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Abstract

Unimodal biometric systems have several limitations, like inter-class
similarity, non-universality, and susceptibility to circumvention. Mul-
tiple biometric modalities are fused to overcome these issues. Here,
the fusion is mainly applied to the information from multiple bio-
metric modalities. Fusion in multimodal biometrics is performed at
various levels, such as sensor level, feature level, score level, rank level
and decision level. The score and rank level fusion are the two widely
applied fusion techniques for multimodal biometrics. In the context of
an identification task, these methods fuse matching score lists or rank
lists from different biometric modalities into a single score or rank list,
respectively.
In this thesis, rank and score level fusion problems are formulated as
optimization problems. Here, the objective is to find a fused list (for
either rank or score). The fused list minimizes a weighted summation
of distances of the fused list with the input lists derived from individ-
ual biometric modalities. The stated distance between a pair of input
lists is computed using the weighted Spearman footrule distance met-
ric. Genetic algorithm based and particle swarm optimization based
fusion approaches (at rank level and at score level) are proposed in this
thesis to solve the stated optimization problems. For initial work, each
modality is assigned equal significance (weight). Furthermore, the
quality-based weight estimation approach is presented in this work
to enhance the performance of proposed optimization based fusion
approaches. The quality-incorporated optimization based fusion ap-
proaches perform better than the equal weight based optimization
approaches.
The adopted optimization based fusion approaches (genetic algo-
rithm and particle swarm optimization) are meta-heuristic algorithms.
These algorithms iteratively search for the optimal solution in a large
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search space. Therefore, these approaches take immense number of
iterations to reach to the optimal solution. An approach to reduce
the dimension of the search space is presented in this thesis for faster
convergence of the proposed optimization based fusion approaches (at
rank and at score levels). The proposed search space-reduction ap-
proaches aid in achieving faster convergence of proposed optimization
based approaches without any degradation in performance.
Usefulness of the proposed search space-reduced quality-incorporated
particle swarm optimization based score level fusion approach is eval-
uated on the problem of person identification in the era of Covid19.
Here, fusion of masked face and iris is performed at score level to iden-
tify a person wearing face mask. Superiority of the proposed work is
experimentally established with comparison to several other state-of-
the-art score level and rank level fusion approaches.
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Chapter 1

Introduction

Identity of a person plays an important role in society. A person is allowed to
access certain facilities depending on his/her identity. Examples include distri-
bution of government-sponsored welfare schemes, entry in a secure facility (such
as data centers, defence establishments, nuclear plants and offices), crossing an
international border and performing banking transactions. A wrong identification
can cause a major security breach in such cases. Therefore, a reliable and secure
identity establishment mechanism is need of the society.

Identity of a person can be determined based on: (i) what he knows, (ii)
what he possesses and (iii) who he is [1]. Identity can be established based on a
person’s knowledge about password, personal identification number or answers to
certain questions. A person can possess a government issued identification card
(e.g., passport, driving licence, voter card etc.), a digital token, smart card, or a
key to establish his identity. The third way to identify a person is based on his
physical or behavioural characteristics such as face, signature etc. The person
identification based on “who he is” (physical or behavioural characteristics) is
known as biometric based identity management system.

This chapter is organized into the following sections: A brief introduction to
biometric system is presented in Section 1.1. In Section 1.2, an introduction to
multibiometric system is presented. The main research objectives of the thesis
are highlighted in Section 1.3. Contributions of the thesis are presented in Section
1.4. Finally, the organization of the remaining chapters of this thesis is presented
in Section 1.5.
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1.1 Introduction to Biometric System

1.1 Introduction to Biometric System
Biometrics is a burgeoning technology that captures and evaluates a person’s
physiological (iris, face, etc.) and behavioural (gait, keystrokes, etc.) characteris-
tics for verification and identification of a person. Commonly used physiological
and behavioural biometric characteristics (modalities) are shown in Fig. 1.1.
Traditionally, a biometric system uses unimodal (single) biometric modality for
identity management system.

Figure 1.1: Examples of physiological and behavioural biometric characteristics
(modalities)

1.1.1 Modules of Biometric System
A biometric system works in two phases: (i) enrolment phase and (ii) recognition
phase. During the enrolment phase, the biometric information for a modality
is acquired from each participating user in the biometric system. The acquired
biometric information is stored in a database. In recognition phase, the biomet-
ric information of the user to be identified (probe user) is re-acquired. This re-
acquired biometric information is compared with the stored biometric information
of the same user for verification. Similarly, the re-acquired biometric information
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Figure 1.2: Pipeline of biometric recognition system

is compared with the biometric information of all the enrolled users for identifi-
cation. Various modules of a biometric recognition system are presented in Fig.
1.2. These modules are discussed below:

1. Sensor Module: In the sensor module, the biometric information is ac-
quired using a modality-specific sensor or device. For example, the finger-
print of a user is captured using a fingerprint scanner. Similarly, the facial
information for face biometrics is captured using a still camera or a video
camera in the form of an image. The voice biometric information can be
recorded using a voice recorder in the form of a signal.

2. Feature Extraction Module: In this module, the key features from the
acquired image or signal are extracted. These extracted features are the
digital representations of the biometric modality. These are also known as
templates. These templates contain discriminative information to identify
a person uniquely. For example, gait energy image (GEI) [2] is a key feature
for the gait modality.

3. Database Module: After extracting the features (templates) from the
raw biometric image or signal at the enrolment phase, the templates are
stored in a database. This database is a repository of templates for all the
enrolled users.

4. Matching Module: The matching module is a part of the recognition
phase of a biometric system. The probe template is matched with the stored
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template of the claimed user (verification) or with all the stored templates
(identification) in the database to produce a matching score (similarity or
dissimilarity score).

5. Rank Creation Module: The rank creation module is only used for iden-
tification task. In this module, the matching scores (similarity or dissimi-
larity scores) of all the enrolled users are sorted to rank each user. These
ordered ranks produce a rank list. This rank list is used to identify the
probe user.

6. Decision Module: The decision module is the last module of the biometric
system. Based on the outcome of the matching module or the rank creation
module, the decision module takes a final decision. This module is used to
verify the claimed user or to identify a user.

1.1.2 Metrics for Evaluating a Biometric System
In order to evaluate the performance of a biometric system, the following metrics
can be used:

1. False Acceptance Rate (FAR): The false acceptance rate (FAR) is also
known as a false match rate (FMR). The false acceptance rate (FAR) refers
to the rate by which an imposter is accepted as genuine user by the bio-
metric system [1]. The FAR is measured as ratio of the total number of
falsely identified genuine users (i.e., but actually impostors - false positive
(FP)) by the biometric system to the total number of impostors in the bio-
metric system. The total number of impostors in the biometric system is
the summation of false positive (FP) and true negative (TN). Here, true
negative (TN) refers to the total number of correctly identified impostors
by the biometric system. The equation for FAR is presented in Eq. 1.1.

FAR = FP

FP +TN
(1.1)

2. False Rejection Rate (FRR): The false rejection rate (FRR) is also
known as the false non-match rate (FNMR). The false rejection rate (FRR)
refers to the rate by which a genuine user is rejected by the biometric system
[1]. The FRR is measured as ratio of the total number of falsely identified
impostors (i.e., actually genuine users- cases of false negative (FN)) by the
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biometric system to the total number of genuine users in the biometric
system. The total number of genuine users in the biometric system is the
summation of false negative (FN) and true positive (TP). Here, true positive
(TP) refers to the total number of correctly identified genuine users by the
biometric system (Eq. (1.2)).

FRR = FN

FN +TP
(1.2)

3. Equal Error Rate (EER): The equal error rate (EER) is a measure of
accuracy of a biometric system when the false rejection rate (FRR) and
false acceptance rate (FAR) are equal. Lower value of EER implies higher
accuracy of a biometric system.

4. Genuine Acceptance Rate (GAR): Another approach to measure the
accuracy of a biometric system is genuine acceptance rate (GAR). The
genuine acceptance rate (GAR) measures the rate by which the biometric
system correctly accepts the genuine users. GAR is measured as following:

GAR = 1−FRR (1.3)

5. Recognition Accuracy: The performance measures FAR, FRR, EER and
GAR are used to evaluate the performance of a biometric system in the con-
text of a verification task. Similarly, recognition accuracy is used to evaluate
the performance of the biometric system in the context of an identification
task. The recognition accuracy (in %) measures the ratio of the number of
correctly identified probes to the total number of probes in the biometric
system. The recognition accuracy ar (in %) is defined as:

ar = nc

np
×100 (1.4)

Here, nc and np denote the number of correctly matched probes and the
total number of probes, respectively.

1.1.3 Real Life Applications of Biometrics
A biometric system is used for two modes of identity establishment mechanism:
(i) verification and (ii) identification. Verification refers to establishment of the
claimed identity of a user as genuine or impostor. In verification mode, the

5



1.1 Introduction to Biometric System

template of a probe user is matched with only the template of a user for whom the
identity is claimed by the probe user (one-to-one matching). Here, the biometric
system answers the question: “are you who you claim to be?”. In identification
mode, the biometric system answers the question: “who are you?”. The template
of a probe user is matched with the templates of all the enrolled users (one-
to-many matching). The probe user is identified as one of the known users of
the system based on the matching scores. In the above case, it is a closed set
identification task. In closed set identification, the probe user must be one of the
enrolled users. On the contrary, in the case of open set identification, the probe
user may not be an enrolled user too.

A biometric system has applications in diverse environments. Biometric sys-
tems are widely used in applications related to the government sector, finan-
cial sector and forensic applications. The government of India has initiated a
large scale biometric based unique identification system (Aadhaar) [3] to assign a
unique identity to all of its citizens. Over the past few years, the Aadhaar based
welfare-disbursement programs are initiated by the Indian government [3]. Simi-
larly, the Philippines government has introduced a biometric based identification
system (PhilSys) [4]. This system aids in unique identification of its citizens and
also provides an environment for secure banking transaction.

Border control and airport security are other applications of the biometric
system. The United Kingdom (UK) iris recognition immigration system (IRIS)
project [5], the United State (US) visitor and immigration status indicator tech-
nology (VISIT) [6] and the United Arab Emirates (UAE) iris-based airport se-
curity system [7] are few examples of biometric based border control and airport
security systems.

Biometrics is also being used in the financial sector, such as for providing
secure banking transactions [8], for the know-your-customer (KYC) [9, 10] pro-
cess and for opening new bank account [11]. National Payments Corporation of
India (NPCI) has recently introduced aadhaar enabled payment system (AePS)
[12] to enable bank customers to avail banking services (e.g., cash deposit, cash
withdrawal, aadhaar to aadhaar fund transfer and other banking transactions)
over biometric based micro-ATM. Similarly, NPCI has also introduced bharat
interface for money (BHIM) aadhaar pay system [13] to enable biometric based
payment system for merchants.

Biometrics also plays an important part in law enforcement related applica-
tions. For decades, biometrics has been used as an investigative tool to find a
suspect. It is also used as forensic evidence. The International Criminal Police
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Organization (Interpol) has initiated a biometric based law enforcement approach
to counter terrorist activities. This initiative is named Facial, Imaging, Recogni-
tion, Searching and Tracking (FIRST) [14]. National Institute of Standards and
Technology (NIST) has defined a standard for using biometrics for law enforce-
ment [15]. Law enforcement agencies across the globe follow this standard for
their investigations.

1.1.4 Limitations of Unimodal Biometrics
Apart from having various advantages of using biometrics for the identity man-
agement system, these systems suffer form various challenges due to increase in
the number of users and use of only a single modality (unimodal) for identification
and verification. Some of the challenges (Fig. 1.3) are discussed in this section.

Figure 1.3: Limitations of unimodal biometrics

1.1.4.1 Noisy Data

A biometric image or signal can become noisy due to poor quality of the presented
biometric information (e.g., cut or scar on fingerprint, change in voice due to
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illness), faulty sensors (e.g., dust or scratches on fingerprint sensor, defocused face
images) or uncontrolled acquisition approaches (e.g., poor illumination conditions
for face image). A noisy biometric image or signal may decrease the recognition
performance of the biometric system.

1.1.4.2 Inter-class Similarity

Inter-class similarity is defined as the similarity between two biometric templates
belonging to different classes (i.e., users). Ideally, biometric templates of two
different classes should be discriminative enough to differentiate between two
users. This condition may be violated in some circumstances. Thus, it increases
the chance of identifying an impostor as a genuine user. Inter-class similarity
increases the false acceptance rate (FAR). Facial images of twins (Fig. 1.3) cause
high inter-class similarity [16].

1.1.4.3 Intra-class Variation

Contrary to inter-class similarity, intra-class variation is defined as the variation
among the biometric templates of the same user (same class). This can be due
to the pose variation (facial pose) or due to the ageing effect on the biometric
modality. Fingerprint and face biometrics change over the age [17]. Therefore,
these biometrics can increase the intra-class variation. High intra-class variation
increases the rejection of genuine users (i.e., increase in false rejection rate (FRR))
by the biometric system.

1.1.4.4 Non-universality

The considered biometric modality in a biometric system must be universal in
nature. Every user in the biometric system must possess the biometric modality
in consideration. Unfortunately, biometric modalities are not universal in nature.
For example, the fingerprint modality does not work for the users who do not have
fingerprints due to injury or any other reason. Similarly, gait based biometric
system does not work for persons with disability to walk. Voice biometrics can
not be captured for speech-impaired persons.

8



1.2 Introduction to Multibiometrics

1.1.4.5 Easy to Spoof

Some of the biometric modalities such as fingerprints [18, 19] and face [20, 21],
can easily be spoofed. A synthetically created fingerprint [19] or a spoofed face
[20] can easily fool a biometric system. Therefore, spoofing is a major challenge
for any biometric system.

1.1.4.6 Other Challenges

Captured biometric information may vary across sensors for the same biometric
modality. Therefore, the biometric system faces interoperability issues. The
biometric system may fail to correctly identify a genuine user if the sensor used for
the enrolment phase is changed at the recognition phase [1]. Similarly, a biometric
system is also vulnerable to a variety of attacks such as template alteration, reply
attack, etc. [1].

1.2 Introduction to Multibiometrics
A unimodal biometric system faces various limitations as above (Section 1.1.4).
Recognition accuracy of a unimodal biometric system decreases due to these lim-
itations. Use of multiple biometric modalities increases the recognition accuracy
and overcomes the limitations of a unimodal biometric system. By combining
biometric information from multiple biometric modalities in a structured man-
ner, a multibiometric system can overcome some of the constraints of a unimodal
biometric system. This superiority of multibiometrics over unimodal biometrics
is established through few of the initial experiments [22, 23]. In the literature,
the word ‘multibiometrics’ widely refers to fusion of different biometric informa-
tion from same biometric modality [1, 24, 25, 26] or fusion of multiple biometric
modalities [27, 28, 29, 30] to verify or identify a probe user. Multibiometrics can
be broadly classified as:

1. Multi-sensor: In a multi-sensor biometric system, multiple sensors are
used to capture the biometric information from the same biometric modal-
ity. For example, face biometrics may be captured using a specially de-
signed face recognition device, a digital camera and a surveillance camera
(Fig. 1.4).
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Figure 1.4: An example of multi-sensor biometric system

Figure 1.5: An example of multi-sample biometric system

2. Multi-sample: A multi-sample biometrics fuses multiple samples of the
same biometric modality. Fusion of frontal face along with left and right
profiles of face [31] (Fig. 1.5) is an example of multi-sample biometrics.

3. Multi-instance: A multi-instance biometrics fuses multiple instances of
similar biometric modality. Example can be a fusion of fingerprint biomet-
rics from different fingers (left and right index fingers) [32] (Fig. 1.6).

4. Multi-algorithm: In a multi-algorithm biometric system, multiple feature
extraction algorithms are used to extract the features of the same biomet-
ric modality. These features are then fused together. One example is the
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Figure 1.6: An example of multi-instance biometric system

Figure 1.7: An example of multi-algorithm biometric system

extraction of features of palm-print by using Radon orientation, Gabor ori-
entation and Gabor phase feature extraction methods [33] (Fig. 1.7). Sim-
ilarly, several features of gait modality are extracted using several feature
extraction methods [2].

5. Multi-trait: A multi-trait biometric system fuses multiple biometric traits
together. Few examples include fusion of face and gait [34] and face and
palm-print [35] (Fig. 1.8).

To build a multimodal biometric system, one needs to examine three questions:
(i) what to fuse, (ii) when to fuse, and (iii) how to fuse. ‘What to fuse’ deals
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Figure 1.8: An example of multi-trait biometric system

with the biometric traits which have to be fused. ‘When to fuse’ answers the
question regarding the stage in the biometric recognition pipeline where the given
biometric information has to be fused. Various stages in the biometric recognition
pipeline are presented in Fig. 1.2. At last, ‘how to fuse’ highlights the required
approach to fuse the given biometric information at a given stage in the biometric
recognition pipeline.

1.2.1 Levels of Multimodal Biometric Fusion
Fusion of multimodal biometrics can be performed at one or more of the following
levels in all of the aforementioned categories: fusion before matching (sensor
level [36, 37, 38], feature level [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]), and
fusion after matching (score level [38, 41, 45, 49, 50, 51, 52, 53, 54, 55, 56, 57],
rank level [34, 58], and decision level [38, 59, 60, 61]).

1.2.1.1 Sensor Level Fusion

Sensor level fusion falls under the category of ‘fusion before matching’ scheme. As
the name suggests, the fusion of biometric information is performed at the sensor
level. Acquired raw biometric images or signals from several sensors are fused at
this level (Fig. 1.9). This level is also known as image-level or pixel-level fusion [1]
as the raw images are directly fused at this level without undergoing the feature
extraction stage. At this fusion level, the amount of biometric information is very
high. At the same time, the size of a biometric image or signal may vary due to
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Figure 1.9: Sensor level fusion

change in biometric modalities. It poses a challenge for the fusion at this level.
As a result, the use of sensor level fusion is limited to the fusion of the same kind
of modality.

1.2.1.2 Feature Level Fusion

Figure 1.10: Feature level fusion

Feature level fusion is another fusion in the category of ‘fusion before match-
ing’. The features from the same or different modalities are extracted using
modality-dependent feature extractor approaches in feature level fusion. These
features are then fused to recognize a user. A schematic diagram of feature level
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fusion is shown in Fig. 1.10. The extracted features from same modality using
different feature extraction approaches or the extracted features from different
modalities may vary in their dimensions. Therefore, the features are brought into
a common dimension before fusing features at this level.

1.2.1.3 Score Level Fusion

Figure 1.11: Score level fusion

The score level fusion is the first fusion level under the category of ‘fusion
after matching’. The score level fusion is used for both user verification and user
identification tasks. In the context of user verification task, the extracted feature
(template) of a probe user is matched with the corresponding stored template
(claimed identity by the probe user) to produce a match score (similarity or
dissimilarity). A user is recognized as a genuine user or an impostor based on the
match score. In the context of user identification task, the template of a probe
user is compared with the templates of all the enrolled users to generate a score
list. The score level fusion fuses such score lists to find a fused score list. This
fused list is then used to establish the identity of the probe user. A schematic
diagram of score level fusion is shown in Fig. 1.11. Furthermore, the score level
fusion scheme can be used for any combination of modalities as the matching
scores (similarity or dissimilarity) are used for fusion. Therefore, the score level
fusion schemes are modality independent. Hence, these schemes are widely used
for the fusion of multimodal biometrics. The major drawback of score level fusion
is the varying range of scores across different modalities. The matching scores for

14



1.2 Introduction to Multibiometrics

different modalities may have different ranges. Hence, all scores are normalized
[49, 62, 63] into a common range before performing the fusion at score level.

1.2.1.4 Rank Level Fusion

Figure 1.12: Rank level fusion

The computed matching scores at the score level are used to rank the users.
Thus, a rank list is created. The rank lists for multiple modalities are fused using
rank level fusion schemes to produce an aggregated rank list. The highest-ranked
user (rank 1 being the best) is the matched user with the probe. Matching scores
(similarity or dissimilarity) are directly used to generate the rank list. Therefore,
score normalization is not required in rank level fusion. A schematic diagram of
rank level fusion is shown in Fig. 1.12.

1.2.1.5 Decision Level Fusion

Decision level fusion is a more abstract level of fusion. At this fusion level,
the least amount of biometric information is present. Only the final decisions
of individual biometric modalities are available at decision level fusion. These
decisions are fused to form the final decision about the genuineness of the probe
user. A schematic diagram of decision level fusion is shown in Fig. 1.13.
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Figure 1.13: Decision level fusion

1.2.2 Real Life Applications of Multimodal Biometrics
In multimodal biometrics, the fused biometric information is likely to be more
distinctive to an individual than the information in a single biometric modality.
Multiple modalities often result in increased recognition performance and sys-
tem reliability. As a result, multimodal biometrics is increasingly being employed
as an authentication method. For example, the Emirates airline has developed
a face and iris biometric-based check-in and boarding system at Dubai airport
[64]. Similarly, Singapore has developed an immigration clearance system based
on multimodal biometrics (MMBS) to enhance the security at immigration and
checkpoints authority (ICA) [65]. Philippines has introduced the face, iris, and
fingerprint-based identification system (PhilSys) [4]. This system aids the unique
identification of its citizens and provides an environment for secure banking trans-
actions. The future of identity in the financial sector is likewise being shaped by
multimodal biometrics [66].

1.3 Research Objective
Traditional biometric systems (unimodal) suffer from various challenges such as
noisy data, intra-class variation, inter-class similarity, non-universality and easi-
ness to spoof. Therefore, research has been progressed in the direction of com-
bining multiple biometric modalities. The combination of biometric information
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from multiple modalities is called a multibiometrics or multimodal biometrics
[1, 24]. Various types of multibiometric systems are listed in Section 1.2.

In a multimodal biometric system, fusion of biometric information from var-
ious modalities can be performed at five different levels: sensor, feature, score,
rank and decision level. These levels of fusion are stated in Section 1.2.1. The
sensor level and feature level fusion approaches fall in the category of ‘fusion be-
fore matching’ schemes. At sensor level fusion, the acquired biometric images
or signals may vary in size across different biometric modalities. Therefore, it is
difficult to combine images or signals at the sensor level unless they are captured
using the similar sensors. Similarly, dimensions of the extracted features from
these images or signals also vary for different modalities. Hence, all the feature
vectors need to be in a common dimension to fuse biometric information at the
feature level [1]. Therefore, these fusion schemes can only be used if either all of
the modalities are of the same type of biometrics or all the feature vectors are
normalized to the same dimension.

On the contrary, the ‘fusion after matching’ schemes (score, rank and decision
level fusion) are not dependent on the nature of the captured images or signals
and the extracted features. In all these schemes, fusion is performed only after
obtaining scores from individual modalities. According to the score level fusion,
similarity or dissimilarity scores are computed by comparing a probe subject’s
biometric information (template) with the enrolled biometric information (tem-
plate) for each biometric modality. In rank level fusion, ranks are derived from
the matching scores. These ranks represent the possible set of matching identities
in decreasing order of confidence. Decision level fusion only requires the decisions
from considered biometric modalities and combines them to generate the final
decision. Therefore, very less information is available during decision level fusion.
Hence, score and rank level fusion schemes have the maximum information avail-
able during fusion in comparison to decision level fusion schemes. Hence, score
level fusion [49, 50, 51, 52, 53, 62, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76] and rank
level fusion [34, 58, 77, 78, 79, 80, 81] are mostly accepted levels of fusion for
multimodal biometrics. Therefore, the scope of the research work in this thesis
is also centred around the score and rank level fusion.

A good fusion strategy at the score and the rank level can enhance the per-
formance of a multimodal biometric system. Moreover, these levels of fusions are
modality independent. Hence, developed approaches for these levels of fusion can
be applied to any modality. Therefore, as reported in this thesis, the objective
of the research is to develop novel modality-independent score and rank level
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fusion schemes to enhance the performance of the multimodal biometric system
for identification task. The problem of score and rank level fusion is conceptu-
alized as an optimization problem in this research. Novel modality-independent
optimization based fusion approaches have been proposed in the context of score
and rank level fusion. Furthermore, the quality of biometric modality is also
considered to enhance the performance of proposed approaches at score and rank
level fusion. The optimization based fusion approaches have slow convergence
rate (i.e., take large amount of time to reach to optimal solution). Therefore, an
approach to reduce the search space is also proposed in this research to achieve a
fast convergence rate for proposed optimization based fusion approaches. Finally,
the proposed fusion approaches are applied to the task of person identification in
the era of covid-19 pandemic or similar situations where persons are using face
masks. The key objective of the reported research in this thesis are as following:

• Proposing novel modality-independent optimization based fusion ap-
proaches for score and rank level fusion for multimodal biometric fusion.

• Incorporating the quality of biometric modality to enhance the performance
of the proposed optimization based fusion schemes.

• Reducing the search space for achieving fast convergence rate of the pro-
posed optimization based fusion approaches.

• Applying the proposed approaches on a task of person identification in the
era of covid-19 pandemic or similar situation when face masks are used.

1.4 Contribution of the Thesis
Major contributions of the thesis are highlighted in this section. Contributions
of this thesis are stated as proposing novel modality independent optimization
based score and rank level fusion strategies as following:

1. Optimization Based Rank Level Fusion of Multimodal Biometrics:
In the context of multimodal biometric fusion, rank level fusion is one of the
widely used fusion level. In rank level fusion, the obtained rank lists from
the matching scores of the considered modalities are fused to produce a
final rank list. The fused list should be as close as possible with all the rank
lists of considered modalities. Therefore, the rank level fusion problem is
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conceptualized as an optimization problem to obtain the optimal fused rank
list. Here, the objective is to find a fused rank list with a minimum weighted
summation of distances from the rank lists of considered modalities. Here,
weighted Spearman footrule distance measure is used to find the stated
distance. A novel rank level fusion approach based on a genetic algorithm
(GA) is proposed in this research to solve the stated optimization problem.
Furthermore, a novel rank level fusion approach based on particle swarm
optimization (PSO) is also proposed in this research.

2. Optimization Based Score Level Fusion of Multimodal Biometrics:
Inspired by the performance of above optimization based rank level fusion
approaches, a similar fusion strategy is investigated for score level fusion.
Here, the optimization based score level fusion approach is proposed to en-
hance the performance of the multimodal biometric system. The score lists
from different modalities are fused together to obtain the final fused score
list in score level fusion. Similar to the optimization based rank level fusion
approach, the score level fusion problem is conceptualized as an optimization
problem. Furthermore, this research proposes two novel score level fusion
approaches based on genetic algorithm and particle swarm optimization to
solve this problem.

3. Quality Driven Optimization Based Multimodal Biometric Fusion:
After investigating the optimization based approaches for rank and score
level fusion of multimodal biometrics. The quality derived optimization
based rank and sore level fusion approaches are proposed in this research.
The quality of biometric modality can significantly increase or decrease the
performance of the multimodal biometric system. Therefore, the quality of
each biometric modality is estimated, this quality is used as a weight for
the considered modality. The estimated weights are incorporated into the
optimization based score and rank level fusion approach to further enhance
the performance of multimodal biometric system.

4. Reduced Search Space Driven Optimization Based Multimodal
Biometric Fusion: The acceptability of multimodal biometric fusion
schemes depends on the recognition accuracy (finding an optimal solution)
of the proposed approach and how quickly the approach finds the optimal so-
lution (convergence time). The above optimization based multimodal fusion
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approaches are slow in finding the optimal solution. A particle swarm opti-
mization (PSO) is a population-based search algorithm. The PSO searches
for an optimal solution in a large search space containing all possible can-
didate solutions. As a result, the PSO based fusion approaches take a
considerable amount of time to reach at the optimal solution. Therefore,
novel approaches to reduce the search space of particle swarm optimization
based rank and score level fusion are proposed in this research to reduce
the amount of time (convergence time) to reach at the optimal solutions.
The same discussion is applied for the genetic algorithm (GA) based ap-
proached too. But PSO based approaches converge faster than GA based
approaches. Hence, in this work, only PSO based approaches have been
taken up for further reduction of their convergence time.

5. Person Identification in the Era of Covid-19 Pandemic Using
Proposed Optimization Based Multimodal Biometric Fusion Ap-
proach: Finally, proposed quality and reduced search space driven particle
swarm optimization based score level fusion approach is applied to a per-
son identification task in the era of covid-19 pandemic. Performances of
the designed system are evaluated in the context of multimodal fusion of
masked face and iris biometrics at score level. Here, the masked face bio-
metric information is fused with the iris biometric information to improve
the recognition accuracy of the multimodal biometric system in the era of
covid-19 pandemic or similar situation.

1.5 Organization of the Thesis
Rest of the thesis is organized as following:

• A literature survey of existing score and rank level fusion approaches for
multimodal biometrics is presented in Chapter 2 .

• In Chapter 3, novel modality-independent optimization based rank level
fusion approaches for multimodal biometrics are proposed.

• In Chapter 4, novel modality-independent optimization based score level
fusion approaches for multimodal biometrics are proposed.
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• In Chapter 5, novel modality-independent quality driven optimization
based score and rank level fusion approaches for multimodal biometrics
are proposed.

• In Chapter 6, novel reduced search space driven optimization based score
and rank level fusion approaches for multimodal biometrics are proposed.

• Application of proposed optimization based multimodal fusion approach in
the era of covid-19 pandemic is reported in Chapter 7.

• Conclusive remarks of this thesis are drawn in Chapter 8. Additionally,
future research directions are highlighted in this chapter.
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Chapter 2

Literature Survey on Score and
Rank Level Fusion Approaches
for Multimodal Biometrics

A literature survey of existing score and rank level fusion approaches for multi-
modal biometrics is presented in this chapter. This chapter is organized into the
following sections: A literature survey of existing score level fusion approaches
is presented in Section 2.1. In Section 2.2, a literature survey of existing rank
level fusion approaches is presented. In Section 2.3, various weight estimation
approaches for score and rank level fusion are presented.

2.1 Score Level Fusion Approaches
Score level fusion approaches can be broadly categorised as: (i) rule-based, (ii)
likelihood ratio-based, (iii) classification-based and (iv) optimization based ap-
proaches. A brief literature review of each one of these categories is presented in
this section.

2.1.1 Rule-Based Methods
In rule-based methods, simple mathematical operations (e.g., summation, prod-
uct, minimum and maximum) are performed on the matching scores from multiple
biometric modalities to generate an aggregated score. Prior to carrying out these
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mathematical operations, obtained scores from individual modalities are normal-
ized into a common range of values. Various normalization methods exist in
literature. Examples include min-max [49, 62, 63], z-score [1, 63], tanh [1, 63],
generalized extreme value distribution-based [50] and anchored score normaliza-
tion [67, 82].

1. Min-Max Normalization: The min-max normalization [49, 62, 63] is one
of the widely used score normalization approach. In this normalization, the
scores are normalized in the range of [0,1]. The minimum and the maximum
scores after normalization are set to 0 and 1, respectively. All other scores
are set to real values in the range of [0,1]. The normalized score using
min-max normalization is computed as following:

ŝij = sij −min(Si)
max(Si)−min(Si)

(2.1)

Here, sij represents a matching score of the probe with the jth enrolled
subject for a biometric modality i. A list Si contains such matching scores
of the probe subject with all the enrolled subjects for the biometric modal-
ity i. The terms min(Si) and max(Si) represent the minimum and the
maximum scores, respectively, for the score list Si. Normalized score of an
enrolled subject j for an input biometric modality i is represented as ŝij . A
list of these scores ŝij of all subjects for biometric modality i represents a
normalized score list Ŝi.

2. z-score Normalization: The z-score normalization [1, 63] uses mean µSi

and standard deviation σSi
of a score list Si to compute the normalized

score ŝij of an enrolled subject j for biometric modality i. The function to
compute normalized score using z-score normalization is as following:

ŝij = sij −µSi

σSi

(2.2)

The z-sore normalization approach is sensitive to outliers as both mean and
standard deviation are sensitive to outliers [1, 63]. The z-score ŝij is equal
to 0 if the matching score sij is equal to the mean. The rest of the scores
are either negative or positive. A matching score sij below the mean µSi

produces a negative z-score. On the other side, a matching score sij above
the mean µSi

produces a positive z-score. These normalized scores are not
in common range for each modality. The z-score normalization is useful in
the presence of outliers in a score list [1, 63].
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3. tanh Normalization: The hyperbolic tangent (tanh) normalization [1, 63]
is genuine score distribution based normalization approach. A genuine score
is the matching score between two biometric templates of the same user.
The normalized score using tanh normalization is computed as following:

ŝij = 1
2

{
tanh

(
0.01×

(
sij −µGi

σGi

))
+1

}
(2.3)

Here, µGi
and σGi

represent mean and standard deviation, respectively, of
the genuine score distribution Gi. The hyperbolic tangent (tanh) function
returns a value in the range of [−1,1]. Therefore, the normalized scores
using tanh normalization are in the range of [0,1] due to Eq. 2.3.

4. Generalized Extreme Value (GEV) Distribution Based Normal-
ization: This approach [50] is based on the extreme value theory [83]. The
genuine scores are present at the extreme (tail) of the entire score distri-
bution containing genuine and impostor scores. Therefore, the generalized
extreme value (GEV) distribution considers only the genuine scores. The
mean (µ), scale (σ) and shape (k) parameters of the GEV distribution are
estimated using the maximum likelihood estimation. The normalized score
using GEV distribution based normalization approach is computed as fol-
lowing:

ŝij =

exp
(

−
(

1+k ×
(

sij−µ
σ

)−(1/k)))
, if k ̸= 0

exp
(
−exp

(
−
(

sij−µ
σ

)))
, if k = 0

(2.4)

The above Eq. 2.4 resembles the cumulative distribution function of GEV
distribution.

5. Anchored Score Normalization: In anchor value based score normaliza-
tion approach [67, 82], an anchor value is computed using the overlapping
region between the distributions of genuine score Gi and impostor score Ii

for biometric modality i. The computed anchor value generates the nor-
malized score ŝij . Figure 2.1 illustrates the overlapping region of genuine
and impostor scores. In this figure, the blue box represents the impostor
scores. Similarly, the green box represents the genuine scores. The red
rectangle highlights the overlapping region of genuine and impostor scores.
In [67, 82], following three approaches are presented to compute the anchor
value:
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Figure 2.1: Genuine and impostor scores with their overlapping region (for
similarity scores)

• Overlap extrema-based anchor (OEBA): The anchor value for
biometric modality i is computed as:

A(i) = max(Ii)−min(Gi) (2.5)

Here, max(Ii) and min(Gi) represent the maximum value of impostor
scores (Ii) and the minimum value of genuine scores (Gi), respectively.

• Mean-to-overlap extrema-based anchor (MOEBA): The anchor
value for biometric modality i is computed as:

A(i) = {max(Ii)−µ(Ii)}+{µ(Gi)−min(Gi)} (2.6)

Here, µ(Ii) and µ(Gi) represent the mean values of impostor scores
(Ii) and genuine scores (Gi), respectively.

• Overlap extrema-variation-based anchor (OEVBA): The an-
chor value for biometric modality i is computed as:

A(i) = max(Ii)−min(Gi)
std(Ii)− std(Gi)

(2.7)

Here, std(Ii) and std(Gi) represent the standard deviations of impostor
scores (Ii) and genuine scores (Gi), respectively.

These computed anchor values are applied on the genuine and impostor
scores for a biometric modality i to compute the normalized score ŝij as:

ŝij =


sij−min(Gi,Ii)
2(A(i)−min(Gi,Ii) , if sij <= A(i)
0.5+ sij−A(i)

max(Gi,Ii)−A(i) , if sij > A(i)
(2.8)
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Here, min(Gi, Ii) represents the minimum value among all genuine Gi and
all impostor Ii scores. Similarly, max(Gi, Ii) represents the maximum value
among all genuine Gi and all impostor Ii scores.

The obtained normalized scores using either of the above mentioned normal-
ization approaches are then fused using rule-based approaches. The rule-based
score level fusion approaches are summarized here.

1. Sum Rule: One basic rule-based method for score level fusion is the sum
rule method [1, 67, 70, 84, 85, 86, 87]. Here, the summation of the normal-
ized scores for several biometric modalities is considered as an aggregated
score. The fused score is computed as:

s′
j =

N∑
i=1

ŝij (2.9)

Here, the normalized and the fused scores for subject j are represented as
ŝij and s′

j , respectively. The number of biometric modalities is represented
by N .

2. Weighted Sum Rule: In the weighted sum rule approach, a weighted
summation of a subject’s normalized scores for all modalities generates an
aggregated score [49, 51, 57, 67, 68, 70, 71, 72, 82, 84, 88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104]. The fused score is computed
as:

s′
j =

N∑
i=1

wiŝij (2.10)

Here, wi represents the weight for ith biometric modality. The weight for
a biometric modality indicates the significance of ith biometric modality
(matcher) while fusing the corresponding scores. Several approaches for esti-
mating weight for each biometric modality have been proposed in the litera-
ture: (i) matcher or classifier performance-based [49], (ii) optimization-based
[105], and (iii) quality-based [54]. Various weight estimation approaches are
discussed in Section 2.3.

3. Product Rule: In product rule based score level fusion approach [1, 84, 86],
the normalized scores of the considered subject from multiple modalities are
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combined using the product of these normalized scores. The computation
is performed as:

s′
j =

N∏
i=1

ŝij (2.11)

4. Weighted Product Rule: Similarly, in weighted product rule based score
level fusion approach [68], the normalized scores of the considered subject
from different modalities are combined using weighted product of normal-
ized scores from each biometric modality. The fused score is computed as:

s′
j =

N∏
i=1

(ŝij)wi (2.12)

5. Min Rule: In min rule based score level fusion approach, the minimum
among the subject’s normalized scores from N different biometric modalities
is considered as the fused score [1, 70].

s′
j = min

∀i
(ŝij) (2.13)

6. Max Rule: In max rule based score level fusion approach, the maximum
among the subject’s normalized scores from N different biometric modalities
is considered as the fused score [1, 70, 106].

s′
j = max

∀i
(ŝij) (2.14)

7. Triangular Norm Based: The works in [55, 69, 86, 107] adopt triangu-
lar norm (t-norm) based techniques for score level fusion. In these works,
Hamacher, Frank, Einstein product, Yager and Schweizer–Sklar t-norm ap-
proaches are used on a pair of normalized scores for fusion. The functions
of Hamacher, Frank, Einstein product, Yager and Schweizer–Sklar t-norms
to compute the fused score s′

j are defined in following equations:

s′
j = ŝ1j ŝ2j

ŝ1j + ŝ2j − ŝ1j ŝ2j
(2.15)

s′
j = logp

(
1+ (p ˆs1j −1)(pŝ2j −1)

p−1

)
for p > 0 (2.16)
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s′
j = ŝ1j ŝ2j

2− (ŝ1j + ŝ2j − ŝ1j ŝ2j)
(2.17)

s′
j = max(1− ((1− ŝ1j)p +(1− ŝ2j)p)1/p,0) for p > 0 (2.18)

s′
j = ((ŝ1j)p +(ŝ2j)p −1)1/p, for p < 0 (2.19)

Here, ŝ1j and ŝ2j represent the normalized scores of a subject j for a pair
of biometric modalities. In the case of fusion involving more than two
modalities, the scores from remaining modalities are iteratively fused with
the already fused score.

8. Symmetric Summation Based: A symmetric summation based ap-
proach is proposed for score level fusion in [108]. The symmetric summation
function is defined as following:

s′
j = t(ŝ1j , ŝ2j)

t(ŝ1j , ŝ2j)+ t(1− ŝ1j ,1− ŝ2j)
(2.20)

Here, t() is a t-norm function. In the case of fusion involving more than
two modalities, the scores from remaining modalities are iteratively fused
with the already fused score.

9. Weighted Quasi-Arithmetic Mean: In comparison to all of the above
rule based techniques, score level fusion using weighted quasi-arithmetic
mean (WQAM) [62] has recently proved to be more efficient. This approach
fuses the normalized scores by using the weighted quasi-arithmetic mean.
A weighted arithmetic mean (wam) is defined as:

wam(ŝ1j , . . . , ˆsNj) = (
N∑

i=1
wiŝij)/

N∑
i=1

wi (2.21)

Similarly, for strictly monotonous continuous generating function g(), the
quasi-arithmetic mean (qam) is defined as:

qam(ŝ1j , . . . , ˆsNj) = g−1

 1
N

N∑
i=1

g(ŝij)
 (2.22)
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The function g−1() is the inverse of the generating function g().
The weighted quasi-arithmetic mean approach ([62]) is combination of
weighted arithmetic mean (Eq. 2.21) and weighted quasi-arithmetic mean
(Eq. 2.22) approaches. It computes the fused scores as following:

s′
j = wqam(ŝ1j , . . . , ˆsNj) = g−1

(
N∑

i=1
wig(ŝij))/

N∑
i=1

wi

 (2.23)

The WQAMs are estimated using various generating functions. Following
generating functions are used in [62]:

g(ŝij) = tan(π

2 ŝij) (2.24)

g(ŝij) = sin(π

2 ŝij) (2.25)

g(ŝij) = cos(π

2 ŝij) (2.26)

g(ŝij) = (cos(π

2 ŝij))r (2.27)

g(ŝij) = (ŝij)r (2.28)

g(ŝij) = rŝij (2.29)

g(ŝij) = r1/ŝij (2.30)

g(ŝij) = exp−(r/ŝij) (2.31)
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2.1.2 Likelihood Ratio Based Score Level Fusion Ap-
proaches

The density distributions of genuine and imposter scores are considered in the
likelihood ratio-based fusion approach [73, 74, 109, 110]. Let these two distribu-
tions of genuine and impostor scores for ith biometric modality be represented as
li,gen(sij) and li,imp(sij), respectively. The likelihood ratio test on the generalized
density in [109] is computed using Eq. 2.32. Similarly, the likelihood ratio test on
the joint density (incorporating quality of a probe) in [73, 74, 110] is computed
using Eq. 2.33.

s′
j =

N∏
i=1

li,gen(sij)
li,imp(sij)

(2.32)

s′
j =

N∏
i=1

li,gen(sij , qi)
li,imp(sij , qi)

(2.33)

Here, qi is a quality estimate of the input signal in ith modality. Moreover, an
actual matching score sij is used here instead of a normalized matching score ŝij .
If the fused score s′

j is greater than a threshold value, the probe is considered as
a genuine user. Otherwise, it is considered as an impostor.

A non-parametric kernel density estimation technique with a Gaussian kernel
is used in [109] to estimate the generalized densities of genuine and impostor
scores. The work in [110] further improves the work in [109] by incorporating the
quality score to estimate the joint density using copula model [110]. Similarly,
a Gaussian mixture model (GMM) is used in [73, 74] to estimate the two score
densities.

The work in [111] proposes two approaches to improve the performance of
likelihood ratio based score level fusion approach. At first, the biometric modali-
ties having poor quality images are excluded while estimating the densities. This
process is named as voting likelihood ratio test. Furthermore, a sequential likeli-
hood ratio test is also proposed to decide the genuineness of a user. This test is
performed for those subjects for whom the decision can not be deduced with the
initial observation using two threshold values. If the fused score lies in between
these two thresholds, the decision is suspended. In this case, voting likelihood
ratio test is applied to make the final decision. In [112], a naive based likelihood
ratio approach is proposed for score level fusion. Here, the naive likelihood ratio
is estimated by summation of log-likelihood ratios of several biometric modalities.
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2.1.3 Classification Based Approaches
In classification based score level fusion approach, the problem of score fusion is
converted as a binary class classification problem (genuine and impostor class).
Support vector machine (SVM) based score level fusion approaches in [75, 76,
113, 114, 115, 116] are few such examples. In these approaches, scores of a
subject from multiple modalities are represented as a score vector. This vector
is passed through a SVM classifier to classify it as either of two classes: genuine
user or impostor. Other classification based score level fusion approaches involve
Dempster-Shafer (D-S) theory [117, 118, 119] and Dezert-Smarandache (DSmT)
theory [50, 120].

The work in [121, 122] uses a sequential fusion approach to fuse several bio-
metric modalities. Likelihood ratio and support vector machine (SVM) classifiers
are sequentially used to decide wither a score vector belongs to genuine user or
impostor.

2.1.4 Optimization Based Approaches
In optimization based score level fusion approaches, the problem of score fusion
is converted as an optimization problem. In [123], a differential evolution based
score level fusion method is proposed. In this work, scores from multiple biometric
modalities are aggregated to minimize the overlapping area between genuine and
impostor score distributions. This objective is achieved by a differential evolution
based search of suitable parameters for the score aggregation function.

The work in [124] uses the grasshopper optimization algorithm [125] to find
the best confidence factors for belief assignments in various modalities. Similarly,
particle swarm optimization based [126] and backtracking search optimization
algorithm based [127] approaches are proposed to determine the best confidence
factors for belief assignments in various modalities.

In [128], a particle swarm optimization (PSO) based approach selects the
best score level fusion rule and its parameters among several competing rule-
based methods. Here, minimization of the weighted sum of the false rejection
rate (FRR) and false acceptance rate (FAR) is the main objective. The cost of
incorrectly admitting an impostor and the cost of incorrectly rejecting a legitimate
user determine the weight. Similarly, PSO is applied in [129] to choose the best
belief function for score level fusion among a set of competing belief functions.
Here, the objective is to reduce the weighted equal error rate.
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2.2 Rank Level Fusion Approaches
In this section, several existing rank level fusion approaches for multimodal bio-
metrics fusion are briefly discussed.

2.2.1 Borda Count Approach
According to Borda count approach [34, 35, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139], summation of ranks of a subject across several modalities provides an
aggregated rank for the concerned subject. Mathematically, it can be expressed
as:

r′
j =

N∑
i=1

rij (2.34)

Here, N represents number of different biometric modalities and rij represents
the rank of jth subject for the ith modality. At the end, the final aggregated rank
of a subject is decided based on the ordering of r′

j values of all subjects. In [140],
a modified Borda count approach is presented. A weak matcher is identified as
having the worst rank for a subject j. Then, the effect of the weak matcher is
reduced by eliminating (i.e., setting to 0) the assigned rank by the matcher for
the subject j. Finally, the Borda count is used to fuse the ranks.

2.2.2 Weighted Borda Count Approach
This method [34, 132, 133, 134, 135, 138, 140, 141] is an extension of Borda count
method. It is also known as logistic regression. In this approach, a weight is as-
signed to each biometric modality. Then, the final rank is calculated by weighted
summation of ranks of a subject for each modality. Mathematical expression to
find the rank of a subject using weighted Borda count method is defined as:

r′
j =

N∑
i=1

wirij (2.35)

Here, N represents number of different biometric modalities. wi is the weight
given to ith modality and rij represents the rank of jth subject for the ith modality.
At the end, the final aggregated rank of a subject is decided based on the ordering
of r′

j values of all subjects. Introduction of weight in this method is advantageous
when biometric modalities have significant differences in their performances.
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2.2.3 Highest Rank Approach
This ranking approach [35, 136, 138, 142, 143, 144] finds the highest rank of a
subject among the ranks in various modalities as the final rank for that subject.
For example, let a subject have 1st rank and 3rd rank in two different biometric
modalities. The highest rank for the subject is 1 between the ranks in these two
modalities. Therefore, final rank of the subject is 1. Expression to find the rank
of a subject using the highest rank method is given below:

r′
j =

N
min
i=1

(rij) (2.36)

Here, N represents number of different biometric modalities, rij represents
the rank of jth subject for the ith modality. It is to be noted that a lower rank
value is better. Therefore, min() function is used in Eq. 2.36 to determine the
highest rank.

As this method computes the highest rank for each subject, many subjects
may have the same rank. These ties are randomly broken to get the final rank of
a subject [32]. It can lead to decrease in identification accuracy.

2.2.4 Non-linear Weighted Approaches
Several non-linear weighted rank methods for rank level fusion are also present
in literature. Exponential ranking method [33] is one of these methods. Mathe-
matically, it can be expressed as:

r′
j =

N∑
i=1

exp(wi rij) (2.37)

A modified version of above exponential rank level fusion is also presented
in [33]. It is known as weighted exponential rank fusion method. It can be
mathematically defined as following:

r′
j =

N∑
i=1

wi exp(rij) (2.38)

A division exponential based non-linear rank level fusion method is proposed
in [32]. It can be mathematically defined as following:

r′
j =

N∑
i=1

1
1+ exp(wi rij)

(2.39)
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A logarithm based non-linear rank level fusion is also presented in [32].
Metamerically, it can be expressed as following:

r′
j =

N∑
i=1

log(1+wi rij) (2.40)

A hyperbolic tangent (tanh) based non-linear rank level fusion is also presented
in [32]. Metamerically, it can be expressed as following: Hyperbolic arc sinus,

r′
j =

N∑
i=1

tanh(wi rij) (2.41)

A hyperbolic arc sine (asinh) based non-linear rank level fusion is also pre-
sented in [32]. Metamerically, it can be expressed as following:

r′
j =

N∑
i=1

asinh(wi rij) (2.42)

Similarly, hyperbolic arc tangent (atanh) based non-linear rank level fusion is
also presented in [32]. Metamerically, it can be expressed as following:

r′
j =

N∑
i=1

atanh(wi rij) (2.43)

In above equations, N represents number of different biometric modalities. wi

is the assigned weight to ith modality. The term rij represents the rank of jth

subject for the ith modality. The final aggregated rank of a subject j is decided
based on the ordering of r′

j values of all subjects.

2.2.5 Markov Chain Based Approach
Rank level fusion of multimodal biometrics is performed in [58, 139, 145] by using
Markov chain [146]. In this method, a node in the Markov chain is associated
with a subject. Transitions in this Markov chain represent an ordered relation
among these enrolled subjects. Stationary distribution for each state (subject) is
computed based on the number of pairwise contests (elections) which have been
won by the subject considering all the rank lists. Stationary distribution of this
Markov chain gives the final rank for each state (subject).
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2.2.6 Fuzzy Rank Based Approach
A fuzzy rank level fusion method is proposed in [147]. A classifier generates a fuzzy
rank and a confidence factor for each enrolled subject (class) in each biometric
modality for a concerned probe subject. The rank sum for each class is computed
as the summation of fuzzy ranks of the concerned classes across all modalities.
The computed fuzzy rank sum is penalized if the class dose not belong to a few
selected top ranks for a modality. Similarly, the complement of confidence factor
sum is computed. The computed complement of confidence factor sum is also
penalized if the class dose not belong to a few selected top ranks for a modality.
The final fused rank is generated by performing multiplication operation between
rank sum and complement of confidence factor sum for each class.

2.3 Weight Estimation Approaches
The existing score (weighted sum rule [49], WQAM [62]) and rank (weighted
Borda count [34], non-linear approaches [33]) level fusion approaches use weight
for each modality. These weights indicate the significance of each modality. Sev-
eral approaches for estimating weight for individual modalities have been pro-
posed in the literature. These approaches are divided into three categories: (i)
matcher or classifier performance-based, (ii) optimization-based, and (iii) quality-
based weight estimation.

2.3.1 Matcher or Classifier Performance-Based Ap-
proaches

The weight wi for ith modality is obtained in [49] by taking reciprocal of its equal
error rate (EER) value. Less value of EER indicates high significance of that
modality. Therefore, high weight value is assigned to that modality. Similarly,
low weight value is assigned to a modality having high value of EER. This weight
assignment using EER is shown in following equation:

wi = 1
EERi

(2.44)

Similarly, the weight for a biometric modality is also considered as inversely
proportional to EER in [148]. This weight assignment using EER is shown in
following equation:
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wi =

(
1∑N

i=1 1/EERi

)
EERi

(2.45)

Additionally, the weights are normalized in [148] to have a summation as 1, i.e.,∑N
i=1 wi = 1.

2.3.2 Optimization-Based Approaches
An appropriate combination of weights for the biometric modalities can also
be searched among all possible combinations of weights. In optimization-based
schemes, the optimal weight for each modality is derived using meta-heuristic
optimization algorithms. In [105, 128], the objective is to find a set of optimal
weights that minimizes the summation of Bayesian costs for false acceptance and
false rejection. The work in [149] selects the optimal weights for each modality by
minimizing the weighted summation of equal error rate (EER) values across all
modalities. In another approach [150], the weights are selected by maximizing the
recognition accuracy. In all of the above approaches, particle swarm optimization
(PSO) algorithm is used to find the optimal weights. Moreover, minimization of
recognition error is considered as the objective function in [151]. A genetic algo-
rithm (GA) based approach is used to find the optimal weights for each biometric
modality in [151].

2.3.3 Quality-Based Approaches
The quality of a biometric signal has a substantial impact on the performance of a
biometric recognition system [152, 153]. Hence, a subpar quality biometric signal
negatively impacts the overall performance of the recognition system. The quality
describes a biometric signal’s potential to be used for recognition while providing
consistent, accurate, and predictable results [153]. Therefore, it is essential to
incorporate the quality of a biometric signal in multimodal biometric fusion [154,
155, 156, 157].

The works in [54, 73, 110] use quality-derived weights for fusion of multimodal
biometrics. The quality of a biometric signal can be estimated by (i) assessment
of biometric signal quality in terms of blurring, defocus, poor illumination, noise,
and other artefacts [158, 159, 160] or (ii) analyzing the biometric information
present in the acquired signal [153, 161].
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The first category of approaches to assess the biometric signal quality is de-
pendent on the characteristics of the signal. Several approaches of this category
are discussed here. The universal quality index in [158] estimates illumination
quality of a facial image in [159]. Here, the quality is assessed by combining three
factors: loss of correlation, luminance distortion, and contrast distortion. Simi-
larly, the sharpness and brightness of an image are used to estimate the quality
of the face image in [160]. In [162], several factors are used to assess the qual-
ity of iris biometrics, such as interlacing, illumination, lighting, occlusion, pixel
count, dilation, off-angle, and blur. A composite no-reference quality score is
computed by combining blockiness and activity estimation in both vertical and
horizontal directions in an image [163]. In [164], blurriness in an image due to
defocus and motion is estimated as a quality metric. In [165], a convolutional
neural network (CNN) based approach is used to estimate the quality of the face
image. The CNN estimates face image quality by analyzing the blurriness in
the face image due to its poor resolution. Few other no-reference image qual-
ity metrics exist in literature, such as blind image quality index (BIQI) [166],
gradient-magnitude map Laplacian-of-Gaussian based blind image quality assess-
ment (GM-LOG-BIQA) [166] and a blind/reference-less image spatial quality
evaluator (BRISQUE) [54, 166].

Above mentioned quality estimation approaches focus on image quality. On
the contrary, the amount of biometric information in an acquired image is equally
important for biometric recognition [153, 161]. Several methods for estimating
quality using biometric information exist in literature. For example, the quality
of fingerprint biometrics is estimated using a wavelet-based quality assessment
approach in [110]. In [167], the quality is estimated using another wavelet-based
quality assessment approach. Similarly, redundant discrete wavelet transform
(RDWT) is used to estimate the quality score of face [168], iris [168, 169] and
fingerprint [170] images. In [171], image quality metric based on wave atom trans-
form is presented for fingerprint biometrics. In [172], the quality of fingerprint
image is estimated using the energy distribution in the power spectrum.

National Institute of Standards and Technology (NIST) fingerprint image
quality (NFIQ) [173] is one of the primarily used quality estimation approaches
for fingerprint biometrics. It consists of 11 quality features, including local orien-
tation, contrast and other fingerprint-related features. Recently, NFIQ 2.0 [174]
is introduced with additional features for fingerprint quality estimation. Simi-
larly, in [175], various fingerprint features are used to estimate the quality of the
fingerprint biometrics.
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In [176], the quality of the entire eye image is estimated based on amount of
occlusion. Furthermore, the quality of iris is estimated by correlation between
the neighbouring features of iris. Additionally, dilation is also used to estimate
the quality of iris. In [177], several statistical measures are used to estimate the
quality of the iris.

A face quality estimation based on convolutional neural network (CNN) is
presented in [178]. Here, a face quality network is trained on the ground truth
quality score. In a completely different approach in [179], a face quality is es-
timated using a CNN-based face recognition model. In this approach, several
instances of the trained face recognition model are considered by randomly se-
lecting the dropout layers. An image is presented to every instance of this model.
The quality is estimated by measuring variation among the generated embeddings
across all instances of the model.

2.4 Summary
A detailed literature review on existing score and rank level fusion approaches is
presented in this chapter. This review helps in developing a good understanding
about these approaches. It can be observed from the presented literature that
the rule based approaches are widely adopted for score (weighted sum rule [49,
51, 67]) and rank (weighted Borda count [34, 132, 133]) level fusion. However,
these approaches do not guarantee the optimal performance of the multimodal
biometric system. On the other hand, few optimization based approaches exist for
multimodal biometrics. These approaches search for the optimal fusion technique
[128], the optimal controlling parameters [123] or the optimal set of weights [105,
128]. This motivates to further explore optimization-based approaches for score
and rank level fusion of multimodal biometrics. Hence, the subsequent chapters
describe the proposed approaches in this direction.

Moreover, several score and rank level fusion approaches use weight for each
modality. These weights indicate significance of the concerned modalities. These
weights are estimated using matcher or classifier performance [49, 148], optimiza-
tion techniques [105, 128], and quality assessment [54, 110].
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Chapter 3

Rank Level Fusion of Multimodal
Biometrics Using Optimization
Based Approaches

In rank level fusion [34, 58, 77, 78, 79, 80, 81] approaches, rank lists are derived
by considering relative ordering of the similarity or the dissimilarity scores be-
tween biometric traits of a probe and those of a set of enrolled subjects. Several
such rank lists corresponding to various biometric modalities are combined to
generate an aggregated or fused rank list. Several rank level fusion approaches
can be found in literature (Section 2.2). Traditional rank level fusion approaches
(e.g., Borda count [34], weighted Borda count [34], the highest rank [35], and
non-linear weighted approaches [32, 33]) derive an aggregated rank list through
simple mathematical calculations involving the input rank lists. As an example,
Borda count [34] considers summation of ranks of a subject in the input rank
lists. Similarly, non-linear weighted exponential approach [33] considers weighted
summation of exponential values of ranks of a subject in the input lists. The
works in [58, 139, 145] utilize Markov chain based models to find the aggregated
rank list.

In a completely different approach, the work in this chapter perceives the rank
level fusion of multimodal biometrics as an optimization problem. In this context,
the objective is to minimize the weighted summation of distances between an
aggregated rank list and the input rank lists. A widely used distance measure in
the domain of rank aggregation problems - weighted Spearman footrule distance
[180] - is considered in the proposed approach. In this chapter, genetic algorithm
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based and particle swarm optimization based approaches are proposed to solve
the above optimization problem in the context of multimodal biometric fusion.

The rest of this chapter is organized as following: A detailed formulation of
rank level fusion of multimodal biometrics as an optimization problem is presented
in Section 3.1. The proposed rank level fusion approach using genetic algorithm
and experimental evaluation of the proposed work are presented in Section 3.2.
In Section 3.3, the proposed rank level fusion approach using particle swarm
optimization and experimental evaluation of the proposed work are presented.
Comparison of convergence rate between genetic algorithm based and particle
swarm optimization based rank level fusion approaches is presented in Section
3.4. Finally, the concluding remarks on the proposed rank level fusion approaches
are drawn in Section 3.5.

3.1 Rank Level Fusion as an Optimization Prob-
lem

Let B1, B2, . . ., BN be various biometric modalities to identify a person. Let the
matching score sij be associated with each such biometric modality Bi for a jth

person (subject) for an input probe. A rank-ordered list Li of those subjects can
be generated from an ordering of these matching scores. Considering a high value
of sij as good (for a similarity score), the following is true about the ordered
list Li: sij > sik implies rLi(j) < rLi(k). Here, rLi(j) indicates the rank (i.e.,
position) of the jth subject in the list Li. On the contrary, considering a low
value of sij as good (for a dissimilarity score), the following is true about the
ordered list Li: sij < sik implies rLi(j) < rLi(k).

Therefore, N ordered lists are created as L1, L2, . . ., LN for biometric modal-
ities B1, B2, . . . , BN , respectively. A combination of these N ordered lists
generates an aggregated list δ∗ as it is shown in Fig. 3.1.

δ∗ = aggregate(L1,L2, . . . ,LN ) (3.1)

Constructing a fused rank list δ∗ with the minimum weighted summation of
distances of the input lists L1, L2,. . ., LN from the fused list is the objective here.
As a result, the objective function for generating the aggregated list is:

minimize ϕ(δ) =
N∑

i=1
wi ×d(δ,Li) (3.2)
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Figure 3.1: Fusion of multimodal biometrics at rank level

A candidate fused list is represented by δ. The fused list which minimizes the
above objective function is denoted as δ∗. A weight wi is associated with each of
the N biometric modalities. Here, the weight represents the significance of the
corresponding biometric modality. In this present work, the significance of each
modality is considered as equal.

The function d() in Eq. 3.2 denotes a distance between a fused and an input
rank list. In the current work, weighted Spearman footrule [180] metric is used
for the distance measure d(δ,Li) between a pair of lists δ and Li. The stated
distance metric estimates the weighted summation of absolute differences between
the subjects ranks (pair-wise) in the input and the aggregated lists as following:

d(δ,Li) =
∑

tϵLi∪δ

I(t)∗ |rδ(t)− rLi(t)| (3.3)

Here, rδ(t) represents the rank (i.e, position) of subject t in the list δ. rLi(t)
represents the rank (i.e, position) of subject t in the input list Li. An influence
factor I(t) is associated with the rank difference for each subject t in Eq. 3.3.
The motivation for considering these weights are mentioned as following: If rank
(i.e., position) of the subject t is good (i.e., close to 1) in any one of the lists, then
the subject will have more influence on the computed distance. Otherwise, the
assigned influence factor I(t) is less to indicate lesser influence of the lower-ranked
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Figure 3.2: Weighted Spearman footrule distance computation

subject (in both lists) on the distance computation. Hence, the value of I(t) is
decided by following Eq. 3.4.

I(t) = 1− (min(rδ(t), rLi(t))−1)
n

(3.4)

Here, n represents the number of enrolled subjects. If subject t is not present
in one of the two lists (either δ or Li), the rank of the subject (rδ(t) or rLi(t)) in
the list is considered as one more then the size of the list.

Figure 3.2 presents an example of applying weighted Spearman footrule dis-
tance for aggregating ranked lists of subjects. Let there be four input lists
L1,L2,L3 and L4. Each list contains six subjects (A, B, C, D, E and F). There is
one candidate list δ. Weighted distance of this candidate list δ from each input
list is computed using Eq. 3.3. For example, subjects A and B are at same po-
sition in the list L1 and δ. Hence, rank difference is zero. Subject C is at third
position in list L1 and is present at fourth position in δ list. Hence, absolute
difference of the two ranks of subject C is one. Minimum of these two ranks is
three. Hence, influence factor I(t) is selected as 0.67 as it is at third position as
shown in Fig. 3.2. Similarly, rank difference is calculated for each subject and a
weighted summation is taken as shown in Fig. 3.2. Thus, it can be estimated that
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weighted Spearman footrule distance between lists L1 and δ is 1.34. Similarly,
estimated weighted Spearman footrule distance of δ from the input lists L2,L3
and L4 are 4.51,4.68 and 3.33, respectively. Finally, distances of a candidate list
from each of the input lists are added to generate the final fitness value ϕ(δ) as
13.86.

3.2 Proposed Genetic Algorithm Based Ap-
proach

In this section, a genetic algorithm based approach is proposed to solve the
above optimization problem (Eq. 3.2). Genetic algorithm is a widely accepted
paradigm to solve this kind of optimization problem involving large search spaces
[181, 182, 183, 184, 185, 186, 187]. This algorithm is based on the process of natu-
ral selection where the fit solutions (chromosomes) are selected from a population
based on a fitness function. These selected chromosomes produce the off-springs
having better chance of survival due to inheritance of the characteristics of these
parent chromosomes. The proposed genetic algorithm based approach uses the
elitism concept. In elitism based genetic algorithm, better solutions are mem-
orised. If the newly produced offsprings do not have better fitness values than
their parents, then the parents are retained in the new population. Otherwise,
produced offsprings substitute their parents in the new population. This con-
cept of elitism ensures that the best solution in an iteration does not deteriorate.
The speed up of the performance of genetic algorithm due to this elitism is well
documented in [188, 189].

The genetic algorithm based rank level fusion approach provides an aggregated
rank list which has the minimum weighted summation of distances from all the
input rank lists. A weighted Spearman footrule distance is used (Section 3.1) to
prioritize the top-ranked subjects. Detail of the proposed genetic algorithm based
approach is presented in this section.

3.2.1 Problem Domain Specific Design of Genetic Algo-
rithm

The major contribution of this work is formulation of rank level fusion of multi-
modal biometrics as an optimization problem and adoption of genetic algorithm
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in this context. Representation of chromosomes and custom-designed operators
to suite this problem domain are presented in this section.

3.2.1.1 Representation of a Chromosome

The objective of this proposed genetic algorithm based rank level fusion scheme
for multimodal biometrics is to find an ordered list of subjects based on their
ranks. Therefore, a chromosome in the proposed approach represents an ordered
list of subjects. Two main characteristics of this representation of chromosome
are stated as following:

• Unique position of a subject in a list indicates its rank. Hence, a subject
appears in a list only once.

• Every subject is present in a list.

Based on the above facts about the design of a chromosome, it can be said that
length of a chromosome is equal to the number of enrolled subjects. For example,
an ordered list δ in Fig. 3.2 is represented by a chromosome (A,B,D,C,E,F ).
Here, subject A has rank one and subject B has rank two. Similar observations
can be made for other subjects in the list too.

3.2.1.2 Fitness of a Chromosome

In order to solve the formulated optimization problem in Section 3.1, fitness of
a chromosome (i.e., a candidate list) is measured as a weighted summation of
distances of the candidate list from the input lists (Eq. 3.2). Weighted Spearman
footrule distance (Eq. 3.3) is used as the distance measure between the candi-
date list and an input list. Here, the objective is to minimize the fitness value.
Therefore, the fittest solution is having the lowest fitness value.

3.2.1.3 Initialization of Population

In traditional genetic algorithm, chromosomes in an initial population are gen-
erated randomly. On the contrary, domain knowledge is used to generate the
chromosomes in initial population for achieving fast convergence [190, 191, 192].
Similarly, initialization of chromosomes in the proposed genetic algorithm is car-
ried out using a mix of knowledge-based and random initialization. Let a popula-
tion of fixed size M is considered. N out of these M chromosomes are initialized
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to represent N input lists (i.e., solutions from each individual modality). Jus-
tification of initializing N chromosomes using input lists is that an input list
represents a ranked list of subjects based on matching scores for the concerned
biometric modality. Ideally, all biometric modalities should generate the same
ranked order of the subjects. But practically, some deviations will be observed
for each modality. Hence, the problem of list aggregation arises. Unless the qual-
ity of the acquired biometric signal is poor, consideration of the input lists in the
initial population improves the convergence rate. Remaining (M − N) chromo-
somes are randomly generated (i.e., a random sequence of subjects are considered
as chromosome). But two characteristics of a chromosome (Section 3.2.1.1) are
maintained during this random initialization.

3.2.1.4 Selection

A roulette wheel based selection process is used in the proposed work. The
chromosomes with better fitness values ϕ(δ) (smaller distances) share the larger
areas in roulette wheel. Let M chromosomes be δ1, δ2, . . ., δM . Corresponding
fitness values of these chromosomes are ϕ(δ1), ϕ(δ2),. . ., ϕ(δM ), respectively. As
the objective is minimization of distances, each fitness value ϕ(δm) is converted
as:

ϕ′(δm) = max(ϕ(δ1),ϕ(δ2), . . . ,ϕ(δM ))/ϕ(δm) (3.5)

Then, the proportion of area Am in the roulette wheel for a chromosome is de-
termined as following:

Am = ϕ′(δm)
ϕ′(δ1)+ϕ′(δ2)+ . . .+ϕ′(δM ) (3.6)

Thus, a fitter chromosome having lower objective function value ϕ(δm)) gets a
larger area on the roulette wheel. The roulette wheel is rotated M times to
select M chromosomes for the new population. Every time, one chromosome
is selected form M chromosomes in the current population. The chromosome,
whose assigned area in the roulette wheel appears in front of a pivot, is selected
each time. Larger the assigned area in the roulette wheel is, the probability of
getting selected into the new population for the chromosome is higher.
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Figure 3.3: An illustration of crossover operation

3.2.1.5 Crossover

The newly generated population based on fitness values is then randomly divided
into M

2 non-overlapping pairs. In the proposed work, population size M is con-
sidered as an even number. Crossover is performed between each pair of parent
chromosomes. For each pair of chromosomes, a crossover point is decided ran-
domly. In crossover operation, a pair of offspring chromosomes are generated by
interchanging the parts of parent chromosomes around the crossover point. This
operation can be understood using illustration in Fig. 3.3. A crossover point is
marked for two parent chromosomes in Fig. 3.3. Every element of the first parent
up to the crossover point (i.e, A, B and C) and every element of the second par-
ent after the crossover point (i.e, B, D and F ) are combined together to produce
the first offspring. It has elements of both parents (i.e, A, B, C, B, D and F ).
Similarly, the second offspring is produced by combining elements of the second
parent up to crossover point (i.e., C, E and A) and elements of the first parent
after crossover point (i.e., D, E and F ). The second offspring contains elements
as C, E, A, D, E and F . After interchanging parts of the chromosomes, repeti-
tion of subjects is possible in a chromosome. As the length of the chromosome
is fixed, it causes missing subjects in the chromosome. It is illustrated using an
example in Fig. 3.3. It violates the designed characteristics of a chromosome in
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this context. In order to deal with this situation, the second occurrence of every
repeated subject is replaced with a missing subject in that chromosome. This
process is performed for every newly generated child chromosome. As it is shown
in Fig. 3.3, there are six subjects (A to F) in each of the parent chromosomes.
After crossover, two generated offsprings may contain repeated subjects. As an
example in Fig. 3.3, subject B and subject E are repeated in the first and the
second offsprings, respectively. In order to remove these repetitions, the second
occurrence of each of the repeated subjects is replaced with a missing subject. As
an example in Fig. 3.3, subject B is repeated and subject E is missing in the first
offspring. Therefore, the second occurrence subject B is replaced by subject E.
Similarly, subject E is repeated and subject B is missing in the second offspring.
Therefore, the second occurrence of subject E is replaced by subject B. More-
over, an elitist genetic algorithm is adopted to speed up convergence. Therefore,
all four chromosomes (both offsprings and both parents) are evaluated using the
fitness function. The two fittest chromosomes (having the two least fitness values)
are selected from the set of four chromosomes. These two selected chromosomes
are retained in the population. It ensures retaining of better solutions in the
population.

3.2.1.6 Mutation

The newly generated population after crossover further goes through the muta-
tion process. The population of chromosomes can be represented using a matrix
of size M × n. Here, the number of chromosome in population is M . The total
number of subjects (length of a chromosome) is n. Each row in this matrix refers
to a chromosome in the population. Another matrix of size M × n is randomly
generated. Each element in the randomly generated matrix has a value in the
range [0,1]. The positions in this matrix having the values less than or equal to
a small mutation probability pmut are considered for mutation operation. Thus,
all such genes are identified, which will go through a mutation process. Let km

number of such candidate positions are identified for mutation in each chromo-
some m. Then, such candidate positions in each chromosome m are paired into
⌊km

2 ⌋ number of pairs. Here, ⌊⌋ refers to the largest integer which is smaller than
or equal to its argument. Here, the mutation operation is designed as pair-wise
swapping of gene values in each ⌊km

2 ⌋ position pairs for the mth chromosome. As
an example in Fig. 3.4, there are ten chromosomes from C1 to C10. Each chromo-
some contains six subjects. A random matrix of size 10×6 is generated. Elements
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Figure 3.4: An illustration of mutation operation

of this matrix have randomly generated values in the range [0,1]. Each position
in the matrix having value less than or equal to mutation probability as 0.01 is
marked using either blue or green color. These elements are candidate positions
for mutation. Pairs of such positions are selected in each chromosome. The genes
in the selected pairs of positions are interchanged to generate new chromosome.
The process also helps in avoiding the repetition of subjects in a chromosome.
As an example in Fig. 3.4, a chromosome in the second row has two subjects
(genes) D and F, whose positions are interchanged. Interestingly, chromosome
C1 has only one candidate position. Another candidate position is not there for
mutation in C1. Hence, the mutation does not take place for this chromosome.
Similarly, chromosome C5 has three candidate positions for mutation with gene
values C, B and E. Here, only first two genes (C and B) are interchanged. There
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is no other position with which the gene E can be interchanged. After this step,
each mutated chromosome is tested using the fitness function. If the fitness value
of a new chromosome is better than the fitness value of its parent chromosome,
then the new chromosome replaces the parent chromosome. Otherwise, the par-
ent chromosome is retained in the new population. Thus, elitism is maintained
for the proposed genetic algorithm. It is to be noted that swapping is always
performed between genes of same chromosome. If genes of different chromosomes
are swapped, then repetition of subjects may occur in chromosomes. Therefore,
genes of the same chromosome are swapped to avoid this problem.

3.2.1.7 Stopping Criteria

Genetic algorithm is iterative in nature. Selection, crossover and mutation steps
are repeated iteratively until a stopping criteria is satisfied. If the chromosomes
in the population do not change due to either crossover or mutation over a num-
ber of iterations, the algorithm stops. The stated window size on the number of
iterations is experimentally decided as 2000 for NIST BSSR1 multimodal biomet-
ric dataset (set 1) [193] and 3500 for OU-ISIR BSS4 multi-algorithm gait dataset
[2, 194]. Then, the best chromosome in the final population is considered as the
final ranked list of the subjects.

3.2.2 Performance Evaluation and Discussion
Detailed performance analysis is carried out for the proposed genetic algorithm
based rank level fusion approach against several existing fusion approaches (both
at rank level and at score level). The proposed approach is experimentally studied
on two different multimodal biometric datasets: (i) NIST BSSR1 multimodal
dataset [193] involving fingerprint and face modalities and (ii) OU-ISIR BSS4
multi-algorithm dataset [2, 194] involving multiple feature extraction methods
of gait biometrics. It is experimentally established that the proposed genetic
algorithm based rank level fusion approach performs better than several existing
state-of-the-art rank and score level fusion approaches. These existing state-of-
the-art approaches are mentioned in Section 3.2.2.1. The datasets along with
the corresponding performance measures of all these comparing approaches are
discussed in subsequent subsections.
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3.2.2.1 State-of-the-Art Approaches for Performance Comparison

Performances of the existing state-of-the-art linear and non-linear rank level fu-
sion approaches are compared with that of the proposed genetic algorithm based
rank level fusion approach. Following rank level fusion approaches are used for
experimental comparison: Borda count [34], weighted Borda count [34] and high-
est rank approach [35] belong to linear rank level fusion approach. Even in recent
years, these three approaches are widely used in the context of rank level fusion
[72, 138]. Exponential [33], weighted exponential [33], division exponential [32]
and logarithm [32] are non-linear rank level fusion approaches. Performance of
the proposed approach is also compared against those of few state-of-the-art score
level fusion approaches, such as weighted sum-rule [51], product-rule [1], max-rule
[1], min-rule [1], weighted quasi arithmetic mean (WQAM) [62], Frank t-norm [69]
and Hammcher t-norm [69]. All these comparing approaches for score level fusion
use min-max normalization technique (Eq. 2.1). The performance of the proposed
approach is also compared with those of few recent sum-rule based approaches us-
ing overlap extrema-based anchor (OEBA) [67], mean-to-overlap extrema-based
anchor (MOEBA) [67] and overlap extrema-variation-based anchored (OEVBA)
normalization techniques [82].

Some of these existing rank level fusion approaches (weighted Borda count,
exponential, weighted exponential, division exponential and logarithm) and ex-
isting score level fusion approaches (weighted sum and WQAM) need weights for
different biometric modalities. These weights have a significant influence in the
performance of these approaches. Hence, an optimal set of weights for various
modalities are obtained to produce the best performance for these comparing ap-
proaches. Therefore, an elitist genetic algorithm is used to obtain the optimum
set of weights for each of the comparing approaches. A chromosome contains
weights in the range of [0,1], i.e, each gene in a chromosomes contains a weight
value. Recognition accuracy (defined in Eq. 3.7) is considered as a fitness func-
tion. Here, ra represents recognition accuracy, nc is number of correctly matched
probes and np is the total number of probes.

ra = nc

np
×100 (3.7)

Initial population is set to 10. Hence, fitness value is computed for each
chromosome. Selection of these chromosomes for next generation is done using
roulette wheel based method. For crossover, 5 random pairs of chromosomes are
selected from the population. After generation of offsprings from a pair of parent
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chromosomes, all four chromosomes (two parents and two offsprings) are tested
for fitness value. Among these four chromosomes, the two chromosomes having
higher fitness values are selected for next generation. Mutation is performed with
the mutation probability of 0.1. In mutation, the selected gene values are sub-
tracted from 1 to produce new gene values. Elitist approach is followed to retain
better chromosomes. A new chromosome having higher fitness value replaces the
old chromosome. Otherwise, the old chromosome is retained. The algorithm
converges when the optimal weights are found.

The set of selected weights depends on the dataset on which the weights are
trained. Hence, k-fold cross-validation (using k = 5) is used to eliminate this
dependency. The dataset is split into k parts. k − 1 parts are considered for
training. These k − 1 parts learn the set of weights using the elitist genetic al-
gorithm. The remaining one part is used as a test set to report the recognition
accuracy. The whole training and testing steps are repeated k-times to get differ-
ent sets of weights and corresponding accuracies on the test sets. Finally, average
accuracy from k such test sets are presented in the result. This process of obtain-
ing weights for each modality is followed for each of the two datasets being used
for performance comparison. On contrary, proposed work assigns same weight to
each individual modality (input list) to check the efficiency of the proposed work
over state-of-the-art rank level fusion approaches.

3.2.2.2 Fusion of Multimodal Biometrics Involving Face and Finger-
print (NIST BSSR1 Multimodal Dataset (Set 1))

Description of the Dataset: In this work, NIST BSSR1 multimodal dataset
(set 1) [193] is considered for performance comparison. This dataset is widely
used to study the fusion of multimodal biometrics [33, 50, 52, 195]. This dataset
contains information from two biometric modalities- fingerprint and face. Fin-
gerprints of right index finger and left index finger are considered as part of
this dataset. Two different face matching modules are used for face biometrics-
termed as G and C in the dataset. Biometric information for the above biometric
modalities were acquired during the enrolment phase form each of the 517 persons
(subjects). In this dataset, similarity scores of each of these subjects as a probe
with all 517 subjects are provided as per two different face matchers (termed as
G and C) and fingerprint matchers for right and left index fingers. In the context
of score level fusion, these similarity scores from various biometric modalities are
fused using existing score level fusion approaches. In order to perform a rank
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Table 3.1: Performance comparison of the proposed GA based rank level fusion
approach with unimodal matchers on NIST BSSR1 multimodal dataset (set 1)

Method Top-1 Rank Top-2 Ranks Top-3 Rank

Unimodal

Face Matcher G 83.37 86.28 88.40
Face Matcher C 88.78 90.52 91.50
Left Fingerprint 85.70 87.04 87.81
Right Fingerprint 92.07 93.23 93.62

Proposed GA Rank Fusion 99.42 99.42 99.42

level fusion, rank lists are generated from the given similarity scores. These rank
lists are fused using the proposed genetic algorithm based as well as the existing
rank level fusion approaches.

Performance Analysis: The recognition accuracies (in %) as defined in Eq.
3.7 for the proposed approach along with each unimodal matcher are presented
in Table 3.1 for the probe being found within top-1 (Rank 1), top-2 (Rank 2) and
top-3 (Rank 3) ranks (cumulative) in the aggregated rank list. The usefulness of
the proposed rank level fusion approach over each of the unimodal matchers is
obvious from the reported results in Table 3.1.

The recognition accuracies of the comparing approaches within top-1 (Rank
1), top-2 (Rank 2) and top-3 (Rank 3) positions along with the proposed approach
are also presented in Table 3.2. It can be seen from the reported recognition ac-
curacies that the proposed genetic algorithm based rank level fusion approach
performs better than the majority of existing state-of-the-art rank level and score
level fusion approaches. Among these existing rank level fusion approaches, divi-
sion exponential approach [32] exhibits equivalent performance to the proposed
approach while top-2 (Rank 2) and top-3 (Rank 3) positions are considered. But
performance of the the proposed approach is better than that of the division
exponential approach if only top-1 position (Rank 1) is considered. Among the
score level approaches, only the WQAM [62] based approaches exhibit equal per-
formance as with the proposed approach. The reason for this superiority of the
proposed approach is that the approach considers minimization of a weighted
summation of the distances between aggregated and input rank lists.

It can be noted that 99.42% is the maximum achievable accuracy on NIST
BSSR1 multimodal dataset (set 1) [193]. It is observed that 514 probes among

52



3.2 Proposed Genetic Algorithm Based Approach

Table 3.2: Performance of the comparing fusion methods on NIST BSSR1 multi-
modal dataset (set 1) using cumulative recognition accuracies in %

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level

Weighted Sum [51] 98.65 98.84 99.03
Max Rule [1] 79.90 94.00 98.45
Min Rule [1] 94.80 95.40 95.60
Product [1] 97.87 98.26 98.67
Sum-OEBA [67] 99.03 99.03 99.26
Sum-MOEBA [67] 98.45 98.84 98.84
Sum-OEVBA [82] 98.70 99.03 99.26
Hamacher t-norm [69] 97.29 97.68 97.68
Frank t-norm [69] 98.07 98.65 98.84
WQAM cos [62] 99.42 99.42 99.42
WQAM cosr [62] 98.65 99.03 99.03
WQAM tan [62] 99.42 99.42 99.42
WQAM sin [62] 98.65 98.84 98.84
WQAM r1/s [62] 99.42 99.42 99.42
WQAM rs [62] 99.42 99.42 99.42
WQAM sr [62] 99.42 99.42 99.42
WQAM log [62] 99.42 99.42 99.42
WQAM exp [62] 99.42 99.42 99.42

Rank Level

Borda Count [34] 92.07 93.04 94.00
WBorda [34] 92.50 94.20 95.36
Highest Rank [35] 79.70 94.81 98.26
Exp [33] 89.16 90.13 91.30
WExp [33] 87.81 89.16 90.71
DivExp [32] 99.23 99.42 99.42
Log [32] 98.45 99.03 99.23
Proposed GA Rank 99.42 99.42 99.42
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a total of 517 probes (99.42%) appear at the Rank 1 (first position) in the fused
list. The improvement in the recognition accuracy is not observed even if top-3
positions are considered in the fused list. This is because the dataset contains
three probe subjects for whom all four biometric matchers fail to correctly identify
the actual subject. These probe subject IDs are 81,224 and 419. The rank for
the probe ID 81 in the aggregated list as well as in all the input rank lists are
reported in Table 3.3. The rank of subject ID 81 (actual subject) is 143 in the
fused list (Table 3.3). The identified subject at first position (ID 419) using the
proposed GA based fusion approach has rank 1 in all the individual matcher
lists. Therefore, the subject ID 419 has been identified at first position (rank 1)
in the proposed GA based rank level fusion approach. Similarly, the identified
subject at second position (ID 377) using the proposed GA based rank level fusion
approach has ranks 155, 79, 109 and 2 in the left index finger, right index finger,
face matcher C and face matcher G, respectively. As this subject has good ranks
in two of the modalities (right index finger and face matcher G), this subject
is identified as the second best subject (rank 2) in the fused list. The other
two probes (ID 224 and 419) that are incorrectly identified suffer from the same
problem as seen in Table 3.4 and Table 3.5. Because of this, even the best of the
fusion techniques are unable to correctly identify these three probes (Table 3.2).

Table 3.3: Ranks at each modality for ideally correct subject and the top three
identified subjects according to the fused list (for probe subject ID 81)

Modality
Ideally correct

subject (ID 81)

1st Identified

subject (ID 419)

2nd Identified

subject (ID 377)

3rd Identified

subject (ID 513)

Left index finger 480 1 155 3

Right index finger 353 1 79 46

Face matcher C 143 1 109 272

Face matcher G 12 1 2 37

GA Rank 143 1 2 3

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are represented using cumulative match characteristic (CMC) curves in
Fig. 3.5 and Fig. 3.6 for rank level and score level approaches, respectively.
The proposed method outperforms several existing rank and score level fusion
approaches, as it can be observed in the CMC curves in Fig. 3.5 and Fig. 3.6.
It is observed from Fig. 3.5 that the CMC curve for the division exponential
approach [32] is overlapping with that of the proposed genetic algorithm based
rank level fusion approach for cumulative rank beyond 2 and above.
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Table 3.4: Ranks at each modality for ideally correct subject and the top three
identified subjects according to the fused list (for probe subject ID 224)

Modality
Ideally correct

subject (ID 224)

1st Identified

subject (ID 68)

2nd Identified

subject (ID 66)

3rd Identified

subject (ID 300)

Left index finger 59 1 123 204

Right index finger 51 1 241 72

Face matcher C 122 5 1 3

Face matcher G 11 29 9 26

GA Rank 12 1 2 3

Table 3.5: Ranks at each modality for ideally correct subject and the top three
identified subjects according to the fused list (for probe subject ID 419)

Modality
Ideally correct

subject (ID 419)

1st Identified

subject (ID 81)

2nd Identified

subject (ID 120)

3rd Identified

subject (ID 356)

Left index finger 478 1 180 69

Right index finger 470 1 2 183

Face matcher C 282 1 5 16

Face matcher G 279 2 20 1

GA Rank 497 1 2 3

The recognition accuracies of several WQAM based approaches [62] are equal
to those of the proposed genetic algorithm based rank level fusion approach.
Therefore, the CMC curves of these approaches overlap with the CMC curve of
the proposed genetic algorithm based rank level fusion approach in Fig. 3.6.

3.2.2.3 Fusion of Multimodal Biometrics for Multiple Gait Feature
Representations (OU-ISIR BSS4 Multi-Algorithm Dataset)

Description of the Dataset: Additionally, the second dataset (BSS4) is form
the Institute of Scientific and Industrial Research (ISIR), Osaka University (OU)
[2, 194]. This dataset has also been used for fusion of multi-biometrics in [196].
In this dataset, an input image sequence from gait has been processed using five
different feature extraction methods: (i) Gait energy image (GEI), (ii) Frequency-
domain feature (FDF), (iii) Gait entropy image (GEnI), (iv) Chrono-gait image
(CGI), (v) Gait flow image (GFI). The dataset is composed of dissimilarity scores
of each of these 3249 subjects as probe with all 3249 subjects for above mentioned
features. These dissimilarity scores from above gait features are fused using exist-
ing score level fusion approaches. Details of these gait feature extraction methods
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Figure 3.5: CMC plots for existing rank level fusion approaches being compared
with that of the proposed GA based rank level fusion approach for NIST BSSR1

Dataset (set 1)

Figure 3.6: CMC plots for existing score level fusion approaches being compared
with that of the proposed GA based rank level fusion approach for NIST BSSR1

Dataset (set 1)
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Table 3.6: Performance comparison of the proposed GA based rank level fusion
approach with unimodal matchers on OU-ISIR BSS4 multi-algorithm dataset

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal

CEnI 80.95 85.50 87.50
CGI 83.35 87.44 89.04
FDF 85.90 89.87 91.23
GEI 85.72 89.54 91.20
GFI 74.92 79.93 82.12

Proposed GA Rank 86.49 90.98 92.24

can be found [2, 196].
Performance Analysis: Rank lists are generated based on the given dissim-

ilarity scores. This provides five rank lists for each probe. These rank lists are
combined using the proposed rank level fusion approach (Section 3.2.1) and other
existing rank and score level fusion approaches as discussed in Section 3.2.2.1.
The proposed method is compared with each unimodal biometric matcher. The
recognition accuracies (in %) for the probe subjects within top-1 (Rank 1), top-2
(Rank 2) and top-3 (Rank 3) ranks (cumulative) are presented in the Table 3.6. It
is worthy to note that the proposed method outperforms each unimodal matcher.
It justifies the need for multi-biometric system.

Similarly, the recognition accuracies are presented in Table 3.7 for various
approaches at score and at rank level fusion along with the proposed genetic
algorithm based rank level fusion approach. These results in Table 3.7 clearly
show that the proposed genetic algorithm based rank level fusion approach has
superior performance over other existing approaches except score level fusion
approach with weighted sum rule [51] for top-1 position (Rank 1). Performance
of the proposed approach increases with top-2 (Rank 2) and top-3 (Rank 3)
positions.

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are presented using cumulative match characteristic (CMC) curve in Fig.
3.7 and Fig. 3.8 for OU-ISIR BSS4 multi-algorithm dataset [2, 194]. The proposed
method outperforms several existing rank and score level fusion approaches, as it
can be observed in the CMC curve in Fig. 3.7 and Fig. 3.8.
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Table 3.7: Performance of the comparing fusion methods on OU-ISIR BSS4 multi-
algorithm dataset using cumulative recognition accuracies in %

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level Fusion

Weighted Sum [51] 86.61 89.72 91.23
Max Rule [1] 85.38 88.27 89.60
Min Rule [1] 77.41 88.15 91.60
Product [1] 77.41 88.21 91.60
Sum-OEBA [67] 86.08 89.60 91.07
Sum-MOEBA [67] 86.45 89.75 91.17
Sum-OEVBA [82] 86.40 89.75 91.19
Hamacher t-norm [69] 86.37 89.57 91.07
Frank t-norm [69] 81.63 89.32 91.47
WQAM cos [62] 86.43 89.50 91.23
WQAM cosr [62] 85.78 88.98 90.34
WQAM tan [62] 86.43 89.50 91.19
WQAM sin [62] 86.43 89.50 91.23
WQAM r1/s [62] 85.29 88.15 89.38
WQAM rs [62] 86.43 89.54 91.07
WQAM sr [62] 85.35 88.89 90.43
WQAM log [62] 86.43 89.50 91.17
WQAM exp [62] 85.29 88.15 89.44

Rank Level Fusion

Borda Count [34] 83.63 87.47 88.77
WBorda [34] 84.58 88.34 89.47
Highest Rank [35] 77.41 88.15 91.54
Exp [33] 83.56 87.47 88.83
WExp [33] 81.60 85.29 87.32
DivExp [32] 86.40 89.94 91.51
Log [32] 85.47 89.20 90.90
Proposed GA Rank 86.49 90.98 92.24
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Figure 3.7: CMC plots for existing rank level fusion approaches being compared
with that of the proposed GA based rank level fusion approach for OU-ISIR BSS4

multi-algorithm Dataset

Figure 3.8: CMC plots for existing score level fusion approaches being compared
with that of the proposed GA based rank level fusion approach for OU-ISIR BSS4

multi-algorithm dataset
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3.2.3 Conclusion
The proposed genetic algorithm based rank level fusion approach exhibits better
performance in identifying the subjects than majority of the existing approaches
of fusion at rank and at score levels for multimodal biometric systems. Though
few of the existing approaches exhibit equal performance as with the proposed ap-
proach. This justifies the introduction of a novel genetic algorithm based approach
in this section. Experiments also justify the usefulness of multimodal biometric
systems over the unimodal biometric systems. The reported results show signifi-
cant improvement in performance inspite of considering the same weight to each
input list. Moreover, initial success for the reported experiments is encouraging
enough to try out other meta-heuristic search and optimization strategies (like
particle swarm optimization) in the context of rank level fusion of multimodal
biometrics.

3.3 Proposed Particle Swarm Optimization
Based Approach

The success of genetic algorithm based rank level fusion approach (Section 3.2)
has provided the motivation to attempt another similar evolutionary computing
based optimization approach - namely, particle swarm optimization (PSO). It
is another well-established paradigm to solve optimization problems involving
large search spaces [197, 198, 199, 200]. Normally, particle swarm optimization
achieves convergence faster than genetic algorithm [201]. Hence, the work in this
section proposes a particle swarm optimization-based approach as a solution to
the stated optimization problem (Eq. 3.2) of rank level fusion.

A weighted summation of distances of the input rank lists from a candidate
aggregate rank list is minimized in this context. Here, the distance between two
rank lists is computed using a weighted Spearman footrule distance (Eq. 3.3).
Experimental study on the performance of the proposed approach is reported
using two multimodal biometrics datasets: (i) NIST BSSR1 multimodal dataset
(set 1) [193] involving face and fingerprint modalities and (ii) OU-ISIR BSS4
multi-algorithm dataset [2, 194] involving multiple feature extraction methods for
gait biometrics. Supremacy of the proposed particle swarm optimization based
rank level fusion approach with respect to existing fusion schemes at score and
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at rank levels is experimentally exhibited. Detail of the proposed particle swarm
optimization based rank level fusion approach is presented in this section.

3.3.1 Problem Domain Specific Design of Particle Swarm
Optimization Based Approach

The major contribution of this work is adoption of particle swarm optimization to
solve the formulated optimization problem for rank level fusion of multimodal bio-
metrics (Section 3.1). Representation of particles and custom-designed operators
to suite this problem domain are presented in this section.

3.3.1.1 Representation of a Candidate Rank List as a Particle Position

In the context of the stated problem, a position of a particle represents a candidate
rank list of the enrolled subjects. These ranks of the subjects indicate relative
closeness of the probe subject with the enrolled subjects. The position of a particle
can be perceived as a point in n-dimensional discrete and finite space. Here, n

represents number of enrolled subjects. As shown in Fig. 3.2, a particle position
(A, B, D, C, E, F) represents a candidate rank list δ. It indicates the rank
of enrolled subjects A,B,C,D,E, and F in comparison to the probe subject as
1,2,4,3,5, and 6, respectively.

3.3.1.2 Fitness of a Candidate Rank List

In particle swarm optimization, fitness of each candidate solution (i.e., particle
position) is evaluated. In the context of the proposed rank level fusion method, a
fitness value is calculated for a candidate rank list (i.e., position of a particle) as
a weighted summation of the distances between the candidate rank list and each
of the input rank lists (Eq. 3.2). All of these input rank lists (i.e., corresponding
biometric modalities) are assigned equal weight in this work. Here, the goal is to
minimize the fitness value. As a result, the solution with the lowest fitness value
is considered as the fittest solution.

3.3.1.3 Initialization of Population of Candidate Rank Lists

A swarm of particles is used in particle swarm optimization by parallelly searching
for the optimal solution in the solution space. The initialization of these positions
of a population (or swarm) of particles (i.e., candidate solutions) is random.
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But incorporation of domain knowledge to initialize the particle positions can be
found in [202, 203]. This domain knowledge-based initialization aids the particle
swarm optimization algorithm to converge fast. Similarly, in the proposed particle
swarm optimization based approach, a combination of random and knowledge-
based initialization is used to initialize the particle positions. Let the swarm have
M particles. For the experiments in this work, the value of M is considered as 10.
The initial positions for N of these M particles are taken as N input rank lists.
Here, N denotes the number of modalities. The input rank lists are assumed to be
the closest candidates for becoming the aggregated rank list in this case. This is
also the basis for the problem formulation (Eq. 3.2), which involves minimization
of a weighted summation of distances of the fused rank list from the input rank
lists. As a result, this form of initialization is justified in the current context.
The positions of remaining (M − N) particles are randomly initialized. In order
to do so, ranks are generated randomly in the range of [1,n] to determine their
initial positions. Here, n represents total number of enrolled users.

3.3.1.4 Exploring Other Candidate Rank Lists

To evaluate the fitness of new candidate rank lists, these M rank lists (i.e., par-
ticle positions) in the population are iteratively updated. The position of the kth

particle (i.e., corresponding rank list) is updated as following:

xk(t+1) = xk(t)+vk(t+1) (3.8)

Here vk(t + 1) relates to the amount of change in the position of the kth particle
from iteration t (i.e, xk(t)) to its new position at iteration (t+1) (i.e, xk(t+1)).
The new velocity while going to the (t + 1)th iteration is referred as vk(t + 1).
Each iteration affects the velocity of particles. The kth particle’s new velocity
vk(t+1) is determined by three factors: (a) the particle’s current velocity vk(t)
at the tth iteration, (b) the particle’s propensity to move towards its personal
best position pbestk(t), and (c) the particle’s propensity to move towards its
social best position gbest(t). The social best position in the adopted PSO refers
to the global best position (gbest(t)) of the entire swarm of particles. As a result,
considering the prior velocity of the particle, its personal best position (pbestk(t)),
and the global best position (gbest(t)) at the given iteration, the new velocity of
the particle is computed using Eq. 3.9.
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vk(t+1) =ω ×vk(t)+ c1 × r1k(t)× (pbestk(t)−xk(t))+
c2 × r2k(t)× (gbest(t)−xk(t))

(3.9)

Here, inertia weight is represented as ω. The velocity of the particle k at
iteration t is defined as vk(t). In the current work, initial particle velocity is set
to 10% of the values at the elements in the initial position vector. If the velocity
is initialized to zero, it indicates that all particles at initial stage are not moving
and any direction. This can lead to the slow convergence of PSO algorithm [204].
Hence, in the proposed work, particle velocity is initialized as 10% of the values
of its initial position vector. At iteration t, xk(t) represents the current position
of the kth particle (i.e., the current candidate rank list). The particle’s personal
best position pbestk(t) is the best among all the positions which it has visited till
iteration t. It refers to the fittest candidate rank list as viewed by the kth particle
up to iteration t. The global best position till iteration t is gbest(t). It refers to
the fittest candidate rank list among the lists which have been generated by the
swarm of particles up to iteration t.

It should be observed that in Eq. 3.9, the addition and subtraction operations
are carried out element-wise in the respective position vectors (i.e., rank lists).
The two coefficients - the cognitive coefficient c1 and the social coefficient c2
- control the velocity updation stage. The cognitive coefficient c1 assists the
particle in exploring the search space towards its personal best position pbestk(t)
by regulating the size of steps taken toward its personal best position. The social
coefficient c2 assists the particle in exploring the search space towards its global
best position gbest(t) by adjusting the magnitude of steps taken towards the
global best location. The values of c1 and c2 are set to be 0.5 for the reported
experiments in this section. The randomness of PSO is maintained by introducing
two random numbers (r1k(t) and r2k(t)) at each iteration. These random numbers
have values in the range [0,1].

The above updation of these M rank lists (i.e., new particle positions) may no
longer yield a valid solution in the discrete and finite solution space. Due to the
above computation, the coordinates in the new position xk(t+1) (i.e., the ranks)
may not be an integer in the range [0,n]. Here, n is total number of enrolled
subjects (i.e., the number of elements defining a position in the solution space).
In order to get a valid solution in the discrete and finite solution space, newly
computed values in xk(t + 1) are sorted in ascending order and are re-ranked to
get back the rank list in the given range (i.e., a legitimate solution in the discrete
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and finite space). Thus, it is ensured that the rank lists will always have ranks
for all the subjects as a sequence of integers in the range [1,n].

3.3.1.5 Stopping Criteria

In particle swarm optimization, the updation of a particle’s velocity and position
in the solution space is performed iteratively until a stopping criteria is met.
When the personal best positions of all the particles do not change during a
series of iteration, the proposed rank level fusion approach based on particle
swarm optimization is considered to have converged. The stated window size
on the number of iterations is experimentally decided as 2000 for NIST BSSR1
multimodal biometric dataset (set 1) [193] and 5000 for OU-ISIR BSS4 multi-
algorithm dataset [2, 194].

3.3.2 Performance Evaluation and Discussion
Performance of the proposed particle swarm optimization based rank level fusion
approach for multimodal biometrics is experimentally evaluated with respect to
the performances of several existing fusion approaches (at score and at rank lev-
els). These existing approaches for performance comparison are discussed in
Section 3.2.2.1. Two multimodal biometrics datasets, namely NIST BSSR1 mul-
timodal dataset (set 1) [193] and OU-ISIR multi-algorithm dataset [2, 194], are
used in these experiments to evaluate the performances of the proposed approach
along with existing score and rank level fusion approaches. The weights for the
comparing weighted score and rank level fusion approachers are obtained using
a genetic algorithm based weight estimation approach. This approach for ob-
taining a suitable set of weights for the existing weighted fusion approaches is
discussed in Section 3.2.2.1. This process of obtaining weights for the concerned
modalities is followed for each of the above two datasets. On the contrary, pro-
posed particle swarm optimization based rank level fusion approach assigns the
same weight to each individual modality (input list) to check the efficacy of the
proposed approach over state-of-the-art rank and score level fusion approaches.

3.3.2.1 Fusion of Multimodal Biometrics Involving Face and Finger-
print (NIST BSSR1 Multimodal Dataset (Set 1))

A brief description of NIST BSSR1 multimodal dataset (set 1) [193] can be found
in Section 3.2.2.2. The recognition accuracies (in %) for the proposed approach
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as well as each unimodal matcher are presented in Table 3.8 for NIST BSSR1
multimodal dataset (set 1) [193]. The recognition accuracies are estimated using
Eq. 3.7. These recognition accuracies are reported for the probe being found
within top-1 (Rank 1), top-2 (Rank 2) and top-3 (Rank 3) ranks (cumulative) in
the aggregated rank list. The usefulness of the proposed rank level fusion method
over each of the unimodal matchers is obvious from the reported results in Table
3.8.

The recognition accuracies of the comparing approaches within top-1 (Rank
1), top-2 (Rank 2) and top-3 (Rank 3) positions along with the proposed ap-
proach are presented in Table 3.9. It can be seen from the reported recognition
accuracies that the proposed particle swarm optimization based rank level fu-
sion approach performs better than the majority of existing state-of-the-art rank
and score level fusion approaches. Among the rank level fusion approaches, ge-
netic algorithm based rank level fusion approach (Section 3.2) exhibits identical
recognition accuracies as compared with the proposed particle swarm optimiza-
tion based approach for all the rank positions. Moreover, division exponential
[32] approach demonstrate identical recognition accuracies as compared with the
proposed approach while considering the top-2 (Rank 2) and top-3 (Rank 3)
positions. However, when only the top-1 (Rank 1) position is considered, the
proposed PSO based rank level fusion approach outperforms the division expo-
nential approach. Among the score level fusion approaches, only the weighted
quasi-arithmetic mean (WQAM) approaches [62] exhibit identical performance
as with the proposed approach in this work. Similar to the genetic algorithm
based approach (Section 3.2), this improved performance of the proposed PSO
based approach can be attributed to minimization of a weighted summation of
the distances between aggregated and input rank lists.

Similar to the genetic algorithm based score level fusion approach in Section
3.2, the maximum achievable recognition accuracy of the proposed PSO based
approach on NIST BSSR1 multimodal dataset (set 1) [193] is 99.42%. Three out
of 517 probes are not correctly identified. These probe subject IDs are 81,224
and 419. The ranks for the probe subject ID 81 in aggregated list as well as in
all the input rank lists are reported in Table 3.10. The rank of subject ID 81
(actual subject) is 33 in the fused list (Table 3.10). The identified subject at
the first position (ID 419) using the proposed PSO based fusion approach has
rank 1 in all the individual matcher lists. Therefore, the subject ID 419 has been
identified at the first position (rank 1) in the proposed PSO based rank level
fusion approach. Similarly, the identified subject at the second position (ID 314)
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Table 3.8: Performance comparison of the proposed PSO based rank level fusion
approach with unimodal matchers on NIST BSSR1 multimodal dataset (set 1)

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal

Face Matcher G 83.37 86.28 88.40
Face Matcher C 88.78 90.52 91.50
Left Fingerprint 85.70 87.04 87.81
Right Fingerprint 92.07 93.23 93.62

Proposed PSO Rank Fusion 99.42 99.42 99.42

using the proposed PSO based rank level multimodal fusion approach has ranks
440, 321, 10 and 6 in the left index finger, right index finger, face matcher C
and face matcher G, respectively. As this subject has good ranks in two of the
modalities (face matcher C and face matcher G), this subject is identified as the
second best subject (rank 2) in the fused list. The other two incorrectly identified
probes (ID 224 and 419) suffer from the same problem as seen in Table 3.11 and
Table 3.12. Because of this, even the best of the fusion techniques are unable
to correctly identify these three subjects, i.e., maximum achievable recognition
accuracy is 99.42% (Table 3.9).

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are represented using cumulative match characteristic (CMC) curves in
Fig. 3.9 and Fig. 3.10 for rank level and score level approaches, respectively.
The proposed method outperforms several existing rank and score level fusion
approaches, as it can be observed in the CMC curves in Fig. 3.9 and Fig. 3.10.
It is observed from Fig. 3.9 that CMC curves for the genetic algorithm based
rank level fusion approach (Section 3.2) and division exponential approach [32]
are overlapping with that of the particle swarm optimization based rank level
fusion approach.

The recognition accuracies of several WQAM based score level fusion ap-
proaches [62] are equal to those of the proposed particle swarm optimization based
rank level fusion approach. Therefore, the CMC curves of these approaches over-
lap with the CMC curve of the proposed particle swarm optimization based rank
level fusion approach in Fig. 3.10.
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Table 3.9: Performance of the comparing fusion approaches on NIST BSSR1
multimodal dataset (set 1) using cumulative recognition accuracies in %

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level

Weighted Sum [51] 98.65 98.84 99.03
Max Rule [1] 79.90 94.00 98.45
Min Rule [1] 94.80 95.40 95.60
Product [1] 97.87 98.26 98.67
Sum-OEBA [67] 99.03 99.03 99.26
Sum-MOEBA [67] 98.45 98.84 98.84
Sum-OEVBA [82] 98.70 99.03 99.26
Hamacher t-norm [69] 97.29 97.68 97.68
Frank t-norm [69] 98.07 98.65 98.84
WQAM cos [62] 99.42 99.42 99.42
WQAM cosr [62] 98.65 99.03 99.03
WQAM tan [62] 99.42 99.42 99.42
WQAM sin [62] 98.65 98.84 98.84
WQAM r1/s [62] 99.42 99.42 99.42
WQAM rs [62] 99.42 99.42 99.42
WQAM sr [62] 99.42 99.42 99.42
WQAM log [62] 99.42 99.42 99.42
WQAM exp [62] 99.42 99.42 99.42

Rank Level

Borda Count [34] 92.07 93.04 94.00
WBorda [34] 92.50 94.20 95.36
Highest Rank [35] 79.70 94.81 98.26
Exp [33] 89.16 90.13 91.30
WExp [33] 87.81 89.16 90.71
DivExp [32] 99.23 99.42 99.42
Log [32] 98.45 99.03 99.23
GA Rank (Section 3.2) 99.42 99.42 99.42
Proposed PSO Rank 99.42 99.42 99.42
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Figure 3.9: CMC plots for existing rank level fusion approaches being compared
with those of the GA based and the proposed PSO based rank level fusion

approaches for NIST BSSR1 multimodal dataset (set 1)

Figure 3.10: CMC plots for existing score level fusion approaches being
compared with that of the proposed PSO based rank level fusion approach for

NIST BSSR1 multimodal dataset (set 1)
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Table 3.10: Ranks at each modality for ideally correct subject and the top three
identified subjects according to the fused list (for probe subject ID 81)

Modality
Ideally correct

subject (ID 81)

1st Identified

subject (ID 419)

2nd Identified

subject (ID 314)

3rd Identified

subject (ID 105)

Left index finger 480 1 440 340

Right index finger 353 1 321 124

Face matcher C 143 1 10 13

Face matcher G 12 1 6 17

PSO Rank 33 1 2 3

Table 3.11: Ranks at each modality for ideally correct subject and the top three
identified subjects according to the fused list (for probe subject ID 224)

Modality
Ideally correct

subject (ID 224)

1st Identified

subject (ID 68)

2nd Identified

subject (ID 66)

3rd Identified

subject (ID 300)

Left index finger 59 1 123 204

Right index finger 51 1 241 72

Face matcher C 122 5 1 3

Face matcher G 11 29 9 26

PSO Rank 13 1 2 3

3.3.2.2 Fusion of Multimodal Biometrics for Multiple Gait Feature
Representations (OU-ISIR BSS4 Multi-Algorithm Dataset)

A brief description of OU-ISIR BSS4 multi-algorithm dataset [2, 194] can be
found in Section 3.2.2.3. The proposed method is compared with each unimodal
biometric matcher. The recognition accuracies (in %) for the probe subjects
within top-1 (Rank 1), top-2 (Rank 2) and top-3 (Rank 3) ranks (cumulative)
are presented in the Table 3.13. It is worthy to note that the proposed method
outperforms each unimodal matcher. It justifies the need for multi-biometric
system.

Similarly, the recognition accuracies are presented in Table 3.14 for various ap-
proaches at score and at rank level fusion along with the proposed particle swarm
optimization based rank level fusion approach. It can be seen from these results
in Table 3.14 that the proposed PSO based rank level fusion approach exhibits
superior performance over other existing rank and score level fusion approaches
for each one of the top-1 (Rank 1), top-2 (Rank 2) and top-3 (Rank 3) positions
(cumulatively) in the aggregated list.

The changes in recognition accuracies (in %) with the changes in cumulative
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Table 3.12: Ranks at each modality for ideally correct subject and the top three
identified subjects according to the fused list (for probe subject ID 419)

Modality
Ideally correct

subject (ID 419)

1st Identified

subject (ID 81)

2nd Identified

subject (ID 120)

3rd Identified

subject (ID 492)

Left index finger 478 1 18 56

Right index finger 470 1 2 68

Face matcher C 282 1 5 10

Face matcher G 279 2 20 49

PSO Rank 468 1 2 3

Table 3.13: Performance comparison (using cumulative recognition accuracies in
%) of the proposed PSO based rank level fusion approach with unimodal matchers
on OU-ISIR BSS4 multi-algorithm dataset

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal

CEnI 80.95 85.50 87.50
CGI 83.35 87.44 89.04
FDF 85.90 89.87 91.23
GEI 85.72 89.54 91.20
GFI 74.92 79.93 82.12

Proposed PSO Rank Fusion 86.73 91.16 92.31

ranks are presented using cumulative match characteristic (CMC) curves in Fig.
3.11 and Fig. 3.12 for OU-ISIR BSS4 multi-algorithm dataset [2, 194]. It is
observed from the CMC curves in Fig. 3.11 and Fig. 3.12 that the proposed
method outperforms several existing rank and score level fusion approaches. It
is also observed from Fig. 3.11 that the CMC curves of the genetic algorithm
based (Section 3.2) and the proposed particle swarm optimization based rank
level fusion approaches are overlapping.

3.3.3 Conclusion
The proposed particle swarm optimization (PSO) based rank level fusion ap-
proach exhibits better performance in identifying the subjects than majority of
the existing approaches for fusion at rank and at score levels for multimodal
biometrics using NIST BSSR1 multimodal dataset (set 1) [193]. Moreover, the
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Table 3.14: Performance of the comparing fusion approaches on OU-ISIR BSS4
multi-algorithm dataset using cumulative recognition accuracies in %

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level Fusion

Weighted Sum [51] 86.61 89.72 91.23
Max Rule [1] 85.38 88.27 89.60
Min Rule [1] 77.41 88.15 91.60
Product [1] 77.41 88.21 91.60
Sum-OEBA [67] 86.08 89.60 91.07
Sum-MOEBA [67] 86.45 89.75 91.17
Sum-OEVBA [82] 86.40 89.75 91.19
Hamacher t-norm [69] 86.37 89.57 91.07
Frank t-norm [69] 81.63 89.32 91.47
WQAM cos [62] 86.43 89.50 91.23
WQAM cosr [62] 85.78 88.98 90.34
WQAM tan [62] 86.43 89.50 91.19
WQAM sin [62] 86.43 89.50 91.23
WQAM r1/s [62] 85.29 88.15 89.38
WQAM rs [62] 86.43 89.54 91.07
WQAM sr [62] 85.35 88.89 90.43
WQAM log [62] 86.43 89.50 91.17
WQAM exp [62] 85.29 88.15 89.44

Rank Level Fusion

Borda Count [34] 83.63 87.47 88.77
WBorda [34] 84.58 88.34 89.47
Highest Rank [35] 77.41 88.15 91.54
Exp [33] 83.56 87.47 88.83
WExp [33] 81.60 85.29 87.32
DivExp [32] 86.40 89.94 91.51
Log [32] 85.47 89.20 90.90
GA Rank (Section 3.2) 86.49 90.98 92.24
Proposed PSO Rank 86.73 91.16 92.31
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Figure 3.11: CMC plots for existing rank level fusion approaches being
compared with those of the GA based and the proposed PSO based rank level

fusion approaches for OU-ISIR BSS4 multi-algorithm dataset

Figure 3.12: CMC plots for existing score level fusion approaches being
compared with that of the proposed PSO based rank level fusion approach for

OU-ISIR BSS4 multi-algorithm dataset
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Rank Level Fusion Approaches

proposed PSO based rank level fusion approach performs better than all the ex-
isting rank and score level fusion approaches as well as the GA based rank level
fusion approach (Section 3.2). This justifies the introduction of a novel parti-
cle swarm optimization based approach in this section. Experiments also justify
the usefulness of multimodal biometric system over the unimodal biometric sys-
tem. The reported results show significant improvement in performance inspite
of considering same weight for each biometric modality in the proposed approach.

3.4 Analysis of Convergence Rate Between GA
Based and PSO Based Rank Level Fusion
Approaches

It is observed from the reported results in Section 3.3.2 that the performances
of GA based and PSO based rank level fusion approaches are similar. Both the
approaches are evolutionary computing-based approaches for solving the opti-
mization problem in Section 3.1. Both of these evolutionary computing based ap-
proaches exhibit similar performances in terms of recognition accuracies. There-
fore, comparison among these two approaches is carried out using the number of
iterations being taken for convergence. Number of iterations for convergence of
these two evolutionary computing-based approaches are observed for NIST BSSR1
multimodal (set 1) [193] and OU-ISIR BBS4 multi-algorithm [2, 194] datasets.
The cumulative distribution functions (CDFs) on the number of iterations are
plotted for these comparing evolutionary computing-based methods in Fig. 3.13
and Fig. 3.14 for NIST BSSR1 multimodal dataset (set 1) [193] and OU-ISIR
BSS4 multi-algorithm [2, 194] dataset, respectively. It is observed from these
plots that the rank level fusion approach based on particle swarm optimization
converges faster (lesser number of iterations) than the rank level fusion approach
based on genetic algorithm.

In order to statically conclude about the above-reported faster convergence of
the PSO based rank level fusion approach over the GA based rank level fusion
approach, a two-sample Kolmogorov-Smirnov (K-S) test is performed on the num-
ber of iterations for convergence between these two approaches. A two-sample
K-S test is a statistical test for comparing the cumulative distributions of two
samples. The following hypothesis are tested:
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Figure 3.13: CDFs of the GA and PSO based rank level fusion approaches on
NIST BSSR1 multimodal dataset (set 1)

Figure 3.14: CDFs of the GA and PSO based rank level fusion approaches on
OU-ISIR BSS4 multi-algorithm gait dataset

• Null Hypothesis H0: two samples follow same distribution.

• Alternate Hypothesis H1: two samples follow different distributions.

Let the two samples having sizes m and n are derived from two distributions.
An observed cumulative distribution function of the first sample is represented
as F (x) and the observed cumulative distribution function of the second sample
is represented as G(x). The maximum difference between these two CDFs is
computed using Eq. 3.10.

Dm,n = max
∀x

|F (x)−G(x)| (3.10)
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The null hypothesis H0 is rejected if the computed difference between CDFs
(Dm,n) is greater than the critical value Dm,n,α for a significance level α. The
critical value Dm,n,α is calculated using Eq. 3.11.

Dm,n,α = c(α)∗
√

m+n

m∗n
(3.11)

Here, c(α) is computed as:

c(α) =
√

−ln(α

2 )∗0.5 (3.12)

3.4.1 Results of Two-Sample K-S Test on Multimodal
Biometric Dataset Involving Face and Fingerprint
(NIST BSSR1 Multimodal Dataset (Set 1))

Number of iterations for convergence is noted down for each probe during the ex-
ecutions of the above discussed GA and PSO based rank level fusion approaches
on NIST BSSR1 multimodal dataset (set 1) [193]. Cumulative distribution func-
tion (CDF) F (x) on number of iterations for convergence is computed for the
PSO based rank level fusion approach. Similarly, cumulative distribution func-
tion (CDF) G(x) on number of iterations for convergence is obtained for GA
based rank level fusion approach. These two cumulative distribution functions
are shown in Fig. 3.13. Then, the maximum difference between these two CDFs is
computed using Eq. 3.10. It is noted from Fig. 3.13 that the maximum difference
between the two CDFs Dm,n is 0.998.

Dm,n = |0.998−0| = 0.998

The critical value is computed using Eq. 3.11 with 0.05 significance level (α).
Considering α = 0.05, c(α) is calculated as 1.36 using Eq. 3.12. NIST BSSR1
multimodal dataset (set 1) [193] has 517 subjects. Hence, each of the comparing
evolutionary computation based rank level fusion approaches are executed 517
times by considering each subject as probe. Hence, the value of m and n are 517
for Eq. 3.11. Thus, the value of Dm,n,α is computed as following:

Dm,n,α = 1.36∗
√

517+517
517∗517 = 0.0846
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Here, null hypothesis is rejected as the value of Dm,n is greater than the value of
Dm,n,α. Hence, it is concluded that the two distributions are different.

3.4.2 Results of Two-Sample K-S Test on Multimodal Bio-
metric Dataset for Multiple Gait Feature Represen-
tations (OU-ISIR BSS4 Multi-Algorithm Dataset)

Number of iterations for convergence is noted down for each probe during the
executions of the above discussed GA and PSO based rank level fusion approaches
on OU-ISIR BSS4 multi-algorithm gait dataset [2, 194]. Cumulative distribution
function (CDF) F (x) on number of iterations for convergence is computed for
the PSO based rank level fusion approach. Similarly, cumulative distribution
function (CDF) G(x) on number of iterations for convergence is obtained for GA
based rank level fusion approach. These two cumulative distribution functions
are shown in Fig. 3.14. Then, the maximum difference between these two CDFs is
computed using Eq. 3.10. It is noted from Fig. 3.14 that the maximum difference
between these two CDFs Dm,n is 0.977.

Dm,n = |0.983−0.006| = 0.977

The critical value is computed using Eq. 3.11 with 0.05 significance level (α).
Considering α = 0.05, c(α) is calculated as 1.36 using Eq. 3.12. OU-ISIR BSS4
multi-algorithm dataset [2, 194] has 3249 subjects. Hence, each of the comparing
evolutionary computation based rank level fusion approaches are executed 3249
times by considering each subject as probe. Hence, the value of m and n are 3249
for Eq. 3.11. Thus, the value of Dm,n,α is computed as following:

Dm,n,α = 1.36∗
√

3249+3249
3249∗3249 = 0.0337

Here, null hypothesis is rejected as the value of Dm,n is greater than the value of
Dm,n,α. Hence, it is concluded that the two distributions are different.
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3.5 Summary
In this chapter, rank level fusion is studied for multimodal biometrics. The man-
ifold contributions of the works in this chapter are summarized in this section.
The rank level fusion in multimodal biometrics is formulated as an optimization
problem. The formulation of this optimization problem considers minimization
of a weighted summation of distances between the aggregated rank list and the
input rank lists. This problem formulation adds novelty to the proposed works
in this chapter. The weighted Spearman footrule distance metric [180] is used to
compute the distance between two rank lists. The weight in the weighted Spear-
man footrule distance is incorporated to ensure more influence of a better ranked
subject than other subjects. A novel way to decide the weight of a subject is
conceptualized in this context.

To solve the stated optimization problem in the context of rank level fusion
of multimodal biometrics, two novel approaches are proposed using genetic algo-
rithm (GA) and particle swarm optimization (PSO). Context-specific representa-
tion of a candidate solution and custom-designed operators are the highlights of
the proposed GA and PSO based approaches.

The proposed approaches are tested using two different multi-biometric
datasets, namely (i) NIST BSSR1 multimodal dataset (set 1) [193] involving fin-
gerprint and face modalities and (ii) OU-ISIR BSS4 multi-algorithm gait dataset
[2, 194] involving several gait feature extraction methods. These approaches ex-
hibit better performance in identifying the subjects than majority of the existing
approaches of fusion at rank and at score levels for multimodal biometrics.

It is experimentally observed that the proposed particle swarm optimization
based approach achieves faster convergence than the proposed genetic algorithm
based approach. This superiority of the proposed PSO based approach over
the proposed GA based approach is established using two-sample Kolmogorov-
Smirnov (K-S) test.

It is to be admitted that the execution time of the proposed approaches is
longer than traditional score and rank level fusion approaches as these proposed
approaches are based on evolutionary computation. But better performance in
terms of recognition accuracies is achieved here. Though execution speed can
be improved by using parallel implementations of these evolutionary-computing
based approaches [205, 206, 207]. Moreover, the success of these optimization
based rank level approaches are encouraging enough to try out optimization based
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approaches in the context of score level fusion of multimodal biometrics. This di-
rection in score level fusion of multimodal biometrics is discussed in next chapter.
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Chapter 4

Score Level Fusion of Multimodal
Biometrics Using Optimization
Based Approaches

Comparison between the biometrics of a probe subject and an enrolled subject
derives a matching score (either similarity or dissimilarity) for each modality.
The matching scores across multiple modalities are fused in score level scheme for
multimodal biometrics. Score level fusion has more information in comparison
to rank and decision level fusion schemes. Hence, score level fusion is mostly
accepted level of fusion for multimodal biometrics [49, 50, 51, 52, 53, 62, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76].

Various score level fusion approaches for multimodal biometrics exist in lit-
erature (Section 2.1). These approaches include simple rule based approaches
[1, 49, 62, 67, 68, 69, 70], likelihood ratio-based methods [73, 74, 109, 110],
classification based methods [75, 76, 116] and optimization based methods
[123, 124, 127]. In [123], the objective of the optimization based approach is
to minimize the overlapping area between genuine and impostor score distribu-
tions. The objective of the optimization based approaches in [124, 127] is to find
the best confidence factors for belief assignments in various modalities. On the
similar direction, the proposed approaches in this chapter consider the score level
fusion as an optimization problem. But contrary to previous optimization based
score level fusion approaches [123, 124, 127], the approaches in this chapter min-
imize a weighted summation of distances between the aggregated score list and
the score lists from individual modalities. The success of the earlier approaches in
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Chapter 3 in the domain of rank level fusion has guided the optimization problem
formulation in this chapter for score level fusion.

The rest of this chapter is organized as following: A detailed formulation of
score level fusion of multimodal biometrics as an optimization problem is pre-
sented in Section 4.1. A novel score level fusion approach is proposed in Section
4.2 using genetic algorithm. Another novel approach is proposed in Section 4.3
for score level fusion of multimodal biometrics using particle swarm optimization.
Comparative analysis of convergence rates among genetic algorithm based and
particle swarm optimization based fusion approaches at rank level and at score
level is presented in Section 4.4. Finally, the concluding remarks on the proposed
score level fusion approaches are drawn in Section 4.5.

4.1 Score Level Fusion as an Optimization Prob-
lem

In the earlier work on optimization based rank level fusion for multimodal biomet-
rics (Chapter 3), the rank level fusion has been conceptualized as an optimization
problem. Being inspired by this earlier work, the current works in this chapter
conceptualize the score level fusion as an optimization problem. Details of this
problem formulation is presented in this section.

In order to identify a probe subject as one of the enrolled subjects, the bio-
metric modalities of the probe subject are matched against the corresponding
biometric modalities of each of the enrolled subjects. Let N biometric modalities
be used for the identification task. For an input probe subject, let a matching
score be defined as sij being a similarity between the probe and the jth enrolled
subject for the biometric modality i, where i = 1 . . .N . A score list Si of such
matching scores of the probe subject with all the enrolled subjects is generated
for each biometric modality. As a result, N score lists are generated as S1, S2,. . .,
SN .

The ranges of these matching scores may vary across several modalities.
Therefore, these matching scores are normalized to bring them into a common
range. There exist several score normalization approaches in literature (Section
2.1.1). Examples include min-max [63], tanh [63], z-score [63] and anchored score
normalization [67, 82]. One of the widely used score normalization approach is
the min-max normalization [49, 62, 63]. Hence, min-max normalization approach
is adopted in this work. It is defined in following equation:

80



4.1 Score Level Fusion as an Optimization Problem

ŝij = sij −min(Si)
max(Si)−min(Si)

(4.1)

The terms min(Si) and max(Si) represent the minimum and the maximum
scores, respectively, for the list Si. Normalized score of an enrolled subject j for an
input biometric modality i is represented as ŝij . The above discussion considers
the matching score as a similarity score. If the matching score is a dissimilarity
score, the above normalized score ŝij is subtracted from 1 to convert it into a
normalized similarity score. The subsequent discussion in this chapter assumes
the term ŝij as a normalized similarity score. A list of these normalized scores
ŝij of all the enrolled subjects for biometric modality i represents a normalized
score list Ŝi. As shown in Fig. 4.1, an aggregated (fused) list δ∗ is created by
combining these N normalized score lists Ŝ1, Ŝ2, . . ., ŜN .

δ∗ = aggregate(Ŝ1, Ŝ2, . . . , ŜN ) (4.2)

Figure 4.1: Fusion of multimodal biometrics at score level

Here, the objective is to derive a fused score list δ∗ having the minimum
weighted summation of distances of the normalized input score lists from the
fused list. The objective function for generating the aggregated list is defined as
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following:

minimize ϕ(δ) =
N∑

i=1
wi ×d(δ, Ŝi) (4.3)

A candidate fused list is represented by δ in the above equation (Eq. 4.3).
The fused list which minimizes the above objective function is denoted as δ∗.
A weight wi is associated with each of the N biometric modalities. Here, the
weight represents the significance of the corresponding biometric modality. In
this present work, the significance of each modality is considered as equal.

The function d() in Eq. 4.3 denotes a distance between a fused list and a
normalized input score list. In the current work, weighted Spearman footrule
[180] metric is used for the distance measure d(δ, Ŝi) between a pair of lists δ and
Ŝi. The stated distance metric estimates the weighted summation of absolute
differences between the normalized matching scores (pair-wise) of a subject in
the input and the aggregated lists as following:

d(δ, Ŝi) =
∑

jϵŜi∪δ

I(j)∗ |ŝδj − ŝij | (4.4)

In Eq. 4.4, the absolute difference between the normalized scores of a subject
j in the pair of lists is influenced by a factor I(j). This term I(j) is subsequently
being referred as influence factor. The following is the justification for considering
these influence factors as weights: A subject j having high normalized score in
either of the lists must have substantial influence on the distance computation. It
is because of the fact that the probe matches well with this subject in this scenario.
Alternatively, a small value for I(j) indicates that the computed distance is less
impacted by a low-scoring subject (in both lists). Therefore, the value of I(j) is
computed as:

I(j) = max(ŝδj , ŝij) (4.5)

One such illustration of computing the distance using the weighted Spearman
footrule distance is shown in Fig. 4.2. This illustration shows four normalized
score lists Ŝ1, Ŝ2, Ŝ3, and Ŝ4. These lists contain matching scores of six sub-
jects (A, B, C, D, E, and F). The score list δ represents one candidate solution.
Weighted distance between a normalized input score list and the candidate list δ

is estimated based on Eq. 4.4. As an illustration, the scores of subject A are 1 and
0.8 in the lists Ŝ1 and δ, respectively. Hence, influence factor I(j) is estimated
as 1 (i.e., maximum of the two normalized scores). Absolute difference of scores
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for subject A is 0.2. Likewise, the influence factor and the absolute difference
of scores are computed for all other subjects. Therefore, the distance between
δ and Ŝ1 lists is 0.62. Likewise, the distances between δ and each of the input
lists Ŝ2, Ŝ3, and Ŝ4 are estimated as 1.47,1.08, and 0.65, respectively. The fitness
value ϕ(δ) of the candidate list δ is finally generated as 3.82 by summation of the
above distances (considering equal weight as 1 for each input list). This fitness
evaluation is illustrated in Fig. 4.2.

Figure 4.2: Fitness evaluation of candidate score list δ through illustration

4.2 Proposed Genetic Algorithm Based Score
Level Fusion Approach

A genetic algorithm (GA) based approach is proposed in this section for score
level fusion of multimodal biometrics for solving the stated optimization problem
(Eq. 4.3). This algorithm is based on natural selection, where the fit solutions
(chromosomes) are selected from a population based on a fitness function. These
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selected chromosomes produce the offsprings having better chances of survival as
they inherit the characteristics of their parents. The proposed genetic algorithm-
based approach uses the elitism concept. In an elitism-based genetic algorithm,
better solutions are memorized across iterations. The speed up of the performance
of genetic algorithm due to this elitism is well documented in literature [188, 189].
Detail of the proposed genetic algorithm based approach is presented in this
section.

4.2.1 Problem Domain Specific Design of Genetic Algo-
rithm

The major contribution of this work is formulation of score level fusion of multi-
modal biometrics as an optimization problem and adoption of genetic algorithm
in this context. Representation of chromosomes and custom-designed operators
to suite this problem domain are presented in this section.

4.2.1.1 Representation of a Chromosome

The objective of this proposed genetic algorithm-based score level fusion approach
for multimodal biometrics is to find an aggregated score list. Therefore, a chromo-
some in the proposed approach represents a candidate score list having normalized
scores of all the enrolled subjects. Hence, length of a chromosome is equal to the
number of enrolled subjects. For example, the candidate normalized score list δ in
Fig. 4.2 is represented by a chromosome (0.8,0.2,0.6,0.5,0.1,0.4). Here, subject
A has a score of 0.8 and subject B has a score of 0.2. Similar observations can be
made for other subjects in this list too.

4.2.1.2 Fitness of a Chromosome

In order to solve the formulated optimization problem in Section 4.1, the fitness
of a chromosome (i.e., a candidate list) is evaluated as weighted summation of
distances of the candidate list from each normalized input score list (Eq. 4.3).
Weighted Spearman footrule distance (Eq. 4.4) is used as the distance measure
between the candidate list and a normalized input score list. Here, the objective
is to minimize the fitness value. Therefore, the fittest solution has the lowest
fitness value.
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4.2.1.3 Initialization of Population

In a traditional genetic algorithm, chromosomes in an initial population are gen-
erated randomly. There also exist approaches where domain knowledge is used
to generate the chromosomes in the initial population [190, 191, 192]. This
knowledge-based initialization helps in fast convergence of the genetic algorithm.
Similarly, chromosome initialization in the proposed genetic algorithm is carried
out using a mix of knowledge-based and random initialization. Let a population
of fixed size M chromosomes be considered. N out of these M chromosomes are
initialized to represent N normalized input lists (i.e., solutions from each modal-
ity). Justification of initializing N chromosomes using the normalized input lists
is that these lists represent normalized matching score lists of subjects for the
concerned biometric modalities. Ideally, all biometric modalities should generate
similar normalized scores for the same subject against the probe. But practically,
some deviations will be observed for each modality. Hence, the problem of list
aggregation arises. Unless the quality of the acquired biometric signal is poor, the
normalized input lists will ideally be a close match to an optimally aggregated
list. Hence, consideration of the input lists in the initial population improves the
convergence rate. The remaining (M −N) chromosomes are randomly generated
to represent lists of normalized scores. Each one of these scores is a random
number in the range [0,1].

4.2.1.4 Selection

A roulette wheel based selection process is used in the proposed work. The
chromosomes which are having better fitness values ϕ(δ) (i.e, lower distances),
share larger areas in the roulette wheel. Let M chromosomes be δ1, δ2, . . ., δM .
Corresponding fitness values of these chromosomes are ϕ(δ1), ϕ(δ2),. . ., ϕ(δM ),
respectively. As the aim is minimization of the objective function, each fitness
value ϕ(δm) is converted as:

ϕ′(δm) = max(ϕ(δ1),ϕ(δ2), . . . ,ϕ(δM ))/ϕ(δm) (4.6)

Then, the proportion of area Am in the roulette wheel for a chromosome is de-
termined as following:

Am = ϕ′(δm)
ϕ′(δ1)+ϕ′(δ2)+ . . .+ϕ′(δM ) (4.7)
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Figure 4.3: Illustration of crossover operation

Thus, a fitter chromosome (having lower objective function value ϕ(δm) will get
a larger area on the roulette wheel. The roulette wheel is rotated M times to
select M chromosomes for the new population. Every time, one chromosome
is selected from M chromosomes in the current population. The chromosome,
whose assigned area in the roulette wheel appears in front of a pivot, is chosen
each time. Bigger designated area in the roulette wheel increases the probability
of getting selected into the new population for the chromosome.

4.2.1.5 Crossover

The newly generated population based on fitness values are then randomly di-
vided into M

2 non-overlapping pairs. In the proposed work, population size M is
considered as an even number. Crossover is performed between each pair of parent
chromosomes. For each pair of chromosomes, a crossover point is selected ran-
domly. In the crossover operation, a pair of offspring chromosomes are generated
by interchanging parts of the parent chromosomes around the crossover point.
Two parent chromosomes are presented in Fig. 4.3 to illustrate the crossover op-
eration. A crossover point is also marked. Elements of the first parent up to the
crossover point (i.e., 1, 0.3 and 0.5) and elements of the second parent after the
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crossover point (i.e., 0.6, 0.5 and 0) are combined to produce the first offspring.
It has elements of both parents (i.e, 1, 0.3, 0.5, 0.6, 0.5 and 0). Similarly, the
second offspring is produced by combining elements of the second parent up to
crossover point (i.e., 0.8, 1 and 0.4) and elements of the first parent after crossover
point (i.e., 0.8, 0 and 0.2). The second offspring contains elements as 0.8, 1, 0.4,
0.8, 0 and 0.2. Moreover, an elitist genetic algorithm is adopted to speed up
convergence. Therefore, all four chromosomes (both offsprings and both parents)
are evaluated using the fitness function. The two fittest chromosomes (having
the two least fitness values) are selected from these four chromosomes. These two
chosen chromosomes are retained in the population. It ensures the retaining of
better solutions in the population.

4.2.1.6 Mutation

The newly generated population after crossover further goes through the muta-
tion process. For each gene value of a chromosome, a random value is generated
in the range [0,1]. If this random value is less than a mutation probability pm,
the gene value is subtracted from 1 to generate a new gene value. The above
mutation process is applied to each gene in all the chromosomes in the popu-
lation. As an example in Fig. 4.4, there is a chromosome having gene values
as (1,0.3,0.5,0.8,0 and 0.2). For each gene value a random value is generated
(0.001,0.23,0.34,0.48,0.009 and 0.1) respectively. Random values for the first
gene and the fifth gene from left hand side are less than mutation probability pm

(0.01 in this example). Hence, these gene values are subtracted from 1 to generate
a new chromosome. The chromosome after mutation is (0,0.3,0.5,0.8,1 and 0.2).
In this current work, an elitist genetic algorithm is adopted. Hence, after muta-
tion of a chromosome, the fitness value for the mutated chromosome is computed.
If the mutated chromosome has a lower fitness value than the chromosome before
mutation, the mutated chromosome replaces the chromosome in the population
(as it is a minimization problem). Otherwise, the chromosome before mutation
is retained in the population.

4.2.1.7 Stopping Criteria

Genetic algorithm is an iterative algorithm. Hence, selection, crossover, and mu-
tation steps are repeated iteratively until a stopping criterion is satisfied. If there
is no change in any chromosome in the population due to crossover or muta-
tion over several iterations, the algorithm is stopped. The stated window size on
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Figure 4.4: Illustration of mutation operation

the number of iterations is experimentally decided as 600 for NIST BSSR1 multi-
modal biometric dataset (set 1) [193] and 5000 for OU-ISIR BSS4 multi-algorithm
dataset [2, 194]. The best chromosome in the final population is considered as
the final aggregated score list of the subjects.

4.2.2 Performance Evaluation and Discussion
Detailed performance analysis is carried out for the proposed genetic algorithm
based score level fusion approach against several existing fusion approaches (both
at score level and at rank level). The existing approaches being used for perfor-
mance comparison are mentioned in Section 3.2.2.1. The weights for the compar-
ing weighted score and rank level fusion approachers are obtained using a genetic
algorithm based weight estimation approach. This approach for obtaining the
suitable set of weights for the existing weighted fusion approaches is discussed
in Section 3.2.2.1. On the contrary, proposed genetic algorithm based score level
fusion approach assigns the same weight to each individual modality (input list)
to check the efficacy of the proposed approach over state-of-the-art rank and
score level fusion approaches. The proposed approach is experimentally evaluated
on two different multi-biometric datasets, namely: (i) NIST BSSR1 multimodal
dataset (set 1) [193] involving face and fingerprint biometrics and (ii) OU-ISIR
BSS4 multi-algorithm gait dataset [2, 194] involving different feature extraction
methods for gait biometrics. The performance measures of all the comparing
approaches on these two datasets are discussed in subsequent subsections.
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4.2.2.1 Fusion of Multimodal Biometrics Involving Face and Finger-
print (NIST BSSR1 Multimodal Dataset (Set 1)

In this work, NIST BSSR1 multimodal dataset (set 1) [193] is considered for
performance comparison. A brief description of this dataset can be found in
Section 3.2.2.2. This dataset is widely used to study the fusion of multimodal
biometrics [33, 50, 52, 195]. As it is discussed in Section 3.2.2.2, similarity scores
of each of 517 subjects as a probe with all the enrolled subjects are provided in this
dataset as per two different face matchers (termed as G and C) and fingerprint
matchers for right and left index fingers.

Finally, the proposed genetic algorithm based score level fusion approach (Sec-
tion 4.2.1) is used to combine the given four score lists. The recognition accuracies
(in %), as defined in Eq. 3.7, for the proposed approach along with each unimodal
matcher are presented in Table 4.1 for the probe being found within top-1 (Rank
1), top-2 (Rank 2) and top-3 (Rank 3) ranks (cumulative) in the aggregated score
list. The usefulness of the proposed score level fusion approach over each of the
unimodal matchers is obvious from the reported results in Table 4.1.

The recognition accuracies of the comparing approaches within top-1 (Rank
1), top-2 (Rank 2) and top-3 (Rank 3) positions along with proposed approach
are also presented in Table 4.2. It can be seen from the reported recognition
accuracies that the proposed genetic algorithm based score level fusion approach
performs better than majority of existing state-of-the-art rank and score level
fusion approaches. Among the rank level fusion approaches, genetic algorithm
based (Section 3.2) and particle swarm optimization based (Section 3.3) rank level
fusion approaches demonstrate identical recognition accuracies to the proposed
GA based score level fusion approach for the top-1 (Rank 1), the top-2 (Rank 2)
and top-3 (Rank 3) positions. Moreover, the division exponential approach [32]
exhibits equivalent performance to the proposed approach while top-2 (Rank 2)
and top-3 (Rank 3) positions are considered. But performance of the the proposed
approach is better than the division exponential approach if only top-1 position
(Rank 1) is considered. Among the score level approaches, only the WQAM based
approaches [62] exhibit equal performance as with the proposed approach. The
reason for this superiority of the proposed GA based score level fusion approach
as well as the GA based (Section 3.2) and PSO based (Section 3.3) rank level
fusion approaches is that these approaches consider minimization of the weighted
summation of the distances between the aggregated list and the input lists.
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Table 4.1: Performance comparison of the proposed GA based score level fusion
approach with unimodal matchers on NIST BSSR1 multimodal dataset (set 1)

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal

Face Matcher G 83.37 86.28 88.40
Face Matcher C 88.78 90.52 91.50
Left Fingerprint 85.70 87.04 87.81
Right Fingerprint 92.07 93.23 93.62

Proposed GA Score Fusion 99.42 99.42 99.42

It can be noted that 99.42% is the maximum achievable accuracy on NIST
BSSR1 multimodal dataset (set 1) [193]. It is observed that 514 probes among
517 probes (99.42%) appear at the Rank 1 (first position) in the fused list. The
improvement in the recognition accuracy is not observed even if the Rank 3
(top-3 positions) were considered in the fused list. This is because the dataset
contains three probe subjects for whom all four biometric matchers fail to correctly
identify the actual subject. These probe subject IDs are 81,224 and 419. The
same observation was also reported in Section 3.2.2.2. The normalized score
and associated rank for the probe ID 81 in the aggregated list as well as in all
the input score lists are reported in Table 4.3. Similarly, the normalized scores
and associated ranks for the wrongly identified subjects at first position, second
position and third position are also shown in Table 4.3. The normalized score
of subject ID 81 (actual subject) is 0.10 and is present at 43rd position in the
aggregated score list (Table 4.3). The identified subject at first position (ID 419)
using the proposed GA based score level fusion approach has normalized score
1 and is present at first position in all the individual matcher lists. Therefore,
the subject ID 419 has been identified at first position (rank 1) in the proposed
GA based score level fusion approach. Similarly, the identified subject at second
position (ID 276) using the proposed GA based score level fusion approach has
normalized scores 0.05 (rank 238), 0.31 (rank 2), 0.29 (rank 380) and 0.84 (rank
3) in the left index finger, right index finger, face matcher C and face matcher G,
respectively. As, this subject has good normalized scores in two of the modalities
(right index finger and face matcher G), this subject is identified as the second
best subject in the fused list. The other two incorrectly identified probes (ID
224 and 419) suffer from the same problem as seen in Table 4.4 and Table 4.5.
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Table 4.2: Performance of the comparing fusion methods on NIST BSSR1 multi-
modal dataset (set 1) using cumulative recognition accuracies in %

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level

Weighted Sum [51] 98.65 98.84 99.03
Max Rule [1] 79.90 94.00 98.45
Min Rule [1] 94.80 95.40 95.60
Product [1] 97.87 98.26 98.67
Sum-OEBA [67] 99.03 99.03 99.26
Sum-MOEBA [67] 98.45 98.84 98.84
Sum-OEVBA [82] 98.70 99.03 99.26
Hamacher t-norm [69] 97.29 97.68 97.68
Frank t-norm [69] 98.07 98.65 98.84
WQAM cos [62] 99.42 99.42 99.42
WQAM cosr [62] 98.65 99.03 99.03
WQAM tan [62] 99.42 99.42 99.42
WQAM sin [62] 98.65 98.84 98.84
WQAM r1/s [62] 99.42 99.42 99.42
WQAM rs [62] 99.42 99.42 99.42
WQAM sr [62] 99.42 99.42 99.42
WQAM log [62] 99.42 99.42 99.42
WQAM exp [62] 99.42 99.42 99.42
Proposed GA Score 99.42 99.42 99.42

Rank Level

Borda Count [34] 92.07 93.04 94.00
WBorda [34] 92.50 94.20 95.36
Highest Rank [35] 79.70 94.81 98.26
Exp [33] 89.16 90.13 91.30
WExp [33] 87.81 89.16 90.71
DivExp [32] 99.23 99.42 99.42
Log [32] 98.45 99.03 99.23
GA Rank (Section 3.2) 99.42 99.42 99.42
PSO Rank (Section 3.3) 99.42 99.42 99.42

91



4.2 Proposed Genetic Algorithm Based Score Level Fusion Approach

Because of this, none of the fusion techniques are able to correctly identify these
three probes (Table 4.2).

Table 4.3: Normalized scores (and their ranks) at each modality for ideally correct
subject and the top three identified subjects according to the fused list (for probe
subject ID 81)

Modality
Ideally correct

subject (ID 81)

1st Identified

subject (ID 419)

2nd Identified

subject (ID 276)

3rd Identified

subject (ID 13)

Left index finger 0.03 (480) 1 (1) 0.05 (238) 0.05 (238)

Right index finger 0.05 (353) 1 (1) 0.31 (2) 0.23 (3)

Face matcher C 0.43 (143) 1 (1) 0.29 (380) 0.50 (2)

Face matcher G 0.78 (12) 1 (1) 0.84 (3) 0.74 (39)

GA Score 0.10 (43) 1 (1) 0.28 (2) 0.19 (3)

Table 4.4: Normalized scores (and their ranks) at each modality for ideally correct
subject and the top three identified subjects according to the fused list (for probe
subject ID 224)

Modality
Ideally correct

subject (ID 224)

1st Identified

subject (ID 66)

2nd Identified

subject (ID 184)

3rd Identified

subject (ID 327)

Left index finger 0.39 (59) 1 (1) 0.22 (165) 0.87 (2)

Right index finger 0.09 (51) 1 (1) 0.09 (51) 0.06 (223)

Face matcher C 0.62 (122) 1 (1) 0.91 (3) 0.75 (31)

Face matcher G 0.97 (11) 0.98 (2) 0.92 (25) 0.37 (267)

GA Score 0.37 (185) 1 (1) 0.92 (2) 0.75 (3)

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are represented using cumulative match characteristic (CMC) curves in
Fig. 4.5 and Fig. 4.6 for rank level and score level approaches, respectively.
The proposed method outperforms several existing rank and score level fusion
approaches, as it can be observed in the CMC curves in Fig. 4.5 and Fig. 4.6.
It is observed from Fig. 4.5 that the CMC curves of GA based (Section 3.2) and
PSO based (Section 3.3) rank level fusion approaches are overlapping with that
of the proposed GA based score level fusion approach. Moreover, the CMC curve
of the division exponential approach [32] is also overlapping with that of the
proposed genetic algorithm based score level fusion approach when cumulative
rank is beyond 2 and above.

The recognition accuracies of several WQAM based approaches [62] are equal
to those of the proposed genetic algorithm based score level fusion approach.
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Figure 4.5: CMC plots for existing rank level fusion approaches being compared
with that of the proposed GA based score level fusion approach for NIST BSSR1

dataset (set 1)

Figure 4.6: CMC plots for existing score level fusion approaches being compared
with that of the proposed GA based score level fusion approach for NIST BSSR1

dataset (set 1)
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Table 4.5: Normalized scores (and their ranks) at each modality for ideally correct
subject and the top three identified subjects according to the fused list (for probe
subject ID 419)

Modality
Ideally correct

subject (ID 419)

1st Identified

subject (ID 81)

2nd Identified

subject (ID 120)

3rd Identified

subject (ID 273)

Left index finger 0.04 (478) 1 (1) 0.12 (216) 0.18 (83)

Right index finger 0.05 (470) 1 (1) 0.70 (9) 0.95 (2)

Face matcher C 0.35 (282) 1 (1) 0.64 (4) 0.63 (5)

Face matcher G 0.34 (279) 0.98 (2) 0.97 (3) 0.89 (17)

GA Score 0.08 (367) 1 (1) 0.64 (2) 0.63 (3)

Therefore, the CMC curves of these WQAM based approaches overlap with the
CMC curve of the proposed genetic algorithm based score level fusion approach
in Fig. 4.6.

4.2.2.2 Fusion of Multimodal Biometrics for Multiple Gait Fea-
ture Representations (OU-ISIR BSS4 Multi-Algorithm Gait
Dataset)

The second dataset (OU-ISIR BSS4 multi-algorithm gait dataset [2, 194]) provides
five score lists for each probe. These score lists are combined using the proposed
genetic algorithm based score level fusion approach (Section 4.2.1) and other
existing rank and score level fusion approaches as discussed in Section 3.2.2.1.
The proposed method is compared with each unimodal biometric matcher. The
recognition accuracies (in %) for the probe subjects within top-1 (Rank 1), top-
2 (Rank 2) and top-3 (Rank 3) ranks (cumulative) are presented in the Table
4.6. It can be noted from Table 4.6 that the proposed method outperforms each
unimodal matcher. It justifies the need for multi-biometric system. Similarly,
Table 4.7 presents the recognition accuracies of various approaches at score and
rank level fusion along with the proposed genetic algorithm based score level
fusion approach.

It is evident from the presented results in Table 4.7 for OU-ISIR multi-
algorithm gait dataset [2, 194] that the proposed score level fusion approach using
genetic algorithm exhibits superior performance over majority of rank level fusion
approaches except PSO based rank level fusion approach in Section 3.3. More-
over, the proposed genetic algorithm based score level fusion approach exhibits
superior performance over existing score level fusion approaches for each one of
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Table 4.6: Performance comparison of the proposed GA based score level fusion
approach with unimodal matchers on OU-ISIR BSS4 multi-algorithm dataset

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal

CEnI 80.95 85.50 87.50
CGI 83.35 87.44 89.04
FDF 85.90 89.87 91.23
GEI 85.72 89.54 91.20
GFI 74.92 79.93 82.12

Proposed GA Score 86.62 91.07 92.24

the top-1 (Rank 1), top-2 (Rank 2) and top-3 (Rank 3) positions (cumulatively)
in the aggregated list. Justification of this superiority is same as that for the
experiments involving the previous dataset NIST BSSR1 multimodal dataset (set
1) [193] (Section 4.2.2.1).

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are presented using cumulative match characteristic (CMC) curves in Fig.
4.7 and Fig. 4.8.

4.2.3 Conclusion
The proposed genetic algorithm based score level fusion approach exhibits better
performance in identifying the subjects than majority of the existing approaches
of fusion at rank and score levels for multimodal biometric systems. Though
the proposed approach is outperformed by particle swarm optimization based
rank level fusion approach (Section 3.3) for OU-ISIR BSS4 multi-algorithm gait
dataset [2, 194]. This justifies the introduction of a novel genetic algorithm based
score level fusion approach in this section. Experiments also justify the useful-
ness of multimodal biometric systems over the unimodal biometric systems. The
reported results show significant improvement in performance in spite of consider-
ing same weight for each input list. Moreover, the initial success for the reported
experiments is encouraging enough to try out other meta-heuristic search and op-
timization strategies in the context of score level fusion for multimodal biometrics.
Furthermore, the superior performance of the particle swarm optimization based
rank level fusion approach (Section 3.3) leads the way to apply particle swarm
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Table 4.7: Performance of the comparing fusion methods on OU-ISIR BSS4 multi-
algorithm dataset using cumulative recognition accuracies in %

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level Fusion

Weighted Sum [51] 86.61 89.72 91.23
Max Rule [1] 85.38 88.27 89.60
Min Rule [1] 77.41 88.15 91.60
Product [1] 77.41 88.21 91.60
Sum-OEBA [67] 86.08 89.60 91.07
Sum-MOEBA [67] 86.45 89.75 91.17
Sum-OEVBA [82] 86.40 89.75 91.19
Hamacher t-norm [69] 86.37 89.57 91.07
Frank t-norm [69] 81.63 89.32 91.47
WQAM cos [62] 86.43 89.50 91.23
WQAM cosr [62] 85.78 88.98 90.34
WQAM tan [62] 86.43 89.50 91.19
WQAM sin [62] 86.43 89.50 91.23
WQAM r1/s [62] 85.29 88.15 89.38
WQAM rs [62] 86.43 89.54 91.07
WQAM sr [62] 85.35 88.89 90.43
WQAM log [62] 86.43 89.50 91.17
WQAM exp [62] 85.29 88.15 89.44
Proposed GA Score 86.62 91.07 92.24

Rank Level Fusion

Borda Count [34] 83.63 87.47 88.77
WBorda [34] 84.58 88.34 89.47
Highest Rank [35] 77.41 88.15 91.54
Exp [33] 83.56 87.47 88.83
WExp [33] 81.60 85.29 87.32
DivExp [32] 86.40 89.94 91.51
Log [32] 85.47 89.20 90.90
GA Rank (Section 3.2) 86.49 90.98 92.24
PSO Rank (Section 3.3) 86.73 91.16 92.31
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Figure 4.7: CMC plots for existing rank level fusion approaches being compared
with that of the proposed GA based score level fusion approach for OU-ISIR

BSS4 multi-algorithm dataset

Figure 4.8: CMC plots for existing score level fusion approaches being compared
with that of the proposed GA based score level fusion approach for OU-ISIR

BSS4 multi-algorithm dataset
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optimization based approach in the context of score level fusion of multimodal
biometrics.

4.3 Proposed Particle Swarm Optimization
Based Score Level Fusion Approach

One of the most well-regarded algorithms in the literature of meta-heuristic op-
timization is particle swarm optimization (PSO). The navigation and foraging
behaviour of birds in nature is imitated by this algorithm. The particle swarm
optimization is commonly used in various fields of study to solve the optimization
problems [197, 198, 199, 200].

In this section, a particle swarm optimization based score level fusion ap-
proach is proposed for solving the optimization problem in Eq. 4.3. A weighted
summation of distances of the normalized input score lists from a candidate ag-
gregate score list is minimized in this context. Here, the distance between two
score lists is computed using a weighted Spearman footrule distance in Eq. 4.4.
Experimental study on the performance of the proposed PSO based score level
fusion approach is reported using two multimodal biometric datasets: (i) NIST
BSSR1 multimodal dataset (set 1) [193] involving face modalities and fingerprint
and (ii) OU-ISIR BSS4 multi-algorithm gait dataset [2, 194] involving multiple
feature extraction methods for gait biometrics. Supremacy of the proposed parti-
cle swarm optimization based score level fusion approach with respect to existing
fusion schemes at score and rank levels is experimentally exhibited. Detail of
the proposed particle swarm optimization based rank level fusion approach is
presented in this section.

4.3.1 Problem Domain Specific Design of Particle Swarm
Optimization Approach

The major contribution of this work is formulation of score level fusion of mul-
timodal biometrics as an optimization problem and adoption of particle swarm
optimization in this context. Representation of particle position and custom-
designed operators to suite this problem domain are presented in this subsection.
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4.3.1.1 Representation of a Candidate Score List as a Particle Position

In particle swarm optimization, position of a particle represents a candidate so-
lution. In the context of the proposed score level fusion approach, the position
of a particle represents a candidate fused list of similarity scores of a probe sub-
ject with each of the enrolled subjects. Let the number of enrolled subjects be
n. Hence, position of a particle can be thought of as a point in a n-dimensional
space. As shown in Fig. 4.2, a particle position (0.8,0.2,0.6, 0.5,0.1,0.4) repre-
sents a candidate similarity score list δ. It indicates the similarity scores of the
probe with the enrolled subjects A,B,C,D,E, and F as 0.8,0.2,0.6,0.5,0.1, and
0.4, respectively.

4.3.1.2 Fitness of a Candidate Score List

In particle swarm optimization, fitness of each candidate solution (i.e., particle
position) is evaluated. In the context of the proposed score level fusion method,
a fitness value is calculated for a candidate score list (i.e., position of a particle)
as a weighted summation of the distances between the candidate score list and
each of the input score lists (Eq. 4.3). All of these input score lists (i.e., corre-
sponding biometric modalities) are given equal weight in this work. The goal is
to minimize the fitness. As a result, the solution with the lowest fitness value is
considered as the fittest solution.

4.3.1.3 Initialization of Population of Candidate Score Lists

A swarm of particles is used in particle swarm optimization to parallelly search
for the optimal solution in the solution space. The initialization of these posi-
tions of a population (or swarm) of particles (i.e., candidate solutions) is random.
But incorporation of domain knowledge to initialize the particle positions can be
found in [202, 203]. This domain knowledge-based initialization aids the particle
swarm optimization algorithm to converge fast. Similarly, in the proposed parti-
cle swarm optimization approach, a combination of random and knowledge-based
initialization is used to initialize the particle positions. Let the swarm have M

particles. For the experiments in this paper, the value of M is considered as 10.
The initial positions for N of these M particles are taken as N normalized input
score lists. The input score lists are assumed to be close candidates for becoming
the aggregated score list in this case. This is also the basis for the problem formula-
tion (Eq. 4.3), which involves minimization of a weighted summation of distances
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of the fused list from the input lists. As a result, this form of initialization is
justified in the current context. The positions of remaining (M − N) particles
are randomly initialized. In order to do so, scores are generated randomly in the
range of [0,1] to determine their initial positions.

4.3.1.4 Exploring Other Candidate Score Lists

To evaluate the fitness of new candidate score lists, these M score lists (i.e.,
particle positions) in the population are iteratively updated. The position of the
kth particle (i.e., corresponding score list) is updated as following:

xk(t+1) = xk(t)+vk(t+1) (4.8)

Here, vk(t+1) relates to the amount of change from the position of the kth par-
ticle at iteration t (i.e, xk(t)) to its new position at iteration (t+1) (i.e, xk(t+1)).
The new velocity while going to the (t+1)th iteration is referred as vk(t+1). The
velocity of a particle is changed with each iteration. The kth particle’s new ve-
locity vk(t+1) is determined by three factors: (a) the particle’s current velocity
vk(t) at the tth iteration, (b) the particle’s propensity to move towards its per-
sonal best position pbestk(t), and (c) the particle’s propensity to move towards
its social best position gbest(t). The social best position in the PSO refers to the
global best position (gbest(t)) of the entire swarm of particles. As a result, con-
sidering the prior velocity of the particle, its personal best position (pbestk(t)),
and the global best position (gbest(t)) at the given iteration, the new velocity of
the particle is computed using Eq. 4.9.

vk(t+1) =ω ×vk(t)+ c1 × r1k(t)× (pbestk(t)−xk(t))+
c2 × r2k(t)× (gbest(t)−xk(t))

(4.9)

Here, inertia weight is represented as ω. The velocity of the particle k at iteration
t is defined as vk(t). Initial particle velocity is set to 10% of the values at the
elements in the initial position vector in the current work. If the velocity is
initialized to zero, it indicates that all particles at initial stage are not moving
and any direction. This can lead to the slow convergence of PSO algorithm [204].
Hence, particle velocity is initialized in the proposed work as 10% of the values
of its initial position vector. At iteration t, xk(t) represents the current position
of the kth particle (i.e., the current candidate score list). The particle’s personal
best position pbestk(t) is the best among all the positions which it has visited till
iteration t. It refers to the fittest candidate score list as viewed by the kth particle
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up to iteration t. The global best position till iteration t is gbest(t). It refers to
the fittest candidate score list among the lists which have been generated by the
swarm of particles up to iteration t.

It should be observed that in Eq. 4.9, the addition and subtraction operations
are carried out element-by-element in the respective position vectors (i.e., score
lists). The two coefficients - the cognitive coefficient c1 and the social coefficient c2
- control the velocity updation stage. By regulating the step size by the particle
toward its personal best position pbestk(t), the cognitive coefficient c1 assists
the particle in exploring the search space toward its personal best position. By
adjusting the magnitude of steps by the particle toward the global best location
(gbest(t)), the social coefficient c2 assists the particle in exploring the search space
toward its global best position. For the reported experiments, the value of c1 and
c2 are set to be 0.5. The randomness of PSO is maintained by introducing two
random numbers, r1k(t) and r2k(t) at each iteration. These random numbers have
values in the range [0,1].

The above updation of these M score lists (i.e., new particle positions) may no
longer represent a valid solution in the solution space consisting normalized scores.
Due to the above computation, the coordinates in the new position xk(t+1) (i.e.,
the normalized scores) may not remain in the range [0,1]. To solve this issue,
newly computed values in xk(t + 1) are clamped in the range [0,1] by replacing
values less than zero with zero and values larger than one with one. As a result,
scores will remain in the range [0,1].

4.3.1.5 Stopping Criteria

In particle swarm optimization, the updation of a particle’s velocity and position
in the solution space is performed iteratively until a stopping criteria is met.
When the personal best positions of all the particles do not change during a
series of iterations, the proposed score level fusion approach based on particle
swarm optimization is considered to have converged. The stated window size
on the number of iterations is experimentally decided as 600 for NIST BSSR1
multimodal biometric dataset (set 1) [193] and 5000 for OU-ISIR BSS4 multi-
algorithm dataset [2, 194].
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4.3.2 Performance Evaluation and Discussion
Performance of the proposed particle swarm optimization based score level fusion
approach for multimodal biometrics is experimentally evaluated with respect to
the performances of several existing fusion approaches (score and rank levels).
The comparing approaches are mentioned in Section 3.2.2.1. Two multimodal
biometric datasets, namely NIST BSSR1 multimodal dataset (set 1) [193] and
OU-ISIR multi-algorithm gait dataset [2, 194], are used in these experiments to
evaluate the performances of the proposed approach along with existing score and
rank level fusion approaches. The weights for the comparing weighted score and
rank level fusion approachers are obtained using a genetic algorithm based weight
estimation approach. This approach for obtaining a suitable set of weights for the
existing weighted fusion approaches is discussed in Section 3.2.2.1. This process
of obtaining weights for the concerned modalities is followed for each of the above
two datasets. On the contrary, proposed particle swarm optimization based score
level fusion approach assigns the same weight to each individual modality (input
list).

4.3.2.1 Fusion of Multimodal Biometrics Involving Face and Finger-
print (NIST BSSR1 Multimodal Dataset (Set 1))

A brief description of NIST BSSR1 multimodal dataset (set 1) [193] can be found
in Section 3.2.2.2. The recognition accuracies (in %) on NIST BSSR1 multimodal
dataset (set 1) [193] for the proposed PSO based score level fusion approach along
with each unimodal matcher are presented in Table 4.8 for the probe being found
within top-1 (Rank 1), top-2 (Rank 2) and top-3 (Rank 3) ranks (cumulative)
in the aggregated score list. Recognition accuracies are estimated using Eq. 3.7.
The usefulness of the proposed PSO based score level fusion approach over each
of the unimodal matchers is obvious from the reported results in Table 4.8.

The recognition accuracies of the comparing approaches within top-1 (Rank
1), top-2 (Rank 2) and top-3 (Rank 3) positions (cumulative) along with those of
the proposed PSO based score level fusion approach are also presented in Table
4.9. It can be seen from the reported recognition accuracies that the proposed par-
ticle swarm optimization based score level fusion approach performs better than
the majority of existing state-of-the-art rank and score level fusion approaches.
Among the rank level fusion approaches, genetic algorithm based (Section 3.2)
and particle swarm optimization based (Section 3.3) rank level fusion approaches
demonstrate identical recognition accuracies as compared with the proposed PSO

102



4.3 Proposed Particle Swarm Optimization Based Score Level Fusion
Approach

Table 4.8: Performance comparison of the proposed PSO based score level fusion
approach with unimodal matchers on NIST BSSR1 multimodal dataset (set 1)

Method Top-1 Ranks Top-2 Ranks Top-3 Ranks

Unimodal

Face Matcher G 83.37 86.28 88.40
Face Matcher C 88.78 90.52 91.50
Left Fingerprint 85.70 87.04 87.81
Right Fingerprint 92.07 93.23 93.62

Proposed PSO Score Fusion 99.42 99.42 99.42

based score level fusion approach for the top-1 (Rank 1), the top-2 (Rank 2) and
top-3 (Rank 3) positions. Moreover, the division exponential approach [32] ex-
hibits equivalent performance to the proposed approach while top-2 (Rank 2) and
top-3 (Rank 3) positions are considered. However, when only the top-1 (Rank 1)
position is considered, the proposed score level fusion approach using PSO out-
performs the division exponential approach [32]. Additionally, among the score
level fusion approaches, the weighted quasi-arithmetic mean (WQAM) based ap-
proaches [62] and GA based (Section 4.2) approach exhibit identical performance
as with the proposed PSO based score level fusion approach in this work. This im-
proved performance of the proposed approach can be attributed to minimization
of the weighted summation of distances of the fused list from the input lists.

Similar to the genetic algorithm based score level fusion approach in Section
4.2, the maximum achievable recognition accuracy of the proposed PSO based
approach on NIST BSSR1 multimodal dataset (set 1) [193] is 99.42%. Three out
of 517 probes are not correctly identified. These probe subject IDs are 81,224
and 419. The normalized score and associated rank for the probe subject ID 81
in aggregated list as well as in all the normalized input score lists are reported in
Table 4.10. The normalized score of subject ID 81 (actual subject) is 0.07 and it
is present at 56th position in the fused list (Table 4.10). The identified subject
at the first position (ID 419) using the proposed PSO based score level fusion
approach has normalized score 1 and is present at first position (rank 1) in all
the individual matcher lists. Therefore, the subject ID 419 has been identified at
the first position (rank 1) in the proposed PSO based score level fusion approach.
Similarly, the identified subject at the second position (ID 427) using the proposed
PSO based score level fusion approach has normalized scores 0.03 (rank 391), 0.15
(rank 9), 0.41 (rank 180) and 0.82 (rank 4) in the left index finger, right index
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Table 4.9: Performance of the comparing fusion approaches on NIST BSSR1
multimodal dataset (set 1) using cumulative recognition accuracies in %

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level

Weighted Sum [51] 98.65 98.84 99.03
Max Rule [1] 79.90 94.00 98.45
Min Rule [1] 94.80 95.40 95.60
Product [1] 97.87 98.26 98.67
Sum-OEBA [67] 99.03 99.03 99.26
Sum-MOEBA [67] 98.45 98.84 98.84
Sum-OEVBA [82] 98.70 99.03 99.26
Hamacher t-norm [69] 97.29 97.68 97.68
Frank t-norm [69] 98.07 98.65 98.84
WQAM cos [62] 99.42 99.42 99.42
WQAM cosr [62] 98.65 99.03 99.03
WQAM tan [62] 99.42 99.42 99.42
WQAM sin [62] 98.65 98.84 98.84
WQAM r1/s [62] 99.42 99.42 99.42
WQAM rs [62] 99.42 99.42 99.42
WQAM sr [62] 99.42 99.42 99.42
WQAM log [62] 99.42 99.42 99.42
WQAM exp [62] 99.42 99.42 99.42
GA Score (Section 4.2) 99.42 99.42 99.42
Proposed PSO Score 99.42 99.42 99.42

Rank Level

Borda Count [34] 92.07 93.04 94.00
WBorda [34] 92.50 94.20 95.36
Highest Rank [35] 79.70 94.81 98.26
Exp [33] 89.16 90.13 91.30
WExp [33] 87.81 89.16 90.71
DivExp [32] 99.23 99.42 99.42
Log [32] 98.45 99.03 99.23
GA Rank (Section 3.2) 99.42 99.42 99.42
PSO Rank (Section 3.3) 99.42 99.42 99.42
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finger, face matcher C and face matcher G, respectively. As this subject has
better scores and their associated ranks than those of the ideally correct subject
in two of the modalities (right index finger and face matcher G), this subject is
identified as the second best subject in the fused list. The other two incorrectly
identified probes (ID 224 and 419) suffer from the same problem as seen in Table
4.11 and Table 4.12. Because of this, none of the fusion techniques are able to
correctly identify these three probes (Table 4.9).

Table 4.10: Normalized scores (and their ranks) at each modality for ideally
correct subject and the top three identified subjects according to the fused list (for
probe subject ID 81)

Modality
Ideally correct

subject (ID 81)

1st Identified

subject (ID 419)

2nd Identified

subject (ID 427)

3rd Identified

subject (ID 371)

Left index finger 0.03 (480) 1 (1) 0.03 (391) 0.02 (513)

Right index finger 0.05 (353) 1 (1) 0.15 (9) 0.10 (59)

Face matcher C 0.43 (143) 1 (1) 0.41 (180) 0.57 (26)

Face matcher G 0.78 (12) 1 (1) 0.82 (4) 0.80 (9)

PSO Score 0.07 (56) 1 (1) 0.41 (2) 0.40 (3)

Table 4.11: Normalized scores (and their ranks) at each modality for ideally
correct subject and the top three identified subjects according to the fused list (for
probe subject ID 224)

Modality
Ideally correct

subject (ID 224)

1st Identified

subject (ID 68)

2nd Identified

subject (ID 66)

3rd Identified

subject (ID 300)

Left index finger 0.39 (59) 1 (1) 0.26 (123) 0.22 (204)

Right index finger 0.09 (51) 1 (1) 0.06 (241) 0.09 (72)

Face matcher C 0.62 (122) 0.93 (5) 1 (1) 0.91 (3)

Face matcher G 0.97 (11) 0.84 (29) 0.98 (9) 0.92 (26)

PSO Score 0.22 (11) 1 (1) 0.59 (2) 0.57 (3)

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are represented using cumulative match characteristic (CMC) curves in Fig.
4.9 and Fig. 4.10 for rank level and score level approaches, respectively. The pro-
posed method outperforms several existing rank and score level fusion approaches,
as it can be observed in the CMC curves in Fig. 4.9 and Fig. 4.10. It is observed
from Fig. 4.9 that the CMC curves of the genetic algorithm based (Section 3.2)
and particle swarm optimization based (Section 3.3) rank level fusion approaches
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Table 4.12: Normalized scores (and their ranks) at each modality for ideally
correct subject and the top three identified subjects according to the fused list (for
probe subject ID 419)

Modality
Ideally correct

subject (ID 419)

1st Identified

subject (ID 81)

2nd Identified

subject (ID 120)

3rd Identified

subject (ID 273)

Left index finger 0.04 (478) 1 (1) 0.12 (180) 0.04 (443)

Right index finger 0.05 (470) 1 (1) 0.95 (2) 0.70 (14)

Face matcher C 0.35 (282) 1 (1) 0.63 (5) 0.64 (4)

Face matcher G 0.34 (279) 0.98 (2) 0.88 (20) 0.97 (4)

PSO Score 0.23 (466) 1 (1) 0.74 (2) 0.64 (3)

overlap with that of the proposed PSO based score level fusion approach. More-
over, the CMC curve of division exponential approach [32] overleaps with CMC
curves of the GA based rank level (Section 3.2), PSO based rank level (Section
3.3) and the proposed PSO based score level fusion approaches, when cumulative
rank is beyond 2 and above.

The recognition accuracies of several WQAM based approaches [62] and GA
based score level fusion approach (Section 4.2) are equal to the proposed particle
swarm optimization based score level fusion approach. Therefore, the CMC curves
of these approaches overlap with that of the proposed PSO based score level fusion
approach as shown in the Fig. 4.10.

4.3.2.2 Fusion of Multimodal Biometrics for Multiple Gait Fea-
ture Representations (OU-ISIR BSS4 Multi-Algorithm Gait
Dataset)

The second dataset (OU-ISIR BSS4 multi-algorithm gait dataset [2, 194]) provides
five score lists for each probe. These score lists are combined using the proposed
particle swarm optimization based score level fusion approach (Section 4.3.1)
and other existing rank and score level fusion approaches as discussed in Section
3.2.2.1. The proposed PSO based score level fusion approach is compared with
each unimodal biometric matcher. The recognition accuracies (in %) for the
probe subjects within top-1 (Rank 1), top-2 (Rank 2) and top-3 (Rank 3) ranks
(cumulative) are presented in the Table 4.13. It is to be noted that the proposed
PSO based score level fusion approach outperforms each unimodal matcher. It
justifies the need for multi-biometric system.
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Figure 4.9: CMC plots for existing rank level fusion approaches being compared
with that of the proposed PSO based score level fusion approach for NIST BSSR1

multimodal dataset (set 1)

Figure 4.10: CMC plots for existing score level fusion approaches being
compared with those of the GA based and the proposed PSO based score level

fusion approaches for NIST BSSR1 multimodal dataset (set 1)
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Table 4.13: Performance comparison (using cumulative recognition accuracies in
%) of the proposed PSO based score level fusion approach with unimodal matchers
on OU-ISIR BSS4 multi-algorithm dataset

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal

CEnI 80.95 85.50 87.50
CGI 83.35 87.44 89.04
FDF 85.90 89.87 91.23
GEI 85.72 89.54 91.20
GFI 74.92 79.93 82.12

Proposed PSO Score 86.95 91.16 92.31

Similarly, Table 4.14 presents the recognition accuracies of various approaches
at score and rank level fusion along with the proposed particle swarm optimization
based score level fusion approach. It is evident from the results presented in Table
4.14 that the proposed PSO based score level fusion approach exhibits superior
performance over other rank and score level fusion approaches for each one of the
top-1 (Rank 1), top-2 (Rank 2) and top-3 (Rank 3) positions (cumulatively) in the
aggregated list. Only PSO based rank level fusion approach (Section 3.3) exhibits
equal performance as the proposed PSO based score level fusion approach (in
terms of recognition accuracy) when top-2 (Rank 2) and top-3 (Rank 3) positions
are considered. The performance of the proposed PSO based score level fusion
approach is better than the PSO based rank level fusion approach when top-1
position (Rank 1) is considered.

Table 4.14 presents cumulative recognition accuracies of the comparing ap-
proaches only up to rank 3. In order to further understand the results, the
changes in recognition accuracies (in %) with the changes in cumulative ranks for
these comparing approaches are presented using cumulative match characteristic
(CMC) curves in Fig. 4.11 and Fig. 4.12. These plots reveal the performances of
the comparing approaches at least up to rank 30. The proposed approach outper-
forms majority of the rank and score level fusion approaches, as it can be observed
in the CMC curves in Fig. 4.11 and Fig. 4.12. It is observed from Fig. 4.11 that
the CMC curves of the proposed particle swarm optimization based score level
fusion approach and particle swarm optimization based rank level fusion approach
(Section 3.3) overlap when the cumulative rank is beyond 1.
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Table 4.14: Performance of the comparing fusion approaches on OU-ISIR BSS4
multi-algorithm dataset using cumulative recognition accuracies in %

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level Fusion

Weighted Sum [51] 86.61 89.72 91.23
Max Rule [1] 85.38 88.27 89.60
Min Rule [1] 77.41 88.15 91.60
Product [1] 77.41 88.21 91.60
Sum-OEBA [67] 86.08 89.60 91.07
Sum-MOEBA [67] 86.45 89.75 91.17
Sum-OEVBA [82] 86.40 89.75 91.19
Hamacher t-norm [69] 86.37 89.57 91.07
Frank t-norm [69] 81.63 89.32 91.47
WQAM cos [62] 86.43 89.50 91.23
WQAM cosr [62] 85.78 88.98 90.34
WQAM tan [62] 86.43 89.50 91.19
WQAM sin [62] 86.43 89.50 91.23
WQAM r1/s [62] 85.29 88.15 89.38
WQAM rs [62] 86.43 89.54 91.07
WQAM sr [62] 85.35 88.89 90.43
WQAM log [62] 86.43 89.50 91.17
WQAM exp [62] 85.29 88.15 89.44
GA Score (Section 4.2) 86.62 91.07 92.24
Proposed PSO Score 86.95 91.16 92.31

Rank Level Fusion

Borda Count [34] 83.63 87.47 88.77
WBorda [34] 84.58 88.34 89.47
Highest Rank [35] 77.41 88.15 91.54
Exp [33] 83.56 87.47 88.83
WExp [33] 81.60 85.29 87.32
DivExp [32] 86.40 89.94 91.51
Log [32] 85.47 89.20 90.90
GA Rank (Section 3.2) 86.49 90.98 92.24
PSO Rank (Section 3.3) 86.73 91.16 92.31
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Figure 4.11: CMC plots for existing rank level fusion approaches being
compared with that of the proposed PSO based score level fusion approach for

OU-ISIR BSS4 multi-algorithm dataset

Figure 4.12: CMC plots for existing score level fusion approaches being
compared with those of the GA based and proposed PSO based score level fusion

approaches for OU-ISIR BSS4 multi-algorithm dataset

110



4.4 Analysis of Convergence Rate Between Proposed Optimization
Based Score and Rank Level Fusion Approaches

4.3.3 Conclusion
The proposed particle swarm optimization based score level fusion approach ex-
hibits better performance in identifying the subjects than the state-of-the-art
approaches of fusion at rank and at score levels for multimodal biometrics using
both the datasets. This justifies the introduction of a novel particle swarm opti-
mization based approach in this section. Experiments also justify the usefulness of
multimodal biometric system over the unimodal biometric system. The reported
results show significant improvement in performance in spite of considering same
weight for each biometric modality in the proposed approach.

4.4 Analysis of Convergence Rate Between Pro-
posed Optimization Based Score and Rank
Level Fusion Approaches

Four novel optimization based approaches are presented in Chapter 3 and Chapter
4. These are listed below:

1. Genetic algorithm (GA) based rank level fusion approach (Section 3.2)

2. Particle swarm optimization (PSO) based rank level fusion approach (Sec-
tion 3.3)

3. Genetic algorithm (GA) based score level fusion approach (Section 4.2)

4. Particle swarm optimization (PSO) based score level fusion approach (Sec-
tion 4.3)

It is observed from the reported results in Section 4.3.2 that the performances
(in terms of cumulative recognition accuracies) of these optimization based ap-
proaches are comparable to each other. All the methods are evolutionary comput-
ing based approaches for solving the optimization problem either in the context of
rank level fusion (Section 3.1) or in the context of score level fusion (Section 4.1).
As all these evolutionary computing based approaches exhibit equivalent perfor-
mance in terms of recognition accuracies, comparison among these approaches
are carried out using the number of iterations being taken for convergence.

Number of iterations for convergence of these four evolutionary computing
based approaches are observed for NIST BSSR1 multimodal dataset (set 1) [193]
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and OU-ISIR BSS4 multi-algorithm dataset [2, 194]. Faster convergence of the
PSO based rank level fusion approach (Section 3.3) in comparison to GA based
rank level fusion approach (Section 3.2) is already established through the anal-
ysis in Section 3.4. Therefore, the comparison (in terms of convergence rate) is
presented in this section among GA based score level fusion (Section 4.2), PSO
based score level fusion (Section 4.3) and PSO based rank level fusion (Section
3.3) approaches.

The cumulative distribution functions (CDFs) on the number of iterations
are plotted for these comparing evolutionary computing based approaches in Fig.
4.13 and Fig. 4.14 for NIST BSSR1 multimodal dataset (set 1) [193]. Similar
plots are presented in Fig. 4.15 and Fig. 4.16 for OU-ISIR BSS4 multi-algorithm
dataset [2, 194]. It is observed from these plots that PSO based score level fusion
approach (Section 4.3) converges faster (lesser number of iterations) than other
two comparing approaches.

In order to prove the above reported faster convergence of the PSO based
score level fusion approach (Section 4.3) than other two approaches, a two-sample
Kolmogorov-Smirnov (K-S) test is performed on the number of iterations for
convergence between a pair of methods. A two-sample K-S test is a statistical
test for comparing the CDFs of two samples. The following hypothesis are tested:

• Null Hypothesis H0: two samples follow same distribution.

• Alternate Hypothesis H1: two samples follow different distributions.

The detail of this test has already been defined in Section 3.4. Hence, the results
of this test are directly presented in following subsections.

4.4.1 Results of Two-Sample K-S Test Using Multimodal
Biometrics Involving Face and Fingerprint (NIST
BSSR1 Multimodal Dataset (Set 1))

Number of iterations for convergence is noted down for each probe during the
executions of the above discussed optimization based rank and score level fusion
approaches on NIST BSSR1 multimodal dataset (set 1) [193]. Cumulative distri-
bution functions for PSO based score level fusion approach (Section 4.3) (F (x))
and GA based score level fusion approach (Section 4.2) (G(x)) are computed us-
ing number of iterations for convergence in both approaches, as shown in Fig.
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Figure 4.13: CDFs on number of iterations for PSO based (Section 4.3) and GA
based (Section 4.2) score level approaches on NIST BSSR1 multimodal dataset

(set 1)

Figure 4.14: CDFs on number of iterations for PSO based score level fusion
approach (Section 4.3) and PSO based rank level fusion approach (Section 3.3) on

NIST BSSR1 multimodal dataset (set 1)
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Figure 4.15: CDFs on number of iterations for PSO based (Section 4.3) and GA
based (Section 4.2) score level fusion approaches on OU-ISIR BSS4

multi-algorithm dataset

Figure 4.16: CDFs on number of iterations for PSO based score level fusion
approach (Section 4.3) and PSO based rank level fusion approach (Section 3.3) on

OU-ISIR BSS4 multi-algorithm dataset
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4.13. Then, the maximum difference between the two CDFs is computed using
Eq. 3.10. From Fig. 4.13, it is noted that the maximum difference between the
two CDFs is 0.975.

Dm,n = |0.996−0.021| = 0.975

The critical value is computed using Eq. 3.11 with 0.05 significance level (α).
Considering α = 0.05, c(α) is calculated as 1.36 using Eq. 3.12. NIST BSSR1
multimodal dataset (set 1) [193] has 517 subjects. Hence, considering each subject
as probe, the comparing multimodal biometric fusion algorithms are executed 517
times. Hence, the value of m and n are 517 for Eq. 3.11. Thus, the value of Dm,n,α

is computed as following:

Dm,n,α = 1.36∗
√

517+517
517∗517 = 0.0846

Here, null hypothesis is rejected as the value of Dm,n is greater than the value
of Dm,n,α. Hence, it is concluded that number of iterations to converge for PSO
based score level fusion (Section 4.3) and GA based score level fusion (Section
4.2) approaches follow two separate distributions. It establishes that PSO based
score level fusion approach (Section 4.3) converges faster than GA based score
level fusion approach (Section 4.2).

Similarly, to compare the performance of PSO based score level fusion ap-
proach (Section 4.3) against the PSO based rank level fusion approach (Section
3.3), the two CDFs F (x) and J(x) for the above approaches are computed as
shown in Fig. 4.14. The maximum difference between the CDF of PSO based
score level fusion approach (Section 4.3) (F (x)) and the CDF of PSO based rank
level fusion approach (Section 3.3) (J(x)) is computed using Eq. 3.10. From Fig.
4.14, it is observed that the maximum difference Dm,n between F (x) and J(x) is
(0.998 − 0.021) = 0.977. Thus, the statistical test rejects the null hypothesis as
the value of Dm,n (0.977) is greater than the value of Dm,n,α (0.0846). Hence,
it shows that number of iterations to converge for PSO based score level fusion
(Section 4.3) and PSO based rank level fusion (Section 3.3) approaches follow two
separate distributions. It establishes that PSO based score level fusion approach
(Section 4.3) converges faster than PSO based rank level fusion approach (Section
4.2).
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4.4.2 Results of Two-Sample K-S Test Using Multimodal
Biometrics for Multiple Gait Feature Representa-
tions (OU-ISIR BSS4 Multi-Algorithm Dataset)

Number of iterations for convergence is noted down for each probe during the
executions of the above discussed optimization based rank and score level fusion
approaches on OU-ISIR BSS4 multi-algorithm gait dataset [2, 194]. Cumulative
distribution functions for PSO based score level fusion approach (Section 4.3)
(F (x)) and GA based score level fusion approach (Section 4.2) (G(x)) are com-
puted using number of iterations for convergence in both methods as shown in
Fig. 4.15. Then, the maximum difference between the two CDFs is computed
using Eq. 3.10. From Fig. 4.15, it is noted that the maximum difference Dm,n

between the two CDFs is 0.987.

Dm,n = |0.990−0.003| = 0.987

The critical value is computed using Eq. 3.11 with 0.05 significance level (α).
Considering α = 0.05, c(α) is calculated as 1.36 using Eq. 3.12. OU-ISIR BSS4
dataset [2, 194] has 3249 subjects. Hence, considering each subject as probe,
the comparing multimodal biometric fusion algorithms are executed 3249 times.
Hence, the value of m and n are 3249 for Eq. 3.11. Thus, the value of Dm,n,α is
computed as following:

Dm,n,α = 1.36∗
√

3249+3249
3249∗3249 = 0.0337

Here, null hypothesis is rejected as the value of Dm,n (0.987) is greater than the
value of Dm,n,α (0.0337). Hence it proves the difference between the distributions
on number of iterations to converge for PSO based score level fusion approach
(Section 4.3) and GA based score level fusion approach (Section 4.2).

Similarly, to compare the convergence rate of PSO based score level fusion
approach (Section 4.3) against PSO based rank level fusion approach (Section
3.3), the two CDFs F (x) and J(x) are computed as shown in Fig. 4.16. The
maximum difference between the CDF of PSO based score level fusion approach
(Section 4.3) (F (x)) and the CDF of PSO based rank level fusion approach (Sec-
tion 3.3) (J(x)) is computed using Eq. 3.10. From Fig. 4.16, it is observed that
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the maximum difference Dm,n between these two distributions F (x) and J(x) is
(0.348−0.0415) = 0.3065. Thus, the statistical test rejects the null hypothesis as
the value of Dm,n (0.3065) is greater than the value of Dm,n,α (0.0337). Therefore,
faster convergence of PSO based score level fusion approach (Section 4.3) is es-
tablished over the convergence of PSO based rank level fusion approach (Section
3.3).

Thus, superiority (in terms of convergence rate) of PSO based score level
fusion approach (Section 4.3) over other proposed approaches in Chapter 3 and
Chapter 4 is established for both datasets - NIST BSSR1 multimodal dataset (set
1) [193] and OU-ISIR BSS4 multi-algorithm dataset [2, 194].

4.5 Summary
Score level fusion for multimodal biometrics is studied in this chapter. The mani-
fold contributions of the works in this chapter are highlighted here: The score level
fusion in multimodal biometrics is formulated as an optimization problem. The
formulation of this optimization problem considers minimization of a weighted
summation of distances between the aggregated score list and the normalized in-
put score lists. This problem formulation adds novelty to the proposed works in
this chapter. The weighted Spearman footrule distance metric [180] is used to
compute the distance between two score lists. The weight in the weighted Spear-
man footrule distance is incorporated to ensure more influence of a high scoring
subject than other subjects. A novel way to decide the weight of a subject is
conceptualized in this context.

To solve the stated optimization problem, two novel score level fusion ap-
proaches based on (i) genetic algorithm (GA) and (ii) particle swarm optimization
(PSO) are proposed in Section 4.2 and Section 4.3, respectively. Context-specific
representation of a candidate solution and custom-designed operators are the
highlights of the proposed GA and PSO based score level fusion approaches.

The performances of these proposed score level fusion approaches are exper-
imentally evaluated on two different multimodal biometric datasets, namely (i)
NIST BSSR1 multimodal dataset (set 1) [193] and (ii) OU-ISIR BSS4 multi-
algorithm gait dataset [2, 194]. The proposed approaches exhibit better perfor-
mance in identifying the subjects than majority of the existing approaches of
fusion at rank and score levels for multimodal biometrics. The reported experi-
mental results in Section 4.3.2 also show that the proposed particle swarm based
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fusion approaches at both rank (Section 3.3) and score (Section 4.3) levels of fu-
sion perform better than the proposed genetic algorithm based fusion approaches
(score and rank level) in terms of recognition accuracy.

Moreover, it is experimentally observed that the particle swarm optimization
based fusion approaches (at rank (Section 3.3) and at score (Section 4.3) levels)
achieve faster convergence than the GA based fusion approaches (at rank (Section
3.2) and at score (Section 4.2) levels). This superiority of the PSO based fusion
approaches over the GA based fusion approaches are established using two-sample
Kolmogorov-Smirnov (K-S) test. Therefore, particle swarm optimization based
score and rank level fusion approaches are adopted in all the subsequent chapters.
It is additionally to be noted that particle swarm optimization based score level
fusion approach (Section 4.3) converges faster than particle swarm optimization
based rank level fusion approach (Section 3.3).

The reported results also show significant improvement in performances of the
proposed optimization based fusion approaches (score and rank level) in spite of
considering same weight to each input list. The performances of the proposed op-
timization based approaches at both rank (Chapter 3) and score (Chapter 4) levels
of fusion can further be enhanced by incorporating the quality-derived weight for
each modality. The initial success for the reported experiments is encouraging
enough to try out quality-derived weights for particle swarm optimization based
fusion approaches (score and rank level) in the context of multimodal biometrics.
This direction of using quality-derived weights for the particle swarm optimization
based fusion approaches (score and rank level) is explored in next chapter.
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Chapter 5

Incorporating Quality in
Optimization Based Fusion
Approaches at Rank and Score
Levels

Performance of a multimodal biometric system depends on the individual biomet-
ric modalities involved in fusion [1]. Performances of these biometric modalities
may vary due to their intrinsic nature and the quality of acquired signal. For
example, identification of a person in wild scenario may be a challenge [208, 209].
Hence, multimodal biometrics enhances the performance of a biometric system.
It is to be noted that every biometric modality has been assigned an equal weight
in the proposed works in Chapter 3 and Chapter 4. But ideally, a challenging
biometric modality may not be assigned the same weight as of a good quality
biometric modality. It is essential to estimate the significance of the consid-
ered biometric modality before performing the fusion. Higher significance of an
individual biometric modality relates to better performance of that modality.
Therefore, several researches [49, 54, 73, 110, 148] estimate this significance of
each biometric modality and assign a weight for each of them. A high weight is
assigned to a more significant biometric modality. Hence, the influence of more
significant modality will be high on the multimodal biometric system.

Several approaches of weight estimation for a biometric modality are present
in the literature [49, 54, 73, 105, 110, 128, 148]. These approaches for weight
estimation are broadly classified into three categories: (i) matcher or classifier
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performance-based [49, 148], (ii) optimization-based [105, 128], and (iii) quality-
based [54, 73, 110]. A detailed review of existing weight estimation approaches
is presented in Section 2.3. Matcher performance-based weight estimation ap-
proaches [49, 148] decide a weight of a modality based on its performance (in
terms of equal error rate, i.e., EER). Optimization-based approaches [105, 128]
use meta-heuristic optimization techniques to select the optimal set of weights
for the concerned modalities. Assignment of a weight to a modality is a ma-
jor characteristic of matcher performance-based and optimization-based weight
estimation techniques. On the contrary, the quality-based weight estimation ap-
proaches assign weight to a modality depending on the quality of the presented
signal. A poor signal quality for a modality will lead to a less weight for it.
Therefore, weight for a modality will vary across probe users depending on their
signal quality.

The quality estimation approaches are based on either the presented signal
quality (e.g., illumination, lighting, occlusion, pixel count, dilation, off-angle, and
blur) or the quality of biometric information (i.e., individuality) in the given
signal. These quality estimation approaches are discussed in Section 2.3.3. An
image can be of good quality but it may not contain the required biometric
information to uniquely identify a person [1]. Therefore, the quality estimation
approach based on biometric information is widely used [172, 173, 176]. The main
drawback of these approaches is that these approaches are modality-dependent.
For example, a quality estimation approach for fingerprint modality [173] can not
be used to estimate the quality of any other biometric modality. Therefore, a
modality-independent approach to estimate the quality of biometric information
is required.

The proposed optimization based rank level and score level fusion approaches
in Chapter 3 and Chapter 4 give equal importance (equal weight) to each modality.
These optimization based approaches show superior performance than state-of-
the-art rank level and score level fusion approaches. The success of these works
encourages to improve the performance of optimization based rank level and score
level fusion approaches by incorporating quality-derived weight for each biometric
modality. In this work, unlike the existing weight estimation approaches for rank
level and score level fusion, each biometric modality of a probe user is assigned
a weight based on a modality-independent estimation of the quality of biometric
information. Here, individuality of a probe user in terms of the acquired signal
in a modality is estimated to assign weight for the modality. Therefore, weight
for a modality may vary across the probe users. In this work, the quality is
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estimated by assessing the ability to distinguish the best matching score of a
probe with respect to a few next best matching scores. The estimated quality
derives weight in the formulation of the optimization problems. Then, particle
swarm optimization based rank level and score level fusion approaches are applied
to solve the stated optimization problems.

The remainder of this chapter is organized as following: The formulation
of each of the rank level and the score level fusion of multimodal biometrics
as an optimization problem is revisited in Section 5.1. The proposed approach
for biometric quality-derived weight estimation is presented in Section 5.2. The
quality-incorporated particle swarm optimization based rank level and score level
fusion approaches are presented in Section 5.3. Performance of the proposed
quality-incorporated rank level and score level fusion approaches are discussed in
Section 5.4. Finally, the concluding remarks are drawn in Section 5.5.

5.1 Multimodal Fusion as an Optimization
Problem

In the earlier works on rank level and score level fusion (Chapter 3 and Chapter 4,
respectively), the fusions of multimodal biometrics at rank and at score levels have
been conceptualized as optimization problems. The problem formulations for rank
level fusion (Chapter 3) and score level fusion (Chapter 4) are briefly revisited in
the following subsections.

5.1.1 Rank Level Fusion as an Optimization Problem
Let L1, L2,. . ., LN be rank-ordered lists of subjects corresponding to N number
of biometric modalities for identifying a person. In Section 3.1, the problem
of obtaining an aggregated rank-ordered list of subjects has been formulated as
an optimization problem. The objective function for this optimization problem
minimizes a weighted summation of distances of the input lists L1, L2,. . ., LN

from the aggregated list. The objective function (which has been stated earlier
in Eq. 3.2) is repeated here for the sake of completeness of this chapter:

minimize ϕ(δ) =
N∑

i=1
wi ×d(δ,Li) (5.1)

121



5.1 Multimodal Fusion as an Optimization Problem

Here, a candidate fused list is represented by δ. A weight wi is associated with
each of the N biometric modalities. Here, the weight represents the significance
of the corresponding biometric modality. In the earlier approaches of rank level
fusion (Chapter 3), the significance of each modality is considered as equal. The
distance d(δ,Li) is a distance between a candidate fused list δ and input list Li.
The weighted Spearman footrule distance [180] is used to estimate the distance
between these two lists. The estimation of the said distance for two such lists
is given in Eq. 3.3. The influence factor as weight in the weighted Spearman
footrule distance is estimated using Eq. 3.4.

Here, it should be noted that the weight being used for weighted Spearman
footrule distance metric [180] is different from the weight wi being used in Eq.
5.1. The weight in the weighted Spearman footrule distance metric is used for
the purpose of considering more influence of subjects at better positions in the
rank list (Eq. 3.3). It is emphasised that wi is the weight (significance) for the
ith biometric modality for a probe user.

5.1.2 Score Level Fusion as an Optimization Problem
Similarly, let Ŝ1, Ŝ2, . . ., ŜN be normalized score lists corresponding to N number
of biometric modalities for identifying a person. Min-max normalization (Eq. 2.1)
of the matching scores are used for score normalization throughout this thesis.
Fusion of these normalized score lists has been formulated as an optimization
problem in Section 4.1. The objective of this optimization problem is to obtain
a fused score list having minimum weighted summation of distances of the input
normalized score lists Ŝ1, Ŝ2, . . ., ŜN from the fused list. As a result, the objective
function for generating the aggregated score list is:

minimize ϕ(δ) =
N∑

i=1
wi ×d(δ, Ŝi) (5.2)

Here, a candidate fused score list is represented by δ. A weight wi is associated
with each of the N biometric modalities. Here, the weight represents the signif-
icance of the corresponding biometric modality. In PSO based score level fusion
approach (Chapter 4), the significance of each modality is considered as equal.
The function d(δ, Ŝi) denotes distance between a candidate fused score list δ and
a normalized input score list Ŝi. A weighted Spearman footrule distance [180] is
used to measure the above said distance. The estimation of the weighted Spear-
man footrule distance is presented in Eq. 4.4. The influence factor of an enrolled
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subject as a weight in the estimation of weighted Spearman footrule distance is
determined using Eq. 4.5.

Here, it should be noted that the weight being used for weighted Spearman
footrule distance metric [180] is different from the weight wi being used in Eq.
5.2. The weight in the weighted Spearman footrule distance metric is used for the
purpose of considering more influence of subjects having better matching scores
in the score list (Eq. 4.4). It is emphasised that wi is the weight (significance)
for the ith biometric modality for a probe user.

It can be seen in Eq. 5.1 and Eq. 5.2 that a weight wi is associated with
each biometric modality. The weight wi represents the significance of the corre-
sponding modality. In the earlier works in Chapter 3 and Chapter 4, the same
weight value 1 is assigned to every modality. These methods will deliver good
results if the captured biometric signals are of equally good quality across all the
modalities. In contrast to assigning equal weight to each modality, the work in
this chapter estimates the weight for each modality of a probe user based on a
novel approach of estimating the quality of biometric information (individuality)
in the probe signal. The weights in Eq. 5.1 and Eq. 5.2 are derived from the es-
timated qualities. The proposed approach for estimating the quality of biometric
information (individuality) is presented in next section.

5.2 Proposed Approach for Estimating Quality
of Biometric Information in a Probe Signal

In this section, a novel approach is proposed for estimating the quality of biomet-
ric information in a probe signal. At first, the philosophy behind the proposed
approach is discussed as following: A good quality probe signal distinguishes be-
tween the highest matching score and the average of next few matching scores
in the sorted order. This difference is used to estimate the quality of biometric
information (individuality) in a probe signal. However, this difference between
the highest matching score and the average of the next few matching scores in
the sorted order is small for a poor quality probe signal. In this case, no subject
stands out distinctly based on the matching scores.

The estimated quality qi of biometric information (individuality) in a probe
signal is used to derive the weight wi in Eq. 5.1 and Eq. 5.2. Here, the quality
qi of biometric information in the probe signal for each modality i is estimated
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using the normalized similarity scores between probe and gallery. Max-min nor-
malization (Eq. 2.1) is used in this work for score normalization. The quality
qi of biometric information for a biometric modality i is estimated by taking the
difference between the maximum normalized similarity score max1(Ŝi) and the
average of the next h normalized similarity scores in sorted order. Here, it is as-
sumed that the value of h is very less than n−1, i.e., h < < n−1. The number
of enrolled users is denoted by n. The above difference is, then, normalized by
the difference between the maximum normalized similarity score max1(Ŝi) and
the average of all other normalized similarity scores in the list Ŝi (excluding the
maximum normalized similarity score max1(Ŝi)). Therefore, the proposed qual-
ity of biometric information (individuality) in the probe signal of ith modality is
estimated using Eq. 5.3.

qi =
max1(Ŝi)− 1

h

∑h+1
l=2 maxl(Ŝi)

max1(Ŝi)− 1
n−1

∑n
l=2 maxl(Ŝi)

(5.3)

Here, the maximum normalized similarity score in the normalized score list
Ŝi for ith modality is represented as max1(Ŝi). The lth maximum normalized
similarity score in sorted order at the normalized score list Ŝi for the ith modality
is denoted as maxl(Ŝi).

The proposed estimation of biometric quality (Eq. 5.3) considers a list of
normalized similarity scores. If the biometric matcher generates dissimilarity
scores, then these normalized dissimilarity scores are subtracted from 1 to convert
them into normalized similarity scores.

Finally, the weight wi for each biometric modality is decided using the esti-
mated qualities as following:

wi = qi∑N
i=1 qi

(5.4)

This ensures that the summation of weights across modalities is 1. N indicates
number of biometric modalities in Eq. 5.4.

It is to be noted that the proposed estimation of quality of biometric informa-
tion (individuality) in a probe signal uses the normalized matching scores. Unlike
[172, 173, 176], the proposed approach dose not depend on any modality. Hence,
it is a modality-independent approach for quality estimation.
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Figure 5.1: Quality-incorporated fusion of multimodal biometrics at rank level

5.3 Proposed Quality-Incorporated Particle
Swarm Optimization Based Fusion Ap-
proaches

The previous work on particle swarm optimization based fusion approaches for
rank level (Section 3.3) and score level (Section 4.3) have considered equal
weight (significance) for each biometric modality. On the contrary, novel quality-
incorporated particle swarm optimization based fusion approaches are presented
in this section as solution to the stated optimization problems (Eq. 5.1 and Eq.
5.2) of rank level and score level fusion.

5.3.1 Proposed Quality-Incorporated Particle Swarm Op-
timization Based Rank Level Fusion Approach

In this work, a quality-derived weight is adopted to assign significance to each bio-
metric modality of a probe user. A schematic diagram of the quality-incorporated
optimization based rank level fusion is given in Fig. 5.1. The rest of the pro-
posed approach is same as the PSO based rank level fusion approach in Section
3.3. Representation of a particle position, initialization of a population, explo-
ration of other candidate solutions and stopping criteria in the proposed quality-
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Figure 5.2: Quality-incorporated fusion of multimodal biometrics at score level

incorporated PSO based approach are maintained as exactly same as the previous
PSO based rank level fusion approach in Section 3.3.

5.3.2 Proposed Quality-Incorporated Particle Swarm Op-
timization Based Score Level Fusion Approach

Similar to rank level fusion, in score level fusion too, a quality-derived weight
is adopted to assign significance to each biometric modality of a probe user.
A schematic diagram of the quality-incorporated optimization based score level
fusion is given in Fig. 5.2. The rest of the proposed approach is same as the PSO
based score level fusion approach in Section 4.3. Representation of a particle
position, initialization of a population, exploration of other candidate solutions
and stopping criteria in the proposed quality-incorporated PSO based approach
are maintained as exactly same as the previous PSO based score level fusion
approach in Section 4.3.
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5.4 Performance Evaluation and Discussion
Detailed performance analysis is carried out for the proposed quality-incorporated
particle swarm optimization based approaches for rank level and for score level
fusion of multimodal biometrics. Experimental studies on the performances of the
proposed approaches are reported using four multimodal biometric datasets. The
first two datasets are virtually created multimodal biometric datasets involving
face and iris biometrics. In the first virtual dataset, the cross-age LFW (CALFW)
database [210] and IIT Delhi iris database (version 1.0) [211] are combined to
create a multimodal biometric dataset. This dataset is referred as FaceIris-V1 in
subsequent portions of the thesis. Similarly, in the second virtual dataset, the
CelebFaces Attributes Dataset (CelebA) [212] and IIT Delhi iris database (version
1.0) [211] are combined to create a multimodal biometric dataset. This dataset is
referred as FaceIris-V2 in subsequent portions of the thesis. The remaining two
datasets are NIST BSSR1 multimodal dataset (set 1) [193] involving face and
fingerprint modalities and OU-ISIR BSS4 multi-algorithm gait dataset [2, 194]
involving multiple feature extraction methods of gait biometrics.

Performance of the proposed quality-derived weight estimation approach is
also evaluated with two different weight estimation techniques in [49] and [51].
Additionally, the performance of the proposed quality-derived weight estimation
approach is also compared with that of the equal weight approach (i.e., each
modality is assigned equal weight). Moreover, supremacy of the proposed quality-
incorporated particle swarm optimization based rank level and score level fusion
approaches with respect to existing fusion schemes at rank and score levels are ex-
perimentally exhibited. The above analysis using each of the above four datasets
is presented in following subsections.

5.4.1 Fusion of Multimodal Biometrics Involving Face and
Iris (Virtual Multimodal Dataset FaceIris-V1)

Description of the Dataset: Performances of the proposed approaches are
evaluated on virtually created dataset involving face and iris modalities. The
first virtually created dataset (FaceIris-V1) contains face images from the cross-
age LFW (CALFW) database [210] and iris images from IIT Delhi iris database
(version 1.0) [211]. The CALFW dataset contains 3000 positive face pairs and
3000 negative face pairs. Two faces in a positive face pair belong to the same
person, but there is an age gap between two such faces. The age gaps in a positive
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pair increase intra-class variation in the dataset. This intra-class variation due
to cross-age makes the dataset more challenging for the face recognition task.
A negative face pair contains faces from two different persons. The CALFW
dataset is widely used in face recognition methods [213, 214]. The iris dataset
[211] is compiled by the research group at IIT Delhi. It contains left and right
iris images from 224 unique subjects. For experiments, left and right iris images
are considered from different subjects. As right iris images are missing for 13
subjects, 435 (i.e., 224×2−13) subjects are considered for the experiments. Each
subject (treating left iris and right iris images as separate subjects) has 5 iris
images. Hence, there are 2175 (i.e., 435×5) images in this dataset. Since only 435
subjects are considered from IIT Delhi iris database [211], unique 435 subjects
are randomly selected from the CALFW database [210] to create the virtual
multimodal biometric dataset (FaceIris-V1). One-to-one correspondence between
the subjects in these two databases is assumed for the created virtual dataset. For
experiments in this work the 435 face image pairs selected from CALFW dataset
[210] are divided into gallery and probe sets. Both the gallery and the probe
set contains 435 image corresponding to 435 different classes. For IIT Delhi iris
database, one image out of 5 images is selected randomly as probe for a given
class. Therefore, 435 images are there in probe set. Remaining 1740 images are
part of gallery set.

Generating Score and Rank Lists for Face: State-of-the-art face em-
bedding approach ArcFace [215] is used in this work to compute the embedding
for the face biometrics. Detailed description of ArcFace can be found in [215].
The cosine similarity [216] between two embeddings for the probe and the gallery
produces a matching score. The cosine similarity is widely used similarity metric
in the face recognition paradigm [217, 218, 219]. A score list is generated using
the matching scores for all the enrolled users with respect to the probe. Finally,
these similarity scores are sorted in descending order to generate a rank list for
the face modality.

Generating Score and Rank Lists for Iris: A state-of-the-art iris recog-
nition system in [220] is adopted for generating the matching scores for iris. The
work in [220] is based on fully convolutional network (FCN). The FCN helps in
generating spatially corresponding iris feature descriptors. Furthermore, an ex-
tended triplet loss (ETL) function accurately differentiates between an iris region
and a non-iris region to achieve enhanced iris feature descriptors. These iris fea-
tures are then binarized. Hamming distance [221] generates the matching score
between the binarized iris features of the probe and the gallery. The gallery set
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contains four images per class. Therefore, the binarized iris feature of a probe is
matched with all the four binarized iris features of a gallery class. The binarized
iris feature giving minimum distance with the probe is considered as its matching
score. Similarly, the matching scores for all the probes in probe set is generated.
Detailed description of the adopted iris recognition approach can be found in
[220]. A score list is generated using the matching scores for all the enrolled users
with respect to the probe. Finally, a rank list is generated using the ascending
order of the matching scores for all the enrolled users with respect to the probe.

Performance Analysis of Rank Level and Score Level Fusion: The first
virtual multimodal dataset FaceIris-V1 provides two score lists and two rank lists
as above. These rank lists are combined using the proposed quality-incorporated
particle swarm optimization based rank level fusion approach (Q-PSO Rank)
(Section 5.3.1) and other existing rank level fusion approaches as discussed in
Section 3.2.2.1. The window size on number of iteration to decide the conver-
gence of the proposed quality-incorporated particle swarm optimization based
rank level fusion approach (Q-PSO Rank) is experimentally decided as 800 for
virtual multimodal dataset FaceIris-V1.

The two score lists are normalized using min-max normalization (Eq. 2.1).
It is to be noted that the generated score for face modality is a similarity score.
On the contrary, the generated score for iris modality is a dissimilarity score.
Hence, the normalized scores for iris modality are converted to similarity score
by subtracting the normalized scores from 1. These normalized similarity score
lists are then combined using the proposed quality-incorporated particle swarm
optimization based score level fusion approach (Q-PSO Score) (Section 5.3.2)
and other existing score level fusion approaches as discussed in Section 3.2.2.1.
The window size on number of iteration to decide the convergence of the pro-
posed quality-incorporated particle swarm optimization based score level fusion
approach (Q-PSO Score) is experimentally decided as 600 for virtual multimodal
dataset FaceIris-V1.

At first, an experiment is performed to observe the impact of the value of h (in
Eq. 5.3) for the proposed quality-based weight estimation approach (Section 5.2).
For this experiment, the value of the integer h is varied from 1 to 10 to estimate
the weights for the two modalities based on their normalized matching scores.
These estimated weights are passed to each one of the comparing weighted rank
level and score level fusion approaches. Corresponding recognition accuracies are
reported in Table 5.1 by considering the top-most ranked subject. It is observed
from this table that the highest recognition accuracy is achieved for the value of h
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Table 5.1: Performance on FaceIris-V1 dataset: Recognition accuracies (in %)
for comparing weighted score and rank level fusion approaches using the proposed
quality-derived weight estimation approach with different values of h (in Eq. 5.3)

Methods h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

Score Level Fusion

Weighted Sum [51] 97.70 97.70 97.70 97.70 97.70 96.55 96.09 95.86 95.86 95.86

WQAM cos [62] 97.70 97.47 97.01 96.55 96.55 96.55 96.32 96.09 95.86 95.86

WQAM cosr [62] 98.16 97.70 97.70 97.47 97.47 97.24 97.24 97.01 97.01 96.55

WQAM tan [62] 98.16 97.70 97.70 97.70 97.47 97.47 97.24 97.01 97.01 96.78

WQAM sin [62] 96.55 95.86 95.63 95.63 95.63 95.40 95.40 95.40 95.40 95.17

WQAM r1/s [62] 98.16 97.70 97.47 97.47 97.47 97.47 97.01 96.78 96.78 96.55

WQAM rs [62] 97.93 97.70 97.47 97.24 96.32 96.32 96.32 96.32 96.09 96.09

WQAM sr [62] 97.70 97.70 97.24 96.78 96.55 96.55 96.55 96.09 95.86 95.63

WQAM log [62] 97.70 97.70 97.24 96.78 96.55 96.55 96.55 96.09 95.86 95.63

WQAM exp [62] 97.70 97.70 97.70 96.78 96.55 96.55 96.32 96.09 96.09 95.86

Proposed Q-PSO Score 98.62 98.16 98.16 98.16 97.70 97.47 97.24 97.01 96.55 96.55

Rank Level Fusion

WBorda [34] 95.63 94.94 94.25 94.25 94.48 94.25 94.25 94.02 94.02 94.02

Exp [33] 94.48 93.79 93.56 93.56 93.56 93.56 93.56 93.33 93.10 93.10

WExp [33] 91.03 91.03 91.03 91.03 91.03 91.03 91.03 91.03 91.03 90.80

DivExp [32] 93.33 92.87 92.41 92.18 92.41 92.64 92.64 92.87 92.64 92.41

Log [32] 96.78 96.78 96.32 96.32 96.32 96.32 96.32 96.32 96.32 96.32

Proposed Q-PSO Rank 98.16 98.16 97.70 97.47 97.47 97.24 97.01 96.55 96.55 96.55

as 1 in each weighted fusion approach on this dataset. The recognition accuracies
monotonically decrease with increase of h for the proposed quality-incorporated
PSO based fusion approaches (rank level and score level) and majority of the
existing approaches (except for the division exponential approach [32]). It can
also be noted that the highest recognition accuracies for few of the approaches
are observed for multiple values of h. For example, weighted sum approach [51]
achieves the highest recognition accuracy (97.70%) for the values of h in between 1
to 5. Similar observations can be made for few other approaches as well. Finally,
the value of h is selected as 1 for weight estimation and further experimental
analysis.

The efficacy of the proposed quality-based weight estimation approach (Sec-
tion 5.2) is presented in Table 5.2 over an equal weight based approach and
few other existing weight estimation approaches in [49] and [51]. The esti-
mated weights using the above mentioned approaches are used for state-of-the-art
weighted score and rank level fusion approaches along with the proposed quality-
incorporated PSO based fusion approaches for rank level (Q-PSO Rank) and
score level (Q-PSO Score). It is observed from Table 5.2 that the performances
of state-of-the-art weighted score and rank level fusion approaches and the pro-
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Table 5.2: Performance comparison of existing weight estimation approaches for
weighted score and rank level fusion approaches on FaceIris-V1

Fusion Methods
Weight Estimation Approaches

Equal Weights Approach in [49] Approach in [51] Quality Based

Score Level Fusion

Weighted Sum [51] 94.25 94.25 94.25 97.70

WQAM cos [62] 94.25 94.48 94.48 97.70

WQAM cosr [62] 94.71 95.63 95.63 98.16

WQAM tan [62] 95.40 94.71 88.51 98.16

WQAM sin [62] 94.02 94.02 94.02 96.55

WQAM r1/s [62] 94.25 95.40 94.94 98.16

WQAM rs [62] 94.25 94.48 94.48 97.93

WQAM sr [62] 94.25 94.48 94.48 97.70

WQAM log [62] 94.25 94.48 94.48 97.70

WQAM exp [62] 94.25 94.48 94.48 97.70

Proposed Q-PSO Score 95.40 95.86 95.63 98.62

Rank Level Fusion

WBorda [34] 92.18 92.18 92.18 95.63

Exp [33] 90.80 90.80 91.03 94.48

WExp [33] 90.80 90.80 90.80 91.03

DivExp [32] 92.87 92.87 92.87 93.33

Log [32] 94.71 94.71 94.94 96.78

Proposed Q-PSO Rank 94.94 95.63 95.17 98.16

posed Q-PSO Rank and Q-PSO Score fusion approaches significantly improve by
incorporating the proposed quality-based weights (Section 5.2). It can also be
observed that the proposed quality-incorporated PSO based fusion approaches
achieve superior performances than majority of state-of-the-art weighted fusion
approaches even after incorporating the proposed quality-based weights. Only
few of the WQAM based approaches [62] perform as equal as the proposed Q-
PSO based rank level fusion approach (as underlined in Table 5.2). Moreover,
the proposed Q-PSO based score level fusion approach outperforms the proposed
Q-PSO based rank level fusion approach.

Furthermore, the recognition accuracy (in %) using the top-most ranked sub-
ject in each of the non-weighted rank and score level fusion approaches is com-
pared with that of the proposed Q-PSO based fusion approaches (rank level and
score level) in Table 5.3. The reported results establish the superiority of the pro-
posed Q-PSO based fusion approaches over state-of-the-art non-weighted score
and rank level fusion approaches.

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are presented using cumulative match characteristic (CMC) curves in Fig.
5.3 and Fig. 5.4. The proposed Q-PSO based fusion approaches outperforms
existing rank and score level fusion approaches, as it can be observed in the CMC
curves in Fig. 5.3 and Fig. 5.4.
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Table 5.3: Performance comparison of the existing non-weighted rank and score
level fusion approaches with the proposed Q-PSO based fusion approaches on vir-
tual multimodal dataset FaceIris-V1

Methods Recognition Accuracy in %

Score Level Fusion

Max Rule [1] 91.49

Min Rule [1] 93.79

Product [1] 94.02

Sum-OEBA [67] 91.26

Sum-MOEBA [67] 93.79

Sum-OEVBA [82] 94.48

Hamacher t-norm [69] 94.02

Frank t-norm [69] 94.02

Proposed Q-PSO Score 98.62

Rank Level Fusion

Borda Count [34] 92.18

Highest Rank [35] 91.49

Proposed Q-PSO Rank 98.16

Figure 5.3: CMC plots for existing rank level fusion approaches being compared
with that of the proposed Q-PSO based fusion approaches for first virtual

multimodal biometric dataset FaceIris-V1

132



5.4 Performance Evaluation and Discussion

Figure 5.4: CMC plots for existing score level fusion approaches being compared
with that of the proposed Q-PSO based fusion approaches for first virtual

multimodal biometric dataset FaceIris-V1

5.4.2 Fusion of Multimodal Biometrics Involving Face and
Iris (Virtual Multimodal Dataset FaceIris-V2)

Description of the Dataset: The second virtual multimodal biometric dataset
(FaceIris-V2) is created by combining the face biometrics from CelebFaces at-
tributes dataset (CelebA) [212] and iris biometrics from IIT Delhi iris database
(version 1.0) [211]. The CelebA dataset contains 202599 celebrity images with
varying face attributes for 10177 unique subjects. The CelebA dataset is one of
the most used dataset for evaluating the performance of face recognition systems
[222, 223]. A short description of the IIT Delhi iris database (version 1.0) [211] is
presented in Section 5.4.1. Similar to the earlier virtual dataset (FaceIris-V1), face
images for only 435 unique subjects are randomly selected from CelebA dataset
[212] corresponding to 435 subjects in IIT Delhi iris database [211] (considering
left iris and right iris as separate subjects). The selected images from CelebA
face dataset [212] containing 435 classes are divided into training (gallery) and
test (probe) set. The gallery set contains 9565 face images. The cosine similarity
between a probe face embedding and all face embeddings of a class in gallery set
is computed. The face embedding in gallery producing maximum cosine simi-
larity is considered as the matching score between the probe and a gallery pair.
Similarly, the matching scores for all the probes in probe set is generated. The
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computation of matching scores for iris modality is same as in Section 5.4.1. The
score lists and rank lists for virtual multimodal biometric dataset (FaceIris-V2)
are constructed using the same approaches (for face and for iris) as discussed in
Section 5.4.1.

Performance Analysis of Rank Level and Score Level Fusion: The
second virtual multimodal dataset FaceIris-V2 provides two score lists and two
rank lists as above. These rank lists are combined using the proposed quality-
incorporated particle swarm optimization based rank level fusion approach (Q-
PSO Rank) (Section 5.3.1) and other existing rank level fusion approaches as
discussed in Section 3.2.2.1. The window size on number of iteration to decide
the convergence of the proposed quality-incorporated particle swarm optimization
based rank level fusion approach (Q-PSO Rank) is experimentally decided as 2000
for virtual multimodal dataset FaceIris-V2.

The two score lists are normalized using min-max normalization (Eq. 2.1).
Similar to the virtual multimodal dataset FaceIris-V1, the normalized dissimilar-
ity scores for iris modality are converted to similarity score by subtracting the
normalized scores from 1. These normalized similarity score lists are then com-
bined using the proposed quality-incorporated particle swarm optimization based
score level fusion approach (Q-PSO Score) (Section 5.3.2) and other existing score
level fusion approaches as discussed in Section 3.2.2.1. The window size on num-
ber of iteration to decide the convergence of the proposed quality-incorporated
particle swarm optimization based score level fusion approach (Q-PSO Score) is
experimentally decided as 600 for virtual multimodal dataset FaceIris-V2.

Similar to the experiment in Section 5.4.1, an experiment is performed to
observe the impact of the value of h (in Eq. 5.3) for the proposed quality-based
weight estimation approach (Section 5.2) on virtual multimodal biometric dataset
FaceIris-V2. For this experiment, the value of the integer h is also varied from
1 to 10 to estimate the weights for the two modalities based on their normalized
matching scores. These estimated weights are used in each one of the comparing
weighted rank level and score level fusion approaches. Corresponding recognition
accuracies are reported in Table 5.4. It is observed from this table that the
highest recognition accuracy is achieved for the value of h as 1 in each weighted
fusion approach on this dataset too. The recognition accuracies monotonically
decrease with increase of h for the proposed Q-PSO based fusion approaches
(rank level and score level) and majority of the existing approaches (except for
the weighted exponential [33] and the division exponential [32] approaches). It can
also be noted that the highest recognition accuracies for few of these approaches
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Table 5.4: Performance on FaceIris-V2 dataset: Recognition accuracies (in %)
for comparing weighted score and rank level fusion approaches using the proposed
quality-derived weight estimation approach with different values of h

Methods h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

Score Level Fusion

Weighted Sum [51] 98.16 97.70 97.70 97.47 97.47 97.24 97.24 97.24 97.24 97.24

WQAM cos [62] 98.16 98.16 97.70 97.70 97.70 97.24 97.24 97.24 97.24 97.24

WQAM cosr [62] 98.85 98.62 98.39 98.39 98.39 98.39 97.70 97.70 97.70 97.70

WQAM tan [62] 99.31 99.31 99.08 98.85 98.85 98.85 98.85 98.39 98.39 98.16

WQAM sin [62] 97.24 96.78 96.55 96.32 95.86 95.63 95.63 95.63 95.63 95.63

WQAM r1/s [62] 98.85 98.85 98.62 98.39 98.16 98.16 98.16 97.93 97.93 97.70

WQAM rs [62] 98.39 98.16 97.70 97.70 97.70 97.70 97.70 97.24 97.24 97.24

WQAM sr [62] 98.16 98.16 97.70 97.70 97.70 97.70 97.47 97.24 97.24 97.24

WQAM log [62] 98.16 98.16 97.70 97.70 97.70 97.70 97.47 97.24 97.24 97.24

WQAM exp [62] 98.16 98.16 97.70 97.70 97.70 97.70 97.47 97.47 97.24 97.24

Proposed Q-PSO Score 99.31 99.31 99.31 99.31 99.08 98.85 98.85 98.85 98.85 98.62

Rank Level Fusion

WBorda [34] 94.94 94.25 94.25 93.79 93.79 93.79 93.79 93.79 93.79 93.79

Exp [33] 94.48 94.02 93.79 93.79 93.56 93.56 93.33 93.33 93.10 93.10

WExp [33] 91.03 91.03 91.03 91.03 91.03 91.03 91.03 91.03 91.03 91.03

DivExp [32] 94.02 93.56 93.56 93.56 93.33 93.33 93.33 93.56 93.56 93.79

Log [32] 94.94 94.94 94.94 94.94 94.94 94.94 94.94 94.94 94.71 94.48

Proposed Q-PSO Rank 99.31 99.08 98.85 98.62 98.62 98.39 98.39 98.39 98.39 98.39

are observed for multiple values of h. For example, WQAM cos approach [62]
achieves the highest recognition accuracy (98.16%) for the value of h as 1 and 2.
Similar observations can be made for few other approaches as well. Finally, the
value of h is selected as 1 for weight estimation and further experimental analysis.

The efficacy of the proposed quality-based weight estimation approach (Sec-
tion 5.2) is presented in Table 5.5 over an equal weight based approach and
few other existing weight estimation approaches in [49] and [51]. The esti-
mated weights using the above mentioned approaches are used for state-of-the-art
weighted score and rank level fusion approaches along with the proposed quality-
incorporated PSO based fusion approaches for rank level (Q-PSO Rank) and
score level (Q-PSO Score). It is observed from Table 5.5 that the performances
of state-of-the-art weighted score and rank level fusion approaches and the pro-
posed Q-PSO Rank and Q-PSO Score fusion approaches significantly improve by
incorporating the proposed quality-based weights (Section 5.2). It can also be
observed that the proposed quality-incorporated PSO based fusion approaches
for rank level (Q-PSO Rank) and score level (Q-PSO Score) achieve superior per-
formances than majority of state-of-the-art weighted fusion approaches even after
incorporating the proposed quality-based weights. Only the WQAM tan based
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Table 5.5: Performance comparison of existing weight estimation approaches for
weighted score and rank level fusion approaches on FaceIris-V2

Fusion Methods
Weight Estimation Approaches

Equal Weights Approach in [49] Approach in [51] Quality Based

Score Level Fusion

Weighted Sum [51] 94.71 94.71 94.71 98.16

WQAM cos [62] 95.17 94.71 94.71 98.16

WQAM cosr [62] 95.40 94.02 94.94 98.85

WQAM tan [62] 95.86 93.79 89.20 99.31

WQAM sin [62] 94.94 94.48 94.71 97.24

WQAM r1/s [62] 95.40 93.79 94.94 98.85

WQAM rs [62] 95.17 94.48 94.71 98.39

WQAM sr [62] 95.17 94.48 94.71 98.16

WQAM log [62] 95.17 94.48 94.71 98.16

WQAM exp [62] 95.17 94.71 94.71 98.16

Proposed Q-PSO Score 96.32 95.17 94.94 99.31

Rank Level Fusion

WBorda [34] 91.49 92.18 91.26 94.94

Exp [33] 91.03 91.03 91.03 94.48

WExp [33] 91.03 91.03 91.03 91.03

DivExp [32] 93.56 92.18 93.56 94.02

Log [32] 94.02 94.25 93.56 94.94

Proposed Q-PSO Rank 96.09 94.94 94.02 99.31

approach [62] performs as equal as the proposed Q-PSO based fusion approaches
(as underlined in Table 5.5).

Furthermore, the recognition accuracy (in %) using the top-most ranked sub-
ject in each of the non-weighted rank and score level fusion approaches is com-
pared with that of the proposed Q-PSO based fusion approaches (rank level and
score level) in Table 5.6. The reported results establish the superiority of the pro-
posed Q-PSO based fusion approaches over state-of-the-art non-weighted score
and rank level fusion approaches.

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are presented using cumulative match characteristic (CMC) curves in Fig.
5.5 and Fig. 5.6. The proposed quality-incorporated PSO based fusion approaches
for rank level (Q-PSO Rank) and score level (Q-PSO Score) outperform majority
of the existing rank and score level fusion approaches, as it can be observed in
the CMC curves in Fig. 5.5 and Fig. 5.6.
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Table 5.6: Performance comparison of existing non-weighted rank and score level
fusion approaches with the proposed Q-PSO based fusion approaches on virtual
multimodal biometric dataset FaceIris-V2

Methods Recognition Accuracy in %

Score Level Fusion

Max Rule [1] 93.10

Min Rule [1] 94.48

Product [1] 95.17

Sum-OEBA [67] 93.79

Sum-MOEBA [67] 94.71

Sum-OEVBA [82] 94.71

Hamacher t-norm [69] 95.17

Frank t-norm [69] 95.17

Proposed Q-PSO Score 99.31

Rank Level Fusion

Borda Count [34] 91.49

Highest Rank [35] 93.10

Proposed Q-PSO Rank 99.31

Figure 5.5: CMC plots for existing rank level fusion approaches being compared
with that of the proposed Q-PSO based fusion approaches for second virtual

multimodal biometric dataset FaceIris-V2
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Figure 5.6: CMC plots for existing score level fusion approaches being compared
with that of the proposed Q-PSO based fusion approaches for second virtual

multimodal biometric dataset FaceIris-V2

5.4.3 Fusion of Multimodal Biometrics Involving Face and
Fingerprint (NIST BSSR1 Multimodal Dataset (Set
1))

The performances of the proposed quality-incorporated PSO based fusion ap-
proaches for rank level (Q-PSO Rank) and score level (Q-PSO Score) are also
evaluated on NIST BSSR1 multimodal dataset (set 1) [193]. This dataset con-
tains four modalities. Hence, four score lists and four rank lists are obtained.
A brief description of this dataset can be found in Section 3.2.2.2. The window
size on number of iteration to decide the convergence of the proposed quality-
incorporated particle swarm optimization based rank (Q-PSO Rank) and score
(Q-PSO Score) level fusion approach are experimentally decided as 600 for this
dataset. Similar to the experiments on above two virtual datasets, an experiment
is performed to observe the impact of the value of h (in Eq. 5.3) for the proposed
quality-based weight estimation approach (Section 5.2). For this experiment, the
value of the integer h is varied from 1 to 10 to estimate the weights for the four
modalities based on their normalized matching scores. Corresponding recognition
accuracies based on different weights (by varying h) are reported in Table 5.7 by
considering the top-most ranked subject. It is observed from this table that the
recognition accuracy remains the same with the values of h in between 1 to 10 in
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Table 5.7: Performance on NIST BSSR1 multimodal dataset (set 1): Recognition
accuracies (in %) for comparing weighted score and rank level fusion approaches
using the proposed quality-derived weight estimation approach with different values
of h (in Eq. 5.3)

Methods h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

Score Level Fusion

Weighted Sum [51] 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23

WQAM cos [62] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

WQAM cosr [62] 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23

WQAM tan [62] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

WQAM sin [62] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

WQAM r1/s [62] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

WQAM rs [62] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

WQAM sr [62] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

WQAM log [62] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

WQAM exp [62] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

Proposed Q-PSO Score 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

Rank Level Fusion

WBorda [34] 92.84 92.84 92.84 92.84 92.84 92.84 92.84 92.84 92.84 92.84

Exp [33] 89.16 89.16 89.16 89.16 89.16 89.16 89.16 89.16 89.16 89.16

WExp [33] 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00

DivExp [32] 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

Log [32] 98.06 98.06 98.06 98.06 98.06 98.06 98.06 98.06 98.06 98.06

Proposed Q-PSO Rank 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42 99.42

each weighted fusion approach. Similar to the reported results for the previous
two datasets (Section 5.4.1 and Section 5.4.2), the value of h is selected as 1 for
weight estimation and further experimental analysis.

The efficacy of the proposed quality-based weight estimation approach (Sec-
tion 5.2) is presented in Table 5.8 over an equal weight based approach and
few other existing weight estimation approaches in [49] and [51]. The esti-
mated weights using the above mentioned approaches are used for state-of-the-art
weighted score and rank level fusion approaches along with the proposed quality-
incorporated PSO based fusion approaches for rank level (Q-PSO Rank) and score
level (Q-PSO Score). It is observed from Table 5.8 that the performances of the
proposed Q-PSO Rank and the Q-PSO Score approaches are equal (99.42%) for
all of the comparing weight estimation approaches. It has already been justified
in Section 3.3.2.1 and Section 4.3.2.1 that a better recognition accuracy than
its reported value (99..42%) can not be achieved for this dataset. Hence, the
proposed quality-based weight estimation approach (Section 5.2) can not provide
any performance improvement for this dataset. Similarly, performances of only
a few state-of-the-art weighted score and rank level fusion approaches improve
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Table 5.8: Performance comparison of existing weight estimation approaches
for weighted score and rank level fusion approaches on NIST BSSR1 multimodal
dataset (set 1)

Fusion Methods
Weight Estimation Approaches

Equal Weights Approach in [49] Approach in [51] Quality Based

Score Level Fusion

Weighted Sum [51] 99.03 99.03 98.65 99.23

WQAM cos [62] 99.42 99.42 99.42 99.42

WQAM cosr [62] 98.84 99.23 99.03 99.23

WQAM tan [62] 99.42 99.42 99.42 99.42

WQAM sin [62] 98.84 98.84 98.84 99.42

WQAM r1/s [62] 99.42 99.42 99.42 99.42

WQAM rs [62] 99.42 99.42 99.42 99.42

WQAM sr [62] 99.42 99.42 99.42 99.42

WQAM log [62] 99.42 99.42 99.42 99.42

WQAM exp [62] 99.42 99.42 99.42 99.42

Proposed Q-PSO Score 99.42 99.42 99.42 99.42

Rank Level Fusion

WBorda [34] 92.26 92.06 92.45 92.84

Exp [33] 88.97 88.78 88.97 89.16

WExp [33] 87.62 87.62 88.00 88.00

DivExp [32] 98.83 99.23 99.23 99.42

Log [32] 98.45 98.45 98.06 98.76

Proposed Q-PSO Rank 99.42 99.42 99.42 99.42

by incorporating the proposed quality-based weights (Section 5.2). It can also
be observed that the several WQAM based approaches [62] perform as equal as
the proposed rank level (Q-PSO Rank) and score level (Q-PSO Score) fusion ap-
proaches. The justifications provided in Section 3.3.2.1 regarding the maximum
achievable recognition accuracy (i.e., 99.42%) of NIST BSSR1 multimodal dataset
(set 1) due to three wrongly identified subjects in this dataset is also applicable
in these results.

Furthermore, the recognition accuracy (in %) using the top-most ranked
subject in each of the non-weighted rank and score level fusion approaches is
compared with that of the proposed quality-incorporated PSO based fusion ap-
proaches for rank level (Q-PSO Rank) and score level (Q-PSO Score) in Table
5.9. The reported results establish the superiority of both of the proposed Q-PSO
based fusion approaches over state-of-the-art non-weighted score and rank level
fusion approaches.

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are represented using cumulative match characteristic (CMC) curves in Fig.
5.7 and Fig. 5.8. The proposed quality-incorporated PSO based fusion approaches
for rank level (Q-PSO Rank) and score level (Q-PSO Score) outperforms majority
of rank and score level fusion approaches, as it can be observed in the CMC curves
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Table 5.9: Performance comparison of existing non-weighted rank and score level
fusion approaches with the proposed Q-PSO based fusion approaches on NIST
BSSR1 multimodal dataset (set 1)

Methods Recognition Accuracy in %

Score Level Fusion

Max Rule [1] 79.90

Min Rule [1] 94.80

Product [1] 97.87

Sum-OEBA [67] 99.03

Sum-MOEBA [67] 98.45

Sum-OEVBA [82] 98.70

Hamacher t-norm [69] 97.29

Frank t-norm [69] 98.07

Proposed Q-PSO Score 99.42

Rank Level Fusion

Borda Count [34] 92.07

Highest Rank [35] 79.70

Proposed Q-PSO Rank 99.42

in Fig. 5.7 and Fig. 5.8. The CMC curves of several WQAM approaches [62]
(Fig. 5.8) overlaps with that of the proposed Q-PSO rank and Q-PSO Score
fusion approaches.

5.4.4 Fusion of Multimodal Biometrics for Multiple Gait
Feature Representations (OU-ISIR BSS4 Multi-
Algorithm Gait Dataset)

The OU-ISIR BSS4 multi-algorithm gait dataset [2, 194] provides five score lists
for each probe. A brief description about this dataset can be found in Section
3.2.2.3. Rank lists are derived from each of these score lists. These rank lists are
combined using the proposed quality-incorporated PSO based fusion approaches
for rank level (Q-PSO Rank) and other existing rank level fusion approaches as
discussed in Section 3.2.2.1. The window size on number of iteration to decide
the convergence of the proposed quality-incorporated particle swarm optimiza-
tion based rank level fusion approach (Q-PSO Rank) is experimentally decided
as 5000 for this dataset. Similarly, the score lists are combined using the proposed
quality-incorporated PSO based fusion approaches for score level (Q-PSO Score)
and other existing score level fusion approaches as discussed in Section 3.2.2.1.
The window size on number of iteration to decide the convergence of the pro-
posed quality-incorporated particle swarm optimization based score level fusion
approach (Q-PSO Score) is experimentally decided as 5000 for this dataset
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Figure 5.7: CMC plots for existing rank level fusion approaches being compared
with that of the proposed Q-PSO based fusion approaches for NIST BSSR1

multimodal dataset (set 1)

Figure 5.8: CMC plots for existing score level fusion approaches being compared
with that of the proposed Q-PSO based fusion approaches for NIST BSSR1

multimodal dataset (set 1)

142



5.4 Performance Evaluation and Discussion

Table 5.10: Performance on OU-ISIR BSS4 multi-algorithm dataset: Recognition
accuracies (in %) for comparing weighted score and rank level fusion approaches
using the proposed quality-derived weight estimation approach with different values
of h (in Eq. 5.3)

Methods h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

Score Level Fusion

Weighted Sum [51] 86.58 86.64 86.64 86.58 86.67 86.67 86.70 86.61 86.61 86.58

WQAM cos [62] 86.58 86.64 86.67 86.58 86.67 86.67 86.70 86.61 86.61 86.58

WQAM cosr [62] 86.09 86.09 86.00 85.96 86.00 86.00 86.18 85.90 85.90 85.90

WQAM tan [62] 86.18 86.18 86.24 86.24 86.21 86.21 86.27 86.12 86.09 86.09

WQAM sin [62] 86.24 86.24 86.24 86.24 86.30 86.27 86.33 86.24 86.27 86.27

WQAM r1/s [62] 86.61 86.67 86.70 86.61 86.70 86.73 86.73 86.70 86.67 86.64

WQAM rs [62] 86.58 86.61 86.70 86.61 86.64 86.70 86.73 86.70 86.64 86.64

WQAM sr [62] 86.58 86.61 86.67 86.61 86.67 86.70 86.70 86.67 86.64 86.61

WQAM log [62] 86.58 86.61 86.67 86.61 86.67 86.70 86.70 86.67 86.64 86.61

WQAM exp [62] 86.58 86.64 86.67 86.58 86.67 86.67 86.70 86.61 86.61 86.58

Proposed Q-PSO Score 86.91 86.95 86.95 86.95 86.95 87.16 87.16 87.16 86.95 86.91

Rank Level Fusion

WBorda [34] 83.66 83.69 83.75 83.75 83.75 84.36 84.93 84.93 83.81 83.66

Exp [33] 82.58 82.58 82.61 82.61 82.98 83.76 83.76 83.76 82.61 82.58

WExp [33] 81.69 81.69 81.69 81.69 81.69 81.69 81.69 81.69 81.69 81.69

DivExp [32] 85.66 85.72 85.72 85.72 85.81 86.23 86.84 86.84 85.72 85.66

Log [32] 84.86 84.95 84.95 84.95 84.95 85.38 85.89 85.89 84.95 84.86

Proposed Q-PSO Rank 86.73 86.79 86.91 86.95 86.95 87.04 87.10 86.95 86.86 86.82

An experiment is performed to observe the impact of the value of h (in Eq.
5.3) for the proposed quality-derived weight estimation approach (Section 5.2).
For this experiment, the value of the integer h is varied from 1 to 10 to estimate
the weights for the five modalities based on their normalized matching scores.
These estimated weights are used in each one of the comparing weighted rank
level and score level fusion approaches. Corresponding recognition accuracies are
reported in Table 5.10 by considering the top-most ranked subject. It is observed
from this table that the highest recognition accuracy is achieved for the value of
h as 7 in each weighted fusion approach on this dataset. It can also be noted
that the highest recognition accuracies for few of the approaches are observed
for multiple values of h. For example, WQAM r1/s based approach [62] achieves
the highest recognition accuracy (86.73%) for the value of h as 6 and 7. Similar
observations can be made for few other approaches as well. Finally, the value of
h is selected as 7 for weight estimation and further experimental analysis.

The efficacy of the proposed quality-based weight estimation approach (Sec-
tion 5.2) is presented in Table 5.11 over an equal weight based approach and
few other existing weight estimation approaches in [49] and [51]. The esti-
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Table 5.11: Performance comparison of existing weight estimation approaches for
weighted score and rank level fusion approaches on OU-ISIR BSS4 multi-algorithm
dataset

Fusion Methods
Weight Estimation Approaches

Equal Weights Approach in [49] Approach in [51] Proposed Approach

Score Level Fusion

Weighted Sum [51] 86.54 86.43 86.61 86.70

WQAM cos [62] 86.24 86.61 86.46 86.70

WQAM cosr [62] 85.65 85.81 85.63 86.18

WQAM tan [62] 86.24 85.96 85.81 86.27

WQAM sin [62] 86.24 86.00 85.96 86.33

WQAM r1/s [62] 85.04 86.61 86.46 86.73

WQAM rs [62] 86.24 86.61 86.46 86.73

WQAM sr [62] 85.1 86.61 86.46 86.70

WQAM log [62] 86.24 86.61 86.46 86.70

WQAM exp [62] 85.04 86.61 86.46 86.70

Proposed Q-PSO Score 86.95 87.01 86.95 87.16

Rank Level Fusion

WBorda [34] 83.63 83.69 83.58 84.93

Exp [33] 82.12 82.54 82.12 83.76

WExp [33] 81.42 81.63 81.60 81.69

DivExp [32] 85.50 85.53 85.44 86.84

Log [32] 84.43 84.80 84.86 85.89

Proposed Q-PSO Rank 86.73 86.88 86.79 87.10

mated weights using the above mentioned approaches are used for state-of-the-art
weighted score and rank level fusion approaches along with the proposed quality-
incorporated PSO based fusion approaches for rank level (Q-PSO Rank) and
score level (Q-PSO Score). It is observed from Table 5.11 that the performances
of state-of-the-art weighted score and rank level fusion approaches and the pro-
posed rank level (Q-PSO Rank) and score level (Q-PSO Score) fusion approaches
improve by incorporating the proposed quality-based weights (Section 5.2). It
can also be observed that the proposed quality-incorporated PSO based fusion
approaches at rank level (Q-PSO Rank) and at score level (Q-PSO Score) achieve
superior performances than state-of-the-art weighted fusion approaches even after
incorporating the proposed quality-based weights. The proposed Q-PSO Score
approach marginally outperforms the proposed Q-PSO Rank based fusion ap-
proach.

Furthermore, the recognition accuracy (in %) using the top-most ranked
subject in each of the non-weighted rank and score level fusion approaches is
compared with that of the proposed quality-incorporated PSO based fusion ap-
proaches for rank level (Q-PSO Rank) and score level (Q-PSO Score) in Table
5.12. The reported results establish the superiority of the proposed Q-PSO Rank
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Table 5.12: Performance comparison of existing non-weighted rank and score level
fusion approaches with the proposed Q-PSO based fusion approaches on OU-ISIR
BSS4 multi-algorithm dataset using cumulative recognition accuracies in %

Methods Recognition Accuracy in %

Score Level Fusion

Max Rule [1] 85.38

Min Rule [1] 77.41

Product [1] 77.41

Sum-OEBA [67] 86.08

Sum-MOEBA [67] 86.45

Sum-OEVBA [82] 86.40

Hamacher t-norm [69] 86.37

Frank t-norm [69] 81.63

Proposed Q-PSO Score 87.16

Rank Level Fusion

Borda Count [34] 83.63

Highest Rank [35] 77.41

Proposed Q-PSO Rank 87.10

and Q-PSO Score based fusion approaches over state-of-the-art non-weighted
score and rank level fusion approaches.

The changes in recognition accuracies (in %) with the changes in cumula-
tive ranks are presented using cumulative match characteristic (CMC) curves in
Fig. 5.9 and Fig. 5.10. The proposed quality-incorporated PSO based fusion
approaches for rank level (Q-PSO Rank) and score level (Q-PSO Score) outper-
forms existing rank and score level fusion approaches, as it can be observed in
the CMC curves in Fig. 5.9 and Fig. 5.10.

5.5 Summary
Particle swarm optimization based fusion approaches at both rank (Section 3.3)
and score (Section 4.3) levels of fusion performs better than state-of-the-art rank
and score level fusion approaches in terms of recognition accuracy. In this chapter,
the performances of these particle swarm optimization based approaches at both
rank (Section 3.3) and score (Section 4.3) levels of fusion are further enhanced
by incorporating the quality-based weight for each modality. A novel modality-
independent biometric quality estimation approach is proposed in this chapter to
enhance the performance of PSO based rank and score level fusion approaches.
The derived quality is used to estimate weight for each modality. The proposed
approach for estimating quality of biometric information in a probe signal uses
matching scores between a probe and the gallery. Therefore, the set of estimated
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Figure 5.9: CMC plots for existing rank level fusion approaches being compared
with that of the proposed Q-PSO based fusion approaches for OU-ISIR BSS4

multi-algorithm dataset

Figure 5.10: CMC plots for existing score level fusion approaches being
compared with that of the proposed Q-PSO based fusion approaches for OU-ISIR

BSS4 multi-algorithm dataset
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weights vary across different probe users. The presented experimental results
highlight the efficacy of incorporating quality-derived weight as compared to sev-
eral weighting strategies (including equal weight for the modalities and weight
estimation approaches in [49], [51]). It is to be noted that a suitable value of h

for estimating quality in Eq. 5.3 varies across datasets.
Moreover, the proposed quality-incorporated PSO based fusion approaches

for rank level (Q-PSO Rank) and score level (Q-PSO Score) perform better than
state-of-the-art approaches for rank and score level fusion of multimodal biomet-
rics in terms of recognition accuracies (in %). Moreover, the proposed Q-PSO
Score approach performs slightly better than the proposed Q-PSO Rank approach
in two out of four datasets.
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Chapter 6

Reduction of Search Space
Dimension for Optimization
Based Fusion Approaches at
Rank and Score Levels

Particle swarm optimization (PSO) based rank level and score level fusion of
multimodal biometrics have been proposed in Section 3.3 and Section 4.3, re-
spectively. Furthermore, the performances of these PSO based approaches are
enhanced by incorporating quality-derived weight for each biometric modality
(Chapter 5). The proposed quality-incorporated PSO based rank level (Section
5.3.1) and score level (Section 5.3.2) fusion approaches outperform state-of-the-art
rank and score level fusion approaches in terms of recognition accuracies.

It is to be noted that particle swarm optimization (PSO) is an iterative search
based optimization algorithm. It searches for the optimum solution by iteratively
searching through numerous candidate solutions in a large search space. It takes
a substantial number of iterations to converge to the optimum solution (i.e., the
aggregated rank list or the aggregated score list). Therefore, a novel approach for
search space reduction is proposed in this chapter for attaining faster convergence
of the PSO based approaches in the context of above mentioned fusion tasks. It
has been shown in Chapter 5 that quality-incorporated PSO (Q-PSO) based rank
level and score level fusion approaches achieve better recognition accuracies than
the initial PSO based approaches in Section 3.3 and Section 4.3. Hence, the
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presented work in this chapter is based on the Q-PSO based approaches for rank
level and score level fusion.

The remainder of this chapter is organized as following: The formulation of
each of the rank level and the score level fusion of multimodal biometrics as an
optimization problem is revisited in Section 6.1. The proposed approach for search
space-reduction is presented in Section 6.2. The search space-reduced quality-
incorporated particle swarm optimization based rank level and score level fusion
approaches are presented in Section 6.3. Performances of the search space-reduced
quality-incorporated rank level and score level fusion approaches are discussed in
Section 6.4. Finally, the concluding remarks are drawn in Section 6.5.

6.1 Multimodal Fusion as an Optimization
Problem

In the earlier works on rank level and score level fusion (Chapter 3 and Chapter 4,
respectively), the fusions of multimodal biometrics at rank and at score levels have
been conceptualized as optimization problems. The problem formulations for rank
level fusion (Chapter 3) and score level fusion (Chapter 4) are briefly revisited in
the following subsections.

6.1.1 Rank Level Fusion as an Optimization Problem
Let L1, L2,. . ., LN be rank-ordered lists of subjects corresponding to N number
of biometric modalities for identifying a person. In Section 3.1, the problem
of obtaining an aggregated rank-ordered list of subjects has been formulated as
an optimization problem. The objective function for this optimization problem
minimizes a weighted summation of distances of the input lists L1, L2,. . ., LN

from the aggregated list. The objective function (which has been stated earlier
in Eq. 3.2) is repeated here for the sake of completeness of this chapter.

minimize ϕ(δ) =
N∑

i=1
wi ×d(δ,Li) (6.1)

Here, a candidate fused list is represented by δ. The distance d(δ,Li) is a
distance between a candidate fused list δ and an input list Li. The weighted
Spearman footrule distance [180] is used to estimate the distance between these
two lists. The estimation of the said distance for two such lists is given in Eq.
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3.3. The influence factor as weight in the weighted Spearman footrule distance
is estimated using Eq. 3.4. Moreover, a weight wi is associated with each of
the N biometric modalities. Here, the weight represents the significance of the
corresponding biometric modality. Similar to the earlier approach of rank level
fusion (Section 5.3), the weight of each modality is assigned using the quality of
the biometric information in a signal.

6.1.2 Score Level Fusion as an Optimization Problem
Let Ŝ1, Ŝ2, . . ., ŜN be normalized score lists corresponding to N number of bio-
metric modalities for identifying a person. Min-max normalization (Eq. 2.1) is
used for score normalization throughout this thesis. Fusion of these normalized
score lists has been formulated as an optimization problem in Section 4.1. The
objective of this optimization problem is to obtain a fused score list having the
minimum weighted summation of distances of the input normalized score lists Ŝ1,
Ŝ2, . . ., ŜN from the fused list. As a result, the objective function for generating
the aggregated score list is:

minimize ϕ(δ) =
N∑

i=1
wi ×d(δ, Ŝi) (6.2)

Here, a candidate fused score list is represented by δ. The function d(δ, Ŝi)
denotes distance between a candidate fused score list δ and a normalized input
score list Ŝi. Similar to the work on rank level fusion approach (Section 6.1.1),
a weighted Spearman footrule distance [180] is used to measure the above said
distance. The estimation of the weighted Spearman footrule distance is presented
in Eq. 4.4. The influence factor of an enrolled subject as a weight in the estimation
of weighted Spearman footrule distance is determined using Eq. 4.5. Moreover,
similar to the work on rank level fusion, a weight wi is associated with each of
the N biometric modalities. Here, the weight represents the significance of the
corresponding biometric modality. Similar to the earlier approach of score level
fusion (Section 5.3.2), the weight of each modality is assigned depending on the
quality of the biometric information in a signal.
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6.1.3 Challenges in Above Optimization Based Ap-
proaches

The above stated optimization problems in the context of rank level fusion and
score level fusion have been solved using novel particle swarm optimization (PSO)
based approaches in Section 3.3 and Section 4.3, respectively. Genetic algorithm
(GA) based approaches have also been proposed in the above contexts (Section
3.2 and Section 4.2). But faster convergence of the PSO based approaches than
the GA based approaches have guided the subsequent works to adopt only the
PSO based approaches. Quality-incorporated PSO (Q-PSO) based approaches
improve the recognition accuracies further in Chapter 5 for rank level and score
level fusion approaches. In all of these works, the position of a particle represents
a candidate fused list of either ranks or similarity scores of each of the enrolled
subjects with respect to a probe subject. Let the number of enrolled subjects be
n. Hence, there are n number of ranks or matching scores as part of candidate
fused lists. Therefore, position of a particle can be perceived as a point in a
n-dimensional space.

The particle swarm optimization (PSO) is a meta-heuristic optimization algo-
rithm. It iteratively searches for the optimal solution in the entire search space.
The search space in particle swarm optimization algorithm depends on the di-
mension of a candidate solution. In context of rank level and score level fusion
of multimodal biometrics, this dimension is equal to the total number of enrolled
users. If there are n enrolled users, then each candidate solution is of n-dimension.
Moreover, the fitness evaluation, velocity updation and position updation involve
computations of vectors having n-dimension. Therefore, the particle swarm op-
timization will converge faster if the dimension of the search space is reduced.
Hence, the current work proposes novel approaches for dimensionality reduction
of search spaces in the context of optimization based approaches for rank level
and score level fusion. This dimensionality reduction is proposed to improve the
convergence rate of the Q-PSO based algorithms. The proposed approaches for
dimensionality reduction of search spaces are presented in next section.
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6.2 Proposed Approaches for Search Space Re-
duction

The convergence rate of particle swarm optimization is dependent on the dimen-
sion of search space. Therefore, novel approaches for search space reduction are
proposed in this work. The detailed descriptions of the proposed approaches for
search space reduction are presented in this section in the context of rank level
and score level fusion of multimodal biometrics.

6.2.1 Search Space Reduction for Rank Level Fusion
Let L1, L2,. . ., LN be rank-ordered lists of subjects corresponding to N number
of biometric modalities for identifying a person. Each rank-ordered list is of n-
dimension corresponding to n enrolled users. Steps of the proposed approach for
dimensionality reduction of search space are narrated here with the help of an
example.

• Step 1: The subjects appearing at the top position in each of the N rank-
ordered lists are identified as T1, T2, . . ., TN . Due to their appearances in
the top positions in the input lists, these subjects are treated as potential
matches for the probe subject. Then, the position of the subject Ti (appear-
ing at the top position in Li list) is identified in every other jth list as P j

i

(for every j ̸= i). Basically, the position of a potential matching subject is
explored in all other rank-ordered lists. Let there be five enrolled subjects
A, B, C, D and E. The rank-ordered lists of these subjects are presented as
L1, L2 and L3 in Fig. 6.1 (Step 1) for three different biometric modalities.
The subject B appears at the top position in the rank-ordered list L1 i.e.,
T1 = ’B’. Similarly, subject A appears at the top positions in rank-ordered
lists L2 and L3, i.e., T2 = T3 = ’A’. Initially, these two subjects have been
assessed as the top contenders for the potential match with the probe sub-
ject. The subject B (being indicated using red rectangle) is at 2nd position
in rank-ordered list L2 (P 2

1 = 2). The subject B is also at 3rd position in
rank-ordered list L3 (P 3

1 = 3). Similarly, the positions of subject A (being
indicated using green rectangle) in rank-ordered lists L1, L2 and L3 are 2nd,
1st and 1st, respectively. Hence, P 1

2 = P 1
3 = 2 and P 3

2 = P 2
3 = 1.
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Figure 6.1: An illustration of search space-reduction for rank level fusion
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Finally, the maximum position value P j for each rank-ordered list j is iden-
tified as:

P j = max
∀i

P j
i (6.3)

In the above example in Fig. 6.1 (Step 1), the maximum position value
P 1 for rank-ordered list L1 is 2 (as max(P 1

2 ,P 1
3 ) = 2). Similarly, the

maximum position P 2 in the rank-ordered list L2 is 2 (as max(P 2
1 ,P 2

3 ) =
max(2,1) = 2). The maximum position P 3 in the rank-ordered list L3 is 3
(as max(P 3

1 ,P 3
2 ) = max(3,1) = 3). This maximum position value P j in a

jth list hosts a potentially matching subject. Hence, all preceding subjects
in the list Lj according to rank order have to be considered as potentially
matching subjects. These subjects have to be considered in the reduced list.
Therefore, according the illustration in Fig. 6.1 (Step 1), subjects B and A

(rank-ordered) are potential matches with the probe in rank-ordered list L1
as the maximum position value P 1 for rank-ordered list L1 is 2. Similarly,
subject identities A and B are potential matches with the probe in rank-
ordered list L2 and subject identities A, E and B are potential matches
with the probe in rank-ordered list L3.

• Step 2: Therefore, the set of subject identities (IDj) for each modality j is
already obtained in step 1 based on the selected subject identities (potential
matches). For example, in Fig. 6.1 (Setp 2), the set of subject identities
(ID1) for list L1 is ID1 = {B,A}. Similarly, the sets of subject identities
for lists L2 and L3 are ID2 = {A,B} and ID3 = {A,E,B}, respectively.
In step 2, union of potential matches from these sets of subject identities
generates an exhaustive list of potential matches. In the above example, the
exhaustive list of potential matches contains subject identities A, B and E

as illustrated in Fig. 6.1 (Step 2).

• Step 3: Finally, the selected subjects (subject identities in exhaustive list
of potential matches) are only used to construct the reduced rank-ordered
list in each modality. The new reduced rank-ordered list Lr

j for jth modality
is derived from the initial list Lj . The selected subjects in the reduced rank-
ordered list Lr

j maintain their relative ordering as similar to the initial list
Lj . As illustrated in Fig. 6.1 (Step 3), the first reduced rank-ordered list Lr

1
is B, A, and E. Similarly, the reduced rank-ordered lists Lr

2 is A, B and E.
The reduced rank-ordered lists Lr

3 is A, E and B. Each initial rank-ordered
list Lj has dimension n. A new reduced rank-ordered list Lr

j is of reduced
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dimension nr. In the above example, dimension of the rank-ordered subject
list is reduced from 5 to 3, as it is shown in Fig. 6.1 (Step 3).

6.2.2 Search Space Reduction for Score Level Fusion
Dimensionality reduction of search space is addressed in this subsection for score
level fusion of multimodal biometrics. Let Ŝ1, Ŝ2,. . ., ŜN be normalized score lists
corresponding to N number of biometric modalities for identifying a person in the
context of score level fusion. Each normalized score list is of n-dimension corre-
sponding to n enrolled users. Steps of the proposed approach for dimensionality
reduction of search space are narrated here with the help of an example.

• Step 1: The first step is to construct the rank-ordered lists of subjects L1,
L2,. . ., LN by considering the normalized similarity scores in descending
order (for similarity scores). Let there be five enrolled subjects A, B, C, D
and E. The normalized score lists Ŝ1, Ŝ2 and Ŝ2 for three different modalities
contain the normalized scores for enrolled subject identities with respect to
a probe as shown in Fig. 6.2 (Step 1). The rank-ordered list of subjects
corresponding to normalized score list Ŝ1 is L1. It contains subject identities
based on the descending order of their normalized similarity scores in the
normalized score list Ŝ1. It is shown in Fig. 6.2 (Step 1). Similarly, the
rank-ordered lists L2 and L3 are obtained from normalized score lists Ŝ2
and Ŝ3, respectively. Then, the step 1 of search space reduction for rank
level fusion (Section 6.2.1) is performed to identify the potential matches
for each rank-ordered list Li. This illustration is shown in Fig. 6.2 (Step
1). In the above example, the subject A appears at top positions in L1 and
L3 lists, i.e., T1 = T3 = ’A’. Similarly, subject B appears at top position in
L2, i.e., T2 = ’B’. Initially, these two subjects have been assessed as the top
contenders for the potential match with the probe subject. The subject A
(being indicated using red rectangle) is at 3rd position in rank-ordered list
L2 (P 2

1 = P 2
3 = 3). The subject A is also at 1st position in rank-ordered list

L3 (P 3
1 = P 1

3 = 1). Similarly, the positions of subject B (being indicated
using green rectangle) in rank-ordered lists L1, L2 and L3 are 2nd, 1st and
2nd, respectively. Hence, P 1

2 = P 3
2 = 2.

Finally, the maximum position value P j for each rank-ordered list j is identi-
fied using Eq. 6.3. In the above example in Fig. 6.2 (Step 1), the maximum
position value P 1 for rank-ordered list L1 is 2 (as max(P 1

2 ,P 1
3 ) = max(2,1)
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Figure 6.2: An illustration of search space-reduction for score level fusion
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= 2). Similarly, the maximum position P 2 in the rank-ordered list L2 is
2 (as max(P 2

1 ,P 2
3 ) = max(3, 3) = 3). The maximum position P 3 in the

rank-ordered list L3 is 2 (as max(P 3
1 ,P 3

2 ) = max(1,2) = 2). This maxi-
mum position value P j in a jth list hosts a potentially matching subject.
Hence, all preceding subjects in the list Lj according to rank order have
to be considered as potentially matching subjects. These subjects have to
be considered in the reduced list. Therefore, according the illustration in
Fig. 6.2 (Step 1), subjects A and B (rank-ordered) are potential matches
with the probe in rank-ordered list L1 as the maximum position value P 1

for rank-ordered list L1 is 2. Similarly, subject identities B, C and A are
potential matches with the probe in rank-ordered list L2 and subject iden-
tities A and B are potential matches with the probe in rank-ordered list
L3.

• Step 2: A set of subject identities (IDj) for each list j is obtained in
step 1 based on the selected subject identities (potential matches). For
example, in Fig. 6.2 (Step 2), the set of subject identities (ID1) for lists
L1 is ID1 = {A,B}. Similarly, the sets of subject identities for list L2 and
L3 are ID2 = {B,C,A} and ID3 = {A,B}, respectively. Similar to the
step 2 of search space reduction for rank level fusion (Section 6.2.1), union
of these sets of subject identities generates an exhaustive list of potential
matches. In the above example, the exhaustive list of potential matches
contains subject identities A, B and C as illustrated in Fig. 6.1 (Step 2).

• Step 3: Finally, the normalized scores of the selected subjects (subject
identities in the exhaustive list of potential matches) are only used to con-
struct the reduced score list in each modality. The new reduced score list
Sr

j for jth modality is derived from the initial list Ŝj . As shown in Fig. 6.2
(Step 3), the first reduced score list Sr

1 has normalized scores of subjects
A, B and C from the initial normalized score list Ŝ1 (i.e., 1, 0.9, and 0.3).
Similarly, the reduced score lists Sr

2 and Sr
3 contain the normalized scores of

the selected set of subjects form the original normalized score lists Ŝ2 and
Ŝ3, respectively. It is shown in Fig. 6.2 (Step 3). Each initial normalized
score list Lj has dimension n. The corresponding new reduced score list
Sr

j is of reduced dimension nr. In the above example, the dimension of the
score list is reduced from 5 to 3 as it is shown in Fig. 6.2 (Step 3).
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6.3 Proposed Search Space-Reduced Quality-
Incorporated Particle Swarm Optimization
Based Fusion Approaches

In the previous works on particle swarm optimization based fusion approaches for
rank level (Section 3.3 and Section 5.3.1) and score level (Section 4.3 and Section
5.3.2), position of a particle represents a candidate fused list of either rank-ordered
subjects or similarity scores. In these approaches, the dimension of each candi-
date list is same as the number of enrolled users n. Novel approaches for reducing
the dimension of search spaces are proposed in Section 6.2.1 and Section 6.2.2 in
the context of rank level fusion and score level fusion, respectively. Based on the
discussions in Section 6.2, novel search space-reduced quality-incorporated par-
ticle swarm optimization based fusion approaches at rank level (RQ-PSO Rank)
and at score level (RQ-PSO Score) are presented in this section to achieve faster
convergence.

6.3.1 Proposed Search Space-Reduced Quality-
Incorporated Particle Swarm Optimization Based
Rank Level Fusion Approach

In this work, the approach for weight assignment to each biometric modality
(Section 5.2) is combined with the proposed approach for dimensionality reduction
of search space (Section 6.2.1). At first, the quality of biometric information is
estimated using Eq. 5.3 for each modality. Weight for each modality is derived
using the estimated qualities of the input biometric signals (Eq. 5.4). These
weights are used in the optimization problem in Eq. 6.1.

Then, the dimensions of the input lists and the search space are reduced
using the proposed approach in Section 6.2.1. Subsequently, particle swarm opti-
mization (PSO) is applied to solve the stated optimization problem in a reduced
search space. The proposed approach is same as the PSO based rank level fusion
approach in Section 3.3 and quality-incorporated PSO based rank level fusion
(Q-PSO Rank) approach in Section 5.3.1. Representation of a particle posi-
tion, initialization of a population, exploration of other candidate solutions and
stopping criteria in the proposed search space-reduced quality-incorporated PSO
based rank fusion approach (RQ-PSO Rank) are maintained as exactly same as
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the previous PSO based rank level fusion approach in Section 3.3 and quality-
incorporated PSO based rank level fusion (Q-PSO Rank) approach in Section
5.3.1.

6.3.2 Proposed Search Space-Reduced Quality-
Incorporated Particle Swarm Optimization Based
Score Level Fusion Approach

Similar to the work in rank level fusion (Section 6.3.1), the proposed approach for
weight assignment to each biometric modality (Section 5.2) is combined with the
proposed approach for dimensionality reduction of search space (Section 6.2.2).
At first, the quality of biometric information is estimated using Eq. 5.3 for each
modality. Weight for each modality is derived using the estimated qualities of
the input biometric signals (Eq. 5.4). These weights are used in the optimization
problem in Eq. 6.2.

The dimensions of the input lists and the search space are reduced using the
proposed approach in Section 6.2.2. Subsequently, particle swarm optimization
(PSO) is applied to solve the stated optimization problem in a reduced search
space. The rest of the proposed approach is same as the PSO based score level
fusion approach in Section 4.3 and quality-incorporated PSO based score level
fusion (Q-PSO Score) approach in Section 5.3.2. Representation of a particle
position, initialization of a population, exploration of other candidate solutions
and stopping criteria in the proposed search space-reduced quality-incorporated
PSO based score fusion approach (RQ-PSO Score) are maintained as exactly same
as the previous PSO based score level fusion approach in Section 4.3 and quality-
incorporated PSO based score level fusion (Q-PSO Score) approach in Section
5.3.2.

6.4 Performance Evaluation and Discussion
Detailed performance analysis is carried out for the proposed search space-reduced
quality-incorporated PSO based fusion approaches at rank level (RQ-PSO Rank)
and at score level (RQ-PSO Score). Experimental study on the performances of
the proposed approaches are reported using four multimodal biometric datasets.
The first two datasets are virtually created multimodal biometric datasets in-
volving face and iris biometrics, namely virtual multimodal biometric dataset
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FaceIris-V1 and virtual multimodal biometric dataset FaceIris-V2. The remain-
ing two datasets are NIST BSSR1 multimodal dataset (set 1) [193] involving
face and fingerprint modalities and OU-ISIR BSS4 multi-algorithm gait dataset
[2, 194] involving multiple feature extraction methods of gait biometrics.

Performances of the proposed search space-reduced quality-incorporated PSO
based fusion approaches at rank level (RQ-PSO Rank) and at score level (RQ-PSO
Score) are experimentally exhibited in comparison to existing fusion schemes at
score and rank levels. Moreover, supremacies of the proposed approaches are also
evaluated with respect to the PSO based rank level fusion approach (Section 3.3)
and the PSO based score level fusion approach (Section 4.3) in terms of average
number of iterations and the average execution time (in seconds) being taken
to achieve convergence. The above analysis is presented in following subsections
using each of the above four datasets.

6.4.1 Fusion of Multimodal Biometrics Involving Face
and Iris (Virtual Multimodal Biometric Dataset
FaceIris-V1)

Performances of the proposed approaches are evaluated on virtually created
dataset, namely FaceIris-V1, involving face and iris modalities. This virtu-
ally created dataset (FaceIris-V1) contains face images from the cross-age LFW
(CALFW) face dataset [210] and iris images from IIT Delhi iris database (version
1.0) [211]. Details of this dataset is presented in Section 5.4.1.

Two score lists are obtained for each probe in the virtual multimodal biometric
dataset FaceIris-V1 for two biometric modalities. Two rank lists are derived for
each probe from the above two score lists. Initially, these score and rank lists are of
size 435, which is equal to number of unique individuals. The size of these rank
lists are reduced using the proposed search space-reduction approach (Section
6.2). These reduced rank lists are considered as inputs to the proposed search
space-reduced quality-incorporated particle swarm optimization based rank level
fusion approach (RQ-PSO Rank) in Section 6.3.1 and other existing rank level
fusion approaches in Section 3.2.2.1. The window size on number of iteration to
decide the convergence of the proposed RQ-PSO Rank based fusion approach is
experimentally decided as 60 for this dataset.

Moreover, the two score lists are normalized using min-max normalization (Eq.
2.1). It is to be noted that the generated score for face modality is a similarity
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Table 6.1: Recognition accuracies (in %) of the proposed search space-reduced
quality-incorporated PSO based fusion approaches with respect to those of uni-
modal matchers on virtual multimodal biometric dataset FaceIris-V1

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal
Face [210] 91.26 92.41 92.41

Iris [211] 89.66 90.80 91.49

Proposed RQ-PSO Rank Fusion 98.16 98.62 98.62

Proposed RQ-PSO Score Fusion 98.62 98.85 99.08

score. On the contrary, the generated score for iris modality is a dissimilarity
score. Hence, the normalized scores for iris modality are converted to similarity
scores by subtracting the normalized scores from 1. Similar to the rank level
fusion, in score level fusion, the sizes of these normalized score lists are reduced
using the proposed search space-reduction approach (Section 6.2). These reduced
normalized similarity score lists are then used as inputs to the proposed search
space-reduced quality-incorporated particle swarm optimization based score level
fusion approach (RQ-PSO Score) (Section 6.3.2) and other existing score level
fusion approaches in Section 3.2.2.1. The window size on number of iteration to
decide the convergence of the proposed RQ-PSO Score based fusion approach is
experimentally decided as 100 for this dataset.

The recognition accuracies (in %) for the proposed search space-reduced
quality-incorporated PSO based fusion approaches at rank level (RQ-PSO Rank)
and at score level (RQ-PSO Score) as well as each unimodal matcher are pre-
sented in Table 6.1 for virtual multimodal biometric dataset FaceIris-V1. The
recognition accuracies are estimated using Eq. 3.7. These recognition accura-
cies are reported for the probe being found within top-1, top-2 and top-3 ranks
(cumulative) in the aggregated rank lists and score lists. The usefulness of the
proposed fusion approaches over each of the unimodal matchers is obvious from
the reported results in Table 6.1.

Furthermore, the recognition accuracies of the comparing approaches within
top-1, top-2 and top-3 positions along with those for the proposed approaches are
presented in Table 6.2. It can be seen from the reported recognition accuracies
that the proposed search space-reduced quality-incorporated PSO based fusion
approaches at rank level (RQ-PSO Rank) and at score level (RQ-PSO Score) per-
form better than existing state-of-the-art rank and score level fusion approaches.

161



6.4 Performance Evaluation and Discussion

Table 6.2: Performance comparison of the existing rank and score level fusion
approaches with the proposed RQ-PSO based fusion approaches on virtual multi-
modal dataset FaceIris-V1 using cumulative recognition accuracies in %

Methods Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level

Weighted Sum [51] 97.70 98.16 98.16
Max [1] 91.49 98.85 98.85
Min [1] 93.79 94.02 94.02
Product [1] 94.02 94.94 95.17
Sum-OEBA [67] 91.26 92.41 92.64
Sum-MOEBA [67] 93.79 94.48 94.71
Sum-OEVBA [82] 94.48 95.86 96.09
Hamacher t-norm [69] 94.02 94.94 95.17
Frank t-norm [69] 94.02 94.94 95.17
WQAM cos [62] 97.70 98.16 98.16
WQAM cosr [62] 98.16 98.62 98.62
WQAM tan [62] 98.16 98.85 99.08
WQAM sin [62] 96.55 96.78 97.01
WQAM r1/s [62] 98.16 98.62 98.62
WQAM rs [62] 97.93 98.62 98.62
WQAM sr [62] 97.70 98.39 98.62
WQAM log [62] 97.70 98.39 98.62
WQAM exp [62] 97.70 98.16 98.39
PSO Score (Section 4.3) 95.40 97.70 98.16
Q-PSO Score (Section 5.3.2) 98.62 98.85 99.08
Proposed RQ-PSO Score 98.62 98.85 99.08

Rank Level

Borda Count [34] 92.18 94.02 94.25
WBorda [34] 95.63 96.55 97.24
Highest Rank [35] 91.49 98.85 98.85
Exp [33] 94.48 95.4 96.09
WExp [33] 91.03 92.64 93.1
DivExp [32] 93.33 94.02 94.94
Log [32] 96.78 97.47 98.16
PSO Rank (Section 3.3) 94.94 96.32 97.24
Q-PSO Rank (Section 5.3.1) 98.16 98.62 98.62
Proposed RQ-PSO Rank 98.16 98.62 98.62
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Figure 6.3: CMC plots for existing rank level fusion approaches being compared
with that of the proposed RQ-PSO based fusion approaches for first virtual

multimodal biometric dataset FaceIris-V1

Moreover, it can also be observed from the Table 6.2 that the recognition accura-
cies of the proposed RQ-PSO Rank (Section 6.3.1) and RQ-PSO Score (Section
6.3.2) based approaches after reducing the dimension of the search space remain
as same as that of quality-incorporated PSO based fusion approaches at rank
level (Q-PSO Rank) (Section 5.3.1) and at score level (Q-PSO Score) (Section
5.3.2).

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are presented using cumulative match characteristic (CMC) curves in Fig.
6.3 and Fig. 6.4. The proposed RQ-PSO based fusion approaches outperform
existing rank and score level fusion approaches, as it can be observed in the CMC
curves in Fig. 6.3 and Fig. 6.4.

Moreover, the main idea behind the proposed work in this chapter is to speed
up the execution of the PSO based approaches for multimodal biometrics while
maintaining the same level of recognition accuracies. The effectiveness of the
proposed search space-reduction approach (Section 6.2) is presented in Table 6.3.
It can be observed from the table that average number of iterations to converge
for each of the proposed RQ-PSO based rank and score level fusion approaches
significantly decreases by using the proposed search space-reduction approach
(Section 6.2). The PSO based rank level fusion approach (Section 3.3) takes
1280 iterations (rounded off to the nearest integer) on an average to reach at
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Figure 6.4: CMC plots for existing score level fusion approaches being compared
with that of the proposed RQ-PSO based fusion approaches for first virtual

multimodal biometric dataset FaceIris-V1

the optimal solution in 2.72 seconds. Here, the average dimension of the search
space is 435, as there are 435 enrolled users in this dataset. After applying the
proposed search space-reduction approach (Section 6.2.1), the average dimension
of the search space is reduced to 45 (rounded off to the nearest integer). Due
to the achieved reduction in average dimension of search space, the proposed
RQ-PSO based rank level fusion approach takes only 103 number of iterations
on an average (rounded off to the nearest integer) to find the optimal solution.
Furthermore, the significant improvement in the average execution time due to
reduced dimension is also seen from Table 6.3. The proposed RQ-PSO based
rank level fusion approach takes 0.10 seconds on an average to find the optimal
solution.

Similar observations are reported in Table 6.3 for PSO based score level fu-
sion approach (Section 4.3) and the proposed RQ-PSO based score level fusion
approach. The PSO based score level fusion approach (Section 4.3) takes 1027
iterations (rounded off to the nearest integer) on an average to reach at the op-
timal solution in 0.35 seconds. Here, the average dimension of the search space
is 435, as there are 435 enrolled users in this dataset. After applying the pro-
posed search space-reduction approach (Section 6.2.2), the average dimension of
the search space is reduced to 45 (rounded off to the nearest integer). Due to
the achieved reduction in average dimension of search space, the proposed RQ-
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Table 6.3: Performance comparison of PSO based rank (Section 3.3) and PSO
based score (Section 4.3) level fusion approaches with the proposed RQ-PSO based
fusion approaches on virtual multimodal dataset FaceIris-V1 using average number
of iterations, average execution time and average dimension of search space

Methods

Average number of iterations

to converge (rounded off

to the nearest integer)

Average execution time

(seconds)

Average dimension of search

space (rounded off to

the nearest integer)

PSO Rank (Section 3.3) 1280 2.72 435

Proposed RQ-PSO Rank 103 0.10 45

PSO Score (Section 4.3) 1027 0.35 435

Proposed RQ-PSO Score 243 0.06 45

PSO based score level fusion approach takes only 243 number of iterations on an
average (rounded off to the nearest integer) to find the optimal solution. Further-
more, the significant improvement in the average execution time due to reduced
dimension is also seen in Table 6.3. The proposed RQ-PSO based score level
fusion approach takes 0.06 seconds on an average to find the optimal solution.
It is also noted that the proposed RQ-PSO Score based approach executes faster
(average execution time 0.06 seconds) than the proposed RQ-PSO Rank based
approach (average execution time 0.10 seconds). Moreover, the reduced dimen-
sion of search space for both the approaches (RQ-PSO Rank and RQ-PSO Score)
is same. This is because the search space-reduction approach for score level fu-
sion (Section 6.2.2) converts the score lists into rank-ordered lists and then use
the steps as similar as the search space-reduction approach for rank level fusion
(Section 6.2.1) to reduce the dimension of the search space.

6.4.2 Fusion of Multimodal Biometrics Involving Face and
Iris (Virtual Multimodal Dataset FaceIris-V2)

The second virtual multimodal biometric dataset (FaceIris-V2) is created by com-
bining the face biometrics from CelebFaces attributes dataset (CelebA) [212] and
iris biometrics from IIT Delhi iris database (version 1.0) [211]. Details of this
dataset is presented in Section 5.4.2.

Two score lists are obtained for each probe in the virtual multimodal biometric
dataset FaceIris-V2 for two biometric modalities. Two rank lists are derived for
each probe from the above two score lists. Initially, these score and rank lists
are of size 435, which is the number of unique individuals in this dataset. The
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sizes of these rank lists are reduced using the proposed search space-reduction
approach (Section 6.2). These reduced rank lists are considered as inputs to the
proposed search space-reduced quality-incorporated particle swarm optimization
based rank level fusion approach (RQ-PSO Rank) in Section 6.3.1 and other
existing rank level fusion approaches in Section 3.2.2.1. The window size on
number of iteration to decide the convergence of the proposed RQ-PSO Rank
based fusion approach is experimentally decided as 600 for this dataset.

Moreover, the two score lists are normalized using min-max normalization (Eq.
2.1). Similar to the virtual multimodal dataset FaceIris-V1, the normalized dis-
similarity scores for iris modality are converted to similarity score by subtracting
the normalized scores from 1. The sizes of these normalized score lists are reduced
using the proposed search space-reduction approach (Section 6.2). These reduced
normalized similarity score lists are then used as inputs to the proposed search
space-reduced quality-incorporated particle swarm optimization based score level
fusion approach (RQ-PSO Score) (Section 6.3.2) and other existing score level
fusion approaches in Section 3.2.2.1. The window size on number of iteration to
decide the convergence of the proposed RQ-PSO Score based fusion approach is
experimentally decided as 100 for this dataset.

The recognition accuracies (in %) for the proposed search space-reduced
quality-incorporated PSO based fusion approaches at rank level (RQ-PSO Rank)
and at score level (RQ-PSO Score) as well as each unimodal matcher are pre-
sented in Table 6.4 for virtual multimodal biometric dataset FaceIris-V2. The
recognition accuracies are estimated using Eq. 3.7. These recognition accura-
cies are reported for the probe being found within top-1, top-2 and top-3 ranks
(cumulative) in the aggregated rank lists and score lists. The usefulness of the
proposed fusion approaches over each of the unimodal matchers is obvious from
the reported results in Table 6.4.

Furthermore, the recognition accuracies of the comparing approaches within
top-1, top-2 and top-3 positions along with those for the proposed approaches are
presented in Table 6.5. It can be seen from the reported recognition accuracies
that the proposed search space-reduced quality-incorporated PSO based fusion
approaches at rank level (RQ-PSO Rank) and at score level (RQ-PSO Score)
perform better than the majority of existing state-of-the-art rank and score level
fusion approaches. Only the WQAM tan approach [62] performs as equal as the
proposed approaches for the top most position. Moreover, it can also be observed
from the Table 6.5 that the recognition accuracies of the proposed RQ-PSO Rank
(Section 6.3.1) and RQ-PSO Score (Section 6.3.2) based approaches after reducing
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Table 6.4: Recognition accuracies (in %) of the proposed search space-reduced
quality-incorporated PSO based fusion approaches with respect to those of uni-
modal matchers on virtual multimodal biometric dataset FaceIris-V2

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal
Face [212] 93.79 94.25 94.48

Iris [211] 89.66 90.80 91.49

Proposed RQ-PSO Rank Fusion 99.31 99.31 99.31

Proposed RQ-PSO Score Fusion 99.31 99.31 99.31

the dimension of the search space remain as same as that of quality-incorporated
PSO based fusion approaches at rank level (Q-PSO Rank) (Section 5.3.1) and at
score level (Q-PSO Score) (Section 5.3.2).

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are presented using cumulative match characteristic (CMC) curves in Fig.
6.5 and Fig. 6.6. The proposed RQ-PSO based fusion approaches outperform
existing rank and score level fusion approaches, as it can be observed in the CMC
curves in Fig. 6.5 and Fig. 6.6.

Moreover, the main idea behind the proposed work in this chapter is to speed
up the execution of the PSO based approaches for multimodal biometrics while
maintaining the same level of recognition accuracies. The effectiveness of the
proposed search space-reduction approach (Section 6.2) is presented in Table 6.6.
It can be observed from the table that average number of iterations to converge
for each of the proposed RQ-PSO based rank and score level fusion approaches
significantly improves by using the proposed search space-reduction approach
(Section 6.2). The PSO based rank level fusion approach (Section 3.3) takes
3054 iterations (rounded off to the nearest integer) on an average to reach at
the optimal solution in 6.95 seconds. Here, the average dimension of the search
space is 435, as there are 435 enrolled users in this dataset. After applying the
proposed search space-reduction approach (Section 6.2.1), the average dimension
of the search space is reduced to 46 (rounded off to the nearest integer). Due
to the achieved reduction in average dimension of the search space, the proposed
RQ-PSO based rank level fusion approach takes only 1088 number of iterations
on an average (rounded off to the nearest integer) to find the optimal solution.
Furthermore, the significant improvement in the average execution time due to
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Table 6.5: Performance comparison of the existing rank and score level fusion
approaches with the proposed RQ-PSO based fusion approaches on virtual multi-
modal biometric dataset FaceIris-V2 using cumulative recognition accuracies in %

Methods Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level

Weighted Sum [51] 98.16 98.62 98.62
Max [1] 93.1 100 100
Min [1] 94.48 94.71 94.71
Product [1] 95.17 95.63 96.32
Sum-OEBA [67] 93.79 94.25 94.48
Sum-MOEBA [67] 94.71 95.4 95.63
Sum-OEVBA [82] 94.71 95.4 95.63
Hamacher t-norm [69] 95.17 95.86 96.32
Frank t-norm [69] 95.17 95.63 95.86
WQAM cos [62] 98.16 98.85 98.85
WQAM cosr [62] 98.85 99.31 99.31
WQAM tan [62] 99.31 100 100
WQAM sin [62] 97.24 97.47 97.7
WQAM r1/s [62] 98.85 99.31 99.31
WQAM rs [62] 98.39 99.08 99.08
WQAM sr [62] 98.16 99.08 99.08
WQAM log [62] 98.16 99.08 99.08
WQAM exp [62] 98.16 98.85 98.85
PSO Score (Section 4.3) 96.32 98.85 99.08
Q-PSO Score (Section 5.3.2) 99.31 99.31 99.31
Proposed RQ-PSO Score 99.31 99.31 99.31

Rank Level

Borda Count [34] 91.49 92.64 93.56
WBorda [34] 94.94 95.86 96.09
Highest Rank [35] 93.10 100 100
Exp [33] 94.48 95.40 95.63
WExp [33] 91.03 91.72 92.41
DivExp [32] 94.02 95.17 96.55
Log [32] 94.94 96.09 97.24
PSO Rank (Section 3.3) 96.09 98.85 99.08
Q-PSO Rank (Section 5.3.1) 99.31 99.31 99.31
Proposed RQ-PSO Rank 99.31 99.31 99.31
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6.4 Performance Evaluation and Discussion

Figure 6.5: CMC plots for existing rank level fusion approaches being compared
with that of the proposed RQ-PSO based fusion approaches for second virtual

multimodal biometric dataset FaceIris-V2

Figure 6.6: CMC plots for existing score level fusion approaches being compared
with that of the proposed RQ-PSO based fusion approaches for second virtual

multimodal biometric dataset FaceIris-V2
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Table 6.6: Performance comparison of PSO based rank (Section 3.3) and PSO
based score (Section 4.3) level fusion approaches with the proposed RQ-PSO based
fusion approaches on virtual multimodal dataset FaceIris-V2 using average number
of iterations, average execution time and average dimension of search space

Methods

Average number of iterations

to converge (rounded off

to the nearest integer)

Average execution time

(seconds)

Average dimension of search

space (rounded off to

the nearest integer)

PSO Rank (Section 3.3) 3054 6.95 435

Proposed RQ-PSO Rank 1088 0.65 46

PSO Score (Section 3.3) 984 0.35 435

Proposed RQ-PSO Score 259 0.07 46

reduced dimension is also seen in Table 6.6. The proposed RQ-PSO based rank
level fusion approach takes 0.65 seconds on an average to find the optimal solution.

Similar observations are reported in Table 6.6 for PSO based score level fu-
sion approach (Section 4.3) and the proposed RQ-PSO based score level fusion
approach. The PSO based score level fusion approach (Section 4.3) takes 984 it-
erations (rounded off to the nearest integer) on an average to reach at an optimal
solution in 0.35 seconds. Here, the average dimension of the search space is 435, as
there are 435 enrolled users in this dataset. After applying the proposed search
space-reduction approach (Section 6.2.2), the average dimension of the search
space is reduced to 46 (rounded off to the nearest integer). Due to the achieved
reduction in average dimension of search space, the proposed RQ-PSO based score
level fusion approach takes only 259 number of iterations on an average (rounded
off to the nearest integer) to find the optimal solution. Furthermore, the signifi-
cant improvement in the average execution time due to reduced dimension is also
seen in Table 6.6. The proposed RQ-PSO based score level fusion approach takes
0.07 seconds on an average to find the optimal solution. It is also noted that
the proposed RQ-PSO Score based approach executes faster (average execution
time 0.07 seconds) than the proposed RQ-PSO Rank based approach (average
execution time 0.65 seconds). Moreover, the reduced dimension of search space
for both the approaches (RQ-PSO Rank and RQ-PSO Score) is same. This is
because the search space-reduction approach for score level fusion (Section 6.2.2)
converts the score lists into rank-ordered lists and then use the steps as similar
to the search space-reduction approach for rank level fusion (Section 6.2.1) to
reduce the dimension of the search space.
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6.4 Performance Evaluation and Discussion

Table 6.7: Recognition accuracies (in %) of the proposed search space-reduced
quality-incorporated PSO based fusion approaches with respect to those of uni-
modal matchers on NIST BSSR1 multimodal dataset (set 1)

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal

Face Matcher G 83.37 86.28 88.40

Face Matcher C 88.78 90.52 91.50

Left Fingerprint 85.70 87.04 87.81

Right Fingerprint 92.07 93.23 93.62

Proposed PSO Rank Fusion 99.42 99.42 99.42

Proposed PSO Score Fusion 99.42 99.42 99.42

6.4.3 Fusion of Multimodal Biometrics Involving Face and
Fingerprint (NIST BSSR1 Multimodal Dataset (Set
1))

The performances of the proposed search space-reduced quality-incorporated PSO
based fusion approaches for rank level (RQ-PSO Rank) and score level (RQ-PSO
Score) are also evaluated on NIST BSSR1 multimodal dataset (set 1) [193]. This
dataset contains four modalities. Hence, four score lists are provided in this
dataset for each probe. Four rank lists are constructed for each probe from the
above score lists. A brief description of this dataset can be found in Section
3.2.2.2. Similar to above two virtual datasets, the sizes of these score and rank
lists are reduced using the proposed search space-reduced approach (Section 6.2).
These reduced rank lists are considered as inputs to the proposed search space-
reduced quality-incorporated PSO based rank level fusion approach (RQ-PSO
Rank) in Section 6.3.1 and other existing rank level fusion approaches as dis-
cussed in Section 3.2.2.1. The window size on number of iteration to decide the
convergence of the RQ-PSO Rank based fusion approach is experimentally de-
cided as 200 for this dataset. Similarly, these reduced score lists are combined
using the proposed search space-reduced quality-incorporated PSO based score
level fusion approach (RQ-PSO Score) in Section 6.3.2 and other existing rank
level fusion approaches in Section 3.2.2.1. The window size on number of iteration
to decide the convergence of the proposed RQ-PSO Score based fusion approach
is experimentally decided as 200 for this dataset.
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Table 6.8: Performance comparison of the existing rank and score level fusion
approaches with the proposed RQ-PSO based fusion approaches on NIST BSSR1
multimodal dataset (set 1) using cumulative recognition accuracies in %

Methods Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level

Weighted Sum [62] 99.23 99.23 99.23
Max [1] 79.90 94.00 98.85
Min [1] 94.80 95.40 95.60
Product [1] 97.87 98.26 98.67
Sum-OEBA [67] 99.03 99.03 99.26
Sum-MOEBA [67] 98.45 98.84 98.84
Sum-OEVBA [82] 98.70 99.03 99.26
Hamacher t-norm [69] 97.29 97.68 97.68
Frank t-norm [69] 98.07 98.65 98.84
WQAM cos [62] 99.42 99.42 99.42
WQAM cosr [62] 99.23 99.42 99.42
WQAM tan [62] 99.42 99.42 99.42
WQAM sin [62] 99.42 99.42 99.42
WQAM r1/s [62] 99.42 99.42 99.42
WQAM rs [62] 99.42 99.42 99.42
WQAM sr [62] 99.42 99.42 99.42
WQAM log [62] 99.42 99.42 99.42
WQAM exp [62] 99.42 99.42 99.42
PSO Score (Section 4.3) 99.42 99.42 99.42
Q-PSO Score (Section 5.3.2) 99.42 99.42 99.42
Proposed RQ-PSO Score 99.42 99.42 99.42

Rank Level

Borda Count [34] 92.07 93.04 94.00
WBorda [34] 92.84 95.02 95.87
Highest Rank [35] 79.70 94.81 98.26
Exp [33] 89.16 90.27 91.88
WExp [33] 88.00 89.23 90.95
DivExp [32] 99.42 99.42 99.42
Log [32] 98.76 99.23 99.23
PSO Rank (Section 3.3) 99.42 99.42 99.42
Q-PSO Rank (Section 5.3.1) 99.42 99.42 99.42
Proposed RQ-PSO Rank 99.42 99.42 99.42
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The recognition accuracies (in %) for the proposed search space-reduced
quality-incorporated PSO based fusion approaches at rank level (RQ-PSO Rank)
and at score level (RQ-PSO Score) as well as each unimodal matcher are pre-
sented in Table 6.7 for NIST BSSR1 multimodal dataset (set 1) [193]. These
recognition accuracies are reported for the probe being found within top-1, top-2
and top-3 ranks (cumulative) in the aggregated rank lists and score lists. The
usefulness of the proposed fusion approaches over each of the unimodal matchers
is obvious from the reported results in Table 6.7.

Furthermore, the recognition accuracies of the comparing approaches within
top-1, top-2 and top-3 positions along with the proposed approaches are presented
in Table 6.8. It can be seen from the reported recognition accuracies that the
proposed search space-reduced quality-incorporated PSO based fusion approaches
at rank level (RQ-PSO Rank) and at score level (RQ-PSO Score) perform better
than majority of state-of-the-art rank and score level fusion approaches except
several WQAM based score level fusion approaches [62]. Moreover, it can also be
observed from the Table 6.8 that the recognition accuracies of the proposed RQ-
PSO Rank (Section 6.3.1) and RQ-PSO Score (Section 6.3.2) based approaches
after reducing the dimension of the search space remain as same as those of
quality-incorporated PSO based fusion approaches at rank level (Q-PSO Rank)
(Section 5.3.1) and at score level (Q-PSO Score) (Section 5.3.2).

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are represented using cumulative match characteristic (CMC) curves in Fig.
6.7 and Fig. 6.8. The proposed search space-reduce quality-incorporated PSO
based fusion approaches for rank level (RQ-PSO Rank) and score level (RQ-PSO
Score) outperform majority of rank and score level fusion approaches, as it can be
observed in the CMC curves in Fig. 6.7 and Fig. 6.8. The CMC curves of several
WQAM approaches [62] (Fig. 6.8) overlap with those of the proposed RQ-PSO
rank and RQ-PSO Score fusion approaches as well as with those of the Q-PSO
Rank (Section 5.3.1) and Q-PSO Score (Section 5.3.2) based fusion approaches.

The effectiveness of the proposed search space-reduction approaches (Section
6.2) in achieving speed up of execution is presented in Table 6.9. It can be
observed from the table that average number of iterations to converge for each of
the proposed RQ-PSO based rank and score level fusion approaches significantly
improves by using the proposed space-reduction approach (Section 6.2). The PSO
based rank level fusion approach (Section 3.3) takes 1240 iterations (rounded off to
the nearest integer) on an average to reach at an optimal solution in 5.10 seconds.
Here, the dimension of search space is 517, as there are 517 enrolled users in this
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6.4 Performance Evaluation and Discussion

Figure 6.7: CMC plots for existing rank level fusion approaches being compared
with that of the proposed RQ-PSO based fusion approaches for NIST BSSR1

multimodal dataset (set 1)

Figure 6.8: CMC plots for existing score level fusion approaches being compared
with that of the proposed RQ-PSO based fusion approaches for NIST BSSR1

multimodal dataset (set 1)
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Table 6.9: Performance comparison of PSO based rank (Section 3.3) and PSO
based score (Section 4.3) level fusion approaches with the proposed RQ-PSO based
fusion approaches on NIST BSSR1 multimodal dataset (set 1) using average number
of iterations, average execution time and average dimension of search space

Methods

Average number of iterations

to converge (rounded off

to the nearest integer)

Average execution time

(seconds)

Average dimension of search

space (rounded off to

the nearest integer)

PSO Rank (Section 3.3) 1240 5.10 517

Proposed RQ-PSO Rank 831 1.71 142

PSO Score (Section 4.3) 1874 1.45 517

Proposed RQ-PSO Score 1328 0.69 142

dataset. After applying the proposed search space-reduction approach (Section
6.2.1), the average particle dimension is reduced to 142 (rounded off to the nearest
integer), as it is reported in Table 6.9. Due to reduction in average dimension of
the search space, the proposed RQ-PSO based rank level fusion approach takes
only 831 number of iterations (rounded off to the nearest integer) on an average
to find the optimal solution. Furthermore, the significant improvement in the
average execution time due to reduced dimension is also seen in Table 6.9. The
proposed RQ-PSO based rank level fusion approach takes on an average 1.71
seconds to find the optimal solution.

Similar observations are reported in Table 6.9 for PSO based score level fu-
sion approach (Section 4.3) and the proposed RQ-PSO based score level fusion
approach. The PSO based score level fusion approach (Section 4.3) takes 1874
iterations (rounded off to the nearest integer) on an average to reach at the opti-
mal solution in 1.45 seconds. Here, the dimension of search space is 517, as there
are 517 enrolled users in this dataset. After applying the proposed search space-
reduction approach (Section 6.2.2), the average particle dimension is reduced to
142 (rounded off to the nearest integer), as it is reported in Table 6.9. Due to
reduction in average dimension of the search space, the proposed RQ-PSO based
score level fusion approach takes only 1328 number of iterations (rounded off to
the nearest integer) on an average to find the optimal solution. Furthermore, the
significant improvement in the average execution time due to reduced dimension
is also seen in Table 6.9. The proposed RQ-PSO based score level fusion approach
takes on an average 0.69 seconds to find the optimal solution. It is also noted that
the proposed RQ-PSO Score based approach executes faster (average execution
time 0.69 seconds) than the proposed RQ-PSO Rank based approach (average
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execution time 1.71 seconds). Moreover, the reduced dimension of search space
for both the approaches (RQ-PSO Rank and RQ-PSO Score) is same. This is
because the search space-reduction approach for score level fusion (Section 6.2.2)
converts the score lists into rank-ordered lists and then use the steps as similar
to the search space-reduction approach for rank level fusion (Section 6.2.1) to
reduce the dimension of the search space.

6.4.4 Fusion of Multimodal Biometrics for Multiple Gait
Feature Representations (OU-ISIR BSS4 Multi-
Algorithm Gait Dataset)

The OU-ISIR BSS4 multi-algorithm gait dataset [2, 194]) provides five score lists
for each probe. Five rank lists are constructed from the above score lists. for
each probe. The sizes of these rank lists are reduced using proposed search space-
reduction approach (Section 6.2.1). These reduced rank lists are considered as
inputs to the proposed search space-reduced quality-incorporated PSO based rank
level fusion approach (RQ-PSO Rank) in Section 6.3.1 and other existing rank
level fusion approaches as discussed in Section 3.2.2.1. The window size on num-
ber of iteration to decide the convergence of the proposed RQ-PSO Rank based
fusion approach is experimentally decided as 1500 for this dataset. Similarly, the
sizes of score lists are reduced using proposed search space-reduction approach
(Section 6.2.2). These reduced score lists are considered as inputs to the proposed
search space-reduced quality-incorporated PSO based score level fusion approach
(RQ-PSO Score) in Section 6.3.2 and other existing rank level fusion approaches
in Section 3.2.2.1. The window size on number of iteration to decide the con-
vergence of the proposed RQ-PSO Score based fusion approach is experimentally
decided as 2000 for this dataset.

The recognition accuracies (in %) for the proposed space-reduced quality-
incorporated PSO based fusion approaches at rank level (RQ-PSO Rank) and at
score level (RQ-PSO Score) as well as each unimodal matcher are presented in
Table 6.10 for OU-ISIR BSS4 multi-algorithm dataset [2, 194]. These recognition
accuracies are reported for the probe being found within top-1, top-2 and top-3
ranks (cumulative) in the aggregated rank lists and score lists. The usefulness
of the proposed fusion approaches over each of the unimodal matchers is obvious
from the reported results in Table 6.10.
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Table 6.10: Recognition accuracies (in %) of the proposed search space-reduced
quality-incorporated PSO based fusion approaches with respect to those of uni-
modal matchers on OU-ISIR BSS4 multi-algorithm dataset

Method Top-1 Rank Top-2 Ranks Top-3 Ranks

Unimodal

CEnI 80.95 85.50 87.50

CGI 83.35 87.44 89.04

FDF 85.90 89.87 91.23

GEI 85.72 89.54 91.20

GFI 74.92 79.93 82.12

Proposed RQ-PSO Rank Fusion 87.10 91.94 92.58

Proposed RQ-PSO Score Fusion 87.16 92.08 92.58

Furthermore, the recognition accuracies of the comparing approaches within
top-1, top-2 and top-3 positions along with the proposed approaches are presented
in Table 6.11. It can be seen from the reported recognition accuracies that the
proposed search space-reduced quality-incorporated PSO based fusion approaches
at rank level (RQ-PSO Rank) and at score level (RQ-PSO Score) perform better
than majority of state-of-the-art rank and score level fusion approaches. More-
over, it can also be observed from the Table 6.11 that the recognition accuracies
of the proposed RQ-PSO Rank (Section 6.3.1) and RQ-PSO Score (Section 6.3.2)
based approaches after reducing the dimension of the search space remain as
same as those of quality-incorporated PSO based fusion approaches at rank level
(Q-PSO Rank) (Section 5.3.1) and at score level (Q-PSO Score) (Section 5.3.2).

The changes in recognition accuracies (in %) with the changes in cumulative
ranks are represented using cumulative match characteristic (CMC) curves in Fig.
6.9 and Fig. 6.10. The proposed search space-reduced quality-incorporated PSO
based fusion approaches for rank level (RQ-PSO Rank) and score level (RQ-PSO
Score) outperform existing rank and score level fusion approaches, as it can be
observed in the CMC curves in Fig. 6.9 and Fig. 6.10. Moreover, the CMC curves
of the proposed RQ-PSO Rank and RQ-PSO Score fusion approaches overlap with
those of the Q-PSO Rank (Section 5.3.1) and Q-PSO Score (Section 5.3.2) based
fusion approaches.

The effectiveness of the proposed search space-reduction approaches (Section
6.2) in achieving speed up of execution is presented in Table 6.12. It can be
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Table 6.11: Performance comparison of the existing rank and score level fusion
approaches with the proposed RQ-PSO based fusion approaches on OU-ISIR BSS4
multi-algorithm dataset using cumulative recognition accuracies in %

Methods Top-1 Rank Top-2 Ranks Top-3 Ranks

Score Level

Weighted Sum [51] 86.70 89.69 91.38
Max [1] 85.38 88.27 89.60
Min [1] 77.41 88.15 91.60
Product [1] 77.41 88.21 91.60
Sum-OEBA [67] 86.08 89.60 91.07
Sum-MOEBA [82] 86.45 89.75 91.17
Sum-OEVBA [82] 86.40 89.75 91.19
Hamacher t-norm [69] 86.37 89.57 91.07
Frank t-norm [69] 81.63 89.32 91.47
WQAM cos [62] 86.70 89.69 91.35
WQAM cosr [62] 86.18 89.21 90.34
WQAM tan [62] 86.27 89.69 91.54
WQAM sin [62] 86.33 89.54 90.7
WQAM r1/s [62] 86.73 89.72 91.41
WQAM rs [62] 86.73 89.72 91.35
WQAM sr [62] 86.70 89.69 91.35
WQAM log [62] 86.70 89.69 91.35
WQAM exp [62] 86.70 89.69 91.35
PSO Score (Section 4.3) 86.95 91.16 92.31
Q-PSO Score (Section 5.3.2) 87.16 92.08 92.58
Proposed RQ-PSO Score 87.16 92.08 92.58

Rank Level

Borda Count [34] 83.63 87.47 88.77
WBorda [34] 84.93 88.48 89.76
Highest Rank [35] 77.41 88.15 91.54
Exp [33] 83.76 87.56 88.41
WExp [33] 81.69 85.32 87.43
DivExp [32] 86.84 89.94 91.65
Log [32] 85.89 89.42 90.43
PSO Rank (Section 3.3) 86.73 91.16 92.31
Q-PSO Rank (Section 5.3.1) 87.10 91.94 92.58
Proposed RQ-PSO Rank 87.10 91.94 92.58
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Figure 6.9: CMC plots for existing rank level fusion approaches being compared
with that of the proposed RQ-PSO based fusion approaches for OU-ISIR BSS4

multi-algorithm dataset

Figure 6.10: CMC plots for existing score level fusion approaches being
compared with that of the proposed RQ-PSO based fusion approaches for

OU-ISIR BSS4 multi-algorithm dataset
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Table 6.12: Performance comparison of PSO based rank (Section 3.3) and PSO
based score (Section 4.3) level fusion approaches with the proposed RQ-PSO based
fusion approaches on OU-ISIR BSS4 multi-algorithm gait dataset using average
number of iterations, average execution time and average dimension of search space

Methods

Average number of iterations

to converge (rounded off

to the nearest integer)

Average execution time

(seconds)

Average dimension of search

space (rounded off to

the nearest integer)

PSO Rank (Section 3.3) 7728 106.23 3249

Proposed RQ-PSO Rank 2155 3.79 79

PSO Score (Section 4.3) 7585 16.03 3249

Proposed RQ-PSO Score 3495 2.52 79

observed from the table that average number of iterations to converge for each of
the proposed RQ-PSO based rank and score level fusion approaches significantly
improves by using the proposed search space-reduction approach (Section 6.2).
The PSO based rank level fusion approach (Section 3.3) takes 7728 iterations
(rounded off to the nearest integer) on an average to reach at an optimal solution
in 106.23 seconds. Here, the dimension of search space is 3249, as there are 3249
enrolled users in this dataset. After applying the proposed search space-reduction
approach (Section 6.2.1), the average dimension of search space is reduced to 79
(rounded off to the nearest integer), as it is reported in Table 6.12. Due to
reduction in average dimension of the search space, the proposed RQ-PSO based
rank level fusion approach takes only 2155 number of iterations (rounded off to
the nearest integer) on an average to find the optimal solution. Furthermore, the
significant improvement in the average execution time due to reduced dimension
is also seen in Table 6.12. The proposed RQ-PSO based rank level fusion approach
takes on an average 3.79 seconds to find the optimal solution.

Similar observations are reported in Table 6.12 for PSO based score level fu-
sion approach (Section 4.3) and the proposed RQ-PSO based score level fusion
approach. The PSO based score level fusion approach (Section 4.3) takes 7585
iterations (rounded off to the nearest integer) on an average to reach at an op-
timal solution in 16.03 seconds. Here, the dimension of search space is 3249, as
there are 3249 enrolled users in this dataset. After applying the proposed search
space-reduction approach (Section 6.2.2) the average dimension of search space
is reduced to 79 (rounded off to the nearest integer), as it is reported in Table
6.12. Due to reduction in average dimension of the search space, the proposed
RQ-PSO based score level fusion approach takes only 3495 number of iterations
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(rounded off to the nearest integer) on an average to find the optimal solution.
Furthermore, the significant improvement in the average execution time due to
reduced dimension is also seen in Table 6.12. The proposed RQ-PSO based score
level fusion approach takes on an average 2.52 seconds to find the optimal solu-
tion. It is also noted that the proposed RQ-PSO Score based approach executes
faster (average execution time 2.52 seconds) than the proposed RQ-PSO Rank
based approach (average execution time 3.79 seconds). Moreover, the reduced
dimension of search space for both the approaches (RQ-PSO Rank and RQ-PSO
Score) is same. This is because the search space-reduction approach for score level
fusion (Section 6.2.2) converts the score lists into rank-ordered lists and then use
the steps as similar to the search space-reduction approach for rank level fusion
(Section 6.2.1) to reduce the dimension of the search space.

6.5 Summary
Meta-heuristic optimization based approaches search for the optimum solution by
iteratively exploring numerous candidate solutions in a large search space. Par-
ticle swarm optimization based approaches are not an exception too. It takes a
substantial number of iterations for these approaches to converge to the optimum
solution (i.e., the aggregated rank list or the aggregated score list). Therefore,
novel approaches for search space reduction are proposed in this chapter for at-
taining faster convergence of the PSO based approaches in the context of rank
level and score level fusion in multimodal biometrics. Experimental analysis of
the proposed search space-reduced quality-incorporated PSO based rank level and
score level fusion approaches shows the effect of reducing the dimension of the
search space of PSO based approaches. This reduction in dimension of search
space helps in achieving faster convergence (in terms of number of iterations and
execution time) than the initial particle swarm optimization based rank level (Sec-
tion 3.3) and score level (Section 4.3) fusion approaches without any compromise
in the recognition accuracies. Additionally, it is also observed that the proposed
search space-reduced quality-incorporated score level fusion approach (RQ-PSO
Score) requires smaller execution time than the proposed search space-reduced
quality-incorporated rank level fusion approach (RQ-PSO Rank) across all four
datasets.

181



Chapter 7

Identifying a Person in Mask:
Fusion of Masked Face and Iris
for Person Identification in
Post-Covid19 Era

In previous chapters, the effectiveness of a search space-reduced quality-
incorporated particle swarm optimization (RQ-PSO) based approach for fusion
of multimodal biometrics is established in a step-by-step fashion. Moreover,
it is also experimentally observed in Section 6.4 that the search space-reduced
quality-incorporated particle swarm optimization based score level fusion (RQ-
PSO Score) approach (Section 6.3.2) executes faster than the search space-reduced
quality-incorporated particle swarm optimization based rank level fusion (RQ-
PSO Rank) approach (Section 6.3.1). Therefore, the RQ-PSO Score approach is
picked up in this work as a solution to a contemporary challenge in biometric
based identification. In the context of Covid19 or any other pandemic where the
virus transmits through breathing, people tend to protect themselves and others
by wearing face masks. Face mask poses a challenge for face-based identification.
Therefore, fusion of masked face and iris modalities is taken up in this chapter as
a very relevant use case for fusion of multimodal biometrics using RQ-PSO based
score level fusion.

This chapter is organized as following: The relevance of such a fusion in
the context of face and iris biometrics is discussed in Section 7.1. An overview
of proposed approach for identifying a person wearing a mask is presented in
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Section 7.2. The approach to generate matching scores for masked face image
is presented in Section 7.3. In Section 7.4, approach to generate the matching
scores for iris modality is presented. In Section 7.5, the detailed formulation of the
score level fusion as an optimization problem is presented. Moreover, the search
space-reduced quality-incorporated particle swarm optimization based score level
fusion approach is revisited in this section. Experimental results are discussed in
Section 7.6. Finally, concluding remarks are drawn in Section 7.7.

7.1 Relevance of the Proposed Fusion Task
Traditionally, a biometric system uses either contact-based (e.g., fingerprint,
palm-print, etc.) or contactless (e.g., iris, face etc.) system to establish a person’s
identity. The ongoing covid19 pandemic [224] has imposed several challenges on
the biometric recognition system [225]. The study in [225] shows that the face,
fingerprint and voice are the most affected biometric modalities due to covid19.
The study also highlights that the contact-based biometric systems have become
irrelevant at the time of covid19 outbreak.

Covid19 [224] can easily spread using contact-based biometric systems. There-
fore, the ongoing covid19 pandemic has forced the biometric systems to go con-
tactless. Another major covid19 induced change in our day-to-day lifestyle is
the use of face and nose protective gears (such as personal protective equip-
ment (PPE), face mask, face shields etc.) to stop the spread of covid19. A face
recognition system is generally trained on unmasked face images. Therefore, the
changed scenario due to use of face mask significantly reduces the performance of
face recognition system. A recent study by National Institute of Standards and
Technology (NIST) shows that the pre-covid19 state-of-the-art face recognition
systems perform significantly poor with the masked face [226]. Similar studies
are also presented in [227, 228].

Recently a masked face recognition challenge has been organized within the
international joint conference on biometrics (IJCB 2021) [229]. This challenge
has highlighted the major shortcoming of face recognition system due to covid19
outbreak. Several solutions have been presented in this challenge. These solutions
have used the ArcFace [215] architecture to identify a person in mask. These
models have been trained on synthetically created masked face dataset to improve
the recognition accuracy. A convolutional neural network (CNN) based mask
aware network (MAN) for masked face recognition has been proposed in [230].
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This method puts a mask in a face image. Here, the training data set is augmented
with masked faces to improve the performance of a face recognition system. This
type of data augmentation have also been used in [231, 232]. A paired differential
siamese network (PDSN) based masked face recognition system has been proposed
in [231]. Here, the PDSN is used to remove the occluded portion of the image
and to highlight only the key features for recognition. In [232], the ArcFace loss
has been combined with specially designed mask-usage classification loss to boost
the performance of the masked face recognition system.

In a completely different approach, a CNN based template unmasking method
is presented in [233]. A self-restrained triplet (SRT) loss function minimizes the
intra-class variation between the positive and anchor image pair to enhance the
recognition accuracy of face recognition model. Similarly, a generative adversar-
ial network (GAN) based approach is presented in [234] to unmask the masked
face image. In contrast, occluded region removal based masked face recognition
systems can be found in [235, 236]. Here, the masked or occluded area is cropped.
The image containing the remaining face region is then passed to the CNN based
model for training and recognition. In [237], a deep-learning based dynamic
ensemble model is presented. It dynamically switches to the ocular region for
recognition in the presence of face mask.

In post-covid19 era, the iris recognition [5, 7] can emerge as an alternative
means for biometric recognition. The iris based biometric recognition systems
are unaffected as the iris region is clearly visible in a masked face image. Though
the iris based recognition systems have shown improved performance, but this
biometric modality faces several challenges. Segmentation of iris region [238, 239]
and iris recognition at distance [240] are the major challenges for iris recogni-
tion. Therefore, it is important to use a combination of biometric modalities to
improve recognition accuracy. Multimodal biometric systems are frequently used
for authentication at various establishments [4, 64]. Fusion of face and iris is
extensively studied in literature [241, 242] and the results are astonishing. The
fusion in multimodal biometrics can be performed at various levels: sensor level,
feature level, score level, rank level and decision level (Section 1.2.1). Score level
fusion is one of the widely used level of fusion [51, 62, 67, 69, 82]. Therefore, in
this work, fusion of masked face and iris is performed at score level to achieve
better recognition accuracy as compared to using only a single biometric modality
(face or iris) in post-covid19 era.
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The current work presents a novel approach involving fusion of masked face
and iris to improve recognition performance of the biometric system in post-
covid19 era. Here, the generative adversarial network (GAN) based approach
[234] is used for mask removal and reconstruction of the face image (unmask-
ing of the face). This unmasked face image is passed to an ArcFace based face
recognition system [215] to compute the matching scores for face modality. Sim-
ilarly, the iris image is passed to the iris recognition system [220] to generate the
matching scores for iris modality. For each one of these two modalities, score list
is constructed from the matching scores of a probe with every enrolled subject
(gallery) in an identification setup. Fusion of these two score lists for unmasked
face and iris is performed at score level. Here, the fusion is performed using
the search space-reduced quality-incorporated particle swarm optimization based
score level fusion (RQ-PSO Score) approach (Section 6.3.2).

7.2 Overview of Person Identification in Masked
Face

The use of face mask due to ongoing covid19 pandemic [224] has posed a big
challenge to existing face recognition systems. State-of-the-art face recognition
systems are not able to correctly identify an enrolled person due to the occlusion
created by the masked face images [226, 227, 228]. The complete face information
is not present in a masked face image to correctly identify a person. The presented
probe with missing biometric information can be complemented by removing the
occluded region [235, 236] and by training the face recognition system on these
new images. Another approach is the use of other available biometric modalities,
such as iris and ocular region [237].

In this work, a multimodal biometric fusion based approach is proposed to
solve the problem of person identification in masked faces. Figure 7.1 presents
an overview of the proposed approach. This approach contains following three
stages: (i) matching score generation for masked face modality, (ii) matching
score generation for iris modality and (iii) score level fusion of these two modali-
ties. In the face biometrics stage, a masked face image of probe user is unmasked
using a generative adversarial network (GAN) based approach [234]. This gener-
ated unmasked face image is passed to the ArcFace based face recognition system
[215] to generate the matching scores. The matching scores for all the enrolled
users with the probe user construct the matching score list for face modality. In
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Figure 7.1: Stages of proposed masked face and iris fusion approach

the iris biometrics stage, an iris image of probe user is passed as an input to the
iris recognition system [220] and matching scores are generated. The matching
scores for all the enrolled users with the probe user construct the matching score
list for iris modality. Finally, the matching score lists of both the modalities are
fused using search space-reduced quality-incorporated particle swarm optimiza-
tion based score level fusion (RQ-PSO Score) approach (Section 6.3.2) to identify
a person. Details of these stages are presented in subsequent sections.

7.3 Matching Score Generation for Face Modal-
ity

A face image of a person wearing mask is captured for person identification. This
section narrates the steps of matching score generation of masked face modality.

7.3.1 GAN based Unmasking Approach
At first, the face mask is removed and the complete face is reconstructed using
a generative adversarial network (GAN) based approach [234]. This GAN-based
unmasking approach is briefly described in this section. This approach takes a
masked face as input and works in two steps. The first step finds the masked
region in the face image using U-Net model [243]. In the second step, GAN gen-
erates the unmasked face image using the mask region and the input masked face
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image. This GAN-based approach uses two discriminators. The first discrimina-
tor is used for learning global structure of the face. The feedback from the first
discriminator helps the generator to generate the unmasked face image. Moreover,
the learning of missing region of the masked face due to the mask is carried out
using the second discriminator. The second discriminator aids the generator to
generate the unmasked image more precisely by incorporating the leaning about
the missing region. Detailed description of this adopted GAN-based unmasking
approach can be found in [234].

7.3.2 Generating Matching Scores
The proposed approach uses state-of-the-art face embedding approach ArcFace
[215] to compute the embedding for the GAN generated unmasked face image.
Detailed description of ArcFace can be found in [215]. The cosine similarity
[216] between two embeddings for the probe and the gallery produces a matching
score. The cosine similarity is widely used similarity metric in the face recognition
paradigm [217, 218, 219]. A score list is generated using the matching scores for
all the enrolled users with the probe.

7.4 Matching Score Generation for Iris Modal-
ity

The iris is visible in spite of wearing a mask. Therefore, the proposed method for
person identification in post-covid19 era suggests to consider iris biometrics along
with the masked face biometrics. In this work, a state-of-the-art iris recognition
system in [220] is adopted for generating the matching scores for iris. The work in
[220] is based on fully convolutional network (FCN). The FCN helps in generating
spatially corresponding iris feature descriptors. Furthermore, an extended triplet
loss (ETL) function accurately differentiates between the iris region and the non-
iris region to achieve enhanced iris feature descriptors. These iris features are
then binarized. Hamming distance [221] generates the matching score between
the binarized iris features of the probe and the gallery. Detailed description of the
adopted iris recognition approach can be found in [220]. A score list is generated
using the matching scores for all the enrolled users with the probe.
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7.5 Score Level Fusion
The last stage of the proposed method is score level fusion. The works in previous
chapters have conceptualized the fusion of multimodal biometrics at the score
level as an optimization problem. Furthermore, the incorporation of quality-based
weight (Section 5.2) and search space-reduction approach (Section 6.2) are the
key highlights of the earlier work in Section 6.3.2. The current work formulates
the score level fusion of face and iris biometrics as an optimization problem and
adopts the approach in Section 6.3.2.

Let Sf and Si be the generated score lists for face and iris modalities, re-
spectively. The ranges of these matching scores vary due to different similarity
measures in these modalities. Therefore, these matching scores are normalized
to bring them into a common range. One of the widely used score normalization
approach is the min-max normalization [49, 62, 63]. Hence, the min-max nor-
malization approach is adopted in this work to bring these scores in the range
between [0,1]. Though other score normalization approaches such as tanh [63],
z-score [63] could have also been applied.

It is to be noted that the generated score for face modality (Section 7.3) is a
similarity score. On the contrary, the generated score for iris modality (Section
7.4) is a dissimilarity score. Hence, the normalized scores for iris modality are
converted to similarity score by subtracting the normalized scores from 1. Let Ŝf

and Ŝi be the normalized score lists for face and iris modalities, respectively. A
combination of these two normalized score lists generates an aggregated score list.
Generation of the aggregated score list is treated as an optimization problem in
this work. The objective of this optimization problem is to minimize a weighted
summation of distances of the aggregated list from the input normalized score
lists Ŝf and Ŝi. The objective function for generating the aggregated score list is
stated below:

minimize Φ(δ) = wf ×d(δ, Ŝf )+wi ×d(δ, Ŝi) (7.1)

A candidate fused score list is represented by δ. Here, weights wf and wi

are associated with face and iris biometric modalities, respectively. The weight
represents the significance of the corresponding biometric modality. The function
d() in Eq. 7.1 denotes the distance between an aggregated and the normalized
input score lists. In the current work, weighted Spearman footrule [180] metric is
used for the distance measure between a pair of score lists. The stated distance
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metric estimates the weighted summation of absolute differences between normal-
ized scores of each subject in the concerned pair of lists. The influence factor of a
subject in weighted Spearman footrule distance is also calculated using Eq. 4.5.

Finally, a search space-reduced quality-incorporated particle swarm optimiza-
tion (RQ-PSO) based score level fusion approach (Section 6.3.2) is adopted in
this work for solving the stated optimization problem (Eq. 7.1). The superiority
of the RQ-PSO based score level fusion approach over existing score and rank
level fusion approaches as well as the earlier proposed rank (Chapter 3) and score
(Chapter 4) level fusion approaches is experimentally proved in Section 6.4. A
particle position in the proposed RQ-PSO based score level fusion approach rep-
resents a reduced candidate score list δ. It indicates the similarity scores of the
probe with the subjects in reduced score lists. Moreover, the objective function
(in Eq. 7.1) of the proposed RQ-PSO Score based approach uses the quality-
based weight to indicate significance of face and iris modalities for a particular
probe. In RQ-PSO Score approach, the particle’s velocity and position in the so-
lution space are updated iteratively until a stopping criteria is met. The window
size on number of iteration to decide the convergence of the adopted RQ-PSO
Score based fusion approach is experimentally decided as 100 for this dataset.
When the personal best positions of all the particles do not change over a certain
period of iterations, the proposed search space-reduced quality-incorporated par-
ticle swarm optimization based score level fusion approach is considered to have
converged.

7.6 Performance Evaluation and Discussion
Performance of the proposed approach is experimentally presented in this sec-
tion. A virtually created multimodal biometric dataset FaceIris-V2 is used for
this purpose. The virtual dataset contains CelebFaces Attributes face dataset
(CelebA) [212] and IIT Delhi iris dataset [211]. Description of this virtual data
set is provided in Section 5.4.2.

7.6.1 Experimental Setup
The experimental setup of the proposed work is presented in this sections.
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Figure 7.2: Similarity scores between masked face images (probe) and
corresponding gallery images

7.6.1.1 Generating Masked Face Dataset

The major challenge faced by masked face recognition system is lack of large
scale masked face dataset. Therefore, several researches [232, 233, 235] have used
synthetically applied mask face dataset for training the model. To carry out
the experiments in this work, a similar approach is used. The mask is applied
on all the selected images of CelebA face dataset [212] using synthetic mask
generation approach [244]. The synthetic mask generation approach is widely
used by researchers [229, 232] to generate synthetic masked face dataset.

7.6.1.2 Division of Dataset

The selected images from CelebA face dataset [212] containing 435 classes are
divided into training (gallery) and test (probe) set. The training set contains
9565 masked face images and corresponding ground truth face images (without
mask). The test set contains 435 masked face images corresponding to 435 classes.
The training dataset is used to train the GAN based model [234]. The evaluation
of trained model is performed on the test (probe) dataset.

7.6.2 Experimental Results
In this work, at first, the effect of mask on the face recognition system is studied.
For the person identification task, the masked face (probe) is compared with
the gallery face images (without mask). The similarity scores for few such probe
images with their ground truth are illustrated in Fig. 7.2. It can be observed form
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Figure 7.3: Similarity scores between unmasked faces images and corresponding
gallery images

the presented similarity scores in Fig. 7.2 that the ArcFace based face recognition
system [215] is not able to correctly identify the genuine subject from the gallery.

Therefore, the proposed method involves an unmasking stage using a GAN
based approach [234]. Figure 7.3 illustrates the similarity scores of unmasked face
images as probe against the gallery images (without mask). It is to be noted that
these unmasked face images in Fig. 7.3 correspond to the masked face images of
Fig. 7.2. It is observed from the Fig. 7.3 that the unmasked face images are close
to the actual images (gallery). Therefore, persons are correctly identified based
on the similarity scores in Fig. 7.3. Thus, the results establish the effectiveness
of GAN based approach [234] to generate the unmasked face images from the
masked images.

Furthermore, the fusion of unmasked face and iris modalities is performed
using the search space-reduced quality-incorporated particle swarm optimization
(RQ-PSO) based score level fusion (Section 6.3.2). The subject having the highest
score in the fused list is identified as a match for the probe. Performance of the
proposed approach is compared against the performances of state-of-the-art score
and rank level fusion approaches as discussed in Section 3.2.2.1. The effect of
combining unmasked face and iris modalities using the proposed as well as state-
of-the-art score and rank level fusion approach is presented in Table 7.1. The
performance of each approach is represented as its ability to recognize a probe
correctly. Recognition accuracy (in %) is used as the metric for performance
comparison. It is observed from Table 7.1 that fusion of face and iris modalities
achieves better recognition accuracy than using only the face modality. Addi-
tionally, experiments are performed without removing the mask. The recognition
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Table 7.1: Performance comparison (recognition accuracies in %) of the adopted
RQ-PSO based score level fusion approach and state-of-the-art score and rank level
fusion approaches in the context of masked face and unmasked face and iris

Method
Masked Face and Iris

Fusion

Unmasked Face and Iris

Fusion

Unimodal
Face 0.92 88.05

Iris 89.66 89.66

Score Level

Weighted Sum [51] 59.77 96.32

Max Rule [1] 89.66 90.35

Min Rule [1] 4.37 91.72

Product Rule [1] 8.28 92.41

Sum-OEBA [67] 7.36 89.89

Sum-MOEBA [67] 54.02 92.41

Sum-OEVBA [82] 78.62 92.18

Hamacher t-norm [69] 7.57 92.18

Frank t-norm [69] 8.28 92.41

WQAM cos [62] 63.22 96.32

WQAM cosˆr [62] 57.24 97.01

WQAM tan [62] 63.22 97.24

WQAM sin [62] 36.55 94.02

WQAM rˆ(1/s) [62] 69.89 97.01

WQAM rˆs [62] 66.44 96.55

WQAM sˆr [62] 56.09 96.55

WQAM log [62] 51.49 96.09

WQAM exp(-r/s) [62] 64.37 96.55

Rank Level

Borda Count [34] 5.29 91.26

Weighted Borda [34] 14.02 93.10

Highest Rank [35] 89.66 90.35

Exponential [33] 3.91 92.41

Weighted Exponential [33] 4.14 88.74

Division Exponential [32] 39.54 94.02

Logarithm [32] 10.58 92.87

RQ-PSO Score (Section 6.3.2) 78.62 97.93

192



7.7 Summary

accuracies for masked face and iris fusion are also presented in Table 7.1 for the
RQ-PSO based score level fusion approach (Section 6.3.2) and state-of-the-art
score and rank level fusion approaches.

There are a few interesting observations in Table 7.1. (i) The recognition
accuracy of only masked face modality is very less (0.92%). It establishes the
known fact that a masked face can not be used for person identification. (ii)
Recognition accuracy using iris modality is 89.66%. The adopted RQ-PSO score
level fusion approach as well as state-of-the-art fusion approaches perform worse
than the individual iris modality. This is because the masked face modality brings
down the performances of the fusion based approaches. Though the fusion based
approaches perform much better than only masked face modality, iris modality
is the best method for person identification in the presence of face mask. (iii)
The recognition accuracy of the face modality after unmasking the face image has
significantly increased from 0.92% to 88.05% (Table 7.1). It justifies the usefulness
of the GAN based unmasking of the masked faces. (iv) Fusion based approaches of
unmasked face and iris modalities perform even better than individual unmasked
face or iris modalities. This justifies the usefulness of multimodal biometrics
over unimodal biometrics. (v) The adopted RQ-PSO based score level fusion
approach achieves better performance than state-of-the-art score and rank level
fusion approaches. At the end, the experimental results establish the superiority
of the adopted GAN based unmasking of face and RQ-PSO based score level
fusion of unmasked and iris biometrics.

7.7 Summary
The major contributions of this chapter are summarized in this section. In this
work, a novel approach involving fusion of masked face and iris is presented to
improve recognition performance of the biometric system in post-covid19 era. A
GAN based approach [234] is suggested to generate the unmasked face images.
The score level fusion is conceptualized as an optimization problem. Furthermore,
a search space-reduced quality-incorporated particle swarm optimization (RQ-
PSO) based score level fusion approach (Section 6.3.2) is adopted to solve the
stated optimization problem. The reported experimental results highlight that
the fusion of masked face (through GAN based unmasking) and iris achieves better
recognition accuracy in post-covid19 era. The adopted RQ-PSO based score level
fusion approach also exhibits superior performance than the existing score and
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rank level fusion approaches. This justifies the adaptation of a novel RQ-PSO
based score level fusion approach in this work. Therefore, the proposed fusion of
masked face (through GAN based unmasking) and iris using RQ-PSO based score
level fusion can be utilized to identify a person wearing mask in post-covid19 era.
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Chapter 8

Conclusion and Future Work

In this chapter, concluding remarks are presented on the research works being
presented in the thesis. This chapter is organized in following two sections: A
summary of the contributions of the works in this thesis is presented in Section
8.1. Finally, a few glimpses on future research directions are placed in Section
8.2.

8.1 Summary of Contributions
In a multimodal biometric system, fusion of biometric information from various
modalities can be performed at five different levels: sensor, feature, score, rank
and decision level. These levels of fusion are stated in Section 1.2.1. The score
level and rank level fusion are widely used levels of fusion for multimodal bio-
metrics. Therefore, the scope of the research work in this thesis is also centred
around the score and rank level fusion.

At first, the rank level fusion in multimodal biometrics is formulated as an
optimization problem. The formulation of this optimization problem considers
minimization of a weighted summation of distances between the aggregated rank
list and the input rank lists. This problem formulation adds novelty to the pro-
posed works in Chapter 3. The weighted Spearman footrule distance metric
[180] is used to compute the distance between two rank lists. The weight in
the weighted Spearman footrule distance is incorporated to ensure more influ-
ence of a better ranked subject than other subjects. A novel way to decide the
weight of a subject is conceptualized in this context. To solve the stated opti-
mization problem in the context of rank level fusion of multimodal biometrics,
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two novel approaches are proposed using genetic algorithm (GA) and particle
swarm optimization (PSO). Context-specific representation of a candidate solu-
tion and custom-designed operators are the highlights of the proposed GA and
PSO based approaches. The proposed approaches are tested using two differ-
ent multi-biometric datasets, namely (i) NIST BSSR1 multimodal dataset (set
1) [193] involving fingerprint and face modalities and (ii) OU-ISIR BSS4 multi-
algorithm gait dataset [2, 194] involving several gait feature extraction methods.
These approaches exhibit better performance in identifying the subjects than
majority of the existing approaches of fusion at rank and at score levels for mul-
timodal biometrics. Moreover, it is experimentally observed that the proposed
particle swarm optimization based approach achieves faster convergence than the
proposed genetic algorithm based approach. This superiority of the proposed
PSO based approach over the proposed GA based approach in terms of execution
time is established using two-sample Kolmogorov-Smirnov (K-S) test.

Similar to the work in Chapter 3, the score level fusion for multimodal bio-
metrics is formulated as an optimization problem in Chapter 4. The formulation
of this optimization problem considers minimization of a weighted summation of
distances between the aggregated score list and the normalized input score lists.
This problem formulation adds novelty to the proposed works in this chapter.
The weighted Spearman footrule distance metric [180] is used to compute the
distance between two score lists. The weight in the weighted Spearman footrule
distance is incorporated to ensure more influence of a high scoring subject than
other subjects. A novel way to decide the weight of a subject is conceptualized
in this context. To solve the stated optimization problem, two novel score level
fusion approaches based on (i) genetic algorithm (GA) and (ii) particle swarm
optimization (PSO) are proposed in Chapter 4. Context-specific representation
of a candidate solution and custom-designed operators are the highlights of the
proposed GA and PSO based score level fusion approaches. The work in Chapter
4 is also experimentally evaluated on two different multimodal biometric datasets,
namely (i) NIST BSSR1 multimodal dataset (set 1) [193] and (ii) OU-ISIR BSS4
multi-algorithm gait dataset [2, 194]. The proposed approaches exhibit better
performance in identifying the subjects than majority of the existing approaches
of fusion at rank and score levels for multimodal biometrics. The reported exper-
imental results in Section 4.3.2 also show that the particle swarm based fusion
approaches at both rank (Section 3.3) and score (Section 4.3) levels of fusion per-
form better than the proposed genetic algorithm based fusion approaches (rank
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and score level) in terms of recognition accuracy. Therefore, particle swarm op-
timization based score and rank level fusion approaches are adopted in all the
subsequent chapters. It is additionally to be noted that particle swarm optimiza-
tion based score level fusion approach (Section 4.3) converges faster than particle
swarm optimization based rank level fusion approach (Section 3.3).

Particle swarm optimization based fusion approaches at both rank (Section
3.3) and score (Section 4.3) levels of fusion perform better than state-of-the-art
rank and score level fusion approaches in terms of recognition accuracy. The re-
ported results also show significant improvement in performances of the proposed
optimization based fusion approaches (score and rank level) in spite of considering
same weight to each input list. In Chapter 5, the performances of these particle
swarm optimization based approaches at both rank (Section 3.3) and score (Sec-
tion 4.3) levels of fusion are further enhanced by incorporating the quality-based
weight for each modality. A novel modality-independent biometric quality esti-
mation approach is proposed in this chapter to enhance the performance of PSO
based rank and score level fusion approaches. The derived quality is used to esti-
mate weight for each modality. The proposed approach for estimating quality of
biometric information in a probe signal uses matching scores between a probe and
the gallery. Therefore, the set of estimated weights vary across different probe
users. The presented experimental results highlight the efficacy of incorporating
quality-derived weight as compared to several weighting strategies.

It is to be noted that particle swarm optimization (PSO) is an iterative search
based optimization algorithm. It searches for the optimum solution by iteratively
searching through numerous candidate solutions in a large search space. It takes
a substantial number of iterations to converge to the optimum solution (i.e., the
aggregated rank list or the aggregated score list). Therefore, a novel approach for
search space reduction is proposed in Chapter 6 for attaining faster convergence of
the PSO based approaches in the context of above mentioned fusion tasks. It has
been shown in Chapter 5 that quality-incorporated PSO (Q-PSO) based rank level
and score level fusion approaches achieve better recognition accuracies than the
initial PSO based approaches in Section 3.3 and Section 4.3. Hence, the presented
work in this chapter is based on the Q-PSO based approaches for rank level and
score level fusion. Experimental analysis of the proposed search space-reduced
quality-incorporated particle swarm optimization (RQ-PSO) based rank level and
score level fusion approaches shows the effect of reducing search space of PSO
based approaches. The RQ-PSO based approaches achieve faster convergence
than the quality-incorporated particle swarm optimization based rank level and
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score level fusion approaches without any decrease in the recognition accuracies.
Moreover, the proposed RQ-PSO Score approach performs slightly better than
the proposed RQ-PSO Rank approach in two out of four datasets.

Finally, the proposed concepts on fusion of multimodal biometrics are applied
to the task of person identification in the era of covid-19 pandemic or similar
situations where persons are using face masks. A novel approach involving fusion
of masked face and iris is presented to improve recognition performance of the
biometric system in post-covid19 era. A generative adversarial network (GAN)
based approach [234] is used to generate the unmasked face images. Then, two
score lists are generated for the face and the iris modalities. Hereafter, a search
space-reduced quality-incorporated particle swarm optimization (RQ-PSO) based
score level fusion approach (Section 6.3.2) is adopted to fuse the normalized score
lists of face and iris modalities. The adopted RQ-PSO based score level fusion
approach exhibits superior performance than the existing score and rank level
fusion approaches. This justifies the adaptation of a novel RQ-PSO based score
level fusion approach in this work. Therefore, the proposed fusion of masked face
(through GAN based unmasking) and iris using RQ-PSO based score level fusion
can be utilized to identify a person wearing mask in post-covid19 era.

At the end, it is to be noted that the proposed works in this thesis relate to
an identification task. In an identification task, a probe is compared with all the
enrolled subjects in the gallery. On the contrary, in a verification task, a probe is
compared with one enrolled subject whose identity is being claimed. Therefore,
verification task does not generate any score or rank list for the probe. Hence, the
proposed works are not applicable for a verification task. It is to be additionally
noted that the proposed works are related with a closed-set identification problem,
where the probe subject is definitely present in the gallery.

8.2 Future Research Directions
In this section, a few points are stated as a continuation of this research work in
future. These research directions are listed here:

• The proposed works in this thesis formulate the tasks of score level and
rank level fusion of multimodal biometrics as a single objective optimization
problem. Here, a weighted summation of distances between an aggregated
list and the input lists is minimized. Alternatively, the score and rank level
fusion of multimodal biometrics can be conceptualized as multi-objective
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optimization problems. In a multi-objective optimization setting, all the
distances between an aggregated list and the input lists are minimized in-
dividually.

• Parallel implementations of the evolutionary-computing based approaches
[205, 206, 207] can be adopted to speed up the proposed approaches for
fusion of multimodal biometrics at rank level and at score level.

• Quality of biometric signal significantly influences the performance of a
biometric system. There have been works on estimating the quality of bio-
metric signal [158, 159, 160, 176]. Moreover, one matching score based
(hence modality-independent) approach to estimate the quality of biomet-
ric signal is proposed in Chapter 5. This area requires further attention of
the researchers. Specifically, deep learning based approaches may be ex-
plored. Few deep learning based approaches for quality estimation exist
in literature [165, 178, 179]. But these approaches of quality estimation
are modality dependent. Usage of deep learning for modality-independent
quality estimation may be explored in future.

• The covid19 has changed the way of using biometric system. Face modality
is one of the most affected biometric modality due to the presence of face
mask [226, 227, 228]. Other biometric modalities can replace or can be
combined with face modality for better performance. Thus, further research
can be made in the direction of combining various biometric modalities (iris,
gait, soft biometrics) to identify a person in current era [235, 236, 245, 246].

• Accurately identifying a person in wild scenarios (on street, parking area,
public places) [247, 248] can be studied. Furthermore, the real world appli-
cations of biometrics (such as emigration, border control, welfare schemes,
banking and other financial operations) [4, 7, 247] can be better understood
and better solutions can be presented.
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