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ABSTRACT

This thesis consists of five chapters.

In Chapter 1, some of the basics of elliptic curves and cryptography have been
discussed. We mainly recall elliptic curve cryptography, basic signature schemes

and bilinear pairings to the extent which is relevant to the thesis.

In Chapter 2, we discuss a blind signature scheme given by K. Chakraborty
and J. Mehta (A stamped blind signature scheme based on elliptic curve dis-
crete logarithm problem, International Journal of Network Security 14(6), 316-
319 (2012)). We also discuss two attacks on it given by M. Tian, Y. Zhu and
Z. Chen. By modifying a pairing (Lee’s pairing), we defined a self-pairing map
and proposed a blind signature scheme based on it. Our scheme avoids above

said attacks.

The rest of the thesis contains our work in Elliptic Curve Cryptography,
mainly in secret sharing schemes based on elliptic curves and bilinear pairings.
The main purpose of using elliptic curves and bilinear pairings is that it gives

similar security (as in existing schemes) with less key sizes.

Chapter 3 is devoted to our work on a multi-secret sharing scheme and a
compartmented multi-secret sharing scheme. In Chapter 4, we have presented
our work on conjunctive and disjunctive compartmented secret sharing schemes.
We presented our work on a conjunctive hierarchical multi-secret sharing scheme
in Chapter 5. All our schemes are verifiable (i.e., each collaborating user can verify
the shares of other collaborating users at the time of reconstruction of the secret)
and computationally secure. We have provided an example (computations are
done using SageMath) of each of the schemes for illustration purposes. Moreover,

we have done security analysis and complexity computations of our schemes.
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Notations and Acronyms

AES
BDHP
DES

DL
DSA
EC
ECC
ECDDHP
ECDHP
ECDLP
ECDSA
MDS
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the set of natural numbers
the set of integers
a field

the finite field with ¢ elements with characteristic p, p is prime

an elliptic curve

the set of points on elliptic curve over
the set of points on elliptic curve over I,
the number of elements in F(F,)

The point at infinity on an elliptic curve
the set of r-torsion points on F

an additive cyclic group

a multiplicative cyclic group

the discriminant

A is isomorphic to B

A is congruent to B modulo n

the set of integers modulo n

the set of invertible elements in Z,,

positive real numbers

Advanced Encryption Standard

Bilenear Diffie-Hellman Problem

Data Encryption Standard

Discrete Logarithm

Digital Signature Algorithm

Elliptic Curve

Elliptic Curve Cryptograophy

Elliptic Curve Decisional Diffie-Hellman Problem
Elliptic Curve Diffie-Hellman Problem
Elliptic Curve Discrete Logarithm Problem
Elliptic Curve Digital Signature Algorithm
Maximum Distance Separable

Rivest-Shamir-Adleman






Introduction

We are now in a digital era. Everyone is involved in technology directly or indi-
rectly. In this digital era, secret sharing and signatures are most commonly used
to protect data, get permission from higher authorities to do specific work, etc.
Cryptography is a vast subject that requires knowledge of various mathemati-
cal concepts, such as Group Theory, Number Theory, as well as Linear Algebra,
Information Theory, and Probability.

Cryptography has been used to help in providing confidential communications
between mutually trusted parties. The trusted parties communicate over a pos-
sibly insecure (public) channel so that an adversary cannot obtain what is being
communicated. To communicate, they require cryptographic tools such as Hash
functions, Signature and Secret Sharing schemes, etc., to achieve specific secu-
rity objectives. In the 1970s, Diffie-Hellman introduced the concept of public-key
cryptography. Their idea was to design a cryptosystem with two distinct keys,
one is public and other is private. The public key would be used for encrypting
the message, while the private key would be used for decrypting the encrypted
message. The public key is accesible to everyone, but only one person, who will
receive the encrypted message, has access to the private key. The cryptosystem
developed by Rivest, Shamir and Adleman (RSA Cryptosystem), is the earliest
and most popular example of a public-key cryptosystem.

Elliptic curves are of great importantance both in Number Theory and Cryp-
tography. It has many applications in Number Theory, such as in proving Fer-
mat’s Last Theorem, integer factorization algorithms, etc. While in Cryptogra-
phy, it is used primarily to secure cryptographic schemes with small key sizes.
One of the advantages of using elliptic curves in cryptographic systems is that
key sizes are smaller and thus, the cryptographic algorithms run faster.

In this thesis, we mainly worked on Elliptic Curve Cryptography, Signature

schemes and Secret Sharing Schemes using elliptic curves. We follow closely

3



4 Introduction

[20, 31, 41, 60, 67).

The thesis consists of five chapters.
Chapter 1. Preliminaries

In Chapter 2, we discuss some of the basics of elliptic curves and cryptogra-
phy. We recall elliptic curve cryptography, basic signature schemes and bilinear

pairings to the extent which is relevant to the thesis.
Chapter 2. A blind signature scheme

In this chapter, we discuss our work [17] on an analogous/modified version of a
scheme given by K. Chakraborty and J. Mehta [10]. The Chakraborty-Mehta’s
scheme is not secure, which is proved by M. Tian, Y. Zhu and Z. Chen [65] by
giving two simple but powerful attacks. Our blind signature scheme is secure and
avoids the attacks given by M. Tian, Y. Zhu and Z. Chen. The scheme is based
on self-pairing map. An anti-symmetric self-pairing was defined by H.-S. Lee |38].
Based on that, a symmetric self-pairing is defined in [17]. The scheme is based

on symmetric self-pairing and elliptic curves.
Chapter 3. Compartmented secret sharing scheme

We have focused on our work |14] on a multi-secret sharing scheme and a compart-
mented multi-secret sharing scheme in this chapter. In a compartmented secret
sharing scheme, a group of participants is partitioned into several compartments.
A share of a secret is distributed among all the participants. At a later time, if
required, a threshold number of participants from each compartment and a total

of global threshold participants collaborate to reconstruct the secret.
Chapter 4. Conjunctive and disjunctive compartmented secret sharing schemes

In this chapter, we have studied conjunctive and disjunctive compartmented se-

cret sharing schemes. This contains our work [15].
Chapter 5. Conjunctive Hierarchical Multi-Secret Sharing Schemes

We presented our work [16] on a conjunctive hierarchical multi-secret sharing
scheme in this chapter. In a conjunctive hierarchical secret sharing scheme, the
participants are divided disjointly into several levels. A secret is distributed to
all the participants by a trusted Dealer in a way so that a predetermined number
of participants from each level and/or with the cooperation of higher levels can

reconstruct the secret.




The schemes which we presented in Chapter 3, 4 and 5 are based on elliptic
curves and bilinear pairings. The schemes are verifiable and computationally
efficient. We have provided security analysis of all the schemes and complexity
aspects are also discussed. For the illustrations, we have given an example of

each of the schemes. The computations are done using SageMath.



Introduction




Chapter 1
Preliminaries

In this chapter, we discuss some of the basics of elliptic curves and cryptogra-
phy. We recall elliptic curve cryptography, basic signature schemes and bilinear

pairings to the extent which is relevant to the thesis.

1.1 Basics of Elliptic Curves

We assume the basic knowledge of group theory, ring theory and fields which
are needed to define elliptic curves. We refer to [19, 28, 39| for a more detailed
discussion of this.

Elliptic curves are described as the set of solutions to an equation in two

variables.

Definition 1.1.1 A Weiestrass equation over a field F is an equation of the form
E: y’ +awwy +asy = 2° + a32” + a4z + ag. (1.1)

We define the following terms

2
ry = aj +4as,
T4 = 2&4 + ajas,
_ 2 4
Te — CL3 + ag,
_ 2 4 2 2
rg = G106 + 40206 — Q10304 + Q203 — A,
cy = T; — 24ry
d A = 2 3 2
an = —ryrg — 8y — 27rg 4+ Irary7s.

7



8 §1.1. Basics of Elliptic Curves

y=a-1 yv=a—z v =a>-3x4+5

Figure 1.1: Examples of elliptic curve over R.

A is called the discriminant of the curve E. If A # 0, then the set of solutions of

Equation 1.1 is called an elliptic curve.

If the characteristic of I is greater than 2, replacing y by y— 3 (a12+a3), Equation

1.1 can be reduced to

B y* =2®+ dya® + ayw + a,. (1.2)

Furthermore, if characteristic of F is not equal to 3, replacing x by z — %a’g,
Equation 1.2 can be reduced to

E": oy* =2° +adjz + aj. (1.3)

Equation 1.3 is called the normal form of the elliptic curve.
By E(F), we denote the set of all the points on E over F along with a point
at infinity O. Example of elliptic curves over R is depicted in Figure 1.1.

1.1.1 The group structure on E(IF)

Consider an elliptic curve
E:y=2"+ar+b (1.4)

over F where a,b € F with non-zero discriminant. We define the addition of

points as follows.

Definition 1.1.2 ([36]) Let £ : y*> = 2* + ax + b be an elliptic curve over R
and P, Q) € E(R) be two points on the curve. We define the sum P + @ and the
negative of P by the following rules.
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1. If P = (z,y), then —P = (z, —y). That is, the negative of P is the reflection

of P about the z-axis.

2.If Q # £P and P # O, Q # O, then draw a line L passing through P
and () which intersect the curve at one more point P + (). The reflection
of P+ @ about z-axis is P + Q.

3. If P=Q and P # —P, draw a tangent line L to the curve at P. If 2P
is the point intersection of the line L and the curve, the reflection of 2P

about z-axis is 2P.

4. If Q = O, then P4+ = P+O = P. In this case, the line L passing through
P and @ is a vertical line. The point O acts as the additive identity.

5. 1fQ=—P, then P+Q = O.

The point at infinity O is the point of intersection where the y-axis and a vertical
line meet. An example of the point addition and doubling on an elliptic curve

over R is illustrated in Figure 1.2.

Now we will see why the line L passing through the points P and () intersects
the curve in at most one more point. We will also derive the formula for the sum
P+Q.

Let P = (z1,y1), @ = (x2,92) and P+ Q = (z3,y3). Our aim is to write z3
and y3 in terms of xq, xa, Y1, yo. Suppose that P & {+Q, O} and Q # O. Then
the equation of L is y = Ax 4+ ¢ where A = (yo — 1) /(22 — x1) and ¢ = y; — Axy.
The point (z, \z + ¢) lies in E(R) if and only if (A\x + ¢)? = 23 + ax + b. If
P = (z1, \z1 4+ ¢) and Q = (22, \x2 + ¢), then we have two roots z; and 5 of
the above equation as the points are on the curve. If z3 is the remaining root of
the cubic equation, the third point of the intersection of L and the curve F is
P+ Q = (v3,—y3). Hence the sum z; + 25 4+ x3 is A2. Thus, x5 = \> — z; — 2y

and y3 = A(z1 — x3) — y1. In terms of xy, x9, y1, y2, we have

2
Y2 — Y1

r3 = — T — T2,
To — T1

Y2 — U
y3=< )(151—933)—3/1.

Tog — X1

(1.5)
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\_

Figure 1.2: Point addition and doubling on elliptic curve E over R.

If P=@Q and P # —P, the slope X of the tangent line L at P is the derivative
dy/dx of Equation 1.4 at P. Then A\ = (32% + a)/2y;, and we obtain the formula
for 2P = (x3,y3) where

(3x2+a>2
T3 = 9 - 25517
s (1.6)
<3x2+a>( )
= Ty — T3) —
Y3 2, 1 3 W

The set of all points on an elliptic curve F over FF satisfy the following prop-
erties. For given P, @ and R in E(F),

1. Closure: P+ @ € E(F).

2. Associativity: (P + Q)+ R =P+ (Q+ R).

3. Existence of identity: P+ O =0+ P = P.

4. Existence of inverses: P+ (—P) = (—-P)+ P =0.

It also satisfies the commutative property. Thus, the set F(F) forms an com-

mutative group.

1.1.2 Elliptic curves over finite field

Elliptic curves defined over a finite field are important in public-key cryptog-
raphy (see Section 1.2). The elliptic curve over F,, in the normal form, where

characteristics greater than 3 is defined as follows.
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Definition 1.1.3 Let a,b € F, with 4a® + 270? # 0. The set of solutions (z,y)
of the equation
E: y*=2"+azx+0b. (1.7)

is defined as elliptic curve over [F,.

Throughout the thesis, we consider the elliptic curve as in Equation 1.7.

We need the following well known results on elliptic curves.

Theorem 1.1.4 ([67, p.97]) We have
EF,) ~Zy, or Zpy, & Ly,
for some m € N, or for some my, mg € N with my|ms.

Theorem 1.1.5 (Hasse [67, p.97]|) Let #E(F,) = n. Then n satisfies

lg+1—n| <274

Theorem 1.1.6 ([67, p.98]) Let ¢ = p' for i € N, where p is a prime and let
n =40+ 1—a. Then there exists an elliptic curve E defined over F, such that
#E(F,) = n if and only if |a| < 2v/1 and a satisfies one of the following:

1. ged(a,p)—1,

2. 2|4 and a = £2V/7,

3. 2|4, p#1 (mod 3), and a = £V,
4. 24i,p=2or3, and a = £p(it1)/2,
5.2]i,p#£1 (mod 4), and a =0,

6. 214 and a = 0.

1.2 Cryptography

Cryptography is an intriguing field of study as it combines elegant mathematics
with many cutting-edge fields of computer science and engineering to find the

solutions that affect many parts of life in the digital era. It is about the algorithms
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and protocols that can be used to provide the core security services of secrecy, data

integrity, source authentication, and digital signatures (see [43|, for example).

Definition 1.2.1 (see [55]) A cryptographic algorithm is a well-defined trans-
formation that, given an input value, generates an output value while satistying
specific security objectives. A distributed method that properly describes the in-
teractions among two or more participants while meeting specific security objec-
tives is known as a cryptographic protocol. A cryptographic scheme is a collection
of associated cryptographic algorithms and protocols that aims to meet certain

security requirements.

In a cryptographic scheme, participants interact by sending their messages to
each other through communication channels. Communication channels are fre-
quently assumed to offer specific security guarantees. A communication channel
is either private or public. Suppose that two participants A and B agreed on
a secret key. Suppose A wishes to communicate a secret message to B over a
public/private channel. The original message, also known as plaintext, is con-
verted into a chaotic form, known as ciphertezt, using the secret key unreadable
to anyone who does not have the secret key. This is known as encryption. Then
participant B will get the original message by converting the ciphertext using the
secret key. This process is known as decryption. The keys and the methods for
using them to encrypt and decrypt the data are fully specified by a cryptosystem.

An adversary is an alliance of an attacker and/or one or more of the participants.

Security goals. The communications between entities (or participants) must
satisfy some security goals to keep their communications secret. The following
fundamental objectives have to be scrutinized for secure communications. Let A

and B be two communicating entities, and X be an adversary.

1. Confidentiality: limiting access to data to those who are allowed to see it,

i.e., X can not read the message.

2. Data integrity: making sure that an adversary has not altered the data, i.e.,
data sent by A that has been altered by X should be detectable by B.

3. Data origin authentication: confirming the original source of data, i.e., B

can verify that the message is actually originated from A.
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Cryptographic systems are classified as symmetric-key (secret-key) cryptogra-
phy and public-key cryptography. In symmetric-key cryptography, the participants
first agree on secret and authentic keying data. Then, to ensure confidentiality,
a symmetric-key encryption may be used. Data integrity and data origin au-
thentication may also be achieved using a MAC (message authentication code)
algorithm. While in public-key cryptographic schemes, the communicating enti-
ties only exchange authentic keying material and not the secret. Each participant
chooses a pair (e, dy) comprised of a private key e; and a corresponding public
key di. It is computationally infeasible to figure out the private key with the
knowledge of the public key.

The security of commonly used public-key schemes is based on the intractabil-

ity of some of well known number-theoretic problems. For example,

1. Integer factorization problem: the security of RSA public-key encryption

and signature methods depends on the complexity of it.

2. Discrete logarithm problem: the security of the EIGamal public-key encryp-
tion and signature schemes and its variations, like the Digital Signature
Algorithm (DSA), depends on its hardness.

3. Elliptic curve discrete logarithm problem: the security of all elliptic curve

cryptographic schemes depends on the hardness of it.

In 1977, a public-key cryptographic scheme was proposed by Rivest, Shamir
and Adleman [52|, called RSA scheme. The scheme chooses two large distinct
primes p and ¢ and set n = pq. Let e; be an encryption exponent such that
1 < e < ¢(n) and ged(ey, p(n))= 1, where p(n) = (p — 1)(¢ — 1). We note that
n is public, and p and q are secrets. Let di be the decryption exponent such that
1 <dp < p(n) and exdy =1 (mod ¢(n)).

The RSA scheme use the fact that m®%* = m (mod n), Vm € Z. The en-
cryption of a message m is done by computing the ciphertext ¢ = m® (mod n).
The ciphertext ¢ can be decrypted by computing c¢* = (m®)% = m (mod n).
Here we assume the hardness of the integer factorization problem. It is compu-

tationally infeasible to find the factors of n using e.
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1.3 Threshold Cryptography

In many cases, one participant shouldn’t have sole authority over access to a
valuable asset. For instance, opening a bank requires two keys, one maintained
by the owner and the other by a bank employee. The access to secret key should
not be limited to a single participant in an ideal cryptographic schemes. Instead,
it must be distributed among several participants such that a sufficient number
of participants can collaboratively access the key.

Threshold cryptography consists of strategies for distributing basic crypto-
graphic schemes among multiple participants. The secret sharing scheme is a
basis of threshold cryptography. The secret is partitioned into many parts. Each
part is called a share of the secret. The reconstruction of the secret is possi-
ble/allowed whenever a sufficient number of shares are available. Otherwise, the
secret cannot be reconstructed. A secret sharing scheme involves a set of partic-

ipants and a trusted Dealer.

Definition 1.3.1 (Trusted Dealer) In a secret sharing scheme, a trusted Dealer
is a participant who is trusted by all other participants to perform a particular
service properly. The Dealer has the authority to set up a scheme and distribute

the shares among the participants.

Definition 1.3.2 (Access structure) Suppose there are n participants in a
secret sharing scheme, and out of n, if at least ¢ participants collaborate, they
are allowed to reconstruct the secret key. Then the number ¢ is called a threshold
number. The set of participants who are allowed to reconstruct the secret key
is known as an authorized set. The collection of all authorized sets is called the

access structure.

Secret sharing scheme. A secret sharing scheme comprises of distribution and
reconstruction protocols. In distribution protocol, a share of a secret is distributed
to each participant. While in reconstruction protocol, any set of participants from
access structure pools their shares and collaborate to reconstruct the secret.

In some secret sharing schemes, verifying the shares by any participant can

allow them to know their originality and avoid attacks.

Verifiable secret sharing scheme. Verifiable secret sharing (VSS) is an im-

portant primitive of secret sharing scheme that permits sharing a secret in the
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presence of an adversary. The uniqueness of a VSS scheme is that everyone can
verify the consistency of the shares, having no idea about the secret. A verifiable

secret sharing scheme is necessary to resist the following.

1. At the time of distribution of shares, a dealer may transmit incorrect or

inconsistent shares to some of the participants.

2. At the time of reconstruction of the secret, participants provide incorrect

shares.

Many secret sharing schemes have been proposed in the literature (see [2, 9,
21, 33, 35, 37, 56, 59, 70]). Secret sharing schemes are not limited to a group
of participants; they are extended to multiple groups of participants, such as

compartmented and hierarchical structures.

1.3.1 Hierarchical secret sharing scheme

In a hierarchical secret sharing scheme, the group of participants is partitioned
into multiple levels. The participants in a level have more priority than the
participants in the lower level. This means that if some participants are absent
and the participants are not in threshold numbers at a level, they take the help of
higher-level participants to reconstruct the secret. So a higher-level participant
can collaborate with the lower-level participants to reconstruct the secret. For

examples,

1. to validate an electronic payments transfer, a bank may demand an agree-
ment of two assistant managers or three tellers. An assistant manager can

substitute for an absent teller, if the need arise.

2. a company would require the consent of two managers or three assistant
managers to authorize a digital locker. If there are only two assistant man-

agers present, a manager can fill in for the missing one.

There are two types of hierarchical access structures, namely, conjunctive and

disjunctive access structures (see [59, 63|, for example).

Definition 1.3.3 (Hierarchical access structures) Suppose that there is a
set U of n participants divided into m disjoint levels Ly, Lg, - -+ , L,,. Define L;
as a higher level than L; if 7 < j. Let t; be the threshold for level L; or higher
and t <ty < - <ty
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1. The conjunctive hierarchical access structure is defined as
r:{AgU; ‘Am <‘01Lj>‘ > ¢, for all 4, 1gigm}.
]:

A set of participants is authorized to reconstruct the secret provided the

set contains at least t; participants from each level L; or higher.

2. If we replace “for all” with “for some” in the above, then we call it the

disjunctive hierarchical access structure.

1.3.2 Compartmented secret sharing scheme

In a compartmented access structure, the group of participants is partitioned
into disjoint compartments. The secret is partitioned so that it can be recovered
with the cooperation of the participants if the number of participants from every
compartment exceeds a predefined compartment threshold and the total number
of participants exceeds the global threshold. For example, suppose that two states
decide to to regulate the use of a common asset which may lead to joint action.
At least two ministers from each state and a total of five ministers must work
together.

The compartmented secret sharing scheme was introduced by Simmon [59].
The access structure for the compartmented secret sharing scheme (see [29, 64])

is defined as follows.

Definition 1.3.4 (Compartmented access structure) Suppose that there is

a set U of n participants partitioned into disjoint compartments Cy, Cy, - , Cp,.
m

Let t; > 1 be the threshold for C; and let ¢ > > ¢; be the global threshold. Any
i=1

set of at least ¢ participants, with at least ¢; participants from C;, 1 < i < m, is
authorized to reconstruct the secret. Mathematically, the compartmented access

structure is is defined as

'={VCUu:VndC;|>t foreachi=1,2,--- ,m, and |[V| > t}.

1.4 Elliptic Curve Cryptography(ECC)

Elliptic curves have been progressively important in number theory and related

topics such as cryptography over the last four decades. In the 1980s, elliptic curves
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Security level 80 112 128 192 256
(bits) — SKIPJACK Triple-DES AES-Small AES-Medium AES-Large
EC parameter n 160 224 256 384 512
DL parameter ¢
RSA modulus n 1024 2048 3072 8192 15360

DL modulus p

Table 1.1: Comparison of key sizes

were first used in cryptography. The algorithms for factorization and primality
testing of an integer were developed using elliptic curves. In the 1980s and 1990s,
elliptic curves played a crucial role in proving Fermat’s Last Theorem.

While deciding on a public key scheme for a specific use, one needs to look

into some of the parameters carefully. For example,
1. Functionality. Is the scheme capable of providing the necessary results?
2. Security. What guarantees are there that the scheme is secure?

3. Performance. Do the protocols fulfill performance criteria for the intended

level of security?

The fundamental reason to use elliptic curves in a cryptographic scheme is to
provide similar security with a smaller key size. An example of the comparison is
given in Table 1.1 (see [31, p.19]), which shows that lower key parameters can be
used in ECC comapred to other systems with same level of security. The variation
in key size is more noticeable as security levels increases. Smaller parameters can
provide advantages such as faster computations and smaller keys and certificates.
The advantages offered by ECC are significant in contexts where storage, speed

of processing, bandwidth is limited.

Elliptic curve key generetion. Let P € E(IF,) be a point of prime order . The
elliptic curve F, the integers g, r, the point P are the public domain parameters.
An integer a chosen arbitrarily from [1,r — 1] is a private key. The corresponding
public key is QQ = aP.

Some of the hardness assumptions that are commonly used in cryptographic

schemes based on elliptic curves are given below.
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Definition 1.4.1 (Elliptic curve discrete logarithm problem (ECDLP))
The elliptic curve discrete logarithm problem is to find the integer a from given

points P and aP.

Definition 1.4.2 (Elliptic curve Diffie-Hellman problem (ECDHP)) Given
points P, aP and bP for a,b € 7Z, the problem of computing abP is called as el-
liptic curve Diffie-Hellman problem.

Definition 1.4.3 (Elliptic curve decisional Diffie-Hellman problem (ECD-
DHP)) Given points P, aP, bP and cP for a, b, c € Z, the elliptic curve decisional
Diffie-Hellman problem is to determine whether abP = cP.

An application of ECDHP is used in key exchange protocol. For instance,
suppose A and B are two entities that want to create a common secret K by
sending their messages to each other through a public channel. Suppose they
agreed upon a group G = (P) of prime order r where P is a point on an elliptic
curve E(F,). A chooses at random some a € [1,r — 1] and sends the point aP
to B. Similarly, B chooses at random some b € [1,7 — 1] and sends the point bP
to A. Then they both can compute secret key K = abP by using their private
keys. Here the key K remains unknown to any attacker even if he knows P, aP
and OP.

There are some known attacks on ECDLP. D. Shanks [57] developed a method,
called Baby Step, Giant Step, that requires /r steps and around /r storage. As
a result, it is only suitable for r of moderate size. The Baby Step, Giant Step
method has a drawback in requiring a lot of storage. Pollard’s p method [47] runs
in about the same amount of time as Baby Step, Giant Step, but requires less

storage. For more details and attacks on ECDLP, we refer to [67].

1.5 Bilinear Pairings

Bilinear pairing is a one-way mapping. It means that computing the pairing of
given inputs is easy, however finding the preimage of a given image is difficult.

We recall the definition as given in [41].

Definition 1.5.1 (Bilinear Pairings) "Let G, and G,, be an additive cyclic

group and a multiplicative cyclic group, respectively, with the same prime order
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r. A bilinear pairing e is a map
e: G, xG, — G,

which satisfy the bilinearity, non-degeneracy and computability properties. That
is, for x1, x2, Y1, Y2 € G4 and the identities 0 € G, 1 € Gy,

e Bilinearity: e(x; + x2,11) = e(z1,y1)e(x2, 1) and
e(z1,y1 +y2) = e(z1, y1)e(z1, y2).

e Non-degeneracy: For each x; # 0, there exists y; such that e(xy,y;) # 1.
Similarly, for each y; # 0, there exists z; such that e(zq,y;) # 1.

e Computability: There exists an algorithm where e can be computed effi-

ciently".

Remark 1.5.2 Following are some of the properties of the bilinear pairings. For
all x,y € G,

1. e(z,0) =e(0,y) = 1.
2. e(mz,ny) = e(x,y)™,Vm,n € Z.

3. e(z,y) = e(y,x).

4. If e(z,y) = 1,Vx € G,, then we have y = 0. (This is equivalent to the

non-degeneracy condition).

We have the following easy observation, which is useful in the security analysis

of our schemes.

Observation 1.5.3 For any z,y,y' € G, and x # 0, we have e(z,y) = e(z,y’)
iffy=y.

Proof. Suppose z,y,y" € G,, x # 0. Since G, is cyclic of prime order r and = # 0,
there exists a,a’ € Z such that y = az, y' = a’z. Suppose e(z,y) = e(z,y'), i.e.
e(r,ax) = e(x,a'r) = e(r,2)* = e(x,z)*. As x # 0 and also e is non-
degenerate, we have e(z,x) # 1. Thus, a = a’ (mod r). Hence y = ¢/'.

The one-wayness of the bilinear map is that, to find x,y € G, such that
e(x,y) = g for a given pairing e and a value g € G,, is difficult. Also, to find
y € G, for a given z € G, and g € G, such that e(z,y) = g is difficult.
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The intractability of the following (see [41]) problem determines the security of

many pairing-based protocols.

Definition 1.5.4 (Bilinear Diffie-Hellman problem (BDHP)) "Let e

be a bilinear pairing on (G,, G,,). The bilinear Diffie-Hellman problem (BDHP)

) abc

is to compute e(z, x for given x, ax, bx, cx € G,".

1.5.1 Divisors

Let c(z,y) be the polynomial defining E (see Equation 1.1). Let F, denote the
algebraic closure of F,. A rational function f on E is an element of the field of

fractions of the ring F [z, y]/(c(,y)).

A divisor D on E(F,) is a formal sum of points D = ) vp[P] where vp
PcE(Fy)
are integers such that vp = 0 for all but finitely many P. The sum )  wvpis
PcE(Fy)
called as the degree (deg(D)) of the divisor D. If deg(D)= 0, then D is known

as a zero divisor. The set of points P for which vp # 0 is known as the support

of D. The divisor of a non-zero rational function f is defined as div(f)= >
PeE(Fq)
ordp(f)[P] where ordp(f) is the order of P as a root/pole of f. The divisors

of rational functions are also called principal divisors. It is well known that

a divisor D = > wp[P] is principal if and only if D is a zero divisor and
PcE(F,)
Z I/pP =0.
PcE(F,)

If P = (z,y), then f(P) = f(x,y). If f is a rational function and D is a
divisor such that div(f) and D have disjoint support, then we define f(D) to be

I[I f(P)"r. For more details on divisors, we refer to |20, 67].
PeE(Fy)

1.5.2 The Tate pairing

Before defining Tate pairing, we recall the following definitions as in [41].

Definition 1.5.5 (Embedding degree [41]) "Let E be an elliptic curve over
F, and P € E(FF,) be a point of prime order r. Assume that ged(r, ¢)= 1. Then
the embedding degree of G = (P) is the least k € Z* such that r | ¢* — 1".

Definition 1.5.6 (Torsion points) Let F, be the algebraic closure of F,. Let
be a prime divisor of #E(F,). The r-torsion points of E, denoted by E[r], is the

set E[r] ={P € E(F,) : rP = O}.
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The following theorem says that, E[¢] forms a group of rank at most 2.

Theorem 1.5.7 ([67, p.79]) Let ¢ € Z*. If the characteristic of F is not equal
to 0 or does not divide £, then

E[ﬁ] = 7P Zy.

According to the above theorem, if ged(r, ) = 1 then E[r] 2 Z, ® Z,.

Example 1.5.8 Let E be an elliptic curve y?> = 2 4+ 42 + 2 over F5. Then
E(Fs5) ={0,(3,1),(3,4)} and #E(F5) = 3. Now ged(3,5) = 1 and 3 | 5% — 1,
i.e., the embedding degree of E(F5) is 2. Let Fs2 = F5[y]/(7* + v+ 1). Then
E(Fs2) and the 3-torsion points E[3] are as follows.

EFs) = {0,(3,1),(3,4),(0,1+27), (0,4 +37), (1,1+27), (1,4 + 37),
(2,347),(2,24+47), (4,1 +27),(4,4 + 37), (3 + 47,1),
(3+47,4), (4+7,1),(4+7,4),(27,3+27), (27,2 + 37),
(47,27), (47, 37), 1 +7,2+27), (1 + 7,3+ 37), (2+ 7,3 +7),
(247,24 47), (1 +47v,3+7), (1 + 47,2+ 47), (3+ 37,4 + 27),
(3+3y,14+37)}

and

E[3] = {0,(3,1),(3,4),(1,1 + 29), (1,4 + 3v), (1 +v,2 + 2y),(1 +~,3 +
37), (47, 27), (47, 37)}-

Let S = (3,1) and T'" = (4v,2v). Then every point of E[3] can be written
as a linear combination of S and T. For example 0S5 + 07T = O, 05 + 1T =
(47,27), 0S+2T = (47,37), LS+0T = (3,1), 1S +1T = (1,4+37), 1S+2T =
(14+7,3437), 25+0T = (3,4), 25 +1T = (1+7,2+27), 2S+2T = (1,1+27).
Hence, we observe that E[3] = Z; & Zs.

Let #E(F,) = vr, where r is a prime integer and r { ¢ —1. Then, £ > 1. Then
E[r] C E(F ), and so r?|#E(F ) (see [4]). We further assume that ged(v,r)=1,
then r t #E(F,)/r?. We denote p,, the order-r subgroup of 7. Then the
(modified) Tate pairing is defined as follows.

Definition 1.5.9 ([41]) "Let P, @ € E[r] and fp be a function with div(fp)=
r[P] —r[O]. Let R € E[r] such that R ¢ {O,P,—Q,P — Q}, and Dy = [Q +
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R] — [Q]. Note that the choice of R ensures that Dg and div(fp) have disjoint
support. Then the (modified) Tate pairing is a map

e: Elr| x E[r] — p,

defined as e(P, Q) = fp(Dg) "~ V/" = (fp(Q + R)/fp(R))(qk_l)/T".
The value e(P, Q) is independent of the choice of the function fp and the point
R, indicating that the Tate pairing is well-defined. It also satisfies the bilinearity

and non-degeneracy properties.

There are some effective algorithms to compute Tate pairing, such as Miller’s
algorithm (see |44]). Miller’s algorithm takes O(logr) operations. For improve-
ments and further reduction in number of operations, we refer to |6, 7, 25|, for
example.

A similar pairing, namely Weil pairing is defined which is used in cryptogra-

phy. One may refer to [44, 67| for more details.

Remark 1.5.10 In all of the proposed schemes (Chapter 3, 4 and 5), one can

use any of the bilinear pairings (for example, Tate pairing, Weil pairing, etc.).

1.6 Hash Function

Hash functions (see [48, 67]) are used to compress arbitrary length string to a
string of fixed length. This helps to allocate storage for the records of a file as
consistently as feasible. Cryptographic hash functions can be used to secure large
amounts of data by ensuring the integrity of a short string, the hash value.

We recall the definition of hash function as in [55].

Definition 1.6.1 (Hash function [55]) "Let £ > 0 be a fixed integer. A hash
function h is a map h : {0,1}* — {0,1}*, mapping bit strings of arbitrary
length to the fixed length k. A hash function h is said to be a cryptographic hash
function if it is easy to compute h(M) for a given string M, and at least one of

the following is satisfied.

e Preimage resistance (one-wayness): For a given hash value m it is compu-
tationally hard to find a bit string M such that h(M) = m.
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e 2nd-preimage resistantance (weak collision resistance): For a given bit string
M, it is computationally hard to find a bit string M’ # M such that
h(M') = h(M).

e Collision resistantance (strong collision resistance): It is computationally
hard to find two distinct bit strings M; and M, such that h(M;) = h(Ms)".

In practice, cryptographic hash functions satisfy all the above three require-
ments. MD5, SHA-1, and SHA-256 are practical examples of cryptographic hash
functions, with output lengths of k — 128, k — 160, and k — 256, respectively.

For more details, we refer to [42].

1.7 Signature Schemes

A signature is used in every situation where we need permission from an author-
ity. A signature specifies that the person is responsible who is signing the mes-
sage/document. For example, a signature is required to sign a contract, withdraw
money from a bank, write a letter, etc. A digital signature scheme is a method of
signing an electronic message. The signed message can be sent over a computer
network. The fundamental feature of a digital signature scheme is that it provides
message authentication, which enables a private key holder to create signatures
on any message.

A signature scheme consists of two protocols called signing and verification.
The signing protocol is carried out by the author of the message and the signer,
and the verifier carries out the verification protocol. In the signing protocol, the
author asks for a signature on a message x, and the signer signs the message
using a (private) signing algorithm sigx that depends on a secret key K. In the
verification protocol, the verifier can verify the resulting signature sigx () using
a public verification algorithm veryg. Let (z,y) be a message-signature pair. The
verification algorithm gives a result of true provided y is a legitimate signature,
otherwise of false .

We recall the definition of a signature scheme as in |60].

Definition 1.7.1 (Signature scheme [60]) "A signature scheme is five-tuple
(P, A, K,S,V), where the following conditions are satisfied.

1. P is finite set of possible messages
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2. Ais a finite set of possible signatures
3. IC, the keyspace, is a finite set of possible keys

4. for each K € K, there is a signing algorithm sigx € S and a corre-
sponding verification algorithm wvergx € V. Each sigg : P — A and
verg @ P x A — {true, false} are functions such that the following

equation is satisfied for every message x € P and for every signature y € A,

true if y = sigg(x)

verk(®,y) = { false if y # sigg(z).

The signed message is a pair (z,y) with x € P and y € A."

In some cases, the author may ask for a signature on a message without
reavailing the content of the message to the signer for security purposes. Such
signature schemes are called blind signature schemes. The application of the blind
signature scheme is used in securing electronic payment systems, electronic voting
systems, etc.

A signature scheme possesses unforgeability property for the basic security
requirement. That is, the only practical method for an adversary to get a valid
message-signature pair (x, sigx (x)) is to run the signing protocol with the private
key K.

Signature schemes are often used along with a secure cryptographic hash func-
tion. There are well-known class signature schemes such as the RSA signature
scheme, DSA, ElGamal signature scheme, etc. For more details, we refer to [60].

An example of the digital signature scheme using elliptic curves is given below.

Elliptic Curve Digital Signature Algorithm (ECDSA).

Let P € E(F,) be a point of large prime order n such that the ECDLP in (P)
is hard. Let P ={0,1}*, A =2 x Z}, and define K = {(p,n, E, P,a,Q) : Q =
aP}, where 0 < a < n — 1. The values p,n, E, P, and @ are public, and a is a
private key.

For a random integer k, 1 < k < n — 1, define

SigK<x7 k) = (u7 U)a




§1.8. Time Complexity of Algorithms 25

as follows:

kP = (rs),
(mod n), and

”
v = k7 '(h(z)+au) (mod n), where h is a hash function.

If either of v or v is 0, then a new value of k£ should be selected.
For x € {0,1}* and u,v € Z), the signature can be verified by the following

computations:

w=uv""

(mod n),
i=w x h(x) (modn),
j=wu (mod n),

(r,s) =1iP + jQ,

verg(z, (u,v)) = true <= r (mod n) = u.

1.8 Time Complexity of Algorithms

The time complexity of an algorithm indicates how long it takes to run in a
computer and how efficient it is. An algorithm is a procedure that produces
certain output on a given input in a specific amount of time. The number of
steps required for an algorithm to complete can be considered a time measure.

We use the following notation (see [36]) to measure the time complexity.

Definition 1.8.1 (Big-O notation) "Let f, g : N — R be two functions.
Suppose that g(z) is the running time of an algorithm on an input size x. Then
we say that g(z) = O(f(x)) if 3 some ¢ € RT such that g(z) < c¢- f(x) for every

sufficiently large z".
Example 1.8.2 If g(z) = 7(logx)? + 822 + 1523, then g(x) = O(z?).

Now we discuss the computational complexity of some well-known algorithms we
use in the later chapters.

Let P € E(F,) be a point. We can compute aP in O(loga) steps using the
Double-and-Add method ([18]). First we write

a=ap+a-2+ay-2*+---+a, 2"
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with a; € {0,1} for i =0,1,2,--- ;7. Then aP can be computed as
aP=ay+a;-2P+as-2*°P+---+a,-2"P

where 2P = 2.2...2P requires only k doublings. Thus, on average, it takes

approximately logoa doublings and %logga additions to compute aP.

Algorithm 1 [1§]
Input P
Q<+—P
for ¢ from 1 to r do
Q «—2Q
ifa;=1then Q +— Q+ P
Output Q.

The computational cost of point addition and doubling on elliptic curve are
I--2M+S and I+2M+28 respectively where I, M, S stand for inverse, multiplica-
tion and squaring (see |1]). There are many bilinear pairings that cost logarithmic
time (see |34, 44|). The time complexity of matrix multiplication of order n x ¢
and t x 1is O(nt) and the inverse of a matrix of order n is O(n?®). This can be

seen using basic formulas.

Remark 1.8.3 For the security analysis of our schemes, we need the following
basic result (see [49, Theorem 5.3.6]) from linear algebra. For the completeness,

we provide its proof.

Proposition 1.8.4 ([49]) A system of m linear equations over a finite field of
order q with n unknowns has either a unique solution, no solution, or ¢* solutions
for some k with 1 < k < n. Fach solution is of equal probability for the case of

q* solutions.

Proof. Consider a system of m equations over I,

a1 + a2 + -+ Ay, =

a21T1 + A22%To + ++* + A2pnXy, = C2

Am121 + G2 + -+ + AppTn =  Cm-
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Let the coefficient matrix be A and the augmented matrix be A’, where

11 Q12 - Qip 11 Q12 -+ Qip | G

Q21 Q22 -+ Q2 Q21 Q22 *++  Q2n | C2
A= ) ) ] and A" =

Am1 Am2 - Amn Am1 Qm2 - Amn | Cm-

We know that the system has a solution if and only if rank(A) is same as rank(A’).
We assume this is the case. After performing elementary row operations, the
matrix A’ is equivalent to the matrix

0 -+ 0 1 byg41)y - bigs—1) 0 big,41)y o0 big,—1) 0 big,y1y 0 bin | di

0 -« 0 0 0 0 1 bogipe1) - baiy1y) O bog,r1) oo bon | da

0 -~~~ 0 0 0 0 0 0 0 1 byaqny o ben | de

0 -~ 0 0 0 0 0 0 0 0 0 o 0|0

0 0 0 0 0 0 0 0 0 0 0o
where 1 < 47 < 49 < --- < 4y < n are the column indices and 1’s are the

pivot element. Thus, & = n — ¢ is the number of free variables, and hence the
dimension of the solution space is also k = n — £. For any choice of values of free
variables 1, -+, @i, 1, Tij41, 0, Tig—15 Tig+1, "+ 5 Tiy—1, Tipt1, " -, Tp from Fy, we
get a unique solution. Thus, the number of solutions is ¢*.

Moreover, as a free variable can assume any of ¢ values (with probability 1/q),
the probability of each solution is 1/¢.







Chapter 2

A Blind Signature Scheme

In this chapter, we present our work [17] on a blind signature scheme. This work
has been published in the "Proceedings of the Seventh International Conference
on Mathematics and Computing, Advances in Intelligent Systems and Comput-
ing, vol. 1412, Springer, (2022)".

The blind signature scheme has been the most significant responsibility from
the beginning of the era of electronic money (e-money). It is an interdependent
agreement that includes two parties, a Bank and a Client. The scheme permits
a client to urge a signature on a message from the Bank without disclosing the
context of the message. The message-signature pair received by the client is
factually uncorrelated to the view acquired by the Bank during the execution
of the agreement. D. Chaum [11] in 1983 first proposed the blind signature
scheme. Later, many blind digital signature schemes were proposed (see |10, 46,
50, 45, 72]). The main applications of the blind signature scheme are in securing
electronic payment systems, electronic voting systems etc.

A blind digital signature scheme should satisfy the following properties:
Blindness: It permits a user to urge a signature on a given message, whereas not
revealing the context of the message to the signer.

Untraceability: When the user has disclosed the signature to the general public,
the signer cannot trace the signature-message pair.

Unforgeability: Solely, the signer will generate a legitimate signature. For an
attacker, executing the signature protocol with the signers private key is the only
practical method to obtain a valid message and signature pair. This property is
foremost very important and should satisfy all signature schemes.

Unlinkability: Nobody can obtain a link between a legitimate blind signature and
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a protocol view except the author of the message.

For detailed security aspects of the blind signature scheme, we refer to [30]. A
verifier can verify the blind signature publicly and meet the necessities of security-
oriented agreements that have an imbalance between the author of the message
and the signer.

In 2014, K. Chakraborty and J. Mehta [10] proposed a stamped blind signature
scheme based on ECDLP (see Definition 1.4.1). Later, M. Tian, Y. Zhu and Z.
Chen [65] observed that Chakraborty-Mehta’s blind signature scheme is insecure
by giving two simple but powerful attacks. In [17], we considered an analogue
version of Chakraborty-Mehta’s scheme, which uses self-pairing (see [17]). The
scheme gives more security and avoids the attacks given by Tian, Zhu and Chen
[65].

The self-pairing was first proposed by H.-S. Lee [38] in 2004. We note that
Lee’s self-pairing is anti-symmetric. Several secret sharing schemes were intro-
duced based on self-pairing (see [40, 8]). A slightly modified Lee’s pairing is

defined in the next section which is used in this chapter.

2.1 Self-Pairings

Let E be an elliptic curve over a finite field IF, with characteristics not equal to 2
and 3. Let 7 be a prime divisor of #E(F,) and r # p. Recall that E[r] = Z, & Z,.
Let S, T be a fixed generating pair of points for the r-torsion group E[r]. Consider
two points P = a;.S+b;T and QQ = a2 S+b,T in E[r], where ay, ag, by, by € [0,7—1].

For some fixed «, 5 € [0, — 1], we define self-pairing map
eap: Elr] x E[r] — Elr|

as eq5(P, Q) = (a1as — byiby)(aS + BT). The trivial case (o« = 0 = ) has been
excluded.
The following theorem lists some of the properties satisfied by self-pairing

map €4 3.
Theorem 2.1.1 For all P, Q, R € E|r] and the point at infinity O,

1. Bilinearity: e,3(P + Q, R) = eq (P, R) + €,3(Q, R) and
ea”g(P, Q + R) = ea”g(P, Q) + ea”g(P, R)
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2. Non-degeneracy: If eq (P, Q) = O for all Q € E]r], then P = O.

3. Symmetry: e, 3(P, Q) = eqp(Q, P) for all P, Q € Elr].
The proof of the theorem is very similar to |38, Proposition 3.1]. For completeness,

we provide the proof below.

1. For all P,Q, R € E[r] with R = a3S + b3T, we have

eag(P+Q,R) = eqp((ar+az)S+ (b1 +b2)T,a3S + bsT)
= ((a1 + az)as — (by + ba)bs)(aS + 5T)
= (ar1as — bibs)(aS + BT) + (azas — babs)(aS + BT)
= eas(P,R)+eap(Q,R).

Similarly e, 3(P, @+ R) = eq (P, Q) + eas(P, R).

2. For any Q = ayS + b,T € E[r], we have
a,3(P, Q) = (a1az — biby)(aS + BT) = O.

Thus, ajas — bibs = 0. By choosing ) with ay # 0 and by, = 0, we obtain
a; = 0. Similarly, by choosing @) with a; = 0 and by # 0, we obtain b; = 0.
Hence P =a;S + 0,17 = O.

3. For all P,Q € E[r], eas(P, Q) = (a1a2 — biba)(aS + BT) = e, 5(Q, P).

The self-pairing map also satisfies the following additional properties:
For all P, Q € E[r|, we have

1. eaﬁg(P, P) = O, if a; = bl.
2. eaﬁ(P, O) == ea,ﬁ((’),Q) = 0.

3. eap(aP,bQ) =ab-e,p(P,Q) for all a,b € Z.

For an illustration, we consider the elliptic curve FE, 3-torsion points E[3],
S and T as in Example 1.5.8. Choose a1 = 2, by = 2, ao = 2, by = 1 in
Zs and fix @« = 1, f = 2 in Zs. Then e,3(P, Q) = e12(25 + 27,25+ T) =
(2x2=-2x1)(1S+2T)=2(15+2T) =25+ T = (1 + 7,2+ 27).

We will give an overview of the Chakraborty-Mehta’s [10] blind signature
scheme and the attacks on it as given by M. Tian, Y. Zhu and Z. Chen [65],

which proved that the scheme is insecure.
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2.2 Overview of Chakraborty-Mehta’s Blind Sig-

nature Scheme

Let P € E(F,) be a point of large prime order r. Let G = (P) such that
ECDLP is hard to solve. The scheme uses a collision-resistant hash function
h: {0,1}* — Z) (see Section 1.6).

The scheme involves an Author (A) of the message, a Signer (S), and a Verifier
(V). The signer chooses a secret key z € Z* and computes Q = P € G. The

signer makes () public.

Signing protocol

The signing protocol involves a blinding algorithm which is executed by A and a

signing algorithm which is carried out by S.

Blinding algorithm:

e A computes h(M) = m, where M is the message.

e Then A calculates K = m(@) = mx P and sends it to the signer.
Signing algorithm:

e S receives K = m@ and computes K/ = 271K = mP.

e Then S generates a signature parameter z, called as stamp, and computes

h(z).
e Again, S computes a point R = K’ + h(z)P and s = x — h(z2).

e Then S sends the generated signature (R, s, z) to the verifier for verification.

Verification protocol

The verifier V verifies the signature by checking the correctness of the equation

sP—Q+ R =h(M)P.
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If the above equation holds true, only then the signature is valid. This can be

observed as follows.

sP—Q+R = (x—h(z))P—2P+ K +h(z)P
= P —h(z)P —xP +mP + h(z)P
— h(M)P.

Now we discuss two attacks on the Chakraborty-Mehta’s scheme, which is given
by M. Tian, Y. Zhu and Z. Chen [65].

Attack 1. Suppose an attacker X wants to get the signer’s secret key x, then he

perform the following steps.

e X queries a blind signature on message M. Then the signer will compute

and produce a signature (R, s, z).
e X calculates h(z) upon receiving of the signature (R, s, z).
e Finally, X gets the signer’s secret key = s+ h(z).

We know that s = x — h(z) by signing algorithm. Observe that X can find the
signer’s secret key x by the above process. So X having a signer’s secret key x

will be able to generate valid signatures on any messages.

Attack 2. Suppose an attacker X wants to get valid signature on a message M,

then he perform the following steps.

X initially produces a stamp 2z’ of the signature.

Then X computes h(z') and h(M).

X chooses an integer s’ € Z, randomly.

Finally, X computes a point R’ = h(M)P + Q — s'P, where Q) = xP is the
signer’s public key.

The forged signature on M is (R, s',2"). We can see that

SP—Q+R =sP—-Q+h(M)P+Q—5sP=h(M)P.




34 §2.3. A Blind Signature Scheme

As a result, the signature (R',s’, 2") will pass the verifier’s scrutiny. That is, the
forged signature (R, s',2’) of X is valid.

To avoid these attacks and to make the scheme more secure, an analogue /modified
version of the above scheme is proposed in [17], which is discussed in the next

section.

2.3 A Blind Signature Scheme

The scheme involves three parties, namely Author (A), Signer (S), and Verifier
(V). The scheme consists of two protocols called signing protocol and verification
protocol. The signing protocol is carried out by both A and S while the verification
protocol is checked out by V. A wants to obtain a signature on a message from
the signer without revealing the context of the message. This includes blinding
the message with the goal that the S can’t read the message. Simultaneously A
needs to ensure that S is the assigned beneficiary of the blinded message. This
can be accomplished by twofold blinding the message (i.e., putting two locks on
the message). One lock is put by S, and he is the one in particular who can
open it, which guarantees that he is the main individual who is accepting blinded
messages from A. Another lock is put by A to ensure that S cannot read the

actual message.
Setting up domain parameters

Firstly, the signer sets up the domain parameters for the scheme.

e S chooses an elliptic curve E over F,, where ¢ = p™, ig € N, and p is a large

prime.

e S chooses a random generating pair (S,7') in E|r|, where r is a large prime
divisor of #E(F,) so that ECDLP in E(F,) is hard, and some fixed a,
B € Z, for which the pairing e, 3 can be determined.

e Finally, S makes {F,q,r,«, 5,5, T,aS + T} as public.

It additionally utilizes a cryptographic hash function (see Section 1.6) h : {0, 1}* —

7, which is collision-resistant.
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Signing Protocol

S chooses two secret keys a, b € Z, such that ged(a,b)=1 and makes P =
aS + bT € E[r] public.

A computes h(M) = m where M is the actual message and m is the hash

value.

Then A computes G = mP = maS + mbT" and sends G to the signer for

signing.

S selects a point H = ¢S + dT" € EJr| such that ac — bd = 1.

Remark 2.3.1 The author wants to send m(aS + 7" for signing to the signer.
The value m(aS + ST') can be computed from G by only the signer, the person
who can find ¢, d € Z, such that ac — bd = 1.

Signing Algorithm

1. The signer S receives G and calculates A = e, (G, H) = m(ac — bd)(aS +
BT) = m(aS + BT'), where H = ¢S +dT.

2. S generates signature parameter z (say stamp), and calculates h(z).
3. S selects a random integer = € [1,7 — 1] such that h(z)x # 1.

4. S calculates a point B on elliptic curve as follows
B =m(aS+ PT)+eqp(xS+T,h(2)S+T) and set J = h(z)zH.

5. S sends the generated signature parameters (B, J, z) to the verifier for ver-

ification.

Verification Protocol
The verifier V computes B —e, 5(J, P) + (oS + 5T) and observes the validity

of the following equation

B —eqp(J, P) + (aS + pT) = A.
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The verifier V accepts the signature if the above equation holds true. The cor-

rectness of the signature is verified as

B —eap(J,P)+ (aS+pT) = m(aS+ pT)+ (h(z)x —1)(aS + BT)
—h(z)xz(ac — bd)(aS + T) + (S + BT)
= m(aS+pT) = A

2.4 Security Aspects of the Scheme

In this section, we analyze the security aspects of the blindness and non-forgeability
of the scheme.

Blindness from Signer’s point of view: The author A sends G = mP =
maS + mbT to the signer S. Then S can compute m(«S + 57) from G using his
secret keys a, b and finding ¢, d such that ac —bd = 1. It is hard to find m from
G = mP as it is equivalent to solving ECDLP for large prime r. Hence S can
not see the message.

Blindness from Adversary’s point of view: An adversary can able to find P
and mP. Finding m from mP is an instance of solving ECDLP. If the adversary
performs a total break of the system, then he can find a, b, and A = m(aS+ 87T,
but finding m from A is again an instance of solving ECDLP. Hence the message

is blinded to the adversary.

We need the following basic result for discussion on unforgeability condition.

Proposition 2.4.1 The probability of getting two integers a and b such that
ged(a,b) = 14s [ (1 —1/p?) = 1/¢(2) where ¢ denotes the Riemann zeta

p, p prime
function.

Proof. We recall the Riemann zeta function ((s) = > 1/n® for s > 1. The
n=1

function ((s) can be written as an infinite product over primes (due to Euler)
and is given as ((s) = [[(1 — 1/p*)~', where p is prime.

Now let a and b be tI;VO positive integers. Suppose that ged(a, b)= 1. Then we
must not have a prime p which divides both a and b. So if we take particular prime
p, then the probability that a is divisible by p is 1/p, and for b, also 1/p. Then,
1/p? is the probability of p dividing both a and b simultaneously. Therefore, the
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probability that p does not divide both a and b is 1 —1/p?. Thus, the probability
that no prime divides both a and b is given by [](1 — 1/p?) = 1/{(2).

3
Non-Forgeability of the signer’s secret keys: The probability of guessing signer’s
keys a and b from P is negligible. So for an adversary, it is practically infeasible

to guess a random signature.

1. The probability of getting two integers a and b such that ged(a,b) = 1 is
[T (1-1/p?) = 1/¢(2) where ¢ denotes the Riemann zeta function.

p<n, p prime

2. The probability of getting = such that h(z)z # 1is 1/(r — 1).
We have the following observations.

Theorem 2.4.2 Let (By,.J1) be the signature corresponding to the message my
and stamp z,. To find a random message mo(# my) for an adversary that satisfies
(B1, J1) for a chosen stamp zo(# z1) is difficult.

Proof. Suppose the adversary chooses a stamp 2o and wants to find a message
msy which satisfies the signature (By, J;). The equation my(aS+ 5T) +eq5(xS +
T h(z1)S+T) =ma(aS+ BT) +eqp(xS+T,h(22)S +T) implies that m;(aS +
BT) + (h(z1)x — 1)(aS + BT) = ma(aS + BT) + (h(2z2)x — 1)(aS + BT) and the
equation h(z1)xH = h(z)xH implies that h(z;)z(cS + dT') = h(z2)x(cS + dT)
which gives h(z1) = h(z2). Then my(aS + BT) = mo(aS + ST). Since the
hash function h is collision-resistant, h(z1) = h(zs) is not possible. In addition,
my(aS + BT) = mo(aS + BT), hence m; = my (mod r).

Theorem 2.4.3 Let (By,J1) be the signature corresponding to the message my
and stamp z. To find a random stamp zo(# z1) for an adversary that satisfies
(B1,J1) for a chosen message ma(# my) is difficult.

Proof. Suppose the adversary chooses a message mo and wants to find a stamp
2o which satisfies the signature (Bj,j;). Then the equation mq(aS + BT) +
ea (@S + T, h(21)S+T) =mo(aS+ ST)+eaps(xS+T,h(22)S +T) implies that
my(aS+LT)+(h(z1)x—1)(aS+PT) = mao(aS+LT)+ (h(z2)r—1)(aS+FT) and
the equation h(z;)zH = h(z2)xzH implies that h(z1)x(cS+dT") = h(z2)z(cS+dT).
Second equation gives h(z;) = h(zz). Since the hash function h is collision-

resistant, h(z1) = h(zz) is not possible.
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We will discuss the following two attacks, which fail for our scheme.

Attack 1. Suppose that an attacker X wants to get the signer’s secret keys a
and b, then he performs the following:

X queries a blind signature on message M. Then the signer can cipher and
output a signature (B, J, z) as a response. After receiving the signature (B, J, z),
X will try to find ¢ and d from J. But finding ¢ and d from J is equivalent to
solving an ECDLP. Without the knowledge of ¢ and d, X cannot get a and 0.
Hence it is impractical to find the signer’s secret keys.

Attack 2. Suppose an attacker X wants to generate a valid signature for a

message M, then can perform the following steps:
1. X generate a stamp z;.
2. X computes h(z) and my = h(M,).
3. X chooses a integer z; € [1,r — 1] such that h(z)x; # 1.
4. Then X computes By = my(aS + 1) + eqp(x1S + T, h(z1)S + T).

Now X cannot set J; = h(z;)z1H as H is unknown to X. Suppose X se-
lects a random Jy = (h(z1)z1 — 1)(c1S + diT) and send (B, Js, ) to verifier for

verification. Then verifier computes

By —eap(J2, P) + (aS+BT) = my(aS+ BT)+ (h(z1)x: — 1)(aS + BT)
—h(z1)z1(acy — bdy)(aS + BT) + (S + ST)
= my(aS+ pT),

provided that (ac; —bd;) = 1, which is impractical. Hence this is resistant to the
attack.




Chapter 3

Compartmented Multi-Secret
Sharing Scheme

This chapter contains our work [14] on a multi-secret sharing scheme (compart-
mented). This work has been accepted for publication in the Journal of Informa-
tion and Optimization Sciences.

In a multi-secret sharing scheme, many secrets are distributed to the users
in such a way that only authorized subsets of users can recover all the secrets.
However, any unauthorized subset of users gets no information about any of
the secrets. We study a multi-secret sharing scheme by D. Liu, D. Huang, P.
Luo, and Y. Dai [40]. Accordingly, we have presented a threshold multi-secret
sharing scheme. It uses a matrix whose any threshold number of rows forms a
Vandermonde matrix [51]. For the scheme in [40], the number of secrets to be
shared is limited to the threshold. In our scheme, any number of secrets can be
shared among the users.

In 1990, G. Simmons [59] introduced a compartmented secret sharing scheme.
In a compartmented secret sharing scheme, users are partitioned into disjoint
compartments. If the number of the collaborating participants exceeds a global
threshold and the collaborating participants from every compartment exceeds
a predetermined compartment threshold, the secret can be recovered. Many
compartmented schemes have been proposed using polynomials [29, 54, 69] and
Chinese Remainder Theorem [33], and many others [13, 12, 22, 62, 64, 68]. The
method is advantageous in synchronizing the information provided to multiple
groups from a single server.

In this chapter, we have focused on a multi-secret sharing scheme and a com-

39



40 §3.1. Multi-Secret Sharing Scheme

partmented multi-secret sharing scheme based on elliptic curves [58], bilinear
pairings |35, 41|, and matrices |[51]. The main purpose of using bilinear pairings
and elliptic curves is that it gives similar security (as in existing schemes) with
less key sizes.

The importance of our approach is that it overcomes some of the limitations
of most existing schemes. Our schemes can handle an unlimited number of users.
Our schemes are efficient and verifiable. Our multi-secret sharing scheme re-
quires O(n?) computations, and the compartmented multi-secret sharing scheme
requires O(mn?) or O(n?®) computations, where n is the number of users and m
is the number of compartments. For example, our scheme is more efficient than
[64]. We have also observed that a secret sharing in compartmented groups pro-
posed by Ghodosi, Pieprzyk and Safavi-Naini [29| does not work properly (the
case t > Y ;). See Remark 3.2.1 for more details.

3.1 Multi-Secret Sharing Scheme

Let ¢ = p with i € N and p be a large prime. Consider P € FE(F,) and
G, = (P) be a subgroup of order r where r is a large prime so that ECDLP is
hard to solve. Consider a pairing e as in Definition 1.5.1. Suppose that there
are n users, say, iy, Us, -+ , Uy, and a trusted Dealer. All the scheme parameters
are generated and published by the Dealer. Furthermore, each user releases their
public key while keeping their secret key private. The Dealer chooses g secret
keys Ky, Ky, -+, K, € [0,p — 1] for the scheme.

e Dealer chooses a matrix of order n X ¢

1 1 1 1
1 2 22 2t-1
B = . .
1 n n? nt=1
e Dealer chooses t random integers aj, as, -+ ,a; € [0, — 1] with a; # 0 and

computes
(bl bg bn)T:B-(al Qg -+ - at)T

where T' denotes the transpose of a matrix. Dealer makes matrix B public.
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Each u; selects a private key z; € [1,7 — 1] and makes x; P public.

Then Dealer computes b;z; P and sends (publicly) to u; for i =1,2,--- 'n

Each u; will get the share b; P by computing z; ' (b;z; P).

Dealer computes sy = e(P, A\-a;P)+ K, 1 < X\ < g, and makes them public.

Also, each u; computes z; = e(P, b; P).

Suppose that ¢ (or more) number of users, say wu,,, U, - , U, collaborate
to reconstruct the secrets K, 1 < A < g. Each collaborating user pools their

z; value and supplementary information ;' P for verification purposes. They

-1
¢ ¢
compute v = [] 2, where y; = ( T (r;— n)) . Finally, they compute the
j=1 i=1i]

secrets as K, = s, — 0.

Remark 3.1.1 We note that the above scheme works for any matrix whose
any t rows form a Vandermonde matrix. For simplicity, we have taken the above
matrix B. We also note that (see |41]), for any P,Q € E[r], we have e(P,Q) €
pr C F C Fyeo Also, for any K € [0,p — 1], we have K € Fyr. Thus e(P, Q) + K

is an element of F

Correctness

The correctness of the secret reconstruction can be observed as follows.
t t
Vo= sz?é = He(P, b,, P)Yi
= He (P,y;b..P)=ce ( (Zyz n) ) =e(P,a;P).

=1

Here y;’s are the entries of the last row of the inverse of the Vandermonde matrix
corresponding to collaborating set of users. We know that the last entry of the
product of the inverse of the Vandermonde matrix and the shares matrix gives

the value a;P (for more details, we refer to [51]). The partial secret a,P is the
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last entry of the product By '+ (b P byP --- b,P)T, where

1 (&1 T‘% T‘i_l
-1
1 7 r% 7“;
B1 - A
1 r Tf Tf_l

is the matrix corresponding to collaborating set of users. Our scheme gives the
partial secret key a; P directly; however, some existing secret sharing schemes (see
[56], for example) use Lagrange interpolation to find the whole polynomial and

get the secret.

Verification of the shares

Users do not need to check the legitimacy of the shares as they are sent in an
encrypted format, and the Dealer is trusted. The users can verify the shares of
the other collaborating users at the time of the reconstruction of the secret. Each
collaborating user u; transmits the share b;P with supplementary information
x; 1 P for verification at the time of the secret reconstruction. The validity of the

equation e(z; ' P, b;x; P) = e(P,b,P) ensures the originality of the share.

3.1.1 Security analysis of the multi-secret sharing scheme

Bilinear pairing behaves like a one-way map, which means it is easy to compute
the image of inputs but difficult to find the pre-image of a given image. In our
scheme, one important factor is that for distributing shares, the Dealer doesn’t
require any secure channel. Dealer encrypts the shares and sends them to the
users publicly. We have assumed that the elliptic curve discrete logarithm prob-
lem is hard to solve for large order group GG,. From the users point of view, they
send z; P, i =1,2,--- ,n, to Dealer. So the Dealer or any adversary cannot know
anything about the users secret key x;. From the Dealer point of view, the shares
b;P,v=1,2,---,n, are distributed to the respective users so that no attacker

gets any information about the share(s).

We have the following observations.

Theorem 3.1.2 For an attacker, the probability of choosing a random point
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a,P € G, such that K = sy —e(P,a;P) for1 < X<gis1l/(r—1).

Proof. We note that K = s, —e(P,a;P) if and only if e(P, a;P) = e(P, A - a;P),
which is true if and only if a;P = Aa;P. Thus, the probability of choosing
a,P € G, with sy —e(P,a,P) = Ky is 1/(r — 1) as a,P # O.

Theorem 3.1.3 The honesty of at least n —t + 1 number of users ensures that
any t — 1 (or less) number of users cannot get any information about any of the
secrets Ky, 1 < X <g.

Proof. Suppose that any ¢ — 1 (or less) number of users, say t,,, Up,, " , Ur,_,,
collaborate to reconstruct the secret. They have the public information and their

shares b, P, b,,P,---, b
t—1

so Y. y;b., P but not y;b,, P as they have no information about the share of w,,,
i=1

P. Also they can compute y;, i = 1,2,--- ¢, and

Tt—1

t
where wu,, is any user other than the ¢ — 1 users. Note that »_ y;b,, P = a;P. For
i=1
choosing the correct share b,, P is as hard as choosing a;P. Then a,P can be any

element of G, and without a,P they cannot compute Ky = s, — e(P, a;P)".

Theorem 3.1.4 There is no loss of information about the secrets of collaborators

for reconstructing the secrets Ky for 1 < A < g.

Proof. The collaborating users pools z; and x;'P values. Finding x;' from
x; ! P is equivalent to solving an ECDLP, which is assumed as hard to solve for a
large order group. Hence they cannot get the users secret key x;, 1 =1,2,--- .
Moreover, the only point /P € G, satisfying e(z;P, bjx;P) = e(P,b;P) must

satisfy 2/ = 2;' (mod r). For
e(z}P,z;b;P) = e(P,b;P) <= e(P,b;P)"" = e(P,b;P)

< 2iz;=1 (modr)

<~ 7i=z;' (modr).

3.1.2 Complexity of the multi-secret sharing scheme

The computational cost of the matrix multiplication of order n x ¢t and ¢ x 1
takes nt operations. Using the "Double-and-Add algorithm" [18], the time for

computing scalar multiplication of a point on an elliptic curve is O(log,r), where
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r is the order of the point. The number of scalar multiplications rquired for
generating shares and reconstruction of the secret is n and ¢, respectively. For
computing ¢ + g pairings, it takes O((t 4+ g)log,r) (see [34, 44|, for example).
Additionally, the scheme requires (¢ — 1)M + 1S operations, where M and S
denote multiplication and subtraction respectively. For computing y;, 1 <1 <,
it takes t((t — 1)M + 1S) operations. Hence the required time complexity for the

scheme is O(n?).

An example of our multi-secret sharing scheme using modified Tate pairing [41]

is given below. The computations are done using SageMath.

Example 3.1.5 Consider E : y? = 23 +5x + 13 over Fy9. The number of points
on the curve is 26 = 2x 13 and 13 | 29%—1. Thus, the embedding degree of E(Fy9)
with respect to 13 is 3. We note that here r =13, p = ¢ =29 and k = 3. Fygs is a
finite field and #E(Fqgs) = 24674. The torsion group E[13] C E(Fy9s). Suppose
there are n = 6 users, say, uj, us, U3, Ug, Us, Ug, and t = 4 be the threshold. Let
Ky =17, Ky =3 and K3 = 24 be the secret keys of the scheme. Dealer considers

the matrix

1 1 1 1

1 2 22 2
B pu—

1 6 62 6°

Suppose Dealer chooses 4 integers 5,2,8,10 € [0, 12] and computes

(by by b3 by bs b)Y = B-(52810)7
(25 121 353 781 1465 2465)"
= (1242198)" (mod 13).

Let Dealer chooses a point P = (57 + 2v + 7,144%* + 4) € E[13] and computes
51 = e(P,10P) +7 =% + 14y + 22, sy = e(P,2 x 10P) + 3 = 2192 + 18y + 23
and s3 = e(P,3 x 10P) + 25 = 23?* + 26 + 2 where v is a root of any irreducible
polynomial of degree 3 over Foq (it follows that Fag(7y) = Fag3) and the pairing e
is the modified Tate pairing as in [41]. The Dealer makes P, s1, so and s3 public.
Each u;, ¢ = 1,2,---,6, chooses random integer, say 1 = 3, x5 = 9, 3 = 2,

x4 = 11, x5 = 5, x5 = 6 and makes z; P public. We have
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1 P
xo P
r3 P
x4 P
x5 P
reP

3P = (1572 + 17y + 4,207),

9P = (772 + 147y + 25,2572 + 1),

2P = (177 + 16 + 17, 14+ + 227 + 10),
11P = (179* 4+ 167 + 17, 159% + Ty + 19),
5P = (2172 + 28y +9,87% + 24+ + 23) and
6P = (199% + 14y + 21,137* + 47y + 22).

Now Dealer computes b;z; P and sends (publicly) to u;, i = 1,2,--- 6, where

bix P
boxo P
bsxs P
byx, P
bsxs P
bere P

12 x 3P = (1572 + 17y + 4,97),

4x 9P = (1572 + 17y + 4,97),

2 x 2P = (79* 4 147y + 25,47* + 28),

1 x 11P = (17* 4+ 167y 4+ 17, 159% + 7y + 19),

9 x 5P = (199% + 147 + 21,137* + 4 + 22) and
8 x 6P = (772 + 14y + 25,257 + 1).

We note that, in this example, all the inverses computed below are of modulo 13.
Now each u; computes the share b; P as x;l(bi:ri)P, 1 < ¢ < 6. Thus the shares

are

b1P = .1'1_1
bQP = .ZL';I
b3P = ‘T??l

P = 9(byx)P = (57 + 2y + 7,159 + 25),

P = 3(bywa) P = (T9* + 147y + 25,47* + 28),

P = T7(bsws)P = (179* 4+ 167y + 17, 14~* 4 227 + 10),
P = 6(byxg)P = (57 + 2y + 7,149* + 4),

P = 8(bszs)P = (T9* + 14 + 25,25v% 4+ 1) and

P = 11(bexs) P = (217* + 28y + 9,217* + 57 + 6).

Suppose that wus, us, us, ug want to reconstruct the secrets. They compute
2 =e(P,b;P) and z;'P, i = 2,3,5,6. Here
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2y = e(P,byP) = 237y? + 267y + 25 and x5, ' P = (1572 + 177 + 4,207),
(P,b3P) = 9y + 24 and a3 P = (199% 4 14y + 21,167% + 257y + 7),

zs = e(PbsP) =28y +2y+ 17 and 25' P = (219% + 287y + 9, 219* + 57 + 6),
(P, b P)

= 1472 + 24y + 1 and x5' P = (17? + 16 + 17,157 + 7y + 19).

zZ3 = eP,b3

zZg = eP,b6

The collaborating users can verify the shares of other collaborating users as

in the above multi-secret sharing scheme. If the verification holds for all collab-

orating users, they calculate v = 25?25 22° 2¢°, where

v = ((2-3)(2-5)(2-6))"'=—-12"" (mod 13) =1,
y3 = (3-2)3-5)(3-6))"'=6" (mod 13) = 11,
ys = ((5—2)(5-3)(5-6))"'=-6" (mod 13) =2 and
ys = ((6—2)(6-3)(6—-5))"'=12"" (mod 13) = 12.

Thus, v = 7?2 + 14y + 15 and they obtain the secrets K| = s; —v = 7, Ky =

s9 —v? =3 and K3 = s3 —v3 = 24.

3.2 Compartmented Multi-Secret Sharing Scheme

Let ¢ = p™ with 4y € N and p be a large prime. Consider P € E(F,) and G, = (P)
be a subgroup of order » where r is a large prime so that ECDLP is hard to solve.
Consider the pairing e as defined above (Definition 1.5.1). Suppose that the
scheme involves a set U of n number of users divided into m disjoint compartments
C1,Cy, - -+, C,, and a trusted Dealer. Let |C;| = n; and t; be the threshold for C;,
i =1,2,---,m. Dealer chooses t; random integers a;,a;, - ,ay, € [0,7 — 1],
with a;, # 0, for each compartment C;, 1 < i < m. Dealer chooses g secret

keys K1, Ky, -+, K, € [0,p — 1] and computes sy = [[ e(P, A - ay, P) + K, <or,
i=1

equivalently s, = e(P, oA aitiP> + K,\>, 1 < X < g. Dealer makes P and s,,
i=1
1 < X\ < g, public.

Let u;; denote j user in the compartment C;.
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Let ¢t > > t; be the global threshold for the scheme. We have the following two
i=1
cases.

m
Case I. t = > t;

i=1
We have the following access structure (in this case)

'={VCU:|VnC;|>t foreveryi, i=1,2--- ,m}.

e Dealer considers a matrix of order n; x t; for each C;, 1 <i < m, as

U oka ki kT
|1 ke k3 oo kG
U kin, Ko oo ki

where k;; € [1,r — 1] and k;; # k;; for j # j'.

e Dealer computes (b by -+ bin,)t = A; - (a;1 ap -+ ay,)’ for each Cj,

1 <i < m, and makes A; public.

e Each u;;, 1 < j < n,;, in the compartment C;, 1 <1 < m, chooses a secret

key z;; € [1,r — 1] randomly and makes z;; P public.

e Then Dealer computes b;;x;; P for each u;; in C; and sends (publicly) to the

respective users in C; for 1 <7 < m.

Each w;; in C; will get the share b;; P by computing xi_jl(bjjxij)P, 1<j<n,.

Case II. t > Y t;

=1

We have the following access structure
L={VCU:|VNC;|>t forevery i, 1 <i<m, and |V| > t}.

Let to =t —>_ t;. Consider the matrix A; for compartment C;, 1 < i < m, where
i=1
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2 ti—1 L ti+to—1
1 ki ku t kzi kzi T kﬁ ’
2 ti—1 ts ti+to—1
L ko ki oo kg kiy - ki
A = )
2 ti—1 .t ti+to—1
1 klnz in; T kl;bl Z;LI e kZ;LZ
Choose () values Wi, Wa, Wy, € [O,T — 1] Let (bzl biz cee bmz)T = Az :
(aip ajg -+ ay, Wy we -+ wy)? for each compartment C;, 1 < i < m, and make

A; public. Then distribute the shares b;1 P, bjs P, - - - , b;,, P to the users in com-
partment C;, 1 <7 < m, as in the Case I.

Reconstruction of the secrets.

Case I. Suppose t; number of users from each compartment C;, 1 <7 < m, come
together to compute the secret keys K, 1 < XA < g. The ¢; number of users in C;

can compute r; = e(P, a;, P) as in previous multi-secret sharing scheme (Section

3.1). Then they compute the secret Ky = sy — [[7}, 1 <A <g.
=1

1

Case II. Suppose that ¢ (or more) number of users collaborate, say a; from Cj,
as from Oy, ..., and «; > t;, 1 < i < m. Without loss of generality, assume that
the collaborating users are uyy, -+, Utay, U1, " " 5 Udags *** s Umds* * * » Umay,- L ReN
they can construct the following system of oy + g + - - - + v, linear equations.

b11P = a11P + kllaup + -+ k?ﬁ_lalth + killwlp + -+ ki11+t0_1wtop
bioP = a1 P+ kigaeP+---+ k‘?z_laltlp + k:'ilelP + -+ klil;-to—lwtop
bia, P = auP +kiga12P + -+ +kiL tay, P+ kL w1 P+ 4 kL0 P
buiP = amiP + kmiameP + -+ ki Y agy, P4 kimw P4 - 4 kit p
bmgp = am1P + k‘mzamzp + -+ k:f;{‘z_lamth + k%bﬂp + -+ k%—i_to_lwtop
bnamP = a1 P+ kmay,ameP + -+ + ki Yap, P+ ki, wi P44 kbt 1y, P

In matrix form, we have
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1 k- KM 0 0 .. o -~ 0 0 - 0 L
1 kg - KLU0 0 0 o0 0 0 kil A
t1—1 t ty+to—1
Fla; - KLU0 00 to o 0 0 0 klt})q k%}nt“ 1
0 0 - 0 1 kor oo k2T 0 0 0 B2 ... glattos
0 0 - 0 1 ke - k27U o0 0 0 k2 ... kfgttos!
to—1 t to+tog—1

0o 0 .- 0 1 ksay - k' o0 0 0 k2, e kit
tm—1 tm tm+to—1
0 0 - 0 0 0 - 0 - 1 kp1 - kim 1 Efmo k?ﬂHU .
tm — tm m -

0 0 - 0 0 0 .- 0 - 1 kme - kim Kl ftm Ao
0 0 .- 0 0 0 .- 0 o 1 kmey, - Kmolokbm oo glmtto—l

T
X (anP cor a1, P a1 P - age, P - amiP - amt,,, P w1 P .- wt0P>
T
= (b11P b12P - b1, P01 P basP - baay P o byua P bpaP - bna,, P)

We have to choose the matrices A; (for Case-1I) such that the above matrix

corresponding to collaborating users is an invertible matrix. The above system of
m m

linear equations have ) t;+to = ¢ unknowns and ) «; = t equations. Hence the

=1 =1
system has a unique solution. After getting the values a;, P, i =1,2,--- ,m, they

m m A
compute the sum Y a;, P and recover the secrets as K = s, —e (P, > a,-tiP) ,
i=1 i=1
1< A<yg.

The verification procedure of the shares is the same as in the previous multi-secret

sharing scheme.

Remark 3.2.1 We note that the scheme proposed by Ghodosi, Pieprzyk and

Safavi-Naini [29] has some limitations. For example, in the case ¢ > > t;, their
i=1
scheme fails. We illustrate this with an example below.

Suppose that there are 2 compartments. Consider n; = 5,no = 5, t; = 2,t, = 3

and a1 = 3, a3 = 4. Then the shares of the collaborating users are, say,

_ 2 3
S11 = kl + a11211 + w17y + Woyy
_ ]{? 2 3
S12 = K1 + Q11012 + W1 X5 + Waliy
_ k‘ 2 3
813 = K1 + a112013 + w1x]3 + wakys

2 3 4
S91 = kQ + a91T21 + A22T9 -+ W1Tyy + Wy
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2 3 4

S99 = kQ + a91T29 -+ 2259 -+ W1Loy + Woloy
=k 2 3 4
S93 = K2 + a21X923 -+ (2253 -+ W1Tog + WaTo3

2 3 4
S = ko + a21T24 + a2075, + w15, + WaTyy

where s;; is the share of u;; and ki, ky are compartment secrets. In matrix form,

we have
1 T11 0 0 0 .’L'%l .’L':fl kl S11
1 T12 0 0 0 I%Q ]7?2 aiy S12
1 T13 0 0 0 l’%j l";’d k’g 513
0 0 1 T21 l’%l 1’%1 I’%l a921 - S921
0 0 1 T2 1’%2 1'32 l'%Q 929 S99
0 0 1 @y a3 235 3, Wi S23
0 0 1 my 23, a3, w3, Wo 594

For any choice of ;; € I, satisfying the equation x11 + 12 + 713 = To1 + 222 +

Tos + Toa We observe that the coefficient matrix is not invertible.

3.2.1 Security analysis of the compartmented multi-secret

sharing scheme

The security analysis of the compartmented multi-secret sharing scheme is similar
to the previous scheme (see Section 3.1.1).

The shares are encrypted by the Dealer and sent to the users (publicly). For
large order group G, we have assumed that the ECDLP is hard to solve. When
the Dealer distributes the shares b;; P to the users, an adversary cannot acquire it
from b;jz;; P as it is comparable to solving an ECDLP. Also, an adversary cannot

get the user secret key x;; from x;; P. The probability of guessing points aj, P,
m A

1 < i < m, (or, the sum) which satisfies the relation K, = s, — e(P, > agtiP) ,
i=1

1 < X\ < g, is negligible for a large prime order group G,.

We have the following observation.

Theorem 3.2.2 An unauthorized set of users cannot obtain any information
about any of the secrets K, for1 < X <g.
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Proof. Assume that V] is an unauthorized set, i.e., V; € T'.

e In the case t = > t;, there is at least one compartment U; from which the
i=1
number of users in V; is less than ¢; that is | V) N C; |< t;. Hence they

cannot compute compartment secrets a;;, as observed by Theorem 3.1.3.

m
e In the case t > > t;, there are two possibilities.
i=1

1. There is a compartment U; for which «; =| Vi N C; |< t;. This implies

that the corresponding value a;;, cannot be computed by Proposition

1.8.4.
m
2. All a; > t; but > «; < t. This rules out the existence of the unique
i=1
solution for wy P, wa P, -+ wy, P.

Hence an unauthorized set of users will get no information about the secrets K
for1 <A <g.

Theorem 3.2.3 (Verification of shares) The compartmented multi-secret shar-

ing scheme can detect and verify harmful activities in time.

Proof. Users can verify the accuracy of other users shares at the time of secret
reconstruction. Verification will be done using the public information x;;b;; P and
an additional information xi_ij given by wu;;. Assume that in order to recon-
struct the secrets, the cooperating u,;; works with the share b;jP. If b;jP =b;; P,
then the equation e(P,b};P) = e(P,b;P) is valid. Additionally, e(P,b;;P) =
e(z;;' P, 23;b;;P) may be used to calculate the value of e(P,b;;P) since x;b;;P
is open to the public. As a result, it is possible to confirm the share of w;; by
examining the correctness of the equation e(xz;;' P, z;;b;; P) = e(P, b}, P).

We have given below an example of the compartmented multi-secret sharing
scheme using modified Tate pairing [41]. The computations are done using Sage-
Math.

Example 3.2.4 Consider £ : y*> = 23+ x+ 38 over Fyy. The #F(Fy;) = 61 and
61 | 473 — 1, i.e., the embedding degree of F(IF4;) with respect to 61 is 3. Fyys is
a finite field and #E(Fy73) = 104188. The group E[61] C E(F,z) is the set of
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torsion points. Let @ = (47 + 21,47 + 15y + 4) € E[61] and G, = (Q) where v
is a root of any irreducible polynomial of degree 3 over F4;. Suppose that there
are 3 compartments. Assume that t; = 2, t, = 2, t3 = 3, and n; = 4, ny = 4,
n3 = 5. Let the secrets K7 = 10, Ky = 22, K3 = 31, K1 = 15 and aq; = 15,
a1a = 20, asy = 25, agse = 30, a3y = 35, azs = 40, azz = 45.

4

8 Ay =

11
13

2 22
72
10 102 |. Compute
12 122
15 152

3
i=1

sy = e(Q,2x34Q)+22 = 167+ 117+26, s3 = (Q, 3 x34Q) +31 = 29>+ 32y +7

and s4 = e(Q, 4 x 34Q) + 15 = 457? + 30y + 5 where the pairing e is the modified

Tate pairing as in [41]. Make @, s, s2, s3 and s, public.

3

Z and A; =

14

Assume that A; =

= = =

[
e e

Case . t =7 (i.e. t1+ta+1t3=T).
Suppose that users wio, U3, U1, Uoo, U3y, Usz, Uzs collaborate to reconstruct the
secrets. Their shares are (2992 + 7Ty + 7,329 + 8y + 19), (2572 + 14~,18+% +
17y + 37), (14~% + 24 + 39,3292 + 30y + 37), (2992 + Ty + 7,327 + 8y + 19),
(1272 4+ 10y + 4, 109% + 2 + 44), (399% + 407 + 40, 772 + 41y + 44) and (24~* +
13+ + 46,2692 + 40 + 18) respectively.

Now wy9, u13 can find their compartment secret a;Q = 20Q = (24492 +
137 + 46,2172 + Ty + 29) using their shares (as illustrated by in Example 4.2.5).

Similarly,
® Uy, Uz can find axn@Q = 30Q = (892 + 33y + 7,359 + 367 + 7).
® Uz, Uss, Uz can find az3Q = 40Q = (892 + 367y + 13,4572 + 22y + 41).

Then they compute the pairing e(Q, 20Q + 30Q +45Q) = e((4y +21,4~v* + 15y +
4), (427*+337+10, 20> +317+18)) = 1592 +29y+42. Finally, the secrets can be
reconstructed as K; = s; — (1572 +29v+42) = 10, Ky = so— (1572 +29vy+42)% =
92, Ky = s3 — (1572 + 207 + 42)% = 31 and Ky = s4 — (1572 + 207 + 42)4 = 15,

Case II. Consider t = 9.

We choose tg =t — (t1 + ta + t3) = 2 values w; = 6, wy = 8. Assume that oy = 2,
o = 3, a3 = 4. Suppose that the users uia, U3, U1, Ua, Us3, U1, U3, Uss and Uss
collaborate to reconstruct the secrets. The matrix corresponding to their shares

1S
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1 8 0 0 0 0 O
1 11 0 0 0 0 O
0 0 1 3 0 0 O
0 0 1 5 0 0 0
0 0 1 9 0 0 O
0 0 0 0 1 2 22
0 0 0 0 1 10 102
0 0 0 0 1 12 122
0 0 0 0 1 15 152

82
112
32
52
92
23
103
123
153

83
113
33
53
93
24
104

124
154

a11@Q
a12@Q
a21Q
a22Q
a31@Q
a32Q
az3Q
w1Q
w2@

(2592 4+ 17 + 24,3992 +7)
(2572 + 17y + 24,3992 + 7)
(2572 + 17y + 24,3992 + 7)
(3772 4 24~ + 41,22 4 35y + 44)
(3192 + 25y 42,2742 + 37y + 19)
(3772 4 24~ + 41,22 4 35y + 44)
(1792 + 447y + 39,4192 + 5y + 2)
(1442 4 24~ + 39,152 + 17y + 10)
(2292 4 4y + 17,2072 + 67 + 45)

The coefficient matrix of the above system of equations is invertible. The users

compute the inverse of the coefficient matrix and multiply it with the shares
matrix to get the unknowns. Then they compute the pairing e(@, 20Q) + 30@Q) +
45Q) = e((4v+21, 442 +157+4), (42724337410, 20v*+31y+18)) = 1572 +29y+
42. Finally, the secrets can be reconstructed as K; = s; — (157 +29y+42) = 10,
Ky = 55 — (1572 + 29y + 42)? = 22, K3 = s3 — (157% + 29y + 42)% = 31 and

Ky = sys— (157 + 297 + 42)* = 15.

We observe that the 13 x 9 matrix

O O O O O O O O O = = = =

— =
W = X

o O O O O O O o O

SO O O O O = H = =B O O O O

© ot w O O O O

o O O o O

= = = =2 2 O O O O o o o o

NN O O O O O o o O

—_ = =
o NN O

o O O O O o o o

\)
N

72
102
122
152

42 43
82 83
112 113
132 133
32 33
52 53
92 93
142 143
23 24
(G E
103 10*
123 124
153 154

has the property that the coefficient matrix corresponding to the shares of any

set of (valid) collaborating users is invertible.

The computational complexity of the scheme is examined in detail in the next

section.
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3.2.2 Complexity of the compartmented multi-secret shar-

ing scheme

For Case 1, it is clearly seen that the time complexity for the scheme is O(mn?)
as seen in Section 3.1.2. We compute the time complexity for Case II below. To

compute the m matrix multiplications of order n; x (¢; + to) and (¢; + to) x 1,
1 =1,2,--- ,m, we require i(t,nl + n;to) operations. Using the "Double-and-
Add algorithm" [18], the tirrllglfor computing scalar multiplication of a point on
an elliptic curve is O(log,r), where r is the order of the point. There are n
scalar multiplications required which cost O(nlog,r). At the time of reconstruc-
tion, the time computation for finding the inverse of a coefficient matrix of order
t, as in Example 3.2.4, is O(t®), which is at most O(n3). The scheme requires
t more scalar multiplications at the time of reconstruction of the secrets. The
computational cost for the addition of two distinct points on the elliptic curve
is I+2M+S and for doubling I4+2M+2S (see [1], for example), where I, S, M
denotes inverse, subtraction and multiplication respectively. We need (m —1) ad-
ditions of the points. So the required computational cost for all point additions
is O(m). The computational cost of a pairing is logarithmic in time (see |34, 44|,
for example) and we required m + ¢ pairing computations. We required g more
1S for reconstruction of the secrets Ky, 1 < A < g. Combining all these, we get
that the complexity of the scheme is O(n?) for Case IL.

Comparision with [64]: The paper [64] is based on MDS codes and requires
O(mn®) time computation where n is the number of users and m is the number
of compartments. Our scheme is based on elliptic curves and bilinear pairings,
for which the scheme will work with less key sizes compared to [64]. Also, our
scheme requires O(mn?) or O(n?®) time computation which is less as compared to
[64].




Chapter 4

Conjunctive and Disjunctive
Compartmented Secret Sharing

Schemes

This chapter contains our work [15] on conjunctive and disjunctive compart-
mented secret sharing schemes. An extended abstract of this chapter is pub-
lished in the Proceedings of Central European Conference on Cryptology (CECC
'22), (2022). The full length paper has been submitted to the Tatra Mountains
Mathematical Publications.

In a compartmented secret sharing scheme, users are divided into distinct
compartments. If the overall number of participants reaches a global threshold
and the number of participants from each compartment exceeds a predefined
compartment threshold, the secret can be reconstructed. An access structure for
the scheme is defined in Section 1.3.2.

Many compartmented secret sharing schemes have been proposed using poly-
nomials [29, 54, 69] and Chinese Remainder Theorem [33], and many others
[12, 64, 68]. The scheme [12] is based on locally repairable codes. The paper
|29] uses polynomials and requires a secure channel for distributing the shares.
A computationally perfect compartmented secret sharing scheme has been pro-
posed using MDS codes in [64]. In the paper [54], the authors introduced a
joint compartmented threshold access structure where the compartments are not
necessarily disjoint.

In this chapter, we present two schemes; a conjunctive and a disjunctive com-

partmented schemes. The schemes use elliptic curves [58] and bilinear pairings

%)
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[35, 41]. Our schemes are verifiable and efficient. Also, the schemes are compu-

tationally secure. We have provided an explicit example of the schemes.
This chapter is motivated by the following.

A group of companies wants to merge for a project. The companies have
their individual and global secret keys. Each company has some compartments.
In a conjunctive scheme, if a particular (threshold) number of users from every
compartment of each company collaborates, they can get the global secret. While
in a disjunctive scheme, a particular number of users from every compartment of

any single company can collaborate and get the global secret.

4.1 Conjunctive and Disjunctive Compartmented

Secret Sharing Schemes

4.1.1 Setting up and distribution of the parameters of the

schemes

Let ¢ = p™ with i € N and p be a large prime. Consider P € E(F,) and
G, = (P) be a subgroup of E(F,) of order r where r is also a prime integer. We
choose r to be a large prime so that ECDLP is hard to solve. Let G,, = pu, where

1 is as in Section 1.5.2. Consider a bilinear pairing e as in Definition 1.5.1.

Let C1,Cs, - -+, C,, be m companies interested to merge for a project. Each
company C; has 7; compartments say Cy1,Cia, - -+, Cir, for 1 < i < m (see Figure
4.1). Suppose there is a set U of n users divided disjointly into these compart-
ments in the presence of a trusted Dealer. Let n;; be the number of users in the
compartment Cj; for each i, 1 <4 < m and each j, 1 < j < 7. Let t;; > 1 be
the threshold number for each Cj; and ¢; > )" t;; be the company threshold of

C;. We define the conjunctive compartmented access structure as

I''={ACU:foreachi, 1 <i<m,|A|l >t
and ‘AQCU’ Zt” for all j,]. S] STz}
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Figure 4.1: Example of conjunctive and disjunctive compartmented schemes

Similarly, the disjunctive compartmented access structure is defined as

Iy ={ACU: forsome i, 1 <i<m,|A| >t
and |[ANCy;| > t;; for all 5,1 <j <7}

The Dealer chooses company secret keys Ki, Ko, -+, K,, € [0,p — 1] for Cj,

Cy, -+, C,, respectively and a global secret key K € [0,p — 1]. Let ayl), aé?,
. ,aé?ij € [0,7 — 1] be t;; random integers, with aéil) # 0, for each compartment

C’ij,lgigmandlgjgn.

Let uyk) denote k¥ user in the compartment C;; of company C;, where 1 <17 <
m,1 <j<7and 1<k <n;.

We have two cases according to the definition of the compartmented access struc-

ture.

Case I. t; = i: ti; (i.e., company threshold ¢; is equal to sum of compartment
j=1

thresholds in ).

e Dealer chooses a matrix M;; of order n;; x t;; for each Cj;, 1 <7 <m and
1 < j < 7, having the following property. Any submatrix of M;; consisting
of ¢;; rows is invertible. Such matrices are related to MDS matrices [53].

L LNT L \T

e Dealer computes <b§’1) b;g) bgz,z]) = M;; - (ag»zl) ayz) aﬁj) for each

compartment Cj;, 1 <i <m and 1 < j < 7, where AT denotes transpose

of the matrix A.
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@ 0 0

e The users u w;, ~in the compartment C; randomly choose pri-

G110 Ujos """ 1
vate keys w(ﬁ , xg, e ,a:y,zij € [1,r — 1], respectively and make x( )P T l)P
- EQ P public.
@ Op 0. Op . 6 ) :
e Then Dealer computes b;;x;; P, bjsx;5 P, » i, L, P for users in each

compartment Cj; of C; and sends (publicly) to the respective users in Cj;.

RO

e The users u u;, - in Cj; will get their respective shares b;il)P,

] 71> 327 » NG
byz)P, cee b% P by computing
@)~ (10, () @O~ (13, () O R PO
T (bﬂ:cij>, T (bjzxj2P>, S T (bjnija:jij).

Case II. t;, > Z ti; (i.e., company threshold ¢; is greater than sum of compart-

ment thresholds in ).

Let t; =t;, — Z ti;. For each j, 1 < j < 7, Dealer chooses a matrix A;; of size
j=1

i
n;; X t;; and a matrix B; of size ) n;; x t;, and consider the matrix

j=1
An 0 -+ 0
0 Ap -+ 0
A= : A : : | By
0 - Aimp O
0 ... 0 Air,

The choice of A;;’s and B; is such that the submatrix of A; corresponding to any
set of ¢; collaborating users is invertible. (Such a matrix exists. See Example
4.2.5 below).

Dealer chooses ¢ random values 1, g, -+, € [0,7 — 1] for company Cj,
1 <i<m. Foreach 1 <i<m, 1§j§7,~and1§k§n,~j,letb§2 be defined by

) (@ D) (i . T
(bﬁf b§2) o bl . b;)l bi,)z N AON )

Ini TiNir;
. . T
(4) (@) (4)
= A (all DR altll ... a’rll oo a’T,Lt,LTZ all al2 ... O{'Lt;

for users in each company C; for 1 < ¢ < m. The Dealer distributes the shares




§4.1. Conjunctive and Disjunctive Compartmented Secret Sharing Schemes 59

b;ik)P to the users in Cj; as in Case L.

For Conjunctive Compartmented Secret Sharing Scheme

Dealer computes s; = H e <P, ayl)P) + K; or equivalently s; = e (P, Z aﬁ)P)
j=1 j=1

)

=1
makes P, M;;, A;, s; and S public.

j

+K; and computes S = e (P, > KiP) + K (see Remark 3.1.1). Finally, Dealer

For Disjunctive Compartmented Secret Sharing Scheme

Dealer computes s; = ]_l e <P, aﬁP) + K, or equivalently s; = e <P, Z ayl)P)
Jj=1 j=1
+K; and a polynomial S(z) = (z— K1)(x — K3) - - - ( — K,,) + K. Finally, Dealer

makes P, M,;, A;, s; and S(x) public.

4.1.2 Reconstruction of the secret key

For conjunctive compartmented secret sharing scheme.

For Case I, suppose that ¢;; (or more) number of users from each compartment

Cij, 1 < j < 7, of every company C;, 1 < i < m, collaborate. Without
loss of generality, suppose the users u%),u%), e ,ug?J from each compartment
C;; of company Cj, 1 < 7 < m, collaborates. Then the collaborating users
from the compartment Cj; can form an invertible submatrix M;; of M;; (by as-

sumption on M;;, the submatrix M{j is invertible). The users in Cj; compute

) p () 0 p\" M) p p(0) 0 p\"
<aj1P ajy P - @jti,-P> = M;;l . (bij big P -+ b],tijP) . Thus, the company
secret K; can be computed as K; = s; — e <P, i: a§?P> and hence the global
j=1

secret key K can be obtained as K =S —e (P, > KZ-P) .
=1

1

For Case II, suppose, for each i, t; number of users from company C; with at

least ¢;; number of users from each compartment Cj; collaborates. Without loss

of generality, suppose that the users u%), u;l2)7 e ,u%ij from compartment C;; of

company C;, 1 < i < m, collaborate, where 3;; > t;; Vi,j and > B;; = t;. The
j=1
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collaborating users in C; can form an invertible submatrix A} of A; and compute

@p - a§21P ag)lp o ad PayP - i P)T

T’i,tiTZ'
= ATNBEP - b P BOP e b, P).

Ti .
Thus, they can compute company secret K; as K; = s; — e (P, Zaﬁ)P),
j=1

1 <4 < m, and hence the global secret key K as K =5 —e (P, > KZP> .

=1

For disjunctive compartmented secret sharing scheme.

The company secret keys K;, 1 < ¢ < m, can be computed as in the previous
reconstruction of the secret key in the conjunctive compartmented secret sharing
scheme. Then the users in any company C; can reconstruct the global secret key
as K = S(K;).

4.1.3 Verification of the shares

Verification of shares is required to resist two types of problems: The Dealer may
send incorrect shares to the users at the time of distribution and the user may
send incorrect shares at the time of secret reconstruction. The first problem is
not arising in our schemes, as the shares are distributed in an encrypted manner.
The verification of the shares in the second problem is given below.

At the time of reconstruction of the secret, each collaborating user uyk)

. -1
the share cglk)P with an additional information :z;gzk) P for verification. Other

sends

collaborating users can check the originality of the share by checking the validity
=1 . . .
of the equation e (xyk) P, bglk)xyk) P) =e (P, cglk) P). The above equation holds if

. . N1 . . )
and only if /P = b P as e («) P, ozl P)=e (P0P).

4.2 Security Analysis of the Schemes

Bilinear pairing operates as a one-way function, which means that computing the
image of inputs is simple, but finding the pre-image of a given image is challeng-
ing. The Dealer encrypts the shares before sending (publicly) them to the users.
We have assumed that the ECDLP is difficult to solve for large order group G,.
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So an attacker cannot obtain bz(f)P when the Dealer distributes the encrypted
share bgﬁ)azgﬁ) P as it is equivalent to solving an ECDLP. For an adversary, the
probability of guessing a point ) that satisfies S —e(P, Q) = K is 1/(r — 1), and
the probability of guessing an integer K’ € [0,p — 1] that is equal to K is 1/p.
Therefore the probability of getting the secret is max{1/(r — 1),1/p}. Since r

and p are very large, the probability is very small.

We have the following results.

Theorem 4.2.1 Any t; — 1(or fewer) number of users from C; know nothing

about the company secret K;.
Proof. Let A be a set of t; — 1 (or less) users in the company C; who try to get
the company secret K.

tij, we have a compartment C;; for which [ AN Cj;| < t;;.
1

In the case t; =

j:
Without loss of generality, suppose that the users ugzl), ugg), e u%ﬁ_l) from the
compartment C;; pool their shares. Then the shares of the users can be written

as a system of equations

W) p ) (i T W p 0 M p)"
(bﬂp boP bj(tij_l)P) = M}, - (aﬂP AP ... ajti],P)
where Mj; is the submatrix (of M;;) corresponding to the shares of the users in
A. The system will have many solutions by Proposition 1.8.4. Thus, the users

cannot get a%)P .

Ti
Similarly, in the case ¢; > ) t;;, there are two possibilities.
=1

e There must be a compartment Cj; in which 8;; = |[ANCy;| < t;;. This

implies that the unknowns aéil)P, 1 < j <7, cannot be computed.

e All 8;; > t;; but Z Bij < t;. Then the users can form a system of equations
i=1
with ¢; variables and less than ¢; equations. Thus, by Proposition 1.8.4,

users cannot get agil)P, 1<7<7.

Hence they cannot get the company secret key K.

Theorem 4.2.2 An unauthorized group of users cannot access the secret key K.




62 §4.2. Security Analysis of the Schemes

Proof. Assume that there is an unauthorized set A of users who want to get the

secret key K.
For conjunctive compartmented scheme.

As A ¢ I'y, we have either of the following cases.

1. There is some i, 1 < i < m, such that |4 N C;| < t;. This implies, by
Theorem 4.2.1, that the company secret K; (and hence the global secret K)

cannot be obtained.

2. Forall i, |[ANC;| > t;, but 3 some ¢ and j such that [ ANC;;| < t;;. Then for
both Case I and Case I1, we have a system of equations with more unknowns
than equations. Thus, by Proposition 1.8.4, we get r* many solutions for
some A. As r is large, the probability of getting K; is negligible. Hence
they cannot get the global secret K.

For the disjunctive compartmented scheme, the proof uses Proposition 1.8.4 and
similar arguments as in the case of the conjunctive compartmented scheme above.

Hence we omit the proof.

We also have the following observations.

Observation 4.2.3 (For the conjunctive compartmented scheme) The
probability of guessing a random @ € E[r] with S —e(P,Q) = K is 1/r, where

E[r] is the set of r-torsion points on the elliptic curve.

The point ) € G, C E[r] is chosen at random and the order of G, is . For a
given P, there is only one @) that satisfies S —e(P, Q) = K.

Observation 4.2.4 (For the disjunctive compartmented scheme) The
probability of guessing an integer K' € [0,p — 1] such that S(K') = K is m/p.
(Recall that m is the degree of S(x)).

Note that there are only m choices of K; for which S(K;) = K. Therefore, to
find the secret K for an attacker, the required probability is m/p and as p is very
large, it is negligible.

We also observe that the constant term of S(z) is K1 K- -+ K,, + K where K is
the global secret. Thus by changing the constant term, it is difficult to get any
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information about K.

We have given below an example of the schemes using modified Tate pairing [41].

The computations are done using SageMath.

Example 4.2.5 Consider F : y? = 23+2x+415 over F47. The number of points in
E(F47) is 61. The embedding degree of E(F47) with respect to 61 is 3 as 61|47°—1.
Then Fy7s is the extended finite field. The size of E(F,7s) is 104188. Let v be a
root of any irreducible cubic polynomial over Fy;. The group E[61] C E(Fys) is
the set of all 61-torsion points [41]. Let P = (15 + 33,992 + 22 + 23) € E[61]
and G, = (P).

Assume that there are two companies C; and Cy. Company C; has 3 compart-
ments, namely, C}1, Cio, C13 and company C5 has three compartments, namely,
Cs1, Caa, Ca3. Suppose that nyy = 3,110 = 4,13 = 5,n91 = 3,N9y = 3,93 = 4
and t1; = 2,tyy = 2,y = 3,8y = 2,y = 2,ts = 3. Let al} = 32,aly =
23,a5) = 14,a%) = 19,a) = 37,a%) = 52,al) = 43 a{} = 25,4y = 36,a5) =
51,a% = 28,a%) = 8,a%) = 4,45y = 7.

We put company secret keys K; = 15, Ky = 22 for (', C respectively and the
global secret key K = 20.

Case I. For t; = t11 +tio +ti3 =7 and tg = to] + tog + tag = 7.

For company C',

21 14 50
3 9
8 3 37 27 23
15 42
let M1 =111 60|, Mip = 0 20 and M3 = |39 57 27
12 22 31 46 23
20 34
40 14 11

T T
We compute (bﬁ) by bg?) = My - <a§11) a%)) = (20 24 36)T. The shares of

the users in the compartment C; of the company C; are

Bl p (2072 + 417 + 45,3792 4 197 + 18)
BYP | = | (1892 + 177 + 21,1992 + 137 + 11)
iy P (1572 + 277 + 41, 182 + 367 + 44)

T T
We compute (bgll) bsy) bl bg?) = M, - (aéll) aé?) = (30 32 18 11)T. The
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shares of the users in the compartment C'5 of the company C; are

b P (4492 + 27,1992 + 22+ + 22)
by P | | (1497 + 13y + 15,1892 + 5y + 29)
bWIP | (1792 + 6,412 + 2y + 1)

b p (4242 + 227 + 34, 24~2 4 277 + 34)

Then, we compute
T T
(béll) by b5y by bé?) = M- (ag}g al) aé?) — (56 41 17 14 53)7.

The shares of the users in the compartment C'3 of the company C are

b P (3472 + 317 + 35,3992 + 37 + 42)
bsy P (2072 4 417y + 45, 1072 + 28 + 29)
bYP [ =1 (3072 + 237,199 4 17y + 27)

b p (2672 + Ty + 12,4572 + 14~ + 21)
by P (3842 + 127 + 39, 3292 + 247 + 34)

For company Cj,

28 52 53
13 47 42 56
let M- 25 15 M 32 48 d M. 1039 24
€ 21 = y Voo = an 23 =
55 36 28
16 12 17 45
38 41 33

T T
We compute (bﬁ) bg) bg?) = My - (aﬁ) ag)) = (4 6 39)T. The shares of the

users in the compartment Cy; of the company C are

B2 p (4672 + 46 + 29,292 + 14 + 4)
BIP | = | (292 + Ty + 45,892 + 14+ + 22)
B2 p (1542 + Ty + 3, 3672 + 397 + 45)

T T
We compute (bg? bg) bé?) = My - (agﬁ) aé?) = (50 48 53)”. The shares of

the users in the compartment Cyy of the company Cy are

b2 p (4242 4 22 + 34,2342 + 20 + 13)
bIP | = | (3292 + 367 + 18,3292 + 387 + 35)

b2 P (3092 + 137 + 8, 1442 + 217 + 15)
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T T
Then, we compute (bg? b2 b2 bgi)) = M- (ag? o) ag?) — (10 38 48 28)7.

The shares of the users in the compartment Cs3 of the company Cy are

b P (2572 + 345 + 14,4072 + 227 + 20)
b3 P | | (169 + 40y + 37,309 + 5y + 36)
b P | | (3292 + 367 + 18,3292 + 38y + 35)
b2 P (4542 + 27y + 19,4542 + 67)

Case II. For t{ > t1; +t1o +t13 =7 and tg > to) + tog +taz = 7.

Let t; =9 and t5 = 8. Then ¢} = 2 and t;, = 1. So choose a;; = 3, a2 = 35 and
g1 = 47.

For company C, we choose a matrix

8 3 0 0 0 0 0 24 9
11 60 0 0 0 0 0 50
1222 0 0 0 0 0 20 57
o 0 3 9 0 0 0 27 20
0 0 15 42 0 0 0 20 56
A, = 0 0 9 20 0 0 0 58 34
0 0 20 34 0 0O 0 9 58
0 0 0 0 21 14 50 13 29
0 0 0 0 37 27 23 58 11
0O 0 0 0 39 57 27 16 14
0 0 0 0 31 46 23 42 21
0O 0 0 0 40 14 11 13 32

for users in company C;. We compute

T
1 1 1 1 1 1 1 1 1 1 1 1
(b1 bl ol o) o) o) 052 053 0l o) ol 013))
T
= A (aﬁ) aty ayy afy) afy) afy afy iy 0412>

= (41 26 17 18 39 40 55 12 51 6 21 58)7.
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The shares of the users of the company C' are

BV p (2072 + 417 + 45,1092 + 287 + 29)
v p (1142 4 30y + 5, 1572 + 377 + 2)
by p (3092 + 23,1972 + 177 + 27)
b p (1792 + 6,412 + 2y + 1)

by P (1592 + T + 3, 3672 + 39 + 45)
by P | (2292 + 43,472 + 28 + 32)
bYOP || (292 + Ty + 45,3992 4 33 + 25)
b P (1842 + 9y + 41, 1442 + 467 + 32)
by P (2572 + 34 + 14,742 + 257 + 27)
bsy P (292 + Ty + 45,872 + 147 + 22)
by P (2272 + 43,4342 4+ 197 + 15)
by P (3892 + 127 + 39, 3292 + 24~ + 34)

For company C, we choose a matrix

13 47 0 0 0O O O 1
2 15 0 0 0 0 0 9
6 12 0 0 0 O 0 9
0 0 42 56 0 0 0 34
A, = 0 0 32 48 0 0 0 11
0 0 17 45 0 0 0 33
0 0 0 0 28 52 53 20
0 0 0 0 10 39 24 57
0O 0 0 0 55 36 28 15
0 0 0 0 38 41 33 34

for each users in the company C5. We compute

T
2) 1(2) 1(2) 1(2) 1.(2) 1(2) 1.(2) 1(2) 1(2) 12
(66 0 o2 057 02 o) 7 03 0fF) 0L)
T
— A+ (aff o} of) o off o o) 1)

= (51235116 18 35 33 21 40).

The shares of the users of the company C5 are
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b2 P (2572 + 34 + 14, T2 + 257 + 27)
B2 P (1172 + 357 + 28,287 + 15)
b2 p (1192 + 307 4 5, 3292 + 107 + 45)
b2 p (157 + 33,99 + 22y + 23)
by P | | (2647 4+ 27y + 3,312 + 367 + 26)
VAP | (1792 + 6,412 + 2y + 1)

b P (1192 + 307 + 5, 3292 + 107 + 45)
b2 P (4542 + 277 + 19,272 + 417)
b2 P (2272 + 43,4372 4+ 197 + 15)

b P (2292 4 43,492 + 287 + 32)

Now we compute s; = e (P, alY P +al) P+ aéll)P) + Ky =e(P,22P) + 15 =

9842 + 457 + 46 and 55 = ¢ <P, d®P+adP + ag?p) + Ky = o(P,23P) +22 =
45+* + 15y + 45 where e is the modified Tate pairing (see [41]).

For conjunctive compartmented scheme, compute S = e(P, K1 P+ Ky P)+ K =
e(P,37P) +20 = 992 + 17y + 38 and make P, My1, Mo, M3, Moy, Moy, Mo, 51, 52
and S public.

For the disjunctive compartmented scheme, compute S(z) = (z — K;)(z —
Ky) + K = (z — 15)(z — 22) 4+ 20 = 2 + 24z + 45 and make P, Ay, Ay, 51, s9 and
S(z) public.

Reconstruction of the secret key

For Case 1.
1 @

Suppose that the users u;y,u;5 in compartment Cy; u%),u in compartment

Cio; uéll),u%),uéi) in compartment Ci3 of company C} and uﬁ),ug) in compart-

ment Coy; u%),u%) in compartment Coo; ué?,ug),uéi) in compartment Coys of

company Cy collaborate to reconstruct the secret. The users uglz),u%) form a

11 60
12 22

(1)
23

51 55
submatrix Mj, = ( ) of M, and compute the inverse M|;' = ( )

11 56
Wp WP\ _ g1 (1OprOp) _ 5

Then they compute (ajy'P ayy P) = Mj7' - (biy P bigP) = ((1492 + 13y +

15,1892 4+ 5y + 29) (1672 + 407 + 37,17v% + 42 + 11))T. Similarly, the users

. u%), u%) can compute the value of agll) P, a%)P.

. uéll), uéIQ), ug? can compute the value of agll)P, aéé)P, a%)P.
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. uﬁ), u!?) can compute the value of a2 P, a{}) P.

° ug), ué; can compute the value of agl)P a%)P

. Uz(a21)> Uso ,u§4) can compute the value of a31)P ag22 P, aé?P

Then they compute the company secrets K; = s; — e (P AP +dVp 4 agl)p)
=15and Ky = sy —e <P, aﬁ)P + ag)P + a31 P) = 22.

For conjunctive compartmented scheme, compute the global secret key K =
S —e(P,K1P+ KyP) = 20.

For the disjunctive compartmented scheme, the collaborating users in any com-

pany C;, i = 1,2, can compute the global secret key K = S(K;) = 20.

For Case II.
1 Q) . L @ 1) -

Suppose that the users ujy, uy5 in compartment Cii; Usy , Uss , Uy, iN compart-

ment C'o; ugl),ugé),ug?,ué; in compartment C'3 of company C) and ug1)7u§22),

ug3) in compartment Coy; u§2>, u( ) in compartment Cas; ugl), u%), ug4) in compart-
ment Css of company C5 collaborate to reconstruct the secret. The users in the

company C; can form a submatrix A} of A; and compute the inverse A, where

1160 0 0 0 0 0 50 1
1222 0 0 0 0 0 20 57
154 0 0 0 20 56

9 20 0 0 0 58 34

Al = 203 0 0 0 9 58

0 37 27 23 58 11
0 31 46 23 42 21
0 40 14 11 13 32

o O O O o o o

0
0
0
0 0 0 21 14 50 13 29
0
0
0

0
0
0
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69

and AT =

Then the users compute

T
<a§11)P a%)P agll)P a%)P aéll)P a%)P a%)P o P a12P>

51 55
11 56

o O O O o o O

o O O O O O O

33
23
39
10
o6
93
32
18
41

36
14
60
30
50
19
46

17

17
10
17
40
27
31
59
37
47

33
21

21

37
21
47
53

18
17
31
17
20
57

40

46
o7
25
a7
46
44
48
23
48

60
16
22
16
o4
31
60
30
52

T
_ 1 1 1 1 1 1 1 1
= AL (b%)P b P )P o P o) P o P o) P b) P bg;p) .

Then they compute the company secrets K; = s; — e (P, agll)P + agll)P + aé?P)

= 15. Similarly, the users in the company C5 can form a submatrix A} of A

and compute the inverse A, ', where A5 =

41
60
46
36
44
48
16
3

and A, =

Then the users compute (

13
2
34
16
6
1
41
42

o7
32
1
22
o4

3
12

38

o O O O

2
a§1)

o o o O

ol 28 53
43 40 22
8 H3 H4

0

o O o O

0

2 2
P a3y P dy)

0

o o o O

0
0
0
0

0

0

0
0
0
0

13 47 0
25 15 0
16 12 0
32 48
17 45

0
0
0

0
0
0

0
0
0

0 0 0
0 0 O
0 0 O
0 0 O
0 0 0
28 52 53
10 39 24
38 41 33

1

9

9
11
33
20
a7
34

T
P o P aP o} P af)P anP) -
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At (o P o P o P U PR P oY P U P bg24>p)T. Then they compute the
company secrets Ky = 59 — e (P, aﬁ)P + agzl)P + aé?P) = 22.

For conjunctive compartmented scheme, compute the global secret key K =
S —e(P, K1 P+ KyP) = 20.

For the disjunctive compartmented scheme, the collaborating users in any

company C;, i = 1,2, can compute the global secret key K = S(K;) = 20.

The computational complexity of the conjunctive compartmented and disjunctive
compartmented schemes are almost same and will be presented in detail in the

next section.

4.3 Computational Complexity of the Schemes

The matrix multiplication of matrices of order n x t and t x 1 involves nt op-
erations. The time for computing scalar multiplication of a point on an elliptic
curve is O(log,r) using the basic "Double-and-Add Algorithm" |18|, where r is
the order of the point. For computing a pairing takes O(log,r) operations (see
[34, 44]). Adding two distinct points takes I+2M+S operations and for doubling
takes I1+2M+2S operations (see [1]) where I, M, S denotes inverse, multiplica-
tion and squaring respectively. To compute an inverse of a matrix of order ¢ using

the basic inversion method cost O(t?).

At the time of distribution of shares.

m
For Case I, the Dealer require ) 7, matrix multiplications of order n;; x t;; and

=1
m  T; m T

tij x 1 which costs Z Z nijtij operations. As Ny > tij and Z Znij = n,
i=1j=1 i=1j=1
the sum > > ny;t;; < n? For Case II, the Dealer require m matrix multiplica-
i=1j=1

m

tions of order (Z nij> X t; and t; x 1 which costs ) (Z nij> t;, operations.
j=1 j=1

i=1

As Yo mij >t and Y Y ny; = n, the sum Y | Dony; |t < n? In addition,
j=1 i=1j=1 i=1 \ j=1

Dealer require n scalar multiplications of points to encrypt the shares bﬁlk):cglk)P

and m more scalar multiplications require to compute K;P, 1 < i < m, that
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costs O((m + n)log,r). To compute s; require i 7; point additions and m pair-
ings which costs O (mlog,r). To compute S iriitlhe conjunctive compartmented
scheme, the Dealer requires m additions of points and one pairing. In disjunctive
compartmented scheme, m multiplications and an addition to compute the poly-

nomial S(z).

At the time of reconstruction of the secret.

For conjunctive compartmented secret sharing scheme:

For Case I, the collaborating users need to find the inverse of ) 7, matrices of

i=1
order t;; that costs Zf:ljle t;”j < n? operations. To find the unknowns a§2P, they
require 72”:1 ilt?j < n? point additions. For Case II, they need to find the inverse
i=1j=
of m matrices of order ¢; that costs itf < n3. To find the unknowns agi,gP, the
number of require point addition is f:ltf < n?. In addition, to find K; required
1=

> m; point additions and m pairing computations. Also, they required O(m)

=1
additions of points and one pairing computation to find K.

For disjunctive compartmented secret sharing scheme:
Suppose that the users in the company C; want to reconstruct the secret. For

Case I, the collaborating users need to find the inverse of 7; matrices of order

t;; that costs Y t; < n® operations. To find the unknowns ayk)P, they require
j=1

Ti

> t?j < n? point additions. For Case II, they need to find the inverse of a matrix

j=1

of order t; that costs t3 < n3. To find the unknowns ayk)P, the number of required

point additions is t? < n?. In addition, finding K; requires m; point additions

and one pairing computation. Also, they require O(m) operations to find K.
Hence, combining all, both schemes required O(n?®) operations. We also see

that the time complexity of the disjunctive compartmented scheme is less as

compared to the conjunctive compartmented scheme.
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Chapter 5

Conjunctive Hierarchical

Multi-Secret Sharing Scheme

In this chapter, we present our work [16] on a conjunctive hierarchical multi-secret
sharing scheme using elliptic curves. This work has been submitted to the Indian
Journal of Pure and Applied Mathematics.

Secret sharing with many levels of hierarchy is known as hierarchical secret
sharing. In a hierarchical secret sharing scheme (see Definition 1.3.1), a group
of users is separated into several levels so that a user can be present at one
of the levels. A secret is distributed among all the users at every level and an
authorized set of users can only reconstruct the secret. Several schemes have been
proposed for hierarchical and conjunctive hierarchical secret sharing schemes (see
[5, 23, 29, 56, 59, 61, 63], for example).

Multi-secret sharing scheme is a method of sharing several secrets among the
users in such a way that any authorized subset of users can recover all the secrets.
However, any unauthorized subset of users gets no information about any of the
secrets. Many multi-secret sharing schemes have been proposed (see [3, 8, 40]).

There are two types of hierarchical schemes, namely conjunctive and dis-
junctive (see Definition 1.3.1). In this chapter, we have presented a conjunctive
hierarchical secret sharing scheme using elliptic curves and bilinear pairings. The
primary rationale for using bilinear pairing with elliptic curves is to give similar
security (to many existing schemes) while using a smaller key size. One impor-
tant feature of our scheme is that the Dealer does not require any secure channel
to distribute the secrets. The Dealer encrypts the secrets and distributes them

to the users publicly.

73
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The two types of hierarchical schemes are useful in many scenarios. For ex-
ample, the project manager(s) and their team members may have access to the
data/workplace according to different levels of authority. In a hospital, a doc-
tor (or team of doctors) may have access to the medical record of every patient,
however, nurses of the hospital may have access to a limited number of patients’
record.

Our scheme is significant because it overcomes all of the limitations inherent
in the majority of existing schemes. The scheme can accommodate any number of
users. Also, there are no limitations on the number of secrets to be shared. More-
over, our scheme is efficient and verifiable. Verifiability means the collaborating
users (at the time of reconstruction) can use public information to check whether
the information shared by the individual user is valid or not. For example, the

schemes proposed in [3] and [66] are verifiable.

5.1 Conjunctive Hierarchical Multi-Secret Shar-

ing Scheme

5.1.1 Setting up and distribution of the parameters of the

scheme

Consider an elliptic curve F over a finite field F,, where ¢ = p® for some iy € N
and p is a large prime. Let P € E(FF,) be a point of order r, where r is a prime
integer and G, = (P), G, = p,.. We assume that r is large enough so that
ECDLP is hard to solve. Consider a bilinear pairing e as in the above definition.
Suppose there is a set U of n users and a trusted Dealer D. The Dealer has the
authority to generate and publish all the parameters of the scheme. The users
are divided into m disjoint levels Ly, Lo, -+ , L,,. Define L; as higher level than
L;ifi < j. Let | L; |= n; and t; be the threshold for level L; or higher for
1 =1,2,---,m. The top level is L; and L,, is the lowest level. Assume that
t; <ty <--- <ty Suppose that s secrets say Ky, Ks,--- , K, are to be shared
among the users. Dealer makes P public.

We recall that a generating matrix M of size k x n of a mazimum distance
separable code (MDS code) C with parameters [n, k, d] over F, satisfies the prop-
erty that any & columns of M are linearly independent (see [32, Theorem 2.4.3]).
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Such matrices are known as MDS matrices. We refer to [32] for more details.

We need the following two propositions to describe the scheme.

Proposition 5.1.1 Let my, ms andt be positive integers. Suppose by, by, -+ by, €

F, be given. If t > my, then there exists an my Xt matriz A and an mq X t matriz
A
B such that any t rows of the matrix M = <B> forms an invertible submatriz

of M, and the system AX = (by by -+ bm,)" has many solutions X € Ft.

Proof. We choose an (m; + my) X t matrix M such that any ¢ rows of M forms
A
an invertible submatrix M. We let M = B/ where A is a m; x t and B is a

mo X t submatrices. Since t > my, the rank of A is m;. It follows that the system

AX = (by by -+ bp,)T has many solutions, as required.

Proposition 5.1.2 Let my, mo and t be positive integers with t < my. Suppose

by, by, by, € F, be given. For any integer t' satisfying my < t' < my + ma,
A A
there exists a matriz M = B B | where A and B are matrices of size mqy Xt

and me X t, A" and B’ are matrices of size my x (t' —t) and mg X (' —t), such
that the first t columns of any t rows of M form an invertible submatriz and the
system <A A’> X = (by by -+ by,)T has many solutions.

Proof. As before, we choose matrices A and B of size m; x t and my X ¢t re-
spectively, such that any t rows of the matrix B form an invertible sub-

matrix. Since ¢ < my, the dimension of the column space of A is t. Let
v1,v9, -+, vy € F" be the column vectors of A. Let W be a subspace of F"
such that Span{vy, vy, -+ ,vi} + W = F™ and the dimension of W is m; —t. By
the hypothesis on ¢/, we have t' —t > m; — t. Thus, we can select ¢ — t column
vectors wy, we, - -+ ,wy_; € F" which spans .

Now, we let A’ be the matrix formed by column vectors wy, wo, - - - , wy_; and
B’ to be any matrix of my x (t' — t) size. As the columns of the matrices A and
A’ span all of F"*, we have rank (A A’> is my. Hence the system (A A’> X =

A A
(by by -+ bpy,)T has many solutions. Letting M = s the proof is

complete.
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Consider the conjunctive hierarchical access structure
I = {AgU; ‘Aﬂ (_LZJle)‘ > t,; for all i, 1§i§m}
]:
as in Definition 1.3.1). Denote by w;; the j** user in the level L;.
j J

Level L;.

e Consider a matrix M; of order ny; X t; such that any submatrix of M;
consisting of any ¢, rows forms an invertible matrix. Such matrices are

transpose of standard MDS matrices.

e D chooses t; random integers ajy, ajz, - , a1, € [0,7 — 1] and computes
(bn big - blnl)T =M, - (an arp - Clm)T

where T' denotes the transpose of a matrix.

e Each uy; in the level Ly, chooses xq; € [1,7 — 1] randomly and makes xq;P

public.

e Then D computes byjxy,; P for user uyj, j = 1,2,--- ,ny, and sends (publicly)

to the respective user.
e Bach uy; will get their share by, P by computing xfjl(bljxlj)P.

Level L,.
Depending on the size of t5, we make the following cases.

Case I. For ty > ny, consider a matrix My of order (n; 4+ ny) X ty such that
a submatrix of My consisting of any t5 rows forms an invertible submatrix. D

chooses to values agy, age, - , as, € [0,r — 1] and computes

(bn b1n1 by - - b2n2)T = M, - (a21 Q2 - a2t2)T7

in such a way that b,;, j = 1,2,--- ,n, are same as in level L;. By Proposition
5.1.1, choosing a matrix M, and values ag1, - - - , ag, satisfying above conditions is
possible. Each uy; in level Ly chooses o5 € [1,7 — 1] randomly and makes x4; P,

Jj=1,2,--- ng, public. Then D computes by;xs; P for us; and sends (publicly)
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to the respective user. Then each wuy; will get their share by; P by computing

.Iz_]l(bQJfEQJ)P

Case II. For ty < ny, consider a matrix Ms of order (ny + ny) X t,, where ny <

t, < ny + ng, such that the first ¢5 columns of any ¢, rows forms an invertible

submatrix of Ms. D chooses t}, values ag, ase, -, Go,y, - - - , Ay, € [0, — 1] and
computes
T _ T
(bu b1n1 by - - b2n2) = M, - (azl A2 -+ A2gy a2t’2> s
in such a way that by;, 7 = 1,2,--- ,ny, are same as in level L;. By Proposition

5.1.2, such a matrix M, satisfying the above conditions exists. D keeps the first
to values (ag1, -+ ,as,) as secret and declares rest t), — to values as public. Each
uz; in level Ly chooses xq; € [1,7 — 1] randomly and makes xo; P public. Then D
computes byjzo; P for us; and sends (publicly) to the respective user. Then each

uz; will get their share by; P by computing x5 (byjao;) P.

In general, for i > 3, the distribution of shares is as following.

Level L,.
i1

Case I. For t; > Y ny, consider a matrix M; of order (ny + ng + -+ +n;) X ¢;
k=1

such that any t; rows form an invertible matrix. D chooses t; values a;1, a2, - - ,

a;, € [0,7 — 1] and computes
(511 te b1n1 by - - b2n2 ceebp e bini)T =M;- (ail Qi - am)T7

in such a way that b,;, s = 1,2,--- ;i —1, j = 1,2,--- ,ng, are same as in the
previous levels. This is possible in view of Proposition 5.1.1. Each u;; in level L;,
chooses z;; € [1,7 — 1] randomly and makes z;; P, j = 1,2,--- ,n;, public. Then
D computes b;;z;; P for u;; and sends (publicly) to the respective user. Then each

u;; will get their share b;; P by computing ;' (byz;;) P.

i1

Case II. For t; < Y ny, consider a matrix M; of order (ny+mngs+- - -+n;) xt,, where
k=1

i1 i

> ny < th <37 ng, such that the first ¢; columns of any ¢; rows form an invertible

k=1 k=1

submatrix of M;. D chooses t; values a;1, a2, -+ , @, - NS [0,7 — 1] and
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computes
(bir =+ biny +o0 b e bmi)T = M; - (air aig -+ @i, - az’t;)Ta
in such a way that by; for s =1,2,--- ;1 —1and j =1,2,--- ,ng, are the same as

in the previous levels. This is possible in view of Proposition 5.1.2. As before, D
keeps the first ¢; values as secret and declares the rest ¢ —¢; values as public. Each
w;; in the level L; chooses z;; € [1,7 — 1] randomly and makes z;; P public. Then
D computes b;;z;; P for u;; and sends (publicly) to the respective user. Then each
u;; will get their share b;; P by computing x;jl(bijazij)P.

Now D chooses secret keys K; € [0,p — 1], 1 < i < s, and computes v; =
e(P, i-Q)+ K, where @ = f: aj1P (see Remark 3.1.1). Finally, D makes v;,

7j=1
1 <i<s,and M;, 1 < j <m, public.

5.1.2 Reconstruction of the secrets

Without loss of generality, suppose that ¢; number of users u;q, u12, - - - , uyy, from
level Ly, ty —t; number of users us1, gz, - - - , Ua(,—¢,) from level Ly, t3—t; number
of users wugy, usy, -+, Uz(yy—¢,) from level Ls, ..., and t,, — t,,_; number of users
Ui, Um(ty—tm_y) rom level L,, collaborate to reconstruct the secrets. The
collaborating users from level L; will consider a submatrix M of M; of order t;
corresponding to their shares and find the inverse M{_l. Then, the users compute
M7V (b P bysP -+ by, P)" = (ay P ayaP -+ ay, P)".

At level Ly, in Case I, the collaborating users from levels L; and Ly can

A, Al
find (ag1 P, agP, -+, ay,P) as above. In Case II, let My = < 32 B? > (see
2 2

Proposition 5.1.2). The collaborating users first compute

by, P b P
. . a P
b, P ) bis, P ) Al 2(t2:+1)
by, P b, P BY ' ’
. . a2t’2P
bl2(t2—t1)P b2(t2*t1)P

where AJ and B are the submatrices of A, and B respectively, corresponding
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to collaborating users. Then, they consider a submatrix M/ consisting of the first

ty columns of M, corresponding to their shares. Finally, they compute
_ T
Myt (VP by P Uy P o By, P) = (an P anP -+ ay,P)".

Similarly, the collaborating users from levels L, Ly and L3 can find <a31P, a3z P,

m

. ,a3t3P> and so on. Then, the users compute Q = > a;1P. Therefore, the

j=1
secrets K; = v; —e (P, i-Q) for 1 <i < s, are revealed.

5.1.3 Verification of the shares

Verification of shares is essential to avoid two types of problems: the Dealer may
send incorrect shares to the users during distribution, and the user may provide
incorrect shares during reconstruction. The first problem does not arise in our
schemes since the shares are distributed in an encrypted way. The shares in the
second problem can be verified in the following way.

During the secret reconstruction, each collaborating user wu;; provides their
share ¢;; P with extra information x[ij for verification. Other collaborating
users can verify the authenticity of the share by examining the validity of the
equation e(x;ij, bijjxi;P) = e(P,c;;P). The above equation holds true if and
only if ¢;; P = b;; P as e(:t:i_ij, bijxij P) = e(P,b;; P).

5.2 Security Analysis of the Scheme

Bilinear pairing e is a one-way function and can be calculated in two steps. The
first is to use Miller’s algorithm (|44, Lemma 2|) to determine the evaluation of a
certain function at a specific divisor of the underlying elliptic curve E. The second
step is the final exponentiation. We also refer to |26] for further information on
how the pairing inversion problem and the individual steps (Miller inversion and
inverting exponentiation) relate to one another. The one-wayness of the bilinear
map is that, to find P,Q € G, such that e(P, Q) = g for a given pairing e and
a value g € G, is difficult. Also, to find Q € G, for a given P € G,, P # 0
and g € G, such that e(P, Q) = g is difficult. The pairing e is non-degenerate
and bilinear, and the groups G,, G,, are cyclic with the same prime order. For
P # 0, the equation e(P, Q) = g = e(P,Q’) implies that e(P,Q — Q') = 1. As




80 §5.2. Security Analysis of the Scheme

P is a generator for G, it follows that () = @Q’. Hence, we have the following

observation.

Observation 5.2.1 For a given pair (P,g) € G, X G, with P # 0, there is a
unique Q € G, such that e(P,Q) = g.

For given points P and aP, a € Z, on an elliptic curve F, finding the value of
a is known as ECDLP. 1t is believed that ECDLP is computationally infeasible
to solve for a suitable choice of the elliptic curve E and points on E (see [27]).

In our scheme, the Dealer does not require a secure channel to distribute the
shares, which is a key aspect of our scheme. The Dealer encrypts the shares
before sending them to the users. When the Dealer distributes the shares b;; P
to the users, an adversary cannot obtain it from b;;z;; P since it is equivalent to
solving an instance of ECDLP. Also, an adversary cannot obtain the users secret

key x;; from z;;P.

Observation 5.2.2 The probability of getting secrets for an adversary is negligi-
ble.

The probability of guessing level secrets a; P for 1 <i <m <or > ai1P> is 1/r
i=1

and guessing the correct secret K; is 1/p. So the probability of getting secrets is

max{1/r, 1/p}. As r and p are large primes, this probability is very small.

Theorem 5.2.3 The probability of receiving any of the secrets K; by an unau-

thorized set of users is low.

Proof. Let A be an unauthorized set of users (i.e., A € I'). Thus, |[AN | U L;

j=1
< t;, for some i,1 < i < m. Let t; — 1 (or less) number of users from level L;

or higher collaborate to compute a;; P. The users can form a system of less than
t; equations with ¢; unknowns. Thus, by Proposition 1.8.4, the system has r*
many solutions for some A, 1 < A\ < t;. Suppose they choose a share b,,P € G,
from level L; or higher levels. Then they can form a square matrix and solve the
system of equations with the share b,,P. However, the probability of choosing
the correct share b,, P is 1/r. Also, the probability of choosing b,, P and a; P is
same. Hence, an unauthorized set of users cannot get any information about the

secret.

A comparison between our scheme and some of the known schemes is shown
in Table 5.1.
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Table 5.1: Comparison with other schemes

| Scheme | Binu[8] | Liu[40] [ Tentu [63] | Our scheme
Hierarchical No No Yes Yes
Multi-secret Yes Yes No Yes
Verifiability Yes No No Yes
Secure channel Yes Yes No No
Limitations on
number of secrets No Yes Yes No
Underlying group || Elliptic curves | Elliptic curves F, Elliptic curves

5.3 An Example of the Scheme

We give an example of the conjunctive hierarchical scheme using modified Tate

pairing ([41]). Computations are based on SageMath.

Consider an elliptic curve E : y? = 2® + 4x + 15 over the finite field F,;. The
number of points in E(Fy;) is 37 and 37 | 473 — 1, i.e., the embedding degree
of E(F47) with respect to 37 is 3. Then Fyzs is an extended finite field and the
number of points in F(F,7s) is 104044. Let « be a root of any irreducible cubic
polynomial over F,;. The group E[37] C E(F,ss) is the set of torsion points.
Let P = (24a + 1,22a% + 10a + 23) € E[37] and G, = (P). We denote, by e,
the (modified) Tate pairing as given in ([41]). Consider the parameters n; = 2,
ng =3, ng =5and t; =1, ty = 3, t3 = 4. Put the secrets K; = 8, Ky = 15,
Ky =22, K, = 11.

Level L.
. 3 .
e Choose the matrix M; = (4) and t; = 1 random integer a;; = 11 € [0, 36].

e Compute (by; b12)T = My - (a11) = (33 7)T where T denotes the transpose

of a matrix.

e Thus, the shares of users w1, uyp are 33P = (a? + 30 +40, 33a* +40a + 28)
and TP = (42a* + 45a + 19, 28 + 2« + 6) respectively.
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Level L.
4 6
2 5
e As ty > ny, choose the matrix My, = |1 0 9 | and t; = 3 integers
5 2 10
7 3 11

o1 = 33, 99 = 32, 93 = 5 from [0, 36]

® Compute (bll b12 bgl b22 b23)T = M2 . (agl 922 agg)T = (33 74 20 12)T We

note that b;; and by are the same as in level L.

e Thus, the shares of users sy, tgs, gz are 4P = (a?+30a+40, 140%+7a+19),
20P = (360 4+ 17a+11, 7o + 19+ 20) and 12P = (Ta? +29a + 45, 260% +
6a + 10) respectively.

Level Ls.

o Asty < ng+no, let th =6.

3 1 7 9
2 4 9 3 6 1
5 2 11 7 10 2
11 2 3 5 7
e Choose the matrix Mz = 2.9 6 151216 and t; = 6 integers
00 3 1 2 4
4 5 1 7 2 9
3 2 8 0 5 3
1 7 11 12 10 4
4 8 9 2 3 1

as; = 6, azg = 25, azs = 8, asqs = 19, azs = 7, azg — 20 from [O, 36] We note
that b1y, b1a, bo1, bag, bag are the same as in levels Ly and Ly. Make ags =7

and asg = 20 public.

e Compute (511 bia ba1 baa bag b3 b3y b3z b3y 535)T = M; - (a31 a3z as3
a34 A35 a36)T = (33 742012123518 5)T

e Thus, the shares of users wus;, usg, uss, usg, uzs are 12P = (7a? + 29« +
45,2602 + 6a + 10), 3P = (14a® + 20« + 21,2202 + 29« + 40), 5P =
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(40 + 9a + 39, 140? 4+ 42a + 5), 18P = (17a* + 6a + 22,2602 + 32 + 10)
and 5P = (4a® + 9« + 39, 14a? + 42 + 5) respectively.

Now compute Q = a1 P+as P+az P = 13P = (17a*+13a+4, 8a?+22a+9).
Then v; = e(P,Q)+ K, = e(P,13P) +8 = 370 + 28a +12, vs = e(P,2Q) + K =
o(P,26P) + 15 = 280 + Ta + 4, v3 = (P, 3Q) + Ky = o(P,2P) + 22 = 3602 +
32a + 23, vy = e(P,4Q) + K, = ¢(P,15P) + 11 = 42a* 4+ 5a + 24. Make P, vy,
vq, U3, V4, My, Ms, M3 public.

Suppose the users w1, U1, Usg, Uze collaborate to reconstruct the secrets K7,
K5, K3 and K. Then, uj; computes level secret a;, P = 37'b P = 25(a” +
30a + 40,3302 + 40a + 28) = (18a? + 27a + 12,360 + 20c + 32). The users

4 6 1
U1, Usgt, Uz form a 3 x 3 matrix, say M, = [1 0 9 | from first, third and
7 3 11
24 19 26
fourth rows of My and compute the inverse Mé_l =136 0 27|. Then they
22 35 30
compute My - (33P 4P 12P)T = ((a® + 30a + 40, 3302 4 40a + 28) (4a? + 9a +
39,33a% + bar + 42) (4a® + 9 + 39, 14a? + 42a + 5))T. Thus, the level secret is
asn P = (a? + 30a + 40, 33a% + 40 + 28). In level Ls, the users uyy, s, Uss, Uszs
know the entries of the corresponding rows of M;3. As as; = 7 and azg = 20 are

public, first they compute

b1 P — (assP + 9asgP) = 31P = (18a° + 42a + 8,400” + 18« + 46),
bo1 P — (10ass P + 2a3s P) = 5P = (4a* + 9a + 39, 14a® + 42a + 5),

bos P — (12a35 P + 16a3sP) = 15P = (31a” + 10 + 24, 11a* + 23a + 44),
bso P — (2a35 P + 9ass P) = 31P = (18a* + 42 + 8,40a* + 18ar + 46).

3 1 5 7
, 5 2 11 7 :
Then they take submatrix M} = 5 9 15 of M3 and compute the inverse
4 5 1 7
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16 36 23 15
26 35 7 35
matrix M ' = . Now, we have
21 7 22 20
1 1 21 6
31P (18a* + 420 + 8, 7a? + 29 + 1)
AL 5P| (Ta? + 29a + 45,210 + 41a + 37)
’ 15P (1802 4+ 120 + 8, a2 + 38 + 44)
31P (1702 + 6 + 22,2102 + 15a + 37)

Thus, the level secret is az P = (1802 + 42a + 8,702 + 29« + 1). Finally,
they compute Q) = a11P + a1 P + a3 P = 13P and reconstruct the secrets as
Ky =v —e(P,Q) =8, Ky = vy —e(P,2Q) = 15, K3 = v3 — ¢e(P,3Q) = 22,
Ky =vy—e(P4Q) = 11.

5.4 Complexity

The number of operations involved in the multiplication of a n; X ¢; matrix with
t; x 1 matrix is t;n;. The time required to compute the scalar multiplication of
a point on an elliptic curve using the Double-and-Add algorithm method [18] is
O(log,r), where r is the order of the point. The time computation for finding the
inverse of a matrix of order ¢; is t3. The computational cost for the addition of
two distinct points on an elliptic curve is I4+2M+S and for doubling I-+2M-+2S
(see [1]), where I, S, M denote inverse, squaring and multiplication, respectively.

There are many pairings that cost logarithmic time (see [34, 44], for example).

At the time of secret distribution. For computing m matrices of different order in
our scheme, the Dealer requires O(mn?) operations. There are n scalar multipli-
cations required to compute b;;x;; P, which costs O(nlog,r). Dealer also requires
m additions of points to compute () that costs O(m) and s pairings to compute
;.

At the time of secrets reconstruction. The collaborating users need to find the

m
inverse of m matrices of order t;, 1 < ¢ < m, which takes >_ ¢? operations. For
i=1

t; < n; and as Y. n; = n, the sum > ¢ < n3. To find the level secret a; P,
; i—1

i=1 1=
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the users need ¢7 points additions for Case I and ¢}* points additions for Case IL.
Furthermore, they required m additions of points to compute ) and s pairings
to compute v;, 1 <17 < s.

Hence, combining all these, the computational complexity of the scheme is
O(n?).

The hierarchical scheme proposed in [71] is based on linear homogeneous re-
currences. The complexity of their scheme is O(n*"~'logn) where k,, is the
threshold of the last level, which is an improvement over the complexity of the

scheme proposed by Tassa [62]. However, the complexity of our scheme is O(n?).
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Conclusion

This thesis contains our work which is published /accepted /submitted in two con-
ferences and two journals. All our work is based on elliptic curves and bilinear
pairings. In Chapter 2, we have discussed a blind signature scheme using self-
pairings. The scheme is an improved version of Chakraborty-Mehta’s scheme
[10] where the security was lacking. In Chapter 3, we gave a multi-secret shar-
ing scheme, and based on it, we presented a compartmented multi-secret sharing
scheme. Then in Chapter 4, we have introduced conjunctive and disjunctive com-
partmented secret sharing schemes. In Chapter 5, we have proposed a conjunctive
hierarchical multi-secret sharing scheme.

The schemes which we presented in Chapter 3, 4 and 5 are based on ellip-
tic curves and bilinear pairings. The schemes are verifiable and computationally
efficient. We have provided security analysis of all the schemes and complexity
aspects are also discussed. For the illustrations, we have given an example of

each of the schemes. The computations are done using SageMath.
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