# Effect of soil amendments with chitinous substrates and application of chitooligosaccharides on rice

Thesis submitted to the University of Hyderabad for the award of

**Doctor of Philosophy** 

By

P.V.S.R.N Sarma (15LPPH06)

Supervisor: Prof. Appa Rao Podile



Department of Plant Sciences School of Life Sciences University of Hyderabad Hyderabad 500046 India

December 2022



#### UNIVERSITY OF HYDERABAD





#### HYDERABAD-500046, INDIA

#### CERTIFICATE

This is to certify that the thesis entitled "Effect of soil amendments with chitinous substrates and application of chitooligosaccharides on rice" submitted by Mr. P.V.S.R.N Sarma bearing Reg. No. 15LPPH06, in partial fulfillment of the requirements for the award of Doctor of Philosophy in Plant Sciences, is a bonafide work carried out by him under the supervision and guidance of Prof. Appa Rao Podile.

The thesis has not been submitted previously in part or in full to this or any other University or Institution for the award of any degree or diploma.

Supervisor —

Prof. Appa Rao Podile

Prof. Appa Rao Podile
FA.Sc. FN.A.Sc., FN.A.S.,
Department of Plant Sciences
School of Life Sciences
University of Hyderabad
Hyderabad-500 046. Telangana

Dept of Plant Sciences

HEAD
Dept. of Plant Sciences
School of Life Sciences
University of Hyderabad
Hyderabad-500 046, T.S. INDIA.

Dean 30/10

School of Life Sqiences

School of Life Sciences University of Hyderabad Hyderabad-500 046.



#### UNIVERSITY OF HYDERABAD

(A Central University established in 1974 by an Act of the Parliament)



#### HYDERABAD-500046, INDIA

#### **CERTIFICATE**

This is to certify that the thesis entitled "Effect of soil amendments with chitinous substrates and application of chitooligosaccharides on rice" submitted by Mr. P.V.S.R.N Sarma bearing registration number 15LPPH06 in partial fulfillment of the requirements for the award of Doctor of Philosophy in Department of Plant Sciences, School of Life Sciences, University of Hyderabad, is a bonafide work carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for award of any degree or diploma.

Further, parts of the thesis have been:

#### A. Published in the following publications:

- Ramakrishna, B\*., Sarma, P.V.S.R.N.\*, Ankati, S., Bhuvanachandra, B., & Podile, A. R. (2021). Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. *Carbohydrate Research*, 510, 108459. https://doi.org/10.1016/j.carres.2021.108459 [\* Equal Contribution]
- Sarma, P.V.S.R.N., Srinivas, V., Anil, K., & Podile, A. R. (2012). Isolation and purification of microbial community DNA from soil naturally enriched for chitin. *Biologia*, 67(4), 644–648. https://doi.org/10.2478/s11756-012-0059-0
- Das, S. N., Madhuprakash, J., Sarma, P.V.S.R.N., Purushotham, P., Suma, K., Manjeet, K., Rambabu, S., Gueddari, N. E. El, Moerschbacher, B. M., & Podile, A. R. (2015). Biotechnological approaches for field applications of chitooligosaccha-rides (COS) to induce innate immunity in plants. Critical Reviews in Biotechnology, 35(1), 29–43. https://doi.org/10.3109/07388551.2013.798255

#### B. Presented in the following conferences:

- Sarma PVSRN, Chalasani Danteswari and Appa Rao Podile. "Influence of chitinous substrate amendments on rhizosphere microbiome of rice". Conference talk presented at the 62<sup>nd</sup> AMI Annual conference on "Microbiology and Society-Current trend and future prospects (MSCTFP- 2022)" during 21<sup>st</sup> to 23<sup>rd</sup> September 2022, in University of Mysore, Mysore, India. (Awarded best Oral presentation)
- Sarma PVSRN, Ramakrishna B and Appa Rao Podile. Enzymatic approach for production of higher chain length chitooligosaccharides and evaluation for elicitor response in rice seedlings" Poster presented at Molecular Intricacies of Plant-Associated Microorganisms (MIPAM-2019) during 1st -3rd February, 2019 in the National Institute of Plant Genome Research, New Delhi, India.
- Sarma PVSRN and Appa Rao Podile. "Construction and screening of metagenomic library for chitin modifying/degrading enzymes". Oral presentation in 10<sup>th</sup> Plant Sciences colloquium, organized by Department of Plant Sciences, University of Hyderabad, Feb, 2018 in Hyderabad, Telangana, India.
- 4. Sarma PVSRN and Appa Rao Podile. "Enzymatic approach for production of higher chain length Chitooligosaccharides and their evaluation for elicitor respon-se in rice seedlings" at the Young Scientist Session in the 14th International Chitin and Chitosan Conference (14th ICCC) & 12th Asia-Pacific Chitin and Chitosan Symposium (12th APCCS) that was held at Kansai University, Osaka, Japan from 27-30th August, 2018. (Awarded CSIR International Travel grant for year 2018).

Further, the student has passed the following courses toward the fulfillment of the course work requirement for Ph.D. degree.

| Sl. No. | Course Code | Name                                             | Credits | Pass/Fail |
|---------|-------------|--------------------------------------------------|---------|-----------|
| 1.      | AS-801      | Analytical Techniques                            | 4       | Pass      |
| 2.      | AS-802      | Research Ethics, Data Analysis and Biostatistics | 3       | Pass      |
| 3.      | AS-803      | Lab Work & Seminar                               | 5       | Pass      |

Supervisor

Prof. Appa Rao Podile

Prof. Appa Rao Podile
F.A.Sc., F.N.A.Sc., F.N.A.S.,
Department of Plant Sciences
School of Life Sciences
University of Hyderabad
Hyderabad-500 046, Telangan

Dept. of Plant Sciences

HEAD
Dept. of Plant Sciences
School of Life Sciences
University of Hyderabad
Hyderabad-500 046, T.S. INDIA

Dean

School of Life Sciences

DEAN
School of Life Sciences
University of Hyderabad
Hyderabad-500 046.



#### UNIVERSITY OF HYDERABAD

(A Central University established in 1974 by an Act of the Parliament)



#### HYDERABAD-500046, INDIA

#### **DECLARATION**

I, P.V.S.R.N Sarma, hereby declare that this thesis entitled "Effect of soil amendments with chitinous substrates and application of chitooligosaccharides on rice" submitted by me under the guidance and supervision of Prof. Appa Rao Podile is a bonafide research work. I also declare that it has not been submitted previously in part or in full to this University or any other University or Institution for the award of any degree or diploma.

P.V.S.R.N Sarma

Prof. Appa Rao Podile Supervisor

Prof. Appa Rao Podile
FA.Sc. FNA.Sc. FNA.A.S.
Department of Plant Sciences
School of Life Sciences
University of Hyderabad
Hyderabad-500 046. Telangana



#### UNIVERSITY OF HYDERABAD

(A Central University established in 1974 by an Act of the Parliament)



#### HYDERABAD-500046, INDIA

#### PLAGIARISM FREE CERTIFICATE

This is to certify that the similarity index of this thesis, as checked by the Library of the University of Hyderabad, is 35%. Out of this, 28% similarity has been identified from the candidate, Mr. P.V.S.R.N Sarma's own/co-authored publications, which are as follows:

- Ramakrishna B\*., Sarma PVSRN\*, Ankati S., Bhuvanachandra B., and Podile AR. (2021). Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydrate Research, 510, 108459. https://doi.org/10.1016/j.carres. 2021.108459 [\* Equal Contribution]
- Das SN, Madhuprakash, J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Rambabu S, Gueddari NE, El, Moerschbacher BM, and Podile AR. (2015). Biotechnological approaches for field applications of chitooligosaccha-rides (COS) to induce innate immunity in plants. Critical Reviews in Biotechnology, 35(1), 29–43. https://doi.org/10.3109/07388551.2013.798255.
- Chalasani D, <u>Basu A</u>, <u>Sarma PVSRN</u>, Jorrin B, Neal AL, Poole PS, Podile AR, and Tkacz A (2021). Poor competitiveness of *Bradyrhizobium* in pigeon pea root colonization in Indian soils. *mBio*, 2(4): e00423-21. (DOI: https://doi.org/10.1128/mBio. 00423-21) [The candidate shares equal first authorship].

These publications, constituting a part of the present thesis, have been deposited in various public repositories. All the publications related to this thesis have been appended at the end of the thesis. Only 7% similarity was identified from other sources in the present thesis. Hence, the present thesis may be considered as plagiarism-free.

Prof. Appa Rao Podile

Supervisor

Prof. Appa Rao Podile
FA.Sc. FNASc., FNAAS,
Dapartment of Plant Sciences
School of Life Sciences
University of Hyderabad
Hyderabad-500 046. Telangana

### List of Contents

| Table of contents                                                                                           | I-IV     |
|-------------------------------------------------------------------------------------------------------------|----------|
| List of figures                                                                                             | IV-VI    |
| List of tables                                                                                              | VI       |
| List of abbreviations                                                                                       | VII-VIII |
| Chapter 1: Introduction                                                                                     | 1 - 17   |
| 1.1 The plant rhizosphere                                                                                   | 1        |
| 1.2. Rice microbiome                                                                                        | 2        |
| 1.3. Importance of organic soil amendments                                                                  | 5        |
| 1.3. Chitinous substrate amendments acts as a biostimulant, inhibits pathogens, and stimulates plant growth | 7        |
| 1.4. Chitooligosaccharides act as elicitors and induce immune response in plants                            | 9        |
| 1.4.1. Mechanism of COS-induced defense in plants                                                           | 9        |
| 1.5. COS production                                                                                         | 11       |
| 1.5.1. Chemical methods                                                                                     | 11       |
| 1.5.2. Enzymatic methods                                                                                    | 12       |
| 1.5.3. Transglycosylation (TG)                                                                              | 14       |
| 1.5.4. Enhancing TG for longer chain COS production                                                         | 15       |
| 1.5.5. Enzyme-based bioprocesses for COS production                                                         | 16       |
| 1.6. Rationale of the study                                                                                 | 17       |
| Chapter II: Material and methods                                                                            | 18-28    |
| 2.1.1. Assessment of chitinous substrates as soil amendments in a field experiment                          | 19       |
| 2.1.2. Metagenomic DNA extraction, polymerase chain reaction (PCR) and nucleic acid sequencing              | 19       |
| 2.1.3. Microbiome data analysis using bioinformatics and statistical tools                                  | 20       |
| 2.1.3.1. Processing of sequencing data                                                                      | 20       |
| 2.1.3.2. Bioinformatic analysis of microbiome (marker gene) data                                            | 20       |
| 2.1.3.3. Visual exploration of taxa abundance                                                               | 21       |
| 2.1.3.4. Alpha diversity analysis                                                                           | 21       |

| 2.1.3.4. Beta diversity analysis                                                            | 21     |
|---------------------------------------------------------------------------------------------|--------|
| 2.1.3.5. Core microbiome analysis                                                           | 21     |
| 2.1.3.6. Biomarker identification and classification                                        | 22     |
| 2.1.3.7. Statistical analysis                                                               | 22     |
| 2.2. Production of COS                                                                      | 23     |
| 2.2.1 Bacterial strains, plasmids, and chemicals                                            | 23     |
| 2.2.2 Expression and purification of SpChiD-Y28A                                            | 23     |
| 2.2.3. Analysis by thin-layer chromatography (TLC) and high-pressure liquid chromatom HPLC  |        |
| 2.2.3. Product analysis by MALDI-TOF MS                                                     | 24     |
| 2.2.4. Optimization of conditions for bulk preparation of COS                               | 25     |
| 2.2.5. Purification of COS by semi-preparative HPLC                                         | 25     |
| 2.3. Elicitor treatments to rice plants under greenhouse conditions                         | 26     |
| 2.4. Bioassays for elicitor activity                                                        | 26     |
| 2.4.1. Hydrogen peroxide (H2O2) assay                                                       | 26     |
| 2.4.2. Phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity                               | 26     |
| 2.4.3. Peroxidase (POD; EC 1.11.1.7) activity                                               | 27     |
| 2.5. Total RNA isolation, cDNA synthesis, and quantitative real-time PCR (qRT-PCR) analysis | 27     |
| 2.6. Purified COS treatment on rice                                                         | 28     |
| Chapter III: Chitinous substrate amendments to rice — a microbiome approach                 | 29-103 |
| 3. Introduction                                                                             | 30     |
| 3.1 Results                                                                                 | 33     |
| 3.1.1. Influence of alpha chitin on rice rhizosphere bacteriome                             | 33     |
| 3.1.2. Influence of alpha chitin on rice rhizosphere mycobiome                              | 37     |
| 3.1.3. Influence of alpha chitin on rice rhizosphere eukaryome                              | 41     |
| 3.1.4. Influence of alpha chitin on rice rhizosphere microbiome                             | 45     |
| 3.1.5. Influence of beta chitin on rice rhizosphere bacteriome                              | 49     |
| 3.1.6. Influence of beta chitin on rice rhizosphere mycobiome                               | 53     |
| 3.1.8. Influence of heta chitin on rice rhizosphere microhiome                              | 61     |

| 3.1.9. Influence of chitosan on rice rhizosphere bacteriomes                  | 55                                 |
|-------------------------------------------------------------------------------|------------------------------------|
| 3.1.10. Influence of chitosan on rice rhizosphere mycobiome                   | 69                                 |
| 3.1.11. Influence of chitosan on rice rhizosphere eukaryome                   | 73                                 |
| 3.1.12. Influence of chitosan on rice rhizosphere microbiome                  | 77                                 |
| 3.1.13. Influence of plant developmental stage on rice rhizosphere            | 81                                 |
| 3.1.14. Amendments with chitinous substrates increased rice yield             | 97                                 |
| 3.2 Discussion                                                                | 101                                |
| 3.2.1. Rice rhizosphere microbiome is shaped by host, stages of growth and    |                                    |
| soil amendments                                                               | 101                                |
| 3.2.2. Bacteriome, mycobiome and eukaryome responded differently to chitinous |                                    |
| substrate amendments to rice rhizosphere                                      | 101                                |
| 3.2.3. Chitin amendments improved microbiome diversity in rice rhizosphere    | 102                                |
| 3.2.4. Core microbiome of rice rhizosphere dominated by Proteobacteria,       |                                    |
| Ascomycota and Euglenozoa                                                     | 102                                |
| 3.2.5. Chitinous substrates improved rice yield                               | 103                                |
|                                                                               |                                    |
|                                                                               |                                    |
| Chapter IV: Application of chitooligosaccharides on rice                      | 104-127                            |
| Chapter IV: Application of chitooligosaccharides on rice                      |                                    |
|                                                                               | 104                                |
| 4.1. Introduction                                                             | 104                                |
| 4.1. Introduction                                                             | 104                                |
| 4.1. Introduction                                                             | 104106106112 naling                |
| 4.1. Introduction                                                             | 104106106112 naling                |
| 4.1. Introduction                                                             | 104106112 naling114                |
| 4.1. Introduction                                                             | 104106112 naling114                |
| 4.1. Introduction                                                             | 104106112 naling114                |
| 4.1. Introduction                                                             | 104106112 naling114115             |
| <ul> <li>4.1. Introduction</li></ul>                                          | 104106112 naling114115116          |
| <ul> <li>4.1. Introduction</li></ul>                                          | 104106112 naling114115116118       |
| <ul> <li>4.1. Introduction</li></ul>                                          | 104106106112 naling114115116118122 |

| 4.3      | .3. COS treatment regulates the expression of signaling and defense-related genes                                                 | 125         |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4.3      | .4. Improvement of grain yield with application of COS in rice                                                                    | 126         |
| Chapte   | er IV: Major findings1                                                                                                            | L <b>28</b> |
| 5. Majo  | or findings reported in the thesis128-                                                                                            | 130         |
| Bibliogr | raphy131-                                                                                                                         | 148         |
| Annexu   | ire 1                                                                                                                             |             |
| Publica  | tions                                                                                                                             |             |
| Similari | ity report                                                                                                                        |             |
| List of  | figures                                                                                                                           |             |
| Fig 1.1  | A rhizosphere microbiome overview                                                                                                 | 2           |
| Fig 1.2  | Schematic representation of the direct effects by application of organic amendments to soil and plants                            | 6           |
| Fig 1.3  | Model for COS-induced activation of chitin receptors and subsequent COS-signaling pathway in plants                               |             |
| _        | Experimental flowchart for chitin substrate amendments to rice crop  Influence of alpha chitin on rice rhizosphere for bacteriome | .31         |
| Fig 3.2  | Influence of alpha chitin on the taxonomic composition of rice rhizosphere bacterial community                                    | 34          |
| Fig 3.3  | Heatmaps representing the core microbiome of alpha chitin on rice rhizosphere bacteriome                                          | 35          |
| Fig 3.4  | Influence of alpha chitin on rice rhizosphere mycobiome                                                                           |             |
|          | Influence of alpha chitin on the taxonomic composition rice rhizosphere fungal community                                          |             |
| Fig 3.6  | Heatmaps representing the core microbiome of alpha chitin on rice rhizosphere                                                     |             |
| Fig 3.7  | mycobiome Influence of alpha chitin on rice rhizosphere eukaryome                                                                 |             |
| -        | Influence of alpha chitin on the taxonomic composition rice rhizosphere eukaryote community                                       |             |
| Fig 3.9  | Heatmaps representing the core microbiome of alpha chitin on rice rhizosphere eukaryome                                           |             |
| Fig 3.10 | Influence of alpha chitin on rice rhizosphere                                                                                     |             |
|          | Influence of alpha chitin on the taxonomic composition of rice                                                                    |             |
| E: 2.43  | rhizosphere microbiome                                                                                                            |             |
| -        | 2 Heatmaps representing the core microbiome of alpha chitin on rice rhizosphere                                                   |             |
| _        | Influence of beta chitin on rice rhizosphere bacteriome                                                                           |             |
|          | community                                                                                                                         | .50         |
| Fig 3.15 | 5 Heatmaps representing the core microbiome of beta chitin on rice rhizosphere bacteriome                                         | 51          |

| Fig 3.16 | Influence of beta chitin on rice rhizosphere mycobiome                                     | 53  |
|----------|--------------------------------------------------------------------------------------------|-----|
| Fig 3.17 | Influence of beta chitin on the taxonomic composition of rice rhizosphere fungal community | 54  |
| Fig 3.18 | Heatmaps representing the core microbiome of beta chitin on rice rhizosphere               |     |
|          | mycobiome                                                                                  | 55  |
| Fig 3.19 | Influence of beta chitin on rice rhizosphere eukaryome                                     | 57  |
| Fig 3.20 | Influence of beta chitin on the taxonomic composition of rice rhizosphere                  |     |
|          | eukaryote community                                                                        | 58  |
| Fig 3.21 | Heatmaps representing the core microbiome of beta chitin on rice rhizosphere eukaryome     | 59  |
| Fig 3.22 | Influence of beta chitin on rice rhizosphere                                               | 61  |
| _        | Influence of beta chitin on the taxonomic composition of rice rhizosphere                  |     |
| Fig 3.24 | Heatmaps representing the core microbiome of beta-chitin on rice rhizosphere               | 63  |
| _        | Influence of chitosan on rice rhizosphere bacteriome                                       |     |
| _        | Influence of chitosan on the taxonomic composition of bacterial community of rice          |     |
| _        | rhizosphere                                                                                | .66 |
| Fig 3.27 | Heatmaps representing the core microbiome of chitosan on rice rhizosphere                  |     |
|          | bacteriome                                                                                 | 67  |
| Fig 3.28 | Influence of chitosan on rice rhizosphere mycobiome                                        | 69  |
| Fig 3.29 | Influence of chitosan on the taxonomic composition of rice rhizosphere fungal              |     |
|          | community                                                                                  | 70  |
| Fig 3.30 | Heatmaps representing the core microbiome of chitosan on rice rhizosphere                  |     |
|          | mycobiome                                                                                  | 71  |
| Fig 3.31 | Influence of chitosan on rice rhizosphere                                                  |     |
|          | eukaryome                                                                                  | .73 |
| Fig 3.32 | Influence of chitosan on the taxonomic composition of rice rhizosphere eukaryote           |     |
|          | community                                                                                  | 74  |
| Fig 3.33 | Heatmaps representing the core microbiome of chitosan on rice rhizosphere                  |     |
|          | eukaryome                                                                                  | 75  |
| Fig 3.34 | Influence of chitosan on rice rhizosphere microbiome                                       | 77  |
| Fig 3.35 | Influence of chitosan on the taxonomic composition of rhizosphere microbiome in            |     |
|          | rice                                                                                       | 78  |
| Fig 3.36 | Heatmaps representing the core microbiome of chitosan on rice rhizosphere                  | 79  |
| Fig 3.37 | Influence of plant developmental stages on rice rhizosphere microbiome                     | 81  |
| Fig 3.38 | Influence of plant developmental stages on taxonomic composition of rice rhizosphere       |     |
|          | microbiome                                                                                 | 82  |
| Fig 3.39 | Heatmaps representing core microbiome of rice rhizosphere                                  | 83  |
| Fig 3.40 | PERMANOVA output measuring the influence of different factors                              | 84  |
| Fig 3.41 | Important abundant features identified with alpha chitin amendment to rice                 |     |
|          | rhizosphere                                                                                | 93  |
| Fig 3.42 | Important abundant features identified with beta chitin amendment to rice                  |     |
|          | rhizosphere                                                                                | 94  |
| Fig 3.43 | Important abundant features identified with chitosan amendment to rice                     |     |
|          | rhizosnhere                                                                                | 9/1 |

| Fig 3.44 important abundant features identified with diverse soil amendments to rice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| rhizosphereFig 3.45 Important abundant features identified with different plant states in rice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95  |
| rhizosphererhizosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95  |
| Fig 3.46 Rice yield under various chitinous substrate amendments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Fig 3.47 Percentage improvement of rice yield under chitinous substrates amendments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| Fig 4.1 Time course reaction of SpChiD-Y28A with DP5 substrat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| Fig 4.2 Reaction conditions optimization to obtain higher TG products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Fig 4.3 Bulk preparation of COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Fig 4.4 Time response curves of H2O2 generation, PAL and POD elicitation by COS (DP5-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| up on root dip and foliar spray treatments of rice seedlings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111 |
| Fig 4.5 Expression of salicylic acid signaling pathway genes after COS and SA treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Fig 4.6 Expression of jasmonic acid signaling pathway genes after COS and SA treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| Fig 4.7 Expression of mitogen-activated protein kinase genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Fig 4.8 Expression of pathogenesis related genes after COS and SA treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Fig 4.9 Induction of chitinase, β-1,3-glucanase and peroxidase genes after COS and SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118 |
| Fig 4.10 Foliar treatment of purified COS on rice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119 |
| Fig 4.11 Rice grain yield after COS treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Fig 4.12 Percentage improvement of rice yield for COS treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121 |
| List of tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Table 1.1 Rice microbiome studies on diverse <i>Oryza</i> species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3   |
| Table 1.2 Major findings on the microbial communities associated with rice (Oryza sativa L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Table 1.3 Use of chitin and chitosan in agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7   |
| Table 1.4 Non-specific enzymes used in the production of COS with higher DP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12  |
| Table 1.5 Details of transglycosylating chitinases from different biological source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14  |
| Table 2.1 PCR conditions for 16SrRNA (bacteria), ITS (fungi) and 18S (eukarya)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| genes amplification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19  |
| Table 2.2: List of primers targeting for gene expression studies in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| rice plants treated with COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Table 3.1 ANOSIM differences between various factors of rice rhizosphere microbiome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86  |
| Table 3.2 ANOSIM differences between various factors in bipartite-combinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| (treatment X plant state) of rice rhizosphere microbiome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87  |
| Table 3.3 ANOSIM differences between various factors in bipartite-combinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| (treatment X dosage) of rice rhizosphere microbiome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89  |
| Table 3.4 ANOSIM differences between various factors Tripartite-combinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| (treatment X dosage X plant state) of rice rhizosphere microbiome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Table 3.5 Tabulated one way ANOVA values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Table 4.1 Summary of elicitation responses of rice treated with COS and SA<br>Table 4.2 One way ANOVA values (P and F-Stat values with degrees of freedom measured be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| and among treated samples) for harvested rice data samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| the control of the co |     |

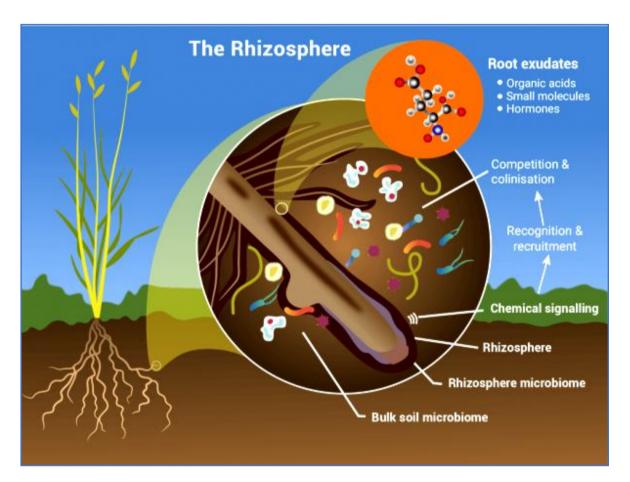
### Abbreviations and Symbols

| COS          | Chitooligosaccharides                                                         |
|--------------|-------------------------------------------------------------------------------|
| °C           | Degree celsius (centigrade)                                                   |
| μg           | Microgram                                                                     |
| μL           | Microlitre                                                                    |
| μM           | Micromolar                                                                    |
| ADW          | Autoclaved distilled water                                                    |
| ANOSIM       | Analysis of similarity                                                        |
| ANOVA        | Analysis of variance                                                          |
| AOS2         | Allene oxide synthase 2                                                       |
| AT           | Arabidopsis thaliana                                                          |
| BL 21        | BL21(DE3) is an <i>E. Coli</i> B strain and does not contain the ion protease |
| 2221         | and the outer membrane protease ompt                                          |
| BLAST        | Basic local alignment search tool                                             |
| BLASTN       | Nucleotide BLAST                                                              |
| bp           | Base pairs                                                                    |
| CEBIP        | Chitin elicitor-binding protein                                               |
| CERK         | Ceramide kinase                                                               |
| CFU          | Colony forming unit                                                           |
| DHB          | 2, ,4-Dihydroxybutyric acid                                                   |
| dNTPs        | Deoxynucleotide triphosphates                                                 |
| DP           | Degree of polymerization                                                      |
| DP5          | Pentamer                                                                      |
| DP6          | Hexamer                                                                       |
| DP7          | Heptamer                                                                      |
| DP8          | Octamer                                                                       |
| DW           | Distilled water                                                               |
| EC           |                                                                               |
| EDS1         | Enzyme commission number  Enhanced disease susceptibility 1                   |
| EE           | Expected error                                                                |
| FDR          | False-discovery rate                                                          |
|              | Gram                                                                          |
| g            | Gravity (relative centrifugal force)                                          |
| g<br>GH      | Glycosyl hydrolase                                                            |
| GlcNAc       | N-acetyl-D-glucosamine;                                                       |
| GPS          | Global positioning system                                                     |
| h            | Hour                                                                          |
| His- tag     | Histidine tag                                                                 |
| HPLC         | High-performance liquid chromatography                                        |
| HPTLC        | High-performance thin layer chromatography                                    |
| ICS1         | Isochorismate synthase 1                                                      |
|              | •                                                                             |
| ITS          | Internal transcribed spacer                                                   |
| IPTG         | Isopropyl-β-D-1-thiogalactopyranoside;                                        |
| JA           | Jasmonic acid                                                                 |
| JAMYB        | JA-inducible Myb transcription factor                                         |
| JMT1         | JA carboxyl methyltransferase 1                                               |
| kb           | Kilobases                                                                     |
| kV           | Kilovolt                                                                      |
| L            | Litre                                                                         |
| LDA          | Linear discriminant analysis                                                  |
| LEfSe        | Linear discriminant analysis effect size                                      |
| LYK4         | Lysm-containing receptor-like kinase                                          |
| LYP          | Lysin motif containing protein family                                         |
| M            | Molar                                                                         |
| MALDI-TOF MS | Matrix assisted laser desorption ionization-time of flight mass               |
|              | spectrometry                                                                  |
| MAMP         | Microbe-associated molecular pattern                                          |
| MAPK         | Mitogen-activated protein kinase                                              |

| MDA         | Maan daaraaga aaguraay                                          |
|-------------|-----------------------------------------------------------------|
|             | Mean decrease accuracy                                          |
| mg<br>Mi-   | Milligram Million hectares                                      |
| Mha         |                                                                 |
| min         | Minute                                                          |
| mL          | Millilitre                                                      |
| mM          | Millimolar                                                      |
| mPNA        | Mitochondria peptide nucleic acid                               |
| MS          | Murashige and Skoog                                             |
| Mt          | Million tonnes                                                  |
| MW          | Molecular weight                                                |
| NCBI        | National Center for Biotechnology Information                   |
| ng          | Nanogram                                                        |
| Ni-NTA      | Nickel-nitrilotriacetic acid                                    |
| NPR1        | Nonexpressor of PR genes1                                       |
| NRE         | Non-rhizobial endophyte                                         |
| OOB         | Out-of-bag                                                      |
| Os          | Oryza sativa                                                    |
| OTU         | Operational taxonomic unit                                      |
| PAD4        | Phytoalexin deficient 4                                         |
| PAL         | Phenylalanine ammonia lyase                                     |
| PAMP        | Pathogen-associated molecular pattern                           |
|             |                                                                 |
| PCA         | Principal component analysis                                    |
| PCoA        | Principal coordinate analysis                                   |
| PCR         | Polymerase chain reaction                                       |
| PERMANOVA   | Permutational multivariate analysis of variance                 |
| pET- 22b(+) | Pelb sequence for periplasmic localization Bacterial vector for |
|             | expressing proteins in the periplasm                            |
| PGPR        | Plant growth promoting rhizobacteria                            |
| PNA         | Peptide nucleic acid                                            |
| POD         | Peroxidase                                                      |
| pPNA        | Plastid peptide nucleic acid                                    |
| PR          | Pathogenesis-related                                            |
| PRR         | Pattern recognition receptor                                    |
| PTI         | Pattern-triggered immunity                                      |
| qRT-PCR     | Quantitative real-time PCR                                      |
| RF          | Random forest                                                   |
| ROS         | Reactive oxygen species                                         |
| rpm         | Rotations per minute                                            |
| rRNA        | Ribosomal RNA                                                   |
| S           | Second                                                          |
| SA          | Salicylic acid                                                  |
|             |                                                                 |
| SAR         | Systemic acquired resistance                                    |
| SDS page    | Sodium dodecyl-sulfate polyacrylamide gel electrophoresis       |
| sp.         | Species Chiri                                                   |
| SpChiD      | Chitinase D from Serratia proteamaculans                        |
| SpChiD-Y28A | Y28A variant of spchid                                          |
| TG          | Transglycosylation                                              |
| TLC         | Thin Layer chromatography                                       |
| TMV         | Tobacco mosaic virus                                            |
| var.        | Variety                                                         |
| VS.         | Verses                                                          |
| WRKY        | WRKY transcription factors                                      |
| zOTU        | Zero-radius operational taxonomic unit                          |
|             |                                                                 |
|             |                                                                 |

# **Chapter - I**

Introduction


#### 1.1 The plant rhizosphere

Plant roots and soil microbes interact intensively in the rhizosphere zone, the soil that is immediately surrounding the roots. The rhizosphere is the interface between plant roots and soil (Fig 1.1), where interactions between microorganisms and invertebrates influence a variety of biological and geochemical processes, which often contribute to the overall performance of the plant. Rhizosphere is home to all of the bacteria that are essential to the terrestrial biosphere. Rhizosphere separates a plant root system from the surrounding soil. With 10<sup>11</sup> microbial cells per gram of root, and 10<sup>12</sup> functional genes per gram of soil, it is possibly the most complex terrestrial microbial habitat on earth. The rhizosphere microbiome, which harbors plant-specific microbial communities, benefits due to rhizodeposition. The composition of the rhizosphere microbiome, which includes species richness and abundance, is, thus, frequently determined by the chemistry of root exudates. The structural and functional characteristics of the rhizosphere microbiome have a beneficial effect on plant growth and fitness. To take advantage of the dynamic rhizosphere, an integrated strategy based on multi-omics (meta-genomics, proteomics, and metabolomics) that reveals microbial activities including structure, function, and quorum sensing is required.

The rhizosphere is also a complex habitat. Understanding the ecology and evolution of rhizosphere is essential for increasing plant production and enhancing ecosystem function (Philippot et al. 2013). Integrating reductionist and systems-based techniques in both agricultural and natural settings would yield unique insights into the key factors and evolutionary processes that drive the rhizosphere microbiome. It also has extensive cross-kingdom biological interaction and geochemical response. Plant nutrient uptake, root exudates, C input hotspots, microbial community structure and abundance, plant pathogen defense, soil permeability changes, geochemical microenvironments, and fungal interaction drive these activities (Edwards et al., 2019; Edwards et al., 2015; Lundberg et al., 2012).

Each plant species exudes a unique mixture of carbohydrates, proteins, enzymes, organic acids, hormones, and other biological components that trigger the soil bacteria to migrate to root vicinity (Hassani et al. 2020). The beneficial bacteria defend plants from infections, increase the availability of nutrients, and produce organic substances for growth, health, and vitality. Aggregation, aeration, water infiltration, and water-holding capacity are

among the benefits to the plant due to the increased microbial activity in the rhizosphere. Plant root exudates provide energy to microorganisms to extract minerals and trace elements. The plants, in turn, pay a carbon fee for soil organism services for receiving nutrients. Plant diversity increases microbial diversity and soil ecosystem strength. Natural systems are effective and healthy because of microbial diversity and diverse compared monoculture systems like crop land (Lemanceau et al., 2017; Özkurt et al., 2020; Sharaf et al., 2019).



**Fig 1.1:** A rhizosphere microbiome overview. The rhizosphere, the zone around a plant's roots, affects both the plant and the soil health. It also has extensive cross-kingdom biological interaction and geochemical response. Plant nutrient uptake, root exudates, C input hotspots, microbial community structure and abundance, plant pathogen defense, soil permeability changes, geochemical microenvironments, and fungal interaction drive these activities (Source: Moran & McGrath, 2021)

#### 1.2. Rice microbiome

The plant microbiome has the potential to enhance crop yield also can contribute to sustainable agriculture. Due to the relative ease of research, non-crop species have been used for plant microbiome studies, despite the need for agriculturally required microbiomes. To make plant microbiomes useful for agriculture, however, a model based on agricultural plants is essential. To elevate our understanding of microbiomes to the level

of ecosystems, we need to also consider features of microbiomes not addressed by bacteria-focused studies. In addition to the microbial composition, the functional characteristics of microbiomes over time and geography will aid us in choosing the proper microorganisms by delivering stage-specific capabilities that can assist crop plants. Fungi and protist communities, which have received less attention, can provide novel insights into the functional dynamics and composition of each community, such as interrelationships between kingdoms and multitrophic interactions. An overview of the research reports on rice microbiome can be seen in Table 1.1 & 1.2.

| S.No | Country      | Species                                                         | Plant<br>part         | Reference                       |
|------|--------------|-----------------------------------------------------------------|-----------------------|---------------------------------|
| 1    | USA          | O. sativa, O. glaberrima, O. japonica                           | Root                  | Edwards et al., 2015            |
| 2    | USA          | O. sativa                                                       | Seed                  | Eyre et al., 2019               |
| 3    | USA          | O. sativa                                                       | Root                  | Santos-Medellín et al.,<br>2021 |
| 4    | Philippines  | Whole genome project of 3000 rice genotypes – <i>O. sativa</i>  | Leaf                  | Roman-Reyna et al.,<br>2020     |
| 5    | China        | O. japonica                                                     | Root                  | Xiong et al., 2021              |
| 6    | Japan        | O. sativa                                                       | Root                  | Ikeda et al., 2014              |
| 7    | India        | O. sativa                                                       | Root                  | Thapa et al., 2018              |
| 8    | India        | O. sativa                                                       | Root                  | Sahu et al., 2022               |
| 9    | India        | O. sativa                                                       | seed                  | Raj et al., 2019                |
| 10   | USA          | O. sativa                                                       | seed                  | Eyre et al., 2019               |
| 11   | China        | O. barthii, O. nivara, O. ruffipogon, O. sativa & O. glaberrima | root                  | Tian et al., 2021               |
| 12   | India        | Aromatic and non aromatic varieties of <i>O. sativa</i>         | leaf                  | Kumar et al., 2021              |
| 13   | Japan        | O. sativa                                                       | root                  | Matsushima et al., 2021         |
| 14   | India        | Black rice varieties of <i>O. sativa</i>                        | Stems<br>and<br>roots | Singha et al., 2021             |
| 15   | China        | O. sativa                                                       | leaf                  | Yang et al., 2020               |
| 16   | Ghana        | O. sativa                                                       | root                  | Kanasugi et al., 2020           |
| 17   | China        | O. sativa                                                       | root                  | Wang et al., 2022               |
| 18   | China        | O. sativa (transgenic rice)                                     | root                  | J. Wang et al., 2019            |
| 19   | USA          | O. sativa (62 RILs population)                                  | root                  | Fernández-baca et al.,<br>2021  |
| 20   | USA          | O. japonica                                                     | Seed,<br>root         | M. Wang et al., 2020            |
| 21   | Burkina Faso | O. sativa                                                       | root                  | Barro et al., 2022              |
| 22   | Vietnam      | O. sativa                                                       | root                  | Masson et al., 2020             |

Table 1.1: Rice microbiome studies on diverse Oryza species

| Fraction     | Major finding                                            | Reference                |
|--------------|----------------------------------------------------------|--------------------------|
| Bulk soil    | Effects of chemical factors (oxygen status and           | Noll et al., 2005        |
|              | inorganic matters) and cultivation practices (crop       | Liu et al., 2016         |
|              | rotation and fertilization regimes) on soil microbial    | Wang et al., 2017        |
|              | communities                                              | Jiang et al., 2016       |
|              |                                                          | Yuan et al., 2019        |
|              |                                                          | Sun et al., 2018         |
| Rhizosphere  | Rhizosphere effects in terms of microbial                | Hussain et al., 2012     |
|              | communities                                              |                          |
|              | Effects of rice development and genotypes on soil        | Hussain et al., 2011     |
|              | microbial communities                                    | Shenton et al., 2016     |
|              | Biocontrol activities of rhizosphere bacteria against    | Spence et al., 2014      |
|              | pathogens                                                |                          |
| Phyllosphere | Effects of abiotic (geographic locations, atmosphere     | Ren et al., 2014         |
|              | and soil conditions, and fertilization regimes) and      | Venkatachalam et al.,    |
|              | biotic factors (rice genotypes) on phyllosphere          | 2016                     |
|              | microbial communities                                    |                          |
|              | Structure, metabolic profiles, and host factors shaping  | Roman-Reyna et al.,      |
|              | phyllosphere bacterial communities                       | 2019                     |
| Endosphere   | Effects of abiotic (graphical location, soil conditions, | Edwards et al., 2015     |
|              | and cultivation practices) and biotic factors (rice      | Ikeda et al., 2014       |
|              | genotypes and root compartment) on microbial             | Long and Yao., 2019      |
|              | communities                                              | Santos-Medellín et al.,  |
|              |                                                          | 2017                     |
|              |                                                          | Bertani et al., 2016     |
|              |                                                          | Fisher and Petrini. 1992 |
|              | Effects of a host genetic factor on the assembly and     | Zhang et al., 2019       |
|              | functions of root bacterial microbiomes                  |                          |
| Seed         | Effects of seed compartments on composition and          | Eyre et al., 2019        |
|              | diversity of seed microbiota                             |                          |
|              | Inheritance of seed bacterial communities                | Hardoimet al., 2012      |
|              | Role of seed as a microbial pool of endophytic           | Kagaet al., 2009         |
|              | microbial communities of mature rice plants              | Wang et al., 2016        |
| Community    | Community dynamics of belowground bacterial              | Edwards et al., 2018     |
| dynamics     | communities (rhizosphere, rhizoplane, and root           |                          |
|              | endosphere) during rice development                      |                          |
| Functional   | Functional characteristic (metabolic make-up) of         | Kniefet al., 2012        |
| prediction   | bacterial communities associated with phyllosphere,      | Okubo et al., 2014       |
| _            | rhizosphere, and root endosphere                         | Sessitschet al., 2012    |

**Table 1.2:** Major findings on the microbial communities associated with rice (*Oryza sativa* L.) (Source: Kim & Lee, 2019)

#### 1.3. Importance of organic soil amendments

Application of external organic inputs to soils can be considered as one of the most ancient agricultural practices. The addition of different organic substances to agricultural soils has proved beneficial to plants and soils, in restoring soil characteristics and enhancing soil quality, and in some instances in providing plants with favorable effects (Duddigan et al. 2022). Soil amendments are used to improve the structure and biological function of soil. The physical and biological features of agricultural soils are negatively impacted by the cultivation practices. Several soil supplements, including biochar, fly ash, and compost, have been utilized to mitigate the impact of fertilizers on soil (Jin et al., 2022). Two types of soil amendments are used to improve soil fertility and stabilize site conditions: organic and inorganic supplements. Organic amendments consist of organic materials/molecules obtained from biomass or live organisms. Compost, wood chips, charcoal, animal manure, agriculture waste such as straw and husk, marine waste such as chitin are typical components of organic amendments. These substances are exceptionally rich in organic matter and macro- and micro elements, which enhance the fertility of soils by ameliorating micro-climatic conditions and may also serve as growth substrates for microorganisms (Bowles et al., 2014; Bastida et al., 2016).

Globally there is an increased interest in the use of organic matter as the primary substrate for agricultural crops, perhaps to encourage beneficial microbes. These organic inputs feed the soil with energy and nutrients, resulting in an environment that is conducive to the survival of crops and the multiplication of microorganisms (Mitter et al., 2013). In addition, the utilization of organic matter, rather than its disposal, is favored since it adds value to the market and recycles back into the soil, resulting in a more sustainable agricultural system (Wang et al., 2012). While a variety of organic materials are available, the efficacy of each of these materials varies, maybe in part because of their chemical contents, kinds, origin, and duration of decomposition. Consequently, the outcomes of these natural products vary from location to location and from field to field. Common examples include the release of pathogen-toxic chemicals, the modification of soil physicochemical properties, the enhancement of microbial activity, and the induction of host resistance against a broad spectrum of soil borne diseases (Fig 1.2).

Moreover, soil is indistinct aspect of the ecosystem which may govern the plants productivity. For sustainable agriculture, it is necessary to optimize the insufficient supply of ready-made organics. Fertile soils promote higher quality crop production, which is important to eradicate world hunger. In addition, fertile soils provide essential nutrients for

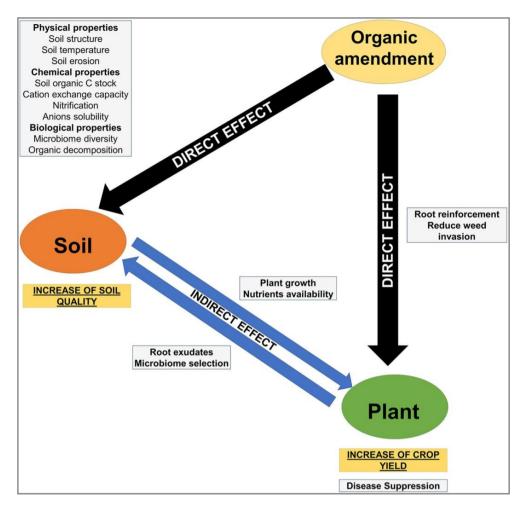



Fig 1.2: Schematic representation of the direct effects by application of organic amendments to soil and plants (black arrows). Indirect effects after organic amendment among soil and plants are also indicated (blue arrows). Beneficial properties resulting from each interaction is boxed in grey. The general effect observed on soil and plants is boxed in yellow (Source: Vida et al., 2020).

plant growth, resulting in the production of nutrient-rich food that meets all human health requirements. Effective management of soil fertility with organic amendments can increase vegetation cover, decrease soil, water, and air pollution, and regulate the availability of water resources (Chaker et al. 2023). This can be enhanced by both organic and inorganic soil fertilizers.

## 1.3. Chitinous substrate amendments acts as a bio-stimulant, inhibits pathogens, and stimulates plant growth

Fungal cell walls, crustacean and insect exoskeletons are rich sources of a crystalline, linear and unbranched homopolymer of  $\beta 1$ , 4-linked N -acetyl- D -glucosamine (GlcNAc) called as chitin. In nature, chitin exists in two forms defined in terms of arrangement of individual polymeric chains in antiparallel (Alpha chitin) or parallel fashion (Beta chitin). Chitin is a highly versatile and promising biopolymer with a great variety of industrial,

medical, agricultural and commercial uses. Chitin is the second most prevalent polysaccharide after cellulose; it is rich in nitrogen, calcium, magnesium, and other minerals needed for healthy microbial activity (Ravi Kumar, 2000). Chitin provides nitrogen to soil microorganisms and plants.

Chitin and its derivatives are biologically active during their interaction with plants and microorganisms (Goosen 2020). They enhance or induce natural defense mechanisms in plants and are recognized as plant growth regulators, growth stimulants, anti-stress agents, and elicitors for the production of secondary metabolites (El Hadrami et al., 2010). Application of chitin can benefit at least in four different ways viz., 1. Protect plants from pests and diseases before and after harvest, 2. Enhance the activity of antagonistic microorganisms for biological control, 3. Enhance the symbiotic plant-microorganism interactions, and 4. Regulate plant growth and development. Chitin and its derivatives are effective as fertilizers, soil conditioning agents, plant disease control agents, anti-transpirants, fruit retardants, and seed coatings (Shamshina et al. 2020) (Table 1.3).

| Use                                   | Crop                     | Properties                                  | Compound           | Reference                                                                    |
|---------------------------------------|--------------------------|---------------------------------------------|--------------------|------------------------------------------------------------------------------|
| Biocontrol action<br>enhancer         | Peanut<br>Apple          | Stimulator substrate for hydrolyses enzymes | Chitin             | Chien et al., 2007;<br>Thommohaway et al.,<br>2007                           |
| Protection after harvest              | Mango<br>Guava<br>Tomato | Antimicrobial                               | Chitosan           | Alimunair et al.,<br>1994.                                                   |
| Retardation of fruit ripening process | Papaya                   | Semi permeable film formation               | Chitosan           | Backman et al., 2005                                                         |
| Nematocidal control                   | Tomato                   | Increases soil chitinolytic microbiota      | Chitin             | Jin et al., 2005                                                             |
| Mycorrhizal symbiosis stimulator      | Tomato                   | Inducer of recognition mechanisms           | Chitin             | Iglesias et al., 1994                                                        |
| Defensive enzymes stimulation         | Rice<br>Tobacco<br>Pea   | Inducer                                     | Chitin<br>Chitosan | Rodrieuez et al.,<br>2007; Falcon et al.,<br>2002; Hadwiger et<br>al., 1994. |
| Defensive enzymes stimulation         | Pepper                   | Inducer                                     | Chitosan           | Chookhongkha et al.<br>2012                                                  |

Table 1.3: Use of Chitin and chitosan in agriculture

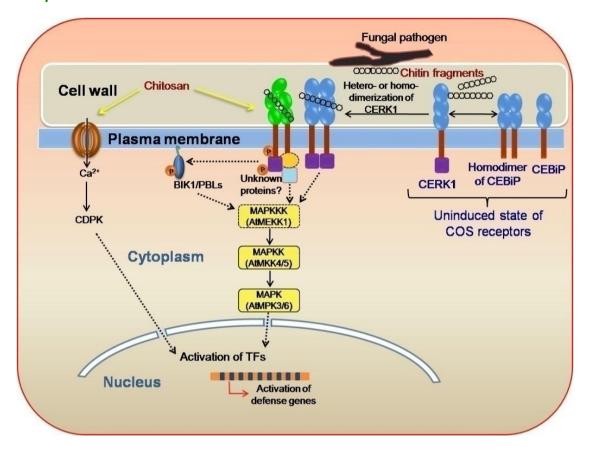
Chitin undergoes depolymerization, when applied to soil, due to the chitinase activity in the soil which is linked to the presence of specific microflora. Chitin is also the principal source of carbon and nitrogen for chitinolytic organisms, which are largely marine and soil bacteria belonging to the genera of the Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes, as well as soil fungi. Chitin has also been used to enhance the efficiency of natural biological controls. Many microorganisms acting as antagonists use chitinases against plant pests and diseases (e.g., *Trichoderma* sp.). Impact of chitin amendment on actinomycetes and the tuber scab infection in potato by *Streptomyces scabies*, resulted in

9.5% disease reduction (Sharp 2013). A few months later, soil actinomycetes increased 24-30 times in chitin-amended soil and also found that some actinomycetes (i.e., *Micromonospora*) had disappeared, while others including *S. scabies* were not much detected.

Chitin and its derivatives can improve legume-Rhizobium symbiosis. Nodulation factors released by *Rhizobium* sp. are primarily lipid chitin oligosaccharides consisting of 3-to-5-units of glucosamine residues attached to fatty acid. Therefore, chitin can be provided as precursor substrate for these metabolites. Other types of interactions (e.g., mycorrhization) have benefited from adding chitin derivatives, as in tomato cultivation (Amerany et al., 2020).

Insolouble chitin can be deacetylated to more soluble biopolymer chitosans ether by enzymatic or chemical reactions, soluble in dilute acids like acetic acid and formic acid. Chitosan is a recognized antibacterial biopolymer (Kikuyama & Shibuya, 1997) and is also a source of nutrients for insects, bacteria and fungi living in the soil. Chitosan, as a soil supplement, controls Fusarium wilt in several plants (Lafontaine & Benhamou, 1996). At optimal concentration, chitosan delays disease development by reducing plant wilting (Rabea et al., 2003). Chitosan-treated soil completely reduced Aspergillus flavus in fieldgrown corn and peanut (El Ghaouth et al., 1992). Chitosan boosts plant defenses, reducing soil-borne diseases. Further, this biopolymer encourages beneficial soil microbes like Bacillus, Pseudomonas, actinomycetes, mycorrhiza, and rhizobacteria (Bell et al., 1998; Murphy & Cassells, 2000). This disrupts rhizosphere microbial balance, there by not favoring plant diseases. Parasitism, antibiosis, and induced resistance help beneficial organisms to outcompete pathogenic microbes (Daayf et al., 2003; Uppal et al., 2008). Assessing the changes due to the soil amendment with chitinous substrates on the rhizosphere microbiome (bacteria, fungi and eukarya) of the rice, will help to understand the contribution of such soil amendments in enhancing the microbial community in the rhizosphere.

## 1.4. Chitooligosaccharides act as elicitors and induce immune response in plants


Plants interact with a wide range of pathogens and have evolved mechanisms to recognize pathogen-derived molecules to elicit induced resistance. Unlike vertebrate animals, plants rely solely on innate immunity to ward off pathogenic microbes. The plants are able to sense evolutionarily conserved general elicitors of pathogens called pathogen-associated

molecular patterns (PAMPs), and activate immune responses, a process that is known as pathogen triggered immunity (PTI). Chitooligosaccharides (COS), released during plant fungal interaction, elicit plant defense upon recognition by their cognate receptors.

#### 1.4.1. Mechanism of COS-induced defense in plants

Lysine motif (LysM) receptor-like kinases (LYKs) or LysM RLPs in plants (LYPs) recognize COS as PAMPs (Fig 1.3). Rice chitin elicitor binding protein (CEBiP) was the first COS receptor (Kaku et al., 2006) identified. Subsequently, rice chitin elicitor receptor kinase 1 (OsCERK1; a LYK), OsLYP4, and OsLYP6 were discovered and their roles in chitin perception were revealed (Liu et al. 2012; Shimizu et al. 2010). While AtCERK1 was required for chitin-triggered immunity in Arabidopsis thaliana (Miya et al. 2007; Wan et al. 2008), AtLYK4 played an auxiliary function (Wan et al., 2012). OsCEBiP homologs are found in maize, sorghum, and rice (Fliegmann et al., 2011). In barley, a homolog was functionally proven to contribute to fungal resistance (Tanaka et al., 2010). Although, rice and Arabidopsis perceive chitin similarly, but their downstream signaling mechanisms differ (Shinya et al., 2012); (Fig 1.3). OsCEBiP and OsCERK1 form hetero-oligomer complexes in rice with chitin (Shimizu et al., 2010). In Arabidopsis, AtCERK1 homodimerization promotes downstream signaling (Liu et al., 2012b). Chitin oligomers (DP1-47 or 8) stabilize the AtCERK1 dimer as bivalent ligands (Liu et al., 2012b; Willmann & Nürnberger 2012), indicating that longer chain COS can activate innate immunity. AtCEBiP, an Arabidopsis homolog of OsCEBiP, is biochemically functional but not necessary for chitin-induced defensive signaling (Shinya et al., 2012). Rice and Arabidopsis differ in pathogen-signal perception because to monocot-dicot distinctions (Ortmann & Moerschbacher 2006; Paulert et al., 2010; Yamada et al., 2017).

Research showed that LYKs and LYPs perceive chitin oligomers, but the intracellular transmission signal(s) are yet to be identified (Fig 1.3). The kinase activity of *At*MPK3 and *At*MPK6 was strongly induced after chitin perception (Wan et al., 2004). Pharmacological inhibitors validated protein phosphatase involvement in chitin-mediated signaling (Zhang et al., 2002). Other MAPKs, substrates, and protein phosphatases in plant chitin-mediated defensive responses are unknown. COS-specific transcription factors are yet to be identified. Chitin treatment affected the expression of 118 defense-related transcription factor genes in *Arabidopsis*, including WRKYs, AP2-ERFs, MYBs, and zinc finger proteins (Libault et al., 2007; Miya et al., 2007). Ethylene-responsive element-binding factors were crucial to plant chitin-induced innate immunity (Son et al. 2012).



**Fig 1.3: Model for COS-induced activation of chitin receptors and subsequent COS-signaling pathway in plants.** During fungal infection, COS released from the fungal cell wall binds to membrane receptors: *At*CERK1 in Arabidopsis and *Os*CEBiP in rice harboring LysM domains. Binding of the ligands induces homodimerization of *At*CERK1 in Arabidopsis and hetero-oligomerization of *Os*CEBiP and *Os*CERK1 by interaction of their ectodomain in rice. The latter could form a protein complex by yet unknown proteins. Cytoplasmic receptor-like kinases, such as BIK1, could be a partner of the complex. Upon phosphorylation the BIK1 may get detached from the complex and activate other cytoplasmic proteins in a way similar to the flg22-mediated signaling (Zhang & Zhou, 2010). Activation of the complex leads to activation of a MAPK cascade which in turn phosphorylate transcription factors that regulate chitin-responsive genes. Partially deacetylated chitosan can bind to *At*CERK1 and activate the defense genes in addition to their effect on membrane destabilization. Dotted arrow and dotted circle/square denote unknown physical interaction and unidentified hypothetical molecules, respectively. Abbreviations: CDPK, calcium-dependent protein kinase; BIK1, Botrytis-induced kinase 1. (Source: Das et al., 2015)

#### 1.5. COS production

Conventionally, the starting material for the production of COS is chitin or chitosan or fungal cell wall (Krairak & Arttisong 2007). It is attractive to use the renewable polysaccharide like chitin to generate COS to promote immunity and utilize for large-scale applications in agriculture. At present, lack of efficient large-scale production processes, high chemical synthesis costs, and lack of well-defined COS compositions limit topical application of COS. Currently COS is produced chemically. Enzymatic methods have also been used for COS production through a synthetic biology route.

#### 1.5.1. Chemical methods

Mostly chemical methods are employed for COS production at industrial level. Acid hydrolysis was the most used industrial process for COS hydrolysis of chitin or chitosan (Thomas et al., 2015). Column chromatography fractionated polymeric chitin or chitosan after partial hydrolysis with strong hydrochloric acid. Acid hydrolysis yields lower DP COS, mostly DP1-DP4 (Jeon et al., 2000). Defaye et al., (1994) found that fluorohydrolysis of chitin in anhydrous hydrogen fluoride yields quantitative COS (DP 2 to 9) with DP2 and DP4 as main products. Mild acid degradation and sonolysis under ultrasound irradiation may generate COS with a high DP (Takahashi et al., 1995). Chemical hydrolysis provides more N-acetyl glucosamine than higher chain length COS (Uchida et al., 1989). Most COS synth-esis methods use GlcNAc or GlcN to produce homooligomers. Trombotto et al., (2008) prepared COS with different DAs from chitosan and concentrated HCl (12M) under appropriate hydrolysis conditions. With hydrolysate pH increased to 9, high DP (>15) COS precipitated. First ultrafiltration, then precipitation in pure ethanol reduced the yeild of low DP (<3) COS.

In the second phase, partial N-acetylation of the GlcN oligomer mixture in hydro-alcoholic solution generated DAs from 25 to 90%. This is the best regulated acetylation of chitosan oligomers. Low yields and time-consuming purification make such approaches unsuitable for large-scale and prolonged COS synthesis. The process may potentially yield hazardous chemicals, causing environmental pollution. Chemical synthesis of COS yields pure molecules, although most procedures are time-consuming, need a lot of organic solvents, and produce only homo-oligomers (Aam et al., (2010); Kuyama et al., (1993) synthesized fully deacetylated COS DP20 from GlcN monomers using phthalimido as the amino protecting group. The synthesis of chitotetraose and chitohexaose from GlcN monomers using dimethylmaleoyl as an amino protective group yielded completely N-acetylated COS (Aly et al., 2001).

#### 1.5.2. Enzymatic methods

Topical application of COS for plant protection has not been realized due to the unavailability of a safer and economical procedure and a precise alternative bioprocess for large-scale production of high DP COS. Large-scale COS production would allow the use of synthetic COS of specified length and sequence as pathogen-associated molecular patterns (PAMPs) to stimulate plant immunity and growth. Enzyme-based approach can manufacture COS with appropriate DP and PA (pattern of acetylation) for an efficient and

environmentally beneficial process. Chitinases (endochitinases and exochitinases), chitosanases, cellulases, lipases, pectinases, and lysozyme are used as biocatalysts (Table 1.4). The cost and availability of chitinases/chitosanases have limited the manufacturing of low DP COS, forcing the adoption of non-specific biocatalysts.

COS was made from crystalline alpha chitin and chitosan using crude *Lecanicillium* fungicola enzymes. Slightly acidified reaction media promoted the hydrolysis due to protonation of the amino groups. The enhanced electrostatic repulsion between these amino groups exposed the  $\beta$ -1, 4-glycosidic linkage of chitin, making it more vulnerable to enzyme recognition (Ramírez-Coutiño et al., 2006). A polygalacturonase-active *Aspergillus niger* pectinase isozyme generated COS with DP2-DP6 (Kittur et al., 2005). Endo-mode Pectinex produced 11 DP COS (Cabrera & Custem, 2005). (Zhang et al., 1999) reported COS with DP3-DP17 released by chitosan treated with cellulase,  $\alpha$ -amylase, and proteinase. A commercial lipase degraded chitosan by cleaving glycosidic linkages in both endo and exo-mode, producing NAG and COS with DP-6 (Lee et al., 2008).

| S.No | Enzyme                | Source                               | Substrate                                | Products<br>(length<br>in DP) | References                       |
|------|-----------------------|--------------------------------------|------------------------------------------|-------------------------------|----------------------------------|
| 1    | Crude enzyme          | Lecanicillium<br>fungicola           | Crystalline α-<br>chitin and<br>chitosan | NK                            | (Ramírez-Coutiño<br>et al. 2006) |
| 2    | Pectinase isozyme     | Aspergillus niger                    | Low molecular weight chitosan            | 2–6                           | (Kittur et al., 2003)            |
| 3    | Pectinex Ultra<br>Spl | Novozymes A/S,<br>Bagsvaerd, Denmark | Chitosan                                 | Up to 11                      | (Cabrera & Van<br>Cutsem 2005;   |
| 4    | Complex enzyme        | Oriental reagent Co.,<br>China       | Chitosan                                 | 3-17                          | (Zhang et al. 1999)              |
| 5    | Lipase                | Novozymes corp.,<br>China            | chitosan                                 | >=6                           | (Lee et al., 2008)               |
| 6    | Pronase               | Streptomyces griseus                 | Chitosan                                 | 2-6                           | (Vishu Kumar et                  |
| 7    | Papain                | Sigma, USA                           | Chitosan                                 | 2-6                           | al. 2005)                        |

NK-Not known

**Table 1.4:** Non-specific enzymes used in the production of COS with higher DP.

The specificity of chitosan-degrading enzymes has been studied conventionally by extensive enzymatic degradation of polymer, and subsequent isolation and characterization of the resulting oligomers. Enzymatic degradation of polymer and separation and characterization of oligomers have been used to study chitosan-degrading enzyme specificity. The degradation reaction kinetics changed the product profiles during hydrolysis (Brurberg et al., 1996). Reactions have multiphasic kinetics because enzymes

have variable binding affinities for substrate sequences. The product mixtures at the conclusion of each phase differ greatly. Since most enzymes produce low DP COS mixtures at equilibrium, this is not conducive for commercial process development. Thus, neither chemical or biotechnological oligomerization nor physical, chemical, or enzymatical partial depolymerization can generate a variety of specified higher DP, bioactive COS needed for agricultural applications.

#### 1.5.3. Transglycosylation (TG)

Due to the complexity of selective protection and manipulation of monosaccharide donors and acceptors, conventional chemical synthetic methods often fail to produce large amounts of oligosaccharides rapidly. Retaining glycosidases in transglycosylation (TG) processes can synthesise the glycosidic bond regioselectively and stereoselectively. Hydrolytic enzymes are run in reverse using activated glycosyl donors and acceptor alcohols, According to the mechanism, a glycosyl enzyme hydrolyzes a donor sugar with a retaining glycosidase. When this intermediate interacts with water, normal hydrolysis takes place. Glycosyl transfer, or TG, will occur if the glycosyl enzyme is blocked by an alcohol such a sugar, allowing for the formation of a new glycosidic bond while maintaining the stereochemistry (Williams & Withers 2000). Improvements in yields have been observed at reduced water concentration, performing TG reactions at higher concentrations and addition of surplus acceptor molecules.

Some glycosyl hydrolase (GH) family 18 chitinases catalyze TG, in addition to hydrolysis of chitin substrates. Since TG is kinetically regulated, efficient TG requires an enzyme with an active site layout that disfavors hydrolytic water molecule positioning and/or encourages carbohydrate molecule binding through strong contacts in positive subsites (Williams & Withers 2000). The fundamental issue with the GH that shows intrinsic TG activity of chitinase is that the outcome of the TG reaction is also serves as a substrate for the enzyme, which can reduce the yield of long chain COS. To improve TG activity and synthesize long chain COS with great biological potential, hydrolytic activity must be reduced. Chitinases can be mutated to lower hydrolytic activity. Enzyme changes should reduce hydrolytic activity and increase glycosyl donor binding in glycon subsites (Jahn et al. 2003).

Glucanase, amylase, cellulase, xylosidase, levan sucrase, dextran sucrase, and other GH enzymes that break down carbohydrates have both hydrolytic and TG activity. (Kim et al.

2000; Muzard et al. 2009). Bacteria, fungi, cycads, and plants have GH 18 family chitinases with TG (Neeraja et al., 2010; Ohnuma et al. 2011b); Purushotham & Podile 2012). Human macrophage chitotriosidase generated TG products up to DP 6–9 from DP5 (Aguilera et al. 2003). Table 1.5 List's longer-chain COS-producing TG chitinases.

| Enzyme                                   | Source organism                                  | Maximum<br>length of<br>TG<br>products<br>obtained | Duration<br>of<br>formation<br>(min) | References                    |
|------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------|-------------------------------|
| CrChi-A                                  | Cycas revolute                                   | DP9                                                | 30                                   | (Taira et al. 2009)           |
| NtChiV                                   | Nicotiana tabacum                                | DP8                                                | 10                                   | (Ohnuma et al., 2011a)        |
| AtChiC                                   | Arabidopsis thaliana                             | DP8                                                | 10                                   | (Ohnuma et al,. 2011b)        |
| AcMNPV chitinase                         | Autographa californica multiple polyhedran virus | DP8                                                | 10                                   | (Fukamizo et al, 2011)        |
| <i>Sp</i> ChiD                           | Serratia proteamaculans 568                      | DP13                                               | 45                                   | (Purushotham and Podile 2012) |
| Chitinase A                              | Vibrio carchariae                                | DP6,DP8                                            | 30                                   | (Suginta et al. 2005)         |
| SpChiD<br>mutants,<br>M226A and<br>Y228A | Serratia proteamaculans 568                      | DP9                                                | 360                                  | (Madhuprakash et al. 2012)    |

**Table 1.5:** Details of transglycosylating chitinases from different biological sources (Source: (Das et al,. 2015a)

#### 1.5.4. Enhancing TG for longer chain COS production

In an attempt to improve TG efficiency, specific mutations were introduced in ChiA and ChiB from *S. marcescens*, that were likely to disfavor correct positioning of the hydrolytic water molecule and/or favor binding of incoming carbohydrate molecules. These two family 18 chitinases have very little inherent TG for DP4 COS. The variants of ChiA and ChiB, ChiA-D313N, ChiA-D313N-F396W and ChiB-D142N, showed increased TG by forming COS with longer DP up to 8 (Zakariassen et al. 2011). Quantum mechanics/molecular mechanics have also showed that mutating Asp142 in ChiB to Asn leads to a change in active site electrostatics that could lead to lower hydrolyzability of the oxazoliniumion intermediate or an increased probability of the intermediate being attacked by an incoming sugar, perhaps due to effects on the catalytic water (Jitonnom et al., 2011). Mutation of Trp97 in the +1 subsite of ChiB and Phe396 in the +2 subsite of ChiA to Ala in *S. marcescens* led to reduced TG activity, probably due to reduced acceptor affinity. These results show that the aromatic residues that seem to determine the degree and

direction of processivity also may co-determine to what extent the enzyme in question may yield TG products.

TG reaction, however, generates a mixture of long chain COS and may even synthesize large, water insoluble COS. To overcome such problems, Martinez et al., (2012) evaluated mutations on the catalytic amino acids of two family GH 18 chitinases, *Bacillus circulans* WL-12 chitinase A1 (*Bc*ChiA1) and *Trichoderma harzanium* chitinase 42 (*Th*Chit42). These mutated chitinases, where the catalytic machinery was disrupted enough to abolish hydrolytic activities, but still operational for TG reaction by providing oxazoline activated donor for synthesis of desired artificial COS, can be considered as novel "glycosynthases". Alteration of amino acid residues in the catalytic center, in the substrate-binding groove, and insolvent accessible regions of ChiD from *Serratia proteamaculans* (*Sp*ChiD) substantially improved the TG activity both in terms of increasing the quantity of TG products and in extending the duration of TG activity (Madhuprakash et al. 2012)

#### 1.5.5. Enzyme-based bioprocesses for COS production

So far, no TG-based bioprocess has been described for large scale production of high DP COS. Initially, enzymatic hydrolysis was carried out in batch reactors, where chitosanase was mixed with it's substrate and was allowed to break down glycosidic bonds of chitosan under optimum conditions (Vårum et al., 1996; Jeon & Kim 2000). However, this batch system had disadvantages such as low yields and higher cost's associated with the use of large quantities of expensive chitosanase. The highest activity was observed when the chitosanase was immobilized on chitin rather than other carriers. The immobilized chitosanase showed a lower affinity and lower reaction rate compared to the free chitosanase. Subsequently, to improve the yield of COS, a system together with an ultrafiltration (UF) membrane reactor was developed to produce COS with relatively high DP (Jeon & Kim 2000).

However, even the UF membrane method did not allow continuous production of COS as there was increased trans-membrane pressure during the reaction due to high viscosity of the chitosan solution used as a substrate, and fouling of membrane by accumulated substrate. The enzymatic approach to generate soluble longer chain COS from chitin has even more limitations such as the crystallinity of the starting substrate, making direct usage of TG-active chitinases for the production of longer DP COS is difficult. The TG-based bioprocess may have to be combined with a pre-treatment of the starting material to break

down it's crystallinity. As an example, Matsuoka et al., (2000) described a continuous enzymatic degradation method where in N, N'-diacetyl chitobiose was prepared from colloidal rather than crystalline chitin in dialysis tubing and a chitinase recycling system.

#### 1.6. Rationale of the study

With increasing costs of chemical fertilizers and growing environmental concerns with the excessive use of chemical fertilizers, the management of nutrients on farms has come under close scrutiny. The organic amendments on the other hand can improve soil structure, water retention capacity of the soils, and increase the carbon stocks. Little is known about how the organic amendments affect soil bacterial community composition and function. There are indications that organic additions like chitin improve soil and substrate quality, plant development, plant resistance and also boost beneficial bacteria involved in plant defense and growth (Hadrami et al., 2010). Chitin has been used to enhance beneficial plant-microbe interactions, particularly symbiotic legume-Rhizobium interaction (Brown et al. 1995). Use of chitosan treated tomato seeds show accelerated germination and produced highly vigorous seedlings and similar effect was also observed in wheat and rice (Ramirez et al., 2010). Against this background, we studied the effect of chitinous substrates amendments to rice, through a detailed analysis of rhizosphere microbiome.

COS released during plant-fungal interactions, induce plant defenses upon recognition. The COS functions as a vaccine with a wide protective range against a number of plant diseases, which makes them possible candidates for crop protection. (Yin, Zhao & Du 2010). Treatment of plants or cell suspension cultures with COS causes defense reactions like the production of ROS, temporary depolarization of membranes, extracellular alkalization, ion flow, and the production of phytoalexin (Kishimoto et al., 2010; Li et al., 2016; Madhuprakash et al., 2015; Basa et al., 2020). COS with DP>4 show biological activity. Despite their biological and agronomic interest, well-structured COS are inaccessible. Owing to the cost limitations in producing the COS from chitin through acid hydrolysis, alkaline hydrolysis, chemical synthesis, and oligosaccharide mixture generated using microbial source or by enzymatic hydrolysis, we have optimized an enzymatic process, to use the improved transglycosylating *Sp*ChiD (Madhuprakash et al., 2018). The long chain COS thus generated in the process were applied on rice crop to see the beneficial effects including defense response, growth and yield in field grown rice.

#### **Questions raised in this study:-**

➤ What type of microbiome changes occur in the rice rhizosphere with chitinous substrate amendments?

- ➤ How to scale up the process to produce mg quantities of higher DP COS?
- ➤ What are the suitable methods for testing the elicitor activity of COS?
- > Will the COS application in rice crop enhance immunity and increase yield?

To address above questions, following approaches were tested in rice:

- 1. Application of chitinous substrates in rice crop under field conditions as three different soil amendments, namely chitin (alpha and beta variants) and chitosan (deacetylated chitin), applied to rice rhizosphere and examine for community dynamics of bacteria, fungi, and eukarya during crop development stages.
- 2. A hypertransglycosylating chitinase mutant *Sp*ChiD-Y28A was utilised to produce COS with DP6 and DP7 and applied the COS on rice.

# **Chapter - II**

**Materials and Methods** 

**\$.....** 

#### 2. Materials and Methods

## 2.1.1. Assessment of chitinous substrates as soil amendments in a field experiment

Rice (*Oryza sativa* cv. Zordar Variety-NP9311) seeds were obtained from Nuziveedu Seeds Pvt Ltd (NSL), Hyderabad, Telangana, India for this study. This is a short-duration variety that matures in 125-130 days. In September 2019, seeds were germinated in a nursery and transplanted to field plots (strip plots of 2ft X 2ft size). Field experiments were carried out at NSL experimental field stations at Girmapur village, Medchal (Dt.), Telangana, India.

Chitinous substrates were procured from Mahtani Chitosan Pvt Ltd, Gujarat, India. Soil amendments were made using alpha-chitin, beta-chitin, chitosan, and bio-fertilizer-Azo-powder consisting of *Azotobacter* (KN Biosciences Pvt Ltd, Hyderabad). Chitinous substrates were tested at two different dosages (low-50mg/kg and high-100mg/kg of soil) and for biofertilizer, recommended dosage (RD) 5x10<sup>7</sup> CFU (1g/kg of soil) and ½ RD of biofertilizer 5x10<sup>7</sup> CFU (0.5g/kg of soil) as per manufacturer instructions were amended to soil and mixed well in the designated plot before the transplantation of rice seedlings. Control plot, with no amendments were also maintained. Other recommended management practices, such as weeding, fertilizer application and plant protection were uniformly adopted for all the experimental plots.

Plants were harvested at two developmental stages, viz. vegetative stage (one month after transplantation) and flowering stage (three months after seedling emergence). Uprooted plants were briefly shaken to remove loosely attached soil. The soil tightly bound to the roots was collected without damaging the roots by vortexing and centrifugation at  $1500 \times g$  for 10 min to yield the 'rhizosphere' fraction. Soil collected from empty plot is the bulk soil fraction. All samples were stored in deep freezer (- $20^{\circ}$ C) until further processing.

## 2.1.2. Metagenomic DNA extraction, polymerase chain reaction (PCR) and nucleic acid sequencing

Metagenomic DNA was extracted from the bulk soil, rhizosphere (0.2-0.5 g for each) using NucleoSpin® Soil Kit (Machery Nagel, Germany). The soil samples with high humic and fulvic acids and less DNA yield, were handled using the protocol from Sarma et al.,

Chapter II Materials & Methods

(2012). PCR was carried out for V4 hypervariable region of the bacterial 16S rRNA gene using 505F/806R primer pair (Caporaso et al., 2011), ITS1F-ITS2R (White et al., 1990) of fungi and 18S primer pair 1427F &1616R (Hannen et al., 1998) for eukarya. PCR mixture consisted of Q5 high fidelity DNA polymerase (New England Biolabs, USA), 0.2ul; 5X reaction buffer 4μl (New England Biolabs, USA); dinucleotide triphosphates (dNTPs), 0.4μl, primers 1μl of each; template DNA 1.5μl of 5ng/μl; and H <sub>2</sub>O to 20μl. PCR conditions are represented in Table 2.1.

| Steps                | 16S rRNA            | ITS                 | 18S                   |  |
|----------------------|---------------------|---------------------|-----------------------|--|
| Initial denaturation | 98°C for 1 min      | 98°C for 1 min      | 98°C for 1 min        |  |
| Denauration          | 98°C for 30s        | 98°C for 30s        | 98°C for 30s          |  |
| Annealing            | 57°C for 30s cycles | 52°C for 30s cycles | 55°C for 30s   avalag |  |
| Extension            | 72°C for 45s        | 72°C for 60s        | 72°C for 60s          |  |
| Final extension      | 72°C for 7 min      | 72°C for 7 min      | 72°C for 7 min        |  |

Table 2.1: PCR conditions for 16SrRNA (bacteria), ITS (fungi) and 18S (eukarya) genes amplification.

Each DNA sample was amplified in triplicate (a replicate of 20µl reactions each) and pooled products from each sample to a single volume (60µl) and observed for desired amplicons on agarose gels, followed by purification using a PCR clean-up kit (Machery Nagel, Germany) for 96 well PCR plates and DNA quality was checked using Nanodrop© (Thermofisher, USA) with A260/280 ratios between 1.8-2.0. Samples were pooled and submitted for sequencing on Illumina MiSeq platform using V3 chemistry of 300PE run at M/s. Molecular Research DNA Laboratory in Texas, USA.

#### 2.1.3. Microbiome data analysis using bioinformatics and statistical tools

#### 2.1.3.1. Processing of sequencing data

Initial quality filter and alignment of reads were done using Usearch 10 fastq\_merge pairs with fastq\_maxee using an EE score of 1. After barcode removal, only reads of the required length were used for further analysis. Plant chloroplast and mitochondrial reads were filtered using a custom-made Bash script similar to the procedure used by Chalasani et al., (2021). Reads were binned into zero-radius Operational Taxonomic Units (zOTUs), including chimera deletion according to the Usearch10 pipeline with Unoise3 (Edgar 2016). Bacterial and fungal zOTUs were annotated using the SILVA SSU132 16S rRNA database (Quast et al. 2012) and the NCBI Taxonomy database, respectively.

Chapter II Materials & Methods

#### 2.1.3.2. Bioinformatic analysis of microbiome (marker gene) data

Comprehensive statistical, visual, and comparative analysis of microbiome data, including diversity analysis, community profiling, and visualization of the data along with graphical representation, were done using MicrobiomeAnalyst (Chong et al., 2020) an R-based online tool (<a href="https://www.microbiomeanalyst.ca/">https://www.microbiomeanalyst.ca/</a>). The data were filtered for low count, low variance and normalized by cumulative sum scaling for the marker gene (16S rRNA gene for bacteria and ITS gene for fungi, 18S for eukaya) analysis. Data rarefaction or transformations were not performed. The R code (Bash) used for analysis of microbiome data is enclosed as Annexure I at the end of the thesis.

#### 2.1.3.3. Visual exploration of taxa abundance

The taxonomic composition of microbial communities in the metagenomic DNA samples were visualized through the direct quantitative comparison of abundances. This relative abundance of taxonomic composition was visualized at the level of phylum and genus, using stacked bar plots.

#### 2.1.3.4. Alpha diversity analysis

Alpha diversity analyses were performed using the phyloseq package (McMurdie & Holmes 2013). Diversity within a sample or community is measured by Microbiome-Analyst. Shannon index was used to measure the alpha-diversity (both species richness and evenness) with the statistical method set to Mann–Whitney/Kruskal–Wallis (non-parametric tests) for significance testing (Kruskal & Wallis 1952). The Mann–Whitney-U test was used to compare two groups (Mann & Whitney 1947), while the Kruskal–Wallis H test compared more than two groups. The alpha-diversity measures were visualized as boxplots for each sample group or experimental factor.

#### 2.1.3.4. Beta diversity analysis

Beta diversity analyses were performed using the 'phyloseq' package (Murdie & Holmes, 2013) of Microbiome-Analyst to compare the diversity or composition between two samples or microbial communities. For beta diversity assessment among the samples, Bray–Curtis similarity (97% DNA identity) indices were calculated and visualized as two-dimensional (2-D) Principal Coordinates Analysis (PCoA) plots. To test the statistical

significance of the clustering pattern in PCoA plots, Permutational multivariate analysis of variance (PERMANOVA) was used.

# 2.1.3.5. Core microbiome analysis

Core microbiome analysis was performed with Microbiome Analyst, based on the core function in R-package microbiome. The core taxa (phyla and genera) that remain unchanged in their composition across the whole microbial community were visualized in the form of heatmaps of compositional (relative) abundance.

#### 2.1.3.6. Biomarker identification and classification

The unique and/or predictive features (biomarkers) were identified and classified using Linear Discriminant Analysis (LDA) Effect Size (LEfSe) and Random Forests (RF) analysis. For LEfSe, the non-parametric factorial Kruskal-Wallis sum-rank test was performed to detect features with significant differential abundance with respect to the class of interest, followed by LDA to estimate the relevance or effect size of differentially abundant features 390. Features were considered to be significant based on their false discovery rate (FDR)-adjusted p-value (p<0.05) and log LDA score cut-off of 2 (Segata et al. 2011). Random Forests (RF) analysis, a classification algorithm approach based upon a collection of unpruned decision trees (classification trees or forests, each built using a bootstrap sample of training data using a randomly selected subset of OTUs), was performed using the Random Forest package (Liaw & Wiener 2002) of Microbiome-Analyst to identify the most indicative microorganisms characterizing each of the microbial communities. The RF classifier was built by growing 5,000 trees, and the class prediction was performed based on the majority vote of the individual trees. Each RF model is validated with the estimation of the classification (out-of-bag [OOB]) error (Bylander 2002). The percent mean reduction in accuracy of the value matrix was used to determine the top 15 taxa (at the genus level) that were most predictive of each microbiome assemblage.

#### 2.1.3.7. Statistical analysis

PERMANOVA (Anderson and Braak 2003), unconstrained PCoA, and analysis of similarity (ANOSIM) (Clarke, 1993) were based on Bray–Curtis similarity matrices (Bray

and Curtis 1957) and calculated from standardized, square-root transformed abundance data and calculated and/or visualized in Primer v7 software (PRIMER-E; Quest Research Ltd., Auckland, New Zealand). Factors influencing the microbial community were statistically assessed using permutation of residuals under a reduced model, the sum of squares type III (partial) with 9,999 permutations using unrestricted permutation of the raw data model of PERMANOVA. We considered pseudo-F values as proxies of a given factor's importance for sample separation and are based on the beta-diversity ratio (difference between two or more sample groups) to alpha-diversity (difference between individual samples within each group). The pseudo-F values for each set of factors were plotted and visualized in Prism 9 (GraphPad, San Diego, USA). PCoA plots are designed to visualize distance matrices with maximum sample separation along multiple axes (however, for clarity, only the first two axis are shown) without prior factorial description. Difference (the ratio of beta- to alpha-diversity) between each set of data for a particular factor is calculated using one-way ANOSIM tests.

### 2.2. Production of COS

Expression of the mutant chitinase *Sp*ChiD-Y28A, its purification and the transglycosylation (TG) were essentially same as described by Ramakrishna et al. (2021). Similarly, testing of the COS on rice seedlings and the assay of the enzymes involved in plant strengthening including defense related enzymes and qRT-PCR analyses of the plant genes were also described in detail by Ramakrishna et al. (2021).

### 2.2.1 Bacterial strains, plasmids, and chemicals

The plasmid pET-22b (+) and *Escherichia coli* strain BL21 (DE3) (Novagen, Madison, USA) were used for the heterologous expression of *Sp*ChiD-Y28A. Ampicillin, Isopropyl-β-D-1-thiogalacto-pyranoside (IPTG), and all other chemicals were purchased from Calbiochem or Merck (Darmstadt, Germany). Ni-NTA-His bound resin was procured from Novagen (Madison, USA) for protein purification. COS with DP5 was obtained from Bio-Base Europe Pilot Plant (BBEPP) (Desteldonk, Belgium) as a part of the European Union's Nano3Bio consortium project.

## 2.2.2 Expression and purification of SpChiD-Y28A

BL21 (DE3) cells (*E. coli* strain) harboring the plasmid pET-22b (+) – SpChiD-Y28A was grown in of LB broth containing ampicillin ( $100\mu g \text{ mL}^{-1}$ ) at  $37^{\circ}\text{C}$  to a cell density of 0.5 OD at 600 nm. The temperature was lowered to  $18^{\circ}\text{C}$  and protein expression was induced by the addition of 0.5 mM IPTG for 24 h. Cells were then collected by centrifugation at  $10000 \times g$  for 10 min at  $4^{\circ}\text{C}$  followed by cell lysis using sonication. After centrifugation at  $25000 \times g$  for 30 min at  $4^{\circ}\text{C}$ , SpChiD-Y28A was purified using Ni-NTA affinity chromatography and eluted as described earlier (Purushotham & Podile 2012). 12% SDS-PAGE was used to analyse fractions containing SpChiD-Y28A. The fractions were collected, concentrated, and buffer exchanged with 20 mM potassium phosphate buffer, pH 8.0, and quantified by BCA protein assay kit.

# 2.2.3. Analysis by thin-layer chromatography (TLC) and high-pressure liquid chromatography HPLC

Aliquots (20µl) of the reaction mixtures were chromatographed on a silica gel plate (TLC Silica Gel60; MerckCo., Germany) with methanol, n-butanol, 25% ammonia solution, and water (5:4:2:1 [vol/vol/vol/vol]). The products were detected by spraying the plate with aniline-diphenylamine reagent (aniline - 400µl, diphenylamine - 400mg, acetone 20ml, 85% phosphoric acid- 3ml) and baking it at 180°C using a hot air gun (Black & Decker, Idstein, Germany) for 3 min.

For high-pressure liquid chromatography (HPLC), aliquots (20µl) of the reaction mixture sample preparation and analysis of reaction products formed by *Sp*ChiD from DP5 substrate were same as described for TLC analysis. However, various concentrations of *Sp*ChiD (560 nM unless stated otherwise) and COS (3.5 mM unless stated otherwise) were used for HPLC analysis. 75µl of the reaction mixture was transferred to an eppendorf tube containing an equivalent volume of 70% acetonitrile to stop the reaction. Using a Hamilton syringe, twenty microliters of the reaction mixture were injected into an HPLC (Shimadzu, Tokyo, Japan) fitted with a Shodex-Asahipack NH2P-50 4E column (4.6mm (id) by 250 mm; Showa Denko K.K) (Hamilton Bonaduz, Switzerland). At 25°C, reaction mixtures were examined. The flow rate was set to 0.7 ml/min, the mobile phase was composed of 67% acetonitrile and 33% MilliQ H<sub>2</sub>O, and the eluted COS were monitored at 210 nm. For the creation of standard graphs, a COS HPLC mixture containing DP1 through DP6

oligomers in equal amounts was utilized. Separate calibration curves of COS were developed for each oligosaccharide. These data points revealed a line with r curve for each standard sugar with r2 values ranging from 0.997 to 1.0, enabling the accurate determination of COS molar concentrations.

### 2.2.3. Product analysis by MALDI –TOF-MS

Matrix-assisted laser desorption ionization-time of flight mass spectrometry was used to examine reaction mixture/ purified COS (MALDI-TOF-MS). Sample (40μl) was concentrated under reduced pressure at 25°C until the solvent was completely evaporated and dissolved in 4μl of HPLC- grade MilliQ H<sub>2</sub>O (Merck, Mumbai, India). 2μl of a 9 mg/ml mixture of 2, 5 –dihydroxy benzoic acid (DHB) in 30% acetonitrile were applied to a ground-steel target plate (MTP-384- TF; Bruker Daltonics, Bremen, Germany), and 2μl sample was mixed into the DHB droplet and dried under a stream of air before being analysed using Ultraflex MALDI-TOF/TOF (Bru-The Flex Control 3.0 software package was used to control the instrument in positive acquisition mode. All spectra were obtained in the positive ion mode using the reflectron mode with voltage of 26, acceleration voltage of 25kV, and a pulsed ion extraction time of 40 ns. The acquisition range was 50 to 3000 m/z. Bruker Flex analysis software was used to generate peak lists from the MS spectra (version 3.0).

# 2.2.4. Optimization of conditions for bulk preparation of COS

SpChiD Y28A, a hyper TG chitinase was chosen for the production of COS>5. Following optimizations were carried out before bulk reaction was set up to obtain more COS and avoid precipitation. Initially, 2ml reaction volumes were set up using SpChiD Y28A enzyme and following reaction components at were tested, Tris-HCl buffer (7.0- 9.0) at different pH range, NaCl addition (10-50 mM), addition of Bovine Serum Albumin –BSA (100ug, 200ug) and substrate concentrations DP5 (1mg/ml to 5mg/ml) Incubated at at  $40^{\circ}$ C. A 25µl of reaction mixture was withdrawn at different time intervals up to 6h, followed by inactivation of enzyme by boiling at 85°C for 15 min. HPLC quantification for TG products is performed as described earlier. To obtain higher chain length COS in good quantity bulk reaction was set up at 250 & 500 ml volume using SpChi D Y28A enzyme (6mg/ml) with 3mg/ml substrate (DP5) in 50 mM Tris-HCl buffer pH 7.0, 50mM

NaCl and 100μg/ml BSA at 37 °C for 90 min. Reaction was terminated by boiling the solution at 85 °C for 15 min. The products were quantified using HPLC.

### 2.2.5. Purification of COS by semi-preparative HPLC

COS with different degree of polymerization (DP) in the reaction mixture were purified by semi preparative HPLC (Shimadzu, Tokyo, Japan) equipped with SHODEX Asahipak NH2P-50-10E column (10 ID × 250 mm, Resonac Europe GmbH, Germany) with suitable guard column. Mobile phase (Acetonitrile and water at 67:33 (v/v)) at a flow rate of 0.7 mL/min was used. The COS eluted were monitored at 210 nm and collected using FRC-10A SHIMADZU fraction collector. Fractions having COS with DP5-7 were pooled separately and lyophilized to a powder form using Scanvac cool safe freeze dryer (Labogene, Denmark).

# 2.3. Elicitor treatments to rice plants under greenhouse conditions

Rice (Oryza sativa cv. BPT 5204) seeds were obtained from the Indian Institute of Rice Research (IIRR), Hyderabad, Telangana, India. Surface sterilization of seeds was carried out using 2% (v/v) sodium hypochlorite for 5 min followed by 5 times washing with deionized water. Sterilized seeds were soaked in distilled water for 24h in dark. Soaked seeds were germinated in petri plates lined with moistened filter paper and incubated at 27 ± 2°C in dark. Uniformly germinated seedlings were carefully transferred to 50 mL tubes (five seedlings per tube) containing half-strength Murashige and Skoog (MS) media. Seedlings were grown till the 3rd leaf stage in a growth chamber with 12h light (300 µmol m<sup>-2s-1</sup>, 25°C) and 12h dark (21°C) with 50% relative humidity. Half strength MS media solution was renewed every 3 days. Based on the mode of treatment, rice seedlings at the 3rd leaf stage were divided into two groups for root dip and foliar treatment, separately. COS with DP5-7 and SA (positive control) were used at a concentration of 10µg mL<sup>-1</sup>. In the root dip treatment, respective test solutions were added to the hydroponic solution, and care was taken to ensure all roots were completely immersed. For foliar application, each tube was sprayed with test solutions thrice at an interval of 5 min, so that the leaves were drenched completely. After the treatment, the rice seedlings were harvested at different time points in liquid N<sub>2</sub> and stored at - 80°C till further processing.

# 2.4. Bioassays for elicitor activity

# 2.4.1. Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) assay

The  $H_2O_2$  levels were determined according to (Velikova et al., 2000). Rice seedlings (0.5 g) were homogenized in the ice bath with 5 mL 0.1% (w/v) TCA solution. The homogenate was centrifuged at  $12000 \times g$  for 15 min. The supernatant (0.5 mL) was added to 0.5 mL of 10 mM potassium phosphate buffer, pH 7.0 and 1 mL of 1 M KI, and the absorbance was measured at 390 nm. The content of  $H_2O_2$  was calculated based on the standard curve.

### 2.4.2. Phenylalanine ammonia lyase (PAL: EC 4.3.1.5) activity

The PAL activity was determined according to Lisker et al., (1983). Seedlings were homogenized in 25 mM sodium borate buffer, pH 8.8 containing 32 mM  $\beta$ -mercapto ethanol. The reaction mixture comprised 50 mM L-phenylalanine in 100 mM sodium borate buffer, pH 8.8 and 0.1 mL crude extract and incubated at 40 °C for 2h. The reaction was arrested by the addition of 80  $\mu$ L of 5 N HCl. The absorbance at 290 nm was read against the same volume of the reaction mixture without L-phenylalanine. The enzyme activity was expressed as  $\mu$ mol of trans-cinnamic acid mg<sup>-1</sup> protein h<sup>-1</sup>.

### **2.4.3. Peroxidase (POD: EC 1.11.1.7) activity**

The POD activity was measured as per the procedure of Putter (1974). Seedlings were homogenized in 5 mL of 0.1 M potassium phosphate buffer, pH 7.0 (with 0.1 mM EDTA, 1% PVP) and centrifuged at  $12000 \times g$  for 15 min at 4°C. The supernatant was used as the enzyme source. The reaction mixture comprised 0.1 M potassium phosphate buffer, 18 mM guaiacol, and 8 mM hydrogen peroxide. Enzyme extract was added to initiate the reaction and recorded the rate of increase in absorbance at 436 nm. Enzyme activity was calculated using an extinction coefficient of 25.5  $\mu$ M<sup>-1</sup> cm<sup>-1</sup>.

# 2.5. Total RNA isolation, cDNA synthesis, and quantitative real-time PCR (qRT-PCR) analysis

Total RNA was isolated from the shoot of COS treated rice seedlings using the NucleoSpin total RNA Kit (Macherey-Nagel, Germany). Approximately 2.0 µg of the purified RNA

was reverse transcribed to cDNA using the cDNA synthesis kit (DSS Takara bio, India). Further, cDNA was used for amplification of few defense candidate genes of rice viz., plant innate immunity-related genes, Salveylic Acid (SA) biosynthesis genes (PAL1 and ICS1), SA signaling genes (EDS1 and PAD4), Mitogen-activated protein kinases (MAPK5a and MAPK6), Jasmonic acid (JA) biosynthesis genes (JA carboxyl methyltransferase-1 JMT1, Allene oxide synthase 2, AOS2 and), JA response gene (JAinducible Myb transcription factor, JAMYB), transcription factor genes (NPR1, WRKY13, and WRKY45), pathogenesis-related genes (PR1a, PR1b, PR4, and PR10), and defense response genes. (Chitinase-I, peroxidase (POD22.3), and β -1,3-glucanase). The qRT-PCR experiments were carried out in an ABI-7500 Real Time PCR System (Applied Biosystems, USA) using SYBR Green Supermix Kit (DSS Takara bio, India). Respective primer sets for defense related genes (Table 2.2) mentioned above were procured commercially and used in this study (Kumari et al. 2016). PCR reaction mixture for each sample contained 5µL of SYBR Green PCR Master mix (DSS Takara, India), 0.2 µL of each primer, and 2µL of diluted cDNA in a total volume of 10 µL. The following cycling conditions were used: a hot start of 50°C for 20s, 95°C for 10 min, 95°C for 15s, annealing temperature 45-65°C for 30s, and 72°C for 30s. The rice ubiquitin gene was used as the internal control. The reactions were performed in triplicates. To determine the relative gene expression, mean Ct values were obtained, and fold change values were calculated using the 2- $\Delta\Delta$ CT method (Schmittgen & Livak, 2008). Results are shown as the mean of three technical replicates with their standard error. The significant difference between treatments with respect to controls and among the time points was determined using Turkey's post hoc multiple comparison test.

| Gene      | Forward primer (5'-3')   | Reverse primer (5'-3')   |  |  |
|-----------|--------------------------|--------------------------|--|--|
| Os18srRNA | CGCGCAAATTACCCAATCCTGACA | TCCCGAAGGCCAACGTAAATAGGA |  |  |
| Os-actin  | CTCTCAGCACATTCCAGCAG     | AGGAGGACGGCGATAACAG      |  |  |
| OsMAPK5a  | GTCTGCTCCGTGATGAAC       | TGATGCCTATGATGTTCTCG     |  |  |
| OsMAPK6   | GATACATTCGCCAACTTCC      | CAGTGATGCCAGGTAAGG       |  |  |
| OsPAL1    | TGTGCGTGCTTCTGCTGCTG     | AGGGTGTTGATGCGCACGAG     |  |  |
| OsICS1    | TGTCCCCACAAAGGCATCCTGG   | TGGCCCTCAACCTTTAAACATGCC |  |  |
| OsEDS1    | CAGGAGAGGCAGTGTTAATCG    | GCAAGCGGAGTAAGTGGTATG    |  |  |
| OsPAD4    | TCAGAGGCAAGGCAGTAGTG     | ACCGCTCACGCAGGATAG       |  |  |
| OsNPR1    | AGAAGTCATTGCCTCCAG       | ACATCGTCAGAGTCAAGG       |  |  |
| OsAos2    | GCGAGAGACGGAGAACCC       | CGACGAGCAACAGCCTTC       |  |  |
| OsJMT1    | CACGGTCAGTCCAAAGATGA     | CTCAACCGTTTTGGCAAACT     |  |  |
| OsJAMYB   | GAGGACCAGAGTGCAAAAGC     | CATGGCATCCTTGAACCTCT     |  |  |

| OsPR1a   | AACTTCGTCGGCCAATCTC     | CATGCATAAACACGTAGCATAGC |
|----------|-------------------------|-------------------------|
| OsPR1b   | TACGACTACGCCTCCAACA     | CCGGCTTATAGTTGCATGTGA   |
| OsPR10   | ACGCCTAAGATGAAGAGGAATAC | CTCAAACGCCACGAGAATTTG   |
| OsWRKY13 | GCCAGCGGAGAACGAATC      | CTCCTCCTGCTTCACAACC     |
| OsWRKY45 | AATTCGGTGGTCGTCAAGAA    | AAGTAGGCCTTTGGGTGCTT    |
| POX22.3  | CAGGCAGCTAATCAGTAGTAG   | ACCATGTCGGTTGCGTCGAG    |
| OsGns1   | TACCGCTCCAACGGCATC      | GGATGTTGTTCCGCACCC      |
| OsCht-1  | TCGGCTCCAACCTGCTGA      | CACTGCCCTGTCATCACCG     |
| OsPR4    | TGGGACCTGAACAAAGTGAGC   | TGGATACACTTGCCACACGAG   |

**Table 2.2: List of primers targeting for gene expression studies in rice plants treated with COS**. Primer sets related to plant innate immunity-related genes, SA biosynthesis genes, SA signaling genes, JA biosynthesis genes, JA response gene, transcription factor genes, pathogenesis-related genes and plant defense response genes were used to monitor gene expression studies and elucidate the effect of COS treatments.

### 2.6. Purified COS treatment on rice

Rice (*O. sativa* cv. Zordar Variety-NP9311, Nuziveedu Seeds Pvt Ltd, Hyderabad) seeds used in the present study. Seeds were germinated in nursery and transplanted to the pots prepared for the experiment purpose in August 2018. All experiments were carried out at Nuziveedu rice experimental fields at Girmapur village, Medchal (dt), Telangana.

Different treatments with purified COS are as follows: T1) DP5, T2) DP6, T3) DP7, T4) Salicylic acid (positive control) concentrations of 10μg/ml (Low) and 20μg/ml (High) concentrations in triplicates. Seedlings were allowed to grow up to 4<sup>th</sup> leaf stage and each treatment was given as foliar spray for pots by dissolving each COS in distilled water mixed 0.01% tween 20 (surfactant) to ensure adsorption of test solution to leaves effectively. Negative control pots were sprayed with water alone. Mode of application for all above mentioned treatments is by foliar spray with fine mist (spraying bottle) until plant is completely drenched. Booster treatment was given by the same method during the flowering stage of crop following the same concentrations. After harvest, yield parameters like seeds per panicle, grain yield (total seed weight per panicle), and 100 seed weight were analyzed. Further data was analyzed by one way ANOVA and represented in results.

# Results & Discussion

# **Chapter - III**

| Chitinous | substrate | amendments | to rice | – a microl                            | biome |  |
|-----------|-----------|------------|---------|---------------------------------------|-------|--|
| approach  |           |            |         |                                       |       |  |
| <b></b>   |           |            |         | •                                     |       |  |
| •         | <b>A</b>  |            |         | · · · · · · · · · · · · · · · · · · · |       |  |

# Chapter 3: Chitinous substrate amendments to rice –a microbiome approach

#### 3. Introduction

Chitin is the second most abundant naturally occurring amino-polysaccharide, next only to cellulose that provides rigidity to the cell walls of the crustaceans, insects, and fungi due to its crystallinity. Chitosans can be derived from chitin by chemical or enzymatic deacetylation, which is relatively soluble. Several metric tons of chitin is extracted, through simple but harsh chemical processes from shrimp and crab shells. Chitosans are derived from chitin, primarily by chemical processes for industrial applications. Chitin and chitosans are relatively less expensive, naturally occurring biologically synthesized polymers, for a wide range of applications including agriculture.

Soil amendments with chitinous substrates enhanced plant defense and also contributed to better growth of crops. Extracellular chitinases are produced by chitinolytic microorganisms to hydrolyze chitin-rich tissues of other species. Chitinolytic organisms are pathogenic or parasites, but a majority are also saprotrophic/necrotrophic feeding on dead material or live in a mutualistic relationship with plants. Thus, chitinolytic microbes play a key role in plant-related ecosystem, particularly with reference to the health and nutrition of plants. The effect of the externally added chitin has been studied intensively on the microbial species that act as antagonists of pathogens causing diseases of plants. Manjula and Podile (2001) showed that chitin-supplemented formulations of *Bacillus* subtilis AF1 improved both the biocontrol and plant growth-promoting activities on pigeonpea and groundnut. Similarly, Kishore et al., (2005) showed improved control of *Phaeoisariopsis personata* (causes late leaf spot in groundnut), by a chitinoytic *Serratia* marcescens with chitin amendment. In addition to direct antibiosis, Kishore et al., (2005) found that, chitin supplementation increased the activity of key plant defense enzymes. The beneficial effect with chitin amendment, to the soil may promote the growth of antagonistic microbes. The complexity of the soil microbial system made it extremely difficult to precisely monitor the changes in the microbial populations, and lead to a reductionistic approach to monitor the population of culturable antagonists in such treatments.

Plant strengthening activities of chitin/chitosan as soil supplements, seed coating, and foliar spray were studied. Several plant species, including coffee (Dzung et al., 2011), soybean, mini-tomato, lettuce, and rice, have shown improved growth after being treated

with chitosan (Chibu and Shibayama, 1999). Boonlertnirun et al., (2008) reported the use of polymeric chitosan to soak rice seeds before planting, followed by soil amendment that enhanced the yield. Adding shrimp waste derived chitin and/or chitosan to soil can temporarily improve the root growth and reduce the rate of nematode infection in tomato plant (Radwan et al., 2012). It was assumed that soil suppressiveness can be enhanced by chitin and or chitosan. While there could be a debate on the contribution of bacteria and fungi to the chitinolytic process in the soil, microcosm experiments demonstrated the role of particular members of the Gamma- and Beta proteobacteria were dominant after the addition of chitin (Keilac et al., 2013). Similarly, Das et al., (2010) reported that Gammaproteobacteria and *Bacilli* dominated chitin-enriched soils (dumping yards for shrimp waste).

In this study, an experiment was designed to monitor the microbiome changes with respect to chitin amendments to the soil, for rice crop, under field conditions. Soil amendment was made with alpha chitin, beta chitin, chitosan, biofertilizer for rice [KN Biosciences, Hyderabad] compared with negative control that received no treatment. Rhizosphere samples were collected at vegetative and flowering stages (Fig 3) for metagenomic DNA isolation. 16S rRNA gene, ITS and 18S rRNA genes were amplified and sequenced by Miseq Illumina sequencing at Mr.DNA technologies, Texas, USA. Data analyses using appropriate statistical tools were carried out from the sequencing data using a bioinformatic pipeline (Chalasani et al. 2021).

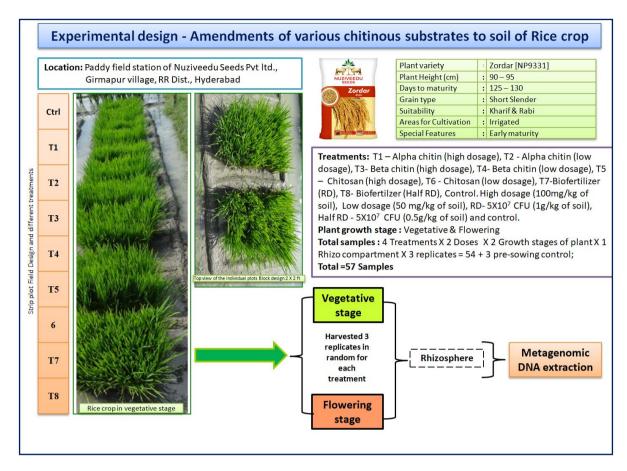
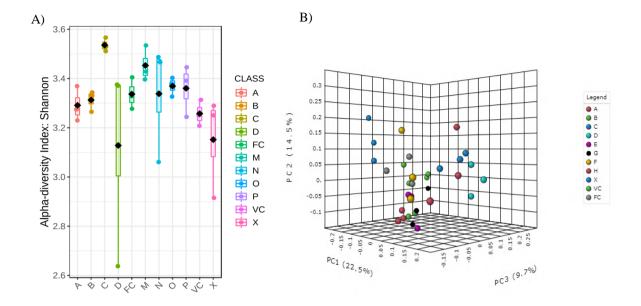



Fig 3: Experimental flowchart for chitin substrate amendments to rice crop.


#### 3.1 Results

# 3.1.1. Influence of alpha chitin on rice rhizosphere bacteriome

Alpha chitin, at high dosage, during flowering stage has highest alpha-diversity (Shannon diversity index), followed by other treatments (Fig 3.1A). Using PCoA plots, the response of bacterial communities to alpha chitin was shown as separate clustering of sample groups without any overlaps (Fig 3.1B). PERMANOVA revealed substantial variations in zOTU assemblage between bacterial communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for bacterial communities in different fractions is 0. 818 (81.8%) (Fig 3.1C).

In all the treatments, the relative abundance of Proteobacteria is higher, including alpha chitin, biofertilizer, vegetative stage control, flowering stage control and pre-sowing control of rice rhizosphere (Fig 3.2A). Other dominant phyla include Chloroflexi, Myxococcota, Bacteroidota and Planctomycetota. Uncultured Sutterellaceae, Uncultured Planctomycetota, *Flavisolibacter*, Uncultured Chloroflexi, Uncultured Nitrosomonadaceae, Uncultured Anaerolineaceae, *Longilinea*, Uncultured Vicinamibacterales, Uncultured Steroidobacteraceae, Uncultured Burkholderiales, Uncultured Myxococcota and *Caenimonas* were top abundant genus in alpha chitin treatment (Fig 3.2B).

Core microbiome calculated using sample prevalence (10%) with relative abundance of 0.01 % for taxa at phylum and genus level is presented in Fig 3.3A and Fig 3.3B. Core microbiome at phylum level comprises of Proteobacteria, Planctomycetota, Myxococcota, Gemmatimonadota, Desulfobacterota, Chloroflexi, Bacteroidota, Acidobacteriota, Actinobacteriota, Crenarchaeota, Firmicutes, Verrucomicrobiota, Nitrospirota and Patescibacteria (Fig 3.3A). Uncultured Vicinamibacterales, Uncultured Sutterellaceae, Uncultured Steroidobacteraceae, Uncultured Planctomycetota, Uncultured Nitrosomonadaceae, Uncultured Gemmatimonadota, Uncultured Chloroflexi, Uncultured Anaerolineaceae, Sphingomonas, Longilinea, Flavisolibacter were top genus detected in core microbiome during Alpha chitin amendments to rice rhizosphere (Fig 3.3B).



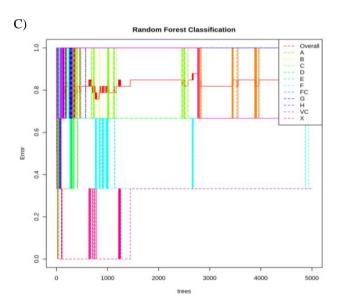



Fig 3.1: Influence of alpha chitin on rice rhizosphere for bacteriome. (A) Alpha-diversity measure using Shannon index at Genus level represented as box plots. Each box plot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.10253; [Kruskal-Wallis] statistic: 15.9. (B) 2-D PCoA plots based on Bray–Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [22. 5%] and the Y-axis representing the second-highest dimension of variation [9.7%] and Z- axis represents third highest degree of variation [9.7%]. Statistical significance: [PERMANOVA] pseudo-F value: 3.1289; R<sup>2</sup>: 0. 58716; p <0. 001. (C) Cumulative OOB error rates by RF classification. The overall error rate 81.8% (0.818) is shown as the red line; lines of other colors represent the error rates for each class. (Alpha Chitin-High Dosage-Vegetative – A, Alpha Chitin-Low Dosage-Vegetative – B, Alpha Chitin-High Dosage-Flowering – C, Alpha Chitin-Low Dosage-Flowering – D, Bio fertilizer-RD-Vegetative – E, Bio fertilizer-Half RD-Vegetative – F, Bio fertilizer-RD-Vegetative – G, Bio fertilizer-Half RD-Flowering – H, Pre treatment – X, Vegetative control – VC, Flowering control – FC).

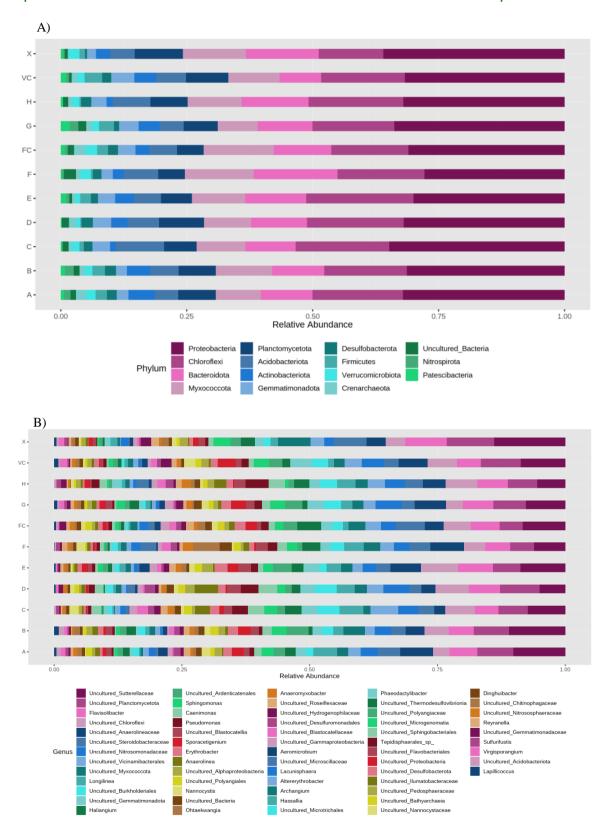



Fig 3.2: Influence of alpha chitin on the taxonomic composition of rice rhizosphere bacterial community. Stacked bar plots represent the relative abundance of bacterial taxa at Phylum (A) and Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified bacterial taxa. (Alpha Chitin-High Dosage-Vegetative – A, Alpha Chitin-Low Dosage-Vegetative – B, Alpha Chitin-High Dosage-Flowering – C, Alpha Chitin-Low Dosage-Flowering – D, Biofertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative – F, Bio fertilizer-RD-Vegetative – G, Biofertilizer-Half RD-Flowering – H, Pre treatment – X, Vegetative control – VC, Flowering control – FC).

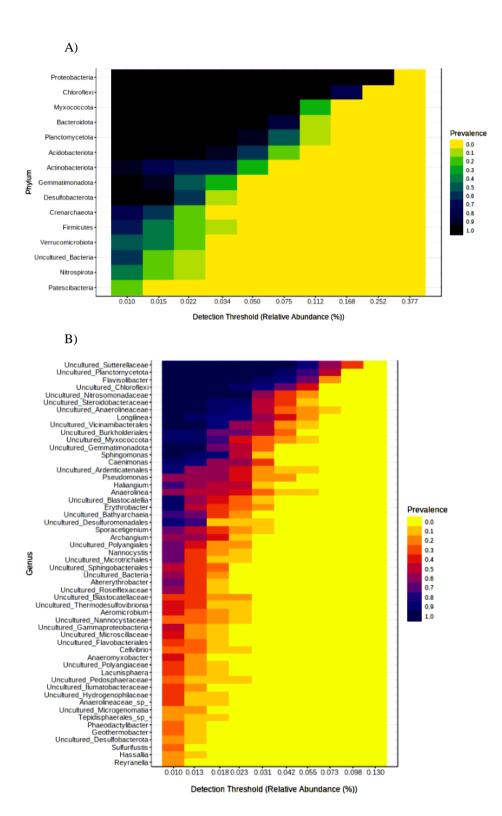



Fig 3.3: Heatmaps representing the core microbiome of alpha chitin on rice rhizosphere bacteriome at Phylum (A) and Genus levels (B). The Y-axis represents the prevalence level of core fungal taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased).

## 3.1.2. Influence of alpha chitin on rice rhizosphere mycobiome

Alpha chitin at high dosage has highest alpha-diversity (Shannon diversity index) at flowering stage, followed by other treatments (Fig 3.4A). Using PCoA plots, the response of fungal communities to alpha chitin treatment was shown as separate clustering of sample groups without any overlaps (Fig 3.4B). PERMANOVA revealed substantial variations in zOTU assemblage between fungal communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for fungal communities in different fractions is 0.545(54.5%) (Fig 3.4C). LEfSe analysis identified *Mortierella* and *Clonostachys* as the biomarkers associated with rice rhizosphere with alpha chitin amendment (Fig 3.4D).

The relative abundance of Uncultured Fungi was greater in alpha chitin followed by Ascomycota, Mucoromycota, Basidiomycota and Chytridiomycota of rice rhizosphere (Fig 3.5A). The abundant taxa include Uncultured Fungi, *Mortierella, Cordyceps, Hygroaster, Aspergillus, Sodiomyces alcalophilus, Clonostachys,* Uncultured Sordariaceae, *Metarhizi, Sebacina, Stachybotrys elegans, Kochiomyces, Pluteus,* Uncultured Talaromyces, *Fragosphaeria, Didymella, Rhizophlyctis, Chaetomium, Cephalotheca, Colletotrichum, Panaeolus,* Uncultured Tremellales, *Telasphaerula* and *Scedosporium* for in with alpha chitin treatement (Fig 3.5B).

Core microbiome was calculated using sample prevalence (10%) with relative abundance of 0.01 % for taxa at phylum and genus level and presented in Fig 3.6A, and Fig 3.6B. Core microbiome at phylum level comprised of Uncultured Fungi, Ascomycota, Mucoromycota, Basidiomycota, Chytridiomycota, Blastocladiomycota, Uncultured Cladosporium, Uncultured Cryptomycota, Uncultured Basidiomycota, Uncultured Ascomycota (Fig 3.6A).

The core microbiome at genus level consisted of Uncultured Fungi, Cordyceps, Mortierella, Aspergillus, Sodiomyces alcalophilus, Metarhizi, Uncultured Sordariaceae, Clonostachys, Stachybotrys elegans, Sebacina, Rhizophlyctis, Pluteus, Fragosphaeria, Uncultured Talaromyces, Hygroaster, Chaetomium, Cephalotheca, Sodiomyces, Panaeolus, Nephromais, Kochiomyces, Gaertneriomyces, Didymella, Catenaria, Ascosphaerator (Fig 3.6B).

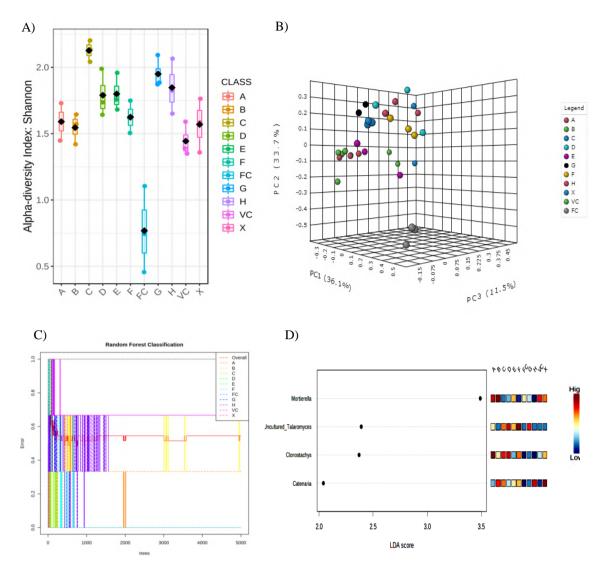



Fig 3.4: Influence of alpha chitin on rice rhizosphere mycobiome. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.00470; [Kruskal-Wallis] statistic: 25.362. (B) 2-D PCoA plots based on Bray-Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [36.1 %] and the Y-axis representing the second-highest dimension of variation [33.7%] and Z- axis represents third highest degree of variation [11.5%]. Statistical significance: [PERMANOVA] pseudo-F value: 7.882; R<sup>2</sup>: 0.78192; p < 0. 001. (C) Cumulative OOB error rates by RF classification. The overall error rate 54.5% (0.545) is shown as the red line; lines of other colors represent the error rates for each class. D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0.05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified fungi taxa. (Alpha Chitin-High Dosage-Vegetative - A, Alpha Chitin-Low Dosage-Vegetative - B, Alpha Chitin-High Dosage-Flowering – C, Alpha Chitin-Low Dosage-Flowering – D, Biofertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative - F, Biofertilizer-RD-Vegetative - G, Biofertilizer-Half RD-Flowering - H, Pre-treatment -X, Vegetative control – VC, Flowering control – FC).

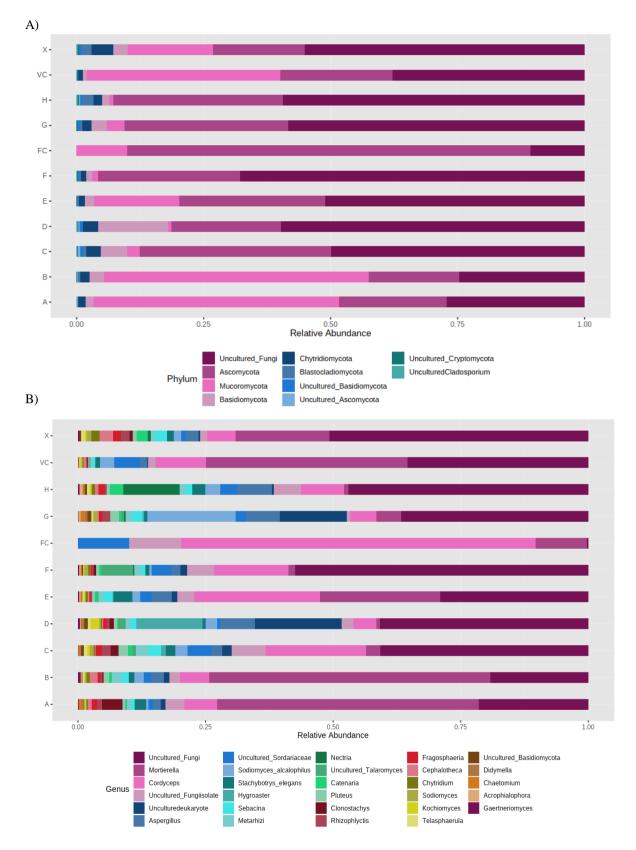
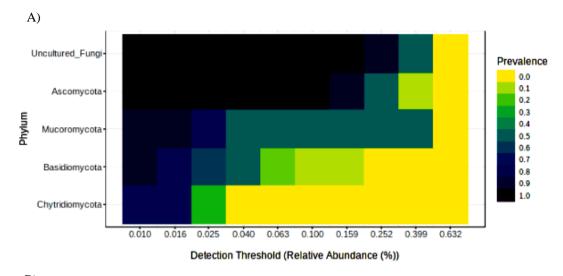




Fig 3.5: Influence of alpha chitin on the taxonomic composition rice rhizosphere fungal community. Stacked bar plots represent the relative abundance of fungal taxa at Phylum (A) and Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified fungal taxa. (Alpha Chitin-High Dosage-Vegetative – A, Alpha Chitin-Low Dosage-Vegetative – B, Alpha Chitin-High Dosage-Flowering – C, Alpha Chitin-Low Dosage-Flowering – D, Bioertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Biofertilizer-Half RD-Flowering – H, Pre-treatment – X, Vegetative control – VC, Flowering control – FC).



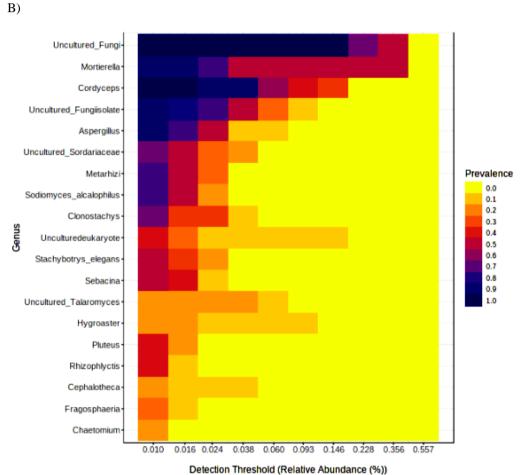



Fig 3.6: Heatmaps representing the core microbiome of alpha chitin on rice rhizosphere mycobiome at Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core fungal taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified fungal taxa.

### 3.1.3. Influence of alpha chitin on rice rhizosphere eukaryome

High dose of alpha chitin, at flowering stage, has highest alpha diversity (Shannon diversity index), followed by other treatments (Fig 3.7A). Using PCoA plots, the response of eukaryote communities to alpha chitin treatment was shown as separate clustering of sample groups without any overlaps (Fig 3.7B). PERMANOVA revealed substantial variations in zOTU assemblage between communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for eukaryote communities in different fractions is 0.212 (21.2%) (Fig 3.7C). LEfSe analysis identified *Cochliopodium* and Unclassified Bodonidae of eukaryota as the biomarkers associated with rice rhizosphere with alpha chitin amendment (Fig 3.7D).

The relative abundance of Uncultured Eukaryote, Amoebozoa, Fungi incertae sedis, Arthropoda, Discosea, Ciliophora, Euglenozoa, Apicomplexa were higher at phylum level (Fig 3.8A), where as top genus during alpha chitin to rice rhizosphere comprised of Uncultured Uncultured Eukaryote, Cryptomycota, Cochliopodium, **Tyrophagus** Eimeriidae, Uncultured Micro Eukaryote, **Pseudoplatynematum** putrescentiae, denticulatum, Protacanthamoeba, Aristerostoma marinum, Uncultured Rozellomycota, and Neobodo saliens (Fig 3.8B).

The core microbiome, calculated using sample prevalence (20%) with relative abundance of 0.01% for taxa, at phylum level and genus level is presented in Fig 3.9A and Fig 3.9B, respectively. The core microbiome at phylum level comprised of Uncultured Micro Eukaryote, Uncultured Eukaryote, Heterolobosea, Fungi incertae sedis, Euglenozoa, Discosea, Ciliophora, Arthropoda, Apicomplexa, Amoebozoa, Uncultured Fungi, Rozellomycota, Nematoda, Cercozoa, Tubulinea, Eukaryota incertae sedis, Ascomycota, Cnidaria, Oomycota, Hapista, Evosea, Bacillariophyta, Streptophyta, Platyhelminthes, Ochrophyta, Mollusca, Loukozoa (Fig 3.9A).

The core microbiome at genus level consisted of Uncultured Micro Eukaryote, Uncultured Eukaryote, Uncultured Cryptomycota, *Tyrophagus putrescentiae*, *Pseudoplatynematum denticulatum*, *Protacanthamoeba*, *Eimeriidae*, *Aristerostoma marinum*, Uncultured Rozellomycota, Uncultured Fungi, *Cochliopodium*, *Rhopalosiphum padi*, *Kuklikophrya ougandae*, *Acanthamoeba*, *Laimydorus*, Unclassified Bodonidae, *Neobodo saliens*, *Vexillifera armata*, *Vahlkampfia*, Uncultured Amoebozoa, *Phialina salinarum* and Cercomonas (Fig 3.9B).

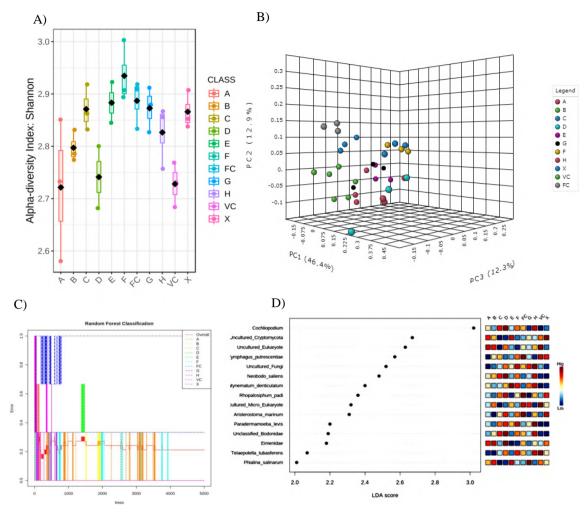



Fig 3.7: Influence of alpha chitin on rice rhizosphere eukaryome. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.01848; [Kruskal-Wallis] statistic: 21.398. (B) 2-D PCoA plots based on Bray-Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [46.4 %] and the Y-axis representing the second-highest dimension of variation [12.9%] and Z- axis represents third highest degree of variation [12.3%]. Statistical significance: [PERMANOVA] pseudo-F value: 11.513; R<sup>2</sup>: 0.83957; p <0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 21.2% (0.212) is shown as the red line; lines of other colours represent the error rates for each class. (D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0.05]. The mini heat map to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified eukarya taxa. (Alpha Chitin-High Dosage-Vegetative – A, Alpha Chitin-Low Dosage-Vegetative – B, Alpha Chitin-High Dosage-Flowering – C, Alpha Chitin-Low Dosage-Flowering – D, Biofertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Bio fertilizer-Half RD-Flowering – H, Pre-treatment – X, Vegetative control – VC, Flowering control – FC).

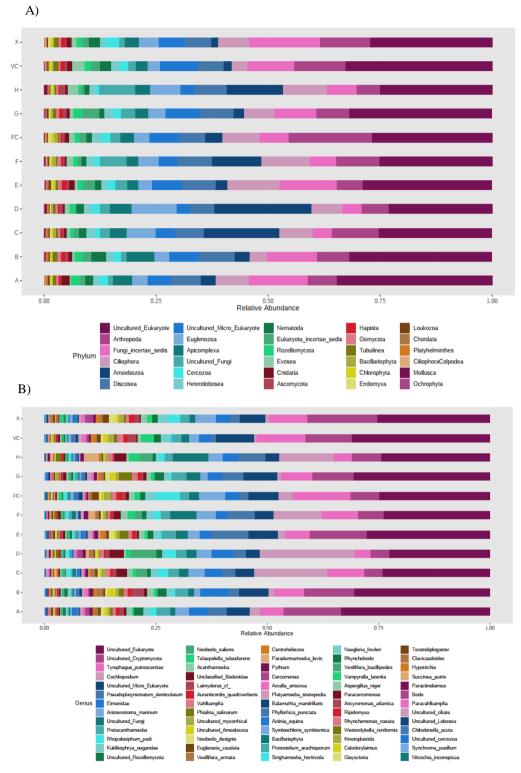



Fig 3.8: Influence of alpha chitin on the taxonomic composition rice rhizosphere eukaryote community. Stacked bar plots represent the relative abundance of eukaryote taxa at Phylum level (A) and Genus level (B) 'Uncultured' taxa labels in the figures represent unclassified eukaryote's taxa. (Alpha Chitin-High Dosage-Vegetative – A, Alpha Chitin-Low Dosage-Vegetative – B, Alpha Chitin-High Dosage-Flowering – C, Alpha Chitin-Low Dosage-Flowering – D, Biofertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative – F, Bio fertilizer-RD-Vegetative – G, Biofertilizer-Half RD-Flowering – H, Pre-treatment – X, Vegetative control – VC, Flowering control – FC).

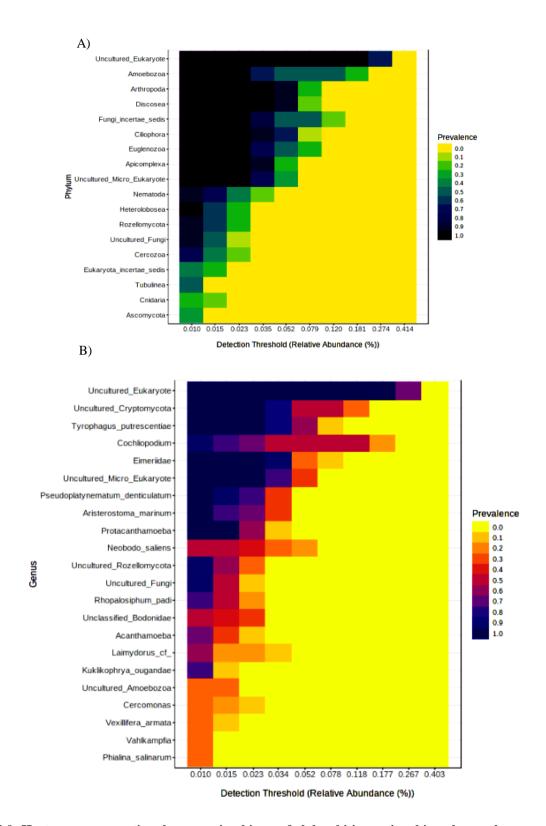



Fig 3.9: Heatmaps representing the core microbiome of alpha chitin on rice rhizosphere eukaryome at Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core fungal taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified eukaryote taxa.

### 3.1.4. Influence of alpha chitin on rice rhizosphere microbiome

The alpha chitin at high dosage has highest alpha-diversity (Shannon diversity index) at flowering followed by other treatments (Fig 3.10A). Using PCoA plots, the response of microbial communities to alpha chitin treatment is shown as separate clustering of sample groups without any overlaps (Fig 3.10B). PERMANOVA revealed substantial variations in zOTU assemblage between microbial communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for microbial communities in different fractions is 0.182 (18.2%) (Fig 3.10C). LEfSe analysis identified *Mortierella* and *Clonostachys* of fungi, *Cochliopodium* and Unclassified Bodonidae of eukaryota are indicator features for alpha chitin treatment to rice rhizosphere, as the biomarkers associated with rice rhizosphere (Fig 3.10D).

The relative abundance of Uncultured Fungi, Uncultured Eukaryote, Ascomycota, Mucoromycota, Amoebozoa, Fungi incertae sedis, Arthropoda, Proteobacteria, Discosea, Ciliophora, Basidiomycota, were higher at phylum level in rice rhizosphere (Fig 3.11A) whereas taxa abundance profile of genus comprises of Uncultured Eukaryote, Uncultured Fungi, *Mortierella*, Uncultured Cryptomycota, *Cochliopodium, Tyrophagus putrescentiae*, Uncultured Micro Eukaryote, *Cordyceps, Eimeriidae, Hygroaster, Pseudoplatynematum denticulatum, Aspergillus, Protacanthamoeba* and *Aristerosto mamarinum* (Fig 3.11B).

Core microbiome, calculated using Sample prevalence (20%) with relative abundance of 0.01% for taxa, at phylum (Fig 3.12A) and genus level (Fig 3.12B). Core microbiome at phylum level comprises of Uncultured Fungi, Uncultured Eukaryote, Proteobacteria, Euglenozoa, Ciliophora, Chloroflexi, Ascomycota, Amoebozoa, Uncultured Micro Eukaryote, Myxococcota, Fungi incertae sedis, Discosea, Arthropoda, and Apicomplexa (Fig 3.12A).

The core microbiome at genus level comprised of Uncultured Fungi, Uncultured Eukaryote, Cordyceps, Uncultured Cryptomycota, *Tyrophagus putrescentiae*, *Protacanthamoeba*, *Eimeriidae*, *Pseudoplatynematum denticulatum* and *Cochliopodium* (Fig 3.12B).

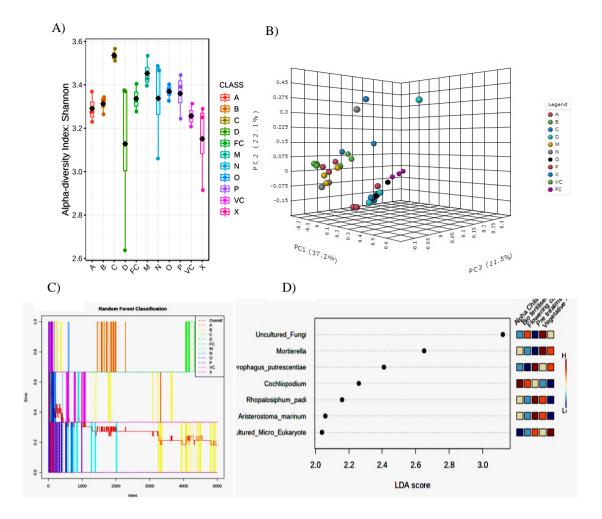



Fig 3.10: Influence of alpha chitin on rice rhizosphere. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.05723; [Kruskal-Wallis] statistic: 17.868. (B) 2-D PCoA plots based on Bray-Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [37.2%] and the Y-axis representing the second-highest dimension of variation [22.1%] and Z- axis represents third highest degree of variation [11.5%]. Statistical significance: [PERMANOVA] pseudo-F value: 14.419; R<sup>2</sup>: 0.86762; p < 0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 18.2% (0.182) is shown as the red line; lines of other colours represent the error rates for each class. D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0.05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified taxa belongs to microbiome. (Alpha Chitin-High Dosage-Vegetative - A, Alpha Chitin-Low Dosage-Vegetative - B, Alpha Chitin-High Dosage-Flowering - C, Alpha Chitin-Low Dosage-Flowering - D, Biofertilizer-RD-Vegetative - E, Biofertilizer-Half RD-Vegetative - F, Biofertilizer-RD-Vegetative - G, Biofertilizer-Half RD-Flowering - H, Pre treatment - X, Vegetative control - VC, Flowering control - FC).

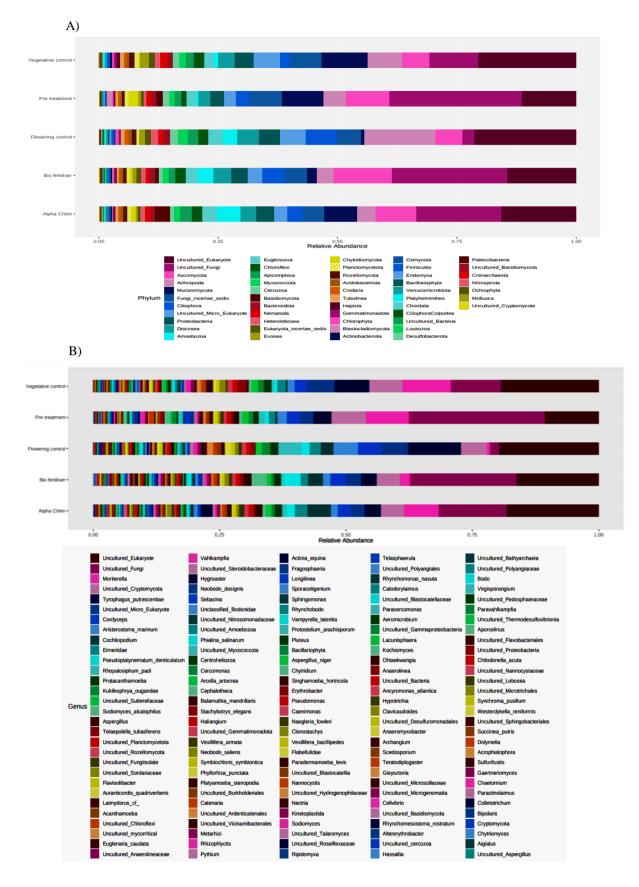



Fig 3.11: Influence of alpha chitin on the taxonomic composition of rice rhizosphere microbiome. Stacked bar plots represent the relative abundance of microbiome taxa at Phylum level (A) and Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified microbiome taxa.

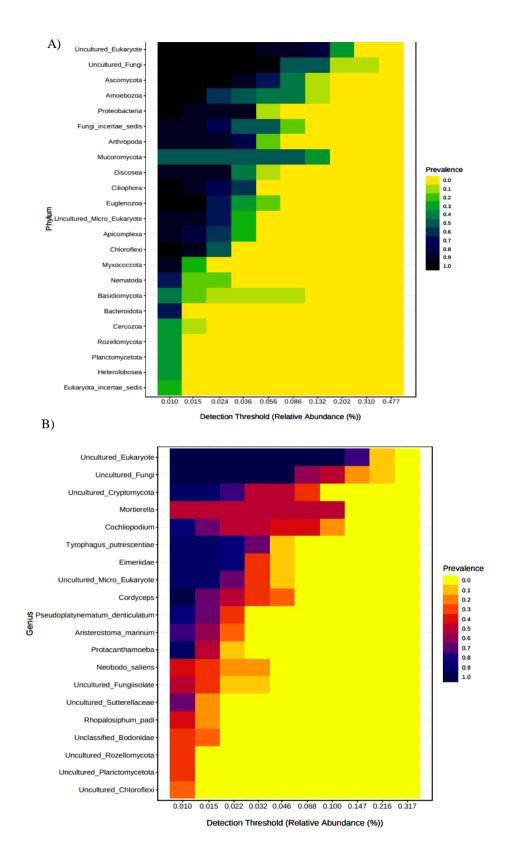



Fig 3.12: Heatmaps representing the core microbiome of alpha chitin on rice rhizosphere Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core microbiome taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified microbiome taxa.

### 3.1.5. Influence of beta chitin on rice rhizosphere bacteriome

High dose of Beta-chitin has highest alpha-diversity (Shannon diversity index) at flowering stage, followed by other treatments (Fig 3.13A). Using PCoA plots, the response of bacterial communities to beta chitin treatment is shown as separate clustering of sample groups without any overlaps (Fig 3.13B). PERMANOVA revealed substantial variations in zOTU assemblage between bacterial communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for bacterial communities in different fractions is 0.818 (81.8%) (Fig 3.13C). Proteobacteria, Chloroflexi, Myxococcota, Bacteroidota, Planctomycetota, Acidobacteriota, Desulfobacterota, Actinobacteriota, Gemmatimonadota and Firmicutes were top abundant phyla during beta chitin treatment to rice rhizosphere (Fig 3.14A), where as top abundant genus includes Uncultured Planctomycetota, Uncultured Sutterellaceae, Uncultured Chloroflexi, Uncultured Nitrosomonadaceae, Flavisolibacter, Uncultured Anaerolineaceae and Uncultured Burkholderiales (Fig 3.14B).

The core microbiome was calculated using sample prevalence (75%) with relative abundance of 0.01% for taxa at phylum level and genus level and is presented in Fig 3.15A and Fig 3.15B, respectively. The core microbiome at phylum level comprised of Proteobacteria, Planctomycetota, Myxococcota, Gemmatimonadota, Desulfobacterota, Chloroflexi, Bacteroidota, Acidobacteriota, Actinobacteriota, Firmicutes, Verrucomicrobiota and Crenarchaeota (Fig 3.15A). Core microbiome at genus level comprises of Uncultured Vicinamibacterales, Uncultured Steroidobacteraceae, Uncultured Planctomycetota, Uncultured Nitrosomonadaceae, Uncultured Desulfuromonadales, Uncultured Chloroflexi, Uncultured Burkholderiales, Uncultured Anaerolineaceae, Flavisolibacter, Uncultured Gemmatimonadota, Pseudomonas and Caenimonas (Fig 3.15B).

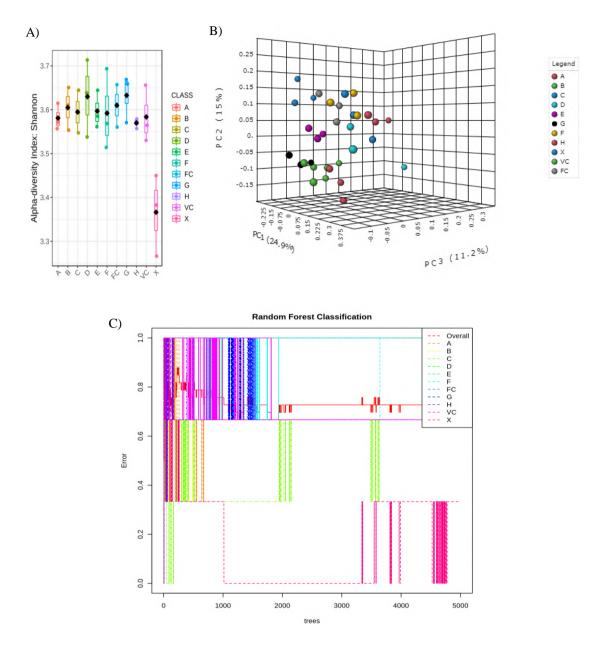



Fig 3.13: Influence of beta chitin on rice rhizosphere bacteriome. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.3702; [Kruskal-Wallis] statistic: 10.838. (B) 2-D PCoA plots based on Bray–Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [24.9%] and the Y-axis representing the second-highest dimension of variation [15%] and Z- axis represents third highest degree of variation [11.2%]. Statistical significance: [PERMANOVA] pseudo-F value: 3.0749; R<sup>2</sup>: 0.58293; p<0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 87.9% (0.879) is shown as the red line; lines of other colours represent the error rates for each class. (Beta Chitin-High Dosage-Vegetative – A, Beta Chitin-Low Dosage-Vegetative – B, Beta Chitin-High Dosage-Flowering – C, Beta Chitin-Low Dosage-Flowering – D, Biofertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative – F, Bio fertilizer-RD-Vegetative – G, Biofertilizer-Half RD-Flowering – H, Pre- treatment – X, Vegetative control – VC, Flowering control – FC).

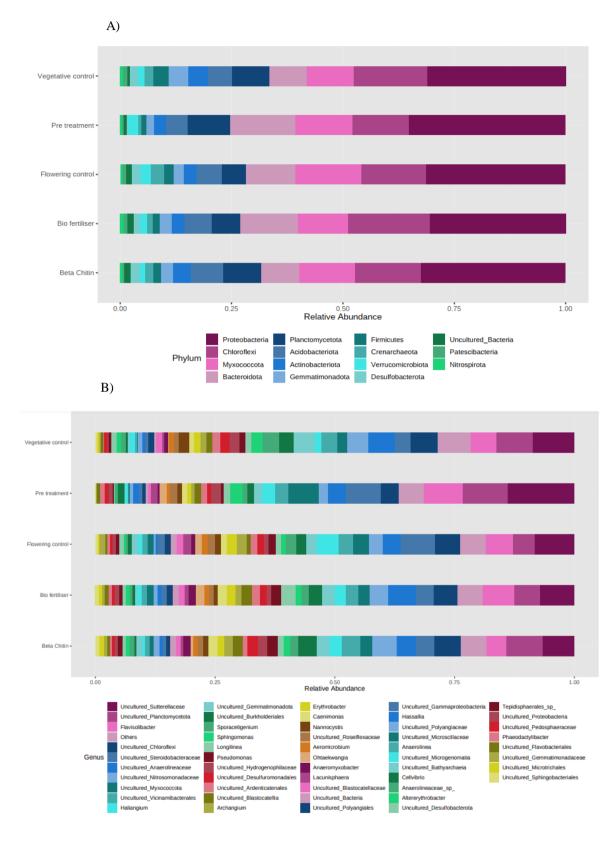



Fig 3.14: Influence of beta chitin on the taxonomic composition of rice rhizosphere bacterial community. Stacked bar plots represent the relative abundance of bacterial taxa at Phylum level (A) and Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified bacterial taxa.

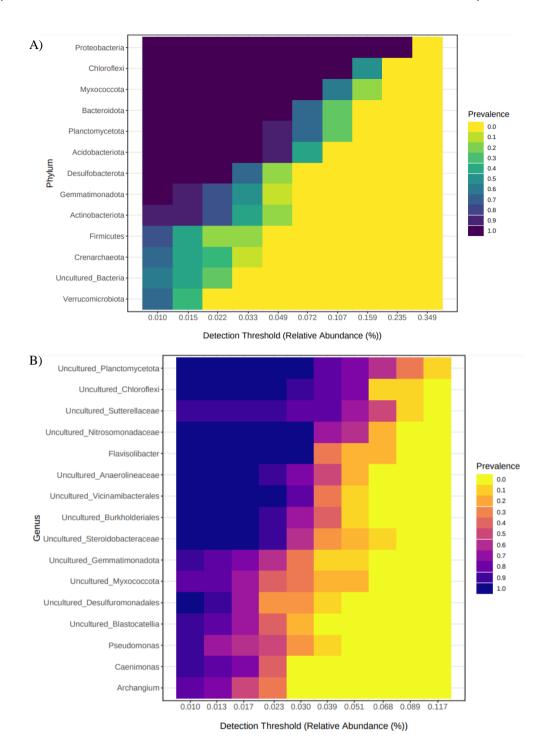



Fig 3.15: Heatmaps representing the core microbiome of beta chitin on rice rhizosphere bacteriome of Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core fungal taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified bacterial taxa.

### 3.1.6. Influence of beta chitin on rice rhizosphere mycobiome

A low dose of beta chitin at flowering stage has highest alpha-diversity (Shannon diversity index), followed by other treatments (Fig 3.16A). Using PCoA plots, the response of fungal communities to alpha chitin treatment is shown as separate clustering of sample groups without any overlaps (Fig 3.16B). PERMANOVA revealed substantial variations in zOTU assemblage between fungal communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for fungal communities in different fractions is 0.636 (63.6%)(Fig 3.16C). LEfSe analysis identified *Clonostachys, Didymella* and *Sebacina*as the biomarkers associated with rice rhizosphere with beta chitin amendment (Fig 3.16D).

The relative abundance of Uncultured Fungi was greater in beta chitin followed by Mucoromycota, Ascomycota, Basidiomycota, Chytridiomycota, and Blastocladiomycota (Fig 3.17A) where as top abundant taxa at genus level includes Uncultured Fungi, Mortierella, Cordyceps, Aspergillus, Sebacina, Stachybotrys elegans, Clonostachys, Pluteus and Sodiomyces alcalophilus (Fig 3.17B).

The core microbiome was calculated using sample prevalence (75%) with relative abundance of 0.01% for taxa and is presented at phylum level (Fig 3.18A) and genus level (Fig 3.18B). The core microbiome at phylum level comprised of Uncultured Fungi, Basidiomycota, Ascomycota, Mucoromycota, Chytridiomycota, Uncultured Cryptomycota, Uncultured Basidiomycota and Blastocladiomycota (Fig 3.18A). Core microbiome at genus level includes Uncultured Fungi, *Cordyceps, Mortierella, Aspergillus, Stachybotrys elegans, Sodiomyces alcalophilus, Sebacina, Clonostachys,* Uncultured Talaromyces, Uncultured Sordariaceae, *Pluteus, Scedosporium* and *Metarhizi* (Fig 3.18B).

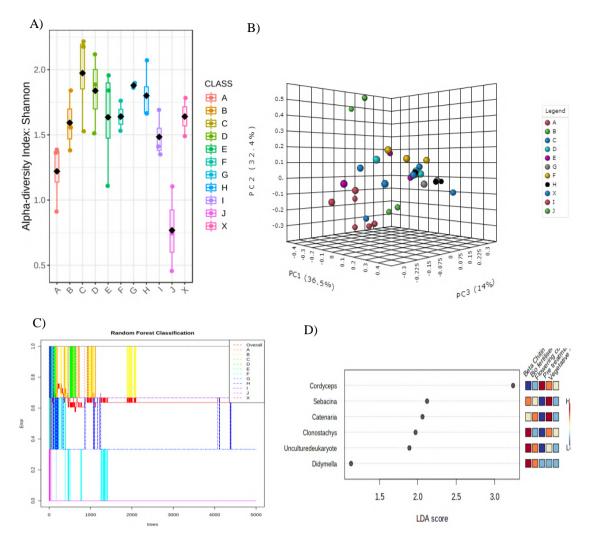



Fig 3.16: Influence of beta chitin on rice rhizosphere mycobiome. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.03760; [Kruskal-Wallis] statistic: 19.216. (B) 2-D PCoA plots based on Bray-Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [36.5 %] and the Y-axis representing the second-highest dimension of variation [32.4%] and Z- axis represents third highest degree of variation [14%]. Statistical significance: [PERMANOVA] pseudo-F value: 8.7221; R2: 0.79857; p <0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 63.6% (0.636) is shown as the red line; lines of other colours represent the error rates for each class. D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0.05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified fungi taxa. (Beta Chitin-High Dosage-Vegetative – A, Beta Chitin-Low Dosage-Vegetative – B, Beta Chitin-High Dosage-Flowering - C, Beta Chitin-Low Dosage-Flowering - D, Biofertilizer-RD-Vegetative - E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Bio fertilizer-Half RD-Flowering – H, Pre- treatment – X, Vegetative control – VC, Flowering control – FC).

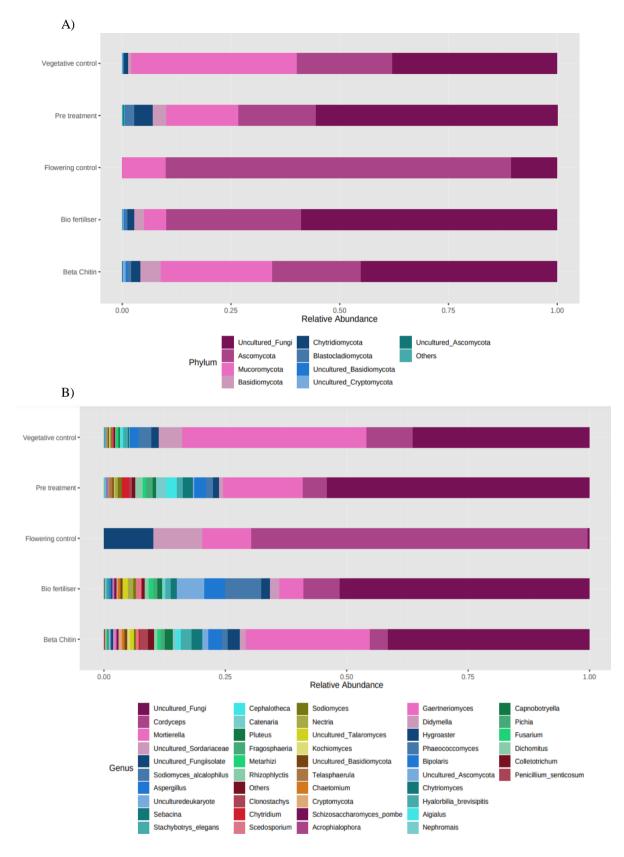



Fig 3.17: Influence of beta chitin on the taxonomic composition of rice rhizosphere fungal community. Stacked bar plots represent the relative abundance of fungal taxa at Phylum level (A) and Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified fungal taxa.

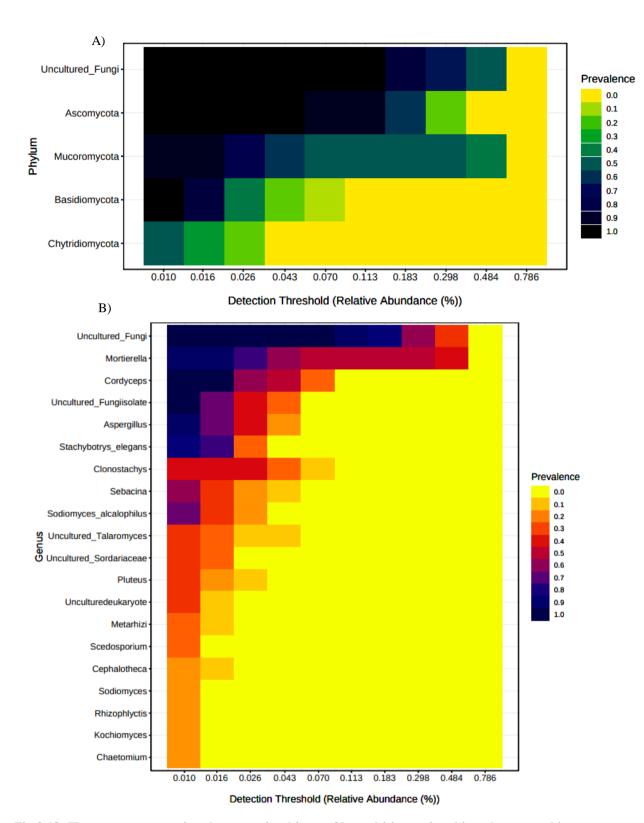



Fig 3.18: Heatmaps representing the core microbiome of beta chitin on rice rhizosphere mycobiome at Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core fungal taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified fungal taxa.

### 3.1.7. Influence of beta chitin on rice rhizosphere eukaryome

The beta chitin treatment, at low dosage, has lowest alpha-diversity (Shannon diversity index), followed by other treatments (Fig 3.19A) during vegetative stage. Using PCoA plots, the response of eukaryote communities to beta chitin treatment was shown as separate clustering of sample groups without any overlaps (Fig 3.19B). PERMANOVA revealed substantial variations in zOTU assemblage between fungal communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for fungal communities in different fractions is 0.303 (30.3%) (Fig 3.19C). LEfSe analysis identified Uncultured Cryptomycota and *Cochliopodium* as the biomarkers associated with rice rhizosphere with beta chitin amendment (Fig 3.19D).

The relative abundance of Uncultured Eukaryote, Fungi incertae sedis, Amoebozoa, Ciliophora, Uncultured micro Eukaryote were higher at phylum level (Fig 3.20A), whereas other abundant genera in beta chitin-amended rice rhizosphere comprised of Uncultured Eukaryote, Uncultured Cryptomycota, *Cochliopodium*, Uncultured micro Eukaryote, *Eimeriidae*, *Tyrophagus putrescentiae*, *Aristerostoma marinum*, *Pseudoplatynematum denticulatum*, *Protacanthamoeba* and *Telaepolella tubasferens* (Fig 3.20B).

Uncultured micro Eukaryote, Uncultured Eukaryote, Nematoda, Fungi incertae sedis, Euglenozoa, Discosea, Ciliophora, Arthropoda, Apicomplexa, Amoebozoa, Rozellomycota, Uncultured Fungi, Heterolobosea, Evosea and Cercozoa were core microbiome for beta chitin amendment to rice rhizosphere (Fig 3.21A). Uncultured micro Eukaryote, Uncultured Eukaryote, Uncultured Cryptomycota, Tyrophagus putrescentiae, *Pseudoplatynematum* denticulatum, Eimeriidae, Cochliopodium, Uncultured Rozellomycota, Protacanthamoeba, Aristerostoma marinum, Uncultured Fungi, padi, Telaepolella tubasferens, Rhopalosiphum Unclassified Bodonidae, Phialinasalinarum, Laimydorus, Acanthamoeba, Vahlkampfia, Neobodo saliens and Neobodo designis are part of core microbiome of eukaryota for beta chitin amendment to rice rhizosphere (Fig 3.21B).

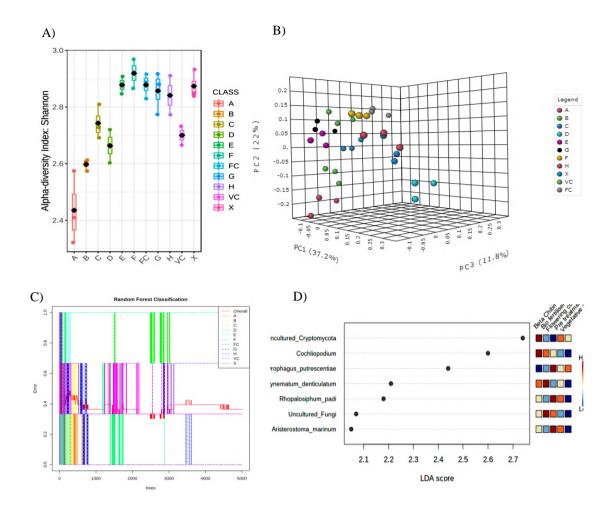



Fig 3.19: Influence of beta chitin on rice rhizosphere eukaryome. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.00293; [Kruskal-Wallis] statistic: 26.667. (B) 2-D PCoA plots based on Bray-Curtis similarity [n= 57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [37.2 %] and the Y-axis representing the second-highest dimension of variation [22%] and Z- axis represents third highest degree of variation [11.8%]. Statistical significance: [PERMANOVA] pseudo-F value: 14.658; R<sup>2</sup>: 0.86949; p < 0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 30.3% (0.303) is shown as the red line; lines of other colours represent the error rates for each class. (D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0.05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified eukarya taxa. (Beta Chitin-High Dosage-Vegetative - A, Beta Chitin-Low Dosage-Vegetative - B, Beta Chitin-High Dosage-Flowering - C, Beta Chitin-Low Dosage-Flowering - D, Biofertilizer-RD-Vegetative - E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Bio fertilizer-Half RD-Flowering – H, Pre treatment – X, Vegetative control – VC, Flowering control – FC).

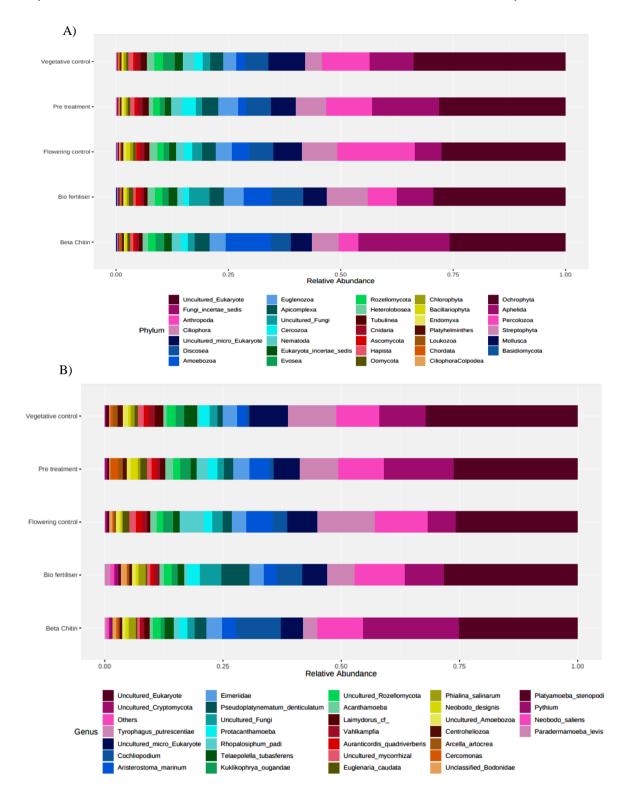



Fig 3.20: Influence of beta chitin on the taxonomic composition of rice rhizosphere eukaryote community. Stacked bar plots represent the relative abundance of eukaryote taxa at Phylum (A) and Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified eukaryote taxa.

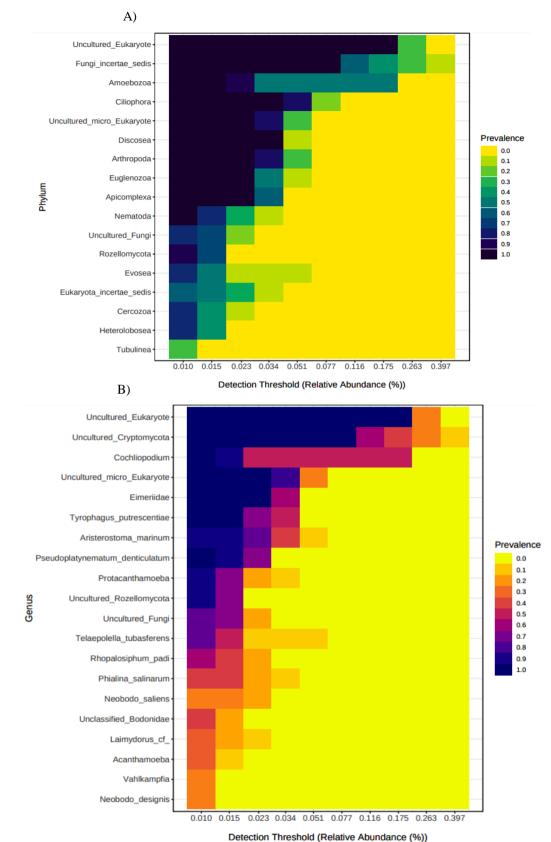



Fig 3.21: Heatmaps representing the core microbiome of beta chitin on rice rhizosphere eukaryome Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core fungal taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified eukaryotal taxa.

# 3.1.8. Influence of beta chitin on rice rhizosphere microbiome

The beta chitin treatment, at vegetative and flowering stages, showed lowest alphadiversity (Shannon diversity index), followed by other treatments (Fig 3.22A). Using PCoA plots, the response of microbiome communities to beta chitin treatment was shown as separate clustering of sample groups without any overlaps (Fig 3.22B). PERMANOVA revealed substantial variations in zOTU assemblage between microbiome communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for microbiome communities in different fractions is 0.364 (36.4%) (Fig 3.22C). LEfSe analysis identified *Mortierella and Clonostachys of fungi, Cochliopodium* of eukaryota are indicator features for beta chitin treatment to rice rhizosphere are indicator features as the biomarkers (Fig 3.22D).

The relative abundance of Uncultured Fungi, Uncultured Eukaryote, Fungi Incertae sedis, Mucoromycota, Ascomycota, Amoebozoa, Proteobacteria and Ciliophora were higher at phylum level (Fig 3.23A), whereas top genus during beta chitin to rice rhizosphere comprises of Uncultured Fungi, Uncultured Eukaryote, Uncultured Cryptomycota, *Mortierella* and *Cochliopodium* (Fig 3.23B).

The core microbiome was calculated using sample prevalence (50%) with relative abundance of 0.01% for taxa at phylum level (Fig 3.24A) and genus level (Fig 3.24B). The core microbiome at phylum level comprised of Uncultured Micro Eukaryote, Uncultured Fungi, Uncultured Eukaryote, Proteobacteria, Fungi incertae sedis, Discosea, Ciliophora, Ascomycota, Arthropoda, Myxococcota, Euglenozoa, Chloroflexi, Apicomplexa and Amoebozoa (Fig 3.24A). The core microbiome at genus level comprised of Uncultured Micro Eukaryote, Uncultured Fungi, Uncultured Eukaryote, Uncultured Cryptomycota, **Tyrophagus** putrescentiae, Aristerostoma marinum. Eimeriidae, Cordyceps, Pseudoplatynematum denticulatum, Protacanthamoeba, Cochliopodium, Mortierella, Uncultured Sutterellaceae, Telaepolella tubasferens, Rhopalosiphum padi, Uncultured Planctomycetota, Kuklikophrya Fungiisolate, Uncultured ougandae. Aspergillus, Phialinasalinarum and Uncultured Sordariaceae (Fig 3.24B).

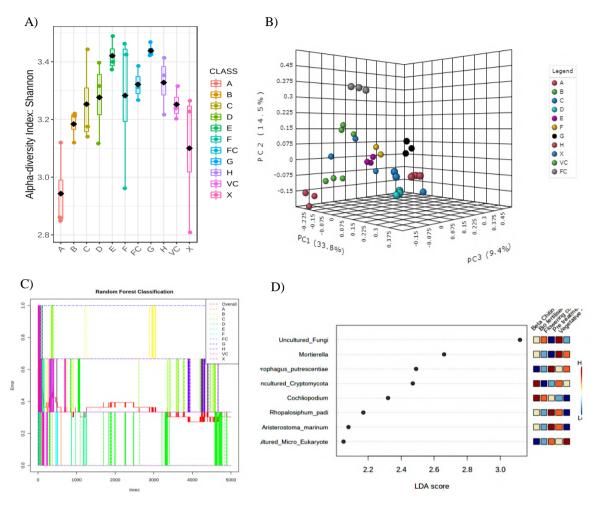
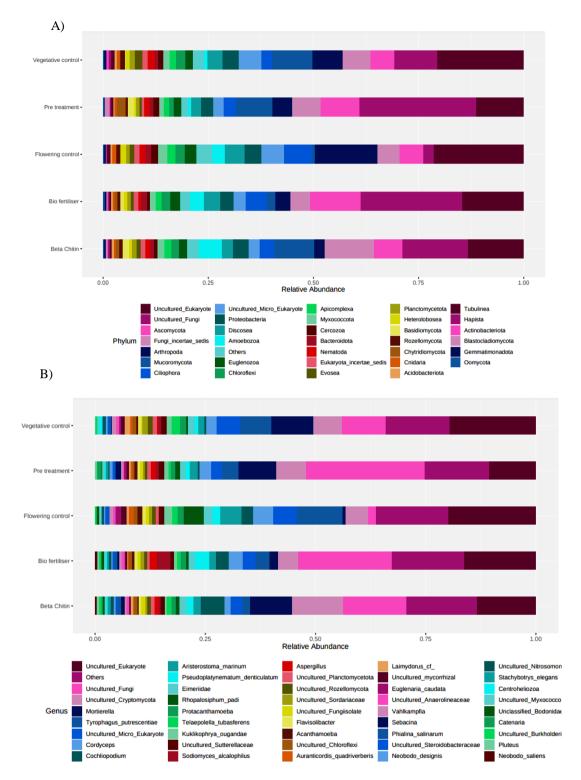




Fig 3.22: Influence of beta chitin on rice rhizosphere. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.0654; [Kruskal-Wallis] statistic: 17.426. (B) 2-D PCoA plots based on Bray-Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [33.8%] and the Y-axis representing the second-highest dimension of variation [14.5%] and Z- axis represents third highest degree of variation [9.4%]. Statistical significance: [PERMANOVA] pseudo-F value: 5.2331; R<sup>2</sup>: 0.70403; p < 0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 36.4% (0.182) is shown as the red line; lines of other colours represent the error rates for each class. (D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0. 05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified taxa belongs to microbiome. (Beta Chitin-High Dosage-Vegetative - A, Beta Chitin-Low Dosage-Vegetative - B, Beta Chitin-High Dosage-Flowering - C, Beta Chitin-Low Dosage-Flowering - D, Biofertilizer-RD-Vegetative - E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Bio fertilizer-Half RD-Flowering – H, Pre treatment -X, Vegetative control -VC, Flowering control -FC).



**Fig 3.23: Influence of beta chitin on the taxonomic composition of rice rhizosphere.** Stacked bar plots represent the relative abundance of eukaryote taxa at Phylum level (A) at the Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified microbiome taxa.

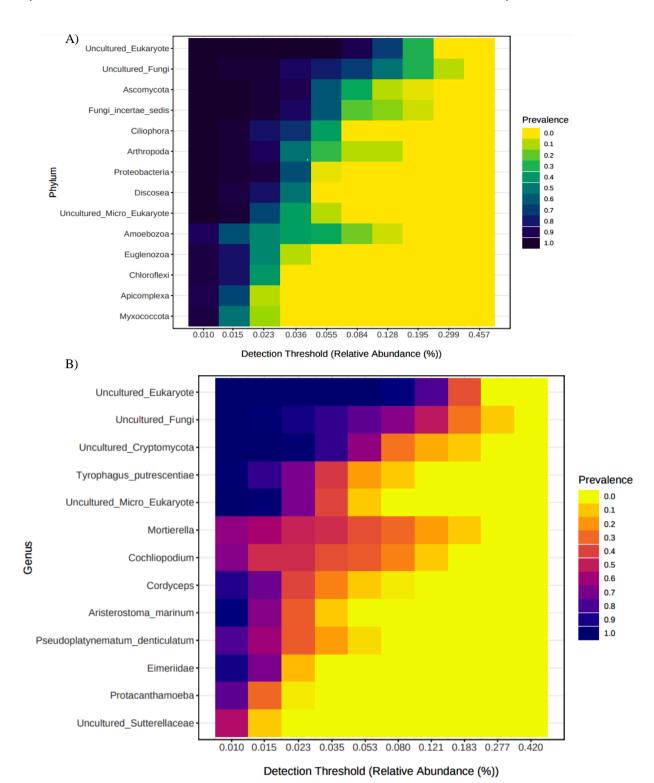
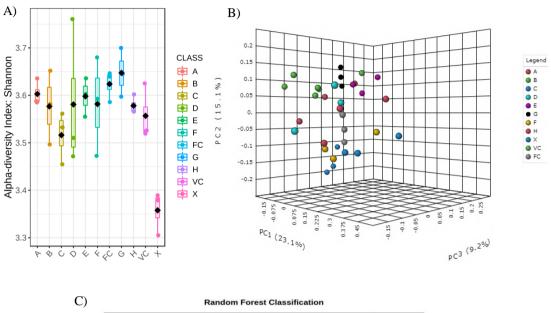




Fig 3.24: Heatmaps representing the core microbiome of beta-chitin on rice rhizosphere at Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core microbiome taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified microbiome taxa.

# 3.1.9. Influence of chitosan on rice rhizosphere bacteriomes

A low dose of chitosan has highest alpha-diversity (Shannon diversity index) at flowering than vegetative and flowering control, but lower when compared to biofertilizer treatments (Fig 3.25A). Using PCoA plots, the response of bacterial communities to chitosan treatment was shown as separate clustering of sample groups without any overlaps (Fig 3.25B). PERMANOVA revealed substantial variations in zOTU assemblage between bacterial communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for bacterial communities in different fractions is 0.818 (81.8%) (Fig 3.25C). The relative abundance of Proteobacteria, Chloroflexi, Myxococcota, Bacteroidota, Planctomycetota and Acidobacteriota were detected taxa abundant during chitosan treatment to rice rhizosphere at phylum level (Fig 3.26A). Uncultured Sutterellaceae, Uncultured Chloroflexi, Uncultured Anaerolineaceae, Uncultured Planctomycetota, Uncultured Nitrosomonadaceae, Haliangium and Flavisolibacter were the abundant taxa at genus level (Fig 3.26 B).

The core microbiome was calculated using sample prevalence (50%) with relative abundance of 0.01% for taxa at phylum level (Fig 3.27A) and genus level (Fig 3.27B) for chitosan treatment to rice rhizosphere. The core microbiome at phylum level comprised of Proteobacteria. Planctomycetota, Myxococcota, Gemmatimonadota. Chloroflexi. Bacteroidota, Acidobacteriota, Actinobacteriota, Desulfobacterota, Verrucomicrobiota, Firmicutes and Crenarchaeota (Fig 3.27A). The core microbiome at genus level comprises of Uncultured Sutterellaceae, Uncultured Steroidobacteraceae, Uncultured Planctomycetota, Uncultured Nitrosomonadaceae, Uncultured Chloroflexi, Uncultured Uncultured Vicinamibacterales. Anaerolineaceae. Flavisolibacter. Uncultured Gemmatimonadota, Uncultured Burkholderiales, Uncultured Myxococcota, Haliangium, Sphingomonas, Longilinea, Pseudomonas, Caenimonas, Sporacetigenium, Uncultured Uncultured Hydrogenophilaceae Blastocatellia, Archangium, Erythrobacter, Nannocystis (Fig 3.27B).



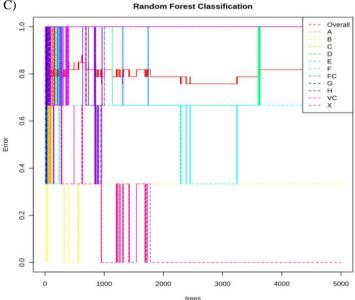



Fig 3.25: Influence of chitosan on rice rhizosphere bacteriome. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.15931; [Kruskal-Wallis] statistic: 14.31. (B) 2-D PCoA plots based on Bray–Curtis similarity [n= 57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [23.1%] and the Y-axis representing the second-highest dimension of variation [15.1%] and Z- axis represents third highest degree of variation [9.2%]. Statistical significance: [PERMANOVA] pseudo-F value: 3.3472; R<sup>2</sup>: 0.60341; p <0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 86.8% (0.868) is shown as the red line; lines of other colours represent the error rates for each class. (Chitosan - High Dosage-Vegetative – A, Chitosan - Low Dosage-Vegetative – B, Chitosan - High Dosage-Flowering – C, Chitosan - Low Dosage-Flowering – D, Bio fertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Bio fertilizer-Half RD-Flowering – H, Pre -treatment – X, Vegetative control – VC, Flowering control – FC).

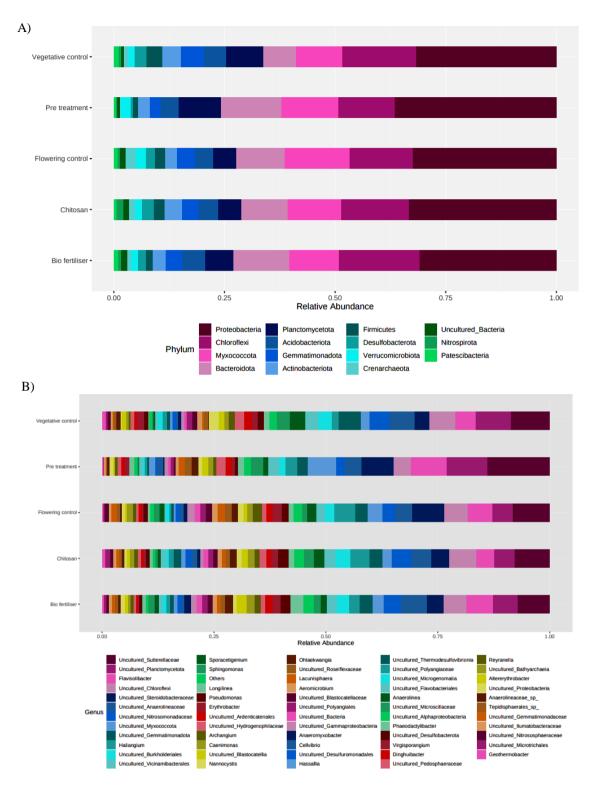
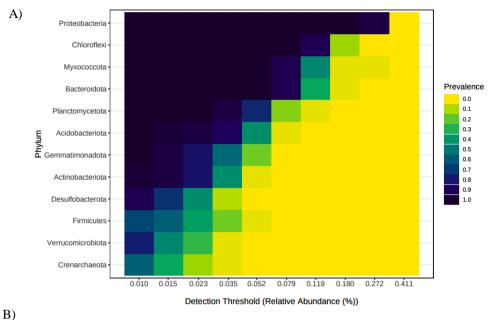




Fig 3.26: Influence of chitosan on the taxonomic composition of bacterial community of rice rhizosphere. Stacked bar plots represent the relative abundance of eukaryote taxa at Phylum level (A) and Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified bacterial taxa



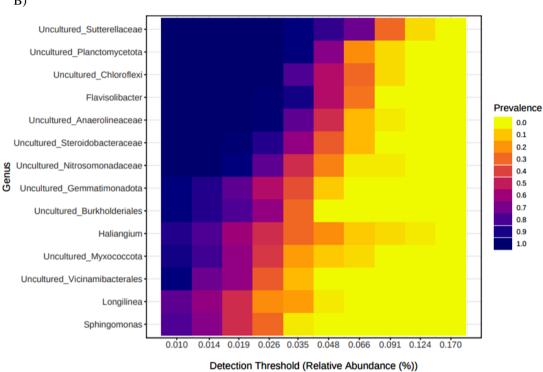



Fig 3.27: Heatmaps representing the core microbiome of chitosan on rice rhizosphere bacteriome at Phylum (A) and Genus levels (B). The Y-axis represents the prevalence level of core microbiome taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified microbiome taxa

# 3.1.10. Influence of chitosan on rice rhizosphere mycobiome

Chitosan treatment at, low dosage has highest alpha-diversity (Shannon diversity index), followed by other treatments (Fig 3.28A) at flowering. Using PCoA plots, the response of fungal communities to chitosan treatment is shown as separate clustering of sample groups without any overlaps (Fig 3.28B). PERMANOVA revealed substantial variations in zOTU assemblage between fungal communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for fungal communities in different fractions is 0.697 (69.7%) (Fig 3.28C). LEfSe analysis identified *Scedosprium* as the biomarkers associated with rice rhizosphere with chitosan amendments (Fig 3.28D).

The relative abundance of Uncultured Fungi, Ascomycota, Mucoromycota, Basidiomycota, Chytridiomycota and Blastocladiomycota was detected in chitosan-treated rice rhizosphere at phylum level (Fig 3.29A). Uncultured Fungi, *Mortierella, Scedosporium, Cordyceps, Aspergillus* and *Aigialus* were highly abundata taxa at genus level, with respect to chitosan treatment to rice rhizosphere (Fig 3.29B).

The core microbiome was calculated using sample prevalence (50 %) with relative abundance of 0.01 % for taxa at phylum and genus level and presented in Fig 3.30A, Fig 3.30B, respectively for chitosan treatment to rice rhizosphere. The core microbiome at phylum level comprised of Uncultured Fungi, Mucoromycota, Ascomycota, Basidiomycota and Chytridiomycota (Fig 3.30A). The core microbiome at genus level comprised of Uncultured Fungi, *Mortierella, Cordyceps, Aspergillus, Scedosporium, Stachybotrys elegans, Pluteus, Metarhizi, Sebacina*, Uncultured Talaromyces, *Sodiomyces alcalophilus, Chytriomyces* and *Catenaria* during chitosan treatment to rice rhizosphere (Fig 3.30B).

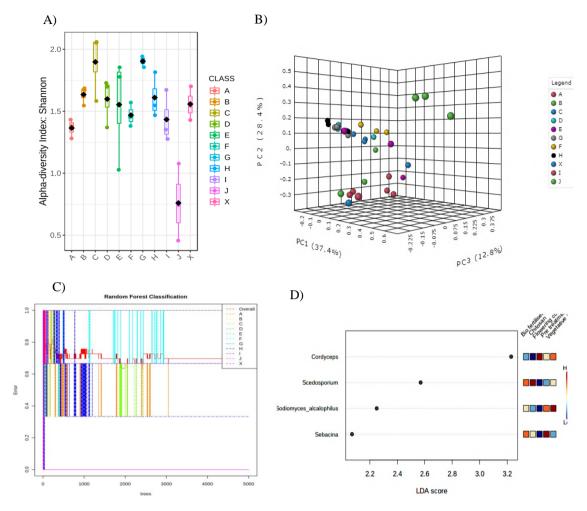



Fig 3.28: Influence of chitosan on rice rhizosphere mycobiome. (A). Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.297; [Kruskal-Wallis] statistic: 19.943. (B) 2-D PCoA plots based on Bray-Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [37.4 %] and the Y-axis representing the second-highest dimension of variation [28.4%] and Z- axis represents third highest degree of variation [12.8%]. Statistical significance: [PERMANOVA] pseudo-F value: 5.5417; R<sup>2</sup>: 0.71583; p < 0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 69.7% (0.697) is shown as the red line; lines of other colors represent the error rates for each class.(D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0.05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified taxa belongs to microbiome. (Chitosan -High Dosage-Vegetative - A, Chitosan - Low Dosage-Vegetative - B, Chitosan -High Dosage-Flowering - C, Chitosan - Low Dosage-Flowering - D, Biofertilizer-RD-Vegetative - E, Biofertilizer-Half RD-Vegetative - F, Bio fertilizer-RD-Vegetative - G, Biofertilizer-Half RD-Flowering -H, Pre-treatment -X, Vegetative control -VC, Flowering control -FC).

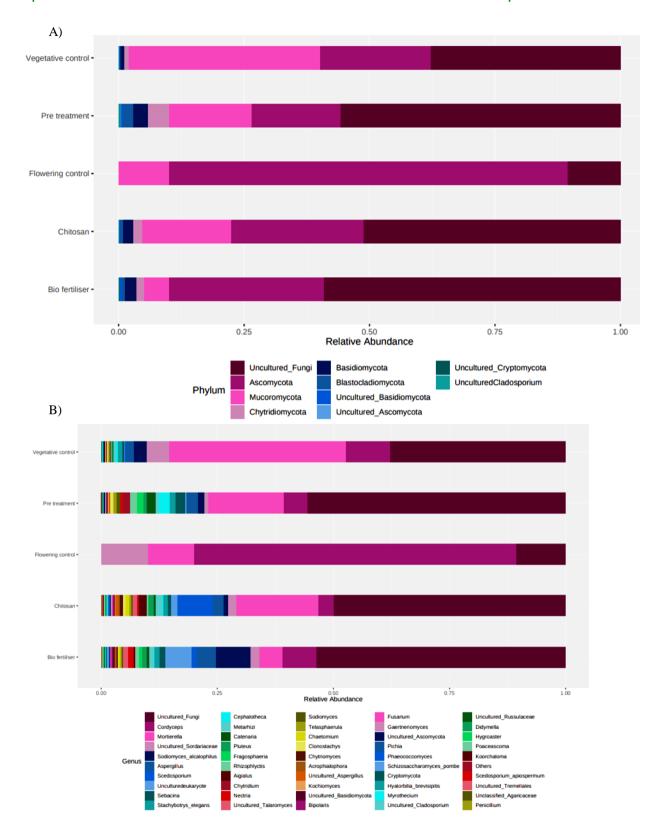



Fig 3.29: Influence of chitosan on the taxonomic composition of rice rhizosphere fungal community. Stacked bar plots represent the relative abundance of eukaryote taxa at Phylum (A) and Genus level (B). Uncultured' taxa labels in the figures represent unclassified fungal taxa

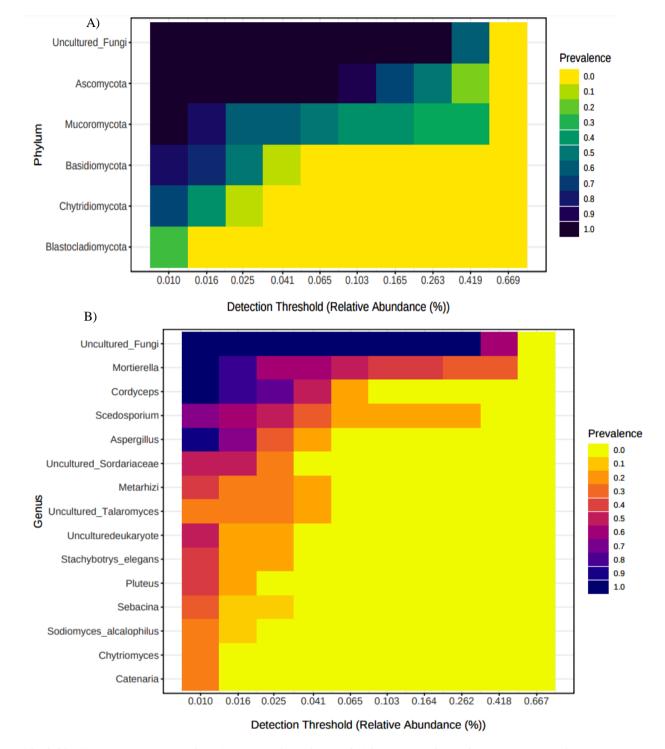



Fig 3.30: Heatmaps representing the core microbiome of chitosan on rice rhizosphere mycobiome at phylum (A) and genus levels (B). The Y-axis represents the prevalence level of core microbiome taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified microbiome taxa

# 3.1.11. Influence of chitosan on rice rhizosphere eukaryome

The chitosan treatments resulted in lowest alpha-diversity (Shannon diversity index), followed by other treatments (Fig 3.31A) at vegetative and flowering stages of rice. Using PCoA plots, the response of eukaryote communities to chitosan treatment was shown as separate clustering of sample groups without any overlaps (Fig 3.31B). PERMANOVA revealed substantial variations in zOTU assemblage between eukaryote communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for eukaryote communities in different fractions is 0.333 (33.3%) (Fig 3.31C). LEfSe analysis identified *Acanthamoeba* as the biomarkers associated with rice rhizosphere with chitosan amendment (Fig 3.31D).

The relative abundance of Uncultured Eukaryote, Fungi incertae sedis, Discosea, Ciliophora, Arthropoda, Amoebozoa, Uncultured micro Eukaryote, Euglenozoa were detected taxa abundant during chitosan treatment to rice rhizosphere at phylum level (Fig. 3.32A). Uncultured Eukaryote, Uncultured Cryptomycota, *Tyrophagus putrescentiae*, Uncultured micro Eukaryote, *Cochliopodium, Acanthamoeba, Eimeriidae, Aristerostoma marinum* were top abundant genus in rice rhizosphere amended with chitosan (Fig 3.32B).

The core microbiome was calculated using sample prevalence (50%) with relative abundance of 0.01% for taxa at phylum level (Fig 3.33A) and genus level (Fig 3.33B) for chitosan treatment. The core microbiome at phylum level comprised of Uncultured micro Eukaryote, Uncultured Fungi, Uncultured Eukaryote, Nematoda, Heterolobosea, Fungi incertae sedis, Euglenozoa, Discosea, Ciliophora, Arthropoda, Apicomplexa, Amoebozoa, Evosea, Rozellomycota, Cercozoa, Tubulinea, Oomycota, Cnidaria, Eukaryotaincertae sedis, Loukozoa and Hapista (Fig 3.33A). Uncultured micro Eukaryote, Uncultured Fungi, Uncultured Eukaryote, Uncultured Cryptomycota, *Tyrophagus* putrescentiae, *Pseudoplatynematum* denticulatum, Protacanthamoeba, Eimeriidae, Aristerostoma Telaepolella tubasferens, Acanthamoeba, Uncultured Rozellomycota, Cochliopodium and Kuklikophrya ougandae were core eukayote taxa at genus level (Fig 3.33B).

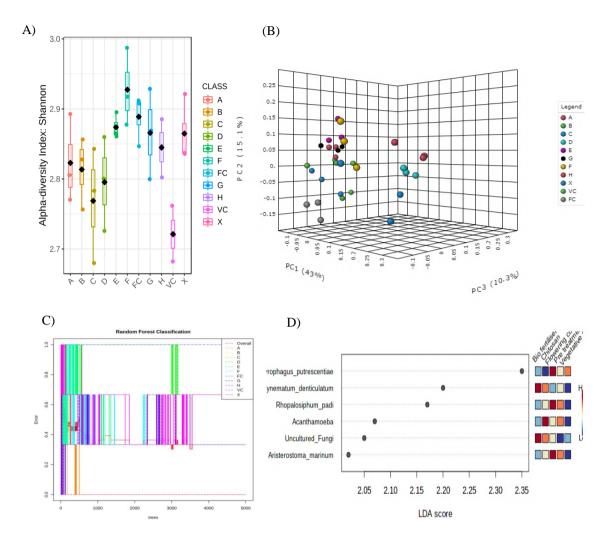



Fig 3.31: Influence of chitosan on rice rhizosphere eukaryome. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.06029; [Kruskal-Wallis] statistic: 17.697. (B) 2-D PCoA plots based on Bray-Curtis similarity [n= 57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [43 %] and the Y-axis representing the second-highest dimension of variation [15.1%] and Z- axis represents third highest degree of variation [10.3%]. Statistical significance: [PERMANOVA] pseudo-F value: 10.89; R<sup>2</sup>: 0.83194; p < 0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 33.3% (0.333) is shown as the red line; lines of other colors represent the error rates for each class. D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0.05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified taxa belongs to microbiome (Chitosan -High Dosage-Vegetative - A, Chitosan - Low Dosage-Vegetative - B, Chitosan -High Dosage-Flowering - C, Chitosan - Low Dosage-Flowering - D, Bio fertilizer-RD-Vegetative - E, Biofertilizer-Half RD-Vegetative - F, Biofertilizer-RD-Vegetative - G, Bio fertilizer-Half RD-Flowering -H, Pre-treatment -X, Vegetative control -VC, Flowering control -FC).

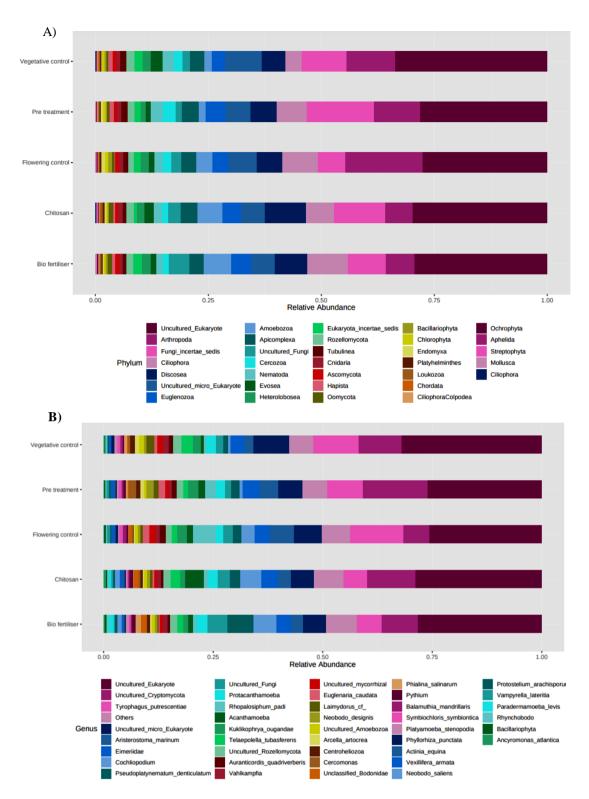
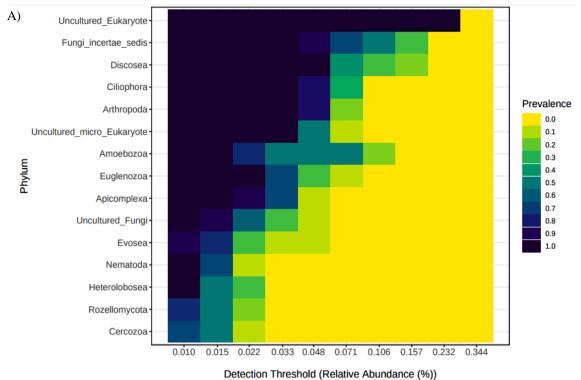




Fig 3.32: Influence of chitosan on the taxonomic composition of rice rhizosphere eukaryote community. Stacked bar plots represent the relative abundance of eukaryote taxa at Phylum level (A) and at Genus level (B). The Uncultured' taxa labels in the figures represent unclassified eukaryote taxa.



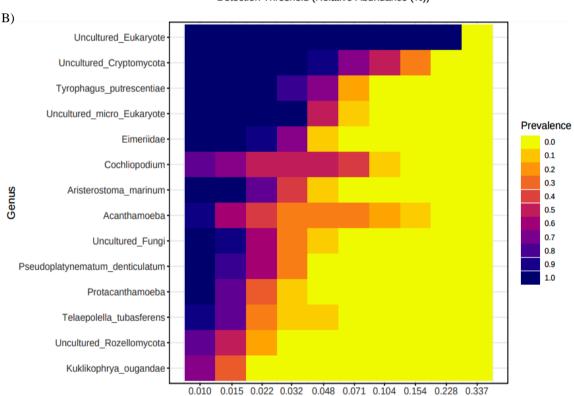



Fig 3.33: Heatmaps representing the core microbiome of chitosan on rice rhizosphere eukaryome at phylum (A) and genus levels (B). Y-axis represents the prevalence level of core microbiome taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified microbiome taxa

Detection Threshold (Relative Abundance (%))

# 3.1.12. Influence of chitosan on rice rhizosphere microbiome

The chitosan at low and high dosages and at different plant development stages has lowest alpha-diversity (Shannon diversity index) when compare to other treatments i.e. biofertilizer, vegetative and flowering control (Fig 3.34A). Using PCoA plots, the response of microbiome communities to chitosan treatment was shown as separate clustering of sample groups without any overlaps (Fig 3.34B). PERMANOVA revealed substantial variations in zOTU assemblage between microbiome communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for microbiome communities in different fractions is 0.333(33.3%) (Fig 3.34C). Sporacetigenium sp. of bacterial genus, Mortierella and Scedosporium of fungi, Acanthamoeba, Cochliopodium of eukaryota are indicator features observed for chitosan treatment to rice rhizosphere (Fig 3.34D).

The relative abundance of Uncultured Eukaryote, Fungi Incertae sedis, Discosea, Ciliophora and Arthropoda were detected taxa abundant during chitosan treatment to rice rhizosphere at phylum level (Fig 3.35A). Uncultured Eukaryote, Uncultured Cryptomycota, *Tyrophagus putrescentiae*, Uncultured micro Eukaryote, *Cochliopodium* and *Acanthamoeba* were highly abundant taxa at genus level (Fig 3.35B).

The core microbiome, calculated using sample prevalence (50 %) with relative abundance of 0.01 % for taxa, is presented at phylum level (Fig 3.36A) and genus level (Fig 3.36B) for the chitosan treatment. The core microbiome at phylum level comprised of Uncultured Micro Eukaryote, Uncultured Fungi, Uncultured Eukaryote, Proteobacteria, Fungi incertae sedis, Discosea, Ciliophora, Chloroflexi, Ascomycota, Arthropoda, Apicomplexa, Euglenozoa, Amoebozoa, Myxococcota, Bacteroidota, Evosea, Nematoda, Mucoromycota, Heterolobosea, Cercozoa, Rozellomycota and Cnidaria. Uncultured micro Eukaryote, Uncultured Fungi, Uncultured Eukaryote, Uncultured Cryptomycota, Tyrophagus putrescentiae, Pseudoplatynematum denticulatum, Protacanthamoeba, Eimeriidae, Aristerostoma marinum, Telaepolella tubasferens, Acanthamoeba, Uncultured Rozellomycota, Cochliopodium, Kuklikophrya ougandae, Unclassified Bodonidae, Rhopalosiphum padi, Neobodosaliens, Vahlkampfia, Pythium, Paradermamoeba levis, Neobodo designis and Actinia equine were core microbiome taxa at genus level (Fig 3.37B).

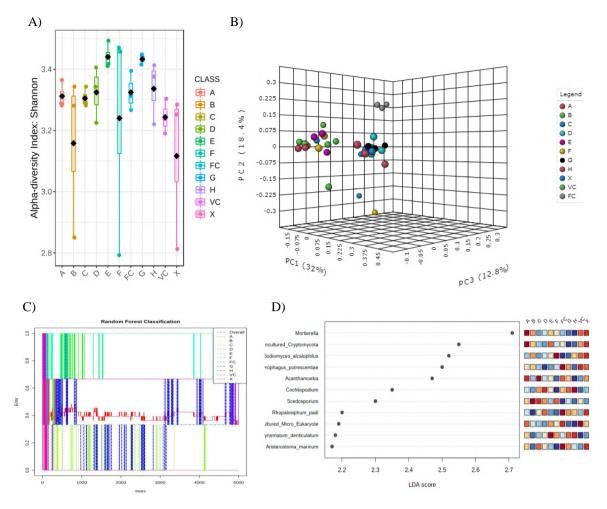



Fig 3.34: Influence of chitosan on rice rhizosphere microbiome (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.1121; [Kruskal-Wallis] statistic: 15.586. (B) 2-D PCoA plots based on Bray-Curtis similarity [n= 57]. The explained variances were shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [32%] and the Y-axis representing the second-highest dimension of variation [18.4%] and Z- axis represents third highest degree of variation [12.8%]. Statistical significance: [PERMANOVA] pseudo-F value: 53.8314; R<sup>2</sup>: 0.63524; p < 0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 33.3 % (0.333) is shown as the red line; lines of other colors represent the error rates for each class. D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted p-value [cut-off: 0.05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified taxa belongs to Microbiome (Chitosan -High Dosage-Vegetative - A, Chitosan - Low Dosage-Vegetative - B, Chitosan -High Dosage-Flowering - C, Chitosan - Low Dosage-Flowering - D, Biofertilizer-RD-Vegetative - E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Biofertilizer-Half RD-Flowering – H, Pre-treatment -X, Vegetative control -VC, Flowering control -FC).

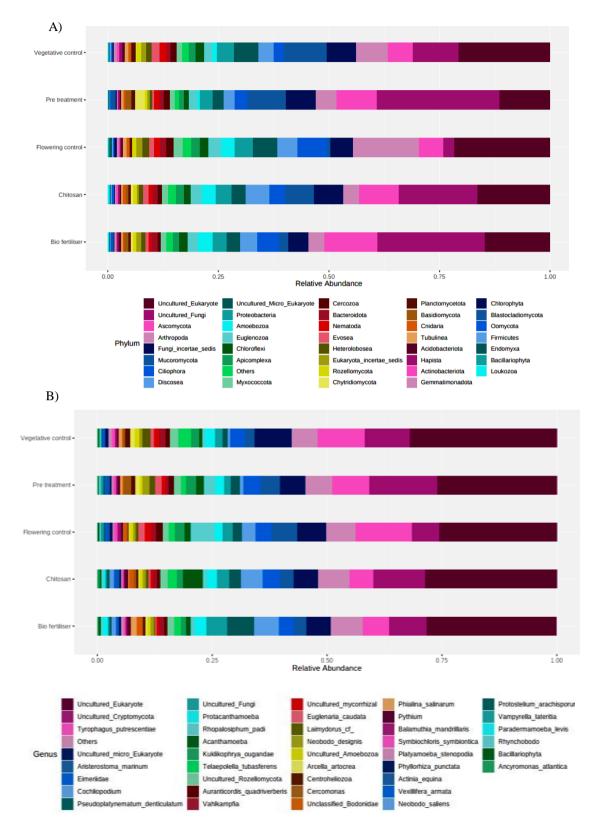
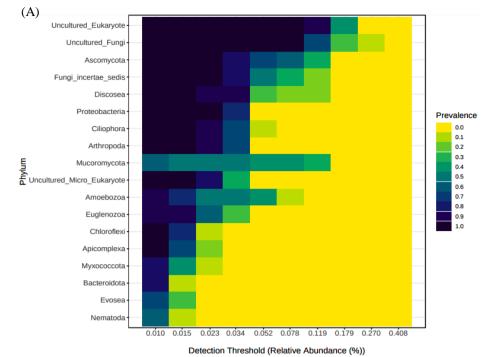




Fig 3.35: Influence of chitosan on the taxonomic composition of rhizosphere microbiome in rice. Stacked bar plots represent the relative abundance of eukaryote taxa at Phylum level (A) and Genus level (B). Uncultured' taxa labels in the figures represent unclassified microbiome taxa.



(B) Uncultured Eukaryote Uncultured\_Fungi Uncultured\_Cryptomycota Mortierella Prevalence Uncultured\_Micro\_Eukaryote 0.0 0.1 Tyrophagus\_putrescentiae 0.2 0.3 Genus Cochliopodium 0.4 Aristerostoma marinum 0.6 0.7 Eimeriidae 8.0 0.9 Pseudoplatynematum\_denticulatum 1.0 Cordyceps Protacanthamoeba Uncultured\_Fungiisolate Telaepolella\_tubasferens 0.010 0.015 0.023 0.034 0.051 0.077 0.116 0.174 0.262 0.394

Fig 3.36: Heatmaps representing the core microbiome of chitosan on rice rhizosphere at Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core microbiome taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified microbiome taxa.

Detection Threshold (Relative Abundance (%))

# 3.1.13. Influence of plant developmental stage on rice rhizosphere

The flowering stage has highest alpha-diversity (Shannon diversity index) compared to the vegetative stage (Fig 3.37A). Using PCoA plots, the response of microbiome communities to beta chitin treatment was shown as separate clustering of sample groups without any overlaps (Fig 3.37B). PERMANOVA revealed substantial variations in zOTU assemblage between microbiome communities of the different fractions. RF analysis (made by growing 5,000 decision trees) with cumulative OOB error rate for microbiome communities in different fractions is 0.526 (52.6%) (Fig 3.37C). Uncultured fungi, *Mortierella* of fungi, and *Cochliopodium* of eukaryota are the indicator features obtained for different plant developmental stages of rice rhizosphere (Fig 3.37D).

The relative abundance of Uncultured Fungi, Uncultured Eukaryote, Ascomycota, Amoebozoa, Arthropoda, Ciliophora, Discosea, Fungi incertae sedis, Euglenozoa and Proteobacteria were the abundant taxa observed during developmental stages in rice rhizosphere at phylum level (Fig 3.38A). Uncultured Fungi, Uncultured Eukaryote, *Cochliopodium*, Uncultured Cryptomycota, *Tyrophagus putrescentiae*, *Cordyceps* spp. and *Aristerostoma marinum* are majorly observed genus of rice rhizosphere (Fig 3.38B).

The core microbiome, calculated using sample prevalence (50 %) with relative abundance of 0.01 % for taxa, is presented at phylum level (Fig 3.39A) and genus level (Fig 3.39B) for vegetative and flowering stages of rice rhizosphere. The core microbiome at phylum level comprised of Uncultured Eukaryote, Proteobacteria, Fungi incertae sedis, Euglenozoa, Discosea, Ciliophora, Ascomycota and Arthropoda (Fig 3.39A). Uncultured Eukaryote, Uncultured Cryptomycota, Uncultured Micro Eukaryote, Uncultured Fungi, Tyrophagus putrescentiae, Eimeriidae, Aristerostoma marinum, Pseudoplatynematum denticulatum, Protacanthamoeba, Cordyceps, Cochliopodium, Mortierella, Uncultured Sutterellaceae, Rhopalosiphum padi, Neobodo saliens, Telaepolella tubasferens, Acanthamoeba, Uncultured Chloroflexi, Aspergillus, Uncultured Planctomycetota, Unclassified Bodonidae, Kuklikophrya ougandae, Uncultured Sordariaceae, Phialina salinarum and Flavisolibacter were core microbiome taxa at genus level (Fig 3.39B). Pseudo-F was calculated using PERMENOVA, and it was used as a proxy to identify key factors shaping rice rhizosphere microbiome and represented in Fig 3.40.

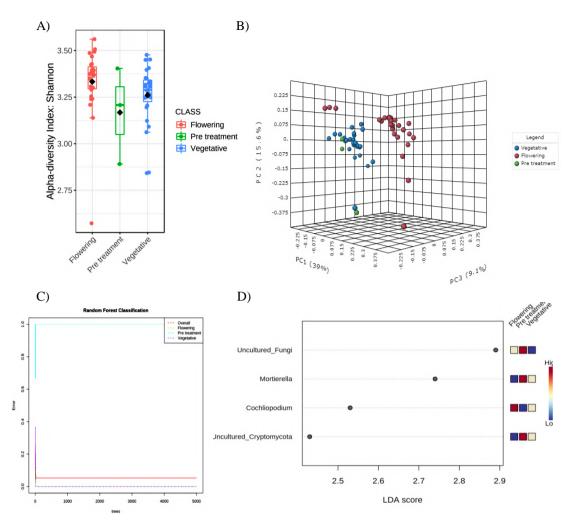



Fig 3.37: Influence of plant developmental stages on rice rhizosphere microbiome. (A) Alpha-diversity measure using Shannon index at Genus level represented as boxplots. Each boxplot represents the diversity distribution of a sample group. The sample groups are represented on the X-axis and their estimated diversity on the Y-axis. Statistical significance: p: 0.060223; [Kruskal-Wallis] statistic: 5.6194. (B) 2-D PCoA plots based on Bray-Curtis similarity [n=57]. The explained variances are shown in brackets. Each axis reflects the percentage of the variation between the samples, with the X-axis representing the highest dimension of variation [39%] and the Y-axis representing the second-highest dimension of variation [15.6%] and Z- axis represents third highest degree of variation [9.1 %]. Statistical significance: [PERMANOVA] pseudo-F value: 9.4961  $R^2$ : 0.38766; p < 0.001. (C) Cumulative OOB error rates by RF classification. The overall error rate 5.26% (0.0526) is shown as the red line; lines of other colors represent the error rates for each class. D) Graphical summary of important features (differentially abundant taxa) identified by LEfSe at the Genus level. Taxa with significant differential abundance are ranked in decreasing order of their logarithmic LDA scores (Effect Size) on the X-axis. Features are considered to be significant based on their FDR-adjusted pvalue [cut-off: 0.05]. The mini heatmap to the right of the plot indicates whether the taxa are enriched (red) or depleted (blue) in each group. 'Uncultured' taxa labels in the figures represent unclassified taxa belongs to microbiome.

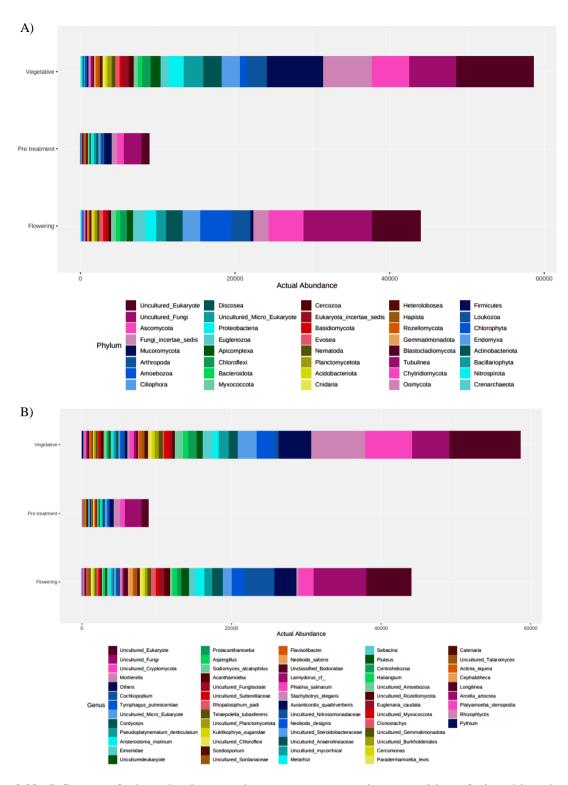



Fig 3.38: Influence of plant developmental stages on taxonomic composition of rice rhizosphere microbiome. Stacked bar plots represent the relative abundance of eukaryote taxa at Phylum level (A) and Genus level (B). 'Uncultured' taxa labels in the figures represent unclassified microbiome taxa

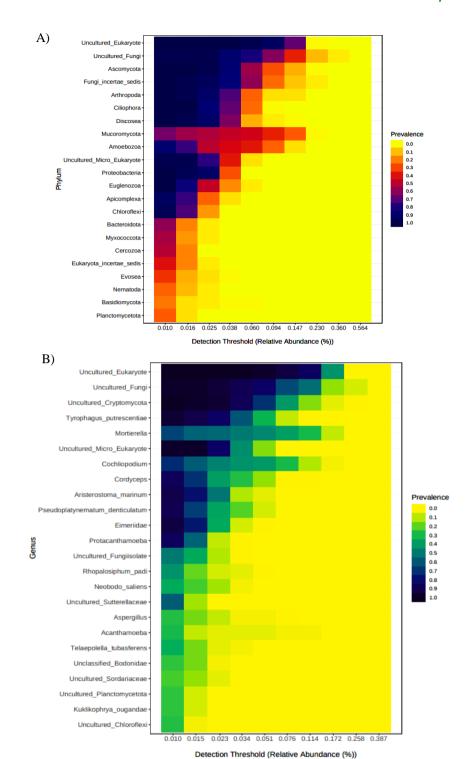



Fig 3.39: Heatmaps representing core microbiome of rice rhizosphere at Phylum (A) and Genus levels (B). Y-axis represents the prevalence level of core microbiome taxa across the detection threshold (relative abundance) range on the X-axis. The variation of prevalence of each phylum/genus is indicated by a colour gradient from blue/yellow (decreased) to red/topo blue (increased). 'Uncultured' taxa label in the figure represents unclassified microbiome taxa.



**Fig 3.40: PERMANOVA output measuring the influence of different factors**. Influences of different factors were calculated in rice rhizosphere microbiome using the pseudo-F value as a proxy.

Plant developmental stage plays a vital role in shaping the host microbiome, irrespective of the plant system. It was also observed in rice rhizosphere microbiome with different soil amendements. ANOSIM test was computed to determine the differences across factors, i.e. mono-, bi- and tri-partite combinations of soil amendments represented in Table 3.1 (treatment), 3.2 (treatment x plant state), 3.3 (treatment x dosage) and 3.4 (treatment x plant state x dosage), respectively.

Important abundant features were identified with different soil amendments to rice rhizosphere (bactera, fungi and eukarya) for alpha chitin (Fig 3.41), beta chitin (Fig 3.42), chitosan (Fig 3.43), all amandemnts (Fig 3.44) and plant developmental stages (Fig 3.45) by EdgeR algorithm with FDR adjusted at p<0.05 and expressed in RLE (Relative Log Expression).

Soil amendment with chitinous substrates showed a less significant dose-dependent response between alpha chitin high dosage and alpha chitin low dosage (R=0.03,P<0.253), alpha chitin high dosage and pre-treatment (R=0.593,P<0.024); alpha chitin high dosage and rice rhizosphere at vegetative stage (control) (R=0.593,P<0.024); alpha chitin high dosage and rice rhizosphere at flowering stage (control) (R=0.994,P<0.012); alpha chitin low dosage and rice rhizosphere at vegetative stage (control) (R=0.259,P<0.143); alpha chitin low dosage and rice rhizosphere at vegetative stage (control) (R=0.259,P<0.143); alpha chitin low dosage and

rice rhizosphere at flowering stage (control) (R=0.34,P<0.06). Similar results observed with beta chitin amendments, lowest found in beta chitin high dosage and beta chitin low dosage (R=-0.026,P<0.535); beta chitin high dosage and pre treatment (R=0.346,P<0.06); beta chitin high dosage and rice rhizosphere at vegetative stage (control) (R=0.272,P<0.107); beta chitin high dosage and rice rhizosphere at flowering stage (control) (R=0.574,P<0.024); beta chitin low dosage and pre treatment (R=0.512,P<0.024); chitin low dosage and rice rhizosphere at vegetative stage (control) (R=0.364,P<0.036); beta chitin low dosage and rice rhizosphere at flowering stage (control) (R=0.716,P<0.012). Chitosan dosage-related results were comparable to those of alpha and beta chitin, i.e., chitosan high dosage and chitosan low dosage (R=-0.002,P<0.416); chitosan high dosage and pre-treatment (R=0.556,P<0.024); chitosan high dosage and rice rhizosphere at vegetative stage (control) (R=0.512,P<0.024); chitosan high dosage and rice rhizosphere at flowering stage (control) (R=0.741,P<0.012); chitosan low dosage and pre treatment (R=0.451,P<0.024); chitosan low dosage and rice rhizosphere at vegetative stage (control) (R=0.358,P<0.048); chitosan low dosage and rice rhizosphere at flowering stage (control) (R=0.426,P<0.036); pre treatment, rice rhizosphere at vegetative stage (control) (R=0.556,P<0.1); pre treatment, rice rhizosphere at flowering stage (control) (R=1,P<0.1); rice rhizosphere at vegetative stage (control), rice rhizosphere at flowering stage (control) (R=1,P<0.1) (Table 3.3).

When three variables were combined, treatment (alpha, beta, and chitosan) x dosage (low and high) x developmental stage (vegetative and flowering), there were significant variations. Alpha chitin (high dosage at flowering stage) and alpha chitin (low dosage at flowering stage) (R=0.37, P<0.001); alpha chitin (high dosage at vegetative stage) and alpha chitin (high dosage at flowering stage) (R=1, P<0.001); alpha chitin (high dosage at vegetative stage) and alpha chitin (low dosage at vegetative stage) (R=1, P<0.001); beta chitin (high dosage at flowering stage), beta chitin (low dosage at flowering stage) (R=0.259, P<0.001); beta chitin (high dosage at vegetative stage) and beta chitin (high dosage at flowering stage) (R=1, P<0.001); beta chitin (high dosage at vegetative stage) and chitosan (high dosage at flowering stage) and chitosan (low dosage at flowering stage) (R=1, P<0.001); chitosan (high dosage at vegetative stage) and chitosan (high dosage at flowering stage) (R=1, P<0.001); chitosan (high dosage at vegetative stage) and chitosan (low dosage at flowering stage) (R=1, P<0.001). Overall, ANOISM data imply that plant developmental stage-

driven responses are greater than dose responses in all rice rhizosphere with chitin treatments (Table 3.4).

| Groups                                   | % of difference | P value |
|------------------------------------------|-----------------|---------|
| Alpha Chitin vs. Beta Chitin             | 12.1            | 0.053   |
| Alpha Chitin vs. Chitosan                | 18.5            | 0.024   |
| Alpha Chitin vs. Biofertilizer           | 15.9            | 0.031   |
| Alpha Chitin vs. Pretreatment            | 39.4            | 0.04    |
| Alpha Chitin vs. Vegetative control      | 28.3            | 0.086   |
| Alpha Chitin vs. Flowering control       | 56.2            | 0.004   |
| Beta Chitin vs. Chitosan                 | 11.2            | 0.047   |
| Beta Chitin vs. Biofertilizer            | 21.9            | 0.008   |
| Beta Chitin vs. Pretreatment             | 42.9            | 0.026   |
| Beta Chitin vs. Vegetative control       | 27.3            | 0.068   |
| Beta Chitin vs. Flowering control        | 51.8            | 0.007   |
| Chitosan vs. Biofertilizer               | 11.2            | 0.056   |
| Chitosan vs. Pretreatment                | 49.7            | 0.002   |
| Chitosan vs. Vegetative control          | 37.3            | 0.009   |
| Chitosan vs. Flowering control           | 55.2            | 0.002   |
| Biofertilizer vs. Pretreatment           | 45.2            | 0.013   |
| Biofertilizer vs. Vegetative control     | 32.9            | 0.037   |
| Biofertilizer vs. Flowering control      | 49.3            | 0.004   |
| Pretreatment vs. Vegetative control      | 55.6            | 0.1     |
| Pretreatment vs. Flowering control       | 100             | 0.1     |
| Vegetative control vs. Flowering control | 100             | 0.1     |
| Vegetative vs. Flowering                 | 74.6            | 0.001   |
| Vegetative vs. Pretreatment              | 55.4            | 0.013   |
| Flowering vs. Pretreatment               | 82.6            | 0.001   |

**Table 3.1: ANOSIM differences between various factors of rice rhizosphere microbiome.** Comparative differences were calculated using the Bray-Curtis Similarity distance matrix by ANOSIM for various soil amendments of rice rhizosphere.

| Groups                                                      | % of difference | P value |
|-------------------------------------------------------------|-----------------|---------|
| Alpha Chitin - Vegetative vs. Alpha Chitin - Flowering      | 82.2            | 0.002   |
| Alpha Chitin - Vegetative vs. Beta Chitin - Vegetative      | 67.6            | 0.002   |
| Alpha Chitin - Vegetative vs. Beta Chitin - Flowering       | 89.3            | 0.002   |
| Alpha Chitin - Vegetative vs. Chitosan – Vegetative         | 51.9            | 0.002   |
| Alpha Chitin - Vegetative vs. Chitosan – Flowering          | 100             | 0.002   |
| Alpha Chitin - Vegetative vs. Biofertilizer - Vegetative    | 59.1            | 0.002   |
| Alpha Chitin - Vegetative vs. Biofertilizer - Flowering     | 100             | 0.002   |
| Alpha Chitin - Vegetative vs. Pre treatment                 | 85.8            | 0.012   |
| Alpha Chitin - Vegetative vs. Rice - Vegetative Rhizosphere | 96.9            | 0.012   |
| Alpha Chitin - Vegetative vs. Rice - Flowering Rhizosphere  | 100             | 0.012   |
| Alpha Chitin - Flowering vs. Beta Chitin - Vegetative       | 92.4            | 0.002   |
| Alpha Chitin - Flowering vs. Beta Chitin - Flowering        | 24.3            | 0.019   |

| 0.002<br>0.002<br>0.002 |
|-------------------------|
|                         |
| 0 002                   |
|                         |
| 0.002                   |
| 0.012                   |
| 0.012                   |
| 0.012                   |
| 0.002                   |
| 0.004                   |
| 0.002                   |
| 0.002                   |
| 0.002                   |
| 0.012                   |
| 0.012                   |
| 0.012                   |
| 0.002                   |
| 0.004                   |
| 0.002                   |
| 0.002                   |
| 0.012                   |
| 0.012                   |
| 0.012                   |
| 0.002                   |
| 0.011                   |
| 0.002                   |
| 0.024                   |
| 0.012                   |
| 0.012                   |
| 0.002                   |
| 0.026                   |
| 0.012                   |
| 0.012                   |
| 0.012                   |
| 0.002                   |
| 0.024                   |
| 0.024                   |
| 0.012                   |
| 0.012                   |
| 0.012                   |
| 0.012                   |
| 0.1                     |
| 0.1                     |
| 0.1                     |
|                         |

Table 3.2: ANOSIM differences between various factors in bipartite-combinations (treatment X plant state) of rice rhizosphere microbiome. Comparative differences were calculated using the Bray-Curtis Similarity distance matrix by ANOSIM for various soil amendments of rice rhizosphere.

| Groups                                                        | % Difference | P Value |
|---------------------------------------------------------------|--------------|---------|
| Alpha Chitin (High) vs. Alpha Chitin (Low)                    | 3            | 0.253   |
| Alpha Chitin (High) vs. Beta Chitin (High)                    | 19.8         | 0.087   |
| Alpha Chitin (High) vs. Beta Chitin (Low)                     | 9.6          | 0.128   |
| Alpha Chitin (High) vs. Chitosan (High)                       | 28.9         | 0.082   |
| Alpha Chitin (High) vs. Chitosan (Low)                        | 13.7         | 0.11    |
| Alpha Chitin (High) vs. Biofertilizer (RD)                    | 28.9         | 0.082   |
| Alpha Chitin (High) vs. Biofertilizer (Half RD)               | 18.5         | 0.1     |
| Alpha Chitin (High) vs. Pre treatment                         | 59.3         | 0.024   |
| Alpha Chitin (High) vs. Rice Rhizosphere (Vegetative control) | 59.3         | 0.024   |
| Alpha Chitin (High) vs. Rice Rhizosphere (Flowering control)  | 99.4         | 0.012   |
| Alpha Chitin (Low) vs. Beta Chitin (High)                     | 7.2          | 0.199   |
| Alpha Chitin (Low) vs. Beta Chitin (Low)                      | 20.9         | 0.084   |
| Alpha Chitin (Low) vs. Chitosan (High)                        | 29.1         | 0.05    |
| Alpha Chitin (Low) vs. Chitosan (Low)                         | 4.6          | 0.232   |
| Alpha Chitin (Low) vs. Biofertilizer (RD)                     | 18.1         | 0.078   |
| Alpha Chitin (Low) vs. Biofertilizer (Half RD)                | 4.4          | 0.273   |
| Alpha Chitin (Low) vs. Pre treatment                          | 27.2         | 0.06    |
| Alpha Chitin (Low) vs. Rice Rhizosphere (Vegetative control)  | 25.9         | 0.143   |
| Alpha Chitin (Low) vs. Rice Rhizosphere (Flowering control)   | 34           | 0.06    |
| Beta Chitin (High) vs. Beta Chitin (Low)                      | 0            | 0.535   |
| Beta Chitin (High) vs. Chitosan (High)                        | 19.8         | 0.091   |
| Beta Chitin (High) vs. Chitosan (Low)                         | 8.3          | 0.216   |
| Beta Chitin (High) vs. Biofertilizer (RD)                     | 28.5         | 0.063   |
| Beta Chitin (High) vs. Biofertilizer (Half RD)                | 15.7         | 0.11    |
| Beta Chitin (High) vs. Pre treatment                          | 34.6         | 0.06    |
| Beta Chitin (High) vs. Rice Rhizosphere (Vegetative control)  | 27.2         | 0.107   |
| Beta Chitin (High) vs. Rice Rhizosphere (Flowering control)   | 57.4         | 0.024   |
| Beta Chitin (Low) vs. Chitosan (High)                         | 11.5         | 0.117   |
| Beta Chitin (Low) vs. Chitosan (Low)                          | 2            | 0.333   |
| Beta Chitin (Low) vs. Biofertilizer (RD)                      | 22.8         | 0.078   |
| Beta Chitin (Low) vs. Biofertilizer (Half RD)                 | 16.7         | 0.087   |
| Beta Chitin (Low) vs. Pretreatment                            | 51.2         | 0.024   |
| Beta Chitin (Low) vs. Rice Rhizosphere (Vegetative control)   | 36.4         | 0.036   |
| Beta Chitin (Low) vs. Rice Rhizosphere (Flowering control)    | 71.6         | 0.012   |
| Chitosan (High) vs. Chitosan (Low)                            | 0            | 0.416   |
| Chitosan (High) vs. Biofertilizer (RD)                        | 24.3         | 0.078   |
| Chitosan (High) vs. Biofertilizer (Half RD)                   | 24.6         | 0.069   |
| Chitosan (High) vs. Pretreatment                              | 55.6         | 0.024   |
| Chitosan (High) vs. Rice Rhizosphere (Vegetative control)     | 51.2         | 0.024   |
| Chitosan (High) vs. Rice Rhizosphere (Flowering control)      | 74.1         | 0.012   |
| Chitosan (Low) vs. Biofertilizer (RD)                         | 13.9         | 0.104   |
| Chitosan (Low) vs. Biofertilizer (Half RD)                    | 1.9          | 0.344   |
| Chitosan (Low) vs. Pretreatment                               | 45.1         | 0.024   |
| Chitosan (Low) vs. Rice Rhizosphere (Vegetative control)      | 35.8         | 0.048   |
| Chitosan (Low) vs. Rice Rhizosphere (Flowering control)       | 42.6         | 0.036   |

| Biofertilizer (RD) vs. Biofertilizer (Half RD)                                 | 9.3  | 0.134 |
|--------------------------------------------------------------------------------|------|-------|
| Biofertilizer (RD) vs. Pretreatment                                            | 63   | 0.024 |
| Biofertilizer (RD) vs. Rice Rhizosphere (Vegetative control)                   | 54.9 | 0.024 |
| Biofertilizer (RD) vs. Rice Rhizosphere (Flowering control)                    | 89.5 | 0.012 |
| Biofertilizer (Half RD) vs. Pretreatment                                       | 35.2 | 0.048 |
| Biofertilizer (Half RD) vs. Rice Rhizosphere (Vegetative control)              | 30.9 | 0.048 |
| Biofertilizer (Half RD) vs. Rice Rhizosphere (Flowering control)               | 45.1 | 0.036 |
| Pretreatment vs. Rice Rhizosphere (Vegetative control)                         | 55.6 | 0.1   |
| Pretreatment vs. Rice Rhizosphere (Flowering control)                          | 100  | 0.1   |
| Rice Rhizosphere (Vegetative control) vs. Rice Rhizosphere (Flowering control) | 100  | 0.1   |

**Table 3.3: ANOSIM differences between various factors in bipartite-combinations (treatment X dosage) of rice rhizosphere microbiome.** Comparative differences were calculated using the Bray-Curtis Similarity distance matrix by ANOSIM for various soil amendments of rice rhizosphere. RD- recommended dosage, Half RD – Half recommended dosage.

| Groups                                                            | % of difference | P value |
|-------------------------------------------------------------------|-----------------|---------|
| Alpha Chitin-High-Vegetative vs. Alpha Chitin-Low-Vegetative      | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Alpha Chitin-High-Flowering      | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Alpha Chitin-Low-Flowering       | 70.4            | 0.1     |
| Alpha Chitin-High-Vegetative vs. Beta Chitin-High-Vegetative      | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Beta Chitin-Low-Vegetative       | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Beta Chitin-High-Flowering       | 96.3            | 0.1     |
| Alpha Chitin-High-Vegetative vs. Beta Chitin-Low-Flowering        | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Chitosan-High-Vegetative         | 96.3            | 0.1     |
| Alpha Chitin-High-Vegetative vs. Chitosan-Low-Vegetative          | 55.6            | 0.1     |
| Alpha Chitin-High-Vegetative vs. Chitosan-High-Flowering          | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Chitosan-Low-Flowering           | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Biofertilizer-RD-Vegetative      | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Biofertilizer-Half RD-Vegetative | 55.6            | 0.1     |
| Alpha Chitin-High-Vegetative vs. Biofertilizer-RD-Flowering       | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Biofertilizer-Half RD-Flowering  | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs . Pre treatment                   | 55.6            | 0.1     |
| Alpha Chitin-High-Vegetative vs. Vegetative control               | 100             | 0.1     |
| Alpha Chitin-High-Vegetative vs. Flowering control                | 100             | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Alpha Chitin-High-Flowering       | 100             | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Alpha Chitin-Low-Flowering        | 85.2            | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Beta Chitin-High-Vegetative       | 100             | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Beta Chitin-Low-Vegetative        | 100             | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Beta Chitin-High-Flowering        | 100             | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Beta Chitin-Low-Flowering         | 100             | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Chitosan-High-Vegetative          | 100             | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Chitosan-Low-Vegetative           | 44.4            | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Chitosan-High-Flowering           | 100             | 0.1     |
| Alpha Chitin-Low-Vegetative vs. Chitosan-Low-Flowering            | 100             | 0.1     |

| Alpha Chitin-Low-Vegetative vs. Biofertilizer-RD-Vegetative      | 100  | 0.1 |
|------------------------------------------------------------------|------|-----|
| Alpha Chitin-Low-Vegetative vs. Biofertilizer-Half RD-Vegetative | 55.6 | 0.1 |
| Alpha Chitin-Low-Vegetative vs. Biofertilizer-RD-Flowering       | 100  | 0.1 |
| Alpha Chitin-Low-Vegetative vs. Biofertilizer-Half RD-Flowering  | 100  | 0.1 |
| Alpha Chitin-Low-Vegetative vs. Pre treatment                    | 59.3 | 0.1 |
| Alpha Chitin-Low-Vegetative vs. Vegetative control               | 92.6 | 0.1 |
| Alpha Chitin-Low-Vegetative vs. Flowering control                | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Alpha Chitin-Low-Flowering       | 37   | 0.1 |
| Alpha Chitin-High-Flowering vs. Beta Chitin-High-Vegetative      | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Beta Chitin-Low-Vegetative       | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Beta Chitin-High-Flowering       | 55.6 | 0.1 |
| Alpha Chitin-High-Flowering vs. Beta Chitin-Low-Flowering        | 92.6 | 0.1 |
| Alpha Chitin-High-Flowering vs. Chitosan-High-Vegetative         | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Chitosan-Low-Vegetative          | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Chitosan-High-Flowering          | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Chitosan-Low-Flowering           | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Biofertilizer-RD-Vegetative      | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Biofertilizer-Half RD-Vegetative | 81.5 | 0.1 |
| Alpha Chitin-High-Flowering vs. Biofertilizer-RD-Flowering       | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Biofertilizer-Half RD-Flowering  | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Pre treatment                    | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Vegetative control               | 100  | 0.1 |
| Alpha Chitin-High-Flowering vs. Flowering control                | 100  | 0.1 |
| Alpha Chitin-Low-Flowering vs. Beta Chitin-High-Vegetative       | 92.6 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Beta Chitin-Low-Vegetative        | 96.3 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Beta Chitin-High-Flowering        | 14.8 | 0.4 |
| Alpha Chitin-Low-Flowering vs. Beta Chitin-Low-Flowering         | 33.3 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Chitosan-High-Vegetative          | 88.9 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Chitosan-Low-Vegetative           | 100  | 0.1 |
| Alpha Chitin-Low-Flowering vs. Chitosan-High-Flowering           | 59.3 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Chitosan-Low-Flowering            | 44.4 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Biofertilizer-RD-Vegetative       | 81.5 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Biofertilizer-Half RD-Vegetative  | 92.6 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Biofertilizer-RD-Flowering        | 51.9 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Biofertilizer-Half RD-Flowering   | 48.1 | 0.1 |
| Alpha Chitin-Low-Flowering vs. Pre treatment                     | 100  | 0.1 |
| Alpha Chitin-Low-Flowering vs. Vegetative control                | 100  | 0.1 |
| Alpha Chitin-Low-Flowering vs. Flowering control                 | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Beta Chitin-Low-Vegetative       | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Beta Chitin-High-Flowering       | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Beta Chitin-Low-Flowering        | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Chitosan-High-Vegetative         | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Chitosan-Low-Vegetative          | 66.7 | 0.1 |
| Beta Chitin-High-Vegetative vs. Chitosan-High-Flowering          | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Chitosan-Low-Flowering           | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Biofertilizer-RD-Vegetative      | 100  | 0.1 |

| Beta Chitin-High-Vegetative vs. Biofertilizer-Half RD-Vegetative | 59.3 | 0.1 |
|------------------------------------------------------------------|------|-----|
| Beta Chitin-High-Vegetative vs. Biofertilizer-RD-Flowering       | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Biofertilizer-Half RD-Flowering  | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Pre treatment                    | 63   | 0.1 |
| Beta Chitin-High-Vegetative vs. Vegetative control               | 100  | 0.1 |
| Beta Chitin-High-Vegetative vs. Flowering control                | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Beta Chitin-High-Flowering        | 96.3 | 0.1 |
| Beta Chitin-Low-Vegetative vs. Beta Chitin-Low-Flowering         | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Chitosan-High-Vegetative          | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Chitosan-Low-Vegetative           | 40.7 | 0.1 |
| Beta Chitin-Low-Vegetative vs. Chitosan-High-Flowering           | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Chitosan-Low-Flowering            | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Biofertilizer-RD-Vegetative       | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Biofertilizer-Half RD-Vegetative  | 55.6 | 0.1 |
| Beta Chitin-Low-Vegetative vs. Biofertilizer-RD-Flowering        | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Biofertilizer-Half RD-Flowering   | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Pre treatment                     | 70.4 | 0.1 |
| Beta Chitin-Low-Vegetative vs. Vegetative control                | 100  | 0.1 |
| Beta Chitin-Low-Vegetative vs. Flowering control                 | 100  | 0.1 |
| Beta Chitin-High-Flowering vs. Beta Chitin-Low-Flowering         | 25.9 | 0.2 |
| Beta Chitin-High-Flowering vs. Chitosan-High-Vegetative          | 85.2 | 0.1 |
| Beta Chitin-High-Flowering vs. Chitosan-Low-Vegetative           | 100  | 0.1 |
| Beta Chitin-High-Flowering vs. Chitosan-High-Flowering           | 55.6 | 0.1 |
| Beta Chitin-High-Flowering vs. Chitosan-Low-Flowering            | 55.6 | 0.1 |
| Beta Chitin-High-Flowering vs. Biofertilizer-RD-Vegetative       | 96.3 | 0.1 |
| Beta Chitin-High-Flowering vs. Biofertilizer-Half RD-Vegetative  | 96.3 | 0.1 |
| Beta Chitin-High-Flowering vs. Biofertilizer-RD-Flowering        | 55.6 | 0.1 |
| Beta Chitin-High-Flowering vs. Biofertilizer-Half RD-Flowering   | 85.2 | 0.1 |
| Beta Chitin-High-Flowering vs. Pre treatment                     | 100  | 0.1 |
| Beta Chitin-High-Flowering vs. Vegetative control                | 100  | 0.1 |
| Beta Chitin-High-Flowering vs. Flowering control                 | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Chitosan-High-Vegetative           | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Chitosan-Low-Vegetative            | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Chitosan-High-Flowering            | 96.3 | 0.1 |
| Beta Chitin-Low-Flowering vs. Chitosan-Low-Flowering             | 77.8 | 0.1 |
| Beta Chitin-Low-Flowering vs. Biofertilizer-RD-Vegetative        | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Biofertilizer-Half RD-Vegetative   | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Biofertilizer-RD-Flowering         | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Biofertilizer-Half RD-Flowering    | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Pre treatment                      | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Vegetative control                 | 100  | 0.1 |
| Beta Chitin-Low-Flowering vs. Flowering control                  | 100  | 0.1 |
| Chitosan-High-Vegetative vs. Chitosan-Low-Vegetative             | 44.4 | 0.1 |
| Chitosan-High-Vegetative vs. Chitosan-High-Flowering             | 100  | 0.1 |
| Chitosan-High-Vegetative vs. Chitosan-Low-Flowering              | 100  | 0.1 |
| Chitosan-High-Vegetative vs. Biofertilizer-RD-Vegetative         | 92.6 | 0.1 |
|                                                                  |      |     |

| Chitosan-High-Vegetative vs. Biofertilizer-Half RD-Vegetative        | 55.6 | 0.1 |
|----------------------------------------------------------------------|------|-----|
| Chitosan-High-Vegetative vs. Biofertilizer-RD-Flowering              | 100  | 0.1 |
| Chitosan-High-Vegetative vs. Biofertilizer-Half RD-Flowering         | 100  | 0.1 |
| Chitosan-High-Vegetative vs. Pre treatment                           | 55.6 | 0.1 |
| Chitosan-High-Vegetative vs. Vegetative control                      | 100  | 0.1 |
| Chitosan-High-Vegetative vs. Flowering control                       | 100  | 0.1 |
| Chitosan-Low-Vegetative vs. Chitosan-High-Flowering                  | 100  | 0.1 |
| Chitosan-Low-Vegetative vs. Chitosan-Low-Flowering                   | 100  | 0.1 |
| Chitosan-Low-Vegetative vs. Biofertilizer-RD-Vegetative              | 59.3 | 0.1 |
| Chitosan-Low-Vegetative vs. Biofertilizer-Half RD-Vegetative         | 7.4  | 0.5 |
| Chitosan-Low-Vegetative vs. Biofertilizer-RD-Flowering               | 100  | 0.1 |
| Chitosan-Low-Vegetative vs. Biofertilizer-Half RD-Flowering          | 100  | 0.1 |
| Chitosan-Low-Vegetative vs. Pre treatment                            | 70.4 | 0.1 |
| Chitosan-Low-Vegetative vs. Vegetative control                       | 59.3 | 0.1 |
| Chitosan-Low-Vegetative vs. Flowering control                        | 100  | 0.1 |
| Chitosan-High-Flowering vs. Chitosan-Low-Flowering                   | 100  | 0.1 |
| Chitosan-High-Flowering vs. Biofertilizer-RD-Vegetative              | 100  | 0.1 |
| Chitosan-High-Flowering vs. Biofertilizer-Half RD-Vegetative         | 100  | 0.1 |
| Chitosan-High-Flowering vs. Biofertilizer-RD-Flowering               | 100  | 0.1 |
| Chitosan-High-Flowering vs. Biofertilizer-Half RD-Flowering          | 100  | 0.1 |
| Chitosan-High-Flowering vs. Pre treatment                            | 100  | 0.1 |
| Chitosan-High-Flowering vs. Vegetative control                       | 100  | 0.1 |
| Chitosan-High-Flowering vs. Flowering control                        | 100  | 0.1 |
| Chitosan-Low-Flowering vs. Biofertilizer-RD-Vegetative               | 100  | 0.1 |
| Chitosan-Low-Flowering vs. Biofertilizer-Half RD-Vegetative          | 100  | 0.1 |
| Chitosan-Low-Flowering vs. Biofertilizer-RD-Flowering                | 100  | 0.1 |
| Chitosan-Low-Flowering vs. Biofertilizer-Half RD-Flowering           | 88.9 | 0.1 |
| Chitosan-Low-Flowering vs. Pre treatment                             | 100  | 0.1 |
| Chitosan-Low-Flowering vs. Vegetative control                        | 100  | 0.1 |
| Chitosan-Low-Flowering vs. Flowering control                         | 100  | 0.1 |
| Biofertilizer-RD-Vegetative vs. Biofertilizer-Half RD-Vegetative     | 55.6 | 0.1 |
| Biofertilizer-RD-Vegetative vs. Biofertilizer-RD-Flowering           | 100  | 0.1 |
| Biofertilizer-RD-Vegetative vs. Biofertilizer-Half RD-Flowering      | 100  | 0.1 |
| Biofertilizer-RD-Vegetative vs. Pre treatment                        | 63   | 0.1 |
| Biofertilizer-RD-Vegetative vs. Vegetative control                   | 100  | 0.1 |
| Biofertilizer-RD-Vegetative vs. Flowering control                    | 100  | 0.1 |
| Biofertilizer-Half RD-Vegetative vs. Biofertilizer-RD-Flowering      | 77.8 | 0.1 |
| Biofertilizer-Half RD-Vegetative vs. Biofertilizer-Half RD-Flowering | 100  | 0.1 |
| Biofertilizer-Half RD-Vegetative vs. Pre treatment                   | 66.7 | 0.1 |
| Biofertilizer-Half RD-Vegetative vs. Vegetative control              | 55.6 | 0.1 |
| Biofertilizer-Half RD-Vegetative vs. Flowering control               | 100  | 0.1 |
| Biofertilizer-RD-Flowering vs. Biofertilizer-Half RD-Flowering       | 96.3 | 0.1 |
| Biofertilizer-RD-Flowering vs. Pre treatment                         | 100  | 0.1 |
| Biofertilizer-RD-Flowering vs. Vegetative control                    | 100  | 0.1 |
| Biofertilizer-RD-Flowering vs. Flowering control                     | 100  | 0.1 |
| Biofertilizer-Half RD-Flowering vs. Pre treatment                    | 100  | 0.1 |
|                                                                      |      |     |

| Biofertilizer-Half RD-Flowering vs. Vegetative control | 100  | 0.1 |
|--------------------------------------------------------|------|-----|
| Biofertilizer-Half RD-Flowering vs. Flowering control  | 100  | 0.1 |
| Pre treatment vs. Vegetative control                   | 55.6 | 0.1 |
| Pre treatment vs. Flowering control                    | 100  | 0.1 |
| Vegetative control vs. Flowering control               | 100  | 0.1 |

**Table 3.4: ANOSIM differences between various factors Tripartite-combinations (treatment X dosage X plant state) of rice rhizosphere microbiome.** Comparative differences were calculated using the Bray-Curtis Similarity distance matrix by ANOSIM for various soil amendments of rice rhizosphere. RD-recommended dosage, Half RD – Half recommended dosage.

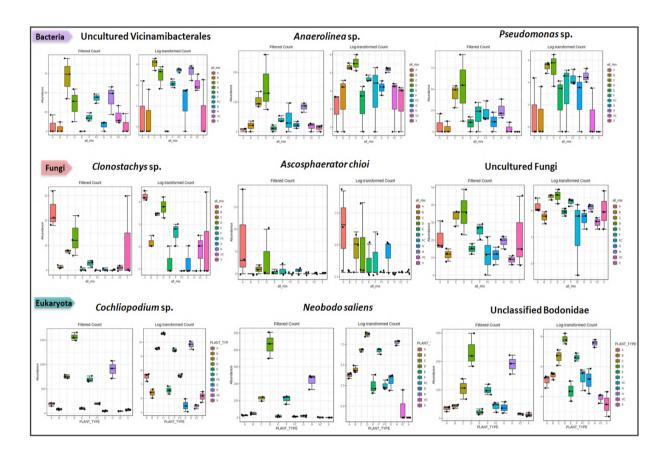



Fig 3.41: Important abundant features identified with alpha chitin amendement to rice rhizosphere. Alpha Chitin-High Dosage-Vegetative – A, Alpha Chitin-Low Dosage-Vegetative – B, Alpha Chitin-High Dosage-Flowering – C, Alpha Chitin-Low Dosage-Flowering – D, Bio fertilizer-RD-Vegetative – E, Bio fertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Biofertilizer-Half RD-Flowering – H, Pre treatment – X, Vegetative control – VC, Flowering control – FC

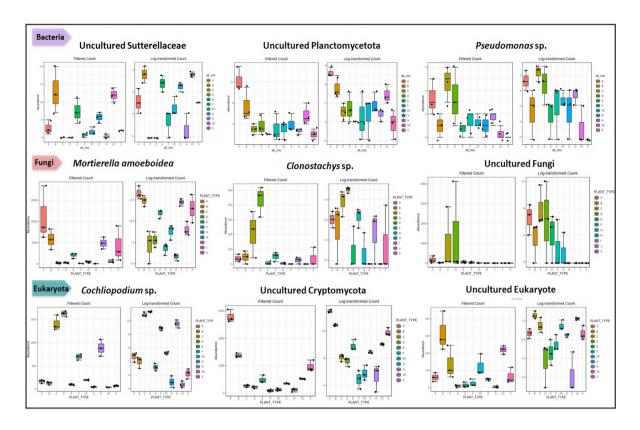



Fig 3.42: Important abundant features identified with beta chitin amendement to rice rhizosphere. Beta Chitin-High Dosage-Vegetative – A, Beta Chitin-Low Dosage-Vegetative – B, Beta Chitin-High Dosage-Flowering – C, Beta Chitin-Low Dosage-Flowering – D, Biofertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Biofertilizer-Half RD-Flowering – H, Pre treatment – X, Vegetative control – VC, Flowering control – FC.

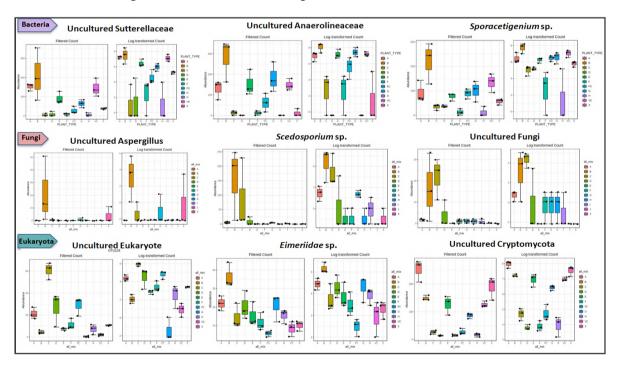



Fig 3.43: Important abundant features identified with chitosan amendement to rice rhizosphere. Chitosan -High Dosage-Vegetative – A, Chitosan - Low Dosage-Vegetative – B, Chitosan - High Dosage-Flowering – C, Chitosan - Low Dosage-Flowering – D, Biofertilizer-RD-Vegetative – E, Biofertilizer-Half RD-Vegetative – F, Biofertilizer-RD-Vegetative – G, Biofertilizer-Half RD-Flowering – H, Pre treatment – X, Vegetative control – VC, Flowering control – FC

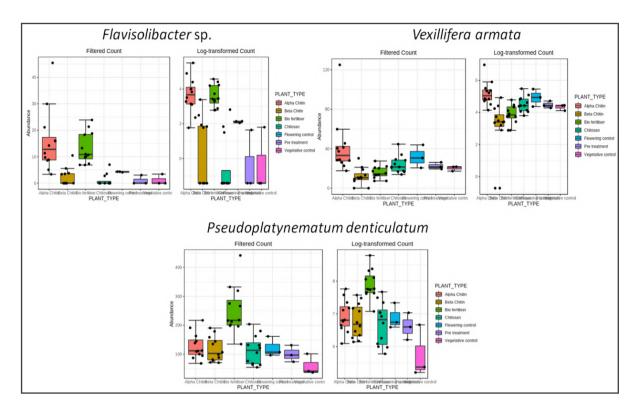



Fig 3.44: Important abundant features identified with diverse soil amendments to rice rhizosphere. EdgeR algorithm with FDR adjusted at p < 0.05 and expressed in RLE (Relative Log Expression) for chitosan, alpha and beta chitin in comparision with vegetative and flowering control, pretreatment.

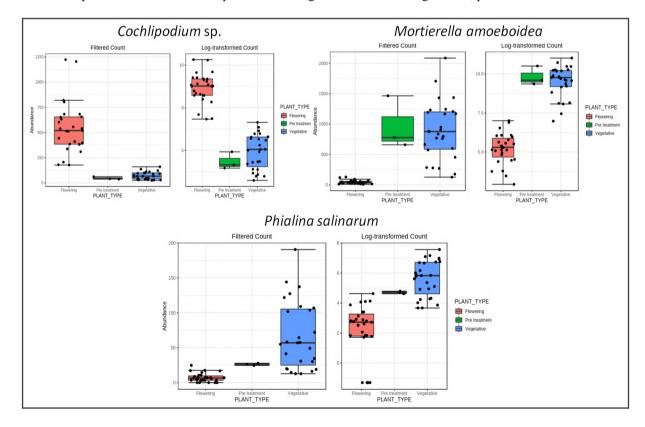
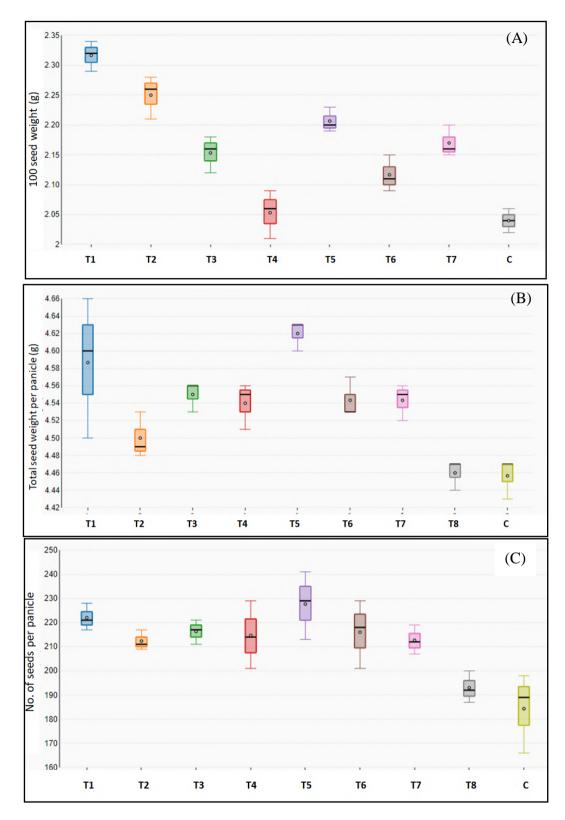
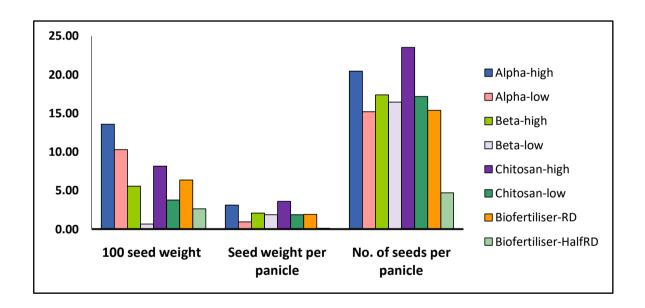




Fig 3.45: Important abundant features identified with different plant states in rice rhizosphere. EdgeR algorithm with FDR adjusted at p < 0.05 and expressed in RLE (Relative Log Expression) for vegetative and flowering stages in comparison with pretreatment.

## 3.1.14. Amendments with chitinous substrates increased rice yield

Soil amendment with chitinous substrates at different doses increased rice yield in terms of 100 seed weight, number of seeds per panicle and total seed weight per panicle, as represented in Fig 3.46. A one way ANOVA summary of the same represented in Table 3.5. Percentage improvement has been cacluated in comparision with control, number of seeds per panicle improved with various chitinous substartes along with other yield parameters and represented in Fig 3.46.


Rice yield has improved under application of various chitinous amendments and box plots with standard deviation were represented Fig 3.46. Yield characteristics such as 100 seed weight (g), number of seeds per panicle, and total seed weight (g) have been recorded. One way ANOVA calculated and represented in Table 3.5, each treatment is significant as F stat > P value, allowing us to reject the null hypothesis. Percentage improvemt has been calcluted in comparsion with untreated control for each yield trait and represented in Fig 3.7. It is observed that percentage improvement for 100 seed weight is alpha chitin - high dosage (13.56%), alpha chitin - low dosage (10.29%), Beta chitin - high dosage (5.56%), Beta chitin - low dosage (0.65%), Chitosan - high dosage (8.17%), Chitosan - low dosage (3.76%), Biofertilizer - RD (6.37%) and Biofertilizer - halfRD (2.61%). Seed weight per panicle improved by alpha chitin - high dosage (3.12%), alpha chitin - low dosage (0.93%), beta chitin - high dosage (2.07%), beta chitin - low dosage (1.88%), Chitosan - high dosage (3.60%), Chitosan - low dosage (1.87%), Biofertilizer - RD (1.89%), Biofertilizer - halfRD (0.09%). Total seedweight improved by alpha chitin - high dosage (20.43%), alpha chitin low dosage (15.19%), beta chitin - high dosage (17.36%), beta chitin - low dosage (16.46%), chitosan - high dosage (23.51%), chitosan - low dosage (17.18%), biofertilizer -RD (15.37%) and biofertilizer – halfRD (4.70%).



**Fig 3.46: Rice yield under various chitinous substrate amendments.** Yield under various chitinous substrates (A) 100 seed weight (g), (B) No. of seeds per panicle, (C) Total seed weight per panicle (g). T1-Alpha chitin (high dosage), T2- Alpha chitin (low dosage), T3- Beta chitin (High dosage), T4- Beta chitin (Low dosage), T5- Chitosan (High dosage), T6- Chitosan (Low dosage), T7-Biofertilzer (RD), T8-Bioferilizer (Half RD), control. High dosage (100 mg/Kg of soil), low dosage (50 mg/Kg of soil), RD-  $5x10^7$  CFU (1g/kg of soil), Half RD  $-5x10^7$  CFU (0.5g/kg of soil).

| S.No | Source of variation               | F -stat | P -value |
|------|-----------------------------------|---------|----------|
| 1    | Seeds per panicle                 | 4.9907  | 0.002    |
| 2    | 100 seed weight (g)               | 26.838  | 0.001    |
| 3    | Total seed weight per panicle (g) | 7.5928  | 0.002    |

**Table 3.5: Tabulated one way ANOVA values.** P and F-Stat values with degrees of freedom measured between and among treated samples, for the harvested data samples.



**Fig 3.47: Percentage improvement of rice yield under chitinous substrates amendments.** Percentage improvement in comparison with control calcultaed for 100 seed weight, seed weight per panicle and no. of seeds per panicle for different dosages of chitinous substrates.

### 3.2 Discussion

## 3.2.1. Rice rhizosphere microbiome is shaped by host, stages of growth and soil amendments

To understand the impact of soil amendment with chitinous substrates in shaping rice root microbiome, we have run PERMANOVA for soil amendments (alpha chitin, beta chitin and chitosan) and plant developmental stage (vegetative and flowering). It is observed that plant growth stage followed by soil amendments plays crucial role in rhizosphere microbiome. Chitinous substrate amendments, with high and low dosage, influenced the microbiome changes in rice rhizosphere. PCoA plot illustrates a sample location shift between all treatments, while the main boundary can be drawn noticeably between vegetative and flowering stages. ANOSIM differences between various factors were calculated and represented in Tables 3.1, 3.2 and 3.3. Major differences were observed during various plant stages i.e., vegetative and flowering stages, irrespective of soil amendments. In several crop species, the plant developmental stage is the primary determinant of community assembly, and significant variation was observed from vegetative to flowering stage (Chalasani et al. 2021; Lundberg et al. 2012; Voges et al. 2019; Xiong et al. 2021).

## 3.2.2. Bacteriome, mycobiome and eukaryome responded differently to chitinous substrate amendments to rice rhizosphere

The microbiome i.e., bacteriome, mycobiome and eukaryome responded differently to various soil amendments during different plant growth stages in rice rhizosphere (Fig 3.40). In the rice rhizosphere, the influence of soil amendments on bacteria was lowest, but the influence of Eukaryome was highest regardless of dosage and soil amendments. Organic amendment (4500 Kg of cow manure Ha<sup>-1</sup>) increases barley (*Hordeum vulgare*) rhizosphere inter-kingdom associations especially bacteria and eukarya (Suleiman et al. 2019). Differential response was observed for bacteria and fungi to various organic amendments (biochar and organic N fertilizers) and fertilizers in chili pepper (*Capsicum annuum*) grown in Californian soil (Dangi et al. 2020).

Organic amendments (rice straw and cow manure) reduce salinity effects on rice microbiome in Bangladesh soils (Wichern et al. 2020). Soil amendments such as dry maize straw and regular nitrogen fertilization affect eukaryome communities more than other

microorganisms in varied agricultural soils of china (Zhao et al. 2019). Organic amendements such as biochar prepared from bamboo, pig manure, cow manure and rice straw along with regular fertilizers improved microbial abundance, enzyme activity in maize rhizosphere (Ibrahim et al. 2020). In wheat–rice rotation, partial substitution of chemical fertilizer with organic fertilizer (pig manure) over seven years improves yields and restored soil bacterial diversity (Li et al., 2022).

## 3.2.3. Chitin amendments improved microbiome diversity in rice rhizosphere

Alpha chitin treatment had highest alpha diversity (Shannon diversity index) when compared to other treatments in rice rhizosphere (Fig 3.1A). Chitin amendments to the rice rhizosphere had a greater impact on fungi and eukaryotes than on bacteria. Organic amendments to soil improve species abundance, diversity and richness. These findings show that the rhizosphere has a higher richness than bulk soil, indicating a selection for certain microbes by plants that can help them in development and nutrient absorption. Crabshell chitin increased bacteria by 13-fold and fungus by 2.5-fold in *Trifolium repens* L. and *Lolium perenne* L. (perennial ryegrass) rhizosphere soils of New Zealand (Sarathchandra et al., 1996).

Chitin supplement in the potting soil boosted lettuce growth and reduced leaf pathogen survival followed by impoved alpha diversity in rhizosphere (Debode et al. 2016). Synthetic fertilizers increased crop yield but decreased soil fertility in *Eruca sativa* but organic additions enhance microbiome diversity and function (Cesarano et al., 2017). Chitin and hydrolysis products were used to enhance chitin degraders in 42-day soil incubation experiment and it was reported to be influenced by different fertilizations (Hui et al. 2020). Biochar and nitrogen fertilizer improve rice performance, reduce cadmium availability, and shape rice soil rhizosphere microorganisms (Zhang et al. 2022). By modifying the rhizosphere microbiome's community structure and metabolism, N-acetylglucosamine stimulates the growth of tomato (Sun et al., 2022). Nano-chitosantreated maize seedlings have more Proteobacteria in their rhizospheres (Agri et al., 2022).

## **3.2.4.** Core microbiome of rice rhizosphere dominated by Proteobacteria, Ascomycota and Euglenozoa

The phylum Proteobacteria, Ascomycota and Euglenozoa are core microbial taxa in rice rhizosphere (Fig 3.3A, 3.15A, 3.27A & 3.39A, 3.6A, 3.18A, 3.30A & 3.39A, 3.9A, 3.21A,

3.33A & 3.39A) with prevalence of 1-0.49%. Proteobacteria and ascomycota were most abundant phyla of rice rhizosphere treated with various organic amendments in Colombian soils (Jiménez et al., 2021). The phylum Proteobacteria responded to the chitin-amendment to soil (Cretoiu et al., 2014). Both members were predominant in rice rhizosphere (Guo et al., 2022), and associated with phosphate solubilisation in three wild cultivars grown under green house in Chinese soils (Sun et al., 2022). The wild rice cultivar *O. rufipogan* harbors *Mortierella* in their rhizosphere under extreme cold stress when grown in soils of south China (Xu et al., 2022). Most of the above abundant phyla are associated several plant species microbiomes reported from native and agriculture soils.

The bacterial genus *Pseudomonas* is a differentially abundant species that can be found in both alpha and beta chitin, but it is least abundant in rice rhizosphere soil that have been treated with chitosan (Fig 3.41 & 3.42). *Pseudomonas* is well-known plant growth promoting bacteria, antagonistic to fungal pathogens and it's highly abundant in both alpha and beta chitin during flowering stage of rice rhizosphere. *Pseudomonas* is a Gramnegative bacterium of class Gammaproteobacteria, belonging to the family Pseudomonadaceae. *Pseudomonas* associated with several plant species with diverse PGPR traits such as IAA production, phosphate, starch, zinc solubilisation, siderophore production, antifungal activity, and chitinase production and its part of many bacterial consortia applied for yield enhancement under field application (Saranraj et al., 2022; Rochimi et al., 2022; Das et al., 2022a). It is associated with rice grown under contrasting climates i.e. at Himachal Pradesh and Andaman & Nicobar islands (Sahu et al. 2022), as endophytes (Sessitsch et al. 2011), rhizosphere soil against rice fungal pathogens (Das et al., 2022b; Majumdar et al., 2022).

More prevalent fungal taxa *Mortierella* is highly abundant in rice rhizosphere with beta chitin amendment which is known as plant growth promoting fungus associated with several crop species and soil. The beneficial effects of *Mortierella* sp. and *M. elongata* in healthy rhizospheres and bulk soil improved plant growth in following cultivated plants *Pisum sativum* (Xu et al., 2012), mulberry fruit (Yu et al. 2016), Vanilla (Xiong et al., 2017), maize (Li et al., 2020) rice (Zhang, et al., 2022; Ding, et al., 2022).

One more prevelant, the fungal genus *Cordyceps* is abundant and a constituent of the paddy rhizosphere core microbiome when chitinous amendments were applied under field conditions. *Cordyceps* is a genus containing around 600 species of ascomycete fungi (sac fungi). Few *Cordyceps* species are parasitic on other fungus and often occur as

entomopathogenic to arthropods, mainly insects most often called as endophytic entomopathogenic fungi (EEPF). *Cordyceps* sp. like *Cordyceps militaris* have at least 24 chitinases in their genomes (<a href="http://www.cazy.org/e9472.html">http://www.cazy.org/e9472.html</a>), thus it is not surprising that chitin addition to the soil may have promoted growth and resulted in it the most abundant fungal species in the paddy rhizosphere. There are many reports on its entomopathogenic trait, but only a few recent reports suggest that *Cordyceps* plays a role in promoting plant growth. For instance, *Cordyceps fumosorosea* isolates were observed to colonize *Solanum melongena* and promote plant growth. In addition, it also reduced the incidence of whiteflies (*Bemisia tabaci*) (Sun et al., 2020).

Tyrophagus putrescentiae, a common saprophagous soil mite`s species in soil, decomposes plant and vertebrate nests. It has been hypothesized that structural chitin from the cell walls of filamentous fungi, which can make up a sizable portion of the mite`s food, is broken up by chitin-digesting enzymes produced by symbiotic bacteria. Depending on the nutrition of the fungus, *T. putrescentiae* can have diverse communities of culturable chitinolytic bacteria, *Stenotrophomonas, Pseudomonas and Brevundimonas* (Smrž et al., 2016; Hubert et al., 2018). *T. putrescentiae* (saprophagous soil mites) observed to be part of core microbiome in rice (Fig 3.9B, 3.12B, 3.21B, 3.24B, 3.33B, 3.36B & 3.39B) (it is reported to form symbiotic relationship between chitinolytic bacteria) and digested fungi in mycophagous micro-arthropods.

### 3.2.5. Chitinous substrates improved rice yield

Chitionus substrates have been used as soil amendments in several crop species like lettuce (Tender et al. 2019), rocket plant (*Eruca vesicaria*) (Barouchas & Liopa, 2021), tomato (Sun et al., 2022). Organic amndements such as *Calothrix elenkinii* inoculation enhances rice biomass and growth. Selective interaction between *C. elenkinii* and the rhizosphere microbiota in tropical alluvial soils (Ranjan et al. 2016). Reports are availble on yield enhancemnt by organic amndemnts in rice with paddy straw (Otero-Jiménez et al., 2021), biochar and compost (Ghorbani et al., 2022), biochar from rice straw, cotton waste biochar (Mowrer et al., 2022), combined slag and biochar (Lin et al. 2022), olive mill waste (Peña et al. 2022), barley straw based biochar (Park et al., 2022). Use of fermented chitin waste as soil amendment for rice impoved the grain yeid to 4.7 folds, recomended as a plant growth stimulator for sustainable rice production (Kananont et al., 2016).

With this background, we attempted a field application of chitinous substrates (alpha chitin, beta chitin and chitosan) for rice crop and monitered the microbiome changes as discussed above. We further maintained the crop till maturity to check for the grain yield. It was observed that dosage postively correlated with all treatments in selected traits of rice yield. In conclusion the use of chitin substrates as amendments due to its low cost, the low concentration requirement, the large supply, and the environmental safety indicate their potential as useful supplments for agriculture to replace synthetic fertilizers/chemicals, over a period of time.

# **Chapter - IV**

| App             | licatio | on of C | Chitoo | ligosac | charides | on rice |
|-----------------|---------|---------|--------|---------|----------|---------|
|                 |         |         |        |         |          |         |
| <b>*</b> ······ |         |         |        |         |          | Ť       |

## Chapter IV: Application of chitooligosaccharides on rice

### 4.1. Introduction

Plants are constantly exposed to microbial pathogens including bacteria, fungi, and viruses. As a protection against the microbial pathogens, plants activate immune responses upon recognition of the evolutionarily conserved pathogen-associated molecular patterns (PAMPs) or microbe-associated molecular patterns (MAMPs) (Das et al., 2015; Choi & Klessig, 2016). Plants detect the PAMPs with the help of membrane-anchored pattern recognition receptors (PRRs) and activate pattern-triggered immunity (PTI). PTI involves callose deposition, synthesis of antimicrobial compounds, activation of mitogen-activated protein kinase (MAPKs) cascade, generation of reactive oxygen species (ROS) etc., (Zipfel, 2014). Flagellin, lipopolysaccharides, peptidoglycans, glucans, and mannans represent some of the known MAMPs/PAMPs (Macho & Zipfel, 2014).

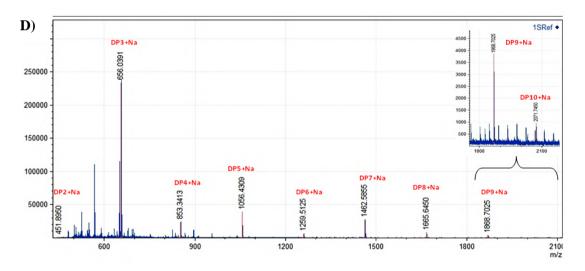
Chitin consists of  $\beta$  (1, 4)-linked N-acetyl-D-glucosamine (GlcNAc) units arranged in a linear form. It is a major structural component of fungal cell walls and insect exoskeletons, and also acts as a MAMP/ PAMP (Das et al. 2015; Li et al. 2016). Oligosaccharides generated from chitin are referred to as chitooligosaccharides (COS). The COS act as a broad-spectrum vaccine against several plant diseases making them potential candidates for crop protection (Yin, Zhao & Du, 2010). Treatment with COS was reported to induce defense reactions like generation of ROS, transient depolarization of membranes, extracellular alkalization and ion flow, production of phytoalexin in plants/cell suspension cultures (Kishimoto et al., 2010; Li et al., 2016), expression of several early responsive genes (Ramonell et al. 2005; Zhang et al. 2002), lignification (Kawasaki et al. 2006) etc., Activation of MAPK cascade, upon chitin elicitation, was reported in rice and *Arabidopsis* (Yamada et al., 2017; Wan & Stacey, 2004).

COS could be prepared from chitin by acid hydrolysis, alkaline hydrolysis, chemical synthesis, generated using microbial source or enzymatic hydrolysis. Chitinases (EC 3.2.1.14), which are glycosyl hydrolases (GHs), also perform trans-glycosylation (TG) using the sugar molecule as the acceptor resulting in the formation of a new glycosidic linkage (Zakariassen et al. 2011), are useful to generate long-chain COS. A few chitinases with TG activity (Purushotham & Podile, 2012) were reported to generate longer COS. A GH18 endo-chitinase from *Serratia proteamaculans* 568 (*Sp*ChiD) that exhibited hyper TG activity (Purushotham and Podile, 2012) was further improved by point mutations to

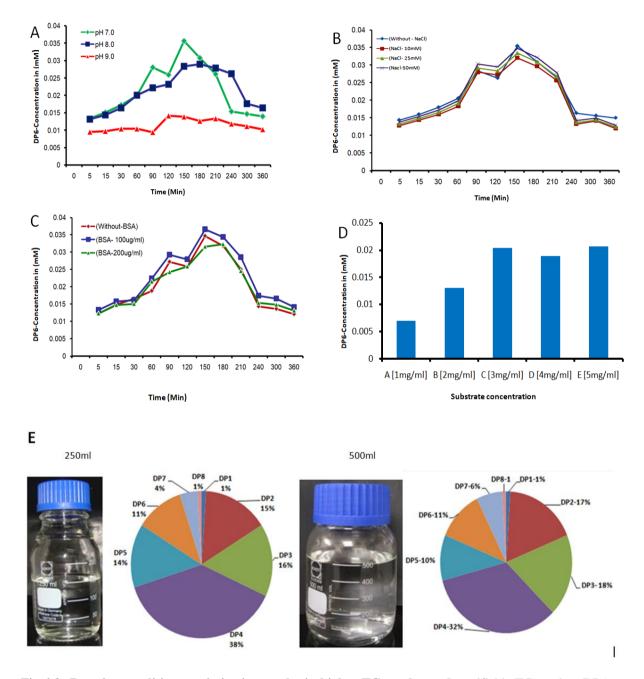
increase the production of long-chain COS (Madhuprakash et al., 2015). Among them, Y28A (mutation in the substrate binding cleft of *Sp*ChiD) generated 21% of TG products from DP4 substrate (Madhuprakash et al. 2018) suggesting its suitability to generate long-chain COS. Hence, we have used *Sp*ChiD-Y28A to produce long-chain COS ranging from DP 5-7. Further, we have optimized the conditions (pH, substrate conc., reaction buffer and incubation time etc.,) to improve yield and purified DP5 (pentamer) DP6 (hexamer) and DP7 (heptamer) to homogeneity and prepared in bulk to test their effect on rice seedligs.

The purified COS were tested on rice seedlings for their ability to induce plant defence. The COS significantly activated the salicylic acid (SA) pathway and defence response genes. Taken together, the possible mechanism of defense activation could be through the induction of plant innate immunity via the MAPK6, which was followed by SA biosynthesis (phenylalanine ammonia lyase1 (PAL1) and isochorismate synthase 1(ICSI)) and SA signalling genes (enhanced disease susceptibility1 (EDSI) and phytoalexin deficient 4 (PAD4)). These signalling genes might trigger transcription factors such as Non-expressor of PR genes1 (NPRI) and WRKY45 which in turn induced the PR (pathogenesis related) and defense genes like PRIa, PR4, PR10, chitinase-1, peroxidase, and  $\beta$  -1,3-glucanase. Overall, the defense response in rice seedlings was primarily mediated by the SA-dependent pathway, with MAPK-mediated MAPK-mediated phosphorylation possibly playing a role. We have tested these purified COS (DP5-DP7) for the first time on rice under field conditions and assessed the growth and development including yield.

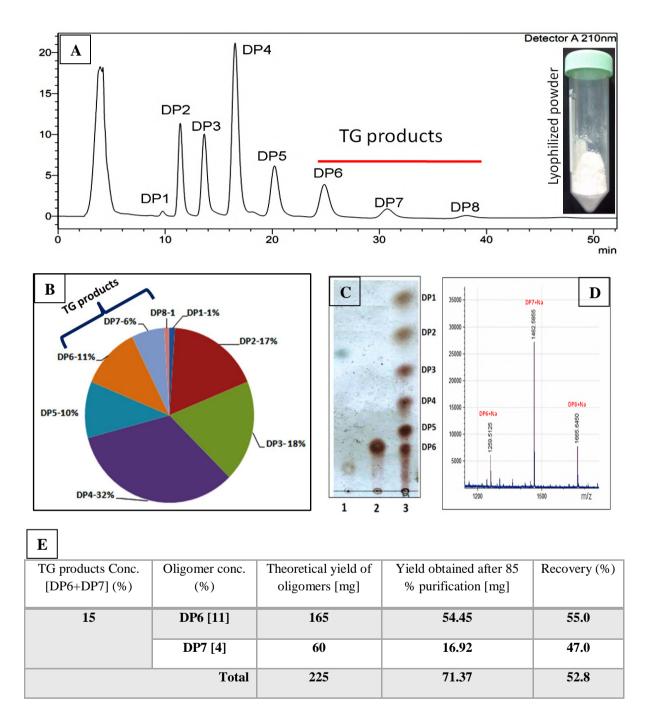
### 4.2. Results


## 4.2.1. Production optimization and purification of COS

To obtain COS>6, we chose a Y28A variant (Madhuprakash et al., 2014) of SpChiD that showed consistent production of COS>DP6 (Fig 4.1A,B) starting from 5<sup>th</sup> min itself. Comparison of the quantifiable TG product (DP6) showed improved yields and maximum at 180<sup>th</sup> min for mutant enzyme (Fig 4.1C). MALDI TOF-MS analysis of the concentrated sample detected COS up to DP 10 (Fig 4.1D). A white precipitate appeared in the bulk reaction (volumes of 150 ml), was eliminated and finally set up the reaction to obtain more quantity of TG products. Quantification of HPLC profiles from samples of different pH range of Tris-HCL buffer for TG product (DP6) revealed the highest yield obtained at 150 min sample of pH 7.0 (Fig 4.2A). Addition of NaCl at 50mM, BSA at 100ug/ml and substrate DP5 at 3mg/ml reaction mixture set up for 90 min duration at 37°C vielded more quantifiable TG product DP6 (Fig 4.2B,C,D). To obtain higher chain length COS in more quantity, bulk reaction was set up (250 & 500 ml) using SpChiD Y28A mutant with optimized conditions Reaction was terminated by boiling the solution at 85°C for 15 min. Comparison of HPLC profiles based on peak area analysis of the products obtained from the both above bulk reaction setup were quantified and represented in pie- charts (Fig 4.2E). Reactions set up (500ml) were prepared and purification of COS was carried out using semi-prep HPLC (Fig 4.3A). TLC analysis of DP6 and DP7 fractions showed the purity of the collected fractions. MALDI-ToF-MS analysis of DP7 purified fraction showed the exact mass of DP7 (Fig 4.3B, C). COS obtained after purification to homogenity is represented in Fig 4.3D.


Chapter IV COS application on rice

A) HPLC Profile


#### 0.16-→ DP1 B)Quantification profile 0.14-DP2 0.12 Concentration (mM) DP5 substrate 0.10-**▼** DP4 0 min 0.08 → DP5 0.06 **→** DP6 5 min 0.04 0.02 15 min 0.00 DP 6 DP 7 A 210 100 200 30 min Time (min) 45 min C) Comparison of quantifiable TG product-DP6 DP 8 60 min SpChiD Y28A 90 min 0.014 Concentration (mM) 0.012 120 min 0.01 0.008 180 min 0.006 0.004 0.002 240 min 20 0 10 15 35 0 5 15 30 45 60 90 120 180 240 Time (min) Time (min)



**Fig 4.1:** Time course reaction of *Sp*ChiD-Y28A with DP5 substrate. A). *Sp*ChiD-Y28A was incubated with DP5 substrate in 50mM sodium acetate buffer, pH 5.6 at 40°C. Samples were collected at different time points and added with equal volume of 70% acetonitrile to stop the reaction and run on HPLC. B). Quantification profile showing different oligomers obtained from DP1-DP6 at different time points up to 4h. C). Graph depicting the quantifiable TG product [DP6] in comparison with *Sp*ChiD enzyme and the \* mark in bar graph depicts the time point where concentration of DP6 is higher. D). MALDI-TOF-MS spectra are labelled according to their observed atomic mass and the degree of polymerization (DP) of the oligosaccharide. Most of the oligosaccharide species were observed as Na adducts of the oligosaccharide Na-salt. Inset shows the magnification for low peak area of m/z ratio.



**Fig 4.2: Reaction conditions optimization to obtain higher TG products**. Quantifiable TG product DP6 obtained for following different optimizations for reaction having *Sp*ChiD-Y28A with DP5 substrate A). pH optimization using Tris–HCl buffer at different pH values of 7, 8, 9. B). Sodium chloride addition to the reaction set up at 10mM, 25mM and 50mM. C). Bovine Serum Albumin (BSA) addition at 100 and 200 μg/ml. D). Substrate (DP5) concentration ranging from 1 to 5mg/ml. E). Bulk reaction set up (250 & 500ml) for COS, Pie-chart representation of the concentration (in %) of different COS obtained based on the HPLC peak area.



**Fig 4.3: Bulk preparation of COS.** Reaction set up in bulk volume with the optimized reaction conditions A). HPLC profile of the reaction mixture showing a clear separation of COS including TG products DP6,DP7, DP8 (highlighted with red line) Inset picture shows lyophilized COS. B). MALDI\_TOF-MS spectrum of purified COS DP7 also shows carryover of DP6, DP8 during separation process, all the masses were adducts of sodium. C). TLC figure showing the DP6 and DP7 obtained in pure form. D). Pie-charts showing the concentration (in %) of different COS obtained based on the HPLC quantification profiles of peak area. E). Yield calculations for purified TG products (DP6, DP7 oligomers).

## 4.2.2. Defense response in rice seedlings upon COS treatment

Induction of defense response by the purified COS with DP5, DP6 and DP7 was tested in rice seedlings at the 3<sup>rd</sup> leaf stage by foliar spray and root dip methods. Oxidative burst response of rice seedlings treated with pure COS (DP5, DP6 and DP7) and SA was evaluated by monitoring the time-dependent production of H<sub>2</sub>O<sub>2</sub>. In all the root-dip treatments, H<sub>2</sub>O<sub>2</sub> formation peaked at 3h and dropped steadily until 72h (Fig 4.4A). SA increased H<sub>2</sub>O<sub>2</sub> levels the most, followed by DP7, DP6, and DP5. The oxidative burst induced by COS foliar spray treatment was both quick (within 1h after elicitation) and prolonged compared to root dip treatment. Maximum H<sub>2</sub>O<sub>2</sub> concentrations were detected at 3 hours with the DP5 and DP6 treatments, and at 6 hours with the DP7 and SA treatments. With the exception of the SA treatment, H<sub>2</sub>O<sub>2</sub>concentrations began to drop at 48 hours (Fig. 4.4B).

DP7 induced the maximum oxidative burst among the tested COS, followed by DP6 and DP5 in both foliar spray and root dip applications (Fig. 4.4A & B). The potential of COS to elicit PAL and POD in rice was studied. An increase in the PAL activity was observed up to 12h, after root treatment with DP6 and DP7 (Fig. 4.4C), and up to 24h with DP5 and SA. A strong increase in the PAL activity was observed with DP7 followed by DP5 and DP6 (Fig. 4.4D). SA application induced higher PAL activity compared to COS elicitations in both root dip and foliar treatments (Fig. 4.4C & D).

The time-response curve for the POD activity with root dip treatment revealed that the activity with DP5, DP6, and DP7 was highest at 24h, 12h, and 6h, respectively (Fig. 4.4E). In the case of foliar spray, maximum POD activity was observed at 24 h with DP5, DP7, and SA treatments and 48 h with DP6 treatment (Fig. 4.4F). The response to DP7 on the POD activity is on par with SA in the foliar application. The response of rice in terms of PAL and POD activities was active till 48 h in foliar spray application reflecting the efficacy of mode of application (Fig. 4.4D and F).

Notably, the induction of elicitation response was dependent on the size of the chitin oligomer i.e., the genes known to function in SA and JA signaling pathways in the seedlings after foliar application. In addition, expression of MAP kinase, WRKY transcription factors, defense responsive genes (chitinase-I,  $\beta$ -1,3-glucanase, peroxidase, and PAL), and PR gene was also studied. Our semi-qPCR results (data not shown) showed

that most of the genes have higher PCR band intensity between 6 and 24h. Therefore, we have analyzed the expression of these genes at 6h, 12h, and 24h by real-time PCR. DP7 exhibited maximum elicitation effect (Table 4.1).

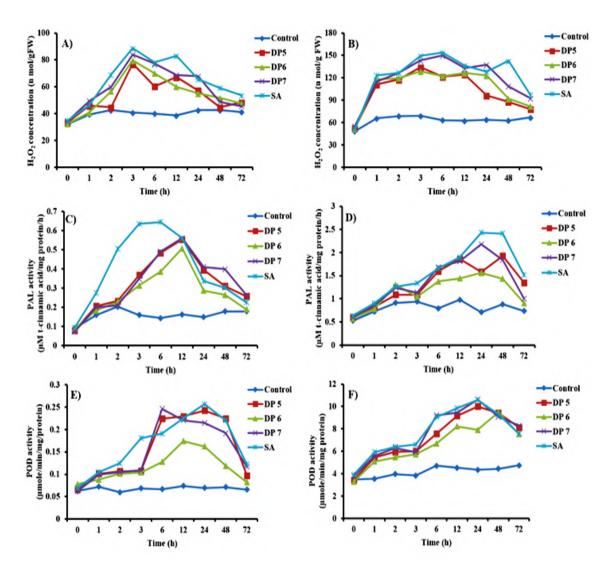



Fig 4.4: Time response curves of  $H_2O_2$  generation, PAL and POD elicitation by COS (DP5-7) upon root dip and foliar spray treatments of rice seedlings. Time response curves of  $H_2O_2$  generation (A & B), PAL (C & D) and POD (E & F) elicitation by COS and SA upon root dip (A, C & E) and foliar spray treatments (B, D & F) of rice seedlings. The data is mean ( $\pm$ SE) of two biological experiments with three technical replicates each. The error bars indicate mean ( $\pm$ SE) of three independent experiments.

| S. | S. No Defense response/Method             |                                                     | Foliar spray treatment |                  |                  |                  | Root-dip treatment |                 |                  |                  |                  |                  |
|----|-------------------------------------------|-----------------------------------------------------|------------------------|------------------|------------------|------------------|--------------------|-----------------|------------------|------------------|------------------|------------------|
| No |                                           |                                                     | Control                | DP5              | DP6              | DP7              | SA                 | Control         | DP5              | DP6              | DP7              | SA               |
|    | Elicitation defense response              |                                                     |                        |                  |                  |                  |                    |                 |                  |                  |                  |                  |
|    |                                           | Maximum at<br>time (h)                              | 3                      | 3                | 3                | 6                | 6                  | 24              | 3                | 3                | 3                | 3                |
| 1  | H <sub>2</sub> O <sub>2</sub><br>generati | Activity nmol/g<br>FW                               | 68.84±<br>15.51        | 134.23±<br>19.04 | 128.65±<br>15.75 | 150.19±<br>17.51 | 154.03±<br>18.8    | 42.5±<br>9.52   | 77.11±<br>9.04   | 79.80±<br>15.75  | 84.03±<br>5.51   | 88.65±<br>16.21  |
|    | on                                        | Control at corresponding time                       | 48.52±<br>20.13        | 68.84±<br>15.51  | 68.84±<br>15.51  | 63.26±<br>18.67  | 63.26±<br>18.67    | 32.12±<br>17.13 | 40.76±<br>15.51  | 40.76±<br>15.51  | 40±<br>8.67      | 40.76±<br>15.51  |
|    | PAL                                       | Maximum at<br>time (h)                              | 12                     | 48               | 24               | 24               | 24                 | 2               | 12               | 12               | 12               | 6                |
| 2  | activity<br>(µM t-<br>cinnami<br>c        | Activity<br>(μM t-cinnamic<br>acid/mg<br>protein/h) | 0.980±<br>0.210        | 1.92±<br>0.425   | 1.55±<br>0.451   | 2.18±<br>0.138   | 2.43±<br>0.1278    | 0.203±<br>0.055 | 0.553±<br>0.0602 | 0.507±<br>0.043  | 0.560±<br>0.062  | 0.644±<br>0.072  |
|    | acid/mg<br>protein/<br>h)                 | Control at<br>corresponding<br>time                 | 0.525±<br>0.37         | 0.882±<br>0.32   | 0.711±<br>0.31   | 0.711±<br>0.31   | 0.711±<br>0.31     | 0.160±<br>0.027 | 0.163±<br>0.078  | 0.163±<br>0.078  | 0.143±<br>0.0967 | 0.143±<br>0.0967 |
|    | POD                                       | Maximum at time (h)                                 | 72                     | 24               | 48               | 24               | 24                 | 12              | 24               | 12               | 6                | 24               |
| 3  | activity<br>(μmol/<br>min/mg              | Activity<br>(µmol/min/mg of<br>protein)             | 4.73±<br>1.248         | 10.007±<br>1.78  | 9.47±<br>1.21    | 10.62±<br>1.67   | 10.58±<br>1.58     | 0.073±<br>0.028 | 0.242±<br>0.0425 | 0.174±±<br>0.028 | 0.245±<br>0.042  | 0.256±<br>0.0432 |
|    | of<br>protein)                            | Control at<br>corresponding<br>time                 | 3.47±<br>0.915         | 4.34±<br>1.37    | 4.42±<br>1.508   | 4.34±<br>1.37    | 4.34±<br>1.37      | 0.062±<br>0.027 | 0.069±<br>0.041  | 0.071±<br>0.032  | 0.066±<br>0.0367 | 0.069±<br>0.041  |

Table 4.1: Summary of elicitation responses of rice treated with COS and SA. Table shows the maximum hydrogen peroxide ( $H_2O_2$ ) accumulation and, phenylalanine ammonia lyase (PAL), and peroxidase (POD) activities at specific time points in rice seedlings upon root dip and foliar spray treatments with COS and SA. The data is mean ( $\pm$  SE) of three independent experiments with three technical replicates each.

## **4.2.3.** COS induced differential expression of defense-related genes in SA and JA signaling pathways

To understand more details on the effect of COS, we examined the transcript levels of SA synthesis-related genes such as *PAL* and *ICS1*. The *PAL* gene was up-regulated significantly at 6h, 12h, and 24h after treatment with DP6, DP7 and SA, compared to their respective controls. However, expression of PAL was induced at all-time points, with different temporal behavior. It was highly induced at 6h, lower at 12h, and again high at 24h, after DP5 treatment (Fig. 4.5A). Treatments with COS (DP5-7) and SA induced the expression of the *ICS1* gene in rice seedlings compared to control. DP6 showed significant induction of the *ICS1* gene at 12h after elicitation, whereas, DP7 and SA treatments increased the transcript levels significantly at 12h and 24h (Fig. 4.5B). DP7 and SA significantly increased the *EDS1* transcripts at 12h and 24h after treatment, whereas the transcripts of *EDS1* in DP5 and DP6 treated seedlings increased marginally (Fig 4.5C). The *PAD4* transcripts accumulated significantly in the rice seedlings with DP7 (at 12h and 24h) and SA (at 24h) treatments (Fig. 4.5D), and no significant induction with DP5 and DP6. Rice seedlings, at 12h and 24h after DP7 treatment, exhibited significant induction of NPR1 transcription. Similarly, SA treatment accounted for a significant induction of NPR1

at 24h after treatment. There was no significant induction of the NPR1 gene in rice seedlings treated with DP5 and DP6 (Fig 4.5E).

Similarly, the expression pattern of the genes known to function in the JA-dependent signaling pathway were evaluated. In rice seedlings, treated with DP7, significant accumulation of *AOS2* transcripts was observed at 24h after treatment. Whereas, the basal expression of *AOS2* was weakly up-regulated in all other treatments (Fig 4.6A). Accordingly, the transcription of *JMT1* was marginal in rice seedlings in all treatments (Fig.4.6B). Concurrently, negative regulation or no change in transcription of *JMYB* was detected in rice treated with COS and SA (Fig. 4.6C).

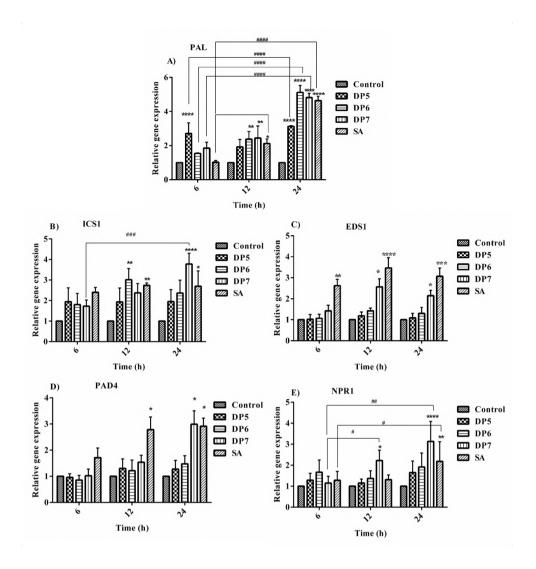



Fig 4.5: Expression of salicylic acid signaling pathway genes after COS and SA treatment. Salicyclic acid signaling pathway genes; Phenylalanine ammonia lyase-PAL (A), Iso-chorismate synthase1-ICSI (B), Enhanced disease susceptibility 1-EDSI (C), Phytoalexin deficient 4-PAD4 (D), and Non-expressor of PR genes1-NPRI (E), were monitored for gene expression after COS and SA treatments. Error bars indicate mean ( $\pm$ SE) of three technical replicates. The asterisk symbol denotes significant difference of treated rice seedlings with respective controls (\*P < 0.05; \*\*P < 0.01; \*\*\*P < 0.001; \*\*\*\*P < 0.0001). The hashtag symbol denotes significant differences between respective treatments among the time points (#P < 0.05; ##P < 0.01; ###P < 0.001; ###P < 0.001; ###P < 0.001).

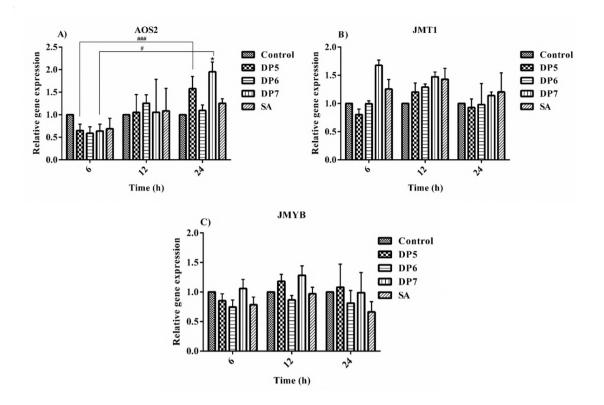



Fig 4.6: Expression of jasmonic acid signaling pathway genes after COS and SA treatment. Jasmonic acid signaling pathway genes; Allene oxidase synthase - AOS2 (A), Jasmonic acid carboxyl methyltransferase-JMT1 (B), and JA-inducible Myb transcription factor JMYB (C) were monitored for gene expression after COS and SA treatments. Error bars indicate mean ( $\pm$ SE) of three technical replicates. The asterisk symbol denotes significant difference of treated rice seedlings with respective controls (\*P <0.05; \*\*P <0.01; \*\*\*\*P <0.001; \*\*\*\*P <0.0001). The hashtag symbol denotes significant differences between respective treatments among the time points (#P <0.05; ##P <0.01; ###P <0.001; ###P <0.0001). The significance was calculated using Tukey's post hoc multiple comparison test (mean  $\pm$  SE, n=3). The experiment was repeated twice with similar results.

## 4.2.4. Differential response of MAPK and WRKY transcription factor genes upon COS elicitation in rice seedlings

MAPK5a transcripts were not induced significantly with COS and SA treatments at all-time points (Fig. 4.7A). Whereas, MAPK6a transcripts accumulated significantly with DP7 (at 24h) and SA (at 12h and 24h) treatments. SA-treated seedlings, at 24h, showed a significant transcription of MAPK6a in comparison to 6h and 12h (Fig. 4.7B). There were no significant differences in the temporal expression of *WRKY13* with COS and SA treatments at 6, 12, and 24h (Fig. 4.7C). WRKY45 gene expression was up-regulated significantly at 12h and 24h after treatment with DP7 compared to their respective controls. Whereas, expression of *WRKY45* was induced in SA treated seedlings at all-time points but showed a significant induction at 12h (Fig. 4.7D).

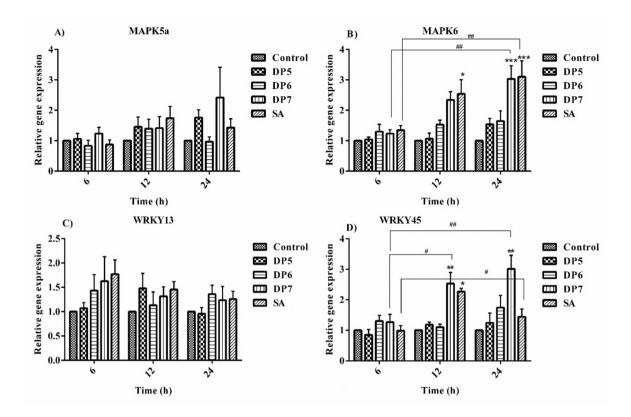



Fig 4.7: Expression of mitogen-activated protein kinase genes. MAPK5a (A) and MAPK6 (B) and WRKY transcription factors: WRKY13 (C) and WRKY45 (D) in rice seedlings treated with COS and SA. Error bars indicate mean ( $\pm$  SE) of three technical replicates. The asterisk symbol denotes significant difference of treated rice seedlings with respective controls (\*P< 0.05; \*\*P< 0.01; \*\*\*P< 0.001; \*\*\*\*P< 0.0001). The hashtag symbol denotes significant differences between respective treatments among the time points (#P< 0.05; ##P< 0.01; ###P< 0.001; ###P< 0.0001). The significance was calculated using Tukey's post hoc multiple comparison test.

## 4.2.5. General defense response to COS elicitation in rice seedlings

To elucidate the molecular mechanisms underpinning the general defense response of rice seedlings upon COS treatment, expression of PR protein genes (PR1a, PR1b, PR4, and PR10), chitinase1,  $\beta$ -1,3-glucanase, and peroxidase genes was evaluated. At 12h and 24h after DP7 treatment, and at 24h after SA treatment, there was a significant expression of PR1a in rice seedlings. DP5 and DP6 treatments account for the insignificant induction of PR1a (Fig 4.8A). There were no significant differences (P <0.05) in the temporal expression of PR1b at 6, 12, and 24h with COS and SA treatments (Fig. 4.8B). The PR4 is not up-regulated in rice seedlings treated with COS and SA, except with DP7 at 24h after treatment (Fig 4.8C). The PR10 was up-regulated significantly at 12h and 24h with DP7 treatment, and at 24h with DP6 and SA treatments compared to their respective controls (Fig. 4.8D). There was a systemic and temporal expression of chitinase1 and  $\beta$  -1,3-glucanase genes in rice seedlings treated with COS and SA.

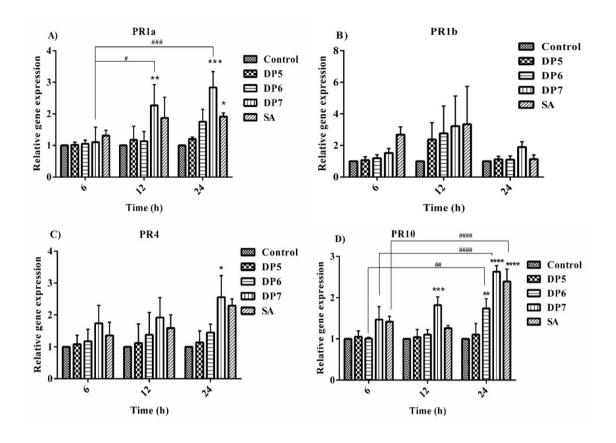



Fig 4.8: Expression of pathogenesis related genesafter COS and SA treatments. Genes related to pathogenesis PR1a (A), PR1b (B), PR4 (C), and PR10 (D) were monitored after COS and SA treatments. Error bars indicate mean ( $\pm$  SE) of three technical replicates. The asterisk symbol denotes significant difference of treated rice seedlings with respective controls (\*P< 0.05; \*\*P< 0.01; \*\*\*P< 0.001; \*\*\*\*P< 0.0001). The hash tag symbol denotes significant differences between respective treatments among the time points (P< 0.05; \*P< 0.01; \*P< 0.01; \*P< 0.001; \*P< 0.001. The significance was calculated using Tukey's post hoc multiple comparison test.

The chitinase-I transcripts increased significantly at 12h and 24h with DP7 and SA treatments. DP5 treatment also enhanced the chitinase transcripts gradually and peaked at 24h considerably. At 12h and 24h, there was a significant induction of the chitinase1 gene, as compared to 6h (Fig. 4.9A). Similarly, the increase of  $\beta$  -1,3-glucanase transcripts was significant at 12h and 24h in DP7 and SA treatments. Whereas, the transcript levels of the  $\beta$  -1,3-glucanase gene in DP5 and DP6 treated plants were marginal (Fig. 4.9B). Both DP6 and DP7 induced the POD gene expression at all-time points with respective controls. However, in comparison to 6h and 24h treatments, expression was significant at 12h after treatment (DP6 = P < 0.0001 and DP7 = P < 0.0001). No significant induction of the POD gene was observed at different time points except for the SA treatment (Fig. 4.9C).

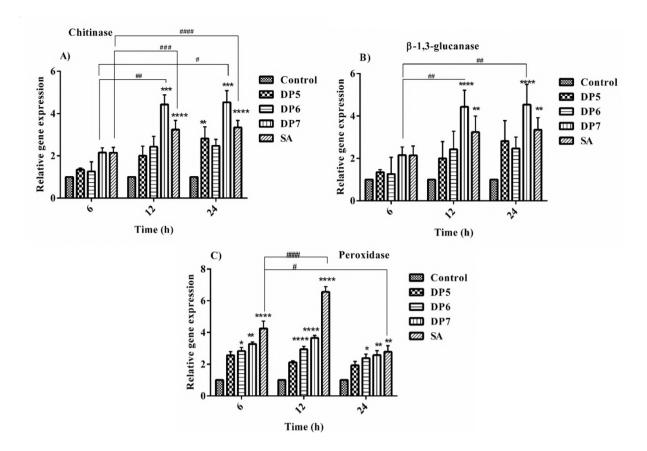
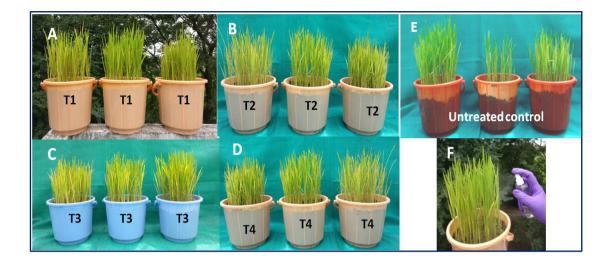
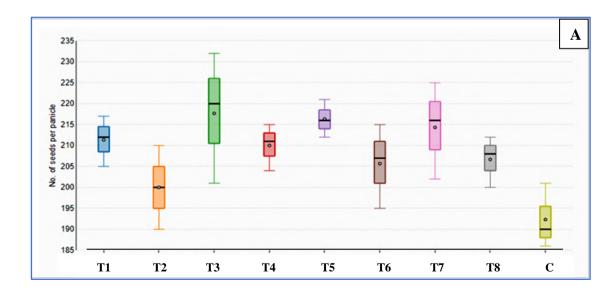
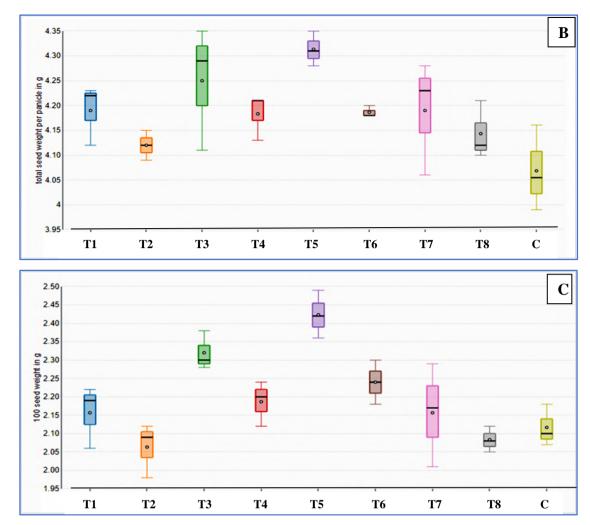




Fig 4.9: Induction of chitinase,  $\beta$ -1,3-glucanase and peroxidase genes after COS and SA treatments. Gene expression of chitinase (A),  $\beta$ -1,3-glucanase (B), and peroxidase (C) genes were monitored after COS and SA treatments. Error bars indicate mean ( $\pm$  SE) of three technical replicates. The asterisk symbol denotes significant difference of treated rice seedlings with respective controls (\*P< 0.05; \*\*P< 0.01; \*\*\*\*P< 0.001; \*\*\*\*P< 0.001). The hash tag symbol denotes significant differences between respective treatments among the time points (#P< 0.05; ##P< 0.01; ###P< 0.001; ###P< 0.0001). The significance was calculated using Tukey's post hoc multiple comparison test.

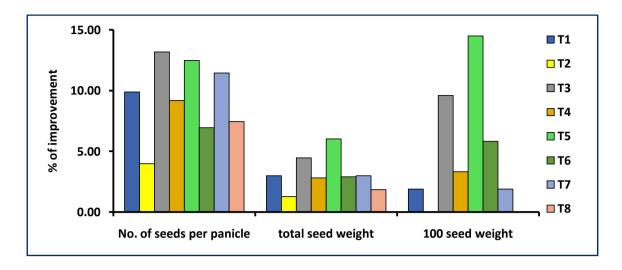

## **4.2.6.** Evaluation of purified COS on rice by foliar application at field condition


To understand the effect of purified COS on rice in terms of improvement of growth and yield, experiment was set up with pot cultivated rice (Zordar variety, NSL Pvt Ltd) under field conditions and treated with purified COS during both vegetative and flowering stage of the plant development (Fig 4.10). Crop was maintained till maturity and plants were harvested when about 95% of the grain had matured. Seeds from panicles were carefully collected for each treatment separately in brown paper bag and kept for open air drying till 12-15% (approx) of moisture content is reached.



**Fig 4.10: Foliar treatment of purified COS on rice.** Pictorial representation of various COS treatments to rice cultivated in pots under field conditions, and foliar treatment of A; DP5-T1, B; DP6-T2, C; DP7-T3, and D; Salicylic acid-T4; untreated control. COS were sprayed during the vegetative and flowering stages of crop for each treatment (F), while water alone was sprayed on control plants.

Yield parameters were tabulated and shown in box plots for each treatment in terms of the number of seeds per panicle, total seed weight, and 100 seed weight (Fig 4.11). Statistical analysis performed using (PRIMER v7 software, Quest Research Limited, NZ) One-way ANOVA to evaluate the significant differences among the means (Table 4.2). Further, Grain yield was also analysed for percentage of improvement with respect to COS treatments in comparison with untreated control (Fig 4.12).






**Fig. 4.11:** Rice grain yield after COS treatments. Box plot depicting the yield parameters obtained from the harvested rice crop treated with following purified COS, DP5 (T1, T2), DP6 (T3, T4), DP7 (T5, T6), Salicyclic acid (T7, T8) along with untreated control (C). (a) Seeds per panicle obtained, (b) 100 Seed weight calculated, (c) Total seed weight per panicle.

| S.No | Source of variation           | P- value | F- stat |
|------|-------------------------------|----------|---------|
| 1    | Seeds per panicle             | 0.0625   | 2.355   |
| 2    | 100 seed weight               | 0.003    | 7.161   |
| 3    | Total seed weight per panicle | 0.314    | 2.839   |

**Table 4.2:** One way ANOVA values (P and F-Stat values with degrees of freedom measured between and among treated samples) for harvested rice data samples



**Fig 4.12: Percentage improvement of rice yield for COS treatments.** Improved yield in terms of Seeds per panicle, total seed weight and 100 seed weight are compared with untreated control for different COS treatments.

Application of purified COS (DP5, DP6 and DP7) improved yield of rice, represented in box plots with standard deviation (Fig 4.11). It is observed that in all the treatments, plants were healthy in comparison with the control and also observed that the flowering stage reached little early (7-10 days) for the treated plants in comparison with untreated control. Yield parameters such as 100 seed weight (g), number of seeds per panicle, and total seed weight (g) have been recorded. One way ANOVA (Table 4.2) was performed to statistically analyse the harvested data and each treatment was found to be significant as F-stat value was higher than its P-value, which allowed us to reject the null hypothesis. The percentage improvement in grain yield has been calculated in comparison to the control for each yield trait (Fig 4.12). It is noted that DP7 (T5) (14.49%) treatment demonstrate the greatest percentage improvement for 100 seed weight, followed by DP6 (T3) (9.61%).

Similarly, treatment with DP7 (T5) (6.93%) exhibited the greatest response for total seed weight, followed by DP6 (T3) (4.46%). In terms of seeds per panicle, DP6 (T3) (13.17%), followed by DP7 (T5) (12.48%), and salicylic acid treatment SA (T7) (11.44%) were effective. In conclusion, various treatments employing the purified COS, the response with heptamer (DP7) was substantial, followed by hexamer (DP6) in terms of grain yield (per panicle) improvement as well as weight of the seed in particular. In conclusion the COS could be used as natural bio-stimulants of plant growth and development.

### 4.3 Discussion

## 4.3.1. Preparation of higher DP COS

Selection of TG enzyme for production of COS >6 is crucial for developing a bioprocess. Y28A variant of *Sp*ChiD that showed consistent production of TG product DP6, even at extended at 180 min. To obtain longer chain COS in higher quantity, bulk reaction set-up (150ml) using *Sp*ChiD-Y28A mutant upto 180min resulted in a white precipitate. Modified reaction conditions and subsequent analysis of MALDI-TOF for the clear liquid and the precipitate showed similar profile of COS up to DP10.

To reduce the formation of precipitate, we tested the influence of Tris-HCl buffer at different pH range (7.0, 8.0 and 9.0) on the reaction set up. Quantification of HPLC profiles for TG product (DP6) revealed the highest yield obtained at 150 min sample of pH 7.0 reaction set up in comparison with reactions set up at pH-8.0 and pH 9.0. Appearance of white precipitate started from 120<sup>th</sup> min for pH 7.0 and 150<sup>th</sup> min for pH 8.0 and not observed in samples with pH 9.0. Further, comparison of TG product (DP6) formation in pH 7.0 (Tris-HCl) reactions set up at substrate concentration 3mg/ml, 50mM NaCl and 100µg/ml BSA for 90min and 120min of incubation, revealed the highest yield obtained at 3mg/ml for 90 min without formation of white precipitate.

All further reactions were carried out with above optimized conditions. HPLC analysis of the products obtained from the both (250 & 500 ml) bulk reaction setup were quantified. The concentration's of DP6 and DP7 obtained were 11% and 4%, respectively, indicating that the total TG product concentration of ~15% in 250ml reaction. Where as in 500ml reaction, concentration's of DP6 and DP7 obtained were 11% and 6% with a total TG product concentration ~17% (Fig 26B) indicating only a marginal increase of 2%.

Purification of COS by semi-preparative HPLC yielded ~15% of TG product concentration's with DP6 and DP7 at 11% and 4%, respectively. Repeated injections of the reaction mixtures were run in semi-preparative HPLC and the collected fractions were pooled before lyophylization. We could recover up to 50% of yield for DP6 and DP7 after purification. TLC and MALDI-TOF-MS, showed pure DP6 and DP7 but MALDI-TOF-MS analysis of DP7 purified fraction revealed a minor contamination of DP6 and DP8 COS.

## 4.3.1. COS induced elicitation response in rice seedlings

Most of the previous studies on chitin elicitation responses in plants were based on suspension cultures and COS prepared chemically from chitin (Felix & Boller, 1993; Kaku et al., 1997; Day et al., 2001; Okada et al., 2002, 2007; Gallão et al., 2007). The present study involves the evaluation of the application of COS (prepared by enzymatic method) by root dip and foliar spray application in rice seedlings. The increase of H<sub>2</sub>O<sub>2</sub> levels (accumulation of ROS) is the initial key indicator during the plant defense responses to pathogen attack and it acts as the signaling molecule in the induction of systemic acquired resistance (SAR) (Dodds & Rathjen, 2010).

In the present study, the  $H_2O_2$  generation was observed in rice seedlings with all treatments and it depends on the degree of polymerization of chitin. Similarly, the root application and pre-treatment of DP7 induced the  $H_2O_2$  generation in *Medicago tranculata* and rice seedlings, respectively (Desaki et al. 2012; Nars et al. 2013). Egusa et al., (2015) reported that COS and chitin nanofiber induced the ROS production in *Arabidopsis*. The present study along with previous reports further supports that the plants induce  $H_2O_2$  generation upon COS treatment.

Both modes of COS treatments increased PAL and POD enzyme activities, which are known to be involved in plant defense responses (Gallão et al. 2007; Jung et al. 2008). Both PAL and POD enzymes displayed their maximum activities between 12h to 48h in foliar treatment. Levels of PAL and POD activities were increased with chitin chain length, i.e., the larger the COS chain length (DP7) the greater the level of enzyme activity. Chitin oligomers induced POD and PAL activities in wheat and soybean leaves (Jung et al. 2008; Vander et al. 1998). Burkhanova et al., (2007) observed the enhanced peroxidase enzyme activity in resistant and susceptible verities of wheat seedlings to root rot upon the treatment of low-MW COS (5-10 kDa). It was reported that chitin-oligomers increased peroxidase and L-phenylalanine ammonia lyase activities in suspension-cultured cells of *Citrus aurantium* (Gallão et al., 2007).

Arabidopsis seedlings treated with microbially-digested lobster shell extract also enhanced PAL and chitinase enzyme activities (Ilangumaran et al. 2017). Compared to DP5 and DP6, which were active at the concentration tested, the DP7 was more active, enhancing the ROS generation, and POD and PAL activities. These results indicate that the exogenous application of COS elicited the defense response. Based on the present results, the foliar application was more effective than the root application, as the elicitation

response was quick and persistent for a long time. This could be probably due to the difference in adherence and penetration properties of COS (by simplistic and apoplastic routes) in targeted cells of different organs i.e., leaves and roots which results in rapid diffusible signal (Pereira et al., 2019; Tanabe et al., 2006). Therefore, foliar mode of treatment was chosen to assess the elicitation response at the molecular level.

## 4.3.2. COS induced differential regulation of SA and JA-signaling pathways

In plants, SA can be synthesized *via* iso-chorismate pathway by *ICS1* and phenylpropanoid pathway by *PAL*. *EDS1* and *PAD4* function in a positive feedback loop to regulate SA synthesis upstream of *ICS1* (Seyfferth & Tsuda, 2014). In the present study, COS treatment, especially DP7 show the gradual significant induction of *ICS1* expression until 24h after elicitation. Consistent with these results, DP7 increased the *EDS1* transcript levels in rice at 12h after elicitation. Expression levels were higher in the DP7 treatment than DP5 and DP6 treatments. Whereas, DP7 and SA, induced the significant expression of *PAD4* expression levels at 24h after the treatment.

The *PAL* gene was strongly elevated in treatments with DP6 and DP7. Besides, the *NPR1* gene, which was suggested to act in transducing the SA signal to downstream and PR gene activation in rice (Shimono et al. 2007), was significantly expressed in COS and SA treatments. Similarly, Zhang et al., (2002) suggested that *EDS1*, *PAD4*, and *CPR1* act upstream of *NPR1* in the SA signal transduction pathway upon chitin treatment in *Arabidopsis* seedlings. Ilangumaran et al., (2017) also observed the strong up-regulation of the *ICS1* gene in *Arabidopsis* treated chitin extract at 24h after treatment. Similarly, induced expression of the *PAL* gene in *Medicago tranculata* seedlings was reported following the COS treatments (Nars et al. 2013). The present data suggest that the phenylpropanoid pathway is the major route for SA biosynthesis, though the contribution of the iso-chorismate pathway is evident in rice seedlings with COS treatment (especially DP7) during the plant SAR response. Therefore, these results suggest that the COS treatment could elicit the SAR response through SA-dependent pathway.

The expression patterns of biosynthesis and signaling genes of JA, another marker involved in plant defense responses (Glazebrook, 2005) was also evaluated. The expression of the *AOS2* gene, which encodes alleneoxide synthase 2, a key enzyme in JA biosynthesis was significantly higher only in DP7 treatment at 24h. Whereas, the transcript levels of *JMT1* (converts JA to volatile methyl jasmonate) and *JMYB* (JA-response) genes

were weakly/or not induced in rice treated with COS. It was observed that chitosan oligosaccharide induced the resistance to *tobacco mosaic virus* (TMV) in *Arabidopsis* through SA-mediated signalling (Jia et al. 2016). These results indicate that the activation of SA synthesis and the SA signaling pathway over the JA pathway upon COS treatment in rice seedlings.

## 4.3.3. COS treatment regulates the expression of signaling and defense-related genes

In plants, MAPK cascades are evolutionarily conserved signalling modules that govern the action of numerous transcription factors such as WRKY and enzymes such as protein kinases, eventually regulating the induction of PR proteins in host responses to a variety of biotic stressors. (Dodds & Rathjen, 2010; Yamada et al., 2017). In this study, DP7 and SA induced the expression of *MAPK6* at 12h and 24h after treatment. However, the expression of *MAPK5a* was significant only in DP7 treatment at 24h. It was reported that *OsMPK6* was activated by several MAMPs (Kurusu et al. 2005; Lieberherr et al. 2005). Kishi-Kaboshi et al., (2010) found that chitin perception by the *OsCEBiP/OsCERK1* complex activates the conserved MAPK cascade, *OsMKK4/5-OsMPK3/MPK6*. This cascade triggers the synthesis of antimicrobial compounds, induction of immune responses such as defense-related gene expression, and cell death in rice.

The WRKY family of transcription factors is known to play a role in regulating the transcription of defense genes through W-box in their promoters. Several WRKY transcription factors play role in disease resistance (Shimono et al., 2007; Shimono et al., 2012) and a number of WRKY genes were identified in the rice genome (Ramamoorthy et al. 2008). WRKY transcription factors also have a role in the modulation of SA and JA-responsive gene expression and disease resistance (Shimono et al., 2012). Our results demonstrated that *WRKY45* transcript levels were significantly induced upon DP7 treatment in rice seedlings. In contrast, the *WRKY13* gene was weakly induced upon COS treatment. In rice plants, knock-down of *WRKY45* compromised the benzo-thiadiazole induced defense against rice blast, whereas, the over-expression of *WRKY45* conferred resistance (Shimono et al. 2007). Qiu et al., (2007) also showed that the over-expression of *OsWRKY13* enhanced the rice resistance to bacterial blight and fungal blast by regulating the defense-related genes in SA and JA dependent signaling. Similarly, chitin elicitor-responsive photon emission potentiation occurred through SA signalling *via OsWRKY45* in rice cell suspension culture (Iyozumi, Nukui & Kato, 2016). Our results were further

supported by Ueno et al., (2017), where it was reported that *OsMPK6* activates the *WRKY45* by phosphorylation, which induces the disease resistance mediated by SA signaling in rice.

To capture more details of the defense response in eliciting the SAR, the expression of PR genes was also studied. In rice seedlings, DP6, as well as DP7, stimulated the expression of PR1a and PR10 genes. However, the PR4 gene was induced considerably only in DP7 treated seedlings at 24h after treatment. By contrast, expression of the PR1b gene was not considerably induced by COS treatments, suggesting the enhanced expression of WRKY45 may activate the PR1a and PR10 genes in SA-dependent pathway. Results presented here are consistent with the findings of Tanabe et al., (2006) who showed that DP7 induced SAR was accompanied by the activation of PR1 and PR10 genes in rice. Moreover, our results show that DP7 and SA induced strong expression of POD, chitinase, and 1,3-βglucanase genes. Previously, it was reported that the transcripts of POD, chitinase, and 1,3-β-glucanase accumulate to higher levels in chitin-treated plants and/or suspension cultures (Kaku et al., 1997; Nars et al., 2013). These results indicate that the COS especially, DP7 induce the expression of defense-related proteins for initiation of PTI. Based on the results, it can be attributed that, DP higher than five is detected by chitin elicitor receptor kinase (OsCERKI) with high specificity (Kaku et al., 2006), which forms a complex with chitin elicitor binding protein (OsCEBiP) thereby downstream chitin signalling (Hayafune et al., 2014; Shimizu et al., 2010) through SA signaling pathway over JA pathway.

#### 4.3.4. Improvement of grain yield with application of COS in rice

COS are being used as important functional materials in a variety of applications. The benefits of utilization of COS in agriculture closely mimic the purpose for which both the bio-fertilizers and bio-pesticides are used, as there is induction of defense against pathogens besides enhanced plant growth. Ramírez et al. (2010) reviewed the applications of chitin and its derivatives as biopolymers with potential agricultural applications and predicted that these biopolymers will be utilised more broadly, particularly to replace chemical pesticides and as growth regulators in future. Chitin and its derivatives are a prospective alternative due to their biological activity and easy availability. Multiple studies demonstrate the mechanisms of action and efficacy of such active principles in agriculture (Sharp, 2013), but are limited to a laboratory scale or controlled environments/green houses and field experiments were not reported.

Several methods of utilising chitin and their derivatives for plant growth stimulation have been attempted, including foliar spraying, seed coating, and soil supplementation. Use of oligo-chitosan as a broad-spectrum vaccine against plant diseases (Yin et al., 2010) highlights the need to produce specific COS for crop protection and production. El-Serafy, (2020) reported the use of ologo-chitosan in *Cordyline* seedlings for improved plant growth and root development. Similarly COS mixture increased plant growth and mineral accumulation in *Phaseolus vulgaris*, although chrolphyll content remained similar (Chatelain et al., 2014). Similarly, many studies reported the application of oligo-chitosan / COS mix in groundnut (Dung & Thang 2014), soybean (Dzung & Thang 2002), sugarcane, rice (El-Sawy et al. 2010), and wheat (Ma et al. 2012) towards improvement in plant growth and yield but no work is reported on specific application of purified COS at field level.

CoS mixtures enriched in oligomers with DP >6. COS of DP <6 can be converted to DP>6 by an efficient transglycosylation (TG) (Usui et al., 1990; Zakariassen et al., 2011; Purushotham & Podile, 2012). We have employed a mutant of TG enzyme *Sp*ChiD Y28A (Madhuprakash et al., 2015) and prepared higher DP COS. Further, we have tested these COS (DP5, DP6, DP7) on rice in terms of plant growth and grain yield. Total seed weight in rice treated with purified COS DP7 and DP6 improved ~7% and ~5% respectively along with improvement in seeds per panicle and 100 seed weight. In conclusion, we report that these COS could potentially be used as natural bio-stimulants of plant growth and development.

## Chapter - V

Major findings

Chapter V Major findings

#### **Chapter 5: Major Findings**

#### 5. Major findings reported in the thesis

 Plant developmental stage shapes rice rhizosphere microbiome, regardless of soil amendments.

- The highest difference, 100% (P≤ 0.005), was observed between vegetative and flowering stages. Highest alpha diversity is observed during flowering stage (ANOSIM)
- Bacteriome, mycobiome and eukaryome responded differently to chitinous substrate amendments to rice rhizosphere.
- Alpha diversity of bacteria, fungi, and eukaryota, are affected by chitinous substrate amendments. The alpha diversity index is highest for bacteria, then for eukaryota, and lowest for fungi.
- In the rice rhizosphere, the influence of soil amendments on bacteria was lowest, but
  the influence of eukaryome was highest regardless of dosage and soil amendments
  (based on Pseudo F value at P≤0.001 obtained during one way ANOVA)
- Core rhizosphere microbiome of rice comprises of Uncultivated Eukaryote, Uncultivated Fungi, Uncultivated Cryptomycota, Tyrophagus putrescentiae, Uncultivated Micro Eukaryote, Mortierella, Cochliopodium and Cordyceps respectively
- Rhizosphere microbiome of rice is shaped by host i.e., plant growth stages and different soil amendments with various dosages.
- The bacterial genus *Pseudomonas* sp. is highly abundant in both alpha and beta chitin treatments to rice rhizosphere and low with respect to chitosan treatments. Abundance of a known PGPR organism like *Pseudomonas* is positively correlated with chitinous treatments.
- The fungal genus *Cordyceps* is part of core microbiome during various chitinous amendments. *Cordyceps* is reported as endophytic entomopathogenic fungus possessing more than 24 chitinase genes in its genome.
- *Tyrophagus putrescentiae* (saprophagous soil mite`s) observed to be part of core microbiome (it is reported to form symbiotic relationship between chitinolytic bacteria and digested fungi in mycophagous micro-arthropods).

Chapter V Major findings

• Rare fungi *Mortierella* is highly abundant in rice rhizosphere under chitinous substrates and it is reported be PGPR for several crop species.

- The fungal genus *Clonostachys* is highly abundant during both alpha and beta chitin treatments to rice. It is reported as a endophytic fungus with plant growth promotion.
- *Scedosporium* sp. (fungi) is highly abundant in chitosan treatments and not prevelant in other treatments.
- Ascosphaera torchioi is abundant in alpha chitin treatment and widely reported as pathogens to insects in nature.
- Differential abundance of *Clonostachys* (genus of fungi) is observed, i.e., in the vegetative stage after alpha chitin treatment, it is highly abundant during the flowering stage of beta chitin treatment.
- The eukaryotic genus *Eimeriidae* is abundant during chitosan treatment at vegetative stage.
- *Cochliopodium* sp. belongs to eukaryotes is highly abundant in alpha and beta chitin treatments especially during plant flowering stage.
- Neobodo sailens are bacterivores protists and abundant in alpha chitin treatment especially during flowering stage of rice
- The bacterial genus *Flavisoilbacter* sp. is highly abundant during vegetative growth stage of rice rhizosphere microbiome
- Chitinous substrate amendments were effective in improving seed weight and total number of seeds, alpha chitin was effective followed by chitosan.
- Conditions were optimized for bulk production of COS using *Sp*ChiDY28A mutant and purified COS was prepared in required quantities for further application.
- Enzymatically generated COS- DP5, DP6 and DP7 elicited plant defense response in rice seedlings by root dip and foliar spray, the latter being more effective.
- Foliar treatment with COS elicited rapid and longer oxidative burst response in rice in comparison with root dip method.
- COS with DP7 exhibited higher induction of defense-related genes than DP6 and DP5.
- Foliar treatment with COS elicited a rapid and longer oxidative burst response in rice.
- COS triggered Salicylic Acid signaling pathway genes for defense in rice over Jasmonic Acid pathway.
- Pathogenesis related proteins *PR1a*, *PR10*, *chitinase1*, *peroxidase* and β -1,3-glucanase genes were induced by DP7.

Chapter V Major findings

• COS-induced activation of PAL and ICS1 and defense-related genes, imply SA-mediated SAR activation, possibly related to *MAPK6* and *WRKY45* expression.

- Induction of *MAPK6a*, *WRKY 13* and *WRKY45* genes was enhanced with DP7 treatment.
- Field evaluation was carried out by spraying purified COS (DP5-DP7) on rice during vegetative and booster dose at flowering stage.
- Harvest index parameters like total seed weight, 100 seed weight and seeds per panicle were improved.
- The total quantity of seeds harvested from each panicle across all treatments indicated that DP6 treatment was the most effective.
- DP7 treatment resulted in the highest total seed weight when all of the treatments were evaluated, followed by the DP6 treatment in rice.

\*\*\*\*\*\*

\*\*\*

## References

- Aam, B. B., Heggset, E. B., Norberg, A. L., Sørlie, M., Vårum, K. M., & Eijsink, V. G. H. (2010). Production of Chitooligosaccharides and Their Potential Applications in Medicine. *Marine Drugs*, 8(5), 1482–1517.
- Agri, Upasana, Parul Chaudhary, Anita Sharma, and Bharti Kukreti. 2022. "Physiological Response of Maize Plants and Its Rhizospheric Microbiome under the Influence of Potential Bioinoculants and Nanochitosan." *Plant and Soil* 474(1–2):451–68.
- Aguilera, B., Ghauharali-van der Vlugt, K., Helmond, M. T. J., Out, J. M. M., Donker-Koopman, W. E., Groener, J. E. M., Boot, R. G., Renkema, G. H., van der Marel, G. A., van Boom, J. H., Overkleeft, H. S., & Aerts, J. M. F. G. (2003). Transglycosidase Activity of Chitotriosidase. *Journal of Biological Chemistry*, 278(42), 40911–40916.
- Aly, M. R. ., Ibrahim, E.-S. I., El Ashry, E. S. H., & Schmidt, R. R. (2001). Synthesis of chitotetraose and chitohexaose based on dimethylmaleoyl protection. *Carbohydrate Research*, *331*(2), 129–142.
- El Amerany, Fatima, Abdelilah Meddich, Said Wahbi, Andrea Porzel, Moha Taourirte, Mohammed Rhazi, and Bettina Hause. 2020. "Foliar Application of Chitosan Increases Tomato Growth and Influences Mycorrhization and Expression of Endochitinase-Encoding Genes." *International Journal of Molecular Sciences* 21(2).
- Anderson, Marti, and Cajo Ter Braak. 2003. "Permutation Tests for Multi-Factorial Analysis of Variance." *Journal of Statistical Computation and Simulation* 73(2):85–113.
- Barouchas, Pantelis E., and Aglaia Liopa Tsakalidi. 2021. "Can Biochar and Chitin as Organic Soil Amendments Be Alternatives to Manures for Rocket (Eruca Sativa Mill.) Growth?" *Emirates Journal of Food and Agriculture* 33(3):194–201.
- Barro, M., Wonni, I., Simonin, M., Kassankogno, A. I., Klonowska, A., Moulin, L., Béna, G., Somda, I., Brunel, C., & Tollenaere, C. (2022). The impact of the rice production system (irrigated vs lowland) on root-associated microbiome from farmer's fields in western Burkina Faso. *FEMS Microbiology Ecology*, 98(9).
- Bastida, F., Torres, I. F., Moreno, J. L., Baldrian, P., Ondoño, S., Ruiz-Navarro, A., Hernández, T., Richnow, H. H., Starke, R., García, C., & Jehmlich, N. (2016). The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. *Molecular Ecology*, 25(18), 4660–4673.
- Bell, A. A., Hubbard, J. C., Liu, L., Davis, R. M., & Subbarao, K. V. (1998). Effects of Chitin and Chitosan on the Incidence and Severity of Fusarium Yellows of Celery. *Plant Disease*, 82(3), 322–328.
- Bowles, T., Acosta-Martínez, V., ... F. C.-S. B. and, & 2014, undefined. (n.d.). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural. *Elsevier*.
- Brown, J. A., Neville, F. J., Sarathchandra, S. U., Watson, R. N., & Cox, N. R. (1995). Effects of chitin amendment on plant growth, microbial populations and nematodes in soil. *Proceedings of the New Zealand Plant Protection Conference*, 48, 208–212.
- Brurberg, M. B., Nes, I. F., & Eijsink, V. G. H. (1996). Comparative studies of chitinases A and B from Serratia marcescens. *Microbiology*, *142*(7), 1581–1589.

- Burkhanova, G. F., L. G. Yarullina, and I. V. Maksimov. 2007. "The Control of Wheat Defense Responses during Infection with Bipolaris Sorokiniana by Chitooligosaccharides." *Russian Journal of Plant Physiology* 54(1):104–10
- Bylander, Tom. 2002. "Estimating Generalization Error on Two-Class Datasets Using out-of-Bag Estimates." *Machine Learning* 48(1–3):287–97.
- Cabrera, J. C., & Van Cutsem, P. (2005). Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. *Biochemical Engineering Journal*, 25(2), 165–172.
- Caporaso, J. Gregory, Christian L. Lauber, William A. Walters, Donna Berg-Lyons, Catherine A. Lozupone, Peter J. Turnbaugh, Noah Fierer, and Rob Knight. 2011. "Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample." *Proceedings of the National Academy of Sciences* 108(supplement\_1):4516–22.
- Cesarano, Gaspare, Francesca De Filippis, Antonietta La Storia, Felice Scala, and Giuliano Bonanomi. 2017. "Organic Amendment Type and Application Frequency Affect Crop Yields, Soil Fertility and Microbiome Composition." *Applied Soil Ecology* 120:254–64.
- Chalasani, Danteswari, Anirban Basu, Sarma V. S. R. N. Pullabhotla, Beatriz Jorrin, Andrew L. Neal, Philip S. Poole, Appa Rao Podile, and Andrzej Tkacz. 2021. "Poor Competitiveness of Bradyrhizobium in Pigeon Pea Root Colonization in Indian Soils" edited by A. K. Vidaver. *MBio* 12(4):423–44.
- Chatelain, Philippe G., Manuela E. Pintado, and Marta W. Vasconcelos. 2014. "Evaluation of Chitooligosaccharide Application on Mineral Accumulation and Plant Growth in Phaseolus Vulgaris." *Plant Science* 215–216:134–40.
- Chaker, R., Ben Mbarek, H., Ben Ammar, A., Maktouf, S., Mbadra, C., Bouzid, J., & Gargouri, K. (2023). Prediction of CO2 emission from arid soil after addition of exogenous organic matter. *Journal of Arid Environments*, 210, 104920.
- Choi, Hyong Woo, and Daniel F. Klessig. 2016. "DAMPs, MAMPs, and NAMPs in Plant Innate Immunity." *BMC Plant Biology* 16(1):232.
- Clarke, K. R. 1993. "Non-Parametric Multivariate Analyses of Changes in Community Structure." *Austral Ecology* 18(1):117–43.
- Cretoiu, Mariana Silvia, Anna Maria Kielak, Andreas Schluter, and Jan Dirk van Elsas. 2014. "Bacterial Communities in Chitin-Amended Soil as Revealed by 16S rRNA Gene Based Pyrosequencing." *Soil Biology and Biochemistry* 76:5–11.
- Daayf, F., El Bellaj, M., El Hassni, M., J'Aiti, F., & El Hadrami, I. (2003). Elicitation of soluble phenolics in date palm (Phoenix dactylifera) callus by Fusarium oxysporum f. sp. albedinis culture medium. *Environmental and Experimental Botany*, 49(1), 41–47.
- Dangi, Sadikshya, Suduan Gao, Yinghua Duan, and Dong Wang. 2020. "Soil Microbial Community Structure Affected by Biochar and Fertilizer Sources." *Applied Soil Ecology* 150:103452.
- Das, Subha Narayan, Sarma P.V.S.R.N, Neeraja Chilukoti, Nampally Malati, Podile App Rao Podile. 2010. "Members of Gammaproteobacteria and Bacilli represent the culturable diversity of chitonolytic bacteria in chitin-enriched soils." World Journal of Microbiology and Biotechnology.26(10), 1875-1881.

- Das, Jyotirmayee, Tushar Kanti Dangar, Tapan Kumar Adhya, and Madhusmita Panigrahy. 2022. "Plant Growth Promoting and Antimicrobial Functionalities of Rhizosphere Pseudomonas Species in Flooded Rice Soils of Coastal Odisha." *Environmental Quality Management*.
- Das, Subha Narayan, Jogi Madhuprakash, P. V. S. R. N. Sarma, Pallinti Purushotham, Katta Suma, Kaur Manjeet, Samudrala Rambabu, Nour Eddine El Gueddari, Bruno M. Moerschbacher, and Appa Rao Podile. 2015. "Biotechnological Approaches for Field Applications of Chitooligosaccharides (COS) to Induce Innate Immunity in Plants." *Critical Reviews in Biotechnology* 35(1):29–43.
- Day, R. B., M. Okada, Y. Ito, K. Tsukada, H. Zaghouani, N. Shibuya, and G. Stacey. 2001. "Binding Site for Chitin Oligosaccharides in the Soybean Plasma Membrane." *Plant Physiology* 126(3):1162–73.
- Debode, Jane, Caroline De Tender, Saman Soltaninejad, Cinzia Van Malderghem, Annelies Haegeman, Inge Van der Linden, Bart Cottyn, Marc Heyndrickx, and Martine Maes. 2016. "Chitin Mixed in Potting Soil Alters Lettuce Growth, the Survival of Zoonotic Bacteria on the Leaves and Associated Rhizosphere Microbiology." *Frontiers in Microbiology* 7(APR):565.
- Defaye, Jacques, Andrée Gadelle, and Christian Pedersen. 1994. "A Convenient Access to β- $(1 \rightarrow 4)$ -Linked 2-Amino-2-Deoxy-d-Glucopyranosyl Fluoride Oligosaccharides and β- $(1 \rightarrow 4)$ -Linked 2-Amino-2-Deoxy-d-Glucopyranosyl Oligosaccharides by Fluorolysis and Fluorohydrolysis of Chitosan." *Carbohydrate Research* 261(2):267–77.
- Desaki, Yoshitake, Ippei Otomo, Daijiro Kobayashi, Yusuke Jikumaru, Yuji Kamiya, Balakrishnan Venkatesh, Shinji Tsuyumu, Hanae Kaku, and Naoto Shibuya. 2012. "Positive Crosstalk of MAMP Signaling Pathways in Rice Cells" edited by R. Subramanyam. *PLoS ONE* 7(12):e51953.
- Dodds, Peter N., and John P. Rathjen. 2010. "Plant Immunity: Towards an Integrated View of Plant–Pathogen Interactions." *Nature Reviews Genetics* 11(8):539–48.
- Duddigan, Sarah, Liz J. Shaw, Paul D. Alexander, and Chris D. Collins. 2022. "Effects of Application of Horticultural Soil Amendments on Decomposition, Quantity, Stabilisation and Quality of Soil Carbon." *Scientific Reports* 2022 12:1 12(1):1–14.
- Dung, Nguyen Anh, and Nguyen Tien Thang. 2014. "Study of Oligoglucosamine Effects on the Growth and Development of Peanut Plants." *TAP CHI SINH HOC* 27(3).
- Dzung, N. A., and N. T. Thang. 2002. "Effect of Oligoglucosamine Prepared by Enzyme Degradation on the Growth of Soybean." *Advances in Chitin Sci.* 463-467.
- Edgar, Robert C. 2016. "UNOISE2: Improved Error-Correction for Illumina 16S and ITS Amplicon Sequencing." *BioRxiv* 081257.
- Edwards, Joseph, Cameron Johnson, Christian Santos-Medellín, Eugene Lurie, Natraj Kumar Podishetty, Srijak Bhatnagar, Jonathan A. Eisen, Venkatesan Sundaresan, and L. Dangl Jeffery. 2015. "Structure, Variation, and Assembly of the Root-Associated Microbiomes of Rice." *Proceedings of the National Academy of Sciences of the United States of America* 112(8):E911–20.
- Egusa, Mayumi, Hidenori Matsui, Takeshi Urakami, Sanami Okuda, Shinsuke Ifuku, Hirofumi Nakagami, and Hironori Kaminaka. 2015. "Chitin Nanofiber Elucidates the Elicitor Activity of Polymeric Chitin in Plants." *Frontiers in Plant Science* 6.

- El Amerany, F., Meddich, A., Wahbi, S., Porzel, A., Taourirte, M., Rhazi, M., & Hause, B. (2020). Foliar application of chitosan increases tomato growth and influences mycorrhization and expression of endochitinase-encoding genes. *International Journal of Molecular Sciences*, 21(2).
- El-Sawy, Naeem M., Hassan A. Abd El-Rehim, Ahmed M. Elbarbary, and El-Sayed A. Hegazy. 2010. "Radiation-Induced Degradation of Chitosan for Possible Use as a Growth Promoter in Agricultural Purposes." *Carbohydrate Polymers* 79(3):555–62.
- El-Serafy, Rasha S. 2020. "Phenotypic Plasticity, Biomass Allocation, and Biochemical Analysis of Cordyline Seedlings in Response to Oligo-Chitosan Foliar Spray." *Journal of Soil Science and Plant Nutrition* 20(3):1503–14.
- El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in Plant Protection. *Marine Drugs*, 8(4), 968–987.
- Eyre, A. W., Wang, M., Oh, Y., & Dean, R. A. (2019). Identification and characterization of the core rice seed microbiome. *Phytobiomes Journal*, *3*(2), 148–157.
- Felix, Georg, Martin Regenass, and Thomas Boller. 1993. "Specific Perception of Subnanomolar Concentrations of Chitin Fragments by Tomato Cells: Induction of Extracellular Alkalinization, Changes in Protein Phosphorylation, and Establishment of a Refractory State." *The Plant Journal* 4(2):307–16.
- Fernández-baca, C. P., Rivers, A. R., Maul, J. E., Kim, W., Poudel, R., McClung, A. M., Roberts, D. P., Reddy, V. R., & Barnaby, J. Y. (2021). Rice Plant–Soil Microbiome Interactions Driven by Root and Shoot Biomass. *Diversity 2021, Vol. 13, Page 125*, 13(3), 125.
- Fliegmann, Judith, Sandra Uhlenbroich, Tomonori Shinya, Yves Martinez, Benoit Lefebvre, Naoto Shibuya, and Jean-Jacques Bono. 2011. "Biochemical and Phylogenetic Analysis of CEBiP-like LysM Domain-Containing Extracellular Proteins in Higher Plants." *Plant Physiology and Biochemistry* 49(7):709–20.
- FUKAMIZO, T., SATO, H., MIZUHARA, M., OHNUMA, T., GOTOH, T., HIWATASHI, K., & TAKAHASHI, S. (2011). Chitinase from Autographa californica Multiple Nucleopolyhedrovirus: Rapid Purification from Sf-9 Medium and Mode of Action. *Bioscience, Biotechnology, and Biochemistry*, 75(9), 1763–1769.
- Gallão, Maria I., Angelo L. Cortelazzo, Manoel P. S. Fevereiro, and Edy S. de Brito. 2007. "Response to Chitin in Suspension-Cultured Citrus Aurantium Cells." *Brazilian Journal of Plant Physiology* 19(1):69–76.
- Ghaouth, Ahmed, Joseph Arul, Alain Asselin, and Nicole Benhamou. 1992. "Antifungal Activity of Chitosan on Post-Harvest Pathogens: Induction of Morphological and Cytological Alterations in Rhizopus Stolonifer." *Mycological Research* 96(9):769–79.
- Ghorbani, Mohammad, Reinhard W. Neugschwandtner, Petr Konvalina, Hossein Asadi, Marek Kopecký, and Elnaz Amirahmadi. 2022. "Comparative Effects of Biochar and Compost Applications on Water Holding Capacity and Crop Yield of Rice under Evaporation Stress: A Two-Years Field Study." *Paddy and Water Environment* 1:1–12.
- Glazebrook, Jane. 2005. "Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens." *Annual Review of Phytopathology* 43(1):205–27.

- Goosen, M. F. A. (Ed.). (2020). Applications of Chitin and Chitosan. CRC Press.
- Guo, Yaping, Bin Song, Anqi Li, Qi Wu, Haili Huang, Na Li, Ying Yang, Jonathan Miles Adams, and Lin Yang. 2022. "Higher PH Is Associated with Enhanced Co-Occurrence Network Complexity, Stability and Nutrient Cycling Functions in the Rice Rhizosphere Microbiome." *Environmental Microbiology*.
- El Hadrami, Abdelbasset, Lorne R. Adam, Ismail El Hadrami, and Fouad Daayf. 2010. "Chitosan in Plant Protection." *Marine Drugs* 8(4):968–87.
- van Hannen, Erik J., Miranda P. van Agterveld, Herman J. Gons, and Hendrikus J. Laanbroek. 1998. "REVEALING GENETIC DIVERSITY OF EUKARYOTIC MICROORGANISMS IN AQUATIC ENVIRONMENTS BY DENATURING GRADIENT GEL ELECTROPHORESIS." *Journal of Phycology* 34(2):206–13.
- Hassani, M. Amine, Ezgi Özkurt, Sören Franzenburg, and Eva H. Stukenbrock. 2020. "Ecological Assembly Processes of the Bacterial and Fungal Microbiota of Wild and Domesticated Wheat Species." *Phytobiomes Journal* 4(3):217–24.
- Hayafune, M., R. Berisio, R. Marchetti, A. Silipo, M. Kayama, Y. Desaki, S. Arima, F. Squeglia, A. Ruggiero, K. Tokuyasu, A. Molinaro, H. Kaku, and N. Shibuya. 2014. "Chitin-Induced Activation of Immune Signaling by the Rice Receptor CEBiP Relies on a Unique Sandwich-Type Dimerization." *Proceedings of the National Academy of Sciences* 111(3):E404–13.
- Hubert, Jan, Marta Nesvorna, Bruno Sopko, Jaroslav Smrz, Pavel Klimov, and Tomas Erban. 2018. "Two Populations of Mites (Tyrophagus Putrescentiae) Differ in Response to Feeding on Feces-Containing Diets." *Frontiers in Microbiology* 9:2590.
- Hui, Cai, Hui Jiang, Bing Liu, Ran Wei, Yiping Zhang, Qichun Zhang, Yongchao Liang, and Yuhua Zhao. 2020. "Chitin Degradation and the Temporary Response of Bacterial Chitinolytic Communities to Chitin Amendment in Soil under Different Fertilization Regimes." *Science of The Total Environment* 705:136003.
- Ibrahim, Muhammed Mustapha, Chenxiao Tong, Kun Hu, Biqing Zhou, Shihe Xing, and Yanling Mao. 2020. "Biochar-Fertilizer Interaction Modifies N-Sorption, Enzyme Activities and Microbial Functional Abundance Regulating Nitrogen Retention in Rhizosphere Soil." *Science of The Total Environment* 739:140065.
- Ikeda, S., Sasaki, K., Okubo, T., Yamashita, A., Terasawa, K., Bao, Z., Liu, D., Watanabe, T., Murase, J., Asakawa, S., Eda, S., Mitsui, H., Sato, T., & Minamisawa, K. (2014). Low Nitrogen Fertilization Adapts Rice Root Microbiome to Low Nutrient Environment by Changing Biogeochemical Functions. *Microbes and Environments*, 29(1), 50–59.
- Ilangumaran, Gayathri, Glenn Stratton, Sridhar Ravichandran, Pushp S. Shukla, Philippe Potin, Samuel Asiedu, and Balakrishnan Prithiviraj. 2017. "Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management." *Frontiers in Microbiology* 8.
- Iyozumi, Hiroyuki, Hideki Nukui, and Kimihiko Kato. 2016. "Chitin Elicitor-Responsive Photon Emission Is Potentiated by Plant Activators through Priming of Salicylic Acid Signaling via OsWRKY45 in Rice." *Rice Research: Open Access* 04(04).
- Jahn, Michael, Dominik Stoll, R. Antony J. Warren, Lóránd Szabó, Pritpal Singh, Harry J. Gilbert, Valérie M. A. Ducros, Gideon J. Davies, and Stephen G. Withers. 2003.

- "Expansion of the Glycosynthase Repertoire to Produce Defined Manno-Oligosaccharides." *Chem. Commun.* (12):1327–29.
- Jeon, You-Jin, and Se-Kwon Kim. 2000. "Production of Chitooligosaccharides Using an Ultrafiltration Membrane Reactor and Their Antibacterial Activity." *Carbohydrate Polymers* 41(2):133–41.
- Jia, Xiaochen, Qingshan Meng, Haihong Zeng, Wenxia Wang, and Heng Yin. 2016. "Chitosan Oligosaccharide Induces Resistance to Tobacco Mosaic Virus in Arabidopsis via the Salicylic Acid-Mediated Signalling Pathway." *Scientific Reports*. doi: 10.1038/srep26144.
- Jin, Bing Jie, Xi Peng Liu, Xavier Le Roux, Qing Fang Bi, Ke Jie Li, Chun Yan Wu, Cheng Liang Sun, Yong Guan Zhu, and Xian Yong Lin. 2022. "Biochar Addition Regulates Soil and Earthworm Gut Microbiome and Multifunctionality." *Soil Biology and Biochemistry* 173:108810.
- Jung, Woo-Jin, Fazli Mabood, Alfred Souleimanov, and Donald L. Smith. 2008. "Effect of Chitin Hexamer and Thuricin 17 on Lignification-Related and Antioxidative Enzymes in Soybean Plants." *Journal of Plant Biology* 51(2):145–49.
- Kaku, Hanae, Yoko Nishizawa, Naoko Ishii-Minami, Chiharu Akimoto-Tomiyama, Naoshi Dohmae, Koji Takio, Eiichi Minami, and Naoto Shibuya. 2006a. "Plant Cells Recognize Chitin Fragments for Defense Signaling through a Plasma Membrane Receptor." *Proceedings of the National Academy of Sciences* 103(29):11086–91.
- Kaku, Hanae, Naoto Shibuya, Peilin Xu, Arun P. Aryan, and Geoffrey B. Fincher. 1997. "N-Acetylchitooligosaccharides Elicit Expression of a Single (13)-Beta-Glucanase Gene in Suspension-Cultured Cells from Barley (Hordeum Vulgare)." *Physiologia Plantarum* 100(1):111–18.
- Kananont, Nungruthai, Rath Pichyangkura, Boonthida Kositsup, Wanpen Wiriyakitnateekul, and Supachitra Chadchawan. 2016. "Improving the Rice Performance by Fermented Chitin Waste." *International Journal of Agriculture and Biology* 18(1):9–15.
- Kanasugi, M., Sarkodee-Addo, E., Omari, R. A., Dastogeer, K. M. G., Fujii, Y., Abebrese, S. O., Bam, R., Asuming-Brempong, S., & Okazaki, S. (2020). Exploring Rice Root Microbiome; The Variation, Specialization and Interaction of Bacteria and Fungi In Six Tropic Savanna Regions in Ghana. Sustainability 2020, Vol. 12, Page 5835, 12(14), 5835.
- Kawasaki, Tsutomu, Hisako Koita, Tomoyuki Nakatsubo, Kana Hasegawa, Kenichi Wakabayashi, Hiroki Takahashi, Kenji Umemura, Toshiaki Umezawa, and Ko Shimamoto. 2006. "Cinnamoyl-CoA Reductase, a Key Enzyme in Lignin Biosynthesis, Is an Effector of Small GTPase Rac in Defense Signaling in Rice." *Proceedings of the National Academy of Sciences* 103(1):230–35.
- Kikuyama, M., K. Kuchitsu, and N. Shibuya. 1997. "Membrane Depolarization Induced by N-Acetylchitooligosaccharide Elicitor in Suspension-Cultured Rice Cells." *Plant and Cell Physiology* 38(8):902–9.
- Kim, H., & Lee, Y.-H. (2019). The Rice Microbiome: A Model Platform for Crop Holobiome. *Https://Doi.Org/10.1094/PBIOMES-07-19-0035-RVW*.
- Kim, T.-J., Park, C.-S., Cho, H.-Y., Cha, S.-S., Kim, J.-S., Lee, S.-B., Moon, T.-W., Kim, J.-W., Oh, B.-H., & Park, K.-H. (2000). Role of the Glutamate 332 Residue in the

- Transglycosylation Activity of Thermus Maltogenic Amylase. *Biochemistry*, 39(23), 6773–6780.
- Kishi-Kaboshi, Mitsuko, Kazunori Okada, Leona Kurimoto, Shinya Murakami, Toshiaki Umezawa, Naoto Shibuya, Hisakazu Yamane, Akio Miyao, Hiroshi Takatsuji, Akira Takahashi, and Hirohiko Hirochika. 2010. "A Rice Fungal MAMP-Responsive MAPK Cascade Regulates Metabolic Flow to Antimicrobial Metabolite Synthesis." *The Plant Journal* 63(4):599–612.
- Kishimoto, Kyutaro, Yusuke Kouzai, Hanae Kaku, Naoto Shibuya, Eiichi Minami, and Yoko Nishizawa. 2010. "Perception of the Chitin Oligosaccharides Contributes to Disease Resistance to Blast Fungus Magnaporthe Oryzae in Rice." *The Plant Journal* 64(2):343–54.
- Kishore, G. K., S. Pande, and A. R. Podile. 2005. "Chitin-Supplemented Foliar Application of Serratia Marcescens GPS 5 Improves Control of Late Leaf Spot Disease of Groundnut by Activating Defence-Related Enzymes." *Journal of Phytopathology* 153(3):169–73.
- Kittur, F. S., Vishu Kumar, A. B., & Tharanathan, R. N. (2003). Low molecular weight chitosans—preparation by depolymerization with Aspergillus niger pectinase, and characterization. *Carbohydrate Research*, 338(12), 1283–1290.
- Kittur, Farooqahamed S., Acharya B. Vishu Kumar, Mandyam C. Varadaraj, and Rudrapatnam N. Tharanathan. 2005. "Chitooligosaccharides—Preparation with the Aid of Pectinase Isozyme from Aspergillus Niger and Their Antibacterial Activity." *Carbohydrate Research* 340(6):1239–45.
- Krairak, Somchai, and Duenpen Arttisong. 2007. "Chitin Oligomers Production from Fungal Mycelium Cultivating on Cassava Starch Medium." *KMITL Sci Tech J* 7:147–54.
- Krairak, S., & Arttisong, D. (2007). Chitin oligomers production from fungal mycelium cultivating on cassava starch medium. *KMITL Sci Tech J*, 7, 147–54.
- Kruskal, William H., and W. Allen Wallis. 1952. "Use of Ranks in One-Criterion Variance Analysis." *Journal of the American Statistical Association* 47(260):583.
- Kumari, Chanchal, Tushar K. Dutta, Prakash Banakar, and Uma Rao. 2016. "Comparing the Defence-Related Gene Expression Changes upon Root-Knot Nematode Attack in Susceptible versus Resistant Cultivars of Rice." *Scientific Reports* 6(February):1–13.
- Kumar, M., Kumar, A., Sahu, K. P., Patel, A., Reddy, B., Sheoran, N., Krishnappa, C., Rajashekara, H., Bhagat, S., & Rathour, R. (2021). Deciphering core-microbiome of rice leaf endosphere: Revelation by metagenomic and microbiological analysis of aromatic and non-aromatic genotypes grown in three geographical zones. *Microbiological Research*, 246, 126704.
- Kurusu, Takamitsu, Toshikazu Yagala, Akio Miyao, Hirohiko Hirochika, and Kazuyuki Kuchitsu. 2005. "Identification of a Putative Voltage-Gated Ca2+ Channel as a Key Regulator of Elicitor-Induced Hypersensitive Cell Death and Mitogen-Activated Protein Kinase Activation in Rice." *The Plant Journal* 42(6):798–809.
- Kuyama, Hiroki, Yuko Nakahara, Tomoo Nukada, Yukishige Ito, Yoshiaki Nakahara, and Tomoya Ogawa. 1993. "Stereocontrolled Synthesis of Chitosan Dodecamer." *Carbohydrate Research* 243(1):C1–7.

- LAFONTAINE, PIERRE J., and NICOLE BENHAMOU. 1996. "Chitosan Treatment: An Emerging Strategy for Enhancing Resistance of Greenhouse Tomato Plants to Infection by Fusarium Oxysporum f.Sp. Radicis-Lycopersici." *Biocontrol Science and Technology* 6(1):111–24.
- Lemanceau, P., M. Barret, S. Mazurier, S. Mondy, B. Pivato, T. Fort, and C. Vacher. 2017. "Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere and Phyllosphere." *Advances in Botanical Research* 82:101–33.
- Lee, D.-X., Xia, W.-S., & Zhang, J.-L. (2008). Enzymatic preparation of chitooligosaccharides by commercial lipase. *Food Chemistry*, 111(2), 291–295.
- Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., Fort, T., & Vacher, C. (2017). Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere and Phyllosphere. *Advances in Botanical Research*, 82, 101–133.
- Li, Fang, Shuiqing Zhang, Yi Wang, Yue Li, Peipei Li, Lin Chen, Xiaolei Jie, Desheng Hu, Biao Feng, Ke Yue, and Yanlai Han. 2020. "Rare Fungus, Mortierella Capitata, Promotes Crop Growth by Stimulating Primary Metabolisms Related Genes and Reshaping Rhizosphere Bacterial Community." *Soil Biology and Biochemistry* 151:108017.
- Li, Kecheng, Ronge Xing, Song Liu, and Pengcheng Li. 2016. "Advances in Preparation, Analysis and Biological Activities of Single Chitooligosaccharides." *Carbohydrate Polymers* 139:178–90.
- Li, Xinyue, Bing Li, Lan Chen, Jingyue Liang, Rong Huang, Xiaoyan Tang, Xiao Zhang, and Changquan Wang. 2022. "Partial Substitution of Chemical Fertilizer with Organic Fertilizer over Seven Years Increases Yields and Restores Soil Bacterial Community Diversity in Wheat–Rice Rotation." *European Journal of Agronomy* 133:126445.
- Liu, B., Li, J.-F., Ao, Y., Qu, J., Li, Z., Su, J., Zhang, Y., Liu, J., Feng, D., Qi, K., He, Y., Wang, J., & Wang, H.-B. (2012). Lysin Motif—Containing Proteins LYP4 and LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate Immunity. *The Plant Cell*, 24(8), 3406–3419.
- Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., Fan, F., Wang, J., Jin, C., Chang, J., Zhou, J.-M., & Chai, J. (2012). Chitin-Induced Dimerization Activates a Plant Immune Receptor. *Science*, *336*(6085), 1160–1164.
- Liaw, A., and M. Wiener. 2002. "Classification and Regression by RandomForest." *R News* 2(3):18–22.
- Libault, Marc, Jinrong Wan, Tomasz Czechowski, Michael Udvardi, and Gary Stacey. 2007. "Identification of 118 Arabidopsis Transcription Factor and 30 Ubiquitin-Ligase Genes Responding to Chitin, a Plant-Defense Elicitor." *Molecular Plant-Microbe Interactions*® 20(8):900–911.
- Lieberherr, Damien, Nguyen Phuong Thao, Ayako Nakashima, Kenji Umemura, Tsutomu Kawasaki, and Ko Shimamoto. 2005. "A Sphingolipid Elicitor-Inducible Mitogen-Activated Protein Kinase Is Regulated by the Small GTPase OsRac1 and Heterotrimeric G-Protein in Rice." *Plant Physiology* 138(3):1644–52.
- Lin, Shaoying, Weiqi Wang, Josep Peñuelas, Jordi Sardans, Marcos Fernández-Martínez, Chengju Su, XupingXu, Bhupinder Pal Singh, and Yunying Fang. 2022. "Combined Slag and Biochar Amendments to Subtropical Paddy Soils Lead to a Short-Term

- Change of Bacteria Community Structure and Rise of Soil Organic Carbon." *Applied Soil Ecology* 179:104593.
- Lisker, N., Lea Cohen, E. Chalutz, and Y. Fuchs. 1983. "Fungal Infections Suppress Ethylene-Induced Phenylalanine Ammonia-Lyase Activity in Grapefruits." *Physiological Plant Pathology* 22(3):331–38.
- Liu, Bing, Jian-Feng Li, Ying Ao, Jinwang Qu, Zhangqun Li, Jianbin Su, Yang Zhang, Jun Liu, Dongru Feng, Kangbiao Qi, Yanming He, Jinfa Wang, and Hong-Bin Wang. 2012. "Lysin Motif—Containing Proteins LYP4 and LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate Immunity." *The Plant Cell* 24(8):3406–19.
- Liu, Tingting, Zixu Liu, Chuanjun Song, Yunfei Hu, Zhifu Han, Ji She, Fangfang Fan, Jiawei Wang, Changwen Jin, Junbiao Chang, Jian-Min Zhou, and Jijie Chai. 2012. "Chitin-Induced Dimerization Activates a Plant Immune Receptor." *Science* 336(6085):1160–64.
- Lundberg, Derek S., Sarah L. Lebeis, Sur Herrera Paredes, Scott Yourstone, Jase Gehring, Stephanie Malfatti, Julien Tremblay, Anna Engelbrektson, Victor Kunin, Tijana Glavina Del Rio, Robert C. Edgar, Thilo Eickhorst, Ruth E. Ley, Philip Hugenholtz, Susannah Green Tringe, and Jeffery L. Dangl. 2012. "Defining the Core Arabidopsis Thaliana Root Microbiome." *Nature* 488(7409):86–90.
- Lv, Haihan, Chenchen Ji, Jingli Ding, Lu Yu, and Hongmei Cai. 2022. "High Levels of Zinc Affect Nitrogen and Phosphorus Transformation in Rice Rhizosphere Soil by Modifying Microbial Communities." *Plants* 11(17):2271.
- Lv, Haihan, Chenchen Ji, Lin Zhang, Cuncang Jiang, and Hongmei Cai. 2022. "Zinc Application Promotes Nitrogen Transformation in Rice Rhizosphere Soil by Modifying Microbial Communities and Gene Expression Levels." *Science of The Total Environment* 849:157858.
- Ma, Lianju, Yueying Li, Cuimei Yu, Yan Wang, Xuemei Li, Na Li, Qiang Chen, and Ning Bu. 2012. "Alleviation of Exogenous Oligochitosan on Wheat Seedlings Growth under Salt Stress." *Protoplasma* 249(2):393–99.
- Macho, Alberto P., and Cyril Zipfel. 2014. "Plant PRRs and the Activation of Innate Immune Signaling." *Molecular Cell* 54(2):263–72.
- Madhuprakash, Jogi, Kishore Babu Bobbili, Bruno M. Moerschbacher, Tej Pal Singh, Musti J. Swamy, and Appa Rao Podile. 2015. "Inverse Relationship between Chitobiase and Transglycosylation Activities of Chitinase-D from Serratia Proteamaculans Revealed by Mutational and Biophysical Analyses." *Scientific Reports* 5(1):15657.
- Madhuprakash, J., Tanneeru, K., Karlapudi, B., Guru Prasad, L. & Podile, A. R. Mutagenesis and molecular dynamics simulations revealed the chitooligosaccharide entry and exit points for chitinase D from *Serratia proteamaculans*. Biochim. Biophys. Acta. 1840, 2685–2694 (2014).
- Madhuprakash, Jogi, Bjørn Dalhus, T. Swaroopa Rani, Appa Rao Podile, Vincent G. H. Eijsink, and Morten Sørlie. 2018. "Key Residues Affecting Transglycosylation Activity in Family 18 Chitinases: Insights into Donor and Acceptor Subsites." *Biochemistry* 57(29):4325–37.
- Madhuprakash, Jogi, Karunakar Tanneeru, Pallinti Purushotham, Lalitha Guruprasad, and Appa Rao Podile. 2012. "Transglycosylation by Chitinase D from Serratia

- Proteamaculans Improved through Altered Substrate Interactions." *Journal of Biological Chemistry* 287(53):44619–27.
- Majumdar, Arnab, Munish Kumar Upadhyay, Pradeep Kumar Dubey, Biswajit Giri, Ashish Kumar Srivastava, and Sudhakar Srivastava. 2022. "Effect of Combined Dry-Wet Irrigation and Microbial Dynamics on Soil Nutrient Bioavailability." doi: 10.31223/X52K99.
- Manjula, K., and A. R. Podile. 2001. "Chitin-Supplemented Formulations Improve Biocontrol and Plant Growth Promoting Efficiency of Bacillus Subtilis AF 1." *Canadian Journal of Microbiology* 47(7):618–25.
- Mann, H. B., and D. R. Whitney. 1947. "On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other." *The Annals of Mathematical Statistics* 18(1):50–60.
- Martinez, Eduardo Andres, Harry Boer, Anu Koivula, Eric Samain, Hugues Driguez, Sylvie Armand, and Sylvain Cottaz. 2012. "Engineering Chitinases for the Synthesis of Chitin Oligosaccharides: Catalytic Amino Acid Mutations Convert the GH-18 Family Glycoside Hydrolases into Transglycosylases." *Journal of Molecular Catalysis B: Enzymatic* 74(1–2):89–96.
- Masson, A. S., Bich, H. H., Simonin, M., Thi, H. N., Czernic, P., Moulin, L., & Bellafiore, S. (2020). Deep modifications of the microbiome of rice roots infected by the parasitic nematode Meloidogyne graminicola in highly infested fields in Vietnam. *FEMS Microbiology Ecology*, 96(7).
- Matsuoka, Koji, Yoshiaki Matsuzawa, Kimio Kusano, Daiyo Terunuma, and Hiroyoshi Kuzuhara. 2000. "An Improved Preparation of N , N '-Diacetylchitobiose by Continuous Enzymatic Degradation of Colloidal Chitin Using Dialysis Tubing as a Convenient Separator." *Biomacromolecules* 1(4):798–800.
- McMurdie, Paul J., and Susan Holmes. 2013. "Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data" edited by M. Watson. *PLoS ONE* 8(4):e61217.
- Matsushima, C., Shenton, M., Kitahara, A., Wasaki, J., Oikawa, A., Cheng, W., Ikeo, K., & Tawaraya, K. (2021). Multiple analysis of root exudates and microbiome in rice (Oryza sativa) under low P conditions. *Archives of Microbiology*, 203(9), 5599–5611.
- Mitter, Birgit, Günter Brader, Muhammad Afzal, Stephane Compant, Muhammad Naveed, Friederike Trognitz, and Angela Sessitsch. 2013. "Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria." *Advances in Agronomy* 121:381–445.
- Miya, Ayako, Premkumar Albert, Tomonori Shinya, Yoshitake Desaki, Kazuya Ichimura, Ken Shirasu, Yoshihiro Narusaka, Naoto Kawakami, Hanae Kaku, and Naoto Shibuya. 2007. "CERK1, a LysM Receptor Kinase, Is Essential for Chitin Elicitor Signaling in Arabidopsis." *Proceedings of the National Academy of Sciences* 104(49):19613–18.
- Moran, J., & McGrath, C. (2021). Comparison of methods for mapping rhizosphere processes in the context of their surrounding root and soil environments. *BioTechniques*, 71(6), 605–614.
- Mowrer, Jake, Ginette Dembele, Andrea Strzelec, and Binita Thapa. 2022. "Cotton Waste-Derived Biochar and Compost Improve Early Growth and AMF Association in Cotton." *Agrosystems, Geosciences & Environment* 5(3):e20298.

- Murphy, John G., Susan M. Rafferty, and Alan C. Cassells. 2000. "Stimulation of Wild Strawberry (Fragaria Vesca) Arbuscular Mycorrhizas by Addition of Shellfish Waste to the Growth Substrate: Interaction between Mycorrhization, Substrate Amendment and Susceptibility to Red Core (Phytophthora Fragariae)." *App. Soil Ecology* 15(2):153–58.
- Muzard, M., N. Aubry, R. Plantier-Royon, M. O'Donohue, and C. Rémond. 2009. "Evaluation of the Transglycosylation Activities of a GH 39 β-d-Xylosidase for the Synthesis of Xylose-Based Glycosides." *Journal of Molecular Catalysis B: Enzymatic* 58(1–4):1–5.
- Nars, A., T. Rey, C. Lafitte, S. Vergnes, S. Amatya, C. Jacquet, B. Dumas, C. Thibaudeau, L. Heux, A. Bottin, and J. Fliegmann. 2013. "An Experimental System to Study Responses of Medicago Truncatula Roots to Chitin Oligomers of High Degree of Polymerization and Other Microbial Elicitors." *Plant Cell Reports* 32(4):489–502.
- Neeraja, Chilukoti, Kondreddy Anil, Pallinti Purushotham, Katta Suma, Pvsrn Sarma, Bruno M. Moerschbacher, and Appa Rao Podile. 2010. "Biotechnological Approaches to Develop Bacterial Chitinases as a Bioshield against Fungal Diseases of Plants." *Critical Reviews in Biotechnology* 30(3).
- Ohnuma, T., Numata, T., Osawa, T., Mizuhara, M., Lampela, O., Juffer, A. H., Skriver, K., & Fukamizo, T. (2011). A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. *Planta*, *234*(1), 123–137.
- Ohnuma, Takayuki, Tomoyuki Numata, Takuo Osawa, Mamiko Mizuhara, Kjell M. Vårum, and Tamo Fukamizo. 2011. "Crystal Structure and Mode of Action of a Class V Chitinase from Nicotiana Tabacum." *Plant Molecular Biology* 75(3):291–304.
- Okada, Atsushi, Takafumi Shimizu, Kazunori Okada, Tomohisa Kuzuyama, Jinichiro Koga, Naoto Shibuya, Hideaki Nojiri, and Hisakazu Yamane. 2007. "Elicitor Induced Activation of the Methylerythritol Phosphate Pathway toward Phytoalexins Biosynthesis in Rice." *Plant Molecular Biology* 65(1–2):177–87.
- Okada, M., M. Matsumura, Y. Ito, and N. Shibuya. 2002. "High-Affinity Binding Proteins for N-Acetylchitooligosaccharide Elicitor in the Plasma Membranes from Wheat, Barley and Carrot Cells: Conserved Presence and Correlation with the Responsiveness to the Elicitor." *Plant Cell Physiol* 43(5):505–12.
- Ortmann, Imke, and Bruno M. Moerschbacher. 2006. "Spent Growth Medium of Pantoea Agglomerans Primes Wheat Suspension Cells for Augmented Accumulation of Hydrogen Peroxide and Enhanced Peroxidase Activity upon Elicitation." *Planta* 224(4):963–70.
- Otero-Jiménez, Vanessa, Jibda del Pilar Carreño-Carreño, Emiliano Barreto-Hernandez, Jan Dirk van Elsas, and Daniel Uribe-Vélez. 2021. "Impact of Rice Straw Management Strategies on Rice Rhizosphere Microbiomes." *Applied Soil Ecology* 167:104036.
- Özkurt, Ezgi, M. Amine Hassani, Uğur Sesiz, Sven Künzel, Tal Dagan, Hakan Özkan, and Eva H. Stukenbrock. 2020. "Seed-Derived Microbial Colonization of Wild Emmer and Domesticated Bread Wheat (Triticum Dicoccoides and t. Aestivum) Seedlings Shows Pronounced Differences in Overall Diversity and Composition." *MBio* 11(6):1–19.
- Park, Jae-Hyuk, Jin-Ju Yun, Ju-Sik Cho, and Se-Won Kang. 2022. "Effect of Soil Amendments Derived from Agricultural Biomass on Rice Yield and Soil Fertility in a Paddy Field of South Korea." *Chemistry Proceedings* 2022, *Vol.* 10, *Page* 87 10(1):87.

- Paulert, R., D. Ebbinghaus, C. Urlass, and B. M. Moerschbacher. 2010. "Priming of the Oxidative Burst in Rice and Wheat Cell Cultures by Ulvan, a Polysaccharide from Green Macroalgae, and Enhanced Resistance against Powdery Mildew in Wheat and Barley Plants." *Plant Pathology* 59(4):634–42.
- Peña, David, Damián Fernández, Angel Albarrán, Soraya Gómez, Carmen Martín, Jaime Sánchez-Terrón, Luis Vicente, and Antonio López-Piñeiro. 2022. "Using Olive Mill Waste Compost with Sprinkler Irrigation as a Strategy to Achieve Sustainable Rice Cropping under Mediterranean Conditions." *Agronomy for Sustainable Development* 42(3):1–17.
- Pereira, Anderson E. S., Bruno T. Sousa, María J. Iglesias, Vera A. Alvarez, Claudia A. Casalongué, Halley C. Oliveira, and Leonardo F. Fraceto. 2019. "Potential Use of Polymeric Particles for the Regulation of Plant Growth." Pp. 45–66 in *Polymers for Agri-Food Applications*. Cham: Springer International Publishing.
- Philippot, Laurent, Jos M. Raaijmakers, Philippe Lemanceau, and Wim H. Van Der Putten. 2013. "Going Back to the Roots: The Microbial Ecology of the Rhizosphere." *Nature Reviews Microbiology* 2013 11:11 11(11):789–99.
- Purushotham, Pallinti, and Appa Rao Podile. 2012. "Synthesis of Long-Chain Chitooligosaccharides by a Hypertransglycosylating Processive Endochitinase of Serratia Proteamaculans 568." *Journal of Bacteriology* 194(16):4260–71.
- Purushotham, Pallinti, P. V. S. R. N. Sarma, and Appa Rao Podile. 2012. "Multiple Chitinases of an Endophytic Serratia Proteamaculans 568 Generate Chitin Oligomers." *Bioresource Technology* 112:261–69.
- Qiu, Deyun, Jun Xiao, Xinhua Ding, Min Xiong, Meng Cai, Yinglong Cao, Xianghua Li, Caiguo Xu, and Shiping Wang. 2007. "OsWRKY13 Mediates Rice Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling." *Molecular Plant-Microbe Interactions*® 20(5):492–99.
- Quast, Christian, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo Yarza, Jörg Peplies, and Frank Oliver Glöckner. 2012. "The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools." *Nucleic Acids Research* 41(D1):D590–96.
- Rabea, Entsar I., Mohamed E. T. Badawy, Christian V. Stevens, Guy Smagghe, and Walter Steurbaut. 2003. "Chitosan as Antimicrobial Agent: Applications and Mode of Action." *Biomacromolecules* 4(6):1457–65.
- Raj, G., Shadab, M., Deka, S., Das, M., Baruah, J., Bharali, R., & Talukdar, N. C. (2019). Seed interior microbiome of rice genotypes indigenous to three agroecosystems of Indo-Burma biodiversity hotspot. *BMC Genomics*, 20(1), 1–16.
- Ramamoorthy, Rengasamy, Shu-Ye Jiang, Nadimuthu Kumar, Prasanna Nori Venkatesh, and Srinivasan Ramachandran. 2008. "A Comprehensive Transcriptional Profiling of the WRKY Gene Family in Rice under Various Abiotic and Phytohormone Treatments." *Plant and Cell Physiology* 49(6):865–79.
- Ramirez-Arrebato, Miguel Angel, Luis Tolentino Alfonso, Aida Tania Rodriguez Pedroso, and Carlos Peniche. 2010. "Chitin Is a Biodegradable Polymer Widely Spread in Nature." *Biotecnología Aplicada* 27(October):270–76.
- Ramírez-Coutiño, Laura, María del Carmen Marín-Cervantes, Sergio Huerta, Sergio Revah,

- and Keiko Shirai. 2006. "Enzymatic Hydrolysis of Chitin in the Production of Oligosaccharides Using Lecanicillium Fungicola Chitinases." *Process Biochemistry* 41(5):1106–10.
- Ramonell, Katrina, Marta Berrocal-Lobo, Serry Koh, Jinrong Wan, Herb Edwards, Gary Stacey, and Shauna Somerville. 2005. "Loss-of-Function Mutations in Chitin Responsive Genes Show Increased Susceptibility to the Powdery Mildew Pathogen Erysiphe Cichoracearum." *Plant Physiology* 138(2):1027–36.
- Ranjan, Kunal, Himani Priya, Balasubramanian Ramakrishnan, Radha Prasanna, Siddarthan Venkatachalam, Shobit Thapa, Rameshwar Tiwari, Lata Nain, Rajendra Singh, and Yashbir Singh Shivay. 2016. "Cyanobacterial Inoculation Modifies the Rhizosphere Microbiome of Rice Planted to a Tropical Alluvial Soil." *Applied Soil Ecology* 108:195–203.
- Ravi Kumar, Majeti N. .. 2000. "A Review of Chitin and Chitosan Applications." *Reactive and Functional Polymers* 46(1):1–27.
- Roman-Reyna, V., Pinili, D., Borja, F. N., Quibod, I. L., Groen, S. C., Alexandrov, N., Mauleon, R., & Oliva, R. (2020). Characterization of the Leaf Microbiome from Whole-Genome Sequencing Data of the 3000 Rice Genomes Project. *Rice*, *13*(1), 1–8.
- Rochimi, Setiawati Mieke, Sugiyono Listiani, Kamaluddin Nadia Nuraniya, and Simarmata Tualar. 2022. "The Use of Endophytic Growth-Promoting Bacteria to Alleviate Salinity Impact and Enhance the Chlorophyll, N Uptake, and Growth of Rice Seedling."
- Sahu, Kuleshwar Prasad, A. Kumar, K. Sakthivel, Bhaskar Reddy, Mukesh Kumar, Asharani Patel, Neelam Sheoran, Subbaiyan Gopalakrishnan, Ganesan Prakash, Rajeev Rathour, and R. K. Gautam. 2022. "Deciphering Core Phyllomicrobiome Assemblage on Rice Genotypes Grown in Contrasting Agroclimatic Zones: Implications for Phyllomicrobiome Engineering against Blast Disease." *Environmental Microbiomes* 17(1):1–27.
- Santos-Medellín, C., Liechty, Z., Edwards, J., Nguyen, B., Huang, B., Weimer, B. C., & Sundaresan, V. (2021). Prolonged drought imparts lasting compositional changes to the rice root microbiome. *Nature Plants* 2021 7:8, 7(8), 1065–1077.
- Saranraj, P., R. Z. Sayyed, M. Kokila, A. Sudha, P. Sivasakthivelan, M. Durga Devi, Rabia Naz, and Humaira Yasmin. 2022. "Plant Growth-Promoting and Biocontrol Metabolites Produced by Endophytic Pseudomonas Fluorescence." *Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion* 349–81.
- Sarathchandra, S. U., R. N. Watson, N. R. Cox, M. E. di Menna, J. A. Brown, G. Burch, and F. J. Neville. 1996. "Effects of Chitin Amendment of Soil on Microorganisms, Nematodes, and Growth of White Clover (Trifolium Repens L.) and Perennial Ryegrass (Lolium Perenne L.)." *Biology and Fertility of Soils* 22(3):221–26.
- Sarma, Pullabhotla V. S. R. N., Vadlamudi Srinivas, Kondreddy Anil, and Appa Rao Podile. 2012. "Isolation and Purification of Microbial Community DNA from Soil Naturally Enriched for Chitin." *Biologia* 67(4):644–48.
- Schmittgen, Thomas D., and Kenneth J. Livak. 2008. "Analyzing Real-Time PCR Data by the Comparative CT Method." *Nature Protocols* 3(6):1101–8.

- Segata, Nicola, Jacques Izard, Levi Waldron, Dirk Gevers, Larisa Miropolsky, Wendy S. Garrett, and Curtis Huttenhower. 2011. "Metagenomic Biomarker Discovery and Explanation." *Genome Biology* 12(6):R60.
- Sessitsch, A., P. Hardoim, J. Döring, A. Weilharter, A. Krause, T. Woyke, B. Mitter, L. Hauberg-Lotte, F. Friedrich, M. Rahalkar, T. Hurek, A. Sarkar, L. Bodrossy, L. Van Overbeek, D. Brar, J. D. Van Elsas, and B. Reinhold-Hurek. 2011. "Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis." *Https://Doi.Org/10.1094/MPMI-08-11-0204* 25(1):28–36. doi: 10.1094/MPMI-08-11-0204.
- Seyfferth, Carolin, and Kenichi Tsuda. 2014. "Salicylic Acid Signal Transduction: The Initiation of Biosynthesis, Perception and Transcriptional Reprogramming." *Frontiers in Plant Science* 5.
- Shamshina, Julia L., Adrian Kelly, Tetyana Oldham, and Robin D. Rogers. 2020. "Agricultural Uses of Chitin Polymers." *Environmental Chemistry Letters* 18(1):53–60.
- Sharaf, Hazem, Richard R. Rodrigues, Jinyoung Moon, Bo Zhang, Kerri Mills, and Mark A. Williams. 2019. "Unprecedented Bacterial Community Richness in Soybean Nodules Vary with Cultivar and Water Status." *Microbiome* 7(1):1–18.
- Sharp, Russell G. 2013. "A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields." *Agronomy* 3(4):757–93.
- Shimizu, Takeo, Takuto Nakano, Daisuke Takamizawa, Yoshitake Desaki, Naoko Ishii-Minami, Yoko Nishizawa, Eiichi Minami, Kazunori Okada, Hisakazu Yamane, Hanae Kaku, and Naoto Shibuya. 2010. "Two LysM Receptor Molecules, CEBiP and OsCERK1, Cooperatively Regulate Chitin Elicitor Signaling in Rice." *The Plant Journal* 64(2):204–14.
- SHIMONO, MASAKI, HIRONORI KOGA, AYA AKAGI, NAGAO HAYASHI, SHINGO GOTO, MIYUKI SAWADA, TAKAYUKI KURIHARA, AKANE MATSUSHITA, SHOJI SUGANO, CHANG-JIE JIANG, HISATOSHI KAKU, HARUHIKO INOUE, and HIROSHI TAKATSUJI. 2012. "Rice WRKY45 Plays Important Roles in Fungal and Bacterial Disease Resistance." *Molecular Plant Pathology* 13(1):83–94.
- Shimono, Masaki, Shoji Sugano, Akira Nakayama, Chang-Jie Jiang, Kazuko Ono, Seiichi Toki, and Hiroshi Takatsuji. 2007. "Rice WRKY45 Plays a Crucial Role in Benzothiadiazole-Inducible Blast Resistance." *The Plant Cell* 19(6):2064–76.
- Shinya, Tomonori, Noriko Motoyama, Asahi Ikeda, Miyuki Wada, Kota Kamiya, Masahiro Hayafune, Hanae Kaku, and Naoto Shibuya. 2012. "Functional Characterization of CEBiP and CERK1 Homologs in Arabidopsis and Rice Reveals the Presence of Different Chitin Receptor Systems in Plants." *Plant and Cell Physiology* 53(10):1696–1706.
- Singha, K. M., Singh, B., & Pandey, P. (2021). Host specific endophytic microbiome diversity and associated functions in three varieties of scented black rice are dependent on growth stage. *Scientific Reports* 2021 11:1, 11(1), 1–17.
- Smrž, Jaroslav, Hana Soukalová, Vlasta Čatská, and Jan Hubert. 2016. "Feeding Patterns of Tyrophagus Putrescentiae (Sarcoptiformes: Acaridae) Indicate That Mycophagy Is Not a Single and Homogeneous Category of Nutritional Biology." *Journal of Insect Science*

- 16(1).
- Son, Geon Hui, Jinrong Wan, Hye Jin Kim, Xuan Canh Nguyen, Woo Sik Chung, Jong Chan Hong, and Gary Stacey. 2012. "Ethylene-Responsive Element-Binding Factor 5, ERF5, Is Involved in Chitin-Induced Innate Immunity Response." *Molecular Plant-Microbe Interactions*® 25(1):48–60.
- Suleiman, Afnan K. A., P. Harkes, Sven van den Elsen, Martijn Holterman, Gerard W. Korthals, Johannes Helder, and Eiko E. Kuramae. 2019. "Organic Amendment Strengthens Interkingdom Associations in the Soil and Rhizosphere of Barley (Hordeum Vulgare)." *Science of The Total Environment* 695:133885.
- Sun, Jiuyun, Shuhua Li, Chunyang Fan, Kangjia Cui, Hongxiao Tan, Liping Qiao, and Laifeng Lu. 2022. "N -Acetylglucosamine Promotes Tomato Plant Growth by Shaping the Community Structure and Metabolism of the Rhizosphere Microbiome." *Microbiology Spectrum* 10(3).
- Sun, Ruibo, Wenjie Zhang, Yangbing Liu, Wenjing Yun, Bingbing Luo, Rushan Chai, Chaochun Zhang, Xingjia Xiang, and Xiaofeng Su. 2022. "Changes in Phosphorus Mobilization and Community Assembly of Bacterial and Fungal Communities in Rice Rhizosphere under Phosphate Deficiency." *Frontiers in Microbiology* 13. doi: 10.3389/FMICB.2022.953340/FULL.
- Sun, Tingfei, Zhang Shen, Mobeen Shaukat, Cailian Du, and Shaukat Ali. 2020. "Endophytic Isolates of Cordyceps Fumosorosea to Enhance the Growth of Solanum Melongena and Reduce the Survival of Whitefly (Bemisia Tabaci)." *Insects* 2020, *Vol.* 11, Page 78 11(2):78.
- Suginta, W., Vongsuwan, A., Songsiriritthigul, C., Svasti, J., & Prinz, H. (2005). Enzymatic properties of wild-type and active site mutants of chitinase A from Vibrio carchariae, as revealed by HPLC-MS. *FEBS Journal*, 272(13), 3376–3386.
- Taira, T., Hayashi, H., Tajiri, Y., Onaga, S., Uechi, G., Iwasaki, H., Ohnuma, T., & Fukamizo, T. (2009). A plant class V chitinase from a cycad (Cycas revoluta): Biochemical characterization, cDNA isolation, and posttranslational modification. *Glycobiology*, 19(12), 1452–1461.
- Takahashi, Yasuko, Fumie Miki, and Kazuko Nagase. 1995. "Effect of Sonolysis on Acid Degradation of Chitin to Form Oligosaccharides." *Bulletin of the Chemical Society of Japan* 68(7):1851–57.
- TANABE, Shigeru, Mitsuo OKADA, Yusuke JIKUMARU, Hisakazu YAMANE, Hanae KAKU, Naoto SHIBUYA, and Eiichi MINAMI. 2006. "Induction of Resistance against Rice Blast Fungus in Rice Plants Treated with a Potent Elicitor, N Acetylchitooligosaccharide." *Bioscience, Biotechnology, and Biochemistry* 70(7):1599–1605.
- Tanaka, Shigeyuki, Akari Ichikawa, Kaori Yamada, Gento Tsuji, Takumi Nishiuchi, Masashi Mori, Hironori Koga, Yoko Nishizawa, Richard O'Connell, and Yasuyuki Kubo. 2010. "HvCEBiP, a Gene Homologous to Rice Chitin Receptor CEBiP, Contributes to Basal Resistance of Barley to Magnaporthe Oryzae." *BMC Plant Biology* 10(1):288.
- Thapa, S., Ranjan, K., Ramakrishnan, B., Velmourougane, K., & Prasanna, R. (2018). Influence of fertilizers and rice cultivation methods on the abundance and diversity of

- phyllosphere microbiome. Journal of Basic Microbiology, 58(2), 172–186.
- Tian, L., Wang, E., Lin, X., Ji, L., Chang, J., Chen, H., Wang, J., Chen, D., Tran, L. S. P., & Tian, C. (2021). Wild rice harbors more root endophytic fungi than cultivated rice in the F1 offspring after crossbreeding. *BMC Genomics*, 22(1), 1–12.
- Tender, C., B. Mesuere, F. Van der Jeugt, A. Haegeman, T. Ruttink, B. Vandecasteele, P. Dawyndt, J. Debode, and E. E. Kuramae. 2019. "Peat Substrate Amended with Chitin Modulates the N-Cycle, Siderophore and Chitinase Responses in the Lettuce Rhizobiome." *Scientific Reports* 2019 9:1 9(1):1–11.
- Thomas, Noel Vinay, Jayachandran Venkatesan, Panchanathan Manivasagan, and Se-Kwon Kim. 2015. "Production and Biological Activities of Chitooligosaccharides (COS)—An Overview." *Journal of Chitin and Chitosan Science* 3(1):1–10.
- Trombotto, Stéphane, Catherine Ladavière, Frédéric Delolme, and Alain Domard. 2008. "Chemical Preparation and Structural Characterization of a Homogeneous Series of Chitin/Chitosan Oligomers." *Biomacromolecules* 9(7):1731–38.
- Ueno, Yoshihisa, Akane Matsushita, Haruhiko Inoue, Riichiro Yoshida, Chang-Jie Jiang, and Hiroshi Takatsuji. 2017. "WRKY45 Phosphorylation at Threonine 266 Acts Negatively on WRKY45-Dependent Blast Resistance in Rice." *Plant Signaling & Behavior* 12(8):e1356968.
- Uppal, A. K., A. El Hadrami, L. R. Adam, M. Tenuta, and F. Daayf. 2008. "Biological Control of Potato Verticillium Wilt under Controlled and Field Conditions Using Selected Bacterial Antagonists and Plant Extracts." *Biological Control* 44(1):90–100.
- Vander, Peter, Kjell M. Vårum, Alain Domard, Nour Eddine El Gueddari, and Bruno M. Moerschbacher. 1998. "Comparison of the Ability of Partially N -Acetylated Chitosans and Chitooligosaccharides to Elicit Resistance Reactions in Wheat Leaves." *Plant Physiology* 118(4):1353–59.
- Vårum, Kjell M., Hilde Kristiansen Holme, Masato Izume, Bjørn Torger Stokke, and Olav Smidsrød. 1996. "Determination of Enzymatic Hydrolysis Specificity of Partially N-Acetylated Chitosans." *Biochimica et Biophysica Acta (BBA) General Subjects* 1291(1):5–15.
- Velikova, V., I. Yordanov, and A. Edreva. 2000. "Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants." *Plant Science* 151(1):59–66.
- Vida, C., de Vicente, A., & Cazorla, F. M. (2020). The role of organic amendments to soil for crop protection: Induction of suppression of soilborne pathogens. *Annals of Applied Biology*, 176(1), 1–15.
- Vishu Kumar, A. B., Varadaraj, M. C., Gowda, L. R., & Tharanathan, R. N. (2005). Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. *Biochemical Journal*, 391(2), 167–175.
- Voges, Mathias J. E. E., Yang Bai, Paul Schulze-Lefert, and Elizabeth S. Sattely. 2019. "Plant-Derived Coumarins Shape the Composition of an Arabidopsis Synthetic Root Microbiome." *Proceedings of the National Academy of Sciences of the United States of America* 116(25):12558–65.
- Wan, Jinrong, Shuqun Zhang, and Gary Stacey. 2004. "Activation of a Mitogen-Activated

- Protein Kinase Pathway in Arabidopsis by Chitin." *Molecular Plant Pathology* 5(2):125–35.
- Wan, Jinrong, Xue-Cheng Zhang, David Neece, Katrina M. Ramonell, Steve Clough, Sungyong Kim, Minviluz G. Stacey, and Gary Stacey. 2008. "A LysM Receptor-Like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis." *The Plant Cell* 20(2):471–81.
- Wang, Qiujun, Qiwei Huang, Li Zhang, Jianchao Zhang, Qirong Shen, and Wei Ran. 2012. "The Effects of Compost in a Rice–Wheat Cropping System on Aggregate Size, Carbon and Nitrogen Content of the Size–Density Fraction and Chemical Composition of Soil Organic Matter, as Shown by 13C CP NMR Spectroscopy." *Soil Use and Management* 28(3):337–46.
- Wang, J., Chapman, S. J., Ye, Q., & Yao, H. (2019). Limited effect of planting transgenic rice on the soil microbiome studied by continuous 13 CO 2 labeling combined with high-throughput sequencing. *Applied Microbiology and Biotechnology*, 103(10), 4217–4227.
- Wang, M., Eyre, A. W., Thon, M. R., Oh, Y., & Dean, R. A. (2020). Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. *Frontiers in Microbiology*, 11, 2183.
- White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. "Amplification And Direct Sequencing Of Fungal Ribosomal Rna Genes For Phylogenetics." Pp. 315–22 in *PCR Protocols*. Elsevier.
- Wichern, Florian, Md Rafiqul Islam, Michael Hemkemeyer, Conor Watson, and Rainer Georg Joergensen. 2020. "Organic Amendments Alleviate Salinity Effects on Soil Microorganisms and Mineralisation Processes in Aerobic and Anaerobic Paddy Rice Soils." Frontiers in Sustainable Food Systems 4:30.
- Williams, Spencer J., and Stephen G. Withers. 2000. "Glycosyl Fluorides in Enzymatic Reactions." *Carbohydrate Research* 327(1–2):27–46.
- Willmann, Roland, and Thorsten Nürnberger. 2012. "How Plant Lysin Motif Receptors Get Activated: Lessons Learned from Structural Biology." *Science Signaling* 5(230).
- Xiong, Chao, Brajesh K. Singh, Ji Zheng He, Yan Lai Han, Pei Pei Li, Li Hua Wan, Guo Zhong Meng, Si Yi Liu, Jun Tao Wang, Chuan Fa Wu, An Hui Ge, and Li Mei Zhang. 2021. "Plant Developmental Stage Drives the Differentiation in Ecological Role of the Maize Microbiome." *Microbiome* 9(1):1–15.
- Xiong, Wu, Rong Li, Yi Ren, Chen Liu, Qingyun Zhao, Huasong Wu, Alexandre Jousset, and Qirong Shen. 2017. "Distinct Roles for Soil Fungal and Bacterial Communities Associated with the Suppression of Vanilla Fusarium Wilt Disease." *Soil Biology and Biochemistry* 107:198–207.
- Xu, Lihui, Sabine Ravnskov, John Larsen, and Mogens Nicolaisen. 2012. "Linking Fungal Communities in Roots, Rhizosphere, and Soil to the Health Status of Pisum Sativum." *FEMS Microbiology Ecology* 82(3):736–45.
- Xu, Shangqi, Jingjing Chang, Chunling Chang, Lei Tian, Xiujun Li, and Chunjie Tian. 2022. "Rhizospheric Microbiomes Help Dongxiang Common Wild Rice (Oryza Rufipogon Griff.) Rather than Leersia Hexandra Swartz Survive under Cold Stress." *Archives of Agronomy and Soil Science* 68(1):76–88.

- Yamada, Kenta, Koji Yamaguchi, Satomi Yoshimura, Akira Terauchi, and Tsutomu Kawasaki. 2017. "Conservation of Chitin-Induced MAPK Signaling Pathways in Rice and Arabidopsis." *Plant and Cell Physiology* 58(6):993–1002.
- Yang, F., Zhang, J., Zhang, H., Ji, G., Zeng, L., Li, Y., Yu, C., Fernando, W. G. D., & Chen, W. (2020). Bacterial Blight Induced Shifts in Endophytic Microbiome of Rice Leaves and the Enrichment of Specific Bacterial Strains With Pathogen Antagonism. *Frontiers in Plant Science*, 11, 963.
- Yin, Heng, Xiaoming Zhao, and Yuguang Du. 2010. "Oligochitosan: A Plant Diseases Vaccine—A Review." *Carbohydrate Polymers* 82(1):1–8.
- Yu, Cui, Xingming Hu, Wen Deng, Yong Li, Guangming Han, and Chuhua Ye. 2016. "Soil Fungal Community Comparison of Different Mulberry Genotypes and the Relationship with Mulberry Fruit Sclerotiniosis." *Scientific Reports* 2016 6:1 6(1):1–9.
- Zakariassen, Henrik, Mona Cecilie Hansen, Maje Jøranli, Vincent G. H. Eijsink, and Morten Sørlie. 2011. "Mutational Effects on Transglycosylating Activity of Family 18 Chitinases and Construction of a Hypertransglycosylating Mutant." *Biochemistry* 50(25):5693–5703.
- Zhang, Bing, Katrina Ramonell, Shauna Somerville, and Gary Stacey. 2002. "Characterization of Early, Chitin-Induced Gene Expression in Arabidopsis." *Molecular Plant-Microbe Interactions*® 15(9):963–70.
- Zhang, Hu, Yuguang Du, Xingju Yu, Masaru Mitsutomi, and Sei-ichi Aiba. 1999. "Preparation of Chitooligosaccharides from Chitosan by a Complex Enzyme." *Carbohydrate Research* 320(3–4):257–60..
- Zhang, Li, Yulei He, Dasong Lin, Yanpo Yao, Ningning Song, and Fangli Wang. 2022. "Co-Application of Biochar and Nitrogen Fertilizer Promotes Rice Performance, Decreases Cadmium Availability, and Shapes Rhizosphere Bacterial Community in Paddy Soil." *Environmental Pollution* 308:119624.
- Zhao, Zhi Bo, Ji Zheng He, Stefan Geisen, Li Li Han, Jun Tao Wang, Ju Pei Shen, Wen Xue Wei, Yun Ting Fang, Pei Pei Li, and Li Mei Zhang. 2019. "Protist Communities Are More Sensitive to Nitrogen Fertilization than Other Microorganisms in Diverse Agricultural Soils." *Microbiome* 7(1):1–16.
- Zipfel, Cyril. 2014. "Plant Pattern-Recognition Receptors." *Trends in Immunology* 35(7):345–51.

| Annexure – I |
|--------------|
| <b>\$</b>    |

#### Bash Code used for data analysis

```
#mbSet<-Init.#mbSetObj()
#mbSet<-SetModuleType(#mbSet, "mdp")
#mbSet<-ReadSampleTable(#mbSet, "Alpha chitin meta.csv");
#mbSet<-Read16STaxaTable(#mbSet, "sorted taxa bact of top 100.csv");</pre>
#mbSet<-Read16SAbundData(#mbSet, "sorted otu taxa bact 100 for alpha chitin.csv", "text", "SILVA", "T");
#mbSet<-SanityCheckData(#mbSet_"text"):
#mbSet<-SanityCheckSampleData(#mbSet);</pre>
#mbSet<-SetmetaAttributes(#mbSet, 0)
#mbSet<-PlotLibSizeView(#mbSet, "norm libsizes 0","png");</pre>
#mbSet<-CreatePhyloseqObj(#mbSet, "text", "SILVA", "F")
#mbSet<-ApplyAbundanceFilter(#mbSet, "prevalence", 1, 0.1);
#mbSet<-ApplyVarianceFilter(#mbSet, "sd", 0.0);
#mbSet<-PerformNormalization(#mbSet, "none", "CSS", "none");</pre>
#mbSet<-PlotTaxaAundanceBar(#mbSet, "taxa_alpha_0","Phylum","PLANT_TYPE", "null", "barraw",10, "set3","sum",10, "bottom", "F", "png");
#mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa_alpha_1","Phylum","Treatment", "none", "barnorm",10,"set3","sum", 10, "bottom", "F", "png"); #mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa_alpha_2","Phylum","Treatment", "none", "barnorm",10,"cont28","sum", 10, "bottom", "F", "png");
#mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa alpha 3","Genus","Treatment", "none", "barnorm",10,"cont28","sum", 10, "bottom", "F", "png");
#mbSet<-PerformBetaDiversity(#mbSet, "beta_diver_0","PCoA","bray","expfac","Treatment","none","OTU","OTU1","Chao1", "yes", "png", 72, "default");
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA","bray","OTU","expfac","Treatment","OTU1","Chao1","beta_diver3d_0.json")
#mbSet<-PerformCategoryComp(#mbSet, "OTU", "adonis", "bray", "Treatment");</pre>
#mbSet<-PerformBetaDiversity(#mbSet, "beta_diver_1","PCoA","bray","expfac","Treatment","none","Genus","Uncultured_Sutterellaceae","Chao1", "yes",
"png", 72, "default");
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA", "bray", "Genus", "expfac", "Treatment", "Uncultured_Sutterellaceae", "Chao1", "beta_diver3d_1.json")
#mbSet<-PerformCategoryComp(#mbSet, "Genus", "adonis", "bray", "Treatment");
#mbSet<-PerformBetaDiversity(#mbSet, "beta_diver_2","PCoA","bray","expfac","Treatment","none","Genus","Uncultured_Sutterellaceae","Chao1", "yes",
"png", 72, "default"):
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA","bray","Genus","expfac","Treatment","Uncultured_Sutterellaceae","Chao1","beta_diver3d_2.json")
#mbSet<-PerformCategoryComp(#mbSet, "Genus", "adonis", "bray", "Treatment");</pre>
#mbSet<-CoreMicrobeAnalysis(#mbSet, "core micro 0",0.2,0.01,"OTU","bwm","overview", "all samples", "Treatment", "null", "png");
#mbSet<-CoreMicrobeAnalysis(#mbSet, "core micro 1",0.1,0.01,"Phylum","plasma","overview", "all samples", "Treatment", "Paddy", "png");
\verb| #mbSet| <-CoreMicrobeAnalysis| (\#mbSet, "core\_micro\_2", 0.1, 0.01, "Genus", "viridis", "overview", "all\_samples", "Treatment", "Paddy", "png"); \\
#mbSet<-RF.Anal(#mbSet, 500,7,1,"Treatment","OTU")
#mbSet<-PlotRF.Classify(#mbSet, 15, "rf_cls_0", "png", width=NA)
#mbSet<-PlotRF.VIP(#mbSet, 15, "rf imp 0", "png", width=NA)
#mbSet<-RF.Anal(#mbSet, 5000,4,1,"Treatment","Genus")
#mbSet<-PlotRF.Classify(#mbSet, 15, "rf cls 1", "png", width=NA)
#mbSet<-PlotRF.VIP(#mbSet, 15, "rf_imp_1", "png", width=NA)
#mbSet<-PerformLefseAnal(#mbSet, 0.1, "fdr", 2.0, "Treatment", "F", "NA", "OTU");</pre>
#mbSet<-PlotLEfSeSummary(#mbSet, 15, "dot", "bar_graph_0","png");</pre>
#mbSet<-PerformLefseAnal(#mbSet, 0.1, "fdr", 2.0, "Treatment", "F", "NA", "Genus");</pre>
#mbSet<-PlotLEfSeSummary(#mbSet, 15, "dot", "bar_graph_1","png");</pre>
#mbSet<-Init.#mbSetObj()
#mbSet<-SetModuleType(#mbSet, "mdp")</pre>
#mbSet<-ReadSampleTable(#mbSet, "Beta chitin meta.csv");</pre>
#mbSet<-Read16STaxaTable(#mbSet, "sorted taxa bact of top 100.csv");</pre>
#mbSet<-Read16SAbundData(#mbSet, "sorted otu taxa bact 100 for Beta chitin.csv", "text", "SILVA", "T");
#mbSet<-SanityCheckData(#mbSet, "text");
#mbSet<-SanityCheckSampleData(#mbSet);</pre>
#mbSet<-SetmetaAttributes(#mbSet, 0)
#mbSet<-PlotLibSizeView(#mbSet, "norm libsizes 0","png");</pre>
#mbSet<-CreatePhylosegObj(#mbSet, "text", "SILVA", "F")
#mbSet<-ApplyAbundanceFilter(#mbSet, "prevalence", 1, 0.1);</pre>
#mbSet<-ApplyVarianceFilter(#mbSet, "sd", 0.0);
#mbSet<-PerformNormalization(#mbSet, "none", "CSS", "none");</pre>
#mbSet<-PlotTaxaAundanceBar(#mbSet, "taxa_alpha_0","Phylum","PLANT_TYPE", "null", "barraw",10, "set3","sum",10, "bottom", "F", "png");
#mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa_alpha_1","Phylum","Treatment", "none", "barnorm",10,"set3","sum", 10, "bottom", "F", "png");
#mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa_alpha_2","Phylum","Treatment", "none", "barnorm",10,"cont28","sum", 10, "bottom", "F", "png"); #mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa_alpha_3","Genus","Treatment", "none", "barnorm",10,"cont28","sum", 10, "bottom", "F", "png");
#mbSet<-PerformBetaDiversity(#mbSet, "beta diver 0","PCoA","bray","expfac","Treatment","none","OTU","OTU1","Chao1", "yes", "png", 72, "default");
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA", "bray", "OTU", "expfac", "Treatment", "OTU1", "Chao1", "beta_diver3d_0.json")
#mbSet<-PerformCategoryComp(#mbSet, "OTU", "adonis", "bray", "Treatment");
#mbSet<-PerformBetaDiversity(#mbSet, "beta_diver_1","PCoA","bray","expfac","Treatment","none","Genus","Uncultured_Sutterellaceae","Chao1", "yes",
"png", 72, "default");
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA", "bray", "Genus", "expfac", "Treatment", "Uncultured_Sutterellaceae", "Chao1", "beta_diver3d_1.json")
#mbSet<-PerformCategoryComp(#mbSet, "Genus", "adonis", "bray", "Treatment");</pre>
\#mbSet < -PerformBetaDiversity (\#mbSet, "beta\_diver\_2", "PCoA", "bray", "expfac", "Treatment", "none", "Genus", "Uncultured\_Sutterellaceae", "Chao1", "yes", "properties", "properties
"png", 72, "default");
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA", "bray", "Genus", "expfac", "Treatment", "Uncultured Sutterellaceae", "Chao1", "beta diver3d 2.json")
#mbSet<-PerformCategoryComp(#mbSet, "Genus", "adonis", "bray", "Treatment");
```

```
#mbSet<-CoreMicrobeAnalysis(#mbSet, "core_micro_0",0.2,0.01,"OTU", "bwm", "overview", "all_samples", "Treatment", "null", "png");
#mbSet<-CoreMicrobeAnalysis(#mbSet, "core_micro_1",0.1,0.01,"Phylum","plasma","overview", "all_samples", "Treatment", "Paddy", "png");
#mbSet<-CoreMicrobeAnalysis(#mbSet, "core micro 2",0.1,0.01,"Genus","viridis","overview", "all samples", "Treatment", "Paddy", "png");
#mbSet<-RF.Anal(#mbSet, 500,7,1,"Treatment","OTU")
#mbSet<-PlotRF.Classify(#mbSet, 15, "rf_cls_0", "png", width=NA)
#mbSet<-PlotRF.VIP(#mbSet, 15, "rf_imp_0", "png", width=NA)
#mbSet<-RF.Anal(#mbSet, 5000,4,1,"Treatment","Genus")
#mbSet<-PlotRF.Classify(#mbSet, 15, "rf_cls_1","png", width=NA)
#mbSet<-PlotRF.VIP(#mbSet, 15, "rf_imp_1", "png", width=NA)
#mbSet<-PerformLefseAnal(#mbSet, 0.1, "fdr", 2.0, "Treatment", "F", "NA", "OTU");
#mbSet<-PlotLEfSeSummary(#mbSet, 15, "dot", "bar_graph_0","png");
#mbSet<-PerformLefseAnal(#mbSet, 0.1, "fdr", 2.0, "Treatment", "F", "NA", "Genus");
#mbSet<-PlotLEfSeSummary(#mbSet, 15, "dot", "bar_graph_1","png");</pre>
#mbSet<-Init.#mbSetObj()
#mbSet<-SetModuleType(#mbSet, "mdp")</pre>
#mbSet<-ReadSampleTable(#mbSet, "Chitosan meta.csv");</pre>
#mbSet<-Read16STaxaTable(#mbSet, "sorted taxa bact of top 100.csv");</pre>
#mbSet<-Read16SAbundData(#mbSet, "sorted otu taxa bact 100 for Chitosan.csv", "text", "SILVA", "T");
#mbSet<-SanityCheckData(#mbSet, "text");</pre>
#mbSet<-SanityCheckSampleData(#mbSet);
#mbSet<-SetmetaAttributes(#mbSet, 0)
#mbSet<-PlotLibSizeView(#mbSet, "norm libsizes 0","png");</pre>
#mbSet<-CreatePhylosegObj(#mbSet, "text", "SILVA", "F")
#mbSet<-ApplyAbundanceFilter(#mbSet, "prevalence", 1, 0.1);</pre>
#mbSet<-ApplyVarianceFilter(#mbSet, "sd", 0.0):
#mbSet<-PerformNormalization(#mbSet, "none", "CSS", "none");</pre>
#mbSet<-PlotTaxaAundanceBar(#mbSet, "taxa_alpha_0","Phylum","PLANT_TYPE", "null", "barraw",10, "set3","sum",10, "bottom", "F", "png");
#mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa_alpha_1","Phylum","Treatment", "none", "barnorm",10,"set3","sum", 10, "bottom", "F", "png");
#mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa_alpha_2","Phylum","Treatment", "none", "barnorm",10,"cont28","sum", 10, "bottom", "F", "png");
#mbSet<-PlotTaxaAbundanceBarSamGrp(#mbSet, "taxa_alpha_3","Genus","Treatment", "none", "barnorm",10,"cont28","sum", 10, "bottom", "F", "png");
#mbSet<-PerformBetaDiversity(#mbSet, "beta_diver_0","PCoA","bray","expfac","Treatment","none","OTU","OTU1","Chao1", "yes", "png", 72, "default");
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA", "bray", "OTU", "expfac", "Treatment", "OTU1", "Chao1", "beta_diver3d_0.json")
#mbSet<-PerformCategoryComp(#mbSet, "OTU", "adonis", "bray", "Treatment");</pre>
#mbSet<-PerformBetaDiversity(#mbSet, "beta diver 1","PCoA","bray","expfac","Treatment","none","Genus","Uncultured Sutterellaceae","Chao1", "yes",
"png", 72, "default");
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA", "bray", "Genus", "expfac", "Treatment", "Uncultured_Sutterellaceae", "Chao1", "beta_diver3d_1.json")
#mbSet<-PerformCategoryComp(#mbSet, "Genus", "adonis", "bray", "Treatment");</pre>
#mbSet<-PerformBetaDiversity(#mbSet, "beta_diver_2","PCoA","bray","expfac","Treatment","none","Genus","Uncultured_Sutterellaceae","Chao1", "yes",
#mbSet<-PCoA3D.Anal(#mbSet, "PCoA", "bray", "Genus", "expfac", "Treatment", "Uncultured Sutterellaceae", "Chao1", "beta diver3d 2.json")
#mbSet<-PerformCategoryComp(#mbSet, "Genus", "adonis", "bray", "Treatment");
#mbSet<-CoreMicrobeAnalysis(#mbSet, "core micro 0",0.2,0.01,"OTU", "bwm", "overview", "all samples", "Treatment", "null", "png");
#mbSet<-CoreMicrobeAnalysis(#mbSet, "core_micro_1",0.1,0.01,"Phylum","plasma","overview", "all_samples", "Treatment", "Paddy", "png");
#mbSet<-CoreMicrobeAnalysis(#mbSet, "core micro 2",0.1,0.01,"Genus", "viridis", "overview", "all samples", "Treatment", "Paddy", "png");
#mbSet<-RF.Anal(#mbSet, 500,7,1,"Treatment","OTU")
#mbSet<-PlotRF.Classify(#mbSet, 15, "rf_cls_0", "png", width=NA)
#mbSet<-PlotRF.VIP(#mbSet, 15, "rf_imp_0", "png", width=NA)
#mbSet<-RF.Anal(#mbSet, 5000,4,1,"Treatment","Genus")
#mbSet<-PlotRF.Classify(#mbSet, 15, "rf_cls_1","png", width=NA)</pre>
#mbSet<-PlotRF.VIP(#mbSet, 15, "rf_imp_1","png", width=NA)
#mbSet<-PerformLefseAnal(#mbSet, 0.1, "fdr", 2.0, "Treatment", "F", "NA", "OTU");
#mbSet<-PlotLEfSeSummary(#mbSet, 15, "dot", "bar_graph_0","png");</pre>
#mbSet<-PerformLefseAnal(#mbSet, 0.1, "fdr", 2.0, "Treatment", "F", "NA", "Genus");
#mbSet<-PlotLEfSeSummary(#mbSet, 15, "dot", "bar_graph_1","png");</pre>
```

## **Publications**

**\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*** 



Contents lists available at ScienceDirect

#### Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres





### Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings

Bellamkonda Ramakrishna<sup>1</sup>, P.V.S.R.N. Sarma<sup>1</sup>, Sravani Ankati, Bhoopal Bhuvanachandra, Appa Rao Podile<sup>\*</sup>

Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India

#### ARTICLE INFO

Keywords: Chitinase Transglycosylation Chitooligosaccharides Elicitor activity Defense mechanism

#### ABSTRACT

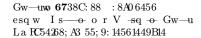
Long-chain chitooligosaccharides (COS) with degree of polymerization (DP) more than 4 are known to have potential biological activities. A hyper-transglycosylating mutant of an endo-chitinase from Serratia proteamaculans (SpChiD-Y28A) was used to synthesize COS with DP6 and DP7 using COS DP5 as substrate. Purified COS with DP5-7 were tested to elicit the defense response in rice seedlings. Among the COS used, DP7 strongly induced oxidative burst response as well as peroxidase, and phenylalanine ammonia lyase activites. A few selected marker genes in salicylic acid (SA)- and jasmonic acid-dependent pathways were evaluated by real-time PCR. The expression levels of pathogenesis-related (PR) genes PR1a and PR10 and defense response genes (chitinase1, peroxidase and -1,3-glucanase) were up regulated upon COS treatment in rice seedlings. The DP7 induced Phenylalanine ammonia lyase and Isochorismate synthase 1 genes, with concomitant increase of Mitogenactivated protein kinase 6 and WRKY45 transcription factor genes indicated the possible role of phosphorylation in the transmission of a signal to induce SA-mediated defense response in rice.

#### 1. Introduction

Plants are constantly exposed to microbial pathogens including bacteria, fungi, and viruses. As a protection against the microbial pathogens, plants activate immune responses upon recognition of the evolutionarily conserved pathogen-associated molecular patterns (PAMPs) or microbe-associated molecular patterns (MAMPs) [1,2]. Plants detect the PAMPs with the help of membrane-anchored pattern recognition receptors (PRRs) and activate pattern-triggered immunity (PTI). PTI involves callose deposition, synthesis of antimicrobial compounds, activation of mitogen-activated protein kinase (MAPKs) cascade, generation of reactive oxygen species (ROS) etc., [3,4]. Flagellin, lipopolysaccharides, peptidoglycans, glucans, and mannans represent some of the known MAMPs/PAMPs [4].

Chitin consists of (1, 4)-linked *N*-acetyl-p-glucosamine (GlcNAc) units arranged in a linear form. It is a major structural component of fungal cell walls and insect exoskeletons, and also acts as a MAMP/PAMP [1,5]. Oligosaccharides generated from chitin are referred to as chitooligosaccharides (COS). The COS act as a broad-spectrum vaccine against several plant diseases making them potential candidates for crop

protection [6]. Treatment with COS was reported to induce defense reactions like generation of ROS, transient depolarization of membranes, extracellular alkalization and ion flux, phytoalexin production in plants/cell suspension cultures [5,7,8], expression of several early responsive genes [9,10], lignification [11] etc., Activation of MAPK cascade, upon chitin elicitation, was reported in *Arabidopsis* and rice [12,13].


The COS could be prepared from chitin by acid hydrolysis, alkaline hydrolysis, chemical synthesis, and oligosaccharide mixture generated using microbial source or by enzymatic hydrolysis. Chitinases (EC 3.2.1.14), which are glycosyl hydrolases (GHs), also perform transglycosylation (TG) using the sugar molecule as the acceptor resulting in the formation of a new glycosidic linkage [14], are useful to generate long-chain COS. A few chitinases with TG activity [15 17] were reported to generate longer COS. A GH18 endo-chitinase from Serratia proteamaculans 568 (SpChiD) that exhibited hyper TG activity [17] was further improved by point mutations to increase the production of long-chain COS [18]. Among them, Y28A (mutation in the substrate binding cleft of SpChiD) generated 21% of TG products from DP4 substrate [19] suggesting its suitability to generate long-chain COS. Hence, we made an attempt to produce long-chain COS ranging from DP5-7

*E-mail addresses*: arpsl@uohyd.ernet.in, podilerao@gmail.com (A.R. Podile). These authors contributed equally to this work.

https://doi.org/10.1016/j.carres.2021.108459

0008-6215/© 2021 Elsevier Ltd. All rights reserved.

<sup>\*</sup> Corresponding author.





#### dysh ryu humfi r lh ryu yot rl yi rhs lyt t ur ceb oyt yrs uh hss nu rlpnmoy lpr ru

Pullabhotla V.S.R.N. SARMA- e j mj v mr Srinivas- Rxwm mm Anil (Eyyj a j x Podile,

Poi v oy p c v i y e m t v p s m t p s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s m s

Kh vwey: sous wqLWEDLWE wfiqow Dqvwwls wqvsr wDrso wuuorws us—s-sq v sw2

Accwh nb nvty: qvwwos E0 qvwHEDLOOMDrs o wuuorws us—s-sq v swDVI0 VovowIvw o Dbhb0 — w — -w s2

#### du ym lryu

Hqrrwr rmu mr rk nmjl x mrn n nwr xww nw j lxw r nw xo n n ju x pj wr v - rwlu mrwp o wpj u lmu juu-nxtmunxw xorwnl - qn qmu xol jlnjw-jwm qn v rl xfių rju qnj q xo wnv j xmn 0 P r q<br/>n nl xwmv x j k wnj w wj juyxu v n xw nj q0O m xu r xo qn pulx mrl kxwm xolqrrw k lqrr. wj n r y xkjku qnvx rvyx jw yj q j xompj. mj rxw xolqr rw rw xru0 c qn rv yx jwln xolqr rw jwm r mrjrn rwjprl u ju nwrxwwnwju vnmdr. wjujwm krx nl qwxuxprlju finum unm x n jkur qv nw xo rwm m ox y xml rxw xolqr rw-lqr x jwjwm qnr mnrjrn0cqnyxmlrxw j noxv lqrwm m lxwjrw j uj pnjvx w xolqrrw qj lxwrk n x qn nw rlqv nw xolqr rwxu rl v rl xx pj wr v x n j y xm lmm k lqr rwxu rl kjl n rj o xv xru wj ju. nwrlqnm rqlqrrw-jlu n.rwmynwmw jyy xjlq y x mm qn kn jlln k r xuj rwp xru v n j pnwx v n0 Pxuj rxw xolqr rwj n nz nwln. j pn nm v n j pnwxv n xojz j rl nlx nv )Hx nun ju03AAA\*rwn.mju qx yrwp )cnjqjjnju0422A\*-jwjlrlujtn mm. v nw )<br/>hj r n ju 422A\*- j jkun xru) Oxknun ju 4227\* jwm nvrlxvyx )grjx n ju 4227\* j twx w k wx j nv y n n v j mn o xv rwm rju xru qj j n juu.nwrlqnmox lqrrw0cxnwqjwln qnlqrrwj n wj

pnwn mr n r ox rwm rjujyyulj rxw n qj n lqj. jl n r mm lqr rwxu rl kjl n rjum r n r oxv nunl mm rwm rju xru jv yun )I j n ju04232\*jwm jux nm nxv jrw jyyrwp)Vnn jsj n ju4232\*0

Tnjpnwxv fl VErxijrxw j lj mmx kjr.
lju k xmffn nw jyy xjlqn OKrqn qnlmu nn
nyj j mmo xv qn mwrxwv nwju jv yun yrx xqn
lmuu r)rwmrnl n jlrxw\*xlmu nnu mm rqrw
qn nwrxwv nwju jv yun)mrnl lmun jlrxw\*0Ir.
nl u rvnqxmr jymmox jwju rxo xruv flxkrju
lxv v wr)c jr(Xuxw3AA3Diqx nju03AA8DRmmj
n ju 4226DInjr(Tjmjv j 4229\*0ajsmwnjw(N wj ntjjw)422;\*mrl nm jrx j npm oxjl.
ln rwp xruv njpnwxv n0

#### Mb hwrbr bt e s h mve y



<sup>/</sup> I s rwuo v

#### **Critical Reviews** in Biotechnology

u A00ws murm uomr/o On a i dA1849.9773 ) w ,- 375: .8913 )r ro

Dtly Sfy Clryfei or mHctm Rorlof A2 27 3125 Oahr tn c I f cmi ectf a UB. Oae/ ER OA21/521: 018599772/3125/8: 9377



S GWJGa B S V J DMG

#### Intpr rupol I nB Ou pnt sun l unl u r nt u ntl uop )Sehuo npu I pu u

Tvci b Obsbzbo Ebt<sup>1</sup>- Kphj N bei vr sbl bti <sup>1,2</sup>- P. V. S. R. N. Sarma<sup>1</sup>- Rbnjjouj Rvsvti pu bn <sup>1</sup>- Lbub Tvn b<sup>1</sup>-Lbvs N bolf fu<sup>1</sup>-Tbn vesbrb Sbn cbcv<sup>1</sup>-Opvs Geejof Gml vfeebsj<sup>2</sup>-Csvop N/N pf stdi cbdi f s<sup>2</sup>-boe Brrb Sbp Rpejrfi<sup>1</sup>

<sup>1</sup>Ihtduyp hry si aodry bfnhrfhvBbfnnsso si Snih bfnhrfhvBcrn huvny si MighudedgBM ghudedgBM gnd drg <sup>2</sup>Ihtduyp hry si aodry HnsosI drg Hrsyhfmrsos I Bernhuny si U hrvyhuBU hrvyhuBL hup dr

#### Hn mo

Rrhout i bwf fwprwfe n fdi bojtn t up sfdphoj f b x jef sbohf pgr bui phfo.efsjwfe n prfndvrfnt boe up fyr sftt joevdfe sftjtubodf bhbjotur bui phfo buubdl / Gyr mpjubujpo pgjoevdfe sftjtubodfcz brrnjabujpo pagopwi mcjpbolujwi fnjabujpost-jt bo buusbolujwi bnafsobujwi aps dspr rspufdujpo/ Di jupprimpt boldi bsjef ) DPT, frindi upst-sfrihbt fe evsjoh r rhou avoh bmjouf sboluj pot-joev df r rhou ef gf otft vr po sf dphojujpo/Efubjrine bobrantft pg tusvduvsf Ogvodujpo sf rbujpoti jr t pg cjpbdujvif di jupt bot  $bt \ x \ f$   $mbt \ sf \ df \ our \ sphsf \ tt \ upx \ bset \ voef \ stuboejoh \ ui \ f \ nf \ di \ bojtn \ pg DPT \ tf \ otjoh \ jo$ rmbout uispvhi uif jefoujgdbujpo boe dibsbdufsj bujpo pg uifjs dphobuf sfdfrupst ibwf hf of sbufe gsfti jn r fuvt gos br r spbdift ui bu x pv ne joevdf joobuf jn n vojuz jo r mbout/Viftf r sphsfttft dpn cjofe x jui uif brr njalbypo pg di jujoOdi juptboODPT jo ejtf btf n bobhf n f ou bsf sf wif x fe i fsf/Jo dpotjefsjoh ui f gifme brrnjadbujpo pg DPT-i px fwfs-fagjdifou boe nbashf.tdbnfn r spevdujpo pgeftjsfe DPT jt b di brifnohjoh ubtl/Vi f bwbjrbcrifn n fui pet-jodnnejoh di fn jdbmps fo zn byd i zesprzitjt boe difn jdbmps cjpufdi oprahjdbmtzou ftjt up r spevdf DPT- bsf britp sf wif x fe/

#### br р

Di jupprjimpt bddi bsjeft - dspr r spuf dujpojoevdfe sftjtubodf-RBNRtusbot hnzadot znbujpo

Sf df jwf e 2A Ef df n cf s 3122 Sf wjtf e A Br sjm3129 Bddfrufe 21 Brsjm3129 Rvcrjiti fe porjof A Tfrufn cfs 3129

#### pow

hpr u

d p tyup u pss 63& v xup p s u tsy. xupu yww rp v t us y 1hxu u u yu pts pyu u vsxu ysp v wysytu pt p yry ys ut su xu tp pwy w p t. p y u . tu p p y w v p px wuys ys rul Hp v XII xyryy u s p t xu p yt y yx xysx v wp u y p su. y s up ut s u p p u u xu tu y u p uwus v xu ys sxu ysp v wysytu x up u xuy s y ut u ,b uu pzp u p 1 5343-1h xu u v tyup u0u y p p yu yu xp ut sut s u.r yp u su vuypsuwuuy xus yput yt upyu v xu pwuut s pu p p upt y u uxpupupyutyupu p pypr u1 hxu uut py pw ys up u р VX xp yw xu v pwy u u y u y p py pu y u px wuys ys ru1hxu p p u pr u uuu y 0 py s u ut wu u p u ysy v px wu sp ut px 0 ,dHad-pt psypu wu Op syput us p p u p dHa d0 u uu 1 hxy su y uvu ut y ,dhS-1 a ywwu ut y dHa d S

V

Httu v s u tu suDH pfp dtyu. Lup u vdp gsyu su . gsx v Zyw gsyu su . i y u y : 3337; . S t yp1 M0 py Dp F x t lu u ly vR tuprpt.R tuprpt

rps u yp

pssxp vt u .

ys tu

u yt w sp. v pwu y. H 54 p t u wpy vps ,MNh -. v wp su pûtuyut w sp. pp u p w s uy v sxyy p suu ,nxp w ( nx . 5343-1 dp u us w yy ,df f usu uv usu Oyu ypu vpsu pu uy ,f Zd - ,Nyw u 4-1a ys ryp f ZU usuy u pxwu.xuu.usudhSulwlr p spyw 1 d p p ys uwus u yus u t us w v u p ys uwus xu ps y y v SX S y ytu xuy su uypsu,fuy r u wp yw vwu u p sy 0 y ,s ypywy x y wysp sxpwu xp pystu x u u yyusu tupx-.yp su tuywputpuwus 0 y ,MnS-1 dpx wuys ys ru ut www.ut y us uMnSx wx py y wu u u s tywuwus xp ru p xu xu tu r u v u uvvus u xuuysyut MhS,gsx uytu (K u. хp u u f 5343-1d p p u uy . x wx us ry 0 py. xp us wyu xu psyy v p uwus yx MhS0 u yupsyy 1

h xu dh S wy u y u yt tyup u u y p su. r t u p p u u u. y s p xu wtyupu uypsu wuutr MhSlHr wpy vdhSr p wuysu uy u t u p xyxx su yru px wu ys py . p uwus p wu y p w p y w s u dhS px p ,Rps u p1 5336E nxp w u p1 533@1 p su v dhS y p uy v su xu y hxy p y tyspu xp dh Ssp rup xywx uwus y u y  $0pt \ p \quad ut \qquad p \ x \quad wu \quad 1$ tuvu u rp yu p up pwpy

RIGHTSLINK

Pullabhotla Venkata Subba Rama Narsimha SarmaN N t N N N p

S 4 p © • ( 6 © m 5 0 • 5 6 b • (C) 5 6n 5 6b 6n© © (C) 6a S S  $\mathsf{T}$ S • © n i

```
P.V.S.R.N. Sarma ccf 6i • • mfg 6T• f 6d • i 6i • P f 6i 0 1

T • i • m 4m e m 4o a • • 4

a • • 4P • i • A88 8 @B4b •

5 • I • O • 6 J• • O • 6 J• O 6 6
```

n6m • • • • • • 60 614 B@H

y 4Th b 98 © 88 C7 H D3 H @88 C5 AD H 5 Az : @4

m m 3R f • T : 89;





## Poor Competitiveness of *Bradyrhizobium* in Pigeon Pea Root Colonization in Indian Soils

Danteswari Chalasani,<sup>a</sup> <sup>®</sup> Anirban Basu,<sup>a</sup> <mark>Sarma V. S. R. N. Pullabhotla</mark>,<sup>a</sup> Beatriz Jorrin,<sup>b</sup> <sup>®</sup> Andrew L. Neal,<sup>c</sup> <sup>®</sup> Philip S. Poole,<sup>b</sup> <sup>®</sup> Appa Rao Podile,<sup>a</sup> <sup>®</sup> Andrzej Tkacz<sup>b</sup>

- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- <sup>b</sup>Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Department of Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, United Kingdom

Danteswari Chalasani, Anirban Basu, and Sarma V. S. R. N. Pullabhotla contributed equally to this work. Author order was determined as female author first followed by males alphabetically and in order of increasing seniority.

ABSTRACT Pigeon pea, a legume crop native to India, is the primary source of protein for more than a billion people in developing countries. The plant can form symbioses with N<sub>2</sub>-fixing bacteria; however, reports of poor crop nodulation in agricultural soils abound. We report here a study of the bacterial community associated with pigeon pea, with a special focus on the symbiont population in different soils and vegetative and non-vegetative plant growth. Location with respect to the plant roots was determined to be the main factor controlling the bacterial community, followed by developmental stage and soil type. Plant genotype plays only a minor role. Pigeon pea roots have a reduced microbial diversity compared to the surrounding soil and select for Proteobacteria, especially for Rhizobium spp., during vegetative growth. While Bradyrhizobium, a native symbiont of pigeon pea, can be found associating with roots, its presence is dependent on plant variety and soil conditions. A combination of 16S rRNA gene amplicon survey, strain isolation, and co-inoculation with nodule-forming Bradyrhizobium spp. and non-N<sub>2</sub>-fixing Rhizobium spp. demonstrated that the latter is a much more successful colonizer of pigeon pea roots. Poor nodulation of pigeon pea in Indian soils may be caused by a poor Bradyrhizobium competitiveness against nonnodulating root colonizers such as Rhizobium. Hence, inoculant strain selection of symbionts for pigeon pea should be based not only on their nitrogen fixation potential but, more importantly, on their competitiveness in agricultural soils.

RTA C Plant symbiosis with N<sub>2</sub>-fixing bacteria is a ey to sustainable, low-input agriculture. While there are ongoing pro ects aiming to increase the yield of cereals using plant genetics and host-microbiota interaction engineering, the biggest potential lies in legume plants. Pigeon pea is a basic food source for a billion low-income people in India. Improving its interactions with N2-fixing rhizobia could dramatically reduce food poverty in India. espite the Indian origin of this plant, pigeon pea nodulates only poorly in native soils. While there have been multiple attempts to select the best N<sub>2</sub>-fixing symbionts, there are no reliable strains available for geographically widespread use. In this article, using 16S rRNA gene amplicon, culturomics, and plant co-inoculation assays, we show that the native pigeon pea symbionts such as Bradyrhizobium spp. are able to nodulate their host, despite being poor competitors for colonizing roots. Hence, in this system, the establishment of effective symbiosis seems decoupled from microbial competition on plant roots. Thus, the effort of finding suitable symbionts should focus not only on their N<sub>2</sub>-fixing potential but also on their ability to colonize. Increasing pigeon pea yield is a low-hanging fruit to reduce world hunger and degradation of the environment through the overuse of synthetic fertilizers.

Citation Chalasani D, Basu A, Pullabhotla SVSRN, Jorrin B, Neal AL, Poole PS, Podile AR, Tkacz A. 2021. Poor competitiveness of *Bradyrhizobium* in pigeon pea root colonization in Indian soils. mBio 12:e00423-21. https://doi.org/10.1128/mBio.00423-21.

**Editor** Anne K. Vidaver, University of Nebraska-

**Copyright** © 2021 Chalasani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Appa Rao Podile, podilerao@gmail.com, or Andrzej Tkacz, andrzei.tkacz@plants.ox.ac.uk.

Received 15 February 2021 Accepted 3 June 2021 Published 6 July 2021



Dpougout mit ut bwbjrbc mg bu Veja gst g Vejgoeg Sjsgeu

#### su f usx Hv u - W

lpvsobmi pn gr bhgC

/gntogwjgs/epn:npebug:cjpsugei



#### w w w 9: @wu u q uU -y-usxyyqu vqut x ysp w wSXVV -W

x xq 0P.V.S.R.N. Sarma0G q dq b t yu\* bq-y yb

wyw 0e wyw 41::: HKOf w

#### BS LENF LOIR

dusuy ut 59 Kusu . . dusuy ut y u y ut v 54 54 Mair q 6456 G qy-qr-u -y u 65 Mur q 6456

Ixvv I xyy q u I xy -yw qssxqytu p ww ww w 9:@

#### B C T S B E

 $w \ w \ 9$ :@wa uuq-ut xu uusu vv vq y-5@sxyyqu-p IxyG0p IxyH0 p lxyl0qtp lxyK.2Ouu – w u uyqtsxqqsuyqy vp lxyG0p lxyH0qtp lxyl x utxq xuuu u uuyq— qsyuq O:24;240qt84@2fxuxuup sxyyquty1 -qut xywxu qsyy 3ry tyw 1sxyy qt x utrqt qwu v rqu usy syyu 0qt u-uqut tyu qqz ut ts v -yw uysqt - uys rqu 2T wuys rqy qu yutv x t - y v y u v xu x uup sxyyqu 2fxu x uup sxyyqu u-uqut uq1 u v s - ytq-sxyy rqu2f xy6qt p1xy6qt p1xy6qt p1xy6qt p1xy6qt p1xy6qt p1xyf1 xuf s u v1xyf2qt p1xyf1 xuf p2 xu p3xyyqu p4xyqu vp IxyGqtp IxyH uuwauqut2

6456 L-u yu Tt2G— ywx u u ut2

u xq u sxyyl

#### I 1

Ixyy y xu us t qrtqy-r-ury-u0u - su- - u0s ut v 15081-y fiut r y v xu qsu 1 -q ut q y wq l 1qsu -w-s q y u-VGN.2Hq ut qsfiy w v  $xu\ sxyy\ sxqy \qquad \quad s \quad q \! - \!\!\! y\ u \ - \qquad \quad x \quad q\ u\ tu\ s\ yr\ ut\ 2\ fxu$ t y q -  $x \beta 1sxyy xq q y q q -u - sxqy 0q t 1sxyy$ qq—u–sxqy2g-yyutryu su-yfiusxyyy uvuq—vyut–qtrysqyr-uts0qu v u v qryvu-21xyyququqy-u yr-uv sxyy tuwqtq1 y qt tysqy 2fxutuu– u vuwus yuu xus uy vy - r-uusq-syq - qssxqytuy uv xufiuy uv ryq s uy 2f qssu xus q-yu q tyqssu yr-u r qu-yfiusu— – uq tsxyy Ou uxqu tuu- ut usyq- qs ys u uuv syu tuw qt q y 2P qt ty1 xuy sq q- ys t qy 0su--q u q t sxyy q u vu xq u 11 -y-usqrxtqu1rytyw t-u2fxuut qyqu ruusyq–vu uuvsyus rusquxuqtxuu Oqt y u ty 0 xu r q u2M xu 0sxyy tuwqtyw wq y t su assu uy xq ty xu s q–y u r q u0 y s uq y w xu uv syu s v sxyy q u -hqqzu1S - qt u q-206454.2 Uys ruxqutuu- utuvsyu quvyyuv xutu - u1 yqy 0 q 0qt uqr-y esx u y -u -y-uu vsxyy qty tuyqyu2 u q-ustutquq1qu – u ytu 2U qyurqsuy U w 5 qy a 1; t su v sxyyqu -a yfi xyuq-206449r.2ey-rqsuyq-yfiu p www t su x uu sxyy q u -e fiyu q-206446.0

u u quwuu - uv xysx qu qyu.-Vqqyuq-206455.2Hqs1 uyq-ut 1 qtu 1sxyy qu xqs uqyu-tu - uyu sxyy xq u u yq-q ry qwu v s us y -Vuu qzq u q-206454r.2L t 1sxyy q u q t - s-uq u w-s yt ys -y fiqwu 0 wauqywvuuut qtsxy -yw qssxqytu -lOae.2fxuu 1 sxyyqu u-uqusxyryuv xuutsyw 1 utsyw u t 2fxuw-s ytux t -quvq y-5@-NO5@ t qy y xu s sqq-yst qy v ys ryq-sxyy tu - u qu 2Ku1 yu xqy wqs u u u su0q tqs u utsqq-ysw-1 q ys qsyt u yt u0NO5@t qy tywu y xuy qs y y - u ys sxyy q t I Oae-y2d2Ou t 1 u u 1qs y y .2 Uq u u xq x t - uy - r-us q-y u - qssxq1 ytu sxq su— - uqt sxyy wytutuqsxut ywu1 - u sxqy x wx – wq t tuu qs yu1 yus-uv 0-uqtyw yu-u yu tuwqtqy v xu - qssxqytu-O u q-644:q.2b suyy y x wx s yr u xutuwqtqy u q-20 vs q-yu - qssxqyturusqutuqsxutyw-u1 - u sxqyqufiuv uq syqywyxxu -yt quyq-2b su 1 yyut suxu ruvyuxuu uxq sq xu

G7-6.

rytyws-uvqy– qutr xu s u v su yusu–1 – -qu--Kyuuq-205AA8.2 fxuxyssxuysq-uyuvsxyyqtytuyqyu-ys-tyw-ywu.y-yfiutvquq-yuq-yutvqytu qwuvq -ysqyyqwys - q-0vt0s uys0xq sq-0qt utysq-yt yu2Ixyyxq qsxuysq qsu y1 t y ut rqyqyux -4sxyy0x utqyytq qsyy qwqy vuu qtysq- sxq 5051tyxu -461ys -xtq - -KbbO.0

uuwuysq— vq qr-u su vwqyywqssu qyw-usxqy2b suyuu u vuxqu-wqttuu rqu

4A: 41@9683( 1 uu v t y8542545: 322 y usx2645624624: 6

t y wq x 2f u-28 / A5 84 67578947C vq B / A5 84 674545642 d4 w w Sq -F x t 2u u 2y -G2d2b t y-u.2

Pc V986988C799: C@89858; BE5D

c f VT Vb MZ d Md R f

a

#### P. V. S. R. N. Sarma

w

f ywy yxFAb y vy :88E7Mwwy yxF:ASyv u :8987d v -yx yF9Eauw-:898 g fiy gwy wy3N y a yx u N6 6:898

uv y w-O w vuwy u x y u x yx w- 5 w- w ywyx z x yx w⊢ xw 6M uz:Cw⊢ uy yy uyxu fi - w- 98 - yx z wyu u wy @ w xu w- ufiu u y6 i - fiwa 4 v w-y wa ux 9Bg Pb Muu 4 5 u y y y xy yx u e e 6 a yw u – fiy y w u x y yu yx -u 11 X y y z x vy -y yx u wu y -y y w- 5 y w-yx 6O- w vuwy u u xy y y y fi wa - fi - u x - yx u u - y y w 5x u yx v fiy uх у 0C@ 16 h- -y u y fi –y w– w vuwy u x y y yx w- x w 6

O– 5y w-yx · O uv y x y · O– wvuwy u · 9Bg P b M ·

O– 4u y z 5uwy 5P 5fi w u y4 –y yw x uv xu uww-u xy u y y wy y

OI

g6b6Pu · d6j 6g6f6b6gu u · O-6byyuu · b6auu · M6f6d x y 0 1
Pyu y zdu gwy wy 4gw- z Z zy gwy wy4
i y z U xy uvux 4U xy uvux A888@B4V x u
y5 u Fu L - x6y y 6 Gu u u x yL u- 6w

u u wy zwuv ux fiy z
- w w fiu 6O- xy x v yx
x y y y y u w y z y y u u x u u uw x y y y y u w y z y y u fiu 4 w x fi z fiu wy u 4 y y y z yw 4 -y -y z w uwyu 4 u x -y w u u -yu - z y u xy 6V y u yx -u x xy u u x w z w- u x 988 v (h-u u u5 -u u x Y :88; 16 b u u yw w fi z w- u y fiy y u yx z -y w- 7w- u u x yuz x x v u yuxyy u vuwyu 4-yyzy4zw xyuvy yw wuxy yufiwuwy6 Nuwy u u x z fi u y - fi- vy u xyw 5 y zw- ux-yyvwvy-yyw5 w fi zwav ux fiy y wy yw y 6 Nuwy u x wy w- u y xyfi uxy u x yw- uwav ux fiy wy6Mufiy vyzw- w : 88D14 -y - u y 0k u fi u x U u fi : 88914 --y 5y w-yx 0n- y u 6 : 88C1 u x y w  $0\Gamma \qquad u \; y \; 5S \; u \; w \; y \; u \; 6 \colon 88 ; GY \; - \; \; y \; y \; u \; 6 \colon 88 A u \, 16 \, h - y \; y$ u w xy uv y y y w- w vuwy u z yz 5 wy v w y z w- uwy u y vu yx -y y u z w- u y 6 g vuwy u u y y wy y wy zw- uyuxw xvy yxz wauv ww 5 OY - y y u 6:88AvGN-u uw-u u y u 6:88Cl6 Nuwy u y u uv y wy zy y z -y yw w fi z w- u y 6h-y x y z w- wvuwy u y w-ux-yywxvyyyuyy yyu yxw uvy

T w

x x u w <mark>Sarma V. S. R. N. Pullabhotla •</mark> u



#### **REVIEW ARTICLE**

## Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants

Ry-ff Th -g vv r fr  $^3$  - d u vuu N -ff -i y yr  $^3$  - dr r k r  $^3$  - P VSRN Sarma  $^3$  - P f 0f v tysrtyv  $^4$  - r u N r j r i u -ff  $^3$ 

Almäig v muv yn buguv dirmuim, eur mr yn Rlmghgl, Rlmghgl, Sulrg, gul  ${}^{B}$ Sur myn buguv Dryip mur gul Dry mip uv tvo, eur mr yn Uwm, Uwm, P muguv

#### Abstract

Fungal diseases of plants continue to contribute to heavy crop losses in spite of the best control efforts of plant pathologists. Breeding for disease-resistant varieties and the application of synthetic chemical fungicides are the most widely accepted approaches in plant disease management. An alternative approach to avoid the undesired effects of chemical control could be biological control using antifungal bacteria that exhibit a direct action against fungal pathogens. Several biocontrol agents, with specific fungal targets, have been registered and released in the commercial market with different fungal pathogens as targets. However, these have not yet achieved their full  $commercial\ potential\ due\ to\ the\ inherent\ \bar{limit} ations\ in\ the\ use\ of\ living\ organisms, such\ as\ relatively\ short\ shelf\ life$ of the products and inconsistent performance in the field. Different mechanisms of action have been identified in microbial biocontrol of fungal plant diseases including competition for space or nutrients, production of antifungal metabolites, and secretion of hydrolytic enzymes such as chitinases and glucanases. This review focuses on the bacterial chitinases that hydrolyze the chitinous fungal cell wall, which is the most important targeted structural component of fungal pathogens. The application of the hydrolytic enzyme preparations, devoid of live bacteria, could be more efficacious in fungal control strategies. This approach, however, is still in its infancy, due to prohibitive production costs. Here, we critically examine available sources of bacterial chitinases and the approaches to improve enzymatic properties using biotechnological tools. We project that the combination of microbial and recombinant DNA technologies will yield more effective environment-friendly products of bacterial chitinases to

**Keywords:** Biocontrol; chitinolytic bacteria; chitinases; fungal pathogens; chitin

#### m u t

aff srfft ff vuv w xrffu-vr v w ff fkrvrfftr-v r Thaw s y tyv -trffr u vffr u v vt - v s - vty ffx t r -v u t-x w x + uv 0 v v - vr ut r - v v w + rff w. Vr ... -s v ... -+ w ff s r –rffftt vu tv vv ur rx-xv uv r r - x-v vt  $\mathbf{v}$  -  $\mathbf{v}$ y-s--vty-ty w xrff r y xv uv vff v - r tv--t vr vu vrrvv wvvuv - v rffv vt tyv -trffw x-t-uv y vr v yv- t r -v -v yr v r uvu t ff v-s tv wv - r tvxv v - yvt ff-rvu rff r vru-ff r r-ff -ffu vff - v wyv r xv vu t r v rsffv0lr xv-tr - t vr v v - r tv rtvv W X--

Cl l m ny Gy müyul mui nEn 2O p n 0S n r 0t c 0c 194448:0d 2UI E N

(Accepted 15 April 2010)

drl 4@AlA995 3drl 598Dl@M45 6454 d c trO0d 2 SmdE542754D84@AA9952645428A@69A



m6l z z z z z z z z 60 © 614

9; A





#### **OPEN ACCESS**

#### r P:uRP yc

Julie Grossman-University of Minnesota Twin Cities-United States

#### IRwRaRPyc

Elisa Pellegrino-Sant'Anna School of Advanced Studies- Italy Attila Kereszt-Eötvös Lóránd Research Network-Hungary

#### p CssRt ECnPRndR

Beatriz Jorrin
beatriz/jorrin@plants/ox/ac/uk
Philip S/ Poole
philip/poole@plants/ox/ac/uk
DLN Rao
dInrao/icar@gmail/com
Anil Kumar Saxena
saxena562@yahoo/com
Appa Rao Podile
podilerao@gmail/com

#### \* ERd:b uc t RduCn

This article was submitted to Plant Symbiotic Interactionsa section of the journal Frontiers in Plant Science

I RdRwRP 2 March 3132 AddREURP 16 August 3132 Svy :tj RP 17 September 3132

#### p:wuCn

Jorrin B- Maluk M- Atoliya N-Kumar SC- Chalasani D- Tkacz A-Singh P- Basu A- Pullabhotla S-Kumar M- Mohanty SR- East AK-Ramachandran VK- James EK-Podile AR- Saxena AK- Rao D and Poole PS (3132) Genomic Diversity of Pigeon Pea (Cajanus cajan L/ Millsp/) Endosymbionts in India and Selection of Potential Strains for Use as Agricultural Inoculants/ Front/ Plant Scl/ 23:681982/ doi: 21/44890pls/3132/681982

## v Snp 1Ps 1cSH 1af pl m1(Spn m6d pb bnvt db bn Og 1 l r t nRpl f e1pnal 1n ynR1d dnR S SPa1pn pl mpaSnatd aHd1nl lpH IS dl A(HPL aLHd ynpPL dnal

Beatr's Jorr's 2, . Marta Ma'Vil 3. Nahvant SAto Wga'. j R\$ CRaran Ku\* ar5.

Danteswar SCRa Vasan S. Andrze Tkl acz². grac R\$ ShR5. An Sban Basu .

Sarma VSRN Pullabhotla . Muruhan Ku\* ar5. j antos Ri an Tan MoRanty 4. A Vs on K1 East².

mboy K1i a\* acRandran². Euan K1Ja\* es³. Appa i ao god Se, . An S/Ku\* ar j axena5, .

DLN i ao4, and g RSM\$ j 1goo Ve²,

<sup>2</sup> Department of Plant Sciences- University of Oxford- Oxford- United Kingdom- <sup>3</sup> The James Hutton Institute- Dundee-United Kingdom- <sup>4</sup> ICAR. Indian Institute of Soil Science- Bhopal- India- <sup>5</sup> ICAR. National Bureau of Agriculturally Important Microorganisms- Mau- India- Department of Plant Sciences- School of Life Science- University of Hyderabad-India

U6 SOn r SM | Cajanus cajan e g 61 r 26 M SI x) S PtOr tSI 655 nw. C P6 M 66 PVM I S RxS vicios vi MhR vtOr 6PM I x NtSI 6OnI CTAI 6MMhR ATE6PMMhR 6 M) M6Ct POnvt6NkvQt vQ WS6 nxvt66OnM TOOR ISPX 16N/U6SOn rSM6 WS 16N/V) ClW6 rCtWMhV/Slx) S 6n WS c Ct/R c 6N/bnR6N/ PONVIONATION OF WITH TOTAL PARTY OF THE PONVIONATION OF THE PONVIO PX'WBMI i SLStWS'SI I WS "OC f 65'R CTr 6 SOn r SMI tOC n xnRSt Rtf "MnR POnR660nI MnR 6 6 f 65 R 6 I WMN 65 M nSSR VCNS 6 r tOLSR 9 V 6 ) MINS RONS N F SN VM h P6 I PtO r nORX (1 M 6 C n MinR VSnPS NGCO 6PM nGtO Sn "dM6Cn |oi u2Nf lxrr"(61 STISPV6LS I f) NGC/16P tV66CN6M WtCxIV WS Mrr (67M60n CT15666 600Px (MnW 9VStSTCtS WS) M6 M6 60 W6 I wx Rf c MI WS 6 CM60n MnR I SnC) 6 MnMf I 6 CTSTSP46S tV60N64/I vtM61 r Ov6nv64/ff MRM v6R vC RtCxI VWPOnR660nI APPCtR6nI fr6SOnrSMSnROf) N6OnWrcStS6CM62RTiC) R6T5tSnw I OS VIVES IN 60 7 CX WStn g ShvkM MhR i Ct WStn bn R6M A TVSt Txn PV6Dh M PVM MPVSt6 M46Dh CT WS 6 CMSRIVEMENT ON USE I CTWS6 MNSOF WC nORX MS MNR r tO ONS WS I tOC W CTR 6 SON rSM - cStSIS'SPV6RTCtTk""ISnO, SISFxSnP6nI MOnIc6VS6VvPO)) StP6M6nCPx'Mnw LythMan CNMMan SRTEC) W/S top mto A9 Px "kwtS PC" SP-160n 9VSrVf" (CL Sn.C) 6P MnMf 16 5ALStMIS nxP'SOMBS (B'SnWeW g %g) St | Ai b) 2 tSLSMSR WMWW/S r 6 SOn r SMSnRO(f) NKOnW c StS ) S) NStI CTWS I SnStMBradyrhizobium MnR Ensifer o MISR On nodC r Vf 'Cl Snf MnR nod P'x I with If nwith Bradyrhizobium yuanmingense c MI tSLSWSR MI w/S) O wPO) On SnRO(f) NOnw VMINOxton nod I SnSI I 6 6M vC wVO S CT Bradyrhizobium cajani MnR Bradyrhizobium zhanjiangense 9V6 lf) Nichwirs SSI IvtMin omU TtO, gMRVfM UtMRSIV2MICOXWIStTOt) SR M"OWSt IVMMBIV6SR On r6SOn rSM c6V WS nOMMN'S

## Similarity Report

# Effect of soil amendments with chitinous substrates and application of chitooligosaccharides on rice

by Pullabhotla Venkata Subba Rama Narasimha Sarma

Librarian

Indira Gandhi Memorial Library UNIVERSITY OF HYDERABAD

Central University P.O. HYDERABAD-500 046.

**Submission date:** 29-Dec-2022 11:40AM (UTC+0530)

**Submission ID:** 1987228470

File name: Thesis\_of\_PVSRN\_Sarma\_-15lpph06.pdf (736.9K)

Word count: 20847 Character count: 119653

## Effect of soil amendments with chitinous substrates and application of chitooligosaccharides on rice

| ORIGINAL     | LITY REPORT                             |                                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.<br>SIMILA | 5%<br>RITY INDEX                        | 13% INTERNET SOURCES                                                                                             | 30%<br>PUBLICATIONS                                            | 9%<br>STUDENT PAPERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PRIMARY      | SOURCES                                 |                                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1            | Sravani Appa Ra<br>respons<br>chitoolig | onda Ramakrish<br>Ankati, Bhoopal<br>o Podile. "Elicita<br>e by transglycos<br>osaccharides in<br>drate Research | Bhuvanachand<br>ation of defense<br>sylated<br>rice seedlings" | dra,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2            | Submitte<br>Hyderab<br>Student Paper    |                                                                                                                  | of Hyderabad,                                                  | Prof. Appa Rao Position F.A.Sc., F.N.A.Sc., |
| 3            | www.tar                                 | ndfonline.com                                                                                                    |                                                                | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4            | of Highe<br>Hyper T<br>Chitinas         | tham, P., and A<br>r Chain Chitooli<br>ransglycosylatin<br>e of Serratia pro<br>of Bacteriology,                 | gosaccharides<br>ig Processive Ei<br>oteamaculans 5            | by a<br>ndo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5            | scielo.slo                              |                                                                                                                  |                                                                | 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 6  | onlinelibrary.wiley.com Internet Source                                                                                                                                                                                                                              | 1 % |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7  | link.springer.com Internet Source                                                                                                                                                                                                                                    | <1% |
| 8  | www.ias.ac.in Internet Source                                                                                                                                                                                                                                        | <1% |
| 9  | www.mdpi.com Internet Source                                                                                                                                                                                                                                         | <1% |
| 10 | Sharp, Russell. "A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields", Agronomy, 2013.  Publication                                                                             | <1% |
| 11 | Subha Narayan Das, Jogi Madhuprakash, P. V. S. R. N. Sarma, Pallinti Purushotham et al. "Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants", Critical Reviews in Biotechnology, 2013 Publication | <1% |
| 12 | epdf.pub<br>Internet Source                                                                                                                                                                                                                                          | <1% |
| 13 | Stjepan Krešimir Kračun, Julia Schückel, Bjørge<br>Westereng, Lisbeth Garbrecht Thygesen et al.<br>"A new generation of versatile chromogenic<br>substrates for high-throughput analysis of                                                                          | <1% |

## biomass-degrading enzymes", Biotechnology for Biofuels, 2015 Publication

| 14 | dx.doi.org<br>Internet Source                                                                                                                                                                                                                                   | <1% |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 15 | Jan Hubert, Marta Nesvorna, Bruno Sopko,<br>Jaroslav Smrz, Pavel Klimov, Tomas Erban.<br>"Two Populations of Mites (Tyrophagus<br>putrescentiae) Differ in Response to Feeding<br>on Feces-Containing Diets", Frontiers in<br>Microbiology, 2018<br>Publication | <1% |
| 16 | R. A. Opole, P. V. V. Prasad, M. Djanaguiraman, K. Vimala, M. B. Kirkham, H. D. Upadhyaya. "Thresholds, sensitive stages and genetic variability of finger millet to high temperature stress", Journal of Agronomy and Crop Science, 2018 Publication           | <1% |
| 17 | Subodh K. Maiti, Jitendra Ahirwal. "Ecological<br>Restoration of Coal Mine Degraded Lands",<br>Elsevier BV, 2019                                                                                                                                                | <1% |
| 18 | Submitted to Marshall High School Student Paper                                                                                                                                                                                                                 | <1% |
| 19 | Laura Ramírez-Coutiño, María del Carmen<br>Marín-Cervantes, Sergio Huerta, Sergio Revah,                                                                                                                                                                        | <1% |

Keiko Shirai. "Enzymatic hydrolysis of chitin in the production of oligosaccharides using Lecanicillium fungicola chitinases", Process Biochemistry, 2006

Publication

| 20 | Pallinti Purushotham, P.V.S.R.N. Sarma, Appa<br>Rao Podile. "Multiple chitinases of an<br>endophytic Serratia proteamaculans 568<br>generate chitin oligomers", Bioresource<br>Technology, 2012<br>Publication  | <1% |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 21 | Y.M.A.Y. Bandara, D.K. Weerasooriya, T.T. Tesso, P.V.V. Prasad, C.R. Little. "Stalk rot fungi affect grain sorghum yield components in an inoculation stage-specific manner", Crop Protection, 2017 Publication | <1% |
| 22 | Thermophilic Microbes in Environmental and Industrial Biotechnology, 2013. Publication                                                                                                                          | <1% |
| 23 | dokumen.pub<br>Internet Source                                                                                                                                                                                  | <1% |
| 24 | repository.rothamsted.ac.uk Internet Source                                                                                                                                                                     | <1% |
| 25 | Submitted to Higher Education Commission Pakistan Student Paper                                                                                                                                                 | <1% |

| 26 | James Moran, Casey McGrat<br>of methods for mapping rhiz<br>processes in the context of t<br>root and soil environments",<br>2021 | zosphere<br>cheir surrounding           | % |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|
| 27 | The European Polysaccharid<br>Excellence (EPNOE), 2013.                                                                           | le Network of <1 9                      | % |
| 28 | Suma, Katta, and Appa Rao A<br>A from Stenotrophomonas r<br>transglycosylation and antifu<br>Bioresource Technology, 20°          | maltophilia shows<br>ungal activities", | % |
| 29 | www.pubmedcentral.nih.gov                                                                                                         | < 1 9                                   | % |
| 30 | coek.info<br>Internet Source                                                                                                      | <19                                     | % |
| 31 | Microorganisms in Environm<br>Management, 2012.                                                                                   | nental <1 9                             | % |
| 32 | P. Vidhyasekaran. "PAMP Sig<br>Innate Immunity", Springer S<br>Business Media LLC, 2014                                           |                                         | % |
|    | Publication                                                                                                                       |                                         |   |

Exclude bibliography On