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Abstract

The following research provides a comprehensive exploration of crypto-

graphic protocols, focusing particularly on Centralized Secret Sharing Schemes

and Distributed Group Key Agreement Protocols. The study’s central goal

revolves around the enhancement of privacy, security, and computational

efficiency in both centralized and distributed environments.

A significant portion of this work is devoted to the development of a novel

scheme in Centralized Secret Sharing, labeled the Multipartite Verifiable

Secret Sharing Scheme. This scheme, uses the Chinese Remainder The-

orem (CRT), such that the participants are equipped with an ability to

validate their respective shares, so as to nullify any malicious dealer ac-

tivity. We further contribute to this domain by proposing a novel Com-

partmented Proactive Secret Sharing Scheme, effectively addressing issues

related to participant privacy, share renewal, and verification in the con-

ventional Compartmented Secret Sharing Schemes (CSSS). This scheme

enhances participant privacy while facilitating the renewal and validation

of shares.

However, the concern of a single point of failure persists in centralized secret

sharing schemes. In an effort to mitigate this, our research extends its scope

to the realm of distributed group key agreement protocols. We introduce

the Elliptic Curve Secret Sharing Scheme (ECSSS), specially designed for

light weight distributed environments. The ECSSS is then incorporated into

a newly developed Authenticated Distributed Group Key Agreement Pro-

tocol. This protocol demonstrates exceptional efficiency in managing key

i



distribution under limited resource conditions, demonstrating rapid compu-

tations, reduced key sizes, and minimal storage requirements.

In addition, we have pioneered a Multi Group Key Agreement Protocol

using Secret Sharing Scheme, which paves the way for multiple groups to

establish common keys for secure communication. An emphasis has been

placed on the correctness and security analysis of these new schemes. The

security of the centralized secret sharing schemes hinges on the discrete

logarithm problem, while the distributed group key agreement protocols

leverage the Elliptic Curve Discrete Logarithm Problem (ECDLP).

This work constitutes a significant contribution to the field of cryptography,

introducing new techniques and protocols to bolster security, privacy, and

efficiency. Although our research offers substantial advancements, potential

areas for future research include examining share renewal in the Multipar-

tite Verifiable Secret Sharing Scheme, and share recovery in the Compart-

mented Proactive Secret Sharing Scheme. Further research is also needed

to understand Authenticated Distributed Group Key Agreement Protocol

using ECSSS in a dynamic environment where participants join and leave

the group dynamically to address scenarios where multiple groups meet the

threshold in the Multi Group Key Agreement Protocols, potentially causing

unintended secret reconstruction.

ii
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Chapter 1

Introduction

Information security has grown increasingly vital as electronic communications have

become an integral part of our daily lives. The primary focus of security is to ensure

the confidentiality, availability, and integrity of information, whether it is stored or

transmitted. Secret sharing schemes serve as valuable methods for securing data in

various cryptographic applications and for establishing additional security protocols.

Consider an intricate scenario involving a highly classified project, which includes

a team of eleven highly specialized scientists. To ensure utmost confidentiality and to

mitigate the risk of trust-related issues, the team decides to keep all project documen-

tation under lock and key. This sensitive information is stored in a secure cabinet,

which, by their design, can only be accessed if at least six of the scientists are present

simultaneously.

This seemingly effective solution presents a couple of inherent challenges: the quan-

tity of locks necessary and the number of keys each scientist must hold. According

to the binomial coefficient formula, there would need to be
(
11
6

)
= 462 locks on the

cabinet, and each scientist would have to carry
(
10
5

)
= 252 keys for it to work. This

approach would certainly be impractical and unfeasible, given the huge number of keys

and locks required.

Nevertheless, these complications can be adeptly tackled by employing a Secret

Sharing Scheme (SSS). An SSS can dramatically simplify the security arrangement by

1



1. INTRODUCTION

only requiring one lock for the cabinet and one key for each scientist. Thus, SSS pro-

vides an efficient, feasible solution to ensure secure access control in this high-security

scenario. This method effectively balances the necessity of security with the practicali-

ties of day-to-day operations, making it a compelling approach to solve the problem at

hand.

1.1 Background and Context of the Research

A Secret Sharing Scheme distributes a secret among a group of participants, and few

or all of them are required for the reconstruction of the secret. There are various types

of secret sharing, including threshold sharing, which consists of dividing a secret into

shares and reconstructing the secret based on the threshold number of shares. A subset

of participants above the threshold can do the reconstruction of the secret while any

number of participants below the threshold cannot reconstruct the secret. There are

numerous applications for Secret Sharing Schemes, including key management, secure

online auctions, fair exchange, secure multiparty computations, and secure voting sys-

tems.

In this thesis, we investigated the usage of Secret Sharing Schemes in both central-

ized and distributed environments. In the first part, Secret Sharing Schemes and their

significance in a centralized environment is explored where information is distributed

centrally, while in the second case, a distributed key agreement is formed between sin-

gle and multiple groups using secret sharing techniques in a distributed environment is

explored. The goal of this research is to advance state-of-the-art in secret sharing and

key agreement protocols by improving the security and privacy of these schemes.

1.1.1 Centralized Secret Sharing Schemes

In a Centralized Secret Sharing Scheme, Dealer computes shares from a secret and

distributes them to participants via a secure channel, then authorized or threshold par-

ticipants can reconstruct the secret.

2



1.1 Background and Context of the Research

Shamir [70] introduced a Secret Sharing Scheme in 1979. Around the same time,

Blakely [9] and Asmuth bloom also [4] introduced Secret Sharing Scheme. In these

Secret Sharing Schemes, Dealer may be malicious and can send false shares to partici-

pants. With these shares, participants will reconstruct an incorrect secret. This affects

the overall correctness of the scheme and the integrity of the secret as well. To address

this issue, Feldman [34] , Iften [45], Qiong et al. [66], Kaya et al.[52], etc introduced a

verifiable Secret Sharing Scheme.

Verifiable Secret Sharing Scheme [34] gives each participant his share and allows

them to check the consistency of the share they received. If a participant receives

a corrupted share from the Dealer, they should request a consistent share from the

Dealer. Verifiable Secret Sharing Scheme (VSSS) helps to identify Dealer is malicious.

The participant can use this technique to ensure that the Dealer he is dealing with is

genuine. For long lived secrets, SSS and VSSS may not be sufficient as the adversary

may slowly gain information about the secret from multiple locations. Herzberg et al.

[43] introduced a proactive Secret Sharing Scheme where participants shares are peri-

odically renewed while the secret remains the same. Unless all the information about

the secret is gained in the same period, no adversary can break the secret.

Proactive Secret Sharing is nothing but share renewal plus Verifiable SSS. In all of

the schemes above discussed, the secret is distributed to a single or unipartite level.

Multipartite and Compartmented [32] secret sharing is introduced by Farras et al. [32]

and Ghodosi et al. [32] respectively in order to enhance security and address the task

of sharing secrets at multiple levels.

In Multipartite Secret Sharing [32], the Dealer splits the secret among multi levels.

The secret is divided into shares and distributed to all levels, and only a sufficient

number of shares are required to reconstruct the original secret. This type of scheme

is aimed at providing a secure, controlled way to transmit sensitive information among

a group with various levels. Various situations can benefit from this scheme, including

business deals, military operations, and corporate governance.
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Compartmented Secret Sharing Scheme [35] is a variant of Multipartite Secret Shar-

ing. In Compartmented Secret Sharing Scheme [35], Dealer chooses the secret, and he

computes the compartment or level secret from the secret. Then level secret is dis-

tributed to the corresponding level through a secure channel. In each level, threshold

number of participants can reconstruct the compartment or level secret. Finally, all

levels are required to reconstruct the original secret from their level secrets. A single

level cannot rebuild the secret.

Two significant research gaps in the area of Centralized Secret Sharing are identi-

fied. The first gap pertains to Multipartite Secret Sharing Schemes [44], which currently

lack mechanisms for verifying the consistency of the shares of the participants . There

are potential vulnerabilities that could compromise the security of the shared secret as

a result of this omission. Also, Compartmented Secret Sharing Scheme [35] suffer from

lack of mechanisms for share verification and renewal. And, in a Multipartite Secret

Sharing Scheme, a level number is made public which may compromise the privacy of

the participants. These research gaps in centralized secret sharing must be addressed

in order to improve their effectiveness and security.

All the above Centralized SSS can be used for key exchange protocols in a centralized

environment, where the dealer can act as a key generation center. However, when it

comes to a distributed environment, key agreement protocols are more popular.

1.1.2 Distributed Group Key Agreement Protocols

In Distributed Group Key Agreement Protocols [39] , there is no key generation center

or Dealer. Only participants communicate with each other without any secure channel

agree on the common key for communication.

A Key Agreement Protocol is a technique for safely creating a shared secret key

via an unreliable communication channel. A key agreement protocol’s objective is to

enable two or more parties to decide on a shared secret key without risking the key’s

interception by a third party. Typically, public key cryptography is used to accomplish

this; in this method, each side has a private key and a public key, and the shared

secret key is created by fusing the two keys together. Key agreement methods are
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frequently combined with other cryptographic protocols, including symmetric encryp-

tion and authentication, to offer secure communication. Diffie-Hellman (DH) [27] and

Elliptic Curve Diffie-Hellman (ECDH) [38], and are a few examples of key agreement

protocols. This key agreement protocols works for two participants, but not for a group

of participants.

A Group Key Agreement Protocol is a procedure used in cryptography to create a

shared secret key among a group of participants. The goal of employing a group key

agreement protocol is to enable secure communication between group members without

requiring each user pair to provide a separate key, These protocols are used to safe-

guard user communication in applications like group chats. These protocols promote

security and privacy by enabling group members to create a shared secret key without

the requirement of a centralized authority. Li et al.[59], Zhang [95], Cui et al.[23], Cao

et al.[16], Alzahrani et al.[2], Cheng et al.[19], Zhang et al.[94], Sun et al. [79] and

Lei zhang et al.[93] introduced various group key agreement protocols using various

techniques such as bilinear pairings, polynomials, elliptic curve.

A Group Key Agreement Protocol using a Secret Sharing Scheme [39], particularly

refers to a technique for creating shares of a secret key and distributing them to the

participants. Only particular subsets of the group can reconstruct the key using their

respective shares. This is frequently employed in circumstances where the shared key’s

security is relatively easy and the risk of a single point of failure is significant. Harn et

al. [39] introduced group key agreement protocols using SSS in a distributed environ-

ment to achieve efficiency in terms of computational cost.

Although Secret Sharing Schemes are used for Distributed Key Agreement Protocols

to achieve efficiency, there are few major research gaps. Firstly, no efficient lightweight

group key agreement protocols with respect to computational cost are available in the

literature. In addition to that, there is a dire need to look into the needs of multigroup

environments. To the best of our knowledge, there are no key agreement protocols for

multi group environments. Distributed Group Key Agreement Protocols Using Secret

Sharing Schemes would be improved by addressing these research gaps.
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1.2 Objectives of Research

The following are the objectives of our research

Centralized Secret Sharing Schemes

1. In a Multipartite Secret Sharing Scheme, malicious Dealer may send incorrect

shares to participants. With those shares, participants can reconstruct the in-

correct secret which may effect the correctness of the Secret Sharing Scheme .

Hence, share verification is required in Multipartite Secret Sharing Schemes to

ensure the consistency of the shares.

2. Multipartite Secret Sharing Schemes are proving to be inefficient for long lived

secrets as the adversary may slowly gain information about the secret from various

participants. Share renewal is required to ensure that no information is gained

from the shares.

3. In a Compartmented Secret Sharing Scheme (a variant of Multipartite secret

Sharing Schemes), the compartment/ level number is made public, thereby com-

promising the privacy of the participant. This information helps the adversary in

gaining more knowledge about the secret.

Distributed Group Key Agreement Protocols

4. Although Group Key Agreement Protocols have been developed for distributed

environments in the literature, efficient group key agreement protocol for lightweight

environments with respect to computational cost is still lacking. Therefore, there

is a dire need for an efficient group key agreement protocol that employs a mech-

anism tailored for lightweight environments.

5. In the literature, numerous Group Key Agreement Protocols have been devel-

oped for single groups. However, there is a noticeable absence of Multi Group

Key Agreement Protocols. As a result, there is a need to establish key agreement

protocols that cater to multi group environments as well.
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1.3 Contributions of Research

A contribution of this research is the development of enhanced Centralized Secret Shar-

ing Schemes and Distributed Grroup Key Agreement Protocols that improve security

and privacy. Our research focuses primarily on addressing the identified research gaps,

such as share verification in Multipartite Secret Sharing Schemes, participant privacy,

share verification, and share renewal in Compartmented Secret Sharing Schemes, Group

Key Agreement Protocols in a light weight environments, and Secret Sharing Schemes

for Multiple Group Key Agreement Protocols.

In order to achieve the first research objective, we developed a Multipartite Veri-

fiable Secret Sharing Scheme, which enables participants to verify the consistency of

their shares after receiving them from dealers. This scheme will ensure the consistency

of the shares received by the participants.

The second and third research objectives were addressed together by a Compart-

mented Proactive Secret Sharing Scheme, which provides privacy for the participants

and also includes mechanisms for share verification and share renewal. All participants

are able to verify and renew their shares as needed, and the privacy of the participant

is achieved by his respective share.

The fourth research objective was addressed by an Authenticated Distributed Group

Key Agreement Protocol using Elliptic Curve Secret Sharing Schemes. Elliptic curves

are quite popular in lightweight environments to achieve security. However, their com-

plex operations become a hindrance for usage in real time environments. We introduced

Elliptic curve Secret Sharing Scheme to achieve efficiency and used it in Group Key

Agreement Protocol that is more suitable for lightweight environments.

The final research objective was addressed by Multi Group Key Agreement Proto-

col using Secret Sharing Schemes for multiple groups. As a result of the incorporation

of Secret Sharing Schemes into these protocols, group key agreements are made more

secure. To the best of our knowledge, ours is the first Multi Group Key Agreement
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Protocol that can ensure participants from multiple groups to share a key.

Ultimately, these contributions can help advance the state-of-the-art for Centralized

Secret Sharing Schemes and Distributed Group Key Agreement Protocols using Secret

Sharing Schemes by providing valuable insights and solutions.

1.4 Overall Structure of the Thesis

The thesis is organized into seven chapters.

In Chapter 1, Brief description of the introduction and context of research, ob-

jectives of the research, and significance of work and the overall structure of the thesis

is presented.

In Chapter 2, The important mathematical primitives and basic cryptographic

preliminaries that are utilized in the design of our proposed schemes are introduced

and a literature survey of the proposed work is presented.

In Chapter 3, Multipartite Verifiable Secret Sharing based on CRT is proposed

for share verification in Multipartite SSS. This chapter also contains the correctness

and security analysis of the scheme as well as comparisons with other schemes.

In Chapter 4, Compartmented Proactive Secret Sharing Scheme is proposed that

addresses share verification share renewal, and privacy of participant issues in Com-

partmented SSS. This chapter also includes the correctness and security analysis of the

scheme.

In Chapter 5, Authenticated Distributed Group Key Agreement Protocol based

on an Elliptic Curve Secret Sharing Scheme is proposed for lightweight environments.

This chapter also contains the correctness and security analysis of the scheme as well

as comparisons with other schemes.

8



1.5 Publications

In Chapter 6, Multi Group Key Agreement Protocol using Secret Sharing Scheme

is proposed to share a secret among multiple groups. This chapter also contains the cor-

rectness and security analysis of the scheme as well as comparisons with other schemes.

In Chapter 7, The research efforts concluding remarks and future work are offered,

as well as further extensions and future directions of the proposed scheme.

1.5 Publications

• Subrahmanyam, Rolla, N. Rukma Rekha, and Y. V. Subba Rao. ”Multipar-

tite verifiable secret sharing based on CRT.” Computer Networks and Inventive

Communication Technologies: Proceedings of Fourth ICCNCT 2021. Springer

Singapore, 2022. (Published, Index: Scopus) (Published, Index: Scopus)

• Subrahmanyam, Rolla, N. Rukma Rekha, and Y. V. Subba Rao. ”Compart-

mented Proactive Secret Sharing Scheme.” International Conference on Intelligent

Sustainable Systems. Singapore: Springer Nature Singapore, 2023. (Published,

Index: Scopus)

• Subrahmanyam, Rolla, N. Rukma Rekha, and YV Subba Rao. ”Authenticated

Distributed Group Key Agreement Protocol Using Elliptic Curve Secret Sharing

Scheme.” IEEE Access (2023). (Published, Index: SCIE)

• Subrahmanyam, Rolla, N. Rukma Rekha, and YV Subba Rao. (2023) ‘Multi-

Group Key Agreement Protocol Using Secret Sharing Scheme’, Int. J. Security

and Networks, (Accepted, Index : Scopus )
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Chapter 2

Preliminaries and Literature

Survey

In this chapter, we delve into the essential mathematical and cryptographic principles

and perform a comprehensive review of existing literature that serves as the cornerstone

for our proposed methodologies.

2.1 Lagrange Interpolating Polynomial(LPI)

A Lagrange interpolating polynomial passes through a set of given points in a plane

and interpolates a function with them. Assuming n distinct points in the plane

(x1, y1), · · · , (xn, yn) the Lagrange Interpolating Polynomial is,

g(x) =

n∑
i=1

Li(x)yi (2.1)

where Li(x) =
(x−1)···(x−(i−1))(x−(i+1))···(x−n)
(i−1)···(i−(i−1))(i−(i+1))···(i−n) . Polynomial g(x) has degree less than or

equal to n− 1 and is unique.

The Lagrange Interpolating Polynomial finds application in Chapter 4, which deals

with the implementation of a Compartmented Proactive Secret Sharing Scheme. Fur-

thermore, Chapter 7 elaborates on a Multigroup Key Agreement Protocol, which also

employs a secret sharing scheme utilizing this mathematical technique.
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2.2 Discrete Logarithm Problem (DLP)

The discrete logarithm problem (DLP) is a mathematical problem with significant cryp-

tographic applications. In a modular arithmetic equation, the DLP is to find x from

given a, p and b such that ax = b (mod p), where a, b, and p are all integers and p is a

prime number.

In these systems, the security is predicated on the notion that finding x for given

a, b, and p is computationally impossible. Compartmented Proactive Secret Sharing

Scheme from Chapter 4, uses the discrete logarithm problem.

2.3 Chinese Remainder Theorem

A Chinese remainder theorem is defined as follows. Given n linear congruences,

x ≡ a1 (mod p1)

x ≡ a2 (mod p2)

...

x ≡ an (mod pn).

There exists a unique solution X (mod M) , where M = p1 × p2 × ... × pn, where

p1, p2, · · · , pn are pairwise relatively prime integers. Solution X can be expressed as

follows:

X = a1M1y1 + a2M2y2 + ...+ anMnyn (mod M)

where M1 =
M
p1
,M2 =

M
p2
, · · · ,Mn = M

pn
, and y1, y2, · · · , yn are the modular inverses of

p1, p2, · · · pn respectively. The Chinese Remainder Theorem is used in the Multipartite

Secret Sharing Scheme from Chapter 3.
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2.4 Field

A field is a mathematical structure made up of the non-empty set F and the binary

addition (+) and multiplication (.) operations that satisfy the following axioms:

• Closure: For all a, b in F , both a+ b and a.b are also in F.

• Commutativity: For all a, b in F, a+ b = b+ a and a.b = b.a.

• Associativity: For all a, b, and c in F, (a+b)+c = a+(b+c) and (a.b).c = a.(b.c).

• Existence of Identity elements: There are two elements in F, 0 and 1, such that

for all a in F, a+ 0 = a and a.1 = a.

• Existence of Inverse elements: For each a in F other than 0, there is an element

−a and a−1 in F such that a+ (−a) = 0 and a.a−1 = 1.

• Distributive property: For any a, b, and c in F, a.(b + c) = (a.b) + (a.c) and

(a+ b)c = (a.c) + (b.c)

These axioms guarantee that the field is predictable and has well-defined behavior

as well as the existence of specific features in the set of elements and operations, as the

existence of additive and multiplicative inverses for all elements other than zero. All

chapters use field operation.

2.5 Elliptic Curves

Assume that q > 3 is a prime number, and we represent Fq as a field Fq. A curve

of the form E : y2 = x3 + ax + b over Fq is an elliptic curve if the discriminant

∆ = 4a3+27b2 ̸= 0, where a, b are constants. In addition to the point at infinity O, the

collection of all points on E over Fq are denoted as E(Fq). Point addition and doubling

are operations on Elliptic curves. That are defined below:
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2.5.1 Elliptic Curves Point Addition and Doubling

Let E be an elliptic curve, and P and Q be two points on it. Let R be sum of P and Q.

The sum can be obtained as follows. Draw a line L passing through P and Q, which

intersects the curve at another point, say R′. The reflection of R′ about x− axis is R,

and we write R = P +Q. If P and Q are the same, the line L is tangent at P , and it

intersects the curve at another point R′. The reflection of R′ about x−axis is R, and

we write R = 2P . Examples of point addition and point doubling on elliptic curves are

depicted in 2.1 and 2.2, respectively.

Suppose that P = (x1, y1) and Q = (x2, y2) then the formula for R is given below.

Let R = P +Q = (x3, y3)

If P ̸= Q, then

x3 = m2 − x1 − x2

y3 = m(x1 − x3)− y1

where m = (y2−y1)
(x2−x1)

is slope of line L passing through P and Q.

If P = Q, then R = P + P .

x3 = m2 − 2x1

y3 = m(x1 − x3)− y1

where m =
(3x2

1+a)
(2y1)

is slope of tangent line L at P . This is called as point doubling.

2.6 Elliptic Curve Discrete Logarithm Problem (ECDLP)

In the area of cryptography, the Elliptic Curve Discrete Logarithm Problem (ECDLP)

is a crucial problem because it gives stronger security with a small key size. Let P and

Q be points on elliptic curve E over field F such that Q = kP , where k is an integer.
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Figure 2.1: Point addition on Elliptic curve

Figure 2.2: Point doubling on Elliptic curve
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From given P and Q, computing k is difficult.

Numerous public key cryptographic systems hinge on the premise that solving the

Elliptic Curve Discrete Logarithm Problem (ECDLP) is computationally implausible

for sufficiently large fields, which forms the foundation of their security. Key examples

of such systems include the Elliptic Curve Digital Signature Algorithm (ECDSA) and

the Elliptic Curve Diffie-Hellman (ECDH). This basically implies that even for highly

capable attackers, determining the value of k given P and Q is considered to be an

insurmountable computational task.

The Elliptic Curves Point Addition and Doubling operations along with ECDLP

are applied in the Authenticated Distributed Group Key Agreement Protocol using

Elliptic Curve Secret Sharing Scheme of chapter 6.

2.7 Vandermode Matrix

A vandermode matrix [54] is a matrix of the form

A =


1 z1 z21 · · · zn−1

1

1 z2 z22 · · · zn−1
2

...
...

...
...

...
1 zn z2n · · · zn−1

n


n×n

with zi ̸= zj for i ̸= j. The matrix A is always invertible. Every vandermode matrix is

invertible as the determinant of the matrix A is
∏

1≤i<j≤n
(zj − zi), which is non-zero.

Vandermode Matrix is used in Authenticated Distributed Group Key Agreement

Protocol using Elliptic Curve Secret Sharing Scheme of Chapter 5.

2.8 Secret Sharing Scheme

A secret sharing scheme is an advanced cryptographic protocol that enables the division

of a single secret into various shares, which are then disseminated among a collection

of participants. The unique characteristic of this scheme is that the original secret can

only be regenerated by assembling a predetermined number of shares, this particular
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number is referred to as the threshold. Typically, a secret sharing scheme encompasses

two crucial algorithms.

An (n, n) secret sharing scheme, often known as a perfect secret sharing scheme, is

where the secret is partitioned into n parts or shares and distributed amongst n partic-

ipants. The intriguing facet of this scheme is that the secret can only be reconstructed

if all n shares are pooled together. If even a single share is missing, the original secret

remains concealed, thereby ensuring maximum security.

On the other hand, a (t, n) secret sharing scheme, also referred to as a threshold

scheme, adds a layer of flexibility. Here, the secret is again split into n portions, but

the key difference is that the original secret can now be reconstructed by any subset

of t or more shares. The advantage here is that even if some participants are absent

or their shares are lost, the secret can still be retrieved as long as at least t shares are

present. This adds resiliency to the secret sharing scheme while still maintaining a high

level of security.

2.8.1 Share Distribution

Dealer takes as input a secret S and generates a set of shares {share1, share2, . . . , sharen},
where each participant receives one share.

2.8.2 Secret Reconstruction

The process of reconstruction involves utilizing a set of shares, which are possessed by

t participants. This set is used to reassemble the initial secret S.

For a secret sharing scheme to be secure, it should satisfy the following properties[70]:

• Correctness: The secret can be correctly reconstructed using the required thresh-

old number of shares.

• Privacy: Any unauthorized subset of shares should reveal no information about

the secret.

• Uniqueness: Different secrets should result in different sets of shares.
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• Robustness: The scheme should be resilient to the presence of malicious partici-

pants or share errors.

2.9 Perfect Secret Sharing Scheme

A Perfect Secret Sharing (PSS)[70] scheme is an essential cryptographic protocol de-

signed to safeguard a secret by distributing its pieces among a group of participants.

The defining characteristic of a PSS scheme is that it offers complete information-

theoretic security.

Mathematically, a PSS scheme operates with a group of n participants. The secret,

denoted as S, is divided into n shares in such a way that any subset of k or more shares

can reconstruct the secret, whereas any subset of less than k shares has no information

about the secret.

More formally, a PSS scheme has the following properties:

• Reconstructability: Any group of k or more shares can combine their pieces

to perfectly reconstruct the secret S.

• Security: Any group with less than k shares cannot glean any information about

the secret S. In other words, for any subset of less than k shares, all possible

values of the secret S are equally likely.

In essence, a PSS scheme allows a secret to be shared among participants in a

secure and robust manner, such that the secret can only be accessed by groups of a

certain size, while smaller groups gain no information about the secret. This ensures

the confidentiality of the secret against any unauthorized access.

2.9.1 Shamir’s Secret Sharing Scheme

Shamir’s Secret Sharing Scheme [70] is a well-known and widely used threshold secret

sharing scheme proposed by Adi Shamir in 1979. It is based on polynomial interpola-

tion over a finite field. Let S be the secret to be shared, and let t be the threshold,

indicating the minimum number of participants required to reconstruct the secret. The
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scheme operates in a finite field F with a prime order q. Shamir’s secret sharing scheme

consists of the following steps:

2.9.1.1 Secret Distribution

• Choose a random polynomial f(x) of degree at most t− 1, where f(0) = S.

• Select n distinct non-zero elements x1, x2, . . . , xn from F as evaluation points.

• Compute the shares as sharei = (xi, f(xi)) for i = 1, 2, . . . , n, and distribute one

share to each participant.

2.9.1.2 Secret Reconstruction

• Collect at least t shares {(xi1 , yi1), (xi2 , yi2), . . . , (xit , yit)} held by t participants.

• Use Lagrange interpolation to reconstruct the polynomial f(x), which yields the

secret S = f(0).

Shamir’s Secret Sharing Scheme guarantees the security properties of a secret shar-

ing scheme, such as correctness, privacy, uniqueness, and robustness. It allows for

flexible threshold settings and provides a reliable method for distributing and recon-

structing secret among a group of participants.

2.9.2 Asmuth Bloom Secret Sharing Scheme

The Asmuth Bloom Secret Sharing Scheme [4] is a type of threshold secret sharing

scheme proposed by Asmuth and Bloom in 1983. It allows a secret to be divided into

shares, where each share is an integer value. The scheme is based on the Chinese Re-

mainder Theorem and requires a trusted dealer to distribute the shares. Shamir secret

sharing scheme takes O(t log2 t) to construct secret, but Asmuth Bloom secret sharing

scheme takes only O(t) to build the secret. This scheme is also of two phases, Share

Distribution, and Secret Reconstruction.
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2.9.2.1 Share Distribution

• Dealer D distributes the secret S into n shares between members of a set P =

{pi : 1 ≤ i ≤ n}, known as the participant set P, each pi being an individual

participant.

• A set of integers {p, l1, l2, ..., ln} such that li ≤ lj for i < j and 0 ≤ S < p, is

chosen with the following conditions:

gcd(li, lj) = 1 where i ̸= j, gcd(p, li) = 1 for every i, and

t∏
i=1

li > p
t−1∏
i=1

ln−i+1

• Let M =
t∏

i=1
li. Dealer computes sh = S + Ap, where A ∈ Z+ is generated

randomly with 0 ≤ sh < M .

• The ith participant share is shi = sh mod li, i = 1, 2, · · · , n.

2.9.2.2 Secret Reconstruction

• Suppose that a coalition C of t participants want to reconstruct the secret. Let

MC =
∏
i∈C

li, and sh ≡ shi mod li for i ∈ C.

• Reconstruct the the secret as S = shmod p. sh is calculated uniquely in GF (MC)

by using CRT. Since sh < M ≤ MC , the solution is also unique in GF (M).

The Asmuth Bloom Secret Sharing Scheme and Shamir Secret Sharing Scheme pro-

vide security properties such as correctness, privacy, uniqueness, and robustness. It

ensures that any unauthorized subset of shares reveals no information about the se-

cret. However, it requires a trusted dealer for share distribution, which is a limitation

of both the schemes. Shamir’s Secret Sharing Scheme takes O(t log2 t) to construct a

secret, but Asmuth Bloom Secret Sharing Scheme takes only O(t) to build the secret.

The Asmuth-Bloom and Shamir Secret Sharing Schemes are useful in scenarios where a

secure and efficient threshold Secret sharing scheme is required, and the trusted dealer
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can be relied upon for share distribution.

In Asmuth Bloom and Shamir SSS(Secret Sharing Scheme), participants have no

mechanism to verify their respective share from dealer for consistency. To overcome this

aspect,verifiable Secret Sharing Schemes are proposed by various authors like Qiong,

et al. [66] in 2005, Iftene [45] in 2007.

Iftene proposed VSSS(Verifiable Secret Sharing Scheme) in 2007 as an extension for

Asmuth Bloom SSS each and every participant can verify their respective share and

other shares after receiving shares from the dealer. The security of the scheme depends

on discrete logarithm problem and the time complexity of secret reconstruction will be

of order of O(t) where t is a threshold.

2.9.3 Iftene CRT-based VSSS

To overcome the verifiability aspect in Asmuth Bloom, Iften proposed VSSS in 2007.

In this scheme, each and every participant can verify their respective share and other

shares after receiving shares from the dealer. This scheme is also made of two phases,

Share Distribution and Secret Reconstruction.

2.9.3.1 Share Distribution

Dealer D computes the following steps

• A set of integers {l0, l1, l2, · · · , ln}, such that li ≤ lj for i < j is chosen with the

following conditions:

gcd(li, lj) = 1 where i ̸= j, and gcd(l0, li) = 1 for every i,

Also, Let M =
t∏

i=1
li .

• Choose secret S ∈ Zl0 .

• Computes sh = S +Al0 < M , where A is positive integer.
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• Computes share shi = sh mod li for i = 1, 2, · · · , n.

• Choose li’ s such that each pi = 2li + 1 is also a prime.

• Let gi ∈ Z∗
pi of order li . The dealer distributes share shi to the ith participants

secretly and computes ci = gshi mod pi for 1 ≤ i ≤ n . Here ci, pi and gi are

public.

• The ith participant checks whether the share is valid or not by

ci = gshi
i mod pi.

2.9.3.2 Secret Reconstruction

Suppose that a coalition C of participants wants to reconstruct the secret.

• Other participants in C can verify the ith participant share with

ci = gshi
i mod pi.

• The coalition C can reconstruct the secret S if all shares are correct.

2.9.3.3 Merit

The primary advantage of the Iften Verifiable Secret Sharing Scheme lies in its ro-

bust self-verification feature. This scheme allows each participant to independently

authenticate their shares, effectively detecting any inconsistencies or malicious shares

distributed by the dealer. This validation mechanism enhances the overall trust and

security in the secret sharing process.

2.9.3.4 Demerit

However, the dealer may be dishonest in a scenario where the dealer chooses sh > M

then coalition C cannot get the correct sh and secret S value.
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2.9.4 Kamer Kaya CRT-based VSSS

In both Iften [45] and Qiong [66] Verifiable Secret Sharing Scheme, the dealer may

be dishonest and may send wrong shares to participants. With those shares autho-

rized participants will never be able to get the actual secret. But in Kamer Kaya et

al. CRT-based VSSS, the dealer sends shares secretly to participants and participants

verify their respective share and check the range of sh < M with their share by using

Boudot range proof technique [52]. The security of the scheme depends on discrete log-

arithm problem. This scheme is also made of two phases, namely, Share Distribution,

and Secret Reconstruction.

Secret Sharing Schemes are commonly classified into two broad categories: unipar-

tite and multipartite.

2.9.5 Unipartite Secret Sharing Scheme

In unipartite secret sharing, all participants are considered as a single group. The

fundamental principle here is that the secret can be reconstructed only when a certain

number of shares, known as the threshold, are combined. The most popular form of

unipartite secret sharing scheme are Shamir’s [70], Asmuth [4], Iften [45], Qiong et

al.[66] , Kamer Kaya et al.[52], etc.

For instance, if we have a group of 10 participants and the threshold is set to 7,

then any combination of 7 participants can reconstruct the secret. If there are fewer

than 7, they will not be able to reconstruct the secret, adding a layer of protection to

the information.

2.9.6 Multipartite Secret Sharing Scheme

Multipartite Secret Sharing is a more complex variant, where participants are divided

into multiple groups. The secret can be reconstructed only when certain conditions are

met regarding the involvement of different groups. In other words, a specified number

of shares from each group is required to reconstruct the secret.
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For example, consider we have three groups - A,B, and C. In a multipartite scheme,

we can set conditions such as ”the secret can be reconstructed when at least 2 shares

from group A, 3 shares from group B, and 1 share from group C are combined.” It offers

a more granular level of control and is especially useful in scenarios where hierarchical

or departmental separations are necessary.

2.10 Access Structure

A secret sharing scheme determines the access structure by determining the minimum

number of shares needed and the specific participants allowed to rebuild the secret. The

secret can be reconstructed by a subset of individuals out of a total of n participants

in a (t, n)-threshold sharing scheme.

A group of participants who have the ability to collectively piece together the secret

information is often referred to as an authorized subset.

In formal terms, let S = [1, 2, ..., n] represent the set of participants. It consists of a

subset of participants, A = [A1, A2, ..., Am], where Ai is a non-empty subset of S, and

the union of all Ai is S. A Secret Sharing Scheme satisfies access structure if participants

can only reconstruct the secret if their shares belong to one of the authorized subsets

Ai. As a result, it is computationally infeasible to reconstruct the secret from the

shares held by the participants in A for any subset A of S that does not belong to any

Ai. The literature describes various types of access structures, such as Multipartite,

Compartmented and Hierarchical, that are defined below:

2.10.1 Multipartite Access Structure

Let P(P ) stand for the power set of P . Further let Ω = {P1, . . . , Pr} be a partition of

the set P , this means
⋃r

i=1 Pi = P and Pi ∩ Pj = ∅ for any 1 ≤ i < j ≤ r. Again, let

σ be a special kind of permutation on P . Special in the sense that σ must map each

member Pi of Ω onto itself; mathematically speaking σ(Pi) = Pi, ∀Pi ∈ Ω. Let βΩ de-

note the collection of all such permutations σ. Let Λ be a collection of subsets of P , so

indeed Λ ⊆ P(P ). Let σ(Λ) = {σ(A) : A ∈ Λ}, such that σ(Λ) ⊂ P(P ). The collection
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Λ is Ω-Partite if and only if the following condition holds: σ ∈ βΩ ⇒ σ(Λ) = Λ. Λ is

said to be r-partite for any positive integer r if it is Ω-partite for some partition Ω on

P of cardinality r [44].

Consider the set Jr = {1, 2, · · · , r}. Let Zr
+ denote the set of vectors u = (u1, · · · , ur) ∈

Zr with ui ≥ 0 for every i ∈ Jr. For a partition Ω = {P1, · · · , Pr} of P and Subset

A ⊆ P and i ∈ Jr. Define Ωi(A) is the number of participants in A ∩ Pi i.e., |A ∩ Pi|
then define a map Ω : P (P ) → Zr

+ as Ω(A) = (Ω1(A),Ω2(A), · · · ,Ωr(A)).

2.10.2 Compartmented Access Structure

Compartmented access structure [35] is a type of access structure in secret shar-

ing schemes where participants are from multiple compartments, and the recovery of

the secret requires a specific number of participants from each compartment. Let

P = {p1, p2, . . . , pn} denote the set of n participants, and let C = {C1, C2, . . . , Ck}
represent the compartments, such that P =

⋃k
i=1Ci.

In a compartmented access structure, we define a set of thresholds T = {t1, t2, . . . , tk},
where ti represents the minimum number of participants required from compartment

Ci to recover the secret. The thresholds must satisfy 1 ≤ ti ≤ |Ci| for each i, where

1 ≤ i ≤ k.

Formally, the access structure Γ of a compartmented secret sharing scheme is defined

as:

Γ = {A ⊆ P : |A ∩ Ci| ≥ ti for all i},

where A is a subset of participants and |A ∩ Ci| represents the number of participants

in A belonging to compartment Ci. The access structure Γ specifies the sets of partic-

ipants that satisfy the threshold requirements for each compartment.

In a compartmented access structure, the reconstruction of the secret involves hav-

ing at least ti participants from each compartment Ci. If the number of participants

in a compartment falls below its threshold, the secret cannot be reconstructed. This

structure allows for fine-grained control over access and enables more complex sharing
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schemes.

The notion of a compartmented access structure provides flexibility in designing

secret sharing schemes that require specific combinations of participants from different

compartments to access the secret.

2.10.3 Hierarchical Access Structure

Simmons (1988) [75] introduced the concept of hierarchical threshold secret sharing

(HTSS), which differs from simple threshold secret sharing (SSS) by assigning differ-

ent roles to participants. In a HTSS scheme, participants are categorized into distinct

security levels. The participants at higher levels can collaborate with lower level par-

ticipants to reconstruct the secret. HTSS is also referred to as a multilevel threshold

secret sharing (MTSS) scheme.

Let’s define the parameters of a HTSS scheme. We have a set of participants

denoted by P = p1, p2, . . . , pn, which is divided into m security levels represented

as L = L1, L2, . . . , Lm. In other words, P is the union of all the security levels,

P =
⋃m

i=1 Li. Additionally, we have a sequence of threshold values T = t1, t2, . . . , tm,

where t1 < t2 < · · · < tm. Each ti indicates the minimum number of participants

required to recover the secret at level Li. These threshold values satisfy the condition

1 ≤ ti ≤ |L1|+ |L2| · · ·+ |Li|, where 1 ≤ i ≤ m.

We can formally define the access structure Γ of the hierarchical threshold secret

sharing scheme as follows: Γ = {A ⊆ P : |A ∩ (
⋃i

j=1 Lj)|. where A is a subset of par-

ticipants and i represents the level, with 1 ≤ i ≤ m. The access structure Γ specifies

the sets of participants that satisfy the threshold requirements for each level.

In a HTSS scheme, the participants are divided into m levels, forming a hierarchical

structure. Each level Li consists of ni participants and a secret can be recovered at

level Li if ti or more participants are present. If the number of participants in level

Li falls below ti, say ri, the remaining ti − ri participants can be selected from higher

levels to meet the threshold requirement. It is important to note that throughout the
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thesis, we assume that level Li is higher than level Li+1 for 1 ≤ i < m.

To illustrate, suppose we have threshold values t1 = 3 at level L1 and t2 = 4 at

level L2. In this case, three participants from L1 or four participants from L2 can

collectively recover the secret. Additionally, the secret can also be recovered if there is

one participant from L1 and three participants from L2.

Secret Sharing Schemes can be categorized as either one-time use or multi-use

schemes. In a one-time use scheme, the shares become invalid after reconstructing

the corresponding secret. Conversely, in a multi-use scheme, the shares can be reused

for multiple secrets. Since the distribution of shares is a meticulous and costly process,

the multi-use property has become crucial for secret sharing schemes.

In all previously mentioned schemes, the dealer has a higher level of authority as

they calculate the shares and distribute them to the participants through a safe com-

munication medium. This method favors the dealer, who is a single point of contact

in a centralized environment. Now we explore the scenario in a distributed environ-

ment. In this context, each participant or user holds an equivalent level of importance,

fostering a more equitable distribution of power. While there is no exact replication

of SSS in a distributed environment, the same is achieved through group key agree-

ment protocols. Group Key Agreement Protocols are available in both Centralized and

Distributed environments. The scope of the thesis is limited to exploring Group Key

Agreement Protocol in a distributed environment using SSS.

2.11 Group Key Agreement Protocols

A base group key agreement protocol [63] enables a group of participants to establish

a shared secret key collectively. The protocol ensures that only authorized participants

can obtain the shared key. Let G represent the group of participants, and let G denote

the group’s generator.

The base group key agreement protocol can be mathematically described as follows:
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Key Generation

• Each participant i ∈ G selects a private key xi.

• The corresponding public key for participant i is calculated as Xi = Gxi .

Key Exchange

• Participants in G broadcast their public keys {Xi} to all group members.

• Each participant i computes the shared secret key Ki as Ki =
∏

j∈GX
xi
j .

Key Confirmation

• Participants verify the validity of the shared key Ki using a predefined criterion

or a specific validation process.

The base group key agreement protocol provides a secure method for establishing

a shared key within a group. It ensures that only participants with valid private keys

can compute the shared secret key. The protocol can be implemented using various

cryptographic primitives, such as elliptic curve cryptography or Diffie-Hellman (DH)

key exchange.

In secure multiparty computing, a group DH (Diffie Hellman) key is computed

for a group of n members, each with a private key ki, and calculates a function

f(k1, k2, · · · , kn) [36]. Tzeng and Tzeng[83, 84] introduced a round-efficient confer-

ence key with f(k1, k2, · · · , kn) = gk1+k2+,··· ,+kn . This is an extension to Burmester

and Desmedt [15] two round protocol with f(k1, k2, · · · , kn) = gk1k2+,··· ,+knk1 which is

round efficient but has a malicious participant attack. The basic DH key agreement pro-

tocol was substantially generalized for many group DH key approaches. This technique

was utilized by Ingemarsson et al. [47], Steer et al. [77], Burmester and Desmedt [15],

and Steiner et al.[77] to exchange group DH public keys by arranging group members

in a logic ring. Burmester achieved computational efficiency by reducing the number

of rounds from (n− 1) to 3. In contrast, Lee et al. [57] and Kim et al. [53, 74] used a

binary tree to arrange group members and exchange DH public keys. In 1996, Steiner

et al.[77] introduced the GDH (Group DH) Key Exchange (KE) as an extension to DH

protocol.
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Bresson et al. [12] protocol was improved with authentication services in 2001 and

is proven secure. In 2006, Bohli [10] developed a scheme for secure group key agreement

protocols, which allows unverified point-to-point networks to be secure against internal

and external attackers.

Later, in 2007, Bresson et al.[12] developed a secure generic authenticated Group

DH key exchange protocol. In 2007 itself, Katz and Yung [51] developed the first

provably secure constant-round and completely scalable GDH protocol in the standard

model. Brecher et al. [11] added robustness to the GDH protocol’s tree-DH method

by making it resistant to system failures, network outages, and member misconduct.

Jarecki et al.[49] developed a group key agreement protocol that can withstand up to

t node failures out of n nodes. Secure digital signatures are used to provide authenti-

cation for DH public keys. The computational cost of each group member is a crucial

concern when implementing these protocols, especially when the group size is large.

Joux [50] first proposed to use pairings in a one-round tripartite key exchange.

Later [6, 22, 28, 30, 73] developed several versions of authenticated group key exchange

protocols. However, most of the pairing-based group KE methods are inefficient, as

they result in a rise in the number of rounds as the group size increases. Choi et al.[22]

developed a pairing-based group KE protocol that required a fixed number of rounds

so that each member will be calculating two pairings and 4n modular exponentiation

where n is a message .

A tree-based pairing-based group KE was developed by Barua et al.[30]. Du et

al.[28] proposed an authenticated ID-based group KE mechanism with a constant num-

ber of rounds. In 2008, Desmedt and Lange [26] created a constant round pairing-based

authenticated group KE that had lower processing complexity per member than pre-

vious protocols. Wu et al.[88] and Zhao et al.[95] developed an asymmetric group key

agreement model that establishes secure networks for group communications. In a hi-

erarchical access control system, Gu et al. [37] represented a group key agreement

technique to speed up rekeying time. Konstantinou [55] developed an ID-based group

key agreement protocol with efficient constant rounds for adhoc networks. Haiyan Sun

[80] developed a new key agreement mechanism with provable security that does not
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require the use of a certificate.

In certain group key transfer protocols, secret sharing is used for group key commu-

nication to achieve efficiency. Laih et al.[56] introduced the first group key transmission

technique using a (t, n) secret sharing method in 1989. Each scheme participant must

enroll with a conference chairperson and reveal a secret to the chairperson. The con-

ference chairperson will select a random conference key as the secret and uses the

secret-sharing mechanism to distribute shares of the secret among members. However,

the number of users that the key can be shared is limited to (t − 1) users only out of

n users. Berkovits [7], Li et al. [58], Saze [68] took a similar approach to distribute

group communications to a large number of people securely. Cao et al.[16] developed

a constant-round group KE protocol based on secret sharing with universally compos-

able security. Harn and Lin [40] developed an authenticated group key transfer protocol

based on the secret sharing technique. However, members do not have equal priority

in this arrangement. To overcome this problem, Harn et al. [39] designed an efficient

group DH key agreement protocol using a secret sharing scheme.

Yang et al.[89] introduced a key agreement-based elliptic curve scheme. It has no

perfect forward secrecy, impression attack, and provable security. Yoon et al. [90]

designed a key agreement protocol that has provable security but suffers from per-

fect forward secrecy. Debio et al.[25] developed a key agreement protocol with perfect

forward secret secrecy that is provable and secure. In all these three schemes, commu-

nication happens between KGC and users. Chen et al.[19] introduced a key agreement

protocol based on an elliptic curve where communication happens between server and

tag in multiple rounds. After that, Liu Y SUn [62] introduced a key agreement pro-

tocol based on ECC (Elliptic curve cryptography). This protocol has one round of

communication between the server and the tag. After that, Shen et al.[72] introduced

that ECC could be used to create secure session keys between authorized users and

devices. Based on ECC, Islam et al.[48] developed an unpaired authentication group

key protocol. It minimizes computational costs and gets rid of public key certificates.

In literature, Alzahrani et al. [2], Cui et al.[23], Sun et al. [79] introduced group key

agreement protocols based on an elliptic curve where communication happens between
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KGC and users.

Petr Dzurenda et al.[31] introduced an authenticated key agreement protocol based

on secret sharing schemes. However, communication happens between KGC and users.

Cheng et al.[19] introduced a group key agreement protocol based on bilinear pairing,

which is suitable for mobile environments. Qikun Zhang [94] introduced a group key

agreement protocol based on bilinear pairing. It has been shown that this protocol

can withstand harmful attacks, such as active and passive attacks. Although Cheng

et al. [19] and Zhang Qikum et al. [94] developed key agreement protocols without

KGC, the cost involved is more. Hence we proposed an Authenticated Distributed Key

Agreement Protocol using Elliptic Curve SSS to improve efficiency .

K. R. RAGHUNANDAN et al. [67] introduced an encryption scheme. The keys for

encrypting the data are generated by the chaotic maps using pseudo-random numbers.

Unauthorized users have a lot of difficulty accessing or changing the data because of

the encryption procedure. One advantage of chaotic-map-based encryption is that it

can be used on edge devices with low computing power. This scheme can be applied

for encryption in a distributed environment.

Liu et al. [61], Binu et al. [8], and Wang et al. [86] introduced centralized secret

sharing schemes based on elliptic curve and pairing. However, these schemes are not

suitable for distributed environments. Liu Y et al. [62], Sheikh et al.[71] send shares

through a public channel in a centralized environment which is a general tendency.

However, to the best of our knowledge, other than Harn et al.[39], no secret sharing

scheme sends shares through the public channel in a distributed environment.

2.11.1 Authenticated DH Group Key Agreement Protocol

A group with n users (U1, U2, · · · , Un), want to construct group key S collaboratively

in a public channel. It consists of the following Set Up and Phases.

Set Up

• Any user choose two primes p and q such that p = 2q + 1, and choose generator

α ∈ Fq.
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• Every user Ui, i = 1, 2, · · · , n, chooses private keys ki and xi , computes ri =

αki , yi = αxi and makes ri and yi public .

Secret Distribution

• Every user Ui computes shares yij = (rjyj)
xi+ki , j = 1, 2, · · · , n, j ̸= i.

• Every user Ui constructs key Ki =
n∏

j=1,j ̸=i

(rjyj)
ki+xi .

• Ui constructs polynomial fi(x) of degree n− 1 from n points:

(0,Ki), (rj , yi1), · · · , (rj , yij), · · · , (rj , yin), j = 1, 2, · · · , n, j ̸= i.

• Ui computes n− 1 shares from fi(x), x = 1, 2, · · ·n− 1 and makes them public.

Key Reconstruction

• Ui computes his corresponding share from Uj , yji = (rjyj)
xi+ki , j = 1, 2, · · · , n, j ̸=

i.

• Ui reconstructs key Kj , j = 1, 2, · · · , n, j ̸= i of Uj from n − 1 public shares and

his respective share by using Lagrange’s interpolation formula.

• Ui reconstructs group key S =
n∏

j=1,
Kj .

Authentication

• Each user Ui computes Ci = h(S,Ui, ri) and makes it public.

• Each user Ui computes Cj
′ = h(S,Uj , rj), for j = 1, 2, · · · , n, j ̸= i. If Cj

′ = Cj

the group key S is valid.

In the literature, elliptic curves are a great resource constrained environments that

give equal amount of security with smaller key sizes. They can offer the same level of

security as other methods, but with smaller key sizes. If the Secret Sharing Scheme

(SSS) mechanism is applied with Elliptic Curve Cryptography (ECC), it could offer

significant benefits in these resource-constrained contexts.
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Harn et al.[39] scheme cannot be extended using the elliptic curve for secret sharing

as we cannot reconstruct the polynomial from the pairs of points in the Secret Dis-

tribution. Hence a novel Authenticated Distributed Group Key Agreement Protocol

using Elliptic Curve Secret Sharing Scheme is proposed in chapter 5.

2.11.2 Summary

This chapter provides a thorough exploration of the key mathematical theories and

a detailed survey of related scholarly works, laying the groundwork for our suggested

approaches.
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Chapter 3

Multipartite Verifiable Secret

Sharing based on CRT

3.1 Introduction

As a fundamental concept in cryptography, secret sharing involves the distribution of a

secret among a set of participants in such a way that only a selected number of partici-

pants can collaborate on reconstructing it, while any smaller number cannot retrieve it.

The concept of information security is vital to the protection of sensitive information

and to ensuring that only authorized parties are able to access the information. As a

result, conventional secret sharing schemes often assume that the dealer responsible for

the distribution of shares can be trusted. If the dealer is malicious, this assumption

may expose the system to vulnerability.

3.1.1 Problem Identification and Motivation:

A Verifiable Secret Sharing Scheme (VSSS) is necessary because a malicious dealer may

distribute incorrect shares, which would prevent the participants from reassembling the

secret. Many existing VSSS, such as those proposed by Iften [45], Qiong et al.[66],

and Kaya[52], are based on the Chinese Remainder Theorem (CRT) as its efficient in

reducing computational cost. Various VSSS based on CRT are available in literature

for Unipartite environments. However, no such mechanism is available in literature for

Multipartite environments. As a generalization of threshold secret sharing, Multipartite
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Secret Sharing involves dividing participants into disjoint partitions and performing the

same action on each partition.

3.1.2 Contribution:

This chapter proposes two Multipartite Verifiable Secret Sharing based on CRT [44]

for verifying the credibility of dealers. The first scheme, Multipartite Verifiable Secret

Sharing based on CRT using Iften’s verifiability scheme, and the second scheme, Multi-

partite Verifiable Secret Sharing based on CRT using Kaya Verifiability scheme. These

two schemes have phases namely, Share Distribution, Commitments, Share Verifica-

tion and Secret Reconstruction. In the Share Distribution stage, the Dealer generates

shares and confidentially transmits these to the respective participants. Next, during

the Commitment phase, the Dealer determines the commitment and publicly discloses

it. During the Share Verification phase, each participant confirms their individual

shares using their specific commitments. Finally, in the Secret Reconstruction phase,

a coalition number of participants has the ability to reconstruct the secret.

3.1.3 Notations and Assumptions

In Multipartite Secret Sharing based on CRT [44], participants cannot verify their re-

spective shares after receiving shares from the dealer. To overcome this problem a novel

Multipartite Verifiable Secret Sharing based on CRT is proposed where the participants

can verify their respective shares and other shares as well. The scheme is proposed in

two variants, the first variant uses Iftene VSSS(Verifiable Secret Sharing Scheme) [45]

and second one uses Kamer Kaya VSSS [52].

The following notations are used in the proposed schemes.

• Let P = {pi : 1 ≤ i ≤ n} be set of participants, Dealer D and S is secret.

• Let τ be set of subsets of P , τ ⊆ 2P , subsets in τ are called authorized subsets.

• ∆ = 2P \τ is called prohibited access structure. Subsets in ∆ are called unautho-

rized subsets.

• Super set of authorized set is again an authorized subset if it satisfies monotone

increasing property. i.e, if B ∈ τ and B ⊆ C ⊆ P , then C ∈ τ .
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• τ0 is minimal authorized subset τ

τ = {C ⊆ P : B ⊆ C,B ∈ τ0}

• ∆1 is maximal unauthorized subset

∆ = {C ⊆ P : C ⊆ B,B ∈ ∆1}

• ui and vi are positive integers.

3.2 Proposed Multipartite VSSS Based on CRT by using

Iftene’s Verifiability Scheme

For a r partition Ω = {P1, · · · , Pr} of P = {pi : 1 ≤ i ≤ n}, we suppose that an access

structure τ is an Ω-partite, where |P1| = n1, · · · , |Pr| = nr and n1+, · · · ,+nr = n.

Then the partition is a transformation Ω : P (P ) −→ Zr
+. Let the corresponding

minimal access structure is τ0 and maximal prohibited access structure is ∆1, so that

Ω(τ0) ⊂ Zr
+ and Ω(∆1) ⊂ Zr

+ can be determined. This consists of four phases, namely

Share distribution, Commitment, Share Verification and Secret Reconstruction.

3.2.1 Share Distribution

Dealer D distributes n shares between members of a set P = {pi : 1 ≤ i ≤ n}, known
as the participant set , each pi being an individual participant.

The dealer does the following:

• A set of integers

{l0, l1 <, · · · , < ln1 , ln1+1 <, · · · , < ln1+n2 , · · · , ln−nr+1 <, · · · , < ln},
where 0 ≤ S ≤ l0, is chosen such that

gcd(li, lj) = 1 where i ̸= j .

• Computes
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M3 = min

( r∏
j=1

uj∏
i=1

lsj−1+i, for all (u1, u2, · · · , ur) ∈ Ω(τ0)

)

where si =
i∑

j=1
nj and 0 = s0 < s1 < s2 < s3 < s4, · · · , < sr = n.

• Computes

M4 = max

( r∏
j=1

vj∏
i=1

lsj−1+i−1, for all(v1, v2, · · · , vr) ∈ Ω(∆1)

)

M3 > l0M4.

• Verify if M3 > l0M4, else choose different set of li’s.

• Dealer computes sh = S + Ap, where A ∈ Z+ is generated randomly with 0 ≤
sh < M3.

• Computes

shi = sh mod li, i = 1, · · · , nj , j = 1, 2, · · · , r

The nj shares are distributed to each participants in Pj randomly

f : {sh1, · · · , shn} −→ P .

3.2.2 Commitment

• Let gi ∈ Z∗
pi of order li. The dealer computes

ci = gshi mod pi. (3.1)

Here ci, pi and gi are public.

• The dealer carries out the computation of commitments ci and publicly discloses

them to allow for the verification of each participant’s share.

3.2.3 Share Verification

• The ith participant validates his share by checking iff

ci ≡ gshi
i mod pi. (3.2)
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• Other participants can verify the ith participant share by checking iff

ci ≡ gshi
i mod pi.

3.2.4 Secret Reconstruction

• Suppose that a coalition C of τ participants want to reconstruct the secret. Let

MC =
∏

f(shi)∈C
li and sh ≡ shi mod li , for f(shi) ∈ C. Solve sh in GF (MC)

uniquely using the CRT.

• Reconstruct the secret as S = sh mod l0.

3.2.5 Proof of Correctness for Verification

Every participant can verify his respective shares as follows, checking iff

ci
?≡ gshi

i mod pi.

The correctness of the above equation can be seen as

ci ≡ gshi mod pi, (from 3.2 )

≡ gshi+lia
i mod pi, since shi = sh mod li,where a is positive integer

≡ gshi
i (glii )

a mod pi

≡ gshi
i mod pi, since order of gi is li.

3.2.6 Security Analysis

Lemma 3.2.1. Commitment ci = gshi mod pi does not leak any information about sh.

Proof. Let G be a cyclic group of order q and gi generates G. Let e be the identity

element of G. Given ci = gshi mod pi. Choose a random integer a ∈ Zp′i
. Then for any

sh ∈ Zp, we have

ci = gqa+sh
i mod pi
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= gqi
a
gshi mod pi

= eagshi mod pi, since e = gqi

= gshi mod pi

Hence, ci = gshi mod pi is uniformally shared in G, i.e., the information about sh is

secure enough.

Theorem 3.2.2. The proposed Multipartite iftene VSSS realizing multipartite access

structures is a perfect SSS.

Proof. In our multipartite scheme, we get that sh can be computed uniquely inGF (MC)

using CRT. the solution is unique in GF (M3) as sh < M3 < MC . Hence it satisfies

that H(S|C) = 0, where H is entropy, for all C ∈ τ (authorized participants can

able to reconstruct the secret). We consider that a coalition C
′
unauthorized partic-

ipants in ∆ has assembled. Let sh
′
denote the unique solution for sh ∈ GF (MC′),

hence sh′ + jMC′ mod l0 is smaller than M3, for 0 ≤ j < l0. From M3 > l0M4 and

M4 > MC′ , we get M3
MC′

> l0 . For 0 ≤ j < l0 all sh
′
+ jMC′ mod l0 are differ-

ent since gcd(MC′ , l0) = 1, and there l0 such values exits. That is S ∈ GF (l0), and

coalition participants cannot get any information about the secret. Hence it satisfy

that H(S|C ′) = H(S), for all C ′ ∈ ∆(Any unauthorized participants can not get any

information about the secret.)

3.3 Proposed Multipartite VSSS Based on CRT by using

Kamer Kaya’s Verifiability Scheme

For a r partition Ω = {P1, · · · , Pr} of P = {pi : 1 ≤ i ≤ n}, we suppose that an access

structure τ is an Ω-partite, where |P1| = n1, · · · , |Pr| = nr and n1+, · · · ,+nr = n.

Then the partition is a transformation Ω : P (P ) −→ Zr
+. Let the corresponding

minimal access structure is τ0 and maximal prohibited access structure is ∆1, so that

Ω(τ0) ⊂ Zr
+ and Ω(∆1) ⊂ Zr

+ can be determined. It consists of four phases, namely

Share Distribution, Commitment, Share Verification and Secret Reconstruction.
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3.3 Proposed Multipartite VSSS Based on CRT by using Kamer Kaya’s
Verifiability Scheme

3.3.1 Share Distribution

Dealer D distributes n shares between members of a set P = {pi : 1 ≤ i ≤ n}, known

as the participant set , each pi being an individual participant.

The dealer does the following:

• A set of integers

{l0, l1 <, · · · , < ln1 , ln1+1 <, · · · , < ln1+n2 , · · · , ln−nr+1 < · · · < ln},

where 0 ≤ S ≤ l0, is chosen,

where, gcd(li, lj) = 1 where i ̸= j .

• Computes

M3 = min

( r∏
j=1

uj∏
i=1

lsj−1+i, for all (u1, u2, · · · , ur) ∈ Ω(τ0)

)

where si =
i∑

j=1
nj and 0 = s0 < s1 < s2 < s3 < s4, · · · , < sr = n.

• Computes

M4 = max

( r∏
j=1

vj∏
i=1

lsj−1+i−1, for all(v1, v2, · · · , vr) ∈ Ω(∆1)

)

• Verify if M3 > l0M4, else choose different set of li’s.

• Let gi ∈ Z∗
p′i

of order li. Let P
′ =

n∏
i=1

pi
′,

Here pi
′ = 2l′i + 1, and li

′’ s both are large primes for 1 ≤ i ≤ n.

Choose g ∈ ZP ′ that is unique satisfying

g ≡ gi mod pi
′
.

• Dealer computes sh = S + Al0, where A ∈ Z+ is generated randomly with

0 ≤ sh < M3.
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3. MULTIPARTITE VSSS BASED ON CRT

• Computes

shi = sh mod li, i = 1, · · · , nj , j = 1, 2, · · · , r

The nj shares are distributed to each participants in Pj randomly

f : {sh1, · · · , shn} −→ P .

3.3.2 Commitment

• Assume both dealer and participant do not knowN prime factorization. Compute

E = gsh mod P
′
N. (3.3)

3.3.3 Share Verification

• ith participant checks whether the share is valid or not by checking iff E ≡

gshi
i mod pi

′ to verify shi = sh mod li. Then participants can verify validity of

the range proof by checking sh < M3.

• Other participants can verify the ith participant share with verification equation

by checking iff

gshi
i ≡ E mod pi

′
.

3.3.4 Secret Reconstruction

• Suppose that a coalition C of τ participants want to reconstruct the secret. Let

MC =
∏

f(shi)ϵC

li, and sh ≡ shi mod li,

for f(shi) ∈ C. Solve sh in GF (MC) uniquely using the CRT.

• Compute the secret as S = sh mod l0.
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3.3 Proposed Multipartite VSSS Based on CRT by using Kamer Kaya’s
Verifiability Scheme

3.3.5 Proof of Correctness for Verification

Every participant can verify his respective share checking iff

gshi
i

?≡ E mod pi
′.

In this equation, the correctness for share verification can be seen as follows:

E mod p
′
i ≡ gsh mod P

′
N mod pi

′ ( from 3.3)

≡ gshi mod pi
′
, since gi ≡ g mod pi

′

≡ gshi+lia
i mod pi

′
, since shi = sh mod li, a is positive integer

≡ gshi
i (glii )

a mod pi
′

≡ gshi
i mod pi

′, since order of gi is li.

3.3.6 Security Analysis

Lemma 3.3.1. Commitment E = gsh mod P ′N does not reveal any information about

sh.

Proof. Let G be a cyclic group of order q and g generates G. Let e be the identity

element of G. Given E = gsh mod P ′N . Choose a random integer a ∈ Zp′i
. Then for

any sh ∈ Zp. We have

E = gqa+sh

= gqagsh

= eagsh

= gsh

Hence, E = gsh mod P ′N is uniformally shared in G, i.e., the information about

sh is secure enough.

Theorem 3.3.2. The proposed Multipartite Kamer Kaya, et al. VSSS realizing multi-

partite access structures is a perfect SSS .
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3. MULTIPARTITE VSSS BASED ON CRT

Proof. Proof is same as theorem 3.2.2.

3.4 Comparison with Existing Schemes

The presented table, as illustrated in Table 3.1, offers a detailed comparison of six

distinctive secret sharing schemes, all of which are underpinned by the Chinese Re-

mainder Theorem. The main characteristics scrutinized in these schemes include their

partitioning nature (unipartite or multipartite), verifiability, and resilience against ma-

licious dealer behavior.

The Asmuth-Bloom SSS underpinned by CRT is noted as a unipartite scheme, how-

ever, it lacks both share verifiability and resistance against dealer malevolence. The

Verifiable Secret Sharing Scheme (VSSS) proposed by Iften , albeit still unipartite,

introduces share verifiability. Yet, similar to the Asmuth-Bloom SSS, it fails to coun-

teract malicious dealer activities.

In contrast, the unipartite VSSS scheme presented by Kameer Kaya et al. embeds

both share verifiability and the ability to withstand malevolent dealers, demonstrat-

ing an advancement over the previous models. The Multipartite SSS leveraging CRT

diverges from the previous three schemes as it operates in a multipartite fashion, and

while it can resist dealer malevolence, it lacks the verifiability feature.

A similar absence of protection against malicious dealers is observed in the Multi-

partite VSSS as per Iften , although this multipartite scheme does offer verifiability.

Finally, the Multipartite VSSS as per Kameer Kaya et al. combines multipartiteness,

share verifiability, and resilience against malicious dealers, culminating in a compre-

hensive solution.

In essence, Table 3.1 delineates the strengths and limitations of each scheme, indi-

cating that the choice of a scheme would greatly depend on the specific requirements

of partitioning nature, verifiability, and resistance to malicious dealer activities.
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3.5 Summary

Scheme Name Unipartite Multipartite Verifiability Resistant to malicious dealer

Asmuth Bloom SSS based on CRT Yes No No No

Iften VSSS based on CRT Yes No Yes No

Kameer kaya et al. VSSS based on CRT Yes No Yes Yes

Multipartite SSS Based on CRT No Yes No Yes

Multipartite VSSS Based on CRT by using Iften, et al. No Yes Yes No

Multipartite VSSS Based on CRT by using Kameer Kaya et al. No Yes Yes Yes

Table 3.1: Comparision table

3.5 Summary

Two schemes namely Multipartite VSSS Based on CRT by using Iften verifiable scheme,

and Multipartite VSSS Based on CRT by using Kamer Kaya verifiable scheme are pro-

posed. In the first scheme, the dealer may be malicious because if participants can not

choose his share sh < M3. However, in the second scheme, the participant can over-

come this demerit by verifying if his share sh < M3. The first scheme do not have that

provision. Both schemes are perfectly secure, and the security of the schemes depends

on discrete logarithm problem.

In both Multipartite VSSS Based on CRT by using Iften’s scheme and Multipartite

VSSS Based on CRT by using Kamer Kaya’s schemes, works for centralized environ-

ments where dealer is the centralized person who generates shares and distributes them.

Our future work is to extend this scheme to Share Renewal in Multipartite VSSS based

on CRT.
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Chapter 4

Compartmented Proactive Secret

Sharing based on Polynomial

4.1 Introduction

Secret Sharing Schemes (SSS) play an important role in ensuring that sensitive in-

formation is accessible only to authorized parties in secure information storage and

sharing systems. A Compartmented Secret Sharing Scheme (CSSS) [35] divides partic-

ipants into distinct compartments, each compartment has its own threshold that must

be met in order to reconstruct the secret. However, conventional CSSS methodologies

introduce a set of limitations and vulnerabilities that can pose significant threats to

the privacy and security of participants. A key concern is the requirement for the

Dealer, who is responsible for distributing shares to participants, to publicly disclose

the compartment number ℓi. This information can provide valuable insights into the

distribution and structure of the secret sharing scheme, potentially enabling unautho-

rized entities to mount successful attacks against the system.

Moreover, the inability of participants to verify or renew their shares in a conven-

tional CSSS is another considerable drawback. This lack of self-verification and renewal

procedures allows for scenarios where a malicious or compromised Dealer can distribute

incorrect or manipulated shares without detection. Consequently, it introduces oppor-

tunities for exploitation and increases the likelihood of successful attacks against the

system.
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4.1 Introduction

Motivated by these challenges, this chapter proposes an enhanced Compartmented

Proactive Secret Sharing Scheme. This advanced framework aims to address the identi-

fied issues, specifically focusing on improving participant privacy, enabling share verifi-

cation, and facilitating share renewal. The proposed scheme provides a comprehensive

solution to the noted vulnerabilities of traditional CSSS, thus promising a significantly

more secure, reliable, and robust secret sharing mechanism.

4.1.1 Problem Identification and Motivation

The central challenge in contemporary Compartmented Secret Sharing Schemes (CSSS)

resides in their design and operational shortcomings that can undermine the privacy

of participants and expose the system to a range of security vulnerabilities. One of

the primary concerns stems from the requirement for the Dealer to publicly reveal the

compartment number ℓi. This practice, although necessary in traditional CSSS, could

inadvertently expose sensitive structural information about the secret sharing scheme.

As a result, it could potentially offer an advantage to unauthorized entities seeking to

compromise the system.

Additionally, participants in a standard CSSS lack the ability to verify their individ-

ual shares. This absence of verification mechanisms means participants must inherently

trust the Dealer. Unfortunately, if the Dealer is compromised or acts maliciously, the

participants are at risk of receiving tampered or incorrect shares, severely threatening

the integrity of the system.

Further amplifying these issues is the absence of a provision for participants to re-

new their shares. The lack of a share renewal mechanism is problematic as it could

lead to stagnation of the share distribution. This static distribution could be exploited

over time by an adversary, given sufficient computational power and time.

These combined weaknesses present compelling motivation to revisit and revise

the traditional CSSS. It is imperative to introduce new mechanisms to ensure par-

ticipant privacy, allow share verification, and provide a mechanism for share renewal.

By addressing these issues, the proposed Compartmented Proactive Secret Sharing
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Scheme strives to significantly enhance the security and robustness of the secret shar-

ing paradigm. Through this, it aims to offer a more resilient and reliable solution for

secure information storage and sharing systems.

4.1.2 Contribution

In order to address the issues namely Privacy of participants, Share Verification and

Share Renewal associated with existing CSSS schemes, this chapter proposes a Com-

partmented Proactive Secret Sharing Scheme, that has the following characteristics:

1. The compartment number is made private in order to ensure the privacy of par-

ticipants.

2. The compartment number is further protected by revealing it only through the

share of each participant.

3. Participants can verify their shares and can assure that their shares are consistent.

4. Shares of participants are periodically renewed through share renewals.

The proposed scheme can be used in the following circumstances: Let’s assume a

Company CEO(Dealer) has a top-secret S, and his company has ℓ department’s. The

CEO chooses the secret s, and then he computes partial secret si for all departments

using that secret. Every department partial secret si is computed by the CEO and he

distributes shares of partial secret secretly to all participants in that compartment i.

Every participant receives a share from the CEO and then uses that share to calculate

his department number ℓi. After that, a threshold number of participants ti come

together to reconstruct the partial secret in each department. Finally, the secret can

be reconstructed by a global threshold number of participants. Next, CSSS proposed

scheme is explained in section 4.2.

4.2 Proposed Compartmented Proactive Secret Sharing

Scheme

In Compartmented Secret Sharing Scheme, the compartment number is made public,

and because of this other participant knows the compartment number of the participant.

46



4.2 Proposed Compartmented Proactive Secret Sharing Scheme

So, participant has no Privacy in compartmented SSS. Hence we proposed Compart-

mented Proactive SSS to address this issue. In addition, we add Share Verification and

Share Renewal features to our proposed scheme. The scheme is explained below.

Assume that there is a group P = {p1, p2, · · · , pN} of N participants. The partic-

ipants are disjointly partitioned into ℓ compartments, such as ℓ1, ℓ2, · · · , ℓℓ. Let ti be

the threshold and ni be the total number of participants in ℓi. Then N =
ℓ∑

i=1
ni and

we denote t =
ℓ∑

i=1
ti as global threshold . However, ℓi (compartment number) is private

and ni is public in this scheme.

This scheme comprises six phases: Share Distribution, Commitments, Share Veri-

fication, Compartment Number Computation, Share Renewal, and Secret Reconstruc-

tion.

During Share Distribution phase, Dealer chooses t − 1 degree polynomial, from

which shares of level secret si are computed, and then distributes them through secure

channels to participants in level ℓi. Next, the Dealer computes a public value. In

Commitment phase, the Dealer computes commitments and makes them public. In

Share Verification phase, each participant verifies their respective share whether it is

valid or not by using commitments. In Compartment Number Computation phase, each

participant computes his level number from public value and his corresponding share.

In Share Renewal phase, each participant renewed his share after some interval time

without changing the secret. In Secret Reconstruction phase, the threshold number

of participants get to reassemble the secret. The above phases are explained below in

detail.

4.2.1 Share Distribution

• The Dealer chooses ℓ− 1 degree polynomial.

g(x) = S + a1x+ a2x
2 + · · ·+ aℓ−1x

ℓ−1 mod q (4.1)

where ai ∈ Fq, secret S = g(0) and q is prime .
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• Each participant has idij , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni.

• Dealer computes compartment secret si, si = g(i) mod q, 1 ≤ i ≤ ℓ.

• Dealer chooses a polynomial of degree ti − 1 for each compartment ℓi, 1 ≤ i ≤ ℓ

hi(x) = si+ci,1x+ci,2x
2+ci,3x

3+· · ·+ci,ti−1x
ti−1 mod q, ci,1, ci,2, · · · , ci,ti−1 ∈ Fq.

(4.2)

• Dealer computes shares(shij )for participants in every compartment and sends

via secure channel.

shij = hi(idij) mod q, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni. (4.3)

• Dealer computes a public value

kij = shij + sh−1
ij + ℓiidij mod q. (4.4)

4.2.2 Commitments

• Dealer chooses a large prime p such that q | (p − 1) and primitive root a of

subgroup of Z∗
p of order q and computes commitments cmi0, cmij as

cmi0 = asi mod p for 1 ≤ i ≤ ℓ. (4.5)

cmij = acik mod p for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni, 1 ≤ k ≤ t− 1. (4.6)

• Dealer makes cmi0, cmij values public.

4.2.3 Share Verification

• Participants can verify validity of their respective share shij by checking iff

ashij = (cmi0)(cmi1)
idij · · · (cmi(t−1))

idij
t−1

mod p,

where 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni.
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4.2 Proposed Compartmented Proactive Secret Sharing Scheme

4.2.4 Compartment Number Computation

• Each participant receives his share shij secretly and public information kij .

• Each participant computes his compartment number ℓi as

ℓi = id−1
ij (kij − shij − sh−1

ij ) mod q.

4.2.5 Share Renewal

• Each participant chooses a polynomial of degree ti − 1 in every compartment

dij(x) = cij,1x+ cij,2x
2 + cij,3x

3 + · · ·+ cij,ti−1x
ti−1 mod q ,where

1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni, dij(0) = 0 and cij,1, cij,2, · · · , cij,ti−1 ∈ Fq.

• Each participant computes ri,k,j and distribute to all participants secretly

ri,k,j = dij(idik) mod q, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni, 1 ≤ k ≤ ni. (4.7)

• Each participant computes sh′ij as

sh′ij =

ni∑
k=1

ri,j,k mod q, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni. (4.8)

• Each participant gets his new share nshij as

nshij = shij + sh′ij mod q, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni. (4.9)

4.2.6 Secret Reconstruction

• In every compartment (ti, ni) participant can recover their compartment secret

si with help of their respective shares by using Lagrange’s interpolation formula

2.1.

• Then participants can get back their polynomial g(x) by using Lagrange’s inter-

polation formula , hence secret S = g(0).

49
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4.3 Numerical Problem

Suppose there is a Dealer who wants to share a secret S among a group P of N = 7

participants, disjointly partitioned into ℓ = 2 compartments: Compartment 1 with

t1 = 2 participants, n1 = 3 and Compartment 2 with t2 = 3 participants, n2 = 4. The

Dealer has chosen prime numbers q = 17, p = 53, and a = 3, which is a primitive root

of Z∗
p of order q.

The Dealer chooses a degree ℓ− 1 = 1 polynomial for secret S:

g(x) = S + a1x mod q

Let’s say that S = 5 and a1 = 3. So, the polynomial is g(x) = 5 + 3x mod 17.

Each participant is assigned an identification number idij . For simplicity, let’s as-

sume that for Compartment 1, id11 = 1, id12 = 2, id13 = 3 and for Compartment 2,

id21 = 8, id22 = 5, id23 = 6, id24 = 7

The Dealer computes the compartment secret si for each compartment:

s1 = g(1) = 5 + 3 ∗ 1 mod 17 = 8 mod 17 = 8,

s2 = g(2) = 5 + 3 ∗ 2 mod 17 = 11 mod 17 = 11.

The Dealer chooses a polynomial of degree ti − 1 for each compartment ℓi.

For ℓ1, we have a degree t1 − 1 = 1 polynomial:

h1(x) = s1 + c1,1x mod q.

Let’s say c1,1 = 2. So, the polynomial is h1(x) = 8 + 2x mod 17.

For ℓ2, we have a degree t2 − 1 = 2 polynomial:

h2(x) = s2 + c2,1x+ c2,2x
2 mod q.

Let’s say c2,1 = 3 and c2,2 = 4. So, the polynomial is h2(x) = 11+3x+4x2 mod 17.

The Dealer computes the shares (shij) for participants in each compartment and sends

them securely:

For Compartment 1 Shares: sh11 = h1(1) = 8 + 2(1) mod 17 = 10, sh12 = h1(2) =

8 + 2(2) mod 17 = 12, sh13 = h1(3) = 8 + 2(3) mod 17 = 14.
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For Compartment 2 Shares: sh21 = h2(8) = 11 + 3(8) + 4(82) mod 17 = 2, sh22 =

h2(5) = 11 + 3(5) + 4(52) mod 17 = 7, sh23 = h2(6) = 11 + 3(6) + 4(62) mod 17 = 3,

sh24 = h2(7) = 11 + 3(7) + 4(72) mod 17 = 7.

The Dealer computes a public value for each participant kij :

For Compartment 1:

k11 = sh11 + sh−1
11 + ℓ1 · id11 mod 17

= 10 + 10−1 + 2 · 1 mod 17 = 7.

k12 = sh12 + sh−1
12 + ℓ1 · id12 mod 17

= 12 + 12−1 + 2 · 2 mod 17 = 9.

k13 = sh13 + sh−1
13 + ℓ1 · id13 mod 17

= 14 + 14−1 + 2 · 3 mod 17 = 1.

For Compartment 2:

k21 = sh21 + sh−1
21 + ℓ2 · id21 mod 17

= 2 + 2−1 + 2 · 8 mod 17 = 12.

k22 = sh2 + sh−1
21 + ℓ2 · id22 mod 17

= 7 + 7−1 + 2 · 5 mod 17 = 5.

k23 = sh23 + sh−1
23 + ℓ2 · id23 mod 17

= 3 + 3−1 + 2 · 6 mod 17 = 4.
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k24 = sh24 + sh−1
24 + ℓ2 · id24 mod 17

= 7 + 7−1 + 2 · 7 mod 17 = 9.

For Compartment 1: k11 = 7, k12 = 9, k13 = 1.

For Compartment 2: k21 = 12, k12 = 5, k23 = 4, k24 = 9.

4.3.1 Commitments

For Compartment 1 (ℓ1), the commitments from equations 4.5 and 4.6 are computed

based on the provided equations. Let’s compute them:

cm10 = as1 mod p = 38 mod 53 = 8

cm11 = ac1,1 mod p = 32 mod 53 = 9

So, for Compartment 1, the commitments are cm10 = 8 and cm11 = 9.

For Compartment 2 (ℓ2), again, we compute the commitments based on the equations:

cm20 = as2 mod p = 311 mod 53 = 47

cm21 = ac2,1 mod p = 33 mod 53 = 27

cm22 = ac2,2 mod p = 34 mod 53 = 14

So, for Compartment 2, the commitments are cm20 = 47, cm21 = 27, and cm22 = 14.

The dealer will make public the following commitments:

For compartment 1: cm10 = 8, cm11 = 9

For compartment 2: cm20 = 47, cm21 = 27, cm22 = 14

4.3.2 Compartment Number Computation

Let’s consider a scenario where we have participant 2, who belongs to compartment 1,

and they wish to determine their corresponding compartment number. The participant

possesses the following information:

Share: sh12 = 12. Public information: k12 = 9

To calculate the participant’s compartment number, we can utilize the given formula:
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4.3 Numerical Problem

ℓi = id−1
ij (kij − shij − sh−1

ij ) mod q

By substituting the provided values into the formula, we obtain:

ℓi = 1−1(9− 12− 12−1) mod 17 = 1

Thus, participant 2, who belongs to compartment 1, can determine their respective

compartment number by using their share value of 12 and the public information value

of 9. In this case, the calculated compartment number is 1.

Similarly, each participant calculates their own respective compartment number.

4.3.3 Share Verification

To verify the validity of participant 2’s share, denoted as sh12 = 12, we can utilize the

following equation:

ashij = (cmi0)(cmi1)
idij · · · (cmi(t−1))

idij
t−1

mod p,

where the given values are as follows:

Participant id: idij = 2

Compartment number: i = 1

Share value: shij = 12

p = 53, a = 3

We can substitute these values into the equation and check its validity:

a12 = (cm10)(cm11)
2 mod 53

Commitments: (cm10) = 8, (cm11) = 9

a12 = 312 ≡ 10648 mod 53 ≡ 35 mod 53

Now, compare both sides of the equation:

35 ≡ (8)(92) mod 53

≡ 8 · 81 mod 53

≡ 648 mod 53

≡ 35 mod 53

Since both sides of the equation are equal, the share sh12 = 12 is verified as valid.

Similarly, other participants should confirm whether their respective shares are valid

or not.

53



4. COMPARTMENTED PROACTIVE SECRET SHARING BASED ON
POLYNOMIAL

4.3.4 Share Renewal

For Compartment 1 Shares:

sh11 = 10, sh12 = 12, sh13 = 14.

For Compartment 2 Shares: sh21 = 2, sh22 = 7, sh23 = 3, sh24 = 7.

For Compartment 1:

d11(x) = 9x

d12(x) = 3x

d13(x) = 4x

For Compartment 2:

d21(x) = 5x

d22(x) = 6x

d23(x) = 9x

d24(x) = 7x

Share renewal values:

For Compartment 1:

d11(1) = 9 ∗ 1 = 9 mod 17 = 9

d11(2) = 9 ∗ 2 = 18 mod 17 = 1

d11(3) = 9 ∗ 3 = 27 mod 17 = 10

d11(8) = 9 ∗ 8 = 72 mod 17 = 4

d11(5) = 9 ∗ 5 = 45 mod 17 = 11

d11(6) = 9 ∗ 6 = 54 mod 17 = 3

d11(7) = 9 ∗ 7 = 63 mod 17 = 12.

d12(1) = 3 ∗ 1 = 3 mod 17 = 3

d12(2) = 3 ∗ 2 = 6 mod 17 = 6

d12(3) = 3 ∗ 3 = 9 mod 17 = 9

d12(8) = 3 ∗ 8 = 24 mod 17 = 7

d12(5) = 3 ∗ 5 = 15 mod 17 = 15
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d12(6) = 3 ∗ 6 = 18 mod 17 = 1

d12(7) = 3 ∗ 7 = 21 mod 17 = 4

d13(1) = 4 ∗ 1 = 4 mod 17 = 4

d13(2) = 4 ∗ 2 = 8 mod 17 = 8

d13(3) = 4 ∗ 3 = 12 mod 17 = 12

d13(8) = 4 ∗ 8 = 32 mod 17 = 15

d13(5) = 4 ∗ 5 = 20 mod 17 = 3

d13(6) = 4 ∗ 6 = 24 mod 17 = 7

d13(7) = 4 ∗ 7 = 28 mod 17 = 11

For Compartment 2:

d21(1) = 5 ∗ 1 = 5 mod 17 = 5

d21(2) = 5 ∗ 2 = 10 mod 17 = 10

d21(3) = 5 ∗ 3 = 15 mod 17 = 15

d21(8) = 5 ∗ 8 = 40 mod 17 = 6

d21(5) = 5 ∗ 5 = 25 mod 17 = 8

d21(6) = 5 ∗ 6 = 30 mod 17 = 13

d21(7) = 5 ∗ 7 = 35 mod 17 = 1

d22(1) = 6 ∗ 1 = 6 mod 17 = 6

d22(2) = 6 ∗ 2 = 12 mod 17 = 12

d22(3) = 6 ∗ 3 = 18 mod 17 = 1

d22(8) = 6 ∗ 8 = 48 mod 17 = 14

d22(5) = 6 ∗ 5 = 30 mod 17 = 13

d22(6) = 6 ∗ 6 = 36 mod 17 = 2

d22(7) = 6 ∗ 7 = 42 mod 17 = 8

d22(1) = 6 ∗ 1 = 6 mod 17 = 6

d22(2) = 6 ∗ 2 = 12 mod 17 = 12

d22(3) = 6 ∗ 3 = 18 mod 17 = 1

d22(8) = 6 ∗ 8 = 48 mod 17 = 14

d22(5) = 6 ∗ 5 = 30 mod 17 = 13
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d22(6) = 6 ∗ 6 = 36 mod 17 = 2

d22(7) = 6 ∗ 7 = 42 mod 17 = 8

d24(1) = 7 ∗ 1 = 7 mod 17 = 7

d24(2) = 7 ∗ 2 = 14 mod 17 = 14

d24(3) = 7 ∗ 3 = 21 mod 17 = 4

d24(8) = 7 ∗ 8 = 56 mod 17 = 5

d24(5) = 7 ∗ 5 = 35 mod 17 = 1

d24(6) = 7 ∗ 6 = 42 mod 17 = 8

d24(7) = 7 ∗ 7 = 49 mod 17 = 15

sh′11: (9 + 3 + 4 + 5 + 6 + 9 + 7) mod 17 = 43 mod 17 = 9

sh′12: (1 + 6 + 8 + 10 + 12 + 1 + 14) mod 17 = 52 mod 17 = 1

sh′13: (10 + 9 + 12 + 15 + 1 + 10 + 4) mod 17 = 61 mod 17 = 10

sh′21: (4 + 7 + 15 + 6 + 14 + 4 + 5) mod 17 = 55 mod 17 = 4

sh′22: (11 + 15 + 3 + 8 + 13 + 11 + 1) mod 17 = 62 mod 17 = 11

sh′23: (3 + 1 + 7 + 13 + 2 + 3 + 8) mod 17 = 37 mod 17 = 3

sh′24: (12 + 4 + 11 + 1 + 8 + 12 + 15) mod 17 = 63 mod 17 = 12

For Compartment 1 new shares: nsh11 = 2, nsh12 = 13, nsh13 = 7.

For Compartment 2 new shares: nsh21 = 6, nsh22 = 1, nsh23 = 3, nsh24 = 2.

4.3.5 Secret Reconstruction

Using Lagrange’s interpolation 2.1, the threshold number of participants( t = t1+ t2 =

2 + 3) can reconstruct the secret by combining their old and new shares.

Old threshold number of shares: sh11 = 10, sh12 = 12, sh22 = 7, sh23 = 3, sh24 = 7.

The secret S = 5.

New threshold number of shares:

nsh11 = 2, nsh12 = 13, nsh22 = 1, nsh23 = 3, nsh24 = 2. The secret S = 5.
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4.4 Correctness and Security Analysis of the scheme

This section explains the correctness and security analysis of Compartment Number

Computation, Share Verification and Share Renewal.

4.4.1 Correctness and Security Analysis for Compartment Number

Each participant calculates their compartment number as follows:

ℓi = id−1
ij (kij − shij − sh−1

ij ) mod q.

id−1
ij (kij − shij − sh−1

ij )mod q

≡ id−1
ij (shij + sh−1

ij + ℓiidij − shij − sh−1
ij ) mod q, from equation 4.4

≡ id−1
ij ℓiidij mod q

≡ ℓi mod q.

The probability of choosing correct shij is 1
q . As q is large prime, the probability is

very less/negligible. From knowing kij and q getting ℓi is difficult without knowledge

of shij for an adversary.

4.4.2 Correctness and Security Analysis for share verification

Participants verify their respective share by using cmi0, cmij as below:

ashij = (cmi0)(cmi1)
idij · · · (cmi(t−1))

idij
t−1

mod p,

where 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni.

(cmi0)(cmi1)
idij (cmi2)

idij
2

· · · (cmi(t−1))
idij

t−1

mod p

≡ (asi)(aci1)idij (aci2)idij
2

· · · (aci(t−1))idij
t−1

mod p, from equation 4.5 and equation 4.6

≡ asi+ci1idij+ci2idij
2+···+ci(t−1)idij

t−1

mod p

≡ agi(idij) mod p, from equation 4.2

≡ ashij mod p, from equation 4.3.
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Here cmi0 and cmij values alone don’t reveal any information about secret because

revealing those values down to solving discrete logarithm problem.

4.4.3 Correctness and Security Analysis for Share renewal

The new share nshij of each participant in compartment ℓi is

nshij = shij + sh′ij mod q, from equation 4.9

= shij +

ni∑
k=1

ri,j,k mod q, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ni, from equation, 4.7

= hi(idij) +

ni∑
k=1

dik(idij) mod q, from equation, 4.7

= si +

ti−1∑
k=1

ci,kidij
k +

ti−1∑
k=1

ci1,kidij
k + · · ·+

ti−1∑
k=1

cini,kidij
k mod q, from equation, 4.2

= si +
(
ci,1 +

ni∑
k=1

cik,1

)
idij · · ·+

(
ci,ti−1 +

ni∑
k=1

cik,ti−1

)
idij

ti−1 mod q.

From each compartment ℓi, ti or more participants can combine to rebuild the com-

partment secret si using the Lagrange’s interpolation formula

Thus the compartment secret si will be revealed. The threshold number of par-

ticipants or more can reconstruct the secret. While less than threshold number of

participants or more cannot get the secret.

The probability of getting the correct secret S is 1
q as S ∈ Fq is random.

4.5 Conclusion

This chapter proposed a Compartmented Proactive Secret Sharing Scheme. In this

scheme, a threshold number of participants are necessary to reconstruct the secret

in each compartment. As part of this proposal, each user can verify his own share

consistency. Moreover, these shares are updated periodically, making it difficult for

unauthorized parties to recreate the hidden information. The secret cannot be recon-

structed in any compartment if there is less than the threshold number of participants.
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4.5 Conclusion

This scheme is offered to improve participant privacy because the compartment num-

ber is known only from his respective share and Share Verifiability and Share Renewal

features were added to enhance the security of the scheme.
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Chapter 5

Authenticated Distributed Group

Key Agreement Protocol using

Elliptic Curve SSS

5.1 Introduction

In a centralised system, we encounter a significant challenge known as the single point

of failure. This issue arises because everything relies on one central element, and if

that part fails, the whole system can collapse. To avoid this risk, we often shift to a

distributed environment. In a distributed framework, many different parts or individ-

uals contribute to the system, making it less reliant on one central part. This shared

responsibility greatly reduces the chance of the entire system breaking down if one part

has a problem.

An important aspect of these distributed systems is the consensus on a group key

agreement protocol. This is a collective decision made by all members of the system to

use a shared key. This key is critical for maintaining secure communication within the

system, allowing everyone to work together efficiently and securely. By moving from a

centralised to a distributed system and agreeing on a group key, we are able to avoid

the single point of failure issue, resulting in a more reliable system.

In distributed environments where participants are located in different locations, group
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key agreement protocols are crucial for securing communication within groups. A com-

mon group key is agreed upon by group members, and this key is then used to facilitate

secure communication among the members of the group. In resource-constrained envi-

ronments, the need for efficient and secure key agreement protocols has become more

pressing than ever due to the rapid expansion of Internet of Things (IoT) applications.

A popular choice for these environments is elliptic curve cryptography (ECC), which

provides sufficient security with smaller key sizes.

Problem Identification and Motivation

There have been numerous techniques used in the literature to distribute group key-

related information among group members, including polynomials, bilinear pairings,

and secret sharing schemes (SSSs). These methods have demonstrated considerable

utility in fostering a secure environment for communication by distributing keys effi-

ciently among users in a network. However, while these approaches are undoubtedly

effective, they present certain challenges when deployed in Internet of Things (IoT) or

other resource-constrained environments. The constraints posed by IoT devices, such

as limited computing power, storage capacity, and energy supply, make traditional

Secret Sharing Scheme less efficient. These environments require a balance between

high-level security and the reduction of computational overhead, storage requirements,

and power consumption. In other words, resource-constrained environments demand

highly efficient security protocols that maintain robust security while consuming mini-

mal resources.

With the aim to address this challenge, there has been a substantial enhancement in

the efficiency of these cryptographic techniques. Notably, the advent and use of secret

sharing schemes have greatly improved key distribution in terms of computational and

communication overheads.

Contributions:

The following are our contributions in this chapter:
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5. AUTHENTICATED DISTRIBUTED GROUP KEY AGREEMENT
PROTOCOL USING ELLIPTIC CURVE SSS

• A novel Elliptic Curve Secret Sharing Scheme (ECSSS) is proposed for resource

constrained environments.

• Authenticated Distributed Group Key Agreement Protocol using Elliptic Curve

Secret Sharing Scheme (ADGKAP) is proposed to achieve equal security with

relatively smaller key size, storage, fast computation.

• To the best of our knowledge, no Authenticated Distributed Group Key Agree-

ment Protocol has used Elliptic Curve Secret Sharing Scheme for share distribu-

tion till date.

The salient features of the ADGKAP are as below:

• A novel Elliptic Curve Secret Sharing Scheme is designed to generate points that

are used as shares by the users.

• All the shares of the scheme are shared through a public channel in a distributed

environment.

• After the group key is reconstructed by each individual user, the user can verify

the authentication of the group key by comparing the hash of his reconstructed

key with the hash of the other user’s reconstructed key.

• ADGKAP is proven secure enough provided the elliptic curve discrete logarithm

problem is intractable. Proposed ADGKAP provides equal security with a smaller

key size, less storage, faster computation, and less computational cost without

compromising on the number of rounds. In this ADGKAP, each group user can

reconstruct the key individually, but an attacker cannot reconstruct the key.

5.2 Notations

• Users, (U1, U2, · · · , Un), where n is number of users.

• Let E : y2 = x3 + ax+ b be an elliptic curve over Fq, q is prime power.

• Point P ∈ E(Fq) and

G =< P > be a group of order ℓ, where ℓ is prime.
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Figure 5.1: Framework of ECSSS

Figure 5.2: Framework of ADGKAP

• Any User Ui makes values E, q, P , and ℓ public.

• r1, r2, · · · , r(n−1), k1 ∈ [1, ℓ− 1] are random values.

• User U1 key is k1P , User U2 is key is k2P , and User Un key is knP .

• bijP are encrypted shares and cijP are public shares, for ith user and j =

1, 2 · · · , n, j ̸= i.

• h is SHA 256 hashing function.
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5.3 Proposed Elliptic Curve Secret Sharing Scheme (EC-

SSS)

ECSSS has two steps namely , Secret Distribution and Key Reconstruction. In Secret

Distribution, user U1 computes n shares of his key k1P generated from elliptic curve

E. Out of n shares, n− 1 shares are made public, and 1 is kept as a private share. The

private share is sent to n − 1 users through a secure channel. In Key Reconstruction,

U2, U3, U4 reconstructs key k1P . The ECSSS and the Correctness of the key recon-

struction are explained in sections 5.3 and 5.3.3, respectively.

Assume that user U1 wants to secretly send the shares of key, k1P to n − 1 users

(U2, U3, U4, · · · , Un) .

5.3.1 Secret Distribution

• Let E : y2 = x3 + ax+ b be an elliptic curve over Fq, q is prime power.

• Point P ∈ E(Fq) and

G =< P > be a group of order ℓ, where ℓ is prime.

• User U1 makes values E, q, P , and ℓ public.

• User U1 chooses a n× n vandermonde matrix A1 and makes it public

A1 =


1 z1 z21 · · · zn−1

1

1 z2 z22 · · · zn−1
2

1 z3 z23 · · · zn−1
3

...
...

...
...

...
1 zn z2n · · · zn−1

n


n×n

• U1 selects values, r1, r2, · · · , r(n−1), k1 ∈ [1, ℓ− 1] randomly.

• U1 calculates d1, c1, · · · , c(n−1) as follows,

(d1, c1, c2, · · · , c(n−1))
T = A1(k1, r1, r2 · · · , r(n−1))

T .

• U1 calculates (d1P, c1P, c2P, · · · , c(n−1)P )T .

• U1 sends share d1P secretly to n− 1 users through secure channel and makes the

remaining n− 1 shares c1P, c2P, · · · , c(n−1)P as public .
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5.3.2 Key Reconstruction

• Each user Ui, i = 2, 3, · · · , n, can reconstruct the key k1P by computing

A1
−1(d1P, c1P, c2P, · · · , c(n−1)P )T , which is equivalent to

(k1P, r1P, r2P, · · · , r(n−1)P )T .

Note 1:

Each user Ui has shares d1P, c1P, c2P, · · · , c(n−1)P .

That is, A1(k1P, r1P, r2P, · · · , r(n−1)P )T = (d1P, c1P, c2P, · · · , c(n−1)P )T .

Figure 5.1 describes ECSSS as follows: Suppose there are three users in the scheme.

User U1 chooses a key k1P , and computes shares: one private share d1P and public

shares c1P and c2P . User U1 sends private share to U2, U3 through a secure channel.

Finally, U2, U3, reconstruct the key k1P from d1P and c1P and c2P .

5.3.3 Correctness of the Key Reconstruction

Each user Ui, i = 2, 3, · · · , n has n shares: one private share d1P ,and n − 1 public

shares c1P, c2P, · · · , c(n−1)P . The user Ui computes A1
−1 and multiply that with

shares (d1P, c1P, c2P, · · · , c(n−1)P )T . i.e

A1
−1(d1P, c1P, c2P, · · · , c(n−1)P )T .

= A1
−1(A1(k1P, r1P, r2P, · · · , r(n−1)P )T )

= I(k1P, r1P, r2P, · · · , r(n−1)P )T , from Note 1 of 5.3.2

= (k1P, r1P, r2P, · · · , r(n−1)P )T

where I = A1
−1(A1) is identity matrix of order n. Therefore each user Ui, i = 2, 3, · · · , n

can reconstruct the key.

Next, we propose an Authenticated Distributed Group Key Agreement Protocol

using Elliptic Curve Secret Sharing Scheme using ( ECSSS), which uses public channel

for share distribution and gives authentication to the group key.
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5.4 Proposed Authenticated Distributed Group Key Agree-

ment Protocol Using Elliptic Curve Secret Sharing

Scheme (ADGKAP)

We propose ADGKAP by using ECSSS. ADGKAP has three steps namely, Secret

Distribution, Key Reconstruction and Authentication. In Secret Distribution , each

user Ui, i = 1, 2, · · · , n computes n − 1 private shares and n − 1 public shares of

point kiP . The private shares are sent in an encrypted manner via a public channel.

Then, each user reconstructs his respective share using his private key and encrypted

share. In Key Reconstruction, every user Ui, i = 1, 2, · · · , n reconstructs the key kjP of

Uj , j = 1, 2, · · · , n, j ̸= i by using his respective share and n− 1 public shares . Then,

each user Ui reconstructs the group key S =
n∑

j=1
kjP . In Authentication, the group key

is reconstructed by each individual user. Also, the user authenticates of group key by

comparing the hash of each user’s reconstructed key with the hash of the other user’s

reconstructed key. This ADGKAP and the Correctness of the group key reconstruction

are explained in sections 5.4 and 5.4.4, and the numerical example of the ADGKAP is

explained in section 5.4.5, respectively.

The goal of the scheme is to create a group key S among n users, U1, U2, · · · , Un,

collaboratively using public channel. This scheme consists of three steps: Secret Dis-

tribution, Key Reconstruction, and Authentication.

5.4.1 Secret Distribution

• Let E : y2 = x3 + ax+ b be an elliptic curve over Fq, q is prime power.

• Point P ∈ E(Fq) and G = ⟨P ⟩ be a group of order ℓ, where ℓ is prime.

• Any user Ui, i = 1, 2, · · · , n , can make E, q, P and ℓ as public.

• Each user Ui chooses a (2n− 2)× n matrix
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Ai =



1 zi1 z2i1 · · · zn−1
i1

...
...

...
...

...

1 zi(n−1) z2i(n−1) · · · zn−1
i(n−1)

1 zin z2in · · · zn−1
in

...
...

...
...

...

1 zi(2n−2) z2i(2n−2) · · · zn−1
i(2n−2)


where zim ̸= zik for m ̸= k , zim, zik ∈ [1, ℓ− 1],

for 1 ≤ i ≤ n and 1 ≤ m, k ≤ (2n− 2),

and Ui makes Ai public.

• Each Ui chooses rij , ki ∈ [1, ℓ− 1] randomly, j = 1, 2, · · · , n− 1.

• Ui computes di1, di2, · · · , di(i−1), di(i+1), · · · , din, and

ci1, ci2, · · · , ci(i−1), ci(i+1), · · · , cin as (di1, di2, · · · , di(i−1), di(i+1), · · · , din, ci1, ci2, · · · ,

ci(i−1), ci(i+1), · · · , cin)T = Ai(ki, ri1, · · · , ri(n−1))
T .

• Ui computes key kiP .

• Ui computes di1P, di2P, · · · , di(i−1)P, di(i+1)P, · · · , dinP , and

ci1P, ci2P, · · · , ci(i−1)P, ci(i+1)P, · · · , cinP .

• Ui makes ci1P, ci2P, · · · , ci(i−1)P, ci(i+1)P, · · · , cinP as public.

• Each user Ui chooses a private key vi ∈ [1, ℓ− 1] and makes viP public.

• User Ui computes encrypted share bijP as

bijP = dijP + vivjP

and sends bijP publicly to the user Uj , j = 1, 2, · · ·n, j ̸= i.

• User Uj will get the private share dijP of Ui by computing dijP = bijP − vjviP .

Note 2: bijP are encrypted public shares and cijP are public shares.
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5.4.2 Key Reconstruction

• Each user Ui reconstructs the key of Uj , j = 1, 2, · · · , n and j ̸= i, as

Mj
−1(djiP, cj1P, cj2P, · · · , cjnP ), which is equivalent to,

(kjP, rj1P, rj2P, · · · , rj(n−1)P ) where

Mj =


1 zji zji

2 · · · zji
n−1

1 zjn z2jn · · · zn−1
jn

...
...

...
...

...

1 zj(2n−2) z2j(2n−2) · · · zn−1
j(2n−2)


n×n

is a submatrix of Aj corresponding to the shares djiP, cj1P, cj2P, · · · , cjnP .

Note that Mj is a Vandermonde matrix.

• Finally, each user Ui reconstructs the group key S =
n∑

j=1
kjP .

5.4.3 Authentication

• Each user Ui computes Ci = h(S) and makes it public, where S =
n∑

j=1
kjP.

• The user will check the authenticity of the key by checking iff C1 = C2 = · · · = Cn.

If the above holds true, then the group key S is valid.

Note 3:

Mj(kj , rj1, · · · , rj(n−1))T represents corresponding rows in Ai(ki, ri1, · · · , ri(n−1))
T .

Figure 5.2 describes ADGKAP as follows: Assume three users are in the scheme.

In Secret Distribution, user U1 chooses a key k1P and computes encrypted shares,

b12P for U2, b13P for U3 and also computes public shares c12P, c13P and sends them

to users, U2, and U3 respectively. Similarly, users, U2 and U3 chooses keys k2P and

k3P respectively. User U2 computes encrypted shares b21P for U1 and b23P for U3

and U3 computes encrypted shares, b31P for U1 and b32P for U2. User U2 computes

public shares c21P, c23P sends them to both users U1 and U3. User U3 computes public

shares c31P, c32P sends them to both users U1 and U2. In Key Reconstruction: User

U1 computes k2P using b21P and public shares c21P, c23P . And also computes k3P

using b31P and public shares c31P, c32P . Similarly U2 computes k1P and k3P , and U3
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computes k1P and k2P . Finally, users , U1, U2, and ,U3 can compute the group key as

S = k1P + k2P + k3P.

5.4.4 Correctness of the Group Key Reconstruction

Each user Ui has (n− 1) private shares di1P, di2P, · · · , di(i−1)P, di(i+1)P, · · · , dinP , and

(n − 1) public shares cj1P, cj2P, · · · , cj(i−1)P, cj(i+1)P, · · · , cjnP , for j = 1, 2, · · · , n,
j ̸= i.

User Ui first computes Mj
−1, j = 1, 2, · · · , n and j ̸= i. Then the user computes

Mj
−1(djiP, cj1P, · · · , cj(i−1)P, cj(i+1)P, · · · , cjnP )T .

= Mj
−1(Mj(kjP, rj1P, · · · , rj(n−1)P )T ), from Note 3 of 5.4.3

= I(kjP, rj1P, · · · , rj(n−1)P )T

= (kjP, rj1P, · · · , rj(n−1)P )T

where I = Mj
−1(Mj) is the identity matrix of order n.

Finally, user Ui computes group key S =
n∑

j=1
kjP .

5.4.5 Numerical Example

• Let E : y2 = x3 + 11x+ 12 be an elliptic curve over F467.

• Point P = (360, 185) ∈ E(F467) and G = ⟨P ⟩ be a group of order ℓ = 79.

• Any user Ui, i = 1, 2, 3 , can make E, q, P and ℓ public.

• We discuss in detail the Secret Distribution , Key Reconstruction, and Authenti-

cation in Tables 5.1, 5.2, and 5.3, respectively.

Table 5.1 is described as follows: In step 1, each user Ui, i = 1, 2, 3 chooses a

matrix of order 4 × 3 and makes it public. In step 2, each user Ui, i = 1, 2, 3,

chooses three random integers ki, ri1, ri2 ∈ [1, 78] randomly. In step 3, user U1 com-

putes d12, d13, c12 and c13, user U2 computes d21, d23, c21 and c23 , user U3 computes

69



5. AUTHENTICATED DISTRIBUTED GROUP KEY AGREEMENT
PROTOCOL USING ELLIPTIC CURVE SSS

d31, d32, c31 and c32 . In step 4, user Ui computes key kiP for i = 1, 2, 3. In step

5, user U1 computes d12P, d13P, c12P , c13P and makes c12P and c13P public, user U2

computes d21P, d23P, c21P , c23P and makes c21P and c23P public, user U3 computes

d31P, d32P, c31P , c32P and makes c31P and c32P public . In step 6, user Ui, i = 1, 2, 3

chooses private key vi and computes public key viP . In step 7, user U1 computes b12P

and b13P , user U2 computes b21P and b23P , user U3 computes b31P and b32P . Then

the users make b12P, b13Pb21P, b23P, b31P, b32P public. In step 8, user U1 computes his

shares d21P and d31P from v2P and v3P respectively, user U2 computes his from shares

d12P and d32P from v1P and v3P respectively, user U3 computes his shares d13P and

d23P from v1P and v2P respectively.

Table 5.2 is described as follows: In step 1, user U1 computes k2P, r21P, r22P from

M2 and d21P, c21P, c23P , user U2 computes k1P, r11P, r12P fromM1 and d12P, c12P, c13P ,

user U3 computes k1P, r11P, r12P from M1 and d13P, c12P, c13P . In step 2, user U1 com-

putes k3P, r31P, r32P from M3 and d31P, c31P, c32P , user U2 computes k3P, r31P, r32P

fromM3 and d32P, c31P, c32P . user U3 computes k2P, r21P, r22P fromM2 and d23P, c21P,

c22P . In step 3 ,user Ui, i = 1, 2, 3 computes group key S = k1P + k2P + k3P .

Table 5.3 is described as follows: In step 1, user Ui computes Ci, i = 1, 2, 3 and

makes it public. In step 2, user U1 verify C1 = C2 = C3, then if they are equal, group

key is valid . Similarly, U2 and U3 verify if their group key is valid or not.

5.5 Security Analysis

In this section, we discussed in detail that a valid user could reconstruct the group key,

but an attacker can not reconstruct the group key in detail.

5.5.1 Every User can reconstruct group key by using public shares

Suppose the user Ui wants to compute kjP , j = 1, 2, · · · , n, j ̸= i, the secret point of

Uj with the help of the private share djiP and n − 1 public shares. The user Ui can

form a system of equations as follows
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Table 5.1: Secret distribution

Steps User U1 User U2 User U3

1 U1 chooses 4× 3 matrix U2 chooses 4× 3 matrix U3 chooses 4× 3 matrix

A1 =


1 2 4
1 5 25
1 3 9
1 6 36

 A2 =


1 3 9
1 7 49
1 4 16
1 2 4

 A3 =


1 8 64
1 4 16
1 9 81
1 10 100


A1 is public A2 is public A3 is public

2 U1 chooses randomly U2 chooses randomly U3 chooses randomly
k1 = 14, r11 = 32, r12 = 27 k2 = 19, r21 = 21, r22 = 35 k3 = 48, r31 = 61, r32 = 12

3 U1 computes U2 computes U3 computes
d12
d13
c12
c13

 = A1

1432
27

 =


186
849
353
1178



d21
d23
c21
c23

 = A2

1921
35

 =


397
1881
663
201



d31
d32
c31
c32

 = A3

4861
12

 =


1304
484
1569
1858



4 U1 computes Key U2 computes Key U3 computes Key
k1P = (99, 290) k2P = (116, 97) k3P = (410, 375)

5


d12P
d13P
c12P
c13P

 =


(424, 193)
(21, 346)
(108, 135)
(288, 416)



d21P
d23P
c21P
c23P

 =


(435, 7)
(11, 159)
(410, 92)
(275, 427)



d31P
d32P
c31P
c32P

 =


(88, 50)
(316, 252)
(221, 195)
(387, 157)


c12P, c13P make public c21P, c23P make public c31P, c32P make public

6 U1 choose U2 chooses U3 chooses
Private key v1 = 24 Private key v2 = 57 Private key v3 = 63

Computes Computes Computes
public key v1P = (261, 186) public key v2P = (133, 124) public key v3P = (121, 391)

7 U1 computes encrypted shares U2 computes encrypted shares U3 computes encrypted shares
b12P = d12P + v1v2P b21P = d21P + v2v1P b31P = d31P + v3v1P
=⇒ b12P = (394, 229) =⇒ b21P = (220, 253) =⇒ b31P = (424, 274)
b13P = d13P + v1v3P b23P = d23P + v2v3P b32P = d32P + v3v2P
=⇒ b13P = (24, 435) =⇒ b23P = (99, 177) =⇒ b32P = (250, 169)

b12P, b13P made public b21P, b23P made public b31P, b32P made public

8 U1 computes shares U2 computes shares U3 computes shares
d21P = b21P − v1v2P d12P = b12P − v2v1P d13P = b13P − v3v1P
=⇒ d21P = (435, 7) =⇒ d12P = (424, 193) =⇒ d13P = (21, 346)
d31P = b31P − v1v3P d32P = b32P − v2v3P d23P = b23P − v3v2P
=⇒ d31P = (88, 50) =⇒ d32P = (316, 252) =⇒ d23P = (11, 159)
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Table 5.2: Key Reconstruction

Steps U1 U2 U3

1 M2 =

1 3 9
1 4 16
1 2 4

 M1 =

1 2 4
1 3 9
1 6 36

 M1 =

1 5 25
1 3 9
1 6 36


M2

−1(d21P, c21P, c23P )T M1
−1(d12P, c12P, c13P )T M1

−1(d13P, c12P, c13P )T

=

 (116, 97)
(203, 437)
(285, 426)

 =

 k2P
r21P
r22P

 =

 (99, 290)
(140, 153)
(220, 253)

 =

 k1P
r11P
r12P

 =

 (99, 290)
(140, 153)
(220, 253)

 =

 k1P
r11P
r12P



2 M3 =

1 8 64
1 9 81
1 10 100

 M3 =

1 4 16
1 9 81
1 10 100

 M2 =

1 7 49
1 4 16
1 2 4


M3

−1(d31P, c31P, c32P )T M3
−1(d32P, c31P, c32P )T M2

−1(d23P, c21P, c23P )T

=

(410, 375)(121, 391)
(163, 367)

 =

 k3P
r31P
r32P

 =

(410, 375)(121, 391)
(163, 367)

 =

 k3P
r31P
r32P

 =

 (116, 97)
(203, 437)
(285, 426)

 =

 k2P
r21P
r22P



3 Group key Group key Group key

S =
3∑

j=1
kjP = (435, 7) S =

3∑
j=1

kjP = (435, 7) S =
3∑

j=1
kjP = (435, 7)

Table 5.3: Key Authentication

Steps U1 U2 U3

1 h(S) = 34 h(S) = 34 h(S) = 34
C1 = 34 is public C2 = 34 is public C3 = 34 is public

2 C1 = C2 = C3 C1 = C2 = C3 C1 = C2 = C3

Group key S is Valid Group key S is Valid Group key S is Valid
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kjP + rj1zjiP + · · ·+ rj(n−1)z
n−1
ji P = djiP

kjP + rj1zjnP + · · ·+ rj(n−1)z
n−1
jn P = cj1P

kjP + rj1zj(n+1)P + · · ·+ rj(n−1)z
n−1
j(n+1)P = cj2P

...

kjP + rj1zj(2n−2)P + · · ·+ rj(n−1)z
n−1
j(2n−2)P = cjnP

Here, ci1, ci2 · · · , cin are public values, and kip and ri1p, · · · , rin−1p and can be cal-

culated by zin, · · · , zi2n−2.

The same matrix form can be represented as

1 zji z2ji · · · zn−1
ji

1 zjn z2jn · · · zn−1
jn

1 zj(n+1) z2j(n+1) · · · zn−1
j(n+1)

...
...

...
...

...

1 zj(2n−2) z2j(2n−2) · · · zn−1
j(2n−2)





kjP

rj1P

rj2P
...

rjnP


=



djiP

cj1P

cj2P
...

cjnP


The above coefficient matrix of the system has n unknowns and n equations, as the

rank of the coefficient matrix is n. Thus the system of equations has a unique solution

[3]. Hence a user can get key kjP , j = 1, 2 · · ·n, by inverting the coefficient matrix and

multiplying it with the share matrix (djiP, cj1P, cj2P, · · · , cjnP )T . Finally, the user Ui

computes the group key S =
n∑

j=1
kjP , using his secret key kiP .

5.5.2 An attacker cannot reconstruct the group key by using public

shares

Suppose an attacker wants to get kiP with n− 1 public shares. The attacker can form

a system of equations as follows.
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kP + ri1zinP + · · ·+ ri(n−1)zin
n−1P = ci1P

kiP + ri1zi(n+1)P + · · ·+ ri(n−1)z
n−1
i(n+1)P = ci2P

...

kiP + ri1zi(n+i−2)P + · · ·+ ri(n−1)z
n−1
i(n+i−2)P = ci(i−1)P

kiP + ri1zi(n+i)P + · · ·+ ri(n−1)z
n−1
i(n+i)P = ci(i+1)P

...

kiP + ri1zi(2n−2)P + · · ·+ ri(n−1)z
n−1
i(2n−2)P = cinP

The same matrix form can be represented as

1 zin · · · zn−1
in

1 zi(n+1) · · · zn−1
i(n+1)

...
...

...
...

...

1 zi(n+i−2) · · · zn−1
i(n+i−2)

1 zi(n+i) · · · zn−1
i(n+i)

...
...

...
...

1 zi(2n−2) · · · zn−1
i(2n−2)




kiP

ri1P
...

ri(n−1)P

 =



ci1P

ci2P
...

ci(i−1)P

ci(i+1)P
...

cinP


The above coefficient matrix of the system has n unknowns and only n−1 equations.

Thus the system of equations has finitely many solutions[3], and each solution is of equal

probability of 1
ℓn . For large ℓ, 1

ℓn is negligible. Thus an attacker cannot get key kiP

and hence S =
n∑

i=1
kiP .

5.6 Comparisons

This section compares our proposed scheme, Authenticated Distributed Group Key

Agreement Protocol using Elliptic Curve Secret Sharing Scheme (ADGKAP) with Harn

et al.[39] on various parameters such as Key size, a technique used, no of rounds and so

on. In literature, Shanks’ and Index Calculus Algorithms [78] are popular for solving

discrete logarithm algorithms in sub exponentiation time. However, till date, there are

no such algorithms for ECDLP [38].

Our ADGKAP scheme’s security relies on ECDLP(Elliptic Curve Discrete Loga-
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Table 5.4: Comparison of computation parameters between Harn Scheme and
ADGKAP scheme

Parameters Harn et al.[39] Our ADGKAP
Key Size(in bits) 1024,2048,3072 160,224,256
Hard problem DLP ECDLP

Crypto technique Polynomial SSS Elliptic Curve SSS

Attack DLP attacks(Index calculus,Shanks) No ECDLP attack

rithm Problem), but Harn et al. rely only on DLP ( Discrete Logarithm Problem). It

is widely known that ECDLP is more secure compared to DLP, hence our scheme is

more secure comparatively. Harn et al. worked on the finite field Fq, but our ADGKAP

scheme worked on the elliptic curve over a finite field E(Fq). This ensures that our

ADGKAP scheme, key size, and storage space are significantly less and have fast com-

putation compared to Harn et al. [39]. A comparison of Harn et al. with our proposed

ADGKAP scheme with respect to various computational efficiency parameters is listed

in Table 5.4.

In Cheng et al. [19] and Zhang Qikum et al. [94] schemes, the group key is dis-

tributed to participants using an encryption mechanism. Decryption relies on a single

key making it less secure because of a single point of failure. However, our proposed

ADGKAP scheme is more secure because shares of the key are distributed to a group

of participants instead of a key. Also, all of these use a secure channel for communi-

cation among users. But our ADGKAP uses public channel for communication among

participants. Li J et al. [59] uses 8n+ 6 exponentiation, where n is operations, Zhang

Q et al. [94] uses (2n+ 10) exponentiation, Cao et al. [16] uses 2 bilinear parings and

Zhang L et. al [93] uses 16 exponentiation, where n is number of users. All these four

schemes use a secure channel for communication between KGC and users. Cheng et al.

[19] uses (2n+ 2) bilinear operations, and Zhang Qikum et al. [94] uses 5 bilinear op-

erations. Both Cheng et al. [19], and Zhang Qikum et al. [94] protocols were designed

without KGC. Harn et al. used 2n exponentiation operations and a secret sharing

scheme without KGC. However, our scheme uses n2 scalar multiplications only. The

cost of bilinear parings and exponentiation are costly operations compared to scalar

multiplications[94]. Hence ADGKAP has less computational cost compared to existing

schemes. Cost comparisons among various schemes are listed in table 6.1.

In our proposed scheme, the matrix Ai and inverse of the matrix Mj of user

Uj , j = 1, 2, · · · , n are pre computed and made public by user Ui. Harn et al. require,

(n2 + n − 2) additions, multiplications (6n2 − 2n − 4) , (2n) divisions , (2n) expo-
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Table 5.5: Cost comparisons among various schemes

Author KGC SSS Channel Total cost

Li J et al. [59] Yes No Secure (8n+ 6) exponentiation

Zhang L et. al [93] Yes No Secure 16 exponentiation

Zhang Q et al. [94] Yes No Secure (2n+ 10) exponentiation

Cheng et al. [19] No No Secure (2n+ 2) bilinear pairings

Qikum et al. [95] No No Secure 5 bilinear pairings

Cao et al. [16] Yes Yes Secure 2 bilinear pairings

Harn et al. [39] No Yes Public 2n exponentiation

ADGKAP scheme No Yes Public n2 scalar multiplications

Table 5.6: Cost comparison between Harn Scheme and ADGKAP scheme

Operations Harn Scheme[39] ADGKAP scheme

Additions O(n2) Nil

Multiplications O(n2) O(n2)

Divisions O(n) Nil

Exponentiation O(n) Nil

Point additions Nil O(n2)

Scalar multiplications Nil O(n2)

Hashing O(n) O(n)

nentiation and (3n) hashing operations . However, our proposed scheme (ADGKAP)

requires (2n2 − 2n) multiplications, (3n2 − 3n) point additions , (3n2 + n − 1) scalar

multiplications and (n) hashing operations. A comparison of the computational cost

between the Harn scheme and our proposed ADGKAP scheme is given in table 5.6.

The observation from the table is that the costlier operation exponentiation is avoided

in our scheme and replaced by point additions and scalar multiplications that deals

with smaller key size with an equal level of security. This reduces the computational

cost of our scheme very much compared to Harn’s scheme. This makes our scheme

efficient in terms of computational cost and key size, which makes it a better choice

for resource constrained environments. Hence our proposed ADGKAP scheme gives

similar security with a smaller key size.

5.7 Summary

We proposed a novel Elliptic curve secret sharing scheme (ECSSS) for share distribu-

tion that is secure enough with a relatively smaller key size and storage. Then, an

Authenticated Distributed Group Key Agreement Protocol using Elliptic Curve Secret
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5.7 Summary

Sharing Scheme (ECSSS) is proposed. The proposed scheme can be used efficiently in a

distributed environment for a group key agreement. In comparison to existing schemes,

our proposed ADGKAP offers equal security with much smaller key sizes, less storage

space, and less computational cost without compromising on the number of rounds.

Every valid user in this scheme can reconstruct the group key, but the attacker cannot

do so. ECDLP is a major aspect of this scheme’s security. Compared to Authenticated

group Diffie–Hellman key agreement protocol [39] our proposed scheme ADGKAP is

more appropriate for resource constrained devices in a distributed environment.

In the future, it would be worthwhile to explore the dynamics of participant in-

teractions, especially the aspects of joining and leaving, within the framework of the

Authenticated Distributed Group Key Agreement Protocol implemented using ECSSS.
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Chapter 6

Multi Group Key Agreement

Protocol using SSS

6.1 Introduction

While numerous key agreement protocols are designed for single groups, their efficiency

wanes when applied to multi-group situations. In this digital age, where remote work

and online collaboration have become the norm, it is vital to ensure secure group

communication across various network applications. Leveraging group key agreement

protocols allows multiple participants to create a shared key, thereby ensuring the

security of their communication over networks. However, these protocols often fall

short in scenarios involving multiple groups that need to establish a common key for

secure interaction.

Now, consider the scenario where we try to adapt single group key agreement proto-

cols for multi-group scenarios. Here, the protocols typically encounter efficiency issues,

as they are not originally designed for such complex situations. Specifically, applying

these single group key agreement protocols for multi-group key agreement incurs signif-

icant overhead. This is because multiple iterations and re-computations are required to

establish a common key among various groups, which increases computational resources

and time, hence undermining the performance of the network. Therefore, it’s crucial

to develop specialized key agreement protocols tailored for multi-group scenarios to

maintain efficient and secure communication.
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Problem Identification and Motivation

In today’s rapidly evolving digital landscape, the rise of remote work and the spatial

distribution of teams has led to an increased demand for efficient and secure multi-group

communication methods. Traditionally, many key decision-making bodies function as

a collective rather than as individuals, forming a series of interlinked committees. To

facilitate effective, secure communication among these committees, it becomes essential

to implement key agreement protocols explicitly tailored for multi-group scenarios.

However, the problem arises when we notice that most existing key agreement pro-

tocols such as Diffie-Hellman and its various extensions, are primarily built on the

principle of pairwise key agreements or single group key agreements. These protocols,

while effective for their designed purposes, fail to address the unique set of challenges

posed by multi-group communications. For instance, they do not account for the in-

creased computational overhead that comes with scaling from single to multiple groups.

Moreover, when single group key agreement protocols are stretched to accommo-

date multi-group situations, they suffer from a significant increase in computational

overhead, as they require additional iterations and calculations to establish a common

key amongst different groups. This extra overhead negatively impacts the network’s

performance by consuming more resources and increasing latency.

The motivation driving this study arises from the urgent need to establish secure,

efficient communication across geographically dispersed groups in an era defined by on-

line collaboration and remote work. It becomes paramount to explore and develop new

key agreement protocols specifically engineered for multi-group scenarios. These proto-

cols should not only ensure secure communication by generating a common key across

multiple groups, but also optimize the process to minimize computational overhead and

resource consumption. By achieving this, we can improve the overall performance of

networks and foster seamless, secure communication across multiple groups.

Contribution

To address the limitations of existing protocols in multi-group scenarios, we propose

a novel multi-group key agreement protocol based on a secret sharing scheme. In our

opinion, our proposed protocol represents the first of its kind. This paper contributes

the following main contributions:
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Figure 6.1: Multi Group Key Agreement Protocol Using Secret Sharing Scheme

• Using a secret sharing scheme, we propose a multi-group key agreement protocol

that fills a gap in the existing literature on multi-group key agreements.

• In every group, the key can be rebuilt by any t or more participants, where t

represents the threshold number of participants.

• Any group will not be able to reconstruct the key with t−1 or fewer participants.

• The safety of a scheme relies on the discrete logarithm problem.

6.2 Proposed Multi Group Key Agreement Protocol Us-

ing Secret Sharing Scheme (MGKAP)

Participants from multiple groups can reconstruct the same key for having multi group

communication in a collaborative application. The entire setup is divided intom groups,

each with ni participants and threshold t for each group. Each participant can recon-

struct the key S iff at least a threshold number of individuals from his group come

together.
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6.2 Proposed Multi Group Key Agreement Protocol Using Secret Sharing
Scheme (MGKAP)

Figure 6.1 represents our multi group key agreement protocol containing m groups,

each with ni participants. Each group has threshold t, i.e., the secret S, which is the

group key, can be reconstructed if and only if atleast threshold t number of participants

from each group come together.

The idea of the scheme is to work in a distributed environment, where any partici-

pant from any group who wants to initiate the communication can select the threshold

t and the prime numbers q and p. All these three values are made public to all the

participants. Each participant chooses a random key polynomial and computes its sub-

shares, and distributes them secretly to other participants and himself in every group.

Every participant must verify whether the respective subshare received from other par-

ticipants is valid or not. After that, each participant calculates his respective share

from the received subshares and his subshare. A threshold number of participants from

each group need to come together to reconstruct the key S. After reconstructing the

key S at each group, any participant of the multiple groups can verify whether the

reconstructed key is correct or not. If the key is valid, participants can start their se-

cure group communication; otherwise, they cannot, which is discussed in theorem 6.4.3.

Proposed MGKAP involves six steps: Setup, Subshare Distribution, Commitments,

Subshare Verification, Original Share Construction, and Key Reconstruction.

6.2.1 Setup

• Assume that there are n total participants in m groups, each group with ni

participants such that
m∑
i=1

ni = n.

• The threshold value for each group is t.

• Each group has ni participants, where ni ≥ t.

• Each participant pi has idi, i = 1, 2, · · · , n.

• Any participant from any group initiate the communication, by choosing a large

prime p such that q | (p− 1) and primitive root a of subgroup of Z∗
p of order q.

• All the above values namely p, q, a, t are made public by the respective participant.
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6.2.2 Subshare Distribution

• Each participant pi, chooses a key si and a polynomial of degree t− 1,

gi(x) = si + ci1x+ ci2x
2 + ci3x

3 + · · ·+ ci(t−1)x
t−1, i = 1, · · · , n, (6.1)

where ci1, ci2, · · · , ci(t−1) ∈ Fq.

• And computes subshare yij = gi(idj) mod q, 1 ≤ i, j ≤ n.

• Later, subshare yij is communicated to all other participants and himself secretly.

6.2.3 Commitments

• Each participant pi computes Feldman commitments [34] cmi0, cmik and makes

them public where

cmi0 = asi mod p, 1 ≤ i ≤ n. (6.2)

cmik = acik mod p, 1 ≤ i ≤ n, 1 ≤ k ≤ t− 1. (6.3)

6.2.4 Subshare Verification

• Each participant pi can verify his respective subshare yij by using commitments

from section 6.2.3. His respective subshare is valid iff

ayij = (cmi0)(cmi1)
idj (cmi2)

idj
2 · · · (cmi(t−1))

idj
t−1

mod p, 1 ≤ i, j ≤ n.

6.2.5 Original Share Construction

• Each participant pi has n − 1 subshares and 1 subshare of himself , a total of n

subshares with him as yij , where 1 ≤ j ≤ n.

• And computes his original share yi as

yi =
n∑

j=1

yji mod q. (6.4)
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6.3 Numerical Example

6.2.6 Key Reconstruction

• Applying Lagrange’s interpolation equation, a threshold number of participants

from each group will come together to get the secret polynomial

g(x) =

t∑
i=1

Li(x)yi mod q. (6.5)

g(x) =

n∑
i=1

gi(x) mod q. (6.6)

• Then, threshold number of participants compute key S = g(0) =
n∑

i=1
gi(0) mod q =

n∑
i=1

simod q.

• Final key S can now be used as a session key for multi group communication.

6.3 Numerical Example

A numerical example on how each participant computes his Subshares, Commitments,

Subshare verification and Key Reconstruction is explained below step wise:

6.3.1 Setup

Assume total participants n = 24

Number of groups m = 4

Group 1 participant id′s = [1, 2, 3, 4, 5, 6, 7]

Group 2 participant id′s = [8, 9, 10, 11, 12, 13]

Group 3 participant id′s = [14, 15, 16, 17, 18]

Group 4 participant id′s = [19, 20, 21, 22, 23, 24]

Any participant of any group can initiate a group communication. Lets us say a

participant chooses for each group threshold, the number of participants t = 4, prime

numbers q = 233, and p = 467. a = 4 is the primitive root of subgroup Z∗
467 values

p, q, t and a are made public.

Tuple [x, y] represents x as id and y as subshare yij .

Can be be selected by any participant and made public.
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6.3.2 Subshare Distribution

Participant 1 chooses a three degree polynomial

g1(x) = 39 + 56x+ 133x2 + 211x3.

Participant 1 computes his subshares as

[[1, 206], [2, 41], [3, 111], [4, 51], [5, 195], [6, 178], [7, 101], [8, 65], [9, 171], [10, 54],

[11, 48], [12, 21], [13, 74], [14, 75], [15, 125], [16, 92], [17, 77], [18, 181], [19, 39], [20,

218], [21, 120], [22, 79], [23, 196], [24, 106]].

Participant 2 chooses three degree polynomial g2(x) = 87 + 13x+ 222x2 + 173x3.

Participant 2 computed sub shares

[[1, 29], [2, 55], [3, 38], [4, 84], [5, 66], [6, 90], [7, 29], [8, 222], [9, 76], [10, 163], [11,

123], [12, 62], [13, 86], [14, 68], [15, 114], [16, 97], [17, 123], [18, 65], [19, 29], [20, 121],

[21, 214], [22, 181], [23, 128], [24, 161]].

Participant 3 chooses three degree polynomial g3(x) = 5 + 183x+ 52x2 + 30x3.

Participant 3 computed sub shares

[[1, 37], [2, 120], [3, 201], [4, 227], [5, 145], [6, 135], [7, 144], [8, 119], [9, 7], [10, 221],

[11, 9], [12, 17], [13, 192], [14, 15], [15, 132], [16, 24], [17, 104], [18, 86], [19, 150], [20,

10], [21, 79], [22, 71], [23, 166], [24, 78]].

Participant 4 chooses three degree polynomial g4(x) = 190 + 89x+ 207x2 + 63x3.

Participant 4 computed sub shares

[[1, 83], [2, 69], [3, 60], [4, 201], [5, 171], [6, 115], [7, 178], [8, 39], [9, 76], [10, 201],

[11, 93], [12, 130], [13, 224], [14, 54], [15, 231], [16, 201], [17, 109], [18, 100], [19, 86],

[20, 212], [21, 157], [22, 66], [23, 84], [24, 123]].

Participant 5 chooses three degree polynomial g5(x) = 188 + 3x+ 138x2 + 150x3.

Participant 5 computed subshares

[[1, 13], [2, 82], [3, 130], [4, 125], [5, 35], [6, 61], [7, 171], [8, 100], [9, 49], [10, 219],

[11, 112], [12, 162], [13, 104], [14, 139], [15, 2], [16, 127], [17, 16], [18, 103], [19, 123],

[20, 44], [21, 67], [22, 160], [23, 58], [24, 195]].
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Participant 6 chooses three degree polynomial g6(x) = 132 + 65x+ 143x2 + 115x3.

Participant 6 computed subshares

[[1, 222], [2, 123], [3, 59], [4, 21], [5, 0], [6, 220], [7, 206], [8, 182], [9, 139], [10, 68],

[11, 193], [12, 39], [13, 63], [14, 23], [15, 143], [16, 181], [17, 128], [18, 208], [19, 179],

[20, 32], [21, 224], [22, 47], [23, 191], [24, 181]].

Participant 7 chooses three degree polynomial g7(x) = 157 + 202x+ 211x2 + 189x3

Participant 7 computed sub shares

[[1, 60], [2, 121], [3, 76], [4, 127], [5, 10], [6, 160], [7, 80], [8, 205], [9, 38], [10, 14],

[11, 102], [12, 38], [13, 24], [14, 29], [15, 22], [16, 205], [17, 81], [18, 85], [19, 186], [20,

120], [21, 89], [22, 62], [23, 8], [24, 129]]

Participant 8 chooses three degree polynomial g8(x) = 167 + 221x+ 69x2 + 29x3

Participant 8 computed subshares

[[1, 20], [2, 185], [3, 137], [4, 50], [5, 98], [6, 222], [7, 130], [8, 229], [9, 227], [10, 65],

[11, 150], [12, 190], [13, 126], [14, 132], [15, 149], [16, 118], [17, 213], [18, 142], [19, 79],

[20, 198], [21, 207], [22, 47], [23, 125], [24, 149]]

Participant 9 chooses three degree polynomial g9(x) = 97 + 74x+ 53x2 + 72x3.

Participant 9 computed subshares

[[1, 63], [2, 101], [3, 177], [4, 24], [5, 74], [6, 60], [7, 181], [8, 170], [9, 226], [10, 82],

[11, 170], [12, 223], [13, 207], [14, 88], [15, 65], [16, 104], [17, 171], [18, 232], [19, 20],

[20, 200], [21, 39], [22, 202], [23, 189], [24, 199]].

Participant 10 chooses three degree polynomial g10(x) = 211 + 212x + 61x2 + 105x3

Participant 10 computed subshares

[[1, 123], [2, 88], [3, 37], [4, 134], [5, 77], [6, 30], [7, 157], [8, 156], [9, 191], [10, 193],

[11, 93], [12, 55], [13, 10], [14, 122], [15, 89], [16, 75], [17, 11], [18, 61], [19, 156], [20,

227], [21, 205], [22, 21], [23, 72], [24, 56]]

Participant 11 chooses three degree polynomial g11(x) = 148 + 116x+ 37x2 + 44x3.
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Participant 11 computed subshares

[[1, 112], [2, 181], [3, 153], [4, 59], [5, 163], [6, 30], [7, 157], [8, 109], [9, 150], [10, 78],

[11, 157], [12, 185], [13, 193], [14, 212], [15, 40], [16, 174], [17, 179], [18, 86], [19, 159],

[20, 196], [21, 228], [22, 53], [23, 168], [24, 138]].

Participant 12 chooses three degree polynomial g12(x) = 55 + 77x+ 35x2 + 1x3.

Participant 12 computed subshares

[[1, 168], [2, 124], [3, 162], [4, 55], [5, 42], [6, 129], [7, 89], [8, 161], [9, 118], [10, 199],

[11, 177], [12, 58], [13, 81], [14, 19], [15, 111], [16, 130], [17, 82], [18, 206], [19, 42], [20,

62], [21, 39], [22, 212], [23, 121], [24, 5]]

Participant 13 chooses three degree polynomial g13(x) = 122 + 161x+ 220x2 + 97x3

Participant 13 computed subshares

[[1, 134], [2, 3], [3, 78], [4, 9], [5, 145], [6, 136], [7, 98], [8, 147], [9, 166], [10, 38], [11,

112], [12, 38], [13, 165], [14, 143], [15, 88], [16, 116], [17, 110], [18, 186], [19, 227], [20,

116], [21, 202], [22, 135], [23, 31], [24, 6]].

Participant 14 chooses three degree polynomial g14(x) = 137 + 164x+ 94x2 + 2x3.

Participant 14 computed subshares

[[1, 164], [2, 158], [3, 131], [4, 95], [5, 62], [6, 44], [7, 53], [8, 101], [9, 200], [10, 129],

[11, 133], [12, 224], [13, 181], [14, 16], [15, 207], [16, 67], [17, 74], [18, 7], [19, 111], [20,

165], [21, 181], [22, 171], [23, 147], [24, 121]] .

Participant 15 chooses three degree polynomial g15(x) = 204 + 223x+ 172x2 + 61x3.

Participant 15 computed subshares

[[1, 194], [2, 195], [3, 107], [4, 63], [5, 196], [6, 173], [7, 127], [8, 191], [9, 32], [10, 16],

[11, 43], [12, 13], [13, 59], [14, 81], [15, 212], [16, 119], [17, 168], [18, 26], [19, 59], [20,

167], [21, 17], [22, 208], [23, 174], [24, 48]].

Participant 16 chooses three degree polynomial

g16(x) = 172 + 140x+ 211x2 + 213x3.
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Participant 16 computed subshares

[[1, 37], [2, 204], [3, 87], [4, 32], [5, 152], [6, 94], [7, 204], [8, 129], [9, 215], [10, 109],

[11, 157], [12, 6], [13, 2], [14, 25], [15, 188], [16, 138], [17, 221], [18, 84], [19, 73], [20,

68], [21, 182], [22, 62], [23, 54], [24, 38]].

Participant 17 chooses three degree polynomial g17(x) = 54 + 176x+ 17x2 + 14x3.

Participant 17 computed subshares

[[1, 28], [2, 120], [3, 181], [4, 62], [5, 80], [6, 86], [7, 164], [8, 165], [9, 173], [10, 39],

[11, 80], [12, 147], [13, 91], [14, 229], [15, 179], [16, 25], [17, 84], [18, 207], [19, 12], [20,

49], [21, 169], [22, 223], [23, 62], [24, 3]]

Participant 18 chooses three degree polynomial

g18(x) = 103 + 11x+ 180x2 + 95x3

Participant 18 computed subshares

[[1, 156], [2, 207], [3, 127], [4, 20], [5, 223], [6, 141], [7, 111], [8, 4], [9, 157], [10, 208],

[11, 28], [12, 187], [13, 90], [14, 74], [15, 10], [16, 2], [17, 154], [18, 104], [19, 189], [20,

47], [21, 15], [22, 197], [23, 231], [24, 221]].

Participant 19 chooses three degree polynomial g19(x) = 194 + 99x+ 47x2 + 132x3.

Participant 19 computed subshares

[[1, 6], [2, 5], [3, 51], [4, 4], [5, 190], [6, 3], [7, 2], [8, 47], [9, 231], [10, 181], [11, 223],

[12, 217], [13, 23], [14, 200], [15, 142], [16, 175], [17, 159], [18, 187], [19, 119], [20, 48],

[21, 67], [22, 36], [23, 48], [24, 196]].

Participant 20 chooses three degree polynomial g20(x) = 55 + 118x+ 159x2 + 98x3

Participant 20 computed subshares

[[1, 197], [2, 80], [3, 59], [4, 23], [5, 94], [6, 161], [7, 113], [8, 72], [9, 160], [10, 33],

[11, 46], [12, 88], [13, 48], [14, 48], [15, 210], [16, 190], [17, 110], [18, 92], [19, 25], [20,

31], [21, 232], [22, 51], [23, 76], [24, 196]]

Participant 21 chooses three degree polynomial

g21(x) = 133 + 108x+ 105x2 + 96x3.
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Participant 21 computed subshares

[[1, 209], [2, 139], [3, 33], [4, 1], [5, 153], [6, 133], [7, 51], [8, 17], [9, 141], [10, 67],

[11, 138], [12, 231], [13, 223], [14, 224], [15, 111], [16, 227], [17, 216], [18, 188], [19, 20],

[20, 55], [21, 170], [22, 9], [23, 148], [24, 231]].

Participant 22 chooses three degree polynomial g22(x) = 177 + 79x+ 109x2 + 213x3.

Participant 22 computed subshares

[[1, 112], [2, 145], [3, 156], [4, 25], [5, 98], [6, 22], [7, 143], [8, 108], [9, 30], [10, 22],

[11, 197], [12, 202], [13, 150], [14, 154], [15, 94], [16, 83], [17, 1], [18, 194], [19, 76], [20,

226], [21, 58], [22, 151], [23, 152], [24, 174]].

Participant 23 chooses three degree polynomial

g23(x) = 120 + 210x+ 30x2 + 110x3.

Participant 23 computed subshares

[[1, 4], [2, 142], [3, 29], [4, 92], [5, 59], [6, 124], [7, 15], [8, 159], [9, 51], [10, 118],

[11, 88], [12, 155], [13, 47], [14, 191], [15, 82], [16, 147], [17, 114], [18, 177], [19, 64], [20,

202], [21, 86], [22, 143], [23, 101], [24, 154]].

Participant 24 chooses three degree polynomial

g24(x) = 62 + 167x+ 119x2 + 187x3 .

Participant 24 computed subshares

[[1, 69], [2, 38], [3, 159], [4, 156], [5, 219], [6, 72], [7, 138], [8, 141], [9, 38], [10, 19],

[11, 41], [12, 61], [13, 36], [14, 156], [15, 145], [16, 193], [17, 24], [18, 61], [19, 28], [20,

115], [21, 46], [22, 11], [23, 200], [24, 104]].

After computing their respective subshares, each participant communicates them

secretly to every other participant and himself.
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6.3.3 Commitments

Group 1 computes commitments using equation 6.2 and 6.3 and makes them public

cm10 = 381, cm11 = 325, cm12 = 363, cm13 = 432

cm20 = 210, cm21 = 30, cm22 = 343, cm23 = 284

cm30 = 90, cm31 = 425, cm32 = 222, cm33 = 169

cm40 = 230, cm41 = 91, cm42 = 206, cm43 = 66

cm50 = 423, cm51 = 64, cm52 = 447, cm53 = 317

cm60 = 441, cm61 = 122, cm62 = 68, cm63 = 175

cm70 = 221, cm71 = 324, cm72 = 432, cm73 = 291

Similarly, group 2, 3, 4 computes their respective commitments and makes them

public.

6.3.4 Subshare Verification

Suppose participant 6 computes subshare [3, 59] and sends secretly to participant 3.

By using participant 6 commitments, participant 3 can verify his respective subshare

as shown below:

ay63 = cm60 × ((cm61)
3)

1 × ((cm62)
3)

2 × ((cm63)
3)

3
mod p

459 = 441 × ((122)3)
1 × ((68)3)

2 × ((175)3)
3

mod 467

252 = 252 mod 467

Similarly, all subshares can be verified by using commitments.

6.3.5 Original Share Construction and Key Reconstruction

All participants compute their respective share from equation 6.4. Now, the thresh-

old number of participants can reconstruct the key by using Lagranges interpolation 6.5.

Group 1 shares:

[1, 116] [2, 163] [3, 209] [4, 109] [5, 184] [6, 56] [7, 46]
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The threshold number of shares: 4

[1, 116] [4, 109] [5, 184] [6, 56] [7, 46]

Key Reconstruction: 213

Group 2 shares:

[8, 9] [9, 33] [10, 206] [11, 150] [12, 186] [13, 169]

The threshold number of shares: 4

[8, 9] [9, 33] [12, 186] [13, 169]

Key Reconstruction: 213

Group 3 shares:

[14, 187] [15, 95] [16, 214] [17, 166] [18, 39]

The threshold number of shares: 4

[14, 187] [16, 214] [17, 166] [18, 39]

Key Reconstruction: 213

Group 4 shares:

[19, 154] [20, 133] [21, 64] [22, 35] [23, 134] [24, 216]

The threshold number of shares: 4

[19, 154] [21, 64] [22, 35] [23, 134]

Key reconstruction: 213

6.4 Correctness and Security Analysis

In this section, the correctness of Subshare Verification, the correctness of the Key

Reconstruction, and Security Analysis are discussed .

6.4.1 Correctness of Subshare Verification

Each participant verifies his respective subshare by using commitments from section

6.2.3.

The verifiability of the subshare can be checked iff

ayij = (cmi0)(cmi1)
idj (cmi2)

idj
2

· · · (cmi(t−1))
idj

t−1

mod p.
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ayij = (asi)(aci1)idj (aci2)idj
2

· · · (aci(t−1))idj
t−1

mod p, from equation 6.2, and 6.3

= asi+ci1idj+ci2idj
2+···+ci(t−1)idj

t−1

mod p

= agi(idj) mod p, from equation 6.1

= ayij mod p.

Commitments cmi0, cmij do not reveal any information about secret [34] as the

same reduces to solving discrete logarithm problem. From equation 6.2 given cmi0, a

and p, getting si is difficult. Similarly from 6.3 given cmij , a and p, finding out cik is

difficult.

6.4.2 Correctness of the Key Reconstruction

Without loss of generality, assume that p1, p2, · · · , pt desire to rebuild the key, say S′.

The secret polynomial g(x) can be computed by using Lagranges interpolation formula

g(x) as

g(x) =

t∑
i=1

Li(x)(yi) mod q (from equation 6.5)

=
t∑

i=1

Li(x)
n∑

j=1

(yji) mod q (from equation 6.4)

=
t∑

i=1

n∑
j=1

Li(x)yji mod q

=
n∑

j=1

t∑
i=1

Li(x)yji mod q

=

n∑
j=1

gj(x) mod q

where Li(x) =
(x−1)···(x−(i−1))(x−(i+1))···(x−t)
(i−1)···(i−(i−1))(i−(i+1))···(i−t) .

The key S′ = g(0) mod q =
n∑

j=1
gj(0) mod q =

n∑
i=1

simod q = S.

6.4.3 Security Analysis

Theorem 6.4.1. Any t or more participants can rebuild the key in every group.
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Proof. Without loss of generality, suppose t participants p1, p2 · · · pt cooperate with

their shares y1, y2 · · · yt to reconstruct the key. The threshold number of participants

computes the Lagrange polynomial g(x) with their public information id1, id2 · · · idt.
Thus, the polynomial g(x) can be computed as

g(x) =
t∑

i=1

Li(x)yi mod q.

and hence the key can be recovered as

g(0) = S =
n∑

i=1

si mod q.

as proved in section 6.4.2

Atleast t or more participants produce polynomial g(x) = S + c1x + c2x
2 + · · ·+

ct−1x
t−1 of degree t − 1 to share S, each of S, c1, · · · , ct−1 is choosen with probability

1
q .

Using basic linear algebra we can see the g(x) is the only solution. There must be

definitely qt possible tuples( t values in Fq), and reconstruction with Lagrange polyno-

mials that gives a matching polynomial of degree t− 1.

However, only qt polynomials exist with a degree of t−1. As a result, there can only

be one matching polynomial per tuple; otherwise, we would run out of polynomials.

Theorem 6.4.2. In every group, lesser than t participants will not be able to recon-

struct the key.

Proof. Without loss of generality, suppose that t− 1 or less participants p1, p2 · · · pt−1

want to reconstruct the key. They use Lagranges interpolation method to reconstruct

the polynomial, say g1(x). However g1(x) is a polynomial of atmost degree t−2. Hence

g1(x) ̸= g(x) and so the secret cannot be recovered. Suppose that they choose random

share yt
′ and follow the same procedure as above. They can find a polynomial, say

g2(x) of degree t − 1. But the probability of choosing a correct share yt
′ for which

g2(x) = g(x) is 1
q .
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Given the shares y1, y2, y3, · · · , yt−1 there is just one value of the missing share yt

that would give that S for each possible value of S. As a result, the t − 1 shares

y1, y2, y3, · · · , yt−1 provide no information on the key because all feasible key values are

still feasible and equiprobable at that moment.

Take note of the word ”equiprobability” in this sentence. For a given key S, the

counting argument states that there exist precisely qt−1 polynomials g(x) with a max-

imum degree of t− 1, such that S = g(0). We wouldn’t realize that much about t− 1

shares, i.e., knowledge of t− 1 values yi = g(idi), to identify a single polynomial g(x);

in reality, we have exactly q matching polynomials, for each feasible value of the key

S. Hence, in every group, lesser than t participants will not be able to reconstruct the

key.

Theorem 6.4.3. Any participant can verify the correctness of the secret s by using

their share after reconstructing it.

Proof. By using shares yi, at least the threshold number of the participants can recon-

struct the secret polynomial

g(x) =
n∑

i=1

gi(x) mod q.

Assuming that any participant want to know if the secret is correct, the participant

computes ki = g(idi) mod q. If both ki and his share yi are equal, then the secret is

valid; otherwise, not.

6.5 Comparison

Various group key agreement protocols are available in the literature that can generate

a group key among users of a single group. However, to the best of our knowledge,

our proposed MGKAP is the first of its kind, which can generate a group key among

users of multigroup. Table 1 compares the first five rows that correspond to schemes

proposed by Li et al.[59], Alzahrani et al.[2], Cui et al. [23], Sun et al.[79], and Zhang

et al.[93], where key generation happens in a distributed environment but still need

a key generation center for information distribution. Also, they use techniques such

as bilinear pairings, whereas most other schemes use SSS. However, none of these
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Table 6.1: Comparisons among various schemes

S.No Scheme Distributed KGC SSS Multi Group

1 Li et al. [59] Yes Yes No No

2 Alzahrani et al. [2] Yes Yes No No

3 Cui et al. [23] Yes Yes No No

4 Sun et al.[79] Yes Yes No No

5 Zhang et al. [93] Yes Yes No No

6 Q Zhang et al.[94] Yes No No No

7 Cheng et al.[19] Yes No No No

8 Cao et al. [16] Yes Yes Yes No

9 Harn et al.[39] Yes No Yes No

10 Proposed MGKAP Yes No Yes Yes

SSS: Secret Sharing Scheme, KGC: Key Generation Center,
MGKAP: Multi Group Key Agreement Protocol using a Secret Sharing Scheme.

schemes are suitable for multigroup communication. Schemes proposed by [94] and

Cheng et al.[19] function in a distributed environment without the need for KGC. This

is relatively better compared to the above schemes, as the problems that arise with

KGC can be avoided. It uses techniques such as bilinear pairings, but still not suitable

for a multigroup environment. Cao et al.[16] and Harn et al.[39] schemes are suitable

for a distributed environment and use SSS to distribute group key related information.

While Cao et al.[16] uses a KGC, Harn et al.[39] do not need a KGC, and both are

not suitable for multigroup environments. Our proposed MGKAP scheme is very much

suitable for key agreement protocols in a distributed multigroup environment and does

not need a KGC, as the users themselves share the information required for group key

generation in the form of subshares using SSS.

6.6 Summary

A novel Multi Group Key Agreement Protocol using a Secret Sharing Scheme in a

distributed environment is proposed in this chapter. Participants from multiple groups

generate subshares for every participant and communicate them secretly. Feldman com-

mitments allow each participant to check the validity of their subshare after receiving

subshares from all other participants. Any threshold t or more participants in every

group can reconstruct the secret, and participants across multiple groups can commu-

nicate securely using this one time session key. The secret cannot be reconstructed in a

group if there are t− 1 or fewer participants. This scheme would be more useful in col-

laborative applications where people from multiple groups must communicate securely.
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6.6 Summary

The correctness of the scheme and security analysis are discussed.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis contributes significantly to the sphere of cryptography, focusing primarily

on Centralized Secret Sharing Schemes and Distributed Group Key Agreement Proto-

cols. The aim has been to enhance three essential facets of the cryptographic protocols

- security, privacy, and computational efficiency. These improvements have been de-

vised with a specific intent to be applicable across both centralized and distributed

computational platforms.

For centralized secret sharing schemes, a Multipartite Verifiable Secret Sharing

Scheme has been introduced. This approach utilizes principles from the Chinese Re-

mainder Theorem (CRT), which subsequently empower participants to verify their indi-

vidual shares. This authentication acts as a preventive measure, negating any possible

maliciousness from the dealer. In this scheme, Commitments ensure that information

is not leaked to reveal secrets and it is a perfect secret sharing scheme.

Additionally, to counter the challenges of privacy, verification, and share renewal

in the existing Compartmented Secret Sharing Schemes (CSSS), we put forth a Com-

partmented Proactive Secret Sharing Scheme. This mechanism ensures the privacy

of participants while enabling the renewal and validation of shares. In this scheme,

at least a threshold number of participants can reconstruct the secret. Less than the

threshold number of participants cannot reconstruct the secret.

Despite these advancements, a common vulnerability in centralized secret sharing
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schemes is the risk of a single point of failure. Addressing this concern, our research

has ventured into the realm of distributed group key agreement protocols. When it

comes to distributed systems, we put forth a novel scheme known as the Elliptic Curve

Secret Sharing Scheme (ECSSS). This scheme serves as a foundation upon which we

developed a unique Authenticated Distributed Group Key Agreement Protocol, inte-

grating the ECSSS into its design. This protocol is highly efficient in managing key

distribution, particularly in resource constrained environments. It is achieved through

the use of smaller key sizes, rapid computation, and minimal storage requirements.

Security analysis of the scheme ensures that only valid user can reconstruct the key.

We further contribute to this domain by formulating a Multi-Group Key Agreement

Protocol. This protocol, grounded in a secret sharing scheme, enables several groups

to agree upon a common key for secure communication. In this scheme, at least a

threshold number of participants can reconstruct the group key in every group. Less

than the threshold number of participants cannot reconstruct the group key.

Throughout our research, we have placed significant emphasis on the correctness

and security analysis of the proposed schemes. The security of centralized secret sharing

schemes is predicated on the discrete logarithm problem, while distributed group key

agreement protocols leverage the Elliptic Curve Discrete Logarithm Problem (ECDLP).

We firmly believe that the schemes we have proposed serve as secure and effective mech-

anisms to protect confidential data and generate group communication keys.

In conclusion, this thesis significantly enriches the field of cryptography by proposing

innovative techniques and protocols in both Centralized Secret Sharing and Distributed

Group Key Agreement. These developments are crucial in improving security, privacy,

and computational efficiency across numerous practical applications.

7.2 Future Work

For future research, it would be insightful to delve into share renewal within the Mul-

tipartite Verifiable Secret Sharing Scheme and share recovery in the Compartmented

Proactive Secret Sharing Scheme. Furthermore, it would be beneficial to investigate in

dynamic environment where participants join and leave the group dynamically. Authen-

ticated Distributed Group Key Agreement Protocol using ECSSS. Lastly, an exciting

research avenue would be to develop solutions for instances where multiple groups meet
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the threshold in the Multi-Group Key Agreement Protocol, which could potentially re-

sult in unintended secret reconstruction.
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[42] Javier Herranz and Germán Sáez. New results on multipartite access

structures. IEE Proceedings-Information Security, 153(4):153–162, 2006. ()

[43] Amir Herzberg, Stanis law Jarecki, Hugo Krawczyk, and Moti Yung.

Proactive secret sharing or: How to cope with perpetual leakage. In

annual international cryptology conference, pages 339–352. Springer, 1995. (3)

[44] Ching-Fang Hsu and Lein Harn. Multipartite secret sharing based on

CRT. Wireless personal communications, 78(1):271–282, 2014. (4, 24, 34)

[45] Sorin Iftene. Secret Sharing Schemes with Applications in Security

Protocols. Sci. Ann. Cuza Univ., 16:63–96, 2006. (3, 20, 22, 33, 34)

[46] Sorin Iftene. General secret sharing based on the chinese remainder

theorem with applications in e-voting. Electronic Notes in Theoretical Com-

puter Science, 186:67–84, 2007. ()

103



REFERENCES

[47] Ingemar Ingemarsson, Donald Tang, and C Wong. A conference key

distribution system. IEEE Transactions on Information theory, 28(5):714–720,

1982. (27)

[48] SK Hafizul Islam and GP Biswas. An improved pairing-free identity-

based authenticated key agreement protocol based on ECC. Procedia

Engineering, 30:499–507, 2012. (29)

[49] Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Flexible robust

group key agreement. IEEE Transactions on Parallel and Distributed Systems,

22(5):879–886, 2010. (28)

[50] Antoine Joux. A one round protocol for tripartite Diffie–Hellman. In

Algorithmic Number Theory: 4th International Symposium, ANTS-IV Leiden, The

Netherlands, July 2-7, 2000. Proceedings 4, pages 385–393. Springer, 2000. (28)

[51] Jonathan Katz and Moti Yung. Scalable protocols for authenticated

group key exchange. Journal of Cryptology, 20:85–113, 2007. (28)
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