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ABSTRACT

Background/aim: Diabetes is a multifactorial disease that affects the functioning of the renin-
angiotensin system (RAS). The role of advanced glycation end products (AGES) in inducing
diabetic complications is well known. In the present study, we hypothesized that the prevention
of AGE accumulation or abrogation of AGE synthesis using an AGE inhibitor, aminoguanidine
(AG), in streptozotocin (STZ)-induced diabetic animal models would affect the progression of
diabetes and it may delay or prevent the onset of diabetes-related complications. We
determined the effects of AG, in STZ-induced diabetic rats by determining various indices of
RAS and renal functions. Additionally, we also investigated the effect of the drug, AG, on
various hemodynamic and physiological functions in the body of the animals.

Methods: Male Sprague Dawley rats weighing 200-250 g were assigned to four groups (n =
4-6): Vehicle, Vehicle+AG, STZ-induced, and STZ-induced+AG treated rats. Diabetes was
induced by a single intraperitoneal (IP) injection of streptozotocin (55 mg/kg) dissolved in
sodium citrate buffer. The Vehicle rats were injected with only buffer. The blood glucose levels
were measured after 48 hours, and animals with blood glucose levels > 300 mg/dL were
included in the study. Blood glucose levels in the vehicle rats were also determined to ensure
their non-diabetic state. After confirmation, AG was administrated at a dose of 1 g/L in drinking
water for two weeks. Urine was collected to measure the urinary protein, urine flow rate, UFR,
glomerular filtration rate (GFR), and also to determine the sodium excretion. Blood was
collected to measure creatinine and sodium. The kidney tissue was harvested to determine the
immune reactivity for renin, AT, and AT proteins by immunoblotting and to perform
histological studies. Similarly, the heart tissue was collected to determine expression levels of
AT proteins by immunoblotting. Data were expressed as mean + standard error of the mean

(SEM), and a p-value < 0.05 was considered statistically significant.



Results: Diabetic rats had a significant drop in body weight, accompanied by increased food
and water consumption. The diabetic rats exhibited significantly increased urine volume, urine
flow rate, and GFR. These phenotypes were significantly or considerately reversed by AG
treatment in the STZ+AG-treated diabetic rats. Aminoguanidine prevented the increase in
blood sugar levels compared to STZ-induced diabetic rats alone (295.9 + 50.69 mg/dl versus
462.3 + 18.6 mg/dL (p < 0.05). However, it did not affect the glomerular filtration rate (GFR)
and glomerular damage, as assessed by the renal histopathological studies. The STZ-induced
diabetic rats had an increased sodium excretion (3.24 + 0.40 mmol) and significantly increased
expression of the AT receptor and that of the ATy receptor, which was slightly reversed by the
treatment with AG. Treatment with AG decreased sodium excretion (2.12 £ 0.63 mmol/L, as
compared to the diabetic rats 3.24 + 0.40 mmol/L. The STZ-induced+AG treated rats also had
modestly decreased expression of the AT receptor (0.99 £+ 0.07 versus 1.12 = 0.08, as
compared to the STZ-induced diabetic rats, while the AT receptors showed a slight increase
in the STZ+AG-treated rats compared to the STZ-induced diabetic rats (1.1 + 0.19 versus 1.08
+0.12).

Conclusion: This study highlights the action of the drug AG in not exacerbating any damage
in diabetic rats. Employing AG as a pharmacological intervention to prevent an increase in
blood sugar adds a new dimension to controlling increased blood sugar and preventing diabetic
complications. The employability and pharmacological intervention of the drug AG, in

diabetes, therefore, need a renewed and further investigation.
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1.1 Diabetes

Diabetes is a chronic metabolic disease with a high rate of morbidity and mortality on a global
scale?. The well-known clinical symptoms of diabetes are polyuria, polyphagia, and
polydipsia®>*4. Additional symptoms include blurry vision, headache, fatigue, delayed wound
healing, and itching of the skin®. Diabetes has further been classified into Type 1 and Type 2.
The type | diabetes has an autoimmune etiology, whereby the B-cells are destroyed by the
body’s own antibodies and affects 5-10% of all cases®’. The effective treatment is daily insulin
injections to reduce blood glucose levels. Whereas Type |1 diabetes is caused by a combination
of insulin resistance, most likely originating due to hyperinsulinemia®. This occurs primarily
in the adipose tissue, but also in the liver, subsequently leading to decreased production by [3-
cells in the pancrease®™°. It is estimated that 90-95% of diabetes are type 2'. However, diabetes
may also manifest during some conditions like pregnancy, drug toxicity, insulin receptor
disorders, genetic disorders, endocrinopathies, and in association with pancreatic exocrine
disease! 4.

The symptoms of diabetes may develop rapidly, typically, within weeks or months, mainly in
type | diabetes, while they usually develop gradually and/or may be delayed or sometimes even
missing in type 2 diabetes. The major risk factors for diabetes include genetic, environmental,
and metabolic factors such as ethnicity, family history of diabetes, and gestational diabetes
combined with older age, overweight and obesity, unhealthy diet, physical inactivity, smoking,
and the intake of alcohol®®. Several dietary practices have been linked to unhealthy body weight
and/or high intake of saturated fatty acids, high total fat intake, and inadequate consumption
of dietary fiber'®. In addition, a high intake of sugar-sweetened beverages, which contain
considerable amounts of free sugars, increases the likelihood of being overweight or obese,
particularly among children!’. Studies have shown an association between a high intake of

sugar and an increased risk of the development of diabetes®*°.
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The economic burden of diabetes is high and bears a significant impact on the socio-
economic progress and public health worldwide?’. Although huge awareness has been created
of the genesis of diabetes, the incidence of diabetes has increased immensely in developed and
developing nations. According to current global estimates from the International Diabetes
Federation (IDF), 537 million people worldwide are estimated to have diabetes, and that
number is expected to rise to 643 million by 2030°. If no effective preventive measures are
taken this number is expected to reach over 784 million by 2045, thereby acquiring an epidemic
proportion. Approximately 50% of the individuals having diabetes remain undiagnosed,
leading to the development of diabetic complications and avoidable or preventive economic
burden to the patients. The global health expenditure for diabetes cases is estimated to reach

approximately USD 1,027,600 billion by 2030’.

Over the last three decades, diabetes prevalence has steadily increased in Asian
countries, particularly India?*. Currently, India leads the world with the largest number of cases
and this is expected to increase further by 2045’. It is estimated that nearly one million children
and adolescents under the age of 20 in India have type 1 diabetes. The total expenditure related
to diabetes in the region is currently USD 10 billion, which could lead to be one of the

considerable medical burdens on the health budget of this country’.
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Figure 1.1: Diabetes estimated cases around the world including India
(The international and national statistics adapted from the International Diabetes Federation

(IDF) Atlas. 2022)
1.1.1 Complications of Diabetes

Poor glucose control leads to hyperglycaemia coupled with insulin resistance thus initiating
factors in the pathogenesis of diabetic complications?>?*. The complications of diabetes are not
limited to one organ and involve various organs of the body including the heart, kidneys, brain,
nervous system, and eyes resulting, in various complications such as retinopathy?*,
nephropathy 2, neuropathy 26, atherosclerosis, heart attack?’, and stroke?3, respectively. Among
all vital organs, the most important ramification of diabetic complications is its effects on
kidneys®. Various mechanisms and insights have been proposed for the pathophysiology of
nephropathy in diabetic conditions*®. However, the mechanisms by which hyperglycemia can
affect renal disease have not been adequately addressed. As a consequence, their life
expectancy decreases in comparison to that of the general population. Although the current
diabetes treatment has been encouraging, the prevention and control of diabetes complications
still remain a challenge. Various hyperglycemia-elicited metabolic and hemodynamic
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derangements have been proposed to contribute to renal complications in diabetes®'. The

currently identified mechanisms include increased oxidative stress>

, polyol pathway,
glycation end-product formation®’, activation of protein kinase C (PKC), chronic
inflammation*, mitochondrial dysfunction, and activation of the renin-angiotensin system
(RAS)*. Among these, activation of the renin-angiotensin system and increased glycation end-
product formation is considered to be the initial core mechanism leading to diabetic kidney

diseases. Therefore, understanding the renin-angiotensin system in the context of renal

complications could help develop effective therapeutic strategies against diabetes

1.2 Physiology of Renin-Angiotensin System

The renin-angiotensin system (RAS) is the very important hormonal system that regulates
sodium balance/ fluid volume, and arterial pressure®®. The RAS system comprises renin,
angiotensinogen, angiotensin-converting enzyme |, IlI, Angiotensin, (1-10), Il and their
principal effector receptors AT: and AT and prorenin/renin binding receptor (PRR)%®%.
Components of the RAS and Angiotensin |l receptors are found in the brain and many
peripheral tissues such as the heart and kidney but also placenta, testis, adipose tissue, and

eye3®.

Table 1.1: List of Renin-angiotensin system components and associated genes

S.no  Components Genes and Chromosome number

1 Angiotensinogen AGT-1q42-3

2 Renin REN, Chromosome number 2 1932

3 AngiotensmI —eeeeee

4 ACE ACE-17q23

5 AngiotensinII e

6 AT AGTR13q 24

7 AT AGTR2 XP 22

8 Prorenin receptor (PRR) ATP6AP2 gene on the X-chromosome
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Renin is an enzyme primarily produced and released by the juxtaglomerular cells (JG)
of the kidney®. Renin cleaves the N-terminal portion of angiotensinogen, to form the
biologically inert decapeptide Angiotensin | or Angiotensin (1-10)*°. The amount of renin in
the bloodstream is a key rate-limiting step in determining the level of Ang Il and the activity
of the RAS®. The kidney also releases unprocessed prorenin through a constitutive mechanism
in addition to this controlled one. Hence, 70% - 90% of renin in human circulation is present
as prorenin®’. There are various mechanisms regulating the renin synthesis and release, namely
(i) A renal baroreceptor mechanism (ii) changes in the Na* content and the distal tubular
macula densa cells (iii) changes in the sympathetic nerve activity via beta-1 adrenergic
receptors on JG cells, (iv) negative feedback by the direct action of Ang Il via the AT;
receptors, and (v) effect on renin secretion and synthesis by endothelial factors, such
as prostaglandins, nitric oxide, and endothelin®. Renin and prorenin are the ligand for the pro
renin receptor (PRR). Currently, this receptor has gained much attention since it plays an
important role in conditions, such as, metabolic syndrome, diabetes, and hypertension*. The
binding of prorenin/renin activates the angiotensin Il-mediated or independent pathway. Thus,
facilitate angiotensinogen generation and promote angiotensin Il effects i.e induce the high
blood pressure and increased heart rate. In addition, their binding triggers a range of cellular
events for example inducing the up-regulation of the pro-fibrotic genes such as TGF-f1
(transforming growth factor-B1), PAI-1 (plasminogen activator inhibitor-1), collagens,
fibronectin, as well as up-regulates COX2 (cyclo-oxygenase 2)*>*3. The increased PRR

synthesis could be linked in some way to altered cardiovascular and renal functions.

Angiotensinogen (AGT) prohormone with a molecular weight of 54-56 kDa¢. The
concentration of plasma angiotensinogen depends on angiotensin Il levels**. Angiotensinogen

is synthesized and released from the liver, but angiotensinogen mRNA expression has also
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been noticed in many other tissues, including the kidney, brain, heart, vascular, adrenal gland,

ovary, placenta, and adipose tissue*>®.

Angiotensin | is an inactive decapeptide produced by renin from the substrate
angiotensinogen®. Angiotensin  (Ang 1), a decapeptide is converted to the functional
octapeptide Angiotensin Il by the hydrolytic action of angiotensin-converting enzyme | (also
known as ACE 1)*’. Although angiotensin-converting enzyme (ACE) is the major catalyst for
the conversion of angiotensin | to angiotensin 11, other enzymes including tissue plasminogen
factor, cathepsin G, tonin, and chymase can also catalyze the conversion of angiotensin | into

I1. The known biological activity of the Angiotensin | peptide is still missing.

The exopeptidase enzyme Angiotensin-converting enzyme,) was identified and
characterized in the 1950s by Skeggs and colleagues*®. Angiotensin-converting enzyme
(ACE) is a zinc metalloprotease®. It is localized on the plasma membranes of various cell
types, such as vascular endothelial cells, microvillar brush border epithelial cells (e.g., renal
proximal tubule cells), and neuroepithelial cells®. The main function of the Angiotensin-
converting enzyme (ACE 1) is to remove the C-terminal dipeptide (His-Leu) to form the

functional octapeptide Ang 11°.

Angiotensin 11, (Ang 1), is a powerful vasoconstrictor hormone or effector of this system®?,
angiotensin (Ang) 11, is produced by sequential cleavage of peptides derived from the substrate
molecule angiotensinogen®. Angiotensin 1l binds to specific receptors (AT: and AT2),
triggering a broad range of biological actions impacting virtually every system in the body
including the brain, heart, kidney, vasculature, and the immune system>3%5. In addition, it
stimulates the production of aldosterone by the zona glomerulosa of the adrenal cortex which
helps in sodium reabsorption in the kidney, via the hormone Aldosterone®®. Angiotensin Il is

also a potent growth modulator and proinflammatory peptide.®” In addition, this peptide
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degrades bradykinin, a vasodilator®® %°. The heptapeptide angiotensin 111 may also stimulate
aldosterone production®. Alteration in the activation of the Renin-Angiotensin System (RAS)
can contribute to the development of hypertension, cardiac hypertrophy, and heart failure, via

a number of pathways involving the kidneys, heart, and blood vessels®*2,

Over the past few years, other angiotensin peptides, like Angiotensin 1V, and especially
angiotensin-(1-7), have been shown to selectively mediate different RAS effects®®. With
regards to the angiotensin-(1-7), this heptapeptide is formed from Angiotensin | by prolyl-
endopeptidase or from Angiotensin Il via prolyl endopeptidase, prolyl carboxy peptidase or
mainly by ACE-2, an enzyme homologous to ACE-1°3. Angiotensin-(1-7) binds to a G-protein
coupled receptor, namely MAS receptor, and, in general, plays a counter-regulatory role to that
of RAS by opposing the vascular and proliferative effects of angiotensin 1184, Many
experimental studies have provided ample support for the counter-regulatory effects of the
RAS axis in diabetes®. A few studies have also provided insights into the role of MAS

receptors in diabetes®.

Angiotensin Il is an octapeptide hormone that mediates its effects via various receptors,
which include AT, AT, ATs and AT+, Among all the receptor types, the type 1 receptor
(AT, and the type 2 receptor, (AT are the most well-studied®. The Angiotensin Il type |
receptor (AT1) and type Il receptor (AT2), belong to the family of G-protein-coupled receptors,
( GPCRs)®’. The AT receptor can activate various signaling pathways. In the G-protein
dependent pathway, it stimulates G-protein Gg/11, leading to the activation of phospholipases
A2, C, and D. This results in the production of inositol trisphosphate (IP3), which triggers
calcium signaling, and the activation of protein kinase C isoforms and MAPKs®%, It also
activates several tyrosine kinases, scaffold proteins, and the nuclear factor-kB pathway in
smooth muscle®®. In the G-protein independent signaling pathway, the AT; receptor can utilize
arrestin-mediated signaling to activate MAPK and the Jak/STAT pathway’®. Furthermore, the
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AT receptor can also signal through other G-proteins, such as Gi/o and G11/12". These
signaling pathways have various downstream effects, including the stimulation of various
sodium transporters like the Na, H-exchanger, Na, K-ATPase, and Na/HCO3 co-transporter in
the kidney and heart’2"3, The receptor AT is expressed prominently in vascular smooth muscle
cells (VSMCs), endothelial cells, endometrium, Kidney, liver, adrenal gland, ovary, brain,
testis, lung, heart, and adipose tissue. The AT; receptor is responsible for the classical actions
of Angiotensin Il such as vasoconstriction, aldosterone release from the adrenal zona
glomerulosa, salt retention in the renal proximal tubules, heart contraction, cell growth in the
cardiac left ventricle and in the arterial wall and stimulation of the sympathetic nervous
system®. After exerting its effects, this receptor undergoes desensitization and internalization

or phosphorylation, through its C-terminal region’.

The Angiotensin |1, type 2 receptor, the AT. receptor primarily acts through the Gi
proteins and tyrosine phosphatases to exert inhibitory effects on cellular responses mediated
by the AT1 receptor and growth factor receptors®. Both (AT1 and AT>) receptor subtypes have
similar Angiotensin I1-binding properties but differ in genomic structures, localization, tissue-
specific expression, and regulation. The Angiotensin I, type 2 receptor (AT?) is extensively
expressed in the fetus, whereas its expression is hugely decreased after birth, being restricted
to a few organs such as the brain, adrenal, heart, kidney, myometrium, and ovary’®. Studies
have shown that in the kidney the AT, receptor mRNA is mainly localized in the proximal
tubules, glomeruli, juxtaglomerular apparatus, interlobular arteries, arcuate arteries, afferent
arterioles, collecting ducts, and outer medullary descending vasa recta’. The AT receptor
plays an important role in embryonic development, growth, differentiation, regeneration of

tissue, and cell death36.7®,

An angiotensin Il receptor that is not blocked by either losartan (angiotensin Il receptor
antagonist that selectively blocks the AT: receptor subtype) or PD 123177 (a selective
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antagonist for the AT receptor subtype) has been classified as ATs’®. Evidence suggests that
the AT, receptor activation, via angiotensin 1V, is an important mediator of the expression of

plasminogen activator inhibitor-177,

Prorenin receptor (PRR) Liver-Angiotensinogen

o Low B.P
and s Kidney-Renin
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Figure 1.2: Renin-angiotensin system components synthesis, and their integrated function

1.3 Physiological Relevance of Renin-Angiotensin System, RAS, Biology/ The

importance of RAS Cascade

The renin-angiotensin system (RAS) plays a significant role in various physiological
processes apart from blood pressure regulation®. In response to decreased blood pressure or
blood volume, angiotensin Il causes the blood vessels to constrict, raising blood pressure, and
also stimulates the release of aldosterone from the adrenal glands. Aldosterone acts on the
kidneys to increase the reabsorption of sodium and water and promote the excretion of
potassium. It also stimulates H* secretion and HCO3" reabsorption in both proximal and distal
tubules thus regulating H*-ATPase activity in the collecting tubule’®. The activation of apical

Na*/H" exchanger and basolateral Na*/HCO3" cotransporter, as well as Na+, K+-ATPase, and
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apical H+-ATPase, are implicated in angiotensin Il-induced transcellular sodium and
bicarbonate reabsorption within the proximal tubule’®. Whereas Na+/H+ exchange and H*-
ATPase contribute to the reabsorption of sodium and bicarbonate in distal tubules’. This
mechanism is vital for regulating fluid balance and electrolyte concentrations. The hormone
angiotensin Il also constricts the efferent arterioles, to help maintain the glomerular filtration
rate (GFR)®. The RAS promotes the release of another hormone called antidiuretic hormone
(ADH) or vasopressin, which increases water reabsorption in the kidneys®. Angiotensin 1l has
direct effects on the heart muscle, promoting cardiac hypertrophy (enlargement of the heart
muscle cells), and fibrosis. In the brain angiotensin Il stimulates the release of antidiuretic
hormone (ADH) from the posterior pituitary gland®. The ADH reduces urine output and helps
to maintain blood pressure®?. It is important to note that angiotensin 11 is involved in a complex
regulatory system, and its effects can vary depending on the physiological and pathological
conditions of the body®°. Collectively, these cascades of actions and reactions lead to increased

blood pressure, with mediation by the heart, kidneys, blood vessels, brain, and adrenal glands

73
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Figure 1.3: Functions of angiotensin II hormone on different organs/tissues
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1.4 Alteration of Renin-Angiotensin System (RAS) in Various Pathological

Conditions

The abnormal activation/ implication of (systemic or intra renal) renin-angiotensin system
(RAS), can have pathological consequences like hypertension, heart failure, chronic kidney
disease, eye disease (age-related macular degeneration (AMD), and glaucoma), and
neurological disease (Alzheimer's disease (AD), Parkinson’s disease (PD), stroke, multiple
sclerosis (MS), and Huntington's disease (HD)®%®°. Factors that contribute to RAS
dysregulation include increased or decreased renin secretion, angiotensinogen production,
angiotensin-converting enzyme (ACE) activity, or angiotensin receptor sensitivity®8’.

1.4.1 Hypertension

The overactive or dysregulated renin-angiotensin system can lead to chronic elevation of
angiotensin Il levels. This chronic activation causes an increased action of Ang Il via increased
activation of the Ang Il receptors, mainly the AT; receptors. This can result in hypertension,
which is a major risk factor for cardiovascular diseases, including heart attacks, strokes, and
heart failure

In addition, the alteration of the renin-angiotensin system (RAS) is closely associated with
the development of preeclampsia, a hypertensive disorder that occurs during pregnancy®.
Preeclampsia is characterized by high blood pressure and signs of organ damage, usually

involving the kidneys and livers®.

1.4.2 Chronic Renal Disease

The elevated angiotensin Il production in the kidney causes inflammation, fibrosis®®, and
modulation of Na+, K+, and ATPase pump®. Thus, dysregulated RAS contributes to renal
damage, and impaired sodium and water balance, affecting the overall physiological balance

of the ions and water, and consequently to the progression of kidney disease. The upregulation
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of angiotensinogen (AGT), angiotensin Il (Ang Il), and ATj receptor expression within the

podocytes of the kidney during DN has also been previously reported®?.

1.4.3 Eye Disease

1.4.3.1 Age-Related Macular Degeneration (AMD)

Age-related macular degeneration (AMD) is characterized by the degeneration of the macula,
the central part of the retina responsible for sharp vision®2. Similarly, in AMD there is an
upregulation of angiotensin-converting enzyme (ACE), which leads to increased production of
angiotensin Il. Thus, angiotensin Il promotes inflammation and oxidative stress, contributing

to retinal vascular damage®® and age-related macular degeneration®2.

1.4.3.2 Glaucoma

Glaucoma is a group of eye conditions characterized by optic nerve damage, often associated
with increased intraocular pressure (IOP). The effector hormone, angiotensin Il has been
shown to contribute to the regulation of IOP by modulating the resistance of aqueous humor
outflow through the trabecular meshwork®*, thus leading to the build-up of the Aqueous humor,
and subsequently to an increased IOP. Additionally, the RAS has been implicated in the
pathogenesis of optic nerve damage and retinal ganglion cell death in glaucoma®. Thus,

dysregulation in RAS is also a causative factor for Hypertensive Retinopathy.
1.4.4 Neurological Diseases

Activation or Dysregulation within the renin-angiotensin system (RAS) signaling has been
implicated in the pathogenesis of various neurological diseases®.

1.4.4.1 Alzheimer's Disease (AD)

Increased levels of angiotensin-converting enzyme (ACE) and angiotensin Il (Ang I1) have
been observed in the brains of individuals with Alzheimer's Disease (AD). The increased action

of angiotensin 11 can contribute to neuroinflammation, oxidative stress, and the accumulation
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of amyloid-beta plaques, which are characteristic features of Alzheimer's Disease pathology®®.
Moreover, activation of the angiotensin type 1 receptor (AT receptor) has been implicated in
promoting cognitive decline and neuronal damage in Alzheimer's Disease®’. Studies have also
shown that increased expression of ACE, Ang Il, and AT receptors is associated with the loss

of dopaminergic neurons in the brains of Parkinson's Disease patients®®°,

1.4.4.2 Ischemic Stroke

During an ischemic stroke, the activation of the RAS can exacerbate brain damage. The
effector hormone of the RAS system, angiotensin Il, through AT receptor activation,
contributes to vasoconstriction, inflammation, oxidative stress, and neuronal cell death in the
ischemic brain'®. Therapies targeting the RAS, such as ACE inhibitors or AT receptor

blockers, have shown potential for reducing post-stroke brain injury®.,

1.4.4.3 Multiple Sclerosis (MS)

Altered RAS signaling has been implicated in Multiple Sclerosis (MS), an autoimmune
neurodegenerative disease. Studies have reported increased expression of ACE and AT
receptors in the brains of Multiple Sclerosis patients. The hormone, Angiotensin Il has been
shown to promote neuroinflammation, blood-brain barrier dysfunction, and immune cell
activation in Multiple Sclerosis'®>. Modulating the RAS components may represent a

therapeutic approach in MS management.

1.4.4.4 Huntington's Disease (HD)

The RAS has been implicated in Huntington's Disease (HD), a genetic neurodegenerative
disorder. Dysregulation of RAS components, including ACE and angiotensin Il levels, has

been observed in the brains of Huntington's Disease patients and mouse models. The hormone
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angiotensin 1l is shown to contribute to neuronal dysfunction, oxidative stress, and
neuroinflammation in Huntington's Disease'®.

Currently, ACE inhibitors angiotensin Il type 1 receptor blockers (ARBs), and
Ssympathetic inhibitors (o, and 3 adrenergic blockers) are extensively used to control the blood
pressure and management of these conditions including renal diseases. However, further
research is needed to fully understand the intricate mechanisms underlying the altered RAS
and to develop effective therapeutic interventions. Therapeutic targeting of the renin-
angiotensin system (RAS) is the most validated clinical strategy for slowing down or delaying

the onset of the changes associated with these conditions.

/ Hypertension

Alteration of
Renin-
Angiotensin
( Central Cardio
Nervous
Vascular

System ) ‘ Disease /J
[ “ - 8 :»““’ \
Pregnancy Gegnancy

Figure 1.4: The central role of the renin-angiotensin system for various physiological functions

and pathological conditions.

1.5 Renin-Angiotensin System Associated with Diabetic Complications

The most common cause of end-stage renal disease in the world is diabetes??. Along with

various complications of diabetes, it is further associated with complications of the kidneys!%.
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The most common complications of diabetes are DN (Diabetic nephropathy), Retinopathy,
Neuropathy, and Cardiovascular disease (CVD)!%®. Many studies have reported that the
alteration of RAS components in association with the endocrine system particularly
angiotensin 1l (Ang I1), and dysregulated signaling within the RAS have caused a change of

renal hemodynamic and nonhemodynamic effects'%

resulting in not only the development of
metabolic syndrome, hypertension, endothelium dysfunction®, but also contributing to

chronic renal disease!?’.

1.5.1 Altered Renin-Angiotensin System Associated with Renal Disease in

Diabetes

i) Altered Renin-Angiotensin System (angiotensin Il) Effect on Renal Hemodynamic

Parameters

The implication of angiotensin Il contributes to various changes in various renal processes and
functions'®, Firstly, the upregulation of angiotensin 11 levels can cause vasoconstriction of the
renal arterioles, thereby reducing renal blood flow, and hence impaired autoregulation of
glomerular filtration rate (GFR)!®. This is mostly prevalent in early diabetic conditions.
Consequently, it can affect renal perfusion and glomerular filtration rate (GFR). These
hemodynamic changes contribute to renal dysfunction and the development of diabetic
nephropathy*°. In addition, the changes in the aldosterone levels in the kidney, mediated and
influenced by angiotensin 11, can impact renal hemodynamics by altering fluid balance,
including ionic and water balance and blood volume!!!. Furthermore, prolonged activation of
the renin-angiotensin system (RAS) can lead to increased production of inflammatory
mediators (MCP-1, 1L-6, and TGF-p)°"%%112, These mediators induce and promote the
deposition of extracellular matrix proteins which contribute to renal tissue damage and

fibrosis!'®. The pathological changes can impair renal hemodynamics by reducing the
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functional capacity of the kidneys***. Additionally, it has been reported that angiotensin Il also

reduces the glomerular filtration coefficient while increasing afferent and efferent arteriolar

resistances, which contributes to a decrease in the GFR in chronic diabetic conditions!>116,

Moreover, numerous experimental studies have also reported that acute infusion of angiotensin
I1, causes changes in renal hemodynamics, and thereby a sustained elevation of intrarenal
angiotensin Il induces proteinuria, which is accompanied by a progressive injury of the
glomerular filtration barrier (composed of the glomerular endothelium, glomerular basement
membrane, and podocytes), a hallmark of diabetic nephropathy!!’. A previous study from
Mullier et al. showed that hyperglycaemia affects renal function by activating the RAS, via
exerting an increase in plasma renin activity (PRA), mean arterial pressure (MAP), and renal
vascular resistance!'8. In addition to these actions, angiotensin Il is involved in the
augmentation of tubulo—glomerular feedback sensitivity and inhibition of pressure-natriuresis,

mediated by the AT receptor®!®,

i) Altered Renin-Angiotensin System (angiotensin I1)- Effect on Non-Hemodynamic

Parameters:

Diabetes is associated with increased oxidative stress?’, characterized by an imbalance
between reactive oxygen species (ROS) production and antioxidant defense mechanisms*?.
The pro-oxidant effects contribute to oxidative stress in diabetes mediated by angiotensin 1122,
This oxidative stress plays an important role in the development of diabetic complications?,
Dysregulated RAS signaling, particularly, angiotensin Il contributes to endothelial dysfunction
in diabetes?*. This impairs endothelium-dependent vasodilation, promotes oxidative stress,
and stimulates the release of endothelin-1, the most potent vasoconstrictor!?*. Endothelial
dysfunction plays a crucial role in the development of cardiovascular complications associated

with diabetes 1°. In diabetes, the implication of angiotensin Il signaling can contribute to
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abnormal cell growth and tissue remodeling, such as mesangial cell and mesangial and tubular
epithelial cell hypertrophy?3126, These cellular changes are also implicated in the development

of diabetic renal complications?’

. Furthermore, insulin resistance, which is caused by
interference of the insulin-stimulated increase in insulin receptor substrate 1-associated PI3K
activity in diabetes is also mediated by angiotensin 11'?812, In addition, Giacchetti et al. in their

studies have also shown that the renal RAS is clearly activated in DM, with increased tissue

angiotensin 11 that leads to the development of diabetic nephropathy*.

In diabetic nephropathy, alteration of RAS (angiotensin Il) causes Na+K+ATPase
modulation, inflammation, and fibrosis in the kidney proximal tubules'®!. Thus, dysregulated
RAS contributes to the retention of sodium, hyperfiltration leading to renal damage, and
progression of kidney diseases™*>'%. In addition, there is an upregulation of angiotensinogen
(AGT), angiotensin Il (Ang Il), and AT: receptor expression within the podocytes of the
kidney. Similarly, there is an upregulation of angiotensin-converting enzyme (ACE), which

leads to increased production of angiotensin Il.

Clinical trials on RAS component inhibitors like ACE inhibitors for example captopril,
enalapril, fosinopril, and perindopril, and three common and angiotensin receptor blockers
(ARBs)-for example irbesartan, losartan, and valsartan show a significantly decreased
incidence of renovascular complications in diabetic patients'*3, The ACE inhibitors show their
protective actions upon skeletal muscle, pancreatic islets, and enhanced insulin sensitivity

associated with decreased adipocyte as well as increased transcapillary glucose transport%,

Studies have reported that not only angiotensin Il shows a significant influence on diabetes
kidney disease, but other components within the RAS have also been found to play a significant
role in renal complications'®. A study conducted by Zimpelmann, J**°., and colleagues

reported that early-stage diabetes causes the stimulation of mMRNA expression for renin in the
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proximal tubule STZ-induced diabetic rats'3®

. This finding suggests that diabetes has an impact
on the regulation of renin production at the genetic level within the proximal tubule of the
kidneys 1. In-vivo study on transgenic mice overexpressing rat angiotensinogen (AGT) gene
in the kidney, had significantly increased blood pressure, albuminuria, and renal injury; and

administration of ARB or ACE inhibitor reversed these abnormalities in diabetes®®.

Previous studies have shown that angiotensin (1-7) serves a protective role by counteracting
the effects of locally-generated angiotensin Il in cardiovascular research, but on the contrary,
a study has shown, that chronic angiotensin (1-7) accelerates renal injury and diabetic

nephropathies in STZ induced rats**"1%,

1.5.2 Altered Renin-Angiotensin System Associated with Diabetes as well as

Cardiovascular Disease

Cardiovascular complications are the primary cause of morbidity, mortality, and fatalities in
individuals with diabetes!®?, These complications include conditions such as coronary artery
disease, stroke, heart failure, peripheral artery disease, and others**°. People with diabetes have
a higher risk of developing these cardiovascular conditions compared to those without diabetes.
Diabetes can lead to the development of atherosclerosis (hardening and narrowing of the
arteries) vascular abnormalities, and organ damage. Proper management of diabetes, including
control of blood sugar levels, blood pressure'®?, and cholesterol, is crucial for reducing the
incidence and severity of cardiovascular complications*® and improving overall patient
outcomes. According to the World Heart Federation and World Health Organization (WHO),
risk factors for cardiovascular disease are mainly genetic, unhealthy diet, physical inactivity,
use of tobacco, and use of alcohol**!. Regular medical care, lifestyle modifications, and
adherence to prescribed medications are important in reducing the impact of cardiovascular

complications in individuals with diabetes'4!.
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The alteration of cardiac function in diabetics occurs through several different mechanisms,
mainly, as, i) decreased glucose transport ii) carbohydrate oxidation, increase in free fatty acids
(FFA) utilization, iii) decrease in sarcolemma calcium transport, and iv) alterations in

myofibrillar regulatory contractile proteins4?

. Patients with diabetes often experience
compromised cardiac glucose metabolism, impacting glucose uptake, glycolysis, and pyruvate
oxidation!*3. This is primarily due to reduced glucose transport into heart cells via GLUT 1
and GLUT 4%, Hence, to manage cardiovascular dysfunction in diabetes, medications like
beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin Il receptor blockers

are commonly clinically used**. These drugs help to improve overall cardiac function

associated with diabetes'*°,

The pathophysiological mechanisms of RAS's association with diabetes and cardiovascular
disease (CVD) remain highly puzzling. In fact, studies reported that renin-angiotensin system
(RAS) components, including renin, angiotensinogen, ACE, and Ang Il receptors, are
upregulated in various cardiovascular diseases (CVD) including cardiac injury, myocardial
infarction, hypertension, and heart failure during diabetes!®. For instance, angiotensin-
converting enzyme (ACE) inhibitors, like perindopril, ramipril, and AT1 receptor blockers
improved cardiovascular morbidity and mortality in patients with diabetes*”. The inhibition
of angiotensin-converting enzyme (ACE) also prevented atherosclerosis and myocardial
infarction in diabetic apolipoprotein E-deficient mice'*®. There is evidence that angiotensin Il
binding to its AT receptors mediates cardiovascular damage by inducing reactive oxygen
species generation, tissue inflammation, fibrosis, and apoptosis®. A study reported that
prolonged hypertension could be manifested in rats with streptozotocin (STZ)-treatment to

induce diabetes!*°.

It has been reported that angiotensin Il (AT receptor blockers reduce systemic inflammation
and renal oxidative stress in diabetic patients and protect against diabetic nephropathy. A study

Page 20 of 211



suggests that losartan, an angiotensin receptor blocker (ARB), could prevent proteinuria in
type 1 diabetic patients'*®. The experimental results of Romero-Nava, R et al. suggest that
diabetes with hypertension changes the mRNA and protein expression of angiotensin 1l
receptors (AT1 and AT.)®. However, the overexpression of AT could be associated with the
reduction in the response to Ang Il in the early stage of diabetes. In a study Musial, D. C. et al
indicated that increased ACE activity leads to sympathetic dysfunction in streptozotocin
(STZ)- induced diabetic rats*>°. The experiments reported by Kala P, et al., on nephrectomised
rats showed that endothelin type A receptor blockade increases renoprotection in congestive
heart failure combined with chronic kidney disease®!. Similarly, the study conducted by
Collett JA, et al. investigated the role of AT: receptor expression in the kidneys of
spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats in the development of
hypertension and found that there was an elevated level of AT receptor expression in the
kidneys of SHR compared to WKY rats®2.% One of the major risk factors for hypertension
related to chronic hyperinsulinemia and obesity is excess sodium retention by the kidneys™°.
Experiment study on opossum kidney (OK) cells, proximal tubule cell line) treated with insulin
revealed that the AT; receptor is upregulated upon activation by ang Il and it also produces
greater stimulation of sodium transporters leading to an increased renal sodium reabsorption®®*,
Thereby, indicating an increased action of the ang Il receptors under hyperinsulinemia
conditions, a typical manifestation of hyperglycemia®®*. In this regard, pharmacological
inhibitors of the synthesis or activity of ang Il, angiotensin-converting enzyme (ACE)

inhibitors have proven immensely useful in cardio-vascular and renal therapeutics*’.

1.6 RAS Inhibitors in Treatment of Diabetes

The most commonly used drugs targeting the angiotensin Il system in hypertension and

diabetes are (i). Angiotensin-converting enzyme (ACE) inhibitors'®, (ii) Angiotensin receptor
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blockers (ARBs), those that selectively block Angiotensin 11 type 1, (AT receptors,'®® and

thereby block the various downstream actions of angiotensin 11, and (iii) Renin inhibitors®’.

Angiotensin Il receptor antagonists as well as ACE inhibitors have been reported and shown
to slow down the progression of diabetic glomerular injury and decrease proteinuria in
hypertensive patients with chronic renal failure'?®. A recent study suggested that captopril, an
ACE inhibitor, offers protection against diabetic nephropathy (kidney damage) and neuropathy
(nerve damage) by targeting multiple mechanisms®®. There are mounting evidences that the
combination therapy with both ACE inhibitors and ARBs is more beneficial compared to a
single therapy**’. Previous studies documented that synergic effect by using ACE inhibitors
and AT;-receptor antagonists in spontaneous hypertensive rats'*®®, and STZ-induced diabetic
rats'®, Treatment with captopril and olmesartan has been found to be beneficial in

experimental models of diabetic rats containing albuminuria and podocyte injury*6:

A study Kohzuki et al. showed Cardiovascular and renal protective effects of losartan in
spontaneously hypertensive rats with diabetes mellitus'®2. In addition, combination therapy of
spironolactone (belongs to potassium-sparing diuretics), and moexipril also showed an
improvement of renal structure and function in experimentally induced diabetic hypertensive
nephropathy rats'®3, However, treatment with ACE inhibitors, angiotensin receptor blockers,
and spironolactone are contraindicated in pregnancy as they may cause fetal damage!®.
Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa,
labetalol, and long-acting nifedipine, while hydralazine may be considered in the acute

management of hypertension in pregnancy or severe preeclampsia®.

Furthermore, though renin inhibitors (Aliskiren) have also emerged as a potential therapeutic
strategy to block RAS and lower blood pressure during diabetes'®’. Although, the use of these

agents is still not common. However, there is limited information on an important early link
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between hyperglycaemia and complications and a consequence of pathogenic mechanisms in
diabetes. Therefore, studying underlying mechanisms to control/ prevent/ manage blood
glucose levels in the increasing diabetic population and its associated complications is the way

forward for developing therapeutic strategies.

1.7 Advanced Glycation End Products

Glycosylation is an enzymatic post-translational modification that plays crucial roles in protein
folding, trafficking, stabilization, cell-to-cell interaction, and function'®®. Proteins are also
susceptible to post-translational modifications that could alter their structure, function, and
half-life during normal aging and pathological conditions such as diabetes!®1¢7. One such
post-translational modification is non-enzymatic glycation and the formation of advanced

glycation end products'6¢”:168,

The advanced glycation end products (AGEs) were first described by Louis Camille
Maillard in 1912. It was identified initially by the Maillard reaction—a process in which food
proteins cross-link with monosaccharides and form a yellow-brown change in the colour of the
food. The chemical reactions involved in the Maillard reaction were first recognized by Hodge,
et al. in 19531, The Advanced glycation end products (AGEs) are complex heterogenous
substances. Although advanced glycation end-product formation occurs at a lower rate over a
lifetime, it occurs more rapidly in clinical conditions such as diabetes*’®. When humans are
exposed to exogenous AGEs, via tobacco, smoke, and diet, they accumulate in the circulating
blood and various tissues, resulting in various disease complications!’t. Furthermore, food
processing methods, such as prolonged heating, and microwave cooking can also accelerate

the AGE formation®’®,

Approximately a dozen forms of AGEs have been detected in tissues!’2and they

have been classified into three categories'®® (i). Fluorescent cross-linking AGEs, such as
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Vesperlysine, pentosidine, Argpyrimidine, and crossline (ii). Non-fluorescent cross-linking
AGEs, such as glyoxal-lysine dimer (GOLD), deoxy glucose-lysine dimer (DOLD), and
methylglyoxal-lysine dimer (MOLD), alkyl formyl glycosyl pyrrole (AFGP), imidazolium
lysine, and arginine-lysine imidazole (ALI), and (iii) non-cross-linking AGEs based on their
chemical structure such as pyrraline and N-carboxymethyl lysine (CML), and carboxyethyl
lysine (CEL). Recently, scientists also discovered novel types of AGEs that exhibit cross-
linking and their unique protein-bound properties'”®. In addition, recent findings also revealed
that modern food habits add several critical AGE compounds which are formed during high-

heat processing as well as heating of animal proteins and high-caloric dietary products®’.

The formation of advanced glycation end products (AGES) is a progressively
complex, and gradual process in the body'’. The advanced glycation end products (AGES)
formation is divided into three major mechanisms: (i) the first is the Schiff base generation.
The initial process of Schiff bases are early and unstable advanced glycation end products
(AGEs), they are formed when the electrophilic carbonyl group of a sugar (aldose or ketose)
reacts with an amine group, particularly those found in arginine or lysine residues of protein®’.
However, they can also undergo irreversible reactions with amino acid fragments of proteins,
leading to the formation of new protein crosslinks.!™ The second stage is the formation of a
more stable Amadori product 1”°. Over a period of time, the reversible Schiff base or Amadori
product can undergo rearrangement reactions through the process known as the Amadori
rearrangement!’®. During this rearrangement, the carbon-nitrogen bond within the sugar-
protein adduct undergoes shift and reorganization!’*. These reactions involve dehydration,
condensation, and rearrangement of molecular structures. These rearrangements lead to the
formation of reversible intermediates. The final stage of AGE formation involves the

irreversible and complex modification of proteins, lipids, or nucleic acids. The rearranged
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products from the Amadori rearrangement undergo additional chemical modifications, leading

to the formation of diverse and heterogeneous AGEs* 417,

The advanced glycation end products are not only produced from glucose but also from
dicarbonyl compounds produced from auto-oxidation and the degradation products of glucose
such as glyoxal, methylglyoxal, and 3-deoxyglucosone or a-hydroxy aldehydes such as

glyceraldehyde’s and glycolaldehyde!™.

The formation of stable advanced glycation end products (AGEs) shows numerous
consequences including their action as cross-linkers between proteins, resulting in the
production of protein-resistant aggregates'’®. These products show deleterious effects by
modifying the biological properties of extracellular matrix (ECM) proteins such as elastin,
collagen, and laminin via crosslinking and altering the functional and mechanical properties of
the target tissues'’’. The intracellular accumulation of AGEs in the endoplasmic reticulum
(ER) impairs the folding of proteins and induces ER-mediated stress, leading to inflammation
or cellular apoptosis!’®. In addition, advanced glycation end products (AGEs) also crosslink
mitochondrial protein leading to mitochondrial protein dysfunction and thereby contributing
to a disturbance in the electron transport chain thus, reducing ATP synthesis and enhancing
free radical generation’’®. The formation of AGEs is influenced by various factors which
include hyperglycemia®®, oxidative stress'®!, lipid oxidation®?, and increasing age'®®. The
accumulated advanced glycation end products are metabolized and eliminated by the liver and
kidney!®*. Dysfunction of these organs in the body can, therefore contribute to the development

and progression of various complications®84,

Page 25 of 211



PROTEIN )’;

SCHIFF BASE

U

AMADORI PRODUCT

.

ADVANCED GLYCATION END PRODUCTS

Figure 1.5: Generation of Advanced glycation end-product formation
1.7.1 Receptors For The Advanced Glycation End Products

The receptor for advanced glycation end products (RAGE) is a group of cell surface receptors
belonging to the immunoglobulin superfamily that play a significant role in various
physiological and pathological processes!®'®, The binding of advanced glycation end
products (AGEs) to the receptors for advanced glycation end products (RAGE) activation
triggers many intracellular signaling pathways'®. This receptor was expressed in different cell
types, including endothelial cells*®”, immune cells'®, neurons®®®, and renal cells'®®. They have
been implicated in the pathogenesis of various diseases, including diabetes®, cardiovascular
diseases®®, neurodegenerative disorders!®, and inflammatory conditions!®. The receptor
(RAGE)-mediated signaling can promote chronic inflammation, endothelial dysfunction, and

tissue fibrosis, leading to the development and progression of these conditions®®.

Furthermore, RAGE signaling has been associated with the activation of nuclear factor kappa

B (NF-xB), a transcription factor, and the production of pro-inflammatory cytokines, such as
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interleukin-6 (1L-6) and tumor necrosis factor-alpha (TNF-a)!**1%, The interaction between
AGEs and RAGE also contributes to oxidative stress through the generation of reactive oxygen

species (ROS) and the impairment of antioxidant defense mechanisms*®.

The receptors for AGEs (RAGE) have other isoforms including soluble RAGE (sRAGE),
endogenous secretory RAGE (esRAGE), and human RAGE secreted (hnRAGEsec) and they
play an important role in AGE clearance!®. The S100-calgranulins (pro-inflammatory
cytokines), amphoterin, amyloid-beta, and fibrillar are a few other ligands that bind to RAGE
Targeting the RAGE receptors and the RAGE-AGE interaction has emerged as a potential
therapeutic strategy for managing various diseases associated with AGE accumulation and
RAGE-mediated pathologies, including diabetes®®. Inhibition of RAGE signaling or blockade
of AGE-RAGE interactions may help attenuate inflammation®® oxidative stress,'*® and tissue
damage,'® offering potential benefits in the prevention and treatment of conditions such as

200

diabetic complications'®*, cardiovascular diseases®®, and neurodegenerative disorders?:,

The accumulated advanced glycation end products (AGEs) also elicit downstream effects
through their interaction with other cellular receptors which including AGE-R1, AGE-R2, and
AGE-R3/galactin-3, the ezrin, radixin, and moesin (ERM) family of receptors?®?. These
receptors are found in many cell types such as macrophages?®®, epithelial cells?®*, podocytes?®®,

mesangial cells?®, and endothelial cells?®”.

The receptor RAGE serves as a key receptor for AGE and plays a crucial role in mediating the
cellular effects of AGEs. This increased response to AGEs, as indicated by increased RAGE
expression in diabetic blood vessels?® and kidneys'®°, suggests that RAGE may contribute to

209

the development and progression of diabetic vascular® and renal complications?%82%0,

Advanced glycation end products AGEs/ Receptor of AGE (RAGE) axis in endothelial cells

activates and triggers the activation of various pathways?'!. One of the important signalling
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mechanisms associated with diabetes is the NFKB pathway!®#?% which results in the
expression of cytoskeleton cell adhesion proteins (Vascular Cell Adhesion Molecule (VCAM),
intercellular Adhesion Molecule (ICAM), and adhesion molecule-1) and proinflammatory
cytokines (Interleukine-6 (IL-6), IL-1pB, and Tumor Necrosis Factor-alpha (TNF-a), indicating
AGEs enhance their permeability and thereby leads to increased inflammation®212213,
Similarly, AGES/RAGE signaling in vascular smooth muscle cells (VSMCs) activates
metalloproteases (MMP-2/9), inflammatory cytokines and chemokines, and endoplasmic
reticulum stress pathways resulting in proliferation and extracellular matrix degradation, along

with impaired autophagy?** and lysosomal degradation?*.

1.7.2 Advanced Glycation End Products (AGEs) In The Pathophysiology of

Diabetes

In diabetes, there is a persistent elevation of blood glucose levels, known as hyperglycaemia,
which provides an increased substrate for the non-enzymatic glycation process 2°. The
increased glycation affects the structure and function of proteins, thus, disrupting their
molecular conformation and altering enzymatic activity?®. This process also interferes with
ligand-binding interactions?®2!’. Advanced glycation end products (AGEs) form cross-links
with both intra- and extracellular structural proteins through non-receptor-mediated or
receptor-mediated pathways leading to resistance to proteolytic cleavage and increased
stiffness®!8, For example, AGE cross-linking on type I collagen and elastin'8, A previous study
suggested that intracellular AGEs interact with their receptor (RAGE) and alter the
intracellular metabolic pathway?!’ as well as gene expression of pro-inflammatory
molecules,’® and induce the release of free radicals?2. The accumulated advanced glycation
end products, therefore interfere with the normal functioning of the cells through multiple
actions like apoptosis, inflammation, protein dysfunction, mitochondrial dysfunction?®, and
oxidative stress'®. The researchers, Brownlee et al in the 1980s first described the deleterious
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effects of AGE formation on the renal and cardiovascular systems in humans and showed how
aminoguanidine (AG), (an inhibitor of advanced glycation end product formation), prevents

220

diabetes-induced arterial protein cross-linking in rats“=". Accumulation of AGEs generates

oxidative species/radicals that lead to the generation of oxidative stress further hastening up

the generation and accumulation of AGEs®®.

In diabetes, the impaired function of the kidneys can contribute to the accumulation of
AGEs because the kidney is the major site of clearance of AGEs??L. The accumulation of these
modified proteins can impair normal protein turnover and degradation processes??*. An in vivo
study on Streptozotocin-induced diabetic mice on a high-AGE diet exhibited increased serum
levels of inflammatory markers (TNF-a and IL-6) along with significant injury to organs like
the kidney and heart?'*. The advanced glycation end products (AGES) activate an autophagy
signaling pathway in B-cells, thereby resulting in increased apoptosis and decreased insulin

secretion due to B-cells destruction???.

The accumulated advanced glycation end products
(AGE) and their cross-linking with collagen lead to altered arterial and myocardial compliance
and increased vascular stiffness, often leading to diastolic dysfunction and systolic
hypertension seen in diabetic patients??®. Accumulating evidence suggests that CML (Ne-
(carboxymethyl) lysine, which is a specific advanced glycation end product (AGE) - is highly
prevalent in diabetes??*, Dicarbonyl stress caused by the formation and accumulation of methyl
glyoxal (MGO) (a reactive glucose metabolite) and its reduced detoxification by glyoxalase 1
(GLO-1), during diabetes results in the development of diabetic nephropathy??. In mature

podocytes, AGEs activate Notch 1 signaling, which could lead to proteinuria or glomerular

disease during diabetes??,
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1.7.3 Advanced Glycation End Products in Various Disease as well as Diabetic
Complications

Elevated level of AGEs is one of the key risk factors that has been associated with the
pathology of diabetic complications such as diabetic nephropathy!®, neuropathy??’,
retinopathy??®, and cardiovascular disease?”® and others such as arthritis?®, liver®!, and
neurodegenerative disease?*?. Extensive studies demonstrated that AGEs are associated with a
disease incidence in several organs through a common mechanism of oxidative stress
inflammation?®3, cross-linking with extracellular matrix proteins?**, and neovascularization?.
In diabetic nephropathy, AGEs accumulate within the renal tissue?, including the glomeruli
and tubules of the kidneys rendering the development and progression of kidney damage?®.
They can also crosslink with proteins in the glomerular basement membrane, impairing its
permeability and hence the filtration function?®’. This results in the leakage of proteins,
including albumin, into the urine, a condition known as proteinuria?®’. The binding of
accelerated advanced glycation end products (AGEs) with RAGE promotes inflammation
within the kidneys and stimulates the production of pro-inflammatory cytokines and
chemokines, via activating inflammatory pathways*°. This chronic inflammation contributes
to the progressive damage to the renal tissue!®. In addition, the formation of advanced
glycation end products (AGES) increases oxidative stress within the kidneys, leading to an
imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant
defense mechanisms?%8, This imbalance therefore an increased oxidative stress, which damages
the renal cells, exacerbating the progression of diabetic nephropathy?®23, The excessive
accumulation of extracellular matrix proteins due to AGEs also contributes to renal fibrosis?*.
Renal fibrosis results in the scarring of the kidney tissue and the loss of normal kidney function
240 Impaired autophagy due to AGE accumulation can lead to the build-up of dysfunctional

cellular components and contribute to the progression of renal damage?!. Therefore,
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accumulation of AGEs and managing blood sugar levels, are crucial strategies for preventing
and slowing the progression of diabetic nephropathy?*!. Recent studies have also shown that
AGEs also contribute to the micro and macrovascular disease associated with diabetes?*?. The
presence of advanced glycation end products (AGEs), can directly affect the structure and
function of blood vessels, thus rendering thickening and stiffening of blood vessel walls?*,

This process, known as vascular fibrosis, leads to impaired blood flow and can result in

conditions like diabetic vascular and peripheral artery disease?*,

The activation of the receptor for advanced glycation end-products (RAGE), leads to
alterations in cell signaling pathways, and endothelial cell dysfunction which in turn triggers
inflammation, atherogenesis, and vasoconstriction, thereby leading to thrombosis and coronary

dysfunction in diabetic cardiovascular disease®**.

In atherosclerosis, a condition characterized by the formation of plaques in the arterial walls,
advanced glycation end products (AGEs) promote the oxidation of low-density lipoproteins
(LDL), enhancing foam cell formation, and facilitating the migration and proliferation of
smooth muscle cells in the arterial walls. These processes lead to the formation of fatty plaques
that narrow the arteries and increase the resistance to blood flow, thereby contributing to
hypertension®?®. In addition, the higher level of AGEs can impair HDL function and
metabolism, leading to decreased levels of this protective lipoprotein?*®, This disruption in
HDL concentration can have negative implications for cardiovascular health and contribute to
the development of cardiovascular complications?’’. This also highlights the increasing
incidence of hypertension in diabetic patients, over a period of time. It is very well known that

diabetics end up with hypertension at some point of time, as a consequence of diabetes?’,

Advanced glycation end products (AGEs), can also directly impact cardiac tissue?*. They

accumulate in the myocardium and effects the cardiomyocytes, leading to impaired
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contractibility and increased stiffness of the heart muscle?#

. This can result in the development
of diabetic cardiomyopathy, a condition characterized by structural and functional

abnormalities of the heart 248,

Research findings have indicated that AGEs can disrupt the normal functioning of retinal
pericytes, which are cells that play a crucial role in maintaining the integrity of blood vessels
in the retina??®, Specifically, advanced glycation end products (AGEs) have been found to
interfere with two key processes: autophagy and migration of retinal pericytes in diabetic

retinopathy?*°.

Diabetic condition has an increase in the glycation process affecting myelin and cytoskeleton
proteins®®®, The presence of AGEs on myelin has the potential to trap immunoglobulin proteins
such as IgG and IgM?®, This trapping effect contributes to the demyelination of both neurons

and nerves, which is a characteristic feature of diabetic neuropathy?°.

The increased liver AGE levels induce hepatic injury and acute liver failure due to the
activation of the RAGE receptor. Additionally, studies have reported the presence of glycated
tau protein in the brains of individuals with Alzheimer's disease. This protein is responsible for
the production of oxidative stress and is associated with the formation of neurofibrillary

tangles, which are characteristic of the disease.

In patients with rheumatoid arthritis, the binding of high concentrations of the potential
proinflammatory ligand, namely S100, to the receptor for advanced glycation end products
(RAGE), triggers the production of autoantibodies and leads to inflammation?*. Furthermore,
glycation and AGE formation have been identified to occur at the gene level, specifically
affecting DNA and histones®®>25, This process can result in errors during DNA replication
and transcription, ultimately promoting mutations that are responsible for diabetic

embryopathy?%.
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Figure 1.6: Advanced glycation end products mediate the various metabolic disorders

1.7.4 Therapeutic Inhibitors of AGEs in Diabetes

According to many reports, advanced glycation end products (AGEs) formation has been
linked to diabetes and various other disorders and their complications?®*?>, Traditionally,
various drugs are available for the management of diabetes?®®. However, current therapeutic
options are not adequate, and intensive therapy for diabetic have their own limitations.
Therefore, prevention of AGE formation could also be a way forward for the effective
management of diabetes and its related complications. Currently, few drugs reduce the damage
induced by AGEs in diabetes?®’. These agents include i) AGEs breakers (alagebrium and
TRC4186) or inhibitors (Aminoguanidine, (AG)) ii) angiotensin Il receptor antagonists
(losartan), and iii) angiotensin-converting enzyme inhibitors (Ramipril), iv) natural flavonoids
(ascorbic acid, Psoralea corylifolia L. Seed Extract, alpha-lipoic acid, forskolin, carnosine, and

quercetin)®’.
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The drug, Aminoguanidine, (AG) was the first AGEs inhibitor employed in diabetic
complications that prevented the accelerated formation of AGEs in vitro and in-vivo
experimental STZ-induced diabetic rat model?®2, Clinical trials have determined AGE-
modified lipids or proteins to assess the impact of therapeutic options against AGEs, but the
effects of these approaches on AGEs still remain unclear. Future pharmacological
interventions employing these therapeutic approaches against AGEs formation and/or
preventing its binding to RAGE are vital to evaluate the benefits of an anti-AGE and RAGE-

antagonist treatment in diabetic patients.
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GAPS IN EXISTING RESEARCH

There are various therapeutic options available for diabetes control, but the major challenges
are their efficacy, adverse effects, other complications, and more importantly not knowing the
exact mechanism by which the treatments work, which is proving to be disadvantageous.
Although the treatments are available, the frequency of patients reaching till End Stage Renal
Disease (ESRD) stage is increasing. The major mechanism leading to diabetic complications
is the alteration and differential regulation of the renin-angiotensin system, elevated blood
sugar levels, and resultant AGEs that may activate multiple pathways upon interaction with
their plasma membrane receptor (RAGE). The inhibition of RAS by angiotensin-converting
enzyme (ACE) inhibitor or angiotensin Il (Ang 1) type-1 receptor (AT1R) blocker has been
shown to suppress the development and progression of nephropathy in both type-1 and type-2
diabetic patients. Moreover, previously Matsui T, and colleagues, found that RAS blockers
could inhibit the AGE-elicited mesangial cell hypertrophy and proximal tubular cell injury.
Similarly, Fukami K, and colleagues, found that RAS blockers inhibit DNA damage and
detachment of podocytes in vitro. In addition, studies have also revealed that RAS inhibition
by ramipril suppressed diabetes or AGE-induced MMP-2 activation in vivo and in vitro. Hence,
we, therefore, hypothesize that the inhibition of the early formation of AGEs and their
subsequent accumulation could not only prevent diabetes-associated complications but also

can contribute to protection against various complications related to diabetes.
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HYPOTHESIS

The altered function of the renin-angiotensin-system (RAS) is a very common ramification of
diabetes, leading to renal (acute or chronic diseases) and cardiovascular complications (angina,
myocardial infarction, and stroke). The dysregulation of the renin-angiotensin system (RAS)
and the formation of Advanced Glycation End Products (AGEs) are the major factors that
contribute to Diabetic complications. Therefore, we hypothesized whether treatment with
Aminoguanidine (AG), an AGE inhibitor could attenuate the diabetic complications in
diabetes. Because accumulation of AGEs has been known to progress at an accelerated rate in
Diabetes, leading to increased complications. Hence, we proposed to employ various kidney
functions and markers as our tool to monitor their role in Diabetic and Non-Diabetic
conditions. Additionally, we have used the heart to monitor cardiovascular functions. These
two parameters, majorly, serve as an index of diabetic complications, including hypertension.
Angiotensin Il acts via its receptors (AT1 and AT>) which has a potent effect that regulates the
renal excretory mechanism, especially Na* levels by the kidney. The hormone Ang Il also
regulates vasoconstriction that controls blood flow, hence regulating Blood Pressure.
Therefore, the levels of the Ang 1l receptors (AT1 and AT>), were determined in the diabetic
animals that could reflect on the functionality of these receptors under diabetic conditions and

vis a vis hypertension.
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OBJECTIVES
1. ESTABLISHMENT OF ANIMAL MODEL FOR DIABETES IN SD (SPRAGUE
DAWLEY) RATS

a) Developing the STZ- induced Diabetic Rat model

b) Developing the STZ-induced diabetic rats and the Employability of AG in STZ- STZ-
induced rats- to study the complication of diabetes in the presence of AG (Aminoguanidine),
an inhibitor of Advanced Glycated End Products.

2. TO INVESTIGATE THE EFFECT OF AMINOGUANIDINE (AG) IN
STREPTOZOTOCIN-INDUCED (STZ-induced) DIABETICS RATS

a) Determination of various parameters as indicators of renal injury

b) Determination of various parameters as indicators of renal functions

c¢) Renal histopathology, assessed as a marker for renal damage

3. PROTEIN EXPRESSION ANALYSIS OF ANGIOTENSIN Il RECEPTORS

1) Protein expression analysis of Angiotensin Il receptors (AT1, & AT2) and Renin from the

kidney
a) ATy, AT2 Renin in the Kidney (IB)
2) Protein expression analysis of Angiotensin Il Receptor (AT1) from Heart

b) ATy Heart (IB)
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CHAPTER 2: MATERIAL AND
METHODS
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2.1 Objective 1: Establishment of a Diabetic Animal Model

2.1.1 Introduction

Animal models provide a good association between basic and translational research by
providing in-vivo conditions to study the disease pathobiology?®®. They are also the most
readily available tools to test therapeutic drugs, their safety, and efficacy before they can be
used in clinical trials?®%:262, However, it is important to use them ethically and responsibly to
recognize their limitations and differences from humans and to properly acknowledge their
contributions and sacrifices made to the research for the betterment of humankind?®®. Even

266

though a number of in vitro 264%5and insilico ?®%studies are available and have improved

consistently over the last few decades, animal models still remain an effective method for

268 269

understanding the complex etiology?®’, pathogenesis?®®, and multi-systemic interactions
under diabetic conditions. A number of animal models, such as rats?’°, mice 2’*, and non-rodent
animals for example Invertebrate animal model-Bombyx mori, Primate model-obese Rh
monkey, zebra fish, hamsters, and pigs?’2. Other species with inherited diabetes symptoms for
example Chinese hamster, TUCO-TUCO?", etc. are used for to understand diabetes
pathogenesis since they share many similarities with humans in terms of physiology, anatomy,
and genetics?”®. These animal models have been developed using different strategies such as
chemical induction, (Alloxane?"*or Streptozotocin®™), surgical (pancreatectomy model)?®,
virus-induced (Coxsackie B virus-induced model?”’, and EMC virus-induced model?’®),
genetically engineered and induced (KK mouse?”, Obese hyperglycemic mice?®, AKITA
mice?®’, Zucker diabetic fatty rats, do/db?®!, GK rats?®?), spontaneous autoimmune (NOD)
mouse and the Bio-Breeding (BB) rat?®’, KDP rats®®, LETL?*, and LEW-iddm?®). Since
diabetes is a metabolic syndrome that reflects the complex integration of body systems, careful

consideration is needed in choosing the correct animal model to be used in different in vivo

experiments. This allows researchers to study the various aspects of the disease and the effects
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of diabetes on various organs and tissues, such as the pancreas, liver, kidney, heart, brain, and
blood vessels. They have also been used to study the effects of diabetes on various functions,
including cognitive, cardiovascular, renal, circulatory, and ocular (Rats, and Mice). By using
these diabetic animal models researchers established specific animal model by monitoring the
changes in blood glucose levels, insulin production, and other physiological and clinical
parameters related to diabetes.

Table 2.1: Various animal models for diabetic complications (Adapted from Kottaisamy, C. et
al.)

s.no | Animal Models Complication of | Characterization
Diabetes
1 NOD mice, C57BL/6, | Diabetic Enlarged glomeruli and mesangial
GK  rat,  Zucker | Nephropathy sclerosis,
diabetic  fatty rat, Albuminuria and reduced renal functions,
Zebrafish thickening of glomeruli leading to
glomerular hypertrophy,

Glomerulosclerosis,  Tubulointerstitial
fibrosis, and renal  hypertrophy,
Overexpression of CIN85/RukL causing

edema
2 Alloxan-induced Diabetic Formation of advanced glycation end
model, BB rats, | Cardiomyopathy | products leading to oxidative stress,
OLETF rats, STZ- Reduced calcium—stimulated ATPase
induced model, GK activity and cardiac  contractility,
rats Alteration in left ventricular diastolic

function, Fibrosis, and apoptosis leading
to myocardial damage, Hyperglycemia,
hyperlipidemia, and cardiac cell death

3 Alloxan-induced Diabetic Microaneurysms with increased acellular
model, Akita mice, | Retinopathy capillaries, Decreased number of
db/db mouse, Surgical amacrine and ganglion cells, Reduced
model, Zebrafish number of Retinal ganglion cells with

thickened  retina, Formation  of
proliferative and contractile cellular
membranes in the retina, Degradation,
and thinning of the retina

4 STZ-induced model, | Diabetic Reduced fiber size of the peroneal nerve
C57BL/KS  (db/db) | Neuropathy and axon than that of the myelin sheath
mice, Ischemic with impaired motor function, Decreased
reperfusion injury sensory nerve conduction velocity and
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model, Chinese density of intraepidermal nerve fibers
Hamster, Obese Rh (IENF), Decreased serum IL-10 level and
Monkey nerve conduction velocity and nerve fiber
density, Reduced conduction velocity,
Reduced conduction velocity and
prolonged duration of F-wave latencies

Despite the animals models mentioned above, streptozotocin-induced Sprague Dawley(SD)
rats extensively used in diabetic research since 1963 due to their easy availability and short
generation interval, more biological similarity to human diabetes®®’. Moreover, this model
mimics the Type 1 diabetes in humans, making them the first choice of animal models in

diabetes research?®®

Feeding of a high-fat diet, and unrestricted Calories intake, have been extensively used in
diabetic research?®, however, there are some limitations, when such animal models have not
resulted in the development of diabetes in the animals?®’. With the STZ treatment, the chances
of developing diabetes have a higher success rate, which requires just a single IP injection and
a sustained high level of glucose in the blood?®®. Hence, STZ that has been considered

advantageous over other methods

Streptozotocin (STZ) is an antibiotic isolated from Streptomyces achromogenes in 1960,
that causes pancreatic islet B-cell destruction?®, Several animal species, including the mouse,
rat, and monkey, are sensitive to the pancreatic B-cell cytotoxic effects of STZ%%, with the
rabbit being the least. Therefore, chemical induction with STZ is most often used to induce

diabetes and related complications in rats and mice?*°.

Sprague Dawley (SD) rats are a strain of albino rats that have been bred specifically for
use in medical research 2. They are popular due to their easy handling, disease-free nature,
cost-effective, docile nature, and good adaptability to laboratory environments?®°, The SD rats

share many characteristics with humans, and very useful model for studying diabetes®*®°. Based
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on dosage concentrations of streptozotocin these rats sooner developed insulin resistance,
hyperglycaemia, and metabolic abnormalities similar to those found in human diabetes??.
These rats are larger than other commonly used diabetic animal models, such as mice. In
addition, rats make them easier to monitor, handle, and collect samples?®2. In addition, these
rats have larger organs and tissues, making them easier to use for histological, biochemical,

and molecular analysis 2°2. Therefore, we have employed the SD rats in our study, and induced

by STZ to studying diabetes-related renal complications.

There are numerous published research papers that have used streptozotocin (STZ)
to induce diabetes in SD rats to study the development of diabetes and the progression of their

associated complications. The below-mentioned table below shows that such studies

Table 2.2: List of literature used STZ-induced SD rats in various diabetic complication

S.No | Title of the study Description References
Downregulation | Results from this study suggested a

of the renin- | downregulation of the renin-angiotensin
angiotensin system (RAS) at the mRNA expression
system 1in 4-wk | level in 4-week STZ-diabetic rats,

1 STZ-diabetic rats | which was restored by insulin

restored by insulin | replacement therapy. It indicated that
therapy insulin may directly or indirectly
regulate the RAS.

293

Reduction of the | The findings of the present study suggest
accumulation of | an interaction between the RAS and
advanced advanced glycation in experimental
2 | glycation end | diabetic nephropathy

products by ACE

294

inhibition in
experimental
diabetic
nephropathy
The breakdown of | The AGE breaker was found to improve
preformed erectile function, increase smooth
3 | advanced muscle content, and decrease collagen
glycation end | content in the penile tissues of diabetic 295
products reverses | rats
erectile

dysfunction in
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streptozotocin-
induced diabetic
rats:  Preventive
versus  curative
treatment

Renal angiotensin
II AT receptors
promote
natriuresis in
streptozotocin-
induced diabetic
rats

Identified that increased expression of
the tubular AT2 receptors contributes to
enhanced urinary sodium excretion in
STZ-treated rats.

296

Impaired
angiotensin I AT1
receptor function
and enhanced Na,
K-ATPase affinity
for sodium in the
proximal tubule of
streptozotocin-
treated diabetic

This data suggests that the higher basal
NKA affinity for Na, possibly due to
lower Ser-phosphorylation of al-
subunit and not the AT receptor
function, in the PTs may be responsible
for increased renal Na reabsorption
associated with early stage of
streptozotocin-induced diabetes

297

Protective effects
of  angiotensin-
converting
enzyme inhibitors
on diabetic
retinopathy

This study investigated the protective
effects of the angiotensin-converting
enzyme (ACE) inhibitor captopril on
diabetic retinopathy in STZ-induced
diabetic rats. Captopril was shown to
reduce retinal vascular leakage and
inhibit neovascularization, suggesting
its usefulness in preventing diabetic
retinopathy

298

Corneal
Complications in
Streptozotocin-
Induced Type I
Diabetic Rats

This study seeks to characterize corneal
functions and complications in a
streptozocin (STZ)-induced rat model of
type 1 diabetes mellitus (DM) and to
understand the pathogenesis of diabetic
keratopathy

299

Renal sympathetic
nervous  system
hyperactivity in
early
streptozotocin-
induced diabetic
kidney disease

This data demonstrates an early role for
the renal sympathetic innervation in the
pathogenesis of DKD

300
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The role of | The use of spironolactone reduced
spironolactone on | nitrite generation and improved vitamin
myocardial E levels independent of blood pressure
9 | oxidative stress in
rat  model of
streptozotocin-
induced diabetes

301

There are growing body of evidence showing that during diabetes high glucose levels
in the systemic circulation contribute to the acceleration of glycation of proteins and their
accumulation in the blood or tissues?*2. This allows the slowly formation of the advanced
glycation end products (AGEs),3%? and their accumulation triggers the insulin resistance?*302,
ROS production®®, oxidative stress!®, and inflammation®°. Thus, causing deterioration of
tissues, and progression of pathological complications of diabetes such as cardiomyopathy3%*,
atherosclerosis®®, nephropathy®%, and neurovascular diseases®®’. Many studies have been
found a relationship between the severity of vascular complications and the level of
accumulation of AGEs?*>3%5308  Recent studies have shown that the accumulation of AGEs
contributes to the activation of nuclear NF-xB polymorphisms?®® leading to the oxidative

stress!® and inflammation®,

The drug, Aminoguanidine also known as Pimagedine is an inhibitor of advanced
glycation end-product formation and has been studied for its potential effects on diabetes
treatment in various animal models®®. Specifically, it has been investigated in the context of
streptozotocin (STZ)-induced SD diabetic rats?®. The invitro and invivo studies have shown
the beneficial effects of aminoguanidine (AG) in ameliorating or preventing complications
caused in experimental diabetic models?®®?%®, In the STZ-induced diabetic rats, the
administration of aminoguanidine has been shown to have several effects, viz. reduction of
nitric oxide production 3!° and to preserve the function viability of pancreatic beta cells?®

220310 These effects help to maintain insulin secretion and hence improve glucose control in
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diabetic models®!. Despite the demonstrable inhibition of AGE formation by AG under in
vitro and in vivo conditions, its translation to clinical practice in humans is still not practiced.
Further research is needed to determine its efficacy, safety, and optimal dosage in human

subjects.

The contents of this chapter discuss our attempts to establish the Streptozotocin-induced
SD diabetic model and evaluate the effect of aminoguanidine, an inhibitor of advanced

glycation end product, on the phenotypic changes in the early diabetic condition.

2.1.2 Materials

Plastic wares, Drugs, and Reagents

Our experiments involved the use of Sprague-Dawley rats weighing between 200-225 g, aged
10 to 11 weeks. The rats were fed a standard chow diet and provided with tap water, ad libitum.
The chemicals Streptozotocin (S0130) and aminoguanidine hydrochloric acid (CAS 396494)
were obtained from Sigma-Aldrich (St. Louis, MO, USA). Additionally, Neosporin antibiotic,
hydrogen peroxide, one-touch ultra-soft lancets (Life Scan), spirit, and 70% isopropanol were
used for the experimental procedures. The laboratory apparatuses used included measuring
cylinders, vacutainers, gloves, masks, and cotton. The solution, Betadine (Povidone-lodine
solution IP 10% w/v) was used for disinfection purposes. Rat cages and metabolic cages were
utilized for housing the rats in a controlled environment with regulated temperature, humidity,
and lighting conditions. Various laboratory supplies such as 1.5-ml microcentrifuge tubes, tube
stands (tarsons), tips, 15 ml Falcon tubes, aluminum foil, 1 ml syringes, and 26-G needles,

were employed throughout the experiment.
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Instruments:

Major instruments used to conduct present experiments methods are enlisted below (Table 2)

Table 2.3: List of instruments used in the study

Name of instruments Company
Glucometer One Touch, ONECARE
Weighing Balance Sartorius
Metabolic Cages B.L.K industries

Desiccator (WT-130,)

United Scientific Supplies DSGL150
Glass Desiccator

Ice machine, and water bath

Blue star

Pipettes

Pipetman (Gilson)

Seizers and forceps

Standard local commercial suppliers

2.1.3 Methods

n=4

( (Male Sprague-Dawley (SD) rats

0.5mM sodium citrate buffer (pH 4.0)

\

]7

(10-11 weeks of age)

| Vehicle SD rats |

n=4

Single |P injection of Streptozotocin 55mg/kg body
weight) in0_5mM sodium citrate buffer (pH 4.0)

I STZ-Anduced SD diabetic rats I

Blood Glucose
Body Weight
Food Consumption
Water Consumption
Urine Volume

—

Administration of AG (1g/L) ]—

Blood Glucose
Body Weight

Food Consumption
Water Consumption
Urine Volume

Figure 2.1: Schematic representation of the study design
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2.1.3.1 Animals

All the experimental protocol was approved by the Institutional Animal Use and Care
Committee of the University of Hyderabad (Approval number: UH/IAEC/AHS/2021-22/07).
Age-matched male Sprague-Dawley rats (10-11-week-old), weighing approximately 200-225
g, were procured from the Indian Council Medical Research Animal Facility at the National
Institute of Nutrition, Hyderabad. The animals were housed at the University of Hyderabad

Animal Facility and had free access to standard rat chow and tap water.

2.1.3.2 Induction of Diabetes in SD Rats

Male Sprague-Dawley rats (10-11 weeks of age), were procured and housed at the University
of Hyderabad animal facility and fed with the standard rat chow diet and water for two weeks.
Briefly, animals were divided into two groups: Vehicle (n=4), and STZ-induced SD rats. A
single IP (intra-peritoneal) injection of Streptozotocin (55mg/kg body weight), dissolved in
0.5mM sodium citrate (pH 4.0) was used to induce diabetes®'?. Vehicle animals were injected
with (0.5mM sodium citrate (pH 4.0). Forty-eight hours after the injection, blood glucose was
measured, from the tail, to test whether these animals non diabetic or not. The animals having
plasma glucose > 300mg/dl were included in our study. The rats were held in the diabetic state
for two weeks and placed in metabolic cages 2-3 days before sacrifice, to collect urine, for 24-

hour urine volume measurement and urinalysis.

2.1.3.3. Measurement of Blood Glucose Levels and Physiological Parameters

During the STZ treatment period, the animal’s change in body weight, food, and water intake
was monitored for two weeks for each experimental group. Blood glucose levels of
experimental animals were measured by taking one drop of blood from the tail vein onto the

test strip forty-eight hours after the injection with STZ to confirm their diabetic state.
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2.1.3.4. Treatment with Aminoguanidine-Experimental Design

Animals for this treatment were assigned to four groups (n =4-6): Vehicle, Vehicle+AG, STZ-
induced, and STZ-induced+AG rats. After the acclimatization period, a single intraperitoneal
(IP) injection of STZ (55 mg/kg) dissolved in 0.5 mM sodium citrate buffer (pH 4.0) was used
to induce type 1 diabetes, as described previously. The animals in the control group (Vehicle)
were injected with 0.5 mM sodium citrate buffer (pH 4.0). After 48 h of the injection, glucose
levels in the blood drawn from the tail vein were measured and animals having blood glucose
levels >300 mg/dL were included in this study. The blood glucose levels in the Vehicle rats
were also determined to ensure that they had not developed diabetes. Rats in the STZ-induced
and Vehicle groups were administered AG at a dose of 1 g/L in drinking water for 2 weeks

after the confirmation of their nondiabetic and diabetic state.

2.1.3.5. Measurement of Blood Glucose Levels
Blood glucose levels were measured using a OneTouch Select Plus Glucometer (ONECARE,

Bengaluru, India).

2.1.3.6. Determination of Body weight, and Food and Water Intake

The body weight and food and water intake were measured over the course of treatments and
also after transferring the rats to metabolic cages for 2—-3 days, prior to their sacrifice. The food
intake was measured by providing the rats in individual cages with a weighed amount of food
and determining the weight of the leftover food in each cage on the next day. Similarly, water
intake was measured by determining the average amount of water, over a period of time,

consumed by the rats from a calibrated water bottle.
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2.1.3.7. Measurement of Urine VVolume
The rats in all the four groups were placed in metabolic cages 2-3 days before their sacrifice

to collect urine. This was followed up to 24 hours to measure the 24-hour urine volume.

2.1.3.8 Statistical Analysis
All Results are expressed as mean £ SEM. The data were analyzed using GraphPad Prism 6.
The student’s t-test was used to compare between the groups. A p-value <0.05 was considered

to be statistically significant.

2.2 Objective 2: The Effect of Aminoguanidine on Streptozotocin-induced

Diabetics Rats: Renal Function

2.2.1 Introduction

There are numerous evidences reporting that enhanced AGEs formation and accumulation of
AGEs most prevalence in various conditions such as (i) diabetes®*, (ii) ageing?®®, (iii) renal
failure®3, and (iv) chronic inflammation®. The AGEs in the kidney accumulate in the renal
compartment, and cross-linking with matrix proteins (long-lived proteins such as collagen, and
elastin) leads to stiffness 31 and altered structural function at renal sites such as the glomerulus,
peritubular vasculature, and arterioles of the kidney, thus promoting glomerulosclerosis and
thickening of the basement membrane, and induces kidney damage3'®. The accumulation of
AGEs in the glomerulus is associated with podocyte epithelial-mesenchymal transition®.
Similarly, in vitro exposure to high concentrations of AGEs induces tubular-epithelial-
myofibroblast transition via RAGE-dependent pathways, contributing to tubulointerstitial
fibrosis®'’. There is evidence showing that AGEs accumulate in the circulation of both diabetic
and non-diabetic patients with renal failure3'8. In addition, it has been suggested that a link
exists between advanced glycation, the development of diabetic complications?¥?, and the

presence of the quantum of the AGE products in diabetic tissues?*2. This relationship has been
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319 and rodents®%°, Previous experimental studies on the rat

identified in studies in both humans
kidney after 32 weeks of Streptozocin diabetes showed increased levels of AGEs associated
with alterations in renal function as well as structural parameters of the kidneys, as manifested
by albuminuria and mesangial expansion®®. It has also been shown that excess formation of
AGEs in diabetes results in crosslinking of collagen and distortion of subcellular structures,
resulting in irreversible tissue damage of the macro- and microvasculature in the kidney®?.
Furthermore, experimental diabetes rats showed impaired kidney function and kidney
anatomical abnormalities, damaging the small blood vessels and filtering units (glomeruli) in
the kidneys, impairing their ability to filter waste products and excess fluids from the blood.
This leads to a gradual decline in the kidney functions®?!. However, it is not known and clear
as to upto what extent of glycosylation could be related to causing functional and structural
abnormalities in the kidney. Certain reports have shown that the accumulated AGEs, act as
signaling molecules and interact with membrane-bound forms of RAGE, thereby activating
multiple inflammatory pathways, including nuclear factor-kappa B (NF-«kB) and mitogen-
activated protein kinases (MAPKSs) under diabetic conditions?®. These pathways induce the
expression of pro-inflammatory cytokines and adhesion molecules, contributing to chronic
inflammation and tissue injury?®. The aforementioned pathways are well known and
mechanistically attributed to the development of fibrosis, glomerulosclerosis, apoptosis, and
cell death and are classic contributors to the progression of diabetic kidney disease in both
humans and experimental animal models (mice and rats)3?232%, There is evidence to showed
that accumulation of AGEs, stimulates increased RAGE expression on podocytes in diabetic
nephropathy patients'®® and rodent models®?*. A Study have shown that RAGE knock-out in
diabetic mice showed reduced renal fibrosis*?. Therefore, management of diabetes is very
critical and important. If the condition is not managed effectively, elevated glycation can cause

damage to the kidneys over a period of time, leading to diabetic nephropathy. Diabetic
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nephropathy is a major cause of end-stage renal disease (ESRD) and a major contributor of

other cardiovascular disease?*2.

Ample evidence from the literature shows that aminoguanidine reduces the AGEs
in in STZ-induced animal models of diabetic nephropathy?®*, retinopathy in spontaneous
hypertensive rats?°, cardiac hypertrophy, and aortic lesions in STZ-induced animal models®3,
In diabetic nephropathy, AG attenuated the rise in albuminuria and prevented mesangial
expansion in the kidney of experimental diabetic rats?®. Furthermore, it also prevented
diabetes-related increases in collagen-cross linking in the atrial wall?®°, the renal glomeruli,
and tubules®?’. A previous experimental report by Ellis and Good et al; showed that AG

328 However,

prevented glomerular basement membrane thickening in diabetic nephropathy
no such effects of AG were not observed in another study?°. Therefore, the effects of AG on
the kidney in experimental diabetes remain debatable. While studies have demonstrated that
aminoguanidine inhibits the accumulation of renal AGEs and thereby reduces the development
of experimental diabetic nephropathy, more clarity on this aspect needs to be established?**.
Previous studies have also assessed the accumulation of AGEs in the aorta and kidney, as well

as renal functional and structural parameters over 32 weeks of experimental diabetes in the

absence and presence of aminoguanidine®?’,
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Figure 2.2: Mechanisms by which AGEs Damage the Kidney (Adapted from Fotheringham,
A. K etal. 2022)3%0

For diagnosis of diabetic complications, and management of diabetes, both urine and blood
analysis are frequently employed to evaluate renal function. This assessment contains
variables like urine protein, creatinine glomerular filtration rate (GFR), and electrolyte
(mainly sodium®. Monitoring these parameters is very important to predicting the

complications, and designing the therapeutic plan.

2.2.1.1 Clinical and Kidney Function Parameters

2.2.1.1.1 Urine Protein

In a healthy individual, the kidneys act as filters, removing waste products and excess
substances from the blood, while retaining essential proteins and other beneficial compounds.
However, in diabetes, particularly if blood sugar levels are consistently high, the blood vessels
in the kidneys can become damaged over time. This can lead to a condition called diabetic
nephropathy®3®?, where the kidney's filtering function is impaired, and protein starts to leak into

the urine known as proteinuria or albuminuria, which can be an early sign of diabetic kidney
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disease (diabetic nephropathy)33®. Proteinuria is usually detected through a simple urine test.
Microalbuminuria is a specific type of proteinuria that refers to the presence of small amounts
of albumin (a specific type of protein) in the urine34. It is often considered an early marker of
diabetic kidney disease, a disease associated with diabetes, and an increased risk of more

severe kidney and heart problems in the future®3*,

2.2.1.1.2 Creatinine

Creatinine is a waste product that is produced in the muscles through the breakdown of
creatine, an energy molecule. It is filtered out of the blood by the kidneys and excreted in urine.
Measurement of creatinine levels in the blood and urine is an essential tool in assessing kidney

function, as the kidneys play a vital role in clearing creatinine from the body3%3%,

In the context of diabetes, monitoring creatinine levels is important because diabetes can have
significant effects on kidney function®*®. Prolonged high blood sugar levels can lead to damage
to the blood vessels in the kidneys, a condition known as diabetic nephropathy®®. As diabetic
nephropathy progresses, the kidneys' ability to filter waste products, including creatinine, can

be impaired33®.

2.2.1.1.3 Glomerular Filtration Rate (GFR)

The GFR is calculated based on the urine and serum creatinine levels?3%, The level of
creatinine in the blood is influenced by the filtration capacity of the kidneys, and therefore,

serves as a marker to estimate GFR%Y,

2.2.1.1.4 Electrolyte (Sodium)

Electrolytes play critical roles in maintaining various bodily functions, including nerve
function, muscle contraction, and fluid balance®¥. In diabetes, imbalances in electrolyte
concentration, mainly sodium can occur due to various factors, including changes in insulin
levels, medication use, and complications related to the disease®'23%, The maintenance of

sodium is altered under the diabetic condition and any imbalance in the ion levels can cause a
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significant physiological and homeostatic shift in the body33’

. A damaged kidney either cannot
filter out sodium or cannot selectively reabsorb sodium from the filtered load, thereby serving

as a precursor for Na* dependent hypertension, under diabetic conditions®®’.

High blood sugar levels can lead to increased thirst and frequent urination, which may cause
dehydration. Dehydration can affect sodium levels in the blood, leading to hypernatremia (high

sodium levels)®¥'.

While performing the assay to determine renal damage, renal histology can provide insights
into the mechanisms underlying diabetes®*°. Diabetes can cause changes in the structure of the
kidneys, such as thickening of the glomerular basement membrane and expansion of the
mesangium. These changes can lead to decreased filtration capacity and increased proteinuria,
hallmarks of renal damage3#. Assessment of renal histology in diabetic rats, therefore can help
researchers understand the ways these changes occur and possibly could identify potential

therapeutic targets.

Aminoguanidine, a hydrazine derivate that acts as an inhibitor of an enzyme called tissue
transglutaminase, is involved in the formation of AGEs and reduces glycation.
Aminoguanidine (AG) has been investigated for its potential role in diabetes and its
complications?®. Studies showed that treatment with AG has resulted in the improvement of
kidney functions 27 and decreased retinal pericyte loss, abnormal endothelial proliferation34,
and peripheral nerve impairment in streptozotocin-induced diabetic (STZ-D) rats®*2. Also, it
is reported that AG treatment reduces lipid peroxidation in vascular complications in
streptozotocin-induced diabetic (STZ-D) rats, and hence reduces the free radical generation®*.
Hence, in this study, we determine the effect of AG’s effect on renal functions and renal

structure in early diabetes conditions.
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2.2.2 Material

Haematoxylin, eosin, xylene, ethanol, glass slides, coverslips, all other chemicals used were

purchased from standard local commercial suppliers and were of analytical grade

2.2.3 Methods
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Figure 2.3: Schematic representation of the objective to study renal functions/injury/damage

2.2.3.1 Determination of Renal Functions

The renal function parameters were determined in partial modifications of the methods as
described previously?®’. Briefly, rats were transferred to metabolic cages for 2—3 days to collect
urine samples, for determining the urine flow rate (UFR), glomerular filtration rate (GFR), and
urinary sodium and protein levels. A clinical biochemistry analyzer (Beckman Coulter and
Olympus) was used to determine the levels of creatinine and electrolytes in the urine. The

urinary protein levels were quantitated spectrophotometrically using the BCA method.
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2.2.3.2 Calculation of GFR

The glomerular filtration rate in the various groups of rats was calculated using the following

formula:

GFR = Urine creatinine x Urine flow rate (uL/min)/Serum creatinine

2.2.3.3 Calculation of Urinary Sodium Excretion Rate
The urinary sodium excretion rate, as an index of renal function and natriuresis, was calculated

using the following formula:

Urinary sodium excretion rate = Urine sodium concentration (mmol/L) x 24 hour-urine

volume/mMoles of Sodium

2.2.3.4 Blood Sample Collection
Blood samples were collected via cardiac puncture into plain sample vacutainer tubes after
anesthetizing the animals with diethyl ether. The blood samples were centrifuged at 2500 rpm

for 10 min to obtain clear serum for biochemical analysis of electrolytes, and serum creatinine

2.2.3.5 Histopathological Analysis of the Kidney

For histopathological analysis, the kidneys from each animal were excised at the time of
sacrifice and placed in 10% formalin, as described previously®-312, They were then dehydrated
and embedded in paraffin. The paraffin-embedded kidney tissues were sectioned at a thickness
of 5 um, and stained with hematoxylin and eosin (H&E)3*2. The sections were examined by a
pathologist. At least 4-10 random fields were examined per section, comparing 10 or more

glomeruli in each field.
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2.2.3.6 Statistical Analysis
Results are expressed as mean + SEM. The data were analyzed using GraphPad Prism 6.
Student’s t-test was used to compare the groups. A p-value<0.05 was considered to be

statistically significant.

2.3 Objective 3: Change in Protein Expression of Renin, Angiotensin Il Type |
and Type Il Receptors (AT; and AT))

2.3.1 Introduction

The renin-angiotensin system plays a crucial in blood pressure regulation, fluid volume, and
electrolyte homeostasis®?. It contains several key components i) ii) renin, iii) angiotensin-
converting enzyme, ACE iv) angiotensin 1, and v) the angiotensin Il receptor. The binding of
the angiotensin 11 with two subtype receptors (AT: and AT,) mediates the various biological
effects including vasoconstriction, aldosterone secretion, catecholamine release as well as
drinking, secretion of prolactin and adrenocorticotrophic hormone, and glycogenolysis,

whereas AT, show the opposite effects of that of the ATy receptors®:67:344,

The AT and AT, receptors are localized in various tissues including kidney . A number of
studies have established the contribution of these receptors to the development of kidney

disease in diabetes®”:344,
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Figure 2.4: Schematic representation of the major component of the renin-angiotensin system

It has been reported that altered RAS components such as angiotensin I, renin, ACE as well
as the angiotensin Il receptor subtypes are frequently associated with the development of
hypertension and metabolic diseases such as atherosclerosis®?®, stroke, coronary artery34,
obesity®*’ disease under diabetes conditions. Moreover, there are reports that chronic high
blood glucose levels in diabetes contribute to long-term kidney disease, such as end-stage renal

disease (ESRD)3*.

Hyperactivity of RAS via angiotensin Il receptor subtypes, (AT, and ATz has been studied
in the context of diabetes?®2%”. However, the changes in the expression of AT; and AT:
receptors are tissue-dependent, for example, the overexpression of AT; receptors has been
shown in the kidney, heart, lungs, aorta, and brain, while the overexpression of AT> receptors
has been reported in mesenteric arteries, kidney, and endothelium”386:34°_ |t has been shown

that there is an upregulation of ATy receptors in the glomeruli and tubules in the kidneys in
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diabetic nephropathy>*. Increased AT receptor expression has also been observed in the retina

31 and diabetic cardiovascular complications®. On the

of patients with diabetic retinopathy
other hand, The AT receptors have been shown to have anti-inflammatory, vasodilatory, and
tissue-protective effects 2. There is evidence that the expression and function of the AT>
receptors become relevant under pathophysiological conditions such as hypertension and
diabetes®:8, A study, a model of type 2 diabetes obese Zucker rats, showed that the tubular
AT, receptor is upregulated and mediates the natriuretic effects mediated by an AT receptor
antagonist®2. Similarly, increased expression of the tubular AT receptors contributes to

296

enhanced urinary sodium excretion in STZ-treated rats=°. The upregulated AT receptors via

the NO/cGMP pathways mediate tubular sodium transport inhibition in STZ-treated rats,

leading to enhanced urinary sodium excretion®®,

Some studies showed that early
streptozotocin-diabetes mellitus downregulates rat kidney AT, receptors®®. However, the
exact mechanisms and significance of AT> receptor function in diabetic complications are still

under investigation, and further research is needed to fully understand their role.

The first and highly regulated rate-limiting step of the renin-angiotensin system is
mediated by renin and its inhibition has been a target for nearly 60 years*8. The study by Miller
et al.; demonstrated that short-term moderate hyperglycemia without glycosuria during the
early stages of diabetes has been linked to an increase in plasma renin activity, mean arterial
pressure, and renal vascular resistance!'8, Moreover, the presence of immunoreactive renin has
been demonstrated in the human end-stage diabetic kidney®®*. Early diabetes mellitus
stimulates proximal tubule renin mMRNA expression in the rat'®. Therefore, the medications
that target the RAS cascade, such as ACE inhibitors, and angiotensin receptor blockers
(ARBs), are solely used to control/slow down the progression of diabetes complications

including hypertension®®, nephropathy®®, retinopathy®’, and neuropathy?3se,
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The most commonly used ARBSs, such as losartan, telmisartan, and valsartan, are the AT;
receptor antagonists, and they block the AT: receptor and subsequently prevent the binding of
Angiotensin Il to this receptor subtype®°%%0 These drugs are known to reduce
vasoconstriction, inflammation, and oxidative stress, among other functions 3*°. In the STZ-
induced diabetic rats, treatment with ARBs has been shown to ameliorate diabetic
nephropathy, retinopathy, and cardiovascular complications, thereby implying the role of AT

receptors in aggravating diabetic complications®%-362,

The inhibitors of ACE, such as enalapril, lisinopril, and ramipril work by inhibiting the enzyme
ACE, which converts Angiotensin | to Angiotensin 11**’. By inhibiting this conversion, ACE
inhibitors indirectly reduce the activation of AT receptors, due to a decreased Ang Il
availability!*’. These inhibitors have been demonstrated to improve renal function, decrease
proteinuria, and attenuate diabetic complications in STZ-induced diabetic rats®®3. Either the
reduction in the levels of Ang Il or the decreased activation of the AT receptors by Ang Il has
shown a significant reduction in the various complications as mediated by the RAS®*®3. In
addition to the above therapy, a combination of therapeutic approaches is also used in the

treatment of diabetes to manage its complications specifically hypertension®64,

Recently, emerging evidence showed that the reduction of accelerated formation of
advanced glycation end products (AGEs), provides an intensive management of diabetic
complications®®*. The drug, Aminoguanidine, AG, an inhibitor of Advanced Glycation
Products, has been studied for its potential effects on diabetic complications?®*. There is a
report that AG has been shown to impact the renin-angiotensin system (RAS) indirectly
reducing oxidative stress, and hemodynamic renal changes and improving endothelial function
in diabetic rats®?":35  Additionally, aminoguanidine has been shown to reduce the prevent

diabetes-induced increases in protein kinase C activity in glomeruli, retina, and mesenteric
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artery. Thus, by reducing AT and AT receptor expression, aminoguanidine helps attenuate

diabetic complications!.

The change in expression of ATy and AT receptor in the diabetic kidney have been reported
67386 pyt the impact of AG on AT and AT receptor AT receptor expression and functional
changes is not known in the kidney of diabetes condition. The AT receptor activation is
generally associated with vasodilation, anti-inflammatory responses, and tissue repair3®®

processes, such effects that are opposite to the effects of the AT; receptors®®°.

It is important to note that while aminoguanidine has shown promise in preclinical studies, its
clinical effectiveness and safety for treating diabetic complications in humans are still under
investigation. Additionally, there may be other factors and pathways involved in the effects of
aminoguanidine beyond the RAS and the AT1/AT: receptors. Therefore, further research is
needed to fully understand the extent and mechanisms of aminoguanidine under diabetic

conditions.

This work aimed to evaluate the protein expression of, renin, angiotensin 11 receptors, ATz, and

AT in the kidney, and heart of diabetic rats before and after administration of AG.

2.3.2 Materials

Chemicals and Reagents: Tri- sodium citrate (Fisher scientific) Sodium Chloride, Potassium
chloride, Calcium Chloride, Magnesium Chloride, Sodium Bicarbonate (Sigma), Potassium
Dihydrogen orthophosphate, D-Glucose anhydrous, 4-(2- Hydroxyehyl)piperazine-1-
chanesulfonic acid sodium (HEPES Sodium), B-Glycerophosphate di sodium salt hydrate
(sigma), Magnesium Chloride (Fisher Scientific), Ethylene glycol-bis (B-amino ethyl ether)-
N,N,N’,N”’ tetra acetic acid tetrasodium salt (EGTA/Sigma-Aldrich), Triton X-100 (Sigma),
Dithiothreitol (Biorad), Phenyl methane sulfonyl fluoride (PMSF) (Sigma), Protease inhibitor

cocktail  (Roche), Sodium dodecyl sulphate (Fisher scientific) N,N,N’,N’
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Tetramethylenediamine (TEMED) (Biorad), Ammonium per sulfate (Biorad), Tween-20
(Biorad), 30%Acrylamide/ Bis-acrylamide (29:1)(Bio rad), Ponceau S dye, Tris free base
(Biorad), Nitrocellulose membrane (0.45 uM (Biorad), Bovine serum albumin fraction V
(BSA) (Roche), diethyl ether (Thermoscientific), 70% isopropanol, Formaldehyde (Himedia),

Ethanol, (Himedia), hematoxylin and eosin

Kit: Pierce BCA protein estimation kit (Bicinchonic acid reagent) (Thermo Fischer), femto

LUCENT TM PLUS HRP chemiluminescent (G Bioscience),

Proteins and Antibodies: Bovine serum albumin fraction V (BSA) (Roche), Anti-Rabit 1gG
HRP, Anti-mouse IgG HRP (Cell Signaling). The antibodies for AT1 and ATz receptors (PA5-
20812 and PA5-20813, respectively) were purchased from ThermoFisher Scientific, and the
B-actin antibody was obtained from Cell Signaling (Danvers, MA, USA,; Cat. # 3700S). The
Femto chemiluminescence substrate was purchased from G- G-biosciences. All other

chemicals used for immunoblotting were purchased from Bio-Rad, Hercules, CA, USA.

Composition of Buffers and other reagents:

Resolving buffer pH 8.8 (40 ml): 1.5 M Tris base 7.26g volume made up of double distilled

water (DDW)

Stacking buffer pH 6.8 (40 ml): 0.5 M Tris base 2.43 g, volume made up of double distilled

water (DDW)

4X Laemmli sample buffer: 30% Glycerol, B-Mercaptoethanol (sigma), 20% SDS, 0.5M Tris
PH-6.8, 1% Bromophenol blue 5X Reservoir buffer (500 ml): Tris base 7.5 g, Glycine 36 g,

volume made up with double distilled water (DDW)

Separating buffer (1 Liter): 5X Reservoir buffer (200ml), 10% SDS (10ml) volume made up

of double distilled water (DDW)
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Transfer buffer (1 Liter): 5X Reservoir buffer (200ml), Methanol 200 ml, volume made up

with DDW

1X Phosphate Buffer Saline: Sodium chloride, potassium chloride, disodium hydrogen

orthophosphate anhydrous, Potassium dihydrogen orthophosphate

PBST: 1X PBS+ 0.1% Tween 20, Blocking buffer: 5% BSA in 1XPBS (pH-7.4), Washing
buffer (PBST): 0.1% Tween20 in 1XPBS (pH-7.4), Antibody dilution (1:1000) buffer: 5%

BSA in 1X PBS+ 0.1% Tween 20, for Beta-Actin (1:3000)

Laboratory Glassware, Materials, and Plates: 96 well plates (Corning), falcon tubes (15ml,
and 50ml), test tubes, desiccator, sterile surgical blades, needles, syringes (Dispo van),
Measuring cylinders, Rat restrainer, cotton, Sterial combine dressing pad, Butter papers,
blotting papers, 10 pl, 200ul (Axygen), and 1ml tips (tarsons), 1.5 ml tubes (Axygen) Petri

dish (corning), nitrile powder free gloves (Lab serve).

Table 2.4: List of instruments used in the study

Name of instrument/ Apparatus Company
Tecan plate reader Thermo Scientific
Tissue homogenizer Unigenetics
chemo doc XRS+ imaging system Biorad
PH meter Oakion
Spinvin Tarson
western blot cassettes Biorad
-80°c freezer Thermo Scientific
-20°c freezer Blue star
Vortex Tarson
Orbital Shaker Tarson
Magnetic stirrer, and beads Tarson
Protein electrophoresis Apparatus Bio-Rad
Mini Trans-Blot Cell Bio-Rad
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2.3.3 Methods
2.3.3.1 Protein Extraction

The kidneys were dissected from the sacrificed rats and rinsed with the Krebs- Henseleit buffer
(118 mM NaCl, 4 mM KClI, 1.25 mM CaCl 2, 1.2 mM MgCI 2, 27.2 mM NaHCO 3, 1 mM
KH 2 PO 4, 5 mM glucose, and 10 mM HEPES; pH 7.4)2%62%7_ The kidney cortex was minced
and homogenized in a lysis buffer (50 mM - glycerophosphate, 2 mM MgCl 2, 1 mM EGTA,
0.5% Triton X-100, 1 mM dl-dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride)
containing a cocktail of protease inhibitors with a broad inhibition specificity for serine and
cysteine proteases, metalloproteases, and calpains. The kidney homogenates were centrifuged
at 14,000 rpm for 15 min at 4°C, and the supernatants were recovered. Total protein was
quantitated using the BCA method by measuring the absorbance at 562 nm, according to the

manufacturer’s protocol

2.3.3.2 Immunoblot Analysis

For immunoblot analysis, the supernatant of the kidney homogenate was dissolved in 4X
loading sample buffer, containing B-mercaptoethanol, and boiled for 5 min at 95 °C. The
proteins (35 g of renin, 35 pg protein for ATy, and 40 pg protein for AT2) were separated
using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE) and
transferred onto a nitrocellulose membrane. The membrane was blocked with 5% bovine serum
albumin in PBS with 0.1% Tween-20. The blots were incubated with the primary antibodies
(polyclonal Renin ((1:1000), AT1(1:1000) and AT. (1:1000) and subsequently with
horseradish peroxidase (HRP)-conjugated anti-rabbit secondary antibody (1:5000). The signal
was detected using a chemiluminescence reagent, and bands were visualized using the
Chemidoc XRS instrument (Bio-Rad). The blots were stripped off the antibodies and reprobed

for B-actin (1:3000, Cell Signaling, cat. 3700S) as a loading control. Densitometry analysis of
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the bands was performed using the ImageJ software (NIH, USA), and renin, ATy, and AT>

levels relative to those of B-actin were determined for all the various groups

2.3.3.3 Statistical Analysis

Results are expressed as mean + SEM. The data were analyzed using GraphPad Prism 6.
Student’s t-test was used to compare the groups. A p-value<0.05 was considered to be

statistically significant
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CHAPTER 3: RESULTS AND
DISCUSSION
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3.1 Objective 1

3.1.1 Blood Glucose Levels after STZ treatment (mg/dL)
Two weeks after the induction of diabetes, STZ-treated rats had significantly increased blood

glucose levels, compared to the corresponding parameter in the Vehicle group (381.8+ 15 vs.

108.3+ 2.13 mg/dL (p<0.05, n = 4; Figure 3.1).
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Figure 3.1: Streptozotocin treatment on SD rats, measurement of blood glucose level in vehicle
and streptozotocin (STZ)-induced diabetic rat groups. Values are means £ SEM, *p<0.05

compared to vehicle rat groups, (Student’s t-test). All experiments were performed in triplicate

3.1.2 Body Weight after STZ treatment (g)

Two weeks after the induction of diabetes, STZ-treated rats a had significantly decreased body
weight (expressed as percent change in body weight) compared to the corresponding parameter

in the Vehicle group (—9.70+ 5.47 vs. 22.82 + 2.85 g (p<0.05, n=6-8; Figure 3.2)
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Figure 3.2: Streptozotocin treatment on SD rats, monitoring body weight in vehicle and
streptozotocin (STZ)-induced diabetic rat groups. Values are means + SEM, *p<0.05

compared to vehicle rat groups, (Student’s t-test). All experiments were performed in triplicate

3.1.3 Food Consumption after STZ Treatment (g)

A significant change in food consumption was observed between rats in the STZ-induced
diabetic and Vehicle groups of rats, with the STZ-treated rats consuming an increased amount

of food compared to the Vehicle rat groups (23.20+ 1.73 vs. 17.18 £ 0.11 g (p<0.05, n=6-8;

Figure 3.3)
[/}
E 3
@ 30
U}
£ ‘
E 20
2
£
2 10-
c
[e]
o
'§ 0 :
e (\\a@ é’eb
@ '\/‘&
P

*-p<0.05 compared to Vehicle

Figure 3.3: Streptozotocin treatment on SD rats, measurement of food consumption in vehicle
and streptozotocin (STZ)-induced diabetic rat groups. Values are means £ SEM, *p<0.05

compared to vehicle rat groups (Student’s t-test). All experiments were performed in triplicate.
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3.1.4 Water Consumption after STZ treatment (mL)

Two weeks after the induction of diabetes, STZ-treated rats showed a significantly increased
water consumption compared to the corresponding parameter in the Vehicle group (98.59 +

9.49 mL vs. 29.09 £ 0.19 mL (p <0.05), n=6-8; Figure 3.4)
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Figure 3.4: Streptozotocin treatment on SD rats, measurement of water consumption in vehicle
and streptozotocin (STZ)-induced diabetic rat groups. Values are means £ SEM, *p<0.05

compared to vehicle rat groups, (Student’s t-test). All experiments were performed in triplicate.

3.1.5 Urine Volume after STZ treatment (mL)

Two weeks after the induction of diabetes, STZ-treated rats had a significantly increased 24-

hour urine output (mL) compared to the Vehicle rats (32.20+8.29 vs. 10.22+0.29 mL (p<0.05),

n=6-8; Figure 3.5).
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Figure 3.5: Streptozotocin treatment on SD rats, measurement of 24-hour urine volume in
vehicle and streptozotocin (STZ)-induced diabetic rat groups. Values are means + SEM,
*p<0.05 compared to vehicle rat groups, (Student’s t-test). All experiments were performed in

triplicate.

3.1.6 AG Treatment in STZ-induced+AG treated Diabetic Rat Groups Prevented

an Increase in Blood Sugar Levels (mg/dL)

Two weeks after the induction of diabetes, STZ-treated rat groups had significantly increased
blood glucose levels compared to the corresponding parameters in the Vehicle rat group (462.3
+ 18.6 vs. 109.7 + 1.25 mg/dL (p<0.05), n=6-8; Figure 3.6). Administration of AG (1 g/L) to
the STZ-induced+AG treated diabetic rat groups had significantly decreased blood glucose
levels, compared with that in the STZ-treated rat groups (295.9 £ 50.69 vs. 462.3 + 18.6 mg/dL
(p<0.05); Figure 3.6). There was a significant change in the blood sugar levels, between the
STZ-induced+AG treated rat groups and Vehicle+AG treated rat groups too (295.9 + 50.69 vs.
111.6+1.49 mg/dL (p<0.05); Figure 3.6). No differences in blood glucose levels were noted
between the Vehicle and Vehicle+AG treated rat groups, (109.7 £ 1.25 + 1.8 vs. 111.6 £ 1.49

mg/dL); Figure 3.6).
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Figure 3.6: Effect of aminoguanidine (AG) treatment (1 g/L) on blood glucose level in vehicle
and streptozotocin (STZ)-treated rat groups, and Vehicle+AG treated rat groups and STZ+AG
treated rat groups. Values are means £ SEM, *p<0.05 compared to vehicle rats, @ p<0.05
compared to Vehicle+AG treated rat groups, #p<0.05 compared to STZ-treated rat groups
(Student’s t-test). n = (6-8).

3.1.7 AG Treatment of STZ-induced+AG treated Diabetic Rat Groups

Demonstrates a Slight Restoration in The Body Weight (g)

Two weeks after the induction of diabetes, STZ-treated rat groups had significantly decreased
percent change in body weight compared to the corresponding parameter in the Vehicle rat
groups (=7.35 £ 5.97 vs. 23.87 £ 4.1 g (p<0.05), n=8; Figure 3.7). Administration of AG (1
g/L) to the STZ-induced+AG treated diabetic rat groups caused a slight restoration in the
percent change in body weight, compared with that in the STZ-treated rat groups (1.6. £ 5.8
vs.—7.35+5.97 g). A significant difference was also noted in the percent change in body weight

between the STZ-induced+AG treated rat groups and Vehicle+AG treated rat groups (1.6. +
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5.8 vs. 18.8 £5.9, p<0.05; Figure 3.7). No differences in these parameters were noted between

the Vehicle and Vehicle+AG treated group of rats (23.87 £ 4.1 vs. 18.8 + 5.9 g); Figure 3.7).
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Figure 3.7: Effect of aminoguanidine (AG) treatment (1 g/L) on body weight (g) in vehicle and
streptozotocin (STZ)-treated rat groups, and Vehicle+AG treated rat groups and STZ+AG
treated rat groups. Values are means = SEM, *p<0.05 compared to vehicle rats, @ p<0.05
compared to Vehicle+AG treated rats, #p< 0.05 compared to STZ-treated rat groups (Student’s

t-test). n =8.
3.1.8. AG Treatment of STZ-induced+AG treated Diabetic Rat Groups Showed

no Change in Food Consumption (g)

Two weeks after the induction of diabetes, the STZ-treated rat group had a significant change
in food consumption compared with the Vehicle groups of rats (19.51 + 1.61 vs. 16.44 + 0.29
g (p<0.05), n=6-8; Figure 3.8). Administration of AG (1 g/L) no difference was recorded
between the food consumption in the STZ-treated rat groups and STZ-induced AG-treated rat
groups (19.51 +1.61 vs. 19.58 + 1.08 g; Figure 3.8). No differences in these parameters were

noted between the Vehicle and Vehicle+AG treated rat groups (16.44 = 0.3 vs. 16.70 £ 0.59).

Page 72 of 211



Food (in grams)

* - p<0.05 compared to Vehicle
@-p<0.05 compared to Vehicle+tAG

Figure 3.8: Effect of aminoguanidine (AG) treatment (1 g/L) on food consumption in vehicle
and streptozotocin (STZ)-treated diabetic rats, and Vehicle+tAG treated rat groups and
STZ+AG treated rat groups. Values are means = SEM, *p<0.05 compared to vehicle rats, @
p<0.05 compared to Vehicle+tAG treated rat groups, #p< 0.05 compared to STZ-treated
diabetic rat groups (Student’s t-test). n = (6-8).

3.1.9 AG Treatment of STZ-induced+AG treated Diabetic Rat Groups

Moderately Decrease the Water Consumption (mL)

Two weeks after the induction of diabetes, STZ-treated rat groups showed significantly
increased water consumption compared to the corresponding parameter in the Vehicle rat
groups (67.13 + 8.78 vs. 30.06 £ 1.56 mL (p<0.05); n=6-8, Figure 3.9). Administration of AG
(1 g/L) to the STZ-induced+AG treated rat groups modestly decreased water consumption
(62.44 £ 10.93 vs. 67.13 + 8.7 mL). There was a significant change in the water consumption
between the STZ-induced+AG treated rat groups and Vehicle+AG treated rat groups (62.44 +
10.93 vs. 28.40 + 0.93 ml; p<0.05); Figure 3.9). No differences in these parameters were noted

between the Vehicle and Vehicle+AG treated rat groups, 30.06 £ 1.56 vs. 28.40 £ 0.93 mL)

Page 73 of 211



801
60

404
204 ‘ \
0 T

* - p<0.05 compared to Vehicle
@-p<0.05 compared to Vehicle+tAG

Water (ml)

Figure 3.9: Effect of aminoguanidine (AG) treatment (1 g/L) on water consumption in vehicle
and streptozotocin (STZ)-treated diabetic rat groups, and Vehicle+AG treated rat groups and
STZ+AG treated rat groups. Values are means = SEM, *p<0.05 compared to vehicle rats, @
p<0.05 compared to Vehicle+tAG treated rat groups, #p< 0.05 compared to STZ-treated
diabetic rat groups (Student’s t-test). n = (6-8).

3.1.10 AG Treatment of STZ-induced+AG treated Diabetic Rat Groups Showed

Decreased Urine VVolume (ml)

Two weeks after the induction of diabetes, STZ-treated rats shown significantly increased 24-
hour urine volume (mL) in comparison to the Vehicle rat groups (29.59+4.21 vs. 6.70+0.82
mL (p<0.05); n=11-15; Figure 3.10). Treatment with AG have resulted in a decreased urine
volume in the STZ-induced +AG treated rat groups, compared to the STZ-treated diabetic rat
groups (17.47+5.8 vs. 29.59+4.21 mL Figure 3.10). Significant changes in urine volume were
observed between the STZ induced+AG treated rat groups and Vehicle+AG treated rat groups
(17.47+5.81 vs. 5.63+0.69), Figure 3.10). No differences in these parameters were noted
between the Vehicle and Vehicle+AG treated rat groups (6.70+£0.82 vs. 5.63+0.69 Figure
3.10). Although the Urine volume is significantly higher in STZ+AG-treated rat groups

compared to the Vehicle rat groups, (17.47+5.81vs. 6.70+0.82). It is significantly /
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substantially decreased in Vehicle+AG treated rat groups compared to STZ-induced diabetic

rats compared with that in the STZ-treated rats (5.63+0.69 vs. 29.59+4.21).
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Figure 3.10: Effect of aminoguanidine (AG) treatment (1 g/L) on urine volume in vehicle and
streptozotocin (STZ)-treated diabetic rat groups, and Vehicle+tAG treated rat groups and
STZ+AG treated rat groups. Values are means = SEM, *p<0.05 compared to vehicle rats, @
p<0.05 compared to Vehicle+AG treated rat groups, #p<0.05 compared to STZ-treated rat
groups (Student’s t-test). n = (11-15).

3.1.11 Discussion

Diabetes accounts for 1.51 million affected persons from 2000-2023 and it can be fatal if not
managed. Hence, several well-designed in vitro and animal model systems have been explored
to study the underlying mechanism of diabetes and related complications. Investigating the
advanced glycation end-product formation (AGESs) and its effect on the regulation of the RAS
system in the progression of diabetic complications is a challenge. This work demonstrated
that the STZ-induced SD rat model is cost-effective, which is economically viable, and is a
suitable model for studying renal function and diabetes progression that could pave the way
for evaluating the effective targeted therapy. In this chapter, we demonstrated the

establishment of a Streptozotocin (STZ)-induced SD rat model for diabetes and its associated
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complications and the reduction/ and or prevention of renal complications with

aminoguanidine administration.

The diabetogenic effect of streptozotocin (STZ) is related to its cytotoxic effect on beta
cells. When this compound enters the pancreatic beta-cell through GLUT-2 transporters, it
produces alkylation and DNA fragmentation, which leads to the destruction of these cells. This
destruction leads to increased glucose levels as a result of their inability to produce insulin,
which is the hormone responsible for the regulation of carbohydrates. Depending on the STZ
dose, it can produce a type | diabetes model or a type Il diabetes model. This effect is mainly

due to the complete or partial destruction of pancreatic beta cells?’,

The results of our study documented that after 48 hours of streptozotocin treatment,
STZ-induced SD diabetic rats had high blood glucose levels (hyperglycaemia). This increase
in blood sugar levels in the STZ-induced diabetic rats was accompanied by a decrease in body
weight (% weight loss) and an increase in water intake (polydipsia), urine volume (polyuria),
and polyphagia, compared to that of the vehicle rat groups. The observed changes in these
parameters are established phenotypes of diabetes®®’, *®8and these features are consistent with
type | diabetes criteria established by different associations such as the American Diabetes
Association (ADA)*®°, International Diabetes Federation (IDF)®°, and other*™. This evidence
that we could develop a good animal model of diabetes and successfully induce the various
complications of diabetes concerning the clinical phenotypes and physiological determinants.
We also documented that, after, administration of AG (1g/L water) in the STZ-induced diabetic
rats, the drug prevented the increase in blood glucose levels compared with that in the STZ-
induced diabetic rats. The AG treatment was also helpful in restoring the weight loss vis-a-vis
and a partial improvement in the other parameters after two weeks in the STZ-induced diabetic
rats. Although we did not evaluate the mechanism in this study, the most plausible explanation
for this could be the fact that AG prevents the formation of AGEs by reacting with
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fragmentation products of sugar-derived ketamine®’2. There are also reports that AG helps
improve insulin sensitivity and enhance glucose uptake by cells, leading to a reduction in blood
glucose levels®”*374, Other studies have also shown that aminoguanidine had been shown to

protect pancreatic beta cells®

, Which are responsible for producing insulin, thereby improving
glucose control, reducing blood glucose levels, and preventing excessive weight loss. In
addition, aminoguanidine has been reported to improve insulin sensitivity in certain studies 373,
Taken together, these factors have most likely lead to a prevention of the increase in the blood
sugar levels in the STZ+AG treated rat groups. This is the most plausible explanation that we

could offer. Measuring the serum insulin levels could provide more insights into this

mechanism and this definitely warrants further study.

Diabetes generally, leads to altered appetite regulation due to an altered metabolic function
and could result in reduced/increased food intake!?’. It has been shown diabetes influences the
release of hormones involved in appetite control, such as leptin®® and ghrelin®®. By
modulating these hormones, aminoguanidine may also help regulate appetite and prevent
excessive weight loss or weight gain. The specific effects of aminoguanidine on weight loss in
diabetic rats may vary depending on the experimental conditions, dosage, and duration of
treatment 2°%327, Further research is needed to fully understand the effects of aminoguanidine
on body weight regulation in the context of diabetes. Our studies have also documented that
there is an appreciable restoration of body weight in the STZ+AG-treated rats, with food
consumption remaining almost the same. This suggests a better utilization of the nutrients in
the STZ+AG-treated rats, compared to the STZ-induced diabetic rats. As evidenced, the STZ-
induced rats are often associated with increased thirst and as a consequence excreted a higher
volume of urine due to hyperglycaemia-induced hyperfiltration by the kidneys?’.
Administration of AG resulted in a partial decrease in water consumption and as a result,

decreased urine excretion as that exhibited by STZ+AG-treated - diabetic rats.
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Various studies have shown previously that aminoguanidine has been shown to have some
potential effects on water consumption in streptozotocin (STZ)-induced diabetic rats, as

observed here in our studies®*2.

In diabetes, the kidneys can be damaged due to excess glucose filtration, leading to
hyperfiltration, impaired fluid reabsorption, and increased urine production leading to an
altered urinary excretion of water and ions?®®. It is postulated hence that treatment of AG may
improve kidney function, and thus help in reducing excessive urine production and subsequent
thirst, a normal physiological response. Diabetes also affects the production and release of
hormones involved in fluid balance and thirst regulation. Additionally, AG has also been
shown to influence the release of certain hormones indirectly such as vasopressin®?’ and atrial
natriuretic peptide'®. By modulating these hormones, aminoguanidine may actually help
regulate fluid balance and could possibly reduce excessive thirst and water consumption, and

hence affect the renal functions.

Diabetes causes oxidative stress, which can damage cells and tissues throughout the body,
including the kidneys®”’. Evidence from the literature, suggests that aminoguanidine also
possesses antioxidant effects, which may help in protection against oxidative stress-induced

damage 3'8.

In conclusion, the acceleration of advanced glycation is the major challenge in
clinical diabetes complications. We have established an STZ-induced diabetic model to
evaluate the phenotypic characteristics after AG treatment. Our study provides promising
results in preventing the increase in blood glucose levels by AG treatment. Furthermore, the
study demonstrated an anomalous or selective action of AG, on body weight, food, and water
consumption, and urine volume thus, it provides a new dimension in strategies to treat diabetic

complications.
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3.2 Objective 2
3.2.1 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Not

Significantly, Increased the Urine Protein Levels (ug/uL)

Diabetic rats had significantly higher urinary protein levels, compared with that in the Vehicle
group rat groups (52.23 = 7.16 vs. 15.14 £ 1.94 pg/uL (p<0.05); n=(3-5). Administration of
AG (1 g/L) slightly, albeit not significantly, increased the urine protein levels in the STZ-
induced+AG-treated rat groups compared with that in STZ-treated rats (61.95 = 7.30 vs. 52.23
+7.16 pg/uL; Figure 3.11). Surprisingly, urine protein levels in vehicle-treated rats that were
administered AG were significantly increased compared with those in vehicle+AG-treated rat
groups (42.35 = 7.45 vs. 15.14 + 1.94 pg/puL (p<0.05)). The urine protein levels were
substantially increased in the STZ-treated rat groups that were administered AG compared with
that in vehicle+AG-treated rat groups that were administered AG, although not significantly

(61.95 + 7.30 vs. 42.35 +£7.45 pg/uL; Figure 3.11).
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Figure 3.11: Effect of aminoguanidine (AG) treatment (1 g/L) on the urinary protein level of
STZ-induced rat groups compared to vehicle rat groups, and Vehicle+AG treated rat groups
and STZ+AG treated rat groups. Values are means + SEM. *p<0.05 compared to vehicle rat

groups, @ p<0.05 compared to Vehicle+AG treated rat groups (Student’s t-test). n = (3-5).
3.2.2 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Had

Significantly Decreased Urine Flow Rate (UFR) (puL/min)

STZ-treated rat groups had significantly higher urine flow rates compared with that in the
Vehicle group rats (20.55 £ 1.94 vs. 4.6 = 0.57 pL/min (p<0.05); n=(3-5). The administration
of AG significantly decreased Urine flow rate (UFR) (Figure 3.12) in STZ-induced+AG
treated rat groups compared with that in STZ-induced rat groups (12.14 + 4.043 vs. 20.55 +
1.94 pL/min, (p<0.05). There was no effect on the UFR in the Vehicle+AG treated rat groups
and Vehicle rat groups (3.90 + 0.48 vs. 4.6 = 0.57 pL/min). However, the UFR was
significantly increased in STZ-induced+AG treated rat groups compared with that in the

Vehicle+AG treated rat groups (12.14 + 4.04 vs. 3.90 £ 0.48 pL/min (p<0.05); (Figure 3.12).
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Figure 3.12: Effect of aminoguanidine (AG) treatment (1 g/L) on urine flow rate (uL/min) of
STZ-induced rat groups compared to vehicle rat groups, and Vehicle+AG treated rat groups
and STZ+AG treated rat groups. Values are means = SEM. *p<0.05 compared to vehicle rat

groups @ p<0.05 compared to Vehicle+AG treated rats (Student’s t-test). n = (3-5).
3.2.3 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Did Not

Affect Glomerular Filtration Rate (GFR) (mL/min)

STZ treated diabetic rat groups had a significantly higher glomerular filtration rate (GFR)
compared with that in the Vehicle group rats (1.1 + 0.08 vs. 0.27 + 0.01 mL/min (p<0.05);
(n=3-5). The AG administration did not affect the glomerular filtration rate (GFR) in STZ-
induced+AG treated rat groups compared with that in STZ-induced rat groups (1.1 + 0.07 vs.
1.1 £ 0.08 mL/min; Figure: 3.13) and the GFR was also found to be similar in Vehicle+AG

treated rat groups and Vehicle rat rat groups (0.29 + 0.02 vs. 0.27 = 0.01 mL/min). The GFR
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was, however, significantly increased in the STZ-treated diabetic rats and STZ-induced+AG

treated rat groups compared to the Vehicle and Vehicle+AG-treated rat groups (Figure 3.13)

@

1.5
=
g 10
E
o
L 0.5
o
—_— I
0.0 ’ .
e <)
6‘(} ¥ 2
XU g 1}@ ,5@*’
$¥© S @
&

%

* - p<0.05 compared to Vehicle
@-p<0.05 compared to Vehicle+AG

Figure 3.13: Effect of aminoguanidine (AG) treatment (1 g/L) on glomerular filtration rate
(ml/min) of STZ-induced diabetic rat groups compared to vehicle rat groups, and Vehicle+AG
treated rat groups and STZ+AG treated rat groups. Values are means = SEM. *p<0.05
compared to vehicle rat groups, @ p<0.05 compared to Vehicle+tAG treated rat groups
(Student’s t-test). n = (3-5).

3.24 AG Treatment of STZ-induced+AG treated Diabetic Rat Groups

Considerably Decreased Urine Sodium Excretion (mmol/L)

The STZ-treated diabetic rat groups had significantly increased urine sodium excretion
compared with that in the Vehicle rat groups (3.24 + 0.40 vs. 1.35 £ 0.21 mmol/L, p<0.05;

Figure 3.14). The administration of AG resulted in a considerably decreased urine sodium
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excretion, although not significant, in the STZ-induced+AG treated rat groups compared with
that in STZ-induced rat groups (2.12 = 0.63 vs. 3.24 + 0.40 mmol/L; Figure 3.14). The urine
sodium excretion in Vehicle+AG treated rat groups was similar to those in Vehicle rats (0.84
+ 0.06 vs. 1.35 £ 0.21 mmol/L). However, urine sodium excretion in the STZ-induced+AG
treated rat groups were increased compared with those in Vehicle+AG treated rat groups (2.12
+ 0.63 vs. 0.84 + 0.06 mmol/L, p<0.05) (Figure 3.14). Moreover, the urine sodium excretion
were significantly increased in the STZ-induced diabetic rat groups compared with that in the
Vehicle +AG treated group of rats (3.24 + 0.40 vs. 0.84 £ 0.06 m mol/L, (p<0.05); Figure
3.14). No difference was recorded in the urinary sodium excretion between the Vehicle rat
groups and the Vehicle+AG-treated rat groups (1.35 + 0.21 vs. 0.84 + 0.06 m mol/L; Figure

3.14).
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Figure 3.14: Effect of aminoguanidine (AG) treatment (1 g/L) on urinary sodium excretion in
the streptozotocin (STZ)-induced diabetic rat groups compared to vehicle rat groups, and
Vehiclet+AG treated rat groups and STZ+AG treated rat groups. Values are means + SEM.

*p<0.05 compared to vehicle rat groups, @ p<0.05 compared to Vehicle+AG treated rat groups

(Student’s t-test). n = (3-5).

3.2.5 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Shows
Modest Reversal in Serum Creatinine (mg/dL)

STZ treated diabetic rat groups had significantly decreased serum creatinine levels, compared
with that in the Vehicle group rat groups (0.77 + 0.02 vs. 1.12+ 0.06 mg/dL (p<0.05, n=4).
Administration of AG (1 g/L) resulted in a modest reversal in serum creatinine in the STZ+AG-
treated rat groups compared with that in STZ-treated rat groups (0.97+£0.08 vs. 0.77+0.02
mg/dL). The levels of Creatinine in the Vehicle +AG treated rat groups had no significant

changes compared with those in vehicle rat groups (1.37£0.14 vs. 1.12+0.06 mg/dL). There
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was no significant difference between the levels of serum creatinine in the STZ-treated rat
groups that were administered AG compared with that in Vehicle+AG treated rat groups
(0.97+0.08 vs. 1.37+0.14 mg/dL). There is no significant difference between serum creatinine
in STZ-induced +AG treated rat groups compared with that in Vehicle rat groups (0.97+0.08

vs. 1.12+0.06 mg/dL, n=4; Table 3.1).

Table 3.1 Serum Creatinine(mg/dL) levels in the various animal groups

Animal Groups Mean + SEM values
Vehicle rats 1.12+0.06
Vehicle + AG treated 1.37+0.14
STZ treated rats 0.77 £ 0.02*
STZ + AG treated rats 0.97+0.08@

Values are expressed means £ SEM. *p<0.05 compared to Vehicle rats, @ p<0.05 compared

to Vehicle+AG rats (Student’s t-test). n = (3-5).

3.2.6 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Shows a

Considerable Decrease in the Urine Creatinine (mg/dL)

STZ treated diabetic rat groups showed a significantly decreased urine creatinine
concentration, compared with that in the Vehicle group rat groups (43.38+ 13.69 vs. 115.2 +
17.56 mg/dL) (p<0.05, n=3-4 Table 3.2). Administration of AG (1 g/L) showed a considerable
decrease in the urine creatinine in STZ+AG treated rat groups, as that of the STZ-treated rat
groups ((36.87+ 1.59 vs. 43.38+13.69 mg/dL; n=3-4, Table 3.2). The levels of urine
creatinine, in the Vehicle+AG treated rat groups had no significant changes compared with
those in Vehicle rat groups (95.97+ 14.08 vs. 115.2 + 17.56 mg/dL n=3. The urine creatinine

significantly decreased in the STZ+AG treated rat groups compared with that in Vehicle+AG
Page 85 of 211



treated rat groups (36.87+£59 vs. 95.97+ 14.08 mg/dL, n=3, (p<0.05); Table 3.2. The urine
creatinine was also significantly decreased in STZ-induced rat groups compared with that in
the Vehicle+AG treated rat groups (43.38 + 13.69 vs. 95.97£14.08 mg/dL, n=3. The urine
creatinine also shows a significant decrease in the STZ-induced+AG treated rat groups
compared with that in Vehicle rat groups (36.87+1.59 vs. 115.2+17.56 mg/dL, n=3 (p<0.05);

Table 3.2

Table 3.2 Urine Creatinine (mg/dL) levels in the various animal groups

Animal Groups Mean + SEM values
Vehicle rats 1152+ 17.56
Vehicle + AG treated rats 95.97+ 14.08
STZ treated rats 43.38+ 13.69*
STZ + AG treated rats 36.87+ 1.59@

Values are expressed means + SEM. *p<0.05 compared to vehicle rats, @ p<0.05 compared

to Vehicle+AG rats (Student’s t-test). n = (3-5).

3.2.7 AG Treatment of STZ-induced+AG-treated Diabetic Rats Shows No

Change in Serum Sodium (mmol/L)

The STZ treated diabetic rat groups had significantly increased Serum sodium levels compared
with that in the Vehicle group rat groups (145.4+2.98 vs. 135.7+2.47 mmol/L (p<0.05); n=4,
Table 3.3). Administration of AG (1 g/L) resulted in no change in the serum sodium in the
STZ- induced+AG-treated rat groups compared with that in STZ-treated rat groups (143.4+
1.84 vs. 145.4 + 2.98 mmol/L, n=4, Table 3.3). The levels of serum sodium, in Vehicle+ AG
treated rat groups, had no significant changes compared with those in Vehicle rat groups

(135.8+2.03 vs. 135.7+2.47 mmol/L n=4, Table 3.3). The serum sodium was significantly
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increased in the STZ-induced+AG treated rat groups compared with that in Vehicle+AG
treated rat groups (143.4+1.84 vs. 135.8+2.03 mmol/L, n=4, (p<0.05); Table 3.3). The serum
sodium levels were, however, significantly increased in the STZ-treated diabetic rat groups
compared to the Vehicle+AG-treated rat groups (145.4 + 2.98 vs. 135.8+ 2.03 mmol/L, n=4,
(p<0.05) :( Table 3.3). The serum sodium level was significantly increased in the STZ-
induced+AG treated rat groups compared with that in Vehicle rat groups (143.4+1.84 vs.

135.7+2.47 mmol/L, n=4 (p<0.05); Table 3.3).

Table 3.3 Serum sodium(mmol/L) levels in the various animal groups

Animal Groups Mean + SEM values
Vehicle 135.7+£2.47
Vehicle + AG treated rats 135.8+2.03
STZ treated rats 145.4+2.98%*
STZ induced+ AG treated rats 143.4+ 1.84@

Values are expressed means + SEM. *p<0.05 compared to vehicle rats, @ p<0.05 compared

to Vehicle+AG rats (Student’s t-test). n = (3-5).

3.2.8 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Show

Reversal of the Decrease in The Urine Sodium (mmol/L)

Urine sodium level was significantly decreased in the STZ-induced diabetic rat groups,
compared with that in the Vehicle group rat groups (77.50 £3.428 vs.109.7+8.41 mmol/L
(p<0.05); n=4, Table 3.4). Administration of AG (1 g/L) resulted in a considerably reversal of
the decrease in the urine sodium levels in the STZ- induced+AG-treated rat groups compared
with that in STZ-treated rat groups (104.7£29.81 vs. 77.50 +3.428 mmol/L, n=4, Table 3.4).

The levels of urine sodium, in Vehicle+AG treated rat groups, showed a moderate change
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compared with those of the Vehicle rat groups (122.0+ 18.00 vs. 109.7+8.41 mmol/L n=4,
Table 3.4). The Urine sodium was moderately decreased in the STZ-induced+AG treated rat
groups compared with that in vehicle+ AG treated rat groups (104.7+29.81 vs. 122.0+ 18.00
mmol/L, n=4, (p<0.05); Table 3.4). The urine sodium was, however, significantly decreased
in the STZ-treated diabetic rat groups compared to the Vehicle+AG-treated rat groups (77.50+
3.428 vs. 122.0+18.00 mmol/L, n=4, (p<0.05); Table 3.4). The urine sodium level was almost
similar in the STZ-induced+AG treated rat groups compared with that in Vehicle rat groups

(104.7£29.81 vs. 109.7+£8.41mmol/L, n=4 (p<0.05); Table 3.4.

Table 3.4 Urine Sodium (mmol/L) levels in the various animal groups

Animal Groups Mean + SEM values
Vehicle 109.7 + 8.41
Vehicle + AG treated rats 122.0 + 18.00
STZ treated rats 77.50 + 3.428*
STZ induced+ AG treated rats 104.7 + 29.81

Values are expressed means + SEM. *p<0.05 compared to vehicle rats, @ p<0.05 compared

to Vehicle+AG rats (Student’s t-test). n = (3-5)

3.2.9 AG Treatment of STZ-Induced Diabetic Rats Did Not Affect The Changes

in The Glomerular Damage (%) in The STZ-induced+AG-treated Rat Groups

Significant changes were noted in the glomerular structures between the STZ-induced diabetic
rat groups and Vehicle rat groups (Figure 3.15). The extent of glomerular damage (%) was
recorded by the visualization of the damaged glomerulus in various fields, as observed under
the microscope. The glomerular damage was recorded as a percent of glomerular damage,

compared to the Vehicle groups of rats by the H&E staining (Figure. 3.15). While the Vehicle
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rats had a normal glomerulus showing normal Bowman’s space and capillaries, the STZ-
induced diabetic rats showed obliteration of the Bowman’s space, collapsed capillaries,
mesangial cell proliferation, and deposition of hyaline material. (Figure. 3.2.5). The STZ-
induced diabetic rat groups and STZ-induced+AG-treated rats groups both showed diffused
deposition of hyaline material with collapsed capillaries. These are the classical features of

diabetic nephropathy that were visualized in the kidneys of diabetic rats using H&E staining.

A greater deposition of PAS-positive material was observed in STZ-indued diabetic rats
compared with that in Vehicle rats. The mesangial cell proliferation was increased in STZ
treated rat groups and STZ-induced+AG treated rat groups compared with that in Vehicle and

Vehicle+AG) (Figure 3.16).
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Figure 3.15 Effect of aminoguanidine (AG) treatment (1 g/L) on the renal damage as visualized
with hematoxylin and eosin (H&E) staining of all four groups. a) Bowman’s space b) Normal
Glomerular capillaries c) Mesangial cells d) Obliteration of Bowman’s Space e) Collapsed

capillaries f) Mesangial Cells proliferation.
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Figure 3.16 Effect of aminoguanidine (AG) treatment (1 g/L) on the renal damage as visualized
with hematoxylin and eosin PAS staining of all four groups. Changes in glomerular histology
visualized included. a) Bowman’s space b) Normal Glomerular capillaries ¢) Mesangial cells
d) Obliteration of Bowman’s Space e¢) Collapsed capillaries f) Mesangial Cells proliferation g)

Hyaline deposition in matrix h) PAS-positive material deposition in matrix

3.2.10 Effect of Aminoguanidine (AG) Treatment (1 g/L) on the Renal Damage
as Visualized with Hematoxylin and Eosin (H&E) and PAS Staining in the STZ-

induced+AG-treated Rat Groups

The extent of glomerular damage, expressed as percent damage, as quantified by the field
analysis, having 10 or more glomeruli in a field, was significantly increased in the STZ-
induced diabetic rat groups compared with that in the Vehicle rat groups (43.34 £ 7.60 vs. 7.79
+ 4.60 (p<0.05); Figure 3.17). Administration of AG (1 g/L) did not affect the changes in the
glomerular damage, as observed for the STZ-induced diabetic rat groups (41.50 = 2.06% vs.
43.34 + 7.60 %). No significant difference in the glomerular damage was recorded between
the Vehicle+AG treated rat groups and Vehicle rat groups (10.67 + 1.76 vs. 7.79 £ 4.60).
However, significantly increased glomerular damage was observed in STZ-induced+AG
treated rat groups compared with that in VVehicle+AG treeated rat groups (41.50 £ 2.06% vs.

10.67 + 1.76, p<0.05).
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Figure 3.17: Effect of AG treatment (I g/L) on (3 B) glomerular damage in vehicle and
streptozotocin (STZ)-induced diabetic rat groups and Vehicle+AG treated rat groups and
STZ+AG treated rat groups. Values are means = SEM. *p<0.05 compared to vehicle rats, @

p<0.05 compared to Vehicle+AG rats (Student’s t-test) n = (3-5).
3.2.11 Discussion

Diabetes leads particularly to a filtration process overload by the kidneys. This excess
workload makes the kidneys susceptible to various regulatory mechanism that affects the
functions of the kidneys leading to a decline in the kidney function over a period of time.
Among the notable factors that affect kidneys are the increased glycation and accumulation of
glycated plasma proteins®?!. These glycated products also affects the functioning of various
organs including , blood vessels®®, eyes??®, and nerves®®® play an essential role in the

pathogenesis of diabetic complications.
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A previous study by Thomas MC et al. have shown that there is an interaction between the
renin-angiotensin system and advanced glycation in the kidney®”® and AG showed a beneficial
effect in the prevention of diabetic nephropathy due to its ability to reduce urine volume, GFR,
and serum AGEs®’. Therefore, treatment with AG has been reported to be beneficial for the
prevention of diabetic complications in STZ-induced diabetic rats. Hence, in the current study,
we also investigated the effect of AG on STZ-induced rats and indices of renal functions. Our
results demonstrated that AG treatment did not cause an increase in urine protein or an index
of renal injury in STZ treated AG rats, but it did lead to decreased creatinine and urine sodium.
Furthermore, it did cause significant reversion of the UFR and did not further increase the
GFR, in early diabetic conditions. Additionally, AG did not increase serum sodium and
potassium. Therefore, treatment with AG indicated the importance of controlling and

regulating the renal functions in the early diabetic condition.

In the present most promising results, we observed that alteration of kidney function
parameters, including the presence of protein in the urine, elevated urine flow rate, GFR, and
urine sodium excretion, as well as serum sodium levels in STZ-induced diabetic model.
Although we did not perform experiment on the underlying mechanism, but we speculating
that alteration in the RAS system in diabetes, and this observation is supported by Anderson et
al®® and other . We observed renal injuries as observed by - collapsed capillaries in the
Bowman’s capsule, mesangial cell proliferation, deposition of the hyaline material, etc.—in
STZ-treated rats, which are characteristics of diabetic lesions. This is also manifested by
increased protein levels in the urine®°. Surprisingly, the Vehicle+AG rats also showed slightly
increased urine protein levels compared with that in Vehicle rats, which may be attributable to
an acute effect, most likely induced by AG, and this observation is supported by Kostic T3,
However, we did not see any noticeable changes in the glomerular structure (V+AG), which

implies an acute effect only, thereby causing proteinuria, and most likely not affecting the
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glomerular structure, greatly. This notion is apparently more credible considering the fact that
the urinary protein levels were also enhanced in the STZ-induced+AG rats compared with that
in the STZ-induced rats. This is more likely an acute phenomenon that is induced by AG

treatment, which warrants further investigation.

Creatinine is a breakdown product of creatine phosphate in muscle and its clearance rate
from blood to urine correlates with the glomerular filtration rate. During this phase, creatinine
levels may not be significantly elevated, as the kidneys are still capable of maintaining normal
to slightly increased filtration rate, as the integrity of the glomerulus is not damaged to that of
the level of end state damage. These are classical characteristics of an early stage of diabetic
complications?®’. In the present study highlights the significantly increased sodium excretion
STZ-induced diabetic rats showed compared to vehicle rats as previously reported by Hakem
et al.?%. This might be due to the underlying mechanisms associated with renal sodium
excretion affected by the sodium transporters, which include sodium-glucose cotransporter 2
(SGLT2) and the sodium-hydrogen exchanger 3 (NHE3), and Na, K ATPase pump?%/:383,
Treatment with AG slightly decreased the sodium excretion in STZ+AG rats but had no change
in serum sodium levels in STZ+AG rats. This indicates that the AG is helping in the attenuation
of the loss of excess sodium and balances electrolytes, contrary to what happens in the early
diabetic condition. Treatment with AG partially or modestly reverses kidney dysfunctions,
such as UFR and GFR as reported by Soulis et al®?’. It has, however, not affected a few other

parameters. We, therefore, see an anomalous and/ or selective action of the action of AGE
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3.3. Objective 3
3.3.1 Effect of Aminoguanidine (AG) Treatment (1 g/L) on STZ-induced diabetic

rats had Moderate Increased Expression of Renin in The Kidney of STZ-

induced+AG treated Rat Groups

The expression of the renin protein in the kidney tissue was determined using western blot
analysis. Renin antibodies detected a band of approximately 45 kDa. Densitometry analysis
showed that the levels of the Renin protein were not changed in STZ-induced diabetic rat
groups compared with that in VVehicle rat groups (1.39+ 0.23 vs. 1.38+ 0.33, n=4, Figure 3.18).
However, upon treatment with AG, the STZ-induced+AG treated rat groups showed a
moderate increased, but not significant, expression levels of the renin protein (1.65+ 0.21 vs.

1.39+ 0.23, (Figure: 3.18).
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Figure 3.18: Effect of aminoguanidine (AG) treatment (1 g/L) on the expression of renin in the
kidney of the vehicle and streptozotocin (STZ)-induced diabetic rat groups, and VehicletAG
treated rat groups and STZ+AG treated rat groups. The renin protein normalized against -

actin. Values are means =SEM.
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3.3.2 Effect of Aminoguanidine (AG) Treatment (1 g/L) on STZ-induced diabetic
rats had No Change in Expression of Ang Il, Type 1, AT;, and a Modest Decrease

in Type 2 receptors, AT, in STZ-induced+AG treated Rat Groups

The expression of the AT1 and ATz receptor proteins in the kidney tissue was determined using
western blot analysis. The ATy, and AT receptor antibodies detected a band of approximately
45 kDa. Densitometry analysis showed that the levels of the AT receptors were significantly
increased in STZ-induced rat groups compared with that in Vehicle rats (1.08 £ 0.12 vs. 0.55
+ 0.04, almost 1.9 fold (p<0.05); Figure 3.19). The ATz receptor levels were also significantly
increased by almost 2.6-fold in the STZ-induced diabetic rats compared with those in the
Vehicle rats (1.12 + 0.08 vs. 0.46 = 0.07 (p<0.05); Figure 3.19). However, upon treatment
with AG, the STZ-induced+AG treated rat groups showed a modest decrease (0.99 £ 0.07 vs.
1.12 £ 0.08) in AT receptor levels (Figure 3.19). On the contrary, the ATy receptor levels did
not change in STZ-induced+AG treated rat groups compared with that in the STZ-induced
diabetic rat groups (1.1 + 0.19 vs. 1.08 = 0.12; Figure 3.19). No significant difference was
observed in the expression of ATy and AT between the Vehicle and the Vehicle+AG-treated

rats.
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Figure 3.19: Effect of aminoguanidine (AG) treatment (1 g/L) on the expression of AT and
AT receptors in the kidney of the vehicle and streptozotocin (STZ)-induced diabetic rats and
Vehicle+AG treated rat groups and STZ+AG treated rat groups. The ATy and AT, proteins
normalized against B-actin. Values are means +SEM. *p<0.05 compared to vehicle rat groups,

@ p<0.05 compared to Vehicle+AG rat groups (Student’s t-test) n = (3-5).

3.3.3 Effect of Aminoguanidine (AG) Treatment (1 g/L) on STZ-induced diabetic
rats No Change in Expression of Ang Il, Type 1, AT, receptor in the heart of in
STZ-induced+AG treated Rat Groups

The expression of the AT receptor proteins in the heart tissue was determined using western
blot analysis. The ATy, receptor antibodies detected a band of approximately 45 kDa.
Densitometry analysis showed that the levels of the AT1 receptors were significantly increased
in STZ-induced rat groups compared with that in Vehicle rat groups (1.64+ 0.19 vs. 0.71 +
0.08, n=4, almost 2 fold (p<0.05); Figure 3.20). Upon treatment with AG, the AT receptor

levels did not change further in STZ-induced+AG treated rat groups compared with that in the
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STZ-induced diabetic rat groups and were almost similar to that observed in the STZ-induced
diabetic rats (1.71 + 0.26 vs. 1.64+ 0.19; Figure 3.20). No significant difference was observed

in the expression of AT between the Vehicle and the Vehicle+AG-treated rat groups.
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Figure 3.20: Effect of aminoguanidine (AG) treatment (1 g/L) on the expression of AT}
receptors in the heart of the vehicle rat groups and streptozotocin (STZ)-induced diabetic rat
groups, and VehicletAG treated rat groups and STZ+AG treated rat groups. The ATy protein
of the heart normalized against -actin. Values are means +SEM. *p<0.05 compared to vehicle

rats, @ p<0.05 compared to Vehicle+AG rats (Student’s t-test) n = (3-5).
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3.3.4 Discussion

There is an evidence showed that diabetic complications have been associated with
hyperglycemia®* and hypertension'®2. A study explored early diabetes rats stimulating the
proximal tubules renin and angiotensin Il and receptors in diabetic kidney 13°38°38%¢_Qur study
demonstrates the upregulation of renal ATy and AT protein expression, and no change in renin
in STZ-diabetic rats by the immunoblotting experiment as previously reported 13529.297.387
Despite the upregulation of renal AT and ATz, the most robustic finding in this study is that
the treatment with AG causes a considerable decrease in AT, expression in STZ induced+AG
treated rat groups, which is a most desirable effect from a clinical point of view. Although we
did not study functional significance, we speculated that angiotensin Il receptors to specific
kidney sites may suggest their involvement in the physiological regulation of renal
haemodynamic 38, excretory functions (natriuresis) 2, and their possible contribution to renal
diseases. It is important to note that the fold increases in the AT receptors in the STZ treated
diabetic rats was more (2.6) compared with that of the AT: receptors (1.9), which is in
consonance with previous studies by Romero-Nava, R. et al and Athar H Siddiqui 8%, The
overexpression of AT could be associated with the reduction in the response to Ang Il in the
early stage of diabetes. Numerious studies showed that significantly increased AT receptors
was associated with an increased stimulation of Na+/K+ ATPase pump in obese Zucker rats
and OK cells 43 There is also a report that shows that the renal angiotensin 11 AT, receptors
promote natriuresis in streptozotocin-induced diabetic rats and obese Zucker rats 3839 e,
very positively speculate that the natriuretic effects of the AT> receptors overcome the anti-
natriuretic effects of the ATy receptors, in our current study. As a consequence of which, we
see increased sodium excretion levels in the STZ-treated diabetic rats. This is a very common
feature in early-stage diabetes where hyperfiltration could lead to increased sodium excretion.

We also demonstrate increased sodium excretion in STZ-induced diabetic rats, which implies
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an increase in natriuretic functions in the STZ-induced diabetic rats®'2. The administration of
AG led to decreased renal levels of the AT> receptor and did not observe any change in the
renal levels of the AT: receptor in STZ+AG rats as compared to STZ treated diabetic rats. We,
therefore speculate that no major difference exists in the anti-natriuretic function AT receptor

in STZ +AG induced rats.

Our data also show no change in renal renin protein expression in STZ treated rats and
moderately increased renin protein expression after AG administration in STZ+AG treated
diabetic rats as compared to STZ treated diabetic rats. The AT: receptor regulates renin
production through the negative feedback mechanism. Thus, it is possible that increased AT1
expression in STZ treated rats may have contributed change in renin protein expression, as
increased renin would have further increased the signalling cascade of Ang Il and an increased
Ang 11 would have led to an increase in the anti-natriuretic function3®. We, are therefore,
inclined to say here that the increase in renin is prevented or inhibited, as a compensatory

mechanism to regulate the anti-natriuretic functions in our model of rats, in the present study.

The heart is a muscular organ containing a network of blood vessels and Angiotensin Il
receptors (AT1and AT>). The activation of the AT receptor causes vasoconstriction leading
to increased blood pressure®®. Our results showed increased protein expression in AT
expression in the heart of STZ-induced rats compared to vehicle rats similar to other reports
8, However, we did not see any significant difference after AG treatment in STZ-induced rats,
meaning thereby a minimal effect of AG treatment in affecting the vasoconstriction of the

arteries in the heart.

In conclusion, this study demonstrated the upregulation of Angiotensin Il (AT and

AT>) and no change in renin protein expression in diabetic conditions. After AG treatment a

Page 99 of 211



slight decrease in AT receptor may have contributed to the enhancement of renin expression

levels.
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CHAPTER 4: SUMMARY AND
CONCLUSIONS
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SUMMARY

Diabetes is a multifactorial disease that affects millions of people worldwide. It leads to various
complications, affecting most of the organs in the body, including kidneys, heart, eyes, nerves,
and vasculature. The role of advanced glycation end products (AGESs) in the pathogenesis of
diabetic complications is well known. This study was aimed at investigating the efficacy of
aminoguanidine (AG), a drug that inhibits the production of AGEs, to mitigate the

complications of diabetes, with a focus on renal functions.

This study was mainly aimed at two aspects (i) rethinking the roles of AGEs in diabetes and
diabetes-induced hypertension, in light of the background information collected from a
thorough and detailed literature survey and (ii) the regulation of RAS and its effect on the renal

functions in diabetic rats treated with AG.

Although the roles of AGEs in diabetes and related complications have been convincingly
demonstrated, the accumulation of AGEs and their specific roles in the regulation of
hypertension under the diabetic conditions remain unclear. Accumulating evidence indicates
the roles of AGEs in insulin signaling and insulin resistance?33913%2 and hence in diabetes.
As the accumulation or production of AGEs is inhibited in the presence of AG, in this study,
it was hypothesized that AG treatment of STZ-induced diabetic rats would result in the

reversion of the increased blood glucose levels or at least prevent hyperglycaemia.

The renin-angiotensin system (RAS) is critical in maintaining water and electrolyte
homeostasis. It regulates many physiological functions of the body, especially the function of
the kidneys. Because altered regulation of RAS under diabetes leads to diabetic complications,
including hypertension and renal diseases, an attempt was made in this study to examine these

complications under diabetic conditions.
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Various animal models have been used to study diabetic complications. The streptozotocin
(STZ)-induced diabetes model is a very good animal model to study the effect of diabetes on
RAS. In the present study, the STZ-induced diabetes rat model was used to determine the
effects of AG on various indices of RAS and renal function. Additionally, the effects of AG
on various hemodynamic parameters and physiological functions in rats were also investigated.
This study focused on observing various renal functions, such as glomerular filtration rate
(GFR) and urine flow rate (UFR), as well as, on determining the glomerular damage and
natriuretic functions in diabetic and AG-treated rats. The action of the most important hormone
in the pressor arm of RAS, angiotensin Il (Ang Il), is mediated via angiotensin Il receptor
subtypes 1 (AT1) and 2 (AT2). The expression levels of these receptors were determined in the
kidneys of diabetic rats to assess the effect of Ang Il on renal functions mediated by these
receptors.

This study was further aimed at understanding the effect of AG treatment on RAS. The
alterations in RAS under diabetic conditions are well known?%33°, This study was focused on
evaluating the action of the most important hormone in the pressor arm of RAS, Ang I, and
on the receptors that mediate the actions of Ang Il, ATz, and ATz. The expression levels of
these receptors in the kidneys were determined. Moreover, another important index of RAS
function—the sodium homeostasis—which is a major contributor to hypertension, was also

investigated. This study was conducted with the following specific objectives:

1. To establish an animal model of diabetes in Sprague-Dawley (SD) rats and study the
effects of AG treatment on clinical phenotypes and hemodynamic parameters in STZ-
induced diabetic rats.

2. To investigate the effects of AG on various aspects of RAS functions, renal functions,
and renal damage, viz., urine flow, urinary protein, glomerular flow rate, sodium

excretion, and glomerular damage, in STZ-induced diabetics rats.
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3. To perform expression analysis of the angiotensin Il receptors, AT1 and ATo.
An STZ-induced diabetic animal model was employed in the present study. Four groups of
rats, which included the vehicle-treated rats, vehicle+AG treated rats, STZ-induced diabetic

rats, and AG-treated STZ-induced diabetic rats, were used in this study.

Objective 1: An STZ-induced diabetic rat model was established and used to determine the
therapeutic effects of AG by evaluating the phenotypic changes. It was ensured that the
vehicle-treated rats were not diabetic. AG treatment prevented the increase in blood glucose
levels in the STZ-induced diabetic rats. AG treatment also affected the body weight, food and
water consumption, and urine volume and should provide a new dimension to strategies for

the prevention or delay of the onset of diabetic complications.

STZ destroys the islet cells of the pancreas resulting in the impairment of insulin production,
which leads to an increase in the blood sugar levels. Considering the prevention of the increase
in blood sugar levels by AG, it was postulated that the AG treatment might result in enhancing
the sensitivity of rats to the small amounts of insulin present after STZ treatment. Thus, we
could see some insulin action, evident by improved glucose utilization, and thereby, a
significant decrease in the blood glucose levels in the STZ+AG treated rats compared with that
in the STZ-induced diabetic rats. Determining the insulin levels in the STZ+AG treated rats
will be one of the aims of a future study, which will help in providing us with a clear answer

to this notion.

Objective 2: The notion that AG treatment affects the functions of the kidney was analyzed.
AG had an anomalous and/or selective action. The changes in renal function, including UFR,
GFR, sodium excretion (natriuresis), urine protein, and glomerular damage, were determined.
AG partially or moderately reversed the alterations in kidney function parameters, such as

UFR, GFR, and natriuresis, indicating that, in diabetes, renal function is either reversed or
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remains unaffected, but is not exacerbated, by AG treatment. However, AG did not affect such

as urinary protein and glomerular damage.

A few of the physiological functions were reversed upon AG treatment and were not as severe
as in the untreated diabetic animals. Moreover, glomerular damage, which is associated with
diabetic lesions and is a very important manifestation of diabetic nephropathy, was clearly
evident in diabetic rats. Treatment with AG did not prevent the glomerular damage, and it was
almost the same as that in STZ-induced diabetic animals. However, other renal functions, such
as natriuresis (sodium excretion), GFR, and UFR, were reversed or partially restored/improved
upon treatment with AG compared with that of the STZ-induced diabetic rats. Natriuresis is an
important physiological indicator of sodium regulation in the body, and hence, a critical
determinant of blood pressure. Sodium excretion was noted to increase in the diabetic rats.
This phenomenon is noticed in early-stage diabetic subjects, who have dysregulated sodium
homeostasis due to hyperfiltration by the kidneys. Treatment with AG considerably reversed
the natriuresis in the STZ+AG-treated diabetic rats. These results suggest that AG treatment
prevents deterioration of the renal functions that are mostly of physiological and homeostatic
origin. It also highlights the important role of AGEs in the pathogenesis of diabetic

complications, especially in the kidneys.

Objective 3: The expression levels of ATy and AT receptors and renin in the kidney and that
of ATy receptors in the heart were determined. The expression of AT and AT receptors was
altered under diabetes conditions. On AG treatment, a decrease in the levels of the AT, receptor
was observed. The decreased glucose levels in STZ+AG-treated rats, coupled with decreased
expression of AT> receptors, reversed the natriuresis. These results provide insights into the
role of RAS in diabetic complications. However, further studies on the mechanistic pathways
facilitating the increased natriuresis in diabetic rats that caused reversion upon AG treatment,
need to be done.
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We intend to mention here that AG treatment prevents the increase in blood sugar levels.
However, in the STZ-induced diabetic rats, an increase in AT receptors was observed, which
is directly responsible for an increased natriuretic function®*¢%2, Corroborating these findings,
an increased expression of AT, receptor and natriuresis in diabetic rats was demonstrated in
this study. Because a direct link between the blood sugar and AT receptor levels has been
reported?®® 312 we emphasize that decreased sugar levels in STZ+AG-treated rats might also
lead to decreased AT receptor levels in these rats. A decrease in the expression of these
receptors will lead to a decrease in natriuretic function, as observed, in our study. Because
natriuresis was reversed by AG treatment, and although they exhibited significantly high levels
of glucose, the sodium excretion was not as high as that in the STZ-induced diabetic rats.
Therefore, it is speculated that although the levels of AT> receptors were modestly decreased,
sodium excretion decreased considerably indicating that these receptors may not be playing a

prominent role in STZ+AG-treated rats.
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CONCLUSIONS

1. The animal model developed in the present study can be used for studying diabetic
complications. This is due to the important ramifications of diabetes as mimicked in the

diabetic animal model, with regards to :

(1) Clinical phenotypes: Elevated blood glucose levels, and decreased body weight

(ii) Physiological determinants: Increased food and water consumption, increased urine output,

and increased urine flow rate

(iii) Altered renal functions: The effect on glomerular filtration rate, presence of urine protein,
dysregulation of urine and serum creatinine as well as serum sodium, urinary sodium excretion,

and glomeruli damage

2. Aminoguanidine (AG), an inhibitor of advanced glycation end products (AGESs) has been
shown to be effective in significantly preventing the increase in blood glucose levels in the
STZ+AG-treated rats. Additionally, it has been shown to be responsible for partially or
modestly reversing the conditions noted in STZ-induced diabetic rats, namely urine flow and
body weight. However, it did not affect a few other parameters. Therefore, an anomalous

and/or selective action of AG was observed in diabetic rats.

3. The breakdown of AGEs is being utilized to treat hypertensive conditions in diabetes. With
the information obtained from these studies, with regard to the prevention of an increase in
blood glucose levels by AG, a new dimension is provided to the biology of diabetes and AGEs

involving RAS.

4. The increased expression of AT1 and ATz receptors in the kidney of STZ-induced diabetic
rats has been shown previously (Ref.) and our results are consistent with those findings. It is

plausible, therefore, to comment on the anti-natriuretic and natriuretic functions of these
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receptors, which regulate the sodium levels in the body. This is a very common feature, in the
regulation of sodium homeostasis in diabetes. This is primarily attributed to the altered

regulation and functions of RAS.
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LIMITATIONS OF THE STUDY

The present study aimed at investigating the effects of AG on STZ-induced diabetic rats has

several limitations as listed below:

1. Diabetic animals are prone to frequent urination and diarrhea, which leads to the
development of infection. Maintaining the animals in a proper disease-free state for a longer

period of time is very important, but challenging.

2. To study the long-term effects of AGE inhibitors on diabetic rats, they need to be maintained
for a longer duration of time. The titration between time and the dose of STZ to be employed

that can cause the disease and have all the complications of diabetes is a challenge.

3. The early-stage diabetic condition may not be associated with AGEs formation. Hence, the
induction of diabetes and subsequent accumulation of AGEs requires time-based studies

because no particular time frame can be guessed for such accumulation to occur.

4. In physiological studies, conditions, factors, and homeostatic balance vary from animal to
animal. Achieving statistically reliable numbers for a desired parameter sometimes becomes

difficult.

5. For volumetric-based measurements, handling has to be done very carefully, and sometimes

only approximate measurements are possible.
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FUTURE SCOPE

In the future studies, the activity of various other RAS components, including various enzymes

and other components, will be looked into. These include:

1. Understanding the activity of prorenin

2. Understanding the activity of prorenin receptor

3. Understanding plasma renin activity

4. Detection of the enzyme activity of ACEL will give an idea of how much Ang Il is being

produced.

5. Analysis of the aldosterone assay will predict the role this hormone plays under in a diabetic

state.

Functional studies of the heart (thoracic aorta) blood vessels can be carried out. Although the
blood vessels are hard and contain a high amount of connective tissue, the study can be
attempted. This will give an idea on how the blood vessels are affected in diabetic conditions,
providing an understanding of the blood flow in the vessels. This would be a reflection on the

arterial flow and subsequent hypertension.

AG was able to ameliorate certain deleterious effects of diabetes in the short-term treatment,
as presented in this study. However, further studies are warranted to evaluate the effect of AG
in STZ-induced diabetic rats in a long-term duration model, which is of more than four weeks.
This will be helpful in obtaining a detailed and better understanding of the functions of AGEs,
AG, and its involvement with the blood sugar levels, as well as the factors that regulate the
blood sugar levels. Additionally, the effects of AGEs and AG need a more detailed study of

the action of these components, with specific reference to RAS.
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Abstract

Background/aim: Diabetes is a multifactorial syndrome that affects the functioning of the renin-angiotensin
system (RAS). The role of advanced glycation end products (AGEs) in diabetes is well known. In the present
study, we hypothesized that the prevention of AGE accumulation or abrogation of AGE synthesis using an
AGE inhibitor, aminoguanidine (AG), in streptozotocin (STZ)-induced diabetic animal models would affect
the progression of diabetes and its related complications. We determined the effects of aminoguanidine (AG),
an AGE inhibitor, in STZ-induced diabetic rats by determining various indices of RAS and renal functions.
Additionally, we also investigated the effect of the drug, AG, on various hemodynamic and physiological
functions in the body of the animals.

Methods: Male Sprague Dawley rats weighing 200-250 g were assigned to four groups (n =4-6): Vehicle,
Vehicle+AG, STZ-induced, and STZ-induced+AG rats. Type 1 diabetes was induced by a single intraperitoneal
(IP) injection of streptozotocin (55 mg/kg) dissolved in sodium citrate buffer. The control groups (Vehicle)
were injected with buffer. The blood glucose levels were measured after 48 hours, and animals with blood
glucose levels > 300 mg/dL were included in the study. Blood glucose levels in the vehicle rats were also
determined to ensure non-diabetic conditions. After confirmation, AG was administrated at a dose of 1 g/L
indrinking water for two weeks. Urine was collected to measure the glomerular filtration rate (GFR), and the
immune reactivity for AT) and AT, proteins was analyzed by inmunoblotting. Data were expressed as mean

+ standard error of the mean (SEM), and a p-value < 0.05 was considered statistically significant.

Results: Diabetic rats had a significant drop in body weight, accompanied by increased food and water
consumption. The diabetic rats exhibited significantly increased urine flow and GFR. These phenotypes were
significantly or considerately reversed by AG treatment in the STZ+AG-treated diabetic rats.
Aminoguanidine prevented the increase in blood sugar levels compared to STZ-induced diabetic rats alone
(295.9 = 50.69 versus 462.3 * 18.6 mg/dL (p < 0.05)). However, it did not affect the glomerular filtration rate
(GFR) and glomerular damage, as assessed by the renal histopathological studies. The STZ-induced diabetic
rats had an increased sodium excretion (3.24 + 0.40 mmol) and significantly increased expression of the AT
receptor and that of the AT) receptor, which was slightly reversed by the treatment with AG. Treatment with
AG decreased sodium excretion (2.12 * 0.63, as compared to the diabetic rats). These rats also had modestly
decreased expression of the AT, receptor (0.99 =0.07 versus 1.12 = 0.08, as compared to the STZ-induced
diabetic rats), while the AT receptors showed a slight increase in the STZ+AG-treated rats compared to the
STZ-induced diabetic rats (1.1 = 0.19 versus 1.08 £0.12).

Conclusion: This study highlights the action of the drug AG in not exacerbating any damage in diabetic rats.
Employing AG as a pharmacological intervention to prevent an increase in blood sugar adds a new
dimension to controlling increased blood sugar and preventing diabetic complications. The employability
and pharmacological intervention of the drug AG, in diabetes, therefore, need a renewed and further
investigation.

Categories: Cardiology, Endocrinology/Diabetes/Metabolism, Nephrology
Keywords: renin-angiotensin system, aminoguanidine, advanced glycation end products, renal functions,
angiotensin ii receptors, diabetes

Introduction

Diabetes is a multifactorial disease caused by a lack of insulin or insulin resistance [1]. It is mainly
characterized by increased blood sugar levels. Epidemiological studies have revealed that more than one in
10 adults are now living with diabetes, and the global diabetic population is estimated to reach 637 million
by 2030 [2].
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