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Abstract

Quasigroups of order n can be represented as an n×n matrix in which each

row as well as in each column has a different permutation of elements from a

non-empty set Zn so that no element appears more than once in any row or

column. Quasigroups are important to cryptography because the number

of quasigroups grows exponentially with its order, and every quasigroup has

a unique inverse quasigroup. So, it makes an important case for the design

of cryptosystems. This thesis mainly proposes three types of new crypto-

primitives based on quasigroups. These are stream ciphers, block ciphers,

and hash functions.

As the first contribution, we have proposed three variants of stream ciphers.

The second stream cipher improves the speed of the first cipher, while the

third stream cipher improves the memory consumption and security of both

the first and second ciphers. The novelty of the proposed stream ciphers is

that once a keystream is generated, it can be reused multiple times because

the proposed ciphers are resistant to the reused key attack. Design of these

ciphers is motivated by the fact that all conventional XOR-based stream

ciphers are vulnerable to reused key attack.

As the second contribution, we have proposed two variants of block ciphers.

The second block cipher is the revised version of the first block cipher that

improves the security of the first block cipher. Both the ciphers are designed

based on multiple quasigroups and use the same set of 16 optimal S-boxes

of 4× 4-bit in the form of an optimal quasigroup of order 16. Each of these

sixteen S-boxes has the highest algebraic degree and the lowest linearity and

differential characteristics. Therefore, these S-boxes provide great security

against linear and differential attacks. The security and performance of the

proposed ciphers are analyzed by comparing them with some of the existing

iii



quasigroup-based proposals and we found that the proposed ciphers are

more secure and efficient than that of the existing ciphers.

Finally, in the third contribution of this thesis, we have proposed two vari-

ants of hash functions and their corresponding message authentication codes

(HMACs) based on quasigroup. The second hash function/HMAC is the

extended version of the first hash function/HMAC that produces 160 bits

more hash/MAC value. By the way, the first hash function and HMAC

produce 224 bits of hash and MAC values, respectively. Each of these two

hash functions can be seen as an extension of the MD5 since they are de-

signed based on the underlying structure of MD5 along with a quasigroup.

These designs are motivated by the fact that MD5 is vulnerable to a colli-

sion attack. The underlying structure of both the proposed hash function

and HMAC are similar. The only difference between the two is that the

quasigroup used in the hash function is publicly known, while the quasi-

group used in HMAC acts as a secret key, thereby computing both the hash

and MAC values both (hash function and HMAC) take the same amount

of time. The security and the performance of the proposed schemes are

analyzed by comparing them with their counterparts, such as SHA-224,

SHA-384, HMAC-SHA-224, and HMAC-SHA-384. We found that the pro-

posed schemes are more secure and efficient than the corresponding existing

schemes.

iv



Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Symmetric key cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Asymmetric key cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Stream cipher and block cipher . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Cryptographic hash function . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Hash function with key or HMAC . . . . . . . . . . . . . . . . . . . . . 5

1.6 Motivation and Research goals . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7.1 New symmetric key cipher based on a quasigroup and AES-256 . 9

1.7.2 A novel stream cipher based on a quasigroup and QG-PRNG . . 9

1.7.3 MQG-PRNG and non-associative quasigroup based stream cipher 10

1.7.4 An efficient block cipher based on multiple optimal quasigroups

and {e, d}-transformation . . . . . . . . . . . . . . . . . . . . . 11

1.7.5 A block ciphers based on multiple optimal quasigroups and {neℓ, ndℓ}-
transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7.6 A QGMD5-224 bits hash function and a QGMAC-224 bits mes-

sage authentication code based on a quasigroup . . . . . . . . . . 12

1.7.7 A QGMD5-384 bits hash function and a QGMAC-384 bits mes-

sage authentication code based on a quasigroup . . . . . . . . . . 13

1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



CONTENTS

2 Mathematical Backgrounds 16

2.1 Latin square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Orthogonal representation of a Latin square . . . . . . . . . . . . 17

2.1.5 Number of Latin squares . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Quasigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Non-associative quasigroup . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 Left inverse, right inverse and n-quasigroup . . . . . . . . . . . . 21

2.2.12 {e, d}-transformation based on quasigroup . . . . . . . . . . . . 24

2.2.15 New {e, d}-transformation based on quasigroup . . . . . . . . . . 25

2.2.16 Optimal quasigroup . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.19 Quasigroups as vector valued Boolean functions . . . . . . . . . . 28

2.2.21 Quasigroup generation . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.25 Quasigroup generation based on row permutations . . . . . . . . 33

3 Literature survey 38

3.1 Stream ciphers based on quasigroup . . . . . . . . . . . . . . . . . . . . 38

3.2 Block ciphers based on quasigroup . . . . . . . . . . . . . . . . . . . . . 42

3.3 Hash functions based on quasigroup . . . . . . . . . . . . . . . . . . . . 44

4 Stream Ciphers based on Quasigroup 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Brief overview of the proposed stream ciphers . . . . . . . . . . . . . . . 50

4.3 New symmetric key cipher based on a quasigroup and AES-256 . . . . . 52

4.3.1 Selection of a quasigroup of order 256 . . . . . . . . . . . . . . . 52

4.3.2 Keystream generation . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Encryption algorithm . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.5 Decryption algorithm . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.7 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.8 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 A novel stream cipher based on a quasigroup and QG-PRNG . . . . . . 63

4.4.1 Keystream generation . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Encryption algorithm . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.4 Decryption algorithm . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.6 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



CONTENTS

4.4.7 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 MQG-PRNG and non-associative quasigroup based stream cipher . . . . 76

4.5.1 Generation of quasigroups . . . . . . . . . . . . . . . . . . . . . . 77

4.5.2 Generation of keystream . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.3 Analysis of the MQG-PRNG . . . . . . . . . . . . . . . . . . . . 81

4.5.4 Encryption Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.5 Decryption Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.6 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.7 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Block Ciphers Based on Multiple Quasigroups 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Brief overview of the proposed block ciphers . . . . . . . . . . . . . . . . 98

5.2.1 Quasigroup operation for encryption and decryption . . . . . . . 100

5.3 An efficient block cipher based on multiple optimal quasigroups and

{e, d}-transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Generation of optimal quasigroups . . . . . . . . . . . . . . . . . 102

5.3.2 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 A block cipher based on multiple optimal quasigroups

and {neℓ, ndℓ}-transformation . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 Generation of round key . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.2 Generation of multiple quasigroups . . . . . . . . . . . . . . . . . 114

5.4.3 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.4 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6.1 Linear cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6.2 Differential cryptanalysis . . . . . . . . . . . . . . . . . . . . . . 126

5.6.3 Avalanche effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6.4 Strict avalanche criterion (SAC) . . . . . . . . . . . . . . . . . . 130

5.6.5 Statistical test for randomness . . . . . . . . . . . . . . . . . . . 132

vii



CONTENTS

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Hash Functions and HMACs bsed on quasigroup 137

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Overview of the proposed hash functions and HMACs. . . . . . . . . . . 138

6.2.1 Brief description of MD5 . . . . . . . . . . . . . . . . . . . . . . 139

6.3 A QGMD5-224 bits hash function and a QGMAC-224 bits message au-

thentication code based on a quasigroup . . . . . . . . . . . . . . . . . . 141

6.3.1 Quasigroup expansion (QGExp) operation . . . . . . . . . . . . . 142

6.3.3 Quasigroup compression (QGComp) operation . . . . . . . . . . 145

6.3.5 Algorithm of QGMD5-224 and QGMAC-224 . . . . . . . . . . . 146

6.3.6 Implementation and software performance . . . . . . . . . . . . . 147

6.3.7 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4 A QGMD5-384 bits hash function and a QGMAC-384 bits message au-

thentication code based on a quasigroup . . . . . . . . . . . . . . . . . . 154

6.4.1 QGExp128To384 layer . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4.3 QGComp384To128 layer . . . . . . . . . . . . . . . . . . . . . . . 158

6.4.5 Algorithm of QGMD5-384 and QGMAC-384 . . . . . . . . . . . 160

6.4.6 Implementation and software performance . . . . . . . . . . . . . 160

6.4.7 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Conclusions and Future work 169

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

References 174

viii



List of Figures

1.1 Workflow of the symmetric key cryptosystem. . . . . . . . . . . . . . . . 2

1.2 Workflow of the asymmetric key cryptosystem. . . . . . . . . . . . . . . 2

2.1 n× 1 multiplexer and its truth table. . . . . . . . . . . . . . . . . . . . . 34

3.1 Block diagram of Edon-80. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Representation of additive cipher. . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Generation of keystream using AES-256. . . . . . . . . . . . . . . . . . . . . 54

4.3 Encryption algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Decryption algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Workflow of keystream generation using QG-PRNG. . . . . . . . . . . . . . . 64

4.6 First level of e-transformation. . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Second level of e-transformation. . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Workflow of encryption algorithm. . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Workflow of decryption algorithm. . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Representation of SD or keystream K ′ of length 16 nibbles. . . . . . . . . . . 78

4.11 Workflow of keystream generation using MQG-PRNG. . . . . . . . . . . . . . 80

4.12 Workflow of the encryption algorithm. . . . . . . . . . . . . . . . . . . . . . 86

4.13 Workflow of the decryption algorithm. . . . . . . . . . . . . . . . . . . . . . 87

5.1 Block diagram of the block cipher. . . . . . . . . . . . . . . . . . . . . . 98

5.2 Encryption and decryption algorithms of the block cipher. . . . . . . . . 102

5.3 Workflow of encryption and decryption of new block cipher. . . . . . . . 110

5.4 Representation of round keys. . . . . . . . . . . . . . . . . . . . . . . . . 111

ix



LIST OF FIGURES

6.1 Hash function and HMAC. . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Length of the message after padding . . . . . . . . . . . . . . . . . . . . 140

6.3 One step operation of MD5 hash function . . . . . . . . . . . . . . . . . 141

6.4 Workflow of QGMD5-224 and QGMAC-224 . . . . . . . . . . . . . . . . 142

6.5 Workflow of QGMD5-384 and QGMAC-384 . . . . . . . . . . . . . . . . 156

x



List of Tables

2.1 Latin square of order 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Latin square of order 4 and corresponding orthogonal representation. . . 17

2.3 The number of Latin squares and reduced Latin squares of order n . . . 18

2.4 Quasigroup of order 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Number of associative quasigroups, non-associative quasigroups, and

quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Operation table of LIQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Operation table of RIQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Optimal quasigroup of order 16. . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Results of WS0(u, v) for the S-box S0. . . . . . . . . . . . . . . . . . . . 30

2.10 Results of △S0 (u, v) for the S-box S0. . . . . . . . . . . . . . . . . . . . 31

2.11 Non-linear quasigroup of order 4. . . . . . . . . . . . . . . . . . . . . . . 32

2.12 Quasigroup Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.13 Quasigroup Q2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.14 Representation of quasigroups Q and LIQ of order n. . . . . . . . . . . 35

2.15 Representation of quasigroups Qi and LIQi of order n. . . . . . . . . . 36

2.16 Quasigroups Q and LIQ of order 8. . . . . . . . . . . . . . . . . . . . . 36

2.17 Quasigroups Qi and LIQi of order 8. . . . . . . . . . . . . . . . . . . . . 37

3.1 Quasigroup of order 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Quasigroup of order 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Right inverse quasigroup of order 6. . . . . . . . . . . . . . . . . . . . . 57

4.3 Comparison of space complexity of the proposed cipher with existing

ciphers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xi



LIST OF TABLES

4.4 Comparison of time complexity of the proposed cipher with existing

ciphers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Parameters for the NIST-STS test. . . . . . . . . . . . . . . . . . . . . . 62

4.6 Results of the NIST-STS test. . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 For 1000 random sequences, results of the NIST-STS test suite for QG-

PRNG as compared to AES-256. . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Right inverse quasigroup of order 6. . . . . . . . . . . . . . . . . . . . . 71

4.9 Time and space complexities of the proposed cipher. . . . . . . . . . . . 71

4.10 NIST-STS test results for the 1000 ciphertexts produced by the new

cipher for variant inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.11 Seeds used for MQG-PRNG in binary format. . . . . . . . . . . . . . . . 83

4.12 Avalanche effect of keystream for the different seeds. . . . . . . . . . . . 84

4.13 Results of the NIST-STS test for 1000 sequences generated by MQG-

PRNG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.14 Time and space complexities of the proposed cipher. . . . . . . . . . . . 89

4.15 NIST-STS test results for the 1000 ciphertexts. . . . . . . . . . . . . . . 95

5.1 Bit permutation for a 128-bit block. . . . . . . . . . . . . . . . . . . . . 105

5.2 Inverse bit permutation for a 128-bit block. . . . . . . . . . . . . . . . . 107

5.3 Some important notations. . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 Avalanche effect of expanded key, when the secret key is with all zeros,

all ones, and randomly generated. . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Comparison of the time and space complexities. . . . . . . . . . . . . . . 122

5.6 Minimum number of active S-boxes in the linear trail of the r+1-round

cipher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Linear Approximation Table (LAT) . . . . . . . . . . . . . . . . . . . . . 126

5.8 Minimum number of active S-boxes in the differential trail of the r + 1-

round cipher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.9 Number of outputs (ciphertexts) whose hamming distances from the orig-

inal output C lie in the specified range. . . . . . . . . . . . . . . . . . . 131

5.10 Strict avalanche criterion of the proposed cipher, discussed in section 5.3. 132

5.11 Strict avalanche criterion of the proposed cipher, discussed in section 5.4. 133

xii



LIST OF TABLES

5.12 For 1000 random keys, results of the NIST test for the proposed encryp-

tion systems as compared to the AES-128 encryption system when the

same key is used for all cryptosystems with CBC mode of operation. . . 134

6.1 Performance analysis of hash functions and HMACs. . . . . . . . . . . . 149

6.2 Results of expected and experimental. . . . . . . . . . . . . . . . . . . . 150

6.3 Results of the absolute differences. . . . . . . . . . . . . . . . . . . . . . 151

6.4 Hamming distances for MD5, SHA-224 and QGMD5-224. . . . . . . . . 153

6.5 Performance analysis of hash functions and HMACs. . . . . . . . . . . . 162

6.6 Results of expected and experimental. . . . . . . . . . . . . . . . . . . . 163

6.7 Results of the absolute differences. . . . . . . . . . . . . . . . . . . . . . 163

6.8 Hamming distances for MD5, SHA-384 and QGMD5-384. . . . . . . . . 165

xiii



Chapter 1

Introduction

With the increasing need to secure data, new cryptographic algorithms have become in-

creasingly imperative. This is due to the fact that cryptography has become an integral

part of data security today. In other words, as more hackers attempt to break into pri-

vate conversation and communication channels, it has become vital to protect privacy

and limit third-party visibility using various security tools or cryptographic algorithms.

Cryptographic algorithms typically consist of an encryption algorithm, a decryption al-

gorithm, a key generation algorithm, a hash function, a message authentication code

(MAC), etc. These days, two types of encryption/decryption algorithms are commonly

used for achieving message confidentiality: (i) symmetric-key algorithm (which is usu-

ally known as symmetric-key cryptosystem) and (ii) asymmetric-key algorithm (which

is usually known as asymmetric-key or public-key cryptosystem).

1.1 Symmetric key cryptosystem

In the symmetric-key cryptosystem, two trusted parties, say Alice and Bob want to

communicate confidentially on an insecure channel. As part of this agreement, Alice

sends a confidential message to Bob or vice versa. Using a secret key, the original

message (which is also known as plaintext) is transformed into an unintelligible form

(also known as ciphertext); this process is called encryption. On the other hand, Bob

recovers the original message by using the same key that was used by Alice in the en-

cryption; this process is called decryption. Graphical representation of a symmetric-key

cryptosystem is shown in Figure 1.1. AES, DES, IDEA, RC4, SEAL, and Blowfish are
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Figure 1.1: Workflow of the symmetric key cryptosystem.

some of the examples of symmetric-key cryptosystems. Symmetric-key cryptosystems

are used in various applications such as credit cards, military, electronic commerce,

digital media, encryption of passwords, email, documents, etc. However, the symmet-

ric key cryptosystems have various drawbacks [72, 74]. One of the drawbacks is that

it requires to share the secret key in advance to communicate between Alice and Bob.

That is, one of the challenges is the management of key distribution. One possible

solution for this key distribution is to use an asymmetric-key cryptosystem.

1.2 Asymmetric key cryptosystem

The concept of an asymmetric-key cryptosystem was introduced by Diffie and Hellman

in 1976. In an asymmetric-key cryptosystem, two keys are used, one is called a public

key and another is called a private key. Both public and private keys of the recipient

(or Bob) are used for encryption and decryption, respectively. That is, Alice uses Bob’s

public key for encrypting the plaintext and Bob uses his own private key for decrypting

the ciphertext. The graphical representation of an asymmetric-key cryptosystem is

shown in Figure 1.2. Note that a public key can be known to “everyone”, whereas a

Figure 1.2: Workflow of the asymmetric key cryptosystem.
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private key is only known by the recipient of the encrypted message. So a public-key

cryptosystem would enable anyone to encrypt a message to be transmitted to Bob, and

only Bob could decrypt the message. The RSA cryptosystem is one of the best examples

of a public-key cryptosystem that was introduced by Rivest, Shamir and Adleman in

1977.

The primary strength of asymmetric-key cryptography over symmetric-key cryp-

tography is that it is more secure than symmetric-key cryptography. This is because

private keys never need to be revealed to anyone. But on the other hand, symmetric-

key cryptography is more efficient than asymmetric-key cryptography. This is because

symmetric-key cryptography requires fewer calculations than asymmetric-key cryptog-

raphy. Depending on how the data is encrypted, symmetric-key cryptography or sym-

metric ciphers are of two types: (i) stream ciphers and (ii) block ciphers.

1.3 Stream cipher and block cipher

Stream ciphers encrypt a unit of data using a keystream which is as long as the plaintext

and is generated based on a secret key, where the unit of data can be either a bit or

a nibble or a byte, etc. A5/1, A5/2, RC4, SNOW, Edon80 are some of the examples

of stream ciphers. Stream ciphers are widely used in cellular phones and wireless

communications. For example, the A5/1 is used in GSM telephone communications,

and the RC4 is used in wireless local area networks (WLANs). One of the security issues

of the stream ciphers that use the XOR function to mix the plaintext and keystream

is that they are vulnerable to reused key (two-time pad) attack. That is, once a

keystream is generated, it can not be used more than once [72, 74]. These ciphers are

also vulnerable to attacks such as a known-plaintext attack and insertion attack [7].

Also, a stream cipher may be analyzed to determine either the message or the employed

secret key using several attacks such as ciphertext only attack, chosen-plaintext attack,

chosen-ciphertext attack, etc. [67].

Block ciphers, on the other hand, encrypt a fixed amount of data at a time called a

block. The size of the block depends on the encryption algorithm. DES and AES are

examples of block ciphers. The DES was previously used as the standard for encryption.

It was vulnerable to attacks such as brute force attack [18] because of its small key size

of 56 bits, chosen-plaintext attack [9] and known-plaintext attack [52]. Hence a new
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standard was required and therefore DES was replaced by AES [64]. Typically, stream

ciphers are more efficient than block ciphers because of the following reasons:

• Stream ciphers work on individual bits and do not require buffering for large

blocks.

• Padding a block is not needed in stream ciphers. Also, error propagation is less

likely in stream ciphers.

• Stream ciphers require less sophisticated circuitry.

In addition, the stream ciphers are more appropriate, and in some cases mandatory (for

example, in telecommunication applications) such as when buffering is limited or when

characters must be individually processed as they are received, or when the block size

cannot be determined before transmission. Since stream ciphers have minimal or no

error propagation, they can be beneficial even in situations where transmission faults

are highly probable.

1.4 Cryptographic hash function

A hash function takes an arbitrary length input message and produces a fixed length

hash value, called the message digest or checksum. Generally, the digest value created

by a hash function is known as a modification detection code (MDC). It detects the

integrity of a message which is sent by a sender. A cryptographic hash function H has

the following properties [69].

1. Pre-image resistant:- Given a hash value y, it is computationally infeasible to find

a message x such that H(x) = y.

2. Second pre-image resistant:- Given a message x1 , it is computationally infeasible

to find a second message x2 such that x1 ̸= x2 and H(x1) = H(x2).

3. Collision resistance:- It must be computationally infeasible to find two messages

x1 , x2 such that x1 ̸= x2 but H(x1) = H(x2).

The MD4, MD5, SHA-256, SHA-384, and SHA-512 are examples of hash functions

given in the literature [33, 72, 74]. The security of these hash functions depends on
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the size of the hash value and the underlying structure of the hash functions. These

hash function are commonly used in message authentication codes [78], pseudo-random

number generators [19], message signing, SSL, time stamping, and in many other cryp-

tographic protocols.

1.5 Hash function with key or HMAC

Message authentication code (MAC) that uses a hash function is called HMAC. It was

introduced by Bellare et al. in 1996 [8]. Later it was generalized and standardized

by FIPS PUB 198-1 [78]. The output of HMAC is used to simultaneously verify both

the authenticity and the data integrity of a message when two authorized parties com-

municate in an insecure channel. That is, the MAC-value is used to verify a sender’s

identity if two parties, say Alice and Bob are communicating in the presence of ad-

versaries. Bob can use a MAC-value to ensure that the message he gets was truly

transmitted by Alice and that it has not been altered or corrupted in transit. For this,

Alice and Bob need to choose a MAC algorithm and exchange the secret key. Before

transmitting the message, Alice calculates the message’s MAC-value and appends it

to the end. When Bob receives the message, he checks that the appended authentica-

tion tag is indeed the correct MAC-value, ensuring that the message was sent by Alice

(or someone else with access to the secret key) and that it was not altered in transit.

Because of the MAC’s computation resistance property, an adversary will be unable

to substitute his/her message or modify the message if he does not have access to the

secret key. Even if an adversary has seen a certain number of previous messages with

the authentication tags sent from Alice to Bob, he will still be unable to modify the

current message or substitute a new one due to MAC’s computation resistance prop-

erty. The MAC is used in internet security protocols including SSL/TLS, SSH, IPsec.

HMAC uses a hash function H and a secret key k shared between Alice and Bob. A

HMAC, denoted by Hk, has the following properties.

1. Easy to compute:- Given a messagem and secret key k, Hk(m) is easy to compute.

2. Compression:- For an arbitrary length message m, Hk(m) produces a fixed length

authentication tag also called the MAC-value of m.
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3. Computation resistance:- Given a fixed number of pairs of messages and their

corresponding authentication tags as (m1, x1), (m2, x2), . . . , (mp, xp), where xi =

Hk(mi), and any other message m /∈ {m1,m2 . . . ,mp} it is computationally in-

feasible to compute Hk(m) without the knowledge of k.

Note that a MAC-value is easy to compute with the knowledge of the key whereas very

difficult to compute without the knowledge of the key. Because of this, it is possible

that with the knowledge of the key one can find a collision for HMAC (such as in the

case of MD5-based HMAC).

1.6 Motivation and Research goals

Research, invention, and augmentation in cryptography are not only a curiosity but also

a necessity. This is because, for every cryptographic measure, a countermeasure has

been found to make it ineffective. The weaknesses of the cryptosystems can be caused

by social engineering or human error, or they can be discovered through cryptanalysis.

Cryptography is a collection of deterministic algorithms that one uses to protect

information and communications against adversarial behavior. In other words, cryp-

tography is primarily concerned with designing and analyzing protocols that prevent

third parties from gaining access to private communications. A deterministic algorithm

can be used to generate secret keys, create digital signatures, authenticate messages,

verify messages, and protect the privacy of confidential information and communica-

tions such as credit card transactions and email correspondence. History has shown

that cryptographic algorithms are designed based on several areas of mathematics, in-

cluding Number theory, Group theory, Finite field, Linear algebra, Boolean algebra,

and Boolean functions. Each of the approaches to design cryptographic algorithms us-

ing these mathematical areas employs an associative algebraic structure. In this thesis,

we expand the set of approaches to design cryptographic algorithms by including a

non-associative mathematical object called a quasigroup [68, 77]. Quasigroups play an

important role in cryptography because of the following reasons:

• The number of quasigroups grows exponentially with its order, so they make an

important case for the design of crypto-primitives.
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• Quasigroups provide convenient tools for constructing crypto-primitives due to

their closure and inversion properties.

• Due to the lack of associativity, one-way functions are easier to create.

• The crypto-primitives based on a quasigroup have a meager computational cost

since they are table look-up operations.

• Quasigroup-based crypto-primitives are suitable for low resource devices such as

smartphones, sensors, tablets, etc [6]. This is in contrast to the most popular

cryptosystems such as AES, DES, and RSA, which drain the battery of such

devices. With the increase of cloud services, the amount of data being transmitted

and received by these devices is growing at an exponential rate [63].

This thesis focuses on designing new cryptographic algorithms based on quasigroups

that are more friendly with hardware and software implementations. That is, using

the quasigroup, we can improve the security and efficiencies of the conventional and

some of the widely used standard cryptographic algorithms, such as MD5, RC4, etc.

In 1992, Ronald Rivest proposed the MD5 hash function. It is a widely used hash

function. This is because it is one of the hash functions requiring the least number of

computations. Of late, many articles are published showing that the MD5 is not secure

because the length of the hash value is too short. So, it is vulnerable to brute force

birthday attacks [58], and a collision can be found within seconds with a complexity of

around 224 [73]. In another case, RC4 is one of the fastest stream ciphers widely used in

various applications such as Wired Equivalent Privacy (WEP), SSL, Wi-Fi Protected

Access (WPA), etc. RC4 is a byte-oriented cipher that uses the XOR function to

mix the plaintext/ciphertext with keystream. So, the cipher is found to be vulnerable

to reuse-key attack (two-time pad). This is one of the major hurdles in all XOR-

based stream ciphers. Further, linear cryptanalysis has shown weaknesses in the DES

cryptosystem [52]. Hence a new standard was required and therefore DES was replaced

by AES. Both DES and AES are suitable for desktop-based applications [6]. We have

also analyzed some existing quasigroup-based crypto-primitives such as stream ciphers,

hash functions, and block ciphers. We found that some of these crypto-primitives are

not as secure as is required; while some others have enhanced security at the expense

of the efficiency of the crypto-primitives. So, quasigroup-based crypto-primitives that
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are stronger and more efficient would be a good alternative to the existing quasigroup-

based crypto-primitives. This is one of the primary motivations behind devising new

crypto-promotives. So, we have set out the following goals:

1. To devise new stream ciphers based on quasigroups. To this end, we have

designed the following:

1.1. New symmetric key cipher based on a quasigroup and AES-256.

1.2. a novel stream cipher based on a quasigroup of order 256 that uses a pseudo-

random number generator based on a quasigroup of order 256, named as

QG-PRNG. It is more efficient than that of the one mentioned in 1.1

1.3. a stream cipher based on multiple quasigroups of order 16 that uses a pseudo-

random number generator based on multiple quasigroups of order 16, named

as MQG-PRNG. It is a revised version of both the algorithms mentioned

above.

2. To devise new block ciphers based on quasigroups. To this end, we have

arrived at the following.

2.1. An efficient block cipher based on multiple optimal quasigroups and {e, d}-

transformation.

2.2. A block cipher based on multiple optimal quasigroups and {neℓ, ndℓ}-transformation.

It is a revised version of the one mentioned in 2.1.

3. To devise new hash functions and HMACs based on quasigroups. To

this end, we have designed the following.

3.1 An extended version of MD5, called here as the modified MD5-224 bits hash

function and the corresponding message authentication code (HMAC) based

on quasigroup.

3.2 An efficient hash function, called here as the modified MD5-384 bits hash

function and the corresponding message authentication code (HMAC) based

on quasigroup. It is a revised version of the one specified in 3.1.
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1.7 Thesis Contributions

Contributions of this thesis are broadly categorized into three parts with respect to

the research goals discussed earlier. The first part discusses three variants of stream

ciphers based on quasigroup; the second part discusses two block ciphers based on

quasigroup, and the third part discusses two variants of hash functions and HMACs

based on quasigroup.

1.7.1 New symmetric key cipher based on a quasigroup and AES-256

In this contribution, we have proposed a new stream cipher for encrypting/decrypting

messages. It masks the weaknesses of the XOR-based stream ciphers and adds extra

security. This is because it uses the quasigroup operation and its inverse instead of

the XOR operation. For generating the keystream, we use AES-256. In fact, any

secure pseudo-random number generator such as CRT-DPR4 [4] can be employed for

the generation of the keystream. However, we choose to describe the proposed stream

cipher using the AES-256. The security of the proposed stream cipher is analyzed and

the randomness of the obtained ciphertext is tested using the NIST-STS test suite. We

found that the proposed cipher satisfied all the required properties. Previous works [46,

60] that use quasigroups in the design of secure systems are vulnerable to the chosen-

plaintext and chosen-ciphertext attacks [45, 80]. The proposed cipher resists these

attacks.

1.7.2 A novel stream cipher based on a quasigroup and QG-PRNG

It is an extension of the work stated in the previous sub-section 1.7.1. In this contri-

bution, we have proposed a novel stream cipher that uses a keystream generated by a

pseudo-random number generator, named QG-PRNG. The QG-PRNG is a quasigroup

based pseudo-random number generator also designed and described in this thesis. Both

the schemes (encryption/decryption and QG-PRNG) use a quasigroup of order 256. It

is more efficient than the previous cipher mentioned in sub-section 1.7.1. This is be-

cause, it uses QG-PRNG in place of AES-256 for generating the keystream, and the QG-

PRNG generates the keystream around 5 times faster than AES-256. Because of this,

the new cipher is faster than the previous one. The cipher is analyzed against various

attacks, including known-plaintext attack, chosen-plaintext attack, chosen-ciphertext

9
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attack, reused key attack, and statistical attack. We found that the proposed cipher is

resistant to these attacks. The novelty of this stream cipher and the previous version

is that a keystream once generated can be reused multiple times. This is because the

proposed ciphers are resistant to reused key attack as against the XOR-based stream

ciphers. The security of the QG-PRNG is analyzed against the attacks such as exhaus-

tive search attack and quasigroup attack. We found that QG-PRNG is resistant to

these attacks. The randomness of the obtained ciphertext and pseudo-random number

sequence is tested using the NIST-STS test suite. We found that both the ciphertext

and the pseudo-random number sequences are highly random.

1.7.3 MQG-PRNG and non-associative quasigroup based stream ci-

pher

It is a revised version of the works stated in the previous sub-sections 1.7.1 & 1.7.2.

In this contribution, we have proposed a new stream cipher that uses a keystream

generated by multiple quasigroups based pseudo-random number generator, named

MQG-PRNG. The MQG-PRNG is also designed and described in this thesis. Both the

encryption/decryption and MQG-PRNG algorithms are designed using multiple quasi-

groups of order 16, and they use 16 quasigroups of order 16. These 16 quasigroups

are generated based on an original non-associative quasigroup of order 16. Mathe-

matically, we have shown that the space of a single quasigroup can be leveraged to

accommodate all these 16 quasigroups. This stream cipher is not only as secure as the

previous ciphers stated in sub-sections 1.7.1 & 1.7.2, but also uses around 99% less

space than the previous ciphers. This cipher is analyzed against various attacks, in-

cluding known-plaintext attack, chosen-plaintext attack, chosen-ciphertext attack, and

Time-memory-data tradeoff (TMDTO) attack. We found that the proposed cipher is

resistant to these attacks. This cipher also overcomes the major hurdle that exists in

the XOR-based stream ciphers against reused key attack. The security of the MQG-

PRNG is analyzed against brute force attacks, and a study on the robustness of the

MQG-PRNG against the slides and related-key attacks is carried out by analyzing the

avalanche effect of the keystream, and we found that the MQG-PRNG satisfied all the

required properties. The randomness of the obtained ciphertext and pseudo-random

number sequence is tested using the NIST-STS test suite. We observed that both
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the obtained ciphertext and the generated pseudo-random number sequence are highly

random.

1.7.4 An efficient block cipher based on multiple optimal quasigroups

and {e, d}-transformation

An efficient block cipher based on multiple quasigroups of order 16 is proposed. It uses

16 optimal S-boxes of 4× 4 bits as an optimal quasigroup of order 16. It is an iterative

cipher, and its design is based on the Substitution Permutation Network (SPN). It uses

16 optimal quasigroups of order 16 and a 128 bits secret key for encrypting/decrypting

the messages. These 16 optimal quasigroups are constructed dynamically based on

an original optimal quasigroup of order 16. Because of this, our cipher leverages the

space of a single quasigroup and uses multiple quasigroups by generating them from

an original quasigroup. That is, the space required by multiple optimal quasigroups

is reduced to that of a single quasigroup. It performs a total of 16 rounds to encrypt

or decrypt a block of 128 bits. Each round, except the last round of the encryption

system, consists of a sequence of two transformations: (i) substitution and (ii) per-

mutation. The last round only performs a substitution. The substitution layer is a

key-dependent S-box layer and it is carried out using the {e, d}-transformation. The

{e, d}-transformation is also defined in this thesis. It randomly selects an S-box out

of 16, depending on the round sub-key.

We have analyzed the cipher for various attacks, including linear and differential

attacks. We found that the proposed block cipher is resistant to these attacks. Also,

the performance analysis (speed and time complexities) and diffusion power of the

proposed cipher are analyzed by comparing with that of the AES-128 and other existing

quasigroup based block ciphers [5, 6, 83]. Due to more computations, the proposed block

cipher is slightly slower than AES-128, while the proposed cipher uses only 50% of the

space of the AES-128. In addition, the proposed block cipher is more efficient than

DES and other existing quasigroup-based block ciphers [5, 6, 83], and gives a better

diffusion power than the existing quasigroup based block ciphers. The randomness of

the obtained ciphertext is tested using the NIST-STS test suite. We observed that the

proposed cipher produces highly random ciphertexts.
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1.7.5 A block ciphers based on multiple optimal quasigroups and

{neℓ, ndℓ}-transformation

This work is an extension of the work discussed in the previous sub-section 1.7.4. It

also uses the same 16 optimal S-boxes as an optimal quasigroup of order 16 as used

in the previous block cipher. It uses {neℓ, ndℓ}-transformation with 128 bits round

key, and performs a total of 17 rounds to encrypt or decrypt a block of 128 bits.

The {neℓ, ndℓ}-transformation is also defined in this thesis. Each round, except the

first and last rounds of the encryption system, consists of three transformations: (i)

substitution, (ii) permutation, and (iii) add-round key. The first round performs only

the add-round key and the last round performs the substitution and add-round key.

The substitution layer (also called a non-linear transformation) is a key-dependent

S-box layer and it is carried out using the {neℓ, ndℓ}-transformation. That is, the

{neℓ, ndℓ}-transformation randomly selects an S-box out of 16, depending on the

round key. The security and the randomness of this cipher are analyzed as in the case

of the previous cipher mentioned in the previous sub-section 1.7.4, and we concluded

that this cipher is also as secure or more than the previous one.

1.7.6 A QGMD5-224 bits hash function and a QGMAC-224 bits mes-

sage authentication code based on a quasigroup

We proposed two schemes based on a quasigroup: (i) a cryptographic hash function,

named here as QGMD5-224, and (ii) a message authentication code based on QGMD5-

224, named here as QGMAC-224. The proposed schemes can be seen as extensions of

the MD5 and HMAC-MD5. The QGMD5-224 hash function expands the hash size of

the MD5 by converting 128 bits into 224 bits. The QGMAC-224 expands the MD5-

based message authentication code (HMAC-MD5) by converting 128 bits into 224 bits.

Both the expansions are carried out using the quasigroup expansion (QGExp128To224)

and the quasigroup compression (QGComp224To128) layers. Note that the underlying

structure of both the schemes QGMD5-224 and QGMAC-224 is the same. The only

difference between the two is that the quasigroup used in the QGMD5-224 is publicly

known, while the quasigroup used in the QGMAC-224 acts as a secret key. The security

and efficiency of the proposed schemes (QGMD5-224 and QGMAC-224) are analyzed

by comparing them with their counterparts, such as SHA-224 and HMAC-SHA-224. It
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is observed that the proposed schemes are more secure and efficient than the existing

proposals.

1.7.7 A QGMD5-384 bits hash function and a QGMAC-384 bits mes-

sage authentication code based on a quasigroup

It is an extension of the work previously discussed in the sub-section 1.7.6. In this

contribution also we propose two schemes based on a quasigroup: (i) a cryptographic

hash function, named here as QGMD5-384, and (ii) a message authentication code

based on QGMD5-384, named here as QGMAC-384. The primary goal of proposing

these new schemes is to obtain a 160-bit longer hash value and MAC value than the

previous one by spending a little bit of extra time. Because of this, the new schemes are

found to be more secure than the previous ones. Also, the algorithm of QGMD5-384

uses an optimal quasigroup of order 16, while the algorithm of QGMAC-384 uses a

quasigroup of order either 16 or 256. The proposed schemes can be seen as extensions

of the MD5 and HMAC-MD5. The QGMD5-384 expands the hash size of the MD5

by converting 128 bits into 384 bits. The QGMAC-384 expands the HMAC-MD5

by converting 128 bits into 384 bits. Both the expansions are carried out through a

series of QGExp128T384 expansion and QGComp384To128 compression layers. The

QGExp128To384 expansion layer is implemented using two sub-expansion layers. The

first sub-expansion layer of QGExp128To384 transforms 128 bits into 224 bits and it is

referred to as QGExp128To224. The second sub-expansion layer of QGExp128To384

transforms 224 bits into 384 bits and it is referred to as QGExp224To384. And the

QGComp384To128 compression layer compresses 384 bits into 128 bits. The security

and efficiency of the proposed schemes (QGMD5-384 and QGMAC-384) are analyzed

by comparing them with their counterparts, such as SHA-384 and HMAC-SHA-384. It

is observed that the proposed schemes are more secure and efficient than the existing

proposals.
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1.9 Organization of the Thesis

1.9 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2: introduces the required mathematical objects such as quasigroup,

left inverse quasigroup, right inverse quasigroup, optimal quasigroup, quasigroups

as vector-valued Boolean functions, and the generation of quasigroups.

Chapter 3: presents a comprehensive survey of the existing quasigroup-based

cryptographic primitives such as stream ciphers, block ciphers, hash functions,

HMACs, etc.

Chapter 4: discusses the proposed three variants of stream ciphers based on

quasigroup, including the basic structure, building elements, and security and

performance analyses.

Chapter 5: discusses the proposed two variants of block ciphers based on mul-

tiple optimal quasigroups, including the basic structure, building elements, and

security and performance analyses.

Chapter 6: describes the proposed two variants of hash functions and HMACs

based on quasigroup, including the basic structure, building elements, and anal-

yses the security and performance of the proposed schemes.

Chapter 7: presents the concluding remarks of the research work done, including

future directions of research.
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Chapter 2

Mathematical Backgrounds

2.1 Latin square

Definition 2.1.1. A Latin square of order n is a n×n matrix in which the entries are

taken from a finite set S and the symbols are arranged in such a way that each symbol

occurs only once in each row and only once in each column.

Example 2.1.2. Table 2.1 is an example of a Latin square of order 6, where the

elements are from the set S = {a, b, c, d, e, f}.

Table 2.1: Latin square of order 6.

a b c d e f

d e f a b c

c d e f a b

b c d e f a

e f a b c d

f a b c d e

The concept of Latin square was introduced by the mathematician Leonhard Euler

(1707 − 1783), and used Latin characters as symbols, but any set of symbols can be

used; in the above example, the alphabetic sequence a, b, c, d, e, f can be replaced by

the integer sequence 1, 2, 3, 4, 5, 6.

16



2.1 Latin square

2.1.3 Orthogonal representation of a Latin square

The orthogonal representation of the Latin square is a set of n2 triples obtained by

writing each entry of a n × n Latin square as a triple (r, c, s), where r is the row

number, c is the column number, and s is the symbol. Example 2.1.4 shows a Latin

square and its corresponding orthogonal representation.

Example 2.1.4. Let S = {1, 2, 3, 4} be a set of order 4. A Latin square over S and

its corresponding orthogonal representation are given in Table 2.2 (a) and in Table 2.2

(b), respectively.

Table 2.2: Latin square of order 4 and corresponding orthogonal representation.

1 2 3 4 (1, 1, 1) (1, 2, 2) (1, 3, 3) (1, 4, 4)

2 1 4 3 (2, 1, 2) (2, 2, 1) (2, 3, 4) (2, 4, 3)

3 4 1 2 (3, 1, 3) (3, 2, 4) (3, 3, 1) (3, 4, 2)

4 3 2 1 (4, 1, 4) (4, 2, 3) (4, 3, 2) (4, 4, 1)

(a) (b)

Various operations on a Latin square can be performed to form another Latin square,

in which one of the operations can be explained using an orthogonal representation

of the Latin square. That is, by permuting the rows, columns, and symbols of an

orthogonal representation of the Latin square, we can obtain a new Latin square, also

called isotopic to the original Latin square [75]. That is, by permuting (r, c, s) of a

Latin square, we can form 6 different Latin squares. For example, if we replace each

triple (r, c, s) by (c, r, s), then we get the transpose of the original Latin square.

2.1.5 Number of Latin squares

For any n, Latin squares of order n can be easily constructed, but counting the distinct

Latin squares of a large order n is very challenging. This is because the number of

Latin squares of order n increases greatly as n increases. The number of distinct Latin

squares of order n can be calculated by the following equation [1, 79]

Ln = n!× (n− 1)!× Rn (2.1)

where Ln denotes the number of distinct Latin squares, Rn denotes the number of

distinct reduced Latin squares, where a reduced Latin square is one in which the first
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2. MATHEMATICAL BACKGROUNDS

row and the first column are in the natural order. An example of a reduced Latin

square of order 4 is given in Table 2.2 (a). For n ≤ 11, the results of Ln and Rn are

given in Table 2.3 [14, 61]. The most recent case for n = 11 is determined in [53], and

for n ≥ 12, the problem remains open for a Latin square researcher [14, 61]. Also, the

Table 2.3: The number of Latin squares and reduced Latin squares of order n

n number of Latin squares (Ln) number of reduced Latin

squares (Rn)

1 1 1

2 2 1

3 12 1

4 576 4

5 161, 280 56

6 812, 851, 200 9, 408

7 61, 479, 419, 904, 000 16, 942, 080

8 108, 776, 032, 459, 082, 956, 800 535, 281, 401, 856

9 5, 524, 751, 496, 156, 892, 842, 531,

225, 600

377, 597, 570, 964, 258, 816

10 9, 982, 437, 658, 213, 039, 871, 725,

064, 756, 920, 320, 000

7, 580, 721, 483, 160, 132, 811,

489, 280

11 776, 966, 836, 171, 770, 144, 107,

444, 346, 734, 230, 682, 311, 065, 600,

000

5, 363, 937, 773, 277, 371, 298,

119, 673, 540, 771, 840

≥ 12 ? ?

Equation (2.1) is not practical for larger n. Therefore the following inequality gives an

estimate of the most accurate upper and lower bounds of the Latin squares of order

n [34]

(n!)2n

nn2 ≤ |Ln| ≤
n∏

k=1

(k!)
n
k , (2.2)

18



2.2 Quasigroup

where |Ln| denotes the number of Latin squares of order n. For n = 2k, k = 4, 5, 6, 7, 8,

these numbers are as follows:

0.101× 10119 ≤ |L16| ≤ 0.689× 10138, (2.3)

0.414× 10726 ≤ |L32| ≤ 0.985× 10785, (2.4)

0.133× 104008 ≤ |L64| ≤ 0.176× 104169, (2.5)

0.337× 1020666 ≤ |L128| ≤ 0.164× 1021091, (2.6)

0.304× 10101724 ≤ |L256| ≤ 0.753× 10102805. (2.7)

2.2 Quasigroup

Definition 2.2.1. Let Zn be the set of non-negative integers less than n. A quasigroup

Q = (Zn, ∗) defined over the set Zn with a binary operation ∗ satisfies the following

properties:

(i) For all t1, t2 ∈ Zn, t1 ∗ t2 ∈ Zn, (Closure property).

(ii) For each pair (t1, t2) ∈ Zn × Zn, there exists unique pair (t3, t4) ∈ Zn × Zn,

such that t1 ∗ t3 = t2 and t4 ∗ t1 = t2.

• Quasigroups also satisfy the following cancellation properties:

(iii) t1 ∗ t2 = t1 ∗ t3 ⇒ t2 = t3 (Left cancelation).

(iv) t2 ∗ t1 = t3 ∗ t1 ⇒ t2 = t3 (Right cancelation).

Note that the binary operation ∗ is also called a quasigroup operation corresponding to

the quasigroup Q. For a quasigroup Q, properties (i) and (ii) must be satisfied. The

following example illustrates an example of a quasigroup of order 5.

Example 2.2.2. Table 2.4 is an example of a quasigroup Q = (Z5, ∗) of order 5 over

the set Z5={0,1,2,3,4}. Note that for t1 = 2 and t2 = 4, t3 = 3 and t4 = 1 are the

unique elements of Z5. This is because t1∗t3 = 2∗3 = 4 = t2 and t4∗t1 = 1∗2 = 4 = t2.

This is true for all t1, t2 ∈ Z5.

A quasigroup is an algebraic structure resembling a group in the sense that division

is always possible. For any positive integer n there exists a quasigroup Q = (Zn, ∗) of
order n. Quasigroups differ from groups mainly in that they do not necessarily require

the properties of associativity and commutativity to be satisfied. They also do not
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Table 2.4: Quasigroup of order 5.

∗ 0 1 2 3 4

0 4 3 0 2 1

1 1 2 4 0 3

2 3 0 1 4 2

3 2 4 3 1 0

4 0 1 2 3 4

need the existence of identity. That is, every group is a quasigroup but the converse is

not true. Quasigroups of order n are usually represented using an n× n multiplication

table. This multiplication table is formed by the permutations of the elements of the

set Zn = {0, 1, 2, . . . , n−1} in such a way that each element occurs exactly once in each

row and exactly once in each column. Such a table is also called a Latin square [16].

Also, the number of quasigroups is the same as that of the Latin squares. Since the

number of Latin squares increases rapidly with its order it follows that the number of

quasigroups increases rapidly with its order. That is, the generation of all the possible

quasigroups of an arbitrary order n (where n ≥ 12) is a hard problem. Properties (i)

and (ii) of the quasigroups enforce the operation table of a quasigroup to be a Latin

square. Therefore, Equation (2.2) is also an estimate of the number of quasigroups.

Hence, the number of quasigroups of orders 16, 32, 64, 128, and 256 also satisfy the

equations 2.3, 2.4, 2.5, 2.6, and 2.7, respectively.

2.2.3 Non-associative quasigroup

Definition 2.2.4. A quasigroup Q = (Zn, ∗) is said to be a non-associative quasigroup

if the following properties are satisfied:

(i) Q must be a quasigroup (see, Definition 2.2.1)

(ii) If ∃ t1, t2, t3 ∈ Zn, (t1 ∗ t2) ∗ t3 ̸= t1 ∗ (t2 ∗ t3) (Non-associative property).

Like quasigroup generation, the generation of all possible non-associative quasi-

groups of the larger order is also a hard problem. This is because the number of

non-associative quasigroups grows exponentially with its order. For instance, the num-

ber of possible quasigroups, associative quasigroups, and non-associative quasigroups

up to order 6 is shown in Table 2.5. Note that associative/non-associative quasigroups
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are a subset of all possible quasigroups of order n, n ≥ 2. That is, the total number of

all possible quasigroups is equal to the sum of the number of both the associative and

non-associative quasigroups. As a result, given in Table 2.5, it can be observed that

Table 2.5: Number of associative quasigroups, non-associative quasigroups, and quasi-

groups

Order Associative quasigroups Non-associative quasigroups Quasigroups

2 2 0 2

3 3 9 12

4 16 560 576

5 30 161,250 161,280

6 480 812,850,720 812,851,200

the number of associative quasigroups of order n (denoted by NAQ(n)) lies between

(n− 1)! and n!, 2 < n ≤ 6, i.e. (n− 1)! < NAQ(n) < n!. For a large value of n, it is a

longstanding open problem to find a suitable tight bound to approximate the number

of associative quasigroups of order n or to prove that such bounds do not hold. So,

from Equation 2.2, the approximated number of non-associative quasigroups is bound

above by

NNAQ(n) ≤
n∏

k=1

(k!)
n
k −NAQ(n) ≈

n∏
k=1

(k!)
n
k , (2.8)

where NNAQ(n) denotes the number of non-associative quasigroups of order n. That

is, for n = 16 and using Equation 2.3, the approximated maximum number of non-

associative quasigroups of order 16 is bonded above by

NNAQ(16) ≈ 0.689× 10138 ≈ 2456. (2.9)

2.2.5 Left inverse, right inverse and n-quasigroup

Definition 2.2.6. Let LIQ = (Zn, \) denotes the left inverse quasigroup of the quasi-

group Q = (Zn, ∗). Then the LIQ satisfies the following conditions:

(i) LIQ must be a quasigroup.

(ii) t2 ∗ t1 = t3 ⇔ t1 = t2 \ t3, where t1, t2, t3 ∈ Zn.

The binary operation ‘\’ is a left inverse operator (or a left inverse quasigroup

operation) corresponding to the quasigroup LIQ = (Zn, \). The example given below

illustrates the concept of left inverse quasigroup.
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Example 2.2.7. Consider the quasigroup Q =< Z5, ∗ > with Z5 = {0, 1, 2, 3, 4}, let
its operation table be as in Table 2.4. Then, the corresponding left inverse quasigroup

is LIQ =< Z5, \ > whose operation table is given in Table 2.6.

Table 2.6: Operation table of LIQ.

\ 0 1 2 3 4

0 2 4 3 1 0

1 3 0 1 4 2

2 1 2 4 0 3

3 4 3 0 2 1

4 0 1 2 3 4

Definition 2.2.8. Let RIQ = (Zn, /) denotes the right inverse quasigroup of the quasi-

group Q = (Zn, ∗). Then the RIQ satisfies the following conditions:

(i) RIQ must be a quasigroup.

(ii) t2 ∗ t1 = t3 ⇔ t2 = t3/t1, where t1, t2, t3 ∈ Zn.

The binary operation ‘/’ is a right inverse operator (or a right inverse quasigroup

operation) corresponding to the quasigroup RIQ = (Zn, /). The example given below

illustrates the concept of right inverse quasigroup.

Example 2.2.9. Consider the quasigroup Q =< Z5, ∗ > with Z5 = {0, 1, 2, 3, 4}, let
its operation table be as in Table 2.4. Then, the corresponding right inverse quasigroup

is RIQ =< Z5, / > whose operation table is given in Table 2.7.

Table 2.7: Operation table of RIQ.

/ 0 1 2 3 4

0 4 2 0 1 3

1 1 4 2 3 0

2 3 1 4 0 2

3 2 0 3 4 1

4 0 3 1 2 4
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Definition 2.2.10. An n-quasigroup is a finite algebra ⟨Zn, f, f1, . . . , fn⟩ consisting of

the elements of Zn with n+1 n-ary operations and satisfies the following identities [60]:

f(f1(t1, t2, . . . , tn), t2, . . . , tn) = t1 = f1(f(t1, t2, . . . , tn), t2, . . . , tn)

f(t1, f2(t1, t2, . . . , tn), . . . , tn) = t2 = f2(t1, f(t1, t2, . . . , tn), . . . , tn)

. . .

f(t1, t2, . . . , fn(t1, t2, . . . , tn)) = tn = fn(t1, t2, . . . , f(t1, t2, . . . , tn))

where f, f1, f2, . . . , fn are n-ary operations (or n-ary quasigroup operations) such that

f(t1, t2, . . . , tn) = tn+1 = fi(t1, t2, . . . , tn), 1 ≤ i ≤ n, i.e. the knowledge of any n

elements of t1, t2, . . . , tn, tn+1 allows an n-ary operation to uniquely determine the re-

maining one element.

This thesis deals with a 2-ary (binary) quasigroup ⟨Zn, f, f1, f2⟩, defined over a

non-empty set Zn together with three 2-ary (binary) operations f, f1, and f2. This is

defined in Lemma 2.2.11, where f, f1, and f2 are denoted by ∗, \, and /, respectively.

Also, the symbols ∗, \, and / are called a quasigroup, a left inverse quasigroup, and a

right inverse quasigroup operations, respectively (see definitions 2.2.1, 2.2.6 and 2.2.8).

So, f(t1, t2) is represented as t2 ∗ t1, f1(t1, t2) is represented as t2 \ t1, and f2(t1, t2) is

represented as t2/t1.

Lemma 2.2.11. A quasigroup Q = (Zn, ∗, \, /) is an algebra with three binary opera-

tions (∗, \, /), and satisfies the following identities:

t2 \ (t2 ∗ t1) = t1 (2.10)

t2 ∗ (t2 \ t1) = t1 (2.11)

(t2 ∗ t1)/t1 = t2 (2.12)

(t2/t1) ∗ t1 = t2 (2.13)

Proof. Since LIQ = (Zn, \) is the left inverse quasigroup of the quasigroup Q = (Zn, ∗).
Then, from property (ii) of Definition 2.2.6, for each triplet (t1, t2, t3) ∈ Zn ×Zn ×Zn,

we have

t2 ∗ t1 = t3 ⇔ t1 = t2 \ t3,

Hence, t2 \ (t2 ∗ t1) = t2 \ t3 = t1.

In property (ii) of Definition 2.2.6, if we interchange the variables t1 and t3, we have

t2 ∗ t3 = t1 ⇔ t3 = t2 \ t1.
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Hence, t2 ∗ (t2 \ t1) = t2 ∗ t3 = t1.

Using the operation tables Table 2.4 and Table 2.6 corresponding to (Z5, ∗) and (Z5, \),
respectively, we can also prove that both identities (2.10) and (2.11) are true, ∀ t1, t2 ∈
Z5.

Similarly, using the property of the right inverse quasigroup, defined in Defini-

tion 2.2.8, both the identities (2.12) and (2.13) can also be proved. Also, using the

operation tables Table 2.4 and Table 2.7 corresponding to (Z5, ∗) and (Z5, /), respec-

tively, both the identities (2.12) and (2.13) can be proved to be true, ∀ t1, t2 ∈ Z5.

2.2.12 {e, d}-transformation based on quasigroup

Let Zn = {p0, p1, . . . , pn−1} be an alphabet, and Q = (Zn, ∗, \) be the quasigroup dis-

cussed earlier. Let ℓ be a leader (or a seed value) which is used in {e, d}-transformation.

Then, the e-transformation is denoted by a mapping f(∗,ℓ) : Z+
n −→ Z+

n , where Z+
n de-

notes the set of nonempty strings of the alphabet Zn, and it is defined as in the following

equation.
f(∗,ℓ)(p0, p1, . . . , pk−1) = c0, c1, . . . , ck−1, for k ≥ 1,

where c0 = ℓ ∗ p0, c1 = c0 ∗ p1, . . . , ck−1 = ck−2 ∗ pk−1.
(2.14)

Similarly, the d-transformation is denoted by a mapping f(\,ℓ) : Z+
n −→ Z+

n , where

Z+
n denotes the set of nonempty strings of the alphabet Zn, and it is defined by the

following equation.

f(\,ℓ)(c0, c1, . . . , ck−1) = p0, p1, . . . , pk−1, for k ≥ 1,

where p0 = ℓ \ c0, p1 = c0 \ c1, . . . , pk−1 = ck−2 \ ck−1.
(2.15)

So, we can say that the sixtuple (Zn, ∗, \, ℓ, f(∗,ℓ), f(\,ℓ)) is a quasigroup cipher over the

alphabet Zn, and its correctness is shown by the following lemma.

Lemma 2.2.13. If (Zn, ∗, \, ℓ, f(∗,ℓ), f(\,ℓ)) is a quasigroup cipher over the alphabet

Zn = {p0, p1, . . . , pn−1}, then f(\,ℓ)(f(∗,ℓ)(p)) = p, where p is the plaintext derived from

the alphabet Zn.

Proof. Let

f(∗,ℓ)(pi1 , pi2 , . . . , pij ) = ci1 , ci2 , . . . , cij , for some j ≥ 1, and 0 ≤ i ≤ n− 1.

Also, let

f(\,ℓ) ◦ f(∗,ℓ)(pi1 , pi2 , . . . , pij ) = f(\,ℓ)(ci1 , ci2 , . . . , cij ) = xi1 , xi2 , . . . , xij .
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So, from Equation (2.14), we have

ci1 = ℓ ∗ pi1 , ci2 = ci1 ∗ pi2 , . . . , cij = cij−1 ∗ pij .

Also, from Equation (2.15), we have

xi1 = ℓ \ ci1 , xi2 = ci1 \ ci2 , . . . , xij = cij−1 \ cij .

So, by Lemma 2.2.11,

xi1 = ℓ \ (ℓ ∗ pi1) = pi1 ,

xi2 = ci1 \ (ci1 ∗ pi2) = pi2 ,

. . . ,

xij = cij−1 \ (cij−1 ∗ pij ) = pij .

Hence, f(\,ℓ)(f(∗,ℓ)(p)) = p.

So, it is quite clear from Lemma 2.2.13 that f(∗,ℓ) is an encoding function and f(\,ℓ) is

a decoding function, for encryption and decryption over the alphabet Zn, respectively.

The example given below illustrates the correctness of this lemma.

Example 2.2.14. Consider the quasigroup Q = (Z5, ∗, \) with Z5 = {0, 1, 2, 3, 4}. Let

its operation tables be as given in Table 2.4 and Table 2.6. Let ℓ = 4 and plaintext

P = 2042301431. Then, for encrypting the plaintext P , we have applied the encoding

function f(∗,4) and the quasigroup as shown in Table 2.4. So, the ciphertext

C = f(∗,4)(P ) = 2300234434.

For decrypting the ciphertext C, we have used left inverse quasigroup given in Table 2.6

and decoding function f(\,4). The recovered plaintext is

P = f(\,4)(C) = 2042301431.

2.2.15 New {e, d}-transformation based on quasigroup

In this thesis, we also use a new {e, d}-transformation for designing the new cryp-

tographic primitives. The use of this transformation is that it allows us to split

the transformation into two parts: (i) {nel, ndl}-transformation, and (ii) {ner, ndr}-
transformation, where nel-transformation and ndl-transformation are the mutually in-

verse transformations of each other, similarly ner-transformation and ndr-transformation
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are the mutually inverse transformations of each other. That is, if nel-transformation

(ner-transformation) is used in the encryption algorithm, then ndl-transformation (ndr-

transformation) is used in the decryption algorithm, and vice versa.

Consider a non-empty alphabet Zn = {p0, p1, . . . , pn−1} and a quasigroup Q =

(Zn, ∗, \, /), and let a secret key to be used in the new {e, d}-transformation be K =

{k0, k1, . . . , kn−1}. Let nel, ndl, ner and ndr transformations be mappings f(∗\,K), f(\∗,K),

f(∗/,K), f(/∗,K) from Z+
n to Z+

n , where Z+
n denotes the set of non-empty strings over

the alphabet Zn, and defined as in the following equations:

nel :

{
f(∗\,K)(p0, p1, . . . , pr−1) = c0, c1, . . . , cr−1, r ≥ 1

where c0 = k0 ∗ p0, c1 = k1 ∗ p1, . . . , cr−1 = kr−1 ∗ pr−1

(2.16)

ndl :

{
f(\∗,K)(c0, c1, . . . , cr−1) = p0, p1, . . . , pr−1, r ≥ 1

where p0 = k0 \ c0, p1 = k1 \ c1, . . . , pr−1 = kr−1 \ cr−1

(2.17)

ner :

{
f(∗/,K)(p0, p1, . . . , pr−1) = c0, c1, . . . , cr−1, r ≥ 1

where c0 = p0 ∗ k0, c1 = p1 ∗ k1, . . . , cr−1 = pr−1 ∗ kr−1

(2.18)

ndr :

{
f(/∗,K)(c0, c1, . . . , cr−1) = p0, p1, . . . , pr−1, r ≥ 1

where p0 = c0/k0, p1 = p1/k1, . . . , pr−1 = cr−1/kr−1

(2.19)

Note that nel and ndl transformations use the quasigroup Q = (Zn, ∗) and its left

inverse quasigroup LIQ = (Zn, \), respectively. Similarly, ner and ndr transforma-

tions use the quasigroup Q = (Zn, ∗) and its right inverse quasigroup RIQ = (Zn, /),

respectively.

Also, note that both nel and ner transformations use the same quasigroup Q =

(Zn, ∗), but for obtaining the value of ci, ne
l-transformation evaluates the expression

ki ∗pi while ner-transformation evaluates the expression pi ∗ki, i ≥ 0. Both of them are

not the same. This is because a quasigroup is a non-commutative algebraic structure.

So both nel and ner transformations would produce different results because pi ∗ ki ̸=
ki ∗ pi.

2.2.16 Optimal quasigroup

Definition 2.2.17. An optimal quasigroup Q = (Z2k , ∗) is a groupoid which has the

following properties:
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(i) Q must be a quasigroup (see Definition 2.2.1).

(ii) Each row or each column of Q must be an optimal S-box of k × k bits.

As of now, no algorithm has been developed for generating the optimal quasigroups

of order 2k, k ≥ 4. So, finding an optimal quasigroup of order 2k is still a longstanding

open problem. Note that each row of an optimal quasigroup is an optimal S-box.

That is, an optimal quasigroup of order 2k consists of 2k optimal S-boxes of k × k

bits. A k × k bits S-box is a Boolean map such as S : Fk
2 → Fk

2, where F2 is a

Galois field over {0, 1}. In other words, an S-box is a permutation of the elements of

Z2k={0, 1, 2, . . . , 2k−1}. This thesis deals with forming an optimal quasigroup of order

16 and requires 16 optimal S-boxes of 4×4 bits. The description of a 4×4 bits optimal

S-box is given in definition 2.2.18.

Definition 2.2.18. A 4× 4 bits S-box is said to be optimal if the following conditions

are satisfied [44]:

(i) S is a bijection,

(ii) Lin(S) = 8, and

(iii) Diff(S) = 4,

where Lin(S) and Diff(S) are the linearity and the differential characteristics of an

S-box, and are defined as follows: Let u = (u0, u1, . . . , uk−1) and v = (v0, v1, . . . , vk−1)

be two vectors, where both ui, vi ∈ F2, 0 ≤ i ≤ k − 1. The dot product of u and v can

be written as

u.v =
k−1∑
i=0

ui.vi,

then

Lin(S) = max{|WS(u, v)| : u ∈ Fk
2, v ∈ Fk

2 andv ̸= 0} (2.20)

and

Diff(S) = max{|△S (u, v)| : u ∈ Fk
2, v ∈ Fk

2 andu ̸= 0}, (2.21)

where

WS(u, v) =
∑
x∈Fk

2

(−1)u.x+v.S(x)
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and

△S (u, v) = {x ∈ Fk
2 : S(x⊕ u)⊕ S(x) = v},

|. . .| denotes the cardinality of a set, and ⊕ denotes bit-wise XOR (modulo 2) operation.

An S-box’s linearity and differential characteristic measure the resistance against the

linear and differential cryptanalysis attacks, respectively. The smaller the linearity and

the differential characteristic of an S-box, the more secure against these attacks.

Generation of the optimal quasigroups of order 16 is a hard problem since it consists

of a total of 16 optimal S-boxes of 4× 4 bits. We generated it based on 16 optimal S-

boxes. Various algorithms that generate 4×4 bits optimal S-boxes exist in the literature

[55, 84]. Note that all such S-boxes are not suitable for forming a quasigroup. This is

because a quasigroup is a mathematical object and has specific properties that must be

satisfied (see Definition 2.2.1). We have chosen 16 S-boxes, namely, S0, S1, S2, . . . , S15

given in [83]. We verified that each of these 16 S-boxes is a bijection; that is, all the 16

S-boxes satisfy property (i) of Definition 2.2.18. For the linearity and the differential

characteristic of S0, for k = 4, we evaluated the values of WS0(u, v) and the values

of △S0 (u, v) using the equations Equation (2.20) and Equation 92.21), respectively,

∀u, v ∈ F4
2. The corresponding results are shown in Table 2.9 and Table 2.10, where u

denotes the row number and v denotes the column number. We see that the maximum

values in tables Table 2.9 and Table 2.10 are 8 and 4, respectively. So, Lin(S0) = 8

and the Diff(S0) = 4. That is, the S0 S-box also satisfies both properties (ii) and (iii)

of Definition 2.2.18. Hence S0 is an optimal S-box. Similarly, we have also verified the

remaining S-boxes, and we found that all of them satisfy all the required properties of

an optimal S-box. Also, these 16 S-boxes are suitable to form an optimal quasigroup

Q = (Z16, ∗), shown in Table 2.8, where ∗ is a quasigroup operation corresponding to

the quasigroup Q of order 16.

2.2.19 Quasigroups as vector valued Boolean functions

Quasigroups are suitable in cryptosystems because of their structure and their large

number. A quasigroup with order 2k can be represented as a vector valued Boolean

function f : F2k
2 → Fk

2, where F2 is a Galois field over {0, 1}. This representation

can classify a quasigroup as linear or non-linear. A Boolean map f : F2k
2 → Fk

2 is

represented by k-tuple of polynomials in which each polynomial is a Boolean function
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Table 2.8: Optimal quasigroup of order 16.

∗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 S0 : 8 0 11 2 9 14 7 6 13 3 15 4 5 10 12 1

1 S1 : 11 2 8 0 7 6 9 14 15 4 13 3 12 1 5 10

2 S2 : 2 11 0 8 6 7 14 9 4 15 3 13 1 12 10 5

3 S3 : 10 5 1 12 3 13 4 15 14 9 6 7 0 8 2 11

4 S4 : 9 14 7 6 8 0 11 2 5 10 12 1 13 3 15 4

5 S5 : 0 8 2 11 14 9 6 7 3 13 4 15 10 5 1 12

6 S6 : 12 1 5 10 15 4 13 3 7 6 9 14 11 2 8 0

7 S7 : 1 12 10 5 4 15 3 13 6 7 14 9 2 11 0 8

8 S8 : 14 9 6 7 0 8 2 11 10 5 1 12 3 13 4 17

9 S9 : 7 6 9 14 11 2 8 0 12 1 5 10 15 4 13 3

10 S10 : 3 13 4 15 10 5 1 12 0 8 2 11 14 9 6 7

11 S11 : 6 7 14 9 2 11 0 8 1 12 10 5 4 15 3 13

12 S12 : 5 10 12 1 13 3 15 4 9 14 7 6 8 0 11 2

13 S13 : 4 15 3 13 1 12 10 5 2 11 0 8 6 7 14 9

14 S14 : 15 4 13 3 12 1 5 10 11 2 8 0 7 6 9 14

15 S15 : 13 3 15 4 5 10 12 1 8 0 11 2 9 14 7 6

fi : F2k
2 → F2, 1 ≤ i ≤ k. A Boolean function fi : F2k

2 → F2 can be uniquely written in

its Algebraic Normal Form (ANF), as a polynomial in 2k variables as

f(x1, x2, . . . , x2k) =
∑

I⊆{1,2,...,2k}

CIx
I , (2.22)

wherexI =
∏
i∈I

xi, x
ϕ = 1, and CI ∈ {0, 1}.

The algebraic degree of the Boolean map f is the maximum algebraic degree of its

component functions (f1, f2, . . . , fk). So,

deg(f) = max{deg(fi(x)) : x ∈ F2k
2 and x ̸= 0, 1 ≤ i ≤ k}. (2.23)

If deg(f) = 1, then f is linear otherwise non-linear.

Let Q = (Z2k , ∗) be a quasigroup of order 2k. Also, let x, y ∈ Z2k , where x =

(x1, x2, . . . , xk) ∈ Fk
2 and y = (yk+1, yk+2, . . . , y2k) ∈ Fk

2. Then, the representation of Q
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Table 2.9: Results of WS0
(u, v) for the S-box S0.

u \ v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 -8 4 4 -4 4 0 0 -8 0 -4 -4 -4 4 0 0

2 0 4 -4 4 4 0 8 -4 -4 0 8 0 0 -4 4

3 0 8 -8 0 0 0 0 4 4 -4 -4 -4 -4 -4 -4

4 0 0 8 4 4 -4 4 0 8 0 0 4 -4 -4 -4

5 0 -4 -4 0 0 4 4 -8 0 4 -4 0 -8 4 -4

6 0 4 4 0 0 4 4 4 -4 -8 0 4 -4 8 0

7 8 0 0 -4 4 -4 -4 -4 -4 -4 4 0 0 0 -8

8 4 -4 0 4 0 8 4 0 4 -4 0 -4 8 0 -4

9 -4 0 4 8 -4 0 -4 0 -4 0 4 -8 -4 0 -4

10 4 8 4 0 -4 8 -4 -4 0 4 0 4 0 -4 0

11 4 -4 0 4 0 0 -4 -4 0 -8 -4 0 -4 -4 8

12 4 4 0 8 4 -4 0 0 -4 4 -8 0 4 4 0

13 4 0 4 -4 -8 -4 8 0 -4 0 -4 -4 0 -4 0

14 4 0 4 -4 8 4 0 4 0 4 0 -8 -4 0 4

15 -4 -4 0 0 4 4 0 4 -8 0 -4 4 0 -8 -4

as vector valued Boolean function is as follows:

x ∗ y ≡ f(x1, x2, . . . , x2k) = f(f1(x1, x2, . . . , x2k), f2(x1, x2, . . . , x2k), . . . , fk(x1, x2, . . . , x2k)),

∀x, y ∈ Z2k , and fi : F2k
2 → F2, 1 ≤ i ≤ k.

Now, a quasigroup Q is said to be linear if deg(fi) ≤ 1, ∀ 1 ≤ i ≤ k; otherwise, Q

is said to be a non-linear quasigroup. Note that the number of quasigroups grows

exponentially as the value of k increases [79]. So, it is very difficult to identify all the

linear and non-linear quasigroups of order 2k. However, it is shown in [21] that for

k = 2, there are 576 quasigroups of order 4, of which 144 are linear quasigroups, and

432 are non-linear quasigroups. The following example illustrates one such non-linear

quasigroup of order 4 with degree 2.

Example 2.2.20. Let Q = (Z4, ∗) be a quasigroup of order 4 with mapping f:F4
2 → F2

2.

The quasigroup Q can be represented as a vector valued Boolean function f(x1, x2, x3, x4) =

(x1 + x2 + x3, x1x3 + x2x3 + x1 + x3 + x4 + 1). So, Q is a non-linear quasigroup with

degree 2, its operation table is given in Table 2.11.
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Table 2.10: Results of △S0
(u, v) for the S-box S0.

u \ v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 2 0 0 0 0 0 2 2 2 0 2 0 2 2 2

2 0 0 4 2 0 0 0 2 2 2 0 2 0 0 2 0

3 0 0 0 0 2 0 2 0 0 4 2 2 2 0 0 2

4 0 2 0 2 2 2 0 0 2 2 0 0 2 0 2 0

5 0 0 0 0 0 2 4 2 2 2 0 0 0 2 2 0

6 0 2 4 0 0 0 2 0 0 0 2 0 2 0 2 2

7 0 2 0 0 0 4 0 2 0 0 0 2 2 0 2 2

8 0 0 0 2 4 2 2 2 0 0 0 2 2 0 0 0

9 0 0 0 2 0 0 2 0 0 0 2 4 0 4 0 2

10 0 2 2 0 2 2 2 2 0 0 0 0 2 0 0 2

11 0 0 2 2 0 0 0 0 4 0 0 0 2 2 0 4

12 0 0 2 2 2 0 0 2 2 0 2 0 0 4 0 0

13 0 0 2 4 0 2 0 0 0 2 4 0 0 0 2 0

14 0 2 0 0 2 2 2 0 2 0 4 0 0 0 2 0

15 0 4 0 0 2 0 0 2 0 2 0 2 2 2 0 0

.

2.2.21 Quasigroup generation

Generating all possible quasigroups of a given order is a hard problem. This is because

as the order increases, the number of quasigroups grows exponentially [79]. Various

algorithms exist in the literature [42, 54, 62], to generate the quasigroups of arbitrary

order. Given a quasigroup, a new quasigroup can be generated by permuting rows,

columns, and symbols of the given quasigroup. This is referred to as an isotopy or

isotopism [42, 75], see the following definition.

Definition 2.2.22. Let Q1 = (Zn, ∗1) and Q2 = (Zn, ∗2) be two quasigroups. An order

triple of bijective mappings α, β, γ : Zn → Zn is called an isotopism from Q1 to Q2, if

∀ x, y ∈ Zn

α(x ∗1 y) = β(x) ∗2 γ(y).

It is noteworthy that an isotopism can allow a quasigroup Q2 to be created from

another quasigroup Q1. This is illustrated in the following example.
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Table 2.11: Non-linear quasigroup of order 4.

∗ 0 1 2 3

0 1 0 2 3

1 3 2 1 0

2 2 3 0 1

3 0 1 3 2

Example 2.2.23. Let Q2 = (Z4, ∗2) be a quasigroup of order 4 over the set Z4 =

{0, 1, 2, 3}, whose operation table is shown in Table 2.13. Let the bijective mappings

α, β, γ : Z4 → Z4 be defined as

α =

(
0 1 2 3

2 1 0 3

)
, β =

(
0 1 2 3

1 2 3 0

)
, γ =

(
0 1 2 3

3 0 2 1

)

Then the new quasigroup Q1 = (Z4, ∗1) is defined by x ∗1 y = α−1(β(x) ∗2 γ(y)), which
is isotopism to Q2 = (Z4, ∗2), shown in Table 2.12.

Table 2.12: Quasigroup Q1

∗1 0 1 2 3

0 0 1 3 2

1 1 3 2 0

2 3 2 0 1

3 2 0 1 3

Table 2.13: Quasigroup Q2

∗2 0 1 2 3

0 2 1 0 3

1 1 3 2 0

2 3 0 1 2

3 0 2 3 1

Claim 2.2.24. If Q is a quasigroup of order n. Then, a maximum of n!2 quasigroups

can be created by permuting both the rows and columns of Q, where n ≥ 4.

Proof. Let Q = (Zn, ∗) be a quasigroup over the set Zn = {0, 1, . . . , n − 1}. It can

be represented as an n × n matrix (for example, a 4 order quasigroup is shown in

Table 2.11), and consists of n number of rows and n number of columns, where each

row and each column is a permutation of Zn = {0, 1, . . . , n− 1}.
Now, by permuting only rows of quasigroup Q, at most n! quasigroups can be

created. Similarly, by permuting only columns of quasigroup Q, at most n! quasigroups

can also be created. So, by permuting the rows and the columns of the quasigroup Q,

a total of n!2 quasigroups can be created. This is because, for each row permutation of

Q, a maximum of n! quasigroups can be formed by permuting the n columns of Q.
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The above claim is helpful in designing new cryptosystems that use multiple quasi-

groups. Also, the new cryptosystems can employ multiple quasigroups by leveraging

the space of a single quasigroup. In other words, for the design of new cryptosystems

based on multiple quasigroups, it is not necessary to store all quasigroups since they

can be generated by permuting rows, columns, or both of an original quasigroup. Next

section gives an algorithm to generate n quasigroups of order n = 2k by permuting the

rows of an original quasigroup Q = (Z2k , ∗).

2.2.25 Quasigroup generation based on row permutations

Let Q = (Z2k , ∗) be an original quasigroup of order n = 2k over the set Z2k =

{0, 1, . . . , n−1}. Since the quasigroup Q is represented by an n×n matrix, where each

row and each column is a permutation of the elements of Z2k . Let S0, S1, . . . , Sn−1 be

the rows of Q, where each Si is a permutation of the elements of Z2k , 0 ≤ i ≤ n − 1.

Then, the quasigroupQ can also be represented asQ = (S0, S1, . . . , Sn−1). For instance,

a quasigroup Q = (S0, S1, . . . , S15) of order 16 is shown in Table 2.8.

By permuting the rows of an order n quasigroup Q, n! quasigroups can be cre-

ated. These n! quasigroups are nothing but permutations of S0, S1, S2, . . . , and Sn−1

rows. Note that here we have specified only n quasigroups to be generated. In other

words, we have to generate or select any n quasigroups out of the total n! quasi-

groups. Let the generated or selected quasigroups be denoted by Q0 = (Zn, ∗0), Q1 =

(Zn, ∗1), ..., Qn−1 = (Zn, ∗n−1), where ∗0, ∗1, ..., ∗n−1 are the quasigroup operations cor-

responding to Q0, Q1, ..., Qn−1, respectively. The selection of quasigroups can be carried

out using an n× 1 multiplexer, where n = 2k. A multiplexer is a combinational circuit

that has a maximum of 2k input values for k selection lines, and it produces a single

output. An n × 1 multiplexer, along with its truth table, are shown in Figure 2.1.

This multiplexer selects a quasigroup based on the current state of the selection lines

s0, s1, . . . , sk−1, the value of sα is either 0 or 1, 0 ≤ α ≤ k− 1. Let QGSELECT be a k-bit

value associated with the selection lines s0, s1, . . ., and sk−1, where s0 and sk−1 are

the least significant bit and the most significant bit, respectively. That is, if sα = 0,

∀ 0 ≤ α ≤ k − 1, then QGSELECT = 0, and the multiplexer selects a quasigroup Q0.

Similarly, if QGSELECT = 1, then the multiplexer selects the quasigroup Q1, and so on.

So, based on the original quasigroup Q = (S0, S1, . . . , Sn−1), the following equation can
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Figure 2.1: n× 1 multiplexer and its truth table.

generate a total of n quasigroups

Q = (S(0+QGSELECT)modn, S(1+QGSELECT)modn, . . . , S(n−1+QGSELECT)modn) (2.24)

where QGSELECT, 0 ≤ QGSELECT ≤ n − 1 is a k-bit value to be given as an in-

put. Note that the result is a quasigroup Q ∈ {Q0, Q1, . . . , Qn−1}. Each of these

{Q0, Q1, . . . , Qn−1} quasigroups consists of the same rows S0, S1, . . . , Sn−1 but in dif-

ferent order (permutation).

Let LIQ = (Zn, \) be a left inverse quasigroup of the quasigroup Q = (Zn, ∗). Also,
let LIQ0, LIQ1, . . . , LIQn−1 be the quasigroups generated from the left inverse quasi-

group LIQ using Equation (2.24). Then, each LIQi is also the left inverse quasigroup

of the quasigroup Qi, 0 ≤ i ≤ n− 1. The correctness of this assertion follows from the

following theorem.

Theorem 1. Let Q and LIQ be a quasigroup and its left inverse quasigroup, respec-

tively. Let Qi, and LIQi be the result of applying a permutation P on the rows of Q

and LIQ, respectively. Then, LIQi is the left inverse quasigroup of the quasigroup Qi.

Proof. Let Q = (Zn, ∗) and LIQ = (Zn, \) be quasigroups of order n, whose operation

tables look like the ones given in Table 2.14 (a) and Table 2.14 (b), respectively. Since

LIQ is the left inverse quasigroup of Q, we have

t1 ∗ t2 = at1,t2 ⇔ t1 \ at1,t2 = bt1,t2

∀ t1, t2 ∈ {0, 1, . . . , n− 1}.
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Now let

P =

(
P(0) P(1) P(2) P(2) · · · P(n− 1)

0 1 2 3 · · · n− 1

)
be a permutation applied on the rows of the quasigroups Q and LIQ, and let Qi =

(Zn, ∗i) and LIQi = (Zn, \i) denote the resulting quasigroups, where P(j)th rows of

both theQ and the LIQ becomes the jth rows of both theQi and the LIQi, respectively,

0 ≤ j,P(j) ≤ n− 1. That is, the operation tables of Qi and LIQi will be as shown in

Table 2.15 (a) and Table 2.15 (b), respectively. Therefore,

t1 ∗i t2 = aP(t1),t2 ⇔ t1 \i aP(t1),t2 = bP(t1),t2

∀ t1, t2 ∈ {0, 1, . . . , n− 1}.

This is true because

t1 ∗ t2 = at1,t2 ⇔ t1 \ at1,t2 = bt1,t2

∀ t1, t2 ∈ {0, 1, . . . , n− 1}.

Table 2.14: Representation of quasigroups Q and LIQ of order n.

∗ 0 1 . . . n− 1 \ 0 1 . . . n− 1

0 a0,0 a0,1 . . . a0,n−1 0 b0,0 b0,1 . . . b0,n−1

1 a1,0 a1,1 . . . a1,n−1 1 b1,0 b1,1 . . . b1,n−1

2 a2,0 a2,1 . . . a2,n−1 2 b2,0 b2,1 . . . b2,n−1

...
...

...
...

...
...

...
...

...
...

n− 1 an−1,0 an−1,1 . . . an−1,n−1 n− 1 bn−1,0 bn−1,1 . . . bn−1,n−1

(a) (b)

The application of Theorem 1 is illustrated in Example 2.2.26.

Example 2.2.26. Let quasigroup Q = (Z8, ∗) over Z8 = {0, 1, 2, 3, 4, 5, 6, 7} is defined

as t1 ∗ t2 = (t1 + t2) mod 8, where t1, t2 ∈ Z8. Then its operation table is as shown in

Table 2.16 (a). Also, let LIQ = (Z8, \) be a left inverse quasigroup of the quasigroup

Q, and its operation be as shown in Table 2.16 (b). Now, let

P =

(
0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

)
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Table 2.15: Representation of quasigroups Qi and LIQi of order n.

∗i 0 1 . . . n− 1 \i 0 1 . . . n− 1

0 aP(0),0 aP(0),1 . . . aP(0),n−1 0 bP(0),0 bP(0),1 . . . bP(0),n−1

1 aP(1),0 aP(1),1 . . . aP(1),n−1 1 bP(1),0 bP(1),1 . . . bP(1),n−1

2 aP(2),0 aP(2),1 . . . aP(2),n−1 2 bP(2),0 bP(2),1 . . . bP(2),n−1

...
...

...
...

...
...

...
...

...
...

n− 1 aP(n−1),0 aP(n−1),1 . . . aP(n−1),n−1 n− 1 bP(n−1),0 bP(n−1),1 . . . bP(n−1),n−1

(a) (b)

be a permutation applied on the rows of the quasigroup Q, and let Qi = (Z8, ∗i) denote
the resulting quasigroup. Then Qi is as shown in Table 2.17 (a), where ∗i is the quasi-

group operation corresponding to the quasigroup Qi. Now, we applied the same rows

permutation P on the left inverse quasigroup LIQ, and let LIQi = (Z8, \i) denote the

resulting quasigroup. Then LIQi is as shown in Table 2.17 (b), where \i is the left

inverse quasigroup operation corresponding to the quasigroup LIQi. It can be verified

that the quasigroup LIQi is the left inverse quasigroup of the quasigroup Qi.

Table 2.16: Quasigroups Q and LIQ of order 8.

∗ 0 1 2 3 4 5 6 7 \ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0 1 7 0 1 2 3 4 5 6

2 2 3 4 5 6 7 0 1 2 6 7 0 1 2 3 4 5

3 3 4 5 6 7 0 1 2 3 5 6 7 0 1 2 3 4

4 4 5 6 7 0 1 2 3 4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4 5 3 4 5 6 7 0 1 2

6 6 7 0 1 2 3 4 5 6 2 3 4 5 6 7 0 1

7 7 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0

(a) (b)

36



2.2 Quasigroup

Table 2.17: Quasigroups Qi and LIQi of order 8.

∗i 0 1 2 3 4 5 6 7 \i 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 0 7 0 1 2 3 4 5 6

1 0 1 2 3 4 5 6 7 1 0 1 2 3 4 5 6 7

2 3 4 5 6 7 0 1 2 2 5 6 7 0 1 2 3 4

3 2 3 4 5 6 7 0 1 3 6 7 0 1 2 3 4 5

4 5 6 7 0 1 2 3 4 4 3 4 5 6 7 0 1 2

5 4 5 6 7 0 1 2 3 5 4 5 6 7 0 1 2 3

6 7 0 1 2 3 4 5 6 6 1 2 3 4 5 6 7 0

7 6 7 0 1 2 3 4 5 7 2 3 4 5 6 7 0 1

(a) (b)
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Chapter 3

Literature survey

Various applications of the quasigroup can be found in cryptography, coding theory,

design theory, and other fields. Our research focuses on the use of quasigroups in cryp-

tography. Because of their structure, characteristics, and an exponential number of

quasigroups of its order, quasigroups are ideal for cryptographic applications. The ef-

fects of quasigroups in cryptography are primarily determined by the quasigroup chosen.

So, one of the issues is determining which quasigroup is appropriate for use and what

preconditions the quasigroup must meet. In this chapter, we present a comprehensive

survey of the existing quasigroup based cryptographic algorithms such as stream ciphers,

block ciphers, hash functions, MACs, etc.

3.1 Stream ciphers based on quasigroup

We have studied various quasigroup based stream ciphers present in literature [12, 28,

43, 46, 59, 60, 81]. The quasigroup based stream ciphers allow us to make polyalphabetic

substitution ciphers, and this property has been used in the design of stream ciphers

for more than 400 years. In 1586, Blaise de Vigenere proposed the first polyalphabetic

stream cipher based on the letters of a keyword, now known as the Vigenere cipher. This

cipher uses a Latin square of the same order as his target language (i.e., for the English

language, the order of a Latin square would be 26). This cipher was thought to be

impenetrable until 1863 when it was discovered that the ciphertext showed repetitions

for a sufficiently large plaintext.
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In 1996, Czeslaw Koscielny showed how a quasigroup can be used in the design of

a stream cipher [41]. In 1997, Markovski et al. proposed a quasigroup based stream

cipher [46]. This cipher is designed based on {e, d}-transformation and uses a leader

ℓ (also called a seed value) along with a quasigroup of an arbitrary order n for en-

crypting/decrypting the plaintext/ciphertext. Note that the leader and the quasigroup

are secrets in this cipher, because of the leader ℓ and {e, d}-transformation the cipher

is found to be vulnerable to chosen-plaintext, chosen-ciphertext, and known-plaintext

attacks [35, 45, 80]. This is because, it creates a relation between the plaintext and the

corresponding ciphertext since it uses the output of each e-transformation as a key (or

keystream) for encrypting the next character of the plaintext. For a known-plaintext

attack, an attacker has the knowledge of the plaintext P = {p1, p2, . . . , pk} and the

corresponding ciphertext C = {c1, c2, . . . , ck}. In this attack, an attacker uses the e-

transformation and retrieves both the leader ℓ and the quasigroup employed. This is

illustrated in the following example.

Example 3.1.1. Let Q=(Z4, ∗) be a quasigroup over Z4 = {0, 1, 2, 3}. Also, let an

attacker knows a plaintext P = 23012312123000312 and the corresponding ciphertext

C = 13322110030120231. Then, an attacker carries out the operations except the first

one involving the leader using the e-transformation defined in section 2.2.12 of Chap-

ter 2 and reconstructs the quasigroup. 1 ∗ 3 = 3, 3 ∗ 0 = 3, 3 ∗ 1 = 2, 2 ∗ 2 = 2, 2 ∗ 3 = 1,

1 ∗ 1 = 1, 1 ∗ 2 = 0, 0 ∗ 1 = 0, 0 ∗ 2 = 3, 3 ∗ 3 = 0, 0 ∗ 0 = 1, 1 ∗ 0 = 2, 2 ∗ 0 = 0,

0 ∗ 3 = 2, 2 ∗ 1 = 3, 3 ∗ 2 = 1. Note that the first equation 1 ∗ 3 = 3 is obtained

by looking at the first element of the ciphertext, the second element of the plaintext,

and the second element of the ciphertext. Similarly, the second equation is obtained

by taking the second element of the ciphertext, the third element of the plain text, and

the third element of the ciphertext. In general, the rth equation is formed from the rth

element of the ciphertext, (r + 1)th element of the plaintext, and the (r + 1)th element

of the ciphertext. The resultant quasigroup is shown in Table 3.1. Once a quasigroup is

reconstructed, the leader ℓ can be uniquely determined by solving the following equation

ℓ ∗ p1 = c1. (3.1)

Since p1 = 2, c1 = 1, then the leader ℓ = 3. Hence, the {e, d}-transformation based

stream ciphers that use a single quasigroup are vulnerable to the known-plaintext attack.

Similar argument shows that the system is also vulnerable to the chosen-plaintext (or
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chosen-ciphertext) attack. In this attack, an attacker can choose the plaintext (cipher-

text), gets the corresponding ciphertext (plaintext), and solves for the quasigroup used

and hence the leader of the scheme.

Table 3.1: Quasigroup of order 4

∗ 0 1 2 3

0 1 0 3 2

1 2 1 0 3

2 0 3 2 1

3 3 2 1 0

Attack complexity of known-plaintext attack: The complexity of the attack

on a {e, d}-transformation based stream cipher with a single quasigroup of order n

is equivalent to the computational complexity for determining the quasigroup used.

This is evident from Example 3.1.1. The number of equations required to determine

a quasigroup of order n can be seen to be n2. Hence the computational complexity of

determining the quasigroup used and hence that of the attack is O(n2). In general, the

attack complexity for order n quasigroup is equal to 2(n− 1)2 [45]. Hence, the existing

cipher can be cryptanalyzed in polynomial time.

In [12, 59, 60], the authors discussed stream ciphers based on the n-quasigroup (also

called n-ary quasigroup operations) of an arbitrary order m. The description of an n-

quasigroup is given in Definition 2.2.10 of Chapter 2. They analyzed their ciphers only

against the exhaustive key search attack and tried to determine the size of the key space

of their proposals. For practical purposes, they considered the values of n and m to be

at least 3 and 256, respectively. So, if n = 3 and m = 256, the size of the key space of

the stream ciphers presented in [59, 60] is found to be around 265 ≈ 3.69× 1019, while

that of an improved 3-quasigroup based stream cipher presented in [12] is found to be

around 2195 ≈ 5.02 × 1058. We noted that the value of n directly affects the software

performance of these ciphers. In other words, as the value of n increases, the software

performance decreases. Also, the ciphers need at least 64K bytes of extra space, this

may be a challenge for small computing devices.

In 2008, Gligoroski et al. introduced an Edon-80 stream cipher [28]. It is an XOR-

based (a binary additive) synchronous stream cipher that was one of the candidates

in the eSTREAM project. The block diagram of Edon-80 is given in Figure 3.1. The
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Figure 3.1: Block diagram of Edon-80.

keystream generator of Edon-80 takes two inputs (i) a secret key K of 80 bits, and (ii)

an initial value IV of 64 bits. And it produces keystream (k1, k2, . . .) of required length.

Then, the keystream is added to the input stream (plaintext/ciphertext) in the encryp-

tion/decryption process. The internal structure of Edon-80 is a pipelined architecture

that consists of 80 stages [28]. This is carried out using 80 e-transformations based on

4 quasigroups of order 4. The primary strength of the Edon-80 is that it is hardware

friendly as it uses only 4 quasigroups of order 4. In contrast, its software performance

is significantly decreased on modern CPUs. The cipher is analyzed against various at-

tacks, including exhaustive key search attack, related key attack, and guess-and-verify

attack, and found it to be resistant to these attacks. However, it is vulnerable to reused

key and known-plaintext attacks. This is because it uses the XOR function to mix the

plaintext/ciphertext with the keystream. Hell and Johansson have done one of the best

attacks on Edon-80, called key recovery attack [36]. And they managed to recover the

key in 272 operations by analyzing the periods of the keystream sequences of Edon-80.

In 2012, Zhang and Xu proposed a new version of Edon-80 stream cipher based

on an arbitrary period length keystream sequence [81]. The purpose of proposing

this new version of the Edon-80 was to enhance the security of the Edon-80 against

key recovery attack. The keystream generation algorithm of the new cipher uses 80

e-transformations along with a quasigroup of order 256, and produces keystream of

required length. Also, the cipher uses the quasigroup operation instead of the XOR

function, such as used in Edon-80, to mix the plaintext/ciphertext with the keystream,

making the cipher resistant to a reused key attack. The cipher is also analyzed against

various attacks, including exhaustive key search attack, chosen-plaintext attack, known-

plaintext attack. We noted that cipher is resistant to these attacks, but it is found to

be inefficient, and the cipher needs at least 256K bytes of extra space.

Lakshmi et al. introduced a synchronous stream cipher based on a quasigroup of

order 256 [43]. The cipher takes a secret key and an initialization vector as its input,
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each of 128 bits in size. The algorithm of keystream generation is iterative and uses

3-quasigroup operations. For each iteration, the algorithm generates 8 bits (one byte)

of the keystream. Then, each byte of the generated keystream is added to one byte of

plaintext/ciphertext in the encryption/decryption process. The security of the cipher

is analyzed only using an algebraic attack. The randomness of the obtained ciphertext

is tested using the NIST-STS test suite and various structural tests and observed that

the ciphertext passes both these tests. Since it is an XOR-based synchronous stream

cipher that uses a quasigroup of order 256 for generating the keystream, it is vulnerable

to known-plaintext and reused-key attacks.

3.2 Block ciphers based on quasigroup

A block cipher based on quasigroups was invented by Gligorovsky and Markovsky [29].

They tried to show the potential of {e, d}-transformation as a new paradigm in cryp-

tography. As in stream ciphers, the design of a new block cipher relies on {e, d}-
transformation. Typically, in a stream cipher, the {e, d}-transformation is applied only

once to the input stream (plaintext/ciphertext) to produce the corresponding output

stream (ciphertext/plaintext). But, in a block cipher, the {e, d}-transformation is ap-

plied more than once times on the input stream to obtain the output stream. Let

P = {p1, p2, . . . , pn} and C = {c1, c2, . . . , cn} be the input stream and output stream

blocks of length n, respectively. Also, let L = {ℓ1, ℓ2, . . . , ℓk} be a given password (or a

sequence of leaders) of length k. Based on given quasigroups and their left/right inverse

quasigroups, the encryption and decryption algorithms can be performed, as shown in

Algorithms 1 and 2, respectively. The description of {e, d}-transformation is specified

in section 2.2.12 of Chapter 2.

Algorithm 1: Encryption

[1] C = P

[2] for i = 1 to k do

[3] if L[i] mod 2 = 0 then

[4] C = (eℓ-transformation on C with leader ℓ = L[i])

[5] else

[6] C = (dℓ-transformation on C with leader ℓ = L[i])
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Algorithm 2: Decryption

[1] P = C

[2] for i = k down to 1 do

[3] if L[i] mod 2 = 0 then

[4] P = (dℓ-transformation on P with leader ℓ = L[i])

[5] else

[6] P = (eℓ-transformation on P with leader ℓ = L[i])

In 2012 and 2013, Battey and Parakh introduced two block ciphers based on a

quasigroup of order 256 [5, 6]. These ciphers use a sequence of leaders (a seed value)

of 256 bits, and perform a total of 32 rounds to encrypt or decrypt a block of 128 bits,

where for each round, they perform two transformations: (i) {e, d}-transformation,

and (ii) left shift operation. Note that they employed the same encryption/decryption

algorithms in both their proposals, and a randomly chosen quasigroup of order 256. A

primary strength of these ciphers is that they are resistant to quasigroup only attack

(exhaustive quasigroup search attack) due to a large number of quasigroups of its order.

But, a randomly chosen quasigroup may not be optimal from linear and differential

cryptanalysis. Also, it may be a challenge to store it in small computing devices.

These existing block ciphers are only analyzed against the randomness property of the

ciphers using the NIST-STS test suite. Since the NIST-STS test suite only evaluates

the system’s randomness, it does not provide security strength against attacks.

Another {e, d}-transformation based block cipher is introduced by Zhao and Xu in

2017 [83]. It uses an optimal quasigroup of order 16 along with a secret key of 80 or

128 bits, and perform 32 rounds to encrypt or decrypt a block of 64 bits. This cipher

is also analyzed against (i) the randomness property of the cipher using the NIST-STS

test suite and (ii) the algebraic properties of the optimal quasigroup used. It is not

analyzed on the basis of the overall structure of the cipher. Noted that it uses less space

than [5, 6]. We analyzed the software performance of the cipher by varying the inputs,

and we observed that the cipher is slower than those of the existing ciphers [5, 6]. Also,

the cipher does not exhibit good confusion and diffusion effects.

In 2014, Markovski et al. introduced a block cipher based on matrix presentation

of quasigroups, named BCMPQ [50]. The cipher uses 128 quasigroups of order 4 in
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both encryption and decryption. In encryption, the quasigroup operation ∗ of order 4

quasigroup (Q, ∗) is defined as

x ∗ y = mt +Axt +Byt + CAxt · CByt

where, A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
are non-singular Boolean matrices and

C =

[
1 1
1 1

]
, both x = (x1, x2), y = (y1, y2) ∈ Q, all x1, x2, y1, y2 ∈ {0, 1},m = [m1,m2]

is a Boolean vector. The operation ’·’ denotes the scalar product, and the addition and

multiplication are over the field GF (2).

In decryption the left inverse quasigroup (Q−1, \) of the quasigroup (Q, ∗) is used,
which is defined as

x \ z = B−1mt +B−1(I + C)Axt +B−1(Cmt · CAxt) +B−1zt +B−1(CAxt · Czt)

where \ denotes the left inverse quasigroup operation corresponding to the left inverse

quasigroup Q−1, and I denotes the identity matrix. The aim of this work is to show

how small quasigroups (quasigroups of order 4) can be used in a block cipher. Also,

this cipher does not require too much space or computational power, so it is suitable

for lightweight cryptographic applications and can be implemented and used for small

devices. The cipher is analyzed against brute-force attacks and it is found to have a

complexity of 282. Also, the randomness properties of this cipher are analyzed using

the avalanche effect and strict avalanche criterion and examined the input and output

bits of the BCMPQ [20].

3.3 Hash functions based on quasigroup

At first, in 2001 and 2002, Dvorsky et al. introduced how quasigroup can be used to

create a cryptographic hash function [23, 24]. These hash functions do not have actual

implementations. Later, in 2009, they proposed a quasigroup based hash function

presented in [70]. This hash function, namely H, uses an e-transformation (defined in

section 2.2.12 of Chapter 2) on the message m1,m2, . . . ,mk to be hashed, such that

m′
1 = IV ∗m1,m

′
2 = m′

1 ∗m2, . . . ,m
′
k = m′

k−1 ∗mk,

44



3.3 Hash functions based on quasigroup

wherem′
1,m

′
2, . . . ,m

′
k are the results of the e-transformation corresponding tom1,m2, . . . ,mk.

Both (m′
1,m

′
2, . . . ,m

′
k) and (m1,m2, . . . ,mk) belong to a chosen quasigroup Q, and IV

is an initial (seed) value also belongs to Q. Then, the hash function H with IV is

defined as

HIV (m1,m2, . . . ,mk) = (. . . ((IV ∗m1) ∗m2) ∗ . . .) ∗mk.

In 2010, Slaminkova et al. analyzed this hash function and found that it is vulnerable

to prefix and suffix attacks [69]. That is, an attacker can find a collision by creating a

false message by adding a prefix or suffix to the original message. This is illustrated

through the following example.

Example 3.3.1. Let M1 = 102201 be a message to be hashed with the initial value

IV = 3 Also, let the quasigroup Q be one given in Table 3.1. Then, the hash value of

M1 is calculated as follows:

H3(102201) = (((((3 ∗ 1) ∗ 0) ∗ 2) ∗ 2) ∗ 0) ∗ 1 = 3.

Now, an attacker can create a false message M2 by adding a prefix to the original

message M1, and it can be written as M2 = X1X2 . . . Xk102201, Xi ∈ Q, 1 ≤ i ≤ k.

The prefix is chosen such that (. . . ((IV ∗ X1) ∗ X2) . . .) ∗ Xk = IV . For IV = 3

and k = 4, one set of values for X1, X2, X3, X4 is 1, 2, 0, 2. That is, the new message

M2 = 1202102201 will have the same hash value as that of the original message M1.

This is verified as in the following:

H3(1202102201) = (((((((((3 ∗ 1) ∗ 2) ∗ 0) ∗ 2) ∗ 1) ∗ 0) ∗ 2) ∗ 2) ∗ 0) ∗ 1 = 3.

That is, for two different messages M1 and M2, H3(M1) = H3(M2). That is a collision

can be found with the help of a prefix attack. Hence, the existing hash function based on

quasigroups is vulnerable to a collision attack. A similar argument can be shown that

the system is also vulnerable to the suffix attack. In this attack, an attacker can create

a false message M2 by appending a suffix to the original message M1 and arrives at a

collision.

This hashing technique is very useful for small-size hash values. But for larger hash

values, storing the quasigroup in the existing quasigroup based hash function can be a

challenge. This is because, for n bits hash value, the order of the quasigroup needed

would be 2n and hence the storage requirement of such a quasigroup is n × 2n × 2n
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bits. In Example 3.3.1, the hash value is of 2 bits and the storage requirements of the

quasigroup (Table 3.1) used in this example is 2 × 22 × 22 bits or 4 bytes. If the size

of a hash value is 18 bits, then the storage requirements of a corresponding quasigroup

will be more than 1 TB. Note that, the size of the hash being used nowadays is more

than 128 bits. One of the special quasigroups that defined in [24], called the modular

subtraction quasigroup, is used to solve this problem. In this thesis, we also overcome

these shortcomings of the existing quasigroup based hash function by proposing a novel

hash function of 224 ( 384) bits.

In 2006, Gligoroski et al. described a generic hash function based on quasigroup

reverse string transformation [26]. Edon-F is another generic hash function based on

quasigroup, introduced in [49] without implementation. In 2008, Gligoroski et al. in-

troduced the first implementation of the generic hash function named Edon-R(256, 384,

512) [27]. Edon-R is a family of hash functions based on Merkle-Damgard straighten-

ing, and they are the wide-pipe iterative hash functions. In 2008, Edon-R was the first

round fastest candidate of the NIST SHA-3 competition. The compression function of

Edon-R works based on two strings, in which one consists of length 2n and another

of length n, where n is the size of the hash value in w-bit words, and the size of w

varies according to the hash size. In 2009, Khovratovich et al. investigated Edon-R

against various attacks and found that all primary three attacks, such as pre-image,

second pre-image, and collision attacks, can be applied with minimal effort [39]. This

is a free-start attack scheme with minimal changeable initial chaining values. In these

attacks, the asymmetrical diffusion of the chaining values in the compression func-

tion is exploited. A meet-in-the-middle attack on Edon-R to find real pre-images was

launched by partially reversing the compression function and fixing one component of

the chaining value.

In 2008, Markovski and Mileva proposed another family of hash functions based

on quasigroup, named NaSHA-(m, k, r) [47], where m and r are positive integers, de-

noting the length of the message digest and in the form of order 22
r
quasigroup re-

spectively, and k is a positive even integer that denotes the number of elementary

quasigroup string transformations. It is also the wide-pipe iterative hash function and

uses Merkle-Damgard straightening. For k = 2, r = 6, and m ∈ {224, 256, 384, 512},

the implementation of NaSHA-(m, k, r) is discussed in literature [47, 48]. Gligoroski
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and Knapskog analyzed NaSHA-(m, k, r) hash family against various attacks, includ-

ing length extension attack, Joux’s multicollision attack [37], 2nd collision attack, and

Kelsey and Schneier’s long message 2nd preimage attack [40]. The free-start preim-

age attack on NaSHA-m with the complexity of 2m/2 and free-start collision attacks on

NaSHA-(m, k, r) with the complexity of 232 are given by Nikolic and Knovratovich [57].

47



Chapter 4

Stream Ciphers based on

Quasigroup

Three types of stream ciphers are discussed in this chapter. All these proposed stream

ciphers provide a high level of security. This is because they use a non-associative

algebraic structure called a quasigroup. Each of these ciphers differs slightly from the

other in terms of time and space complexities. Each cipher is a symmetric key cipher

and uses the same keystream for encryption/decryption. They use a quasigroup and its

inverse quasigroup in encryption and decryption, respectively. The size of the keystream

is the same as that of the plaintext/ciphertext and it is generated using a secret key.

Both the secret key and the quasigroup are kept secret, so ciphers provide excellent

security. In this chapter, we give a brief overview of the proposed stream ciphers,

define the basic structure and the building elements of the proposed stream ciphers, and

analyze the performance and perform security analyses of the proposed stream ciphers.

One of the goals of the proposed new stream ciphers is to overcome the issue of the

two-time pad in the existing XOR-based stream ciphers. Two-time pad is nothing but a

reused key attack. We know that an XOR-based stream cipher provides perfect security

against a one-time pad. But, the keystream should be as long as the plaintext/ciphertext,

which increases the difficulty of key management and key distribution.
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4.1 Introduction

A stream cipher is a symmetric key cipher that uses the same key for encryption and

decryption. It uses a pseudo-random keystream sequence to generate the ciphertext,

which encrypts individual characters (typically binary digits) of a plaintext one at a

time. A block cipher, on the other hand, encrypts groups of characters of the plaintext

at the same time. Stream ciphers are typically faster and less complex in hardware

than block ciphers. They are also more suitable and, in some cases, mandatory (e.g., in

wireless communications) when block size cannot be determined before transmission.

Because they operate on individual bits, padding of bits is not required, and error

propagation is less likely.

Stream ciphers are of two types: (i) synchronous, and (ii) self-synchronous (or

asynchronous). The only difference is that in the synchronous stream cipher, the

keystream generation is independent of the plaintext and the ciphertext. In contrast,

the keystream generation depends on the fixed number of previous ciphertext digits in

the asynchronous stream cipher. The most common self-synchronizing stream ciphers

are based on block ciphers and currently use 1-bit Cipher Feedback (CFB) mode. Most

of the synchronous stream ciphers proposed in the literature to date are XOR-based

(additive) stream ciphers. The graphical representation of the additive stream cipher

is given in Figure 5.1. In the figure, both encryption and decryption use the same

Figure 4.1: Representation of additive cipher.

keystream generation algorithm using the secret key K. In encryption algorithm, each

plaintext digit pi is encrypted with a keystream digit ki and produces a ciphertext digit

ci. In decryption algorithm, on the other hand, each ciphertext digit ci is decrypted
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with the same keystream digit ki as used in encryption and recovers the original plain-

text digit pi. The following is an example of additive stream cipher.

Example 4.1.1. Encryption:

PlainText : = 1001010111001010⊕
KeyStream : = 1010000110101011

−−−−−−−−−−−−−−−−

CipherText : = 0011010001100001

Decryption:

CipherText : = 0011010001100001⊕
KeyStream : = 1010000110101011

−−−−−−−−−−−−−−−−

PlainText : = 1001010111001010

where
⊕

denotes a bit-wise addition modulo 2 operation.

4.2 Brief overview of the proposed stream ciphers

This chapter proposes three stream ciphers based on quasigroups. Each cipher is a

synchronous stream cipher that uses a quasigroup operation instead of the XOR oper-

ation of the conventional stream ciphers for encryption/decryption of the message. So,

the new ciphers resolve the major issue of reused key attack that exists in the XOR-

based stream ciphers. Also, the proposed ciphers use a new {e, d}-transformation,
named {nel/r, ndl/r}-transformation instead of {e, d}-transformation of the exist-

ing cipher based on quasigroup [46]. This new transformation allows the proposed

ciphers to be resistant to known-plaintext, chosen-plaintext, and chosen-ciphertext at-

tacks [45, 80]. The details of the new {e, d}-transformation are given in section 2.2.15

of Chapter 2.

The proposed ciphers use a keystream of size as long as the plaintext/ciphertext, is

generated by a pseudo-random number generator. The ciphers consist of (i) an encryp-

tion algorithm, (ii) a decryption algorithm, and (ii) a keystream generation algorithm.
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For encryption, the ciphers use a quasigroup Q = (Zn, ∗) of order 16 or 256 (i.e.

n = 16 or 256) along with either an nel-transformation or an ner-transformation,

depending on the encryption algorithm. And for decryption, the ciphers use either

an ndl-transformation along with a left inverse quasigroup LIQ = (Zn, \) or an

ndr-transformation along with a right inverse quasigroup RIQ = (Zn, /) of order 16

or 256 (i.e. n = 16 or 256), depending on the decryption algorithm. The symbols ∗, \

and / are the binary operations, here called a quasigroup operation, a left inverse quasi-

group operation, and a right inverse quasigroup operation, respectively. The details of

Q = (Zn, ∗), LIQ = (Zn, \) and RIQ = (Zn, /) are given in section 2.2.5 of Chapter 2.

All the proposed stream ciphers are iterative in nature and can be seen as polyal-

phabetic substitution ciphers since the relationship between the plaintext and the cor-

responding ciphertext is one-to-many. Note that the polyalphabetic substitution cipher

is more secure than the monoalphabetic substitution cipher [56]. This is because, in

the monoalphabetic substitution cipher, each plaintext character is substituted with

the same ciphertext character; while in the polyalphabetic substitution cipher, each

plaintext character is substituted with different ciphertext characters. Each of these

substitution operations is carried out using a substitution table or a quasigroup. The

first stream cipher1 and the second stream cipher 2 use AES-256 and QG-PRNG for

generating their keystreams, respectively. These ciphers can encrypt/decrypt a maxi-

mum of 16 bytes (128 bits) of plaintext/ciphertext in each iteration. The third stream

cipher 3 uses MQG-PRNG for generating its keystream; and it can encrypt/decrypt

a maximum of 8 bytes (64 bits) of plaintext/ciphertext in each iteration. Note that

QG-PRNG and MQG-PRNG are quasigroup based pseudo-random number generators,

where for generating the pseudo-random sequences, the QG-PRNG uses a quasigroup

of order 256 while MQG-PRNG uses 16 quasigroups of order 16. Each of these stream

ciphers is discussed in the following sections.

1New symmetric key cipher based on a quasigroup and AES-256
2A novel stream cipher based on a quasigroup and QG-PRNG
3MQG-PRNG and non-associative quasigroup based stream cipher
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4.3 New symmetric key cipher based on a quasigroup and

AES-256

This section discusses the structure and the building elements of a stream cipher. It

is a symmetric key cipher and uses a secret key (denoted by K) for generating the

keystream. For encrypting the plaintext, the cipher uses a quasigroup Q of order 256.

In contrast, for decrypting the ciphertext, it uses a right inverse quasigroup RIQ of the

quasigroup Q. It keeps both the secret key K and the quasigroup Q/RIQ secret, due

to which the proposed cipher is resistant to various attacks, including known-plaintext,

chosen-plaintext, and chosen-ciphertext attacks. It uses AES-256 for generating the

keystream, denoted by K ′.

4.3.1 Selection of a quasigroup of order 256

A quasigroup operation that uses 1-byte plaintext characters and 1-byte random keystream

characters to produce 1-byte ciphertext characters at a time is the primary idea of em-

ploying a quasigroup of order 256. In the proposed algorithm, any order quasigroup in

place of quasigroup of order 256 can be employed. Higher-order quasigroups are prefer-

able because the number of quasigroups grows exponentially as the order increases.

Since all ASCII values can be represented in 8 bits, and each character has an integer

value ranging from 0 to 255, we chose a 256-order quasigroup in our proposed algo-

rithm. It can be verified that the number of quasigroups of order 256 is very large (see

section 2.2 of Chapter 2. So, it is practically impossible to guess correctly the employed

quasigroup.

4.3.2 Keystream generation

The encryption/decryption algorithm of the stream cipher uses a keystream K ′ with a

length equal to the plaintext/ciphertext. To generate such a long keystream the cipher

uses an AES-256 encryption system. Using a secret key K, an initialization vector IV ,

and a counter ’Counter’, the encryption algorithm of AES-256 generates keystream

K ′ of the required length. Also, the AES-256 encryption system assures that the

generated keystream K ′ is random. The algorithm of the keystream generation based

on the Cipher Block Chaining (CBC) mode of operation is given in Algorithm 3. In this

algorithm, N denotes the number of iterations that the keystream generation algorithm
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is to be performed, and the symbol ⊕ denotes an addition modulo 2 operation. The

Algorithm 3: Generation of keystream K
′

Input: 1. A Counter with 128 bits random value.

2. An IV with 128 bits initial value.

3. A secret key K of 256 bits.

Output: An 128-bit of keystream K ′.

[1] for i = 0 to N − 1 do

[2] IV = IV ⊕ Counter;

[3] K ′
[i×16+1,i×16+2,...,i×16+16] =AES-256 ENC(IV,K);

[4] IV = K ′
[i×16+1,i×16+2,...,i×16+16];

[5] Counter = Counter + 1;

algorithm generates 16 bytes of keystream in each iteration and repeated until the

keystream size is the same as that of the plaintext. The generated keystream can be

represented as

K ′
[1,2,...,n] = k1, k2, . . . , kn

where each ki is a 1-byte (character) value and will be used to encrypt the 1-byte

(character) value of the plaintext. Note that the generated keystream K ′ is different

from the secret key K used in AES-256. The keystream generation algorithm can use

either the encryption or decryption algorithm of AES with a secret key of 128/192/256

bits. The proposed stream cipher uses an AES encryption system with a 256-bit secret

key. The block diagram of the keystream generation is given in Figure 4.2.

4.3.3 Encryption algorithm

The encryption algorithm uses an ner-transformation along with a quasigroup Q =

(Z256, ∗) of order 256 for encrypting the plaintext P = p1 p2 p3 . . . pn using the generated

keystream K
′
= k1 k2 k3 . . . kn, and produces the ciphertext C = c1 c2 c3 . . . cn, whose

size is equal to the plaintext. The ner-transformation is defined (see section 2.2.15

of Chapter 2) as

ci = pi ∗ ki

where pi, ki, and ci are characters of 1-byte each, 1 ≤ i ≤ n, and ’∗’ is the quasigroup

operation corresponding the chosen quasigroup Q = (Z256, ∗). Note that the encryption
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Figure 4.2: Generation of keystream using AES-256.

algorithm works on characters of 1-byte each. It encrypts each plaintext character pi

using a keystream character ki and produces a ciphertext character ci. If the keystream

is not precomputed and is generated sequentially, the encryption algorithm can encrypt

16 bytes of plaintext in one iteration. The algorithm can encrypt the entire plaintext

in a single iteration if the keystream is precomputed. Graphical representation of the

encryption algorithm is shown in Figure 4.3. In this figure, an ner is nothing but

the ner-transformation. Example 4.3.4 illustrates the functioning of this encryption

algorithm.

Example 4.3.4. Consider the quasigroup Q = (Z6, ∗) with Z6 = {0, 1, 2, 3, 4, 5}, and
its operation table is given in Table 4.1. Let 16 bytes of plaintext P be

p1, p2, . . . , p16 = 4145230103452012,

and 16 bytes of the keystream K ′ be

k1, k2, . . . , k16 = 3410135243235301.

Then applying the foregoing encryption algorithm using the quasigroup Q given in Ta-

ble 4.1, we have 16 bytes of the ciphertext C as

c1, c2, . . . , c16 = 2552251225304302.
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Figure 4.3: Encryption algorithm.

4.3.5 Decryption algorithm

The decryption algorithm is the reverse of the encryption algorithm. It uses an ndr-transformation

along with the right inverse quasigroup RIQ = (Z256, /) of the quasigroup Q used in

the encryption algorithm. It recovers the plaintext P = p1 p2 p3 . . . pn from the cipher-

text C = c1 c2 c3 . . . cn using the same keystream K
′
= k1 k2 k3 . . . kn as used in the

encryption. The ndr-transformation is defined (see section 2.2.15 of Chapter 2) as

pi = ci/ki

where ’/’ is the right inverse quasigroup operation corresponding to the quasigroup

RIQ, pi, ki, and ci are characters of 1-byte each, 1 ≤ i ≤ n. Note that the algorithm

works on characters of 1-byte each, and it decrypts each ciphertext character ci using

a keystream character ki and produces a plaintext character pi. If the keystream is not

precomputed and is generated sequentially, the decryption algorithm can decrypt 16

bytes of ciphertext in one iteration. The algorithm can decrypt the entire ciphertext

in a single iteration if the keystream is precomputed. Graphical representation of the
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Table 4.1: Quasigroup of order 6.

∗ 0 1 2 3 4 5

0 5 4 0 3 2 1

1 0 1 2 4 5 3

2 3 2 5 1 0 4

3 1 0 4 5 3 2

4 4 5 3 2 1 0

5 2 3 1 0 4 5

decryption algorithm is shown in Figure 4.4. In this figure, an ndr is nothing but

the ndr-transformation. Example 4.3.6 illustrates the functioning of this decryption

algorithm.

Figure 4.4: Decryption algorithm.

Example 4.3.6. Consider the quasigroup RIQ = (Z6, /) with Z6 = {0, 1, 2, 3, 4, 5}, and
its operation table is given in Table 4.2. Note that RIQ is the right inverse quasigroup

of the quasigroup Q, whose operation table is given in Table 4.1 (see section 2.2.5 of

Chapter 2, for more details about quasigroup and its right inverse quasigroup). We
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consider the ciphertext C and the keystream K ′ form the Example 4.3.4. That is,

C = c1, c2, . . . , c16 = 2552251225304302

and

K ′ = k1, k2, . . . , k16 = 3410135243235301.

Then by applying the foregoing decryption algorithm using the quasigroup RIQ given

in Table 4.2, we recovered the original plaintext P as

p1, p2, p3, . . . , p16 = 4145230103452012.

Table 4.2: Right inverse quasigroup of order 6.

/ 0 1 2 3 4 5

0 1 3 0 5 2 4

1 3 1 5 2 4 0

2 5 2 1 4 0 3

3 2 5 4 0 3 1

4 4 0 3 1 5 2

5 0 4 2 3 1 5

4.3.7 Performance analysis

In this section, we analyzed the performance of the proposed stream cipher in terms

of time (speed) and space complexities. Also, its performance is compared with some

existing quasigroup based stream ciphers presented in the literature [12, 28, 43, 59, 60,

81].

• Space complexity: The space complexity of the proposed stream cipher is same as

that of the existing XOR-based stream ciphers, except for the space required for

the quasigroup used by the proposed cipher. The new cipher needs one quasigroup

of order 256 along with an S-box of 256 bytes since it employed AES-256 for

generating the keystream; that is, the cipher needs 65792 bytes of extra space

for encryption/decryption. The space required to store S-boxes or quasigroups of

the proposed cipher is also compared with that of the other existing quasigroup

based stream ciphers [12, 28, 43, 59, 60, 81]. The results of this analysis are shown
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in Table 4.3. It can be observed that the proposed cipher is as expensive as the

existing quasigroup based stream ciphers, except for Edon-80 introduced in [28].

Table 4.3: Comparison of space complexity of the proposed cipher with existing ciphers.

Stream ciphers
Space in KB

Encryption Decryption

Proposal cipher 64.25 64.25

Existing ciphers

Chakrabarti et al. [12] 64 16384

Edon-80 [28] 0.02 0.02

Lakshmi et al. [43] 64 64.007

Petrescu [59, 60] 64 16384

Zhang and Xu [81] 256 320

• Time complexity: The proposed stream cipher is implemented in C++ language

on a system with the following configuration: Intel(R) Core(TM) i5-2400 CPU

@3.40 GHz processor with 8 GB RAM and 64-bit Linux operating system. The

source code of the proposed cipher is run 1000 times for different inputs and

we calculated the average execution time in seconds. The cipher used the C++

standard <chrono> library to measure the execution time [38]. The performance

of the proposed cipher is compared with those of the existing quasigroup based

stream ciphers presented in literature [12, 28, 43, 59, 60, 81]. Table 4.4 shows

the time complexities of different ciphers, which are listed in the first column of

the table. For each of these ciphers, the second, third, and fourth columns of the

table list the execution times in seconds for different inputs. As a result, It can

be observed that the proposed cipher is faster than all the existing quasigroup

based stream ciphers, except for one introduced in [43].

4.3.8 Security analysis

The primary strength of the proposed stream cipher is that it uses AES-256 in Cipher

Block Chaining (CBC) mode encryption for generating the keystream K ′. Also, the

key elements for the AES-256 consist of the secret key K, the initialization vector IV ,
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Table 4.4: Comparison of time complexity of the proposed cipher with existing ciphers.

Stream ciphers
Execution time in seconds

1.22 MB 2.11 MB 6.01 MB

Proposal cipher 0.21 0.39 1.12

Existing ciphers

Chakrabarti et al. [12] 0.30 0.51 1.32

Edon-80 [28] 3.51 6.89 13.78

Lakshmi et al. [43] 0.04 0.09 0.28

Petrescu [59, 60] 0.23 0.40 1.15

Zhang and Xu [81] 0.62 1.24 3.73

and the Counter. Since the size of secret key K is 256 bits, it is resistant to brute force

attack as there are 2256 possible keys. AES-256 has already been proven to be secure

against variety of attacks, including brute force attack, related-key attack, and linear

and differential attacks. Hence the keystream K ′ generation is secure from various

attacks.

Note that the proposed stream cipher keeps both the quasigroup Q and the gen-

erated keystream K ′ secret so as to make the cipher resistant to known-plaintext,

chosen-plaintext, and chosen-ciphertext attacks. In known-plaintext attack, the crypt-

analyst knows a plaintext string p1 p2 . . . pn and the corresponding ciphertext string

c1 c2 . . . cn . In chosen-plaintext attack, the cryptanalyst chooses a plaintext string

p1 p2 . . . pn , and obtains the corresponding ciphertext string c1 c2 . . . cn by temporar-

ily accessing the encryption system. And in chosen-ciphertext attack, the cryptanalyst

chooses a ciphertext string c1 c2 . . . cn , and obtains the corresponding plaintext string

p1 p2 . . . pn by temporarily accessing the decryption system. For encrypting the plain-

text, if the quasigroup Q used to encrypt is not secret, it is easy for the cryptanalyst

to obtain the keystream K ′. So this stream cipher can not resist the known-plaintext,

chosen-plaintext, and chosen-ciphertext attacks. Consequently, we need to keep the

quasigroup Q secret, details are given in the next section.

4.3.8.1 Known plaintext attack

The proposed cipher uses an ner/ndr-transformation along with a quasigroupQ/RIQ

of order 256 in the encryption/decryption system. Note that the maximum number of
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quasigroups of order 256 is bounded above by

0.753× 10102,805

. Now, let us assume that a cryptanalyst knows a plaintext P = p1 p2 . . . pn and

the corresponding ciphertext C = c1 c2 . . . cn . Also, assume that everyone knows the

employed quasigroupQ. Then for determining the keystreamK ′ = k1, k2. . . . , kn, which

is a confidential element of the encryption-decryption system, the adversary must solve

the following system of equations corresponding to the ner-transformation used in

the encryption system:
c1 = p1 ∗ k1

c2 = p2 ∗ k2

· · ·

cn = pn ∗ kn


(4.1)

where k1, k2, . . . , kn are unknown.

This system of equations has a unique solution due to the uniqueness property of

the quasigroup (see section 2.2 of Chapter 2 ). So, the cipher can not resist the known-

plaintext attack. Whereas, if we keep the quasigroup Q secret, then the system of

equations given in Equation (4.1) has as many solutions as there are the number of

quasigroups of order 256. So, determining the employed quasigroup Q and hence the

keystream k1, k2, . . . , kn make it practically impossible. Therefore, the proposed stream

cipher is resistant to the known-plaintext attack.

Using a similar argument, it can be shown that the cipher is resistant to the chosen-

ciphertext and chosen-plaintext attacks as well.

4.3.8.2 Statistical test for randomness using NIST-STS test suite

The randomness of the ciphertexts obtained from the proposed stream cipher is tested

using the NIST-STS test suite [65]. Each NIST-STS test yields a P-value between 0 and

1 (both included) and indicates success or failure. A P-value represents the probability

that a perfect random number generator would produce a less random sequence than the

one being tested[65]. For these tests, we have chosen a threshold value (α) to be 0.01,

also called the significance level, and other parameters as shown in Table 4.5. Typically,

the value of α is chosen in the range [0.001, 0.01]. For the randomness of a sequence, we
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compare the P-value of a sequence to a threshold value (α). If P-value ≥ α, then the

sequence is considered to be random, otherwise non-random. We have used NIST Spec.

Publ. 800-22 rev. 1a package that consists of 15 types of statistical tests [65]. Each of

these 15 tests has different input parameters and a different number of P-values [13].

Each P-value corresponds to a single statistical test on a binary sequence. Some of

these tests perform a series of t sub-tests, t ∈ {2, 8, 18, 148}. Following are these 15

tests and some of their sub-tests:

• Frequency Test: It evaluates the frequency of ones and zeros in the entire se-

quence.

• Block Frequency (BF) Test: It evaluates the frequency of ones and zeros in m-bit

blocks.

• Cumulative Sum (CS) Test: It performs two types of cumulative sum tests (or

performs 2 sub-tests). Both evaluate whether the maximal cumulative sum of

partial sequences is outside the range for the expected behavior of a random

sequence.

• Runs Test: This test evaluates the longest sequence of contiguous ones in the

entire sequence and compares the oscillation between ones and zeros to a standard

frequency.

• Longest Run (LR) Test: It compares the longest contiguous run of ones in m-bit

blocks to the expected frequency of the same.

• Rank Test: It evaluates the rank of disjoint sub-matrices within the entire se-

quence.

• Discrete Fourier Transform (DFT) Test: It is implemented as a Fast Fourier

Transform. It detects repeating or periodic features that are near to each other.

• Non-overlapping Template (NOT) Test: The purpose of this test is to detect

generators that produce too many occurrences of a given non-periodic (aperiodic)

pattern. It performs 148 sub-tests and uses an m-bit window to search for a

specific m-bit pattern. If the pattern is not found, the window slides a one-bit

position. If the pattern is found, the window is reset to the bit after the found

pattern, and the search resumes.
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• Overlapping Template (OT) Test: It evaluates the number of occurrences of pre-

specified target strings.

• Universal Statistical (US) Test: It is also called a Maurer’s test. It detects whether

or not the sequence can be significantly compressed without loss of information.

A significantly compressible sequence is considered to be non-random.

• Approximate Entropy (AE) Test: It evaluates the frequency of all possible over-

lapping m-bit patterns across the entire sequence.

• Random Excursion (RE) Test: The purpose of this test is to determine if the the

number of visits to a state within a random walk exceeds what one would expect

for a random sequence. This test performs actually a series of 8 sub-tests.

• Random Excursion Variants (REV) Test: The purpose of this test is to detect

deviations from the expected number of visits to various states in the random

walk. This test performs actually a series of 18 sub-tests.

• Serial Test: It performs two types of serial tests (or performs 2 sub-tests). Both

compare the frequency of all the m-bit overlapping patterns in the full sequence

separately.

• Linear Complexity (LC) Test: It uses linear complexity to test for randomness.

Table 4.5: Parameters for the NIST-STS test.

Tests Block length(m)

Block frequency test 128

Non-overlapping template test 9

Overlapping template test 9

Approximate entropy test 10

Serial test 16

Linear complexity test 500

We run each of these tests for 1000 obtained ciphertext sequences. The size of each

sequence is 106 bits. Table 4.6 shows the results of the average P-value of the NIST-STS

test suite. As a result, it can be observed that the P-value of each of these tests crosses
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the significance level (α = 0.01), and conclude that the obtained ciphertext sequences

are random.

Table 4.6: Results of the NIST-STS test.

Si. No. Tests P-value

1 Frequency 0.507678

2 Block frequency 0.513950

3 Cumulative sum 0.675720

4 Runs 0.542138

5 Longest run 0.552834

6 Rank 0.443481

7 Discrete fourier transform 0.500707

8 Non-overlapping template 0.479753

9 Overlapping template 0.491251

10 Universal statistical 0.511753

11 Approximate entropy 0.471052

12 Random excursion 0.501743

13 Random excursion variants 0.494101

14 Serial 0.553913

15 Linear complexity 0.576939

4.4 A novel stream cipher based on a quasigroup and QG-

PRNG

This section discusses (i) a new cipher algorithm based on a quasigroup of order 256,

and (ii) a pseudo-random number generator based on a quasigroup of order 256, named

QG-PRNG. This stream cipher is an extension of work initially discussed in section 4.3.

It uses QG-PRNG for generating the keystream in place of AES-256 used in the previous

stream cipher. So, the new stream cipher is more efficient than the previous one. It can

be noted that to generate a keystream K ′ of 160 KB, AES-256 takes around 27499 µs,

while QG-PRNG takes only 579 µs. Because of this, the overall cipher is faster than

the previous cipher, and it takes around 6367 µs to encrypt data of 4MB, while the

previous stream cipher takes around 800301 µs. Also, the decryption algorithm of this

stream cipher uses the left inverse quasigroup in place of the right inverse quasigroup
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such as used in the previous cipher. The randomness of the obtained keystream K ′

generated by QG-PRNG is analyzed using the NIST-STS test suite. It is observed that

the outputs of QG-PRNG are highly random. The structure of the proposed stream

cipher and its building elements are discussed in the subsequent sections.

4.4.1 Keystream generation

The encryption/decryption algorithm uses a keystream K ′ of size as long as the plain-

text. To generate such a long keystream K ′, we used a pseudo-random number gen-

erator based on a quasigroup of order 256, named QG-PRNG. It uses an initialization

vector (IV ), also called a seed-value of 128 bits (16 bytes), and a quasigroup of order

256. The algorithm of QG-PRNG produces keystream K ′ of the required length. Since

the encryption algorithm requires the keystream K ′ to be random, QG-PRNG ensures

this. Workflow of the keystream generation is given in Figure 4.5.

Figure 4.5: Workflow of keystream generation using QG-PRNG.

Note that the algorithm of QG-PRNG is described as well as implemented using the

Output Feedback (OFB) mode of operation. Each iteration of QG-PRNG generates

128 bits (16 bytes) of keystream K ′ and it is repeated until the size of keystream K
′
is

the same as that of the plaintext. This generates the keystream as

K
′
= k1 k2 k3 . . . kn ,

where each ki is a 1-byte character and will be used to encrypt a 1-byte character

of the plaintext. It can also be implemented using other modes of operation such as

Cipher Feedback (CFB) mode, Cipher Block Chaining (CBC), and Counter (CTR)

mode. Each mode of operation has its advantages and disadvantages [67].
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Let IV = (s0, s1, . . . , s15) be a seed of 128 bits (16 bytes), where each si is a byte

value for 0 ≤ i ≤ 15. QG-PRNG employs two levels of e-transformation on IV

successively to arrive at the required keystream. Details of the e-transformation are

given in section 2.2.12 of Chapter 2. Each of these two levels of e-transformation is

carried out in the specified range and direction. We use e-left(sj → sj+3, ℓ) transfor-

mation, commonly known as e-transformation that works in the increasing sequence

of bytes (8-bit values) or from the left to right direction; and e-right(sj+3 → sj , ℓ)

transformation, it works in the reverse direction of e-left(sj → sj+3, ℓ). The descrip-

tion of the e-left(sj → sj+3, ℓ) and e-right(sj+3 → sj , ℓ) are as follows:

e-left(sj → sj+3, ℓ) :


sj = ℓ ∗ sj
sj+1 = sj ∗ sj+1

sj+2 = sj+1 ∗ sj+2

sj+3 = sj+2 ∗ sj+3

and

e-right(sj+3 → sj , ℓ) :


sj+3 = ℓ ∗ sj+3

sj+2 = sj+3 ∗ sj+2

sj+1 = sj+2 ∗ sj+1

sj = sj+1 ∗ sj
where ∗ is one of the quasigroup operations corresponding to the selected quasigroup

Q = (Z256, ∗) and ℓ denotes a leader that belongs to Z256. The successive application

of these two levels of e-transformation is as follows:

• First level of e-transformation:- The first level of e-transformation on the

original IV for the first iteration (or on the intermediate IV for the remaining

iterations) is carried out using the following four successive transformations with

initial leader a ∈ Z256: (i) e-left(s0 → s3, ℓ = a), (ii) e-right(s7 → s4, ℓ = s3),

(iii) e-left(s8 → s11, ℓ = s4), and (iv) e-right(s15 → s12, ℓ = s11). This is

depicted in Figure 4.6.

Figure 4.6: First level of e-transformation.
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• Second level of e-transformation:- The second level of e-transformation works

in reverse order of the first level of e-transformation, as shown in Figure 4.7.

And the e-transformation is applied on the output of the first level of e-transformation.

The successive expressions governing this transformation are: (i) e-left(s12 →
s15, ℓ = b), (ii) e-right(s11 → s8, ℓ = s15), (iii) e-left(s4 → s7, ℓ = s8), and (iv)

e-right(s3 → s0, ℓ = s7), where the initial leader b ∈ Z256.

Figure 4.7: Second level of e-transformation.

These successive transformations ensure that if a single bit of the original seed (IV )

is changed, then each bit of the intermediate IV (or in the corresponding keystream)

would be changed with high probability. The pseudocode of the generation of the

keystream based on the Output Feedback (OFB) mode of operation is given in Algo-

rithm 4. In this algorithm, N denotes the number of iterations that the QG-PRNG is

to be performed, and IVI denotes the I
th iteration initialization vector (or intermediate

IV ). For the 0th iteration, IV0 is IV itself. In each iteration of QG-PRNG, line num-

bers from 3 to 6 perform the first level of e-transformation on the original IV0 (or on

the intermediate IVI , I ≥ 1). This is followed by the second level of e-transformation

specified in the lines from 7 to 10. That is, both the levels of e-transformation update

IVI in each iteration of QG-PRNG, and the results are stored in the same IVI . Also,

the recent IVI is fed into the next iteration of QG-PRNG.

4.4.1.1 Statistical test of QG-PRNG using NIST-STS test suite

The randomness of the obtained keystream K ′, which is generated by the QG-PRNG,

is tested using the NIST-STS test suite [65]. The NIST-STS test suite consists of

various statistical tests. The details of each of such tests are discussed already in

section 4.3.8.2. We have run each test of the NIST-STS test suite with the significance

level α = 0.01. We ran each test of NIST-STS for 1000 obtained pseudo-random

sequences (keystreams), where the size of each keystream is 106 bits. The obtained
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Algorithm 4: Pseudocode of the QG-PRNG based on OFB mode

Input: 1. Original IV = (s0, s1, . . . , s15) of 128 bits (16 bytes).

2. A quasigroup Q = (Z256, ∗) of order 256.
3. The initial leaders a, b ∈ Z256

Output: Each iteration produces 16 bytes (128 bits) of keystream.

[1] for I = 0 to N − 1 do

[2] IVI = IV ;

[3] ℓ = a, e-left(s0 → s3, ℓ); ▷ 1st level of e-transformation start

[4] ℓ = s3, e-right(s7 → s4, ℓ);

[5] ℓ = s4, e-left(s8 → s11, ℓ);

[6] ℓ = s11, e-right(s15 → s12, ℓ); ▷ 1st level of e-transformation end

[7] ℓ = b, e-left(s12 → s15, ℓ); ▷ 2nd level of e-transformation start

[8] ℓ = s15, e-right(s11 → s8, ℓ);

[9] ℓ = s8, e-left(s4 → s7, ℓ);

[10] ℓ = s7, e-right(s3 → s0, ℓ); ▷ 2nd level of e-transformation end.

[11] IV = IVI

results of the QG-PRNG are compared with that of the AES-256. Table 4.7 shows the

results of both the QG-PRNG and AES-256. From the results, as shown in Table 4.7,

It can be observed that the randomness of the QG-PRNG is approximately the same

as that of the AES-256.

4.4.2 Encryption algorithm

The encryption algorithm of this cipher is almost the same as that of the encryption

algorithm of the previous cipher, discussed in section 4.3.3. The only difference is

that it uses an nel-transformation instead of ner-transformation. The description

of nel-transformation is specified in section 2.2.15 of Chapter 2. It uses the same

quasigroup as used by the keystream generation algorithm QG-PRNG . For a plaintext

P = p1 p2 p3 . . . pn and the keystream K
′
= k1 k2 k3 . . . kn, it produces the ciphertext

C = c1 c2 c3 . . . cn, whose size is equal to the plaintext, as follows:

ci = ki ∗ pi

where pi is a plaintext character, ki is a keystream character, and ci is a ciphertext

character; the size of each character is 8 bits (1-byte), 1 ≤ i ≤ n, and ’∗’ is the
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Table 4.7: For 1000 random sequences, results of the NIST-STS test suite for QG-PRNG

as compared to AES-256.

Tests
QG-PRNG AES-256

Number

of suc-

cess

Number

of fail-

ures

Proportion

of success

out of 1000

Number

of suc-

cess

Number

of fail-

ures

Proportion

of success

out of 1000

Frequency 995 5 0.995 991 9 0.991

BF 990 10 0.990 992 8 0.992

CS 992 8 0.992 991 9 0.991

Runs 990 10 0.990 989 11 0.989

LR 989 11 0.989 990 10 0.990

Rank 994 6 0.994 992 8 0.992

DFT 987 13 0.987 986 14 0.986

NOT 981 19 0.981 980 20 0.980

OT 994 6 0.994 995 5 0.995

US 988 12 0.988 988 12 0.988

AE 991 9 0.991 990 10 0.990

RE 988 12 0.988 985 15 0.985

REV 990 10 0.990 990 10 0.990

Serial 993 7 0.993 994 6 0.994

LC 996 4 0.996 983 17 0.983

quasigroup operation corresponding the chosen quasigroup Q = (Z256, ∗) of order 256.
The workflow of the encryption algorithm is shown in Figure 4.8. In this figure, nel

is nothing but an nel-transformation. Functionality of this encryption algorithm

is illustrated by Example 4.4.3. Compare this with the one given in Example 4.3.4 of

section 4.3.3. Note that for the same inputs (P,K ′, and Q), these two examples produce

different results. This is because the quasigroup Q = (Z256, ∗) is a non-commutative

algebraic structure, i.e., as pi ∗ ki ̸= ki ∗ pi.

Example 4.4.3. Consider the same quasigroup QG = (Z6, ∗) with Z6 = {0, 1, 2, 3, 4, 5}
used in Example 4.3.4, and its operation table is given in Table 4.1. We also consider

the same plaintext P to be encrypted and the same keystream K ′ used in Example 4.3.4.

That is,

P = p1, p2, . . . , p16 = 4145230103452012
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Figure 4.8: Workflow of encryption algorithm.

and

K ′ = k1, k2, . . . , k16 = 3410135243235301.

Then applying the foregoing encryption algorithm using the quasigroup Q given in Ta-

ble 4.1, we have the ciphertext as

C = c1, c2, . . . , c16 = 3551252245021142.

4.4.4 Decryption algorithm

The decryption algorithm is the reverse of the encryption algorithm. It uses two quasi-

groups Q and LIQ of order 256, where Q is used for generating the keystream K ′ and

LIQ is used for decryption since both encryption and decryption algorithms use the

same keystream. The decryption algorithm of this cipher is almost the same as that of

the decryption algorithm of the previous cipher, discussed in section 4.3.5. The only

difference is that it uses an ndl-transformation instead of ndr-transformation. The

description of ndl-transformation is specified in section 2.2.15 of Chapter 2. It uses

the left inverse quasigroup LIQ = (Z256, \) of the quasigroup Q used in the encryp-

tion algorithm. The main principle of the decryption algorithm is that for the given

ciphertext C = c1 c2 c3 . . . cn and the same keystream K
′
= k1 k2 k3 . . . kn used in the

encryption algorithm, it recovers the original plaintext P = p1 p2 p3 . . . pn as follows:

pi = ki \ ci
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where ’\’ is the left inverse quasigroup operation corresponding to the quasigroup

LIQ, and all pi, ki, and ci are characters of 8 bits (1-byte), 1 ≤ i ≤ n. Workflow

of the decryption algorithm is given in Figure 4.9. In this figure, ndl is nothing but

an ndl-transformation. Example 4.4.5 illustrates the functioning of this decryption

Figure 4.9: Workflow of decryption algorithm.

algorithm.

Example 4.4.5. Consider the quasigroup LIQ = (Z6, \) with Z6 = {0, 1, 2, 3, 4, 5}.
Its operation table is given in Table 4.8. Note that LIQ is the left inverse quasigroup

of the quasigroup Q, whose operation table is given in Table 4.1 (see section 2.2.5

of Chapter 2, for more details about quasigroup and its left inverse quasigroup). We

consider the ciphertext C and the keystream K ′ from the Example 4.4.3. That is,

C = c1, c2, . . . , c16 = 3551252245021142

and

K ′ = k1, k2, . . . , k16 = 3410135243235301.

Then by applying the foregoing decryption algorithm using the quasigroup LIQ given

in Table 4.8, we recovered the original plaintext P as

p1, p2, p3, . . . , p16 = 4145230103452012.

4.4.6 Performance analysis

The proposed cipher is implemented in C++, its performance is analyzed in terms of

space and time (speed) complexities by comparing it with the previous cipher discussed
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Table 4.8: Right inverse quasigroup of order 6.

\ 0 1 2 3 4 5

0 2 5 4 3 1 0

1 0 1 2 5 3 4

2 4 3 1 0 5 2

3 1 0 5 4 2 3

4 5 4 3 2 0 1

5 3 2 0 1 4 5

in section 4.3 and some existing quasigroup based stream ciphers presented in the

literature [12, 28, 43, 59, 60, 81]. To analyze the performance of this cipher, we used the

same procedures as we used to analyze the previous cipher, discussed in section 4.3.7.

The cipher ran 1000 times for different inputs and we calculated the average execution

time in seconds. Experimental results for both time and space complexities are given in

Table 4.9. If we compare this result with the previous results shown in section 4.3.7, it

can be observed that in terms of memory requirement, this cipher is a bit more expensive

than the previous ciphers. But, it is faster than our first cipher discussed in section 4.3,

including other existing ciphers introduced in literature [12, 28, 43, 59, 60, 81].

Table 4.9: Time and space complexities of the proposed cipher.

Stream cipher
Execution time in seconds Space in KB

1.22 MB 2.11 MB 6.01 MB Encryption Decryption

Proposed cipher 0.002 0.003 0.007 64 128

4.4.7 Security analysis

For generating the keystream K ′, the proposed cipher uses QG-PRNG. The QG-PRNG

is a pseudo-random number generator that uses an initialization value IV (also called

a seed value) of 128 bits along with a quasigroup Q = (Z256, ∗) of order 256. As

discussed in section 2.2 of Chapter 2, the maximum number of quasigroups of order

256 is bounded above by

0.753× 10102,805.

71



4. STREAM CIPHERS BASED ON QUASIGROUP

So, QG-PRNG can generate a maximum of 0.753×10102,805 possible keystreams K ′ for

each IV. Since, quasigroupQ is one of the core elements of both the schemes (QG-PRNG

and encryption/decryption algorithms), so it is kept secret. If the quasigroup Q used is

not secret, it is easy for the cryptanalyst to crack the cipher against a known-plaintext

attack. This is already illustrated in the previous section 4.3.8.1. Typically, IV is known

to everyone. However, our observation is that for any cryptographically secure pseudo-

random generator, we need a secret random seed so that the corresponding output

is unpredictable. If we keep IV secret along with the quasigroup Q, the keystream

generator (QG-PRNG) can be seen to provide greater security. This is because the

security of the QG-PRNG depends not only on the IV but also on the employed

quasigroup Q, which can be changed rapidly. For determining the IV and the employed

quasigroup Q, a cryptanalyst can apply the brute force methods as follows:

• Exhaustive IV search only attack : The QG-PRNG uses an IV of 128 bits. There-

fore, the number of possible IV s is 2128 ≈ 3.4× 1038. Let us assume cryptanalyst

uses a supercomputer and tries 5.37×1017 IV s per second, then the cryptanalyst

needs around 2.01 × 1013 years to determine the employed IV . This is because

these days a supercomputer can execute 5.37× 1017 FLOPS1 [76].

• Quasigroups only attack : The QG-PRNG uses only one quasigroup of order 256,

and a maximum number of quasigroup of order 256 is 0.753×10102805. Here also,

we employ the same argument as that given in the exhaustive IV search only

attack. That is, if a cryptanalyst tries 5.37 × 1017 quasigroups per second, then

the attacker needs around 0.044×10102781 years to guess the employed quasigroup.

• Attack complexity : The attack complexity of QG-PRNG can be defined in the

following two ways: (i) If we keep the IV public, then the attack complexity

of QG-PRNG against brute-force attack is equivalent to that of the quasigroups

only attack, and (ii) if we keep the IV secret along with quasigroup Q, then

the attack complexity of QG-PRNG against brute-force attack is equal to the

number of computations required by a cryptanalyst to discover both the IV and

the employed quasigroup. But this is equal to the product of the number of

computations required by the exhaustive IV search only attack and the number

1Floating-point Operations Per Second
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of computations required by the quasigroups only attack. So, the complexity

of brute force attack (or key-space complexity) against QG-PRNG is equal to

2.560 × 10102843. That is, if an attacker performs 5.37 × 1017 computations per

second [76], then the cryptanalyst needs around 0.151 × 10102819 years to crack

the QG-PRNG.

In the case of the encryption of the proposed stream cipher, the same quasigroup

Q is used in both the encryption algorithm and the QG-PRNG. The quasigroup Q

used in the QG-PRNG of the decryption is also the same as that of the encryption.

However, in the case of decryption, the quasigroup used is the left inverse of that used

in the encryption. This is because both encryption and decryption algorithms use the

same keystream K ′. As discussed above, in the quasigroups attack, it is practically

impossible to determine the employed quasigroups. Hence, the proposed cipher is

resistant to brute-force attacks.

4.4.7.1 Known plaintext attack

Since the encryption/decryption algorithm of this cipher is almost the same as that

of the previous cipher, discussed in section 4.3. The only difference is that it uses

nel/ndl-transformation instead of ner/ndr-transformation for encrypting/decrypting

the messages. Therefore, the attack complexity of this cipher against known-plaintext

attack would be the same as that of the previous cipher illustrated in section 4.3.8.1.

The attack can be carried out by solving the following system of equations:

c1 = k1 ∗ p1

c2 = k2 ∗ p2

· · ·

cn = kn ∗ pn


(4.2)

where k1, k2, . . . , kn are unknown. This system of equations has as many solutions as

there are the number of quasigroups of order 256., which is practically infinite, and

hence the cipher is resistant to known-plaintext attack.

Using a similar argument, it can be shown that the cipher is resistant to the chosen-

ciphertext and chosen-plaintext attacks as well.
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4.4.7.2 Reused key attack

Reused key attack is applied on a stream cipher that uses the keystream more than

once for encrypting the messages. If we use the same keystream K ′ to encrypt two or

more different messages, an attacker in the XOR-based stream ciphers, can eliminate

the encryption by XORing the two messages; whereas in the proposed cipher such an

elimination is not possible. To see this, consider

C1 = K ′ ∗M1

C2 = K ′ ∗M2

where C1 and C2 are the ciphertexts obtained using the proposed stream cipher, and ∗
is one of the quasigroup operations corresponding to the employed quasigroup of order

256. If we use ⊕ operation instead of ∗, then the cipher becomes XOR-based stream

cipher and the cryptanalyst in the reused key attack computes

C1 ⊕ C2 = (K ′ ⊕M1)⊕ (K ′ ⊕M2) = M1 ⊕M2.

where ⊕ is a bit-wise addition modulo 2 operation. See that the obtained byte sequence

does not depend on the keystreamK ′. In other words, if anyone intercepts two messages

encrypted with the same key, they can recover M1⊕M2 which is a form of running key

cipher. Even if neither message is known, as long as both the messages are in a natural

language, such a cipher can often be broken because of enough redundancy present in

English and ASCII encoding. So, an attacker can easily recover the original messages

from:

C1 ⊕ C2 = M1 ⊕M2 → M1,M2

But in our case:

C1 ∗ C2 = (K ′ ∗M1) ∗ (K ′ ∗M2) ̸= M1 ∗M2

Hence, the proposed stream cipher is resistant to reused-key attack.

4.4.7.3 Statistical attack

The encryption system of the proposed cipher uses a quasigroup Q = (Z256, ∗) with

Z256 = {0, 1, . . . , 255}. All possible elements of Z256 occurs with equal probability in

the quasigroup Q. Also, the algorithm of keystream generation (QG-PRNG) uses the
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quasigroup Q for generating the keystream K ′ = k1, k2, . . . , kn, where each kj is a byte

value and belongs to Z256, 1 ≤ j ≤ n. So, all possible elements of Z256 also occur with

equal probability in the generated keystream sequence k1, k2, . . . , kn. That is, each

element of Z256 occurs as often as any other in each position of k1, k2, . . . , kn. Since

the probability P (kj) =
1

256 , 1 ≤ j ≤ n, the distribution of the keystream sequence is

uniform. We cannot say the plaintext p1, p2, . . . , pn is a random sequence. It can be

inferred that the corresponding ciphertext c1, c2, . . . , cn is uniformly distributed. This is

because, the ciphertext obtained using the proposed cipher is shown in the next section

to be random. So, the distribution of the elements in the ciphertext c1, c2, . . . , cn is

also uniform. The resistance of the proposed stream cipher to a statistical attack seems

very good.

4.4.7.4 Statistical test for randomness using NIST-STS test suite

The randomness of the obtained ciphertexts is tested using the NIST-STS test suite [65].

The NIST-STS test suite consists of various statistical tests. The details of each of such

tests are discussed in section 4.3.8.2. We ran each test of the NIST-STS test suite using

a significance level α = 0.01 for three inputs (i) input contains all binary 0′s (0X00),

(ii) input contains all binary 1′s (0XFF), and (iii) input contains random values. The

size of each input file is 1048576 bits. We generated 1000 binary sequences (ciphertexts)

for each of these three files using 1000 different keystreams. Now, these 1000 binary

sequences of each file are tested using NIST-STS test suite. The results of each of these

tests are shown in Table 4.10. The first column of the table lists the name of the tests

carried out. The proportion of sequences that passed a statistical test at α = 0.01

significance level for all 0X00, all 0XFF, and random inputs are listed in columns second,

third, and fourth, respectively. According to the experimental results, as shown in

Table 4.10, It can be observed that on average, 98.99% of sequences pass each of these

tests for the significance level α = 0.01, so, it can be concluded that the proposed cipher

produces highly random binary sequences.
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Table 4.10: NIST-STS test results for the 1000 ciphertexts produced by the new cipher

for variant inputs.

Tests Proportion of

success out of

1000 for all 0X00

input

Proportion of

success out of

1000 for all 0XFF

input

Proportion of

success out of

1000 for random

input

Frequency 0.988 0.996 0.983

Block frequency 0.978 0.994 0.989

Cumulative sum 0.980 0.991 0.991

Runs 0.972 0.993 0.990

Longest run 0.997 0.995 0.995

Rank 0.996 0.989 0.991

Discrete fourier transform 0.992 0.993 0.990

Non-overlapping template 0.979 0.989 0.988

Overlapping template 0.996 0.992 0.991

Universal statistical 0.988 0.988 0.988

Approximate entropy 0.987 0.990 0.992

Random excursion 0.989 0.985 0.987

Random excursion variants 0.992 0.987 0.989

Serial 0.991 0.992 0.991

Linear complexity 0.992 0.987 0.989

4.5 MQG-PRNG and non-associative quasigroup based

stream cipher

This section discusses a modified version of the previous ciphers, discussed in sec-

tions 4.3 & 4.4. The main goal of proposing this cipher is to reduce the space complex-

ities of the previous ciphers. This can be done using a smaller order quasigroup instead

of a larger one. And hence, we carried it out using a quasigroup of order 16 instead of

a quasigroup of order 256 that was used in the previous ciphers. It is a symmetric key

cipher and uses 16 quasigroups of order 16 and their inverse quasigroups in encryption

and decryption algorithms, respectively. These 16 quasigroups are generated during the

encryption/decryption process by permuting the rows of the original non-associative

quasigroup Q = (Z16, ∗) of order 16, where the size of each quasigroup is 128 bytes.
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That is, the proposed cipher leverages the space of a single quasigroup and uses 16

quasigroups. As a result, the space required by 16 quasigroups (2048 bytes) is reduced

to that of a single quasigroup (128 bytes).

The proposed cipher consists of three parts: (i) a keystream generation algorithm,

(ii) an encryption algorithm, and (iii) a decryption algorithm. The cipher uses a

keystream K ′, generated by a keystream generation algorithm (or a pseudo-random

number generator), which is based on multiple (16) quasigroups, named here as MQG-

PRNG. The MQG-PRNG is also described in this section. Both the schemes (MQG-

PRNG and encryption/decryption algorithms) are iterative and use a different set of

16 quasigroups of order 16. Each iteration of both the schemes produces 16 nibbles

(64 bits) of output. That is, for each iteration, MQG-PRNG generates a 16 nibbles

(64 bits) of the keystream, and the cipher encrypts/decrypts a 16 nibbles of plain-

text/ciphertext. The randomness of the pseudo-random number (keystream K ′) gen-

erated by MQG-PRNG is analyzed using the NIST-STS test suite. We noted that the

obtained keystream K ′ is highly random.

4.5.1 Generation of quasigroups

Our proposed schemes use 16 quasigroups of order 16 for both the keystream generation

and the encryption/decryption algorithms. Let Q = (Z16, ∗) be an original quasigroup

of order 16 over set Z16 = {0, 1, . . . , 15}. By permuting the rows of the multiplication

(or operation) table of the quasigroup Q, we arrive at another quasigroup. So, by per-

muting the rows of the quasigroup Q, 16! quasigroups can be created. That is, these 16!

quasigroups are the result of permutations of rows of the original quasigroup Q. Note

that both schemes (encryption/decryption and keystream generation algorithms) use

only 16 quasigroups. So, any 16 out of the total 16! quasigroups can be selected. Let the

selected quasigroups be denoted by Q0 = (Z16, ∗0), Q1 = (Z16, ∗1), ..., Q15 = (Z16, ∗15),
where ∗0, ∗1, ..., ∗15 are the quasigroup operations corresponding to Q0, Q1, ..., Q15, re-

spectively. Note that all these 16 quasigroups need not be stored. This is because each

quasigroup consists of the same rows but in a different order (permutation).

The proposed schemes are iterative in nature, and each iteration of the proposed

schemes uses only one quasigroup out of 16 quasigroups. Also, a quasigroup may be

used in more than one iteration. This is decided by a 16× 1 multiplexer used in each

iteration of the proposed schemes. Multiplexer is a combinational circuit that has a
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maximum of n input values for k selection lines and it produces a single output for each

input, where n = 2k. This multiplexer can also be used to select a quasigroup of order

n by permuting the rows of an original quasigroup Q = (Zn, ∗), given in section 2.2.25

of Chapter 2. Here, in this case, k = 4. So, as in the case of Equation 2.24 of Chapter 2,

the following equation can be used to select a total of 16 quasigroups of order 16

Qi = (R(0+Comp)mod 16, R(1+Comp)mod 16, . . . , R(15+Comp)mod 16) (4.3)

where R0, R1, . . . , R15 denote row numbers of the original quasigroup Q = (Z16, ∗),
Qi ∈ {Q0, Q1, . . . , Q15}, 0 ≤ Comp, i ≤ 15, and the value of Comp is determined as

follows: Let SD be a seed (or an intermediate seed) of 64 bits (16 nibbles), which is

used to generate a 64-bit of keystream K ′ in each iteration of the keystream generation

algorithm, described later in section 4.5.2. Let both the seed SD and the keystream K ′

of 16 nibbles be organized as a 4×4 matrix of sj ’s as shown in Figure 4.10, 0 ≤ j ≤ 15.

Then, the value of Comp is calculated as

Figure 4.10: Representation of SD or keystream K ′ of length 16 nibbles.

Comp = Temp0 ⊕ Temp1 ⊕ Temp2 ⊕ Temp3,

where,Temp0 = s0 ⊕ s4 ⊕ s8 ⊕ s12,

Temp1 = s1 ⊕ s5 ⊕ s9 ⊕ s13,

Temp2 = s2 ⊕ s6 ⊕ s10 ⊕ s14,

Temp3 = s3 ⊕ s7 ⊕ s11 ⊕ s15.

(4.4)

The Comp is a compression function, which is used in both the keystream generation

and the encryption/decryption algorithms that compresses a 64-bit value to a 4-bit

value, denoted by x0, x1, x2 and x3. These four bits are being considered as the selection
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lines of the 16 × 1 multiplexer employed in both schemes (encryption/decryption and

keystream generation algorithms), which are updated by the current iteration key of

the keystream K ′ in the case of encryption algorithm; whereas it is the current iteration

seed SD (or intermediate SD) in the case of the keystream generation algorithm. The

multiplexer selects or generates a quasigroup based on the current state of selection

lines x0, x1, x2, x3. The value of xα is either 0 or 1, where x0 and x3 are the least

and the most significant bits, 0 ≤ α ≤ 3. If x3 = 0, x2 = 0, x1 = 0, x0 = 0, then the

multiplexer selects or generates a quasigroup Q0. If x3 = 0, x2 = 0, x1 = 0, x0 = 1,

then the multiplexer selects or generates a quasigroup Q1, and so on.

Note that using the same equation (Equation 4.3) to generate the row’s permuta-

tions on the left inverse quasigroup of the quasigroup used in encryption, the decryption

algorithm that uses this left inverse quasigroup gives the correct result, see Theorem 1

in Chapter 2.

4.5.2 Generation of keystream

The new stream cipher uses a keystream of size as long as the plaintext/ciphertext. To

generate such a long keystream, we used a pseudo-random number generator based

on multiple quasigroups of order 16, named here as MQG-PRNG. It uses a seed

SD = (IV, Counter) of 64 bits (16 nibbles). The SD is a combination of an initial-

ization value (IV ) and a Counter, where each of IV and Counter is 64 bits in size. For

a cryptographically secure pseudo-random generator, we need both IV and Counter

to be random so that the corresponding output is unpredictable. For generating the

keystream, the MQG-PRNG uses 16 quasigroups of order 16. These 16 quasigroups

are generated during the keystream generation based on an original non-associative

quasigroup Q = (Z16, ∗) of order 16. The algorithm of MQG-PRNG is implemented

using the Cipher Block Chaining (CBC) mode of operation. That is, the output of an

iteration of the MQG-PNRG is fed into the next iteration of MQG-PRNG as inter-

mediate IV . Also, the Counter is increased by one. Each iteration of MQG-PRNG

uses either SD or intermediate SD of 64 bits along with a quasigroup Qi = (Z16, ∗i),
which is randomly selected out of 16 quasigroups, 1 ≤ i ≤ 16. Selection of this quasi-

group is based on a 16× 1 multiplexer employed in each iteration of the MQG-PRNG.

The workflow of the keystream generation is given in Figure 4.11. This generates the

keystream K ′ = k1 k2 k3 . . . kn , where each ki is a nibble value and will be used to
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Figure 4.11: Workflow of keystream generation using MQG-PRNG.

encrypt a nibble value of the plaintext. The keystream generation algorithm can also

be implemented using other modes of operation such as Cipher Feedback (CFB) mode,

Output Feedback (OFB), and Counter (CTR) mode. Each mode of operation has their

advantages and disadvantages [67].

Let SD = (s0, s1, . . . , s15) be a seed of 64 bits (16 nibbles), where each si is a

nibble value for 0 ≤ i ≤ 15. The algorithm of MQG-PRNG uses two levels of

e-transformation for generating the keystream K ′. Note that the algorithm of MQG-

PRNG is almost the same as that of the algorithm of QG-PRNG, discussed in sec-

tion 4.4.1. This is because both (MQG-PRNG and QG-PRNG) use two successive

levels of e-transformation on SD/IV (or intermediate SD/IV ) to arrive at the re-

quired keystream K ′. These two levels of the e-transformation are also described in

section 4.4.1. However, some of the differences between QG-PRNG and MQG-PRNG

are as follows:

1. QG-PRNG uses a single quasigroup of order 256, while MQG-PRNG uses 16

quasigroups of order 16, where these 16 quasigroups are generated based on an

original non-associative quasigroup Q.

2. QG-PRNG uses an IV of 128 bits (16 bytes), while MQG-PRNG uses an SD of

64 bits (16 nibbles).

So, based on the algorithm of QG-PRNG, which is given in Algorithm 4 of section 4.4.1,

the algorithm of MQG-PRNG is designed and it is given in Algorithm 5. In this al-

gorithm, N denotes the total number of iterations that the MQG-PRNG is to be
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Algorithm 5: Pseudocode of the MQG-PRNG based on CBC mode

Input: 1. Original SD = (s0, s1, . . . , s15) of 64 bits (16 nibbles).

2. A non-associative quasigroup Q = (Z16, ∗) of order 16.
3. The initial leaders a, b ∈ Z16

Output: Each iteration produces 16 nibbles (64 bits) of keystream.

[1] for I = 0 to N − 1 do

[2] SDI = IV ⊕ Counter;

[3] Qi =selection of a quasigroup based on Ith iteration SDI ;

[4] Followed by successive two levels of e-transformation specified

in line numbers from [3] to [10] of Algorithm 4;

[5] IV = SDI ;

[6] Counter = Counter+1;

performed, Qi denotes a selected quasigroup of order 16 based on current SDI , and

its corresponding quasigroup operation is denoted by ∗i. SDI denotes the Ith iteration

seed value (or intermediate SD). For the 0th iteration, SD0 is SD itself. In each iteration

of MQG-PRNG, line number [4] performs both levels of e-transformation on the

SDI , which is defined in Algorithm 4. That is, both the levels of e-transformation

update SDI in each iteration of MQG-PRNG and the results are stored in the same

SDI . Also, the recent SDI is fed into the next iteration of MQG-PRNG. Each iteration

of MQG-PRNG generates 64 bits (16 nibbles) of keystream and is repeated until the

size of keystream K ′ is the same as that of the plaintext/ciphertext. Since the encryp-

tion/decryption algorithm requires the keystream to be random, MQG-PRNG ensures

this.

4.5.3 Analysis of the MQG-PRNG

The key elements of MQG-PRNG are the initialization vector IV of 64 bits, Counter of

64 bits, and 16 quasigroups of order 16. These 16 quasigroups are generated based on an

original non-associative quasigroup Q that acts as a secret key. It can be seen that the

maximum number of non-associative quasigroups of order 16 is bounded above by 2456

(see Equation 2.9 of section 2.2.3 in Chapter 2). So, the algorithm of MQG-PRNG can

generate a maximum of 2456 possible keystreams K ′ for each seed SD. Since quasigroup

Q functions as the core of the proposed scheme, it is kept secret. If the quasigroup Q
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used is not secret, it is easy for the attacker to crack the proposed scheme against a

chosen-plaintext attack, illustrated later in section 4.5.7.3. In order to determine the

employed quasigroup, an attacker can apply the brute-force methods as follows:

•Quasigroup attack : The MQG-PRNG uses a non-associative quasigroup of order 16,

which acts as a secret key, and a maximum number of non-associative quasigroups of

order 16 is 2456 (see Equation 2.9 of section 2.2.3 in Chapter 2). Assuming an at-

tacker uses a supercomputer and tries 537.21 × 1015 ≈ 258 quasigroups per second,

then the attacker needs around 2373 years to determine the employed quasigroup. Note

that nowadays supercomputers can execute 537.21 PFLOPS = 537.21 × 1015 ≈ 258

floating-point operations per second (FLOPS) [76].

4.5.3.1 Avalanche effect of the keystream K ′

In this subsection, we looked at how the MQG-PRNG modifies the bits in a pseudo-

random sequence (keystream) when the seed (SD) is modified slightly. Whenever a single

bit of a seed is modified (from 1 to 0 or from 0 to 1), and if a pseudo-random number

generator (PRNG) changes the pseudo-random sequence’s bits with a probability of

approximately 50%, then the PRNG would provide good diffusion power and protection

from some slide and related-key attacks.

We conducted various experiments to evaluate the performance of the MQG-PRNG

against the avalanche effect on the keystream K ′. In each experiment, we chose special

cases of the seeds, changed a particular bit in each of the seeds, generated the corre-

sponding keystreams, and we compared them with the original keystream to see how

they differ from each other.

Here, we have given some results from one of the experiments conducted during

this research. The seeds that were used in this experiment are given in Table 4.11.

Table 4.12 shows the experimental results for the keystreams of sizes 1024 bits and

4096 bits. Table 4.12 shows the minimum, maximum, and average (mean) change

percentage in each of the generated keystreams whenever a single bit is changed in

the corresponding seed. From the results given in Table 4.12, we see that change of

one bit in the seed changed more than 49% of the generated keystream bits. This is

quite close to the ideal value of 50%. Also, the amount of dispersion (or variation)

of all possible changes in each of the generated keystream bits is measured using the
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standard deviation, denoted by sd. The results show that the change percentage of each

of the generated keystream bits is not only close to the mean but also the value of sd

is decreasing as the size of the generated keystream increases. Since a low sd indicates

that the values tend to be close to the mean (also called the expected value) of the set,

while a high sd indicates that the values are spread out over a wider range. Hence,

we can conclude that the MQG-PRNG produces good random sequences. That is, it

has a higher diffusion and hence provides protection from some slide and key-related

attacks.

Table 4.11: Seeds used for MQG-PRNG in binary format.

Seeds

seed1 0000000000000000000000000000000000000000000000000000000000000000

seed2 1111111111111111111111111111111111111111111111111111111111111111

seed3 1001011010010110100101101001011010010110100101101001011010010110

seed4 1111111111111111111111111111111100000000000000000000000000000000

seed5 0000000000000000000000000000000011111111111111111111111111111111

seed6 0000000000000000111111111111111100000000000000001111111111111111

seed7 0101010101010101010101010101010101010101010101010101010101010101

seed8 0000000011111111000000001111111100000000111111110000000011111111

4.5.3.2 Statistical test of MQG-PRNG using NIST-STS test suite

We have tested the quality of the obtained pseudo-random sequences using the NIST-

STS test suite. We have used the NIST Spec. Publ. 800-22 rev. 1a package with

significance level α = 0.01 that consists of 15 different statistical tests [65]. More

details of the NIST-STS test suite are given in section 4.3.8.2. We ran each test of

NIST-STS for 1000 obtained pseudo-random sequences produced by the MQG-PRNG,

where the size of each sequence is 106 bits. The results of each of these tests are shown

in Table 4.13. First column of the table lists the name of the tests carried out. The

number of accepted (success) sequences, the number of rejected (failures) sequences,

and the proportion of sequences that passed a statistical test at α = 0.01 significance

level are listed in columns second, third, and fourth, respectively. According to the

experimental results as shown in Table 4.13, it can be observed that 98.3% of sequences
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Table 4.12: Avalanche effect of keystream for the different seeds.

Seeds of

128 bits

Keystream of

1024 bits

Keystream of

4096 bits

Seeds of

128 bits

Keystream of

1024 bits

Keystream

4096 bits

seed1 min = 44.73%,

max = 54.39%,

avg = 49.89%,

sd = 1.67

min = 48.05%,

max = 51.29%,

avg = 49.77%,

sd = 0.73

seed5 min = 46.09%,

max = 54.00%,

avg = 49.96%,

sd = 1.63

min = 48.71%,

max = 51.66%,

avg = 50.11%,

sd = 0.76

seed2 min = 47.27%,

max = 52.25%,

avg = 49.84%,

sd = 1.25

min = 48.46%,

max = 51.56%,

avg = 50.03%,

sd = 0.69

seed6 min = 46.97%,

max = 53.52%,

avg = 50.25%,

sd = 1.44

min = 47.83%,

max = 51.68%,

avg = 49.86%,

sd = 0.91

seed3 min = 46.68%,

max = 53.32%,

avg = 50.21%,

sd = 1.45

min = 47.73%,

max = 52.37%,

avg = 49.84%,

sd = 0.75

seed7 min = 46.48%,

max = 53.81%,

avg = 50.25%,

sd = 1.57

min = 48.58%,

max = 53.03%,

avg = 50.26%,

sd = 0.85

seed4 min = 46.68%,

max = 54.98%,

avg = 50.27%,

sd = 1.63

min = 48.10%,

max = 51.32%,

avg = 49.91%,

sd = 0.77

seed8 min = 46.39%,

max = 52.64%,

avg = 49.75%,

sd = 1.49

min = 47.71%,

max = 51.29%,

avg = 49.91%,

sd = 0.75

pass each of these tests for the significance level α = 0.01, implying that the pseudo-

random sequences we obtained are random. Also, if we compare the performance of

the MQG-PRNG against NIST-STS test with that of the AES-256, whose results are

given in Table 4.7 of section 4.4.1.1, we see that the randomness of the outputs of the

MQG-PRNG and AES-256 are comparable to each other.

4.5.4 Encryption Algorithm

The encryption algorithm of this cipher is almost the same as that of the encryption

algorithm of the previous cipher, discussed in section 4.4.2. This is because, it also uses

the nel-transformation. The only difference is that for the nel-transformation,

it uses 16 quasigroups Qi = (Z16, ∗i) of order 16 instead of a single quasigroup Q =

(Z256, ∗) of order 256. These 16 quasigroups are generated based on an original non-

associative quasigroup Q = (Z16, ∗) of order 16. The encryption algorithm works on

one nibble (4 bits) of data. It encrypts a plaintext P = P[1,...,n] = p1 p2 . . . pn with the
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Table 4.13: Results of the NIST-STS test for 1000 sequences generated by MQG-PRNG.

Tests Number

of success

Number of

failures

Proportion of

success out of

1000

Frequency 991 9 0.991

Block frequency 983 17 0.983

Cumulative sum 992 8 0.992

Runs 993 7 0.993

Longest run 988 12 0.988

Rank 993 7 0.993

Discrete fourier transform 988 12 0.988

Non-overlapping template 988 12 0.988

Overlapping template 991 9 0.991

Universal statistical 988 12 0.988

Approximate entropy 988 12 0.988

Random excursion 990 10 0.990

Random excursion variants 991 9 0.991

Serial 988 12 0.988

Linear complexity 993 7 0.993

keystream K ′ = K ′
[1,...,n] = k1 k2 . . . kn, and produces the ciphertext C = C[1,...,n] =

c1 c2 c3 . . . cn as follows:

cj = kj ∗i pj

where pj , kj , and cj are characters of 4 bits (1-nibble), 1 ≤ j ≤ n, and ∗i is one

the quasigroup operations corresponding to the employed quasigroup Qi, 0 ≤ i ≤ 15.

The encryption algorithm encrypts 16 nibbles (64 bits) of plaintext P in one iteration.

This is because the MQG-PRNG generates 16 nibbles (64 bits) of keystream K ′ in

one iteration. For each iteration, it uses a quasigroup Qi randomly selected out of 16

quasigroups, which is decided by a 16× 1 multiplexer used, 0 ≤ i ≤ 15. The workflow

of the encryption algorithm is shown in Figure 4.12. The pseudocode of the encryption

algorithm is given in Algorithm 6. In this algorithm, N denotes the total number of

iterations that the encryption algorithm is to be performed, I denotes the Ith iteration
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Figure 4.12: Workflow of the encryption algorithm.

Algorithm 6: Pseudocode of the encryption algorithm

Input: 1. Plaintext P = P[1,...,n] = p1, p2, . . . , pn of n nibbles to be encrypted.

2. A non-associative quasigroup Q = (Z16, ∗) of order 16.
Output: Ciphertext C = C[1,...,n] = c1, c2, . . . , cn of n nibbles.

[1] for I = 0 to N-1 do

[2] K ′
[16×I+1,...,16×I+16] = MQG-PRNG(I);

[3] Qi = generation of a quasigroup based on Ith iteration keystream

K ′
[16×I+1,...,16×I+16];

[4] C[16×I+1,...,16×I+16] = K ′
[16×I+1,...,16×I+16] ∗i P[16×I+1,...,16×I+16];

out of N , and ∗i is one of the quasigroup operation corresponding to the employed

quasigroup Qi of order 16, 0 ≤ i ≤ 15.

4.5.5 Decryption Algorithm

The decryption algorithm is the reverse process of the encryption algorithm. It recovers

the plaintext P from the ciphertext C. It uses ndl-transformation along with 16 left

inverse quasigroups LIQi = (Z16, \i) of order 16, where \i is one of the left inverse

quasigroup operations corresponding the employed quasigroup LIQi, 0 ≤ i ≤ 15. Note

that these 16 left inverse quasigroups are the left inverses of the quasigroups that were

used in the encryption algorithm. Also, It uses the 16 quasigroups Qi = (Z16, ∗i) as that
used in the encryption algorithm for generating the keystream K ′ since both encryption
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and decryption use the same keystream K ′, where ∗i is one of the quasigroup operations

corresponding the employed quasigroup Qi, 0 ≤ i ≤ 15. The decryption algorithm

also works on one nibble (4 bits) of data. It decrypts a ciphertext C = C[1,...,n] =

c1 c2 c3 . . . cn using the same keystream K ′ = K ′
[1,...,n] = k1 k2 . . . kn as that used in the

encryption algorithm, and recovers the original plaintext P = P[1,...,n] = p1 p2 . . . pn as

follows:

pj = kj \i cj

where pj , kj , and cj are characters of 4 bits (1-nibble), 1 ≤ j ≤ n, and \i is one of

the left inverse quasigroup operations corresponding to the employed quasigroup LIQi,

0 ≤ i ≤ 15. The workflow of the decryption algorithm is shown in Figure 4.13. Like

Figure 4.13: Workflow of the decryption algorithm.

the encryption algorithm, the decryption algorithm also decrypts 16 nibbles (64 bits)

of ciphertext in one iteration. This is because it also uses the MQG-PRNG algorithm

for generating the keystream K ′. The pseudocode of the decryption algorithm is given

in Algorithm 7. In this algorithm, N denotes the total number of iterations that the

decryption algorithm is to be performed, I denotes the Ith iteration out of N , and \i is

one of the left inverse quasigroup operations corresponding to the employed quasigroup

LIQi of order 16, 0 ≤ i ≤ 15.
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Algorithm 7: Pseudocode of the decryption algorithm

Input: 1. Ciphertext C = C[1,...,n] = c1, c2, . . . , cn of n nibbles to be decrypted.

2. A non-associative quasigroup Q = (Z16, ∗) of order 16 for

generating the keystream K ′.

3. A left inverse quasigroup LIQ = (Z16, \) of order 16 for decryption,

where LIQ is the left inverse of Q.

Output: Plaintext P = P[1,...,n] = p1, p2, . . . , pn of n nibbles.

[1] for I = 0 to N-1 do

[2] K ′
[16×I+1,...,16×I+16] = MQG-PRNG(I);

[3] LIQi = generation of a left inverse quasigroup based on Ith iteration

keystream K ′
[16×I+1,...,16×I+16];

[4] P[16×I+1,...,16×I+16] = K ′
[16×I+1,...,16×I+16] \i C[16×I+1,...,16×I+16];

4.5.6 Performance analysis

The cipher is implemented in C++, and its performance is analyzed against both the

space and the time (speed) complexities by comparing it with those of the previous

ciphers discussed in sections 4.3 & 4.4, and some existing quasigroup based stream

ciphers introduced in literature [12, 28, 43, 59, 60, 81]. To analyze the performance of

this cipher, we used the same tools and system configurations as we used to analyze the

previous cipher, discussed in section 4.3.7. The cipher is run 1000 times for different

inputs and calculated the average execution time in seconds. Experimental results for

both time and space complexities are given in Table 4.14. If we compare this result

with those of the previous results shown in sections 4.3.7 & 4.4.6, it can be observed

that in terms of memory requirement, except Edon-80 [28], this cipher is not only less

expensive than both the previous ciphers discussed in sections 4.3 & 4.4, but also less

expensive than other existing ciphers introduced in literature [12, 43, 59, 60, 81]. In

contrast, it is slightly slower than our previous cipher discussed in section 4.4 and an

existing cipher introduced in literature [43], but faster than our first cipher discussed

in section 4.3 and other existing ciphers introduced in literature [12, 28, 59, 60, 81].
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Table 4.14: Time and space complexities of the proposed cipher.

Stream cipher
Execution time in seconds Space in KB

1.22 MB 2.11 MB 6.01 MB Encryption Decryption

Proposed cipher 0.07 0.13 0.39 0.13 0.25

4.5.7 Security analysis

The key elements of the proposed cipher are MQG-PRNG and 16 quasigroups of order

16. These 16 quasigroups are generated based on an original non-associative quasi-

group Q that acts as a secret key. Note that the maximum number of non-associative

quasigroups of order 16 is bounded above by 2456 (see Equation 2.9 of section 2.2.3 in

Chapter 2). So, the encryption/decryption algorithm can use a maximum of 2456 secret

quasigroups. Since quasigroup Q functions as the core of the proposed cipher, it is kept

as a secret. If the quasigroup Q used is not secret, it is easy for the attacker to crack

the cipher against a chosen-plaintext attack as illustrated later in section 4.5.7.3.

The proposed cipher keeps both the non-associative quasigroupQ and the keystream

K ′ secret. This is because the security of the proposed cipher depends not only on the

keystream K ′ but also on the employed quasigroup Q, which can be changed rapidly.

Due to this, the proposed cipher can be seen as a family of stream ciphers parame-

terized by a quasigroup Q. The proposed cipher uses any 16 quasigroups out of 2456.

These 16 quasigroups are generated from the original non-associative quasigroup Q

by a circular shift of rows by a constant amount Comp, see Equation 4.3. Each it-

eration of the proposed cipher encrypts/decrypts 64 bits of the plaintext/ciphertext

and uses a quasigroup randomly out of these 16 quasigroups, which is decided by a

16 × 1 multiplexer employed. Note that a quasigroup may be used in more than one

iteration. The selection of quasigroup depends on the current iteration 64 bits of the

keystream K ′. Let N be the number of iterations that the proposed cipher performs

to encrypt/decrypt a N × 64 bits of the plaintext/ciphertext. So, the number of ways

to use any 16 quasigroups out of 2456 in N iteration is equal to 2456 × 16N−1. For

example, if N = 16, then a total of 2456 × 1615 ways possible to use 16 quasigroup in

16 iterations to generate a 1024 bits of plaintext/ciphertext. In order to determine the

employed quasigroups, an attacker can apply the brute-force methods as follows:
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• Quasigroups attack : The proposed cipher uses 16 quasigroups of order 16, and a

maximum number of quasigroups of order 16 is 2456. Assuming the cipher performs

N iterations, the number of possibilities that one needs to search to determine the

quasigroups used in these iterations is 2456 × 16N−1, where N ≥ 1. It can be seen that

as N increases, the complexity of this attack increases. For example, if N = 16, the

attack complexity of determining the employed quasigroups that generate 1024 bits of

the plaintext/ciphertext is equal to 2456 × 1615 = 2516. That is if an attacker uses a

supercomputer and tries 537.21× 1015 ≈ 258 quasigroups per second, then the attacker

needs around 2433 years to determine the employed quasigroups. This is because, nowa-

days supercomputers can execute 537.21 PFLOPS = 537.21×1015 ≈ 258 floating-point

operations per second (FLOPS) [76]

4.5.7.1 Reused key attack

This cipher is almost the same as that of our previous ciphers, discussed in sections 4.3

& 4.4. The only difference is that it uses 16 quasigroups of order 16 instead of a single

quasigroup of order 256. Therefore, the analysis of this cipher, in the context of the

reused key attack, is the same as that of the previous cipher, discussed in section 4.4.7.2.

From the design of the cipher, we have

C1 = K ′ ∗i M1

C2 = K ′ ∗i M2

where C1 and C2 are the ciphertexts obtained using the proposed stream ciphers,

and ∗i is one of the quasigroup operations corresponding to the employed quasigroup

Qi = (Z16, ∗i), 0 ≤ i ≤ 15. If we use ⊕ operation instead of ∗i, then the cipher becomes

XOR-based stream cipher and the attacker in the reused key attack computes

C1 ⊕ C2 = (K ′ ⊕M1)⊕ (K ′ ⊕M2) = M1 ⊕M2

where ⊕ is an XOR operation. That is, the obtained byte sequence does not depend on

the keystream K ′. In other words, if anyone encrypts two messages with the same key,

they can recoverM1⊕M2 which is a form of running key cipher. Even if neither message

is known, as long as both the messages are in a natural language, such a cipher can
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often be broken because of enough redundancy present in English and ASCII encoding.

And a cryptanalyst easily can recover the original messages from

C1 ⊕ C2 = M1 ⊕M2 → M1,M2.

Hence, a cipher that uses the XOR operation for mixing the plaintext with the keystream

would be vulnerable to reused key attack. But in our case:

C1 ∗i C2 = (K ′ ∗i M1) ∗i (K ′ ∗i M2) ̸= M1 ∗i M2.

This is because ∗i is one of the quasigroup operations corresponding to the employed

quasigroup Qi, 0 ≤ i ≤ 15. Hence, the proposed cipher is resistant to reused key attack.

However, the proposed cipher would be vulnerable to reused key attack if the fol-

lowing properties hold:

(1) t1 \ (t2 ∗ t3) = (t1 \ t2) ∗ t3, ∀ t1, t2, t3 ∈ Zn.

(2) (t1 ∗ t2)/t3 = t1 ∗ (t2/t3), ∀ t1, t2, t3 ∈ Zn

where Q = (Zn, ∗), LIQ = (Zn, \) and RIQ = (Zn, /) be a quasigroup, its left inverse

quasigroup, and its right inverse quasigroup, respectively. This is because the attacker

can recover useful information from the following equations:

C1 \ C2 = (K ′ ∗M1) \ (K ′ ∗M2)

(K ′ ∗M1) \ (K ′ ∗M2) = C1 \ C2

(K ′ ∗M2) = (K ′ ∗M1) ∗ (C1 \ C2), see Definition 2.2.6 of Chapter 2

M2 = K ′ \ [(K ′ ∗M1) ∗ (C1 \ C2)], see Definition 2.2.6 of Chapter 2

M2 = [K ′ \ (K ′ ∗M1)] ∗ (C1 \ C2), using property (1)

M2 = M1 ∗ (C1 \ C2), see identity (2.10) of Lemma 2.2.11, defined in Chapter 2

Similarly, using the property (2) and C1/C2, we can also arrive at the following equation:

M1 = (C1/C2) ∗M2.

We verified both the above properties (1) and (2) using all possible quasigroups of

order up to 6 (see Table 2.5 of Chapter 2) and found that only associative quasigroups

and their left/right inverse quasigroups satisfy these properties. It is a longstanding

open problem to either verify or disprove, for large order quasigroups, that only the

associative quasigroups possess the above-mentioned two properties. Note that the

proposed cipher is designed based on a non-associative quasigroup. So, the proposed

cipher is secure against reused key attack.
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4.5.7.2 Time-Memory-Data Tradeoff attack

Time-memory-data tradeoff (TMDTO) attack is a powerful attack against stream ci-

pher. It reduces the complexity of the brute-force (exhaustive key search) attack. Let

• N denotes the number of the internal states to be covered by the attacker (or the

size of the search space).

• P denotes the time complexity of the preprocessing phase (or offline time com-

plexity).

• M denotes the space (memory) complexity.

• T denotes the time complexity of the real-time phase (or online time complexity).

• D denotes the data complexity.

Martinand and Hellman [51] introduced a time-memory tradeoff (TMTO) method for

breaking block ciphers using a tradeoff curve TM2 = N2, where N ≥ T ≥ 1. Later,

Babbage and Golic [2, 30] devised different time-memory-data tradeoff method for

breaking stream ciphers with new tradeoff curves TM = N , P = M , D ≥ T ≥ 1. And

we referred to it as the BS attack. Also, Biryukov and Shamir introduced a different

tradeoff curve with better bounds to improve the attack complexity of the TMDTO

against stream ciphers, which is TM2D2 = N2, P = N
D , T ≥ D2 ≥ 1 [10]. And we

referred to it as the BS attack.

The time-memory-data tradeoff (TMDTO) attack is an extension of the time-

memory tradeoff (TMTO) attack that aims to achieve better tradeoffs by increasing the

number of data required. It was first successfully applied on A5/1 stream cipher [11].

Generally, a TMDTO attack is performed in two phases: (i) preprocessing phase (also

called the offline phase) and (ii) the real-time phase (also called the online phase).

In the preprocessing phase, the attacker recomputes several tables with memory com-

plexity M. Each of these tables stores the mapping between different internal states

(secret keys) and the corresponding keystreams with preprocessing time complexity P,

which allows for reducing the online time complexity T. In the real-time phase, the

attacker tries to invert the function mapping of the internal states of a stream cipher to

a segment of the keystream output by intercepting D keystreams and searching them

in the table with time complexity T, expecting to get some matches and recover the

corresponding input (internal state).
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Using TMDTO attacks, an attacker can try to reconstruct the internal state of the

stream cipher to recover the secret key. That is, using the internal state update process,

an attacker could obtain not only subsequently generated keystreams by running the

cipher forward if he or she has reconstructed an internal state at any particular time

but also recover previous states iteratively and further get the underlying secret key by

running the cipher backward. Note that the secret keys are nothing but the quasigroups

of order 16 that the proposed cipher uses in both the keystream generation and the

encryption algorithm (see Figure 4.12). Also, each iteration of both the keystream

generation and the encryption algorithm uses a different quasigroup. That is, for each

of the 2456 possible non-associative quasigroups of order 16, the cipher has 2456 states

(see Equation 2.9 of section 2.2.3 in Chapter 2). That is, N = 2456 × 2456 = 2912 (see

Figure 4.12); which is 2 times the secret key length. So, the attack complexity of the

proposed stream cipher against the BG attack would be T = D = M = N
1
2 = 2456,

which is equivalent to the exhaustive key search attack. Hence, the proposed cipher is

resistant to BG attack.

An attacker can also recover the secret key directly using the pre-computed table

that stores the keystream segments for different (key, seed) pairs [22]. Note that a secret

key is nothing but a non-associative quasigroup used for encryption/decryption, and the

maximum number of non-associative quasigroups of order 16 is 2456 (see Equation 2.9

of section 2.2.3 in Chapter 2). The attacker can search the table for a collision and

recover some of the secret keys if he or she has some keystream data under different

secret keys corresponding to these seeds. The tradeoff curves remain the same as that

used to recover internal states, but N is modified to represent the size of the collection

of all possible (key, seed) pairs, i.e. N = 2520. This is because, in the proposed

stream cipher, the size of the seed and key spaces are 264 and 2456, respectively. So,

the attack complexity against BS and BG are T = 2528 for D = M = 2128 and

T = M = D = N
1
2 = 2260, respectively [25]. But it is still impractical.

4.5.7.3 Chosen plaintext attack

This cipher is analyzed against a chosen-plaintext attack in the same way as the previous

ciphers analyzed against a known-plaintext attack in sections 4.3.8.1 & 4.4.7.1. Suppose

the cryptanalyst chooses the plaintext P = p1 p2 . . . pn , obtains the ciphertext C =

c1 c2 . . . cn corresponding to the chosen-plaintext, and tries to determine the keystream
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K ′ employed in the encryption/decryption system. The cryptanalyst, then, for the

keystream K ′ used in the stream cipher, must solve the following system of equations:

c1 = k1 ∗i p1

c2 = k2 ∗i p2

· · ·

cn = kn ∗i pn


(4.5)

where ∗i is one of the quasigroup operations corresponding to the employed quasigroup

of order 16, 0 ≤ i ≤ 15, and k1, k2, . . . , kn are unknowns. Let us assume that the

quasigroups Qi used are known to everyone. Then, each of these above equations has a

maximum of 16 solutions since the proposed cipher uses a maximum of 16 quasigroups.

In other words, each of these equations has a unique solution for each quasigroup. So,

the cipher can not resist this attack. But the employed quasigroups are kept secret.

So, the above system of equations has as many solutions as there are the number

of quasigroups of order 16. Hence determining the quasigroups makes it practically

impossible. Therefore, the proposed cipher is resistant to chosen-plaintext attack.

Using a similar argument, it can be shown that the cipher is resistant to the chosen-

ciphertext and known-plaintext attacks as well.

4.5.7.4 Statistical test for randomness

The randomness of the obtained ciphertexts is tested using the NIST-STS test suite [65].

The NIST-STS test suite consists of various statistical tests. The details of each of such

tests are discussed in section 4.3.8.2. We ran each test of the NIST-STS test suite using

a significance level α = 0.01 for three inputs (i) input contains all binary 0′s (0X00),

(ii) input contains all binary 1′s (0XFF), and (iii) input contains random values. The

size of each input file is 106 bits. We generated 1000 binary sequences (ciphertexts) for

each of these three files using 1000 different keystreams so that each file uses the same

keystream. Now, for 1000 binary sequences of each file, separately, we ran each test of

the NIST-STS 1000 times. The results of each of these tests are shown in Table 4.15.

The first column of the table lists the name of the tests carried out. The proportion

of sequences that passed a statistical test at α = 0.01 significance level for all 0X00, all

0XFF, and random inputs are listed in columns second, third, and fourth, respectively.

According to the experimental results, as shown in Table 4.15, we note that on average,
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99.04% of sequences pass each of these tests. so, it can be concluded that the proposed

cipher produces highly random ciphertexts.

Table 4.15: NIST-STS test results for the 1000 ciphertexts.

Tests Proportion of

success out of

1000 for all 0X00

input

Proportion of

success out of

1000 for all 0XFF

input

Proportion of

success out of

1000 for random

input

Frequency 0.989 0.993 0.991

Block frequency 0.989 0.997 0.992

Cumulative sum 0.990 0.992 0.994

Runs 0.990 0.990 0.989

Longest run 0.994 0.996 0.987

Rank 0.989 0.990 0.992

Discrete fourier transform 0.993 0.989 0.992

Non-overlapping template 0.990 0.990 0.991

Overlapping template 0.986 0.988 0.992

Universal statistical 0.988 0.989 0.990

Approximate entropy 0.988 0.994 0.990

Random excursion 0.989 0.990 0.991

Random excursion variants 0.989 0.989 0.990

Serial 0.990 0.994 0.989

Linear complexity 0.987 0.986 0.990

4.5.8 Summary

In this chapter, we have proposed three stream ciphers based on quasigroups. The

first cipher discussed in section 4.3, uses AES-256 for generating the keystream and a

single quasigroup of order 256 for encrypting/decrypting the messages, while the sec-

ond and third ciphers are discussed in sections 4.4 and 4.5, respectively. The second

cipher uses QG-PRNG for generating the keystream and a single quasigroup of order

256 for encrypting/decrypting the messages, while the third cipher uses MQG-PRNG

for generating the keystream and 16 quasigroups for encrypting/decrypting the mes-

sages. Use of multiple quasigroups contributes to increased security. This is because a
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different quasigroup is used after a certain amount of plaintext/ciphertext. QG-PRNG

and MQG-PRNG are pseudo-random number generators, which are also described in

this chapter. To generate the keystreams, the QG-PRNG uses a single quasigroup of

order 256, while MQG-PRNG uses 16 quasigroups of order 16. The randomness of the

obtained keystreams produced by the QG-PRNG and MQG-PRNG is analyzed using

the NIST-STS test suite. We noted that the generated keystream sequences are highly

random.

Novelty of these stream ciphers is that they are resistant to the reused key attack as

against the existing XOR-based stream ciphers. Hence a keystream can be reused mul-

tiple times, thereby overcoming the major hurdle that exists in the application of the

XOR-based stream ciphers. Also, the ciphers are analyzed against various attacks, in-

cluding the chosen-ciphertext attack, the chosen-plaintext attack, the known-plaintext

attack, the reused-key attack, the statistical attack, and the time-memory-data tradeoff

(TMDTO) attack. We observed that our ciphers are resistant to these attacks as well.

The performance of the proposed ciphers is analyzed by comparing them to each

other and we found that our third cipher is slightly slower than our second cipher, but

overall third cipher outperforms both the first and second ciphers. This is because the

third cipher uses about 99% less memory (in bytes) than the first and second ciphers.

In addition, if we compare the performance of the proposed ciphers with that of the

existing quasigroup based stream ciphers [12, 28, 43, 59, 60, 81]. We observed that in

most cases the proposed ciphers are more efficient than the existing quasigroup based

ciphers [12, 28, 43, 59, 60, 81].

The randomness of the obtained ciphertexts produced by the proposed stream ci-

phers is analyzed by the NIST-STS test suite. We found that the obtained ciphertexts

of the proposed ciphers are highly random.
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Chapter 5

Block Ciphers Based on Multiple

Quasigroups

This chapter discusses two schemes of block ciphers based on multiple quasigroups.

They are symmetric key ciphers and use 16 optimal S-boxes in the form of an optimal

quasigroup of order 16. A maximum of 16! optimal quasigroups can be formed using the

16 S-boxes, these ciphers can be seen as a family of encryption systems parameterized

by an optimal quasigroup. That is, the sender and the receiver agree on a cryptosystem

by first deciding on the quasigroup. This chapter gives a brief overview of the ciphers,

the structure of the ciphers, the details of building elements of the ciphers, and analyzes

the performance and security of the ciphers.

While describing these ciphers, the emphasis is on how the ciphers use Substitu-

tion Permutation Networks (SPN) to achieve confusion and diffusion of bits from the

plaintext to the ciphertext and why they are an excellent alternative to the existing

quasigroup-based block ciphers.

5.1 Introduction

As discussed in the last chapter, a stream cipher encrypts/decrypts one data item

(bit/nibble/byte) of the plaintext/ciphertext at a time. In contrast, a block cipher

encrypts/decrypts a fixed amount of plaintext/ciphertext at a time called a block.

One significant difference between the block ciphers and the stream ciphers is that

block ciphers are stateless, whilst stream ciphers are stateful. That is, a stream cipher
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maintains an internal state to generate the next part of the keystream. A block cipher

is also a symmetric key cipher that uses the same key for encryption and decryption.

Block diagram of a block cipher is shown in Figure 5.1. A cipher takes a fixed-size

Figure 5.1: Block diagram of the block cipher.

block as input and produces an output block whose size is equal to the size of the input

block. It also uses the same secret key for encrypting and decrypting messages. Block

and key sizes usually depend on the cipher algorithm. For example, block and key sizes

are 64 bits each in DES; whereas 128 bits or more in modern block ciphers.

A block cipher can not only be used as an encryption algorithm but it can also be

used as a versatile building block for implementing a wide range of cryptographic appli-

cations, such as hash functions, message authentication codes, pseudo-random number

generators, etc. Most modern-day block ciphers are designed based on permutation

and substitution networks and are iterative in nature. In an iterated cipher, a round

function and a key schedule must be specified, and a block of plaintext will be encrypted

through N iterations of the same function. The output of the first block may be used

to help encrypt the second block in what is called a mode of operation. For encrypting

the long plaintext, a block cipher can use several modes of operation, such as ECB,

CBC, CFB, etc. Different modes of operation offer different levels of protection against

error propagation caused by transmission errors in the ciphertext [67].

5.2 Brief overview of the proposed block ciphers

This chapter proposes two cipher algorithms for encrypting/decrypting messages. The

ciphers employ optimal quasigroups and their corresponding left inverse quasigroups.

They are block ciphers and each of them uses 16 optimal quasigroups of order 16. Each

of these 16 optimal quasigroups is constructed based on an original quasigroup Q =
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(Z16, ∗) of order 16. The description of the optimal quasigroup is given in section 2.2.16

of Chapter 2. The proposed ciphers use 16 S-boxes S0, S1, . . . S15 in the form of an

optimal quasigroup Q = (Z16, ∗) of order 16, shown in Table 2.8 of Chapter 2. Note

that the size of each of these 16 S-boxes is 4× 4 bits.

The first cipher 1 performs a total of 16 rounds to encrypt and decrypt a mes-

sage of 128 bits. Each of these rounds uses one non-linear transformation (also called

{e, d}-transformation) and one linear transformation. The non-linear transformation

uses 8 bits of the secret key, also called a seed value or a sub-key, for processing a block

of 128 bits of data. The details of the {e, d}-transformation are given in section 2.2.15

of Chapter 2.

The second cipher 2 performs a total of 17 rounds to encrypt and decrypt a mes-

sage of 128 bits. Each of these rounds uses 128 bits round key along with one non-

linear transformation (also called {neℓ, ndℓ}-transformation) and two linear trans-

formations. Note that the {neℓ, ndℓ}-transformation is defined in section 2.2.15 of

Chapter 2.

The algorithms of the proposed ciphers are described as well as they are imple-

mented using the Cipher Block Chaining (CBC) mode of operation. Each iteration of

the ciphers encrypts/decrypts 128 bits of plaintext/ciphertext, and the ciphers are iter-

ated until the entire plaintext/ciphertext is encrypted/decrypted. The ciphers can also

be described using other modes of operation, such as Cipher Feedback (CFB) mode,

Output Feedback (OFB), and Counter (CTR) mode. Each mode of operation has its

own advantages and disadvantages [67].

The non-linear transformation is nothing but a key-dependent S-box layer, which

is carried out using the quasigroup operation. In each quasigroup operation, a key-

dependent S-box layer chooses one S-box out of the 16 S-boxes of the quasigroup. The

choice is based on the round key or sub-key. We believe that key-dependent S-box

ciphers are more secure than fixed S-box ciphers. This is because key-dependent S-

boxes do not offer any specific properties to the cryptanalyst. Most key-dependent

S-box ciphers are effectively random. Examples of such ciphers are Blowfish [66] and

SEAL [15].

1An efficient block cipher based on multiple optimal quasigroups and {e, d}-transformation
2A block cipher based on multiple optimal quasigroups and {neℓ, ndℓ}-transformation
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5.2.1 Quasigroup operation for encryption and decryption

A quasigroup operation is nothing but a substitution (S-box) operation. It substitutes

a byte (8-bit) value with another byte (8-bit) value, depending on the round key or

sub-key. Sixteen optimal quasigroups of order 16 are employed in the design of the

proposed block ciphers, where each of these 16 quasigroups contains the same 16 S-

boxes S0, S1, . . . S15 as an optimal quasigroup of order 16, but in a different order

(permutation), one such quasigroup is shown in Table 2.8 of Chapter 2. Note that the

size of each of these 16 S-boxes is 4 × 4 bits. So, all operations are performed in the

form of 4-bit (also called nibbles) aggregations. Let each byte of data be divided into

two nibbles. That is, a byte value x is represented as x = x1x0, where x1 and x0 are

nibbles. Then, the quasigroup operations for encryption and decryption are defined as

x1x0 ⋆i y1y0 = (x1 ∗i y1)||(x0 ∗i y0)

or

Sx1x0 [y1y0] = Sx1 [y1]||Sx0 [y0]

(5.1)

and

x1x0♯iy1y0 = (x1 \i y1)||(x0 \i y0)

or

S−1
x1x0

[y1y0] = S−1
x1

[y1]||S−1
x0

[y0]

(5.2)

respectively, where (∗i, \i) and (⋆i, ♯i) are quasigroup operations corresponding to nib-

bles and bytes respectively, 0 ≤ i, j ≤ 15, and || is a concatenation operation that

concatenates two 4-bit values into one 8-bit value. Sj [x] denotes the output of jth

S-box, determined by looking up the row number j and the column number x of the

quasigroup Q; similarly S−1
j [x] denotes the output of jth inverse S-box, determined by

looking up the row number j and the column number x of the left inverse quasigroup

LIQ of the quasigroup Q, where S−1
j is inverse of Sj . Also, the symbol ♯i is called the

inverse (or left inverse) quasigroup operation corresponding to the symbol ⋆i. That is,

if a quasigroup Qi = (Z16, ⋆i) that consists of S1, S2, . . . , S15 is used for encryption then

its left inverse quasigroup LIQi = (Z16, ♯i) that consists of S−1
1 , S−1

2 , . . . , S−1
15 is used

for decryption.
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5.3 An efficient block cipher based on multiple optimal

quasigroups and {e, d}-transformation

This section discusses the structure and the building elements of the first block cipher.

The proposed cipher is an iterative cipher, and its design is based on the Substitution

Permutation Network (SPN). It uses 16 optimal quasigroups of order 16 and a 128-bit

secret key for encrypting/decrypting the messages. These 16 optimal quasigroups are

constructed dynamically based on an original (fixed) optimal quasigroup Q = (Z16, ∗)

of order 16. Because of this, the cipher leverages the space of a single quasigroup

and uses multiple quasigroups by generating them from an original quasigroup. That

is, the space required by multiple optimal quasigroups is reduced to that of a single

quasigroup. It performs a total of 16 rounds to encrypt or decrypt a block of 128 bits.

Each round consists of two transformations (substitution and permutation), except the

last/first round of the encryption/decryption. These transformations are an intermix

of substitutions and permutations. The last/first round of the encryption/decryption

only consists of the substitution.

The algorithm of the new cipher consists of three parts: (1) an algorithm to ran-

domly select (or generate) an optimal quasigroup for each round, (2) an encryption algo-

rithm, and (3) a decryption algorithm. The encryption algorithm consists of two trans-

formations: (i) e-transformation, and (ii) bit permutation. The decryption algorithm

also consists of two corresponding inverse transformations: (i) d-transformation, and

(ii) inverse bit permutation. The e-transformation and the d-transformation are

nothing but key-dependent S-box layers that depend on the sub-key. The workflow

of both the encryption and the decryption algorithms of the proposed block cipher is

shown in Figure 5.2. In this figure, kj , 0 ≤ j ≤ 15, denotes a sub-key value of 8-bit (or an

8-bit of the secret keyK), which is used in each round for (i) selecting a random optimal

quasigroup Qi for encryption and a left inverse quasigroup LIQi for decryption (where

LIQi is the left inverse of Qi), 0 ≤ i ≤ 15, and (ii) e-transformation of the encryp-

tion and d-transformation of the decryption. The algorithm uses a 8bitTo4bitComp

compression function that compresses an 8-bit kj to 4-bit. This 4-bit value is used by

a 16 × 1 multiplexer for generating a random optimal quasigroup. The generation of

the optimal quasigroups is discussed in the next section.
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Figure 5.2: Encryption and decryption algorithms of the block cipher.

5.3.1 Generation of optimal quasigroups

The proposed cipher uses 16 optimal quasigroups of order 16 and performs a total of 16

rounds to encrypt or decrypt the messages. Also, each round of the proposed cipher uses

only one optimal quasigroup out of 16 optimal quasigroups. This optimal quasigroup

is selected randomly with equal probability. Note that an optimal quasigroup may

be used in more than one round. Selection of the optimal quasigroup is carried out

using a 16 × 1 multiplexer used in each round of the cipher, as shown in Figure 5.2.

Note that these 16 optimal quasigroups are generated based on an original quasigroup

Q = (Z16, ∗). By permuting the rows of the original quasigroup Q, 16! quasigroups

can be created. The proposed cipher uses only 16 quasigroups of 16! quasigroups. So,
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any 16 out of the total 16! quasigroups can be selected. Let the selected quasigroups

be Q0 = (Z16, ∗0), Q1 = (Z16, ∗1), ..., Q15 = (Z16, ∗15), where ∗0, ∗1, ..., ∗15 are the

quasigroup operations corresponding to Q0, Q1, ..., Q15, respectively. Note that all these

16 quasigroups need not be stored. This is because each quasigroup consists of the same

rows but in a different order (permutation).

Based on 16 × 1 multiplexer, generation or selection of a total 16 quasigroups is

done using Equation 4.3 of section 4.5.1 of Chapter 4, which is reproduced here in

Equation 5.3 for easy reference:

Qi = (R(0+constval)mod 16, R(1+constval)mod 16, . . . , R(15+constval)mod 16) (5.3)

where R0, R1, . . . , R15 denote row numbers of the original quasigroup Q = (Z16, ∗),
0 ≤ constval ≤ 15, Qi ∈ {Q0, Q1, . . . , Q15}. The value of constval is determined as

follows: For selecting the rth round quasigroup, we consider rth round seed value or

sub-key kr, 0 ≤ r ≤ 15. This is a byte (8-bit) value of secret key K. So, divide kr into

two 4-bit values (nibbles), that is kr = kr1kr0 , where kr0 and kr1 are nibbles. Then,

constval = 8bitTo4bitComp(kr) = kr1 ⊕ kr0 (5.4)

where ⊕ is a bitwise addition modulo 2 operation. The constval is 4 bits and they are

denoted by s0, s1, s2, and s3, where s0 and s3 are the least and the most significant

bits, respectively. These si, 0 ≤ i ≤ 3, are considered as the selection lines of the

16 × 1 multiplexer. If s3 = 0, s2 = 0, s1 = 0, s0 = 0, then the multiplexer selects or

generates a quasigroup Q0. If s3 = 0, s2 = 0, s1 = 0, s0 = 1, then the multiplexer

selects or generates a quasigroup Q1, and so on. Also, the same permutations of the

rows R0, R1, . . . , R15 are used in the decryption algorithm, but these permutations are

generated based on the LIQ = (Z16, \), where LIQ is the left inverse quasigroup of

the original optimal quasigroup Q. The correctness of this is proven by Theorem 1 in

Chapter 2.

5.3.2 Encryption

Encryption algorithm of the proposed block cipher is carried out in a total of 16 rounds.

Each of these rounds, except the last round, consists of two transformations to encrypt

a 128 bits block of data. The last (15th) round performs only the E-transformation.
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5.3.2.1 E-transformation

The E-transformation is nothing but e-transformation, defined in section 2.2.12 of

Chapter 2. This constitutes a non-linear layer of the proposed cipher. It uses 16 S-

boxes S0, S1, . . . , S15 in the form of an optimal quasigroup Q = (Z16, ∗) of order 16.

These 16 S-boxes are given in Table 2.8 of Chapter 2. It is a key-dependent S-box layer

that substitutes a byte for a byte. It increases the confusion power of the cipher and

hides the relationship between the ciphertext and the key; thereby making it difficult to

find the key from the ciphertext. Let P={p0, p1, . . . , p15}, kr, and C = {c0, c1, . . . , c15}
denote input to a round, 8-bit seed value (sub-key) for the rth round, and the output

of a round, respectively. Then, the way of using the E-transformation on P with seed

value kr to obtain the corresponding C is as follows:

c0 = kr ⋆i p0,

cj = cj−1 ⋆i pj

}
(5.5)

where p0 pj , cj and kr are byte values, 1 ≤ j ≤ 15, 0 ≤ r ≤ 15, and ⋆i is one of

the quasigroup operations corresponding to the quasigroup Qi = (Z16, ⋆i), defined in

Equation 5.1, 0 ≤ i ≤ 15.

5.3.2.2 Bit permutation

This is a linear transformation used after E-transformation to increase the diffusion

power of the block cipher. It spreads the non-zero bits so as to increase the number

of active S-boxes in the differential and linear trails; thereby getting the maximum

impact of the substitution layer. It has the ability to hide the relationship between the

ciphertext and the plaintext. The permutation of the bits used in the proposed cipher

is given row-wise in Table 5.1. It maps bits from bit position x to bit position σ(x),

defined by the following equation:

σ(x) =

(
32

((
3

⌊
x mod 16

4

⌋
+ (x mod 4)

)
mod 4

)
+ 4

⌊ x

16

⌋
+ 1 + (x mod 4)

)
mod 128.

The following observations can be made by looking at the permutation layer:

(i) The four output bits of a particular round S-box enter into four different S-boxes

of the next round.
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(ii) The four input bits to an S-box of a particular round come from four different

S-boxes of the previous round.

(iii) The yth output bit of an S-box of a particular round becomes the ((y+1) mod 4)th

input bit of a different S-box of the next round, where 0 ≤ y ≤ 3, 0th and 3th bits

are the least and most significant bits, respectively, of the S-box.

(iv) The yth input bit to an S-box of a particular round comes from the ((y −
1) mod 4)th output bit of a different S-box of the previous round.

According to observation (i); the four output bits of an S-box in one round will affect

four S-boxes in the next round, and then 16 S-boxes together in the round after that.

Therefore, it can be demonstrated that this permutation will affect all the 32 S-boxes

in three rounds using similar reasoning for the subsequent rounds. That is, this bit

permutation needs four rounds to achieve the full diffusion, that is, an input bit to

an S-box of a particular round will influence all the 128 bits in four rounds, which is

optimal [3].

Table 5.1: Bit permutation for a 128-bit block.

1 34 67 100 97 2 35 68 65 98 3 36 33 66 99 4

5 38 71 104 101 6 39 72 69 102 7 40 37 70 103 8

9 42 75 108 105 10 43 76 73 106 11 44 41 74 107 12

13 46 79 112 109 14 47 80 77 110 15 48 45 78 111 16

17 50 83 116 113 18 51 84 81 114 19 52 49 82 115 20

21 54 87 120 117 22 55 88 85 118 23 56 53 86 119 24

25 58 91 124 121 26 59 92 89 122 27 60 57 90 123 28

29 62 95 0 125 30 63 96 93 126 31 64 61 94 127 32

5.3.2.3 Encryption algorithm using CBC mode of operation

The encryption algorithm of the proposed block cipher is implemented using the Cipher

Block Chaining (CBC) mode of operation. The pseudocode of the encryption algorithm

is given in Algorithm 8. In this algorithm, Qi denotes a generated optimal quasigroup

based on the kr for the rth round of Pj block, 0 ≤ i, r ≤ 15, 0 ≤ j ≤ N − 1, where

N is the total number of plaintext blocks to be encrypted. The encryption algorithm
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Algorithm 8: Pseudocode of the encryption algorithm

Input: 1. Plaintext in the form of 128-bit (16 bytes) blocks. Let P0, P1, . . . ,

PN−1 be N number of blocks to be encrypted.

2. Initial value (IV ) of 128 bits (16 bytes).

3. Secret key K of 128 bits in the form of a sequence of 16 bytes such

as K = k0, k1, . . . , k15, where kr is a 8-bit value for 0 ≤ r ≤ 15.

4. An optimal quasigroup of order 16.

Output: Ciphertext whose size is equal to the size of the plaintext.

[1] for j = 0 to N-1 do

[2] Pj = XOR(Pj , IV );

[3] for r = 0 to 14 do

[4] Qi = Generated optimal quasigroup based on kr;

[5] Pj = E-transformation(Pj , kr, Qi);

[6] Pj = Bit-permutation(Pj);

[7] Qi = Generated optimal quasigroup based on k15;

[8] Pj = E-transformation(Pj , k15, Qi);

[9] IV = Pj ;

updates block Pj many times during the encryption process, and the results are stored

in the same block Pj , 0 ≤ j ≤ N − 1.

5.3.3 Decryption

The decryption process is the reverse of the encryption process. It recovers the original

plaintext from the ciphertext. It uses the same sequence of the round seed values but

in reverse order. Let K = k0, k1, . . . , k15 be 16 bytes of seed values, and if kr is used

in the rth round of the encryption algorithm, then kt is used in the tth round of the

decryption algorithm, where t = 15 − r, 0 ≤ r ≤ 15. The decryption algorithm of the

proposed block cipher is not the same as the encryption algorithm. Also, it uses the

left inverses of the quasigroups that were used in the encryption algorithm. It also

performs a total of 16 rounds to decrypt a 128-bit block of data. Each round, except

the initial (0th) round, consists of two transformations. In the initial round, only the

D-transformation takes place.
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5.3.3.1 D-transformation

The D-transformation is nothing but d-transformation, defined in section 2.2.12 of

Chapter 2. It is the inverse of the E-transformation. It uses the inverse S-boxes

S−1
0 , S−1

0 , . . . , S−1
15 as a left inverse quasigroup LIQ = (Z16, \) of the quasigroup Q =

(Z16, ∗) that was used in the E-transformation, where S−1
α is the inverse of Sα, 0 ≤

α ≤ 15. A method to find the left inverse quasigroup LIQ of the quasigroup Q is

given in Chapter 2. Let C = {c0, c1, . . . , c15}, kt, and P={p0, p1, . . . , p15} denote round

input, 8-bit seed value (sub-key) for the tth round, and the round output, respectively.

Then, the way of using the D-transformation on C with seed value kt to recover P is

as follows:
p0 = kt♯ic0,

pj = cj−1♯icj ,

}
(5.6)

where p0 pj , cj and kt are byte values for 1 ≤ j ≤ 15, 0 ≤ t ≤ 15, and ♯i is one

of the left inverse quasigroup operations corresponding to the left inverse quasigroup

LIQi = (Z16, ♯i), defined in Equation 5.2, 0 ≤ i ≤ 15.

5.3.3.2 Inverse bit permutation

The inverse bit permutation of the decryption algorithm is the reverse of the bit per-

mutation used in the encryption algorithm, shown in Table 5.2.

Table 5.2: Inverse bit permutation for a 128-bit block.

115 0 5 10 15 16 21 26 31 32 37 42 47 48 53 58

63 64 69 74 79 80 85 90 95 96 101 106 111 112 117 122

127 12 1 6 11 28 17 22 27 44 33 38 43 60 49 54

59 76 65 70 75 92 81 86 91 108 97 102 107 124 113 118

123 8 13 2 7 24 29 18 23 40 45 34 39 56 61 50

55 72 77 66 71 88 93 82 87 104 109 98 103 120 125 114

119 4 9 14 3 20 25 30 19 36 41 46 35 52 57 62

51 68 73 78 67 84 89 94 83 100 105 110 99 116 121 126

5.3.3.3 Decryption algorithm based on CBC mode

The decryption algorithm of the proposed block cipher is also implemented using the

Cipher Block Chaining (CBC) mode of operation. Each iteration of the decryption
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algorithm decrypts 128 bits of the ciphertext and is repeated until the entire ciphertext

is decrypted. The pseudocode of the decryption algorithm is given in Algorithm 9.

In this algorithm, LIQi denotes a generated left inverse quasigroup based on the seed

Algorithm 9: Pseudocode of the decryption algorithm

Input: 1. Ciphertext in the form of 128-bit (16 bytes) blocks. Let C0, C1, . . . ,

CN−1 be the N number of blocks to be decrypted.

2. Initial value (IV ) of 128 bits (16 bytes).

3. Secret key K of 128 bits in the form of a sequence of 16 bytes such

as K = k0, k1, . . . , k15, where kt is a 8-bit value for 0 ≤ t ≤ 15.

4. A left inverse quasigroup of order 16, this quasigroup is the left

inverse of a quasigroup that was used in the encryption algorithm.

Output: Plaintext whose size is equal to the size of the ciphertext.

[1] for j = 0 to N − 1 do

[2] CopyOfCj= Cj ;

[3] LIQi = Generated left inverse quasigroup based on k0;

[4] Cj = D-transformation (Cj , k0, LIQi);

[5] for t = 1 to 15 do

[6] LIQi = Generated left inverse quasigroup based on kt;

[7] Cj = Inverse bit permutation (Cj);

[8] Cj = D-transformation (Cj , kt, LIQi);

[9] Cj = XOR (Cj , IV );

[10] IV = CopyOfCj ;

value for the tth round of Cj block, 0 ≤ i, t ≤ 15, 0 ≤ j ≤ N − 1, where N is the total

number of ciphertext blocks to be decrypted. The CopyofCj is a temporary variable

used to store the value of Cj before starting the decryption process. The decryption

algorithm updates block Cj many times during the decryption process, and the results

are stored in the same block Cj , 0 ≤ j ≤ N − 1.

5.4 A block cipher based on multiple optimal quasigroups

and {neℓ, ndℓ}-transformation

The notation employed in this section is given in Table 5.3. Here, we discuss another

block cipher different from the one discussed in the previous section 5.3. It is an
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Table 5.3: Some important notations.

Notation Meaning

XOR or ⊕ :bitwise addition modulo 2 operation

IV :an initial value of 128 bits

N :a total number of blocks to be encrypted/decrypted

K0 :initial (0th) round key or secret key

RKr :rth round key for encryption, 0 ≤ r ≤ 16

RKt :tth round key for decryption, where t = 16− r

RKr : wp :pth word of the rth round key for encryption, 0 ≤ r ≤ 16, 0 ≤ p ≤ 67

RKt : wp :pth word of the tth round key for decryption, where t = 16− r

W :a total of 68 words of the round key

r & t :round number for encryption & decryption respectively, where 0 ≤ r, t ≤ 16

B & C :block number for encryption & decryption respectively, where 0 ≤ B,C ≤ N − 1

iterative cipher, and its design is also based on the Substitution Permutation Network

(SPN). It also uses a 128 bits secret key and 16 optimal quasigroups of order 16.

These 16 optimal quasigroups are generated based on an original optimal quasigroup

Q = (Z16, ∗) of order 16. The description of the optimal quasigroup is specified in

Chapter 2. Note that this cipher uses the same set of 16 S-boxes used by the previous

cipher. These 16 S-boxes S0, S1, . . . , S15 are given in Table 2.8 of Chapter 2. It performs

a total of 17 rounds to encrypt or decrypt a block of 128 bits. Each round consists of

a sequence of transformations. These transformations are an intermix of substitutions

and permutations. Each round, except the initial/last round of encryption/decryption

of the proposed cipher, uses an optimal quasigroup by randomly picking one out of the

16 optimal quasigroups. This optimal quasigroup is selected based on the previous/next

round key of encryption/decryption. The proposed cipher leverages the space of a single

optimal quasigroup and employs 16 optimal quasigroups by generating them from a

single optimal quasigroup. That is, the space required by 16 optimal quasigroups

is reduced to that of a single optimal quasigroup. The Theorem 1 of Chapter 2 is

useful in proving the correctness of the proposed cipher. The workflow of encryption

and decryption of the proposed block cipher is shown in Figure 5.3. In the figure,

wp, 0 ≤ p ≤ 67, denotes a 32-bit word of the round key. The word representation of

the round key is described in the next subsection. Every round uses a quasigroup Qi
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Figure 5.3: Workflow of encryption and decryption of new block cipher.

for encryption and an inverse quasigroup LIQi for decryption (where LIQi is the left

inverse of Qi), each of which is selected by a 16× 1 multiplexer.

The algorithm of the proposed cipher consists of four parts: (1) an algorithm to

randomly select an optimal quasigroup for each round of a block, (2) an algorithm to

generate a round key, (3) an encryption algorithm, and (4) a decryption algorithm. The

encryption algorithm employs three different transformations: (i) Encoding function,

(ii) Bit permutation, and (iii) Add round key. Similarly, the decryption algorithm

has three corresponding inverse transformations: (i) Decoding function, (ii) Inverse bit

permutation, and (iii) Add round key.

110



5.4 A block cipher based on multiple optimal quasigroups
and {neℓ, ndℓ}-transformation

5.4.1 Generation of round key

The proposed block cipher uses a round key generation algorithm to encrypt or decrypt

a data block. It uses a 128-bit round key for each round to encrypt or decrypt a block of

128 bits. These round keys are generated based on the secret key of 128 bits along with

16 optimal quasigroups of order 16. The generation of each round key uses an optimal

quasigroup out of 16 optimal quasigroups, selected by a 16×1 multiplexer. Now, the se-

cret key of 128 bits is partitioned into four words, and these, in turn, are arranged as four

columns of a matrix. Let K0 = (k(0,0), k(0,1), k(0,2), k(0,3), . . . , k(3,0), k(3,1), k(3,2), k(3,3))

be a secret key of 128 bits (16 bytes), where each k(i,j) is a byte value for 0 ≤ i, j ≤ 3,

which are organized as a 4 × 4 matrix of bytes as shown in Figure 5.4 (a). In this

matrix, pth word (column) is denoted by wp, where 0 ≤ p ≤ 3 and size of each wp

is 32 bits. These four words are used to create the initial (0th) round key, and it is

represented as (K0 : w0, K0 : w1, K0 : w2, K0 : w3) or simply, K0 = (w0, w1, w2, w3).

Our proposed cipher performs a total of 17 rounds for encrypting/decrypting a block of

128 bits, and each round consists of four words as a key. Therefore, a total of 68 words

(W = {RK0 : w0, RK0 : w1, RK0 : w2, RK0 : w3, RK1 : w4, . . . , RK15 : w63, RK16 :

w64, RK16 : w65, RK16 : w66, RK16 : w67}) are required as shown in Figure 5.4. These

Figure 5.4: Representation of round keys.

68 words are generated based on K0, including four words of the initial (0th) round key

K0. For 1 ≤ r ≤ 16, 4 ≤ p ≤ 67, a pth word of the rth round key is generated based on

the previous words p− 4 and p− 3. The generation of the round key algorithm is given

in Algorithm 10. In this algorithm, Qi, 0 ≤ i ≤ 15, is a generated quasigroup. And ⋆i
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Algorithm 10: Generation of the round key

Input: 1. A 128-bit secret key in the form of a 4× 4 matrix of bytes as shown

in Figure 5.4(a).

2. An optimal quasigroup of order 16.

Output: Generates all the 17 rounds key in the form of a 4× 68 matrix of

bytes as shown in Figure 5.4.

[1] if r = 0 and 0 ≤ p ≤ 3 then

[2] RK0 = K0;

[3] else

[4] for p = 4 to 67 do

[5] if p mod 4 = 0 then

[6] Qi = generated quasigroup based on rth round key;

[7] r = r + 1;

[8] if RK(r−1) : w(p−3) ∈ W then

[9] RKr : wp = RK(r−1) : w(p−4) ⋆i RK(r−1) : w(p−3);

[10] else

[11] RKr : wp = RK(r−1) : w(p−4)⋆i RKr : w(p−3);
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is the binary operation (quasigroup operation) of 32-bit words defined as follows: Let

U = (u1, u2, u3, u4) and V = (v1, v2, v3, v4) be two words of 32 bits each, where uj and

vj are byte values (1 ≤ j ≤ 4). Then,

U⋆iV = Z = (u1 ⋆i v1, u2 ⋆i v2, u3 ⋆i v3, u4 ⋆i v4),

where ⋆i is one of the quasigroup operations defined in Equation 5.1, 0 ≤ i ≤ 15. Note

that a quasigroup operation ⋆i is a look-up table operation. So, here the resultant

value Z is determined by looking up the element having the row number U and the

column number V in the table representation of the quasigroup Q = (Z232 ,⋆i).

Note that both the encryption and the generation of the round key algorithms use

the same set of optimal quasigroups. These optimal quasigroups are generated based

on an original optimal quasigroup Q = (Z16, ∗). But in decryption, we use a left inverse

quasigroup LIQ = (Z16, \) of the quasigroup Q. Note that both the encryption and

the decryption algorithms use the same round key. Therefore in decryption, the key

generation algorithm has to perform the quasigroup operations corresponding to the

quasigroup Q = (Z16, ∗) based on the quasigroup LIQ = (Z16, \). From Definition 2.2.6

of Chapter 2, the relation between these two quasigroup operations is as follows:

t2 \ t3 = t1 ⇔ t2 ∗ t1 = t3,∀(t1, t2, t3) ∈ Z16 × Z16 × Z16.

5.4.1.1 Avalanche effect of expanded key

The round key generation (key expansion) algorithm uses a 4-word (where the size of

each word is 4 bytes) secret key and produces a total of 64 words, excluding the secret

key. The round key generation algorithm uses 16 optimal quasigroups of order 16. Out

of these, it uses only one optimal quasigroup for generating a round key. The selection

of an optimal quasigroup for each round depends on the previous round key except for

the initial round. Uniformly using each of these 16 optimal quasigroups eliminates the

possibility of producing the same expanded key for two different secret keys. It also

allows us to obtain high diffusion of the secret key bits during the key expansion. The

current round key is used to generate the next round key. This and the use of optimal

quasigroups cause the key generation algorithm to produce distinct round keys. So, key

bits in every round are unique. Therefore, slide attacks are avoided. We also believe

that the possibility of the existence of weak or related keys is minimal.
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Key expansion and key scheduling algorithms are designed so that the knowledge

of a part of the secret key or round sub-key bits will not allow determining the other

round’s sub-key bits. We analyzed the avalanche effect on the expanded key and com-

pared it with that of the AES-128 key expansion for three cases, namely, (i) all 0’s,

(ii) all 1’s, and (iii) randomly generated secret keys. Results of this analysis are given

in Table 5.4. These results are obtained by changing each bit of the secret key as the

size of the secret key is 128 bits. Note that more than 47% bits of the expanded key

have been changed in the case of the proposed key expansion algorithm, whereas the

corresponding number in the case of AES-128 is only around 31%. That is, the results

of the proposed cipher are more close to the ideal value than the results of AES-128.

Based on these results, we can conclude that our key expansion algorithm has a higher

diffusion than AES-128 for protection from some slide and key-related attacks.

Table 5.4: Avalanche effect of expanded key, when the secret key is with all zeros, all

ones, and randomly generated.

Secret key

of 128 bits

Proposed cipher AES-128

key1 = 0 min = 42.19%, max = 54.25%,

avg = 47.73%, sd = 3.21

min = 16.09%, max = 46.25%,

avg = 32.26%, sd = 7.12

key2 = 1 min = 42.43%, max = 53.07%,

avg = 47.95%, sd = 2.63

min = 17.42%, max = 46.09%,

avg = 31.65%, sd = 7.53

key3 = rand min = 44.38%, max = 50.24%,

avg = 47.87%, sd = 1.01

min = 16.48%, max = 45.00%,

avg = 31.49%, sd = 7.58

5.4.2 Generation of multiple quasigroups

Both the schemes (round key generation and encryption/decryption algorithms) use 16

optimal quasigroups of order 16. These 16 quasigroups are generated by permuting the

rows of an original quasigroup Q = (Z16, ∗), example of it is given in Table 2.8 of Chap-

ter 2. By permuting the rows of the optimal quasigroup Q, 16! optimal quasigroups

can be created. Note that the proposed schemes use only 16 optimal quasigroups. So,

we select any 16 out of the total 16! optimal quasigroups. Let the selected optimal

quasigroups be denoted by Q0 = (Z16, ∗0), Q1 = (Z16, ∗1), ..., Q15 = (Z16, ∗15), where
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∗0, ∗1, ..., ∗15 are the quasigroup operations corresponding to Q0, Q1, ..., Q15, respec-

tively.

The selection of an optimal quasigroup out of 16 optimal quasigroups depends on

both the round key and an optimal quasigroup of the previous round of the proposed

encryption system, except the 1st round. This is because the 1st round uses the initial

(0th) round key and an original optimal quasigroup Q. Using a 16× 1 multiplexer, the

generation or selection of a total of 16 quasigroups is discussed earlier in section 5.3.1.

So, using this process, the following equation can generate 16 optimal quasigroups

based on an original quasigroup Q.

Qi = (R(0+Rconstval)mod 16, R(1+Rconstval)mod 16, . . . , R(15+Rconstval)mod 16) (5.7)

where R0, R1, . . . , R15 denote row numbers of the original quasigroup Q = (Z16, ∗), 0 ≤
Rconstval ≤ 15, Qi ∈ {Q0, Q1, . . . , Q15}, and the value of Rconstval is determined

as follows: For selecting or generating (r+1)th round optimal quasigroup, we consider

rth (previous) round key shown in Figure 5.4. This is a 4 × 4 matrix of bytes. Now,

define

Temp0 = k(0,4r) ⊕ k(1,4r) ⊕ k(2,4r) ⊕ k(3,4r),

Temp1 = k(0,4r+1) ⊕ k(1,4r+1) ⊕ k(2,4r+1) ⊕ k(3,4r+1),

Temp2 = k(0,4r+2) ⊕ k(1,4r+2) ⊕ k(2,4r+2) ⊕ k(3,4r+2),

Temp3 = k(0,4r+3) ⊕ k(1,4r+3) ⊕ k(2,4r+3) ⊕ k(3,4r+3),

XORofTempj = Temp0 ⊕ Temp1 ⊕ Temp2 ⊕ Temp3.

Each Tempj for 0 ≤ j ≤ 3 and XORofTempj are byte values. Let XORofTempj be divided

into two 4-bit values (nibbles), that is XORofTempj = x1x0, where x0 and x1 are nibbles.

Then,

Rconstval = x1 ∗i x0, (5.8)

where ∗i is the quasigroup operation corresponding to the rth round’s optimal quasi-

group, 0 ≤ i, r ≤ 15. The Rconstval is 4 bits, denoted by s3, s2, s1, and s0, where

s0 and s3 are the least significant bit and the most significant bit, respectively. These

sα, 0 ≤ α ≤ 3, are considered as the selection lines of the 16 × 1 multiplexer. If
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s3 = 0, s2 = 0, s1 = 0, s0 = 0, then the multiplexer selects or generates a quasi-

group Q0. If s3 = 0, s2 = 0, s1 = 0, s0 = 1, then the multiplexer selects or gener-

ates a quasigroup Q1, and so on. Note that all these 16 optimal quasigroups need

not be stored. This is because each optimal quasigroup consists of the same rows

R0, R1, . . . , R15 but in a different order (permutation). Also, the same permutations of

the rows R0, R1, . . . , R15 are used in the decryption algorithm, but these permutations

are applied on the LIQ = (Z16, \), where LIQ is the left inverse quasigroup of the

original optimal quasigroup Q. The correctness is proven in Theorem 1 in Chapter 2.

5.4.3 Encryption

Encryption is carried out in a total of 17 rounds. Each of these rounds, except the

initial and the last rounds, comprises the following three transformations and encrypts

a 128-bit block of data. Initial (0th) round performs only the add round key, and the

last (16th) round performs the encoding function and add round key.

5.4.3.1 Encoding function

The encoding function is nothing but an nel-transformation, defined in section 2.2.15

of Chapter 2. It is a non-linear transformation of the proposed cipher. It uses 16 S-

boxes S0, S1, . . . , S15 as an optimal quasigroup of order 16. These 16 S-boxes are given

in Table 2.8 of Chapter 2. It is a key-dependent S-box layer that substitutes a byte for

a byte. It adds to the confusion property and hides the relationship between the key

and the ciphertext; thereby making it difficult to find the key from the ciphertext. Let

B={p0, p1, . . . , p15}, K={k0, k1, . . . , k15}, and C = {c0, c1, . . . , c15} denote input to a

round, round key, and the output of a round, respectively. Then the way of using the

encoding function on B with round key K to obtain the corresponding C is as follows:

cj = kj ⋆i pj

where all pj , cj and kj are byte values for 0 ≤ j ≤ 15 and ⋆i is one of the quasigroup

operations, defined in Equation 5.1, for 0 ≤ i ≤ 15.
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5.4.3.2 Bit permutation

This is a linear transformation used to increase the diffusion power of the cipher. This

is the second transformation in a round function. This cipher uses the same bit per-

mutation as that of the encryption algorithm of the previous cipher, described in sec-

tion 5.3.2.2.

5.4.3.3 Add round key

This is also a linear transformation. It is the third and the last transformation in a

round function. This transforms a round input B={p0, p1, . . . , p15} of 16 bytes to the

corresponding round output C = {c0, c1, . . . , c15} of 16 bytes by XORing the input B

with a round key K={k0, k1, . . . , k15} of 16 bytes as follows:

cj = kj ⊕ pj

where all pj , cj and kj are byte values for 0 ≤ j ≤ 15.

5.4.3.4 Encryption algorithm based on CBC mode of operation

The algorithm of the proposed cipher is implemented using the Cipher Block Chaining

(CBC) mode of operation. Each iteration of the proposed cipher encrypts/decrypts

128 bits of plaintext/ciphertext, and it is repeated until the entire plaintext/ciphertext

is encrypted/decrypted. The encryption algorithm of the proposed block cipher is

given in Algorithm 11. In this algorithm, Qi denotes a generated quasigroup based

on the (r − 1)th round key for the rth round of Bj block, 0 ≤ i ≤ 15, 0 ≤ r ≤ 16,

0 ≤ j ≤ N − 1, where N is the total number of plaintext blocks to be encrypted.

The encryption algorithm updates block Bj many times during the encryption, and

the results are stored in the same block Bj .

5.4.4 Decryption

The decryption process is the reverse of encryption. It obtains the corresponding plain-

text from the ciphertext. The algorithm of decryption is not the same as encryption.

It uses the same sequence of round keys but in reverse order. Also, it uses the inverses

of the quasigroups that were used in the encryption. It also performs 17 rounds to

decrypt a 128-bit block of data. Each round, except the initial and the last rounds,
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Algorithm 11: Pseudocode of the encryption algorithm

Input: 1. Plaintext in the form of 128-bit (16 bytes) blocks. Let B0, B1, . . . ,

B(N−1) be the N number of blocks to be encrypted.

2. Initial value (IV ) of 128 bits (16 bytes).

3. Secret key of 128 bits (16 bytes).

4. An optimal quasigroup of order 16.

Output: Ciphertext whose size is equal to the size of the plaintext.

[1] {RKr:0 ≤ r ≤ 16}=Generate all the 17 rounds key;

[2] for j = 0 to N − 1 do

[3] Bj =XOR(Bj , IV );

[4] Bj = Add round key(Bj , RK0);

[5] for r = 1 to 15 do

[6] Qi = Generated quasigroup based on RKr−1;

[7] Bj = Encoding function(Bj , RKr, Qi);

[8] Bj = Bit permutation(Bj);

[9] Bj = Add round key(Bj , RKr);

[10] Qi = Generated quasigroup based on RK15;

[11] Bj = Encoding function(Bj , RK16, Qi);

[12] Bj = Add round key(Bj , RK16);

[13] IV = Bj ;
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consists of the following three transformations. In the initial round, add round key and

decoding function; in the last round, only the add round key takes place.

5.4.4.1 Add round key

The add round key transformation for decryption is the same as that of the encryption

process described in section 5.4.3.3.

5.4.4.2 Inverse bit permutation

This cipher uses the same inverse bit permutation as that of the decryption algorithm

of the previous cipher, described in section 5.3.3.2.

5.4.4.3 Decoding function

The decoding function is nothing but an ndl-transformation, defined in section 2.2.15

of Chapter 2. It is the inverse of the encoding function. It uses the inverse S-boxes

S−1
0 , S−1

0 , . . . , S−1
15 as a left inverse quasigroup LIQ = (Z16, \) of the quasigroup Q =

(Z16, ∗) that was used in the encoding function, where S−1
α is the inverse of Sα, 0 ≤

α ≤ 15. Let C = {c0, c1, . . . , c15}, K={k0, k1, . . . , k15}, and B={p0, p1, . . . , p15} denote

round input, round key, and the round output, respectively. Then the decoding function

on C with the round key K to recover B is as follows:

pj = kj♯icj

where all pj , cj and kj are byte values for 0 ≤ j ≤ 15 and ♯i is one of the left inverse

quasigroup operations, defined in Equation 5.2, for 0 ≤ i ≤ 15.

5.4.4.4 Decryption algorithm based on CBC mode

The decryption algorithm of the proposed cipher is also implemented using the Cipher

Block Chaining (CBC) mode of operation. Each iteration of the decryption algorithm

decrypts 128 bits of the ciphertext and is repeated until the whole ciphertext is de-

crypted. The algorithm of decryption algorithm is given in Algorithm 12. In this

algorithm, LIQi, 0 ≤ i ≤ 15, is a generated left inverse quasigroup based on the

(t + 1)th (next) round key for the tth round of Cj block, 0 ≤ t ≤ 16, 0 ≤ j ≤ N − 1,

where N is the total number of ciphertext blocks to be decrypted. The CopyofCj is a
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Algorithm 12: Pseudocode of the decryption algorithm

Input: 1. Ciphertext in the form of 128-bit (16 bytes) blocks. Let C0, C1, . . . ,

C(N−1) be the N number of blocks to be decrypted.

2. Initial value (IV ) of 128 bits (16 bytes).

3. Secret key of 128 bits (16 bytes).

4. A left inverse quasigroup of order 16, this quasigroup is the left

inverse of a quasigroup that was used in the encryption algorithm.

Output: Plaintext whose size is equal to the size of the ciphertext.

[1] {RKt:0 ≤ t ≤ 16}=Generate all the 17 rounds key;

[2] for j = 0 to N − 1 do

[3] CopyOfCj= Cj ;

[4] LIQi = Generated quasigroup based on RK1;

[5] Cj = Add round key (Cj , RK0);

[6] Cj = Decoding function (Cj , RK0, LIQi);

[7] for t = 1 to 15 do

[8] LIQi = Generated quasigroup based on RKt+1;

[9] Cj = Add round key (Cj , RKt);

[10] Cj = Inverse bit permutation (Cj);

[11] Cj =Decoding function (Cj , RKt, LIQi);

[12] Cj = Add round key (Cj , RK16);

[13] Cj = XOR (Cj , IV );

[14] IV = CopyOfCj ;
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temporary variable used to store the value of Cj before starting the decryption process.

The decryption algorithm updates block Cj many times during the decryption, and the

results are stored in the same block Cj , 0 ≤ j ≤ N − 1.

5.5 Performance analysis

In this section, we analyzed the performance of the proposed block ciphers in terms of

time (speed) and space complexities. Also, their performances are compared with AES-

128, DES, and the existing quasigroup-based block ciphers presented in the literature [5,

6, 83].

The proposed ciphers have been implemented in C++ on a system with the following

configuration: Intel(R) Core(TM) i5-2400 CPU @3.40 GHz processor with 8 GB RAM

and 64-bit Linux operating system. The source code of the proposed ciphers is run 103

times for different samples, and we calculated the average execution time in seconds. We

have used the C++ standard <chrono> library to measure the execution time [38].

Note that the space complexity is determined based on the S-boxes or quasigroups

required for all ciphers. The performance of the proposed cipher is compared with

that of the existing quasigroup-based block ciphers [5, 6, 83], DES and AES-128. The

results of this analysis are shown in Table 5.5. According to the results, as shown in

Table 5.5, it can be observed that the proposed ciphers are faster than the existing

ciphers, except for AES-128. However, the proposed ciphers use only 50% of the space

compared to that of the AES-128.

5.6 Security analysis

The proposed ciphers can be seen as a family of encryption systems parameterized

by an optimal quasigroup of order 16. Since our system can create a maximum of

16! optimal quasigroups of order 16; it follows that there are C16!
1 ways to select an

optimal quasigroup out of 16! optimal quasigroups. That is, the family consists of

C16!
1 cryptosystems. The sender and the receiver agree on a cryptosystem by first

deciding on an optimal quasigroup. Once a cryptosystem is decided, the set of 16

optimal quasigroups of order 16 it uses is fixed, and each round uses only one of these

16 optimal quasigroups with equal probability, depending on the round key or sub-key
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Table 5.5: Comparison of the time and space complexities.

Time complexity Space complexity

Block ciphers Execution time in seconds Space in bytes

1 MB 2.11 MB 4.21 MB

Proposed block ciphers

1st cipher discussed in

section 5.3

0.96 1.93 3.87 128

2nd cipher discussed in

section 5.4

1.23 2.47 4.95 128

Existing block ciphers

Battey et al. [5, 6] 2.51 4.61 10.57 65536

Zhao and Xu [83] 3.32 6.71 13.47 128

DES 10.42 20.79 39.82 180

AES-128 0.67 1.21 2.32 256

value. To access these 16 quasigroups, a cryptanalyst must first determine the secret

key to be used.

• Exhaustive key search attack :- The proposed ciphers use a secret key of 128

bits. Therefore, the number of the possible keys is 2128 ≈ 3.4 × 1038. So, the running

time of this attack is T = O(u) = O(2128), where u is the size of the key space. Note

that it is exponential in the size of the secret key. Let us assume a cryptanalyst uses

a supercomputer and tries 5.37 × 1017 keys per second, then the cryptanalyst needs

around 2.01 × 1013 years to determine the employed key. This is because these days,

supercomputers can perform 5.37× 1017 FLOPS1 [76].

5.6.1 Linear cryptanalysis

Linear cryptanalysis is one of the powerful attacks against block ciphers. This attack

model works based on the known-plaintext attack. It creates linear approximations of

the plaintext bits, ciphertext bits, and sub-keys that hold with a suitably high prob-

ability. Let Pl be the probability of a linear approximation, then its probability bias

(denoted by ϵ) can be defined as |Pl − 1
2 |. The higher the magnitude of the probability

bias ϵ, the fewer known plaintexts are required to mount a linear attack. The encryption

1floating point operations per second
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systems of the proposed ciphers are slightly different from each other. This is because,

each round of the first cipher uses only two transformations ((i) E-transformation, and

(ii) bit-permutation); whereas the second cipher uses three transformations ((i) encod-

ing function, (ii) bit permutation, and (iii) add round key ). The E-transformation and

encoding function are key-dependent substitution (S-box) layers that use the round key

value. The first cipher discussed in section 5.3 consists of 16 rounds, and each round

uses a substitution (or an E-transformation) layer. The second cipher discussed in

section 5.4 consists of 17 rounds, in which only the 16 rounds (from the 1st round to

the 16th round of the encryption algorithm) use substitution (or encoding functions)

layers. In both ciphers, a substitution layer is nothing but an S-box layer that uses 16

optimal S-boxes as an optimal quasigroup of order 16, where the size of each S-boxes

is 4× 4 bits.

We investigate the linear probability bias ϵ of r + 1 round cipher by constructing

the linear approximations of r + 1 rounds, r ≥ 0. This is because once a r + 1-round

linear approximation of the r+2 rounds cipher is discovered with a suitably high linear

probability bias ϵ, then it is conceivable to attack the cipher [32]. Let u bits of the

plaintext or input to the 0th round (denoted by I0), v bits of the output of the rth

round (denoted by Or), and a total of w bits of the round keys used from the 0th round

to the rth round (denoted by K(0,r)). Then an approximation of r rounds is defined as

follows (
u⊕

i=0

Ixi
0

)
⊕

 v⊕
j=0

O
xj
r

 =
w⊕

k=0

Kxk

(0,r) (5.9)

where xi, xj and xk denote bit positions, and ⊕ is a bitwise addition modulo 2 oper-

ation. For the first cipher, the right side value of Equation 5.9 would be zero since

it does not consist of an add-round-key transformation. For the second cipher, the

right side value of Equation 5.9 would be either 0 or 1, depending on the round key

bits involved in the add-round-key transformation. These bits are fixed but unknown

(as they are determined by the key under attack). This kind of linear relation is ob-

tained by concatenating the appropriate linear approximations of S-boxes from round

to round of the cipher. This is because S-boxes are the only non-linear components of

the proposed cipher. These linear approximations hold a relation between the input

and output bits of the S-boxes with a certain probability. The linear approximation of
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the r + 1 rounds cipher represents a linear trail (also called a path from the 0th round

up to the rth round of the encryption system) that consists of active S-boxes. A linear

trail is optimal if it contains a minimum number of active S-boxes.

We used the Linear Approximation Tables (LATs) of the active S-boxes to form

the linear trails. A LAT shows the probability bias values of all the possible linear

approximations of an S-box. Note that the LATs of all the 16 S-boxes have the same

magnitude linear probability bias values (|Pl − 1
2 |). Because of this property, the key-

dependent S-box (non-linear) layer does not need to differentiate among LATs of all

the 16 S-boxes while arriving at the optimal linear trail. A LAT of one of the S-boxes

is given in Table 5.7. In this table, α denotes the input mask (row number), and β

denotes the output mask (column number) of the linear approximation in hexadecimal.

Dividing each table element by 16 gives the probability bias ϵ for that particular linear

approximation. That is, for all possible input values and hence the output values of

the S-box, a linear approximation is represented as a0 · y0 ⊕ a1 · y1 ⊕ a2 · y2 ⊕ a3 · y3 =
b0·z0⊕b1·z1⊕b2·z2⊕b3·z3, where “·” denotes bitwise AND operation, both ai, bi ∈ {0, 1},
a0a1a2a3 is the binary representation of α and b0b1b2b3 is the binary representation of

β where (a0, b0) and (a3, b3) are the least and the most significant bits, respectively.

For example α = A and β = 2, a linear approximation of the S-box with probability

bias 1
4 is y1 ⊕ y3 = z1. More details about LAT are given in [32].

We investigate the construction of an r + 1-round linear trail by examining non-

zero input masks corresponding to the S-boxes from the 0th round to the rth round,

r ≥ 0. If a particular non-zero input mask (α) occurs, then the corresponding output

mask (β) with suitably high probability bias and the least hamming weight is decided

using the LATs of the S-boxes in each round. As we all know, a linear trail consists of

a sequence of input and output masks between the rounds so that the output masks

from one round correspond to the input masks of the next round. We only consider

the linear approximations of the S-boxes that have non-zero input masks and hence

non-zero output masks to estimate the number of active S-boxes of a linear trail. Since

the size of the input block of the proposed ciphers is 128 bits, it is impossible to find

all of the possible linear trails for 2128 inputs. So, we divide 128 bits input block into

4 sub-blocks as P1, P2, P3, and P4, where the size of each sub-block is 32 bits. And

then, we use all the possible non-zero inputs of the first sub-block P1, keeping all the

remaining sub-blocks P2, P3, and P4 as zero values. This gives rise to a maximum of
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232 linear trails. Similarly, we repeated the same procedure for the sub-blocks P2, P3,

and P4. Note that both ciphers use the same 16 S-boxes and a bit permutation to

achieve the confusion and diffusion properties, respectively. So, the substitution and

permutation layers of both ciphers do not differentiate the number of active S-boxes in

the optimal linear trail. In order to investigate the optimal linear trails corresponding

to both the ciphers discussed in sections 5.3 and 5.4, we used a computer-based search

to find an optimal linear trail of the r + 1-round cipher (r ≥ 0) by evaluating the

number of active S-boxes at each round of the proposed block ciphers. The number

of active S-boxes in the optimal linear trail of the r + 1-round cipher corresponding

to both ciphers is given in Table 5.6 (a) and (b). In this table, #r denotes the round

number, and #S-box denotes the minimum number of active S-boxes in the optimal

linear trail of the r + 1-round cipher.

Table 5.6: Minimum number of active S-boxes in the linear trail of the r+1-round cipher.

1st cipher, discussed in section 5.3 2nd cipher, discussed in section 5.4

#r # S-box #r # S-box #r # S-box #r # S-box

0 1 8 45 1 1 9 45

1 2 9 68 2 2 10 68

2 3 10 89 3 3 11 89

3 5 11 113 4 5 12 113

4 7 12 134 5 7 13 134

5 11 13 159 6 11 14 159

6 17 14 190 7 17 15 190

7 28 15 211 8 28 16 211

(a) (b)

The maximum probability bias of all the 16 S-boxes employed in the proposed block

ciphers is 2−2. So, using the piling-up lemma, the probability bias (ϵ) of the r-round

cipher can be determined as follows [52]:

ϵ = 2#S-box−1 × (MPB)#S-box

where MPB denotes the maximum probability bias of the S-boxes used.

The complexity of the r + 1-round cipher against linear attack can be obtained by
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using the following formula [32]:

Nl ≈
1

ϵ2
,

where Nl denotes the number of known plaintexts needed to mount the linear attack.

Also, the complexity of the r+2 rounds cipher against linear cryptanalysis depends

on the linear probability bias value of r+1 rounds [32], r ≥ 0. According to the results

as shown in Table 5.6 (a)/(b), for #r = 14/15 and #S-box = 190, we have ϵ = 2−191.

So, mounting the linear attack of a 16/17-round cipher required 2382 known plaintexts

(Nl). Hence, the proposed ciphers are resistant to linear attacks.

Table 5.7: Linear Approximation Table (LAT)

α \ β 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 -2 2 4 0 2 2 0 -4 2 -2 0 0 2 2 0

2 0 0 2 -2 2 2 0 4 -2 -2 0 4 0 0 -2 2

3 0 2 4 -2 2 0 2 0 2 4 -2 0 0 -2 0 -2

4 0 -2 0 2 0 2 -4 2 0 2 0 -2 0 -2 -4 -2

5 0 0 -2 -2 0 0 2 2 -4 0 2 -2 0 -4 2 -2

6 0 -2 2 0 -2 0 0 2 2 -4 -4 -2 0 -2 2 0

7 0 4 0 0 -2 2 -2 -2 -2 -2 -2 2 0 0 0 -4

8 0 0 -2 -2 0 0 2 2 0 0 -2 -2 -4 4 -2 -2

9 0 -2 0 2 4 -2 0 -2 0 -2 0 2 -4 -2 0 -2

A 0 0 4 0 -2 -2 2 -2 -2 -2 2 -2 0 0 -4 0

B 0 2 -2 0 2 0 0 -2 -2 0 -4 -2 0 -2 -2 4

C 0 2 2 0 4 2 -2 0 0 -2 2 -4 0 2 2 0

D 0 4 0 4 0 -4 0 4 0 0 0 0 0 0 0 0

E 0 2 0 2 -2 4 2 0 2 0 2 0 -4 -2 0 2

F 0 0 -2 2 2 2 4 0 2 -2 0 0 4 0 -2 -2

5.6.2 Differential cryptanalysis

Differential cryptanalysis is also one of the powerful attacks against block ciphers. This

attack model works based on the chosen-plaintext attack. It reduces the complexity

of the exhaustive key search attack. Like linear cryptanalysis, here we constructed the
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differential trail of r+1-round cipher, r ≥ 0. Let P ′ and P ′′ be the inputs (plaintexts)

to the system and the corresponding outputs (outputs of the rth round of the proposed

ciphers) be R′ and R′′, respectively. The input difference is denoted by ∆P = P ′⊕P ′′,

and the output difference is denoted by ∆R = R′ ⊕R′′, where ⊕ is a bit-wise addition

modulo 2 operation. The pair (∆P,∆R) is referred to as an expected differential trail

(or differential characteristic) of an r+ 1-round cipher if a particular output difference

∆R occurs given a particular input difference ∆P with a suitably high probability.

Since the proposed ciphers are of 128 bits, processing all the possible 2128 differential

trails is practically impossible. This expected differential characteristic can be arrived

at by concatenating the appropriate differential characteristics of the S-boxes from

round to round. This is because S-boxes are the only non-linear components of the

proposed block ciphers, and a differential trail consists of a sequence of input and

output differences between the rounds; it follows that the output difference from one

round corresponds to the input difference of the next round. Before combining the

S-boxes to derive differential trails, we must discuss the influence of the add-round

key layer on the differential trail (or on the S-box differential), which is used in the

second cipher discussed in section 5.4. Consider the inputs P ′ and P ′′, and let kr be a

round key used with both the inputs P ′ and P ′′ in the add-round key layer. Then, the

corresponding outputs would be P ′⊕kr and P ′′⊕kr, respectively. Now, we have input

difference as (P ′ ⊕ kr) ⊕ (P ′′ ⊕ kr) = P ′ ⊕ P ′′. Hence, the add-round key layer does

not influence the input difference value and can be ignored to evaluate the number of

active S-boxes in the optimal linear trail.

We used the Difference Distribution Table (DDT) of the active S-boxes to find

the differential probabilities of the differential trails. A differential trail is said to be

optimal if it contains a minimum number of active S-boxes. A DDT of the S-box

shows the differential probability for all the possible pairs of the input and output

differences. Note that the DDTs of all the 16 S-boxes of the proposed ciphers have

the same differential probability for all the possible input and output differences pairs.

Because of this property, the key-dependent non-linear (S-box) layer does not need to

differentiate among DDTs of all the 16 S-boxes while arriving at the optimal differential

trail. A DDT of one of the S-boxes is given in Table 2.10 of Chapter 2.

For both the ciphers discussed in sections 5.3 and 5.4, we investigate the construc-

tion of the differential trails by examining non-zero input differences corresponding to
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the S-boxes from the 0th round to the rth round, r ≥ 0. If a particular non-zero input

difference occurs, then the corresponding output difference with suitably high proba-

bility and the least hamming weight is decided in each round using the DDTs of the

S-boxes. So, we only consider the S-boxes that have non-zero input differences and

hence non-zero output differences to estimate the number of active S-boxes of a differ-

ential trail. Since the size of the input block of both the proposed cipher is 128 bits, we

divide 128-bit input (input difference) block ∆P into 4 sub-blocks as ∆P1,∆P2,∆P3,

and ∆P4, where the size of each sub-block is 32 bits. And then, we find all the dif-

ferential trails for all the possible non-zero values for the first sub-block ∆P1, keeping

the remaining three sub-blocks fixed. This gives rise to a maximum of 232 differential

trails. Similarly, we repeated the same procedure for the sub-blocks ∆P2, ∆P3, and

∆P4. Note that both the ciphers use the same 16 S-boxes and a bit permutation to

achieve the confusion and diffusion properties, respectively. Therefore, the substitution

and permutation layers do not differentiate the ciphers while determining the number

of active S-boxes in the optimal differential trail. We used a computer-based search to

find an optimal differential trail of r+1-round cipher (r ≥ 0) by evaluating the number

of active S-boxes at each round of the proposed ciphers. The minimum number of

active S-boxes in the optimal differential trail of r + 1-round cipher corresponding to

the first and the second ciphers are given in Table 5.8 (a) and 5.8 (b), respectively. In

this table, #r denotes the round number, and #S-box denotes the minimum number

of active S-boxes in the optimal differential trail of the r + 1-round cipher.

The maximum differential probability of all the 16 S-boxes employed in the proposed

block ciphers is 2−2. The attack complexity of the r + 1-round cipher against differ-

ential cryptanalysis is approximately the inverse proportion to its largest differential

probability and can be determined using the following formula [32]:

Nd ≈ c

Pd
,

where Nd denotes the number of chosen plaintexts required to mount the differential

cryptanalysis attack, c is a small constant, and Pd denotes the differential probability

of r + 1-round cipher, determined as

Pd =

#S−box∏
i=1

Pi,
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Table 5.8: Minimum number of active S-boxes in the differential trail of the r + 1-round

cipher.

1st cipher, discussed in section 5.3 2nd cipher, discussed in section 5.4

#r # S-box #r # S-box #r # S-box #r # S-box

0 1 8 23 1 1 9 23

1 2 9 31 2 2 10 31

2 3 10 43 3 3 11 43

3 4 11 62 4 4 12 62

4 6 12 88 5 6 13 88

5 9 13 115 6 9 14 115

6 13 14 142 7 13 15 142

7 16 15 166 8 16 16 166

(a) (b)

where Pi denotes the differential probability of the ith active S-box in the differential

trail of the r + 1-round cipher, r ≥ 0.

Like linear cryptanalysis, the complexity of the r + 2 rounds cipher against differ-

ential cryptanalysis depends on the differential probability of r + 1 rounds [32], r ≥ 0.

According to the results shown in Table 5.8 (a)/(b), for #r = 14/15 and #S-box = 142,

we have Pd = (2−2)142 = 2−284. And if c = 1, then Nd = 2284. So, mounting the dif-

ferential attack of a 16/17-round cipher required 2284 chosen plaintexts. Hence, the

proposed ciphers are resistant to differential attacks.

5.6.3 Avalanche effect

Avalanche effect is one of the desirable properties of the block ciphers, wherein for a

small change in the input (plaintext), there should be a large change in the correspond-

ing output (ciphertext). A good avalanche effect ensures that the diffusion power of a

block cipher is at least 50%. We looked into the avalanche effects of both the proposed

ciphers using the inputs of low and high hamming weights.

Let P be an input block of 128 bits with a low hamming weight that consists of all

binary 0′s (0X00). We created 128 inputs Pj that differ in 1 bit from the original input

P . That is

Pj = P ⊕ (1 <<j),
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where ⊕ is a bitwise addition modulo 2, <<j is the left shift operation by j bit positions

and 0 ≤ j ≤ 127.

Now let C be the output of the original input P and Cj be the output of the input

Pj for 0 ≤ j ≤ 127. We calculated the hamming distances between C and Cj in

percentages as

hdpj =
hd(C,Cj)

length(C)
× 100%,

where 0 ≤ j ≤ 127, hd(C,Cj) denotes the hamming distance between C and Cj ,

and length(C) denotes the number of binary digits in the output (ciphertext) C. We

repeated the same process for another 128-bit input (plaintext) with a high hamming

weight that consists of all binary 1′s (0XFF), and we calculated all the corresponding

values of hdpj for 0 ≤ j ≤ 127. For both the inputs, we compared the hdpj values of

the proposed ciphers with those of the existing quasigroup based block ciphers given

in [5, 6, 83] and AES-128. The results of this analysis corresponding to different ciphers

are given in Table 5.9. The table shows the number of times the hamming distances

(hdpi) of the outputs C0, C1, . . . , C127 from C lie in the specified range. For example,

for the input 0XFF , 60 time the values of hdpi of AES-128 lie in the range of 35−49.99;

while for the input 0X00, 55 time the values of hdpi of AES-128 lie in the range of

35 − 49.99. The average (mean) hamming distance in percentage and the median

absolute deviation (MAD) are also given in the last two columns of the table. The

MAD tells us how far the hamming distances from the mean are. From these values,

it can be observed that the avalanche effect of the block ciphers is approximately the

same as that of AES-128, and better than those of all the other existing quasigroup

based block ciphers given in [5, 6, 83].

5.6.4 Strict avalanche criterion (SAC)

A strict avalanche criterion measures the impact on each bit of the output (ciphertext)

by changing the input (plaintext) bits. That is, for a slight change in the plaintext, the

impact on each bit of the corresponding output should be uniform. That is, whenever

a single bit of the input is changed (from 1 to 0 or from 0 to 1), each of the output’s

bits changes with a probability of approximately 50% [20]. In order to test whether the

proposed ciphers meet this criterion, we used 128 random secret keys. Using each of

these secret keys, we encrypted 1024 different randomly generated inputs (plaintexts)
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Table 5.9: Number of outputs (ciphertexts) whose hamming distances from the original

output C lie in the specified range.

Range of hamming distance in percentage (hdpj)

≤ 34.99 35− 49.99 50− 64.99 ≥ 65 Mean MAD

Proposed block ciphers

1st cipher, discussed

in section 5.3

0XFF 0 57 71 0
50.07 3.12

0X00 0 63 65 0

2nd cipher, discussed

in section 5.4

0XFF 0 66 62 0
50.10 3.14

0X00 0 51 77 0

Existing block ciphers

Battey et al. [5, 6]
0XFF 0 60 68 0

49.37 3.94
0X00 0 70 58 0

Zhao and Xu [83]
0XFF 32 52 44 0

39.32 13.75
0X00 23 49 56 0

AES-128
0XFF 0 60 68 0

49.95 3.24
0X00 0 55 73 0

of the same length. Then, we changed a particular bit in each of these 1024 inputs

(the bit with the same sequence number in all inputs). We encrypted all 1024 modified

inputs using each secret key and compared them with the original outputs to see how

they differed. Since the size of each randomly generated input is 128 bits, we repeated

this process 128 times so that every single bit in each of these inputs is changed. The

partial results of this experiment corresponding to the cipher proposed in section 5.3

and the cipher proposed in section 5.4 are shown in Tables 5.10 and 5.11, respectively.

Each cell of the table represents the change percentage of the jth bit of the output

(ciphertext) when the ith bit of the input (plaintext) is changed, where i is the row

number and j is the column number of the table. For example, in the table, it can

be verified that when the 120th bit of the inputs is changed, then the 32th bit of the

outputs changed in half (50%) of the outputs.

So, from our experimental results, shown in Tables 5.10 and 5.11, it can be observed

that when an arbitrary bit of the inputs is changed, each bit of the outputs is changed

with the probability of approximately 50%. This implies that if a single bit is changed

in all of the 1024 inputs, then each of the output’s bits will change in approximately

half of the outputs. Hence, the proposed ciphers satisfy the strict avalanche criterion
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(SAC).

Table 5.10: Strict avalanche criterion of the proposed cipher, discussed in section 5.3.

Output (ciphertext) bits

1 2 4 8 16 32 64 128

In
p
u
t
(p
la
in
te
x
t)

b
it
s

1 49.94% 50.08% 49.74% 50.04% 49.97% 49.91% 50.08% 50.02%

2 50.03% 49.97% 49.89% 50.01% 49.88% 50.01% 50.13% 49.92%

3 50.00% 49.96% 50.01% 49.82% 49.67% 49.94% 49.97% 50.00%

4 49.98% 49.95% 49.89% 49.98% 49.93% 49.98% 50.00% 50.00%

5 50.02% 50.03% 50.07% 49.80% 49.97% 49.76% 50.01% 49.83%

6 50.00% 50.00% 50.04% 50.01% 50.08% 49.89% 49.93% 50.00%

7 50.35% 50.02% 50.21% 50.30% 50.01% 49.95% 50.06% 49.93%

8 50.21% 49.94% 49.99% 50.03% 49.71% 50.26% 50.12% 49.95%

16 49.93% 50.05% 50.04% 50.00% 50.06% 49.91% 49.86% 49.95%

20 49.89% 49.80% 50.34% 49.94% 50.14% 49.94% 49.87% 50.01%

25 50.11% 50.04% 49.90% 50.13% 49.97% 50.00% 50.07% 50.00%

32 50.24% 50.08% 50.01% 49.94% 49.76% 49.95% 49.78% 49.74%

40 50.06% 49.89% 49.97% 49.96% 50.07% 50.07% 50.05% 50.06%

41 50.00% 50.07% 49.99% 50.07% 49.97% 49.93% 50.00% 49.99%

64 50.09% 50.14% 50.06% 49.99% 50.03% 49.90% 50.01% 49.95%

100 50.05% 50.14% 50.02% 49.90% 50.20% 50.26% 49.82% 49.91%

110 50.11% 49.87% 49.86% 50.01% 50.00% 50.10% 49.98% 49.95%

120 50.00% 50.00% 50.02% 49.88% 49.94% 50.00% 50.13% 49.92%

127 50.02% 49.89% 50.08% 50.06% 50.00% 49.84% 50.13% 49.95%

128 49.96% 49.87% 50.00% 50.03% 49.92% 50.00% 50.04% 50.00%

5.6.5 Statistical test for randomness

The ciphertexts created using the proposed ciphers pass various statistical tests of

NIST-STS 1. We evaluated the randomness of the obtained ciphertexts using the NIST-

STS test suite. Each test of the NIST-STS package gives a p-value and Success/Fail

status. The p-value is the probability that a perfect random number generator would

have produced a less random sequence than the one being tested [65]. We have used

NIST Spec. Publ. 800-22 rev. 1a package with significance level α = 0.01 that consists

1National Institute of Standards and Technology - Statistical Test Suite
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Table 5.11: Strict avalanche criterion of the proposed cipher, discussed in section 5.4.

Output (ciphertext) bits

1 2 4 8 16 32 64 128

In
p
u
t
(p
la
in
te
x
t)

b
it
s

1 49.97% 50.07% 50.04% 50.14% 49.87% 49.90% 50.08% 50.04%

2 49.83% 49.94% 49.87% 50.04% 49.87% 50.03% 50.17% 49.95%

3 50.09% 49.93% 50.02% 49.82% 49.67% 49.94% 49.97% 49.92%

4 49.97% 49.94% 49.87% 49.78% 49.94% 49.88% 50.00% 49.76%

5 50.02% 50.05% 50.07% 49.80% 49.87% 49.76% 50.04% 49.73%

6 49.65% 50.00% 50.04% 50.01% 50.08% 49.89% 49.93% 50.00%

7 50.35% 50.02% 50.21% 50.30% 50.00% 49.95% 50.06% 49.93%

8 50.21% 49.89% 49.99% 50.09% 49.71% 50.26% 50.12% 49.95%

16 49.83% 50.07% 50.04% 50.30% 50.06% 49.91% 49.86% 49.79%

20 49.88% 49.80% 50.34% 49.95% 50.14% 49.94% 49.87% 50.00%

25 50.17% 50.04% 49.90% 50.13% 49.87% 50.00% 50.07% 49.58%

32 50.24% 50.08% 50.01% 49.94% 49.76% 49.95% 49.78% 49.74%

40 50.09% 50.17% 49.97% 49.90% 50.07% 50.07% 50.05% 50.10%

41 50.00% 50.17% 49.89% 50.07% 49.98% 49.91% 50.06% 49.89%

64 50.11% 50.15% 50.06% 49.99% 50.13% 49.90% 50.01% 49.93%

100 50.05% 50.14% 50.02% 49.90% 50.20% 50.26% 49.82% 49.91%

110 50.20% 49.87% 49.86% 50.00% 50.08% 50.10% 49.98% 49.90%

120 50.03% 50.00% 50.02% 49.85% 49.94% 49.96% 50.13% 49.90%

127 50.03% 49.79% 50.06% 50.00% 50.08% 49.84% 50.13% 49.89%

128 49.87% 49.80% 50.16% 50.08% 49.92% 50.00% 50.04% 50.17%

of 15 types of statistical tests [65]. The details of each of these tests are described in

section 4.3.8.2 of Chapter 4.

Various data types are defined in [13, 71]. In which, we have chosen a Cipher

Block Chaining Mode. This is because the proposed ciphers are implemented based

on CBC mode. We randomly chose 128 bits IV , 128 bits secret key K, and 8192

128 bits plaintext blocks for each of these tests. A binary sequence of 1048576 bits is

constructed using the ciphertext obtained in the CBC mode. That is, it is a binary

sequence obtained by concatenating the 8192 ciphertext blocks of 128 bits each. We

generated 1000 such binary sequences for the same plaintext blocks using different

random 128 bits keys. We ran each of these tests on the outputs of both the proposed
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ciphers and AES-128 1000 times and compared the randomness of the proposed ciphers

with that of the AES-128 for each binary sequence of 1048576 bits. The experimental

results of this analysis corresponding to the cipher discussed in sections 5.3 and the

cipher discussed in section 5.4 are given in Table 5.12. In this table, column A lists the

names of the tests carried out. The number of accepted binary sequences corresponding

to the first cipher discussed in section 5.3, the second cipher discussed in section 5.4,

and the AES-128 that passed a statistical test at the α = 0.01 significance level are

given in columns B, C, and D, respectively. As a result, the randomness of the proposed

ciphers is comparable to that of the AES-128. Hence, from the NIST-STS’s point of

view, both the proposed ciphers are random.

Table 5.12: For 1000 random keys, results of the NIST test for the proposed encryption

systems as compared to the AES-128 encryption system when the same key is used for all

cryptosystems with CBC mode of operation.

A B C D

Tests Proportion of success

out of 1000 samples

for the 1st cipher, dis-

cussed in section5.3

Proportion of success

out of 1000 samples

for 2nd cipher, dis-

cussed in section5.4

Proportion of suc-

cess out of 1000

samples for the

AES-128

Frequency 0.993 0.991 0.991

BF 0.983 0.990 0.991

CS 0.994 0.993 0.992

Runs 0.990 0.987 0.989

LR 0.990 0.989 0.992

Rank 0.996 0.985 0.991

DFT 0.982 0.988 0.986

NOT 0.985 0.987 0.980

OT 0.992 0.992 0.994

US 0.985 0.991 0.988

AE 0.991 0.988 0.993

RE 0.989 0.990 0.985

REV 0.991 0.993 0.990

Serial 0.993 0.987 0.994

LC 0.995 0.989 0.981
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5.7 Summary

This chapter proposed two block ciphers to encrypt or decrypt data in the form of a

block of 128 bits. The proposed ciphers use 16 optimal S-boxes as an optimal quasigroup

of order 16, where the size of each S-box is 4×4 bits. The design of the proposed ciphers

is based on the concept of multiple quasigroups. They utilize the functionality of the

16 optimal quasigroups derived from an original optimal quasigroup of order 16. In

other words, they leverage the space of a single quasigroup and use 16 quasigroups by

generating them from an original quasigroup. So, the space required by 16 optimal

quasigroups is reduced to that of a single quasigroup. The second cipher discussed in

section 5.4 is more standard than the first cipher discussed in section 5.3. This is because

each round of the second cipher uses three transformations (substitution, permutation,

and add round key), while the first cipher uses only two transformations (substitution

and permutation). The proposed ciphers have been analyzed against several attacks,

including linear cryptanalysis and differential cryptanalysis, and found that the ciphers

are resistant to these attacks. Also, we have analyzed the software performance (time

complexity), space complexity, and avalanche effect (diffusion effect) of the proposed

ciphers by comparing them with AES-128 and other existing quasigroup based block

ciphers [5, 6, 83]. We noted that the avalanche effect of our ciphers is almost the same

as that of AES-128 and due to more computations our ciphers are slightly slower than

AES-128, but our cipher uses half the space compared to AES-128. Also, the proposed

block ciphers use the same amount of space as that used by [83] but 512 times lesser

than [5, 6]. We also noted that our ciphers are more efficient than DES. In addition,

our ciphers are more than 2 times faster and give a better avalanche effect than other

existing quasigroup based block ciphers [5, 6, 83]. Hence, we concluded that our ciphers

appear to be an excellent alternative for the quasigroup based proposals. We have also

analyzed our ciphers against the strict avalanche criterion (SAC). The results showed

that when a random bit of plaintext is changed the proposed ciphers change each bit

of the ciphertext with a probability of approximately 50%. Hence the proposed ciphers

satisfy the SAC.

Remember that our ciphers can be seen as a family of encryption systems parame-

terized by an optimal quasigroup of order 16. So, if required, the security of the ciphers

can be enhanced by keeping the optimal quasigroup secret along with the secret key.
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That is, the security of the proposed ciphers depends not only on the secret key but also

on the optimal quasigroup employed. Note that our ciphers use 16 optimal quasigroups

in all the 16 rounds, and these 16 quasigroups are generated from the initial optimal

quasigroup by circularly shifting the rows. Since an optimal quasigroup is constructed

using the 16 optimal S-boxes, we, therefore, can form a maximum of 16! optimal quasi-

groups by permuting the rows. So, the total key space of our ciphers would then be

C16!
1 × 1616 × 2128 ≈ 2236. Therefore, the proposed ciphers can be seen to be more

secure than AES-128 against quantum attack since in quantum computing [31], the

best quantum attack against any symmetric-key cryptosystem is proportional to the

square root of the key space. And, the attack complexity of our cipher against quantum

attack is about 2118, while in the case of AES-128 is only 264.

The randomness of the obtained ciphertexts produced by the proposed ciphers is

tested using the NIST statistical test suite. We ran our encryption systems for a ran-

dom plaintext of 1048576 bits with 1000 different keys and generated 1000 ciphertexts.

The results of the proposed ciphers are compared with that of AES-128 for the same

plaintext and the same keys. We observed that the randomness of the outputs of our

ciphers and AES-128 are comparable to each other.
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Chapter 6

Hash Functions and HMACs

bsed on quasigroup

This chapter introduces two variants of cryptographic hash functions and their cor-

responding message authentication codes (HMACs). Both hash functions can be seen

as extensions of the MD5 hash function. The underlying structure of the new hash

functions is based on MD5 and a quasigroup of order 16 or 256. This chapter gives a

brief overview of the proposed hash functions and HMACs, describes the structure and

building elements of the proposed schemes, and analyzes the performance and security

of the proposed schemes.

6.1 Introduction

As we know, the encryption/decryption method is used to achieve confidential com-

munication. It protects against passive attacks, where the cryptanalyst only observes

messages transmitted between sender and receiver. For active attacks, on the other

hand, the cryptanalyst can also change the content of messages during the transmis-

sion. To mitigate this type of threat, encryption itself is not sufficient. So, we need

another cryptographic tool called a hash function that will enable us to detect when a

modification has occurred. Modern hash functions can be divided into two types: (i) a

hash function without a key and (ii) a hash function with a key, also called HMAC. A

cryptographic hash function (or HMAC) is a one-way compression function that com-

presses a variable-length message to a fixed-length hash value (or MAC value). The
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block diagram of the hash and HMAC algorithms is shown in Figure 6.1. In this figure,

H denotes the hash function that takes a variable-length message M and produces a

fixed length hash value H(M); the size of H(M) depends on the hash algorithm. The

value of H(M) is used to detect the integrity of the transmitted message M . On the

other hand, Hk denotes the HMAC that takes two inputs (i) a variable-length mes-

sage M and (ii) a secret key k and produces a fixed length MAC value Hk(M), also

called an authentication tag; the size of Hk(M) depends on the HMAC algorithm. The

value of Hk(M) is used to simultaneously verify the authenticity and the integrity of

the transmitted message M when two authorized parties communicate in an insecure

channel. More details about the cryptographic hash functions and HMACs are given

in Chapter 1.

Figure 6.1: Hash function and HMAC.

6.2 Overview of the proposed hash functions and HMACs.

This chapter proposes two extended versions of the MD5 and HMAC-MD5 based on

quasigroup. The first hash function and HMAC, named QGMD5-224 and QGMAC-

224, generate a 224-bit hash value and MAC value, respectively. And the second

hash function and HMAC, named QGMD5-384 and QGMAC-384, generate a 384-

bit hash value and MAC value, respectively. All the schemes are designed based on

the quasigroup. Note that the underlying structure of both the hash function and
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message authentication code is similar. The only difference between the two is that the

quasigroup used in the hash function is publicly known, while the quasigroup used in the

message authentication code acts as a secret key. Also, depending on the algorithms,

the proposed schemes use a quasigroup of order 16 or 256. Note that the use of a

quasigroup of order 256 will provide more security than the use of a quasigroup of

order 16. But to store a quasigroup of order 256 more space is required than that of a

quasigroup of order 16, and this may be a challenge for small computing devices. So,

initially, we prefer to use the order 16 quasigroups, and later, we can use order 256 if

needed.

All the proposed schemes are iterative in nature. And for each iteration, they take

a 512-bit input block of the message M , and produce 224 or 384 bits as hash (MAC)

value. Let input message M be divided into ℓ blocks B1, B2, . . . , Bℓ, where the size

of each block Bi is 512 bits, 1 ≤ i ≤ ℓ. All proposed schemes are implemented using

the cipher block chaining (CBC) mode of operation. Each scheme processes the input

message M block by block and produces an output of 224 or 384 bits hash (MAC) value

depending on the algorithm used is either QGMD5-224 (QGMAC-224) or QGMD5-384

(QGMAC-384), respectively. Processing of each of these blocks is as follows: Let i ≥ 1

be a fixed integer less than ℓ. Each of the proposed schemes takes block Bi together

with the initial value IVi−1 as input, performs four rounds, and outputs a 128-bit IVi.

Note that IV0 is the initial value chosen at the beginning. jth, 1 ≤ j ≤ 4, round of the

algorithms consists of jth round of MD5, followed by the quasigroup based expansion

and compression operations. The processing of the last block Bℓ is exactly the same

as that of the previous blocks B1, B2, . . . , Bℓ−1 except that the last (4th) round of the

algorithms consists of Round 4 of MD5 followed by only the expansion operation.

6.2.1 Brief description of MD5

MD5 is one of the most widely used hash functions in cryptography since it requires

the least number of computations. It is iterative in nature and designed based on

Merkle-Damgard construction. As input, it takes a variable-length message M and

produces an output with a fixed length of 128 bits as the hash value. In order to begin

the process, the entire message M is divided into 512-bit blocks. There is padding

applied if the length of message M is not a multiple of 512 bits, and it is padded by

adding a sufficient number of 0’s after a bit 1 to bring the length of message M to a
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multiple of 512 bits minus 64 bits. Once the padding has been applied, append 64 bits

representation of the length of the original message M if the original message length

is less than or equal to 264; otherwise, the lower order 64 bits of the representation of

the original message M are used so that the resulting message is an exact multiple of

512 bits as shown in Figure 6.2. Now each of these 512-bit blocks of a message M is

Figure 6.2: Length of the message after padding

processed by dividing it into sixteen 32-bit words. The algorithm of MD5 has 4 rounds,

each of which has 16 steps, for a total of 64 steps. Each 512 bits block of M passes

through the following 4 round functions:

R(1,p)(X,Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z), 1 ≤ p ≤ 16

R(2,p)(X,Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z), 17 ≤ p ≤ 32

R(3,p)(X,Y, Z) = (X ⊕ Y ⊕ Z), 33 ≤ p ≤ 48

R(4,p)(X,Y, Z) = Y ⊕ (X ∨ ¬Z), 49 ≤ p ≤ 64

(6.1)

where, X, Y , Z are 32 bit words and ∧,∨,⊕ and ¬ are AND, OR, XOR, and NOT

operations, respectively. The R(r,p) denotes the rth round function in the pth step,

1 ≤ r ≤ 4, 1 ≤ p ≤ 64. Each step of the MD5 operates on four 32 bits words W, X, Y,

and Z, and performs the operation as follows:

W = Z

X = ((W +R(r,p)(X,Y, Z) +mi + kj) ≪s) +X

Y = X

Z = Y

(6.2)

where the operation + denotes the addition modulo 232, mi denotes a message word of

32 bits, kj denotes a step-specific constant, and ≪s is a specific constant that specifies

a left-circular shift by s-bit position. The graphical representation of one step operation

of MD5 is shown in Figure 6.3.
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Figure 6.3: One step operation of MD5 hash function

6.3 A QGMD5-224 bits hash function and a QGMAC-224

bits message authentication code based on a quasi-

group

This section proposes two new schemes based on a quasigroup: (i) a cryptographic hash

function, named here as QGMD5-224, and (ii) a message authentication code based on

QGMD5-224, named here as QGMAC-224. The QGMD5-224 hash function expands

the hash size of the MD5 hash function by converting 128 bits into 224 bits. The

QGMAC-224 expands the MD5 based message authentication code (HMAC-MD5) by

converting 128 bits into 224 bits. Both expansions are carried out using the quasigroup

expansion (QGExp128To224) and the quasigroup compression (QGComp224To128)

layers. Note that the underlying structure of both the schemes QGMD5-224 and

QGMAC-224 is similar. The only difference between the two is that the quasigroup

used in QGMD5-224 is publicly known, while the quasigroup used in QGMAC-224 acts

as a secret key. The workflow of both the QGMD5-224 and the QGMAC-224 is shown
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in Figure 6.4. In order to start the process of each of these schemes, an arbitrary length

Figure 6.4: Workflow of QGMD5-224 and QGMAC-224

message M is first divided into ℓ fixed-size blocks, where the size of each block is 512

bits. If the length of the message M is not a multiple of 512 bits, then the padding

will be required, and it is padded as in the case of the MD5 hash function, such as

discussed earlier in section 6.2.1. Observe that each round, except the last round of

the last block of MD5, is followed by a QGExp128To224 layer that expands 128 bits

into 224 bits by inserting 96 bits and a QGComp224To128 layer that compresses back

to 128 bits by deleting 96 bits. The last round of the last block of MD5 is followed by

only a QGExp128To224 layer. Both layers QGExp128To224 and QGComp224To128

are defined using the quasigroup expansion (QGExp) and the quasigroup compression

(QGComp) operations, respectively. These operations are defined by confining to the

rules of the selected quasigroup. Depending on the algorithm, the proposed schemes use

quasigroups of orders 16 or 256. The functioning of QGExp and QGComp operations

with these order quasigroups is explained separately in detail.

6.3.1 Quasigroup expansion (QGExp) operation

The QGExp operation works byte-by-byte, and for each expansion operation, it takes

two bytes of data and produces a sequence of three bytes of data. Let each 8-bit (one
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byte) value be divided into two 4-bit values. That is, a character (one-byte value) p is

represented as p = p1p0, where p0 and p1 are 4-bit values (hexadecimal digits or nibble

values). The proposed schemes use quasigroups of order 16 and 256. Therefore, for the

quasigroup of order 256, it is defined as follows:

p1p0 ⊛1 q1q0 = (p1p0, q1q0, r1r0) (6.3)

where r1r0= p1p0 ∗1 q1q0, and ∗1 and ⊛1 denote the quasigroup operation and the

QGExp operation corresponding to order 256, respectively. Note that the resultant

element r1r0 is determined by looking up the element having the row index of p1p0 and

the column index of q1q0 in the table representation of the quasigroup of order 256.

Now, for the quasigroup of order 16, the QGExp operation is defined as follows:

p1p0 ⊛2 q1q0 = (p1p0, q1q0, r1||r0) (6.4)

where r1=p1 ∗2 q1, r0=p0 ∗2 q0, and ∗2 and ⊛2 denote the quasigroup operation and the

QGExp operation corresponding to order 16, respectively and || is the concatenation

operation that concatenates two 4-bit value to make one 8-bit value. Note that r0

is determined by looking up the element having the row index of p0 and the column

index of q0 in the table representation of the quasigroup of order 16. Similarly, r1 is

determined by looking up the element having the row index of p1 and the column index

of q1 in the table representation of the quasigroup of order 16.

A general application of the QGExp operation for a pair of sequences of elements

can be defined as follows:

Let P = (p11p
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pij0 and pij1 are nibble (4-bit) values for 1 ≤ i ≤ t, 1 ≤ j ≤ k, ql1q
l
0 is a byte value, ql0

and ql1 are nibble (4-bit) values for 1 ≤ l ≤ t, then
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where ri1r
i
0=pik1 pik0 ∗1 qi1qi0, ∗1 is the quasigroup operation of order 256 with respect to

the QGExp operation ⊛1 or r
i
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i
0=(pik1 ∗2qi1)||(pik0 ∗2qi0), ∗2 is the quasigroup operation of

order 16 with respect to the QGExp operation ⊛2 and || is the concatenation operation.

6.3.1.1 QGExp128To224 layer

The quasigroup expansion layer (QGExp128To224) uses the QGExp operation for ex-

panding the intermediate result of 128 bits into 224 bits by inserting 96 bits. It works

as follows:
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where the symbol ⊛ would be either ⊛1 or ⊛2 depending on the order of the quasigroup

employed. rj1r
j
0 is the resultant or inserted byte based on the quasigroup operation,

1 ≤ j ≤ 12. The QGExp128To224 converts 128 bits (16 bytes) to 224 bits (28 bytes).

Working of this layer is illustrated by the following example.

Example 6.3.2. Consider the quasigroup of order 16 given in Table 2.8 of Chapter 2.

And let P = (34, AF,A0, 48), Q = (42, 2F, 72, A8), U = (0B,A3, 38, 4C), and V =

(30, 28, BC,D8) be a sequence of 128 bits (16 bytes) of data in hexadecimal digits to be

converted to 224 bits (28 bytes). Then, the QGExp128To224 layer converts 128 bits to

224 bits as follows:

(P ⊛2 Q) = ((34, 42, 37), (AF, 2F, 46), (A0, 72, CB), (48, A8, CA))

((P ⊛2 Q)⊛2 U) = ((34, 42, 37, 0B,A9), (AF, 2F, 46, A3, CA),

(A0, 72, CB, 38, 11), (48, A8, CA, 4C,DE))

(((P ⊛2 Q)⊛2 U)⊛2 V ) = ((34, 42, 37, 0B,A9, 30, F7), (AF, 2F, 46, A3, CA, 28, C0),

(A0, 72, CB, 38, 11, BC, 3C), (48, A8, CA, 4C,DE,D8, 7B))

where ⊛2 is the QGExp operation of order 16. The inserted bytes are indicated by under-

lining them. After performing the QGExp128To224, the resulting sequence of 224 bits

(28 bytes) is 3442370BA930F7AF2F46A3CA28C0A072CB3811BC3C48A8CA4CDED87B.

6.3.3 Quasigroup compression (QGComp) operation

The QGComp operation is nothing but a quasigroup operation. It takes two bytes of

data as input and produces one byte of data as output. Like the QGExp operation, it

is also defined for both quasigroups of orders 16 and 256 as follows:

Let p0, p1, q0, q1, r0, and r1 be 4-bit (nibble) values. Then, for the quasigroup of order

256. It is defined as

r1r0 = p1p0 ∗1 q1q0 (6.5)

where ∗1 denotes a quasigroup operation of order 256.

And, for a quasigroup of order 16, it is defined as

r1 = p1 ∗2 q1||r0 = p0 ∗2 q0 (6.6)

where ∗2 denotes a quasigroup operation of order 16. and || is the concatenation

operation that concatenates two 4-bit values to make one 8-bit value.
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6.3.3.1 QGComp224To128 layer

The quasigroup compression (QGComp224To128) layer is the inverse of the QGExp128To224

layer. It takes 224 bits as input and converts them into 128 bits as output. In other

words, QGComp224To128 compresses the partial hash-value (or MAC-value) of 224

bits into 128 bits. This 128-bit output is then fed into the next round of the MD5

algorithm. It works as follows: First, it divides a block of 224 bits (28 bytes) into four

sub-blocks of 56 bits (7 bytes) each. Let Pj = (p11p
1
0, p

2
1p

2
0, p

3
1p

3
0, p

4
1p

4
0, p
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5
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6
0, p

7
1p

7
0)

be a sub-block of 7 byte, where pt0 and pt1 are 4-bit values, and pt1p
t
0 is a byte value,

1 ≤ t ≤ 7, 1 ≤ j ≤ 4. Then,

QGComp(Pj) = (r11r
1
0, r

2
1r

2
0, r

3
1r

3
0, r

4
1r

4
0)

where, for a quasigroup of order 256, ri1r
i
0 = pi1p

i
0 ∗1 p8−i

1 p8−i
0 , ∗1 is the quasigroup

operation of order 256 for 1 ≤ i ≤ 3 and r41r
4
0 = p41p

4
0.

And, for a quasigroup of order 16, ri1r
i
0 = (pi1∗2p

8−i
1 )||(pi0∗2p

8−i
0 ), ∗2 is the quasigroup

operation of order 16 for 1 ≤ i ≤ 3 and r41r
4
0 = p41p

4
0. This is illustrated by the following

example.

Example 6.3.4. Consider the quasigroup Q of order 16 used in Example 6.3.2, which is

given in Table 2.8 of Chapter 2. Also, from Example 6.3.2, we consider the sequence of

224 bits (28 bytes) P = 3442370BA930F7AF2F46A3CA28C0A072CB3811BC3C48A8C

A4CDED87B, represented in hexadecimal digits, which is to be compressed. These

bytes are divided into four sub-blocks as P1 = 3442370BA930F7, P2 = AF2F46A3CA28C0,

P3 = A072CB3811BC3C, and P4 = 48A8CA4CDED87B. Now using the quasigroup

of order 16 given in Table 2.8 of Chapter 2

QGComp224To128(P ) = QGComp(P1)||QGComp(P2)||QGComp(P3)||QGComp(P4)

where QGComp(P1) = B262670B, QGComp(P2) = ED08D9A3, QGComp(P3) =

F594A738, and QGComp(P4) = 2C9A064C. After performing the QGComp224To128

on P , the resulting sequence of 128 bits (16 bytes) is B262670BED08D9A3F594A7382C9

A064C.

6.3.5 Algorithm of QGMD5-224 and QGMAC-224

The proposed schemes make use of the QGExp128To224 and QGComp224To128 layers

along with the round functions of the MD5 hash function to produce a hash value
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of 224 bits or a MAC value of 224 bits. Note that the QGExp128To224 and the

QGComp224To128 layers are defined by confining to the rules of the selected quasigroup

of order 256 or 16 depending on the algorithm. Also, note that each of the proposed

schemes processes the input message block by block. So, a message M = B1, B2, ˙..., Bℓ

is divided into, say ℓ, message blocks, where the size of each message block Bi is 512 bits,

1 ≤ i ≤ ℓ. The pseudocode of the algorithm of QGMD5-224 and that of the QGMAC-

224 is given in Algorithm 13. In this algorithm, the variables B′
i and B′

ℓ are used to

store the output of the round functions of MD5. And the variables OutPutOfExp

and OutPutOfComp are used to store the output of the layers QGExp128To224 and

QGComp224To128, respectively.

6.3.6 Implementation and software performance

The proposed schemes have been implemented in C++ on a system with the follow-

ing configuration: Intel(R) Core(TM) i5-2400 CPU @3.40 GHz processor with 4 GB

RAM and 64 bits Linux operating system. The performance of the proposed schemes

(QGMD5-224 and QGMAC-224) is analyzed by comparing them with the standard

hash functions and message authentication codes, such as MD5, SHA-224, HMAC-

MD5, and SHA-HMAC-224. For this analysis, we ran each of these schemes 1000 times

for a randomly chosen message M=“The brown dog jumps over a lazy cat” and cal-

culated the average execution time in microseconds (µs). For measuring the execution

time in microseconds, we used a C++ standard library < chrono > [38]. The results of

this analysis are presented in Table 6.5. See that the performance of the QGMD5-224

hash function is compared with that of both MD5 and SHA-224 hash functions, and

the performance of the QGMAC-224 is compared with that of both HMAC-MD5 and

HMAC-SHA-224. It can be observed that the proposed hash function QGMD5-224 is

slightly slower than the MD5 but faster than the SHA-224. And the proposed mes-

sage authentication code QGMAC-224 is faster than both the HMAC-MD5 and the

HMAC-SHA-224.

6.3.7 Security analysis

CrackStation and HashCracker tools were used to analyze the proposed QGMD5-224

hash function against the dictionary attack. These tools are basically intended to crack

the hash value of MD4, MD5, etc. They employ massive pre-computed lookup tables to
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Algorithm 13: Algorithm of QGMD5-224 and QGMAC-224

Input: 1. Message M in the form of ℓ blocks B1, B2, . . . , Bℓ of 512 bits each.

2. An initial value IV0 of 128 bits.

Output: A hash value or MAC-value of 224 bits.

[1] if ℓ = 1 then

[2] GOTO Line No. [14];

[3] else

[4] for i = 1 to ℓ− 1 do

[5] for j = 1 to 4 do

[6] if j = 1 then

[7] B′
i =Round-1 of MD5(Bi, IVi−1);

[8] else

[9] B′
i =Round-j of MD5(Bi, OutPutOfComp);

[10] OutPutOfExp = QGExp128TO224(B′
i);

[11] OutPutOfComp = QGComp224To128(OutPutOfExp);

[12] if j = 4 then

[13] IVi = OutPutOfCOmp;

[14] for j = 1 to 3 do

[15] if j = 1 AND ℓ = 1 then

[16] B′
ℓ =Round-1 of MD5(B1, IV0);

[17] else if j = 1 AND ℓ > 1 then

[18] B′
ℓ =Round-1 of MD5(Bℓ, IVℓ−1);

[19] else

[20] B′
ℓ =Round-j of MD5(Bℓ, OutPutOfComp);

[21] OutPutOfExp = QGExp128TO224(B′
ℓ);

[22] OutPutOfComp = QGComp224To128(OutPutOfExp);

[23] B′
ℓ =Round-4 of MD5(Bℓ, OutPutOfComp);

[24] OutPutOfExp = QGExp128TO224(B′
ℓ). Output these 224 bits as the final

hash value or MAC-value of the message M ;
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Table 6.1: Performance analysis of hash functions and HMACs.

Hash Functions Avg Execution time

in microseconds (µs)

Message Authen-

tication Codes

Avg Execution time

in microseconds (µs)

Existing schemes

MD5 7.94 HMAC-MD5 10.13

SHA-224 10.28 HMAC-SHA-224 15.72

Proposed schemes

QGMD5-224 9.85 QGMAC-224 9.85

crack password hashes. The QGMD5-224 is also analyzed against various other attacks,

including the brute force attack, and it is found to be resistant to these attacks as well.

A hash value produced by a hash function determines its strength against brute force

attack and the QGMD5-224 produces a 224-bit hash value instead of 128-bit, as in the

case of MD5. Typically, for an n-bit hash value, a brute force attack requires 2n effort

to compute the (i) pre-image and (ii) second pre-image attacks, and to find a collision,

it requires 2n/2 effort. Since the size of the hash value of QGMD5-224 is 224 bits as

against 128 bits of MD5, the QGMD5-224 can be seen to be more secure than the MD5.

6.3.7.1 Collision Resistance

Collision resistance is one of the important properties of a hash function. That is,

a hash function must be collision resistant. This is because the mapping of a hash

function between message space and the set of hash values is many-to-one, meaning

different messages may have the same hash value. For testing the collision resistance

of the proposed QGMD5-224 hash function, we randomly select pairs of messages M1

and M2 with hamming distance 1. For each pair of messages M1 and M2, we computed

the corresponding hash values h1 and h2 and stored them in ASCII format (ASCII

representation is a sequence of bytes in which each byte value lies from 0 to 255). Now,

we perform the following two experiments, which are defined in [82].

In the first experiment, we compare h1 and h2 as byte sequences, and a number

of bytes that have the same value at the same position, namely the number of hits, is

counted as follows:

v =

s∑
p=i

f(d(xp), d(x
′
p)), where f(x, y) =

{
1, x = y

0, x ̸= y.
(6.7)
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The function d(.) converts the entries to their equivalent decimal values, and s denotes

the number of bytes in a hash value. Smaller v characterizes the stronger hash function

against collision resistance.

Theoretically, for N independent experiments, the following equation specifies the

expected number of times v hits for an s-byte hash value.

WN (v) = N × Prob{v} (6.8)

where Prob{v} = s!
v!(s−v)!

(
1

256

)v (
1− 1

256

)s−v
, v = 0, 1, 2, . . . , s. If v = 0, a collision

will never happen, and if v = s, a collision will happen. Using equation (6.8) and for

N = 2048, we computed the expected values of WN (v) for s = 28 byte hash-values.

These results are presented in Table 6.2 (a). The experimental results of SHA-224

and QGMD5-224 are presented in Table 6.2 (b). If we compare the experimental

results of SHA-224 and QGMD5-224 with the corresponding expected results, which

are tabulated in Table 6.2 (a) and (b). It can be observed that the experimental results

Table 6.2: Results of expected and experimental.

Expected results (WN (v)) Experimental results

v s = 28 SHA-224

(s = 28)

QGMD5-224

(s = 28)

0 1835.42 1828 1841

1 201.54 212 199

2 10.67 8 8

v ≥ 3 0 0 0

(a) (b)

of the proposed QGMD5-224 not only coincide very well with the theoretical ones but

also it has better collision resistance than that of the SHA-224.

In the second experiment, we calculated the absolute difference (AD) between each

pair of h1 and h2 as

AD =
s∑

p=1

|d(up)− d(u′p)| (6.9)

where d(up) and d(u′p) are the pth byte value of the h1 and h2, respectively. The larger

value of AD implies a stronger hash function against collision resistance. For each of
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the hash functions SHA-224 and QGMD5-224, the simulation of this experiment is also

run 2048 times and calculated the minimum, maximum, mean, and mean/char of AD.

The results of this experiment are given in Table 6.3. Note that the ideal value of

mean/char, as defined in [17], is 85.33. According to the results as shown in Table 6.3,

it can be observed that the obtained mean/char value of the proposed QGMD5-224

hash function is closer to the ideal value of 85.33 than that of the SHA-224. Hence, the

second experiment also ensures that QGMD5-224 is more secure than the SHA-224.

Table 6.3: Results of the absolute differences.

Hash Functions Minimum Maximum Mean Mean/Char

SHA-224 707 2417 2308.60 82.45

QGMD5-224 1203 4351 2377.48 84.91

6.3.7.2 Prefix and suffix attacks

A prefix attack is one of the alternative ways to find a collision in the cryptographic hash

function. In this attack, an attacker creates a false message by choosing an arbitrary

message and appends it to the original message so that the false (appended) message

and the original message have the same hash value.

Mathematically, for a given quasigroup Q and an initial value IV , let M = (m1,m2,

. . . ,mk) be a message to be hashed, where mi ∈ Q, 1 ≤ i ≤ k. Let P = (p1, p2, . . . , pu)

be a prefix to be appended to M where pj ∈ Q, 1 ≤ j ≤ u. The attacker can then

create a false message PM = (p1, p2, . . . , pu,m1,m2, . . . ,mk) by adding the prefix P

to the original message M , so that HIV (PM) = HIV (M). HIV (P ) = IV is the only

condition for this to happen. In other words, this attack can be applied if a hash

function is vulnerable to a pre-image attack. The proposed QGMD5-224 hash function

uses MD5 along with quasigroup-based expansion (QGExp128To224) and compression

(QGComp224T128) layers and MD5 is resistant to this pre-image attack. That is,

the security of the QGMD5-224 is not only dependent on the MD5 but also on the

QGExp128To224 and QGComp224T128 layers. Hence, the QGMD5-224 is resistant to

prefix attack.

A similar argument can be used to show that the proposed hash function is re-

sistant to the suffix attack as well. For this attack, first, an attacker chooses a suf-
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fix S = (s1, s2, . . . , st), sj ∈ Q, 1 ≤ j ≤ t, and tries to create a false message

MS = (m1,m2, . . . ,mk, s1, s2, . . . , st) by appending the suffix S to the original message

M , so that HIV (MS) = h = HIV (M). This can happen only if Hh(S) = h.

6.3.7.3 Avalanche effect

An avalanche effect is one of the desirable properties of a hash function. It means a

hash function should have a good avalanche effect. That is, the output of the hash

function should change significantly for a slight change in input. We have analyzed

the proposed QGMD5-224 hash function against this test by comparing it with those

of the existing MD5 and SHA-224 hash functions. For this test, we randomly chose a

message M=“The brown dog jumps over a lazy cat” of 280 bits, and generated 280

messages M = M0,M1, . . . ,M279 by changing the ith bit (from 0 to 1 or from 1 to 0)

of M , 0 ≤ i ≤ 279.

Let h = H(M) be the hash value of the original message M and hi = H(Mi) be the

hash values of the messages Mi for 0 ≤ i ≤ 279. Since the hash value size of MD5 is

128 bits, it differs from that of SHA-224 and QGMD5-224. So, the hamming distance

between hi and h is measured in percentage as follows:

HDPi =
D(h, hi)

NB(h)
× 100% (6.10)

where HDPi denotes the hamming distance between hi and h in percentage for 0 ≤

i ≤ 279, D(h, hi) denotes the hamming distance between h and hi and NB(h) denotes

the total number of binary digits in hash value h. For each of the hash functions MD5,

SHA-224, and QGMD5-224, the results of this test are shown in Table 6.4. In this

table, the first column shows the range of hamming distances (HDPi) in the specified

range separately; the second, third, and fourth columns of the table show the number

of times the hamming distances (HDPi) of the hash values h0, h1, . . . , h279 from h lie

in the specified range given in the first column of the table corresponding to MD5,

SHA-224, and QGMD5-224, respectively. Also given in the last row of the table is the

average (mean) hamming distance in percentage. From these values, it can be observed

that the avalanche effect of QGMD5-224 is better than that of both MD5 and SHA-224.
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Table 6.4: Hamming distances for MD5, SHA-224 and QGMD5-224.

Range of

HDPi

Number of hash

pairs of MD5

Number of hash

pairs of SHA-224

Number of hash

pairs of QGMD5-224

35 - 44.99 41 19 16

45 - 54.99 206 238 246

55 - 64.99 33 23 18

Avarage hamming distance

Mean: 49.76 49.97 50.02

6.3.7.4 Bit variance test

Bit variance test is one of the statistical tests to measure the impact on each bit of

hash value by changing the bits of the input message. If there is a slight change in the

input message, then the impact of this change on each bit of the corresponding hash

value should be uniform. The proposed QGMD5-224 hash function takes a variable

length input message and produces a fixed-length 224 bits hash value. For each bit

of the hash value, we calculate the probability of this bit being 1. Let Pi(0) be the

probability that the ith bit of a hash value is 0. Similarly, let Pi(1) be the probability

that the ith bit of a hash value is 1. If Pi(0) = Pi(1) =
1
2 for all bits of the hash value

(i.e. i = 1, 2, . . . , 224), then the QGMD5-224 passes the bit variance test. Since it

is computationally difficult to consider all the possible input message bit changes, we

evaluated the results for the same messages M0,M1, . . . ,M279, which were earlier used

in the avalanche effect test, and found the following:

Number of hash values = 281

Mean frequency of 1s (expected) = 140.5

Mean frequency of 1s (calculated) = 140.4

According to these results, it can be observed that the average probability of 1s ≈ 50%.

Hence, QGMD5-224 passes the bit variance test.

6.3.7.5 Analysis of QGMAC-224

The proposed message authentication code QGMAC-224 is designed based on the hash

function QGMD5-224 and uses a quasigroup of order 16 or 256 depending on the
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algorithm. This quasigroup acts as a secret key. Therefore, the security of the QGMAC-

224 depends on the hash function QGMD5-224 as well as on the quasigroup of order

256 or 16 that is used. Since the number of quasigroups of orders 16 and 256 is

upper bounded by 0.689× 10138 and 0.753× 10102805, respectively, the use of order 256

quasigroups will provide more security than the quasigroups of order 16. But to store a

quasigroup of order 256, 65280 bytes extra space is required than that of a quasigroup

of order 16.

As of today, a cryptosystem with keyspace 2128 is considered to be a secure cryp-

tosystem. So, the use of order 16 quasigroups also provides good security in QGMAC-

224. This is because the number of quasigroups of order 16 is 0.689 × 10138 ≈ 2456.

That is, the use of order 256 quasigroups can be an alternative option. Because of

the large number of quasigroups of either order, it follows that the probability of

identifying the employed quasigroup is close to zero. Hence, QGMAC-224 is resis-

tant to brute force attack. Also, QGMAC-224 is analyzed against forgery attack and

found to be resistant. In this attack, an attacker chooses a fixed n number of different

messages (M1,M2, . . . ,Mn) and their corresponding MAC values (authentication tags)

(h1, h2, . . . , hn) and tries to solve the following equations for the secret key k :

hi = Hk(Mi), 1 ≤ i ≤ n (6.11)

where, H is the QGMD5-224 hash function and k is the quasigroup employed. If the

attacker has knowledge of the secret key k, then the attacker can forge an authentication

tag for any chosen message. But the above system of equations has as many solutions

as there are quasigroups of order 16 or 256. Hence determining the quasigroup makes it

practically impossible. Therefore, the QGMAC-224 is also resistant to forgery attack.

6.4 A QGMD5-384 bits hash function and a QGMAC-384

bits message authentication code based on a quasi-

group

This section proposes an extension of the work previously described in section 6.3. In

this section, we also discuss two new schemes based on a quasigroup: (i) a cryptographic

hash function, named here as QGMD5-384, and (ii) a message authentication code

based on QGMD5-384, named here as QGMAC-384. The primary goal of proposing
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these new schemes is to obtain a 160-bit longer hash value and MAC value than the

previous one by spending a little bit extra time. By which the new schemes are found

to be more secure than the previous ones. Also, the algorithm of QGMD5-384 uses an

optimal quasigroup of order 16, while the algorithm of QGMAC-384 uses a quasigroup

of order 16 or 256, depending on the algorithm. Note that the underlying structure

of both the schemes QGMD5-384 and QGMAC-384 is similar. The only difference

between the two is that the quasigroup used in QGMD5-384 is publicly known, while

the quasigroup used in QGMAC-384 acts as a secret key. The description of an optimal

quasigroup of order 16 is given in section 2.2.16 of Chapter 2. In future, a 16 order

optimal quasigroup can be replaced by a 256 order optimal quasigroup. It will only

be possible if we generate an optimal quasigroup of order 256. This is because the

generation of optimal quasigroups of order 2k is a hard problem, k ≥ 4.

The proposed schemes can be seen as an expansion of the hash value and MAC value

sizes of the MD5 and HMAC-MD5, respectively. Both the expansions are done through

a series of QGExp128T384 and QGComp384To128 layers. The QGExp128To384 ex-

pansion layer is implemented in two sub-expansion layers. In the first sub-expansion

layer, QGExp128To384 transforms 128 bits into 224 bits and is referred to as QG-

Exp128To224. In the second sub-expansion layer, QGExp128To384 transforms 224

bits into 384 bits and is referred to as QGExp224To384. And the QGComp384To128

compression layer compresses 384 bits into 128 bits. The workflow of both the QGMD5-

384 and the QGMAC-384 is shown in Figure 6.5. In order to start the process of each

of these schemes, an arbitrary length message M is first divided into ℓ fixed-size blocks,

where the size of each block is 512 bits. If the length of the message M is not a multiple

of 512 bits, then the padding will be required, and it is padded as in the case of the

MD5 hash function, such as discussed earlier in section 6.2.1. Observe that each round,

except the last round of the last block, MD5 is followed by a QGExp128To224 sub-layer

that expands 128 bits to 224 bits by inserting 96 bits, QGExp224to384 sub-layer that

expands 224 bits into 384 bits by inserting 160 bits, and a QGComp384To128 layer

that compresses back to 128 bits by deleting 256 bits. In the last round of the last

block, MD5 is followed by only the QGExp128To224 and QGExp224To384 sub-layers.

Both QGExp128To384 and QGComp384To128 layers are defined using the quasigroup

expansion (QGExp) and the quasigroup compression (QGComp) operations, respec-

tively. The QGExp and QGComp operations are defined previously in sections 6.3.1
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Figure 6.5: Workflow of QGMD5-384 and QGMAC-384

and 6.3.3, respectively by confining to the rules of the selected quasigroup of order 16

or 256, depending on the algorithm.

6.4.1 QGExp128To384 layer

The quasigroup-based expansion layer (QGExp128To384) expands the intermediate

result of 128 bits into 384 bits by inserting 256 bits. It is carried out by employing two

consecutive sub-layers (i) QGExp128To224 and (ii) QGExp224To384. Each of these

sub-layers uses the QGExp operation, defined in section 6.3.1.

6.4.1.1 QGExp128To224 sub-layer

The QGExp128To224 is the first sub-layer of the QGExp128To384 that takes 128 bits as

input and converts them into 224 bits as output. It is defined earlier in section 6.3.1.1.

And we have the following four consecutive tuples as the output of this sub-layer:
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where the size of each tuple is 56 bits (7 bytes), pi1p
i
0, q

i
1q

i
0, u

i
1u

i
0, v

i
1v

i
0, and rj1r

j
0 are 8-

bit (byte) values, whereas pi0, q
i
0, u

i
0, v

i
0, r

j
0, p

i
1, q

i
1, u

i
1, v

i
1, and rj1 are 4-bit (nibble) values,

1 ≤ i ≤ 4 and 1 ≤ j ≤ 12.

6.4.1.2 QGExp224To384 sub-layer

The QGExp224To384 is the second sub-layer of the QGExp128To384 that takes 224

bits as input and converts them into 384 bits as output. That is, the output of the

QGExp128To224 sub-layer is used as the input to the QGExp224To384 sub-layer. It

works as follows:

(P ′ ⊛Q′) = ((p11p
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where the symbol ⊛ would be either ⊛1 or ⊛2 depending on quasigroup of order 256 or

16 employed. The symbols ⊛1 and ⊛2 are defined in Equation (6.3) and Equation (6.4),

respectively. rt1r
t
0, 13 ≤ t ≤ 33 is the resulting or inserting byte based on quasigroup

operation. Note that the QGExp224To384 sub-layer converts 224 bits (28 bytes) to

392 bits (49 bytes). The last byte r331 r330 is deleted as the proposed schemes only need

384 bits (48 bytes). The following example illustrates these expansion sub-layers.
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Example 6.4.2. Consider the quasigroup of order 16 given in Table 2.8 of Chapter 2.

And let P = (34, AF,A0, 48), Q = (42, 2F, 72, A8), U = (0B,A3, 38, 4C), and V =

(30, 28, BC,D8) be a sequence of 128 bits (16 bytes) of data in hexadecimal digits to be

converted to 384 bits (48 bytes). Then, the first expansion sub-layer (QGExp128To224)

of QGExp128To384 converts 128 bits to 224 bits as follows:

(P ⊛2 Q) = ((34, 42, 37), (AF, 2F, 46), (A0, 72, CB), (48, A8, CA))

((P ⊛2 Q)⊛2 U) = ((34, 42, 37, 0B,A9), (AF, 2F, 46, A3, CA),

(A0, 72, CB, 38, 11), (48, A8, CA, 4C,DE))

(((P ⊛2 Q)⊛2 U)⊛2 V ) = ((34, 42, 37, 0B,A9, 30, F7), (AF, 2F, 46, A3, CA, 28, C0),

(A0, 72, CB, 38, 11, BC, 3C), (48, A8, CA, 4C,DE,D8, 7B))

The output of QGExp128To224 becomes the input to the second expansion sub-layer

(QGExp224To384) of the expansion layer QGExp128To384, where (34, 42, 37, 0B,A9, 30, F7),

(AF, 2F, 46, A3, CA, 28, C0), (A0, 72, CB, 38, 11, BC, 3C), and (48, A8, CA, 4C,DE,D8, 7B)

are considered as P ′, Q′, U ′, and V ′, respectively. Now, the second expansion sub-layer

(QGExp224To384) of QGExp128To384 converts 224 bits to 384 bits as follows:

(P ′ ⊛2 Q
′) = ((34, AF, 64), (42, 2F, 75), (37, 46, 33), (0B,A3, F9), (A9, CA,E5),

(30, 28, 1D), (F7, C0, 91))

((P ′ ⊛2 Q
′)⊛2 U

′) = ((34, AF, 64, A0, 99), (42, 2F, 75, 72, D2), (37, 46, 33, CB, 07),

(0B,A3, F9, 38, 4C), (A9, CA,E5, 11, 48), (30, 28, 1D,BC, 36),

(F7, C0, 91, 3C,EC))

(((P ′ ⊛2 Q
′)⊛2 U

′)⊛2 V
′) = ((34, AF, 64, A0, 99, 48, BC), (42, 2F, 75, 72, D2, A8, 04),

(37, 46, 33, CB, 07, CA, 5E), (0B,A3, F9, 38, 4C, 4C, 88),

(A9, CA,E5, 11, 48, DE, 34), (30, 28, 1D,BC, 36, D8, 87),

(F7, C0, 91, 3C,EC, 7B,A6))

where ⊛2 is the QGExp operation of order 16. The inserted bytes are indicated by under-

lining them. After performing the QGExp128To384, the resulting sequence of 384 bits

(48 bytes) is 34AF64A09948BC422F7572D2A804374633CB07CA5E0BA3F9384C4C8

8A9CAE51148DE3430281DBC36D887F7C0913CEC7B.

6.4.3 QGComp384To128 layer

The quasigroup-based compression layer (QGExp384To128) compresses the interme-

diate result of 384 bits into 128 bits by deleting 256 bits. It is carried out using the
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QGComp operation, defined in section 6.3.3. The application of QGComp384To128

is as follows: First, it divides the 384 bits (48 bytes) into 3 sub-blocks of 128 bits

(16 bytes) each. Let P = (p11p
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where xi1x
i
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i
0 ∗1 qi1qi0 or xi1x

i
0 = (pi1 ∗2 qi1)||(pi0 ∗2 qi0), and

((P ⊙1 Q)⊙1 U) or ((P ⊙2 Q)⊙2 U) =(y11y
1
0, y

2
1y

2
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where yi1y
i
0 = xi1x

i
0∗1ui1ui0 or yi1yi0 = (xi1∗2ui1)||(xi0∗2ui0). The symbols ⊙1 and ⊙2 denote

the quasigroup-based compression operations corresponding to the quasigroup of orders

256 and 16, respectively. And the symbols ∗1 and ∗2 are the quasigroup operations

corresponding to the symbols ⊙1 and ⊙2 of the orders 256 and 16, respectively. The

following example illustrates the functioning of this compression layer.

Example 6.4.4. Consider the quasigroup Q of order 16 used in Example 6.4.2. This is

given in Table 2.8 of Chapter 2. Also, from Example 6.4.2, we consider the sequence of

384-bit (48 bytes) P = 34AF64A09948BC422F7572D2A804374633CB07CA5E0BA3F

9384C4C88A9CAE51148DE3430281DBC36D887F7C0913CEC7B represented in hex-

adecimal digits. To compress these bytes are divided into three sub-blocks as P1 =

34AF64A09948BC422F7572D2A8043746, P2 = 33CB07CA5E0BA3F9384C4

C88A9CAE511, and P3 = 48DE3430281DBC36D887F7C0913CEC7B. Now using

the quasigroup of order 16 given in Table 2.8 of Chapter 2, the QGComp384To128

layer works as follows:

(P1 ⊙2 P2) =C6E2C2EF2D9CA14F884A4124255C2FD1,

and then

(P1 ⊙2 P2)⊙2 P3) =D76A163D0260BC6CDA5C4EC9F8B8A953,

where ⊙2 is the quasigroup-based compression operation of order 16. The obtained

result D76A163D0260BC6CDA5C4EC9F8B8A953 consists of 16 bytes and hence is

128 bits.
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6.4.5 Algorithm of QGMD5-384 and QGMAC-384

The proposed schemes make use of the QGExp128To384 and QGComp384To128 layers

along with the round functions of the MD5 to produce a hash value of 384 bits or a

MAC value of 384 bits. The algorithm of QGMD5-384 uses an optimal quasigroup

of order 16, and the algorithm of QGMAC-384 uses a quasigroup of order 16 or 256,

depending on the algorithm. Each of the proposed schemes processes the input message

block by block. So, a message M = B1, B2, ˙..., Bℓ is divided into, say ℓ, message blocks,

where the size of each message block Bi is 512 bits, 1 ≤ i ≤ ℓ. The pseudocode of the

algorithm of QGMD5-384 and that of the QGMAC-384 is given in Algorithm 14. In this

algorithm, the variables B′
i and B′

ℓ are used to store the output of the round functions

of MD5. And the variables OutPutOfFirstSubExpL, OutPutOfSecondSubExpL,

and OutPutOfCompL are used to store the output of the layers QGExp128To224,

QGExp224To384, and QGComp384To128, respectively.

6.4.6 Implementation and software performance

The proposed schemes have been implemented using the same system configuration and

software tools used to implement the previous schemes. The details of these are given

in section 6.3.6. Inputs to these schemes are also the same as those used in the previous

schemes. The performance of the proposed schemes (QGMD5-384 and QGMAC-384)

is compared with those of the standard hash functions and message authentication

codes, such as MD5, SHA-384, HMAC-MD5, and HMAC-SHA-384. The results of

this analysis are presented in Table 6.5. See that the performance of the QGMD5-

384 hash function is compared with that of both MD5 and SHA-384 hash functions,

and the performance of the QGMAC-384 is compared with that of both HMAC-MD5

and HMAC-SHA-384. It can be observed that the performance of QGMD5-384 and

QGMAC-384 is slightly slower than that of MD5 and HMAC-MD5 but faster than that

of SHA-384 and HMAC-SHA-384, respectively.

6.4.7 Security analysis

The security of the proposed QGMD5-384 hash function is analyzed against various

attacks, including brute force, collision, prefix, and suffix attacks. And it is found to

be resistant to these attacks.
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Algorithm 14: Algorithm of QGMD5-384 and QGMAC-384

Input: 1. Message M in the form of ℓ blocks B1, B2, . . . , Bℓ of 512 bits each.

2. An initial value IV0 of 128 bits.

Output: A hash value or MAC-value of 384 bits.

[1] if ℓ = 1 then

[2] GOTO Line No. [15];

[3] else

[4] for i = 1 to ℓ− 1 do

[5] for j = 1 to 4 do

[6] if j = 1 then

[7] B′
i =Round-1 of MD5(Bi, IVi−1);

[8] else

[9] B′
i =Round-j of MD5(Bi, OutPutOfComp);

[10] OutPutOfFirstSubExpL = QGExp128TO224(B′
i);

[11] OutPutOfSecondSubExpL =

QGExp224TO384(OutPutOfFirstSubExpL);

[12] OutPutOfCompL =

QGComp384To128(OutPutOfSecondSubExpL);

[13] if j = 4 then

[14] IVi = OutPutOfCompL;

[15] for j = 1 to 3 do

[16] if j = 1 AND ℓ = 1 then

[17] B′
ℓ =Round-1 of MD5(B1, IV0);

[18] else if j = 1 AND ℓ > 1 then

[19] B′
ℓ =Round-1 of MD5(Bℓ, IVℓ−1);

[20] else

[21] B′
ℓ =Round-j of MD5(Bℓ, OutPutOfCompL);

[22] OutPutOfFirstSubExpL = QGExp128TO224(B′
ℓ);

[23] OutPutOfSecondSubExpL =

QGExp224TO384(OutPutOfFirstSubExpL);

[24] OutPutOfCompL = QGComp384To128(OutPutOfSecondSubExpL);

[25] B′
ℓ =Round-4 of MD5(Bℓ, OutPutOfCompL);

[26] OutPutOfFirstSubExpL = QGExp128TO224(B′
ℓ);

[27] OutPutOfSecondSubExpL = QGExp224TO384(OutPutOfFirstSubExpL).

Output these 384 bits as the final hash value or MAC-value of the message M ;
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Table 6.5: Performance analysis of hash functions and HMACs.

Hash Functions Avg Execution time

in microseconds (µs)

Message Authen-

tication Codes

Avg Execution time

in microseconds (µs)

Existing schemes

MD5 7.94 HMAC-MD5 10.13

SHA-384 17.92 HMAC-SHA-384 22.04

Proposed schemes

QGMD5-384 16.52 QGMAC-384 16.52

6.4.7.1 Brute force attack

The QGMD5-384 produces a 384 bits hash value instead of 128 bits and 224 bits, as in

the case of MD5 and QGMD5-224, respectively. Typically, for an n-bit hash value, a

brute force attack requires 2n effort to compute (i) pre-image and (ii) second pre-image

attacks, and to find a collision, it requires 2n/2 effort. Since the size of the hash value

of QGMD5-384 is 384 bits as against 128 bits and 224 bits of MD5 and QGMD5-224,

respectively, the QGMD5-384 can be seen to be more secure than both the MD5 and

the previous QGMD5-224 hash functions.

6.4.7.2 Collision attack

We have used the same procedure to analyze the QGMD5-384 hash function against

this attack that was used to analyze the previous QGMD5-224 hash function; details

are given in section 6.3.7.1. That is, we perform two experiments by randomly choosing

N = 2048 pairs of messages M i
1 and M i

2 with hamming distance 1, 1 ≤ i ≤ 2048. And

for each pair of messages M i
1 and M i

2, we computed the corresponding hash values hi1

and hi2 and stored them in ASCII format.

In the first experiment, for all pairs of hash values hi1 and hi2, 1 ≤ i ≤ 2048, we

computed the experimental results of both the SHA-384 and the QGMD5-384 using

Equation (6.7); and the expected results of an s-byte hash value using Equation (6.8).

The expected and experimental results are given in Table 6.6 (a) and (b), respectively.

In this table, v denotes the number of bytes that have the same value at the same

position if we compare a pair of hi1 and hi2 as byte sequences, 1 ≤ i ≤ 2048; s denotes

the number of bytes in a hash value, and WN (v) denotes the number of times v hits in
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N number of experiments. Smaller v characterizes the stronger hash function against

collision resistance. If we compare the experimental results of SHA-384 and QGMD5-

384 with the corresponding expected results, which are tabulated in Table 6.6 (a) and

(b), It can be observed that the experimental results of the proposed QGMD5-384

Table 6.6: Results of expected and experimental.

Expected result (WN (v)) Experimental result

v s = 48 SHA-384

(s = 48)

QGMD5-384

(s = 48)

0 1697.23 1676 1683

1 319.48 348 335

2 29.44 20 27

3 1.77 4 3

v ≥ 4 0 0 0

(a) (b)

not only coincide very well with the theoretical ones but also it has better collision

resistance than that of SHA-384.

In the second experiment, we calculated the absolute difference (AD) between each

pair of hi1 and hi2 using Equation (6.9), 1 ≤ i ≤ 2048. In this case, the larger value

of AD characterizes the stronger hash function against collision resistance. For each

of the hash functions SHA-384 and QGMD5-384, the simulation of this experiment is

also run 2048 times and calculated the minimum, maximum, mean, and mean/char of

AD. The results of this experiment are given in Table 6.7. Note that the ideal value of

mean/char, as defined in [17], is 85.33. According to the results as shown in Table 6.7,

it can be observed that the obtained mean/char value of the proposed QGMD5-384

hash function is closer to the ideal value of 85.33 than that of the SHA-384. Hence,

the second experiment also ensures that QGMD5-384 is more secure than SHA-384.

Table 6.7: Results of the absolute differences.

Hash Functions Minimum Maximum Mean Mean/Char

SHA-384 2821 5209 3913.43 81.52

QGMD5-384 2800 5395 4046.27 84.31
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6.4.7.3 Prefix and suffix attacks

Prefix and suffix attacks are common methods for finding collisions in cryptographic

hash functions. The details of these attacks against the QGMD5-224 hash function are

described in section 6.3.7.2. For the prefix attack, an attacker creates a false message

PM = (p1, p2, . . . , pu,m1,m2, . . . ,mk) by adding the prefix P = (p1, p2, . . . , pu) to the

original message M = (m1,m2, . . . ,mk) so that HIV (PM) = HIV (M), where H is

the hash function, mi ∈ Q for 1 ≤ i ≤ k, pj ∈ Q, for 1 ≤ j ≤ u, and IV and Q

denote an initial value and an employed quasigroup. This attack is successful only if

HIV (P ) = IV . In other words, this attack can happen if a hash function is vulnerable

to a pre-image attack. But the proposed QGMD5-384 hash function is resistant to

pre-image attack. This is because it uses MD5 and an optimal quasigroup of order

16. Since MD5 is already resistant to the pre-image attack and the optimal quasigroup

consists of 16 optimal S-boxes of 4 × 4. That is, the security of the QGMD5-384 is

not only dependent on the MD5 but also on the 16 optimal S-boxes as an optimal

quasigroup of order 16. Hence, the QGMD5-384 is resistant to prefix attack.

A similar argument can be used to show that the proposed QGMD5-384 hash func-

tion is resistant to the suffix attack. To mount this attack, first, an attacker chooses

a suffix S = (s1, s2, . . . , st), sj ∈ Q, 1 ≤ j ≤ t, and tries to create a false message

MS = (m1,m2, . . . ,mk, s1, s2, . . . , st) by appending the suffix S to the original mes-

sage M , so that HIV (MS) = h = HIV (M). This attack is successful only if Hh(S) = h.

6.4.7.4 Avalanche effect

A hash function must exhibit a good avalanche effect since it is one of the desirable

properties of a hash function. We have analyzed the proposed QGMD5-384 hash func-

tion against this test by comparing it with those of the existing MD5 and SHA-384

hash functions. For this test, we used the same process and inputs that were used to

analyze the QGMD5-224 hash function. The details are described in section 6.3.7.3.

The results of the MD5, SHA-384, and QGMD5-384 against this test are given in Ta-

ble 6.8. In this table, HDPi denotes the hamming distance between two hash values in

percentage, which is obtained using Equation (6.10). The first column shows the range

of hamming distances (HDPi) in the specified range separately; the second, third, and

fourth columns show the number of times the hamming distances (HDPi) of the hash
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values lie in the specified range given in the first column of the table corresponding to

MD5, SHA-384, and QGMD5-384, respectively. Also given in the last row of the table

is the average (mean) hamming distance in percentage. From these values, it can be

observed that the avalanche effect of QGMD5-384 is better than that of both MD5 and

SHA-384.

Table 6.8: Hamming distances for MD5, SHA-384 and QGMD5-384.

Range of

HDPi

Number of hash

pairs of MD5

Number of hash

pairs of SHA-384

Number of hash

pairs of QGMD5-384

35 - 44.99 41 7 7

45 - 54.99 206 265 268

55 - 59.99 33 8 5

Avarage hamming distance

Mean: 49.76 49.97 50.12

6.4.7.5 Bit variance test

Bit variance test is one of the statistical tests to measure the impact on each bit of hash

value by changing the bits of the input message. If there is a slight change in the input

message, then the impact of this change on each bit of the corresponding hash value

should be uniform. For this test, we used the same inputs that were used to analyze

the QGMD5-224 hash function, given in section 6.3.7.4. The proposed QGMD5-384

hash function takes a variable length input message and produces a fixed-length 384

bits hash value. So, for each of these 384 bits, we calculate the probability of a bit

being 1. Let Pi(1) be the probability that the ith bit of a hash value is 1. Similarly, let

Pi(0) be the probability that the ith bit of a hash value is 0. If Pi(1) = Pi(0) =
1
2 for

all bits of the hash value, i.e. for i = 1, 2, . . . , 384, then the QGMD5-384 passes the bit

variance test. The obtained results are as follows:

Number of hash values = 281

Mean frequency of 1s (expected) = 140.5

Mean frequency of 1s (calculated) = 140.3

According to these results, it can be observed that the average probability of 1s ≈ 50%.

Hence, QGMD5-384 passes the bit variance test.
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6.4.7.6 Analysis of QGMAC-384

The proposed message authentication code QGMAC-384 is designed based on the hash

function QGMD5-384 and uses a secret quasigroup of order 16 or 256, depending on

the algorithm. So, the security of the QGMAC-384 depends on both the QGMD5-384

and the quasigroup of order 16 or 256 that is used. Since the number of quasigroups of

orders 16 and 256 is upper bounded by 0.689× 10138 and 0.753× 10102805, respectively,

the use of order 256 quasigroups will provide more security than the quasigroups of

order 16. But to store a quasigroup of order 256 is required 65280 bytes extra space

than that of a quasigroup of order 16.

As of today, a cryptosystem with at least a keyspace of 2128 is considered to be

a secure cryptosystem. Therefore, the use of order 16 quasigroups also provides good

security in QGMAC-384. This is because the number of quasigroups of order 16 is

0.689 × 10138 ≈ 2456. That is, the use of order 256 quasigroups can be an alternative

option. Because of the large number of quasigroups of either order, it follows that the

probability of identifying the employed quasigroup is close to zero. Hence, QGMAC-

384 is resistant to brute force attack. Also, QGMAC-384 is analyzed against forgery

attack and found to be resistant. In this attack, an attacker chooses a fixed number,

say n, of different messages (M1,M2, . . . ,Mn) and their corresponding MAC values

(authentication tags) (h1, h2, . . . , hn) and tries to solve the following equations for the

secret key k :

hi = Hk(Mi), 1 ≤ i ≤ n (6.12)

where, H is the QGMD5-384 hash function and k is the quasigroup employed. If the

attacker has knowledge of the secret key k, then the attacker can forge an authentication

tag for any chosen message. But here, k is secret. So, the above system of equations

has as many solutions as there are quasigroups of order 16 or 256. Hence determining

the quasigroup makes it practically impossible. Therefore, the QGMAC-384 is also

resistant to forgery attack.

6.5 Summary

This chapter proposed two hash functions and, based on them, proposed the corre-

sponding message authentication codes. Each of these schemes is designed based on a
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quasigroup. The first hash function (QGMD5-224) and message authentication code

(QGMAC-224) produce 224 bits hash value and MAC value, respectively. They are

discussed in section 6.3. The second hash function (QGMD5-384) and message authen-

tication code (QGMAC-384) produce 384 bits hash value and MAC value, respectively.

They are discussed in section 6.4. Both the hash functions and the message authen-

tication codes can be viewed as the extended version of MD5, and they use the MD5

along with a quasigroup of order 16 or 256, depending on the algorithms. The pro-

posed schemes mask the weaknesses of MD5 and adds extra security. We have analyzed

both the QGMD5-224 and the QGMD5-384 against various attacks, including brute

force attack, collision resistance, and prefix and suffix attacks, and found that they are

resistant to these attacks. The randomness properties of the proposed hash functions

are analyzed using the avalanche effect and bit variance test, and they satisfied all the

properties that are needed for the ideal hash functions.

We compared our schemes with the existing quasigroup-based hash functions that

are discussed in the literature survey of Chapter 3 and are introduced in the liter-

ature [23, 24, 70]. We found that the proposed hash functions (QGMD5-224 and

QGMD5-384) are resistant to prefix and suffix attacks [69]; while the existing hash

functions [23, 24, 70] are vulnerable to these attacks. Hence, It can be concluded that

the new quasigroup based hash functions (QGMD5-224 and QGMD5-384) appear to

be a good alternative to the existing quasigroup based hash functions.

Also, the proposed QGMAC-224 and QGMAC-384 can be viewed as an extended

version of HMAC-MD5. They use a quasigroup of order 16 or 256 as a secret key to

calculate the MAC values. Since the number of quasigroups of order 16 or 256 is prac-

tically infinite, it is computationally infeasible to determine the employed quasigroup.

Hence the QGMAC-224 and QGMAC-384 are resistant to brute force attacks. Also,

they are analyzed against forgery attacks, and found that both of them are resistant

to forgery attacks as well.

The software performance of both QGMD5-224 and QGMAC-224 is compared to

that of the corresponding algorithms of MD5, SHA-224, HMAC-MD5, and HMAC-

SHA-224. Similarly, the software performance of both QGMD5-384 and QGMAC-384

is compared to that of the corresponding algorithms of MD5, SHA-384, HMAC-MD5,

and HMAC-SHA-384. We found that QGMD5-224 is slightly slower than MD5 but
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faster that SHA-224. And QGMAC-224 is found to be always faster than both HMAC-

MD5 and HMAC-SHA-224. On the other hand, we found that QGMD5-384 is slightly

slower than MD5 but faster than SHA-384. And QGMAC-384 is slightly slower than

HMAC-MD5 but faster than HMAC-SHA-384.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

The major contribution of this thesis is the design of new cryptosystems based on

quasigroup. Contributions are broadly categorized into three parts. In the first part

three variants of stream ciphers, in the second part two variants of block ciphers, and

in the third part two variants of hash functions and HMACs are proposed. All these

proposals are based on the concept of quasigroup.

The three proposed stream ciphers are described in Chapter 4. The first cipher

discussed in section 4.3, uses AES-256 for generating the keystream and a quasigroup

of order 256 for encrypting/decrypting the messages. The second cipher discussed in

section 4.4, uses QG-PRNG for generating the keystream and a quasigroup of order

256 for encrypting/decrypting the messages. The QG-PRNG is a quasigroup based

pseudo-random number generator described in section 4.4.1. Note that the second ci-

pher is the revised version of the first cipher. This is because the second cipher uses

QG-PRNG for generating the keystream instead of AES-256 as used in the first cipher,

thereby the second cipher is more efficient than the first cipher. The third cipher is

discussed in section 4.5. It uses MQG-PRNG for generating the keystream and 16

quasigroups of order 16 for encrypting/decrypting the messages. The MQG-PRNG is

a multiple quasigroups-based pseudo-random number generator, uses 16 quasigroups,

and it is described in section 4.4.2. The algorithms of both the MQG-PRNG and the

encryption/decryption use the same set of 16 quasigroups but may be in different orders

(permutations). These 16 quasigroups are dynamically generated based on an original

169



7. CONCLUSIONS AND FUTURE WORK

quasigroup of order 16. The use of multiple quasigroups contributes to increased se-

curity since a different quasigroup is used after a certain amount of time. Note that

the third cipher is the revised version of both the first and second ciphers. This is

because, the third cipher uses a quasigroup of order 16 instead of a quasigroup of order

256 as used in both the first and second ciphers, thereby the third cipher needs around

99% lesser space than both the first and second ciphers. The novelty of the proposed

stream ciphers is that they are resistant to the reused key attack as against the ex-

isting XOR-based stream ciphers. Hence a keystream can be reused multiple times,

thereby overcoming the major hurdle that exists in the application of the stream ci-

phers. The proposed ciphers are analyzed against the most common attacks, including

the chosen-ciphertext attack, the chosen-plaintext attack, the known-plaintext attack,

the reused-key attack, and the time-memory-data tradeoff (TMDTO) attack. We ob-

served that our ciphers are resistant to these attacks. Also, the performance of the

proposed ciphers is analyzed by comparing them to some of the existing quasigroup

based stream ciphers [12, 28, 43, 59, 60, 81]. We observed that in most cases the pro-

posed ciphers are more efficient than the existing quasigroup based proposals. The

randomness of the obtained ciphertexts produced by the proposed stream ciphers is

analyzed using the NIST-STS test suite. We found that the obtained ciphertexts of the

proposed ciphers are highly random.

The proposed two block ciphers to encrypt or decrypt messages in the form of a

block of 128 bits are described in Chapter 5. Both the ciphers are designed based

on the Permutation Substitution Network (PSN) and use 16 optimal S-boxes as an

optimal quasigroup of order 16, where the size of each S-box is 4× 4 bits. The design

of the proposed ciphers is based on the key-dependent S-box, where the operations

are carried out using the quasigroup operation. In each quasigroup operation, a key-

dependent S-box layer chooses one S-box out of the 16 S-boxes, where the choice is

based on the round key or sub-key. We believe that key-dependent S-box ciphers are

more secure than fixed S-box ciphers. This is because key-dependent S-boxes do not

offer any specific properties to the cryptanalyst. Most key-dependent S-box ciphers are

effectively random. Examples of such ciphers are Blowfish [66] and SEAL [15]. The

second cipher discussed in section 5.4 is more standard than the first cipher discussed in

section 5.3. This is because each round of the second cipher uses three transformations

(substitution, permutation, and add round key), while the first cipher uses only two
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transformations (substitution and permutation). The proposed ciphers are analyzed

against several attacks, including linear cryptanalysis and differential cryptanalysis,

and found that the ciphers are resistant to these attacks. Also, we have analyzed

the software performance (time complexity), space complexity, and avalanche effect

(diffusion effect) of the proposed ciphers by comparing them with AES-128 and other

existing quasigroup based block ciphers [5, 6, 83]. We noted that the avalanche effect

of our ciphers compares to that of the AES-128 and due to more computations our

ciphers are slightly slower than AES-128, but our cipher uses half the space compared

to AES-128. Also, the proposed block ciphers use the same amount of space as that

used by [83] but 512 times lesser than [5, 6]. We also noted that our ciphers are more

efficient than DES. In addition, our ciphers are more than 2 times faster and give a

better avalanche effect than other existing quasigroup based block ciphers [5, 6, 83].

Hence, we concluded that the proposed ciphers appear to be an excellent alternative to

the quasigroup based proposals. The randomness of the obtained ciphertexts produced

by the proposed ciphers is tested using the NIST statistical test suite. We ran our

encryption systems for a random plaintext of 1048576 bits with 1000 different keys and

generated 1000 ciphertexts. The results are compared with that of AES-128 for the

same plaintext and the same keys. We observed that the randomness of the outputs of

our ciphers and AES-128 are comparable to each other.

In Chapter 6, we proposed two hash functions and, based on them we also proposed,

the corresponding message authentication codes (HMACs). Each of these schemes is

designed using the quasigroup. The first hash function, named QGMD5-224, and the

corresponding message authentication code, named QGMAC-224 produce 224 bits hash

value and MAC value, respectively. They are described in section 6.3. The second hash

function, named QGMD5-384, and the corresponding message authentication code,

named QGMAC-384 produce 384 bits hash value and MAC value, respectively. They

are described in section 6.4. The proposed hash functions (QGMD5-224 and QGMD5-

384) can be seen as the extended version of MD5. They are designed using the MD5 and

a quasigroup of order either 16 or 256. They mask the weaknesses of MD5 and add extra

security. We have analyzed both the QGMD5-224 hash function and the QGMD5-384

hash function against several attacks, including brute force attack, collision resistance,

and prefix and suffix attacks, and found that the proposed hash functions are resis-

tant to these attacks. The randomness properties of the proposed hash functions are
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analyzed using the avalanche effect and bit variance test, and they satisfied all the

properties that are needed for the ideal hash functions.

The proposed HMACs (QGMAC-224 and QGMAC-384) can be seen as an extended

version of HMAC-MD5. They use a quasigroup of order either 16 or 256 as a secret

key and calculate the MAC values. Since the number of quasigroups of order 16 or 256

is practically infinite, it is impossible to determine the employed quasigroup. Hence

the QGMAC-224 and QGMAC-384 are resistant to brute force attack. Also, they are

analyzed against forgery attacks and found that both are resistant to forgery attacks

as well.

The software performance of both QGMD5-224 and QGMAC-224 is compared to

that of the corresponding algorithms of MD5, SHA-224, HMAC-MD5, and HMAC-

SHA-224. Similarly, the software performance of both QGMD5-384 and QGMAC-384 is

compared to that of the corresponding algorithms of MD5, SHA-384, HMAC-MD5, and

HMAC-SHA-384. We found that QGMD5-224 is slightly slower than MD5 but faster

than SHA-224. And QGMAC-224 is found to be always faster than both HMAC-MD5

and HMAC-SHA-224. On the other hand, we found that QGMD5-384 is slightly slower

than MD5 but faster than SHA-384. And QGMAC-384 is slightly slower than HMAC-

MD5 but faster than HMAC-SHA-384. Also, we observed that the performance of the

proposed hash functions and their corresponding HMACs are the same. This is because

the underlying structure of both the proposed hash functions and their corresponding

HMACs is similar. The only difference between the two is that the quasigroup used in

the hash functions is publicly known, while the quasigroup used in HMACs acts as a

secret key.

7.2 Future work

In this thesis, we have designed several cryptosystems based on quasigroups. Each of

the proposed cryptosystems comes under the category of symmetric key cryptography.

So, one of our intentions is to design public key cryptosystems based on quasigroup. In

addition, we have the following intentions:

• To analyze the proposed stream ciphers against several attacks such as Algebraic

attack, Correlation attack, Fault attack, Guess and determine attack, etc.
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• To analyze the proposed block ciphers against more cryptanalytic attacks such as

Boomerang attack, Meet-in-the-middle attack, Key recovery attack, Impossible

differential attack, etc.

• To analyze the proposed keystream generation algorithms (QG-PRNG and MQG-

PRNG) against several attacks such as Related-key attack, Slide attack, etc.

• To analyze the proposed hash functions against several attacks such as Rainbow

table attack, Side-channel attack, Length extension attack, etc.

Last but not the least, we would like to extend the proposed hash functions and their

corresponding HMACs to produce 512 or 728 bits hash and MAC values. We also

would like to explore the possibility of designing other crypto-primitives such as digital

signature and authentication systems using the proposed hash functions and HMACs.
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