replaced by a 256 order optimal quasigroup. It will only
be possible if we generate an optimal quasigroup of order 256. This is because the
generation of optimal quasigroups of order 2¥ is a hard problem, k > 4.

The proposed schemes can be seen as an expansion of the hash value and MAC value
sizes of the MD5 and HMAC-MD5, respectively. Both the expansions are done through
a series of QGExp128T384 and QGComp384To128 layers. The QGExp128T0384 ex-
pansion layer is implemented in two sub-expansion layers. In the first sub-expansion
layer, QGExp128To384 transforms 128 bits into 224 bits and is referred to as QG-
Expl128To224. In the second sub-expansion layer, QGExp128To384 transforms 224
bits into 384 bits and is referred to as QGExp224To384. And the QGComp384To128
compression layer compresses 384 bits into 128 bits. The workflow of both the QGMD5-
384 and the QGMAC-384 is shown in Figure In order to start the process of each
of these schemes, an arbitrary length message M is first divided into ¢ fixed-size blocks,
where the size of each block is 512 bits. If the length of the message M is not a multiple
of 512 bits, then the padding will be required, and it is padded as in the case of the
MD5 hash function, such as discussed earlier in section [6.2.1] Observe that each round,
except the last round of the last block, MD?5 is followed by a QGExp128To224 sub-layer
that expands 128 bits to 224 bits by inserting 96 bits, QGExp224t0384 sub-layer that
expands 224 bits into 384 bits by inserting 160 bits, and a QGComp384To128 layer
that compresses back to 128 bits by deleting 256 bits. In the last round of the last
block, MD5 is followed by only the QGExp128T0224 and QGExp224To384 sub-layers.
Both QGExp128T0384 and QGComp384To128 layers are defined using the quasigroup
expansion (QGExp) and the quasigroup compression (QGComp) operations, respec-

tively. The QGExp and QGComp operations are defined previously in sections [6.3.1
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Block-B, Block-B, Block-Bg
| 512 bits 512 bits | 512 bits |
¢ ¢ ¢
| Round-1ofMD5 | Round-10f MD5 | [ Round-10f MD5 |
[ QGEspi28Toz2a || || QGEXpt;BTﬂZM | | QGEXp%BTﬂZM |
élzt2| QGEXp€24T0384 | SGEE 24 Troi | | QiGERT 22dNo0kd. |
[ QGComp384To128 | | QGComp384To128 | | QGComp384To128 |
i ' i
| Round-4of MD5 ||| || Round-4of MD5 | | Round-4 of MD5 |
| QGExpl‘EBTnDd [l QGExp;28TDZ24 | | QGExp1'28T9224 |
| QGExp;24To3B4 [l |l QGExp;24T0384 | | QGExp2;4T0384 |
| QGComp84T0128 [l QGCompv384To;28 | | Hasivalue
|_IL_0| 128 bits 12 128 bits 384 bits o

Figure 6.5: Workflow of QGMD5-384 and QGMAC-384

and respectively by confining to the rules of the selected quasigroup of order 16
or 256, depending on the algorithm.

6.4.1 QGExpl28To384 layer

The quasigroup-based expansion layer (QGExp128To384) expands the intermediate
result of 128 bits into 384 bits by inserting 256 bits. It is carried out by employing two
consecutive sub-layers (i) QGExp128T0224 and (ii) QGExp224To384. Each of these
sub-layers uses the QGExp operation, defined in section [6.3.1

6.4.1.1 QGExp128To0224 sub-layer

The QGExp128T0224 is the first sub-layer of the QGExp128To384 that takes 128 bits as
input and converts them into 224 bits as output. It is defined earlier in section [6.3.1.1

And we have the following four consecutive tuples as the output of this sub-layer:

P" = (p1po, 9140, 170, uitio, T170, V100, T170),

Q/ (p%pgv Q%QOa T%TO’ u%u%, T?T(?? 0%0(2)’ T%OT(I]O)7
U' = (p?pgv a1 QOa T‘%T%, uzliu?)’ TITZ)’ Uzlj)vg’ T%lrél),
V' = (p1po, 4140, 1770, 410, TI7G, V100, 71T ”)-
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where the size of each tuple is 56 bits (7 bytes), pilpé, qll'qé, u"lué, Ull'vf), and r{ré are 8-
bit (byte) values, whereas pé, qé, u%, vé, ), pi, qi, u’i, fui, and 7 are 4-bit (nibble) values,

1<i<4and1<j<I12.

6.4.1.2 QGExp224To384 sub-layer

The QGExp224T0384 is the second sub-layer of the QGExp128To384 that takes 224
bits as input and converts them into 384 bits as output. That is, the output of the
QGExp128T0224 sub-layer is used as the input to the QGExp224To384 sub-layer. It

works as follows:

(P'® Q") = ((pipy, P10, r1°10°), (a1 a0, aiag, ri'rgh), (rirg, ring, ri°rd?),

1 2 16,16 55 6.6 17 17 1,1 ,2 2 18 18
U1UO’U1U0W1 7o )s (7”17“0,7“17“077“1 7o )s (U1U07U1v07rl "o )

9,.9 10,10 19,19
rr 07 LT Ty )
1
1

(P'®Q)®U’) = ((piph, pivg, ri°r®, piph, ri°rd"), (a1 45, i ads ritrdt, i, it

(

(rir

(r T07T1T07T1 To »T170,71 To
( 17,17 7.7 .24 24
(

1
1
5
1
9 10,.10 ,.19,.19 11 11 _.26 26))
1
1
1

r 7“0#"1 To "1 70 »T1 To »71 70
(((P/ ® Q/) ® U/) ® V ) ((p pOaplpOa T%BT(l)37p1p(]v T%Orgo’plp(]v T%7T(2)7)

1 14,.14 21,21 2828
Q1qoa(J1QO77"1 7o aQ1QD77"1 7o aCI1QO77'1 o )s
1
1

2 15,15 3.3 .22 922 4 4 _29 29
r 7“0,7"17“0,?"1 70, TIT0, T1 T > T1T0,T1 0 )

1 2 16,16 , 3.3 .23,.23 .4 4 30 30
Uluo’uluoﬂ”l T, UTUY, TIOTH, UTUG, TT TG )5

17,17 7.7 .24 .24 8 8 31 31
r 7"077“17“077”1 ToSTITOsTT T S TIT0sTT O ),

5
1
1 2 18 18 .3 .3 25 25 4 4 32 32
UIUO’UIUOvrl To > ViV, TI VG5 VIV, VYT Uh ),
9
1

(
(
(
(
(
(

0 e T e T g Ty g )
where the symbol ® would be either ®1 or ®9 depending on quasigroup of order 256 or
16 employed. The symbols ®; and ®4 are defined in Equation and Equation ,
respectively. rirf, 13 <t < 33 is the resulting or inserting byte based on quasigroup
operation. Note that the QGExp224To384 sub-layer converts 224 bits (28 bytes) to
392 bits (49 bytes). The last byte 7"%37‘83 is deleted as the proposed schemes only need
384 bits (48 bytes). The following example illustrates these expansion sub-layers.
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Example 6.4.2. Consider the quasigroup of order 16 given in Table[2.8 of Chapter[3
And let P = (34, AF, A0,48), Q = (42,2F,72,A8), U = (0B, A3,38,4C), and V =
(30,28, BC, D8) be a sequence of 128 bits (16 bytes) of data in hexadecimal digits to be
converted to 384 bits (48 bytes). Then, the first expansion sub-layer (QGEzp128To224)
of QGEzp128To384 converts 128 bits to 224 bits as follows:

(P ®2 Q) = ((34,42,37), (AF, 2F, 46), (A0, 72,CB), (48, A8, CA))
(P ®2 Q) ®2U) = ((34,42,37,0B, A9), (AF,2F, 46, A3,CA),

(A0,72,CB,38,11), (48, A8,CA,4C, DE))
(P @2 Q) @2 U) @3 V) = ((34,42,37,0B, A9, 30, F7), (AF, 2F, 46, A3, C A, 28, C0),

(A0,72,C B, 38,11, BC,3C), (48, AS, CA,4C, DE, D8, 7B))
The output of QGFExp128To22  becomes the input to the second expansion sub-layer
(QGExp224To384) of the expansion layer QGExp128To384, where (34,42,37,08, A9, 30, F'7),
(AF,2F,46, A3,CA,28,C0), (A0,72,CB,38,11, BC,3C), and (48, A8, CA,4C, DE, D8,7B)
are considered as P', Q', U', and V', respectively. Now, the second expansion sub-layer
(QGExp224To384) of QGExp128To38/ converts 224 bits to 384 bits as follows:

(P' @2 Q) = ((34, AF, 64), (42,2F, 75), (37,46, 33), (0B, A3, F9), (A9, CA, E5),
30,28,1D), (F7,C0,91))

(
(P @2 Q) @2 U') = ((34, AF, 64, A0, 99), (42, 2F, 75,72, D2), (37,46, 33, OB, 07),

(

(

0B, A3, F9,38,4C), (A9,CA, E5,11,48),(30,28,1D, BC, 36),
F7,00,91,3C, EC))

(P @2 Q) @ U') @2 V') = ((34, AF, 64, A0,99, 48, BC), (42,2F, 75,72, D2, A8, 04),
(37,46,33,CB,07,CA,5E), (0B, A3, F9,38,4C, 4C, 83),
(A9,CA, E5,11,48, DE, 34), (30,28,1D, BC, 36, D8, 87),
(F7,C0,91,3C, EC,7B, A6))

where ®3 is the QGEzp operation of order 16. The inserted bytes are indicated by under-

lining them. After performing the QGFExp128To384, the resulting sequence of 384 bits

(48 bytes) is 34AF64A09948 BC422F'7572D2A804374633C BOTC A5 E0BA3F9384C'4C8
S8A9CAES51148DE3430281DBC36D88TF7C0913CECTB.

6.4.3 QGComp384To0128 layer

The quasigroup-based compression layer (QGExp384To128) compresses the interme-
diate result of 384 bits into 128 bits by deleting 256 bits. It is carried out using the
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QGComp operation, defined in section [6.3.3] The application of QGComp384To128
is as follows: First, it divides the 384 bits (48 bytes) into 3 sub-blocks of 128 bits

(16 bytes) each. Let P = (pipd,p2p3,...,pi%%), Q = (d1¢¢, ?¢3, - -, ai%q¢®), and
U = (ujud,uiud,..., ui®ui®) be a sequence 3 sub-blocks of 48 bytes each, where

pﬁpg, qiqé, and u’lug are bytes values, whereas pi, ¢¢, ul, pé, qé, and ua are nibble values,

1 <3 <16. Then
(P©1Q) or (P2 Q) =(a1zg, atag, ..., 21%%5°)
where iz} = piph *1 ¢iqh or xizh = () %2 ¢))||(P} *2 ¢), and
(PO1Q)@1U) or (P®2Q)®2U) =414, 4195, »y1 v0°)

where yiyi = xizhx uiud or yiyh = (28 xoul)||(zf*2ul). The symbols ®1 and 2 denote
the quasigroup-based compression operations corresponding to the quasigroup of orders
256 and 16, respectively. And the symbols *; and %9 are the quasigroup operations
corresponding to the symbols ®; and ®2 of the orders 256 and 16, respectively. The

following example illustrates the functioning of this compression layer.

Example 6.4.4. Consider the quasigroup Q of order 16 used in Example[6.4.3 This is
gwen in Table[2.8 of Chapter[3d. Also, from Example[6.].9, we consider the sequence of
384-bit (48 bytes) P = 34AF64A09948 BC422F7572D2A804374633C BOTC ASEOBA3F
9384C'4C88A9C AE51148DE3430281DBC36D887F7C0913C ECTB represented in hex-
adecimal digits. To compress these bytes are divided into three sub-blocks as P =
34AF64A09948 BC422F7572D2A8043746, P, = 33C BOTC ASE0BA3F9384C4
C88A9C AEB1L, and Ps = 48D FE3430281DBC36D887F7C0913C ECTB. Now using
the quasigroup of order 16 given in Table [2.8 of Chapter[3, the QGComp384To128

layer works as follows:

(P1 ®2 PQ) =C6E202EF2D9C A14F884A4124255C2F D1,
and then
(Py ®g Py) ®2 P3) =D76A163D0260BC6C DASCAEC9F8B8A953,

where ®9 is the quasigroup-based compression operation of order 16. The obtained
result D76A163D0260BC6C DASCAECIF8B8A9S3 consists of 16 bytes and hence is
128 bits.
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6.4.5 Algorithm of QGMD5-384 and QGMAC-384

The proposed schemes make use of the QGExp128To384 and QGComp384To128 layers
along with the round functions of the MD5 to produce a hash value of 384 bits or a
MAC value of 384 bits. The algorithm of QGMD5-384 uses an optimal quasigroup
of order 16, and the algorithm of QGMAC-384 uses a quasigroup of order 16 or 256,
depending on the algorithm. Each of the proposed schemes processes the input message
block by block. So, a message M = By, Bo, ..., By is divided into, say ¢, message blocks,
where the size of each message block B; is 512 bits, 1 < ¢ < £. The pseudocode of the
algorithm of QGMD5-384 and that of the QGMAC-384 is given in Algorithm|[I4] In this
algorithm, the variables B and B are used to store the output of the round functions
of MD5. And the variables OQutPutO f FirstSubExpL, OutPutO fSecondSubExpL,
and OutPutO fComplL are used to store the output of the layers QG Expl28T 0224,
QG Exp224T 0384, and QGComp384T 0128, respectively.

6.4.6 Implementation and software performance

The proposed schemes have been implemented using the same system configuration and
software tools used to implement the previous schemes. The details of these are given
in section[6.3.6] Inputs to these schemes are also the same as those used in the previous
schemes. The performance of the proposed schemes (QGMD5-384 and QGMAC-384)
is compared with those of the standard hash functions and message authentication
codes, such as MD5, SHA-384, HMAC-MD5, and HMAC-SHA-384. The results of
this analysis are presented in Table See that the performance of the QGMD5-
384 hash function is compared with that of both MD5 and SHA-384 hash functions,
and the performance of the QGMAC-384 is compared with that of both HMAC-MD5
and HMAC-SHA-384. It can be observed that the performance of QGMD5-384 and
QGMAC-384 is slightly slower than that of MD5 and HMAC-MD5 but faster than that
of SHA-384 and HMAC-SHA-384, respectively.

6.4.7 Security analysis

The security of the proposed QGMDb5-384 hash function is analyzed against various
attacks, including brute force, collision, prefix, and suffix attacks. And it is found to

be resistant to these attacks.
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Algorithm 14: Algorithm of QGMD5-384 and QGMAC-384

[1]
[2]

[3]
[4]
(5]
[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

Input: 1. Message M in the form of £ blocks By, Bs, ..., By of 512 bits each.
2. An initial value IV} of 128 bits.
Output: A hash value or MAC-value of 384 bits.
if /=1 then
L GOTO Line No. [15];

else
fori=1tol—1do
for j =1 to 4 do
if j =1 then
| B/ =Round-1 of MD5(B;, IV;_);

else
L B =Round-j of MD5(B;, Out PutO fComp);

OutPutO fFirstSubExpL = QGExpl28T0224(BY});
OutPutO f SecondSubExpL =
QGExp224T0384(Out PutO f FirstSubExpL);
Out PutO fCompL =
QGComp384T0128(Out PutO fSecondSubExpL);
if j =4 then
t 1V; = Out PutO fCompL;

for j =1 to 3 do
if j=1 AND ¢ =1 then
L Bj, =Round-1 of MD5(By, IVp);

else if j =1 AND ¢ > 1 then
| B, =Round-1 of MD5(B, IVi_1);

else
L B, =Round-j of MD5(By, Out PutO fCompL);

OutPutO fFirstSubExpL = QGExpl28T0224(By);

OutPutO fSecondSubExpL =
QGExp224T0384(Out PutO f FirstSubExpL);

Out PutO fCompL = QGComp384T 0128(Out PutO f SecondSubExpL);

Bj, =Round-4 of MD5(By, OutPutO fCompL);

OutPutO fFirstSubExpL = QGExpl28T0224(By);

OutPutO f SecondSubExpL = QG Exp224T0384(Out PutO f FirstSubExpL).
Output these 384 bits as the final hash value or MAC-value of the message M;
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Table 6.5: Performance analysis of hash functions and HMACs.

Hash Functions Avg Execution time | Message Authen- Avg Execution time

in microseconds (us) | tication Codes in microseconds (us)

Existing schemes

MD5 7.94 HMAC-MD5 10.13

SHA-384 17.92 HMAC-SHA-384 22.04
Proposed schemes

QGMD5-384 16.52 | QGMAC-384 16.52

6.4.7.1 Brute force attack

The QGMD5-384 produces a 384 bits hash value instead of 128 bits and 224 bits, as in
the case of MD5 and QGMD5-224, respectively. Typically, for an n-bit hash value, a
brute force attack requires 2" effort to compute (i) pre-image and (ii) second pre-image
attacks, and to find a collision, it requires 2/2 effort. Since the size of the hash value
of QGMD5-384 is 384 bits as against 128 bits and 224 bits of MD5 and QGMD5-224,
respectively, the QGMD5-384 can be seen to be more secure than both the MD5 and
the previous QGMD5-224 hash functions.

6.4.7.2 Collision attack

We have used the same procedure to analyze the QGMD5-384 hash function against
this attack that was used to analyze the previous QGMD5-224 hash function; details
are given in section[6.3.7.1} That is, we perform two experiments by randomly choosing
N = 2048 pairs of messages M} and M} with hamming distance 1, 1 < < 2048. And
for each pair of messages M? and M4, we computed the corresponding hash values h?
and h} and stored them in ASCII format.

In the first experiment, for all pairs of hash values hi and k%, 1 < i < 2048, we
computed the experimental results of both the SHA-384 and the QGMD5-384 using
Equation ; and the expected results of an s-byte hash value using Equation .
The expected and experimental results are given in Table[6.6[ (a) and (b), respectively.
In this table, v denotes the number of bytes that have the same value at the same
position if we compare a pair of hﬁ and h% as byte sequences, 1 <7 < 2048; s denotes

the number of bytes in a hash value, and Wy (v) denotes the number of times v hits in

162



6.4 A QGMD5-384 bits hash function and a QGMAC-384 bits message
authentication code based on a quasigroup

N number of experiments. Smaller v characterizes the stronger hash function against
collision resistance. If we compare the experimental results of SHA-384 and QGMD5-
384 with the corresponding expected results, which are tabulated in Table (a) and
(b), It can be observed that the experimental results of the proposed QGMD5-384

Table 6.6: Results of expected and experimental.

Expected result (W (v)) Experimental result
v s =48 SHA-384 QGMD5-384
(s =48) (s =48)
0 1697.23 1676 1683
1 319.48 348 335
2 29.44 20 27
3 1.77 4 3
v > 0 0
(a) (b)

not only coincide very well with the theoretical ones but also it has better collision
resistance than that of SHA-384.

In the second experiment, we calculated the absolute difference (AD) between each
pair of k¢ and h% using Equation , 1 <4 < 2048. In this case, the larger value
of AD characterizes the stronger hash function against collision resistance. For each
of the hash functions SHA-384 and QGMD5-384, the simulation of this experiment is
also run 2048 times and calculated the minimum, maximum, mean, and mean/char of
AD. The results of this experiment are given in Table Note that the ideal value of
mean/char, as defined in [I7], is 85.33. According to the results as shown in Table
it can be observed that the obtained mean/char value of the proposed QGMD5-384
hash function is closer to the ideal value of 85.33 than that of the SHA-384. Hence,
the second experiment also ensures that QGMD5-384 is more secure than SHA-384.

Table 6.7: Results of the absolute differences.

Hash Functions Minimum Maximum Mean  Mean/Char
SHA-384 2821 5209 3913.43 81.52
QGMD5-384 2800 5395 4046.27 84.31
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6.4.7.3 Prefix and suffix attacks

Prefix and suffix attacks are common methods for finding collisions in cryptographic
hash functions. The details of these attacks against the QGMD?5-224 hash function are
described in section For the prefix attack, an attacker creates a false message
PM = (p1,p2,...,Ppu,m1,ma,...,mi) by adding the prefix P = (p1,p2,...,ps) to the
original message M = (mj,ma,...,mg) so that Hyy(PM) = Hry (M), where H is
the hash function, m; € Q for 1 < ¢ < k, p; € @, for 1 < j < u, and IV and @
denote an initial value and an employed quasigroup. This attack is successful only if
Hyy(P) = 1V. In other words, this attack can happen if a hash function is vulnerable
to a pre-image attack. But the proposed QGMD5-384 hash function is resistant to
pre-image attack. This is because it uses MD5 and an optimal quasigroup of order
16. Since MD?5 is already resistant to the pre-image attack and the optimal quasigroup
consists of 16 optimal S-boxes of 4 x 4. That is, the security of the QGMD5-384 is
not only dependent on the MD5 but also on the 16 optimal S-boxes as an optimal
quasigroup of order 16. Hence, the QGMD5-384 is resistant to prefix attack.

A similar argument can be used to show that the proposed QGMD5-384 hash func-
tion is resistant to the suffix attack. To mount this attack, first, an attacker chooses
a suffix § = (s1,s2,...,5), 55 € @, 1 < j < t, and tries to create a false message
MS = (my,ma,...,mg,S1,S2,...,5) by appending the suffix S to the original mes-
sage M, so that Hyy(MS) = h = Hry(M). This attack is successful only if Hy,(S) = h.

6.4.7.4 Avalanche effect

A hash function must exhibit a good avalanche effect since it is one of the desirable
properties of a hash function. We have analyzed the proposed QGMD5-384 hash func-
tion against this test by comparing it with those of the existing MD5 and SHA-384
hash functions. For this test, we used the same process and inputs that were used to
analyze the QGMD5-224 hash function. The details are described in section [6.3.7.3
The results of the MD5, SHA-384, and QGMD5-384 against this test are given in Ta-
ble[6.8] In this table, HDP; denotes the hamming distance between two hash values in
percentage, which is obtained using Equation . The first column shows the range
of hamming distances (H DF;) in the specified range separately; the second, third, and

fourth columns show the number of times the hamming distances (H DPF;) of the hash
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values lie in the specified range given in the first column of the table corresponding to
MD5, SHA-384, and QGMD5-384, respectively. Also given in the last row of the table
is the average (mean) hamming distance in percentage. From these values, it can be
observed that the avalanche effect of QGMD5-384 is better than that of both MD5 and
SHA-384.

Table 6.8: Hamming distances for MD5, SHA-384 and QGMD5-384.

Range of | Number of hash | Number of hash | Number of hash
HDP; pairs of MD5 pairs of SHA-384 | pairs of QGMD5-384
35 - 44.99 41 7 7
45 - 54.99 206 265 268
55 - 59.99 33 8 5

Avarage hamming distance
Mean: 49.76 49.97 50.12

6.4.7.5 Bit variance test

Bit variance test is one of the statistical tests to measure the impact on each bit of hash
value by changing the bits of the input message. If there is a slight change in the input
message, then the impact of this change on each bit of the corresponding hash value
should be uniform. For this test, we used the same inputs that were used to analyze
the QGMD5-224 hash function, given in section The proposed QGMD5-384
hash function takes a variable length input message and produces a fixed-length 384
bits hash value. So, for each of these 384 bits, we calculate the probability of a bit
being 1. Let P;(1) be the probability that the " bit of a hash value is 1. Similarly, let
P;(0) be the probability that the i*" bit of a hash value is 0. If P;(1) = P;(0) = 3 for
all bits of the hash value, i.e. for i = 1,2,...,384, then the QGMD5-384 passes the bit

variance test. The obtained results are as follows:

Number of hash values = 281
Mean frequency of 1s (expected) = 140.5

Mean frequency of 1s (calculated) = 140.3

According to these results, it can be observed that the average probability of 1s ~ 50%.
Hence, QGMD5-384 passes the bit variance test.
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6.4.7.6 Analysis of QGMAC-384

The proposed message authentication code QGMAC-384 is designed based on the hash
function QGMDA5-384 and uses a secret quasigroup of order 16 or 256, depending on
the algorithm. So, the security of the QGMAC-384 depends on both the QGMD5-384
and the quasigroup of order 16 or 256 that is used. Since the number of quasigroups of
orders 16 and 256 is upper bounded by 0.689 x 10'3® and 0.753 x 10192805 respectively,
the use of order 256 quasigroups will provide more security than the quasigroups of
order 16. But to store a quasigroup of order 256 is required 65280 bytes extra space
than that of a quasigroup of order 16.

2128 ig considered to be

As of today, a cryptosystem with at least a keyspace of
a secure cryptosystem. Therefore, the use of order 16 quasigroups also provides good
security in QGMAC-384. This is because the number of quasigroups of order 16 is
0.689 x 10138 ~ 2456 That is, the use of order 256 quasigroups can be an alternative
option. Because of the large number of quasigroups of either order, it follows that the
probability of identifying the employed quasigroup is close to zero. Hence, QGMAC-
384 is resistant to brute force attack. Also, QGMAC-384 is analyzed against forgery
attack and found to be resistant. In this attack, an attacker chooses a fixed number,
say n, of different messages (My, Ms, ..., M,) and their corresponding MAC values
(authentication tags) (h1,ha,...,h,) and tries to solve the following equations for the

secret key k :

where, H is the QGMD5-384 hash function and k is the quasigroup employed. If the
attacker has knowledge of the secret key k, then the attacker can forge an authentication
tag for any chosen message. But here, k is secret. So, the above system of equations
has as many solutions as there are quasigroups of order 16 or 256. Hence determining
the quasigroup makes it practically impossible. Therefore, the QGMAC-384 is also

resistant to forgery attack.

6.5 Summary

This chapter proposed two hash functions and, based on them, proposed the corre-

sponding message authentication codes. Each of these schemes is designed based on a
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quasigroup. The first hash function (QGMD5-224) and message authentication code
(QGMAC-224) produce 224 bits hash value and MAC value, respectively. They are
discussed in section The second hash function (QGMD5-384) and message authen-
tication code (QGMAC-384) produce 384 bits hash value and MAC value, respectively.
They are discussed in section Both the hash functions and the message authen-
tication codes can be viewed as the extended version of MD5, and they use the MD5
along with a quasigroup of order 16 or 256, depending on the algorithms. The pro-
posed schemes mask the weaknesses of MD5 and adds extra security. We have analyzed
both the QGMD5-224 and the QGMD5-384 against various attacks, including brute
force attack, collision resistance, and prefix and suffix attacks, and found that they are
resistant to these attacks. The randomness properties of the proposed hash functions
are analyzed using the avalanche effect and bit variance test, and they satisfied all the
properties that are needed for the ideal hash functions.

We compared our schemes with the existing quasigroup-based hash functions that
are discussed in the literature survey of Chapter [3| and are introduced in the liter-
ature |23, 24, [70]. We found that the proposed hash functions (QGMD5-224 and
QGMD5-384) are resistant to prefix and suffix attacks [69]; while the existing hash
functions [23| 24 [70] are vulnerable to these attacks. Hence, It can be concluded that
the new quasigroup based hash functions (QGMD5-224 and QGMD5-384) appear to
be a good alternative to the existing quasigroup based hash functions.

Also, the proposed QGMAC-224 and QGMAC-384 can be viewed as an extended
version of HMAC-MD5. They use a quasigroup of order 16 or 256 as a secret key to
calculate the MAC values. Since the number of quasigroups of order 16 or 256 is prac-
tically infinite, it is computationally infeasible to determine the employed quasigroup.
Hence the QGMAC-224 and QGMAC-384 are resistant to brute force attacks. Also,
they are analyzed against forgery attacks, and found that both of them are resistant
to forgery attacks as well.

The software performance of both QGMD5-224 and QGMAC-224 is compared to
that of the corresponding algorithms of MD5, SHA-224, HMAC-MD5, and HMAC-
SHA-224. Similarly, the software performance of both QGMD5-384 and QGMAC-384
is compared to that of the corresponding algorithms of MD5, SHA-384, HMAC-MD?5,
and HMAC-SHA-384. We found that QGMD5-224 is slightly slower than MD5 but
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faster that SHA-224. And QGMAC-224 is found to be always faster than both HMAC-
MD5 and HMAC-SHA-224. On the other hand, we found that QGMD5-384 is slightly
slower than MD5 but faster than SHA-384. And QGMAC-384 is slightly slower than
HMAC-MD5 but faster than HMAC-SHA-384.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

The major contribution of this thesis is the design of new cryptosystems based on
quasigroup. Contributions are broadly categorized into three parts. In the first part
three variants of stream ciphers, in the second part two variants of block ciphers, and
in the third part two variants of hash functions and HMACs are proposed. All these
proposals are based on the concept of quasigroup.

The three proposed stream ciphers are described in Chapter [d The first cipher
discussed in section uses AES-256 for generating the keystream and a quasigroup
of order 256 for encrypting/decrypting the messages. The second cipher discussed in
section [4.4] uses QG-PRNG for generating the keystream and a quasigroup of order
256 for encrypting/decrypting the messages. The QG-PRNG is a quasigroup based
pseudo-random number generator described in section Note that the second ci-
pher is the revised version of the first cipher. This is because the second cipher uses
QG-PRNG for generating the keystream instead of AES-256 as used in the first cipher,
thereby the second cipher is more efficient than the first cipher. The third cipher is
discussed in section It uses MQG-PRNG for generating the keystream and 16
quasigroups of order 16 for encrypting/decrypting the messages. The MQG-PRNG is
a multiple quasigroups-based pseudo-random number generator, uses 16 quasigroups,
and it is described in section The algorithms of both the MQG-PRNG and the
encryption/decryption use the same set of 16 quasigroups but may be in different orders

(permutations). These 16 quasigroups are dynamically generated based on an original
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quasigroup of order 16. The use of multiple quasigroups contributes to increased se-
curity since a different quasigroup is used after a certain amount of time. Note that
the third cipher is the revised version of both the first and second ciphers. This is
because, the third cipher uses a quasigroup of order 16 instead of a quasigroup of order
256 as used in both the first and second ciphers, thereby the third cipher needs around
99% lesser space than both the first and second ciphers. The novelty of the proposed
stream ciphers is that they are resistant to the reused key attack as against the ex-
isting XOR-based stream ciphers. Hence a keystream can be reused multiple times,
thereby overcoming the major hurdle that exists in the application of the stream ci-
phers. The proposed ciphers are analyzed against the most common attacks, including
the chosen-ciphertext attack, the chosen-plaintext attack, the known-plaintext attack,
the reused-key attack, and the time-memory-data tradeoff (TMDTO) attack. We ob-
served that our ciphers are resistant to these attacks. Also, the performance of the
proposed ciphers is analyzed by comparing them to some of the existing quasigroup
based stream ciphers [12, 28] [43], 59, 60, 8T]. We observed that in most cases the pro-
posed ciphers are more efficient than the existing quasigroup based proposals. The
randomness of the obtained ciphertexts produced by the proposed stream ciphers is
analyzed using the NIST-STS test suite. We found that the obtained ciphertexts of the
proposed ciphers are highly random.

The proposed two block ciphers to encrypt or decrypt messages in the form of a
block of 128 bits are described in Chapter Both the ciphers are designed based
on the Permutation Substitution Network (PSN) and use 16 optimal S-boxes as an
optimal quasigroup of order 16, where the size of each S-box is 4 x 4 bits. The design
of the proposed ciphers is based on the key-dependent S-box, where the operations
are carried out using the quasigroup operation. In each quasigroup operation, a key-
dependent S-box layer chooses one S-box out of the 16 S-boxes, where the choice is
based on the round key or sub-key. We believe that key-dependent S-box ciphers are
more secure than fixed S-box ciphers. This is because key-dependent S-boxes do not
offer any specific properties to the cryptanalyst. Most key-dependent S-box ciphers are
effectively random. Examples of such ciphers are Blowfish [66] and SEAL [I5]. The
second cipher discussed in section is more standard than the first cipher discussed in
section [5.3] This is because each round of the second cipher uses three transformations

(substitution, permutation, and add round key), while the first cipher uses only two
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transformations (substitution and permutation). The proposed ciphers are analyzed
against several attacks, including linear cryptanalysis and differential cryptanalysis,
and found that the ciphers are resistant to these attacks. Also, we have analyzed
the software performance (time complexity), space complexity, and avalanche effect
(diffusion effect) of the proposed ciphers by comparing them with AES-128 and other
existing quasigroup based block ciphers [0l [6l [83]. We noted that the avalanche effect
of our ciphers compares to that of the AES-128 and due to more computations our
ciphers are slightly slower than AES-128, but our cipher uses half the space compared
to AES-128. Also, the proposed block ciphers use the same amount of space as that
used by [83] but 512 times lesser than [B, [6]. We also noted that our ciphers are more
efficient than DES. In addition, our ciphers are more than 2 times faster and give a
better avalanche effect than other existing quasigroup based block ciphers [5] [6, [83].
Hence, we concluded that the proposed ciphers appear to be an excellent alternative to
the quasigroup based proposals. The randomness of the obtained ciphertexts produced
by the proposed ciphers is tested using the NIST statistical test suite. We ran our
encryption systems for a random plaintext of 1048576 bits with 1000 different keys and
generated 1000 ciphertexts. The results are compared with that of AES-128 for the
same plaintext and the same keys. We observed that the randomness of the outputs of
our ciphers and AES-128 are comparable to each other.

In Chapter [0} we proposed two hash functions and, based on them we also proposed,
the corresponding message authentication codes (HMACs). Each of these schemes is
designed using the quasigroup. The first hash function, named QGMD5-224, and the
corresponding message authentication code, named QGMAC-224 produce 224 bits hash
value and MAC value, respectively. They are described in section [6.3] The second hash
function, named QGMD5-384, and the corresponding message authentication code,
named QGMAC-384 produce 384 bits hash value and MAC value, respectively. They
are described in section The proposed hash functions (QGMD5-224 and QGMDS5-
384) can be seen as the extended version of MD5. They are designed using the MD5 and
a quasigroup of order either 16 or 256. They mask the weaknesses of MD5 and add extra
security. We have analyzed both the QGMD5-224 hash function and the QGMD5-384
hash function against several attacks, including brute force attack, collision resistance,
and prefix and suffix attacks, and found that the proposed hash functions are resis-

tant to these attacks. The randomness properties of the proposed hash functions are
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analyzed using the avalanche effect and bit variance test, and they satisfied all the
properties that are needed for the ideal hash functions.

The proposed HMACs (QGMAC-224 and QGMAC-384) can be seen as an extended
version of HMAC-MD5. They use a quasigroup of order either 16 or 256 as a secret
key and calculate the MAC values. Since the number of quasigroups of order 16 or 256
is practically infinite, it is impossible to determine the employed quasigroup. Hence
the QGMAC-224 and QGMAC-384 are resistant to brute force attack. Also, they are
analyzed against forgery attacks and found that both are resistant to forgery attacks
as well.

The software performance of both QGMD5-224 and QGMAC-224 is compared to
that of the corresponding algorithms of MD5, SHA-224, HMAC-MD5, and HMAC-
SHA-224. Similarly, the software performance of both QGMD5-384 and QGMAC-384 is
compared to that of the corresponding algorithms of MD5, SHA-384, HMAC-MD5, and
HMAC-SHA-384. We found that QGMD5-224 is slightly slower than MD5 but faster
than SHA-224. And QGMAC-224 is found to be always faster than both HMAC-MD5
and HMAC-SHA-224. On the other hand, we found that QGMD5-384 is slightly slower
than MD5 but faster than SHA-384. And QGMAC-384 is slightly slower than HMAC-
MD5 but faster than HMAC-SHA-384. Also, we observed that the performance of the
proposed hash functions and their corresponding HMACs are the same. This is because
the underlying structure of both the proposed hash functions and their corresponding
HMAC:s is similar. The only difference between the two is that the quasigroup used in
the hash functions is publicly known, while the quasigroup used in HMACs acts as a

secret key.

7.2 Future work

In this thesis, we have designed several cryptosystems based on quasigroups. Each of
the proposed cryptosystems comes under the category of symmetric key cryptography.
So, one of our intentions is to design public key cryptosystems based on quasigroup. In

addition, we have the following intentions:

e To analyze the proposed stream ciphers against several attacks such as Algebraic

attack, Correlation attack, Fault attack, Guess and determine attack, etc.
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e To analyze the proposed block ciphers against more cryptanalytic attacks such as
Boomerang attack, Meet-in-the-middle attack, Key recovery attack, Impossible

differential attack, etc.

e To analyze the proposed keystream generation algorithms (QG-PRNG and MQG-
PRNG) against several attacks such as Related-key attack, Slide attack, etc.

e To analyze the proposed hash functions against several attacks such as Rainbow

table attack, Side-channel attack, Length extension attack, etc.

Last but not the least, we would like to extend the proposed hash functions and their
corresponding HMACs to produce 512 or 728 bits hash and MAC values. We also
would like to explore the possibility of designing other crypto-primitives such as digital

signature and authentication systems using the proposed hash functions and HMACs.
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