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Abstract

Each cell in a biological system requires thousands of proteins to perform

specific tasks at specific times and locations to function correctly. Gene

variants can occasionally prevent one or more proteins from functioning

correctly by making a protein malfunction or not be produced at all by

altering the gene’s instructions which produces it. A variant can impair

normal development or result in a disease when it changes a protein essential

to the body. This information can be represented as a interaction network.

Construction and analysis of Gene-Gene networks, constructed using gene

expression data, are popular ways to understand the underlying mechanisms

of complex diseases. The major challenge with gene expression data with

a large number of variables(genes) and a comparatively very small number

of samples is to extract disease-related information, as the gene expression

data contains a vast amount of redundant data and noise.

This thesis focuses on constructing a statistically and biologically meaning-

ful Alzheimer’s disease gene networks from the gene expression data and

then the problem-specific analysis of the constructed disease gene networks.

As the first contribution to the thesis, we have introduced a novel frame-

work to construct Alzheimer’s disease gene networks. The framework uses

t-test, correlation, Gene Ontology categories machine learning techniques

to construct the disease gene network and to detect the potential biomarker

genes. In the second contribution, we have used the proposed framework

to construct the stage-wise Alzheimer’s disease gene networks and carried

out the community analysis. We have proposed a new stable community

discovery algorithm (Neighbour-based community discovery algorithm) for

community analysis. In the third contribution, we have analyzed the stage-

wise Alzheimer’s disease gene network to identify the genes that may be

responsible for or play an important role in the disease progression. We

iii



have introduced a new centrality measure to rank the genes according to

their involvement in the network progression. Through all these methods,

we could identify a large number of genes that are proven to be important in

Alzheimer disease progression and onset. Further, this framework is generic

enough for it to be used with any other disease.
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Chapter 1

Introduction

Gene expression studies and gene-network analyses are vitally important for under-

standing complex diseases. This facilitates an understanding of the underlying process

of these disorders. Gene activity is affected and regulated by other genes. One of

the popular ways to represent this information is through gene regulatory networks,

which are constructed using gene expression data where genes are represented as nodes

and edges represent the dependencies and possibly functional relations among genes.

However, constructing a disease gene network with equal statistical and biological sig-

nificance remains a major challenge among researchers. The vast amount of data and

noise in the gene expression data makes it a challenge to construct and analyse the

networks and extract the disease-specific information.

1.1 Biological Networks

Genes are the basic physical and functional units of heredity which are parts of the

DNA. Every gene comprises of a particular set of instructions for a particular function

or protein. According to Human Genome Project, humans have approximately 20000

to 25000 genes. Gene-gene interaction networks refer to the relationships between

genes and how they interact with each other to regulate various biological processes

in the body. These networks consist of a group of genes that are interconnected and

influence each other’s expression and function. These interactions can be direct, where

one gene directly regulates the expression or function of another gene, or they can be

indirect, where one gene influences the expression or function of another gene through

1



1.1 Biological Networks

intermediate pathways or regulatory factors.

Gene-gene interaction networks are important in understanding the intricate genetic

basis of various diseases and disorders, as well as identifying potential therapeutic

targets for these conditions. There are several different gene-gene interaction networks

that are important in disease analysis:

• Genetic pathways: These are networks of genes that are involved in specific bio-

logical processes or pathways. For example, the signaling pathway that regulates

cell growth and division is a genetic pathway. Figure 1.1 shows a gene-gene net-

work based on their GO categories[See 2.2.2].

Figure 1.1: GO graph using GOnet tool.

• Protein-protein interaction networks (PPI): These are networks of proteins that

interact with each other to perform specific functions in the cell. Fig. 1.2 shows

an example of PPI network. These interactions can be disrupted in diseases,

leading to abnormal function.

2



1.1 Biological Networks

Figure 1.2: PPI network using STRING database.

• Genetic networks: These are networks of genes that interact with each other to

regulate gene expression. Dysregulation of these networks can lead to abnormal

gene expression and disease.

• Genetic regulation networks: These are networks of genes that regulate the ex-

pression of other genes. Dysregulation of these networks can lead to abnormal

gene expression and disease manifestation.

• Genetic disease networks: These are networks of genes that are associated with

a specific diseases. Analysis of these networks can help identify potential thera-

peutic targets and improve diagnosis and treatment of diseases.

Overall, the importance of gene-gene interaction networks in disease analysis lies in their

ability to provide insights into the hidden genetic basis of the disease and identifying the

potential therapeutic targets. Network-based methods in disease analysis have several

advantages over other methods, including:

• Integrative analysis: Network-based methods allow for the integration of multiple

data types and sources, providing a more comprehensive understanding of the

underlying biological structure of a disease.

• Contextual information: Network-based methods provide additional context and

relationships between genes, proteins, and biological pathways, helping to identify
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potential biomarker genes.

• Prioritization: Network-based methods can prioritize candidate genes and path-

ways based on their centrality or importance in the network, making it easier to

identify the most promising targets for further investigation.

• System-level understanding: Network-based methods provide a systems-level view

of disease biology, allowing for the identification of common disease mechanisms

and potential drug targets.

• Data visualization: Network-based methods can visually represent complex bi-

ological relationships, making it easier to communicate results and understand

complex biological systems.

1.2 Alzheimer’s Disease

Brain can be divided into different regions, each with its own distinct functions and

characteristics. These regions include the frontal lobe, parietal lobe, occipital lobe, tem-

poral lobe, cerebellum, brainstem, and limbic system. The frontal lobe is responsible

for decision-making, problem-solving, and impulse control, while the parietal lobe plays

a key role in processing sensory information such as touch and spatial awareness. The

occipital lobe is primarily involved in processing visual information, while the temporal

lobe is important for language, memory, and hearing. The cerebellum is responsible

for coordination and movement, while the brainstem controls basic functions such as

breathing and heart rate. The limbic system, which includes the hippocampus, amyg-

dala, and hypothalamus, is involved in emotions, motivation, and memory formation.

Figure 1.3 shows the different brain regions and functions associated with the respective

regions. Figure 1.4 show the limbic system.

Any disease network can be viewed as pre and post disease. Pre, a normal network

before the disease afflicts a person and post where the disease has manifested to a

certain extent.

Alzheimer’s disease is a prevalent form of dementia. It is an irreversible disease

with a progressive loss of memory and worsening cognitive function. The leading cause

of AD is said to be the abnormal deposits of protein forms amyloid plaques and tau

tangles throughout the brain [1]. The hippocampus is a brain structure located deep
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1.2 Alzheimer’s Disease

Figure 1.3: Regions of Brain. Source: Dana.org(Neuroanatomy: The Basics)

Figure 1.4: Limbic System. Source: Designua/Shutterstock
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within the temporal lobe that plays a crucial role in all aspects of semantic memory.

It is often reported to be the first area affected in Alzheimer’s disease [2, 3]. Figure 1.5

shows the brain images during the Alzheimer’s disease progression.

Figure 1.5: Progression of Alzheimer’s Disease. Source: https://www.drugwatch.com/

health/alzheimers-disease/

1.3 Motivation

Alzheimer’s disease is a neurological disorder that affects an individual’s memory, motor

functions, behavior, and thought process. Its analysis poses several challenges:

• Early Diagnosis: It is difficult to diagnose Alzheimer’s disease in its early stages,

because the symptoms are similar to those of other age-related disorders such as

mild cognitive impairment.

• Lack of a definitive diagnostic test: Currently, the diagnosis of AD is based on

clinical evaluation and neuroimaging, but a definitive test is still not available.

• Heterogeneity of the disease: AD can manifest with different symptoms and pro-

gression patterns, making it hard to study and treat.

• Complexity of the disease mechanisms: Alzheimer’s is a complex disease with

multiple causes, making it difficult to pinpoint specific genetic or environmental

factors that contribute to its development.

1.3.1 Current research

Current research on Alzheimer’s disease is focused on:
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1.3 Motivation

• Early detection and diagnosis: Developing new biomarkers and diagnostic tools

to detect AD in its early stages.

• Understanding the disease mechanism: Research is ongoing to uncover the molec-

ular and cellular mechanisms involved in the development of AD.

• Development of new treatments: There is ongoing research to develop new drugs

and therapies to treat AD, including the use of gene therapy, immuno-therapy,

and stem cell therapy.

1.3.2 Key Research Methods

Some of the key research methods for analysing the Alzheimer’s disease are as follows:

• Genome-wide association studies (GWAS): GWAS are used to identify genetic

variants that are associated with Alzheimer’s disease.

• Epigenetic changes: Researchers are exploring the role that epigenetic changes

may play in the development of Alzheimer’s disease.

• Biomarkers: Researchers are working to identify biomarkers that can be used to

diagnose Alzheimer’s disease and monitor its progression.

• Targeted therapy: Researchers are exploring the use of targeted therapy to treat

Alzheimer’s disease by targeting specific genes or biological pathways.

1.3.3 Challenges

Challenges associated with these methods:

• Sample size: Large sample sizes are required for GWAS to have enough power to

detect genetic variants associated with Alzheimer’s disease.

• Complexity of epigenetic changes: Understanding the complex interplay between

genetic and environmental factors that contribute to epigenetic changes is chal-

lenging.

• Limited understanding of biomarkers: There is a limited understanding of the

specific biomarkers that are indicative of Alzheimer’s disease, making it difficult

to develop effective diagnostic tests.
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• Cost and complexity of targeted therapy: Targeted therapy is a complex and

costly approach, requiring significant funding and resources.

1.4 Objectives

Objectives of this work are:

• Construction of more biologically, statistically meaningful Alzheimer’s disease

gene network.

• Analysis of Alzheimer’s disease stage-wise gene networks:

– Identifying the genes whose communities got changed/disturbed during the

disease progression from one stage to the next stage.

– Dynamic network analysis of Alzheimer’s disease networks to identify the

genes which may play an important role in the disease progression.

1.5 Contributions

1.5.1 Construction of Alzheimer’s Disease Gene Network

Most often, t-test and correlation are used to identify significant genes at the initial

level. As the genes are differentially expressed, their classification power is generally

high. These genes might appear significant, but their degree of specificity towards the

disease might be low, leading to misleading interpretations. Similarly, there may be

many false correlations between the genes that can affect the identification of relevant

genes. We introduced a new framework, tcGONet, to reduce the false correlations and

find the potential bio-markers for the disease. The tcGONet framework concerned uses

the t-test, correlation, Gene Ontology (GO) categories, and machine learning techniques

to find bio-marker genes. The tcGONet framework detects Alzheimer-related genes in

every dataset considered. Some of the identified genes which are directly involved in

Alzheimer’s are APP, GRIN2B, and APLP2. The proposed framework also identifies

genes like ZNF621, RTF1, DCH1, and ERBB4, which may play an important role in

Alzheimer’s. Gene set enrichment analysis (GSEA) is also carried out to determine the

major GO categories: down-regulated and up-regulated. The work in this contribution

has been published in [4].
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1.5.2 Community analysis

Detecting communities/subnetworks in disease conditions or drug treatments can pro-

vide valuable insight into disease etiology or therapeutic responses. However, choosing

a suitable community discovery algorithm is important. Every algorithm has its own

pros and cons.

As a contribution to the thesis, we have proposed a new community discovery al-

gorithm, NBCD, which shows more stability in detecting better community structures

according to popular measures than the other state-of-the-art and newly published

algorithms. The NBCD algorithm is used to analyze the changes in the neighbour-

hood(community) of genes as the disease progresses. We have analyzed the top 20

genes according to the changes in their neighbourhood and interestingly, we identified

genes related to AD.

1.5.3 Disease Progression

Temporal network analysis has become a powerful tool for unveiling the network evo-

lution over time. In recent times, different centrality measures have been proposed to

measure the importance of nodes in different scenarios. However, there is no centrality

measure yet introduced to measure the importance of nodes in the network progression.

This work introduces a new centrality measure, transition centrality, to measure the

node’s importance in network evolution between two given time stamps.

Transition centrality can play an important role in the analysis of disease progres-

sion. In the past, many studies have been done to identify the potential genes related

to diseases. However, the stage-wise analysis of diseases is less explored. Identifying

the role of the gene in disease progression or the gene’s role in a particular stage of

the disease is not studied extensively. Believing that different genes are responsible for

different stages of disease progression, we evaluate the transition centrality measures on

three different temporal disease datasets; Alzheimer’s disease, Parkinson’s disease and

the Human breast cancer cell cycle. Using the transition centrality, we have identified

the stage-specific genes which may play a crucial role in the disease progression. The

identified genes’ specificity to a particular disease stage validates our findings.

9



1.6 Outline

1.5.4 Publications

The list of papers published during the Ph.D.:

1. Shailendra Sahu, Pankaj Singh Dholaniya, & Rani, T.S. Identifying the can-

didate genes using co-expression, GO, and machine learning techniques

for Alzheimer’s disease. Network Modeling Analysis in Health Informatics and

Bioinformatics 11, 10 (2022). DOI: 10.1007/s13721-021-00349-9.

2. Shailendra Sahu, T. Sobha Rani, A neighbour-similarity based commu-

nity discovery algorithm, Expert Systems with Applications, Volume 206, 2022,

117822. DOI: 10.1016/j.eswa.2022.117822.

1.6 Outline

Chapter 2 gives an overview of Alzheimer’s Disease. It explains the preliminary back-

ground required to understand the terms and techniques which are required to under-

stand the further chapters. The third chapter will present our proposed framework to

construct and analyse the disease networks. Chapter 4 will show our novel commu-

nity discovery algorithm(NBCD) and our findings related to Alzheimer’s disease using

NBCD. The fifth chapter presents the stage-wise analysis of the Alzheimer’s disease

network and our proposed centrality measure to rank the genes according to their in-

volvement in the network progression. Finally, Chapter 6 presents the conclusion of

the thesis.
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Chapter 2

Literature Survey

Neurological diseases are conditions that affect the central nervous system (CNS), which

includes the brain and the spinal cord. These diseases can result in conditions from

mild to severe and can affect a person’s ability to move, speak, and think. There are

several such diseases like Alzheimer’s, Parkinson’s, Multiple sclerosis and so on.

Most common neurological disease is Alzheimer’s disease, which is a type of demen-

tia that affects memory, thinking, and behavior. It is caused by the degeneration of

brain cells and is typically diagnosed in older people.

Another neurological disease is multiple sclerosis (MS), which is an autoimmune

disorder that affects the myelin sheath, a protective layer surrounding nerve fibers.

This damage can disrupt communication between the brain and the rest of the body,

leading to symptoms such as muscle weakness, numbness, and balance problems.

Parkinson’s disease is a progressive neurological disorder that affects the brain’s abil-

ity to control movement. It is caused by the loss of nerve cells that produce dopamine, a

neurotransmitter that helps coordinate muscle movement. Symptoms include tremors,

stiffness, and difficulty with balance and walking.

Stroke is a neurological disorder caused by a disruption of blood flow to the brain.

This can be caused by a blockage or bleeding in the brain and can lead to serious damage

or death. Symptoms include paralysis, loss of speech, and difficulty with memory and

cognition.

Epilepsy is a neurological disorder characterized by seizures, which are sudden,

uncontrolled electrical discharges in the brain. Seizures can range in severity and may

cause changes in behavior, consciousness, or body movements.
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2.1 Alzheimer’s Disease

Figure 2.1: Amyloid Plaques and Neurofibrillary Tangles. Source: http://www.

interet-general.info/article.php3?id_article=13241

There are many other neurological diseases, such as brain tumors, spinal cord in-

juries, and traumatic brain injuries, which can have significant impact on a person’s

physical and cognitive abilities. It is important to seek medical attention and follow a

treatment plan to manage and potentially improve symptoms of these diseases.

2.1 Alzheimer’s Disease

According to the National Institute of Aging, U.S., Alzheimer’s disease (AD) is a brain

disorder that gradually impairs thinking and memory abilities as well as the capacity

to complete even the most basic tasks. AD is the most typical cause of dementia in

older adults. The disease is named after Dr. Alois Alzheimer. Amyloid plaques and tau

tangles are considered as the primary cause of Alzheimer’s disease. During Alzheimer’s

disease, amyloid plaques, which are abnormal clumps of protein, and tau tangles, which

are tangled bundles of fibers, develop throughout the brain. The amyloid plaques build

between the neurons, and tau tangles build inside the neurons, which interrupts the

communication between neurons. Figure 2.1, shows the comparison between a normal

and Alzheimer’s brain in context of amyloid plaques and tau tangles. APOE is said to

be the most common gene associated with AD [1]. Apart from APOE, APP, PSEN1,

and PSEN2 are also observed as the cause of AD [5].
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2.2 Background

Initial manifestations of these damages can be observed in the entorhinal cortex

and hippocampus, two brain regions important for memory. Later, it has an impact on

the parts of the cerebral cortex that controls language, thought, and social interactions.

Eventually, brain’s many other regions suffer a harm. As AD progresses, the brain starts

shrinking. A person with Alzheimer’s disease gradually loses the ability to live and work

independently over time. However, the method by which the disease develops remains

unclear; all forms of Alzheimer’s appear to share overproduction and/or decreased

clearance of a type of protein called amyloid beta peptides.

2.2 Background

The study of genes, Gene Ontology, and pathways is important for understanding

the complex mechanisms behind genetic inheritance and the roles that genes play in

various biological processes. This knowledge can help researchers identify potential

genetic markers for diseases, develop new treatments, and improve our understanding

of the genetic basis of traits and disorders.

2.2.1 Gene

Gene is the basic unit of heredity passed from the parent to the child. Genes are made

up of sequences of DNA and are arranged, one after the other, at specific locations

on chromosomes in the nucleus of cells. They contain information for making specific

proteins that lead to the expression of a particular physical characteristic or trait, such

as hair color or eye color, or to a particular function in a cell [6].

2.2.2 Gene Ontology and Pathway

The Gene Ontology (GO) is a standardized vocabulary used to describe the functions

of genes and gene products in a consistent and systematic way. It consists of three

main categories: molecular function, cellular component, and biological process [7].

• Molecular function: This category describes the specific chemical or physical

activity of a gene product, such as enzyme activity or receptor binding.

• Cellular component: This category describes the location or structure within the

cell where a gene product is found, such as the cytoplasm or mitochondria.
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• Biological process: This category describes the broader physiological or devel-

opmental processes in which a gene product is involved, such as cell growth or

immune response.

A pathway is a series of biochemical reactions that are connected and interdepen-

dent, leading to the production of a specific product or the achievement of a specific

function. Pathways can be either metabolic (involved in the production and breakdown

of molecules) or signaling (involved in the transmission of information within cells or

between cells) [8].

2.2.3 Gene Expression Data

Gene expression data refers to the measurement of the levels of gene activity in a cell

or tissue at a specific time point. These measurements can be used to understand

the functional role of specific genes, how they are regulated, and how they respond

to different environmental conditions or treatments. Gene expression data is in table

form where rows represent the genes and columns represent the various samples such

as experimental conditions or tissue, and every cell in the table has a number which

characterizes the expression level of the particular gene in that particular sample. There

are several methods for measuring the gene expression data, including microarray-based

techniques, RNA-sequencing (RNA-seq), and quantitative polymerase chain reaction

(qPCR).

Pros:

• Gene expression data can provide valuable insights into the mechanisms under-

lying biological processes and diseases.

• Gene expression data can be used to classify tissues or cell types based on their

gene activity patterns.

• Gene expression data can help identify the functions of newly discovered genes.

Cons:

• Gene expression data may not accurately reflect the true levels of gene activity in

a cell or tissue due to technical limitations of the methods used to measure gene

expression.
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• Gene expression data may be influenced by environmental factors such as diet

and stress, which can confound the results.

• Gene expression data may be influenced by the genetic background of the organ-

ism being studied, which can limit the generalizability of the findings.

For any biological process, the microarray gene expression data offers a simultaneous

gene expression profile of thousands of genes. Among the thousands of genes, a few

important genes typically play a dominant role in the development of a disease. An

important area of bioinformatics research involves a computational method to identify

disease-related genes, as any classification scheme based on gene expression data faces

a significant bottleneck because, despite the small sample size, the feature space is

enormous, containing tens of thousands of genes[9, 10].

2.2.4 Differentially expressed genes

We can better understand the pathology of diseases and, eventually, treat them, by

examining the difference between the diseased and healthy states o the genes. Dif-

ferentially expressed genes (DEGs), which involve the identification of genes that are

differentially expressed in disease, is a major area of investigation. A gene is said to

be differentially expressed if there is a statistically significant difference or change in

expression levels between two experimental conditions. DEGs can be helpful in iden-

tifying potential biomarkers, therapeutic targets, and gene signatures for diagnostics

in pharmaceutical and clinical research. Even though specific gene expression changes

may not always result in biological activity, such information can still be combined with

other biological data in a high-throughput manner to produce integrated analyses, such

as mapping the disease’s target landscape[11, 12].

2.2.5 Gene Regulations

Gene up-regulation and down-regulation refer to the changes in the expression levels

of a particular gene.

• Up-regulation refers to the process by which a gene’s expression is increased,

resulting in an increased amount of the protein that the gene encodes. This can

occur naturally, or it can be induced by external factors such as stress, hormones,

or exposure to certain drugs.
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• Down-regulation, on the other hand, refers to the process by which a gene’s

expression is decreased, resulting in a reduced amount of the protein that the gene

encodes. This can occur naturally as part of a normal developmental process, or

it can be induced by external factors such as environmental toxins, drugs, or

disease.

The regulation of gene expression is a critical process that allows cells to adapt to

changing conditions and maintain proper function. Up-regulation and down-regulation

of genes are important mechanisms for controlling cellular processes and maintaining

homeostasis in the body.

In this work, statistically and biologically meaningful networks are constructed to

identify the genes that are responsible for disease onset and progression. Community

discovery discovery algorithm are used to detect the structure within the networks that

may not be directly available. Progression of the disease in dynamic networks is studied

through centrality measures. Sections 2.3, 2.4 and 2.5 provide the details about the

background for each of these proposals.

2.3 Network Construction

Networks, or graphs, can be a useful tool for analyzing diseases for a number of reasons.

One reason is that they can be used to represent the relationships between different

components of a system, such as the relationships between different genes or proteins

in a biological system, or the relationships between different individuals in a popula-

tion. This can help researchers understand how different components of the system are

connected and how they may influence each other.

Another reason why networks are useful for analyzing diseases is that they can be

used to identify patterns and trends that may not be apparent when looking at data in

other formats. For example, network analysis can be used to identify clusters of genes

or proteins that are highly connected and may be playing a key role in the disease.

It can also be used to identify important nodes or hubs in the network that may be

driving the disease process.

Use of networks and graph theory in disease analysis can help researchers better

understand the complex systems underlying diseases and identify potential targets for

intervention or treatment. There are several methods that can be used to construct
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networks for studying diseases:

• Literature-based networks: These networks are constructed by extracting infor-

mation about disease-associated genes, proteins, or other molecular entities from

the scientific literature. The nodes in the network represent the molecular enti-

ties, and edges are drawn between nodes that are mentioned in the same context

in the literature. For example in [13], Mallory et al. used 100000 full-text PLOS

articles to extract both protein–protein and transcription factor interactions. In

[14], Garand et al. identified the list of potential signature genes for the multi-

faceted disease using Acumenta Literature LabTM (LitLab). LitLab is an online

literature mining tool to extract the information about genes, pathways and other

biological functions related to user’s query. But there are several potential draw-

backs in using literature-based gene-gene networks:

– Limited coverage: Literature-based gene-gene networks are only as compre-

hensive as the published literature. If there is limited research on a particular

gene or interaction, it may not be represented in the network.

– Bias: The published literature is subject to various biases, such as publica-

tion bias, which means that certain types of studies or results are more likely

to be published. This can lead to a biased view of the gene-gene interactions.

– Incomplete information: Literature-based gene-gene networks are limited to

the information that is available in the published literature. This means

that they may not include all of the relevant information about a particular

gene or interaction.

– Inaccuracies: There may be errors or inconsistencies in the published liter-

ature, which can lead to inaccuracies in the gene-gene network.

– Complexity: Gene-gene networks can be complex and difficult to interpret,

especially for people without a strong background in biology or genetics.

• Data-driven networks: These networks are constructed from large datasets, such

as gene expression data or protein-protein interaction data. The nodes in the

network represent genes or proteins, and edges are drawn between nodes that

show correlated expression or physical interaction. Data-based gene networks
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are the widely used networks to identify the potential genes for disease, analyz-

ing disease progression and underlying process of biological functions and the

disease. Enormous research has been carried out based on the gene-expression

and protein interaction data. For example in [15], Lemoine et al. developed

a R package GWENA for constructing and analysing gene-expression networks.

In [16], Lau et al. investigates the changes in gene expression patterns during

Drosophila melanogaster embryogenesis. This study provides insight into the

complex changes in gene expression that occur during Drosophila melanogaster

embryogenesis and highlights the importance of studying gene expression over

time in understanding developmental processes. Despite the popularity of gene-

expression network, there are many challenges associated with the gene-expression

data. In [17], Burns et al. performed experiments on 475 datasets and concludes

that up to 97% of edges in the gene-expression network can be false or incorrect.

Below are few challenges which make it difficult to construct and analyze the

data-based gene networks:

– Limited sample size: Data-driven approaches often rely on large amounts of

data to identify patterns and relationships. However, this can be a problem

when dealing with gene expression or protein interaction data, as the number

of samples available for analysis may be limited. This can lead to unreliable

or biased results, as the sample may not accurately represent the larger

population.

– Complexity of data: Gene expression and protein interaction data can be

extremely complex and multi-dimensional, making it difficult to accurately

analyze and interpret the results. This can lead to errors or misunderstand-

ings of the data, which can have significant consequences for downstream

applications such as drug development or disease diagnosis.

– Dependence on data quality: The quality of the data collected is critical to

the accuracy and reliability of data-driven approaches. If the data is con-

taminated or poorly collected, it can lead to misleading or incorrect results.

• Hybrid networks: These networks combine information from the literature with

data-driven approaches. For example, a hybrid network might include edges

between genes that are supported by both literature evidence and data-driven
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evidence. Many researchers have integrated different biological networks into one

gene-gene interaction network. For example, in [18, 19, 20], authors integrated the

gene co-expression and protein-protein interaction networks in order to construct

a more meaningful gene network. However, there are some challenges associated

with the integration of different networks such as:

– Complexity: Hybrid gene networks can be complex, with many different

types of genetic elements interacting in intricate ways. This complexity can

make it difficult to understand and predict the behavior of the network.

– Robustness: Hybrid gene networks may be less robust to perturbations or

changes in the environment compared to simpler regulatory systems. For

example, a change in the expression level of a single transcription factor could

have downstream effects on the expression of many genes in the network.

– Dynamics: The dynamic behavior of hybrid gene networks can be difficult to

predict, as the interactions between different genetic elements can produce

nonlinear or non-intuitive outcomes.

• Clinical networks: These networks are constructed from clinical data, such as

patient records or electronic health records. The nodes in the network represent

patients, and edges are drawn between patients who share certain characteristics,

such as a diagnosis or a treatment. Some major drawbacks of clinical networks

are:

– Cost: Participating in a clinical network often requires a financial invest-

ment, which may be a burden for smaller practices or organizations.

– Time commitment: Participating in a clinical network requires a time com-

mitment, as members must attend meetings, participate in conference calls,

and complete required training.

– Loss of autonomy: Joining a clinical network may require member organi-

zations to cede some control and decision-making authority to the network.

– Complexity: Clinical networks can be complex organizations, with multiple

levels of governance and decision-making. This can make it difficult for

members to navigate and understand the inner workings of the network.
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– Limited reach: Clinical networks may only cover a limited geographic area,

which can limit their effectiveness for organizations or patients located out-

side of the network’s coverage area.

2.4 Community Discovery

Community discovery, refers to the process of identifying groups or clusters of nodes

that are densely interconnected within the group, but less connected to nodes outside

of the group in a network. This process is often used to identify patterns or structures

within the network that may not be immediately apparent.

In the context of disease gene networks, community discovery can be helpful in

identifying groups of genes that are closely related to a particular disease. For example,

if a group of genes is found to be highly interconnected within the network, and these

genes are also known to be associated with a particular disease, this could suggest that

these genes play a central role in the development or progression of the disease.

Community discovery can also be useful in identifying potential therapeutic targets

for a disease. For example, if a particular group of genes is found to be important in the

disease process, targeting these genes with drugs or other therapies may be a potential

way to treat or prevent the disease from originating or progressing.

Overall, community discovery can be a valuable tool for understanding the under-

lying mechanisms of a disease and identifying potential therapeutic approaches. Some

of the state-of-the-art community discovery algorithms are as follows:

• Walktrap: It is a community discovery algorithm based on the random walks[21].

One potential drawback of this algorithm is that it may not always produce

high-quality communities as its performance strongly depends on the degree dis-

tribution of the network [22].

• Infomap: This algorithm uses the principle of information theory to partition

a network into communities[23]. Infomap accurately uncovers the communities

that are strongly connected internally, but fails to do so for loosely connected

communities [24].

• Modularity maximization: Algorithms based on the modularity maximization like

Greedy modularity [25] and Louvain [26] aims to partition a network into commu-
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nities such that the modularity of identified community structure is maximum.

One major drawback of this algorithm is that it is sensitive to the resolution limit,

which means that it may not be able to identify smaller communities within larger

ones [27].

• Label Propagation Algorithm (LPA): This algorithm is based on the idea of prop-

agating labels through a network in order to identify communities[28]. It is a fast

and efficient community detection algorithm. A major drawback of LPA is the

randomness in grouping nodes that leads to instability and the formation of large

communities.

In summary, every community discovery algorithms has its own strengths and weak-

nesses and is well-suited for certain types of networks and use cases.

2.5 Centrality Measures

Centrality measure is a statistical method used to determine the importance or influence

of a particular node or vertex in a network. It helps to identify the most influential

nodes within a network, which may be used to understand the structure and dynamics

of the network.

There are several types of centrality measures, including:

• Degree centrality [29]: This measure calculates the number of connections a node

has in the network. Nodes with a high degree centrality are considered highly

connected and influential. The main drawback of degree-based centrality is that

it only provides local information about a network vertex.

• Betweenness centrality [30]: This measure calculates the number of times a node

acts as a bridge or connector between other nodes in the network. Nodes with

high betweenness centrality are considered important for information flow in the

network. One of the major limitation of this measure can be that it is computa-

tionally expensive to calculate and it may not be appropriate when there are a

number of parallel edges between nodes.

• Closeness centrality [31]: This measure calculates the average distance between a

node and all other nodes in the network. Nodes with high closeness centrality are
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considered well-connected and able to reach other nodes quickly. This measure

cannot be used for disconnected networks.

• Eigenvector centrality [32]: This measure calculates the influence of a node based

on the influence of the nodes it is connected to. Nodes with high eigenvector

centrality are considered influential due to the influence of their connections.

No centrality measure is best or worst. They all are application specific. The nodes

which are important/central according to one centrality measure are often not that

important according to another centrality measure.
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Chapter 3

Identifying the Candidate Genes

using tcGONet Framework for

Alzheimer’s Disease

Gene-Gene interaction networks can be used to understand the underlying process that

are responsible for the these interactions. Construction of such networks itself is not a

trivial task, since specious things could lead to different interpretations. In this chapter,

a framework tcGONet, is proposed to construct a statically and biologically meaningful

disease networks.

3.1 Literature Survey

Alzheimer’s disease is a neurological disorder that affects an individual’s memory, motor

functions, behaviour, and thought process. It has been observed that the hippocampus

is the first region that gets affected by Alzheimer’s. Hence a study of the hippocampus

region may identify genes responsible for the occurrence of the disease. This can be the

early stage of the disease.

Various studies have been carried out to identify the genes which are differentially

expressed in the AD affected brains [5, 33]. T-test, gene correlation networks are the

most common statistical techniques used to identify the significant genes. The t-test is

used to test the significant difference in gene expression levels [34]. For example, in [35],

Zhu and Yang et al. used the rejection region of the t-test to identify the candidate
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3.1 Literature Survey

genes for AD. In [33], Sumanta Ray et al. analyzed the preservation patterns of gene

co-expression networks during Alzheimer’s disease progression. However, the t-test only

gives the significant difference in the mean expression values of genes between control

and disease sets, which is not enough to determine the significant influence of genes

on the disease. There could be many other reasons apart from the disease, which can

result in a change in the expression value of a particular gene.

A gene correlation network, also known as a gene co-expression network, is a com-

putational method used to analyze the relationships between genes based on their

expression patterns. The network is constructed by measuring the levels of gene ex-

pression across a large number of samples or tissues and then calculating the correlation

between the expression patterns of pairs of genes. Genes that have highly correlated

expression patterns are considered to be functionally related and are often involved in

the same biological processes or pathways.

The gene correlation network can be visualized as a graph, where each gene is rep-

resented by a node and the edges between the nodes represent the correlation between

the expression patterns of the corresponding genes. By analyzing the structure of the

gene correlation network, researchers can identify groups or modules of genes that are

co-expressed and may have related functions. This approach has been widely used to

study the genetic basis of various diseases and traits, as well as to identify potential

drug targets and biomarkers.

Rui-ting et al. [36] constructed a co-expression network using WGNCA and ana-

lyzed their clinical features. As a result, they identified four genes(ENO2, ELAVL4,

SNAP91, and NEFM) said to be associated with AD. In [37], Xia J et al. constructed

the co-expression network using the method proposed by Ruan and Zhang [38]. Then

they ranked the genes based on a new topological overlap formula, a modified version of

the formula described in [39, 40]. The main concern with constructing a co-expression

network using this method is that it depends on the user-defined value α. Different

values of α result in a different number of edges. This means every gene in the co-

expression network is connected to its top α co-expressed genes. It may impact the

removal of positive edges. Like the t-test, the correlation between two genes is not

enough to tell that two correlated genes interact with each other. There may be many

false correlations.

As the gene expression datasets are vast, various machine learning techniques are
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3.1 Literature Survey

used along with the other statistical methods. Takahiro Koiwa et al. and K. Nishi-

waki et al. [41, 42] used the random forest to identify the AD-related genes. In [43],

AL-Dlaeen et al. used a decision tree classifier to predict the AD. There are many

other algorithms, such as the K-means clustering algorithm, Principal component anal-

ysis(PCA), ant colony algorithm (ACO), independent component analysis algorithm

(ICA), the angle cosine distance algorithm and Chebyshev inequality algorithm (ACD),

which produce less efficient and unstable results [35]. In [44], Sharma et al. combined

two feature selection techniques, LASSO and Random forest, for gene selection and

achieved a high classification accuracy. In [45], Ramya et al. used the t-test, Signal to

noise ratio and f-test for the initial selection of genes and then selected genes were used

in a modified particle swarm optimization algorithm to obtain further refined genes.

Cheng et al. [46] observed that the machine learning model’s average classification

accuracy is higher than that of conventional methods. Apart from this, the authors

also observed that machine learning approaches could also recognize oxidative phospho-

rylation genes in the Alzheimer’s pathway. In [47], Saputra et al. compared different

decision trees with particle swarm optimization as feature selection methods and ob-

served that the random forest gives the best accuracy. Kuang et al.([48]) compared

the performance of three machine learning algorithms, artificial neural network(ANN),

decision tree and logistic regression models, to predict the AD. They found that ANN

worked better than the other two models and observed that the age, daily routine,

urine neuronal thread protein associated with AD, smoking, alcohol intake and sex are

the crucial factors.

Almost every feature selection technique is applied on differentially expressed genes,

i.e. genes obtained after the t-test. As the genes are differentially expressed, their classi-

fication power is generally high. These genes might appear significant, but their degree

of specificity towards the disease might be low, leading to misleading interpretations.

Some genes are expressed in basic cellular pathways and possess a higher probability

of being differentially expressed across several biological conditions [49]. Nevertheless,

as AD’s causes probably include genetic, environmental, and lifestyle factors, differ-

ent genes are identified as important in different AD datasets. Due to these various

factors involved in AD, statistical methods and machine learning techniques alone are

inadequate.
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3.2 Dataset

3.2 Dataset

The gene expression datasets GSE48350, GSE5281 and GSE28146, are downloaded

from Gene Expression Omnibus (GEO), NCBI. The datasets GSE483501(Dataset 1)

and GSE52812(Dataset 2) contain gene expression data of control and Alzheimer’s

disease patients. The dataset GSE281463(Dataset 3) contains microarray data of the

hippocampal gray matter. The GSE48350 and GSE5281 datasets contain samples from

different brain regions. We took only Hippocampus data for analysis as it is said to be

affected first in Alzheimer’s disease [3]. Table 3.1 describes the data.

Table 3.1: Dataset description

Datasets Control AD

GSE48350(Dataset 1) 25 19

GSE5281(Dataset 2) 13 10

GSE28146 (Dataset 3) 8 22

3.3 tcGONet

In this chapter, a new framework tcGONet, in addition to t-test and correlation net-

work, GO-similarity matrix, and feature selection for filtering genes of less interest is

proposed. Figure 3.1 shows the tcGONet, in particular for Alzheimer’s disease.

Initially, differentially expressed genes are identified using the t-test. Then the

identified genes are used to create two separate correlation networks for a disease and

control sets using Pearson’s correlation. There may be many false correlations, so

a GO similarity matrix is introduced to reduce the false correlations. GO matrix

consists of the number of similar GO terms between every pair of genes. Then the

GO similarity matrix is used to eliminate edges in the correlation networks that do not

fall under the pre-defined criteria. The resultant correlation networks are then used for

further analysis. Genes present in the control correlation network but not in the disease

correlation network and vice-versa are selected as the genes of interest. A separate Gene

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48350
2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5281
3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28146
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3.3 tcGONet

Set Enrichment Analysis(GSEA) has been carried out for selected genes to identify the

affected GO categories. The feature selection algorithm is now applied to the selected

genes to determine the most important genes from the important ones. This framework

is generic and can be used for the construction and identification of important genes

responsible for disease onset and progression. As a case study, Alzheimer’s disease is

chosen to verify the usability of this framework in identifying the important genes. All

the components of the tcGONet are explained in detail in the following sections.
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3.3 tcGONet

Figure 3.1: tpGONet framework for network construction and gene selection.
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3.3 tcGONet

3.3.1 T-test

T-test is a statistical test that is used to determine whether there is a significant

difference between the means of two groups. It is commonly used to compare the

means of two independent samples, or to compare the means of two related samples

(e.g. a pretest and a posttest).

The mathematical formula for a t-test is:

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

where x̄1 is the mean of group 1, x̄2 is the mean of group 2, s1 is the standard

deviation of group 1, s2 is the standard deviation of group 2, and n1 and n2 are the

sample sizes of group 1 and group 2, respectively.

A t-test was performed on all the datasets, i.e., GSE48350, GSE5281 and GSE28146,

to find the significant difference in the expression values of genes in control and AD pa-

tients using GEO2R analysis tool[NCBI]. p.value ≤ 0.05 and fold count, |logFC| ≥ 0.8

are used as the threshold values to filter out the edges. These are standard values

used in the literature [50]. As many genes have different probe ids, we took the av-

erage expression and fold count values. 696, 7222 and 1893 differentially expressed

genes(DEGs) are obtained from dataset 1, dataset 2 and dataset 3, respectively.

3.3.2 Gene Co-Expression Network

Correlation is a measure of the relationship between two variables. It tells us how

closely two variables are related, and the strength and direction of that relationship.

There are several types of correlation, but Pearson’s correlation is one of the most

commonly used.

Pearson’s correlation coefficient (also known as Pearson’s r) is a measure of the

strength and direction of a linear relationship between two variables. It is calculated

using the following formula:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

where xi and yi are the values of x and y variables in ith sample, x̄ and ȳ are the

means of x and y variables.
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3.3 tcGONet

The value of Pearson’s r ranges from -1 to 1. A value of -1 indicates a strong

negative relationship, a value of 1 indicates a strong positive relationship, and a value

of 0 indicates no relationship.

Pearson’s correlation is used to calculate the correlation between each pair of genes

after performing the t-test. ±0.8 is taken as the threshold value as it is interpreted as

strong/high correlation [51, 52]. Akoglu and Mukaka have pointed out that a correlation

value of 0.7 to 0.9 indicates a high positive correlation and 0.9 as a very high positive

correlation. Hence a value of 0.8 is chosen as the threshold. All the correlation values

which are greater than or equal to |0.8| are considered as 1, and the rest of the values

are considered as 0. The resultant adjacency matrix is used to create the gene co-

expression matrix. Two separate networks for control and AD are constructed using

the binarized Pearson correlation values as edges.

3.3.3 GO Similarity Matrix

Gene ontology (GO) [53] has become an accepted norm to evaluate the practical connec-

tions among gene products. GO is a scientific classification of biological terms identified

using the properties of genes or their products. There are three GO categories: biolog-

ical process, cellular component and molecular function. Two proteins engaged in the

same biological process are bound to interact than proteins engaged with various bio-

logical processes [54]. Besides, two proteins need to come into close contact (essentially

momentarily) to communicate; subsequently, co-localization can likewise be utilized to

anticipate protein-protein interactions. Hence, the tcGONet uses GO categories for

measuring the strength of the connection between genes in the correlation network.

GO similarity matrix consists of the GO similarity score between a pair of genes.

Go similarity score is calculated as the number of common GO terms between two

genes. For example, if Gene1 has 5 GO terms GO1, GO2, GO3, GO4 and GO5, and

Gene2 has 4 GO terms GO1, GO3, GO5, and GO6. There are three common GO

terms between the genes Gene1 and Gene2, which are GO1, GO2, and GO5. Hence the

GO similarity score(GO(Gene1,Gene2)) between Gene1 and Gene2 is 3. GO categories of

the differentially expressed genes (DEGs) identified by the t-test are used to construct

the GO similarity matrix. The GO categories of all the DEGs are downloaded from

DAVID (The Database for Annotation, Visualization, and Integrated Discovery) [55].

In the first dataset (GSE48350), out of 696 DEGs, 646 DEGs have known GO terms,
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3.3 tcGONet

and in the second dataset (GSE5281), out of 7222 DEGs, 6377 DEGs have known GO

terms. In dataset 3 (GSE28146), out of 1893 DEGs, 1210 DEGs have known GO terms.

All the three GO categories, i.e., Biological Process (BP), Molecular Function (MF)

and Cellular Component (CC) are considered for the construction of the GO similarity

matrix. Gene similarity matrix consists of the GO similarity score between all pairs of

genes, shown in Fig. 3.2.



Gene1 Gene2 ..... GeneN

Gene1 0 GO(1,2) ..... GO(1,N)

Gene2 GO(2,1) 0 ..... GO(2,N)

. . . ..... .

. . . ..... .

. . . ..... .

GeneN GO(N,1) GO(N,2) ..... 0


Figure 3.2: GO Similarity Matrix

This GO similarity matrix is used to create the GO network. In order to deter-

mine the cut-off score for the GO similarity score, 4000 genes(except the genes consid-

ered in the experiment) having nearly 11000 edges that are experimentally proven are

taken[DAVID]. The GO similarities between the genes having experimentally proven in-

teractions are analyzed. Average number of similar GO terms between two genes(having

experimentally proven edges (interactions)) is 3.14. Hence the ceiling value 4 is taken

as the threshold value. All the edges whose weight (GO similarity score) is less than

four are deleted. An edge between two genes is to be considered if they have at least

four common GO terms.

3.3.4 Common Genes and Edges Between GO and Correlation Net-

works

A combined network is constructed to take care of the false correlations by mapping

gene correlation networks (Control and AD) to the GO network. As genes sharing more

GO terms will tend to have a high biological association, combining the correlation

and GO network helps to eliminate the edges with less biological significance [54, 56].

A combined AD network is constructed using the common edges between the AD

correlation network and the GO network. A similar combined network is constructed

for the control network using the control correlation network and GO network. Table 3.2
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3.3 tcGONet

shows the count of edges in the correlation network and GO network. Table 3.3 shows

the network description of combine networks constructed using GO and correlation

networks.

Table 3.2: Edge description of correlation and GO networks.

Dataset

Edges

Correlation N/W
GO N/W

Control AD

GSE48350 16441 22814 6740

GSE5281 403894 364752 767620

GSE28146 52128 508 43803

Table 3.3: Network description of combined networks.

Dataset
Combined Control Network Combined AD Network

Nodes Edges Nodes Edges

GSE48350 240 673 219 774

GSE5281 2487 20486 3138 15499

GSE28146 589 989 12 7

3.3.5 Gene Set Enrichment Analysis(GSEA)

For the biological validation of constructed combined networks that are constructed,

we performed the gene set enrichment analysis. The gene set enrichment analy-

sis of AD and control networks is performed using GSEA 4.0 application, which

can be downloaded from http://software.broadinstitute.org/gsea [57]. The

all GENE ONTOLOGY database is used for this analysis. The GSEA analysis provides

us the information about the biological functions which may got affected in AD.

Tables 3.4 and 3.5 list the common GO terms of dataset 1 and dataset 2 which got

down-regulated and up-regulated in the control and AD networks, respectively. All GO

terms related to dataset 3 are provided in supplementary data.
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3.4 Comparison with other works

3.3.6 Analysis of Networks

All the genes in the combined networks may be important regarding Alzheimer’s dis-

ease, but, generally, a gene of interest functions differently in normal and AD affected

persons. Hence, for further analysis, we have not considered the genes common to both

AD and control networks. We only choose those genes that are only present in either

AD or control network, i.e. genes that are present in AD network but not in control

network and vice-versa. Hence, both AD and control common networks are analyzed

and culled the genes present in the AD network but not in the control network (AD-

CTRL) and vice-versa. As a result, 79 such genes are identified in dataset 1, 1107 genes

in dataset 2 and 1 gene in dataset 3. Similarly, genes which are present in the control

network but not in the AD network are identified. They are 100, 456 and 584 genes in

dataset 1, dataset 2 and dataset 3 are respectively. Genes common to both networks

are 140, 2031 and 11 in each of the datasets. Fig. 3.3 shows the Venn diagram of

different pools in every dataset.

(a) GSE48350

AD Control

14079 100

(b) GSE5281

AD Control

20311107 456

(c) GSE28146

AD Control

111 584

Figure 3.3: Venn diagram analysis of gene in control and AD networks

To further shortlist the genes, feature selection using correlation-based feature sub-

set selection for machine learning algorithms [58] is performed. After performing feature

selection, we have obtained 13 genes out of 179 genes (79 + 100, Fig.3.3a) in dataset 1

(GSE48350), 101 genes out of 1563 (1107 + 456, Fig.3.3b) genes, and 54 genes out of

585 (1 + 584, Fig.3.3c) genes, in dataset 2 (GSE5281) as the top ranking genes.

3.4 Comparison with other works

For the comparison purpose, we have considered two recently published frameworks:

the first is based on Lasso and random forest (LASSO & RF)[44], and the second is

based on t-test, genetic algorithm, and a modified particle swarm optimization algo-
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3.4 Comparison with other works

rithm (MPSO)[45]. For a fair comparison, if the number of genes obtained by the

frameworks is more than 20, we chose only the top 20 genes for the comparison us-

ing CorrelationAttributeEval feature selection algorithm in WEKA which ranks the

attributes based on their correlation with the class. Table 3.6 shows the top genes

obtained from the different frameworks for different datasets. Table 3.7, 3.8 and 3.9

list all the identified genes in dataset 1, dataset 2 and dataset 3 respectively. Genes

selected for dataset 3 are provided in supplementary data.

Table 3.6: Different genes selected by the proposed algorithm, Lasso and MPSO.

FrameworkDataset1 Dataset2 Dataset3

tpGONet ATP2B3, FGF12,

MDFIC, NSG1, TAC1,

ZNF621, BTK, CD44,

CD5, DACH1, ERBB4,

RTF1, TAB3

ABI2, ELAVL3,

AP2A2, CEP97,

ADGRB3, SRRM2,

AGFG1, SEC22C,

EAPP, AKAP13,

TNRC6B, ARHGAP21,

CHMP2A, BICD1,

FAM120A, COPG1,

YTHDC1, INTS3,

ERC1, BRD9

ARL8B, PMAIP1,

THRB, BHLHE40,

ZNF711, BNIP3, DIS3,

ZMYM2, HNRNPA0,

MAPKAPK2, KPNA6,

KBTBD7, MAP2K6,

AHNAK, CD44, IL1R1,

LRP8, NCOA2, CDH5,

ZBTB17

Lasso

and

Random

Forest

ANKIB1, FBRSL1,

LOC101927151, RAE1,

RTF1, SLC25A46,

ZNF621

ARHGAP5,

CDK5RAP2,

CKMT1A, CKMT1B,

DUSP8, FAM120A,

FAM168A, FAM63A,

KTN1, LOC101927562,

OSBPL1A, PEBP1,

RHOB, TESK1,

ZNF532

BNIP3, CD44, HPS3,

MCCC1, NSUN6,

ST6GALNAC5

MPSO ZNF621,

LOC101927151,

SLC25A46, ANKIB1,

RAE1, RTF1

ANKRD12, ELAVL3,

ERC1, GPR155, KTN1,

NAV1

IL13RA1, DEFB125,

RFX4, CXorf38, JAM3,

ZFP41, TGFB1I1, TTL

Table 3.7: Genes identified in Dataset 1 (GSE48350)

Gene.symbol P.Value logFC

ATP2B3 0.000131 -0.9364480

BTK* 1.05e-05 -0.8254824

CD44* 0.000118 1.04783081

CD5 0.00123 0.87985092

DACH1 2.8e-05 0.94417236

ERBB4* 0.00074 0.82142565

FGF12 0.00134 -1.1104277

MDFIC 0.000417 0.8739675

NSG1* 0.001075 -1.05723075

TAB3 0.00173 1.00097339

RTF1 1.46e-17 -1.7616841

TAC1* 0.0139 1.32196006

ZNF621 2.32e-24 2.96528119

*Identified in literature.
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3.4 Comparison with other works

Table 3.8: Genes identified in Dataset 2 (GSE5281)

Gene.symbol P.Value logFC Gene.symbol P.Value logFC

ABI2 0.0067832 0.961026636667 INTS3 2.79E-06 -1.37560425

ACBD5 1.25E-06 2.3668954 IPO7 0.000274 0.85463051

ACO1 0.000295 -0.98042327 JPH3 0.000359 2.11788507

AGFG1 9.36E-06 2.19387208 KDM5A 0.00524225 1.9725445

ACTR1B 0.000606 -0.97274028 KIF1A 2.31E-05 1.27250433

ACVR1B 0.000422 1.39831289 KTN1 4E-10 2.34921503

ADAM22 0.0216053333333 0.53768401 L1CAM 4.46E-07 1.83246955

ADAM23 4.08E-06 -1.73163989 LAMP1 0.0038554085 -1.73519342

ADCY2 2.95E-05 1.31786542 MAGI2 3.35E-08 3.020489

AKAP13 0.00647204185714 1.04407532714 MAP6 6.54E-07 1.89564215

AKAP8L 0.000989 1.87231609 MARK3 0.0001442 -0.04287374

ANK3 0.000124 2.44887394 MIB1 3.95E-09 2.14433497

AP2A2 0.000291433333333 -1.11659461 MORF4L2 0.001740079 2.404579215

AP3D1 0.00770605 1.39260274 MRPS5 0.000319606666667 2.40202342333

ADGRB3 6.93E-07 2.46317656 NAP1L4 2.12E-05 -1.09098646

ANKRD11 0.00421 1.24675 NEUROD1 4.28E-05 1.56594988

ARHGAP21 4.55E-08 2.64329836 CBX3 0.00117 2.43672

BBX 0.003446645924 1.888399814 NR2F2///NR2F1 5.13E-05 1.37623146

BICD1 7.65E-07 1.88214093 NSL1 0.014850297 1.450132955

BNIP3L 0.000345 0.94418923 NUCKS1 2.05365E-06 0.11134135

BRD9 4.94E-06 -1.80179381 PNISR 0.000345876666667 1.60721201

C12orf10 0.00169 -0.82914204 PRKAB2 0.0002555 1.431380315

PTBP3 4.61E-05 1.91441374

CAMSAP2 0.00028575 0.050696345 PTP4A1 0.005201145 0.24193515

CAPRIN2 4.8E-06 -1.48271188 PTPRJ 4.73E-06 -1.34847657

CBL 1.29E-06 1.32748593 REV3L 1.08E-06 1.33991121

CEP97 0.00550010933333 1.99005593 RFK 4.39E-05 1.1322082

CHMP2A 5.25E-05 -1.91874975 KDELR2 3.08E-05 -1.07980691

CLN8 6.19E-06 1.24748557 SEC22C 9.851395E-05 1.871307925

COPG1 3.09E-08 -2.10125131 SLC25A36 0.010800795 1.20768185

CORO1C 1.01E-05 -1.35341065 SLC8A1 8.59E-08 1.66146541

CTSC 0.005502715 1.421647035 SRRM2 0.0028989782 2.03190842

DGKG 1.35E-05 2.67416378 STOML2 6.49E-08 -2.13214491

EAPP 1.16E-08 -1.71677758 SUZ12P1///SUZ12 0.000103 0.8732712

EIF5B 0.00467275 1.32003578667 TBL1XR1 1.155237E-07 -0.45937598

ELAVL3 1.33E-10 2.89606404 TNPO2 9.1E-07 1.7570126

ELMO1 3.08E-06 -2.49796439 TNRC6B 2.17015266667E-05 1.56078730333

ERC1 4.31E-10 2.47720499 TRIM23 1.72E-05 1.39388483

ERCC3 2.21E-06 -1.46854842 MNT 5.07E-05 1.43479172

MICAL1 0.0234 1.22246841 PABPC3 3.48E-06 1.14393254

ESF1 0.009050321 1.38541814 UNKL 3.21E-05 1.08877527

FAM120A 0.000426554166667 1.51672673333 USP10 0.000656245 1.216217585

UHMK1 1.07E-06 1.8235725 WDR82 6.58E-06 3.907264

ZNF532 1.66E-09 -2.46526681 YTHDC1 0.00066 1.7781

GALNT1 0.00010224 1.28699208 ZBTB1 0.00018795 2.059890885

GLG1 9.93E-09 1.55542645 ZMAT3 9.7E-06 1.33505671

GOLGA2 0.00525002385 1.82953746 ZNF148 0.000365265 1.22672275

GRIN2B 0.0004368415 1.678765335 ZNF264 4.16E-06 1.46456226

GRK3 1.63E-09 2.31565161 ZNF652 0.0006725 1.62317446

HSPH1 5.07E-06 1.55584984 ZNF770 7.36E-05 1.06839715

INO80D 0.0056500398 0.291794275 MPRIP 2.1775E-05 -2.412150
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Table 3.9: Genes identified in Dataset 3 (GSE28146)

Gene P.Value logFC Gene P.Value logFC

AHNAK 0.00262204 0.98198608 MAP2K6 0.01595241 0.87513261

ARID2 0.00729477 1.10568321 MAPKAPK2 0.03803999 0.99704209

ARL8B 0.00339015 -1.06449196 MMP25 0.00227936 1.63779073

BABAM1 0.01135208 -1.23711096 NCOA2 0.03326324 1.18257032

BHLHE40 0.00038624 1.28253737 NR2F2 0.01002185 -1.17016344

BNIP1 0.00758357 -1.43055366 PHLDB2 0.01342753 1.61673762

BNIP3 0.00434216 -0.9784713 PMAIP1 0.00032392 2.12952376

BOK 0.00031164 1.62960415 PRDM9 0.01930253 1.59091908

CD44 0.00192801 1.22502707 PRMT2 0.01439603 -1.2391834

CD44 0.0060737 1.48449061 PTBP1 0.0091615 1.04351217

CDH5 0.00999381 0.94147819 RBL2 0.01267011 1.13216523

CHRNA3 0.01426888 -1.10012937 RBM15B 0.00410289 1.01976731

CITED2 0.0007325 -1.17412862 RC3H2 0.00068678 -0.81815358

CLN6 0.01049238 -1.48885166 REV1 0.02505561 -0.98487729

CYBB 0.00043958 2.09599291 RHOT1 0.00983653 -2.06345313

DIO2 0.01657926 -1.08859571 SELPLG 0.00102717 1.75407251

DIS3 0.03408111 0.86868341 SIRPB1 0.01981797 -1.41708899

FGD6 0.01946995 -1.41193122 SORBS1 0.00527204 0.83808703

GFM1 0.01715968 -1.08458122 STEAP4 0.03592597 -0.8679121

GLI3 0.00561154 -1.13185341 SYNGAP1 0.0178071 -1.05676322

GRIA4 0.03489461 -1.07582032 THRB 0.00547597 -0.98552353

HNRNPA0 0.01948719 -0.84039497 TMEM88 0.00293001 -1.7443467

IL1R1 0.00519789 1.35390824 TYMS 0.00662579 1.86512571

IRAK3 0.00155661 2.15419575 ZBTB17 0.00436392 -1.10062518

KBTBD7 0.00198938 -1.36386637 ZMYM2 0.003935 -1.66437016

KPNA6 0.00782112 -1.44454199 ZNF174 0.01271933 -1.28963757

ZNF711 0.00172779 -1.16541981

LRP8 0.03749307 -1.11916343 ZNF91 0.01719465 -1.19189899

As observed from Table 3.6, the significant genes obtained by all frameworks are

almost different for all the datasets. This does not provide us with any inference. There-

fore, we compared the degree of specificity of genes obtained by the tcGONet, LAASO

& RF and MPSO, towards Alzheimer’s disease. We checked the direct interactions of

38



3.5 Results

the genes obtained with the AD pathway genes using the STRING database. We did

not find any common pattern in the number of interactions, making it difficult to draw

any conclusion. We further used DAVID1 to obtain the diseases in which the genes are

involved after feature selection which did not yield significant results as the number of

genes is less, and some are not characterized. It is well known that interacting proteins

regulate the function of a protein [59]. So retrieving the interacting partners and the

associated diseases can give us a deeper insight into the genes obtained from our frame-

work. HIPPIE2 is used to fetch the high confidence primary interacting proteins of the

genes obtained from our analysis. The primary interacting genes are then subjected to

DAVID analysis to obtain the corresponding diseases.

It is observed that in dataset 1 and dataset 2, primary interactions of the genes

obtained by the tcGONet are directly associated with Alzheimer’s disease with high

significance. In contrast, the interacting partners of genes obtained from other algo-

rithms are not at all related to any neurological disorders. Although in dataset 3,

genes obtained from the tcGONet, LASSO & RF and MPSO framework have inter-

acting partners associated with Alzheimer’s disease. However, it is interesting to note

that the significance and count of genes associated with AD in the tcGONet are quite

high compared to the LASSO & RF and MPSO framework. The supplementary data

provides the table of all the diseases related to the genes, the gene count, and their

corresponding p-values.

3.5 Results

Using the framework introduced, we are able to identify genes in all datasets that are

directly or indirectly related to AD with a high classification power. Table 3.7 and 3.8

list the genes identified. The link between the identified genes and the AD pathway

genes is analyzed to find out the importance of the identified genes in this work. As a

result, it is found that most genes have either direct or one-hop interaction with the AD

pathway genes. Table 3.10 shows some direct interactions between top genes of dataset

1 and AD pathway genes. As the top genes in both datasets are different, we tried

to determine the relationship between both datasets’ top genes. STRING database1 is

1https://david.ncifcrf.gov/
2http://cbdm-01.zdv.uni-mainz.de/ mschaefer/hippie/
1https://string-db.org/
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used to find interactions between the genes, only interactions that are experimentally

proven are from the curated database with at least medium confidence value 0.4(as

mentioned in STRING database) are considered. All the top genes of dataset 1 have

either direct or one-hop connections with at least one top gene of dataset 2 (a few of

the interactions are shown in Table 3.11). We also checked the GO similarity between

the top genes of both datasets and the GO similarity of top genes with the AD pathway

genes to find the similarity between them. Also checked the primary interactions of the

identified genes and found them related to AD with high significance compared to the

genes identified by other considered frameworks. All the interactions, GO similarity,

disease-associated and primary interactions files can be found in the “Supplementary

Data”.

Table 3.10: STRING interactions between top genes of dataset 1 and AD pathway

genes.

Top Genes of Dataset 1 AD Pathway Genes STRING Interaction Score

ATP2B3 CALM1 0.69

BTK FAS 0.935

ERBB4 PSEN1 0.9

FGF12 CALM1 0.96

TAB3 TNF 0.902

TAC1 APP 0.9

In dataset 1, out of 13 genes identified, 5 (BTK, CD44, ERBB4, NSG1, and TAC1)

are found to be related to AD in the recent literature. Similarly, many genes (ADAM22,

AGFG1, GRIN2B, MPRIP, ZNF532 etc.), identified in dataset 2 are listed in the liter-

ature.

• Gene ATP2B31 has human phenotype ontology of ataxia, cerebellar atrophy,

cerebellar hypoplasia, clumsiness.

• Gene FGF12 has a human phenotype ontology of abnormal myelination, abnor-

mality of vision, absence of speech.

• In [60], Keaney et al. observed that the activation of phospholipase gamma 2, a

genetic risk factor in AD, is decreased due to the blockade of BTK.

1www.genecards.org
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Table 3.11: STRING interactions between top genes of dataset 1 and data set 2.

Top Genes of Dataset 1 Top Genes of Dataset2 STRING Interaction Score

BTK CBL 0.95

CD44 ANK3 0.8

ERBB4 GRIN2B 0.9

ATP2B3 CALM1 0.69

CALM1 ADCY2 0.64

CD5 CD4 0.861

CD4 AGFG1 0.9

DACH1 NCOR1 0.426

NCOR1 TBL1XR1 0.98

FGF12 CALM1 0.96

CALM1 ADCY2 0.64

MDFIC CTNNB1 0.9

CTNNB1 TBL1XR1 0.935

FGF12 SRPK2 0.442

SRPK2 SRRM2 0.442

TAB3 MAP3K7 0.986

MAP3K7 PRKAB2 0.817

RTF1 SUPT16H 0.995

SUPT16H ERCC3 0.9

TAC1 TACR1 0.965

TACR1 AGFG1 0.9

ZNF621 TRIM28 0.922

TRIM28 ZNF770 0.902

• In [61], Elhanan et al. investigated the expression values of CD44 splice variants

in the hippocampus region of AD patients and compared it with the control

patients and observed that the expression values of splice variants of CD44 are

significantly higher in AD patients when compared to the normal person. The

research suggested that some splice variants of CD44 contribute to AD pathology.

• Ran-Sook Woo et al. [62] found that up-regulation of the immunoreactivity of

ERBB4 may involve in Alzheimer’s disease progression.

• In [63], Abhik Ray Chaudhury et al. observed that Neuregulin-1 and ERBB4

immunoreactivity is associated with plaques formation in the AD brain.
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• Eric M. Norstrom et al. [64], report that NEEP21 protein (gene name: NSG1),

affects the processing of APP and Aβ production.

• Marco Magistri et al. [65] analyzed that in the hippocampus region of the brain

in AD patients, TAC1 is downregulated compared to controls hippocampus.

The GSEA analysis shows that out of 22, 12 GO terms that got down-regulated in

the control network are not being regulated in the AD network and vice-versa, which

indicates that there may be a disturbance in the regulation of those 12 GO terms.

Similarly, out of 21, 18 GO terms that got up-regulated in the control network is not

being regulated in the AD network vice-versa.

In the GO terms that are identified, we find that some are found to be disturbed in

the Alzheimer’s disease, like, GO SYNAPTIC VESICLE MEMBRANE, GO AXON,

GO TRANSPORT VESICLE MEMBRANE, GO VESICLE MEDIATED TRANS-

PORT IN SYNAPSE, GO NEGATIVE REGULATION OF RNA BIOSYNTHETIC

PROCESS, GO REGULATION OF CELL POPULATION PROLIFERATION, GO

NEGATIVE REGULATION OF TRANSCRIPTION BY RNA POLYMERASE II,

GO RESPONSE TO WOUNDING, GO SKELETAL SYSTEM DEVELOPMENT, GO

POSITIVE REGULATION OF RNA BIOSYNTHETIC PROCESS and GO ZINC ION

BINDING.

K. Blennow et al. [66], found that the level of synaptic vesicle membrane protein

rab3a was reduced in Alzheimer’s disease in the hippocampus. In the literature, it is

found that in Alzheimer’s disease, the amyloid-beta disturbed the vesicle transport

in synapse in the hippocampus [67, 68]. In [69], Wo Y. et al. observed that the

cell proliferation gets slowdown when the APP is over expressed. Nicole T. Watt

et al. [70] discussed the role of Zinc in Alzheimer’s disease. Zinc binds to amyloid-

beta, advancing its conglomeration into neurotoxic species, and disturbance of zinc

homeostasis in the brain results in synaptic and memory deficiencies. Kiecolt et al.

[71], observed that wound healing took a long time significantly in AD patients than

in controls. Chen et al. [72] conclude that AD increase the risk of osteoporosis (Skelton

disorder). The overexpression of amyloid-beta might happen in both cerebrum and

bone, meddling with the RANKL signalling cascade, improving osteoclast activities,

and prompting osteoporosis.
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3.6 Conclusions

Most often, t-test and correlation are used to identify significant genes at the initial

level. As the genes are differentially expressed, their classification power is generally

high. These genes might appear significant, but their degree of specificity towards the

disease might be low, leading to misleading interpretations. Similarly, there may be

many false correlations between the genes that can affect the identification of relevant

genes. This work introduces a new framework to reduce the false correlations and

find the potential biomarkers for the disease. The framework concerned uses the t-

test, correlation, Gene Ontology(GO) categories, and machine learning techniques to

find potential genes. The tcGONet detects Alzheimer related genes in every dataset

considered. Some of the genes identified which are directly involved in Alzheimer are

APP, GRIN2B and APLP2. The tcGONet also identifies genes like ZNF621, RTF1,

DCH1, ERBB4, which may play an important role in Alzheimer’s. Gene set enrichment

analysis (GSEA) is also carried out to determine the major GO categories: down-

regulated and up-regulated.

3.7 Summary

In summary, in this chapter, a framework that includes t-test, correlation, GO cate-

gories, feature selection methods is developed to identify the potential biomarkers for

Alzheimer’s disease. The GO categories are analyzed and used to create a more bi-

ologically significant network, which helps in eliminating false correlations. Feature

selection is used to list out the top genes.

Biological interactions between the top genes of all datasets are studied in which

the top genes either have direct or one-hop experimentally proven interactions with

one another. Biological interactions between top genes and AD pathway genes are also

studied. As a result, many of the genes were found to have direct experimentally proven

interactions with the AD pathway genes. Primary interactions of selected genes show

that the genes selected by the tcGONet are associated with Alzheimer’s disease.

Gene set enrichment analysis of AD and control networks is also carried out and

found that GO terms which got up-regulated/down-regulated in AD network but not in

control network and vice-versa, may get disturbed in Alzheimer’s disease. The literature

shows that the genes identified by the decision tree classifier whose logFC values indicate
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that these genes that need to be up-regulated are down-regulated and vice versa. The

results consist of the genes and GO terms that are related to Alzheimer’s disease in the

literature, which adds more credibility to the results. The results show that the genes

identified by the tcGONet have a high degree of association with AD in comparison to

the genes identified by the other frameworks considered. In future, the tcGONet can

be applied to other diseases too, and an automated tool based on the tcGONet can be

developed.
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Chapter 4

Stage-wise Commmunity

Analysis of Alzheimer’s Disease

Networks

Network representation has emerged as the popular method of real-world complex sys-

tems representation in the past few years. Community structures play a significant

role in analysing complex networks like social networks, biological networks, computer

networks and various other kinds of networks. Community detection enables us to

discover same set of nodes on the basis of an area of interest. However, there are still

some issues with the community discovery algorithms which remain unaddressed such

as tightness relationship between the nodes and some cases of conflicts which creates

ambiguity in determining he node’s best-fit community. In this chapter have introduced

a novel neighbour-based community discovery algorithm, NBCD is proposed to address

these issues. NBCD then is used to identify the potential genes of Alzheimer’s disease.

4.1 Background

4.1.1 Community

A community in a network is taken to be a subset of nodes within the graph such that

connections between the nodes within the community are denser than connections with

the rest of the network [73].

There are many community discovery algorithms proposed in the literature.
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Broadly, there are two approaches for community detection; the first is the optimization

based approach, which optimizes a defined criterion. For example, Greedy Modularity,

looks for Modularity optimization. The second is the non-optimization-based commu-

nity detection approaches like LPA, Walktrap, neighbour-based similarity algorithms,

etc.

Tightness relationship among nodes within the communities is an important issue.

Within communities, tightness refers to the degree of connectivity between nodes that

belong to the same community. Nodes within a community are typically more tightly

connected to each other than they are to nodes outside the community. This high level

of internal connectivity is what distinguishes communities from the rest of the network.

Modularity is a popular measure to check the tightness of nodes within the communities

and sparsity of the communities and hence many popular community discovery algo-

rithms look for Modularity optimization. Although, Modularity suffers from resolution

limit [27], that is, unable to detect the small communities resulting in low F-score. In

addition, this also suffers from high degeneracy [74], that is, more than one community

structure with equally high Modularity which leads to a conflict/confusion.

Furthermore, in community discovery there are other issues like handling the con-

flicts, that is, selecting the best-fit community of a node when the node belongs equally

to more than one community. This can lead to inaccurate communities at the initial

stage and makes it difficult to reach a high-quality community structure eventually.

For instance, consider a case where there is a bridge node with degree two, and both

of it’s neighbours belong to two different communities. Then there arises confusion

about the bridge node’s community. Similarly, confusion occurs when a node has the

same similarity score with two or more nodes of different communities. A single wrong

prediction may lead to a wrong prediction for other nodes too which may result in

detecting a poor community structure.

4.1.2 Community Discovery in Biological Systems

In the field of biology, community detection has been applied to various problems, such

as identifying functional modules in protein-protein interaction networks, studying the

organization of food webs, and analyzing the spread of diseases in contact networks.

One example of its application is in protein-protein interaction networks, where com-

munity detection algorithms can be used to identify groups of proteins that are likely to

46



4.1 Background

function together in a common biological process. This can help researchers understand

the organization of the cell and predict new interactions between the proteins. Another

example is in the spread of diseases in contact networks, where community detection

can be used to identify subgroups of individuals that are more likely to spread an in-

fection to one another. This can help public health officials target interventions to the

most at-risk populations and slow the spread of the disease. Overall, community de-

tection is a powerful tool that can help researchers and practitioners better understand

the structure and organization of complex networks in biology.

In [75], Cantini et al. explore the use of gene communities as a means of iden-

tifying key players in the development of cancer. The study utilizes a multi-network

approach, which involves combining multiple types of genomic data to better under-

stand the underlying mechanisms of cancer. They applied the community detection

method to three different types of genomic data: protein-protein interaction networks,

co-expression networks, and somatic mutation networks. By combining these three net-

works, the authors were able to identify gene communities that were highly enriched

for cancer-related genes.

Calderer wt al. in [76] discuss the use of community detection algorithms to identify

groups of interacting elements within large-scale bipartite biological networks. The au-

thors tested several community detection algorithms on large-scale bipartite networks

of protein-protein interactions, gene-gene interactions, and gene-disease associations.

They found that these algorithms were able to identify biologically meaningful com-

munities, such as groups of proteins that function in similar pathways or groups of

genes that are associated with specific diseases within the networks. The study also

found that the performance of the community detection algorithms varied depending

on the type of bipartite network and the specific algorithm used. For example, some

algorithms performed better on protein-protein interaction networks, while others per-

formed better on gene-disease association networks.

In [77], Wilson et al. used the community detection techniques to identify functional

and disease pathways in protein-protein interaction networks. The authors used a

community detection algorithm called ”modularity optimization” to identify groups of

proteins that are highly interconnected and likely to play a role in specific biological

processes or diseases.

In [78], M’barek et al. present a novel approach for identifying communities or
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groups of highly interconnected nodes in biological networks. The authors propose the

use of a genetic algorithm (GA) for community detection, which is a computational

method that mimics the process of natural selection to find optimal solutions to a

problem.

In [79], HU et al. propose a new method for detecting communities in biological

networks, specifically focusing on the identification of disease-causing genes. The au-

thors propose a multi-scale approach that uses a significance-based algorithm to identify

communities of genes that are likely to be involved in a specific disease.

In [80], Singhal et al. introduced a new method for community detection in net-

works, called multiscale community detection (MCODE). The authors developed the

MCODE algorithm as a plugin for the Cytoscape software, which is a popular tool for

visualizing and analyzing networks. The main finding of the study is that MCODE is

able to detect communities in networks at multiple scales, which means that it ca n

identify both big and small groups of highly interconnected nodes. This is in contrast

to traditional community detection methods, which often only identify large groups of

nodes. The authors demonstrate the effectiveness of MCODE by applying it on several

different types of networks, including protein-protein interaction networks, metabolic

networks, and social networks.

Allen et al., in [81] proposed a statistical network model BANYAN (Bayesian ANal-

ysis of communitY connectivity in spAtial single-cell Networks) which is capable of dis-

cerning community connectivity structure in high throughput spatial transcriptomics

data. In [82], Dilmaghani et al. used deferential network analysis on RNA-sequencing

(RNA-seq) time series datasets. Then they applied community detection algorithms on

deferential networks to understand the temporal behaviour of genes. In [83], Pathak

et. al proposed a new local community detection algorithm, (lcda-go), which detects

the communities based on GO functions and network topology. However, there is not

much study on community detection in temporal disease networks.

We in this work proposed the NBCD algorithm to analyze the stage wise networks

of Alzheimer’s disease for Hippocampus region. A thorough study of genes whose

neighbourhood (community) is changed drastically in the next stage of AD is carried

out.
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4.2 Neighbour-Based Community Discovery Algo-

rithm(NBCD)

The proposed algorithm finds the similarity between the node and its neighbours. The

similarity measure and similarity parameter α are introduced to find the similarity

between two nodes which is discussed in Section 4.2.1 of the paper. In order to further

increase the quality of communities, the NBCD algorithm in phase 2 shifts the nodes

to the communities where most of the node’s neighbours are present. The NBCD

algorithm can handle cases where there may arise a confusion in selecting the node’s

community. The “friends of friend” concept and similarity parameter α take care of

the tightness relation between the nodes. At present, the NBCD algorithm detects only

non-overlapping communities, i.e. disjoint communities.

4.2.1 Similarity Measure

Two novel similarity measures are introduced here. The first phase of NBCD works

using these similarity measures. The concepts from social network analysis are used

in forming these similarity measures. The first similarity measure, simnn(x, y), checks

the similarity between two nodes. This works on a ”Friends of Friend” concept, i.e.

friends who share a certain number of mutual friends are most probably are alike in

some sense. For example, they may have the same set of interests or may belong to the

same school/college.

In the same way, the second similarity measure between the node and community,

simnc(x, c), points to the fact that if one’s majority of friends belong to a particular

community, there are more chances that the person also belongs to the same community.

According to first similarity measure, simnn(x, y), if node y is a neighbour of the node

x and have (100/α)% number of same neighbours, then node y is similar to node x

and belongs to the same community as x, where α is the similarity parameter. The

similarity function, simnn(x, y) returns 1, if node y is similar to x or else returns 0.

simn,n(x, y) =

1, if Count[Nbr(x) ∩Nbr(y)] + 1 > Deg(y)
α , Deg(y) > 2

1, if Deg(y) ≤ 2
0, otherwise

(1)
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The second similarity measure, simnc(x, c), tells whether the node x belongs to com-

munity c or not. It returns 1 if x belongs to community c, -1, to take action according

to defined ground rules (see subsection 4.2.2) and 0, if x does not belongs to community

c.

simn,c(x, c) =

 1, if Count[Nbr(x) ∩mem(c)] > Deg(x)
α , Deg(x) > 2

−1, if Deg(x) ≤ 2
0, otherwise

(2)

In both simnn(x,y) and simnc(x,c), Deg(x) and Nbr(x) represent the degree and neigh-

bours of x respectively. mem(c) represents the members of community c. Through the

similarity parameter α, the user can choose the tightness of the community i.e. how

well the nodes are connected in a community. To detect the best value of α, different

values of α are taken, and the performance measures are compared for all the datasets

considered. The values of α are taken in the range of 1.5 to 3 with an increment of 0.5.

α = 1.5 means 66.6% similarity and α = 3 means 33.33% similarity.

4.2.2 Basic Steps of the algorithm

The proposed algorithm(NBCD) works in two phases; Clustering of nodes based on the

neighbour’s similarity and reshuffling of the nodes among the detected communities.

The NBCD1 algorithm is implemented in Python(Python 3.8.10) language. The pro-

posed method is described in Algorithm 1 and 2. The flow chart of NBCD is shown in

Fig. 4.1, where Nbr(x) represents list of neighbours of node x, nbr1 and nbr2 repre-

sents the neighbour one and two of node x (degree=2) and nodes is the list of nodes in

descending order according to the degree. Some ground rules are constructed to han-

dle the conflicts. The rules are based on a straightforward concept, “Majority wins”;

whenever a conflict happens between nodes or communities, the conflict is resolved in

favour of the node and community, which has more connections(degree) and members,

respectively. For example, according to the ground rule, if a node has a degree of two,

i.e. only two neighbours, the node will go with the neighbour with more connections,

i.e. high degree. Similarly, if a node has an equal number of neighbours in two or

more communities, then the node belongs to the community with more members. The

ground rules defined for the proposed algorithm are as follows:

1https://drive.google.com/drive/folders/1UD7Lat3I4M5L187KYGO8srDhT9fxTUsJ?usp=sharing
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• Nodes in the descending order of the degree are given as input to the algorithm.

• Node y, a neighbour of node x, belongs to the community of node x if simnn(x,y)

= 1.

• If node y is the neighbour of node x and the degree of node y is one, y belongs

to the community of node x.

• Nodes with degree two belong to the community of its neighbour with the highest

degree.

• A node belongs to a community which have the highest number of its neighbours.

• A node having an equal number of neighbours present in different communities

belongs to the community where the sum of the degrees of the node’s neighbours

is the highest.
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Figure 4.1: Flow Digram of NBCD’s Phase 1 (community allocation).
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Algorithm 1: Stage 1: Community Allocation

Input: Graph(G), α (Similarity parameter)
Output: Detected Communities

1 list of community[] // Initially empty
2 nodes[ ] //list of nodes in descending order according to degree
3 for x in nodes[ ] do
4 if x not visited then
5 for community in list of communities do
6 if simnc(x, community)==1 then
7 Add x to the community
8 Mark x as visisted
9 community found=True

10 break

11 if community found=True then
12 continue

13 else
14 if simnc(x, community)==0 then
15 Create a new community
16 Add x to the new community
17 Mark x as visited
18 for n in Neighbours[x] do
19 if simnn(x, n)==1 then
20 Add n to the new communty
21 Mark n as visited

22 Add new community to list of community[]

23 else if simnc(x, community)==-1 and Deg[x]==2 then
24 neighbour 1=Neighbour 1 of x
25 neighbour 2=Neighbour 2 of x
26 if Degree[neighbour 1]>Degree[neighbour 2] then
27 if neighbour 1 is visited then
28 Add x to the community of neighbour 1
29 Mark x as visited

30 else
31 Create a new community
32 Add x and neighbour 1 to the new community
33 Mark x and neighbour 1 as visited
34 Add new community to list of community[]

35 else if Degree[neighbour 2]> Degree[neighbour 1] then
36 if neighbour 2 is visited then
37 Add x to the community of neighbour 2
38 Mark x as visited

39 else
40 Create a new community
41 Add x and neighbour 1 to the new community
42 Mark x and neighbour 1 as visited
43 Add new community to list of community[]

44 else
45 if neighbour 1 is visited then
46 Add x to the community of neighbour 1
47 Mark x as visited

48 else if neighbour 2 is visited then
49 Add x to the community of neighbour 2
50 Mark x as visited

51 else
52 Create a new community
53 Add x, neighbour 1 and neighbour 2 to the new

community
54 Mark x, neighbour 1 and neighbour 2 as visited
55 Add new community to list of community[]

56 else
57 n=Neighbours[x]
58 if n is visited then
59 Add x to n’s community
60 Mark x as visited

61 else
62 Create a new community
63 Add x and n to the new community
64 Mark x and n as visited
65 Add new community to list of community[]
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Algorithm 2: Stage 2: Node Shifting

Input: Detected communities and it’s Modularity(Old modularity) in Phase 1

Output: Final Communities

1 do

2 for x in Nodes do

3 Shift x to the community where the maximum number of it’s neighbours are

present. If two or more communities contain an equal number of neighbours,

then shift x to the community whose neighbours have the highest degree (Sum of

the degree of all neighbours).

4 New modularity= Modularity(community)

5 If New modularity > Old modularity then

6 Old modularity=New modularity

7 shift=1

8 Else

9 shift=0

10 while shift ==1

11 Delete empty communities

4.2.3 Example

To demonstrate the technique intuitively, we take the Karate dataset as an example.

For demonstration, we are considering α = 2 as the similarity parameter for NBCD.

The Karate network consists of 34 nodes and 78 edges[84]. In the community

detection phase, initially, the NBCD starts with the node having the highest degree,

which is node ‘34’. Since the list of communities is empty; NBCD creates a community,

c[0], and adds node ‘34’ to it. All the neighbours of node ‘34’ are then checked for

similarity using the similarity measure simnn(x, y). Where x is node ‘34’ and y is the

neighbour of node ‘34’. For example, Nodes ‘10’, ‘15’, ‘16’, ‘19’, ‘21’, ‘23’ and ‘27’ are

neighbours of node ‘34’ and their degree is two. So according to similarity measure

these nodes will be directly added to the community c[0]. Another case is node ‘9’,

which is a neighbour of node ‘34’ whose degree is greater than two. So the similarity

measure simnn(x, y) checks for the common neighbours between nodes ‘34’ and ‘9’.

Both nodes have two common neighbours, nodes ‘31’ and ‘33’. So the conditions are

satisfied:

Count[Nbr(34) ∩Nbr(9)] + 1 >
Deg(9)

α

2 + 1 >
5

2
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∴ simnn(34, 9) = 1

That is node ‘9’ is similar to node ‘34’ and hence is added to the community c[0]

and marked as visited. Similarly, the similarity between node ‘34’ and its remaining

neighbours is checked, and similar neighbours are added into the community c[0] and

marked as visited. At the end the community c[0] is added to the list of communities

C. Now nodes ‘34’, ‘9’, ‘24’, ‘29’, ‘30’, ‘31’, ‘33’, ‘10’, ‘15’, ‘16’, ‘19’, ‘21’, ‘23’ and ‘27’

are in the community c[0].

The node with the highest degree in the remaining nodes is then selected, which

is node ‘1’. Now, node ‘1’ is checked to see whether it belongs to any community

present in the list of communities or not, through the similarity function simnc(x, y)

for all communities in the list of communities, C, where x is node ‘1’ and c is the

community in the list of communities, C. As node ‘1’ do not belong to any community

present in C, a new community, c[1], is created and node ‘1’ is added in c[1]. Again

all the neighbours of node ‘1’ are checked for the similarity using similarity function

simnn(x, y). The process continues till all nodes are not visited. As the result of

community detection phase, NBCD detects 4 communities C {c[0], c[1], c[2], c[3]},
which are shown in Fig 4.2, where different colours represent different communities.

The Modularity of community structure detected in phase 1 is 0.3698.

All nodes are checked for their best-fit community in the shifting phase, i.e., where

their maximum number of neighbours are present. In round one, the current community

of node ‘32’ is c[2] and a maximum number of its neighbours are present in c[0], so

node ‘32’ is shifted from community c[2] to c[0]. Similarly, node ‘28’ is shifted from c[3]

to c[0], and nodes ‘25’ and ‘26’ are shifted from c[2] to c[0]. The degree of node ‘10’

is two, and its current community is c[0]. One neighbour ‘34’ is present in community

c[0], and another neighbour ‘3’ is present in c[1]. No shifting is done because the degree

of node ‘34’ is greater than that of node ‘3’. After round one is finished, the Modularity

of community structure is 0.3715. As the new Modularity is approximately equal to

the previous Modularity, NBCD won’t go for the next shifting round. NBCD only go

for the next round of shifting if the Modularity increases by 0.01 i.e.1%. Hence, NBCD

terminates and gives the final set of communities.
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Figure 4.2: Steps of NBCD on the Karate Network.

4.2.4 Experiments

Proposed NBCD algorithm is compared with six other popular algorithms: Walktrap,

Greedy Modularity, Label propagation algorithm(LPA) [85], Louvain and Eigenvector,

and also with five recently published algorithms: Synwalk, FPPM, DSLPA, SimCMR

and NSA, to determine the efficiency of NBCD. Walktrap, Louvain and Eigenvector

from the cdlib package(python) [86], and LPA and Greedy Modularity algorithms are

taken from the Networkx package(python) [87]. For DSLPA, we used the parameter

values mentioned in [88]. Experiments are performed on HP-g6-Notebook with Intel

Core i5-3210, 4GB RAM and Ubuntu 20.04.3 LTS (Focal Fossa).
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Table 4.1: Worst-case time-complexities of considered community discovery algorithms.

Algorithm Time-

complexity

Remarks Source

Walktrap O(m.n2) n = number of

nodes, m = number

of edges.

[89]

Greedy Modu-

larity

O(m.d log n) n = number of

nodes, m = number

of edges, d = depth

of the dendrogram.

[25]

LPA O(m) m = number of

edges.

[90]

Louvain O(n log n) n = number of nodes [26]

Leading-

Eigenvector

O(m(m +

n))

n= number of nodes [86]

DSLPA O(m2) m = number of edges [87]

NSA O(n log n) n - number of nodes [91]

SimCMR O(n.k.F+

k2.G +

k.H)

n= number of nodes,

k= number of candi-

dates to be shifted,

F= computation

time of stage 2,

G= computation

time of stage 3, H=

computation time to

calculate Modularity

in stage 4.

[92]

Synwalk O(n2) n= number of nodes. [84]

FPPM O(m) m= number of edges [93]

NBCD O((k.n log n)) n= number of nodes,

k= number of rounds

in the shifting phase

[94]
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Comparison is made on eight datasets with ground-truth communities. Also made

a comparison on artificial networks, i.e. LFR networks created using the Networkx

package(python) [87]. Table 4.2 describes the real-world networks.

• The Zachary’s Karate Club Network shows the friendship among the karate club’s

members, where a node represents a member, and an edge between two nodes

represents the friendship between those members. Zachary observed the club

for three years and witnessed the split in the club into two groups due to the

dispute between instructor and administrator; these two groups represent the

communities in the network [84].

• The Lusseau’s Dolphin Social Network represents the network of the doubtful

sound bottlenose dolphins, where a node represents a dolphin, and an edge rep-

resents the co-occurrence of dolphins. The network consists of four ground-truth

communities [93].

• The Risk Network is the network of a political strategical game where 42 territo-

ries(nodes) are divided into 6 continents(ground-truth communities) [92].

• American College Football Network; represents the games played between dif-

ferent college teams, where college teams represent the node, and an edge rep-

resents the game played between two teams. All the teams are divided into

conferences(ground-truth communities) where each conference can consist of 8 to

12 teams [94].

• The Yeast Network represents the protein-protein interaction in budding yeast,

where nodes represent the proteins and edges represents the interactions between

proteins [95].

• The Amazon Network is an e-commerce network, where nodes are products and

the edges between two product represents that the two products are bought fre-

quently [96].

• DBLP Network represents a bibliography network, where authors are considered

as nodes, and an edge between two authors represents the co-authorship [96].

• Youtube Network represents a social network where each user of Youtube is con-

sidered as a node, and an edge represents the friendship between two users [97].
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For the datasets; DBLP, Youtube and Amazon, the top 5000 ground-truth communities

are initially taken, and then the bottom one-fourth communities are removed accord-

ing to their internal density. For the remaining communities, maximum independent

disjoint sets are found for the ground-truth communities in order to get the disjoint

communities. The communities are first arranged in descending order according to the

number of nodes present in them. Then the disjoint sets are taken, starting from the

first community (a community consisting of the highest number of nodes) [98, 99].

Table 4.2: Real-world networks with ground-truth communities.

DataSet Nodes Edges Avg Degree Ground Communities

Amazon 6428 16223 5.05 893

DBLP 23654 75618 6.3937 2974

Dolphin 62 159 5.129 4

Football 115 613 10.66 12

Karate 34 78 4.529 2

Risk 42 83 3.952 6

Yeast 2284 6646 5.8196 13

Youtube 10364 18717 3.6119 2798

4.2.4.1 Lancichinetti–Fortunato–Radicchi(LFR) Networks

Table 4.3 shows the parameters used for creating the LFR networks [100]. Other than

parameters shown in Table 4.2 there is one more important parameter, the mixing

parameter (µ), the fraction of intra-community edges added to each node. The smaller

the value of µ is, the clearer the community structure will be. Hence, µ = 0.5 can

be taken as a transition point [101]. The µ value above 0.5 can lead to overlapping

communities in the network. For the experiments, the µ value is varied from 0.1 to

0.5 with an increment of 0.1 for each group of LFR networks. Total 100 networks are

generated for each value of µ while keeping the other parameters the same, and the

results are the average of 100 networks.
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Table 4.3: The parameters for LFR network construction where Kavg = Average degree,

Kmax = Maximum degree, Cmin = Minimum community size, Cmax = Maximum commu-

nity size and tau1 and tau2 are the parameters for power law distribution.

Name Nodes Kavg Kmax Cmin Cmax tau1 tau2

LFR1000.a 1000 4 15 5 20 2 1.1

LFR5000.a 5000 4 15 5 20 2 1.1

LFR1000.b 1000 4 20 10 40 2 1.1

LFR5000.b 5000 4 20 10 40 2 1.1

4.2.4.2 Evaluation Measures

Four popular measures, NMI (Normalized Mutual Information) [102], F-score, ARI

(Adjusted Rand Index), AMI(Adjusted Mutual Information) and Modularity are used

to evaluate the performance of the proposed method and the other state-of-the-art com-

munity discovery algorithms and also the recent algorithms available in the literature.

• Normalized Mutual Information(NMI): Let C and C ’ be the ground-truth com-

munities and predicted communities, respectively, |C| and |C ’| be the number of

communities in C and C ’ respectively, then the NMI between C and C ’ can be

calculated as follows:

I(C,C ’) =

|C|∑
k=1

|C’|∑
l=1

nkl

N
log

(
Nnkl

nkml

)

E(C) = −
|C|∑
k=1

nk

N
log

(nk

N

)

NMI(C,C ’) =
I(C,C ’)√
E(C).E(C ’)

where I(C,C ’) is the mutual information between C and C ’, E(C) and E(C ’)

are the entropies of C and C ’, N is the total number of nodes in the network,

nk is the number of nodes belonging to the kth community (Ck) of C, ml is the

number of nodes belonging to the lth community (C ’
l) of C

’ and nkl is the number

of nodes belonging to both ground-truth (Ck) and predicted communities (C ’
l),

for all k = 1 to |C| and l = 1 to |C ’| [98]. The desirable NMI score ranges from

0 to 1 [103].
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• F-Score: The F-score of the system is defined as the weighted harmonic mean of

its Precision(P) and Recall(R), that is

F =
1

β 1
P + (1− β) 1

R

or F =
2×R× P

R+ P

where the weight β ∈ [0, 1] [104].

• Adjusted Rand Index(ARI): In 1985, Hubert and Arabie proposed the ARI for the

comparison of partitions [105]. If C = {C1, C2...C i} and C ′ = {C ′
1, C

′
2...C

′
i} are

the ground-truth and predicted communities respectively then the ARI between

C and C ′ is calculated as:

ARI(C,C ′) =
2 (N00N11 −N01N10)

(N00 +N01) (N01 +N11) + (N00 +N10) (N10 +N11)

where N00 indicates the number of node-pairs in the same community in C and

C’. N11 shows the number of node-pairs that are in the same community in both C

and C’. N01 represents the number of node-pairs that are in the same community

in C but are not in the same community in C’. N10 indicates the number of node-

pairs that are not in the same community in C but are in the same community

in C’ [88].

• Adjusted Mutual Information(AMI): The AMI score was proposed by Vinh et al.

in 2010 [106]. If C = {C1, C2...C i} and C ′ = {C ′
1, C

′
2...C

′
i} are the ground-

truth and predicted communities respectively then the AMI between C and C ′ is

calculated as:

AMI(C,C ′) =
I (C,C ′)− E ((C,C ′))

1/2H (C) +H (C ′)− E (I (C,C ′))

where I (C,C ′) is the mutual information between C and C’. E (I (C,C ′)) is

expected mutual information. H (C) and H (C ′) are Entropy of C and C ′ [107].

• Modularity : Modularity(Q) is a popularly used performance measure to check the

quality of community structure. The Modularity, Q, of a community structure

can be calculated as:

Q =
1

2m

∑
c∈C

(
2mc −

K2
c

2m

)
where mc is the number of edges inside the community c, Kc is the sum of degrees

of nodes in community c, and m is the total number of edges in the network [27].
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4.2 Neighbour-Based Community Discovery Algorithm(NBCD)

Python implementation of NMI, F-score(weighted average), ARI, AMI and Modu-

larity are used for the evaluation using the sklearn package [108].

4.2.5 Results

Table 4.4, 4.5, 4.6, 4.7 and 4.8 show the NMI, F-score, ARI score, AMI and Modularity

score obtained by the NBCD algorithm and the other competitive algorithms for all the

datasets. The scores in Table 4.4, 4.5, 4.6, 4.7 and 4.8, marked in bold font, indicate the

best scores in the respective rows. The NBCD algorithm gives a better NMI, ARI and

AMI score for 5 out of 8 datasets, and F-score in 4 out of 8 datasets. Although NBCD

doesn’t give top score for 3 datasets but still gives the scores in top 4 slots for rest of

the three datasets. Table 4.9 shows the time taken by different algorithms for different

datasets. Table 4.10 shows the parameters considered for NBCD, NSA and DSLPA

algorithms. Figure 4.4 and 4.5 show the plots of performance of NBCD and other

competitive algorithm on LFR networks. Figure 4.7 shows the plot of performance of

NBCD for different values of similarity parameter, α, on considered datasets.

Table 4.4: The NMI score of different algorithms on real-world networks. The largest

NMI scores are in bold. (∗ : JAVA:Out of Memory Error)

DataSet Walktrap Greedy LPA Louvain Eiginvector DSLPA NSA SimCMR Synwalk FPPM NBCD

Amazon 0.9975 0.9975 0.9964 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9927 0.9981

DBLP 0.9790 0.9210 0.9930 0.9200 0.7510 ∗ 0.9314 0.9224 0.9200 0.9389 0.9957

Dolphin 0.6320 0.7030 0.7460 0.8370 0.6350 0.6297 0.8185 0.8312 0.6530 0.8495 0.9053

Football 0.8874 0.7436 0.8547 0.8561 0.6987 0.8873 0.8882 0.8967 0.9242 0.8561 0.9095

Karate 0.5042 0.6925 0.7210 0.5866 0.6771 1.0000 0.6995 0.6955 0.4361 1.0000 1.0000

Risk 0.8480 0.8940 0.9030 0.9450 0.7230 0.6542 0.8483 0.8406 0.8708 0.8483 0.8971

Yeast 0.2550 0.1270 0.2260 0.1300 0.0440 0.2017 0.0749 0.1110 0.2656 0.1890 0.2176

Youtube 0.9440 0.8580 0.9320 0.8480 0.6820 0.9280 0.7739 0.8360 0.8294 0.8905 0.9210

Table 4.5: The F-score of different algorithms on real-world networks. The largest F-

scores are in bold.(∗ : JAVA:Out of Memory Error)

DataSet Walktrap Greedy LPA Louvain Eigenvector DSLPA NSA SimCMR Synwalk FPPM NBCD

Amazon 0.9609 0.9609 0.9806 0.9609 0.9609 0.9609 0.9609 0.9609 0.9609 0.9637 0.9897

DBLP 0.8470 0.4660 0.9420 0.4590 0.4540 ∗ 0.4738 0.4690 0.4589 0.5676 0.9748

Dolphin 0.7400 0.7700 0.7460 0.8370 0.7630 0.7211 0.8396 0.9191 0.5851 0.9353 0.9673

Football 0.7791 0.3915 0.8950 0.5551 0.4710 0.7773 0.6846 0.7392 0.9116 0.5551 0.7878

Karate 0.6918 0.8155 0.9185 0.7714 0.7624 1.0000 0.8840 0.8789 0.6345 1.0000 1.0000

Risk 0.8470 0.9310 0.9740 0.9050 0.7600 0.4456 0.8468 0.8316 0.8560 0.8468 0.9058

Yeast 0.1170 0.1290 0.0020 0.1630 0.1130 0.0882 0.0855 0.1010 0.1431 0.0842 0.1146

Youtube 0.7910 0.4820 0.7680 0.4340 0.3910 0.4970 0.3915 0.3920 0.4075 0.5445 0.6715
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4.2 Neighbour-Based Community Discovery Algorithm(NBCD)

Table 4.6: Adjusted Rand Index(ARI) of different algorithms on real-world networks.

The largest ARI are in bold.(∗ : JAVA:Out of Memory Error)

DataSet Walktrap Greedy LPA Louvain Eigenvector DSLPA NSA SimCMR Synwalk FPPM NBCD

Amazon 0.9727 0.9727 0.9756 0.9727 0.9727 0.9727 0.9727 0.9727 0.9727 0.9466 0.9877

DBLP 0.3170 0.2480 0.9360 0.2620 0.0030 ∗ 0.3322 0.2656 0.2567 0.3367 0.9656

Dolphin 0.5750 0.6550 0.6400 0.7910 0.4960 0.5892 0.7427 0.8034 0.4747 0.8207 0.9090

Football 0.8154 0.4737 0.6205 0.7071 0.4641 0.8132 0.7975 0.8272 0.8967 0.7071 0.8465

Karate 0.3331 0.6803 0.7531 0.4619 0.5121 1.0000 0.7022 0.6656 0.2668 1.0000 1.0000

Risk 0.6880 0.8340 0.8680 0.8390 0.5500 0.5017 0.6880 0.6386 0.7377 0.6880 0.7552

Yeast 0.0170 0.0330 0.0100 0.3290 -0.0090 0.0120 0.0276 0.0290 0.0214 0.0362 0.0207

Youtube 0.0650 0.0290 0.0370 0.0360 0.0030 0.3170 0.1120 0.0660 0.0260 0.0265 0.0431

Table 4.7: Adjusted Mutual Index(AMI) of different algorithms on real-world networks.

The largest AMI are in bold.(∗ : JAVA:Out of Memory Error)

DataSet Walktrap Greedy LPA Louvain Eigenvector DSLPA NSA SimCMR Synwalk FPPM NBCD

Amazon 0.9922 0.9922 0.9882 0.9922 0.9922 0.9922 0.9922 0.9922 0.9922 0.9759 0.9940

DBLP 0.9270 0.7830 0.9730 0.7810 0.4910 ∗ 0.8051 0.7859 0.7812 0.8165 0.9836

Dolphin 0.6070 0.6820 0.7190 0.8220 0.6040 0.5895 0.8030 0.8200 0.6464 0.8394 0.8988

Football 0.8561 0.7028 0.8191 0.8205 0.6332 0.8507 0.8574 0.8681 0.8992 0.8205 0.8820

Karate 0.4727 0.6808 0.7083 0.5653 0.6610 1.0000 0.6874 0.6840 0.3264 1.0000 1.0000

Risk 0.8000 0.8660 0.8730 0.9280 0.6510 0.5951 0.8003 0.7976 0.8299 0.8003 0.8696

Yeast 0.1330 0.0860 0.1200 0.0940 0.0170 0.0994 0.0510 0.0780 0.1338 0.1167 0.1123

Youtube 0.7560 0.5840 0.7180 0.5730 0.3380 0.7060 0.4749 0.5500 0.5442 0.6325 0.6931

Table 4.8: Modularity of different algorithms on benchmark datasets. The largest Mod-

ularity are in bold.(∗ : JAVA:Out of Memory Error).

DataSet Walktrap Greedy LPA Louvain Eigenvector DSLPA NSA SimCMR Synwalk FPPM NBCD

Amazon 0.998 0.986 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.959 0.991

DBLP 0.970 0.959 0.992 0.993 0.768 0.992 ∗ 0.992 0.993 0.975 0.962

DOLPHIN 0.489 0.499 0.495 0.519 0.491 0.502 0.439 0.526 0.373 0.526 0.513

FOOTBALL 0.603 0.552 0.568 0.604 0.493 0.603 0.565 0.603 0.601 0.604 0.601

KARATE 0.353 0.355 0.381 0.419 0.393 0.402 0.371 0.395 0.284 0.371 0.371

RISK 0.624 0.606 0.625 0.634 0.547 0.624 0.502 0.609 0.631 0.624 0.591

YEAST 0.524 0.335 0.570 0.587 0.250 0.528 0.430 0.567 0.522 0.541 0.503

YOUTUBE 0.696 0.672 0.756 0.779 0.598 0.700 0.592 0.735 0.752 0.710 0.696

Table 4.9: Time(in Seconds) taken by the algorithms considerd for different datasets.(∗ :

JAVA:Out of Memory Error)

DataSet Walktrap Greedy LPA Louvain Eiginvector DSLPA NSA SimCMR Synwalk FPPM NBCD, α=2

Amazon 0.421 1.880 1.823 0.727 0.678 6.270 4.123 2.697 0.085 3.53 1.095

DBLP 4.573 9.820 20.091 3.661 1.689 ∗ 120.237 20.144 0.357 1588.636 5.512

Dolphin 0.002 0.020 0.011 0.007 0.021 0.034 0.002 0.006 0.039 0.14 0.114

Football 0.007 0.083 0.015 0.014 0.030 0.058 0.009 0.010 0.0122 0.312 0.108

Karate 0.002 0.010 0.007 0.004 0.014 0.009 0.001 0.004 0.035 0.156 0.029

Risk 0.115 0.009 0.005 0.035 0.153 0.018 0.001 0.002 0.0317 0.173 0.083

Yeast 0.510 8.241 0.968 0.576 0.216 13.340 2.402 0.226 0.157 26.404 8.236

Youtube 1.873 30.107 7.164 2.341 1.608 95.929 43.109 11.295 0.356 267.968 10.369
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Table 4.10: Parameters used for different Algorithms.(∗ : JAVA:Out of Memory Error)

DataSet NSA DSLPA NBCD

Amazon 0.10 6.00 2.5

DBLP 0.05 ∗ 1.5

Dolphin 0.10 2.00 2.0

Football 0.05 1.50 3.0

Karate 0.10 2.00 2.0

Risk 0.05 1.50 1.5

Yeast 0.05 1.50 3.0

Youtube 0.05 0.83 3.0
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4.2 Neighbour-Based Community Discovery Algorithm(NBCD)

Figure 4.3: Karate Network; (a) Ground-truth communities, (b) Communities detected

by NBCD. Dolphin network; (c) Ground-truth communities, (d) Communities detected by

NBCD. Risk network; (e) Ground-truth communities, (f) Communities detected by NBCD.

Football network; (g) Ground-truth communities, (h) Communities detected by NBCD.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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4.2 Neighbour-Based Community Discovery Algorithm(NBCD)

Figure 4.4: Comparison of different evaluation measure of considered community discov-

ery algorithm on LFR-1000 networks. NBCD, α = 0.2 ( ), Walktrap ( ), Greedy

Modularity ( ), LPA ( ), Louvain ( ), Eigenvector ( ), SimCmr ( ), NSA

( ), DSLPA ( ), Synwalk ( ), FPPM ( ).
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4.2 Neighbour-Based Community Discovery Algorithm(NBCD)

Figure 4.5: Comparison of different evaluation measures of considered community dis-

covery algorithm on LFR-5000 networks. NBCD, α = 0.2 ( ), Walktrap ( ), Greedy

Modularity ( ), LPA ( ), Louvain ( ), Eigenvector ( ), SimCmr ( ), NSA

( ), DSLPA ( ), Synwalk ( ), FPPM ( ).
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4.3 Discussion

Figure 4.6: Comparison of Modularity measure of considered community discovery algo-

rithm on LFR-1000 networks. NBCD, α = 0.2 ( ), Walktrap ( ), Greedy Modularity

( ), LPA ( ), Louvain ( ), Eigenvector ( ), SimCmr ( ), NSA ( ), DSLPA

( ), Synwalk ( ), FPPM ( ).
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4.3 Discussion

4.3.1 LFR Networks

Figures 4.4 and 4.5 show the plots for NMI, F-score, ARI and AMI scores and Figure

4.6 shows the Modularity score for NBCD and other algorithms considered. For in-
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stance, if we don’t consider Synwalk for comparison, NBCD outperforms all the other

algorithms considered. NBCD gave a better score for all performance measures except

Modularity. However, even though the Modularity score for NBCD is not the best, it

is still very close to the best one. Furthermore, unlike Louvain, Greedy Modularity

and SimCMR, which achieve the best Modularity, NBCD gives the best scores for all

the other performance measures. Louvain, Greedy Modularity and SimCMR look for

the Modularity optimization and hence achieve the best Modularity score compared to

other algorithms considered, but fail to detect small communities, which results in the

low F-score compared to the best F-score. On the other hand, even though the Modu-

larity score of NBCD is not the best, it is still very close to the best one and yet achieves

the best scores in all other performance measures. Now, if we compare NBCD and Syn-

walk, Synwalk shows inconsistent performance for different LFR networks. For some

LFR networks, Synwalk performs very poorly (LFR1000.a (µ=0.1,0.5), LFR5000.a (for

all µ values), LFR5000.b (µ=0.4, 0.5)). On the other hand, NBCD either gave the

best score or else a close one to the best score; NBCD didn’t perform comparatively

poorly for any LFR networks for all the measures considered. Only for the F-score that

too for LFR1000.a networks with µ values 0.3 and 0.4, there is a noticeable difference

in the F-scores of NBCD and Synwalk. From the plots, it can be clearly seen that

Synwalk shows inconsistency in its performance with regard to performance measures

considered, while NBCD performs consistently for different LFR networks

4.3.1.1 Real-time Datasets

In the Karate network (Fig.4.3(a & b)), it can be seen that the NBCD algorithm

detected ground-truth communities correctly. In the Dolphin network (Fig. 4.3(c &

d)), the NBCD algorithm predicted the correct community for each node except for

the nodes ’28’ and ’39’. While in the Football network (Fig. 4.3(e & f)), the NBCD

algorithm predicted most of the communities same as the ground-truth communities.

In the Risk network (Fig. 4.3(g & h)), the proposed algorithm NBCD predicted the

correct community for each node except for the nodes ’17’, ’22’, ’26’ and ’27’. Although

the NBCD doesn’t give the best scores for the Youtube and Yeast networks, it still

gives a better score than the other 6 algorithms. As there are only 13 ground-truth

communities in the Yeast network and communities detected by NBCD are 181, the

F-score is very low.
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4.3.2 Effect of α

Figure 4.7 shows the plot between performance measures and α values. Table 4.11

shows the time taken by NBCD for different value of α. It can be concluded from Ta-

ble 4.11 that for a higher value of alpha, NBCD takes less time, i.e. for the communities

with tightly connected nodes, NBCD takes more time comparatively than the commu-

nities with loosely connected nodes. α=1.5 represents the communities with tightly

connected nodes and α=3 represents those with loosely connected nodes. Through the

experiments(Fig. 4.7), 2.5 is the recommended value of α in case where ground truth

communities are not available.

Table 4.11: Time taken by NBCD for different α values.

DataSet α=1.5 α=2 α=2.5 α=3

Amazon 1.829 1.095 0.996 0.976

DBLP 8.524 5.512 4.503 4.285

Dolphin 0.1976 0.0903 0.0609 0.0481

Football 0.4775 0.2032 0.0642 0.0634

Karate 0.039 0.029 0.011 0.011

Risk 0.1009 0.0595 0.0341 0.0225

Yeast 11.913 8.236 5.646 4.844

Youtube 14.452 10.369 5.49 4.57
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4.3 Discussion

Figure 4.7: Performance of NBCD for different α values on datasets considered. NMI

( ), F-score ( ), ARI ( ), AMI ( ), Modularity ( )
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4.3.3 Comparison with the state-of-the-art-algorithms

From Table 4.4-4.7, it can be concluded that the proposed algorithm NBCD performs

better than the state-of-the-art community discovery algorithms. NBCD gives bet-

ter scores for 5 out of 8 real-life datasets. NBCD also provides a consistent and the

best results for LFR networks. From Figure 4.4 and 4.5, it can be observed that the

Louvain and Greedy Modularity perform best according to Modularity but if other per-

formance measures are considered they performed badly. Eigenvector algorithms per-

formed worst according to all the performance measures. In LFR networks, the number

of communities detected by Louvain, Greedy Modularity, and Eigenvector algorithms

is less compared to the ground-truth communities, resulting in low scores. In contrast,

the number of communities detected by NBCD is close to the number of ground-truth

communities, the F-score plot for LFR networks is a proof of that. The time taken by

Walktrap, LPA, Louvain and LPA are less than NBCD. The Greedy Modularity algo-

rithm takes less time for some datasets and more time for some datasets than NBCD.

NBCD gives the best score or gives a score close to the best one with respect to all the

performance measures. No other algorithm has shown this consistency.

4.3.4 Comparison with the recently published algorithms

The NBCD algorithm completely outperforms the recently published algorithms, i.e.

Synwalk, FPPM, DSLPA, NSA and SimCMR. It can be seen in Table 4.4-4.7 that

NBCD gives the best score(NMI, F-score, ARI and AMI) for almost every dataset.

However, SimCMR an FPPM achieves the best scores when Modularity is considered,

but there is a negligible difference between the Modularity score of NBCD and the best

Modularity score. In Football dataset Synwalk gives the highest scores but NBCD also

achieves the a scores which is very close to the highest ones. For the yeast dataset,

NSA, FPPM and SimCMR give a better ARI score than NBCD. In Youtube, dataset

DSLPA gives better NMI, ARI and AMI scores than NBCD. In the LFR networks, also

NBCD completely outperforms the other algorithms except Synwalk on every score.

The reason behind the poor performance of all three algorithms is that they are unable

to detect the small communities. The number of communities detected by them is very

less compared to ground-truth communities. The other important factor is parameters

used by DSLPA and NSA. For the DSLPA, the author gives no specific range for
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the parameter, ϵ. So the user needs to try different values of ϵ to achieve the best

communities structure, which will take multiple runs to achieve the best community

structure. Although in NSA, authors gave the range of threshold value(δ) of merging

parameter(λ), which is 0.05 to 2, problem here is that one needs to increment/decrement

the threshold value by 0.01 within the range to achieve the best community structure,

which will take multiple attempts again. It can be observed from Table 4.9 that for the

Youtube dataset, NSA takes 43 seconds and DSLPA takes around 96 seconds which is

comparatively high. Similarly, for the DBLP dataset, NSA took about 2 minutes, and

DSLPA doesn’t run due to JAVA: out of memory error. For the yeast dataset, NBCD

takes higher time in comparison to the other three algorithms.

4.4 Discovery of Communities Using NBCD in

Alzheimer’s Disease Dataset

The ground truth sets of communities are not known apriori in biological datasets.

Hence, the NBCD provides an approximate method, using which communities can be

discovered in these sets. For the community detection we used the NBCD with the

suggested value of α i.e. α = 2.5 4.3.2.

4.4.1 Dataset

For the temporal analysis of Alzheimer’s disease we used the gene-expression data,

GSE281461. The dataset is freely available at Gene Expression Omnibus(GEO). This

dataset contains the gene-expressions from gray matter of hippocampus tissue. The

dataset consists of 8 samples of control, 7 samples of incipient, 8 samples of moderate

and 7 samples of severe stage of AD.

4.4.2 Network Construction and Community Detection

For the network construction we have used the tcGONet framework, proposed in the

Chapter 3 [4]. Using the tcGONet framework , networks are constructed for each stage

of AD i.e. control, incipient, moderate and severe stage. The community detection

algorithm NBCD is applied on each network to detect the communities. Table 4.12

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28146
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shows the description of networks constructed and number of communities detected in

each network.

Table 4.12: Network Description.

Stage Nodes(Genes) Edges Number of communities using NBCD

Control 2435 11842 59

Early 2580 15076 49

Moderate 2343 8528 89

Severe 2594 15332 34

4.5 Analysis

For analysis, common genes between two consecutive stages are taken and then their

neighbourhoods i.e communities are analyzed. Table 4.13 shows the details of common

genes between two consecutive stages.

Table 4.13: Common Genes between two consecutive stages.

Stages Common Genes

Control and Early 2251

Early and Moderate 2213

Moderate and Severe 2207

Changes in the communities of all common genes between in two consecutive stages

are analyzed. For example, analyzing size of communities of gene X in stage 1 and

stage 2 and common genes in communities of gene x in stages 1 and 2. For the anal-

ysis we picked top 20 genes according to Jaccard distance between communities of

genes between the consecutive stages. Let, CXctrl
and CXearly

be the communities of

gene X in control and early network respectively. Then, the Jaccard distance between

communities of Gene X in control and early network can be calculated as:

JD(Xctrl vs early) =
|CXctrl

∩ CXearly
|

|CXctrl
∪ CXearly

|
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Table 4.14: Community change bwtween the networs.

Gene Size of community

in control network

Size of community in

incipient network

Number of

Common genes

Jaccard

Distance

OR2C3 847 3 0 0.9988

ADGRG1 25 825 0 0.9988

RALGAPA2 847 3 0 0.9988

SPIRE1 847 2 0 0.9988

LRG1 7 825 0 0.9988

Table 4.15: Top 20 genes whose communities are disturbed. Genes marked in red colour

are involved in the AD and genes in orange colour are involved in some other neurological

disorder.

]

Control to early Early to Moderate Moderate to Severe

OR2C3 ASAP3 ATAD3A

ADGRG1 HHEX RABEPK

RALGAPA2 NUDCD1 SLC27A1

SPIRE1 OR10D3 CACNB4

LRG1 ITGAM TM4SF5

TFCP2L1 JAM3 HIBADH

MED23 THBS1 GP2

TPM3 BTRC ABCB5

MMP9 COG5 KCNJ11

IPO11 ZNF33B ADGRE3

VPS53 GABRD ADAM12

DDX52 WDR62 FBN3

COL8A1 ZNF449 HAUS8

CACNG8 S1PR5 AXIN2

ABCC8 FAM83A GABRD

LAMA3 ADAMTS2 OR2B2

ITGA2 OPN4 SHISA9

MRPL41 RHOT2 ZNF177

PCDHB1 GP2 ZNF559-ZNF177

PPP2R1B ELOVL6 SAR1B
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4.5.1 Control to Early

In the top 20 genes whose communities got disturbed during control to early stage of

AD, many genes like MMP9, VPS53, ABCC8, LAMA3, ITGA2 are found to be

associated with AD or some other neurological disorders. Other than these genes many

other genes are recently shows some association with the AD.

In [109], Pathak et al. found that the OR2C3 gene is one of the genes that is

methylated in individuals with mild cognitive impairment (MCI) in Mexican American

population. Methylation of this gene is associated with an increased risk for MCI, which

is a precursor to Alzheimer’s disease. The OR2C3 gene is involved in the transport

of molecules in synapses, which are the connections between nerve cells in the brain.

This suggests that changes in the OR2C3 gene may contribute to the development of

cognitive impairments and may be a potential target for therapeutic intervention.

In [110], Folts et al. found that the ADGRG1 gene encodes for a specific type of

G protein-coupled receptor (GPCR) called an adhesion GPCR, which plays a critical

role in the development and function of the nervous system. The study found that the

ADGRG1 gene is highly expressed in the brain and spinal cord, and that mutations

in this gene are associated with several neurological disorders, including Parkinson’s

disease, Alzheimer’s disease, and Schizophrenia. In [111], Camilli et al. investigated the

role of a protein called leucine-rich alpha-2-glycoprotein 1 (LRG1) in various disease

conditions. The study found that LRG1 plays a role in the development and progression

of several diseases, including cancer, inflammation, and cardiovascular disease.

4.5.2 Early to Moderate

During the early to moderate stage, we found that HHEX, NUDCD1, JAM3,

BTRC, ZNF33B, GABRD, ADAMTS2, OPN4, and ELOVL6 were among the

top 20 genes that experienced community disturbance and are associated with either

Alzheimer’s Disease or some other neurological disorder. Other than this many other

genes have shown the association with Alzheimer’s disease. In [112] Su et al. found

that Alzheimer’s disease is deferentially associated with the ASAP3 low expression

phenotype. Salih et al. in [113] found that variations in the ITGAM gene, which codes

for the protein CD11b, can influence a person’s risk for developing Alzheimer’s disease.

The study suggests that individuals with certain variations in the ITGAM gene may
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be more susceptible to the toxic effects of amyloid beta, a protein that forms plaques in

the brains of Alzheimer’s patients. This increased susceptibility may increase the risk

of developing Alzheimer’s disease.

The study [114] aimed at identifying the potential biomarkers for Alzheimer’s dis-

ease using a proteomic analysis of platelet membrane proteins. One of the genes

identified in the study as a potential biomarker for Alzheimer’s disease is THBS1

(thrombospondin 1). The study found that THBS1 levels were significantly increased

in the platelets of Alzheimer’s disease patients compared to healthy controls. Addition-

ally, the study found that THBS1 levels were positively correlated with the severity of

Alzheimer’s disease symptoms, as measured by cognitive testing.

4.5.3 Moderate to Severe

We found that CACNB4, HIBADH, KCNJ11, ADAM12, FBN3, AXIN2, and

SHISA9 were among the 20 genes that experienced community disruption and are

associated with either Alzheimer’s Disease or some other neurological disorder during

the moderate to severe stage. Apart from these genes many other genes among the top

20 genes found to be associated with the AD. In [115], Zhao et al. found that the protein

ATAD3A plays a significant role in the development of neuropathology and cognitive

deficits in Alzheimer’s disease. The study found that when ATAD3A forms oligomers

(clusters of multiple protein molecules), it leads to an increase in the formation of

amyloid plaques in the brain, which is a hallmark of Alzheimer’s disease. Additionally,

the study found that these oligomers also cause cognitive deficits in the brain, such

as memory loss and a decline in cognitive function. Overall, the findings of this study

suggest that ATAD3A plays a significant role in the development of Alzheimer’s disease

and that targeting ATAD3A may be a potential therapeutic approach for treating the

disease.

4.6 Conclusions

In this chapter, a new community discovery algorithm, NBCD, which works using two

novel similarity functions based on a novel similarity parameter and a set of ground

rules that can handle the conflicts is proposed. For a fair comparison, NBCD is com-

pared with community discovery algorithms with different approaches, i.e. algorithms
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based on random walks, label propagation, neighbours-based similarity, optimization

of performance measures and hybrid approaches. From the results, unlike other com-

munity discovery algorithms used for comparison, NBCD performs equally well on all

the performance measures considered.

The NBCD algorithm is then used to identify the gene’s communities in different

stages of AD. Genes whose communities are being changed or disturbed drastically

during the disease progression from one stage to the next are being observed. Such

genes are found to be associated with AD. Interestingly, some identified genes are

recently found to be associated with AD.

Our findings suggest that the community disturbance of specific genes may play

a role in the progression of Alzheimer’s disease. Further studies are needed to fully

understand the mechanisms underlying the changes in gene expression and the impact

on disease progression.

4.7 Summary

In this chapter, a novel neighbour-based community discovery algorithm, NBCD, is

introduced. The NBCD is then compared with different state-of-the-art and recently

published community discovery algorithms. To evaluate the performance of the NBCD

different popular performance measures was used. The extensive experiments shows

that the NBCD perform better and consistent than the other considered algorithms.

Later in the chapter NBCD was used to analyze the community structure of genes in

Alzheimer’s stage-wise disease networks.
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Chapter 5

Temporal Analysis of Disease

Networks

Temporal graphs, also known as dynamic graphs, are a type of graph data structure that

represents the evolution of relationships over time. Temporal graphs can be classified

into two main categories: static temporal graphs and dynamic temporal graphs. Static

temporal graphs represent a snapshot of the graph at a specific time point, while

dynamic temporal graphs represent the evolution of the graph over time. Temporal

graphs can be represented as G(V,E, T ) where V is the set of vertices, T is the set

of time stamps and E, a set of temporal edges, where each temporal edge is a triplet

(u, v, t), with u, v ∈ V and t ∈ T [116]. Temporal graphs are particularly useful

for modeling dynamic systems, such as social networks, transportation systems, and

biological networks.

In the context of biological networks, temporal graphs can be used to track the

evolution of gene expression or protein-protein interactions over time, providing insights

into the underlying mechanisms of disease progression. In [116], Hosseinzadeh et. al

discussed about the temporal graphs and their applications in biology and medicine.

5.1 Literature Survey

In [117], Thompson et al. highlight the potential for temporal network theory to ad-

vance the understanding of brain disorders, such as Alzheimer’s disease, schizophrenia,

and depression which are characterized by abnormal functional connectivity patterns.
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Authors also used the temporal degree and closeness centrality to find out the central

nodes in the brain network dynamics.

In [118], Li et al. constructed a temporal network using spatial information and

gene expression data and then they applied the clustering algorithm on the tempo-

ral network constructed to identify protein complexes. Similarly in [119], Meng et

al. constructed temporal-spatial dynamic PPI networks by integrating protein-protein

interaction networks with gene expression data and subcellular localization informa-

tion. They introduced the maximum degree centrality (MDC) method and constructed

temporal network to evaluate the essentiality of hub proteins.

In [120], Hiram et al. discussed the importance of temporal graph ranging from epi-

demic modelling and predicting the epidemic propagation, to evaluation of measures for

epidemic controlling. In [121], Humphries et al. introduced a framework for modeling

the spread of epidemics on temporal networks. The framework consists of three main

components: a model for the dynamics of the epidemic on the network, a model for the

temporal evolution of the network, and a method for inferring the parameters of the

model from data.

In [122], Gao et al. developed a method called temporal network flow entropy

(TNFE) to detect the critical state during the disease. The authors defined the critical

state as a pre-disease state which act as a tripping point which can be helpful to prevent

the disease deterioration.

In [123], Wang et al. developed a tool, MitoTNT, to analyse the dynamics of

Mitochondria network in the cell that rapidly changes through fission, fusion, and

motility.

5.2 Centrality Measures for Temporal Graphs

The concept of centrality measures, originally applied in static graphs, has been ex-

panded to include temporal graphs as well. Centrality measures are a crucial aspect of

graph analysis and are frequently used to determine the most significant nodes within

a graph. Various metrics have been developed to define centrality, each providing a dis-

tinct perspective on the importance of a node. Below are the three popular centrality

measures which are extended to temporal graph:

• Degree Centrality: In a temporal graph, degree centrality is calculated in a similar
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way to how it is done in a static graph, but with an additional step of summing

across different time stamps. Specifically, the temporal degree centrality of a node

v in a temporal graph is determined by adding up the degree of node v in each

individual snapshot [117]. The temporal degree centrality of a node v, TD(v) can

be calculated as follow:

TD(v) =
t=n∑
t=1

degv(t)

where, degv(t) is the degree of node v in graph G at timestamp t.

• Temporal Closeness Centrality: Closeness centrality measure takes into account

the distance of a node from all other nodes in a graph. It is often used to

identify nodes that have quick and easy access to information or resources within

a network. Temporal closeness centrality of a node v is obtained by averaging

the sum of the inverses of the optimal distances between v and other nodes of

the temporal graph. The temporal closeness centrality TC(v) of node v can be

calculated as follow:

TC(v) =
1

n− 1

∑
u∈V \u

1

du,v
,

where n is number of vertices and du,v is the optimal distance between node u

and v such that u ̸= v.

• Temporal Betweenness Centrality: It is widely used centrality measure to identify

the important nodes. Betweenness centrality of a node is calculated as number

of times a node appears in an optimal path between any pair of nodes. The

temporal closeness centrality TB(v) of node v can be calculated as follow:

TB(v) =
∑

s ̸=v ̸=u∈V

δs,u(v)

δs,u
,

where δs,u is the number of optimal paths between node s to u δs,u(v), is the

number of times v appears in the optimal paths between s and u.

5.2.1 Issues in implementing centrality measures for temporal graph

In section 5.2, for centrality measures we have used the word ”optimal path” instead

of shortest path which is considered as optimal path in static networks. The reason

behind using the word ”optimal path” is that there could be many optimal paths in
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temporal networks. In a temporal network, path with the least number of edges(shortest

path) can be considered as a optimal path or may be a path with earliest arrival

time(foremost) or may be a path with the minimal travel time(fastest) or may be

a combination of two like shortest foremost. Hence, deciding the optimal path is a

important task.

Xuan et al. in [124], presented the algorithms to calculate shortest, foremost and

fastest paths. In [125], Kim et al. gave an efficient algorithm with a polynomial time

complexity to calculate betweenness centrality based on the shortest path. However,

for a large network calculating betweenness centrality in a temporal graph is compu-

tationally very expensive. On the other hand researchers have found that finding the

foremost and fastest walk is a NP-hard problem [116, 126, 127].

5.3 Motivation

Recently, many studies have been carried out comparing different neuro-degenerative

diseases. However, the stage-wise analysis of diseases has not been initiated so far.

Believing that different genes can be responsible for different stages of disease progres-

sion, we, in this chapter, have introduced a modified version of betweenness centrality

named transitioncentrality for temporal graphs.

5.4 Experiments

In this chapter we introduce a new centrality measure for temporal networks called

transitioncentrality measure which ranks the nodes on the basis of their importance in

network progression. Proposed Transition centrality measure is used on three different

gene expression datasets(Alzheimer’s Disease, Parkinson’s Disease and Human breast

cancer cell cycle) to identify the genes that are responsible for disease progression.

Here we formally describe the definition and mathematical representation of tem-

poral graph, temporal path and shortest temporal path.

Definition (Temporal Graph). An undirected Temporal graph G can be rep-

resented as G(V,E, T ) where V is the set of vertices, E is the set of edges, E ⊆
{({u, v}, t) | u, v ∈ V, u ̸= v, t ∈ T} and T is the time stamp, T ∈ {1, 2, ....N}. For
a temporal graph G, Vt is the set of vertices and Et is the set of the edges present in
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the graph at time stamp t, t ∈ T, Vt ⊆ V and Et ⊆ E.

Definition (Temporal Path). A temporal path is a path such that the time stamp

of every edge in the path should be equal or greater than it’s previous edge.

Definition (Shortest Temporal Path). Shortest temporal path is a shortest path

such that the path should be a temporal path.

5.4.1 Transition Centrality

Transition centrality(CT ) is a measure for temporal graphs that calculates the impor-

tance of nodes during a network evolution, that is, graph evolution from a particular

time stamp to the next time stamp. Transition centrality identifies the nodes through

which the nodes in graph Gti at time instant ti are connected to the newly added nodes

in graph Gti+1 at next time instant ti+1. In other words, it identifies the nodes through

which most communication happens between the old and new nodes. The mathematical

representation of transition centrality for a temporal graph G(V,E, T ), T = {ti, ti+1}
is as follow:

CT (v) =
∑
a̸=b

σa,b(v)

σa,b
, a ∈ Vti , b ∈ {Vti+1 \ Vti}

where σa,b is the number of temporal shortest path from a to b and σa,b(v) is the number

of temporal shortest path between a to b that passes through v.

5.4.2 Datasets

Gene expression data of Alzheimer’s disease, Parkinson’s disease and human breast

cancer cell cycle are considered for identification of crucial nodes responsible in disease

progression.

• Alzheimer’s Disease(AD): Alzheimer’s disease a neurological disorder. The AD

dataset(GSE281461) can be downloaded form Gene Expression Omnibus(GEO).

This dataset contains the gene-expressions from gray matter of hippocampus

tissue. The dataset consists samples from control, early, moderate and severe

stages of AD.

• Parkinson’s data: Parkinson’s disease is another neurological disease. The data

consists patients information at different time points including demographic

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28146
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data(gender and age in year 4) and clinical data(General PD Severity, Disability,

Cognition, Autonomic Function, Sleep, and Mental Health). However, for our ex-

periments we only consider the gene-expression data of patients at different PD

severity level. After excluding the patients with incomplete data we got data from

4 stages stage 0 to stage 3 where stage 0 represents the control state and stage

3 represent the severity of PD. Parkinson’s disease dataset can be downloaded

from Parkinson’s Progression Markers Initiative1.

• Human Breast Cancer Cell Cycle: The cell cycle is a highly regulated cyclic

process that leads to cell division. It comprises of distinct phases through which

cells proceed in a pre-defined order leading to their duplication and transmission

of genetic information from one generation to the next. The phases of the cell

cycle are G1, S, G2 and H.

G1 phase (which is the gap between two divisions and the cells prepare them-

selves for division), S phase ( cells undergo DNA synthesis), G2 phase (between

S phase and M phase) and M phase (a set of ordered processes which involves the

generation of mitotic spindles leading to cell division). A quiescent G0 phase also

exists before G1 and after the M phase, which includes cells that have temporar-

ily or permanently halted cell division [128]. The cell cycle is regulated through

a series of checkpoints (G1-S and G2-M interface), ensuring that each stage is

completed fully before proceeding to the next. This is controlled through the in-

teractions of large groups of genes that are dynamic and ensure temporal control

[128]. To understand the evolution of interactions between genes in different cell

cycle phases, Human breast cancer cell cycle data were obtained from the GEO

database (GEO Accession ID: GSE944792).

5.4.3 Graph Construction

For the initial graph construction for every stage of AD and PD dataset, we have

constructed the networks using tcGONet framework, proposed in chapter 3 [4].

To compute the transition centrality, temporal graph for each consecutive stage

is constructed. For example in AD datasets, temporal graphs between the con-

1https://www.ppmi-info.org/
2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94479
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secutive AD stages i.e from control to incipient, incipient to moderate and mod-

erate to severe are built. Similarly, temporal graphs for PD stages are also

constructed. The algorithm for the temporal graph construction is as follows:

Algorithm 3: Temporal Graph Construction

Input: Two graph instances, G(Gti(Vti , Eti), Gti+1(Vti+1 , Eti+1))
Output: Temporal Graph

GT (V,E, T ), V = {Vti ∪ Vti+1}, E = {Eti ∪ Eti+1}, T = {1, 2}
1 for edge in Eti do
2 Add edge in GT with T=1

3 for edge in {Eti+1 \ Eti} do
4 Add edge in GT with T=2

Using the framework [4] we constructed the network for all stages of each dataset.

Table 5.1 shows the description of static networks of the disease constructed for all

stages. Then using the proposed algorithm we constructed the temporal network for

each consecutive stage. Table 5.2 describes the temporal networks constructed.

Table 5.1: Disease stage wise network description

Disease Network Nodes Edges Avg. Degree

AD

Control 2435 11842 9.73

Incipient 2580 15076 11.69

Moderate 2343 8528 7.28

Severe 2594 15332 11.82

PD

Stage 0 1548 14736 19.04

Stage 1 1985 45890 46.24

Stage 2 2049 71447 69.74

Stage 3 2045 62962 61.58

Cancer Cell-cycle

G0G1-S(R1) 3510 38490 21.93

S-G2M (R2) 1617 9065 11.21

G2M-G0G1 (R3) 2979 28156 18.90
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Table 5.2: Disease temporal network description

Disease Network Nodes Edges(t=1) Edges(t=2)

AD

Control and Incipient 2764 11842 14518

Incipient and Moderate 2710 15076 8093

Moderate and Severe 2730 8528 14901

PD

Stage 0 and Stage 1 2038 14736 36044

Stage 1 and Stage 2 2106 45890 29272

Stage 2 and Stage 3 2114 71447 6989

Cell-cycle
R1 and R2 4298 38490 6191

R2 and R3 3872 9065 26192

R2 and R3 4648 28156 27455

5.5 Results

For every temporal graph constructed we calculated the transition centrality of all

genes to rank the genes according to their importance in disease progression between

two consecutive stages. For the analysis purpose we have examined the top 20 genes in

each temporal network. Table 5.3, 5.4, 5.5 show the top 20 genes according to transition

centrality in all diseases(stage-wise).

5.6 Analysis

For the validation of the findings, the role or involvement of identified genes in the

particular stage are examined through literature. In addition, direct interaction of

identified genes with the disease related genes(AD:PSEN1 , APP , APOE , PSEN2 ,

MAPT , NOS3 , HFE , ABCA7 , PLAU and MPO; PD: GBA, LRRK2, PRKN, SNCA,

PINK1, PARK7 and VPS35) are also obtained.

5.6.1 Alzheimer’s Disease

• Genes of interest during Control to Early(incipient) stages of AD:

– RARA: Suping Cai et. al. in [129] found that the left superior temporal sul-

cus chortical thickness and RARA genetic expression are highly correlated
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Table 5.3: Top 20 genes according to transition centrality for every temporal network in

AD.

Control to Incipient Incipient to Moderate Moderate to Severe

ABCB4 JAK2 GPER1

RARA TGFB1 CASR

KIF20B DNM2 JAK2

RAB29 BCL2L1 AMFR

PDGFC FGFR2 COL1A1

BCL2L1 CFTR P2RX1

CCR2 CCR2 PLAUR

STK24 SLC8A1 CLIC4

F9 FBXW7 SERPINB13

LRP1 HLA-DRB1 CDK5

ERAP1 MAS1 FASLG

LRP6 SFN ARHGDIB

DHRS2 PRKCD TERT

CFTR RARA TRAF4

PPIA GNAS VCL

MARK2 PDLIM4 DBT

APC NOS1 CCR2

HLA-DRB1 JAK1 DICER1

HMOX1 PLAUR ABCB4

ATP7B OAS3 PRKDC
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Table 5.4: Top 20 genes according to transition centrality for every temporal network in

PD

Stage 0 to Stage 1 Stage 1 to Stage 2 Stage 2 to Stage 3

RPS3 ACTB LRRK2

BCL2 EGFR EGFR

ACTB BCL2 ACTB

ZBTB40 LRRK2 KRTAP6-1

ZNF629 KRAS KRT73

HMX1 BCL2L1 ZIK1

SOHLH2 KCNC2 DLST

VAMP3 FTCD MEF2C

EGFR HSPA8 HSPA8

LRRK2 AK8 EXT2

AR ZFP90 BCL2

BCL2L1 GTF2H3 FLYWCH1

SLC2A6 MAN2B2 THAP8

SLC45A1 HMGB1 KCNC2

HMGB1 ANXA4 COPG2

PCGF6 APOB BCL2L1

ESS2 RSF1 DCTN3

FGG MEF2C GRIN2C

KDM6B SLC25A5 LRRTM4

EEF1A1 EXT2 ELFN1
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Table 5.5: Top 20 genes according to transition centrality for every temporal network in

Cancer Cell-cycle.

R1 to R2 R2 to R3 R3 to R1

AKT1 ACTB HSP90AA1

GAPDH EGF RPS27A

BRCA1 HIF1A AKT1

MDM2 MDM2 RHOA

HSP90AA1 HSP90AA1 ACTB

RPS27A ITGB1 GAPDH

ITGB1 RHOA FN1

RHOA RPS27A VEGFA

CDK1 BRCA1 HDAC1

VEGFA JUN LRRK2

KDR CDK1 CD4

FN1 FN1 DLG4

CACNA1C CDKN1A MDM2

HIF1A PTPRC CCNA2

HIST2H2BE HIST1H2BD JUN

PLK1 VEGFA CDK2

TYMS HDAC1 FOS

EGF HIST1H2BK GRB2

BMP4 CCND1 EGF

CD4 CDK6 AR
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and associated with conversion from normal cognition to mild cognitive im-

pairment. In [130], Deepanshi et al. also identified RARA as top gene

associated with the AD progression.

– BCL2L1: Kitamura er al. in [131] investigate the levels of some of the

proteins involved in the regulation of apoptosis (programmed cell death) in

the brains of Alzheimer’s disease patients compared to healthy controls. The

proteins studied include Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1, and CPP32.

Findings of the study suggest that there are changes in the levels of these

proteins in the brains of Alzheimer’s disease patients, particularly in regions

involved in memory and learning. Specifically, the study found that the

levels of Bax, Bak and Bad are increased, while the levels of Bcl-2 and Bcl-x

have decreased in the brains of Alzheimer’s disease patients.

– CCR2: In [132], El Khoury et al. investigated the role of a protein called

CCR2 in the development and progression of Alzheimer’s disease. The study

used mice that were genetically modified to lack CCR2 and found that these

mice showed a significant reduction in the number of microglia, a type of

immune cell in the brain that is responsible for clearing away damaged cells

and debris. The researchers found that the lack of CCR2 led to a signifi-

cant increase in the accumulation of amyloid beta (Aβ), a protein that is

known to play a key role in the development of Alzheimer’s disease. This

accumulation of Aβ was associated with a significant increase in the num-

ber of neurofibrillary tangles, another hallmark of Alzheimer’s disease. The

study also found that the mice lacking CCR2 showed a significant decrease

in the number of synapses, the connections between neurons that are cru-

cial for cognitive function. This was accompanied by a significant decline in

cognitive function, as measured by tests of memory and learning. Overall,

the findings of the paper suggest that CCR2 plays an important role in the

accumulation of amyloid beta and the progression of Alzheimer’s disease,

and that the loss of this protein impairs microglial accumulation, leading to

an accelerated progression of Alzheimer-like disease.

– LRP1: In [133], Shinohara discuss the findings of several studies that have

investigated the role of LRP1 in the development of Alzheimer’s disease. The
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Figure 5.1: Protein-Protein interaction between identified genes(control to early stage)

and top 10 AD related genes. AD , Identified genes .

studies suggest that LRP1 plays a critical role in the clearance of amyloid-β

(Aβ) peptides, which are a key component of the plaques found in the brains

of individuals with AD, and in the regulation of Apolipoprotein E (ApoE),

a protein that is involved in the transport and clearance of Aβ. The authors

conclude that the evidence from clinical and pre-clinical studies suggests that

LRP1 plays a critical role in the pathogenesis of AD and targeting LRP1

may be a potential therapeutic strategy for the treatment of AD.

– ABCB4: It controls brain lipid transport and has been reported as a blood

biomarker with APOE [134, 135].

– Apart from this, many of the genes have direct interaction with the AD re-

lated genes. Figure 5.1, shows the interaction between top 20 genes identified

(control to early stage) and AD related genes.

• Genes of interest during Early(incipient) to moderate stage of AD:

– JAK1/JAK2: The Nevado-Holgado et al. in [136] used a combination of
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genetic data, clinical data, and empirical validation to identify potential

targets for the development of therapeutic treatments for Alzheimer’s dis-

ease. The study found that the Jak-Stat signaling pathway is a potential

target for such treatments, as it appears to be strongly associated with the

development of Alzheimer’s disease.

– FGFR2 (important for brain development repair and maintenance) is one of

the several FGF receptors. In [137], Klimaschewski et al. discuss about the

role of fibroblast growth factor (FGF) signaling in various neurological disor-

ders such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis.

The study found that FGF signaling is altered in these diseases, leading to

changes in neural cell survival, differentiation, and migration. The study

found that in Alzheimer’s disease, FGF signaling is disrupted, leading to the

formation of amyloid plaques and the death of neurons.

– PRKCD: The study in [138] found that the expression of PRKCD decreases

in AD patients compared to healthy controls. This suggests that the de-

creased expression of PRKCD may contribute to the dysfunction of the Fc

gamma receptor-mediated phagocytosis pathway in AD.

– TGFB1: The Von Bernhardi et al. in [139] suggest that abnormal TGFβ

signaling may contribute to the formation of amyloid plaques and neurofib-

rillary tangles, which are characteristic features of Alzheimer’s disease. They

also suggest that abnormal TGFβ signaling may lead to inflammation and

damage to the blood-brain barrier, which could further contribute to the

development of Alzheimer’s.

– DNM2: Finding in [140] suggests that the Dynamin 2 gene may play a role

in the development of late-onset Alzheimer’s disease, independent of the well

established risk factor APOE-epsilon4.

– Figure 5.2 shows the interaction between top 20 identified genes(early to

moderate stage) and AD related genes.

• Genes of interest during moderate to severe stage of AD:

– GPER1: The findings of [141] indicate that GPER1/GPR30 is present in

various regions of the brain, including the hypothalamus and hippocampus,
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Figure 5.2: Protein-Protein interaction between identified genes(early to moderate stage)

and top 10 AD related genes. AD , Identified genes .

and is involved in regulating various neural processes such as synaptic plas-

ticity and neuroprotection.

– CASR: In [142], Gardenal et al. discussed the findings of a study in which

researchers used a triple transgenic mouse model of Alzheimer’s disease (AD)

to investigate the expression of the calcium-sensing receptor (CaSR) in the

hippocampus. The findings of this study suggest that increased expression

of the CaSR in the hippocampus may play a role in the development of AD

and that targeting the CaSR may be a potential therapeutic strategy for this

disease. The study found that in the triple transgenic mouse model of AD,

there was an increase in the expression of the CaSR in the hippocampus.

– AMFR: In [143], Yang et al. suggest that the autocrine motility factor

(AMF) receptor plays a role in the processes of learning and memory in the

brain. The study provides evidence that the AMF receptor is involved in

synaptic plasticity, which is the ability of the connections between neurons

(synapses) to change in strength. It is found that AMF receptor is essential
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for spatial learning and memory in the hippocampus, a brain region involved

in memory formation. The study also suggests that AMF receptor may

be a potential target for the development of treatment for memory-related

disorders such as Alzheimer’s disease.

– CLIC4: The study [144] found that this protein is involved in the activation

of the NLRP3 inflammasome, a complex of proteins that play a key role in

the production of IL-1β, a pro-inflammatory cytokine. The dysregulation of

the NLRP3 inflammasome is recognized as the common feature of chronic

inflammatory and metabolic diseases including Alzheimer’s disease.

– CDK5 (cyclin-dependent kinase 5): This is a protein that plays a role in

the regulation of neural cell growth and survival. Fukasawa et al. in [145]

found that the expression of the CDK5 gene was significantly higher in the

brains of individuals with Alzheimer’s disease as compared to those without

the disease. This suggests that an over-activation of the CDK5 protein may

contribute to the development of Alzheimer’s.

– The interaction between top 20 identified genes(moderate to severe stage)

and AD related genes are shown in Figure 5.3.

5.6.2 Parkinson’s Disease

• Control to stage 1:

– RPS3: In [146], De Graeve et al. found that the mammalian protein RPS3A

can counteract the aggregation and toxicity of α-synuclein in a yeast model

system. α-synuclein is a protein that is known to be involved in the devel-

opment of Parkinson’s disease and other neurodegenerative disorders. The

researchers found that when RPS3A was added to yeast cells expressing α-

synuclein, the protein was less likely to aggregate and caused less toxicity to

the cells.

– ACTB, cytoplasmic beta actin is associated with early-onset of severe

deafness-dystonia syndrome, craniofacial dysmorphism [147].

– EGFR, Epidermal Growth Factor Receptor signalling pathway including

Cx26, might play an important role in dopaminergic neuronal cell death

during the process of neuro-apoptosis [148].
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Figure 5.3: Protein-Protein interaction between identified genes(moderate to severe

stage) and top 10 AD related genes. AD , Identified genes .

– SLC45A1: In [149], Ayka et al. found that SLC transporters play an im-

portant role in the transportation of molecules across the cell membrane,

and the defects in these transporters may contribute to the development of

neurodegenerative disorders.

– We also looked for the physical interaction of identified genes with the PD

related genes. Figure 5.4 shows the interaction between top 20 identified

genes(Control to stage 1) and PD related genes.

– LRRK2: LRRK2 mutations are the major cause of inherited and sporadic

Parkinson’s disease [150, 151].

• Stage1 to Stage 2:

– BCL2L1: In [152], Chakrabarti et al. use a bioinformatics-based approach

to analyze the mechanisms by which the protein α-synuclein contributes

to the development of Parkinson’s disease. One of the key findings of the

study was that the BCL2L1 gene, which encodes the protein Bcl-xL, is a
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Figure 5.4: Protein-Protein interaction between identified genes(stage 0 to stage 1) and

PD related genes. PD related genes , Identified genes , PD related gene which is also

present in identified gene list .

potential target for the cytotoxic effects of α-synuclein. The researchers

found that α-synuclein can interact with Bcl-xL and disrupts it’s normal

function, which is to protect cells from apoptosis (programmed cell death).

This disruption may lead to the accumulation of damaged cells in the brain,

which is a hallmark of Parkinson’s disease. Additionally, the study found

that the BCL2L1 gene is down-regulated in Parkinson’s disease, which may

further contribute to the development of the disease by reducing the levels

of Bcl-xL and increasing the susceptibility of cells to α-synuclein-mediated

toxicity.

– AK8: Adenylate kinase assesses the risk of diseases where oxidative stress

plays a crucial role in neurodegenerative diseases [153].

– APOB: The gene found statistically significant in PD[154].

– HSPA8: The finding in [155] shows that the chemical compound rotenone,

which is known to be toxic to cells and is believed to contribute to the

development of Parkinson’s disease, has the ability to decrease the levels

of a specific protein called HSPA8/hsc70 in cells in a laboratory setting

(in vitro). HSPA8/hsc70 is a type of protein called a chaperone protein,
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Figure 5.5: Protein-Protein interaction between identified genes(stage 1 to stage 2) and

PD related genes. PD related genes , Identified genes , PD related gene which is also

present in identified gene list .

which helps other proteins fold and function properly in the cell. The study

suggests that this down-regulation of HSPA8/hsc70 by rotenone may be a

new mechanism by which the chemical contributes to the development of

Parkinson’s disease.

– GTF2H3: In [156], the miR-369-3p/GTF2H3 gene was found to be differen-

tially expressed in the midbrains of patients with advanced-stage PD. The

miR-369-3p microRNA is known to regulate the expression of genes involved

in cell growth and differentiation, and the GTF2H3 gene is a member of the

general transcription factor family that is involved in DNA repair and tran-

scriptional regulation.

– Figure 5.5 shows the interaction between top 20 identified genes(stage 1 to

stage 2) and PD related genes.

• Stage 2 to Stage 3:

– DLST: In [157], Hansen et al. found that the DLST gene plays an impor-

tant role in the regulation of the α-ketoglutarate dehydrogenase complex

(KGDHC), which is a key enzyme involved in the metabolism of energy in
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the brain. The researchers found that mutations in the DLST gene can lead

to a decrease in the activity of the KGDHC, which in turn can contribute to

the development of neurodegenerative diseases such as Alzheimer’s disease

and Parkinson’s disease.

– MEF2C: Many studies found MEF2C gene as risk factor for multiple neu-

rological disorders, such as Late Onset Alzheimer’s disease (LOAD) and

Parkinson’s disease [158, 159, 160, 161].

– EXT2: The study in [162] suggests that changes in the expression of EXT2

gene may play a role in the development of neurodegenerative diseases and

aging-related changes in the brain

– GRIN2C: In [163], Liu et al. found that increasing the activity of a specific

subunit of the NMDA receptor, known as GluN2C, in a specific brain re-

gion called the external globus pallidus, led to improved motor function in

a mouse model of Parkinson’s disease. The study also found that this in-

crease in GluN2C activity led to increased firing of a specific type of neuron

called fast-spiking neurons in the external globus pallidus. The GRIN2C

gene encodes for the GluN2C subunit of the NMDA receptor. The study

suggests that increasing the activity of GluN2C-containing NMDA recep-

tors in the external globus pallidus may be a potential therapeutic strategy

for improving motor function in Parkinson’s disease.

– The interaction between top 20 identified genes(stage 2 to stage 3) and PD

related genes are shown in Figure 5.6.
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Figure 5.6: Protein-Protein interaction between identified genes(stage 2 to stage 3) and

PD related genes. PD related genes , Identified genes , PD related gene which is also

present in identified gene list .

5.6.3 Human Brest cancer cell cycle

• G1-S Transition: Literature search of first 20 genes from the r1 to r2 transi-

tion table reveals that they play an important role in G1-S phase transition.

Some of the genes included AKT1 (important for proliferation, observed in

cancers)[164], MDM2 (preventing p53 activation and promoting cell cycle pro-

gression through G1-S phase)[164], BRCA1 (checkpoint protein involved in all

phases of cell cycle)[165].

• G2M Transition: Literature search of first 20 genes from the r2 to r3 transition

table reveals that they play an important role in G2-M phase transition. Some of

the genes were important for producing proteins like Cyclin B and cdk1 which are

crucial for G2-M phase transition and progression into M phase (Fig 1B). Also

other genes like ACTB (important cell cycle regulator, control cell shape deforma-

tion during mitotic cell division)[166], RHOA (member of RHO-GTPases, impor-

tant for modulating signalling pathways crucial for cell cycle progression)[166],

ITGB1 (used to control YWHAZ which is known to control G2-M checkpoint

protein)[167].
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• M-G0/G1 transition: Since the data was obtained from a cancer cell line, the

genes obtained from r3 to r1 transition play an important role in continuous cell

cycle progression and helps in maintaining it’s cancerous properties. Some of

the genes included NT5E/CD73 were experimentally shown that upon their inhi-

bition, epithelial-to-mesenchymal transition, cell migration and invasion ( often

linked to many cancer phenotypes) was inhibited[168], RPS27a, which is known

to arrest cell cycle at G2-M upon knockout[169], BMP4, upon its inhibition by

TGFβ/cyclin D1/Smad proteins promotes breast cancer stem cell self-renewal

activity[170].

5.7 Conclusions

Recently, many studies have been carried out comparing different neuro-degenerative

diseases. However, the stage-wise analysis of diseases has not been taken up. Believing

that different genes can be responsible for different stages of disease progression, we,

in this chapter, have introduced a modified version of betweenness centrality named

transitioncentrality for temporal graphs. We have tested the transition centrality on

stage-wise data of Alzheimer’s and Parkinson’s diseases. Using the transition centrality,

we found the genes which may play a crucial role in the disease progression. As a result,

we have identified the stage-specific genes. Interestingly, we could validate the identified

genes’ specificity in a particular stage from the literature.

5.8 Summary

In this chapter, we first discussed temporal graphs and different works that used tempo-

ral networks to analyse the dynamicity of different biological networks. Then centrality

measures in the temporal networks and their fundamental problems are discussed. Later

in the chapter, a formal definition of temporal network, temporal path and temporal

shortest path according to our problem specification are given. Introduction to an algo-

rithm to construct the temporal network is provided. We introduced a new centrality

measure to identify the central genes in terms of network progression(between any two

time stamps). To evaluate the transition centrality measure, this measure is tested on

three different disease datasets(AD, PD, HBC). The results are validated using litera-
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ture. Interestingly, in every dataset, many genes that are identified found to be related

to the disease.

In conclusion, we introduced a new centrality measure called the transition cen-

trality measure for temporal networks. Using the transition centrality measure, we

identified the central genes in terms of disease progression between two consecutive

stages. We also validated our findings using the literature.
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Chapter 6

Conclusion & Future Work

6.1 Conclusion

This PhD thesis explores the analysis of disease networks and the identification of

potential biomarker genes using gene expression data. The thesis focuses on Alzheimer’s

disease, but a generalized framework is also presented for the analysis of other diseases.

The thesis starts by introducing the problem of identifying potential biomarker genes for

diseases and the challenges associated with it. Then, it provides a review of the existing

techniques for the analysis of gene expression data, such as clustering, differential gene

expression analysis, pathway analysis, and network analysis. Network analysis is chosen

as the primary technique for the analysis of gene expression data because it can provide

a global view of the interactions among genes and can reveal the underlying biological

processes involved in the disease.

The first contribution of the thesis is the development of a generalized frame-

work(tcGONet) for the construction of disease networks and the identification of po-

tential genes from those networks. The tcGONet framework involves the integration

of gene expression data with Gene Ontology. The tcGONet framework includes sev-

eral steps, such as data preprocessing, network construction, network analysis, and

gene prioritization. The framework is evaluated using several datasets, and the results

demonstrate its effectiveness in identifying potential genes for diseases.

The second contribution involves the community analysis of the Alzheimer’s disease

network using a novel neighbour-based community discovery algorithm (NBCD). The

goal of this contribution is to identify nodes whose communities are disturbed within the
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Alzheimer’s disease network as the disease progresses. The first step of this contribution

is the construction of the Alzheimer’s disease network using the tcGONet framework.

Next, the NBCD algorithm is applied to the Alzheimer’s disease network to identify

genes whose communities got disturbed. The NBCD algorithm differs from many state-

of-the-art community discovery algorithms in that it takes into account the tightness

relationship among nodes when assigning them to communities. NBCD also handles the

conflicts that may arise when multiple communities are a good fit for a particular node.

The NBCD algorithm is shown to be superior to other considered algorithms through

extensive experiments. This demonstrates its effectiveness in identifying communities

within the Alzheimer’s disease network. Once the communities have been identified,

the next step is to analyze how they change as the disease progresses. This is done by

studying genes whose communities are disturbed from one stage to another stage of

the disease. The identified genes are found to be related to Alzheimer’s disease.

The third contribution focuses on identifying stage-specific genes in disease tempo-

ral graphs. A new centrality measure called the temporal transition centrality measure

is proposed, which is designed to identify genes that play a crucial role in disease pro-

gression. First, the static networks for every stage were constructed using the tcGONet

framework. Then for every consecutive network, a temporal network was constructed.

Finally, the temporal transition centrality measure is used to rank genes according to

their importance in network progression. To demonstrate the efficacy of the proposed

centrality measure, the temporal transition centrality measure is applied to three differ-

ent stage-wise disease datasets, including Alzheimer’s, Parkinson’s, and breast cancer.

For each of these diseases, the temporal transition centrality measure was used to iden-

tify genes that were likely to be important in disease progression. The results of this

analysis were quite promising. In each of the three diseases studied, the temporal tran-

sition centrality measure was able to identify genes that had previously been linked

to the disease. Moreover, some of the genes identified by the centrality measure had

only recently been associated with the disease, suggesting that the measure was able

to detect novel disease-related genes

In summary, three distinct analyses were conducted on networks related to

Alzheimer’s disease with the aim of identifying potential biomarker genes. However,

despite using the same dataset, the genes identified from each analysis are different.

This disparity can be attributed to the specific research questions and hypotheses that

103



6.1 Conclusion

guided each analysis, resulting in varying analytical approaches and methods. Conse-

quently, different genes were deemed important or relevant in each analysis, leading to

a unique set of significant genes in each case. For instance, the first analysis sought to

extract potential biomarker genes from a disease network without considering disease

progression stages, whereas the second analysis aimed at identifying genes whose inter-

acting genes had significantly changed during disease progression. Similarly, the third

analysis aims at pinpointing genes that played a significant role in disease progression.

Although the identified genes differed, efforts were made to identify any functional sim-

ilarities between the genes identified using different methods. This involved analyzing

functional similarities through Gene Ontology (GO) analysis and identifying any shared

functions [See 2.2.2]. Additionally, gene expression patterns were compared to identify

similarities in gene regulation (up/down-regulation [See 2.2.5]), and pathway analysis

was conducted to see if genes belonged to the same pathways. Despite these analyses,

no common patterns emerged among the genes identified, although some exhibited di-

rect interactions with one another. Future biological experiments may provide insights

into how these genes relate to each other and their involvement in the disease.

It was also observed that different datasets of the same disease give a different set

of genes despite using the same methods. Some of the main reasons are:

• Biological variability: Gene expression in Alzheimer’s disease is influenced by a

variety of biological factors, such as age, gender, ethnicity, medical history and

disease severity. These factors can introduce variability into the data, even when

using the same experimental protocol.

• Sample size and composition: Differences in sample size and composition can also

impact the results. For example, a dataset with a larger sample size may be more

powerful at detecting statistically significant differences than a smaller dataset.

• Technical variability: Gene expression measurements are subject to various

sources of technical variability, including sample preparation, RNA extraction,

microarray or sequencing platform, normalization methods, and statistical anal-

ysis. Small differences in these steps can lead to different results, especially when

dealing with less expressed genes or subtle changes in gene expression [See 2.2.3].

• Source variability: Gene expressions can be extracted from a variety of tissues and
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organs in the body, including blood, skin, muscle, brain, liver, and many others.

The specific tissues used for gene expression analysis depend on the research

question and the experimental design of the study.

Overall, the PhD thesis contributes significantly to the understanding of Alzheimer’s

disease and its progression. The three contributions provide a generalized framework

for constructing disease networks, a novel community discovery algorithm for analyz-

ing Alzheimer’s disease networks, and a new centrality measure for identifying genes

that may play an important role in disease progression. The thesis sheds light on the

complexity of Alzheimer’s disease and highlights the importance of considering multiple

factors and using multiple techniques for a comprehensive understanding of the disease.

6.2 Future Work

Our research has demonstrated the immense potential of the tcGONet framework in

constructing biologically and statistically significant disease networks, which can serve

as a valuable tool for identifying biomarker genes for various diseases. With the inte-

gration of additional biological information, we believe that the tcGONet framework

can be further enhanced to create even more informative disease networks.

Furthermore, our novel community discovery algorithm, NBCD, has been shown to

outperform other similar algorithms in its ability to identify communities in different

types of networks. Although NBCD currently works only with undirected networks,

we envision its extension to directed and dynamic networks in the future, thereby

expanding its applicability to a wider range of real-world networks. Another important

feature that could be added is to use it for overlapping community discovery.

Our proposed temporal centrality measure has also proven its worth in identifying

genes that play crucial roles in disease progression. This measure, known as transition

centrality, has the potential to be applied to other temporal networks, such as social

networks, to pinpoint nodes that are of utmost importance in network progression.

In summary, our research has revealed exciting opportunities for further exploration

and innovation in the field of network analysis and its applications in various domains,

including biological and social networks.

105



References

[1] U.S. National Institute of Aging. [link]. (4, 12)

[2] Melissa C. Duff, Natalie V. Covington, Caitlin Hilverman, and

Neal J. Cohen. Semantic Memory and the Hippocampus: Revisiting,

Reaffirming, and Extending the Reach of Their Critical Relationship.

Frontiers in Human Neuroscience, 13, 2020. (6)

[3] Kuljeet Singh Anand and Vikas Dhikav. Hippocampus in health and

disease: An overview. Annals of Indian Academy of Neurology, 15(4):239,

2012. (6, 26)

[4] Shailendra Sahu, Pankaj Singh Dholaniya, and T Sobha Rani. Identi-

fying the candidate genes using co-expression, GO, and machine learn-

ing techniques for Alzheimer’s disease. Network Modeling Analysis in Health

Informatics and Bioinformatics, 11(1):1–12, 2022. (8, 73, 84, 85)

[5] Hélène-Marie Lanoiselée, Gaël Nicolas, David Wallon, Anne
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[15] Gwenaëlle G Lemoine, Marie-Pier Scott-Boyer, Bathilde Ambroise,
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of gene co-expression networks in time-series data: A case study in

drosophila melanogaster embryogenesis. Frontiers in genetics, 11:517, 2020.

(18)

[17] Joshua JR Burns, Benjamin T Shealy, Mitchell S Greer, John A

Hadish, Matthew T McGowan, Tyler Biggs, Melissa C Smith, F Alex

Feltus, and Stephen P Ficklin. Addressing noise in co-expression net-

work construction. Briefings in Bioinformatics, 23(1):bbab495, 2022. (18)

[18] Linlin Tian, Tong Chen, Jiaju Lu, Jianguo Yan, Yuting Zhang,

Peifang Qin, Sentai Ding, and Yali Zhou. Integrated Protein–Protein

Interaction and Weighted Gene Co-expression Network Analysis Un-

cover Three Key Genes in Hepatoblastoma. Frontiers in cell and develop-

mental biology, 9:631982, 2021. (19)

[19] Jiancheng Zhong, Chao Tang, Wei Peng, Minzhu Xie, Yusui Sun,

Qiang Tang, Qiu Xiao, and Jiahong Yang. A novel essential protein

identification method based on PPI networks and gene expression data.

BMC bioinformatics, 22(1):1–21, 2021. (19)

[20] S Mahapatra, R Bhuyan, J Das, and T Swarnkar. Integrated multi-

plex network based approach for hub gene identification in oral cancer.

Heliyon, 7(7):e07418, 2021. (19)

[21] Pascal Pons and Matthieu Latapy. Computing Communities in Large

Networks Using Random Walks. In Computer and Information Sciences -

ISCIS 2005, pages 284–293, 2005. (20)
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Zäıane, and Ricardo JGB Campello. Communities validity: methodi-

cal evaluation of community mining algorithms. Social Network Analysis

and Mining, 3(4):1039–1062, 2013. (61)
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