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ABSTRACT 

 

Background/aim: Diabetes is a multifactorial disease that affects the functioning of the renin-

angiotensin system (RAS). The role of advanced glycation end products (AGEs) in inducing 

diabetic complications is well known. In the present study, we hypothesized that the prevention 

of AGE accumulation or abrogation of AGE synthesis using an AGE inhibitor, aminoguanidine 

(AG), in streptozotocin (STZ)-induced diabetic animal models would affect the progression of 

diabetes and it may delay or prevent the onset of diabetes-related complications. We 

determined the effects of AG, in STZ-induced diabetic rats by determining various indices of 

RAS and renal functions. Additionally, we also investigated the effect of the drug, AG, on 

various hemodynamic and physiological functions in the body of the animals. 

Methods: Male Sprague Dawley rats weighing 200-250 g were assigned to four groups (n = 

4-6): Vehicle, Vehicle+AG, STZ-induced, and STZ-induced+AG treated rats. Diabetes was 

induced by a single intraperitoneal (IP) injection of streptozotocin (55 mg/kg) dissolved in 

sodium citrate buffer. The Vehicle rats were injected with only buffer. The blood glucose levels 

were measured after 48 hours, and animals with blood glucose levels > 300 mg/dL were 

included in the study. Blood glucose levels in the vehicle rats were also determined to ensure 

their non-diabetic state. After confirmation, AG was administrated at a dose of 1 g/L in drinking 

water for two weeks. Urine was collected to measure the urinary protein, urine flow rate, UFR, 

glomerular filtration rate (GFR), and also to determine the sodium excretion. Blood was 

collected to measure creatinine and sodium. The kidney tissue was harvested to determine the 

immune reactivity for renin, AT1, and AT2 proteins by immunoblotting and to perform 

histological studies. Similarly, the heart tissue was collected to determine expression levels of 

AT1 proteins by immunoblotting. Data were expressed as mean ± standard error of the mean 

(SEM), and a p-value < 0.05 was considered statistically significant. 



 
 

Results: Diabetic rats had a significant drop in body weight, accompanied by increased food 

and water consumption. The diabetic rats exhibited significantly increased urine volume, urine 

flow rate, and GFR. These phenotypes were significantly or considerately reversed by AG 

treatment in the STZ+AG-treated diabetic rats. Aminoguanidine prevented the increase in 

blood sugar levels compared to STZ-induced diabetic rats alone (295.9 ± 50.69 mg/dl versus 

462.3 ± 18.6 mg/dL (p < 0.05). However, it did not affect the glomerular filtration rate (GFR) 

and glomerular damage, as assessed by the renal histopathological studies. The STZ-induced 

diabetic rats had an increased sodium excretion (3.24 ± 0.40 mmol) and significantly increased 

expression of the AT2 receptor and that of the AT1 receptor, which was slightly reversed by the 

treatment with AG. Treatment with AG decreased sodium excretion (2.12 ± 0.63 mmol/L, as 

compared to the diabetic rats 3.24 ± 0.40 mmol/L. The STZ-induced+AG treated rats also had 

modestly decreased expression of the AT2 receptor (0.99 ± 0.07 versus 1.12 ± 0.08, as 

compared to the STZ-induced diabetic rats, while the AT1 receptors showed a slight increase 

in the STZ+AG-treated rats compared to the STZ-induced diabetic rats (1.1 ± 0.19 versus 1.08 

± 0.12). 

Conclusion: This study highlights the action of the drug AG in not exacerbating any damage 

in diabetic rats. Employing AG as a pharmacological intervention to prevent an increase in 

blood sugar adds a new dimension to controlling increased blood sugar and preventing diabetic 

complications. The employability and pharmacological intervention of the drug AG, in 

diabetes, therefore, need a renewed and further investigation. 
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1.1 Diabetes 

Diabetes is a chronic metabolic disease with a high rate of morbidity and mortality on a global 

scale1,2. The well-known clinical symptoms of diabetes are polyuria, polyphagia, and 

polydipsia3,4. Additional symptoms include blurry vision, headache, fatigue, delayed wound 

healing, and itching of the skin5. Diabetes has further been classified into Type 1 and Type 2. 

The type I diabetes has an autoimmune etiology, whereby the β-cells are destroyed by the 

body’s own antibodies and affects 5-10% of all cases6,7. The effective treatment is daily insulin 

injections to reduce blood glucose levels. Whereas Type II diabetes is caused by a combination 

of insulin resistance, most likely originating due to hyperinsulinemia8. This occurs primarily 

in the adipose tissue, but also in the liver, subsequently leading to decreased production by β-

cells in the pancrease9,10.  It is estimated that 90-95% of diabetes are type 27. However, diabetes 

may also manifest during some conditions like pregnancy, drug toxicity, insulin receptor 

disorders, genetic disorders, endocrinopathies, and in association with pancreatic exocrine 

disease11-14 . 

The symptoms of diabetes may develop rapidly, typically, within weeks or months, mainly in 

type I diabetes, while they usually develop gradually and/or may be delayed or sometimes even 

missing in type 2 diabetes. The major risk factors for diabetes include genetic, environmental, 

and metabolic factors such as ethnicity, family history of diabetes, and gestational diabetes 

combined with older age, overweight and obesity, unhealthy diet, physical inactivity, smoking, 

and the intake of alcohol15. Several dietary practices have been linked to unhealthy body weight 

and/or high intake of saturated fatty acids, high total fat intake, and inadequate consumption 

of dietary fiber16. In addition, a high intake of sugar-sweetened beverages, which contain 

considerable amounts of free sugars, increases the likelihood of being overweight or obese, 

particularly among children17. Studies have shown an association between a high intake of 

sugar and an increased risk of the development of diabetes18,19.   
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              The economic burden of diabetes is high and bears a significant impact on the socio-

economic progress and public health worldwide20. Although huge awareness has been created 

of the genesis of diabetes, the incidence of diabetes has increased immensely in developed and 

developing nations. According to current global estimates from the International Diabetes 

Federation (IDF), 537 million people worldwide are estimated to have diabetes, and that 

number is expected to rise to 643 million by 20307. If no effective preventive measures are 

taken this number is expected to reach over 784 million by 2045, thereby acquiring an epidemic 

proportion. Approximately 50% of the individuals having diabetes remain undiagnosed, 

leading to the development of diabetic complications and avoidable or preventive economic 

burden to the patients. The global health expenditure for diabetes cases is estimated to reach 

approximately USD 1,027,600 billion by 20307.  

            Over the last three decades, diabetes prevalence has steadily increased in Asian 

countries, particularly India21. Currently, India leads the world with the largest number of cases 

and this is expected to increase further by 20457.  It is estimated that nearly one million children 

and adolescents under the age of 20 in India have type 1 diabetes. The total expenditure related 

to diabetes in the region is currently USD 10 billion, which could lead to be one of the 

considerable medical burdens on the health budget of this country7. 



Page 4 of 211 
 
 

 

Figure 1.1: Diabetes estimated cases around the world including India 

(The international and national statistics adapted from the International Diabetes Federation 

(IDF) Atlas. 2022) 

1.1.1 Complications of Diabetes 

Poor glucose control leads to hyperglycaemia coupled with insulin resistance thus initiating 

factors in the pathogenesis of diabetic complications22,23. The complications of diabetes are not 

limited to one organ and involve various organs of the body including the heart, kidneys, brain, 

nervous system, and eyes resulting, in various complications such as retinopathy24, 

nephropathy 25, neuropathy 26, atherosclerosis, heart attack27, and stroke28, respectively. Among 

all vital organs, the most important ramification of diabetic complications is its effects on 

kidneys29. Various mechanisms and insights have been proposed for the pathophysiology of 

nephropathy in diabetic conditions30. However, the mechanisms by which hyperglycemia can 

affect renal disease have not been adequately addressed. As a consequence, their life 

expectancy decreases in comparison to that of the general population. Although the current 

diabetes treatment has been encouraging, the prevention and control of diabetes complications 

still remain a challenge. Various hyperglycemia-elicited metabolic and hemodynamic 
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derangements have been proposed to contribute to renal complications in diabetes31. The 

currently identified mechanisms include increased oxidative stress32, polyol pathway, 

glycation end-product formation33, activation of protein kinase C (PKC), chronic 

inflammation34, mitochondrial dysfunction, and activation of the renin-angiotensin system 

(RAS)35. Among these, activation of the renin-angiotensin system and increased glycation end-

product formation is considered to be the initial core mechanism leading to diabetic kidney 

diseases. Therefore, understanding the renin-angiotensin system in the context of renal 

complications could help develop effective therapeutic strategies against diabetes 

1.2 Physiology of Renin-Angiotensin System 

The renin-angiotensin system (RAS) is the very important hormonal system that regulates 

sodium balance/ fluid volume, and arterial pressure36. The RAS system comprises renin, 

angiotensinogen, angiotensin-converting enzyme I, II, Angiotensin, (1-10), II and their 

principal effector receptors AT1 and AT2 and prorenin/renin binding receptor (PRR)36,37. 

Components of the RAS and Angiotensin  II receptors are found in the brain and many 

peripheral tissues such as the heart and kidney but also placenta, testis, adipose tissue, and 

eye36. 

Table 1.1: List of Renin-angiotensin system components and associated genes 

S.no Components Genes and Chromosome number 

1 Angiotensinogen AGT-1q42-3 

2 Renin REN, Chromosome number 2 1q32 

3 Angiotensin I -------- 

4 ACE ACE-17q23 

5 Angiotensin II -------- 

6 AT1 AGTR13q 24 

7 AT2 AGTR2 XP 22 

8 Prorenin receptor (PRR) ATP6AP2 gene on the X-chromosome 
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          Renin is an enzyme primarily produced and released by the juxtaglomerular cells (JG) 

of the kidney38. Renin cleaves the N-terminal portion of angiotensinogen, to form the 

biologically inert decapeptide Angiotensin I or Angiotensin (1-10)39.  The amount of renin in 

the bloodstream is a key rate-limiting step in determining the level of Ang II and the activity 

of the RAS39. The kidney also releases unprocessed prorenin through a constitutive mechanism 

in addition to this controlled one. Hence, 70% - 90% of renin in human circulation is present 

as prorenin37. There are various mechanisms regulating the renin synthesis and release, namely 

(i) A renal baroreceptor mechanism (ii) changes in the Na+ content and the distal tubular 

macula densa cells   (iii) changes in the sympathetic nerve activity via beta-1 adrenergic 

receptors on JG cells,  (iv) negative feedback by the direct action of Ang II via the AT1 

receptors, and (v) effect on renin secretion and synthesis by endothelial factors, such 

as prostaglandins, nitric oxide, and endothelin40. Renin and prorenin are the ligand for the pro 

renin receptor (PRR). Currently, this receptor has gained much attention since it plays an 

important role in conditions, such as, metabolic syndrome, diabetes, and hypertension41.  The 

binding of prorenin/renin activates the angiotensin II-mediated or independent pathway. Thus, 

facilitate angiotensinogen generation and promote angiotensin II effects i.e induce the high 

blood pressure and increased heart rate. In addition, their binding triggers a range of cellular 

events for example inducing the up-regulation of the pro-fibrotic genes such as TGF-β1 

(transforming growth factor-β1), PAI-1 (plasminogen activator inhibitor-1), collagens, 

fibronectin, as well as up-regulates COX2 (cyclo-oxygenase 2)42,43. The increased PRR 

synthesis could be linked in some way to altered cardiovascular and renal functions. 

        Angiotensinogen (AGT) prohormone with a molecular weight of 54-56 kDa36. The 

concentration of plasma angiotensinogen depends on angiotensin II levels44. Angiotensinogen 

is synthesized and released from the liver, but angiotensinogen mRNA expression has also 

https://www.sciencedirect.com/topics/medicine-and-dentistry/prostaglandin
https://www.sciencedirect.com/topics/medicine-and-dentistry/nitric-oxide
https://www.sciencedirect.com/topics/medicine-and-dentistry/endothelin
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been noticed in many other tissues, including the kidney, brain, heart, vascular, adrenal gland, 

ovary, placenta, and adipose tissue45,46.  

        Angiotensin I is an inactive decapeptide produced by renin from the substrate 

angiotensinogen45. Angiotensin  (Ang I), a decapeptide is converted to the functional 

octapeptide Angiotensin II by the hydrolytic action of angiotensin-converting enzyme I (also 

known as ACE I)47. Although angiotensin-converting enzyme (ACE) is the major catalyst for 

the conversion of angiotensin I to angiotensin II, other enzymes including tissue plasminogen 

factor, cathepsin G, tonin, and chymase can also catalyze the conversion of angiotensin I into 

II. The known biological activity of the Angiotensin I peptide is still missing. 

           The exopeptidase enzyme Angiotensin-converting enzyme,) was identified and 

characterized in the 1950s by  Skeggs and colleagues48. Angiotensin-converting enzyme 

(ACE) is a zinc metalloprotease49. It is localized on the plasma membranes of various cell 

types, such as vascular endothelial cells, microvillar brush border epithelial cells (e.g., renal 

proximal tubule cells), and neuroepithelial cells50. The main function of the Angiotensin-

converting enzyme (ACE 1 ) is to remove the C-terminal dipeptide (His-Leu) to form the 

functional octapeptide Ang II51.  

 Angiotensin II, (Ang II), is a powerful vasoconstrictor hormone or effector of this system52, 

angiotensin (Ang) II, is produced by sequential cleavage of peptides derived from the substrate 

molecule angiotensinogen36.  Angiotensin II binds to specific receptors (AT1 and AT2), 

triggering a broad range of biological actions impacting virtually every system in the body 

including the brain, heart, kidney, vasculature, and the immune system53-55. In addition, it 

stimulates the production of aldosterone by the zona glomerulosa of the adrenal cortex which 

helps in sodium reabsorption in the kidney, via the hormone Aldosterone56. Angiotensin II is 

also a potent growth modulator and proinflammatory peptide.57 In addition, this peptide 
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degrades bradykinin, a vasodilator58 59. The heptapeptide angiotensin III may also stimulate 

aldosterone production60. Alteration in the activation of the Renin-Angiotensin System (RAS) 

can contribute to the development of hypertension, cardiac hypertrophy, and heart failure, via 

a number of pathways involving the kidneys, heart, and blood vessels61,62. 

       Over the past few years, other angiotensin peptides, like Angiotensin IV, and especially 

angiotensin-(1-7), have been shown to selectively mediate different RAS effects63. With 

regards to the angiotensin-(1-7), this heptapeptide is formed from Angiotensin I by prolyl-

endopeptidase or from Angiotensin II via prolyl endopeptidase, prolyl carboxy peptidase or 

mainly by ACE-2, an enzyme homologous to ACE-163. Angiotensin-(1-7) binds to a G-protein 

coupled receptor, namely MAS receptor, and, in general, plays a counter-regulatory role to that 

of RAS by opposing the vascular and proliferative effects of angiotensin II64. Many 

experimental studies have provided ample support for the counter-regulatory effects of the 

RAS axis in diabetes64.  A few studies have also provided insights into the role of MAS 

receptors in diabetes65. 

         Angiotensin II is an octapeptide hormone that mediates its effects via various receptors, 

which include AT1, AT2, AT3, and AT4
36. Among all the receptor types,  the type 1 receptor 

(AT1), and the type 2 receptor, (AT2) are the most well-studied66.  The Angiotensin II type I 

receptor (AT1) and type II receptor (AT2), belong to the family of G-protein-coupled receptors, 

( GPCRs)67. The AT1 receptor can activate various signaling pathways. In the G-protein 

dependent pathway, it stimulates G-protein Gq/11, leading to the activation of phospholipases 

A2, C, and D. This results in the production of inositol trisphosphate (IP3), which triggers 

calcium signaling, and the activation of protein kinase C isoforms and MAPKs68. It also 

activates several tyrosine kinases, scaffold proteins, and the nuclear factor-kB pathway in 

smooth muscle69.  In the G-protein independent signaling pathway, the AT1 receptor can utilize 

arrestin-mediated signaling to activate MAPK and the Jak/STAT pathway70. Furthermore, the 
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AT1 receptor can also signal through other G-proteins, such as Gi/o and G11/1271. These 

signaling pathways have various downstream effects, including the stimulation of various 

sodium transporters like the Na, H-exchanger, Na, K-ATPase, and Na/HCO3 co-transporter in 

the kidney and heart72,73. The receptor AT1 is expressed prominently in vascular smooth muscle 

cells (VSMCs), endothelial cells,  endometrium, kidney, liver, adrenal gland, ovary, brain, 

testis, lung, heart, and adipose tissue36. The AT1 receptor is responsible for the classical actions 

of Angiotensin II such as vasoconstriction, aldosterone release from the adrenal zona 

glomerulosa, salt retention in the renal proximal tubules, heart contraction, cell growth in the 

cardiac left ventricle and in the arterial wall and stimulation of the sympathetic nervous 

system36. After exerting its effects, this receptor undergoes desensitization and internalization 

or phosphorylation,  through its C-terminal region74. 

          The Angiotensin II, type 2 receptor, the AT2 receptor primarily acts through the Gi 

proteins and tyrosine phosphatases to exert inhibitory effects on cellular responses mediated 

by the AT1 receptor and growth factor receptors36. Both (AT1 and AT2) receptor subtypes have 

similar Angiotensin II-binding properties but differ in genomic structures, localization, tissue-

specific expression, and regulation. The Angiotensin II, type 2 receptor (AT2) is extensively 

expressed in the fetus, whereas its expression is hugely decreased after birth, being restricted 

to a few organs such as the brain, adrenal, heart, kidney, myometrium, and ovary73. Studies 

have shown that in the kidney the AT2 receptor mRNA is mainly localized in the proximal 

tubules, glomeruli, juxtaglomerular apparatus, interlobular arteries, arcuate arteries, afferent 

arterioles, collecting ducts, and outer medullary descending vasa recta75. The AT2 receptor 

plays an important role in embryonic development, growth, differentiation, regeneration of 

tissue, and cell death36,75. 

         An angiotensin II receptor that is not blocked by either losartan (angiotensin II receptor 

antagonist that selectively blocks the AT1 receptor subtype) or PD 123177  (a selective 
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antagonist for the AT2 receptor subtype) has been classified as AT3
76. Evidence suggests that 

the AT4 receptor activation, via angiotensin IV, is an important mediator of the expression of 

plasminogen activator inhibitor-177. 

 

Figure 1.2: Renin-angiotensin system components synthesis, and their integrated function  

1.3 Physiological Relevance of Renin-Angiotensin System, RAS, Biology/ The 

importance of RAS Cascade 

 The renin-angiotensin system (RAS) plays a significant role in various physiological 

processes apart from blood pressure regulation36. In response to decreased blood pressure or 

blood volume, angiotensin II causes the blood vessels to constrict, raising blood pressure, and 

also stimulates the release of aldosterone from the adrenal glands. Aldosterone acts on the 

kidneys to increase the reabsorption of sodium and water and promote the excretion of 

potassium. It also stimulates H+ secretion and HCO3- reabsorption in both proximal and distal 

tubules thus regulating H+-ATPase activity in the collecting tubule78. The activation of apical 

Na+/H+ exchanger and basolateral Na+/HCO3- cotransporter, as well as Na+, K+-ATPase, and 
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apical H+-ATPase, are implicated in angiotensin II-induced transcellular sodium and 

bicarbonate reabsorption within the proximal tubule79. Whereas Na+/H+ exchange and H+-

ATPase contribute to the reabsorption of sodium and bicarbonate in distal tubules79. This 

mechanism is vital for regulating fluid balance and electrolyte concentrations. The hormone 

angiotensin II also constricts the efferent arterioles, to help maintain the glomerular filtration 

rate (GFR)80. The RAS promotes the release of another hormone called antidiuretic hormone 

(ADH) or vasopressin, which increases water reabsorption in the kidneys81. Angiotensin II has 

direct effects on the heart muscle, promoting cardiac hypertrophy (enlargement of the heart 

muscle cells), and fibrosis. In the brain angiotensin II stimulates the release of antidiuretic 

hormone (ADH) from the posterior pituitary gland82. The ADH reduces urine output and helps 

to maintain blood pressure82. It is important to note that angiotensin II is involved in a complex 

regulatory system, and its effects can vary depending on the physiological and pathological 

conditions of the body55. Collectively, these cascades of actions and reactions lead to increased 

blood pressure, with mediation by the heart, kidneys, blood vessels, brain, and adrenal glands 

73. 

 

Figure 1.3: Functions of angiotensin II hormone on different organs/tissues 
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1.4 Alteration of Renin-Angiotensin System (RAS) in Various Pathological 

Conditions  

The abnormal activation/ implication of (systemic or intra renal) renin-angiotensin system 

(RAS), can have pathological consequences like hypertension, heart failure,  chronic kidney 

disease, eye disease (age-related macular degeneration (AMD), and glaucoma), and 

neurological disease (Alzheimer's disease (AD), Parkinson’s disease (PD), stroke, multiple 

sclerosis (MS), and Huntington's disease (HD)83-85. Factors that contribute to RAS 

dysregulation include increased or decreased renin secretion, angiotensinogen production, 

angiotensin-converting enzyme (ACE) activity, or angiotensin receptor sensitivity86,87. 

1.4.1 Hypertension 

The overactive or dysregulated renin-angiotensin system can lead to chronic elevation of 

angiotensin II levels. This chronic activation causes an increased action of Ang II via increased 

activation of the Ang II receptors, mainly the AT1 receptors. This can result in hypertension, 

which is a major risk factor for cardiovascular diseases, including heart attacks, strokes, and 

heart failure 

      In addition, the alteration of the renin-angiotensin system (RAS) is closely associated with 

the development of preeclampsia, a hypertensive disorder that occurs during pregnancy88. 

Preeclampsia is characterized by high blood pressure and signs of organ damage, usually 

involving the kidneys and liver88.  

1.4.2 Chronic Renal Disease 

The elevated angiotensin II production in the kidney causes inflammation, fibrosis89, and 

modulation of Na+, K+, and ATPase pump90.  Thus, dysregulated RAS contributes to renal 

damage, and impaired sodium and water balance, affecting the overall physiological balance 

of the ions and water, and consequently to the progression of kidney disease. The upregulation 
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of angiotensinogen (AGT), angiotensin II (Ang II), and AT1 receptor expression within the 

podocytes of the kidney during DN has also been previously reported91.   

1.4.3 Eye Disease 

1.4.3.1 Age-Related Macular Degeneration (AMD) 

Age-related macular degeneration (AMD) is characterized by the degeneration of the macula, 

the central part of the retina responsible for sharp vision92. Similarly, in AMD there is an 

upregulation of angiotensin-converting enzyme (ACE), which leads to increased production of 

angiotensin II. Thus, angiotensin II promotes inflammation and oxidative stress, contributing 

to retinal vascular damage93  and age-related macular degeneration92.  

1.4.3.2 Glaucoma 

Glaucoma is a group of eye conditions characterized by optic nerve damage, often associated 

with increased intraocular pressure (IOP). The effector hormone, angiotensin II has been 

shown to contribute to the regulation of IOP by modulating the resistance of aqueous humor 

outflow through the trabecular meshwork94, thus leading to the build-up of the Aqueous humor, 

and subsequently to an increased IOP.  Additionally, the RAS has been implicated in the 

pathogenesis of optic nerve damage and retinal ganglion cell death in glaucoma95. Thus, 

dysregulation in RAS is also a causative factor for Hypertensive Retinopathy. 

1.4.4 Neurological Diseases 

Activation or Dysregulation within the renin-angiotensin system (RAS) signaling has been 

implicated in the pathogenesis of various neurological diseases96.  

1.4.4.1 Alzheimer's Disease (AD) 

Increased levels of angiotensin-converting enzyme (ACE) and angiotensin II (Ang II) have 

been observed in the brains of individuals with Alzheimer's Disease (AD). The increased action 

of angiotensin  II can contribute to neuroinflammation, oxidative stress, and the accumulation 
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of amyloid-beta plaques, which are characteristic features of Alzheimer's Disease pathology96. 

Moreover, activation of the angiotensin type 1 receptor (AT1 receptor) has been implicated in 

promoting cognitive decline and neuronal damage in Alzheimer's Disease97. Studies have also 

shown that increased expression of ACE, Ang II, and AT1 receptors is associated with the loss 

of dopaminergic neurons in the brains of Parkinson's Disease patients98,99.  

1.4.4.2 Ischemic Stroke 

During an ischemic stroke, the activation of the RAS can exacerbate brain damage. The 

effector hormone of the RAS system, angiotensin II, through AT1 receptor activation, 

contributes to vasoconstriction, inflammation, oxidative stress, and neuronal cell death in the 

ischemic brain100. Therapies targeting the RAS, such as ACE inhibitors or AT1 receptor 

blockers, have shown potential for reducing post-stroke brain injury101. 

1.4.4.3 Multiple Sclerosis (MS) 

Altered RAS signaling has been implicated in Multiple Sclerosis (MS), an autoimmune 

neurodegenerative disease. Studies have reported increased expression of ACE and AT1 

receptors in the brains of Multiple Sclerosis patients. The hormone, Angiotensin II has been 

shown to promote neuroinflammation, blood-brain barrier dysfunction, and immune cell 

activation in Multiple Sclerosis102. Modulating the RAS components may represent a 

therapeutic approach in MS management. 

1.4.4.4 Huntington's Disease (HD) 

The RAS has been implicated in Huntington's Disease (HD), a genetic neurodegenerative 

disorder. Dysregulation of RAS components, including ACE and angiotensin II levels, has 

been observed in the brains of Huntington's Disease patients and mouse models. The hormone 
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angiotensin II is shown to contribute to neuronal dysfunction, oxidative stress, and 

neuroinflammation in Huntington's Disease103.  

                  Currently, ACE inhibitors angiotensin II type 1 receptor blockers (ARBs), and 

sympathetic inhibitors (α, and β adrenergic blockers) are extensively used to control the blood 

pressure and management of these conditions including renal diseases. However, further 

research is needed to fully understand the intricate mechanisms underlying the altered RAS 

and to develop effective therapeutic interventions. Therapeutic targeting of the renin-

angiotensin system (RAS) is the most validated clinical strategy for slowing down or delaying 

the onset of the changes associated with these conditions. 

 

 

Figure 1.4: The central role of the renin-angiotensin system for various physiological functions 

and pathological conditions. 

1.5 Renin-Angiotensin System Associated with Diabetic Complications 

The most common cause of end-stage renal disease in the world is diabetes22. Along with 

various complications of diabetes, it is further associated with complications of the kidneys104. 
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The most common complications of diabetes are DN (Diabetic nephropathy),  Retinopathy, 

Neuropathy, and Cardiovascular disease (CVD)105.  Many studies have reported that the 

alteration of RAS components in association with the endocrine system particularly 

angiotensin II (Ang II), and dysregulated signaling within the RAS have caused a change of 

renal hemodynamic and nonhemodynamic effects106 resulting in not only the development of 

metabolic syndrome, hypertension, endothelium dysfunction106, but also contributing to 

chronic renal disease107.  

1.5.1 Altered Renin-Angiotensin System Associated with Renal Disease in 

Diabetes 

i) Altered Renin-Angiotensin System (angiotensin II) Effect on Renal Hemodynamic 

Parameters  

The implication of angiotensin II contributes to various changes in various renal processes and 

functions108. Firstly, the upregulation of angiotensin II levels can cause vasoconstriction of the 

renal arterioles, thereby reducing renal blood flow, and hence impaired autoregulation of 

glomerular filtration rate (GFR)109. This is mostly prevalent in early diabetic conditions. 

Consequently, it can affect renal perfusion and glomerular filtration rate (GFR). These 

hemodynamic changes contribute to renal dysfunction and the development of diabetic 

nephropathy110. In addition, the changes in the aldosterone levels in the kidney, mediated and 

influenced by angiotensin II, can impact renal hemodynamics by altering fluid balance, 

including ionic and water balance and blood volume111. Furthermore, prolonged activation of 

the renin-angiotensin system (RAS) can lead to increased production of inflammatory 

mediators (MCP-1, IL-6, and TGF-β)57,69,112. These mediators induce and promote the 

deposition of extracellular matrix proteins which contribute to renal tissue damage and 

fibrosis113. The pathological changes can impair renal hemodynamics by reducing the 
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functional capacity of the kidneys114. Additionally, it has been reported that angiotensin II also 

reduces the glomerular filtration coefficient while increasing afferent and efferent arteriolar 

resistances, which contributes to a decrease in the GFR in chronic diabetic conditions115,116. 

Moreover, numerous experimental studies have also reported that acute infusion of angiotensin 

II, causes changes in renal hemodynamics, and thereby a sustained elevation of intrarenal 

angiotensin II induces proteinuria, which is accompanied by a progressive injury of the 

glomerular filtration barrier (composed of the glomerular endothelium, glomerular basement 

membrane, and podocytes), a hallmark of diabetic nephropathy117. A previous study from 

Mullier et al. showed that hyperglycaemia affects renal function by activating the RAS, via 

exerting an increase in plasma renin activity (PRA), mean arterial pressure (MAP), and renal 

vascular resistance118. In addition to these actions, angiotensin II is involved in the 

augmentation of tubulo–glomerular feedback sensitivity and inhibition of pressure-natriuresis, 

mediated by the AT1 receptor119.   

ii) Altered Renin-Angiotensin System (angiotensin II)- Effect on Non-Hemodynamic 

Parameters: 

Diabetes is associated with increased oxidative stress120, characterized by an imbalance 

between reactive oxygen species (ROS) production and antioxidant defense mechanisms121. 

The pro-oxidant effects contribute to oxidative stress in diabetes mediated by angiotensin II122. 

This oxidative stress plays an important role in the development of diabetic complications123. 

Dysregulated RAS signaling, particularly, angiotensin II contributes to endothelial dysfunction 

in diabetes124. This impairs endothelium-dependent vasodilation, promotes oxidative stress, 

and stimulates the release of endothelin-1, the most potent vasoconstrictor124. Endothelial 

dysfunction plays a crucial role in the development of cardiovascular complications associated 

with diabetes 125. In diabetes, the implication of angiotensin II signaling can contribute to 
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abnormal cell growth and tissue remodeling, such as mesangial cell and mesangial and tubular 

epithelial cell hypertrophy123,126. These cellular changes are also implicated in the development 

of diabetic renal complications127. Furthermore, insulin resistance, which is caused by 

interference of the insulin-stimulated increase in insulin receptor substrate 1-associated PI3K 

activity in diabetes is also mediated by angiotensin II128,129. In addition, Giacchetti et al. in their 

studies have also shown that the renal RAS is clearly activated in DM, with increased tissue 

angiotensin II that leads to the development of diabetic nephropathy130.  

   In diabetic nephropathy, alteration of RAS (angiotensin II) causes Na+K+ATPase 

modulation, inflammation, and fibrosis in the kidney proximal tubules131. Thus, dysregulated 

RAS contributes to the retention of sodium, hyperfiltration leading to renal damage, and 

progression of kidney diseases131,132. In addition, there is an upregulation of angiotensinogen 

(AGT), angiotensin II (Ang II), and AT1 receptor expression within the podocytes of the 

kidney. Similarly, there is an upregulation of angiotensin-converting enzyme (ACE), which 

leads to increased production of angiotensin II.  

           Clinical trials on RAS component inhibitors like ACE inhibitors for example captopril, 

enalapril, fosinopril, and perindopril, and three common and angiotensin receptor blockers 

(ARBs)-for example irbesartan, losartan, and valsartan show a significantly decreased 

incidence of renovascular complications in diabetic patients133. The ACE inhibitors show their 

protective actions upon skeletal muscle, pancreatic islets, and enhanced insulin sensitivity 

associated with decreased adipocyte as well as increased transcapillary glucose transport129.  

Studies have reported that not only angiotensin II shows a significant influence on diabetes 

kidney disease, but other components within the RAS have also been found to play a significant 

role in renal complications134. A study conducted by Zimpelmann, J135., and colleagues 

reported that early-stage diabetes causes the stimulation of mRNA expression for renin in the 
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proximal tubule STZ-induced diabetic rats135. This finding suggests that diabetes has an impact 

on the regulation of renin production at the genetic level within the proximal tubule of the 

kidneys 135. In-vivo study on transgenic mice overexpressing rat angiotensinogen (AGT) gene 

in the kidney, had significantly increased blood pressure, albuminuria, and renal injury; and 

administration of ARB or ACE inhibitor reversed these abnormalities in diabetes136.  

Previous studies have shown that angiotensin (1–7) serves a protective role by counteracting 

the effects of locally-generated angiotensin II in cardiovascular research, but on the contrary, 

a study has shown, that chronic angiotensin (1–7) accelerates renal injury and diabetic 

nephropathies in STZ induced rats137,138.  

1.5.2 Altered Renin-Angiotensin System Associated with Diabetes as well as 

Cardiovascular Disease 

Cardiovascular complications are the primary cause of morbidity, mortality, and fatalities in 

individuals with diabetes132. These complications include conditions such as coronary artery 

disease, stroke, heart failure, peripheral artery disease, and others139. People with diabetes have 

a higher risk of developing these cardiovascular conditions compared to those without diabetes. 

Diabetes can lead to the development of atherosclerosis (hardening and narrowing of the 

arteries) vascular abnormalities, and organ damage. Proper management of diabetes, including 

control of blood sugar levels, blood pressure132, and cholesterol, is crucial for reducing the 

incidence and severity of cardiovascular complications140 and improving overall patient 

outcomes. According to the World Heart Federation and World Health Organization (WHO), 

risk factors for cardiovascular disease are mainly genetic, unhealthy diet, physical inactivity, 

use of tobacco, and use of alcohol141.  Regular medical care, lifestyle modifications, and 

adherence to prescribed medications are important in reducing the impact of cardiovascular 

complications in individuals with diabetes141. 
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The alteration of cardiac function in diabetics occurs through several different mechanisms, 

mainly, as, i) decreased glucose transport ii) carbohydrate oxidation, increase in free fatty acids 

(FFA) utilization, iii) decrease in sarcolemma calcium transport, and iv) alterations in 

myofibrillar regulatory contractile proteins142. Patients with diabetes often experience 

compromised cardiac glucose metabolism, impacting glucose uptake, glycolysis, and pyruvate 

oxidation143. This is primarily due to reduced glucose transport into heart cells via GLUT 1 

and GLUT 4144. Hence, to manage cardiovascular dysfunction in diabetes, medications like 

beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin II receptor blockers 

are commonly clinically used145. These drugs help to improve overall cardiac function 

associated with diabetes145.  

The pathophysiological mechanisms of RAS's association with diabetes and cardiovascular 

disease (CVD) remain highly puzzling. In fact, studies reported that renin-angiotensin system 

(RAS) components, including renin, angiotensinogen, ACE, and Ang II receptors, are 

upregulated in various cardiovascular diseases (CVD) including cardiac injury, myocardial 

infarction, hypertension, and heart failure during diabetes146. For instance, angiotensin-

converting enzyme (ACE) inhibitors, like perindopril, ramipril, and AT1 receptor blockers 

improved cardiovascular morbidity and mortality in patients with diabetes147.   The inhibition 

of angiotensin-converting enzyme (ACE) also prevented atherosclerosis and myocardial 

infarction in diabetic apolipoprotein E-deficient mice148. There is evidence that angiotensin II 

binding to its AT1 receptors mediates cardiovascular damage by inducing reactive oxygen 

species generation, tissue inflammation, fibrosis, and apoptosis69. A study reported that 

prolonged hypertension could be manifested in rats with streptozotocin (STZ)-treatment to 

induce diabetes149.  

It has been reported that angiotensin II (AT1) receptor blockers reduce systemic inflammation 

and renal oxidative stress in diabetic patients and protect against diabetic nephropathy. A study 
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suggests that losartan, an angiotensin receptor blocker (ARB), could prevent proteinuria in 

type 1 diabetic patients149. The experimental results of Romero-Nava, R et al. suggest that 

diabetes with hypertension changes the mRNA and protein expression of angiotensin II 

receptors (AT1 and AT2)
86. However, the overexpression of AT2 could be associated with the 

reduction in the response to Ang II in the early stage of diabetes. In a study Musial, D. C. et al 

indicated that increased ACE activity leads to sympathetic dysfunction in streptozotocin 

(STZ)- induced diabetic rats150. The experiments reported by Kala P, et al., on nephrectomised 

rats showed that endothelin type A receptor blockade increases renoprotection in congestive 

heart failure combined with chronic kidney disease151. Similarly, the study conducted by 

Collett JA, et al. investigated the role of AT1 receptor expression in the kidneys of 

spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats in the development of 

hypertension and found that there was an elevated level of AT1 receptor expression in the 

kidneys of SHR compared to WKY rats152.153  One of the major risk factors for hypertension 

related to chronic hyperinsulinemia and obesity is excess sodium retention by the kidneys10. 

Experiment study on opossum kidney (OK) cells, proximal tubule cell line) treated with insulin 

revealed that the AT1 receptor is upregulated upon activation by ang II and it also produces 

greater stimulation of sodium transporters leading to an increased renal sodium reabsorption154. 

Thereby, indicating an increased action of the ang II receptors under hyperinsulinemia 

conditions, a typical manifestation of hyperglycemia154. In this regard, pharmacological 

inhibitors of the synthesis or activity of ang II, angiotensin-converting enzyme (ACE) 

inhibitors have proven immensely useful in cardio-vascular and renal therapeutics147. 

1.6 RAS Inhibitors in Treatment of Diabetes  

The most commonly used drugs targeting the angiotensin II system in hypertension and 

diabetes are (i). Angiotensin-converting enzyme (ACE) inhibitors155, (ii) Angiotensin receptor 
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blockers (ARBs), those that selectively block Angiotensin II type 1, (AT1) receptors,156 and 

thereby block the various downstream actions of angiotensin II, and  (iii) Renin inhibitors157. 

Angiotensin II receptor antagonists as well as ACE inhibitors have been reported and shown 

to slow down the progression of diabetic glomerular injury and decrease proteinuria in 

hypertensive patients with chronic renal failure126. A recent study suggested that captopril, an 

ACE inhibitor, offers protection against diabetic nephropathy (kidney damage) and neuropathy 

(nerve damage) by targeting multiple mechanisms158. There are mounting evidences that the 

combination therapy with both ACE inhibitors and ARBs is more beneficial compared to a 

single therapy147. Previous studies documented that synergic effect by using ACE inhibitors 

and AT1-receptor antagonists in spontaneous hypertensive rats159, and STZ-induced diabetic 

rats160. Treatment with captopril and olmesartan has been found to be beneficial in 

experimental models of diabetic rats containing albuminuria and podocyte injury161 

 A study Kohzuki et al. showed Cardiovascular and renal protective effects of losartan in 

spontaneously hypertensive rats with diabetes mellitus162.  In addition, combination therapy of 

spironolactone (belongs to potassium-sparing diuretics), and moexipril also showed an 

improvement of renal structure and function in experimentally induced diabetic hypertensive 

nephropathy rats163.  However, treatment with ACE inhibitors, angiotensin receptor blockers, 

and spironolactone are contraindicated in pregnancy as they may cause fetal damage164. 

Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa, 

labetalol, and long-acting nifedipine, while hydralazine may be considered in the acute 

management of hypertension in pregnancy or severe preeclampsia88. 

Furthermore, though renin inhibitors (Aliskiren) have also emerged as a potential therapeutic 

strategy to block RAS and lower blood pressure during diabetes157. Although, the use of these 

agents is still not common. However, there is limited information on an important early link 
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between hyperglycaemia and complications and a consequence of pathogenic mechanisms in 

diabetes. Therefore, studying underlying mechanisms to control/ prevent/ manage blood 

glucose levels in the increasing diabetic population and its associated complications is the way 

forward for developing therapeutic strategies. 

1.7 Advanced Glycation End Products  

Glycosylation is an enzymatic post-translational modification that plays crucial roles in protein 

folding, trafficking, stabilization, cell-to-cell interaction, and function165. Proteins are also 

susceptible to post-translational modifications that could alter their structure, function, and 

half-life during normal aging and pathological conditions such as diabetes166,167. One such 

post-translational modification is non-enzymatic glycation and the formation of advanced 

glycation end products167,168.  

             The advanced glycation end products (AGEs) were first described by Louis Camille 

Maillard in 1912. It was identified initially by the Maillard reaction–a process in which food 

proteins cross-link with monosaccharides and form a yellow-brown change in the colour of the 

food. The chemical reactions involved in the Maillard reaction were first recognized by Hodge, 

et al. in 1953169. The Advanced glycation end products (AGEs) are complex heterogenous 

substances. Although advanced glycation end-product formation occurs at a lower rate over a 

lifetime, it occurs more rapidly in clinical conditions such as diabetes170. When humans are 

exposed to exogenous AGEs, via tobacco, smoke, and diet, they accumulate in the circulating 

blood and various tissues, resulting in various disease complications171. Furthermore, food 

processing methods, such as prolonged heating, and microwave cooking can also accelerate 

the AGE formation171.   

                   Approximately a dozen forms of AGEs have been detected in tissues172and they 

have been classified into three categories166 (i). Fluorescent cross-linking AGEs, such as 
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Vesperlysine, pentosidine, Argpyrimidine, and crossline (ii). Non-fluorescent cross-linking 

AGEs, such as glyoxal-lysine dimer (GOLD), deoxy glucose-lysine dimer (DOLD), and 

methylglyoxal-lysine dimer (MOLD), alkyl formyl glycosyl pyrrole (AFGP), imidazolium 

lysine, and arginine-lysine imidazole (ALI), and (iii) non-cross-linking AGEs based on their 

chemical structure such as pyrraline and N-carboxymethyl lysine (CML), and carboxyethyl 

lysine (CEL). Recently, scientists also discovered novel types of AGEs that exhibit cross-

linking and their unique protein-bound properties173. In addition, recent findings also revealed 

that modern food habits add several critical AGE compounds which are formed during high-

heat processing as well as heating of animal proteins and high-caloric dietary products171.  

               The formation of advanced glycation end products (AGEs) is a progressively 

complex, and gradual process in the body174. The advanced glycation end products (AGEs) 

formation is divided into three major mechanisms: (i) the first is the Schiff base generation. 

The initial process of Schiff bases are early and unstable advanced glycation end products 

(AGEs), they are formed when the electrophilic carbonyl group of a sugar (aldose or ketose) 

reacts with an amine group, particularly those found in arginine or lysine residues of protein174. 

However, they can also undergo irreversible reactions with amino acid fragments of proteins, 

leading to the formation of new protein crosslinks.175 The second stage is the formation of a 

more stable Amadori product 175. Over a period of time, the reversible Schiff base or Amadori 

product can undergo rearrangement reactions through the process known as the Amadori 

rearrangement175. During this rearrangement, the carbon-nitrogen bond within the sugar-

protein adduct undergoes shift and reorganization174. These reactions involve dehydration, 

condensation, and rearrangement of molecular structures. These rearrangements lead to the 

formation of reversible intermediates. The final stage of AGE formation involves the 

irreversible and complex modification of proteins, lipids, or nucleic acids. The rearranged 
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products from the Amadori rearrangement undergo additional chemical modifications, leading 

to the formation of diverse and heterogeneous AGEs174,175. 

The advanced glycation end products are not only produced from glucose but also from 

dicarbonyl compounds produced from auto-oxidation and the degradation products of glucose 

such as glyoxal, methylglyoxal, and 3-deoxyglucosone or α-hydroxy aldehydes such as 

glyceraldehyde’s and glycolaldehyde175.  

The formation of stable advanced glycation end products (AGEs) shows numerous 

consequences including their action as cross-linkers between proteins, resulting in the 

production of protein-resistant aggregates176. These products show deleterious effects by 

modifying the biological properties of extracellular matrix (ECM) proteins such as elastin, 

collagen, and laminin via crosslinking and altering the functional and mechanical properties of 

the target tissues177.  The intracellular accumulation of AGEs in the endoplasmic reticulum 

(ER) impairs the folding of proteins and induces ER-mediated stress, leading to inflammation 

or cellular apoptosis178. In addition, advanced glycation end products (AGEs) also crosslink 

mitochondrial protein leading to mitochondrial protein dysfunction and thereby contributing 

to a disturbance in the electron transport chain thus, reducing ATP synthesis and enhancing 

free radical generation179. The formation of AGEs is influenced by various factors which 

include hyperglycemia180, oxidative stress181, lipid oxidation182, and increasing age183. The 

accumulated advanced glycation end products are metabolized and eliminated by the liver and 

kidney184. Dysfunction of these organs in the body can, therefore contribute to the development 

and progression of various complications184.  
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Figure 1.5: Generation of Advanced glycation end-product formation  

1.7.1 Receptors For The Advanced Glycation End Products 

The receptor for advanced glycation end products (RAGE) is a group of cell surface receptors 

belonging to the immunoglobulin superfamily that play a significant role in various 

physiological and pathological processes185,186. The binding of advanced glycation end 

products (AGEs) to the receptors for advanced glycation end products (RAGE) activation 

triggers many intracellular signaling pathways186. This receptor was expressed in different cell 

types, including endothelial cells187, immune cells188, neurons189, and renal cells190. They have 

been implicated in the pathogenesis of various diseases, including diabetes190, cardiovascular 

diseases191, neurodegenerative disorders192, and inflammatory conditions188. The receptor 

(RAGE)-mediated signaling can promote chronic inflammation, endothelial dysfunction, and 

tissue fibrosis, leading to the development and progression of these conditions193. 

Furthermore, RAGE signaling has been associated with the activation of nuclear factor kappa 

B (NF-κB), a transcription factor, and the production of pro-inflammatory cytokines, such as 
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interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α)194,195. The interaction between 

AGEs and RAGE also contributes to oxidative stress through the generation of reactive oxygen 

species (ROS) and the impairment of antioxidant defense mechanisms196. 

The receptors for AGEs (RAGE) have other isoforms including soluble RAGE (sRAGE), 

endogenous secretory RAGE (esRAGE), and human RAGE secreted (hRAGEsec) and they 

play an important role in AGE clearance197. The S100-calgranulins (pro-inflammatory 

cytokines), amphoterin, amyloid-beta, and fibrillar are a few other ligands that bind to RAGE 

Targeting the RAGE receptors and the RAGE-AGE interaction has emerged as a potential 

therapeutic strategy for managing various diseases associated with AGE accumulation and 

RAGE-mediated pathologies, including diabetes198. Inhibition of RAGE signaling or blockade 

of AGE-RAGE interactions may help attenuate inflammation199 oxidative stress,199 and tissue 

damage,199 offering potential benefits in the prevention and treatment of conditions such as 

diabetic complications194, cardiovascular diseases200, and neurodegenerative disorders201. 

The accumulated advanced glycation end products (AGEs) also elicit downstream effects 

through their interaction with other cellular receptors which including AGE-R1, AGE-R2, and 

AGE-R3/galactin-3, the ezrin, radixin, and moesin (ERM) family of receptors202. These 

receptors are found in many cell types such as macrophages203, epithelial cells204, podocytes205, 

mesangial cells206, and endothelial cells207.  

The receptor RAGE serves as a key receptor for AGE and plays a crucial role in mediating the 

cellular effects of AGEs. This increased response to AGEs, as indicated by increased RAGE 

expression in diabetic blood vessels208 and kidneys190, suggests that RAGE may contribute to 

the development and progression of diabetic vascular209 and renal complications208,210.   

Advanced glycation end products AGEs/ Receptor of AGE (RAGE) axis in endothelial cells 

activates and triggers the activation of various pathways211. One of the important signalling 
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mechanisms associated with diabetes is the NFKB pathway194,209, which results in the 

expression of cytoskeleton cell adhesion proteins (Vascular Cell Adhesion Molecule (VCAM), 

intercellular Adhesion Molecule (ICAM), and adhesion molecule-1) and proinflammatory 

cytokines (Interleukine-6 (IL‐6), IL‐1β, and Tumor Necrosis Factor-alpha (TNF‐α), indicating 

AGEs enhance their permeability and thereby leads to increased inflammation195,212,213. 

Similarly, AGEs/RAGE signaling in vascular smooth muscle cells (VSMCs) activates 

metalloproteases (MMP‐2/9), inflammatory cytokines and chemokines, and endoplasmic 

reticulum stress pathways resulting in proliferation and extracellular matrix degradation, along 

with impaired autophagy214 and lysosomal degradation211. 

1.7.2 Advanced Glycation End Products (AGEs) In The Pathophysiology of 

Diabetes  

In diabetes, there is a persistent elevation of blood glucose levels, known as hyperglycaemia, 

which provides an increased substrate for the non-enzymatic glycation process 215. The 

increased glycation affects the structure and function of proteins, thus, disrupting their 

molecular conformation and altering enzymatic activity216. This process also interferes with 

ligand-binding interactions215,217. Advanced glycation end products (AGEs) form cross-links 

with both intra- and extracellular structural proteins through non-receptor-mediated or 

receptor-mediated pathways leading to resistance to proteolytic cleavage and increased 

stiffness218. For example, AGE cross-linking on type I collagen and elastin218. A previous study 

suggested that intracellular AGEs interact with their receptor (RAGE) and alter the 

intracellular metabolic pathway217 as well as gene expression of pro-inflammatory 

molecules,195 and induce the release of free radicals212. The accumulated advanced glycation 

end products, therefore interfere with the normal functioning of the cells through multiple 

actions like apoptosis, inflammation, protein dysfunction, mitochondrial dysfunction219, and 

oxidative stress195. The researchers, Brownlee et al in the 1980s first described the deleterious 
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effects of AGE formation on the renal and cardiovascular systems in humans and showed how 

aminoguanidine (AG), (an inhibitor of advanced glycation end product formation), prevents 

diabetes-induced arterial protein cross-linking in rats220. Accumulation of AGEs generates 

oxidative species/radicals that lead to the generation of oxidative stress further hastening up 

the generation and accumulation of AGEs195.  

          In diabetes, the impaired function of the kidneys can contribute to the accumulation of 

AGEs because the kidney is the major site of clearance of AGEs221. The accumulation of these 

modified proteins can impair normal protein turnover and degradation processes221. An in vivo 

study on Streptozotocin‐induced diabetic mice on a high-AGE diet exhibited increased serum 

levels of inflammatory markers (TNF‐α and IL‐6) along with significant injury to organs like 

the kidney and heart214. The advanced glycation end products (AGEs) activate an autophagy 

signaling pathway in β‐cells, thereby resulting in increased apoptosis and decreased insulin 

secretion due to β‐cells destruction222.  The accumulated advanced glycation end products 

(AGE) and their cross-linking with collagen lead to altered arterial and myocardial compliance 

and increased vascular stiffness, often leading to diastolic dysfunction and systolic 

hypertension seen in diabetic patients223. Accumulating evidence suggests that CML (Nε-

(carboxymethyl) lysine, which is a specific advanced glycation end product (AGE) - is highly 

prevalent in diabetes224. Dicarbonyl stress caused by the formation and accumulation of methyl 

glyoxal (MGO) (a reactive glucose metabolite) and its reduced detoxification by glyoxalase 1 

(GLO‐1), during diabetes results in the development of diabetic nephropathy225. In mature 

podocytes, AGEs activate Notch 1 signaling, which could lead to proteinuria or glomerular 

disease during diabetes226.  
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1.7.3 Advanced Glycation End Products in Various Disease as well as Diabetic 

Complications 

Elevated level of AGEs is one of the key risk factors that has been associated with the 

pathology of diabetic complications such as diabetic nephropathy180, neuropathy227, 

retinopathy228, and cardiovascular disease229 and others such as arthritis230, liver231, and 

neurodegenerative disease232. Extensive studies demonstrated that AGEs are associated with a 

disease incidence in several organs through a common mechanism of oxidative stress 

inflammation233, cross-linking with extracellular matrix proteins234, and neovascularization235. 

In diabetic nephropathy, AGEs accumulate within the renal tissue236, including the glomeruli 

and tubules of the kidneys rendering the development and progression of kidney damage236. 

They can also crosslink with proteins in the glomerular basement membrane, impairing its 

permeability and hence the filtration function237. This results in the leakage of proteins, 

including albumin, into the urine, a condition known as proteinuria237. The binding of 

accelerated advanced glycation end products (AGEs) with RAGE promotes inflammation 

within the kidneys and stimulates the production of pro-inflammatory cytokines and 

chemokines, via activating inflammatory pathways190. This chronic inflammation contributes 

to the progressive damage to the renal tissue190. In addition, the formation of advanced 

glycation end products (AGEs) increases oxidative stress within the kidneys, leading to an 

imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant 

defense mechanisms238. This imbalance therefore an increased oxidative stress, which damages 

the renal cells, exacerbating the progression of diabetic nephropathy238,239. The excessive 

accumulation of extracellular matrix proteins due to AGEs also contributes to renal fibrosis240.  

Renal fibrosis results in the scarring of the kidney tissue and the loss of normal kidney function 

240. Impaired autophagy due to AGE accumulation can lead to the build-up of dysfunctional 

cellular components and contribute to the progression of renal damage241. Therefore, 
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accumulation of AGEs and managing blood sugar levels, are crucial strategies for preventing 

and slowing the progression of diabetic nephropathy241. Recent studies have also shown that 

AGEs also contribute to the micro and macrovascular disease associated with diabetes242. The 

presence of advanced glycation end products (AGEs), can directly affect the structure and 

function of blood vessels, thus rendering thickening and stiffening of blood vessel walls243. 

This process, known as vascular fibrosis, leads to impaired blood flow and can result in 

conditions like diabetic vascular and peripheral artery disease243.  

The activation of the receptor for advanced glycation end-products (RAGE), leads to 

alterations in cell signaling pathways, and endothelial cell dysfunction which in turn triggers 

inflammation, atherogenesis, and vasoconstriction, thereby leading to thrombosis and coronary 

dysfunction in diabetic cardiovascular disease244. 

In atherosclerosis, a condition characterized by the formation of plaques in the arterial walls, 

advanced glycation end products (AGEs) promote the oxidation of low-density lipoproteins 

(LDL), enhancing foam cell formation, and facilitating the migration and proliferation of 

smooth muscle cells in the arterial walls. These processes lead to the formation of fatty plaques 

that narrow the arteries and increase the resistance to blood flow, thereby contributing to 

hypertension245. In addition, the higher level of AGEs can impair HDL function and 

metabolism, leading to decreased levels of this protective lipoprotein246. This disruption in 

HDL concentration can have negative implications for cardiovascular health and contribute to 

the development of cardiovascular complications247. This also highlights the increasing 

incidence of hypertension in diabetic patients, over a period of time. It is very well known that 

diabetics end up with hypertension at some point of time, as a consequence of diabetes247. 

Advanced glycation end products (AGEs), can also directly impact cardiac tissue248. They 

accumulate in the myocardium and effects the cardiomyocytes, leading to impaired 
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contractibility and increased stiffness of the heart muscle248. This can result in the development 

of diabetic cardiomyopathy, a condition characterized by structural and functional 

abnormalities of the heart 248. 

Research findings have indicated that AGEs can disrupt the normal functioning of retinal 

pericytes, which are cells that play a crucial role in maintaining the integrity of blood vessels 

in the retina228. Specifically, advanced glycation end products  (AGEs) have been found to 

interfere with two key processes: autophagy and migration of retinal pericytes in diabetic 

retinopathy249. 

Diabetic condition has an increase in the glycation process affecting myelin and cytoskeleton 

proteins250. The presence of AGEs on myelin has the potential to trap immunoglobulin proteins 

such as IgG and IgM250. This trapping effect contributes to the demyelination of both neurons 

and nerves, which is a characteristic feature of diabetic neuropathy250. 

The increased liver AGE levels induce hepatic injury and acute liver failure due to the 

activation of the RAGE receptor.  Additionally, studies have reported the presence of glycated 

tau protein in the brains of individuals with Alzheimer's disease. This protein is responsible for 

the production of oxidative stress and is associated with the formation of neurofibrillary 

tangles, which are characteristic of the disease. 

In patients with rheumatoid arthritis, the binding of high concentrations of the potential 

proinflammatory ligand, namely S100, to the receptor for advanced glycation end products 

(RAGE), triggers the production of autoantibodies and leads to inflammation251. Furthermore, 

glycation and AGE formation have been identified to occur at the gene level, specifically 

affecting DNA and histones252,253. This process can result in errors during DNA replication 

and transcription, ultimately promoting mutations that are responsible for diabetic 

embryopathy252. 
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Figure 1.6: Advanced glycation end products mediate the various metabolic disorders 

1.7.4 Therapeutic Inhibitors of AGEs in Diabetes 

According to many reports, advanced glycation end products (AGEs) formation has been 

linked to diabetes and various other disorders and their complications254,255. Traditionally, 

various drugs are available for the management of diabetes256. However, current therapeutic 

options are not adequate, and intensive therapy for diabetic have their own limitations. 

Therefore, prevention of AGE formation could also be a way forward for the effective 

management of diabetes and its related complications. Currently, few drugs reduce the damage 

induced by AGEs in diabetes257.  These agents include i) AGEs breakers (alagebrium and 

TRC4186) or inhibitors (Aminoguanidine, (AG)) ii) angiotensin II receptor antagonists 

(losartan), and iii) angiotensin-converting enzyme inhibitors (Ramipril), iv) natural flavonoids 

(ascorbic acid, Psoralea corylifolia L. Seed Extract, alpha-lipoic acid, forskolin, carnosine, and 

quercetin)257.  
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The drug, Aminoguanidine, (AG) was the first AGEs inhibitor employed in diabetic 

complications that prevented the accelerated formation of AGEs in vitro and in-vivo 

experimental STZ-induced diabetic rat model258,259. Clinical trials have determined AGE-

modified lipids or proteins to assess the impact of therapeutic options against AGEs, but the 

effects of these approaches on AGEs still remain unclear. Future pharmacological 

interventions employing these therapeutic approaches against AGEs formation and/or 

preventing its binding to RAGE are vital to evaluate the benefits of an anti-AGE and RAGE-

antagonist treatment in diabetic patients. 
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GAPS IN EXISTING RESEARCH  

There are various therapeutic options available for diabetes control, but the major challenges 

are their efficacy, adverse effects, other complications, and more importantly not knowing the 

exact mechanism by which the treatments work, which is proving to be disadvantageous. 

Although the treatments are available, the frequency of patients reaching till End Stage Renal 

Disease (ESRD) stage is increasing. The major mechanism leading to diabetic complications 

is the alteration and differential regulation of the renin-angiotensin system, elevated blood 

sugar levels, and resultant AGEs that may activate multiple pathways upon interaction with 

their plasma membrane receptor (RAGE). The inhibition of RAS by angiotensin-converting 

enzyme (ACE) inhibitor or angiotensin II (Ang II) type-1 receptor (AT1R) blocker has been 

shown to suppress the development and progression of nephropathy in both type-1 and type-2 

diabetic patients. Moreover, previously Matsui T, and colleagues, found that RAS blockers 

could inhibit the AGE-elicited mesangial cell hypertrophy and proximal tubular cell injury. 

Similarly, Fukami K, and colleagues, found that RAS blockers inhibit DNA damage and 

detachment of podocytes in vitro. In addition, studies have also revealed that RAS inhibition 

by ramipril suppressed diabetes or AGE-induced MMP-2 activation in vivo and in vitro. Hence, 

we, therefore, hypothesize that the inhibition of the early formation of AGEs and their 

subsequent accumulation could not only prevent diabetes-associated complications but also 

can contribute to protection against various complications related to diabetes. 
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HYPOTHESIS 

The altered function of the renin-angiotensin-system (RAS) is a very common ramification of 

diabetes, leading to renal (acute or chronic diseases) and cardiovascular complications (angina, 

myocardial infarction, and stroke). The dysregulation of the renin-angiotensin system (RAS) 

and the formation of Advanced Glycation End Products (AGEs) are the major factors that 

contribute to Diabetic complications. Therefore, we hypothesized whether treatment with 

Aminoguanidine (AG), an AGE inhibitor could attenuate the diabetic complications in 

diabetes. Because accumulation of AGEs has been known to progress at an accelerated rate in 

Diabetes, leading to increased complications. Hence, we proposed to employ various kidney 

functions and markers as our tool to monitor their role in Diabetic and Non-Diabetic 

conditions. Additionally, we have used the heart to monitor cardiovascular functions. These 

two parameters, majorly, serve as an index of diabetic complications, including hypertension. 

Angiotensin II acts via its receptors (AT1 and AT2) which has a potent effect that regulates the 

renal excretory mechanism, especially Na+ levels by the kidney. The hormone Ang II also 

regulates vasoconstriction that controls blood flow, hence regulating Blood Pressure. 

Therefore, the levels of the Ang II receptors (AT1 and AT2), were determined in the diabetic 

animals that could reflect on the functionality of these receptors under diabetic conditions and 

vis a vis hypertension. 
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OBJECTIVES 

1. ESTABLISHMENT OF ANIMAL MODEL FOR DIABETES IN SD (SPRAGUE 

DAWLEY) RATS 

a) Developing the STZ- induced Diabetic Rat model 

b) Developing the STZ-induced diabetic rats and the Employability of AG in STZ- STZ-

induced rats- to study the complication of diabetes in the presence of AG (Aminoguanidine), 

an inhibitor of Advanced Glycated End Products. 

2. TO INVESTIGATE THE EFFECT OF AMINOGUANIDINE (AG) IN 

STREPTOZOTOCIN-INDUCED (STZ-induced) DIABETICS RATS 

a) Determination of various parameters as indicators of renal injury 

b) Determination of various parameters as indicators of renal functions 

c) Renal histopathology, assessed as a marker for renal damage 

3. PROTEIN EXPRESSION ANALYSIS OF ANGIOTENSIN II RECEPTORS 

1) Protein expression analysis of Angiotensin II receptors (AT1, & AT2) and Renin from the 

kidney 

a) AT1, AT2 Renin in the Kidney (IB) 

2) Protein expression analysis of Angiotensin II Receptor (AT1) from Heart 

b) AT1 Heart (IB) 
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2.1 Objective 1: Establishment of a Diabetic Animal Model  

2.1.1 Introduction 

Animal models provide a good association between basic and translational research by 

providing in-vivo conditions to study the disease pathobiology260. They are also the most 

readily available tools to test therapeutic drugs, their safety, and efficacy before they can be 

used in clinical trials261,262. However, it is important to use them ethically and responsibly to 

recognize their limitations and differences from humans and to properly acknowledge their 

contributions and sacrifices made to the research for the betterment of humankind263. Even 

though a number of in vitro 264,265and insilico 266studies are available and have improved 

consistently over the last few decades, animal models still remain an effective method for 

understanding the complex etiology267, pathogenesis268, and multi-systemic interactions269 

under diabetic conditions. A number of animal models, such as rats270, mice 271, and non-rodent 

animals for example Invertebrate animal model-Bombyx mori, Primate model-obese Rh 

monkey,  zebra fish, hamsters, and pigs272. Other species with inherited diabetes symptoms for 

example Chinese hamster, TUCO-TUCO272, etc. are used for to understand diabetes 

pathogenesis since they share many similarities with humans in terms of physiology, anatomy, 

and genetics273. These animal models have been developed using different strategies such as 

chemical induction, (Alloxane274or Streptozotocin275), surgical (pancreatectomy model)276, 

virus-induced (Coxsackie B virus-induced model277, and EMC virus-induced model278), 

genetically engineered and induced (KK mouse279, Obese hyperglycemic mice280, AKITA 

mice267, Zucker diabetic fatty rats, db/db281, GK rats282), spontaneous autoimmune (NOD) 

mouse and the Bio-Breeding (BB) rat267, KDP rats283, LETL284, and LEW-iddm267). Since 

diabetes is a metabolic syndrome that reflects the complex integration of body systems, careful 

consideration is needed in choosing the correct animal model to be used in different in vivo 

experiments. This allows researchers to study the various aspects of the disease and the effects 
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of diabetes on various organs and tissues, such as the pancreas, liver, kidney, heart, brain, and 

blood vessels. They have also been used to study the effects of diabetes on various functions, 

including cognitive, cardiovascular, renal, circulatory, and ocular (Rats, and Mice).  By using 

these diabetic animal models researchers established specific animal model by monitoring the 

changes in blood glucose levels, insulin production, and other physiological and clinical 

parameters related to diabetes. 

Table 2.1: Various animal models for diabetic complications (Adapted from Kottaisamy, C. et 

al.) 

s.no Animal Models Complication of 

Diabetes 

Characterization 

1 NOD mice, C57BL/6, 

GK rat, Zucker 

diabetic fatty rat, 

Zebrafish 

 

Diabetic 

Nephropathy 

 

Enlarged glomeruli and mesangial 

sclerosis,  

Albuminuria and reduced renal functions, 

thickening of glomeruli leading to 

glomerular hypertrophy, 

Glomerulosclerosis, Tubulointerstitial 

fibrosis, and renal hypertrophy, 

Overexpression of CIN85/RukL causing 

edema 

 

2 Alloxan-induced 

model, BB rats, 

OLETF rats, STZ-

induced model, GK 

rats 

 

Diabetic 

Cardiomyopathy 

 

Formation of advanced glycation end 

products leading to oxidative stress, 

Reduced calcium—stimulated ATPase 

activity and cardiac contractility, 

Alteration in left ventricular diastolic 

function, Fibrosis, and apoptosis leading 

to myocardial damage, Hyperglycemia, 

hyperlipidemia, and cardiac cell death 

 

3 Alloxan-induced 

model, Akita mice, 

db/db mouse, Surgical 

model, Zebrafish 

 

Diabetic 

Retinopathy 

 

Microaneurysms with increased acellular 

capillaries, Decreased number of 

amacrine and ganglion cells, Reduced 

number of Retinal ganglion cells with 

thickened retina, Formation of 

proliferative and contractile cellular 

membranes in the retina, Degradation, 

and thinning of the retina 

 

4 STZ-induced model, 

C57BL/KS (db/db) 

mice, Ischemic 

reperfusion injury 

Diabetic 

Neuropathy 

 

Reduced fiber size of the peroneal nerve 

and axon than that of the myelin sheath 

with impaired motor function, Decreased 

sensory nerve conduction velocity and 
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model, Chinese 

Hamster, Obese Rh 

Monkey 

 

density of intraepidermal nerve fibers 

(IENF), Decreased serum IL-10 level and 

nerve conduction velocity and nerve fiber 

density, Reduced conduction velocity, 

Reduced conduction velocity and 

prolonged duration of F-wave latencies 

 

 

Despite the animals models mentioned above, streptozotocin-induced Sprague Dawley(SD)  

rats extensively used in diabetic research since 1963 due to their easy availability and short 

generation interval, more biological similarity to human diabetes267. Moreover, this  model 

mimics the Type 1 diabetes in humans, making them the first choice of animal models in 

diabetes research285 

      Feeding of a high-fat diet, and unrestricted Calories intake, have been extensively used in 

diabetic research286, however, there are some limitations, when such animal models have not 

resulted in the development of diabetes in the animals287. With the STZ treatment, the chances 

of developing diabetes have a higher success rate, which requires just a single IP injection and 

a sustained high level of glucose in the blood288. Hence, STZ that has been considered 

advantageous over other methods  

         Streptozotocin (STZ) is an antibiotic isolated from Streptomyces achromogenes in 1960, 

that causes pancreatic islet β-cell destruction289. Several animal species, including the mouse, 

rat, and monkey, are sensitive to the pancreatic β-cell cytotoxic effects of STZ289, with the 

rabbit being the least. Therefore, chemical induction with STZ is most often used to induce 

diabetes and related complications in rats and mice290.      

      Sprague Dawley (SD) rats are a strain of albino rats that have been bred specifically for 

use in medical research 290. They are popular due to their easy handling, disease-free nature, 

cost-effective, docile nature, and good adaptability to laboratory environments290. The SD rats 

share many characteristics with humans, and very useful model for studying diabetes290. Based 
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on dosage concentrations of streptozotocin these rats sooner developed insulin resistance, 

hyperglycaemia, and metabolic abnormalities similar to those found in human diabetes291. 

These rats are larger than other commonly used diabetic animal models, such as mice. In 

addition, rats make them easier to monitor, handle, and collect samples292. In addition, these 

rats have larger organs and tissues, making them easier to use for histological, biochemical, 

and molecular analysis 292. Therefore, we have employed the SD rats in our study, and induced 

by STZ to studying diabetes-related renal complications.  

                   There are numerous published research papers that have used streptozotocin (STZ) 

to induce diabetes in SD rats to study the development of diabetes and the progression of their 

associated complications. The below-mentioned table below shows that such studies 

Table 2.2: List of literature used STZ-induced SD rats in various diabetic complication 

S.No Title of the study Description References 

 

 

 

 

1 

Downregulation 

of the renin-

angiotensin 

system in 4-wk 

STZ-diabetic rats 

restored by insulin 

therapy 

 

Results from this study suggested a 

downregulation of the renin-angiotensin 

system (RAS) at the mRNA expression 

level in 4-week STZ-diabetic rats, 

which was restored by insulin 

replacement therapy. It indicated that 

insulin may directly or indirectly 

regulate the RAS. 

 

 

 

 

 

 
293 

 

 

 

2 

Reduction of the 

accumulation of 

advanced 

glycation end 

products by ACE 

inhibition in 

experimental 

diabetic 

nephropathy 

 

The findings of the present study suggest 

an interaction between the RAS and 

advanced glycation in experimental 

diabetic nephropathy 

 

 

 

 
294 

 

 

3 

The breakdown of 

preformed 

advanced 

glycation end 

products reverses 

erectile 

dysfunction in 

The AGE breaker was found to improve 

erectile function, increase smooth 

muscle content, and decrease collagen 

content in the penile tissues of diabetic 

rats 

 

 

 

 
295 
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streptozotocin‐

induced diabetic 

rats: Preventive 

versus curative 

treatment 

 

 

 

4 

Renal angiotensin 

II AT2 receptors 

promote 

natriuresis in 

streptozotocin-

induced diabetic 

rats 

 

Identified that increased expression of 

the tubular AT2 receptors contributes to 

enhanced urinary sodium excretion in 

STZ-treated rats. 

 

 

 

 
296 

 

 

 

 

5 

Impaired 

angiotensin II AT1 

receptor function 

and enhanced Na, 

K-ATPase affinity 

for sodium in the 

proximal tubule of 

streptozotocin-

treated diabetic 

 

This data suggests that the higher basal 

NKA affinity for Na, possibly due to 

lower Ser-phosphorylation of α1-

subunit and not the AT1 receptor 

function, in the PTs may be responsible 

for increased renal Na reabsorption 

associated with early stage of 

streptozotocin-induced diabetes 

 

 

 

 

 

 
297 

 

 

 

 

6 

Protective effects 

of angiotensin-

converting 

enzyme inhibitors 

on diabetic 

retinopathy 

 

This study investigated the protective 

effects of the angiotensin-converting 

enzyme (ACE) inhibitor captopril on 

diabetic retinopathy in STZ-induced 

diabetic rats. Captopril was shown to 

reduce retinal vascular leakage and 

inhibit neovascularization, suggesting 

its usefulness in preventing diabetic 

retinopathy 

 

 

 

 

 

 
298 

 

 

 

7 

Corneal 

Complications in 

Streptozotocin-

Induced Type I 

Diabetic Rats 

 

This study seeks to characterize corneal 

functions and complications in a 

streptozocin (STZ)-induced rat model of 

type I diabetes mellitus (DM) and to 

understand the pathogenesis of diabetic 

keratopathy 

 

 

 

 
299 

 

 

 

8 

Renal sympathetic 

nervous system 

hyperactivity in 

early 

streptozotocin‐

induced diabetic 

kidney disease 

 

This data demonstrates an early role for 

the renal sympathetic innervation in the 

pathogenesis of DKD 

 

 

 

 

 
300 
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9 

The role of 

spironolactone on 

myocardial 

oxidative stress in 

rat model of 

streptozotocin‐

induced diabetes 

 

The use of spironolactone reduced 

nitrite generation and improved vitamin 

E levels independent of blood pressure 

 

 

 

 

 
301 

 

               There are growing body of evidence showing that during diabetes high glucose levels 

in the systemic circulation contribute to the acceleration of glycation of proteins and their 

accumulation in the blood or tissues242.  This allows the slowly formation of the advanced 

glycation end products (AGEs),302 and their accumulation triggers the insulin resistance254,303, 

ROS production255, oxidative stress195, and inflammation180. Thus, causing deterioration of 

tissues, and progression of pathological complications of diabetes such as cardiomyopathy304, 

atherosclerosis305, nephropathy306, and neurovascular diseases307. Many studies have been 

found a relationship between the severity of vascular complications and the level of 

accumulation of AGEs255,305,308.  Recent studies have shown that the accumulation of AGEs 

contributes to the activation of nuclear NF-κB polymorphisms213 leading to the oxidative 

stress195 and inflammation180. 

                   The drug, Aminoguanidine also known as Pimagedine is an inhibitor of advanced 

glycation end-product formation and has been studied for its potential effects on diabetes 

treatment in various animal models309. Specifically, it has been investigated in the context of 

streptozotocin (STZ)-induced SD diabetic rats258. The invitro and invivo studies have shown 

the beneficial effects of aminoguanidine (AG) in ameliorating or preventing complications 

caused in experimental diabetic models220,258. In the STZ-induced diabetic rats, the 

administration of aminoguanidine has been shown to have several effects, viz.  reduction of 

nitric oxide production 310 and to preserve the function viability of pancreatic beta cells258 

220,310. These effects help to maintain insulin secretion and hence improve glucose control in 
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diabetic models311. Despite the demonstrable inhibition of AGE formation by AG under in 

vitro and in vivo conditions, its translation to clinical practice in humans is still not practiced. 

Further research is needed to determine its efficacy, safety, and optimal dosage in human 

subjects.  

           The contents of this chapter discuss our attempts to establish the Streptozotocin-induced 

SD diabetic model and evaluate the effect of aminoguanidine, an inhibitor of advanced 

glycation end product, on the phenotypic changes in the early diabetic condition. 

2.1.2 Materials  

Plastic wares, Drugs, and Reagents 

Our experiments involved the use of Sprague-Dawley rats weighing between 200-225 g, aged 

10 to 11 weeks. The rats were fed a standard chow diet and provided with tap water, ad libitum. 

The chemicals Streptozotocin (S0130) and aminoguanidine hydrochloric acid (CAS 396494) 

were obtained from Sigma-Aldrich (St. Louis, MO, USA). Additionally, Neosporin antibiotic, 

hydrogen peroxide, one-touch ultra-soft lancets (Life Scan), spirit, and 70% isopropanol were 

used for the experimental procedures. The laboratory apparatuses used included measuring 

cylinders, vacutainers, gloves, masks, and cotton. The solution, Betadine (Povidone-Iodine 

solution IP 10% w/v) was used for disinfection purposes. Rat cages and metabolic cages were 

utilized for housing the rats in a controlled environment with regulated temperature, humidity, 

and lighting conditions. Various laboratory supplies such as 1.5-ml microcentrifuge tubes, tube 

stands (tarsons), tips, 15 ml Falcon tubes, aluminum foil, 1 ml syringes, and 26-G needles, 

were employed throughout the experiment. 
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Instruments:  

Major instruments used to conduct present experiments methods are enlisted below (Table 2) 

Table 2.3: List of instruments used in the study 

Name of instruments Company 

Glucometer One Touch, ONECARE 

Weighing Balance Sartorius 

Metabolic Cages B.I.K industries 

Desiccator (WT-130,) United Scientific Supplies DSGL150 

Glass Desiccator 

Ice machine, and water bath Blue star 

Pipettes Pipetman (Gilson) 

Seizers and forceps Standard local commercial suppliers 

2.1.3 Methods  
 

 

Figure 2.1: Schematic representation of the study design 
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2.1.3.1 Animals 

All the experimental protocol was approved by the Institutional Animal Use and Care 

Committee of the University of Hyderabad (Approval number: UH/IAEC/AHS/2021-22/07). 

Age-matched male Sprague-Dawley rats (10–11-week-old), weighing approximately 200–225 

g, were procured from the Indian Council Medical Research Animal Facility at the National 

Institute of Nutrition, Hyderabad. The animals were housed at the University of Hyderabad 

Animal Facility and had free access to standard rat chow and tap water. 

2.1.3.2 Induction of Diabetes in SD Rats 

Male Sprague-Dawley rats (10-11 weeks of age), were procured and housed at the University 

of Hyderabad animal facility and fed with the standard rat chow diet and water for two weeks. 

Briefly, animals were divided into two groups: Vehicle (n=4), and STZ-induced SD rats. A 

single IP (intra-peritoneal) injection of Streptozotocin (55mg/kg body weight), dissolved in 

0.5mM sodium citrate (pH 4.0) was used to induce diabetes312. Vehicle animals were injected 

with (0.5mM sodium citrate (pH 4.0). Forty-eight hours after the injection, blood glucose was 

measured, from the tail, to test whether these animals non diabetic or not.  The animals having 

plasma glucose > 300mg/dl were included in our study. The rats were held in the diabetic state 

for two weeks and placed in metabolic cages 2-3 days before sacrifice, to collect urine, for 24-

hour urine volume measurement and urinalysis. 

2.1.3.3. Measurement of Blood Glucose Levels and Physiological Parameters 

During the STZ treatment period, the animal’s change in body weight, food, and water intake 

was monitored for two weeks for each experimental group. Blood glucose levels of 

experimental animals were measured by taking one drop of blood from the tail vein onto the 

test strip forty-eight hours after the injection with STZ to confirm their diabetic state. 
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2.1.3.4. Treatment with Aminoguanidine-Experimental Design 

Animals for this treatment were assigned to four groups (n = 4–6): Vehicle, Vehicle+AG, STZ-

induced, and STZ-induced+AG rats. After the acclimatization period, a single intraperitoneal 

(IP) injection of STZ (55 mg/kg) dissolved in 0.5 mM sodium citrate buffer (pH 4.0) was used 

to induce type 1 diabetes, as described previously. The animals in the control group (Vehicle) 

were injected with 0.5 mM sodium citrate buffer (pH 4.0). After 48 h of the injection, glucose 

levels in the blood drawn from the tail vein were measured and animals having blood glucose 

levels >300 mg/dL were included in this study. The blood glucose levels in the Vehicle rats 

were also determined to ensure that they had not developed diabetes. Rats in the STZ-induced 

and Vehicle groups were administered AG at a dose of 1 g/L in drinking water for 2 weeks 

after the confirmation of their nondiabetic and diabetic state. 

2.1.3.5. Measurement of Blood Glucose Levels 

Blood glucose levels were measured using a OneTouch Select Plus Glucometer (ONECARE, 

Bengaluru, India). 

2.1.3.6. Determination of Body weight, and Food and Water Intake 

The body weight and food and water intake were measured over the course of treatments and 

also after transferring the rats to metabolic cages for 2–3 days, prior to their sacrifice. The food 

intake was measured by providing the rats in individual cages with a weighed amount of food 

and determining the weight of the leftover food in each cage on the next day. Similarly, water 

intake was measured by determining the average amount of water, over a period of time, 

consumed by the rats from a calibrated water bottle. 
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2.1.3.7. Measurement of Urine Volume 

The rats in all the four groups were placed in metabolic cages 2-3 days before their sacrifice 

to collect urine. This was followed up to 24 hours to measure the 24-hour urine volume. 

2.1.3.8 Statistical Analysis 

All Results are expressed as mean ± SEM. The data were analyzed using GraphPad Prism 6. 

The student’s t-test was used to compare between the groups. A p-value <0.05 was considered 

to be statistically significant. 

2.2 Objective 2: The Effect of Aminoguanidine on Streptozotocin-induced 

Diabetics Rats: Renal Function  

2.2.1 Introduction 

There are numerous evidences reporting that enhanced  AGEs formation and accumulation of 

AGEs most prevalence in various conditions such as (i) diabetes254, (ii) ageing215, (iii)  renal 

failure313,  and (iv) chronic inflammation209. The AGEs in the kidney accumulate in the renal 

compartment, and cross-linking with matrix proteins (long-lived proteins such as collagen, and 

elastin) leads to stiffness 314 and altered structural function at renal sites such as the glomerulus, 

peritubular vasculature, and arterioles of the kidney, thus promoting glomerulosclerosis and 

thickening of the basement membrane, and induces kidney damage315. The accumulation of 

AGEs in the glomerulus is associated with podocyte epithelial-mesenchymal transition316. 

Similarly, in vitro exposure to high concentrations of AGEs induces tubular-epithelial-

myofibroblast transition via RAGE-dependent pathways, contributing to tubulointerstitial 

fibrosis317. There is evidence showing that AGEs accumulate in the circulation of both diabetic 

and non-diabetic patients with renal failure318. In addition, it has been suggested that a link 

exists between advanced glycation, the development of diabetic complications242, and the 

presence of the quantum of the AGE products in diabetic tissues242. This relationship has been 
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identified in studies in both humans319 and rodents320. Previous experimental studies on the rat 

kidney after 32 weeks of Streptozocin diabetes showed increased levels of AGEs associated 

with alterations in renal function as well as structural parameters of the kidneys, as manifested 

by albuminuria and mesangial expansion258. It has also been shown that excess formation of 

AGEs in diabetes results in crosslinking of collagen and distortion of subcellular structures, 

resulting in irreversible tissue damage of the macro- and microvasculature in the kidney321. 

Furthermore, experimental diabetes rats showed impaired kidney function and kidney 

anatomical abnormalities, damaging the small blood vessels and filtering units (glomeruli) in 

the kidneys, impairing their ability to filter waste products and excess fluids from the blood. 

This leads to a gradual decline in the kidney functions321. However, it is not known and clear 

as to upto what extent of glycosylation could be related to causing functional and structural 

abnormalities in the kidney. Certain reports have shown that the accumulated AGEs, act as 

signaling molecules and interact with membrane-bound forms of RAGE, thereby activating 

multiple inflammatory pathways, including nuclear factor-kappa B (NF-κB) and mitogen-

activated protein kinases (MAPKs) under diabetic conditions209. These pathways induce the 

expression of pro-inflammatory cytokines and adhesion molecules, contributing to chronic 

inflammation and tissue injury209. The aforementioned pathways are well known and 

mechanistically attributed to the development of fibrosis, glomerulosclerosis, apoptosis, and 

cell death and are classic contributors to the progression of diabetic kidney disease in both 

humans and experimental animal models (mice and rats)322,323. There is evidence to showed 

that accumulation of AGEs, stimulates increased RAGE expression on podocytes in diabetic 

nephropathy patients190  and rodent models324. A Study have shown that RAGE knock-out in 

diabetic mice showed reduced renal fibrosis325. Therefore, management of diabetes is very 

critical and important. If the condition is not managed effectively, elevated glycation can cause 

damage to the kidneys over a period of time, leading to diabetic nephropathy. Diabetic 
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nephropathy is a major cause of end-stage renal disease (ESRD) and a major contributor of 

other cardiovascular disease242. 

                     Ample evidence from the literature shows that aminoguanidine reduces the AGEs 

in in STZ-induced animal models of diabetic nephropathy294, retinopathy in spontaneous 

hypertensive rats326, cardiac hypertrophy,  and aortic lesions in STZ-induced animal models133. 

In diabetic nephropathy, AG attenuated the rise in albuminuria and prevented mesangial 

expansion in the kidney of experimental diabetic rats258. Furthermore, it also prevented 

diabetes-related increases in collagen-cross linking in the atrial wall220, the renal glomeruli, 

and tubules327. A previous experimental report by Ellis and Good et al; showed that AG 

prevented glomerular basement membrane thickening in diabetic nephropathy328.  However, 

no such effects of AG were not observed in another study329. Therefore, the effects of AG on 

the kidney in experimental diabetes remain debatable. While studies have demonstrated that 

aminoguanidine inhibits the accumulation of renal AGEs and thereby reduces the development 

of experimental diabetic nephropathy, more clarity on this aspect needs to be established294. 

Previous studies have also assessed the accumulation of AGEs in the aorta and kidney, as well 

as renal functional and structural parameters over 32 weeks of experimental diabetes in the 

absence and presence of aminoguanidine327. 
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Figure 2.2: Mechanisms by which AGEs Damage the Kidney (Adapted from Fotheringham, 

A. K et al. 2022)330 

For diagnosis of diabetic complications, and management of diabetes, both urine and blood 

analysis are frequently employed to evaluate renal function. This assessment contains 

variables like urine protein, creatinine glomerular filtration rate (GFR), and electrolyte  

(mainly sodium331. Monitoring these parameters is very important to predicting the 

complications, and designing the therapeutic plan.  

2.2.1.1 Clinical and Kidney Function Parameters 

2.2.1.1.1 Urine Protein 

In a healthy individual, the kidneys act as filters, removing waste products and excess 

substances from the blood, while retaining essential proteins and other beneficial compounds. 

However, in diabetes, particularly if blood sugar levels are consistently high, the blood vessels 

in the kidneys can become damaged over time. This can lead to a condition called diabetic 

nephropathy332, where the kidney's filtering function is impaired, and protein starts to leak into 

the urine known as proteinuria or albuminuria, which can be an early sign of diabetic kidney 
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disease (diabetic nephropathy)333. Proteinuria is usually detected through a simple urine test. 

Microalbuminuria is a specific type of proteinuria that refers to the presence of small amounts 

of albumin (a specific type of protein) in the urine334. It is often considered an early marker of 

diabetic kidney disease, a disease associated with diabetes, and an increased risk of more 

severe kidney and heart problems in the future334.  

2.2.1.1.2 Creatinine 

Creatinine is a waste product that is produced in the muscles through the breakdown of 

creatine, an energy molecule. It is filtered out of the blood by the kidneys and excreted in urine. 

Measurement of creatinine levels in the blood and urine is an essential tool in assessing kidney 

function, as the kidneys play a vital role in clearing creatinine from the body335,336. 

In the context of diabetes, monitoring creatinine levels is important because diabetes can have 

significant effects on kidney function335. Prolonged high blood sugar levels can lead to damage 

to the blood vessels in the kidneys, a condition known as diabetic nephropathy335. As diabetic 

nephropathy progresses, the kidneys' ability to filter waste products, including creatinine, can 

be impaired335. 

2.2.1.1.3 Glomerular Filtration Rate (GFR) 

The GFR is calculated based on the urine and serum creatinine levels312,336. The level of 

creatinine in the blood is influenced by the filtration capacity of the kidneys, and therefore, 

serves as a marker to estimate GFR297.  

2.2.1.1.4 Electrolyte (Sodium) 

Electrolytes play critical roles in maintaining various bodily functions, including nerve 

function, muscle contraction, and fluid balance337. In diabetes, imbalances in electrolyte 

concentration, mainly sodium can occur due to various factors, including changes in insulin 

levels, medication use, and complications related to the disease312,338. The maintenance of 

sodium is altered under the diabetic condition and any imbalance in the ion levels can cause a 
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significant physiological and homeostatic shift in the body337. A damaged kidney either cannot 

filter out sodium or cannot selectively reabsorb sodium from the filtered load, thereby serving 

as a precursor for Na+ dependent hypertension, under diabetic conditions297. 

High blood sugar levels can lead to increased thirst and frequent urination, which may cause 

dehydration. Dehydration can affect sodium levels in the blood, leading to hypernatremia (high 

sodium levels)337.   

While performing the assay to determine renal damage, renal histology can provide insights 

into the mechanisms underlying diabetes339. Diabetes can cause changes in the structure of the 

kidneys, such as thickening of the glomerular basement membrane and expansion of the 

mesangium. These changes can lead to decreased filtration capacity and increased proteinuria, 

hallmarks of renal damage340. Assessment of renal histology in diabetic rats, therefore can help 

researchers understand the ways these changes occur and possibly could identify potential 

therapeutic targets.  

Aminoguanidine, a hydrazine derivate that acts as an inhibitor of an enzyme called tissue 

transglutaminase, is involved in the formation of AGEs and reduces glycation. 

Aminoguanidine (AG) has been investigated for its potential role in diabetes and its 

complications294. Studies showed that treatment with AG has resulted in the improvement of 

kidney functions 327 and decreased retinal pericyte loss, abnormal endothelial proliferation341, 

and peripheral nerve impairment in streptozotocin-induced diabetic (STZ-D) rats342.  Also, it 

is reported that AG treatment reduces lipid peroxidation in vascular complications in 

streptozotocin-induced diabetic (STZ-D) rats, and hence reduces the free radical generation343.  

Hence, in this study, we determine the effect of AG’s effect on renal functions and renal 

structure in early diabetes conditions.  
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2.2.2 Material  

Haematoxylin, eosin, xylene, ethanol, glass slides, coverslips, all other chemicals used were 

purchased from standard local commercial suppliers and were of analytical grade 

2.2.3 Methods 

 

Figure 2.3: Schematic representation of the objective to study renal functions/injury/damage  

2.2.3.1 Determination of Renal Functions 

The renal function parameters were determined in partial modifications of the methods as 

described previously297. Briefly, rats were transferred to metabolic cages for 2–3 days to collect 

urine samples, for determining the urine flow rate (UFR), glomerular filtration rate (GFR), and 

urinary sodium and protein levels. A clinical biochemistry analyzer (Beckman Coulter and 

Olympus) was used to determine the levels of creatinine and electrolytes in the urine. The 

urinary protein levels were quantitated spectrophotometrically using the BCA method. 
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2.2.3.2 Calculation of GFR 

The glomerular filtration rate in the various groups of rats was calculated using the following 

formula: 

GFR = Urine creatinine × Urine flow rate (µL/min)/Serum creatinine 

2.2.3.3 Calculation of Urinary Sodium Excretion Rate 

The urinary sodium excretion rate, as an index of renal function and natriuresis, was calculated 

using the following formula: 

Urinary sodium excretion rate = Urine sodium concentration (mmol/L) × 24 hour-urine 

volume/mMoles of Sodium 

2.2.3.4 Blood Sample Collection 

Blood samples were collected via cardiac puncture into plain sample vacutainer tubes after 

anesthetizing the animals with diethyl ether.  The blood samples were centrifuged at 2500 rpm 

for 10 min to obtain clear serum for biochemical analysis of electrolytes, and serum creatinine 

2.2.3.5 Histopathological Analysis of the Kidney 

For histopathological analysis, the kidneys from each animal were excised at the time of 

sacrifice and placed in 10% formalin, as described previously88,312. They were then dehydrated 

and embedded in paraffin. The paraffin-embedded kidney tissues were sectioned at a thickness 

of 5 µm, and stained with hematoxylin and eosin (H&E)312. The sections were examined by a 

pathologist. At least 4–10 random fields were examined per section, comparing 10 or more 

glomeruli in each field. 
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2.2.3.6 Statistical Analysis 

Results are expressed as mean ± SEM. The data were analyzed using GraphPad Prism 6. 

Student’s t-test was used to compare the groups. A p-value<0.05 was considered to be 

statistically significant. 

2.3 Objective 3: Change in Protein Expression of Renin, Angiotensin II Type I 

and Type II Receptors (AT1 and AT2) 

2.3.1 Introduction 

The renin-angiotensin system plays a crucial in blood pressure regulation, fluid volume, and 

electrolyte homeostasis62. It contains several key components i) ii) renin, iii) angiotensin-

converting enzyme, ACE iv) angiotensin II, and v) the angiotensin II receptor. The binding of 

the angiotensin II with two subtype receptors (AT1 and AT2) mediates the various biological 

effects including vasoconstriction, aldosterone secretion, catecholamine release as well as 

drinking, secretion of prolactin and adrenocorticotrophic hormone, and glycogenolysis, 

whereas AT2 show the opposite effects of that of the AT1 receptors36,67,344. 

The AT1 and AT2 receptors are localized in various tissues including kidney 73. A number of 

studies have established the contribution of these receptors to the development of kidney 

disease in diabetes67,344. 
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Figure 2.4: Schematic representation of the major component of the renin-angiotensin system 

 

It has been reported that altered RAS components such as angiotensin II, renin, ACE as well 

as the angiotensin II receptor subtypes are frequently associated with the development of 

hypertension and metabolic diseases such as atherosclerosis345, stroke, coronary artery346, 

obesity347  disease under diabetes conditions. Moreover, there are reports that chronic high 

blood glucose levels in diabetes contribute to long-term kidney disease, such as end-stage renal 

disease (ESRD)348.  

Hyperactivity of RAS via angiotensin II receptor subtypes, (AT1, and AT2)   has been studied 

in the context of diabetes296,297. However, the changes in the expression of AT1 and AT2 

receptors are tissue-dependent, for example, the overexpression of AT1 receptors has been 

shown in the kidney, heart, lungs, aorta, and brain, while the overexpression of AT2 receptors 

has been reported in mesenteric arteries, kidney, and endothelium73,86,349.  It has been shown 

that there is an upregulation of AT1 receptors in the glomeruli and tubules in the kidneys in 
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diabetic nephropathy350. Increased AT1 receptor expression has also been observed in the retina 

of patients with diabetic retinopathy351  and diabetic cardiovascular complications86. On the 

other hand, The AT2 receptors have been shown to have anti-inflammatory, vasodilatory, and 

tissue-protective effects 352. There is evidence that the expression and function of the AT2 

receptors become relevant under pathophysiological conditions such as hypertension and 

diabetes36,86. A study, a model of type 2 diabetes obese Zucker rats,  showed that the tubular 

AT2 receptor is upregulated and mediates the natriuretic effects mediated by an AT1 receptor 

antagonist353. Similarly, increased expression of the tubular AT2 receptors contributes to 

enhanced urinary sodium excretion in STZ-treated rats296. The upregulated AT2 receptors via 

the NO/cGMP pathways mediate tubular sodium transport inhibition in STZ-treated rats, 

leading to enhanced urinary sodium excretion296. Some studies showed that early 

streptozotocin-diabetes mellitus downregulates rat kidney AT2 receptors135. However, the 

exact mechanisms and significance of AT2 receptor function in diabetic complications are still 

under investigation, and further research is needed to fully understand their role. 

          The first and highly regulated rate-limiting step of the renin-angiotensin system is 

mediated by renin and its inhibition has been a target for nearly 60 years118. The study by Miller 

et al.; demonstrated that short-term moderate hyperglycemia without glycosuria during the 

early stages of diabetes has been linked to an increase in plasma renin activity, mean arterial 

pressure, and renal vascular resistance118. Moreover, the presence of immunoreactive renin has 

been demonstrated in the human end-stage diabetic kidney354. Early diabetes mellitus 

stimulates proximal tubule renin mRNA expression in the rat135. Therefore, the medications 

that target the RAS cascade, such as ACE inhibitors, and angiotensin receptor blockers 

(ARBs), are solely used to control/slow down the progression of diabetes complications 

including hypertension355,  nephropathy356, retinopathy357, and neuropathy358.  
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The most commonly used ARBs, such as losartan, telmisartan, and valsartan, are the AT1 

receptor antagonists, and they block the AT1 receptor and subsequently prevent the binding of 

Angiotensin II to this receptor subtype359,360. These drugs are known to reduce 

vasoconstriction, inflammation, and oxidative stress, among other functions 359. In the STZ-

induced diabetic rats, treatment with ARBs has been shown to ameliorate diabetic 

nephropathy, retinopathy, and cardiovascular complications, thereby implying the role of AT1 

receptors in aggravating diabetic complications361,362.  

The inhibitors of ACE, such as enalapril, lisinopril, and ramipril work by inhibiting the enzyme 

ACE, which converts Angiotensin I to Angiotensin II147. By inhibiting this conversion, ACE 

inhibitors indirectly reduce the activation of AT1 receptors, due to a decreased Ang II 

availability147. These inhibitors have been demonstrated to improve renal function, decrease 

proteinuria, and attenuate diabetic complications in STZ-induced diabetic rats363. Either the 

reduction in the levels of Ang II or the decreased activation of the AT1 receptors by Ang II has 

shown a significant reduction in the various complications as mediated by the RAS363. In 

addition to the above therapy, a combination of therapeutic approaches is also used in the 

treatment of diabetes to manage its complications specifically hypertension364.  

                  Recently, emerging evidence showed that the reduction of accelerated formation of 

advanced glycation end products (AGEs), provides an intensive management of diabetic 

complications294. The drug, Aminoguanidine, AG, an inhibitor of Advanced Glycation 

Products, has been studied for its potential effects on diabetic complications294. There is a 

report that AG has been shown to impact the renin-angiotensin system (RAS) indirectly 

reducing oxidative stress, and hemodynamic renal changes and improving endothelial function 

in diabetic rats327,365. Additionally, aminoguanidine has been shown to reduce the prevent 

diabetes-induced increases in protein kinase C activity in glomeruli, retina, and mesenteric 
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artery. Thus, by reducing AT1 and AT2 receptor expression, aminoguanidine helps attenuate 

diabetic complications106. 

The change in expression of AT1 and AT2 receptor in the diabetic kidney have been reported 

67,366 but the impact of AG on AT1 and AT2 receptor AT2 receptor expression and functional 

changes is not known in the kidney of diabetes condition. The AT2 receptor activation is 

generally associated with vasodilation, anti-inflammatory responses, and tissue repair366 

processes, such effects that are opposite to the effects of the AT1 receptors349. 

It is important to note that while aminoguanidine has shown promise in preclinical studies, its 

clinical effectiveness and safety for treating diabetic complications in humans are still under 

investigation. Additionally, there may be other factors and pathways involved in the effects of 

aminoguanidine beyond the RAS and the AT1/AT2 receptors. Therefore, further research is 

needed to fully understand the extent and mechanisms of aminoguanidine under diabetic 

conditions. 

This work aimed to evaluate the protein expression of, renin, angiotensin II receptors, AT1, and 

AT2 in the kidney, and heart of diabetic rats before and after administration of AG.  

2.3.2  Materials  

Chemicals and Reagents: Tri- sodium citrate (Fisher scientific) Sodium Chloride, Potassium 

chloride, Calcium Chloride, Magnesium Chloride, Sodium Bicarbonate (Sigma), Potassium 

Dihydrogen orthophosphate, D-Glucose anhydrous, 4-(2- Hydroxyehyl)piperazine-1-

ehanesulfonic acid sodium (HEPES Sodium), ꞵ-Glycerophosphate di sodium salt hydrate 

(sigma), Magnesium Chloride (Fisher Scientific), Ethylene glycol-bis (ꞵ-amino ethyl ether)- 

N,N,N’,N’ tetra acetic acid tetrasodium salt (EGTA/Sigma-Aldrich), Triton X-100 (Sigma), 

Dithiothreitol (Biorad), Phenyl methane sulfonyl fluoride (PMSF) (Sigma), Protease inhibitor 

cocktail (Roche), Sodium dodecyl sulphate (Fisher scientific) N,N,N’,N’ 
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Tetramethylenediamine (TEMED) (Biorad), Ammonium per sulfate (Biorad), Tween-20 

(Biorad), 30%Acrylamide/ Bis-acrylamide (29:1)(Bio rad), Ponceau S dye, Tris free base 

(Biorad), Nitrocellulose membrane (0.45 µM (Biorad), Bovine serum albumin fraction V 

(BSA) (Roche), diethyl ether (Thermoscientific), 70% isopropanol, Formaldehyde (Himedia), 

Ethanol, (Himedia), hematoxylin and eosin 

Kit: Pierce BCA protein estimation kit (Bicinchonic acid reagent) (Thermo Fischer), femto 

LUCENT TM PLUS HRP chemiluminescent (G Bioscience), 

Proteins and Antibodies: Bovine serum albumin fraction V (BSA) (Roche), Anti-Rabit IgG 

HRP, Anti-mouse IgG HRP (Cell Signaling). The antibodies for AT1 and AT2 receptors (PA5-

20812 and PA5-20813, respectively) were purchased from ThermoFisher Scientific, and the 

β-actin antibody was obtained from Cell Signaling (Danvers, MA, USA; Cat. # 3700S).  The 

Femto chemiluminescence substrate was purchased from G- G-biosciences. All other 

chemicals used for immunoblotting were purchased from Bio-Rad, Hercules, CA, USA. 

Composition of Buffers and other reagents:  

Resolving buffer pH 8.8 (40 ml): 1.5 M Tris base 7.26g volume made up of double distilled 

water (DDW) 

Stacking buffer pH 6.8 (40 ml): 0.5 M Tris base 2.43 g, volume made up of double distilled 

water (DDW) 

4X Laemmli sample buffer: 30% Glycerol, β-Mercaptoethanol (sigma), 20% SDS, 0.5M Tris 

PH-6.8, 1% Bromophenol blue 5X Reservoir buffer (500 ml): Tris base 7.5 g, Glycine 36 g, 

volume made up with double distilled water (DDW) 

Separating buffer (1 Liter): 5X Reservoir buffer (200ml), 10% SDS (10ml) volume made up 

of double distilled water (DDW) 
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Transfer buffer (1 Liter): 5X Reservoir buffer (200ml), Methanol 200 ml, volume made up 

with DDW 

1X Phosphate Buffer Saline: Sodium chloride, potassium chloride, disodium hydrogen 

orthophosphate anhydrous, Potassium dihydrogen orthophosphate 

PBST: 1X PBS+ 0.1% Tween 20, Blocking buffer: 5% BSA in 1XPBS (pH-7.4), Washing 

buffer (PBST): 0.1% Tween20 in 1XPBS (pH-7.4), Antibody dilution (1:1000) buffer: 5% 

BSA in 1X PBS+ 0.1% Tween 20, for Beta-Actin (1:3000) 

Laboratory Glassware, Materials, and Plates: 96 well plates (Corning), falcon tubes (15ml, 

and 50ml), test tubes, desiccator, sterile surgical blades, needles, syringes (Dispo van), 

Measuring cylinders, Rat restrainer, cotton, Sterial combine dressing pad, Butter papers, 

blotting papers, 10 µl, 200µl (Axygen), and 1ml tips (tarsons), 1.5 ml tubes (Axygen) Petri 

dish (corning), nitrile powder free gloves (Lab serve). 

 Table 2.4: List of instruments used in the study 

Name of instrument/ Apparatus Company 

Tecan plate reader Thermo Scientific 

Tissue homogenizer Unigenetics 

chemo doc XRS+ imaging system Biorad 

PH meter Oakion 

Spinvin Tarson 

western blot cassettes Biorad 

-80°c freezer Thermo Scientific 

-20°c freezer Blue star 

Vortex Tarson 

Orbital Shaker Tarson 

Magnetic stirrer, and beads Tarson 

Protein electrophoresis Apparatus Bio-Rad 

Mini Trans-Blot Cell Bio-Rad 
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2.3.3 Methods 

2.3.3.1 Protein Extraction 

The kidneys were dissected from the sacrificed rats and rinsed with the Krebs- Henseleit buffer 

(118 mM NaCl, 4 mM KCl, 1.25 mM CaCl 2, 1.2 mM MgCl 2, 27.2 mM NaHCO 3, 1 mM 

KH 2 PO 4, 5 mM glucose, and 10 mM HEPES; pH 7.4)296,297. The kidney cortex was minced 

and homogenized in a lysis buffer (50 mM β- glycerophosphate, 2 mM MgCl 2, 1 mM EGTA, 

0.5% Triton X-100, 1 mM dl-dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride) 

containing a cocktail of protease inhibitors with a broad inhibition specificity for serine and 

cysteine proteases, metalloproteases, and calpains. The kidney homogenates were centrifuged 

at 14,000 rpm for 15 min at 4°C, and the supernatants were recovered. Total protein was 

quantitated using the BCA method by measuring the absorbance at 562 nm, according to the 

manufacturer’s protocol 

2.3.3.2 Immunoblot Analysis 

For immunoblot analysis, the supernatant of the kidney homogenate was dissolved in 4X 

loading sample buffer, containing β-mercaptoethanol, and boiled for 5 min at 95 °C. The 

proteins (35 µg of renin, 35 µg protein for AT1, and 40 µg protein for AT2) were separated 

using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE) and 

transferred onto a nitrocellulose membrane. The membrane was blocked with 5% bovine serum 

albumin in PBS with 0.1% Tween-20. The blots were incubated with the primary antibodies 

(polyclonal Renin ((1:1000), AT1(1:1000) and AT2 (1:1000) and subsequently with 

horseradish peroxidase (HRP)-conjugated anti-rabbit secondary antibody (1:5000). The signal 

was detected using a chemiluminescence reagent, and bands were visualized using the 

Chemidoc XRS instrument (Bio-Rad). The blots were stripped off the antibodies and reprobed 

for β-actin (1:3000, Cell Signaling, cat. 3700S) as a loading control. Densitometry analysis of 
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the bands was performed using the ImageJ software (NIH, USA), and renin, AT1, and AT2 

levels relative to those of β-actin were determined for all the various groups 

2.3.3.3 Statistical Analysis 

Results are expressed as mean ± SEM. The data were analyzed using GraphPad Prism 6. 

Student’s t-test was used to compare the groups. A p-value<0.05 was considered to be 

statistically significant 
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3.1 Objective 1  

3.1.1 Blood Glucose Levels after STZ treatment (mg/dL) 

Two weeks after the induction of diabetes, STZ-treated rats had significantly increased blood 

glucose    levels, compared to the corresponding parameter in the Vehicle group (381.8± 15 vs. 

108.3± 2.13 mg/dL (p<0.05, n = 4; Figure 3.1). 

 

 

 

 

 

 

Figure 3.1: Streptozotocin treatment on SD rats, measurement of blood glucose level in vehicle 

and streptozotocin (STZ)-induced diabetic rat groups. Values are means ± SEM, *p<0.05 

compared to vehicle rat groups, (Student’s t-test). All experiments were performed in triplicate 

3.1.2 Body Weight after STZ treatment (g) 

Two weeks after the induction of diabetes, STZ-treated rats a had significantly decreased body 

weight (expressed as percent change in body weight) compared to the corresponding parameter 

in the Vehicle group (−9.70± 5.47 vs. 22.82 ± 2.85 g (p<0.05, n=6-8; Figure 3.2) 
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Figure 3.2: Streptozotocin treatment on SD rats, monitoring body weight in vehicle and 

streptozotocin (STZ)-induced diabetic rat groups. Values are means ± SEM, *p<0.05 

compared to vehicle rat groups, (Student’s t-test). All experiments were performed in triplicate 

3.1.3 Food Consumption after STZ Treatment (g) 

A significant change in food consumption was observed between rats in the STZ-induced 

diabetic and Vehicle groups of rats, with the STZ-treated rats consuming an increased amount 

of food compared to the Vehicle rat groups (23.20± 1.73 vs. 17.18 ± 0.11 g (p<0.05, n=6-8; 

Figure 3.3) 

 

Figure 3.3: Streptozotocin treatment on SD rats, measurement of food consumption in vehicle 

and streptozotocin (STZ)-induced diabetic rat groups. Values are means ± SEM, *p<0.05 

compared to vehicle rat groups (Student’s t-test). All experiments were performed in triplicate. 
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3.1.4 Water Consumption after STZ treatment (mL) 

Two weeks after the induction of diabetes, STZ-treated rats showed a significantly increased 

water consumption compared to the corresponding parameter in the Vehicle group (98.59 ± 

9.49 mL vs. 29.09 ± 0.19 mL (p <0.05), n=6-8; Figure 3.4) 

 

Figure 3.4: Streptozotocin treatment on SD rats, measurement of water consumption in vehicle 

and streptozotocin (STZ)-induced diabetic rat groups. Values are means ± SEM, *p<0.05 

compared to vehicle rat groups, (Student’s t-test). All experiments were performed in triplicate. 

3.1.5 Urine Volume after STZ treatment (mL) 

Two weeks after the induction of diabetes, STZ-treated rats had a significantly increased 24-

hour urine output (mL) compared to the Vehicle rats (32.20±8.29 vs. 10.22±0.29 mL (p<0.05), 

n=6-8; Figure 3.5). 

 



Page 70 of 211 
 
 

 

Figure 3.5: Streptozotocin treatment on SD rats, measurement of 24-hour urine volume in 

vehicle and streptozotocin (STZ)-induced diabetic rat groups. Values are means ± SEM, 

*p<0.05 compared to vehicle rat groups, (Student’s t-test). All experiments were performed in 

triplicate. 

3.1.6 AG Treatment in STZ-induced+AG treated Diabetic Rat Groups Prevented 

an Increase in Blood Sugar Levels (mg/dL) 

Two weeks after the induction of diabetes, STZ-treated rat groups had significantly increased 

blood glucose levels compared to the corresponding parameters in the Vehicle rat group (462.3 

± 18.6 vs. 109.7 ± 1.25 mg/dL (p<0.05), n=6-8; Figure 3.6). Administration of AG (1 g/L) to 

the STZ-induced+AG treated diabetic rat groups had significantly decreased blood glucose 

levels, compared with that in the STZ-treated rat groups (295.9 ± 50.69 vs. 462.3 ± 18.6 mg/dL 

(p<0.05); Figure 3.6). There was a significant change in the blood sugar levels, between the 

STZ-induced+AG treated rat groups and Vehicle+AG treated rat groups too (295.9 ± 50.69 vs. 

111.6±1.49 mg/dL (p<0.05); Figure 3.6). No differences in blood glucose levels were noted 

between the Vehicle and Vehicle+AG treated rat groups, (109.7 ± 1.25 ± 1.8 vs. 111.6 ± 1.49 

mg/dL); Figure 3.6). 
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Figure 3.6: Effect of aminoguanidine (AG) treatment (1 g/L) on blood glucose level in vehicle 

and streptozotocin (STZ)-treated rat groups, and Vehicle+AG treated rat groups and STZ+AG 

treated rat groups. Values are means ± SEM, *p<0.05 compared to vehicle rats, @ p<0.05 

compared to Vehicle+AG treated rat groups, #p<0.05 compared to STZ-treated rat groups 

(Student’s t-test). n = (6–8). 

3.1.7 AG Treatment of STZ-induced+AG treated Diabetic Rat Groups 

Demonstrates a Slight Restoration in The Body Weight (g) 

Two weeks after the induction of diabetes, STZ-treated rat groups had significantly decreased 

percent change in body weight compared to the corresponding parameter in the Vehicle rat 

groups (−7.35 ± 5.97 vs. 23.87 ± 4.1 g (p<0.05), n=8; Figure 3.7). Administration of AG (1 

g/L) to the STZ-induced+AG treated diabetic rat groups caused a slight restoration in the 

percent change in body weight, compared with that in the STZ-treated rat groups (1.6. ± 5.8 

vs.−7.35 ± 5.97 g). A significant difference was also noted in the percent change in body weight 

between the STZ-induced+AG treated rat groups and Vehicle+AG treated rat groups (1.6. ± 
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5.8 vs. 18.8 ± 5.9, p<0.05; Figure 3.7). No differences in these parameters were noted between 

the Vehicle and Vehicle+AG treated group of rats (23.87 ± 4.1 vs. 18.8 ± 5.9 g); Figure 3.7). 

 

Figure 3.7: Effect of aminoguanidine (AG) treatment (1 g/L) on body weight (g) in vehicle and 

streptozotocin (STZ)-treated rat groups, and Vehicle+AG treated rat groups and STZ+AG 

treated rat groups. Values are means ± SEM, *p<0.05 compared to vehicle rats, @ p<0.05 

compared to Vehicle+AG treated rats, #p< 0.05 compared to STZ-treated rat groups (Student’s 

t-test). n =8. 

3.1.8. AG Treatment of STZ-induced+AG treated Diabetic Rat Groups Showed 

no Change in Food Consumption (g) 

Two weeks after the induction of diabetes, the STZ-treated rat group had a significant change 

in food consumption compared with the Vehicle groups of rats (19.51 ± 1.61 vs. 16.44 ± 0.29 

g (p<0.05), n=6-8; Figure 3.8). Administration of AG (1 g/L) no difference was recorded 

between the food consumption in the STZ-treated rat groups and STZ-induced AG-treated rat 

groups (19.51 ± 1.61 vs. 19.58 ± 1.08 g; Figure 3.8). No differences in these parameters were 

noted between the Vehicle and Vehicle+AG treated rat groups (16.44 ± 0.3 vs. 16.70 ± 0.5g). 
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Figure 3.8: Effect of aminoguanidine (AG) treatment (1 g/L) on food consumption in vehicle 

and streptozotocin (STZ)-treated diabetic rats, and Vehicle+AG treated rat groups and 

STZ+AG treated rat groups. Values are means ± SEM, *p<0.05 compared to vehicle rats, @ 

p<0.05 compared to Vehicle+AG treated rat groups, #p< 0.05 compared to STZ-treated 

diabetic rat groups (Student’s t-test). n = (6–8). 

3.1.9 AG Treatment of STZ-induced+AG treated Diabetic Rat Groups 

Moderately Decrease the Water Consumption (mL) 

Two weeks after the induction of diabetes, STZ-treated rat groups showed significantly 

increased water consumption compared to the corresponding parameter in the Vehicle rat 

groups (67.13 ± 8.78 vs. 30.06 ± 1.56 mL (p<0.05); n= 6-8, Figure 3.9). Administration of AG 

(1 g/L) to the STZ-induced+AG treated rat groups modestly decreased water consumption 

(62.44 ± 10.93 vs. 67.13 ± 8.7 mL). There was a significant change in the water consumption 

between the STZ-induced+AG treated rat groups and Vehicle+AG treated rat groups (62.44 ± 

10.93 vs. 28.40 ± 0.93 ml; p<0.05); Figure 3.9). No differences in these parameters were noted 

between the Vehicle and Vehicle+AG treated rat groups, 30.06 ± 1.56 vs. 28.40 ± 0.93 mL) 
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Figure 3.9: Effect of aminoguanidine (AG) treatment (1 g/L) on water consumption in vehicle 

and streptozotocin (STZ)-treated diabetic rat groups, and Vehicle+AG treated rat groups and 

STZ+AG treated rat groups. Values are means ± SEM, *p<0.05 compared to vehicle rats, @ 

p<0.05 compared to Vehicle+AG treated rat groups, #p< 0.05 compared to STZ-treated 

diabetic rat groups (Student’s t-test). n = (6–8). 

3.1.10 AG Treatment of STZ-induced+AG treated Diabetic Rat Groups Showed 

Decreased Urine Volume (ml) 

Two weeks after the induction of diabetes, STZ-treated rats shown significantly increased 24-

hour urine volume (mL) in comparison to the Vehicle rat groups (29.59±4.21 vs. 6.70±0.82 

mL (p<0.05); n=11-15; Figure 3.10). Treatment with AG have resulted in a decreased urine 

volume in the STZ-induced +AG treated rat groups, compared to the STZ-treated diabetic rat 

groups (17.47±5.8 vs. 29.59±4.21 mL Figure 3.10). Significant changes in urine volume were 

observed between the STZ induced+AG treated rat groups and Vehicle+AG treated rat groups 

(17.47±5.81 vs. 5.63±0.69), Figure 3.10). No differences in these parameters were noted 

between the Vehicle and Vehicle+AG treated rat groups (6.70±0.82 vs. 5.63±0.69 Figure 

3.10). Although the Urine volume is significantly higher in STZ+AG-treated rat groups 

compared to the Vehicle rat groups, (17.47±5.81vs. 6.70±0.82). It is significantly / 
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substantially decreased in Vehicle+AG treated rat groups compared to STZ-induced diabetic 

rats compared with that in the STZ-treated rats (5.63±0.69 vs. 29.59±4.21). 

 

Figure 3.10: Effect of aminoguanidine (AG) treatment (1 g/L) on urine volume in vehicle and 

streptozotocin (STZ)-treated diabetic rat groups, and Vehicle+AG treated rat groups and 

STZ+AG treated rat groups. Values are means ± SEM, *p<0.05 compared to vehicle rats, @ 

p<0.05 compared to Vehicle+AG treated rat groups, #p<0.05 compared to STZ-treated rat 

groups (Student’s t-test). n = (11-15). 

3.1.11 Discussion 

Diabetes accounts for 1.51 million affected persons from 2000-2023 and it can be fatal if not 

managed. Hence, several well-designed in vitro and animal model systems have been explored 

to study the underlying mechanism of diabetes and related complications. Investigating the 

advanced glycation end-product formation (AGEs) and its effect on the regulation of the RAS 

system in the progression of diabetic complications is a challenge. This work demonstrated 

that the STZ-induced SD rat model is cost-effective, which is economically viable, and is a 

suitable model for studying renal function and diabetes progression that could pave the way 

for evaluating the effective targeted therapy. In this chapter, we demonstrated the 

establishment of a Streptozotocin (STZ)-induced SD rat model for diabetes and its associated 
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complications and the reduction/ and or prevention of renal complications with 

aminoguanidine administration. 

        The diabetogenic effect of streptozotocin (STZ) is related to its cytotoxic effect on beta 

cells. When this compound enters the pancreatic beta-cell through GLUT-2 transporters, it 

produces alkylation and DNA fragmentation, which leads to the destruction of these cells. This 

destruction leads to increased glucose levels as a result of their inability to produce insulin, 

which is the hormone responsible for the regulation of carbohydrates. Depending on the STZ 

dose, it can produce a type I diabetes model or a type II diabetes model. This effect is mainly 

due to the complete or partial destruction of pancreatic beta cells274.  

           The results of our study documented that after 48 hours of streptozotocin treatment, 

STZ-induced SD diabetic rats had high blood glucose levels (hyperglycaemia). This increase 

in blood sugar levels in the STZ-induced diabetic rats was accompanied by a decrease in body 

weight (% weight loss) and an increase in water intake (polydipsia), urine volume (polyuria), 

and polyphagia, compared to that of the vehicle rat groups. The observed changes in these 

parameters are established phenotypes of diabetes367, 368and these features are consistent with 

type I diabetes criteria established by different associations such as the American Diabetes 

Association (ADA)369, International Diabetes Federation (IDF)370, and other371. This evidence 

that we could develop a good animal model of diabetes and successfully induce the various 

complications of diabetes concerning the clinical phenotypes and physiological determinants. 

We also documented that, after, administration of AG (1g/L water) in the STZ-induced diabetic 

rats, the drug prevented the increase in blood glucose levels compared with that in the STZ-

induced diabetic rats. The AG treatment was also helpful in restoring the weight loss vis-à-vis 

and a partial improvement in the other parameters after two weeks in the STZ-induced diabetic 

rats. Although we did not evaluate the mechanism in this study, the most plausible explanation 

for this could be the fact that AG prevents the formation of AGEs by reacting with 
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fragmentation products of sugar-derived ketamine372. There are also reports that AG helps 

improve insulin sensitivity and enhance glucose uptake by cells, leading to a reduction in blood 

glucose levels373,374. Other studies have also shown that aminoguanidine had been shown to 

protect pancreatic beta cells375, which are responsible for producing insulin, thereby improving 

glucose control, reducing blood glucose levels, and preventing excessive weight loss. In 

addition, aminoguanidine has been reported to improve insulin sensitivity in certain studies 373. 

Taken together, these factors have most likely lead to a prevention of the increase in the blood 

sugar levels in the STZ+AG treated rat groups. This is the most plausible explanation that we 

could offer. Measuring the serum insulin levels could provide more insights into this 

mechanism and this definitely warrants further study.  

Diabetes generally, leads to altered appetite regulation due to an altered metabolic function 

and could result in reduced/increased food intake127. It has been shown diabetes influences the 

release of hormones involved in appetite control, such as leptin376 and ghrelin376. By 

modulating these hormones, aminoguanidine may also help regulate appetite and prevent 

excessive weight loss or weight gain. The specific effects of aminoguanidine on weight loss in 

diabetic rats may vary depending on the experimental conditions, dosage, and duration of 

treatment 259,327. Further research is needed to fully understand the effects of aminoguanidine 

on body weight regulation in the context of diabetes. Our studies have also documented that 

there is an appreciable restoration of body weight in the STZ+AG-treated rats, with food 

consumption remaining almost the same. This suggests a better utilization of the nutrients in 

the STZ+AG-treated rats, compared to the STZ-induced diabetic rats.  As evidenced, the STZ-

induced rats are often associated with increased thirst and as a consequence excreted a higher 

volume of urine due to hyperglycaemia-induced hyperfiltration by the kidneys297. 

Administration of AG resulted in a partial decrease in water consumption and as a result, 

decreased urine excretion as that exhibited by STZ+AG-treated - diabetic rats.  



Page 78 of 211 
 
 

Various studies have shown previously that aminoguanidine has been shown to have some 

potential effects on water consumption in streptozotocin (STZ)-induced diabetic rats, as 

observed here in our studies342.  

In diabetes, the kidneys can be damaged due to excess glucose filtration, leading to 

hyperfiltration, impaired fluid reabsorption, and increased urine production leading to an 

altered urinary excretion of water and ions258. It is postulated hence that treatment of AG may 

improve kidney function, and thus help in reducing excessive urine production and subsequent 

thirst, a normal physiological response. Diabetes also affects the production and release of 

hormones involved in fluid balance and thirst regulation. Additionally, AG has also been 

shown to influence the release of certain hormones indirectly such as vasopressin327 and atrial 

natriuretic peptide106. By modulating these hormones, aminoguanidine may actually help 

regulate fluid balance and could possibly reduce excessive thirst and water consumption, and 

hence affect the renal functions.  

Diabetes causes oxidative stress, which can damage cells and tissues throughout the body, 

including the kidneys377. Evidence from the literature, suggests that aminoguanidine also 

possesses antioxidant effects, which may help in protection against oxidative stress-induced 

damage 378.  

                 In conclusion, the acceleration of advanced glycation is the major challenge in 

clinical diabetes complications. We have established an STZ-induced diabetic model to 

evaluate the phenotypic characteristics after AG treatment. Our study provides promising 

results in preventing the increase in blood glucose levels by AG treatment. Furthermore, the 

study demonstrated an anomalous or selective action of AG, on body weight, food, and water 

consumption, and urine volume thus, it provides a new dimension in strategies to treat diabetic 

complications.  
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3.2 Objective 2 

3.2.1 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Not 

Significantly, Increased the Urine Protein Levels (µg/µL) 

Diabetic rats had significantly higher urinary protein levels, compared with that in the Vehicle 

group rat groups (52.23 ± 7.16 vs. 15.14 ± 1.94 µg/µL (p<0.05); n=(3-5). Administration of 

AG (1 g/L) slightly, albeit not significantly, increased the urine protein levels in the STZ-

induced+AG-treated rat groups compared with that in STZ-treated rats (61.95 ± 7.30 vs. 52.23 

± 7.16 µg/µL; Figure 3.11). Surprisingly, urine protein levels in vehicle-treated rats that were 

administered AG were significantly increased compared with those in vehicle+AG-treated rat 

groups (42.35 ± 7.45 vs. 15.14 ± 1.94 µg/µL (p<0.05)). The urine protein levels were 

substantially increased in the STZ-treated rat groups that were administered AG compared with 

that in vehicle+AG-treated rat groups that were administered AG, although not significantly 

(61.95 ± 7.30 vs. 42.35 ±7.45 µg/µL; Figure 3.11). 
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Figure 3.11: Effect of aminoguanidine (AG) treatment (1 g/L) on the urinary protein level of 

STZ-induced rat groups compared to vehicle rat groups, and Vehicle+AG treated rat groups 

and STZ+AG treated rat groups. Values are means ± SEM. *p<0.05 compared to vehicle rat 

groups, @ p<0.05 compared to Vehicle+AG treated rat groups (Student’s t-test). n = (3–5). 

3.2.2 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Had 

Significantly Decreased Urine Flow Rate (UFR) (µL/min)  

STZ-treated rat groups had significantly higher urine flow rates compared with that in the 

Vehicle group rats (20.55 ± 1.94 vs. 4.6 ± 0.57 µL/min (p<0.05); n=(3-5). The administration 

of AG significantly decreased Urine flow rate (UFR) (Figure 3.12) in STZ-induced+AG 

treated rat groups compared with that in STZ-induced rat groups (12.14 ± 4.043 vs. 20.55 ± 

1.94 µL/min, (p<0.05). There was no effect on the UFR in the Vehicle+AG treated rat groups 

and Vehicle rat groups (3.90 ± 0.48 vs. 4.6 ± 0.57 µL/min). However, the UFR was 

significantly increased in STZ-induced+AG treated rat groups compared with that in the 

Vehicle+AG treated rat groups (12.14 ± 4.04 vs. 3.90 ± 0.48 µL/min (p<0.05); (Figure 3.12). 
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Figure 3.12: Effect of aminoguanidine (AG) treatment (1 g/L) on urine flow rate (µL/min) of 

STZ-induced rat groups compared to vehicle rat groups, and Vehicle+AG treated rat groups 

and STZ+AG treated rat groups. Values are means ± SEM. *p<0.05 compared to vehicle rat 

groups @ p<0.05 compared to Vehicle+AG treated rats (Student’s t-test). n = (3–5). 

3.2.3 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Did Not 

Affect Glomerular Filtration Rate (GFR) (mL/min)  

STZ treated diabetic rat groups had a significantly higher glomerular filtration rate (GFR) 

compared with that in the Vehicle group rats (1.1 ± 0.08 vs. 0.27 ± 0.01 mL/min (p<0.05); 

(n=3-5). The AG administration did not affect the glomerular filtration rate (GFR) in STZ-

induced+AG treated rat groups compared with that in STZ-induced rat groups (1.1 ± 0.07 vs. 

1.1 ± 0.08 mL/min; Figure: 3.13) and the GFR was also found to be similar in Vehicle+AG 

treated rat groups and Vehicle rat rat groups (0.29 ± 0.02 vs. 0.27 ± 0.01 mL/min). The GFR 
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was, however, significantly increased in the STZ-treated diabetic rats and STZ-induced+AG 

treated rat groups compared to the Vehicle and Vehicle+AG-treated rat groups (Figure 3.13) 

 

Figure 3.13: Effect of aminoguanidine (AG) treatment (1 g/L) on glomerular filtration rate 

(ml/min) of STZ-induced diabetic rat groups compared to vehicle rat groups, and Vehicle+AG 

treated rat groups and STZ+AG treated rat groups. Values are means ± SEM. *p<0.05 

compared to vehicle rat groups, @ p<0.05 compared to Vehicle+AG treated rat groups 

(Student’s t-test). n = (3–5). 

3.2.4 AG Treatment of STZ-induced+AG treated Diabetic Rat Groups 

Considerably Decreased Urine Sodium Excretion (mmol/L)  

The STZ-treated diabetic rat groups had significantly increased urine sodium excretion 

compared with that in the Vehicle rat groups (3.24 ± 0.40 vs. 1.35 ± 0.21 mmol/L, p<0.05; 

Figure 3.14). The administration of AG resulted in a considerably decreased urine sodium 
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excretion, although not significant, in the STZ-induced+AG treated rat groups compared with 

that in STZ-induced rat groups (2.12 ± 0.63 vs. 3.24 ± 0.40 mmol/L; Figure 3.14). The urine 

sodium excretion in Vehicle+AG treated rat groups was similar to those in Vehicle rats (0.84 

± 0.06 vs. 1.35 ± 0.21 mmol/L). However, urine sodium excretion in the STZ-induced+AG 

treated rat groups were increased compared with those in Vehicle+AG treated rat groups (2.12 

± 0.63 vs. 0.84 ± 0.06 mmol/L, p<0.05) (Figure 3.14). Moreover, the urine sodium excretion 

were significantly increased in the STZ-induced diabetic rat groups compared with that in the 

Vehicle +AG treated group of rats (3.24 ± 0.40 vs. 0.84 ± 0.06 m mol/L, (p<0.05); Figure 

3.14). No difference was recorded in the urinary sodium excretion between the Vehicle rat 

groups and the Vehicle+AG-treated rat groups (1.35 ± 0.21 vs. 0.84 ± 0.06 m mol/L; Figure 

3.14). 
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Figure 3.14: Effect of aminoguanidine (AG) treatment (1 g/L) on urinary sodium excretion in 

the streptozotocin (STZ)-induced diabetic rat groups compared to vehicle rat groups, and 

Vehicle+AG treated rat groups and STZ+AG treated rat groups. Values are means ± SEM. 

*p<0.05 compared to vehicle rat groups, @ p<0.05 compared to Vehicle+AG treated rat groups 

(Student’s t-test). n = (3–5). 

3.2.5 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Shows 

Modest Reversal in Serum Creatinine (mg/dL)  

STZ treated diabetic rat groups had significantly decreased serum creatinine levels, compared 

with that in the Vehicle group rat groups (0.77 ± 0.02 vs. 1.12± 0.06 mg/dL (p<0.05, n=4). 

Administration of AG (1 g/L) resulted in a modest reversal in serum creatinine in the STZ+AG-

treated rat groups compared with that in STZ-treated rat groups (0.97±0.08 vs. 0.77±0.02 

mg/dL). The levels of Creatinine in the Vehicle +AG treated rat groups had no significant 

changes compared with those in vehicle rat groups (1.37±0.14 vs. 1.12±0.06 mg/dL). There 
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was no significant difference between the levels of serum creatinine in the STZ-treated rat 

groups that were administered AG compared with that in Vehicle+AG treated rat groups 

(0.97±0.08 vs. 1.37±0.14 mg/dL). There is no significant difference between serum creatinine 

in STZ-induced +AG treated rat groups compared with that in Vehicle rat groups (0.97±0.08 

vs. 1.12±0.06 mg/dL, n=4; Table 3.1). 

Table 3.1 Serum Creatinine(mg/dL) levels in the various animal groups 

Animal Groups Mean ± SEM values 

Vehicle rats 1.12± 0.06 

Vehicle + AG treated 1.37±0.14 

STZ treated rats 0.77 ± 0.02* 

STZ + AG treated rats  0.97±0.08@ 

 

Values are expressed means ± SEM. *p<0.05 compared to Vehicle rats, @ p<0.05 compared 

to Vehicle+AG rats (Student’s t-test). n = (3–5). 

3.2.6 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Shows a 

Considerable Decrease in the Urine Creatinine (mg/dL)  

STZ treated diabetic rat groups showed a significantly decreased urine creatinine 

concentration, compared with that in the Vehicle group rat groups (43.38± 13.69 vs. 115.2 ± 

17.56 mg/dL) (p<0.05, n=3-4 Table 3.2). Administration of AG (1 g/L) showed a considerable 

decrease in the urine creatinine in STZ+AG treated rat groups, as that of the STZ-treated rat 

groups ((36.87± 1.59 vs.  43.38±13.69 mg/dL; n=3-4, Table 3.2).  The levels of urine 

creatinine, in the Vehicle+AG treated rat groups had no significant changes compared with 

those in Vehicle rat groups (95.97± 14.08 vs. 115.2 ± 17.56 mg/dL n=3. The urine creatinine 

significantly decreased in the STZ+AG treated rat groups compared with that in Vehicle+AG 
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treated rat groups (36.87±59 vs. 95.97± 14.08 mg/dL, n=3, (p<0.05); Table 3.2. The urine 

creatinine was also significantly decreased in STZ-induced rat groups compared with that in 

the Vehicle+AG treated rat groups (43.38 ± 13.69 vs. 95.97±14.08 mg/dL, n=3. The urine 

creatinine also shows a significant decrease in the STZ-induced+AG treated rat groups 

compared with that in Vehicle rat groups (36.87±1.59 vs. 115.2±17.56 mg/dL, n=3 (p<0.05); 

Table 3.2 

Table 3.2 Urine Creatinine (mg/dL) levels in the various animal groups 

Animal Groups Mean ± SEM values 

Vehicle rats 115.2 ± 17.56 

Vehicle + AG treated rats 95.97± 14.08 

STZ treated rats 43.38± 13.69* 

STZ + AG treated rats 36.87± 1.59@ 

 

Values are expressed means ± SEM. *p<0.05 compared to vehicle rats, @ p<0.05 compared 

to Vehicle+AG rats (Student’s t-test). n = (3–5). 

3.2.7 AG Treatment of STZ-induced+AG-treated Diabetic Rats Shows No 

Change in Serum Sodium (mmol/L)  

The STZ treated diabetic rat groups had significantly increased Serum sodium levels compared 

with that in the Vehicle group rat groups (145.4±2.98 vs. 135.7±2.47 mmol/L (p<0.05); n=4, 

Table 3.3). Administration of AG (1 g/L) resulted in no change in the serum sodium in the 

STZ- induced+AG-treated rat groups compared with that in STZ-treated rat groups (143.4± 

1.84 vs. 145.4 ± 2.98 mmol/L, n=4, Table 3.3). The levels of serum sodium, in Vehicle+ AG 

treated rat groups, had no significant changes compared with those in Vehicle rat groups 

(135.8±2.03 vs. 135.7±2.47 mmol/L n=4, Table 3.3). The serum sodium was significantly 
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increased in the STZ-induced+AG treated rat groups compared with that in Vehicle+AG 

treated rat groups (143.4±1.84 vs. 135.8±2.03 mmol/L, n=4, (p<0.05); Table 3.3). The serum 

sodium levels were, however, significantly increased in the STZ-treated diabetic rat groups 

compared to the Vehicle+AG-treated rat groups (145.4 ± 2.98 vs. 135.8± 2.03 mmol/L, n=4, 

(p<0.05) :( Table 3.3). The serum sodium level was significantly increased in the STZ-

induced+AG treated rat groups compared with that in Vehicle rat groups (143.4±1.84 vs. 

135.7±2.47 mmol/L, n=4 (p<0.05); Table 3.3). 

Table 3.3 Serum sodium(mmol/L) levels in the various animal groups 

Animal Groups Mean ± SEM values 

Vehicle 135.7±2.47 

Vehicle + AG treated rats 135.8±2.03 

STZ treated rats 145.4±2.98* 

STZ induced+ AG treated rats 143.4± 1.84@ 

 

Values are expressed means ± SEM. *p<0.05 compared to vehicle rats, @ p<0.05 compared 

to Vehicle+AG rats (Student’s t-test). n = (3–5). 

3.2.8 AG Treatment of STZ-induced+AG-treated Diabetic Rat Groups Show 

Reversal of the Decrease in The Urine Sodium (mmol/L)  

Urine sodium level was significantly decreased in the STZ-induced diabetic rat groups, 

compared with that in the Vehicle group rat groups (77.50 ±3.428 vs.109.7±8.41 mmol/L 

(p<0.05); n=4, Table 3.4). Administration of AG (1 g/L) resulted in a considerably reversal of 

the decrease in the urine sodium levels in the STZ- induced+AG-treated rat groups compared 

with that in STZ-treated rat groups (104.7±29.81 vs. 77.50 ±3.428 mmol/L, n=4, Table 3.4). 

The levels of urine sodium, in Vehicle+AG treated rat groups, showed a moderate change 
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compared with those of the Vehicle rat groups (122.0± 18.00 vs. 109.7±8.41 mmol/L n=4, 

Table 3.4). The Urine sodium was moderately decreased in the STZ-induced+AG treated rat 

groups compared with that in vehicle+ AG treated rat groups (104.7±29.81 vs. 122.0± 18.00 

mmol/L, n=4, (p<0.05); Table 3.4). The urine sodium was, however, significantly decreased 

in the STZ-treated diabetic rat groups compared to the Vehicle+AG-treated rat groups (77.50± 

3.428 vs. 122.0±18.00 mmol/L, n=4, (p<0.05); Table 3.4). The urine sodium level was almost 

similar in the STZ-induced+AG treated rat groups compared with that in Vehicle rat groups 

(104.7±29.81 vs. 109.7±8.41mmol/L, n=4 (p<0.05); Table 3.4. 

Table 3.4 Urine Sodium (mmol/L) levels in the various animal groups 

 

 

 

 

 

Values are expressed means ± SEM. *p<0.05 compared to vehicle rats, @ p<0.05 compared 

to Vehicle+AG rats (Student’s t-test). n = (3–5) 

3.2.9 AG Treatment of STZ-Induced Diabetic Rats Did Not Affect The Changes 

in The Glomerular Damage (%) in The STZ-induced+AG-treated Rat Groups 

Significant changes were noted in the glomerular structures between the STZ-induced diabetic 

rat groups and Vehicle rat groups (Figure 3.15). The extent of glomerular damage (%) was 

recorded by the visualization of the damaged glomerulus in various fields, as observed under 

the microscope. The glomerular damage was recorded as a percent of glomerular damage, 

compared to the Vehicle groups of rats by the H&E staining (Figure. 3.15). While the Vehicle 

Animal Groups Mean ± SEM values 

Vehicle 109.7 ± 8.41 

Vehicle + AG treated rats 122.0 ± 18.00 

STZ treated rats 77.50 ± 3.428* 

STZ induced+ AG treated rats 104.7 ± 29.81 
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rats had a normal glomerulus showing normal Bowman’s space and capillaries, the STZ-

induced diabetic rats showed obliteration of the Bowman’s space, collapsed capillaries, 

mesangial cell proliferation, and deposition of hyaline material. (Figure. 3.2.5). The STZ-

induced diabetic rat groups and STZ-induced+AG-treated rats groups both showed diffused 

deposition of hyaline material with collapsed capillaries. These are the classical features of 

diabetic nephropathy that were visualized in the kidneys of diabetic rats using H&E staining. 

A greater deposition of PAS-positive material was observed in STZ-indued diabetic rats 

compared with that in Vehicle rats. The mesangial cell proliferation was increased in STZ 

treated rat groups and STZ-induced+AG treated rat groups compared with that in Vehicle and 

Vehicle+AG) (Figure 3.16). 

 

Figure 3.15 Effect of aminoguanidine (AG) treatment (1 g/L) on the renal damage as visualized 

with hematoxylin and eosin (H&E) staining of all four groups. a) Bowman’s space b) Normal 

Glomerular capillaries c) Mesangial cells d) Obliteration of Bowman’s Space e) Collapsed 

capillaries f) Mesangial Cells proliferation. 
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Figure 3.16 Effect of aminoguanidine (AG) treatment (1 g/L) on the renal damage as visualized 

with hematoxylin and eosin PAS staining of all four groups. Changes in glomerular histology 

visualized included. a) Bowman’s space b) Normal Glomerular capillaries c) Mesangial cells 

d) Obliteration of Bowman’s Space e) Collapsed capillaries f) Mesangial Cells proliferation g) 

Hyaline deposition in matrix h) PAS-positive material deposition in matrix 

3.2.10 Effect of Aminoguanidine (AG) Treatment (1 g/L) on the Renal Damage 

as Visualized with Hematoxylin and Eosin (H&E) and PAS Staining in the STZ- 

induced+AG-treated Rat Groups 

The extent of glomerular damage, expressed as percent damage, as quantified by the field 

analysis, having 10 or more glomeruli in a field, was significantly increased in the STZ-

induced diabetic rat groups compared with that in the Vehicle rat groups (43.34 ± 7.60 vs. 7.79 

± 4.60 (p<0.05); Figure 3.17). Administration of AG (1 g/L) did not affect the changes in the 

glomerular damage, as observed for the STZ-induced diabetic rat groups (41.50 ± 2.06% vs. 

43.34 ± 7.60 %). No significant difference in the glomerular damage was recorded between 

the Vehicle+AG treated rat groups and Vehicle rat groups (10.67 ± 1.76 vs. 7.79 ± 4.60). 

However, significantly increased glomerular damage was observed in STZ-induced+AG 

treated rat groups compared with that in Vehicle+AG treeated rat groups (41.50 ± 2.06% vs. 

10.67 ± 1.76, p<0.05). 
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Figure 3.17: Effect of AG treatment (1 g/L) on (3 B) glomerular damage in vehicle and 

streptozotocin (STZ)-induced diabetic rat groups and Vehicle+AG treated rat groups and 

STZ+AG treated rat groups. Values are means ± SEM. *p<0.05 compared to vehicle rats, @ 

p<0.05 compared to Vehicle+AG rats (Student’s t-test) n = (3–5). 

3.2.11 Discussion 

Diabetes leads particularly to a filtration process overload by the kidneys. This excess 

workload makes the kidneys susceptible to various regulatory mechanism that affects the 

functions of the kidneys leading to a decline in the kidney function over a period of time. 

Among the notable factors that affect kidneys are the increased glycation and accumulation of 

glycated plasma proteins321. These glycated products also affects the functioning of various 

organs including , blood vessels305, eyes228, and nerves250 play an essential role in the 

pathogenesis of diabetic complications.  
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A previous study by Thomas MC et al. have shown that there is an interaction between the 

renin-angiotensin system and advanced glycation in the kidney379 and  AG showed a beneficial 

effect in the prevention of diabetic nephropathy due to its ability to reduce urine volume, GFR, 

and serum  AGEs327. Therefore, treatment with AG has been reported to be beneficial for the 

prevention of diabetic complications in STZ-induced diabetic rats. Hence, in the current study, 

we also investigated the effect of AG on STZ-induced rats and indices of renal functions. Our 

results demonstrated that AG treatment did not cause an increase in urine protein or an index 

of renal injury in STZ treated AG rats, but it did lead to decreased creatinine and urine sodium.  

Furthermore, it did cause significant reversion of the UFR and did not further increase the 

GFR, in early diabetic conditions. Additionally, AG did not increase serum sodium and 

potassium. Therefore, treatment with AG indicated the importance of controlling and 

regulating the renal functions in the early diabetic condition. 

    In the present most promising results, we observed that alteration of kidney function 

parameters, including the presence of protein in the urine, elevated urine flow rate, GFR, and 

urine sodium excretion, as well as serum sodium levels in STZ-induced diabetic model. 

Although we did not perform experiment on the underlying mechanism, but we speculating 

that alteration in the RAS system in diabetes, and this observation is supported by Anderson et 

al380 and other 381. We observed renal injuries as observed by - collapsed capillaries in the 

Bowman’s capsule, mesangial cell proliferation, deposition of the hyaline material, etc.—in 

STZ-treated rats, which are characteristics of diabetic lesions. This is also manifested by 

increased protein levels in the urine380. Surprisingly, the Vehicle+AG rats also showed slightly 

increased urine protein levels compared with that in Vehicle rats, which may be attributable to 

an acute effect, most likely induced by AG, and this observation is supported by Kostic T382. 

However, we did not see any noticeable changes in the glomerular structure (V+AG), which 

implies an acute effect only, thereby causing proteinuria, and most likely not affecting the 
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glomerular structure, greatly. This notion is apparently more credible considering the fact that 

the urinary protein levels were also enhanced in the STZ-induced+AG rats compared with that 

in the STZ-induced rats. This is more likely an acute phenomenon that is induced by AG 

treatment, which warrants further investigation. 

     Creatinine is a breakdown product of creatine phosphate in muscle and its clearance rate 

from blood to urine correlates with the glomerular filtration rate. During this phase, creatinine 

levels may not be significantly elevated, as the kidneys are still capable of maintaining normal 

to slightly increased filtration rate, as the integrity of the glomerulus is not damaged to that of 

the level of end state damage. These are classical characteristics of an early stage of diabetic 

complications297. In the present study highlights the significantly increased sodium excretion 

STZ-induced diabetic rats showed compared to vehicle rats as previously reported by Hakem 

et al.297. This might be due to the underlying mechanisms associated with renal sodium 

excretion affected by the sodium transporters, which include sodium-glucose cotransporter 2 

(SGLT2) and the sodium-hydrogen exchanger 3 (NHE3), and Na, K ATPase pump297,383. 

Treatment with AG slightly decreased the sodium excretion in STZ+AG rats but had no change 

in serum sodium levels in STZ+AG rats. This indicates that the AG is helping in the attenuation 

of the loss of excess sodium and balances electrolytes, contrary to what happens in the early 

diabetic condition. Treatment with AG partially or modestly reverses kidney dysfunctions, 

such as UFR and GFR as reported by Soulis et al327.  It has, however, not affected a few other 

parameters. We, therefore, see an anomalous and/ or selective action of the action of AGE 
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3.3. Objective 3 

3.3.1 Effect of Aminoguanidine (AG) Treatment (1 g/L) on STZ-induced diabetic 

rats had Moderate Increased Expression of Renin in The Kidney of STZ-

induced+AG treated Rat Groups  

The expression of the renin protein in the kidney tissue was determined using western blot 

analysis. Renin antibodies detected a band of approximately 45 kDa. Densitometry analysis 

showed that the levels of the Renin protein were not changed in STZ-induced diabetic rat 

groups compared with that in Vehicle rat groups (1.39± 0.23 vs. 1.38± 0.33, n=4, Figure 3.18). 

However, upon treatment with AG, the STZ-induced+AG treated rat groups showed a 

moderate increased, but not significant, expression levels of the renin protein (1.65± 0.21 vs. 

1.39± 0.23, (Figure: 3.18).  

                                                                            

 

Figure 3.18: Effect of aminoguanidine (AG) treatment (1 g/L) on the expression of renin in the 

kidney of the vehicle and streptozotocin (STZ)-induced diabetic rat groups, and Vehicle+AG 

treated rat groups and STZ+AG treated rat groups. The renin protein normalized against β-

actin. Values are means ±SEM.  
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3.3.2 Effect of Aminoguanidine (AG) Treatment (1 g/L) on STZ-induced diabetic 

rats had No Change in Expression of Ang II, Type 1, AT1, and a Modest Decrease 

in Type 2 receptors, AT2 in STZ-induced+AG treated Rat Groups  

The expression of the AT1 and AT2 receptor proteins in the kidney tissue was determined using 

western blot analysis. The AT1, and AT2 receptor antibodies detected a band of approximately 

45 kDa. Densitometry analysis showed that the levels of the AT1 receptors were significantly 

increased in STZ-induced rat groups compared with that in Vehicle rats (1.08 ± 0.12 vs. 0.55 

± 0.04, almost 1.9 fold (p<0.05); Figure 3.19). The AT2 receptor levels were also significantly 

increased by almost 2.6-fold in the STZ-induced diabetic rats compared with those in the 

Vehicle rats (1.12 ± 0.08 vs. 0.46 ± 0.07 (p<0.05); Figure 3.19). However, upon treatment 

with AG, the STZ-induced+AG treated rat groups showed a modest decrease (0.99 ± 0.07 vs. 

1.12 ± 0.08) in AT2 receptor levels (Figure 3.19). On the contrary, the AT1 receptor levels did 

not change in STZ-induced+AG treated rat groups compared with that in the STZ-induced 

diabetic rat groups (1.1 ± 0.19 vs. 1.08 ± 0.12; Figure 3.19). No significant difference was 

observed in the expression of AT1 and AT2 between the Vehicle and the Vehicle+AG-treated 

rats. 
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Figure 3.19: Effect of aminoguanidine (AG) treatment (1 g/L) on the expression of AT1 and 

AT2 receptors in the kidney of the vehicle and streptozotocin (STZ)-induced diabetic rats and 

Vehicle+AG treated rat groups and STZ+AG treated rat groups. The AT1 and AT2 proteins 

normalized against β-actin. Values are means ±SEM. *p<0.05 compared to vehicle rat groups, 

@ p<0.05 compared to Vehicle+AG rat groups (Student’s t-test) n = (3–5). 

3.3.3 Effect of Aminoguanidine (AG) Treatment (1 g/L) on STZ-induced diabetic 

rats No Change in Expression of Ang II, Type 1, AT1 receptor in the heart of in 

STZ-induced+AG treated Rat Groups 

The expression of the AT1 receptor proteins in the heart tissue was determined using western 

blot analysis. The AT1, receptor antibodies detected a band of approximately 45 kDa. 

Densitometry analysis showed that the levels of the AT1 receptors were significantly increased 

in STZ-induced rat groups compared with that in Vehicle rat groups (1.64± 0.19 vs. 0.71 ± 

0.08, n=4, almost 2 fold (p<0.05); Figure 3.20). Upon treatment with AG, the AT1 receptor 

levels did not change further in STZ-induced+AG treated rat groups compared with that in the 
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STZ-induced diabetic rat groups and were almost similar to that observed in the STZ-induced 

diabetic rats (1.71 ± 0.26 vs. 1.64± 0.19; Figure 3.20). No significant difference was observed 

in the expression of AT1 between the Vehicle and the Vehicle+AG-treated rat groups. 

                                                                      

 

Figure 3.20: Effect of aminoguanidine (AG) treatment (1 g/L) on the expression of AT1 

receptors in the heart of the vehicle rat groups and streptozotocin (STZ)-induced diabetic rat 

groups, and Vehicle+AG treated rat groups and STZ+AG treated rat groups. The AT1 protein 

of the heart normalized against β-actin. Values are means ±SEM. *p<0.05 compared to vehicle 

rats, @ p<0.05 compared to Vehicle+AG rats (Student’s t-test) n = (3–5). 
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3.3.4 Discussion 

There is an evidence showed that diabetic complications have been associated with 

hyperglycemia384 and hypertension132. A study explored early diabetes rats stimulating the 

proximal tubules renin and angiotensin II and receptors in diabetic kidney 135,385,386. Our study 

demonstrates the upregulation of renal AT1 and AT2 protein expression, and no change in renin 

in STZ-diabetic rats by the immunoblotting experiment as previously reported 135,296,297,387. 

Despite the upregulation of renal AT1 and AT2, the most robustic finding in this study is that 

the treatment with AG causes a considerable decrease in AT2 expression in STZ induced+AG 

treated rat groups, which is a most desirable effect from a clinical point of view. Although we 

did not study functional significance, we speculated that angiotensin II  receptors to specific 

kidney sites may suggest their involvement in the physiological regulation of renal 

haemodynamic 386, excretory functions (natriuresis) 296, and their possible contribution to renal 

diseases. It is important to note that the fold increases in the AT2 receptors in the STZ treated 

diabetic rats was more (2.6) compared with that of the AT1 receptors (1.9), which is in 

consonance with previous studies by Romero-Nava, R.  et al and Athar H Siddiqui 86,388.  The 

overexpression of AT2 could be associated with the reduction in the response to Ang II in the 

early stage of diabetes. Numerious studies showed that significantly increased AT1 receptors 

was associated with an increased stimulation of Na+/K+ ATPase pump in obese Zucker rats 

and OK cells 154,389. There is also a report that shows that the renal angiotensin II AT2 receptors 

promote natriuresis in streptozotocin-induced diabetic rats and obese Zucker rats 388,390. We, 

very positively speculate that the natriuretic effects of the AT2 receptors overcome the anti-

natriuretic effects of the AT1 receptors, in our current study. As a consequence of which, we 

see increased sodium excretion levels in the STZ-treated diabetic rats. This is a very common 

feature in early-stage diabetes where hyperfiltration could lead to increased sodium excretion. 

We also demonstrate increased sodium excretion in STZ-induced diabetic rats, which implies 
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an increase in natriuretic functions in the STZ-induced diabetic rats312. The administration of 

AG led to decreased renal levels of the AT2 receptor and did not observe any change in the 

renal levels of the AT1 receptor in STZ+AG rats as compared to STZ treated diabetic rats. We, 

therefore speculate that no major difference exists in the anti-natriuretic function AT2 receptor 

in STZ +AG induced rats. 

Our data also show no change in renal renin protein expression in STZ treated rats and 

moderately increased renin protein expression after AG administration in STZ+AG treated 

diabetic rats as compared to STZ treated diabetic rats. The AT1 receptor regulates renin 

production through the negative feedback mechanism.  Thus, it is possible that increased AT1 

expression in STZ treated rats may have contributed change in renin protein expression, as 

increased renin would have further increased the signalling cascade of Ang II and an increased 

Ang II would have led to an increase in the anti-natriuretic function385. We, are therefore, 

inclined to say here that the increase in renin is prevented or inhibited, as a compensatory 

mechanism to regulate the anti-natriuretic functions in our model of rats, in the present study.  

The heart is a muscular organ containing a network of blood vessels and Angiotensin II 

receptors (AT1 and AT2). The activation of the AT1 receptor causes vasoconstriction leading 

to increased blood pressure86. Our results showed increased protein expression in AT1 

expression in the heart of STZ-induced rats compared to vehicle rats similar to other reports 

86. However, we did not see any significant difference after AG treatment in STZ-induced rats, 

meaning thereby a minimal effect of AG treatment in affecting the vasoconstriction of the 

arteries in the heart. 

                   In conclusion, this study demonstrated the upregulation of Angiotensin II (AT1 and 

AT2) and no change in renin protein expression in diabetic conditions. After AG treatment a 
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slight decrease in AT2 receptor may have contributed to the enhancement of renin expression 

levels. 
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SUMMARY 
 

Diabetes is a multifactorial disease that affects millions of people worldwide. It leads to various 

complications, affecting most of the organs in the body, including kidneys, heart, eyes, nerves, 

and vasculature. The role of advanced glycation end products (AGEs) in the pathogenesis of 

diabetic complications is well known. This study was aimed at investigating the efficacy of 

aminoguanidine (AG), a drug that inhibits the production of AGEs, to mitigate the 

complications of diabetes, with a focus on renal functions.  

This study was mainly aimed at two aspects (i) rethinking the roles of AGEs in diabetes and 

diabetes-induced hypertension, in light of the background information collected from a 

thorough and detailed literature survey and (ii) the regulation of RAS and its effect on the renal 

functions in diabetic rats treated with AG.  

Although the roles of AGEs in diabetes and related complications have been convincingly 

demonstrated, the accumulation of AGEs and their specific roles in the regulation of 

hypertension under the diabetic conditions remain unclear. Accumulating evidence indicates 

the roles of AGEs in insulin signaling and insulin resistance128,391,392, and hence in diabetes. 

As the accumulation or production of AGEs is inhibited in the presence of AG, in this study, 

it was hypothesized that AG treatment of STZ-induced diabetic rats would result in the 

reversion of the increased blood glucose levels or at least prevent hyperglycaemia.  

The renin-angiotensin system (RAS) is critical in maintaining water and electrolyte 

homeostasis. It regulates many physiological functions of the body, especially the function of 

the kidneys. Because altered regulation of RAS under diabetes leads to diabetic complications, 

including hypertension and renal diseases, an attempt was made in this study to examine these 

complications under diabetic conditions.  
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Various animal models have been used to study diabetic complications. The streptozotocin 

(STZ)-induced diabetes model is a very good animal model to study the effect of diabetes on 

RAS. In the present study, the STZ-induced diabetes rat model was used to determine the 

effects of AG on various indices of RAS and renal function. Additionally, the effects of AG 

on various hemodynamic parameters and physiological functions in rats were also investigated. 

This study focused on observing various renal functions, such as glomerular filtration rate 

(GFR) and urine flow rate (UFR), as well as, on determining the glomerular damage and 

natriuretic functions in diabetic and AG-treated rats. The action of the most important hormone 

in the pressor arm of RAS, angiotensin II (Ang II), is mediated via angiotensin II receptor 

subtypes 1 (AT1) and 2 (AT2). The expression levels of these receptors were determined in the 

kidneys of diabetic rats to assess the effect of Ang II on renal functions mediated by these 

receptors.  

This study was further aimed at understanding the effect of AG treatment on RAS. The 

alterations in RAS under diabetic conditions are well known293,380. This study was focused on 

evaluating the action of the most important hormone in the pressor arm of RAS, Ang II, and 

on the receptors that mediate the actions of Ang II, AT1, and AT2. The expression levels of 

these receptors in the kidneys were determined. Moreover, another important index of RAS 

function—the sodium homeostasis—which is a major contributor to hypertension, was also 

investigated. This study was conducted with the following specific objectives: 

1. To establish an animal model of diabetes in Sprague-Dawley (SD) rats and study the 

effects of AG treatment on clinical phenotypes and hemodynamic parameters in STZ-

induced diabetic rats. 

2. To investigate the effects of AG on various aspects of RAS functions, renal functions, 

and renal damage, viz., urine flow, urinary protein, glomerular flow rate, sodium 

excretion, and glomerular damage, in STZ-induced diabetics rats. 
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3. To perform expression analysis of the angiotensin II receptors, AT1 and AT2. 

An STZ-induced diabetic animal model was employed in the present study. Four groups of 

rats, which included the vehicle-treated rats, vehicle+AG treated rats, STZ-induced diabetic 

rats, and AG-treated STZ-induced diabetic rats, were used in this study. 

Objective 1: An STZ-induced diabetic rat model was established and used to determine the 

therapeutic effects of AG by evaluating the phenotypic changes. It was ensured that the 

vehicle-treated rats were not diabetic. AG treatment prevented the increase in blood glucose 

levels in the STZ-induced diabetic rats. AG treatment also affected the body weight, food and 

water consumption, and urine volume and should provide a new dimension to strategies for 

the prevention or delay of the onset of diabetic complications.  

STZ destroys the islet cells of the pancreas resulting in the impairment of insulin production, 

which leads to an increase in the blood sugar levels. Considering the prevention of the increase 

in blood sugar levels by AG, it was postulated that the AG treatment might result in enhancing 

the sensitivity of rats to the small amounts of insulin present after STZ treatment. Thus, we 

could see some insulin action, evident by improved glucose utilization, and thereby, a 

significant decrease in the blood glucose levels in the STZ+AG treated rats compared with that 

in the STZ-induced diabetic rats. Determining the insulin levels in the STZ+AG treated rats 

will be one of the aims of a future study, which will help in providing us with a clear answer 

to this notion. 

Objective 2: The notion that AG treatment affects the functions of the kidney was analyzed. 

AG had an anomalous and/or selective action. The changes in renal function, including UFR, 

GFR, sodium excretion (natriuresis), urine protein, and glomerular damage, were determined. 

AG partially or moderately reversed the alterations in kidney function parameters, such as 

UFR, GFR, and natriuresis, indicating that, in diabetes, renal function is either reversed or 
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remains unaffected, but is not exacerbated, by AG treatment. However, AG did not affect such 

as urinary protein and glomerular damage.  

A few of the physiological functions were reversed upon AG treatment and were not as severe 

as in the untreated diabetic animals. Moreover, glomerular damage, which is associated with 

diabetic lesions and is a very important manifestation of diabetic nephropathy, was clearly 

evident in diabetic rats. Treatment with AG did not prevent the glomerular damage, and it was 

almost the same as that in STZ-induced diabetic animals. However, other renal functions, such 

as natriuresis (sodium excretion), GFR, and UFR, were reversed or partially restored/improved 

upon treatment with AG compared with that of the STZ-induced diabetic rats. Natriuresis is an 

important physiological indicator of sodium regulation in the body, and hence, a critical 

determinant of blood pressure. Sodium excretion was noted to increase in the diabetic rats. 

This phenomenon is noticed in early-stage diabetic subjects, who have dysregulated sodium 

homeostasis due to hyperfiltration by the kidneys. Treatment with AG considerably reversed 

the natriuresis in the STZ+AG-treated diabetic rats. These results suggest that AG treatment 

prevents deterioration of the renal functions that are mostly of physiological and homeostatic 

origin. It also highlights the important role of AGEs in the pathogenesis of diabetic 

complications, especially in the kidneys.  

Objective 3: The expression levels of AT1 and AT2 receptors and renin in the kidney and that 

of AT1 receptors in the heart were determined. The expression of AT1 and AT2 receptors was 

altered under diabetes conditions. On AG treatment, a decrease in the levels of the AT2 receptor 

was observed. The decreased glucose levels in STZ+AG-treated rats, coupled with decreased 

expression of AT2 receptors, reversed the natriuresis. These results provide insights into the 

role of RAS in diabetic complications. However, further studies on the mechanistic pathways 

facilitating the increased natriuresis in diabetic rats that caused reversion upon AG treatment, 

need to be done. 
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We intend to mention here that AG treatment prevents the increase in blood sugar levels. 

However, in the STZ-induced diabetic rats, an increase in AT2 receptors was observed, which 

is directly responsible for an increased natriuretic function296,312. Corroborating these findings, 

an increased expression of AT2 receptor and natriuresis in diabetic rats was demonstrated in 

this study. Because a direct link between the blood sugar and AT2 receptor levels has been 

reported296 312, we emphasize that decreased sugar levels in STZ+AG-treated rats might also 

lead to decreased AT2 receptor levels in these rats. A decrease in the expression of these 

receptors will lead to a decrease in natriuretic function, as observed, in our study. Because 

natriuresis was reversed by AG treatment, and although they exhibited significantly high levels 

of glucose, the sodium excretion was not as high as that in the STZ-induced diabetic rats. 

Therefore, it is speculated that although the levels of AT2 receptors were modestly decreased, 

sodium excretion decreased considerably indicating that these receptors may not be playing a 

prominent role in STZ+AG-treated rats. 
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CONCLUSIONS 
 

1. The animal model developed in the present study can be used for studying diabetic 

complications. This is due to the important ramifications of diabetes as mimicked in the 

diabetic animal model, with regards to : 

(i) Clinical phenotypes: Elevated blood glucose levels, and decreased body weight 

(ii) Physiological determinants: Increased food and water consumption, increased urine output, 

and increased urine flow rate 

(iii) Altered renal functions: The effect on glomerular filtration rate, presence of urine protein, 

dysregulation of urine and serum creatinine as well as serum sodium, urinary sodium excretion, 

and glomeruli damage 

2. Aminoguanidine (AG), an inhibitor of advanced glycation end products (AGEs) has been 

shown to be effective in significantly preventing the increase in blood glucose levels in the 

STZ+AG-treated rats. Additionally, it has been shown to be responsible for partially or 

modestly reversing the conditions noted in STZ-induced diabetic rats, namely urine flow and 

body weight. However, it did not affect a few other parameters. Therefore, an anomalous 

and/or selective action of AG was observed in diabetic rats.  

3. The breakdown of AGEs is being utilized to treat hypertensive conditions in diabetes. With 

the information obtained from these studies, with regard to the prevention of an increase in 

blood glucose levels by AG, a new dimension is provided to the biology of diabetes and AGEs 

involving RAS. 

4. The increased expression of AT1 and AT2 receptors in the kidney of STZ-induced diabetic 

rats has been shown previously (Ref.) and our results are consistent with those findings. It is 

plausible, therefore, to comment on the anti-natriuretic and natriuretic functions of these 
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receptors, which regulate the sodium levels in the body. This is a very common feature, in the 

regulation of sodium homeostasis in diabetes. This is primarily attributed to the altered 

regulation and functions of RAS. 
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LIMITATIONS OF THE STUDY 
 

The present study aimed at investigating the effects of AG on STZ-induced diabetic rats has 

several limitations as listed below:  

1. Diabetic animals are prone to frequent urination and diarrhea, which leads to the 

development of infection. Maintaining the animals in a proper disease-free state for a longer 

period of time is very important, but challenging. 

2. To study the long-term effects of AGE inhibitors on diabetic rats, they need to be maintained 

for a longer duration of time. The titration between time and the dose of STZ to be employed 

that can cause the disease and have all the complications of diabetes is a challenge. 

3. The early-stage diabetic condition may not be associated with AGEs formation. Hence, the 

induction of diabetes and subsequent accumulation of AGEs requires time-based studies 

because no particular time frame can be guessed for such accumulation to occur. 

4. In physiological studies, conditions, factors, and homeostatic balance vary from animal to 

animal. Achieving statistically reliable numbers for a desired parameter sometimes becomes 

difficult. 

5. For volumetric-based measurements, handling has to be done very carefully, and sometimes 

only approximate measurements are possible. 
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FUTURE SCOPE 
 

In the future studies, the activity of various other RAS components, including various enzymes 

and other components, will be looked into. These include:  

1. Understanding the activity of prorenin  

2. Understanding the activity of prorenin receptor 

3. Understanding plasma renin activity  

4. Detection of the enzyme activity of ACE1 will give an idea of how much Ang II is being 

produced. 

5. Analysis of the aldosterone assay will predict the role this hormone plays under in a diabetic 

state. 

Functional studies of the heart (thoracic aorta) blood vessels can be carried out. Although the 

blood vessels are hard and contain a high amount of connective tissue, the study can be 

attempted. This will give an idea on how the blood vessels are affected in diabetic conditions, 

providing an understanding of the blood flow in the vessels. This would be a reflection on the 

arterial flow and subsequent hypertension. 

AG was able to ameliorate certain deleterious effects of diabetes in the short-term treatment, 

as presented in this study. However, further studies are warranted to evaluate the effect of AG 

in STZ-induced diabetic rats in a long-term duration model, which is of more than four weeks. 

This will be helpful in obtaining a detailed and better understanding of the functions of AGEs, 

AG, and its involvement with the blood sugar levels, as well as the factors that regulate the 

blood sugar levels. Additionally, the effects of AGEs and AG need a more detailed study of 

the action of these components, with specific reference to RAS. 
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