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ABSTRACT

This thesis consists of �ve chapters.

In Chapter 1, some of the basics of elliptic curves and cryptography have been

discussed. We mainly recall elliptic curve cryptography, basic signature schemes

and bilinear pairings to the extent which is relevant to the thesis.

In Chapter 2, we discuss a blind signature scheme given by K. Chakraborty

and J. Mehta (A stamped blind signature scheme based on elliptic curve dis-

crete logarithm problem, International Journal of Network Security 14(6), 316-

319 (2012)). We also discuss two attacks on it given by M. Tian, Y. Zhu and

Z. Chen. By modifying a pairing (Lee's pairing), we de�ned a self-pairing map

and proposed a blind signature scheme based on it. Our scheme avoids above

said attacks.

The rest of the thesis contains our work in Elliptic Curve Cryptography,

mainly in secret sharing schemes based on elliptic curves and bilinear pairings.

The main purpose of using elliptic curves and bilinear pairings is that it gives

similar security (as in existing schemes) with less key sizes.

Chapter 3 is devoted to our work on a multi-secret sharing scheme and a

compartmented multi-secret sharing scheme. In Chapter 4, we have presented

our work on conjunctive and disjunctive compartmented secret sharing schemes.

We presented our work on a conjunctive hierarchical multi-secret sharing scheme

in Chapter 5. All our schemes are veri�able (i.e., each collaborating user can verify

the shares of other collaborating users at the time of reconstruction of the secret)

and computationally secure. We have provided an example (computations are

done using SageMath) of each of the schemes for illustration purposes. Moreover,

we have done security analysis and complexity computations of our schemes.
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Notations and Acronyms

N the set of natural numbers

Z the set of integers

F a �eld

Fq the �nite �eld with q elements with characteristic p, p is prime

E an elliptic curve

E(F) the set of points on elliptic curve over F
E(Fq) the set of points on elliptic curve over Fq

#E(Fq) the number of elements in E(Fq)

O The point at in�nity on an elliptic curve

E[r] the set of r-torsion points on E

Ga an additive cyclic group

Gm a multiplicative cyclic group

∆ the discriminant

A ∼= B A is isomorphic to B

A ≡ B (mod n) A is congruent to B modulo n

Zn the set of integers modulo n

Z×
n the set of invertible elements in Zn

R+ positive real numbers

AES Advanced Encryption Standard

BDHP Bilenear Di�e-Hellman Problem

DES Data Encryption Standard

DL Discrete Logarithm

DSA Digital Signature Algorithm

EC Elliptic Curve

ECC Elliptic Curve Cryptograophy

ECDDHP Elliptic Curve Decisional Di�e-Hellman Problem

ECDHP Elliptic Curve Di�e-Hellman Problem

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

MDS Maximum Distance Separable

RSA Rivest-Shamir-Adleman





Introduction

We are now in a digital era. Everyone is involved in technology directly or indi-

rectly. In this digital era, secret sharing and signatures are most commonly used

to protect data, get permission from higher authorities to do speci�c work, etc.

Cryptography is a vast subject that requires knowledge of various mathemati-

cal concepts, such as Group Theory, Number Theory, as well as Linear Algebra,

Information Theory, and Probability.

Cryptography has been used to help in providing con�dential communications

between mutually trusted parties. The trusted parties communicate over a pos-

sibly insecure (public) channel so that an adversary cannot obtain what is being

communicated. To communicate, they require cryptographic tools such as Hash

functions, Signature and Secret Sharing schemes, etc., to achieve speci�c secu-

rity objectives. In the 1970s, Di�e-Hellman introduced the concept of public-key

cryptography. Their idea was to design a cryptosystem with two distinct keys,

one is public and other is private. The public key would be used for encrypting

the message, while the private key would be used for decrypting the encrypted

message. The public key is accesible to everyone, but only one person, who will

receive the encrypted message, has access to the private key. The cryptosystem

developed by Rivest, Shamir and Adleman (RSA Cryptosystem), is the earliest

and most popular example of a public-key cryptosystem.

Elliptic curves are of great importantance both in Number Theory and Cryp-

tography. It has many applications in Number Theory, such as in proving Fer-

mat's Last Theorem, integer factorization algorithms, etc. While in Cryptogra-

phy, it is used primarily to secure cryptographic schemes with small key sizes.

One of the advantages of using elliptic curves in cryptographic systems is that

key sizes are smaller and thus, the cryptographic algorithms run faster.

In this thesis, we mainly worked on Elliptic Curve Cryptography, Signature

schemes and Secret Sharing Schemes using elliptic curves. We follow closely

3



4 Introduction

[20, 31, 41, 60, 67].

The thesis consists of �ve chapters.

Chapter 1. Preliminaries

In Chapter 2, we discuss some of the basics of elliptic curves and cryptogra-

phy. We recall elliptic curve cryptography, basic signature schemes and bilinear

pairings to the extent which is relevant to the thesis.

Chapter 2. A blind signature scheme

In this chapter, we discuss our work [17] on an analogous/modi�ed version of a

scheme given by K. Chakraborty and J. Mehta [10]. The Chakraborty-Mehta's

scheme is not secure, which is proved by M. Tian, Y. Zhu and Z. Chen [65] by

giving two simple but powerful attacks. Our blind signature scheme is secure and

avoids the attacks given by M. Tian, Y. Zhu and Z. Chen. The scheme is based

on self-pairing map. An anti-symmetric self-pairing was de�ned by H.-S. Lee [38].

Based on that, a symmetric self-pairing is de�ned in [17]. The scheme is based

on symmetric self-pairing and elliptic curves.

Chapter 3. Compartmented secret sharing scheme

We have focused on our work [14] on a multi-secret sharing scheme and a compart-

mented multi-secret sharing scheme in this chapter. In a compartmented secret

sharing scheme, a group of participants is partitioned into several compartments.

A share of a secret is distributed among all the participants. At a later time, if

required, a threshold number of participants from each compartment and a total

of global threshold participants collaborate to reconstruct the secret.

Chapter 4. Conjunctive and disjunctive compartmented secret sharing schemes

In this chapter, we have studied conjunctive and disjunctive compartmented se-

cret sharing schemes. This contains our work [15].

Chapter 5. Conjunctive Hierarchical Multi-Secret Sharing Schemes

We presented our work [16] on a conjunctive hierarchical multi-secret sharing

scheme in this chapter. In a conjunctive hierarchical secret sharing scheme, the

participants are divided disjointly into several levels. A secret is distributed to

all the participants by a trusted Dealer in a way so that a predetermined number

of participants from each level and/or with the cooperation of higher levels can

reconstruct the secret.



The schemes which we presented in Chapter 3, 4 and 5 are based on elliptic

curves and bilinear pairings. The schemes are veri�able and computationally

e�cient. We have provided security analysis of all the schemes and complexity

aspects are also discussed. For the illustrations, we have given an example of

each of the schemes. The computations are done using SageMath.
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Chapter 1

Preliminaries

In this chapter, we discuss some of the basics of elliptic curves and cryptogra-

phy. We recall elliptic curve cryptography, basic signature schemes and bilinear

pairings to the extent which is relevant to the thesis.

1.1 Basics of Elliptic Curves

We assume the basic knowledge of group theory, ring theory and �elds which

are needed to de�ne elliptic curves. We refer to [19, 28, 39] for a more detailed

discussion of this.

Elliptic curves are described as the set of solutions to an equation in two

variables.

De�nition 1.1.1 A Weiestrass equation over a �eld F is an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.1)

We de�ne the following terms

r2 = a21 + 4a2,

r4 = 2a4 + a1a3,

r6 = a23 + 4a6,

r8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

c4 = r22 − 24r4

and ∆ = −r22r8 − 8r34 − 27r26 + 9r2r4r6.

7
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y
2
= x

3
− 1 y

2
= x

3
− x y

2
= x

3
− 3x+ 5

Figure 1.1: Examples of elliptic curve over R.

∆ is called the discriminant of the curve E. If ∆ ̸= 0, then the set of solutions of

Equation 1.1 is called an elliptic curve.

If the characteristic of F is greater than 2, replacing y by y− 1
2
(a1x+a3), Equation

1.1 can be reduced to

E ′ : y2 = x3 + a′2x
2 + a′4x+ a′6. (1.2)

Furthermore, if characteristic of F is not equal to 3, replacing x by x − 1
3
a′2,

Equation 1.2 can be reduced to

E ′′ : y2 = x3 + a′′4x+ a′′6. (1.3)

Equation 1.3 is called the normal form of the elliptic curve.

By E(F), we denote the set of all the points on E over F along with a point

at in�nity O. Example of elliptic curves over R is depicted in Figure 1.1.

1.1.1 The group structure on E(F)

Consider an elliptic curve

E : y2 = x3 + ax+ b (1.4)

over F where a, b ∈ F with non-zero discriminant. We de�ne the addition of

points as follows.

De�nition 1.1.2 ([36]) Let E : y2 = x3 + ax + b be an elliptic curve over R
and P, Q ∈ E(R) be two points on the curve. We de�ne the sum P +Q and the

negative of P by the following rules.
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1. If P = (x, y), then −P = (x,−y). That is, the negative of P is the re�ection

of P about the x-axis.

2. If Q ̸= ±P and P ̸= O, Q ̸= O, then draw a line L passing through P

and Q which intersect the curve at one more point P +Q. The re�ection

of P +Q about x-axis is P +Q.

3. If P = Q and P ̸= −P , draw a tangent line L to the curve at P . If 2P

is the point intersection of the line L and the curve, the re�ection of 2P

about x-axis is 2P .

4. If Q = O, then P+Q = P+O = P . In this case, the line L passing through

P and Q is a vertical line. The point O acts as the additive identity.

5. If Q = −P , then P +Q = O.

The point at in�nity O is the point of intersection where the y-axis and a vertical

line meet. An example of the point addition and doubling on an elliptic curve

over R is illustrated in Figure 1.2.

Now we will see why the line L passing through the points P and Q intersects

the curve in at most one more point. We will also derive the formula for the sum

P +Q.

Let P = (x1, y1), Q = (x2, y2) and P + Q = (x3, y3). Our aim is to write x3

and y3 in terms of x1, x2, y1, y2. Suppose that P ̸∈ {±Q,O} and Q ̸= O. Then
the equation of L is y = λx+ c where λ = (y2 − y1)/(x2 − x1) and c = y1 − λx1.

The point (x, λx + c) lies in E(R) if and only if (λx + c)2 = x3 + ax + b. If

P = (x1, λx1 + c) and Q = (x2, λx2 + c), then we have two roots x1 and x2 of

the above equation as the points are on the curve. If x3 is the remaining root of

the cubic equation, the third point of the intersection of L and the curve E is

P +Q = (x3,−y3). Hence the sum x1 + x2 + x3 is λ
2. Thus, x3 = λ2 − x1 − x2

and y3 = λ(x1 − x3)− y1. In terms of x1, x2, y1, y2, we have

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2,

y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1.

(1.5)
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P
Q

L

P +Q

P +Q

P
L

2P

2P

Figure 1.2: Point addition and doubling on elliptic curve E over R.

If P = Q and P ̸= −P , the slope λ of the tangent line L at P is the derivative

dy/dx of Equation 1.4 at P . Then λ = (3x2
1 + a)/2y1, and we obtain the formula

for 2P = (x3, y3) where

x3 =

(
3x2 + a

2y1

)2

− 2x1,

y3 =

(
3x2 + a

2y1

)
(x1 − x3)− y1.

(1.6)

The set of all points on an elliptic curve E over F satisfy the following prop-

erties. For given P,Q and R in E(F),

1. Closure: P +Q ∈ E(F).

2. Associativity: (P +Q) +R = P + (Q+R).

3. Existence of identity: P +O = O + P = P .

4. Existence of inverses: P + (−P ) = (−P ) + P = O.

It also satis�es the commutative property. Thus, the set E(F) forms an com-

mutative group.

1.1.2 Elliptic curves over �nite �eld

Elliptic curves de�ned over a �nite �eld are important in public-key cryptog-

raphy (see Section 1.2). The elliptic curve over Fq, in the normal form, where

characteristics greater than 3 is de�ned as follows.



�1.2. Cryptography 11

De�nition 1.1.3 Let a, b ∈ Fq with 4a3 + 27b2 ̸= 0. The set of solutions (x, y)

of the equation

E : y2 = x3 + ax+ b. (1.7)

is de�ned as elliptic curve over Fq.

Throughout the thesis, we consider the elliptic curve as in Equation 1.7.

We need the following well known results on elliptic curves.

Theorem 1.1.4 ([67, p.97]) We have

E(Fq) ≃ Zm or Zm1 ⊕ Zm2

for some m ∈ N, or for some m1, m2 ∈ N with m1|m2.

Theorem 1.1.5 (Hasse [67, p.97]) Let #E(Fq) = n. Then n satis�es

|q + 1− n| ≤ 2
√
q.

Theorem 1.1.6 ([67, p.98]) Let ℓ = pi for i ∈ N, where p is a prime and let

n = ℓ + 1 − a. Then there exists an elliptic curve E de�ned over Fℓ such that

#E(Fℓ) = n if and only if |a| ≤ 2
√
ℓ and a satis�es one of the following:

1. gcd(a, p)=1,

2. 2 | i and a = ±2
√
ℓ,

3. 2 | i, p ̸≡ 1 (mod 3), and a = ±
√
ℓ,

4. 2 ∤ i, p = 2 or 3, and a = ±p(i+1)/2,

5. 2 | i, p ̸≡ 1 (mod 4), and a = 0,

6. 2 ∤ i and a = 0.

1.2 Cryptography

Cryptography is an intriguing �eld of study as it combines elegant mathematics

with many cutting-edge �elds of computer science and engineering to �nd the

solutions that a�ect many parts of life in the digital era. It is about the algorithms
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and protocols that can be used to provide the core security services of secrecy, data

integrity, source authentication, and digital signatures (see [43], for example).

De�nition 1.2.1 (see [55]) A cryptographic algorithm is a well-de�ned trans-

formation that, given an input value, generates an output value while satisfying

speci�c security objectives. A distributed method that properly describes the in-

teractions among two or more participants while meeting speci�c security objec-

tives is known as a cryptographic protocol. A cryptographic scheme is a collection

of associated cryptographic algorithms and protocols that aims to meet certain

security requirements.

In a cryptographic scheme, participants interact by sending their messages to

each other through communication channels. Communication channels are fre-

quently assumed to o�er speci�c security guarantees. A communication channel

is either private or public. Suppose that two participants A and B agreed on

a secret key. Suppose A wishes to communicate a secret message to B over a

public/private channel. The original message, also known as plaintext, is con-

verted into a chaotic form, known as ciphertext, using the secret key unreadable

to anyone who does not have the secret key. This is known as encryption. Then

participant B will get the original message by converting the ciphertext using the

secret key. This process is known as decryption. The keys and the methods for

using them to encrypt and decrypt the data are fully speci�ed by a cryptosystem.

An adversary is an alliance of an attacker and/or one or more of the participants.

Security goals. The communications between entities (or participants) must

satisfy some security goals to keep their communications secret. The following

fundamental objectives have to be scrutinized for secure communications. Let A

and B be two communicating entities, and X be an adversary.

1. Con�dentiality: limiting access to data to those who are allowed to see it,

i.e., X can not read the message.

2. Data integrity: making sure that an adversary has not altered the data, i.e.,

data sent by A that has been altered by X should be detectable by B.

3. Data origin authentication: con�rming the original source of data, i.e., B

can verify that the message is actually originated from A.



�1.2. Cryptography 13

Cryptographic systems are classi�ed as symmetric-key (secret-key) cryptogra-

phy and public-key cryptography. In symmetric-key cryptography, the participants

�rst agree on secret and authentic keying data. Then, to ensure con�dentiality,

a symmetric-key encryption may be used. Data integrity and data origin au-

thentication may also be achieved using a MAC (message authentication code)

algorithm. While in public-key cryptographic schemes, the communicating enti-

ties only exchange authentic keying material and not the secret. Each participant

chooses a pair (ek, dk) comprised of a private key ek and a corresponding public

key dk. It is computationally infeasible to �gure out the private key with the

knowledge of the public key.

The security of commonly used public-key schemes is based on the intractabil-

ity of some of well known number-theoretic problems. For example,

1. Integer factorization problem: the security of RSA public-key encryption

and signature methods depends on the complexity of it.

2. Discrete logarithm problem: the security of the ElGamal public-key encryp-

tion and signature schemes and its variations, like the Digital Signature

Algorithm (DSA), depends on its hardness.

3. Elliptic curve discrete logarithm problem: the security of all elliptic curve

cryptographic schemes depends on the hardness of it.

In 1977, a public-key cryptographic scheme was proposed by Rivest, Shamir

and Adleman [52], called RSA scheme. The scheme chooses two large distinct

primes p and q and set n = pq. Let ek be an encryption exponent such that

1 < ek < φ(n) and gcd(ek, φ(n))= 1, where φ(n) = (p− 1)(q − 1). We note that

n is public, and p and q are secrets. Let dk be the decryption exponent such that

1 < dk < φ(n) and ekdk ≡ 1 (mod φ(n)).

The RSA scheme use the fact that mekdk ≡ m (mod n), ∀m ∈ Z. The en-

cryption of a message m is done by computing the ciphertext c ≡ mek (mod n).

The ciphertext c can be decrypted by computing cdk ≡ (mek)dk ≡ m (mod n).

Here we assume the hardness of the integer factorization problem. It is compu-

tationally infeasible to �nd the factors of n using ek.
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1.3 Threshold Cryptography

In many cases, one participant shouldn't have sole authority over access to a

valuable asset. For instance, opening a bank requires two keys, one maintained

by the owner and the other by a bank employee. The access to secret key should

not be limited to a single participant in an ideal cryptographic schemes. Instead,

it must be distributed among several participants such that a su�cient number

of participants can collaboratively access the key.

Threshold cryptography consists of strategies for distributing basic crypto-

graphic schemes among multiple participants. The secret sharing scheme is a

basis of threshold cryptography. The secret is partitioned into many parts. Each

part is called a share of the secret. The reconstruction of the secret is possi-

ble/allowed whenever a su�cient number of shares are available. Otherwise, the

secret cannot be reconstructed. A secret sharing scheme involves a set of partic-

ipants and a trusted Dealer.

De�nition 1.3.1 (Trusted Dealer) In a secret sharing scheme, a trusted Dealer

is a participant who is trusted by all other participants to perform a particular

service properly. The Dealer has the authority to set up a scheme and distribute

the shares among the participants.

De�nition 1.3.2 (Access structure) Suppose there are n participants in a

secret sharing scheme, and out of n, if at least t participants collaborate, they

are allowed to reconstruct the secret key. Then the number t is called a threshold

number. The set of participants who are allowed to reconstruct the secret key

is known as an authorized set. The collection of all authorized sets is called the

access structure.

Secret sharing scheme. A secret sharing scheme comprises of distribution and

reconstruction protocols. In distribution protocol, a share of a secret is distributed

to each participant. While in reconstruction protocol, any set of participants from

access structure pools their shares and collaborate to reconstruct the secret.

In some secret sharing schemes, verifying the shares by any participant can

allow them to know their originality and avoid attacks.

Veri�able secret sharing scheme. Veri�able secret sharing (VSS) is an im-

portant primitive of secret sharing scheme that permits sharing a secret in the
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presence of an adversary. The uniqueness of a VSS scheme is that everyone can

verify the consistency of the shares, having no idea about the secret. A veri�able

secret sharing scheme is necessary to resist the following.

1. At the time of distribution of shares, a dealer may transmit incorrect or

inconsistent shares to some of the participants.

2. At the time of reconstruction of the secret, participants provide incorrect

shares.

Many secret sharing schemes have been proposed in the literature (see [2, 9,

21, 33, 35, 37, 56, 59, 70]). Secret sharing schemes are not limited to a group

of participants; they are extended to multiple groups of participants, such as

compartmented and hierarchical structures.

1.3.1 Hierarchical secret sharing scheme

In a hierarchical secret sharing scheme, the group of participants is partitioned

into multiple levels. The participants in a level have more priority than the

participants in the lower level. This means that if some participants are absent

and the participants are not in threshold numbers at a level, they take the help of

higher-level participants to reconstruct the secret. So a higher-level participant

can collaborate with the lower-level participants to reconstruct the secret. For

examples,

1. to validate an electronic payments transfer, a bank may demand an agree-

ment of two assistant managers or three tellers. An assistant manager can

substitute for an absent teller, if the need arise.

2. a company would require the consent of two managers or three assistant

managers to authorize a digital locker. If there are only two assistant man-

agers present, a manager can �ll in for the missing one.

There are two types of hierarchical access structures, namely, conjunctive and

disjunctive access structures (see [59, 63], for example).

De�nition 1.3.3 (Hierarchical access structures) Suppose that there is a

set U of n participants divided into m disjoint levels L1, L2, · · · , Lm. De�ne Li

as a higher level than Lj if i < j. Let ti be the threshold for level Li or higher

and t1 ≤ t2 ≤ · · · ≤ tm.
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1. The conjunctive hierarchical access structure is de�ned as

Γ =

{
A ⊆ U :

∣∣∣∣A ∩
(

i∪
j=1

Lj

)∣∣∣∣ ≥ ti for all i, 1 ≤ i ≤ m

}
.

A set of participants is authorized to reconstruct the secret provided the

set contains at least ti participants from each level Li or higher.

2. If we replace �for all� with �for some� in the above, then we call it the

disjunctive hierarchical access structure.

1.3.2 Compartmented secret sharing scheme

In a compartmented access structure, the group of participants is partitioned

into disjoint compartments. The secret is partitioned so that it can be recovered

with the cooperation of the participants if the number of participants from every

compartment exceeds a prede�ned compartment threshold and the total number

of participants exceeds the global threshold. For example, suppose that two states

decide to to regulate the use of a common asset which may lead to joint action.

At least two ministers from each state and a total of �ve ministers must work

together.

The compartmented secret sharing scheme was introduced by Simmon [59].

The access structure for the compartmented secret sharing scheme (see [29, 64])

is de�ned as follows.

De�nition 1.3.4 (Compartmented access structure) Suppose that there is

a set U of n participants partitioned into disjoint compartments C1, C2, · · · , Cm.

Let ti ≥ 1 be the threshold for Ci and let t ≥
m∑
i=1

ti be the global threshold. Any

set of at least t participants, with at least ti participants from Ci, 1 ≤ i ≤ m, is

authorized to reconstruct the secret. Mathematically, the compartmented access

structure is is de�ned as

Γ = {V ⊆ U :| V ∩ Ci |≥ ti for each i = 1, 2, · · · ,m, and |V | ≥ t} .

1.4 Elliptic Curve Cryptography(ECC)

Elliptic curves have been progressively important in number theory and related

topics such as cryptography over the last four decades. In the 1980s, elliptic curves
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Security level 80 112 128 192 256
(bits) → SKIPJACK Triple-DES AES-Small AES-Medium AES-Large

EC parameter n
DL parameter q

160 224 256 384 512

RSA modulus n
DL modulus p

1024 2048 3072 8192 15360

Table 1.1: Comparison of key sizes

were �rst used in cryptography. The algorithms for factorization and primality

testing of an integer were developed using elliptic curves. In the 1980s and 1990s,

elliptic curves played a crucial role in proving Fermat's Last Theorem.

While deciding on a public key scheme for a speci�c use, one needs to look

into some of the parameters carefully. For example,

1. Functionality. Is the scheme capable of providing the necessary results?

2. Security. What guarantees are there that the scheme is secure?

3. Performance. Do the protocols ful�ll performance criteria for the intended

level of security?

The fundamental reason to use elliptic curves in a cryptographic scheme is to

provide similar security with a smaller key size. An example of the comparison is

given in Table 1.1 (see [31, p.19]), which shows that lower key parameters can be

used in ECC comapred to other systems with same level of security. The variation

in key size is more noticeable as security levels increases. Smaller parameters can

provide advantages such as faster computations and smaller keys and certi�cates.

The advantages o�ered by ECC are signi�cant in contexts where storage, speed

of processing, bandwidth is limited.

Elliptic curve key generetion. Let P ∈ E(Fq) be a point of prime order r. The

elliptic curve E, the integers q, r, the point P are the public domain parameters.

An integer a chosen arbitrarily from [1, r− 1] is a private key. The corresponding

public key is Q = aP .

Some of the hardness assumptions that are commonly used in cryptographic

schemes based on elliptic curves are given below.
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De�nition 1.4.1 (Elliptic curve discrete logarithm problem (ECDLP))

The elliptic curve discrete logarithm problem is to �nd the integer a from given

points P and aP .

De�nition 1.4.2 (Elliptic curve Di�e-Hellman problem (ECDHP))Given

points P , aP and bP for a, b ∈ Z, the problem of computing abP is called as el-

liptic curve Di�e-Hellman problem.

De�nition 1.4.3 (Elliptic curve decisional Di�e-Hellman problem (ECD-

DHP))Given points P , aP , bP and cP for a, b, c ∈ Z, the elliptic curve decisional
Di�e-Hellman problem is to determine whether abP = cP .

An application of ECDHP is used in key exchange protocol. For instance,

suppose A and B are two entities that want to create a common secret K by

sending their messages to each other through a public channel. Suppose they

agreed upon a group G = ⟨P ⟩ of prime order r where P is a point on an elliptic

curve E(Fq). A chooses at random some a ∈ [1, r − 1] and sends the point aP

to B. Similarly, B chooses at random some b ∈ [1, r − 1] and sends the point bP

to A. Then they both can compute secret key K = abP by using their private

keys. Here the key K remains unknown to any attacker even if he knows P , aP

and bP .

There are some known attacks on ECDLP. D. Shanks [57] developed a method,

called Baby Step, Giant Step, that requires
√
r steps and around

√
r storage. As

a result, it is only suitable for r of moderate size. The Baby Step, Giant Step

method has a drawback in requiring a lot of storage. Pollard's ρ method [47] runs

in about the same amount of time as Baby Step, Giant Step, but requires less

storage. For more details and attacks on ECDLP, we refer to [67].

1.5 Bilinear Pairings

Bilinear pairing is a one-way mapping. It means that computing the pairing of

given inputs is easy, however �nding the preimage of a given image is di�cult.

We recall the de�nition as given in [41].

De�nition 1.5.1 (Bilinear Pairings) "Let Ga and Gm be an additive cyclic

group and a multiplicative cyclic group, respectively, with the same prime order
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r. A bilinear pairing e is a map

e : Ga ×Ga −→ Gm

which satisfy the bilinearity, non-degeneracy and computability properties. That

is, for x1, x2, y1, y2 ∈ Ga and the identities 0 ∈ Ga, 1 ∈ Gm,

� Bilinearity: e(x1 + x2, y1) = e(x1, y1)e(x2, y1) and

e(x1, y1 + y2) = e(x1, y1)e(x1, y2).

� Non-degeneracy: For each x1 ̸= 0, there exists y1 such that e(x1, y1) ̸= 1.

Similarly, for each y1 ̸= 0, there exists x1 such that e(x1, y1) ̸= 1.

� Computability: There exists an algorithm where e can be computed e�-

ciently".

Remark 1.5.2 Following are some of the properties of the bilinear pairings. For

all x, y ∈ Ga,

1. e(x, 0) = e(0, y) = 1.

2. e(mx, ny) = e(x, y)mn,∀m,n ∈ Z.

3. e(x, y) = e(y, x).

4. If e(x, y) = 1,∀x ∈ Ga, then we have y = 0. (This is equivalent to the

non-degeneracy condition).

We have the following easy observation, which is useful in the security analysis

of our schemes.

Observation 1.5.3 For any x, y, y′ ∈ Ga and x ̸= 0, we have e(x, y) = e(x, y′)

i� y = y′.

Proof. Suppose x, y, y′ ∈ Ga, x ̸= 0. Since Ga is cyclic of prime order r and x ̸= 0,

there exists a, a′ ∈ Z such that y = ax, y′ = a′x. Suppose e(x, y) = e(x, y′), i.e.

e(x, ax) = e(x, a′x) =⇒ e(x, x)a = e(x, x)a
′
. As x ̸= 0 and also e is non-

degenerate, we have e(x, x) ̸= 1. Thus, a ≡ a′ (mod r). Hence y = y′.

The one-wayness of the bilinear map is that, to �nd x, y ∈ Ga such that

e(x, y) = g for a given pairing e and a value g ∈ Gm is di�cult. Also, to �nd

y ∈ Ga for a given x ∈ Ga and g ∈ Gm such that e(x, y) = g is di�cult.
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The intractability of the following (see [41]) problem determines the security of

many pairing-based protocols.

De�nition 1.5.4 (Bilinear Di�e-Hellman problem (BDHP)) "Let e

be a bilinear pairing on (Ga, Gm). The bilinear Di�e-Hellman problem (BDHP)

is to compute e(x, x)abc for given x, ax, bx, cx ∈ Ga".

1.5.1 Divisors

Let c(x, y) be the polynomial de�ning E (see Equation 1.1). Let Fq denote the

algebraic closure of Fq. A rational function f on E is an element of the �eld of

fractions of the ring Fq[x, y]/(c(x, y)).

A divisor D on E(Fq) is a formal sum of points D =
∑

P∈E(Fq)

νP [P ] where νP

are integers such that νP = 0 for all but �nitely many P . The sum
∑

P∈E(Fq)

νP is

called as the degree (deg(D)) of the divisor D. If deg(D)= 0, then D is known

as a zero divisor. The set of points P for which νP ̸= 0 is known as the support

of D. The divisor of a non-zero rational function f is de�ned as div(f)=
∑

P∈E(Fq)

ordP (f)[P ] where ordP (f) is the order of P as a root/pole of f . The divisors

of rational functions are also called principal divisors. It is well known that

a divisor D =
∑

P∈E(Fq)

νP [P ] is principal if and only if D is a zero divisor and

∑
P∈E(Fq)

νPP = O.

If P = (x, y), then f(P ) = f(x, y). If f is a rational function and D is a

divisor such that div(f) and D have disjoint support, then we de�ne f(D) to be∏
P∈E(Fq)

f(P )νP . For more details on divisors, we refer to [20, 67].

1.5.2 The Tate pairing

Before de�ning Tate pairing, we recall the following de�nitions as in [41].

De�nition 1.5.5 (Embedding degree [41]) "Let E be an elliptic curve over

Fq and P ∈ E(Fq) be a point of prime order r. Assume that gcd(r, q)= 1. Then

the embedding degree of G = ⟨P ⟩ is the least k ∈ Z+ such that r | qk − 1".

De�nition 1.5.6 (Torsion points) Let Fq be the algebraic closure of Fq. Let r

be a prime divisor of #E(Fq). The r-torsion points of E, denoted by E[r], is the

set E[r] = {P ∈ E(Fq) : rP = O}.
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The following theorem says that, E[ℓ] forms a group of rank at most 2.

Theorem 1.5.7 ([67, p.79]) Let ℓ ∈ Z+. If the characteristic of F is not equal

to 0 or does not divide ℓ, then

E[ℓ] ∼= Zℓ ⊕ Zℓ.

According to the above theorem, if gcd(r, q) = 1 then E[r] ∼= Zr ⊕ Zr.

Example 1.5.8 Let E be an elliptic curve y2 = x3 + 4x + 2 over F5. Then

E(F5) = {O, (3, 1), (3, 4)} and #E(F5) = 3. Now gcd(3, 5) = 1 and 3 | 52 − 1,

i.e., the embedding degree of E(F5) is 2. Let F52 = F5[γ]/(γ
2 + γ + 1). Then

E(F52) and the 3-torsion points E[3] are as follows.

E(F52) = {O, (3, 1), (3, 4), (0, 1 + 2γ), (0, 4 + 3γ), (1, 1 + 2γ), (1, 4 + 3γ),

(2, 3 + γ), (2, 2 + 4γ), (4, 1 + 2γ), (4, 4 + 3γ), (3 + 4γ, 1),

(3 + 4γ, 4), (4 + γ, 1), (4 + γ, 4), (2γ, 3 + 2γ), (2γ, 2 + 3γ),

(4γ, 2γ), (4γ, 3γ), (1 + γ, 2 + 2γ), (1 + γ, 3 + 3γ), (2 + γ, 3 + γ),

(2 + γ, 2 + 4γ), (1 + 4γ, 3 + γ), (1 + 4γ, 2 + 4γ), (3 + 3γ, 4 + 2γ),

(3 + 3γ, 1 + 3γ)}

and

E[3] = {O, (3, 1), (3, 4), (1, 1 + 2γ), (1, 4 + 3γ), (1 + γ, 2 + 2γ), (1 + γ, 3 +

3γ), (4γ, 2γ), (4γ, 3γ)}.
Let S = (3, 1) and T = (4γ, 2γ). Then every point of E[3] can be written

as a linear combination of S and T . For example 0S + 0T = O, 0S + 1T =

(4γ, 2γ), 0S+2T = (4γ, 3γ), 1S+0T = (3, 1), 1S+1T = (1, 4+3γ), 1S+2T =

(1+γ, 3+3γ), 2S+0T = (3, 4), 2S+1T = (1+γ, 2+2γ), 2S+2T = (1, 1+2γ).

Hence, we observe that E[3] ∼= Z3 ⊕ Z3.

Let #E(Fq) = vr, where r is a prime integer and r ∤ q−1. Then, k > 1. Then

E[r] ⊆ E(Fqk), and so r2|#E(Fqk) (see [4]). We further assume that gcd(v, r)=1,

then r ∤ #E(Fqk)/r
2. We denote µr, the order-r subgroup of F∗

qk
. Then the

(modi�ed) Tate pairing is de�ned as follows.

De�nition 1.5.9 ([41]) "Let P , Q ∈ E[r] and fP be a function with div(fP )=

r[P ] − r[O]. Let R ∈ E[r] such that R ̸∈ {O, P,−Q,P − Q}, and DQ = [Q +
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R] − [Q]. Note that the choice of R ensures that DQ and div(fP ) have disjoint

support. Then the (modi�ed) Tate pairing is a map

e : E[r]× E[r] −→ µr

de�ned as e(P,Q) = fP (DQ)
(qk−1)/r = (fP (Q+R)/fP (R))(q

k−1)/r".

The value e(P,Q) is independent of the choice of the function fP and the point

R, indicating that the Tate pairing is well-de�ned. It also satis�es the bilinearity

and non-degeneracy properties.

There are some e�ective algorithms to compute Tate pairing, such as Miller's

algorithm (see [44]). Miller's algorithm takes O(logr) operations. For improve-

ments and further reduction in number of operations, we refer to [6, 7, 25], for

example.

A similar pairing, namely Weil pairing is de�ned which is used in cryptogra-

phy. One may refer to [44, 67] for more details.

Remark 1.5.10 In all of the proposed schemes (Chapter 3, 4 and 5), one can

use any of the bilinear pairings (for example, Tate pairing, Weil pairing, etc.).

1.6 Hash Function

Hash functions (see [48, 67]) are used to compress arbitrary length string to a

string of �xed length. This helps to allocate storage for the records of a �le as

consistently as feasible. Cryptographic hash functions can be used to secure large

amounts of data by ensuring the integrity of a short string, the hash value.

We recall the de�nition of hash function as in [55].

De�nition 1.6.1 (Hash function [55]) "Let k ≥ 0 be a �xed integer. A hash

function h is a map h : {0, 1}∗ −→ {0, 1}k, mapping bit strings of arbitrary

length to the �xed length k. A hash function h is said to be a cryptographic hash

function if it is easy to compute h(M) for a given string M , and at least one of

the following is satis�ed.

� Preimage resistance (one-wayness): For a given hash value m it is compu-

tationally hard to �nd a bit string M such that h(M) = m.
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� 2nd-preimage resistantance (weak collision resistance): For a given bit string

M , it is computationally hard to �nd a bit string M ′ ̸= M such that

h(M ′) = h(M).

� Collision resistantance (strong collision resistance): It is computationally

hard to �nd two distinct bit strings M1 and M2 such that h(M1) = h(M2)".

In practice, cryptographic hash functions satisfy all the above three require-

ments. MD5, SHA-1, and SHA-256 are practical examples of cryptographic hash

functions, with output lengths of k = 128, k = 160, and k = 256, respectively.

For more details, we refer to [42].

1.7 Signature Schemes

A signature is used in every situation where we need permission from an author-

ity. A signature speci�es that the person is responsible who is signing the mes-

sage/document. For example, a signature is required to sign a contract, withdraw

money from a bank, write a letter, etc. A digital signature scheme is a method of

signing an electronic message. The signed message can be sent over a computer

network. The fundamental feature of a digital signature scheme is that it provides

message authentication, which enables a private key holder to create signatures

on any message.

A signature scheme consists of two protocols called signing and veri�cation.

The signing protocol is carried out by the author of the message and the signer,

and the veri�er carries out the veri�cation protocol. In the signing protocol, the

author asks for a signature on a message x, and the signer signs the message

using a (private) signing algorithm sigK that depends on a secret key K. In the

veri�cation protocol, the veri�er can verify the resulting signature sigK(x) using

a public veri�cation algorithm verK . Let (x, y) be a message-signature pair. The

veri�cation algorithm gives a result of true provided y is a legitimate signature,

otherwise of false .

We recall the de�nition of a signature scheme as in [60].

De�nition 1.7.1 (Signature scheme [60]) "A signature scheme is �ve-tuple

(P ,A,K,S,V), where the following conditions are satis�ed.

1. P is �nite set of possible messages



24 �1.7. Signature Schemes

2. A is a �nite set of possible signatures

3. K, the keyspace, is a �nite set of possible keys

4. for each K ∈ K, there is a signing algorithm sigK ∈ S and a corre-

sponding veri�cation algorithm verK ∈ V . Each sigK : P −→ A and

verK : P × A −→ {true, false} are functions such that the following

equation is satis�ed for every message x ∈ P and for every signature y ∈ A,

verK(x, y) =

{
true if y = sigK(x)

false if y ̸= sigK(x).

The signed message is a pair (x, y) with x ∈ P and y ∈ A."

In some cases, the author may ask for a signature on a message without

reavailing the content of the message to the signer for security purposes. Such

signature schemes are called blind signature schemes. The application of the blind

signature scheme is used in securing electronic payment systems, electronic voting

systems, etc.

A signature scheme possesses unforgeability property for the basic security

requirement. That is, the only practical method for an adversary to get a valid

message-signature pair (x, sigK(x)) is to run the signing protocol with the private

key K.

Signature schemes are often used along with a secure cryptographic hash func-

tion. There are well-known class signature schemes such as the RSA signature

scheme, DSA, ElGamal signature scheme, etc. For more details, we refer to [60].

An example of the digital signature scheme using elliptic curves is given below.

Elliptic Curve Digital Signature Algorithm (ECDSA).

Let P ∈ E(Fp) be a point of large prime order n such that the ECDLP in ⟨P ⟩
is hard. Let P = {0, 1}∗, A = Z×

n × Z×
n , and de�ne K = {(p, n, E, P, a,Q) : Q =

aP}, where 0 ≤ a ≤ n − 1. The values p, n, E, P , and Q are public, and a is a

private key.

For a random integer k, 1 ≤ k ≤ n− 1, de�ne

sigK(x, k) = (u, v),
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as follows:

kP = (r, s),

u = r (mod n), and

v = k−1(h(x) + au) (mod n), where h is a hash function.

If either of u or v is 0, then a new value of k should be selected.

For x ∈ {0, 1}∗ and u, v ∈ Z×
n , the signature can be veri�ed by the following

computations:

w = v−1 (mod n),

i = w × h(x) (mod n),

j = wu (mod n),

(r, s) = iP + jQ,

verK(x, (u, v)) = true⇐⇒ r (mod n) = u.

1.8 Time Complexity of Algorithms

The time complexity of an algorithm indicates how long it takes to run in a

computer and how e�cient it is. An algorithm is a procedure that produces

certain output on a given input in a speci�c amount of time. The number of

steps required for an algorithm to complete can be considered a time measure.

We use the following notation (see [36]) to measure the time complexity.

De�nition 1.8.1 (Big-O notation) "Let f, g : N −→ R+ be two functions.

Suppose that g(x) is the running time of an algorithm on an input size x. Then

we say that g(x) = O(f(x)) if ∃ some c ∈ R+ such that g(x) ≤ c · f(x) for every
su�ciently large x".

Example 1.8.2 If g(x) = 7(logx)3 + 8x2 + 15x3, then g(x) = O(x3).

Now we discuss the computational complexity of some well-known algorithms we

use in the later chapters.

Let P ∈ E(Fq) be a point. We can compute aP in O(loga) steps using the

Double-and-Add method ([18]). First we write

a = a0 + a1 · 2 + a2 · 22 + · · ·+ ar · 2r



26 �1.8. Time Complexity of Algorithms

with ai ∈ {0, 1} for i = 0, 1, 2, · · · , r. Then aP can be computed as

aP = a0 + a1 · 2P + a2 · 22P + · · ·+ ar · 2rP

where 2kP = 2 · 2 · · · 2P requires only k doublings. Thus, on average, it takes

approximately log2a doublings and 1
2
log2a additions to compute aP .

Algorithm 1 [18]

Input P
Q←− P
for i from 1 to r do

Q←− 2Q
if ai = 1 then Q←− Q+ P

Output Q.

The computational cost of point addition and doubling on elliptic curve are

I+2M+S and I+2M+2S respectively where I,M, S stand for inverse, multiplica-

tion and squaring (see [1]). There are many bilinear pairings that cost logarithmic

time (see [34, 44]). The time complexity of matrix multiplication of order n × t

and t × 1 is O(nt) and the inverse of a matrix of order n is O(n3). This can be

seen using basic formulas.

Remark 1.8.3 For the security analysis of our schemes, we need the following

basic result (see [49, Theorem 5.3.6]) from linear algebra. For the completeness,

we provide its proof.

Proposition 1.8.4 ([49]) A system of m linear equations over a �nite �eld of

order q with n unknowns has either a unique solution, no solution, or qk solutions

for some k with 1 ≤ k ≤ n. Each solution is of equal probability for the case of

qk solutions.

Proof. Consider a system of m equations over Fq

a11x1 + a12x2 + · · ·+ a1nxn = c1

a21x1 + a22x2 + · · ·+ a2nxn = c2
...

am1x1 + am2x2 + · · ·+ amnxn = cm.
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Let the coe�cient matrix be A and the augmented matrix be A′, where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn




and A′ =




a11 a12 · · · a1n c1

a21 a22 · · · a2n c2
...

...
. . .

...
...

am1 am2 · · · amn cm.




.

We know that the system has a solution if and only if rank(A) is same as rank(A′).
We assume this is the case. After performing elementary row operations, the
matrix A′ is equivalent to the matrix




0 · · · 0 1 b1(i1+1) · · · b1(i2−1) 0 b1(i2+1) · · · b1(iℓ−1) 0 b1(iℓ+1) · · · b1n d1

0 · · · 0 0 0 · · · 0 1 b2(i2+1) · · · b2(iℓ−1) 0 b2(iℓ+1) · · · b2n d2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 bℓ(iℓ+1) · · · bℓn dℓ

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0




where 1 ≤ i1 < i2 < · · · < iℓ ≤ n are the column indices and 1's are the

pivot element. Thus, k = n − ℓ is the number of free variables, and hence the

dimension of the solution space is also k = n− ℓ. For any choice of values of free

variables x1, · · · , xi1−1, xi1+1, · · · , xi2−1, xi2+1, · · · , xiℓ−1, xiℓ+1, · · · , xn from Fq, we

get a unique solution. Thus, the number of solutions is qk.

Moreover, as a free variable can assume any of q values (with probability 1/q),

the probability of each solution is 1/qk.





Chapter 2

A Blind Signature Scheme

In this chapter, we present our work [17] on a blind signature scheme. This work

has been published in the "Proceedings of the Seventh International Conference

on Mathematics and Computing, Advances in Intelligent Systems and Comput-

ing, vol. 1412, Springer, (2022)".

The blind signature scheme has been the most signi�cant responsibility from

the beginning of the era of electronic money (e-money). It is an interdependent

agreement that includes two parties, a Bank and a Client. The scheme permits

a client to urge a signature on a message from the Bank without disclosing the

context of the message. The message-signature pair received by the client is

factually uncorrelated to the view acquired by the Bank during the execution

of the agreement. D. Chaum [11] in 1983 �rst proposed the blind signature

scheme. Later, many blind digital signature schemes were proposed (see [10, 46,

50, 45, 72]). The main applications of the blind signature scheme are in securing

electronic payment systems, electronic voting systems etc.

A blind digital signature scheme should satisfy the following properties:

Blindness : It permits a user to urge a signature on a given message, whereas not

revealing the context of the message to the signer.

Untraceability : When the user has disclosed the signature to the general public,

the signer cannot trace the signature-message pair.

Unforgeability : Solely, the signer will generate a legitimate signature. For an

attacker, executing the signature protocol with the signers private key is the only

practical method to obtain a valid message and signature pair. This property is

foremost very important and should satisfy all signature schemes.

Unlinkability : Nobody can obtain a link between a legitimate blind signature and

29
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a protocol view except the author of the message.

For detailed security aspects of the blind signature scheme, we refer to [30]. A

veri�er can verify the blind signature publicly and meet the necessities of security-

oriented agreements that have an imbalance between the author of the message

and the signer.

In 2014, K. Chakraborty and J. Mehta [10] proposed a stamped blind signature

scheme based on ECDLP (see De�nition 1.4.1). Later, M. Tian, Y. Zhu and Z.

Chen [65] observed that Chakraborty-Mehta's blind signature scheme is insecure

by giving two simple but powerful attacks. In [17], we considered an analogue

version of Chakraborty-Mehta's scheme, which uses self-pairing (see [17]). The

scheme gives more security and avoids the attacks given by Tian, Zhu and Chen

[65].

The self-pairing was �rst proposed by H.-S. Lee [38] in 2004. We note that

Lee's self-pairing is anti-symmetric. Several secret sharing schemes were intro-

duced based on self-pairing (see [40, 8]). A slightly modi�ed Lee's pairing is

de�ned in the next section which is used in this chapter.

2.1 Self-Pairings

Let E be an elliptic curve over a �nite �eld Fq with characteristics not equal to 2

and 3. Let r be a prime divisor of #E(Fq) and r ̸= p. Recall that E[r] ∼= Zr⊕Zr.

Let S, T be a �xed generating pair of points for the r-torsion group E[r]. Consider

two points P = a1S+b1T andQ = a2S+b2T in E[r], where a1, a2, b1, b2 ∈ [0, r−1].
For some �xed α, β ∈ [0, r − 1], we de�ne self-pairing map

eα,β : E[r]× E[r] −→ E[r]

as eα,β(P,Q) = (a1a2 − b1b2)(αS + βT ). The trivial case (α = 0 = β) has been

excluded.

The following theorem lists some of the properties satis�ed by self-pairing

map eα,β.

Theorem 2.1.1 For all P , Q, R ∈ E[r] and the point at in�nity O,

1. Bilinearity: eα,β(P +Q,R) = eα,β(P,R) + eα,β(Q,R) and

eα,β(P,Q+R) = eα,β(P,Q) + eα,β(P,R).
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2. Non-degeneracy: If eα,β(P,Q) = O for all Q ∈ E[r], then P = O.

3. Symmetry: eα,β(P,Q) = eα,β(Q,P ) for all P , Q ∈ E[r].

The proof of the theorem is very similar to [38, Proposition 3.1]. For completeness,

we provide the proof below.

1. For all P,Q,R ∈ E[r] with R = a3S + b3T , we have

eα,β(P +Q,R) = eα,β((a1 + a2)S + (b1 + b2)T, a3S + b3T )

= ((a1 + a2)a3 − (b1 + b2)b3)(αS + βT )

= (a1a3 − b1b3)(αS + βT ) + (a2a3 − b2b3)(αS + βT )

= eα,β(P,R) + eα,β(Q,R).

Similarly eα,β(P,Q+R) = eα,β(P,Q) + eα,β(P,R).

2. For any Q = a2S + b2T ∈ E[r], we have

eα,β(P,Q) = (a1a2 − b1b2)(αS + βT ) = O.

Thus, a1a2 − b1b2 = 0. By choosing Q with a2 ̸= 0 and b2 = 0, we obtain

a1 = 0. Similarly, by choosing Q with a2 = 0 and b2 ̸= 0, we obtain b1 = 0.

Hence P = a1S + b1T = O.

3. For all P,Q ∈ E[r], eα,β(P,Q) = (a1a2 − b1b2)(αS + βT ) = eα,β(Q,P ).

The self-pairing map also satis�es the following additional properties:

For all P , Q ∈ E[r], we have

1. eα,β(P, P ) = O, if a1 = b1.

2. eα,β(P,O) = eα,β(O, Q) = O.

3. eα,β(aP, bQ) = ab · eα,β(P,Q) for all a, b ∈ Z.

For an illustration, we consider the elliptic curve E, 3-torsion points E[3],

S and T as in Example 1.5.8. Choose a1 = 2, b1 = 2, a2 = 2, b2 = 1 in

Z3 and �x α = 1, β = 2 in Z3. Then eα,β(P,Q) = e1,2(2S + 2T, 2S + T ) =

(2× 2− 2× 1)(1S + 2T ) = 2(1S + 2T ) = 2S + T = (1 + γ, 2 + 2γ).

We will give an overview of the Chakraborty-Mehta's [10] blind signature

scheme and the attacks on it as given by M. Tian, Y. Zhu and Z. Chen [65],

which proved that the scheme is insecure.
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2.2 Overview of Chakraborty-Mehta's Blind Sig-

nature Scheme

Let P ∈ E(Fq) be a point of large prime order r. Let G = ⟨P ⟩ such that

ECDLP is hard to solve. The scheme uses a collision-resistant hash function

h : {0, 1}∗ −→ Z×
r (see Section 1.6).

The scheme involves an Author (A) of the message, a Signer (S), and a Veri�er

(V). The signer chooses a secret key x ∈ Z×
r and computes Q = xP ∈ G. The

signer makes Q public.

Signing protocol

The signing protocol involves a blinding algorithm which is executed by A and a

signing algorithm which is carried out by S.

Blinding algorithm:

� A computes h(M) = m, where M is the message.

� Then A calculates K = mQ = mxP and sends it to the signer.

Signing algorithm:

� S receives K = mQ and computes K ′ = x−1K = mP .

� Then S generates a signature parameter z, called as stamp, and computes

h(z).

� Again, S computes a point R = K ′ + h(z)P and s = x− h(z).

� Then S sends the generated signature (R, s, z) to the veri�er for veri�cation.

Veri�cation protocol

The veri�er V veri�es the signature by checking the correctness of the equation

sP −Q+R = h(M)P.



�2.2. Overview of Chakraborty-Mehta's Blind Signature Scheme 33

If the above equation holds true, only then the signature is valid. This can be

observed as follows.

sP −Q+R = (x− h(z))P − xP +K ′ + h(z)P

= xP − h(z)P − xP +mP + h(z)P

= h(M)P.

Now we discuss two attacks on the Chakraborty-Mehta's scheme, which is given

by M. Tian, Y. Zhu and Z. Chen [65].

Attack 1. Suppose an attacker X wants to get the signer's secret key x, then he

perform the following steps.

� X queries a blind signature on message M . Then the signer will compute

and produce a signature (R, s, z).

� X calculates h(z) upon receiving of the signature (R, s, z).

� Finally, X gets the signer's secret key x = s+ h(z).

We know that s = x − h(z) by signing algorithm. Observe that X can �nd the

signer's secret key x by the above process. So X having a signer's secret key x

will be able to generate valid signatures on any messages.

Attack 2. Suppose an attacker X wants to get valid signature on a message M ,

then he perform the following steps.

� X initially produces a stamp z′ of the signature.

� Then X computes h(z′) and h(M).

� X chooses an integer s′ ∈ Z×
r randomly.

� Finally, X computes a point R′ = h(M)P +Q− s′P , where Q = xP is the

signer's public key.

The forged signature on M is (R′, s′, z′). We can see that

s′P −Q+R′ = s′P −Q+ h(M)P +Q− s′P = h(M)P.
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As a result, the signature (R′, s′, z′) will pass the veri�er's scrutiny. That is, the

forged signature (R′, s′, z′) of X is valid.

To avoid these attacks and to make the scheme more secure, an analogue/modi�ed

version of the above scheme is proposed in [17], which is discussed in the next

section.

2.3 A Blind Signature Scheme

The scheme involves three parties, namely Author (A), Signer (S), and Veri�er

(V). The scheme consists of two protocols called signing protocol and veri�cation

protocol. The signing protocol is carried out by bothA and S while the veri�cation

protocol is checked out by V. A wants to obtain a signature on a message from

the signer without revealing the context of the message. This includes blinding

the message with the goal that the S can't read the message. Simultaneously A

needs to ensure that S is the assigned bene�ciary of the blinded message. This

can be accomplished by twofold blinding the message (i.e., putting two locks on

the message). One lock is put by S, and he is the one in particular who can

open it, which guarantees that he is the main individual who is accepting blinded

messages from A. Another lock is put by A to ensure that S cannot read the

actual message.

Setting up domain parameters

Firstly, the signer sets up the domain parameters for the scheme.

� S chooses an elliptic curve E over Fq, where q = pi0 , i0 ∈ N, and p is a large

prime.

� S chooses a random generating pair (S, T ) in E[r], where r is a large prime

divisor of #E(Fq) so that ECDLP in E(Fq) is hard, and some �xed α,

β ∈ Zr for which the pairing eα,β can be determined.

� Finally, S makes {E, q, r, α, β, S, T, αS + βT} as public.

It additionally utilizes a cryptographic hash function (see Section 1.6) h : {0, 1}∗ −→
Z×
r which is collision-resistant.
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Signing Protocol

� S chooses two secret keys a, b ∈ Zr such that gcd(a, b)=1 and makes P =

aS + bT ∈ E[r] public.

� A computes h(M) = m where M is the actual message and m is the hash

value.

� Then A computes G = mP = maS + mbT and sends G to the signer for

signing.

� S selects a point H = cS + dT ∈ E[r] such that ac− bd = 1.

Remark 2.3.1 The author wants to send m(αS + βT ) for signing to the signer.

The value m(αS + βT ) can be computed from G by only the signer, the person

who can �nd c, d ∈ Zr such that ac− bd = 1.

Signing Algorithm

1. The signer S receives G and calculates A = eα,β(G,H) = m(ac− bd)(αS +

βT ) = m(αS + βT ), where H = cS + dT .

2. S generates signature parameter z (say stamp), and calculates h(z).

3. S selects a random integer x ∈ [1, r − 1] such that h(z)x ̸= 1.

4. S calculates a point B on elliptic curve as follows

B = m(αS + βT ) + eα,β(xS + T, h(z)S + T ) and set J = h(z)xH.

5. S sends the generated signature parameters (B, J, z) to the veri�er for ver-

i�cation.

Veri�cation Protocol

The veri�er V computes B− eα,β(J, P )+ (αS+βT ) and observes the validity

of the following equation

B − eα,β(J, P ) + (αS + βT ) = A.
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The veri�er V accepts the signature if the above equation holds true. The cor-

rectness of the signature is veri�ed as

B − eα,β(J, P ) + (αS + βT ) = m(αS + βT ) + (h(z)x− 1)(αS + βT )

−h(z)x(ac− bd)(αS + βT ) + (αS + βT )

= m(αS + βT ) = A.

2.4 Security Aspects of the Scheme

In this section, we analyze the security aspects of the blindness and non-forgeability

of the scheme.

Blindness from Signer's point of view : The author A sends G = mP =

maS +mbT to the signer S. Then S can compute m(αS + βT ) from G using his

secret keys a, b and �nding c, d such that ac− bd = 1. It is hard to �nd m from

G = mP as it is equivalent to solving ECDLP for large prime r. Hence S can

not see the message.

Blindness from Adversary's point of view : An adversary can able to �nd P

and mP . Finding m from mP is an instance of solving ECDLP. If the adversary

performs a total break of the system, then he can �nd a, b, and A = m(αS+βT ),

but �nding m from A is again an instance of solving ECDLP. Hence the message

is blinded to the adversary.

We need the following basic result for discussion on unforgeability condition.

Proposition 2.4.1 The probability of getting two integers a and b such that

gcd(a, b) = 1 is
∏

p, p prime

(1 − 1/p2) = 1/ζ(2) where ζ denotes the Riemann zeta

function.

Proof. We recall the Riemann zeta function ζ(s) =
∞∑
n=1

1/ns for s > 1. The

function ζ(s) can be written as an in�nite product over primes (due to Euler)

and is given as ζ(s) =
∏
p

(1− 1/ps)−1, where p is prime.

Now let a and b be two positive integers. Suppose that gcd(a, b)= 1. Then we

must not have a prime p which divides both a and b. So if we take particular prime

p, then the probability that a is divisible by p is 1/p, and for b, also 1/p. Then,

1/p2 is the probability of p dividing both a and b simultaneously. Therefore, the
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probability that p does not divide both a and b is 1− 1/p2. Thus, the probability

that no prime divides both a and b is given by
∏
p

(1− 1/p2) = 1/ζ(2).

Non-Forgeability of the signer's secret keys : The probability of guessing signer's

keys a and b from P is negligible. So for an adversary, it is practically infeasible

to guess a random signature.

1. The probability of getting two integers a and b such that gcd(a, b) = 1 is∏
p≤n, p prime

(1− 1/p2) ≈ 1/ζ(2) where ζ denotes the Riemann zeta function.

2. The probability of getting x such that h(z)x ̸= 1 is 1/(r − 1).

We have the following observations.

Theorem 2.4.2 Let (B1, J1) be the signature corresponding to the message m1

and stamp z1. To �nd a random message m2(̸= m1) for an adversary that satis�es

(B1, J1) for a chosen stamp z2( ̸= z1) is di�cult.

Proof. Suppose the adversary chooses a stamp z2 and wants to �nd a message

m2 which satis�es the signature (B1, J1). The equation m1(αS+βT )+eα,β(xS+

T, h(z1)S + T ) = m2(αS + βT ) + eα,β(xS + T, h(z2)S + T ) implies that m1(αS +

βT ) + (h(z1)x− 1)(αS + βT ) = m2(αS + βT ) + (h(z2)x− 1)(αS + βT ) and the

equation h(z1)xH = h(z2)xH implies that h(z1)x(cS + dT ) = h(z2)x(cS + dT )

which gives h(z1) = h(z2). Then m1(αS + βT ) = m2(αS + βT ). Since the

hash function h is collision-resistant, h(z1) = h(z2) is not possible. In addition,

m1(αS + βT ) = m2(αS + βT ), hence m1 = m2 (mod r).

Theorem 2.4.3 Let (B1, J1) be the signature corresponding to the message m1

and stamp z1. To �nd a random stamp z2(̸= z1) for an adversary that satis�es

(B1, J1) for a chosen message m2(̸= m1) is di�cult.

Proof. Suppose the adversary chooses a message m2 and wants to �nd a stamp

z2 which satis�es the signature (B1, j1). Then the equation m1(αS + βT ) +

eα,β(xS + T, h(z1)S + T ) = m2(αS + βT ) + eα,β(xS + T, h(z2)S + T ) implies that

m1(αS+βT )+(h(z1)x−1)(αS+βT ) = m2(αS+βT )+(h(z2)x−1)(αS+βT ) and

the equation h(z1)xH = h(z2)xH implies that h(z1)x(cS+dT ) = h(z2)x(cS+dT ).

Second equation gives h(z1) = h(z2). Since the hash function h is collision-

resistant, h(z1) = h(z2) is not possible.
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We will discuss the following two attacks, which fail for our scheme.

Attack 1. Suppose that an attacker X wants to get the signer's secret keys a

and b, then he performs the following:

X queries a blind signature on message M . Then the signer can cipher and

output a signature (B, J, z) as a response. After receiving the signature (B, J, z),

X will try to �nd c and d from J . But �nding c and d from J is equivalent to

solving an ECDLP. Without the knowledge of c and d, X cannot get a and b.

Hence it is impractical to �nd the signer's secret keys.

Attack 2. Suppose an attacker X wants to generate a valid signature for a

message M1, then can perform the following steps:

1. X generate a stamp z1.

2. X computes h(z1) and m1 = h(M1).

3. X chooses a integer x1 ∈ [1, r − 1] such that h(z1)x1 ̸= 1.

4. Then X computes B1 = m1(αS + βT ) + eα,β(x1S + T, h(z1)S + T ).

Now X cannot set J1 = h(z1)x1H as H is unknown to X. Suppose X se-

lects a random J2 = (h(z1)x1 − 1)(c1S + d1T ) and send (B1, J2, z) to veri�er for

veri�cation. Then veri�er computes

B1 − eα,β(J2, P ) + (αS + βT ) = m1(αS + βT ) + (h(z1)x1 − 1)(αS + βT )

−h(z1)x1(ac1 − bd1)(αS + βT ) + (αS + βT )

= m1(αS + βT ),

provided that (ac1− bd1) = 1, which is impractical. Hence this is resistant to the

attack.



Chapter 3

Compartmented Multi-Secret

Sharing Scheme

This chapter contains our work [14] on a multi-secret sharing scheme (compart-

mented). This work has been accepted for publication in the Journal of Informa-

tion and Optimization Sciences.

In a multi-secret sharing scheme, many secrets are distributed to the users

in such a way that only authorized subsets of users can recover all the secrets.

However, any unauthorized subset of users gets no information about any of

the secrets. We study a multi-secret sharing scheme by D. Liu, D. Huang, P.

Luo, and Y. Dai [40]. Accordingly, we have presented a threshold multi-secret

sharing scheme. It uses a matrix whose any threshold number of rows forms a

Vandermonde matrix [51]. For the scheme in [40], the number of secrets to be

shared is limited to the threshold. In our scheme, any number of secrets can be

shared among the users.

In 1990, G. Simmons [59] introduced a compartmented secret sharing scheme.

In a compartmented secret sharing scheme, users are partitioned into disjoint

compartments. If the number of the collaborating participants exceeds a global

threshold and the collaborating participants from every compartment exceeds

a predetermined compartment threshold, the secret can be recovered. Many

compartmented schemes have been proposed using polynomials [29, 54, 69] and

Chinese Remainder Theorem [33], and many others [13, 12, 22, 62, 64, 68]. The

method is advantageous in synchronizing the information provided to multiple

groups from a single server.

In this chapter, we have focused on a multi-secret sharing scheme and a com-

39
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partmented multi-secret sharing scheme based on elliptic curves [58], bilinear

pairings [35, 41], and matrices [51]. The main purpose of using bilinear pairings

and elliptic curves is that it gives similar security (as in existing schemes) with

less key sizes.

The importance of our approach is that it overcomes some of the limitations

of most existing schemes. Our schemes can handle an unlimited number of users.

Our schemes are e�cient and veri�able. Our multi-secret sharing scheme re-

quires O(n2) computations, and the compartmented multi-secret sharing scheme

requires O(mn2) or O(n3) computations, where n is the number of users and m

is the number of compartments. For example, our scheme is more e�cient than

[64]. We have also observed that a secret sharing in compartmented groups pro-

posed by Ghodosi, Pieprzyk and Safavi-Naini [29] does not work properly (the

case t >
∑

ti). See Remark 3.2.1 for more details.

3.1 Multi-Secret Sharing Scheme

Let q = pi0 with i0 ∈ N and p be a large prime. Consider P ∈ E(Fq) and

Ga = ⟨P ⟩ be a subgroup of order r where r is a large prime so that ECDLP is

hard to solve. Consider a pairing e as in De�nition 1.5.1. Suppose that there

are n users, say, u1, u2, · · · , un, and a trusted Dealer. All the scheme parameters

are generated and published by the Dealer. Furthermore, each user releases their

public key while keeping their secret key private. The Dealer chooses g secret

keys K1, K2, · · · , Kg ∈ [0, p− 1] for the scheme.

� Dealer chooses a matrix of order n× t

B =




1 1 1 · · · 1

1 2 22 · · · 2t−1

...
...

...
. . .

...

1 n n2 · · · nt−1




.

� Dealer chooses t random integers a1, a2, · · · , at ∈ [0, r − 1] with at ̸= 0 and

computes

(b1 b2 · · · bn)T = B · (a1 a2 · · · at)T

where T denotes the transpose of a matrix. Dealer makes matrix B public.
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� Each ui selects a private key xi ∈ [1, r − 1] and makes xiP public.

� Then Dealer computes bixiP and sends (publicly) to ui for i = 1, 2, · · · , n.

� Each ui will get the share biP by computing x−1
i (bixiP ).

� Dealer computes sλ = e(P, λ·atP )+Kλ, 1 ≤ λ ≤ g, and makes them public.

� Also, each ui computes zi = e(P, biP ).

Suppose that t (or more) number of users, say ur1 , ur2 , · · · , urt , collaborate

to reconstruct the secrets Kλ, 1 ≤ λ ≤ g. Each collaborating user pools their

zi value and supplementary information x−1
i P for veri�cation purposes. They

compute v =
t∏

j=1

z
yj
rj , where yj =

(
t∏

i=1,i ̸=j

(rj − ri)

)−1

. Finally, they compute the

secrets as Kλ = sλ − vλ.

Remark 3.1.1 We note that the above scheme works for any matrix whose

any t rows form a Vandermonde matrix. For simplicity, we have taken the above

matrix B. We also note that (see [41]), for any P,Q ∈ E[r], we have e(P,Q) ∈
µr ⊆ F∗

qk
⊆ Fqk . Also, for any K ∈ [0, p− 1], we have K ∈ Fqk . Thus e(P,Q) +K

is an element of Fqk .

Correctness

The correctness of the secret reconstruction can be observed as follows.

v =
t∏

i=1

zyiri =
t∏

i=1

e(P, briP )yi

=
t∏

i=1

e(P, yibriP ) = e

(
P,

(
t∑

i=1

yibri

)
P

)
= e(P, atP ).

Here yi's are the entries of the last row of the inverse of the Vandermonde matrix

corresponding to collaborating set of users. We know that the last entry of the

product of the inverse of the Vandermonde matrix and the shares matrix gives

the value atP (for more details, we refer to [51]). The partial secret atP is the
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last entry of the product B−1
1 · (b1P b2P · · · btP )T , where

B1 =




1 r1 r21 · · · rt−1
1

1 r2 r22 · · · rt−1
2

...
...

...
. . .

...

1 rt r2t · · · rt−1
t




is the matrix corresponding to collaborating set of users. Our scheme gives the

partial secret key atP directly; however, some existing secret sharing schemes (see

[56], for example) use Lagrange interpolation to �nd the whole polynomial and

get the secret.

Veri�cation of the shares

Users do not need to check the legitimacy of the shares as they are sent in an

encrypted format, and the Dealer is trusted. The users can verify the shares of

the other collaborating users at the time of the reconstruction of the secret. Each

collaborating user ui transmits the share b′iP with supplementary information

x−1
i P for veri�cation at the time of the secret reconstruction. The validity of the

equation e(x−1
i P, bixiP ) = e(P, b′iP ) ensures the originality of the share.

3.1.1 Security analysis of the multi-secret sharing scheme

Bilinear pairing behaves like a one-way map, which means it is easy to compute

the image of inputs but di�cult to �nd the pre-image of a given image. In our

scheme, one important factor is that for distributing shares, the Dealer doesn't

require any secure channel. Dealer encrypts the shares and sends them to the

users publicly. We have assumed that the elliptic curve discrete logarithm prob-

lem is hard to solve for large order group Ga. From the users point of view, they

send xiP , i = 1, 2, · · · , n, to Dealer. So the Dealer or any adversary cannot know
anything about the users secret key xi. From the Dealer point of view, the shares

biP , i = 1, 2, · · · , n, are distributed to the respective users so that no attacker

gets any information about the share(s).

We have the following observations.

Theorem 3.1.2 For an attacker, the probability of choosing a random point
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a′tP ∈ Ga such that Kλ = sλ − e(P, a′tP ) for 1 ≤ λ ≤ g is 1/(r − 1).

Proof. We note that Kλ = sλ− e(P, a′tP ) if and only if e(P, a′tP ) = e(P, λ · atP ),

which is true if and only if a′tP = λatP . Thus, the probability of choosing

a′tP ∈ Ga with sλ − e(P, a′tP ) = Kλ is 1/(r − 1) as a′tP ̸= O.

Theorem 3.1.3 The honesty of at least n − t + 1 number of users ensures that

any t− 1 (or less) number of users cannot get any information about any of the

secrets Kλ, 1 ≤ λ ≤ g.

Proof. Suppose that any t − 1 (or less) number of users, say ur1 , ur2 , · · · , urt−1 ,

collaborate to reconstruct the secret. They have the public information and their

shares br1P, br2P, · · · , brt−1P . Also they can compute yi, i = 1, 2, · · · , t, and
so

t−1∑
i=1

yibriP but not ytbrtP as they have no information about the share of urt ,

where urt is any user other than the t− 1 users. Note that
t∑

i=1

yibriP = atP . For

choosing the correct share brtP is as hard as choosing atP . Then atP can be any

element of Ga and without atP they cannot compute Kλ = sλ − e(P, atP )λ.

Theorem 3.1.4 There is no loss of information about the secrets of collaborators

for reconstructing the secrets Kλ for 1 ≤ λ ≤ g.

Proof. The collaborating users pools zi and x−1
i P values. Finding x−1

i from

x−1
i P is equivalent to solving an ECDLP, which is assumed as hard to solve for a

large order group. Hence they cannot get the users secret key xi, i = 1, 2, · · · , t.
Moreover, the only point x′

iP ∈ Ga satisfying e(x′
iP, bixiP ) = e(P, biP ) must

satisfy x′
i ≡ x−1

i (mod r). For

e(x′
iP, xibiP ) = e(P, biP ) ⇐⇒ e(P, biP )x

′
ixi = e(P, biP )

⇐⇒ x′
ixi ≡ 1 (mod r)

⇐⇒ x′
i ≡ x−1

i (mod r).

3.1.2 Complexity of the multi-secret sharing scheme

The computational cost of the matrix multiplication of order n × t and t × 1

takes nt operations. Using the "Double-and-Add algorithm" [18], the time for

computing scalar multiplication of a point on an elliptic curve is O(log2r), where
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r is the order of the point. The number of scalar multiplications rquired for

generating shares and reconstruction of the secret is n and t, respectively. For

computing t + g pairings, it takes O((t + g)log2r) (see [34, 44], for example).

Additionally, the scheme requires (t − 1)M + 1S operations, where M and S

denote multiplication and subtraction respectively. For computing yi, 1 ≤ i ≤ t,

it takes t((t− 1)M+1S) operations. Hence the required time complexity for the

scheme is O(n2).

An example of our multi-secret sharing scheme using modi�ed Tate pairing [41]

is given below. The computations are done using SageMath.

Example 3.1.5 Consider E : y2 = x3+5x+13 over F29. The number of points

on the curve is 26 = 2×13 and 13 | 293−1. Thus, the embedding degree of E(F29)

with respect to 13 is 3. We note that here r = 13, p = q = 29 and k = 3. F293 is a

�nite �eld and #E(F293) = 24674. The torsion group E[13] ⊆ E(F293). Suppose

there are n = 6 users, say, u1, u2, u3, u4, u5, u6, and t = 4 be the threshold. Let

K1 = 7, K2 = 3 and K3 = 24 be the secret keys of the scheme. Dealer considers

the matrix

B =




1 1 1 1

1 2 22 23

...
...

...
...

1 6 62 63




.

Suppose Dealer chooses 4 integers 5, 2, 8, 10 ∈ [0, 12] and computes

(b1 b2 b3 b4 b5 b6)
T = B · (5 2 8 10)T

= (25 121 353 781 1465 2465)T

≡ (12 4 2 1 9 8)T (mod 13).

Let Dealer chooses a point P = (5γ2 + 2γ + 7, 14γ2 + 4) ∈ E[13] and computes

s1 = e(P, 10P ) + 7 = γ2 + 14γ + 22, s2 = e(P, 2 × 10P ) + 3 = 21γ2 + 18γ + 23

and s3 = e(P, 3× 10P )+ 25 = 23γ2+26γ+2 where γ is a root of any irreducible

polynomial of degree 3 over F29 (it follows that F29(γ) = F293) and the pairing e

is the modi�ed Tate pairing as in [41]. The Dealer makes P , s1, s2 and s3 public.

Each ui, i = 1, 2, · · · , 6, chooses random integer, say x1 = 3, x2 = 9, x3 = 2,

x4 = 11, x5 = 5, x6 = 6 and makes xiP public. We have
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x1P = 3P = (15γ2 + 17γ + 4, 20γ),

x2P = 9P = (7γ2 + 14γ + 25, 25γ2 + 1),

x3P = 2P = (17γ2 + 16γ + 17, 14γ2 + 22γ + 10),

x4P = 11P = (17γ2 + 16γ + 17, 15γ2 + 7γ + 19),

x5P = 5P = (21γ2 + 28γ + 9, 8γ2 + 24γ + 23) and

x6P = 6P = (19γ2 + 14γ + 21, 13γ2 + 4γ + 22).

Now Dealer computes bixiP and sends (publicly) to ui, i = 1, 2, · · · , 6, where

b1x1P = 12× 3P = (15γ2 + 17γ + 4, 9γ),

b2x2P = 4× 9P = (15γ2 + 17γ + 4, 9γ),

b3x3P = 2× 2P = (7γ2 + 14γ + 25, 4γ2 + 28),

b4x4P = 1× 11P = (17γ2 + 16γ + 17, 15γ2 + 7γ + 19),

b5x5P = 9× 5P = (19γ2 + 14γ + 21, 13γ2 + 4γ + 22) and

b6x6P = 8× 6P = (7γ2 + 14γ + 25, 25γ2 + 1).

We note that, in this example, all the inverses computed below are of modulo 13.

Now each ui computes the share biP as x−1
i (bixi)P , 1 ≤ i ≤ 6. Thus the shares

are

b1P = x−1
1 (b1x1)P = 9(b1x1)P = (5γ2 + 2γ + 7, 15γ2 + 25),

b2P = x−1
2 (b2x2)P = 3(b2x2)P = (7γ2 + 14γ + 25, 4γ2 + 28),

b3P = x−1
3 (b3x3)P = 7(b3x3)P = (17γ2 + 16γ + 17, 14γ2 + 22γ + 10),

b4P = x−1
4 (b4x4)P = 6(b4x4)P = (5γ2 + 2γ + 7, 14γ2 + 4),

b5P = x−1
5 (b5x5)P = 8(b5x5)P = (7γ2 + 14γ + 25, 25γ2 + 1) and

b6P = x−1
6 (b6x6)P = 11(b6x6)P = (21γ2 + 28γ + 9, 21γ2 + 5γ + 6).

Suppose that u2, u3, u5, u6 want to reconstruct the secrets. They compute

zi = e(P, biP ) and x−1
i P , i = 2, 3, 5, 6. Here
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z2 = e(P, b2P ) = 23γ2 + 26γ + 25 and x−1
2 P = (15γ2 + 17γ + 4, 20γ),

z3 = e(P, b3P ) = 9γ + 24 and x−1
3 P = (19γ2 + 14γ + 21, 16γ2 + 25γ + 7),

z5 = e(P, b5P ) = 28γ2 + 2γ + 17 and x−1
5 P = (21γ2 + 28γ + 9, 21γ2 + 5γ + 6),

z6 = e(P, b6P ) = 14γ2 + 24γ + 1 and x−1
6 P = (17γ2 + 16γ + 17, 15γ2 + 7γ + 19).

The collaborating users can verify the shares of other collaborating users as

in the above multi-secret sharing scheme. If the veri�cation holds for all collab-

orating users, they calculate v = zy22 zy33 zy55 zy66 , where

y2 = ((2− 3)(2− 5)(2− 6))−1 = −12−1 (mod 13) = 1,

y3 = ((3− 2)(3− 5)(3− 6))−1 = 6−1 (mod 13) = 11,

y5 = ((5− 2)(5− 3)(5− 6))−1 = −6−1 (mod 13) = 2 and

y6 = ((6− 2)(6− 3)(6− 5))−1 = 12−1 (mod 13) = 12.

Thus, v = γ2 + 14γ + 15 and they obtain the secrets K1 = s1 − v = 7, K2 =

s2 − v2 = 3 and K3 = s3 − v3 = 24.

3.2 Compartmented Multi-Secret Sharing Scheme

Let q = pi0 with i0 ∈ N and p be a large prime. Consider P ∈ E(Fq) and Ga = ⟨P ⟩
be a subgroup of order r where r is a large prime so that ECDLP is hard to solve.

Consider the pairing e as de�ned above (De�nition 1.5.1). Suppose that the

scheme involves a set U of n number of users divided intom disjoint compartments

C1, C2, · · · , Cm and a trusted Dealer. Let |Ci| = ni and ti be the threshold for Ci,

i = 1, 2, · · · ,m. Dealer chooses ti random integers ai1, ai2, · · · , aiti ∈ [0, r − 1],

with aiti ̸= 0, for each compartment Ci, 1 ≤ i ≤ m. Dealer chooses g secret

keys K1, K2, · · · , Kg ∈ [0, p − 1] and computes sλ =
m∏
i=1

e(P, λ · aitiP ) +Kλ

(
or,

equivalently sλ = e
(
P,

m∑
i=1

λ · aitiP
)
+Kλ

)
, 1 ≤ λ ≤ g. Dealer makes P and sλ,

1 ≤ λ ≤ g, public.

Let uij denote jth user in the compartment Ci.
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Let t ≥
m∑
i=1

ti be the global threshold for the scheme. We have the following two

cases.

Case I. t =
m∑
i=1

ti

We have the following access structure (in this case)

Γ = {V ⊆ U :| V ∩ Ci |≥ ti for every i, i = 1, 2, · · · ,m}.

� Dealer considers a matrix of order ni × ti for each Ci, 1 ≤ i ≤ m, as

Ai =




1 ki1 k2
i1 · · · kti−1

i1

1 ki2 k2
i2 · · · kti−1

i2
...

...
...

. . .
...

1 kini
k2
ini
· · · kti−1

ini




,

where kij ∈ [1, r − 1] and kij ̸= kij′ for j ̸= j′.

� Dealer computes (bi1 bi2 · · · bini
)T = Ai · (ai1 ai2 · · · aiti)T for each Ci,

1 ≤ i ≤ m, and makes Ai public.

� Each uij, 1 ≤ j ≤ ni, in the compartment Ci, 1 ≤ i ≤ m, chooses a secret

key xij ∈ [1, r − 1] randomly and makes xijP public.

� Then Dealer computes bijxijP for each uij in Ci and sends (publicly) to the

respective users in Ci for 1 ≤ i ≤ m.

� Each uij in Ci will get the share bijP by computing x−1
ij (bijxij)P , 1 ≤ j ≤ ni.

Case II. t >
m∑
i=1

ti

We have the following access structure

Γ = {V ⊆ U :| V ∩ Ci |≥ ti for every i, 1 ≤ i ≤ m, and |V | ≥ t}.

Let t0 = t−
m∑
i=1

ti. Consider the matrix Ai for compartment Ci, 1 ≤ i ≤ m, where
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Ai =




1 ki1 k2
i1 · · · kti−1

i1 kti
i1 · · · kti+t0−1

i1

1 ki2 k2
i2 · · · kti−1

i2 kti
i2 · · · kti+t0−1

i2
...

...
...

. . .
...

...
. . .

...

1 kini
k2
ini
· · · kti−1

ini
kti
ini
· · · kti+t0−1

ini




.

Choose t0 values ω1, ω2, · · · , ωt0 ∈ [0, r − 1]. Let (bi1 bi2 · · · bini
)T = Ai ·

(ai1 ai2 · · · aiti ω1 ω2 · · · ωt0)
T for each compartment Ci, 1 ≤ i ≤ m, and make

Ai public. Then distribute the shares bi1P, bi2P, · · · , bini
P to the users in com-

partment Ci, 1 ≤ i ≤ m, as in the Case I.

Reconstruction of the secrets.

Case I. Suppose ti number of users from each compartment Ci, 1 ≤ i ≤ m, come

together to compute the secret keys Kλ, 1 ≤ λ ≤ g. The ti number of users in Ci

can compute ri = e(P, aitiP ) as in previous multi-secret sharing scheme (Section

3.1). Then they compute the secret Kλ = sλ −
m∏
i=1

rλi , 1 ≤ λ ≤ g.

Case II. Suppose that t (or more) number of users collaborate, say α1 from C1,

α2 from C2, ..., and αi ≥ ti, 1 ≤ i ≤ m. Without loss of generality, assume that

the collaborating users are u11, · · · , u1α1 , u21, · · · , u2α2 , · · · , um1, · · · , umαm . Then

they can construct the following system of α1 + α2 + · · ·+ αm linear equations.

b11P = a11P + k11a12P + · · ·+ kt1−1
11 a1t1P + kt111ω1P + · · ·+ kt1+t0−1

11 ωt0P

b12P = a11P + k12a12P + · · ·+ kt1−1
12 a1t1P + kt112ω1P + · · ·+ kt1+t0−1

12 ωt0P

...

b1α1P = a11P + k1α1a12P + · · ·+ kt1−1
1α1

a1t1P + kt11α1
ω1P + · · ·+ kt1+t0−1

1α1
ωt0P

...

bm1P = am1P + km1am2P + · · ·+ ktm−1
m1 amtmP + ktmm1ω1P + · · ·+ ktm+t0−1

m1 ωt0P

bm2P = am1P + km2am2P + · · ·+ ktm−1
m2 amtmP + ktmm2ω1P + · · ·+ ktm+t0−1

m2 ωt0P

...

bmαmP = am1P + kmαmam2P + · · ·+ ktm−1
mαm

amtmP + ktmmαm
ω1P + · · ·+ ktm+t0−1

mαm
ωt0P.

In matrix form, we have
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


1 k11 · · · kt1−1
11 0 0 · · · 0 · · · 0 0 · · · 0 kt111 · · · kt1+t0−1

11

1 k12 · · · kt1−1
12 0 0 · · · 0 · · · 0 0 · · · 0 kt112 · · · kt1+t0−1

12

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 k1α1 · · · kt1−1
1α1

0 0 · · · 0 · · · 0 0 · · · 0 kt11α1
· · · kt1+t0−1

1α1

0 0 · · · 0 1 k21 · · · kt2−1
21 · · · 0 0 · · · 0 kt221 · · · kt2+t0−1

21

0 0 · · · 0 1 k22 · · · kt2−1
22 · · · 0 0 · · · 0 kt222 · · · kt2+t0−1

22

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · 0 1 k2α2 · · · kt2−1
2α2

· · · 0 0 · · · 0 kt22α2
· · · kt2+t0−1

2α2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · 0 0 0 · · · 0 · · · 1 km1 · · · ktm−1
m1 ktmm1 · · · ktm+t0−1

m1

0 0 · · · 0 0 0 · · · 0 · · · 1 km2 · · · ktm−1
m2 ktmm2 · · · ktm+t0−1

m2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · 0 0 0 · · · 0 · · · 1 kmαm · · · ktm−1
mαm ktmmαm · · · ktm+t0−1

mαm




×
(
a11P · · · a1t1P a21P · · · a2t2P · · · am1P · · · amtmP ω1P · · · ωt0P

)T

=
(
b11P b12P · · · b1α1P b21P b22P · · · b2α2P · · · bm1P bm2P · · · bmαmP

)T
.

We have to choose the matrices Ai (for Case-II) such that the above matrix

corresponding to collaborating users is an invertible matrix. The above system of

linear equations have
m∑
i=1

ti+ t0 = t unknowns and
m∑
i=1

αi = t equations. Hence the

system has a unique solution. After getting the values aitiP , i = 1, 2, · · · ,m, they

compute the sum
m∑
i=1

aitiP and recover the secrets as Kλ = sλ− e

(
P,

m∑
i=1

aitiP

)λ

,

1 ≤ λ ≤ g.

The veri�cation procedure of the shares is the same as in the previous multi-secret

sharing scheme.

Remark 3.2.1 We note that the scheme proposed by Ghodosi, Pieprzyk and

Safavi-Naini [29] has some limitations. For example, in the case t >
m∑
i=1

ti, their

scheme fails. We illustrate this with an example below.

Suppose that there are 2 compartments. Consider n1 = 5, n2 = 5, t1 = 2, t2 = 3

and α1 = 3, α2 = 4. Then the shares of the collaborating users are, say,

s11 = k1 + a11x11 + ω1x
2
11 + ω2x

3
11

s12 = k1 + a11x12 + ω1x
2
12 + ω2x

3
12

s13 = k1 + a11x13 + ω1x
2
13 + ω2x

3
13

s21 = k2 + a21x21 + a22x
2
21 + ω1x

3
21 + ω2x

4
21



50 �3.2. Compartmented Multi-Secret Sharing Scheme

s22 = k2 + a21x22 + a22x
2
22 + ω1x

3
22 + ω2x

4
22

s23 = k2 + a21x23 + a22x
2
23 + ω1x

3
23 + ω2x

4
23

s24 = k2 + a21x24 + a22x
2
24 + ω1x

3
24 + ω2x

4
24

where sij is the share of uij and k1, k2 are compartment secrets. In matrix form,

we have 


1 x11 0 0 0 x2
11 x3

11

1 x12 0 0 0 x2
12 x3

12

1 x13 0 0 0 x2
13 x3

13

0 0 1 x21 x2
21 x3

21 x4
21

0 0 1 x22 x2
22 x3

22 x4
22

0 0 1 x23 x2
23 x3

23 x4
23

0 0 1 x24 x2
24 x3

24 x4
24







k1

a11

k2

a21

a22

ω1

ω2




=




s11

s12

s13

s21

s22

s23

s24




.

For any choice of xij ∈ Fq satisfying the equation x11 + x12 + x13 = x21 + x22 +

x23 + x24 we observe that the coe�cient matrix is not invertible.

3.2.1 Security analysis of the compartmented multi-secret

sharing scheme

The security analysis of the compartmented multi-secret sharing scheme is similar

to the previous scheme (see Section 3.1.1).

The shares are encrypted by the Dealer and sent to the users (publicly). For

large order group Ga, we have assumed that the ECDLP is hard to solve. When

the Dealer distributes the shares bijP to the users, an adversary cannot acquire it

from bijxijP as it is comparable to solving an ECDLP. Also, an adversary cannot

get the user secret key xij from xijP . The probability of guessing points a′itiP ,

1 ≤ i ≤ m, (or, the sum) which satis�es the relation Kλ = sλ − e
(
P,

m∑
i=1

a′itiP
)λ
,

1 ≤ λ ≤ g, is negligible for a large prime order group Ga.

We have the following observation.

Theorem 3.2.2 An unauthorized set of users cannot obtain any information

about any of the secrets Kλ for 1 ≤ λ ≤ g.
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Proof. Assume that V1 is an unauthorized set, i.e., V1 ̸∈ Γ.

� In the case t =
m∑
i=1

ti, there is at least one compartment Ui from which the

number of users in V1 is less than ti that is | V1 ∩ Ci |< ti. Hence they

cannot compute compartment secrets aiti as observed by Theorem 3.1.3.

� In the case t >
m∑
i=1

ti, there are two possibilities.

1. There is a compartment Ui for which αi =| V1 ∩Ci |< ti. This implies

that the corresponding value aiti cannot be computed by Proposition

1.8.4.

2. All αi ≥ ti but
m∑
i=1

αi < t. This rules out the existence of the unique

solution for ω1P, ω2P, · · · , ωt0P.

Hence an unauthorized set of users will get no information about the secrets Kλ

for 1 ≤ λ ≤ g.

Theorem 3.2.3 (Veri�cation of shares) The compartmented multi-secret shar-

ing scheme can detect and verify harmful activities in time.

Proof. Users can verify the accuracy of other users shares at the time of secret

reconstruction. Veri�cation will be done using the public information xijbijP and

an additional information x−1
ij P given by uij. Assume that in order to recon-

struct the secrets, the cooperating uij works with the share b′ijP . If b
′
ijP = bijP ,

then the equation e(P, b′ijP ) = e(P, bijP ) is valid. Additionally, e(P, bijP ) =

e(x−1
ij P, xijbijP ) may be used to calculate the value of e(P, bijP ) since xijbijP

is open to the public. As a result, it is possible to con�rm the share of uij by

examining the correctness of the equation e(x−1
ij P, xijbijP ) = e(P, b′ijP ).

We have given below an example of the compartmented multi-secret sharing

scheme using modi�ed Tate pairing [41]. The computations are done using Sage-

Math.

Example 3.2.4 Consider E : y2 = x3+x+38 over F47. The #E(F47) = 61 and

61 | 473 − 1, i.e., the embedding degree of E(F47) with respect to 61 is 3. F473 is

a �nite �eld and #E(F473) = 104188. The group E[61] ⊆ E(F473) is the set of
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torsion points. Let Q = (4γ + 21, 4γ2 + 15γ + 4) ∈ E[61] and Ga = ⟨Q⟩ where γ

is a root of any irreducible polynomial of degree 3 over F47. Suppose that there

are 3 compartments. Assume that t1 = 2, t2 = 2, t3 = 3, and n1 = 4, n2 = 4,

n3 = 5. Let the secrets K1 = 10, K2 = 22, K3 = 31, K1 = 15 and a11 = 15,

a12 = 20, a21 = 25, a22 = 30, a31 = 35, a32 = 40, a33 = 45.

Assume that A1 =




1 4

1 8

1 11

1 13


, A2 =




1 3

1 5

1 9

1 14


 and A3 =




1 2 22

1 7 72

1 10 102

1 12 122

1 15 152


. Compute

s1 = e
(
Q,

3∑
i=1

aitiQ
)
+ 10 = e(Q, 95Q) + 10 = e(Q, 34Q) + 10 = 15γ2 + 29γ + 52,

s2 = e(Q, 2×34Q)+22 = 16γ2+11γ+26, s3 = e(Q, 3×34Q)+31 = 2γ2+32γ+7

and s4 = e(Q, 4× 34Q)+ 15 = 45γ2+30γ+5 where the pairing e is the modi�ed

Tate pairing as in [41]. Make Q, s1, s2, s3 and s4 public.

Case I. t = 7 (i.e. t1 + t2 + t3 = 7).

Suppose that users u12, u13, u21, u22, u31, u33, u34 collaborate to reconstruct the

secrets. Their shares are (29γ2 + 7γ + 7, 32γ2 + 8γ + 19), (25γ2 + 14γ, 18γ2 +

17γ + 37), (14γ2 + 24γ + 39, 32γ2 + 30γ + 37), (29γ2 + 7γ + 7, 32γ2 + 8γ + 19),

(12γ2 + 10γ + 4, 10γ2 + 2γ + 44), (39γ2 + 40γ + 40, 7γ2 + 41γ + 44) and (24γ2 +

13γ + 46, 26γ2 + 40γ + 18) respectively.

Now u12, u13 can �nd their compartment secret a12Q = 20Q = (24γ2 +

13γ + 46, 21γ2 + 7γ + 29) using their shares (as illustrated by in Example 4.2.5).

Similarly,

� u21, u22 can �nd a22Q = 30Q = (8γ2 + 33γ + 7, 35γ2 + 36γ + 7).

� u31, u33, u34 can �nd a33Q = 40Q = (8γ2 + 36γ + 13, 45γ2 + 22γ + 41).

Then they compute the pairing e(Q, 20Q+30Q+45Q) = e((4γ+21, 4γ2+15γ+

4), (42γ2+33γ+10, 20γ2+31γ+18)) = 15γ2+29γ+42. Finally, the secrets can be

reconstructed as K1 = s1−(15γ2+29γ+42) = 10, K2 = s2−(15γ2+29γ+42)2 =

22, K3 = s3 − (15γ2 + 29γ + 42)3 = 31 and K4 = s4 − (15γ2 + 29γ + 42)4 = 15.

Case II. Consider t = 9.

We choose t0 = t− (t1 + t2 + t3) = 2 values ω1 = 6, ω2 = 8. Assume that α1 = 2,

α2 = 3, α3 = 4. Suppose that the users u12, u13, u21, u22, u23, u31, u33, u34 and u35

collaborate to reconstruct the secrets. The matrix corresponding to their shares

is
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


1 8 0 0 0 0 0 82 83

1 11 0 0 0 0 0 112 113

0 0 1 3 0 0 0 32 33

0 0 1 5 0 0 0 52 53

0 0 1 9 0 0 0 92 93

0 0 0 0 1 2 22 23 24

0 0 0 0 1 10 102 103 104

0 0 0 0 1 12 122 123 124

0 0 0 0 1 15 152 153 154







a11Q

a12Q

a21Q

a22Q

a31Q

a32Q

a33Q

ω1Q

ω2Q




=




(25γ2 + 17γ + 24, 39γ2 + 7)

(25γ2 + 17γ + 24, 39γ2 + 7)

(25γ2 + 17γ + 24, 39γ2 + 7)

(37γ2 + 24γ + 41, 2γ2 + 35γ + 44)

(31γ2 + 25γ + 2, 27γ2 + 37γ + 19)

(37γ2 + 24γ + 41, 2γ2 + 35γ + 44)

(17γ2 + 44γ + 39, 41γ2 + 5γ + 2)

(14γ2 + 24γ + 39, 15γ2 + 17γ + 10)

(22γ2 + 4γ + 17, 20γ2 + 6γ + 45)




.

The coe�cient matrix of the above system of equations is invertible. The users

compute the inverse of the coe�cient matrix and multiply it with the shares

matrix to get the unknowns. Then they compute the pairing e(Q, 20Q + 30Q +

45Q) = e((4γ+21, 4γ2+15γ+4), (42γ2+33γ+10, 20γ2+31γ+18)) = 15γ2+29γ+

42. Finally, the secrets can be reconstructed as K1 = s1− (15γ2+29γ+42) = 10,

K2 = s2 − (15γ2 + 29γ + 42)2 = 22, K3 = s3 − (15γ2 + 29γ + 42)3 = 31 and

K4 = s4 − (15γ2 + 29γ + 42)4 = 15.

We observe that the 13× 9 matrix




1 4 0 0 0 0 0 42 43

1 8 0 0 0 0 0 82 83

1 11 0 0 0 0 0 112 113

1 13 0 0 0 0 0 132 133

0 0 1 3 0 0 0 32 33

0 0 1 5 0 0 0 52 53

0 0 1 9 0 0 0 92 93

0 0 1 14 0 0 0 142 143

0 0 0 0 1 2 22 23 24

0 0 0 0 1 7 72 73 74

0 0 0 0 1 10 102 103 104

0 0 0 0 1 12 122 123 124

0 0 0 0 1 15 152 153 154




has the property that the coe�cient matrix corresponding to the shares of any

set of (valid) collaborating users is invertible.

The computational complexity of the scheme is examined in detail in the next

section.
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3.2.2 Complexity of the compartmented multi-secret shar-

ing scheme

For Case I, it is clearly seen that the time complexity for the scheme is O(mn2)

as seen in Section 3.1.2. We compute the time complexity for Case II below. To

compute the m matrix multiplications of order ni × (ti + t0) and (ti + t0) × 1,

i = 1, 2, · · · ,m, we require
m∑
i=1

(tini + nit0) operations. Using the "Double-and-

Add algorithm" [18], the time for computing scalar multiplication of a point on

an elliptic curve is O(log2r), where r is the order of the point. There are n

scalar multiplications required which cost O(nlog2r). At the time of reconstruc-

tion, the time computation for �nding the inverse of a coe�cient matrix of order

t, as in Example 3.2.4, is O(t3), which is at most O(n3). The scheme requires

t more scalar multiplications at the time of reconstruction of the secrets. The

computational cost for the addition of two distinct points on the elliptic curve

is I+2M+S and for doubling I+2M+2S (see [1], for example), where I, S, M

denotes inverse, subtraction and multiplication respectively. We need (m−1) ad-

ditions of the points. So the required computational cost for all point additions

is O(m). The computational cost of a pairing is logarithmic in time (see [34, 44],

for example) and we required m + g pairing computations. We required g more

1S for reconstruction of the secrets Kλ, 1 ≤ λ ≤ g. Combining all these, we get

that the complexity of the scheme is O(n3) for Case II.

Comparision with [64]: The paper [64] is based on MDS codes and requires

O(mn3) time computation where n is the number of users and m is the number

of compartments. Our scheme is based on elliptic curves and bilinear pairings,

for which the scheme will work with less key sizes compared to [64]. Also, our

scheme requires O(mn2) or O(n3) time computation which is less as compared to

[64].



Chapter 4

Conjunctive and Disjunctive

Compartmented Secret Sharing

Schemes

This chapter contains our work [15] on conjunctive and disjunctive compart-

mented secret sharing schemes. An extended abstract of this chapter is pub-

lished in the Proceedings of Central European Conference on Cryptology (CECC

'22), (2022). The full length paper has been submitted to the Tatra Mountains

Mathematical Publications.

In a compartmented secret sharing scheme, users are divided into distinct

compartments. If the overall number of participants reaches a global threshold

and the number of participants from each compartment exceeds a prede�ned

compartment threshold, the secret can be reconstructed. An access structure for

the scheme is de�ned in Section 1.3.2.

Many compartmented secret sharing schemes have been proposed using poly-

nomials [29, 54, 69] and Chinese Remainder Theorem [33], and many others

[12, 64, 68]. The scheme [12] is based on locally repairable codes. The paper

[29] uses polynomials and requires a secure channel for distributing the shares.

A computationally perfect compartmented secret sharing scheme has been pro-

posed using MDS codes in [64]. In the paper [54], the authors introduced a

joint compartmented threshold access structure where the compartments are not

necessarily disjoint.

In this chapter, we present two schemes; a conjunctive and a disjunctive com-

partmented schemes. The schemes use elliptic curves [58] and bilinear pairings

55
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[35, 41]. Our schemes are veri�able and e�cient. Also, the schemes are compu-

tationally secure. We have provided an explicit example of the schemes.

This chapter is motivated by the following.

A group of companies wants to merge for a project. The companies have

their individual and global secret keys. Each company has some compartments.

In a conjunctive scheme, if a particular (threshold) number of users from every

compartment of each company collaborates, they can get the global secret. While

in a disjunctive scheme, a particular number of users from every compartment of

any single company can collaborate and get the global secret.

4.1 Conjunctive and Disjunctive Compartmented

Secret Sharing Schemes

4.1.1 Setting up and distribution of the parameters of the

schemes

Let q = pi0 with i0 ∈ N and p be a large prime. Consider P ∈ E(Fq) and

Ga = ⟨P ⟩ be a subgroup of E(Fq) of order r where r is also a prime integer. We

choose r to be a large prime so that ECDLP is hard to solve. Let Gm = µr where

µr is as in Section 1.5.2. Consider a bilinear pairing e as in De�nition 1.5.1.

Let C1, C2, · · · , Cm be m companies interested to merge for a project. Each

company Ci has τi compartments say Ci1, Ci2, · · · , Ciτi for 1 ≤ i ≤ m (see Figure

4.1). Suppose there is a set U of n users divided disjointly into these compart-

ments in the presence of a trusted Dealer. Let nij be the number of users in the

compartment Cij for each i, 1 ≤ i ≤ m and each j, 1 ≤ j ≤ τi. Let tij ≥ 1 be

the threshold number for each Cij and ti ≥
∑

tij be the company threshold of

Ci. We de�ne the conjunctive compartmented access structure as

Γ1 = {A ⊆ U : for each i, 1 ≤ i ≤ m, |A| ≥ ti

and |A ∩ Cij| ≥ tij for all j, 1 ≤ j ≤ τi}.
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C1 Cm

C11 C12 C1τ1 Cm1 Cm2 Cmτm

. . . . . .

. . . . . .

Figure 4.1: Example of conjunctive and disjunctive compartmented schemes

Similarly, the disjunctive compartmented access structure is de�ned as

Γ2 = {A ⊆ U : for some i, 1 ≤ i ≤ m, |A| ≥ ti

and |A ∩ Cij| ≥ tij for all j, 1 ≤ j ≤ τi}.

The Dealer chooses company secret keys K1, K2, · · · , Km ∈ [0, p − 1] for C1,

C2, · · · , Cm respectively and a global secret key K ∈ [0, p − 1]. Let a
(i)
j1 , a

(i)
j2 ,

· · · , a(i)jtij
∈ [0, r − 1] be tij random integers, with a

(i)
j1 ̸= 0, for each compartment

Cij, 1 ≤ i ≤ m and 1 ≤ j ≤ τi.

Let u
(i)
jk denote kth user in the compartment Cij of company Ci, where 1 ≤ i ≤

m, 1 ≤ j ≤ τi and 1 ≤ k ≤ nij.

We have two cases according to the de�nition of the compartmented access struc-

ture.

Case I. ti =
τi∑
j=1

tij (i.e., company threshold ti is equal to sum of compartment

thresholds in Ci).

� Dealer chooses a matrix Mij of order nij × tij for each Cij, 1 ≤ i ≤ m and

1 ≤ j ≤ τi, having the following property. Any submatrix of Mij consisting

of tij rows is invertible. Such matrices are related to MDS matrices [53].

� Dealer computes
(
b
(i)
j1 b

(i)
j2 · · · b(i)jnij

)T
= Mij ·

(
a
(i)
j1 a

(i)
j2 · · · a(i)jtij

)T
for each

compartment Cij, 1 ≤ i ≤ m and 1 ≤ j ≤ τi, where AT denotes transpose

of the matrix A.
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� The users u
(i)
j1 , u

(i)
j2 , · · · , u(i)

jnij
in the compartment Cij randomly choose pri-

vate keys x
(i)
j1 , x

(i)
j2 , · · · , x(i)

jnij
∈ [1, r − 1], respectively and make x

(i)
j1P, x

(i)
j2P,

· · · , x(i)
jnij

P public.

� Then Dealer computes b
(i)
j1x

(i)
j1P, b

(i)
j2x

(i)
j2P, · · · , b(i)jnij

x
(i)
jnij

P for users in each

compartment Cij of Ci and sends (publicly) to the respective users in Cij.

� The users u
(i)
j1 , u

(i)
j2 , · · · , u(i)

jnij
in Cij will get their respective shares b

(i)
j1P,

b
(i)
j2P, · · · , b(i)jnij

P by computing

x
(i)
j1

−1
(
b
(i)
j1x

(i)
j1P

)
, x

(i)
j2

−1
(
b
(i)
j2x

(i)
j2P

)
, · · · , x

(i)
jnij

−1
(
b
(i)
jnij

x
(i)
jnij

P
)
.

Case II. ti >
τi∑
j=1

tij (i.e., company threshold ti is greater than sum of compart-

ment thresholds in Ci).

Let t′i = ti −
τi∑
j=1

tij. For each j, 1 ≤ j ≤ τi, Dealer chooses a matrix Aij of size

nij × tij and a matrix Bi of size
τi∑
j=1

nij × t′i, and consider the matrix

Ai =




Ai1 0 · · · 0 0

0 Ai2 · · · 0 0
...

...
. . .

...
... Bi

0 0 · · · Ai(τi−1) 0

0 0 · · · 0 Aiτi




.

The choice of Aij's and Bi is such that the submatrix of Ai corresponding to any

set of ti collaborating users is invertible. (Such a matrix exists. See Example

4.2.5 below).

Dealer chooses t′i random values αi1, αi2, · · · , αit′i ∈ [0, r − 1] for company Ci,

1 ≤ i ≤ m. For each 1 ≤ i ≤ m, 1 ≤ j ≤ τi and 1 ≤ k ≤ nij, let b
(i)
jk be de�ned by

(
b
(i)
11 b

(i)
12 · · · b(i)1ni1

· · · b(i)τi1
b
(i)
τi2
· · · b(i)τiniτi

)T

= Ai ·
(
a
(i)
11 · · · a(i)1ti1

· · · a(i)τi1
· · · a(i)τitiτi

αi1 αi2 · · · αit′i

)T

for users in each company Ci for 1 ≤ i ≤ m. The Dealer distributes the shares
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b
(i)
jkP to the users in Cij as in Case I.

For Conjunctive Compartmented Secret Sharing Scheme

Dealer computes si =
τi∏
j=1

e
(
P, a

(i)
j1P

)
+Ki or equivalently si = e

(
P,

τi∑
j=1

a
(i)
j1P

)

+Ki and computes S = e

(
P,

m∑
i=1

KiP

)
+K (see Remark 3.1.1). Finally, Dealer

makes P , Mij, Ai, si and S public.

For Disjunctive Compartmented Secret Sharing Scheme

Dealer computes si =
τi∏
j=1

e
(
P, a

(i)
j1P

)
+Ki or equivalently si = e

(
P,

τi∑
j=1

a
(i)
j1P

)

+Ki and a polynomial S(x) = (x−K1)(x−K2) · · · (x−Km)+K. Finally, Dealer

makes P , Mij, Ai, si and S(x) public.

4.1.2 Reconstruction of the secret key

For conjunctive compartmented secret sharing scheme.

For Case I, suppose that tij (or more) number of users from each compartment

Cij, 1 ≤ j ≤ τi, of every company Ci, 1 ≤ i ≤ m, collaborate. Without

loss of generality, suppose the users u
(i)
j1 , u

(i)
j2 , · · · , u(i)

jtij
from each compartment

Cij of company Ci, 1 ≤ i ≤ m, collaborates. Then the collaborating users

from the compartment Cij can form an invertible submatrix M ′
ij of Mij (by as-

sumption on Mij, the submatrix M ′
ij is invertible). The users in Cij compute(

a
(i)
j1P a

(i)
j2P · · · a(i)jtij

P
)T

= M ′−1
ij ·

(
b
(i)
j1P b

(i)
j2P · · · b(i)jtij

P
)T

. Thus, the company

secret Ki can be computed as Ki = si − e

(
P,

τi∑
j=1

a
(i)
j1P

)
and hence the global

secret key K can be obtained as K = S − e

(
P,

m∑
i=1

KiP

)
.

For Case II, suppose, for each i, ti number of users from company Ci with at

least tij number of users from each compartment Cij collaborates. Without loss

of generality, suppose that the users u
(i)
j1 , u

(i)
j2 , · · · , u(i)

jβij
from compartment Cij of

company Ci, 1 ≤ i ≤ m, collaborate, where βij ≥ tij ∀i, j and
τi∑
j=1

βij = ti. The
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collaborating users in Ci can form an invertible submatrix A′
i of Ai and compute

(a
(i)
11P · · · a(i)1ti1

P · · · a(i)τi1
P · · · a(i)τitiτi

P αi1P · · · αit′iP )T

= A′−1
i (b

(i)
11P · · · b(i)1βi1

P · · · b(i)τi1
P · · · b(i)τiβiτi

P ).

Thus, they can compute company secret Ki as Ki = si − e

(
P,

τi∑
j=1

a
(i)
j1P

)
,

1 ≤ i ≤ m, and hence the global secret key K as K = S − e

(
P,

m∑
i=1

KiP

)
.

For disjunctive compartmented secret sharing scheme.

The company secret keys Ki, 1 ≤ i ≤ m, can be computed as in the previous

reconstruction of the secret key in the conjunctive compartmented secret sharing

scheme. Then the users in any company Ci can reconstruct the global secret key

as K = S(Ki).

4.1.3 Veri�cation of the shares

Veri�cation of shares is required to resist two types of problems: The Dealer may

send incorrect shares to the users at the time of distribution and the user may

send incorrect shares at the time of secret reconstruction. The �rst problem is

not arising in our schemes, as the shares are distributed in an encrypted manner.

The veri�cation of the shares in the second problem is given below.

At the time of reconstruction of the secret, each collaborating user u
(i)
jk sends

the share c
(i)
jkP with an additional information x

(i)
jk

−1
P for veri�cation. Other

collaborating users can check the originality of the share by checking the validity

of the equation e
(
x
(i)
jk

−1
P, b

(i)
jkx

(i)
jkP

)
= e

(
P, c

(i)
jkP

)
. The above equation holds if

and only if c
(i)
jkP = b

(i)
jkP as e

(
x
(i)
jk

−1
P, b

(i)
jkx

(i)
jkP

)
= e

(
P, b

(i)
jkP

)
.

4.2 Security Analysis of the Schemes

Bilinear pairing operates as a one-way function, which means that computing the

image of inputs is simple, but �nding the pre-image of a given image is challeng-

ing. The Dealer encrypts the shares before sending (publicly) them to the users.

We have assumed that the ECDLP is di�cult to solve for large order group Ga.
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So an attacker cannot obtain b
(k)
ij P when the Dealer distributes the encrypted

share b
(k)
ij x

(k)
ij P as it is equivalent to solving an ECDLP. For an adversary, the

probability of guessing a point Q that satis�es S − e(P,Q) = K is 1/(r− 1), and

the probability of guessing an integer K ′ ∈ [0, p − 1] that is equal to K is 1/p.

Therefore the probability of getting the secret is max{1/(r − 1), 1/p}. Since r

and p are very large, the probability is very small.

We have the following results.

Theorem 4.2.1 Any ti − 1(or fewer) number of users from Ci know nothing

about the company secret Ki.

Proof. Let A be a set of ti − 1 (or less) users in the company Ci who try to get

the company secret Ki.

In the case ti =
τi∑
j=1

tij, we have a compartment Cij for which |A ∩ Cij| < tij.

Without loss of generality, suppose that the users u
(i)
j1 , u

(i)
j2 , · · · , u(i)

j(tij−1) from the

compartment Cij pool their shares. Then the shares of the users can be written

as a system of equations

(
b
(i)
j1P b

(i)
j2P · · · b(i)j(tij−1)P

)T
= M ′

ij ·
(
a
(i)
j1P a

(i)
j2P · · · a(i)jtij

P
)T

where M ′
ij is the submatrix (of Mij) corresponding to the shares of the users in

A. The system will have many solutions by Proposition 1.8.4. Thus, the users

cannot get a
(i)
j1P .

Similarly, in the case ti >
τi∑
j=1

tij, there are two possibilities.

� There must be a compartment Cij in which βij = |A ∩ Cij| < tij. This

implies that the unknowns a
(i)
j1P , 1 ≤ j ≤ τi, cannot be computed.

� All βij ≥ tij but
τi∑
j=1

βij < ti. Then the users can form a system of equations

with ti variables and less than ti equations. Thus, by Proposition 1.8.4,

users cannot get a
(i)
j1P , 1 ≤ j ≤ τi.

Hence they cannot get the company secret key Ki.

Theorem 4.2.2 An unauthorized group of users cannot access the secret key K.
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Proof. Assume that there is an unauthorized set A of users who want to get the

secret key K.

For conjunctive compartmented scheme.

As A ̸∈ Γ1, we have either of the following cases.

1. There is some i, 1 ≤ i ≤ m, such that |A ∩ Ci| < ti. This implies, by

Theorem 4.2.1, that the company secret Ki (and hence the global secret K)

cannot be obtained.

2. For all i, |A∩Ci| ≥ ti, but ∃ some i and j such that |A∩Cij| < tij. Then for

both Case I and Case II, we have a system of equations with more unknowns

than equations. Thus, by Proposition 1.8.4, we get rλ many solutions for

some λ. As r is large, the probability of getting Ki is negligible. Hence

they cannot get the global secret K.

For the disjunctive compartmented scheme, the proof uses Proposition 1.8.4 and

similar arguments as in the case of the conjunctive compartmented scheme above.

Hence we omit the proof.

We also have the following observations.

Observation 4.2.3 (For the conjunctive compartmented scheme) The

probability of guessing a random Q ∈ E[r] with S − e(P,Q) = K is 1/r, where

E[r] is the set of r-torsion points on the elliptic curve.

The point Q ∈ Ga ⊆ E[r] is chosen at random and the order of Ga is r. For a

given P , there is only one Q that satis�es S − e(P,Q) = K.

Observation 4.2.4 (For the disjunctive compartmented scheme) The

probability of guessing an integer K ′ ∈ [0, p − 1] such that S(K ′) = K is m/p.

(Recall that m is the degree of S(x)).

Note that there are only m choices of Ki for which S(Ki) = K. Therefore, to

�nd the secret K for an attacker, the required probability is m/p and as p is very

large, it is negligible.

We also observe that the constant term of S(x) is K1K2 · · ·Km +K where K is

the global secret. Thus by changing the constant term, it is di�cult to get any
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information about K.

We have given below an example of the schemes using modi�ed Tate pairing [41].

The computations are done using SageMath.

Example 4.2.5 Consider E : y2 = x3+2x+15 over F47. The number of points in

E(F47) is 61. The embedding degree of E(F47) with respect to 61 is 3 as 61|473−1.
Then F473 is the extended �nite �eld. The size of E(F473) is 104188. Let γ be a

root of any irreducible cubic polynomial over F47. The group E[61] ⊆ E(F473) is

the set of all 61-torsion points [41]. Let P = (15γ + 33, 9γ2 + 22γ + 23) ∈ E[61]

and Ga = ⟨P ⟩.
Assume that there are two companies C1 and C2. Company C1 has 3 compart-

ments, namely, C11, C12, C13 and company C2 has three compartments, namely,

C21, C22, C23. Suppose that n11 = 3, n12 = 4, n13 = 5, n21 = 3, n22 = 3, n23 = 4

and t11 = 2, t12 = 2, t13 = 3, t21 = 2, t22 = 2, t23 = 3. Let a
(1)
11 = 32, a

(1)
12 =

23, a
(1)
21 = 14, a

(1)
22 = 19, a

(1)
31 = 37, a

(1)
32 = 52, a

(1)
33 = 43 a

(2)
11 = 25, a

(2)
12 = 36, a

(2)
21 =

51, a
(2)
22 = 28, a

(2)
31 = 8, a

(2)
32 = 4, a

(2)
33 = 7.

We put company secret keys K1 = 15, K2 = 22 for C1, C2 respectively and the

global secret key K = 20.

Case I. For t1 = t11 + t12 + t13 = 7 and t2 = t21 + t22 + t23 = 7.

For company C1,

let M11 =




8 3

11 60

12 22


, M12 =




3 9

15 42

9 20

20 34




and M13 =




21 14 50

37 27 23

39 57 27

31 46 23

40 14 11



.

We compute
(
b
(1)
11 b

(1)
12 b

(1)
13

)T
= M11 ·

(
a
(1)
11 a

(1)
12

)T
= (20 24 36)T . The shares of

the users in the compartment C11 of the company C1 are



b
(1)
11 P

b
(1)
12 P

b
(1)
13 P


 =



(20γ2 + 41γ + 45, 37γ2 + 19γ + 18)

(18γ2 + 17γ + 21, 19γ2 + 13γ + 11)

(15γ2 + 27γ + 41, 18γ2 + 36γ + 44)


 .

We compute
(
b
(1)
21 b

(1)
22 b

(1)
23 b

(1)
24

)T
= M12 ·

(
a
(1)
21 a

(1)
22

)T
= (30 32 18 11)T . The
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shares of the users in the compartment C12 of the company C1 are




b
(1)
21 P

b
(1)
22 P

b
(1)
23 P

b
(1)
24 P




=




(44γ2 + 27γ, 19γ2 + 22γ + 22)

(14γ2 + 13γ + 15, 18γ2 + 5γ + 29)

(17γ2 + 6, 41γ2 + 2γ + 1)

(42γ2 + 22γ + 34, 24γ2 + 27γ + 34)




.

Then, we compute(
b
(1)
31 b

(1)
32 b

(1)
33 b

(1)
34 b

(1)
35

)T
= M13 ·

(
a
(1)
31 a

(1)
32 a

(1)
33

)T
= (56 41 17 14 58)T .

The shares of the users in the compartment C13 of the company C1 are




b
(1)
31 P

b
(1)
32 P

b
(1)
33 P

b
(1)
34 P

b
(1)
35 P




=




(34γ2 + 31γ + 35, 39γ2 + 3γ + 42)

(20γ2 + 41γ + 45, 10γ2 + 28γ + 29)

(30γ2 + 23γ, 19γ2 + 17γ + 27)

(26γ2 + 7γ + 12, 45γ2 + 14γ + 21)

(38γ2 + 12γ + 39, 32γ2 + 24γ + 34)




.

For company C2,

let M21 =



13 47

25 15

16 12


, M22 =



42 56

32 48

17 45


 and M23 =




28 52 53

10 39 24

55 36 28

38 41 33



.

We compute
(
b
(2)
11 b

(2)
12 b

(2)
13

)T
= M21 ·

(
a
(2)
11 a

(2)
12

)T
= (4 6 39)T . The shares of the

users in the compartment C21 of the company C2 are



b
(2)
11 P

b
(2)
12 P

b
(2)
13 P


 =



(46γ2 + 46γ + 29, 2γ2 + 14γ + 4)

(2γ2 + 7γ + 45, 8γ2 + 14γ + 22)

(15γ2 + 7γ + 3, 36γ2 + 39γ + 45)


 .

We compute
(
b
(2)
21 b

(2)
22 b

(2)
23

)T
= M22 ·

(
a
(2)
21 a

(2)
22

)T
= (50 48 53)T . The shares of

the users in the compartment C22 of the company C2 are



b
(2)
21 P

b
(2)
22 P

b
(2)
23 P


 =



(42γ2 + 22γ + 34, 23γ2 + 20γ + 13)

(32γ2 + 36γ + 18, 32γ2 + 38γ + 35)

(30γ2 + 13γ + 8, 14γ2 + 21γ + 15)


 .
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Then, we compute
(
b
(2)
31 b

(2)
32 b

(2)
33 b

(2)
34

)T
= M23 ·

(
a
(2)
31 a

(2)
32 a

(2)
33

)T
= (10 38 48 28)T .

The shares of the users in the compartment C23 of the company C2 are




b
(2)
31 P

b
(2)
32 P

b
(2)
33 P

b
(2)
34 P




=




(25γ2 + 34γ + 14, 40γ2 + 22γ + 20)

(16γ2 + 40γ + 37, 30γ2 + 5γ + 36)

(32γ2 + 36γ + 18, 32γ2 + 38γ + 35)

(45γ2 + 27γ + 19, 45γ2 + 6γ)




.

Case II. For t1 > t11 + t12 + t13 = 7 and t2 > t21 + t22 + t23 = 7.

Let t1 = 9 and t2 = 8. Then t′1 = 2 and t′2 = 1. So choose α11 = 3, α12 = 35 and

α21 = 47.

For company C1, we choose a matrix

A1 =




8 3 0 0 0 0 0 24 9

11 60 0 0 0 0 0 50 1

12 22 0 0 0 0 0 20 57

0 0 3 9 0 0 0 27 20

0 0 15 42 0 0 0 20 56

0 0 9 20 0 0 0 58 34

0 0 20 34 0 0 0 9 58

0 0 0 0 21 14 50 13 29

0 0 0 0 37 27 23 58 11

0 0 0 0 39 57 27 16 14

0 0 0 0 31 46 23 42 21

0 0 0 0 40 14 11 13 32




for users in company C1. We compute

(
b
(1)
11 b

(1)
12 b

(1)
13 b

(1)
21 b

(1)
22 b

(1)
23 b

(1)
24 b

(1)
31 b

(1)
32 b

(1)
33 b

(1)
34 b

(1)
35

)T

= A1 ·
(
a
(1)
11 a

(1)
12 a

(1)
21 a

(1)
22 a

(1)
31 a

(1)
32 a

(1)
33 α11 α12

)T

= (41 26 17 18 39 40 55 12 51 6 21 58)T .
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The shares of the users of the company C1 are




b
(1)
11 P

b
(1)
12 P

b
(1)
13 P

b
(1)
21 P

b
(1)
22 P

b
(1)
23 P

b
(1)
24 P

b
(1)
31 P

b
(1)
32 P

b
(1)
33 P

b
(1)
34 P

b
(1)
35 P




=




(20γ2 + 41γ + 45, 10γ2 + 28γ + 29)

(11γ2 + 30γ + 5, 15γ2 + 37γ + 2)

(30γ2 + 23γ, 19γ2 + 17γ + 27)

(17γ2 + 6, 41γ2 + 2γ + 1)

(15γ2 + 7γ + 3, 36γ2 + 39γ + 45)

(22γ2 + 43, 4γ2 + 28γ + 32)

(2γ2 + 7γ + 45, 39γ2 + 33γ + 25)

(18γ2 + 9γ + 41, 14γ2 + 46γ + 32)

(25γ2 + 34γ + 14, 7γ2 + 25γ + 27)

(2γ2 + 7γ + 45, 8γ2 + 14γ + 22)

(22γ2 + 43, 43γ2 + 19γ + 15)

(38γ2 + 12γ + 39, 32γ2 + 24γ + 34)




.

For company C2, we choose a matrix

A2 =




13 47 0 0 0 0 0 1

25 15 0 0 0 0 0 9

16 12 0 0 0 0 0 9

0 0 42 56 0 0 0 34

0 0 32 48 0 0 0 11

0 0 17 45 0 0 0 33

0 0 0 0 28 52 53 20

0 0 0 0 10 39 24 57

0 0 0 0 55 36 28 15

0 0 0 0 38 41 33 34




for each users in the company C2. We compute

(
b
(2)
11 b

(2)
12 b

(2)
13 b

(2)
21 b

(2)
22 b

(2)
23 b

(2)
31 b

(2)
32 b

(2)
33 b

(2)
34

)T

= A2 ·
(
a
(2)
11 a

(2)
12 a

(2)
21 a

(2)
22 a

(2)
31 a

(2)
32 a

(2)
33 α21

)T

= (51 2 35 1 16 18 35 33 21 40)T .

The shares of the users of the company C2 are
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


b
(2)
11 P

b
(2)
12 P

b
(2)
13 P

b
(2)
21 P

b
(2)
22 P

b
(2)
23 P

b
(2)
31 P

b
(2)
32 P

b
(2)
33 P

b
(2)
34 P




=




(25γ2 + 34γ + 14, 7γ2 + 25γ + 27)

(11γ2 + 35γ + 28, 28γ + 15)

(11γ2 + 30γ + 5, 32γ2 + 10γ + 45)

(15γ + 33, 9γ2 + 22γ + 23)

(26γ2 + 27γ + 3, 31γ2 + 36γ + 26)

(17γ2 + 6, 41γ2 + 2γ + 1)

(11γ2 + 30γ + 5, 32γ2 + 10γ + 45)

(45γ2 + 27γ + 19, 2γ2 + 41γ)

(22γ2 + 43, 43γ2 + 19γ + 15)

(22γ2 + 43, 4γ2 + 28γ + 32)




.

Now we compute s1 = e
(
P, a

(1)
11 P + a

(1)
21 P + a

(1)
31 P

)
+K1 = e(P, 22P ) + 15 =

28γ2 + 45γ + 46 and s2 = e
(
P, a

(2)
11 P + a

(2)
21 P + a

(2)
31 P

)
+K2 = e(P, 23P ) + 22 =

45γ2 + 15γ + 45 where e is the modi�ed Tate pairing (see [41]).

For conjunctive compartmented scheme, compute S = e(P,K1P+K2P )+K =

e(P, 37P )+ 20 = 9γ2 +17γ+38 and make P,M11,M12,M13,M21,M22,M23, s1, s2

and S public.

For the disjunctive compartmented scheme, compute S(x) = (x − K1)(x −
K2) +K = (x− 15)(x− 22) + 20 = x2 + 24x+ 45 and make P,A1, A2, s1, s2 and

S(x) public.

Reconstruction of the secret key

For Case I.

Suppose that the users u
(1)
12 , u

(1)
13 in compartment C11; u

(1)
22 , u

(1)
23 in compartment

C12; u
(1)
31 , u

(1)
32 , u

(1)
34 in compartment C13 of company C1 and u

(2)
11 , u

(2)
12 in compart-

ment C21; u
(2)
22 , u

(2)
23 in compartment C22; u

(2)
31 , u

(2)
32 , u

(2)
34 in compartment C23 of

company C2 collaborate to reconstruct the secret. The users u
(1)
22 , u

(1)
23 form a

submatrix M ′
11 =

(
11 60

12 22

)
of M11 and compute the inverse M ′−1

11 =

(
51 55

11 56

)
.

Then they compute
(
a
(1)
11 P a

(1)
12 P

)T
= M ′−1

11 ·
(
b
(1)
12 P b

(1)
13 P

)T
=
(
(14γ2 + 13γ +

15, 18γ2 + 5γ + 29) (16γ2 + 40γ + 37, 17γ2 + 42γ + 11)
)T

. Similarly, the users

� u
(1)
22 , u

(1)
23 can compute the value of a

(1)
21 P, a

(1)
22 P .

� u
(1)
31 , u

(1)
32 , u

(1)
34 can compute the value of a

(1)
31 P, a

(1)
32 P, a

(1)
33 P .
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� u
(2)
11 , u

(2)
12 can compute the value of a

(2)
11 P, a

(2)
12 P .

� u
(2)
22 , u

(2)
23 can compute the value of a

(2)
21 P, a

(2)
22 P .

� u
(2)
31 , u

(2)
32 , u

(2)
34 can compute the value of a

(2)
31 P, a

(2)
32 P, a

(2)
33 P .

Then they compute the company secrets K1 = s1 − e
(
P, a

(1)
11 P + a

(1)
21 P + a

(1)
31 P

)

= 15 and K2 = s2 − e
(
P, a

(2)
11 P + a

(2)
21 P + a

(2)
31 P

)
= 22.

For conjunctive compartmented scheme, compute the global secret key K =

S − e(P,K1P +K2P ) = 20.

For the disjunctive compartmented scheme, the collaborating users in any com-

pany Ci, i = 1, 2, can compute the global secret key K = S(Ki) = 20.

For Case II.

Suppose that the users u
(1)
12 , u

(1)
13 in compartment C11; u

(1)
22 , u

(1)
23 , u

(1)
24 in compart-

ment C12; u
(1)
31 , u

(1)
32 , u

(1)
34 , u

(1)
35 in compartment C13 of company C1 and u

(2)
11 , u

(2)
12 ,

u
(2)
13 in compartment C21; u

(2)
22 , u

(2)
23 in compartment C22; u

(2)
31 , u

(2)
32 , u

(2)
34 in compart-

ment C23 of company C2 collaborate to reconstruct the secret. The users in the

company C1 can form a submatrix A′
1 of A1 and compute the inverse A′−1

1 , where

A′
1 =




11 60 0 0 0 0 0 50 1

12 22 0 0 0 0 0 20 57

0 0 15 42 0 0 0 20 56

0 0 9 20 0 0 0 58 34

0 0 20 34 0 0 0 9 58

0 0 0 0 21 14 50 13 29

0 0 0 0 37 27 23 58 11

0 0 0 0 31 46 23 42 21

0 0 0 0 40 14 11 13 32



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and A′−1
1 =




51 55 33 36 17 33 18 46 60

11 56 23 14 10 21 17 57 16

0 0 39 60 17 6 31 25 22

0 0 10 30 40 21 17 57 16

0 0 56 50 27 9 20 46 54

0 0 53 19 31 37 57 44 31

0 0 32 46 59 21 5 48 60

0 0 18 3 37 47 9 23 30

0 0 41 17 47 53 40 48 52




.

Then the users compute

(
a
(1)
11 P a

(1)
12 P a

(1)
21 P a

(1)
22 P a

(1)
31 P a

(1)
32 P a

(1)
33 P α11P α12P

)T

= A′−1
1 ·

(
b
(1)
12 P b

(1)
13 P b

(1)
22 P b

(1)
23 P b

(1)
24 P b

(1)
31 P b

(1)
32 P b

(1)
34 P b

(1)
35 P

)T
.

Then they compute the company secrets K1 = s1 − e
(
P, a

(1)
11 P + a

(1)
21 P + a

(1)
31 P

)

= 15. Similarly, the users in the company C2 can form a submatrix A′
2 of A2

and compute the inverse A′−1
2 , where A′−1

2 =




13 47 0 0 0 0 0 1

25 15 0 0 0 0 0 9

16 12 0 0 0 0 0 9

0 0 32 48 0 0 0 11

0 0 17 45 0 0 0 33

0 0 0 0 28 52 53 20

0 0 0 0 10 39 24 57

0 0 0 0 38 41 33 34




and A′−1
2 =




41 13 57 0 0 0 0 0

60 2 32 0 0 0 0 0

46 34 1 25 14 0 0 0

36 16 22 38 11 0 0 0

44 6 54 0 0 51 28 53

48 1 9 0 0 43 40 22

16 41 3 0 0 8 53 54

3 42 12 0 0 0 0 0




.

Then the users compute
(
a
(2)
11 P a

(2)
12 P a

(2)
21 P a

(2)
22 P a

(2)
31 P a

(2)
32 P a

(2)
33 P α21P

)T
=
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A′−1
2 ·

(
b
(2)
11 P b

(2)
12 P b

(2)
13 P b

(2)
22 P b

(2)
23 P b

(2)
31 P b

(2)
32 P b

(2)
34 P

)T
. Then they compute the

company secrets K2 = s2 − e
(
P, a

(2)
11 P + a

(2)
21 P + a

(2)
31 P

)
= 22.

For conjunctive compartmented scheme, compute the global secret key K =

S − e(P,K1P +K2P ) = 20.

For the disjunctive compartmented scheme, the collaborating users in any

company Ci, i = 1, 2, can compute the global secret key K = S(Ki) = 20.

The computational complexity of the conjunctive compartmented and disjunctive

compartmented schemes are almost same and will be presented in detail in the

next section.

4.3 Computational Complexity of the Schemes

The matrix multiplication of matrices of order n × t and t × 1 involves nt op-

erations. The time for computing scalar multiplication of a point on an elliptic

curve is O(log2r) using the basic "Double-and-Add Algorithm" [18], where r is

the order of the point. For computing a pairing takes O(log2r) operations (see

[34, 44]). Adding two distinct points takes I+2M+S operations and for doubling

takes I+2M+2S operations (see [1]) where I, M, S denotes inverse, multiplica-

tion and squaring respectively. To compute an inverse of a matrix of order t using

the basic inversion method cost O(t3).

At the time of distribution of shares.

For Case I, the Dealer require
m∑
i=1

τi matrix multiplications of order nij × tij and

tij × 1 which costs
m∑
i=1

τi∑
j=1

nijtij operations. As nij ≥ tij and
m∑
i=1

τi∑
j=1

nij = n,

the sum
m∑
i=1

τi∑
j=1

nijtij ≤ n2. For Case II, the Dealer require m matrix multiplica-

tions of order

(
τi∑
j=1

nij

)
× ti and ti × 1 which costs

m∑
i=1

(
τi∑
j=1

nij

)
ti operations.

As
τi∑
j=1

nij ≥ ti and
m∑
i=1

τi∑
j=1

nij = n, the sum
m∑
i=1

(
τi∑
j=1

nij

)
ti ≤ n2. In addition,

Dealer require n scalar multiplications of points to encrypt the shares b
(i)
jkx

(i)
jkP

and m more scalar multiplications require to compute KiP , 1 ≤ i ≤ m, that
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costs O((m + n)log2r). To compute si require
m∑
i=1

τi point additions and m pair-

ings which costs O (mlog2r). To compute S in the conjunctive compartmented

scheme, the Dealer requires m additions of points and one pairing. In disjunctive

compartmented scheme, m multiplications and an addition to compute the poly-

nomial S(x).

At the time of reconstruction of the secret.

For conjunctive compartmented secret sharing scheme:

For Case I, the collaborating users need to �nd the inverse of
m∑
i=1

τi matrices of

order tij that costs
m∑
i=1

τi∑
j=1

t3ij ≤ n3 operations. To �nd the unknowns a
(i)
jkP , they

require
m∑
i=1

τi∑
j=1

t2ij ≤ n2 point additions. For Case II, they need to �nd the inverse

of m matrices of order ti that costs
m∑
i=1

t3i < n3. To �nd the unknowns a
(i)
jkP , the

number of require point addition is
m∑
i=1

t2i ≤ n2. In addition, to �nd Ki required

m∑
i=1

mi point additions and m pairing computations. Also, they required O(m)

additions of points and one pairing computation to �nd K.

For disjunctive compartmented secret sharing scheme:

Suppose that the users in the company Ci want to reconstruct the secret. For

Case I, the collaborating users need to �nd the inverse of τi matrices of order

tij that costs
τi∑
j=1

t3ij < n3 operations. To �nd the unknowns a
(i)
jkP , they require

τi∑
j=1

t2ij < n2 point additions. For Case II, they need to �nd the inverse of a matrix

of order ti that costs t
3
i < n3. To �nd the unknowns a

(i)
jkP , the number of required

point additions is t2i < n2. In addition, �nding Ki requires mi point additions

and one pairing computation. Also, they require O(m) operations to �nd K.

Hence, combining all, both schemes required O(n3) operations. We also see

that the time complexity of the disjunctive compartmented scheme is less as

compared to the conjunctive compartmented scheme.
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Chapter 5

Conjunctive Hierarchical

Multi-Secret Sharing Scheme

In this chapter, we present our work [16] on a conjunctive hierarchical multi-secret

sharing scheme using elliptic curves. This work has been submitted to the Indian

Journal of Pure and Applied Mathematics.

Secret sharing with many levels of hierarchy is known as hierarchical secret

sharing. In a hierarchical secret sharing scheme (see De�nition 1.3.1), a group

of users is separated into several levels so that a user can be present at one

of the levels. A secret is distributed among all the users at every level and an

authorized set of users can only reconstruct the secret. Several schemes have been

proposed for hierarchical and conjunctive hierarchical secret sharing schemes (see

[5, 23, 29, 56, 59, 61, 63], for example).

Multi-secret sharing scheme is a method of sharing several secrets among the

users in such a way that any authorized subset of users can recover all the secrets.

However, any unauthorized subset of users gets no information about any of the

secrets. Many multi-secret sharing schemes have been proposed (see [3, 8, 40]).

There are two types of hierarchical schemes, namely conjunctive and dis-

junctive (see De�nition 1.3.1). In this chapter, we have presented a conjunctive

hierarchical secret sharing scheme using elliptic curves and bilinear pairings. The

primary rationale for using bilinear pairing with elliptic curves is to give similar

security (to many existing schemes) while using a smaller key size. One impor-

tant feature of our scheme is that the Dealer does not require any secure channel

to distribute the secrets. The Dealer encrypts the secrets and distributes them

to the users publicly.

73
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The two types of hierarchical schemes are useful in many scenarios. For ex-

ample, the project manager(s) and their team members may have access to the

data/workplace according to di�erent levels of authority. In a hospital, a doc-

tor (or team of doctors) may have access to the medical record of every patient,

however, nurses of the hospital may have access to a limited number of patients'

record.

Our scheme is signi�cant because it overcomes all of the limitations inherent

in the majority of existing schemes. The scheme can accommodate any number of

users. Also, there are no limitations on the number of secrets to be shared. More-

over, our scheme is e�cient and veri�able. Veri�ability means the collaborating

users (at the time of reconstruction) can use public information to check whether

the information shared by the individual user is valid or not. For example, the

schemes proposed in [3] and [66] are veri�able.

5.1 Conjunctive Hierarchical Multi-Secret Shar-

ing Scheme

5.1.1 Setting up and distribution of the parameters of the

scheme

Consider an elliptic curve E over a �nite �eld Fq, where q = pi0 for some i0 ∈ N
and p is a large prime. Let P ∈ E(Fq) be a point of order r, where r is a prime

integer and Ga = ⟨P ⟩, Gm = µr. We assume that r is large enough so that

ECDLP is hard to solve. Consider a bilinear pairing e as in the above de�nition.

Suppose there is a set U of n users and a trusted Dealer D. The Dealer has the

authority to generate and publish all the parameters of the scheme. The users

are divided into m disjoint levels L1, L2, · · · , Lm. De�ne Li as higher level than

Lj if i < j. Let | Li |= ni and ti be the threshold for level Li or higher for

i = 1, 2, · · · ,m. The top level is L1 and Lm is the lowest level. Assume that

t1 ≤ t2 ≤ · · · ≤ tm. Suppose that s secrets say K1, K2, · · · , Ks are to be shared

among the users. Dealer makes P public.

We recall that a generating matrix M of size k × n of a maximum distance

separable code (MDS code) C with parameters [n, k, d] over Fq satis�es the prop-

erty that any k columns of M are linearly independent (see [32, Theorem 2.4.3]).
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Such matrices are known as MDS matrices. We refer to [32] for more details.

We need the following two propositions to describe the scheme.

Proposition 5.1.1 Letm1,m2 and t be positive integers. Suppose b1, b2, · · · , bm1 ∈
Fr be given. If t > m1, then there exists an m1× t matrix A and an m2× t matrix

B such that any t rows of the matrix M =

(
A

B

)
forms an invertible submatrix

of M , and the system AX = (b1 b2 · · · bm1)
T has many solutions X ∈ Ft

r.

Proof. We choose an (m1 +m2)× t matrix M such that any t rows of M forms

an invertible submatrix M . We let M =

(
A

B

)
, where A is a m1 × t and B is a

m2× t submatrices. Since t > m1, the rank of A is m1. It follows that the system

AX = (b1 b2 · · · bm1)
T has many solutions, as required.

Proposition 5.1.2 Let m1,m2 and t be positive integers with t ≤ m1. Suppose

b1, b2, · · · , bm1 ∈ Fr be given. For any integer t′ satisfying m1 < t′ ≤ m1 + m2,

there exists a matrix M =

(
A A′

B B′

)
, where A and B are matrices of size m1×t

and m2 × t, A′ and B′ are matrices of size m1 × (t′ − t) and m2 × (t′ − t), such

that the �rst t columns of any t rows of M form an invertible submatrix and the

system
(
A A′

)
X = (b1 b2 · · · bm1)

T has many solutions.

Proof. As before, we choose matrices A and B of size m1 × t and m2 × t re-

spectively, such that any t rows of the matrix

(
A

B

)
form an invertible sub-

matrix. Since t ≤ m1, the dimension of the column space of A is t. Let

v1, v2, · · · , vt ∈ Fm1
r be the column vectors of A. Let W be a subspace of Fm1

r

such that Span{v1, v2, · · · , vt}+W = Fm1
r and the dimension of W is m1− t. By

the hypothesis on t′, we have t′ − t ≥ m1 − t. Thus, we can select t′ − t column

vectors w1, w2, · · · , wt′−t ∈ Fm1
r which spans W .

Now, we let A′ be the matrix formed by column vectors w1, w2, · · · , wt′−t and

B′ to be any matrix of m2 × (t′ − t) size. As the columns of the matrices A and

A′ span all of Fm1
r , we have rank

(
A A′

)
is m1. Hence the system

(
A A′

)
X =

(b1 b2 · · · bm1)
T has many solutions. Letting M =

(
A A′

B B′

)
, the proof is

complete.
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Consider the conjunctive hierarchical access structure

Γ =

{
A ⊆ U :

∣∣∣∣A ∩
(

i∪
j=1

Lj

)∣∣∣∣ ≥ ti for all i, 1 ≤ i ≤ m

}

(as in De�nition 1.3.1). Denote by uij the jth user in the level Li.

Level L1.

� Consider a matrix M1 of order n1 × t1 such that any submatrix of M1

consisting of any t1 rows forms an invertible matrix. Such matrices are

transpose of standard MDS matrices.

� D chooses t1 random integers a11, a12, · · · , a1t1 ∈ [0, r − 1] and computes

(b11 b12 · · · b1n1)
T = M1 · (a11 a12 · · · a1t1)T

where T denotes the transpose of a matrix.

� Each u1j in the level L1, chooses x1j ∈ [1, r − 1] randomly and makes x1jP

public.

� ThenD computes b1jx1jP for user u1j, j = 1, 2, · · · , n1, and sends (publicly)

to the respective user.

� Each u1j will get their share b1jP by computing x−1
1j (b1jx1j)P .

Level L2.

Depending on the size of t2, we make the following cases.

Case I. For t2 > n1, consider a matrix M2 of order (n1 + n2) × t2 such that

a submatrix of M2 consisting of any t2 rows forms an invertible submatrix. D

chooses t2 values a21, a22, · · · , a2t2 ∈ [0, r − 1] and computes

(b11 · · · b1n1 b21 · · · b2n2)
T = M2 · (a21 a22 · · · a2t2)T ,

in such a way that b1j, j = 1, 2, · · · , n1, are same as in level L1. By Proposition

5.1.1, choosing a matrix M2 and values a21, · · · , a2t2 satisfying above conditions is
possible. Each u2j in level L2 chooses x2j ∈ [1, r − 1] randomly and makes x2jP ,

j = 1, 2, · · · , n2, public. Then D computes b2jx2jP for u2j and sends (publicly)
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to the respective user. Then each u2j will get their share b2jP by computing

x−1
2j (b2jx2j)P .

Case II. For t2 ≤ n1, consider a matrix M2 of order (n1 + n2) × t′2, where n1 <

t′2 ≤ n1 + n2, such that the �rst t2 columns of any t2 rows forms an invertible

submatrix of M2. D chooses t′2 values a21, a22, · · · , a2t2 , · · · , a2t′2 ∈ [0, r − 1] and

computes

(b11 · · · b1n1 b21 · · · b2n2)
T = M2 · (a21 a22 · · · a2t2 · · · a2t′2)

T ,

in such a way that b1j, j = 1, 2, · · · , n1, are same as in level L1. By Proposition

5.1.2, such a matrix M2 satisfying the above conditions exists. D keeps the �rst

t2 values (a21, · · · , a2t2) as secret and declares rest t′2 − t2 values as public. Each

u2j in level L2 chooses x2j ∈ [1, r− 1] randomly and makes x2jP public. Then D

computes b2jx2jP for u2j and sends (publicly) to the respective user. Then each

u2j will get their share b2jP by computing x−1
2j (b2jx2j)P .

In general, for i ≥ 3, the distribution of shares is as following.

Level Li.

Case I. For ti >
i−1∑
k=1

nk, consider a matrix Mi of order (n1 + n2 + · · · + ni) × ti

such that any ti rows form an invertible matrix. D chooses ti values ai1, ai2, · · · ,
aiti ∈ [0, r − 1] and computes

(b11 · · · b1n1 b21 · · · b2n2 · · · bi1 · · · bini
)T = Mi · (ai1 ai2 · · · aiti)T ,

in such a way that bsj, s = 1, 2, · · · , i − 1, j = 1, 2, · · · , ns, are same as in the

previous levels. This is possible in view of Proposition 5.1.1. Each uij in level Li,

chooses xij ∈ [1, r − 1] randomly and makes xijP , j = 1, 2, · · · , ni, public. Then

D computes bijxijP for uij and sends (publicly) to the respective user. Then each

uij will get their share bijP by computing x−1
ij (bijxij)P .

Case II. For ti ≤
i−1∑
k=1

nk, consider a matrixMi of order (n1+n2+· · ·+ni)×t′i, where
i−1∑
k=1

nk < t′i ≤
i∑

k=1

nk, such that the �rst ti columns of any ti rows form an invertible

submatrix of Mi. D chooses t′i values ai1, ai2, · · · , aiti , · · · , ait′i ∈ [0, r − 1] and
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computes

(b11 · · · b1n1 · · · bi1 · · · bini
)T = Mi · (ai1 ai2 · · · aiti · · · ait′i)

T ,

in such a way that bsj for s = 1, 2, · · · , i− 1 and j = 1, 2, · · · , ns, are the same as

in the previous levels. This is possible in view of Proposition 5.1.2. As before, D

keeps the �rst ti values as secret and declares the rest t
′
i−ti values as public. Each

uij in the level Li chooses xij ∈ [1, r− 1] randomly and makes xijP public. Then

D computes bijxijP for uij and sends (publicly) to the respective user. Then each

uij will get their share bijP by computing x−1
ij (bijxij)P .

Now D chooses secret keys Ki ∈ [0, p − 1], 1 ≤ i ≤ s, and computes vi =

e (P, i ·Q) + Ki where Q =
m∑
j=1

aj1P (see Remark 3.1.1). Finally, D makes vi,

1 ≤ i ≤ s, and Mj, 1 ≤ j ≤ m, public.

5.1.2 Reconstruction of the secrets

Without loss of generality, suppose that t1 number of users u11, u12, · · · , u1t1 from

level L1, t2−t1 number of users u21, u22, · · · , u2(t2−t1) from level L2, t3−t2 number
of users u31, u32, · · · , u3(t3−t2) from level L3, . . . , and tm − tm−1 number of users

um1, · · · , um(tm−tm−1) from level Lm collaborate to reconstruct the secrets. The

collaborating users from level L1 will consider a submatrix M ′
1 of M1 of order t1

corresponding to their shares and �nd the inverse M ′−1
1 . Then, the users compute

M ′−1
1 · (b11P b12P · · · b1t1P )T = (a11P a12P · · · a1t1P )T .

At level L2, in Case I, the collaborating users from levels L1 and L2 can

�nd (a21P, a22P, · · · , a2t2P ) as above. In Case II, let M2 =

(
A2 A′

2

B2 B′
2

)
(see

Proposition 5.1.2). The collaborating users �rst compute




b′11P
...

b′1t1P

b′21P
...

b′2(t2−t1)
P




=




b11P
...

b1t1P

b21P
...

b2(t2−t1)P




−
(
A′′

2

B′′
2

)



a2(t2+1)P
...

a2t′2P


 ,

where A′′
2 and B′′

2 are the submatrices of A′
2 and B′

2 respectively, corresponding
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to collaborating users. Then, they consider a submatrix M ′
2 consisting of the �rst

t2 columns of M2 corresponding to their shares. Finally, they compute

M ′−1
2 ·

(
b′11P · · · b′1t1P b′21P · · · b′2(t2−t1)

P
)T

= (a21P a22P · · · a2t2P )T .

Similarly, the collaborating users from levels L1, L2 and L3 can �nd
(
a31P, a32P,

· · · , a3t3P
)
and so on. Then, the users compute Q =

m∑
j=1

aj1P . Therefore, the

secrets Ki = vi − e (P, i ·Q) for 1 ≤ i ≤ s, are revealed.

5.1.3 Veri�cation of the shares

Veri�cation of shares is essential to avoid two types of problems: the Dealer may

send incorrect shares to the users during distribution, and the user may provide

incorrect shares during reconstruction. The �rst problem does not arise in our

schemes since the shares are distributed in an encrypted way. The shares in the

second problem can be veri�ed in the following way.

During the secret reconstruction, each collaborating user uij provides their

share cijP with extra information x−1
ij P for veri�cation. Other collaborating

users can verify the authenticity of the share by examining the validity of the

equation e(x−1
ij P, bijxijP ) = e(P, cijP ). The above equation holds true if and

only if cijP = bijP as e(x−1
ij P, bijxijP ) = e(P, bijP ).

5.2 Security Analysis of the Scheme

Bilinear pairing e is a one-way function and can be calculated in two steps. The

�rst is to use Miller's algorithm ([44, Lemma 2]) to determine the evaluation of a

certain function at a speci�c divisor of the underlying elliptic curve E. The second

step is the �nal exponentiation. We also refer to [26] for further information on

how the pairing inversion problem and the individual steps (Miller inversion and

inverting exponentiation) relate to one another. The one-wayness of the bilinear

map is that, to �nd P,Q ∈ Ga such that e(P,Q) = g for a given pairing e and

a value g ∈ Gm is di�cult. Also, to �nd Q ∈ Ga for a given P ∈ Ga, P ̸= 0

and g ∈ Gm such that e(P,Q) = g is di�cult. The pairing e is non-degenerate

and bilinear, and the groups Ga, Gm are cyclic with the same prime order. For

P ̸= 0, the equation e(P,Q) = g = e(P,Q′) implies that e(P,Q − Q′) = 1. As
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P is a generator for Ga, it follows that Q = Q′. Hence, we have the following

observation.

Observation 5.2.1 For a given pair (P, g) ∈ Ga × Gm with P ̸= 0, there is a

unique Q ∈ Ga such that e(P,Q) = g.

For given points P and aP , a ∈ Z, on an elliptic curve E, �nding the value of

a is known as ECDLP. It is believed that ECDLP is computationally infeasible

to solve for a suitable choice of the elliptic curve E and points on E (see [27]).

In our scheme, the Dealer does not require a secure channel to distribute the

shares, which is a key aspect of our scheme. The Dealer encrypts the shares

before sending them to the users. When the Dealer distributes the shares bijP

to the users, an adversary cannot obtain it from bijxijP since it is equivalent to

solving an instance of ECDLP. Also, an adversary cannot obtain the users secret

key xij from xijP .

Observation 5.2.2 The probability of getting secrets for an adversary is negligi-

ble.

The probability of guessing level secrets ai1P for 1 ≤ i ≤ m
(
or

m∑
i=1

ai1P
)
is 1/r

and guessing the correct secret Ki is 1/p. So the probability of getting secrets is

max{1/r, 1/p}. As r and p are large primes, this probability is very small.

Theorem 5.2.3 The probability of receiving any of the secrets Ki by an unau-

thorized set of users is low.

Proof. Let A be an unauthorized set of users (i.e., A ̸∈ Γ). Thus,

∣∣∣∣∣A ∩
(

i⋃
j=1

Lj

)∣∣∣∣∣
< ti, for some i, 1 ≤ i ≤ m. Let ti − 1 (or less) number of users from level Li

or higher collaborate to compute ai1P . The users can form a system of less than

ti equations with ti unknowns. Thus, by Proposition 1.8.4, the system has rλ

many solutions for some λ, 1 ≤ λ ≤ ti. Suppose they choose a share buvP ∈ Ga

from level Li or higher levels. Then they can form a square matrix and solve the

system of equations with the share buvP . However, the probability of choosing

the correct share buvP is 1/r. Also, the probability of choosing buvP and ai1P is

same. Hence, an unauthorized set of users cannot get any information about the

secret.

A comparison between our scheme and some of the known schemes is shown

in Table 5.1.
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Table 5.1: Comparison with other schemes

Scheme Binu [8] Liu [40] Tentu [63] Our scheme

Hierarchical No No Yes Yes
Multi-secret Yes Yes No Yes
Veri�ability Yes No No Yes

Secure channel Yes Yes No No
Limitations on

number of secrets No Yes Yes No
Underlying group Elliptic curves Elliptic curves Fq Elliptic curves

5.3 An Example of the Scheme

We give an example of the conjunctive hierarchical scheme using modi�ed Tate

pairing ([41]). Computations are based on SageMath.

Consider an elliptic curve E : y2 = x3 +4x+15 over the �nite �eld F47. The

number of points in E(F47) is 37 and 37 | 473 − 1, i.e., the embedding degree

of E(F47) with respect to 37 is 3. Then F473 is an extended �nite �eld and the

number of points in E(F473) is 104044. Let α be a root of any irreducible cubic

polynomial over F47. The group E[37] ⊆ E(F473) is the set of torsion points.

Let P = (24α + 1, 22α2 + 10α + 23) ∈ E[37] and Ga = ⟨P ⟩. We denote, by e,

the (modi�ed) Tate pairing as given in ([41]). Consider the parameters n1 = 2,

n2 = 3, n3 = 5 and t1 = 1, t2 = 3, t3 = 4. Put the secrets K1 = 8, K2 = 15,

K3 = 22, K4 = 11.

Level L1.

� Choose the matrix M1 =

(
3

4

)
and t1 = 1 random integer a11 = 11 ∈ [0, 36].

� Compute (b11 b12)
T = M1 · (a11) = (33 7)T where T denotes the transpose

of a matrix.

� Thus, the shares of users u11, u12 are 33P = (α2+30α+40, 33α2+40α+28)

and 7P = (42α2 + 45α + 19, 28α2 + 2α + 6) respectively.
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Level L2.

� As t2 > n1, choose the matrix M2 =




4 6 1

2 5 8

1 0 9

5 2 10

7 3 11




and t2 = 3 integers

a21 = 33, a22 = 32, a23 = 5 from [0, 36].

� Compute (b11 b12 b21 b22 b23)
T = M2 · (a21 a22 a23)

T = (33 7 4 20 12)T . We

note that b11 and b12 are the same as in level L1.

� Thus, the shares of users u21, u22, u23 are 4P = (α2+30α+40, 14α2+7α+19),

20P = (36α2+17α+11, 7α2+19α+20) and 12P = (7α2+29α+45, 26α2+

6α + 10) respectively.

Level L3.

� As t3 < n1 + n2, let t
′
3 = 6.

� Choose the matrix M3 =




3 1 5 7 1 9

2 4 9 3 6 1

5 2 11 7 10 2

1 1 2 3 5 7

2 9 6 15 12 16

10 0 3 1 2 4

4 5 1 7 2 9

3 2 8 0 5 3

1 7 11 12 10 4

4 8 9 2 3 1




and t′3 = 6 integers

a31 = 6, a32 = 25, a33 = 8, a34 = 19, a35 = 7, a36 = 20 from [0, 36]. We note

that b11, b12, b21, b22, b23 are the same as in levels L1 and L2. Make a35 = 7

and a36 = 20 public.

� Compute (b11 b12 b21 b22 b23 b31 b32 b33 b34 b35)
T = M3 · (a31 a32 a33

a34 a35 a36)
T = (33 7 4 20 12 12 3 5 18 5)T .

� Thus, the shares of users u31, u32, u33, u34, u35 are 12P = (7α2 + 29α +

45, 26α2 + 6α + 10), 3P = (14α2 + 20α + 21, 22α2 + 29α + 40), 5P =
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(4α2 + 9α+ 39, 14α2 + 42α+ 5), 18P = (17α2 + 6α+ 22, 26α2 + 32α+ 10)

and 5P = (4α2 + 9α + 39, 14α2 + 42α + 5) respectively.

Now compute Q = a11P+a21P+a31P = 13P = (17α2+13α+4, 8α2+22α+9).

Then v1 = e(P,Q)+K1 = e(P, 13P )+8 = 37α2+28α+12, v2 = e(P, 2Q)+K2 =

e(P, 26P ) + 15 = 28α2 + 7α + 4, v3 = e(P, 3Q) +K3 = e(P, 2P ) + 22 = 36α2 +

32α + 23, v4 = e(P, 4Q) +K4 = e(P, 15P ) + 11 = 42α2 + 5α + 24. Make P , v1,

v2, v3, v4, M1, M2, M3 public.

Suppose the users u11, u21, u23, u32 collaborate to reconstruct the secrets K1,

K2, K3 and K4. Then, u11 computes level secret a11P = 3−1b11P = 25(α2 +

30α + 40, 33α2 + 40α + 28) = (18α2 + 27α + 12, 36α2 + 20α + 32). The users

u11, u21, u23 form a 3 × 3 matrix, say M ′
2 =



4 6 1

1 0 9

7 3 11


 from �rst, third and

fourth rows of M2 and compute the inverse M ′−1
2 =



24 19 26

36 0 27

22 35 30


. Then they

compute M ′−1
2 · (33P 4P 12P )T = ((α2 +30α+40, 33α2 +40α+28) (4α2 +9α+

39, 33α2 + 5α + 42) (4α2 + 9α + 39, 14α2 + 42α + 5))T . Thus, the level secret is

a21P = (α2 + 30α + 40, 33α2 + 40α + 28). In level L3, the users u11, u21, u23, u32

know the entries of the corresponding rows of M3. As a35 = 7 and a36 = 20 are

public, �rst they compute

b11P − (a35P + 9a36P ) = 31P = (18α2 + 42α + 8, 40α2 + 18α + 46),

b21P − (10a35P + 2a36P ) = 5P = (4α2 + 9α + 39, 14α2 + 42α + 5),

b23P − (12a35P + 16a36P ) = 15P = (31α2 + 10α + 24, 11α2 + 23α + 44),

b32P − (2a35P + 9a36P ) = 31P = (18α2 + 42α + 8, 40α2 + 18α + 46).

Then they take submatrix M ′
3 =




3 1 5 7

5 2 11 7

2 9 6 15

4 5 1 7




of M3 and compute the inverse
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matrix M ′−1
3 =




16 36 23 15

26 35 7 35

21 7 22 20

1 1 21 6




. Now, we have

M ′−1
3 ·




31P

5P

15P

31P




=




(18α2 + 42α + 8, 7α2 + 29α + 1)

(7α2 + 29α + 45, 21α2 + 41α + 37)

(18α2 + 12α + 8, α2 + 38α + 44)

(17α2 + 6α + 22, 21α2 + 15α + 37)




.

Thus, the level secret is a31P = (18α2 + 42α + 8, 7α2 + 29α + 1). Finally,

they compute Q = a11P + a21P + a31P = 13P and reconstruct the secrets as

K1 = v1 − e(P,Q) = 8, K2 = v2 − e(P, 2Q) = 15, K3 = v3 − e(P, 3Q) = 22,

K4 = v4 − e(P, 4Q) = 11.

5.4 Complexity

The number of operations involved in the multiplication of a ni × ti matrix with

ti × 1 matrix is tini. The time required to compute the scalar multiplication of

a point on an elliptic curve using the Double-and-Add algorithm method [18] is

O(log2r), where r is the order of the point. The time computation for �nding the

inverse of a matrix of order ti is t
3
i . The computational cost for the addition of

two distinct points on an elliptic curve is I+2M+S and for doubling I+2M+2S

(see [1]), where I, S, M denote inverse, squaring and multiplication, respectively.

There are many pairings that cost logarithmic time (see [34, 44], for example).

At the time of secret distribution. For computing m matrices of di�erent order in

our scheme, the Dealer requires O(mn2) operations. There are n scalar multipli-

cations required to compute bijxijP , which costs O(nlog2r). Dealer also requires

m additions of points to compute Q that costs O(m) and s pairings to compute

vi.

At the time of secrets reconstruction. The collaborating users need to �nd the

inverse of m matrices of order ti, 1 ≤ i ≤ m, which takes
m∑
i=1

t3i operations. For

ti ≤ ni and as
m∑
i=1

ni = n, the sum
m∑
i=1

t3i ≤ n3. To �nd the level secret ai1P ,



�5.4. Complexity 85

the users need t2i points additions for Case I and t′2i points additions for Case II.

Furthermore, they required m additions of points to compute Q and s pairings

to compute vi, 1 ≤ i ≤ s.

Hence, combining all these, the computational complexity of the scheme is

O(n3).

The hierarchical scheme proposed in [71] is based on linear homogeneous re-

currences. The complexity of their scheme is O(nkm−1logn) where km is the

threshold of the last level, which is an improvement over the complexity of the

scheme proposed by Tassa [62]. However, the complexity of our scheme is O(n3).
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Conclusion

This thesis contains our work which is published/accepted/submitted in two con-

ferences and two journals. All our work is based on elliptic curves and bilinear

pairings. In Chapter 2, we have discussed a blind signature scheme using self-

pairings. The scheme is an improved version of Chakraborty-Mehta's scheme

[10] where the security was lacking. In Chapter 3, we gave a multi-secret shar-

ing scheme, and based on it, we presented a compartmented multi-secret sharing

scheme. Then in Chapter 4, we have introduced conjunctive and disjunctive com-

partmented secret sharing schemes. In Chapter 5, we have proposed a conjunctive

hierarchical multi-secret sharing scheme.

The schemes which we presented in Chapter 3, 4 and 5 are based on ellip-

tic curves and bilinear pairings. The schemes are veri�able and computationally

e�cient. We have provided security analysis of all the schemes and complexity

aspects are also discussed. For the illustrations, we have given an example of

each of the schemes. The computations are done using SageMath.
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