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(c) Cytosine (i) 1 mM (ii) 100 µM (iii) 50 µM, and (iv) 10 µM M, (v) 100 nM, and (vi) 10 
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concentration) of the 792 cm-1 Raman peak. 
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Chapter 1 
 

INTRODUCTION AND THESIS OUTLINE 

 

Abstract 
 

This chapter provides a comprehensive overview of the motivation behind the work 

performed and the results presented in the thesis. It is set to focus on the basics and theory 

of physics involved in this thesis methods. It begins with focusing on the significance of 

plasmonic materials and their recent applications, including the preparation methods. 

Various trace detection techniques in vogue for the detection of different molecules like 

explosives, pesticides, dyes are examined, particularly emphasising the advantages of 

surface-enhanced Raman spectroscopy (SERS) over other techniques. The chapter then 

delves into the theoretical underpinnings of the Raman scattering and SERS enhancement, 

exploring the influence of materials (Ag, Au, and Ag-Au alloys), nanoparticle size, 

material, shape, and interparticle distance using COMSOL simulations. The challenges 

currently facing SERS and their origins are also discussed. State-of-the-art in the SERS 

techniques in substrate fabrication, applications, and implementation of machine learning 

techniques is also detailed. An introduction to machine learning techniques and their 

applications in SERS is presented, along with an overview of the different molecules 

studied in the thesis, including explosives and biomolecules. 
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1.1. Introduction    

“There is a plenty of room at the bottom,” claimed Prof. Richard Feynman at the American 

Physical Society conference in 1959, introducing the term ‘Nanotechnology’ and 

emphasising the importance of its study [1]. He called nanoparticles ‘tiny machines’ and 

as he rightly predicted, they have revolutionised many fields in science. But the usage of 

nanoparticles can be traced back to fourth century AD in the Roman civilization through 

the popularly known Lycurgus cup in the present British museum. The dichroism observed 

in the cup was ascertained to the presence of Ag-Au alloy nanoparticles of different sizes 

in specific ratio of 7:3, along with 10 percent of Cu nanoparticles [2]. Stained glass 

windows of churches in the late medieval period were found to contain Ag-Au 

nanoparticles giving them distinct luminous colours [3]. Ag or Cu nanoparticles were 

found in ceramic gazes of the Islamic world and Europe during the 9th-17th centuries [4]. 

A number of Renaissance pots produced during the 16th century was encrusted with 

nanoparticles by the Italians [5]. Nanomaterials such as carbon nanotubes, “Damascus” 

blades with distinct patterns, cementite nanowires were extensively used to improve 

strength and performance of different materials [6]. However, throughout this period there 

was no understanding of the properties of the nanoparticles. In 1857, a colloidal gold 

containing nanoparticles was prepared by Faraday and from then it was known that 

metallic nanoparticles exhibit different optical properties than the bulk [7]. This was the 

first attempt to understand the properties of nanoparticles and soon a field of study called 

‘nanoscience’ has emerged. Further, the theory developed by Gustav Mie in 1908 provided 

a full understanding of the scattering of light in small metallic particles [8]. Advancements 

in characterization techniques like Scanning Tunnelling Microscope (STM), Atomic Force 

Microscope (AFM), Scanning Electron Microscope (SEM), Field Emission Scanning 

Electron Microscope (FESEM), and Transmission Electron Microscope (TEM) has further 

revolutionised the study of nanoparticles progressively.     

Advents in nanotechnology lead to the emergence of many new fields, one of the crucial 

fields being plasmonics. Plasmonics deals with the study of the oscillations of conduction 

electrons in metallic nanostructures and at the metal-dielectric interfaces, including their 

potential applications [9]. The free conduction electrons in metals are constantly moving 

under the influence of fixed positive charge centred at the nucleus. The oscillations of 
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these free electrons can be understood through Drude and Lorentz models [10]. The 

quantum of these collective oscillations of the conduction electrons is called as a 

“plasmon” and the study of these oscillations and related applications is called as 

‘plasmonics’. Upon interaction with electromagnetic field, there are two important 

resonances that occur in plasmons, Localised Surface Plasmon Resonance (LSPR) and 

propagating Surface Plasmon Resonance (SPR) [11].  Propagating Surface Plasmons 

(PSP) are evanescent electromagnetic waves that are only present at flat, metal-dielectric 

interfaces and are caused by the oscillations of conduction electrons within the metal. 

Under optimum conditions, like angle of incidence, dielectric constant, and wavelength of 

light, that satisfy the conditions of conservation of energy and momentum, exciting PSPs 

lead to resonant oscillations called as SPR. SPRs are very sharp resonances and are 

function of many experimental parameters. Specific configuration like Otto or 

Kretschmann setups are used in order to excite SPR [12]. They are capable of travelling 

relatively larger distances (10-100 m) and have very sharp resonances making them a 

reliable choice for plasmonic waveguides and sensors respectively [13]. LSPR refers to 

resonances in nanostructures where surface plasmons are confined and often need only the 

conservation of energy criteria thus removing the need for complex experimental setup. 

LSPR resonances are relatively broader than SPR and are hence advantageous for certain 

applications like SERS. SPR always needs a planar interface to facilitate PSPs whereas 

LSPR can be excited in 3D volumes like the case of nanoparticles dispersed in water. 

LSPR applications also have greater flexibility to tune the resonances by changing the 

shape, size as opposed to SPR [14]. The distinct properties of metal nanostructures are 

attributed to the occurrence of LSPR originating from collective as well as coherent 

oscillations of electrons on the surface in these structures. This often leads to field 

localization and hence enhancement in electric field to small regions. These oscillations 

and the filed enhancement caused by LSPR are highly dependent on the shape, size and 

surrounding media of the nanoparticles [15] [16].  Additionally, it offers the chance to 

modify the nanoparticles' characteristics according to the specific application.   

SERS and plasmonics share a symbiotic relationship where development in one field is 

aiding the other. A good SERS substrate can be used as a tool to comprehend the 

fundamentals of plasmonics, and a good plasmonic material is always a good SERS 

substrate. SERS is a potent analytical approach that increases the Raman scattering signal 

of molecules when they are adsorbed on metallic or dielectric nanostructured surfaces by 
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several orders of magnitude. SERS is both a quantitative and qualitative spectroscopic 

technique for the unique identification of various materials through their vibrational 

fingerprint. Fleischmann made the initial discovery of the phenomenon accidently in 1974 

while examining pyridine adsorbed on a roughened silver electrode [17]. However, the 

enhancement in his experiment was credited to a larger adsorption surface area that was 

available to the molecules. The origin of the enhancement was only discovered through 

additional research conducted in 1977 by two separate research groups, Jeanmaire and van 

Duyne [18] and Albrecht and Creighton [19]. It is now well known that the two 

mechanisms of electromagnetic enhancement (EE) and chemical enhancement (CE) 

account for the majority of the contributions to the enhancement. The CE mechanism 

arises from the chemical interaction between the adsorbed molecule and the surface. This 

interaction can modify the molecular polarizability and induce charge transfer, resulting 

in an enhancement of the Raman scattering signal [17]. The electromagnetic enhancement 

in SERS primarily arises from the strong electromagnetic fields produced by the LSPRs 

of the metal nanostructures. These LSPRs are a consequence of the conduction band 

electrons' collective oscillations in response to incoming light stimulation. The resulting 

enhanced electromagnetic fields can be used to excite Raman-active molecules, leading to 

the amplification of their vibrational signals [18]. The scattering intensity of the molecule 

in this case is bound to grow by several orders of magnitude as a result of the two 

enhancements, which is the product of these two [10]. Understanding the origin of SERS 

enhancements and its influence on various parameters such as shape, size, and material of 

the nanoparticles, including the experimental parameters, is important to maximize the 

SERS enhancement [19] and for translating the research to practical applications. Under 

such optimized conditions, SERS has the potential to detect trace analytes in the regime of 

Attomolar  [20], femtomolar [21], picomolar [22] and nanomolar [23] and even single 

molecule [24] or a cell [25]. With this potential, SERS has seen many applications for trace 

detection of explosives [26] [27] [28][29], biomolecules [30], pesticides [31], [32], 

microorganisms [33], drugs [34], and disease biomarkers [35] to name a few. The current 

research in SERS is focused on three main aspects, a) Innovations in plasmonics for SERS, 

b) Taking SERS to different applications and developing SERS based devices, and c) 

Usage of machine learning techniques to overcome some of the challenge sin SERS as 

shown in figure 1.1.  
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Figure 1.1: State of the art in SERS in terms of substrate fabrication, applications and 

implementation in machine learning techniques.  

1.2. Trace Detection of Explosives 

With growing terrorism and threats to world peace, homeland security is a challenge for 

every nation. Detection/sensing of high energy materials (HEMs), often called as 

explosives, in public places in view of safety is an important aspect of a country’s security. 

Trace detection of explosives is important to identify early threat and further save lives. 

Bulk detection and trace detection are the two broad categories into which explosive 

detection can be divided. Bulk detection refers to detection of bulk explosives and is now 

very well established with existing techniques such as Raman Spectroscopy, terahertz 

(THz) spectroscopy, Laser-induced Breakdown Spectroscopy (LIBS), neutron based 

technologies, X-ray imaging, and computed tomography etc. [36]. Trace explosive 

detection refers to detection of explosives that one cannot see with the naked eye and is 

often used as an indication of handling bulk explosives prior [37] [38]. There are many 

trace explosive detection techniques like ion mobility spectroscopy (IMS), 

Chemiluminescence (CL), gas chromatography (GC), mass spectroscopy (MS), 

photoacoustic spectroscopy (PAS), and SERS [39]. These techniques can further be 

classified on the basis of sample collection technique or if it offers a fingerprint signature, 

near field or standoff and so on as shown in the figure 1.2.  IMS identifies ions based on 

their mobility in a gas phase. It works by ionizing a sample and subjecting the resulting 

ions to an electric field, which causes them to drift through a gas-filled chamber at different 
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speeds depending on their size and shape, allowing for their identification. Though quick, 

IMS does not give fingerprint response, is not compatible for multiplexing, destructive and 

the result depends on the length of drift tube and atmospheric conditions [40]. CL is based 

on a chemical reaction that when an electronically excited state of a chemical de-excites 

to ground state it generates electromagnetic radiation as light. There are different 

techniques that make use of CL for trace detection like thermal energy analyser (TEA), 

luminal based CL, electrochemiluminescence as such or in combination with an 

immunoassay with or without a fluorophore [41]. These techniques are always coupled 

with a separation technique to detect explosives in a complex matrix because of the lack 

of selectivity. For example, gas chromatography coupled TEA is widely used for explosive 

detection exploiting the fact that most of the explosives containing nitrate or nitro groups 

[41] . In MS, the charge to mass ratio of the components present in the sample are analysed 

in the presence of a magnetic field and a mass spectrum is generated to identify the sample. 

PAS involves the use of a laser to excite a sample and generate acoustic waves, which are 

detected by a microphone. The resulting signal provides information about the sample's 

properties, such as its absorption spectrum and concentration. Each of the techniques 

comes with its own challenges and limitations when it comes to preventing false alarms, 

sensitivity, detection in complex matrices and multiplexing. In real world situations, safe, 

non-destructive, label-free, cost-effective, and rapid detection is imperative for any 

explosive detection technique.  

Figure 1.2: Schematic of classification of different explosive detection techniques. 
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Biomolecules are defined as chemical substances present or produced by living organisms 

including proteins, nucleic acids (DNA, RNA, and their bases), lipids, carbohydrates, and 

vitamins [42].  Detection of biomolecules is important to understand different biochemical 

processes, optimise drug delivery mechanisms in pharmaceutical applications, and for 

early diagnosis of diseases [35]. Existing popular techniques like enzyme-linked 

immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are known to be time 

consuming and cost-ineffective. Specifically, for biomolecules trace detection techniques 

that can track minute changes in cells/tissues or in complex bio fluids, help in early disease 

diagnosis thus saving lives. It is also ideal to have a tool that is water compatible and offers 

high signal to noise ratio despite the presence of huge background as is the case for 

biomolecules. Recent pandemic (COVID-19) and growing cancers, has invoked new 

interest in developing SERS based detections systems for non-invasive, rapid and early 

detection [43].   

The performance of any trace detection is characterised by the following parameters. 

1) Selectivity: It is the ability of a detection system to detect a specific analyte despite 

the presence of other molecules interfering with its detection. 

2) Sensitivity: Sensitivity is technically defined as the minimum change in input 

parameter that can show detectable change in the output parameter. In the case of 

trace detection, it is the smallest change in concentration that can be detected by 

the detection technique.  

3) Limit of Detection (LOD): Limit of detection is defined by the standard definition 

[44]. It is given as the relation between standard deviation of the intensity of the 

blank sample,  and the slope of the intensity vs concentration calibration curve, 

b,  

                                                                 𝐿𝑂𝐷 =  
3

𝑏
                                                                     (1.1)  

4) Reproducibility: Reproducibility means the variation in the intensity of a selected 

signature peak/response of the molecule under study. It is usually measured in 

terms of relative standard deviation (RSD), which is a ration of mean to the 

standard deviation of the signal. Lower RSD indicates better reproducibility. 

SERS overcomes the existing challenges in the detection of both, explosives and 

biomolecules by offering portable, rapid, non-destructive, and fingerprint detection. It is 
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an excellent tool for trace detection because it enables identification of molecules present 

at extremely low concentrations due to the high field amplification caused by the 

interaction between the analyte molecules and the plasmonic material. SERS is also known 

for its selectivity making it an ideal tool for identifying trace amounts of target molecules 

in complex matrices, which is crucial for various types of field applications in explosive 

and biomolecule detection. SERS also allows for rapid analysis with detection times as 

less as 2-5 minutes [45], multiplexing allowing simultaneous detection of two analyte 

molecules [46], and versatility meaning one SERS substrate can be used for detection of 

different molecules [47]. SERS is also non-destructive, indicating that samples can be 

analysed without altering their chemical or physical properties. This is important for 

explosive and biomolecule sensing where samples need to be preserved for further 

analysis, prevent damage of tissues/cells or operator’s safety is a concern. Along with these 

advantages, recent developments in portable instrumentation and compact lasers have 

made SERS desirable for on-site analysis [48]. This means that samples can be analysed 

in the field, rather than being transported to a laboratory for analysis making it possible to 

pursue onsite and remote detection. 

Using different criteria such as velocity of detonation, chemical properties and energy 

released, explosives are classified into different groups in order study their properties. First 

and foremost, as explosives have varying destructive capacities depending on their 

velocity, the categorization of explosives based on detonation velocity is often employed 

in a variety of industries, including the military, mining, and building destruction [49]. If 

the velocity of detonation is greater than 4000 m/sec, the explosives are classified as high 

energy explosives. Further depending on the sensitivity, they are classified into primary, 

secondary and tertiary. Primary explosives are extremely sensitive to heat, spark and 

friction and hence detonate easily. They are often used as triggering agents for secondary 

explosives in small quantities. Mercury fulminate, lead azide, lead styphnate, and tetracene 

are some of the examples of primary explosives. Secondary explosives are the most 

commonly studied and used explosives as they are not very sensitive to external stimuli. 

They are often triggered by a primary explosive and have high detonation velocities. Some 

of the commonly studied secondary explosives include 1,3,5-Trinitroperhydro-1,3,5-

triazine (RDX), 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX), 5 Amino,3-nitro,1,3,5-

nitrozole (ANTA), 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), 

Trinitrotoluene (TNT), and 1,1-diamino-2,2-dinitroethene (FOX-7). Tertiary explosives 
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have very low detonation velocities and are often used for demolition and mining. Low 

are also characterised by low velocity of detonation and used as propellants in various 

applications. Black powder, gun powder and amputations in firearms are some of the 

examples of tertiary explosives [50].  

1.3. Localized Surface Plasmon Resonance 
 

Understanding LSPR is important to understand SERS and the factors that influence the 

enhancement in SERS. SERS primarily uses LSPR for enhancing the Raman signal 

through mechanisms discussed in later sections.  There are reports where both SPR and 

LSPR are used in SERS for dual mode enhancement [51–53]. However, the work done in 

this thesis has focused exclusively on LSPR based SERS for the advantages discussed in 

the introduction. In order to understand the LSPR, one has to look into the interaction of 

electromagnetic radiation with metal nanoparticles whose size is less than the wavelength 

of the light and hence is often treated as an electrostatic problem. When electromagnetic 

radiation strikes a metal nanoparticle, the displacement of the conduction electrons from 

the positive ions causes the system to become polarised. But Columbic attraction causes 

the displaced negative and positive charges to be brought together, producing a restoring 

force. In response to the periodic electric field and the restoring force produced by the 

Columbic attraction between the positive and negative charges, the conduction electrons 

in the nanoparticle experience coherent oscillation, as seen in figure 1.3 a). This may be 

described in a manner similar to the mass-spring oscillator model, as seen in figure 1.3 b). 

The coherent oscillations in metal nanoparticles are referred to as LSPR, which is called 

"localised" because the electron oscillations are spatially constrained in three dimensions. 

 

Figure 1.3: Schematic of a) LSPR oscillations in metal nanoparticles in the presence of an 

electromagnetic field, b) Spring-mass model of a molecule with two atoms bound by a spring 

analogous to the chemical bond. 

a) b) 
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In order to develop a theoretical formulation for the origin of LSPR, the simplest model at 

hand is a spherical metallic nanoparticle. Instead of solving the Maxwell’s equations fully, 

we can restore to the electrostatic approximation. In real life situations, where the 

excitation wavelength is approximately around 500-800 nm, is much larger than the size 

of the nanoparticles, which is approximately 10-100 nm, this approximation is justified.  

LSPR in a metallic sphere can thus be understood with electrostatic approximation by 

solving the Laplace equation with appropriate boundary conditions.  

The Laplace equation for a potential, V, is given as,  

                                                       2𝑉 = 0                                                                   (1.2) 

In the spherical coordinates, the solution of the above equation is a series of Legendre 

polynomials and is a function of radial distance, r and the polar angle,  [54]. 

                                           V(r, ) =  ∑ (Alr
l + 

Bl

rl+1

l=0 ) Pl(cos)                                 (1.3) 

Consider a metallic sphere of radius, R, dielectric function , placed in a medium of 

dielectric constant, m. The potential inside (Vin) and outside (Vout) this metallic sphere in 

the presence of an external electromagnetic field, EInc, is obtained by solving equation 

(1.3).  

                                                            𝑉𝑖𝑛 =  ∑ (𝐴𝑙𝑟
𝑙

𝑙=0 ) 𝑃𝑙(𝑐𝑜𝑠)                                      (1.4)                       

                                                      𝑉𝑜𝑢𝑡 = ∑ ( 
𝐵𝑙

𝑟𝑙+1

𝑙=0 ) 𝑃𝑙(𝑐𝑜𝑠)                                     (1.5) 

Using the appropriate boundary conditions, the constants Al and Bl can be derived as [54], 

                                                              𝐴𝑙 =  𝐵𝑙 = 0 for 𝑙 1  

                                            𝐴1 =  
−3m

+2m
 EInc  , 𝐵1 =  

−𝑚

+2m
 𝑅3EInc                              (1. 6) 

From equations (1.4), (1.5) and (1.6), the potential inside and outside the sphere can be 

written as, 

                                                   𝑉𝑖𝑛 =  
−3m

+2m
 EInc 𝑟𝑐𝑜𝑠                                              (1.7) 

                                 𝑉𝑜𝑢𝑡 = −EInc𝑟𝑐𝑜𝑠 +
−𝑚

+2m
 𝑅3 EInc

𝑐𝑜𝑠

𝑟2                                           (1.8) 



11 

 

From the multipole expansion of the electric field potential, the first term indicates the 

monopole contribution while the second term indicates the dipole contribution where the 

dipole moment can be written as, 

                                         𝑝 = 4 𝑚
−𝑚

+2m
 𝑅3 EInc =  𝑚  EInc                              (1. 8)  

 here is the polarizability of the sphere and is a measure of ‘responsiveness’ of the 

molecule to the electromagnetic radiation, can be written as, 

                                                   =  4 
−𝑚

+2m
 𝑅3                                                           (1. 9)      

From the potential the electric field inside the metallic sphere can be derived as, 

                                                          EIn =  
3m

+2m
 EInc                                               (1.10) 

The absorption, scattering and extinction cross sections of the sphere can be derived using 

the above equations [55] and all of them have  + 2m in the denominator.  

It has to be noted that the dielectric function for metals is a function of wavelength and is 

a complex function which can be written as a sum of real and imaginary parts as, 

                                                () = Re() + iIm()                                       (1.12)     

In a case where Im[()] is small implying Im[()] ~0 and Re[()] ~(-2m), the 

denominator in equation 1.11 tends to infinity. This is the resonance condition where the 

optical response of the metallic sphere is huge and is called as a LSPR. The field that is 

generated and hence the denominator in equation 1.11 is hugely dependent on the shape 

of the metal nanostructure. The resonance condition that is obtained here is purely a 

consequence of the geometry of the sphere and the boundary conditions that have been 

used in the derivation. This validates the dependence of LSPR on the shape of the metal 

nanostructures studied, as for example for a cylinder the denominator changes to () +

m, changing the resonance condition [18]. The equation also suggests the dependence of 

LSPR on the surrounding medium (m), for example LSPR is red shifted in the presence 

of medium with higher dielectric function like water than air. We will study the specific 

case of gold and silver in later sections. There are many important inferences on LSPR 

that can be drawn from the sphere model and are summarised below. The nature and 

quality of LSPR depends on,   



12 

 

 Nature of dielectric function of the metal (). 

 Shape of the nanoparticle as it results to different resonance condition in the 

denominator of the electric field. 

 Wavelength, as a consequence that the dielectric function of the metal is a function 

of wavelength. 

 Surrounding medium through the variable m in the term including the presence of 

other nanoparticle in the vicinity.  

In the coming sections we will introduce the aspects of LSPR that will influence the 

enhancements in the SERS. 

1.3.1. Optical Properties of Coinage Metals 

The optical properties of coinage metals such as Ag, Au, and Cu are essential to 

understanding their widespread usage as SERS substrates. In this thesis we have 

extensively worked on Ag, Au and their combinations and hence will restrict the 

discussion to Ag and Au. The Drude model provides a good approximation for the 

dielectric function of these metals in the region of interest [10]. In this thesis work for the 

simulations, we have used the dielectric function provided by the widely cited Johnson 

and Christy’s work [56]. Figure 1.4 shows real and imaginary parts of dielectric functions 

of gold and silver taken from their work.  

Figure 1.4: Real and imaginary parts of dielectric functions of gold and silver taken from Johnson 

and Christy’s work [56]. 

a) b) 

c) d) 
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The resonance condition derived in equation 1.11 has constraints on the dielectric function 

through the denominator. It implies that the real part of the dielectric function is largely 

negative. Figures 1.4 a), 1.4 c) indicate exactly the same for the real part of the dielectric 

function along with a monotonous decrease in the visible region. The denominator also 

signifies that the imaginary part has to be small and this condition is met by both the metals 

as shown in figures 1.4 b), 1.4 d). A small imaginary part also implies a superior quality 

factor. It has to be noted that imaginary part of Ag is smaller than Au, which indeed makes 

Ag a better performer in terms of enhancement in SERS. At higher wavelengths in the IR 

regions, both Ag and Au are known to perform equally par because of the similarity in 

dielectric function in this region [57]. However, Au is known to exhibit greater stability, 

low toxicity [58] and compatibility and hence is a preferred choice especially for SERS 

based biology applications [59]. There is also a recent surge in usage of materials beyond 

metals like doped semiconductors and dielectrics that have similar dielectric functions as 

SERS substrates [60] [61] [62] [63] [64].  

1.4. SERS Enhancement Mechanism 

It is crucial to first take a step back and comprehend Raman Scattering before moving on 

to comprehend the mechanism of SERS. SERS, after all, is an essentially Raman scattering 

with enhancement in signal through plasmonic nanostructures. Raman scattering refers to 

inelastic scattering of light by materials resulting in change in frequency of the incident 

light. This shift in frequency is called ‘Raman shift’ and is a vibrational signature of the 

materials under study. It is referred to as "Stokes Raman" (down conversion) if the 

frequency of the scattered light is lower than the incident frequency, and as "anti-Stokes 

Raman" (up conversion) if it is greater. Anti-Stokes scenario occurs if the molecules are 

already in an excited state and hence is not a common occurrence at room temperature. 

Throughout this thesis we are only referring to stokes shift. Raman spectroscopy has huge 

potential for many applications given it is label free, rapid and also offers fingerprint 

spectra enabling unique identification of samples under study. Classically the Raman 

scattering can be explained using the oscillating electric dipole where the scattered 

radiation is treated as radiation emitted by the dipole. When electromagnetic radiation 

interacts with a molecule, it interacts with the electron cloud associated with a chemical 

bond and induces a dipole moment. The induced dipole moment, pinduced, is proportional 
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to the incident electromagnetic field, Einc, and has a proportionality constant polarizability, 

 as given by the equation (1.13). 

                                                    𝑝𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =    𝐸𝑖𝑛𝑐                                                    (1.13)    

Raman scattering can be explained using a classical model using the spring-mass analogy 

and Newton mechanics. Consider a diatomic molecule which can be modelled using a 

spring mass system [figure 3 b)].  The force between the atoms can be written as in 

equation 1.14 using the Hook’s law, where x1, x2 are the displacements from the origin, 

m1, m2 are the atomic masses and K is the spring constant which is equivalent to bond 

strength. 

                                                        
𝑚1𝑚2

𝑚1+𝑚2
(

𝑑2𝑥1

𝑑𝑡2
+

𝑑2𝑥2

𝑑𝑡2
) =  −𝐾(𝑥1 + 𝑥2)                      (1.14)   

By introducing total displacement, q, as the sum of displacements x1, x2 and reduced mass, 

, the above equation can be rewritten as,  

                                                                  
𝑑2𝑞

𝑑𝑡2  = -K q                                                (1.15) 

The solution of the above differential equation with boundary condition at t=0 can be 

written as, 

                                                       𝑞 =  𝑞0 cos(2𝑚𝑡)                                                  (1.16) 

Where, 𝑚 =
1

2
 √

𝐾


  is the frequency of the vibration from the mean position and is, hence, 

dependent on the bond strength and the reduced mass of the atoms. The induced 

polarizability given in equation 1.13 for an incident electric field 𝐸0cos (20𝑡) can be 

rewritten as,  

                                     𝑝𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =    𝐸𝑖𝑛𝑐 =    𝐸0cos (20𝑡)                              (1.17) 

The polarizability is a tensor and is a function of displacement of the atoms present in the 

molecule. Under the small displacement caused in the presence of electric field, it can be 

approximated by the Taylor expansion as,  

                                                          =  0  𝑞 (
𝑑

𝑑𝑞
)𝑞=0   … ..                                 (1.18) 
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Combining the equations 1.16, 1.17 and 1.18, one can write the induced diploe moment 

as, 

      𝑝𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =  0 𝐸0 cos(20𝑡) +   𝑞0 cos(2𝑚𝑡) 𝐸0 cos(20𝑡) (
𝑑

𝑑𝑞
)𝑞=0 + ⋯ (1.19) 

The first term is equivalent to Rayleigh scattering, where the frequency of the dispersed 

light is the same as the frequency of the incoming light. Using trigonometric identities, the 

second term may be stretched to produce two distinct terms that represent the sum and 

difference of frequencies, as illustrated below.  

𝑝𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =  0 𝐸0 cos(20𝑡)

+   𝑞0 𝐸0 (
𝑑

𝑑𝑞
)𝑞=0 [cos(2 0 − 𝑚𝑡) + cos(2 0 + 𝑚𝑡)]

+ ⋯                                                                                                                 (1.20) 

As can be seen, the sum and difference frequencies generated in the equation highlight the 

contribution of anti-Stokes and Stokes frequencies in the Raman scattering event, 

respectively. It is important to note that for Raman scattering, 
𝑑

𝑑𝑞
  must be non-zero 

meaning only the vibrational modes that result in change in polarizability are Raman 

active.  The intensity of the Raman signal is proportional to the Raman cross-section of 

the molecule and the incident power density. The scenario is same in the case of SERS 

except with an enhancement factor originating from both electromagnetic and chemical 

enhancement. The Raman power, PRaman emitted in an event is proportional to the intensity 

of the input laser power, I, number of molecules in the excitation region, N, and scattering 

cross section of the kth mode, k.   

                                                     𝑃𝑅𝑎𝑚𝑎𝑛 = 𝐾𝑁𝑘𝐼                                                     (1.21) 

K here is the proportionality constant that accounts for instrument parameters like detector 

efficiency in converting photons into electrons. In the case of SERS, the output power, 

PSERS is proportional to the Raman power with an additional enhancement factor, GSERS, 

which is further a product of electromagnetic enhancement, GEM, and chemical 

enhancement, GCM.  

                                            𝑃𝑆𝐸𝑅𝑆 =  𝐺𝑆𝐸𝑅𝑆𝑃𝑅𝑎𝑚𝑎𝑛 =   𝐺𝐸𝑀𝐺𝐶𝑀𝑃𝑅𝑎𝑚𝑎𝑛                    (1.22) 
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1.4.1. Electromagnetic Enhancement 

After the discovery of anomalously intense Raman signal of pyridine adsorbed on silver 

electrodes in early 1970s, there were many theories which attempted to understand the 

origin of enhancement. Electromagnetic enhancement is an important contribution to 

SERS and with optimum plasmonic material it could be as high as 1010 [65]. The 

understanding of EM enhancement (EME) was a progress of different works over the years 

which lead it to the current form. Through his work, Moskovits proposed that the roughed 

electrodes can be approximated as nanoparticles and are hence contributing to the 

enhancement through plasmonic effects [66]. Further, he suggested that colloidal 

nanoparticles can also be used for such enhancements [67].  Eventually in 1979, Creighton 

et al. have demonstrated SERS with Ag/Au colloids and went further to study the effects 

of size and wavelength of SPR on SERS. They argued that the enhancement is from the 

surface plasmon resonance in metallic nanostructures and called it ‘plasmon resonance-

enhanced Raman’ in their studies [68]. His group significantly contributed in the progress 

of SERS substrates beyond roughened surfaces and eventually concluded that the 

dielectric function of the metals has a role to play in the efficiency of SERS [69]. The idea 

of SERS hotspots has also been conceptualised by Creighton during his studies on the 

effects of aggregation of gold nanoparticles on SERS enhancement [70]. This observation 

was reinforced by a different study performed to calculate the field enhancement for Ag 

and Au dimers establishing the concept of SERS hotspots. The idea was conceptualised 

later for the detection of single molecule detection like that of haemoglobin in between 

two Ag nanoparticles [71]. Eventually, the electromagnetic enhancement in SERS is now 

well understood and is formulated below. The EME in SERS is mainly attributed to the 

nature of LSPR and its effects on the presence of probe molecules in the vicinity. As any 

LSPR technique, it is a near field enhancement and is dependent on different factors that 

influence the quality of LSPR. In SERS substrates the probe molecules are adsorbed on 

the surface of metal nanoparticles/nanostructures either through physisorption or 

chemisorption. The enhancement is formulated by solving the electric field around these 

probe molecules in the presence of the metal nanoparticles. The EME can be understood 

in terms of two events [17] [18], 
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1.4.1.1. Local Field Enhancement (LFE) 

In the sections described above, it is clear that metal nanoparticles under certain conditions 

experience field enhancement in their vicinity. The enhancement of incident electric field 

in the presence of nanoparticles is called as LFE. This field enhancement is localized in 

the vicinity of the nanoparticle and these areas of dense electric field are often called as 

‘hotspots’ in SERS. The field enhancement this case can be understood using the classical 

dipole approximation described earlier where the power of dipole radiation of the 

oscillating Raman dipole is given as, 

                                      𝑃𝑅𝑎𝑚𝑎𝑛 =  
4

120𝑐3 𝑝𝑖𝑛𝑑𝑢𝑐𝑒𝑑
2
 = 

4

120𝑐3  𝐸𝑖𝑛𝑐 
2
                      (1.23) 

The equation above suggests that the power is proportional to the square of incident filed 

intensity using which we can define a LF intensity enhancement factor (LFIEF), MLFIE for 

a local field of ELoc (L) as (where L is the frequency of incident radiation),  

                                                           𝑀𝐿𝐹𝐼𝐸 =  
 ELoc(𝐿)2

 Einc(𝐿)2
                                                     (1.24) 

The local filed enhancement depends on many factors originating from the dependence of 

LSPR on different parameters. It is generally intense at tips, sharp edges, and cervices 

similar to the popular lightening rod effect in metals. It is also a function of orientation of 

the molecule, wavelength, polarization of the field with respect to the metal nanoparticle 

of interest. 

1.4.1.2. Re-radiation Enhancement (RE) 

While the LFE is from the perspective of the metal nanoparticle and associated LSPR, re-

radiation effect is from the perspective of the molecule. This results from the fact that, as 

equation 1.23 illustrates, the power emitted by an oscillating dipole relies on its 

surrounding environment [72].  Depending on its electromagnetic environment, a fixed 

oscillating dipole amplitude will extract more or less energy. If a dipole oscillates close to 

a metal surface with a frequency of R, its power can, for example, be many orders of 

magnitude greater than if it were radiated in free space. This is often described as modified 

spontaneous emission and is described in detail elsewhere [73]. In the presence of metal 

nanoparticle and the local field enhancement, the power radiated by the molecule, PRad is 

enhanced and the radiation enhancement factor, MREF, relative to the free space, P0 is given 

as, 
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                                                        𝑀𝑅𝐸𝐹 =  
𝑃𝑅𝑎𝑑

𝑃0
 = 

 ELoc(𝑅)2

 Einc(𝐿)2
                                      (1.25) 

The total EM enhancement, GEM in SERS is the product of LFIE and REF and is often 

known as E4 approximation of SERS enhancement.  

                                            𝐺𝐸𝑀 =  𝑀𝐿𝐹𝐼𝐸𝑀𝑅𝐸 =  
 ELoc(𝐿)2

 Einc(𝐿)2
 
 ELoc(𝑅)2

 Einc(𝐿)2
                       (1.26) 

Under the approximation that the Raman shift is small which implies LR, this can 

further be simplified as below. The approximation is also justified by the optical 

reciprocity theorem discussed elsewhere [74]. 

                                                      𝐺𝐸𝑀 ELoc(𝐿)4                                                  (1.27) 

It has to be noted that the origin of EME is same for both the cases i.e., the excitation of 

LSPR in metal nanoparticles by the incident electromagnetic field.  

1.4.2. Chemical Enhancement 

While EME is an attribute of metal nanostructures, CME depends on the molecule and 

nanostructure interaction and hence the enhancement is subjective. The origin of CME in 

SERS is believed to be the change in polarizability of the molecule due to 

chemical/physical changes after its interaction with the plasmonic material. The exact 

magnitude of this enhancement, GCME, depends on the molecule and metal combination 

and often ranges between 102-104 in magnitude. Though the contribution is relatively small 

compared to EME, it plays a crucial role in SERS as it often causes anomalies like shifts 

in expected Raman modes, and enhancement of specific modes while quenching few. The 

details of the mechanism and the different ways in which the polarizability is changed are 

discussed elsewhere [75], [76], [77], [78]. Broadly, these are described as ‘charge transfer 

mechanisms’ in which the electronic charge around the molecule is slightly perturbed in 

the presence of the nanostructure as shown in figure 1.5 depending on the interacting 

between the two [77].  

Molecules in the SERS technique are adsorbed on the metal nanostructure either through 

physisorption on chemisorption, the distinction of which is made on the basis of enthalpy 

of the process [79], [80].  Chemisorption often involves formation of a chemical bond and, 

hence, causes a stronger perturbation in the molecule’s structure than physisorption. In 
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both the cases the change in charge distribution relative to that of free molecules induces 

change in the Raman polarizability and, hence, in the Raman modes cross section.  

 

Figure 1.5: Illustration of chemical enhancement in SERS through charge transfer mechanism 

between analyte molecule and the metal nanostructure a) case of resonant excitation where laser 

energy is close to the electronic transitions of the analyte molecule. b, c) Photo driven charge 

transfer mechanisms between the Fermi and HOMO, LUMO energy levels [81]. 

The total enhancement in SERS, GSERS, is a product of both electromagnetic and chemical 

enhancements and is summarised in figure 1.6. 

  

Figure 1.6: Illustration of a probe molecule at a SERS hotspot and associated electromagnetic and 

chemical enhancement contribution to signal enhancement in SERS.  

1.4.3. Calculating Enhancement Factor 

The SERS Enhancement factor (EF), is defined as, 

                                                              EF =  
ISERS/CSERS

INR/CNR
                                              (1.27) 

Where INR, ISERS stands for intensity under normal Raman and SERS conditions 

respectively while CNR and CSERS represents concentration of the analyte in normal Raman 
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and SERS respectively. CSERS is the lowest concentration of analyte that has been detected 

using the substrate. ISERS is the peak intensity of prominent vibrational mode for the analyte 

under study. It has to be noted that the INR and CNR have to be measured under same 

experimental conditions like power, acquisition time and spot size as SERS. CNR is the 

concentration of the same analyte as SERS and is usually in milli molar. INR is the peak 

intensity of prominent vibrational mode under Raman conditions [65]. These 

measurements have to be performed on the blank i.e., structure without the plasmonic 

nanostructures.   

The enhancement factor calculated this way is only a lower limit and is often the modest 

way to have an estimate. Not all molecules in the collection area contribute to the SERS 

effect. Only a fraction of molecules adsorbed on the nanostructures will result in the 

enhancement. In order to estimate the fraction of adsorbed molecules, adsorption studies 

become relevant.  An upper estimate can be calculated by modelling the adsorption of the 

molecules on the SERS substrate. The Analytical Enhancement Factor is defined as,  

                                                 AEF =  
ISERS/NSERS

INR/NNR
                                                         (1.28) 

Here, INR, ISERS stands for intensity under normal Raman and SERS conditions respectively 

while NNR and NSERS represents number of molecules contributing to INR and ISERS, 

respectively. NSERS is calculated as follows [82], 

                                             𝑁𝑆𝐸𝑅𝑆 = 𝜂 𝑁𝐴 𝐶𝑆𝐸𝑅𝑆 𝑉𝑎
𝐴𝑙𝑎𝑠𝑒𝑟

𝐴𝑡𝑜𝑡𝑎𝑙 
                                             (1.29) 

Where,  is the adsorption factor found by fitting the concentration and intensity data to 

an adsorption isotherm like Langmuir. CSERS is the lowest concentration detected in SERS 

and Alaser, Atotal are the laser spot size and area covered by the analyte molecule, 

respectively. NA is the Avogadro number and Va is the volume of the analyte drop casted. 

NNR is measured on the blank substrate as follows, 

                                                          𝑁𝑁𝑅 =  𝑁𝐴 𝐶𝑁𝑅 𝑉𝑎
𝐴𝑙𝑎𝑠𝑒𝑟

𝐴𝑁𝑅
                                       (1.30) 

From equations (1.28), (1.29) and (1.30), AEF is given as, 

                                            AEF =
ISERS

IRaman

NRaman

NSERS
=  

ISERS

IRaman

CNR ×ANS 

η × CSERS × Atotal
                 (1.31)                                          
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The adsorption factor is always less than one and hence the EF calculated this way is 

always higher than the one calculated without taking adsorption into account. This method 

of calculating EF ensures that we take into account only those molecules that are adsorbed 

on the nanostructure.  

1.5. Factors that influence SERS 

In order to understand different factors like size, shape, material and distance between 

nanoparticles on SERS enhancement, COMSOL Multiphysics based simulations have 

been performed. The simulations were performed in RF module with Electromagnetic 

Wave physics. This module solves Maxwell's equations for a given system in the 

frequency domain. The simulations steps performed are described below and illustrated in 

figure 1.7. 

    Geometry of the problem is built including the perfectly matching layers (PML) 

layer. Only a quarter of the geometry was simulated to reduce memory usage and 

time. Boundary conditions were imposed at the interfaces to account for the 

symmetry of the problem. A PML shell of half the wavelength is used for the study. 

Changing the thickness however did not change the output parameters except the 

quality of the near field of the nanoparticle. 

    Materials of the domains under study were defined. Optical constants of gold and 

silver were defined using values from the most widely used literature by Johnson 

and Christy [56]. Interpolation function was used to incorporate the same. The 

surrounding medium is defined as air =1 for both the cases. 

    The geometry was discretized using physics-based meshing in COMSOL. The 

sequence generated was edited to optimise the results. Mesh size was chosen such 

that the output parameters are unchanged on further fine meshing. A detailed mesh 

refinement study can be pursued with a parametric sweep on element size; however, 

this comes at a cost of memory and computation time. 

    Physics of the problem is defined with an input plane wave sweeping a range of 

wavelengths under study. The problem is formulated for scattered field and 

accordingly scattering boundary conditions were defined. 

    The extension, scattering, absorption coefficients and cross sections were defined. 

The quantities were derived from Mie theory and taken as it is [83]. The absorption 

cross section region is defined as the volume of the nanoparticle because it is a near 
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field property. Similarly scattering cross sections are defined at the internal PML 

layers because it is a far field property. The relation between 

absorption/extinction/scattering coefficient and cross section is given as,                                  

                                                𝑄𝑁𝑃 =  
𝑎𝑏𝑠/𝑠𝑐𝑎𝑡/𝑒𝑥𝑡

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐
                                               (1.32) 

    A parametric sweep across wavelengths of interest is defined in the study section. 

The wavelength is varied in steps of two for both gold and silver. 

                    

Figure 1.7: Flowchart for simulations performed in COMSOL Multiphysics. 

1.5.1. Effects of Material  

The choice of right material is key for SERS applications and a good plasmonic material 

is characterised by its enhancement, ease of use and durability. Ag, Au and Cu are the 

widely used plasmonic materials in the visible and near-IR region while aluminium is 

preferred in the UV region [84] [85] owing to the desirable nature of the dielectric 

functions of these metals in those regions as shown in figure 1.8. Different combinations 

of these metals as alloys and in different morphologies like spheres, triangles, stars, 

dendrites and cubes were used to maximise the enhancement in SERS.   

Figure 1.8: Plasmonic region of interest for Ag, Au and Cu where there are extensively used in 

SERS. Figure adapted from the reference [86]. 
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Using COMSOL, we have studied the LSPR in the case of Ag, Au, Ag-Au core-shell, and 

alloy nanoparticles. This is because recently there has been an increase in usage of 

bimetallic Ag-Au nanoparticles employing their synergic benefits of enhanced stability 

and optimum enhancement with a choice of tunability in the SERS [87]. The dielectric 

function for simulating the alloy nanoparticles is taken from elsewhere [88]. For alloy 

nanoparticles, it is seen that the LSPR red shifts with increasing Au composition as shown 

in figures 1.9 a), 1.9 b). This knowledge is often used in choosing the right alloy 

nanoparticles with suitable resonance in order to increase the SERS enhancement. 

Similarly, Ag@Au and Au@Ag core-shell nanoparticles also offer a wide range of 

tunability in the visible region by varying the thickness of the shell as shown in figures 1.9 

c), 1.9 d). Recently there has been a growing interest in usage of hybrid and flexible 

plasmonic materials as enhancers in SERS [89]. Ag-TiO2 based SERS trace detection has 

been shown to achieve higher sensitivity through photo induced mechanisms in the 

transition metals [90]. Shell isolated nanoparticle enhanced Raman spectroscopy 

(SHINERS) have also been used with a combination of coinage metals, transition metals 

and semiconductors [91] [92]. The usage of 2-D materials such as graphene oxide, hBN, 

and MoS2 in hybrid SERS substrates for greater stability and enhancement through 

chemical mechanism has also seen a rise [93] [94]. In this thesis, Ag, Au and their 

combinations are extensively used as SERS substrates both in colloidal form and as rigid 

substrates. In one study Cu nanostructures were also used for trace detection of explosives 

as a low-cost alternative to Ag and Au.  

1.5.2. Effects of Size of Nanoparticles  

The LFIE is the main mechanism that governs the enhancement in SERS. As size of the 

nanoparticle increases the restoring force decreases resulting in the red shift of the LSPR 

resonance. This shift in LSPR with the size of the nanoparticles and is studied using 

COMSOL Multiphysics for both Ag and Au nanoparticles. The red shift in resonance with 

increasing size can be seen in both the cases. However, the shift is greater in the case of 

Ag than Au. Also, silver has higher quality of resonance than gold, accounting for the fact 

that Im[()] is relatively high for gold in the visible region. This leads to increased 

absorption and hence damping of oscillations in the case of gold. It can also be seen that 

the resonance broadens with increasing size implying decreased quality factor. The 

broadening is due to radiation effects. This can further be noticed with increase in 

scattering cross-section with increasing size. Absorption dominates for small particles and 
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scales slower whereas scattering is greater for bigger particles. Multipole resonances can 

also be seen with increasing size. The longest resonance in this case corresponds to the 

dipole resonance. The red shift in dipolar resonances reduces the overlap of the multipolar 

resonances. Figure 1.10 shows the extinction spectra of Ag and Au nanospheres for 

different sizes. It can be seen that the redshift in resonance is greater for silver than gold. 

This can be ascertained to higher optical absorption in gold in the visible region. From 

equation (32), the extinction cross-section for 10 nm Ag sphere at resonance can be 

estimated as, 10-15 m2. Similarly, for 10 nm sized Au nanosphere the extinction cross-

section is estimated as 10-16 m2. 

Figure 1.9: Extinction spectra of a) c) Ag-Au alloy nanoparticles of size 10nm with varying 

compositions. b) Inset shows the LSPR of the alloy nanoparticles as a function of the Au 

composition. c) Ag@Au core-shell nanoparticles with varying Au thickness. b) Au@Ag core-shell 

nanoparticles with varying Ag thickness. 

The red shift in resonance with increasing size is plotted in figure 1.11 a) for both Ag and 

Au. It can be seen that the shift is greater in the case of Ag (360 to 470 nm) than Au (510 

to 560nm). This is attributed to the low radiation/retardation effects in Au as opposed to 

Ag attributing to the difference in the Im[()] in both [10]. The field enhancement along 

the polarization direction of the incident field is also studied and the relative field is plotted 

in figure 1.11 b). The field characteristics indicate a sharp enhancement in the vicinity of 

the nanoparticle followed by an exponential decay in the intensity with distance from the  
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Figure 1.10: Calculated extinction (QExt), absorption (QAbs), and scattering (QScat) spectra, surrounded by air, of A) Au for a) 20 nm b) 40 nm c) 60 nm and 

d) extension spectra for all sizes as indicated in the figure. B) Ag nanospheres of size a) 20 nm b) 40 nm c) 60 nm and d) extinction spectra for all sizes.  

A) B) 

a) b) 

c) d) 

a) 

b) 

c) d) 
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nanoparticle. This re-emphasis the localization of hotspots in SERS and the importance of 

having a substrate with high density of hotspots for achieving trace detection.  

Figure 1.11: a) LSPR resonance as a function of particle size for Ag and Au nanoparticles, b) 

Local field intensity as a function of distance from the nanoparticle for Ag sphere.  

1.5.3. Effects of distance between the Nanoparticles 

Trace detection in SERS hugely benefits from the localized intense electric field regions 

called as hotspots. Hotspots are formed between the junction of two or more nanoparticles 

and a molecule is in the vicinity of these hotspots benefits from the intense field. SERS 

signal generated by a single molecule at a hotspot is the same as the SERS signal generated 

by 580 molecules randomly adsorbed on the surface [95] [10]. These hotspots, however, 

are commonly distributed randomly on the substrate surface and the inhomogeneous 

adsorption of the molecules adds further to the randomness. SERS suffers from poor 

reproducibility because of the localization of these hotspots. Laser illumination also 

changes the shape, size, and distance of these hotspots, contributing to further signal 

variations [96]. Using COMSOL, we have studied the effects of distance between the 

nanoparticles on the field intensity for the case of two 10 nm Ag spheres. Field intensity 

plotted in figure 1.12 a) clearly indicates that aggregation of nanoparticles indeed 

facilitates high density and quality hot spots facilitating lower detection limits [97]. Figure 

1.12 b) presents the near field intensity pattern for different distances between the dimer 

configurations. In order to understand the near field enhancement in case of a dimer 

configuration, we have simulated two Ag nanospheres by varying the gap between the two 

nanoparticles. The maximum field enhancement as a function of distance is shown in the 

Figure 1.12 c). It has been found the relative the relative electric field varies as 1/r0.86 where 

r is the distance between the nanoparticles. 
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1.5.4. Effects of Shape of the Nanoparticles 

The intensity of the local field enhancement through the localised surface plasmon 

resonance depends hugely on the morphology of the NP [98] [99] [100]. Lightning rod 

effects are thought to be responsible for the enhancement of electric fields at metallic tips 

[101]. In a study using star, triangular and spherical nanoparticles, it was found that the 

star nanoparticles outperformed the other two in terms of enhancement and limit of 

detection [97]. Surface area to volume ratios are useful indicators of electron density, 

Figure 1.12: A) Relative electric 

field along the electric field direction 

as a function of distance from the 

centre of the dimer. B) Near field 

intensity pattern for the dimer with 

distance a) 0.5 nm b) 2 nm c) 4 nm 

and d) 6 nm. C) Relative electric 

field as a function of gap between 

nanoparticles of Ag dimer 

configuration. Squares the 

experimental data points while the 

solid line is a polynomial fit. 

A) B) 

C) 

a) b) 

c) d) 

Figure 1.13: Near field 

enhancement around 

anisotropic NSs a) Ag 

Cube b) Ag star c) Ag 

triangle d) Ag Dendrites 

e) Ag Dendrites with 

Au. Nanoparticles. 
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which is proportional to electrostatic fields. Owing to this, the electric field enhancement 

effect of metallic nanoparticles increases as their edges sharpen. COMSOL Multiphysics 

has been used in order to simulate near field enhancement around different anisotropic 

structures as shown in figure 1.13.  

1.5.5. Experimental Parameters 

 SERS efficiency depends on various experimental parameters like excitation wavelength, 

spot size of the laser on the substrate, laser power, and polarization. Choosing a right 

wavelength is crucial for SERS to maximise the enhancement. As suggested by equation 

(23), Raman power is inversely proportional to 4 and, hence, it may appear that shorter 

wavelengths are suitable for higher signals. However, in order to quench fluorescence, 

which is a major competitor for SERS during measurements, it is always better to choose 

longer wavelengths like the IR.  Longer wavelengths, in addition, are also known to offer 

better signal to noise ratio. Shorter wavelengths also mean a smaller Raman shift which 

demands a spectrometer with higher resolution. Choosing a wavelength close to the LSPR 

resonance of the metal substrate or to the absorption of the probe molecule is known to 

enhance the signal further through what is popularly called as SERS [21]. Spot size of the 

laser on the substrate determines the number of probe molecules that are contributing to 

the signal. A larger spot size would average signal over large number of molecules in 

various hotspots and all result in good reproducibility. A small spot size just at the hotspot 

is ideal for trace detection and single molecule SERS. In order to supress fluorescence and 

also prevent the damage of the substrate, it is always ideal to work at low powers in SERS.  

1.6. Machine Learning for SERS  

Human brain identifies and predicts through observations and learnings. Through machine 

learning, this job is outsourced to a computer through a program or an algorithm. The 

programs are trained though large data sets in order to recognise patterns and make 

accurate predictions on things that are unknown. An early example of a machine learning 

algorithm is a model that filters spam emails through key words. Depending on the type 

of datasets and the models used, machine learning techniques are broadly classified into 

supervised, unsupervised and reinforcement models as shown in figure 1.14. In supervised 

models labelled data is given to the model for training and educated predictions were made 

on unlabelled data sets. Unsupervised models are built to discover patterns and 

relationships in unlabelled data sets and are often used for clustering and dimensionality 
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reduction. Reinforcement models attempt to solve real world problems through a path that 

maximises reward and minimises the error. 

Figure 1.14: Schematic of classification of different machine learning algorithms.  

Machine learning (ML) techniques have gained popularity in different fields including 

spectroscopy for pre and post data processing recently. The wide availability of 

Raman/SERS data and computation facilities has enabled this rapid progression [102]. 

SERS has witnessed a huge surge in the usage of different ML algorithms both supervised 

and unsupervised, to overcomes many existing challenges and improve data collection and 

analysis. This trend is desirable given the complexity of existing SERS challenges, 

including trace detection, signal fluctuations, quantification, and identification, which 

involve many variables and require an analytical tool that can capture patterns without 

expert input [103]. Trace detection involves identifying faint signals from a noisy 

background, making it a task that can benefit from ML assistance. In the case of 

biomolecules, background contributions from undesirable components interfere with the 

signal, necessitating ML algorithms to extract useful information [104]. SERS also 

experiences inherent signal fluctuations due to the localization of hotspots and the 

dynamics of molecules and substrate adsorption which can be circumvent by using 

appropriate ML models [105]  [96]. The intrinsic signal variations in SERS makes it 

challenging to quantify the analyte under where simple linear analysis is not promising 

given that the intensity and analyte concentration is dominantly nonlinear. Thus 

quantification and the process of identification of chemical composition can be addressed 

by using ML [23]. In addition, ML in SERS can also be used to improve data collection, 
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overcome signal fluctuations, enhance on-site usability, estimate the effect of scattering, 

and even enhance the SERS signal itself [106] [107] [108] [109]. Principal component 

analysis (PCA), support vector machine (SVM), partial least squares (PLS), decision trees 

(DTs), and convolutional neural networks (CNNs) are a few common ML approaches. 

Figure 1.14 illustrates these techniques. PCA is a dimensionality reduction method that 

maintains components that are typical of the data with high variance. It is frequently 

applied as a pre-processing step to simplify models or as a classification method. [110]. 

SVM is a nonlinear machine learning approach that may be used for both regression and 

classification. It works by employing a kernel function to find a hyperplane that separates 

two or more classes. [111]. PLS is useful for quantitative studies when the data set is small 

and the number of variables is large, as it still extracts useful information [112] [113]. DTs 

are commonly used for data classification using bootstrapping [114], while CNNs employ 

filters and pooled layers in their architecture, often used for modelling large data sets with 

images [115].   

1.7. Molecules Studied in This Thesis 

Different molecules including explosives, biomolecules and dyes have been studied in this 

thesis works. Each SERS substrate that has been fabricated has been first characterised 

using dye molecules as they offer higher Raman cross sections due to the presence of free 

electrons. Explosive molecules can have various structures depending on the type of 

explosive. However, most explosive molecules share some common characteristics. They 

typically contain a large amount of potential energy stored in their chemical bonds, which 

can be rapidly released in an exothermic reaction. One common structural feature of 

explosive molecules is the presence of a highly reactive functional group, such as nitro (-

NO2) or azide (-N3). These groups contain high-energy nitrogen-oxygen or nitrogen-

nitrogen bonds that can be easily broken, releasing a large amount of energy in the process. 

Explosive molecules can exist in different states, such as solid, liquid, or gas, and their 

chemical and physical properties can vary depending on their state. Kanamycin, penicillin, 

and ampicillin are three different types of antibiotics with distinct chemical structures and 

modes of action studied in this thesis. Kanamycin is an aminoglycoside antibiotic that is 

effective against a wide range of gram-negative and some gram-positive bacteria. It 

consists of a complex ring structure with several amino groups and sugar residues. The 

active functional groups allow kanamycin to bind to the bacterial ribosome and inhibit 

protein synthesis, leading to bacterial cell death [116]. Penicillin is a beta-lactam antibiotic 
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that is effective against a variety of bacterial infections. It is composed of a beta-lactam 

ring fused to a thiazolidine ring [117]. The beta-lactam ring is crucial to the antibiotic's 

function, as it binds to and inhibits the activity of bacterial enzymes called penicillin-

binding proteins (PBPs). These enzymes are responsible for synthesizing the bacterial cell 

wall, and inhibition of their activity leads to the disruption of bacterial cell wall formation, 

eventually leading to cell death. Ampicillin is a semi-synthetic penicillin derivative that is 

similar in structure to penicillin, but with an additional amino group. This modification 

increases the antibiotic's effectiveness against gram-negative bacteria by allowing it to 

penetrate the outer membrane of these bacteria. Adenine and cytosine are two of the four 

nitrogenous bases that make up the genetic code of DNA (the other two being guanine and 

thymine). Adenine and cytosine are both classified as purine and pyrimidine bases, 

respectively. The structure of adenine consists of a purine ring system, which is composed 

of two fused rings. Adenine also contains two functional groups - an amine group and a 

carbonyl group - attached to the purine ring. The amine group is responsible for forming 

hydrogen bonds with the thymine base in DNA, while the carbonyl group participates in 

the formation of the phosphodiester bonds between nucleotides in the DNA backbone. The 

structure of cytosine, on the other hand, consists of a single pyrimidine ring with a carbonyl 

group and an amine group attached to it. Like adenine, cytosine can form hydrogen bonds 

with its complementary base in DNA (guanine). Thiram is a chemical compound 

belonging to the class of fungicides in agriculture to control various fungal diseases in 

crops. The chemical structure of thiram is also notable for its Sulphur atoms, which are 

responsible for the compound's strong odour. The distinctive smell of thiram is often used 

as a warning signal to indicate the presence of the chemical in products such as treated 

seeds. Naphthalene is an aromatic hydrocarbon with the chemical formula and is a 

common water contaminant [118]. The structure of naphthalene consists of two fused 

benzene rings. Each benzene ring is composed of six carbon atoms and six hydrogen atoms 

arranged in a hexagonal ring structure. In naphthalene, these two benzene rings are fused 

together by sharing two adjacent carbon atoms, forming a structure that resembles a figure-

eight. Melamine is an organic compound with the chemical formula and is a white 

crystalline solid. It is a common food adulterant especially in the milk raising health 

concerns recently [119]. The molecule has six amine functional groups (-NH2) attached to 

the nitrogen atoms and three carbonyl functional groups (-C=O) attached to the carbon 

atoms. Figure 1.15 depicts the structures of all the molecules studied in this thesis using 

the molecules studied in this thesis using Gaussian software with appropriate basis 
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function optimised for the state of minimum ground state energy. In addition to these 

molecules, SERS substrates were also used for the detection of live bacteria, Escherichia 

coli, commonly known as E. coli. E. coli is a rod-shaped bacterium that is commonly found 

in the lower intestines of warm-blooded organisms and is also a common water 

contaminant raising public health concerns. It is a single-celled prokaryotic organism with 

a simple internal structure and made up of different proteins, lipids, nucleoid, ribosomes, 

and plasmids. The whole organism Raman spectra depends on the composition of these 

contents and varies from species to species and, hence, offers a way to identify them 

through vibrational spectrum.  

1.8. Challenges and Thesis Motivation 

SERS, as discussed above, is a powerful evolving tool for trace detection of explosives 

and biomolecules. Despite all its advantages, there are many challenges associated with 

SERS standing in the way of translating the benefits to the real world [96]. SERS signals 

are known to have poor spatial reproducibility owing to inhomogeneous distribution of 

hotspots, random adsorption of molecules on the metal structure, coupling of the molecule 

with the substrate etc. [120], [121]. Periodic and predictable structures like those produced 

by e-beam lithography and laser ablation that are ligand free (pure) are promising in this 

regard [29]. The SERS substrates as they involve noble metals like Ag, Au and Pt are 

known to be expensive and are often not reusable and durable as they are prone to rapid 

oxidation. The cost of the substrates can be brought down drastically if instead a 

semiconductor material like Si is used as the base material with deposition of Ag/Au by 

different methods [122]. The combination of Ag and Au is also known to prevent rapid 

oxidation of the substrates thus increasing their durability [21]. Often on field it is 

advantageous to have a flexible substrate that would enable swabbing the surface. A 

flexible substrate is defined as something that is easy to bend and fold [123], [124], [125].  

SERS is also known to have inherent signal fluctuations because of very factors that are 

known to enhance the SERS signal. The hotspots that lead to signal enhancement through 

electromagnetic effects are localised to small areas causing point to point signal variations 

in SERS [126], [127]. These hotspots are also known to evolve under the presence of laser 

light causing signal ‘blinking’ in SERS [96]. The vibrational spectrum in SERS is also 

different from Raman with significant peak shifts and enhancement/quenching of certain 

modes depending on the adsorption, orientation of the molecule with respect to the metal  
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Figure 1.15: DFT optimized structures of different molecules studied in this thesis. 

nanostructure. In many applications, it is also useful to quantify the trace analyte that is 

being studied using SERS. However, the signal intensity and quantity of analyte is non-

linear and is complex for the signal blinking effects in SERS. Going beyond the detection 
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limit of fabricated plasmonic substrates to achieve ultra-trace sensitivity involves changing 

the experimental parameters like choosing the right wavelength. Resonant excitation in the 

case of SERS is known to enhance the SERS signal further by at least 106 times [10]. With 

a combination of ultrafast lasers, novel methods for low-cost synthesis of durable and 

flexible SERS substrates and machine learning techniques, this thesis attempts to address 

these challenges at various levels as discussed in detail in each chapter as shown in figure 

1.16.  

Figure 1.16: Schematic of different challenges in SERS and different chapters presented in the 

thesis addressing the challenges.  

1.9. Rest of the Thesis Outline 

Chapter 2: Synthesis and Characterization Techniques 

This chapter primarily focuses on various techniques for fabrication/synthesis and 

characterization that were utilized throughout the study. Specifically, the synthesis and 

mechanisms for the formation of plasmonic nanostructures through ultrafast laser ablation 

in air and different chemical methods are discussed in detail. Additionally, different 

characterization techniques such as FESEM, TEM, UV-Visible spectroscopy, and contact 

angle measurements are elaborated upon, as they were used to analyse the nanoparticles. 

The chapter also includes comprehensive descriptions of two Raman instruments, a 

portable system and micro-Raman system, along with the procedures utilized for SERS 
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measurements on both rigid and flexible substrates. Finally, the chapter provides detailed 

information on ultrafast laser systems (femtosecond amplifier and oscillator) and various 

pulse characterization techniques. 

Chapter 3: Ultrafast Laser Ablated Plasmonic NSs for SERS 

This chapter exclusively focuses on ultrafast laser ablated nanostructures and their 

application as highly reproducible SERS substrates. Different nanostructures were 

prepared using laser ablation of Si, Ag, Ag-Au and Cu using both femtosecond laser 

amplifier and oscillator. The work done in this chapter attempts to overcome the challenge 

of reproducibility in SERS using the advantage of periodic structures resulting from the 

ultrafast laser ablation.  

Chapter 3.1: Using femtosecond laser oscillator (140 fs, 800 nm, 80 MHz), web-like 

structures were fabricated on Si via laser ablation in air. The nanostructures formed on Si 

exhibited unique web-like structures where the nanoparticles self-assembled into 

nanochains, interweaving closely. The effects of different laser parameters like fluence, 

scan speed (number of pulses per spot) on the formation of these structures were studied 

in detail. It was understood that there is a threshold fluence for the formation of these web-

like structures. The size of the nanoparticles within the nanochains was found to increase 

with increasing the scan speed. The mechanism for the formation of these web-like 

structures in the case of high repetition rate is understood and is presented in detail. These 

structures were further coated with thin layer of Au (~10nm) using thermal vapour 

evaporation and used as SERS substrate with methylene blue as the probe molecule. The 

web-like structures demonstrated better enhancements than plain Au coated Si substrates 

owing to the chemical enhancement from the Si nanostructures and resulted in 1 M 

sensitivity. As opposed to conventional laser ablation using amplifier systems, this is low-

cost alternative for plasmonic SERS substrates.  

Chapter 3.2 describes the SERS substrates that were prepared for these studies using 

femtosecond laser (800 nm, 50 fs, 1kHz) ablation of Ag-Au (1:1) in air. The effect of angle 

of incidence on the formation of the nanostructures for 0, 10, 20, and 30 has been 

studied. The investigation of a potentially explosive chemical (picric acid), two dye 

molecules (rhodamine 6G, crystal violet), and an amino acid (cysteine) using surface 

enhanced resonance Raman spectroscopy (SERRS) is the main emphasis of this study. 

These molecules were first analysed using UV-Visible spectroscopy to understand the 
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absorption regions. Accordingly, laser excitation close to the resonance were chosen in 

order to achieve ultra-trace detection limits. It has been investigated how the SERRS 

performance of the laser-ablated structures changes with the ablation angle. The ideal 

structure was applied to more studies on different analytes. Surface debris is frequently 

produced by laser ablation in the air and is eliminated before employing them for the 

application. But here, we have looked at the widely contested link between enhancement 

and repeatability, with the benefit of having randomly stacked nanoparticles in debris and 

periodic substrates without debris. An inverse link between enhancement and repeatability 

in SERS has been discovered using statistically significant data (5000 spectra for each), 

employing the benefit of two substrates from a single experiment. Rhodamine 6G, crystal 

violet, picric acid, and cysteine were shown to have substrate sensitivity values of 10 fM, 

100 fM, 100 nM, and 100 nM, respectively, with high repeatability [21].   

Chapter 3.3 presents studies carried out on ultrafast laser ablation, using an amplifier 

system (50 fs, 1kHz, 800 nm), of Ag and Cu in air using cylindrical focusing conditions. 

Under cylindrical focusing novel sand-dune like structures were observed on both Ag and 

Cu. The effects of laser fluence on the formation of these structures is studied. Further, the 

Cu nanostructures were utilised for the detection of two explosive molecules, Ammonium 

Nitrate and Tetryl (2, 4, 6-trinitrophenylmethylnitramine) and a dye molecule, Methylene 

Blue with sensitivities of 50 M, 100  M and 5  M.  The Ag nanostructures exhibited 

superior reproducibility in the trace detection of two explosives, Tetryl and RDX, and one 

biomolecule, cytosine with sensitivity of 50 nM, 1 M and 100 nM respectively. The Ag 

structures have shown a superior reproducibility of 6% implying practical usability. These 

structures were also used for identification of different E. coli species based on SERS data 

using PCA.  

Chapter 4: Novel flexible, Hydrophobic, Hybrid and Low-Cost SERS Substrates 

The work presented in this chapter focuses on low-cost and durable SERS substrates that 

were synthesised by simple chemical and physical methods.  

Chapter 4.1 discusses anisotropic Ag and Ag-Au nanostructures that were fabricated by 

etching the Si in the presence of AgNO3/ HAuCl4 (metal salts). Effects of salt 

concentrations, duration of etching on the formation of highly anisotropic nanostructures 

were studied. These nanostructures were further coated with Au in a single step reaction 

which has significantly increased the durability and performance of the nanostructures as 
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SERS substrates. Extensive SERS mapping studies along with trace detection of different 

hazardous and bio molecules like dyes, DNA bases, antibiotics, pesticide and explosive 

will be presented. The sensitivity for CV, adenine, cytosine, penicillin G, kanamycin, 

ampicillin, AN, and thiram were found to be in the nanomolar regime for all the molecules. 

SERS data collected at regular intervals indicate that the substrates were stable for a period 

of 120 days when stored in ambient atmosphere. COMSOL studies to understand the near 

field enhancement in these structures will also be presented [30].  

Chapter 4.2 focuses on Si nanostructures decorated with 2-D laser ablated MoS2 as SERS 

substrates. Interesting MoS2 morphologies were generated by femtosecond laser ablation 

of commercial MoS2 powder in water, ethanol and methanol. Si nanowires decorated with 

bimetallic Ag-Au nanoparticles were synthesised by electroless etching method. These 

structures were characterised by FESEM, TEM and after layering with laser fabricated 2-

D MoS2 these hybrid substrates were utilised for trace detection of diverse analyte 

molecules like malachite green (MG) (0.5 nM), melamine (100 nM), naphthalene (300 

nM), L-Cysteine (100 nM), tetryl (50 nM) and bacteria (Escherichia coli). The durability 

of the samples measured by collecting SERS data on different days indicated the stability 

of samples for 200 days. The results indicate that the MoS2 has offered dual benefit of 

signal enhancement and increasing the durability of the substrates.  

Chapter 4.3 highlights the novel hydrophobic plasmonic substrate that has been fabricated 

by a simple method of spin coating filter paper with Si oil. This is so far the cheapest and 

single step method to modify the wettability of filter paper. The spin coating time has been 

optimised to achieve a contact angle of 1100. Au nanoparticles that were fabricated by 

femtosecond laser ablation of gold in water were used as the plasmonic material. SERS 

data has been collected using portable Raman system for different concentrations of Picric 

Acid and Crystal Violet, sampling the whole substrate collecting nearly 900 spectra. Using 

non-linear machine learning models like principal component analysis (PCA) and support 

vector regression (SVR), the intensity and concentration SERS data has been modelled 

with an accuracy of 96% for CV and 94% for PA. This is a quick and inexpensive way to 

measure analytes by employing a portable Raman Spectrometer with a calculation time of 

less than 10 seconds [23]. This chapter also presents free standing porous Si decorated 

with Ag nanoparticles synthesised by wet etching method for trace detection of methylene 

blue, picric acid, ammonium nitrate, and thiram with sensitivities of 50 nM, 1 µM, 2 µM, 

and 1 µM [124]. 
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Chapter 5: Overcoming Signal Fluctuations in the SERS for Improved Field 

Applications 

This chapter focuses on addressing the challenge of trace quantification and signal 

fluctuations in SERS using machine learning techniques. The work done in this chapter 

emphases on developing a deep learning model to overcome signal fluctuations in SERS 

and hence bridge the gap between lab and onsite performance. Three molecules, tetryl, 

crystal violet and picric acid were studied using Ag decorated Au nanodendrites 

(AuNPs@AgNDs) synthesised by chemical methods described in chapter 4. The 

experimental parameters of SERS like excitation wavelength, laser power, and spot size 

were systematically varied in order to simulate the general variation of experimental 

parameters in SERS across instruments. A deep learning model called Neural Network 

Aided SERS (NNAS) has been developed using the SERS data collected with mapping 

tool from the micro-Raman setup for three molecules, tetryl, picric acid and crystal violet. 

Using a signal to noise ratio threshold, each spectrum is labelled as representative and non-

representative devoid of expert’s opinion.  Out of sample predictions were also made to 

evaluate the model’s performance and resulted in accuracy of 0.982, 0.981 and, 0.985 for 

CV, tetryl and, picric acid, respectively. The model has been compared with standard 

classification algorithm, SVM (accuracy 89%) and was found to outperform. The model 

has also been evaluated with a portable Raman spectrum and resulted in 100% accuracy 

indicating the cross functionality of the model. We think that our NNAS can close the 

performance gap that exists between onsite detection and lab-based SERS substrates [106].  

Chapter 6: Conclusion and Scope 

This chapter provides a comprehensive summary of the work carried out in the thesis, 

emphasizing the encountered challenges and potential for future improvements. It explores 

the possibilities of enhancing the COMSOL simulations described in chapter 1 to 

incorporate real-world scenarios, thus further optimizing the nanostructures. Furthermore, 

it outlines the potential for broadening the versatility of the substrates by extending their 

application to detect vapours and direct liquid samples and also the aspect of 

commercializing. Additionally, the discussion highlights the scope for improving chemical 

methods by extending their use to flexible substrates. Suggestions for enhancing the 

hydrophobic filter paper substrate, as detailed in chapter 5, are also presented. Moreover, 

the chapter elaborates on the possibilities of improving the machine learning models to 
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better suit real-world applications, while also exploring the limitations of the methods 

utilized for substrate preparation and characterization. We will discuss the scope of 

expanding the SERS applications towards diseases diagnosis as it has immense potential 

in enabling early detection of disease biomarkers [35][128].  
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Chapter 2 
 

Synthesis and Characterization Techniques 

 

Abstract  
 

This chapter primarily focuses on various techniques for fabrication/synthesis and 

characterization that were utilized throughout the study. Specifically, the synthesis and 

mechanisms for the formation of plasmonic nanostructures through ultrafast laser ablation 

in air/water and chemical/physical methods are discussed in detail. Additionally, different 

characterization techniques such as FESEM, TEM, UV-Visible spectroscopy, and contact 

angle measurements are elaborated upon, as they were used to analyse the nanoparticles. 

The chapter also includes comprehensive descriptions of two Raman instruments, a 

portable system and micro-Raman system, along with the procedures utilized for SERS 

measurements on both rigid and flexible substrates. Finally, the chapter provides detailed 

information on ultrafast laser systems (femtosecond amplifier and oscillator) and various 

pulse characterization techniques. 
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2.1. Introduction 

Plasmonic structures are being fabricated by plethora of techniques that best suit the 

material and application of interest. Broadly these techniques can be classified as top-down 

or bottom-up approaches depending on their assembly. The top-down method begins with 

a bulk material that eventually breaks down under any external agent like intense light or 

heat into nanoscale structures. In the bottom-up method, particles at atomic or molecular 

scale assemble to form a nanostructure (NS) [1], as illustrated in Figure 2.1. Laser ablation, 

ball milling, thermal evaporation, and sputtering are popular top-down approaches. At the 

same time, chemical vapour deposition, hydrothermal methods, and sol-gel are some 

examples of bottom-up methods [2]. Bottom-up methods are mediated mainly by 

chemicals, while top-down methods are mediated through force, pressure, light, or heat. 

By monitoring the reaction conditions, the bottom-up method gives enormous flexibility 

to control the size, shape, and yield of the top-down method is more suitable for the 

fabrication of nanostructures on a bulk surface and is known to yield inhomogeneous 

distribution of NPs [3]. Further, these nanomaterials are classified based on the material 

and the dimension of the particles. Based on dimension, there are 0D, 1D, 2D, and 3D 

nanostructures with a constraint on dimension being from 1-100 nm [4]. Based on the 

material, they are broadly classified as carbon-based, metal NSs, semiconductor 

nanoparticles (NPs), and nanocomposites [5].  

The aim of NP fabrication techniques with a view of application in SERS is to have a) 

ligand free particles that does not interfere with the probe molecules, b) have morphologies 

for maximum enhancement, c) provide flexibility for easy sample collection in view of 

field applications, and d) be stable against oxidation. This thesis focuses on all these 

aspects by using different techniques for each case with a focus on SERS based 

applications. Laser ablation in liquid and air is a ligand free, green technique that results 

in precise and pure nanoparticles and nanostructures in the same experiment [6]. The 

mechanisms of laser ablation and the effects of different laser parameters are discussed in 

detail in the later sections. Anisotropic nanostructures with sharp edges and crevices are 

known to offer higher enhancement in SERS through what is popularly known as the 

‘lightening rod effect’ [7] [8]. We will discuss a bottom-up chemical methods based on 

electroless etching for synthesis of Au and Ag nanodendrites on a semiconductor surface. 

Effects of reaction time, temperature, and concentration of the metal salts on the formation 

of these metal nanostructures is also discussed. This chapter starts with understanding the 
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different NP fabrication techniques used in this study followed by detailed description of 

the characterization techniques that have been used. Different characterization techniques 

that are preliminary to characterize SERS substrates before measurements are also 

discussed.  

Figure 2.1: Illustration of top-down and bottom-up methods for the preparation of plasmonic 

nanostructures.  

2.2. Fabrication and Synthesis of NSs 

Throughout the thesis we have extensively used ultrafast laser ablation and chemical 

methods for the fabrication of SERS substrates.  

2.2.1. Ultrafast Laser Ablation 

Science has taken a huge leap after the invention of laser by Maiman in 1960 [9]. To the 

fascination of the research communities across disciplines, the invention was explored to 

study astronomy and atoms, cells and celestial objects, medicine and machinery. The entry 

of the ultrafast lasers further revolutionized science and technology both in labs and on 

field. ULAL and SERS are both two novel applications that emerged from this excitement. 

Laser ablation is a subtractive processing technique in which material of interest is exposed 

to laser radiation with a goal of generating nanoparticles or patterns or both in a single 

experiment. It is derived from the Latin word ‘ablatio’ meaning ‘carrying away’. Laser 

ablation in liquids is an improvement over laser ablation in gases for its residue free 

process. To our knowledge, ultrafast laser ablation in liquids was first reported by 

Henglein in 1993 [10]. Ultrafast laser ablation is known to result in minimum debris and 

heat affected zone and would hence lead to precise structure modifications [11] [12]. 

Intuitively, the laser parameters like wavelength, pulse duration, fluence, focusing 

conditions influence the efficiency of the process [13] [14] [15]. Experimental conditions 

like the solvent, number of pulses per spot, presence of external field also influence the 
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results. In addition, ablation is hugely dependent on the material under study and the 

mechanism, laser requirements are different for insulators, metals and semiconductors 

[16]. Addition of surfactants and salts [17], presence of electric or magnetic field during 

ablation [18–20], focusing conditions [21–23] and temperature [24] are also known to 

influence the ablation outcome.  

The mechanism of laser ablation is described by a series of events which needs 

interdisciplinary approach to understand. Laser ablation is understood through the 

interaction of ultrafast pulses with electrons followed by energy exchange process between 

atoms and ions. The events during ablation can be summarised as below, 

1) Upon incidence of high intensity laser pulses, the incident energy is absorbed by the 

free or conduction electrons through inverse Bremsstrahlung (IBS) absorption process.  

2) This is quickly followed by a relaxation of energy through thermal conduction or 

diffusion facilitated by electron-phonon coupling.  

3) At the level of lattice, the exchange of energy eventually leads to different events like 

heating, breaking of chemical bonds leading to the formation of plasma and ablation 

eventually.  

Classically, the ablation is explained using the two temperature model [25] [26]. Two 

temperature model describes the distribution of laser energy in the ablation area in one 

dimension taken as z in this case. It describes the evolution of lattice temperature (Ti) and 

electron temperature (Te).  

                                                Ce
∂Te

∂t
=  −

∂Q(z)

∂z
−  (Te − Ti) + S                                      (2.1) 

                                                           Ci
∂Ti

∂t
=   (Te − Ti)                                                   (2.2) 

Q(z) here is the heat flux and is given by the below equation, 

                                                              𝑄(𝑧) =  −ke
∂Te

∂t
                                                     (2.3) 

S represents heating contribution by the laser source and is written as, 

                                                                 𝑆 = 𝐼(𝑡)𝐴𝑒−𝑧                                                  (2.4) 

Here, A stands for surface absorptivity, I(t) for laser intensity, and for material absorption 

coefficient. For the electron and lattice systems, respectively, Ce and Ci represent the heat 
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capacity per unit volume. In the equation, ke is the thermal conductivity of the electron 

system, and is a measure of coupling between the electron and lattice systems.  

The formation of NPs and NSs is understood by studying the evolution and condensation 

of the plasma plume formed during ablation. Continuous exposure to laser and heating 

causes high temperature and density in plasma leading to the expansion of the same and 

also ejection from the surface if the recoil pressure is high [27] . This is followed by rapid 

quenching because of collisions between the particles in the plasma leading to nucleation 

or condensation and eventual formation of NPs [28]. The mechanism of heat exchange 

during laser ablation has been simulated using COMSOL for the case of alumina based on 

the parameters given in the reference and the results depict the summary of the mechanism 

described above [29]. 

Figure 2.2. COMSOL simulation of heat exchange during LA of alumina with a pulse duration of 

10 s and repetition rate of 20 Hz showing a series of heating and cooling of the surface.  

Figure 2.3: Time scale of different events that occur during laser ablation in liquids for a 

nanosecond laser. Figure adopted from reference [31].  
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Laser ablation in the presence of liquids will result in the confinement of plasma plume 

resulting in drastic difference in the process of plasma evolution and condensation [30]. 

LAL can be described as a ‘two birds with one stone’ methods which will result in 

formation of NSs and NPs in a single experiment. The first two steps described for laser 

ablation in air being the same, after rapid heating of the surface by the laser the material 

vaporizes and creates a high-pressure vapour bubble just above the surface. This bubble 

expands rapidly due to the heat generated by the laser, and then collapses due to the 

pressure of the surrounding liquid. The collapse of the vapour bubble generates a shock 

wave that ejects the vaporized material from the surface and into the surrounding liquid. 

The ejection of the material can cause secondary effects, such as cavitation bubbles and 

shock waves, that can affect the surrounding liquid and the material being ablated. Figure 

2.3 presents time scale of different events that occur during laser ablation in liquids with a 

nanosecond laser. The time scale of the events hugely depends on the pulse duration, 

material and the surround liquid [31] [32].  

2.2.2. Chemical Methods for NP Synthesis 

Chemical methods provide a flexibility for the fabrication of flexible and anisotropic 

nanostructures which are of interest for SERS based traced detection concerning field 

applications. In order to synthesis highly branched, fractal Ag structures, we have used a 

cost effective and table top method that is popularly called as electroless etching.  

2.2.2.1. Electroless Etching 

Since 1990s silver dendrites have attracted lot of attention for their unique morphology 

and applications in catalysis, fuel cells and storage devices [33] [34]. They are known to 

provide large surface area and optical properties that are desirable for signal enhancement 

in different applications including SERS. There are many methods for the fabrication of 

Ag dendrites which can be broadly classified as electrochemical or chemical routes [35]. 

In an electrochemical process there is a usage of potential or current in order to reduce the 

Ag reduction. The formation of dendrites depends on the applied field/current, presence 

of surfactants and the reaction time [36] [37]. Electroless deposition process on another 

hand works by simultaneous reduction and oxidation reactions on the surface of the 

template used. The method can be extended to different metals, for example, zinc and 

CuSe nano-dendrites have also been reported by Matsushita et al. and Zheng et al. [38] 

[39].  
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In 2005, Qiu et al. have first proposed the use of Si wafer as a template for the fabrication 

of Ag dendrites with HF as an etching agent [40].  The formation of these dendrite 

structures is better explained by diffusion limited aggregation theory (DLA) [41]. The 

central idea of the theory is that particles move freely through random walk and eventually 

settle at a site contributing to the growth of it. The formation of fractal structures is initiated 

by the formation of a seed particle from the metal salt. Particles formed at different site 

diffuse through random walk and will stop once they reach and attach to the low energy 

sites close to the seed. This process continues and the particles continue to add to the 

growth of the static structure as shown in figure 2.4. Until they arrive at the specified low 

energy sites on the substrate and are deposited there, the Ag2+ nuclei released from random 

sites move randomly throughout the substrate. The cluster is formed by the nuclei 

sequentially aggregating [42]. The Si surface is initially etched in the presence of HF 

leading to the formation of Si nanowires. The Ag nuclei that are simultaneously formed 

during the redox reaction assemble on the Si nanowires and lead to the formation of 

clusters. Through the transfer of electrons from the Si atoms underneath, the Si atoms 

constantly reduced the Ag ions in the solution, and the reduced Ag atoms were 

subsequently deposited on the Si surface. In our later work, the dendrites formed were 

removed by dipping in NH4OH to regain the Si NW structure which was further coated 

with gold and silver and is used for SERS in combination with MoS2 [43].  

Figure 2.4: Illustration of formation of anisotropic silver dendrites through electroless etching of 

Si in the presence of AgNO3 and HF [44].  

The reactions explaining the mechanism of formation of these structures are as below [45], 

                                             4𝐴𝑔+ + 𝑆𝑖 + 6 𝐹−  → 4 𝐴𝑔 + 𝑆𝑖𝐹6
−2                                     (2.5) 

                                                          𝐴𝑔+ +  𝑒−  →  𝐴𝑔                                                       (2.6) 

                                                𝑆𝑖 + 6𝐻𝐹 →  𝑆𝑖𝐹6
−2 + 4 𝐻+ + 4 𝑒−                                   (2.7) 

Metal nanostructures with sharp edges and crevices are known to contribute further for the 

electromagnetic enhancement in SERS through the ‘lightening rod effect’ [46]. The 

electric field lines for a conductor are very well known to be normal to the surface. On a 
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flat surface the field lines are evenly spaced and are hence less dense whereas for curved 

surfaces, the density of the field lines emerging from the surface are concentrated as shown 

in figure 2.5 [47]. 

Figure 2.5: Electric Field line for a) conductor b) a conductor in the presence of an electric field. 

Reproduced from https://courses.lumenlearning.com/suny-physics/chapter/18-7-conductors-and-

electric-fields-in-static-equilibrium/. 

2.2.2.2. Other Methods 

Etching of Si in the presence of an electric field leads to the formation of different 

structures and also induces porosity in the material [48]. In the presence of an etch cell and 

by applying a current density in the presence of HF, free standing porous Si has also been 

fabricated [49]. This porous Si was further decorated with Ag nanoparticles by electroless 

etching [50].  Recently hydrophobic and super hydrophobic substrates have gained 

tremendous interest for their ability to concentrate the analyte and NPs to a small area 

facilitating higher density of  

Figure 2.6: Schematic of mechanism for drying of nanoparticles on the surface of hydrophobic 

filter paper.  

hotspots and lower detection limits [51] [52] [53]. Normal filter paper, owing to its 

porosity spreads the analyte and nanoparticles leading to poor enhancement. In order to 

fabricate hydrophobic filter paper (HFP), previously different techniques involving 

coating alkyl ketene dimer[52], 2-dodecen-1-yl)-succinic anhydride[54], agar[55], spin-

coating diluted polydimethylsiloxan (PDMS)[56], perfluoroalkyltriethoxysilanes [57] was 

https://courses.lumenlearning.com/suny-physics/chapter/18-7-conductors-and-electric-fields-in-static-equilibrium/
https://courses.lumenlearning.com/suny-physics/chapter/18-7-conductors-and-electric-fields-in-static-equilibrium/


59 

 

used. All these methods involve extensive pre-treatment, possibility for interference with 

SERS probes and are not cost efficient. Different drying mechanisms of the hydrophobic 

surface are also known to remove the undesirable coffee ring patterns during drying of the 

colloids [58][59]. We have used a simple spin coating method for the fabrication of 

hydrophobic filter paper that was used for quantification of trace explosives along with 

plasmonic Au NPs [60]. The detailed wetting mechanism has been studied using contact 

angle measurements. It was discovered that the initial contact angle was 1100 after the 

nanoparticles were dropped. As the drop dries, the contact angle reduced gradually rather 

than suddenly. The periods of continuous contact angle imply that there is no pinching of 

the contact lines, and hence, no single coffee ring. As a result, the drying pattern, which is 

shown in figure 2.6, combines constant contact line drying with constant contact angle 

drying. A drop of CuSO4 was used to see the drying pattern. CuSO4 was chosen because it 

has the ability to form colour crystals when dried thus facilitating the visibility when dried. 

The materials and characterization equipment used that have been used in the thesis work 

including the chemicals used in synthesis, analyte molecules are summarised in table 2.1.  

2.3. Experimental Techniques  

2.3.1. Ti:Sapphire as a Gain Medium 

Ever since its discovery by Moulton, Ti:Sapphire (Ti:Sa) was widely explored for its 

ability to produce ultrafast pulses [61].  It has quickly replaced the existing dye laser to 

generate ultrafast pulses through mode locking [62] and became the go to laser gain 

medium for the tunable ultrafast laser systems [63]. The lasing occurs in the Ti+3 atoms of 

the crystal. Ti sapphire has very wide bandwidth which consequently facilitates the 

generation of ultrafast pulses also gibing an opportunity to tune wavelengths (600- 100 

nm) as shown in figure 2.7. Its excellent thermal conductivity circumvents the thermal 

effects caused during lasing. It is also known to have good mechanical strength, rigidity 

and inertness to external chemicals. It is frequently pumped using a frequency doubled Nd 

doped solid state laser with emission close to 532 nms. The pumping requires intense, high 

beam quality source given the upper state lifetime of Ti+3+ is very small (3.8 s). The 

doping concentration of Ti+3 in Al2O3 is often kept very low (~0.2%) in order to preserve 

the crystal quality as a consequence of which longer crystals and high intensity pump 

beams are required to obtain higher output. Mode locking in the Ti:Sa system often 
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happens through the Kerr effect facilitated by the high intensity of the output beam. A 

large bandwidth is desirable for producing ultrashort pulses as given by the equation (1.8). 

Table 2.1: Summary of materials and different characterization techniques used in this study.  

Material/Tool Chemical formula/details Specifications 

Silver Nitrate AgNO3 Finar 

Hydrofluoric Acid HF Sigma-Aldrich 

Chloroauric Acid HAuCl4.3H2O Sigma-Aldrich 

Si wafers (1-10 Ωcm) Si Macwin 

Ammonium Nitrate  NH4NO3 HEMRL, Pune 

Picric Acid C6H3N3O7 HEMRL, Pune 

Tetryl  C7H5N5O8 HEMRL, Pune 

Gold, Silver, Alloys Ag, Au, Ag-Au (1:1) Purchased locally 

Filter paper - Whatman 

Antibiotics 

(Penicillin G, 

Kanamycin, 

Ampicillin) 

- Sigma-Aldrich 

DNA Bases (Adenine, 

Cytosine)  

9H-purin-6-amine 

6-amino-1H-pyrimidin-2-one 

Sigma Aldrich 

Thiram  Tetramethylthiuram disulfide Sigma Aldrich 

Escherichia coli  - Lab grown 

Crystal Violet 

Rhodamine 6G 

Methylene Blue 

C25N3H30Cl 

 C28H31N2O3Cl 

 C16H18ClN3S 

Sigma-Aldrich 

Python  https://www.python.org/downloa

ds/release/python-383/ 

Version 3.8.3 

COMSOL https://www.comsol.com/ Version 6.0 

Origin  https://www.originlab.com/ Origin 2018 

FESEM https://www.felmi-

zfe.at/instrumentation/sem/zeiss-

ultra-55 

Carl ZEISS, Ultra 55 

TEM https://www.fei.com/products/te

m/tecnai-g2-spirit-for-life-

sciences/#gsc.tab=0 

Technai 

UV-Visible 

spectrometer 

https://www.jasco.de/en/content/

V-670/~nm.13~nc.407/V-670-

UV-VIS-NIR-

Spectrophotometer.html 

Jasco V-670 

Micro-Raman 

spectrometer 

https://www.horiba.com/ind/scien

tific/products/detail/action/show/

Horiba LabRam 

https://www.felmi-zfe.at/instrumentation/sem/zeiss-ultra-55
https://www.felmi-zfe.at/instrumentation/sem/zeiss-ultra-55
https://www.felmi-zfe.at/instrumentation/sem/zeiss-ultra-55
https://www.fei.com/products/tem/tecnai-g2-spirit-for-life-sciences/#gsc.tab=0
https://www.fei.com/products/tem/tecnai-g2-spirit-for-life-sciences/#gsc.tab=0
https://www.fei.com/products/tem/tecnai-g2-spirit-for-life-sciences/#gsc.tab=0
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Product/labram-hr-evolution-

1083/ 

fs Oscillator 

(Chameleon) 

https://www.coherent.com/lasers/

oscillators 

Coherent 

fs laser amplifier 

(Libra) 

https://www.coherent.com/lasers/

amplifiers 

Coherent 

 

Figure 2.7: Absorption and emission spectra of Ti-Sa laser. Image reproduced form 

https://micro.magnet.fsu.edu/primer/java/lasers/tsunami/index.html. 

                                                                     ∆𝜔∆𝑡 ≥ 𝐾                                                        (1.8) 

 here is the FWHM of the band width of the medium and t is the FWHM of the pulse 

duration and K is a constant that depends on the pulse duration. The relation is derived 

from the Fourier relations of frequency and time dependent electric fields. The relation 

indicates that a large bandwidth material like Ti:Sa is needed for generation of ultrashort 

pulses. 

2.3.2. Femtosecond Laser Oscillator  

Femtosecond laser ablation of Si has been performed using a coherent femtosecond laser 

oscillator (Chameleon). It is a tunable Ti-Sa laser with maximum power at 800 nm, pulse 

width of 140 fs, and repetition rate of 80 MHz. The Ti-Sa laser is pumped with a diode 

pumped Nd-YVO4 laser (Verdi). The chameleon oscillator system consists of two laser 

heads, Verdi and the ultra-fast laser with Ti-Sa as the gain medium. The repetition rate of 

the laser is determined by the time it takes for one pulse to emerge out of the cavity and 

this time is around 11 ns for the chameleon laser resulting in the repetition rate of 80 MHz. 

Femtosecond pulses are generated by mode locking which involves synchronizing the 

https://www.coherent.com/lasers/oscillators
https://www.coherent.com/lasers/oscillators
https://www.coherent.com/lasers/amplifiers
https://www.coherent.com/lasers/amplifiers
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oscillation of multiple longitudinal laser modes in order to achieve constructive 

interference. Depending on the mechanism, mode locking is classified as active and 

passive mode locking. In active mode locking, a precisely timed electric/acoustic optical 

shutter is used to synchronise the modulation time with that of round-trip time to facilitate 

mode locking. This often needs precise and sophisticated setups and require monitoring if 

there is change in round trip or the cavity length of the laser. In contrast, for the case of 

passive mode locking the modulation is self-adjusted with the arrival of the high intensity 

laser pulses and often use saturable absorbers. Saturable absorber consists of non-linear 

material whose optical properties change as a function of laser intensity. When a saturable 

absorber is incorporated into the laser cavity, it modulates the laser's optical properties in 

a way that favours the formation of short pulses. Initially, when the laser starts operating, 

the saturable absorber exhibits high absorption for the incident light. As the light intensity 

increases, the absorber saturates, leading to a decrease in its absorption capability. This 

reduced absorption allows the laser to build up energy within the cavity over multiple 

round trips. As the energy increases, the saturable absorber reaches a point where its 

absorption decreases significantly, and it behaves more like a transparent medium. At this 

stage, the gain provided by the laser cavity compensates for the loss incurred, and the laser 

starts emitting a pulse of light. The pulse generated then travels through the laser cavity 

and interacts with the saturable absorber again. The absorber recovers its high absorption 

capabilities and removes the excess energy from the pulse, effectively preventing it from 

growing indefinitely. This process repeats, allowing the laser to produce a train of well-

defined, ultrafast pulses. Mode locking through saturable absorption happens in the 

chameleon system through the optical Kerr effect. The optical Kerr effect refers to the 

phenomenon where the refractive index of a material changes in response to the intensity 

of incident light as given by equation (2.9).  

                                                           𝑛(𝐼) = 𝑛0 +  𝑛2𝐼                                                        (2.9) 

Here n0 is the linear refractive index and n2 is the non-linear refractive index and I is the 

intensity of the laser light. Kerr lens effect and different optical components present in the 

laser system leads to chirping of the pulse though group velocity dispersion. Inverted prism 

combinations are used in order to compensate for the GVD and make the effective GVD 

zero. One of the significant consequences of Kerr effect is optical self-focusing where 

because of the intensity peaking at the centre of the beam, the refractive index also 

increases leading to the formation of ‘Kerr lens’. The larger the number of modes locked, 
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higher the intensity of the pulse. As suggested, the Kerr lens is formed only at high 

intensities like the case of mode locked pulses and is absent for continuous pulse. This 

lens, like the case of an optical lens, narrows the beam diameter. The laser system is also 

equipped with a slit that is tuned to allow only the narrowed mode locked pulse while 

gating the continuous beam as shown in the figure 2.8. where the continuous laser is 

blocked and mode locked pulse is allowed when the slit is active [64].  

Figure 2.8: Illustration of mode locking through saturable absorber in Chameleon a) when the slit 

is inactive and b) when the slit is active.  

2.3.3. Femtosecond Amplifier System  

Figure 2.9: Beam path for the Coherent femtosecond laser amplifier where green light indication 

the pump (Evolution), red indicates seed from Vitesse and yellow for the pulse within the 

regenerative amplifier. The coloured line indicated chirped pulse. The labels for optical 

components are highlighted in the figure.  
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Typical values of energy per pulse generated by a femtosecond laser oscillator is around a 

few nanojoules and is insufficient for many applications like ablation of metals or laser 

induced breakdown spectroscopy. An amplifier system overcomes this by having in 

addition to a routine laser cavity with gain medium and mirrors, an ultrafast laser amplifier 

comprising of an amplifying unit and chirped pulse amplification unit in order to amplify 

the seed pulse from  

2.3.3.1. Amplification Mechanism 

An ultrafast amplifier system consists of an amplifier unit along with an oscillator system 

in order to amplify the pulses further. An amplifier system can be a multi-pass system or 

a regenerative amplifier but the latter is always preferred given the simplicity in the 

alignment.   It also consists of chirped pulse amplification system, an innovative way to 

expand and then compress the ultrafast pulses in order to prevent damage to the optical 

components and the crystal.  

The Libra femtosecond laser amplifier system consists of four modules namely, a) Vitesse, 

b) Evolution, c) Regenerative amplifier and d) pulse stretcher-compressor units. Vitesse is 

a Ti-Sa oscillator system that serves as a seed laser for amplification. Evolution is a Q-

switched 527 nm laser that serves as a pump for the amplifier system. Regenerative 

amplifier facilitates amplification of the ultrafast pulses through making multiple passes 

through the gain medium coupled with an optical shutter. In a regenerative amplifier, 

initially the laser gain medium is pumped until enough energy is accumulated. The seed 

pulse is injected into the amplifier through the shutter whose duration is less than the 

round-trip time of the seed laser. This pulse will make multiple passes through the gain 

medium and is then amplified significantly. Once enough energy is accumulated, it is 

eventually released again through an optical switch.  

An amplified pulse in the regenerative amplifier, given the high intensity is capable of 

damaging the crystal and the optics inside the cavity. In 1980s the problem was addressed 

by the invention of chirped pulse amplification by Donna Strickland, which has eventually 

won her noble prize in 2018 [65]. The idea in its simplicity is to stretch the pulse before 

amplification and compress it before ejection using different dispersive elements. Once 

the pulse is stretched in order to reduce the peak intensity, the pulse is ready to be amplified 

as the intensity will be less than the damage crystal of the gain medium. After amplifying, 

a compressor with opposite GVD is employed to eject an unchirped, amplified pulse. The 
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compressor also compensates for the dispersion introduced during the amplification 

process. So the distance between gratings is different for stretcher and compressor. A 

prism pair is the simplest combination of optics that can function as stretcher and 

compressor in right combinations. However, a grating pair is used in the to avoid material 

losses. Once the pulse is stretched it is released into the regenerative amplifier using a time 

gated Pockel’s cell.  

The detailed beam path for the Libra system is shown in figure 2.9. The seed pulse from 

the Vitesse oscillator is passed through a series of mirrors into the stretcher system. The 

stretcher system consists of a grating, in order to introduce GVD, along with other optical 

components as shown in figure 2.10 a). The stretched pulse is then fed into the Ti-Sa 

crystal in the regenerative amplifier at a Brewster angle.  The pump laser (Evolution) 

creates excited state population in the Ti-Sa crystal in the amplifier unit. The Pockel’s cells 

in the regenerative amplifier are controlled externally by a synchronization and delay 

generator (SDG). The regenerative amplifier amplifies the stretched pulse. The output of 

the regenerative is compressed in the compressor system as shown in figure 2.10 b) and 

the output unchirped, amplified fs pulse is ejected. The whole system is connected to a 

water chiller that dissipate s the heat generated by different lasers in the system and is 

maintained at 210C.   

Figure 2.10: Schematic of optical path in the a) Stretcher system and b) Compressor system of the 

amplifier. Images have been reproduced from the manual of Coherent [66].  

2.3.3.2. Autocorrelation  

Measuring the pulse duration of an ultrafast pulse is extremely important in order to 

estimate the time resolution that the pulse can offer and to gate specific events during the 

experiments. Conventional photodiodes have a response time in the order of few 

nanoseconds are not useful in measurement of ultrashort pulses. A pulse autocorrelation 

technique, as the names suggests, measures the temporal correlation of the pulse with 

itself. A beam splitter is used to divide the pulse into two identical pulses, which are then 

made to cross into a second order nonlinear crystal, where second harmonic production 
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takes place, as illustrated in figure 2.11. To introduce a temporal shift in the pulses, the 

two beams' travel lengths are maintained apart. If the arm length difference is reduced to 

the point where the pulses collide within the nonlinear crystal, the process of sum 

frequency generation takes place, producing an output with a shorter wavelength. When 

the relative time delay is increased, the mixing product becomes weaker and the overlap 

of the two pulses in the crystal decreases. Intuitively, for shorter pulses, the overlap lasts 

for very short time. This delay, ,  is controlled by motorized translational stages. In order 

to measure pulse duration, the path length and the intensity of the second harmonic output 

are plotted. The field strength of the mixed beam can be written as,  

                                                             𝐸𝑠𝑖𝑔
𝑆𝐻𝐺   𝐸(𝑡)𝐸(𝑡 − 𝜏)                                                 (2.10) 

Since the intensity is proportional to the square of field and it is always intensity that we 

measure in lab, the equation can also be written as, 

                                                             𝐼𝑠𝑖𝑔
𝑆𝐻𝐺   𝐼(𝑡)𝐼(𝑡 − 𝜏)                                                      (2.11) 

The intensity autocorrelation is then written as,  

                                                      𝐴(𝜏) =  ∫ 𝐼(𝑡)𝐼(𝑡 − 𝜏)
∞

−∞
                                                   (2.12) 

Figure 2.11: Schematic of experimental setup inside an autocorrelator used to measure 

femtosecond laser pulses. Figure reproduced from the reference [67].  
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Coherent single shot autocorrelator (SSA) has been employed in order to measure the pulse 

duration of the fs amplifier system. The laser is incident on a mirror at the entrance slit and 

is guided into the experimental setup. A 50:50 beam splitter splits the beam into two paths 

one of whose path lengths is controlled using a delay generator. The two beams are then 

made to overlap and cross inside the non-linear KDP crystal. The crystal angle needs to be 

optimized for the overlapping of the beams. A CCD detector is used to the detect the 

intensity of the second harmonic pulse. Bandpass filter and neutral density filters are used 

before the CCD in order to filter the 800 nm radiation and prevent overexposure of the 

CCD. 

Figure 2.12: Femtosecond amplifier system pulse width measurement using intensity 

autocorrelation technique  

The FWHM of the pulse was found to be 99 fs and taking into account the correction for 

the Gaussian shape of the pulse, the pulse duration was calculated to be ~70 fs (figure 

2.12). The discrepancy between the reported duration of ~50 fs and the experimentally 

measured pulse can be attributed to group velocity mismatch and group velocity dispersion 

of the ultrafast pulses when they pass through different optical components. 
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2.4. Experimental Setups  

2.4.1. Ultrafast Laser Ablation 

The laser was aligned using different reflective mirrors and was focused on the sample 

using long working distance objectives (50X and 100X) as shown in figure 2.13. The 

sample was moved on a computer controlled translational stages to make patterns on the 

Si substrate. We have studied the effects of different experimental parameters and 

characterized by FESEM. A square pattern was used for SERS studies as it was proven to 

be advantageous in our previous study using a femtosecond amplifier [68]. A combination 

of Brewster wave plate and half wave plate was used in order to adjust the power to the 

required value. Effects of number of pulses per spot have been studied by changing the 

scan speed using the programmable stages. Web-like Si structures were observed at a 

particular scan speed and fluence. Laser fluence has been changes by changing the working 

objective to 100x keeping the scan speed fixed and the resulting morphology was studied 

using FESEM. Systematic experiments indicate that there is a threshold fluence for the 

formation of the web like structures and the mechanism is discussed in chapter 3.  Laser 

ablated Si structures with 50X, 1.5 mm/s, laser power of 2.5 W, and fluence of 1 J/cm2 

were used for SERS after coating it with thin layer of Au (10 nm) by thermal evaporation 

method.  

Figure 2.13: Experimental setup for laser ablation of Si using femtosecond laser oscillator system.  

The femtosecond laser amplifier was used for different experiments with slight 

modifications in the setup for different ablation conditions. Ablation of Ag-Au (1:1) alloy 
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has been performed in air using different angle of incidence. The mirror just above the 

sample has been placed on a rotation mount in order to rotate to change the angle of  

Figure 2.14: Schematic of femtosecond laser ablation used in the thesis work for different 

conditions a) of Ag-Au target using different angles of incidence, b) Irradiation of MoS2 powder 

using magnetic stirrer, and c) Au in water. 

incidence on the sample. The lens this case has been placed above the mirror as shown in 

figure 2.14. Instead of using a plano-convex lens, a cylindrical lens has been used for the 

ablation of Ag and effects of different experimental conditions has been studied. MoS2 

powder ablation was performed by dispersing the sample in three different solvents, 

ethanol, methanol and water and by using a magnetic stirrer in order to facilitate 

homogeneous irradiation.  

2.4.2. Raman Systems 

Horiba Raman Spectrometer  

The initial experiment performed by Prof. C.V. Raman that eventually lead to the 

discovery of Raman effect and Noble prize was very rudimentary and used sun light as an 

excitation source. He used a green filter to filter the sunlight and excite the chloroform 

sample which was found to give away yellow light through inelastic scattering [69]. But 

modern-day Raman systems have come a long way and now are extremely portable 

(weighing less than 5 Kgs and transportable in a small suitcase) and stable. A Raman 

measurement typically consists of an excitation source, optics for sample illumination and 

signal collection, appropriate filters to filter Rayleigh and anti-stokes shifts, spectrometer 

and a detector.  
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Figure 2.15: a) Optical alignment inside the Horiba LabRam Raman Spectrometer (Image 

reproduced from the user manual of the instrument [70], and b) Simplified schematic of the optical 

path.  

This thesis majorly used Horiba LabRam Raman Spectrometer for data collection and a 

BWTEK portable Raman spectrometer for one study. Horiba Raman spectrometer consists 

of four excitation sources of wavelengths 532 nm (Nd:YVO4), 633 nm (He-Ne), 325 nm ( 

He-Cd) and 785 nm (GaAs) lasers. Raman scattering is proportional to 4, where  is the 

frequency and hence would appear that using shorter wavelengths is ideal. However, in 

order to limit fluorescence and prevent sample damage, it is not ideal to use short 

wavelengths always. While choosing a wavelength, it is advantageous to choose a 

wavelength close to the resonance of the metal NSs or the probe molecule in order to 

enhance the signal further through resonance effects [23]. The choice of the wavelength is 

made through the software LabSpec and there are notch and edge filters which are 

automatically adjusted after the wavelength selection in order to reject Rayleigh 

frequencies (F4 and F5) (Refer figure 2.15). It also consists of nine positions which will 

allow to change the laser power though selection from the software by rotating the filter 

wheel F3. The sample is mounted on an XY stage controlled by a joy stick. The system is 

also equipped with a microscope with white light illumination by transmission and 

objectives of magnification 10, 20, 50, 40 and 100 mounted on a rotating turret. It 

consists of a grating with 1800 grooves/mm. It consists of a multichannel CCD detector 

cooled to -600C covering UV-Vis-IR regions. It has a spectral resolution of 0.35 cm-1. The 

beam enters the system through the mirrors M1 and M2 and passes through a polarizer P1. 

It has a spectrometer in Czerny-Turner alignment with a CCD detector.  

The portable Raman spectrometer has a laser source with an excitation wavelength of 785 

nm. It offers best balance between fluorescence and the Raman signal and is known to 

have less damage threshold for many materials making it a popular choice for SERS. The 
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beam size is nearly 90 s and is extremely useful for collecting signal from large area 

averaging the SERS signal fluctuations. The power can be adjusted through the software 

from 1mW to nearly 350 mW. It consists of a high band pass filter to filter Rayleigh and 

anti-Stokes lines. 

2.5. Characterization Techniques  

2.5.1. FESEM and TEM 

Electron microscopes offer higher resolution than the light microscopes and has hence 

revolutionized many areas of science [71]. Field emission scanning electron microscope 

(FESEM) and Tunnelling Electron Microscope (TEM) are the two frontline electron 

imaging techniques that are being extensively used for characterization of SERS 

substrates. Electrons in these techniques are accelerated through a potential gradient and 

the interaction of these electrons with the sample leads to different events that are imaged 

consequently. Electrons from the source, referred as primary electrons, are generated and 

passed in high vacuum environment in order to increase their mean free path. These 

electrons are focused on the sample though different electromagnetic lenses. The electron 

interaction with the sample leads to the formation of secondary electrons which are used 

for imaging. The properties of emitted electrons from the sample like angle and energy 

reflect the topography of the sample. These electrons are detected using a detector and are 

amplified to achieve a final digital image of the sample.  A sharp tungsten tip is an electron 

source and functions as a cathode where the anode is placed just after the tip.   

Figure 2.16: Schematic to illustrate the working principle of a) SEM and b) TEM for imaging.  
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Different electromagnetic lenses like the condenser lens, scanning coil, and objective lens 

focus the electron beam to a sharp point on the sample. In FESEM, scattered electrons are 

imaged and whereas in TEM, transmitted electrons are imaged as shown in figure 2.16.  

The current in the condenser lens is inversely proportional to the beam size. The electron 

beam scans the surface of the sample in a raster pattern. In a TEM system, the primary 

electrons pass through the sample providing information about the internal structure of it 

and hence offers better resolution (0.1nm) while FESEM offers a resolution a few 

nanometres. In FESEM images are formed by scattered electrons resulting in 3-D images 

whereas in TEM transmitted electrons resulting in 2-D images. In TEM, high resolution 

TEM images (HR-TEM) images that are formed by both scattered and transmitting 

electrons are useful in analysing the crystal structure. TEM also facilitates electron 

diffraction studies that give detailed information about the lattice parameters of the crystal 

using selected area electron diffraction (SAED).    

2.5.2. UV-Visible Spectroscopy 

Understanding LSPR resonances is essential to utilise the nanomaterials for SERS based 

applications. UV-Visible spectroscopy measures attenuation of light as it passes through 

the sample either in reflection or transmission geometry covering UV and Visible spectrum 

of the electromagnetic radiation. It provides valuable information regarding the electronic 

states of the sample through absorption of the incident radiation. A beam of light emitted 

from a visible and/or UV light source is directed towards a prism or diffraction grating. 

These optical elements separate the beam of light into its constituent wavelengths, creating 

a spectrum. Each individual wavelength, also known as a monochromatic beam, is then 

split into two beams of equal intensity using a half-mirrored device. One of these beams, 

called the sample beam, passes through a small transparent container called a cuvette. 

Inside the cuvette, there is a solution of the compound that is being investigated, dissolved 

in a transparent solvent. This sample beam interacts with the compound in the solution. 

The other beam, known as the reference beam, passes through an identical cuvette that 

contains only the solvent without the compound. This reference beam serves as a baseline 

for comparison. Both the sample beam and the reference beam continue their paths and 

are directed towards electronic detectors. These detectors measure the intensities of the 

light beams. The intensities of the sample beam and the reference beam are then compared. 

By analysing the differences in intensities between the two beams, one can gain valuable 
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information about the compound under investigation. This information can include 

characteristics such as the absorption, emission, or scattering of light by the compound, 

which can provide insights into its properties and behaviour. In UV-Visible spectroscopy 

absorption is indirectly measured through transmittance which is a measure of what is not 

absorbed. This is reinforced by the fact that photons that are absorbed by the sample will 

be extinguished and reflects in the intensity of transmitted light. the transmitted light 

reflecting in the intensity. The power extinguished, PExt is given as, 

                                                     𝑃𝐸𝑥𝑡 =  𝐸𝑥𝑡  𝑆𝐼𝑛𝑐                                                               (2.13) 

Here, SInc is a measure of incident power density of the light source and Ext is the 

proportionality constant known as the extinction cross section, an attribute of the molecule. 

To extrapolate this to an ensemble of molecules in a solvent, consider a solution of these 

molecules adding to a concentration of cm [M], in an elementary volume of length dL [m] 

along the beam, and a surface area A [m2] across. Therefore, P = SIncA [W] is the power 

entering this box. The volume comprises molecules with a mass dN = NcmAdL, each of 

which contributes to extinction with a cross-section Ext, producing an extinguished power 

dPExt = NExtSInccmAdL using Avogadro's number N. The incident beam's power as it leaves 

the box is consequently given as the differential equation, 

                                                                    
𝑑𝑃

𝑃
=  −𝑁𝐸𝑥𝑡𝑐𝑚𝑑𝐿                                                   (2.14) 

 The power transmitted over a length L is then obtained by integrating equation (2.14), 

                                                      𝑃𝑡𝑟𝑎𝑛 =  𝑃𝐼𝑛𝑐𝑒−(𝑁𝐸𝑥𝑡𝑐𝑚𝐿)                                                 (2.15) 

Transmittance is often defined as the ration of transmitted power and the incident power 

whereas absorbance (A) is defined as negative logarithm of transmittance. 

                                          𝐴 =  − log(𝑇) =  − log (
𝑃𝑡𝑟𝑎𝑛

𝑃𝐼𝑛𝑐
) =  

𝑁𝐸𝑥𝑡𝑐𝑚𝐿

ln (10)
                            (2.16) 

 The molar absorption coefficient () is defined as, 

                                                                       =  
𝑁𝐸𝑥𝑡

ln (10)
                                                         (2.17) 

From equation (2.16) and (2.17), we have absorbance as, 

                                                                                   𝐴 =  𝑐𝑚𝐿                                                      (2.18) 
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The above equation is known as the Beer-Lambert’s law.  

UV-Visible spectroscopy provides useful insights into shape, size, and density of the 

nanoparticles. The absorption information provides a flexibility to choose an excitation for 

the specific nanomaterial in order to exploit resonance. UV-Visible absorption of the probe 

molecules is also important in accessing the resonance enhancement. Anisotropic or 

asymmetric nanostructures often have a longitudinal and transverse absorption peaks in 

the absorption spectrum [72]. Aggregation of NPs, as is the case during the addition of 

salts reflects as increase in the value of absorbance [73]. The LSPR resonance is known to 

red shift with increase in the size of the NPs [74].     

2.5.3. Energy Dispersive X-Ray Spectroscopy  

FESEM instruments in addition to imaging also facilitate energy dispersive X-Ray 

spectroscopy (EDX) for the identification of elements in the selected region. It will help 

in both qualitative and quantitative identification (relative abundance) of elements on the 

surface of the sample. It is based on the principle that each element has a characteristic X-

ray peak. In order to generate X-rays, high intensity electron beam is focused on the 

sample. This results in the emission of electron from the inner shell of the atomic structure 

leading to the formation of an electron hole at the site. An electron at a higher shell 

occupies this vacancy by emitting a characteristic X-ray. The quantity and intensity of the 

emitted electrons is measured using an energy dispersive spectrometer (EDS). EDS 

enables the measurement of the specimen's elemental composition since the energies of 

the X-rays are indicative of the energy difference between the two shells and of the atomic 

structure of the emitting element. We have used EDX to confirm and identify the elements 

on the surface of nanostructures and nanoparticles synthesised by both chemical and laser 

ablation in this study.  

2.5.4. SERS Measurements  

Different SERS substrates were used to full fill different performance metrics of SERS 

efficiency. All the substrates in this study are planar. In all the cases we have used simple 

drop-casting of the colloid NPs for SERS studies. The samples were cleaned right after 

their respective preparation techniques using acetone and ultra-sonication. SERS studies 

were performed on different molecules summarised in table 2.1. Different concentrations 

of each analyte molecules were prepared using serial dilution methods and stored in sealed 
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glass vials. Upon the plasmonic substrate, 2-20 l of the probe molecule of given 

concentration was drop casted on the substrate and waited to dry. In this thesis, both 

portable and micro-Raman systems were used for measurements. Fresh sample was used 

for each study. For the AuNPs@AgNDs work and laser ablated Ag, we have used 532 nm 

laser excitation in the Horiba system. In a different study involving laser ablated Ag-Au, 

extensive UV-Visible absorption studies of the analyte molecule were carried out before 

choosing an excitation wavelength in order to be close to the resonance. Measurements 

were performed after focusing the sample using inbuilt microscope in micro Raman system 

assisted by the software [75]. For mapping studies, random large area was chosen on the 

surface and a peak window has been selected to map the intensity. The acquisition time 

and laser power were chosen carefully to prevent sample damage and at the same time get 

maximum SERS signal. In order to take into account spatial signal fluctuations in SERS, 

we have performed different at least 10 random measurements on the sample surface and 

considered the average spectrum as the representation at a particular concentration. For 

studying the aging of the substrates, the samples were sealed and stored in desiccator and 

measurements were carried at regular intervals of time. Detailed protocol for the end-to-

end measurements carried out in the thesis work have been published step wise [75]. 
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Chapter 3 
 

Ultrafast Laser Ablated Plasmonic NSs 

for SERS 

 

Abstract 
 

This chapter exclusively focuses on ultrafast laser ablated nanostructures and their 

application as highly reproducible SERS substrates. Different nanostructures were 

prepared using laser ablation of Si, Ag, Ag-Au, and Cu using both femtosecond laser 

amplifier and oscillator pulses. In Chapter 3.1. using a femtosecond laser oscillator (140 

fs, 800 nm, 80 MHz), web-like structures were fabricated on Si via laser ablation in the 

air. The nanostructures formed on Si exhibited unique web-like structures where the 

nanoparticles self-assembled into nanochains, interweaving closely. The effects of 

different laser parameters like fluence and scan speed on the formation of these structures 

were studied in detail. These structures were coated with a thin layer of Au (~10 nm) and 

used as SERS substrate with methylene blue as the probe molecule. Chapter 3.2. describes 

the SERS substrates fabricated using femtosecond laser (800 nm, 50 fs, 1kHz) ablation of 

Ag-Au (1:1) in air. The effect of the angle of incidence on the formation of the 

nanostructures has been studied. In this study, an explosive molecule (picric acid), two dye 

molecules (Rhodamine 6G and crystal violet), and an amino acid (cysteine) are all 

investigated using SERRS. We have looked at the much-contested link between 

enhancement and repeatability, with the benefit of having randomly stacked nanoparticles 

in debris and periodic substrates without debris. Rhodamine 6G, crystal violet, picric acid, 

and cysteine were shown to have substrate sensitivity values of 10 fM, 100 fM, 100 nM, 

and 100 nM, respectively, with high repeatability.  Chapter 3.3 presents studies on 

ultrafast laser ablation, using an amplifier system, of Ag and Cu in the air using cylindrical 

focusing conditions. These structures were further utilized for SERS-based detection of 

different explosives and biomolecules. Using chemometrics in conjugation with SERS, 

different bacteria species have been classified using the SERS spectra.  
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3.1. Introduction 

Fabrication of precise, ligand-free, and controllable nanostructures is requisite for many 

plasmonic-based applications. Ultrafast laser ablation is a go-to technique that allows the 

fabrication of diverse nanostructures in a single step by controlling the experimental 

parameters. The detailed mechanism of laser ablation has been discussed in Chapter 2. In 

this thesis work, we have limited ourselves to working with femtosecond lasers as they are 

known to result in minimum heat affected zone (HAZ) and, consequently, a precise 

structure, as shown in figure 3.1 [1].  

Figure 3.1: Schematic of laser ablation by a) nanosecond pulses, b) femtosecond pulses and SEM 

images of laser ablated steel foil with c) nanosecond and d) femtosecond laser of same wavelength. 

Figure reproduced from [2].  

In the fs regime, ultrashort [femtosecond (fs)] pulses primarily interact with electrons, 

whereas longer pulse durations as the case of nanosecond pulses engage with the lattice 
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structure. Therefore, when a fs pulse interacts with a material heat conduction is limited 

[2]. Consequently, the material undergoes ablation within a confined and well-defined 

spatial region, minimizing the mechanical and thermal damage inflicted on the target area. 

Conversely, irradiating materials with longer [nanosecond (ns)] pulse durations lead to 

continuous heating of the target material. Heat conduction then disperses the laser pulse 

energy beyond the size of the laser spot, resulting in the boiling and evaporation of the 

irradiated target material. This uncontrolled boiling and evaporation process generates an 

uncontrollable melt layer as indicated by figure 3.1. For these reasons, fs laser was 

preferred for ablation with focus on both amplifier and oscillator systems for metals and 

semiconductors.  

3.2. Structures Prepared using Femtosecond Laser 

Oscillator  
 

Conventional laser ablation is often performed using a femtosecond amplifier system for 

its high energy per pulse (typically mJ). However, the complexity and cost of the system 

limits its application for material processing. In this study we have used an oscillator 

system with high repetition rate in order to study the effects of different experimental 

conditions on the laser ablation of Si in air. The mechanism of ablation is different for the 

case of high repetition rate pulses resulting in structures that are unconventional and have 

found far reaching applications in solar cells and cancer therapy [3] [4]. Often controlled 

environments like a furnace with tunable temperature or presence of noble gas atmosphere 

is required in order to fabricate anisotropic structures like wires or rods through laser 

ablation. However, owing to their unique mechanism, nanoparticles that self-assemble into 

chains which intertwine into webs is possible to achieve using MHz pulses [5]. In the case 

of repetition rates in the kHz regime, the nanoparticles are known to aggregate by random 

stacking. But for the case of MHz pulses, particles were seen to be fused into nanochains. 

3D web-like structures were also reported for high repetition rate laser ablation of egg 

shells constituting of calcium carbonate [6].  They have also studied the effects of 

repetition rate on the density of the nanofibers formed during ablation. Similar web-like 

nanostructures were reported with Si coated with Au during MHz ablation and the 

structures have demonstrated suitable properties for the application in solar cells owing to 

their properties of high surface area and anisotropy [7]. Sivakumar et al. have 

systematically studied the effects of different laser parameters and composition on these 
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structures [8]. Using laser vaporization-condensation technique (LVC), web-like 

nanostructures were reported on Si under controlled experimental conditions like 

temperature, pressure and background gas [9]. The similarity of nanostructures formed 

during MHz ablation and LVC indicates that the web-like structures are formed during 

nucleation and growth of the nanoparticles [5]. For their ability to mimic extracellular 

matrix, these Si nanostructures have also found applications in biology for cell 

proliferation, tissue engineering and regeneration [10]. These Si structures were also 

studied as a potential for cancer therapy and diagnosis for their selective binding capacity 

without the need of any additives or catalysts [4] [11]. 

Web-like Si nanostructures were fabricated by laser ablation of Si in air with a fs laser 

oscillator (Coherent Chameleon). The laser system has been elaborately discussed in 

chapter 2 including the experimental setup. After gold coating, these nanostructures were 

used for SERS studies with methylene blue as a probe molecule. Femtosecond laser 

ablation is a simple and green technique for precise surface processing of different 

materials including dielectrics, metals, and semiconductors. The simplicity of the 

experimental setup and diversity of the material processing capabilities have expanded 

new horizons for this field. The formed structures are highly dependent on the input laser 

parameters such as pulse duration, repetition rate, fluence and wavelength. 

Conventionally, fs laser processing is performed with amplified systems which are 

expensive. Such laser processed materials have found diverse applications in many areas, 

SERS being one [12]. SERS is both a quantitative and qualitative technique for unique 

identification of molecule under study. Very little work has been done on using 

femtosecond oscillator structured substrates for SERS. We have extensively studied the 

effects of number of pulses per spot and fluence on the web-like structures formed and 

characterized them using FESEM. These structures exhibited interesting morphology with 

Si nanoparticles aggregating into nano-chains which further self-assembled into web-like 

structures. The mechanism of formation of these web-like structures is understood and the 

effects of different experimental conditions on these structures were investigated. The 

web-like structures demonstrated better enhancements than plain Au coated Si substrates 

owing to the chemical enhancement from the Si nanostructures and resulted in 1 M 

sensitivity. As opposed to conventional laser ablation using amplifier systems, this is low-

cost alternative for plasmonic SERS substrates. 
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3.2.1. Experimental Setup 

We have used a tunable Ti-Sapphire laser (Chameleon Ultra, M/s Coherent) with pulse 

duration of ~140 fs (wavelength of 800 nm; average power of ~2.5 W and repetition rate 

80 MHz) for our studies. The laser was aligned using different reflective mirrors and was 

focused on the sample using long working distance objectives (50X and 100X). The 

sample was moved on a computer controlled translational stages to make patterns on the 

Si substrate. We have studied the effects of different experimental parameters and 

characterized the resulting structures by FESEM. A square pattern was used for SERS 

studies as it was proven to be advantageous in our previous study using a femtosecond 

amplifier [13]. Laser ablated Si structures with 50X, 1.5 mm/s, a laser power of 2.5 W, 

and fluence of 1 J/cm2 were used for SERS after coating it with thin layer of Au (10 nm) 

by thermal evaporation method.  

3.2.2. Effects of Scan Speed 

The speed of the translational stages determines the number of pulses per spot and the time 

a pulse dwells on the target surface. We have systematically studied the effects of scan 

speed on the formation of the web-like structures. The resulting structures were 

characterized using FESEM. The results as shown in figure 3.2 indicate low scan speed 

(0.05 mm/s) yielded a dense network of the nanofibers with smaller nanoparticles whereas 

relatively high scan speed (2 mm/s) yielded in less dense nanofibers with larger 

nanoparticles. This happened because for the case of low scan speed, we have a greater 

number of pulses per spot and hence ablating more material, resulting in greater yield and 

also further fragmentation of the nanoparticles formed during the initial stages. Results 

with the intermediate scan speeds are summarized in the figure 3.3 and are consistent with 

the explanation.  

Figure 3.2: FESEM images of laser ablated Si for different scan speeds as indicated in the figure. 

Left side images are in low-resolution while the right ones are in high-resolution. 
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The nanoparticle size for all the scan speeds can be seen to be uniform for each scan speed 

indicating homogeneous nucleation. The results are also in agreement with equation (11) 

where scan speed is correlated to the dwelling time (Dt). The number of evaporated species 

which determine the density of the nanoparticles can be seen to proportionate to the 

dwelling time of the laser pulse at a spot as suggested by the equation.  

Figure 3.3: Summary of results on studying the effects of scan speed on the density and size of 

the Si nanoparticles comprising the web-like nanostructures.  

Previous studied by Bo Tan et al. have indicated that there is a threshold number of pulses 

for the formation of these web-like structures [5]. The number of pulses at which the web-

like structures form was found to be matching with the time taken for the formation of the 

nanoparticles [5]. 

3.2.3. Effects of Fluence 

Laser fluence is a critical parameter determining the resulting nanostructures in laser 

ablation. Previous studies have studied effects of laser fluence as a consequence of change 

in pulse repetition rate and analysed the results [5]. In our case we have changed the laser 

fluence by changing the working objective from 50  to 100  consequently changing the 

spot size from 2.6 m to 1.6 m at a constant power. The input power and scan speed were 

kept constant at a value of 2.5 W and 1.5 mm/s. The results are presented in figure 3.4 and 

indicate that as the fluence is increased the web-like structures disappeared and heat 

induced agglomeration into cauliflower like nanostructures. In order to understand if there 

is a threshold fluence for the formation of these web-like structures, we have lowered the 

laser power to 1.5 W accounting for 7.5 J/cm2 and the results indicate that there is indeed 

a threshold fluence for the formation of the web-like structures. The results for different 

fluences, as shown in figure 3.5 indicate that there is an increase in aggregation of 

nanoparticles with increasing fluence of the laser. Perriere et al. have discussed the effects 

of laser fluence on the ablation outcomes for the case of femtosecond laser with different 

targets [14]. It was found that different ablation species are emitted at different ablation 

fluences depending on the material and the energy.  
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Figure 3.4: FESEM images of femtosecond laser ablated Si nanostructures for different laser 

fluencies as indicated in the image.  

The order of fluence for the emission of droplets (Ed), atomic species (Ea) and clusters (Ec) 

is given as,  

                                                                        𝐸𝑐 ≈  𝐸𝑎 < 𝐸𝑑  

This indicates that ablation at higher fluence is dominated by droplet emission resulting in 

aggregates as shown in the figure 3.5 deviating from the web-like structures. Using the 

same objective of 100, laser power has been decreased to 1.5 W in order to reduce the 

fluence and understand if there is threshold fluence for the formation of the web-like 

nanostructures. 

Figure 4 image corresponding to 7.5 J/cm2 with web-like structures confirms that there is 

indeed a threshold fluence for the same. However, at this fluence, the size of the 

nanoparticles within the nano-chains is inhomogeneous unlike the case for ablation at 1 
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J/cm2. It has to be noted that the geometric effect of changing spot size even at constant 

fluence itself has consequences in the mechanism of laser ablation [14]. Smaller spot sizes 

were known to favour nanoparticle formation whereas larger spot sizes lead to the 

formation of droplets analogous to the mechanism of supersonic jet formation as shown in 

the figure 3.5. Figure 3.6 summarizes the effects of laser fluence on the formation of 

nanoparticle aggreagtes for the case of high repetation rate fs ablation of Si in air.  

Figure 3.5: CCD images of emissions during fs laser abaltion of Ti with nearly same fluence but 

different spot sizes of a) 1  10-3 cm2 and b) 2.4  10-4 cm2. Figure reproduced from the refernece 

[14].  

Figure 3.6: Summary of effects of fluence on laser ablation of Si showing increase in aggregation 

with increasing fluence.  

3.2.4. Mechanism of Laser Ablation  

Nanoparticles during laser ablation are generated by nucleation and growth of laser ablated 

species. When laser beam is focused on the solid target the temperature of the spot is 

increased rapidly leading to vaporization of the target. The collisions between the 

evaporated species leads to the formation of laser induced plasma plume the properties of 

which depend on the ambient gas, material and pressure [15]. The expansion of plasma 

plume leads to rapid quenching in the temperature of the vaporized materials facilitating 

the formation of nanoparticles by nucleation [16]. Nanoparticles are formed during the 

cooling stage of plasma plume through nucleation. The size and shape of the nanoparticles 
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is largely determined by the wavelength, fluence of the laser and the surrounding 

environment of the plasma plume [17]. The nanoparticle formation will come to halt when 

the density reaches an equilibrium concentration or if the particle temperature reaches to 

equilibrium. In the case of MHz pulses, you have constant flux of new particles leading to 

steady growth of NPs and their agglomeration as shown in figure 3.7. This is explained by 

equation (3.11) derived for the case of titanium NPs by Bo Tan et al. [18]. The equation 

gives the number of evaporated atoms (N), during laser ablation as a function of both 

material and laser properties. The first terms in the bracket are the parameters related to 

the properties of the material and the second term refers to the laser parameters like power 

(Pavg), repetition rate (Rrep) and beam size at the focus (Afoc) [19]. The number of particles 

ejected from an ablation area is also proportional to the amount of time a pulse spends on 

a particular spot (Dt) [18]. This is determined by the scanning speed of the laser.  

The thermal evaporation as derived from equilibrium conditions, for a single pulse, 

elsewhere is given as [19],  

                                            𝑅𝑒𝑣𝑝  ≈  𝑛𝑎𝑖𝑟 (
𝑘𝐵𝑇𝑚𝑎𝑥

2𝜋𝑀𝑎
)

1

2
(𝑡𝑝𝑡𝑒𝑞)

1

2  [
𝑎𝑡𝑜𝑚𝑠

𝑐𝑚2 ]                                  (3.1) 

Here Tmax is the maximum temperature of the sample surface at the end of the laser pulse, 

tp is the pulse duration and teq is the time taken to reach the equilibrium distribution.  

The average temperature can be modelled using 1 D heat conduction equation as derived 

elsewhere by Gamalay et al. as [20], 

                                                 𝑇𝑎𝑣𝑔 =  (
2

𝜋
)

1/2 𝐼𝑎(𝑎𝑡𝑝)
1/2

𝑘ℎ
=  

1

21/2
 𝑇(0, 𝑡𝑝)                                    (3.2) 

Ia here is the intensity of the laser absorbed by the material and ‘a’ is the area of scanning 

on the sample. For pulsed laser ablation the maximum temperature, Tmax occurs at the end 

of the laser pulse and hence it follows that, 

                                                                𝑇𝑚𝑎𝑥 = 𝑇(0, 𝑡𝑝)                                                        (3.3) 

So from equation (3.2) and (3.3), it can be written that, 

                                                               𝑇𝑚𝑎𝑥 =  
2𝐼𝑎(𝑎𝑡𝑝)

1/2

𝑘ℎ(𝜋)1/2                                                 (3.4) 
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The intensity absorbed by the sample for a laser intensity of I0, depends on the absorption 

coefficient of the material, , and is hence given as,  

                                                                              𝐼𝑎 =  𝜀𝐼0                                                            (3.5) 

The intensity of the incident laser pulse, I0 is known to be, 

                                                              𝐼0 =  
𝑃𝑎𝑣𝑔

𝑅𝑟𝑒𝑝𝑡𝑝𝐴𝑓𝑜𝑐
                                                          (3.6) 

From equation (3.4), (3.5) and (3.6), the maximum temperature and hence the thermal 

evaporation of the surface can be written as,  

                                                            𝑇𝑚𝑎𝑥 =  
2 𝜀𝑃𝑎𝑣𝑔𝑎1/2

𝑘ℎ𝑅𝑟𝑒𝑝𝐴𝑓𝑜𝑐 (𝜋𝑡𝑝)
1/2                                            (3.7) 

                                              𝑅𝑒𝑣𝑝  ≈  𝑛𝑎𝑖𝑟 (
𝑘𝐵𝑎𝜀𝑡𝑒𝑞

3/2

𝜋3/2𝑀𝑎𝑘ℎ
 

𝑃𝑎𝑣𝑔

𝑅𝑟𝑒𝑝𝐴𝑓𝑜𝑐
)

1

2

 [
𝑎𝑡𝑜𝑚𝑠

𝑐𝑚2 ]                                 (3.8) 

For a single pulse, the number of evaporated species, Np is given as,  

                                                                       𝑁𝑝 =  𝑅𝑒𝑣𝑝𝐴𝑓𝑜𝑐                                                   (3.9) 

For estimating the number of species evaporated for the case of multiple pulses (NMP), it 

is crucial to consider the time a pulse spends at a particular spot known as dwell time, Dt 

and is given as,  

                                                                   𝑁𝑀𝑃 =  𝑅𝑒𝑣𝑝𝐴𝑓𝑜𝑐𝑅𝑟𝑒𝑝𝐷𝑡                                              (3.10) 

Hence, the total number of evaporated species from equation (3.8) and (3.10) can be 

written as,  

                                  𝑁𝑀𝑃  =  𝑛𝑎𝑖𝑟  (
𝑘𝐵𝑎𝜀𝑡𝑒𝑞

3/2

𝑀𝑎𝑘ℎ𝜋3/2
)

1/2

(𝑃𝑎𝑣𝑔𝑅𝑟𝑒𝑝𝐴𝑓𝑜𝑐)
1/2

 𝐷𝑡                      (3.11) 

The equation indicates that the laser parameters like pulse duration, repetition rate and 

energy strongly influence the outcomes of the laser ablation. Specifically, it says that the 

repetition rate of the laser influences the number of evaporated species through a factor of 

square root.  
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Figure 3.7: Schematic of mechanism of formation of nanochains during high repetition rate fs 

ablation of Si.  

3.2.5. SERS Measurements 

In order to fabricate a SERS substrate, the Si sample was moved in a raster pattern using 

two stages to achieve square arrays as shown in figure 3.8 a). Such square arrays were 

proven to be advantageous for signal enhancement in SERS in our previous studies [13]. 

Detailed experimental setup has been discussed in chapter 2. We have used a 50  

objective with laser power of 2.5 W and scan speed of 1.5 mm/cm2 for SERS studies. The 

spacing between the lines was kept to 20 m. The sample (LS-Si) was subsequently coated 

with a thin layer of Au (~10 nm) using thermal evaporation technique and was then 

characterized using FESEM as shown in figure 3.8. EDX data indicate the presence of 

both Au and Si on the sample surface.   

Figure 3.8: a, b) FESEM imaging of web-like Si nanostructures as SERS substrate FESEM 

micrographs of LS-Si used for SERS studies at different magnifications and c) EDX spectrum with 

quantitative results for the gold coated Si used for SERS.  

Methylene blue (MB) was chosen as the probe molecule and different concentrations of 

the analyte were prepared as discussed in chapter 2. 5 l of the selected concentration of 

the sample was drop-casted on the substrate and was waited to dry. Portable Raman 
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Spectrometer (BWTek) with laser excitation 785 nm was used for SERS. Each spectrum 

is an average of 20 spectra collected at random sites on the sample. 

Figure 3.9: a) SERS spectra of MB with 785 nm excitation, 10s acquisition time and 20 mW laser 

power a) on LS-Si and plain Au coated Si for 100 M concentration b) SERS spectra of MB on 

LS-Si for different concentrations. The spectrum of 1 M concentration was multiplied by 10 for 

better visibility c) Intensity variation of 1621 cm-1 peak of MB at 20 random spots on the substrate.  

The data as shown in figure 3.9 indicates that the LS-Si enhances the signal nearly two-

fold relative to the plain Si coated with Au. It was reported that the combination of 

plasmonic metals and dielectrics would enhance the plasmonic response of the ensemble 

[21]. Recently, dielectrics are being explored as alternatives to metal plasmonics as they 

are known to enhance the signal through charge transfer mechanisms [22]. Si based 

materials have been used as SERS substrates and established to enhance the signal [23].  

3.3. Metal Nanostructures Using Femtosecond Amplifier  
 

Metals have a higher ablation threshold relative to semiconductors and need higher energy 

per pulse in order to achieve ablation. Using femtosecond amplifier system that is 

described in detail in chapter 2, laser ablation of Ag, Ag-Au and Cu has been studied and 

their application as SERS substrates for detection of different analytes has been explored.  

3.3.1. Femtosecond Laser Ablation of Ag:Au Alloy and Application in SERS 

Using femtosecond laser (800 nm, 50 fs, 1kHz) ablation of Ag-Au (1:1) in air, diverse 

nanostructures have been fabricated. The effects of angle of incidence on the formation of 

the nanostructures for 0, 10, 20, and 30 has been studied. focuses on surface enhanced 

resonance Raman spectroscopy (SERRS) for the study of an explosive molecule (picric 

acid), two dye molecules (rhodamine 6G, crystal violet), and an amino acid (cysteine). 

These molecules were first analysed using UV-Visible spectroscopy to understand the 
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absorption regions. Accordingly, laser excitation close to the resonance were chosen in 

order to achieve ultra-trace detection limits. The effects of angle of incidence on the 

formation of NSs and the consequence of it on the SERRS performance has been studied. 

The optimum structure was used for further studies. Surface debris is inevitable in laser 

ablation in the air and is eliminated before employing them for the application. But here, 

we have looked at the hotly contested link between enhancement and repeatability, with 

the benefit of having randomly stacked nanoparticles in debris and periodic substrates 

without debris. With statistically significant data (~5000 spectra for each), an inverse 

relationship has been found between enhancement and reproducibility in SERS using the 

advantage of two substrates from single experiment. The SERRS has clearly proved to be 

advantageous for the trace detection of R6G, crystal violet, picric acid, and cysteine with 

sensitivities of 10 fM, 100 fM, 100 nM, and 100 nM, respectively, with good 

reproducibility [24].   

3.3.1.1. Experimental Setup  
 

The experimental investigation involved the utilization of a fs laser ablation technique, 

employing a Ti-Sapphire laser system (M/s Coherent; Libra) emitting light pulses with a 

central wavelength of 800 nm and a pulse duration of 50 fs as described in chapter 2. A 

comprehensive account of the intricate setup can be found elsewhere [25]. In summary, 

the laser beam was directed towards the target specimen through a series of reflective 

mirrors, while the sample itself was strategically positioned on programmable translation 

stages, enabling controlled movement in a raster pattern to facilitate the creation of 

intricate structures within a defined area of 4x4 mm². To focus the beam onto the sample 

with precision, a 15 cm plano-convex lens was employed. For attenuation purposes, a 

combination of a Brewster window and a half wave plate was utilized, effectively reducing 

the laser energy. Specifically, an energy level of 20 mJ was chosen for the ablation process. 

To enable adjustments in the angle of incidence on the sample, a mirror positioned above 

the sample was mounted on a rotational platform, allowing for accurate readings and 

alterations. Prior to the commencement of the ablation process, the Ag-Au sample 

underwent a meticulous cleansing procedure involving the application of acetone, 

followed by ultra-sonication to meticulously eliminate any traces of surface 

contamination. Subsequently, the ablation procedure was carried out at four distinct 

angles: 00, 100, 200, and 300. To facilitate easy identification and categorization of the 

resulting debris substrates, the samples were designated as D-S0, D-S10, D-S20, and D-
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S30, respectively, based on the corresponding angles and ‘D’ representing debris. 

Moreover, for the samples that underwent sonication treatment to remove surface debris 

before ablation, an additional label of ND-S0, ND-S10, ND-S20, and ND-S30 was affixed, 

where "ND" denoted the absence of debris. 

3.3.1.2. Characterization of fs Laser Structured Ag-Au Nanostructures 

The nanostructures as fabricated by laser ablation for different angles of incidence were 

characterized by FESEM imaging. The micrographs captured by FESEM in Figure 3.10 

depict the laser-ablated structures alongside the associated debris, showcasing the impact 

of varying ablation angles. It is noteworthy that all images were captured at an identical 

magnification of 10 KX, ensuring consistent visual representation. The findings of the 

study reveal a notable trend in the production of nanoparticles, which manifest as debris, 

as the ablation angle changes. Specifically, the yield of nanoparticles exhibited an increase 

from the incidence angle of 00, followed by a subsequent decrease with further increments 

in the angle. This observation aligns with the results obtained from the work conducted by 

Gopala Krishna et al., who performed similar experiments in a water-based medium 

utilizing Ag nanoparticles  [26]. Their study reported that, at a specific angle of incidence, 

the absorption of laser energy was comparatively higher, indicating a greater concentration 

of nanoparticles at that particular angle as the ablation was carried out in liquid [26]. 

Furthermore, Gopala Krishna et al. also observed distinct variations in the particle size 

distribution as a consequence of different angles of incidence, as outlined in their 

comprehensive investigation. To comprehend the underlying mechanism governing these 

phenomena, an analogy can be drawn to the process of tilling soil with a sharp-pointed 

tool. In this analogy, the amount of soil removed is contingent upon the angle at which the 

tool is positioned relative to the ground. Similarly, the angle of incidence during laser 

ablation plays a pivotal role in the magnitude of debris production and subsequent 

nanoparticle concentration, thus influencing the particle size distribution. Overall, the 

utilization of FESEM micrographs, combined with the findings from Gopala Krishna et 

al.'s research, contributes to a deeper understanding of the intricate dynamics at play in 

laser ablation processes and sheds light on the importance of ablation angles in 

nanoparticle yield and distribution. To eliminate any surface debris, present on the 

samples, a meticulous cleaning procedure was conducted by subjecting the specimens to 
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ultrasonic treatment in water for ~15 minutes, followed by thorough rinsing. Subsequently, 

the cleaned structures underwent further characterization through FESEM imaging.   

Figure 3.10: FESEM images of laser ablated Ag-Au nanostructures with debris for different angles 

of incidence a) 00, b)100, c) 200 and d) 300 as indicated in the figure. The images indicate that the 

number of nanoparticles ablated is different for different angles of incidence.   

Figure 3.11: FESEM images of laser ablated Ag-Au nanostructures without debris for different 

angles of incidence a) 00, b)100, c) 200 and d) 300 as indicated in the figure. The images indicate 

the formation of ripples on Ag-Au surface for all angles of incidence but with varying periodicity. 

e) and f) Represent EDX data showing the presence of both Ag and Au.  

The outcomes of this analysis are graphically presented in Figure 3.11, where it is 

important to note that all the captured images were taken at an identical magnification of 

25 KX. The results indicate the formation of ripple like structures for all energies which 
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have proven to have advantage in the SERS in our previous studies [27]. The results 

obtained from the FESEM imaging reveal the formation of distinctive ripple-like 

structures across all energy levels investigated. It is worth highlighting that these specific 

ripple formations have demonstrated advantageous characteristics in SERS, as previously 

established in our own research endeavors. 

3.3.1.3. UV-Visible Spectroscopy of the Analyte Molecules 

To gain insight into the absorption characteristics of the analyte molecules and 

subsequently determine the most appropriate excitation wavelength, UV-Visible 

spectroscopy was conducted for each of the chosen analyte molecules intended for SERS. 

The absorption spectra of the various analytes are presented in Figure 3.12 (a), providing 

a visual representation of their absorption properties. 

Figure 3.12: a) UV-Visible absorption spectrum of different probe molecules used in SERS 

studies for this work. The dotted line indicates the laser excitation wavelengths. b) Scatter plot of 

the absorption peak and excitation wavelength for each probe molecule where  is indicating 

the absolute difference between the two. 

From the graph, it is evident that both dye molecules exhibit absorption peaks within the 

visible region while on the other hand, the explosive compound and the biomolecule 

display absorption primarily within the UV region, signifying their preferential absorption 

of light at shorter wavelengths. Based on the absorption characteristics obtained from UV-

Visible spectroscopy, the laser excitation wavelength was carefully selected to match the 

absorption peaks of the respective analyte molecules. This chosen excitation wavelength 

is visually represented as a dotted line in Figure 3.12 a). To provide a comprehensive 

understanding of the relationship between the absorption peaks and the excitation 

wavelength, Figure 3.12 b) presents a scatter plot illustrating the absorption peak values 

plotted against the corresponding excitation wavelengths for each analyte molecule. 
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Furthermore, it is worth noting that the plasmonic resonance exhibited by the Ag-Au 

material occurs within the visible region, as clearly indicated in Figure 3.13. This 

plasmonic resonance characteristic presents a significant advantage, particularly for the 

dye molecules that overlap with the absorption range. The overlapping of the dye 

molecules' absorption peaks with the plasmonic resonance enhances the SERS signals and 

ultimately contributes to improved detection sensitivity and signal enhancement [28,29].  

3.3.1.4.  Surface Enhanced Resonance Raman Spectroscopy (SERRS) 

Surface-enhanced Raman spectroscopy (SERS) benefits not only from the plasmonic 

nanostructures and chemical enhancement mechanisms but also from an additional 

enhancement when the incident laser excitation closely aligns with the electronic 

transitions of the molecules and the resonance of the plasmonic material under 

investigation. These resonance conditions are known to amplify the standard SERS signal 

by up to 106 times [30]. This phenomenon is commonly referred to as Surface Enhanced 

Resonance Raman Spectroscopy (SERRS). With advancements in laser technology and 

instrumentation, rendering them portable and cost-effective, there is an increasing 

opportunity to select excitation wavelengths that precisely match the characteristics of the 

sample and the specific field of study. It is well established that different classes of 

materials exhibit absorption within distinct spectral domains. For instance, explosives and 

biomolecules typically absorb light within the ultraviolet (UV) spectral region, while dyes 

tend to absorb within the visible region [31]. By aligning the excitation wavelength with 

the absorption characteristics of the analyte molecules and the plasmonic resonance of the 

substrate material, researchers can exploit the resonance effects to optimize the SERS 

signal and achieve heightened sensitivity and enhanced analytical capabilities [32].   

Figure 3.13: UV-Visible reflectance data of Ag-Au sample used in this study indicating 

plasmonics resonance in the visible range. 
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3.3.1.5. SERRS Data Analysis 

The resonance Raman spectra of Rhodamine 6G (R6G) have been extensively studied and 

established as a suitable analyte molecule due to the availability of 532 nm laser excitation, 

which closely aligns with its absorption peak. Additionally, R6G has demonstrated a 

remarkable affinity for metals, particularly silver nanostructures [33]. This advantageous 

combination of factors has allowed for comprehensive investigations into R6G, extending 

to the study of single molecules and fundamental aspects [34]. In the initial stages of our 

studies, we assessed the performance of each substrate with debris using a concentration 

of 1 μM R6G. The results revealed that the substrate ablated at an angle of 100 

outperformed the other substrates, as illustrated in Figure 3.14. This superior performance 

can be attributed to the higher yield of nanoparticles produced at this specific angle, 

consequently providing an increased number of hotspots for the adsorption of R6G 

molecules. 

Figure 3.14 showcases the SERRS spectra obtained from different substrates, with the data 

averaged over ten random spots on each sample. The accompanying bar graph highlights 

the enhanced performance of the D-S10 sample. It is worth noting that the observed 

deviation in performance, although notable, is not statistically significant when compared 

to the RSD within a single sample at different spots (22%) or the RSD between different 

samples (26%). Based on these findings, we selected the sample ablated at an angle of 100 

as the preferred substrate for subsequent studies involving various analyte molecules and 

fundamental investigations.  

Figure 3.14: a) SERRS spectra of femtosecond laser ablated Ag-Au samples for different angles 

of incidence for 1 M of R6G with 532 nm laser excitation. Each spectrum is an average of 10 

spectra collected at different spots on each sample. b) Bar graph for 1650 cm-1 peak intensity of 

R6G indicating better performance of D-S10 sample. 
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SERS is often characterized by two key aspects: enhancement factor and reproducibility. 

The relationship between these two factors is a subject of ongoing debate and is often 

described as an uncertainty relation, where an increase in EF comes at the expense of 

reproducibility, and vice versa [30]. This trade-off can be attributed to the localized nature 

of the hotspots responsible for high enhancement, which can also lead to poor 

reproducibility [35]. To delve deeper into this relationship, it is instructive to examine the 

SERS behavior on two different types of substrates: densely packed, randomly stacked 

nanoparticles and periodic nanostructures. In this context, we utilized debris (D-S10) and 

no debris (ND-S10) structures to explore this advantage. A concentration of 5 μM R6G 

was employed, and SERRS mapping was performed on both substrates, specifically 

focusing on the 612 cm-1 peak of R6G, within an area of 100 μm2. Figure 3.15 illustrates 

the SERRS mapping data, with false colors representing the intensity of the 612 cm-1 peak 

of R6G on a) the ND-S10 substrate and e) the D-S10 substrate. Figures 3.15 b) and 3.15 

f) display the corresponding spectra, while Figures 3.15 c) and figure 3.15 g) depict 

contour maps of the intensity distribution. Figures 3.15 d) and 3.15 h) present statistical 

analyses of approximately ~5000 spectra for each sample, clearly indicating the RSD, 

mean, standard deviation (SD), and range (maximum-minimum intensity). The data 

clearly reveal that the ND-S10 substrate exhibits higher reproducibility, with an RSD of 

10%, albeit with a compromise on enhancement, as indicated by the maximum intensity 

of 2403 counts. On the other hand, the D-S10 substrate demonstrates superior 

enhancement, with a maximum intensity of 4671 counts, but at the cost of higher RSD of 

31%. These trends are further supported by the statistical parameters presented in the 

figures. Based on this statistically significant data, it is evident that an inverse relationship 

exists between reproducibility and enhancement in SERS. This study emphasizes that for 

applications focused on trace detection, such as forensics or explosive detection, SERS 

substrates with a high density of hotspots are preferable. We have also performed mapping 

studies at low concentration (10p pM) of R6G with the ND-S10 substrate and still found 

good reproducibility as shown in Figure 3.16. 

To evaluate the efficiency of the substrate, we conducted a study on R6G at different 

concentrations using the ND-S10 substrate. For ultra-trace detection, we utilized the D-

S10 substrate based on the insights gained from the mapping studies, and successfully 

detected concentrations as low as 10 fM, as depicted in Figure 3.17 a). For better 

readability, the complete spectrum is presented in Figure 3.17 b). Notable peaks observed 
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in the spectrum correspond to R6G's C-C-C ring bending at 614 cm-1, as well as the 

aromatic C-C stretching at 1363 cm-1 and 1650 cm-1 [33].  The relationship between 

concentration and intensity was found to be nonlinear, with the intensity saturating at 

higher concentrations. To quantify the data and enable quantitative detection, we have  

Figure 3.15: SERRS mapping studies performed in an area of 100 m2 with 5 M of R6G for D-

S10 and ND-S10 substrate with 612 cm-1 peak as reference. a,e) SERRS false color image 

generated for the peak intensity for a) ND-S10, e) D-S10 substrate. b and f represent corresponding 

spectra while c,g) show the contour maps of the peak intensity distribution. d,h) Scatterplot of peak 

intensity for d) ND-S10 and h) D-S10 sample with statistical parameters summarized in the figure. 

The line in the graphs indicate the mean value.    

Figure 3.16: SERRS mapping studies performed in an area of 100 m2 with 10 pM of R6G on 

ND-S10 substrate with 612 cm-1 peak as reference. a) SERRS false color image generated for the 

peak intensity. b) corresponding spectra while c) show the contour map of the peak intensity 

distribution. d) Scatterplot of peak intensity for d) with statistical parameters summarized in the 

figure. The line in the graphs indicate the mean value.   

fitted the experimental data to a polynomial equation with an R2 value of 0.98, indicating 

a good fit for prediction purposes. This fitting equation can be employed to facilitate 

quantitative analysis of R6G concentrations. To assess reproducibility, we examined 5 μM 

R6G within each ND-S10 substrate (represented in the figure 3.17 d) by  
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Figure 3.17: a) SERRS spectra of R6G for different concentrations collected on ND-S10 substrate 

with 532 nm laser excitation and 1mW laser power. The spectrum at 10 fM is collected with D-

S10 sample and is multiplied by 10 for better readability. b) The full spectrum of the 10fM of R6G 

presented for readability. c) SERRS intensity and concentration relation for 1650 cm-1 peak 

intensity of R6G fitted to a polynomial with an R2 value of 0.98. d) Reproducibility of the signal 

at 10 random spots on the substrate for ND-S10 (black) and D-S10 (red) samples with 5 M R6G. 

the grey curve) and D-S10 substrate [represented by the red curve in Figure 3.17 d)]. We 

collected ten random spectra on each sample for analysis. The results revealed that the D-

S10 substrate exhibited a higher RSD of 22%, while the ND-S10 substrate demonstrated 

a lower RSD of 5%, consistent with the findings discussed in the mapping section. This 

reinforces the inverse relationship between reproducibility and enhancement in SERS, as 

established earlier. The EF was calculated for lowest detected value of R6G (10fM) using 

the method described elsewhere [36] and was found to be 8 109. 

In addition to R6G, we also investigated CV, a dye with absorption at 592 cm-1. To 

maximize the excitation efficiency, we employed a 633 nm laser, which closely matches 



105 

 

the absorption peak of CV. SERRS spectra of CV at various concentrations were collected 

using the ND-S10 substrate, with the exception of the lowest concentration (100 fM),   

Figure 3.18: a) SERRS spectra of CV for different concentrations collected on ND-S10 substrate 

with 633 nm laser excitation and 1mW laser power. The spectrum at 100 fM is collected with D-

S10 sample and is multiplied by 10 for better readability. b) SERRS intensity and concentration 

relation for 1618 cm-1 peak intensity of CV fitted to a polynomial with an R2 value of 0.98. c) 

Reproducibility of the signal at 10 random spots on the substrate for ND-S10 (black) and D-S10 

(red) samples with 1 M of CV. 

which was measured using the D-S10 sample, as illustrated in Figure 3.18 a). The SERRS 

spectra of crystal violet exhibited distinct peaks at 1618 cm-1, 1179 cm-1, 912 cm-1, and 

723 cm-1, corresponding to C-C stretching, C-H in-plane bending, ring skeletal vibrations, 

and C-H out-of-plane bending modes, respectively [37]. Figure 3.18 b) demonstrates the 

relationship between intensity and concentration for the 1618 cm-1 peak of CV. The data 

points were fitted to a polynomial equation with an R2 value of 0.98, indicating a robust 

non-linear relationship. To assess reproducibility, we collected ten random spectra on both 

the ND-S10 (represented by the black curve) and D-S10 (represented by the red curve) 

substrates, as depicted in Figure 3.18 c). The ND-S10 substrate exhibited a low Relative 

Standard Deviation (RSD) of 4%, signifying high reproducibility. On the other hand, the 
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D-S10 substrate demonstrated a higher RSD of 28%, indicating slightly reduced 

reproducibility compared to the ND-S10 substrate. 

Explosives and biomolecules have absorption in the UV region as is also demonstrated in 

figure 12. The resonance excitation of explosives using UV-SERS has been extensively 

studied and recognized as advantageous[38,39]. However, it is important to note that UV 

lasers can potentially damage the analyte molecules, necessitating the use of extremely 

low laser powers to avoid such damage and enable ultra-trace detection[40–45]. In this 

study, we employed a 325 nm He-Cd laser with a power of 1 mW to investigate the SERS 

behavior of an explosive molecule, picric acid (PA), and an amino acid called cysteine. 

Figure 3.19 a) presents the SERRS spectra of PA at various concentrations, with the lowest 

detected concentration being 100 nM, even at the low power of 1 mW. The distinct peaks 

observed at 1343 cm-1 and 826 cm-1 correspond to the symmetric stretching mode of the 

NO2 group and the bending mode of the C-H bond, respectively [46]. Similarly, Figure 

3.20 a) displays the SERRS data for cysteine at different concentrations, with the lowest 

detected concentration also being 100 nM. 

Figure 3.19: SERRS spectra of for different concentrations for a) PA studied with 325 nm laser 

excitation and 1.3 mW laser power on ND-S10 substrate. The 100 nM spectrum for PA is 

multiplied by 5 to increase visibility. c) Reproducibility of 1343 cm-1 of PA collected at 10 random 

spots on the same with RSDs of 16%. 

The peaks observed at 2944 cm-1, 2564 cm-1, and 677 cm-1 correspond to specific 

vibrational modes of cysteine, as confirmed by the existing literature [47].  Reproducibility 

is a critical aspect of SERS measurements. Figure 3.19 c) and Figure 3.20 c) depict the 

reproducibility of the ND-S10 substrate for both picric acid and cysteine, respectively. Ten 

spectra were collected for each analyte, and the RSD was calculated. The RSD for picric 

acid was found to be 16% (for ND-S10), while for cysteine, it was 18%. 
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Figure 3.20: SERRS spectra of for different concentrations for a) Cysteine studied with 325 nm 

laser excitation and 1.3 mW laser power on ND-S10 substrate. b) Intensity and concentration fit c) 

Reproducibility of 2944 cm-1 peak of Cysteine collected at 10 random spots on the same with RSDs 

of 18%. 

Table 3.1 provides a comprehensive summary of the reproducibility and EFs obtained for 

the various analytes investigated in this study. The data clearly demonstrates an inverse 

relationship between reproducibility and EF, as exemplified by the results obtained using 

the D-S10 and ND-S10 substrates. It is important to note that despite the lower 

reproducibility, the EFs achieved for the dye molecules remain promising due to the 

advantage of resonance excitation, which effectively compensates for some of the inherent 

limitations of SERS. However, it is worth mentioning that the EFs observed for the 

explosive and dye molecules are relatively modest. This is primarily attributed to the 

experimental conditions, wherein the laser power was deliberately kept very low at 1.3 

mW to prevent potential sample damage caused by the UV laser. By prioritizing the 

preservation of the sample integrity, the EFs for these particular analytes were 

compromised. Nevertheless, the obtained EFs still exhibit considerable potential, 

particularly in the context of resonance excitation, which effectively addresses some of the 

challenges associated with SERS analysis. 

Table 3.1: Summary of analytes and SERS parameters for this study. 

Substrate Analyte RSD Enhancement 

Factor 

ND-S10 R6G 10% (~5000 spectra) 1109 

D-S10 R6G 31% (~5000 spectra) 81010 

ND-S10 CV 4% (10 spectra) 3109 

D-S10 CV 28% (10 spectra) 21010 

ND-S10 PA 16% 6105 

ND-S10 Cysteine 18% 4105 
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3.3.2. Femtosecond Ablation with Cylindrical Focusing  

Femtosecond laser pulses (~70 fs) at a central wavelength of 800 nm and a repetition rate 

of 1 kHz were used for our cylindrical focusing studies. The detailed experimental setup 

is discussed in chapter 2. We have used a cylindrical lens to focus the laser on the substrate. 

The line focus has significantly increased the rate of ablation and hence reduced the time. 

It also resulted in novel sand dune-like nanoripples that were later shown to have an 

advantage in our SERS studies. The sample was moved in a raster pattern in an area of 

4x4 mm2 using programmable linear translational stages.  Prior to SERS studies, the 

formation of these nanoripples as a function of laser energy was studied and characterized 

using FESEM imaging. A structure with regular and uniform nanoripples was chosen for 

SERS studies keeping in view the reproducibility of the signal. These laser-induced 

periodic surface structures (LIPSS) are known to form by the interference of incident 

electromagnetic waves with surface plasmon polaritons [48]. The other theory proposes 

that they are a consequence of non-uniform energy absorption by the surface [49]. These 

LIPSS were proven to have an advantage in SERS in our previous studies [50] [51].  

3.3.2.1. Results on Ag 

Effects of laser power on the resulting nanostructures has been studied thoroughly by 

changing the laser power using a combination of half wave plate and Brewster window as 

discussed in chapter 2. The resulting nanostructures were characterized by FESEM and 

the results are presented in figure 3.21. 

Figure 3.21: FESEM images of laser structured Ag with different energies as indicated in the 

figure for different magnifications.  

The formation of LIPS on the sample surface depends on the beam profile of the incident 

beam [52]. Accordingly, different structures were observed for Gaussian and Bessel beam 

ablation [53].  
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3.3.2.2. SERS Studies  

Figure 3.22: FESEM images of laser structured Ag that was used as SERS substrate for different 

magnifications as indicated in the figure. The inset image shows a tree bark with ripples resembling 

the nano-ripples on Ag. Inset show EDX spectrum with Ag peak.  

In order to carry out SERS measurements, the sample was ablated in an area of 4x4 cm2 

with lines of spacing 80 m and characterised using FESEM as shown in figure 3.22. The 

area between the lines was covered with nano-ripples. The inset image shows uncanny 

resemblance of these nano-ripples with wavy patterns on a tree bark. The samples were 

then utilised for the trace detection of two explosive molecules, tetryl and RDX along with 

a biomolecule, cytosine. A portable Raman spectrometer with 10 mW laser power and 10s 

of acquisition time has been used for the measurements. The data for each concentration 

of the analyte molecule is presented in figure 3.23. The lowest detected concentration of 

the analyte molecules tetryl, RDX and cytosine was found to be 50 nM, 100 M and 100 

nM, respectively. The prominent peak of tetryl, RDX and cytosine at 1357 cm-1, 857 cm-1 

and 791 cm-1 correspond to NO2 symmetric stretching [54], N–N stretching and NO2 axial 

scissoring [55] and ring breathing [56], respectively. The intensity and concentration 

relation for these prominent peaks of the three molecules has found to be non-linear as 

shown in the figure 3.23 d). The EF calculated using the method described elsewhere 

[56][57] was found to be 1.7 108, 3.1 104 and 5.6 107 for Tetryl, RDX and cytosine, 

respectively.  

Using cylindrical focusing, large area LIPS have been achieved in between the spacing 

between two lines. In order to understand the distribution of hotspots and SERS intensity 

in this region, we have performed Raman mapping using 532 nm laser excitation and 50 
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 objective for 5 M concentration of Tetryl with Horiba Raman spectrometer. A random 

area of 65 m2 has been chosen on the sample and was focused using the objective. 

Figure 3.23: SERS spectra of a) Tetryl, b) RDX and, c) Cytosine for different concentrations 

collected using portable Raman spectrometer with laser power of 10mW and acquisition time of 

10s. d) Intensity and concentration relation for prominent peaks of the three analyte molecules.   

The laser power was set to 10 mW and the acquisition time was kept at 2s. For intensity 

mapping, 1358 cm-1 peak of Tetryl corresponding to NO2 symmetric stretching has been 

chosen and false colours as shown in figure 3.24 a) indicate the intensity scale for different 

ranges. The intensity distribution indicates that the signal distribution is uniform for large 

areas but is specifically high at certain regions corresponding to hotspots. The distribution 

of signal intensity is guided by different conditions in SERS like the orientation of the 

molecule and the adsorption at a particular site [58] [25].  

SERS recently is being extensively used for detection of microorganisms including covid-

19 [59]. The promise of SERS to perform label-free, rapid and bio-compatible 

measurements has been the reason for its popular choice. However, unlike molecules, 
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microorganisms do not have a fingerprint spectrum for identification as they are composed 

of many biomolecules like lipids, proteins, and nucleic acids all of which are Raman active 

[60] [61]. Often machine learning algorithms are used in conjugation with SERS data in 

order to specifically identify the organism under study [62] [63].E. coli, short for 

Escherichia coli, is a type of bacteria commonly found in the lower intestines of warm-

blooded organisms, including humans. While most strains of E. coli are harmless, some 

can cause severe illness and even be life-threatening. Therefore, the detection and 

identification of E. coli bacteria are of significant importance for several reasons. E. coli 

can cause various infections, including urinary tract infections, respiratory illnesses, and 

gastrointestinal diseases. Certain strains, such as E. coli O157:H7, are known to produce 

toxins that can lead to severe foodborne illnesses, such as diarrhoea, abdominal cramps, 

and even kidney failure. Rapid and accurate detection of E. coli is crucial to prevent the 

spread of these infections and promptly treat affected individuals, minimizing the risk to 

public health. E. coli contamination is often associated with foodborne outbreaks, 

particularly in undercooked or improperly handled meat, raw vegetables, and 

contaminated water. The presence of E. coli in food products can lead to widespread  

Figure 3.24: a) SERS mapping image of Tetryl of concentration 5M generated using the intensity 

of 1358 cm-1 peak of Tetryl in an area of 65 m2. b) Corresponding SERS spectra of the mapping 

region and, c) Intensity distribution of the mapping area.  

illnesses and has the potential for significant economic impact due to product recalls, 

hospitalizations, and potential lawsuits. Detecting E. coli in food processing plants, farms, 

and water sources allows for timely intervention, ensuring the safety of food supplies and 

preventing outbreaks. E. coli is used as an indicator organism to assess water quality and 

detect faecal contamination in natural water bodies, recreational waters, and wastewater 

treatment facilities. Monitoring E. coli levels helps identify potential sources of 

contamination, assess the effectiveness of sanitation measures, and safeguard the 

environment. High levels of E. coli can indicate the presence of other harmful pathogens, 
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making its detection crucial for maintaining ecological balance and protecting human and 

animal populations. Detecting and monitoring E. coli strains are essential for scientific 

research and epidemiological surveillance. By understanding the distribution, prevalence, 

and characteristics of different E. coli strains, researchers can study their virulence factors, 

antibiotic resistance patterns, and evolutionary traits. This information is critical for 

developing effective treatments, vaccines, and public health strategies to combat E. coli-

related infections.  

Figure 3.25: a) SERS spectra of different E. coli species as indicated in the image, b) PCA for 

classification and identification of the species using SERS data. 

Using the laser structured Ag as the substrate, different species of E. coli have been 

detected using SERS. E. coli samples were prepared using a standard protocol in a biology 

lab and were allowed to grow overnight. To remove the effects of growth medium, the 

samples were centrifuged and the pellet was collected, transferred to 6 l of water. SERS 

spectra was collected using the Horiba Raman spectrometer with 532 nm and 1 mW laser 

power, 2s of acquisition time. Five E. coli species labelled as BL21, Nico, DHS, 

ML1655, and BL21 DE3 were taken for the studies. These variants have a slightest 

difference in their genetic makeup which reflects in their composition and in turn in the 

SERS spectra. The unprocessed SERS spectra for each species are plotted and presented 

in figure 3.25 a) indicating that there is no significant feature difference between the 

species especially for BL21 and Nico. In order to classify and identify the spectra, the data 

was processed using principal component analysis (PCA) collecting 5 spectra for each 

species. The resulting data as shown in figure 3.25 b) indicates that the species can indeed 

be distinguished using machine learning techniques.  
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3.3.2.3. Sand dune like Cu NSs for SERS 

Most often than not, SERS substrates are made of Au or Ag, which are usually expensive. 

Here we present femtosecond laser processed Cu substrate as SERS substrate for the 

detection of two explosive molecules, ammonium nitrate and Tetryl (2, 4, 6-trinitro 

phenylmethyl nitramine), and a dye molecule, methylene blue. Ammonium Nitrate is the 

most commonly used explosive molecule in recent mishaps. Effects of laser energy on the 

formation of these nanostructures has been studied and characterised using FESEM. Laser 

structures fabricated at 0.8 mJ were used for the SERS studies as shown in the figure 3.26. 

Laser Induced Periodic Structures (LIPS) are formed upon irradiation of solids with 

linearly polarized Ti:sapphire fs laser pulses in air under normal incidence. These LIPS 

are generated by interference of the incident laser beam with a surface electromagnetic 

wave (SEW) generated at the rough surface which might include the excitation of surface 

plasmon polaritons (SPPs). LIPSSs are important for modification of materials so that 

enhancement in their performance can be achieved with respect to properties such as 

coefficient of friction, wear, wettability adhesion, fracture and impact strengths just to 

name a few.  

The SERS studies were carried out with a portable Raman spectrometer with 785 nm laser 

excitation, 30 mW laser energy, and 3s acquisition time. Our preliminary studies have 

promised that these substrates can be used for the detection of two explosive molecules 

ammonium nitrate and tetryl with concentrations of 50 M and 100 M, respectively. 

Figures 3.26 a)-c) show the FESEM micrographs of laser-ablated Cu at different 

magnifications. The images at higher magnification clearly indicate the formation of sand 

dune-like LIPSS on Cu. Figures 3.26 d) shows the EDX quantitative data of the selected 

area on laser structured Cu. Figure 3.29 shows SERS spectra of Tetryl, Methylene Blue, 

and Ammonium Nitrate at concentrations of 100 M, 5 M, and 50 M on the Cu 

substrate, respectively. The prominent modes of MB were identified at 1284 cm-1, 1435 

cm-1, and 1626 cm-1, which correspond to the C-H in-plane bending, C-C asymmetric, and 

C-N ring stretching, modes, respectively [6]. The observed 1042 cm-1 Raman mode for 

AN corresponds to symmetric NO3
- stretching [6]. The 1357 cm-1 Raman mode of Tetryl 

corresponds to symmetric stretching of nitro group [7].  
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Figure 3.26: a)-c) FESEM micrographs of laser ablated Cu nanostructures at different 

magnifications indicate the presence of sand dune-like laser-induced periodic structures. d) 

Quantitative results of the EDX spectrum of a selected area on laser structured Cu. 

The SERS studies were performed with a portable Raman Spectrometer with 785 nm laser 

excitation, 30 mW laser energy, and 3s acquisition time. A structure with regular and 

uniform nanoripples obtained for 0.8mJ was chosen for SERS studies keeping in view the 

reproducibility of the signal as shown in Figure 3.27. 10 l of the analyte was drop-casted 

on the substrate and waited to dry. Figure 3.27 a) shows the SERS spectrum of tetryl at a 

concentration of 100  M on the LS-Cu (black line) and plain Cu (red line), respectively. 

The laser structured Cu (LS-Cu) has clearly performed better than plain Cu by nearly ~12 

times. Similar studies were performed with MB and AN as shown in Figure 3.27 c). 

Reproducibility is an important factor determining the performance of a SERS substrate. 

We have collected the SERS signal at 10 random spots on the substrate and estimated the 

relative standard deviation (RSD) to be ~5% as shown in figure 3.27 b). 

Figure 3.27: a) SERS spectra of Tetryl for a concentration at 100 M on laser structured Cu (LS-

Cu) (black line, top) and plain Cu (red line, bottom) (multiplied by 3 to enhance the readability) b) 

Intensity of the 1358 cm-1 peak collected at 10 random spots on the substrate demonstrating an 

RSD of 5%. c) SERS spectra of Tetryl, MB and AN for concentrations 10 M, 5 M and 50 M, 

respectively, collected with portable Raman spectrometer with 785 nm laser excitation and 30 mW 

laser power. 
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3.4. Conclusions 

This chapter focused on fabrication of diverse nanostructures on Ag, Ag-Au (1:1), Si and 

Cu using femtosecond laser ablation in air. In chapter 3.1, fs laser oscillator has also been 

employed to achieve web-like nanostructures on Si. Effects of different experimental 

parameters like laser fluence, and scan speed on all the resulting nanostructures have been 

studied. The mechanism of formation of the web-like structures is thoroughly understood 

and the results were correlated with the theory. Subsequently, after coating with Au, these 

nanostructures were utilised as SERS substrates for detection of MB with a sensitivity of 

1 M. In chapter 3.2., effects of changing incident angle on fs laser amplifier-based 

ablation of Ag-Au alloy have been studied for four different angles of 0, 10, 20 and 30. 

These structures were utilised for SERS measurements with two different motives,  

a) With the use of contrast in nanostructures between debris and no-debris substrates, 

the fundamental relationship between SERS enhancement and reproducibility has 

been studied. An uncertainty product like relationship has been found between the 

two parameters communicating that a high enhancement comes at a trade-off of 

reproducibility owing to the localization of the hotspots.  

b) Using resonant excitation and through SERRS, ultra-trace detection of four 

molecules, R6G, PA, CV and Cysteine has been studied achieving sensitivity of 10 

fM, 100 nM, 100 fM, and 100 nM, respectively with good reproducibility.  

c) Using cylindrical focusing, ripple like nanostructures have been obtained on Ag 

and Cu and effects of laser energy on these parameters have been studied. Ag 

structures were utilised for the detection of tetryl, RDX and cytosine with 

sensitivity of 50 nM, 100 M and 100 nM, respectively. The EF was found to be 

1.7 108, 3.1 104 and 5.6 107 for tetryl, RDX and cytosine, respectively. Sand-

dune like Cu NSs were utilised for the detection of tetryl, methylene blue and 

ammonium nitrate achieving a remarkable RSD of 5% with sensitivity of 10 M, 

5 M and 50 M, respectively.  

The performance of the Si nanostructures could be significantly improved by changing the 

thickness of the gold coating. In-situ synthesis of Au-Si nanostructures by ablating after 

gold coating has been explored elsewhere and also resulted in similar structures [8]. There 

is scope to use silver instead of gold which could have resulted in higher enhancement. 

SERRS measurement in section 3.1.5. have been performed under extremely low power 
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of nearly ~1 mW to suppress fluorescence and prevent damage to the sample under 

resonance conditions. The unusually low power has clearly reflected in the detection 

sensitivity of explosive molecule PA. Studies carried out for identification and 

classification of bacteria species can be extended to identifying covid-variants through 

SERS spectra.  
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Chapter 4 
 

Novel Flexible, Hydrophobic, Hybrid and 

Low-cost SERS Substrates 
 

Abstract 
 

The work presented in this chapter focused on low-cost and durable SERS substrates that 

were synthesised by simple chemical and physical methods. First section discusses hybrid 

and low-cost rigid substrates with anisotropic Ag and Ag-Au nanostructures that were 

fabricated by etching the Si in the presence of metal salts. Effects of salt concentrations, 

duration of etching on the formation of highly anisotropic nanostructures were studied. 

Extensive SERS mapping studies along with trace detection of different hazardous and bio 

molecules like crystal violet, adenine, cytosine, penicillin G, kanamycin, ampicillin, AN, 

and thiram will be presented. Further, application of Si nanostructures decorated with 2-D 

laser ablated MoS2 as SERS substrates will be presented. Novel MoS2 morphologies were 

generated by femtosecond laser ablation of commercial MoS2 powder in water, ethanol 

and methanol. Si nanowires decorated with bimetallic Ag-Au nanoparticles after coating 

with MoS2 they were utilised for trace detection of diverse analyte molecules like MG (0.5 

nM), melamine (100 nM), naphthalene (300 nM), L-Cysteine (100 nM), tetryl (50 nM) 

and E. coli. The results indicate that the MoS2 has offered dual benefit of signal 

enhancement and increasing the durability of the substrates. The second part of the chapter 

focuses on flexible SERS substrates highlighting the novel hydrophobic plasmonic 

substrate that has been fabricated by a simple method of spin coating filter paper with Si 

oil. We have observed that this has been by far the cheapest and single step method to 

modify the filter paper wettability. Using nonlinear machine learning models such as 

principal component analysis (PCA) and support vector regression (SVR), these substrates 

have been used for rapid quantification using the SERS data. Towards the end, this chapter 

presents free standing porous Si decorated with Ag nanoparticles synthesised by wet 

etching method for trace detection of methylene blue, picric acid, ammonium nitrate, and 

thiram with sensitivities of 50 nM, 1 µM, 2 µM, and 1 µM. 
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4.1. Introduction 
 

To translate the SERS technique for real world applications, cost and ease of sample 

collection are two important constraints. Bottom-up chemical methods offer flexibility to 

synthesise highly anisotropic nanostructures that promise higher enhancement and limit of 

detection in trace sensing [1][2].  Silver dendrites have garnered significant attention since 

the 1990s due to their distinctive structure and their applications in catalysis, fuel cells, 

and storage devices [3] [4]. These dendrites offer a large surface area and desirable optical 

properties, making them suitable for signal enhancement in various applications, including 

SERS. The fabrication of Ag dendrites can be achieved through different methods, broadly 

categorized as electrochemical or chemical routes [5]. Electrochemical processes involve 

the utilization of potential or current to facilitate the reduction of Ag ions. The formation 

of dendrites is influenced by factors such as the applied field/current, presence of 

surfactants, and reaction time [6] [7]. On the other hand, electroless deposition processes 

involve simultaneous reduction and oxidation reactions on the surface of a template 

material. This method can be extended to various metals; for instance, Matsushita et al. 

reported the formation of Zinc and CuSe nano-dendrites using this technique [8] [9]. In 

2005, Qiu et al. introduced the use of silicon (Si) wafers as templates for fabricating Ag 

dendrites, employing hydrofluoric acid (HF) as an etching agent [10]. The formation of 

these dendritic structures can be better explained by the diffusion-limited aggregation 

theory (DLA) [11]. According to DLA, particles undergo random walks and eventually 

settle at specific sites, contributing to the growth of the structure. The fractal structures are 

initiated by the formation of a seed particle from the metal salt. Particles formed at 

different locations diffuse randomly and attach to low energy sites near the seed particle. 

During this time, Ag2+ nuclei released from random sites move freely throughout the 

substrate until they reach designated low energy sites and deposit there. The cluster is 

formed by the sequential aggregation of these nuclei [12]. To initiate the formation of Ag 

dendrites, the Si surface is initially etched in the presence of HF, resulting in the formation 

of Si nanowires. Simultaneously, Ag nuclei are formed through a redox reaction and 

assemble on the Si nanowires, leading to cluster formation. The Ag ions in the solution are 

continually reduced by Si atoms through electron transfer, and the reduced Ag atoms are 

subsequently deposited on the Si surface. Si etching in the presence of an electric field 

induces diverse structural formations and introduces porosity in the material [13]. 
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Furthermore, the utilization of an etch cell along with the application of current density in 

the presence of HF has enabled the fabrication of freestanding porous Si [14] [15]. 

Subsequently, this porous Si has been decorated with Ag nanoparticles through electroless 

etching [16]. Recently, there has been significant interest in hydrophobic and 

superhydrophobic substrates due to their capacity to concentrate analytes and 

nanoparticles in a confined area, thereby facilitating a higher density of hotspots and lower 

detection limits [17] [18] [19]. However, conventional filter paper, due to its porosity, 

tends to disperse the analyte and nanoparticles, leading to poor enhancement. To address 

this limitation, various techniques have been employed to fabricate hydrophobic filter 

paper (HFP), such as coating with alkyl ketene dimer [18], (2-dodecen-1-yl)-succinic 

anhydride [20], agar [21], spin-coating diluted polydimethylsiloxane (PDMS) [22], and 

perfluoroalkyltriethoxysilanes [23]. These methods often require extensive pre-treatment, 

may interfere with SERS probes, and are not cost-efficient. The difference in drying 

mechanism of a colloidal nanoparticles on the hydrophobic surface is also known to 

minimise the undesirable coffee ring effects [24] [25]. 

Figure 4.1: Results of COMSOL simulation showing a) Geometry of Ag dendrites constructed b) 

Near field simulation of the Ag dendrites showing enhancement at the tips. c) Geometry of Au@Ag 

nano-dendrites constructed. d) Near field simulation of Au@Ag nano-dendrites clearly showing 

additional enhancement relative to the plain Ag dendrites. Image taken from [26]. 

4.2. Anisotropic and Hybrid SERS Substrates 

4.2.1. Highly Anisotropic Ag Dendrites for SERS 

High density of hotspots is a prerequisite for SERS based trace detection to facilitate 

electromagnetic enhancement. Ag dendrites not only have the advantage of concentrated 

field at the tips but also offer high surface area for the adsorption of the probe molecules. 

Combining the Ag nanostructures with Au is known to offer the dual benefit of enhancing 

the field further and also to prevent rapid oxidation of the Ag nanostructures. COMSOL 

simulations have been carried out in order to visualise and understand the field 

enhancement around these structures as shown in figure 4.1. The images indicate higher 
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field enhancement around the tips of the fractals shown by false colour map. The near field 

enhancement is higher for the case of AuNPs@Ag nanodendrites relative to the case of 

only Ag nanodendrites as anticipated. In a different study, these dendrites were transferred 

to a filter paper and used as flexible substrate for SERS based detection [27]. 

4.2.2. Sample Preparation 

Silver dendrites were prepared by a technique that was first proposed by Qiu et al. and was 

also carried forward by our group previously [10]. The protocol was scaled to produce 

dendrites in large scale on a 3-inch Si wafer. Briefly, Si wafer was cleansed with acetone 

and diluted HF to eliminate chemical residues and native oxide, respectively. 

Subsequently, the clean Si wafer was immersed in an electrolytic solution containing 

AgNO3 and HF with concentration of 30 mM, 4.6 M, respectively, to induce dendrite 

formation at a temperature of 300C through the mechanism that is best described in chapter 

2. Following the dendrite growth, the samples were rinsed with deionized water and dried 

in the surrounding atmosphere. In order to decorate the Ag dendrites with Au NPs, the 

samples the wafer was immersed in gold salt of 1mM concentration for 30 min, 1 h, 2 h, 

and 3 h and labelled as AuNPs@AgNDs-0.5, AuNPs@AgNDs-1, AuNPs@AgNDs-2, 

AuNPs@AgNDs-3, respectively. The optical images of the final samples are presented in 

figure 4.2.   

Figure 4.2: Optical images of the bare three-inch Si wafer (left), AgNDs on Si wafer (middle), 

and AuNPs@AgNDs on Si wafer (right). The AuNPs were decorated in ~3 hours (i.e., 

AuNPs@AgNDs-3). 

The formation of Ag dendrites in an electroless etching method depends hugely on the 

concentration of the metal salt, duration of the etching and the ambient temperature. 

Effects of these parameters on the dendrites were studied systematically for the case of 

pure Ag dendrites [28]. In the present study we have studied the effects of concentration 
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of Au salt on the coverage of Ag dendrites for different concentration of HAuCl4.3H2O as 

presented in figure 4.3.  

Figure 4.3: FESEM images of (a) as prepared AgNDs and AuNPs decorated AgNDs at various 

molar concentrations of Au seed solutions at b) 0.05 mM, c) 0.1 mM, d) 0.5 mM, e) 1 mM, f) 1.5 

mM (g) 3 mM, h) 5 mM, i) 7 mM at room temperature. 

The presented data clearly indicates that an increase in the concentration of the gold 

solution led to a noticeable enhancement in the decoration of AuNPs on the surfaces of 

AgNDs. At lower concentrations of the Au seed of 0.05 mM to 1mM, a sparsely populated 

layer of AuNPs was observed on the AgNDs. However, as the concentration of the gold 

solution increased, particularly at 1.5 mM, significant changes in the density of AuNPs 

decoration became apparent, as depicted in figure 4.3 f). Notably, at 3 mM concentration, 

a higher density of AuNPs grew, covering almost the entire dendritic structure, as 

illustrated in figure 4.3 g). As we proceeded to even higher concentrations, the AuNPs 

completely obscured the dendrite structure. This excessive coverage of AuNPs may not be 

suitable for SERS measurements, as it conceals the desired dendritic nature of the 

substrate. After carefully examining all the concentrations of AuNPs, we intentionally 

selected the favourable deposition condition of 1 mM concentration, which exhibited 
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isolated AuNPs with a uniform distribution along with prominent Ag dendrite structure. 

The duration of growth of Au NPs at this concentration is also optimised and the results 

are depicted in figure 4.4 for 0.5, 1, 2 and 3 hours. It can be seen that distinct and 

homogenously distributed Au NPs were formed at the duration of 3 hours which is 

presented in detail in figure 4.5 and hence was used for SERS studies.  

Figure 4.4: SEM images displaying morphology of the AgNDs decorated with 1 mM AuNPs at 

various times of deposition, a) 30 minutes (i.e., AuNPs@AgNDs-0.5), b) 1 hour (i.e., 

AuNPs@AgNDs-1), c) 2 hours (i.e., AuNPs@AgNDs-2) and, d) 3 hours (i.e., AuNPs@AgNDs-

3) (highlighted yellow-coloured circles represent the AuNPs decoration on AgNDs at a few places 

for clarity). 

Figure 4.5: SEM images of the AuNPs (on AgNDs) decorated at 3 hours’ reaction time (AuNPs 

deposited at 1 mM concentration) (i.e., AuNPs@AgNDs-3) viewed at different magnifications. 

EDX mapping for the AuNPs@AgNDs-3 has been carried out in order to assess the 

distribution of nanostructures and their composition and is presented in figure 4.6.  
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Figure 4.6: EDX mapping presents the elemental composition of the AuNPs@AgNDs-3 sample, 

which depicts a high concentration of Ag, Au, and Si, and a lower concentration of O as expected. 

Figure 4.7 displays the reflection properties of silver nano-dendrites (AgNDs) and AgNDs 

coated with gold nanoparticles (AuNPs). It is evident that the reflection decreases as the 

deposition time of AuNPs on AgNDs increases, indicating a change in surface roughness. 

Through meticulous analysis of the reflection data, we have determined that the 

AuNPs@AgNDs-3 sample exhibits lower reflection properties at shorter wavelengths. In 

the case of anisotropic structures like AgNDs, both longitudinal and transverse surface 

plasmon resonance (SPR) bands are observed. The longitudinal band is typically at higher 

wavelengths compared to the transverse band in elongated structures. Specifically, in our 

study, the transverse mode corresponds to a wavelength of 426 nm, while the longitudinal 

mode corresponds to 696 nm in AgNDs  [29] [30] [31]. The dip in the reflection spectrum 

is more pronounced for the longitudinal mode, indicating a higher degree of anisotropy. 

However, the dip at 464 nm is relatively weak and requires further investigation for 

accurate assignment. This peak could be attributed to variations in the sizes, shapes, and 

configurations of the AuNPs on AgNDs, which themselves exhibit diverse sizes and 

shapes. In previous studies, multiple resonance peaks were reported for silver-based fractal 

structures such as dendrites [32]. Similarly, the characteristics of AgNDs, dominated by 

branches with high aspect ratios, contribute to the observed longitudinal bands in the 

higher wavelength regions. The positions of the SPR bands correlate with the maximum 

electric field strength, which aids in selecting an appropriate excitation wavelength that 
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provides better resonant conditions for SERS measurements on these active AgNDs-based 

substrates. In this study, an excitation wavelength of 532 nm was chosen based on these 

considerations. 

Figure 4.7: Reflectance spectra of AgNDs and AuNPs decorated AgNDs at various deposition 

times (inset shows the magnified SPR band 1 in 400-500 nm). 

4.2.3. Application for Detection of Diverse Analytes 

SERS activity serves as a crucial parameter for assessing the efficacy of SERS substrates. 

Consequently, we conducted a comprehensive evaluation of the SERS activity of 

AuNPs@AgNDs-3 substrates by utilizing various probing molecules such as dyes, 

explosives, DNA bases, and antibiotics. In the initial stage, to gauge the sensitivity and 

capability of the substrate, we employed a basic cationic dye molecule, namely crystal 

violet (CV). CV was chosen due to its strong absorption characteristics in the visible region 

under 532 nm laser excitation. Figure 4.8 a) illustrates the concentration-dependent plot 

(ranging from 10 µM to 1 nM) obtained on the active substrate, where the vibrational 

modes of CV were identified at 918 cm-1 and 1181 cm-1, following the literature [33]. A 

notable change in intensity was observed in the primary characteristic peak at 918 cm-1, 

which demonstrated a gradual decrease with decreasing concentration, as expected. The 
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logarithm of intensity versus analyte concentration for the Raman mode at 918 cm-1 

exhibited a linear relationship with an R2 value of 0.99, as depicted in figure 4.8 b). In 

addition to assessing the SERS activity of the substrate, it is essential to evaluate the degree 

of sensitivity by determining the analytical enhancement factor (AEF). The AEF is derived 

by incorporating the adsorption factor η, obtained from the intensity versus concentration 

plot, into the standard formula described in our earlier publications [34] [28]. For a 

concentration of 1 nM CV, the calculated AEF was approximately 3.2×107, as shown in 

table 4.1. 

Figure 4.8: SERS spectra of CV (dye) on AuNPs@AgNDs-3 at (a) (i) 10 µM (ii) 5 µM (iii) 1 µM, 

and (iv)100 nM (v) 10 nM and (vi) 1 nM concentrations and (b) corresponding linear fit of log 

(intensity) versus log (lower concentration) of the 918 cm-1 Raman peak. 

DNA bases play a fundamental role in the structure and function of DNA, which is the 

hereditary material in living organisms. The four DNA bases, adenine (A), thymine (T), 

cytosine (C), and guanine (G), are responsible for encoding genetic information. Detecting 

and analyzing DNA bases are of significant importance in various fields such as 

biomedical research, clinical diagnostics, forensic science, and environmental monitoring. 

The detection of DNA bases provides valuable insights into numerous biological processes 

and can aid in the identification of genetic mutations, disease markers, genetic 

relationships, and biodiversity. By understanding the variations and interactions of DNA 

bases, researchers can unravel genetic predispositions to diseases, develop personalized 

medicine approaches, and design targeted therapeutic interventions. DNA base detection 

also plays a crucial role in forensic investigations, enabling the identification of individuals 

and establishing relationships between individuals based on their genetic profiles. In recent 

years, SERS have emerged as powerful tools for DNA base detection. SERS offers several 

advantages, including high sensitivity, label-free detection, and multiplexing capabilities. 
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It allows for the detection of minute quantities of DNA bases, facilitating rapid and 

accurate analysis. Furthermore, SERS-based detection methods can be integrated with 

microfluidic systems, enabling high-throughput screening and miniaturization of 

analytical platforms. It opens doors to advancements in personalized medicine, genetic 

diagnostics, and forensic investigations. In this study we have detected two DNA bases, 

adenine and cytosine to demonstrate the potential of the AuNPs@AgNDs-3 substrates.  

The SERS spectra of adenine were obtained with concentration ranging from 1 mM to 100 

nM, as depicted in Figure 4.9 a). It is evident that the intensity values decrease as the 

concentration approaches trace levels. The Raman modes associated with adenine were 

identified at 534 cm-1, 621 cm-1, 722 cm-1, 1125 cm-1, 1246 cm-1 , 1330 cm-1, and 1481 cm-

1, corresponding to adenine as identified with an earlier report [35]. Notably, the intensity 

of the characteristic peak at 722 cm-1 remained observable even at lower concentrations. 

The relationship between the log intensity and analyte concentration for the specific 

Raman mode at 722 cm-1 exhibited a linear dependence, with an R2 value of 0.99, as 

illustrated in Figure 4.9 b). Furthermore, cytosine, another DNA base, was detected using 

the AgNDs@AuNPs-3 substrate. SERS spectra of cytosine were acquired with different 

solutions, ranging from 1 mM to 10 nM, as shown in Figure 4.9 c). The characteristic 

vibrational peaks of cytosine were identified at 604 cm-1, 792 cm-1, 1115 cm-1, 1251 cm-1, 

1368 cm-1, 1524 cm-1, and 1641 cm-1 as identified with the reference [36]. The specific 

mode at 792 cm-1 exhibited a distinct peak even at lower detection levels, indicating the 

significant role of AuNPs-coated AgNDs in biomarker detection. The plot of log intensity 

versus analyte concentration for cytosine displayed linearity with an effective R2 value of 

0.99, as demonstrated in Figure 4.9 d). The calculated AEF for different concentrations of 

adenine and cytosine are listed in table 4.1. Specifically, the AEF for 100 nM adenine and 

10 nM cytosine were estimated to be 1.7×106 and 8.1×106, respectively. 

The detection of antibiotics holds immense significance in various fields, including 

medicine, public health, and environmental monitoring. Antibiotics are crucial 

medications used to treat bacterial infections and have greatly improved human health by 

saving countless lives. However, the emergence of antibiotic resistance poses a significant 

challenge to effective treatment and necessitates the development of robust detection 

methods. The detection of antibiotics plays a vital role in clinical settings, enabling 

healthcare professionals to identify the presence of specific antibiotics in patient samples. 

This information helps guide appropriate treatment decisions, ensuring that patients 
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receive the most effective and targeted therapy. Timely and accurate detection of 

antibiotics can assist in determining the appropriate dosage and duration of treatment, 

minimizing the risk of adverse effects and optimizing patient outcomes. 

Figure 4.9: SERS spectra of adenine (DNA bases) on AuNPs@AgNDs-3 at (a) (i) 1 mM (ii) 100 

µM (iii) 50 µM, and (iv)10 µM, and (v) 100 nM concentrations, (b) corresponding linear fit of log 

(intensity) Versus log (lower concentration) of the 722 cm-1 Raman peak, (c) Cytosine (i) 1 mM 

(ii) 100 µM (iii) 50 µM, and (iv) 10 µM M, (v) 100 nM, and (vi) 10 nM concentrations, and (d) 

corresponding linear fit of log (intensity) versus log (lower concentration) of the 792 cm-1 Raman 

peak. 

Furthermore, the detection of antibiotics is essential in monitoring and controlling the 

spread of antibiotic resistance. Antibiotic-resistant bacteria pose a serious threat to public 

health, as they can cause infections that are difficult to treat and may lead to increased 

morbidity and mortality. By detecting antibiotics in environmental samples, such as water 

sources and agricultural systems, scientists can assess the extent of antibiotic pollution and 

its impact on the development of antibiotic resistance in bacteria. This information is 

crucial for implementing strategies to mitigate the spread of resistance and preserve the 

effectiveness of antibiotics. Detection of antibiotics also plays a pivotal role in food safety 

and quality control. Antibiotics are commonly used in animal husbandry and aquaculture 
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to prevent and treat bacterial infections. However, the presence of antibiotics in food 

products beyond acceptable levels can have adverse effects on consumer health. Detecting 

antibiotics in food samples helps ensure compliance with regulatory standards, protects 

consumers from potential health risks, and maintains the integrity of the food supply chain.  

Here, we have detected three antibiotics, namely penicillin, kanamycin and ampicillin as 

a proof of the concept, in order to establish the capability of our substrates in antibiotic 

detection. The substrates have demonstrated as sensitivity of 10 nM, 100 nM and 10 nM 

for the three analyte molecules, respectively, as shown in the figure 4.10 demonstrating 

trace detection. The prominent peaks of each of the molecule were identified using the 

references [37] [38] [39]. 

Further, these substrates also demonstrated promising performance for the detection of 

trace explosives and pesticides. Ammonium nitrate and thiram were chosen as model 

molecules for demonstrating because they are the commonly used explosive and pesticide 

molecules. Based on our previous analysis of SERS data on AN [28], we have determined 

that the AuNPs@AgNDs-3 substrate exhibits approximately a 40% increase in Raman 

intensity compared to simple AgNDs at a concentration of 10 µM as shown in figure 4.11. 

This enhancement in intensity is primarily attributed to the improved stability of AgNDs 

after the deposition of AuNPs, which reduces natural oxidation effects. Additionally, the 

cooperative effect of both AuNDs and AuNPs contributes to the observed enhancement. 

Furthermore, our investigations have extended to the detection of trace amounts of thiram, 

a common pesticide in food safety [40]. 

Table 4.1: Summary of analytes detected and SERS parameter for AuNPs@AgNDs. 

Analyte Peak [cm-1] Lowest  

Detected 

AEF  LOD 

Thiram 1384 10 nM 1.1×106 2 nM 

AN 1045 100 nM 5.0×105 5 nM 

Ampicillin 988 10 nM 7.2×106 4 nM 

Kanamycin 975 100 nM 2.8×105 56 nM 

Penicillin-G 985 10 nM 5.4×106 2 nM 

Cytosine 792 10 nM 8.1×106 28 nM 

Adenine 722 100 nM 1.7×106 2 nM 

Crystal violet 918 1 nM 3.2×107 348 pM 
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Figure 4.10: SERS spectra of penicillin G on AuNPs@AgNDs-3 at (a) (i) 1 mM (ii) 100 µM (iii) 

50 µM, and (iv) 10 µM M, (v) 100 nM, and (vi) 10 nM concentrations, and (b) corresponding 

linear fit of log (intensity) vs log ( lower concentration) of the 985 cm-1 Raman peak (c) Kanamycin 

(i) 1 mM (ii) 100 µM (iii) 50 µM, and (iv)10 µM, and (v) 100 nM concentrations, and (d) 

corresponding linear fit of log (intensity) vs log (lower concentration) of the 975 cm-1 peak, (e) 

Ampicillin (i) 1mM (ii) 100 µM (iii) 50 µM, and (iv)10 µM, (v) 100 nM, and (vi) 10 nM 

concentrations, and (f) corresponding linear fit of log (intensity) versus log ( lower concentration) 

of the 988 cm-1 peak. 
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Figure 4.11: SERS spectra of AN (explosive) on AuNPs@AgNDs-3 at (a) (i) 50 µM (ii) 10 µM 

(iii) 5 µM, and (iv) 1 µM, and (v) 100 nM concentrations, and (b) corresponding linear fit of log 

(intensity) versus log (lower concentration) of the 1045 cm-1 Raman peak. 

Figure 4.12. SERS spectra of thiram (pesticide) on AuNPs@AgNDs-3 at (a) (i) 10 µM, (ii) 5 µM, 

(iii) 300 nM, (iv)100 nM, and (v) 10 nM concentrations, and (b) corresponding linear fit of log 

(intensity) versus log (lower concentration) of the 1384 cm-1 Raman peak. 

Figure 4.12 represents SERS spectra for thiram of different concentrations collected using 

the AuNPs@AgNDs-3 showing a sensitivity of 10 nM and AEF for the same was 

estimated to be 1.1×106 for 10 nM concentration.  The durability and reproducibility of the 

substrates has been studied using CV and cytosine as the probe molecules. The results as 

indicated in figure 4.13 communicates that the substrates offer a decent reproducibility 

with RSD less than 9% for both the molecules indicating practical usage. The durability 

of the substrates measured at regular intervals for CV of 5 µM is presented in figure 4.13. 

The intensity of the 918 cm-1 peak indicates that the samples have a shelf life of nearly 120 
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days in ambient conditions. The durability can further be improved by storing them in 

vacuum conditions.  

Figure 4.13: Spectral reproducibility of (a) CV at 5 µM, and (b) cytosine at 50 µM concentrations, 

(c) corresponding histogram with RSD values, (d) Stability estimation of AuNPs@AgNDs-3 

substrate at 5 µM CV over 120 days. 

Raman mapping was conducted on CV at a selected area of 45×45 µm² with 4 µm spacing 

using a 10X microscope objective. Approximately 120 SERS spectra were collected from 

the sample for mapping, as shown in figures 4.14 a)-c). The relative standard deviation 

(RSD) of the 80 selected spectra from the mapping data in figure 4.14 b) was found to be 

<5%, while for the 170 selected spectra, the RSD was <7%, as depicted in figure 4.14 c). 

The acquisition time was set to 3 seconds with 3 spectra averaged at each point. 

Furthermore, a smaller area Raman mapping was performed within a 20×20 µm² region 

with a spacing of approximately 1.5 µm, resulting in the collection of around 200 spectra. 

Color maps were generated to represent the SERS intensities across the mapping area for 

the CV mode at 918 cm-1, corresponding to ring skeletal vibrations [41]. The color scale 

reflects the intensity counts for each mode. The color maps generally displayed a uniform 

distribution across the majority of the mapping area, except for small regions resembling 

islands. This variation can be attributed to the presence of high-density hotspots in certain 
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parts of the sample, influenced by the distribution of AgNPs on AgNDs and the 

overlapping of AgNDs observed in the FESEM images. Signal variations will also arise 

from non-uniform adsorption of the analyte on the substrate, molecular orientation, 

coupling with nanoparticles and the laser, as well as the distance between molecules and 

hotspots. It is pertinent to note that the signal collection during mapping was performed 

on a single plane and not from the highest signal plane of the substrate. These three-

dimensional anisotropic dendrites, along with the positioning of AgNDs and AuNPs, 

contribute to the overall Raman signal. 

Improvements can be made by implementing automated Z-axis scanning for autofocus and 

collecting the best Raman signal from each point. Although this approach would reduce 

the RSD value, it would increase the scanning time. Another consideration is to enhance 

the enhancement factors by 3-4 times, rendering the relatively higher RSD values 

insignificant due to the overall higher enhancements. Notably, the Raman signal deviation 

is relatively lower in small area mapping. Similar mapping studies were conducted for 

cytosine at a concentration of 10 µM, focusing on the 792 cm-1 peak. Mapping regions of 

100×100 µm² and 20×20 µm² are depicted in figures 4.14 d)-f). Figure 4.14 a) 

demonstrates better reproducibility for CV with large area Raman mapping (40×40 µm²). 

However, slightly inferior reproducibility is observed for the 20×20 µm² region [figure 

4.14 b)], likely due to overlapping of the collection area throughout the region, leading to 

potential photodegradation effects in the dye and subsequently reducing the Raman signal. 

Figure 4.14 f) presents the Raman mapping data for cytosine under the same conditions, 

exhibiting improved reproducibility compared to the dye. Therefore, it is hypothesized that 

the lower reproducibility observed for the dye is potentially attributed to laser-induced 

effects caused by the overlap in the collection area.  

The reproducibility during mapping can be increased significantly by working with low 

powers that would prevent the sample degradation. Selecting a specific peak of interest 

instead of a full range measurement could also reduce the duration of exposure of the 

sample to the laser. A detailed protocol on approaching SERS mapping has been provided 

for these samples in our earlier report [26].  
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Figure 4.14: (a) Selected large-area Raman mapping (45 × 45 m2) of SERS substrate with 532 

nm laser excitation, 10X microscope objective, 25 mW laser power with CV as probe molecule 

for  918 cm-1 Raman mode with 3s acquisition time, averaged over 3 spectra (b) Small area (20×20 

m2) SERS mapping of CV (c) corresponding representative spectra of the mapping region,  (d) 

Selected large-area Raman mapping (100×100 m2) - cytosine as the probe molecule for the 792 

cm-1 Raman mode [with similar acquisition parameters mentioned in (a)] (e) Small area (20×20 

m2) SERS mapping of 10 µM cytosine (f) Corresponding representative spectra of the mapping 

region [presented in (e)]. The background (grey color) in (a) and (d) depicts the optical microscope 

images of the substrates. 

4.3. 2-D, Hybrid SERS Substrates  

2D materials, such as MoS2, h-BN, and graphene have gained significant attention as 

SERS substrates due to their unique properties and potential applications. These materials 

exhibit several advantages that make them valuable for enhancing Raman signals and 

improving the sensitivity of molecular detection. One key advantage of 2D materials is 

their large surface area-to-volume ratio owing to their atomically thin layers with a high 

density of edges and defects, which can provide numerous active sites for the adsorption 

of target molecules. This high surface area allows for efficient interaction between the 

analyte molecules and the substrate, leading to enhanced Raman signals. Furthermore, the 

electronic properties of 2D materials contribute to their SERS activity. MoS2 and GO 

possess unique band structures, including bandgaps, which can facilitate charge transfer 

processes and enhance the local electromagnetic field near the molecules of interest. This 

effect is particularly prominent in the presence of plasmonic nanoparticles or other metal 

structures, leading to increased Raman signal amplification. Another advantage of 2D 
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materials is their chemical tunability. Functionalization and doping of these materials can 

be achieved by introducing various chemical groups, such as metal ions or organic 

molecules. These modifications can enhance the interaction between the analyte molecules 

and the substrate, resulting in improved SERS performance. Additionally, the surface 

chemistry of 2D materials can be tailored to selectively capture specific analytes, enabling 

highly sensitive and selective detection. Using a combination of laser ablation (for 

preparation of MoS2) and wet etching of Si, we have fabricated a highly durable and 

sensitive SERS substrate as represented in figure 4.15.  

Figure 4.15: Schematic of application of MoS2 decorated plasmonic SiNWs for SERS based 

sensing. 

4.3.1. Preparation and Characterization  

In this study, we prepared vertically aligned silicon nanowires (SiNWs) through a Silver 

Assisted Electroless (SAE) etching method using p-type, boron-doped, (100) oriented Si 

wafers with a resistivity of 1-10 Ω-cm. The detailed cleaning and SAE process protocol 

can be found in our previous investigations [42]. To summarize, the Si wafers were 

thoroughly cleaned with acetone and ethanol to eliminate any chemical contaminants. 

Subsequently, the wafers were immersed in a 10% HF solution to remove the native oxide 

layer. The SAE process consisted of two consecutive steps: silver deposition and etching. 

Silver deposition involved dipping the Si wafer in a mixture of 0.02 M AgNO3 and 4.6 M 

HF for 2 minutes. The Ag-deposited Si wafer was then immersed in an etching solution of 
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14.1 M HF and 1.9 M H2O2 at 60 0C for 30 minutes. Afterward, the Ag dendrites on the 

NWs surface were dissolved by sonicating with a 1:3 ratio of H2O2 to NH4OH solution for 

5 minutes. The resulting vertically aligned SiNWs were thoroughly rinsed with deionized 

water and dried with nitrogen gas to ensure a chemical-free substrate. In addition, we 

decorated Ag and Au nanoparticles onto the SiNWs using a simple immersion bath method 

[43]. Initially, the SiNWs were immersed in a solution of 5 mM AgNO3 at 400C for 2 

minutes to decorate AgNPs. Subsequently, the AgNPs-decorated SiNWs were immersed 

in a HAuCl4 solution with a concentration of 4 mM at 50 0C for 1 minute to achieve a 

better distribution of AuNPs in conjunction with AgNPs. Furthermore, ultra-pure MoS2 

micro-powder was irradiated using a femtosecond laser with a pulse duration of 50fs and 

a wavelength of 800 nm in different solvent environments such as ethanol, methanol, and 

water. Prior to ablation, 0.3g of MoS2 powder was dissolved in 3 mL of solvent and 

sonicated. The laser beam was steered using reflective mirrors and focused in a glass 

beaker for irradiation. To maintain homogeneity and prevent particle settling, the solution 

was continuously stirred using a magnetic stirrer at 400 rpm. The laser power was 

controlled using a combination of a Brewster window and a half-wave plate, and a laser 

energy of 1.5 mJ was utilized. The irradiation time was set to 40 minutes, during which a 

noticeable color change occurred in the MoS2 solution. Following careful observation of 

FESEM images as shown in figure 4.16, the resulting MoS2 nanosheets obtained in a water 

environment were drop-casted onto the Ag-AuNPs/SiNWs structure to create a functional 

hybrid SERS-active substrate (MoS2/Ag-AuNPs/SiNWs). Additional data were obtained 

by conducting UV-Visible absorption spectra analysis of MoS2 in different solvents, as 

depicted in Figure 4.16 d). The combination of plasmonic nanoparticles and MoS2 sheets 

on SiNWs generated an effective SERS signal through the synergistic effect of 

electromagnetic and chemical mechanism mechanisms.  

The study included field emission scanning electron microscopy investigations to unveil 

the morphological changes. As depicted in Figure 4.17, a distinct structure of SiNWs 

decorated with Ag-AuNPs is observed. The SiNWs exhibit estimated diameters ranging 

from 250 to 350 nm, with heights measuring approximately 11-12 µm. Notably, Figures 

4.17 a) and 4.17 b) demonstrate a pronounced accumulation of Ag-AuNPs at the tips of 

the SiNWs. This observation suggests that the energy conditions at the NW tips are highly 

conducive to the reduction of Ag and Au ions during the immersion bath process.  
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Figure 4.16: FESEM images of laser-irradiated MoS2 in different liquid environments (a) Water, 

(b) Ethanol, (c) Methanol, and (d) Corresponding absorption spectra. 

Moreover, Figures 4.17 d) and 4.17 e) clearly illustrate the uniform distribution of AgNPs 

and Ag-AuNPs along the walls of the SiNWs, respectively. These images confirm that the 

distribution of Ag-AuNPs on the vertically aligned SiNW walls is highly favourable for 

the generation of hotspots. Enhancements in the stability and sensitivity of Ag-AuNPs on 

SiNWs were achieved through the incorporation of MoS2 nano-sheets as protective caps. 

Notably, MoS2 synthesized in a water environment exhibited a prominent resonance band 

at approximately 300 nm. Subsequently, the as-prepared MoS2 nano-sheets were carefully 

applied onto the Ag-AuNPs/SiNWs structure to create a hybrid SERS substrate, and the 

resulting morphology is illustrated in Figure 4.17 c). Elemental compositions of MoS2-

coated Ag-AuNPs@SiNWs were confirmed through EDS analysis, as demonstrated in 

Figure 4.17 f). The examination revealed prominent peaks corresponding to Si and Ag, 

indicating the presence of SiNWs and AgNPs, respectively. 
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Figure 4.17: FESEM image of (a) AgNPs decorated SiNWs, (b) Ag-AuNPs decorated SiNWs, (c) 

MoS2 coated Ag-AuNPs/SiNWs, (d-e) higher magnifications of (b and c) images respectively, and 

(f) EDS spectrum of figure (c). 
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Figure 4.18: Bright-field images of (a) AgNPs distributed on the walls of SiNWs, (b) Ag-AuNPs 

distributed on the walls of SiNWs (c) SAED pattern of figure (b), (d) Dark-filed image of figure 

(b), (e) HRTEM image and the red rectangular line directs the area of selection for IFFT, and (f) 

IFFT data obtained from a selected area of figure (e).   

Additionally, Au peaks were observed, indicating the presence of AuNPs. Furthermore, 

small amounts of oxygen, sulphur, and molybdenum were detected, which can be 

attributed to the presence of MoS2 nano-sheets.  The distribution of bimetallic (Ag-Au) 

nanoparticles (NPs) on vertically aligned SiNWs is revealed through TEM imaging, as 

depicted in Figure 4.18. The TEM images in Figure 14.8 a) and figure 4.18 b) exhibit the 

distribution of AgNPs and Ag-AuNPs on the walls of SiNWs, respectively. The average 

sizes of AgNPs and AuNPs are estimated to be approximately ~12 ±0.4 nm and ~20 ±0.6 

nm, respectively, dispersed over the NW walls. Notably, the inter-particle separations 

between AgNPs and AuNPs are measured to be 17 nm and 23 nm, respectively, indicating 

a rapid enhancement in signal strength. The Selective Area Electron Diffraction (SAED) 

pattern displayed in Figure 4.18 c) and the corresponding dark-field image shown in Figure 

4.18 d) provide authentic information about the distribution of AgNPs and AuNPs. 

Furthermore, Figure 4.18 f) presents a high-resolution TEM image along with the 

corresponding Inverse Fast Fourier Transform (IFFT) image of the bi-metallic NPs 

decorated SiNWs. The IFFT is derived from the region of interest highlighted by the red 

rectangular line in Figure 4.18 e). By analyzing the IFFT image, a d-spacing of 0.235 nm 
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is extracted for Ag (111)/Au (111), which corresponds to the JCPDS card No.98-005-

0882.  

4.3.2. SERS Measurements  

The SERS measurements were performed using the advanced Horiba LabRam HR 

evolution Raman system, employing a 532 nm laser for excitation. To ensure precise data 

collection, a 50  microscopic objective was utilized to focus the collection area. The study 

maintained a consistent laser power of 10 mW and an acquisition time of 5 seconds for all 

measurements. In evaluating the performance of the SERS substrate, parameters such as 

versatility, reproducibility, and durability played vital roles.  

Figure 4.19: (a) SERS signal sensitivities of MG detected on various SERS-active substrates 

indicating signal enhancement at each stage (the spectra are shifted for clarity) (b) Bar-chart 

showing the quantitative CM and EM enhancements of MG detection [data has been taken from 

Fig. 4.19 a)]. 

Figure 4.20: (a) SERS spectra of MG at various level of concentrations as indicated in the image, 

and (b) linear plot of log(concentration) vs log(intensity) of the peak 1617 cm-1. 
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The distinct peak corresponding to MG at 1617 cm-1 exhibits a noticeable change in 

intensity when comparing the Ag-AuNPs/SiNWs substrate to the mono-metallic 

(AgNPs/SiNWs) substrate as shown in figure 4.19. Additionally, the Raman strength of 

individual MoS2 nano-sheets (NSs) on SiNWs shows a nominal intensity for the MG peak 

at 1617 cm-1. However, upon incorporating the MoS2 NSs onto the Ag-AuNPs/SiNWs 

substrate, we observed approximately a two-fold enhancement compared to the mono-

metallic substrate. This enhancement can be attributed to the synergistic effect of 

electromagnetic interactions from Ag-Au bimetallic NPs and charge transfer mechanisms 

from MoS2. The combination of these effects leads to a strong electric field generation at 

the hot-spot regions when subjected to laser excitation and studied in detail for MG and 

presented in figure 4.20. Furthermore, Figure 4.19 b) presents a bar chart displaying 

quantitative variations in intensity observed at different stages of substrate design. This 

statistical data highlights the significance of incorporating 2D materials onto the Ag-

AuNPs/SiNWs substrate and their consequential impact on signal enhancements. The 

extent of these enhancements may vary depending on the specific analyte being studied. 

Figure 4.21: (a) SERS spectra of melamine at various concentrations (spectra are shifted for 

clarity) (b) Linear plot of log (intensity) versus log (concentration) of the peak at 677 cm-1 (c) 

SERS spectra of naphthalene at various concentrations as indicated in the Fig. (spectra are shifted 

for clarity) and (d) Linear plot of log (intensity) versus log (conc.) of the peak at 1386 cm-1. 
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The detection of naphthalene is important for several reasons. Naphthalene is a volatile 

organic compound (VOC) commonly found in various products such as mothballs, 

cleaning agents, and pesticides. It is also released during the combustion of fossil fuels and 

tobacco smoking. One significant reason for detecting naphthalene is its potential health 

hazards. Prolonged exposure to naphthalene vapours or ingestion of naphthalene-

containing substances can have adverse effects on human health. It is classified as a 

possible human carcinogen by several regulatory agencies, and long-term exposure has 

been linked to the development of lung and urinary tract cancers. Furthermore, 

naphthalene exposure can cause other health issues, such as respiratory problems, eye and 

skin irritation, and damage to the liver and kidneys. Another important aspect of 

naphthalene detection relates to environmental concerns. Naphthalene is released into the 

atmosphere through industrial processes, vehicle emissions, and burning of fossil fuels. It 

contributes to air pollution and can react with other pollutants to form secondary 

pollutants, including ozone and particulate matter, which have detrimental effects on air 

quality and human health. Efficient detection of naphthalene is crucial for monitoring and 

controlling its presence in indoor and outdoor environments and had been successfully 

demonstrated with our samples as shown in figure 4.21. The important peaks of 

naphthalene were identified with respect to reference  [44] and detected with a sensitivity 

of 300 nM. Similar studies were carried out on melamine which is a common food 

adulterant and achieved a sensitivity of 100 nM which is lower than the reported value so 

far.  

Three biomolecules, bovine serum albumin (BSA), cysteine and adenine were also 

detected with our samples establishing their versatility. The reported sensitivity for these 

molecules with our hybrid substrates is 100 nM for each analyte as represented in figure 

4.22. The peaks were identified using the references [45][46]. The utilization of SERS has 

garnered significant attention in the realm of bacteria and microorganism detection [47]. 

One particular microorganism of concern is E. coli, a common contaminant in food and 

water that poses health risks. The rod-shaped E. coli cell from the B1121 bacterial strain, 

which is frequently employed in molecular biology, features a diameter of less than a 

micrometer.  

In this study, E. coli was prepared using a standard method outlined elsewhere [48]. A 

depiction of the SERS spectrum of the strained B1121 E. coli bacteria, multiplied by a 

factor of five, can be seen in Figure 4.23. Several prominent Raman modes were identified  
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Figure 4.22: (a) SERS spectra of BSA at various concentrations (b) Linear plot of log 

(concentration) versus log (intensity) of the peak at 998 cm-1 (c) SERS spectra of adenine at various 

concentrations (d) Linear plot of log (intensity) versus log (concentration) of the peak at 722 cm-1 

(e) SERS spectra of cysteine at various concentrations and (f) Linear plot of log (intensity) versus 

log (concentration) of the peak 679 cm-1. 

in our investigation of E. coli, specifically at 751 cm-1, 1130 cm-1, 1159 cm-1, 1146 cm-1, 

and 2937 cm-1. These peaks within the overall organism spectrum are well-known to stem 

from amino acids, lipids, and nucleic acids [49]. To assess any potential alterations in the 
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SERS spectrum, measurements were conducted throughout the bacterial growth period. 

However, no significant changes were observed. 

Figure 4.23: Whole organism SERS spectrum of B1121 strained E. coli bacteria detected on 

hybrid MoS2/Ag-AuNPs/SiNWs substrate. 

A trace explosive molecule tetryl has also been detected using the MoS2/Ag-

AuNPs/SiNWs substrate achieving a sensitivity of 50 nM as shown in figure 4.24. 

Figure 4.24: (a) SERS spectra of tetryl at various concentrations (spectra are shifted for clarity) 

and (b) Linear plot of log (intensity) versus log (concentration) of the Raman peak at 1362 cm-1. 

Large area Raman mapping has been carried out in order to understand the distribution of 

hotspots and ascertain the performance of the substrates as shown in the figure 4.25. The 

mapping data for tetryl with nearly 500 spectra in an area of 100 m2 depicts an RSD of 

6% establishing the practical applicability of the substrates. In addition to reproducibility, 

durability is also a crucial parameter for translating the lab scale substrates to field. The 

durability of the substrates has been studied with melamine as the probe molecule and the 
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data is presented in figure 4.26. The data indicates that even after a duration of 240 days, 

there is a significant presence of the melamine peak (~6%). The durability can be 

significantly improved if the samples were stored in vacuum sealed conditions as opposed 

to ambient conditions as performed in this study. 

Figure 4.25: a) SERS mapping area (50 ×50 μm2) of 5 μM Tetryl with false colors for the peak 

intensity of 1362 cm-1 mode b) Scatterplot for the peak intensity of ∼500 spectra collected in 

mapping with RSD of 6%. The line indicates the mean value c) SERS spectra of the mapping 

region. d) The corresponding contour plot for the spectra depicted no significant peak shift at all 

collection points. 

Figure 4.26: (a) SERS durability of melamine (100 μM) as a function of the aging (days), and (b) 

Intensity variations as a function of aging (days). 
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4.4. Flexible SERS Substrates 

Flexible SERS substrates hold great importance due to their unique characteristics and 

potential applications [50]. Flexible substrates refer to thin, bendable materials that can 

conform to various shapes and surfaces, enabling enhanced Raman signal amplification in 

a flexible and versatile manner. The importance of flexible SERS substrates lies in their 

ability to provide enhanced sensitivity and reproducibility in Raman spectroscopy while 

accommodating complex sample geometries. Traditional rigid substrates, such as glass or 

silicon, are limited in their adaptability to non-flat or irregular surfaces. Flexible substrates, 

on the other hand, can conform to curved or uneven surfaces, allowing for direct contact 

and improved signal collection from samples with complex topographies. The versatility 

of flexible SERS substrates extends to their integration into wearable devices, flexible 

electronics, and microfluidic systems. These substrates can be seamlessly incorporated 

into textiles, patches, or wearable sensors, enabling in-situ and real-time monitoring of 

chemical and biological analytes. This has significant implications in fields like healthcare, 

environmental monitoring, and food safety, where on-site and non-destructive analysis is 

crucial. Moreover, flexible SERS substrates offer advantages in terms of portability, ease 

of handling, and cost-effectiveness compared to their rigid counterparts. They can be 

fabricated using various materials, including polymers, metal foils, or nanoparticle-

deposited films, allowing for customizable designs and scalability. This flexibility in 

substrate material and fabrication methods further enhances their potential for widespread 

adoption and commercialization.  

4.4.1. Novel Hydrophobic Filter Paper as SERS Substrate 

Hydrophobic substrates play a crucial role in SERS, a powerful analytical technique used 

for sensitive detection and characterization of molecules. Hydrophobic substrates are 

highly desirable in SERS applications for several reasons including enhancing the SERS 

signal further. Hydrophobic substrates provide an ideal environment for SERS 

enhancement due to their ability to adsorb molecules with a strong affinity in a small area 

leading to concentration of hotspots. Hydrophobic surfaces tend to repel water molecules, 

preventing their interference with the adsorption of target molecules. This results in a 

higher concentration of analyte molecules on the substrate surface, leading to stronger 

Raman scattering signals. In addition, hydrophobic substrates are inherently more stable 

in aqueous environments compared to hydrophilic substrates. They are less prone to 



154 

 

degradation or alteration when exposed to water or other polar solvents. This stability 

ensures the longevity and reproducibility of SERS measurements, making hydrophobic 

substrates ideal for practical applications. These substrates also minimize unwanted 

background signals that can arise from the surrounding medium. The hydrophobic nature 

of the substrate reduces the adsorption of impurities, including water molecules and other 

contaminants present in the sample or solution. By reducing the background noise, the 

SERS signal-to-noise ratio is improved, enhancing the sensitivity and detection limits of 

the technique. Further, hydrophobic surfaces allow for better control over the molecule-

substrate interaction. The hydrophobicity can be tailored to specific requirements by 

modifying the substrate's surface chemistry or by employing appropriate surface coatings. 

This control enables precise manipulation of the molecule-substrate distance and 

orientation, optimizing the SERS enhancement for specific analytes. They are compatible 

with a broad range of analytes, including both hydrophobic and hydrophilic molecules. 

This versatility makes them suitable for the analysis of various chemical and biological 

species, such as drugs, proteins, nucleic acids, and environmental pollutants. Additionally, 

hydrophobic substrates can be utilized for SERS-based sensing in complex biological and 

environmental samples where hydrophilic substrates may not be as effective. The use of 

hydrophobic substrates expands the capabilities of SERS and contributes to its 

effectiveness in diverse fields, including chemistry, materials science, biology, medicine, 

and environmental monitoring.  

Currently, there are different techniques to modify the wettability of a filter paper through 

both chemical and physical routes. Through a sequence of process of calendaring followed 

by treating the filter paper with alkyl ketene dimer, hydrophobicity was introduced on the 

surface resulting in a contact angle of nearly 1100 [51]. In a different study, hydrophobicity 

was achieved by treating the filter paper with (2- dodecen-1-yl)-succinic anhydride 

(DDSA, 95 %) in hexagonal followed by heating at high temperatures and the process was 

repeated for two to three cycles [20]. Agarose modified filter paper has been used for the 

trace detection of trace explosives [21]. Spin coating with polydimethylsiloxane followed 

by heating has also resulted in hydrophobicity with a contact angle of nearly 1300 [22]. 

Plasmonic filter paper was heated in the presence of 1H, 1H, 2H, 2H-

Perfluoroalkyltriethoxysilane in vacuum at high temperature for 6 hours to achieve 

hydrophobicity enabling trace detection of melamine with sensitivity down to 1ppm [23]. 

All these methods are cost ineffective and require a series of procedures involving time 
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and resources. Si oil which costs nearly 15 USD for 500 ml combined with a spin coating 

method with duration of less than 4 minutes, is the cheapest and rapid alternative to the 

existing methods. This substrate was subsequently used for the quantification of trace 

explosives using machine learning as shown in the figure below (figure 4.27).  

Figure 4.27: Schematic of HFP in combination with machine learning for rapid quantification of 

trace analyte molecules.  

4.4.1.1. Preparation Method and Data Acquisition  

To prepare the substrate, filter paper was initially treated with a coating of silicone oil 

using a spin coater (Holmarc Spin coater, India) for a duration of 4 minutes. The excess 

silicone oil was then eliminated by subjecting the samples to a temperature of 100 0C in 

an oven for one hour. For the synthesis of gold nanoparticles, pure gold was subjected to 

femtosecond laser ablation in water. This was accomplished using a Ti-Sapphire laser with 

a pulse duration of 50 fs, a repetition rate of 1 kHz, and a wavelength of 800 nm. The 

experimental setup was discussed in chapter 2. To prevent multiple-spot ablation at a 

single point, the sample was first cleaned and then placed in a 10 ml beaker containing 7 

ml of water. It was then mounted on a two-dimensional X-Y stage and moved in a raster 

pattern within a 4x4 mm2 area at a scan speed of 1 mm/s. The laser power was controlled 

using a combination of a Brewster window and a half-wave plate, with an energy of 500 

µJ utilized for the ablation process. The beam was focused on the target using a 25 cm 

convex lens until a cracking plasma sound was heard. For the SERS studies, the 

synthesized gold nanoparticles (Au NPs) were drop-casted onto the hydrophobic filter 

paper, followed by the addition of the analyte molecule. The sample was then allowed to 

dry, resulting in a drop size of approximately 2 mm on the filter paper. In the investigation, 

we have examined the dye molecule of CV at various concentrations, including 1 mM, 

100 µM, 10 µM, 1 µM, and 100 nM. Additionally, an explosive molecule known as PA 
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was studied at concentrations of 1 mM, 100 µM, 10 µM, and 5 µM. The SERS studies 

were conducted using a portable Raman spectrometer (BWTEK) with a laser excitation 

wavelength of 785 nm. The spectrometer offered a power scalable option ranging from 3 

to 300 mW and was equipped with a micro-positioning system consisting of XYZ stages. 

A laser power of 10 mW was set as the input, and an acquisition time of 10 s was 

maintained for all the experiments. To acquire data, the samples were manually moved in 

a raster pattern using the translational stages. It is noteworthy that all the spectra were 

obtained under identical experimental conditions to ensure consistency and accuracy. To 

calculate the Enhancement Factor, higher concentrations of both analytes without 

nanoparticles were placed on the same filter paper, and the corresponding spectra were 

recorded. This allowed for a comparative analysis to determine the enhancement achieved 

with the addition of nanoparticles. In order to sample the sample surface well and collect 

statistically significant data 100 spectra were collected per concentration, adding to the 

total spectra of ~900.  

4.4.1.2. Characterization 

4.4.1.2.1. FESEM and TEM imaging 

The characterization of the nanoparticles involved a comprehensive analysis of their 

structure, distribution, and shape using transmission electron microscopy (TEM). For 

imaging, the colloids were drop-casted onto TEM grids with a carbon coating and left to 

dry prior to measurements. TEM images at various magnifications were captured using a 

SEI cecnai G2 S-Twin 200 kV microscope, providing valuable insights into the 

morphology of the gold nanoparticles. Figure 4.28 displays these TEM images, 

showcasing different views of the nanoparticles. To determine the size distribution of the 

particles, multiple TEM images of the same colloids were utilized in conjunction with 

ImageJ software. Through analysis, it was observed that the frequency distribution of sizes 

exhibited a unimodal pattern, which was subsequently fitted to a Gaussian function. The 

average particle size was estimated to be approximately 20 nm, with a standard deviation 

of 1.8 nm. The full width at half maximum (FWHM) was measured to be around 4 nm. It 

is worth noting that the presence of larger particles beyond the average size was indicated 

by the extended tail of the Gaussian fit. This could potentially be attributed to the ejection 

of fragments during the ablation process or the coalescence of nanoparticles during the 

initial stages of ablation. Moreover, selected area electron diffraction (SAED) patterns 

were obtained, revealing the miller planes corresponding to (111), (2,0,0), (2,2,0), and 
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(3,1,1) of gold. These patterns were cross-referenced with the JCPDS file number Au: 04-

0784 for confirmation and identification. The analysis revealed a unimodal size 

distribution, with the presence of larger particles beyond the average size. SAED patterns 

provided information about the crystallographic planes of gold.  

Figure 4.28: a) and b) TEM images of Au nanoparticles at different magnifications. c) and d) 

HRTEM images at different magnifications. Inset in a) and b) depicts the particle size distribution 

fitted to a Gaussian distribution and inset in d) shows the SAED pattern. 

To gain insights into the morphology of the hydrophobic filter paper (HFP), field emission 

scanning electron microscopy (FESEM) was employed for characterization. The obtained 

micrographs are presented in Figure 4.29, showcasing the HFP at various magnifications. 

The FESEM images reveal notable differences compared to plain filter paper (FP) fibers 

observed in previous studies. In contrast to FP, the cellulose fibers of the HFP appear more 

planar and well-bounded. This distinctive morphology of the cellulose fibers in HFP 

provides a larger surface area for enhanced adsorption of nanoparticles. Consequently, 
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when observed at higher magnification, the nanoparticles are observed to be concentrated 

within a small region, highlighting the impact of the hydrophobic nature of the substrate. 

To quantify the hydrophobicity of the substrate, contact angle measurements were 

performed. The contact angle serves as an indicator of the degree of hydrophobicity, with 

higher angles indicating greater hydrophobic properties. 

In this study, the Low Bond Axis Symmetric Drop Analysis (LBASDA) plugin in ImageJ 

was utilized for measuring the contact angle [52], yielding a value of approximately 110°. 

The inset in Figure 4.29 a) demonstrates the contact angle observed for the HFP, while 

Figure 4.29 b) provides a visual comparison of the spreading behaviour of the drop on the 

hydrophobic HFP versus the normal FP. The image clearly illustrates the undesired 

spreading of the drop on FP, contrasting with the contained shape observed on the 

hydrophobic HFP. 

Figure 4.29: a), b), c) FESEM micrographs of HFP at different magnifications. Inset in a) shows 

contact angle measurement and b) shows a drop of CV on HFP and normal FP. 

The micrographs revealed distinct cellulose fiber characteristics and concentrated 

nanoparticle distribution in the hydrophobic region. Contact angle measurements further 

confirmed the hydrophobic nature of the substrate, emphasizing its potential for preventing 

undesired drop spreading compared to the normal filter paper. These observations 

contribute to a better understanding of the morphology and properties of the hydrophobic 

filter paper used in the study. 

 

4.4.1.2.2.  UV-Visible Spectroscopy 

The resulting AuNPs from fs laser ablation were subjected to characterization using UV-

Visible spectroscopy to investigate their localized Surface Plasmon Resonance (LSPR) 

properties. The UV-visible absorption measurements were conducted within the 

wavelength range of 300-800 nm. Figure 4.30 displays the absorption spectra of the Au 

NPs, revealing a distinct LSPR peak observed at 521 nm. In the accompanying inset, a 

COMSOL simulation showcases the near-field enhancement around randomly spaced Au 
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NPs, which possess an average size of approximately 20 nm. The incident electric field is 

polarized in the X-direction, with an input wavelength of 785 nm. The simulated image 

provides valuable insights into the local field enhancement between the gaps of the 

nanoparticles. It demonstrates that as the nanoparticles are concentrated within a confined 

area, such as in the case of the HFP, a greater number of hotspots are formed. These 

hotspots are regions of heightened local field enhancement, which play a crucial role in 

intensifying the Raman signals. Moreover, the near-field enhancement gradually 

diminishes as the distance between the nanoparticles increases. Based on these 

observations, it can be inferred that the concentration of NPs within a small area, as 

facilitated by the HFP, holds promise for generating a greater number of hotspots and, 

consequently, stronger Raman signals. This highlights the potential significance of the 

spatial arrangement of NPs in enhancing the performance of SERS. 

 

Figure 4.30: UV-Visible absorption spectrum of laser ablated Au NPs. Inset shows near field 

simulation of randomly spaced Au NPs of different sizes with 785 nm excitation using COMSOL.  

4.4.1.2.3. Data Modelling and Quantification 

All data pre-processing and multivariate analysis were conducted using Python 3.8.3. To 

ensure accurate analysis, baseline correction was implemented using the widely utilized 

asymmetric least square fitting method proposed by Eilers et al. [53]. Subsequently, the 

spectra were subjected to smoothening using a Savitzky-Golay filter [54]. Prior to 

performing PCA, the spectra were standardized using the RobustScaler function built into 

Scikit Learn, which effectively eliminated outliers (for details refer appendix A). The 
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analysis employed the inbuilt Kernel PCA and SVR algorithms available in the Python 

Scikit Learn library. Figure 4.31 illustrates the average of 100 SERS spectra obtained for 

each concentration of the analytes CV and PA. 

Among the observed peaks, the Raman peak at approximately 1094 cm-1 corresponds to 

the C–O–C bending mode of the filter paper [55]. In the case of CV, the Raman peaks at 

1618 cm-1, 1179 cm-1, 912 cm-1, and 723 cm-1 correspond to the C-C stretching, C-H in-

plane bending, ring skeletal vibrations, and C-H out-of-plane bending modes, respectively 

[56]. For PA, the modes at 1345 cm-1 and 827 cm-1 correspond to the NO2 symmetric 

stretching and C-H bending modes, respectively [57]. 

Figure 4.31: SERS spectra on HFP for different concentrations of a) CV, b) PA collected with a 

portable Raman spectrometer with laser excitation 785 nm and 10 mW laser power. Figures 

represent average and standard deviation of 100 spectra collected at random sites on the substrate 

for each concentration. The prominent peaks for each analyte molecule are highlighted in yellow 

colour. ‘arb.u.’ means arbitrary units. 

Figure 4.32: Individual SERS spectra of each concentration for the two molecules studied in the 

work.  

Finally, the SERS enhancement factors were found to was found to be 3x104 for PA and 

5x106 for CV. The relative standard deviation (RSD) was calculated, considering the 1345 
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cm-1 peak for PA and the 1618 cm-1 peak for CV, resulting in an RSD of approximately 

27%. This data was considered for analysis using non-linear machine learning models. To 

reduce the dimensionality of the dataset while retaining relevant information, principal 

components explaining 95% of the total variance were selected as shown in figure 4.33. 

These principal components were then utilized as inputs for support vector regression 

(SVR). 

Figure 4.33: Cumulative variance as a function of number of Principal components for a) CV, b) 

PA. 

Principal component analysis (PCA) is one of the most widely used ML algorithm for 

different applications including dimensionality reduction, classification and outlier 

detection. In this thesis work, we have exclusively used for the case of dimensionality 

reduction and hence the discussion is restricted to only that context. Dimensionality 

reduction techniques, such as PCA, offer a valuable approach for representing large 

datasets in a more concise manner, facilitating the efficiency and simplicity of subsequent 

algorithms. By reducing the dimensions of the data, computational resources and memory 

requirements are significantly alleviated. Traditional PCA operates on linear relationships 

between input and output features, but when confronted with nonlinear data patterns, 

alternative methods like Kernel PCA become necessary. Kernel PCA effectively addresses 

nonlinearity by employing a kernel function that maps the nonlinear variables onto a 

higher-dimensional space, where they can be linearly separated—an approach commonly 

referred to as the 'Kernel trick.' This transformation enables the identification of underlying 

linear structures in the data. Several kernel functions, such as polynomial, radial basis, 

cosine, and sigmoid, can be employed in Kernel PCA to accomplish this mapping task. 
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Each kernel function possesses unique properties that suit different datasets and 

nonlinearities. Given the nonlinearity present in the SERS data, we have utilized Kernel 

PCA for our analysis, specifically incorporating the sigmoid activation function. This 

choice of activation function contributes to capturing the complex relationships and 

nonlinear features inherent in the data, allowing for more accurate representation and 

subsequent analysis as shown in figure 4.34. The detailed mechanism of SVM is explained 

in appendix A.  The PCs accounting for variance of greater than 90% were given as inputs 

to SVR with RBF as the kernel function and the results are summarised in the table 4.2.  

                            Table 4.2: Summary of regression metrics for SVR. 

    

 

 

Figure 4.34: PCA for a) CV and b) PA for different concentrations as indicated in the labels. 

4.4.2. Flexible Porous Si for SERS  

A single silicon wafer is used as the starting material for the fabrication of porous silicon 

(pSi), a diverse porous nanostructure. pSi is created through electrochemical or anodic 

etching of crystalline silicon using an aqueous electrolyte containing hydrofluoric acid 

(HF) and alcohol. This process allows for precise control over pore size and porosity. pSi 

possesses micro, meso, and macro pores with cylindrical columns, offering a large surface 

area, unique optical properties, and chemical stability. These characteristics make pSi an 

ideal substrate for robust SERS activity. The utilization of pSi in SERS applications gained 

significant attention in the early 2000s ever since its discover in Bell labs [58], leading to 

the development of SERS-based substrates. To enhance flexibility and ease of handling, a 

free-standing single-crystal porous silicon (FS-pSi) substrate was developed by detaching 

Analyte No. of 

PCs 

R2 MSE Bias Variance 

CV 8 0.9629 0.070 0.068 0.007 

PA 17 0.9472 0.063 0.064 0.011 
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the pSi layer from the parent silicon substrate. The detachment process involved dissolving 

the silicon in alkaline solutions based on Fick's law. While the application of pSi as a 

flexible substrate in SERS sensing is a relatively unexplored area, SERS itself is a highly 

promising analytical technique with single-molecule detection capabilities. It offers high 

precision, sensitivity, and selectivity, making it suitable for various fields such as 

medicine, environmental pollutant detection, food safety, and military applications. The 

mechanism of plasmonic SERS involves electromagnetic (EM) and chemical (CM) 

enhancement mechanisms, with the charge transfer (CT) effect playing a crucial role in 

the chemical enhancement mechanism [16]. Plasmonic nanostructures are essential for 

effective molecular detection in SERS, as they induce localized surface plasmon resonance 

and enhance the electromagnetic field. To achieve high sensitivity, reproducibility, and 

selectivity in SERS, much attention has been devoted to preparing plasmonic SERS-active 

substrates. Therefore, the objective of the study was to synthesize flexible SERS substrates 

comprising a layer of silver NPs decorated on FS-pSi. These substrates aim to enable trace-

level molecular detection with stability and reproducibility, making them suitable for on-

site applications. 

4.4.2.1. Sample Preparation and Characterization 

Nanocrystalline pSi with low dimensionality was prepared using a solution-based anodic 

etching process. Commercially available boron-doped silicon wafers (1×1 cm²) were 

subjected to cleaning with acetone and ethanol to eliminate surface contaminants. The 

cleaned wafers were then immersed in diluted hydrofluoric acid (HF) to etch away the 

native oxide layer, following previously established procedures [59] [60]. For the anodic 

etching, the pre-cleaned silicon wafer was directly mounted as the anode in an in-house 

etch-cell setup, while a platinum coil served as the cathode. The etch-cell was filled with 

an electrolyte containing a mixture of water, HF, and ethanol in a ratio of 1:1:2. The 

etching process was initiated using pulsed current densities, applying 30 mA/cm² for 60 

minutes for anodization and 170 mA/cm² for 1 minute for electro-polishing using a 

Keithley-2400 DC current source and the results are shown in figure 4.37. Despite 

differences in resistivity, these current densities were utilized. Figure 4.35 illustrates the 

step-by-step synthesis of the free-standing pSi layers. After detachment from the etched 

silicon substrate, the pSi layer was retained on scotch tape to enhance flexibility. 
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Photographic representations of the detached free-standing pSi layer are shown in Figure 

4.36, demonstrating the stability of the FS-pSi layers even after repeated folding attempts. 

Figure 4.35: Processing steps for the fabrication of AgNPs@FS-pSi layer by anodic-etching 

followed by electro-polishing. 

The FS-pSi layers were subjected to a two-step electroless deposition process, known as 

galvanic immersion, to decorate them with Ag NPs. In the first step, a solution of 0.002 M 

AgNO3 was deposited onto the FS-pSi layer, followed by immersion in a 5 M hydrofluoric 

acid (HF) solution for 15 seconds in the second step. The density of Ag NPs was controlled 

by adjusting the deposition time, which was set at 30 minutes, 60 minutes, and 4 hours as 

shown in figure 4.38. These samples were designated as AgNPs@FSpSi-30min, 

AgNPs@FSpSi-60min, and AgNPs@FSpSi-4h, respectively. The AgNPs@FSpSi-60min. 

Figure 4.36: Photographs of FS-pSi (a) floating on water (b) freely held by a tweezer, and (c) 

mounted on a flexible scotch tape. 

Figure 4.37: (a) The morphology of as-anodized FS-pSi layer and (b) the histogram of the pore 

size distribution (solid line indicates the Gaussian fit). 
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Figure 4.38: AgNPs decoration of FS-pSi at various deposition times (a) 30 min, (b) 60 min, (c) 

4 hours, and (d) EDS spectrum of AgNPs@FSpSi-60min sample. [Inset of the figure (d) illustrates 

the distribution of AgNPs over the sample surface of FSpSi-60min [shown in (b)] and the solid 

line is a Gaussian fit]. 

sample was optimized and selected for further investigations. In this study, a 3-inch silicon 

wafer, costing approximately 25 USD, was sliced into pieces measuring 1.5×1.5 cm² for 

subsequent processing. 

Each sliced piece, with an area of 2.25 cm² and a cost of less than $5, was utilized for the 

fabrication of free-standing porous silicon. Importantly, the parent silicon used for etching 

could be recycled and repurposed for FS-pSi fabrication after appropriate cleaning and 

dusting of the samples. Depending on the measurement requirements, the resulting FS-pSi 

decorated with AgNPs, with a diameter of approximately 10 mm, was further divided into 

two pieces for characterization studies. Through comprehensive measurements and 

analyses, we demonstrate that a single piece of this cost-effective SERS-active substrate 

typically costs less than 1USD and possesses excellent capabilities for the rapid detection 

of hazardous materials. 

4.4.2.2. SERS Measurements  

SERS measurements were carried out using 532 nm laser excitation of the Horiba Raman 

spectrometer with 25 mW of laser power. Three molecules, methylene blue, picric acid 

and ammonium nitrate were studied and trace detection was demonstrated for each 
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molecule. Initially to assess the performance of the samples prepared for different 

deposition time, MB was chosen as a test molecule and SERS spectra for each sample has 

been collected (figure 4.39).  

Figure 4.39: The SERS spectra of MB molecules on AgNPs@FS-60min substrate at a 

concentration of (a)-(i) 100 μM (ii) 50 μM (iii) 10 μM (iv) 5 μM (v) 1 μM and (vi) 100 nM 

concentration (b) SERS spectra of MB (5 μM) at various AgNPs deposition time on FS-pSi. 

Spectra in (a) and (b) are stacked in Y-axis to avoid ambiguity in the data. 

Figure 4.40: The SERS spectra of PA, an explosive molecule, on AgNPs@FSpSi-60min substrate 

at concentration of (a)-(i) 100 μM, (ii) 50 μM, (iii) 30 μM, (iv) 10 μM, and (v) 5 μM concentrations, 

(b) SERS spectra of PA (30 μM) at various AgNPs deposition time on FSpSi, and (c) corresponding 

linear calibration [log (SERS intensity) versus log (concentration)] of the different Raman modes 

observed at 832 cm−1, 1177 cm−1, and 1346 cm−1.  
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The data communicates that the AgNPs@FS prepared for 4 hours has outperformed 

slightly the sample at 1 hour. This is due to the high density of hotspots originating from 

the densely packed AgNPs produced at this deposition time. However, such aggregation 

of NPs also reflects as poor reproducibility and hence AgNPs@FS-60min sample was 

chosen for further SERS measurements.  Measurements performed on PA also confirmed 

the same as indicated in figure 4.40. 

The reproducibility of the signal has been measured with MB (10 M) and PA (50 M) 

and the RSD was found to be less than 10% as shown in figure 4.41. Though there is a 

significant room for improving the enhancement factors as shown in the table 4.3, the RSD 

for the given cost and flexibility outweighs the performance. Reproducibility of PA has 

also been studied and presented in figure 4.42. 

Figure 4.41: (a) Reproducibility of the SERS spectra of 10 μM MB molecules detected at 10 

different spots on AgNPs@FSpSi-60min, and (b) the corresponding standard analysis with RSD 

values.  

Figure 4.42: (a) Reproducibility of the SERS spectra of 50 μM PA molecules detected at 10 

different spots on AgNDs@FSpSi-60min, and (b) the corresponding histogram with RSD values. 
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Figure 4.43: The SERS spectra of AN molecule on AgNPs@FSpSi-60min substrate at (a)-(i) 100 

μM, (ii) 50 μM, (iii) 10 μM, (iv) 5 μM, and (v) 1 μM concentrations, (b) The SERS spectra of AN 

(50 μM) at various AgNPs deposition time on FS-pSi, and (c) corresponding linear calibration [log 

(SERS intensity) versus log (concentration)] of the Raman modes at 711 cm−1, and 1042 cm−1 (d) 

Reproducibility of AN (50 μM) on AgNDs@FSpSi-60min substrate and inset shows the 

corresponding standard deviation. 

 

Figure 4.44: The SERS spectra of thiram (pesticide) on AgNPs@FSpSi-60min at (a) (i) 10 μM 

(ii) 5 μM (iii) 1 μM and (iv) 100 nM concentrations (b) SERS spectra of thiram (10 μM) at various  

AgNPs deposition time on FSpSi and (c) corresponding linear relationship of log (SERS intensity) 

versus log (concentration). 
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We have also studied ammonium nitrate reporting a sensitivity of 5M with an RSD of 

4% as shown in figure 4.43. A pesticide molecule thiram has also been studied with 100 

nM sensitivity as shown in figure 4.44. The durability of the samples has been studied with 

50 μM of MB at regular intervals of time and a recognisable fingerprint of MB was found 

until 90 days as shown in the figure 4.45. 

Figure 4.45: (a) Linear dependence of log (SERS intensity) versus log (analyte concentration) for 

the principal modes of MB molecules, (b) The durability estimation of AgNPs@FSpSi-60min 

substrate with 50 μM concentration of MB over a period of 90 days. 

The intensity and concentration fits that are used to calculate the LOD are presented in 

figure 4.46.  The overall relation between intensity and concentration is non-linear and is 

linear for lower concentrations. The slope of the linear graphs is an important parameter 

for calculating LODs as presented in equation (1.1). The R2 for the linear fits for all the 

analytes is greater than 95% and LODs are approximated using the slope. The results are 

summarised in the table 4.3.  

Figure 4.46: The SERS intensity versus analyte concentration for (a) MB - 1626 cm−1 (b) PA -

1346 cm−1 (c) AN - 1042 cm−1 (d) thiram-1385 cm−1, and (e)-(h) Linear dependence of the log 

SERS intensities verses lower molecular concentrations. 
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Table 4.3: Summary of analytes detected and the SERS parameter for studies on pSi. 

Molecule Raman peak 

[cm-1] 

Lowest detected 

conc. [M] 

AEF LOD 

Thiram 1385 10-7 2.9×104 1 µM 

AN 1042 10-6 1.0×105 2 µM 

PA 1346 5×10-6 1.3×104 1 µM 

MB 1626 10-7 7.4×105 50 nM 

 

4.6. Conclusion and Scope 

This chapter summarises synthesis and application of novel anisotropic, flexible SERS 

substrates for SERS based trace detection of diverse analyte molecules including, 

explosives, pesticides, bacteria, food adulterants, environmental pollutants and 

biomolecules. Wafer scale, highly branched, dense Ag nanodendrites decorated with Au 

nanoparticles were synthesised by a simple electroless etching method of Si in the presence 

of HF. The samples have demonstrated trace detection with prolonged shelf life for 

antibiotics (penicillin, kanamycin and ampicillin), DNA bases (adenine, cytosine), 

explosive (AN) and pesticide thiram with nanomolar sensitivity. 2-D material, laser 

ablated MOS2 coated plasmonic SiNWs have demonstrated additional enhancement in 

addition to electromagnetic enhancement enabling trace detection of diverse analytes with 

increased durability. Hydrophobic filter paper that has been fabricated by spin coating with 

Si oil has been demonstrated as the so far cheapest method to modify the surface of the 

filter paper. This substrate has been used for quantification of trace analytes, CV and PA 

using machine learning algorithms, PCA and SVR. Using a portable Raman spectrometer 

coupled with algorithms that take less than 10s to run, this is a rapid low-cost method for 

quantification in SERS so far. Free standing, low cost, flexible porous Si decorated with 

Ag NPs has demonstrated trace detection of AN, thiram, and MB with a reproducibility of 

less than 8%. The durability of the samples can be significantly improved by storing them 

in vacuum sealed conditions in view of commercial application. The enhancement for the 

case HFP can be significantly increased if colloidal anisotropic NPS like stars and triangle 

are used instead of spherical NPs.    
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Chapter 5 

Overcoming Signal Fluctuations in the SERS 

for Improved Field Applications 

 

Abstract 
 

This chapter attempts to address the challenge of signal fluctuations in SERS using deep 

learning techniques. SERS has demonstrated its enormous ability to detect trace analytes 

at the laboratory scale, with prospective applications in various fields. The undesirable 

signal reliability and blinking issues limit the onsite detection capabilities of SERS due to 

several factors, including analyte adsorption, an uneven distribution of hotspots, molecule 

orientation, and so on.  SERS has an intrinsic tendency to exhibit signal variations, 

rendering it a stochastic process.  Due to these signal fluctuations, identifying a spectrum 

as a molecule representative relies seriously on an expert. This chapter starts with 

understanding the origin of signal fluctuations in SERS-based trace detection and how 

machine learning techniques will be helpful. We will understand the working of NNs and 

develop a neural network-aided SERS model (NNAS) that effectively identifies reliable 

SERS spectra of trace explosives (Tetryl, Picric Acid) and a dye molecule, crystal violet, 

without an expert’s influence. Massive SERS data has been collected using Ag-decorated 

Au nanodendrites synthesized by chemical methods described in Chapter 4. The model 

eliminates the reliability of the expert by classifying the spectra as representative (RS) and 

non-representative (NRS) using a unique signal-to-noise ratio technique. The experimental 

parameters of the SERS experiment, like excitation wavelength, laser power, and spot size, 

were systematically varied to simulate the general variation of experimental parameters in 

the SERS across instruments. A validation set and out-of-sample testing were used to 

validate the model, which had an accuracy of 98% (0.98) for all analytes.  We believe that 

NNAS goes a long way in automating and bridging the gap between laboratory 

performance and field for the case of SERS-based trace detection.   
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5.1. Introduction 

In recent years, machine learning (ML) has been shaping our lives in various ways offering 

convenience and newfound ways to discover deep insights through data. With its ability 

to extract information from large and complex datasets in diverse fields across sciences, 

there is a surge in the usage of ML for data analysis, especially in spectroscopy [1]. 

Traditional linear methods for processing the data are no longer sufficient to address real 

world applications through spectroscopy. With this need, there is an emergence of new 

field called ‘chemometrics’. Chemometrics essentially deals with developing 

mathematical and statistical models to optimise measurements and experiments in 

analytical chemistry and also to extract useful insights from the experimental data in this 

discipline [2]. SERS being one of the popular spectroscopic tool, has also seen a 

welcoming change of usage in chemometrics for data analysis [3]. The emergence of SERS 

in biology and complex systems, increased computing power, and the availability of open-

source machine learning libraries such as TensorFlow, Keras, and Scikitlearn, which are 

easy to implement, have facilitated this development [3].  

Field applications concerning SERS has several characteristics that make it particularly 

suited for the usage of machine learning in data processing. Over the years, innovations in 

plasmonic materials have resolved the issue of low sensitivity and drastically improved 

the limit of detection (LOD) in SERS, allowing even for single molecule detection [4] [5]. 

However, the SERS spectra for the case of trace detection exhibit considerable variation 

in intensity and spectral profiles due to the orientation of the molecules concerning the 

SERS surface, uneven adsorption and inhomogeneous distribution of hotspots [6]. This 

stands in the way of translating well-established benefits of SERS to the field for practical 

applications.  Conventional linear-based methods are unsuitable for capturing the various 

possible relations and identifying the spectra in complex matrices during trace 

identification. As a rescue, machine learning (ML) based methods are well-suited to 

capture complex relationships within large sets of spectra. Thus far, the usage of ML in 

SERS has focused only on post data processing applications like a) identification of the 

spectrum, b) classification, c) quantification [7] [8]. Attempts were also made to use ML 

algorithms to enhance the data collection process [9], estimate scattering efficiency [10] 

and to further enhance the SERS signal through PCA [11].  This chapter discusses how 

the ML algorithms can be trained to recognize features in the SERS spectra and assign 
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them to the proper label corresponding to the identity of the analyte and understand 

different correlations on the field devoid of any expert reliance.  

5.1.1. Machine Learning Algorithms 

Machine learning refers to a computer program or system that can acquire knowledge by 

analysing raw data and identifying key features through a process aptly called as ‘training’. 

The knowledge gained through this process can then be utilized to solve real-world 

problems by making informed decisions after thorough ‘evaluation’. Choice of the ML 

model, size of the data set, quality of the data, parameters in the model, play a key role in 

the performance of the model’s predictions. By analysing and learning from the data 

through the model, ML systems can be trained to improve the accuracy and effectiveness, 

analogous to human learning. ML algorithms can be classified into three main categories: 

supervised learning, unsupervised learning, and reinforcement learning as shown in figure 

14 of chapter 1. The discussion of these classifications and different machine learning 

algorithms is thoroughly discussed in chapter 1. We will limit the discussion in this section 

only to the models studied in this work.  

5.1.1.1. Neural Networks (NNs) 

Many scientific inventions have been inspired by observing living forms around us. 

Helicopters were invented inspiring from flying birds. Lotus leaves inspired many 

hydrophobic surface applications. Solar cells architecture that was inspired from leaf folds 

and so on. One such inspiration that revolutionized modern day life to an unimaginable 

scale are neural networks. The architecture of NNs is inspired from the functioning of 

human brain transferring information from one neuron to neuron and learning from the 

patterns. Though the current NNs have moved far away from their biological analogy, they 

have made incredible progress and became a part of our day-to-day life through 

recommendation systems, voice recognition tools, face recognition apps and computer 

vision applications to name a few.  NNs are typically data hungry and need a large amount 

of data for training. The availability of big data and proven superior performance of NNs 

relative to other ML models has reinforced the development in NNs. Innovations in the 

direction of computation devices and development of libraries like Tensorflow and Keras 

has made the implementation of NNs easier in the recent years. NNs recognise complex 

patterns from given data by a series of mathematical operations classified as forward and 

backward propagation as shown in figure 5.1. NNs are known to extract features by 
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themselves without any need for data pre-processing algorithms. The detailed mechanisms 

of their working are discussed in the sections that follow.  

The fundamental unit of a NN is called as a ‘node’ and functions analogous to the neuron 

in the brain as represented in figure 5.2. Different nodes are put together in ‘layers’ 

depending on the complexity of the problem in order to build a model. The first layer is 

called as an input layer, the intermediate one is called hidden layers while the final layer 

is called an output layer. The user inputs a feature vector with N dimensions represented 

as xi with i =1, 2,  ..N into an input layer with N neurons. At each of the neurons weighted 

sum of the input function along with a bias term is calculated as h[j], index j representing 

the layer number and is 1 for input layer (equation 1). A NN uses weights (W[j]) to indicate 

the importance of a particular feature in predicting a final value based on the input value. 

A bias term, b[j], is also added which gives a flexibility to shift the activation function left 

or right. The goal of the training mechanism in NNs is to find optimum values of the 

weights and biases through iterations of forward and backward propagation (called as 

‘epochs’). The convergence of the model and its progression can be studied by analysing 

learning curves which are graphs of loss and iterations (epochs).  

Figure 5.1: Schematic of flow of training mechanism in NNs through a series of mathematical 

operations classified as forward and backward propagation.   

Once the input feature vector is given, the weighted sum of the input vector along with a 

bias term is calculated at each node. This summation is then passed through an activation 

function (A[j]) in order to add non-linearity to capture complex patterns the model 

(equation 2). As the name suggests, activation function decides whether a neuron should 

be activated or not depending on the threshold.  There are different activation functions 

like ReLU, sigmoid, SELU and tanh, and are used depending on the problem at hand. Of 
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all, ReLU is known to be computationally inexpensive and hence we have restricted to 

using ReLU in this thesis. At the output neuron we have used sigmoid as the activation 

function [equation (3)].  

                                                                 ℎ[1] =  𝑥𝑖𝑊
[1] +  𝑏[1]                                                   (5.1) 

                                                                            𝐴[1] = 𝑎(ℎ[1])                                                     (5.2) 

                                              𝑅𝑒𝐿𝑈 = max( 0, 𝑥),   Sigmoid =  
1

1+𝑒−𝑥
                                 (5.3) 

Figure 5.2: a) Representation of a single neuron with input and output (Image taken from 

Wikipedia), b) A single node of a NN with input, activation function and an output.  

Followed by this, the input for the second layer will be the output of the first layer followed 

by an activation function as represented by equation 4 and 5. This process continues for 

all the hidden layers of the network until the output layer.  

                                                              ℎ[2] =  𝑊[2]𝐴[1] +  𝑏[2]                                           (5.4) 

                                                                𝐴[2] = 𝑎(ℎ[2])                                                         (5.5) 

The ultimate goal of any ML model is to make predictions that are close to the actual value. 

This is achieved by a process aptly called as ‘optimization’. In the specific case of NNs, 

the goal of the optimization algorithm is to find weights and biases that would eventually 

minimize the error. Gradient descent algorithms are very popular for this task. The 

optimization algorithm starts by randomly initializing the weight and updating them in an 

interactive process until they are close to the predicted values (𝑌̂). This deviation from 

actual values (𝑌) is calculated for each iteration through a function called as cost function, 

J, as given below in equation 6, 

                                                             𝐽 =  
1

2
 (𝑌̂ − 𝑌)2                                                                (5.6) 
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The whole exercise discussed so far until calculation of weights is called as forward pass. 

The weights are updated in backward pass through calculating the gradient. The algorithm 

in each iteration moves step by step to the minimum and the size of the step depends on 

the ‘learning rate ()’ of the NN and it determines the rate of convergence. The goal of 

this sequential iterations is to minimize the cost function. Each of such iteration is called 

as an ‘epoch’. The number of gradients to be computed depends on the number of 

parameters in the model and are calculated using the chain rule in differential equations as 

below in equation (5.7), 

                                                          
𝑑𝐽

𝑑𝑊[1] =  
𝑑𝐽

𝑑𝐴[1]  
𝑑𝐴[1]

𝑑ℎ[1]  
𝑑ℎ[1]

𝑑𝑊[1]                                              (5.7) 

After the gradient, in this process the weights are updated as below,  

                                                           𝑊𝑛𝑒𝑤 =  𝑊𝑜𝑙𝑑 −   
𝑑𝐽

𝑑𝑊
                                                    (5.8) 

For the case of NNAS, we have used a stochastic gradient descent (SGD) method as an 

optimiser and binary cross entropy as the cost function. Following the computation of loss 

on each training example, the model’s parameters are changed for the case of SGD. 

Consequently, the model parameters will be updated m times in one cycle if the dataset 

contains m training values.  

Neural networks have a tendency to overfit the data. Overfitting is a scenario where the 

model performs exceptionally well on the training data while performing poorly on 

validation and test data set. Regularization is a technique that is used to overcome the 

problem of overfitting in NNs. It is a slight perturbation to the cost function and penalizes 

certain weight matrices.  

                                           𝐽 =  
1

2
 (𝑌̂ − 𝑌)2 + 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚                                (5.9) 

We have used accuracy as a measure of performance of the model. Accuracy for the case 

of classification is defined as below, 

                                                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                          (5.10) 

Here TP, TN, FP and FN are true positive, true negative, false positive and false negative 

respectively. Through a process, popularly called as hyperparameter tuning, different 

parameters like activation function, optimizer, scaler and learning rate are changed in order 

to get optimum accuracy. The final architecture of the neural network along is represented 
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in figure 5.3 b). Figure 5.3 a) depicts similar layers of interconnected neurons in the 

cerebral part of the brain that recognise patterns as an analogy.  

Figure 5.3: a) Sketch of cerebral cortex showing scheme of layers of interconnected neurons. 

Image taken from Wikipedia (https://en.wikipedia.org/wiki/Cerebral_cortex). b) Architecture of 

NNAS used in this study with two hidden layers, input and output layers.  

5.2. Signal fluctuations in the SERS 

The enhancement mechanisms in SERS are discussed elaborately in chapter 1 section 1.4. 

Electromagnetic enhancement is the significant contributor to the SERS signal 

enhancement and originates through high field intensity in the vicinity of metal 

nanoparticles popularly called as ‘hotspots’ [12]. Chemical enhancement is a consequence 

of change in polarizability that results from the interaction of probe molecules with the 

nanostructure either chemically or physically [13]. The ability of the SERS to detect trace 

or even single molecule and other merits are purely a consequence of these mechanisms. 

However, through the same mechanisms that lead to signal enhancement, SERS also 

experiences many signal fluctuations and deviations from the conventional Raman 

spectroscopy making it extremely reliable on an expert. In the following discussion we 

will focus on the origin of such signal fluctuations in first place.  

The first fact comes from the fact that LSPR resonances that aid SERS are heavily 

dependent on the wavelength of the excitation source as studied in chapter 1, section 1.3. 

As a result of this dependence, some of the Raman modes might be selectively enhanced 

while the others might get quenched [14] [15]. Further, the orientation of the molecule 

with respect to the metal nanostructure and the symmetry of the Raman mode also dictates 

the selective enhancement and quenching of the modes[16]. These are guided by the 

surface selection rules in SERS [6]. The orientation of the molecule with respect to the 

polarization of the incident laser beam also plays a crucial role and contribute to the signal 

fluctuations spatially [17] [18].  Upon adsorbing on the metal surface, depending on the 

https://en.wikipedia.org/wiki/Cerebral_cortex
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molecule and metal nanostructure chemistry, the molecule might also undergo chemical 

changes resulting in drastic change of Raman signature with respect to the actual molecule 

[19]. Oxidation of metal substrates that are widely used in SERS, all cause undesirable 

changes in the Raman signal [15]. All these possibilities reflect as slight or large shift in 

Raman peaks or in some cases even broadening of peaks making the identification 

extremely reliable on expert’s knowledge. Photo bleaching and the formation of different 

photo-products are also reported in SERS [20]. 

The preparation of SERS substrates through various techniques also adds to the inherent 

deviations/fluctuations in SERS. In many instances, colloidal NPs are used as SERS 

substrates for detection of the analyte. In this scenario, given the Brownian motion 

associated with these colloids causing diffusion of molecules from the collection area, the 

intensity of the signal is known to fluctuate at any point of time [21]. These can be 

classified as temporal fluctuations as opposed to spatial fluctuations.  Another popular 

technique that is in use is drop-casting where colloidal NPs are dropped on to a planar 

surface like Si or metal and waited to dry. Though this technique is easy to implement, it 

is known to cause inhomogeneous distribution of both probe and NPs which will 

eventually reflect in the SERS intensity [22]. Nevertheless, often when aided with a 

microscope these distributions can also be used to our advantage, like the recently reported 

coffee-ring effect aided SERS [23] [24]. These can be classified as spatial fluctuations. An 

alternative that is generally considered for drop casting is spin coating. Spin coating 

however, is known to have low efficiency in terms of number of particles that are adhered 

to the surface relative to the input which manifests as poor density of hotspots in SERS.  

In addition to these, SERS intensities are also vulnerable to laser effects that are caused 

during the excitation [25]. The colloids in all the cases are known to undergo small 

movements under the laser exposure probably through the local heating caused by the laser 

[26]. Long acquisition times, which are often a prerequisite for trace detection also cause 

photo bleaching when the laser beam is focused at a single spot for very long time. In the 

case of trace detection and even further for single molecule detection, the orientation of 

the molecule with respect to the hotpots also plays a key role in the enhancement. Even 

though these fixed substrates seem unchanging/unmoving at a glance, at a nanoscale range 

which is where LFIE predominates, there is still movement. The incidence of laser 

aggravates these changes at the hotspots causing heating and even change in the roughness 

of the substrate [27] [28]. Through laser induced photo-chemistry or through indirect 
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heating of the substrate, the molecules are also known to desorb, diffuse or even undergo 

chemical transformation [29]. It has been also reported that the molecules move in an out 

of these hotspots causing signal ‘blinking’ [30]. Further, the illumination of laser is also 

known to cause significant geometric changes like change in the distance between the NPs 

in addition to their shape and size [31].   The near field enhancement is also known to lead 

to the formation of cavities through various forces which in turn cause signal fluctuations 

[32]. Given these contributions, it is difficult to ascertain specific reasons for the case of 

signal fluctuations in a single experiment and needs an extensive statistical analysis as 

done by selected groups [33] [34]. Figure 5.4 depicts schematic of hotspot distribution, 

molecules distributed on the nanostructure and associated signal fluctuations.  

 

Figure 5.4: Schematic of distribution of probe molecules on a SERS substrate with hotspots and 

associated signal fluctuations.  

All these effects are further magnified for the case of trace detection because the SERS 

signal originates from only a few molecules that are adsorbed on the substrate surface. 

Trace detection is heavily dependent on the hotspot enhancement and owing to the 

localization of the later, the signal intensity inherently fluctuates from point to point. On a 

SERS substrate typically these hotspots are known to occupy only a 1% or a fraction of 

the total area adding to the poor reproducibility of the signal [35]. Statistically this would 

mean that in the case of trace molecule detection, the detection is only possible if the 

molecule is present at that 1% surface area. In first stance this would convey that the role 

of hotspots is insignificant but it so happens that such small fraction contributes nearly 

80% to the total signal emphasising their importance [36]. Diffusion of such molecules in 
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the presence of laser illumination either in or out of hotspots comes at a huge cost in terms 

of enhancement and could be a common occurrence especially for the case of 

physisorption [25,37,38]. On an other hand, a highly enhancing substrate comes at the cost 

of reproducibility analogous to the uncertainty relation [39]. The localization of hotspots 

restricts the number of molecules that can be adsorbed in these small fraction of area  [18]. 

Photo bleaching of molecules in such enhanced local fields is also anticipated to happen 

[41] [42]. All these deviations are in many instances far from the mean value and often 

studied experimentally under the term long tailed distribution using statistics [35] [43]. 

Trace detection innovations in SERS focus on developing substrates with high density of 

hotspots but the very nature of these hotspots will eventually lead to the challenges in 

detection [44]. This temporal fluctuations in the intensity are in fact considered as a 

signature of single or few molecule detection [45]. Intensity fluctuations in the local field 

enhancement has been reported and discussed for the case of trace detection [46]. Detailed 

effects of temperature broadly called as thermal effects on the intensity fluctuation for 

trace detection were studied by both heating and cooling [40]. As an instance of this signal 

fluctuations, we have seen selective quenching, enhancement, photo bleaching and 

oxidation effects for the case of Picric Acid during our measurements. Figure 5.5 shows 

different SERS spectra observed under same experimental conditions but at different 

spatial point while performing mapping for the Picric Acid in this study supporting the 

discussions so far. 

 

Figure 5.5: Different scenarios of SERS spectra of picric acid measured on same substrate of 

Au@Ag nanodendrites under experimental indication selective enhancement/quenching of peaks, 

effects of oxidation and photo bleaching.  

5.3. Neural Network Aided SERS (NNAS)  

All the shortcomings of SERS through its inherent signal fluctuations discussed so far 

make the measurements heavily dependent on an expert. In a lab scale environment, in the 

presence of an expert SERS has promised trace detection in the limits of attomolar [47,48], 
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femtomolar [39,49–51], and picomolar [52,53] molar detection. Single molecule SERS, 

through hugely debated has also been reported [54]. Xu et al. recently reported single 

haemoglobin molecule detection targeting hotspots between Ag nanoparticles [55]. Lin et 

al. have reported detection of single bacterium cell using immobilised plasmonic structures 

exploiting hotspots between Au nanoparticles[56]. Trace and ultra-trace detection of 

explosives using SERS has also been reported using different plasmonic materials by 

various research groups[57] [58]. However, in the present scenario these results are still at 

laboratory level and could not be translated onto the field [59].  

ML techniques are being widely used in SERS focusing mainly on post data collection 

analysis, for example, in the case of classification [60–66], identification [64,67–72], and 

quantification [73–79] goals. Despite the promising application of ML, little or no work 

has been in SERS to automate the data collection process eradicating the huge dependence 

on expert. For the case of trace detection, any expert in the lab has to collect large volume 

of data before finding one representative spectra for various reasons discussed above. This 

is highly unreliable in field applications. Specifically, for the case of explosive detection, 

there are innovations in the direction of flexible substrates that offer easy collection of 

sample from surfaces through swabbing [80]. Low cost, durable, high density hotspot and 

reusable substrates have also been proposed for trace explosive detection [81]. It is also 

well known that high enhancement is a trade-off for reproducibility which would intern 

increase the reliability on an expert [36][82]. Despite these innovations in terms of 

plasmonic materials or instrumentations over the decades still did not take SERS to the 

field. In this regard, it is imperative to have an automated, streamlined and efficient SERS 

data collection system that would remove the reliance on expert. For this case we have 

employed a deep neural network model which we named as Neural Network Aided SERS 

(NNAS) as graphically depicted in figure 5.6.  

In a recent work by Carney et al., they have attempted to improve the data collection 

efficiency and sampling in SERS through ML models [9]. Their model has used different 

ML algorithms like SVM, linear discriminant analysis (LDA), decision trees (DTs), 

random forest (RF) and an extreme gradient boosting (XGB) algorithms in order to classify 

and predict the SERS spectra as ‘good’, ‘bad’ and ‘maybe’. The labelled data set that is 

used for training has been labelled by an expert manually when each spectrum is displayed 

to the user using a software. They have tested highly ordered commercial substrates and 

claim their model cannot be generalised to measurements done across different 
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instruments.  Before building our own model, we have attempted to reproduce similar 

accuracy for trace explosives by manually labelling our data. In our observation, we have 

realised that the labelling is hugely prone to conformational bias and realised the boundary 

between what is representative and non-representative is thin especially for trace signals 

burring in noise. Confirmation bias in this case is an inevitable tendency to look for 

specific patterns in the signals with a pre-existing knowledge on how the signal looks like. 

Moreover, we realised the task is tedious specially to train algorithms that need huge 

amount of data to make accurate predictions. The present study proposes a novel approach 

to address the issue of spectra labelling for trace explosives detection without human 

intervention. The proposed method employs a unique SNR based analysis to differentiate 

between representative (R) and non-representative (NR) spectra. Additionally, we utilize 

an in-house, low-cost fabricated substrate for data collection rather than commercially 

available ones, catering to the needs of on-site defence applications. Our research results 

demonstrate that the proposed NNAS model exhibits a superior performance in terms of 

sensitivity, selectivity, and accuracy compared to the existing methods. 

Figure 5.6: Graphical representation of the goal of NNAS model to bridge the gap between lab 

and field performance removing the reliance of expert by automating the identification of 

representative SERS spectra of trace explosives.  

In this study, data was collected from our laboratory-fabricated substrates using Au 

nanoparticles on Ag nano-dendrites (AuNPs@AgNDs), which were prepared using a 

simple electroless deposition technique [83][84]. As training of NNs demands huge 

volume of data, large number of spectra were obtained by mapping the substrates with 

crystal violet (CV), tetryl (2,4,6-trinitrophenylmethylnitramine), and picric acid (PA) as 

analytes. Prior to modelling, data pre-processing baseline correction and spike removal 

were performed using python. The SNR for each prominent peak of the analytes was 

calculated using the first standard deviation (FSD) method as described elsewhere [85]. 
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The average SNR was then used to represent the SERS spectrum. Based on the SNR, a 

threshold was set for labelling the spectra as either representative (R) or non-representative 

(NR) automated by a python code. The collected data was divided into training and 

validation sets, and a deep learning model with four layers was utilized to identify the 

spectra. The model was validated using the validation dataset, and out-of-sample 

predictions were made to evaluate the model's performance. A schematic of the model's 

end to end workflow, from data collection to model evaluation, is shown in the figure 5.7. 

 

Figure 5.7: End to end streamlined workflow for the NNAS model starting from data collection 

to model evaluation. 

A neural network, which includes the input and output layers, has various layers depending 

on the difficulty of the challenge. The input layer receives the input parameters, xi. The 

bias term is used by the neuron to compute the total weighted inputs. An activation 

function processes the output from each layer. In a backpropagation mechanism, the 

weights are modified to reduce the loss function as discussed before. The majority of the 

codes were written in Python 3.8.3 utilising the Keras and Scikit-learn packages. Free 

Python tools like Scikitlearn and Keras will import various features including 

classification, functions, and neural networks. Baseline correction was carried out prior to 

modelling using the asymmetric least square fitting method suggested by Eilers and 

colleagues [86]. Each analyte's Raman shift was sent to the input layer as input. The hidden 

layers consist of 10 and 5 neurons, respectively, with each feature a rectified linear unit 

(ReLU) for their activation function. Comparatively speaking to other activation functions, 
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ReLU is computationally cheap.  Each layer also receives a regularisation parameter (l1 

regularisation) to avoid overfitting. One neuron in the output layer is given sigmoid as 

activation function. Binary cross-entropy has been utilised as the loss function, while 

stochastic gradient descent has been used as the optimizer. The model's performance was 

measured using accuracy as a performance indicator, and the learning rate was optimised 

and set to 0.001. By using a minimum validation loss as a parameter and an early ending 

mechanism, the number of epochs was determined.  

5.3.1. Signal to Noise Ratio Approach 

The data used for modelling and prediction in our NNAS model has been collected using 

Horiba LabRam Raman spectrometer. Therefore, we have used the signal to noise ratio 

that has been discussed in Horiba documentation and is widely used in the context of 

Raman spectroscopy. HORIBA Scientific has been defining SNR as the difference 

between the peak signal and the background noise, divided by the square root of the 

background noise. This is the First Standard Deviation (FSD) approach. In Raman 

Spectroscopy, a combination of Raman peaks is often utilized as a molecular signature for 

detection, especially in the case of explosives. This is because all nitrogen-based explosive 

molecules tend to exhibit a peak at around 1300 wavenumbers, corresponding to the nitro 

stretching vibration. Taking that into account to label the analyte, we have employed the 

average SNR of all the prominent Raman modes of each molecule. The peak intensity of 

the Raman mode is denoted by IPeak, while INoise is the average noise measured in the range 

corresponding to the signal's wings. The SNR is then computed as, 

                                                          𝑆𝑁𝑅 =  
𝐼𝑃𝑒𝑎𝑘−𝐼𝑁𝑜𝑖𝑠𝑒

√𝐼𝑁𝑜𝑖𝑠𝑒
                                                     (5.11) 

The SNR, which measures the relative strength of the Raman signal to noise, is a valuable 

metric for determining the quality of the SERS spectra. By observation, a threshold SNR 

was chosen to label the spectra as R or NR, where if SNR is greater than threshold the 

signal is representative and is non-representative otherwise.  

5.3.2 Sample Preparation 

SERS substrates were fabricated using a facile, cost-effective two-step method, as 

illustrated in figure 5.8. Initially, the silicon (Si) substrate was subjected to a cleaning 

protocol involving acetone and diluted hydrofluoric acid (HF) to eliminate any native 

oxide layer. To generate silver nanodendrites (AgNDs), we employed an electroless 



191 

 

etching technique as previously discussed in our research [84]. The pre-cleaned Si wafer 

was submerged in an electrolyte solution comprising of (30 mM) silver nitrate (AgNO3) 

and (4.6 M) HF at room temperature for 15 minutes, resulting in a uniform AgNDs growth. 

The AgNDs were then cleaned with de-ionized water and dried in ambient air. To 

circumvent the rapid oxidation and consequent substrate degradation, we decorated the 

AgNDs with gold nanoparticles (AuNPs). The AuNPs were deposited onto the AgNDs by 

immersing the AgNDs in an HF: HAuCl4 solution for approximately three hours, leading 

to high-density distribution of AuNPs. The resulting AuNPs-decorated AgNDs 

(AuNPs@AgNDs) were employed for the detection of molecules as 1x1 cm2 substrates. 

Stock solutions of the three analytes were prepared and serially diluted in order to achieve 

the desired concentrations. The FESEM images of the synthesized dendrites are presented 

in the previous chapter 4, section 4.2. 

Figure 5.8: Schematic of preparation of AuNPs decorated on AgNDs (AuNPs@AgNDs) and their 

application for SERS. 

5.3.3 Data collection 

The SERS substrates that were prepared using a two-step method were utilized for the 

detection of three different analytes in this study. In addition to external parameters, SERS 

is also sensitive to instrument conditions that are used during data collection. In order to 

build a model that is universal, it is essential to take into account these experimental 

conditions that can influence the performance of the SERS substrates, such as laser 
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excitation wavelength [87], spot size, laser power, and collection optics [88]. Therefore, 

in this work, various experimental conditions were systematically varied to simulate real-

world scenarios and to develop a generalizable model. Two concentrations of each analyte 

were studied, and for each, the input laser power, excitation wavelength, and spot size 

were varied as summarized in Table 5.1. Implementation of ML using python is described 

in appendix B. 

Table 5.1: Summary of experimental parameters that were systematically varied during data 

collection.  

 

Dye molecules are often used as standards to measure the performance of SERS substrates 

because of their high Raman cross-section. However, the SERS signal from dye molecules 

is often prone to undesirable effects such as fluorescence and photo degradation. 

Moreover, the coupling of the molecule to the metal nanoparticles enhances specific 

modes, making it more challenging, particularly in trace detection. Dye molecules are also 

more sensitive to experimental conditions such as laser power, spot size, and acquisition 

time. In this study, crystal violet of concentrations 1 μM and 100 nM was used for analysis. 

For the detection of explosives such as Tetryl and PA, SERS has shown tremendous 

potential, particularly for trace detection to the limits of picomolar and nanomolar, 

respectively. In this study, different concentrations of Tetryl and PA were used under 

various experimental conditions as summarized in Table 5.1. To collect enough data for 

the model, 3 μl of analyte was drop-casted on the prepared SERS substrate and allowed to 

dry. Large area Raman mapping was performed, and a random area of 80×70 μm2 was 

chosen on the substrate for mapping. By varying the experimental conditions and 

analysing the collected data, a unified model was developed to take into account the 

general variations in experimental conditions in SERS. Figure 5.9 a) shows how data is 

split for model training, validation and out of sample evaluation and figure 5.9 b) shows a 

code snippet of the model.  

S. No.    Molecule Laser 

excitation 

    Spot size Concentrations Total 

Spectra 

  1        CV         532 nm      2.6 M 1 M, 100 nM 1806 

  2      Tetryl         532 nm      1.3 M 1 M, 100 nM 1936 

  3 Picric Acid         633 nm      3.8 M 5 M, 500 nM 1506 
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Figure 5.9: a) Flowchart showing data analysis and splitting for training, evaluation and out of 

sample evaluation, b) Code snippet of the NNAS model showing implementation of various 

techniques discussed in the section. 

5.3.4 Results and Discussion 

The target analyte molecule in the initial experiment was Crystal Violet. Figure 5.10 a) 

shows the characteristic Raman modes of CV, which correspond to the C-C stretching, C-

H in-plane bending, ring skeletal vibrations, and C-H out-of-plane bending modes, at 1620 

cm-1, 1176 cm-1, 912 cm-1, and 723 cm-1, respectively [89]. These particular Raman modes 

were chosen for SNR investigation, and the average SNR was calculated since they are 

suggestive of CV. The classification of spectra as representative or non-representative 

required an SNR threshold of 10 by observation. A random subset of typical spectra was 

deleted in order to provide an equal number of spectra for each label (903 R spectra and 

903 NR spectra) and to eliminate sampling bias during modelling. Given that the spectra 

were spatially localised tending to the distribution of hotspots, the dataset was randomly 

shuffled in order to add randomization. Figure 5.10 b) depicts the intensity distribution of 

the spectra for each prominent Raman mode of CV that were used to calculate SNR, 

whereas Figure 5.10 c) shows the SERS spectra, containing both RS and NRS, that were 

used to model the data. By using a minimum validation loss as a parameter and an early 

stopping mechanism, the number of epochs was determined. The alike intensity 

distribution of all peaks of the CV as shown in figure 5.10 b) is an indication that the 

contribution of chemical enhancement is negligible in comparison to the electromagnetic 

enhancement [90].  
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Figure 5.10: a) A representative spectrum of CV with prominent peaks used for calculating SNR 

labelled in blue. b) Swarm plot showing distribution of the prominent peaks highlighted in blue. c) 

Input SERS data for CV that is used for modelling.   

Previous investigations have been conducted on two explosive molecules, Tetryl and PA. 

In this study, Tetryl with concentrations of 1 μM and 100 nM were utilized for large area 

mapping with similar parameters to CV, except the microscopic objective was altered to 

change the laser spot size to 1.3 μM. The laser spot size is a crucial parameter in SERS 

data collection as it influences the number of molecules in the collection area and, as a 

result, the SERS signal. A total of 1938 spectra were collected, consisting of 969 RS and 

969 NRS, for Tetryl modeling. The RS of Tetryl is depicted in Figure 5.11 a), with notable 

peaks identified in grey for calculating SNR. The Raman mode of tetryl at 1358 cm-1 

corresponds to the symmetric stretching of the nitro group [91]. Figure 5.11 b) illustrates 

the intensity distribution of the spectra for each significant Raman mode of tetryl, which 

are employed to calculate SNR. Figure 5.11 c) depicts the SERS spectra utilized for 

modelling, which include both RS and NRS.  

Figure 5.11: a) A representative spectrum of tetryl with prominent peaks used for calculating SNR 

labelled in grey. b) Swarm plot showing distribution of the prominent peaks highlighted in grey. 

c) Input SERS data for tetryl that is used for modelling.   
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0To enhance the applicability of the model to variations in instrument facilities from 

laboratory to on-site, PA was examined at different concentrations of 5 μM and 500 nM 

using 633 nm laser excitation. Approximately 1506 spectra were acquired for both 

concentrations and processed according to the flowchart. The RS of PA is presented in 

Figure 5.12 a), with prominent bands highlighted in pink, which was utilized for SNR 

calculation. The Raman modes at 1345 cm-1 and 827 cm-1 correspond to the NO2 

symmetric stretching mode and C-H bending mode, respectively [92]. Figure 5.12 b) 

displays the intensity distribution of the spectra for each significant Raman mode of PA, 

which are used for calculating SNR. Figure 5.12 c) illustrates the SERS spectra employed 

for modelling, comprising both RS and NRS.  

Figure 5.12: a) A representative spectrum of picric acid with prominent peaks used for calculating 

SNR labelled in pink. b) Swarm plot showing distribution of the prominent peaks highlighted in 

blue. c) Input SERS data for picric acid that is used for modelling.   

Learning curves in neural networks depict the progress of training accuracy and loss 

metrics over time, such as the number of epochs or iterations. These curves are useful for 

evaluating model performance and identifying overfitting or underfitting problems. 

During the training process, the model is exposed to a set of training data, and the learning 

curves display the changes in model performance metrics with respect to the amount of 

training data. Initially, as more data is added, the model performance improves, leading to 

a decrease in loss and an increase in accuracy. However, as the model approaches its 

capacity to learn from the training data, its performance may reach a plateau. This indicates 

that additional data may not enhance the model's performance. Learning curves are an 

important tool for diagnosing problems in neural network models, such as overfitting, 

underfitting, or insufficient training data. Overfitting occurs when the model is too 

complex, and it performs well on the training data but poorly on the test data. Underfitting 

occurs when the model is too simple, and it performs poorly on both the training and test 

data. By analyzing learning curves, it is possible to determine if the model is overfitting or 

underfitting, as well as identify the optimal number of training iterations or epochs to 
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achieve the desired performance. Therefore, learning curves are a valuable tool for 

assessing neural network model performance during the training phase, detecting 

overfitting or underfitting, and determining the optimal number of training iterations or 

epochs. They can provide valuable insights into the behaviour of the model, allowing for 

adjustments to be made to enhance its performance. In the case of overfitting the training 

loss is very low (meaning accuracy is high) and validation loss is high (meaning accuracy 

is low) indicating good performance on training set and poor performance in validation set 

(the opposite is true for under fitting) [93]. In the case of a good fit, the training and 

validation losses decrease with each epoch and converge as shown in the figure 5.13 for 

the case of NNAS.  

Figure 5.13: Learning curves for training and validation data of NNAS model with loss as a 

parameter for a) CV, b) Tetryl, and c) Picric Acid.  

In order to examine the events of “by chance” we have changed the ‘random_state’ 

parameter while splitting the data sets to study different split cases and looked into the 

learning curves and accuracy. Random state controls the shuffling of the data while 

splitting the data set. Different random state numbers mean different splits and hence 

different training and validation data set.  Figure 5.14 shows learning curves for the 

different random states with similar results indicating that the accuracy is not an event of 

chance.  

Figure 5.14: Learning for different random states resulting similar accuracy indicating that the 

accuracy of the model is not an event of chance.  
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5.3.5 Spatial Representation of the Data 

In the interest of defence applications, it is often important to spatially map a selected area 

to identify the presence of trace hazardous materials. This is more so important for the case 

of SERS which is known to exhibit matrix effects and hugely relies on the distribution of 

the hotspots. Mapping tools in SERS always come with huge instrumentation and are 

expensive, unemployable on the field. In order to overcome this challenge, we propose a 

simple spatial representation tool using python and the model predictions from NNAS.  To 

assess the model's performance spatially, we generated a spectral data image that included 

RS and NRS for both actual and predicted validation datasets. True validation spectral data 

is depicted spatially as RS and NRS in Figure 5.15 a), while the predicted validation 

spectra by the model is shown in Figure 5.15 b). The validation dataset's confusion matrix, 

which shows an accuracy of 0.983, is displayed in Figure 5.15 c). We also performed an 

out-of-sample evaluation by acquiring extra SERS data (~284 spectra) at a distinct 

concentration (50 nM) to assess the model further. The out-of-sample prediction's 

confusion matrix, with an accuracy of 0.982, is depicted in Figure 5.15 d), which confirms 

the model's performance.  

Figure 5.15: Spatial representation of a) actual and b) NNAS predicted validation SERS data set 

for CV with green representing RS and red representing NRS, c) Confusion matrix of the validation 

data set indicating an accuracy of 0.983, d) Confusion matrix of 284 out of sample SERS spectra 

for a different concentration than the testing data set (50 nM) depicting an accuracy of 0.982.  

With an interest of on-site performance for detection of explosives using SERS, we 

focused on two explosive samples. Figure 5.16 a) portrays the spatial representation of 

true validation spectral data, which is represented as RS (blue) and NRS (green), while 

Figure 5.16 b) illustrates the predicted validation spectra by the model. Figure 5.16 c) 

exhibits the validation dataset's confusion matrix, with an accuracy of 0.984. To further 

evaluate the model, we gathered extra SERS data (~777 spectra) at a distinct concentration 

(50 nM) for an out-of-sample evaluation. Figure 5.16 d) presents the out-of-sample 
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prediction's confusion matrix, indicating an accuracy of 0.981, thereby affirming the 

model's performance.  

Figure 5.16: Spatial representation of a) actual and b) NNAS predicted validation SERS data set 

for Tetryl with blue representing RS and green representing NRS, c) Confusion matrix of the 

validation data set indicating an accuracy of 0.984, d) Confusion matrix of 777 out of sample SERS 

spectra for a different concentration than the testing data set (50 nM) depicting an accuracy of 

0.981.  

Analogous investigations were conducted on PA, which is a commonly used explosive 

molecule. The authentic validation spectral data of PA is demonstrated spatially as RS 

(yellow) and NRS (blue) in Figure 5.17 a), while the predicted validation spectra by the 

model is presented in Figure 5.17 b). The validation data set confusion matrix depicted in 

Figure 5.17 c) has an accuracy of 0.993. To evaluate the model further, additional SERS 

data (~1026 spectra) at a different concentration (100 nM) were collected for out of sample 

evaluation. The confusion matrix for the out-of-sample forecast with an accuracy of 0.985 

is illustrated in Figure 5.17 d), which validates the model's performance. Figure 5.18 shows 

spatial representation of out of sample data for all the three analytes studied in the model. 

The distribution of the spectra through this kind of representation also provides insights 

into the distribution of hotspots on the substrates without the need of any SERS 

microscopy. 

Figure 5.17: Spatial representation of a) actual and b) NNAS predicted validation SERS data set 

for picric acid with yellow representing RS and dark blue representing NRS, c) Confusion matrix 

of the validation data set indicating an accuracy of 0.993, d) Confusion matrix of 1026 out of 

sample SERS spectra for a different concentration than the testing data set (100 nM) depicting an 

accuracy of 0.985.  



199 

 

Figure 5.18: Spatial mapping of representative and non-representative spectra for actual, predicted 

data for a), b) CV, c), d) Tetryl, e),f) Picric Acid.  

SERS has been widely analysed using well-liked classification technique Support Vector 

Machine (SVM). In order to compare the performance of NNAS, we have applied SVM 

technique for the same data and evaluated. For the classification of NRS and RS for all 

analytes, we have utilised SVM with Gaussian Kernel Radial Basis Function (RBF), and 

the accuracies for CV, Tetryl, and PA are 0.889, 0.874, and 0.887, respectively. Even with 

carefully controlled variations in the experimental settings, the NNAS model 

outperformed SVM with greater accuracy for all analytes. Figure 5.19 presents the 

confusion matrix for the SVM model with three analytes. Table 5.2 summarizes the 

performance of the two models in terms of accuracy.  

Figure 5.19: Confusion matrix for the classification based on SVM for a) CV, b) Tetryl and c) 

Picric Acid indication accuracy of 0.889, 0.874, and 0.887, respectively.  
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Table 5.2: Comparison of performance of SVM and NNAS model.  

 

5.4. Conclusion and Scope 
 

ML techniques are being widely used in SERS to analyse data and to extract meaningful 

information beyond the linear analysis models [94] [95] [96]. SERS is known to have 

inherent signal fluctuations through same mechanisms that lead to enhancement like a) 

dependence of LSPR on the wavelength, b) non-uniform adsorption of molecules, c) 

change in molecular structure through chemisorption, d) hotspot dynamic under the 

influence of a laser, e) thermal effects caused by the laser, f) surface oxidation of the metal 

NS and f) diffusion of hotspots in and out of hotspots. All these mechanisms make SERS 

measurements extremely reliable on a trained experimentalist and thus stand in the way of 

field applications [6] [97]. NNs are known to recognise complex data patterns without any 

data pre-processing and are hence widely used for automation. The efforts to use ML 

algorithms in SERS have been severely restricted to pre-processing artefacts like baseline 

correction, removal of cosmic spike and noise elimination [98] [99] [100]. The goal of the 

NNAS model studied in this work is to overcome signal fluctuations in SERS without any 

expert’s reliance in view of field applications. We have used in-house (AuNPs@AgNDs) 

SERS substrates prepared using an easy and affordable electroless deposition technique. 

In order to incorporate different parameters that typically influence SERS, we have 

carefully changed the experimental parameters, such as the laser wavelength and spot size, 

to study three analyte molecules at trace levels. The model was evaluated using validation 

and out of sample data after being trained on a training set. For out-of-sample testing of 

CV, Tetryl, and picric acid, the model's accuracy was found to be 0.982, 0.981, and 0.985, 

respectively. The model's performance was compared against SVM, which demonstrated 

an accuracy of less than 89% across all analytes. The model has also accurately predicted 

CV spectrum from a portable Raman device indicating cross-functionality of the model. 

The trained NNAS model on one analyte needed no change for other two analytes, 

         Analyte SVM 

Accuracy 

Validation set 

accuracy of NNAS 

Out of Sample 

Accuracy of NNAS 

 Crystal Violet (CV)      0.889           0.983               0.982 

         Tetryl      0.874           0.984               0.981 

   Picric Acid (PA)      0.887           0.993               0.985 
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implying that the model can be extended to any molecule of interest without any further 

parameter tuning. Data collected has been performed on randomly ordered and highly 

anisotropic nanostructures ensuring that the model works well for both ordered and 

disordered substrates unlike previous works [9]. We foresee that our model can close the 

performance gap between onsite and laboratory detection of SERS substrates. 

This model can be utilised as a tool to understanding the distribution of hotspots on a 

surface. Often SERS substrates are characterised by high quality imaging tools like 

FESEM or TEM prior to measurements. However, in the presence of the analyte molecules 

and under the exposure of laser, the distribution and dynamics of hotspots is known to 

change significantly. In that regard, the spatial mapping tool prescribed in this model can 

be a useful tool in understanding the adsorption and hotspot distribution. This tool is also 

extremely useful for field applications where a suspicious area can be mapped successfully 

using SERS spectra characteristics in order to successfully identify suspicious materials. 

NNAS is an end-to-end model including data pre-processing and hence can be used as a 

plug in for field applications. The model can be made more rigorous if it is trained with 

data containing common field background elements like soil, clothes, luggage materials 

and plastic. The calculation of SNR in this model was based on identifying significant 

peaks that are characteristic of the molecule by the expert. This process can be improved 

by using peak identification algorithms that are widely discussed elsewhere [101] [102]. 

The data collection for this model was performed using mapping tool of Horiba LabRam 

Raman spectrometer which has automatic movable stages. It is also possible to extend data 

collection using portable instruments by using programmable, user-controlled stages. The 

model can be further extended for quantification analysis where the algorithms studied in 

chapter _ can be sued in streamline with the output of the NNAS model. NNAS can be 

extremely useful in analysing complex biological fluids and in situ measurements that are 

being extensively carried out using SERS recently [3]. 
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Chapter 6 

 

Summary and Future Scope 

 

Abstract 
 

This thesis work explored different projects to address several pressing challenges in the 

SERS measurements for trace detection. The conclusion chapter of this thesis work 

emphasizes the significance of contributions made through this thesis and also their short 

comings. Our findings have not only addressed the research objectives but have also 

provided valuable insights to envision SERS for real field applications making a potential 

impact for explosives and other hazardous materials detection. Furthermore, this thesis 

work has identified several avenues for future research and development. The future scope 

of this work encompasses extension of the current application of machine learning 

techniques and also prospects to extend the SERS studies for biology applications. The 

conclusions drawn from this research lay the foundation for further advancements and 

investigations. It is our hope that this work will serve as a catalyst for future research 

endeavours and inspire future researchers to refine the results and applications.  
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6.1. Summary  
 

In the last decade the SERS technique has seen a tremendous increase in applications 

addressing tenacious causes like homeland security, forensics, environmental safety, and 

disease detection including the recent covid-19 [1] [2]. However, translating the benefits 

from research to the field has been a challenge limiting the performance only to lab scale. 

The challenges on the way of field, especially for achieving real world applications of 

SERS can be summarized as [3], 

Reproducibility: SERS is known to have poor spatial reproducibility caused by signal 

fluctuations from point to point owing to the localization of hotspots. This manifests more 

prominently during trace detection when the molecules on the plasmonic surface are 

sparse. Higher enhancement factor, as is the case for trace detection, often comes at the 

cost of reproducibility.  

Durability and cost: Most often than not, gold and silver nanostructures are used as SERS 

substrates as they have desirable optical properties for enhanced field in the visible region. 

However, these samples are expensive and often prone to rapid oxidation (especially 

silver-based substrates). Having a semiconductor substrate as a template for gold and silver 

nanoparticles would bring down the cost of the substrate.   

Signal fluctuations: Signal fluctuations are inherent to SERS through the same 

mechanism of signal enhancement. Electromagnetic and chemical enhancement are known 

to cause signal fluctuations through various mechanisms as discussed elaborately in 

chapter 5. This makes SERS hugely reliable on an expert thus limiting the measurements 

to be carried out outside the lab atmosphere. 

Quantification: Though SERS has a potential for quantitative trace detection, accurate 

quantification is limited for very reasons of signal fluctuations and reproducibility. The 

intensity and the quantity are not directly correlated for reasons broadly discussed in 

chapter 5.  

Ultra-trace detection: Making the best of the SERS substrates in order to achieve ultra-

trace detection goes beyond fabrication of plasmonic substrates. Choosing the right 

wavelength close to the resonant excitation would enable achieving lower detection limits 

through SERRS. 
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Flexible substrates for easy sampling: Ease of sample collection is a key feature for field 

applications. Flexible substrates are not only low cost but would enable sample collection 

through swabbing as on when needed unlike rigid substrates.  

This thesis successfully attempted to address these challenges with different projects that 

have been taken up as shown in figure 6.1. Table 6.1 presents summary of all the substrates 

and their highlights.  

6.1.1. Machine Learning for Quantification in SERS 

Novel hydrophobic filter paper substrate has been fabricated by a simple method of spin 

coating it with Si oil followed by drop-casting, drying of Au nanoparticles to use it as a 

SERS substrate [4]. Machine learning techniques namely, PCA and SVR were used for 

quantification of trace explosive picric acid and a dye molecule with a remarkable accuracy 

of greater than 96%. The measurements were done with a portable Raman spectrometer 

and the total time to run the model was less than 10 s making it a promising tool for field 

applications. Some of the significant contributions made in this work are,  

a) For the first time, using a simple method of coating with Si oil, low-cost alternative for 

modifying the wettability of the Si oil has been proposed. HFPs had previously been 

reported to be either expensive or to require extensive pre- and post-processing. For 

the SERS experiments, FP was coated in a few prior works with alkyl ketene dimer 

(AKD) [5], (2-dodecen-1-yl)-diluted PDMS [6], succinic anhydride [7](60 USD for 

100 g), agar [8], and spin-coating perfluoroalkyltriethoxysilanes [9] (150 USD for 5 

g). In contrast coating with Si oil (15 USD for 500 mL) is a single step, cost effective 

method that has been prescribed so far.  

b) Using a portable Raman spectrometer, two analyte molecules, PA and CV were 

detected with sensitivity of 5 M and 100 nM, respectively. Significant data of nearly 

900 spectra has been collected for both the analytes with nearly 100 per concentration 

in order to full sample the substrate surface.  

c) Nonlinear machine learning models, PCA and SVR have been used in sequence in 

order to quantify the analyte molecule under study. The time required to run the 

program was less than 10s and this is the fastest algorithm so far used for quantification 

in SERS.  
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6.1.2. Femtosecond Laser Ablation of Metals and Semiconductors 

Femtosecond laser ablation has been utilised to fabricate nanostructures on metals and 

semiconductors and effects of different experimental parameters have been thoroughly 

studied. Some of the significant contributions made in these studies have been summarised 

below.  

6.1.2.1. Studies on Ag-Au nanostructures 

 

a) Using an amplifier system and Ag-Au as a substrate, effects of angle of incidence on 

the resulting nanostructures and consequently their SERS performance has been 

studied [10].  

b) It was found that at a particular angle of incidence of 100 the substrate has 

outperformed the other substrates at 00, 200, and 300 with rhodamine 6G as a probe 

molecule. This has been attributed to increase in ablation yield at this particular angle 

of incidence. 

c) Using contrasting nanostructures with debris deposited samples and periodic 

nanostructures after cleaning, the relationship between enhancement factor and 

reproducibility has been explored for the first time. An inverse relationship between 

these two has found implying good reproducibility in trace detection comes at the cost 

of enhancement.  

d) Further, these nanostructures were utilised for ultra-trace detection of R6G, CV, PA 

and cysteine, respectively with sensitivity of 10 fM, 100 fM, 100 nM, and 100 nM 

using resonant excitation through SERRS.  

6.1.2.2. Studies on Si Nanostructures 
 

a) As opposed to conventional laser ablation with amplifier system, a fs oscillator has 

been used to fabricate web-like nanostructures on Si as a low cost alternative for SERS 

substrate [11]. 

b) Effects of scanning speed and fluence on the web-like structures have been studied in 

detail and correlated with the existing literature [12]. 

c) The mechanism of formation of these web-like Si nanostructures has been thoroughly 

understood and the results obtained were analysed. 

d) After coating it with Au of 10 nm through thermal evaporation method, the substrates 

were utilised for SERS based detection of MB with a sensitivity of 1 M.  
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6.1.2.3. Studies on Ag, Cu using Cylindrical Focusing 

 

a) Using fs laser ablation through cylindrical focusing, large area ripple like structures 

were obtained on Ag and Cu unlike the resulting structures from Gaussian beam 

ablation. 

b) The Ag nanostructures were utilised for the detection of tetryl, RDX, and cytosine with 

a sensitivity of 50 nM, 1 M, 100 nM with a significant reproducibility of ~6%.  

c) Using the Ag structures and PCA, different species of bacteria, E. coli. have been 

classified and identified using the SERS data.   

d) Low cost, Cu NSs were utilised for the detection of tetryl, ammonium nitrate, MB with 

a sensitivity of 100 M, 50 M and 5 M with a remarkable RSD of 5%.  

6.1.3. Anisotropic Ag-Au dendrites for SERS 

Highly branched and anisotropic Ag dendrites decorated with Au have been synthesised 

using a simple electroless deposition on Si [13].  

a) The near field enhancement in the vicinity of the nanostructures has been studied using 

COMSOL Multiphysics clearly showing the advantage of anisotropic structures.  

b) Establishing the versatility of the substrates, they have used for the detection of diverse 

analyte molecules including explosives, dye molecules, pesticide and biomolecules. 

CV, adenine, cytosine, penicillin G, kanamycin, ampicillin, AN, and thiram were 

detected with sensitivity of 1 nM, 100 nM, 10 nM, 10 nM, 100 nM, 10 nM, 100 nM, 

10 nM, respectively.  

c) These substrates were utilized for developing a neural network model named neural 

network aided SERS (NNAS) to overcome signal fluctuations in the SERS data.  

d) Using a unique signal to noise ratio approach the spectra has been labelled as 

representative and non-representative of the molecules under study. Using the labels, 

the model has been trained for three analyte molecules, CV, PA, and Tetryl using SERS 

data from the Raman mapping. 

e) Out of sample predictions were also made to evaluate the model’s performance and 

resulted in accuracy of 0.982, 0.981 and, 0.985 for CV, Tetryl and, Picric Acid, 

respectively. 

f) The model has been compared with standard classification algorithm, SVM (accuracy 

89%) and was found to outperform.  
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g) We believe that our NNAS can bridge the performance gap of SERS substrates 

between lab and onsite detection.   

h) Through this work, a detailed protocol for SERS-based detection has been 

prescribed to encourage beginners in the field [14].  

   Figure 6.1: Summary of different contributions made in SERS in this thesis work. 

6.1.4. 2-D materials for SERS 

a) Femtosecond laser irradiation of MoS2 has been carried out in ethanol, water and 

methanol and the results were characterised using FESEM, UV-visible spectroscopy.  

b) Nano-plates like morphology was observed in water ablated samples and were 

subsequently used for SERS in combination with Si nanowires decorated with 

plasmonic nanoparticles.  

c) MoS2 has resulted in nearly ~2-fold enhancement in addition to the enhancement from 

plasmonic materials and has significantly increased the durability of the substrate to 

more than 200 days.  

d) Different molecules, malachite green, melamine, naphthalene, L-cysteine, and tetryl 

have been studied for trace detection and achieved sensitivity of 0.5 nM, 100 nM, 300 
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nM, 100 nM, 50 nM, respectively. In addition, the substrates have also demonstrated 

successful detection of E. coli in water.  

Table 6.1:  Summary of all the substrates, analyte molecules, and highlights of the studies 

performed in this thesis.  

S. No. SERS Substrate Molecules Lowest 

detected 

Highlights 

1 fs laser structured 

Cu 

Tetryl, AN, MB 100 M, 50 M 

and 5 M 

Low cost, 

reproducible (5 %) 

2 fs laser structured 

Ag 

Tetryl, RDX, 

Cytosine 
50 nM, 1 M, 

100 nM 

Highly 

reproducible with 

RSD of 6%.  

3 Chemically 

synthesised 

AuNPs@AgNDs 

CV, adenine, 

cytosine, 

penicillin G, 

kanamycin, 

ampicillin, AN, 

and Thiram 

1 nM, 100 nM, 

10 nM, 10 nM, 

100 nM, 10 nM, 

100 nM, 10 nM 

Low cost, durable 

substrates. 

Substrates were 

used to develop 

NNAS model to 

overcome signal 

fluctuations in 

SERS 

4 Hybrid MoS2 

layered plasmonic 

Si nanostructures  

Malachite 

Green, 

Melamine, 

Naphthalene, L-

Cysteine, tetryl 

and E.coli 

0.5 nM, 100 nM, 

300nM, 100 

nM, 50 nM  

Highly durable and 

low-cost substrates 

that could be even 

used for live 

organism sensing 

5 Flexible porous Si 

substrate  

MB, PA, AN, 

and Thiram 

50 nM, 1 µM, 2 

µM, and 1 µM 

Free standing, 

flexible and low-

cost substrate. 

6 Hydrophobic 

plasmonic filter 

paper  

Picric Acid and 

Crystal Violet 
5 M and 100 

nM 

Novel substrate, 

fabricated for the 

first time and used 

for rapid 

quantification 

using ML 

techniques.  

7 fs laser structured 

web-like Si 

coated with Au 

Methylene blue 1 M Formation of web-

like NSs is studied 

and the mechanism 

is understood.  

8 fs laser structured 

Ag-Au 

Rhodamine 6G, 

crystal violet, 

picric acid, and 

cysteine 

10 fM, 100 fM, 

100 nM, and 

100 nM 

SERRS has been 

used for ultra-trace 

detection. The 

relationship 

between 

enhancement and 

reproducibility is 

studied.  
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6.1.5. Flexible, Free Standing Porous Si Substrate for SERS 

a) Through a simple technique of wet etching in the presence of electric field, porous Si 

has been fabricated and was further decorated with Ag through etching in the presence 

of HF and AgNO3
 [15].  

b) Studies on the concentration and duration of etching has been carried out to optimise 

the SERS performance based on the hotspot density.  

c) These samples were employed for the trace detection of MB, PA, AN, and thiram with 

sensitivity of 50 nM, 1 µM, 2 µM, and 1 µM, respectively.  

d) With significant durability of ~90 days and cost much lower than the available 

commercial substrates, these samples are suitable for real world applications.       

A five-axis representation to visualise SERS performance has also been formulated for the 

first time and is presented in appendix C.            

6.2. Future Scope 

In many aspects, there is a significant room for improvement in the studies that have been 

carried out in this thesis.  

a) One important aspect is to focus on commercializing the substrates proposed in this 

thesis. In almost all the cases, the substrates have outperformed the commercially 

available substrates in terms of durability, sensitivity, versatility, and reproducibility. 

The HFP, for example can be commercialised by making paper strips analogues to pH 

strips and can be used, on the go, in the field as done in some of the previous studies. 

A hand-held Raman system will help in analyzing the data within a short period of 

time.  Large scale, single step synthesis of anisotropic nanostructures on Si wafer with 

preparation time of less than 2 hours has an enormous potential of commercial usage 

given the cost and superior performance.  

b) In the study of HFP for SERS, the enhancement could be significantly improved by 

using alloy or anisotropic nanostructures like stars or triangles as reported before [16]. 

In addition to trace detection, the substrates can be utilised for vapour detection of 

different explosives.  

c) A simple alternative for contact angle measurements have been temporarily used using 

a Samsung camera and a combination of lenses as shown in figure 6.2. The contact 

angle measured using the setup was found to have a difference of ~40 compared with 
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the angle measured using the commercial setup. The quality of the image and the setup 

can be significantly improved by using appropriate illumination and a better camera.  

d) The regression model used for quantification can be improved by collecting data for 

more intermediate concentrations for the analyte molecules under study. However, 

care here must be taken to ensure that the intensity distribution does not overlap as a 

part of exploratory data analysis. 

Figure 6.2: Images of a drop of Au nanoparticles and CuSO4 on HFP taken using home built 

contact angle setup.  

e) For the neural network model used in the thesis, the peaks used for calculating SNR 

were identified manually. Instead, a moving window algorithm can be used to identify 

the peaks, removing expert dependence at one more stage.  

f) Early identification of diseases using the SERS potential for trace detection is the 

current trend in the research concerning SERS [17]. The substrates prescribed in this 

thesis have a huge potential to be used for different applications in biology as well.  

The machine learning algorithms studied in this thesis will be a foundation for the 

analysis of complex data obtained from the biological systems. 

g) The COMSOL studies carried out in the thesis can be extended beyond plasmonics to 

study enhancements originating from Si nanostructures and MoS2 in combination with 

plasmonic materials. Studies on effects of light polarization can also be initiated.  

h) Gaussian distribution of the laser pulse during SERS measurements lead to 

inhomogeneous illustration and hence excitation of the hotspots in the selected area. 

Modifying the wave front for carrying out SERS measurements using adaptive optics 

can be considered to achieve uniform illustration and effective plasmonic resonance 

which would probably reflect in the reproducibility, sensitivity of the Raman signal 

[18].  



220 

 

References 
 

[1] B. Sharma, R.R. Frontiera, A.I. Henry, E. Ringe, R.P. Van Duyne, SERS: Materials, 

applications, and the future, Mater. Today. 15 (2012) 16–25. 

https://doi.org/10.1016/S1369-7021(12)70017-2. 

[2] F. Saviñon-Flores, E. Méndez, M. López-Castaños, A. Carabarin-Lima, K.A. 

López-Castaños, M.A. González-Fuentes, A. Méndez-Albores, A review on sers-

based detection of human virus infections: Influenza and coronavirus, Biosensors. 

11 (2021). https://doi.org/10.3390/bios11030066. 

[3] A.I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, B. Ren, Surface-enhanced Raman 

spectroscopy: Benefits, trade-offs and future developments, Chem. Sci. 11 (2020) 

4563–4577. https://doi.org/10.1039/d0sc00809e. 

[4] R. Beeram, D. Banerjee, L.M. Narlagiri, V.R. Soma, Machine learning for rapid 

quantification of trace analyte molecules using SERS and flexible plasmonic paper 

substrates, Anal. Methods. 14 (2022) 1788–1796. 

https://doi.org/10.1039/d2ay00408a. 

[5] M. Lee, K. Oh, H.K. Choi, S.G. Lee, H.J. Youn, H.L. Lee, D.H. Jeong, 

Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide 

Detection by Hydrophobicity Change of Paper Surface, ACS Sensors. 3 (2018) 

151–159. https://doi.org/10.1021/acssensors.7b00782. 

[6] N. V. Godoy, D. García-Lojo, F.A. Sigoli, J. Pérez-Juste, I. Pastoriza-Santos, I.O. 

Mazali, Ultrasensitive inkjet-printed based SERS sensor combining a high-

performance gold nanosphere ink and hydrophobic paper, Sensors Actuators, B 

Chem. 320 (2020) 128412. https://doi.org/10.1016/j.snb.2020.128412. 

[7] A. Raza, B. Saha, In situ silver nanoparticles synthesis in agarose film supported on 

filter paper and its application as highly efficient SERS test stripes, Forensic Sci. 

Int. 237 (2014) 42–46. https://doi.org/10.1016/j.forsciint.2014.01.019. 

[8] D.J. Lee, D.Y. Kim, Hydrophobic paper-based SERS sensor using gold 

nanoparticles arranged on graphene oxide flakes, Sensors. 19 (2019) 8–14. 

https://doi.org/10.3390/s19245471. 

[9] C. Zhang, T. You, N. Yang, Y. Gao, L. Jiang, P. Yin, Hydrophobic paper-based 

SERS platform for direct-droplet quantitative determination of melamine, Food 

Chem. 287 (2019) 363–368. https://doi.org/10.1016/j.foodchem.2019.02.094. 

[10] R. Beeram, V.R. Soma, Ultra-trace detection of diverse analyte molecules using 

femtosecond laser structured Ag – Au alloy substrates and SERRS, Opt. Mater. 137 

(2023) 113615. https://doi.org/10.1016/j.optmat.2023.113615. 

[11] R. Beeram, D. Banerjee, A. Mangababu, S.V. Rao, Femtosecond Laser Processed 

Web-like Silicon Nanostructures and Application in Surface Enhanced Raman 

Spectroscopy, Presented in CLEO-PACIFIC 2022, Japan. (Yet to be online) 

[12] B. Tan, K. Venkatakrishnan, Synthesis of fibrous nanoparticle aggregates by 

femtosecond laser ablation in air, Opt. Express. 17 (2009) 1064. 

https://doi.org/10.1364/oe.17.001064. 

[13] V.S. Vendamani, R. Beeram, M.M. Neethish, S.V.S.N. Rao, S.V. Rao, Wafer-scale 



221 

 

silver nanodendrites with homogeneous distribution of gold nanoparticles for 

biomolecules detection, IScience. 25 (2022) 104849. 

https://doi.org/10.1016/j.isci.2022.104849. 

[14] V.S. Vendamani, R. Beeram, S.V.S.N. Rao, S.V. Rao, Protocol for designing 

AuNP-capped Ag dendrites as surface-enhanced Raman scattering sensors for trace 

molecular detection, STAR Protoc. 4 (2023) 102068. 

https://doi.org/10.1016/j.xpro.2023.102068. 

[15] V.S. Vendamani, R. Beeram, S.V.S. Nageswara Rao, A.P. Pathak, V.R. Soma, 

Trace level detection of explosives and pesticides using robust, low-cost, free-

standing silver nanoparticles decorated porous silicon, Opt. Express. 29 (2021) 

30045. https://doi.org/10.1364/oe.434275. 

[16] S.S.B. Moram, C. Byram, V.R. Soma, Gold-nanoparticle- and nanostar-loaded 

paper-based SERS substrates for sensing nanogram-level Picric acid with a portable 

Raman spectrometer, Bull. Mater. Sci. 43 (2020) art. # 53. 

https://doi.org/10.1007/s12034-019-2017-8. 

[17] R. Beeram, K.R. Vepa, V.R. Soma, Recent Trends in SERS-Based Plasmonic 

Sensors for Disease Diagnostics , Biomolecules Detection , and Machine Learning, 

5 (2023) 328. https://doi.org/10.3390/bios13030328. 

[18] M. Shutova, A.M. Sinyukov, B. Birmingham, Z. Zhang, A. V. Sokolov, Adaptive 

optics approach to surface-enhanced Raman scattering, Opt. Lett. 45 (2020) 3709. 

https://doi.org/10.1364/ol.394548. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



222 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

                                                                                  

                 Intentional Blank Page  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



223 

 

Appendix A 
 

Support Vector Machine 
 

Support Vector Machine (SVM) is a powerful machine learning algorithm that is used for 

both classification and regression problems. It falls under supervised learning technique. 

It is extremely useful in solving both linear and non-linear problems and an even for outlier 

detection in some cases. Unlike many ML algorithms, SVMs are known to work well for 

small data sets as well.   SVM operates on the principle of identifying a hyperplane capable 

of effectively separating data points into distinct classes. This hyperplane is carefully 

chosen to maximize the distance between itself and the nearest data points from each class, 

known as support vectors. Termed as a 'decision boundary,' the hyperplane is defined by 

a set of parameters that are learned through the training process. In binary classification 

scenarios, SVM seeks to discover a hyperplane that optimizes the margin, representing the 

gap between the hyperplane and the closest data points from both classes. To achieve this, 

an optimization problem is formulated, aiming to minimize classification errors while 

simultaneously maximizing the margin. Several techniques, such as quadratic 

programming, gradient descent, and interior point methods, can be employed to solve this 

constrained optimization problem effectively. SVM can be extended to address multiclass 

classification tasks by adopting a one-vs-all approach. This strategy involves training 

multiple binary classifiers, each focused on differentiating one class from the rest. By 

combining the results from these binary classifiers, the overall classification of multiple 

classes is achieved. One notable advantage of SVM is its proficiency in handling high-

dimensional data efficiently. Unlike certain machine learning algorithms like decision 

trees and artificial neural networks, SVM exhibits reduced susceptibility to overfitting, a 

common concern where a model becomes excessively complex and struggles to generalize 

to new data points.  

The mathematics behind SVM can be understood using a simple binary classification 

problem. Let the input parameters be represented by a vector, x with a dimension, D. Each 

data point is called as a support vector. y be the label corresponding to the vector x and is 

the prediction variable. The equation of the hyperplane for this case can be given as, 

𝑤𝑥 − 𝑏 = 0 
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Where, w is a vector with same dimensionality as the input parameter, x and b is a real 

number. The above equation is equivalent to, 

                                            𝑤1𝑥1 +  𝑤2𝑥2 +  𝑤3𝑥3 + ⋯ 𝑤𝐷𝑥𝐷 − 𝑏 = 0 

Using a mathematical function, depending on the sign of the input vector relative to the 

hyperplane, the classification of different classes is performed. This can be constructed as, 

                                                           𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑥 − 𝑏) 

The problem then remains to find the hyperplane that best classifies the data i.e. to find 

optimum values of w, b represented hereafter as w* and b*. The job of the algorithm is to 

find these optimum values defined by a function, f(x) as, 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤∗𝑥 − 𝑏∗) 

Finding the right w* and x* is an optimization problem that is typical in any machine 

learning algorithm under given constraints. The constraints for the case of a binary 

classification problem that is shown in figure A.1 is, 

                                                       w𝑥𝑖 − 𝑏  1 if 𝑦𝑖 = +1 

                                                       w𝑥𝑖 − 𝑏  1 if 𝑦𝑖 = −1 

Figure A.1: Schematic of SVM for classification of two classes through a hyperplane.  
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The decision boundary given by the hyperplane in SVM also has a ‘margin’ which is the 

distance between two support vectors that are closest to the hyperplane. The optimization 

problem of SVM can be derived as,  

                                      min
1

2
 w 

2
 with the constraint of 𝑦𝑖(w 𝑥𝑖 − 𝑏) ≥ 1 

 

The example above is a simple binary classification making the hyperplane linear in a two-

dimensional plane. However, for higher dimensions the problem is complex and SVM in 

this case uses a kernel function. Kernel function is an alternative to polynomials functions 

which when used in higher orders tend to overfit the data, by using something called as 

‘kernel trick’.  
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Appendix B 
 

Guide to Implementing Machine Learning Using Python 
 

Python is a preferable language for implementing machine learning as it has a rich 

ecosystem of libraries and frameworks specifically designed for machine learning. Popular 

libraries like TensorFlow, Pandas, and scikit-learn provide extensive functionality and 

support for various machine learning tasks, making it easier to develop and deploy 

machine learning models. Python is also known for its simplicity and readability. Its clean 

syntax and easy-to-understand code make it accessible for both beginners and experienced 

developers. Here, we are providing a step-by-step guide to implement machine learning 

models for spectroscopy using python.  

1) Data curation: Machine learning models always perform better if there is statistically 

significant data. In fact, in a breakthrough study, it was found that any model performs 

equally good as the best model if the data set is large enough1. However, the quality of 

data is crucial keeping in mind the problem of interest (It is popularly said that 

‘Garbage in, Garbage out’). It always helps to formulate the problem before data 

collection. It has to be ensured that the data collected is a complete representation of 

the sample under study. Pandas is a popular library for reading and writing large data 

in python. 

2) Data Pre-processing: Spectroscopic data like SERS often need certain pre-processing 

before building a model. Baseline correction, peak identification and spike removal 

are a few such steps. Machine learning algorithms are sensitive to the magnitude of the 

data and hence often need any kind of scaling like normalization or standardization 

before progressing. This can be implemented by importing scalars like 

‘StandardScalar’ or Normalizer from the ‘sklearn.preprocessing’ library.   

3) Exploratory Data Analysis: It is important to have a fair understanding of data in 

hand before choosing a model. Exploratory data analysis includes finding the mean, 

distribution and outliers in the data to name a few. Finding relation between the 

variables under study (linear or nonlinear, for example) will be a guide for choosing a 

machine learning model.  

4) Choosing a model: Choosing a model is a crucial step and is guided by the following 

prescriptions. 



227 

 

a) Gain a thorough understanding of the problem you are trying to solve. Identify 

the type of machine learning problem, such as classification, regression, 

clustering, or recommendation. Different problems require different types of 

models.  

b) Consider the size of the dataset, the number of features, and the presence of 

any patterns or relationships. Understanding your data will help you determine 

which models are appropriate and whether any preprocessing or feature 

engineering is required.  

c) Models are built on certain assumptions about the data. Evaluate whether your 

data aligns with the assumptions of the model you are considering. For 

example, linear regression assumes a linear relationship between variables.  

d) Assess the complexity of the problem at hand. Simple models like linear 

regression or decision trees may be sufficient for straightforward problems, 

while complex problems with intricate patterns may require more advanced 

models like deep neural networks.  

e) Determine the performance requirements for your model. Consider factors 

such as accuracy, speed, interpretability, and scalability. Some models may 

trade off interpretability for better accuracy, so consider the trade-offs that align 

with your specific needs. Evaluate the performance of different models using 

appropriate evaluation metrics. Split your data into training and validation sets 

or use cross-validation techniques to assess how well each model generalizes 

to unseen data. Compare metrics like accuracy, precision, recall, F1-score, or 

mean squared error to select the model that performs the best. Data splitting 

can be implemented using scikit-learn library. 

f) Take into account the computational resources required to train and deploy the 

model. Some models may have higher memory or processing requirements, so 

ensure that you have the necessary infrastructure to support them.  

g) Leverage the knowledge and experience of the machine learning literature that 

is existing in the area of your study. Stay updated on the latest research, read 

papers, and participate in online forums and discussions to understand which 

models are commonly used and recommended for similar problems.  

h) It is often an iterative process to find the best model. Experiment with different 

models, fine-tune hyperparameters, and analyze the results. Refine your 

approach based on insights gained from each iteration. Hyperparameters are 
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model variables that can be changed in order to improve the accuracy of the 

model, like for example number of layers in an artificial neural network.  

5) Implementing the model of choice: Python provides an easy way to implement any 

complex model with its standard libraries. Scikit-learn offers a wide range of machine 

learning algorithms and techniques, including supervised and unsupervised learning, 

classification, regression, clustering, dimensionality reduction, and model selection. It 

covers many popular algorithms such as decision trees, random forests, support vector 

machines (SVM), k-nearest neighbours (KNN), PCA and more. For implementing 

neural networks, Keras is a popular library and is extremely easy to use.  

6) Results representation: Data visualization in python is made easy with libraries like 

matplotlib, and seaborn. Depending on the model and results of interest any 

representation of choice can be implemented using these models.  

A deeper understanding of the models and theory implementation can be achieved by 

attending Prof. Andrew Ng’s course on ML on Coursera. A screenshot of code 

implementing PCA is presented in figure B.1. 

Figure B.1: Screenshot presenting implementation of ML model on python. 
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Appendix C 
 

Five Axis Representation of SERS Performance 
 

In this thesis we have illustrated a novel and graphic way to represent the performance of 

any SERS substrate. There are five important metrics to evaluate a SERS substrate, namely 

a) Cost, b) Durability, c) Reproducibility, d) Enhancement Factor and, e) Sensitivity. Our 

visualization is a summary of this parameters which communicates complex information 

in one image. In our representation we have given a false scale for each of the parameter 

based on a range of values for each rank. These five parameters are further represented on 

five axes along concentric circles where each circle represents a number on the scale bar 

as shown in figure C1. A polygon is drawn joining all the points for each parameter for a 

given substrate. The colour of the polygon is also assigned based on an overall score 

calculated for all the five parameters.  

Figure C1: Skeleton for representation of SERS performance of a given substrate.  

The scale that is set for each parameter are as below in table C1. 
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Table C1: Summary of scale of parameters. 

Cost RSD Durability Sensitivity Enhancement Score 
Overall 

Score 

<1 USD <7% >3 months 
10 nM – few 

pM 
>107 4 

20-18       

Green 
 

1 USD-

5 USD 
7-12% 3-2 months 1-100 nM 107- 105 3 

18- 16         

Yellow 
 

5 USD-

10 USD 
12-20% 2 -3 weeks 1-100 M 105 – 103 2 

16-12          

Orange 
 

>10 

USD 
>20% <3 weeks <M <103 1 

<12              

Red 
 

 

Based on this representation, two substrates, AuNPs@AgNDs and hydrophobic filter 

paper has been evaluated and the representation are presented in figure C2. It is evident 

from the representation of the two substrates that AuNPs@AgNSs has clearly 

outperformed HFP in terms of durability, sensitivity and reproducibility, while the cost 

being comparable. These representations can also be used as a guide to improve the 

performance of a particular substrate based on the short comings. For example, the 

representation communicates that HFP has relatively low enhancement which can be 

improved on if focused specifically by using alloy or anisotropic NPs. Durability can also 

be improved by storing in vacuum atmosphere. Hence, this representation is a powerful 

tool to analyse, compare and estimate room for improvement for different SERS 

substrates.  

 

Figure C2: Representations of AuNPs@AgNDs substrate and hydrophobic filter paper.  
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