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CHAPTER 1
Introduction to Computer-Aided Drug Design



1.1 Overview of Computer-Aided Drug Design

Computer-aided drug design (CADD) involves discovering and developing new and effective
pharmaceuticals (or) drugs utilizing computational methods and techniques.! According to reports, the
standard drug discovery cycle, illustrated in Figure 1.1, from lead identifications to clinical trials, requires
10-15 years and over 500-800 million USD before leading to the market,.22 For this reason, drug research
and commercialization are drawn-out, challenging, and expensive procedures; CADD is frequently
employed in the pharmaceutical industry to expedite the designing process in the best possible
way.*°Utilizing computational tools that use Al and ML technologies in the hit-to-lead process has several
benefits, including finding promising leads more rapidly and exploring a more expansive chemical space.
With the CADD techniques, fewer compounds will need to be synthesized and examined in vitro, which
can minimize the extensive trial-and-error testing required.® As a result of the significant expansion of
CADD over the past several years, which has enhanced awareness of complicated and demanding
biological processes, some CADD-related technologies, such as data science, wearable technology, Al,
and ML technologies, appear to be revolutionizing evidence-based medicine, providing a fascinating look
into the future deep medicine.” Technologies made it possible to find novel pharmacologically active

drug molecules swiftly.

Computer Aided Drug Design

D) i > e i

1-2 years

* Bioinformatics
* Reverse Docking

* Computational
Chemical biology

1-2 years

1-2 years

» Target Druggablity = Virtual

Prediction

« Computational
Systems biology

Screening

* De novo

Drug Design

1-2 years
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* Scaffold hopping

* Focused Library
Design

» Druglikeness
Analysis

Preclinical
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1-2 years

* In silico ADMET
Prediction

* PBPK Simulations

* Computational
Systems biology

Clinical
Trials

FDA
Approved

1-2 years

Figure 1.1 The steps and the timeline of the standard drug discovery cycle and the role of computer-aided

drug design (CADD) in the modern drug discovery pipeline.
An excellent achievement of CADD has been the design and discovery of inhibitors for various critical
illnesses, such as those caused by viruses,® %1011 bhacterial infections, 12 cancer,*® diabetes,* and
neurological disorders, etc.’™%1" From time immemorial, a few examples of drugs that were developed
utilizing the CADD are presented in Table 1.1 The current emphasis in CADD is on creating new
computer software or computer-based programmers to create large compound libraries that include
several pharmacologically active biomolecules by enhancing their physicochemical and ADMET
properties or develop a sophisticated new algorithm to measure the potency and selectivity of new lead



candidate molecules. Therefore, in the first chapter, we will discuss the most recent advances and

developments in CADD technology.!®

Table 1.1 The list of drugs that came into existence with the help of CADD, its biological actions, and targets.

Drugs

Biological Actions

Targets

Captopril *° Valsartan®
Norfloxacin®!
Epalrestat?
Dorzolamide?

Saquinavir,?* Indinavir,®
Ritonavir,? Nelfinavir,?
Efavirenz,?® Darunavir,?
Raltegravir®

Imatinib®

Zolmitriptan®?
Sunitinib®®
Aliskiren®*

Tomudex®®

Boceprevir,* Telaprevir,*’
Grazoprevir®

Crizotinib,*® Dacomitinib*

Saroglitazar®
Rucaparib*
Lifitegrast®®
Vaborbactam*
Erdafitinib*

Nolatrexed*

Antihypertensive
Urinary Tract infections
Diabetic neuropathy
Glaucoma

Human immunodeficiency virus
(HIV)

Acute lymphoblastic leukemia
Migraine
kidney cancer
Human renin inhibitor

Colorectal cancer

Hepatitis C virus (HCV)
inhibitor

Non-Small Cell Lung Cancer
(NSCLC)
Diabetic Dyslipidemia
Prostate Cancer
Dry eye disease
Bacterial infections

Urothelial carcinoma

Liver cancer

Angiotensin Converting enzyme (ACE)
Topoisomerase Il & IV
Aldose Reductase
Carbonic anhydrase

HIV-1 protease

Abi tyrosinase
5-hydroxytryptamine (5HT)
V EGF-R2 kinase
Angiotensinogen

Thymidylate synthase
NS3/4A protease

Anaplastic Lymphoma Kinase & ROS
Proto-Oncogene 1

Peroxisome Proliferator-Activated
(PPAR)
Poly (ADP-ribose) polymerase

LFA-1/ICAM-1
beta-lactamase
Fibroblast growth factor receptor
EGFR, VEGF/PDGFR(receptors)

1.2 A Brief History of CADD

The last few decades witnessed significant developments in CADD methods, and the major milestone in

the CADD can be classified into the following:

¢ 1900: Introduction of lock-and-key ideas by E. Fisher (1894) and P. Enrich (1909).



¢ 1970: Quantitative structure-activity relationships (QSAR) were established. However, it was limited to

2- Dimensional, retrospective analysis.

¢ 1980: The developments in the CADD field were significantly influenced by various crucial disciplines,
including molecular biology, X-ray crystallography, multi-dimensional nuclear magnetic resonance

(NMR), molecular modeling, and computer graphics.

e 1990: Combinatorial chemistry, high-throughput screening, and human genome bioinformatics are
current approaches in creative medical science. Target identification and lead chemical discovery are
aided by in silico techniques like homology modeling and virtual screening. Lead optimization benefits
from cutting-edge strategies like scaffold hopping and free energy estimates. Cost-effective preclinical
testing benefits from in silico ADMET prediction and pharmacokinetic modeling. There are three
significant steps involved in drug design and drug discovery: (i) Target identification and validation, (ii)

Lead generation and optimization, and finally, (iii) Clinical studies.

Table 1.2 lists commonly used molecular databases in CADD.

Dataset Description Examples
Protein Data Experimentally established 3D structures of PDB ID: 6LU7 (Mpro), 1EVE
Bank (PDB)*"4® protein, nucleic acids, and complex assemblies ~ (AChE), 2V5Z (MAO-B), 4NNI
are stored in a database. (Ribosomal protein S1 of M.TB),
etc.
Chemical Small molecule databases and their biological = Drug bank, PubChem, ChEMBL.
databases***° activity such as interactions with specific

proteins and possible medicinal usage.

Genomic and Genomic and protein sequences datasets from  Uniprot, Human Genome Project,
proteomic organisms. Ensemble.
datasets®1:>2

1. 3 The Impact of Technology on CADD

Developing medicinal chemicals that target specific molecules has become substantially more efficient
with the emergence of computer techniques. CADD encompasses all preclinical or clinical trials, lead
finding, optimization, and target identification. The speed and effectiveness of the drug development
process have been significantly increased and enhanced due to considerable developments in CADD

approaches in the post-genomic period.



1.3.1 Three Phases of the In-Silico Drug Design Methods

The method of computational drug discovery can be classified into three phases involving identifying,

optimizing, and testing prospective drug candidates using computer-aided drug designing tools:

First phase: is target identification, in which potential pharmaceutical targets and the associated biological

pathways are discovered using computational methods.

Second phase: is known as lead discovery. Several potential therapeutic compounds are screened and
narrowed down to a select few with a high affinity for the target.

Third phase: The efficacy and safety properties of the selected drug candidates are greatly enhanced and
optimized in the lead optimization phase. These enhanced prospects might then be the subject of

preclinical and clinical research for future testing and development.
1.3.2 In Silico Validation of Targets and Identification Cavity

Identifying and validating targets is the initial and pivotal stage in the drug research pipeline. Selecting
druggable targets from tens of thousands of potential macromolecules remains a challenge. A variety of

technologies have recently developed to achieve these goals.

Table 1.3 Computational algorithms employed for binding-site prediction of proteins.

S.No.  Name of Packages Methods
1 Fpocket Geometric clustering of ligand binding pockets
2 CASTp* Identification of surface cavities
3 SURFNET® Surface-based ligand binding site prediction
4 Meta Detector®® A consensus of multiple methods
5 DoGSiteScorer,>” Epock,°MSpocket’™ Machine learning-based pocket prediction
6 MetaPocket® A consensus of multiple methods
7 Bite Net®® The deep learning-based binding site prediction
8 Q-SiteFinder®® Voronoi tessellation-based pocket detection
9 LISE®® Ligand-induced surface expansion method
10 PoVME?® Volume-based pocket identification

A protein cavity is a crevice or pocket within a protein that can bind to specific ligands or small molecules.
These cavities are typically necessary for protein function because they allow it to interact with other
molecules and carry out biological tasks. The amino acid sequence and its three-dimensional structure

5



contribute to the size and shape of the protein cavities. Understanding the form and function of protein
cavities is crucial for designing and developing new drugs. Some of the computational algorithms
employed for the binding-site prediction of proteins are reported in Table 1.3.

1.3.3 In Silico ADMET Studies (Absorption, Distribution, Metabolism, Excretion, and Toxicity)

The primary factors contributing to the costly failures of pharmaceutical drugs in late-stage research,
pharmacokinetics, and toxicity, are frequently seen as failed. As a result, these factors must be considered
as shortly as possible in the drug identification process. Due to the development of combinatory chemistry
and high throughput screening, the number of compounds requiring preliminary data ADMET has
considerably grown. The essential pharmacokinetics, metabolism, and toxicity endpoints may be modeled

using in-silico technology, accelerating drug development.
1.3.4 In Silico Drug Safety Prediction

Early toxicity prediction is essential in drug discovery to reduce the financial risks and potential harm to
the public. Significant losses and safety concerns might come from late-stage clinical studies or post-
marketing discovery of unfavorable toxicological consequences. Several methods can be employed to
predict toxicities, including Genotoxicity, liver toxicity, Inhibition of CYP450 enzymes, and

Cardiovascular toxicity.
1.3.5 Advantages of CADD

1. We could reduce the quantity of biological and synthetic testing in this manner.

2. It produces the most effective medication candidate by filtering substances with undesirable
qualities using in silico methods.

3. ltisarapid, automated, cost-effective, and time-saving technique.

4. ltallows us to learn more about the patterns of drug-receptor interactions.

5. Insilico studies may investigate enormous chemical libraries and uncover compounds with high hit
rates, in contrast to traditional high throughput screening methods.

6. These strategies reduce the likelihood of failures in the latter stage.
1.4 Drug-Likeness Molecules

The Lipinski Rule of Five (L-Ro05) is frequently applied to determine how drug-like a molecule is.
According to L-Ro5, molecules with the features that follow are predicted to have restricted absorption

and permeability, a molecular weight (MW) of not more than 500 Da or g/mol, lipophilicity (LogP) of not



more than 5, and not more than 5 hydrogen-bond donors (HBD) and 10 not more than hydrogen-bond
acceptors (HBA),>® and the Ghose filter (GF) adds additional criteria to forecasts to make them better.
The GF predicts that molecules with MW between 160 and 480 Da, a logP between -0.4 and 5.6, a molar
refractivity (A) between 40 and 130, and a total number of atoms (TNA) between 20 and 70 are expected

to exhibit considerable absorption.

Lipinskri rule of five
(or)

Physico-chemical Properties
(or)

Drug likeness molecules

Properties

RBC< 10

HBD <5

Figure 1.2 Physico-chemical properties of drug-likeness molecules.

Veber's rule (VR) suggests that molecules not more than 10 rotatable bonds (RB) and a polar surface area
(PSA) of not more than 140 are more likely to be bioavailable, expanding the standard for bioavailability.
Mugger's rule differs from L-Ro5, GF, and VR by incorporating to a further distinction between
compounds that are drug-likeness and non-drug-likeness molecules. According to Mugger's rule, drug-
like compounds are characterized by a MW of 200-600, a LogP range: -2 to 5, PSA limit: <150, NR count:
<7, NC count: >4, NH count: >1, RB limit: <15, HBD limit: <5, HBA limit: <10.

1.5 Main Categories of CADD Approaches:
CADD approaches are primarily classified into two categories for developing drugs or pharmaceuticals:
1.5.1 Structure-Based or Direct Drug Design (SBDD)

In contemporary pharmaceutical research, SBDD software finds promising chemical compounds with
high binding free energies; calculating an empirical score from free energy in binding or affinity can
evaluate the efficacy of Structure-Based Drug Design (SBDD). This score indicates the success rate of

SBDD. Notably, SBDD is predicated on a prior structural understanding of the target protein, and docking
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is used to determine the bio-affinity or interaction of tested chemical molecules using datasets. This

technique may produce, a novel therapeutic molecule with enhanced interaction with the target protein.

Computer Aided drug design

(CADD)
Llgand based drug design Structure based drug design
(LBDD) (SBDD)
1. Molecular Simiarity 1. Lead-molecular docking
2. QSAR 2. De novo drug design
3. Pharmacophore modeling A. Fragment based drug design

B. Artificial neural network drug design

Lead
optimization

l

Drug Candidate

Figure 1.3 Overview of computer-aided drug design.

1.5.2. Ligand-based or Indirect Drug Design (LBDD)

LBDD, or ligand-based drug design, is used in drug discovery, but the ligands that bind to the protein are
unknown. In this method, ligands are used to create a pharmacophore model or molecule with all the
necessary elements to attach to the target active sites pharmacophore-based techniques and QSARs are
primarily utilized in LBDD. In this method, compounds with similar structures are expected to interact
with the target protein and have comparable biological functions. The exact atomic interactions of the

protein-ligand complex are not necessary for LBDD, in contrast to SBDD.
1.6 Molecular Docking and Algorithms

Various features are used to design docking tools, such as rigid and flexible, and methodologies such as

genetic algorithms, simulated annealing, Monte Carlo simulations, and iterative development algorithms



are employed using distinct approaches. The benchmark and an explanation of the molecular docking
tools are provided.

Many different molecular docking software programmers were developed utilizing different algorithms.®°
This section highlights the benefits of commonly used algorithms and explores the diverse applications
developed using each approach. It is important to note that docking software often utilizes multiple search

algorithms simultaneously or independently.
1.6.1 Matching Algorithm

The Matching algorithm is widely recognized as a simple yet effective approach for consideration that
must be given to the spatial alignment of two molecules to accommodate the geometric overlap between
them.5! Different alignments between the receptor and the ligand are achieved in various ways. The
DOCK program, for instance, heavily relies on the matching algorithm method as a part of its adaptable
docking strategies. For example, in the first stages of the DOCK program, the locations of the potential
ligand are determined, as well as the regions of the binding site known as sphere centers that are
discovered using a Matching algorithm. Numerous other popular systems, such as DOCK, employ this
tactic of Shape-matching algorithms.®2

1.6.2 Monte Carlo (MC) Algorithm

Many docking applications, including Auto Dock, MCDOCK, AutoDockVina, QXP, and
ROSETTALIGAND, employ Monte Carlo (MC) algorithms. % Using the Metropolis criteria, the
fundamental idea of MC is to accept or reject changes that occur randomly. Docking a ligand with a
structure is utilized for determining the conformational structure of molecular affinity.5*The Monte Carlo
(MC) techniques, rooted in the Metropolis MC algorithm, are crucial in advancing docking investigations
by providing acceptance criteria. In each iteration of the Algorithm, ligands undergo random alterations.
If the binding position has an improved energy score. The alteration is permitted, while in cases where the
energy score decreases, acceptance is determined based on the probability (P) defined in the equation

below.
P = exp[—(E; — Ey)/KgT (Eq.1.1)

Kp is the Boltzmann constant, T is the system temperature, and E; and E, are the energy scores before
and after the system change, respectively. The majority of applications using MC simulation give a precise
and accurate performance. However, time-dependent approaches like MD simulations do not suit the MC

methodology.



1.6.3 Genetic Algorithm

The genetic Algorithm (GA) is a widely employed optimization technique for tackling docking problems.
It has been extensively utilized to expedite calculations and identify the variables that significantly impact
the activity of the investigated drug compound.®® The GA approach draws inspiration from Darwin's
theory of natural evolution, wherein two chromosomes (rates parents) combine genetically to generate a
new chromosome that may exhibit superior characteristics compared to its parents.%® This approach uses

a variety of scoring functions (SFs) and several variables, such as crossover and mutation.®’
1.6.4 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) technique approach was developed in 1995 by Kennedy and
Eberhart. In a study conducted by Garcia-Godoy, Lopez-Camacho, Garcia-Nieto, Nebro, and Aldana-
Montes in 2015. One metaheuristic employed in molecular docking is swarm optimization techniques.
These approaches frame a docking problem as a parameter optimization problem and relate it to a clearly
defined SF. The optimization approach looks for a ligand's docked conformation that uses the least energy.
PSO is known for being a productive strategy for handling challenging search situations. Additionally,
there are other docking algorithms based on swarm intelligence, such as SODOCK_.® The PSO method
has proven effective in addressing molecular docking challenges, particularly when minimizing the ligand
score based on the scoring function. The developers have designed several docking techniques using these

algorithms, each with its own advantages and disadvantages, shown in Table 1.4.

Table 1.4 The algorithms and programs for CADD docking tools.

Algorithms Programs or Docking Tools

Matching algorithm DOCK 4.0,' Ph4DOCK,% GM-Dock™

Monte Carlo (MC) MCDOC,™* PRODOCK," AutoDock™

Genetic Algorithm (GA) GOLD3.1,"* GasDock,” PSI-DOCK,® Autodock4.08

Particle swarm optimization (PSO) AutoDock, ClustMPSQO"’

Tabu search SFDock and Proleads’™

Incremental construction eHiTS,” DOCK 4.0,% FlexX?!

Simulated annealing MolDock,? AutoDock4.0 and AutoDockVina®®

Multiple Copy Simultaneous Search HOOK,® FlexX®°

Evolutionary programming (EP) MolDock,** GOLD,* AutoDock,® DIVALI,®
DARWIN,® PSI- DOCK,® FLIP Dock,® Lead finder®

Fast Fourier transform Algorithm. ZDOCK server,** Pathchdock,® HexServer®
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1.7 Scoring Function (SF)

The design and definition of the scoring function (SF) is an important feature and critical for accurately
rating docking candidates. The accuracy of the docking process relies on the precision of the scoring
functions employed to describe the binding mode and ligand placement. These scoring functions are also
instrumental in identifying potential drug candidates, thereby facilitating the discovery of protein targets.
However, it remains a challenging endeavor to develop a rapid and highly accurate prognosis in molecular

docking.%
1.7.1 Force Field

A force field model is derived from atomic-scale information such as bond angles, lengths, and torsion
angles. Mechanical calculations based on physical principles and experimental data are routinely used to
construct force-field functions and associated parameters. Examples of force-field SFs are AutoDock,
DOCK, GOLD, and D-score.*®

1.7.2 Empirical Scoring Function

Calculates binding affinity by adding the fundamental energy components of the protein ligand.% These
empirical SFs were used in several investigations. The study compares POLSCORE ° to the other SF
programmers, Drug Score and X-SCORE. Overall, the analysis demonstrated that POLSCORE is more
reliable in predicting the docked position. The empirical scoring function technique employs a training
set comprising binding affinities of unknowns to determine the optimal weights for energy components.
Various optimization strategies, such as linear regression analysis, can achieve this. Other empirical

scoring functions, like F-Score, are also commonly utilized.%
1.7.3 Knowledge-Based Scoring Functions

Knowledge-based SFs often leverage the structural details of known protein-ligand complexes to enhance
their predictive capabilities.®® Another name for it is statistical potential-based SFs; energy potentials
obtained from empirically confirmed atomic structures are knowledge-based SFs. Researchers have
successfully created and used predictive models for analyzing protein and ligand interactions and
predicting protein structure, using scoring functions based on knowledge. Knowledge-based SFs and
techniques have been compared in numerous research methodologies mentioned earlier, revealing that
knowledge-based SFs can achieve a favorable trade-off between computational efficiency (speed) and
predictive accuracy. It also demonstrates robustness when compared to the training set. Examples of
knowledge-based SFs include PMF, Smog, Bleep, and Drug Score. %
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1.7.4 Machine Learning-Based Scoring Functions

Various machine learning (ML)-based scoring functions (MLSFs) may be used to create more reliable
scoring functions, which can improve docking procedures.’® MLSFs outperform other traditional SFs in
general, and they are used for grading and improving SF accuracy. When ML-SFs are of the supervised
kind, they rely on training data sets.% Support vector machines (SVM), random forests (RF), and

convolutional neural networks (CNNSs) are some of the ML methodologies utilized to create ML-SFs.1%

1.8 Molecular Dynamics (MD) Simulations and Free Energy Calculations

MD simulations of proteins were conducted for the first time in 1970, marking a significant milestone
over 60 years after the initial discovery of the three-dimensional structure of proteins through X-ray
crystallography. The Protein crystal structures archived in the Protein Data Bank (PDB) provide static
representations, capturing a single conformation of the proteins. However, it is important to note that
protein structures are inherently dynamic. Bonds within proteins undergo constant movement and
fluctuations, leading to changes in conformation and occasionally in function. To gain a comprehensive
understanding of the conformational space explored by proteins, molecular dynamics (MD) simulations
are widely employed. MD simulations offer a means to simulate the motion of proteins, utilizing
experimental structures obtained from the PDB and computational models derived from homology
modeling or entirely constructed from MD simulations to analyze the spatial arrangement of atoms in
three dimensions. This methodology replaces a static model with a dynamic one, where the atomic system
is set into motion. By numerically solving the classical Newtonian dynamic equations, the simulation
replicates the motion observed in the system. The technique of MD simulations is built upon Newton's
second law, often referred to as the equation of motion, which serves as the fundamental principle

governing the simulations
F =ma (Eq.1.2)

Here, m denotes the mass, a the acceleration of the particle, and F represents the force acting on it. It is
possible to calculate their acceleration by simply determining the forces at work on each system
component. An integrated set of motion equations provides a trajectory that captures particle positions,
velocities, and accelerations over time. This trajectory can be utilized to calculate the average values of

different properties.

The process of molecular dynamics (MD) simulation is deterministic, meaning that with

the initial positions and velocities of each atom, the state of the system may be predicted at any point in t
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ime. It is crucial to comprehend the significance of bonded and unbonded atom interactions, particularly
Coulomb's law and the Lennard-Jones potential for van der Waals interactions. Both the system's bonded
and unbonded components are covered by these interactions.'® MD simulations can be computationally
demanding and time-consuming, requiring substantial computational resources. Several widely used
software packages, such as AMBER,!%® CHARMM,!% and GROMACS, " have been developed to

simulate protein flexibility through MD simulations in solvated protein systems.
1.8.1 Force Fields

A collection of variables and a mathematical formula referred to as the force field can be used to
mathematically characterize the energy of a protein based on its atomic coordinates. This mathematical
statement demonstrates the connection between the energy of the system and its three-dimensional
coordinates. A force field employed to describe molecular systems is constructed from two terms: the
equation for the bonded interactions, which encompasses bond length, bond angle, and dihedral
parameters, and the equation for non-bonded interactions, which represent atoms with covalent bonds.
The second term's equation, estimated using Coulomb's law and the Lennard-Jones potential, accounts for

non-bonded interactions produced by van der Waals and electrostatic forces.

V(r) = Z ky (b—by )%+ z ko (6—0,)% + Z ko [cos(n®+6) +1]

bonds angles torsions
q:q9; | Ay Gy
+ lr" + —7 - | (Eql3)
non bond y Y i

pairs

In a molecular system, the ensemble of atom coordinates is denoted as V(r). Internal molecular
parameters refer to the bonds (b), angles (8), and torsions (@) within the molecule. Non-bonded terms
encompass Lennard-Jones (LJ) parameters such as ¢;; (well-depth) and R,,;, (distance of minimum
interaction energy). These LJ parameters define van der Waals interactions. Additionally, partial charges

(gq) are used in Coulomb's law to describe electrostatic contributions.

An analytical form in force fields represents the interatomic potential energy and other contributing
factors. The force field parameters are typically obtained through classical methods like ab-initio or semi-
empirical quantum mechanical calculations. Alternatively, they can be derived by fitting the force field to
experimental data obtained from techniques.® The force field should be computationally efficient for
rapid evaluation, while still capturing sufficient detail to replicate the properties of the systems under

investigation accurately.
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In scientific literature, many force fields are available to describe molecules of different complexities and
address diverse systems. Examples include the Universal force fields (UFF), encompassing characteristics
for all periodic table atoms and finding utility in various applications. These force fields have been
developed in different iterations, such as CHARMM19, CHARMM22, CHARMMZ27, GROMOS96,
GROMOS45A3, GROMOS53A5, GROMOS53A6, AMBER91, AMBER94, AMBER96, AMBER99,
AMBERO02, and more.'®When investigating proteins and small molecules, it is crucial to ensure

compatibility between the force field employed and the molecular components under investigation.
1.8.2 Root Mean Square Deviation (RMSD)

RMSD is a commonly employed quantitative metric for assessing the similarity between two sets of 3D
atomic coordinates in an overlay. It can be calculated and displayed for various types and subsets of atoms,
such as all carbon atoms in a protein, all atoms in a molecule, all residues in a protein, or all atoms when
a protein is bound to a ligand. Studies have shown that folded regions exhibit more excellent stability,
while loops tend to be more flexible, contributing to a reduction in the overall RMSD of the system.!°

1.8.3 Binding Free Energy

Various methods, each with different levels of complexity, have been utilized to estimate binding free
energy in biological macromolecular systems such as proteins.t! Simplifying scoring methods is essential
to achieving the requisite competency when searching enormous chemical databases of tiny compounds
for a hit molecule that could one day serve as a lead or treatment candidate. The continuum solvent
approximation may determine the binding free energy by assuming quadratic fluctuations around a
particular configuration. It combines configurations obtained from molecular dynamics (MD) simulations
conducted in explicit solvents with free energy estimators based on an implicit continuous solvent model.
The MMPB-SA technique enables the determination of various types of free energies associated with
biomolecules, including binding, polar, and non-polar free energies. The g-mmpbsa tool and several non-
polar solvation models can be used to determine the binding free energy of protein-ligand complexes. One
of these models, the repulsive model, considers how residue energy affects binding energy and the solvent-

accessible surface area, volume, and other variables.

The MD trajectories that GROMACS generates are compatible with the program g-mmpbsa.'!? Use the
following formulae to compute the binding free energy: The binding free energy is shown when an

inhibitor forms a compound with a protein.

AGbind = Gcomplex - (Gfree—protein + Gfree—inhibitor) (Eq- 1-4)
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Here, Grree—protein @A Grree—imnivitor represent the individual protein and inhibitor when they are
individually present in the solvent. On the other hand, G.ompiex refers to the combined free energy of the
protein-inhibitor complex. As previously mentioned, the free energy of each separate entity is represented

by the symbol G.
G = Eyy — TS + Gsowation (Eq.1.5)

The abbreviation TS, T, and S represents the contribution of entropy to the free energy in a vacuum,
temperature, and entropy, respectively. The free energy connected to the solvation process is referred as
Gsowation- ENErgy is needed to transport a solute from a vacuum into a solvent. The term refers to both

the electrostatic and non-electrostatic parts of the free energy involved in solvation, denoted as G4 and

Gnon—polar F€Spectively.

Gsolvation = Gpolar - (Gfree—protein + Gfree—inhibitor) (EQ- 1-6)

The total potential energy of a molecule in a closed system is included in the Ej;;,, or Energy of Molecular
Mechanics. Both bonded and non-bonded interactions are included, and the computation is based on the

molecular mechanics (MM) force field parameters.

Evm = Epondea T Enon—bondea = Ebondea + (EvdW + Eelec) (Eq.1.7)

The Eponaeq 1S the interactions within the system, including bond, angle, dihedral, improper interactions,
and non-bonded interactions. often called E,,,,—pongeqa  Particle interactions are influenced by several
factors, including van der Waals, and electrostatic forces are typically simulated in molecular systems

using the Coulomb and Lennard-Jones (LJ) potential functions.
1.9 Artificial Intelligence (Al)-Based Drug Design Methods

Artificial intelligence (Al) refers to computer algorithms that can learn from data and improve a task over
time. These models were created using machine learning (ML), a branch of artificial intelligence. Al
algorithms are available in a wide variety, including reinforcement learning, unsupervised learning, and
supervised learning. In supervised learning, the Algorithm is improved by using labeled data, where both
the input and output are known, to enhance its capacity to predict novel, unknown data. With
reinforcement learning, an algorithm can take actions that maximize rewards in a particular environment. Table
1.5 briefly overviews four popular Al models, including their descriptions and some examples of common

use cases.
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Table 1.5 summary of the Al-based CADD models and their applications.

Al Model Description Use Cases
Convolutional Neural A type of neural network well-suited for image Image recognition, object
Network (CNN) classification tasks due to its ability to identify  detection, and medical image

Recurrent Neural
Network (RNN)

Random Forest

Support Vector
Machine (SVM)

patterns and features in images.

A type of neural network well-suited for
processing sequential data, such as text or speech.
It uses a feedback loop to allow information to
persist over time.

An ensemble learning algorithm that combines
multiple decision trees to make predictions. It is
often used for classification and regression tasks.

A type of machine learning algorithm well-suited
for classification tasks, mainly when dealing with
complex data. Finding the best hyperplane to
separate the data into different classes works.

analysis.

Natural language processing,
speech recognition, and time
series prediction.

Credit risk analysis, fraud
detection, and  predicting
customer churn.

Image classification, text
classification, and gene
expression analysis.

(Input) Dendrite

Axon Terminal (Output)

Figure 1.4 Biological neuron cell A comparison of the NNs.

Artificial neural networks (ANNS) are used in drug research and development. ANN may be able to

structurally and functionally mimic the capacities of the human brain. Numerous neurons in the brain can

store, retrieve, and link bits of information. It can recognize patterns based on previous training and

knowledge. The human brain contains an estimated 100 billion or more neurons, and these neurons are

interconnected through approximately 100 trillion synaptic connections. The capacity of the brain to

communicate with its enormous number of neurons, which is required for a meaningful interpretation of

the information, determines how it processes information**®. The dendrites, cell body, axon, and synapses

of a biological neuron collaborate to process information, transfer information, and receive signals in

Figure 1.4.
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Figure 1.5 Artificial neuron cell in ANN's.

1.9.1 Al in Drug Discovery and Applications

. Predicting 3D structure of target protein
. Prediciting drug-protein interactions

. Al in determining drug activtity

. Al in denovo drug design

Al
in drug design

o W N -

Alin
drug repurposing

Identification of therapeutic target
Prediction of new therapeutical use

Alin
hemical synthesi drug screening

1.
J 1>
2.

1. Al in prediction of reaction yield I. Prediction of toxicity

2. Al in Prediciton of retrosynthesis pathways 2. Prediciton of bioactivity

3. Developing insights into reaction mechanisms| |3. Prediction of physicochemical property

4. Al in designing synthetic route 4, Identification and classification of target cells

Figure 1.6 Various applications of Al in drug discovery.

The power of the brain lies in its ability to transmit information across vast networks of neurons rapidly
within seconds. Both acquired skill sets and inherited characteristics significantly affect the ability of ones
ability to receive and comprehend newly acquired information. The knowledge of neuroscience has
improved with the mapping of the brain and the comprehension of the functions of different neurons.
However, the exact mechanism of the brain is still unknown, and a computer has not entirely simulated
it. With the advancements in computing power, there is ongoing development of networks that have the

potential to function like the human brain.
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The input, hidden, and output layers comprise the three artificial neuron layers.!* The input layer selects
the input variable, which is later modified by the hidden layer before becoming calculated into the ultimate
output values at the output layer in Figure 1.5.

Finding and developing novel drugs is challenging, expensive, and time-consuming. Typically, the R&D
cycle lasts 10 to 15 years. Pharmaceutical companies invest significant money in drug research, yet the
high attrition rate lowers R&D productivity. Only one in ten potential drug compounds advances beyond
phase | clinical trials to receive regulatory approval. There is still a need for a new drug.'*>!® The cost
burden and time constraint of researching and creating novel pharmaceuticals requires significant
financial resources. It is a time-intensive endeavor, and the pharmaceutical sector has increasingly resorted

to Al to address these issues.

Al provides a range of tools and technologies that can speed up the validation of therapeutic targets,
uncover possible hit and lead compounds, and improve drug design. Al thus has the potential to drastically
cut the expense and time associated with finding new medicines, which would be advantageous for the
healthcare sector.!’

Tablel.6 Some of the artificial intelligence tools employed in the drug discovery processes.

Tool Details

DeepChem?!® A Python-based Al tool for various drug discovery task predictions

DeepNeuralNet-QSAR Molecular activity predictions

DeepTox!?° Toxicity predictions

Neural Graph Property prediction of novel molecules

Fingerprints'?!

ORGANIC!% A practical approach for generating molecules with desired properties

Potential Net!? Ligand-binding affinity prediction based on a graph convolutional neural network

The chemical configuration required to trigger the desired reaction at the point of interest can be predicted
using various computational techniques. These methods can also aid structural refinement to achieve
multiple goals, including potency, safety, solubility, permeability, and synthesizability. The physical
characteristics of the drug can also be predicted, and the synthesis procedure can be planned using
computational approaches.?*1%5 One way to accelerate the elimination of non-lead compounds is to utilize
all the available information, including structure- and ligand-based techniques. For instance, quantitative

structure-activity relationship (QSAR) modeling has been implemented to select promising drug
18



candidates from a pool of up to a million options. Additionally, deep learning technology can now handle
the vast amount of data produced during drug discovery and development, which has expanded due to the
increase in big data in recent years.1?512’As seen in Figure 1.7, there are several ways that Al applications

might speed up the drug development process.

A computational network consisting of one or multiple layers of artificial neurons (ANs) is commonly
referred to as an artificial neural network (ANN) (see Figure 1.7). ANNs draw inspiration from the
complex network of nerve cells in the human central nervous system. These networks aim to mimic the
functioning of the human brain in performing specific tasks or functions of interest. In practice, ANNs

can be implemented using electrical components or simulated through digital computer software, as

Haykin et al. described.*?

Tablel.7 Application of Al-based CADD methods in drug discovery.

Category Subtitles Description
1) Al'in Drug a) Predicting the 3D 1) Al algorithms utilize protein sequence analysis and
Design Structure of the Target computational models to predict target protein structures,
Protein!?® enhancing drug design efficiency.
2) By identifying potential binding sites and
interactions, Al techniques revolutionize drug discovery,
optimizing outcomes.
b) Predicting Drug- 1) Al techniques, like machine learning and data
Protein Interactions*° analysis, predict drug-target interactions, improving
therapy development.
2) Leveraging Al enables safer and more effective drugs
by minimizing adverse effects through enhanced
analysis.
c) Al in Determining 1) Al techniques enhance drug compound evaluation and
Drug Activity! forecasting, optimizing research.
2) Efficient identification and prioritization of promising
candidates expedite pharmaceutical development.
d) Al in De Novo Drug 1) Al algorithms are revolutionizing drug design by
Design?® creating novel molecules.
2) Optimized characteristics of Al-designed drugs offer
potential medical breakthroughs.
2) Al in Drug a) Identification of 1) Al analysis identifies untapped therapeutic benefits in

Repurposing

Therapeutic Use!®

existing drugs.
2) Repurposing drugs with Al enhances patient care and
treatment options.
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3) Al in Drug
Screening

4) Al in Chemical
Synthesis

5) Alin
Polypharmacology

b) Predicting New
Therapeutic Use'®*

a) Prediction of
Toxicity'®

b) Prediction of Bio-
Activity®

¢) Prediction of
Physicochemical
Properties™’

d) Identification and
Classification of Target
Cells®®

a) Al Prediction of
Reaction Yield™*®

b) Al Prediction of
Retro Synthesis
Pathways'4°

¢) Developing Reaction
Mechanisms!#

d) Al in Designing
Synthetic Route!#?

a) Designing Bio-
Specific Drug
Molecules!*3

b) Designing Synthetic
Route#

1) Al analysis of molecular characteristics can unveil
new therapeutic possibilities.
2)Harnessing Al's potential
opportunities in medical research.
1) Al analysis of drug molecules enables the
identification of novel therapeutic uses.

2) Harnessing the power of Al unveils repurposing
opportunities in medicine.

1) Al algorithms enhance drug discovery by predicting
biological efficacy accurately.

2) Target identification and selection benefit from Al-
powered forecasting technology.

1) Al-driven predictive algorithms enhance drug-
likeness molecules properties and optimization.

2) Pharmaceutical R&D experiences a transformative
revolution through Al-powered technologies.

1) Leveraging advanced Al techniques to identify and
categorize target cells accurately, revolutionizing drug
targeting and treatment efficacy.

1) Al techniques to predict the yield of chemical
reactions, aiding in synthesis planning.

2) Al techniques to predict and suggest retro-synthesis
pathways for efficiently synthesizing target molecules.

enables repurposing

1) Al algorithms to develop reaction mechanisms for
chemical synthesis, improving efficiency.

1) Al methods to design optimal synthetic routes for
efficiently producing target molecules.

1) Al algorithms to design drug molecules that target
multiple biological pathways for improved efficacy.

1) Al techniques to design synthetic routes for producing
polypharmacological drugs.

Input layer

hidden layer Output layer
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Figure 1.7 The architecture of an artificial neural network with input, hidden, and output layers.

The three layers commonly present in ANNs are input, output, and hidden layers. The initial layer and
input point of the ANN are the input layer. The initial environment input is passed to the following layer
in this layer for processing. The hidden layers come next after the input layer. ANNSs in the buried layers
modify it based on the information they receive. One of several factors that influence the transformation
process is the nature of the activation function. However, ANNSs can have several hidden layers. An ANN's

output layer is its top layer. This layer determines the final result of the network.
1.9.2 Feed-Forward Neural Networks

Feed-forward neural network (FFNN) creates the output by transmitting the input signal from the outside
environment through the network. The final output of an FFNN is computed for any input pattern using a
single forward pass through the network, beginning at the input layer and ending at the output layer. There
are no feedback loops between levels and the layers before them in FFNNs.!

1.9.2.1 Backpropagation Learning Algorithm

Backpropagation is one of the well-known techniques used in FNNs.'#**At the start of the learning process,
the candidate weights and biases of the network are usually initialized with random values. These
candidate weights and biases are updated or modified through a series of learning iterations. Epochs are

employed to explain each learning iteration in backpropagation. An epoch typically has two phases:

1. Forward propagation: The input samples are fed into the FFNN, which then determines the actual

output of the network, as explained previously.

2. Backward propagation: During this stage, the network error is computed by utilizing a loss function.
The difference between the actual output and the output values desired for the input samples is an
error of the network. The learning algorithm selects a set of weights and biases with the least error
with the aid of the loss function, which incorporates a performance parameter. In the training phase
of the study, the estimated error value is obtained by propagating from the output layer back to the
input layer. This error value is then utilized to adjust the weights and biases of the neurons in the

network. The mean squared error (MSE) was employed in this study as the loss function.
1.9.3 Recurrent Neural Networks (RNN)

RNN are a valuable network for processing temporal input and sequences. RNN repeats sequences while

storing all object-specific data in a hidden state and keeping track of every item they have observed. The
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compact form of a basic RNN is presented on the left side of Figure 1.8, while the form stretched across
all time steps is displayed on the right side. The network'’s hidden state at time step t is determined using
the activation function F to calculate the input X; and the hidden state from the previous time step,h;_;.
The influence of the previous time step on the following one is preserved by the RNN's internal memory,

which is made possible by this calculating method.
1.9.3.1 Types of RNN

RNN are more flexible than feed-forward networks, which only have a single input and output since the
lengths of the inputs and outputs may be changed. RNNs are advantageous for modeling sequential data
because of their flexibility.

1. One to One RNN 2. One to many RNN
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Figure 1.9 The inputs and outputs of four types of RNNs.
There are four main types of RNN, each with a different range of input and output lengths.
a) One-to-one RNN is a primary neural network. It is widely applied to machine learning
problems with only one input and output.
b) One-to-many RNN one input and several outputs.
c) Many-to-one RNN predicts one output from a variety of multiple inputs. It is a typical approach
in sentiment classification, where text is the input and a category is the output.

d) The term "many-to-many RNN" refers to RNN with many inputs and outputs.
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1.9.3.2 Limitations of RNN

Simple RNN models often have two significant problems. The gradient, the slope of both the loss and

error functions, relates to these issues.

1. Vanishing Gradient problems occur when the gradient becomes so tiny that altering the parameters is

no longer advantageous; at this point, the Algorithm reaches a point of no return.

2. The exploding gradient problem arises when the gradient reaches an excessive size, rendering the
model unstable. In this scenario, larger error gradients accumulate, resulting in too high model weights.

This issue could lead to longer training times and lower model performance.

Reducing the number of hidden layers in the neural network is a straightforward way to address these
problems, which will also simplify RNNs somewhat. Advanced RNN designs, such as the LSTM, can

resolve these problems.
1.9.4 Long short-term memory (LSTM)

LSTM cells are particular building blocks employed by the long-short-term memory (LSTM) neural
network, a type of RNN (Figure 1.9). The two hidden states calculated and stored by LSTM cells are cell
state ¢ and cell output h. Disappearing gradients is when networks lose the capacity to remember
information from previous time steps. LSTM can deal with this issue. Conventional RNNs and extensive
non-recurrent neural networks both frequently encounter this problem. The processing of older data
remains relatively high when LSTM maintains the cell state ¢ for many time steps (Figure 1.10).14°
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Figure 1.10 A cartoon picture of a simple LSTM neural network.
LSTM cells have an inbuilt computation system called gates to calculate the cell and output states. The
input gate, forget gate, output gate, and input modulation gate are the four gates that make up an LSTM
cell (Figure 1.11). These gates control O of data information that goes through the neural network and

cell membrane.'*" It is computed using the input gate at time step t.

it = 0 (Wl xt + Ul ht—l + bl) (Eq. 1.8)
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The forget gate f; is determined by

fr = a(wf X+ Usheq + bf) (Eq.1.9)
The output gate O is determined by

0; = owWyx;+ U, hi_qy +b,) (Eq.1.10)

To determine the cell state c, the input modulation gate (¢;) is determined by

¢y =tanh( wex; + U. hy_q +b.) (Eq.1.11)
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Figure 1.11 Detailed cartoon picture of the LSTM neural network.

®

Where x, isthe input at time t and h,_, is the output state at the last time. The four gates' respective
input x: vectors are represented by the weight matrices step wy, step, wy step w,, , and step w,. U;,Uy, U,
and U.make up the weight matrices for the four gates' previous output state, h,_;, whereas b;, bs, b, and

b. are the bias terms.

1.10 List of Diseases

1.10.1 Overview of Alzheimer's Disease (AD)
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AD is a progressive neurological condition that deteriorates over time. It is characterized by notable
alterations in the brain, resulting in the accumulation of specific proteins. As the disease advances, it leads
to the shrinking of the brain and the eventual death of brain cells. The most common cause of dementia,
a progressive decline in cognitive abilities, including memory, reasoning, behavior, and interpersonal
skills, is AD. Particular changes significantly impact the ability of an individual to carry out daily
activities. Approximately 6.5 million individuals aged 65 and above live with AD in the United States.
Among them, over 70% are 75 years old or older. On a global scale, of the estimated 55 million people
affected by dementia, around 60% to 70% are believed to have AD.*® In the initial stages of AD,
individuals may experience initial signs such as difficulty remembering recent events or conversations.
As the condition progresses, it leads to more severe memory issues and the inability to carry out everyday
tasks. While certain medications can potentially improve or slow down the advancement of symptoms,

it's important to note that there is currently no known cure for AD.

Nevertheless, there are various programs and services available to provide support to individuals with the
disease as well as their caregivers. In the advanced stages of the condition, the substantial loss of brain
function can give rise to complications like dehydration, malnutrition, or infections, which, in some cases,
can lead to death.'*® Acetylcholinesterase (AChE) plays a crucial role in the human body as an enzyme
that breaks down the neurotransmitter acetylcholine. Acetylcholine is involved in transmitting signals
between nerve cells and is particularly important for cognitive functions, including memory and learning.
In drug design, AChE inhibitors play a significant role. This requires a thorough understanding of the
structure and mechanism of enzymes. Scientists employ various strategies in Silico ADME properties,
such as computer-aided drug design and molecular modeling, to design and optimize inhibitors with

improved specificity and potency.
1.10.2 Overview of COVID-19

The Coronaviridae family of viruses, which includes the large group of viruses collectively known as
coronaviruses, can infect a variety of animal species in addition to humans. While certain coronaviruses
are known to cause mild respiratory illnesses that resemble the common cold, other coronaviruses have
been associated with more deadly diseases, including SARS and Middle East Respiratory Syndrome
(MERS). In December 2019, Wuhan, China, saw the emergence of a brand-new coronavirus that had
never been observed in humans.® This coronavirus infection typically results in respiratory problems,
fever, coughing, and breathing issues. It could result in pneumonia, severe acute respiratory syndrome, or
even death in severe cases. The World Health Organisation (WHO) is aggressively collaborating with
international scientists, governments, and partner organizations in order to fast expand our scientific

25



understanding of this unique virus. Their combined efforts are meant to provide quick guidance on
precautionary measures to protect public health and halt the outbreak from spreading. The rights,
responsibilities, and functions of health professionals must also be addressed. This includes workplace
health and safety. Frontline healthcare workers play a crucial role in responding to outbreaks and are often
exposed to various hazards that increase their susceptibility to infection with the pathogen responsible for
the outbreak.'®

1.10.3 Overview of Parkinson's Disease (PD)

PD is a progressive neurological condition distinguished by various motor symptoms, including slowed
movement, tremors, muscle stiffness, difficulties with walking and balance, and involuntary movements.
People with PD commonly experience a variety of non-motor problems in addition to motor abnormalities.
These include discomfort, sensory issues, sleep disruptions, mental health conditions, and cognitive
impairment. The motor symptoms associated with PD, such as dyskinesia (involuntary movements) and
dystonia (painful involuntary muscle contractions), significantly impact speech, mobility, and overall
functioning, leading to limitations in daily life activities. As the disease progresses, these symptoms
worsen, resulting in a high incidence of disability and the need for increased care. Moreover, it is common
for individuals with PD to develop dementia as the disease advances. Dementia in PD can manifest as
cognitive decline, memory problems, and difficulties with thinking and reasoning.>? In addition to PD,
other movement disorders such as multiple system atrophy, progressive supranuclear palsy, chorea, ataxia,
and dystonia are also known to exist. Tremors, sluggish movement, and muscle rigidity are signs of several
movement disorders that may resemble Parkinson's disease (PD). All movement disorders experience
similar challenges in effectively identifying the ailment and providing appropriate treatment, much like
PD.

Access to medication for these disorders is particularly limited in low- and middle-income countries
(LMIC). While increasing age is a significant risk factor for developing PD, it is essential to note that
younger individuals can also be affected. Furthermore, PD tends to affect men more frequently than
women. Although the precise causes of Parkinson's disease (PD) are still not fully known, it is commonly
accepted that a combination of hereditary factors and lifetime exposure to environmental variables
contribute to the development of the disease. Some of these environmental factors include pesticides,

solvents, and air pollution.®3
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1.10.4 Overview of Tuberculosis Disease (TB)

TB is a bacterial infection caused by Mycobacterium tuberculosis, primarily affecting the lungs. When
people with lung TB cough, sneeze, or discharge saliva, the disease is spread through the air. Infection
can result from breathing in even a tiny number of these microorganisms. Annually, approximately 10
million people worldwide develop tuberculosis. Despite being a preventable and treatable condition, TB
remains the top infectious cause of death, claiming the lives of around 1.5 million individuals annually.
TB has a particularly devastating impact on individuals living with HIV, being the leading cause of death

among this population.

Table 1.8 Disease, target proteins, its mechanisms, and PDB ID of the target protein.

Disease Protein Mechanism PDB ID

Alzheimer's Acetylcholinesterase (AChE) Inhibition of AChE activity to increase 1EVE
ACh levels in the brain.

COVID-19 Main protease (Mpro) Inhibition of MP™ activity to prevent 6LU7
viral replication.

Parkinson's Monoamine oxidase B (MAO-B)  Inhibition of MAO-B activity to increase 2V5Z
dopamine levels in the brain.

Tuberculosis Ribosomal RNA S1 Inhibition of ribosomal RNA S1, which 4ANNI
is involved in the translation of mMRNA
into protein.

Additionally, TB plays a significant role in contributing to the problem of antimicrobial resistance. While
TB affects people globally, most cases occur in low- and middle-income countries.'® Approximately 50%
of TB cases are concentrated in eight countries: Bangladesh, China, India, Indonesia, Nigeria, Pakistan,
the Philippines, and South Africa. These nations bear a significant burden of TB infections, contributing
to a substantial portion of the global TB caseload. Roughly a quarter of the world's population is believed
to have been exposed to TB bacteria. However, it is essential to note that not everyone infected will
progress to active TB disease. Some individuals will naturally clear the infection, and those infected but
not yet showing symptoms cannot transmit the disease to others. Individuals who have been infected with
TB bacteria face a lifetime risk of approximately 5-10% of developing TB disease. However, certain
factors can increase this risk. Those with compromised immune systems, such as individuals living with
viral infections, malnutrition, diabetes, or those who engage in tobacco use, are more susceptible to falling
ill with TB.1%®
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CHAPTER 2
Methodology of Recurrent Neural Network Method to

Design Potential Drug-likeness Molecules
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2.1 Computational Details

All the HF calculations are carried out using the Gaussian-09 package.! Autodock-Vina? is used for
defining binding energy implemented in RDKit Package.® Molecular dynamics (MD) simulations are
done in GROMACS packages* and VMD. Physicochemical or Lipinski rule of five® and ADME
properties are calculated by the Swiss-ADME website.® The following sections detail the LORD
molecular predictor in different steps. Firstly, it investigates the potential binding sites and then prepares

the data for training. After training, it generates new drug-like molecules.
2.2 Potential Binding Site Analysis by Scanning MESP

To perform binding site analysis, MESP calculations are done for the acetylcholinesterase enzyme
(AChE) with a 3D cubic box length of 40 x 40 x 40. The MESP is evaluated by using Equation (1) in
the Gaussian09 package.

V(r) = z L f pUDL (Eq.2.1)

r—R B r—r’
A

Where Za is the charge of the nucleus located at Ra, MESP evaluation at each grid point is expensive for
the entire protein. We calculated the acetylcholinesterase (AChE), main protease (Mpro), Monoamine

oxidase-B (MAO-B), and ribosomal protein S1 of Mycobacterium tuberculosis (Mtb).
2.2.1 MESP Calculation for Identification of Binding Sites in Target Protein

The total protein of (AChE) is subdivided into 27 substrate structures sequentially, and each substrate

structure contains 20 amino acids, as shown in Figure 2.1.

The uniform grid spacing of 0.3 A is preserved in all MESP calculations. The MESP evaluations are done
for all substrate structures with the same cubic box using cubegen as implemented in the g09 package. All
the substrate cube files are loaded in VMD and transformed into one single cube file. Figure 2.1 shows
two color regions of MESP distributions, such as dark blue color lobes inside, representing most negative
regions with function value -0.20 of the protein. The grey color distribution shows low negative areas of
the entire protein at -0.01 a.u. The total MESP distribution can be seen in Figure 2.1 with two layers. The
most negative regions, such as inner blue color lobes, are further investigated by surface cavity analysis
as highlighted by black circles with notations C1-C4. MESP function values are projected onto the plane
to trace the exact potential of the binding site location. Scanning MESP function values within the plane
resulted in surface cavities, as shown in Figure 2.1. The surface cavities were assumed to be the most

potential binding sites. The surface cavities provide an understanding of the distribution of MESP function
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values by following the gradients as color changes, as shown in Figure 2.1. The most negative MESP
function values are spotted as inner and outer circles. The color distribution indicates that drug molecules
can swallow into the cavity by following the gradient of charge distribution. This analysis provided the

four best potential binding sites for further studies.
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Figure 2.1 (A) MESP distribution of the AChE and (B) the procedure to construct substrate structures.
2.3 Data Preparation

Potential drug-likeness molecules were collected for this investigation from the ChEMBEL database.
1500 molecules in total were chosen, with a particular emphasis on substances that showed similarities to
donepezil and literature-recommended molecules believed to be connected to Alzheimer's disease, as
mentioned in Chapter 3, along with 1600 molecules that are antiviral drugs or show similarities to antiviral
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compounds and literature-recommended molecules for the treatment of COVID-19 in Chapter 4. In
Chapter 5, the focus of the investigation focused on Parkinson's disease, and 986 compounds related to
safinamide drugs and their matching molecular similarities, as well as molecules proposed by the
literature, were included. Finally, 786 compounds associated with pyrazinamide drugs and their molecular
similarities, as well as molecules suggested in the literature for treating tuberculosis, were covered in
Chapter 6 of the study.

The docking process involved evaluating all the molecules against multiple target binding sites, including
the MESP-suggested and experimentally reported sites. The corresponding binding energies (BE) were
determined and recorded for each molecule based on the specific type of binding site being considered.
Consequently, the total binding energies obtained for each molecule across all the target binding sites

were collected and stored in a file for further analysis.
2.4 Input Preparation for LORD Algorithm

Drug-likeness molecules are fragmented by the BRICS-BONDS’ fragmentation scheme as implemented
in the RDKit package.® Unique fragments are saved into the library by fingerprint similarity measure to
avoid repetition of fragments as implemented in RDKit. In total fragments were saved in the library.
Including all binding sites in the library helps identify their potential for binding interactions. The length

of the library becomes 1000isthe sum of several drug fragments and several protein sites.

Symmetric functions were used to provide rotationally and transnationally invariant coordinates to the
LSTM networks as input vectors for each atom as inspired by Boehlert al.® Symmetric functions such as
radial (gi) and angular (g{") as shown in Equations (2) and (3). Symmetric functions cover the atomic

environment accurately for each atom within the cut-off sphere.

g = Zexp(_nrrij)fc(rij) (Eq. 2.2)

i#j

gl = z z (1 + T]COS(eijk))c exp(—Ma(rij + Tk + rie) fe(ri) fe(rj ) fe(ri)  (Eq. 2.3)

%) k=i

2 [eos () +1] ien <
fc(rii) =42 o e B =T
0 if rij > I'c

(Eq.2.4)

Here, rij, rik, and rik are the internuclear distance between i, jth and k™ atoms in a molecule. f. (rij), fe(rik)

and fc(rik) are cut-off functions for respective r;;, 7, and ry,. 8, is the angle between j" and k™ atoms
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cantered at i" atom. n,- and n, are the width of the Gaussian function. The set ofn,., 14, {, and A are given
in Table 2.1.

Table 2.1 Set of parameters 7,,n,, ¢, and A values for symmetric functions.

nr Na ¢ y)
0.001 0.001 1 1
0.010 0.003 2 1
0.017 0.006 4 -
0.030 0.011 16 -
0.045 0.020 - -
0.066 0.037 - -
0.095 0.075 - -
0.150 - - -
0.350 - - -

We have used a cut-off radius r, = 8A. In the protein environment, the active site is covered within a 10

A cut-off distance from the center of the cavity.

Symmetric function values are calculated for an entire library ( drug fragments + protein sites(Cy, Ca, Cs,
Ca4)) using Equations (2) and (3). In total, 51 symmetric functions are used for each atom to describe the
environment. To recognize each fragment uniquely, the sum of the symmetric function values for each

atom within the fragment has been considered an input vector, as shown in Equation (5).

N
Fragment feature = Z(Dfad + D"8) (Eq. 2.5)

i=1

Input is prepared so that the number of rows is the length of the molecule or the number of fragments and
columns are 51 fragment features, i.e. (times steps X fragment features). The number of times steps is
chosen based on the maximum molecular length in the database to maintain the uniform dimension while

training by applying padding in Keras API.
2.5 LORD Output Preparation

LSTM simultaneously predicts two types of outputs, such as sequence and corrected binding energy

(CBE) prediction. The sequence prediction output layer requires on-hot encoding of an entire library
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(times steps X Length of Library) and CBE values for each molecule that involved in the
training.CBE is calculated by Equation (2.6).

_ 1 1 V;
CBE (C) = | BE + §<.ZS (V3 < BE) (Eq.2.6)
1=1,

Where BE is the binding energy stored for each molecule concerning the protein site calculated with
AutoDock Vina V; is the variable consisting of the Lipinski rule of five, such as the rotational bonds,
log(P) value, hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), and molecular weight.
Actual binding energy is corrected according to the physicochemical properties calculated for each
molecule in the database. LSTM networks are trained using CBE rather than BE to recognize the Lipinski

rule of five. CBE enables LSTM networks to better prediction of the biologically active molecule.
2.6 Block Diagram of LORD Designer Algorithm

The block diagram for the LORD designer is shown in Figure 2.2. The research begins by retrieving the
target protein structure from the Protein Data Bank (PDB) and accessing all available drug molecules
stored in the ChEMBEL database. Once these resources are obtained, the subsequent step involves an
analysis of the binding sites within the target protein, as previously discussed. Simultaneously, a drug
fragment library is prepared for further investigations.

To facilitate the training of Long short-term memory (LSTM) networks, input data is prepared by
employing the symmetric function procedure mentioned earlier. This input is then utilized for LSTM
training, followed by testing using the prepared input. The network error is minimized through iterative
training until reaching the desired minimum value. Upon achieving optimal network performance, the
LORD (LSTM enable onsite recurrent molecular designer) algorithm comes into play, allowing the
generation of novel drug molecules. The database is updated to incorporate the newly constructed

molecules during this process.

Notably, the LORD algorithm incorporates a condition known as CBE (Chemical Bond Energy), which
ensures that only molecules meeting the minimum cut-off criteria are saved, while the remaining ones are
discarded to streamline the molecule-building procedure. The process of training and designing drug-
likeness molecules is continued in generation mode. LSTM starts with the ChEMBEL database, called

1stgeneration LSTM, and LSTM is upgraded to better generations by adding newly generated data
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Figure 2.2 Block diagram for LORD designer algorithm.
2.7 LSTM Network Architecture and Training

LSTM networks consist of four layers, as shown in Figure 4. It begins with the Input layer, such as the

symmetric function vector. Two LSTM layers and an output layer. The output layer consists of sequence
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prediction with SoftMax function and CBE(C) value prediction with dense layers simultaneously, as
shown in Figure 4. Each LSTM layer consists of 256 hidden units, and the activation function is used. In
the beginning network, the architecture is initialized with random weights. The total loss is the sum of the
categorical loss and means squared loss, as shown in Figure 4. The categorical cross-entropy (CCE) and
mean squared error (MSE) loss functions are defined by Equations (7) and (8) as implemented in Keras
API.

n
1 S
MSE = —Z(CBE — CBE)? (Eq.2.7)
n i=1
length of
library
CCE = — Z yilog (7 (Eq.2.8)
t=1

Where CBE is calculated by corrected binding and CBE is corrected binding from the network for the
mean squared error function. And alsoy, and(y;) are real and network outputs of one-hot encoding for
sequence generation. The loss function is back propagated to optimize the weights by Adam optimizer as
implemented in Keras API.

2.8 LORD Molecular Drug Predictor

LORD utilizes the trained weights and generates molecules. To begin with, it requires a protein site as
input, and then it generates a sequence of fragments as the time series goes on, as shown in Figure 4. At
time series (t — 1), it suggests the fragment output from the library, and in a subsequent step, it suggests
the next fragment at t time series by providing the first fragment as input. The following time series
indicates the number of fragments. Each fragment series is combined by using the RDKit package. At the
same time, generating molecules number of fragments to generate is limited by maximum molecular

weight as the cut-off is chosen as 500.
2.9 CHARMM Force Field in GROMACS

CHARMM (Chemistry at Harvard Macromolecular Mechanics) is a comprehensive collection of force
fields and software for conducting molecular dynamics simulations and analysis. It offers united atom
(CHARMML19) and all-atom (CHARMMZ22, CHARMMZ27, CHARMM36) force fields tailored to specific
research needs. The CHARMM27 force field has been successfully adapted for GROMACS, a widely
used molecular dynamics software. It is officially supported and provides accurate results within the

GROMACS environment. On the other hand, the CHARMM36 force field files, which are continually
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updated, can be obtained directly from the MacKerell lab website. The MacKerell lab is known for
regularly producing the most current and up-to-date CHARMM force field files in the compatible
GROMACS format.

To utilize the CHARMM force field parameters within GROMACS, researchers can employ the
CHARMM36 force field. This force field is readily available in GROMACS as a precompiled binary file,
encompassing all the necessary topology and parameter files required for simulations. By utilizing the
CHARMM36 force field in GROMACS, researchers can benefit from a powerful combination of accurate

force field parameters and the versatile simulation capabilities of GROMACS.1?
To employ the force field in GROMACS, the following steps are followed:

a) Begin by acquiring the CHARMM36 force field files from the official CHARMM  website. These
files contain the necessary parameters and specifications for the CHARMMZ36 force field.

b) Once you have downloaded the CHARMM36 force field files, you will need to convert them into a
format compatible with GROMACS. This can be achieved by utilizing the gmx ffcharmm2gmx
command, specifically designed for this purpose. Executing this command will facilitate the
conversion process and generate the essential topology and parameter files in the appropriate
GROMACS format.

c) Prepare your system for simulation using the standard GROMACS workflow.

d) Use the generated topology and parameter files in your simulation using the -f and -p flags in the
grompp command.

GROMACS is a popular molecular dynamics simulation package that can simulate protein-ligand
complexes. Here is a general outline of the steps involved in running a GROMACS simulation for a

protein-ligand complex:

1. Prepare the system: This process entails establishing the initial spatial arrangement of the protein-
ligand complex, solvating the system in a water box, adding ions to neutralize the system, and
assigning force field parameters to the protein and ligand molecules.

2. Energy minimization: Energy reduction aims to eliminate steric conflicts and unwanted interactions
from the system. To do this, a series of reduction procedures are applied to the system until the
energy converges to a minimum.

3. Equilibration: In this process, the system is allowed to adjust to the simulated conditions, such as
temperature and pressure. The equilibration procedure consists of NVT (constant volume, constant
temperature) and NPT (constant number of particles, pressure, and temperature).
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4. Production run: This is an accurate simulation of the system; the simulation should be run for a
significant length to portray the dynamics of the protein-ligand complex accurately. The simulation
period typically ranges between nanoseconds to microseconds depending on the research issue.

5. Analysis: Many analyses may be run after the simulation to understand better how the protein-
ligand complex functions. These investigations involve determining the root mean square deviation
(RMSD) of the protein-ligand complex over time, figuring out the binding energy between the
protein and ligand, and analyzing the protein-ligand complex’s trajectory to search for essential

interactions.
6. Analyze the trajectory of the protein-ligand complex to search for essential interactions.
2.10 Free Energy Calculation (g_mmpbsa)

The g_mmpbsa software employs the Molecular Mechanics Poisson-Boltzmann Surface Area
(MM/PBSA) ! approach to compute binding free energies in molecular systems. This technique
commonly assesses the binding strength between multiple molecules, including protein-ligand complexes.
By employing the MM/PBSA method, researchers can calculate the free energy of binding, a crucial
parameter in understanding the stability and affinity of molecular interactions. The g_mmpbsa software
facilitates the application of this approach, enabling efficient and accurate estimation of binding free

energies in various molecular systems.

Kumari et al.*? The g_mmpbsa (Molecular Mechanics/Poisson-Boltzmann Surface Area) method is a
computational approach specifically designed to determine binding free energy in protein-ligand
complexes. This method incorporates molecular dynamics simulations, where the protein-ligand complex
is subjected to dynamic behavior, and the subsequent free energy changes are computed utilizing a specific
formula. By employing the g_mmpbsa method, researchers can gain valuable insights into the energetics
of protein-ligand interactions, enabling the evaluation of binding strengths and the prediction of potential

binding affinities using followed formula.

AGbind = AGcomplex - (AGprotein + AGligand ) (Eq- 2-9)

Where AGying IS the binding free energy of the protein-ligand complex, Acomplex IS the free energy of the
complex, AGprotein represents the free energy of the protein when it is not bound to any ligand,, and AGiigand
represents the free energy of the ligand when it is not bound to the protein. These values play a critical
role in assessing the energetic contributions and stability of the protein-ligand complex.
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The g_mmpbsa software package offers a comprehensive set of tools for conducting molecular dynamics
simulations, computing electrostatic and van der Waals interactions within protein-ligand systems, and
estimating solvation-free energy using the Poisson-Boltzmann Equation. By leveraging these calculations,
the software facilitates the estimation of binding free energy for the complex, employing the formula

mentioned earlier.

To utilize g_mmpbsa effectively, users must provide input files containing the coordinates of the protein
and ligand and parameters necessary for the molecular dynamic simulation and Poisson-Boltzmann
calculations. The software operates via a command-line interface, allowing users to execute commands
and run the required calculations. Upon completion, the output files generated by g_mmpbsa will contain
the estimated binding free energy and other pertinent information pertaining to the protein-ligand

complex.
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CHAPTER 3

Design of Potential Druglikeness Molecules for Alzheimer's

Disease
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3.1 Introduction to Alzheimer's Disease

Alzheimer's Disease (AD) is a prevalent neurological condition characterized by the progressive loss
of memory and cognitive function due to the degeneration of neurons in the brain. AD is widely
recognized as the most prevalent form of dementia, and it arises from disruptions in the transmission
of signals between nerve cells and muscle cells in the brain, typically caused by the inhibition of an
enzyme called cholinesterase. This leads to the degeneration of neurons in the cerebral cortex and the
formation of neurofibrillary tangles and plaques containing a beta-amyloid protein. These pathological
changes profoundly impact the experience of individuals living with AD.2 AI/ML can help discover
the complexity necessary in discovering new intervention targets for neurodegenerative disorder by
developing novel approaches, models, and algorithms to enable research of the complex non-linear
dynamics between biology, environment, sickness, and public health. This method can improve our
understanding of neurodegeneration and provide novel treatment for patients suffering from
catastrophic neurodegenerative disease.® In 2015, 46.8 million people lived with AD or a related form
of dementia globally, with 1.9 million fatalities. In 2017, there were over 50 million Alzheimer's
sufferers; in 2030, this figure will be 74.7 million; in 2050, it will be 131 million. The countries
witnessing the most rapid growth in the population of AD patients include Finland, the United States,
Canada, Iceland, Sweden, Switzerland, Norway, Denmark, the Netherlands, Belgium, India,
Cambodia, Georgia, and Singapore, among others are among the countries with the fastest-growing

patient populations.*

Acetylcholine (ACh) is a neurotransmitter that plays a role in the normal functioning of the brain. It
involves many important cognitive processes, such as attention, learning, and memory formation. Ach
is produced by cholinergic neurons, which are concentrated in the basal forebrain and brainstem. In
AD, there is a significant reduction in cholinergic function due to the loss of cholinergic neurons in
the brain. This loss of function is thought to contribute to the cognitive and memory impairments
characteristic of AD. Specifically, the breakdown of Ach is accelerated due to an increase in the
activity of an enzyme called Acetylcholinesterase (AChE).>® It's an enzyme that breaks down ACh
into acetyl and choline as a result, there is a decrease in the level of Ach in the brain, leading to

cognitive and memory deficits.

Acetylcholinesterase inhibitors (AChEIs) are a class of drugs that are commonly used to treat the

cognitive and memory impairments associated with AD. These drugs are Donepezil, Rivastigmine,
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Galantamine, Tacrine, and memantine, which are market available, ondansetron is a highly effective
cholinesterase inhibitor and other novel related AChEIs,”®° including Eptastigmine, Phenserine,
Huperzine A, Dimebon, Pozanicline (ABT-089), RG3487, GSK239512, Varenicline, ABT-288,
Nelonicline (ABT-126), Encenicline (EVP-6124), S 38093 LadostigilHemitartrate, GLN-1062, and
SUVN-G3031 work by inhibiting the activity of AChE, which allows on the controlled breakdown of
Ach and therefore increases the ACh concentrations in the brain. 101
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Figure 3.1 Mechanisms of action Acetylcholinesterase inhibitors in AD.

The X-ray crystal structure of AChE of the protein id: 1IEVE'>! was crystallized with Donepezil and
was retrieved from the protein data bank (PDB). In which the active site of amino acids are Tyrosine
70 (Try70), Asparticacid 72 (Asp72), Tryptophan 84(Trp84), Glycine 118(Gly118), Glycine
119(Gly119), Tyrosinel21(Try121), Tyrosine 130(Try130), Serine 200(Ser200), Alanine
201(Ala201), Tryptophan 279(Trp279), Phenylalanine 288(Phe288), Phenylalanine290(Phe290),
Phenylalanine 330(Phe 330), Phenylalanine 331(Phe 331), Tyrosine 334(Try334), Histidine(His440)

in the torpedo californica acetylcholinesterase (TCAhE).

Numerous computational research methods have been documented regarding AChElIs, focusing on the
substances involved. Through molecular docking studies, it has been predicted that the interactions
between the protein and ligand complex exhibit robust binding activity. The protein and ligand

complex suggest high binding activity of the compounds such as Flurbiprofen, Isoniazide, 14
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Spirooxindole,’® Thiazole-related compounds,'® Pyrimidine, Oxadiazole!’” and Pyridine derivatives'®
were employed for the AChE inhibitory activity, and Table 3.1 includes to some of the previous

literature, we focused on discusses the methodology and providing a summary.

Table 3.1 Overview of previous literature and focus on methodology and summary.

Methodology

Summary

Small-molecule,
therapeutics,
biologics

Molecular
docking, MD
simulations, and
QSAR
approaches

Crystal structure,
molecular
docking and
simulation,
tacrine.

Donepezil,
computational
Studies, and
biological
Validation

E_
pharmacophore-
based virtual
screening,
molecular
docking, and MD
simulations

Molecular
docking, MD
simulations

Fragment-based
drug design,

This article explores various aspects of AD and drug design, focusing on
dementia, the blood-brain barrier, small-molecule therapeutics, biologics,
neurodegenerative disease, and neuroinflammation. It provides valuable
insights into the challenges and advancements in developing drugs for AD and
sheds light on the underlying mechanisms of this neurodegenerative condition.®

Computational modeling has emerged as a powerful tool for designing multi-
target-directed inhibitors. This approach simultaneously targets multiple
pathological factors in the disease, potentially enhancing therapeutic efficacy.
Researchers can use computational techniques to develop innovative drug
candidates with improved potency and selectivity, offering promising prospects
in the fight against AD.%°

The newly determined crystal structure of AChE in complex with inhibitors
offers valuable insights, aiding the development of novel drugs with enhanced
efficacy. The findings open doors for more targeted and effective drug design
strategies, potentially leading to improved treatments for various conditions.?

Donepezil-like compound(D:) being investigated for AD treatment shares
similarities with the FDA-approved drug donepezil. D; has shown promising
effects in elevating acetylcholine levels and reducing AP plaques in
Caenorhabditis elegans, surpassing the functionality of Donepezil at similar
doses. Moreover, D: exhibits an agonistic effect on the a 7 nicotinic
acetylcholine receptor, making it a potentially beneficial AD treatment with its
dual-binding site characteristics and additional impact on neurotransmission.??

New therapeutic candidates with potential value in treating conditions related to
AChE dysfunction. A combination of virtual screening and molecular dynamics
simulations is employed. Using computational methods, scientists aim to
pinpoint promising compounds that can be further investigated and developed,
ultimately advancing the field of drug discovery and paving the way for
potential treatments targeting an AChE.?

Fragment-based design and virtual screening to identify a promising new
acetylcholinesterase  inhibitor. This innovative approach combines
computational methods and molecular modeling to efficiently discover potential
drug candidates, paving the way for developing more effective treatments for
AD.%#

Innovative research focuses on creating activity rules and designing chemical
fragments to facilitate the virtual discovery of novel dual inhibitors targeting
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molecular
docking and dual-
target inhibitor

Peptides and
proteins,
Inhibitors

Docking studies,
MD simulations,
and MM-GBSA
calculations

Virtual screening,
molecular
docking, and MD
simulations

Molecular
docking, MD
simulations, and
DFT calculations

Natural
compounds,
molecular
docking, MD
simulations, and
pharmacokinetic
predictions

Pharmacophore
studies,
molecular
docking, MD
simulations

Synthesis,
molecular
docking, and
biological
Evaluations

both AChE and BACEL enzymes, with the aim of combatting AD. This study
aims to contribute to developing effective therapies against this debilitating
neurodegenerative disorder.

A novel approach utilizing virtual screening and binding free energy
calculations is employed to identify potential AChE inhibitors. This study aims
to discover new compounds that can effectively inhibit AChE, a key enzyme
involved in neurodegenerative disorders, by using computational techniques.?

This study utilizes molecular dynamics and structure-based virtual screening to
identify potential natural compounds that can modulate the signaling pathway.
By targeting this pathway, the identified compounds hold promise as
therapeutics for AD, providing new avenues for developing effective
treatments.?’

New acetylcholinesterase inhibitors are achieved through virtual screening, in
vitro experiments, and molecular dynamics simulations. This study presents a
novel approach to discovering potential therapeutic agents that target
acetylcholinesterase, offering promising avenues for further exploration in the
field of drug discovery.?®

This study aims to identify highly effective acetylcholinesterase inhibitors
derived from plants with the potential to be used in treating Alzheimer's disease.
By employing advanced algorithms, the research seeks to discover promising
candidates for further investigation and development of therapeutic strategies.?®

Exploring the potential of natural compounds: computational screening for
acetylcholinesterase inhibition. This study employs biocomputational
techniques to evaluate the effectiveness of various natural compounds in
targeting acetylcholinesterase, a key enzyme implicated in neurological
disorders. Screening these compounds can identify potential candidates for
further investigation and drug development.*

A novel approach combining pharmacophore modeling, virtual screening,
docking simulation, and bioassay has identified potent acetylcholinesterase
inhibitors. This discovery presents new candidates with promising potential in
treating neurological disorders.!

In this study, researchers aimed to develop new thiazole-based derivatives as
potential AChE inhibitors. A series of compounds were synthesized and
evaluated for their inhibitory activity against AChE, an enzyme implicated in
AD. Promising results were obtained, indicating that these thiazole derivatives
have the potential to be effective AChE inhibitors, which could contribute to the
development of novel treatments for AD.%?

The present chapter shows a novel design strategy for designing drug-like molecules by applying an
AChE target. The methodology section explained the binding site analysis using MESP and LORD
designer theory and implementation. The results section gives a detailed discussion about
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physicochemical and ADME properties and MD simulation results for LORD 25 potential drug-like

molecules by LORD with concluding remarks.
3.2 Result and Discussion
3.2.1 MESP Calculation for Identification of Binding Sites in Alzheimer's Target Protein

The whole protein of AChE is subdivided into 27 substrate structures sequentially, and each substrate
structure contains 20 amino acids, as shown in Figure 3.2. A uniform grid spacing of 0.3 A is
maintained in all MESP calculations. The MESP evaluations are done for all substrate structures with

the same cubic box using cubegen as implemented in the g09 package.
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Figure 3.2 (A) MESP distribution of the AChE and (B) Substrate structures.

Figure 3.2 depicts MESP isosurfaces, such as dark blue lobes, representing most negative regions
with function value —0.20 a.u. of the protein. The red color distribution shows another MESP

isosurface with —0.01 a.u. for the complete protein. The total MESP distribution can be seen in Figure
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3.2.2 Design of Potential Drug-Likeness Molecules

LORD molecular designer designed 25 Potential drug-likeness molecules and compared them to the

market-available donepezil drug.
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Figure 3.3 The structure of the twenty-five drug-likeness predicted molecules and the reference

Donepezil (R1) molecules.

3.2 with two layers. The most negative regions, such as inner blue color lobes, are further investigated
by surface cavity analysis as highlighted by black circles with notations C1-C4. MESP function values
are projected onto the plane to trace the location of the potential binding site. Scanning MESP function
values within the plane resulted in surface cavities, as shown in Figure 3.2. The surface cavities were
assumed to be the most potential binding sites. The surface cavities provide an understanding of the
distribution of MESP function values by following the gradients as color changes, as shown in Figure

3.2. The color distribution indicates that drug molecules can swallow into the cavity by following the
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gradient of charge distribution

. This analysis provided the four best potential binding sites for further
studies.
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Figure 3.4 Stereo-isomers of D1, Ds, and R; drug-likeness molecules and their interactions with the target
protein.
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3.2.3 Interactions of Stereo-Isomers with Target Molecules

Stereochemistry is crucial to the development of pharmaceuticals, given that many drugs actions
depend on their three-dimensional structure. Drug designers can choose the most active and secure
stereoisomer or create a drug that can specifically target a certain stereoisomer by studying the
stereochemistry of a drug molecule and the mechanism of its action. Dia, D1g, D3a, D3g, and Ri1a, R
are the enantiomers that reflect the absolute stereochemistry of the stereocentres in 3D structures using
ChemDraw 3D software. Stereoisomers were investigated for their interaction with Site-4 (Cs4) of the

acetylcholinesterase of the target protein.

During docking, the protein's active amino acids interact with the ligand creating hydrogen bonds,
electrostatic interactions, and van der Waals interactions. These interactions stabilize the protein-
ligand combination. These findings provided evidence for the impact of the stereo centers on the
molecular docking energy (BE), corrected binding energy (CBE), protein-ligand complex and the

nature of interactions.

In this Dia BE of —14.0 kcal/mol, CBE was —11.0 kcal/mol, and hexahydro-4H-furo[2,3-b] pyran
fragments were more significant than Dig. The protein and ligand complex can develop two P-alkyl
bonding interactions with TRP A: 279 and one hydrogen bond with ARG A: 289 amino acid residues.
Given that Dig have BE and CBE are lower than those of Dia (—13.5 and —10.6 kcal/mol,
respectively), it must have a lower binding energy. In the complex, Dsa interacts with the Pi-sigma
bonding of TRP A:279 and contains fragments of 1-methylnaphthalene with BE —12.5 kcal/mol and
CBE —10.5 kcal/mol. D3B has a lower binding energy than D3A, with a BE of —10.0 kcal/mol and
a CBE of —8.6 kcal/mol, respectively, and both R1a, Ris have BE -10.8 kcal/mol, CBE —8.1 kcal/mol.

In Figure 6, D1a, D3a, and Ria are stereoisomers of drug-likeness molecules with more incredible
binding energy than Dig, D3g, and Rig stereoisomers. We were seen to be stabilized by the minimal
distance between amino acid residues and the protein-ligand nature of their interaction. The molecular
docking results are significantly influenced by stereochemistry, and accurate ligand binding process
and affinity predictions depend on accurate ligand and protein structure modeling. In this study, we
found that the interaction between D1, and D3 stereoisomers is better than that of the drug Donepezil

(R1) due to the higher binding energies and shorter minimal distance between amino acid residues.
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3.2.4 Protein-Ligand Complex and their Interaction Studies of the Top Four Drug-Likeness
Molecules at Selected Four Binding Sites

To visualize the target binding site, we have provided the protein-ligand complex for all four target
binding sites in Figure 3.5 (left column). On the other side, we have shown the BE and CBE of the top
four (D1, D2, D3.D4) LORD-generated molecules and reference molecules of the Donepezil (R1) for
each site (C1 to C4) from top to bottom in the right column of Figure 3.5 CBE values for LORD's top
four molecules are much lower in energy than the reference molecules shown in the green and blue
color bar plot in all the sites. LORD molecules dominate the present existing market drugs in all four

sites.
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Figure 3.5 Protein-ligand complex and their interaction studies of the top five drug-likeness molecules at
selected five binding sites. (A) MESP suggested site-1(C1), (B) MESP suggested site-2 (C>), (C) MESP
suggested cavity site-3 (Cs), and (D) Experimentally reported site-4 (Ca).
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3.2.5 Binding sites analysis from protein-ligand complex

MESP cavity analysis has explored the interactions between proteins and their ligands at each of the
four sites (C1-Cs). The 25 potential drug-likeness molecules can bind to three different protein cavities
based on the MESP strategy conducted on it and compared with the experimentally suggested active
binding cavity or site. An active cavity is a particular type of cavity present in the protein structure

that is crucial to the activity of the protein.

The common active amino acid residues are Glycine A 32 (GLY A:32), Glutamic acid A:37 (GLU
A:37), Proline A:38 (PRO A:38), Valine A:40 (VAL A:40), Glycine A 41(GLY A:41), Lysine A:51
(LSY A:51), Lysine A:52 (LSY A:52), Proline (PRO 53), Trptophan A:54 (TRP A:54), Serine A:55
(SER A:55), Tryptophan A:58 (TRP A: 58), Proline A:64 (PRO A:64), Asparagine A:65 (ASN A: 65),
Serine (SER A:91), Asparagine (ASP A: 93), Tryptophan A:96 (TYR A:96) found in Site-1(C1)

Figure 3.6 Acetylcholinesterase enzyme and four cavities, Cy, Cz, Cs, Ca4
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It demonstrated decreased binding energy compared to the other three sites. The residues of amino acids were
found at Site-2 (C,). It is shown in Serine A:12,(SER A:12), Phenylalanine A:35 (PHE A:35), arginine (ARG
A:47), Proline A:48 (PRO A:48), Lysine A:51 (LYS A:51), Proline A:53 (PRO A:53), Leucine A:171 (LEU
A:171), Arginine A:174 (ARG A:174), Glutamic acid A:178 (GLN A:178), Trptophan (TRP A:179),
Aparaginine A:230 (ASN A: 230), Cysteine A:231 (CYS A: 231), Alanine A:234 (ALA A:234), Valine A:236
(VAL A:236), Serine A:237 (SER A: 237), Valine A:238 (VAL A:238), Isolecuine A:296 (ILE A:296),
Asparagine ASP:297 (ASP 297), Glycine A:298 (GLY A: 298), Proline A:302 (PRO A: 302), Threonine A:303
(THR A: 303), Serine A:304 (SER A: 304), Leucine A:305 (LEU A: 305), Glutamine A:306 (GLU A: 306),
Histidine A:362 ( HIS A: 362), Histidine A:398 (HIS A: 398), Proline A:403 (PRO A: 403) that site-4(C,) and
site-3(Cs) have more incredible binding energy than site-2 (Cz), while site-1(C1) has less binding energy than
site-2(C).

We noticed that the active amino acids at the site-3 (Cz) and experimentally reported site-4 (Ca)
correspond, including Aspartic acid A:72, (ASP A:72), Trptophan A:84 (TRP A:84), Asparagine
A:85 (ASN A:85), Proline A:86 (PRO A:86), Glycine A:117 (GLY A:117), Glycine A:118 (GLY
A:118), Glycine A:119 (GLY A:119), Typtophan A:121 (TYR A:121), Serine A:122 (SER A:122),
Tyrptophan A:130 (TYR A:130), Glutamine A:199 (GLU A:199), Serine A:200 (SER A: 200),
Trptophan A:279 (TRP A:279), Leucine A:282 (LEU A:282), Serine A:286 (SER A:286), Isolecuine
A:287 (ILE A:287), Phenylalanine A:288 (PHE A:288), Arginine A:289 (ARG A:289), Phenylalanine
A:290 (PHE A:290), Phenylalanine A:330, (PHE A: 330), Phenylalanine A:331 (PHE A:331),
Tyrosine A:334 (TYR A:334), Glycine A:335 (GLY A:335), Histidine A:440 (HIS A: 440), Glycine
A:441 (GLY A:441) are amino acid interaction and shown better binding energy.

To understand the concept of a specific cavity in a protein, one starts by describing the three-
dimensional structure of proteins. The lengthy complex structures known as proteins develop from
chains of amino acids. The specialized folding and twisting of these amino acid indicators create a
particular protein substrate. Suppose the amino acid residues are arranged in certain nooks or cavities
within this structure. In that case, they may interact with the substrate in a certain way or go through

conformational changes with the help of MESP studies.
3.2.6 Cavity-Drug-Likeness Molecules Interaction Matrix

Drug design depends on how proteins and ligands interact, given that numerous drugs modify the
function or signaling of specific proteins by attaching to receptors. Understanding the protein's three-

dimensional structure and locating possible ligand-binding sites are important steps in drug discovery.
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Computer modeling and simulation approaches are frequently utilized to forecast how ligands will
interact with the protein and find ligands that are likely to have powerful and precise binding
interactions. The Donepezil drug and 25 additional compounds with drug-likeness characteristics were
put to docking simulations against the target protein acetylcholinesterase in the study.Here, Figure 3.7
, displays the results of these interactions between the proteins and their associated ligands after
various types of interactions have been recorded. Although van der Waals interactions and other weak
interactions (WI) are also addressed, hydrogen bonds, conventional hydrogen, Pi-Pi, Pi-alkyl, Pi-su
Iphur, and Pi-cation are interactions considered with strong interactions (SI). Hydrogen bonds are
shown as dark green, conventional hydrogen interactions as pine green, non-covalent interactions are
depicted as pink for Pi-Pi interactions, light pink for Pi-alkyl, yellow for Pi-sulphur, red for Pi-cation,
and light green for weak van der Waals interactions respectively.

We analyzed the interactions between the donepezil complex and the active amino acid residues in
different complexes. In R1 complex, we observed 5 strong interactions (S1) and 7 weak interactions
(WI) of active amino acids. Similarly, the D1 complex showed interactions with 11 Sl and 8 WI active
amino acid residues. The D2 complex exhibited interactions with 8 Sl and 13 WI active amino acids,
while the Dz complex showed interactions with 8 SI and 10 WI active amino acids. D4 complex
exhibited interaction with 5 SI and 11 WI active amino acids. In the Ds complex, interactions were
observed with 5 SI and 15 WI active amino acids, while the De complex showed interactions with 4
Sl and 9 WI active amino acids. In the D7 complex, we found interactions with 3 SI and 13 W1 active
amino acids. The Dg complex displayed interactions with 12 SI and 7 W1 active amino acids, while
the Dg complex showed interactions with 5 SI and 11 WI active amino acids. In the D10 complex, we
observed interactions with 3 SI and 8 WI active amino acids, and in the D11 complex, there were
interactions with 8 SI and 6 WI active amino acids. The D1» complex exhibited interactions with 7 S
and 3 W1 active amino acids, while the D13 complex showed interactions with 4 Sl and 12 W1 active
amino acids. In the D14 complex, interactions were observed with 6 SI and 4 W1 active amino acids,
and in the D15 complex, we found interactions with 8 Sl and 7 WI active amino acids. The D1s complex
showed interactions with 8 Sl and 5 WI active amino acids, while the D17 complex exhibited
interactions with 10 SI and 6 WI active amino acids. In the Dig complex, we observed interactions
with 9 Sl and 6 W1 active amino acids, while the D1g complex showed interactions with 5 Sl and 10
W1 active amino acids. The D2o complex displayed interactions with 8 SI and 4 W1 active amino acids.

In the D21 complex, interactions were observed with 6 Sl and 11 WI active amino acids, while the D2,
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complex showed interactions with 11 SI and 6 WI active amino acids. The D23 complex exhibited
interactions with 7 Sl and 8 WI active amino acids, and in the D24 complex, we found interactions with
9 Sl and 7 WI active amino acids. Finally, the D2s complex displayed interactions with 5 Sl and 4 W1

active amino acids.
3.2.7 Physico-Chemical Properties and ADME Properties

To validate twenty-five Potential drug-likeness molecules, we have provided the physic-chemical
properties, such as the Lipinski rule of five in Figure 3.8, for all twenty-five molecules. All the
candidate molecules show molecular weight ranging from 284.23 to 484.63; hence, less than 500
Daltons or g/molten Partition coefficient ranges between 2.64-4.97which is less than 5, and No. of
HBD is between 0-3, and No.of HBA is between 1-5. The molecular polar surface area ranges between
26.17-73.36, is less than 140 angstroms, and the total number of the rotatable bond are ranged between
1-8, is less than 10. Figure 3.8 shows that most molecules followed the Lipinski rule of five. Hence,

they can be studied for further analysis.
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Figure 3.8 Physico-chemical properties of 25 drug-likeness molecules (A) Molecular weight (g/mol), (B)
Hydrogen bond acceptor count, (C) Hydrogen bond donor count, (D) Partition coefficient (Logp), (E) Total

polar surface area, and (F) Rotatable bond count.

ADME properties are generated using the SWISS ADME website to succeed with twenty-five
molecules. ADME properties are most effective in predicting human pharmacokinetic properties to be
successful in clinical trials. The top five potential molecules and reference molecule(R1) have shown
in Table 3.2, and ADME offers high gastrointestinal absorption (GlI). Four of them have a permeability
of the blood-brain barrier (BBB). The molecules determined for the Cytochrome P450 isomers are

represented in Table 3.2.

Table 3.2 ADME / Pharmacokinetic proprieties of the site-wise selected molecules in gastrointestinal
absorption. ®Blood brain barrier permeant. °P-gp substrate. ‘Cytochrome P450 family 1 subfamily A member2.
eCytochrome P450 family 2 subfamily ¢ member19. ‘Cytochrome P450 family 2 subfamily C member 9.
9Cytochrome P450 family 2 subfamily D member 6. "Cytochrome P450 family 3 subfamily A member4. 'Skin

permeation in cm.

S.NO Gl BBB P- CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 LogK,'
abs®  permeant” gpsubstrate Inhibitor® Inhibitor® Inhibitor® Inhibitor®  Inhibitor"

D1 High Yes No No No No No Yes -5.64
D2 High Yes Yes No No No Yes Yes -4.38
D3 High Yes Yes No No No Yes No -5.79
D4 High Yes Yes No No No Yes No -4.5

R1 High Yes Yes No No No Yes Yes -5.58

3.2.8 Correlation of Potential Drug-Likeness Molecules vs Site Wise Binding Energy

The CBE values for twenty-five molecules are displayed at each location, as indicated by Figure 3.9.
The range of CBE is -4.0 to -10.6 kcal /mol for all four sites of the acetylcholinesterase. In this figure
3.9A, the X-axis represents the number of drug-like molecules, while the Y-axis represents the binding
energy. In this Figure 3.9B, the X-axis represents the number of binding sites or cavities, while the Y-
axis represents the binding energy. Figures 3.9 A and 3.9 B show that blue is the primary interaction

site with the experimental site for all the drug-like molecules. CBE analysis showed that Cz and C4
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contained more potential for protein and ligand complex binding energy than C; and Co, as shown in
Figure 3.9. The blue line of C4 (Experimental reported active site) represents binding energy value -
6.8 to 10.6 kcal/mol, and the black line C; was shown -3.5 to -6.2 kcal/mol binding energy. The red
line for C, showed -4.1 to -7.0 kcal/ mol, and the green line for C3 was -6.7 to -10.6 kcal/mol. Two

sites (Cs, Cs4) are better than the others (C1, C2) based on their binding energies, as shown in Figure

3.9.
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Figure 3.9 Corrected binding energy (CBE) trend curves for LORD 25 molecules at all four sites. (A) The X-
axis is 25 drug-likeness molecules (D1 to Ds), and Y-axis is CBE values and (B) The X-axis is MESP-suggested
sites (Cy, Cy, Cs), and Y-axis is CBE values.

3.2.9 Molecular Dynamics (MD) Simulations

Acetylcholinesterase enzyme receptor with top four drug-like molecules and donepezil drug molecule
is further studied by MD simulations using GROMACS 5.1.2 package. To compare the stability, we
have also conducted MD simulations for Donepezil. The MD simulations were performed using the
CHARMM force field to assess the energy evaluations of the protein. The ligand topology was also
determined using the CHARMM General Force Field (CGenFF). This combination of force fields
allowed for comprehensive and accurate evaluations of both the protein and ligand components during
the MD simulations.>® After the protein-ligand complex was successfully docked, it was immersed in
a cubic box using the TIP3 water model for solvation. An appropriate number of chlorine ions (CL-)

were added to achieve a neutral charge, followed by energy minimization using the steepest descent
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approach with 10,000 steps. The NVT ensemble was utilized to maintain a temperature of 298 K
throughout the simulation, while the NPT ensemble, with a pressure range of 1.0 bar to 250 bars, was
employed to simulate the ligand-protein complex. The Particle Mesh Ewald and LINCS algorithms
were utilized for short-range electrostatic interactions. A Van der Waals distance cut-off of 10 A was
applied to constrain all bonds. The stability of the system was maintained through simulations lasting

100 ns. The RMSD plots are shown in Figure 3.10 for four top drug molecules with Donepezil.
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Figure 3.10 MD simulation studies of the RMSD for the top four drug-likeness molecules (D1, D,, D3, D4) and

Reference (Ry).

The interaction between the AChE target and four drug-like molecules, along with Donepezil, was
compared. To analyze the dynamic behavior, stability of interaction, and structural changes in the
complexes, RMSD calculations were employed. Molecular dynamics (MD) simulations of AChE were
performed for three ligand molecules over a duration of 100 ns. Molecular alignment was assessed by
superimposing the average structure at the start of the simulation (0 ns) with the output structures at
100 ns. The stability of the protein-ligand complexes for the four-candidate drug-like molecules was
evaluated based on the RMSD and RMSF values obtained from the MD simulations. Figure 3.10
illustrates the tight binding of these four candidate ligands within site 1 (C1) of AChE, as indicated by
their RMSD values.
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3.2.10 Free Energy Calculations

The protein-ligand complexes binding energy, or binding energy (BE) as it is more often known, was
determined using the g-mmpbsa software. The molecular mechanics (MM) force field is used to
calculate the vacuum potential energy resulting from different interactions, such as bound and unbound
forces. The MM force field uses the Lennard-Jones potential function to determine the van der Waals
(Evdw) energy contribution and the Coulomb potential function to determine the electrostatic energy
contribution. To determine the polar contribution and calculate the free energy of solvation, the
Poisson-Boltzmann equation's solution is also used. In the case of non-polar contribution, it is typically
believed that the solvent-accessible surface area (SASA) and the non-electrostatic solvation energy
have a direct correlation. The non-polar energy term includes the van der Waals interaction and the
attractive and repellent forces produced by cavities created between the solute and solvent. Snapshots
of the equilibrated area from the molecular dynamics (MD) trajectory are taken during the binding
energy (BE) computations. The computations are done using the default settings supplied by Kumari

et al. using the MmPbsaDecomp.py script, which is part of the g-mmpbsa package.

For the five protein-ligand complexes that were chosen, calculations of binding energy (BE) using the
MM-PBSA program were made. The top four drug-likeness as D1, D2, D3, Ds, and Donepezil's
reference (R1) molecule all had BE values between 0-10 ns, 30-40 ns, 60-70 ns, and 90-100 ns. The
BE distribution calculation revealed that it significantly contributed to the overall BE, as shown in
Table 3.3.

Table 3.3 Free energy calculation of the top four drug-likeness (D:-D.) molecules and Donepezil (R1).

Time Complex free energies (kJ/mol)

intervals

(ns) D1 D; Ds D4 R:

0-25 —134.4 —144.3 —-113.4 —-110.9 —-111.1
+/-15.0 +/-17.3 +/—-15.8 +/—-19.2 +/-16.2

25-50 —134.5 —-120.7 —115.2 —-112.7 —-122.6
+/—13.5 +/-12.8 +/-16.6 +/—14.7 +/-11.5

50-75 —136.2 —145.8 —-114.1 —-117 .8 —116.7
+/-12.3 +/-17.3 +/—-16.2 +/—-12.5 +/-16.1

75-100 —143.5 —119.0 —124.7 —118.9 —-121.5
+/—12.7 +/-10.7 +/—-12.9 +/—14.2 +/—-11.7
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3.3 Conclusions

The present research introduces an innovative approach to designing drug-like molecules that target
proteins at their binding sites. The current study provides a novel method for designing drug-like
compounds targeting target proteins on-site. The molecular structure is built through LSTM-suggested
fragment addition. Due to LORD's ability to include physicochemical features through corrected
binding energy training, the probability of unnecessary molecule generations is extremely rare. The
LORD uses a reverse engineering technique, which involves learning about the environment of the
target binding site and then constructing molecules. Hence, the produced molecule has an excellent
possibility of becoming a drug-like molecule. LORD has the advantage of being computationally
cheap due to the platform technique used while scanning the MESP cavities, and it will automatically
find target binding sites. LORD is smart enough to build potential molecules based on the target site's
environment. Thus, the molecules generated will be appropriate for that site. This work investigates
LORD extensively in this study on the Acetylcholinesterase (AChE), which causes AD. We
discovered four putative binding sites, one of which was an experimentally active site. Four potential
binding sites are utilized to build molecules by LORD, producing 25 potential drug candidates. The
experimentally active site, when compared to the other sites in CBE values, is the most dominant of
the four binding sites. LORD 25 molecules have good Corrected binding energy (CBE) (kcal/mol),
AutoDockvina binding energy (BE), physicochemical, and ADME qualities when compared to
commercially available medications such as Donepezil. In addition, MD simulations of the top-four
potential drug-like compounds were investigated, and it was discovered that these are more stable in

protein during long simulation runs than donepezil drugs.
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CHAPTER 4

Designing of Potential Drug-Likeness Molecules for
COVID-19
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4.1 Introduction to COVID-19

The recently identified RNA virus coronavirus disease-2019 (COVID-19) or severe acute
respiratory syndrome coronavirus Il (SARS-CoV-2) represents a significant health risk to the
general public.t The most common symptoms of the coronavirus are fever, dry cough, sore throat,
headache, loss of taste, and severe symptoms such as difficulty breathing and chest pain, which
sometimes leads to pneumonia.? COVID-19-infected people show mild to moderate illness.
SARS-CoV-2 belongs to the Coronaviridae family of Coronaviruses are enveloped, positive-
sense, single-stranded ribonucleic acids (RNA) genomes like MERS-CoV and SARS-CoV.3 The
novel coronavirus genome consists of many essential proteins such as nucleocapsid protein, Spike
protein (S), and Envelope protein (E), Membrane protein (M). These proteins showed crucial roles
in the gene expression and replication process of the coronavirus that will lead to the breaking

down of the polyproteins in the human genome.*

The 3C-like protease (3CL-pro) is a different designation of the SARS-CoV-2 virus's main
protease (MP). By using replicase enzymes, this protease is in charge of breaking down
polyproteins. MP™ is a dimeric protein comprising the protomers A and B, which are two identical
parts. Each protomer is made up of three different domains: domain I, which is made up of residues
8to 101, domain Il (residues 102 to 184) and has an antiparallel beta-barrel structure, and domain
I11 (residues 201 to 303) and contains a lot of alpha helices. A flexible loop region spanning
residues 185 to 200 connects domain Il to MP™. Catalytic dyads, made up of Cys145 and His41,
are essential to the activity of enzyme. In the space between domains I and Il, MP™ substrate-
binding site is found. The crystal structure of the main protease with inhibitor N3 complex is PDB
ID: 6LU7.° Fragment molecular orbitals (FMO) method-based interaction analysis on Moro by
splitting into five fragments indicates that the essential amino acid residues are His41, His163,
His164, and Glu166 due to hydrogen bond interactions.® MP™ is an essential drug target due to its
indispensable role in viral replication of the life cycle and transcription virus inside the host. And
hence, one can develop effective antiviral drugs for treating COVID-19 infection.”® CADD plays
a significant role in the drug discovery journey and holds particular significance in combating the
COVID-19 pandemic.®*°

Recent literature studies indicate that drug repurposing processes are an essential strategy to
identify drugs by applying three types of proteins such as main protease (MP™), Papain-like-
protease (PLP™), RNA-dependent polymerase (RdRp) or Nucleotide inhibitor to combat COVID-
19 pandemic.!!+12:13 The computational studies on existing antiviral medicines ** such as
Remdesivir, Hydroxyl ethylamine derivative Favipiravir, Ritonavir, Lopinavir, Oseltamivir,
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Ribavir, Galidesivir, and Riamilovir are promising to combat COVID-19.'%Also, there are other

potential medicines such as Chloroquine, hydroxyl Chloroquine (HCQ), Mycopheacidsc acids

(MPA), Premirolast, isoniazid, and Eriodictyol, Azithromycin. Telaprevir and paritaprevir are

studied by covalent interactions, and asunaprevir, simeprevir, and paritaprevir are studied by

noncovalent interactions, and Hydroxyl ethylamine derivatives in the treatment for COVID-19.1

Previous a selection of relevant literature, while our focus in this section is to discuss the

methodology and offer a concise summary in Table 4.1.

Figure 4.1 Mechanism action of viral replication.

Table 4.1 Summary of literature on methodology.

Methodology

Summary

X-ray
crystallography

COVID-19,
molecular
docking, virtual
screening,
machine
learning, and
molecular
dynamics
simulations.

X-ray
crystallography,

The crystal structure of SARS-CoV-2 MP provides crucial insights into the design
of potent a-ketoamide inhibitors, facilitating the development of enhanced
antiviral medications to combat COVID-19. By leveraging these important details,
researchers can devise more effective strategies to target the viral protease,
potentially leading to improved treatment options against the disease.!’

This critical overview assesses the computational approaches employed for
COVID-19 drug discovery. The study identifies key techniques such as molecular
docking, virtual screening, machine learning, and molecular dynamics simulations
through an extensive literature review. The strengths and limitations of these
approaches are evaluated, shedding light on their contributions to the search for
effective treatments for COVID-19.18

The recent breakthrough in COVID-19 research has unveiled the structure of the
MP® enzyme, a key target for potential drug development against the virus.
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virtual screening
and biochemical
assays

SARS-CoV-2
virus, machine
learning,

Pharmacology

Molecular
docking and MD
simulations

X-ray
crystallography
and molecular
modeling

Virtual
screening and
molecular
docking

Virtual
screening,
molecular
docking and MD
simulations

Structure-based
virtual screening
and MD
simulations

Computational
and
experimental
studies

In silico
screening and
MD simulations

Molecular
docking and MD
simulations

Alongside this discovery, scientists have also identified inhibitors that could
effectively target and block the activity of the MP© enzyme.®

This review of 17,000 studies highlighted the significant role of computational
approaches in combating COVID-19. The findings demonstrated that Al-driven
methodologies have contributed to various aspects, including epidemiological
modeling, drug discovery, vaccine development, and patient care. By leveraging
computational tools and techniques, researchers have been able to accelerate the
understanding of the virus, facilitate data-driven decision-making, and enhance
public health strategies to mitigate the impact of the pandemic effectively.?

Virtual screening and structural optimization techniques have successfully
pinpointed potential inhibitors for the MP™ enzyme. This breakthrough discovery
offers a promising pathway toward creating highly effective antiviral medications.
Researchers have identified compounds that exhibit potent inhibitory effects on
Mpro by utilizing computational methods and refining the molecular structure.?

Establishing the structural foundation for developing inhibitors against the MP™
enzyme of SARS-CoV has provided valuable insights, facilitating the progress in
drug development. This advancement lays the groundwork for designing effective
inhibitors to target the MP™ enzyme, potentially contributing to developing
therapeutic interventions against SARS-CoV.??

Promising novel small-molecule inhibitors have been identified to target the
SARS-CoV-2 MP° enzyme, providing potential candidates for developing
effective antiviral therapies against COVID-19. These inhibitors hold promise in
combating the virus by inhibiting the activity of the MP™ enzyme, which plays a
crucial role in viral replication.?

Virtual screening and molecular dynamics simulations have been employed to
identify potential inhibitors for the MP® enzyme in SARS-CoV-2. This
breakthrough offers hope for developing powerful antiviral treatments, instilling
optimism in the ongoing battle against the COVID-19 pandemic.?*

Promising antiviral drug candidates have emerged by identifying potent MP®
inhibitors possessing favorable drug-likeness characteristics. These findings
showecase their potential as effective agents in developing antiviral medications.
Their favorable properties make them worthy contenders for further investigation
and potential use in combating viral infections.?®

Boceprevir, GC-376, and calpain inhibitors Il and XII exhibit promising antiviral
activity by specifically targeting the main protease of SARS-CoV-2, thereby
impeding viral replication. These compounds hold significant potential as
therapeutic options for combating the virus, offering valuable strategies for
antiviral intervention. By inhibiting the main viral protease, they disrupt essential
viral processes and may contribute to the development of effective antiviral
treatments.?

The identification of FDA-approved drugs as potential inhibitors for the SARS-
CoV-2 MP™ enzyme opens up possibilities for repurposing them as treatments for
COVID-19. These drugs exhibit inhibitory properties, indicating their potential to
target and hinder the activity of the MP™ enzyme associated with the virus. This
discovery provides an avenue for exploring existing medications in the fight
against COVID-19.#

New possibilities for COVID-19 treatment have emerged with the identification
of potential inhibitors that target the MP™ enzyme. These inhibitors have been
found within FDA-approved drugs, providing opportunities to repurpose existing
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Fragment
molecular orbital
calculations and
MD simulations

X-ray
crystallography
and SBDD

Virtual
screening and
MD simulations

X-ray
crystallography,
fragment
screening, and
medicinal
chemistry

N-heterocyclic
compounds,
DFT
calculations, and
molecular
docking

Insilico antiviral
screening,
molecular
docking, and
MD simulations

medications. This discovery paves the way for exploring alternative therapeutic
options for COVID-19 by leveraging the safety profiles and availability of already
approved drugs.?®

Quantum mechanics/molecular mechanics simulations were employed to assess
the effectiveness of MP™ inhibitors, yielding crucial insights into their binding
mechanisms. These simulations offered valuable contributions to developing new
drugs, as they shed light on the interactions between the inhibitors and their target,
paving the way for enhanced drug design and optimization.?

The constant evolution and diversity of SARS-CoV-2 MP™ inhibitors pose
significant challenges in antiviral drug design. Furthermore, the emergence of drug
resistance further complicates the development of effective treatments. It is
imperative to devise new strategies and approaches to combat these challenges and
create novel antiviral drugs to effectively target the virus and overcome resistance
mechanisms.*

Novel phytochemicals derived from medicinal plants have been discovered
through molecular docking and deep learning techniques, showcasing their
promising inhibitory effects against the SARS-CoV-2 MP™ protein.3!

Researchers are making significant strides in developing potent noncovalent
inhibitors targeting the SARS-CoV-2 MP® protein. These inhibitors have
demonstrated promising efficacy in preclinical studies, effectively blocking the
activity of the viral protease and impeding viral replication. This approach offers
a potential avenue for developing effective antiviral therapies against COVID-19
without relying on covalent binding mechanisms.=2

The study employed molecular docking and DFT calculations to evaluate the
binding affinity and interaction between the N-heterocycles and viral proteins. The
aim was to predict their antiviral activity and identify key structural features
contributing to their effectiveness.®

The study utilized computational techniques to examine the anti-SARS-CoV-2
activity of chloroguine and its analogy. Additionally, the researchers performed a
virtual screening of main protease inhibitors to identify potential compounds with
inhibitory effects on the virus and highlight promising compounds that could be
further studied for their efficacy against SARS-CoV-2.%

4.2 Results and Discussion

4..2.1 MESP Calculation for Identification Binding Sites MP™ in COVID-19 Target

Figure 4.2 shows the whole MESP distribution with two layers. Surface cavity analysis explores

the most negative areas, such as the inner blue color lobes marked in black circles with notations

C1-C5. MESP function values are projected onto the plane to pinpoint the precise location of the

possible binding site. The scanning MESP function values inside the plane produced surface

cavities.
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Figure 4.2 Substrate structures (A) and (B) MESP distribution of the MP™ target protein.

The surface cavities were expected to have the most significant number of possible binding sites.
As illustrated in Figure 4.2, the surface cavities help to comprehend the distribution of MESP
function values by tracking the gradients as the color changes. The inner and outer circles represent
the two negative MESP function isosurfaces. The color distribution suggests that drug molecules
can be ingested into the cavity by following the charge distribution gradient. This analysis

identified the top five probable binding sites for future investigation.
4.2.2 Design of Potential Candidate Molecules

The chapter contains 50 potential candidates developed utilizing the LORD method and compared

to Remdesivir (R1), a presently available drug in the market.
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Figure 4.3 Fifty potential candidate drug-likeness molecule structures.
4.2.3 Stereochemistry and Protein-Ligand Complex Interaction Studies

The stereochemistry of six stereoisomers, Dia, Dis, D2a, D2s, and Ria, Ris, as well as their
interactions with Site-5 (Cs) of the MP™ target protein. The enantiomers were visualized in 3D
structures using Chemdraw 3D software to demonstrate their absolute stereochemistry. The
investigation examined the impact of stereochemistry on the docking energy between
stereoisomers and the target protein. Specifically, the study focused on analyzing how different
stereo centers influenced the docking process. The protein's active amino acids create a variety of
interactions with the ligand, including hydrogen bonds, electrostatic interactions, and van der
Waals contacts, the protein-ligand combinations are stabilized by these interactions.
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Figure 4.4 Stereochemistry and its Role in D1, D2, Ri drug-likeness molecules and their
interactions.

D1a showed a higher BE of -11.0 kcal/mol and a higher CBE of —7.5 kcal/mol than D1g (BE=—9.9
kcal/mol and CBE=—6.4 kcal/mol). D1a and the protein complex generated one P-sigma bonding
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contact with MET 49 and one hydrogen bonding connection with ASN 142 amino acid residues
with phenol. D1a also has more substantial 1H-pyrazolo[3,4-d] pyrimidine fragments than D1g.
D2a also had a greater BE= —10.6 kcal/mol and CBE= —7.4 kcal/mol than D2s (BE=—9.2
kcal/mol and CBE=—6.2 kcal/mol), and it interacted with the Pi-sigma bonding of MET 49.
Additionally, Ria had a BE of —10.8 kcal/mol, a CBE of —8.1 kcal/mol, and fragments of
pyrrolo[2,1-f] [1,2,4] triazine-4-amine. R1a and protein complex interacted with GLU 166 amino
acid residue via one Pi-sigma bonding and one carbon-hydrogen bonding interaction, making it
more significant than Rig (BE=—7.8 kcal/mol and CBE=—4.3 kcal/mol).

The 3D chemdraw software to visualize the stereoisomers and observed that Dia, D2a, and Ria
stereoisomers had higher BE than D1g, D2g, and R1g stereoisomers. The minimal distance between
amino acid residues and the protein-ligand nature of their interaction influenced the complexes'
stability. The study concluded that the stereochemistry of the ligand influences the kind and
strength of the interaction with the target protein, and stereoisomers with higher BE and lower
minimum distance between amino acid residues interacted effectively with the target protein. D1

and D stereoisomers better interacted with the target protein than Remdesivir (R1).

4.2.4 Protein-Ligand Complex and their Interaction Studies of the Top Four Drug-Likeness

Molecules at Selected Four Binding Sites

We have shown the protein-ligand complex for each of the five target binding sites in Figure 4.5.
These illustrations may be seen in the Figure left column. A Black circle in each picture denotes
the precise position between the protein that have particular interactions with the ligand complex
at each site. Additionally, we have presented the BE and CBE values for the top five LORD-
generated molecules (Di-Ds)well as three reference molecules, Remdesivir (Ri1), Hydroxy
chloroquinoline (R2), and Favipiravir (Rs) - for each site, labeled C1 to Cs from top to bottom, in
the right column of Figure 4.5. The CBE values for the top five molecules generated by LORD
were observed to be much lower than the three reference molecules shown in the green and blue
color-coded bar plots in all five sites. This indicates that the LORD-generated molecules have

stronger binding affinities to the target protein, an essential property for an effective drug.

Furthermore, the LORD-generated molecules were found to outperform the currently available
drugs in the market for all five binding sites. This suggests that the LORD-generated molecules
have the potential to be more effective in treating diseases or conditions that target these specific
binding sites. Our results demonstrate that the LORD-generated molecules have strong binding
affinities to the target protein and could potentially serve as better drug candidates than currently

available drugs in the market.
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Figure 4.5 The Protein Site with drug-likeness molecules complex and their interaction studies of
the top five drug-likeness molecules and three reference molecules at Selected five binding sites.
(A) MESP suggested site-1(C1), (B) MESP suggested site-2 (C>), (C) MESP suggested cavity site-
3 (Cs), and (D) Experimentally reported site-4 (Ca).

4.2.5 Binding Sites Analysis from Protein-Ligand Complex

We identified specific amino acid residues active in the five target binding sites (C; to Cs). In Site-
1 (Cy), we found the active residues to be Glycine 12(Gyl2), Phenylalanine 3 (Phe3), Arginine 4
(Arg4), Lysine 5 (Lys5), Tyrosinel26 (Tyrl26), Glutamine 127 (GIn127), Tryptophan 207
(Trp207), Asparagine 214 (Asn214), Leucine 282 (Leu282), Serine 284 (Ser284), Alaninine 285
(Ala285), Leucine 286 (Leu286), and Threonine 292 (Thr292). In comparison to the other sites,
Site-1 exhibited decreased binding energy. In Site-2 (C.), we observed active residues including
Threonine 21 (Thr2l), Cysteine 22 (Cys22), Glycine 23 (Gly23), threonine 24 (Thr24),
Threonine 25 (Thr25), Lysine 61 (Lys61), Serine (Ser62), Asparagine 63 (Asn63), Histidine 64
(His64), Asparagine 65 (Asn65), Phenylalanine 66 (Phe66), leucine 67 (Leu67), Glutamine 74
(GIn74), Leucine 75 (Leu75), Arginine 76 (Arg76), Valine 77 (Val77), Isoleucine 78 (1le78), and
Glycine 79 (Gly79). Site-4 (C4) and Site-3 (Cs) had higher BE than Site-2, whereas Site-1 had
lower binding energy. Active amino acid residues in Site-3 (Cs) included Proline 52 (Pro52),
Asparagine 53 (Asn53), Tyrosine (Tyr54), Glutamic acid 55 (Glu55), Methionine 82 (Met82),
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Glutamine 83 (GIn83), Valine 86 (\Val86), Leucine 87 (Leu87), Glycine 179 (Gly179), Aspargine
180 (Ans180), Phenylalanine 181 (Phel181), Tyrosine 182 (Tyr182), Phenylalanine 185 (Phel85),
Valine 186 (\Val186), Aspartic acid 187 (Aspl87) and Arginine (Argl88). Interestingly, we
noticed that these active residues at Site-4 corresponded to the experimentally reported active
residues in Site-5, including Threonine 26 (Thr26), Leucine 27 (Leu27), Phenylalanine 140
(Phel40), Leucine 141 (Leul4l), Asparagine 142 (Asnl142), Glycine 143 (Gly143), Serine 144
(Ser144), Cysteine (Cys145), Histidine 163 (His163), Histidine 164 (His164), Methionine 165
(Met165), glutamic acid 166 (Glul66), Aspartic acid 187 (Asp187), Arginine 188 (Argl88),
Glutamine189(GIn189), Threonine 190 (Thr190), and Alanine 191(Alal91) These amino acids

interacted with each other and resulted in better binding energy.
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Figure 4.6 The four active sites, C1, Cz, Cs, and Cs, of the target, main protease.
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4.2.6 Cavity Drug-Likeness Interaction Matrix

In this study, we docked fifty potential drug-likeness molecular interactions against the target
protein. Figure 4.7 depicts interactions between proteins and ligands and summarises our findings,
using different colors for different types of interactions. We investigated the interactions between

the Remdesivir complex and various active amino acid residues.
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We investigated the Remdesivir-protein interactions complex with 20 active amino acid residues, 20
active amino acid residue interactions in the D1, 20 active amino acids in the D2, 22 active amino acids
in the D3, 22 active amino acids in the D4, 23 active amino acids in the Ds, 21 active amino acids in the
De, 21 active amino acids in the D7, 17 active amino acids in the Ds, 13 active amino acids in the Do,
17 active amino acids in the D1o, 15 active amino acid in the D11, 15 active amino acids in the D12, 14
active amino acids in the D13, 16 active amino acids in the D14, 16 active amino acids in the Ds, 13
active amino acids in the D1, 16 active amino acids in the D17, 17 active amino acids in the D1s, 20
active amino acids in the D19, 15 active amino acids in the Do, 14 active amino acids in the D21, 14
active amino acids in the D22, 15 active amino acids in the D23, 17 active amino acids in the D24 and 14
active amino acids in the D2s, 16 active amino acid residue interactions in the D2, 19 active amino
acids in the D7, 15 active amino acids in the D2g, 21 active amino acids in the D2o, 14 active amino
acids in the D3, 14 active amino acids in the D31, 16 active amino acids in the Dz., 13 active amino
acids in the Das, 11 active amino acids in the Das, 22 active amino acids in the Dss, 15 active amino
acids in the Dss, 17 active amino acids in the D37, 15 active amino acids in the Dzs, 19 active amino
acids in the Dsg, 16 active amino acids in the Dao, 15 active amino acids in the D41, 16 active amino
acids in the Das, 18 active amino acids in the D43, 18 active amino acids in the Das, 17 active amino
acids in the Dss, 19 active amino acids in the D47, 17 active amino acids in the Dass, 16 active amino
acids in the Da4g, and 15 active amino acids in the Dso. Essentially, the interaction between proteins and
ligands is important for drug design because it makes it possible to create substances that can precisely
target and control the activity of disease-related proteins, leading to the development of effective and

secure therapeutics.
4.2.7 Physicochemical and ADME Properties

To validate LORD algorithm on 50 molecules, we have provided the physicochemical properties, such
as the Lipinski rule of five in Figure 4.8 for all the fifty molecules. All the candidate molecules show
molecular weight ranging from 456.46 to 474.60, less than 500 Daltons. The Partition coefficient
ranges between 1.65-3.42, less than 5; HBD is between 2-4, and HBA is between 3-9. The molecular
polar surface area ranges between 73.49-147.61, is less than 140A2, and the total number of the
rotatable bond ranges between 3-4 is less than 10. Figure 4.8 represents that most of the molecules
followed the Lipinski rule of five; hence, they can be studied for further analysis. LORD once again
proved that it incorporates Lipinski's rule of five by learning CBE while training data.
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ADME properties are generated by using the SWISS ADME website for the 50 molecules predicted
using the LORD algorithm. ADME properties are most effective in predicting human pharmacokinetic

properties to be successful in clinical trials. The top five potential molecules have shown in Table 4.2.
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Figure 4.8 Physico-chemical properties of LORD 50 molecules. (A) Molecular weight (g/mol), (B) Hydrogen
bond acceptor, (C) Hydrogen bond donor, (D) Partition Coefficient (Logp), (E) Total polar surface area, and (F)

Rotatable bond count.

Table 4.2 ADME or Pharmacokinetic proprieties of the site-wise selected molecules in
3Gastrointestinal absorption, °Blood brain barrier permeant, °P-gp substrate, “Cytochrome P450 family
1 subfamily A member2, éCytochrome P450 family 2 subfamily C member19, ‘Cytochrome P450
family 2 subfamily C member 9, 9Cytochrome P450 family 2 subfamily D member 6, "Cytochrome

P450 family 3 subfamily A member4, and 'Skin permeation in cm.
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S.No Gl BBB P-gp CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 Log

abs® permnt  substrate® Inhibitor Inhibitor® Inhibitor’  Inhibitor® Inhibitor" Kp'

Low No No No No No No Yes -7.88
High No Yes No No Yes Yes Yes -7.08
High No No No No No Yes Yes -5.16
Low No No No No No No No -5.70
High No Yes No No Yes Yes Yes -6.41
Low No Yes No No No No Yes -8.62

4.2.8 Correlation of Potential Drug-Likeness Molecules vs. Site-Wise Binding Energy
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Figure 4.9 Corrected binding energy trend curves for LORD 50 molecules at all five sites. (A) The

X-axis is 50 drug-likeness molecules (D1 to Dso), and Y-axis is CBE values, (B) The X-axis is
ESP-suggested sites (Ci, Cz, C3,C4), and Y-axis is CBE values.

The CBE values for LORD 50 molecules at each site are depicted in Figure 4.9. The range of CBE is

—3.0 to —8.0 kcal /mol for all five sites of the main protease of the Sars-Cov-2 virus. In Figure 4.9 A,

the X-axis represents 50 potential drug-likeness molecules, and Y-axis corresponds to CBE Figure 4.9

B.

The X-axis represents the number of cavities or binding sites, while the Y-axis displays the CBE.
92



Figure 4.9 shows that Pink is a significant interaction and experimental site for all the drug-likeness
molecules. And also, CBE analysis showed that Site 4 and Site 5 are more potential for protein-ligand
complex interactions compared to sites 1, 2, and 3, as indicated in Figure 4.9.

In which the black line of C1 (Experimental reported active site) represents binding energy value -3.2
to -5.6 kcal/mol, and the red line C> was shown -3.6 to -6.0 kcal/mol binding energy. The green line
for C3 was shown at -3.9 to -6.9 kcal/ mol, the blue line for C4 was shown at -4.3 to -7.2 kcal/mol, and
the pink line for Cs showed -4.8 to -8.2 kcal/mol. Two sites (C4, Cs) are better than the other three sites
(Cy, C2, and C3) based on their CBE value shown in Figure 4.9.

4.2.9 Molecular Dynamics (MD) Simulations

The main protease of SARS-CoV-2 was extensively investigated to identify
potential molecules employing MD simulations using the GROMACS 5.1.2 program. Three top drug-
likeness compounds were discovered and compared to stability of reference molecule, Remdesivir
using MD simulations. In the MD simulations, the protein energy evaluations in this study were
conducted using the CHARMM force field, while the ligand topology was generated using the
CHARMM General Force Field (CGenFF). The TIP3 water model was employed within a cubical box
to facilitate the dissolution of the protein-ligand complex. To ensure system neutrality, chloride ions
were introduced. The energy of the system was minimized using the steepest descent method. To

maintain a constant temperature of 298 K,an NVT ensemble was utilized.

Additionally, the NPT ensemble was employed to simulate the behavior of the ligand-protein
combination. The Particle Mesh Ewald and LINCS algorithms were used to examine short-range
electrostatics, and a VVan der Waals distance threshold of 10 was utilized to limit all bonds. To assure
stability, the simulations were run for 100 ns, and the RMSD plots were compared to compare the

stability of the three possible drug-like molecules with Remdesivir.
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Figure 4.10. RMSD deviations of Protein-Ligand complex.

The molecular interactions of the two potential drug-like compounds and Remdesivir with the SARS-
CoV-2 virus were compared using the RMSD calculation. The stability of the association between the
ligands and the protein and the structural changes in the complex were investigated. The RMSD result
suggested that the three potential ligands were strongly bound inside Site 5 (Cs) of the MP", RMSD
values range from 0.1-0.3.2 nm to 0.2-0.3.5 nm. The MD simulation of the SARS-CoV-2 virus's major
protease revealed good molecular contact of the three ligand molecules, and the stability of the
connection between drugs and ligands was investigated. Molecular superposition was used to compare
the average of the input (0 ns) and output (100 ns) structures. The findings revealed that the two-
candidate potential drug-likeness compounds were stable and had effective molecular interactions with
the MP™,

4.2.10 Free Energy Calculations

The protein-ligand complexes binding energy (BE) as it is more often known, was determined using
the g-mmpbsa software. Calculating the vacuum potential energy resulting from various interactions,
including both bound and unbound states, requires the application of the molecular mechanics (MM)
force field. The computation of the electrostatic and van der Waals (Evdw) energy contributions
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involves the use of the Coulomb potential function and the Lennard-Jones potential function,
respectively. The solution to the Poisson-Boltzmann equation allowed for identifying the polar
contribution while evaluating the free energy of solvation. It has traditionally been assumed that the
solvent-accessible surface area (SASA) and the non-electrostatic solvation energy are closely related
when evaluating the non-polar contribution. The non-polar energy term (Gnonpolar) inCOrporates van der
Waals interactions and the attractive and repulsive forces that arise between the solute and solvent due
to cavities. During the Free energy calculations, snapshots of the equilibrated area from the molecular
dynamics (MD) trajectory were captured. All computations were performed using the
MmPbsaDecomp.py script, which is part of the g-mmpbsa package, with the default parameters

provided by Kumari et al.

Table 4.3 Free energy calculation of the top four drug-likeness (D1-Ds) molecules and Remdesivir
(Ro).

Time Complex free energies (kJ/mol)
intervals
(ns) D, D, R;
0-25 —-17.6 +/-11.6 —49.5 +/—13.7 —~76.2 4+/—19.3
25-50 —-208 +/—12.4 —43.6 +/—14.1 —59.6
+/—15.5
50-75 —-29.2 +/—-129 —-44.0 +/—-11.0 —64.9
+/—13.3
75-100 —31.7+/-8.8 —38.2 +/—12.2 —64.9
+/—-13.3

For the two protein-ligand complexes that were chosen, calculations of binding energy (BE) using the
MM-PBSA program were made. The top four drug-likeness as, D1, D2, and Remdesivir as reference
(R1) molecules, had BE values at 0-25ns, 25-50ns, 50-75ns, and 75-100ns. The BE distribution

calculation revealed that it significantly contributed to the overall BE, as shown in Table 4.3.
4.3 Conclusions

The present work demonstrates a novel approach to designing on-site drug-likeness molecules for
target proteins. On-site drug design strategy allows the algorithm better in building molecules by
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exactly locating the target binding site environment by MESP cavity studies. LORD method can be
utilized for any target protein to design drug-likeness molecules. LORD can incorporate the
physicochemical properties by corrected binding energy training. Hence, the possibility of irrelevant
molecular generations is very much infrequent. LORD follows a reverse engineering approach, such
as knowing the environment of the target binding site and building molecules. Hence, it is a very high
chance that the constructed molecule can become a drug-likeness molecule. The advantages of LORD
are computationally cheap due to the substrate approach while scanning the MESP cavities, and it will
locate target binding sites automatically. LORD algorithm is intelligent towards building molecules

based on the target site environment. Hence, the suggestion of molecules will be relevant to that site.

In this work, we found five potential binding sites, including an experimentally active site. Five
potential binding sites are utilized to build molecules by LORD, producing 50 potential drug
candidates. Out of all five binding sites, the experimentally active site is more dominant than the other
sites in CBE values. LORD 50 molecules possess excellent BE (kcal/mol), and Physico-chemical
properties and have shown better ADME properties than market-available drugs such as Remedesivir,
Favipiravir, and Hydroxychloroquine. Further, MD simulations of top-four candidate drug-like
molecules are studied and found to be stable in protein for long simulation runs, unlike less stable

Remdesivir drug molecules.
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CHAPTER 5

Design of Potential Drug-likeness Molecules for Parkinson's
Disease
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5.1 Introduction to Parkinson’s Disease

Parkinson’s Disease (PD) is a common neurological disorder wherein the midbrain's substantia nigra
loses dopaminergic neurons. With its rising prevalence, PD has become a major public health concern,
affecting approximately 7-10 million individuals aged 60 and above globally. Second, only to
Alzheimer's disease (AD), PD requires increased research endeavors and interventions to enhance the
well-being of those afflicted, underscoring the need to address its escalating challenges effectively.!?
Because dopamine replacement therapy is still the most effective symptomatic medication for
Parkinson's disease, most contemporary treatments focus on symptomatic alleviation to enhance patient
quality of life. For a more in-depth examination of contemporary pharmacotherapies and their efficacy,
consider, ® Flavin adenine dinucleotide (FAD)-containing enzymes that are connected to the
mitochondrial outer membrane and responsible for catalyzing the oxidative deamination of monoamine
neurotransmitters and dietary amines are found in specific human monoamine oxidase (MAO) enzymes.*
The two main types of MAO isoforms are monoamine oxidase type A (MAO-A) and monoamine oxidase
type B (MAO-B). MAO isoforms are distinguished based on their genetic makeup, distribution within
tissues, and the specific substances they act upon. MAO-A, an enzyme, is crucial in breaking down
norepinephrine, serotonin, and tyramine. Selective inhibitors targeting MAO-A are commonly used in
treating depression. By inhibiting this enzyme, the levels of these neurotransmitters are increased, which
helps alleviate depressive symptoms, and the MAO-B type is employed for selectivity of the metabolized
dopamine, so selective MAO-B inhibitors to the treatment of the PD.>
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Tyrosine-hyroxylage l 3,4 Dihydroxy
henyl acteic acid
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Dopamine (DA)

synaptic gap A . ©A
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Figure 5. 1 Cartoon illustrating the Monoamine Oxidase-B enzyme role in PD.
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The current studies on the crystal structure of the human MAO-B type with safinamide complex (PDB
ID=2V5Z, Resolution =1.6A) are available in the protein databank.® In which complex of human MAO-
B with safinamide have hydrogen bond interaction of the Tyrosine-435(Tyr-435), Leucine (Leu-171),
amino acids, and Pi-interaction of the Leucine (Leu-171), Cysteine-172(Cys-172), Tyrosine-326(Tyr-
326), Phenylalanine (Phe-168), Leucine-164(Leu-164), Isoleucine-199(1le-199) amino acid residues.’

The recent literature is reported as chemical scaffolds of the N-heterocyclic compounds® and their related
compounds® 3-Arylcoumarin-tetracyclic tacrine,*® coumarin derivatives,'* chacolone derivatives,'? and
their related compounds are used as novel MAO-B inhibitors are employed as Anti Parkinson's agent.
And Table 5.1 present a selection of relevant previous literature, while our focus in this section is to

discuss the methodology and summary.

Table 5.1 Overview of previous literature and focus on methodology and summary.

Methodology

Summary

X-ray crystallography
and molecular docking

X-ray crystallography
and computational
analysis

Fragment-based drug
design, synthesis, MAO
inhibitory in Vitro and
Vivo assay.

Molecular docking, MD
simulations, and QSAR
studies

Drug Repurposing,
Molecular docking, and
molecular MD
simulations

Molecular docking, MD
simulations, and

In a comprehensive study, researchers extensively investigated the structural
aspects of the binding mode demonstrated by selective MAO-B inhibitors, which
paved the way for rational drug design strategies. Through meticulous analysis, the
study yielded valuable insights into the specific interactions and molecular features
that contribute to the inhibitor’s selectivity. This newfound knowledge offers
researchers a deeper understanding of the critical binding mechanism involved, thus
enabling the development of more potent and customized MAO-B inhibitors.t®

A study on the crystal structure analysis of MAO-B and its reversible inhibitors has
been conducted to facilitate the development of new propargylaminoindan
compounds with enhanced selectivity and pharmacological properties. By
analyzing the complex structure, researchers aim to design novel compounds that
exhibit improved therapeutic benefits.**

In this study, we employed a computational fragment-based design to identify a
novel, potent, and selective inhibitor of the MAO-B. Using a combination of virtual
screening, docking simulations, and MD simulations, we identified a promising
fragment that exhibited strong binding affinity and selectivity for MAO-B.%®

Novel MAO-B hit inhibitors using multidimensional molecular modeling
approaches and application of binary QSAR models for prediction of their
therapeutic activity, pharmacokinetic, and toxicity properties, the authors explore
the development of new MAO-B inhibitors using molecular modeling techniques.*®

Virtual screening and molecular dynamics simulations to discover new MAO-B
inhibitors that could have neuroprotective properties. The study aims to identify
potential compounds that could be further investigated for treating
neurodegenerative disorders such as AD by employing computational techniques.’

The mechanism of irreversible inhibition of MAO enzymes by the antiparkinsonian
propargylamine inhibitors, rasagiline, and selegiline. Using computational methods,
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guantum chemical
analysis

pharmacophore
modeling, QSAR
analysis, Molecular
docking, MD simulation,
and free energy
calculations

Natural product,
molecular docking and
MD simulations

Molecular docking and
MD simulations

Pharmacophore
modeling, molecular
docking, MD
simulations, and machine
learning

Flavonoids, molecular
docking, and synthesis
approaches

QSAR modeling,
Molecular docking, and
MD simulations
Benzofuran,
Safinamide compounds
and Molecular docking

MAO inhibitors
Selegiline, rasagiline,
safinamide
Unsaturated Ketone,
ADME prediction,
Docking studies, MD
simulations, and binding
free energy

QSAR modeling,
molecular docking, in
silico ADME

the study provides valuable insights into the binding interactions and structural
changes involved, enhancing our understanding of these inhibitors' therapeutic
effects.!8

New insights on the activity and selectivity of MAO-B inhibitors through in silico
methods explore the use of computational methods to analyze the effectiveness and
specificity of MAO-B inhibitors. The study provides valuable insights into the
design and development of potential drugs targeting MAO-B, aiding in treating
neurodegenerative disorders such as PD.°

In silico study to identify new MAO-A selective inhibitors from natural sources by
virtual screening and molecular dynamics simulation" explores the use of
computational methods to discover potential inhibitors of the enzyme MAO-A. The
study focuses on natural sources and employs virtual screening and MD simulations
to identify promising compounds.?

Identification of new small molecule MAO-B inhibitors through pharmacophore-
based virtual screening, molecular docking, and MD simulation studies; they
utilized computational methods to identify potential inhibitors for MAO-B, by
employing pharmacophore-based virtual screening, molecular docking, and MD
simulation techniques.?

This study proposes a novel approach to developing treatments for AD and PD by
targeting MAO-B. Combining machine learning and computer-aided drug design,
the researchers identified potential inhibitors for MAO-B. These findings hold
promise for the development of new therapies that could help mitigate the
progression of these neurodegenerative diseases.?

The use of computational methods to investigate flavonoid derivatives as potential
inhibitors of MAO-B. By studying the structural properties and interactions of these
compounds, researchers aim to design novel compounds that can effectively target
MAO-B and potentially have therapeutic effects.?®

Chemical library design, QSAR modeling, and MD simulations of naturally
occurring coumarins as dual inhibitors of MAO-B and AChE, explore the potential
of naturally occurring coumarins as dual inhibitors of MAO-B and AChE.?*

This study focuses on designing, synthesizing, and evaluating new compounds
targeting MAO-B for treating Parkinson's disease. The researchers aimed to
improve the pharmacokinetic properties of these compounds. The findings of the
study may contribute to the development of novel MAO-B inhibitors with enhanced
therapeutic potential for PD.%

MAO-B inhibitors for the treatment of PD: past, present, and future™ explores the
historical development, current usage, and prospects of MAO-B inhibitors in the
treatment of PD.?

New MAO-B inhibitors using a multi-faceted approach. The study incorporates
docking-based alignment, 3D-QSAR, ADMET prediction, molecular dynamics
simulation, and MM_GBSA binding free energy to design potential inhibitors. The
findings could contribute to the development of new therapeutic strategies for
diseases associated with MAO-B activity.?’

The use of computational methods to study a group of compounds that target MAO-
B for the treatment of Alzheimer's disease. The article discusses the application of
quantitative structure-activity relationship (QSAR) models, simulation techniques,
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and ADMET/pharmacokinetics assessment to evaluate the potential effectiveness
of these compounds.?
2H-chromen-2-one core,  The study utilized both structure-based and ligand-based approaches to derive 3D-
3D-QSAR, and QSAR predictive models. By analyzing the structures of the inhibitors and their
molecular docking. binding interactions with MAO-B, the researchers developed models that could
predict the activity of new inhibitors based on their molecular features.?®

Therefore, in the current study, the successful application of ESP studies was employed for finding the
potential binding site in the protein target, and LORD generator for designing twenty-five candidate
potential drug-likeness for employs to inhibit MAO-B in PD.

5.2 Results and Discussion

5.2.1 MESP Calculation for Identification Binding Sites in Target Protein

A
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Figure 5.2 (A) MESP distribution of the MAO-B and (B) Substrate structures.

All the substrate cube files are loaded in VMD and transformed into one cube file. Figure 5.2 shows two
color regions of MESP distributions, such as dark blue lobes inside red, representing most negative
regions with function value —0.20 a.u. of the protein. The red color distribution shows low negative
regions with a function value of —0.01 a.u. of the whole protein. The total MESP distribution can be
seen in Figure 5.2 with two layers. The most negative regions, such as inner blue color lobes, are further
investigated by surface cavity analysis as highlighted by black circles with notations C:-Ca. To trace the
exact location of the potential binding site, MESP function values are projected onto the plane. Scanning
MESP function values within the plane resulted in surface cavities, as shown in Figure 5.2. The surface
cavities were assumed to be the most potential binding sites. The two most negative MESP function
values are spotted as inner and outer circles. This analysis provided the four best possible binding sites
for further studies.

5.2.2 Design Potential Candidate Molecules

25 LORD-generated molecules are designed; the twenty-five with reference market drug Safinamide
(Ry1) are selected based on AutoDock vina binding energy, and corrected binding energy are reported in
Figure 5.3.
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Figure 5.3 Potential 25 molecules predicted using LORD drug designer.

5.2.3 Stereochemistry and Protein-Ligand Complex Interaction Studies

Stereochemistry is vital for the generation of drugs, given that many therapies' activities depend on their
three-dimensional configuration. Consideration should be given to stereoselectivity when designing
small molecules that interact with their objectives. Drug developers can choose the most effective and
secure stereoisomer or create a treatment that can specifically target a certain stereoisomer by assessing

the stereochemistry of a therapeutic molecule and the mechanism of action.

The interaction of stereoisomers D1a, D1g, R1a, and Rig with the Site-4 (C4) and chemical structure of a
target protein was investigated using ChemDraw 3D software. Among the stereocisomers, D2a showed a
higher BE of -11.1 kcal/mol and a higher CBE of -8.3 kcal/mol than D2g. The molecule also created two
Pi-sulfur bonding connections with PHE A: 168, one hydrogen bond, and two Pi-sigma contacts with
ARG A: 289 amino acid residues, indicating a more significant engagement with the target protein. D2g,
on the other hand, had better BE and CBE values than D2g, with BE of -10.9 kcal/mol and CBE of -8.1

kcal/mol. Both R1a and Rig BE values are shown at -9.2 kcal/mol and -7.0 kcal/mol, respectively.

Figure 5.4 presented the stereoisomers D2a and Ria as drug-likeness molecules with much greater
binding energy than the D.g and R1g stereoisomers. The minimal distance between amino acid residues
and the kind of interaction with the protein was demonstrated to maintain the stereoisomer relationship.
The interaction between D> stereoisomers has been shown to be better than that of the Safinamide (R1)
drug due to their higher binding energies and shorter minimum distance between amino acid residues.
The findings provide important insights into the impact of stereochemistry on ligand-protein interactions,
which may aid in medicine design and development by optimizing stereochemistry for improved

efficacy.
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Figure 5.4 Stereochemistry and its role in D1, Ry drug-likeness molecules and their interactions studies.

5.2.4 Protein-Ligand Complex and Their Interaction Studies of The Top Four Drug-likeness
Molecules at Selected Four Binding Sites

According to this investigation, the LORD compounds had greater binding energies than the reference
molecule, safinamide (R1), in all four binding sites. It implies that the LORD compounds have the

108



potential to be more effective treatments than those already available. LORD chemicals have lower CBE

values than reference molecules, suggesting they interact favorably with the target protein.
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Figure 5.5 The binding site analysis of the specific drug molecule with each site, (A) MESP suggested site-
1(Cy), (B) MESP suggested site-2 (C»), (C) MESP suggested cavity site-3 (Cs), and (D) Experimentally reported
site (Ca).

Figure 5.5 depicts the protein-ligand combination for all four target binding sites in the left column. Cy,
C», Cs, and C4 are the target binding sites. BE and CBE of the top four molecules generated by LORD
(D1, D2, D3, D4) and reference molecules of safinamide (R1) for each site (Cz to C4) are shown in a color
bar plot on the right side of Figure 5.5. The black and green color bars represent the BE and CBE values
of the reference molecules, respectively. The CBE values for LORD's top four molecules are much

lower in energy than the reference compounds displayed in the black and green color bar plot for all
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four locations. The findings give information on the design and development of new medicinal
compounds with improved binding properties. The use of LORD in synthesizing innovative
pharmaceutical compounds has the potential to produce more effective drugs with fewer side effects
and better therapeutic outcomes.

5.2.5 Binding Sites Analysis from Protein-Ligand Complex

The ESP cavity analysis was performed to explore the interactions between proteins and their ligands at

four unique sites labeled C; through Ca.
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Figure 5.6 Monoamine Oxidase-B enzyme Protein active sites (C1, C2, Cs, and Ca).

Active amino acid residues at C; with lower binding energies were identified to be Arginine42 (ARG42),

Glycine 57 (GLY57), Glycine 58 (GLY58), Tyrosine 60 (TYRG60), Leucine 164 (LEU164),
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Phenylalanine 168 (PHE168), Leucine 171 (LEU171), Cysteinel72 ( CYS172), lIsoleucine 198
(ILE198), Glutamine 206 (GLNZ206), Isoleucine 316 (ILE316), Tyrosine 326 (TYR326), Phenylalanine
343 (PHE343), Cysteine 397 (CYS397), Serine 33 (SER33), Glycine (GLY434), Tyrosine 435
(TYRA435), and Methionine 436 (MET436). At C», it was discovered that Glycine 57 (GLY57), Glycine
58 (GLY58), Serine 59 (SER59), Tyrosine 60 (TYR60), Phenylalanine 168 (PHE168), Leucine 171
(LEU171), Cysteine 172 (CYS172), Isoleucine198 (ILE198), Isoleucine 199 (ILE199), Glutamine 206
(GLN206), Lysine 296 (LYS296), Tyrosine 326 (TYR326), Methionine (MET341), Glycine 342
(GLY342), Cysteine 397 (CYS397), Threonine 426 (THRA426), Tyrosine 435 (TYRA435), and
Methionine 436 (MET436) occurred. When compared to sites C; and C», sites C3 and C4 have higher

binding energies with various amino acid residues.

Further analysis indicated a link between the experimentally reported site C4 and the active amino acids
at site Cs. Phenylalanine 103 (PHE103), Valine 106 (VAL106), Asparagine 116 (ASN116), Tryptophan
119 (TRP119), Arginine 120 (ARG120), Aspartic acid (ASP123), Arginine 127 (ARG127), Glutamic
acid 128 (GLU128), Proline 130 (PRO130), Lysine 191 (LYS191), Glutamine 191 (GLN191),
Threonine 478 (THR478), Threonine 479 (THR479), Leucine (LEU482), and Glutamic acid (GLU483)
had the most significant binding energies at Cs. These findings suggest that amino acid residues at
different sites have an essential role in protein-ligand interactions and that knowing the binding energies

at each location is critical for predicting and changing protein-ligand interactions.
5.2.6 Cavity-Drug-Likeness Molecules Interaction Matrix

Drug design is based on how proteins and ligands interact, even though several drugs alter the function
or signaling of specific proteins by attaching to receptors. A key step in the drug development process is
identifying possible ligand-binding sites to forecast how ligands will interact with the protein and find
ligands likely to have robust and precise binding interactions; computer modeling and simulation
methods are frequently utilized. The MAO-B target protein was used to screen 25 potential drug-likeness
molecules results are reported in Table 5.7, where interactions between proteins and their ligands are
marked as hydrogen bonds, conventional hydrogen interactions, Pi-Pi contacts, Pi-alkyl interactions, Pi-
sulphur interactions, Pi-cation interactions, and van der Waals interactions. Hydrogen bonds, traditional
hydrogen contacts, Pi-Pi interactions, Pi-alkyl interactions, Pi-sulphur interactions, and Pi-cation
interactions represent strong interactions (Sl1). In contrast, van der Waals interactions illustrate weak

interactions (WI).
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Table 5.7 The protein target-Drug interaction matrix of 25 drug-likeness molecules with the MAO-B target
protein within the experimentally reported site4 (Ca).
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The safinamide complex was investigated for its interactions with 16 active amino acid residues. The
interactions were studied for each of the 25 complexes, referred to as D1 to D2s. The active amino acid
residues included 15 in the D1 complex, 19 in the D> complex, 16 in the D3 complex, 12 in the D4
complex, 14 in the Ds complex, 16 in the Ds complex, 11 in the D7 complex, 14 in the Dg complex, 13
in the Dg complex, 17 in the D1o complex, 13 in the D11 complex, 13 in the D12 complex, 10 in the D13
complex, 15 in the D14 complex, 11 in the Dis complex, 10 in the D1 complex, 20 in the D17 complex,
22 in the D1g complex, 8 in the Dig complex, 14 in the Do complex, 14 in the D2 complex, 14 in the D2,
complex, 12 in the D23 complex, 11 in the D24 complex, and 8 in the D2s complex.

5.2.7 Physicochemical Properties and ADME Properties
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Figure 5.8 Physico-chemical properties of LORD 25 molecules. (A) Molecular weight (g/mol). (B)
Hydrogen bond acceptor, (C) Hydrogen bond donor, (D) Partition Coefficient (Logp), (E) Total polar

surface area and (F) Rotatable bond count.
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Essentially, the ability to precisely target and modulate the activity of disease-related proteins is a vital
component of the interaction between proteins and ligands, which is crucial for the creation of reliable

and efficient therapies.

We used Lipinski's rule of five to evaluate the physicochemical characteristics of 25 compounds. These
potential compounds have molecular weights between 216.21 and 386.23 g/mol, below the 500 g/mol
threshold. Their lipophilicity-indicating partition coefficients are within the desirable range of 1.75-3.92,
which denotes acceptable membrane permeability. The compounds have between 0 and 2 hydrogen bond
donors (HBD), whereas there are between 1 and 5 hydrogen bond acceptors (HBA). We also measured
the total polar surface area (TPSA) of the molecules. Which is a measure of the ability of molecules to
interact with polar surfaces, ranges between 12.89-76.38 angstroms, and is less than 140 angstroms. The
total number of rotatable bonds in the molecules ranges between 1-5, less than 10. Figure 5.8 shows that
most molecules fit Lipinski's rule of five requirements, indicating that they are likely to have strong
pharmacokinetic characteristics and can be researched further for medication development. This
discovery highlights LORD's efficacy, taught using a machine learning method that employs Lipinski's

rule of five.

We utilized the SWISS-ADME website to determine the suitability of the 25 potential compounds found
by LORD. Based on the ADME study, we found the top five candidate compounds shown in Table 5.2.
Table 5.2 ADME / Pharmacokinetic proprieties of the site-wise selected molecules in 2Gastrointestinal
absorption, °Blood brain barrier permeant, °P-gp substrate, “Cytochrome P450 family 1 subfamily A
member2, éCytochrome P450 family 2 subfamily ¢ member19, ‘Cytochrome P450 family 2 subfamily C
member 9, 9Cytochrome P450 family 2 subfamily D member 6. "Cytochrome P450 family 3 subfamily

A member4, 'Skin permeation in cm.

S.No. Gl BBB P-gp CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 LogKp'
abs®  permeant” substrate® Inhibitor® Inhibitor® Inhibitor’ Inhibitor? Inhibitor"

D, High Yes No No No No No Yes -5.64
D High Yes Yes No No No Yes Yes -4.38
D3 High Yes Yes No No No Yes No -5.79
D4 High Yes Yes No No No Yes No -4.5

R: High Yes Yes No No No Yes Yes -5.58
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5.2.8 Correlation of Potential Drug-Likeness Molecules vs. Site-Wise Binding Energy

CBE values for LORD 25 molecules are shown at each site, as shown in Figure 5.8. The range of CBE
is -4.0 to -10.6 kcal /mol for all four sites of the MAO-B. Figure 5.9A illustrates the correlation between
the number of drug-like molecules (X-axis) and their respective binding energies (Y-axis). On the other
hand, Figure 5.9B depicts the relationship between the number of binding sites or cavities (X-axis) and

the corresponding binding energies (Y-axis).

Figure 5.9 shows that the green color is the primary interaction site with the experimental site for all the
drug-like molecules. CBE analysis showed that Site 4 and Site 3 maintained more potential for protein-
ligand complex interactions than Site 1, 2, as indicated by Figure 5.9. We performed computational
binding energy (CBE) analysis for four locations of the MAO-B enzyme to evaluate the binding affinity
of the LORD 25 molecules, as shown in Figure 5.8. All four locations had CBE values of -3.8 to -8.5
kcal/mol. In Figures 5.9A and 5.9B, we also plotted the number of drug-likeness molecules against
binding energy and the number of binding sites against binding energy. As shown by the green line in
Figure 5.9, our study revealed that the green interaction site was the most suitable for all drug similarity
compounds. Figure 5.9 shows that Sites 3 and 4 had a higher potential for protein-ligand complex

interactions than Sites 1 and 2.
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Figure 5.9 Corrected binding energy (CBE) trend curves for LORD 25 molecules at all four sites. (A)
The X-axis is 25 drug-likeness molecules (D1 to Dzs), and Y-axis is CBE values and (B) The x-axis is

ESP-suggested sites (C1, Cz, C3) and y-axis is CBE values.
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Moreover, we identified the binding energies of each site-based on the CBE analysis. The blue line in
Site 1 showed a CBE of —3.9 to —6.1 kcal/mol. The maroon color line in Site 2 exhibited a CBE of
—4.9 to -6.8 kcal/mol, and the pink color line in Site 3 showed a BE of —5.8 to —7.7 kcal/mol, while
the green color line in Site 4, which represents the experimental active site, showed CBE value of —4.9
to —8.3 kcal/mol. Our analysis suggests that Site 3 and Site 4 are more promising binding sites than Site
1 and Site 2, as their binding energies are stronger. This information can guide the selection of the most

promising molecules for further experimental validation.
5.2.9 Molecular Dynamic (MD) Simulations

MD simulations investigated the stability of the top three D1, D2, and D3 molecules, and safinamide drug
molecules bind to the MAO-B enzyme receptor. For the MD simulations, the GROMACS 5.1.2 software

was employed.

The CHARMM force field was employed to evaluate the energy of the protein, while the CHARMM
General Force Field (CGenFF) was utilized to generate ligand topologies. After docking, the protein-
ligand complex was solvated in a cubic box employing the TIP3 water model. To neutralize the system,
chlorine (CL") ions were added, and the energy was minimized using the steepest descent method with
10,000 steps. The NVT ensemble maintained the system's temperature at 298 K, while the NPT

ensemble, ranged from 1.0 bar to 250 bars, was employed to simulate the ligand-protein complex.
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Figure 5.10 RMSD of the MD simulations.
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The Particle Mesh Ewald and LINCS algorithms were utilized for short-range electrostatics, and a Van
der Waals distance cut-off of 10 was used to limit all bonds. To preserve stability, the simulations were
run for 100 ns. The strength of the top four drug-like compounds was compared using safinamide as the
reference molecule. The RMSD graphs show how much the protein-ligand complex structure has
deviated from its beginning structure. We can tell which molecule has a more stable protein-ligand

complex structure by analyzing the RMSD graphs.
5.2.10 Free Energy Calculations

The g-mmpbsa program determines the free binding energy for protein-ligand complexes. This algorithm
assesses the vacuum potential energy resulting from interactions between the bound and unbound protein
and ligand using a molecular mechanics (MM) force field. The MM force field uses the Lennard-Jones
potential function to compute the van der Waals (Evdw) energy contribution and the Coulomb potential

function to determine the electrostatic energy contribution.

Table 5.3 Free energy calculation of the top four drug-likeness (D1-D4) molecules and Safinamide (R1).

Time Complex Free Energies (kJ/mol)
interval
s D: D D3 D, R:
(ns)
0-25 -93.3 +/-89 —126.0 -63.9 —35.7 -101.3
+/—13.6 +/—17.0 +/—10.4 +/—8.7
25-50 —-97.0 —130.1 —-74.8 —62.0 +/—-24.7 —104.5
+/—11.9 +/—-11.0 +/—14.2 +/-9.9
50-75 —103.4 —-126.6 +/-9.7 —-71.4 —85.4 +/-7.7 —-101.4
+/-7.7 +/-13.5 +/-7.4
75-100 —101.2 —1245 +/-10.0 —-68.7 +/-7.9 —-81.0 +/-9.4 —98.6
+/-7.7 +/-10.1

To assess the polar contribution, the solvation energy is evaluated using the Poisson-Boltzmann
equation. The non-polar contribution is computed based on the assumption that it is proportional to the
solvent-accessible surface area (SASA). The non-polar energy term (Gnonpolar) incorporates the van
der Waals interactions and the attractive and repulsive forces arising from cavities between the solute
and solvent. In order to calculate the binding energy, snapshots from the equilibrated region of the
molecular dynamics (MD) trajectory are selected. The MmPbsaDecomp.py script provided by Kumari

et al, with default settings, is employed to carry out all calculations using the g-mmpbsa package.
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For the four protein-ligand complexes (D1-D4) and one protein-drug molecule(R1) complex that were
chosen, calculations of binding energy (BE) using the MM-PBSA program were made. The top four
drug-likeness as D1, D2, D3, D4, and Safinamide (R1) molecules, all had BE values between 0-10 ns, 30-
40 ns, 60-70 ns, and 90-100 ns. The BE distribution calculation revealed that it significantly contributed

to the overall BE, as shown in Table 5.3.
5.3 Conclusions

LORD is smart enough to build potential molecules based on the target site's environment. Thus, the
molecules generated will be appropriate for that site. In this work, LORD is investigated extensively in
this study on the MAO-B, which causes PD. We discovered four putative binding sites, one of which
was an experimentally active site. Four potential binding sites are utilized to build molecules by LORD,
producing 25 potential drug candidates. LORD 25 molecules have good corrected binding energy (CBE),
AutoDockvina binding energy (BE), physicochemical, and ADME qualities compared to commercially
available drugs such as Safinamide. In addition, MD simulations of the top-four potential drug-like
compounds were investigated, and it was discovered that these are more stable in protein during long

simulation runs than the Safinamide drug.
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CHAPTER 6

Designing of Potential Drug-Likeness Molecules for Tuberculosis
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6.1 Introduction to Tuberculosis:

Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis, primarily affects the
lungs but can also affect other human organs. In 2019, the World Health Organisation (WHO) projected
that 1.7 million people died due to an estimated 10 million new cases of TB being identified.

By extending the range of crucial proteins used in TB chemotherapy, discovering ligands for most of the
Mtb proteins may result in new TB drugs and targets. Only roughly 10 Mtb targets have historically been
the focus of drug development efforts, leaving many other crucial proteins untapped. This strategy
addresses medication resistance, toxicity, and the length of TB treatment by finding ligands for Mtb

proteins.>

The four initial lines of TB treatment main drugs are isoniazid (INH), rifampicin (RIF), Pyrazinamide
(PZA), and ethambutol (EMB). The discovery of effective TB drugs is a complicated and difficult
procedure. One of the significant issues is the high attrition rate of candidate molecules throughout
clinical development. Researchers are looking into new targets and discovering new pharmaceuticals or
drugs for Anti TB therapy to address this. Another difficulty is drug resistance, which has become a
serious public health concern worldwide. Researchers aim to treat drug-resistant tuberculosis by finding
and conforming novel therapeutic targets.®

Pyrazinamide

Microsomal Enzyme

Pyrazonic acid ~ Plasma membrance

Cytoplasm

Figure 6.1 Pyrazinamide drug inhibits the role of ribosomal protein S1 of mycobacterium tuberculosis.
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The main role of ribosomal protein S1 (RpsA) in relation to PZA resistance is crucial, as highlighted in
the previous study. Notably, several compounds, namely PXYC1, PXYC2, PXYC12, PXYC13, and
PXYD3, have demonstrated antibiotic properties, and the multiple dynamic simulations of PZA were
conducted action on MTB mutations such as T370P and W403G are employed for the vital role of
affecting protein activity.* The other three mutants, N11k, P69T, and D126N, are, interact with PZA

drug molecules are controlled or inhibited growth in Ribosomal protein S1 of MTB.®

The in-silico generation of novel inhibitors and their potential as an oral administration strategy. Due to
their binding free energy, ADMET characteristics, and drug-likeness, benzimidazole compounds are an
excellent choice for FtsZ inhibitors.®” We presented Table 6.1, which highlights key the previous
literature, while our primary emphasis in this section centers on discussing methodology and providing

a summary.

Table 6.1 Overview of previous literature on methodology and summary.

Methodology

Summary

Mycobacterium
tuberculosis,
proteome modeling,
and virtual screening.

X-ray
crystallography,
pyrazinamide-S1
complex in
Mycobacterium
tuberculosis

Molecular docking,
structure-based drug
design

Structure-activity
relationship (SAR)
studies, Molecular
docking, and
Synthesis approaches

Molecular docking,
pharmacophore,
molecular dynamics

This study uses a computational approach to deorphanize targets in mycobacterium
tuberculosis, the bacterium responsible for tuberculosis. By integrating genomic and
proteomic data, we identified potential drug targets among the uncharacterized proteins
in the M. tuberculosis genome. Our methodology combines protein-protein interaction
networks, sequence homology analysis, and functional annotation to prioritize the most
promising candidates for further experimental validation.®

This research elucidates the mechanism of action of Pyrazinamide, an important drug
used to treat Mycobacterium tuberculosis infections. By determining the crystal
structure of the pyrazinamide-S1 complex, the study reveals the specific binding
interactions and highlights the key amino acid residues involved in the binding process.
These findings provide valuable insights for developing more effective therapeutic
strategies against tuberculosis.’

The application of structure-based computer-aided drug design (SB-CADD) in
discovering potential drugs against Mycobacterium tuberculosis, the causative agent of
tuberculosis. The study highlights the importance of computational methods in
identifying compounds that target specific protein structures involved in the
pathogenesis of tuberculosis. The findings provide valuable insights for developing
novel therapeutics to combat this infectious disease.°

This study focuses on identifying novel compounds that can effectively target the
ribosomal protein S1 in antibiotic-resistant strains of Mycobacterium tuberculosis.
Through a comprehensive evaluation process, several promising compounds have been
discovered and assessed for their potential antimicrobial activity. The findings of this
research provide valuable insights for developing new therapies against drug-resistant
tuberculosis, addressing a critical global health concern.'

This study focuses on in silico drug design for ribosomal protein S1 (RpsA) with an
Ala438 deletion, using the active compound Zrl15 as a basis. The researchers employed
computational techniques to design potential drug candidates that can specifically target
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simulations, and Free
energy calculations

Pyrazinamide,
multidrug-resistant tb
(mdr-tb), molecular
docking, and
molecular dynamic
simulation.

Benzimidazole,
molecular docking
and molecular
dynamic simulations.

In silico structure-
based drug screening,
molecular modelling,
pharmacophore
modelling, QSAR.

and in vitro
translation reaction.

Virtual screening,
Trans-translation,
Drug-resistant

Beilschmie
compound, Multi-
drug resistant
tuberculosis and
molecular docking,
and virtual screening

Mutation
Identification,
Molecular docking,
MD simulations, and
Free energy
calculations

Structured-based
drug design,

RpsA and potentially restore its functionality. This approach holds promise for the
development of novel therapeutics against RpsA-related disorders.

In this study, we employed computational methods to investigate the binding
mechanism between pyrazinoic acid (PA) and the RpsA protein. By utilizing molecular
docking and molecular dynamics simulations, we revealed the key interactions involved
in the PA-RpsA binding process. Our findings suggest that PA forms hydrogen bonds
and hydrophobic interactions with specific residues in the binding pocket of RpsA,
providing valuable insights for the Design of novel anti-tuberculosis drugs targeting this
protein.B®

In This research focused on exploring the potential of benzimidazole congeners as
innovative drug candidates. Through in-silico investigations, the study evaluated their
drug likeliness by performing molecular docking simulations and analyzing the
interactions with target proteins. Additionally, physicochemical properties were
assessed to determine their suitability as drugs. The findings from this study provide
valuable insights into the promising applications of benzimidazole congeners in drug
discovery and development.*

Computational medicinal chemistry techniques to identify new chemical structures with
promising anti-tuberculosis activity. They analyze various compounds through a
rational drug design approach and propose potential candidates for further investigation.
This study highlights the importance of computational methods in accelerating the
discovery of effective anti-tuberculosis drugs, potentially aiding in the global fight
against tuberculosis.®®

New compounds can inhibit the peptidyl transferase center in Mycobacterium
tuberculosis. These small molecules have the potential to be developed into drugs for
treating tuberculosis, providing a promising avenue for combating this infectious
disease.®

Potential therapeutic targets against drug-resistant strains of Mycobacterium
tuberculosis. By investigating the lead compounds and identifying critical residues
within the ribosomal protein S1, the researchers aim to develop novel drugs that can
effectively combat the challenges posed by drug resistance in tuberculosis treatment.
This research holds promise for advancing the development of new treatment options
for tuberculosis.*’

Structure-based computational study to explore beilschmie compounds and their
potential as targeted therapies against multidrug-resistant mycobacterium tuberculosis.
The study aimed to identify promising compounds for further investigation by
analyzing the molecular structures and interactions. The findings contribute to the
development of novel treatments for tuberculosis, especially against drug-resistant
strains.'®

Newly identified mutations in the ribosomal protein S1 (rpsA) are linked to resistance
against Pyrazinamide. The researchers employed advanced computational
methodologies, including molecular dynamics simulations and free energy calculations,
to explore the effects of these mutations on the protein's stability and binding affinity to
Pyrazinamide.*

This study aimed to identify potential inhibitors for tuberculosis using a combination of
structure-based drug design, molecular docking, and molecular dynamics simulation.
The crystal structure of a relevant protein was obtained and used for the virtual
screening of a compound library. Promising compounds were selected based on their
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molecular docking
and MD simulations

Natural compounds,
molecular docking,
and MD simulations

Computational
techniques, virtual
screening, drug
resistance studies, in-

binding affinities, and their stability and dynamics were further evaluated through
molecular dynamics simulations. These findings provide valuable insights for the
development of new anti-tuberculosis drugs.?

This study uses a structure-based strategy to discover a natural compound inhibitor that
can effectively target M. tuberculosis thioredoxin reductase. The binding affinity,
stability, and dynamics of protein-ligand complexes were evaluated by employing
molecular docking and MD simulation techniques. The findings from this study offer
important insights into potential natural compounds that could be utilized as inhibitors
to combat M. tuberculosis infection.

This study aimed to explore opportunities for overcoming tuberculosis by targeting
emerging targets and developing inhibitors. A literature review identified potential
targets, and computational techniques were used to screen and identify inhibitors
against these targets. In vitro and in vivo experiments were conducted to evaluate the

vitro and in vivo efficacy of the identified inhibitors against Mycobacterium tuberculosis.??
studies

In this, we present a study on the successful application of MESP studies employed for finding the
potential binding site in the protein target and LSTM generator for designing candidate potential drug-
likeness molecules from staring fragment molecules. Presently, important molecular properties based on
the physicochemical and ADMET properties using RDKit and Swiss-ADMET, Density function theory
DFT calculation using the Gaussian software package, and molecular dynamics simulations studies were
employed for dynamic behavior, stability of the protein-ligand complex by using Gromacs package. The
free binding energies calculations and active amino acid residues of protein with ligand binding site

interactions were calculated by the MM-PBSA method.
6.2 Result and Discussion
6.2.1 MESP Calculation for Identification of Binding Site in Target Protein

We have collected 16 protein fragments of amino acid residues from the ribosomal protein S1 of
Mycobacterium tuberculosis (TB). There are 278-287, 288-297, 298-307, 308-317, 318-327, 328-337,
338-347, 348-357, 358-367, 368-377, 378-387, 388-397, 398-407, 408-417, 418-427, 428-438 amino
acid residues and then calculated the Molecular electrostatic potential surface area (MESP) using by
gaussian package. In comparison, MESP was employed at the possible binding site on the protein

fragment surface of the amino acid.
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(A) (B)

Figure 6.2 ESP studies of the ribosomal protein S1 of mycobacterium tuberculosis.

All the substrate cube files are loaded in VMD and transformed into one single cube file. Figure 6.2
shows two color regions of MESP distributions, such as dark blue lobes inside red, representing most
negative regions with function value -0.20 of the protein. The red color distribution shows low negative
regions with a function value of -0.01 a.u. of the whole protein. The total MESP distribution can be seen
in Figure 6.2 with two layers. The most negative regions, such as inner blue color lobes, are further
investigated by surface cavity analysis as highlighted by black circles with notations C1-Ca. To trace the
exact location of the potential binding site, MESP function values are projected onto the plane. Scanning
ESP function values within the plane resulted in surface cavities, as shown in Figure 6.2. This analysis
provided the four best potential binding sites for further studies.

6.2.2 Design of Potential Drug-Likeness Molecules

In the present manuscript, 25 LORD-generated molecules are provided. Twenty-five with reference
market drug pyrazinamide (R:) are selected based on AutoDock vina binding energy, and corrected

binding energy are shown in Table Figure 6.3.
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Figure 6.3 Twenty-five potential candidate drug-likeness molecules and Reference molecule geometric

structures.
6.2.3 Stereochemistry and Protein-Ligand Complex Interaction Studies

Stereochemistry is important in drug discovery because the biological activity of many drugs is
dependent on their three-dimensional configuration. Stereoselectivity must be considered when
designing small molecules that interact with biological targets. Stereoisomers can be synthesized
separately or isolated using chiral chromatography to produce new drugs. The activity of these particular
stereoisomers can then be determined. Drug developers can pick the most efficient and secure
stereoisomer or design a therapy targeting a specific stereoisomer by analyzing the stereochemistry of a
medicinal molecule and its mechanism of action. In this way, we investigated the stereochemistry of a
potential candidate molecule and its interactions with experimental Site-4 (C4) of the target protein from
Mycobacterium tuberculosis (TB). We employed ChemDraw 3D software to design 3D structures that
accurately matched the stereochemistry of the stereocenters and studied the interactions of four

129



stereoisomers (Dsa, Dsg, Dsa, and Deg) with the target protein, and determined molecular docking energy

(BE) and corrected binding energy (CBE).
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Figure 6.4 Stereo-isomer of Ds and De drug molecules and their interactions with target protein.
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Dsa exhibited a BE of -6.5 kcal/mol and a CBE of —4.8 kcal/mol, with pyridine fragments being more
important than Dsg. Dsa has one hydrogen bond contact with ASN A:366 and three Pi-alkyl interactions
with ALA A:327. D5B, on the other hand, had a BE shown at -6.2 kcal/mol and a CBE of —4.5 kcal/mol.
D6A and D6B have a BE of 6.9 kcal/mol and a CBE of —5.3 kcal/mol. These results explain how stereo
centers affect molecular docking energy and the complexity of interactions between proteins and ligands.
Drug developers can design more effective and safe therapeutics by understanding the stereochemistry
of chemical compounds and their interactions with biological targets.

6.2.4 Protein-Ligand Complex and Their Interaction Studies of the Top Four Drug-Likeness
Molecules at Selected Four Binding Sites

1Dy

CabDy

~Leu3s

Aasas /N
7

C3Dy

ASp34
\

Binding Energy (kcal/mol)

CqDy

(‘-lDI ('4Dl CJDJ ('4[)! CIRI
Protein-Druglikeness Molecular Complexes

Figure 6.5 Protein-ligand complex and their interaction studies of the top five drug-likeness molecules at
selected five binding sites. (A) MESP suggested site-1(C1), (B) MESP suggested site-2 (C,), (C) MESP
suggested cavity site-3 (Cs), (D) Experimentally reported site-4 (C.).
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We presented a diagram of the protein-ligand complex in Figure 6.5 (left column) for all four binding
sites to help you understand the binding site for the target. As seen in Figures 6 and 5, the black circle
on each picture depicts the precise position of the ligand complex interactions. Furthermore, in the right
column of Figure 6.5, we compared the BE and CBE of the top five compounds created by LORD (D3,

D2, D3, D4) for each site (C1 to C4) with the reference molecule, Pyrazinamide (Ry).

The BE and CBE values for the top five potential drug-likeness molecules designed by LORD are
better binding energy than the reference molecules, as seen in the maroon and green4 color bar plots for
all four binding sites. Finally, our LORD-generated potential molecules beat traditional market drugs in

all four binding sites.

6.2.5 Binding Sites Analysis from Protein-Ligand Complex
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Figure 6.6 Ribosomal protein S1 of mycobacterium tuberculosis active sites (Cy, Cy, Cs, Ca).
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The ESP cavity analysis was employed to explore the interactions between proteins and their ligands at
four different binding sets (C1-C4). Our findings demonstrated that the amino acid residues at Site-1 (C1)
have high binding energies than the other three binding sites. These residues include Thr 302, Lys 303,
Phe 310, Glu 318, Leu 320, Val 321, His 322, Arg 357, lle 358, Ser 359, and Leu 360. At Site-2 (C»),
Phe 307, Val 321, His 322, lle 323, Ser 324, Glu 325, Leu 326, lle 349, Asp 350, Arg 357, Ser 359, and
Leu 360 were identified as active amino acid residues. Additionally, it was found that sites 4 and 3
exhibit higher binding energies than C1 and Ca, respectively, while C1 and C> exhibit lower energies.
Our investigation also revealed that the active amino acids at site-3 (C3) and site-4 (C4) correspond with
the experimentally confirmed site-4 (Cs). These active amino acids include Leu 326, Ala 327, Val329,
Val337, Val338, Asp 343, Met 345, Leu 362, Asn 366, Met 427, Ala 430, GIn 431, Lys 434, and Phe
435.

6.2.6 Cavity-Drug-Likeness Molecules Interaction Matrix

Understanding how proteins and ligands interact is crucial in potential molecule development. It is
essential to identify potential ligand-binding sites and precisely determine the three-dimensional
structure of the protein to facilitate the development of effective drugs. Computer modeling and
simulation methods are widely used to predict how ligands interact with the protein and identify ligands
likely to have robust and precise binding interactions. For this, 25 potential drug-likeness molecules were
docked to the target protein, and the docked compounds were graded using a strict filter that considered
four parameters. Strong contacts were represented by dark green for hydrogen bonds, pine green for
typical hydrogen interactions, and pink for non-covalent interactions such as Pi-Pi, Pi-alkyl, Pi-sulphur,
and Pi-cation. Weak van der Waals interactions were represented by light green. The pyrazinamide
complex was investigated for interactions with four active amino acid residues. In contrast, the D
complex had 11 active amino acid residue interactions, D, had 13 active amino acids, D3 had 16 active
amino acids, D4 had 12 active amino acids, Ds had 9 active amino acids, De had 12 active amino acids,
D7 had 9 active amino acids, Dg had 12 active amino acids, Dg had 12 active amino acids, D10 had 12
active amino acids, D11 had 13 active amino acids, D12 had 11 active amino acids, D1z had 11 active
amino acids, D14 had 12 active amino acids, D1s had 13 active amino acids, Die had 10 active amino
acids, D17 had 11 active amino acids, D1g had 9 active amino acids, D19 had 9 active amino acids, D2
had 9 active amino acids, D21 had 11 active amino acids, D2 had 10 active amino acids, D23 had 9 active
amino acids, D24 had 10 active amino acids, and D25 had 11 active amino acids. The binding energy was

employed to calculate and analyze all of these interactions, and the results are shown in Figure 6.7.
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Figure 6.7 Target-Drug Interaction matrix for 25 drug candidates.
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Determining the interactions between proteins and ligands is critical for developing reliable and effective
potential drug-likeness molecules. A way to precisely target and regulate the activity of disease-related

proteins is essential for developing potential drug-likeness molecules.
6.2.7 Physicochemical and ADME properties

The physicochemical features of twenty-five potential drug-likeness molecules have been analyzed
using the Lipinski rule of five to determine their applicability. The Lipinski rule of five is a series of

principles used to assess a molecule's drug-likeness based on its physicochemical features.
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Figure 6.8 Physico-chemical properties of 25 drug-likeness molecules. (A) Molecular weight (g/mol),
(B) Hydrogen bond acceptor, (C) Hydrogen bond donor, (D) Partition Coefficient (LogP), (E) Total polar
surface area, and (F) Rotatable bond count.

The analysis showed that all twenty-five molecules had an MW ranging from 306.32 to 484.63 g/mol,
which is less than the upper limit of 500 g/mol set by the Lipinski rule of five. The logP values of these
molecules ranged between 2.64 and 4.97, which is less than the upper limit of 5 set by the Lipinski rule
of five. The number of HBD was found to be between 0-3, while the number of HBA was between 1-5.
The molecular polar surface area of the molecules ranged from 26.17 to 73.36 angstroms, which is less
than the upper limit of 140 angstroms. Additionally, the TPSA in these molecules ranged from 1-8, less
than the upper limit of 10 set by the Lipinski rule of five.

Table 6.2 ADME / Pharmacokinetic proprieties of the selected molecules in 2Gastrointestinal absorption.
®Blood brain barrier permeant. “P-gp substrate, 9Cytochrome P450 family 1 subfamily A member2,
®Cytochrome P450 family 2 subfamily ¢ member19, ‘Cytochrome P450 family 2 subfamily C member 9,
9Cytochrome P450 family 2 subfamily D member 6, "Cytochrome P450 family 3 subfamily A member4,

ISkin permeation in cm.

S.No. Gl BBB P-gp CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 Log
abs? permeant® substrate® Inhibitord Inhibitor® Inhibitor® Inhibitor9 Inhibitor" Kp'
D1 High No No Yes No No Yes Yes -6.81
D2 High No Yes Yes No No No No -7.26
Ds High No Yes Yes No No No No -7.29
Da High No Yes Yes Yes Yes Yes Yes -6.83
R1 High No No No No No No No -7.48

To succeed with twenty-five molecules, ADME (Absorption, Distribution, Metabolism, and Excretion)
qualities are critical for determining the effectiveness, safety, and pharmacokinetic aspects of potential
drug-likeness molecules during drug development. The SWISS ADME website is a tool for predicting
these attributes based on the molecule's chemical structure. Prediction of ADME features is critical in
finding possible drug candidates with a high probability of success in clinical trials. The top five candidate

potent drug-likeness molecules with promising ADME features are listed in Table 6.2.
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6.2.8 Correlation of Potential Drug-Likeness Molecules vs. Site-wise binding Energy

The binding energies of twenty-five drug-like compounds were determined for four distinct target protein
binding sites. The results are shown in Figures 6.8(A) and 6.8(B), with binding energies ranging from -
2.5 to -5.8 kcal/mol. Figure 6.8(A) plots the number of drug-likeness molecules against their respective
binding energies, while Figure 6.8(B) plots the number of binding sites against their binding energies. In
both pictures, the green color denotes sites that interact considerably with the experimental site. As shown
in Figure 6.8, the study indicated that binding sites C3 and C4 had more potential for binding energies of

protein and ligand complexes than C; and Co.
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Figure 6.9 Corrected binding energy (CBE) trend curves for LORD 25 molecules at all four sites. (A)
The X-axis is 25 drug-likeness molecules (D1 to D2s), and Y-axis is CBE values and (B) The X-axis is

ESP-suggested sites (C1,C2,C3,Cs), and Y-axis is CBE values.
6.2.9 Molecular Dynamics (MD) Simulations

MD simulations of the pyrazinamide drug and four drug-like molecules (D1, D2, D3, and D4) were carried
out using the GROMACS 5.1.2 software. The CHARMM force field was employed to calculate the
protein's energy and molecular dynamics (MD) simulations, and the CHARMM General Force Field
(CGenFF) was used to create the ligand's topology. The protein-ligand combination was put inside a
container and submerged once the docking process was finished, thereby solvating the system using the

TIP3 water model. Chloride (CI-) ions were appropriately added to the complex to keep it neutral. The
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steepest descent approach was used for a total of 10,000 steps to conserve energy. The simulations
employed the NVT ensemble while maintaining the temperature at 298 K and the NPT ensemble ranging
from 1.0 bar to 250 bar to simulate the ligand-protein interaction. The Particle Mesh Ewald and LINCS
algorithms were used to address short-range electrostatic interactions, and all bonds were restricted using
a Van Der Waals distance threshold of 10. To assure stability, the simulations were carried out for 100 ns,
and the RMSD graphs for the four top drug molecules with Pyrazinamide are presented in Figure 6.10.
The researchers were most likely comparing the stability of the four drug-likeness molecules with

Pyrazinamide to evaluate their potential as therapeutic candidates.
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Figure 6.10 MD simulation studies of the RMSD, top four drug-likeness molecules (D1, D2, D3, D4) and

reference drug molecule (R1).
6.2.10 Free Energy Calculations

The protein-ligand complexes binding energy, or binding energy (BE) as it is more often known, was
determined using the g-mmpbsa software. The molecular mechanics (MM) force field is used to model
both bound and unbound states to determine the vacuum potential energy resulting from various
interactions.This involves utilizing the Coulomb and Lennard-Jones potential functions to compute the
electrostatic and van der Waals (Evdw) energy contributions. Additionally, the Poisson- Boltzmann
equation is A significant advance that was made in precisely identifying the polar component during the

evaluation of the solvation-free energy.
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In general, considering that non-electrostatic solvation energy correlates precisely with the solvent-
accessible surface area (SASA) when calculating the non-polar contribution. The non-polar energy term
(Gnonpolar) includes the van der Waals interaction, such as the attracting and repelling forces that emerge
between the solute and solvent due to cavities. During the Free energy calculations, snapshots of the
equilibrated area from the molecular dynamics (MD) trajectory are captured. To carry out these
computations, the default parameters outlined by Kumari et al. are utilized, and the MmPbsaDecomp.py

script included with the g-mmpbsa package is employed.

The Dy, D2, D3 have better complex free energy than the reference of Pyrazinamide (R1) are shown in
Table 6.3.

Time Complex free energy (kJ/mol)
intervals
D, D: D3 Ds R1
(ns)
0-25 —62.8 —41.5 —61.0 -51.9 —-16.0
+/—8.5 +/—13.8 +/—16.4 +/—15.3 +/— 6.4
25-50 —60.6 —-61.7 —61.0 —54.2 —20.1
+/—13.7 +/-14.4 +/—16.4 +/—34.2 +/—14.0

Table 6.3 Free energy of interaction of the top four drug-likeness (D1-D4) molecules and Pyrazinamide

(R1) with target protein.

The results are shown in Table 5.3, which reveal that D1, D2, and D3 have lower complex free energy
values than the reference molecule pyrazinamide (R1). These data imply that D1, D2, and D3 may have

higher binding affinity and preferential interactions with the protein than the reference molecules.

6.3 Conclusions

LORD is thoroughly investigated in this work on the ribosomal protein S1 of mycobacterium tuberculosis.
We discovered five putative binding sites, one of which was experimentally active. LORD uses five
possible binding sites to construct compounds, yielding 25 potential therapeutic candidates. The
experimentally active site in CBE values is more prominent than the other four binding sites. LORD 25
molecules exhibit superior BE (kcal/mol) and physicochemical qualities and better ADME features than
the currently marketed medication pyrazinamide. In addition, unlike less stable pyrazinamide medicines,

MD simulations of the top four potential drug-like compounds are investigated and shown to be protein
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stable during lengthy simulation runs. The study focuses on using LORD on the ribosomal protein S1 of
mycobacterium tuberculosis, which is linked to TB. The researchers found five possible binding sites, one
experimentally active, and utilized LORD to generate 25 prospective drug options. The prospective
therapeutic candidates' binding energy (BE) values were determined to be good, and they demonstrated
better physicochemical and ADME qualities when compared to the market-available medication

pyrazinamide.

Furthermore, MD simulations on the top four potential drug-like compounds revealed that they were
protein stable during lengthy simulation runs. Overall, the study indicates that LORD might be a valuable
method for discovering new potential drug-likeness molecules and improving their characteristics to
facilitate drug development. The study also emphasizes the potential of the discovered drug-likeness

molecules for treating TB.
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CHAPTER 7

Conclusions and Scope for Future Work
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7.1 Conclusions

We have developed an automatic drug designer called “LSTM-Enabled On-Site Recurrent Molecular
Designer” (LORD). The LORD designer scans the entire target protein and finds the potential binding
energy sites using MESP cavity analysis. The target binding energy sites facilitate LORD to design the
potential drug-like molecule at that specific protein target binding site in the following step. While
developing the drug molecule, LORD encapsulates the Physicochemical properties such as Lipinski’s rule
of five. Drug-likeness molecules are filtered through ADME properties and molecular dynamics (MD)
studies. The LORD designer applied AD, COVID-19, PD, and TB, essential in the potential drug target
to combat the various diseases. We generated potential drug-like molecules and studied their
physicochemical properties, ADME properties, and MD studies on top potential drug-likeness molecules.
In these studies show that the 125 drug-like molecules are promising to combat those diseases compared
with available market drugs. Generally, the designer can be used for any target protein to design drug-like
molecules and define binding sites. While identifying the potential binding sites, it uses the MESP
calculation, which is performed at a lower computational cost using the substrate structure approach.
Design strategy mainly depends on the target binding site environment; hence, LORD can accurately
design the drug.
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Figure 7.1 Current working chapters.
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LORD is a computational strategy for designing novel compounds with particular characteristics, like
high affinity and selectivity for a target protein. Computer methods and simulations forecast how a target

protein will interact with various small-molecule drugs.

The subsequent step involves utilizing a computational algorithm to produce and asses numerous potential
drug-likeness molecules. The biological potential of these molecules is assessed, including potency,
selectivity, and bioavailability. Next, the most promising compounds are produced and tested in vitro and

in vivo to determine their effectiveness and safety.
7.2 Scope for Future Work

LORD molecular design has several advantages over traditional drug discovery methods, including the
possibility of developing incredibly selective medicines for a specific target protein. Also, it makes it
possible to quickly test many compounds, which might help save both time and money.De novo drug
design will move towards combing computational and experimental methods, leading to greater precision

and effectiveness. Here are some possible directions for the future of de novo drug design.

It is predicted that de novo drug design will adopt this strategy in the future, including a range of
computational and experimental techniques to enhance the accuracy and efficacy of the drug development
process. The following directions for LORD drug design might develop in the future:

1. Artificial intelligence and machine learning may be used to analyze vast amounts of data from
experimental assays and improve the accuracy of predictions of molecular interactions. This may

speed up the search for potential new drug candidates.

2.Using big data: The expanding availability of detailed biological data, like genomic and proteomic

data, may offer crucial knowledge about disease pathophysiology and potential treatment targets.

3.Improving the efficiency of the drug discovery process: LORD molecular design can benefit from
advancements in high-throughput screening, which allow for the rapid testing of large compounds.
In addition, advances in synthetic chemistry and automation can improve the efficiency of compound

synthesis and testing.
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4.Targeting complex disorders: Since many diseases have complex or poorly known underlying
systems, it may be challenging to create effective therapies. LORD design offers a systematic
strategy for exploring novel therapeutic targets and designing molecules with the most desirable

features, which can assist in overcoming these difficulties.

5.The future of LORD de novo molecular designer will help develop potential drug-likeness

compounds to treat various target proteins such as HIV and breast cancer.

Future work
( De novo drug design)

Figure 7.2 Future direction of the thesis work.
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