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Introduction to Computer-Aided Drug Design 
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1.1 Overview of Computer-Aided Drug Design 

Computer-aided drug design (CADD) involves discovering and developing new and effective 

pharmaceuticals (or) drugs utilizing computational methods and techniques.1 According to reports, the 

standard drug discovery cycle, illustrated in Figure 1.1, from lead identifications to clinical trials, requires 

10–15 years and over 500–800 million USD before leading to the market,.2,3 For this reason, drug research 

and commercialization are drawn-out, challenging, and expensive procedures; CADD is frequently 

employed in the pharmaceutical industry to expedite the designing process in the best possible 

way.4,5Utilizing computational tools that use AI and ML technologies in the hit-to-lead process has several 

benefits, including finding promising leads more rapidly and exploring a more expansive chemical space. 

With the CADD techniques, fewer compounds will need to be synthesized and examined in vitro, which 

can minimize the extensive trial-and-error testing required.6 As a result of the significant expansion of 

CADD over the past several years, which has enhanced awareness of complicated and demanding 

biological processes, some CADD-related technologies, such as data science, wearable technology, AI, 

and ML technologies, appear to be revolutionizing evidence-based medicine, providing a fascinating look 

into the future deep medicine.7  Technologies made it possible to find novel pharmacologically active 

drug molecules swiftly. 

 

Figure 1.1  The steps and the timeline of the standard drug discovery cycle and the role of computer-aided 

drug design (CADD) in the modern drug discovery pipeline.  

An excellent achievement of CADD has been the design and discovery of inhibitors for various critical 

illnesses, such as those caused by viruses, 8 , 9 , 10 , 11  bacterial infections, 12  cancer, 13  diabetes, 14  and 

neurological disorders, etc.15,16,17 From time immemorial, a few examples of drugs that were developed 

utilizing the CADD are presented in Table 1.1 The current emphasis in CADD is on creating new 

computer software or computer-based programmers to create large compound libraries that include 

several pharmacologically active biomolecules by enhancing their physicochemical and ADMET 

properties or develop a sophisticated new algorithm to measure the potency and selectivity of new lead 
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candidate molecules. Therefore, in the first chapter, we will discuss the most recent advances and 

developments in CADD technology.18  

Table 1.1 The list of drugs that came into existence with the help of CADD, its biological actions, and targets. 

 

1.2 A Brief History of CADD 

The last few decades witnessed significant developments in CADD methods, and the major milestone in 

the CADD can be classified into the following: 

• 1900: Introduction of lock-and-key ideas by E. Fisher (1894) and P. Enrich (1909).  

Drugs Biological Actions Targets 

Captopril,19 Valsartan20 Antihypertensive Angiotensin Converting enzyme (ACE) 

Norfloxacin21  Urinary Tract infections Topoisomerase II & IV 

Epalrestat22 Diabetic neuropathy Aldose Reductase 

 Dorzolamide23 Glaucoma  Carbonic anhydrase  

Saquinavir,24 Indinavir,25 

Ritonavir,26 Nelfinavir,27 

Efavirenz,28 Darunavir,29 

Raltegravir30 

Human immunodeficiency virus 

(HIV) 

HIV-1 protease 

Imatinib31  Acute lymphoblastic leukemia Abi tyrosinase 

Zolmitriptan32 Migraine 5-hydroxytryptamine (5HT)  

Sunitinib33  kidney cancer V EGF-R2 kinase 

Aliskiren34 Human renin inhibitor Angiotensinogen 

Tomudex35 Colorectal cancer Thymidylate synthase 

Boceprevir,36 Telaprevir,37 

Grazoprevir38 

Hepatitis C virus (HCV) 

inhibitor 

NS3/4A protease 

Crizotinib,39 Dacomitinib40 Non-Small Cell Lung Cancer 

(NSCLC) 

Anaplastic Lymphoma Kinase  & ROS 

Proto-Oncogene 1  

Saroglitazar41 Diabetic Dyslipidemia Peroxisome Proliferator-Activated 

(PPAR) 

Rucaparib42  Prostate Cancer Poly (ADP-ribose) polymerase  

Lifitegrast43 Dry eye disease LFA-1/ICAM-1 

Vaborbactam44 Bacterial infections beta-lactamase 

Erdafitinib45 Urothelial carcinoma Fibroblast growth factor receptor 

Nolatrexed46 Liver cancer EGFR, VEGF/PDGFR(receptors) 
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• 1970: Quantitative structure-activity relationships (QSAR) were established. However, it was limited to 

2- Dimensional, retrospective analysis. 

• 1980: The developments in the CADD field were significantly influenced by various crucial disciplines, 

including molecular biology, X-ray crystallography, multi-dimensional nuclear magnetic resonance 

(NMR), molecular modeling, and computer graphics. 

• 1990: Combinatorial chemistry, high-throughput screening, and human genome bioinformatics are 

current approaches in creative medical science. Target identification and lead chemical discovery are 

aided by in silico techniques like homology modeling and virtual screening. Lead optimization benefits 

from cutting-edge strategies like scaffold hopping and free energy estimates. Cost-effective preclinical 

testing benefits from in silico ADMET prediction and pharmacokinetic modeling. There are three 

significant steps involved in drug design and drug discovery: (i) Target identification and validation, (ii) 

Lead generation and optimization, and finally, (iii) Clinical studies. 

Table 1.2 lists commonly used molecular databases in CADD. 

Dataset Description Examples 

Protein Data 

Bank (PDB)47,48  

Experimentally established 3D structures of 

protein, nucleic acids, and complex assemblies 

are stored in a database. 

PDB ID: 6LU7 (Mpro), 1EVE 

(AChE), 2V5Z (MAO-B), 4NNI 

(Ribosomal protein S1 of M.TB), 

etc. 

Chemical 

databases49,50 

Small molecule databases and their biological 

activity such as interactions with specific 

proteins and possible medicinal usage. 

 

Drug bank, PubChem, ChEMBL.  

Genomic and 

proteomic 

datasets51,52  

Genomic and protein sequences datasets from 

organisms. 

Uniprot, Human Genome Project, 

Ensemble. 

 

1. 3 The Impact of Technology on CADD 

Developing medicinal chemicals that target specific molecules has become substantially more efficient 

with the emergence of computer techniques. CADD encompasses all preclinical or clinical trials, lead 

finding, optimization, and target identification. The speed and effectiveness of the drug development 

process have been significantly increased and enhanced due to considerable developments in CADD 

approaches in the post-genomic period. 
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1.3.1 Three Phases of the In-Silico Drug Design Methods 

The method of computational drug discovery can be classified into three phases involving identifying, 

optimizing, and testing prospective drug candidates using computer-aided drug designing tools: 

First phase: is target identification, in which potential pharmaceutical targets and the associated biological 

pathways are discovered using computational methods. 

Second phase: is known as lead discovery. Several potential therapeutic compounds are screened and 

narrowed down to a select few with a high affinity for the target.  

Third phase: The efficacy and safety properties of the selected drug candidates are greatly enhanced and 

optimized in the lead optimization phase. These enhanced prospects might then be the subject of 

preclinical and clinical research for future testing and development. 

1.3.2 In Silico Validation of Targets and Identification Cavity 

Identifying and validating targets is the initial and pivotal stage in the drug research pipeline. Selecting 

druggable targets from tens of thousands of potential macromolecules remains a challenge. A variety of 

technologies have recently developed to achieve these goals. 

Table 1.3 Computational algorithms employed for binding-site prediction of proteins. 

 

A protein cavity is a crevice or pocket within a protein that can bind to specific ligands or small molecules. 

These cavities are typically necessary for protein function because they allow it to interact with other 

molecules and carry out biological tasks. The amino acid sequence and its three-dimensional structure 

S.No. Name of Packages Methods 

1 Fpocket53 Geometric clustering of ligand binding pockets 

2 CASTp54 Identification of surface cavities 

3 SURFNET55 Surface-based ligand binding site prediction 

4 Meta Detector56 A consensus of multiple methods 

5 DoGSiteScorer,57 Epock,70MSpocket71 Machine learning-based pocket prediction 

6 MetaPocket63 A consensus of multiple methods 

7 Bite Net58 The deep learning-based binding site prediction 

8 Q-SiteFinder66 Voronoi tessellation-based pocket detection 

9 LISE68 Ligand-induced surface expansion method 

10 PoVME69 Volume-based pocket identification 
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contribute to the size and shape of the protein cavities. Understanding the form and function of protein 

cavities is crucial for designing and developing new drugs. Some of the computational algorithms 

employed for the binding-site prediction of proteins are reported in Table 1.3.  

1.3.3 In Silico ADMET Studies (Absorption, Distribution, Metabolism, Excretion, and Toxicity) 

The primary factors contributing to the costly failures of pharmaceutical drugs in late-stage research, 

pharmacokinetics, and toxicity, are frequently seen as failed. As a result, these factors must be considered 

as shortly as possible in the drug identification process. Due to the development of combinatory chemistry 

and high throughput screening, the number of compounds requiring preliminary data ADMET has 

considerably grown. The essential pharmacokinetics, metabolism, and toxicity endpoints may be modeled 

using in-silico technology, accelerating drug development. 

1.3.4 In Silico Drug Safety Prediction 

Early toxicity prediction is essential in drug discovery to reduce the financial risks and potential harm to 

the public. Significant losses and safety concerns might come from late-stage clinical studies or post-

marketing discovery of unfavorable toxicological consequences. Several methods can be employed to 

predict toxicities, including Genotoxicity, liver toxicity, Inhibition of CYP450 enzymes, and 

Cardiovascular toxicity. 

1.3.5 Advantages of CADD 

1. We could reduce the quantity of biological and synthetic testing in this manner. 

2. It produces the most effective medication candidate by filtering substances with undesirable 

qualities using in silico methods. 

3. It is a rapid, automated, cost-effective, and time-saving technique. 

4. It allows us to learn more about the patterns of drug-receptor interactions. 

5. In silico studies may investigate enormous chemical libraries and uncover compounds with high hit 

rates, in contrast to traditional high throughput screening methods. 

6. These strategies reduce the likelihood of failures in the latter stage. 

1.4 Drug-Likeness Molecules 

The Lipinski Rule of Five (L-Ro5) is frequently applied to determine how drug-like a molecule is. 

According to L-Ro5, molecules with the features that follow are predicted to have restricted absorption 

and permeability, a molecular weight (MW) of not more than 500 Da or g/mol, lipophilicity (LogP) of not 
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more than 5, and not more than 5 hydrogen-bond donors (HBD) and 10 not more than hydrogen-bond 

acceptors (HBA),59 and the Ghose filter (GF) adds additional criteria to forecasts to make them better. 

The GF predicts that molecules with MW between 160 and 480 Da, a logP between -0.4 and 5.6, a molar 

refractivity (A) between 40 and 130, and a total number of atoms (TNA) between 20 and 70 are expected 

to exhibit considerable absorption. 

      

                              Figure 1.2 Physico-chemical properties of drug-likeness molecules. 

Veber's rule (VR) suggests that molecules not more than 10 rotatable bonds (RB) and a polar surface area 

(PSA) of not more than 140 are more likely to be bioavailable, expanding the standard for bioavailability. 

Mugger's rule differs from L-Ro5, GF, and VR by incorporating to a further distinction between 

compounds that are drug-likeness and non-drug-likeness molecules. According to Mugger's rule, drug-

like compounds are characterized by a MW of 200-600, a LogP range: -2 to 5, PSA limit: ≤150, NR count: 

≤7, NC count: >4, NH count: >1, RB limit: ≤15, HBD limit: ≤5, HBA limit: ≤10. 

1.5 Main Categories of CADD Approaches: 

CADD approaches are primarily classified into two categories for developing drugs or pharmaceuticals: 

1.5.1 Structure-Based or Direct Drug Design (SBDD) 

In contemporary pharmaceutical research, SBDD software finds promising chemical compounds with 

high binding free energies; calculating an empirical score from free energy in binding or affinity can 

evaluate the efficacy of Structure-Based Drug Design (SBDD). This score indicates the success rate of 

SBDD. Notably, SBDD is predicated on a prior structural understanding of the target protein, and docking 
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is used to determine the bio-affinity or interaction of tested chemical molecules using datasets. This 

technique may produce, a novel therapeutic molecule with enhanced interaction with the target protein. 

 

Figure 1.3 Overview of computer-aided drug design. 

 

1.5.2. Ligand-based or Indirect Drug Design (LBDD)    

LBDD, or ligand-based drug design, is used in drug discovery, but the ligands that bind to the protein are 

unknown. In this method, ligands are used to create a pharmacophore model or molecule with all the 

necessary elements to attach to the target active sites pharmacophore-based techniques and QSARs are 

primarily utilized in LBDD. In this method, compounds with similar structures are expected to interact 

with the target protein and have comparable biological functions. The exact atomic interactions of the 

protein-ligand complex are not necessary for LBDD, in contrast to SBDD.  

1.6 Molecular Docking and Algorithms 

Various features are used to design docking tools, such as rigid and flexible, and methodologies such as 

genetic algorithms, simulated annealing, Monte Carlo simulations, and iterative development algorithms 
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are employed using distinct approaches. The benchmark and an explanation of the molecular docking 

tools are provided. 

Many different molecular docking software programmers were developed utilizing different algorithms.60 

This section highlights the benefits of commonly used algorithms and explores the diverse applications 

developed using each approach. It is important to note that docking software often utilizes multiple search 

algorithms simultaneously or independently. 

1.6.1 Matching Algorithm 

The Matching algorithm is widely recognized as a simple yet effective approach for consideration that 

must be given to the spatial alignment of two molecules to accommodate the geometric overlap between 

them.61 Different alignments between the receptor and the ligand are achieved in various ways. The 

DOCK program, for instance, heavily relies on the matching algorithm method as a part of its adaptable 

docking strategies. For example, in the first stages of the DOCK program, the locations of the potential 

ligand are determined, as well as the regions of the binding site known as sphere centers that are 

discovered using a Matching algorithm. Numerous other popular systems, such as DOCK, employ this 

tactic of Shape-matching algorithms.62 

1.6.2 Monte Carlo (MC) Algorithm 

Many docking applications, including Auto Dock, MCDOCK, AutoDockVina, QXP, and 

ROSETTALIGAND, employ Monte Carlo (MC) algorithms. 63  Using the Metropolis criteria, the 

fundamental idea of MC is to accept or reject changes that occur randomly. Docking a ligand with a 

structure is utilized for determining the conformational structure of molecular affinity.64The Monte Carlo 

(MC) techniques, rooted in the Metropolis MC algorithm, are crucial in advancing docking investigations 

by providing acceptance criteria. In each iteration of the Algorithm, ligands undergo random alterations. 

If the binding position has an improved energy score. The alteration is permitted, while in cases where the 

energy score decreases, acceptance is determined based on the probability (P) defined in the equation 

below. 

                                                   𝛲 = exp[−(𝐸1 − 𝐸0)/𝐾𝐵𝑇                                                          (𝐸𝑞. 1.1) 

𝐾𝐵 is the Boltzmann constant, 𝑇 is the system temperature, and 𝐸1 and 𝐸0 are the energy scores before 

and after the system change, respectively. The majority of applications using MC simulation give a precise 

and accurate performance. However, time-dependent approaches like MD simulations do not suit the MC 

methodology. 
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1.6.3 Genetic Algorithm 

The genetic Algorithm (GA) is a widely employed optimization technique for tackling docking problems. 

It has been extensively utilized to expedite calculations and identify the variables that significantly impact 

the activity of the investigated drug compound.65 The GA approach draws inspiration from Darwin's 

theory of natural evolution, wherein two chromosomes (rates parents) combine genetically to generate a 

new chromosome that may exhibit superior characteristics compared to its parents.66 This approach uses 

a variety of scoring functions (SFs) and several variables, such as crossover and mutation.67 

1.6.4 Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) technique approach was developed in 1995 by Kennedy and 

Eberhart. In a study conducted by Garcia-Godoy, Lopez-Camacho, Garcia-Nieto, Nebro, and Aldana-

Montes in 2015. One metaheuristic employed in molecular docking is swarm optimization techniques. 

These approaches frame a docking problem as a parameter optimization problem and relate it to a clearly 

defined SF. The optimization approach looks for a ligand's docked conformation that uses the least energy. 

PSO is known for being a productive strategy for handling challenging search situations. Additionally, 

there are other docking algorithms based on swarm intelligence, such as SODOCK.68 The PSO method 

has proven effective in addressing molecular docking challenges, particularly when minimizing the ligand 

score based on the scoring function. The developers have designed several docking techniques using these 

algorithms, each with its own advantages and disadvantages, shown in Table 1.4. 

Table 1.4 The algorithms and programs for CADD docking tools. 

Algorithms Programs or Docking Tools 

Matching algorithm DOCK 4.0,16  Ph4DOCK,69  GM-Dock70 

Monte Carlo (MC) MCDOC,71 PRODOCK,72 AutoDock73 

Genetic Algorithm (GA) GOLD3.1,74 GasDock,75 PSI-DOCK,76 Autodock4.082  

Particle swarm optimization (PSO) AutoDock, ClustMPSO77 

Tabu search SFDock and Proleads78  

Incremental construction eHiTS,79 DOCK 4.0,80 FlexX81  

Simulated annealing MolDock,82 AutoDock4.o and AutoDockVina83 

Multiple Copy Simultaneous Search  HOOK,84  FlexX30 

Evolutionary programming (EP) MolDock,31 GOLD,85 AutoDock,25 DIVALI,86 

DARWIN,87 PSI- DOCK,88 FLIP Dock,89 Lead finder90  

Fast Fourier transform Algorithm. ZDOCK server,91 Pathchdock,92 HexServer93 
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1.7 Scoring Function (SF) 

The design and definition of the scoring function (SF) is an important feature and critical for accurately 

rating docking candidates. The accuracy of the docking process relies on the precision of the scoring 

functions employed to describe the binding mode and ligand placement. These scoring functions are also 

instrumental in identifying potential drug candidates, thereby facilitating the discovery of protein targets. 

However, it remains a challenging endeavor to develop a rapid and highly accurate prognosis in molecular 

docking.94 

 1.7.1 Force Field 

A force field model is derived from atomic-scale information such as bond angles, lengths, and torsion 

angles. Mechanical calculations based on physical principles and experimental data are routinely used to 

construct force-field functions and associated parameters. Examples of force-field SFs are AutoDock, 

DOCK, GOLD, and D-score.95 

 1.7.2 Empirical Scoring Function 

Calculates binding affinity by adding the fundamental energy components of the protein ligand.96 These 

empirical SFs were used in several investigations. The study compares POLSCORE 97 to the other SF 

programmers, Drug Score and X-SCORE. Overall, the analysis demonstrated that POLSCORE is more 

reliable in predicting the docked position. The empirical scoring function technique employs a training 

set comprising binding affinities of unknowns to determine the optimal weights for energy components. 

Various optimization strategies, such as linear regression analysis, can achieve this. Other empirical 

scoring functions, like F-Score, are also commonly utilized.98 

1.7.3 Knowledge-Based Scoring Functions 

Knowledge-based SFs often leverage the structural details of known protein-ligand complexes to enhance 

their predictive capabilities.99 Another name for it is statistical potential-based SFs; energy potentials 

obtained from empirically confirmed atomic structures are knowledge-based SFs. Researchers have 

successfully created and used predictive models for analyzing protein and ligand interactions and 

predicting protein structure, using scoring functions based on knowledge. Knowledge-based SFs and 

techniques have been compared in numerous research methodologies mentioned earlier, revealing that 

knowledge-based SFs can achieve a favorable trade-off between computational efficiency (speed) and 

predictive accuracy. It also demonstrates robustness when compared to the training set. Examples of 

knowledge-based SFs include PMF, Smog, Bleep, and Drug Score.100 
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1.7.4 Machine Learning-Based Scoring Functions   

Various machine learning (ML)-based scoring functions (MLSFs) may be used to create more reliable 

scoring functions, which can improve docking procedures.101 MLSFs outperform other traditional SFs in 

general, and they are used for grading and improving SF accuracy. When ML-SFs are of the supervised 

kind, they rely on training data sets. 102  Support vector machines (SVM), random forests (RF), and 

convolutional neural networks (CNNs) are some of the ML methodologies utilized to create ML-SFs.103 

1.8 Molecular Dynamics (MD) Simulations  and Free Energy Calculations 

MD simulations of proteins were conducted for the first time in 1970, marking a significant milestone 

over 60 years after the initial discovery of the three-dimensional structure of proteins through X-ray 

crystallography. The  Protein crystal structures archived in the Protein Data Bank (PDB) provide static 

representations, capturing a single conformation of the proteins. However, it is important to note that 

protein structures are inherently dynamic. Bonds within proteins undergo constant movement and 

fluctuations, leading to changes in conformation and occasionally in function. To gain a comprehensive 

understanding of the conformational space explored by proteins, molecular dynamics (MD) simulations 

are widely employed. MD simulations offer a means to simulate the motion of proteins, utilizing 

experimental structures obtained from the PDB and computational models derived from homology 

modeling or entirely constructed from MD simulations to analyze the spatial arrangement of atoms in 

three dimensions. This methodology replaces a static model with a dynamic one, where the atomic system 

is set into motion. By numerically solving the classical Newtonian dynamic equations, the simulation 

replicates the motion observed in the system. The technique of MD simulations is built upon Newton's 

second law, often referred to as the equation of motion, which serves as the fundamental principle 

governing the simulations 

                                                          𝐹 = 𝑚𝑎                                                             (𝐸𝑞. 1.2)                 

Here, 𝑚 denotes the mass, 𝑎 the acceleration of the particle, and 𝐹 represents the force acting on it. It is 

possible to calculate their acceleration by simply determining the forces at work on each system 

component. An integrated set of motion equations provides a trajectory that captures particle positions, 

velocities, and accelerations over time. This trajectory can be utilized to calculate the average values of 

different properties.  

The process of molecular dynamics (MD) simulation is deterministic, meaning that with 

the initial positions and velocities of each atom, the state of the system may be predicted at any point in t
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ime. It is crucial to comprehend the significance of bonded and unbonded atom interactions, particularly 

Coulomb's law and the Lennard-Jones potential for van der Waals interactions. Both the system's bonded 

and unbonded components are covered by these interactions.104 MD simulations can be computationally 

demanding and time-consuming, requiring substantial computational resources. Several widely used 

software packages, such as AMBER,105  CHARMM, 106  and GROMACS,107  have been developed to 

simulate protein flexibility through MD simulations in solvated protein systems. 

1.8.1 Force Fields 

A collection of variables and a mathematical formula referred to as the force field can be used to 

mathematically characterize the energy of a protein based on its atomic coordinates. This mathematical 

statement demonstrates the connection between the energy of the system and its three-dimensional 

coordinates. A force field employed to describe molecular systems is constructed from two terms: the 

equation for the bonded interactions, which encompasses bond length, bond angle, and dihedral 

parameters, and the equation for non-bonded interactions, which represent atoms with covalent bonds. 

The second term's equation, estimated using Coulomb's law and the Lennard-Jones potential, accounts for 

non-bonded interactions produced by van der Waals and electrostatic forces. 

𝑉(𝑟) = ∑ 𝑘𝑏  

𝑏𝑜𝑛𝑑𝑠

(𝑏 − 𝑏𝑜 )2 + ∑ 𝑘𝜃  

𝑎𝑛𝑔𝑙𝑒𝑠

(𝜃 − 𝜃𝑜 )2  + ∑ 𝑘Ф  

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

[cos( 𝑛 Ф + 𝛿 ) + 1]  

+ ∑  [
𝑞𝑖 𝑞𝑗   

𝑟𝑖𝑗
+   

𝐴𝑖𝑗   

𝑟𝑖𝑗
12 −  

𝐶𝑖𝑗   

𝑟𝑖𝑗
6 ]

𝑛𝑜𝑛 𝑏𝑜𝑛𝑑
𝑝𝑎𝑖𝑟𝑠 

    (𝐸𝑞. 1.3)       

In a molecular system, the ensemble of atom coordinates is denoted as 𝑉(𝑟) . Internal molecular 

parameters refer to the bonds (b), angles (𝜃), and torsions (Ф) within the molecule. Non-bonded terms 

encompass Lennard-Jones (LJ) parameters such as 𝜀𝑖𝑗  (well-depth) and 𝑅𝑚𝑖𝑛  (distance of minimum 

interaction energy). These LJ parameters define van der Waals interactions. Additionally, partial charges 

(𝑞) are used in Coulomb's law to describe electrostatic contributions. 

An analytical form in force fields represents the interatomic potential energy and other contributing 

factors. The force field parameters are typically obtained through classical methods like ab-initio or semi-

empirical quantum mechanical calculations. Alternatively, they can be derived by fitting the force field to 

experimental data obtained from techniques.108 The force field should be computationally efficient for 

rapid evaluation, while still capturing sufficient detail to replicate the properties of the systems under 

investigation accurately. 
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In scientific literature, many force fields are available to describe molecules of different complexities and 

address diverse systems. Examples include the Universal force fields (UFF), encompassing characteristics 

for all periodic table atoms and finding utility in various applications. These force fields have been 

developed in different iterations, such as CHARMM19, CHARMM22, CHARMM27, GROMOS96, 

GROMOS45A3, GROMOS53A5, GROMOS53A6, AMBER91, AMBER94, AMBER96, AMBER99, 

AMBER02, and more. 109 When investigating proteins and small molecules, it is crucial to ensure 

compatibility between the force field employed and the molecular components under investigation. 

1.8.2 Root Mean Square Deviation (RMSD) 

RMSD is a commonly employed quantitative metric for assessing the similarity between two sets of 3D 

atomic coordinates in an overlay. It can be calculated and displayed for various types and subsets of atoms, 

such as all carbon atoms in a protein, all atoms in a molecule, all residues in a protein, or all atoms when 

a protein is bound to a ligand. Studies have shown that folded regions exhibit more excellent stability, 

while loops tend to be more flexible, contributing to a reduction in the overall RMSD of the system.110 

1.8.3 Binding Free Energy  

Various methods, each with different levels of complexity, have been utilized to estimate binding free 

energy in biological macromolecular systems such as proteins.111 Simplifying scoring methods is essential 

to achieving the requisite competency when searching enormous chemical databases of tiny compounds 

for a hit molecule that could one day serve as a lead or treatment candidate. The continuum solvent 

approximation may determine the binding free energy by assuming quadratic fluctuations around a 

particular configuration. It combines configurations obtained from molecular dynamics (MD) simulations 

conducted in explicit solvents with free energy estimators based on an implicit continuous solvent model. 

The MMPB-SA technique enables the determination of various types of free energies associated with 

biomolecules, including binding, polar, and non-polar free energies. The g-mmpbsa tool and several non-

polar solvation models can be used to determine the binding free energy of protein-ligand complexes. One 

of these models, the repulsive model, considers how residue energy affects binding energy and the solvent-

accessible surface area, volume, and other variables. 

The MD trajectories that GROMACS generates are compatible with the program g-mmpbsa.112 Use the 

following formulae to compute the binding free energy: The binding free energy is shown when an 

inhibitor forms a compound with a protein. 

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝐺𝑓𝑟𝑒𝑒−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐺𝑓𝑟𝑒𝑒−𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 )                   (𝐸𝑞. 1.4) 
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Here, 𝐺𝑓𝑟𝑒𝑒−𝑝𝑟𝑜𝑡𝑒𝑖𝑛  and 𝐺𝑓𝑟𝑒𝑒−𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟  represent the individual protein and inhibitor when they are 

individually present in the solvent. On the other hand, 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥  refers to the combined free energy of the 

protein-inhibitor complex. As previously mentioned, the free energy of each separate entity is represented 

by the symbol 𝐺.  

𝐺 =  𝐸𝑀𝑀  −  𝑇𝑆 +  𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛                                              (𝐸𝑞. 1.5)  

The abbreviation 𝑇𝑆, 𝑇, and 𝑆 represents the contribution of entropy to the free energy in a vacuum, 

temperature, and entropy, respectively. The free energy connected to the solvation process is referred as 

𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛. Energy is needed to transport a solute from a vacuum into a solvent. The term refers to both 

the electrostatic and non-electrostatic parts of the free energy involved in solvation, denoted as 𝐺𝑝𝑜𝑙𝑎𝑟 and 

𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟, respectively. 

𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐺𝑝𝑜𝑙𝑎𝑟 − (𝐺𝑓𝑟𝑒𝑒−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐺𝑓𝑟𝑒𝑒−𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟)                      (𝐸𝑞. 1.6) 

The total potential energy of a molecule in a closed system is included in the 𝐸𝑀𝑀, or Energy of Molecular 

Mechanics. Both bonded and non-bonded interactions are included, and the computation is based on the 

molecular mechanics (MM) force field parameters. 

𝐸𝑀𝑀 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 +  𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 =  𝐸𝑏𝑜𝑛𝑑𝑒𝑑 +  (𝐸𝑣𝑑𝑊 +  𝐸𝑒𝑙𝑒𝑐)                    (𝐸𝑞. 1.7)  

The 𝐸𝑏𝑜𝑛𝑑𝑒𝑑  is the interactions within the system, including bond, angle, dihedral, improper interactions, 

and non-bonded interactions. often called 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 . Particle interactions are influenced by several 

factors, including van der Waals, and electrostatic forces are typically simulated in molecular systems 

using the Coulomb and Lennard-Jones (LJ) potential functions. 

1.9 Artificial Intelligence (AI)-Based Drug Design Methods 

Artificial intelligence (AI) refers to computer algorithms that can learn from data and improve a task over 

time. These models were created using machine learning (ML), a branch of artificial intelligence. AI 

algorithms are available in a wide variety, including reinforcement learning, unsupervised learning, and 

supervised learning. In supervised learning, the Algorithm is improved by using labeled data, where both 

the input and output are known, to enhance its capacity to predict novel, unknown data. With 

reinforcement learning, an algorithm can take actions that maximize rewards in a particular environment. Table 

1.5 briefly overviews four popular AI models, including their descriptions and some examples of common 

use cases. 
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Table 1.5 summary of the AI-based CADD models and their applications. 

AI Model Description Use Cases 

Convolutional Neural 

Network (CNN) 

A type of neural network well-suited for image 

classification tasks due to its ability to identify 

patterns and features in images. 

Image recognition, object 

detection, and medical image 

analysis. 

   

Recurrent Neural 

Network (RNN) 

A type of neural network well-suited for 

processing sequential data, such as text or speech. 

It uses a feedback loop to allow information to 

persist over time. 

Natural language processing, 

speech recognition, and time 

series prediction. 

   

Random Forest An ensemble learning algorithm that combines 

multiple decision trees to make predictions. It is 

often used for classification and regression tasks. 

Credit risk analysis, fraud 

detection, and predicting 

customer churn. 

   

Support Vector 

Machine (SVM) 

A type of machine learning algorithm well-suited 

for classification tasks, mainly when dealing with 

complex data. Finding the best hyperplane to 

separate the data into different classes works. 

Image classification, text 

classification, and gene 

expression analysis. 

                                                                                                                                             

 

Figure 1.4 Biological neuron cell A comparison of the NNs. 

 

Artificial neural networks (ANNs) are used in drug research and development. ANN may be able to 

structurally and functionally mimic the capacities of the human brain. Numerous neurons in the brain can 

store, retrieve, and link bits of information. It can recognize patterns based on previous training and 

knowledge. The human brain contains an estimated 100 billion or more neurons, and these neurons are 

interconnected through approximately 100 trillion synaptic connections. The capacity of the brain to 

communicate with its enormous number of neurons, which is required for a meaningful interpretation of 

the information, determines how it processes information113. The dendrites, cell body, axon, and synapses 

of a biological neuron collaborate to process information, transfer information, and receive signals in  

Figure 1.4. 
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1.9.1 AI in Drug Discovery and Applications 

                         

Figure 1.6 Various applications of AI in drug discovery. 

The power of the brain lies in its ability to transmit information across vast networks of neurons rapidly 

within seconds. Both acquired skill sets and inherited characteristics significantly affect the ability of ones 

ability to receive and comprehend newly acquired information. The knowledge of neuroscience has 

improved with the mapping of the brain and the comprehension of the functions of different neurons. 

However, the exact mechanism of the brain is still unknown, and a computer has not entirely simulated 

it. With the advancements in computing power, there is ongoing development of networks that have the 

potential to function like the human brain. 

 

Figure 1.5 Artificial neuron cell in ANN's. 
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The input, hidden, and output layers comprise the three artificial neuron layers.114 The input layer selects 

the input variable, which is later modified by the hidden layer before becoming calculated into the ultimate 

output values at the output layer in Figure 1.5. 

Finding and developing novel drugs is challenging, expensive, and time-consuming. Typically, the R&D 

cycle lasts 10 to 15 years. Pharmaceutical companies invest significant money in drug research, yet the 

high attrition rate lowers R&D productivity. Only one in ten potential drug compounds advances beyond 

phase I clinical trials to receive regulatory approval. There is still a need for a new drug.115,116 The cost 

burden and time constraint of researching and creating novel pharmaceuticals requires significant 

financial resources. It is a time-intensive endeavor, and the pharmaceutical sector has increasingly resorted 

to AI to address these issues. 

AI provides a range of tools and technologies that can speed up the validation of therapeutic targets, 

uncover possible hit and lead compounds, and improve drug design. AI thus has the potential to drastically 

cut the expense and time associated with finding new medicines, which would be advantageous for the 

healthcare sector.117 

Table1.6  Some of the artificial intelligence tools employed in the drug discovery processes. 

Tool Details 

DeepChem118 A Python-based AI tool for various drug discovery task predictions 

DeepNeuralNet-QSAR119 Molecular activity predictions 

DeepTox120 Toxicity predictions 

Neural Graph 

Fingerprints121 

Property prediction of novel molecules 

ORGANIC122 A practical approach for generating molecules with desired properties 

Potential Net123 Ligand-binding affinity prediction based on a graph convolutional neural network  

 

The chemical configuration required to trigger the desired reaction at the point of interest can be predicted 

using various computational techniques. These methods can also aid structural refinement to achieve 

multiple goals, including potency, safety, solubility, permeability, and synthesizability. The physical 

characteristics of the drug can also be predicted, and the synthesis procedure can be planned using 

computational approaches.124,125 One way to accelerate the elimination of non-lead compounds is to utilize 

all the available information, including structure- and ligand-based techniques. For instance, quantitative 

structure-activity relationship (QSAR) modeling has been implemented to select promising drug 
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candidates from a pool of up to a million options. Additionally, deep learning technology can now handle 

the vast amount of data produced during drug discovery and development, which has expanded due to the 

increase in big data in recent years.126,127As seen in Figure 1.7, there are several ways that AI applications 

might speed up the drug development process.                            

A computational network consisting of one or multiple layers of artificial neurons (ANs) is commonly 

referred to as an artificial neural network (ANN) (see Figure 1.7). ANNs draw inspiration from the 

complex network of nerve cells in the human central nervous system. These networks aim to mimic the 

functioning of the human brain in performing specific tasks or functions of interest. In practice, ANNs 

can be implemented using electrical components or simulated through digital computer software, as 

Haykin et al. described.128 

Table1.7 Application of AI-based CADD methods in drug discovery.  

Category Subtitles Description 

 

1) AI in Drug 

Design 

a) Predicting the 3D 

Structure of the Target 

Protein129 

1) AI algorithms utilize protein sequence analysis and 

computational models to predict target protein structures, 

enhancing drug design efficiency. 

 2) By identifying potential binding sites and 

interactions, AI techniques revolutionize drug discovery, 

optimizing outcomes. 

b) Predicting Drug-

Protein Interactions130 

1) AI techniques, like machine learning and data 

analysis, predict drug-target interactions, improving 

therapy development. 

2) Leveraging AI enables safer and more effective drugs 

by minimizing adverse effects through enhanced 

analysis. 

 

c) AI in Determining 

Drug Activity131 

1) AI techniques enhance drug compound evaluation and 

forecasting, optimizing research. 

2) Efficient identification and prioritization of promising 

candidates expedite pharmaceutical development. 

 

d) AI in De Novo Drug 

Design132 

1) AI algorithms are revolutionizing drug design by 

creating novel molecules. 

2) Optimized characteristics of AI-designed drugs offer 

potential medical breakthroughs. 

 

2) AI in Drug 

Repurposing 

a) Identification of 

Therapeutic Use133 

1) AI analysis identifies untapped therapeutic benefits in 

existing drugs.     

 2) Repurposing drugs with AI enhances patient care and 

treatment options. 
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b) Predicting New 

Therapeutic Use134 

1) AI analysis of molecular characteristics can unveil 

new therapeutic possibilities. 

2)Harnessing AI's potential enables repurposing 

opportunities in medical research. 

3) AI in Drug 

Screening 

a) Prediction of 

Toxicity135 

1) AI analysis of drug molecules enables the 

identification of novel therapeutic uses.                                                     

2) Harnessing the power of AI unveils repurposing 

opportunities in medicine. 

b) Prediction of Bio-

Activity136 

1) AI algorithms enhance drug discovery by predicting 

biological efficacy accurately. 

2) Target identification and selection benefit from AI-

powered forecasting technology. 

c) Prediction of 

Physicochemical 

Properties137 

1) AI-driven predictive algorithms enhance drug-

likeness molecules properties and optimization. 

2) Pharmaceutical R&D experiences a transformative 

revolution through AI-powered technologies. 

d) Identification and 

Classification of Target 

Cells138 

1) Leveraging advanced AI techniques to identify and 

categorize target cells accurately, revolutionizing drug 

targeting and treatment efficacy. 

4) AI in Chemical 

Synthesis 

a) AI Prediction of 

Reaction Yield139 

1) AI techniques to predict the yield of chemical 

reactions, aiding in synthesis planning. 

b) AI Prediction of 

Retro Synthesis 

Pathways140 

2) AI techniques to predict and suggest retro-synthesis 

pathways for efficiently synthesizing target molecules. 

c) Developing Reaction 

Mechanisms141 

1) AI algorithms to develop reaction mechanisms for 

chemical synthesis, improving efficiency. 

d)  AI in Designing 

Synthetic Route142 

1) AI methods to design optimal synthetic routes for 

efficiently producing target molecules. 

5) AI in 

Polypharmacology 

a) Designing Bio-

Specific Drug 

Molecules143 

1) AI algorithms to design drug molecules that target 

multiple biological pathways for improved efficacy. 

b) Designing Synthetic 

Route144 

1) AI techniques to design synthetic routes for producing 

polypharmacological drugs. 
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Figure 1.7 The architecture of an artificial neural network with input, hidden,  and output layers. 

The three layers commonly present in ANNs are input, output, and hidden layers. The initial layer and 

input point of the ANN are the input layer. The initial environment input is passed to the following layer 

in this layer for processing. The hidden layers come next after the input layer. ANNs in the buried layers 

modify it based on the information they receive. One of several factors that influence the transformation 

process is the nature of the activation function. However, ANNs can have several hidden layers. An ANN's 

output layer is its top layer. This layer determines the final result of the network. 

1.9.2 Feed-Forward Neural Networks 

Feed-forward neural network (FFNN)  creates the output by transmitting the input signal from the outside 

environment through the network. The final output of an FFNN is computed for any input pattern using a 

single forward pass through the network, beginning at the input layer and ending at the output layer. There 

are no feedback loops between levels and the layers before them in FFNNs.117 

1.9.2.1 Backpropagation Learning Algorithm 

Backpropagation is one of the well-known techniques used in FNNs.145At the start of the learning process, 

the candidate weights and biases of the network are usually initialized with random values. These 

candidate weights and biases are updated or modified through a series of learning iterations. Epochs are 

employed to explain each learning iteration in backpropagation. An epoch typically has two phases: 

1. Forward propagation: The input samples are fed into the FFNN, which then determines the actual 

output of the network, as explained previously. 

2. Backward propagation: During this stage, the network error is computed by utilizing a loss function. 

The difference between the actual output and the output values desired for the input samples is an 

error of the network. The learning algorithm selects a set of weights and biases with the least error 

with the aid of the loss function, which incorporates a performance parameter. In the training phase 

of the study, the estimated error value is obtained by propagating from the output layer back to the 

input layer. This error value is then utilized to adjust the weights and biases of the neurons in the 

network. The mean squared error (MSE) was employed in this study as the loss function. 

1.9.3 Recurrent Neural Networks (RNN) 

RNN are a valuable network for processing temporal input and sequences. RNN repeats sequences while 

storing all object-specific data in a hidden state and keeping track of every item they have observed. The 
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compact form of a basic RNN is presented on the left side of Figure 1.8, while the form stretched across 

all time steps is displayed on the right side. The network's hidden state at time step t is determined using 

the activation function F to calculate the input X𝑡  and the hidden state from the previous time step,ℎ𝑡−1. 

The influence of the previous time step on the following one is preserved by the RNN's internal memory, 

which is made possible by this calculating method. 

1.9.3.1 Types of RNN 

RNN are more flexible than feed-forward networks, which only have a single input and output since the 

lengths of the inputs and outputs may be changed. RNNs are advantageous for modeling sequential data 

because of their flexibility.  

            

Figure 1.9 The inputs and outputs of four types of RNNs.  

There are four main types of RNN, each with a different range of input and output lengths. 

a) One-to-one RNN is a primary neural network. It is widely applied to machine learning 

problems with only one input and output. 

b) One-to-many RNN one input and several outputs. 

c) Many-to-one RNN predicts one output from a variety of multiple inputs. It is a typical approach 

in sentiment classification, where text is the input and a category is the output. 

d) The term "many-to-many RNN" refers to RNN with many inputs and outputs.                                    
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1.9.3.2 Limitations of RNN  

Simple RNN models often have two significant problems. The gradient, the slope of both the loss and 

error functions, relates to these issues. 

1. Vanishing Gradient problems occur when the gradient becomes so tiny that altering the parameters is 

no longer advantageous; at this point, the Algorithm reaches a point of no return. 

2. The exploding gradient problem arises when the gradient reaches an excessive size, rendering the 

model unstable. In this scenario, larger error gradients accumulate, resulting in too high model weights. 

This issue could lead to longer training times and lower model performance. 

Reducing the number of hidden layers in the neural network is a straightforward way to address these 

problems, which will also simplify RNNs somewhat. Advanced RNN designs, such as the LSTM, can 

resolve these problems. 

1.9.4 Long short-term memory (LSTM) 

LSTM cells are particular building blocks employed by the long-short-term memory (LSTM) neural 

network, a type of RNN (Figure 1.9). The two hidden states calculated and stored by LSTM cells are cell 

state c and cell output h. Disappearing gradients is when networks lose the capacity to remember 

information from previous time steps. LSTM can deal with this issue. Conventional RNNs and extensive 

non-recurrent neural networks both frequently encounter this problem. The processing of older data 

remains relatively high when LSTM maintains the cell state c for many time steps (Figure 1.10).146 

 

Figure 1.10 A cartoon picture of a simple LSTM neural network. 

LSTM cells have an inbuilt computation system called gates to calculate the cell and output states. The 

input gate, forget gate, output gate, and input modulation gate are the four gates that make up an LSTM 

cell (Figure 1.11). These gates control Ow of data information that goes through the neural network and 

cell membrane.147 It is computed using the input gate at time step t. 

𝑖𝑡  =  𝜎 (𝑤𝑖 𝑥𝑡  + 𝑈𝑖 ℎ𝑡−1 +  𝑏𝑖)                                              (𝐸𝑞. 1.8) 
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The forget gate 𝑓𝑡   is determined by 

𝑓𝑡  =  𝜎(𝑤𝑓 𝑥𝑡 + 𝑈𝑓 ℎ𝑡−1 + 𝑏𝑓 )                                                 (𝐸𝑞. 1.9)  

The output gate Ot is determined by 

𝑂𝑡 =  𝜎(𝑤𝑜 𝑥𝑡 +  𝑈𝑜 ℎ𝑡−1 + 𝑏𝑜 )                                                (𝐸𝑞. 1.10) 

To determine the cell state c, the input modulation gate (𝑐𝑡̃) is determined by 

𝑐𝑡̃ = tanh( 𝑤𝑐 𝑥𝑡 +  𝑈𝑐 ℎ𝑡−1 + 𝑏𝑐 )                                     (𝐸𝑞. 1.11)      

 

                              Figure 1.11 Detailed cartoon picture of the LSTM neural network. 

 

 

Where   𝑥𝑡  is the input at time t and  ℎ𝑡−1  is the output state at the last time. The four gates' respective 

input xt vectors are represented by the weight matrices step 𝑤𝑖, step, 𝑤𝑓 step 𝑤𝑜 , and step 𝑤𝑐.   𝑈𝑖,𝑈𝑓, 𝑈𝑜 

and 𝑈𝑐make up the weight matrices for the four gates' previous output state,  ℎ𝑡−1, whereas  𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 and  

𝑏𝑐  are the bias terms. 

 

1.10 List of Diseases 

1.10.1 Overview of Alzheimer's Disease (AD) 
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AD is a progressive neurological condition that deteriorates over time. It is characterized by notable 

alterations in the brain, resulting in the accumulation of specific proteins. As the disease advances, it leads 

to the shrinking of the brain and the eventual death of brain cells. The most common cause of dementia, 

a progressive decline in cognitive abilities, including memory, reasoning, behavior, and interpersonal 

skills, is AD. Particular changes significantly impact the ability of an individual to carry out daily 

activities. Approximately 6.5 million individuals aged 65 and above live with AD in the United States. 

Among them, over 70% are 75 years old or older. On a global scale, of the estimated 55 million people 

affected by dementia, around 60% to 70% are believed to have AD.148  In the initial stages of AD, 

individuals may experience initial signs such as difficulty remembering recent events or conversations. 

As the condition progresses, it leads to more severe memory issues and the inability to carry out everyday 

tasks. While certain medications can potentially improve or slow down the advancement of symptoms, 

it's important to note that there is currently no known cure for AD. 

Nevertheless, there are various programs and services available to provide support to individuals with the 

disease as well as their caregivers. In the advanced stages of the condition, the substantial loss of brain 

function can give rise to complications like dehydration, malnutrition, or infections, which, in some cases, 

can lead to death.149 Acetylcholinesterase (AChE) plays a crucial role in the human body as an enzyme 

that breaks down the neurotransmitter acetylcholine. Acetylcholine is involved in transmitting signals 

between nerve cells and is particularly important for cognitive functions, including memory and learning. 

In drug design, AChE inhibitors play a significant role. This requires a thorough understanding of the 

structure and mechanism of enzymes. Scientists employ various strategies in Silico ADME properties, 

such as computer-aided drug design and molecular modeling, to design and optimize inhibitors with 

improved specificity and potency. 

1.10.2 Overview of COVID-19 

The Coronaviridae family of viruses, which includes the large group of viruses collectively known as 

coronaviruses, can infect a variety of animal species in addition to humans. While certain coronaviruses 

are known to cause mild respiratory illnesses that resemble the common cold, other coronaviruses have 

been associated with more deadly diseases, including SARS and Middle East Respiratory Syndrome 

(MERS). In December 2019, Wuhan, China, saw the emergence of a brand-new coronavirus that had 

never been observed in humans.150 This coronavirus infection typically results in respiratory problems, 

fever, coughing, and breathing issues. It could result in pneumonia, severe acute respiratory syndrome, or 

even death in severe cases. The World Health Organisation (WHO) is aggressively collaborating with 

international scientists, governments, and partner organizations in order to fast expand our scientific 
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understanding of this unique virus. Their combined efforts are meant to provide quick guidance on 

precautionary measures to protect public health and halt the outbreak from spreading. The rights, 

responsibilities, and functions of health professionals must also be addressed. This includes workplace 

health and safety. Frontline healthcare workers play a crucial role in responding to outbreaks and are often 

exposed to various hazards that increase their susceptibility to infection with the pathogen responsible for 

the outbreak.151 

 1.10.3   Overview of Parkinson's Disease (PD)           

PD is a progressive neurological condition distinguished by various motor symptoms, including slowed 

movement, tremors, muscle stiffness, difficulties with walking and balance, and involuntary movements. 

People with PD commonly experience a variety of non-motor problems in addition to motor abnormalities. 

These include discomfort, sensory issues, sleep disruptions, mental health conditions, and cognitive 

impairment. The motor symptoms associated with PD, such as dyskinesia (involuntary movements) and 

dystonia (painful involuntary muscle contractions), significantly impact speech, mobility, and overall 

functioning, leading to limitations in daily life activities. As the disease progresses, these symptoms 

worsen, resulting in a high incidence of disability and the need for increased care. Moreover, it is common 

for individuals with PD to develop dementia as the disease advances. Dementia in PD can manifest as 

cognitive decline, memory problems, and difficulties with thinking and reasoning.152 In addition to PD, 

other movement disorders such as multiple system atrophy, progressive supranuclear palsy, chorea, ataxia, 

and dystonia are also known to exist. Tremors, sluggish movement, and muscle rigidity are signs of several 

movement disorders that may resemble Parkinson's disease (PD). All movement disorders experience 

similar challenges in effectively identifying the ailment and providing appropriate treatment, much like 

PD. 

Access to medication for these disorders is particularly limited in low- and middle-income countries 

(LMIC). While increasing age is a significant risk factor for developing PD, it is essential to note that 

younger individuals can also be affected. Furthermore, PD tends to affect men more frequently than 

women. Although the precise causes of Parkinson's disease (PD) are still not fully known, it is commonly 

accepted that a combination of hereditary factors and lifetime exposure to environmental variables 

contribute to the development of the disease. Some of these environmental factors include pesticides, 

solvents, and air pollution.153 
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1.10.4   Overview of Tuberculosis Disease (TB) 

TB is a bacterial infection caused by Mycobacterium tuberculosis, primarily affecting the lungs. When 

people with lung TB cough, sneeze, or discharge saliva, the disease is spread through the air. Infection 

can result from breathing in even a tiny number of these microorganisms. Annually, approximately 10 

million people worldwide develop tuberculosis. Despite being a preventable and treatable condition, TB 

remains the top infectious cause of death, claiming the lives of around 1.5 million individuals annually. 

TB has a particularly devastating impact on individuals living with HIV, being the leading cause of death 

among this population.  

Table 1.8 Disease, target proteins, its mechanisms, and PDB ID of the target protein. 

Disease Protein  Mechanism PDB ID 

Alzheimer's Acetylcholinesterase (AChE) Inhibition of AChE activity to increase 

ACh levels in the brain. 

1EVE 

COVID-19 Main protease (Mpro) Inhibition of Mpro activity to prevent 

viral replication. 

6LU7 

Parkinson's Monoamine oxidase B (MAO-B) Inhibition of MAO-B activity to increase 

dopamine levels in the brain. 

2V5Z 

 

Tuberculosis Ribosomal RNA S1 Inhibition of ribosomal RNA S1, which 

is involved in the translation of mRNA 

into protein. 

4NNI 

 

Additionally, TB plays a significant role in contributing to the problem of antimicrobial resistance. While 

TB affects people globally, most cases occur in low- and middle-income countries.154 Approximately 50% 

of TB cases are concentrated in eight countries: Bangladesh, China, India, Indonesia, Nigeria, Pakistan, 

the Philippines, and South Africa. These nations bear a significant burden of TB infections, contributing 

to a substantial portion of the global TB caseload. Roughly a quarter of the world's population is believed 

to have been exposed to TB bacteria. However, it is essential to note that not everyone infected will 

progress to active TB disease. Some individuals will naturally clear the infection, and those infected but 

not yet showing symptoms cannot transmit the disease to others. Individuals who have been infected with 

TB bacteria face a lifetime risk of approximately 5-10% of developing TB disease. However, certain 

factors can increase this risk. Those with compromised immune systems, such as individuals living with 

viral infections, malnutrition, diabetes, or those who engage in tobacco use, are more susceptible to falling 

ill with TB.155  
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Methodology of Recurrent Neural Network Method to 

Design Potential Drug-likeness Molecules 
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2.1 Computational Details 

All the HF calculations are carried out using the Gaussian-09 package.1 Autodock-Vina2 is used for 

defining binding energy implemented in RDKit Package.3 Molecular dynamics (MD) simulations are 

done in GROMACS packages 4  and VMD. Physicochemical or Lipinski rule of five 5  and ADME 

properties are calculated by the Swiss-ADME website. 6  The following sections detail the LORD 

molecular predictor in different steps. Firstly, it investigates the potential binding sites and then prepares 

the data for training. After training, it generates new drug-like molecules. 

2.2 Potential Binding Site Analysis by Scanning MESP 

To perform binding site analysis, MESP calculations are done for the acetylcholinesterase enzyme 

(AChE) with a 3D cubic box length of 40 × 40 × 40. The MESP is evaluated by using Equation (1) in 

the Gaussian09 package. 

V(r) = ∑
ZA

|r − RA|
− ∫

ρ(r′)d3r′

|r − r′|
                                               (Eq. 2.1) 

Where ZA is the charge of the nucleus located at RA, MESP evaluation at each grid point is expensive for 

the entire protein. We calculated the acetylcholinesterase (AChE), main protease (Mpro), Monoamine 

oxidase-B (MAO-B), and ribosomal protein S1 of Mycobacterium tuberculosis (Mtb). 

2.2.1 MESP Calculation for Identification of Binding Sites in  Target Protein 

The total protein of (AChE) is subdivided into 27 substrate structures sequentially, and each substrate 

structure contains 20 amino acids, as shown in Figure 2.1. 

The uniform grid spacing of 0.3 Å is preserved in all MESP calculations. The MESP evaluations are done 

for all substrate structures with the same cubic box using cubegen as implemented in the g09 package. All 

the substrate cube files are loaded in VMD and transformed into one single cube file. Figure 2.1 shows 

two color regions of MESP distributions, such as dark blue color lobes inside, representing most negative 

regions with function value -0.20 of the protein. The grey color distribution shows low negative areas of 

the entire protein at -0.01 a.u. The total MESP distribution can be seen in Figure 2.1 with two layers. The 

most negative regions, such as inner blue color lobes, are further investigated by surface cavity analysis 

as highlighted by black circles with notations C1-C4. MESP function values are projected onto the plane 

to trace the exact potential of the binding site location. Scanning MESP function values within the plane 

resulted in surface cavities, as shown in Figure 2.1. The surface cavities were assumed to be the most 

potential binding sites. The surface cavities provide an understanding of the distribution of MESP function 
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values by following the gradients as color changes, as shown in Figure 2.1. The most negative MESP 

function values are spotted as inner and outer circles. The color distribution indicates that drug molecules 

can swallow into the cavity by following the gradient of charge distribution. This analysis provided the 

four best potential binding sites for further studies.  

 

                                                                                                                                        

Figure 2.1 (A) MESP distribution of the AChE and (B) the procedure to construct substrate structures.  

2.3 Data Preparation 

Potential drug-likeness molecules were collected for this investigation from the ChEMBEL database. 

1500 molecules in total were chosen, with a particular emphasis on substances that showed similarities to 

donepezil and literature-recommended molecules believed to be connected to Alzheimer's disease, as 

mentioned in Chapter 3, along with 1600 molecules that are antiviral drugs or show similarities to antiviral 
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compounds and literature-recommended molecules for the treatment of COVID-19 in Chapter 4. In 

Chapter 5, the focus of the investigation focused on Parkinson's disease, and 986 compounds related to 

safinamide drugs and their matching molecular similarities, as well as molecules proposed by the 

literature, were included. Finally, 786 compounds associated with pyrazinamide drugs and their molecular 

similarities, as well as molecules suggested in the literature for treating tuberculosis, were covered in 

Chapter 6 of the study. 

The docking process involved evaluating all the molecules against multiple target binding sites, including 

the MESP-suggested and experimentally reported sites. The corresponding binding energies (BE) were 

determined and recorded for each molecule based on the specific type of binding site being considered. 

Consequently, the total binding energies obtained for each molecule across all the target binding sites 

were collected and stored in a file for further analysis. 

2.4 Input Preparation for LORD Algorithm 

Drug-likeness molecules are fragmented by the BRICS-BONDS7 fragmentation scheme as implemented 

in the RDKit package.8 Unique fragments are saved into the library by fingerprint similarity measure to 

avoid repetition of fragments as implemented in RDKit. In total fragments were saved in the library. 

Including all binding sites in the library helps identify their potential for binding interactions. The length 

of the library becomes 1000isthe sum of several drug fragments and several protein sites.  

Symmetric functions were used to provide rotationally and transnationally invariant coordinates to the 

LSTM networks as input vectors for each atom as inspired by Boehlert al.9 Symmetric functions such as 

radial (gi
r) and angular (gi

a) as shown in Equations (2) and (3). Symmetric functions cover the atomic 

environment accurately for each atom within the cut-off sphere. 

gi
r   =   ∑ exp(−ηrrij) fc(rij)                                                   (Eq.  2.2)

i≠j

 

gi
a   =   ∑ ∑ (1 + ηcos(θijk))

ζ

exp(−ηa(rij + rjk + rik) fc(rij)fc(rjk)fc(rik)

k≠i

   (Eq.  2.3)

i≠j

 

fc(rij) =  {

1

2
[cos (

πrij

rc
) + 1]  if rij ≤ rc

0                                if rij > rc

                                             (Eq. 2.4) 

Here, rij, rjk, and rik are the internuclear distance between ith, jth and kth atoms in a molecule. fc (rij), fc(rjk) 

and fc(rik) are cut-off functions for respective 𝑟𝑖𝑗, 𝑟𝑗𝑘 and 𝑟𝑖𝑘. 𝜃𝑖𝑗𝑘 is the angle between 𝑗th and 𝑘th atoms 
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cantered at 𝑖th atom. 𝜂𝑟  and 𝜂𝑎 are the width of the Gaussian function. The set of𝜂𝑟 , 𝜂𝑎 , 𝜁, 𝑎𝑛𝑑 𝜆 are given 

in Table 2.1. 

Table 2.1 Set of parameters  𝜂𝑟 , 𝜂𝑎, 𝜁, 𝑎𝑛𝑑 𝜆 values for symmetric functions. 

𝜼r 𝜼𝒂 𝜻 𝝀 

0.001 0.001 1 1 

0.010 0.003 2 -1 

0.017 0.006 4 - 

0.030 0.011 16 - 

0.045 0.020 - - 

0.066 0.037 - - 

0.095 0.075 - - 

0.150 - - - 

0.350 - - - 

We have used a cut-off radius 𝑟𝑐 = 8Å. In the protein environment, the active site is covered within a 10 

Å cut-off distance from the center of the cavity. 

Symmetric function values are calculated for an entire library ( drug fragments +  protein sites(C1, C2, C3, 

C4)) using Equations (2) and (3). In total, 51 symmetric functions are used for each atom to describe the 

environment. To recognize each fragment uniquely, the sum of the symmetric function values for each 

atom within the fragment has been considered an input vector, as shown in Equation (5). 

Fragment feature =  ∑(Di
rad +  Di

Ang
)                                           (Eq.  2.5)

N

i=1

 

Input is prepared so that the number of rows is the length of the molecule or the number of fragments and 

columns are 51 fragment features, i.e. (times steps ×  fragment features). The number of times steps is 

chosen based on the maximum molecular length in the database to maintain the uniform dimension while 

training by applying padding in Keras API. 

2.5 LORD Output Preparation 

LSTM simultaneously predicts two types of outputs, such as sequence and corrected binding energy 

(CBE) prediction. The sequence prediction output layer requires on-hot encoding of an entire library 
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( 𝑡𝑖𝑚𝑒𝑠 𝑠𝑡𝑒𝑝𝑠 ×  𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐿𝑖𝑏𝑟𝑎𝑟𝑦 ) and CBE values for each molecule that involved in the 

training.CBE is calculated by Equation (2.6). 

CBE (C ) =
1

2
(BE +

1

5
( ∑

Vi

Max(Vi)
× BE

i=1,5

))                               (Eq. 2.6) 

Where BE is the binding energy stored for each molecule concerning the protein site calculated with 

AutoDock Vina 𝑉𝑖 is the variable consisting of the Lipinski rule of five, such as the rotational bonds, 

log(P) value, hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), and molecular weight. 

Actual binding energy is corrected according to the physicochemical properties calculated for each 

molecule in the database. LSTM networks are trained using CBE rather than BE to recognize the Lipinski 

rule of five. CBE enables LSTM networks to better prediction of the biologically active molecule.  

2.6 Block Diagram of LORD Designer Algorithm 

The block diagram for the LORD designer is shown in Figure 2.2. The research begins by retrieving the 

target protein structure from the Protein Data Bank (PDB) and accessing all available drug molecules 

stored in the ChEMBEL database. Once these resources are obtained, the subsequent step involves an 

analysis of the binding sites within the target protein, as previously discussed. Simultaneously, a drug 

fragment library is prepared for further investigations. 

To facilitate the training of Long short-term memory (LSTM) networks, input data is prepared by 

employing the symmetric function procedure mentioned earlier. This input is then utilized for LSTM 

training, followed by testing using the prepared input. The network error is minimized through iterative 

training until reaching the desired minimum value. Upon achieving optimal network performance, the 

LORD (LSTM enable onsite recurrent molecular designer) algorithm comes into play, allowing the 

generation of novel drug molecules. The database is updated to incorporate the newly constructed 

molecules during this process. 

Notably, the LORD algorithm incorporates a condition known as CBE (Chemical Bond Energy), which 

ensures that only molecules meeting the minimum cut-off criteria are saved, while the remaining ones are 

discarded to streamline the molecule-building procedure. The process of training and designing drug-

likeness molecules is continued in generation mode. LSTM starts with the ChEMBEL database, called 

1stgeneration LSTM, and LSTM is upgraded to better generations by adding newly generated data 
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Figure 2.2 Block diagram for LORD designer algorithm. 

2.7 LSTM Network Architecture and Training 

LSTM networks consist of four layers, as shown in Figure 4. It begins with the Input layer, such as the 

symmetric function vector. Two LSTM layers and an output layer. The output layer consists of sequence 
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prediction with SoftMax function and CBE(C ) value prediction with dense layers simultaneously, as 

shown in Figure 4. Each LSTM layer consists of 256 hidden units, and the activation function is used. In 

the beginning network, the architecture is initialized with random weights. The total loss is the sum of the 

categorical loss and means squared loss, as shown in Figure 4. The categorical cross-entropy (CCE) and 

mean squared error (MSE) loss functions are defined by Equations (7) and (8) as implemented in Keras 

API.  

MSE =
1

n
∑(CBE − 𝐶𝐵𝐸̅̅ ̅̅ ̅̅ )2

n

i=1

                                                         (Eq. 2.7) 

CCE = − ∑ ytlog (yt̅)                                                   (Eq. 2.8)

length of
 library

t=1

 

Where CBE is calculated by corrected binding and 𝐶𝐵𝐸̅̅ ̅̅ ̅̅  is corrected binding from the network for the 

mean squared error function. And alsoyt and(yt̅) are real and network outputs of one-hot encoding for 

sequence generation. The loss function is back propagated to optimize the weights by Adam optimizer as 

implemented in Keras API. 

2.8 LORD Molecular Drug Predictor 

LORD utilizes the trained weights and generates molecules. To begin with, it requires a protein site as 

input, and then it generates a sequence of fragments as the time series goes on, as shown in Figure 4. At 

time series (𝑡 − 1), it suggests the fragment output from the library, and in a subsequent step, it suggests 

the next fragment at 𝑡 time series by providing the first fragment as input. The following time series 

indicates the number of fragments. Each fragment series is combined by using the RDKit package. At the 

same time, generating molecules number of fragments to generate is limited by maximum molecular 

weight as the cut-off is chosen as 500.  

2.9 CHARMM Force Field in GROMACS 

CHARMM (Chemistry at Harvard Macromolecular Mechanics) is a comprehensive collection of force 

fields and software for conducting molecular dynamics simulations and analysis. It offers united atom 

(CHARMM19) and all-atom (CHARMM22, CHARMM27, CHARMM36) force fields tailored to specific 

research needs. The CHARMM27 force field has been successfully adapted for GROMACS, a widely 

used molecular dynamics software. It is officially supported and provides accurate results within the 

GROMACS environment. On the other hand, the CHARMM36 force field files, which are continually 
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updated, can be obtained directly from the MacKerell lab website. The MacKerell lab is known for 

regularly producing the most current and up-to-date CHARMM force field files in the compatible 

GROMACS format. 

To utilize the CHARMM force field parameters within GROMACS, researchers can employ the 

CHARMM36 force field. This force field is readily available in GROMACS as a precompiled binary file, 

encompassing all the necessary topology and parameter files required for simulations. By utilizing the 

CHARMM36 force field in GROMACS, researchers can benefit from a powerful combination of accurate 

force field parameters and the versatile simulation capabilities of GROMACS.10 

To  employ the  force field in GROMACS, the following steps are followed: 

a) Begin by acquiring the CHARMM36 force field files from the official CHARMM    website. These 

files contain the necessary parameters and specifications for the CHARMM36 force field. 

b) Once you have downloaded the CHARMM36 force field files, you will need to convert them into a 

format compatible with GROMACS. This can be achieved by utilizing the gmx ffcharmm2gmx 

command, specifically designed for this purpose. Executing this command will facilitate the 

conversion process and generate the essential topology and parameter files in the appropriate 

GROMACS format. 

c) Prepare your system for simulation using the standard GROMACS workflow. 

d) Use the generated topology and parameter files in your simulation using the -f and -p flags in the 

grompp command. 

GROMACS is a popular molecular dynamics simulation package that can simulate protein-ligand 

complexes. Here is a general outline of the steps involved in running a GROMACS simulation for a 

protein-ligand complex: 

1. Prepare the system: This process entails establishing the initial spatial arrangement of the protein-

ligand complex, solvating the system in a water box, adding ions to neutralize the system, and 

assigning force field parameters to the protein and ligand molecules. 

2. Energy minimization: Energy reduction aims to eliminate steric conflicts and unwanted interactions 

from the system. To do this, a series of reduction procedures are applied to the system until the 

energy converges to a minimum. 

3. Equilibration: In this process, the system is allowed to adjust to the simulated conditions, such as 

temperature and pressure. The equilibration procedure consists of NVT (constant volume, constant 

temperature) and NPT (constant number of particles, pressure, and temperature). 
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4. Production run:  This is an accurate simulation of the system; the simulation should be run for a 

significant length to portray the dynamics of the protein-ligand complex accurately. The simulation 

period typically ranges between nanoseconds to microseconds depending on the research issue. 

5. Analysis:  Many analyses may be run after the simulation to understand better how the protein-

ligand complex functions. These investigations involve determining the root mean square deviation 

(RMSD) of the protein-ligand complex over time, figuring out the binding energy between the 

protein and ligand, and analyzing the protein-ligand complex's trajectory to search for essential 

interactions. 

6. Analyze the trajectory of the protein-ligand complex to search for essential interactions. 

2.10 Free Energy Calculation (g_mmpbsa)      

The g_mmpbsa software employs the Molecular Mechanics Poisson-Boltzmann Surface Area 

(MM/PBSA) 11  approach to compute binding free energies in molecular systems. This technique 

commonly assesses the binding strength between multiple molecules, including protein-ligand complexes. 

By employing the MM/PBSA method, researchers can calculate the free energy of binding, a crucial 

parameter in understanding the stability and affinity of molecular interactions. The g_mmpbsa software 

facilitates the application of this approach, enabling efficient and accurate estimation of binding free 

energies in various molecular systems. 

Kumari et al.12 The g_mmpbsa (Molecular Mechanics/Poisson-Boltzmann Surface Area) method is a 

computational approach specifically designed to determine binding free energy in protein-ligand 

complexes. This method incorporates molecular dynamics simulations, where the protein-ligand complex 

is subjected to dynamic behavior, and the subsequent free energy changes are computed utilizing a specific 

formula. By employing the g_mmpbsa method, researchers can gain valuable insights into the energetics 

of protein-ligand interactions, enabling the evaluation of binding strengths and the prediction of potential 

binding affinities using followed formula. 

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝛥𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝛥𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝛥𝐺𝑙𝑖𝑔𝑎𝑛𝑑 )                         (Eq. 2.9) 

Where ΔGbind is the binding free energy of the protein-ligand complex, Δcomplex is the free energy of the 

complex, ΔGprotein represents the free energy of the protein when it is not bound to any ligand,, and ΔGligand  

represents the free energy of the ligand when it is not bound to the protein. These values play a critical 

role in assessing the energetic contributions and stability of the protein-ligand complex. 
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The g_mmpbsa software package offers a comprehensive set of tools for conducting molecular dynamics 

simulations, computing electrostatic and van der Waals interactions within protein-ligand systems, and 

estimating solvation-free energy using the Poisson-Boltzmann Equation. By leveraging these calculations, 

the software facilitates the estimation of binding free energy for the complex, employing the formula 

mentioned earlier. 

To utilize g_mmpbsa effectively, users must provide input files containing the coordinates of the protein 

and ligand and parameters necessary for the molecular dynamic simulation and Poisson-Boltzmann 

calculations. The software operates via a command-line interface, allowing users to execute commands 

and run the required calculations. Upon completion, the output files generated by g_mmpbsa will contain 

the estimated binding free energy and other pertinent information pertaining to the protein-ligand 

complex. 
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CHAPTER 3 

Design of Potential Druglikeness Molecules for Alzheimer's 

Disease 
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3.1 Introduction to Alzheimer's Disease 

Alzheimer's Disease (AD) is a prevalent neurological condition characterized by the progressive loss 

of memory and cognitive function due to the degeneration of neurons in the brain. AD is widely 

recognized as the most prevalent form of dementia, and it arises from disruptions in the transmission 

of signals between nerve cells and muscle cells in the brain, typically caused by the inhibition of an 

enzyme called cholinesterase.1 This leads to the degeneration of neurons in the cerebral cortex and the 

formation of neurofibrillary tangles and plaques containing a beta-amyloid protein. These pathological 

changes profoundly impact the experience of individuals living with AD.2 AI/ML can help discover 

the complexity necessary in discovering new intervention targets for neurodegenerative disorder by 

developing novel approaches, models, and algorithms to enable research of the complex non-linear 

dynamics between biology, environment, sickness, and public health. This method can improve our 

understanding of neurodegeneration and provide novel treatment for patients suffering from 

catastrophic neurodegenerative disease.3 In 2015, 46.8 million people lived with AD or a related form 

of dementia globally, with 1.9 million fatalities. In 2017, there were over 50 million Alzheimer's 

sufferers; in 2030, this figure will be 74.7 million; in 2050, it will be 131 million. The countries 

witnessing the most rapid growth in the population of AD patients include Finland, the United States, 

Canada, Iceland, Sweden, Switzerland, Norway, Denmark, the Netherlands, Belgium, India, 

Cambodia, Georgia, and Singapore, among others are among the countries with the fastest-growing 

patient populations.4  

Acetylcholine (ACh) is a neurotransmitter that plays a role in the normal functioning of the brain. It 

involves many important cognitive processes, such as attention, learning, and memory formation. Ach 

is produced by cholinergic neurons, which are concentrated in the basal forebrain and brainstem. In 

AD, there is a significant reduction in cholinergic function due to the loss of cholinergic neurons in 

the brain. This loss of function is thought to contribute to the cognitive and memory impairments 

characteristic of AD. Specifically, the breakdown of Ach is accelerated due to an increase in the 

activity of an enzyme called Acetylcholinesterase (AChE).5,6 It's an enzyme that breaks down  ACh 

into acetyl and choline as a result, there is a decrease in the level of Ach in the brain, leading to 

cognitive and memory deficits.  

Acetylcholinesterase inhibitors (AChEIs) are a class of drugs that are commonly used to treat the 

cognitive and memory impairments associated with AD. These drugs are Donepezil, Rivastigmine, 
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Galantamine, Tacrine, and memantine, which are market available, ondansetron is a highly effective 

cholinesterase inhibitor and other novel related AChEIs,7,8 ,9  including Eptastigmine, Phenserine, 

Huperzine A, Dimebon, Pozanicline (ABT-089), RG3487, GSK239512, Varenicline, ABT-288, 

Nelonicline (ABT-126), Encenicline (EVP-6124), S 38093 LadostigilHemitartrate, GLN-1062, and 

SUVN-G3031  work by inhibiting the activity of AChE, which allows on the controlled breakdown of  

Ach and therefore increases the  ACh concentrations in the brain.10,11 

 

Figure 3.1 Mechanisms of action Acetylcholinesterase inhibitors in AD. 

The X-ray crystal structure of AChE of the protein id: 1EVE12,13 was crystallized with Donepezil and 

was retrieved from the protein data bank (PDB). In which the active site of amino acids are Tyrosine 

70 (Try70), Asparticacid 72 (Asp72), Tryptophan 84(Trp84), Glycine 118(Gly118), Glycine 

119(Gly119), Tyrosine121(Try121), Tyrosine 130(Try130), Serine 200(Ser200), Alanine 

201(Ala201), Tryptophan 279(Trp279), Phenylalanine 288(Phe288), Phenylalanine290(Phe290), 

Phenylalanine 330(Phe 330), Phenylalanine 331(Phe 331), Tyrosine 334(Try334), Histidine(His440) 

in the torpedo californica acetylcholinesterase (TcAhE).  

Numerous computational research methods have been documented regarding AChEIs, focusing on the 

substances involved. Through molecular docking studies, it has been predicted that the interactions 

between the protein and ligand complex exhibit robust binding activity. The protein and ligand 

complex suggest high binding activity of the compounds such as Flurbiprofen, Isoniazide, 14 
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Spirooxindole,15 Thiazole-related compounds,16 Pyrimidine, Oxadiazole17 and Pyridine derivatives18 

were employed for the AChE inhibitory activity, and Table 3.1 includes to some of the previous 

literature, we focused on discusses the methodology and providing a summary. 

Table 3.1  Overview of previous literature and focus on methodology and summary. 

Methodology Summary 

Small-molecule, 

therapeutics, 

biologics 

This article explores various aspects of AD and drug design, focusing on 

dementia, the blood-brain barrier, small-molecule therapeutics, biologics, 

neurodegenerative disease, and neuroinflammation. It provides valuable 

insights into the challenges and advancements in developing drugs for AD and 

sheds light on the underlying mechanisms of this neurodegenerative condition.19 

Molecular 

docking, MD 

simulations, and 

QSAR 

approaches 

Computational modeling has emerged as a powerful tool for designing multi-

target-directed inhibitors. This approach simultaneously targets multiple 

pathological factors in the disease, potentially enhancing therapeutic efficacy. 

Researchers can use computational techniques to develop innovative drug 

candidates with improved potency and selectivity, offering promising prospects 

in the fight against AD.20 

Crystal structure, 

molecular 

docking and 

simulation, 

tacrine. 

The newly determined crystal structure of AChE in complex with inhibitors 

offers valuable insights, aiding the development of novel drugs with enhanced 

efficacy. The findings open doors for more targeted and effective drug design 

strategies, potentially leading to improved treatments for various conditions.21 

Donepezil, 

computational 

Studies, and 

biological 

Validation 

 

Donepezil-like compound(D1) being investigated for AD treatment shares 

similarities with the FDA-approved drug donepezil. D1 has shown promising 

              v    g                 v      d   d    g  β    q       

Caenorhabditis elegans, surpassing the functionality of Donepezil at similar 

doses. Moreover, D1  x  b        g                      α 7 nicotinic 

acetylcholine receptor, making it a potentially beneficial AD treatment with its 

dual-binding site characteristics and additional impact on neurotransmission.22 

E-

pharmacophore-

based virtual 

screening, 

molecular 

docking, and MD 

simulations 

New therapeutic candidates with potential value in treating conditions related to 

AChE dysfunction. A combination of virtual screening and molecular dynamics 

simulations is employed. Using computational methods, scientists aim to 

pinpoint promising compounds that can be further investigated and developed, 

ultimately advancing the field of drug discovery and paving the way for 

potential treatments targeting an AChE.23 

Molecular 

docking, MD 

simulations 

Fragment-based design and virtual screening to identify a promising new 

acetylcholinesterase inhibitor. This innovative approach combines 

computational methods and molecular modeling to efficiently discover potential 

drug candidates, paving the way for developing more effective treatments for 

AD.24 

Fragment-based 

drug design, 

Innovative research focuses on creating activity rules and designing chemical 

fragments to facilitate the virtual discovery of novel dual inhibitors targeting 
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molecular 

docking and dual-

target inhibitor  

both AChE and BACE1 enzymes, with the aim of combatting AD. This study 

aims to contribute to developing effective therapies against this debilitating 

neurodegenerative disorder.25 

Peptides and 

proteins,  

Inhibitors 

A novel approach utilizing virtual screening and binding free energy 

calculations is employed to identify potential AChE inhibitors. This study aims 

to discover new compounds that can effectively inhibit AChE, a key enzyme 

involved in neurodegenerative disorders, by using computational techniques.26 

Docking studies, 

MD simulations, 

and MM-GBSA 

calculations 

This study utilizes molecular dynamics and structure-based virtual screening to 

identify potential natural compounds that can modulate the signaling pathway. 

By targeting this pathway, the identified compounds hold promise as 

therapeutics for AD, providing new avenues for developing effective 

treatments.27 

Virtual screening, 

molecular 

docking, and MD 

simulations 

New acetylcholinesterase inhibitors are achieved through virtual screening, in 

vitro experiments, and molecular dynamics simulations. This study presents a 

novel approach to discovering potential therapeutic agents that target 

acetylcholinesterase, offering promising avenues for further exploration in the 

field of drug discovery.28 

Molecular 

docking, MD 

simulations, and 

DFT calculations  

This study aims to identify highly effective acetylcholinesterase inhibitors 

derived from plants with the potential to be used in treating Alzheimer's disease. 

By employing advanced algorithms, the research seeks to discover promising 

candidates for further investigation and development of therapeutic strategies.29 

Natural 

compounds, 

molecular 

docking, MD 

simulations, and 

pharmacokinetic 

predictions 

Exploring the potential of natural compounds: computational screening for 

acetylcholinesterase inhibition. This study employs biocomputational 

techniques to evaluate the effectiveness of various natural compounds in 

targeting acetylcholinesterase, a key enzyme implicated in neurological 

disorders. Screening these compounds can identify potential candidates for 

further investigation and drug development.30 

Pharmacophore 

studies, 

molecular 

docking, MD 

simulations  

A novel approach combining pharmacophore modeling, virtual screening, 

docking simulation, and bioassay has identified potent acetylcholinesterase 

inhibitors. This discovery presents new candidates with promising potential in 

treating neurological disorders.31 

Synthesis, 

molecular 

docking, and 

biological 

Evaluations  

In this study, researchers aimed to develop new thiazole-based derivatives as 

potential AChE inhibitors. A series of compounds were synthesized and 

evaluated for their inhibitory activity against AChE, an enzyme implicated in 

AD. Promising results were obtained, indicating that these thiazole derivatives 

have the potential to be effective AChE inhibitors, which could contribute to the 

development of novel treatments for AD.32 

The present chapter shows a novel design strategy for designing drug-like molecules by applying an 

AChE target. The methodology section explained the binding site analysis using MESP and LORD 

designer theory and implementation. The results section gives a detailed discussion about 
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physicochemical and ADME properties and MD simulation results for LORD 25 potential drug-like 

molecules by LORD with concluding remarks. 

3.2 Result and Discussion 

3.2.1 MESP Calculation for Identification of Binding Sites in Alzheimer's Target Protein 

The whole protein of AChE is subdivided into 27 substrate structures sequentially, and each substrate 

structure contains 20 amino acids, as shown in Figure 3.2. A uniform grid spacing of 0.3 Å  is 

maintained in all MESP calculations. The MESP evaluations are done for all substrate structures with 

the same cubic box using cubegen as implemented in the g09 package. 

              

 

Figure 3.2 (A) MESP distribution of the AChE and (B) Substrate structures. 

Figure 3.2  depicts MESP isosurfaces, such as dark blue lobes, representing most negative regions 

with function value −0.20  a.u. of the protein. The red color distribution shows another MESP 

isosurface with −0.01 a.u. for the complete protein. The total MESP distribution can be seen in Figure  
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3.2.2 Design of Potential Drug-Likeness Molecules 

LORD molecular designer designed 25 Potential drug-likeness molecules and compared them to the 

market-available donepezil drug. 
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Figure 3.3 The structure of the twenty-five drug-likeness predicted molecules and the reference 

Donepezil (R1) molecules. 

3.2 with two layers. The most negative regions, such as inner blue color lobes, are further investigated 

by surface cavity analysis as highlighted by black circles with notations C1-C4. MESP function values 

are projected onto the plane to trace the location of the potential binding site. Scanning MESP function 

values within the plane resulted in surface cavities, as shown in Figure 3.2. The surface cavities were 

assumed to be the most potential binding sites. The surface cavities provide an understanding of the 

distribution of MESP function values by following the gradients as color changes, as shown in Figure 

3.2. The color distribution indicates that drug molecules can swallow into the cavity by following the 
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gradient of charge distribution. This analysis provided the four best potential binding sites for further 

studies. 

 

Figure 3.4 Stereo-isomers of D1, D3, and R1 drug-likeness molecules and their interactions with the target 

protein. 
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3.2.3 Interactions of Stereo-Isomers with Target Molecules 

Stereochemistry is crucial to the development of pharmaceuticals, given that many drugs actions 

depend on their three-dimensional structure. Drug designers can choose the most active and secure 

stereoisomer or create a drug that can specifically target a certain stereoisomer by studying the 

stereochemistry of a drug molecule and the mechanism of its action. D1A, D1B, D3A, D3B, and R1A, R1B 

are the enantiomers that reflect the absolute stereochemistry of the stereocentres in 3D structures using 

ChemDraw 3D software. Stereoisomers were investigated for their interaction with Site-4 (C4) of the 

acetylcholinesterase of the target protein. 

During docking, the protein's active amino acids interact with the ligand creating hydrogen bonds, 

electrostatic interactions, and van der Waals interactions. These interactions stabilize the protein-

ligand combination. These findings provided evidence for the impact of the stereo centers on the 

molecular docking energy (BE), corrected binding energy (CBE), protein-ligand complex and the 

nature of interactions. 

In this D1A BE of −14.0 kcal/mol, CBE was −11.0 kcal/mol, and hexahydro-4H-furo[2,3-b] pyran 

fragments were more significant than D1B. The protein and ligand complex can develop two P-alkyl 

bonding interactions with TRP A: 279 and one hydrogen bond with ARG A: 289 amino acid residues. 

Given that D1B have BE and CBE are lower than those of D1A ( −13.5  and −10.6  kcal/mol, 

respectively), it must have a lower binding energy. In the complex, D3A interacts with the Pi-sigma 

bonding of TRP A:279 and contains fragments of 1-methylnaphthalene with BE −12.5 kcal/mol and 

CBE −10.5 kcal/mol. D3B has a lower binding energy than D3A, with a BE of −10.0 kcal/mol and 

a CBE of −8.6 kcal/mol, respectively, and both R1A, R1B have BE -10.8 kcal/mol, CBE −8.1 kcal/mol. 

In Figure 6, D1A, D3A, and R1A   are stereoisomers of drug-likeness molecules with more incredible 

binding energy than D1B, D3B, and R1B stereoisomers. We were seen to be stabilized by the minimal 

distance between amino acid residues and the protein-ligand nature of their interaction. The molecular 

docking results are significantly influenced by stereochemistry, and accurate ligand binding process 

and affinity predictions depend on accurate ligand and protein structure modeling. In this study, we 

found that the interaction between D1, and D3 stereoisomers is better than that of the drug Donepezil 

(R1) due to the higher binding energies and shorter minimal distance between amino acid residues. 
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3.2.4 Protein-Ligand Complex and their Interaction Studies of the Top Four  Drug-Likeness 

Molecules at Selected Four Binding Sites 

To visualize the target binding site, we have provided the protein-ligand complex for all four target 

binding sites in Figure 3.5 (left column). On the other side, we have shown the BE and CBE of the top 

four (D1, D2, D3.D4) LORD-generated molecules and reference molecules of the Donepezil (R1) for 

each site (C1 to C4) from top to bottom in the right column of Figure 3.5 CBE values for LORD's top 

four molecules are much lower in energy than the reference molecules shown in the green and blue 

color bar plot in all the sites. LORD molecules dominate the present existing market drugs in all four 

sites. 

 

Figure 3.5 Protein-ligand complex and their interaction studies of the top five drug-likeness molecules at 

selected five binding sites. (A) MESP suggested site-1(C1), (B) MESP suggested site-2 (C2), (C) MESP 

suggested cavity site-3 (C3), and (D) Experimentally reported site-4 (C4). 
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3.2.5 Binding sites analysis from protein-ligand complex 

MESP cavity analysis has explored the interactions between proteins and their ligands at each of the 

four sites (C1-C4). The 25 potential drug-likeness molecules can bind to three different protein cavities 

based on the MESP strategy conducted on it and compared with the experimentally suggested active 

binding cavity or site. An active cavity is a particular type of cavity present in the protein structure 

that is crucial to the activity of the protein. 

The common active amino acid residues are  Glycine A 32 (GLY A:32),  Glutamic acid A:37 (GLU 

A:37), Proline A:38 (PRO A:38), Valine A:40 (VAL A:40),  Glycine A 41(GLY A:41), Lysine A:51 

(LSY A:51), Lysine A:52 (LSY A: 52), Proline (PRO 53),  Trptophan A:54 (TRP A:54),  Serine A:55 

(SER A:55), Tryptophan A:58 (TRP A: 58), Proline A:64 (PRO A:64), Asparagine A:65 (ASN A: 65),  

Serine (SER A:91), Asparagine (ASP A: 93), Tryptophan A:96 (TYR A:96) found in Site-1(C1) 

 

Figure 3.6 Acetylcholinesterase enzyme and four cavities, C1, C2, C3, C4 
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It demonstrated decreased binding energy compared to the other three sites. The residues of amino acids were 

found at Site-2 (C2). It is shown in  Serine A:12,(SER A:12), Phenylalanine A:35 (PHE A:35),  arginine (ARG 

A:47),  Proline A:48 (PRO  A:48), Lysine A:51 (LYS A:51), Proline A:53 (PRO A:53),  Leucine A:171 (LEU 

A:171), Arginine A:174 (ARG A:174), Glutamic acid A:178 (GLN A:178),  Trptophan (TRP A:179), 

Aparaginine A:230 (ASN A: 230), Cysteine A:231 (CYS A: 231), Alanine A:234 (ALA A:234), Valine A:236 

(VAL A:236), Serine A:237 (SER A: 237), Valine A:238 (VAL  A:238),  Isolecuine A:296 (ILE   A:296),  

Asparagine ASP:297 (ASP 297),  Glycine A:298 (GLY A: 298), Proline A:302 (PRO A: 302), Threonine A:303 

(THR A: 303), Serine A:304 (SER A: 304), Leucine A:305 (LEU A: 305), Glutamine A:306 (GLU A: 306), 

Histidine A:362 ( HIS A: 362), Histidine A:398 (HIS A: 398), Proline A:403 (PRO A: 403) that site-4(C4) and 

site-3(C3) have more incredible binding energy than site-2 (C2), while site-1(C1) has less binding energy than 

site-2(C2). 

We noticed that the active amino acids at the site-3 (C3) and experimentally reported site-4 (C4) 

correspond, including  Aspartic acid A:72, (ASP  A:72), Trptophan A:84 (TRP A:84), Asparagine 

A:85 (ASN A:85),  Proline A:86 (PRO A:86), Glycine A:117 (GLY A:117), Glycine A:118 (GLY  

A:118), Glycine A:119 (GLY  A:119), Typtophan A:121 (TYR A:121), Serine A:122 (SER A:122), 

Tyrptophan A:130 (TYR A:130), Glutamine A:199 (GLU  A:199), Serine A:200 (SER  A: 200), 

Trptophan A:279 (TRP A:279), Leucine A:282 (LEU A:282),  Serine A:286 (SER A:286),  Isolecuine 

A:287 (ILE A:287), Phenylalanine A:288 (PHE A:288),  Arginine A:289 (ARG A:289), Phenylalanine 

A:290 (PHE A:290),  Phenylalanine A:330, (PHE A: 330),  Phenylalanine A:331 (PHE A:331), 

Tyrosine A:334 (TYR A:334),  Glycine A:335 (GLY A:335), Histidine A:440 (HIS  A: 440), Glycine 

A:441 (GLY A:441) are amino acid interaction and shown better binding energy. 

To understand the concept of a specific cavity in a protein, one starts by describing the three-

dimensional structure of proteins. The lengthy complex structures known as proteins develop from 

chains of amino acids. The specialized folding and twisting of these amino acid indicators create a 

particular protein substrate. Suppose the amino acid residues are arranged in certain nooks or cavities 

within this structure. In that case, they may interact with the substrate in a certain way or go through 

conformational changes with the help of MESP studies. 

3.2.6 Cavity-Drug-Likeness Molecules Interaction Matrix 

Drug design depends on how proteins and ligands interact, given that numerous drugs modify the 

function or signaling of specific proteins by attaching to receptors. Understanding the protein's three-

dimensional structure and locating possible ligand-binding sites are important steps in drug discovery.  
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Figure 3.7 Interaction matrix of main protease with 25 drug-likeness molecules at the experimentally reported 

site-4 (C4). 
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Computer modeling and simulation approaches are frequently utilized to forecast how ligands will 

interact with the protein and find ligands that are likely to have powerful and precise binding 

interactions.The Donepezil drug and 25 additional compounds with drug-likeness characteristics were 

put to docking simulations against the target protein acetylcholinesterase in the study.Here, Figure 3.7 

, displays the results of these interactions between the proteins and their associated ligands after 

various types of interactions have been recorded. Although van der Waals interactions and other weak 

interactions (WI) are also addressed, hydrogen bonds, conventional hydrogen, Pi-Pi, Pi-alkyl, Pi-su 

lphur, and Pi-cation are interactions considered with strong interactions (SI). Hydrogen bonds are 

shown as dark green, conventional hydrogen interactions as pine green, non-covalent interactions are 

depicted as pink for Pi-Pi interactions, light pink for Pi-alkyl, yellow for Pi-sulphur, red for Pi-cation, 

and light green for weak van der Waals interactions respectively. 

We analyzed the interactions between the donepezil complex and the active amino acid residues in 

different complexes. In R1 complex, we observed 5 strong interactions (SI) and 7 weak interactions 

(WI) of active amino acids. Similarly, the D1 complex showed interactions with 11 SI and 8 WI active 

amino acid residues. The D2 complex exhibited interactions with 8 SI and 13 WI active amino acids, 

while the D3 complex showed interactions with 8 SI and 10 WI active amino acids. D4 complex 

exhibited interaction with 5 SI and 11 WI active amino acids. In the D5 complex, interactions were 

observed with 5 SI and 15 WI active amino acids, while the D6 complex showed interactions with 4 

SI and 9 WI active amino acids. In the D7 complex, we found interactions with 3 SI and 13 WI active 

amino acids. The D8 complex displayed interactions with 12 SI and 7 WI active amino acids, while 

the D9 complex showed interactions with 5 SI and 11 WI active amino acids. In the D10 complex, we 

observed interactions with 3 SI and 8 WI active amino acids, and in the D11 complex, there were 

interactions with 8 SI and 6 WI active amino acids. The D12 complex exhibited interactions with 7 SI 

and 3 WI active amino acids, while the D13 complex showed interactions with 4 SI and 12 WI active 

amino acids. In the D14 complex, interactions were observed with 6 SI and 4 WI active amino acids, 

and in the D15 complex, we found interactions with 8 SI and 7 WI active amino acids. The D16 complex 

showed interactions with 8 SI and 5 WI active amino acids, while the D17 complex exhibited 

interactions with 10 SI and 6 WI active amino acids. In the D18 complex, we observed interactions 

with 9 SI and 6 WI active amino acids, while the D19 complex showed interactions with 5 SI and 10 

WI active amino acids. The D20 complex displayed interactions with 8 SI and 4 WI active amino acids. 

In the D21 complex, interactions were observed with 6 SI and 11 WI active amino acids, while the D22 
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complex showed interactions with 11 SI and 6 WI active amino acids. The D23 complex exhibited 

interactions with 7 SI and 8 WI active amino acids, and in the D24 complex, we found interactions with 

9 SI and 7 WI active amino acids. Finally, the D25 complex displayed interactions with 5 SI and 4 WI 

active amino acids. 

3.2.7 Physico-Chemical Properties and ADME Properties 

To validate twenty-five Potential drug-likeness molecules, we have provided the physic-chemical 

properties, such as the Lipinski rule of five in Figure 3.8, for all twenty-five molecules. All the 

candidate molecules show molecular weight ranging from 284.23 to 484.63; hence, less than 500 

Daltons or g/molten Partition coefficient ranges between 2.64-4.97which is less than 5, and No. of 

HBD is between 0-3, and No.of HBA is between 1-5. The molecular polar surface area ranges between 

26.17-73.36, is less than 140 angstroms, and the total number of the rotatable bond are ranged between 

1-8, is less than 10. Figure 3.8 shows that most molecules followed the Lipinski rule of five. Hence, 

they can be studied for further analysis. 
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Figure 3.8 Physico-chemical properties of 25 drug-likeness molecules (A) Molecular weight (g/mol), (B) 

Hydrogen bond acceptor count, (C) Hydrogen bond donor count, (D) Partition coefficient (Logp), (E) Total 

polar surface area, and (F) Rotatable bond count. 

ADME properties are generated using the SWISS ADME website to succeed with twenty-five 

molecules. ADME properties are most effective in predicting human pharmacokinetic properties to be 

successful in clinical trials. The top five potential molecules and reference molecule(R1) have shown 

in Table 3.2, and ADME offers high gastrointestinal absorption (GI). Four of them have a permeability 

of the blood-brain barrier (BBB). The molecules determined for the Cytochrome P450 isomers are 

represented in Table 3.2.   

Table 3.2 ADME / Pharmacokinetic proprieties of the site-wise selected molecules in gastrointestinal 

absorption. bBlood brain barrier permeant. cP-gp substrate. dCytochrome P450 family 1 subfamily A member2. 

eCytochrome P450 family 2 subfamily c member19. fCytochrome P450 family 2 subfamily C member 9. 

gCytochrome P450 family 2 subfamily D member 6. hCytochrome P450 family 3 subfamily A member4. ISkin 

permeation in cm. 

S.NO GI                   

absa 

BBB              

permeantb 

P-

gpsubstratec 

CYP1A2 

Inhibitord 

CYP2C19 

Inhibitore 

CYP2C9 

Inhibitorf 

CYP2D6         

Inhibitorg 

CYP3A4 

Inhibitorh 

Log Kp
i 

D1 High Yes  No No No No  No  Yes -5.64 

D2 High Yes  Yes  No No No Yes Yes -4.38 

D3 High Yes  Yes  No No No Yes  No -5.79 

D4 High Yes  Yes No No No  Yes No  -4.5 

R1 High  Yes  Yes No No No Yes  Yes -5.58 

 

3.2.8 Correlation of Potential Drug-Likeness Molecules vs Site Wise Binding Energy 

The CBE values for twenty-five molecules are displayed at each location, as indicated by Figure 3.9. 

The range of CBE is -4.0 to -10.6 kcal /mol for all four sites of the acetylcholinesterase. In this figure 

3.9A, the X-axis represents the number of drug-like molecules, while the Y-axis represents the binding 

energy. In this Figure 3.9B, the X-axis represents the number of binding sites or cavities, while the Y-

axis represents the binding energy. Figures 3.9 A and 3.9 B show that blue is the primary interaction 

site with the experimental site for all the drug-like molecules. CBE analysis showed that C3 and C4 
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contained more potential for protein and ligand complex binding energy than C1 and C2, as shown in 

Figure 3.9. The blue line of C4 (Experimental reported active site) represents binding energy value -

6.8 to 10.6 kcal/mol, and the black line C1 was shown -3.5 to -6.2 kcal/mol binding energy. The red 

line for C2 showed -4.1 to -7.0 kcal/ mol, and the green line for C3 was -6.7 to -10.6 kcal/mol. Two 

sites (C3, C4) are better than the others (C1, C2) based on their binding energies, as shown in Figure 

3.9. 

 

Figure 3.9 Corrected binding energy (CBE) trend curves for LORD 25 molecules at all four sites. (A) The X-

axis is 25 drug-likeness molecules (D1 to D25), and Y-axis is CBE values and (B) The X-axis is MESP-suggested 

sites (C1, C2, C3), and Y-axis is CBE values. 

3.2.9  Molecular Dynamics (MD) Simulations 

Acetylcholinesterase enzyme receptor with top four drug-like molecules and donepezil drug molecule 

is further studied by MD simulations using GROMACS 5.1.2 package. To compare the stability, we 

have also conducted MD simulations for Donepezil. The MD simulations were performed using the 

CHARMM force field to assess the energy evaluations of the protein. The ligand topology was also 

determined using the CHARMM General Force Field (CGenFF). This combination of force fields 

allowed for comprehensive and accurate evaluations of both the protein and ligand components during 

the MD simulations.58 After the protein-ligand complex was successfully docked, it was immersed in 

a cubic box using the TIP3 water model for solvation. An appropriate number of chlorine ions (CL-) 

were added to achieve a neutral charge, followed by energy minimization using the steepest descent 
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approach with 10,000 steps. The NVT ensemble was utilized to maintain a temperature of 298 K 

throughout the simulation, while the NPT ensemble, with a pressure range of 1.0 bar to 250 bars, was 

employed to simulate the ligand-protein complex. The Particle Mesh Ewald and LINCS algorithms 

were utilized for short-range electrostatic interactions. A Van der Waals distance cut-       10 Å w   

applied to constrain all bonds. The stability of the system was maintained through simulations lasting 

100 ns. The RMSD plots are shown in Figure 3.10 for four top drug molecules with Donepezil.  

                             

Figure 3.10 MD simulation studies of the RMSD for the top four drug-likeness molecules (D1, D2, D3, D4) and 

Reference (R1). 

The interaction between the AChE target and four drug-like molecules, along with Donepezil, was 

compared. To analyze the dynamic behavior, stability of interaction, and structural changes in the 

complexes, RMSD calculations were employed. Molecular dynamics (MD) simulations of AChE were 

performed for three ligand molecules over a duration of 100 ns. Molecular alignment was assessed by 

superimposing the average structure at the start of the simulation (0 ns) with the output structures at 

100 ns. The stability of the protein-ligand complexes for the four-candidate drug-like molecules was 

evaluated based on the RMSD and RMSF values obtained from the MD simulations. Figure 3.10 

illustrates the tight binding of these four candidate ligands within site 1 (C1) of AChE, as indicated by 

their RMSD values. 
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3.2.10 Free Energy Calculations 

The protein-ligand complexes binding energy, or binding energy (BE) as it is more often known, was 

determined using the g-mmpbsa software. The molecular mechanics (MM) force field is used to 

calculate the vacuum potential energy resulting from different interactions, such as bound and unbound 

forces. The MM force field uses the Lennard-Jones potential function to determine the van der Waals 

(Evdw) energy contribution and the Coulomb potential function to determine the electrostatic energy 

contribution. To determine the polar contribution and calculate the free energy of solvation, the 

Poisson-Boltzmann equation's solution is also used. In the case of non-polar contribution, it is typically 

believed that the solvent-accessible surface area (SASA) and the non-electrostatic solvation energy 

have a direct correlation. The non-polar energy term includes the van der Waals interaction and the 

attractive and repellent forces produced by cavities created between the solute and solvent. Snapshots 

of the equilibrated area from the molecular dynamics (MD) trajectory are taken during the binding 

energy (BE) computations. The computations are done using the default settings supplied by Kumari 

et al. using the MmPbsaDecomp.py script, which is part of the g-mmpbsa package. 

For the five protein-ligand complexes that were chosen, calculations of binding energy (BE) using the 

MM-PBSA program were made. The top four drug-likeness as D1, D2, D3, D4, and Donepezil's 

reference (R1) molecule all had BE values between 0-10 ns, 30-40 ns, 60-70 ns, and 90-100 ns. The 

BE distribution calculation revealed that it significantly contributed to the overall BE, as shown in 

Table 3.3.  

Table 3.3 Free energy calculation of the top four drug-likeness (D1-D4) molecules and Donepezil (R1). 

Time 

intervals     

(ns) 

Complex free energies (kJ/mol) 

D1 D2 D3 D4 R1 

0-25 −134.4
±/−15.0   

−144.3 
+/− 17.3 

−113.4 
+/− 15.8 

−110.9 
+/− 19.2 

−111.1 
+/− 16.2 

25-50 −134.5 
+/− 13.5 

−120.7 
+/−12.8 

−115.2 
+/− 16.6 

−112.7 
+/− 14.7 

−122.6 
+/− 11.5 

50-75 −136.2 
+/− 12.3 

−145.8 
+/− 17.3 

−114.1 
+/− 16.2 

−117 .8 
+/− 12.5 

−116.7 
+/− 16.1 

75-100 −143.5 
+/− 12.7 

−119.0 
+/− 10.7 

−124.7 
+/− 12.9 

−118.9 
+/− 14.2 

−121.5 
+/− 11.7 
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3.3 Conclusions 

The present research introduces an innovative approach to designing drug-like molecules that target 

proteins at their binding sites. The current study provides a novel method for designing drug-like 

compounds targeting target proteins on-site. The molecular structure is built through LSTM-suggested 

fragment addition. Due to LORD's ability to include physicochemical features through corrected 

binding energy training, the probability of unnecessary molecule generations is extremely rare. The 

LORD uses a reverse engineering technique, which involves learning about the environment of the 

target binding site and then constructing molecules. Hence, the produced molecule has an excellent 

possibility of becoming a drug-like molecule. LORD has the advantage of being computationally 

cheap due to the platform technique used while scanning the MESP cavities, and it will automatically 

find target binding sites. LORD is smart enough to build potential molecules based on the target site's 

environment. Thus, the molecules generated will be appropriate for that site. This work investigates 

LORD extensively in this study on the Acetylcholinesterase (AChE), which causes AD. We 

discovered four putative binding sites, one of which was an experimentally active site. Four potential 

binding sites are utilized to build molecules by LORD, producing 25 potential drug candidates. The 

experimentally active site, when compared to the other sites in CBE values, is the most dominant of 

the four binding sites. LORD 25 molecules have good Corrected binding energy (CBE) (kcal/mol), 

AutoDockvina binding energy (BE), physicochemical, and ADME qualities when compared to 

commercially available medications such as Donepezil. In addition, MD simulations of the top-four 

potential drug-like compounds were investigated, and it was discovered that these are more stable in 

protein during long simulation runs than donepezil drugs. 
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4.1 Introduction to COVID-19 

The recently identified RNA virus coronavirus disease-2019 (COVID-19) or severe acute 

respiratory syndrome coronavirus II (SARS-CoV-2) represents a significant health risk to the 

general public.1 The most common symptoms of the coronavirus are fever, dry cough, sore throat, 

headache, loss of taste, and severe symptoms such as difficulty breathing and chest pain, which 

sometimes leads to pneumonia. 2  COVID-19-infected people show mild to moderate illness. 

SARS-CoV-2 belongs to the Coronaviridae family of Coronaviruses are enveloped, positive-

sense, single-stranded ribonucleic acids (RNA) genomes like MERS-CoV and SARS-CoV.3 The 

novel coronavirus genome consists of many essential proteins such as nucleocapsid protein, Spike 

protein (S), and Envelope protein (E), Membrane protein (M). These proteins showed crucial roles 

in the gene expression and replication process of the coronavirus that will lead to the breaking 

down of the polyproteins in the human genome.4 

The 3C-like protease (3CL-pro) is a different designation of the SARS-CoV-2 virus's main 

protease (Mpro). By using replicase enzymes, this protease is in charge of breaking down 

polyproteins. Mpro is a dimeric protein comprising the protomers A and B, which are two identical 

parts. Each protomer is made up of three different domains: domain I, which is made up of residues 

8 to 101, domain II (residues 102 to 184) and has an antiparallel beta-barrel structure, and domain 

III (residues 201 to 303) and contains a lot of alpha helices. A flexible loop region spanning 

residues 185 to 200 connects domain II to Mpro. Catalytic dyads, made up of Cys145 and His41, 

are essential to the activity of enzyme. In the space between domains I and II, Mpro substrate-

binding site is found. The crystal structure of the main protease with inhibitor N3 complex is PDB 

ID: 6LU7.5 Fragment molecular orbitals (FMO) method-based interaction analysis on Moro by 

splitting into five fragments indicates that the essential amino acid residues are His41, His163, 

His164, and Glu166 due to hydrogen bond interactions.6 Mpro is an essential drug target due to its 

indispensable role in viral replication of the life cycle and transcription virus inside the host. And 

hence, one can develop effective antiviral drugs for treating COVID-19 infection.7,8 CADD plays 

a significant role in the drug discovery journey and holds particular significance in combating the 

COVID-19 pandemic.9,10  

Recent literature studies indicate that drug repurposing processes are an essential strategy to 

identify drugs by applying three types of proteins such as main protease (Mpro), Papain-like-

protease (PLpro), RNA-dependent polymerase (RdRp) or Nucleotide inhibitor to combat COVID-

19 pandemic. 11 , 12 , 13  The computational studies on existing antiviral medicines 14  such as 

Remdesivir, Hydroxyl ethylamine derivative Favipiravir, Ritonavir, Lopinavir, Oseltamivir, 
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Ribavir, Galidesivir, and Riamilovir are promising to combat COVID-19.15Also, there are other 

potential medicines such as Chloroquine, hydroxyl Chloroquine (HCQ), Mycopheacidsc acids 

(MPA), Premirolast, isoniazid, and Eriodictyol, Azithromycin. Telaprevir and paritaprevir are 

studied by covalent interactions, and asunaprevir, simeprevir, and paritaprevir are studied by 

noncovalent interactions, and Hydroxyl ethylamine derivatives in the treatment for COVID-19.16 

Previous a selection of relevant literature, while our focus in this section is to discuss the 

methodology and offer a concise summary in Table 4.1. 

 

           

Figure 4.1 Mechanism action of viral replication. 

Table 4.1 Summary of literature on methodology. 

Methodology Summary 

X-ray 

crystallography 

 

The crystal structure of SARS-CoV-2 Mpro provides crucial insights into the design 

of potent α-ketoamide inhibitors, facilitating the development of enhanced 

antiviral medications to combat COVID-19. By leveraging these important details, 

researchers can devise more effective strategies to target the viral protease, 

potentially leading to improved treatment options against the disease.17 

 COVID-19, 

molecular 

docking, virtual 

screening, 

machine 

learning, and 

molecular 

dynamics 

simulations. 

This critical overview assesses the computational approaches employed for 

COVID-19 drug discovery. The study identifies key techniques such as molecular 

docking, virtual screening, machine learning, and molecular dynamics simulations 

through an extensive literature review. The strengths and limitations of these 

approaches are evaluated, shedding light on their contributions to the search for 

effective treatments for COVID-19.18 

X-ray 

crystallography, 

The recent breakthrough in COVID-19 research has unveiled the structure of the 

Mpro enzyme, a key target for potential drug development against the virus. 
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virtual screening 

and biochemical 

assays 

Alongside this discovery, scientists have also identified inhibitors that could 

effectively target and block the activity of the Mpro enzyme.19 

SARS-CoV-2 

virus, machine 

learning, 

Pharmacology 

 

This review of 17,000 studies highlighted the significant role of computational 

approaches in combating COVID-19. The findings demonstrated that AI-driven 

methodologies have contributed to various aspects, including epidemiological 

modeling, drug discovery, vaccine development, and patient care. By leveraging 

computational tools and techniques, researchers have been able to accelerate the 

understanding of the virus, facilitate data-driven decision-making, and enhance 

public health strategies to mitigate the impact of the pandemic effectively.20 

Molecular 

docking and MD 

simulations 

Virtual screening and structural optimization techniques have successfully 

pinpointed potential inhibitors for the Mpro enzyme. This breakthrough discovery 

offers a promising pathway toward creating highly effective antiviral medications. 

Researchers have identified compounds that exhibit potent inhibitory effects on 

Mpro by utilizing computational methods and refining the molecular structure.21 

X-ray 

crystallography 

and molecular 

modeling 

Establishing the structural foundation for developing inhibitors against the Mpro 

enzyme of SARS-CoV has provided valuable insights, facilitating the progress in 

drug development. This advancement lays the groundwork for designing effective 

inhibitors to target the Mpro enzyme, potentially contributing to developing 

therapeutic interventions against SARS-CoV.22 

Virtual 

screening and 

molecular 

docking 

Promising novel small-molecule inhibitors have been identified to target the 

SARS-CoV-2 Mpro enzyme, providing potential candidates for developing 

effective antiviral therapies against COVID-19. These inhibitors hold promise in 

combating the virus by inhibiting the activity of the Mpro enzyme, which plays a 

crucial role in viral replication.23 

Virtual 

screening, 

molecular 

docking and MD 

simulations 

Virtual screening and molecular dynamics simulations have been employed to 

identify potential inhibitors for the Mpro enzyme in SARS-CoV-2. This 

breakthrough offers hope for developing powerful antiviral treatments, instilling 

optimism in the ongoing battle against the COVID-19 pandemic.24 

Structure-based 

virtual screening 

and MD 

simulations 

Promising antiviral drug candidates have emerged by identifying potent Mpro 

inhibitors possessing favorable drug-likeness characteristics. These findings 

showcase their potential as effective agents in developing antiviral medications. 

Their favorable properties make them worthy contenders for further investigation 

and potential use in combating viral infections.25 

Computational 

and 

experimental 

studies  

Boceprevir, GC-376, and calpain inhibitors II and XII exhibit promising antiviral 

activity by specifically targeting the main protease of SARS-CoV-2, thereby 

impeding viral replication. These compounds hold significant potential as 

therapeutic options for combating the virus, offering valuable strategies for 

antiviral intervention. By inhibiting the main viral protease, they disrupt essential 

viral processes and may contribute to the development of effective antiviral 

treatments.26 

In silico 

screening and 

MD simulations 

The identification of FDA-approved drugs as potential inhibitors for the SARS-

CoV-2 Mpro enzyme opens up possibilities for repurposing them as treatments for 

COVID-19. These drugs exhibit inhibitory properties, indicating their potential to 

target and hinder the activity of the Mpro enzyme associated with the virus. This 

discovery provides an avenue for exploring existing medications in the fight 

against COVID-19.27 

Molecular 

docking and MD 

simulations 

New possibilities for COVID-19 treatment have emerged with the identification 

of potential inhibitors that target the Mpro enzyme. These inhibitors have been 

found within FDA-approved drugs, providing opportunities to repurpose existing 
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medications. This discovery paves the way for exploring alternative therapeutic 

options for COVID-19 by leveraging the safety profiles and availability of already 

approved drugs.28 

Fragment 

molecular orbital 

calculations and 

MD simulations 

Quantum mechanics/molecular mechanics simulations were employed to assess 

the effectiveness of Mpro inhibitors, yielding crucial insights into their binding 

mechanisms. These simulations offered valuable contributions to developing new 

drugs, as they shed light on the interactions between the inhibitors and their target, 

paving the way for enhanced drug design and optimization.29 

X-ray 

crystallography 

and SBDD 

 

The constant evolution and diversity of SARS-CoV-2 Mpro inhibitors pose 

significant challenges in antiviral drug design. Furthermore, the emergence of drug 

resistance further complicates the development of effective treatments. It is 

imperative to devise new strategies and approaches to combat these challenges and 

create novel antiviral drugs to effectively target the virus and overcome resistance 

mechanisms.30 

Virtual 

screening and 

MD simulations 

Novel phytochemicals derived from medicinal plants have been discovered 

through molecular docking and deep learning techniques, showcasing their 

promising inhibitory effects against the SARS-CoV-2 Mpro protein.31 

X-ray 

crystallography, 

fragment 

screening, and 

medicinal 

chemistry 

Researchers are making significant strides in developing potent noncovalent 

inhibitors targeting the SARS-CoV-2 Mpro protein. These inhibitors have 

demonstrated promising efficacy in preclinical studies, effectively blocking the 

activity of the viral protease and impeding viral replication. This approach offers 

a potential avenue for developing effective antiviral therapies against COVID-19 

without relying on covalent binding mechanisms.32 

N-heterocyclic 

compounds, 

DFT 

calculations, and 

molecular 

docking 

The study employed molecular docking and DFT calculations to evaluate the 

binding affinity and interaction between the N-heterocycles and viral proteins. The 

aim was to predict their antiviral activity and identify key structural features 

contributing to their effectiveness.33 

 Insilico antiviral 

screening, 

molecular 

docking, and 

MD simulations 

The study utilized computational techniques to examine the anti-SARS-CoV-2 

activity of chloroquine and its analogy. Additionally, the researchers performed a 

virtual screening of main protease inhibitors to identify potential compounds with 

inhibitory effects on the virus and highlight promising compounds that could be 

further studied for their efficacy against SARS-CoV-2.34 

 

4.2 Results and Discussion 

4. .2.1 MESP Calculation for Identification Binding Sites Mpro in COVID-19 Target 

Figure 4.2 shows the whole MESP distribution with two layers. Surface cavity analysis explores 

the most negative areas, such as the inner blue color lobes marked in black circles with notations 

C1-C5. MESP function values are projected onto the plane to pinpoint the precise location of the 

possible binding site. The scanning MESP function values inside the plane produced surface 

cavities. 
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 Figure 4.2 Substrate structures (A) and (B) MESP distribution of the Mpro target protein. 

The surface cavities were expected to have the most significant number of possible binding sites. 

As illustrated in Figure 4.2, the surface cavities help to comprehend the distribution of MESP 

function values by tracking the gradients as the color changes. The inner and outer circles represent 

the two negative MESP function isosurfaces. The color distribution suggests that drug molecules 

can be ingested into the cavity by following the charge distribution gradient. This analysis 

identified the top five probable binding sites for future investigation. 

4.2.2 Design of Potential Candidate Molecules 

The chapter contains 50 potential candidates developed utilizing the LORD method and compared 

to Remdesivir (R1), a presently available drug in the market.  
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 Figure 4.3 Fifty potential candidate drug-likeness molecule structures. 

4.2.3 Stereochemistry and  Protein-Ligand Complex Interaction Studies 

The stereochemistry of six stereoisomers, D1A, D1B, D2A, D2B, and R1A, R1B, as well as their 

interactions with Site-5 (C5) of the Mpro target protein. The enantiomers were visualized in 3D 

structures using Chemdraw 3D software to demonstrate their absolute stereochemistry. The 

investigation examined the impact of stereochemistry on the docking energy between 

stereoisomers and the target protein. Specifically, the study focused on analyzing how different 

stereo centers influenced the docking process. The protein's active amino acids create a variety of 

interactions with the ligand, including hydrogen bonds, electrostatic interactions, and van der 

Waals contacts, the protein-ligand combinations are stabilized by these interactions.  
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Figure 4.4 Stereochemistry and its Role in D1, D2, R1 drug-likeness molecules and their 

interactions.  

D1A showed a higher BE of -11.0 kcal/mol and a higher CBE of −7.5 kcal/mol than D1B (BE=−9.9 

kcal/mol and CBE=−6.4 kcal/mol). D1A and the protein complex generated one P-sigma bonding 
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contact with MET 49 and one hydrogen bonding connection with ASN 142 amino acid residues 

with phenol. D1A also has more substantial 1H-pyrazolo[3,4-d] pyrimidine fragments than D1B. 

D2A also had a greater BE= −10.6 kcal/mol and CBE= −7.4 kcal/mol than D2B (BE=−9.2 

kcal/mol and CBE=−6.2 kcal/mol), and it interacted with the Pi-sigma bonding of MET 49. 

Additionally, R1A had a BE of −10.8  kcal/mol, a CBE of −8.1  kcal/mol, and fragments of 

pyrrolo[2,1-f] [1,2,4] triazine-4-amine. R1A and protein complex interacted with GLU 166 amino 

acid residue via one Pi-sigma bonding and one carbon-hydrogen bonding interaction, making it 

more significant than R1B (BE=−7.8 kcal/mol and CBE=−4.3 kcal/mol). 

The 3D chemdraw software to visualize the stereoisomers and observed that D1A, D2A, and R1A 

stereoisomers had higher BE than D1B, D2B, and R1B stereoisomers. The minimal distance between 

amino acid residues and the protein-ligand nature of their interaction influenced the complexes' 

stability. The study concluded that the stereochemistry of the ligand influences the kind and 

strength of the interaction with the target protein, and stereoisomers with higher BE and lower 

minimum distance between amino acid residues interacted effectively with the target protein. D1 

and D2 stereoisomers better interacted with the target protein than Remdesivir (R1).   

4.2.4 Protein-Ligand Complex and their Interaction Studies of the Top Four Drug-Likeness 

Molecules at Selected Four Binding Sites 

We have shown the protein-ligand complex for each of the five target binding sites in Figure 4.5. 

These illustrations may be seen in the Figure left column. A Black circle in each picture denotes 

the precise position between the protein that have particular interactions with the ligand complex 

at each site. Additionally, we have presented the BE and CBE values for the top five LORD-

generated molecules (D1-D5)well as three reference molecules, Remdesivir (R1), Hydroxy 

chloroquinoline (R2), and Favipiravir (R3) - for each site, labeled C1 to C5 from top to bottom, in 

the right column of Figure 4.5. The CBE values for the top five molecules generated by LORD 

were observed to be much lower than the three reference molecules shown in the green and blue 

color-coded bar plots in all five sites. This indicates that the LORD-generated molecules have 

stronger binding affinities to the target protein, an essential property for an effective drug. 

Furthermore, the LORD-generated molecules were found to outperform the currently available 

drugs in the market for all five binding sites. This suggests that the LORD-generated molecules 

have the potential to be more effective in treating diseases or conditions that target these specific 

binding sites. Our results demonstrate that the LORD-generated molecules have strong binding 

affinities to the target protein and could potentially serve as better drug candidates than currently 

available drugs in the market. 
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Figure 4.5 The Protein Site with drug-likeness molecules complex and their interaction studies of 

the top five drug-likeness molecules and three reference molecules at Selected five binding sites. 

(A) MESP suggested site-1(C1), (B) MESP suggested site-2 (C2), (C) MESP suggested cavity site-

3 (C3), and (D) Experimentally reported site-4 (C4). 

4.2.5 Binding Sites Analysis from Protein-Ligand Complex 

We identified specific amino acid residues active in the five target binding sites (C1 to C5). In Site-

1 (C1), we found the active residues to be  Glycine 12(Gyl2),  Phenylalanine 3 (Phe3), Arginine 4 

(Arg4),  Lysine 5 (Lys5), Tyrosine126 (Tyr126), Glutamine 127 (Gln127), Tryptophan 207 

(Trp207), Asparagine 214 (Asn214), Leucine 282 (Leu282), Serine 284 (Ser284), Alaninine 285 

(Ala285), Leucine 286 (Leu286), and Threonine 292 (Thr292). In comparison to the other sites, 

Site-1 exhibited decreased binding energy. In Site-2 (C2), we observed active residues including  

Threonine 21 (Thr21),  Cysteine 22 (Cys22), Glycine 23 (Gly23),  threonine 24 (Thr24), 

Threonine 25 (Thr25), Lysine 61 (Lys61), Serine (Ser62),  Asparagine 63 (Asn63), Histidine 64  

(His64), Asparagine 65 (Asn65), Phenylalanine 66 (Phe66), leucine 67 (Leu67), Glutamine 74 

(Gln74), Leucine 75 (Leu75), Arginine 76 (Arg76), Valine 77 (Val77),  Isoleucine 78 (Ile78), and  

Glycine 79 (Gly79). Site-4 (C4) and Site-3 (C3) had higher BE than Site-2, whereas Site-1 had 

lower binding energy. Active amino acid residues in Site-3 (C3) included Proline 52 (Pro52), 

Asparagine 53 (Asn53), Tyrosine (Tyr54), Glutamic acid 55 (Glu55), Methionine 82 (Met82), 
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Glutamine 83 (Gln83), Valine 86 (Val86), Leucine 87 (Leu87), Glycine 179 (Gly179),  Aspargine 

180 (Ans180), Phenylalanine 181 (Phe181),  Tyrosine 182 (Tyr182), Phenylalanine 185 (Phe185), 

Valine 186 (Val186), Aspartic acid 187 (Asp187) and  Arginine (Arg188). Interestingly, we 

noticed that these active residues at Site-4 corresponded to the experimentally reported active 

residues in Site-5, including Threonine 26 (Thr26), Leucine 27 (Leu27), Phenylalanine 140 

(Phe140), Leucine 141 (Leu141), Asparagine 142 (Asn142), Glycine 143 (Gly143),  Serine 144 

(Ser144), Cysteine (Cys145), Histidine 163 (His163), Histidine 164 (His164), Methionine 165 

(Met165), glutamic acid 166 (Glu166), Aspartic acid 187 (Asp187), Arginine 188 (Arg188), 

Glutamine189(Gln189), Threonine 190 (Thr190), and Alanine 191(Ala191) These amino acids 

interacted with each other and resulted in better binding energy. 

 

 

Figure 4.6 The four active sites, C1, C2, C3, and C4, of the target, main protease. 
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4.2.6 Cavity Drug-Likeness  Interaction Matrix 

In this study, we docked fifty potential drug-likeness molecular interactions against the target 

protein. Figure 4.7 depicts interactions between proteins and ligands and summarises our findings, 

using different colors for different types of interactions. We investigated the interactions between 

the Remdesivir complex and various active amino acid residues.  
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Figure 4.7 Experimentally reported Site5 (C5) of the main protease with 50 drug-likeness molecules. 
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 We investigated the Remdesivir-protein interactions complex with 20 active amino acid residues, 20 

active amino acid residue interactions in the D1, 20 active amino acids in the D2, 22 active amino acids 

in the D3, 22 active amino acids in the D4, 23 active amino acids in the D5, 21 active amino acids in the 

D6, 21 active amino acids in the D7, 17 active amino acids in the D8, 13 active amino acids in the D9,  

17 active amino acids in the D10, 15  active amino acid in the D11, 15 active amino acids in the D12, 14 

active amino acids in the D13, 16 active amino acids in the D14, 16 active amino acids in the D15, 13 

active amino acids in the D16, 16 active amino acids in the D17, 17 active amino acids in the D18, 20 

active amino acids in the D19, 15 active amino acids in the D20, 14 active amino acids in the D21, 14 

active amino acids in the D22, 15 active amino acids in the D23, 17 active amino acids in the D24 and 14 

active amino acids in the D25, 16 active amino acid residue interactions in the D26, 19 active amino 

acids in the D27, 15 active amino acids in the D28, 21 active amino acids in the D29, 14 active amino 

acids in the D30, 14 active amino acids in the D31, 16 active amino acids in the D32, 13 active amino 

acids in the D33, 11  active amino acids in the D34, 22 active amino acids in the D35, 15 active amino 

acids in the D36, 17 active amino acids in the D37, 15 active amino acids in the D38, 19 active amino 

acids in the D39, 16 active amino acids in the D40, 15 active amino acids in the D41, 16 active amino 

acids in the D42, 18 active amino acids in the D43, 18 active amino acids in the D44, 17 active amino 

acids in the D45, 19 active amino acids in the D47, 17 active amino acids in the D48, 16 active amino 

acids in the D49, and 15 active amino acids in the D50 .  Essentially, the interaction between proteins and 

ligands is important for drug design because it makes it possible to create substances that can precisely 

target and control the activity of disease-related proteins, leading to the development of effective and 

secure therapeutics.  

4.2.7 Physicochemical and ADME Properties 

To validate LORD algorithm on 50 molecules, we have provided the physicochemical properties, such 

as the Lipinski rule of five in Figure 4.8 for all the fifty molecules. All the candidate molecules show 

molecular weight ranging from 456.46 to 474.60, less than 500 Daltons. The Partition coefficient 

ranges between 1.65-3.42, less than 5; HBD is between 2-4, and HBA is between 3-9. The molecular 

polar surface area ranges between 73.49-147.61, is less than 140Å2 , and the total number of the 

rotatable bond ranges between 3-4 is less than 10. Figure 4.8 represents that most of the molecules 

followed the Lipinski rule of five; hence, they can be studied for further analysis. LORD once again 

proved that it incorporates Lipinski's rule of five by learning CBE while training data. 
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ADME properties are generated by using the SWISS ADME website for the 50 molecules predicted 

using the LORD algorithm. ADME properties are most effective in predicting human pharmacokinetic 

properties to be successful in clinical trials. The top five potential molecules have shown in Table 4.2.  

 

Figure 4.8 Physico-chemical properties of LORD 50 molecules. (A) Molecular weight (g/mol), (B) Hydrogen 

bond acceptor, (C) Hydrogen bond donor, (D) Partition Coefficient (Logp), (E) Total polar surface area, and (F) 

Rotatable bond count. 

Table 4.2 ADME or Pharmacokinetic proprieties of the site-wise selected molecules in 

aGastrointestinal absorption, bBlood brain barrier permeant, cP-gp substrate, dCytochrome P450 family 

1 subfamily A member2, eCytochrome P450 family 2  subfamily C member19, fCytochrome P450 

family 2 subfamily C member 9, gCytochrome P450 family 2 subfamily D member 6, hCytochrome 

P450 family 3 subfamily A member4, and ISkin permeation in cm. 
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S.No GI                   

absa 

BBB              

permnt 

P-gp                    

substratec 

CYP1A2 

Inhibitord 

CYP2C19 

Inhibitore 

CYP2C9 

Inhibitorf  

CYP2D6         

Inhibitorg      

CYP3A4 

Inhibitorh 

Log 

Kpi 

D1 Low No  No No No No No Yes -7.88 

D2 High No Yes No No Yes Yes Yes -7.08 

D3 High No No No No No Yes Yes -5.16 

D4 Low No No No No No No No -5.70 

D5 High No Yes No No Yes Yes Yes -6.41 

R1 Low No Yes No No No No Yes -8.62 

 

4.2.8 Correlation of Potential Drug-Likeness Molecules vs. Site-Wise Binding Energy 

 

Figure 4.9 Corrected binding energy trend curves for LORD 50 molecules at all five sites. (A) The 

X-axis is 50 drug-likeness molecules (D1 to D50), and Y-axis is CBE values, (B)  The X-axis is 

ESP-suggested sites (C1, C2, C3, C4), and Y-axis is CBE values. 

 

The CBE values for LORD 50 molecules at each site are depicted in Figure 4.9. The range of CBE is 

−3.0 to −8.0 kcal /mol for all five sites of the main protease of the Sars-Cov-2 virus. In Figure 4.9 A, 

the X-axis represents 50 potential drug-likeness molecules, and Y-axis corresponds to CBE Figure 4.9 

B. The X-axis represents the number of cavities or binding sites, while the Y-axis displays the CBE. 
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Figure 4.9 shows that Pink is a significant interaction and experimental site for all the drug-likeness 

molecules. And also, CBE analysis showed that Site 4 and Site 5 are more potential for protein-ligand 

complex interactions compared to sites 1, 2, and 3, as indicated in Figure 4.9. 

In which the black line of C1 (Experimental reported active site) represents binding energy value -3.2 

to -5.6 kcal/mol, and the red line C2 was shown -3.6 to -6.0 kcal/mol binding energy. The green line 

for C3 was shown at -3.9 to -6.9 kcal/ mol, the blue line for C4 was shown at -4.3 to -7.2 kcal/mol, and 

the pink line for C5 showed -4.8 to -8.2 kcal/mol. Two sites (C4, C5) are better than the other three sites 

(C1, C2, and C3) based on their CBE value shown in Figure 4.9. 

4.2.9  Molecular Dynamics (MD) Simulations 

The main protease of SARS-CoV-2 was extensively investigated to identify 

potential molecules employing MD simulations using the GROMACS 5.1.2 program. Three top drug-

likeness compounds were discovered and compared to stability of reference molecule, Remdesivir 

using MD simulations. In the MD simulations, the protein energy evaluations in this study were 

conducted using the CHARMM force field, while the ligand topology was generated using the 

CHARMM General Force Field (CGenFF). The TIP3 water model was employed within a cubical box 

to facilitate the dissolution of the protein-ligand complex. To ensure system neutrality, chloride ions 

were introduced. The energy of the system was minimized using the steepest descent method. To 

maintain a constant temperature of 298 K,an NVT ensemble was utilized. 

Additionally, the NPT ensemble was employed to simulate the behavior of the ligand-protein 

combination. The Particle Mesh Ewald and LINCS algorithms were used to examine short-range 

electrostatics, and a Van der Waals distance threshold of 10 was utilized to limit all bonds. To assure 

stability, the simulations were run for 100 ns, and the RMSD plots were compared to compare the 

stability of the three possible drug-like molecules with Remdesivir.  
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Figure 4.10. RMSD deviations of Protein-Ligand complex. 

The molecular interactions of the two potential drug-like compounds and Remdesivir with the SARS-

CoV-2 virus were compared using the RMSD calculation. The stability of the association between the 

ligands and the protein and the structural changes in the complex were investigated. The RMSD result 

suggested that the three potential ligands were strongly bound inside Site 5 (C5) of the Mpro. RMSD 

values range from 0.1-0.3.2 nm to 0.2-0.3.5 nm. The MD simulation of the SARS-CoV-2 virus's major 

protease revealed good molecular contact of the three ligand molecules, and the stability of the 

connection between drugs and ligands was investigated. Molecular superposition was used to compare 

the average of the input (0 ns) and output (100 ns) structures. The findings revealed that the two-

candidate potential drug-likeness compounds were stable and had effective molecular interactions with 

the Mpro.  

4.2.10 Free Energy Calculations 

The protein-ligand complexes binding energy (BE) as it is more often known, was determined using 

the g-mmpbsa software. Calculating the vacuum potential energy resulting from various interactions, 

including both bound and unbound states, requires the application of the molecular mechanics (MM) 

force field. The computation of the electrostatic and van der Waals (Evdw) energy contributions 
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involves the use of the Coulomb potential function and the Lennard-Jones potential function, 

respectively. The solution to the Poisson-Boltzmann equation allowed for identifying the polar 

contribution while evaluating the free energy of solvation. It has traditionally been assumed that the 

solvent-accessible surface area (SASA) and the non-electrostatic solvation energy are closely related 

when evaluating the non-polar contribution. The non-polar energy term (Gnonpolar) incorporates van der 

Waals interactions and the attractive and repulsive forces that arise between the solute and solvent due 

to cavities. During the Free energy calculations, snapshots of the equilibrated area from the molecular 

dynamics (MD) trajectory were captured. All computations were performed using the 

MmPbsaDecomp.py script, which is part of the g-mmpbsa package, with the default parameters 

provided by Kumari et al. 

Table 4.3 Free energy calculation of the top four drug-likeness (D1-D4) molecules and Remdesivir 

(R1). 

Time 

intervals 

(ns) 

Complex free energies (kJ/mol) 

D1 D2 R1 

0-25 −17.6 +/−11.6 −49.5 +/− 13.7 −76.2 +/− 19.3 

25-50 −20.8 +/− 12.4 −43.6 +/− 14.1 −59.6 
+/− 15.5 

50-75 −29.2 +/− 12.9 −44.0 +/− 11.0 −64.9 
+/− 13.3 

75-100 −31.7 +/− 8.8 −38.2 +/− 12.2 −64.9 
+/− 13.3 

 

For the two protein-ligand complexes that were chosen, calculations of binding energy (BE) using the 

MM-PBSA program were made. The top four drug-likeness as, D1, D2, and Remdesivir as reference 

(R1) molecules, had BE values at 0-25ns, 25-50ns, 50-75ns, and 75-100ns. The BE distribution 

calculation revealed that it significantly contributed to the overall BE, as shown in Table 4.3.  

4.3 Conclusions 

The present work demonstrates a novel approach to designing on-site drug-likeness molecules for 

target proteins. On-site drug design strategy allows the algorithm better in building molecules by 
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exactly locating the target binding site environment by MESP cavity studies. LORD method can be 

utilized for any target protein to design drug-likeness molecules. LORD can incorporate the 

physicochemical properties by corrected binding energy training. Hence, the possibility of irrelevant 

molecular generations is very much infrequent. LORD follows a reverse engineering approach, such 

as knowing the environment of the target binding site and building molecules. Hence, it is a very high 

chance that the constructed molecule can become a drug-likeness molecule. The advantages of LORD 

are computationally cheap due to the substrate approach while scanning the MESP cavities, and it will 

locate target binding sites automatically. LORD algorithm is intelligent towards building molecules 

based on the target site environment. Hence, the suggestion of molecules will be relevant to that site.  

In this work, we found five potential binding sites, including an experimentally active site. Five 

potential binding sites are utilized to build molecules by LORD, producing 50 potential drug 

candidates. Out of all five binding sites, the experimentally active site is more dominant than the other 

sites in CBE values. LORD 50 molecules possess excellent BE (kcal/mol), and Physico-chemical 

properties and have shown better ADME properties than market-available drugs such as Remedesivir, 

Favipiravir, and Hydroxychloroquine. Further, MD simulations of top-four candidate drug-like 

molecules are studied and found to be stable in protein for long simulation runs, unlike less stable 

Remdesivir drug molecules.  
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CHAPTER 5 

Design of Potential Drug-likeness Molecules for Parkinson's 

Disease 
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5.1 Introduction to Parkinson’s Disease 

Parkinson’s Disease (PD) is a common neurological disorder wherein the midbrain's substantia nigra 

loses dopaminergic neurons. With its rising prevalence, PD has become a major public health concern, 

affecting approximately 7-10 million individuals aged 60 and above globally. Second, only to 

Alzheimer's disease (AD), PD requires increased research endeavors and interventions to enhance the 

well-being of those afflicted, underscoring the need to address its escalating challenges effectively.1,2  

Because dopamine replacement therapy is still the most effective symptomatic medication for 

Parkinson's disease, most contemporary treatments focus on symptomatic alleviation to enhance patient 

quality of life. For a more in-depth examination of contemporary pharmacotherapies and their efficacy, 

consider, 3  Flavin adenine dinucleotide (FAD)-containing enzymes that are connected to the 

mitochondrial outer membrane and responsible for catalyzing the oxidative deamination of monoamine 

neurotransmitters and dietary amines are found in specific human monoamine oxidase (MAO) enzymes.4 

The two main types of MAO isoforms are monoamine oxidase type A (MAO-A) and monoamine oxidase 

type B (MAO-B). MAO isoforms are distinguished based on their genetic makeup, distribution within 

tissues, and the specific substances they act upon. MAO-A, an enzyme, is crucial in breaking down 

norepinephrine, serotonin, and tyramine. Selective inhibitors targeting MAO-A are commonly used in 

treating depression. By inhibiting this enzyme, the levels of these neurotransmitters are increased, which 

helps alleviate depressive symptoms, and the MAO-B type is employed for selectivity of the metabolized 

dopamine, so selective MAO-B inhibitors to the treatment of the PD.5  

Figure 5. 1 Cartoon illustrating the Monoamine Oxidase-B enzyme role in PD.  
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The current studies on the crystal structure of the human MAO-B type with safinamide complex (PDB 

ID= 2V5Z, Resolution =1.6A) are available in the protein databank.6 In which complex of human MAO-

B with safinamide have hydrogen bond interaction of the Tyrosine-435(Tyr-435), Leucine (Leu-171), 

amino acids, and Pi-interaction of the Leucine (Leu-171), Cysteine-172(Cys-172), Tyrosine-326(Tyr-

326), Phenylalanine (Phe-168), Leucine-164(Leu-164), Isoleucine-199(Ile-199) amino acid residues.7 

The recent literature is reported as chemical scaffolds of the N-heterocyclic compounds8 and their related 

compounds9 3-Arylcoumarin-tetracyclic tacrine,10 coumarin derivatives,11 chacolone derivatives,12 and 

their related compounds are used as novel MAO-B inhibitors are employed as Anti Parkinson's agent. 

And Table 5.1 present a selection of relevant previous literature, while our focus in this section is to 

discuss the methodology and summary. 

Table 5.1 Overview of previous literature and focus on methodology and summary. 

Methodology Summary 

 

X-ray crystallography 

and molecular docking 

In a comprehensive study, researchers extensively investigated the structural 

aspects of the binding mode demonstrated by selective MAO-B inhibitors, which 

paved the way for rational drug design strategies. Through meticulous analysis, the 

study yielded valuable insights into the specific interactions and molecular features 

that contribute to the inhibitor’s selectivity. This newfound knowledge offers 

researchers a deeper understanding of the critical binding mechanism involved, thus 

enabling the development of more potent and customized MAO-B inhibitors.13 

X-ray crystallography 

and computational 

analysis 

A study on the crystal structure analysis of MAO-B and its reversible inhibitors has 

been conducted to facilitate the development of new propargylaminoindan 

compounds with enhanced selectivity and pharmacological properties. By 

analyzing the complex structure, researchers aim to design novel compounds that 

exhibit improved therapeutic benefits.14 

Fragment-based drug 

design, synthesis, MAO 

inhibitory in Vitro and 

Vivo assay. 

In this study, we employed a computational fragment-based design to identify a 

novel, potent, and selective inhibitor of the MAO-B. Using a combination of virtual 

screening, docking simulations, and MD simulations, we identified a promising 

fragment that exhibited strong binding affinity and selectivity for MAO-B.15 

Molecular docking, MD 

simulations, and QSAR 

studies 

Novel MAO-B hit inhibitors using multidimensional molecular modeling 

approaches and application of binary QSAR models for prediction of their 

therapeutic activity, pharmacokinetic, and toxicity properties, the authors explore 

the development of new MAO-B inhibitors using molecular modeling techniques.16 

 

Drug Repurposing, 

Molecular docking, and 

molecular MD 

simulations 

 

Virtual screening and molecular dynamics simulations to discover new MAO-B 

inhibitors that could have neuroprotective properties. The study aims to identify 

potential compounds that could be further investigated for treating 

neurodegenerative disorders such as AD by employing computational techniques.17 

Molecular docking, MD 

simulations, and 

The mechanism of irreversible inhibition of MAO enzymes by the antiparkinsonian 

propargylamine inhibitors, rasagiline, and selegiline. Using computational methods, 
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quantum chemical 

analysis 

the study provides valuable insights into the binding interactions and structural 

changes involved, enhancing our understanding of these inhibitors' therapeutic 

effects.18 

pharmacophore 

modeling, QSAR 

analysis, Molecular 

docking, MD simulation, 

and free energy 

calculations 

New insights on the activity and selectivity of MAO-B inhibitors through in silico 

methods explore the use of computational methods to analyze the effectiveness and 

specificity of MAO-B inhibitors. The study provides valuable insights into the 

design and development of potential drugs targeting MAO-B, aiding in treating 

neurodegenerative disorders such as PD.19 

Natural product, 

molecular docking and 

MD simulations 

In silico study to identify new MAO-A selective inhibitors from natural sources by 

virtual screening and molecular dynamics simulation" explores the use of 

computational methods to discover potential inhibitors of the enzyme MAO-A. The 

study focuses on natural sources and employs virtual screening and MD simulations 

to identify promising compounds.20 

Molecular docking and 

MD simulations 

Identification of new small molecule MAO-B inhibitors through pharmacophore-

based virtual screening, molecular docking, and MD simulation studies; they 

utilized computational methods to identify potential inhibitors for MAO-B, by 

employing pharmacophore-based virtual screening, molecular docking, and MD 

simulation techniques.21 

Pharmacophore 

modeling, molecular 

docking, MD 

simulations, and machine 

learning 

This study proposes a novel approach to developing treatments for AD and PD by 

targeting MAO-B. Combining machine learning and computer-aided drug design, 

the researchers identified potential inhibitors for MAO-B. These findings hold 

promise for the development of new therapies that could help mitigate the 

progression of these neurodegenerative diseases.22 

Flavonoids, molecular 

docking, and synthesis 

approaches 

The use of computational methods to investigate flavonoid derivatives as potential 

inhibitors of MAO-B. By studying the structural properties and interactions of these 

compounds, researchers aim to design novel compounds that can effectively target 

MAO-B and potentially have therapeutic effects.23 

QSAR modeling, 

Molecular docking, and 

MD simulations 

Chemical library design, QSAR modeling, and MD simulations of naturally 

occurring coumarins as dual inhibitors of MAO-B and AChE, explore the potential 

of naturally occurring coumarins as dual inhibitors of MAO-B and AChE.24             

Benzofuran, 

Safinamide compounds 

and Molecular docking 

This study focuses on designing, synthesizing, and evaluating new compounds 

targeting MAO-B for treating Parkinson's disease. The researchers aimed to 

improve the pharmacokinetic properties of these compounds. The findings of the 

study may contribute to the development of novel MAO-B inhibitors with enhanced 

therapeutic potential for PD.25 

MAO inhibitors 

Selegiline, rasagiline, 

safinamide 

MAO-B inhibitors for the treatment of PD: past, present, and future" explores the 

historical development, current usage, and prospects of MAO-B inhibitors in the 

treatment of PD.26 

Unsaturated Ketone, 

ADME prediction, 

Docking studies, MD 

simulations, and  binding 

free energy 

New MAO-B inhibitors using a multi-faceted approach. The study incorporates 

docking-based alignment, 3D-QSAR, ADMET prediction, molecular dynamics 

simulation, and MM_GBSA binding free energy to design potential inhibitors. The 

findings could contribute to the development of new therapeutic strategies for 

diseases associated with MAO-B activity.27 

QSAR modeling, 

molecular docking, in 

silico ADME 

The use of computational methods to study a group of compounds that target MAO-

B for the treatment of Alzheimer's disease. The article discusses the application of 

quantitative structure-activity relationship (QSAR) models, simulation techniques, 
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and ADMET/pharmacokinetics assessment to evaluate the potential effectiveness 

of these compounds.28 

2H-chromen-2-one core, 

3D-QSAR, and 

molecular docking. 

The study utilized both structure-based and ligand-based approaches to derive 3D-

QSAR predictive models. By analyzing the structures of the inhibitors and their 

binding interactions with MAO-B, the researchers developed models that could 

predict the activity of new inhibitors based on their molecular features.29 

 

Therefore, in the current study, the successful application of ESP studies was employed for finding the 

potential binding site in the protein target, and LORD generator for designing twenty-five candidate 

potential drug-likeness for employs to inhibit MAO-B in PD. 

5.2 Results and Discussion  

5.2.1 MESP Calculation for Identification Binding Sites in Target Protein    
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   Figure 5.2 (A) MESP distribution of the MAO-B and (B) Substrate structures. 

All the substrate cube files are loaded in VMD and transformed into one cube file. Figure 5.2 shows two 

color regions of MESP distributions, such as dark blue lobes inside red, representing most negative 

regions with function value −0.20 a.u. of the protein. The red color distribution shows low negative 

regions with a function value of −0.01 a.u. of the whole protein. The total MESP distribution can be 

seen in Figure 5.2 with two layers. The most negative regions, such as inner blue color lobes, are further 

investigated by surface cavity analysis as highlighted by black circles with notations C1-C4. To trace the 

exact location of the potential binding site, MESP function values are projected onto the plane. Scanning 

MESP function values within the plane resulted in surface cavities, as shown in Figure 5.2. The surface 

cavities were assumed to be the most potential binding sites. The two most negative MESP function 

values are spotted as inner and outer circles. This analysis provided the four best possible binding sites 

for further studies.  

5.2.2 Design Potential Candidate Molecules 

 25 LORD-generated molecules are designed; the twenty-five with reference market drug Safinamide 

(R1) are selected based on AutoDock vina binding energy, and corrected binding energy are reported in 

Figure 5.3.   
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Figure 5.3 Potential 25 molecules predicted using LORD drug designer. 

5.2.3 Stereochemistry and Protein-Ligand Complex Interaction Studies 

Stereochemistry is vital for the generation of drugs, given that many therapies' activities depend on their 

three-dimensional configuration. Consideration should be given to stereoselectivity when designing 

small molecules that interact with their objectives. Drug developers can choose the most effective and 

secure stereoisomer or create a treatment that can specifically target a certain stereoisomer by assessing 

the stereochemistry of a therapeutic molecule and the mechanism of action.  

The interaction of stereoisomers D1A, D1B, R1A, and R1B with the Site-4 (C4) and chemical structure of a 

target protein was investigated using ChemDraw 3D software. Among the stereoisomers, D2A showed a 

higher BE of -11.1 kcal/mol and a higher CBE of -8.3 kcal/mol than D2B. The molecule also created two 

Pi-sulfur bonding connections with PHE A: 168, one hydrogen bond, and two Pi-sigma contacts with 

ARG A: 289 amino acid residues, indicating a more significant engagement with the target protein. D2B, 

on the other hand, had better BE and CBE values than D2B, with BE of -10.9 kcal/mol and CBE of -8.1 

kcal/mol. Both R1A and R1B BE values are shown at -9.2 kcal/mol and -7.0 kcal/mol, respectively. 

Figure 5.4 presented the stereoisomers D2A and R1A as drug-likeness molecules with much greater 

binding energy than the D2B and R1B stereoisomers. The minimal distance between amino acid residues 

and the kind of interaction with the protein was demonstrated to maintain the stereoisomer relationship. 

The interaction between D2 stereoisomers has been shown to be better than that of the Safinamide (R1) 

drug due to their higher binding energies and shorter minimum distance between amino acid residues. 

The findings provide important insights into the impact of stereochemistry on ligand-protein interactions, 

which may aid in medicine design and development by optimizing stereochemistry for improved 

efficacy.
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Figure 5.4 Stereochemistry and its role in D1, R1 drug-likeness molecules and their interactions studies. 

 

 5.2.4 Protein-Ligand Complex and Their Interaction Studies of The Top Four Drug-likeness 

Molecules at Selected Four Binding Sites 

According to this investigation, the LORD compounds had greater binding energies than the reference 

molecule, safinamide (R1), in all four binding sites. It implies that the LORD compounds have the 
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potential to be more effective treatments than those already available. LORD chemicals have lower CBE 

values than reference molecules, suggesting they interact favorably with the target protein.  

 

 

Figure 5.5 The binding site analysis of the specific drug molecule with each site, (A) MESP suggested site-

1(C1), (B) MESP suggested site-2 (C2), (C) MESP suggested cavity site-3 (C3), and (D) Experimentally reported 

site (C4). 

 

Figure 5.5 depicts the protein-ligand combination for all four target binding sites in the left column. C1, 

C2, C3, and C4 are the target binding sites. BE and CBE of the top four molecules generated by LORD 

(D1, D2, D3, D4) and reference molecules of safinamide (R1) for each site (C1 to C4) are shown in a color 

bar plot on the right side of Figure 5.5. The black and green color bars represent the BE and CBE values 

of the reference molecules, respectively. The CBE values for LORD's top four molecules are much 

lower in energy than the reference compounds displayed in the black and green color bar plot for all 
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four locations. The findings give information on the design and development of new medicinal 

compounds with improved binding properties. The use of LORD in synthesizing innovative 

pharmaceutical compounds has the potential to produce more effective drugs with fewer side effects 

and better therapeutic outcomes. 

5.2.5 Binding Sites Analysis from Protein-Ligand Complex  

The ESP cavity analysis was performed to explore the interactions between proteins and their ligands at 

four unique sites labeled C1 through C4. 

 

 

 Figure 5.6 Monoamine Oxidase-B enzyme Protein active sites (C1, C2, C3, and C4). 

Active amino acid residues at C1 with lower binding energies were identified to be Arginine42 (ARG42), 

Glycine 57 (GLY57),  Glycine 58 (GLY58), Tyrosine 60 (TYR60), Leucine 164 (LEU164), 
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Phenylalanine 168 (PHE168), Leucine 171 (LEU171), Cysteine172 ( CYS172), Isoleucine 198 

(ILE198), Glutamine 206 (GLN206), Isoleucine 316 (ILE316), Tyrosine 326 (TYR326), Phenylalanine 

343 (PHE343), Cysteine 397 (CYS397), Serine 33 (SER33), Glycine (GLY434), Tyrosine 435 

(TYR435), and Methionine 436 (MET436). At C2, it was discovered that Glycine 57 (GLY57), Glycine 

58 (GLY58), Serine 59 (SER59), Tyrosine 60 (TYR6O), Phenylalanine 168 (PHE168), Leucine 171 

(LEU171), Cysteine 172 (CYS172), Isoleucine198 (ILE198), Isoleucine 199 (ILE199), Glutamine 206 

(GLN206), Lysine 296 (LYS296), Tyrosine 326 (TYR326), Methionine (MET341), Glycine 342 

(GLY342), Cysteine 397 (CYS397), Threonine 426 (THR426), Tyrosine 435 (TYR435), and 

Methionine 436 (MET436) occurred. When compared to sites C1 and C2, sites C3 and C4 have higher 

binding energies with various amino acid residues. 

Further analysis indicated a link between the experimentally reported site C4 and the active amino acids 

at site C3. Phenylalanine 103 (PHE103), Valine 106 (VAL106), Asparagine 116 (ASN116), Tryptophan 

119 (TRP119), Arginine 120 (ARG120), Aspartic acid (ASP123), Arginine 127 (ARG127), Glutamic 

acid 128 (GLU128), Proline 130 (PRO130), Lysine 191 (LYS191), Glutamine 191 (GLN191), 

Threonine 478 (THR478), Threonine 479 (THR479), Leucine (LEU482), and Glutamic acid (GLU483) 

had the most significant binding energies at C3. These findings suggest that amino acid residues at 

different sites have an essential role in protein-ligand interactions and that knowing the binding energies 

at each location is critical for predicting and changing protein-ligand interactions. 

5.2.6 Cavity-Drug-Likeness Molecules Interaction Matrix 

Drug design is based on how proteins and ligands interact, even though several drugs alter the function 

or signaling of specific proteins by attaching to receptors. A key step in the drug development process is 

identifying possible ligand-binding sites to forecast how ligands will interact with the protein and find 

ligands likely to have robust and precise binding interactions; computer modeling and simulation 

methods are frequently utilized. The MAO-B target protein was used to screen 25 potential drug-likeness 

molecules results are reported in Table 5.7, where interactions between proteins and their ligands are 

marked as hydrogen bonds, conventional hydrogen interactions, Pi-Pi contacts, Pi-alkyl interactions, Pi-

sulphur interactions, Pi-cation interactions, and van der Waals interactions. Hydrogen bonds, traditional 

hydrogen contacts, Pi-Pi interactions, Pi-alkyl interactions, Pi-sulphur interactions, and Pi-cation 

interactions represent strong interactions (SI). In contrast, van der Waals interactions illustrate weak 

interactions (WI). 
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Table 5.7  The protein target-Drug interaction matrix of 25 drug-likeness molecules with the MAO-B target 

protein within the experimentally reported site4 (C4). 

. 
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The safinamide complex was investigated for its interactions with 16 active amino acid residues. The 

interactions were studied for each of the 25 complexes, referred to as D1 to D25. The active amino acid 

residues included 15 in the D1 complex, 19 in the D2 complex, 16 in the D3 complex, 12 in the D4 

complex, 14 in the D5 complex, 16 in the D6 complex, 11 in the D7 complex, 14 in the D8 complex, 13 

in the D9 complex, 17 in the D10 complex, 13 in the D11 complex, 13 in the D12 complex, 10 in the D13 

complex, 15 in the D14 complex, 11 in the D15 complex, 10 in the D16 complex, 20 in the D17 complex, 

22 in the D18 complex, 8 in the D19 complex, 14 in the D20 complex, 14 in the D21 complex, 14 in the D22 

complex, 12 in the D23 complex, 11 in the D24 complex, and 8 in the D25 complex. 

5.2.7 Physicochemical Properties and ADME Properties 

 

Figure 5.8 Physico-chemical properties of LORD 25 molecules. (A) Molecular weight (g/mol). (B) 

Hydrogen bond acceptor, (C) Hydrogen bond donor, (D) Partition Coefficient (Logp), (E) Total polar 

surface area and (F) Rotatable bond count. 
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Essentially, the ability to precisely target and modulate the activity of disease-related proteins is a vital 

component of the interaction between proteins and ligands, which is crucial for the creation of reliable 

and efficient therapies. 

We used Lipinski's rule of five to evaluate the physicochemical characteristics of 25 compounds. These 

potential compounds have molecular weights between 216.21 and 386.23 g/mol, below the 500 g/mol 

threshold. Their lipophilicity-indicating partition coefficients are within the desirable range of 1.75-3.92, 

which denotes acceptable membrane permeability. The compounds have between 0 and 2 hydrogen bond 

donors (HBD), whereas there are between 1 and 5 hydrogen bond acceptors (HBA). We also measured 

the total polar surface area (TPSA) of the molecules. Which is a measure of the ability of molecules to 

interact with polar surfaces, ranges between 12.89-76.38 angstroms, and is less than 140 angstroms. The 

total number of rotatable bonds in the molecules ranges between 1-5, less than 10. Figure 5.8 shows that 

most molecules fit Lipinski's rule of five requirements, indicating that they are likely to have strong 

pharmacokinetic characteristics and can be researched further for medication development. This 

discovery highlights LORD's efficacy, taught using a machine learning method that employs Lipinski's 

rule of five. 

We utilized the SWISS-ADME website to determine the suitability of the 25 potential compounds found 

by LORD. Based on the ADME study, we found the top five candidate compounds shown in Table 5.2. 

Table 5.2 ADME / Pharmacokinetic proprieties of the site-wise selected molecules in aGastrointestinal 

absorption, bBlood brain barrier permeant, cP-gp substrate, dCytochrome P450 family 1 subfamily A 

member2, eCytochrome P450 family 2 subfamily c member19, fCytochrome P450 family 2 subfamily C 

member 9, gCytochrome P450 family 2 subfamily D member 6. hCytochrome P450 family 3 subfamily 

A member4, ISkin permeation in cm. 

S.No. GI                   

absa 

BBB              

permeantb 

P-gp                    

substratec 

CYP1A2 

Inhibitord 

CYP2C19 

Inhibitore 

CYP2C9 

Inhibitorf  

CYP2D6         

Inhibitorg      

CYP3A4 

Inhibitorh 

Log Kp i 

D1 High Yes  No No No No  No  Yes -5.64 

D2 High Yes  Yes  No No No Yes Yes -4.38 

D3 High Yes  Yes  No No No Yes  No -5.79 

D4 High Yes  Yes No No No  Yes No  -4.5 

R1 High  Yes  Yes No No No Yes  Yes -5.58 
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5.2.8 Correlation of Potential Drug-Likeness Molecules vs. Site-Wise Binding Energy 

CBE values for LORD 25 molecules are shown at each site, as shown in Figure 5.8. The range of CBE 

is -4.0 to -10.6 kcal /mol for all four sites of the MAO-B. Figure 5.9A illustrates the correlation between 

the number of drug-like molecules (X-axis) and their respective binding energies (Y-axis). On the other 

hand, Figure 5.9B depicts the relationship between the number of binding sites or cavities (X-axis) and 

the corresponding binding energies (Y-axis).  

Figure 5.9 shows that the green color is the primary interaction site with the experimental site for all the 

drug-like molecules. CBE analysis showed that Site 4 and Site 3 maintained more potential for protein-

ligand complex interactions than Site 1, 2, as indicated by Figure 5.9. We performed computational 

binding energy (CBE) analysis for four locations of the MAO-B enzyme to evaluate the binding affinity 

of the LORD 25 molecules, as shown in Figure 5.8. All four locations had CBE values of -3.8 to -8.5 

kcal/mol. In Figures 5.9A and 5.9B, we also plotted the number of drug-likeness molecules against 

binding energy and the number of binding sites against binding energy. As shown by the green line in 

Figure 5.9, our study revealed that the green interaction site was the most suitable for all drug similarity 

compounds. Figure 5.9 shows that Sites 3 and 4 had a higher potential for protein-ligand complex 

interactions than Sites 1 and 2. 

Figure 5.9 Corrected binding energy (CBE) trend curves for LORD 25 molecules at all four sites. (A) 

The X-axis is 25 drug-likeness molecules (D1 to D25), and Y-axis is CBE values and (B)  The x-axis is 

ESP-suggested sites (C1, C2, C3) and y-axis is CBE values. 
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Moreover, we identified the binding energies of each site-based on the CBE analysis. The blue line in 

Site 1 showed a CBE of −3.9 to −6.1 kcal/mol. The maroon color line in Site 2 exhibited a CBE of 

−4.9 to -6.8 kcal/mol, and the pink color line in Site 3 showed a BE of −5.8 to −7.7 kcal/mol, while 

the green color line in Site 4, which represents the experimental active site, showed CBE value of −4.9 

to −8.3 kcal/mol. Our analysis suggests that Site 3 and Site 4 are more promising binding sites than Site 

1 and Site 2, as their binding energies are stronger. This information can guide the selection of the most 

promising molecules for further experimental validation. 

 5.2.9  Molecular Dynamic (MD) Simulations 

MD simulations investigated the stability of the top three D1, D2, and D3 molecules, and safinamide drug 

molecules bind to the MAO-B enzyme receptor. For the MD simulations, the GROMACS 5.1.2 software 

was employed. 

The CHARMM force field was employed to evaluate the energy of the protein, while the CHARMM 

General Force Field (CGenFF) was utilized to generate ligand topologies. After docking, the protein-

ligand complex was solvated in a cubic box employing the TIP3 water model. To neutralize the system, 

chlorine (CL-) ions were added, and the energy was minimized using the steepest descent method with 

10,000 steps. The NVT ensemble maintained the system's temperature at 298 K, while the NPT 

ensemble, ranged from 1.0 bar to 250 bars, was employed to simulate the ligand-protein complex. 

 

Figure 5.10 RMSD of the MD simulations. 
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The Particle Mesh Ewald and LINCS algorithms were utilized for short-range electrostatics, and a Van 

der Waals distance cut-off of 10 was used to limit all bonds. To preserve stability, the simulations were 

run for 100 ns. The strength of the top four drug-like compounds was compared using safinamide as the 

reference molecule. The RMSD graphs show how much the protein-ligand complex structure has 

deviated from its beginning structure. We can tell which molecule has a more stable protein-ligand 

complex structure by analyzing the RMSD graphs. 

5.2.10 Free Energy Calculations 

The g-mmpbsa program determines the free binding energy for protein-ligand complexes. This algorithm 

assesses the vacuum potential energy resulting from interactions between the bound and unbound protein 

and ligand using a molecular mechanics (MM) force field. The MM force field uses the Lennard-Jones 

potential function to compute the van der Waals (Evdw) energy contribution and the Coulomb potential 

function to determine the electrostatic energy contribution. 

Table 5.3  Free energy calculation of the top four drug-likeness (D1-D4) molecules and Safinamide (R1). 

Time 

interval

s 

(ns) 

Complex Free Energies (kJ/mol) 

D1 D2 D3 D4 R1 

0-25 −93.3 +/− 8.9 −126.0 
+/− 13.6 

−63.9 
+/− 17.0 

−35.7 
+/− 10.4 

−101.3 
+/− 8.7 

25-50 −97.0 
+/− 11.9 

−130.1 
+/− 11.0 

−74.8 
+/− 14.2 

−62.0 +/−24.7 −104.5 
+/−9.9 

50-75 −103.4 
+/−7.7 

−126.6 +/−9.7 −71.4 
+/−13.5 

−85.4 +/−7.7 −101.4 
+/−7.4 

75-100 −101.2 
+/−7.7 

−124.5 +/−10.0 −68.7 +/−7.9 −81.0 +/−9.4 −98.6 
+/−10.1 

 

To assess the polar contribution, the solvation energy is evaluated using the Poisson-Boltzmann 

equation. The non-polar contribution is computed based on the assumption that it is proportional to the 

solvent-accessible surface area (SASA). The non-polar energy term (Gnonpolar) incorporates the van 

der Waals interactions and the attractive and repulsive forces arising from cavities between the solute 

and solvent. In order to calculate the binding energy, snapshots from the equilibrated region of the 

molecular dynamics (MD) trajectory are selected. The MmPbsaDecomp.py script provided by Kumari 

et al, with default settings, is employed to carry out all calculations using the g-mmpbsa package. 
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For the four protein-ligand complexes (D1-D4)  and one protein-drug molecule(R1) complex that were 

chosen, calculations of binding energy (BE) using the MM-PBSA program were made. The top four 

drug-likeness as D1, D2, D3, D4, and Safinamide (R1) molecules, all had BE values between 0-10 ns, 30-

40 ns, 60-70 ns, and 90-100 ns. The BE distribution calculation revealed that it significantly contributed 

to the overall BE, as shown in Table 5.3.  

5.3 Conclusions 

LORD is smart enough to build potential molecules based on the target site's environment. Thus, the 

molecules generated will be appropriate for that site. In this work, LORD is investigated extensively in 

this study on the MAO-B, which causes PD. We discovered four putative binding sites, one of which 

was an experimentally active site. Four potential binding sites are utilized to build molecules by LORD, 

producing 25 potential drug candidates. LORD 25 molecules have good corrected binding energy (CBE), 

AutoDockvina binding energy (BE), physicochemical, and ADME qualities compared to commercially 

available drugs such as Safinamide. In addition, MD simulations of the top-four potential drug-like 

compounds were investigated, and it was discovered that these are more stable in protein during long 

simulation runs than the Safinamide drug. 
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CHAPTER 6 

Designing of Potential Drug-Likeness Molecules for Tuberculosis 
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6.1 Introduction to Tuberculosis: 

Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis, primarily affects the 

lungs but can also affect other human organs. In 2019, the World Health Organisation (WHO) projected 

that 1.7 million people died due to an estimated 10 million new cases of TB being identified.1  

By extending the range of crucial proteins used in TB chemotherapy, discovering ligands for most of the 

Mtb proteins may result in new TB drugs and targets. Only roughly 10 Mtb targets have historically been 

the focus of drug development efforts, leaving many other crucial proteins untapped. This strategy 

addresses medication resistance, toxicity, and the length of TB treatment by finding ligands for Mtb 

proteins.2 

The four initial lines of TB treatment main drugs are isoniazid (INH), rifampicin (RIF), Pyrazinamide 

(PZA), and ethambutol (EMB). The discovery of effective TB drugs is a complicated and difficult 

procedure. One of the significant issues is the high attrition rate of candidate molecules throughout 

clinical development. Researchers are looking into new targets and discovering new pharmaceuticals or 

drugs for Anti TB therapy to address this. Another difficulty is drug resistance, which has become a 

serious public health concern worldwide. Researchers aim to treat drug-resistant tuberculosis by finding 

and conforming novel therapeutic targets.3 

                           

 Figure 6.1 Pyrazinamide drug inhibits the role of ribosomal protein S1 of mycobacterium tuberculosis. 
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The main role of ribosomal protein S1 (RpsA) in relation to PZA resistance is crucial, as highlighted in 

the previous study. Notably, several compounds, namely PXYC1, PXYC2, PXYC12, PXYC13, and 

PXYD3, have demonstrated antibiotic properties, and the multiple dynamic simulations of PZA were 

conducted action on MTB mutations such as T370P and W403G are employed for the vital role of 

affecting protein activity.4 The other three mutants, N11k, P69T, and D126N, are, interact with PZA 

drug molecules are controlled or inhibited growth in Ribosomal protein S1 of MTB.5  

The in-silico generation of novel inhibitors and their potential as an oral administration strategy. Due to 

their binding free energy, ADMET characteristics, and drug-likeness, benzimidazole compounds are an 

excellent choice for FtsZ inhibitors.6,7 We presented Table 6.1, which highlights key the previous 

literature, while our primary emphasis in this section centers on discussing methodology and providing 

a summary. 

Table 6.1 Overview of previous literature on methodology and summary. 

Methodology Summary 

Mycobacterium 

tuberculosis, 

proteome modeling, 

and virtual screening. 

This study uses a computational approach to deorphanize targets in mycobacterium 

tuberculosis, the bacterium responsible for tuberculosis. By integrating genomic and 

proteomic data, we identified potential drug targets among the uncharacterized proteins 

in the M. tuberculosis genome. Our methodology combines protein-protein interaction 

networks, sequence homology analysis, and functional annotation to prioritize the most 

promising candidates for further experimental validation.8 

X-ray 

crystallography, 

pyrazinamide-S1 

complex in 

Mycobacterium 

tuberculosis 

This research elucidates the mechanism of action of Pyrazinamide, an important drug 

used to treat Mycobacterium tuberculosis infections. By determining the crystal 

structure of the pyrazinamide-S1 complex, the study reveals the specific binding 

interactions and highlights the key amino acid residues involved in the binding process. 

These findings provide valuable insights for developing more effective therapeutic 

strategies against tuberculosis.9 

Molecular docking, 

structure-based drug 

design 

The application of structure-based computer-aided drug design (SB-CADD) in 

discovering potential drugs against Mycobacterium tuberculosis, the causative agent of 

tuberculosis. The study highlights the importance of computational methods in 

identifying compounds that target specific protein structures involved in the 

pathogenesis of tuberculosis. The findings provide valuable insights for developing 

novel therapeutics to combat this infectious disease.10 

Structure-activity 

relationship (SAR) 

studies, Molecular 

docking, and 

Synthesis approaches 

This study focuses on identifying novel compounds that can effectively target the 

ribosomal protein S1 in antibiotic-resistant strains of Mycobacterium tuberculosis. 

Through a comprehensive evaluation process, several promising compounds have been 

discovered and assessed for their potential antimicrobial activity. The findings of this 

research provide valuable insights for developing new therapies against drug-resistant 

tuberculosis, addressing a critical global health concern.11 

Molecular docking, 

pharmacophore, 

molecular dynamics 

This study focuses on in silico drug design for ribosomal protein S1 (RpsA) with an 

Ala438 deletion, using the active compound Zrl15 as a basis. The researchers employed 

computational techniques to design potential drug candidates that can specifically target 
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simulations, and Free 

energy calculations 

RpsA and potentially restore its functionality. This approach holds promise for the 

development of novel therapeutics against RpsA-related disorders.12 

Pyrazinamide, 

multidrug-resistant tb 

(mdr-tb), molecular 

docking, and 

molecular dynamic 

simulation. 

In this study, we employed computational methods to investigate the binding 

mechanism between pyrazinoic acid (PA) and the RpsA protein. By utilizing molecular 

docking and molecular dynamics simulations, we revealed the key interactions involved 

in the PA-RpsA binding process. Our findings suggest that PA forms hydrogen bonds 

and hydrophobic interactions with specific residues in the binding pocket of RpsA, 

providing valuable insights for the Design of novel anti-tuberculosis drugs targeting this 

protein.13 

Benzimidazole, 

molecular docking 

and molecular 

dynamic simulations. 

In This research focused on exploring the potential of benzimidazole congeners as 

innovative drug candidates. Through in-silico investigations, the study evaluated their 

drug likeliness by performing molecular docking simulations and analyzing the 

interactions with target proteins. Additionally, physicochemical properties were 

assessed to determine their suitability as drugs. The findings from this study provide 

valuable insights into the promising applications of benzimidazole congeners in drug 

discovery and development.14 

In silico structure-

based drug screening, 

molecular modelling, 

pharmacophore 

modelling, QSAR. 

Computational medicinal chemistry techniques to identify new chemical structures with 

promising anti-tuberculosis activity. They analyze various compounds through a 

rational drug design approach and propose potential candidates for further investigation. 

This study highlights the importance of computational methods in accelerating the 

discovery of effective anti-tuberculosis drugs, potentially aiding in the global fight 

against tuberculosis.15 

and in vitro 

translation reaction. 

New compounds can inhibit the peptidyl transferase center in Mycobacterium 

tuberculosis. These small molecules have the potential to be developed into drugs for 

treating tuberculosis, providing a promising avenue for combating this infectious 

disease.16 

Virtual screening, 

Trans-translation, 

Drug-resistant 

 

Potential therapeutic targets against drug-resistant strains of Mycobacterium 

tuberculosis. By investigating the lead compounds and identifying critical residues 

within the ribosomal protein S1, the researchers aim to develop novel drugs that can 

effectively combat the challenges posed by drug resistance in tuberculosis treatment. 

This research holds promise for advancing the development of new treatment options 

for tuberculosis.17 

Beilschmie 

compound, Multi-

drug resistant 

tuberculosis and   

molecular docking, 

and virtual screening 

Structure-based computational study to explore beilschmie compounds and their 

potential as targeted therapies against multidrug-resistant mycobacterium tuberculosis. 

The study aimed to identify promising compounds for further investigation by 

analyzing the molecular structures and interactions. The findings contribute to the 

development of novel treatments for tuberculosis, especially against drug-resistant 

strains.18 

Mutation 

Identification, 

Molecular docking, 

MD simulations, and 

Free energy 

calculations 

Newly identified mutations in the ribosomal protein S1 (rpsA) are linked to resistance 

against Pyrazinamide. The researchers employed advanced computational 

methodologies, including molecular dynamics simulations and free energy calculations, 

to explore the effects of these mutations on the protein's stability and binding affinity to 

Pyrazinamide.19  

Structured-based 

drug design, 

This study aimed to identify potential inhibitors for tuberculosis using a combination of 

structure-based drug design, molecular docking, and molecular dynamics simulation. 

The crystal structure of a relevant protein was obtained and used for the virtual 

screening of a compound library. Promising compounds were selected based on their 
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molecular docking 

and MD simulations 

binding affinities, and their stability and dynamics were further evaluated through 

molecular dynamics simulations. These findings provide valuable insights for the 

development of new anti-tuberculosis drugs.20 

Natural compounds, 

molecular docking, 

and MD simulations 

This study uses a structure-based strategy to discover a natural compound inhibitor that 

can effectively target M. tuberculosis thioredoxin reductase. The binding affinity, 

stability, and dynamics of protein-ligand complexes were evaluated by employing 

molecular docking and MD simulation techniques. The findings from this study offer 

important insights into potential natural compounds that could be utilized as inhibitors 

to combat M. tuberculosis infection.21 

Computational 

techniques, virtual 

screening, drug 

resistance studies, in-

vitro and in vivo 

studies 

This study aimed to explore opportunities for overcoming tuberculosis by targeting 

emerging targets and developing inhibitors. A literature review identified potential 

targets, and computational techniques were used to screen and identify inhibitors 

against these targets. In vitro and in vivo experiments were conducted to evaluate the 

efficacy of the identified inhibitors against Mycobacterium tuberculosis.22  

 

In this, we present a study on the successful application of MESP studies employed for finding the 

potential binding site in the protein target and LSTM generator for designing candidate potential drug-

likeness molecules from staring fragment molecules. Presently, important molecular properties based on 

the physicochemical and ADMET properties using RDKit and Swiss-ADMET, Density function theory 

DFT calculation using the Gaussian software package, and molecular dynamics simulations studies were 

employed for dynamic behavior, stability of the protein-ligand complex by using Gromacs package. The 

free binding energies calculations and active amino acid residues of protein with ligand binding site 

interactions were calculated by the MM-PBSA method. 

6.2 Result and Discussion  

6.2.1 MESP Calculation for Identification of Binding Site in Target Protein  

We have collected 16 protein fragments of amino acid residues from the ribosomal protein S1 of 

Mycobacterium tuberculosis (TB). There are 278-287, 288-297, 298-307, 308-317, 318-327, 328-337, 

338-347, 348-357, 358-367, 368-377, 378-387, 388-397, 398-407, 408-417, 418-427, 428-438 amino 

acid residues and then calculated the  Molecular electrostatic potential surface area (MESP) using by 

gaussian package. In comparison, MESP was employed at the possible binding site on the protein 

fragment surface of the amino acid.  
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(A)                                                                                 (B) 

Figure 6.2 ESP studies of the ribosomal protein S1 of mycobacterium tuberculosis.  

All the substrate cube files are loaded in VMD and transformed into one single cube file. Figure 6.2 

shows two color regions of MESP distributions, such as dark blue lobes inside red, representing most 

negative regions with function value -0.20 of the protein. The red color distribution shows low negative 

regions with a function value of -0.01 a.u. of the whole protein. The total MESP distribution can be seen 

in Figure 6.2 with two layers. The most negative regions, such as inner blue color lobes, are further 

investigated by surface cavity analysis as highlighted by black circles with notations C1-C4. To trace the 

exact location of the potential binding site, MESP function values are projected onto the plane. Scanning 

ESP function values within the plane resulted in surface cavities, as shown in Figure 6.2. This analysis 

provided the four best potential binding sites for further studies.  

6.2.2 Design of Potential Drug-Likeness Molecules 

In the present manuscript, 25 LORD-generated molecules are provided. Twenty-five with reference 

market drug pyrazinamide (R1) are selected based on AutoDock vina binding energy, and corrected 

binding energy are shown in Table Figure 6.3.   
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Figure 6.3 Twenty-five potential candidate drug-likeness molecules and Reference molecule geometric 

structures. 

6.2.3 Stereochemistry and Protein-Ligand Complex Interaction Studies 

Stereochemistry is important in drug discovery because the biological activity of many drugs is 

dependent on their three-dimensional configuration. Stereoselectivity must be considered when 

designing small molecules that interact with biological targets. Stereoisomers can be synthesized 

separately or isolated using chiral chromatography to produce new drugs. The activity of these particular 

stereoisomers can then be determined. Drug developers can pick the most efficient and secure 

stereoisomer or design a therapy targeting a specific stereoisomer by analyzing the stereochemistry of a 

medicinal molecule and its mechanism of action. In this way, we investigated the stereochemistry of a 

potential candidate  molecule and its interactions with experimental Site-4 (C4) of the target protein from 

Mycobacterium tuberculosis (TB). We employed ChemDraw 3D software to design 3D structures that 

accurately matched the stereochemistry of the stereocenters and studied the interactions of four 
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stereoisomers (D5A, D5B, D6A, and D6B) with the target protein, and determined molecular docking energy 

(BE) and corrected binding energy (CBE). 

 

Figure 6.4 Stereo-isomer of D5 and D6 drug molecules and their interactions with target protein. 
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D5A exhibited a BE of -6.5 kcal/mol and a CBE of −4.8 kcal/mol, with pyridine fragments being more 

important than D5B. D5A has one hydrogen bond contact with ASN A:366 and three Pi-alkyl interactions 

with ALA A:327. D5B, on the other hand, had a BE shown at -6.2 kcal/mol and a CBE of −4.5 kcal/mol. 

D6A and D6B have a BE of 6.9 kcal/mol and a CBE of −5.3 kcal/mol. These results explain how stereo 

centers affect molecular docking energy and the complexity of interactions between proteins and ligands. 

Drug developers can design more effective and safe therapeutics by understanding the stereochemistry 

of chemical compounds and their interactions with biological targets. 

 6.2.4 Protein-Ligand Complex and Their Interaction Studies of the Top Four Drug-Likeness 

Molecules at Selected Four Binding Sites 

 
Figure 6.5 Protein-ligand complex and their interaction studies of the top five drug-likeness molecules at 

selected five binding sites. (A) MESP suggested site-1(C1), (B) MESP suggested site-2 (C2), (C) MESP 

suggested cavity site-3 (C3), (D) Experimentally reported site-4 (C4). 
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We presented a diagram of the protein-ligand complex in Figure 6.5 (left column) for all four binding 

sites to help you understand the binding site for the target. As seen in Figures 6 and 5, the black circle 

on each picture depicts the precise position of the ligand complex interactions. Furthermore, in the right 

column of Figure 6.5, we compared the BE and CBE of the top five compounds created by LORD (D1, 

D2, D3, D4) for each site (C1 to C4) with the reference molecule, Pyrazinamide (R1). 

 The BE and CBE values for the top five potential drug-likeness molecules designed by LORD are 

better binding energy than the reference molecules, as seen in the maroon and green4 color bar plots for 

all four binding sites. Finally, our LORD-generated potential molecules beat traditional market drugs in 

all four binding sites. 

6.2.5 Binding Sites Analysis from Protein-Ligand Complex  

 

Figure 6.6 Ribosomal protein S1 of mycobacterium tuberculosis active sites (C1, C2, C3, C4). 
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 The ESP cavity analysis was employed to explore the interactions between proteins and their ligands at 

four different binding sets (C1-C4). Our findings demonstrated that the amino acid residues at Site-1 (C1) 

have high binding energies than the other three binding sites. These residues include Thr 302, Lys 303, 

Phe 310, Glu 318, Leu 320, Val 321, His 322, Arg 357, Ile 358, Ser 359, and Leu 360. At Site-2 (C2), 

Phe 307, Val 321, His 322, Ile 323, Ser 324, Glu 325, Leu 326, Ile 349, Asp 350, Arg 357, Ser 359, and 

Leu 360 were identified as active amino acid residues. Additionally, it was found that sites 4 and 3 

exhibit higher binding energies than C1 and C2, respectively, while C1 and C2 exhibit lower energies. 

Our investigation also revealed that the active amino acids at site-3 (C3) and site-4 (C4) correspond with 

the experimentally confirmed site-4 (C4). These active amino acids include Leu 326, Ala 327, Val329, 

Val337, Val338, Asp 343, Met 345, Leu 362, Asn 366, Met 427, Ala 430, Gln 431, Lys 434, and Phe 

435. 

6.2.6 Cavity-Drug-Likeness Molecules Interaction Matrix 

Understanding how proteins and ligands interact is crucial in potential molecule development. It is 

essential to identify potential ligand-binding sites and precisely determine the three-dimensional 

structure of the protein to facilitate the development of effective drugs. Computer modeling and 

simulation methods are widely used to predict how ligands interact with the protein and identify ligands 

likely to have robust and precise binding interactions. For this, 25 potential drug-likeness molecules were 

docked to the target protein, and the docked compounds were graded using a strict filter that considered 

four parameters. Strong contacts were represented by dark green for hydrogen bonds, pine green for 

typical hydrogen interactions, and pink for non-covalent interactions such as Pi-Pi, Pi-alkyl, Pi-sulphur, 

and Pi-cation. Weak van der Waals interactions were represented by light green. The pyrazinamide 

complex was investigated for interactions with four active amino acid residues. In contrast, the D1 

complex had 11 active amino acid residue interactions, D2 had 13 active amino acids, D3 had 16 active 

amino acids, D4 had 12 active amino acids, D5 had 9 active amino acids, D6 had 12 active amino acids, 

D7 had 9 active amino acids, D8 had 12 active amino acids, D9 had 12 active amino acids, D10 had 12 

active amino acids, D11 had 13 active amino acids, D12 had 11 active amino acids, D13 had 11 active 

amino acids, D14 had 12 active amino acids, D15 had 13 active amino acids, D16 had 10 active amino 

acids, D17 had 11 active amino acids, D18 had 9 active amino acids, D19 had 9 active amino acids, D20 

had 9 active amino acids, D21 had 11 active amino acids, D22 had 10 active amino acids, D23 had 9 active 

amino acids, D24 had 10 active amino acids, and D25 had 11 active amino acids. The binding energy was 

employed to calculate and analyze all of these interactions, and the results are shown in Figure 6.7. 
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Figure 6.7 Target-Drug Interaction matrix for 25 drug candidates. 
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Determining the interactions between proteins and ligands is critical for developing reliable and effective 

potential drug-likeness molecules. A way to precisely target and regulate the activity of disease-related 

proteins is essential for developing potential drug-likeness molecules. 

6.2.7 Physicochemical and ADME properties 

The physicochemical features of twenty-five potential drug-likeness molecules have been analyzed 

using the Lipinski rule of five to determine their applicability. The Lipinski rule of five is a series of 

principles used to assess a molecule's drug-likeness based on its physicochemical features.  
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Figure 6.8 Physico-chemical properties of 25 drug-likeness molecules. (A) Molecular weight (g/mol), 

(B) Hydrogen bond acceptor, (C) Hydrogen bond donor, (D) Partition Coefficient (LogP), (E) Total polar 

surface area, and (F) Rotatable bond count. 

The analysis showed that all twenty-five molecules had an MW ranging from 306.32 to 484.63 g/mol, 

which is less than the upper limit of 500 g/mol set by the Lipinski rule of five. The logP values of these 

molecules ranged between 2.64 and 4.97, which is less than the upper limit of 5 set by the Lipinski rule 

of five. The number of HBD was found to be between 0-3, while the number of HBA was between 1-5. 

The molecular polar surface area of the molecules ranged from 26.17 to 73.36 angstroms, which is less 

than the upper limit of 140 angstroms. Additionally, the TPSA in these molecules ranged from 1-8, less 

than the upper limit of 10 set by the Lipinski rule of five. 

Table 6.2 ADME / Pharmacokinetic proprieties of the selected molecules in aGastrointestinal absorption. 

bBlood brain barrier permeant. cP-gp substrate, dCytochrome P450 family 1 subfamily A member2, 

eCytochrome P450 family 2 subfamily c member19, fCytochrome P450 family 2 subfamily C member 9, 

gCytochrome P450 family 2 subfamily D member 6, hCytochrome P450 family 3 subfamily A member4, 

ISkin permeation in cm. 

S.No. GI                   

absa 

BBB              

permeantb 

P-gp                    

substratec 

CYP1A2 

Inhibitord 

CYP2C19 

Inhibitore 

CYP2C9 

Inhibitorf  

CYP2D6         

Inhibitorg      

CYP3A4 

Inhibitorh 

Log 

Kp 
i 

D1 High No  No Yes No No  Yes Yes -6.81 

D2 High No Yes  Yes No No No No -7.26 

D3 High No Yes  Yes No No No No -7.29 

D4 High No Yes Yes Yes Yes Yes Yes -6.83 

R1 High  No No No No No No No -7.48 

 

To succeed with twenty-five molecules, ADME (Absorption, Distribution, Metabolism, and Excretion) 

qualities are critical for determining the effectiveness, safety, and pharmacokinetic aspects of potential 

drug-likeness molecules during drug development. The SWISS ADME website is a tool for predicting 

these attributes based on the molecule's chemical structure. Prediction of ADME features is critical in 

finding possible drug candidates with a high probability of success in clinical trials. The top five candidate 

potent drug-likeness molecules with promising ADME features are listed in Table 6.2.  
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6.2.8 Correlation of Potential Drug-Likeness Molecules vs. Site-wise binding Energy 

The binding energies of twenty-five drug-like compounds were determined for four distinct target protein 

binding sites. The results are shown in Figures 6.8(A) and 6.8(B), with binding energies ranging from -

2.5 to -5.8 kcal/mol. Figure 6.8(A) plots the number of drug-likeness molecules against their respective 

binding energies, while Figure 6.8(B) plots the number of binding sites against their binding energies. In 

both pictures, the green color denotes sites that interact considerably with the experimental site. As shown 

in Figure 6.8, the study indicated that binding sites C3 and C4 had more potential for binding energies of 

protein and ligand complexes than C1 and C2.  

Figure 6.9 Corrected binding energy (CBE) trend curves for LORD 25 molecules at all four sites. (A) 

The X-axis is 25 drug-likeness molecules (D1 to D25), and Y-axis is CBE values and (B)  The X-axis is 

ESP-suggested sites (C1,C2,C3,C4), and Y-axis is CBE values. 

6.2.9 Molecular Dynamics (MD) Simulations 

MD simulations of the pyrazinamide drug and four drug-like molecules (D1, D2, D3, and D4) were carried 

out using the GROMACS 5.1.2 software. The CHARMM force field was employed to calculate the 

protein's energy and molecular dynamics (MD) simulations, and the CHARMM General Force Field 

(CGenFF) was used to create the ligand's topology. The protein-ligand combination was put inside a 

container and submerged once the docking process was finished, thereby solvating the system using the 

TIP3 water model. Chloride (Cl-) ions were appropriately added to the complex to keep it neutral. The 
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steepest descent approach was used for a total of 10,000 steps to conserve energy. The simulations 

employed the NVT ensemble while maintaining the temperature at 298 K and the NPT ensemble ranging 

from 1.0 bar to 250 bar to simulate the ligand-protein interaction. The Particle Mesh Ewald and LINCS 

algorithms were used to address short-range electrostatic interactions, and all bonds were restricted using 

a Van Der Waals distance threshold of 10. To assure stability, the simulations were carried out for 100 ns, 

and the RMSD graphs for the four top drug molecules with Pyrazinamide are presented in Figure 6.10. 

The researchers were most likely comparing the stability of the four drug-likeness molecules with 

Pyrazinamide to evaluate their potential as therapeutic candidates. 

 

Figure 6.10 MD simulation studies of the RMSD, top four drug-likeness molecules (D1, D2, D3, D4) and 

reference drug molecule (R1).  

6.2.10 Free Energy Calculations 

The protein-ligand complexes binding energy, or binding energy (BE) as it is more often known, was 

determined using the g-mmpbsa software. The molecular mechanics (MM) force field is used to model 

both bound and unbound states to determine the vacuum potential energy resulting from various 

interactions.This involves utilizing the Coulomb and Lennard-Jones potential functions to compute the 

electrostatic and van der Waals (Evdw) energy contributions. Additionally, the Poisson- Boltzmann 

equation is A significant advance that was made in precisely identifying the polar component during the 

evaluation of the solvation-free energy. 
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In general, considering that non-electrostatic solvation energy correlates precisely with the solvent-

accessible surface area (SASA) when calculating the non-polar contribution. The non-polar energy term 

(Gnonpolar) includes the van der Waals interaction, such as the attracting and repelling forces that emerge 

between the solute and solvent due to cavities. During the Free energy calculations, snapshots of the 

equilibrated area from the molecular dynamics (MD) trajectory are captured. To carry out these 

computations, the default parameters outlined by Kumari et al. are utilized, and the MmPbsaDecomp.py 

script included with the g-mmpbsa package is employed. 

The D1, D2, D3 have better complex free energy than the reference of Pyrazinamide (R1) are shown in 

Table 6.3. 

Time 

intervals 

(ns) 

Complex free energy (kJ/mol) 

D1 D2 D3 D4 R1 

0-25 −62.8 
+/− 8.5 

−41.5 
+/− 13.8 

−61.0 
+/− 16.4 

−51.9 
+/− 15.3 

−16.0
+/− 6.4 

25-50 −60.6 
+/− 13.7 

−61.7 
+/−14.4 

−61.0 
+/− 16.4 

−54.2 
+/− 34.2 

−20.1 
+/− 14.0 

Table 6.3 Free energy of interaction of the top four drug-likeness (D1-D4) molecules and Pyrazinamide 

(R1) with target protein. 

The results are shown in Table 5.3, which reveal that D1, D2, and D3 have lower complex free energy 

values than the reference molecule pyrazinamide (R1). These data imply that D1, D2, and D3 may have 

higher binding affinity and preferential interactions with the protein than the reference molecules. 

 

6.3 Conclusions 

LORD is thoroughly investigated in this work on the ribosomal protein S1 of mycobacterium tuberculosis. 

We discovered five putative binding sites, one of which was experimentally active. LORD uses five 

possible binding sites to construct compounds, yielding 25 potential therapeutic candidates. The 

experimentally active site in CBE values is more prominent than the other four binding sites. LORD 25 

molecules exhibit superior BE (kcal/mol) and physicochemical qualities and better ADME features than 

the currently marketed medication pyrazinamide. In addition, unlike less stable pyrazinamide medicines, 

MD simulations of the top four potential drug-like compounds are investigated and shown to be protein 
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stable during lengthy simulation runs. The study focuses on using LORD on the ribosomal protein S1 of 

mycobacterium tuberculosis, which is linked to TB. The researchers found five possible binding sites, one 

experimentally active, and utilized LORD to generate 25 prospective drug options. The prospective 

therapeutic candidates' binding energy (BE) values were determined to be good, and they demonstrated 

better physicochemical and ADME qualities when compared to the market-available medication 

pyrazinamide. 

Furthermore, MD simulations on the top four potential drug-like compounds revealed that they were 

protein stable during lengthy simulation runs. Overall, the study indicates that LORD might be a valuable 

method for discovering new potential drug-likeness molecules and improving their characteristics to 

facilitate drug development. The study also emphasizes the potential of the discovered drug-likeness 

molecules for treating TB. 
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CHAPTER 7 

Conclusions and Scope for Future Work 
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7.1 Conclusions 

We have developed an automatic drug designer called “LSTM-Enabled On-Site Recurrent Molecular 

Designer” (LORD). The LORD designer scans the entire target protein and finds the potential binding 

energy sites using MESP cavity analysis. The target binding energy sites facilitate LORD to design the 

potential drug-like molecule at that specific protein target binding site in the following step. While 

developing the drug molecule, LORD encapsulates the Physicochemical properties such as Lipinski’s rule 

of five. Drug-likeness molecules are filtered through ADME properties and molecular dynamics (MD) 

studies. The LORD designer applied AD, COVID-19, PD, and TB, essential in the potential drug target 

to combat the various diseases. We generated potential drug-like molecules and studied their 

physicochemical properties, ADME properties, and MD studies on top potential drug-likeness molecules. 

In these studies show that the 125 drug-like molecules are promising to combat those diseases compared 

with available market drugs. Generally, the designer can be used for any target protein to design drug-like 

molecules and define binding sites. While identifying the potential binding sites, it uses the MESP 

calculation, which is performed at a lower computational cost using the substrate structure approach. 

Design strategy mainly depends on the target binding site environment; hence, LORD can accurately 

design the drug. 

                

Figure 7.1 Current working chapters. 
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LORD is a computational strategy for designing novel compounds with particular characteristics, like 

high affinity and selectivity for a target protein. Computer methods and simulations forecast how a target 

protein will interact with various small-molecule drugs. 

The subsequent step involves utilizing a computational algorithm to produce and asses numerous potential 

drug-likeness molecules. The biological potential of these molecules is assessed, including potency, 

selectivity, and bioavailability. Next, the most promising compounds are produced and tested in vitro and 

in vivo to determine their effectiveness and safety. 

7.2 Scope for Future Work 

LORD molecular design has several advantages over traditional drug discovery methods, including the 

possibility of developing incredibly selective medicines for a specific target protein. Also, it makes it 

possible to quickly test many compounds, which might help save both time and money.De novo drug 

design will move towards combing computational and experimental methods, leading to greater precision 

and effectiveness. Here are some possible directions for the future of de novo drug design. 

It is predicted that de novo drug design will adopt this strategy in the future, including a range of 

computational and experimental techniques to enhance the accuracy and efficacy of the drug development 

process. The following directions for LORD drug design might develop in the future: 

1.Artificial intelligence and machine learning may be used to analyze vast amounts of data from 

experimental assays and improve the accuracy of predictions of molecular interactions. This may 

speed up the search for potential new drug candidates. 

2.Using big data: The expanding availability of detailed biological data, like genomic and proteomic 

data, may offer crucial knowledge about disease pathophysiology and potential treatment targets.  

3.Improving the efficiency of the drug discovery process: LORD molecular design can benefit from 

advancements in high-throughput screening, which allow for the rapid testing of large compounds. 

In addition, advances in synthetic chemistry and automation can improve the efficiency of compound 

synthesis and testing. 
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4.Targeting complex disorders: Since many diseases have complex or poorly known underlying 

systems, it may be challenging to create effective therapies. LORD design offers a systematic 

strategy for exploring novel therapeutic targets and designing molecules with the most desirable 

features, which can assist in overcoming these difficulties. 

5.The future of LORD de novo molecular designer will help develop potential drug-likeness 

compounds to treat various target proteins such as HIV and breast cancer. 

              

                                             Figure 7.2 Future direction of the thesis work. 

 

 

 

 

 




















